Texas Commission on Environmental Quality

Edwards Aquifer Application Cover Page

Our Review of Your Application

The Edwards Aquifer Program staff conducts an administrative and technical review of all applications. The turnaround time for administrative review can be up to 30 days as outlined in 30 TAC 213.4(e). Generally administrative completeness is determined during the intake meeting or within a few days of receipt. The turnaround time for technical review of an administratively complete Edwards Aquifer application is 90 days as outlined in 30 TAC 213.4(e). Please know that the review and approval time is directly impacted by the quality and completeness of the initial application that is received. In order to conduct a timely review, it is imperative that the information provided in an Edwards Aquifer application include final plans, be accurate, complete, and in compliance with 30 TAC 213.

Administrative Review

- 1. <u>Edwards Aquifer applications</u> must be deemed administratively complete before a technical review can begin. To be considered administratively complete, the application must contain completed forms and attachments, provide the requested information, and meet all the site plan requirements. The submitted application and plan sheets should be final plans. Please submit one full-size set of plan sheets with the original application, and half-size sets with the additional copies.
 - To ensure that all applicable documents are included in the application, the program has developed tools to guide you and web pages to provide all forms, checklists, and guidance. Please visit the below website for assistance: http://www.tceq.texas.gov/field/eapp.
- 2. This Edwards Aquifer Application Cover Page form (certified by the applicant or agent) must be included in the application and brought to the administrative review meeting.
- 3. Administrative reviews are scheduled with program staff who will conduct the review. Applicants or their authorized agent should call the appropriate regional office, according to the county in which the project is located, to schedule a review. The average meeting time is one hour.
- 4. In the meeting, the application is examined for administrative completeness. Deficiencies will be noted by staff and emailed or faxed to the applicant and authorized agent at the end of the meeting, or shortly after. Administrative deficiencies will cause the application to be deemed incomplete and returned.
 - An appointment should be made to resubmit the application. The application is re-examined to ensure all deficiencies are resolved. The application will only be deemed administratively complete when all administrative deficiencies are addressed.
- 5. If an application is received by mail, courier service, or otherwise submitted without a review meeting, the administrative review will be conducted within 30 days. The applicant and agent will be contacted with the results of the administrative review. If the application is found to be administratively incomplete, it can be retrieved from the regional office or returned by regular mail. If returned by mail, the regional office may require arrangements for return shipping.
- 6. If the geologic assessment was completed before October 1, 2004 and the site contains "possibly sensitive" features, the assessment must be updated in accordance with the *Instructions to Geologists* (TCEQ-0585 Instructions).

Technical Review

- 1. When an application is deemed administratively complete, the technical review period begins. The regional office will distribute copies of the application to the identified affected city, county, and groundwater conservation district whose jurisdiction includes the subject site. These entities and the public have 30 days to provide comments on the application to the regional office. All comments received are reviewed by TCEQ.
- 2. A site assessment is usually conducted as part of the technical review, to evaluate the geologic assessment and observe existing site conditions. The site must be accessible to our staff. The site boundaries should be

- clearly marked, features identified in the geologic assessment should be flagged, roadways marked and the alignment of the Sewage Collection System and manholes should be staked at the time the application is submitted. If the site is not marked the application may be returned.
- 3. We evaluate the application for technical completeness and contact the applicant and agent via Notice of Deficiency (NOD) to request additional information and identify technical deficiencies. There are two deficiency response periods available to the applicant. There are 14 days to resolve deficiencies noted in the first NOD. If a second NOD is issued, there is an additional 14 days to resolve deficiencies. If the response to the second notice is not received, is incomplete or inadequate, or provides new information that is incomplete or inadequate, the application must be withdrawn or will be denied. Please note that because the technical review is underway, whether the application is withdrawn or denied **the application fee will be forfeited**.
- 4. The program has 90 calendar days to complete the technical review of the application. If the application is technically adequate, such that it complies with the Edwards Aquifer rules, and is protective of the Edwards Aquifer during and after construction, an approval letter will be issued. Construction or other regulated activity may not begin until an approval is issued.

Mid-Review Modifications

It is important to have final site plans prior to beginning the permitting process with TCEQ to avoid delays.

Occasionally, circumstances arise where you may have significant design and/or site plan changes after your Edwards Aquifer application has been deemed administratively complete by TCEQ. This is considered a "Mid-Review Modification". Mid-Review Modifications may require redistribution of an application that includes the proposed modifications for public comment.

If you are proposing a Mid-Review Modification, two options are available:

- If the technical review has begun your application can be denied/withdrawn, your fees will be forfeited, and the plan will have to be resubmitted.
- TCEQ can continue the technical review of the application as it was submitted, and a modification application can be submitted at a later time.

If the application is denied/withdrawn, the resubmitted application will be subject to the administrative and technical review processes and will be treated as a new application. The application will be redistributed to the affected jurisdictions.

Please contact the regional office if you have questions. If your project is located in Williamson, Travis, or Hays County, contact TCEQ's Austin Regional Office at 512-339-2929. If your project is in Comal, Bexar, Medina, Uvalde, or Kinney County, contact TCEQ's San Antonio Regional Office at 210-490-3096

Please fill out all required fields below and submit with your application.

1. Regulated Entity Name: BASIS- Leander (RM 2243 and Ronald Reagan Public Improvement)						2. Regulated Entity No.:			
3. Customer Name: BASIS Texas Charter Schools, Inc.					s, Inc.	4. Customer No.:			
5. Project Type: (Please circle/check one)	New		Modif	icatior	1	Extension		Exception	
6. Plan Type: (Please circle/check one)			EXT	Technical Clarification	Optional Enhanced Measures				
7. Land Use: (Please circle/check one)	Resider	ntial	Non-r	esiden	itial) 8. Si		e (acres):	1.313 AC (CZP BOUNDARY)
9. Application Fee:			10. Permanent B		BMP(s	SMP(s): 15' Vegetative		e Filter Strip	
11. SCS (Linear Ft.):	N/A		12. AST/UST (No			o. Tar	ıks):	N/A	
13. County:	Williar	nson	14. Watershed:					Turkey Creek-	Brushy Creek

Application Distribution

Instructions: Use the table below to determine the number of applications required. One original and one copy of the application, plus additional copies (as needed) for each affected incorporated city, county, and groundwater conservation district are required. Linear projects or large projects, which cross into multiple jurisdictions, can require additional copies. Refer to the "Texas Groundwater Conservation Districts within the EAPP Boundaries" map found at:

http://www.tceq.texas.gov/assets/public/compliance/field_ops/eapp/EAPP%20GWCD%20map.pdf

For more detailed boundaries, please contact the conservation district directly.

Austin Region							
County:	Hays	Travis	Williamson				
Original (1 req.)							
Region (1 req.)	_	_					
County(ies)		_					
Groundwater Conservation District(s)	Edwards Aquifer AuthorityBarton Springs/ Edwards AquiferHays TrinityPlum Creek	Barton Springs/ Edwards Aquifer	NA				
City(ies) Jurisdiction	AustinBudaDripping SpringsKyleMountain CitySan MarcosWimberleyWoodcreek	AustinBee CavePflugervilleRollingwoodRound RockSunset ValleyWest Lake Hills	AustinCedar ParkFlorenceGeorgetownJerrellLeanderLiberty HillPflugervilleRound Rock				

San Antonio Region						
County:	Bexar	Comal	Kinney	Medina	Uvalde	
Original (1 req.)						
Region (1 req.)						
County(ies)						
Groundwater Conservation District(s)	Edwards Aquifer Authority Trinity-Glen Rose	Edwards Aquifer Authority	Kinney	EAA Medina	EAA Uvalde	
City(ies) Jurisdiction	Castle HillsFair Oaks RanchHelotesHill Country VillageHollywood ParkSan Antonio (SAWS)Shavano Park	Bulverde Fair Oaks Ranch Garden Ridge New Braunfels Schertz	NA	San Antonio ETJ (SAWS)	NA	

I certify that to the best of my knowledge, that the application is complete and accurate. This application is hereby submitted to TCEQ for administrative review and technical review.					
Emiliano Guerrero, P.E.					
Print Name of Customer/Authorized Agent	06/27/25				
Signature of Customer/Authorized Agent	Date				

FOR TCEQ INTERNAL USE ONLY					
Date(s)Reviewed: Date Administratively Complete:					
Received From:	Correct	Correct Number of Copies:			
Received By:	Distribu	ntion Date:			
EAPP File Number:	Complex	x:			
Admin. Review(s) (No.):	No. AR	Rounds:			
Delinquent Fees (Y/N):	Review '	Time Spent:			
Lat./Long. Verified:	SOS Cus	stomer Verification:			
Agent Authorization Complete/Notarized (Y/N):	Fee	Payable to TCEQ (Y/N):			
Core Data Form Complete (Y/N):	Check:	Signed (Y/N):			
Core Data Form Incomplete Nos.:		Less than 90 days old (Y/N):			

Contributing Zone Plan Exception

June 27, 2025

BASIS - Leander RM 2243 & Ronald Reagan Blvd Intersection

Leander, Texas 78641

Prepared for:

Texas Commission on Environmental Quality Attn: Edwards Aquifer Protection Program Prepared by:

Emiliano Guerrero, P.E. Texas Professional Engineer License No. 99386 Colliers Engineering & Design

3421 Paesanos Pkwy, Ste. 200 San Antonio TX 78231 Main: 877 627 3772 Colliersengineering.com

Project No. 909-05-02

Colliers Engineering & Design 3421 Paesanos Parkway San Antonio, TX 78231 726-204-9735 rheyna.rodriguez@collierseng.com

Date: June 24, 2025

To: Texas Commission on Environmental Quality (TCEQ)
Edwards Aquifer Protection Program

P.O. Box 13087

Austin, TX 78711-3087

Subject: Request for Expedited Review – Contributing Zone Plan (CZP)

Project Name: LEANDER COMMERCE PARK

Location: 8770 RANCH TO MARKET RD 2243, LEANDER, TEXAS

Dear TCEQ Review Team,

On behalf of our client, we respectfully request an expedited review of the Contributing Zone Plan (CZP) submitted for the LEANDER COMMERCE PARK project located at 8770 RANCH TO MARKET RD 2243, LEANDER, TEXAS.

This project is under a time-sensitive schedule due to coordination with on-site public infrastructure improvements and a targeted construction start date that supports critical milestones for school facility development. Delays in approval of this CZP may significantly impact the overall project timeline and the ability to meet permit coordination requirements with the City of Leander and other regulatory agencies.

We fully understand and appreciate TCEQ's regulatory responsibilities and remain committed to providing any supplemental documentation or clarification needed to facilitate this review.

Thank you for your consideration, and please feel free to contact me directly at 726-204-9735 or rheyna.rodriguez@collierseng.com if you have any questions or require additional information.

Sincerely,

Rheyna Rodriguez

Project Services Manager

Colliers Engineering & Design

Rhoyna Rodrigues

SECTION 1
Contributing Zone Exception
Request Form

Contributing Zone Exception Request Form

Texas Commission on Environmental Quality

for Regulated Activities on the Contributing Zone to the Edwards Aquifer and Relating to 30 TAC §213.24(1), Effective June 1, 1999

To ensure that the application is administratively complete, confirm that all fields in the form are complete, verify that all requested information is provided, consistently reference the same site and contact person in all forms in the application, and ensure forms are signed by the appropriate party.

Note: Including all the information requested in the form and attachments contributes to more streamlined technical reviews.

Signature

To the best of my knowledge, the responses to this form accurately reflect all information requested concerning the proposed regulated activities and methods to protect the Edwards Aquifer. This **Contributing Zone Exception Request Form** is hereby submitted for TCEQ review and executive director approval. The request was prepared by:

Print Name of Customer/Agent: Emiliano Guerrero, P.E.

Date: 06/27/2025

Signature of Customer/Agent:

Regulated Entity Name: BASIS- Leander (RM 2243 and Ronald Reagan Public Improvement)

Project Information

1. County: Williamson

2. Stream Basin: Brushy Creek

3. Groundwater Conservation District (if applicable): N/A

4. Customer (Applicant):

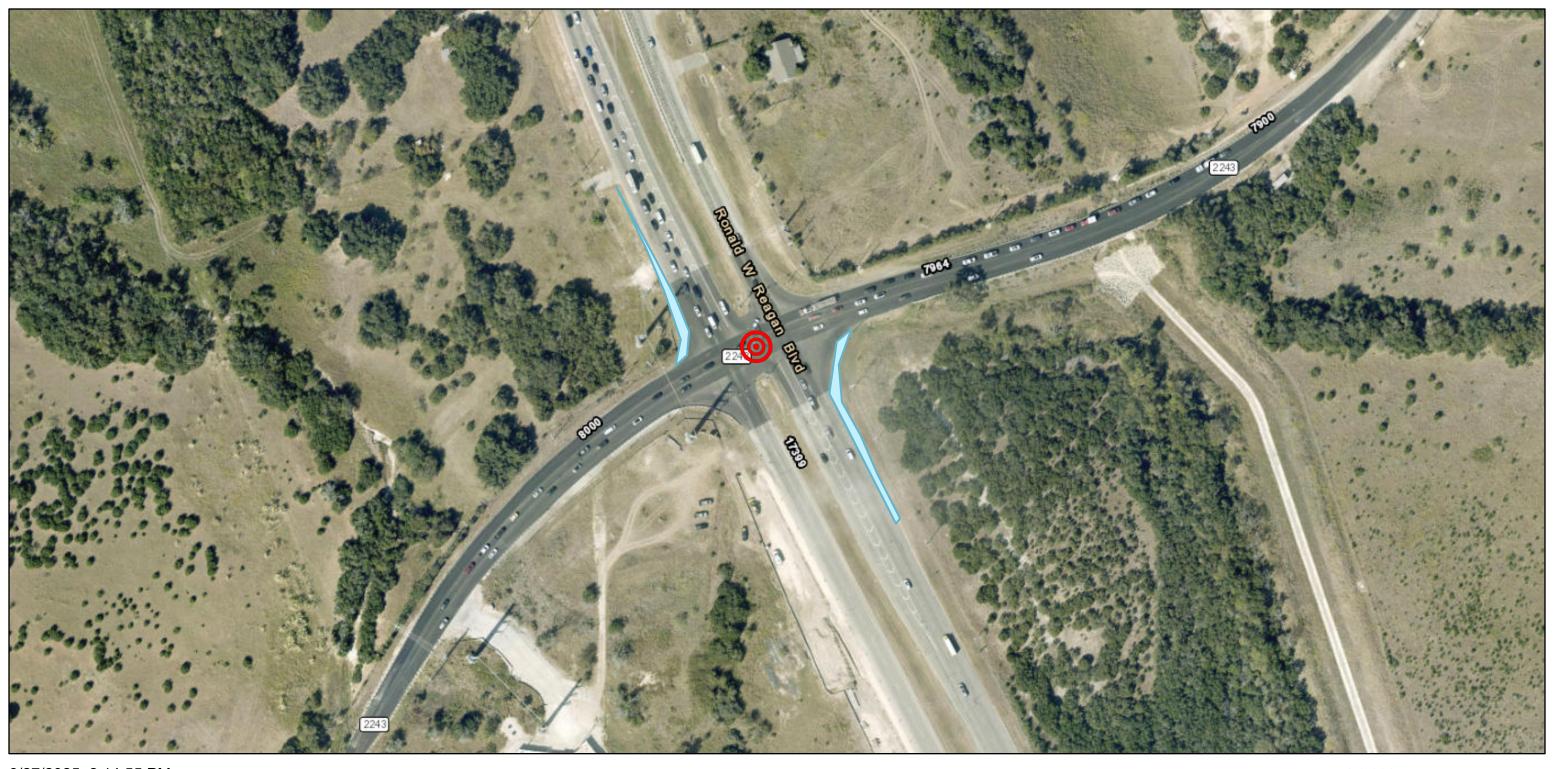
Contact Person: Andrew Freeman
Entity: Basis Texas Charter Schools, Inc.
Mailing Address: 404 E. Ramsey, #106

 City, State: San Antonio, TX
 Zip: 78216

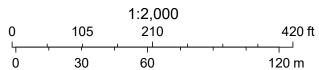
 Telephone: 210-876-9444
 Fax: _____

Email Address: <u>andre</u>w.freeman@btxschools.org

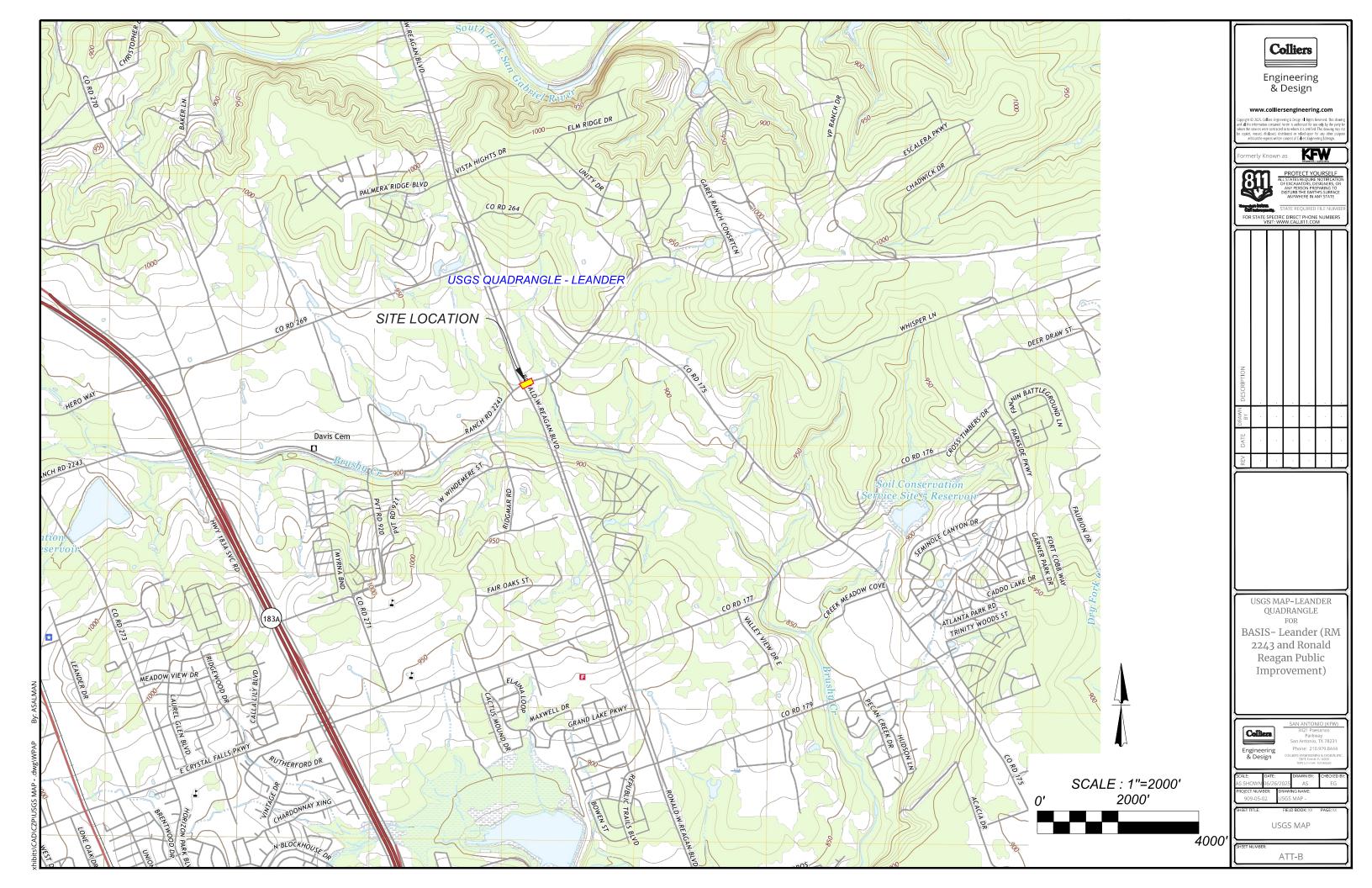
5.	Agent/Representative (If any):
	Contact Person: Emiliano Guerrero, P.E. Entity: Colliers Engineering & Design Mailing Address: 3421 Paesanos Parkway Ste. 200 City, State: San Antonio, Texas Zip: 78231 Telephone: 726 223 3146 Fax: Email Address: emiliano.guerrero@collierseng.com
6.	Project Location
	This project is inside the city limits of Leander This project is outside the city limits but inside the ETJ (extra-territorial jurisdiction) of
	This project is not located within any city limits or ETJ.
7.	The location of the project site is described below. Sufficient detail and clarity has been provided so that the TCEQ's Regional staff can easily locate the project and site boundaries for a field investigation. From the TCEQ Austin Regional Office (12100 Park 35 Circle, Austin, TX 78753), head north on IH-35 N for approximately 9 miles. Take exit Parmer Lane/FM 734, and turn left (west) onto FM 1431 (Whitestone Blvd). Continue on FM 1431 for about 8 miles, then turn right (north) onto Ronald Reagan Blvd. Proceed north for approximately 3.5 miles to reach the intersection of Ronald
8.	Reagan Blvd and RM 2243 (Hero Way) in Leander, TX. The project site is located at this intersection and includes improvements on two corners of the crossing. Attachment A - Road Map. A road map showing directions to and location of the project site is attached. The map clearly shows the boundary of the project site.
9.	Attachment B - USGS Quadrangle Map. A copy of the USGS Quadrangle Map (Scale: 1" = 2000') is attached. The map(s) should clearly show:
	✓ Project site boundaries.✓ USGS Quadrangle Name(s).
10.	Attachment C - Project Narrative. A detailed narrative description of the proposed project is provided at the end of this form. The project description is consistent throughout the application and contains, at a minimum, the following details:
	Area of the site Offsite areas Impervious cover Permanent BMP(s) Proposed site use Site history Previous development Area(s) to be demolished
11.	. Existing project site conditions are noted below:
	 □ Existing commercial site □ Existing industrial site □ Existing residential site ☒ Existing paved and/or unpaved roads


Undeveloped (Cleared)	
Undeveloped (Undisturbed/Not cleared)	
Other: Public Road Improvement	
12. Attachment D - Nature Of Exception. A narrative description of the nature of each exception requested is attached. All provisions of 30 TAC §213 Subchapter B for which an exception is being requested have been identified in the description.	ich

13. Attachment E - Equivalent Water Quality Protection. Documentation demonstrating equivalent water quality protection for surface streams which enter the Edwards Aquifer is attached.


Administrative Information

- 14. Submit one (1) original and one (1) copy of the application, plus additional copies as needed for each affected incorporated city, groundwater conservation district, and county in which the project will be located. The TCEQ will distribute the additional copies to these jurisdictions.
- 15. The applicant understands that prior approval under this section must be obtained from the executive director for the exception to be authorized.


BASIS- Leander (RM 2243 and Ronald Reagan Public Improvement)

6/27/2025, 2:14:55 PM

Esri, HERE, Garmin, (c) OpenStreetMap contributors, Source: Esri, Maxar, Earthstar Geographics, and the GIS User Community

PROJECT NARRATIVE

The proposed project involves minor roadway improvements located at the intersection of RM 2243 and Ronald Reagan Boulevard in the City of Leander, Williamson County, Texas. The project site lies entirely within the Edwards Aquifer Contributing Zone and is located within the South Brushy Creek watershed. The planned improvement includes converting existing paved shoulders into right-turn lanes on the northwest and southeast quadrants of the intersection. These improvements are being implemented to meet mitigation requirements identified in the Traffic Impact Analysis (TIA). All work will be confined to the existing TxDOT and/or municipal right-of-way.

Currently, the intersection consists of paved lanes, traffic signal infrastructure, and stabilized shoulders. Site runoff follows two primary drainage patterns. Drainage Area 1 (DA-1) drains southwest from the northwest quadrant of the intersection, while Drainage Area 2 (DA-2) drains southeast from the southeast quadrant. These areas exhibit gentle slopes ranging from 0% to 5%. No modification to the established drainage flow paths is proposed, and no new outfalls or flow redirection will be introduced. Exhibit EX-3A provides delineation of the existing drainage areas.

The proposed work involves minor widening to support two additional right-turn lanes. This will introduce approximately 0.188 acres of new impervious cover, resulting in a net increase of 0.154 acres. The total construction disturbance area is 0.364 acres, all of which remains within the public right-of-way. No existing structures will be impacted, and no offsite areas will be disturbed. To ensure stormwater quality treatment for the increase in impervious area, a fifteen-foot (15') engineered vegetative filter strip (VFS) will be installed along the downstream edge of the new shoulder. This VFS is designed in accordance with TCEQ's Edwards Aquifer Protection Program guidelines and will provide total suspended solids (TSS) removal consistent with permanent BMP performance expectations.

Construction will be conducted in compliance with the Texas Pollutant Discharge Elimination System (TPDES) regulations. A Storm Water Pollution Prevention Plan (SWPPP) will be developed, implemented, and maintained throughout construction. Temporary best management practices (BMPs), such as silt fences, stabilized construction entrances, and inlet protection, will be used to prevent erosion and off-site sediment transport. Following construction, all disturbed areas not paved will be stabilized with sod or approved native vegetation before removing temporary BMPs.

In accordance with the Texas Commission on Environmental Quality (TCEQ) rules under 30 Texas Administrative Code (TAC) §213, regulated activities in the Contributing Zone must implement measures to protect water quality. Although the net increase in impervious cover for this project is relatively small (0.154 acres), the installation of the engineered vegetative filter strip ensures appropriate stormwater quality protection in compliance with these regulations. The filter strip will serve as a permanent BMP and provide treatment through infiltration and filtering of sheet flow runoff.

This project consists solely of horizontal roadway improvements, does not include any vertical development, and is entirely within existing developed transportation infrastructure. The inclusion of the vegetative filter strip ensures the project will not pose a significant threat to water quality and is consistent with the requirements of the Edwards Aquifer Protection Program.

NATURE OF EXCEPTION

This submittal is being provided for a proposed roadway improvement project located at the intersection of RM 2243 and Ronald Reagan Boulevard in Leander, Williamson County, Texas. The proposed scope of work includes converting existing shoulders into right-turn lanes at the northwest and southeast corners of the intersection. The project area lies entirely within the Edwards Aquifer Contributing Zone and is located within the South Brushy Creek watershed.

The improvement will result in a total of 0.188 acres of new impervious cover, with a net increase of 0.154 acres. All work will occur within the existing TxDOT and/or municipal right-of-way, and the total construction disturbance area is approximately 0.364 acres.

To address stormwater quality concerns associated with the net increase in impervious cover, a fifteen-foot (15') engineered vegetative filter strip (VFS) will be installed along the downstream edge of the improved roadway shoulders. The VFS is designed in accordance with the Texas Commission on Environmental Quality (TCEQ) guidance and provides effective treatment of total suspended solids (TSS) through sheet flow filtration, serving as a permanent best management practice (BMP).

Additionally, a Storm Water Pollution Prevention Plan (SWPPP) will be developed and implemented throughout construction in accordance with Texas Pollutant Discharge Elimination System (TPDES) requirements. Temporary erosion and sedimentation controls—including silt fencing, stabilized construction entrances, and inlet protection—will be installed and maintained for the duration of the project. Upon project completion, disturbed areas not covered by pavement will be stabilized with sod or native vegetation.

This document serves to demonstrate compliance with TCEQ's Edwards Aquifer Protection Program and to provide supporting documentation for the proposed stormwater quality treatment approach utilizing engineered vegetative filter strips.

EQUIVALENT WATER QUALITY PROTECTION

This submittal is being provided for a proposed roadway improvement project at the intersection of RM 2243 and Ronald Reagan Boulevard in Leander, Williamson County, Texas. The proposed activity includes converting existing shoulders into right-turn lanes on the northwest and southeast corners of the intersection. The site is located within the Edwards Aquifer Contributing Zone and the South Brushy Creek watershed.

The project will result in approximately 0.188 acres of new impervious cover, with a net increase of 0.154 acres. Although this is a relatively small addition, permanent water quality protection will be provided for the increased impervious area.

A fifteen-foot (15') engineered vegetative filter strip (VFS) will be installed at the downstream edge of the widened shoulders. The VFS is designed to treat runoff through sheet flow filtration, effectively removing total suspended solids (TSS) and providing permanent stormwater quality treatment. The filter strip design is consistent with guidance from the Texas Commission on Environmental Quality (TCEQ) and is appropriate for the low-intensity runoff generated by this type of roadway improvement.

During construction, temporary erosion and sediment controls will be implemented in accordance with the project's Storm Water Pollution Prevention Plan (SWPPP). Specifically, silt fence will be installed along the downslope limits of the disturbed areas to prevent off-site sedimentation. The silt fence will remain in place and be maintained until the site is fully stabilized.

Upon completion of construction, all disturbed areas not covered by pavement will be stabilized with sod or native vegetation, and temporary BMPs will be removed. These combined measures will ensure both temporary and long-term protection of water quality for the Edwards Aquifer Contributing Zone.

SECTION 2 TEMPORARY STORMWATER SECTION

Temporary Stormwater Section

Texas Commission on Environmental Quality

for Regulated Activities on the Edwards Aquifer Recharge Zone and Relating to 30 TAC §213.5(b)(4)(A), (B), (D)(I) and (G); Effective June 1, 1999

To ensure that the application is administratively complete, confirm that all fields in the form are complete, verify that all requested information is provided, consistently reference the same site and contact person in all forms in the application, and ensure forms are signed by the appropriate party.

Note: Including all the information requested in the form and attachments contributes to more streamlined technical reviews.

Signature

To the best of my knowledge, the responses to this form accurately reflect all information requested concerning the proposed regulated activities and methods to protect the Edwards Aquifer. This **Temporary Stormwater Section** is hereby submitted for TCEQ review and executive director approval. The application was prepared by:

executive director approval. The application was prepared by:
Print Name of Customer/Agent: Emiliano Guerrero, P.E.
Date: <u>06/27</u> /2025
Signature of Customer/Agent:
A particular to the second of
Regulated Entity Name: <u>BASIS</u> - Leander (RM 2243 and Ronald Reagan Public Improvement)
Project Information
Potential Sources of Contamination
Examples: Fuel storage and use, chemical storage and use, use of asphaltic products, construction vehicles tracking onto public roads, and existing solid waste.
1. Fuels for construction equipment and hazardous substances which will be used during construction:
The following fuels and/or hazardous substances will be stored on the site:
These fuels and/or hazardous substances will be stored in:
Aboveground storage tanks with a cumulative storage capacity of less than 250

gallons will be stored on the site for less than one (1) year.

	 Aboveground storage tanks with a cumulative storage capacity between 250 gallons and 499 gallons will be stored on the site for less than one (1) year. Aboveground storage tanks with a cumulative storage capacity of 500 gallons or more will be stored on the site. An Aboveground Storage Tank Facility Plan application must be submitted to the appropriate regional office of the TCEQ prior to moving the tanks onto the project.
	Evels and hazardous substances will not be stored on the site.
2.	Attachment A - Spill Response Actions. A site specific description of the measures to be taken to contain any spill of hydrocarbons or hazardous substances is attached.
3.	Temporary aboveground storage tank systems of 250 gallons or more cumulative storage capacity must be located a minimum horizontal distance of 150 feet from any domestic, industrial, irrigation, or public water supply well, or other sensitive feature.
4.	Attachment B - Potential Sources of Contamination. A description of any activities or processes which may be a potential source of contamination affecting surface water quality is attached.

Sequence of Construction

- 5. Attachment C Sequence of Major Activities. A description of the sequence of major activities which will disturb soils for major portions of the site (grubbing, excavation, grading, utilities, and infrastructure installation) is attached.
 - For each activity described, an estimate (in acres) of the total area of the site to be disturbed by each activity is given.
 - For each activity described, include a description of appropriate temporary control measures and the general timing (or sequence) during the construction process that the measures will be implemented.
- 6. Name the receiving water(s) at or near the site which will be disturbed or which will receive discharges from disturbed areas of the project: Brushy Creek

Temporary Best Management Practices (TBMPs)

Erosion control examples: tree protection, interceptor swales, level spreaders, outlet stabilization, blankets or matting, mulch, and sod. Sediment control examples: stabilized construction exit, silt fence, filter dikes, rock berms, buffer strips, sediment traps, and sediment basins. Please refer to the Technical Guidance Manual for guidelines and specifications. All structural BMPs must be shown on the site plan.

7. Attachment D – Temporary Best Management Practices and Measures. TBMPs and measures will prevent pollution of surface water, groundwater, and stormwater. The construction-phase BMPs for erosion and sediment controls have been designed to retain sediment on site to the extent practicable. The following information is attached:

		A description of how BMPs and measures will prevent pollution of surface water, groundwater or stormwater that originates upgradient from the site and flows across the site.
		 A description of how BMPs and measures will prevent pollution of surface water or groundwater that originates on-site or flows off site, including pollution caused by contaminated stormwater runoff from the site. A description of how BMPs and measures will prevent pollutants from entering surface streams, sensitive features, or the aquifer.
		A description of how, to the maximum extent practicable, BMPs and measures will maintain flow to naturally-occurring sensitive features identified in either the geologic assessment, TCEQ inspections, or during excavation, blasting, or construction.
8.	X	The temporary sealing of a naturally-occurring sensitive feature which accepts recharge to the Edwards Aquifer as a temporary pollution abatement measure during active construction should be avoided.
		Attachment E - Request to Temporarily Seal a Feature. A request to temporarily seal a feature is attached. The request includes justification as to why no reasonable and practicable alternative exists for each feature.
		There will be no temporary sealing of naturally-occurring sensitive features on the site.
9.	X	Attachment F - Structural Practices . A description of the structural practices that will be used to divert flows away from exposed soils, to store flows, or to otherwise limit runoff discharge of pollutants from exposed areas of the site is attached. Placement of structural practices in floodplains has been avoided.
10.	X	Attachment G - Drainage Area Map . A drainage area map supporting the following requirements is attached:
		 For areas that will have more than 10 acres within a common drainage area disturbed at one time, a sediment basin will be provided. For areas that will have more than 10 acres within a common drainage area disturbed at one time, a smaller sediment basin and/or sediment trap(s) will be used.
		For areas that will have more than 10 acres within a common drainage area disturbed at one time, a sediment basin or other equivalent controls are not attainable, but other TBMPs and measures will be used in combination to protect down slope and side slope boundaries of the construction area.
		There are no areas greater than 10 acres within a common drainage area that will be disturbed at one time. A smaller sediment basin and/or sediment trap(s) will be used in combination with other erosion and sediment controls within each disturbed drainage area.

- There are no areas greater than 10 acres within a common drainage area that will be disturbed at one time. Erosion and sediment controls other than sediment basins or sediment traps within each disturbed drainage area will be used.
- 11. Attachment H Temporary Sediment Pond(s) Plans and Calculations. Temporary sediment pond or basin construction plans and design calculations for a proposed temporary BMP or measure have been prepared by or under the direct supervision of a Texas Licensed Professional Engineer. All construction plans and design information must be signed, sealed, and dated by the Texas Licensed Professional Engineer. Construction plans for the proposed temporary BMPs and measures are attached.
 - X N/A
- 12. Attachment I Inspection and Maintenance for BMPs. A plan for the inspection of each temporary BMP(s) and measure(s) and for their timely maintenance, repairs, and, if necessary, retrofit is attached. A description of the documentation procedures, recordkeeping practices, and inspection frequency are included in the plan and are specific to the site and/or BMP.
- 13. All control measures must be properly selected, installed, and maintained in accordance with the manufacturer's specifications and good engineering practices. If periodic inspections by the applicant or the executive director, or other information indicate a control has been used inappropriately, or incorrectly, the applicant must replace or modify the control for site situations.
- 14. If sediment escapes the construction site, off-site accumulations of sediment must be removed at a frequency sufficient to minimize offsite impacts to water quality (e.g., fugitive sediment in street being washed into surface streams or sensitive features by the next rain).
- 15. Sediment must be removed from sediment traps or sedimentation ponds not later than when design capacity has been reduced by 50%. A permanent stake will be provided that can indicate when the sediment occupies 50% of the basin volume.
- 16. Litter, construction debris, and construction chemicals exposed to stormwater shall be prevented from becoming a pollutant source for stormwater discharges (e.g., screening outfalls, picked up daily).

Soil Stabilization Practices

Examples: establishment of temporary vegetation, establishment of permanent vegetation, mulching, geotextiles, sod stabilization, vegetative buffer strips, protection of trees, or preservation of mature vegetation.

17. Attachment J - Schedule of Interim and Permanent Soil Stabilization Practices. A schedule of the interim and permanent soil stabilization practices for the site is attached.

- 18. Records must be kept at the site of the dates when major grading activities occur, the dates when construction activities temporarily or permanently cease on a portion of the site, and the dates when stabilization measures are initiated.
- 19. Stabilization practices must be initiated as soon as practicable where construction activities have temporarily or permanently ceased.

Administrative Information

- 20. All structural controls will be inspected and maintained according to the submitted and approved operation and maintenance plan for the project.
- 21. If any geologic or manmade features, such as caves, faults, sinkholes, etc., are discovered, all regulated activities near the feature will be immediately suspended. The appropriate TCEQ Regional Office shall be immediately notified. Regulated activities must cease and not continue until the TCEQ has reviewed and approved the methods proposed to protect the aquifer from any adverse impacts.
- 22. Silt fences, diversion berms, and other temporary erosion and sediment controls will be constructed and maintained as appropriate to prevent pollutants from entering sensitive features discovered during construction.

SPILL RESPONSE ACTIONS

If there is an accidental spill on site, the contractor shall respond with appropriate action. The contractor will be required to contact the owner and in turn the owner will contact the TCEQ in the event of a spill on site. In addition to the following guidance, reference the latest version of TCEQ's Technical Guidance Manual (TGM) RG-348 Section 1.4.16.

Cleanup

- 1. Clean up leaks and spills immediately.
- 2. Use a rag for small spills on paved surfaces, a damp mop for general cleanup, and absorbent material for larger spills. If the spilled material is hazardous, then the used cleanup materials are also hazardous and must be disposed of as hazardous waste.
- 3. Never hose down or bury dry material spills. Clean up as much of the material as possible and dispose of properly. See the waste management BMPs in this section for specific information.

Minor Spills

- 1. Minor spills typically involve small quantities of oil, gasoline, paint, etc. which can be controlled by the first responder at the discovery of the spill.
- 2. Use absorbent materials on small spills rather than hosing down or burying the spill.
- 3. Absorbent materials should be promptly removed and disposed of properly.
- 4. Follow the practice below for a minor spill:
 - Contain the spread of the spill.
 - Recover spilled materials.
 - Clean the contaminated area and properly dispose of contaminated materials.

Semi-Significant Spills

Semi-significant spills still can be controlled by the first responder along with the aid of other personnel such as laborers and the foreman, etc. This response may require the cessation of all other activities.

Spills should be cleaned up immediately:

- 1. Contain spread of the spill.
- 2. Notify the project foreman immediately.
- 3. If the spill occurs on paved or impermeable surfaces, clean up using "dry" methods (absorbent materials, cat litter and/or rags). Contain the spill by encircling with absorbent materials and do not let the spill spread widely.
- 4. If the spill occurs in dirt areas, immediately contain the spill by constructing an earthen dike. Dig up and properly dispose of contaminated soil.

Colliers

Engineering & Design

If the spill occurs during rain, cover spill with tarps or other material to prevent contaminating runoff.

Significant/Hazardous Spills

For significant or hazardous spills that are in reportable quantities:

- Notify the TCEQ by telephone as soon as possible and within 24 hours at (512)339-2929 (Austin) or 210-490-3096 (San Antonio) between 8 AM and 5 PM. After hours, contact the Environmental Release Hotline at 1-800-832-8224. It is the contractor's responsibility to have all emergency phone numbers at the construction site.
- 2. For spills of federal reportable quantities, in conformance with the requirements in 40 CFR parts 110,119, and 302, the contractor should notify the National Response Center at (800) 424-8802.
- 3. Notification should first be made by telephone and followed up with a written report.
- 4. The services of a spills contractor or a Haz-Mat team should be obtained immediately. Construction personnel should not attempt to clean up until the appropriate and qualified staffs have arrived at the job site.
- 5. Other agencies which may need to be consulted include, but not limited to, the City Police Department, County Sheriff Office, Fire Departments, etc.

Vehicle and Equipment Maintenance

- 1. If maintenance must occur onsite, use a designated area and a secondary Containment, located away from drainage courses, to prevent the runoff of storm water and the runoff of spills.
- 2. Regularly inspect onsite vehicles and equipment for leaks and repair immediately
- 3. Check incoming vehicles and equipment (including delivery trucks, and employee and subcontractor vehicles) for leaking oil and fluids. Do not allow leaking vehicles or equipment onsite.
- 4. Always use secondary containment, such as a drain pan or drop cloth, to catch spills or leaks when removing or changing fluids.
- 5. Place drip pans or absorbent materials under paving equipment when not in use.
- 6. Use absorbent materials on small spills rather than hosing down or burying the spill. Remove the absorbent materials promptly and dispose of properly.
- 7. Promptly transfer used fluids to the proper waste or recycling drums. Don't leave full drip pans or other open containers lying around.
- 8. Oil filters disposed of in trashcans or dumpsters can leak oil and pollute stormwater. Place the oil filter in a funnel over a waste oil-recycling drum to drain excess oil before disposal. Oil filters can also be recycled. Ask the oil supplier or recycler about recycling oil filters.
- Store cracked batteries in a non- leaking secondary container. Do this with all cracked batteries even if you think all the acid has drained out. If you drop a

battery, treat it as if it is cracked. Put it into the containment area until you are sure it is not leaking.

Vehicle and Equipment Fueling

- 1. If fueling must occur on site, use designated areas, located away from drainage courses, to prevent the runoff of stormwater and the runoff of spills.
- 2. Discourage "topping off" of fuel tanks.
- 3. Always use secondary containment, such as a drain pan, when fueling to catch spills/ leaks.

POTENTIAL SOURCES OF CONTAMINATION

During Construction:

- 1. Oil, grease, fuel, and hydraulic fluid contamination from construction equipment and vehicle dripping.
- 2. Hydrocarbons from paving operations.
- 3. Miscellaneous trash and litter from construction workers and material wrappings.
- 4. Construction debris.
- 5. Silt leaving the site.

Ultimate Use:

- 1. Vehicle drippings within parking lot.
- 2. Stormwater runoff contamination from fertilizers, herbicides, and pesticides.
- 3. Groundwater contamination from leakage in wastewater system.

SEQUENCE OF MAJOR ACTIVITIES

Intended Schedule or Sequence of Major Activities:

- 1) Installation of BMPs
 - Appropriate Temporary BMPs:
 - Stabilized Construction Entrance/Exit
 - Construction Staging Area
- 2) Site Clearing Activities (±0.364 Acres)
 - Appropriate Temporary BMPs:
 - Stabilized Construction Entrance/Exit
 - Silt Fence
 - Inlet Protection/Rock Berm
 - Tree Protection
 - Construction Staging Area
- 3) Earthwork & Grading (±0.364 Acres)
 - Appropriate Temporary BMPs:
 - Stabilized Construction Entrance/Exit
 - Silt Fence
 - Inlet Protection/Rock Berm
 - Tree Protection
 - Construction Staging Area
- 4) Construction of Utilities
- 5) Paving Activities
 - Subgrade
 - Base
 - Pavement
- 6) Building Construction
- 7) Soil Stabilization
 - Appropriate Temporary BMPs:
 - Stabilized Construction Entrance/Exit
 - Silt Fence
 - Inlet Protection/Rock Berm
 - Tree Protection
 - Construction Staging Area
- 8) Site cleanup and Removal of temporary BMPs

TEMPORARY BEST MANAGEMENT PRACTICES AND MEASURES

Temporary BMPs will be installed prior to soil disturbing construction activity. Silt fencing will be placed along the down-gradient sides of the property to prevent silt from escaping the construction area. Inlet protection will be placed on all inlets. A temporary construction entrance will be placed on site to reduce vehicle "tracking" onto adjoining streets. A concrete washout pit will be used to collect all excess concrete during construction. A construction staging area will be used for equipment storage and vehicle maintenance.

BMPs for this project will protect surface water or groundwater from turbid water, phosphorus, sediment, oil, and other contaminants, which may mobilize in storm water flows by slowing the flow of runoff to allow sediment and suspended solid to settle out of the runoff.

Practices may also be implemented on site for interim and permanent stabilization. Stabilization practices may include but are not limited to: establishment of temporary vegetation, establishment of permanent vegetation, mulching, geotextiles, sod stabilization, vegetative buffer strips, protection of existing trees and vegetation, and other similar measures.

The BMPs for this project are designed to allow water to pass through after sedimentation has occurred. Existing flow patterns will be maintained to any naturally-occurring sensitive features that are discovered during construction.

REQUEST TO TEMPORARILY SEAL A FEATURE

There will be no temporary sealing of any naturally occurring features on site.

STRUCTURAL PRACTICES

structural Best Management Practices (BMPs) will be implemented to minimize sediment runoff and protect water quality during construction activities at the intersection of RM 2243 and Ronald Reagan Boulevard. Given the limited disturbance area and scope of work, the primary structural BMP to be utilized is **silt fence**.

Silt fencing will be installed along the **down-gradient sides** of the disturbed areas to prevent sediment from leaving the site and impacting surrounding areas or stormwater systems. The silt fence will be installed prior to the start of construction and maintained throughout the duration of the project until final stabilization is achieved.

No other structural BMPs such as inlet protection, stabilized construction entrances, or concrete washout pits are necessary due to the **small scale (0.364 acres disturbed)** and nature of the improvements (minor widening within existing right-of-way). All disturbed areas not paved will be stabilized with **sod** following construction.

The location of the silt fence is shown on the CZP Site Plan (**EX-1**), and details and specifications are provided in the CZP Site Plan Detail Sheet (**EX-2**) located in the construction document set at the end of this report.

DRAINAGE AREA MAP

A drainage area map is included at the end of this report (EX-3A & EX-3B).

TEMPORARY SEDIMENT POND(S) PLANS AND CALCULATIONS

For this project, there are no disturbed areas over 10 acres within a common drainage watershed that will be disturbed at the same time. Therefore, no temporary sediment ponds are proposed.

INSPECTION AND MAINTENANCE FOR BMPs

MAINTENANCE

The only erosion and sediment control BMP proposed for this project is **silt fence**, which will be installed along the downslope edge of disturbed areas during construction. The silt fence will be maintained in good condition and inspected regularly to ensure proper function. Sediment will be removed when accumulation reaches 6 inches. Any torn, collapsed, or displaced sections of the silt fence will be repaired or replaced immediately. Once final stabilization is achieved, the silt fence will be removed, and the area will be restored with sod.

INSPECTIONS

A qualified individual designated by the permittee will inspect the BMPs **once per week** and after any rainfall event of 0.5 inches or greater. The inspection report will include the date of inspection, name of the inspector, condition of the silt fence, and any corrective actions taken. If deficiencies are observed, they will be corrected within 7 days, and the SWPPP will be updated as necessary. Inspection logs will be maintained onsite and available for review.

Major Observations Will Include:

- Sediment buildup needing removal
- Damage or failure of silt fence
- Any erosion or offsite sediment discharge
- Areas needing additional stabilization

ATTACHMENT I

INSPECTION FORM

NAME OF INSPECTOR					
Inspector must attach a brief summary of qualifications to this report.)					
DATE					
BEST MANAGEMENT PRACTICES (BMPs)					
☐ Vegetative Buffers					
☐In Compliance ☐Out of Compliance ☐Not Applicable					
Comments/Maintenance Required:					
Soil Covering (Including mulch and temporary vegetation)					
☐In Compliance ☐Out of Compliance ☐Not Applicable					
Comments/Maintenance Required:					
Outlet Protection					
☐In Compliance ☐Out of Compliance ☐Not Applicable					
Comments/Maintenance Required:					
Sediment Control Basins					
☐ In Compliance ☐ Out of Compliance ☐ Not Applicable					
Comments/Maintenance Required:					

ATTACHMENT I

☐ Silt Fence	&
☐In Compliance ☐Out of Compliance ☐Not Applicable	
Comments/Maintenance Required:	
Stabilized Entrances/Exits	
☐In Compliance ☐Out of Compliance ☐Not Applicable	
Comments/Maintenance Required:	
☐ Construction Staging Areas	
☐In Compliance ☐Out of Compliance ☐Not Applicable	
Comments/Maintenance Required:	
☐ Inlet Protection	
☐In Compliance ☐Out of Compliance ☐Not Applicable	
Comments/Maintenance Required:	
☐ Gravel Filter Bags	
☐In Compliance ☐Out of Compliance ☐Not Applicable	
Comments/Maintenance Required:	
☐ Vegetated Filter Strip	
☐In Compliance ☐Out of Compliance ☐Not Applicable	
Comments/Maintenance Required:	

ATTACHMENT I

☐ Concrete Truck Washout Pit	&
☐ In Compliance ☐ Out of Compliance ☐ Not Applicable Comments/Maintenance Required:	
☐ Trash Receptacles	
☐In Compliance ☐Out of Compliance ☐Not Applicable	
Comments/Maintenance Required:	
☐ General Site Cleanliness	
☐In Compliance ☐Out of Compliance ☐Not Applicable	
Comments/Maintenance Required:	
□ Other	
☐In Compliance ☐Out of Compliance ☐Not Applicable	
Comments/Maintenance Required:	
☐ Other	
☐In Compliance ☐Out of Compliance ☐Not Applicable	
Comments/Maintenance Required:	
☐In Compliance ☐Out of Compliance ☐Not Applicable	
Comments/Maintenance Required:	

ATTACHMENT I

MAJOR OBSERVATIONS

At a minimum, inspector shall note any evidence of erosion, sediment discharges from the site, BMPs requiring maintenance, BMPs requiring modification, and any additional BMPs required.
CERTIFICATION
"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."
"I further certify I am an authorized signatory in accordance with the provisions of 30 TAC §305.128."
INSPECTOR NAME/SIGNATURE
DATE
OWNER NAME/SIGNATURE
DATE

SCHEDULE OF INTERIM AND PERMANENT SOIL STABILIZATION

Construction practices shall disturb the minimal amount of existing ground cover as required for land clearing, grading, and construction activity for the shortest amount of time possible to minimize the potential of erosion and sedimentation from the site. Existing vegetation shall be maintained and left in place until it is necessary to disturb for construction activity. For this project the following stabilization practices will be implemented:

- 1. Hydraulic Mulch and Seeding: Disturbed areas subject to erosion shall be stabilized with hydraulic mulch and/or seeded and watered to provide interim stabilization. For areas that are not to be sodded as per the project landscaping plan, a minimum of 85% vegetative cover will be established to provide permanent stabilization.
- 2. Sodding and Wood Mulch: As per the project landscaping plan, Sodding and wood mulch will be applied to landscaped areas to provide permanent stabilization prior to project completion.

Records of the following shall be maintained by the permitee in the attached Project Timeline:

- a) The dates when major grading activities occur;
- b) The dates when construction activities temporarily or permanently cease on a portion of the site; and
- c) The dates when stabilization measures are initiated.

Stabilization measures must be initiated as soon as practical in portions of the site where construction activities have temporarily or permanently ceased, and except as provided in the following, must be initiated no more that fourteen (14) days after the construction activity in that portion of the site has temporarily or permanently ceased:

Where the initiation of stabilization measures by the 14th day after construction activity temporarily or permanently ceased is precluded by snow cover or frozen ground conditions, stabilization measures must be initiated as soon as practical.

Where construction activity on a portion of the site is temporarily ceased and earth disturbing activities will be resumed within twenty-one (21) days, temporary stabilization measures do not have to be initiated on that portion of the site.

In arid areas (areas with an average rainfall of 0-10 inches), semiarid areas (areas with an average annual rainfall of 10 to 20 inches), and areas experiencing droughts where the initiation of stabilization measures by the 14th day after construction activity has temporarily or permanently ceased is precluded by seasonably arid conditions, stabilization measures must be initiated as soon as practical. For interim stabilization during drought conditions best management practices will be implemented. These may include but are not limited to geotextile blankets and matting, hydromulch, diversion structures and/or structural controls such as silt

fence and rock berms. These BMPs are to be maintained in accordance with the Design inspection/maintenance schedule provided in Attachment I.

PROJECT TIMELINE

	PROJECT TIMELINE		
	DATES WHEN MAJOR GRADING ACTIVITIES OCCUR		
Date	Construction Activity		
	,		
	DATES WHEN CONSTRUCTION ACTIVITIES		
	TEMPORARILY OR PERMANENTLY CEASE		
Date	Construction Activity		
DA	TES WHEN STABILIZATION MEASURES ARE INITIATED		
Date	Stabilization Activity		

SECTION 3 ADDITIONAL FORMS

OWNER AUTHORIZATION FORM

Owner Authorization Form

Edwards Aquifer Protection Program

Instructions

Complete the following form by adding the requested information in the fields below. The form must be notarized for it to be considered complete. Attach it to other programmatic submittals required by 30 Texas Administrative Code (30 TAC), Chapter 213, and provide it to TCEQ's Edwards Aquifer Protection Program (EAPP) as part of your application.

If you have questions on how to fill out this form or about EAPP, please contact us by phone at 512-339-2929 or by e-mail at eapp@tceq.texas.gov.

Landowner Authorization

I, Jon Spears of 8770 Leander Partners LLC

am the owner of the property located at:

A 16.736 acre tract of land in the E. D. Harmon Survey, Abstract 6, Williamson County, Texas, located 0.63 miles east of the US Hwy 183 and RM 2243 intersection.

and am duly authorized in accordance with 30 TAC 213.4(c)(2) and 213.4(d)(1), or 30 TAC 213.23(c)(2) and 213.23(d), relating to the right to submit an application, signatory authority, and proof of authorized signatory.

I do hereby authorize BASIS Texas Charter Schools, Inc.

To conduct construction of permanent BMPs stated within this Contributing Zone Plan

At A 16.736 acre tract of land in the E. D. Harmon Survey, Abstract 6, Williamson County, Texas, located 0.63 miles east of the US Hwy 183 and RM 2243 intersection.

Landowner Acknowledgement

I understand that 8770 Leander Partners LLC

Is ultimately responsible for the compliance with the approved or conditionally approved Edwards Aquifer protection plan and any special conditions of the approved plan through all phases of plan implementation even if the responsibility for compliance and the right to possess and control the property referenced in the application has been contractually assumed by another legal entity. I further understand that any failure to comply with any condition of the executive director's approval is a violation and subject to administrative rule or orders and penalties as provided under 30 TAC 213.10, relating to enforcement. Such violations may also be subject to civil penalties.

Landowner Signature Landowner Signature Date THE STATE § OF Texas County § of Harris BEFORE ME, the undersigned authority, on this day personally appeared known to me to be the person whose name is subscribed to the foregoing instrument and acknowledged to me that (s)he executed same for the purpose and consideration therein expressed. GIVEN under my hand and seal of office on this $\underline{5}^{\text{th}}$ day of $\underline{\underline{\text{May}}}$ Click or tap here to add ID NOTARY PUBLIC **DONNA WHITMIRE** Leana Whitmire Notary Public, State of Texas Comm. Expires 10-18-2026 Typed or Printed Name of Notary Notary ID 2206650 MY COMMISSION EXPIRES: Date October 18, 2026 **Optional Attachments** Select All that apply:

☐ Deed Restricted Easement

☐ Other legally binding documents

□ Lease Agreement□ Signed Contract

Owner Authorization Form

Edwards Aquifer Protection Program

Instructions

Complete the following form by adding the requested information in the fields below. The form must be notarized for it to be considered complete. Attach it to other programmatic submittals required by 30 Texas Administrative Code (30 TAC), Chapter 213, and provide it to TCEQ's Edwards Aquifer Protection Program (EAPP) as part of your application.

If you have questions on how to fill out this form or about EAPP, please contact us by phone at 512-339-2929 or by e-mail at eapp@tceq.texas.gov.

Landowner Authorization

I, CHESTORION KINOf Cedar Park VFW #10427 Post

am the owner of the property located at:

Parcel ID R031314 and Parcel ID R375914

and am duly authorized in accordance with 30 TAC 213.4(c)(2) and 213.4(d)(1), or 30 TAC 213.23(c)(2) and 213.23(d), relating to the right to submit an application, signatory authority, and proof of authorized signatory.

I do hereby authorize BASIS Texas Charter Schools, Inc.

To conduct construction of permanent BMPs stated within this Contributing Zone Plan

At Precise location of the authorized regulated activities.

Landowner Acknowledgement

I understand that Cedar Park VFW #10427 Post

Is ultimately responsible for the compliance with the approved or conditionally approved Edwards Aquifer protection plan and any special conditions of the approved plan through all phases of plan implementation even if the responsibility for compliance and the right to possess and control the property referenced in the application has been contractually assumed by another legal entity. I further understand that any failure to comply with any condition of the executive director's approval is a violation and subject to administrative rule or orders and penalties as provided under 30 TAC 213.10, relating to enforcement. Such violations may also be subject to civil penalties.

Landowner Signature

Landowner Signature
04/16/2025
Date
THE STATE § OF Texas
County § of WILLIAMSON
BEFORE ME, the undersigned authority, on this day personally appeared
ChristopherKing
known to me to be the person whose name is subscribed to the foregoing instrument and acknowledged to me that (s)he executed same for the purpose and consideration therein expressed.
GIVEN under my hand and seal of office on this let day of April, 2025
Click or tap here to add ID NOTARY PUBLIC Devri Izzard Nurnarde 3
Typed or Printed Name of Notary MY COMMISSION EXPIRES: Date 05-0-20-7 Notary Public, State of Texas Comm. Expires 05-01-2027 Notary ID 130211108
Optional Attachments
Select All that apply:
□ Lease Agreement
□ Signed Contract
□ Deed Restricted Easement
□ Other legally binding documents

Agent Authorization Form

For Required Signature
Edwards Aquifer Protection Program
Relating to 30 TAC Chapter 213
Effective June 1, 1999

1	Shane Rotter	
	Print Name	
	Environmental Specialist	
	Title - Owner/President/Other	
of	TxDOT	
	Corporation/Partnership/Entity Name	
have authorized	Colliers Engineering & Design Representatives	
	Print Name of Agent/Engineer	
of	Colliers Engineering & Design	
	Print Name of Firm	

to represent and act on the behalf of the above named Corporation, Partnership, or Entity for the purpose of preparing and submitting this plan application to the Texas Commission on Environmental Quality (TCEQ) for the review and approval consideration of regulated activities.

I also understand that:

- The applicant is responsible for compliance with 30 Texas Administrative Code Chapter 213 and any condition of the TCEQ's approval letter. The TCEQ is authorized to assess administrative penalties of up to \$10,000 per day per violation.
- For those submitting an application who are not the property owner, but who have the right to control and possess the property, additional authorization is required from the owner.
- Application fees are due and payable at the time the application is submitted. The
 application fee must be sent to the TCEQ cashier or to the appropriate regional office.
 The application will not be considered until the correct fee is received by the
 commission.
- A notarized copy of the Agent Authorization Form must be provided for the person preparing the application, and this form must accompany the completed application.

TCEQ-0599 (Rev.04/01/2010)		Page 2 of 2

No person shall commence any regulated activity on the Edwards Aquifer Recharge Zone, Contributing Zone or Transition Zone until the appropriate application for the activity has been filed with and approved by the Executive Director.

SIGNATURE PAGE:

	So cer
Applicant's Signature	5/1/25 Date
THE STATE OF§	
County of§	
to me to be the person whose r	authority, on this day personally appearedknown name is subscribed to the foregoing instrument, and acknowledged to rethe purpose and consideration therein expressed.
	NOTARY PUBLIC
	Typed or Printed Name of Notary
	MY COMMISSION EXPIRES:

Agent Authorization Form

For Required Signature
Edwards Aquifer Protection Program
Relating to 30 TAC Chapter 213
Effective June 1, 1999

	Andrew Freeman	
	Print Name	
	Executive Director	
	Title - Owner/President/Other	
of	BASIS Texas Charter Schools Inc.	
	Corporation/Partnership/Entity Name	
have authorized	Colliers Engineering & Design Representatives	
	Print Name of Agent/Engineer	
of	Colliers Engineering & Design	
	Print Name of Firm	

to represent and act on the behalf of the above named Corporation, Partnership, or Entity for the purpose of preparing and submitting this plan application to the Texas Commission on Environmental Quality (TCEQ) for the review and approval consideration of regulated activities.

I also understand that:

- 1. The applicant is responsible for compliance with 30 Texas Administrative Code Chapter 213 and any condition of the TCEQ's approval letter. The TCEQ is authorized to assess administrative penalties of up to \$10,000 per day per violation.
- 2. For those submitting an application who are not the property owner, but who have the right to control and possess the property, additional authorization is required from the owner.
- 3. Application fees are due and payable at the time the application is submitted. The application fee must be sent to the TCEQ cashier or to the appropriate regional office. The application will not be considered until the correct fee is received by the commission.
- 4. A notarized copy of the Agent Authorization Form must be provided for the person preparing the application, and this form must accompany the completed application.
- 5. No person shall commence any regulated activity on the Edwards Aquifer Recharge Zone, Contributing Zone or Transition Zone until the appropriate application for the activity has been filed with and approved by the Executive Director.

SIGNATURE PAGE:

Applicant's Signature

THE STATE OF S

County of S

EFORE ME, the undersigned authority, on this day personally appeared Addrew Town Known to me to be the person whose name is subscribed to the foregoing instrument, and acknowledged to me that (s)he executed same for the purpose and consideration therein expressed.

GIVEN under my hand and seal of office on this day of Advancy Advance Notary Public, State of Texas NoTARY PUBLIC

MELISSA ANN WILLIAMS NOTARY PUBLIC

MELISSA ANN WILLIAMS NOTARY PUBLIC

Typed or Printed Name of Notary

MY COMMISSION EXPIRES: 06-27-2027

APPLICATION FEE FORM

Application Fee Form

Texas Commission on Environmer	ital Quality			
Name of Proposed Regulated Entity: <u>BASIS</u> - Leander (RM 2243 and Ronald Reagan Public Improvement)				
Regulated Entity Location:				
Name of Customer: BASIS Texas	Charter Schools In	C.		
Contact Person: Emiliano Guerrero	o, P.E. Phor	ne: <u>726 2</u> 23 3146		
Customer Reference Number (if iss	sued):CN			
Regulated Entity Reference Number	er (if issued):RN	<u>-</u>		
Austin Regional Office (3373)				
Hays	Travis	ХW	illiamson	
San Antonio Regional Office (3362	2)			
Bexar	Medina	□ U\	ralde	
Comal	Kinney			
Application fees must be paid by cl	neck, certified check,	or money order, payab	le to the Texas	
Commission on Environmental Qu	ality. Your canceled	check will serve as you	r receipt. This	
form must be submitted with you	r fee payment . This p	payment is being subm	tted to:	
X Austin Regional Office		San Antonio Regional C	ffice	
Mailed to: TCEQ - Cashier		Overnight Delivery to: 1	CEQ - Cashier	
Revenues Section	1	12100 Park 35 Circle		
Mail Code 214	E	Building A, 3rd Floor		
P.O. Box 13088	A	Austin, TX 78753		
Austin, TX 78711-3088	(512)239-0357		
Site Location (Check All That Appl	y):			
Recharge Zone	X Contributing Zone	Transi	tion Zone	
Type of Plan	1	Size	Fee Due	
Water Pollution Abatement Plan, C	Contributing Zone			
Plan: One Single Family Residentia	l Dwelling	Acres	\$	
Water Pollution Abatement Plan, C	Contributing Zone			
Plan: Multiple Single Family Reside	ntial and Parks	Acres	\$	
Water Pollution Abatement Plan, C	Contributing Zone			
Plan: Non-residential			\$	
Sewage Collection System		L.F.	\$	
Lift Stations without sewer lines		Acres	\$	
Underground or Aboveground Stor	rage Tank Facility	Tanks	\$	
Piping System(s)(only)		Each	\$	
Exception		1 Each	\$ 500	
Extension of Time		Each	\$	

Date: <u>06/27</u>/2025

Application Fee Schedule

Texas Commission on Environmental Quality

Edwards Aquifer Protection Program 30 TAC Chapter 213 (effective 05/01/2008)

Water Pollution Abatement Plans and Modifications

Contributing Zone Plans and Modifications

	Project Area in	_
Project	Acres	Fee
One Single Family Residential Dwelling	< 5	\$650
Multiple Single Family Residential and Parks	< 5	\$1,500
	5 < 10	\$3,000
	10 < 40	\$4,000
	40 < 100	\$6,500
	100 < 500	\$8,000
	≥ 500	\$10,000
Non-residential (Commercial, industrial, institutional,	< 1	\$3,000
multi-family residential, schools, and other sites	1 < 5	\$4,000
where regulated activities will occur)	5 < 10	\$5,000
	10 < 40	\$6,500
	40 < 100	\$8,000
	≥ 100	\$10,000

Organized Sewage Collection Systems and Modifications

Project	Cost per Linear Foot	Minimum Fee- Maximum Fee
Sewage Collection Systems	\$0.50	\$650 - \$6,500

Underground and Aboveground Storage Tank System Facility Plans and Modifications

Project	Cost per Tank or Piping System	Minimum Fee- Maximum Fee
Underground and Aboveground Storage Tank Facility	\$650	\$650 - \$6,500

Exception Requests

Project	Fee	
Exception Request	\$500	

Extension of Time Requests

Project	Fee
Extension of Time Request	\$150

CORE DATA FORM

TCEQ Core Data Form

For detailed instructions on completing this form, please read the Core Data Form Instructions or call 512-239-5175.

SECTION I: General Information

1. Reason for	Submissi	on (If other is checked	d please describ	e in space pro	ovided.)						
New Pern	nit, Registra	ation or Authorization	(Core Data For	m should be s	submitted v	with the prog	gram application.)				
Renewal	(Core Data	Form should be submi	tted with the re	enewal form)			Other				
2. Customer	Reference	Number (if issued)		Follow this li		<u> </u>	3. Regulated Entity Reference Number (if issued)				
CN				Central R		RN					
ECTIO	N II:	Customer	Inforn	<u>nation</u>							
4. General Cu	ıstomer In	formation	5. Effective	Date for Cu	ıstomer lı	nformation	Updates (mm/dd	/уууу)			
New Custor	mer		 pdate to Custo	mer Informat	tion	Cha	nge in Regulated Er	ntity Own	ership		
Change in Lo	egal Name	(Verifiable with the Te	xas Secretary o	f State or Texa	as Comptro	oller of Publi	c Accounts)				
The Custome	r Name su	ıbmitted here may	be updated a	utomaticall	y based o	on what is o	current and activ	e with t	he Texas Secr	etary of State	
(SOS) or Texa	s Comptro	oller of Public Accou	ınts (CPA).								
6. Customer	Legal Nam	ne (If an individual, pri	int last name fir	rst: ea: Doe. Jo	ohn)		If new Customer	enter pr	evious Custome	er below:	
		(9			,		J new oddenier	, criter pr			
8770 Leander F	Partners LLC										
7. TX SOS/CP	A Filing N	<mark>umber</mark>	8. TX State	Tax ID (11 di	igits)		9. Federal Tax	<mark>ID</mark>	10. DUNS	Number (if	
0000	007000						(9 digits)				
0803	887808	3	320	0772894	189		86-1384	710			
							00 1004	7 10			
11. Type of C	ustomer:		tion			☐ Indivi	dual	Partn	ership: 🔲 Gen	eral 🗌 Limited	
Government: [City 🔲 (County 🗌 Federal 📗	Local State	Other		☐ Sole F	Sole Proprietorship Other:				
12. Number o	of Employ	ees					13. Independe	ntly Ow	ned and Ope	rated?	
□ 0-20 □ 2	21-100	101-250 251-	-500 🗌 501	and higher			⊠ Yes	☐ No			
14. Customer	Role (Pro	posed or Actual) – as	it relates to the	Regulated En	ntity listed	on this form.	Please check one o	of the follo	owing		
Owner		☐ Operator	Ov	vner & Opera	tor						
Occupation	al Licensee	Responsible Pa	rty 🔲	VCP/BSA App	licant		Other	:			
15. Mailing	2901	W SAM HOU	JSTON P	KWY N	STE E	320					
Address:	City	HOUSTO	N	State	TX	ZIP	77043-		ZIP + 4	1642	
16. Country N	Mailing In	formation (if outside	USA)		1	7. E-Mail A	ddress (if applicab	ole)			
18. Telephon	e Number	•		19. Extensio	n or Code	2	20. Fax I	Number	(if applicable)		

TCEQ-10400 (11/22) Page 1 of 3

SECTION III: Regulated Entity Information

21. General Regulated Er	ntity Informa	ation (If 'New Reg	julated Entity" is select	ted, a new permi	it applicat i oi	n is also required.)				
New Regulated Entity ☐ Update to Regulated Entity Name ☐ Update to Regulated Entity Information										
The Regulated Entity Name submitted may be updated, in order to meet TCEQ Core Data Standards (removal of organizational endings such as Inc, LP, or LLC).										
22. Regulated Entity Name (Enter name of the site where the regulated action is taking place.)										
BASIS - Leander										
23. Street Address of the Regulated Entity:										
(No PO Boxes)	City		State	ZI	IP		ZIP + 4			
24. County	Williamson				1	1		1		
		If no Stree	et Address is provid	ed, fields 25-2	8 are requi	ired.				
25. Description to 0.63 miles east of the US Hwy 183 and RM 2243 intersection. Physical Location:										
26. Nearest City					Si	tate	Nea	rest ZIP Code		
Leander					TX	(7864	1		
Latitude/Longitude are required and may be added/updated to meet TCEQ Core Data Standards. (Geocoding of the Physical Address may be used to supply coordinates where none have been provided or to gain accuracy).										
used to supply coordinat	es where no	ne have been p	-				•	, 20		
used to supply coordinat 27. Latitude (N) In Decim		30.58445556	-	iccuracy).	itude (W) I	In Decimal:	97.82530	-		
27. Latitude (N) In Decim		30.58445556	rovided or to gain o	iccuracy).		Minutes		833 Seconds		
27. Latitude (N) In Decim Degrees 30	Al:	30.58445556	Seconds 4.04	28. Long	97	Minutes 49	97.82530	833 Seconds 31.11		
27. Latitude (N) In Decim	Minutes 30.	30.58445556	Seconds 4.04	28. Long	97	Minutes 49	97.82530	833 Seconds 31.11		
27. Latitude (N) In Decim Degrees 30 29. Primary SIC Code	Minutes 30.	30.58445556 35 Secondary SIC (Seconds 4.04	28. Long Degrees 31. Primary N	97	Minutes 49 32. Secon	97.82530	833 Seconds 31.11		
27. Latitude (N) In Decim Degrees 30 29. Primary SIC Code (4 digits)	Minutes 30. (4 d	30.58445556 35 Secondary SIC (Seconds 4.04 Code	28. Long Degrees 31. Primary N (5 or 6 digits)	97	Minutes 49 32. Secon	97.82530	833 Seconds 31.11		
27. Latitude (N) In Decim Degrees 30 29. Primary SIC Code (4 digits) 8211	Minutes 30. (4 d	30.58445556 35 Secondary SIC (Seconds 4.04 Code	28. Long Degrees 31. Primary N (5 or 6 digits)	97	Minutes 49 32. Secon	97.82530	833 Seconds 31.11		
27. Latitude (N) In Decime Degrees 30 29. Primary SIC Code (4 digits) 8211 33. What is the Primary I Charter School	Minutes 30. (4 d	30.58445556 35 Secondary SIC (Seconds 4.04 Code	28. Long Degrees 31. Primary N (5 or 6 digits)	97	Minutes 49 32. Secon	97.82530	833 Seconds 31.11		
27. Latitude (N) In Decime Degrees 30 29. Primary SIC Code (4 digits) 8211 33. What is the Primary I	Minutes 30. (4 d	30.58445556 35 Secondary SIC (Seconds 4.04 Code	28. Long Degrees 31. Primary N (5 or 6 digits)	97	Minutes 49 32. Secon	97.82530	833 Seconds 31.11		
27. Latitude (N) In Decime Degrees 30 29. Primary SIC Code (4 digits) 8211 33. What is the Primary I Charter School	Minutes 30. (4 d	30.58445556 35 Secondary SIC (Seconds 4.04 Code	28. Long Degrees 31. Primary N (5 or 6 digits)	97 IAICS Code	Minutes 49 32. Secon	97.82530 ndary NAIC	833 Seconds 31.11		
27. Latitude (N) In Decime Degrees 30 29. Primary SIC Code (4 digits) 8211 33. What is the Primary I Charter School 34. Mailing Address:	Minutes 30. (4 d	30.58445556 35 Secondary SIC (Seconds 4.04 Code	28. Long Degrees 31. Primary N (5 or 6 digits) NAICS description	97 IAICS Code	Minutes 49 32. Secon	97.82530 ndary NAIC its)	833 Seconds 31.11		

39. TCEQ Programs and ID Numbers Check all Programs and write in the permits/registration numbers that will be affected by the updates submitted on this form. See the Core Data Form instructions for additional guidance.

TCEQ-10400 (11/22) Page 2 of 3

☐ Dam Safety	Districts	☑ Edwards Aquifer	Emissions Inventory Air	☐ Industrial Hazardous Waste
Municipal Solid Waste	New Source Review Air	☐ OSSF	Petroleum Storage Tank	☐ PWS
Sludge	Storm Water	☐ Title V Air	Tires	Used Oil
☐ Voluntary Cleanup	Wastewater	☐ Wastewater Agriculture	☐ Water Rights	Other:
SECTION IV: Pr	eparer Inf	<u>ormation</u>	•	,

40. Name:	Emiliano Guerr	ero, P.E.		41. Title:	Regional Manager	
42. Telephone	Number	43. Ext./Code	44. Fax Number	45. E-Mail Address		
726 223 3146			(210)979-8441	emiliano.gue	rrero@collierseng.com	

SECTION V: Authorized Signature

46. By my signature below, I certify, to the best of my knowledge, that the information provided in this form is true and complete, and that I have signature authority to submit this form on behalf of the entity specified in Section II, Field 6 and/or as required for the updates to the ID numbers identified in field 39.

Company:	Colliers Engineering & Design	Manager			
Name (In Print):	Emiliano Guerrero, P.E.	Emiliano Guerrero, P.E.			
Signature:	at party			Date:	06/27/2025

TCEQ-10400 (11/22) Page 3 of 3

TCEQ Core Data Form

For detailed instructions on completing this form, please read the Core Data Form Instructions or call 512-239-5175.

SECTION I: General Information

1. Reason for Submission (If other is checked please describe in space provided.)

New Pern	nit. Registra	tion or Authorization	Core Data F	orm should be s	submitted	with the prod	aram ap	olication.)			
		Form should be submit					Other				
		Number (if issued)		Follow this li	ink to sear	rch 3. Re	3. Regulated Entity Reference Number (if issued)				
CN Central Registry					RN						
SECTION	N II:	Customer	Infor	<u>mation</u>	<u>l</u>						
4. General Customer Information 5. Effective Date for Customer Info					Information	Updat	es (mm/dd/	′уууу)			
☑ New Custor ☐ Change in Le		Uverifiable with the Tex	-	tomer Informat of State or Texa			•	egulated Ent	tity Owne	ership	
		bmitted here may l oller of Public Accou	-	l automaticall	ly based	on what is o	current	and active	with th	ne Texas Seci	retary of State
6. Customer	Legal Nam	e (If an individual, pri	nt last name	first: eg: Doe, Jo	lohn)		<u>If nev</u>	v Customer,	enter pre	evious Custom	er below:
BASIS Texas Ch	arter Schoo	ls, Inc.									
7. TX SOS/CP				i <mark>e Tax ID</mark> (11 di			9. Federal Tax ID 10. DUNS Number (if applicable) (9 digits)			Number (if	
0801	536270	,	02	0-1000000			45-4269957				
11. Type of C	ustomer:		ion			☐ Indivi	☐ Individual Partnership: ☐ General ☐ Limit			neral 🔲 Limited	
Government: [City 🔲 (County 🔲 Federal 🔲	Local 🗌 Sta	ate 🗌 Other		☐ Sole F	Sole Proprietorship Other:				
12. Number o	of Employ	ees					13. Independently Owned and Operated?				
☑ 0-20 2	21-100] 101-250 251-	500 🗌 50	01 and higher			⊠ Yes □ No				
14. Customer	Role (Pro	posed or Actual) – as i	t relates to t	he Regulated En	ntity listea	on this form.	Please	check one of	the follo	owing	
⊠Owner ☐Occupationa	al Licensee	Operator Responsible Pa		Owner & Opera				Other:			
15. Mailing	404 E Rar	msey, #106									
Address:											
Address.	City	San Antonio		State	TX	ZIP	7821	6		ZIP + 4	
16. Country N	Mailing Inf	formation (if outside	USA)	1		17. E-Mail A	ddress	(if applicabl	'e)	1	
						andrew.freem	nan@btx	schools.org			
18. Telephon	e Number			19. Extensio	on or Coc	le		20. Fax N	lumber	(if applicable)	

TCEQ-10400 (11/22) Page 1 of 3

SECTION III: Regulated Entity Information

21. General Regulated Er	ntity Informa	ation (If 'New Reg	julated Entity" is select	ted, a new permi	it applicat i oi	n is also required.)				
New Regulated Entity ☐ Update to Regulated Entity Name ☐ Update to Regulated Entity Information										
The Regulated Entity Name submitted may be updated, in order to meet TCEQ Core Data Standards (removal of organizational endings such as Inc, LP, or LLC).										
22. Regulated Entity Name (Enter name of the site where the regulated action is taking place.)										
BASIS - Leander										
23. Street Address of the Regulated Entity:										
(No PO Boxes)	City		State	ZI	IP		ZIP + 4			
24. County	Williamson				1	1		1		
		If no Stree	et Address is provid	ed, fields 25-2	8 are requi	ired.				
25. Description to 0.63 miles east of the US Hwy 183 and RM 2243 intersection. Physical Location:										
26. Nearest City					Si	tate	Nea	rest ZIP Code		
Leander					TX	(7864	1		
Latitude/Longitude are required and may be added/updated to meet TCEQ Core Data Standards. (Geocoding of the Physical Address may be used to supply coordinates where none have been provided or to gain accuracy).										
used to supply coordinat	es where no	ne have been p	-				•	, 20		
used to supply coordinat 27. Latitude (N) In Decim		30.58445556	-	iccuracy).	itude (W) I	In Decimal:	97.82530	-		
27. Latitude (N) In Decim		30.58445556	rovided or to gain o	iccuracy).		Minutes		833 Seconds		
27. Latitude (N) In Decim Degrees 30	Al:	30.58445556	Seconds 4.04	28. Long	97	Minutes 49	97.82530	833 Seconds 31.11		
27. Latitude (N) In Decim	Minutes 30.	30.58445556	Seconds 4.04	28. Long	97	Minutes 49	97.82530	833 Seconds 31.11		
27. Latitude (N) In Decim Degrees 30 29. Primary SIC Code	Minutes 30.	30.58445556 35 Secondary SIC (Seconds 4.04	28. Long Degrees 31. Primary N	97	Minutes 49 32. Secon	97.82530	833 Seconds 31.11		
27. Latitude (N) In Decim Degrees 30 29. Primary SIC Code (4 digits)	Minutes 30. (4 d	30.58445556 35 Secondary SIC (Seconds 4.04 Code	28. Long Degrees 31. Primary N (5 or 6 digits)	97	Minutes 49 32. Secon	97.82530	833 Seconds 31.11		
27. Latitude (N) In Decim Degrees 30 29. Primary SIC Code (4 digits) 8211	Minutes 30. (4 d	30.58445556 35 Secondary SIC (Seconds 4.04 Code	28. Long Degrees 31. Primary N (5 or 6 digits)	97	Minutes 49 32. Secon	97.82530	833 Seconds 31.11		
27. Latitude (N) In Decime Degrees 30 29. Primary SIC Code (4 digits) 8211 33. What is the Primary I Charter School	Minutes 30. (4 d	30.58445556 35 Secondary SIC (Seconds 4.04 Code	28. Long Degrees 31. Primary N (5 or 6 digits)	97	Minutes 49 32. Secon	97.82530	833 Seconds 31.11		
27. Latitude (N) In Decime Degrees 30 29. Primary SIC Code (4 digits) 8211 33. What is the Primary I	Minutes 30. (4 d	30.58445556 35 Secondary SIC (Seconds 4.04 Code	28. Long Degrees 31. Primary N (5 or 6 digits)	97	Minutes 49 32. Secon	97.82530	833 Seconds 31.11		
27. Latitude (N) In Decime Degrees 30 29. Primary SIC Code (4 digits) 8211 33. What is the Primary I Charter School	Minutes 30. (4 d	30.58445556 35 Secondary SIC (Seconds 4.04 Code	28. Long Degrees 31. Primary N (5 or 6 digits)	97 IAICS Code	Minutes 49 32. Secon	97.82530 ndary NAIC	833 Seconds 31.11		
27. Latitude (N) In Decime Degrees 30 29. Primary SIC Code (4 digits) 8211 33. What is the Primary I Charter School 34. Mailing Address:	Minutes 30. (4 d	30.58445556 35 Secondary SIC (Seconds 4.04 Code	28. Long Degrees 31. Primary N (5 or 6 digits) NAICS description	97 IAICS Code	Minutes 49 32. Secon	97.82530 ndary NAIC its)	833 Seconds 31.11		

39. TCEQ Programs and ID Numbers Check all Programs and write in the permits/registration numbers that will be affected by the updates submitted on this form. See the Core Data Form instructions for additional guidance.

TCEQ-10400 (11/22) Page 2 of 3

☐ Dam Safety	Districts	☑ Edwards Aquifer	Emissions Inventory Air	☐ Industrial Hazardous Waste
Municipal Solid Waste	New Source Review Air	□ OSSF	Petroleum Storage Tank	PWS
Sludge	Storm Water	☐ Title V Air	Tires	Used Oil
☐ Voluntary Cleanup	Wastewater	☐ Wastewater Agriculture	☐ Water Rights	Other:
SECTION IV: Pr	eparer Inf	<u>ormation</u>		

40. Name:	Emiliano Guerr	ero		41. Title:	Regional Manager
42. Telephone	Number	43. Ext./Code	44. Fax Number	45. E-Mail Address	
726 223 3146			(210)979-8441	emiliano.gue	rrero@collierseng.com

SECTION V: Authorized Signature

46. By my signature below, I certify, to the best of my knowledge, that the information provided in this form is true and complete, and that I have signature authority to submit this form on behalf of the entity specified in Section II, Field 6 and/or as required for the updates to the ID numbers identified in field 39.

Company:	Colliers Engineering & Design	Regional N	Manager		
Name (In Print):	Emiliano Guerrero, P.E.	miliano Guerrero, P.E.			
Signature:	Ch planting			Date:	06/27/2025

TCEQ-10400 (11/22) Page 3 of 3

EXHIBITS

LEGAL DESCRIPTION

A LAND TITLE SURVEY OF 16.736 ACRES, MORE OR LESS, IN THE E. D. HARMON SURVEY, ABSTRACT 6, WILLIAMSON COUNTY, TEXAS, BEING ALL OF A CALLED 16.739 ACRE TRACT OF LAND CONVEYED TO DANIEL RAMIREZ MIRANDA AND CANDELARIA GARCIA MIRANDA IN VOLUME 2000, PAGE 9 OF THE OFFICIAL RECORDS OF WILLIAMSON COUNTY, TEXAS.

BENCHMARKS

TBM #100 (PAPE DAWSON) AT ELEVATION = 906.47 SET BY WINDROSE SURVEYING.

TBM #101 (PAPE DAWSON) AT ELEVATION = 912.58 SET BY WINDROSE SURVEYING.

COORDINATION NOTE:

1. CONTACT SPECTRUM TO COORDINATE CABLE TV, INTERNET & PHONE SERVICE. (855)-243-8892.

2. CONTACT PEC TO COORDINATE ELECTRICAL SERVICES. (512-219-2602). 3. CONTACT AT&T TO COORDINATE TELEPHONE & INTERNET SERVICE.

4. CONTACT CITY OF LEANDER FOR SEWER AND WATER SERVICES. (512)-259-1142.

5. CONTRACTOR SHALL CONTACT 1-800-DIG-TESS A MINIMUM OF 48 HOURS PRIOR TO THE START OF CONSTRUCTION.

WITH THE STORMWATER POLLUTION PREVENTION PLAN AND COMPLYING WITH THE REGULATIONS CONTAINED WITHIN IT.

ALL OPERATORS SHALL SUBMIT A NOTICE OF INTENT (NOI) AT LEAST 48 HOURS IN ADVANCE AND ALL BEST MANAGEMENT PRACTICES (BMP'S) SHALL BE IN PLACE PRIOR TO STARTING CONSTRUCTION ACTIVITIES.

CONTRACTOR TO ENSURE THAT STRUCTURAL BMP'S ARE INSTALLED WITHIN THE LIMITS OF THE SITE BOUNDARY.

MAINTENANCE AND INSPECTION:

CONTRACTOR SHOULD LIMIT CONSTRUCTION ACTIVITIES TO ONLY THOSE AREAS SHOWN TO BE DISTURBED ON THIS PLAN. IF ADDITIONAL VEGETATED AREAS ARE DISTURBED, THEY SHOULD BE PROTECTED WITH APPROPRIATE BEST MANAGEMENT PRACTICES UNTIL THE AREAS HAVE BEEN STABILIZED AS PER THE SPECIFICATIONS OF THE SWPPP. THE AREAS OF THIS ADDITIONAL SOIL DISTURBANCE AND THE MEASURES USED SHOULD BE SHOWN ON THE SITE PLAN AND NOTED WITHIN THE MODIFICATIONS SECTION WITH THE SIGNATURE AND DATE OF THE RESPONSIBLE PARTY.

2. LOCATION OF CONSTRUCTION ENTRANCE/EXIT, CONCRETE WASHOUT PIT, AND EQUIPMENT AND STORAGE ARE TO BE FIELD DETERMINED. LOCATIONS SHALL BE UPDATED ON THIS PLAN.

PROJECT COMPLETION:

3. ALL DISTURBED AREAS ARES NOT COVERED BY IMPERVIOUS COVER ARE TO BE STABILIZED PER THE SWPPP AND PROJECT SPECIFICATIONS PRIOR TO REMOVAL OF ANY BMP'S AND/OR PRIOR TO FILING A NOTICE OF TERMINATION

4. BEST MANAGEMENT PRACTICES MAY BE REMOVED IN PHASES IF ALL UPGRADIENT AREAS HAVE BEEN STABILIZED PER SWPPP AND PROJECT SPECIFICATIONS. THIS PHASING SHOULD BE NOTED WITHIN THE MODIFICATIONS SECTION WITH THE SIGNATURE AND DATE OF THE RESPONSIBLE PARTY.

5. CONTRACTOR TO ENSURE THEY HAVE MET ALL REQUIREMENTS OF THE SWPPP BEFORE FILING A NOTICE OF TERMINATION (NOT).

TEMPORARY VEGETATION:

THE PREFERRED OPTION DURING THE CURRENT DROUGHT WITH REGARDS TO RE-VEGETATION IS TO PREPARE THE SEEDBED, ADDING TOPSOIL/COMPOST AS REQUIRED, PLACE FERTILIZER AND PERMANENT SEED MIX, AND THEN CORRECTLY INSTALL A SOIL RETENTION BLANKET (SRB) OR CHANNEL LINER, WHICHEVER IS REQUIRED FOR THE LOCATION. NO WATERING TO ESTABLISH VEGETATION WOULD BE REQUIRED. INFORMATION ON APPROVED SRB AND CHANNEL LINERS FOR THE SLOPE AND SOIL TYPE FOR A SPECIFIC LOCATION CAN BE FOUND AT http://www.dot.state.tx.us/business/

RECOMMENDATION WHICH SHOULD BE PROVIDED TO THE UTILITY INSPECTOR.

doing_business/product_evaluation/erosion_control.htm INSTALLATION SHOULD BE ACCORDING TO THE MANUFACTURER'S

ALL OWNERS/OPERATORS ARE RESPONSIBLE FOR FAMILIARIZING THEMSELVES

The following/listed "construction notes" are intended to be advisory in nature only and do not constitute an approval or conditional approval by the Executive Director (ED), nor do they constitute a comprehensive listing of rules or conditions to be followed during construction. Further actions may be required to achieve compliance with TCEQ regulations found in Title 30, Texas Administrative Code (TAC), Chapters 213 and 217, as well as local ordinances and regulations providing for the protection of water quality. Additionally, nothing contained in the following/listed "construction notes" restricts the powers of the ED, the commission or any other governmental entity to prevent, correct, or curtail activities that result or may result in pollution of the Edwards Aquifer or hydrologically connected surface waters. The holder of any Edwards Aquifer Protection Plan containing "construction notes" is still responsible for compliance with Title 30, TAC, Chapters 213 or any other applicable TCEQ regulation, as well as all conditions of an Edwards Aquifer Protection Plan through all phases of plan implementation. Failure to comply with any condition of the ED's approval, whether or not in contradiction of any "construction notes," is a violation of TCEQ regulations and any violation is subject to administrative rules, orders, and penalties as provided under Title 30, TAC § 213.10 (relating to Enforcement). Such violations may also be subject to civil penalties and injunction. The following/listed "construction notes" in no way represent an approved exception by the ED to any part of Title 30 TAC, Chapters 213 and 217, or any other TCEQ applicable regulation

Texas Commission on Environmental Quality Contributing Zone Plan General Construction Notes

Edwards Aquifer Protection Program Construction Notes - Legal Disclaimer

1. A written notice of construction must be submitted to the TCEQ regional office at least 48 hours prior to the start of any ground disturbance or construction activities. This notice must include: - the name of the approved project;

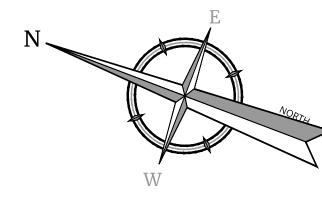
- the activity start date; and - the contact information of the prime contractor.

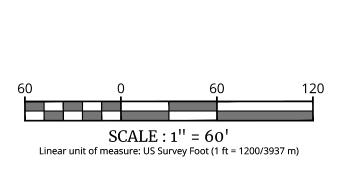
2. All contractors conducting regulated activities associated with this project should be provided with complete copies of the approved Contributing Zone Plan (CZP) and the TCEQ letter indicating the specific conditions of its approval. During the course of these regulated activities, the contractor(s) should keep copies of the approved plan and approval letter on-site.

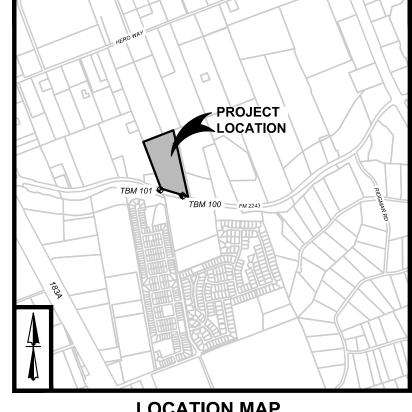
- 3. No hazardous substance storage tank shall be installed within 150 feet of a water supply source, distribution system, well, or sensitive feature.
- 4. Prior to beginning any construction activity, all temporary erosion and sedimentation (E&S) control measures must be properly installed and maintained in accordance with the manufacturers specifications. If inspections indicate a control has been used inappropriately, or incorrectly, the applicant must replace or modify the control for site situations. These controls must remain in place until the disturbed areas have been permanently stabilized.
- 5. Any sediment that escapes the construction site must be collected and properly disposed of before the next rain event to ensure it is not washed into surface streams, sensitive features, etc.
- 6. Sediment must be removed from the sediment traps or sedimentation basins when it occupies 50% of the basin's design capacity.
- 7. Litter, construction debris, and construction chemicals exposed to stormwater shall be prevented from being discharged offsite.
- 9. If portions of the site will have a cease in construction activity lasting longer than 14 days, soil stabilization in those areas shall be initiated as soon as possible prior to the 14th day of inactivity. If activity will resume prior to the 21st day, stabilization measures are not required. If drought conditions or inclement weather prevent action by the 14th day, stabilization measures shall be initiated as soon as possible.

10. The following records should be maintained and made available to the TCEQ upon request:

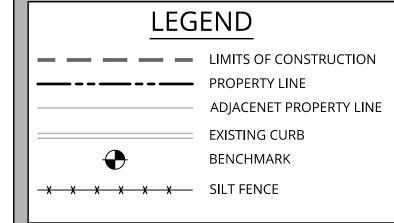
8. All excavated material that will be stored on-site must have proper E&S controls.


- the dates when major grading activities occur;


- the dates when construction activities temporarily or permanently cease on a portion of the site; and - the dates when stabilization measures are initiated.

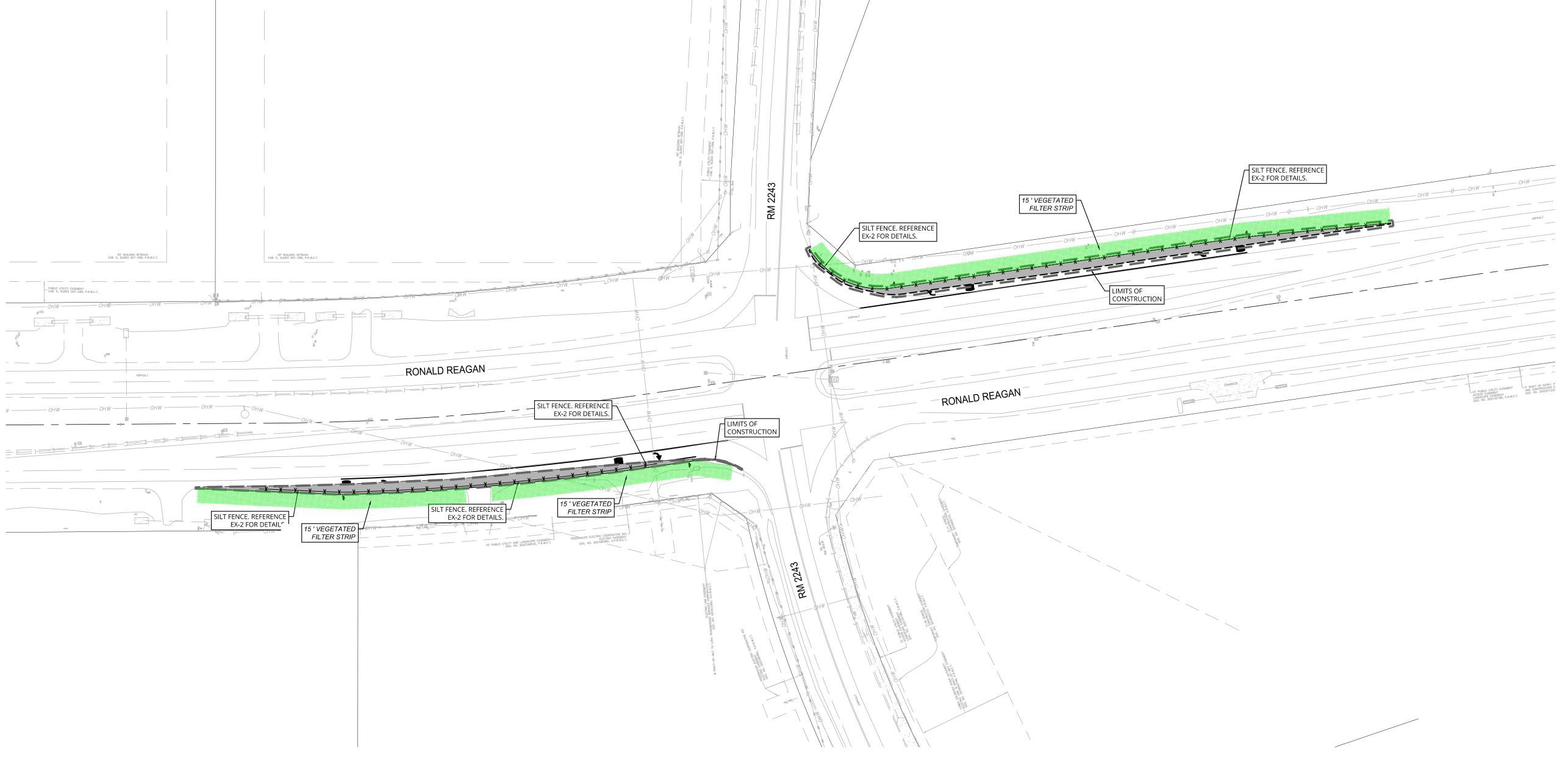

11. The holder of any approved CZP must notify the appropriate regional office in writing and obtain approval from the executive director prior to initiating any of the following:

- A. any physical or operational modification of any best management practices (BMPs) or structure(s), including but not limited to temporary or permanent ponds, dams, berms, silt fences, and diversionary structures;
- B. any change in the nature or character of the regulated activity from that which was originally approved;
- C. any change that would significantly impact the ability to prevent pollution of the Edwards Aquifer; or
- D. any development of land previously identified as undeveloped in the approved contributing zone plan.

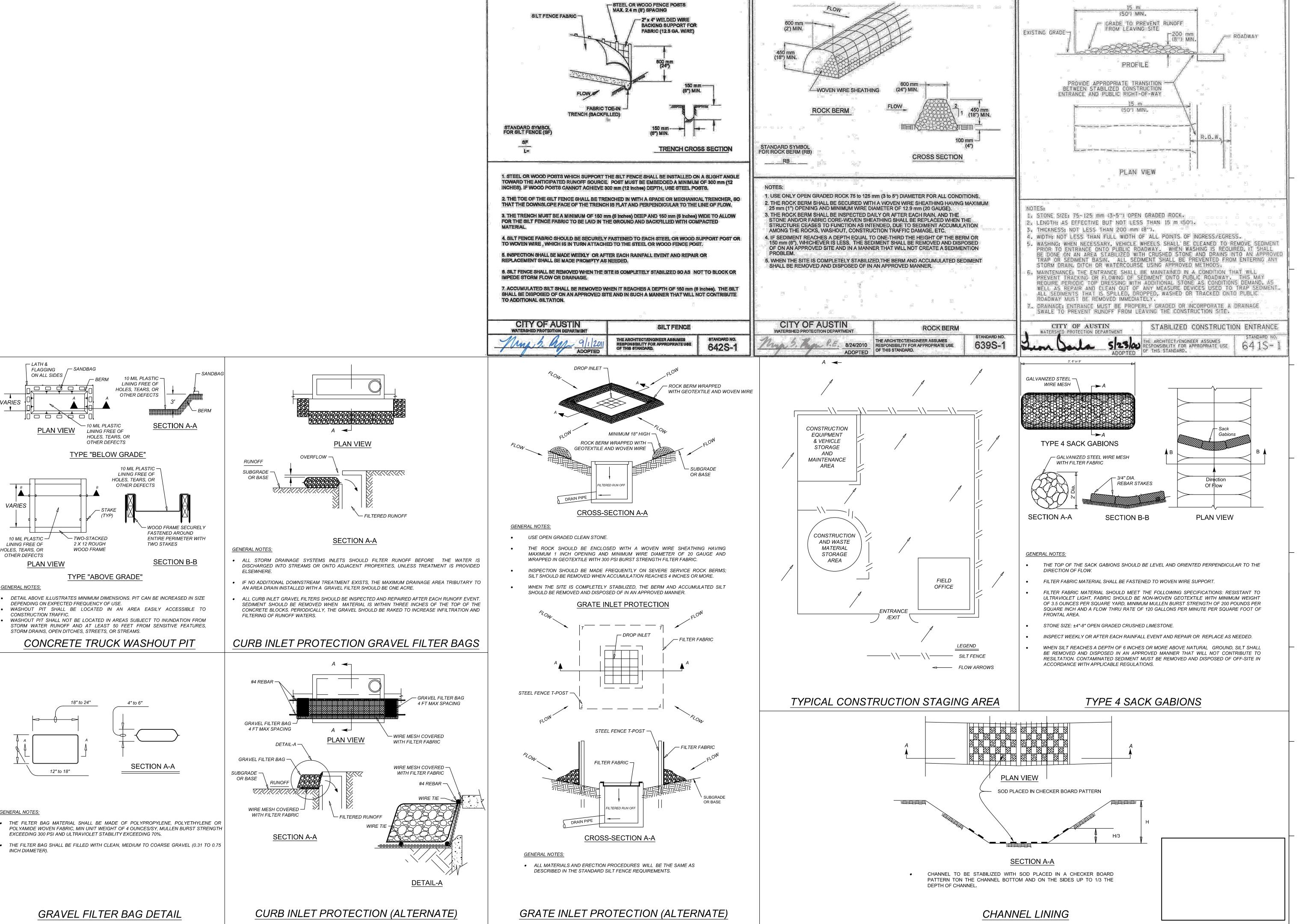

Austin Regional Office San Antonio Regional Office 2800 S. IH 35, Suite 100 14250 Judson Road Austin, Texas 78704-5712 San Antonio, Texas 78233-4480 Phone(512) 339-2929 Phone(210) 490-3096 Fax (512) 339-3795 Fax (210) 545-4329

LOCATION MAP NOT TO SCALE

DRAWINGS, SPECIFICATIONS, AND ADDENDUMS MAY NOT BE COPIED, SCANNED, NOR ELECTRONICALLY DISTRIBUTED OR USED FOR CONSTRUCTION WITHOUT THE EXPRESSED WRITTEN CONSENT OF GRACE HEBERT CURTIS ARCHITECTS, LLC. NO PLAN ROOM, ELECTRONIC PLAN SERVICE (INTERNET PLAN SERVICE), NOR REPRODUCTION COMPANY SHALL BE PERMITTED TO POST THESE DOCUMENTS WITHOUT THE EXPRESSED WRITTEN CONSENT OF THE ARCHITECT, GRACE HEBERT CURTIS ARCHITECTS,LLC.


© THIS SET OF DOCUMENTS INCLUSIVE OF

03.26.25 **CON DOCS** PERMIT SET 909-05-02(24000843A)


CZP SITE PLAN

SHEET NUMBER

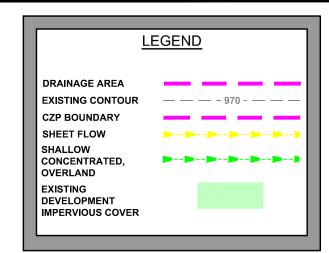
EX-1B

THIS DOCUMENT HAS BEEN PRODUCED FROM MATERIAL THAT WAS STORED AND/OR TRANSMITTED ELECTRONICALLY AND MAY HAVE BEEN INADVERTENTLY ALTERED. RELY ONLY ON FINAL HARDCOPY MATERIALS BEARING THE CONSULTANT'S ORIGINAL SIGNATURE AND SEAL

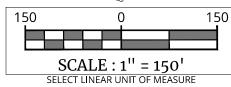
GRACE HEBERT CURTIS ARCHITECTS, LLC

© THIS SET OF DOCUMENTS INCLUSIVE OF DRAWINGS, SPECIFICATIONS, AND ADDENDUMS MAY NOT BE COPIED, SCANNED, NOR ELECTRONICALLY THE EXPRESSED WRITTEN CONSENT OF GRACE HEBERT CURTIS ARCHITECTS, LLC. NO PLAN ROOM, ELECTRONIC PLAN SERVICE (INTERNET PLAN SFRVICE). NOR REPRODUCTION COMPANY SHALL BE PERMITTED TO POST THESE DOCUMENTS WITHOUT THE EXPRESSED WRITTEN CONSENT OF THE ARCHITECT, GRACE HEBERT CURTIS ARCHITECTS,LLC.

Description Date ADDENDUM #01 02/14/25 ADDENDUM #02


03.26.25 CON DOCS PERMIT SET 909-05-02(24000843A)


CZP SITE PLAN DETAILS


SHEET NUMBER

THIS DOCUMENT HAS BEEN PRODUCED FROM MATERIAL THAT WAS STORED AND/OR TRANSMITTED ELECTRONICALLY AND MAY HAVE BEEN INADVERTENTLY ALTERED. RELY ONLY ON FINAL HARDCOPY MATERIALS BEARING THE CONSULTANT'S ORIGINAL SIGNATURE AND SEAL

EX-2

Drainage			SHEET FLOW	/		SHALLOW CONCENTRATED FLOW CHANNEL FLOW				W	TOTAL/AREA			
Area	n	L (ft)	P2 (in)	s %	Tt(min)	Paved/Unpaved	V (ft/s)	L (ft)	s (%)	Tt(min)	L (ft)	V (ft/s)	Tt(min)	Tc(min)
	Existing Conditions													
DA1	0.011	79	4.06	2.00	5									5
DA2	0.011	82	4.06	1.50	5	UNPAVED	2.28	48	2.00	0				5

EXISTING RUNOFF (RATIONAL METHOD)										
DRAINAGE AREA	ACRES	Tc	C25	C100	25 YR I	25 YR FLOW	100 YR I	100 YR FLOW		
DA1	0.549	5	0.63	0.71	11.62	4.02	15.32	5.97		
DA2	0.763	5	0.63	0.71	11.62	5.59	15.32	8.30		

AREA IN ACRES	"C" 25 YR	"C" 100 YR	COVER TYPE
0.231	0.29	0.36	GOOD CONDITION - FLAT 0-2%
0.318	0.88	0.97	PAVED
WEIGHTED	0.63	0.71	DA1
EXISTING	MPERVIOU	S COVER	0.318 AC

_				
N	AREA IN ACRES	"C" 25 YR	"C" 100 YR	COVER TYPE
	0.323	0.29	0.36	GOOD CONDITION - FLAT 0-2%
+	0.440	0.88	0.97	PAVED
1	WEIGHTED	0.63	0.71	DA2
┙	EXISTING	IMPERVIOU	S COVER	0.44

Engineering & Design

www.colliersengineering.co

Copyright © 2025. Colliers Engineering & Design AI Rights Reserved. This and all the information contained berein is authorized for use only by the p whom the services were contracted or to whom it is certified. This drawing to receive the contract the contract of the contract was for the contract.

nerly Known as

PROTECT YOURSELF
ALL STATES REQUIRE NOTIFICATION
OF EXCAVATORS, DESIGNERS, O
ANY PERSON PREPARING TO
DISTURB THE EARTH'S SURFACE
ANYWHERE IN ANY STATE

FOR STATE SPECIFIC D

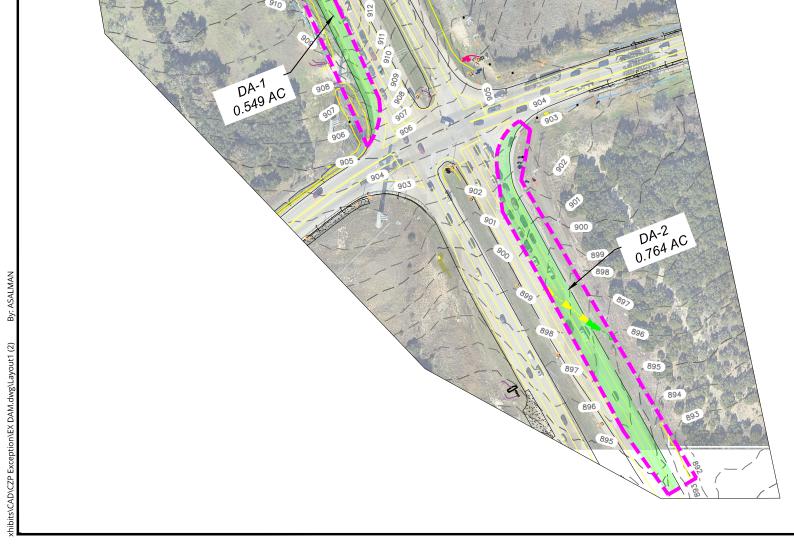
NO DESCRIPTION OF THE PROPERTY OF THE PROPERTY

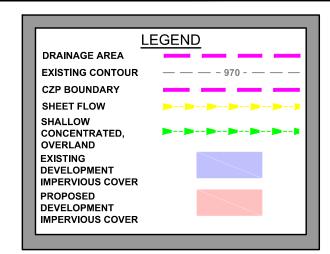
EXHIBIT
FOR
BASIS- Leander (RM

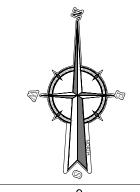
2243 and Ronald Reagan Public Improvement)

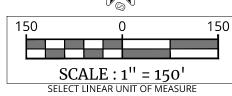
MUNICIPALITY WILLIAMSON COUNTY LEANDER, TEXAS

3421 Paesanos Parkway San Antonio, TX 78231


Phone: 210.979.844


COLLIERS ENGINEERING & DESIGN
TRIPLS Firm#: 10194550


SCALE: DATE: DRAWN BY: CHECKED BY:
AS SHOWN 06/27/2025 AS EG
PROJECT NUMBER: DRAWING NAME:
909-05-02 EX DAM


EXISTING DRAINAGE AREA
MAP

EX-3A

Drainage		9	SHEET FLOW	/			SHALLOW CO	ONCENTRATE	D FLOW		C	HANNEL FLO	TOTAL/AREA	
Area	n	L (ft)	P2 (in)	s %	Tt(min)	Paved/Unpaved	V (ft/s)	L (ft)	s (%)	Tt(min)	L (ft)	V (ft/s)	Tt(min)	Tc(min)
	Proposed Conditions													
DA1	0.011	79	4.06	2.00	5									5
DA2	0.011	82	4.06	1.50	5	UNPAVED	2.28	48	2.00	0				5

PROPOSED RUNOFF (RATIONAL METHOD)										
DRAINAGE AREA	ACRES	Tc	C25	C100	25 YR I	25 YR FLOW	100 YR I	100 YR FLOW		
DA1	0.549	5	0.71	0.80	11.62	4.53	15.32	6.73		
DA2	0.763	5	0.69	0.77	11.62	6.12	15.32	9.00		
DAZ	01700		0.05	0.,,	11.02	0.11	15.52	3.00		

AREA IN ACRES	"C" 25 YR	"C" 100 YR	COVER TYPE					
0.155	0.29	0.36	GOOD CONDITION - FLAT 0-2%					
0.394	0.88	0.97	PAVED					
WEIGHTED	0.71	0.80	DA1					
	WEIGHTED C VALUE							
AREA IN ACRES	"C" 25 YR	"C" 100 YR	COVER TYPE					
0.246	0.29	0.36	GOOD CONDITION - FLAT 0-2%					
0.518	0.88	0.97	PAVED					
WEIGHTED	0.69	0.77	DA2					

Engineering & Design

www.colliersengineering.co

yright © 2025. Colliers Engineering & Design Al Rights Reserved. This draw all the information contained herein is authorized for use only by the party om the services were contracted or to whom it is certified. This drawing may

rly Known as

PROTECT YOURSELF
ALL STATES REQUIRE NOTIFICATI
OF EXCAVATORS, DESIGNERS, C
ANY PERSON PREPARING TO
DISTURB THE EARTH'S SURFAC

STATE REQU OR STATE SPECIFIC DIRECT P

ASIL: MWAWY DESCRIPTION

SECONDARY

SECONDAR

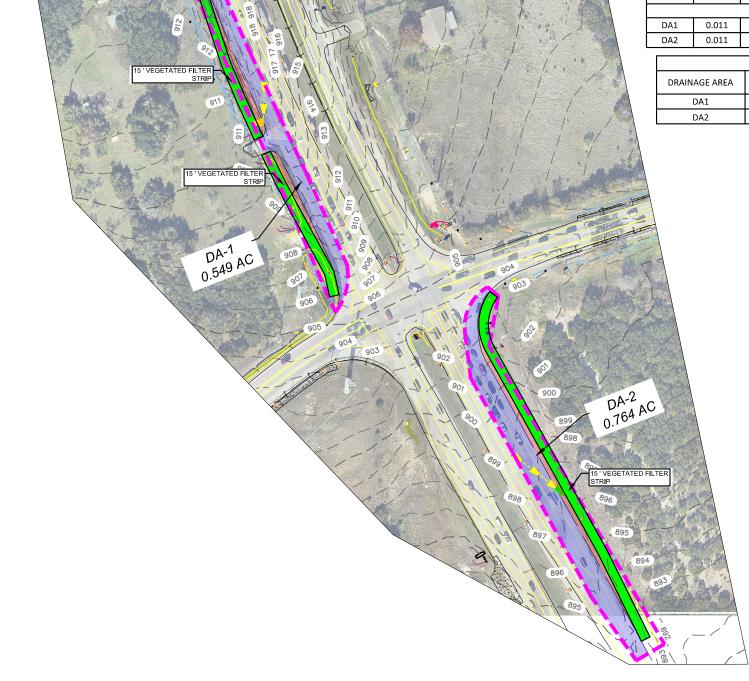
EXHIBIT
FOR
S- Leande

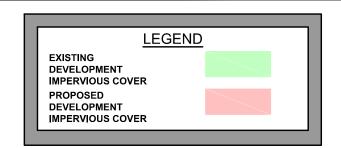
BASIS- Leander (RM 2243 and Ronald Reagan Public Improvement)

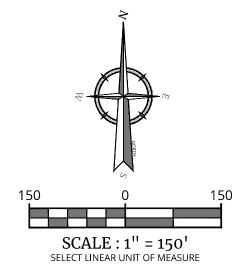
MUNICIPALITY
WILLIAMSON COUNTY
LEANDER, TEXAS

SAN ANTONIO (KFW)

3421 Paesanos
Parkway
San Antonio, TX 78231

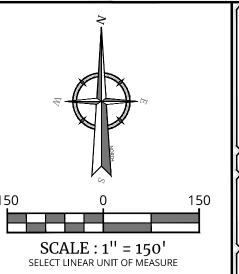

San Antonio, TX 78231

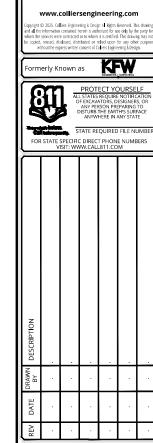

princering
Design
Sensing
Sensi


SCALE: DATE: DRAWN BY: CHECKED BY:
AS SHOWN 06/27/2025 AS EG
PROJECT NUMBER: DRAWING NAME:
909-05-02 PRO DAM

SHEET TITLE: FIELD BOOK; XX PAGE; XX
PROPOSED DRAINAGE AREA

NUMBER: EX-3B





EXISTING / PROPOSED IMPERVIOUS COVER									
		SQ. FT.	ACRES						
KISTING IMPERVIOUS COVER		33,048	0.759						
ROPOSED IMPERVIOUS COVER		8,185	0.188						
ET INCREASE IMPERVIOUS COVER		6,692	0.154						

Colliers

Engineering & Design

EXHIBIT BASIS- Leander (RM BASIS - Leander (RM 2243 and Ronald Reagan Public Improvement) MUNICIPALITY WILLIAMSON COUNTY LEANDER, TEXAS

ROJECT NUMBER: 909-05-02 PROEX IC

EXISTING / PROPOSED IMPERVIOUS COVER

EX-4

Texas Commission on Environmental Quality

TSS Removal Calculations 04-20-2009

Project Name: BASIS- Leander (RM 2243 and Ronald Reagan Public Improvement)

SISSINAL ENGLIS

06/27/25

Date Prepared: 6/27/2025

Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell.

Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348.

Characters shown in red are data entry fields.

Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spreadsheet.

1. The Required Load Reduction for the total project

Pages 3-27 to 3-30

Page 3-29 Equation 3.3: $L_M = 27.2(A_N \times P)$

 $L_{\text{M TOTAL PROJECT}}$ = Required TSS removal resulting from the proposed development = 80% of increased load

 A_N = Net increase in impervious area for the project

P = Average annual precipitation, inches

Calculations from RG-348

Site Data: Determine Required Load Removal Based on the Entire Project

County = Williamson
Total project area included in plan * = 1.313 acres Predevelopment impervious area within the limits of the plar =

Total post-development impervious area within the limits of the plar =

Total post-development impervious cover fraction = acres 0.70

L_{M TOTAL PROJECT} = * The values entered in these fields should be for the total project area

Number of drainage basins / outfalls areas leaving the plan area =

2. Drainage Basin Parameters (This information should be provided for each basin)

Drainage Basin/Outfall Area No. =

Total drainage basin/outfall area= acres Predevelopment impervious area within drainage basin/outfall are = Post-development impervious area within drainage basin/outfall are = Post-development impervious fraction within drainage basin/outfall are = 0.318 acres lhs

3. Indicate the proposed BMP Code for this basin

where:

Proposed BMP = Vegetated Filter Strips emoval efficiency = 85 percent Removal efficiency =

Batch Detention Bioretention Contech Jellyfish Constructed Wetland Extended Detention Grassy Swale Retention / Irrigation Sand Filter Stormceptor Vegetated Filter Strips Vortechs Wet Basin

4. Calculate Maximum TSS Load Removed (LR) for this Drainage Basin by the selected BMP Type.

RG-348 Page 3-33 Equation 3.7: L_R = (BMP efficiency) x P x (A x 34.6 + A_P x 0.54)

A_C = Total On-Site drainage area in the BMP catchment area

A_I = Impervious area proposed in the BMP catchment area

A_P = Pervious area remaining in the BMP catchment area L_R = TSS Load removed from this catchment area by the proposed BMP

0.540 acres 0.076 Aı = acres 0.46 acres

5. Calculate Fraction of Annual Runoff to Treat the drainage basin / outfall are

Desired L_{M THIS BASIN} = 66 lbs.

0.84

Texas Commission on Environmental Quality

TSS Removal Calculations 04-20-2009

Project Name: BASIS- Leander (RM 2243 and Ronald Reagan Public Improvement)

EMILIANO Z. GUERRERO

06/27/25

Date Prepared: 6/27/2025

Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell.

Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348.

Characters shown in red are data entry fields.

Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spreadsheet.

1. The Required Load Reduction for the total project

Calculations from RG-348

Pages 3-27 to 3-30

Page 3-29 Equation 3.3: L_M = 27.2(A_N x P)

where: L_{M TOTAL PROJECT} = Required TSS removal resulting from the proposed development = 80% of increased load

134

A_N = Net increase in impervious area for the project P = Average annual precipitation, inches

Site Data: Determine Required Load Removal Based on the Entire Project

County =	Williamson	
Total project area included in plan * =	1.313	acres
Predevelopment impervious area within the limits of the plar* =	0.759	acres
Total post-development impervious area within the limits of the pla* =	0.913	acres
Total post-development impervious cover fraction* =	0.70	1
P =	32	inches
		-

L_{M TOTAL PROJECT} =

* The values entered in these fields should be for the total project area.

Number of drainage basins / outfalls areas leaving the plan area =

2. Drainage Basin Parameters (This information should be provided for each basin)

Drainage Basin/Outfall Area No. =

Total drainage basin/outfall area Predevelopment impervious area within drainage basin/outfall are Dost-development impervious area within drainage basin/outfall are Dost-development impervious area within drainage basin/outfall are Dost-development impervious fraction within drainage basin/outfall are Lamitis basin Education State St

0.078

3. Indicate the proposed BMP Code for this basin

Proposed BMP = Vegetated Filter Strips
Removal efficiency = 85 percent

Batch Detention Bioretention Contech Jellyfish Constructed Wetland Extended Detention Grassy Swale Retention / Irrigation Sand Filter Stormceptor Vegetated Filter Strips Vortechs Wet Basin Wet Vault

4. Calculate Maximum TSS Load Removed (Lg) for this Drainage Basin by the selected BMP Type.

RG-348 Page 3-33 Equation 3.7: L_R = (BMP efficiency) x P x (A, x 34.6 + A $_P$ x 0.54)

where:

 $A_{\rm C}$ = Total On-Site drainage area in the BMP catchment area $A_{\rm I}$ = Impervious area proposed in the BMP catchment area $A_{\rm P}$ = Pervious area remaining in the BMP catchment area

L_R = TSS Load removed from this catchment area by the proposed BMP

 $\begin{array}{lll} A_{C} = & \textbf{0.764} & \text{acres} \\ A_{I} = & \textbf{0.078} & \text{acres} \\ A_{P} = & \textbf{0.69} & \text{acres} \\ L_{R} = & \textbf{83} & \text{lbs} \end{array}$

5. Calculate Fraction of Annual Runoff to Treat the drainage basin / outfall are

Desired L_{M THIS BASIN} = 68 lbs.

= 0.81

3.2.4 <u>Vegetative Filter Strips</u>

Filter strips, also known as vegetated buffer strips, are vegetated sections of land similar to grassy swales, except they are essentially flat with low slopes, and are designed only to accept runoff as overland sheet flow. A photograph of a vegetated buffer strip is shown in Figure 3-3. The dense vegetative cover facilitates conventional pollutant removal through detention, filtration by vegetation, and infiltration (Young et al., 1996).

Figure 3-3 Filter Strip

Filter strips cannot treat high velocity flows, and do not provide enough storage or infiltration to effectively reduce peak discharges to predevelopment levels for design storms (Schueler et al., 1992). This lack of quantity control restricts their use to relatively small tributary areas.

There are three primary applications for vegetative filter strips. One application is as an interim measure on a phased development. Another is along roadways where runoff that would otherwise discharge directly to a receiving water, passes through the filter strip before entering a conveyance system. Properly designed roadway medians and shoulders make effective vegetated filter strips. The third application is land in the natural condition adjacent to perimeter lots in subdivisions that will not drain via gravity to other BMPs.

Vegetative filter strips can be implemented as an interim BMP on a phased project where the initial level of development results in less than 20% impervious cover in a subwatershed on the tract. The requirements for this type of installation are less stringent than those implemented as a permanent BMP and level spreaders are acceptable for distributing the flow over the strip. Once the impervious cover in a sub-watershed exceeds 20%, a permanent BMP such as a sand filter or pond must be constructed to treat the runoff.

In vegetative filter strips implemented as a permanent and final BMP, the catchment area must have sheet flow to the filter strips without the use of a level spreader. Although an inexpensive control measure, they are most useful in contributing watershed areas where

peak runoff velocities are low, as they are unable to treat the high flow velocities typically associated with high impervious cover.

Successful performance of filter strips relies heavily on maintaining shallow unconcentrated flow. To avoid flow channelization and maintain performance, a filter strip should:

- Contain dense vegetation with a mix of erosion resistant, soil binding species
- Engineered vegetated filter strips should be graded to a uniform, even and a slope of less than 20%
- Natural vegetated filter strip slopes should not exceed 10%, providing that there are no flow concentrating areas on the strip.
- Laterally traverse the contributing runoff area (Schueler, 1987)

Filter strips can be used upgradient from watercourses, wetlands, or other water bodies, along toes and tops of slopes, and at outlets of other stormwater management structures. They should be incorporated into street drainage and master drainage planning (Urbonas et al., 1992). The most important criteria for selection and use of this BMP are soils, space, and slope.

Selection Criteria

- Soils and moisture are adequate to grow relatively dense vegetative stands
- Sufficient space is available
- Slope is less than 20%
- Comparable performance to more expensive structural controls

Limitations (NCTCOG, 1993)

- Can be difficult to maintain sheet flow
- Cannot be placed on steep slopes
- Area required may make infeasible on some sites

Cost Considerations

Filter strips are one of the least expensive stormwater treatment options and cost less to construct than curb and gutter drainage systems.

3.4.6 Vegetative Filter Strips

Filter strips may be natural or engineered. The use of natural filter strips is limited to perimeter lots and other areas that will not drain by gravity to other BMPs on the site.

Natural Filter Strips:

- (1) The filter strip should extend along the entire length of the contributing area.
- (2) The slope should not exceed 10%.
- (3) The minimum dimension (in the direction of flow) should be 50 feet.
- (4) All of the filter strip should lie above the elevation of the 2-yr, 3-hr storm of any adjacent drainage.
- (5) There is no requirement for vegetation density or type.

Engineered Filter Strips

Many of the general criteria applied to swale design apply equally well to engineered vegetated filter strips. Vegetated roadside shoulders provide one of the best opportunities for incorporating filter strips into roadway and highway design as shown in Figure 3-21. The general design goal is to produce uniform, shallow overland flow across the entire filter strip. Landscaping on residential lots is not considered to function as a vegetated filter strip because fertilizers and pesticides are commonly applied in these areas. In addition, all areas designated as engineered filter strips should be described in a legally binding document that restricts modification of these areas through an easement, setback, or other enforceable mechanism.

- (1) The filter strip should extend along the entire length of the contributing area and the slope should not exceed 20%. The minimum dimension of the filter strip (in the direction of flow) should be no less than 15 feet. The maximum width (in the direction of flow) of the contributing impervious area should not exceed 72 feet. For roadways with a vegetated strip along both sides the total width of the roadway should not exceed 144 feet (i.e., 72 feet draining to each side).
- (2) The minimum vegetated cover for engineered strips is 80%.
- (3) The area contributing runoff to a filter strip should be relatively flat so that the runoff is distributed evenly to the vegetated area without the use of a level spreader.
- (4) The area to be used for the strip should be free of gullies or rills that can concentrate overland flow (Schueler, 1987).

- (5) The top edge of the filter strip along the pavement will be designed to avoid the situation where runoff would travel along the top of the filter strip, rather than through it.
- (6) Top edge of the filter strip should be level, otherwise runoff will tend to form a channel in the low spot. A level spreader should not be used to distribute runoff to an engineered filter strip.
- (7) Filter strips should be landscaped after other portions of the project are completed.

Interim Filter Strips

Filter strips can be implemented as an interim BMP in a phased development when the initial level of development results in an impervious cover of less than 20% in a subwatershed of the project.

- (1) The filter strip area must be 50% of the size of the contributing impervious cover.
- (2) Top edge of the filter strip should be level; otherwise, runoff will tend to form a channel in the low spot. If a level spreader is used (this is only allowed for interim use) to distribute runoff to the filter strip, it must be lined or be constructed of impermeable materials (concrete).
- (3) The area to be used for the strip should be free of gullies or rills that can concentrate overland flow.
- (4) Filter strips should be landscaped after other portions of the project are completed and vegetation coverage should be at least 80%.

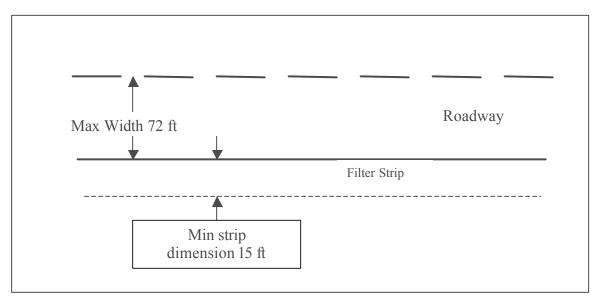


Figure 3-21 Example of Filter Strip along Roadway

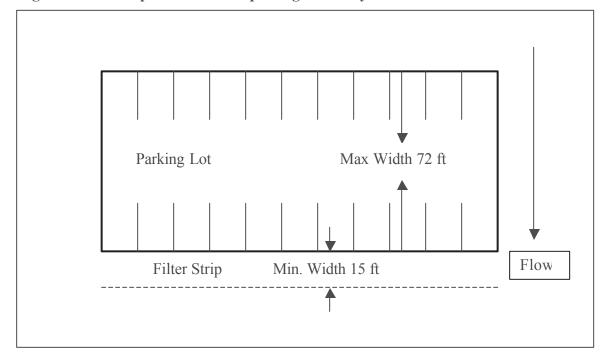


Figure 3-22 Example Configuration of Filter Strip adjacent to Parking Lot

Traffic Impact Analysis

Level 3 Traffic Impact Analysis

March 10, 2025

TIA Version 3
BASIS Leander (Leander Commerce Park)
TIA-25-0015

City of Leander, Williamson County, Texas

Prepared for:

BASIS Leander

Nicholas D. Aiello, PE, PTOE, PTP

TX Professional Engineer License No. 133969 Colliers Engineering & Design

5901 Vega Avenue Suite 100 Austin, Texas 78735 Main: 877 627 3772 colliersengineering.com

Project No. 23015395A

Table of Contents

Executive Summary	4
Introduction	6
Existing Roadway Conditions	8
Existing Traffic Conditions	10
Access Assessment	11
Pedestrian Accommodations	12
School Queue and Circulation	13
Trip Generation & Distribution	14
Future Traffic Conditions	16
2026 ICE Evaluation	21
Deceleration Lane Warrants	26
Traffic Signal Warrant Analysis	28
HCM Capacity Analysis	30
Mitigation Pro Rata	41
Sight Distance Analysis	42
Summary and Conclusions	43

Tables

Table 1 – Land Use Summary	6
Table 2 – Data Collection Efforts	10
Table 3 – MSTA School Queue Calculations	13
Table 4 – Site Generated Trips	14
Table 5 – Trip Distribution	14
Table 6 – Background Growth Rates – 183A Frontage Road	17
Table 7 – Background Growth Rates – RM 2243	18
Table 8 – Background Growth Rates – Ronald Reagan	19
Table 9 – Growth Rate	19
Table 10 – ADT Calculations – RM 2243 & Future Raider Way	23
Table 11 – SPICE Summary – RM 2243 & Future Raider Way	24
Table 12 – Turn Lane Summary – RM 2243 & Future Raider Way	26
Table 13 – Turn Lane Summary – RM 2243 & Western Commercial Driveway	27
Table 14 – Traffic Signal Warrant Descriptions	28
Table 15 – Traffic Signal Warrant Results - RM 2243 & Future Raider Way	29
Table 16 – HCM LOS/Delay Criteria	30
Table 17 – Level of Service Summary (1 of 3)	31
Table 18 – Level of Service Summary (2 of 3)	32
Table 19 – Level of Service Summary (3 of 3)	33
Table 20 – Build with Mitigation Level of Service Summary (1 of 3) – Ronald Reagan Boulevard	35
Table 21 – Build with Mitigation Level of Service Summary (2 of 3) – Ronald Reagan Boulevard	35
Table 22 – Build with Mitigation Level of Service Summary (3 of 3) – Ronald Reagan Boulevard	36

Table 23 – Build with Mitigation Level of Service Summary (1 of 3) – 183A NB Frontage Road
Table 24 – Build with Mitigation Level of Service Summary (2 of 3) – 183A NB Frontage Road37
Table 25 – Build with Mitigation Level of Service Summary (3 of 3) – 183A NB Frontage Road37
Table 26 – Build with Mitigation Level of Service Summary (1 of 3) – 183A SB Frontage Road38
Table 27 – Build with Mitigation Level of Service Summary (2 of 3) – 183A SB Frontage Road39
Table 28 – Build with Mitigation Level of Service Summary (3 of 3) – 183A SB Frontage Road39
Table 29 – Mitigation Pro Rata41
Table 30 – Sight Distance Analysis42
Appendices
Appendix A
Appendix BTIA Scoping Document
Appendix CTraffic Figures
Appendix DTraffic Count Data
Appendix ETrip Generation Calculations
Appendix FTraffic Signal Warrant Analysis
Appendix G
Appendix H Traffic Signal Timing Directives
Appendix I
SPICE/CAP-X Figures
Figure 1 – SPICE Inputs – RM 2243 & Future Raider Way – AM Peak21
Figure 2 – SPICE Inputs – RM 2243 & Future Raider Way – School Dismissal PM Peak22
Figure 3 – SPICE Inputs – RM 2243 & Future Raider Way – PM Peak22
Figure 4 – SPICE Results – RM 2243 & Future Raider Way23
Figure 5 – CAP-X Results – RM 2243 & Future Raider Way – AM Peak24
Figure 6 – CAP-X Results – RM 2243 & Future Raider Way – School Dismissal PM Peak24
Figure 7 – CAP-X Results – RM 2243 & Future Raider Way – PM Peak25

Executive Summary

This Level 3 Traffic Impact Analysis has been prepared for BASIS Leander ("Applicant") in association with a proposed mixed-use development ("Project") within the City of Leander, Williamson County, Texas. The Applicant proposed to develop a +/- 91,400 SF charter school on the northern portion of the site with an anticipated enrollment of 1,455 students. For purposes of the traffic assessment, the southern portion of the site will be considered as a proposed retail component (strip retail center) for a conservative evaluation. As part of the development, the future alignment of Raider Way along the eastern property boundary will be constructed to RM 2433. According to the City of Leander Thoroughfare Plan, Raider Way will be a north-south collector. The location of Raider Way was confirmed by City Council and the cross section is anticipated to be one-lane in each direction divided by a two-way-left-turn-lane (TWLTL).

Ingress and egress access to/from the charter school is proposed along the future Raider Way. A right-in/right-out driveway with a physical pork-chop island to restrict left-turns is proposed along RM 2433 for the commercial site. The driveway for the commercial site will be permitted by others.

Traffic volume data was collected within the study area to gain an understanding of the existing roadway conditions and operations through turning movement counts ("TMC") conducted on Thursday, January 11, 2024 from 7:00 AM to 9:00 AM and from 2:00 PM to 6:00 PM at the intersections of RM 2243 & Ronald Reagan Boulevard, RM 2243 & 183A NB Frontage Road, and RM 2243 & 183A SB Frontage Road. Additionally, an Automatic Traffic Recorder ("ATR") was installed along RM 2243 within the vicinity of the project site on Wednesday, May 8, 2024 from 12:00 AM to 12:00 AM to collect 24 hours of traffic data.

Circulation and Queueing

The peak high demand queue length associated with the Charter School for both the Primary and Secondary Circulation Plans is 1,183 feet and would occur during the 3:15 PM dismissal period. The available on-site queueing lengths for the proposed Primary and Secondary Circulation Plans are 3,891 feet and 3,140 feet, respectively. Therefore, the proposed circulation plans are sufficient to accommodate the anticipated operations of the site.

Mitigation

RM 2243 & Future Raider Way

An Intersection Control Evaluation (ICE) was conducted in accordance with TxDOT standards at the proposed T-Intersection at RM 2243 & Future Raider Way. Based upon the SPICE/CAP-X assessment, a traffic signal with deceleration lanes will provide the lowest v/c ratio and provide for pedestrian accommodations. With right-of-way and environmental constraints (Brushy Creek), a roundabout or larger infrastructure foot-print design is not recommended at this intersection. A traffic signal will provide pedestrian accommodations and the lower v/c ratio.

Due to drainage and right-of-way constraints, a 440' long RM 2243 eastbound left-turn lane is recommended as a longer turn lane would have substantial impact to the culvert west of the property and potential right-of-way impacts to the adjacent cemetery property, which is not feasible

to obtain nor recommended. As such the 440' left-turn lane is optimal to support the queue without spillback during critical peak hours. A westbound right-turn deceleration lane is warranted along RM 2243 at the Future Raider Way. The 605' right-turn lane will be constructed with 100' of storage (to support the HCM 7th edition 4 car (100') 95th percentile queue) and 505' for deceleration (inclusive of 100' taper). A traffic signal is warranted in the 2026 Build condition satisfying TMUTCD 8-hour, 4-hour and peak hour warrants. With the proposed roadway geometry and traffic signal, all movements at the intersection of RM 2243 & Future Raider Way will operate at acceptable Levels of Service during all peak hours studied. The intersection will operate at overall Levels of Service "C" or better during all peak hours studied. The proposed Right-in/Right-Out Western Commercial Site Driveway will operate at acceptable Levels of Service during all peak hours studied, and the 95th percentile queues can be accommodated within the layout of the site.

RM 2243 & Ronald Reagan Blvd

Under the 2026 Build with Mitigation condition, it is proposed to reconstruct the substandard northbound and southbound shoulders along Ronald Reagan Blvd and convert them into full width 12'-wide right-turn deceleration lanes. Using a 0-mph differential, a 65mph roadway has a right-turn deceleration lane of 730' (700' deceleration + 30' minimum storage). Using a 10-mph speed differential, the right-turn deceleration lane length would be 545' (515' deceleration + 30' minimum storage). Using the 545' deceleration length, the proposed right-turn lane lengths would be similar to the existing left-turn deceleration lanes on Ronald Reagan Blvd. It is recommended to implement 545' long right-turn deceleration lanes to improve No-Build conditions while maintaining consistency with the existing geometry at the intersection. The 545' right-turn lanes will be supported by maintaining the existing right-turn channelization under yield control. Physical signal improvements are not proposed.

RM 2243 & 183A Toll Road Frontage Rds

Under the 2026 Build with Mitigation condition, it is proposed to optimize the traffic signal timings at the signalized intersections of RM 2243 & the 183A Toll Rd Frontage Roads. With timing optimization, the level of service requirements per the City of Leander and the Austin Transportation Criteria Manual are met and the overall intersection with operate at LOS "D," or better, during the studied peak hours.

Introduction

This Level 3 Traffic Impact Analysis has been prepared for Basis Leander ("Applicant") in association with a proposed mixed-use development ("Project") within the City of Leander, Williamson County, Texas. The Applicant proposes to develop a +/- 91,400 SF charter school on the northern portion of the site with an anticipated enrollment of 1,455 students and a 29,150 SF retail component on the southern portion of the site to be developed by others. The following represents the anticipated student enrollment by grade level:

• Grades K-5: 780 students;

• Grades 6-8: 398 students;

• Grades 9-10: 145 students; and

• Grades 11-12: 132 students.

For purposes of the traffic assessment, the southern portion of the site will be considered as a retail component (strip retail center) for a conservative evaluation. Based upon the size of the southern portion of the site and accounting for potential parking and on-site detention, it is estimated that a 29,150 SF strip retail center could be developed. **Table 1** represents a breakdown of the land uses and intensities.

Table 1 – Land Use Summary

ITE Land Use	Code and Description	Size
538	Charter School (K-12)	1,455 students
822	Strip Retail Plaza (<40k)	29,150 SF

The site is located at 8770 RM 2243 and is identified as Parcel ID Numbers: R327095 & R433125. As part of the development, the future alignment of Raider Way along the eastern property boundary will be constructed to RM 2433. According to the City of Leander Thoroughfare Plan, Raider Way will be a north-south collector. The location of Raider Way was confirmed by City Council and the cross section is anticipated to be one-lane in each direction divided by a two-way-left-turn-lane (TWLTL).

Ingress and egress access to/from the charter school is proposed along the future Raider Way. A right-in/right-out driveway with a physical pork-chop island to restrict left-turns is proposed along RM 2433 for the commercial site. The western commercial driveway will be permitted by others.

The Site Location Map and the Site Plan are included as **Figures 1** & **2** in **Appendix C**. The TIA Determination Worksheet is included in **Appendix A**. A concept align of the Future Raider Way is provided as **Figure 3** in **Appendix C**.

A Scoping Meeting was held with the City of Leander on Tuesday, April 9, 2024 and a second TIA scoping meeting was held with the City of Leander and TxDOT on Friday, November 1, 2024 for the proposed development. A follow-up meeting was held on February 25, 2025. The TIA Scoping Documents and meeting information are included in **Appendix B**.

This study presents an evaluation of the current and future traffic conditions in the vicinity of the project site. Specific elements included in this study are:

- TIA Materials from the meetings held on Tuesday, April 9, 2024, Friday, November 1, 2024 and February 25, 2025;
- An inventory of the roadway facilities in the vicinity of the project, including the existing physical and traffic operating characteristics;
- Determination of the 2024 Existing Conditions;
- Site Generated Trips as described in the ITE Trip Generation Manual, 11th Edition;
- Trip Distribution and Assignment;
- Forecast of 2026 No-Build Traffic Volumes;
- Forecast of the 2026 Build Traffic Volumes;
- Site Access Assessment;
- Pedestrian Accommodations Assessment;
- School Queue and Circulation Plan Assessment;
- Intersection Control Evaluation:
- Turn Lane Evaluations;
- Traffic Signal Warrant Analysis;
- Peak Hour Capacity Analysis for the 2024 Existing Conditions;
- Peak Hour Capacity Analysis for the 2026 No-Build Conditions;
- Peak Hour Capacity Analysis for the 2026 Build Conditions;
- Sight Distance Evaluation; and
- Summary and Conclusions.

Existing Roadway Conditions

A field investigation was conducted adjacent to the project site to obtain an inventory of existing roadway conditions, posted traffic controls, adjacent land uses, lane configurations, and existing traffic patterns.

Roadways

RM 2243 is an urban major collector roadway under jurisdiction of the TxDOT with a general eastwest orientation. The roadway provides one (1) 12-foot-wide travel lane in each direction with guidelines on each side of the roadway within the vicinity of the project site. The posted speed limit is 55 mph. Sidewalk, curbing, and bicycle lane striping are not provided within 1,000 feet of the project site.

Ronald Reagan Boulevard is an urban principal arterial roadway under the jurisdiction of the City of Leander with a general north-south orientation. The roadway provides two (2) 12-foot-wide travel lanes in each direction separated by a grass median with a variable width. Additionally, the roadway provides 6-10-foot-wide shoulders on each side of the roadway. The posted speed limit is 65 mph south of RM 2243. Sidewalk, curbing, and bicycle lane striping are not provided within 1,000 feet of the project site.

183A Frontage Road is an urban major collector roadway under the jurisdiction of the Central Texas Regional Mobility Authority (CTRMA) with a general north-south orientation. The roadway currently provides two (2) 12-foot-wide travel lanes in each direction divided by a grass median with a variable width. Additionally, the roadway provides 5-10-foot-wide shoulders on each side of the roadway. The posted speed limit is 60 mph.

Signalized Intersections

Ronald Reagan Boulevard & RM 2243 is a signalized four-leg intersection operating on a variable cycle length. The eastbound and westbound approaches of RM 2243 provide one (1) dedicated left-turn lane and one (1) shared through/right-turn lane with a channelized right-turn lane operating under yield control. The northbound and southbound approaches of Ronald Reagan Boulevard provide one (1) dedicated left-turn lane, one (1) dedicated through lane, and one (1) shared through/right-turn lane with a channelized right-turn lane operating under yield control.

183A NB Frontage Road & RM 2243 is a signalized four-leg intersection operating on a variable cycle length on the same controller as the intersection of 183A SB Frontage Road & RM 2243. The eastbound approach of RM 2243 Avenue provides one (1) dedicated left-turn lane and one (1) dedicated through lane. The westbound approach of RM 2243 provides one (1) dedicated through lane and one (1) shared through/right-turn lane. The northbound approach of 183A NB Frontage Road is an ingress-only approach and provides one (1) shared left-turn/U-turn lane with a channelized U-turn to 183A SB Frontage Road, two (2) dedicated through lanes, and one (1) dedicated right-turn lane that is channelized under yield control. The southbound approach of 183A NB Frontage Road is an egress-only approach and provides two (2) receiving lanes.

183A SB Frontage Road & RM 2243 is a signalized four-leg intersection operating on a variable cycle length on the same controller as the intersection of 183A SB Frontage Road & RM 2243. The eastbound approach of RM 2243 Avenue provides one (1) dedicated through lane, and one (1) shared through/right-turn lane with a channelized right-turn under yield control. The westbound approach of RM 2243 provides one (1) dedicated left-turn lane and one (1) dedicated through lane. The northbound approach of 183A SB Frontage Road is an egress-only approach and provides two (2) receiving lanes. The southbound approach of 183A SB Frontage Road is an ingress-only approach and provides one (1) dedicated left-turn lane, one (1) dedicated through lane, and one (1) shared through/right-turn lane with a channelized right-turn under yield control.

Existing Traffic Conditions

Turning Movement Counts

Traffic volume data was collected within the study area to gain an understanding of the existing roadway conditions and operations through turning movement counts (TMC) conducted on Thursday, January 11, 2024 from 7:00 AM to 9:00 AM and from 2:00 PM to 6:00 PM at the following intersections:

- RM 2243 & Ronald Reagan Boulevard;
- 183A NB Frontage Road & RM 2243; and
- 183A SB Frontage Road & RM 2243.

It is noted the established network peak hour was determined based on the bell schedules for the proposed charter school.

The data collection efforts are detailed in **Table 2**. The processed TMC data is provided in **Appendix D**.

Table 2 - Data Collection Efforts

Peak Period	Date Collected	Traffic Count Time Frame	Established Network Peak Hour
Weekday Morning		7:00 AM - 9:00 AM	7:30 AM - 8:30 AM
Weekday Evening School Dismissal	Thursday, January 11, 2024	2:00 PM – 6:00 PM	3:00 PM - 4:00 PM
Weekday Evening			5:00 PM - 6:00 PM

Automatic Traffic Recorder

Additionally, an Automatic Traffic Recorder (ATR) was installed along RM 2243 within the vicinity of the project site on Wednesday, May 8, 2024 from 12:00 AM to 12:00 AM to collect 24 hours of traffic data. Based upon the ATR data and turning movement counts, the volumes were balanced between the intersections to maintain consistency in the network. The processed ATR data is provided in **Appendix D**. A Volume Flow Diagram illustrating the 2024 Existing Condition is provided as **Figure 5** in **Appendix C**.

Access Assessment

Site Access

As part of the development, the future alignment of Raider Way along the eastern property boundary will be constructed to RM 2433. According to the City of Leander Thoroughfare Plan, Raider Way will be a north-south collector. The location of Raider Way was confirmed by City Council and the cross section is anticipated to be one-lane in each direction divided by a two-way-left-turn-lane (TWLTL).

Ingress and egress access to/from the charter school is proposed along the future Raider Way. A right-in/right-out driveway with a physical pork-chop island to restrict left-turns is proposed along RM 2433 for the commercial site.

The intersection of RM 2243 & Future Raider Way will be located approximately one (1) mile west of the intersection of Ronald Reagan Boulevard & RM 2243 and 0.75 mile east of the intersection RM 2243 & 183A Toll Road.

Adjacent Access

The existing private access and ingress/egress easement to the adjacent property to the east (VFD) will be removed from RM 2243 to manage future access near the new proposed intersection of RM 2243 & Raider Way. The adjacent property to the east will take access along Raider Way near the opposite northern school access.

Access Spacing

TxDOT Access Management Criteria specifies access spacing criteria for TxDOT facilities. RM 2243 has a posted speed limit of 55 miles per hour. Consistent with the TxDOT Access Management Criteria, Table 2-2, access points on TxDOT facilities should have a minimum spacing of 425 feet when the posted speed limit is greater than or equal to 50 miles per hour.

The proposed right-in/right-out commercial driveway along RM 2243 will be 400′ west of the proposed intersection of RM 2243 & Future Raider Way. Please note, the driveway is proposed as far as possible from Future Raider Way. As the land uses between the north and south lots will not have vehicular interconnectivity to discourage student drop-off/pick-up in the commercial lot, the commercial lot will only service the retail trips. As the driveway will be located in the area of the RM 2243 eastbound left-turn lane to the Future Raider Way, it is recommended to physically prohibit left-turns to/from the commercial driveway with a right-turn taper and pork-chop island. The western commercial driveway will be permitted by others.

The driveway spacing exhibit along RM 2243 is illustrated as Figure 4 in Appendix C.

Pedestrian Accommodations

School drop-off/pick-up will occur on-site in designated areas. Pedestrian accommodations will be provided along the future Raider Way roadway and along RM 2243. The sidewalk will be provided along both sides of the proposed alignment of Raider Way during the first phase of development (charter school). Once the southern lot is developed with the commercial use (by others), the sidewalk adjacent to RM 2243 will be constructed (by others). This is compliant with the plat and City Transportation Master Plan.

At the intersection of RM 2243 & Future Raider Way, the proposed traffic signal will meet current TxDOT standards and provide ADA compliant pedestrian accommodations including curb ramps, audible pedestrian push buttons, pedestrian signal heads and crosswalks.

School Queue and Circulation

The Municipal and School Transportation Assistance (MSTA) School Traffic Calculator is utilized to calculate the anticipated queue lengths consistent with the total student enrollment. Two (2) circulation plans were developed for school pick-up/drop-off times occurring at the site to maintain safe and efficient traffic operations. The calculated queue lengths for each circulation plan are illustrated in **Table 3**. The MSTA school queue calculation sheets are provided in **Appendix I**.

Table 3 – MSTA School Queue Calculations

Dismissal Grades Stud		Students	Students per Circulation Plan		Average Queue Length		High Demand Length	
Time			Primary	Secondary	Primary	Secondary	Primary	Secondary
2:55 PM	6 & 8–12 (early elective)	346	173 (50%)	173 (50%)	734′	734′	954′	954′
3:15 PM	K, 4 & 5	420	210 (50%)	210 (50%)	910′	910′	1,183′	1,183′
3:35 PM	1-3	360	180 (50%)	180 (50%)	777′	777′	1,010′	1,010′
3:55 PM	7 & 8–12 (late elective)	329	164 (50%)	165 (50%)	711′	711′	926′	926′

As illustrated in **Table 3**, the peak high demand queue length for both the Primary and Secondary Circulation Plans is 1,183 feet and would occur during the 3:15 PM dismissal period. The available on-site queueing lengths for the proposed Primary and Secondary Circulation Plans are 3,891 feet and 3,140 feet, respectively. Therefore, the proposed circulation plans are sufficient to accommodate the anticipated operations of the site.

The southern commercial lot and northern charter school lot are not anticipated to share vehicular connectivity to prevent students from being dropped-off/picked-up in the commercial lot.

Trip Generation & Distribution

Trip Generation

Trip generation estimates for the proposed development were determined using Land Use Code 538 – Charter School (K-12) and 822 – Strip Retail Plaza (<40k) as per the Institute of Transportation Engineers' (ITE), *Trip Generation Manual, 11th Edition*. Based on the ITE Trip Generation Manual, the weekday PM peak hour for LUC 822 generally occurs during the adjacent street PM peak hour (typically between 4:00 PM – 6:00 PM), while the dismissal time period for the charter school is between 3:00 PM - 4:00 PM. The morning peak hours for both land uses occur during the adjacent street AM peak hour. Based upon the trip generation calculations, the TIA will analyze the AM peak hour, the School Dismissal PM peak hour, and the PM peak hour. A trip generation summary during the AM peak hour, School Dismissal PM peak hour and PM peak hour of adjacent street is provided in **Table 4.** The trip generation calculations are provided in **Appendix E.**

Table 4 - Site Generated Trips

ΙΤ	E Land Use Code and Description	Size	Weekday AM Peak of Adjacent Street /School Arrival		Weekday School Dismissal Peak		Weekday PM Peak of Adjacent Street				
			Enter	Exit	Total	Enter	Exit	Total	Enter	Exit	Total
538	Charter School (K-12)	1,455 students	616	592	1,208	531	531	1,062	313	312	625
822	Strip Retail Plaza (<40k)	29,150 SF	41	28	69	89	89	178	96	96	192
	Total		657	620	1,277	620	620	1,240	409	408	817

Trip Distribution

Trip distribution methodology was developed based on existing travel patterns within the adjacent roadway network, adjacent land uses, proposed land uses, development locations, access locations, and the proximity of major arterials within the vicinity of the site. The proposed trip distribution for the site is provided in **Table 5**.

Table 5 - Trip Distribution

	To/From	Distribution
	RM 2243, West of Site	20%
West of Site 183A NB Frontage Road, South of Site 183A SB Frontage Road, North of Site		20%
		25%
	RM 2243, East of Site	5%
East of Site	Ronald Reagan Boulevard, North of Site	15%
Ronald Reagan Boulevard, South of Site		15%
	Total	100%

Volume Flow Diagrams of the Basis Charter School Trip Distributions and Site Generated Trips throughout the study area are provided as **Figures 6-7** in **Appendix C.** Volume Flow Diagrams of the Retail Trip Distributions and Site Generated Trips throughout the study area are provided as **Figures 8-9** in **Appendix C**. A Volume Flow Diagram of the Total Site Generated Trips is provided as **Figure 10** in **Appendix C**.

Future Traffic Conditions

To determine the traffic impact of the development, an estimation of the traffic operational characteristics at the Build date, without the construction of the project (or "No-Build" condition), is made. The existing volumes have been projected to the Build year of 2026.

Background Growth

The TxDOT Statewide Planning Map and City of Leander Traffic Impact Assessment Guidelines were referenced to estimate the anticipated annual growth rate to account for general increases in traffic due to regional population and employment growth by the build year. A background growth rate was identified to estimate the future traffic volumes to the build out years. The TxDOT Traffic Count Data Base System (TCDS) was used to determine a growth factor. It is anticipated that an **8%** growth rate will be utilized for Ronald Regan Boulevard and a **4%** growth rate will be utilized for both 183A Frontage Road and RM 2243. **Tables 6-8** summarize the background growth rates within the area.

Table 6 - Background Growth Rates - 183A Frontage Road

Location & Description	Year	Volume	Average Growth Rate	Average Annual Growth Rate
	2023	6,188	-6.1%	
#246D17SBSR,	2022	6,593	17.3%	
TL0000,183A Frontage	2021	5,623	12.8%	-3.85%
Road SB, South of RM	2020	4,985	-10.5%	-3.83%
2243	2019	5,567	-27.3%	
	2018	7,661		
	2023	15,266	10.8%	
#246D17SBSR,	2022	13,780	17.2%	
TL0000,183A Frontage	2021	11,753	1.0%	4.09%
Road NB, South of RM	2020	11,637	-8.2%	4.09%
2243	2019	12,673	20.8%	
	2018	10,490		
	2023	6,738	0.0%	
#246D17NBSR,	2022	6,741	18.4%	
TL0000,183A Frontage	2021	5,749	27.0%	2.13%
Road NB, South of RM	2020	4,528	-20.4%	2.15%
2243	2019	5,692	-6.5%	
	2018	6,090		
	2023	8,471	5.9%	
	2022	8,000	17.3%	
#246H46SBDR, 183A	2021	6,823	11.1%	2 620/
Frontage Road B, South of RM 2243	2020	6,144	-9.0%	2.63%
33401 01 NW 22-73	2019	6,755	-9.8%	
	2018	7,488	16.9%	
	Average Over	all Growth Rate		2.95%

Table 7 - Background Growth Rates - RM 2243

Location & Description	Year	Volume	Average Growth Rate	Average Annual Growth Rate
	2023	12547	9.8%	
	2022	11432	-23.1%	
#246H49A, RM2243,	2021	14866	56.6%	0.270/
East of Ronald Reagan Boulevard	2020	9494	-35.5%	-0.27%
Boalevara	2019	14719	18.9%	
	2018	12380		
#246H181, RM2243-	2023	13,227	8.3%	
KG, East of 183A NB	2022	12,209	-12.9%	-2.81%
Frontage Road	2021	14,015		
	2023	10,775	87.5%	
	2022	5,748	-23.1%	
#246H48, RM2243, West of 183A SB	2021	7,475	14.2%	5.55%
Frontage Road	2020	6,543	-11.6%	5.55%
Trontage Road	2019	7,401	-12.2%	
	2018	8,434		
	2023	9,160	12.2%	
	2022	8,166	1.2%	
#246T64B, RM2243- KG, West of CR 273	2021	8,069	40.2%	2 240/
	2020	5,755	-28.0%	-2.21%
	2019	7,989	-3.2%	1
	2018	8,250		
	Average Over	all Growth Rate		1.30%

Table 8 - Background Growth Rates - Ronald Reagan

Location & Description	Year	Volume	Average Growth Rate	Average Annual Growth Rate		
	2023	35,766	54.8%			
#246HP45, Ronald	2021/22	23,103	59.9%	44.960/		
Reagan Boulevard, South of RM 2243	2020	14,445	-35.6%	14.86%		
30dti 01 kivi 22-13	2019	22,430				
	2023	43,747	39.4%			
#246H36D, Ronald	2022	31,381	-17.6%			
Reagan Boulevard,	2021	38,075	43.0%	3.01%		
South of RM 2243	2020	26,631	-31.8%			
	2019	39,052				
	2023	24,059	29.3%			
#246HP1483, Ronald	2021/22	18,614	65.1%	0.200/		
Reagan Boulevard, North of RM 2243	2020	11,276	-37.6%	8.28%		
NOTEH OF KIVI 22-13	2019	18,072	12.3%			
	2023	25,722	54.8%			
#246HP203, Ronald	2021/22	16,615	6.9%			
Reagan Boulevard, North of RM 2243	2020	15,539	-3.7%	5.16%		
	2019	16,131	-21.1%			
	2018	20,450				
	Average Overall Growth Rate					

Table 9 summarizes the background growth rates within the vicinity of the Project site.

Table 9 – Growth Rate

Build-Year Growth Rate						
Roadway Ronald Reagan 183A Frontage Road RM 2243						
Growth Rate	8.00%	4.00%	4.00%			
Years	2	2	2			
Growth Factor	1.166	1.082	1.082			

Adjacent Developments

Colliers Engineering & Design contacted the City of Leander to determine if there are any planned or approved developments within the vicinity of the study area. It was determined at the TIA Scoping meeting that no immediate adjacent developments are planned in the area.

2026 No-Build Conditions

The 2026 No-Build traffic volumes were forecasted by applying the applicable background growth rates to the existing traffic volumes. A Volume Flow Diagram illustrating the 2026 No-Build Condition is provided as **Figure 11** in **Appendix C**.

2026 Build Conditions

The 2026 Build conditions reflect the construction of the future Raider Way alignment. The 2026 Build traffic volumes were forecasted by adding the site generated trips of the proposed development to the No-Build traffic volumes. A Volume Flow Diagram illustrating the 2026 Build Condition is provided as **Figure 12** in **Appendix C**.

2026 ICE Evaluation

An Intersection Control Evaluation (ICE) was conducted to determine the preferred intersection and control type using both safety (SPICE) and operational (CAP-X) analysis at the intersection of RM 2243 & Future Raider Way under the 2026 Build condition.

TxDOT has adopted the FHWA SPICE analysis spreadsheet for quantifying the safety performance for different intersection types. Based on design year TMC input parameters for peak hour traffic at proposed intersections, the SPICE tool can predict crash frequency and severity for each control strategy. TxDOT has also adopted the FHWA CAP-X analysis spreadsheet which uses ADT inputs to rank the Volume/Capacity ratio of each control strategy. This CAP-X tool also establishes performance metrics for pedestrian and bicycle accommodations attributed to each control strategy assessed.

ICE analysis is required when there are plans to establish a new intersection or when any substantive change is made to the roadway geometry of an existing intersection along a state highway. Results from the SPICE and CAP-X analysis tools are to be compared with one another to provide recommendations for the most safe and viable control type at each intersection location.

RM 2243 & Future Raider Way

FHWA SPICE Tool

Turning movement counts were established by combining the peak hour site generated trips for the project with the projected 2026 No-Build volumes. The 2026 Design year TMC data for the AM peak hour, School Dismissal PM peak hour, and PM peak hour periods are outlined in **Figures 1-3.**

Traffic Volume Demand Volume (Veh/hr) Percent (%) Heavy Volume **U-Turn** Left Thru Right Vehicles Growth Eastbound 0 0 427 540 2.00% 0.00% Westbound 0 0 594 216 2.00% 0.00% Southbound 0 217 0 385 2.00% 0.00% Northbound 0 0 0 2.00% 0.00%

Figure 1 - SPICE Inputs - RM 2243 & Future Raider Way - AM Peak

Figure 2 – SPICE Inputs – RM 2243 & Future Raider Way – School Dismissal PM Peak

Traffic Volume Demand									
		Volume	(Veh/hr)		Perce	nt (%)			
	U-Turn	Left	Thru	Right	Heavy Vehicles	Volume Growth			
Eastbound	0	403	718	0	2.00%	0.00%			
Westbound	0	0	540	186	2.00%	0.00%			
Southbound	0	217	0	345	2.00%	0.00%			
Northbound	0	0	0	0	2.00%	0.00%			

Figure 3 – SPICE Inputs – RM 2243 & Future Raider Way – PM Peak

Traffic Volume Demand									
		Volume	(Veh/hr)		Perce	nt (%)			
	U-Turn	Left	Thru	Right	Heavy Vehicles	Volume Growth			
Eastbound	0	265	805	0	2.00%	0.00%			
Westbound	0	0	585	110	2.00%	0.00%			
Southbound	0	143	0	203	2.00%	0.00%			
Northbound	0	0	0	0	2.00%	0.00%			

The FHWA SPICE tool analyzes the average daily traffic (ADT) calculated from the AM, School Dismissal PM, and PM peak hours TMC data to rank different intersection types by their level of safety performance. The 2026 ADT Calculations at RM 2243 & Future Raider Way are included in **Table 10.**

Table 10 - ADT Calculations - RM 2243 & Future Raider Way

Time Period	Roadway	Location	Total Entering Volumes (TEV)	ADT (TEV/10%)	Average ADT	
	RM 2243	East of Intersection	1,567	15,670	17.570	
AM	RIVI ZZ45	West of Intersection	1,946	19,460	17,570	
	Eastern Site Driveway	North of Intersection	1,245	12,450	3,880	
	RM 2243	East of Intersection	1,661	16,610	19.240	
School Dismissal PM	RIVI 2243	West of Intersection	2,006	20,060	18,340	
	Eastern Site Driveway	North of Intersection	1,151	11,510	11,510	
	DM 2242	East of Intersection	1,643	16,430	17.510	
PM	RM 2243	West of Intersection	1,858	18,580	17,510	
	Eastern Site Driveway	North of Intersection	721	7,210	7,120	

SPICE Results and Summary

The FHWA SPICE tool tabulates the predicted amount of vehicle crashes yielded by each control strategy. Results for predicted crash data at RM 2243 & Eastern Site Driveway under 2026 Build conditions are illustrated in **Figure 4** and summarized in **Table 11**.

Figure 4 – SPICE Results – RM 2243 & Future Raider Way

Crash Prediction Summary								
Control Strategy	Crash Type	Opening Year	Design Year	Total Project Life Cycle	AADT Within Prediction Range?			
	Total	1.51	-	-	NI/A			
1-lane Roundabout	Fatal & Injury	0.28			N/A			
M	Total	5.19		270	Me			
Minor Road Stop	Fatal & Injury	2.15			No			
Traffic Signal	Total	2.91	-	770	Vaa			
	Fatal & Injury	1.21			Yes			

Table 11 – SPICE Summary – RM 2243 & Future Raider Way

Criterion	Dank	Intersection Type			
Criterion	Rank	Crash Prediction	Control Strategy		
	1	1.51	Roundabout		
Lowest Total Crashes	2	2.91	Traffic Signal		
	3	5.19	Minor Road Stop		
	1	0.28	Roundabout		
Lowest Fatal & Injury Crashes	2	1.21	Traffic Signal		
	3	2.15	Minor Road Stop		

FHWA CAP-X Tool Results and Summary

The same peak hour volumes and intersection types were analyzed between both CAP-X and SPICE tools. Results indicating the viability of each intersection type at RM 2243 & Future Raider Way under the 2026 Build conditions for the AM, School Dismissal PM, and PM peak hours are illustrated in **Figures 5-7.**

Figure 5 - CAP-X Results - RM 2243 & Future Raider Way - AM Peak

TYPE OF INTERSECTION	Overall V/C Ratio	V/C Ranking	Pedestrian Accommodations	Bicycle Accommodations
Traffic Signal	0.75	1	Good	Excellent
1 X 1 Roundabout	0.93	2	Excellent	Excellent
Two-Way Stop Control E-W	7.98	3	Fair	Good

Figure 6 - CAP-X Results - RM 2243 & Future Raider Way - School Dismissal PM Peak

TYPE OF INTERSECTION	Overall V/C Ratio	V/C Ranking	Pedestrian Accommodations	Bicycle Accommodations
Traffic Signal	0.70	1	Good	Excellent
1 X 1 Roundabout	1.04	2	Excellent	Excellent
Two-Way Stop Control E-W	7.73	3	Fair	Good

Figure 7 – CAP-X Results – RM 2243 & Future Raider Way – PM Peak

TYPE OF INTERSECTION	Overall V/C Ratio	V/C Ranking	Pedestrian Accommodations	Bicycle Accommodations
Traffic Signal	0.60	1	Good	Excellent
1 X 1 Roundabout	0.92	2	Excellent	Excellent
Two-Way Stop Control E-W	3.07	3	Fair	Good

Signalization, minor street stop control, and roundabout intersection control types were compared based on overall safety and viability at the intersection of RM 2243 & Eastern Site Driveway. Based on SPICE results using 2026 ADT calculations, lower total, injury, and fatal crashes were predicted for signalization and roundabout intersection types than stop control. CAP-X results indicated that signalization at the intersection of RM 2243 & Future Raider Way Driveway would offer a lower overall volume/capacity (V/C) ratio during all peak hours studied in comparison to both stop control and roundabout intersection types. Additionally, there are right-of-way, grade and environmental constraints for a roundabout at the proposed intersection of RM 2243 & Future Raider Way due to Brushy Creek. Therefore, a roundabout is not feasible and provides a higher v/c ratio when compared to a traffic signal.

ICE Recommendation

Results from SPICE and CAP-X analysis indicate that signalization would be the most feasible control type at RM 2243 & Future Raider Way under the 2026 Build condition. A traffic signal would provide pedestrian accommodations and the lowest v/c ratio during all peak hours studied.

Deceleration Lane Warrants

A left-turn and right-turn deceleration lane evaluation was conducted at the proposed Eastern Site Driveway along RM 2243. Additionally, a right-turn lane deceleration lane was conducted at the proposed Western Site Driveway along RM 2243. The deceleration lane analyses were conducted in accordance with the TxDOT Access Management Manual, TxDOT Roadway Design Manual and City standards (where applicable). Left-turn and right-turn lanes are required at driveways or street intersections with 50 peak hour trips or more. The deceleration lane evaluations at the site driveways under the 2026 Build condition are provided in **Tables 12-13.**

Table 12 - Turn Lane Summary - RM 2243 & Future Raider Way

Time Period	Movement		Traffic Volume	Turn Lane Warranted?	RDM Turn Length	Proposed Turn Lane Length
AM Dook	EB	Left	427	Yes	755′*	440′***
AM Peak	WB	Right	216	Yes	605′**	605′
School Dismissal PM Peak	EB	Left	403	Yes	755′*	440′***
SCHOOL DISHIISSALPIVI PEAK	WB	Right	186	Yes	605′**	605′
PM Peak	EB	Left	265	Yes	755′*	440′***
PIVI Peak	WB	Right	110	Yes	605′**	605′

^{*0} mph differential per TxDOT RDM, 755′ left-turn lane (505′ deceleration + 250′ storage per HCM 7th Edition – 10 car queue)

Based upon the anticipated Build traffic volumes, an eastbound left-turn deceleration lane is warranted along RM 2243 at the Future Raider Way. Please note, based upon the HCM 7th edition reports detailed later in this report, a 95th percentile queue of 10 vehicles (250') is anticipated during the critical AM peak and School Dismissal PM peak hours. Due to drainage and right-of-way constraints, a 440' left-turn lane is recommended as a longer turn lane would have substantial impact to the culvert west of the property and potential right-of-way impacts to the adjacent cemetery property, which is not feasible to obtain nor recommended. As such the 440' left-turn lane is optimal to support the queue without spillback during critical peak hours. A westbound right-turn deceleration lane is warranted along RM 2243 at the Future Raider Way. The 605' right-turn lane will be constructed with a 100' (to support the HCM 7th edition 4 car (100') 95th percentile queue) and 505' for deceleration (inclusive of 100' taper). A concept plan of the turn lane improvements at FM 2243 & Future Raider Way is provided as **Figure 13** in **Appendix C**.

^{**0} mph differential per TxDOT RDM, 605' right-turn lane (505' deceleration + 100' of storage per HCM 7th Edition – 4 car queue)

^{***}Please note as discussed with TxDOT and the City of Leander, there is a box culvert and right-of-way constraints from the adjacent cemetery property that preclude the full 755' left-turn lane length. Using a 10-mph differential per TxDOT RDM and using the minimum storage of 100', a 440' left-turn lane can be provided without major impacts to sensitive adjacent properties.

Table 13 – Turn Lane Summary – RM 2243 & Western Commercial Driveway

Time Period	Move	ement	Traffic Volume	Turn Lane Warranted?	Turn Lane Length
AM Peak	WB	R	14	No	Not Warranted –
School Dismissal PM Peak	WB	R	31	No	Right-Turn Taper with physical channelization recommended.
PM Peak	WB	R	34	No	

Based upon the anticipated Build traffic volumes, a westbound right-turn deceleration lane is not warranted along RM 2243 at the Western Right-in/Right-Out Commercial Driveway. However, it will be required to install a physical pork-chop with channelization. Therefore, it is recommended to construct a tapered right-turn into the driveway to provide physical channelization with a "Texas longhorn" island design. The proposed improvements at RM 2243 & Raider Way will be compatible with the proposed western commercial driveway. The commercial driveway permit will be applied by others for their property.

Traffic Signal Warrant Analysis

Signal warrant methodology and factors are outlined in *Chapter 4C* of the *Texas Manual on Uniform Traffic Control Devices, 2014* (TMUTCD). Section 4C.01 of the TMUTCD states that to warrant a traffic signal:

"An engineering study of traffic conditions, pedestrian characteristics, and physical characteristics of the location shall be performed to determine whether the installation of a traffic signal is justified at a particular location."

The traffic control signal investigation is comprised of analyzing several factors related to the operation and safety at the study location. The factors are utilized to determine if the potential signalization will improve traffic operations. The TMUTCD outlines multiple traffic signal warrants which are applied to determine if signalization is justified. The warrants applicable to this analysis are defined in **Table 14**.

Table 14 - Traffic Signal Warrant Descriptions

	Warrant	Description			
1	8-Hour Vehicular Volume	This warrant examines any 8 hours within a study period with consideration given to the large volume of traffic interacting at an intersection and/or large queues of traffic along an intersecting minor street.			
2	4-Hour Vehicular Volume	This warrant examines any 4 hours within a study period with consideration given to intersecting traffic volumes as the main consideration.			
3	Peak Hour	This warrant is intended for use at a location where traffic conditions are such that for a minimum of 1 hour of an average day, the minor-street suffers undue delay when entering or crossing a major street.			

A typical traffic signal warrant analysis is based on hourly traffic volumes over at least a 12-hour period. As previously discussed, 24-hour ATR data was collected along the site frontage on RM 2243 on Wednesday, May 8, 2024, from 12:00 AM to 12:00 PM.

Average Daily Traffic

As published in the ITE *Trip Generation Manual, 11th Edition*, the time-of-day distributions for Land Use Codes 538 – Charter School (K-12) were utilized to estimate the average daily traffic volumes. It is noted, the ITE time-of-day distributions are not provided for Land Use Code 822 – Strip Retail Plaza due to a limited number of study sites. As such, the time-of-day distributions for Land Use Code 820 – Shopping Center were utilized. The ITE time-of-day distributions assign percentages of the daily traffic to each hour of the day. The ADT was estimated by taking the average of the values calculated by applying these percentages to each of the weekday morning and evening peak hour traffic volumes.

12-Hour Traffic Volumes

The 12-hour traffic volumes for the 2026 No-Build condition were calculated by applying the ITE time-of-day distributions for the planned adjacent developments to the estimated ADT values. The calculated adjacent development traffic volumes were applied to each applicable intersection movement and added to the observed 12-hour traffic volumes.

The calculated 12-hour traffic volumes for the 2026 Build condition were calculated by applying the ITE time-of-day distributions for the proposed charter school to the estimated ADT values. The calculated charter school traffic volumes were then applied to each applicable intersection movement and added to the no-build traffic volumes.

Traffic Signal Warrant Analysis Results

This analysis was performed for the intersection of RM 2243 & Eastern Site Driveway using the latest version of *Trafficware Warrants V.10*. Based on TMUTCD standards, the 8-hour, 4-hour, and peak hour traffic signal warrants were **met** under the 2026 Build condition. **Table 15** summarizes the warrant analysis results. The traffic signal warrant reports are included in **Appendix F.**

Table 15 - Traffic Signal Warrant Results - RM 2243 & Future Raider Way

	Mayer		Haura Daguirad	2026 Build		
Warrant			Hours Required	Hours Reached	Satisfied	
1	8-Hour Vehicular	Condition A	8	9	YES	
	Volume	Condition B	8	5	TES	
2	4-Hour Veh	icular Volume	4	7	YES	
3	Peak	(Hour	1	5	YES	
	Tota	3	}			

HCM Capacity Analysis

The peak hour traffic operations within the project vicinity were evaluated at the study intersections. The analyses were performed using the latest version of *Synchro Trafficware*, a traffic analysis and simulation program. The results of these analyses provide Levels of Service (LOS), volume/capacity descriptions, and average seconds of delay for the intersection movements.

The efficiency with which an intersection operates is a function of volume and capacity. The capacity of an intersection is the volume of vehicles it can accommodate during a given time period. LOS is a qualitative measure describing operational conditions within a traffic stream in terms of traffic characteristics such as freedom to maneuver, traffic interruption, comfort, and convenience. Six (6) LOS are defined for each type of facility with analysis procedures available. Levels of Service range from "A" through "F," with Level "A" representing excellent conditions with no delays, and failure and deficient operations denoted by Level "F." The HCM LOS criteria for signalized and unsignalized intersections are provided in **Table 16**.

Table 16 - HCM LOS/Delay Criteria

Level of front dec	Average Control Delay (sec/veh)								
Level of Service	Signalized Intersections	Unsignalized Intersections							
А	≤ 10	≤ 10							
В	> 10 - 20	> 10 - 15							
С	> 20 - 35	> 15 - 25							
D	> 35 – 55	> 25 - 35							
E	> 55 – 80	> 35 – 50							
F	> 80	> 50							

Consistent with the City of Leander and TxDOT LOS criteria, LOS "D" with a Volume to Capacity (V/C) ratio of 0.95 or less, is considered acceptable. If the intersection operates below a LOS "D" prior to the development, the No-Build LOS should be maintained.

The Levels of Service for the 2024 Existing, 2026 No-Build, and 2026 Build conditions are summarized in **Tables 17-19**. The capacity analysis calculation worksheets are provided in **Appendix G.**

Table 17 – Level of Service Summary (1 of 3)

	Movement		AM Peak Hour												
			2024 Existing Condition						26 No-Bui		ition	2026 Build Condition			
Intersection						95 th %	Bay				95 th %				95 th %
			LOS	Delay	V/C	Queue	Length	LOS	Delay	V/C	Queue	LOS	Delay	V/C	Queue
						(ft)	(ft)				(ft)				(ft)
	EB	L	F	145.6	0.98	251′	415′	F	164.9	1.07	274′	F	397.2	1.73	486′
		TR	F	114.7	1.05	628′	-	F	139.5	1.14	698′	F	256.5	1.45	956′
	WB	L	F	219.1	1.31	536′	500′	F	258.2	1.42	585′	F	252.8	1.40	581′
RM 2243 (EB/WB)		TR	Е	76.0	0.91	578′	-	F	90.5	0.98	654'	F	103.4	1.04	712′
& Ronald Reagan		U/L	F	111.3	0.80	188′	500′	F	122.3	0.87	215′	F	378.2	1.68	448′
Boulevard (NB/SB)	NB	TR	D	53.4	0.81	558′	-	Е	67.8	0.95	714′	Е	65.5	0.94	701′
(IND/SD)		U/L	F	80.4	0.75	244′	540′	F	80.2	0.76	260′	F	80.2	0.76	256′
	SB	T TR	F	114.3	1.14	1,052'	-	F	186.7	1.32	1,302'	F	213.0	1.38	1,388′
	Ove	erall	F	103.5	_	-	-	F	143.2	-	-	F	189.3	-	-
		L	A	4.7	0.05	12	165′	A	4.3	0.05	10'	A	3.4	0.05	7′
	EB	Т	Α	10.0	0.39	187′	-	В	10.8	0.42	204'	В	14.1	0.69	511'
183A NB Frontage	WB	T TR	F	103.3	0.98	321′	-	F	102.3	1.09	358′	F	336.7	1.67	597'
Road (NB) & RM 2243 (EB/WB)		U/L	С	25.7	0.38	141′	415'	С	26.7	0.41	153'	C	26.0	0.38	140′
	NB	T	C	23.4	0.31	102'	-	C	24.0	0.33	109'	C	23.8	0.30	99'
		TR	A	4.1	0.35	38'	415′	A	4.9	0.37	46′	В	11.7	0.55	123'
	Overall		D	47.5	-	-	-	D	47.6	-	-	F	146.2	-	-
	EB	T	С	25.8	0.64	126′	-	С	29.1	0.67	146′	D	50.8	0.79	211′
		L	В	12.0	0.57	162'	165′	В	13.8	0.62	163'	Е	67.8	0.87	167′
183A SB Frontage	WB	T	В	13.5	0.44	202'	-	В	15.9	0.47	204'	E	69.0	0.55	197'
Road (SB) & RM	SB	U/L	C	21.9	0.25	102'	715′	C	22.9	0.27	109'	C	28.4	0.54	224'
2243 (EB/WB)		T	С	28.1	0.72	304'	-	С	31.1	0.78	336′	С	32.8	0.80	327'
	Overall		С	22.2	_	_	_	С	24.9	_	_	D	48.7	_	_
183A SB Frontage Road (SB) & Frontage Road U- Turn (WB)	WB	L	b	11.8	0.28	29'	250′	b	12.0	0.31	32'	b	13.5	0.35	39'
RM 2243 (EB/WB) & Western Right- In/Right-Out Site Driveway (SB)	SB	R	-	-	-	-	-	-	-	-	-	С	19.2	0.07	5′
	ED	L	-	-	-	-	440′	-	-	-	-	С	29.2	0.90	245′
	EB	Т	-	-	-	-	-	-	-	-	-	А	6.2	0.46	118′
RM 2243 (EB/WB)	WB	Т	-	-	-	-	-	-	-	-	-	D	37.0	0.91	443'
& Future Raider	WAR	R	-	-	-	-	440′	-	-	-	-	В	17.9	0.39	118′
Way (SB)	SB	L	-	-	-	-	-	-	-	-	-	D	43.8	0.79	223'
	מכ	R	-	-	-	-	-	-	-	-	-	С	22.7	0.68	23'
	Ove	erall	-	-	-	-	-	-	-	-	-	С	25.2	-	-

Note: Uppercase indicates a signalized intersection; lowercase indicates an unsignalized intersection.

Table 18 - Level of Service Summary (2 of 3)

	Movement		PM School Dismissal Peak Hour												
			2024 Existing Condition					202	6 No-Bui	ld Condi	tion	2	026 Build	Conditi	on
Intersection						95 th %	Bay				95 th %				95 th %
			LOS	Delay	V/C	Queue (ft)	Length	LOS	Delay	V/C	Queue (ft)	LOS	Delay	V/C	Queue (ft)
		L	F	230.2	1.31	578'	(ft) 415'	F	276.0	1.44	634'	F	437.7	1.84	854'
	EB	TR	F	188.7	1.25	901'	-	F	225.7	1.35	995'	F	339.4	1.64	1,262'
		L	F	132.8	0.97	410′	500′	F	150.7	1.06	454'	F	141.6	1.04	430'
	WB	TR	 F	134.8	1.09	731′	-	F	162.3	1.18	815'	F	174.2	1.22	853'
RM 2243 (EB/WB)		U/L	<u></u> F	124.7	0.85	257'	500′	F	132.4	0.90	286′	F	303.4	1.49	536′
& Ronald Reagan	NB	T	Г	124.7	0.65	257	300	Г	132.4	0.90	200	Г	303.4	1.49	330
Boulevard (NB/SB)	IND	TR	Е	73.3	0.98	957′	-	F	115.3	1.12	1,208′	F	99.5	1.08	1,130′
(145/35)		U/L	F	143.6	1.01	415′	540′	F	161.8	1.09	461′	F	150.9	1.05	437′
	SB	T TR	D	48.3	0.75	646′	-	Е	55.7	0.87	795′	F	58.1	0.90	833′
	Ove	erall	F	103.7	_	_	_	F	129.7		_	F	164.5	_	_
		L	A	6.6	0.06	21′	165′	Α	6.0	0.06	21′	A	5.5	0.06	11'
	EB	Т	В	12.5	0.42	172'	-	В	12.4	0.44	192'	C	22.1	0.75	525'
183A NB Frontage	WB	T TR	F	93.7	0.89	312′	-	F	107.2	1.01	296′	F	312.7	1.61	570′
Road (NB) & RM		U/L	С	23.3	0.40	312′	415′	С	25.0	0.45	175′	С	23.3	0.41	171′
2243 (EB/WB)	NB	Т	C	23.5	0.50	285′	-	C	25.3	0.56	200′	C	23.5	0.51	196′
		TR	A	4.5	0.50	84'	415′	A	0.5	0.29	0'	C	22.9	0.78	301′
	Overall		D	35.7	-	-	-	D	39.0	-	-	F	115.3	-	-
	EB	T TR	С	26.7	0.5	108′	-	С	28.3	0.61	118′	D	40.5	0.71	185′
		L	Α	8.6	0.42	83'	165′	Α	9.3	0.48	125′	В	16.2	0.67	140′
183A SB Frontage	WB	T	В	13.9	0.51	191'	-	В	15.8	0.58	280′	E	58.5	0.64	238′
Road (SB) & RM	SB	U/L	C	24.8	0.34	110′	715′	C	25.0	0.36	118'	C	31.6	0.62	242'
2243 (EB/WB)		T					7.0		20.0						
		TR	C	26.3	0.58	180′	-	C	26.9	0.60	196′	C	26.6	0.54	195′
	Overall		С	20.7	-	-	-	С	21.8	-	-	D	36.8	-	-
183A SB Frontage Road (SB) & Frontage Road U- Turn (WB)	WB	L	b	10.4	0.20	18'	250′	b	10.6	0.22	20′	b	14.4	0.34	37′
RM 2243 (EB/WB) & Western Right- In/Right-Out Site Driveway (SB)	SB	R	-	-	-	-	-	-	-	-	-	C	19.1	0.20	18′
	EB	L	-	-	-	-	440′	-	-	-	-	С	34.0	0.91	250′
	LD	Т	-	-	-	-	-	-	-	-	-	Α	9.9	0.66	235′
RM 2243 (EB/WB)	WB	Т	-	-	-	-	-	-	-	-	-	С	31.9	0.88	380′
& Future Raider	WB	R	-	-	-	-	440′					В	18.7	0.36	105′
Way (SB)	SB	L	-	-	-	-	-	-	-	-	-	С	29.8	0.62	183′
	20	R	-	-	-	-	-	-	-	-	-	В	18.8	0.58	220′
	Ove	erall	-	-	-	-	-	-	-	-	-	C	22.6	-	-

Note: Uppercase indicates a signalized intersection; lowercase indicates an unsignalized intersection.

Table 19 - Level of Service Summary (3 of 3)

			PM Peak Hour												
Intersection			2024 Existing Condition					202	26 No-Bui	ld Condi	ition	2	026 Build	Conditi	on
	Movement					95 th %	Bay				95 th %				95 th %
			LOS	Delay	V/C	Queue (ft)	Length (ft)	LOS	Delay	V/C	Queue (ft)	LOS	Delay	V/C	Queue (ft)
		L	F	288.3	1.48	689'	415'	F	334.8	1.59	752'	F	454.2	1.88	909'
	EB	TR	 F	186.1	1.25	910'	-	 F	224.2	1.35	1,009'	 F	310.8	1.57	1,211'
		L	 F	141.5	1.02	454'	500'	 F	160.8	1.10	503'	 F	157.2	1.09	496'
	WB	TR	F.	125.9	1.06	731′	-	 F	151.2	1.15	818'	 F	166.1	1.19	863'
RM 2243 (EB/WB)		U/L	 F	113.1	0.75	203'	500'	 F	117.4	0.79	230′	 F	190.0	1.16	406'
& Ronald Reagan	NB	T		113.1	0.73	203	300	•	117.1	0.75	230	•	130.0	1110	100
Boulevard (NB/SB)		TR	F	162.0	1.25	1,414′	-	F	237.7	1.43	1,730′	F	231.5	1.42	1,705′
(140/30)		U/L	F	128.2	0.94	388′	540′	F	144.9	1.02	430′	F	143.0	1.01	425′
	SB	Т	D	49.8	0.79	717′	_	Е	60.1	0.92	905'	Е	67.5	0.97	991'
		TR		49.0	0.79	717	_		00.1	0.92	903		07.5	0.57	331
	Ove	rall	F	137.3	-	-	-	F	178.4	-	-	F	199.9	-	-
	EB	L	Α	7.2	0.06	20′	165′	Α	7.2	0.06	21′	Α	6.1	0.06	15′
	ED	Т	В	11.0	0.39	142′	-	В	11.4	0.42	153′	В	13.1	0.60	235′
183A NB Frontage Road (NB) & RM 2243 (EB/WB)	WB	T TR	F	106.9	1.05	312'	-	F	113.3	1.13	346′	F	247.3	1.46	502′
	NB	U/L	С	30.2	0.69	312′	415′	С	33.0	0.75	345′	С	30.0	0.68	319′
		Т	С	27.0	0.69	285′	-	С	28.8	0.75	315′	С	26.9	0.69	291′
		TR	Α	6.2	0.56	84'	415′	Α	0.6	0.33	0'	С	20.1	0.75	286′
	Overall		D	39.9	-	-	-	D	41.5	-	-	F	83.4	-	-
	EB	T TR	В	19.4	0.37	81′	-	В	19.7	0.40	87'	С	28.0	0.51	130′
	WB	L	Α	5.6	0.35	75′	165′	Α	5.8	0.39	75′	Α	7.8	0.53	119'
183A SB Frontage		T	C	24.9	0.68	318′	-	D	50.2	0.74	334'	E	64.4	0.81	327'
Road (SB) & RM	SB	U/L	C	24.8	0.31	122′	715′	С	24.8	0.33	131′	С	27.9	0.50	200′
2243 (EB/WB)		Т													
		TR	С	28.7	0.63	233′	-	C	29.3	0.67	255′	C	28.6	0.64	243′
	Overall		С	23.2	-	-	-	С	31.9	-	-	D	37.2	-	-
183A SB Frontage Road (SB) & Frontage Road U- Turn (WB)	WB	L	b	10.4	0.21	20′	250′	b	10.3	0.20	18'	b	10.7	0.13	11′
RM 2243 (EB/WB) & Western Right- In/Right-Out Site Driveway (SB)	SB	R	-	-	-	-	-	-	-	-	-	C	17.0	0.18	18′
•	EB	L	-	-	-	-	440'	-	-	-	-	В	13.9	0.70	60′
		Т	-	-	-	-	-	-	-	-	-	Α	8.6	0.74	168′
RM 2243 (EB/WB)	WB	Т	-	-	-	-	-	-	-	-	-	С	20.3	0.85	268′
& Future Raider	VVB	R	-	-	-	-	440′	-	-	-	-	В	11.7	0.19	35′
Way (SB)	SB	L	-	-	-	-	-	-	-	-	-	С	23.9	0.52	88′
	2R	R	-	-	-	-	-	-	-	-	-	В	17.9	0.47	105'
	Ove	erall	-	-	-	-	-	-	-	-	-	В	14.6	-	-

Note: Uppercase indicates a signalized intersection; lowercase indicates an unsignalized intersection.

RM 2243 & Ronald Reagan Boulevard

2024 Existing Analysis

Under the Existing condition, the overall intersection and multiple intersection movements operate with delay during the AM, School Dismissal PM, and PM peak hours, respectively.

2026 No-Build Analysis

Under the No-Build condition, all intersection movements will continue to operate at or near Existing Levels of Service during all peak hours studied.

2026 Build Analysis

Under the Build condition, all intersection movements would continue to experience delay when compared to the No-Build Levels of Service during all peak hours studied.

2026 Build with Mitigation Analysis

Under the 2026 Build with Mitigation condition, it is proposed to reconstruct the substandard northbound and southbound shoulders along Ronald Reagan Blvd and convert them into full width 12'-wide right-turn deceleration lanes. Using a 0-mph differential, a 65mph roadway has a right-turn deceleration lane of 730' (700' deceleration + 30' minimum storage). Using a 10-mph speed differential, the right-turn deceleration lane length would be 545' (515' deceleration + 30' minimum storage). Using the 545' deceleration length, the proposed right-turn lane lengths would be similar to the existing left-turn deceleration lanes on Ronald Reagan Blvd. It is recommended to implement 545' long right-turn deceleration lanes to improve No-Build conditions while maintaining consistency with the existing geometry at the intersection.

The 545' right-turn lanes will be supported by maintaining the existing right-turn channelization under yield control. Physical signal improvements are not proposed. With proposed mitigation, the overall intersection level of service will improve when compared to the 2026 No-Build condition. The Levels of Service for the 2026 No-Build & Build with Mitigation conditions for all peak hours studied are illustrated in **Tables 20-22**.

Table 20 - Build with Mitigation Level of Service Summary (1 of 3) - Ronald Reagan Boulevard

						ΙA	M Peak H	our			
				2026 No	-Build Co	ondition		2026 Bui	ld with Mi	tigation	Condition
Intersection	Move	ment	LOS	Delay	V/C	95 th % Queue (ft)	Bay Length (ft)	LOS	Delay	V/C	95 th % Queue (ft)
	EB	L	F	164.9	1.07	274′	415'	F	198.8	1.24	436′
	EB	TR	F	139.5	1.14	698'	-	F	177.2	1.26	896'
	WD	L	F	258.2	1.42	585'	500′	F	239.7	1.37	575′
	WB	TR	F	90.5	0.98	654'	-	F	96.8	1.01	700′
		U/L	F	122.3	0.87	215′	500′	F	161.7	0.10	388′
RM 2243 (EB/WB) & Ronald Reagan	NB	T TR	Е	67.8	0.95	714′	-	Е	56.5	1.12	504′
Boulevard (NB/SB)		R	-	-	-	-	515′	А	0.2	0.15	0'
		U/L	F	80.2	0.76	260′	540′	F	80.3	0.76	257'
	SB	T TR	F	186.7	1.32	1,302′	-	F	192.8	1.33	1,148′
		R	-	-	-	-	515′	А	0.3	0.21	0'
	Ove	erall	F	143.2	-	-	-	F	135.2	-	-

Table 21 - Build with Mitigation Level of Service Summary (2 of 3) - Ronald Reagan Boulevard

					S	chool Dis	missal PM	l Peak Ho	ur		
				2026 No	o-Build Co	ndition		2026 Bui	ld with Mi	tigation (Condition
Intersection	Move	ment				95 th %	Bay				95 th %
			LOS	Delay	V/C	Queue	Length	LOS	Delay	V/C	Queue
						(ft)	(ft)				(ft)
	EB	L	F	276.0	1.44	634'	415′	F	225.0	1.33	763′
	ED	TR	F	225.7	1.35	995'	-	F	220.5	1.35	1,166'
		L	F	150.7	1.06	454'	500′	F	153.2	1.06	441′
		TR	F	162.3	1.18	815′	-	F	186.1	1.25	866′
		U/L	F	132.4	0.90	286′	500′	F	128.4	0.97	441'
RM 2243 (EB/WB) &	NB T	Т		1150	1.12	1 200/		_	00.0	1.00	025/
Ronald Reagan	NB	TR	F	115.3	1.12	1,208′	-	F	89.9	1.02	935′
Boulevard (NB/SB)		R	-	-	-	-	515′	Α	0.2	0.17	0'
		U/L	F	161.8	1.09	461′	540′	F	112.1	0.89	378′
	C.D.	Т			0.07	7051		_	640	0.06	6701
	SB TR	Е	55.7	0.87	795′	-	Е	64.8	0.86	678′	
		R	-	-	-	-	515′	Α	0.2	0.18	0'
	Ove	Overall	F	129.7	-	-	-	F	115.6	-	-

Table 22 - Build with Mitigation Level of Service Summary (3 of 3) - Ronald Reagan Boulevard

						PI	M Peak Ho	our			
				2026 No	-Build Co	ndition		2026 Bui	ld with Mi	tigation (Condition
Intersection	Move	ment				95 th %	Bay				95 th %
			LOS	Delay	V/C	Queue	Length	LOS	Delay	V/C	Queue
						(ft)	(ft)				(ft)
	EB	L	F	334.8	1.59	752′	415'	F	201.1	1.27	789′
	ED	TR	F	224.2	1.35	1,009'	-	F	186.9	1.27	1,102'
	WD	L	F	160.8	1.10	503'	500′	F	216.5	1.27	532'
	WB	TR	F	151.2	1.15	818′	-	F	217.2	1.33	911'
		U/L	F	117.4	0.79	230′	500′	F	127.0	0.92	358'
RM 2243 (EB/WB) &	NID	T	227.7	1 12	1 720/		_	242.2	1.26	1 170/	
Ronald Reagan	NB	TR	F	237.7	1.43	1,730′	-	F	213.3	1.36	1,472′
Boulevard (NB/SB)		R	-	-	-	-	515′	А	0.4	0.24	0'
		U/L	F	144.9	1.02	430'	540′	F	95.2	0.80	331'
	CD	Т	_	CO 1	0.02	005/		_	F0.6	0.02	600/
	SB TR E	E	60.1	0.92	905′	-	Е	58.6	0.82	680′	
		R	-	-	-	-	515′	Α	0.2	0.17	0'
	Ove	Overall	F	178.4	-	-	-	F	145.3	-	-

183A NB Frontage Road & RM 2243

2024 Existing Analysis

Under the Existing condition, all intersection movements operate at Levels of Service "C" or better, with the exception of the westbound movements which experience significant delays during all peak hours studied. The intersection operates at overall Levels of Service "D" or better during all peak hours studied.

2026 No-Build Analysis

Under the No-Build condition, all intersection movements will continue to operate at or near Existing Levels of Service during all peak hours studied. The intersection would continue to operate at an overall Level of Service "D" during all peak hours studied.

2026 Build Analysis

Under the Build condition, all intersection movements would continue to operate at or near No-Build Levels of Service during all peak hours studied, with the exception of the westbound movements which would experience delay.

2026 Build with Mitigation Analysis

Under the 2026 Build with Mitigation condition, it is proposed to optimize the traffic signal timings at the signalized intersections of RM 2243 & the 183A Toll Rd Frontage Roads. With timing optimization, the level of service requirements per the City of Leander and the Austin Transportation Criteria Manual are met and the overall intersection with operate at LOS "D," or better, during the studied peak hours.

The Levels of Service for the 2026 No-Build & Build with Mitigation conditions for all peak hours studied are illustrated in **Tables 23-25.**

Table 23 - Build with Mitigation Level of Service Summary (1 of 3) - 183A NB Frontage Road

				AM Peak Hour									
				2026 No	o-Build Co	ndition		2026 Bui	ld with Mi	tigation (Condition		
Intersection	Move	ment				95 th %	Bay				95 th %		
			LOS	Delay	V/C	Queue	Length	LOS	Delay	V/C	Queue		
						(ft)	(ft)				(ft)		
	EB	L	Α	4.3	0.05	10'	165′	Α	2.1	0.06	1′		
		Т	В	10.8	0.42	204'	-	В	12.5	0.55	280′		
1024 ND F	WD	T F	102.3	1.09	250/		_	E 4 E	0.00	401′			
183A NB Frontage	WB	TR	Г	102.3	1.09	358′	-	D	54.5	0.88	401		
Road (NB/SB) & RM		U/L	C	26.7	0.41	153′	415'	D	43.0	0.62	176′		
2243 (EB/WB)	NB	Т	C	24.0	0.33	109′	-	D	35.5	0.49	126′		
		TR	Α	4.9	0.37	46′	415'	Α	0.3	0.23	0'		
	Ove	erall	D	47.6	-	-	-	С	32.8	-	-		

Table 24 - Build with Mitigation Level of Service Summary (2 of 3) - 183A NB Frontage Road

					S	chool Dis	missal PM	l Peak Ho	ur			
				2026 No	-Build Co	ondition		2026 Build with Mitigation Condition				
Intersection	Move	ment				95 th %	Bay				95 th %	
			LOS	Delay	V/C	Queue	Length	LOS	Delay	V/C	Queue	
						(ft)	(ft)				(ft)	
	FB	L	Α	6.0	0.06	21′	165′	Α	2.0	0.06	0'	
	ED	Т	В	12.4	0.44	192′	-	D	52.4	0.57	276′	
1004 115 5	\A/D	Т	F	107.2	1.01	2061		_	12.1	0.06	2561	
183A NB Frontage	WB	TR	F	107.2	1.01	296′	-	D	43.1	0.86	356′	
Road (NB/SB) & RM		U/L	С	25.0	0.45	175′	415'	D	47.0	0.73	250′	
2243 (EB/WB)	NB	Т	C	25.3	0.56	200′	-	D	53.6	0.91	295'	
		TR	Α	0.5	0.29	0'	415'	Α	0.6	0.36	0'	
	Ove	erall	D	39.0	-	-	-	D	39.7	-	-	

Table 25 - Build with Mitigation Level of Service Summary (3 of 3) - 183A NB Frontage Road

		_								_			
						PI	M Peak H	our					
				2026 No	-Build Co	ndition		2026 Build with Mitigation Condition					
Intersection	Movement					95 th %	Bay				95 th %		
			LOS	Delay	V/C	Queue	Length	LOS	Delay	V/C	Queue		
						(ft)	(ft)				(ft)		
	EB	L	Α	7.2	0.06	21′	165'	Α	9.5	0.07	16′		
		Т	В	11.4	0.42	153′	-	В	17.3	0.61	210′		
1024 ND F	WD	Т	F	112.2	1 12	2461		F	06.0	1.00	420/		
183A NB Frontage	WB	TR	F	113.3	1.13	346′	-	F	96.8	1.09	438′		
Road (NB/SB) & RM		U/L	C	33.0	0.75	345′	415′	С	28.2	0.67	307'		
2243 (EB/WB)	NB	Т	C	28.8	0.75	315′	-	С	25.4	0.68	280′		
		TR	Α	0.6	0.33	0'	415′	Α	0.6	0.36	0'		
	Ove	erall	D	41.5	-	-	-	D	39.5	-	-		

183A SB Frontage Road & RM 2243

2024 Existing Analysis

Under the Existing condition, all intersection movements operate at Levels of Service "C" or better during all peak hours studied. The intersection operates at overall Levels of Service "C" or better during all peak hours studied.

2026 No-Build Analysis

Under the No-Build condition, all intersection movements will continue to operate at or near Existing Levels of Service during all peak hours studied.

2026 Build Analysis

Under the Build condition, all intersection movements would continue to operate at or near No-Build Levels of Service during all peak hours studied, with the exception of the westbound through movement which would operate at a Level of Service "E" during all peak hours studied and the westbound left-turn movement which would operate at a Level of Service "E" during the AM peak hour. The intersection would operate at an overall Level of Service "D" during all peak hours studied.

2026 Build with Mitigation Analysis

Under the 2026 Build with Mitigation condition, it is proposed to optimize the traffic signal timings at the signalized intersections of RM 2243 & the 183A Toll Rd Frontage Roads. With timing optimization, the level of service requirements per the City of Leander and the Austin Transportation Criteria Manual are met and the overall intersection with operate at LOS "D," or better, during the studied peak hours. The Levels of Service for the 2026 No-Build & Build with Mitigation conditions for all peak hours studied are illustrated in **Tables 26-28**.

Table 26 - Build with Mitigation Level of Service Summary (1 of 3) - 183A SB Frontage Road

				AM Peak Hour									
				2026 No	-Build Co	ndition		2026 Bui	ld with Mi	tigation (Condition		
Intersection	Move	ment	LOS	Delay	V/C	95 th % Queue (ft)	Bay Length (ft)	LOS	Delay	V/C	95 th % Queue (ft)		
	EB WB	T TR	С	29.1	0.67	146′	-	D	39.7	0.74	204′		
1001.55.5		L	В	13.8	0.62	163'	165'	С	28.6	0.67	200'		
183A SB Frontage		Т	В	15.9	0.47	204′	-	D	46.4	0.48	324′		
Road (NB/SB) & RM		U/L	С	22.9	0.27	109'	715′	D	36.1	0.65	248′		
2243 (EB/WB)	SB	T TR	С	31.1	0.78	336′	-	D	54.0	0.96	410′		
	Ove	erall	С	24.9	-	-	-	D	43.5	-	-		

Table 27 - Build with Mitigation Level of Service Summary (2 of 3) - 183A SB Frontage Road

					5	School Dis	missal PN	И Peak Ho	ur			
				2026 No	-Build Co	ndition		2026 Build with Mitigation Condition				
Intersection	Move	ment	LOS	Delay	V/C	95 th % Queue (ft)	Bay Length (ft)	LOS	Delay	V/C	95 th % Queue (ft)	
	EB	T TR	С	28.3	0.61	118′	С	D	46.7	0.72	191′	
1004 60 5	A SB Frontage WB (NB/SB) & RM	L	Α	9.3	0.48	125′	Α	D	36.6	0.89	226′	
O		Т	В	15.8	0.58	280′	В	D	41.0	0.55	355′	
` ,		U/L	С	25.0	0.36	118′	С	D	53.9	0.84	324'	
2243 (EB/WB)	SB	T TR	С	26.9	0.60	196′	С	D	37.7	0.74	228′	
	Ove	erall	С	21.8	-	-	-	D	42.4	-	-	

Table 28 - Build with Mitigation Level of Service Summary (3 of 3) - 183A SB Frontage Road

						P	M Peak H	our			
				2026 No	-Build Co	ndition		2026 Bui	ld with Mi	tigation C	Condition
Intersection	Move	ment				95 th %	Bay				95 th %
			LOS	Delay	V/C	Queue (ft)	Length (ft)	LOS	Delay	V/C	Queue (ft)
	EB TR	T TR	В	19.7	0.40	87′	-	В	19.9	0.37	108′
1024 CD E	WD	L	Α	5.8	0.39	75′	165′	Α	5.7	0.42	59'
183A SB Frontage	WB	Т	D	50.2	0.74	334′	-	D	44.5	0.67	343'
Road (NB/SB) & RM		U/L	С	24.8	0.33	131′	715′	D	39.8	0.67	236′
2243 (EB/WB)	SB	T TR	С	29.3	0.67	255′	-	D	45.0	0.87	322'
	Ove	erall	С	31.9	-	-	-	D	35.4	-	-

183A SB Frontage Road & NB Frontage Road U-Turn

2024 Existing Analysis

Under the Existing condition, the westbound left-turn movement operates at a Level of Service "B" during all peak hours studied.

2026 No-Build Analysis

Under the No-Build condition, the westbound left-turn movement will continue to operate at or near No-Build Levels of Service during all peak hours studied.

2026 Build Analysis

Under the Build condition, the westbound left-turn movement would continue to operate at or near No-Build Levels of Service during all peak hours studied.

RM 2243 & Western Right-In/Right-Out Commercial Driveway

2026 Build Analysis

Under the Build condition, the southbound right-turn movement would operate at a Level of Service "C" during all peak hours studied. The calculated 95th percentile queues at the Western Site Driveway would be approximately two (2) vehicles or less during all peak hours studied and could be accommodated within the layout of the site.

RM 2243 & Future Raider Way

2026 Build Analysis

Under the 2026 Build condition, the traffic volumes at the intersection of RM 2243 & Future Raider Way meet the traffic signal warrant criteria based on the 8-hour warrant, 4-hour warrant, and peak hour warrant. Therefore, under the 2026 Build condition, it is proposed to construct a traffic signal. Additionally, based on the deceleration lane analyses, a dedicated 440-foot left-turn lane is proposed for the eastbound approach of RM 2243 and a dedicated 605-foot right-turn lane is proposed for the westbound approach of RM 2243.

Under the Build condition, all intersection movements would operate at Levels of Service "D" or better during all peak hours studied, and the eastbound and westbound queues for the turning movements would be accommodated within their proposed storage bays. The intersection would operate at overall Levels of Service "C" or better during all peak hours studied.

Mitigation Pro Rata

In accordance with City of Leander requirements, a mitigation pro rata has been calculated for the proposed improvements.

Table 29 - Mitigation Pro Rata

Intersection	Movement/ Approach	AM Peak Hour Volumes (SGT / Build)	School Dismissal Peak Hour Volumes (SGT / Build)	PM Peak Hour Volumes (SGT / Build)	Highest Percentage used for Pro Rata
RM 2243 & Raider Way (Traffic Signal, RM 2243 EB Left- Turn Lane and RM 2243 WB Right-Turn Lane)	EBL + WBL	1258 / 1258	1182 / 1182	755 / 755	100%
Ronald Reagan Blvd & RM 2243	SBR	98 / (187+1502+314)	93 / (196+982+263)	61 / (194+1113+255)	7%
(Ronald Reagan Blvd NB and SB Right-Turn Lanes)	NBR	99 / (174 + 742 +221)	93 / (190+1159+255)	62 / (145+1495+380)	9%

Sight Distance Analysis

In accordance with the TxDOT *Roadway Design Manual*, intersection sight distance criteria were utilized from Sections 9.5.3.2 of the American Association of State Highway and Transportation Officials' (AASHTO) publication, *A Policy on Geometric Design of Highways and Streets, 2018.* Case B2 – Right Turn From Stop and Case F – Left Turn from the Major Road were reviewed at the applicable turning maneuvers. The design speed for sight distance was established as posted (55mph) + 10 mph (65mph).

Table 30 - Sight Distance Analysis

Location	Turn Type	Design Speed	Required Design Intersection Sight Distance
RM 2243 & Western Right-In/Right-Out Commercial Driveway	Case B2 – Right Turn from Stop	65 mph	625′
RM 2243 & Future	Case B2 – Right Turn from Stop	65 mph	625'
Raider Way	Case F – Left Turn from Major Road		530′

Based upon a field investigation, the applicable design intersection sight distances can be met at the proposed driveways and intersections. For reference, Case B2 was reviewed at the future signalized intersection of RM 2243 & Future Raider Way to determine if Future Raider Way SB "Right On Red" is acceptable and Case F to determine if a flashing yellow arrow for RM 2243 eastbound left-turns in acceptable. Intersection sight distance is met for both considerations.

Summary and Conclusions

This Level 3 Traffic Impact Analysis evaluated the proposed +/- 91,400 SF charter school on the northern portion of the site with an anticipated enrollment of 1,455 students and a 29,150 SF retail component on the southern portion of the site to be developed by others within the City of Leander, Williamson County, Texas. The findings of the Traffic Impact Analysis are summarized as follows:

- 1. The Applicant proposes to +/- 91,400 SF charter school on the northern portion of the site with an anticipated enrollment of 1,455 students in grades K-12. Additionally, the TIA assumes a 29,150 SF retail use on the southern portion of the site is to be developed by others.
- 2. As part of the development, the future alignment of Raider Way along the eastern property boundary will be constructed to RM 2433. According to the City of Leander Thoroughfare Plan, Raider Way will be a north-south collector. The location of Raider Way was confirmed by City Council and the cross section is anticipated to be one-lane in each direction divided by a two-way-left-turn-lane (TWLTL).
- 3. Ingress and egress access to/from the charter school is proposed along the future Raider Way. A right-in/right-out driveway with a physical pork-chop island to restrict left-turns is proposed along RM 2433 for the commercial site. The driveway for the commercial site will be permitted by others.
- 4. Using the MSTA queuing calculator, the proposed Primary and Secondary Circulation Plans are sufficient to accommodate the anticipated operations of the site.
- 5. Intersection Control Evaluation (ICE), Traffic Signal Warrants and Turn Lane Warrants were conducted at the intersection of RM 2243 & Future Raider Way. Based upon these analyses, a traffic signal is warranted and recommended. A traffic signal will provide pedestrian accommodation and provide a 0.75 v/c ratio or less during the peak hours. Due to drainage and right-of-way constraints, a 440' long RM 2243 eastbound left-turn lane is recommended as a longer turn lane would have substantial impact to the culvert west of the property and potential right-of-way impacts to the adjacent cemetery property, which is not feasible to obtain nor recommended. As such the 440' left-turn lane is optimal to support the queue without spillback during critical peak hours. A westbound right-turn deceleration lane is warranted along RM 2243 at the Future Raider Way. The 605' right-turn lane will be constructed with 100' of storage (to support the HCM 7th edition 4 car (100') 95th percentile queue) and 505' for deceleration (inclusive of 100' taper). Under the Build condition, all intersection movements would operate at Levels of Service "D" or better during all peak hours studied, and the eastbound and westbound queues for the turning movements would be accommodated within their provided storage bays. The intersection would operate at overall Levels of Service "C" or better during all peak hours studied.

- 6. Under the 2026 Build with Mitigation condition at the intersection of Ronald Reagan Boulevard & RM 2243, it is proposed to reconstruct the substandard northbound and southbound shoulders along Ronald Reagan Blvd and convert them into full width 12'-wide right-turn deceleration lanes. Using a 0-mph differential, a 65mph roadway has a right-turn deceleration lane of 730' (700' deceleration + 30' minimum storage). Using a 10-mph speed differential, the right-turn deceleration lane length would be 545' (515' deceleration + 30' minimum storage). Using the 545' deceleration length, the proposed right-turn lane lengths would be similar to the existing left-turn deceleration lanes on Ronald Reagan Blvd. It is recommended to implement 545' long right-turn deceleration lanes to improve No-Build conditions while maintaining consistency with the existing geometry at the intersection. The 545' right-turn lanes will be supported by maintaining the existing right-turn channelization under yield control. Physical signal improvements are not proposed.
- 7. Under the 2026 Build with Mitigation condition at the intersections of 183A Frontage Roads & RM 2243, it is proposed to optimize the traffic signal timings. With timing optimization, the level of service requirements per the City of Leander and the Austin Transportation Criteria Manual are met and the overall intersection with operate at LOS "D," or better, during the studied peak hours.
- 8. Under the Build condition, the westbound left-turn movement at the intersection of 183A SB Frontage Road & Frontage Road U-Turn would continue to operate at or near No-Build Levels of Service during all peak hours studied.
- 9. Under the Build condition, the southbound right-turn movement at the intersection of RM 2243 & Right-In/Right-Out Western Commercial Driveway would operate at a Level of Service "C" during all peak hours studied. The calculated 95th percentile queues at the Western Site Driveway would be approximately two (2) vehicles or less during all peak hours studied and could be accommodated within the layout of the site.
- 10. Intersection sight distance is acceptable at the proposed right-in/right-out western commercial driveway on RM 2243 and for SB right on reds and EB yellow flashing left turn arrow at the proposed signalized intersection of RM 2243 & Future Raider Way.

 $R:\Projects\2023\23015395A\Docs\241223_smp_TIA_Basis\ Leander.docx$

Traffic Impact Analysis

Appendix A | TIA Determination Worksheet

CITY OF LEANDER

TRAFFIC STUDY SCREENING EVALUATION FORM

This form shall be submitted with every development permit application to help determine the level of study required. City staff will notify the applicant to schedule a traffic study scoping meeting, if required. Note: The grey areas on this form are to be prepared by City of Leander Staff.

Propo	osed De	velopm	ent		Date Subn	nitted:	3/1	2/24				
Name	e:	BASIS	S Le	ander				24-0				
Locat	tion:	8770 RM 224	43 (Parce	el ID: R327095 & R433125)	Project Nu	mber(s):						
Applic	cant/A	gent/Pro	oject (Developer	Traffic Stuc	ly Prepare	r					
Name	э:	8770 L	eande	er Partners LLC	Name:		Nicholas	Aiello, P.E	E. (Collier	s Enginee	ring & Design, Inc.)	
Phone	e:	(713)	744	-7415	Phone:		(877) 627-3772					
Email:	:	jspeaı	rs@t	tnrg.net	Email:		nicholas.aiello@collierseng.com					
				een prepared	☐ YES	If YES	Date:					
at this	slocatio	on within	the p	oast (2) years?	MNO	\rightarrow	Proje	ect Numi	ber(s):		a) a	
use ad	needed, Iditional			Project Size (SF, units, etc.)	Zoniı	ng		Hour Trip			Daily Trips	
sneet &	eet & attach (ITE code) (SF, units, etc.) N/A N/A				General Comm	nercial (GC)		n/out) /A		n/out) I/A	N/A	
Evia	tin a	14//		14/73	Contrair Conn	nordial (GG)			,	<i>"</i>	IN/A	
EXIS	ting					>						
To	ıtal											
10	nai	538	3	1,455 students	General Comm	nercial (GC)	1,2	208	6:	25*	3,922*	
Prop	osed	822	2	29,150 SF	General Comm	nercial (GC)	6	9	1	92	1,587	
1100	0304			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	s:							
То	ital								*see atta	ched sheet	*see attached sheet	
		otal New	rrips	(increase/decre	ase from ex	ist.) →	+1,	277		317	+5,509	
	Level 0 Level 1 Traffic Study Traffic Study				Leve Traffic S			Level 3			Level 4	
0 to 59	new pkhr	w pkhr trips OR new daily trips OR 250 – 499 new daily trips			100 – 299 new j 500 – 4,999 new	okhr trips OR	300 - 69	offic Stud 9 new pkhr t 0,000 new do	rips OR	≥ 700 d ≥ 10,000	affic Study new pkhr trips OR 1 new daily trips OR ≥ 100 acres	
	Recon (Circle	nmenda One)	tion	Level 0	Level 1		Lev	el 2	Lev	vel 3	Level 4	
ted By	Printed	nted Name: Tessa +			kines		ıts:					
Printed Name: Tessa H Signature: Date: 3/27/2		teines		Comments:								
Date: 3/27/2			1		ပိ							
	3/2+12									Jan	uary 2024 v 1.1	

PROJECT NAME: LEANDER COMMERCE PARK

(BASIS LEANDER)

TRAFFIC IMPACT ANALYSIS (TIA)

APPLICATION & CHECKLIST SUBMITTAL PACKET

CONTENTS

Contents	1
General Information	2
Helpful Links	2
Contact Information	2
Instructions	2
Process	3
Required Items For The Submittal Package	3
Application Fee Calculation	3
Property Information	4
Criteria For Decision	
Applicant Information	

GENERAL INFORMATION

A Traffic Impact Analysis (TIA) is a study of the impacts of a development on the City's transportation system conducted by a registered professional engineer. During the subdivision process, the concept plan requires that the applicant provides the traffic volume generated by the proposed development and a TIA as required by the Roadway Adequacy Ordinance based on the number of trips. The City Engineer has the option to request a fee in lieu of TIA. The site development process includes a similar requirement.

The Roadway Adequacy Ordinance requires a TIA when a project that has a projected average daily trips in excess of 2,000 based upon the latest edition of the Institute of Transportation Engineers (ITE) Trip Generation Manual. In cases where the land uses are not specified at the time of land development application, the daily trip generation rate shall be based upon the maximum use intensity allowed for the development.

The initial TIA shall be submitted with the concept plan or site development permit for the project. An update to the traffic impact analysis is required to be submitted with the review of each final plat submittal. The TIA shall be prepared in accordance with standard transportation engineering practices for purposes of determining the adequacy of the road network to serve the proposed development, and whether off-site road dedication and improvements should be made to mitigate the effects of the development proposed in the application. The TIA shall determine:

- 1. Trips to be generated by the proposed development;
- 2. Assignment of such trips to the road network analyzed;
- 3. The capacity of affected thoroughfares before and after the proposed development;
- 4. Specific recommendations for thoroughfare improvements and traffic-control modifications needed to mitigate the traffic from the proposed development; and
- 5. The development projects proportionate share of the costs of such improvements and modifications.

HELPFUL LINKS

- Development Services www.leandertx.gov/ds. Includes links to the following:
 - Development Process Applications, Submittal Schedule
 - Planning Department: Zoning, Subdivision, Site Development, Current Developments
 - Building Permits & Inspections: Building Permits, Impact Fees
 - Engineering Department
 - Maps & Guides Comprehensive Plan, Transportation Plan, Development Guide, Transportation Criteria Manual, Drainage Criteria Manual
- Fire: www.leandertx.gov/fire
- Parks: www.leandertx.gov/parksrec
- Development Hub Application Portal: <u>www.leandertx.gov/hubgo</u>

CONTACT INFORMATION

Please contact the Development Services Department by emailing planning@leandertx.gov with any questions regarding this application.

INSTRUCTIONS

- Fill out the following application and checklist completely prior to submission.
- Current applications and City ordinances may be found on the City's website (http://www.leandertx.gov/ds).
- Please refer to the "Submittal Schedule" for submittal deadlines. Applications may be submitted through the Development Hub at anytime for preview. Once all items are confirmed and accepted, the review process will start on the next available filing date as listed in the submittal schedule.
- A scoping meeting is required prior to submittal.
- This submittal shall be reviewed concurrently with a site development or subdivision review. The application and attachments need to be uploaded to the Development Hub as part of the site development or subdivision application.
- All items listed in the "Required Items for Application Submittal" on page 3 shall be uploaded to the Development Hub.

PROCESS

The applicant shall conduct a scoping meeting with City Staff to determine the geographic area to be included in a TIA. During this meeting, the City Engineer may also make the determination that a fee in lieu of TIA is more appropriate. The following standards shall apply:

- 1. The City Staff shall determine the geographic area to be included in a TIA.
- 2. A TIA must be performed under the supervision of a registered professional engineer (State of Texas) or other qualified individual.
- 3. A TIA must conform to the requirements of the roadway adequacy ordinance and the requirements of the City of Austin's Transportation Criteria Manual.
- 4. A TIA must describe the study methodology, the data used, and the study findings and provide recommendations based on the results.
- 5. A TIA must be signed/sealed by a registered professional engineer (State of Texas) or other qualified individual responsible for the supervision of the study and preparation of the TIA.

REQUIRED ITEMS FOR THE SUBMITTAL PACKAGE

ALGORALD II LING FOR THE GODINI FALL FRONTOL					
ITEMS	PROVIDED	Check each box if you have complied with that item. This application/checklist is only a guide. All state and local ordinances and code requirements cannot be reflected on this application/checklist. If there are any questions regarding the regulations, the applicant shall consult source law.			
REQUIRED IT	X X X	 Completed and Signed Application & Checklist with the owner's signatures. Complete Traffic Impact Analysis (TIA) and all support materials Scoping Meeting Confirmation 			
E	X	4. Application Fees (calculation listed below).			

APPLICATION FEE* CALCULATION

FILING FEE		\$500.00
	\$2,000 for developments that include up to 5,000 trips per day	
STAFF REVIEW	\$3,000 for developments that include 5,001 to 10,000 trips per day	
FEE	\$4,000 for developments that include 10,001 to 15,000 trips per day	
	\$5,000 for developments that include 15,001 and more trips per day	\$ <u>3,000.00</u>
OUTSIDE CONSULTANT / 3 RD PARTY REVIEW	Outside consultant fee deposit (settle up will be completed at the close of the project)	\$2,000.00
	Professional Recovery Fee:	\$250.00
	Technology Fee:	\$25.00
TOTAL FEE (due at the time of application submission):		\$ 5,775.00

^{*} An invoice for application fees will be provided during the completeness check. All fees shall be paid prior to the acceptance of the submittal for review.

PROPERTY INFORMATION

1.	General property location:	8770 RM 22	43 , Leander, TX, 78641	
2.	Current legal description:	Parcel No. R	327095 and R433125	
3.	Property Acreage:	16.39 ac.		
4.	Associated Applications:	CP-24-0032	, TIA-25-0015	
5.	Type of TIA:	☑ Initial TIA	☐ Update to an Existing TIA:	
	,,			Name of Original TIA

CRITERIA FOR DECISION

- The Council and/or City Staff may deny an application if the results of a TIA demonstrate that a proposed development may overburden the city's street system.
- The Council and/or City Staff may deny an application if the TIA demonstrates the projected traffic generated by the project, combining with the existing traffic, exceeds the desirable operating level on a residential or collector street for the study area, or endangers the public safety.
- The Council and/or City Staff may approve an application that would otherwise be denied if the Council determines that:
 - a. The applicant has satisfactorily mitigated any adverse traffic conditions;
 - b. The projected additional traffic from a project has an insignificant effect on a residential or collector street.
- An applicant may modify an application to minimize the traffic-related conditions identified in a TIA by:
 - a. Submitting a justification to reduce the projected vehicles;
 - b. Dedication of additional right-of-way;

Owner Name: Jon Spears	Company:8770 Leander Partners LLC
ddress: 15120 Northwest Fwy, Ste 190	City: Houston State: TX Zip: 77040
mail: spears@tnrg.net	Phone: (713) 744-7415
roject Agent: Nick Aiello	Company: Colliers Engineering & Design
_{hone:} (512) 287-8370	Fax: N/A
ddress: 5901 Vega Ave, Ste 100	City: Austin State: TX Zip: 78735
mail: nicholas.aiello@collierseng.com	Mobile: (609) 668-2566
	and that all information shown hereon is correct and complete to the best of r
Nick A	Aiello 1/7/2025

Traffic Impact Analysis

Appendix B | TIA Scoping Document

Date: December 23, 2024

TRAFFIC IMPACT ANALYSIS SCOPE AND STUDY AREA

Project Name: Basis Leander (City of Leander Project No. CP-24-0032)

Location: 8770 RM 2243 (Parcel ID: R327095 & R433125)

Owner's Agent: Nick Aiello, P.E., PTOE, PTP

(Colliers Engineering – Traffic Engineer Consultant) Phone: (512) 287-8370

Instructions: Sections I and II of the scope must be approved prior to formal submittal of a Traffic Impact Analysis (TIA). You may receive sign off of both sections concurrently or separately.

I. Data Collection

1. Background Information

- a. Proposed daily trip generation estimate.
- b. Location/Study area map that specifies major roadways and intersections within study area
- c. The following adopted plans and public infrastructure improvement projects apply to this site:
 - CAMPO 2045 Transportation Plan
- 2. Intersections Level of Service: Calculations for AM adjacent street/school arrival, PM school dismissal, and PM adjacent street peak hours must be performed for the following intersections, showing (a) existing traffic conditions and (b) projected traffic conditions, identifying site, non-site, and total traffic:
 - a. RM 2243 & Ronald Regan Blvd
 - b. RM 2243 & 183A Toll Rd NB/SB Frontage Rds
 - c. All site driveways

<u>Notes</u>: Existing signal timings shall be used for the intersection unless alternative timing proposals are approved by TXDOT.

Capacity Analysis for each phase/year shall include:

- a. Level of Service by movements
- b. Delay by movements
- c. V/C by movements
- d. 95th percentile queue by movements
- 3. **Signal Warrant Analysis:** a Signal Warrant analysis (showing both existing and projected volumes at time of warranting) shall be performed for the following study area intersections showing 12 hrs of data including peak hrs:
 - a. RM 2243 & Future Raider Way
 - i. ~0.75 mile west to RM 2243 & 183A Toll Rd NB Frontage Rd Traffic Signal

BASIS Leander December 23, 2024

ii. ~1.00 mile east to RM 2243 & Ronald Reagan Blvd Traffic Signal

4. Sight Distance Analysis

a. When proposed mitigation recommends a new traffic signal be installed, an analysis of the intersection's continuous <u>sight distance</u> on approach to stopped queues (from back of queue to potential stop bar) should be included on State highways using the stopping sight distance method. (ref: AASHTO Green Book or TxDOT RDW manual for details on how to perform).

- b. In addition, on approach to any signalized intersection or PHB, the two primary faces of the signal must be continuously visible from the distance in the Texas MUTCD Table 4D.2 to the stop line (60 mph=715') or the developer must design and fund at 100% pro-rata in their mitigations to warn approaching drivers of a potential hidden queue
- c. Intersections or new driveways must also provide an analysis of the <u>intersection sight distance</u> for City streets.

5. Analysis Phases/Years:

Existing 2024

No-Build 2026

Build 2026

6. Other Considerations:

- a. Counts are to be taken when public schools are in session. If counts are taken while schools are not in session, mathematically determined adjustment factors may be used based on historic nearby traffic counts or as otherwise approved by County staff.
- b. Ensure automated traffic data captures demand. Manual observations or a multiple period analysis may be necessary.
- c. Capture and report data to calibrate model for existing operational analysis (i.e. queue length and approach/movement delay recommended)
- d. Methodology for capacity and level of service shall be Highway Capacity Manual, latest edition (i.e. Synchro, version 10).
- e. Discuss and illustrate methodology for trip distribution.

II. Study Assumptions

- **1. Data Assumptions** The following assumptions must be included in the analysis. Any change in these assumptions must be approved by the transportation reviewer(s) prior to submittal of the TIA.
 - a. Background Traffic—the annual growth rate shall be calculated using the following standard formula and back solved to growth rate: "Newest reported volume = Old reported volume * (1+Growth rate) ^ number of years in between the two volumes" and back solved.
 - Ronald Regan Blvd 8% per year. 1.08² = 1.166 growth factor.
 - 183A Toll Rd Frontage Rds and RM 2243 4% per year. 1.04² = 1.082 growth factor.

BASIS Leander December 23, 2024

b. The roadway used for computing growth rate should be of the same class of highway as the development's location and be as close as possible.

2. Background

a. Other Projects to be Included:

	Project Name	Case Number
N/A		N/A

- b. Internal Trips /Transit Trips/Walking/Biking: 0% per ITE
- c. Pass by trip reductions: 0% per ITE

III. Submittal Requirements

- 1. The cover sheet of the TIA must include the My Permit Now permit number if a city or county involved.
- Submit to TXDOT electronically via box.com the items specified below: TxDOT will invite you to our box.com server or you can give us a link to download via yours.
- 3. Traffic signal modeling requirements:
 - a. All timing sheets from various sources (City of Leander, TXDOT, etc.) to be included in the Appendix of the TIA.
 - b. Submit electronically by dropbox the following invo (in the number specified) containing the following: PDF of the TIA, Synchro Network for all conditions analyzed and background DXF or aerial format. Synchro files must be in real world coordinates, Excel spreadsheets with, overall trip generation, internal and pass-by trip capture rates if applicable, site trip distribution & assignment within roadway network and site driveways, A CAD file for the site plan, if available.
 - c. All intersections must be modeled in one Synchro (latest edition) file (including unsignalized intersections).
 - d. Synchro signal timing sheets to be included in the following format:
 - Existing conditions.
 - Future conditions:
 - o (am background, am background + site, am background + site + mitigation)
 - (school pm background, school pm background + site, school pm background + site + mitigation)
 - (pm background, pm background + site, pm background + site + mitigation)
 - e. Intersection LOS by movements, Delay by movements, v/c by movements, and 95% queue length by movements in a tabular format (preferably in 11"x17") for different scenarios noted.

4. Maps

- a. A proposed Site Plan
- b. A map showing all bicycle routes, bus transit and bus stops within ½ mile of the site
- c. A map showing all background projects and trip generation for each project,
- d. A map showing all roadways and driveways analyzed (labeled and dimensioned)
- e. An aerial map of all intersections with roadway improvements (dimensioned), including above ground utilities called out.

BASIS Leander December 23, 2024

Prepared by:	Nicholas Aiello, P.E., PTOE, PTP, Colliers Engineering &	_Phone: <u>(512) 287-8370</u> . Design
Accepted by:_	Scott R. Cunningham, P.E., TxDOT Austin District Traffic	_Phone: <u>(512) 698-0549</u> Ops.
Accepted by:_	Tessa Heines, P.E., City of Leander	_Phone: <u>(512) 528-2933</u>

5901 Vega Ave Suite 100 Austin, TX 78735 Main: 877 627 3772

Minutes of Meeting

Recorded by: Nicholas Aiello (Colliers Engineering & Design, Inc.)

Meeting date: Friday, November 1, 2024 – 11:00 AM -12:00 PM

Meeting location: Microsoft Teams

Subject/project name: TIA Scoping Meeting

RM 2243 & Raider Way
CP-24-0032 - Basis Leander

Proposed Charter School & Potential Retail Site

8770 RM 2243, City of Leander, Williamson County, Texas

Project No.: 23015395A

Attendees: Ann Weis, P.E., (City of Leander – Senior Engineer)

Tessa Haines, P.E., (City of Leander – Senior Engineer)
Brian Duffey (City of Leander Traffic Consultant, BGE Inc.)

Scott Cunningham, P.E. (TxDOT Austin District, Traffic Ops Engineer)

Shane Brown (TxDOT Georgetown Office, Access Management Coordinator)

Jared Bowers, A.I.A., (Grace Hebert Curtis Architects)

Nick Aiello, P.E., PTOE, PTP (Colliers Engineering & Design - Traffic)

Sofia Piela (Colliers Engineering & Design – Traffic)
Randall Nixon (Colliers Engineering & Design – Site/Civil)
Nick Parker (Colliers Engineering & Design – Site/Civil)
Matthew Hilbig (Colliers Engineering & Design – Site/Civil)

- Nick Aiello of Colliers Engineering & Design (CED) mentioned the TIA Screening Form was submitted to TxDOT & City of Leander. TxDOT and City of Leander agreed to have one joint scope. BGE will be the City of Leander's third-party traffic reviewer.
- Nick gave a brief introduction of everyone and an overview of the project:
 - A previous TIA scoping meeting was held in April of 2024 with the City of Leander. However, since said meeting, the future alignment of Raider Way has shifted to the eastern portion of the site, which has modified the proposed access, site layout and circulation. This TIA scoping meeting was scheduled to rescope the project with this change and have an agreed scope with both the City of Leander and TxDOT.
 - Charter school is proposed on "Lot 1" of the site.

Project No. 23015395A November 1, 2024 Page 2 | 4

- Lot "2" will be included as retail for the TIA. Lot 2 is anticipated to be developed by others.
- o Discussed City Thoroughfare Plan for Raider Way to intersect RM 2243.
 - CED originally considered Raider Way alignment on the western side of site.
 - City has gone through coordination and approved a different alignment towards eastern portion of site – close to existing access easement between the site and the adjacent VFD site.
 - TxDOT inquired about the distance to nearby signalized intersections to the future Raider Way.
 - Nick A stated it is just under a mile to Route 183A and just under a mile to Ronald Reagan Blvd.
- Now that the alignment of Raider Way has changed It is proposed that all ingress and
 egress traffic utilize Raider Way and a full-movement signalized T-intersection be proposed
 at the intersection of RM 2243 & Raider Way. Left and right-turn deceleration lanes are
 anticipated along RM 2243 at the future Raider Way.
- Scott Cunningham of TxDOT asked if CED's TIA would include that Lot 2 development or if CED would have that developer do it. Nick stated CED would assume the commercial use is to be constructed as part of the TIA, and if a developer came in with a more intensive use, they would be responsible to complete an updated TIA. Nick A stated CED is looking at the ability to construct a separate right-in/right-out driveway along RM 2243 for the commercial lot.
- Shane Brown of TxDOT stated that deceleration lanes and access spacing should be considered for a commercial driveway. Nick stated that the distance may be a little short of access spacing but would be close. Additionally, there are utilities an culvert in the area that may preclude the full deceleration lane length. TxDOT stated they would review and potentially consider a shorter access spacing/deceleration length but only with a right-in/right-out driveway with physical separation. Left-turns would not be considered at the commercial only driveway. Nick stated that other TxDOT Area Offices are using a modified pork chop island design to physically prohibit left-turns. CED will investigate the feasibility of this design for a right-in/right-out driveway.
- Scott requested queueing calculations to be provided.
 - Nick A stated CED will do queue assessment for the site using MTSA calculator. Nick mentioned how BASIS has had success with double stacking and how significant queueing areas are provided on-site with circulation plan.
 - o Nick A inquired about timeframe for future Vista Heights roadway?

Project No. 23015395A November 1, 2024 Page 3 | 4

- Ann Weis of the City of Leander stated there is no plan yet will likely be few years out. Ann mentioned to call the road "Unnamed Road" not Vista Heights.
- Primary route to/from the site will be via RM 2243 and via left-turns into the site from Raider Way. CED has not included the future "Vista Heights/unnamed road" road as part of the site trips distribution. Nick A explained drop off/pick-up would be coordinated with the location of the fire lane. Nick A explained differential in afternoon between school dismissal and peak of street:
 - School dismissal is around 3PM and ends prior to 4PM. PM street peak is between 4-6PM.
 - Nick explained trip generation calculations
 - Scott asked if there will be a gate that is locked to the site or can parents drive up all day long? Jared Bowers of A.I.A. (Client) does not know but will look into that
 - Scott mentioned it would be a problem if the site was gated outside of arrival/dismissal times since parents could come early to pick up students and would back up onto street. There will be significant traffic control in pickup/drop-off areas and strict procedural notes will be given to parents. Nick A mentioned the app BASIS uses to identify where to drop-off/pick-up, time frames, different plans, etc. There will typically be a "practice" day for parent/student prior to the first day of school.
 - o Brian Duffey of GEC Inc. had questions about the analyzed peak hours
 - Nick A stated the PM generator estimates 625 trips outside of school peak hour which is pretty conservative
 - Brian said he believes unique enough traffic patterns at different times will happen which need to be accounted for. Brian requested the AM peak hour of adjacent street traffic, PM generator (school dismissal) and PM peak hour of adjacent street traffic be analyzed.
 - Nick A discussed the study area signal to east (RM 2243 & Ronald Reagan), signal to west (RM 2243 & 183A), and RM 2243 & Future Raider Way. The following was also confirmed:
 - 2024 Existing, 2026 No-Build & Build capacity analysis periods
 - 3 peak hours AM peak hour of adjacent street traffic, PM generator (school dismissal) and PM peak hour of adjacent street traffic.
 - Various background growth rates were discussed. The TIA will review TxDOT count data and historical data. Based upon the TxDOT data, it's anticipated

Project No. 23015395A November 1, 2024 Page 4 | 4

that 8% growth rate will be applied to Ronald Reagan Blvd and 3% growth rate will be applied to RM 2243 and 183A Frontage Roads.

- City and TxDOT confirmed no major other developments in the area to consider in the No-Build condition.
- Nick stated the following studies will be done for RM 2243 & Future Raider Way Alignment:
 - ICE/SPICE/CAP-X Assessment
 - This assessment will be used to address "alternative" design assessment request by TxDOT. However, the ultimate control will be subject to meeting City ordinance, master planning, throughfare planning, etc.
 - Traffic Signal Warrant Analysis w/ 12 hour counts to review 8-hour, 4-hour and peak hour warrants.
 - Level of Service assessment
 - Deceleration Lane Warrant Assessment
 - Limited ability to develop to the south of the site because of Brushy Creek. Any turn lanes, will have to be pushed onto the project side of the roadway.
- Ann asked about what is happening with the property to the east
 - Nick and Randall did not have confirmation at this time. BASIS will need to coordinate with the adjacent landowner.
 - Ann asked what would happen with event traffic for the adjacent VFW site would it be through RM 2243 & Raider Way rather than direct access. It's anticipated future access would be off of Raider Way. Ann stated coordination between property owners needs to take place regarding the proposed roadway.
 - Scott asked if Williamson County needs to be involved? Ann stated that they
 do not, so CED can remove them on the header of the TIA scoping document.

Minutes of Meeting

Recorded by: Nicholas Aiello (Colliers Engineering & Design, Inc.)

Meeting date: Tuesday, April 9, 2024 – 9:00 AM -10:00AM

Meeting location: Microsoft Teams

Subject/project name: TIA Scoping Meeting

CP-24-0032 - Basis Leander

Proposed Charter School & Potential Retail Site

8770 RM 2243, City of Leander, Williamson County, Texas

Project No.: 23015395A

Attendees: Ann Weis, P.E., (City of Leander – Senior Engineer)

Tessa Haines, P.E., (City of Leander – Senior Engineer)

Tom Chermack (Chermack Consulting)
David Mattson (Chermack Consulting)

Jared Bowers, A.I.A., (Grace Hebert Curtis Architects)

Nicholas Aiello, P.E., PTOE, PTP (Colliers Engineering & Design - Traffic)

Jaime Salinas, P.E. (Colliers Engineering & Design – Site/Civil)

Sofia Piela (Colliers Engineering & Design – Traffic)

Meeting Details

The project site is currently undeveloped. It is proposed to develop a charter school with an anticipated enrollment of 1,455 students on the northern portion of the site and potentially 29,150 SF of retail space on the southern portion of the site. The purpose of the meeting is to discuss the Traffic Study Level required for the site, the anticipated trip generation for the proposed development as well as access to/from RM 2243. A Traffic Study Screening Evaluation Form and Traffic Impact Analysis Letter were submitted to the City of Leander prior to the meeting. The Circulation Plan illustrates the proposed site driveway(s) along RM 2243.

Discussion Items

- Nicholas Aiello of Colliers Engineering & Design (CED) gave an overview of the proposed development and highlighted the following:
 - TIA Screening Form with the proposed land uses was submitted with the Concept Plan Application.

Project No. 23015395A April 9, 2024 Page 2 | 3

- The proposed development will utilize the existing eastern driveway/access easement along RM 2243 for ingress circulation and proposes a new driveway to the west on RM 2243 for egress circulation.
- Applicant is looking for feedback on the City's timing for Raider Way. The Applicant can only control what is on their property. The anticipated development build timeframe is Summer 2026.
 Nick believes a signal may not be warranted based upon 4-hour and 8-hour warrants at the egress driveway (without Raider Way extension by the City). Traffic counts would be needed to confirm. If a signal is not warranted, Nick would like to assess the full-movement egress driveway as right-out only (controlled by signs and school monitors) during the school peak periods.
- The charter school will have primary and secondary drop-off/pick-up locations and queueing areas. Queueing estimates are based on the MSTA calculator.

TIA Confirmation Items

- Ann Weis from the City of Leander stated the City has no immediate plan with Raider Way –
 it is shown on the Master Plan. There is no funding yet for the project and it may be more
 than 10 years out.
- The City agreed with conducting the egress driveway assessment. The City would like the Applicant's engineer to document the signal warrant analysis. If a signal is not warranted, they would consider the right-only turn restriction (with signs and a monitor) during the school peak periods.
- The City mentioned that turn lane warrants should be conducted on RM 2243 at the ingress driveway.
- All access/site issues will be addressed during the Preliminary Plat phase. Traffic Study submission runs parallel with Preliminary Plat submission after Concept Plan typically. An approved TIA is required to approve the Preliminary Plat.
- The intersection alignment of the egress driveway/Future Raider Way should be revised to meet current City standards. City required no more than 10% skew, TxDOT may allow 15%. The Applicant would likely have to dedicate ROW for Raider Way with a total width of 74-feet (standard for a collector roadway as shown in Comprehensive Plan) adjacent to the cemetery and up to 82' at RM 2243. There is another collector roadway on the Master Plan north of the site which will require a 74-foot-wide ROW.
- When Preliminary Plat is finalized, notes will be needed to address the TIA analysis and any required mitigation/improvements.
- The Roadway Impact Fee Structure was recently updated and there is no longer a fee in lieu of TIA. The City uses the 2020 Austin Transportation Criteria Manual for TIA requirements. A TDM will not be required only a TIA.
- Study Area is confirmed as the proposed site driveway(s), RM 2243 & US 183 Toll Road Frontage Rd traffic signals and the FM 2243 & Ronald Reagan Blvd traffic signal.

Project No. 23015395A April 9, 2024 Page 3 | 3

• Growth rates to be confirmed with the City. Specifically, Ronald Regan Blvd is anticipated to have a higher growth rate than other roadways in the area. Most TxDOT count stations are showing a ~10% growth rate on Ronald Reagan Blvd and the central part of the City is showing a ~3-5% growth. CED will review growth rates per roadway rather than the entire study area. CED also noted that once the Hero Way expansion project is completed, we would anticipate traffic would be diverted away from the current RM 2243 roadway to Hero Way.

Site Access

- o Driveway spacing to meet City and TxDOT requirements. The driveways should not be in conflict with any proposed deceleration lane.
- If deceleration lanes are warranted at the ingress driveway, it may require a grading or drainage easement. The preliminary plat would need to identify easement locations, but they can be modified at final plat.
- o Sight distances at egress driveway to be confirmed in TIA.

Next Steps

- Proceed with traffic counts and performing traffic study and signal warrant assessment.
- Applicant will coordinate RM 2243 access with TxDOT.

R:\Projects\2023\23015395A\Scoping Meeting\240409_smp_Scoping_Mtg.docx

Nicholas Aiello

From: Nicholas Aiello

Sent: Monday, March 3, 2025 8:55 AM **To:** Brian Duffey; Tessa Heines

Cc: tom@chermackconsulting.com; Jared Bowers; Jaime Salinas; Ann Weis

Subject: RE: BASIS Leander - RM 2243 TxDOT Traffic Review

Brian and Tessa,

Following up from last week, TxDOT confirmed the below email is their formal review for us and we will revise the TIA as such.

Thank you for your continued coordination on this project.

Thanks,

Nick Aiello, PE, PTOE, PTP

Geographic Discipline Leader | Traffic Planning Austin, Texas

Colliers Engineering & Design

Nicholas.Aiello@collierseng.com

Cell: 609 668 2566 | Main: 877 627 3772

colliersengineering.com | affiliated authorized entities

DISCLAIMER This e-mail is confidential. It may also be legally privileged. If you are not the addressee you may not copy, forward, disclose or use any part of this email text or attachments. If you have received this message in error, please delete it and all copies from your system and notify the sender immediately by return e-mail. Internet communications cannot be guaranteed to be timely, secure, error or virus free. The sender does not accept liability for any errors or omissions. Any drawings, sketches, images, or data are to be understood as copyright protected.

From: Nicholas Aiello < Nicholas. Aiello @collierseng.com>

Sent: Thursday, February 27, 2025 10:55 AM

To: Brian Duffey <bduffey@bgeinc.com>; Tessa Heines <THeines@leandertx.gov>

Cc: tom@chermackconsulting.com; Jared Bowers <jbowers@ghc-arch.com>; Jaime Salinas

<Jaime.Salinas@collierseng.com>; Ann Weis <AWeis@leandertx.gov>

Subject: FW: BASIS Leander - RM 2243 TxDOT Traffic Review

Brian and Tessa,

Just wanted to keep you posted. Please see TxDOT correspondence on the mitigation for the BASIS Leander project. I have not received the full review letter yet if they intend on sending it.

 TxDOT is willing to accept the lower turn-bay storage length for the RM 2243 EB left at Raider Way due to the drainage/culvert conflicts. They will be requiring the full length of the RM 2243 WB right-turn lane at Raider Way. TxDOT is good with the mitigation at RM 2243 & Ronald Reagan of the NB right / SB right deceleration lane/shoulder conversion.

Thanks again for meeting with us earlier in the week.

Have a good day,

Nick Aiello, PE, PTOE, PTP

Geographic Discipline Leader | Traffic Planning Austin, Texas

Colliers Engineering & Design

Nicholas.Aiello@collierseng.com

Cell: 609 668 2566 | Main: 877 627 3772

<u>colliersengineering.com</u> | <u>affiliated authorized entities</u>

DISCLAIMER This e-mail is confidential. It may also be legally privileged. If you are not the addressee you may not copy, forward, disclose or use any part of this email text or attachments. If you have received this message in error, please delete it and all copies from your system and notify the sender immediately by return e-mail. Internet communications cannot be guaranteed to be timely, secure, error or virus free. The sender does not accept liability for any errors or omissions. Any drawings, sketches, images, or data are to be understood as copyright protected.

From: Shane Brown < Tommy.Brown@txdot.gov>

Sent: Thursday, February 27, 2025 9:55 AM

To: Nicholas Aiello < Nicholas. Aiello@collierseng.com >

Cc: Jared Bowers < jbowers@ghc-arch.com>; tom@chermackconsulting.com; Jaime Salinas

<Jaime.Salinas@collierseng.com>

Subject: RE: BASIS Leander - RM 2243 TxDOT Traffic Review

Ok I spoke with my AE, Kyle Russell and he confirmed that we would be agreeable to shortening the left turn lane to avoid the cemetery and the ditch problems, he did want to see the full length right turn though, and he said he had no comments on the Ronald Reagan intersection as he didn't think that would have any negative impact on your access point.

Shane Brown
Access Management & Utility Coordinator
Georgetown Area Office – TXDOT

2727 South Austin Ave, Georgetown Texas 78626

512-734-5754

2nd Timothy 4:7-8

From: Nicholas Aiello < Nicholas. Aiello@collierseng.com>

Sent: Thursday, February 27, 2025 9:00 AM **To:** Shane Brown < Tommy.Brown@txdot.gov>

Cc: Jared Bowers < <u>ibowers@ghc-arch.com</u>>; <u>tom@chermackconsulting.com</u>; Jaime Salinas

<Jaime.Salinas@collierseng.com>

Subject: RE: BASIS Leander - RM 2243 TxDOT Traffic Review

This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Thanks for confirming Shane.

Nick Aiello, PE, PTOE, PTP

Geographic Discipline Leader | Traffic Planning Austin, Texas

Colliers Engineering & Design

Nicholas.Aiello@collierseng.com

Cell: 609 668 2566 | Main: 877 627 3772

colliersengineering.com | affiliated authorized entities

DISCLAIMER This e-mail is confidential. It may also be legally privileged. If you are not the addressee you may not copy, forward, disclose or use any part of this email text or attachments. If you have received this message in error, please delete it and all copies from your system and notify the sender immediately by return e-mail. Internet communications cannot be guaranteed to be timely, secure, error or virus free. The sender does not accept liability for any errors or omissions. Any drawings, sketches, images, or data are to be understood as copyright protected.

From: Shane Brown < Tommy.Brown@txdot.gov Sent: Thursday, February 27, 2025 7:12 AM

To: Nicholas Aiello < Nicholas. Aiello@collierseng.com >

Cc: Jared Bowers < <u>ibowers@ghc-arch.com</u>>; <u>tom@chermackconsulting.com</u>; Jaime Salinas

<Jaime.Salinas@collierseng.com>

Subject: RE: BASIS Leander - RM 2243 TxDOT Traffic Review

Should be today.

Shane Brown
Access Management & Utility Coordinator
Georgetown Area Office – TXDOT
2727 South Austin Ave, Georgetown Texas 78626
512-734-5754

2nd Timothy 4:7-8

From: Nicholas Aiello < Nicholas. Aiello@collierseng.com >

Sent: Wednesday, February 26, 2025 5:15 PM **To:** Shane Brown < Tommy.Brown@txdot.gov>

Cc: Jared Bowers < jbowers@ghc-arch.com>; tom@chermackconsulting.com; Jaime Salinas

<Jaime.Salinas@collierseng.com>

Subject: BASIS Leander - RM 2243 TxDOT Traffic Review

This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Shane,

Thanks again for meeting with us yesterday. Please let me know when you think you will be able to share the TxDOT traffic review with our team so we can revise the traffic study and resubmit.

Thank you!

Nick Aiello, PE, PTOE, PTP

Geographic Discipline Leader | Traffic Planning Principal Associate

Nicholas.Aiello@collierseng.com

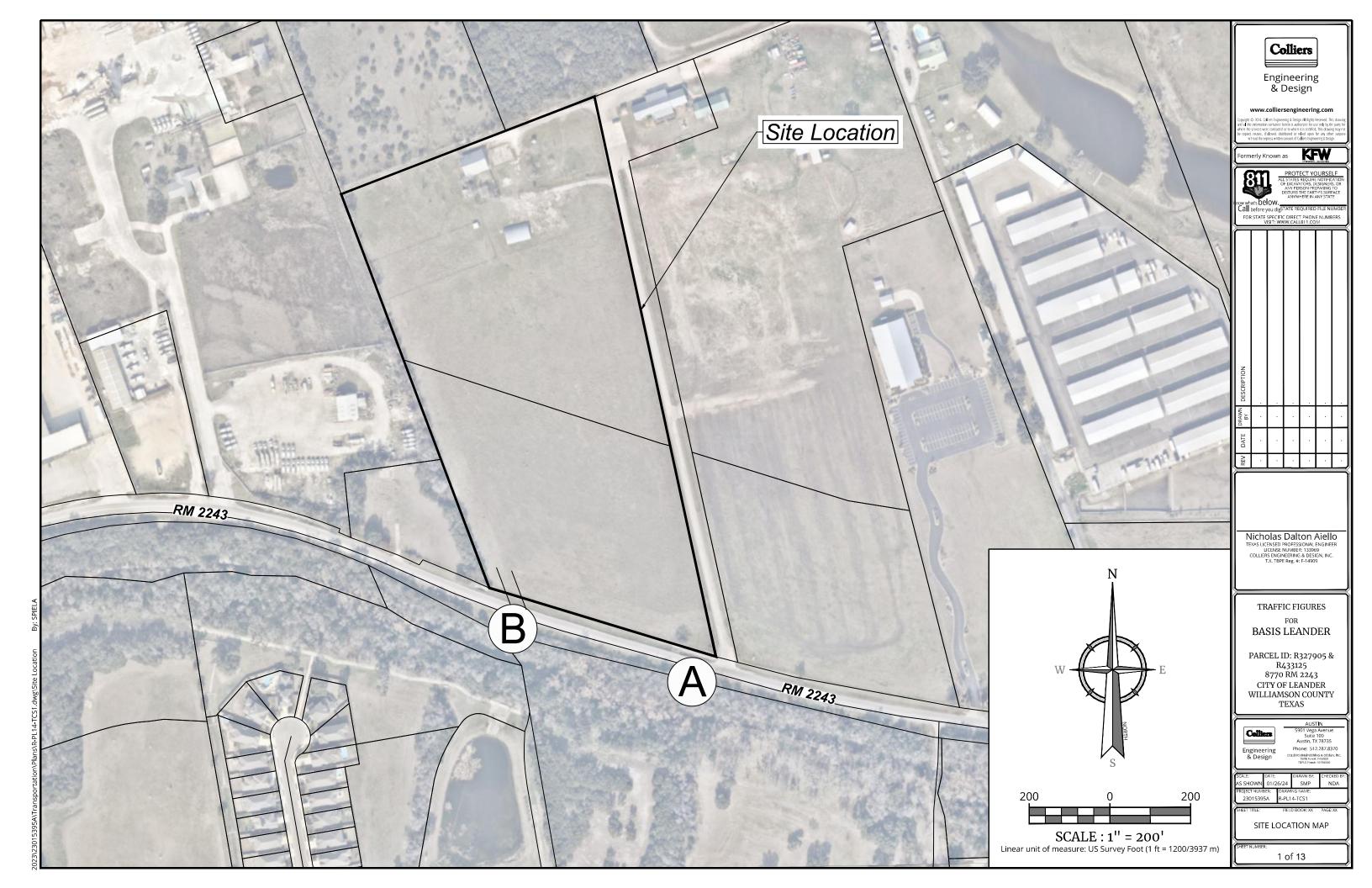
Cell: 609 668 2566 | Main: 877 627 3772

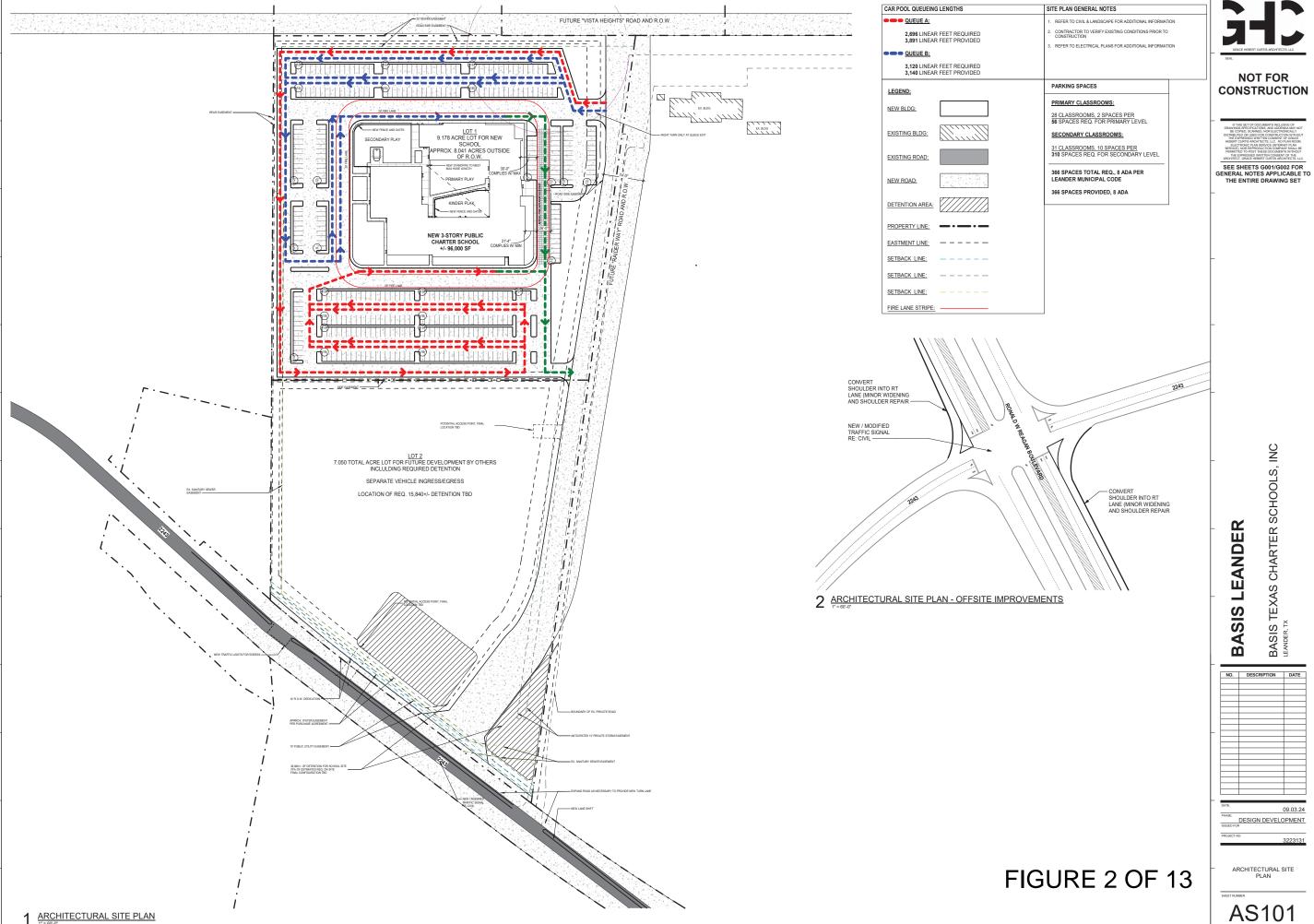
5901 Vega Avenue, Ste 100 | Austin, Texas 78735

colliersengineering.com affiliated authorized entities

Engineering & Design

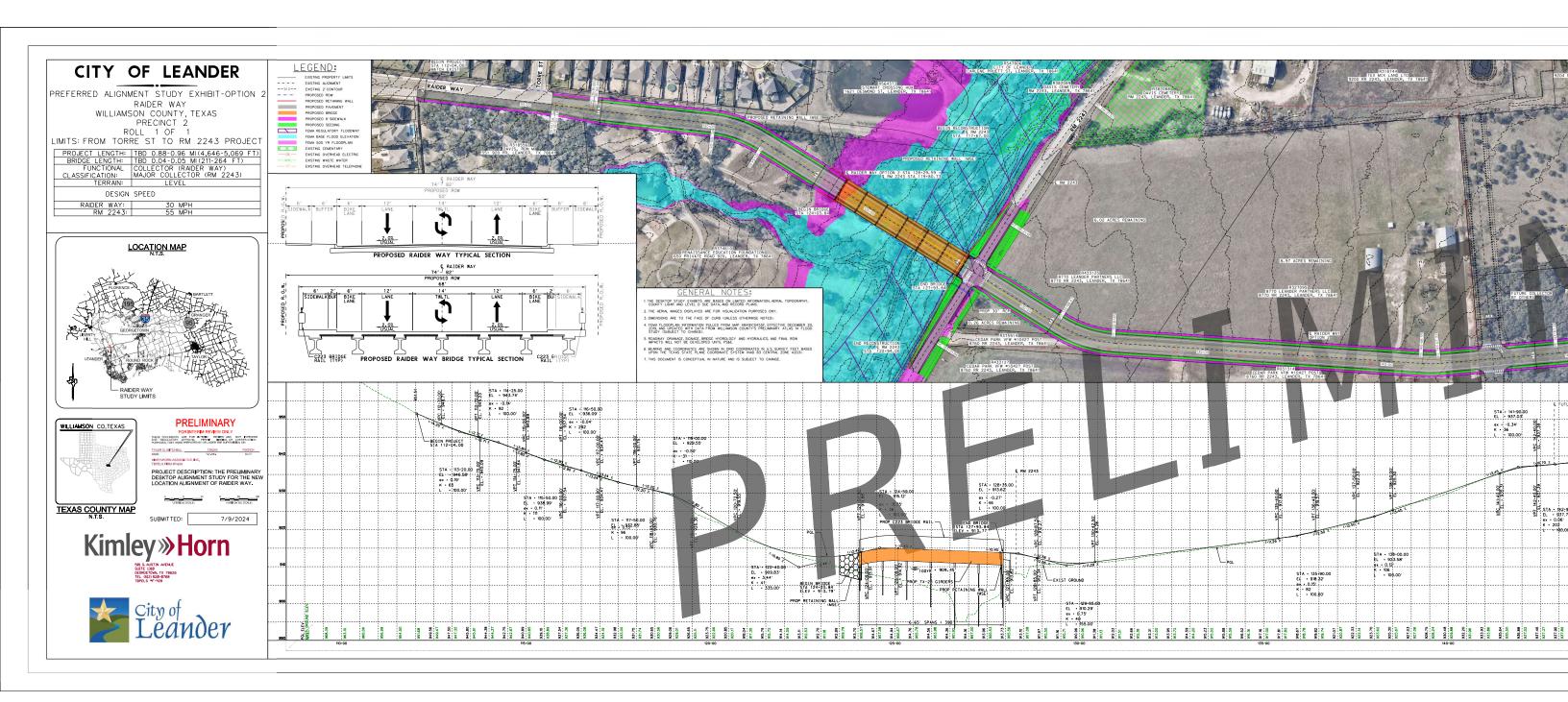
DISCLAIMER This e-mail is confidential. It may also be legally privileged. If you are not the addressee you may not copy, forward, disclose or use any part of this email text or attachments. If you have received this message in error, please delete it and all copies from your system and notify the sender immediately by return e-mail. Internet communications cannot be guaranteed to be timely, secure, error or virus free. The sender does not accept liability for any errors or omissions. Any drawings, sketches, images, or data are to be understood as copyright protected.


A Texas Department of Transportation I



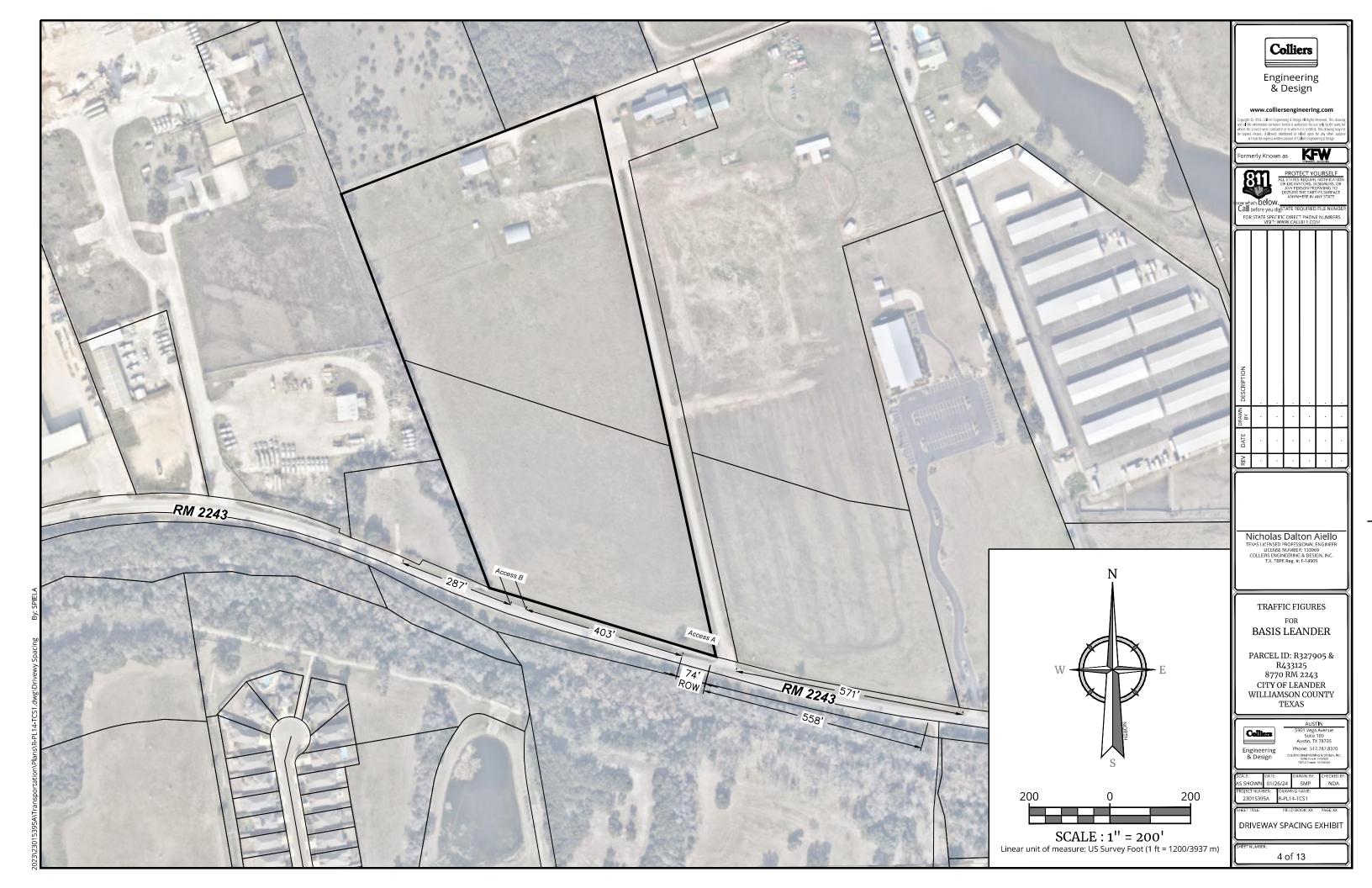
Traffic Impact Analysis

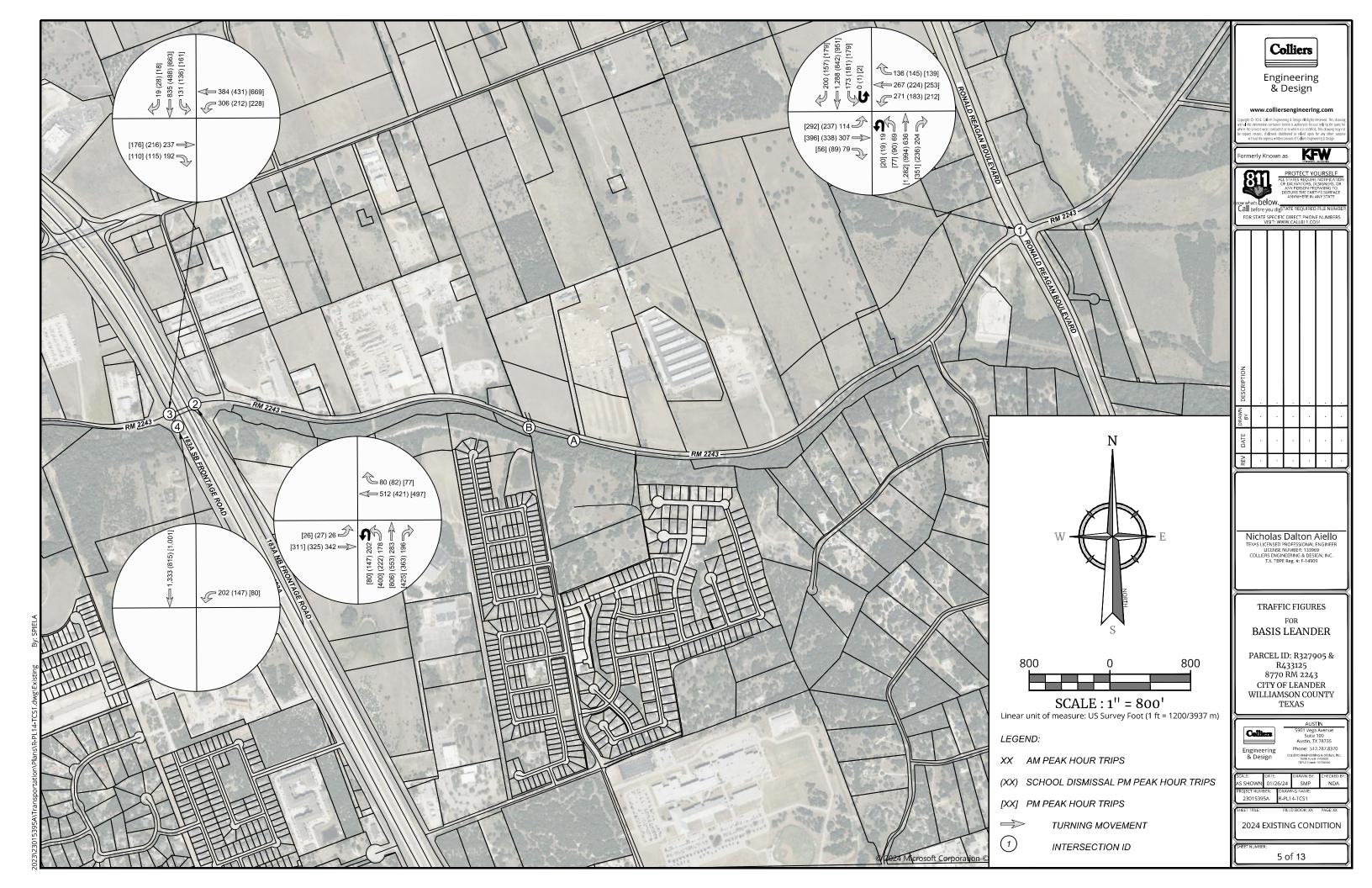
Appendix C | Traffic Figures

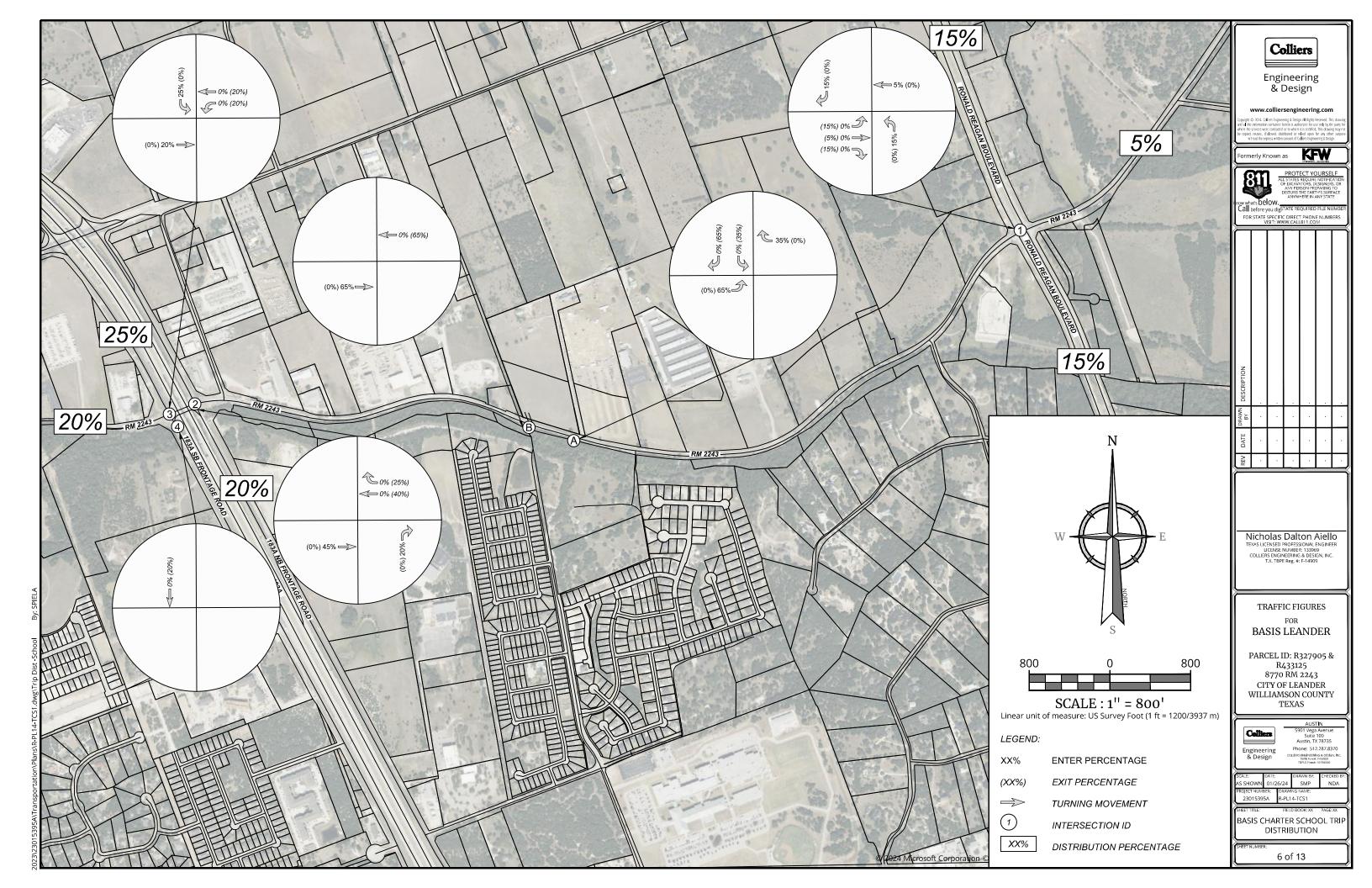


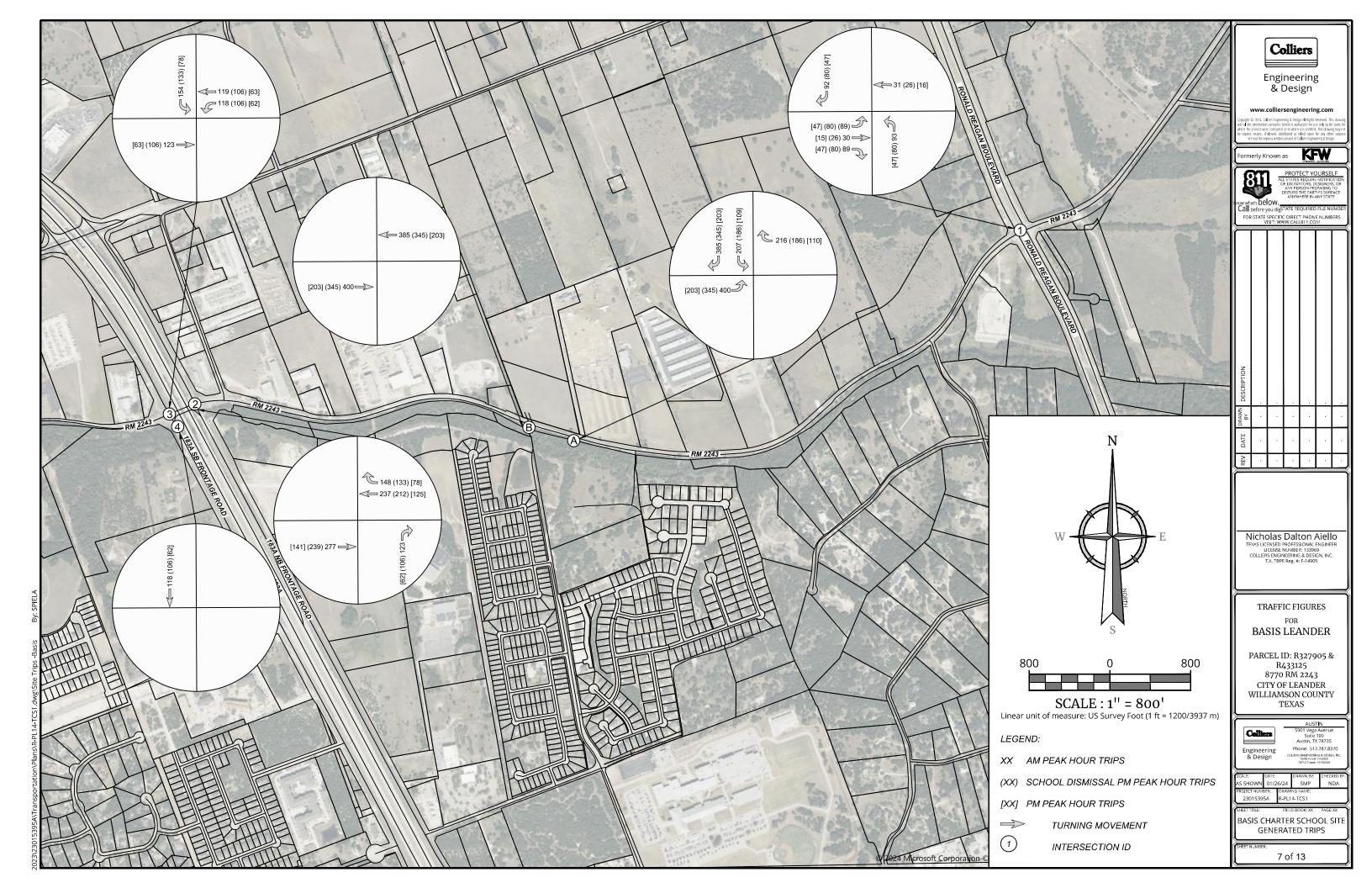
NOT FOR **CONSTRUCTION**

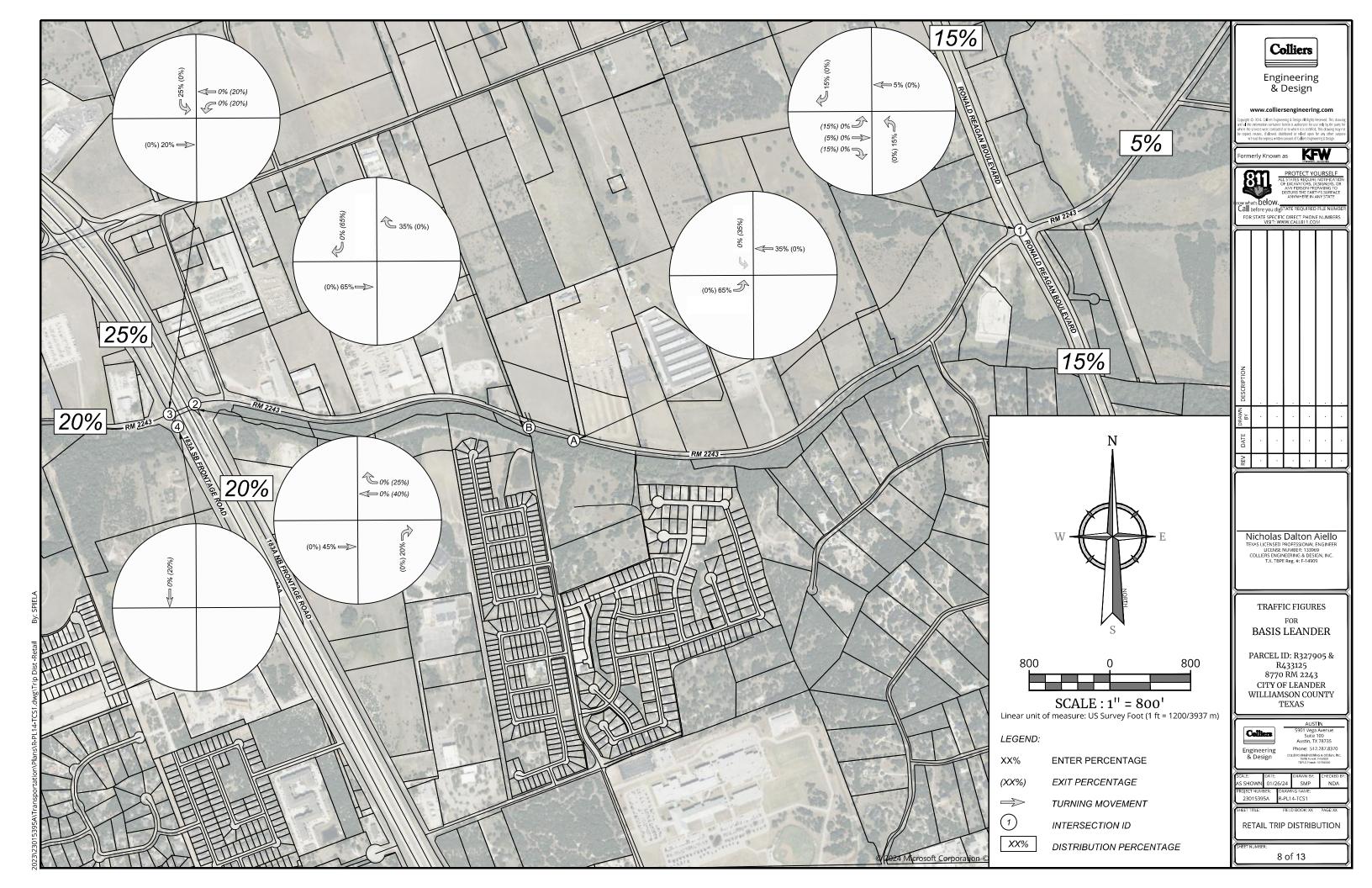
DESIGN DEVELOPMENT
ISSUED FOR

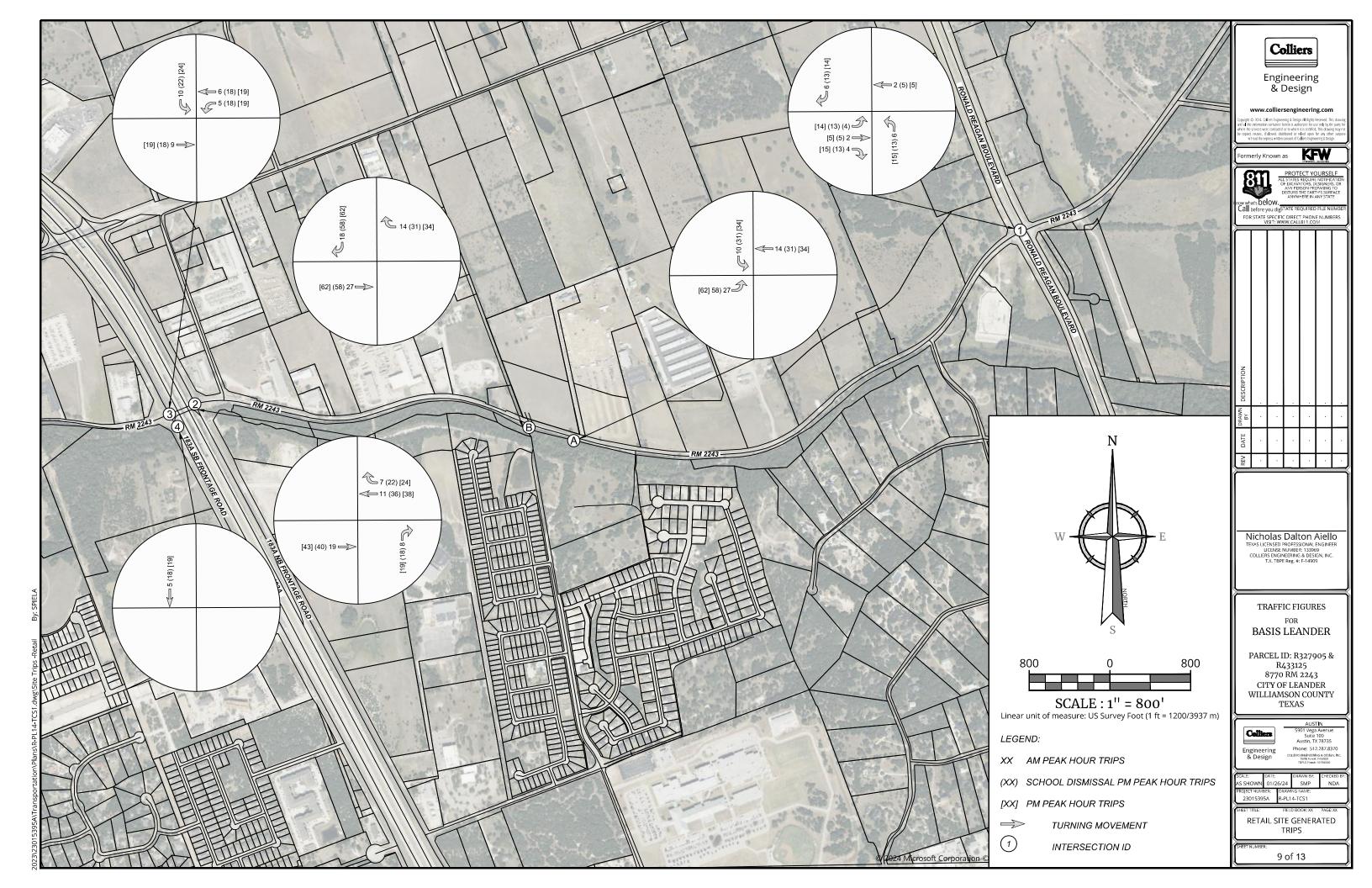

ARCHITECTURAL SITE PLAN

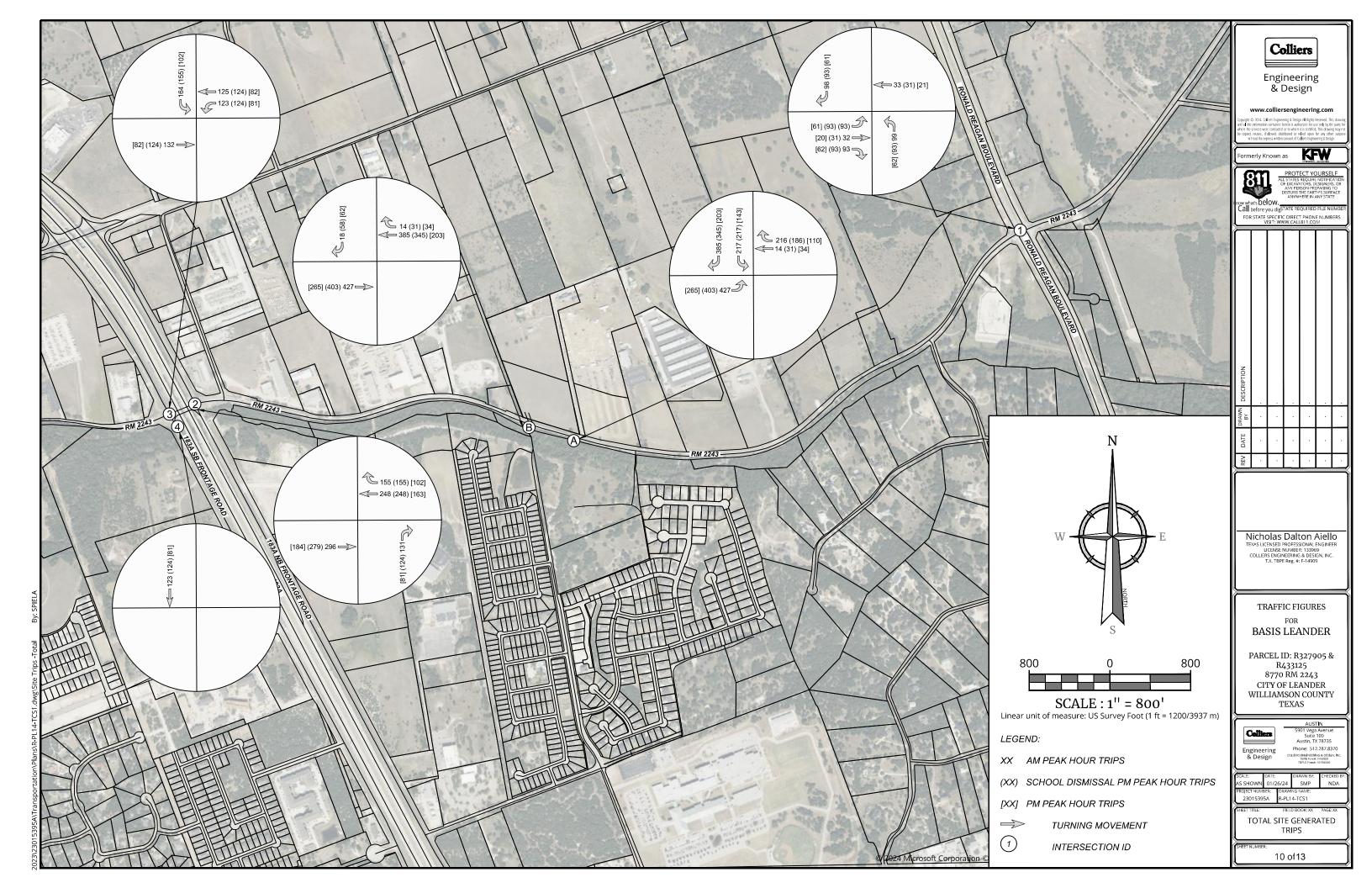

AS101

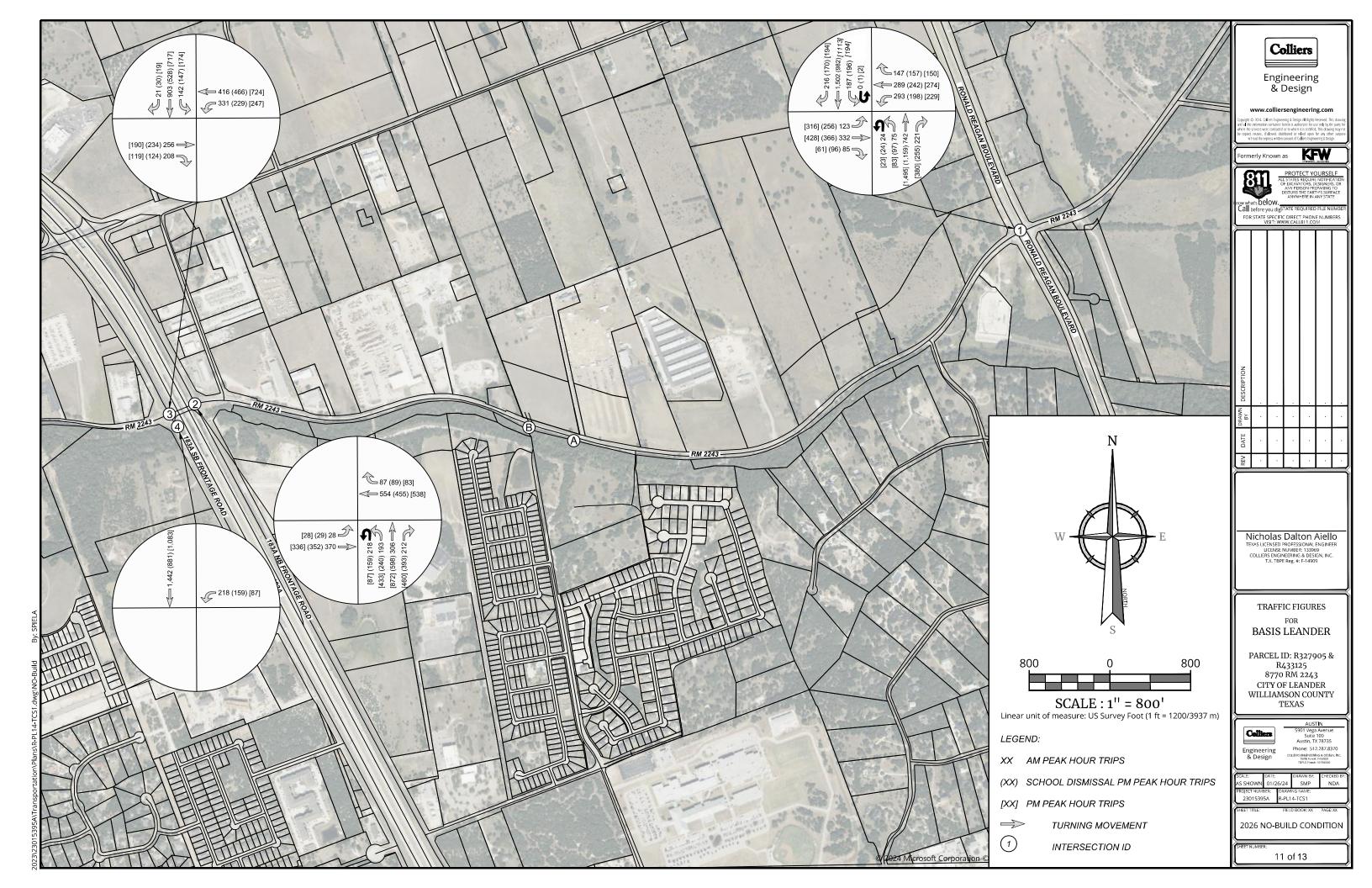


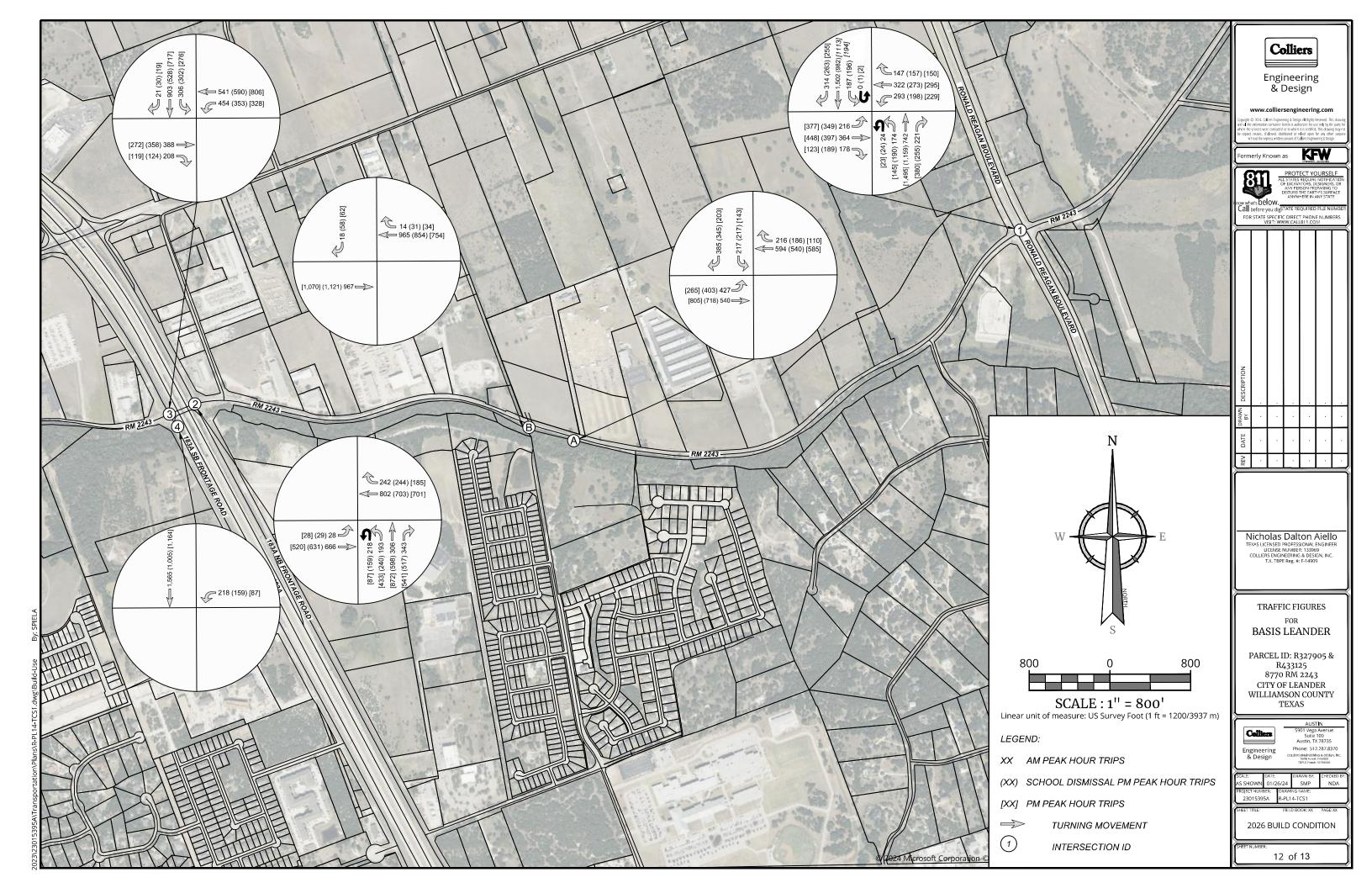

NOT TO SCALE - REPORT FORMATTED

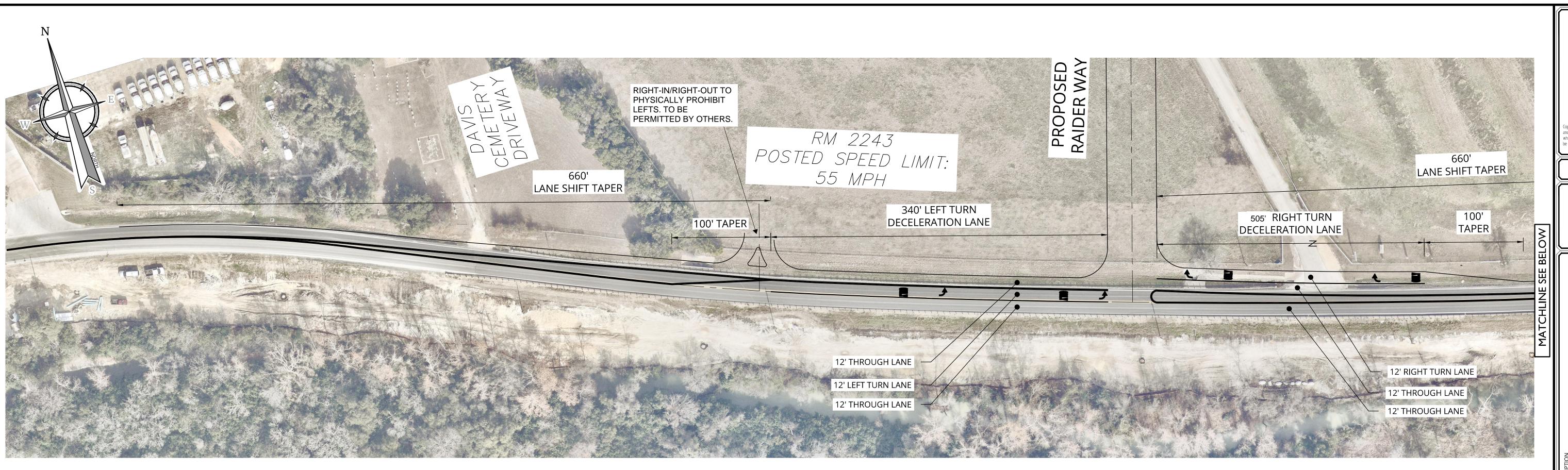

FIGURE 3 OF 13

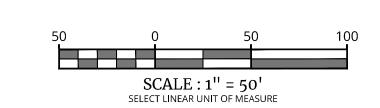












NOTES:

- I. THIS PLAN IS FOR CONCEPTUAL PURPOSES ONLY.
- ALL EXISTING AND PROPOSED LINEWORK IS BASED OFF AERIAL IMAGERY.
- 3. ALL RIGHT OF WAY LINEWORK WAS BASED OFF OF AVAILABLE GIS INFORMATION FROM THE CITY.

			C	`o.	11i	er	S			
		E	-	gir D			_	Ţ •		
d all om	ght © 2 the info the serv ied, reu	025. Co ormation ices wei used, di	lliers En 1 contair 1e contra 5closed,	erso gineerin ned hero acted or distribu	g & Des ein is au to whor uted or	ign All R thorized n it is ce relied (ights Re for use rtified.	served. only by This drav r any ot	This dra the par wing ma ther pu	ty fo iy no
FC	R ST		SPEC	EXCAV. PRE	STATES ATORS PARING RFACE	REQU , DESIG G TO E ANYW	IRE NO GNERS DISTUR HERE	B THE IN ANY	ATION NY PER EARTH ' STATE	ISOI I'S E

ROADWAY IMPROVEMENT CONCEPT PLAN

FOR
BASIS SCHOOL

CITY OF LEANDER WILLIAMSON COUNTY TEXAS

	AUSTIN
Colliers	5901 Vega Avenue, Suite 100 Austin, TX 78735
Engineering & Design	Phone: 877.627.3772 COLLIERS ENGINEERING & DESIGN, INC

AS SHOWN			DRAWN BY:	CHECKED BY:
	01/2	9/2025	MJN	NAD
PROJECT NUM	BER:	DRAWII	NG NAME:	
240008	43A	R-PL01	-CNPT	

13 of 13

Traffic Impact Analysis

Appendix D | Traffic Count Data

Thu Jan 11, 2024

Full Length (7 AM-9 AM, 2 PM-6 PM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks, Pedestrians, Bicycles on Crosswalk)

All Movements

ID: 1146774, Location: 30.587027, -97.809558

Leg	FM 2243	3				FM 2243						Reagan l	Blvd				Ronald F	0	lvd				
Direction	Eastbour	nd				Westbou	nd				Northb	ound					Southbou	ınd					
Time	L	T	R I	U	App Ped∗	L	T	R	U	App Ped*	I	T	R	U	App	Ped*	L	T	R	U	App	Ped*	Int
2024-01-11 7:00AM	21	58	15	0	94 0	74	70	41	0	185 0	13	135	47	8	203	0	40	315	67	0	422	0	904
7:15AM	25	75	19	0	119 0	69	74	41	0	184 0	9	137	58	5	209	0	48	308	59	0	415	0	927
7:30AM	28	75	15	0	118 0	67	82	22	0	171 0	18		60	6	239	0	48	324	59	0	431	0	959
7:45AM	33	78	22	0	133 0	67	63	25	0	155 0	20	162	61	5	248	0	34	318	45	0	397	0	933
Hourly Total	107	286			464 0	277	289	129	0	695 0			226	24	899	0	170	1265	230	0	1665	0	3723
8:00AM	26	75			123 0	68	65	44	0	177 0	12		32	6	212	0	45	338	39	0	422	0	934
8:15AM	27	79			126 0	69	57	45	0	171 0	19		51	2	229	0	46	308	57	0	411	0	937
8:30AM	28	77	23	0	128 0	58	54	35	0	147 0	15	164	48	4	231	0	45	250	50	0	345	0	851
8:45AM	32	69	14	0	115 0	38	51	31	0	120 0	15	179	56	5	255	0	43	259	63	0	365	0	855
Hourly Total	113	300	79	0	492 0	233	227	155	0	615 0	61	662	187	17	927	0	179	1155	209	0	1543	0	3577
2:00PM	36	72	21	0	129 0	41	47	48	0	136 1	26	208	40	6	280	0	32	150	39	0	221	0	766
2:15PM	48	68	21	0	137 0	42	57	38	0	137 1	18	209	53	2	282	0	36	140	64	1	241	0	797
2:30PM	58	70	18	0	146 0	45	48	38	0	131 0	15	237	73	5	330	0	45	169	38	0	252	0	859
2:45PM	51	51	10	0	112 0	35	67	38	0	140 0	13	223	56	3	295	0	46	180	32	0	258	0	805
Hourly Total	193	261	70	0	524 0	163	219	162	0	544 2	72	877	222	16	1187	0	159	639	173	1	972	0	3227
3:00PM	48	70	17	0	135 0	52	65	31	0	148 0	21	212	54	6	293	0	52	182	23	0	257	0	833
3:15PM	57	84	15	0	156 0	40	52	39	0	131 0	20	237	58	3	318	0	45	231	52	0	328	0	933
3:30PM	69	89	23	0	181 0	46	50	44	0	140 0	28	275	63	4	370	0	41	204	40	1	286	0	977
3:45PM	63	95	34	0	192 0	45	57	31	0	133 0	21	270	61	6	358	0	43	225	42	0	310	0	993
Hourly Total	237	338	89	0	664 0	183	224	145	0	552 0	90	994	236	19	1339	0	181	842	157	1	1181	0	3736
4:00PM	67	83	22	0	172 0	46	61	29	0	136 1	25	289	61	3	378	0	29	198	41	2	270	0	95€
4:15PM	64	82	15	0	161 0	51	57	45	0	153 0	19	299	54	10	382	0	46	203	44	0	293	0	989
4:30PM	65	92	21	0	178 0	39	61	32	0	132 0	24	328	68	4	424	0	46	233	46	1	326	0	1060
4:45PM	66	82	7	0	155 0	47	64	27	0	138 0	25	326	72	3	426	0	40	238	33	0	311	0	1030
Hourly Total	262	339	65	0	666 0	183	243	133	0	559 1	93	1242	255	20	1610	0	161	872	164	3	1200	0	4035
5:00PM	65	112	21	0	198 0	52	62	39	0	153 0	26	325	81	7	439	0	41	232	37	1	311	0	1101
5:15PM	72	86	10	0	168 0	51	61	35	0	147 0	18	332	111	3	464	0	43	245	46	0	334	0	1113
5:30PM	78	106	10	0	194 0	51	55	33	0	139 0	12	333	88	6	439	0	46	244	53	0	343	0	1115
5:45PM	77	92	15	0	184 0	58	75	32	0	165 0	21	292	71	4	388	0	49	230	43	1	323	0	1060
Hourly Total	292	396	56	0	744 0	212	253	139	0	604 0	77	1282	351	20	1730	0	179	951	179	2	1311	0	4389
Total	1204	1920	430	0 3	3554 0	1251	1455	863	0	3569 3	453	5646	1477	116	7692	0	1029	5724	1112	7	7872	0	22687
% Approach	33.9%	54.0%	12.1% 09	%		35.1%	40.8%	24.2%	0%		5.9%	73.4%	19.2%	1.5%	-	-	13.1%	72.7%	14.1%	0.1%	-	_	
% Total	5.3%	8.5%	1.9% 09	% 15	5.7% -	5.5%	6.4%	3.8%	0%	15.7% -	2.0%	24.9%	6.5%	0.5%	33.9%	-	4.5%	25.2%	4.9%	0%	34.7%	_	
Lights	1119	1788	412	0 3	3319 -	1193	1313	831	0	3337 -	432	5556	1416	112	7516	-	983	5637	995	7	7622	_	21794
% Lights	92.9%	93.1%	95.8% 09	% 9 3	3.4% -	95.4%	90.2%	96.3%	0%	93.5% -	95.4%	98.4%	95.9%	96.6%	97.7%	-	95.5%	98.5%	89.5%	100%	96.8%		96.1%
Articulated Trucks	47	51	1	0	99 -	34	52	4	0	90 -	8	32	27	0	67	-	14	14	68	0	96		352
% Articulated Trucks	3.9%	2.7%	0.2% 09	% 2	2.8% -	2.7%	3.6%	0.5%	0%	2.5% -	1.8%	0.6%	1.8%	0%	0.9%	-	1.4%	0.2%	6.1%	0%	1.2%		1.6%
Buses and Single-Unit Trucks	38	81	17	0	136 -	24	90	28	0	142 -	13	58	34	4	109	-	32	73	49	0	154	_	541

Leg	FM 2243	3			FM 2243	3				Ronald R	eagan B	lvd			Ronald R	eagan B	lvd			
Direction	Eastbour	nd			Westbou	nd				Northbou	nd				Southbou	ınd				
Time	L	T	R U	App Ped*	L	T	R U	App Pe	d*	L	T	R	U	App Ped*	L	T	R	U	App Ped	* Int
% Buses and Single-Unit Trucks	3.2%	4.2%	4.0% 0%	3.8% -	1.9%	6.2%	3.2% 0%	4.0%	-	2.9%	1.0%	2.3%	3.4%	1.4% -	3.1%	1.3%	4.4%	0%	2.0%	- 2.4%
Pedestrians	-	-		- 0	-	-		-	0	-	-	-	-	- 0	-	-	-	-	-	0
% Pedestrians	-	-			-	-		- ()%	-	-	-	-		-	-	-	-	-	
Bicycles on Crosswalk	-	-		- 0	-	-		-	3	-	-	-	-	- 0	-	-	-	-	-	0
% Bicycles on Crosswalk	-	-			-	-		- 100)%	-	-	-	-		-	-	-	-	-	

^{*}Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

Thu Jan 11, 2024

AM Peak (7:30 AM - 8:30 AM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks, Pedestrians, Bicycles on Crosswalk)

All Movements

ID: 1146774, Location: 30.587027, -97.809558

Leg Direction	FM 2243 Eastbour						FM 2243 Westbou						Ronald I Northbo	_	Blvd				Ronald I Southbo	0	Blvd				
Time	L	T	R	U	App 1	Ped*	L	T	R	U	Арр	Ped*	L	Т	R	U	Арр	Ped*		Т	R	U	Арр	Ped*	Int
2024-01-11 7:30AM	28	75	15	0	118	0	67	82	22	0	171	0	18	155	60	6	239		48	324	59	0	431	0	959
7:45AM	33	78	22	0	133	0	67	63	25	0	155	0	20	162	61	5	248	0	34	318	45	0	397	0	933
8:00AM	26	75	22	0	123	0	68	65	44	0	177	0	12	162	32	6	212	0	45	338	39	0	422	0	934
8:15AM	27	79	20	0	126	0	69	57	45	0	171	0	19	157	51	2	229	0	46	308	57	0	411	0	937
Total	114	307	79	0	500	0	271	267	136	0	674	0	69	636	204	19	928	0	173	1288	200	0	1661	0	3763
% Approach	22.8%	61.4%	15.8%	0%	-	-	40.2%	39.6%	20.2%)%	-	-	7.4%	68.5%	22.0%	2.0%	-	-	10.4%	77.5%	12.0%	0%	-	-	-
% Total	3.0%	8.2%	2.1%	0%	13.3%	-	7.2%	7.1%	3.6% ()%	17.9%	-	1.8%	16.9%	5.4%	0.5%	24.7%	-	4.6%	34.2%	5.3%	0%	44.1%	-	-
PHF	0.864	0.972	0.898	-	0.940	-	0.982	0.814	0.756	-	0.952	-	0.863	0.981	0.836	0.792	0.935	-	0.901	0.953	0.847	-	0.963	-	0.981
Lights	94	283	78	0	455	-	254	246	131	0	631	-	67	614	192	18	891	-	166	1268	184	0	1618	-	3595
% Lights	82.5%	92.2%	98.7%	0% !	91.0%	-	93.7%	92.1%	96.3%)%	93.6%	-	97.1%	96.5%	94.1%	94.7%	96.0%	-	96.0%	98.4%	92.0%	0%	97.4%	-	95.5%
Articulated Trucks	7	9	0	0	16	-	13	12	1	0	26	-	0	7	5	0	12	-	2	2	10	0	14	-	68
% Articulated Trucks	6.1%	2.9%	0%	0%	3.2%	-	4.8%	4.5%	0.7%)%	3.9%	-	0%	1.1%	2.5%	0%	1.3%	-	1.2%	0.2%	5.0%	0%	0.8%	-	1.8%
Buses and Single-Unit Trucks	13	15	1	0	29	-	4	9	4	0	17	-	2	15	7	1	25	-	5	18	6	0	29	-	100
% Buses and Single-Unit Trucks	11.4%	4.9%	1.3%	0%	5.8%	-	1.5%	3.4%	2.9%()%	2.5%	-	2.9%	2.4%	3.4%	5.3%	2.7%	-	2.9%	1.4%	3.0%	0%	1.7%	-	2.7%
Pedestrians	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	
% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bicycles on Crosswalk	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	
% Bicycles on Crosswalk	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

^{*}Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

Thu Jan 11, 2024

Forced Peak (3 PM - 4 PM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks, Pedestrians, Bicycles on Crosswalk)

All Movements

ID: 1146774, Location: 30.587027, -97.809558

Leg	FM 224					FM 2243						Ronald I	_	Blvd				Ronald F	_	Blvd				
Direction	Eastbou					Westbou	na					Northbo						Southbou						<u> </u>
Time	L	T	R	U	App Ped*	L	T	R	U	App	Ped*	L	T	R	U	App	Ped*	L	T	R	U	App	Ped*	Int
2024-01-11 3:00PM	48	70	17	0	135 0	52	65	31	0	148	0	21	212	54	6	293	0	52	182	23	0	257	0	833
3:15PM	57	84	15	0	156 0	40	52	39	0	131	0	20	237	58	3	318	0	45	231	52	0	328	0	933
3:30PM	69	89	23	0	181 0	46	50	44	0	140	0	28	275	63	4	370	0	41	204	40	1	286	0	977
3:45PM	63	95	34	0	192 0	45	57	31	0	133	0	21	270	61	6	358	0	43	225	42	0	310	0	993
Total	237	338	89	0	664 0	183	224	145	0	552	0	90	994	236	19	1339	0	181	842	157	1	1181	0	3736
% Approach	35.7%	50.9%	13.4%	0%		33.2%	40.6%	26.3%	0%	-	-	6.7%	74.2%	17.6%	1.4%	-	-	15.3%	71.3%	13.3%	0.1%	-	-	-
% Total	6.3%	9.0%	2.4%	0%	17.8% -	4.9%	6.0%	3.9%	0%	14.8%	-	2.4%	26.6%	6.3%	0.5%	35.8%	-	4.8%	22.5%	4.2%	0%	31.6%	-	-
PHF	0.859	0.889	0.654	-	0.865 -	0.880	0.862	0.824	-	0.932	-	0.804	0.904	0.937	0.792	0.905	-	0.870	0.911	0.755	0.250	0.900	-	0.941
Lights	216	314	88	0	618 -	169	199	136	0	504	-	85	980	228	18	1311	-	174	826	127	1	1128	-	3561
% Lights	91.1%	92.9%	98.9%	0%	93.1% -	92.3%	88.8%	93.8%	0%	91.3%	-	94.4%	98.6%	96.6%	94.7%	97.9%	-	96.1%	98.1%	80.9%	100%	95.5%	-	95.3%
Articulated Trucks	15	11	0	0	26 -	9	5	2	0	16	-	1	8	4	0	13	-	3	7	15	0	25	_	80
% Articulated Trucks	6.3%	3.3%	0%	0%	3.9% -	4.9%	2.2%	1.4%	0%	2.9%	-	1.1%	0.8%	1.7%	0%	1.0%	-	1.7%	0.8%	9.6%	0%	2.1%	-	2.1%
Buses and Single-Unit Trucks	6	13	1	0	20 -	5	20	7	0	32	-	4	6	4	1	15	-	4	9	15	0	28	-	95
% Buses and Single-Unit Trucks	2.5%	3.8%	1.1%	0%	3.0% -	2.7%	8.9%	4.8%	0%	5.8%	-	4.4%	0.6%	1.7%	5.3%	1.1%	-	2.2%	1.1%	9.6%	0%	2.4%	-	2.5%
Pedestrians	-	-	-	-	- 0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	
% Pedestrians	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bicycles on Crosswalk	-	-	-	-	- 0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	
% Bicycles on Crosswalk	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

^{*}Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

Thu Jan 11, 2024

PM Peak (5 PM - 6 PM) - Overall Peak Hour

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks, Pedestrians, Bicycles on Crosswalk)

All Movements

ID: 1146774, Location: 30.587027, -97.809558

Leg	FM 224	3					FM 2243						Ronald I	Reagan E	Blvd				Ronald F	Reagan E	Blvd				
Direction	Eastbou	nd					Westbou	nd					Northbo	und					Southbo	und					
Time	L	T	R	U	App P	ed*	L	T	R	U	App	Ped*	L	T	R	U	App	Ped*	L	T	R	U	App	Ped*	Int
2024-01-11 5:00PM	65	112	21	0	198	0	52	62	39	0	153	0	26	325	81	7	439	0	41	232	37	1	311	0	1101
5:15PM	72	86	10	0	168	0	51	61	35	0	147	0	18	332	111	3	464	0	43	245	46	0	334	0	1113
5:30PM	78	106	10	0	194	0	51	55	33	0	139	0	12	333	88	6	439	0	46	244	53	0	343	0	1115
5:45PM	77	92	15	0	184	0	58	75	32	0	165	0	21	292	71	4	388	0	49	230	43	1	323	0	1060
Total	292	396	56	0	744	0	212	253	139	0	604	0	77	1282	351	20	1730	0	179	951	179	2	1311	0	4389
% Approach	39.2%	53.2%	7.5%	0%	-	-	35.1%	41.9%	23.0%	0%	-	-	4.5%	74.1%	20.3%	1.2%	-	-	13.7%	72.5%	13.7%	0.2%	-	-	-
% Total	6.7%	9.0%	1.3%	0%	17.0%	-	4.8%	5.8%	3.2%	0%	13.8%	-	1.8%	29.2%	8.0%	0.5%	39.4%	-	4.1%	21.7%	4.1%	0%	29.9%	-	-
PHF	0.936	0.884	0.667	-	0.939	-	0.914	0.843	0.891	-	0.915	-	0.740	0.962	0.791	0.714	0.932	-	0.913	0.970	0.844	0.500	0.956	-	0.984
Lights	286	378	56	0	720	-	209	243	133	0	585	-	73	1273	345	20	1711	-	176	948	171	2	1297	-	4313
% Lights	97.9%	95.5%	100%	0%	96.8%	-	98.6%	96.0%	95.7%	0%	96.9%	-	94.8%	99.3%	98.3%	100%	98.9%	-	98.3%	99.7%	95.5%	100%	98.9%	-	98.3%
Articulated Trucks	6	3	0	0	9	-	1	0	1	0	2	-	0	3	3	0	6	-	2	1	3	0	6	_	23
% Articulated Trucks	2.1%	0.8%	0%	0%	1.2%	-	0.5%	0%	0.7%	0%	0.3%	-	0%	0.2%	0.9%	0%	0.3%	-	1.1%	0.1%	1.7%	0%	0.5%	-	0.5%
Buses and Single-Unit Trucks	0	15	0	0	15	-	2	10	5	0	17	-	4	6	3	0	13	-	1	2	5	0	8	-	53
% Buses and Single-Unit Trucks	0%	3.8%	0%	0%	2.0%	-	0.9%	4.0%	3.6%	0%	2.8%	-	5.2%	0.5%	0.9%	0%	0.8%	-	0.6%	0.2%	2.8%	0%	0.6%	-	1.2%
Pedestrians	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	
% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bicycles on Crosswalk	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	
% Bicycles on Crosswalk	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

^{*}Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

Thu Jan 11, 2024

Full Length (7 AM-9 AM, 2 PM-6 PM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks, Pedestrians, Bicycles on Crosswalk)

All Movements

ID: 1146775, Location: 30.582778, -97.83573

Leg	FM 2243						FM 2						183 NBFR						183 N						
Direction	Eastboun							bound					Northboun						Southl						
Time	L	T		U	App		L	T	R	U	App		L	T	R	U	11	Ped*	L	T	R	U	App	Ped*	
2024-01-11 7:00AM		68	0	0	70	0	0	116	15	0	131	0		55	36	11	122	0	0	0	0	0	0	0	323
7:15AM	_	91	0	0	94	0	0	143	18	0	161	0		58	42	24	156	0	0	0	0	0	0	0	
7:30AM	_	97	0	0	106	0	0	132	22	0	154	0		58	37	33	163	0	0	0	0	0	0	0	423
7:45AM		94	0	0	100	0	0	125	20	0	145	0		84	52	52	236	0	0	0	0	0	0	0	
Hourly Total		350	0	0	370	0	0	516	75	0	591	0		255	167	120	677	0	-	0	0	0	0	0	
8:00AM		83	0	0	90	0	0	138	20	0	158	0		75	65	65	248	0	0	0	0	0	0	0	496
8:15AM	_	68	0	0	72	0	0	117	18	0	135	0		66	42	52	212	0		0	0	0	0	0	
8:30AM	_	90	0	0	92	0	0	107	18	0	125	0		75	39	23	174	0	0	0	0	0	0	0	391
8:45AM		84	0	0	88	0	0	109	27	0	136	0		66	37	21	159	0	0	0	0	0	0	0	
Hourly Total		325	0	0	342	0	0	471	83	0	554	0	_	282	183	161	793	0	0	0	0	0	0	0	1689
2:00PM	1	71	0	0	72	0	0	105	18	0	123	0		95	61	14	218	0	0	0	0	0	0	0	
2:15PM		81	0	0	84	0	0	97	23	0	120	0		109	77	18	256	0	0	0	0	0	0	0	460
2:30PM	_	80	0	0	82	0	0	94	20	0	114	0		117	71	17	251	0	0	0	0	0	0	0	
2:45PM	6	52	0	0	58	0	0	92	22	0	114	0		103	59	25	235	0	0	0	0	0	0	0	
Hourly Total		284	0	0	296	0	0	388	83	0	471	0	194	424	268	74	960	0	0	0	0	0	0	0	
3:00PM		74	0	0	76	0	0	76	20	0	96	0	40	131	72	15	258	0	0	0	0	0	0	0	
3:15PM	3	73	0	0	76	0	0	113	17	0	130	0	56	118	81	21	276	0	0	0	0	0	0	0	482
3:30PM	4	111	0	0	115	0	0	95	21	0	116	0	58	147	109	42	356	0	0	0	0	0	0	0	
3:45PM	18	66	0	0	84	0	0	107	24	0	131	0	57	157	101	69	384	0	0	0	0	0	0	0	599
Hourly Total	. 27	324	0	0	351	0	0	391	82	0	473	0	211	553	363	147	1274	0	0	0	0	0	0	0	2098
4:00PM	8	75	0	0	83	0	0	88	15	0	103	0	77	181	95	39	392	0	0	1	0	0	1	0	579
4:15PM	10	90	0	0	100	0	0	132	24	0	156	0	76	153	106	22	357	0	0	0	0	0	0	0	613
4:30PM	6	102	0	0	108	0	0	103	18	0	121	0	88	153	126	45	412	0	0	0	0	0	0	0	641
4:45PM	13	77	0	0	90	0	0	128	15	0	143	0	93	179	123	32	427	0	0	0	0	0	0	0	660
Hourly Total	. 37	344	0	0	381	0	0	451	72	0	523	0	334	666	450	138	1588	0	0	1	0	0	1	0	2493
5:00PM	5	81	0	0	86	0	0	120	23	0	143	0	107	173	88	19	387	0	0	0	0	0	0	0	616
5:15PM	6	70	0	0	76	0	0	121	13	0	134	0	96	202	93	20	411	0	0	0	0	0	0	0	621
5:30PM	11	78	0	0	89	0	0	114	20	0	134	0	89	198	113	16	416	0	0	0	0	0	0	0	639
5:45PM	4	82	0	0	86	0	0	136	21	0	157	0	108	233	131	25	497	0	0	0	0	0	0	0	740
Hourly Total	. 26	311	0	0	337	0	0	491	77	0	568	0	400	806	425	80	1711	0	0	0	0	0	0	0	2616
Total	139	1938	0	0	2077	0	0	2708	472	0	3180	0	1441	2986	1856	720	7003	0	0	1	0	0	1	0	12261
% Approach	6.7%	93.3%	0% ()%	-	-	0%	85.2%	14.8%	0%	-	-	20.6%	42.6%	26.5%	10.3%	-	-	0%	100%	0%	0%	-	-	-
% Total	1.1%	15.8%	0% ()%	16.9%		0%	22.1%	3.8%	0%	25.9%	-	11.8%	24.4%	15.1%	5.9%	57.1%	-	0%	0%	0%	0%	0%	_	-
Lights	132	1764	0	0	1896		0	2568	353	0	2921		1398	2901	1782	705	6786	-	0	1	0	0	1		11604
% Lights	95.0%	91.0%	0% ()%	91.3%	-	0%	94.8%	74.8%	0%	91.9%	-	97.0%	97.2%	96.0%	97.9%	96.9%	-	0%	100%	0%	0%	100%	-	94.6%
Articulated Trucks	2	84	0	0	86	-	0	42	79	0	121	-	10	24	18	0	52	-	0	0	0	0	0	-	259
% Articulated Trucks	1.4%	4.3%	0% ()%	4.1%	-	0%	1.6%	16.7%	0%	3.8%	-	0.7%	0.8%	1.0%	0%	0.7%	-	0%	0%	0%	0%	0%	-	2.1%
Buses and Single-Unit Trucks	5	90	0	0	95	-	0	98	40	0	138	-	33	61	56	15	165	-	0	0	0	0	0	-	398

Leg		FM 2243						FM 22	243					183 NBFR					183 NI	BFR		
Direct	tion	Eastbound	l					Westb	ound					Northboun	ıd				Southb	ound		
Time		L	T	R	U	App	Ped*	L	T	R	U	App	Ped*	L	T	R	U	App Ped*	L	T R U	App Ped*	Int
	% Buses and Single-Unit Trucks	3.6%	4.6%	0%	0%	4.6%	-	0%	3.6%	8.5%	0%	4.3%	-	2.3%	2.0%	3.0%	2.1%	2.4% -	0%	0% 0% 0%	0%	- 3.2%
	Pedestrians	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	- 0	-		- ()
	% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-			
	Bicycles on Crosswalk	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	- 0	-		- ()
	% Bicycles on Crosswalk	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-		-	

^{*}Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

Thu Jan 11, 2024

AM Peak (7:30 AM - 8:30 AM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks, Pedestrians, Bicycles on Crosswalk)

All Movements

ID: 1146775, Location: 30.582778, -97.83573

Leg Direction	FM 2243 Eastbound	4					FM 2 Westl						183 NBFI Northbou							NBFR 1boun					
Time	Eastbouilt	т	R	U	Δnn	Ped*	vv esti	Т	R	U	Арр			T	R	U	Арр		Joun	Т	R	U	Ann	Ped*	Int
2024-01-11 7:30AM	9	97	0	0	106	1 60	0	132	22	0	154	Λ (1 Eu	35	58	37	33	163	1 60	0	0	0	0	0	0	423
7:45AM	6	94	0	0	100	0	0	125	20	0	145	0	48	84	52	52	236	0	0	0	0	0	0	0	481
8:00AM	7	83	0	0	90	0	0	138	20	0	158	0	43	75	65	65	248	0	0	0	0	0	0	0	496
8:15AM	1	68	0	0	72	0	0	117	18	0	135	0	52	66	42	52	212	0	0	0	$\frac{0}{0}$	0	0	0	419
	4					U	U					U						U	U					U	
Total	26	342	0	0	368	0	0	512	80	0	592	0	178	283	196	202	859	0	0	0	0	0	0	0	1819
% Approach	7.1%	92.9%	0%	0%	-	-	0%	86.5%	13.5%	0%	-	-	20.7%	32.9%	22.8%	23.5%	-	-	0%	0%	0%	0%	-	-	-
% Total	1.4%	18.8%	0%	0%	20.2%	-	0%	28.1%	4.4%	0%	32.5%	-	9.8%	15.6%	10.8%	11.1%	47.2%	-	0%	0%	0%	0%	0%	-	-
PHF	0.722	0.881	-	-	0.868	-	-	0.928	0.909	-	0.937	-	0.856	0.842	0.754	0.777	0.866	-	-	-	-	-	-	-	0.917
Lights	23	305	0	0	328	-	0	491	56	0	547	-	163	259	180	196	798	-	0	0	0	0	0	-	1673
% Lights	88.5%	89.2%	0%	0%	89.1%	-	0%	95.9%	70.0%	0%	92.4%	-	91.6%	91.5%	91.8%	97.0%	92.9%	-	0%	0%	0%	0%	-	-	92.0%
Articulated Trucks	1	18	0	0	19	-	0	10	22	0	32	-	3	10	1	0	14	-	0	0	0	0	0	-	65
% Articulated Trucks	3.8%	5.3%	0%	0%	5.2%	-	0%	2.0%	27.5%	0%	5.4%	-	1.7%	3.5%	0.5%	0%	1.6%	-	0%	0%	0%	0%	-	-	3.6%
Buses and Single-Unit Trucks	2	19	0	0	21	-	0	11	2	0	13	-	12	14	15	6	47	-	0	0	0	0	0	-	81
% Buses and Single-Unit Trucks	7.7%	5.6%	0%	0%	5.7%	-	0%	2.1%	2.5%	0%	2.2%	-	6.7%	4.9%	7.7%	3.0%	5.5%	-	0%	0%	0%	0%	-	-	4.5%
Pedestrians	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	_	-	-	0	
% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-
Bicycles on Crosswalk	-	_	-	-	-	0	-	-	-	-	-	0	-	-	-	-	_	0	-	-		-	-	0	
% Bicycles on Crosswalk	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-

^{*}Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

Thu Jan 11, 2024

Forced Peak (3 PM - 4 PM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks, Pedestrians, Bicycles on Crosswalk)

All Movements

ID: 1146775, Location: 30.582778, -97.83573

Leg	FM 2243						FM 2						183 NBFI							NBFR					
Direction	Eastbound						Westl	oound					Northbou						Sout	ıboun	ıd				
Time	L	T	R	U	App	Ped*	L	T	R	U	App	Ped*	L	T	R	U	App	Ped*	L	T	R	U	App	Ped*	Int
2024-01-11 3:00PM	2	74	0	0	76	0	0	76	20	0	96	0	40	131	72	15	258	0	0	0	0	0	0	0	430
3:15PM	3	73	0	0	76	0	0	113	17	0	130	0	56	118	81	21	276	0	0	0	0	0	0	0	482
3:30PM	4	111	0	0	115	0	0	95	21	0	116	0	58	147	109	42	356	0	0	0	0	0	0	0	587
3:45PM	18	66	0	0	84	0	0	107	24	0	131	0	57	157	101	69	384	0	0	0	0	0	0	0	599
Total	27	324	0	0	351	0	0	391	82	0	473	0	211	553	363	147	1274	0	0	0	0	0	0	0	2098
% Approach	7.7%	92.3%	0%	0%	-	-	0%	82.7%	17.3%	0%	-	-	16.6%	43.4%	28.5%	11.5%	-	-	0%	0%	0%	0%	-	-	-
% Total	1.3%	15.4%	0%	0%	16.7%	-	0%	18.6%	3.9%	0%	22.5%	-	10.1%	26.4%	17.3%	7.0%	60.7%	-	0%	0%	0%	0%	0%	-	-
PHF	0.375	0.730	-	-	0.763	-	-	0.865	0.854	-	0.903	-	0.909	0.881	0.833	0.533	0.829	-	-	-	-	-	-	-	0.876
Lights	26	295	0	0	321	-	0	362	65	0	427	-	208	545	345	145	1243	-	0	0	0	0	0	-	1991
% Lights	96.3%	91.0%	0%	0%	91.5%	-	0%	92.6%	79.3%	0%	90.3%	-	98.6%	98.6%	95.0%	98.6%	97.6%	-	0%	0%	0%	0%	-	-	94.9%
Articulated Trucks	0	18	0	0	18	-	0	7	12	0	19	-	0	1	6	0	7	-	0	0	0	0	0	-	44
% Articulated Trucks	0%	5.6%	0%	0%	5.1%	-	0%	1.8%	14.6%	0%	4.0%	-	0%	0.2%	1.7%	0%	0.5%	-	0%	0%	0%	0%	-	-	2.1%
Buses and Single-Unit Trucks	1	11	0	0	12	-	0	22	5	0	27	-	3	7	12	2	24	-	0	0	0	0	0	-	63
% Buses and Single-Unit Trucks	3.7%	3.4%	0%	0%	3.4%	-	0%	5.6%	6.1%	0%	5.7%	-	1.4%	1.3%	3.3%	1.4%	1.9%	-	0%	0%	0%	0%	-	-	3.0%
Pedestrians	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	
% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bicycles on Crosswalk	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	
% Bicycles on Crosswalk	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

^{*}Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

Thu Jan 11, 2024

PM Peak (5 PM - 6 PM) - Overall Peak Hour

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks, Pedestrians, Bicycles on Crosswalk)

All Movements

ID: 1146775, Location: 30.582778, -97.83573

Leg Direction	FM 2243 Eastbour						FM 2 Westl	243 bound					183 NBFF Northbour						183 N South	NBFR nboun					
Time	L	T	R	U	App	Ped*	L	T	R	U	App	Ped*	L	T	R	U	App	Ped*	L	T	R	U	App	Ped*	ınt
2024-01-11 5:00PM	5	81	0	0	86	0	0	120	23	0	143	0	107	173	88	19	387	0	0	0	0	0	0	0	616
5:15PM	6	70	0	0	76	0	0	121	13	0	134	0	96	202	93	20	411	0	0	0	0	0	0	0	621
5:30PM	11	78	0	0	89	0	0	114	20	0	134	0	89	198	113	16	416	0	0	0	0	0	0	0	639
5:45PM	4	82	0	0	86	0	0	136	21	0	157	0	108	233	131	25	497	0	0	0	0	0	0	0	740
Total	26	311	0	0	337	0	0	491	77	0	568	0	400	806	425	80	1711	0	0	0	0	0	0	0	2616
% Approach	7.7%	92.3%	0%	0%	-	-	0%	86.4%	13.6%	0%	-	-	23.4%	47.1%	24.8%	4.7%	-	-	0%	0%	0%	0%	-	-	-
% Total	1.0%	11.9%	0%	0%	12.9%	-	0%	18.8%	2.9%	0%	21.7%	-	15.3%	30.8%	16.2%	3.1%	65.4%	-	0%	0%	0%	0%	0%	-	-
PHF	0.591	0.948	-	-	0.947	-	-	0.903	0.837	-	0.904	-	0.926	0.865	0.811	0.800	0.861	-	-	-	-	-	-	-	0.884
Lights	26	298	0	0	324	-	0	475	69	0	544	-	392	798	416	80	1686	-	0	0	0	0	0	-	2554
% Lights	100%	95.8%	0%	0%	96.1%	-	0%	96.7%	89.6%	0%	95.8%	-	98.0%	99.0%	97.9%	100%	98.5%	-	0%	0%	0%	0%	-	-	97.6%
Articulated Trucks	0	6	0	0	6	-	0	5	4	0	9	-	0	0	3	0	3	-	0	0	0	0	0	-	18
% Articulated Trucks	0%	1.9%	0%	0%	1.8%	-	0%	1.0%	5.2%	0%	1.6%	-	0%	0%	0.7%	0%	0.2%	-	0%	0%	0%	0%	-	-	0.7%
Buses and Single-Unit Trucks	0	7	0	0	7	-	0	11	4	0	15	-	8	8	6	0	22	-	0	0	0	0	0	-	44
% Buses and Single-Unit Trucks	0%	2.3%	0%	0%	2.1%	-	0%	2.2%	5.2%	0%	2.6%	-	2.0%	1.0%	1.4%	0%	1.3%	-	0%	0%	0%	0%	-	-	1.7%
Pedestrians	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	
% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bicycles on Crosswalk	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	
% Bicycles on Crosswalk	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

^{*}Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

Thu Jan 11, 2024

Full Length (7 AM-9 AM, 2 PM-6 PM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks, Pedestrians, Bicycles on Crosswalk)

All Movements

ID: 1146776, Location: 30.582505, -97.836511

Leg		FM 2	243					FM 2243						183 9	BFR				183 9	SBFR	l.					1
Direction		Eastb	ound					Westbour	nd					Nortl	ıbour	ıd			Sout	hbour	nd					
Гіте		L	T	R	U	App	Ped*	L	T	R	U	App I	Ped*	L	T	R	U	App Peo	*	L	T	R	U	App I	Ped*	Int
	2024-01-11 7:00AM	0	41	38	0	79	0	77	54	0	0	131	0	0	0	0	12	12	0	37	156	6	0	199	0	42
	7:15AM	0	53	59	0	112	0	83	81	0	0	164	0	0	0	0	23	23	0	41	221	5	0	267	0	56
	7:30AM	0	70	57	0	127	0	69	81	0	0	150	0	0	0	0	34	34	0	37	223	6	0	266	0	
	7:45AM	0	61	55	0	116	0	59	89	0	0	148	0	0	0	0	39	39	0	34	220	3	0	257	0	
	Hourly Total	0	225	209	0	434	0	288	305	0	0	593	0	0	0	0	108	108	0	149	820	20	0	989	0	212
	8:00AM	0	58	29	0	87	1	85	90	0	0	175	0	0	0	0	69	69	0	26	203	4	0	233	0	56
	8:15AM	0	42	51	0	93	0	73	94	0	0	167	0	0	0	0	48	48	0	32	189	6	0	227	0	53
	8:30AM	0	56	37	0	93	0	81	74	0	0	155	0	0	0	0	25	25	0	33	184	3	0	220	0	49
	8:45AM	0	49	45	0	94	0	80	69	0	0	149	0	0	0	0	23	23	0	40	182	6	0	228	0	49
	Hourly Total	0	205	162	0	367	1	319	327	0	0	646	0	0	0	0	165	165	0	131	758	19	0	908	0	208
	2:00PM	0	29	20	0	49	0	43	95	0	0	138	0	0	0	0	16	16	0	47	112	4	0	163	0	36
	2:15PM	0	38	27	0	65	0	61	105	0	0	166	0	0	0	0	18	18	0	43	106	7	0	156	0	40
	2:30PM	0	46	28	0	74	0	58	85	0	0	143	0	0	0	0	16	16	0	40	103	9	0	152	0	38
	2:45PM	0	36	23	0	59	0	36	85	0	0	121	0	0	0	0	27	27	0	25	113	6	0	144	0	35
	Hourly Total	0	149	98	0	247	0	198	370	0	0	568	0	0	0	0	77	77	0	155	434	26	0	615	0	150
	3:00PM	0	49	28	0	77	0	42	96	0	0	138	0	0	0	0	13	13	0	21	103	5	0	129	0	35
	3:15PM	0	45	23	0	68	0	53	105	0	0	158	0	0	0	0	19	19	0	38	116	11	0	165	0	41
	3:30PM	0	53	29	0	82	0	64	112	0	0	176	0	0	0	0	31	31	0	53	114	6	0	173	0	46
	3:45PM	0	69	35	0	104	0	53	118	0	0	171	0	0	0	0	79	79	0	24	155	6	0	185	0	53
	Hourly Total	0	216	115	0	331	0	212	431	0	0	643	0	0	0	0	142	142	0	136	488	28	0	652	0	176
	4:00PM	0	60	24	0	84	0	51	122	0	0	173	0	0	0	0	40	40	0	24	127	10	0	161	0	45
	4:15PM	0	65	27	0	92	0	57	141	0	0	198	0	0	0	0	22	22	0	37	130	4	0	171	0	48
	4:30PM	0	65	32	0	97	1	38	144	0	0	182	0	0	0	0	43	43	0	43	167	8	0	218	0	54
	4:45PM	0	57	48	0	105	0	52	165	0	0	217	0	0	0	0	34	34	0	31	141	7	0	179	0	53
	Hourly Total	0	247	131	0	378	1	198	572	0	0	770	0	0	0	0	139	139	0	135	565	29	0	729	0	201
	5:00PM	0	43	28	0	71	0	59	171	0	0	230	0	0	0	0	17	17	0	42	179	2	0	223	0	54
	5:15PM	0	27	10	0	37	0	46	173	0	0	219	0	0	0	0	21	21	0	35	155	3	0	193	0	47
	5:30PM	0	58	47	0	105	0	49	155	0	0	204	0	0	0	0	18	18	0	40	163	8	0	211	0	53
	5:45PM	0	42	25	0	67	0	74	170	0	0	244	0	0	0	0	23	23	0	39	166	5	0	210	0	54
	Hourly Total	0	170	110	0	280	0	228	669	0	0	897	0	0	0	0	79	79	0	156	663	18	0	837	0	209
	Total	0	1212	825	0	2037	2	1443	2674	0	0	4117	0	0	0	0	710	710	0	862	3728	140	0	4730	0	1159
	% Approach	0%	59.5%	40.5%	0%	-	-	35.0%	65.0%	0%	0%	-	-	0%	0%	0%	100%	-	- 18.	.2%	78.8%	3.0%	0%	-	-	
	% Total	0%	10.5%	7.1%	0%	17.6%	-	12.4%	23.1%	0%	0%	35.5%	-	0%	0%	0%	6.1%	6.1%	- 7.	.4%	32.2%	1.2%	0%	40.8%	-	
	Lights	0	1157	809	0	1966	-	1364	2565	0	0	3929	-	0	0	0	696	696	-	734	3600	136	0	4470	-	1106
	% Lights	0%	95.5%	98.1%	0%	96.5%	-	94.5%	95.9%	0%	0%	95.4%	-	0%	0%	0%	98.0%	98.0%	- 85.	.2%	96.6%	97.1%	0%	94.5%	-	95.49
	Articulated Trucks	0	13	4	0	17	-	25	22	0	0	47	-	0	0	0	2	2	-	72	44	0	0	116	-	18
	% Articulated Trucks	0%	1.1%	0.5%	0%	0.8%	-	1.7%	0.8%	0%	0%	1.1%	-	0%	0%	0%	0.3%	0.3%	- 8.	.4%	1.2%	0%	0%	2.5%	-	1.69
Busa	es and Single-Unit Trucks	0	42	12		54	-	54	87	0	0	141	_	0	0	0	12	12	-	56	84	4	0	144	-	35

Leg		FM 22	243					FM 2243						183	SBFR					183 SBFR						
Direct	tion	Eastbo	ound					Westboun	d					Nort	hboun	nd				Southboun	ıd					
Time		L	T	R	U	App	Ped*	L	T	R	U	App	Ped*	L	T	R	U	App	Ped*	L	T	R	U	App	Ped*	Int
	% Buses and Single-Unit Trucks	0%	3.5%	1.5%	0%	2.7%	-	3.7%	3.3%	0%	0%	3.4%	-	0%	0%	0%	1.7%	1.7%	-	6.5%	2.3%	2.9%	0%	3.0%	-	3.0%
	Pedestrians	-	-	-	-	-	1	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	
	% Pedestrians	-	-	-	-	-	50.0%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Bicycles on Crosswalk	-	-	-	-	-	1	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	
	% Bicycles on Crosswalk	-	-	-	-	-	50.0%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

^{*}Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

Thu Jan 11, 2024

Forced Peak (7:30 AM - 8:30 AM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks, Pedestrians, Bicycles on Crosswalk)

All Movements

ID: 1146776, Location: 30.582505, -97.836511

Leg	FM 2						FM 2243	,						SBFR					183 SBFF						
Direction	Eastb						Westboun	d					Nort	hbour					Southbou						
Time	L	T	R	U	App	Ped*	L	T	R	U	App	Ped*	L	T	R	U	App	Ped*	L	T	R	U	App	Ped*	Int
2024-01-11 7:30AM	0	70	57	0	127	0	69	81	0	0	150	0	0	0	0	34	34	0	37	223	6	0	266	0	577
7:45AM	0	61	55	0	116	0	59	89	0	0	148	0	0	0	0	39	39	0	34	220	3	0	257	0	560
8:00AM	0	58	29	0	87	1	85	90	0	0	175	0	0	0	0	69	69	0	26	203	4	0	233	0	564
8:15AM	0	42	51	0	93	0	73	94	0	0	167	0	0	0	0	48	48	0	32	189	6	0	227	0	535
Total	0	231	192	0	423	1	286	354	0	0	640	0	0	0	0	190	190	0	129	835	19	0	983	0	2236
% Approach	0%	54.6%	45.4%	0%	-	-	44.7%	55.3%	0%	0%	-	-	0%	0%	0%	100%	-	-	13.1%	84.9%	1.9%	0%	-	-	-
% Total	0%	10.3%	8.6%	0%	18.9%	-	12.8%	15.8%	0%	0%	28.6%	-	0%	0%	0%	8.5%	8.5%	-	5.8%	37.3%	0.8%	0%	44.0%	-	-
PHF	-	0.825	0.842	-	0.833	-	0.841	0.941	-	-	0.914	-	-	-	-	0.688	0.688	-	0.872	0.936	0.792	-	0.924	-	0.969
Lights	0	214	189	0	403	-	273	332	0	0	605	-	0	0	0	185	185	-	107	810	17	0	934	-	2127
% Lights	0%	92.6%	98.4%	0%	95.3%	-	95.5%	93.8%	0%	0%	94.5%	-	0%	0%	0%	97.4%	97.4%	-	82.9%	97.0%	89.5%	0%	95.0%	-	95.1%
Articulated Trucks	0	3	1	0	4	-	2	6	0	0	8	-	0	0	0	1	1	-	14	10	0	0	24	-	37
% Articulated Trucks	0%	1.3%	0.5%	0%	0.9%	-	0.7%	1.7%	0%	0%	1.3%	-	0%	0%	0%	0.5%	0.5%	-	10.9%	1.2%	0%	0%	2.4%	-	1.7%
Buses and Single-Unit Trucks	0	14	2	0	16	-	11	16	0	0	27	-	0	0	0	4	4	-	8	15	2	0	25	-	72
% Buses and Single-Unit Trucks	0%	6.1%	1.0%	0%	3.8%	-	3.8%	4.5%	0%	0%	4.2%	-	0%	0%	0%	2.1%	2.1%	-	6.2%	1.8%	10.5%	0%	2.5%	-	3.2%
Pedestrians	-	-	-	-	-	1	-	-	-	-		0	-	-	-	-	-	0	-	-	-	-	-	0	
% Pedestrians	-	-	-	-	-	100%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bicycles on Crosswalk	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	
% Bicycles on Crosswalk	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

^{*}Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

Thu Jan 11, 2024

AM Peak (7:15 AM - 8:15 AM) - Overall Peak Hour

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks, Pedestrians, Bicycles on Crosswalk)

All Movements

ID: 1146776, Location: 30.582505, -97.836511

Leg Direction	FM 2 Eastb						FM 2243 Westboun	d						SBFR hbour					183 SBFF Southbou						
Time	Lasto	T	R	U	Арр	Ped*	V estbouii	u T	R	U	Арр	Ped*	I I.	Т	R	U	Арр	Ped*	L	Т	R	U	Ann	Ped*	Int
2024-01-11 7:15AM	0	53	59	0	112	0	83	81	0	0	164	0	0		0	23	23	0	41	221	5		267	0	566
7:30AM	0	70	57	0	127	0	69	81	0	0	150	0	0	0	0	34	34	0	37	223	6		266	0	577
7:45AM	0	61	55	0	116	0	59	89	0	0	148	0	0	0	0	39	39	0	34	220	3	0	257	0	560
8:00AM	0	58	29	0	87	1	85	90	0	0	175	0	0	0	0	69	69	0	26	203	4	0	233	0	564
Total	0	242	200	0	442	1	296	341	0	0	637	0	0	0	0	165	165	0	138	867	18	0	1023	0	2267
% Approach	0%	54.8%	45.2%	0%	-	-	46.5%	53.5%	0%	0%	_	-	0%	0%	0%	100%	-	-	13.5%	84.8%	1.8%	0%	-	-	-
% Total	0%	10.7%	8.8%	0%	19.5%	-	13.1%	15.0%	0%	0%	28.1%	-	0%	0%	0%	7.3%	7.3%	-	6.1%	38.2%	0.8%	0%	45.1%	-	-
PHF	-	0.864	0.847	-	0.870	-	0.871	0.947	-	-	0.910	-	-	-	-	0.598	0.598	-	0.841	0.972	0.750	-	0.958	-	0.982
Lights	0	225	199	0	424	-	283	316	0	0	599	-	0	0	0	161	161	-	119	845	17	0	981	-	2165
% Lights	0%	93.0%	99.5%	0%	95.9%	-	95.6%	92.7%	0%	0%	94.0%	-	0%	0%	0%	97.6%	97.6%	-	86.2%	97.5%	94.4%	0%	95.9%	-	95.5%
Articulated Trucks	0	2	0	0	2	-	2	8	0	0	10	-	0	0	0	1	1	-	12	11	0	0	23	-	36
% Articulated Trucks	0%	0.8%	0%	0%	0.5%	-	0.7%	2.3%	0%	0%	1.6%	-	0%	0%	0%	0.6%	0.6%	-	8.7%	1.3%	0%	0%	2.2%	-	1.6%
Buses and Single-Unit Trucks	0	15	1	0	16	-	11	17	0	0	28	-	0	0	0	3	3	-	7	11	1	0	19	-	66
% Buses and Single-Unit Trucks	0%	6.2%	0.5%	0%	3.6%	-	3.7%	5.0%	0%	0%	4.4%	-	0%	0%	0%	1.8%	1.8%	-	5.1%	1.3%	5.6%	0%	1.9%	-	2.9%
Pedestrians	-	-	-	-	-	1	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	
% Pedestrians	-	-	-	-	-	100%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bicycles on Crosswalk	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-		-	0	-	-	-	-	-	0	
% Bicycles on Crosswalk	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

^{*}Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

Thu Jan 11, 2024

Forced Peak (3 PM - 4 PM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks, Pedestrians, Bicycles on Crosswalk)

All Movements

ID: 1146776, Location: 30.582505, -97.836511

Leg	FM 2	243					FM 2243						183	SBFR					183 SBFR	1					
Direction	Eastb	ound					Westboun	d					Nort	hboun	ıd				Southbour	nd					
Time	L	T	R	U	App	Ped*	L	T	R	U	Арр	Ped*	L	T	R	U	Арр	Ped*	L	T	R	U	Арр	Ped*	Int
2024-01-11 3:00PM	0	49	28	0	77	0	42	96	0	0	138	0	0	0	0	13	13	0	21	103	5	0	129	0	357
3:15PM	0	45	23	0	68	0	53	105	0	0	158	0	0	0	0	19	19	0	38	116	11	0	165	0	410
3:30PM	0	53	29	0	82	0	64	112	0	0	176	0	0	0	0	31	31	0	53	114	6	0	173	0	462
3:45PM	0	69	35	0	104	0	53	118	0	0	171	0	0	0	0	79	79	0	24	155	6	0	185	0	539
Total	0	216	115	0	331	0	212	431	0	0	643	0	0	0	0	142	142	0	136	488	28	0	652	0	1768
% Approach	0%	65.3%	34.7%	0%	-	-	33.0%	67.0%	0%	0%	-	-	0%	0%	0%	100%	-	-	20.9%	74.8%	4.3%	0%	-	-	-
% Total	0%	12.2%	6.5%	0%	18.7%	-	12.0%	24.4%	0%	0%	36.4%	-	0%	0%	0%	8.0%	8.0%	-	7.7%	27.6%	1.6%	0%	36.9%	-	-
PHF	-	0.783	0.821	-	0.796	-	0.828	0.913	-	-	0.913	-	-	-	-	0.449	0.449	-	0.642	0.787	0.636	-	0.881	-	0.820
Lights	0	210	110	0	320	-	195	414	0	0	609	-	0	0	0	140	140	-	112	474	26	0	612	-	1681
% Lights	0%	97.2%	95.7%	0%	96.7%	-	92.0%	96.1%	0%	0%	94.7%	-	0%	0%	0%	98.6%	98.6%	-	82.4%	97.1%	92.9%	0%	93.9%	-	95.1%
Articulated Trucks	0	1	0	0	1	-	7	1	0	0	8	-	0	0	0	0	0	-	18	4	0	0	22	-	31
% Articulated Trucks	0%	0.5%	0%	0%	0.3%	-	3.3%	0.2%	0%	0%	1.2%	-	0%	0%	0%	0%	0%	-	13.2%	0.8%	0%	0%	3.4%	-	1.8%
Buses and Single-Unit Trucks	0	5	5	0	10	-	10	16	0	0	26	-	0	0	0	2	2	-	6	10	2	0	18	-	56
% Buses and Single-Unit Trucks	0%	2.3%	4.3%	0%	3.0%	-	4.7%	3.7%	0%	0%	4.0%	-	0%	0%	0%	1.4%	1.4%	-	4.4%	2.0%	7.1%	0%	2.8%	-	3.2%
Pedestrians	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	
% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bicycles on Crosswalk	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	
% Bicycles on Crosswalk	-	-	-	-		-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-

^{*}Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

Thu Jan 11, 2024

Forced Peak (5 PM - 6 PM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks, Pedestrians, Bicycles on Crosswalk)

All Movements

ID: 1146776, Location: 30.582505, -97.836511

Leg Direction	FM 2 Eastb						FM 2243 Westboun	d					183 S North						183 SBFR Southbour						
Time	L	T	R	U	Арр	Ped*	L	T	R	U	Арр	Ped*	L	T	R	U	Арр	Ped*	L	Т	R	U	Арр	Ped*	Int
2024-01-11 5:00PM	0	43	28	0	71	0	59	171	0	0	230	0	0	0	0	17	17	0	42	179	2	0	223	0	541
5:15PM	0	27	10	0	37	0	46	173	0	0	219	0	0	0	0	21	21	0	35	155	3	0	193	0	470
5:30PM	0	58	47	0	105	0	49	155	0	0	204	0	0	0	0	18	18	0	40	163	8	0	211	0	538
5:45PM	0	42	25	0	67	0	74	170	0	0	244	0	0	0	0	23	23	0	39	166	5	0	210	0	544
Total	0	170	110	0	280	0	228	669	0	0	897	0	0	0	0	79	79	0	156	663	18	0	837	0	2093
% Approach	0%	60.7%	39.3%	0%	-	-	25.4%	74.6%	0%	0%	-	-	0%	0%	0%	100%	-	-	18.6%	79.2%	2.2%	0%	-	-	-
% Total	0%	8.1%	5.3%	0%	13.4%	-	10.9%	32.0%	0%	0%	42.9%	-	0%	0%	0%	3.8%	3.8%	-	7.5%	31.7%	0.9%	0%	40.0%	-	-
PHF	' -	0.733	0.585	-	0.667	-	0.770	0.967	-	-	0.919	-	-	-	-	0.859	0.859	-	0.929	0.926	0.563	-	0.938	-	0.962
Lights	0	164	109	0	273	-	220	653	0	0	873	-	0	0	0	79	79	-	145	650	18	0	813	-	2038
% Lights	0%	96.5%	99.1%	0%	97.5%	-	96.5%	97.6%	0%	0%	97.3%	-	0%	0%	0%	100%	100%	-	92.9%	98.0%	100%	0%	97.1%		97.4%
Articulated Trucks	0	3	0	0	3	-	5	0	0	0	5	-	0	0	0	0	0	-	3	0	0	0	3		11
% Articulated Trucks	0%	1.8%	0%	0%	1.1%	-	2.2%	0%	0%	0%	0.6%	-	0%	0%	0%	0%	0%	-	1.9%	0%	0%	0%	0.4%	-	0.5%
Buses and Single-Unit Trucks	0	3	1	0	4	-	3	16	0	0	19	-	0	0	0	0	0	-	8	13	0	0	21	-	44
% Buses and Single-Unit Trucks	0%	1.8%	0.9%	0%	1.4%	-	1.3%	2.4%	0%	0%	2.1%	-	0%	0%	0%	0%	0%	-	5.1%	2.0%	0%	0%	2.5%	-	2.1%
Pedestrians	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	
% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bicycles on Crosswalk	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	
% Bicycles on Crosswalk	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

^{*}Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

1. RM 2243 - ATR

Wed May 8, 2024 Full Length (12 AM-12 AM (+1)) All Classes (Vehicles)

All Channels

ID: 1184029, Location: 30.581868, -97.824586

Leg	West		East		
Direction	Eastbound		Westbound		
Time	T	Арр		Арр	Int
2024-05-08 12:00.	M 7	7		9	16
12:15.		9	7	7	16
12:30	AM 4	4	5	5	9
12:45.	AM 6	6	7	7	13
Hourly T	otal 26	26	28	28	54
1:00	AM 6	6	8	8	14
1:15	AM 6	6	2	2	8
1:30.	AM 5	5	2	2	7
1:45.	AM 2	2	3	3	5
Hourly T	otal 19	19	15	15	34
2:00	AM 4	4	0	0	4
2:15.	AM 5	5	2	2	7
2:30.	AM 8	8	6	6	14
2:45.	M 5	5	8	8	13
Hourly T	otal 22	22	16	16	38
3:00	AM 5	5	8	8	13
3:15.	AM 5	5	4	4	9
3:30	AM 10	10	4	4	14
3:45	AM 12	12	11	11	23
Hourly T	otal 32	32	27	27	59
4:00		12	6	6	18
4:15.	AM 12	12	11	11	23
4:30.	AM 14	14	19	19	33
4:45.	AM 22	22	21	21	43
Hourly T	otal 60	60	57	57	117
5:00.		30	27	27	57
5:15.	AM 32	32	43	43	75
5:30.	AM 45	45	54	54	99
5:45.	AM 50	50	66	66	116
Hourly T	otal 157	157	190	190	347
6:00	AM 69	69		73	142
6:15	AM 72	72	94	94	166
6:30		97	143	143	240
6:45	AM 102	102	154	154	256
Hourly T	otal 340	340	464	464	804
7:00	AM 105	105	155	155	260
7:15	AM 133	133	123	123	256
7:30	AM 124	124	128	128	252

Leg	West	East	
Direction	Eastbound	Westbound	
Time	Т Арр	T App	Int
7:45AN			
Hourly Tota	1 506 50 6	515 515	
8:00AN	f 115 115	136 136	251
8:15AN	1 127 127	7 131 131	258
8:30AM	110 110	114 114	
8:45AM	1 107 107	7 123 123	
Hourly Total	l 459 459	504 504	
9:00AN	1 102 102		
9:15AM			
9:30AN	<u> </u>		
9:45AM	1	<u> </u>	
Hourly Total		480	
10:00AN			
10:15AM			
10:30AN	1	<u> </u>	
10:45AN			
Hourly Tota			
11:00AN	<u> </u>		
11:15AM			
11:30AN			
11:45AM			
Hourly Tota			
12:00PN	<u> </u>	1	
12:15PN	1	<u> </u>	
12:30PM		<u> </u>	
12:45PN			
Hourly Tota			
1:00PN			
1:15PM			
1:30PM			
1:45PN			
Hourly Tota			
2:00PN			
2:15PN			
2:30PM			
2:45PM			
Hourly Total			
3:00PM			
3:15PM			
3:30PM			
3:45PM	1		
Hourly Tota			
4:00PM			
4:15PN			288
4:30PM	1 163 163	129 129	292

	West		East		
Direction	Eastbound		Westbound		
Time	Т	Арр	T	Арр	
4:45PM	140	140	119	119	259
Hourly Total	601	601	527	527	1128
5:00PM	185	185	115	115	300
5:15PM	202	202	125	125	327
5:30PM	151	151	124	124	275
5:45PM	126	126	162	162	288
Hourly Total	664	664	526	526	1190
6:00PM	107	107	148	148	255
6:15PM	103	103	120	120	223
6:30PM	131	131	122	122	253
6:45PM	108	108	117	117	225
Hourly Total	449	449	507	507	956
7:00PM	124	124	69	69	193
7:15PM	103	103	82	82	185
7:30PM	65	65	84	84	149
7:45PM	94	94	72	72	166
Hourly Total	386	386	307	307	693
8:00PM	91	91	78	78	169
8:15PM	69	69	81	81	150
8:30PM	82	82	60	60	142
8:45PM	78	78	58	58	136
Hourly Total	320	320	277	277	597
9:00PM	64	64	62	62	126
9:15PM	60	60	60	60	120
9:30PM	37	37	39	39	76
9:45PM	32	32	33	33	65
Hourly Total	193	193	194	194	387
10:00PM	42	42	44	44	86
10:15PM	27	27	30	30	57
10:30PM	23	23	25	25	48
10:45PM	11	11	18	18	29
Hourly Total	103	103	117	117	220
11:00PM	7	7	14	14	21
11:15PM	12	12	21	21	33
11:30PM	10	10	18	18	33 28 19
11:45PM	8	8	_	11	
Hourly Total	37	37	64	64	101
Total	7744	7744	7512	7512	15256
% Approach		-	100%	-	-
% Total	50.8%	50.8%	49.2%	49.2%	-
Vehicles		7744	7512	7512	15256
% Vehicles	100%	100%	100%	100%	100%

^{*}T: Thru

Traffic Impact Analysis

Appendix E | Trip Generation Calculations

Charter School (K-12)

(538)

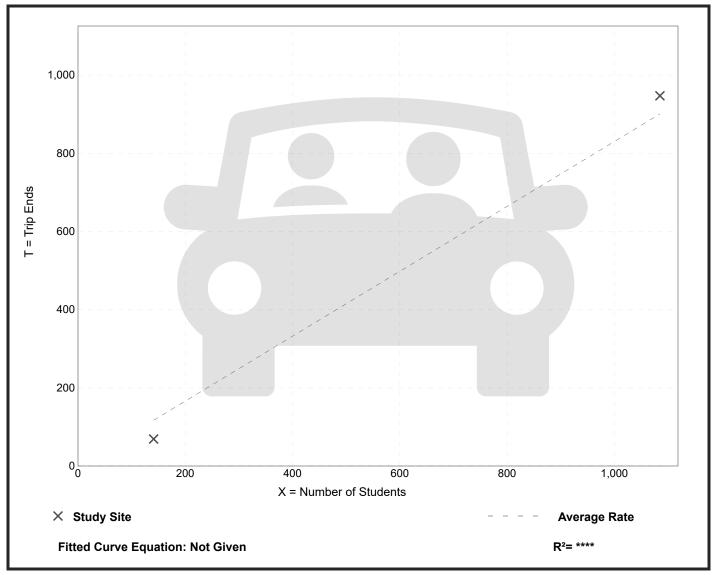
Vehicle Trip Ends vs: Students

On a: Weekday,

Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 2 Avg. Num. of Students: 613


Directional Distribution: 51% entering, 49% exiting

Vehicle Trip Generation per Student

Average Rate	Range of Rates	Standard Deviation
0.83	0.49 - 0.87	*

Data Plot and Equation

Caution - Small Sample Size

Charter School (K-12)

(538)

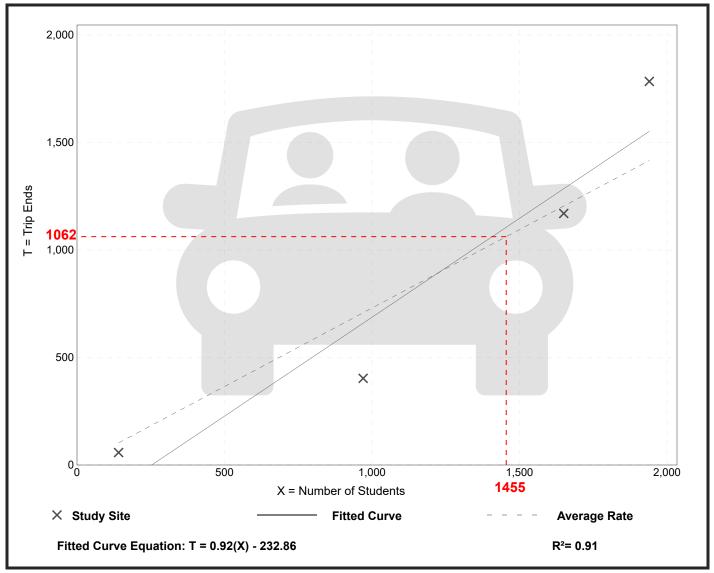
Vehicle Trip Ends vs: Students

On a: Weekday,

PM Peak Hour of Generator

Setting/Location: General Urban/Suburban

Number of Studies: 4 Avg. Num. of Students: 1175


Directional Distribution: 50% entering, 50% exiting

Vehicle Trip Generation per Student

Average Rate	Range of Rates	Standard Deviation
0.73	0.41 - 0.92	0.23

Data Plot and Equation

Caution - Small Sample Size

Strip Retail Plaza (<40k)

(822)

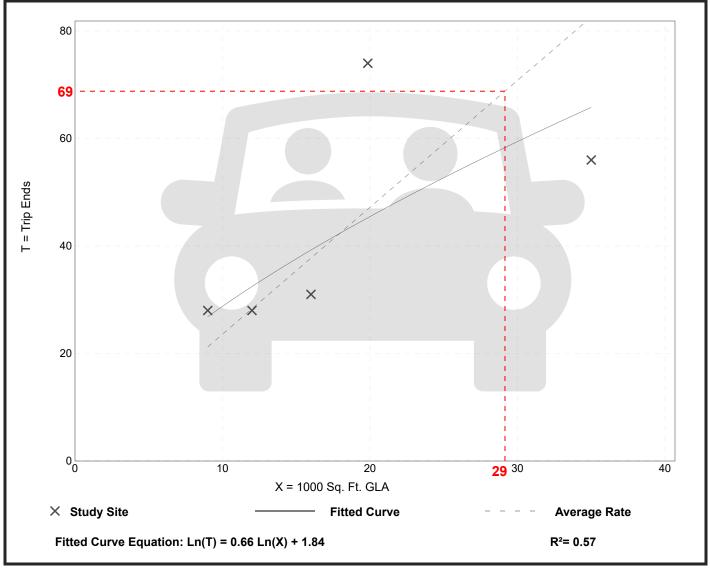
Vehicle Trip Ends vs: 1000 Sq. Ft. GLA

On a: Weekday,

Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 5 Avg. 1000 Sq. Ft. GLA: 18


Directional Distribution: 60% entering, 40% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GLA

Average Rate	Range of Rates	Standard Deviation
2.36	1.60 - 3.73	0.94

Data Plot and Equation

Caution - Small Sample Size

Strip Retail Plaza (<40k)

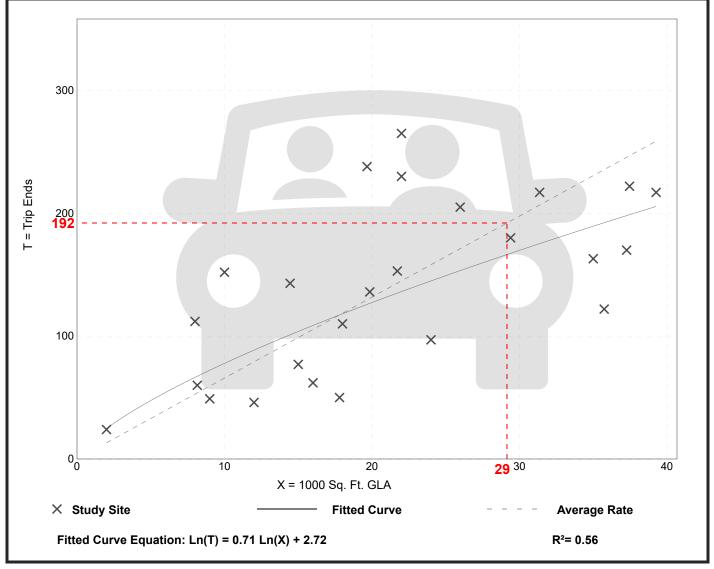
(822)

Vehicle Trip Ends vs: 1000 Sq. Ft. GLA

On a: Weekday,

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban


Number of Studies: 25 Avg. 1000 Sq. Ft. GLA: 21

Directional Distribution: 50% entering, 50% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GLA

Average Rate	Range of Rates	Standard Deviation
6.59	2.81 - 15.20	2.94

Data Plot and Equation

*PM peak hour of generator for Land Use Code 538 and the PM peak hour of adjacent street traffic differ. The school dismissal peak hour is from 3pm-4pm where the PM peak hour of adjacent street traffic occurs between 4pm-6pm.

**ITE Trip Generation Manual does not provide ADT for Land Use Code 538.

The ITE Time of Day Distributions Appendix (attached on next page) was used to estimate both the PM peak hour of adjacent street traffic and the ADT for Land Use Code 538.

LUC 538 ITE Trip Generation

- AM peak hour of adj street = 1,208 veh (based on ITE trip generation)
- PM peak hour of generator = 1,062 veh (based on ITE trip generation)

* LUC 538 PM peak hour of adjacent street traffic

- PM peak hour of adj street traffic = PM peak hour of generator * (4-5PM% / 3-4PM%)
- PM peak hour of adj street traffic = 1,062 veh * (11.6% / 19.7%)
- PM peak hour of adj street traffic = 625 veh

**LUC 538 ADT

- ADT = AM peak hour of adj street / (7-8AM%)
- ADT = 1,208 veh / 30.8%
- ADT = 3,922 veh

Hourly Distribution of Enterin	g and Exiting	Vehicle Trips by	Land Use		
Source: ITE <i>Trip Gei</i>					
Land Use Code		538			
Land Use	(Charter School (K-1	2)		
Setting		eneral Urban/Subur	•		
Time Period		Weekday			
# Data Sites		2			
	% (of 24-Hour Vehicle	 Trips		
Time	Total	Entering	Exiting		
12:00 - 1:00 AM	0.0%	0.0%	0.0%		
1:00 - 2:00 AM	0.0%	0.0%	0.0%		
2:00 - 3:00 AM	0.0%	0.0%	0.0%		
3:00 - 4:00 AM	0.1%	0.1%	0.1%		
4:00 - 5:00 AM	0.0%	0.0%	0.0%		
5:00 - 6:00 AM	0.0%	0.0%	0.0%		
6:00 - 7:00 AM	2.2%	4.2%	0.1%		
7:00 - 8:00 AM	30.8% 38.2% 23.3				
8:00 - 9:00 AM	14.8% 13.8% 15.8				
9:00 - 10:00 AM	1.2%	1.2%	1.3%		
10:00 - 11:00 AM	2.1%	2.7%	1.5%		
11:00 - 12:00 PM	2.5%	2.2%	2.8%		
12:00 - 1:00 PM	2.9%	2.6%	3.2%		
1:00 - 2:00 PM	1.4%	1.4%	1.5%		
2:00 - 3:00 PM	5.8%	8.8%	2.8%		
3:00 - 4:00 PM	<mark>19.7%</mark>	12.4%	26.9%		
4:00 - 5:00 PM	<mark>11.6%</mark>	8.2%	14.9%		
5:00 - 6:00 PM	2.7%	2.3%	3.2%		
6:00 - 7:00 PM	1.8%	1.7%	2.0%		
7:00 - 8:00 PM	0.3%	0.2%	0.3%		
8:00 - 9:00 PM	0.2%	0.0%	0.3%		
9:00 - 10:00 PM	0.0%	0.0%	0.0%		
10:00 - 11:00 PM	0.0%	0.0%	0.0%		
11:00 - 12:00 AM	0.0%	0.0%	0.0%		

Traffic Impact Analysis

Appendix F | Traffic Signal Warrant Analysis

		c Volumes	Counted		
Start Time Through Through Left 7:00 AM 65% 0% 7:15 AM 65% 0% 7:30 AM 65% 0% 7:45 AM 65% 0% 8:00 AM 65% 0% 8:15 AM 65% 0% 8:30 AM 65% 0% 8:45 AM 65% 0% 9:00 AM 65% 15% 9:15 AM 65% 15% 9:30 AM 65% 15% 9:34 AM 65% 15% 9:45 AM 65% 15% 10:00 AM 65% 15% 10:30 AM 65% 15% 10:30 AM 65% 15% 11:00 AM 65% 15% 11:30 AM 65% 15% 11:30 AM 65% 15% 12:200 PM 65% 15% 12:30 PM 65% 15% 12:30 PM 65% 15% 1:50 PM <th>Site Driveway</th> <th>2243 Western Si</th> <th>2243</th> <th>Leg</th>	Site Driveway	2243 Western Si	2243	Leg	
7:00 AM 65% 0% 0% 7:15 AM 65% 0% 0% 7:30 AM 65% 0% 0% 8:00 AM 65% 0% 0% 8:15 AM 65% 0% 8:45 AM 65% 0% 9:00 AM 65% 15% 9:45 AM 65% 15% 15% 15% 10:00 AM 65% 15% 15% 10:00 AM 65% 15% 15% 11:15 AM 65% 15% 15% 15% 15% 15% 15% 15% 15% 15% 1	uthbound	bound South	bound	Direction	
7:00 AM 65% 0% 0% 7:15 AM 65% 0% 0% 7:30 AM 65% 0% 0% 8:00 AM 65% 0% 0% 8:15 AM 65% 0% 8:45 AM 65% 0% 9:00 AM 65% 15% 9:45 AM 65% 15% 15% 15% 10:00 AM 65% 15% 15% 10:00 AM 65% 15% 15% 11:15 AM 65% 15% 15% 15% 15% 15% 15% 15% 15% 15% 1	Right	ough Left	ough	Start Time	
7:15 AM 65% 0% 7:30 AM 65% 0% 8:00 AM 65% 0% 8:15 AM 65% 0% 8:30 AM 65% 0% 8:45 AM 65% 0% 9:10 AM 65% 15% 9:15 AM 65% 15% 9:30 AM 65% 15% 9:45 AM 65% 15% 10:15 AM 65% 15% 10:30 AM 65% 15% 11:30 AM 65% 15% 11:45 AM 65% 15% 11:30 AM 65% 15% 11:45 AM 65% 15% 11:45 AM 65% 15% 12:45 PM 65% 15% 11:30 PM 65% 15% 11:45 PM 65% 15% 11:30 PM 65% 15% 11:45 PM 65% 15%	50%	0	U		
7:30 AM 65% 0% 8:00 AM 65% 0% 8:15 AM 65% 0% 8:315 AM 65% 0% 8:320 AM 65% 0% 9:00 AM 65% 15% 9:30 AM 65% 15% 9:30 AM 65% 15% 10:00 AM 65% 15% 10:15 AM 65% 15% 10:30 AM 65% 15% 10:45 AM 65% 15% 11:45 AM 65% 15% 11:45 AM 65% 15% 12:30 PM 65% 15% 12:30 PM 65% 15% 11:45 PM 65% 15% 11:50 PM 65% 15% 15:50 PM 65% 15%	50%				
7:45 AM 65% 8:00 AM 65% 8:015 AM 65% 8:15 AM 65% 8:30 AM 65% 8:34 AM 65% 9:00 AM 65% 9:00 AM 65% 9:15 AM 65% 9:15 AM 65% 9:30 AM 65% 9:30 AM 65% 9:45 AM 65% 15% 15% 15% 10:00 AM 65% 15% 15% 10:15 AM 65% 15% 15% 10:15 AM 65% 15% 15% 10:15 AM 65% 15% 15% 11:00 AM 65% 15% 15% 15% 11:45 AM 65% 15% 15% 15% 15% 15% 15% 15% 15% 15% 1	50%		_		
8:00 AM 65% 0% 8:15 AM 65% 0% 8:30 AM 65% 0% 8:45 AM 65% 0% 9:00 AM 65% 15% 9:15 AM 65% 15% 9:30 AM 65% 15% 10:00 AM 65% 15% 10:15 AM 65% 15% 10:15 AM 65% 15% 10:15 AM 65% 15% 10:15 AM 65% 15% 11:15 AM 65% 15% 11:30 AM 65% 15% 11:30 AM 65% 15% 11:30 AM 65% 15% 11:30 AM 65% 15% 11:45 AM 65% 15% 12:30 PM 65% 15% 12:45 PM 65% 15% 1:30 PM 65% 15% 1:30 PM 65% 15% 1:30 PM 65% 15% 1:30 PM 65% 15% 1:45 PM 65% 15% 1:50 PM 65% 15%	50%				
8:15 AM 65% 0% 8:30 AM 65% 0% 8:45 AM 65% 0% 9:00 AM 65% 15% 9:15 AM 65% 15% 9:30 AM 65% 15% 10:00 AM 65% 15% 10:15 AM 65% 15% 10:15 AM 65% 15% 10:30 AM 65% 15% 11:30 AM 65% 15% 11:45 AM 65% 15% 11:45 AM 65% 15% 12:45 PM 65% 15% 1:30 PM 65% 15% 1:30 PM 65% 15% 1:30 PM 65% 15% 1:30 PM 65% 15% 1:45 PM 65% 15% 1:50 PM 65% 15%	50%				
8:30 AM 65% 0% 8:45 AM 65% 9:00 AM 65% 9:15 AM 65% 9:30 AM 65% 9:30 AM 65% 9:45 AM 65% 15% 15% 10:00 AM 65% 15% 10:15 AM 65% 10:15 AM 65% 15% 10:15 AM 65% 15% 15% 10:15 AM 65% 15% 15% 10:15 AM 65% 15% 15% 10:45 AM 65% 15% 15% 11:00 AM 65% 15% 15% 11:00 AM 65% 15% 15% 11:00 AM 65% 15% 15% 12:00 PM 65% 15% 15% 12:30 PM 65% 15% 15% 15% 12:45 PM 65% 15% 15% 15% 15% 15% 15% 15% 15% 15% 1	50%				
8:45 AM 65% 15% 15% 9:00 AM 65% 9:15 AM 65% 9:15 AM 65% 9:30 AM 65% 9:45 AM 65% 15% 15% 15% 10:00 AM 65% 15% 10:15 AM 65% 10:15 AM 65% 15% 10:15 AM 65% 15% 10:30 AM 65% 15% 15% 11:15 AM 65% 15% 11:15 AM 65% 15% 11:15 AM 65% 15% 15% 11:20 AM 65% 15% 15% 12:00 PM 65% 15% 12:45 PM 65% 15% 15% 15% 130 PM 65% 15% 15% 15% 155 PM 65% 155% 15% 15% 15% 15% 15% 15% 15% 15%	50%				
9:00 AM 65% 15% 9:15 AM 65% 9:30 AM 65% 15% 9:45 AM 65% 15% 15% 10:00 AM 65% 15% 10:15 AM 65% 10:15 AM 65% 15% 10:15 AM 65% 15% 10:30 AM 65% 15% 15% 10:45 AM 65% 15% 11:10 AM 65% 15% 11:15 AM 65% 15% 11:15 AM 65% 15% 15% 11:20 AM 65% 15% 15% 12:00 PM 65% 15% 12:45 PM 65% 15% 12:45 PM 65% 15% 15% 15% 15% 15 PM 65% 15% 15% 15% 15% 15 PM 65% 15% 15% 15% 15% 15% 15% 15% 15% 15% 1	50%				
9:15 AM 65% 15% 9:30 AM 65% 15% 9:45 AM 65% 15% 15% 10:00 AM 65% 15% 10:15 AM 65% 15% 10:30 AM 65% 15% 10:45 AM 65% 15% 11:00 AM 65% 15% 15% 11:15 AM 65% 15% 15% 12:00 PM 65% 15% 12:15 PM 65% 12:30 PM 65% 15% 15% 130 PM 65% 15% 15% 12:45 PM 65% 15% 15% 12:45 PM 65% 15% 15% 15% 12:45 PM 65% 15% 15% 15% 15% 15% 15% 15% 15% 15% 1	35%				
9:30 AM 65% 15% 15% 15% 10:00 AM 65% 15% 15% 10:15 AM 65% 15% 10:15 AM 65% 15% 15% 10:30 AM 65% 15% 15% 11:00 AM 65% 15% 11:00 AM 65% 15% 11:00 AM 65% 15% 11:00 AM 65% 15% 11:15 AM 65% 15% 15% 11:25 AM 65% 15% 15% 12:00 PM 65% 15% 12:30 PM 65% 15% 15% 130 PM 65% 15% 15% 130 PM 65% 15% 15% 12:45 PM 65% 15% 15% 12:45 PM 65% 15% 15% 15% 12:45 PM 65% 15% 15% 15% 15% 15% 15% 15% 15% 15% 1	35%				
9:45 AM 65% 15% 15% 10:00 AM 65% 15% 15% 10:15 AM 65% 15% 15% 10:45 AM 65% 15% 15% 11:00 AM 65% 15% 15% 11:00 AM 65% 15% 15% 11:00 AM 65% 15% 15% 11:45 AM 65% 15% 15% 12:00 PM 65% 15% 12:45 PM 65% 15% 15% 11:45 PM 65% 15% 15% 12:45 PM 65% 15% 15% 15% 15 PM 65% 15% 15% 15% 15 PM 65% 15% 15% 15% 15% 15 PM 65% 15% 15% 15% 15% 15% 15% 15% 15% 15% 1					
10:00 AM 65% 15% 15% 10:15 AM 65% 15% 10:30 AM 65% 15% 15% 10:45 AM 65% 15% 11:00 AM 65% 11:10 AM 65% 15% 11:15 AM 65% 15% 11:30 AM 65% 15% 15% 11:30 AM 65% 15% 15% 12:45 PM 65% 15% 12:45 PM 65% 15% 12:45 PM 65% 15% 12:45 PM 65% 15% 15% 12:45 PM 65% 15% 15% 15% 15% 15% 15 PM 65% 15% 15% 15% 15% 15 PM 65% 15% 15% 15% 15 PM 65% 15% 15% 15% 15 PM 65% 15% 15% 15% 15% 15 PM 65% 15% 15% 15% 15% 15% 15% 15% 15% 15% 1	35%				
10:15 AM 65% 15% 10:30 AM 65% 15% 10:45 AM 65% 15% 11:00 AM 65% 15% 11:15 AM 65% 15% 11:30 AM 65% 15% 11:45 AM 65% 15% 12:00 PM 65% 15% 12:15 PM 65% 15% 12:30 PM 65% 15% 1:00 PM 65% 15% 1:30 PM 65% 15% 1:30 PM 65% 15% 1:45 PM 65% 15% 2:00 PM 65% 15% 2:15 PM 65% 15% 2:30 PM 65% 15% 2:45 PM 65% 15% 3:30 PM 65% 0% 3:15 PM 65% 0% 3:30 PM 65% 0% 4:30 PM 65% 0% 4:30 PM 65% 0% 4:45 PM 65% 0% 5:30 PM 65% 0% 5:30 PM	35%				
10:30 AM 65% 15% 10:45 AM 65% 15% 11:00 AM 65% 15% 11:15 AM 65% 15% 11:30 AM 65% 15% 11:45 AM 65% 15% 12:00 PM 65% 15% 12:15 PM 65% 15% 12:30 PM 65% 15% 12:45 PM 65% 15% 1:00 PM 65% 15% 1:30 PM 65% 15% 1:30 PM 65% 15% 1:45 PM 65% 15% 2:00 PM 65% 15% 2:15 PM 65% 15% 2:30 PM 65% 15% 2:45 PM 65% 15% 3:30 PM 65% 0% 3:30 PM 65% 0% 3:45 PM 65% 0% 4:30 PM 65% 0% 4:30 PM 65% 0% 4:45 PM 65% 0% 5:30 PM 65% 15% 5:30 PM <td>35%</td> <td></td> <td></td> <td></td>	35%				
10:45 AM 65% 15% 11:00 AM 65% 15% 11:15 AM 65% 15% 11:30 AM 65% 15% 11:45 AM 65% 15% 12:00 PM 65% 15% 12:15 PM 65% 15% 12:30 PM 65% 15% 12:45 PM 65% 15% 1:00 PM 65% 15% 1:30 PM 65% 15% 1:30 PM 65% 15% 1:30 PM 65% 15% 2:00 PM 65% 15% 2:15 PM 65% 15% 2:30 PM 65% 15% 2:45 PM 65% 15% 3:30 PM 65% 0% 3:30 PM 65% 0% 3:45 PM 65% 0% 4:30 PM 65% 0% 4:30 PM 65% 0% 4:45 PM 65% 0% 5:15 PM 65% 0% 5:30 PM 65% 15% 5:30 PM	35%				
11:00 AM 65% 15% 11:15 AM 65% 15% 11:30 AM 65% 15% 11:45 AM 65% 15% 12:00 PM 65% 15% 12:15 PM 65% 15% 12:30 PM 65% 15% 12:45 PM 65% 15% 1:00 PM 65% 15% 1:30 PM 65% 15% 1:30 PM 65% 15% 1:45 PM 65% 15% 2:00 PM 65% 15% 2:15 PM 65% 15% 2:30 PM 65% 15% 2:45 PM 65% 15% 3:00 PM 65% 0% 3:30 PM 65% 0% 3:45 PM 65% 0% 4:30 PM 65% 0% 4:30 PM 65% 0% 4:45 PM 65% 0% 4:45 PM 65% 0% 5:15 PM 65% 0% 5:15 PM 65% 15% 5:15 PM	35%				
11:15 AM 65% 11:30 AM 65% 11:45 AM 65% 12:00 PM 65% 12:15 PM 65% 12:30 PM 65% 12:45 PM 65% 1:00 PM 65% 1:00 PM 65% 1:30 PM 65% 1:30 PM 65% 1:30 PM 65% 1:45 PM 65% 2:00 PM 65% 2:15 PM 65% 2:30 PM 65% 2:30 PM 65% 3:30 PM 65% 3:30 PM 65% 3:30 PM 65% 3:30 PM 65% 4:00 PM 65% 4:30 PM 65% 4:30 PM 65% 5:15 PM 65% 5:30 PM 65% 5:45 PM 65% 5:45 PM 65% 6:00 PM 65% 6:15 PM 65% 6:30 PM 65%	35%				
11:30 AM 65% 11:45 AM 65% 12:00 PM 65% 12:15 PM 65% 12:30 PM 65% 12:30 PM 65% 12:45 PM 65% 1:00 PM 65% 1:30 PM 65% 1:30 PM 65% 1:30 PM 65% 1:45 PM 65% 2:00 PM 65% 2:15 PM 65% 2:30 PM 65% 2:30 PM 65% 3:00 PM 65% 3:30 PM 65% 3:30 PM 65% 3:30 PM 65% 4:00 PM 65% 4:30 PM 65% 4:45 PM 65% 5:00 PM 65% 5:15 PM 65% 5:30 PM 65% 5:45 PM 65% 6:00 PM 65% 6:15 PM 65% 6:30 PM 65%	35%				
11:45 AM 65% 12:00 PM 65% 12:15 PM 65% 12:30 PM 65% 12:45 PM 65% 1:00 PM 65% 1:00 PM 65% 1:30 PM 65% 1:30 PM 65% 1:30 PM 65% 1:45 PM 65% 2:00 PM 65% 2:15 PM 65% 2:30 PM 65% 2:30 PM 65% 3:00 PM 65% 3:30 PM 65% 3:30 PM 65% 3:45 PM 65% 4:00 PM 65% 4:30 PM 65% 4:45 PM 65% 5:00 PM 65% 5:15 PM 65% 5:30 PM 65% 5:45 PM 65% 6:00 PM 65% 6:15 PM 65% 6:30 PM 65%	35%				
12:00 PM 65% 12:15 PM 65% 12:30 PM 65% 12:45 PM 65% 1:00 PM 65% 1:00 PM 65% 1:15 PM 65% 1:30 PM 65% 1:30 PM 65% 1:45 PM 65% 2:00 PM 65% 2:15 PM 65% 2:30 PM 65% 2:30 PM 65% 3:00 PM 65% 3:30 PM 65% 3:30 PM 65% 3:45 PM 65% 4:00 PM 65% 4:30 PM 65% 4:45 PM 65% 5:00 PM 65% 5:15 PM 65% 5:30 PM 65% 5:45 PM 65% 6:00 PM 65% 6:15 PM 65% 6:30 PM 65%	35%				
12:15 PM 65% 12:30 PM 65% 12:45 PM 65% 1:00 PM 65% 1:15 PM 65% 1:30 PM 65% 1:30 PM 65% 1:45 PM 65% 2:00 PM 65% 2:15 PM 65% 2:30 PM 65% 2:30 PM 65% 3:00 PM 65% 3:30 PM 65% 3:30 PM 65% 3:33 PM 65% 4:00 PM 65% 4:30 PM 65% 4:45 PM 65% 5:00 PM 65% 5:30 PM 65% 5:45 PM 65% 6:00 PM 65% 6:15 PM 65% 6:30 PM 65%	35%				
12:30 PM 65% 12:45 PM 65% 1:00 PM 65% 1:15 PM 65% 1:30 PM 65% 1:30 PM 65% 1:45 PM 65% 2:00 PM 65% 2:15 PM 65% 2:30 PM 65% 2:45 PM 65% 3:00 PM 65% 3:30 PM 65% 3:30 PM 65% 3:45 PM 65% 4:00 PM 65% 4:30 PM 65% 4:45 PM 65% 5:00 PM 65% 5:30 PM 65% 5:30 PM 65% 5:45 PM 65% 6:00 PM 65% 6:15 PM 65% 6:30 PM 65%	35%				
12:45 PM 65% 1:00 PM 65% 1:15 PM 65% 1:30 PM 65% 1:30 PM 65% 1:45 PM 65% 2:00 PM 65% 2:15 PM 65% 2:30 PM 65% 2:30 PM 65% 2:45 PM 65% 3:00 PM 65% 3:30 PM 65% 3:33 PM 65% 4:00 PM 65% 4:00 PM 65% 4:30 PM 65% 4:45 PM 65% 5:00 PM 65% 5:30 PM 65% 5:45 PM 65% 6:00 PM 65% 6:15 PM 65% 6:30 PM 65%	35%	15%	55%	12:15 PM	
1:00 PM 65% 1:15 PM 65% 1:30 PM 65% 1:45 PM 65% 2:00 PM 65% 2:15 PM 65% 2:30 PM 65% 2:30 PM 65% 2:45 PM 65% 3:00 PM 65% 3:30 PM 65% 3:330 PM 65% 3:45 PM 65% 4:00 PM 65% 4:30 PM 65% 4:30 PM 65% 5:00 PM 65% 5:15 PM 65% 5:30 PM 65% 5:45 PM 65% 6:00 PM 65% 6:15 PM 65% 6:30 PM 65%	35%	15%	55%	12:30 PM	
1:15 PM 65% 1:30 PM 65% 1:45 PM 65% 2:00 PM 65% 2:15 PM 65% 2:30 PM 65% 2:30 PM 65% 2:45 PM 65% 3:00 PM 65% 3:30 PM 65% 3:33 PM 65% 4:00 PM 65% 4:00 PM 65% 4:30 PM 65% 4:45 PM 65% 5:00 PM 65% 5:15 PM 65% 5:30 PM 65% 5:45 PM 65% 6:00 PM 65% 6:15 PM 65% 6:30 PM 65%	35%	15%	55%	12:45 PM	
1:30 PM 65% 1:45 PM 65% 2:00 PM 65% 2:15 PM 65% 2:30 PM 65% 2:45 PM 65% 3:00 PM 65% 3:15 PM 65% 3:30 PM 65% 3:30 PM 65% 3:45 PM 65% 4:00 PM 65% 4:30 PM 65% 4:45 PM 65% 5:00 PM 65% 5:15 PM 65% 5:30 PM 65% 5:45 PM 65% 6:00 PM 65% 6:15 PM 65% 6:30 PM 65%	35%	15%	55%	1:00 PM	
1:45 PM 65% 2:00 PM 65% 2:15 PM 65% 2:30 PM 65% 2:30 PM 65% 2:45 PM 65% 3:00 PM 65% 3:15 PM 65% 3:30 PM 65% 3:30 PM 65% 4:00 PM 65% 4:00 PM 65% 4:30 PM 65% 4:45 PM 65% 5:00 PM 65% 5:15 PM 65% 5:30 PM 65% 5:45 PM 65% 6:00 PM 65% 6:15 PM 65% 6:30 PM 65%	35%	15%	55%	1:15 PM	
2:00 PM 65% 15% 2:15 PM 65% 15% 2:30 PM 65% 15% 2:45 PM 65% 0% 3:00 PM 65% 0% 3:15 PM 65% 0% 3:45 PM 65% 0% 4:00 PM 65% 0% 4:15 PM 65% 0% 4:30 PM 65% 0% 4:45 PM 65% 0% 4:45 PM 65% 0% 5:00 PM 65% 5:15 PM 65% 5:30 PM 65% 5:45 PM 65% 6:00 PM 65% 6:15 PM 65% 6:30 PM 65% 15% 6:30 PM 65% 15% 6:30 PM 65% 15% 6:30 PM 65% 15%	35%	15%	55%	1:30 PM	
2:15 PM 65% 2:30 PM 65% 2:45 PM 65% 3:00 PM 65% 3:15 PM 65% 3:30 PM 65% 3:45 PM 65% 4:00 PM 65% 4:15 PM 65% 4:30 PM 65% 4:45 PM 65% 5:00 PM 65% 5:15 PM 65% 5:30 PM 65% 5:45 PM 65% 6:00 PM 65% 6:15 PM 65% 6:30 PM 65%	35%	15%	55%	1:45 PM	
2:15 PM 65% 2:30 PM 65% 2:45 PM 65% 3:00 PM 65% 3:15 PM 65% 3:30 PM 65% 3:45 PM 65% 4:00 PM 65% 4:15 PM 65% 4:30 PM 65% 4:45 PM 65% 5:00 PM 65% 5:15 PM 65% 5:30 PM 65% 5:45 PM 65% 6:00 PM 65% 6:15 PM 65% 6:30 PM 65%	35%	15%	55%	2:00 PM	
2:30 PM 65% 2:45 PM 65% 3:00 PM 65% 3:15 PM 65% 3:30 PM 65% 3:45 PM 65% 4:00 PM 65% 4:15 PM 65% 4:30 PM 65% 4:45 PM 65% 5:00 PM 65% 5:15 PM 65% 5:30 PM 65% 5:45 PM 65% 6:00 PM 65% 6:15 PM 65% 6:30 PM 65%	35%	15%		2:15 PM	
2:45 PM 65% 3:00 PM 65% 3:15 PM 65% 3:30 PM 65% 3:45 PM 65% 4:00 PM 65% 4:15 PM 65% 4:30 PM 65% 4:45 PM 65% 5:00 PM 65% 5:15 PM 65% 5:30 PM 65% 5:45 PM 65% 6:00 PM 65% 6:15 PM 65% 6:30 PM 65%	35%				
3:00 PM 65% 0% 3:15 PM 65% 0% 3:30 PM 65% 0% 3:45 PM 65% 0% 4:00 PM 65% 0% 4:15 PM 65% 0% 4:45 PM 65% 0% 5:00 PM 65% 15% 5:15 PM 65% 15% 5:30 PM 65% 15% 6:00 PM 65% 15% 6:15 PM 65% 15% 6:30 PM 65% 15% 6:30 PM 65% 15%	35%				
3:15 PM 65% 0% 3:30 PM 65% 0% 3:45 PM 65% 0% 4:00 PM 65% 0% 4:15 PM 65% 0% 4:30 PM 65% 0% 4:45 PM 65% 0% 5:00 PM 65% 15% 5:15 PM 65% 15% 5:30 PM 65% 15% 6:00 PM 65% 15% 6:15 PM 65% 15% 6:30 PM 65% 15% 6:30 PM 65% 15%	50%				
3:30 PM 65% 3:45 PM 65% 4:00 PM 65% 4:15 PM 65% 4:30 PM 65% 4:45 PM 65% 5:00 PM 65% 5:15 PM 65% 5:30 PM 65% 5:45 PM 65% 6:00 PM 65% 6:15 PM 65% 6:30 PM 65%	50%				
3:45 PM 65% 4:00 PM 65% 4:15 PM 65% 4:30 PM 65% 4:45 PM 65% 5:00 PM 65% 5:15 PM 65% 5:30 PM 65% 5:45 PM 65% 6:00 PM 65% 6:15 PM 65% 6:30 PM 65%	50%				
4:00 PM 65% 0% 4:15 PM 65% 0% 4:30 PM 65% 0% 4:45 PM 65% 0% 5:00 PM 65% 15% 5:15 PM 65% 15% 5:30 PM 65% 15% 5:45 PM 65% 15% 6:00 PM 65% 15% 6:15 PM 65% 15% 6:30 PM 65% 15%	50%				
4:15 PM 65% 0% 4:30 PM 65% 0% 4:45 PM 65% 0% 5:00 PM 65% 15% 5:15 PM 65% 15% 5:30 PM 65% 15% 5:45 PM 65% 15% 6:00 PM 65% 15% 6:15 PM 65% 15% 6:30 PM 65% 15%	50%				
4:30 PM 65% 0% 4:45 PM 65% 0% 5:00 PM 65% 15% 5:15 PM 65% 15% 5:30 PM 65% 15% 5:45 PM 65% 15% 6:00 PM 65% 15% 6:15 PM 65% 15% 6:30 PM 65% 15%	50%				
4:45 PM 65% 0% 5:00 PM 65% 15% 5:15 PM 65% 15% 5:30 PM 65% 15% 5:45 PM 65% 15% 6:00 PM 65% 15% 6:15 PM 65% 15% 6:30 PM 65% 15%	50%				
5:00 PM 65% 15% 5:15 PM 65% 15% 5:30 PM 65% 15% 5:45 PM 65% 15% 6:00 PM 65% 15% 6:15 PM 65% 15% 6:30 PM 65% 15%	50%				
5:15 PM 65% 15% 5:30 PM 65% 15% 5:45 PM 65% 15% 6:00 PM 65% 15% 6:15 PM 65% 15% 6:30 PM 65% 15%	35%				
5:30 PM 65% 15% 5:45 PM 65% 15% 6:00 PM 65% 15% 6:15 PM 65% 15% 6:30 PM 65% 15%	35%				
5:45 PM 65% 15% 6:00 PM 65% 15% 6:15 PM 65% 15% 6:30 PM 65% 15%	35%				
6:00 PM 65% 15% 6:15 PM 65% 15% 6:30 PM 65% 15%					
6:15 PM 65% 15% 6:30 PM 65% 15%	35%				
6:30 PM 65% 15%	35%				
	35%				
6:45 PIVI 65% 15%	35%				
	35%	15%))	6:45 PM	
Colliers BASIS Leander		BASIS Leander			
Project No. 23015395A		Project No. 23015395A			
Engineering & Design City of Leander, Williamson Count	, Texas	, Williamson County, 1	City of L	Engineering & Design	

	SGT Time	of Day Cal	culations -	- LUC 538		
	ITE 0/ I	110 520	ADT (pe	er hour)	ADT (per '	15-minute)
Start Time	ITE % - I	LUC 538	1961	1961	1961	1961
	Entering %	Exiting %	Entering	Exiting	Entering	Exiting
7:00 AM	38.2%	23.3%	749	457	187	114
7:15 AM					187	114
7:30 AM					187	114
7:45 AM					188	115
8:00 AM	13.8%	15.8%	271	310	68	78
8:15 AM				3.0	68	78
8:30 AM					68	78
8:45 AM					67	76
9:00 AM	1.2%	1.3%	24	25	6	6
9:15 AM				23	6	6
9:30 AM					6	6
9:45 AM					6	7
10:00 AM	2.7%	1.5%	53	29	13	7
10:15 AM			55	23	13	7
10:30 AM					13	7
10:45 AM					14	8
11:00 AM	2.2%	2.8%	43	55	11	14
11:15 AM			73	33	11	14
11:30 AM					11	14
11:45 AM					10	13
12:00 PM	2.6%	3.2%	51	63	13	16
12:15 PM	2.070	3.270	31	03	13	16
12:30 PM					13	16
12:45 PM					12	15
1:00 PM	1.4%	1.5%	27	29	7	7
1:15 PM	11.170	1.570	21	29	7	7
1:30 PM					7	7
1:45 PM					6	8
2:00 PM	8.8%	2.8%	173	55	43	14
2:15 PM	0.070	2.070	173	55	43	14
2:30 PM					43	14
2:45 PM					44	13
3:00 PM	12.4%	26.9%	243	528	61	132
3:15 PM	121170	201370	243	320	61	132
3:30 PM					61	132
3:45 PM					60	132
4:00 PM	8.2%	14.9%	161	292	40	73
4:15 PM					40	73
4:30 PM					40	73
4:45 PM					41	73
5:00 PM	2.3%	3.2%	45	63	11	16
5:15 PM			اد	33	11	16
5:30 PM					11	16
5:45 PM					12	15
6:00 PM	1.7%	2.0%	33	39	8	10
6:15 PM				3,	8	10
6:30 PM					8	10
6:45 PM					9	9
	BASIS Leander					
Colliers		п				
Engineering	Project No. 23015395A					
Engineering & Design	City of Leander, Williamson County, Texas					

SGT Time of Day Calculations - LUC 822						
	ITC 0/4 I	UC 822	ADT (pe	er hour)	ADT (per 1	15-minute)
Start Time	11E % - 1	LUC 822	794	793	794	793
	Entering %	Exiting %	Entering	Exiting	Entering	Exiting
7:00 AM	1.9%	1.2%	15	10	4	3
7:15 AM					4	3
7:30 AM					4	3
7:45 AM					3	1
8:00 AM	2.8%	1.8%	22	14	6	4
8:15 AM					6	4
8:30 AM					6	4
8:45 AM					4	2
9:00 AM	4.8%	3.0%	38	24	10	6
9:15 AM					10	6
9:30 AM					10	6
9:45 AM					8	6
10:00 AM	6.8%	5.0%	54	40	14	10
10:15 AM					14	10
10:30 AM					14	10
10:45 AM	0.557	7.607			12	10
11:00 AM	8.2%	7.0%	65	56	16	14
11:15 AM					16	14
11:30 AM					16	14
11:45 AM	0.004	0.50/			17	14
12:00 PM	9.3%	8.5%	74	67	19	17
12:15 PM					19	17
12:30 PM					19	17
12:45 PM	0.40/	0.60/			17	16
1:00 PM	8.4%	8.6%	67	68	17	17
1:15 PM					17	17
1:30 PM					17	17
1:45 PM	7.5%	0.204	60		16	17
2:00 PM	7.5%	8.2%	60	65	15	16
2:15 PM					15	16
2:30 PM					15	16
2:45 PM	7.8%	8.1%	60	C 4	15	17
3:00 PM	7.070	0.170	62	64	16	16
3:15 PM					16	16
3:30 PM					16	16
3:45 PM	8.3%	8.3%	66	66	14	16
4:00 PM	0.570	0.570	66	66	17 17	17 17
4:15 PM 4:30 PM					17	17
4:30 PM 4:45 PM					17	17
5:00 PM	8.4%	8.5%	67	67	17	17
5:15 PM	3.470	3.370	07	07	17	17
5:30 PM					17	17
5:45 PM					16	16
6:00 PM	7.4%	7.5%	59	59	15	15
6:15 PM			33	Jý	15	15
6:30 PM					15	15
6:45 PM					14	14
Colliers		BASIS Leander				
		Project No. 23015395A				
Engineering & Design		City of Leander, Williamson County, Texas				

	SGT Time of Day	Calculations - LUC !	538	
Leg	RM 2243	RM 2243		te Driveway
Direction	Eastbound	Westbound		bound
Start Time	Through	Through	Left	Right
7:00 AM	122		0	57
7:15 AM	122		ő	57
7:30 AM	122		0	57
7:45 AM	122		0	58
8:00 AM	44		0	39
8:15 AM	44		0	39
8:30 AM	44		0	39
8:45 AM	44		0	38
9:00 AM	4		1	
	4			2 2
9:15 AM	4		1	2
9:30 AM			1	
9:45 AM	4		1	2
10:00 AM	8		1	2
10:15 AM	8		1	2
10:30 AM	8		1	2
10:45 AM	9		1	3
11:00 AM	7		2	5
11:15 AM	7		2	5
11:30 AM	7		2	5 5
11:45 AM	7		2	
12:00 PM	8		2	6
12:15 PM	8		2	6
12:30 PM	8		2	6
12:45 PM	8		2	5
1:00 PM	5		1	2
1:15 PM	5		1	2
1:30 PM	5		1	2
1:45 PM	4		1	3
2:00 PM	28		2	5 5
2:15 PM	28		2	5
2:30 PM	28		2	5
2:45 PM	29		2	5
3:00 PM	40		0	66
3:15 PM	40		0	66
3:30 PM	40		0	66
3:45 PM	39		0	66
4:00 PM	26		0	37
4:15 PM	26		0	37
4:30 PM	26		0	37
4:45 PM	27		0	37
5:00 PM	7		2	6
5:15 PM	7		2	6
5:30 PM	7		2	6
5:45 PM	8		2	5
6:00 PM	5		2	4
6:15 PM	5		2	4
6:30 PM	5		2	4
6:45 PM	6		1	3
Colliers		BASIS Leande	<u> </u>	
Comers	Project No. 23015395A			
Engineering & Design	City of Leander, Williamson County, Texas			
or nealign	City Of	Leanaci, vviiilailisüll	County, TEXAS	

	SGT Time of Day	Calculations - LUC	322	
Leg	RM 2243	RM 2243		te Driveway
Direction	Eastbound	Westbound		bound
Start Time	Through	Through	Left	Right
7:00 AM	3	1111000011	0	2
7:15 AM	3		ő	2
7:30 AM	3		0	2
7:45 AM	2		0	1
8:00 AM	4		0	2
8:15 AM	4		0	2
	4		0	2
8:30 AM	3			
8:45 AM			0	1
9:00 AM	7		1	2
9:15 AM	7		1	2
9:30 AM	7		1	2
9:45 AM	5		1	2
10:00 AM	9		2	4
10:15 AM	9		2	4
10:30 AM	9		2	4
10:45 AM	8		2	4
11:00 AM	10		2	5
11:15 AM	10		2	5
11:30 AM	10		2	5 5
11:45 AM	11		2	
12:00 PM	12		3	6
12:15 PM	12			6
12:30 PM	12		3	6
12:45 PM	11		2	6
1:00 PM	11		3	6
1:15 PM	11		3	6
1:30 PM	11		3	6
1:45 PM	10		3	6
2:00 PM	10		2	6
2:15 PM	10		2	6
2:30 PM	10		2	6
2:45 PM	10		3	6
3:00 PM	10		0	8
3:15 PM	10		0	8
3:30 PM	10		0	8
3:45 PM	9		0	8
	11		0	9
4:00 PM	11			9
4:15 PM			0	
4:30 PM	11		0	9
4:45 PM	10		0	8
5:00 PM	11		3	6
5:15 PM	11		3	6
5:30 PM	11		3	6
5:45 PM	10		2	6
6:00 PM	10		2	5
6:15 PM	10		2	5
6:30 PM	10		2	5
6:45 PM	9		2	5
Colliers		BASIS Leande	r 	
	Project No. 23015395A			
Engineering & Design	City of Leander, Williamson County, Texas			

		affic Volumes	_	
_eg	RM 2243	RM 2243		te Driveway
Direction	Eastbound	Westbound	South	bound
Start Time	Through	Through	Left	Right
7:00 AM	238	168	0	59
7:15 AM	268	133	0	59
7:30 AM	258	138	0	59
7:45 AM	280	118	0	58
8:00 AM	172	147	0	41
8:15 AM	185	142	0	41
8:30 AM	167	123	0	41
8:45 AM	162	133	0	39
9:00 AM	120	135	2	4
9:15 AM	141	132	2	4
9:30 AM	128	123	2	4
9:45 AM	129	129	2	5
10:00 AM	147	124	3	6
10:15 AM	137	108	3	6
10:30 AM	116	132	3	6
10:45 AM	115	125	3	6
11:00 AM	114	115	4	10
	137	130	4	
11:15 AM 11:30 AM	124	120	4	10
				10
11:45 AM	116	115	4	9
12:00 PM	143	94	5	12
12:15 PM	144	102	5	12
12:30 PM	158	98	5	12
12:45 PM	161	102	5	11
1:00 PM	133	121	4	8
1:15 PM	123	129	4	8
1:30 PM	169	108	4	8
1:45 PM	156	118	4	9
2:00 PM	170	104	5	11
2:15 PM	167	142	5 5	11
2:30 PM	189	147	5	11
2:45 PM	182	128	5	11
3:00 PM	175	124	0	74
3:15 PM	214	134	0	74
3:30 PM	249	171	0	74
3:45 PM	262	127	0	74
4:00 PM	211	138	0	45
4:15 PM	185	163	0	45
4:30 PM	213	140	0	45
4:45 PM	187	129	0	44
5:00 PM	218	124	5	12
5:15 PM	236	135	5	12
5:30 PM	181	134	5	12
5:45 PM	154	175	5	11
6:00 PM	131	160	4	9
6:15 PM	126	130	4	9
6:30 PM	157	132	4	9
6:45 PM	132	127	3	8
Colliers		BASIS Leande	r	
		Project No. 23015	 395A	
Engineering & Design	City of	Leander, Williamson	County, Texas	

Warrants Summary Report

1: RM 2243 and Western Site Driveway

Intersection Information:

	Major Street	Minor Street
Street Name	RM 2243	Western Site Driveway
Direction	EB/WB	SB
Number of Land	es 1	1
Approach Spee	ed 50	30

Warrant	Met?	Notes
Warrant 1, Eight-Hour Ve	ehicular Volum	ne
	Yes	
Condition A or B Met?	Yes	9 Hours met (8 required)
Condition A and B Met?	No	5 Hours met (8 required)
Warrant 2, Four-Hour Ve	hicular Volum	e
	Yes	7 Hours met (4 required)
Warrant 3, Peak Hour		
	Yes	
Condition A Met?	No	0 Hours met (1 required)
Condition B Met?	Yes	5 Hours met (1 required)
Warrant 4, Pedestrian Vo	olume	
	No	
Condition A Met?	No	0 Hours met (4 required)
Condition B Met?	No	0 Hours met (1 required)
Warrant 5, School Cross	ing	
	No	

Federal 2009 1

Warrant 6, Coordinated	Signal System
	No
Narrant 7, Crash Expe	
	No
Traffic Volume Cond.?	Yes 10 Hours met (8 required)
Ped Condition?	No 0 Hours met (8 required)
Warrant 8, Roadway Ne	work
ivairant o, Roadway iv	Yes
	165
<i>N</i> arrant 9, Intersection	
Warrant 9, Intersection	Near a Grade Crossing
Warrant 9, Intersection	
	No
	No
AWSC Warrant, Multiw	y Stop Application Yes
Warrant 9, Intersection AWSC Warrant, Multiware Condition A Met? Condition B Met?	y Stop Application

2

Warrant 1: Eight-hour Vehicular Volume

1: RM 2243 and Western Site Driveway

Intersection Information:

Maior Street Name: RM 2243

Major Street Name	e: RM 2243			
Major Street Direc	tion: EB/WB			
Minor Street Direc	tion: SB			
	WARR	ANT 1 MET? Yes		
Details:				
Condition A Met?	No 5 H	lours met (8 required) at 70%	%	
Condition B Met?	Yes 9 H	lours met (8 required) at 70%	%	
Hour	Major Street Vehicle (Total of Both Approaches	s High Volume Minor Approach Vehicles	70% Standard Met? Cond. A OR Cond. B	56% Standard Met? Cond. A AND Cond.
			Condition A Condition B 70% 70% Column Column	Condition A Condition B 56% 56% Column Column
07:00 to 08:00	1,601	235	Yes* Yes*	Yes* Yes*
Condition A	Volume >= 70% Yes column (350)?	Volume >= 70% Yes column (105)?		
	Volume >= 56% column (280)?	Volume >= 56% Yes column (84)?		
Condition B	Volume >= 70% Yes column (525)?	Volume >= 70% Yes column (53)?		
	Volume >= 56% Yes column (420)?	Volume >= 56% Yes column (42)?		
07:15 to 08:15	1,514	217	Yes Yes	Yes Yes
Condition A	Volume >= 70% Yes column (350)?	Volume >= 70% Yes column (105)?		
	Volume >= 56% Yes column (280)?	Volume >= 56% Yes column (84)?		
Condition B	Volume >= 70% Yes column (525)?	Volume >= 70% Yes column (53)?		
	Volume >= 56% Yes column (420)?	Volume >= 56% Yes column (42)?		
07:30 to 08:30	1,440	199	Yes Yes	Yes Yes
Condition A	Volume >= 70% Yes column (350)?	Volume >= 70% Yes column (105)?		
	Volume >= 56% Yes column (280)?	Volume >= 56% Yes column (84)?		
Condition B	Volume >= 70% Yes column (525)?	Volume >= 70% Yes column (53)?		
	Volume >= 56% Yes column (420)?	Volume >= 56% Yes column (42)?		
07:45 to 08:45	1,334	181	Yes Yes	Yes Yes
Condition A	Volume >= 70% Yes column (350)?	Volume >= 70% Yes column (105)?		
	Volume >= 56% Yes column (280)?	Volume >= 56% Yes column (84)?		
Condition B	Volume >= 70% Yes column (525)?	Volume >= 70% Yes column (53)?		
	Volume >= 56% Yes column (420)?	Volume >= 56% Yes column (42)?		

Federal 2009

08:00 to 09:00	1,231	162	Yes* Yes*	Yes* Yes*
Condition A	Volume >= 70% Yes column (350)?	Volume >= 70% Yes column (105)?		
	Volume >= 56% Yes column (280)?	Volume >= 56% Yes column (84)?		
Condition B	Volume >= 70% Yes column (525)?	Volume >= 70% Yes column (53)?		
	Volume >= 56% Yes column (420)?	Volume >= 56% Yes column (42)?		
08:15 to 09:15	1,167	127	Yes Yes	Yes Yes
Condition A	Volume >= 70% Yes column (350)?	Volume >= 70% Yes column (105)?		
	Volume >= 56% Yes column (280)?	Volume >= 56% Yes column (84)?		
Condition B	Volume >= 70% Yes column (525)?	Volume >= 70% Yes column (53)?		
	Volume >= 56% Yes column (420)?	Volume >= 56% Yes column (42)?		
08:30 to 09:30	1,113	92	No Yes	Yes Yes
Condition A	Volume >= 70% Yes column (350)?	Volume >= 70% No column (105)?		
	Volume >= 56% Yes column (280)?	Volume >= 56% Yes column (84)?		
Condition B	Volume >= 70% Yes column (525)?	Volume >= 70% Yes column (53)?		
	Volume >= 56% Yes column (420)?	Volume >= 56% Yes column (42)?		
08:45 to 09:45	1,074	57	No Yes	No Yes
Condition A	Volume >= 70% Yes column (350)?	Volume >= 70% No column (105)?		
	Volume >= 56% Yes column (280)?	Volume >= 56% No column (84)?		
Condition B	Volume >= 70% Yes column (525)?	Volume >= 70% Yes column (53)?		
	Volume >= 56% Yes column (420)?	Volume >= 56% Yes column (42)?		
09:00 to 10:00	1,037	25	No No	No No
Condition A	Volume >= 70% Yes column (350)?	Volume >= 70% No column (105)?		
	Volume >= 56% Yes column (280)?	Volume >= 56% No column (84)?		
Condition B	Volume >= 70% Yes	Volume >= 70% column (53)?		
	Volume >= 56% Yes column (420)?	Volume >= 56% No column (42)?		
09:15 to 10:15	1,053	28	No No	No No
Condition A	Volume >= 70% Yes column (350)?	Volume >= 70% No column (105)?		
	Volume >= 56% Yes column (280)?	Volume >= 56% No column (84)?		
Condition B	Volume >= 70% Yes column (525)?	Volume >= 70% No column (53)?		
	Volume >= 56% Yes column (420)?	Volume >= 56% No column (42)?		
09:30 to 10:30	1,025	31	No No	No No
Condition A	Volume >= 70% Yes column (350)?	Volume >= 70% No column (105)?		
	Volume >= 56% Yes column (280)?	Volume >= 56% No column (84)?		
Condition B	Volume >= 70% Yes column (525)?	Volume >= 70% No column (53)?		
	Volume >= 56% Yes column (420)?	Volume >= 56% No column (42)?		

09:45 to 10:45	1,022	34	No No	No No
Condition A	Volume >= 70% Yes column (350)?	Volume >= 70% No column (105)?		
	Volume >= 56% Yes column (280)?	Volume >= 56% No column (84)?		
Condition B	Volume >= 70% Yes column (525)?	Volume >= 70%		
	Volume >= 56% Yes column (420)?	Volume >= 56% column (42)?		
10:00 to 11:00	1,004	36	No No	No No
Condition A	Volume >= 70% Yes column (350)?	Volume >= 70% No column (105)?		
	Volume >= 56% Yes column (280)?	Volume >= 56% No column (84)?		
Condition B	Volume >= 70% Yes column (525)?	Volume >= 70% No column (53)?		
	Volume >= 56% Yes column (420)?	Volume >= 56%		
10:15 to 11:15	962	41	No No	No No
Condition A	Volume >= 70% Yes column (350)?	Volume >= 70% No column (105)?		
	Volume >= 56% Yes column (280)?	Volume >= 56% No column (84)?		
Condition B	Volume >= 70% Yes column (525)?	Volume >= 70% No column (53)?		
	Volume >= 56% Yes column (420)?	Volume >= 56% No column (42)?		
10:30 to 11:30	984	46	No No	No Yes
Condition A	Volume >= 70% Yes column (350)?	Volume >= 70% No column (105)?		
	Volume >= 56% Yes column (280)?	Volume >= 56% No column (84)?		
Condition B	Volume >= 70% Yes column (525)? Volume >= 56% Yes column (420)?	Volume >= 70% column (53)? Volume >= 56% column (42)?		
10:45 to 11:45	980	51	No No	No Yes
Condition A	Volume >= 70% Yes	Volume >= 70% No	NO NO	100
	column (350)? Volume >= 56% column (280)? Yes	column (105)? Volume >= 56% column (84)?		
Condition B	Volume >= 70% Yes	Volume >= 70% No		
	column (525)? Volume >= 56% column (420)? Yes	column (53)? Volume >= 56% Yes column (42)?		
11:00 to 12:00	971	55	No Yes*	No Yes
Condition A	Volume >= 70% Yes column (350)?	Volume >= 70% No column (105)?		
	Volume >= 56% Yes column (280)?	Volume >= 56% No column (84)?		
Condition B	Volume >= 70% Yes column (525)?	Volume >= 70% Yes column (53)?		
	Volume >= 56% Yes column (420)?	Volume >= 56% Yes column (42)?		
11:15 to 12:15	979	58	No Yes	No Yes
Condition A	Volume >= 70% Yes column (350)?	Volume >= 70% No column (105)?		
	Volume >= 56% Yes column (280)?	Volume >= 56% No column (84)?		
Condition B	Volume >= 70% Yes column (525)?	Volume >= 70% Yes column (53)?		
	Volume >= 56% Yes column (420)?	Volume >= 56% Yes column (42)?		

44-00 to 40-00	050	04	No.	No.
11:30 to 12:30	958	61	No Yes	No Yes
Condition A	Volume >= 70% Yes column (350)?	Volume >= 70% No column (105)?		
	Volume >= 56% Yes column (280)?	Volume >= 56% No column (84)?		
Condition B	Volume >= 70% Yes column (525)?	Volume >= 70% Yes column (53)?		
	Volume >= 56% Yes column (420)?	Volume >= 56% Yes column (42)?		
11:45 to 12:45	970	64	No Yes	No Yes
Condition A	Volume >= 70% Yes column (350)?	Volume >= 70% No column (105)?		
	Volume >= 56% Yes column (280)?	Volume >= 56% No column (84)?		
Condition B	Volume >= 70% Yes column (525)?	Volume >= 70% Yes column (53)?		
	Volume >= 56% Yes column (420)?	Volume >= 56% Yes column (42)?		
12:00 to 13:00	1,002	67	No Yes*	No Yes
Condition A	Volume >= 70% Yes	Volume >= 70% No	110	100
	column (350)? Volume >= 56% Yes	column (105)? Volume >= 56% No		
O a sa didi a sa D	column (280)?	column (84)?		
Condition B	column (525)?	column (53)?		
	Volume >= 56% Yes column (420)?	Volume >= 56% Yes column (42)?		
12:15 to 13:15	1,019	62	No Yes	No Yes
Condition A	Volume >= 70% Yes column (350)?	Volume >= 70% No column (105)?		
	Volume >= 56% Yes column (280)?	Volume >= 56% No column (84)?		
Condition B	Volume >= 70% Yes column (525)?	Volume >= 70% Yes column (53)?		
	Volume >= 56% Yes column (420)?	Volume >= 56% Yes column (42)?		
12:30 to 13:30	1,025	57	No Yes	No Yes
Condition A	Volume >= 70% Yes column (350)?	Volume >= 70% No column (105)?		
	Volume >= 56% Yes column (280)?	Volume >= 56% No column (84)?		
Condition B	Volume >= 70% Yes column (525)?	Volume >= 70% Yes column (53)?		
	Volume >= 56% Yes column (420)?	Volume >= 56% Yes column (42)?		
12:45 to 13:45	1,046	52	No No	No Yes
Condition A	Volume >= 70% Yes column (350)?	Volume >= 70% No column (105)?		
	Volume >= 56% Yes column (280)?	Volume >= 56% No column (84)?		
Condition B	Volume >= 70% Yes column (525)?	Volume >= 70% No column (53)?		
	Volume >= 56% Yes column (420)?	Volume >= 56% Yes column (42)?		
13:00 to 14:00	1,057	49	No No	No Yes
Condition A	Volume >= 70% Yes column (350)?	Volume >= 70% No column (105)?		
	Volume >= 56% Yes column (280)?	Volume >= 56% No column (84)?		
Condition B	Volume >= 70% Yes column (525)?	Volume >= 70%		
	Volume >= 56% Yes column (420)?	Volume >= 56% Yes column (42)?		
	COIGIIII (420) :	COIGIIII (42)!		

13:15 to 14:15	1,077	53	No Yes*	No Yes
Condition A	Volume >= 70% Yes column (350)?	Volume >= 70% No column (105)?		
	Volume >= 56% Yes column (280)?	Volume >= 56% No column (84)?		
Condition B	Volume >= 70% Yes column (525)?	Volume >= 70% Yes column (53)?		
	Volume >= 56% Yes column (420)?	Volume >= 56% Yes column (42)?		
13:30 to 14:30	1,134	57	No Yes	No Yes
Condition A	Volume >= 70% Yes column (350)?	Volume >= 70% No column (105)?		
	Volume >= 56% Yes column (280)?	Volume >= 56% No column (84)?		
Condition B	Volume >= 70% Yes column (525)?	Volume >= 70% Yes column (53)?		
	Volume >= 56% Yes column (420)?	Volume >= 56% Yes column (42)?		
13:45 to 14:45	1,193	61	No Yes	No Yes
Condition A	Volume >= 70% Yes column (350)?	Volume >= 70% No column (105)?		
	Volume >= 56% Yes column (280)?	Volume >= 56% No column (84)?		
Condition B	Volume >= 70% Yes column (525)?	Volume >= 70% Yes column (53)?		
	Volume >= 56% Yes column (420)?	Volume >= 56% Yes column (42)?		
14:00 to 15:00	1,229	64	No Yes	No Yes
Condition A	Volume >= 70% Yes column (350)?	Volume >= 70% No column (105)?		
	Volume >= 56% Yes column (280)?	Volume >= 56% No column (84)?		
Condition B	Volume >= 70% Yes column (525)?	Volume >= 70% Yes column (53)?		
	Volume >= 56% Yes column (420)?	Volume >= 56% Yes column (42)?		
14:15 to 15:15	1,254	122	Yes* Yes*	Yes* Yes*
Condition A	Volume >= 70% Yes	Volume >= 70% Yes		
	column (350)?	column (105)?		
	column (350)? Volume >= 56% Yes column (280)?	100		
Condition B	column (350)? Volume >= 56% Yes column (280)? Volume >= 70% Yes	column (105)? Volume >= 56% Yes column (84)? Volume >= 70% Yes		
Condition B	column (350)? Volume >= 56% Yes column (280)?	column (105)? Volume >= 56% Yes column (84)?		
Condition B 14:30 to 15:30	column (350)? Volume >= 56% Yes column (280)? Volume >= 70% Yes column (525)? Volume >= 56% Yes	column (105)? Volume >= 56% Yes column (84)? Volume >= 70% Yes column (53)? Volume >= 56% Yes	Yes Yes	Yes Yes
	column (350)? Volume >= 56% Yes column (280)? Volume >= 70% Yes column (525)? Volume >= 56% Yes column (420)?	column (105)? Volume >= 56%	Yes Yes	Yes Yes
14:30 to 15:30	column (350)? Volume >= 56% Yes column (280)? Volume >= 70% Yes column (525)? Volume >= 56% Yes column (420)? 1,293 Volume >= 70% Yes	column (105)? Volume >= 56% Yes column (84)? Volume >= 70% Yes column (53)? Volume >= 56% Yes column (42)? 180 Volume >= 70% Yes	Yes Yes	Yes Yes
14:30 to 15:30	column (350)? Volume >= 56% Yes column (280)? Volume >= 70% Yes column (525)? Volume >= 56% Yes column (420)? 1,293 Volume >= 70% Yes column (350)? Volume >= 56% Yes	column (105)? Volume >= 56%	Yes Yes	Yes Yes
14:30 to 15:30 Condition A	column (350)? Volume >= 56% Yes column (280)? Volume >= 70% Yes column (525)? Volume >= 56% Yes column (420)? 1,293 Volume >= 70% Yes column (350)? Volume >= 56% Yes column (280)? Volume >= 70% Yes column (280)?	column (105)? Volume >= 56%	Yes Yes	Yes Yes
14:30 to 15:30 Condition A	column (350)? Volume >= 56% Yes column (280)? Volume >= 70% Yes column (525)? Volume >= 56% Yes column (420)? 1,293 Volume >= 70% Yes column (350)? Volume >= 56% Yes column (280)? Volume >= 70% Yes column (280)? Volume >= 70% Yes column (525)? Volume >= 56% Yes Yes column (525)? Volume >= 56% Yes	column (105)? Volume >= 56%	Yes Yes	Yes Yes Yes Yes
14:30 to 15:30 Condition A Condition B	column (350)? Volume >= 56%	column (105)? Volume >= 56%		
14:30 to 15:30 Condition A Condition B	column (350)? Volume >= 56% column (280)? Volume >= 70% column (525)? Volume >= 56% column (420)? 1,293 Volume >= 70% column (350)? Volume >= 56% column (280)? Volume >= 70% column (525)? Volume >= 6% column (525)? Volume >= 56% column (420)? 1,377 Volume >= 70% Yes 1,377 Volume >= 70% Yes	column (105)? Volume >= 56%		
14:30 to 15:30 Condition A Condition B	column (350)? Volume >= 56% column (280)? Volume >= 70% column (525)? Volume >= 56% column (420)? 1,293 Volume >= 70% column (350)? Volume >= 56% column (280)? Volume >= 70% column (525)? Volume >= 56% column (420)? 1,377 Volume >= 70% column (350)? Volume >= 56% column (350)? Volume >= 56% column (350)? Volume >= 56% Ves column (350)? Volume >= 56% Ves	column (105)? Volume >= 56%		

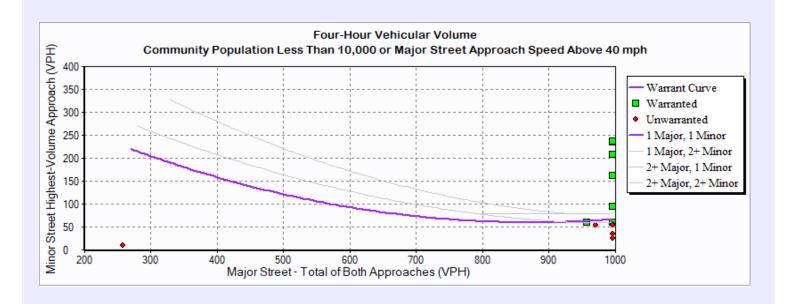
15:00 to 16:00	1,456	296	Yes Yes	Yes Yes
Condition A	Volume >= 70% Yes	Volume >= 70% Yes		
	column (350)? Volume >= 56% Yes	column (105)? Volume >= 56% Yes		
Condition B	column (280)? Volume >= 70%	column (84)? Volume >= 70% Yes		
Condition B	column (525)? Volume >= 56% Yes	column (53)? Volume >= 56% Yes		
	column (420)?	column (42)?		
15:15 to 16:15	1,506	267	Yes* Yes*	Yes* Yes*
Condition A	Volume >= 70% Yes column (350)?	Volume >= 70% Yes column (105)?		
	Volume >= 56% Yes column (280)?	Volume >= 56% Yes column (84)?		
Condition B	Volume >= 70% Yes column (525)?	Volume >= 70% Yes column (53)?		
	Volume >= 56% Yes column (420)?	Volume >= 56% Yes column (42)?		
45.004.40.00			V V	V V
15:30 to 16:30 Condition A	1,506 Volume >= 70% Ves	238 Volume >= 70% Ves	Yes Yes	Yes Yes
Condition A	column (350)?	column (105)?		
	Volume >= 56% Yes column (280)?	Volume >= 56% Yes column (84)?		
Condition B	Volume >= 70% Yes column (525)?	Volume >= 70% Yes column (53)?		
	Volume >= 56% Yes column (420)?	Volume >= 56% Yes column (42)?		
15:45 to 16:45	1,439	209	Yes Yes	Yes Yes
Condition A	Volume >= 70% Yes	Volume >= 70% Yes	103	103
	column (350)? Volume >= 56% Yes	column (105)? Volume >= 56% Yes		
Condition B	column (280)? Volume >= 70% Ves	column (84)? Volume >= 70% Ves		
Condition B	Volume >= 70% Yes column (525)? Volume >= 56% Yes	Volume >= 70% Yes column (53)? Volume >= 56% Yes		
	column (420)?	column (42)?		
16:00 to 17:00	1,366	179	Yes Yes	Yes Yes
Condition A	Volume >= 70% Yes column (350)?	Volume >= 70% Yes column (105)?		
	Volume >= 56% Yes column (280)?	Volume >= 56% Yes column (84)?		
Condition B	Volume >= 70% Yes column (525)?	Volume >= 70% Yes column (53)?		
	Volume >= 56% Yes column (420)?	Volume >= 56% column (42)?		
16:15 to 17:15	1,359	151	Yes* Yes*	Yes* Yes*
Condition A	Volume >= 70% Yes column (350)?	Volume >= 70% Yes column (105)?		
	Volume >= 56%	Volume >= 56% Yes column (84)?		
Condition B	Volume >= 70% Yes column (525)?	Volume >= 70% Yes column (53)?		
	Volume >= 56% Yes column (420)?	Volume >= 56% Yes column (42)?		
16:30 to 17:30	1,382	123	Yes Yes	Yes Yes
Condition A	Volume >= 70% Yes	Volume >= 70% Yes	,,,,,	100
	column (350)? Volume >= 56% Yes column (280)?	column (105)? Volume >= 56% column (84)? Yes		
		COMMINICOTY!		
Condition B	Volume >= 70%	Volume >= 70% Yes column (53)?		
Condition B	· · · · · · · · · · · · · · · · · · ·			

16:45 to 17:45	1,344	95	No Yes	Yes Yes
Condition A	Volume >= 70% Yes	Volume >= 70% No	140	100
Condition A	column (350)? Volume >= 56% Yes	column (105)? Volume >= 56% Yes		
Canditian D	column (280)?	column (84)?		
Condition B	column (525)?	column (53)?		
	Volume >= 56% Yes column (420)?	Volume >= 56% Yes column (42)?		
17:00 to 18:00	1,357	67	No Yes	No Yes
Condition A	Volume >= 70% Yes column (350)?	Volume >= 70% No column (105)?		
	Volume >= 56% Yes column (280)?	Volume >= 56% No column (84)?		
Condition B	Volume >= 70% column (525)?	Volume >= 70% Yes column (53)?		
	Volume >= 56% Yes column (420)?	Volume >= 56% Yes column (42)?		
17:15 to 18:15	1,306	63	No Yes*	No Yes
Condition A	Volume >= 70% Yes	Volume >= 70% No	1.00	110
	column (350)? Volume >= 56% Yes	column (105)? Volume >= 56% No		
Condition B	column (280)? Volume >= 70% Yes	column (84)? Volume >= 70% Yes		
Condition B	column (525)? Volume >= 56% Yes	column (53)? Volume >= 56% Yes		
	column (420)?	column (42)?		
17:30 to 18:30	1,191	59	No Yes	No Yes
Condition A	Volume >= 70% Yes column (350)?	Volume >= 70% No column (105)?		
	Volume >= 56% Yes column (280)?	Volume >= 56% No column (84)?		
Condition B	Volume >= 70% Yes column (525)?	Volume >= 70% Yes column (53)?		
	Volume >= 56% Yes column (420)?	Volume >= 56% Yes column (42)?		
17:45 to 18:45	1,165	55	No Yes	No Yes
Condition A	Volume >= 70% Yes column (350)?	Volume >= 70% No column (105)?		
	Volume >= 56% Yes column (280)?	Volume >= 56% No column (84)?		
Condition B	Volume >= 70% Yes column (525)?	Volume >= 70% Yes		
	Volume >= 56% Yes	Volume >= 56% Yes		
	column (420)?	column (42)?		
18:00 to 19:00		column (42)?	No No	No Yes
18:00 to 19:00 Condition A	column (420)?	column (42)?	No No	No Yes
	column (420)? 1,095 Volume >= 70% Yes	50 Volume >= 70% No	No No	No Yes
	column (420)? 1,095 Volume >= 70%	Volume >= 70% No column (105)? Volume >= 56% No	No No	No Yes
Condition A	column (420)? 1,095 Volume >= 70%	Volume >= 70%	No No	No Yes
Condition A	column (420)? 1,095 Volume >= 70%	Volume >= 70%	No No	No Yes
Condition A Condition B	column (420)? 1,095 Volume >= 70% column (350)? Volume >= 56% column (280)? Volume >= 70% column (525)? Volume >= 56% column (420)? 804 Volume >= 70% Yes	Volume >= 70%		
Condition A Condition B 18:15 to 19:15	column (420)? 1,095 Volume >= 70% column (350)? Volume >= 56% column (280)? Volume >= 70% column (525)? Volume >= 56% column (420)? 804	Volume >= 70%		
Condition A Condition B 18:15 to 19:15	column (420)? 1,095 Volume >= 70% column (350)? Volume >= 56% column (280)? Volume >= 70% column (525)? Volume >= 56% column (420)? 804 Volume >= 70% column (350)? Volume >= 56% Yes Volume >= 56% Yes Volume >= 56% Yes	Volume >= 70%		

18:30 to 19:30	548		24		No No	No No
Condition A	Volume >= 70% column (350)?	Yes	Volume >= 70% column (105)?	No		
	Volume >= 56% column (280)?	Yes	Volume >= 56% column (84)?	No		
Condition B	Volume >= 70% column (525)?	Yes	Volume >= 70% column (53)?	No		
	Volume >= 56% column (420)?	Yes	Volume >= 56% column (42)?	No		
	` '					
18:45 to 19:45	259		11		No No	No No
18:45 to 19:45 Condition A	259 Volume >= 70% column (350)?	No		No	No No	No No
	Volume >= 70%		11 Volume >= 70%	No No	No No	No No
	Volume >= 70% column (350)? Volume >= 56%	No	Volume >= 70% column (105)? Volume >= 56%		No No	No No

Warrant 2: Four-hour Vehicular Volume

1: RM 2243 and Western Site Driveway


Intersection Information:

	Major Street	Minor Street
Street Name	RM 2243	Western Site Driveway
Direction	EB/WB	SB
Number of Lanes	; 1	1
Approach Speed	50	30

Yes

Warrant 2 Met?

Details:

Hourly Volumes

Hour	Major Street Total All Approaches (vph)	Minor Street Highest Volume Approach (vph)
00:00:00 - 01:00:00	0.00	0.00
01:00:00 - 02:00:00	0.00	0.00
02:00:00 - 03:00:00	0.00	0.00
03:00:00 - 04:00:00	0.00	0.00
04:00:00 - 05:00:00	0.00	0.00
05:00:00 - 06:00:00	0.00	0.00
06:00:00 - 07:00:00	0.00	0.00
07:00:00 - 08:00:00	1,601.00	235.00
08:00:00 - 09:00:00	1,231.00	162.00
09:00:00 - 10:00:00	1,037.00	25.00
10:00:00 - 11:00:00	1,004.00	36.00
11:00:00 - 12:00:00	971.00	55.00
12:00:00 - 13:00:00	1,002.00	67.00
13:00:00 - 14:00:00	1,057.00	49.00
14:00:00 - 15:00:00	1,229.00	64.00
15:00:00 - 16:00:00	1,456.00	296.00
16:00:00 - 17:00:00	1,366.00	179.00
17:00:00 - 18:00:00	1,357.00	67.00
18:00:00 - 19:00:00	1,095.00	50.00
19:00:00 - 20:00:00	0.00	0.00
20:00:00 - 21:00:00	0.00	0.00
21:00:00 - 22:00:00	0.00	0.00
22:00:00 - 23:00:00	0.00	0.00
23:00:00 - 00:00:00	0.00	0.00

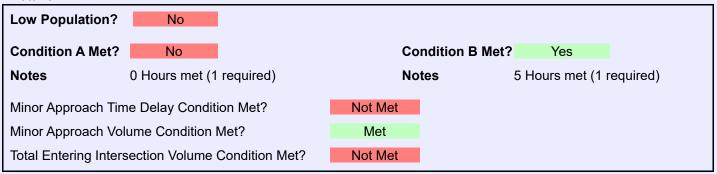
12

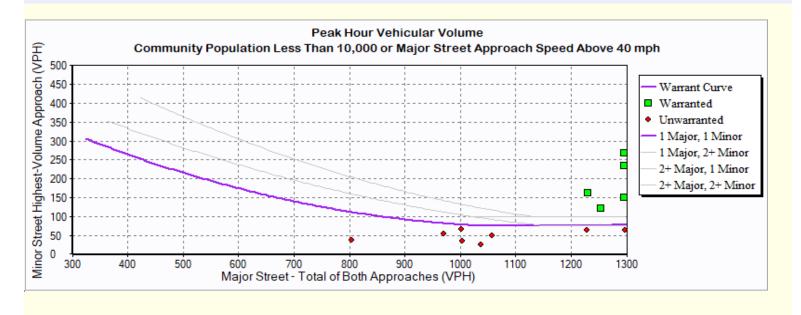
Warranted Volumes

Hour	Major Street Total All Approaches (vph)	Minor Street Highest Volume Approach (vph)
07:00:00 - 08:00:00	1,601.00	235.00
08:00:00 - 09:00:00	1,231.00	162.00
11:30:00 - 12:30:00	958.00	61.00
13:45:00 - 14:45:00	1,193.00	61.00
14:45:00 - 15:45:00	1,377.00	238.00
15:45:00 - 16:45:00	1,439.00	209.00
16:45:00 - 17:45:00	1,344.00	95.00

Federal 2009

Warrant 3: Peak Hour


1: RM 2243 and Western Site Driveway


Intersection Information:

	Major Street	Minor Street
Street Name	RM 2243	Western Site Driveway
Direction	EB/WB	SB
Number of Lanes	1	1
Approach Speed	50	30

Warrant 3 Met? Yes

Details

Warrant 3: Peak Hour

1: RM 2243 and Western Site Driveway

Hour	Major Street Total All Approaches (vph)	Minor Street Highest Volume Approach (vph)
7:00	1,601	235
8:00	1,231	162
9:00	1,037	25
10:00	1,004	36
11:00	971	55
12:00	1,002	67
13:00	1,057	49
14:00	1,229	64
14:15	1,254	122
15:15	1,506	267
16:15	1,359	151
17:15	1,306	63
18:15	804	37

Traffic Impact Analysis

Appendix G | Capacity Analysis Worksheets

	۶	→	•	←	4	†	-	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	*	1	ň	13	*	† 1>	*	† 1>	
Traffic Volume (vph)	114	307	271	267	69	636	173	1288	
Future Volume (vph)	114	307	271	267	69	636	173	1288	
Lane Group Flow (vph)	116	394	277	411	91	857	178	1518	
Turn Type	Prot	NA	Prot	NA	Prot	NA	Prot	NA	
Protected Phases	7	4	3	8	5	2	1	6	
Permitted Phases									
Detector Phase	7	4	3	8	5	2	1	6	
Switch Phase									
Minimum Initial (s)	5.0	6.0	5.0	6.0	5.0	10.0	5.0	10.0	
Minimum Split (s)	13.4	12.9	13.4	12.9	14.0	17.5	14.0	17.5	
Total Split (s)	20.0	39.0	27.0	46.0	19.0	45.0	39.0	65.0	
Total Split (%)	13.3%	26.0%	18.0%	30.7%	12.7%	30.0%	26.0%	43.3%	
Yellow Time (s)	5.4	5.4	5.4	5.4	6.0	6.0	6.0	6.0	
All-Red Time (s)	3.0	1.5	3.0	1.5	3.0	1.5	3.0	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	8.4	6.9	8.4	6.9	9.0	7.5	9.0	7.5	
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	None	C-Min	None	C-Min	
Act Effct Green (s)	11.6	32.1	18.6	39.1	9.8	46.9	20.6	57.7	
Actuated g/C Ratio	0.08	0.21	0.12	0.26	0.07	0.31	0.14	0.38	
v/c Ratio	0.98	1.05	1.31	0.91	0.80	0.81	0.75	1.14	
Control Delay (s/veh)	145.6	114.7	219.1	76.0	111.3	53.4	80.4	114.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay (s/veh)	145.6	114.7	219.1	76.0	111.3	53.4	80.4	114.3	
LOS	F	F	F	Е	F	D	F	F	
Approach Delay (s/veh)		121.7		133.6		58.9		110.7	
Approach LOS		F		F		Е		F	
Queue Length 50th (ft)	115	~413	~348	378	89	396	170	~910	
Queue Length 95th (ft)	#251	#628	#536	#578	#188	#558	244	#1052	
Internal Link Dist (ft)		2065		766		2316		1512	
Turn Bay Length (ft)	415		500		500		540		
Base Capacity (vph)	118	375	211	453	116	1059	347	1331	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.98	1.05	1.31	0.91	0.78	0.81	0.51	1.14	
Intersection Summary									

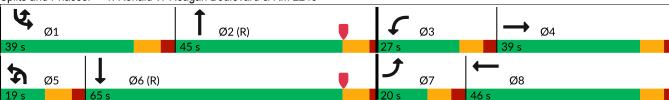
Cycle Length: 150

Actuated Cycle Length: 150

Offset: 68 (45%), Referenced to phase 2:NBT and 6:SBT, Start of Yellow

Natural Cycle: 150

Control Type: Actuated-Coordinated


Maximum v/c Ratio: 1.31

Intersection Signal Delay (s/veh): 103.5 Intersection LOS: F
Intersection Capacity Utilization 109.3% ICU Level of Service H

Analysis Period (min) 15

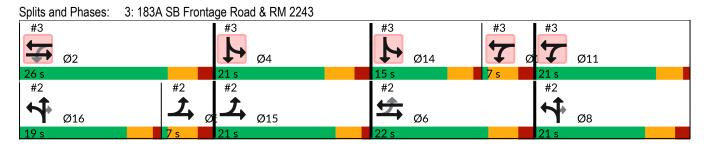
- Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.
 - Queue shown is maximum after two cycles.

Splits and Phases: 1: Ronald W Reagan Boulevard & RM 2243

	٠	→	←	1	†	-						
Lane Group	EBL	EBT	WBT	NBL	NBT	NBR	Ø1	Ø2	Ø4	Ø5	Ø8	Ø11
Lane Configurations	*	↑	†	7	^	7						
Traffic Volume (vph)	26	342	512	178	283	196						
Future Volume (vph)	26	342	512	178	283	196						
Lane Group Flow (vph)	28	372	644	193	308	213						
Turn Type	D.P+P	NA	NA	Split	NA	Perm						
Protected Phases	5 15	5 6 15	6	8 16	8 16		1	2	4	5	8	11
Permitted Phases	6					8 16						
Detector Phase	5 15	5 6 15	6	8 16	8 16	8 16						
Switch Phase												
Minimum Initial (s)			9.0				1.0	9.0	9.0	1.0	9.0	5.0
Minimum Split (s)			15.0				7.0	15.0	15.0	7.0	15.0	9.5
Total Split (s)			22.0				7.0	26.0	21.0	7.0	21.0	21.0
Total Split (%)			24.4%				8%	29%	23%	8%	23%	23%
Yellow Time (s)			4.0				4.0	4.0	4.0	4.0	4.0	3.5
All-Red Time (s)			2.0				2.0	2.0	2.0	2.0	2.0	1.0
Lost Time Adjust (s)			0.0				2.0	2.0	2.0	2.0	2.0	1.0
Total Lost Time (s)			6.0									
Lead/Lag			0.0				Lag			Lag		
Lead-Lag Optimize?							Lag			Lag		
Recall Mode			Min				None	Min	None	Min	Min	None
Act Effct Green (s)	40.3	46.3	16.1	25.1	25.1	25.1	INOITE	IVIIII	NONE	IVIIII	IVIIII	INOTIC
Actuated g/C Ratio	0.48	0.56	0.19	0.30	0.30	0.30						
v/c Ratio	0.46	0.30	0.19	0.38	0.31	0.35						
Control Delay (s/veh)	4.7	8.2	66.7	25.7	23.4	4.1						
Queue Delay	0.0	1.8	36.7	0.0	0.0	0.0						
Total Delay (s/veh)	4.7	10.0	103.3	25.7	23.4	4.1						
LOS	4.7 A	10.0	103.3 F	23.7 C	23.4 C	4.1 A						
	A	9.6	103.3	U	18.3	A						
Approach Delay (s/veh)			103.3 F		10.3 B							
Approach LOS	4	A		00	65	0						
Queue Length 50th (ft)	4	116	~181	80								
Queue Length 95th (ft)	m12	187	#321	141	102	38						
Internal Link Dist (ft)		40	1492	445	48	445						
Turn Bay Length (ft)	F.40	050	٥٦٦	415	4050	415						
Base Capacity (vph)	549	950	655	632	1252	712						
Starvation Cap Reductn	0	407	0	0	0	0						
Spillback Cap Reductn	0	0	68	18	0	0						
Storage Cap Reductn	0.05	0 00	0	0 24	0.25	0 20						
Reduced v/c Ratio	0.05	0.69	1.10	0.31	0.25	0.30						
Intersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 83.	4											
Natural Cycle: 70												
Control Type: Actuated-Und	coordinated											
Maximum v/c Ratio: 0.98												
Intersection Signal Delay (s					tersection							
Intersection Capacity Utiliza	ation 80.2%			IC	U Level	of Service	D					
Analysis Period (min) 15												
~ Volume exceeds capac	ity, queue i	s theoreti	cally infini	te.								

Lane Group	Ø14	Ø15	Ø16
Lane Configurations			
Traffic Volume (vph)			
Future Volume (vph)			
Lane Group Flow (vph)			
Turn Type			
Protected Phases	14	15	16
Permitted Phases			
Detector Phase			
Switch Phase			
Minimum Initial (s)	5.0	5.0	5.0
Minimum Split (s)	9.5	9.5	9.5
Total Split (s)	15.0	21.0	19.0
Total Split (%)	17%	23%	21%
Yellow Time (s)	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0
Lost Time Adjust (s)			
Total Lost Time (s)			
Lead/Lag	Lead		Lead
Lead-Lag Optimize?	Yes		Yes
Recall Mode	None	None	None
Act Effct Green (s)	110110	110110	140110
Actuated g/C Ratio			
v/c Ratio			
Control Delay (s/veh)			
Queue Delay			
Total Delay (s/veh)			
LOS			
Approach Delay (s/veh)			
Approach LOS			
Queue Length 50th (ft)			
Queue Length 95th (ft)			
Internal Link Dist (ft)			
Turn Bay Length (ft)			
Base Capacity (vph)			
Starvation Cap Reductn			
Spillback Cap Reductn			
Storage Cap Reductn			
Reduced v/c Ratio			
Intersection Summary			
•			

Timings SMP Synchro 12 Report Queue shown is maximum after two cycles.


- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
- m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 2: 183A NB Frontage Road & RM 2243

Timings Synchro 12 Report SMP

	→	•	←	/	ļ							
Lane Group	EBT	WBL	WBT	SBL	SBT	Ø1	Ø4	Ø5	Ø6	Ø8	Ø11	Ø14
Lane Configurations	† 1>	*	^	*	†							
Traffic Volume (vph)	237	306	384	131	835							
Future Volume (vph)	237	306	384	131	835							
Lane Group Flow (vph)	442	315	396	135	881							
Turn Type	NA	D.P+P	NA	Split	NA							
Protected Phases	2	1 11	1 11 2	4 14	4 14	1	4	5	6	8	11	14
Permitted Phases		2										
Detector Phase	2	1 11	1 11 2	4 14	4 14							
Switch Phase												
Minimum Initial (s)	9.0					1.0	9.0	1.0	9.0	9.0	5.0	5.0
Minimum Split (s)	15.0					7.0	15.0	7.0	15.0	15.0	9.5	9.5
Total Split (s)	26.0					7.0	21.0	7.0	22.0	21.0	21.0	15.0
Total Split (%)	28.9%					8%	23%	8%	24%	23%	23%	17%
Yellow Time (s)	4.0					4.0	4.0	4.0	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0					2.0	2.0	2.0	2.0	2.0	1.0	1.0
Lost Time Adjust (s)	0.0											
Total Lost Time (s)	6.0											
Lead/Lag						Lag		Lag				Lead
Lead-Lag Optimize?												Yes
Recall Mode	Min					None	None	Min	Min	Min	None	None
Act Effct Green (s)	15.0	36.1	42.1	29.2	29.2							
Actuated g/C Ratio	0.18	0.43	0.50	0.35	0.35							
v/c Ratio	0.64	0.57	0.44	0.25	0.72							
Control Delay (s/veh)	25.7	10.5	10.2	21.9	28.1							
Queue Delay	0.1	1.5	3.3	0.0	0.0							
Total Delay (s/veh)	25.8	12.0	13.5	21.9	28.1							
LOS	С	В	В	С	С							
Approach Delay (s/veh)	25.8		12.9		27.3							
Approach LOS	С		В		С							
Queue Length 50th (ft)	77	137	172	51	211							
Queue Length 95th (ft)	126	m162	m202	102	304							
Internal Link Dist (ft)	1271		40		1952							
Turn Bay Length (ft)				715								
Base Capacity (vph)	882	596	998	557	1261							
Starvation Cap Reductn	0	136	490	0	0							
Spillback Cap Reductn	56	0	0	0	0							
Storage Cap Reductn	0	0	0	0	0							
Reduced v/c Ratio	0.54	0.68	0.78	0.24	0.70							
Intersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 83.4												
Natural Cycle: 70												
Control Type: Actuated-Unco	ordinated											
Maximum v/c Ratio: 0.98												
Intersection Signal Delay (s/v	reh): 22.2			In	tersection	LOS: C						
Intersection Capacity Utilizati						of Service	D					
Analysis Period (min) 15												
m Volume for 95th percenti	le queue	is metere	d by upstr	eam sign	al.							
				3								

O		
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Lane Group Flow (vph)		
Turn Type		
	15	16
Permitted Phases	IJ	10
Detector Phase		
Switch Phase	٥	E 0
\ <i>\</i>	.0	5.0
/	.5	9.5
Total Split (s) 21.		19.0
Total Split (%) 23°		21%
\ /	.5	3.5
	.0	1.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag		Lead
Lead-Lag Optimize?		Yes
Recall Mode Non	ne	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay (s/veh)		
Queue Delay		
Total Delay (s/veh)		
LOS		
Approach Delay (s/veh)		
Approach LOS		
Queue Length 50th (ft)		
Queue Length 95th (ft)		
Internal Link Dist (ft)		
Turn Bay Length (ft)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		

Timings SMP Synchro 12 Report

	•	•	†	~	-	↓
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*					^
Traffic Volume (veh/h)	202	0	0	0	0	1333
Future Volume (Veh/h)	202	0	0	0	0	1333
Sign Control	Yield		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.97	0.92	0.92	0.92	0.97	0.97
Hourly flow rate (vph)	208	0	0	0	0	1374
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (ft)						125
pX, platoon unblocked	0.79					
vC, conflicting volume	687	0			0	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	65	0			0	
tC, single (s)	6.9	6.9			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	72	100			100	
cM capacity (veh/h)	733	1084			1622	
			CD 0			
Direction, Lane #	WB 1	SB 1	SB 2			
Volume Total	208	687	687			
Volume Left	208	0	0			
Volume Right	0	0	0			
cSH	733	1700	1700			
Volume to Capacity	0.28	0.40	0.40			
Queue Length 95th (ft)	29	0	0			
Control Delay (s/veh)	11.8	0.0	0.0			
Lane LOS	В					
Approach Delay (s/veh)	11.8	0.0				
Approach LOS	В					
Intersection Summary						
Average Delay			1.6			
Intersection Capacity Utiliza	ation		49.7%	IC	Ulevelo	of Service
Analysis Period (min)	u		15	10	2 201010	5011100
raidiyoio i cilou (iliili)			10			

	۶	→	•	•	1	†	-	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	*	13	7	1	A	†	1	† 1>	
Traffic Volume (vph)	237	338	183	224	90	994	181	842	
Future Volume (vph)	237	338	183	224	90	994	181	842	
Lane Group Flow (vph)	252	455	195	392	116	1308	194	1063	
Turn Type	Prot	NA	Prot	NA	Prot	NA	Prot	NA	
Protected Phases	7	4	3	8	5	2	1	6	
Permitted Phases									
Detector Phase	7	4	3	8	5	2	1	6	
Switch Phase									
Minimum Initial (s)	5.0	6.0	5.0	6.0	5.0	10.0	5.0	10.0	
Minimum Split (s)	13.4	12.9	13.4	12.9	14.0	17.5	14.0	17.5	
Total Split (s)	29.0	44.0	30.0	45.0	24.0	77.0	29.0	82.0	
Total Split (%)	16.1%	24.4%	16.7%	25.0%	13.3%	42.8%	16.1%	45.6%	
Yellow Time (s)	5.4	5.4	5.4	5.4	6.0	6.0	6.0	6.0	
All-Red Time (s)	3.0	1.5	3.0	1.5	3.0	1.5	3.0	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	8.4	6.9	8.4	6.9	9.0	7.5	9.0	7.5	
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	None	C-Min	None	C-Min	
Act Effct Green (s)	20.7	37.1	21.7	38.1	14.5	69.4	20.0	75.0	
Actuated g/C Ratio	0.12	0.21	0.12	0.21	0.08	0.39	0.11	0.42	
v/c Ratio	1.31	1.25	0.97	1.09	0.85	0.98	1.01	0.75	
Control Delay (s/veh)	230.2	188.7	132.9	134.8	124.7	73.3	143.6	48.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay (s/veh)	230.2	188.7	132.9	134.8	124.7	73.3	143.6	48.3	
LOS	F	F	F	F	F	Е	F	D	
Approach Delay (s/veh)		203.5		134.1		77.5		63.0	
Approach LOS		F		F		Е		Е	
Queue Length 50th (ft)	~382	~663	234	~504	138	795	~235	556	
Queue Length 95th (ft)	#578	#901	#410	#731	#257	#957	#415	646	
Internal Link Dist (ft)		2065		766		2316		1512	
Turn Bay Length (ft)	415		500		500		540		
Base Capacity (vph)	192	363	201	359	142	1336	192	1410	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.31	1.25	0.97	1.09	0.82	0.98	1.01	0.75	
Intersection Summary									
Cycle Length: 180									

Cycle Length: 180 Actuated Cycle Length: 180

Offset: 163 (91%), Referenced to phase 2:NBT and 6:SBT, Start of Yellow

Natural Cycle: 150

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.31

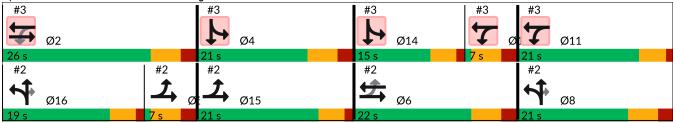
Intersection Signal Delay (s/veh): 103.7 Intersection LOS: F
Intersection Capacity Utilization 105.4% ICU Level of Service G

Analysis Period (min) 15

1: Ronald W Reagan Boulevard & RM 2243

- Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
- 95th percentile volume exceeds capacity, queue may be longer.
 - Queue shown is maximum after two cycles.

Splits and Phases: 1: Ronald W Reagan Boulevard & RM 2243


	۶	→	+	1	†	~						
Lane Group	EBL	EBT	WBT	NBL	NBT	NBR	Ø1	Ø2	Ø4	Ø5	Ø8	Ø11
Lane Configurations	*	↑	† \$	*	^	7						
Traffic Volume (vph)	27	325	421	222	553	363						
Future Volume (vph)	27	325	421	222	553	363						
Lane Group Flow (vph)	31	369	571	252	628	413						
Turn Type	D.P+P	NA	NA	Split	NA	Perm						
Protected Phases	5 15	5 6 15	6	8 16	8 16		1	2	4	5	8	11
Permitted Phases	6					8 16						
Detector Phase	5 15	5 6 15	6	8 16	8 16	8 16						
Switch Phase												
Minimum Initial (s)			9.0				1.0	9.0	9.0	1.0	9.0	5.0
Minimum Split (s)			15.0				7.0	15.0	15.0	7.0	15.0	9.5
Total Split (s)			22.0				7.0	26.0	21.0	7.0	21.0	21.0
Total Split (%)			24.4%				8%	29%	23%	8%	23%	23%
Yellow Time (s)			4.0				4.0	4.0	4.0	4.0	4.0	3.5
All-Red Time (s)			2.0				2.0	2.0	2.0	2.0	2.0	1.0
Lost Time Adjust (s)			0.0				2.0	2.0	2.0	2.0	2.0	1.0
Total Lost Time (s)			6.0									
Lead/Lag			0.0				Lag			Lag		
Lead-Lag Optimize?							Lag			Lag		
Recall Mode			Min				None	Min	None	Min	Min	None
Act Effct Green (s)	37.5	43.5	15.8	30.2	30.2	30.2	NOHE	IVIIII	NOHE	IVIIII	IVIIII	INOTIC
Actuated g/C Ratio	0.44	0.51	0.18	0.35	0.35	0.35						
v/c Ratio	0.44	0.31	0.18	0.40	0.50	0.50						
Control Delay (s/veh)	6.6	10.3	51.2	23.2	23.5	4.5						
Queue Delay	0.0	2.2	42.5	0.0	0.0	0.0						
Total Delay (s/veh)	6.6	12.5	93.7	23.3	23.5	4.5						
LOS	0.0 A	12.5 B	93.7 F	23.3 C	23.5 C	4.5 A						
	A	12.0	93.7	U	17.3	A						
Approach LOS			93.7 F		17.3 B							
Approach LOS	٥	B		100		٥						
Queue Length 50th (ft)	9	120	154	102	139	0						
Queue Length 95th (ft)	m22	179	#254	161	183	52						
Internal Link Dist (ft)		40	1492	445	48	445						
Turn Bay Length (ft)	F04	070	050	415	4050	415						
Base Capacity (vph)	531	870	650	677	1353	859						
Starvation Cap Reductn	0	358	0	0	0	0						
Spillback Cap Reductn	0	0	123	9	0	0						
Storage Cap Reductn	0	0	0	0	0	0						
Reduced v/c Ratio	0.06	0.72	1.08	0.38	0.46	0.48						
Intersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 85.7	7											
Natural Cycle: 65												
Control Type: Actuated-Und	coordinated											
Maximum v/c Ratio: 0.89												
Intersection Signal Delay (s				In	tersectior	n LOS: D						
Intersection Capacity Utiliza	ition 75.8%)		IC	U Level o	of Service	D					
Analysis Period (min) 15												
# 95th percentile volume	exceeds ca	pacity, qu	ueue may	be longer								

	~	~ -	~
Lane Group	Ø14	Ø15	Ø16
Lane Configurations			
Traffic Volume (vph)			
Future Volume (vph)			
Lane Group Flow (vph)			
Turn Type			
Protected Phases	14	15	16
Permitted Phases			
Detector Phase			
Switch Phase			
Minimum Initial (s)	5.0	5.0	5.0
Minimum Split (s)	9.5	9.5	9.5
Total Split (s)	15.0	21.0	19.0
Total Split (%)	17%	23%	21%
Yellow Time (s)	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0
Lost Time Adjust (s)			
Total Lost Time (s)			
Lead/Lag	Lead		Lead
Lead-Lag Optimize?	Yes		Yes
Recall Mode	None	None	None
Act Effct Green (s)	110110	140110	140110
Actuated g/C Ratio			
v/c Ratio			
Control Delay (s/veh)			
Queue Delay			
Total Delay (s/veh)			
LOS			
Approach Delay (s/veh)			
Approach LOS			
Queue Length 50th (ft)			
Queue Length 95th (ft)			
Internal Link Dist (ft)			
Turn Bay Length (ft)			
Base Capacity (vph)			
Starvation Cap Reductn			
Spillback Cap Reductn			
Storage Cap Reductn			
Reduced v/c Ratio			
Intersection Summary			

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 2: 183A NB Frontage Road & RM 2243

	→	•	+	/	Ţ							
Lane Group	EBT	WBL	WBT	SBL	SBT	Ø1	Ø4	Ø5	Ø6	Ø8	Ø11	Ø14
Lane Configurations	† 1>	*	↑	*	† \$							
Traffic Volume (vph)	216	212	431	136	488							
Future Volume (vph)	216	212	431	136	488							
Lane Group Flow (vph)	403	259	526	166	629							
Turn Type	NA	D.P+P	NA	Split	NA							
Protected Phases	2	1 11	1 11 2	4 14	4 14	1	4	5	6	8	11	14
Permitted Phases		2										
Detector Phase	2	1 11	1 11 2	4 14	4 14							
Switch Phase	_											
Minimum Initial (s)	9.0					1.0	9.0	1.0	9.0	9.0	5.0	5.0
Minimum Split (s)	15.0					7.0	15.0	7.0	15.0	15.0	9.5	9.5
Total Split (s)	26.0					7.0	21.0	7.0	22.0	21.0	21.0	15.0
Total Split (%)	28.9%					8%	23%	8%	24%	23%	23%	17%
Yellow Time (s)	4.0					4.0	4.0	4.0	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0					2.0	2.0	2.0	2.0	2.0	1.0	1.0
Lost Time Adjust (s)	0.0					2.0	2.0	2.0	2.0	2.0	1.0	1.0
Total Lost Time (s)	6.0											
Lead/Lag	0.0					Lag		Lag				Lead
Lead-Lag Optimize?						Lag		Lag				Yes
Recall Mode	Min					None	None	Min	Min	Min	None	None
Act Effct Green (s)	16.4	40.2	46.3	27.4	27.4	NONE	NONE	IVIIII	IVIIII	IVIIII	INOTIC	INOTIC
Actuated g/C Ratio	0.19	0.47	0.54	0.32	0.32							
v/c Ratio	0.19	0.47	0.54	0.34	0.56							
Control Delay (s/veh)	26.6	7.7	10.8	24.8	26.3							
Queue Delay	0.1	0.8	3.1	0.0	0.0							
Total Delay (s/veh)	26.7	8.6	13.9	24.8	26.3							
LOS	20.7 C	0.0 A	13.9 B	24.0 C	20.3 C							
Approach Delay (s/veh)	26.7		12.2	U	26.0							
Approach LOS	20.7 C		12.2 B		20.0 C							
	78	64	201	68	146							
Queue Length 50th (ft)	108	m126	m290	110	180							
Queue Length 95th (ft)	1271	111120	40	110	1952							
Internal Link Dist (ft)	1271		40	745	1902							
Turn Bay Length (ft)	054	600	1011	715	1160							
Base Capacity (vph)	851	609	1041	513	1169							
Starvation Cap Reductn	0	147	398	0	0							
Spillback Cap Reductn	59	0	0	6	0							
Storage Cap Reductn	0	0	0 00	0	0							
Reduced v/c Ratio	0.51	0.56	0.82	0.33	0.54							
Intersection Summary												
Cycle Length: 90	_											
Actuated Cycle Length: 85.	.7											
Natural Cycle: 65	,,											
Control Type: Actuated-Und	coordinated	l										
Maximum v/c Ratio: 0.89	, ,, ,,											
Intersection Signal Delay (s					tersection		_					
Intersection Capacity Utiliza	ation 75.8%			IC	U Level o	of Service	e D					
Analysis Period (min) 15												
m Volume for 95th percer	ntile queue	is metere	d by upstr	eam sign	al.							

Lane Group	Ø15	Ø16
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	15	16
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	5.0	5.0
Minimum Split (s)	9.5	9.5
Total Split (s)	21.0	19.0
Total Split (%)	23%	21%
Yellow Time (s)	3.5	3.5
All-Red Time (s)	1.0	1.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag		Lead
Lead-Lag Optimize?		Yes
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay (s/veh)		
Queue Delay		
Total Delay (s/veh)		
LOS		
Approach Delay (s/veh)		
Approach LOS		
Queue Length 50th (ft)		
Queue Length 95th (ft)		
Internal Link Dist (ft)		
Turn Bay Length (ft)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		

	•	•	†	~	-	↓
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*					^
Traffic Volume (veh/h)	147	0	0	0	0	815
Future Volume (Veh/h)	147	0	0	0	0	815
Sign Control	Yield		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	163	0	0	0	0	906
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (ft)						125
pX, platoon unblocked	0.86					
vC, conflicting volume	453	0			0	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	34	0			0	
tC, single (s)	6.9	6.9			4.1	
tC, 2 stage (s)	0.0	0.0				
tF (s)	3.5	3.3			2.2	
p0 queue free %	80	100			100	
cM capacity (veh/h)	835	1084			1622	
			00.0		.022	
Direction, Lane #	WB 1	SB 1	SB 2			
Volume Total	163	453	453			
Volume Left	163	0	0			
Volume Right	0	0	0			
cSH	835	1700	1700			
Volume to Capacity	0.20	0.27	0.27			
Queue Length 95th (ft)	18	0	0			
Control Delay (s/veh)	10.4	0.0	0.0			
Lane LOS	В					
Approach Delay (s/veh)	10.4	0.0				
Approach LOS	В					
Intersection Summary						
Average Delay			1.6			
Intersection Capacity Utiliza	ntion		35.4%	IC	III evel d	of Service
Analysis Period (min)	illori		15	10	O LOVOI C	/ OCIVICO
Alialysis Fellou (IIIIII)			19			

1. Nonaid W Neag	an bou	evalu	CX I XIVI	ZZ 4 3					1 101 1
	۶	→	•	←	1	†	-	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	*	A	*	1>	Ä	† 1>	Ä	† 1>	
Traffic Volume (vph)	292	396	212	253	77	1282	179	951	
Future Volume (vph)	292	396	212	253	77	1282	179	951	
ane Group Flow (vph)	298	461	216	400	99	1666	185	1153	
Turn Type	Prot	NA	Prot	NA	Prot	NA	Prot	NA	
Protected Phases	7	4	3	8	5	2	1	6	
Permitted Phases									
Detector Phase	7	4	3	8	5	2	1	6	
Switch Phase									
Minimum Initial (s)	5.0	6.0	5.0	6.0	5.0	10.0	5.0	10.0	
Minimum Split (s)	13.4	12.9	13.4	12.9	14.0	17.5	14.0	17.5	
otal Split (s)	29.0	44.0	30.0	45.0	24.0	77.0	29.0	82.0	
otal Split (%)	16.1%	24.4%	16.7%	25.0%	13.3%	42.8%	16.1%	45.6%	
'ellow Time (s)	5.4	5.4	5.4	5.4	6.0	6.0	6.0	6.0	
All-Red Time (s)	3.0	1.5	3.0	1.5	3.0	1.5	3.0	1.5	
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	8.4	6.9	8.4	6.9	9.0	7.5	9.0	7.5	
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	
ead-Lag Optimize?	Loud	Lug	Loud	Lug	Loud	Lug	Loud	Lug	
Recall Mode	None	None	None	None	None	C-Min	None	C-Min	
act Effct Green (s)	20.6	37.1	21.6	38.1	13.7	69.5	20.0	75.8	
Actuated g/C Ratio	0.11	0.21	0.12	0.21	0.08	0.39	0.11	0.42	
/c Ratio	1.48	1.25	1.02	1.06	0.75	1.25	0.11	0.72	
Control Delay (s/veh)	288.3	186.1	141.5	125.9	113.1	162.0	128.2	49.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay (s/veh)	288.3	186.1	141.5	125.9	113.1	162.0	128.2	49.8	
.OS	200.5 F	F	F	123.3 F	F	F	120.2 F	73.0 D	
Approach Delay (s/veh)	ı	226.2	ı	131.4	ı	159.3	ı	60.6	
Approach LOS		220.2 F		131.4 F		159.5 F		00.0 E	
Queue Length 50th (ft)	~481	~673	~269	~504	116	~1280	221	622	
Queue Length 95th (ft)	#689	#910	#454	#731	#203	#1414		717	
• ,	#009	2065	#454	766	#203		#388	1512	
nternal Link Dist (ft)	415	2000	500	700	500	2316	540	1312	
Furn Bay Length (ft)		270	500	277	500	1226		1155	
Base Capacity (vph)	202	370	212	377	144	1336	196	1455	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.48	1.25	1.02	1.06	0.69	1.25	0.94	0.79	
ntersection Summary									
Cycle Length: 180									
actuated Cycle Length: 180)								
Offset: 163 (91%), Referen		se 2:NBT	and 6:SB	T. Start o	of Yellow				
Natural Cycle: 150	I Ta to prior	2 -11101	0.00	, June	. 511511				
Control Type: Actuated-Coo	ordinated								
Maximum v/c Ratio: 1.48	J. dilliatod								
ntersection Signal Delay (s	(veh): 137	3		lı.	ntersectio	n LOS: F			
ntersection Capacity Utiliza	•					of Service	e H		
Analysis Pariod (min) 15	~~~·· 14 .	, 5		''	LOVOI	J. JOI 1100	- • •		

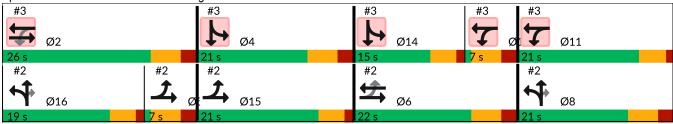
Timings SMP

Analysis Period (min) 15

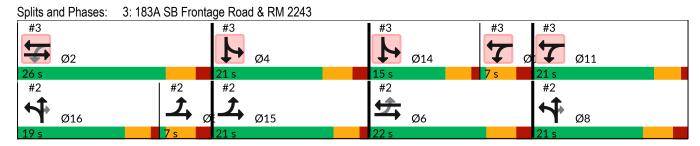
- Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.
 - Queue shown is maximum after two cycles.

Splits and Phases: 1: Ronald W Reagan Boulevard & RM 2243

	•	→	←	1	†	-						
Lane Group	EBL	EBT	WBT	NBL	NBT	NBR	Ø1	Ø2	Ø4	Ø5	Ø8	Ø11
Lane Configurations	*	^	† \$	7	^	7						
Traffic Volume (vph)	26	311	497	400	806	425						
Future Volume (vph)	26	311	497	400	806	425						
Lane Group Flow (vph)	30	353	653	455	916	483						
Turn Type	D.P+P	NA	NA	Split	NA	Perm						
Protected Phases	5 15	5 6 15	6	8 16	8 16		1	2	4	5	8	11
Permitted Phases	6					8 16						
Detector Phase	5 15	5 6 15	6	8 16	8 16	8 16						
Switch Phase												
Minimum Initial (s)			9.0				1.0	9.0	9.0	1.0	9.0	5.0
Minimum Split (s)			15.0				7.0	15.0	15.0	7.0	15.0	9.5
Total Split (s)			22.0				7.0	26.0	21.0	7.0	21.0	21.0
Total Split (%)			24.4%				8%	29%	23%	8%	23%	23%
Yellow Time (s)			4.0				4.0	4.0	4.0	4.0	4.0	3.5
All-Red Time (s)			2.0				2.0	2.0	2.0	2.0	2.0	1.0
Lost Time Adjust (s)			0.0				2.0	2.0	2.0	2.0	2.0	1.0
Total Lost Time (s)			6.0									
Lead/Lag			0.0				Lag			Lag		
Lead-Lag Optimize?							Lag			Lag		
Recall Mode			Min				None	Min	None	Min	Min	None
Act Effct Green (s)	38.0	44.0	16.0	33.3	33.3	33.3	INOITE	IVIIII	NONE	IVIIII	IVIIII	INOTIC
Actuated g/C Ratio	0.43	0.49	0.18	0.37	0.37	0.37						
v/c Ratio	0.43	0.49	1.05	0.69	0.69	0.56						
Control Delay (s/veh)	7.2	9.7	85.2	30.1	27.0	6.2						
Queue Delay	0.0	1.3	21.7	0.1	0.0	0.2						
Total Delay (s/veh)	7.2	11.0	106.9	30.2	27.0	6.2						
LOS	7.2 A	11.0 B	100.9 F	30.2 C	27.0 C	0.2 A						
Approach Delay (s/veh)	Α	10.7	106.9	C	22.4	Α						
,		10.7 B	100.9 F		22.4 C							
Approach LOS	7	94	~212	213	225	19						
Queue Length 50th (ft)	7 20	142	#312	312	285	84						
Queue Length 95th (ft)	20	40	1492	312	205 48	04						
Internal Link Dist (ft)		40	1492	445	40	415						
Turn Bay Length (ft)	E40	000	604	415	1017							
Base Capacity (vph)	519	900	624	674	1347	869						
Starvation Cap Reductn	0	345	100	0	0	0						
Spillback Cap Reductn	0	0	129	9	0	0						
Storage Cap Reductn Reduced v/c Ratio	0.06	0.64	0 1.32	0.68	0.68	0 0.56						
	0.00	0.04	1.02	0.00	0.00	0.00						
Intersection Summary Cycle Length: 90												
	2											
Actuated Cycle Length: 89.	J											
Natural Cycle: 65	oordinate -											
Control Type: Actuated-Uno Maximum v/c Ratio: 1.05	Joorumated											
	/vob), 20 0			l	torocotic	100.0						
Intersection Signal Delay (s					tersection		г					
Intersection Capacity Utiliza	au011 84.8%			IC	U Level (of Service						
Analysis Period (min) 15	the more t	a 4la a ('	المالية المالية	4-								
 Volume exceeds capac 	ity, queue i	s tneoreti	cally infini	te.								


Lane Group	Ø14	Ø15	Ø16
Lane Configurations			
Traffic Volume (vph)			
Future Volume (vph)			
Lane Group Flow (vph)			
Turn Type			
Protected Phases	14	15	16
Permitted Phases			
Detector Phase			
Switch Phase			
Minimum Initial (s)	5.0	5.0	5.0
Minimum Split (s)	9.5	9.5	9.5
Total Split (s)	15.0	21.0	19.0
Total Split (%)	17%	23%	21%
Yellow Time (s)	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0
Lost Time Adjust (s)	1.0	1.0	1.0
Total Lost Time (s)			
Lead/Lag	Lead		Lead
Lead-Lag Optimize?	Yes		Yes
Recall Mode	None	None	None
Act Effct Green (s)	110110	110110	110110
Actuated g/C Ratio			
v/c Ratio			
Control Delay (s/veh)			
Queue Delay			
Total Delay (s/veh)			
LOS			
Approach Delay (s/veh)			
Approach LOS			
Queue Length 50th (ft)			
Queue Length 95th (ft)			
Internal Link Dist (ft)			
Turn Bay Length (ft)			
Base Capacity (vph)			
Starvation Cap Reductn			
Spillback Cap Reductn			
Storage Cap Reductn			
Reduced v/c Ratio			
Intersection Summary			

Queue shown is maximum after two cycles.


95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 2: 183A NB Frontage Road & RM 2243

	→	•	←	/	Ţ							
Lane Group	EBT	WBL	WBT	SBL	SBT	Ø1	Ø4	Ø5	Ø6	Ø8	Ø11	Ø14
Lane Configurations	↑ ↑	*	^	*	†							
Traffic Volume (vph)	176	228	669	161	663							
Future Volume (vph)	176	228	669	161	663							
Lane Group Flow (vph)	298	238	697	168	710							
Turn Type	NA	D.P+P	NA	Split	NA							
Protected Phases	2	1 11	1 11 2	4 14	4 14	1	4	5	6	8	11	14
Permitted Phases		2										
Detector Phase	2	1 11	1 11 2	4 14	4 14							
Switch Phase												
Minimum Initial (s)	9.0					1.0	9.0	1.0	9.0	9.0	5.0	5.0
Minimum Split (s)	15.0					7.0	15.0	7.0	15.0	15.0	9.5	9.5
Total Split (s)	26.0					7.0	21.0	7.0	22.0	21.0	21.0	15.0
Total Split (%)	28.9%					8%	23%	8%	24%	23%	23%	17%
Yellow Time (s)	4.0					4.0	4.0	4.0	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0					2.0	2.0	2.0	2.0	2.0	1.0	1.0
Lost Time Adjust (s)	0.0											
Total Lost Time (s)	6.0											
Lead/Lag						Lag		Lag				Lead
Lead-Lag Optimize?								•				Yes
Recall Mode	Min					None	None	Min	Min	Min	None	None
Act Effct Green (s)	19.3	42.9	48.9	28.4	28.4							
Actuated g/C Ratio	0.22	0.48	0.55	0.32	0.32							
v/c Ratio	0.37	0.35	0.68	0.31	0.63							
Control Delay (s/veh)	19.4	5.2	10.8	24.7	28.7							
Queue Delay	0.0	0.4	14.1	0.0	0.0							
Total Delay (s/veh)	19.4	5.6	24.9	24.8	28.7							
LOS	В	Α	С	С	С							
Approach Delay (s/veh)	19.4		20.0		27.9							
Approach LOS	В		В		С							
Queue Length 50th (ft)	45	46	277	71	177							
Queue Length 95th (ft)	81	m75	m318	122	233							
Internal Link Dist (ft)	1271		40		1952							
Turn Bay Length (ft)				715								
Base Capacity (vph)	827	675	1034	567	1187							
Starvation Cap Reductn	0	148	326	0	0							
Spillback Cap Reductn	1	0	0	5	0							
Storage Cap Reductn	0	0	0	0	0							
Reduced v/c Ratio	0.36	0.45	0.98	0.30	0.60							
Intersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 89.3	3											
Natural Cycle: 65												
Control Type: Actuated-Unc	oordinated											
Maximum v/c Ratio: 1.05												
Intersection Signal Delay (s/	veh): 23.2			In	tersection	LOS: C						
Intersection Capacity Utiliza	,					of Service	E					
Analysis Period (min) 15												
m Volume for 95th percen	tile queue	is metere	d by upstr	eam sign	al.							

Lane Configurations Traffic Volume (vph) Future Volume (vph) Lane Group Flow (vph) Turn Type Protected Phases 15 16 Permitted Phases Detector Phase Switch Phase
Traffic Volume (vph) Future Volume (vph) Lane Group Flow (vph) Turn Type Protected Phases 15 16 Permitted Phases Detector Phase Switch Phase
Future Volume (vph) Lane Group Flow (vph) Turn Type Protected Phases 15 16 Permitted Phases Detector Phase Switch Phase
Lane Group Flow (vph) Turn Type Protected Phases 15 16 Permitted Phases Detector Phase Switch Phase
Turn Type Protected Phases 15 16 Permitted Phases Detector Phase Switch Phase
Protected Phases 15 16 Permitted Phases Detector Phase Switch Phase
Permitted Phases Detector Phase Switch Phase
Detector Phase Switch Phase
Switch Phase
Minimum Initial (a) FO FO
Minimum Initial (s) 5.0 5.0
Minimum Split (s) 9.5 9.5
Total Split (s) 21.0 19.0
Total Split (%) 23% 21%
Yellow Time (s) 3.5 3.5
All-Red Time (s) 1.0 1.0
Lost Time Adjust (s)
Total Lost Time (s)
Lead/Lag Lead
Lead-Lag Optimize? Yes
Recall Mode None None
Act Effct Green (s)
Actuated g/C Ratio
v/c Ratio
Control Delay (s/veh)
Queue Delay
Total Delay (s/veh)
LOS
Approach Delay (s/veh)
Approach LOS
Queue Length 50th (ft)
Queue Length 95th (ft)
Internal Link Dist (ft)
Turn Bay Length (ft)
Base Capacity (vph)
Starvation Cap Reductn
Spillback Cap Reductn
Storage Cap Reductn
Reduced v/c Ratio
Intersection Summary

	1	•	†	~	1	Ţ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	I
Lane Configurations	7					^	Ī
Traffic Volume (veh/h)	147	0	0	0	0	815	
Future Volume (Veh/h)	147	0	0	0	0	815	
Sign Control	Yield		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	
Hourly flow rate (vph)	179	0	0	0	0	994	
Pedestrians					•		
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)			110110			140110	
Upstream signal (ft)						125	
pX, platoon unblocked	0.84					120	
vC, conflicting volume	497	0			0		
vC1, stage 1 conf vol	731	U			0		
vC2, stage 2 conf vol							
vCu, unblocked vol	6	0			0		
tC, single (s)	6.8	6.9			4.1		
tC, 2 stage (s)	0.0	0.9			4.1		
tF (s)	3.5	3.3			2.2		
p0 queue free %	79	100			100		
	848	1084			1622		
cM capacity (veh/h)					1022		
Direction, Lane #	WB 1	SB 1	SB 2				
Volume Total	179	497	497				
Volume Left	179	0	0				
Volume Right	0	0	0				
cSH	848	1700	1700				
Volume to Capacity	0.21	0.29	0.29				
Queue Length 95th (ft)	20	0	0				
Control Delay (s/veh)	10.4	0.0	0.0				
Lane LOS	В						
Approach Delay (s/veh)	10.4	0.0					
Approach LOS	В						
Intersection Summary							
Average Delay			1.6				
Intersection Capacity Utilization	ion		35.4%	IC	ULevel	of Service	
Analysis Period (min)			15	.0	2 20.01		

	۶	→	•	←	4	†	-	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	*	13	*	1	A	† 1>	A	† 1>	
Traffic Volume (vph)	123	332	293	289	75	742	187	1502	
Future Volume (vph)	123	332	293	289	75	742	187	1502	
Lane Group Flow (vph)	126	426	299	445	101	983	192	1753	
Turn Type	Prot	NA	Prot	NA	Prot	NA	Prot	NA	
Protected Phases	7	4	3	8	5	2	1	6	
Permitted Phases									
Detector Phase	7	4	3	8	5	2	1	6	
Switch Phase									
Minimum Initial (s)	5.0	6.0	5.0	6.0	5.0	10.0	5.0	10.0	
Minimum Split (s)	13.4	12.9	13.4	12.9	14.0	17.5	14.0	17.5	
Total Split (s)	20.0	39.0	27.0	46.0	19.0	45.0	39.0	65.0	
Total Split (%)	13.3%	26.0%	18.0%	30.7%	12.7%	30.0%	26.0%	43.3%	
Yellow Time (s)	5.4	5.4	5.4	5.4	6.0	6.0	6.0	6.0	
All-Red Time (s)	3.0	1.5	3.0	1.5	3.0	1.5	3.0	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	8.4	6.9	8.4	6.9	9.0	7.5	9.0	7.5	
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	None	C-Min	None	C-Min	
Act Effct Green (s)	11.6	32.1	18.6	39.1	10.0	45.7	21.8	57.5	
Actuated g/C Ratio	0.08	0.21	0.12	0.26	0.07	0.30	0.15	0.38	
v/c Ratio	1.07	1.14	1.42	0.98	0.87	0.95	0.76	1.32	
Control Delay (s/veh)	164.9	139.5	258.2	90.5	122.3	67.8	80.2	186.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay (s/veh)	164.9	139.5	258.2	90.5	122.3	67.8	80.2	186.7	
LOS	F	F	F	F	F	Е	F	F	
Approach Delay (s/veh)		145.3		157.9		72.8		176.2	
Approach LOS		F		F		Е		F	
Queue Length 50th (ft)	~136	~478	~392	422	100	487	183	~1164	
Queue Length 95th (ft)	#274	#698	#585	#654	#215	#714	260	#1302	
Internal Link Dist (ft)		2065		766		2316		1512	
Turn Bay Length (ft)	415		500		500		540		
Base Capacity (vph)	118	375	211	453	116	1034	347	1328	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.07	1.14	1.42	0.98	0.87	0.95	0.55	1.32	
Intersection Summary									

Intersection Summary

Cycle Length: 150

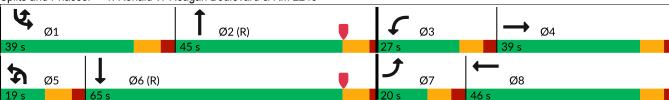
Actuated Cycle Length: 150

Offset: 68 (45%), Referenced to phase 2:NBT and 6:SBT, Start of Yellow

Natural Cycle: 150

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.42


Intersection Signal Delay (s/veh): 143.2 Intersection LOS: F
Intersection Capacity Utilization 119.1% ICU Level of Service H

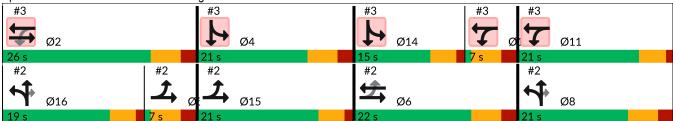
Analysis Period (min) 15

- Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Ronald W Reagan Boulevard & RM 2243

	۶	→	+	1	†	~						
Lane Group	EBL	EBT	WBT	NBL	NBT	NBR	Ø1	Ø2	Ø4	Ø5	Ø8	Ø11
Lane Configurations	*	↑	†	7	^	7						
Traffic Volume (vph)	28	370	554	193	306	212						
Future Volume (vph)	28	370	554	193	306	212						
Lane Group Flow (vph)	30	402	697	210	333	230						
Turn Type	D.P+P	NA	NA	Split	NA	Perm						
Protected Phases	5 15	5 6 15	6	8 16	8 16		1	2	4	5	8	11
Permitted Phases	6					8 16						
Detector Phase	5 15	5 6 15	6	8 16	8 16	8 16						
Switch Phase												
Minimum Initial (s)			9.0				1.0	9.0	9.0	1.0	9.0	5.0
Minimum Split (s)			15.0				7.0	15.0	15.0	7.0	15.0	9.5
Total Split (s)			22.0				7.0	26.0	21.0	7.0	21.0	21.0
Total Split (%)			24.4%				8%	29%	23%	8%	23%	23%
Yellow Time (s)			4.0				4.0	4.0	4.0	4.0	4.0	3.5
All-Red Time (s)			2.0				2.0	2.0	2.0	2.0	2.0	1.0
Lost Time Adjust (s)			0.0				2.0	2.0	2.0	2.0	2.0	1.0
Total Lost Time (s)			6.0									
Lead/Lag			0.0				Lag			Lag		
Lead-Lag Optimize?							Lag			Lag		
Recall Mode			Min				None	Min	None	Min	Min	None
Act Effct Green (s)	41.2	47.2	16.1	25.9	25.9	25.9	NOHE	IVIIII	NOHE	IVIIII	IVIIII	INOTIC
Actuated g/C Ratio	0.48	0.55	0.19	0.30	0.30	0.30						
v/c Ratio	0.48	0.33	1.09	0.30	0.33	0.37						
Control Delay (s/veh)	4.3	8.5	95.6	26.6	24.0	4.9						
Queue Delay	0.0	2.3	6.7	0.0	0.0	0.0						
Total Delay (s/veh)	4.3	10.8	102.3	26.7	24.0	4.9						
LOS	4.3 A	10.6 B	102.5 F	20.7 C	24.0 C	4.9 A						
Approach Delay (s/veh)	Α	10.3	102.3	U	19.0							
Approach LOS		10.3 B	102.3 F		19.0 B							
Queue Length 50th (ft)	4	132	~228	90	73	0						
	m10	204	~226 #358	153	109	46						
Queue Length 95th (ft)	IIIIU	40	#336 1492	100	48	40						
Internal Link Dist (ft)		40	1492	44E	40	445						
Turn Bay Length (ft)	EEO	040	640	415	1006	415						
Base Capacity (vph)	559	949	642	643	1286	720						
Starvation Cap Reductn	0	402	0	0	0	0						
Spillback Cap Reductn	0	0	88	22	0	0						
Storage Cap Reductn	0	0 70	0	0	0	0						
Reduced v/c Ratio	0.05	0.73	1.26	0.34	0.26	0.32						
Intersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 85.2	2											
Natural Cycle: 65												
Control Type: Actuated-Und	coordinated											
Maximum v/c Ratio: 1.09												
Intersection Signal Delay (s					tersectior							
Intersection Capacity Utiliza	ation 85.6%)		IC	U Level of	of Service	Ε					
Analysis Period (min) 15												
 Volume exceeds capaci 	ity, queue i	s theoreti	cally infini	te.								


Lane Configurations Traffic Volume (vph) Future Volume (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead Lead Lead Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)	Lane Group	Ø14	Ø15	Ø16
Traffic Volume (vph) Future Volume (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Link Dist (ft) Turn Bay Length (ft) Turn Bay Length (ft)				
Future Volume (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Yellow Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead Lead Lead Lead Lead Lead Lead				
Lane Group Flow (vph) Turn Type Protected Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Yellow Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Turn Type Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) Lead/Lag Lead Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio V/c Ratio Control Delay (s/veh) LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Index Simick Si				
Protected Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Yellow Time (s) Lead/Lag Lead Lead Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Indimum Split (s) Total Split (s) Total Split (s) Total Split (%) Total Split (s) Total Split (%) Total Split (s) Total Split (s) Total Lost Time (s) Lead Lead Lead Lead Lead Lead Lead Lead				
Permitted Phases Detector Phase Switch Phase Minimum Initial (s) 5.0 5.0 5.0 Minimum Split (s) 9.5 9.5 9.5 Total Split (s) 15.0 21.0 19.0 Total Split (%) 17% 23% 21% Yellow Time (s) 3.5 3.5 3.5 All-Red Time (s) 1.0 1.0 1.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead Lead-Lag Optimize? Yes Yes Recall Mode None None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)		14	15	16
Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead Lead Lead Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) Approach LOS Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lead/Lag Lead Lead Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) India Split (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.				
Minimum Initial (s) 5.0 5.0 5.0 Minimum Split (s) 9.5 9.5 9.5 Total Split (s) 15.0 21.0 19.0 Total Split (%) 17% 23% 21% Yellow Time (s) 3.5 3.5 3.5 All-Red Time (s) 1.0 1.0 1.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead Lead-Lag Optimize? Yes Yes Recall Mode None None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Minimum Split (s) 9.5 9.5 9.5 Total Split (s) 15.0 21.0 19.0 Total Split (%) 17% 23% 21% Yellow Time (s) 3.5 3.5 3.5 All-Red Time (s) 1.0 1.0 1.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead Lead-Lag Optimize? Yes Yes Recall Mode None None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)		5.0	5.0	5.0
Total Split (s) 15.0 21.0 19.0 Total Split (%) 17% 23% 21% Yellow Time (s) 3.5 3.5 3.5 All-Red Time (s) 1.0 1.0 1.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead Lead-Lag Optimize? Yes Yes Recall Mode None None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Total Split (%) 17% 23% 21% Yellow Time (s) 3.5 3.5 3.5 All-Red Time (s) 1.0 1.0 1.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead Lead-Lag Optimize? Yes Yes Recall Mode None None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead Lead Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
All-Red Time (s) 1.0 1.0 1.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead Lead-Lag Optimize? Yes Yes Recall Mode None None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead Lead-Lag Optimize? Yes Yes Recall Mode None None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)	()			
Total Lost Time (s) Lead/Lag Lead Lead Lead-Lag Optimize? Yes Yes Recall Mode None None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)		1.0	1.0	1.0
Lead/Lag Lead Lead Lead-Lag Optimize? Yes Yes Recall Mode None None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Lead-Lag Optimize? Yes Yes Recall Mode None None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)		l ead		l ead
Recall Mode None None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)	•			
Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)			None	
Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)		140116	TAOHE	140116
v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Internal Link Dist (ft) Turn Bay Length (ft)				
Turn Bay Length (ft)				
	` ,			
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Reduced v/c Ratio	Reduced V/C Ratio			
Intersection Summary	Intersection Summary			

Queue shown is maximum after two cycles.

- # 95th percentile volume exceeds capacity, queue may be longer.

 Queue shown is maximum after two cycles.
- m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 2: 183A NB Frontage Road & RM 2243

	→	•	+	/	Ţ							
Lane Group	EBT	WBL	WBT	SBL	SBT	Ø1	Ø4	Ø5	Ø6	Ø8	Ø11	Ø14
Lane Configurations	† 1>	*	^	*	† \$							
Traffic Volume (vph)	256	331	416	142	903							
Future Volume (vph)	256	331	416	142	903							
Lane Group Flow (vph)	478	341	429	146	953							
Turn Type	NA	D.P+P	NA	Split	NA							
Protected Phases	2	1 11	1 11 2	4 14	4 14	1	4	5	6	8	11	14
Permitted Phases		2										
Detector Phase	2	1 11	1 11 2	4 14	4 14							
Switch Phase												
Minimum Initial (s)	9.0					1.0	9.0	1.0	9.0	9.0	5.0	5.0
Minimum Split (s)	15.0					7.0	15.0	7.0	15.0	15.0	9.5	9.5
Total Split (s)	26.0					7.0	21.0	7.0	22.0	21.0	21.0	15.0
Total Split (%)	28.9%					8%	23%	8%	24%	23%	23%	17%
Yellow Time (s)	4.0					4.0	4.0	4.0	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0					2.0	2.0	2.0	2.0	2.0	1.0	1.0
Lost Time Adjust (s)	0.0					2.0	2.0			2.0	1.0	
Total Lost Time (s)	6.0											
Lead/Lag	0.0					Lag		Lag				Lead
Lead-Lag Optimize?						Lug		Lug				Yes
Recall Mode	Min					None	None	Min	Min	Min	None	None
Act Effct Green (s)	16.2	37.5	43.5	29.6	29.6	110110	140110	IVIIII	IVIIII	IVIIII	140110	140110
Actuated g/C Ratio	0.19	0.44	0.51	0.35	0.35							
v/c Ratio	0.13	0.62	0.47	0.33	0.78							
Control Delay (s/veh)	28.9	11.3	10.9	22.9	31.1							
Queue Delay	0.2	2.5	5.0	0.0	0.0							
Total Delay (s/veh)	29.1	13.8	15.9	22.9	31.1							
LOS	C	В	10.5 B	C	C							
Approach Delay (s/veh)	29.1	U	15.0	U	30.0							
Approach LOS	23.1 C		15.0 B		C							
Queue Length 50th (ft)	95	151	190	57	243							
Queue Length 95th (ft)	146	m163	m204	109	336							
Internal Link Dist (ft)	1271	111103	40	109	1952							
Turn Bay Length (ft)	1271		40	715	1902							
Base Capacity (vph)	849	573	995	545	1236							
,	049	129	488	0	1230							
Starvation Cap Reductn	55											
Spillback Cap Reductn		0	0	0	0							
Storage Cap Reductn Reduced v/c Ratio	0.60	0 0.77	0.85	0 0.27	0.77							
Intersection Summary	0.00	0.11	0.00	0.21	0.77							
Cycle Length: 90												
Actuated Cycle Length: 85.	2											
Natural Cycle: 65	. L											
Control Type: Actuated-Uni	coordinated	l										
Maximum v/c Ratio: 1.09	Coordinated											
Intersection Signal Delay (s	s/veh). 24 0			In	tersection	108.0						
Intersection Capacity Utiliza					U Level		\F					
Analysis Period (min) 15	adon 03.070			iC	O LEVEL	or Oct VICE	, L					
m Volume for 95th percer	ntile augus	ie motoro	d by upetr	aam cian	ءا							
iii volume ioi soin percer	nule queue	is metere	a by upsti	cam sign	al.							

Splits and Phases: 3: 183A SB Frontage Road & RM 2243 #3 #3 Ø2 Ø4 Ø14 Ø11 #2 #2 #2 Ø6 Ø8 Ø16

Lane Group	Ø15	Ø16
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	15	16
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	5.0	5.0
Minimum Split (s)	9.5	9.5
Total Split (s)	21.0	19.0
Total Split (%)	23%	21%
Yellow Time (s)	3.5	3.5
All-Red Time (s)	1.0	1.0
Lost Time Adjust (s)	1.0	1.0
Total Lost Time (s)		
Lead/Lag		Lead
Lead-Lag Optimize?		Yes
Recall Mode	None	None
Act Effct Green (s)	INUIT	INOHE
Actuated g/C Ratio		
v/c Ratio		
Control Delay (s/veh)		
Queue Delay		
Total Delay (s/veh)		
LOS		
Approach Delay (s/veh)		
Approach LOS		
Queue Length 50th (ft)		
Queue Length 95th (ft)		
Internal Link Dist (ft)		
Turn Bay Length (ft) Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn Reduced v/c Ratio		
Reduced V/C Ratio		
Intersection Summary		

	•	•	†	-	-	ļ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*					^
Traffic Volume (veh/h)	218	0	0	0	0	1442
Future Volume (Veh/h)	218	0	0	0	0	1442
Sign Control	Yield		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.97	0.92	0.92	0.92	0.97	0.97
Hourly flow rate (vph)	225	0	0	0	0	1487
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (ft)						125
pX, platoon unblocked	0.76					
vC, conflicting volume	744	0			0	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	39	0			0	
tC, single (s)	6.9	6.9			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	69	100			100	
cM capacity (veh/h)	735	1084			1622	
			00.0			
Direction, Lane #	WB 1	SB 1	SB 2			
Volume Total	225	744	744			
Volume Left	225	0	0			
Volume Right	0	0	0			
cSH	735	1700	1700			
Volume to Capacity	0.31	0.44	0.44			
Queue Length 95th (ft)	32	0	0			
Control Delay (s/veh)	12.0	0.0	0.0			
Lane LOS	В					
Approach Delay (s/veh)	12.0	0.0				
Approach LOS	В					
Intersection Summary						
Average Delay			1.6			
Intersection Capacity Utilizati	ion		52.7%	IC	U Level o	of Service
Analysis Period (min)			15			

	۶	→	•	←	4	†	-	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	7	1	7	13	*	†	*	† 1>	
Traffic Volume (vph)	256	366	198	242	97	1159	196	982	
Future Volume (vph)	256	366	198	242	97	1159	196	982	
Lane Group Flow (vph)	272	491	211	424	126	1504	210	1226	
Turn Type	Prot	NA	Prot	NA	Prot	NA	Prot	NA	
Protected Phases	7	4	3	8	5	2	1	6	
Permitted Phases									
Detector Phase	7	4	3	8	5	2	1	6	
Switch Phase									
Minimum Initial (s)	5.0	6.0	5.0	6.0	5.0	10.0	5.0	10.0	
Minimum Split (s)	13.4	12.9	13.4	12.9	14.0	17.5	14.0	17.5	
Total Split (s)	29.0	44.0	30.0	45.0	24.0	77.0	29.0	82.0	
Total Split (%)	16.1%	24.4%	16.7%	25.0%	13.3%	42.8%	16.1%	45.6%	
Yellow Time (s)	5.4	5.4	5.4	5.4	6.0	6.0	6.0	6.0	
All-Red Time (s)	3.0	1.5	3.0	1.5	3.0	1.5	3.0	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	8.4	6.9	8.4	6.9	9.0	7.5	9.0	7.5	
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	None	C-Min	None	C-Min	
Act Effct Green (s)	20.6	37.1	21.6	38.1	14.8	69.5	20.0	74.7	
Actuated g/C Ratio	0.11	0.21	0.12	0.21	0.08	0.39	0.11	0.42	
v/c Ratio	1.44	1.35	1.06	1.18	0.90	1.12	1.09	0.87	
Control Delay (s/veh)	276.0	225.7	150.7	162.3	132.4	115.3	161.8	55.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay (s/veh)	276.0	225.7	150.7	162.3	132.4	115.3	161.8	55.7	
LOS	F	F	F	F	F	F	F	Е	
Approach Delay (s/veh)		243.6		158.4		116.6		71.2	
Approach LOS		F		F		F		Е	
Queue Length 50th (ft)	~433	~752	~271	~583	150	~1070	~278	692	
Queue Length 95th (ft)	#634	#995	#454	#815	#286	#1208	#461	795	
Internal Link Dist (ft)		2065		766		2316		1512	
Turn Bay Length (ft)	415		500		500		540		
Base Capacity (vph)	189	363	200	359	142	1337	192	1408	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.44	1.35	1.06	1.18	0.89	1.12	1.09	0.87	
Intersection Summary									

Cycle Length: 180 Actuated Cycle Length: 180

Offset: 163 (91%), Referenced to phase 2:NBT and 6:SBT, Start of Yellow

Natural Cycle: 150

Control Type: Actuated-Coordinated

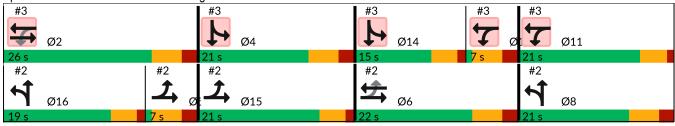
Maximum v/c Ratio: 1.44

Intersection LOS: F Intersection Signal Delay (s/veh): 129.7 Intersection Capacity Utilization 114.1% ICU Level of Service H

Analysis Period (min) 15

- Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.
 - Queue shown is maximum after two cycles.

Splits and Phases: 1: Ronald W Reagan Boulevard & RM 2243


	۶	→	←	4	†	~						
Lane Group	EBL	EBT	WBT	NBL	NBT	NBR	Ø1	Ø2	Ø4	Ø5	Ø8	Ø11
Lane Configurations	*	↑	†	*	^	7						
Traffic Volume (vph)	29	352	455	240	598	393						
Future Volume (vph)	29	352	455	240	598	393						
Lane Group Flow (vph)	33	400	618	273	680	447						
Turn Type	D.P+P	NA	NA	Split	NA	Free						
Protected Phases	5 15	5 6 15	6	8 16	8 16		1	2	4	5	8	11
Permitted Phases	6					Free						
Detector Phase	5 15	5 6 15	6	8 16	8 16							
Switch Phase												
Minimum Initial (s)			9.0				1.0	9.0	9.0	1.0	9.0	5.0
Minimum Split (s)			15.0				7.0	15.0	15.0	7.0	15.0	9.5
Total Split (s)			22.0				7.0	26.0	21.0	7.0	21.0	21.0
Total Split (%)			24.4%				8%	29%	23%	8%	23%	23%
Yellow Time (s)			4.0				4.0	4.0	4.0	4.0	4.0	3.5
All-Red Time (s)			2.0				2.0	2.0	2.0	2.0	2.0	1.0
Lost Time Adjust (s)			0.0				2.0	2.0	2.0	2.0	2.0	1.0
Total Lost Time (s)			6.0									
Lead/Lag			0.0				Lag			Lag		
Lead-Lag Optimize?							Lug			Lug		
Recall Mode			Min				None	Min	None	Min	Min	None
Act Effct Green (s)	39.1	45.1	16.0	29.5	29.5	86.6	NONE	IVIIII	NONE	171111	IVIIII	INOTIC
Actuated g/C Ratio	0.45	0.52	0.18	0.34	0.34	1.00						
v/c Ratio	0.45	0.32	1.01	0.45	0.56	0.29						
Control Delay (s/veh)	6.0	10.0	73.9	25.0	25.3	0.23						
Queue Delay	0.0	2.4	33.3	0.0	0.0	0.0						
Total Delay (s/veh)	6.0	12.4	107.2	25.0	25.3	0.5						
LOS	0.0 A	12.4 B	107.2 F	25.0 C	25.5 C	0.5 A						
Approach Delay (s/veh)	A	11.9	107.2	U	17.3	Α						
Approach LOS		11.9 B	107.2 F		17.3 B							
	6	130	~176	118	161	0						
Queue Length 50th (ft)												
Queue Length 95th (ft)	m21	192 40	#296	175	200 48	0						
Internal Link Dist (ft)		40	1492	445	40	445						
Turn Bay Length (ft)	T 40	004	C1.1	415	4000	415						
Base Capacity (vph)	548	884	614	670	1339	1538						
Starvation Cap Reductn	0	349	0	0	0	0						
Spillback Cap Reductn	0	0	115	9	0	0						
Storage Cap Reductn	0	0	0	0	0	0						
Reduced v/c Ratio	0.06	0.75	1.24	0.41	0.51	0.29						
Intersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 86.6												
Natural Cycle: 65												
Control Type: Actuated-Unco	ordinated											
Maximum v/c Ratio: 1.01												
Intersection Signal Delay (s/\					tersectior							
Intersection Capacity Utilizati	ion 72.9%			IC	U Level o	of Service	C C					
Analysis Period (min) 15												
 Volume exceeds capacity 	y, queue is	s theoreti	cally infinit	te.								

Lane Configurations Traffic Volume (vph) Future Volume (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead Lead Lead Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)	Lane Group	Ø14	Ø15	Ø16
Traffic Volume (vph) Future Volume (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Link Dist (ft) Turn Bay Length (ft) Turn Bay Length (ft)				
Future Volume (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Yellow Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead Lead Lead Lead Lead Lead Lead				
Lane Group Flow (vph) Turn Type Protected Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Yellow Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Turn Type Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) Lead/Lag Lead Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio V/c Ratio Control Delay (s/veh) LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Index Simick Si				
Protected Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Yellow Time (s) Lead/Lag Lead Lead Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Indimum Split (s) Total Split (s) Total Split (s) Total Split (%) Total Split (s) Total Split (%) Total Split (s) Total Split (s) Total Lost Time (s) Lead Lead Lead Lead Lead Lead Lead Lead				
Permitted Phases Detector Phase Switch Phase Minimum Initial (s) 5.0 5.0 5.0 Minimum Split (s) 9.5 9.5 9.5 Total Split (s) 15.0 21.0 19.0 Total Split (%) 17% 23% 21% Yellow Time (s) 3.5 3.5 3.5 All-Red Time (s) 1.0 1.0 1.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead Lead-Lag Optimize? Yes Yes Recall Mode None None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)		14	15	16
Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead Lead Lead Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) Approach LOS Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lead/Lag Lead Lead Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) India Split (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.				
Minimum Initial (s) 5.0 5.0 5.0 Minimum Split (s) 9.5 9.5 9.5 Total Split (s) 15.0 21.0 19.0 Total Split (%) 17% 23% 21% Yellow Time (s) 3.5 3.5 3.5 All-Red Time (s) 1.0 1.0 1.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead Lead-Lag Optimize? Yes Yes Recall Mode None None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Minimum Split (s) 9.5 9.5 9.5 Total Split (s) 15.0 21.0 19.0 Total Split (%) 17% 23% 21% Yellow Time (s) 3.5 3.5 3.5 All-Red Time (s) 1.0 1.0 1.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead Lead-Lag Optimize? Yes Yes Recall Mode None None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)		5.0	5.0	5.0
Total Split (s) 15.0 21.0 19.0 Total Split (%) 17% 23% 21% Yellow Time (s) 3.5 3.5 3.5 All-Red Time (s) 1.0 1.0 1.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead Lead-Lag Optimize? Yes Yes Recall Mode None None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Total Split (%) 17% 23% 21% Yellow Time (s) 3.5 3.5 3.5 All-Red Time (s) 1.0 1.0 1.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead Lead-Lag Optimize? Yes Yes Recall Mode None None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead Lead Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
All-Red Time (s) 1.0 1.0 1.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead Lead-Lag Optimize? Yes Yes Recall Mode None None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead Lead-Lag Optimize? Yes Yes Recall Mode None None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)	()			
Total Lost Time (s) Lead/Lag Lead Lead Lead-Lag Optimize? Yes Yes Recall Mode None None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)		1.0	1.0	1.0
Lead/Lag Lead Lead Lead-Lag Optimize? Yes Yes Recall Mode None None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Lead-Lag Optimize? Yes Yes Recall Mode None None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)		l ead		l ead
Recall Mode None None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)	•			
Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)			None	
Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)		140116	140116	140116
v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Internal Link Dist (ft) Turn Bay Length (ft)				
Turn Bay Length (ft)				
	` ,			
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Reduced v/c Ratio	Reduced V/C Ratio			
Intersection Summary	Intersection Summary			

Queue shown is maximum after two cycles.

- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
- m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 2: 183A NB Frontage Road & RM 2243

Lane Configurations Traffic Volume (vph) 234 229 466 147 528 Turner Volume (vph) 240 25 568 179 681 Turner Volume (vph) 241 41 414 414 Turner Volume (vph) 25 Turner Volume (vph) 26 Turner Volume (vph) 27 Turner Volume (vph) 283 187 280 Turner Volume (vph) 283 187 280 Turner Volume (vph) 283 187 297 Turner Volume (vph) 284 285 Turner Volume (vph) 285 Turner Volume (vph) 286 Turner Volume (vph) 287 Turner Volume (vph) 288 Turner Volume (vph) 288 Turner Volume (vph) 288 Turner Volume (vph) 287 Turner Volume (vph) 288 Turner Volume (vph) 287 Turner Volume (vph) 288 Turner Volume (vph) 287 Turner Volume (vph) 288 Turner Volume (vph) 288 Turner Volume (vph) 289 Turner Volume (vph) 281 Turner Volume (vph) 282 Turner Volume (vph) 283 Turner Volume (vph) 284 Turner Volume (vph) 285 Turner Volume (vph) 286 Turner Volume (vph) 287 Turner Volume (vph) 288 Turner Volume (vph) 288 Turner Volume (vph) 288 Turner Volume (vph) 289 Turner		→	•	←	/	ļ							
Traffic Volume (vph)	Lane Group	EBT	WBL	WBT	SBL	SBT	Ø1	Ø4	Ø5	Ø6	Ø8	Ø11	Ø14
Traffic Volume (vph)	Lane Configurations	† 1>	*	^	*	†							
Future Volume (vph)	Traffic Volume (vph)		229		147	528							
Lane Group Flow (viph) 436		234		466		528							
Turn Type		436	279	568	179	681							
Protected Phases 2 111 1112 414 414 1 4 5 6 8 11 14 Permitted Phases 2 Detector Phase 2 111 1112 414 414 1 4 5 6 8 8 11 14 Permitted Phases 2 111 1112 414 414 Switch Phase Minimum Initial (s) 9.0	,	NA	D.P+P	NA	Split	NA							
Detector Phase 2		2	1 11	1 11 2		4 14	1	4	5	6	8	11	14
Switch Phase	Permitted Phases		2										
Minimum Initial (s) 9.0 1.0 9.0 1.0 9.0 9.0 5.0 5.0 Minimum Split (s) 15.0 7.0 15.0 7.0 15.0 7.0 15.0 15.0 9.5 9.5 9.5 Minimum Split (s) 26.0 7.0 21.0 7.0 21.0 7.0 22.0 21.0 21.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 1	Detector Phase	2	1 11	1 11 2	4 14	4 14							
Minimum Split (s)	Switch Phase												
Total Split (s) 26.0 7.0 21.0 7.0 22.0 21.0 21.0 15.0 17.0 22.0 21.0 21.0 15.0 17.0 17.0 17.0 22.0 21.0 21.0 21.0 17.0 17.0 22.0 21.0 21.0 21.0 17.0 17.0 22.0 21.0 21.0 21.0 17.0 17.0 22.0 21.0 21.0 21.0 17.0 22.0 21.0	Minimum Initial (s)	9.0					1.0	9.0	1.0	9.0	9.0	5.0	5.0
Total Split (s) 26.0 7.0 21.0 7.0 22.0 21.0 21.0 15.0 17.0 22.0 21.0 21.0 15.0 17.0 17.0 17.0 22.0 21.0 21.0 17.0 17.0 22.0 21.0 21.0 17.0 17.0 22.0 23.0 23.0 17.0 17.0 22.0 21.0 23.0	Minimum Split (s)	15.0					7.0	15.0	7.0	15.0	15.0	9.5	9.5
Total Split (%)		26.0					7.0	21.0	7.0	22.0	21.0	21.0	15.0
Yellow Time (s)		28.9%					8%	23%	8%	24%	23%	23%	
All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 Lost Time Adjust (s) 0.0 Total Lost Time (s) 6.0 Lead/Lag													
Lost Time Adjust (s)	()												
Total Lost Time (s) 6.0 Lead/Lag Lag Lag Lag Lead Lead-Lag Optimize? Yes Recall Mode Min	. ,												
Lead-Lag Optimize? Recall Mode Min Act Effect Green (s) 16.7													
Lead-Lag Optimize? None None Min Min Min None None None Min Min None Non							Lag		Lag				Lead
Recall Mode Min Act Effct Green (s) 16.7 40.4 46.4 28.1 28							9		9				
Act Effet Green (s) 16.7 40.4 46.4 28.1 28.1 Actuated g/C Ratio 0.19 0.47 0.54 0.32 0.32 v/c Ratio 0.61 0.48 0.58 0.36 0.60 Control Delay (s/veh) 28.1 8.3 11.9 25.0 27.0 Queue Delay 0.2 1.0 4.0 0.0 0.0 Total Delay (s/veh) 28.3 9.3 15.8 25.0 27.0 LOS C A B C C C Approach Delay (s/veh) 28.3 13.7 26.6 Approach Delay (s/veh) 28.3 13.7 26.6 Approach Delay (s/veh) 87 73 220 74 160 Queue Length 50th (ft) 87 73 220 74 160 Queue Length 50th (ft) 118 m125 m280 118 196 Internal Link Dist (ft) 1271 40 1952 Turm Bay Length (ft) 1271 40 1952 Turm Bay Length (ft) 82 584 1024 508 1157 Starvation Cap Reductn 59 0 0 6 0 0 Storage Cap Reductn 59 0 0 0 6 0 Storage Cap Reductn 59 0 0 0 6 0 Storage Cap Reductn 0 0.56 0.61 0.86 0.36 0.59 Intersection Summary Cycle Length: 90 Actuated Cycle : 65 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 1.01 Intersection Capacity (Willization 72.9% Analysis Period (min) 15		Min					None	None	Min	Min	Min	None	
Actuated g/C Ratio 0.19 0.47 0.54 0.32 0.32 v/c Ratio 0.61 0.48 0.58 0.36 0.60 Control Delay (s/veh) 28.1 8.3 11.9 25.0 27.0 Queue Delay 0.2 1.0 4.0 0.0 0.0 Total Delay (s/veh) 28.3 9.3 15.8 25.0 27.0 LOS C A B C C C A A B C C C A Approach Delay (s/veh) 28.3 13.7 26.6 Approach LOS C B C B C C C C C C C C C C C C C C C			40 4	46 4	28 1	28 1	110110	110110			14	110110	110110
v/c Ratio 0.61 0.48 0.58 0.36 0.60 Control Delay (s/veh) 28.1 8.3 11.9 25.0 27.0 Queue Delay 0.2 1.0 4.0 0.0 0.0 Total Delay (s/veh) 28.3 9.3 15.8 25.0 27.0 LOS C A B C C Approach Delay (s/veh) 28.3 13.7 26.6 Approach LOS C B C Queue Length 50th (ft) 87 73 220 74 160 Queue Length 95th (ft) 118 m125 m280 118 196 Internal Link Dist (ft) 1271 40 1952 Turn Bay Length (ft) 715 15 Base Capacity (vph) 842 584 1024 508 1157 Starvation Cap Reductn 0 129 363 0 0 Spillback Cap Reductn 59 0 0 6 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.56 0.61 0.86 0.36 0.59 Intersection Summary Cycle Length: 96 15 </td <td>. ,</td> <td></td>	. ,												
Control Delay (s/veh) 28.1 8.3 11.9 25.0 27.0 Queue Delay 0.2 1.0 4.0 0.0 0.0 Total Delay (s/veh) 28.3 15.8 25.0 27.0 LOS C A B C C Approach Delay (s/veh) 28.3 13.7 26.6 Approach LOS C B C Queue Length 50th (ft) 87 73 220 74 160 Queue Length 95th (ft) 118 m125 m280 118 196 Internal Link Dist (ft) 1271 40 1952 Turn Bay Length (ft) 1271 40 1952 Turn Bay Length (ft) 842 584 1024 508 1157 Starvation Cap Reductn 0 129 363 0 0 Spillback Cap Reductn 59 0 0 6 0 Spillback Cap Reductn 0 0 0 0 0 0 Reduced v/c Ratio 0.56 0.61 0.86 0.36 0.59 Intersection Summary Cycle Length: 90 Actuated Cycle Length: 86.6 Natural Cycle: 65 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 1.01 Intersection Signal Delay (s/veh): 21.8 Intersection LOS: C Intersection Signal Delay (s/veh): 21.8 Intersection LOS: C Intersection Capacity Utilization 72.9% Analysis Period (min) 15	•												
Queue Delay 0.2 1.0 4.0 0.0 0.0 Total Delay (s/veh) 28.3 9.3 15.8 25.0 27.0 LOS C A B C C Approach Delay (s/veh) 28.3 13.7 26.6 Approach LOS C B C Queue Length 50th (ft) 87 73 220 74 160 Queue Length 95th (ft) 118 m125 m280 118 196 Internal Link Dist (ft) 1271 40 1952 117 40 1952 Turn Bay Length (ft) 715 5 5 1157 5 5 5 1157 5 5 1157 5 5 1157 5 5 1157 5 5 1157 5 5 1157 5 5 1157 5 5 1157 5 5 1157 5 1157 5 1157 1157 1157 1157 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
Total Delay (s/veh)	, ,												
LOS C A B C C Approach Delay (s/veh) 28.3 13.7 26.6 Approach LOS C B C Queue Length 50th (ft) 87 73 220 74 160 Queue Length 95th (ft) 118 m125 m280 118 196 Internal Link Dist (ft) 1271 40 1952 Turn Bay Length (ft) 715 Base Capacity (vph) 842 584 1024 508 1157 Starvation Cap Reductn 0 129 363 0 0 Spillback Cap Reductn 59 0 0 6 0 Storage Cap Reductn 59 0 0 0 6 0 Storage Cap Reductn 0 0 0 0 0 0 Reduced v/c Ratio 0.56 0.61 0.86 0.36 0.59 Intersection Summary Cycle Length: 90 Actuated Cycle Length: 86.6 Natural Cycle: 65 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 1.01 Intersection Signal Delay (s/veh): 21.8 Intersection Capacity Utilization 72.9%	•												
Approach Delay (s/veh) 28.3 13.7 26.6 Approach LOS C B C Queue Length 50th (ft) 87 73 220 74 160 Queue Length 95th (ft) 118 m125 m280 118 196 Internal Link Dist (ft) 1271 40 1952 Turn Bay Length (ft) 715 Base Capacity (vph) 842 584 1024 508 1157 Starvation Cap Reductn 0 129 363 0 0 Spillback Cap Reductn 59 0 0 6 0 Storage Cap Reductn 59 0 0 0 6 0 Storage Cap Reductn 0 0 0 0 0 0 Reduced v/c Ratio 0.56 0.61 0.86 0.36 0.59 Intersection Summary Cycle Length: 90 Actuated Cycle Length: 86.6 Natural Cycle: 65 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 1.01 Intersection Signal Delay (s/veh): 21.8 Intersection LOS: C Intersection Capacity Utilization 72.9% ICU Level of Service C													
Approach LOS C B C Queue Length 50th (ft) 87 73 220 74 160 Queue Length 95th (ft) 118 m125 m280 118 196 Internal Link Dist (ft) 1271 40 1952 Turn Bay Length (ft) 715 Base Capacity (vph) 842 584 1024 508 1157 Starvation Cap Reductn 0 129 363 0 0 Spillback Cap Reductn 59 0 0 6 0 Spillback Cap Reductn 59 0 0 0 6 0 Spillback Cap Reductn 0 0 0 0 0 0 Reduced v/c Ratio 0.56 0.61 0.86 0.36 0.59 Intersection Summary Cycle Length: 90 Actuated Cycle Length: 86.6 Natural Cycle: 65 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 1.01 Intersection Signal Delay (s/veh): 21.8 Intersection LOS: C Intersection Capacity Utilization 72.9% ICU Level of Service C Analysis Period (min) 15			, , , , , , , , , , , , , , , , , , ,										
Queue Length 50th (ft) 87 73 220 74 160 Queue Length 95th (ft) 118 m125 m280 118 196 Internal Link Dist (ft) 1271 40 1952 Turn Bay Length (ft) 715 Base Capacity (vph) 842 584 1024 508 1157 Starvation Cap Reductn 0 129 363 0 0 Spillback Cap Reductn 59 0 0 6 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.56 0.61 0.86 0.36 0.59 Intersection Summary Cycle Length: 90 Actuated Cycle: 65 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 1.01 Intersection Signal Delay (s/veh): 21.8 Intersection LOS: C Intersection Capacity Utilization 72.9% ICU Level of Service C Analysis Period (min) 15													
Queue Length 95th (ft) 118 m125 m280 118 196 Internal Link Dist (ft) 1271 40 1952 Turn Bay Length (ft) 715 Base Capacity (vph) 842 584 1024 508 1157 Starvation Cap Reductn 0 129 363 0 0 Spillback Cap Reductn 59 0 0 6 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.56 0.61 0.86 0.36 0.59 Intersection Summary Cycle Length: 90 Actuated Cycle Length: 86.6 Natural Cycle: 65 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 1.01 Intersection Signal Delay (s/veh): 21.8 Intersection LOS: C Intersection Capacity Utilization 72.9% ICU Level of Service C Analysis Period (min) 15			73		74								
Internal Link Dist (ft)	•												
Turn Bay Length (ft) 715 Base Capacity (vph) 842 584 1024 508 1157 Starvation Cap Reductn 0 129 363 0 0 Spillback Cap Reductn 59 0 0 6 0 Storage Cap Reductn 0 0 0 0 0 0 Reduced v/c Ratio 0.56 0.61 0.86 0.36 0.59 Intersection Summary Cycle Length: 90 Actuated Cycle Length: 86.6 Natural Cycle: 65 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 1.01 Intersection Signal Delay (s/veh): 21.8 Intersection LOS: C Intersection Capacity Utilization 72.9% ICU Level of Service C Analysis Period (min) 15			111120		110								
Base Capacity (vph) 842 584 1024 508 1157 Starvation Cap Reductn 0 129 363 0 0 Spillback Cap Reductn 59 0 0 6 0 Storage Cap Reductn 0 0 0 0 0 0 Reduced v/c Ratio 0.56 0.61 0.86 0.36 0.59 Intersection Summary Cycle Length: 90 Actuated Cycle Length: 86.6 Natural Cycle: 65 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 1.01 Intersection Signal Delay (s/veh): 21.8 Intersection LOS: C Intersection Capacity Utilization 72.9% ICU Level of Service C Analysis Period (min) 15	()	1211		40	715	1002							
Starvation Cap Reductn 0 129 363 0 0 Spillback Cap Reductn 59 0 0 6 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.56 0.61 0.86 0.36 0.59 Intersection Summary Cycle Length: 90 Actuated Cycle Length: 86.6 Natural Cycle: 65 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 1.01 Intersection Signal Delay (s/veh): 21.8 Intersection LOS: C Intersection Capacity Utilization 72.9% ICU Level of Service C Analysis Period (min) 15 ICU Level of Service C		842	584	1024		1157							
Spillback Cap Reductn 59 0 0 6 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.56 0.61 0.86 0.36 0.59 Intersection Summary Cycle Length: 90 Actuated Cycle Length: 86.6 Natural Cycle: 65 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 1.01 Intersection Signal Delay (s/veh): 21.8 Intersection LOS: C Intersection Capacity Utilization 72.9% ICU Level of Service C Analysis Period (min) 15 ICU Level of Service C													
Storage Cap Reductn 0 0 0 0 0 0 0 Reduced v/c Ratio 0.56 0.61 0.86 0.36 0.59 Intersection Summary Cycle Length: 90 Actuated Cycle Length: 86.6 Natural Cycle: 65 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 1.01 Intersection Signal Delay (s/veh): 21.8 Intersection LOS: C Intersection Capacity Utilization 72.9% ICU Level of Service C Analysis Period (min) 15													
Reduced v/c Ratio 0.56 0.61 0.86 0.36 0.59 Intersection Summary Cycle Length: 90 Actuated Cycle Length: 86.6 Natural Cycle: 65 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 1.01 Intersection Signal Delay (s/veh): 21.8 Intersection LOS: C Intersection Capacity Utilization 72.9% ICU Level of Service C Analysis Period (min) 15													
Intersection Summary Cycle Length: 90 Actuated Cycle Length: 86.6 Natural Cycle: 65 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 1.01 Intersection Signal Delay (s/veh): 21.8 Intersection Capacity Utilization 72.9% ICU Level of Service C Analysis Period (min) 15													
Actuated Cycle Length: 86.6 Natural Cycle: 65 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 1.01 Intersection Signal Delay (s/veh): 21.8 Intersection Capacity Utilization 72.9% Analysis Period (min) 15 Intersection Cycle Length: 86.6 Intersection Cycle Length: 86.6 Intersection Cycle Length: 86.6 Intersection Cycle Length: 86.6 Intersection LOS: C													
Actuated Cycle Length: 86.6 Natural Cycle: 65 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 1.01 Intersection Signal Delay (s/veh): 21.8 Intersection Capacity Utilization 72.9% Analysis Period (min) 15 Intersection Cycle Length: 86.6 Intersection Cycle Length: 86.6 Intersection Cycle Length: 86.6 Intersection Cycle Length: 86.6 Intersection LOS: C	Cycle Length: 90												
Natural Cycle: 65 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 1.01 Intersection Signal Delay (s/veh): 21.8 Intersection Capacity Utilization 72.9% ICU Level of Service C Analysis Period (min) 15													
Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 1.01 Intersection Signal Delay (s/veh): 21.8 Intersection Capacity Utilization 72.9% ICU Level of Service C Analysis Period (min) 15													
Maximum v/c Ratio: 1.01 Intersection Signal Delay (s/veh): 21.8 Intersection Capacity Utilization 72.9% ICU Level of Service C Analysis Period (min) 15	•	ordinated											
Intersection Signal Delay (s/veh): 21.8 Intersection LOS: C Intersection Capacity Utilization 72.9% ICU Level of Service C Analysis Period (min) 15													
Intersection Capacity Utilization 72.9% ICU Level of Service C Analysis Period (min) 15		veh): 21.8			In	tersection	LOS: C						
Analysis Period (min) 15		,						C C					
m Volume for 95th percentile queue is metered by upstream signal.		le queue	is metere	d by upstr	eam sign	al.							

Splits and Phases: 3: 183A SB Frontage Road & RM 2243 #3 #3 Ø2 Ø4 Ø14 Ø11 #2 #2 #2 Ø6 Ø8 Ø16

Lane Group	Ø15	Ø16
Lane Configurations	10.10	10 10
Traffic Volume (vph)		
Future Volume (vph)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	15	16
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	5.0	5.0
Minimum Split (s)	9.5	9.5
Total Split (s)	21.0	19.0
Total Split (%)	23%	21%
Yellow Time (s)	3.5	3.5
All-Red Time (s)	1.0	1.0
Lost Time Adjust (s)	1.0	1.0
Total Lost Time (s)		
Lead/Lag		Lead
Lead-Lag Optimize?		Yes
Recall Mode	None	None
Act Effct Green (s)	140110	140110
Actuated g/C Ratio		
v/c Ratio		
Control Delay (s/veh)		
Queue Delay		
Total Delay (s/veh)		
LOS		
Approach Delay (s/veh)		
Approach LOS		
Queue Length 50th (ft)		
Queue Length 95th (ft)		
Internal Link Dist (ft)		
Turn Bay Length (ft)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		

	•	*	†	-	-	↓
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*					^
Traffic Volume (veh/h)	159	0	0	0	0	881
Future Volume (Veh/h)	159	0	0	0	0	881
Sign Control	Yield		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	177	0	0	0	0	979
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (ft)						125
pX, platoon unblocked	0.85					
vC, conflicting volume	490	0			0	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	36	0			0	
tC, single (s)	6.9	6.9			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	78	100			100	
cM capacity (veh/h)	821	1084			1622	
Direction, Lane #	WB 1	SB 1	SB 2			
Volume Total	177	490	490			
Volume Left	177	490	490			
Volume Right	0	0	0			
cSH	821	1700	1700			
Volume to Capacity	0.22	0.29	0.29			
Queue Length 95th (ft)	20	0.29	0.29			
Control Delay (s/veh)	10.6	0.0	0.0			
Lane LOS	10.0 B	0.0	0.0			
Approach Delay (s/veh)	10.6	0.0				
Approach LOS	В	0.0				
• •	U					
Intersection Summary						
Average Delay			1.6			
Intersection Capacity Utiliza	ation		37.2%	IC	U Level of	of Service
Analysis Period (min)			15			

Intersection Signal Delay (s/veh): 178.4

Intersection Capacity Utilization 131.9%

Analysis Period (min) 15

	۶	→	•	+	1	†	/	Ţ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	7	13	*	7+	Ä	↑ ↑	Ä	† \$	
Traffic Volume (vph)	316	428	229	274	83	1495	194	1113	
Future Volume (vph)	316	428	229	274	83	1495	194	1113	
Lane Group Flow (vph)	322	499	234	433	108	1914	200	1334	
Turn Type	Prot	NA	Prot	NA	Prot	NA	Prot	NA	
Protected Phases	7	4	3	8	5	2	1	6	
Permitted Phases									
Detector Phase	7	4	3	8	5	2	1	6	
Switch Phase			_		_				
Minimum Initial (s)	5.0	6.0	5.0	6.0	5.0	10.0	5.0	10.0	
Minimum Split (s)	13.4	12.9	13.4	12.9	14.0	17.5	14.0	17.5	
Total Split (s)	29.0	44.0	30.0	45.0	24.0	77.0	29.0	82.0	
Total Split (%)	16.1%	24.4%	16.7%	25.0%	13.3%	42.8%	16.1%	45.6%	
Yellow Time (s)	5.4	5.4	5.4	5.4	6.0	6.0	6.0	6.0	
All-Red Time (s)	3.0	1.5	3.0	1.5	3.0	1.5	3.0	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	8.4	6.9	8.4	6.9	9.0	7.5	9.0	7.5	
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize?		_~9		9		9		9	
Recall Mode	None	None	None	None	None	C-Min	None	C-Min	
Act Effct Green (s)	20.6	37.1	21.6	38.1	14.1	69.5	20.0	75.4	
Actuated g/C Ratio	0.11	0.21	0.12	0.21	0.08	0.39	0.11	0.42	
v/c Ratio	1.59	1.35	1.10	1.15	0.79	1.43	1.02	0.92	
Control Delay (s/veh)	334.8	224.2	160.8	151.2	117.4	237.7	144.9	60.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay (s/veh)	334.8	224.2	160.8	151.2	117.4	237.7	144.9	60.1	
LOS	F	F	F	F	F	F	F	E	
Approach Delay (s/veh)		267.6		154.5		231.3		71.2	
Approach LOS		207.0 F		F		201.0 F		E	
Queue Length 50th (ft)	~540	~767	~313	~585	127	~1602	~249	783	
Queue Length 95th (ft)	#752	#1009	#503	#818	#230	#1730	#430	#905	
Internal Link Dist (ft)	,,,,,,,	2065	,, 500	766	#200	2316	,, 100	1512	
Turn Bay Length (ft)	415	2300	500	700	500	2010	540	1012	
Base Capacity (vph)	202	370	212	377	144	1337	196	1450	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.59	1.35	1.10	1.15	0.75	1.43	1.02	0.92	
Intersection Summary									
Cycle Length: 180									
Actuated Cycle Length: 180									
Offset: 163 (91%), Reference	ad to phace	O O'NIDT	and G.CD	T Stort o	f Vallou				
Natural Cycle: 150	ed to prias	C Z.IND I	anu u.ob	i, Stait 0	i Tellow				
Control Type: Actuated-Coor	dinated								
Maximum v/c Ratio: 1.59	umateu								
iviaximum v/c Ratio. 1.39	1) 470					100 5			

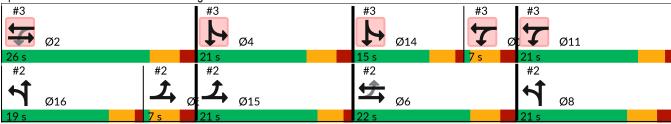
Timings Synchro 12 Report SMP

Intersection LOS: F

ICU Level of Service H

- Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.
 - Queue shown is maximum after two cycles.

Splits and Phases: 1: Ronald W Reagan Boulevard & RM 2243


	۶	→	•	4	†	-						
Lane Group	EBL	EBT	WBT	NBL	NBT	NBR	Ø1	Ø2	Ø4	Ø5	Ø8	Ø11
Lane Configurations	*	↑	† 1>	7	^	7						
Traffic Volume (vph)	28	336	538	433	872	460						
Future Volume (vph)	28	336	538	433	872	460						
Lane Group Flow (vph)	32	382	705	492	991	523						
Turn Type	D.P+P	NA	NA	Split	NA	Free						
Protected Phases	5 15	5 6 15	6	8 16	8 16		1	2	4	5	8	11
Permitted Phases	6					Free						
Detector Phase	5 15	5 6 15	6	8 16	8 16							
Switch Phase												
Minimum Initial (s)			9.0				1.0	9.0	9.0	1.0	9.0	5.0
Minimum Split (s)			15.0				7.0	15.0	15.0	7.0	15.0	9.5
Total Split (s)			22.0				7.0	26.0	21.0	7.0	21.0	21.0
Total Split (%)			24.4%				8%	29%	23%	8%	23%	23%
Yellow Time (s)			4.0				4.0	4.0	4.0	4.0	4.0	3.5
All-Red Time (s)			2.0				2.0	2.0	2.0	2.0	2.0	1.0
Lost Time Adjust (s)			0.0							,	,	
Total Lost Time (s)			6.0									
Lead/Lag			0.0				Lag			Lag		
Lead-Lag Optimize?							Lag			Lug		
Recall Mode			Min				None	Min	None	Min	Min	None
Act Effct Green (s)	38.0	44.0	16.0	33.1	33.1	89.1	140110	141111	140110	141111	141111	140110
Actuated g/C Ratio	0.43	0.49	0.18	0.37	0.37	1.00						
v/c Ratio	0.06	0.42	1.13	0.75	0.75	0.33						
Control Delay (s/veh)	7.2	10.1	111.3	32.8	28.8	0.6						
Queue Delay	0.0	1.3	2.0	0.2	0.0	0.0						
Total Delay (s/veh)	7.2	11.4	113.3	33.0	28.8	0.6						
LOS	Α	В	F	C	C	A						
Approach Delay (s/veh)	, , <u>, , , , , , , , , , , , , , , , , </u>	11.1	113.3	<u> </u>	22.5	, , , , , , , , , , , , , , , , , , ,						
Approach LOS		В	F		C							
Queue Length 50th (ft)	8	103	~245	237	251	0						
Queue Length 95th (ft)	21	153	#346	345	315	0						
Internal Link Dist (ft)	۷1	40	1492	040	48	U						
Turn Bay Length (ft)		70	1402	415	70	415						
Base Capacity (vph)	520	902	625	675	1350	1583						
Starvation Cap Reductn	0	319	023	0/3	0	0						
Spillback Cap Reductn	0	0	142	15	0	0						
Storage Cap Reductin	0	0	0	0	0	0						
Reduced v/c Ratio	0.06	0.66	1.46	0.75	0.73	0.33						
Intersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 89.1												
Natural Cycle: 75												
Control Type: Actuated-Uncod	ordinated											
Maximum v/c Ratio: 1.13												
Intersection Signal Delay (s/ve	eh): 41.5			In	tersection	LOS: D						
Intersection Capacity Utilization					U Level o		E					
Analysis Period (min) 15	2.1 00.1 70				5 25107 0	001 1100	_					
 Volume exceeds capacity 												

Lane Group	Ø14	Ø15	Ø16
Lane Configurations			
Traffic Volume (vph)			
Future Volume (vph)			
Lane Group Flow (vph)			
Turn Type			
Protected Phases	14	15	16
Permitted Phases			
Detector Phase			
Switch Phase			
Minimum Initial (s)	5.0	5.0	5.0
Minimum Split (s)	9.5	9.5	9.5
Total Split (s)	15.0	21.0	19.0
Total Split (%)	17%	23%	21%
Yellow Time (s)	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0
Lost Time Adjust (s)	1.0	1.0	1.0
Total Lost Time (s)			
Lead/Lag	Lead		Lead
Lead-Lag Optimize?	Yes		Yes
Recall Mode	None	None	None
Act Effct Green (s)	110110	110110	110110
Actuated g/C Ratio			
v/c Ratio			
Control Delay (s/veh)			
Queue Delay			
Total Delay (s/veh)			
LOS			
Approach Delay (s/veh)			
Approach LOS			
Queue Length 50th (ft)			
Queue Length 95th (ft)			
Internal Link Dist (ft)			
Turn Bay Length (ft)			
Base Capacity (vph)			
Starvation Cap Reductn			
Spillback Cap Reductn			
Storage Cap Reductn			
Reduced v/c Ratio			
Intersection Summary			

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 2: 183A NB Frontage Road & RM 2243

	-	•	•	-	ļ							
Lane Group	EBT	WBL	WBT	SBL	SBT	Ø1	Ø4	Ø5	Ø6	Ø8	Ø11	Ø14
Lane Configurations	↑ ↑	*	†	*	↑ ↑							
Traffic Volume (vph)	190	247	724	174	717							
Future Volume (vph)	190	247	724	174	717							
Lane Group Flow (vph)	322	257	754	181	767							
Turn Type	NA	D.P+P	NA	Split	NA							
Protected Phases	2	1 11	1 11 2	4 14	4 14	1	4	5	6	8	11	14
Permitted Phases		2										
Detector Phase	2	1 11	1 11 2	4 14	4 14							
Switch Phase												
Minimum Initial (s)	9.0					1.0	9.0	1.0	9.0	9.0	5.0	5.0
Minimum Split (s)	15.0					7.0	15.0	7.0	15.0	15.0	9.5	9.5
Total Split (s)	26.0					7.0	21.0	7.0	22.0	21.0	21.0	15.0
Total Split (%)	28.9%					8%	23%	8%	24%	23%	23%	17%
Yellow Time (s)	4.0					4.0	4.0	4.0	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0					2.0	2.0	2.0	2.0	2.0	1.0	1.0
Lost Time Adjust (s)	0.0					2.0	2.0	2.0	2.0	2.0	1.0	1.0
Total Lost Time (s)	6.0											
Lead/Lag	0.0					Lag		Lag				Lead
Lead-Lag Optimize?						Lug		Lug				Yes
Recall Mode	Min					None	None	Min	Min	Min	None	None
Act Effct Green (s)	19.1	42.2	48.2	28.9	28.9	None	NOTIC	141111	IVIIII	IVIIII	INOTIC	IVOITO
Actuated g/C Ratio	0.21	0.47	0.54	0.32	0.32							
v/c Ratio	0.40	0.39	0.75	0.33	0.67							
Control Delay (s/veh)	19.7	5.3	11.8	24.8	29.3							
Queue Delay	0.0	0.5	38.4	0.0	0.0							
Total Delay (s/veh)	19.7	5.8	50.4	24.8	29.3							
LOS	В	A	D	C C	C							
Approach Delay (s/veh)	19.7		38.9		28.5							
Approach LOS	13.7 B		D		20.5 C							
Queue Length 50th (ft)	49	61	356	76	193							
Queue Length 95th (ft)	87	m75	m334	131	255							
Internal Link Dist (ft)	1271	1117 5	40	131	1952							
Turn Bay Length (ft)	1211		+0	715	1332							
	835	654	1027	568	1189							
Base Capacity (vph) Starvation Cap Reductn	000	139	321	0	0							
Spillback Cap Reductn	25	0	0	5	0							
Storage Cap Reductn	0	0	0	0	0							
Reduced v/c Ratio	0.40	0.50	1.07	0.32	0.65							
Intersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 89.1												
Natural Cycle: 75												
Control Type: Actuated-Unco	ordinated											
Maximum v/c Ratio: 1.13												
Intersection Signal Delay (s/v	eh): 31.9			In	tersection	LOS: C						
Intersection Capacity Utilization					U Level o		Ε					
Analysis Period (min) 15												
m Volume for 95th percentil	la ausaus :	a matara	d by upotr	oom oian	ام							

Splits and Phases: 3: 183A SB Frontage Road & RM 2243 #3 #3 Ø2 Ø4 Ø14 Ø11 #2 #2 #2 Ø6 Ø16 Ø8

Lane Configurations Traffic Volume (vph) Future Volume (vph) Lane Group Flow (vph) Turn Type Protected Phases 15 16 Permitted Phases Detector Phase Switch Phase
Traffic Volume (vph) Future Volume (vph) Lane Group Flow (vph) Turn Type Protected Phases 15 16 Permitted Phases Detector Phase Switch Phase
Future Volume (vph) Lane Group Flow (vph) Turn Type Protected Phases 15 16 Permitted Phases Detector Phase Switch Phase
Lane Group Flow (vph) Turn Type Protected Phases 15 16 Permitted Phases Detector Phase Switch Phase
Turn Type Protected Phases 15 16 Permitted Phases Detector Phase Switch Phase
Protected Phases 15 16 Permitted Phases Detector Phase Switch Phase
Permitted Phases Detector Phase Switch Phase
Detector Phase Switch Phase
Switch Phase
Minimum Initial (a) FO FO
Minimum Initial (s) 5.0 5.0
Minimum Split (s) 9.5 9.5
Total Split (s) 21.0 19.0
Total Split (%) 23% 21%
Yellow Time (s) 3.5 3.5
All-Red Time (s) 1.0 1.0
Lost Time Adjust (s)
Total Lost Time (s)
Lead/Lag Lead
Lead-Lag Optimize? Yes
Recall Mode None None
Act Effct Green (s)
Actuated g/C Ratio
v/c Ratio
Control Delay (s/veh)
Queue Delay
Total Delay (s/veh)
LOS
Approach Delay (s/veh)
Approach LOS
Queue Length 50th (ft)
Queue Length 95th (ft)
Internal Link Dist (ft)
Turn Bay Length (ft)
Base Capacity (vph)
Starvation Cap Reductn
Spillback Cap Reductn
Storage Cap Reductn
Reduced v/c Ratio
Intersection Summary

	•	•	†	~	-	↓
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*					^
Traffic Volume (veh/h)	159	0	0	0	0	881
Future Volume (Veh/h)	159	0	0	0	0	881
Sign Control	Yield		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96
Hourly flow rate (vph)	166	0	0	0	0	918
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (ft)						125
pX, platoon unblocked	0.83					
vC, conflicting volume	459	0			0	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	0	0			0	
tC, single (s)	6.8	6.9			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	80	100			100	
cM capacity (veh/h)	846	1084			1622	
	WB 1	SB 1	SB 2		-	
Direction, Lane #						
Volume Total	166	459	459			
Volume Left	166	0	0			
Volume Right	0	0	0			
cSH	846	1700	1700			
Volume to Capacity	0.20	0.27	0.27			
Queue Length 95th (ft)	18	0	0			
Control Delay (s/veh)	10.3	0.0	0.0			
Lane LOS	В					
Approach Delay (s/veh)	10.3	0.0				
Approach LOS	В					
Intersection Summary						
Average Delay			1.6			
Intersection Capacity Utiliza	ation		37.2%	IC	U Level o	of Service
Analysis Period (min)			15			
Consultation			10			

	۶	→	•	•	4	†	-	Ţ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	*	1>	7	1	*	† 1>	*	↑ ↑	
Traffic Volume (vph)	216	364	293	322	174	742	187	1502	
Future Volume (vph)	216	364	293	322	174	742	187	1502	
Lane Group Flow (vph)	218	548	296	473	198	972	190	1834	
Turn Type	Prot	NA	Prot	NA	Prot	NA	Prot	NA	
Protected Phases	7	4	3	8	5	2	1	6	
Permitted Phases									
Detector Phase	7	4	3	8	5	2	1	6	
Switch Phase									
Minimum Initial (s)	5.0	6.0	5.0	6.0	5.0	10.0	5.0	10.0	
Minimum Split (s)	13.4	12.9	13.4	12.9	14.0	17.5	14.0	17.5	
Total Split (s)	20.0	39.0	27.0	46.0	19.0	45.0	39.0	65.0	
Total Split (%)	13.3%	26.0%	18.0%	30.7%	12.7%	30.0%	26.0%	43.3%	
Yellow Time (s)	5.4	5.4	5.4	5.4	6.0	6.0	6.0	6.0	
All-Red Time (s)	3.0	1.5	3.0	1.5	3.0	1.5	3.0	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	8.4	6.9	8.4	6.9	9.0	7.5	9.0	7.5	
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	None	C-Min	None	C-Min	
Act Effct Green (s)	11.6	32.1	18.6	39.1	10.0	45.9	21.6	57.5	
Actuated g/C Ratio	0.08	0.21	0.12	0.26	0.07	0.31	0.14	0.38	
v/c Ratio	1.73	1.45	1.40	1.04	1.68	0.94	0.76	1.38	
Control Delay (s/veh)	397.2	256.5	252.8	103.4	378.3	65.5	80.2	213.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay (s/veh)	397.2	256.5	252.8	103.4	378.3	65.5	80.2	213.0	
LOS	F	F	F	F	F	E	F	F	
Approach Delay (s/veh)		296.5		160.9		118.4		200.5	
Approach LOS		F		F		F		F	
Queue Length 50th (ft)	~313	~720	~386	~486	~281	478	181	~1251	
Queue Length 95th (ft)	#486	#956	#581	#712	#448	#701	256	#1388	
Internal Link Dist (ft)		2064		766		2316		1512	
Turn Bay Length (ft)	415		500		500		540		
Base Capacity (vph)	126	378	211	456	118	1037	347	1326	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.73	1.45	1.40	1.04	1.68	0.94	0.55	1.38	
	1.10		1.10		1.00	0.01	0.00	1.00	
Intersection Summary									

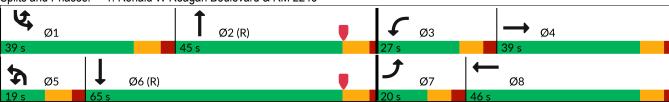
Cycle Length: 150

Actuated Cycle Length: 150

Offset: 68 (45%), Referenced to phase 2:NBT and 6:SBT, Start of Yellow

Natural Cycle: 150

Control Type: Actuated-Coordinated

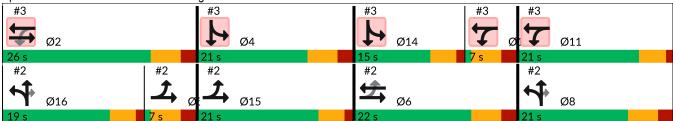

Maximum v/c Ratio: 1.73

Intersection Signal Delay (s/veh): 189.3 Intersection LOS: F
Intersection Capacity Utilization 135.1% ICU Level of Service H

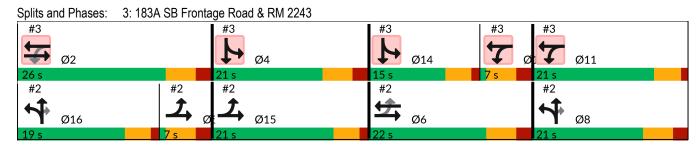
Analysis Period (min) 15

- Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.

Splits and Phases: 1: Ronald W Reagan Boulevard & RM 2243



	•	→	•	1	†	1						
Lane Group	EBL	EBT	WBT	NBL	NBT	NBR	Ø1	Ø2	Ø4	Ø5	Ø8	Ø11
Lane Configurations	*	↑	† 1>	7	^	7						
Traffic Volume (vph)	28	666	802	193	306	343						
Future Volume (vph)	28	666	802	193	306	343						
Lane Group Flow (vph)	29	680	1065	197	312	350						
Turn Type	D.P+P	NA	NA	Split	NA	Perm						
Protected Phases	5 15	5 6 15	6	8 16	8 16		1	2	4	5	8	11
Permitted Phases	6					8 16						
Detector Phase	5 15	5 6 15	6	8 16	8 16	8 16						
Switch Phase												
Minimum Initial (s)			9.0				1.0	9.0	9.0	1.0	9.0	5.0
Minimum Split (s)			15.0				7.0	15.0	15.0	7.0	15.0	9.5
Total Split (s)			22.0				7.0	26.0	21.0	7.0	21.0	21.0
Total Split (%)			24.4%				8%	29%	23%	8%	23%	23%
Yellow Time (s)			4.0				4.0	4.0	4.0	4.0	4.0	3.5
All-Red Time (s)			2.0				2.0	2.0	2.0	2.0	2.0	1.0
Lost Time Adjust (s)			0.0				2.0	2.0	2.0	2.0	2.0	1.0
Total Lost Time (s)			6.0									
Lead/Lag			0.0				Lag			Lag		
Lead-Lag Optimize?							Lug			Lug		
Recall Mode			Min				None	Min	None	Min	Min	None
Act Effct Green (s)	42.8	48.8	16.0	27.6	27.6	27.6	NOTIC	IVIIII	NONC	141111	IVIIII	INOTIC
Actuated g/C Ratio	0.48	0.55	0.18	0.31	0.31	0.31						
v/c Ratio	0.45	0.69	1.67	0.38	0.30	0.55						
Control Delay (s/veh)	3.4	11.6	334.6	26.0	23.8	11.7						
Queue Delay	0.0	2.5	2.0	0.0	0.0	0.0						
Total Delay (s/veh)	3.4	14.1	336.7	26.0	23.8	11.7						
LOS	A	В	550.7 F	20.0 C	23.0 C	В						
Approach Delay (s/veh)		13.6	336.7	U	19.4	U						
Approach LOS		13.0 B	550.7 F		13.4 B							
Queue Length 50th (ft)	3	226	~468	87	70	48						
Queue Length 95th (ft)	m7	511	#597	140	99	123						
Internal Link Dist (ft)	1117	40	1443	140	48	123						
` ,		40	1443	415	40	415						
Turn Bay Length (ft)	570	000	620		1927							
Base Capacity (vph)	570	989 190	638	619	1237	717						
Starvation Cap Reductn Spillback Cap Reductn	0		0 150	0 20	0	0						
	0	0			0	0						
Storage Cap Reductn Reduced v/c Ratio	0.05	0.85	0 2.18	0.33	0 0.25	0.49						
Intersection Summary	0.00	0.00	2.10	0.00	0.20	0.43						
Cycle Length: 90												
Actuated Cycle Length: 88.4	1											
Natural Cycle: 90	Т											
Control Type: Actuated-Unc	oordinatod											
Maximum v/c Ratio: 1.67	ooramated											
Intersection Signal Delay (s	/voh): 1/16	2		In	tersection	I OS: E						
Intersection Capacity Utiliza					U Level		Н					
Analysis Period (min) 15	109.2	/0		IC	O LEVEI (JI SEIVICE	711					
 Volume exceeds capaci 	ty augus i	e theoretic	cally infinit	ή_								
~ volume exceeds capaci	ıy, queue I	s theoreth	cally iniinii	te.								


Lane Configurations Traffic Volume (vph) Future Volume (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead Lead Lead Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Lost (ft) Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)	Lane Group	Ø14	Ø15	Ø16
Traffic Volume (vph) Future Volume (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Link Dist (ft) Turn Bay Length (ft) Turn Bay Length (ft)				
Future Volume (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Yellow Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead Lead Lead Lead Lead Lead Lead				
Lane Group Flow (vph) Turn Type Protected Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Yellow Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Link Dist (ft) Turn Bay Length (ft) Turn Bay Length (ft) 14 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16 17 18 18 18 19 18 18 18 18 18 18 18 18 18 18 18 18 18				
Turn Type Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) Lead/Lag Lead Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio V/c Ratio Control Delay (s/veh) LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Index Simick Si				
Protected Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Yellow Time (s) Lead/Lag Lead Lead Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Indimum Split (s) Total Split (s) Total Split (s) Total Split (%) Total Split (s) Total Split (%) Total Split (s) Total Split (s) Total Lost Time (s) Lead Lead Lead Lead Lead Lead Lead Lead				
Permitted Phases Detector Phase Switch Phase Minimum Initial (s) 5.0 5.0 5.0 Minimum Split (s) 9.5 9.5 9.5 Total Split (s) 15.0 21.0 19.0 Total Split (%) 17% 23% 21% Yellow Time (s) 3.5 3.5 3.5 All-Red Time (s) 1.0 1.0 1.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead Lead-Lag Optimize? Yes Yes Recall Mode None None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)		14	15	16
Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead Lead Lead Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) Approach LOS Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lead/Lag Lead Lead Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) India Split (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.				
Minimum Initial (s) 5.0 5.0 5.0 Minimum Split (s) 9.5 9.5 9.5 Total Split (s) 15.0 21.0 19.0 Total Split (%) 17% 23% 21% Yellow Time (s) 3.5 3.5 3.5 All-Red Time (s) 1.0 1.0 1.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead Lead-Lag Optimize? Yes Yes Recall Mode None None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Minimum Split (s) 9.5 9.5 9.5 Total Split (s) 15.0 21.0 19.0 Total Split (%) 17% 23% 21% Yellow Time (s) 3.5 3.5 3.5 All-Red Time (s) 1.0 1.0 1.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead Lead-Lag Optimize? Yes Yes Recall Mode None None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)		5.0	5.0	5.0
Total Split (s) 15.0 21.0 19.0 Total Split (%) 17% 23% 21% Yellow Time (s) 3.5 3.5 3.5 All-Red Time (s) 1.0 1.0 1.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead Lead-Lag Optimize? Yes Yes Recall Mode None None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Total Split (%) 17% 23% 21% Yellow Time (s) 3.5 3.5 3.5 All-Red Time (s) 1.0 1.0 1.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead Lead-Lag Optimize? Yes Yes Recall Mode None None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead Lead Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
All-Red Time (s) 1.0 1.0 1.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead Lead-Lag Optimize? Yes Yes Recall Mode None None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead Lead-Lag Optimize? Yes Yes Recall Mode None None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)	()			
Total Lost Time (s) Lead/Lag Lead Lead Lead-Lag Optimize? Yes Yes Recall Mode None None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)		1.0	1.0	1.0
Lead/Lag Lead Lead Lead-Lag Optimize? Yes Yes Recall Mode None None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Lead-Lag Optimize? Yes Yes Recall Mode None None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)		l ead		l ead
Recall Mode None None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)	•			
Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)			None	
Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)		140116	TAOHE	140116
v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft)				
Internal Link Dist (ft) Turn Bay Length (ft)				
Turn Bay Length (ft)				
	` ,			
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Reduced v/c Ratio	Reduced V/C Ratio			
Intersection Summary	Intersection Summary			

- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
- m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 2: 183A NB Frontage Road & RM 2243

	→	•	+	/	Ţ							
Lane Group	EBT	WBL	WBT	SBL	SBT	Ø1	Ø4	Ø5	Ø6	Ø8	Ø11	Ø14
Lane Configurations	† 1>	*	^	*	† \$							
Traffic Volume (vph)	388	454	541	306	903							
Future Volume (vph)	388	454	541	306	903							
Lane Group Flow (vph)	602	459	546	309	933							
Turn Type	NA	D.P+P	NA	Split	NA							
Protected Phases	2	1 11	1 11 2	4 14	4 14	1	4	5	6	8	11	14
Permitted Phases		2										
Detector Phase	2	1 11	1 11 2	4 14	4 14							
Switch Phase												
Minimum Initial (s)	9.0					1.0	9.0	1.0	9.0	9.0	5.0	5.0
Minimum Split (s)	15.0					7.0	15.0	7.0	15.0	15.0	9.5	9.5
Total Split (s)	26.0					7.0	21.0	7.0	22.0	21.0	21.0	15.0
Total Split (%)	28.9%					8%	23%	8%	24%	23%	23%	17%
Yellow Time (s)	4.0					4.0	4.0	4.0	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0					2.0	2.0	2.0	2.0	2.0	1.0	1.0
Lost Time Adjust (s)	0.0					2.0	2.0	2.0	2.0	2.0	1.0	1.0
Total Lost Time (s)	6.0											
Lead/Lag	0.0					Lag		Lag				Lead
Lead-Lag Optimize?						Lag		Lag				Yes
Recall Mode	Min					None	None	Min	Min	Min	None	None
Act Effct Green (s)	18.7	40.7	46.7	29.7	29.7	NONE	NONE	IVIIII	IVIIII	IVIIII	INOTIC	INOTIC
Actuated g/C Ratio	0.21	0.46	0.53	0.34	0.34							
v/c Ratio	0.79	0.40	0.55	0.54	0.80							
Control Delay (s/veh)	37.5	16.7	13.6	28.4	32.8							
Queue Delay	13.3	51.0	55.3	0.0	0.0							
Total Delay (s/veh)	50.8	67.8	69.0	28.4	32.8							
LOS	50.6 D	67.6 E	09.0 E	20.4 C	32.0 C							
Approach Delay (s/veh)	50.8		68.4	U	31.7							
,	50.6 D		00.4 E		31.7 C							
Approach LOS		249	322	142	250							
Queue Length 50th (ft)	150 211	m167	m197	224	327							
Queue Length 95th (ft)	1271	111107	40	224	1952							
Internal Link Dist (ft)	1271		40	715	1902							
Turn Bay Length (ft)	000	E24	004	715	1100							
Base Capacity (vph)	809	534	991	578	1186							
Starvation Cap Reductn	0	132	556	0	0							
Spillback Cap Reductn	193	0	0	0	0							
Storage Cap Reductn Reduced v/c Ratio	0.98	0 1.14	0 1.26	0.53	0 0.79							
	0.90	1.14	1.20	0.55	0.19							
Intersection Summary Cycle Length: 90												
	1											
Actuated Cycle Length: 88. Natural Cycle: 90	4											
Control Type: Actuated-Uni	ooordinataa	l l										
Maximum v/c Ratio: 1.67	coordinated	 										
	/vob\. 40 7			I	torooctic	100.0						
Intersection Signal Delay (s					tersection		, LI					
Intersection Capacity Utiliza	auon 109.2°	/0		IC	CU Level of	or Service	П					
Analysis Period (min) 15	atila avere	ia matara	d by const	oom ele-	al							
m Volume for 95th percer	nuie queue	is metere	a by upstr	eam sign	al.							

Lane Configurations Traffic Volume (vph) Future Volume (vph) Lane Group Flow (vph) Turn Type Protected Phases 15 16 Permitted Phases Detector Phase Switch Phase
Traffic Volume (vph) Future Volume (vph) Lane Group Flow (vph) Turn Type Protected Phases 15 16 Permitted Phases Detector Phase Switch Phase
Future Volume (vph) Lane Group Flow (vph) Turn Type Protected Phases 15 16 Permitted Phases Detector Phase Switch Phase
Lane Group Flow (vph) Turn Type Protected Phases 15 16 Permitted Phases Detector Phase Switch Phase
Turn Type Protected Phases 15 16 Permitted Phases Detector Phase Switch Phase
Protected Phases 15 16 Permitted Phases Detector Phase Switch Phase
Permitted Phases Detector Phase Switch Phase
Detector Phase Switch Phase
Switch Phase
Minimum Initial (a) FO FO
Minimum Initial (s) 5.0 5.0
Minimum Split (s) 9.5 9.5
Total Split (s) 21.0 19.0
Total Split (%) 23% 21%
Yellow Time (s) 3.5 3.5
All-Red Time (s) 1.0 1.0
Lost Time Adjust (s)
Total Lost Time (s)
Lead/Lag Lead
Lead-Lag Optimize? Yes
Recall Mode None None
Act Effct Green (s)
Actuated g/C Ratio
v/c Ratio
Control Delay (s/veh)
Queue Delay
Total Delay (s/veh)
LOS
Approach Delay (s/veh)
Approach LOS
Queue Length 50th (ft)
Queue Length 95th (ft)
Internal Link Dist (ft)
Turn Bay Length (ft)
Base Capacity (vph)
Starvation Cap Reductn
Spillback Cap Reductn
Storage Cap Reductn
Reduced v/c Ratio
Intersection Summary

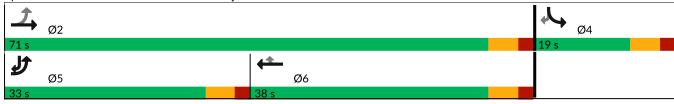
	•	•	†	~	-	↓
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*					^
Traffic Volume (veh/h)	218	0	0	0	0	1565
Future Volume (Veh/h)	218	0	0	0	0	1565
Sign Control	Yield		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.97	0.92	0.92	0.92	0.97	0.97
Hourly flow rate (vph)	225	0	0	0	0	1613
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (ft)						125
pX, platoon unblocked	0.76					
vC, conflicting volume	807	0			0	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	130	0			0	
tC, single (s)	6.9	6.9			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	65	100			100	
cM capacity (veh/h)	648	1084			1622	
			00.0			
Direction, Lane #	WB 1	SB 1	SB 2			
Volume Total	225	807	807			
Volume Left	225	0	0			
Volume Right	0	0	0			
cSH	648	1700	1700			
Volume to Capacity	0.35	0.47	0.47			
Queue Length 95th (ft)	39	0	0			
Control Delay (s/veh)	13.5	0.0	0.0			
Lane LOS	В					
Approach Delay (s/veh)	13.5	0.0				
Approach LOS	В					
Intersection Summary						
Average Delay			1.7			
Intersection Capacity Utiliza	ation		56.1%	IC	U Level o	of Service
Analysis Period (min)			15	.0		
ranaryoro i oriou (iliili)			10			

Intersection						
Int Delay, s/veh	0.2					
		EDT	WDT	WPD	CDI	CDD
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	^	^	\$	4.4	0	7
Traffic Vol, veh/h	0	967	965	14	0	18
Future Vol, veh/h	0	967	965	14	0	18
Conflicting Peds, #/hr	_ 0	_ 0	_ 0	_ 0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	Stop
Storage Length	-	-	-	-	-	0
Veh in Median Storage,		0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	1051	1049	15	0	20
Major/Minor N	Major1	N	Major2	ı	/linor2	
Conflicting Flow All	- viajoi i	0	<u> </u>	0	-	1057
Stage 1		-		-	_	1037
Stage 2	_	_	_	_	_	_
Critical Hdwy						6.22
	-	-	-	-	-	0.22
Critical Hdwy Stg 1		_	-			-
Critical Hdwy Stg 2	-	-	-	-	-	2 240
Follow-up Hdwy	-	-	-	-	-	3.318
Pot Cap-1 Maneuver	0	-	-	-	0	274
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	-
Platoon blocked, %		-	-	-		0=1
Mov Cap-1 Maneuver	-	-	-	-	-	274
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
HCM Control Delay, s/v			0		19.17	
HCM LOS	/ 0		U		19.17 C	
I IOIVI LOS					U	
Minor Lane/Major Mvm	t	EBT	WBT	WBR S	SBLn1	
Capacity (veh/h)		-	-	-	274	
HCM Lane V/C Ratio		-	-	_	0.072	
HCM Control Delay (s/v	/eh)	-	-	-		
HCM Lane LOS		_	-	_	С	
HCM 95th %tile Q(veh)		-	-	-	0.2	
					7.2	

HCM 7th TWSC Synchro 12 Report SMP

	٠	-	•	*	-	1
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	7	↑	†	7	7	7
Traffic Volume (vph)	427	540	594	216	217	385
Future Volume (vph)	427	540	594	216	217	385
Turn Type	pm+pt	NA	NA	Perm	Prot	pm+ov
Protected Phases	5	2	6		4	5
Permitted Phases	2			6		4
Detector Phase	5	2	6	6	4	5
Switch Phase						
Minimum Initial (s)	5.0	10.0	10.0	10.0	10.0	5.0
Minimum Split (s)	11.0	16.0	16.0	16.0	16.0	11.0
Total Split (s)	33.0	71.0	38.0	38.0	19.0	33.0
Total Split (%)	36.7%	78.9%	42.2%	42.2%	21.1%	36.7%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0	6.0
Lead/Lag	Lead		Lag	Lag		Lead
Lead-Lag Optimize?						
Recall Mode	None	Min	Min	Min	None	None

Intersection Summary


Cycle Length: 90

Actuated Cycle Length: 87.4

Natural Cycle: 90

Control Type: Actuated-Uncoordinated

Splits and Phases: 6: RM 2243 & Raider Way

	۶	→	←	•	-	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	*	†	↑	7	7	1
Traffic Volume (veh/h)	427	540	594	216	217	385
Future Volume (veh/h)	427	540	594	216	217	385
Initial Q (Qb), veh	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00			1.00	1.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No	No		No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	464	587	646	235	236	418
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	0.92	0.92	0.92	0.92	0.92
Cap, veh/h	517	1265	709	600	300	615
	0.22	0.68	0.38	0.38	0.17	0.17
Arrive On Green						
Sat Flow, veh/h	1781	1870	1870	1585	1781	1585
Grp Volume(v), veh/h	464	587	646	235	236	418
Grp Sat Flow(s),veh/h/ln	1781	1870	1870	1585	1781	1585
Q Serve(g_s), s	13.9	11.4	25.3	8.3	9.8	13.0
Cycle Q Clear(g_c), s	13.9	11.4	25.3	8.3	9.8	13.0
Prop In Lane	1.00			1.00	1.00	1.00
Lane Grp Cap(c), veh/h	517	1265	709	600	300	615
V/C Ratio(X)	0.90	0.46	0.91	0.39	0.79	0.68
Avail Cap(c_a), veh/h	748	1574	775	657	300	615
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	19.1	5.9	22.8	17.5	30.8	19.6
Incr Delay (d2), s/veh	10.1	0.3	14.3	0.4	13.0	3.0
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	9.8	4.7	17.7	4.7	8.9	0.9
Unsig. Movement Delay, s/veh						
LnGrp Delay(d), s/veh	29.2	6.2	37.0	17.9	43.8	22.7
LnGrp LOS	C	Α	D	В	D	C
Approach Vol, veh/h		1051	881		654	
Approach Delay, s/veh		16.3	31.9		30.3	
		10.3 B	31.9 C		30.3 C	
Approach LOS			C		C	
Timer - Assigned Phs		2		4	5	6
Phs Duration (G+Y+Rc), s		58.2		19.0	23.0	35.2
Change Period (Y+Rc), s		6.0		6.0	6.0	6.0
Max Green Setting (Gmax), s		65.0		13.0	27.0	32.0
Max Q Clear Time (g_c+l1), s		13.4		15.0	15.9	27.3
Green Ext Time (p_c), s		3.6		0.0	1.1	1.9
U = 7:		J. J				
Intersection Summary			05.0			
HCM 7th Control Delay, s/veh			25.2			
HCM 7th LOS			С			

	۶	→	•	+	1	†	/	Ţ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	*	₽	7	1>	Ä	† \$	ă	^	_
Traffic Volume (vph)	349	397	198	273	190	1159	196	982	
Future Volume (vph)	349	397	198	273	190	1159	196	982	
Lane Group Flow (vph)	356	598	202	439	216	1443	201	1270	
Turn Type	Prot	NA	Prot	NA	Prot	NA	Prot	NA	
Protected Phases	7	4	3	8	5	2	1	6	
Permitted Phases									
Detector Phase	7	4	3	8	5	2	1	6	
Switch Phase									
Minimum Initial (s)	5.0	6.0	5.0	6.0	5.0	10.0	5.0	10.0	
Minimum Split (s)	13.4	12.9	13.4	12.9	14.0	17.5	14.0	17.5	
Total Split (s)	29.0	44.0	30.0	45.0	24.0	77.0	29.0	82.0	
Total Split (%)	16.1%	24.4%	16.7%	25.0%	13.3%	42.8%	16.1%	45.6%	
Yellow Time (s)	5.4	5.4	5.4	5.4	6.0	6.0	6.0	6.0	
All-Red Time (s)	3.0	1.5	3.0	1.5	3.0	1.5	3.0	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	8.4	6.9	8.4	6.9	9.0	7.5	9.0	7.5	
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize?		~9	_564	_~9	_544	~3	_544		
Recall Mode	None	None	None	None	None	C-Min	None	C-Min	
Act Effct Green (s)	20.6	37.1	21.6	38.1	15.0	69.5	20.0	74.5	
Actuated g/C Ratio	0.11	0.21	0.12	0.21	0.08	0.39	0.11	0.41	
v/c Ratio	1.84	1.64	1.01	1.22	1.49	1.08	1.05	0.90	
Control Delay (s/veh)	437.7	339.4	141.6	174.2	303.4	99.5	150.9	58.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay (s/veh)	437.7	339.4	141.6	174.2	303.4	99.5	150.9	58.1	
LOS	+57.7	555.4 F	F	F	505.4 F	55.5 F	130.5 F	50.1	
Approach Delay (s/veh)	'	376.1		164.0		126.1	,	70.7	
Approach LOS		570.1		F		F		70.7 E	
Queue Length 50th (ft)	~634	~1010	~245	~618	~350	~991	~256	726	
Queue Length 95th (ft)	#854	#1262	#430	#853	#536	#1130	#437	833	
Internal Link Dist (ft)	1100-4	2065	11-400	766	11000	2316	11-401	1512	
Turn Bay Length (ft)	415	2000	500	700	500	2010	540	1012	
Base Capacity (vph)	193	365	200	361	145	1337	192	1411	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.84	1.64	1.01	1.22	1.49	1.08	1.05	0.90	
	1.04	1.04	1.01	1.22	1.70	1.00	1.00	0.00	
Intersection Summary									
Cycle Length: 180									
Actuated Cycle Length: 180									
Offset: 163 (91%), Reference	ed to phas	se 2:NBT	and 6:SB	T, Start o	f Yellow				
Natural Cycle: 150									
Control Type: Actuated-Coor	dinated								
Maximum v/c Ratio: 1.84									
Intersection Signal Delay (s/v	veh): 164.	5		lr	ntersectio	n LOS: F			
Intersection Capacity Utilizat	ion 121.0	%		10	CU Level	of Service	e H		
Analysis Period (min) 15									

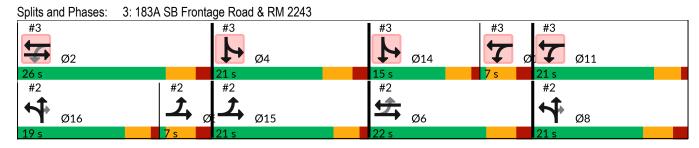
Timings SMP

Analysis Period (min) 15

- Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.
 - Queue shown is maximum after two cycles.

Splits and Phases: 1: Ronald W Reagan Boulevard & RM 2243

	•	→	←	4	†	-						
Lane Group	EBL	EBT	WBT	NBL	NBT	NBR	Ø1	Ø2	Ø4	Ø5	Ø8	Ø11
Lane Configurations	*	↑	↑ ↑	7	^	7						
Traffic Volume (vph)	29	631	703	240	598	517						
Future Volume (vph)	29	631	703	240	598	517						
Lane Group Flow (vph)	32	686	1029	261	650	562						
Turn Type	D.P+P	NA	NA	Split	NA	Perm						
Protected Phases	5 15	5 6 15	6	8 16	8 16		1	2	4	5	8	11
Permitted Phases	6					8 16						
Detector Phase	5 15	5 6 15	6	8 16	8 16	8 16						
Switch Phase												
Minimum Initial (s)			9.0				1.0	9.0	9.0	1.0	9.0	5.0
Minimum Split (s)			15.0				7.0	15.0	15.0	7.0	15.0	9.5
Total Split (s)			22.0				7.0	26.0	21.0	7.0	21.0	21.0
Total Split (%)			24.4%				8%	29%	23%	8%	23%	23%
Yellow Time (s)			4.0				4.0	4.0	4.0	4.0	4.0	3.5
All-Red Time (s)			2.0				2.0	2.0	2.0	2.0	2.0	1.0
Lost Time Adjust (s)			0.0				2.0	2.0	2.0	2.0	2.0	1.0
Total Lost Time (s)			6.0									
Lead/Lag			0.0				Lag			Lag		
Lead-Lag Optimize?							Lag			Lag		
Recall Mode			Min				None	Min	None	Min	Min	None
Act Effct Green (s)	38.4	44.4	16.0	32.0	32.0	32.0	NONE	IVIIII	NONE	IVIIII	IVIIII	INOTIC
Actuated g/C Ratio	0.43	0.50	0.18	0.36	0.36	0.36						
v/c Ratio	0.43	0.30	1.61	0.30	0.51	0.30						
Control Delay (s/veh)	5.5	16.6	310.4	23.2	23.5	22.9						
Queue Delay	0.0	5.5	2.2	0.0	0.0	0.0						
Total Delay (s/veh)	5.5	22.1	312.7	23.3	23.5	22.9						
LOS	3.5 A	ZZ. 1	512.7 F	23.3 C	23.5 C	22.9 C						
	A	21.3	312.7	C	23.2	U						
Approach Delay (s/veh)		21.3 C	312. <i>1</i>		23.2 C							
Approach LOS	0			100	145	161						
Queue Length 50th (ft)	9	395	~443	106		161						
Queue Length 95th (ft)	m11	525	#570	171	196	301						
Internal Link Dist (ft)		40	1492	445	48	445						
Turn Bay Length (ft)	F04	040	000	415	4004	415						
Base Capacity (vph)	521	916	638	680	1361	748						
Starvation Cap Reductn	0	173	0	0	0	0						
Spillback Cap Reductn	0	0	160	17	0	0						
Storage Cap Reductn	0	0 00	0	0	0.40	0.75						
Reduced v/c Ratio	0.06	0.92	2.15	0.39	0.48	0.75						
Intersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 88.	4											
Natural Cycle: 80												
Control Type: Actuated-Und	coordinated											
Maximum v/c Ratio: 1.61												
Intersection Signal Delay (s					tersection							
Intersection Capacity Utiliza	ation 104.8°	%		IC	U Level	of Service	G					
Analysis Period (min) 15												
~ Volume exceeds capac	ity, queue i	s theoreti	cally infinit	te.								


Lane Group	Ø14	Ø15	Ø16
Lane Configurations			
Traffic Volume (vph)			
Future Volume (vph)			
Lane Group Flow (vph)			
Turn Type			
Protected Phases	14	15	16
Permitted Phases			
Detector Phase			
Switch Phase			
Minimum Initial (s)	5.0	5.0	5.0
Minimum Split (s)	9.5	9.5	9.5
Total Split (s)	15.0	21.0	19.0
Total Split (%)	17%	23%	21%
Yellow Time (s)	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0
Lost Time Adjust (s)	1.0	1.0	1.0
Total Lost Time (s)			
Lead/Lag	Lead		Lead
Lead-Lag Optimize?	Yes		Yes
Recall Mode	None	None	None
Act Effct Green (s)	110110	110110	110110
Actuated g/C Ratio			
v/c Ratio			
Control Delay (s/veh)			
Queue Delay			
Total Delay (s/veh)			
LOS			
Approach Delay (s/veh)			
Approach LOS			
Queue Length 50th (ft)			
Queue Length 95th (ft)			
Internal Link Dist (ft)			
Turn Bay Length (ft)			
Base Capacity (vph)			
Starvation Cap Reductn			
Spillback Cap Reductn			
Storage Cap Reductn			
Reduced v/c Ratio			
Intersection Summary			

- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
- m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 2: 183A NB Frontage Road & RM 2243

	→	•	←	/	ļ							
Lane Group	EBT	WBL	WBT	SBL	SBT	Ø1	Ø4	Ø5	Ø6	Ø8	Ø11	Ø14
Lane Configurations	† 1>	*	^	*	†							
Traffic Volume (vph)	358	353	590	302	528							
Future Volume (vph)	358	353	590	302	528							
Lane Group Flow (vph)	524	384	641	328	607							
Turn Type	NA	D.P+P	NA	Split	NA							
Protected Phases	2	1 11	1 11 2	4 14	4 14	1	4	5	6	8	11	14
Permitted Phases		2										
Detector Phase	2	1 11	1 11 2	4 14	4 14							
Switch Phase												
Minimum Initial (s)	9.0					1.0	9.0	1.0	9.0	9.0	5.0	5.0
Minimum Split (s)	15.0					7.0	15.0	7.0	15.0	15.0	9.5	9.5
Total Split (s)	26.0					7.0	21.0	7.0	22.0	21.0	21.0	15.0
Total Split (%)	28.9%					8%	23%	8%	24%	23%	23%	17%
Yellow Time (s)	4.0					4.0	4.0	4.0	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0					2.0	2.0	2.0	2.0	2.0	1.0	1.0
Lost Time Adjust (s)	0.0					,		,		,		
Total Lost Time (s)	6.0											
Lead/Lag	0.0					Lag		Lag				Lead
Lead-Lag Optimize?						Lug		Lug				Yes
Recall Mode	Min					None	None	Min	Min	Min	None	None
Act Effct Green (s)	18.4	42.1	48.1	28.3	28.3	TTOTIC	140110	IVIIII	IVIIII	IVIIII	140110	HOHO
Actuated g/C Ratio	0.21	0.48	0.54	0.32	0.32							
v/c Ratio	0.71	0.67	0.64	0.62	0.54							
Control Delay (s/veh)	35.1	10.0	13.3	31.4	26.6							
Queue Delay	5.5	6.2	45.2	0.1	0.0							
Total Delay (s/veh)	40.5	16.2	58.5	31.6	26.6							
LOS	70.0 D	В	E	C	C							
Approach Delay (s/veh)	40.5		42.7	<u> </u>	28.3							
Approach LOS	70.5 D		72.7 D		C							
Queue Length 50th (ft)	130	173	369	156	146							
Queue Length 95th (ft)	185	m140	m238	242	195							
Internal Link Dist (ft)	1271	111140	40	272	1952							
Turn Bay Length (ft)	1211		70	715	1332							
Base Capacity (vph)	803	570	1037	562	1182							
Starvation Cap Reductn	003	135	444	0	0							
Spillback Cap Reductn	216	0	0	16	0							
Storage Cap Reductn	0	0	0	0	0							
Reduced v/c Ratio	0.89	0.88	1.08	0.60	0.51							
Intersection Summary	0.00	0.00	1.00	0.00	0.01							
Cycle Length: 90												
Actuated Cycle Length: 88.4	1											
Natural Cycle: 80												
Control Type: Actuated-Unc	oordinated											
Maximum v/c Ratio: 1.61	ooramatoa											
Intersection Signal Delay (s.	/veh). 36 8			In	tersection	108·D						
Intersection Capacity Utiliza					U Level		G G					
Analysis Period (min) 15	104.0	70		10	O LEVEL	or oer vice	, 0					
m Volume for 95th percen	itile queue	is metero	d hy unetr	eam sign	al							
iii voidille ioi sotii percen	ille queue	10 1110 1010	a by upsti	cam sign	uı.							

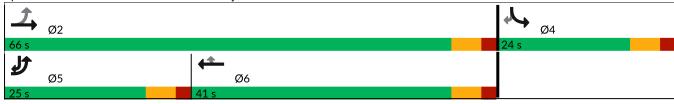
Lane Group	Ø15	Ø16
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	15	16
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	5.0	5.0
Minimum Split (s)	9.5	9.5
Total Split (s)	21.0	19.0
Total Split (%)	23%	21%
Yellow Time (s)	3.5	3.5
All-Red Time (s)	1.0	1.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag		Lead
Lead-Lag Optimize?		Yes
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay (s/veh)		
Queue Delay		
Total Delay (s/veh)		
LOS		
Approach Delay (s/veh)		
Approach LOS		
Queue Length 50th (ft)		
Queue Length 95th (ft)		
Internal Link Dist (ft)		
Turn Bay Length (ft)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		

	•	•	†	-	-	↓		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	ň					^	_	
Traffic Volume (veh/h)	159	0	0	0	0	1101		
Future Volume (Veh/h)	159	0	0	0	0	1101		
Sign Control	Yield		Free			Free		
Grade	0%		0%			0%		
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82		
Hourly flow rate (vph)	194	0	0	0	0	1343		
Pedestrians								
Lane Width (ft)								
Walking Speed (ft/s)								
Percent Blockage								
Right turn flare (veh)								
Median type			None			None		
Median storage veh)								
Upstream signal (ft)						125		
pX, platoon unblocked	0.86							
vC, conflicting volume	672	0			0			
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	303	0			0			
tC, single (s)	6.8	6.9			4.1			
tC, 2 stage (s)								
tF (s)	3.5	3.3			2.2			
p0 queue free %	66	100			100			
cM capacity (veh/h)	574	1084			1622			
	WB 1	SB 1	SB 2					
Direction, Lane #								
Volume Loft	194	672	672					
Volume Left	194	0	0					
Volume Right	0 574	1700	1700					
cSH	574	1700	1700					
Volume to Capacity	0.34	0.40	0.40					
Queue Length 95th (ft)	37	0	0					
Control Delay (s/veh)	14.4	0.0	0.0					
Lane LOS	В	0.0						
Approach LOC	14.4	0.0						
Approach LOS	В							
Intersection Summary								
Average Delay			1.8					
Intersection Capacity Utiliza	tion		43.3%	IC	U Level c	of Service		
Analysis Period (min)			15					

Intersection						
Int Delay, s/veh	0.5					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		^	1			7
Traffic Vol, veh/h	0	1121	854	31	0	58
Future Vol, veh/h	0	1121	854	31	0	58
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	Stop
Storage Length	_	-	-	-	-	0
Veh in Median Storage,		0	0	_	0	-
Grade, %	- π	0	0	-	0	_
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	0	1218	928	34	0	63
IVIVIIIL FIOW	U	1210	920	34	U	03
Major/Minor N	/lajor1	N	Major2	N	/linor2	
Conflicting Flow All		0		0	_	945
Stage 1	_	_	_		_	-
Stage 2	_	_	_	_	_	_
Critical Hdwy		_		_	_	6.22
Critical Hdwy Stg 1	_	_	_	_	_	0.22
Critical Hdwy Stg 2	-	-	-	_	-	_
	_	-	-	-	-	
Follow-up Hdwy	-	-	-	-		3.318
Pot Cap-1 Maneuver	0	-	-	-	0	318
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	-	-	-	-	-	318
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Annroach	EB		WB		SB	
Approach						
HCM Control Delay, s/v	0		0		19.13	
HCM LOS					С	
Minor Lane/Major Mvmt		EBT	WBT	WBR S	BLn1	
Capacity (veh/h)				-	0.40	
HCM Lane V/C Ratio		_	<u> </u>		0.199	
HCM Control Delay (s/v	(oh)	-		-		
	en)	_	-			
HCM Of the O(trah)		-	-	-	C	
HCM 95th %tile Q(veh)		-	-	-	0.7	

HCM 7th TWSC Synchro 12 Report SMP

	•	\rightarrow	•	•	1	1
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	*	†	^	7	7	7
Traffic Volume (vph)	403	718	540	186	217	345
Future Volume (vph)	403	718	540	186	217	345
Turn Type	pm+pt	NA	NA	Perm	Prot	pm+ov
Protected Phases	5	2	6		4	5
Permitted Phases	2			6		4
Detector Phase	5	2	6	6	4	5
Switch Phase						
Minimum Initial (s)	5.0	10.0	10.0	10.0	10.0	5.0
Minimum Split (s)	11.0	24.0	24.0	24.0	24.0	11.0
Total Split (s)	25.0	66.0	41.0	41.0	24.0	25.0
Total Split (%)	27.8%	73.3%	45.6%	45.6%	26.7%	27.8%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0	6.0
Lead/Lag	Lead		Lag	Lag		Lead
Lead-Lag Optimize?						
Recall Mode	None	Min	Min	Min	Min	None


Intersection Summary

Cycle Length: 90 Actuated Cycle Length: 81.4

Natural Cycle: 80

Control Type: Actuated-Uncoordinated

Splits and Phases: 6: RM 2243 & Raider Way

	٠	→	←	•	-	1
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	*	^	^	7	*	7
Traffic Volume (veh/h)	403	718	540	186	217	345
Future Volume (veh/h)	403	718	540	186	217	345
Initial Q (Qb), veh	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00			1.00	1.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No	No		No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	438	780	587	202	236	375
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2
Cap, veh/h	483	1178	669	567	383	649
Arrive On Green	0.19	0.63	0.36	0.36	0.22	0.22
Sat Flow, veh/h	1781	1870	1870	1585	1781	1585
Grp Volume(v), veh/h	438	780	587	202	236	375
Grp Sat Flow(s), veh/h/ln	1781	1870	1870	1585	1781	1585
Q Serve(g_s), s	12.4	20.5	22.7	7.3	9.3	14.1
Cycle Q Clear(g_c), s	12.4	20.5	22.7	7.3	9.3	14.1
Prop In Lane	1.00	20.5	22.1	1.00	1.00	1.00
	483	1178	669	567	383	649
Lane Grp Cap(c), veh/h						
V/C Ratio(X)	0.91	0.66	0.88	0.36	0.62	0.58
Avail Cap(c_a), veh/h	575	1452	847	718	415	678
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	17.7	9.1	23.2	18.3	27.4	17.6
Incr Delay (d2), s/veh	16.3	0.8	8.7	0.4	2.4	1.1
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	10.0	9.4	15.2	4.2	7.3	18.9
Unsig. Movement Delay, s/veh						
LnGrp Delay(d), s/veh	34.0	9.9	31.9	18.7	29.8	18.8
LnGrp LOS	С	Α	С	В	С	В
Approach Vol, veh/h		1218	789		611	
Approach Delay, s/veh		18.6	28.5		23.0	
Approach LOS		В	С		С	
Timer - Assigned Phs		2		4	5	6
Phs Duration (G+Y+Rc), s		54.6		22.6	21.0	33.6
Change Period (Y+Rc), s		6.0		6.0	6.0	6.0
Max Green Setting (Gmax), s		60.0		18.0	19.0	35.0
Max Q Clear Time (g_c+l1), s		22.5		16.1	14.4	24.7
Green Ext Time (p_c), s		5.4		0.5	0.6	2.9
Intersection Summary						
HCM 7th Control Delay, s/veh			22.6			
HCM 7th LOS			С			

	۶	→	1	•	1	†	-	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	*	1>	*	₽	*	† 1>	*	† 1>	
Traffic Volume (vph)	377	448	229	295	145	1495	194	1113	
Future Volume (vph)	377	448	229	295	145	1495	194	1113	
Lane Group Flow (vph)	381	577	231	450	169	1894	198	1382	
Turn Type	Prot	NA	Prot	NA	Prot	NA	Prot	NA	
Protected Phases	7	4	3	8	5	2	1	6	
Permitted Phases									
Detector Phase	7	4	3	8	5	2	1	6	
Switch Phase									
Minimum Initial (s)	5.0	6.0	5.0	6.0	5.0	10.0	5.0	10.0	
Minimum Split (s)	13.4	12.9	13.4	12.9	14.0	17.5	14.0	17.5	
Total Split (s)	29.0	44.0	30.0	45.0	24.0	77.0	29.0	82.0	
Total Split (%)	16.1%	24.4%	16.7%	25.0%	13.3%	42.8%	16.1%	45.6%	
Yellow Time (s)	5.4	5.4	5.4	5.4	6.0	6.0	6.0	6.0	
All-Red Time (s)	3.0	1.5	3.0	1.5	3.0	1.5	3.0	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	8.4	6.9	8.4	6.9	9.0	7.5	9.0	7.5	
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	None	C-Min	None	C-Min	
Act Effct Green (s)	20.6	37.1	21.6	38.1	15.0	69.5	20.0	74.5	
Actuated g/C Ratio	0.11	0.21	0.12	0.21	0.08	0.39	0.11	0.41	
v/c Ratio	1.89	1.57	1.09	1.19	1.16	1.42	1.01	0.97	
Control Delay (s/veh)	454.2	310.8	157.2	166.1	190.0	231.5	143.0	67.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay (s/veh)	454.2	310.8	157.2	166.1	190.0	231.5	143.0	67.5	
LOS	F	F	F	F	F	F	F	Е	
Approach Delay (s/veh)		367.8		163.1		228.1		77.0	
Approach LOS		F		F		F		Е	
Queue Length 50th (ft)	~684	~959	~305	~628	~234	~1576	~240	830	
Queue Length 95th (ft)	#909	#1211	#496	#863	#406	#1705	#425	#991	
Internal Link Dist (ft)		2065		766		2316		1512	
Turn Bay Length (ft)	415		500		500		540		
Base Capacity (vph)	202	368	212	377	146	1337	196	1429	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.89	1.57	1.09	1.19	1.16	1.42	1.01	0.97	
Interception Cummany									

Intersection Summary

Cycle Length: 180
Actuated Cycle Length: 180

Offset: 163 (91%), Referenced to phase 2:NBT and 6:SBT, Start of Yellow

Natural Cycle: 150

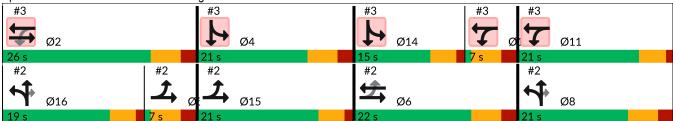
Control Type: Actuated-Coordinated

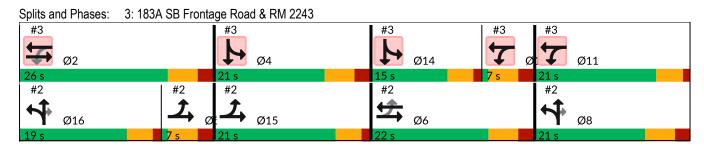
Maximum v/c Ratio: 1.89

Intersection Signal Delay (s/veh): 199.9 Intersection LOS: F
Intersection Capacity Utilization 136.4% ICU Level of Service H

Analysis Period (min) 15

- Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.


Splits and Phases: 1: Ronald W Reagan Boulevard & RM 2243


	٠	→	←	1	†	-						
Lane Group	EBL	EBT	WBT	NBL	NBT	NBR	Ø1	Ø2	Ø4	Ø5	Ø8	Ø11
Lane Configurations	*	↑	†	7	^	7						
Traffic Volume (vph)	28	520	701	433	872	541						
Future Volume (vph)	28	520	701	433	872	541						
Lane Group Flow (vph)	29	542	923	451	908	564						
Turn Type	D.P+P	NA	NA	Split	NA	Perm						
Protected Phases	5 15	5 6 15	6	8 16	8 16		1	2	4	5	8	11
Permitted Phases	6					8 16						
Detector Phase	5 15	5 6 15	6	8 16	8 16	8 16						
Switch Phase												
Minimum Initial (s)			9.0				1.0	9.0	9.0	1.0	9.0	5.0
Minimum Split (s)			15.0				7.0	15.0	15.0	7.0	15.0	9.5
Total Split (s)			22.0				7.0	26.0	21.0	7.0	21.0	21.0
Total Split (%)			24.4%				8%	29%	23%	8%	23%	23%
Yellow Time (s)			4.0				4.0	4.0	4.0	4.0	4.0	3.5
All-Red Time (s)			2.0				2.0	2.0	2.0	2.0	2.0	1.0
Lost Time Adjust (s)			0.0				2.0	2.0	2.0	2.0	2.0	1.0
Total Lost Time (s)			6.0									
Lead/Lag			0.0				Lag			Lag		
Lead-Lag Optimize?							Lag			Lag		
Recall Mode			Min				None	Min	None	Min	Min	None
Act Effct Green (s)	38.0	44.0	16.0	33.3	33.3	33.3	NONE	IVIIII	NONE	IVIIII	IVIIII	INOTIC
Actuated g/C Ratio	0.43	0.49	0.18	0.37	0.37	0.37						
v/c Ratio	0.43	0.49	1.46	0.68	0.69	0.75						
Control Delay (s/veh)	6.1	12.2	244.9	29.9	26.9	20.1						
Queue Delay	0.0	0.9	2.4	0.1	0.0	0.0						
Total Delay (s/veh)	6.1	13.1	247.3	30.0	26.9	20.1						
LOS	Α	13.1 B	247.3 F	30.0 C	20.9 C	20.1 C						
Approach Delay (s/veh)	Α	12.7	247.3	U	25.6	U						
• • • • • • • • • • • • • • • • • • • •		12. <i>1</i>	241.3 F		25.0 C							
Approach LOS	7	157	~378	210	223	149						
Queue Length 50th (ft)			~576 #502	210 319	223	286						
Queue Length 95th (ft)	m15	235 40	1492	319	48	200						
Internal Link Dist (ft)		40	1492	44E	40	445						
Turn Bay Length (ft)	E40	010	620	415	1240	415 761						
Base Capacity (vph)	519	910	632	674	1348							
Starvation Cap Reductn	0	154	160	0	0	0						
Spillback Cap Reductn	0	0	168	12	0	0						
Storage Cap Reductn Reduced v/c Ratio	0.06	0.72	0 1.99	0.68	0 0.67	0 0.74						
	0.00	0.12	1.33	0.00	0.07	0.74						
Intersection Summary												
Cycle Length: 90	2											
Actuated Cycle Length: 89.	ა 											
Natural Cycle: 80		ı										
Control Type: Actuated-Und	coordinated	l										
Maximum v/c Ratio: 1.46	/b) 00 4				4	100 5						
Intersection Signal Delay (s	Intersection LOS: F											
Intersection Capacity Utiliza	ICU Level of Service G											
Analysis Period (min) 15		. 0		1								
 Volume exceeds capac 	ity, queue i	s tneoreti	cally intini	te.								

- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
- m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 2: 183A NB Frontage Road & RM 2243

	→	•	+	/	Ţ							
Lane Group	EBT	WBL	WBT	SBL	SBT	Ø1	Ø4	Ø5	Ø6	Ø8	Ø11	Ø14
Lane Configurations	† 1>	*	^	7	† ‡							
Traffic Volume (vph)	272	328	806	276	717							
Future Volume (vph)	272	328	806	276	717							
Lane Group Flow (vph)	395	331	814	279	733							
Turn Type	NA	D.P+P	NA	Split	NA							
Protected Phases	2	1 11	1 11 2	4 14	4 14	1	4	5	6	8	11	14
Permitted Phases		2										
Detector Phase	2	1 11	1 11 2	4 14	4 14							
Switch Phase												
Minimum Initial (s)	9.0					1.0	9.0	1.0	9.0	9.0	5.0	5.0
Minimum Split (s)	15.0					7.0	15.0	7.0	15.0	15.0	9.5	9.5
Total Split (s)	26.0					7.0	21.0	7.0	22.0	21.0	21.0	15.0
Total Split (%)	28.9%					8%	23%	8%	24%	23%	23%	17%
Yellow Time (s)	4.0					4.0	4.0	4.0	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0					2.0	2.0	2.0	2.0	2.0	1.0	1.0
Lost Time Adjust (s)	0.0											
Total Lost Time (s)	6.0											
Lead/Lag						Lag		Lag				Lead
Lead-Lag Optimize?						9		9				Yes
Recall Mode	Min					None	None	Min	Min	Min	None	None
Act Effct Green (s)	19.2	42.3	48.3	29.0	29.0	110110	110110	14		14	110110	110110
Actuated g/C Ratio	0.22	0.47	0.54	0.32	0.32							
v/c Ratio	0.51	0.53	0.81	0.50	0.64							
Control Delay (s/veh)	27.6	6.5	14.2	27.8	28.6							
Queue Delay	0.4	1.3	50.3	0.1	0.0							
Total Delay (s/veh)	28.0	7.9	64.4	27.9	28.6							
LOS	C	Α	E	C	C							
Approach Delay (s/veh)	28.0		48.1		28.4							
Approach LOS	C		D		C							
Queue Length 50th (ft)	84	121	477	126	183							
Queue Length 95th (ft)	130	m119	m327	200	243							
Internal Link Dist (ft)	1271	111113	40	200	1952							
Turn Bay Length (ft)	1211		70	715	1332							
Base Capacity (vph)	805	625	1023	583	1188							
Starvation Cap Reductn	003	137	319	0	0							
Spillback Cap Reductn	107	0	0	16	0							
Storage Cap Reductn	0	0	0	0	0							
Reduced v/c Ratio	0.57	0.68	1.16	0.49	0.62							
Intersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 89.3												
Natural Cycle: 80												
Control Type: Actuated-Uncoordinated												
Maximum v/c Ratio: 1.46												
Intersection Signal Delay (s/	veh): 37.2			In	tersection	LOS: D						
Intersection Capacity Utilizat					U Level		G					
Analysis Period (min) 15					S = 5101 C							
m Volume for 95th percent	ile queue	is metere	d by upstr	eam sign	al.							
				_								

Lane Configurations Traffic Volume (vph) Future Volume (vph) Lane Group Flow (vph) Turn Type Protected Phases 15 16 Permitted Phases Detector Phase Switch Phase
Traffic Volume (vph) Future Volume (vph) Lane Group Flow (vph) Turn Type Protected Phases 15 16 Permitted Phases Detector Phase Switch Phase
Future Volume (vph) Lane Group Flow (vph) Turn Type Protected Phases 15 16 Permitted Phases Detector Phase Switch Phase
Lane Group Flow (vph) Turn Type Protected Phases 15 16 Permitted Phases Detector Phase Switch Phase
Turn Type Protected Phases 15 16 Permitted Phases Detector Phase Switch Phase
Protected Phases 15 16 Permitted Phases Detector Phase Switch Phase
Permitted Phases Detector Phase Switch Phase
Detector Phase Switch Phase
Switch Phase
Minimum Initial (a) FO FO
Minimum Initial (s) 5.0 5.0
Minimum Split (s) 9.5 9.5
Total Split (s) 21.0 19.0
Total Split (%) 23% 21%
Yellow Time (s) 3.5 3.5
All-Red Time (s) 1.0 1.0
Lost Time Adjust (s)
Total Lost Time (s)
Lead/Lag Lead
Lead-Lag Optimize? Yes
Recall Mode None None
Act Effct Green (s)
Actuated g/C Ratio
v/c Ratio
Control Delay (s/veh)
Queue Delay
Total Delay (s/veh)
LOS
Approach Delay (s/veh)
Approach LOS
Queue Length 50th (ft)
Queue Length 95th (ft)
Internal Link Dist (ft)
Turn Bay Length (ft)
Base Capacity (vph)
Starvation Cap Reductn
Spillback Cap Reductn
Storage Cap Reductn
Reduced v/c Ratio
Intersection Summary

Timings SMP Synchro 12 Report

	•	*	†	-	-	ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	*					^	
Traffic Volume (veh/h)	87	0	0	0	0	1164	
Future Volume (Veh/h)	87	0	0	0	0	1164	
Sign Control	Yield		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	
Hourly flow rate (vph)	91	0	0	0	0	1212	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (ft)						125	
pX, platoon unblocked	0.83						
vC, conflicting volume	606	0			0		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	111	0			0		
tC, single (s)	6.8	6.9			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	87	100			100		
cM capacity (veh/h)	724	1084			1622		
Direction, Lane #	WB 1	SB 1	SB 2				
Volume Total	91	606	606				
Volume Left	91	0	0				
Volume Right	0	0	0				
cSH	724	1700	1700				
Volume to Capacity	0.13	0.36	0.36				
Queue Length 95th (ft)	11	0.50	0.50				
Control Delay (s/veh)	10.7	0.0	0.0				
Lane LOS	В	0.0	0.0				
Approach Delay (s/veh)	10.7	0.0					
Approach LOS	10.7	0.0					
	D						
Intersection Summary							
Average Delay			0.7				
Intersection Capacity Utiliza	ation		43.7%	IC	U Level o	of Service	
Analysis Period (min)			15				

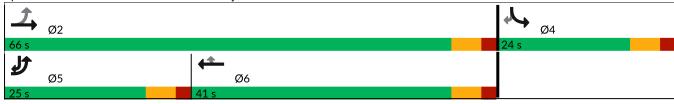
Intersection						
Int Delay, s/veh	0.6					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		↑	1>	11511	UDL	T T
Traffic Vol, veh/h	0	1070	754	34	0	62
Future Vol, veh/h	0	1070	754	34	0	62
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	- Olop	Stop
Storage Length	_	-	_	-	_	0
Veh in Median Storage		0	0	_	0	-
Grade, %	- σ, π -	0	0	_	0	<u>-</u>
Peak Hour Factor	92	92	92	92	92	92
	2	2	2	2	2	2
Heavy Vehicles, %			820	37		67
Mvmt Flow	0	1163	820	3/	0	67
Major/Minor	Major1	N	Major2	N	/linor2	
Conflicting Flow All		0	-	0	-	838
Stage 1	-	-	_	-	_	-
Stage 2	_	_	_	_	_	_
Critical Hdwy	_	_	_	_	-	6.22
Critical Hdwy Stg 1	_	_	_	_	_	-
Critical Hdwy Stg 2	_	_	_	_	_	_
Follow-up Hdwy	_	_	_	_		3.318
Pot Cap-1 Maneuver	0	_	_	_	0	366
Stage 1	0	_	_	_	0	J00 -
Stage 2	0	_	_	-	0	
Platoon blocked, %	U	-	•	-	U	-
		-	-			266
Mov Cap-1 Maneuver	-	-	-	-	-	366
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
HCM Control Delay, s/			0		17.04	
HCM LOS	•		· ·		C	
1 JOHN LOO						
Minor Lane/Major Mvn	nt	EBT	WBT	WBR S	SBLn1	
Capacity (veh/h)		-	-	-	366	
HCM Lane V/C Ratio		-	-	-	0.184	
HCM Control Delay (sa	/veh)	-	-	-	17	
HCM Lane LOS		-	-	-	С	
HCM 95th %tile Q(veh)	-	-	-	0.7	
	,					

HCM 7th TWSC Synchro 12 Report

SMP

	۶	-	←	•	1	1
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	1	^	†	7	7	7
Traffic Volume (vph)	265	805	585	110	143	203
Future Volume (vph)	265	805	585	110	143	203
Turn Type	pm+pt	NA	NA	Perm	Prot	pm+ov
Protected Phases	5	2	6		4	5
Permitted Phases	2			6		4
Detector Phase	5	2	6	6	4	5
Switch Phase						
Minimum Initial (s)	5.0	10.0	10.0	10.0	10.0	5.0
Minimum Split (s)	11.0	16.0	16.0	16.0	16.0	11.0
Total Split (s)	25.0	66.0	41.0	41.0	24.0	25.0
Total Split (%)	27.8%	73.3%	45.6%	45.6%	26.7%	27.8%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0	6.0
Lead/Lag	Lead		Lag	Lag		Lead
Lead-Lag Optimize?						
Recall Mode	None	Min	Min	Min	None	None

Intersection Summary


Cycle Length: 90

Actuated Cycle Length: 76

Natural Cycle: 60

Control Type: Actuated-Uncoordinated

Splits and Phases: 6: RM 2243 & Raider Way

Timings SMP Synchro 12 Report

	۶	→	—	1	-	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	*	†	†	7	7	7
Traffic Volume (veh/h)	265	805	585	110	143	203
Future Volume (veh/h)	265	805	585	110	143	203
Initial Q (Qb), veh	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00	1.00	1.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	1.00	No	No	1.00	No	1.00
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	288	875	636	120	155	221
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %					300	468
Cap, veh/h	414	1178	750	636		
Arrive On Green	0.13	0.63	0.40	0.40	0.17	0.17
Sat Flow, veh/h	1781	1870	1870	1585	1781	1585
Grp Volume(v), veh/h	288	875	636	120	155	221
Grp Sat Flow(s),veh/h/ln	1781	1870	1870	1585	1781	1585
Q Serve(g_s), s	5.0	19.3	18.3	2.9	4.7	6.8
Cycle Q Clear(g_c), s	5.0	19.3	18.3	2.9	4.7	6.8
Prop In Lane	1.00			1.00	1.00	1.00
Lane Grp Cap(c), veh/h	414	1178	750	636	300	468
V/C Ratio(X)	0.70	0.74	0.85	0.19	0.52	0.47
Avail Cap(c_a), veh/h	757	1891	1103	935	540	683
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	11.8	7.6	16.1	11.5	22.5	17.1
Incr Delay (d2), s/veh	2.1	0.9	4.2	0.1	1.4	0.7
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	2.4	6.7	10.7	1.4	3.5	0.0
. , , , , , , , , , , , , , , , , , , ,		0.7	10.7	1.4	ა.ט	0.2
Unsig. Movement Delay, s/veh		8.6	20.2	11 7	23.9	17.0
LnGrp Delay(d), s/veh	13.9		20.3	11.7		17.9
LnGrp LOS	В	A	C	В	C	В
Approach Vol, veh/h		1163	756		376	
Approach Delay, s/veh		9.9	19.0		20.3	
Approach LOS		Α	В		С	
Timer - Assigned Phs		2		4	5	6
Phs Duration (G+Y+Rc), s		43.4		16.0	13.6	29.8
Change Period (Y+Rc), s		6.0		6.0	6.0	6.0
Max Green Setting (Gmax), s		60.0		18.0	19.0	35.0
Max Q Clear Time (g_c+l1), s		21.3		8.8	7.0	20.3
Green Ext Time (p c), s		6.6		0.9	0.6	3.5
u = 7·						
Intersection Summary			44.0			
HCM 7th Control Delay, s/veh			14.6			
HCM 7th LOS			В			

	۶	→	•	•	1	1	~	/	ļ	4	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	7	1	¥	1	A	^	7	Ž.	44	7	_
Traffic Volume (vph)	216	364	293	322	174	742	221	187	1502	314	
Future Volume (vph)	216	364	293	322	174	742	221	187	1502	314	
Lane Group Flow (vph)	218	548	296	473	198	749	223	190	1517	317	
Turn Type	Prot	NA	Prot	NA	Prot	NA	Free	Prot	NA	Free	
Protected Phases	7	4	3	8	5	2		1	6		
Permitted Phases							Free			Free	
Detector Phase	7	4	3	8	5	2		1	6		
Switch Phase											
Minimum Initial (s)	6.0	6.0	6.0	6.0	5.0	10.0		5.0	10.0		
Minimum Split (s)	12.9	12.9	12.9	12.9	14.0	17.5		14.0	17.5		
Total Split (s)	23.0	44.0	26.0	47.0	24.0	42.0		38.0	56.0		
Total Split (%)	15.3%	29.3%	17.3%	31.3%	16.0%	28.0%		25.3%	37.3%		
Yellow Time (s)	5.4	5.4	5.4	5.4	6.0	6.0		6.0	6.0		
All-Red Time (s)	1.5	1.5	1.5	1.5	3.0	1.5		3.0	1.5		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0		
Total Lost Time (s)	6.9	6.9	6.9	6.9	9.0	7.5		9.0	7.5		
Lead/Lag	Lag	Lag	Lead	Lead	Lead	Lag		Lead	Lag		
Lead-Lag Optimize?											
Recall Mode	None	None	None	None	None	C-Min		None	C-Min		
Act Effct Green (s)	16.1	37.1	19.1	40.1	15.0	41.9	150.0	21.6	48.5	150.0	
Actuated g/C Ratio	0.11	0.25	0.13	0.27	0.10	0.28	1.00	0.14	0.32	1.00	
v/c Ratio	1.24	1.26	1.37	1.01	1.12	0.77	0.15	0.76	1.33	0.21	
Control Delay (s/veh)	198.8	177.2	239.7	96.8	161.7	56.5	0.2	80.3	192.8	0.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay (s/veh)	198.8	177.2	239.7	96.8	161.7	56.5	0.2	80.3	192.8	0.3	
LOS	F	F	F	F	F	Е	Α	F	F	Α	
Approach Delay (s/veh)		183.3		151.8		63.6			152.1		
Approach LOS		F		F		Е			F		
Queue Length 50th (ft)	~264	~660	~380	~465	~221	356	0	181	~1008	0	
Queue Length 95th (ft)	#436	#896	#575	#700	#388	#504	0	257	#1148	0	
Internal Link Dist (ft)		2064		766		2316			1512		
Turn Bay Length (ft)	415		500		500		515	540		515	
Base Capacity (vph)	176	436	216	467	177	969	1524	335	1144	1538	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.24	1.26	1.37	1.01	1.12	0.77	0.15	0.57	1.33	0.21	

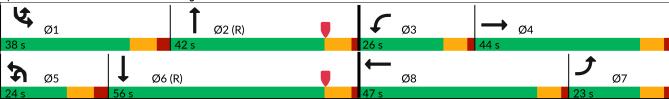
Intersection Summary

Cycle Length: 150 Actuated Cycle Length: 150

Offset: 13 (9%), Referenced to phase 2:NBT and 6:SBT, Start of Yellow

Natural Cycle: 150

Control Type: Actuated-Coordinated

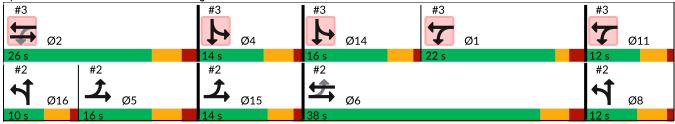

Maximum v/c Ratio: 1.37

Intersection Signal Delay (s/veh): 135.2 Intersection LOS: F
Intersection Capacity Utilization 123.9% ICU Level of Service H

Analysis Period (min) 15

- Volume exceeds capacity, queue is theoretically infinite.
 - Queue shown is maximum after two cycles.
- 95th percentile volume exceeds capacity, queue may be longer.
 - Queue shown is maximum after two cycles.

Splits and Phases: 1: Ronald W Reagan Boulevard & RM 2243


	•	→	←	4	†	1						
Lane Group	EBL	EBT	WBT	NBL	NBT	NBR	Ø1	Ø2	Ø4	Ø5	Ø8	Ø11
Lane Configurations	*	↑	†	*	^	7						
Traffic Volume (vph)	28	666	802	193	306	343						
Future Volume (vph)	28	666	802	193	306	343						
Lane Group Flow (vph)	29	680	1065	197	312	350						
Turn Type	D.P+P	NA	NA	Split	NA	Free						
Protected Phases	5 15	5 6 15	6	8 16	8 16		1	2	4	5	8	11
Permitted Phases	6					Free						
Detector Phase	5 15	5 6 15	6	8 16	8 16							
Switch Phase												
Minimum Initial (s)			9.0				1.0	9.0	9.0	1.0	6.0	5.0
Minimum Split (s)			15.0				7.0	15.0	15.0	7.0	12.0	9.5
Total Split (s)			38.0				22.0	26.0	14.0	16.0	12.0	12.0
Total Split (%)			42.2%				24%	29%	16%	18%	13%	13%
Yellow Time (s)			4.0				2.0	4.0	4.0	4.0	4.0	3.5
All-Red Time (s)			2.0				2.0	2.0	1.0	2.0	1.0	1.0
Lost Time Adjust (s)			0.0				2.0	2.0	1.0		1.0	
Total Lost Time (s)			6.0									
Lead/Lag			0.0				Lag			Lag		
Lead-Lag Optimize?							Lug			Lug		
Recall Mode			Min				None	Min	None	Min	Min	None
Act Effct Green (s)	55.2	61.2	31.2	17.0	17.0	89.2	140110	IVIIII	110110	IVIIII	IVIIII	140110
Actuated g/C Ratio	0.62	0.69	0.35	0.19	0.19	1.00						
v/c Ratio	0.02	0.55	0.88	0.62	0.49	0.23						
Control Delay (s/veh)	2.1	6.3	36.3	43.0	35.5	0.23						
Queue Delay	0.0	6.2	18.2	0.0	0.0	0.0						
Total Delay (s/veh)	2.1	12.5	54.5	43.0	35.5	0.3						
LOS	Α.1	12.3 B	04.0 D	43.0 D	D	Α						
Approach Delay (s/veh)		12.0	54.5	U	22.9							
Approach LOS		12.0 B	04.0 D		C							
Queue Length 50th (ft)	1	211	281	104	84	0						
Queue Length 95th (ft)	m1	280	#401	176	126	0						
Internal Link Dist (ft)	1111	40	1443	170	48	U						
Turn Bay Length (ft)		40	1443	415	40	415						
Base Capacity (vph)	514	1245	1233	318	637	1538						
Starvation Cap Reductn	0	502	0	0	037	1556						
			190									
Spillback Cap Reductn	0	0		0	0	0						
Storage Cap Reductn Reduced v/c Ratio	0.06	0.92	0 1.02	0.62	0.49	0.23						
Intersection Summary	0.00	0.02	1.02	0.02	0.10	0.20						
Cycle Length: 90												
Actuated Cycle Length: 89.	2											
Natural Cycle: 90	_											
Control Type: Actuated-Und	coordinated											
Maximum v/c Ratio: 0.96	Journaled											
	/vob). 22 0			l _n	tersection	100.0						
Intersection Signal Delay (s												
Intersection Capacity Utiliza	auon 90.9%			IC	U Level o	JI SELVICE	; F					
Analysis Period (min) 15	ovocada sa	nacity	HOLIO MEST	ha lares								
# 95th percentile volume	exceeas ca	pacity, q	ueue may	ne iongei								

Lane Group	Ø14	Ø15	Ø16
Lane Configurations			
Traffic Volume (vph)			
Future Volume (vph)			
Lane Group Flow (vph)			
Turn Type			
Protected Phases	14	15	16
Permitted Phases	14	13	10
Detector Phase			
Switch Phase			
	<i>E</i> 0	<i>E</i> 0	ΕO
Minimum Initial (s)	5.0	5.0	5.0
Minimum Split (s)	9.5	9.5	9.5
Total Split (s)	16.0	14.0	10.0
Total Split (%)	18%	16%	11%
Yellow Time (s)	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0
Lost Time Adjust (s)			
Total Lost Time (s)			
Lead/Lag	Lead		Lead
Lead-Lag Optimize?	Yes		Yes
Recall Mode	None	None	None
Act Effct Green (s)			
Actuated g/C Ratio			
v/c Ratio			
Control Delay (s/veh)			
Queue Delay			
Total Delay (s/veh)			
LOS			
Approach Delay (s/veh)			
Approach LOS			
Queue Length 50th (ft)			
Queue Length 95th (ft)			
Internal Link Dist (ft)			
Turn Bay Length (ft)			
Base Capacity (vph)			
Starvation Cap Reductn			
Spillback Cap Reductn			
Storage Cap Reductn			
Reduced v/c Ratio			
Intersection Summary			

Timings SMP Synchro 12 Report Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 2: 183A NB Frontage Road & RM 2243

	→	•	+	/	ļ							
Lane Group	EBT	WBL	WBT	SBL	SBT	Ø1	Ø4	Ø5	Ø6	Ø8	Ø11	Ø14
Lane Configurations	† 1>	*	^	*	†							
Traffic Volume (vph)	388	454	541	306	903							
Future Volume (vph)	388	454	541	306	903							
Lane Group Flow (vph)	608	463	552	312	942							
Turn Type	NA	D.P+P	NA	Split	NA							
Protected Phases	2	1 11	1 11 2	4 14	4 14	1	4	5	6	8	11	14
Permitted Phases		2										
Detector Phase	2	1 11	1 11 2	4 14	4 14							
Switch Phase												
Minimum Initial (s)	9.0					1.0	9.0	1.0	9.0	6.0	5.0	5.0
Minimum Split (s)	15.0					7.0	15.0	7.0	15.0	12.0	9.5	9.5
Total Split (s)	26.0					22.0	14.0	16.0	38.0	12.0	12.0	16.0
Total Split (%)	28.9%					24%	16%	18%	42%	13%	13%	18%
Yellow Time (s)	4.0					2.0	4.0	4.0	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0					2.0	1.0	2.0	2.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0											
Total Lost Time (s)	6.0											
Lead/Lag						Lag		Lag				Lead
Lead-Lag Optimize?						9		9				Yes
Recall Mode	Min					None	None	Min	Min	Min	None	None
Act Effct Green (s)	20.0	51.2	55.2	25.0	25.0	110110	110110			14	110110	110110
Actuated g/C Ratio	0.22	0.57	0.62	0.28	0.28							
v/c Ratio	0.74	0.67	0.48	0.65	0.96							
Control Delay (s/veh)	32.9	10.7	8.9	36.1	54.0							
Queue Delay	6.8	17.8	37.5	0.0	0.0							
Total Delay (s/veh)	39.7	28.6	46.4	36.1	54.0							
LOS	D	C	D	D	D							
Approach Delay (s/veh)	39.7		38.2		49.6							
Approach LOS	D		D		D							
Queue Length 50th (ft)	142	179	257	157	277							
Queue Length 95th (ft)	204	m200	m324	248	#410							
Internal Link Dist (ft)	1271	111200	40	210	1952							
Turn Bay Length (ft)	1211		40	715	1002							
Base Capacity (vph)	825	686	1152	477	979							
Starvation Cap Reductn	0	216	629	0	0							
Spillback Cap Reductn	171	0	0	0	0							
Storage Cap Reductn	0	0	0	0	0							
Reduced v/c Ratio	0.93	0.99	1.06	0.65	0.96							
Intersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 89.2												
Natural Cycle: 90												
Control Type: Actuated-Unco	ordinated	1										
Maximum v/c Ratio: 0.96												
Intersection Signal Delay (s/v	eh): 43.5			In	tersection	LOS: D						
Intersection Capacity Utilizati					U Level		F					
Analysis Period (min) 15	551576				, 10,0,0	20.7100						
# 95th percentile volume ex	ceeds ca	nacity di	ieue mav	be longer								
" John Pordonillo volume 6/	.50500	.paorty, qt	add may	20 longer								

Lane Configurations Traffic Volume (vph) Future Volume (vph) Lane Group Flow (vph) Turn Type Protected Phases 15 16 Permitted Phases Detector Phase Switch Phase Minimum Initial (s) 5.0 5.0 Minimum Split (s) 9.5 9.5 Total Split (s) 14.0 10.0 Total Split (%) 16% 11% Yellow Time (s) 3.5 3.5 All-Red Time (s) 1.0 1.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead-Lag Optimize? Yes Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) Queue Length 55th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio	Lane Group	Ø15	Ø16		
Traffic Volume (vph) Future Volume (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Minimum Minimum Minimum Split (s) Minimum Split (s) Minimum Split (s) Minimum Minimum Minimum Split (s) Minimum Split (s) Minimum Split (s) Minimum Mini	Lane Configurations				•
Future Volume (vph) Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Minimum Minimum Minimum Minimum Minimum					
Lane Group Flow (vph) Turn Type Protected Phases Detector Phases Switch Phase Switch Phase Minimum Initial (s) Minimum Split (s) Minimum S					
Turn Type Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) Approach LOS Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio					
Protected Phases Detector Phase Switch Phase Minimum Initial (s) S.0 S.0 Minimum Split (s) S.0					
Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Joseph		15	16		
Switch Phase Minimum Initial (s) 5.0 5.0 Minimum Split (s) 9.5 9.5 Total Split (s) 14.0 10.0 Total Split (%) 16% 11% Yellow Time (s) 3.5 3.5 All-Red Time (s) 1.0 1.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead-Lag Optimize? Yes Recall Mode None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Dolay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio	Permitted Phases				
Minimum Initial (s) 5.0 5.0 Minimum Split (s) 9.5 9.5 Total Split (s) 14.0 10.0 Total Split (%) 16% 11% Yellow Time (s) 3.5 3.5 All-Red Time (s) 1.0 1.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Yes Recall Mode None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Reduced v/c Ratio	Detector Phase				
Minimum Split (s) 9.5 9.5 Total Split (s) 14.0 10.0 Total Split (%) 16% 11% Yellow Time (s) 3.5 3.5 All-Red Time (s) 1.0 1.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead-Lag Optimize? Yes Recall Mode None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Reduced v/c Ratio	Switch Phase				
Minimum Split (s) 9.5 9.5 Total Split (s) 14.0 10.0 Total Split (%) 16% 11% Yellow Time (s) 3.5 3.5 All-Red Time (s) 1.0 1.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Yes Recall Mode None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Reduced v/c Ratio	Minimum Initial (s)	5.0	5.0		
Total Split (s) 14.0 10.0 Total Split (%) 16% 11% Yellow Time (s) 3.5 3.5 All-Red Time (s) 1.0 1.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead-Lag Optimize? Yes Recall Mode None None Act Effet Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn Reduced v/c Ratio		9.5	9.5		
Total Split (%) 16% 11% Yellow Time (s) 3.5 3.5 All-Red Time (s) 1.0 1.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead-Lag Optimize? Yes Recall Mode None None Act Effet Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio					
Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Yes Recall Mode None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Reduced v/c Ratio					
All-Red Time (s) 1.0 1.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead-Lag Optimize? Yes Recall Mode None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			3.5		
Lost Time Adjust (s) Total Lost Time (s) Lead/Lag					
Total Lost Time (s) Lead/Lag Lead Lead-Lag Optimize? Yes Recall Mode None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio					
Lead/Lag Lead Lead-Lag Optimize? Yes Recall Mode None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio					
Lead-Lag Optimize? Yes Recall Mode None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			Lead		
Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Reduced v/c Ratio					
Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Reduced v/c Ratio		None			
Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio					
v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio	. ,				
Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio					
Queue Delay Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio					
Total Delay (s/veh) LOS Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio					
Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio					
Approach Delay (s/veh) Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio					
Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio					
Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio					
Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio					
Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio					
Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio					
Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio					
Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio					
Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio					
Storage Cap Reductn Reduced v/c Ratio					
Reduced v/c Ratio					
Intersection Cummany					
intersection outlinary	Intersection Summary				

Timings SMP Synchro 12 Report Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

3: 183A SB Frontage Road & RM 2243 Splits and Phases:

	۶	→	•	•	1	1	-	1	ļ	4	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	*	13	7	13	7	^	7	7	^	7	
Traffic Volume (vph)	349	397	198	273	190	1159	255	196	982	263	
Future Volume (vph)	349	397	198	273	190	1159	255	196	982	263	
Lane Group Flow (vph)	356	598	202	439	216	1183	260	201	1002	268	
Turn Type	Prot	NA	Prot	NA	Prot	NA	Free	Prot	NA	Free	
Protected Phases	7	4	3	8	5	2		1	6		
Permitted Phases							Free			Free	
Detector Phase	7	4	3	8	5	2		1	6		
Switch Phase											
Minimum Initial (s)	5.0	6.0	5.0	6.0	5.0	10.0		5.0	10.0		
Minimum Split (s)	13.4	12.9	13.4	12.9	14.0	17.5		14.0	17.5		
Total Split (s)	37.0	52.0	29.0	44.0	32.0	65.0		34.0	67.0		
Total Split (%)	20.6%	28.9%	16.1%	24.4%	17.8%	36.1%		18.9%	37.2%		
Yellow Time (s)	5.4	5.4	5.4	5.4	6.0	6.0		6.0	6.0		
All-Red Time (s)	3.0	1.5	3.0	1.5	3.0	1.5		3.0	1.5		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0		
Total Lost Time (s)	8.4	6.9	8.4	6.9	9.0	7.5		9.0	7.5		
Lead/Lag	Lag	Lag	Lead	Lead	Lead	Lag		Lead	Lag		
Lead-Lag Optimize?											
Recall Mode	None	None	None	None	None	C-Min		None	C-Min		
Act Effct Green (s)	28.6	45.1	20.6	37.1	23.0	59.0	180.0	23.5	59.5	180.0	
Actuated g/C Ratio	0.16	0.25	0.11	0.21	0.13	0.33	1.00	0.13	0.33	1.00	
v/c Ratio	1.33	1.35	1.06	1.25	0.97	1.02	0.17	0.89	0.86	0.18	
Control Delay (s/veh)	225.0	220.5	153.2	186.1	128.4	89.9	0.2	112.1	64.8	0.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay (s/veh)	225.0	220.5	153.2	186.1	128.4	89.9	0.2	112.1	64.8	0.3	
LOS	F	F	F	F	F	F	Α	F	E	Α	
Approach Delay (s/veh)		222.2		175.7		80.8			59.5		
Approach LOS		F		F		F			E		
Queue Length 50th (ft)	~543	~913	~260	~632	259	~794	0	235	585	0	
Queue Length 95th (ft)	#763	#1166	#441	#866	#441	#935	0	#378	678	0	
Internal Link Dist (ft)		2065		766		2316			1512		
Turn Bay Length (ft)	415		500		500		515	540		515	
Base Capacity (vph)	268	442	191	352	223	1159	1568	241	1169	1482	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.33	1.35	1.06	1.25	0.97	1.02	0.17	0.83	0.86	0.18	

Intersection Summary

Cycle Length: 180

Actuated Cycle Length: 180

Offset: 172 (96%), Referenced to phase 2:NBT and 6:SBT, Start of Yellow

Natural Cycle: 150

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.35

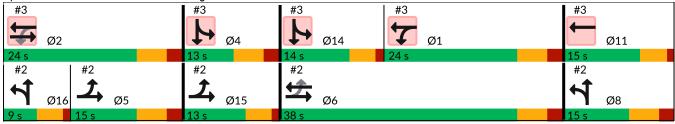
Intersection Signal Delay (s/veh): 115.6 Intersection LOS: F
Intersection Capacity Utilization 112.8% ICU Level of Service H

Analysis Period (min) 15

School Dismissal PM Peak

- Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
- 95th percentile volume exceeds capacity, queue may be longer.
 - Queue shown is maximum after two cycles.

Splits and Phases: 1: Ronald W Reagan Boulevard & RM 2243

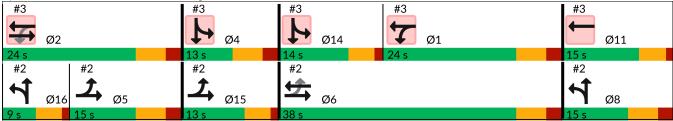

	•	→	←	1	†	-						
Lane Group	EBL	EBT	WBT	NBL	NBT	NBR	Ø1	Ø2	Ø4	Ø5	Ø8	Ø11
Lane Configurations	*	↑	†	*	^	7						
Traffic Volume (vph)	29	631	703	240	598	517						
Future Volume (vph)	29	631	703	240	598	517						
Lane Group Flow (vph)	32	686	1029	261	650	562						
Turn Type	D.P+P	NA	NA	Split	NA	Free						
Protected Phases	5 15	5 6 15	6	8 16	8 16		1	2	4	5	8	11
Permitted Phases	6					Free						
Detector Phase	5 15	5 6 15	6	8 16	8 16							
Switch Phase												
Minimum Initial (s)			9.0				1.0	9.0	7.0	1.0	7.0	5.0
Minimum Split (s)			15.0				7.0	15.0	13.0	7.0	13.0	9.5
Total Split (s)			38.0				24.0	24.0	13.0	15.0	15.0	15.0
Total Split (%)			42.2%				27%	27%	14%	17%	17%	17%
Yellow Time (s)			4.0				4.0	4.0	4.0	4.0	4.0	3.5
All-Red Time (s)			2.0				2.0	2.0	2.0	2.0	2.0	1.0
Lost Time Adjust (s)			0.0				2.0	2.0	2.0	2.0	2.0	1.0
Total Lost Time (s)			6.0									
Lead/Lag			0.0				Lag			Lag		
Lead-Lag Optimize?							Lag			Lag		
Recall Mode			Min				None	Min	None	Min	Min	None
Act Effct Green (s)	53.0	59.0	31.0	18.0	18.0	89.0	NONE	IVIIII	NONE	IVIIII	IVIIII	INOTIC
Actuated g/C Ratio	0.60	0.66	0.35	0.20	0.20	1.00						
v/c Ratio	0.06	0.57	0.86	0.20	0.20	0.36						
Control Delay (s/veh)	2.0	6.3	34.4	47.0	53.6	0.56						
Queue Delay	0.0	46.1	8.7	0.0	0.0	0.0						
Total Delay (s/veh)	2.0	52.4	43.1	47.0	53.6	0.6						
LOS	2.0 A	52.4 D	43.1 D	47.0 D	55.0 D	Α						
	A	50.1	43.1	U	32.2	A						
Approach Delay (s/veh)		50.1 D	43.1 D		32.2 C							
Approach LOS	0			110	192	0						
Queue Length 50th (ft)	0	220	265	140								
Queue Length 95th (ft)	m0	m276	#356	#250	#295	0						
Internal Link Dist (ft)		161	1492	445	48	445						
Turn Bay Length (ft)	F44	4000	4000	415	745	415						
Base Capacity (vph)	511	1232	1228	358	715	1568						
Starvation Cap Reductn	0	599	0	0	0	0						
Spillback Cap Reductn	0	0	176	0	0	0						
Storage Cap Reductn	0	0	0	0	0	0						
Reduced v/c Ratio	0.06	1.08	0.98	0.73	0.91	0.36						
Intersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 89												
Natural Cycle: 80												
Control Type: Semi Act-Uncoord												
Maximum v/c Ratio: 0.91												
Intersection Signal Delay (s					tersectior							
Intersection Capacity Utiliza	ation 89.4%)		IC	U Level o	of Service	Ε					
Analysis Period (min) 15												
# 95th percentile volume	exceeds ca	pacity, q	ueue may	be longer	:							

Lane Group	Ø14	Ø15	Ø16
Lane Configurations			
Traffic Volume (vph)			
Future Volume (vph)			
Lane Group Flow (vph)			
Turn Type			
Protected Phases	14	15	16
Permitted Phases	17	10	10
Detector Phase			
Switch Phase			
Minimum Initial (s)	5.0	5.0	3.0
Minimum Split (s)	9.5	9.5	7.5
Total Split (s)	14.0	13.0	9.0
Total Split (%)	16%	14%	10%
Yellow Time (s)	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0
Lost Time Adjust (s)	1.0	1.0	1.0
Total Lost Time (s)			
	Lead		Lead
Lead/Lag	Yes		Yes
Lead-Lag Optimize?		None	
Recall Mode	None	None	None
Act Effct Green (s)			
Actuated g/C Ratio			
v/c Ratio			
Control Delay (s/veh)			
Queue Delay			
Total Delay (s/veh)			
LOS			
Approach Delay (s/veh)			
Approach LOS			
Queue Length 50th (ft)			
Queue Length 95th (ft)			
Internal Link Dist (ft)			
Turn Bay Length (ft)			
Base Capacity (vph)			
Starvation Cap Reductn			
Spillback Cap Reductn			
Storage Cap Reductn			
Reduced v/c Ratio			
Intersection Summary			
intersection outlinary			

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 2: 183A NB Frontage Road & RM 2243


	→	•	←	-	ļ							
Lane Group	EBT	WBL	WBT	SBL	SBT	Ø4	Ø5	Ø6	Ø8	Ø11	Ø14	Ø15
Lane Configurations	† 1>	*	↑	*	† \$							
Traffic Volume (vph)	358	354	590	302	528							
Future Volume (vph)	358	354	590	302	528							
Lane Group Flow (vph)	524	385	641	328	607							
Turn Type	NA	D.P+P	NA	Split	NA							
Protected Phases	2	1	1 11 2	4 14	4 14	4	5	6	8	11	14	15
Permitted Phases		2										
Detector Phase	2	1	1 11 2	4 14	4 14							
Switch Phase												
Minimum Initial (s)	9.0	1.0				7.0	1.0	9.0	7.0	5.0	5.0	5.0
Minimum Split (s)	15.0	7.0				13.0	7.0	15.0	13.0	9.5	9.5	9.5
Total Split (s)	24.0	24.0				13.0	15.0	38.0	15.0	15.0	14.0	13.0
Total Split (%)	26.7%	26.7%				14%	17%	42%	17%	17%	16%	14%
Yellow Time (s)	4.0	4.0				4.0	4.0	4.0	4.0	3.5	3.5	3.5
All-Red Time (s)	2.0	2.0				2.0	2.0	2.0	2.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0										
Total Lost Time (s)	6.0	6.0										
Lead/Lag		Lag					Lag				Lead	
Lead-Lag Optimize?		<u> </u>									Yes	
Recall Mode	Min	None				None	Min	Min	Min	None	None	None
Act Effct Green (s)	18.0	35.1	56.1	20.9	20.9							
Actuated g/C Ratio	0.20	0.39	0.63	0.23	0.23							
v/c Ratio	0.72	0.89	0.55	0.84	0.74							
Control Delay (s/veh)	36.9	28.1	7.9	53.9	37.7							
Queue Delay	9.8	8.5	33.1	0.0	0.0							
Total Delay (s/veh)	46.7	36.6	41.0	53.9	37.7							
LOS	D	D	D	D	D							
Approach Delay (s/veh)	46.7		39.4		43.4							
Approach LOS	D		D		D							
Queue Length 50th (ft)	134	90	273	179	167							
Queue Length 95th (ft)	191	m#226	m355	#324	228							
Internal Link Dist (ft)	1271		161		1952							
Turn Bay Length (ft)				715								
Base Capacity (vph)	723	451	1155	390	823							
Starvation Cap Reductn	0	45	543	0	0							
Spillback Cap Reductn	170	0	0	0	0							
Storage Cap Reductn	0	0	0	0	0							
Reduced v/c Ratio	0.95	0.95	1.05	0.84	0.74							
Intersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 89												
Natural Cycle: 80												
Control Type: Semi Act-Unco	oord											
Maximum v/c Ratio: 0.91												
Intersection Signal Delay (s/	veh): 42.4			In	tersection	LOS: D						
Intersection Capacity Utilizat				IC	U Level	of Service	E					
Analysis Period (min) 15												
# 95th percentile volume e	xceeds ca	apacity, qu	leue may	be longer								

Lane Group	Ø16		
Lane Configurations			
Traffic Volume (vph)			
Future Volume (vph)			
Lane Group Flow (vph)			
Turn Type			
Protected Phases	16		
Permitted Phases			
Detector Phase			
Switch Phase			
Minimum Initial (s)	3.0		
Minimum Split (s)	7.5		
Total Split (s)	9.0		
Total Split (%)	10%		
Yellow Time (s)	3.5		
All-Red Time (s)	1.0		
Lost Time Adjust (s)			
Total Lost Time (s)			
Lead/Lag	Lead		
Lead-Lag Optimize?	Yes		
Recall Mode	None		
Act Effct Green (s)			
Actuated g/C Ratio			
v/c Ratio			
Control Delay (s/veh)			
Queue Delay			
Total Delay (s/veh)			
LOS			
Approach Delay (s/veh)			
Approach LOS			
Queue Length 50th (ft)			
Queue Length 95th (ft)			
Internal Link Dist (ft)			
Turn Bay Length (ft)			
Base Capacity (vph)			
Starvation Cap Reductn			
Spillback Cap Reductn			
Storage Cap Reductn			
Reduced v/c Ratio			
Intersection Summary			
intoroccion Caminary			

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 3: 183A SB Frontage Road & RM 2243

	•	→	•	←	1	†	-	1	ļ	4	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	7	13	*	T ₂	A	^	7	A	^	7	
Traffic Volume (vph)	377	448	229	295	145	1495	380	209	1029	255	
Future Volume (vph)	377	448	229	295	145	1495	380	209	1029	255	
Lane Group Flow (vph)	381	577	231	450	169	1510	384	213	1039	258	
Turn Type	Prot	NA	Prot	NA	Prot	NA	Free	Prot	NA	Free	
Protected Phases	7	4	3	8	5	2		1	6		
Permitted Phases							Free			Free	
Detector Phase	7	4	3	8	5	2		1	6		
Switch Phase											
Minimum Initial (s)	5.0	6.0	5.0	6.0	5.0	10.0		5.0	10.0		
Minimum Split (s)	13.4	12.9	13.4	12.9	14.0	17.5		14.0	17.5		
Total Split (s)	39.0	53.0	27.0	41.0	28.0	47.0		53.0	72.0		
Total Split (%)	21.7%	29.4%	15.0%	22.8%	15.6%	26.1%		29.4%	40.0%		
Yellow Time (s)	5.4	5.4	5.4	5.4	6.0	6.0		6.0	6.0		
All-Red Time (s)	3.0	1.5	3.0	1.5	3.0	1.5		3.0	1.5		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0		
Total Lost Time (s)	8.4	6.9	8.4	6.9	9.0	7.5		9.0	7.5		
Lead/Lag	Lag	Lag	Lead	Lead	Lead	Lag		Lead	Lag		
Lead-Lag Optimize?	•					· ·			· ·		
Recall Mode	None	None	None	None	None	C-Min		None	C-Min		
Act Effct Green (s)	30.6	46.1	18.6	34.1	18.8	56.5	180.0	27.0	64.7	180.0	
Actuated g/C Ratio	0.17	0.26	0.10	0.19	0.10	0.31	1.00	0.15	0.36	1.00	
v/c Ratio	1.27	1.27	1.27	1.33	0.92	1.36	0.24	0.80	0.82	0.17	
Control Delay (s/veh)	201.1	186.9	216.5	217.2	127.0	213.3	0.4	95.2	58.6	0.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay (s/veh)	201.1	186.9	216.5	217.2	127.0	213.3	0.4	95.2	58.6	0.2	
LOS	F	F	F	F	F	F	Α	F	Е	Α	
Approach Delay (s/veh)		192.5		217.0		166.6			53.8		
Approach LOS		F		F		F			D		
Queue Length 50th (ft)	~564	~850	~341	~676	201	~1230	0	247	588	0	
Queue Length 95th (ft)	#789	#1102	#532	#911	#358	#1472	0	331	680	0	
Internal Link Dist (ft)		2065		766		2316			1512		
Turn Bay Length (ft)	415		500		500		515	540		515	
Base Capacity (vph)	300	456	182	339	185	1109	1583	432	1272	1553	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.27	1.27	1.27	1.33	0.91	1.36	0.24	0.49	0.82	0.17	
			,								

Intersection Summary

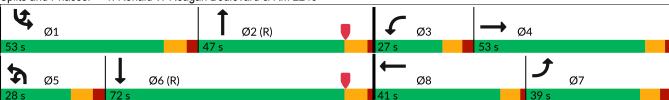
Cycle Length: 180 Actuated Cycle Length: 180

Offset: 170 (94%), Referenced to phase 2:NBT and 6:SBT, Start of Yellow

Natural Cycle: 150

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.36


Intersection LOS: F Intersection Signal Delay (s/veh): 145.3 Intersection Capacity Utilization 125.1% ICU Level of Service H

Analysis Period (min) 15

PM Peak

- ~ Volume exceeds capacity, queue is theoretically infinite.
 - Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.
 - Queue shown is maximum after two cycles.

Splits and Phases: 1: Ronald W Reagan Boulevard & RM 2243

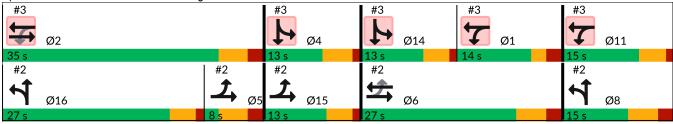
	۶	→	•	1	†	1													
Lane Group	EBL	EBT	WBT	NBL	NBT	NBR	Ø1	Ø2	Ø4	Ø5	Ø8	Ø11							
Lane Configurations	*	↑	↑ ↑	*	^	7													
Traffic Volume (vph)	28	520	701	433	872	541													
Future Volume (vph)	28	520	701	433	872	541													
Lane Group Flow (vph)	29	542	923	451	908	564													
Turn Type	D.P+P	NA	NA	Split	NA	Free													
Protected Phases	5 15	5 6 15	6	8 16	8 16		1	2	4	5	8	11							
Permitted Phases	6					Free													
Detector Phase	5 15	5 6 15	6	8 16	8 16														
Switch Phase																			
Minimum Initial (s)			9.0				1.0	9.0	8.0	1.0	9.0	5.0							
Minimum Split (s)			15.0				7.0	15.0	13.0	7.0	15.0	9.5							
Total Split (s)			27.0				14.0	35.0	13.0	8.0	15.0	15.0							
Total Split (%)			30.0%				16%	39%	14%	9%	17%	17%							
Yellow Time (s)			4.0				2.0	4.0	4.0	4.0	4.0	3.5							
All-Red Time (s)			2.0				2.0	2.0	1.0	2.0	2.0	1.0							
Lost Time Adjust (s)			0.0							,	,								
Total Lost Time (s)			6.0																
Lead/Lag			0.0				Lag			Lag									
Lead-Lag Optimize?							Lug			Lug									
Recall Mode			Min				None	Min	None	Min	Min	None							
Act Effct Green (s)	36.1	42.1	21.0	33.1	33.1	87.2	140110	141111	140110	141111	141111	110110							
Actuated g/C Ratio	0.41	0.48	0.24	0.38	0.38	1.00													
v/c Ratio	0.07	0.61	1.09	0.67	0.68	0.36													
Control Delay (s/veh)	9.5	14.2	90.3	28.2	25.4	0.6													
Queue Delay	0.0	3.1	6.5	0.0	0.0	0.0													
Total Delay (s/veh)	9.5	17.3	96.8	28.2	25.4	0.6													
LOS	A	В	F	C	C	A													
Approach Delay (s/veh)		16.9	96.8	<u> </u>	18.8	, , , , , , , , , , , , , , , , , , ,													
Approach LOS		В	F		В														
Queue Length 50th (ft)	7	156	~315	202	214	0													
Queue Length 95th (ft)	m16	210	#438	307	280	0													
Internal Link Dist (ft)	11110	161	1492	301	48	U													
Turn Bay Length (ft)		101	1732	415	70	415													
Base Capacity (vph)	390	890	848	732	1464	1583													
Starvation Cap Reductn	0	242	0	0	0	0													
Spillback Cap Reductn	0	0	220	0	0	0													
Storage Cap Reductn	0	0	0	0	0	0													
Reduced v/c Ratio	0.07	0.84	1.47	0.62	0.62	0.36													
Intersection Summary																			
Cycle Length: 90																			
Actuated Cycle Length: 87.2																			
Natural Cycle: 75																			
Control Type: Actuated-Unco																			
Maximum v/c Ratio: 1.09	oramatoa																		
Intersection Signal Delay (s/veh): 39.5 Intersection LOS: D																			
Analysis Period (min) 15	OIT 00.0 /0			10		OUI VIU	Intersection Capacity Utilization 95.3% ICU Level of Service F												

Lane Group	Ø14	Ø15	Ø16
Lane Configurations			•
Traffic Volume (vph)			
Future Volume (vph)			
Lane Group Flow (vph)			
Turn Type			
Protected Phases	14	15	16
Permitted Phases			
Detector Phase			
Switch Phase			
Minimum Initial (s)	5.0	5.0	5.0
Minimum Split (s)	9.5	9.5	9.5
Total Split (s)	13.0	13.0	27.0
Total Split (%)	14%	14%	30%
Yellow Time (s)	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0
Lost Time Adjust (s)	1.0	1.0	1.0
Total Lost Time (s)			
	Lead		Lead
Lead/Lag	Yes		Yes
Lead-Lag Optimize? Recall Mode		None	
	None	None	None
Act Effct Green (s)			
Actuated g/C Ratio			
v/c Ratio			
Control Delay (s/veh)			
Queue Delay			
Total Delay (s/veh)			
LOS			
Approach Delay (s/veh)			
Approach LOS			
Queue Length 50th (ft)			
Queue Length 95th (ft)			
Internal Link Dist (ft)			
Turn Bay Length (ft)			
Base Capacity (vph)			
Starvation Cap Reductn			
Spillback Cap Reductn			
Storage Cap Reductn			
Reduced v/c Ratio			
Intersection Summary			
Intersection Summary			

Queue shown is maximum after two cycles.

- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
- m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 2: 183A NB Frontage Road & RM 2243


	→	1	+	1	Ţ							
Lane Group	EBT	WBL	WBT	SBL	SBT	Ø1	Ø4	Ø5	Ø6	Ø8	Ø11	Ø14
Lane Configurations	† 13	*	^	*	†							
Traffic Volume (vph)	272	328	806	276	717							
Future Volume (vph)	272	328	806	276	717							
Lane Group Flow (vph)	395	331	814	279	743							
Turn Type	NA	D.P+P	NA	Split	NA							
Protected Phases	2	1 11	1 11 2	4 14	4 14	1	4	5	6	8	11	14
Permitted Phases		2										
Detector Phase	2	1 11	1 11 2	4 14	4 14							
Switch Phase												
Minimum Initial (s)	9.0					1.0	8.0	1.0	9.0	9.0	5.0	5.0
Minimum Split (s)	15.0					7.0	13.0	7.0	15.0	15.0	9.5	9.5
Total Split (s)	35.0					14.0	13.0	8.0	27.0	15.0	15.0	13.0
Total Split (%)	38.9%					16%	14%	9%	30%	17%	17%	14%
Yellow Time (s)	4.0					2.0	4.0	4.0	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0					2.0	1.0	2.0	2.0	2.0	1.0	1.0
Lost Time Adjust (s)	0.0											
Total Lost Time (s)	6.0											
Lead/Lag	0.0					Lag		Lag				Lead
Lead-Lag Optimize?						9		9				Yes
Recall Mode	Min					None	None	Min	Min	Min	None	None
Act Effct Green (s)	26.1	53.1	57.1	21.0	21.0	110110	110110	14			110110	110110
Actuated g/C Ratio	0.30	0.61	0.65	0.24	0.24							
v/c Ratio	0.37	0.42	0.67	0.67	0.87							
Control Delay (s/veh)	19.8	4.4	10.1	39.7	45.0							
Queue Delay	0.1	1.3	34.5	0.1	0.0							
Total Delay (s/veh)	19.9	5.7	44.5	39.8	45.0							
LOS	В	A	D	D	D							
Approach Delay (s/veh)	19.9		33.3		43.6							
Approach LOS	В		C		D							
Queue Length 50th (ft)	70	49	330	146	215							
Queue Length 95th (ft)	108	m59	m343	#236	#322							
Internal Link Dist (ft)	1271	11100	161	11200	1952							
Turn Bay Length (ft)	1211		101	715	1002							
Base Capacity (vph)	1170	788	1284	419	852							
Starvation Cap Reductn	0	266	514	0	0							
Spillback Cap Reductn	161	0	0	6	0							
Storage Cap Reductn	0	0	0	0	0							
Reduced v/c Ratio	0.39	0.63	1.06	0.68	0.87							
Intersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 87.2	2											
Natural Cycle: 75												
Control Type: Actuated-Unc	oordinated											
Maximum v/c Ratio: 1.09												
Intersection Signal Delay (sa	/veh): 35.4			In	tersection	LOS: D						
Intersection Capacity Utiliza					U Level		· F					
Analysis Period (min) 15				10	5 20701	. Corvioc	•					
# 95th percentile volume 6	avocada aa	nacity a	IALIA MAV	he longer	•							

Lane Group	Ø15	Ø16
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	15	16
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	5.0	5.0
Minimum Split (s)	9.5	9.5
Total Split (s)	13.0	27.0
Total Split (%)	14%	30%
Yellow Time (s)	3.5	3.5
All-Red Time (s)	1.0	1.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag		Lead
Lead-Lag Optimize?	.,	Yes
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay (s/veh)		
Queue Delay		
Total Delay (s/veh) LOS		
Approach Delay (s/veh) Approach LOS		
Queue Length 50th (ft)		
Queue Length 95th (ft)		
Internal Link Dist (ft)		
Turn Bay Length (ft)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		

Timings SMP Synchro 12 Report Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 3: 183A SB Frontage Road & RM 2243

Traffic Impact Analysis

Appendix H | Traffic Signal Timing Directives

SEPAC All Data

Date/Time: 2023-04-10 00:00:00

Intersection Name: Ronald Reagan @ 2243

Intersection Alias: 22

Access	Data
TICCOSS	~

Access Code Connection Method				Method Revision Address				S	IP Addr	ess	GPS 1	Enabled	GPS Port			
9999		Direct I	P			5.2.2	.2 1			10.30.8.2	.2	False		8		
						P	hase Init	ializatio	n Data							
Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Initial	Initial 1-Inact 3-Ylw 1-Inact 1-Inact 1-I		1-Inact	3-Ylw	1-Inact	1-Inact	None	None	None	None	None	None	None	None		

Phase Data Bank 1:

Phase Timing

Phase	Min Green	Passage	Max1	Max2	DMAX	DSTP/10	Yel/10	Red/10			Offset	Walk Offset Mode	Green	Bike Psg	Walk	Ped Clr	Alt Walk	Alt Ped Clr	Flash Walk	Ext Ped Clr	Actuated Rest in Walk
1	5	20	25	30	0	0	60	30	0	0	0	0	0	0	0	0	0	0	False	0	False
2	10	20	50	50	0	0	60	15	0	0	0	0	0	0	0	0	0	0	False	0	False
3	5	20	25	30	0	0	54	30	0	0	0	0	0	0	0	0	0	0	False	0	False
4	6	20	35	50	0	0	54	15	0	0	0	0	0	0	0	0	0	0	False	0	False
5	5	20	25	30	0	0	60	30	0	0	0	0	0	0	0	0	0	0	False	0	False
6	10	20	50	50	0	0	60	15	0	0	0	0	0	0	0	0	0	0	False	0	False
7	5	20	25	30	0	0	54	30	0	0	0	0	0	0	0	0	0	0	False	0	False
8	6	20	35	50	0	0	54	15	0	0	0	0	0	0	0	0	0	0	False	0	False
9	0	0	0	0	0	0	30	0	0	0	0	0	0	0	0	0	0	0	False	0	False
10	0	0	0	0	0	0	30	0	0	0	0	0	0	0	0	0	0	0	False	0	False
11	0	0	0	0	0	0	30	0	0	0	0	0	0	0	0	0	0	0	False	0	False
12	0	0	0	0	0	0	30	0	0	0	0	0	0	0	0	0	0	0	False	0	False
13	0	0	0	0	0	0	30	0	0	0	0	0	0	0	0	0	0	0	False	0	False
14	0	0	0	0	0	0	30	0	0	0	0	0	0	0	0	0	0	0	False	0	False
15	0	0	0	0	0	0	30	0	0	0	0	0	0	0	0	0	0	0	False	0	False
16	0	0	0	0	0	0	30	0	0	0	0	0	0	0	0	0	0	0	False	0	False

Phase	Added Initial			B4	Time to Redu	Gap	Non-Act Response		Recall Delay		Ped Recall Delay				Condit Service		Omit	Minus Yel	Omit Call	AWS Flash Output	Grn
1	0	0	0	0	0	0	False	None	0	None	0	False	False	False	False	False	0	0	0		
2	0	0	0	0	0	0	True	Min	0	None	0	True	True	False	False	False	0	0	0		
3	0	0	0	0	0	0	False	None	0	None	0	True	False	False	False	False	0	0	0		
4	0	0	0	0	0	0	False	None	0	None	0	True	False	False	False	False	0	0	0		
5	0	0	0	0	0	0	False	None	0	None	0	False	False	False	False	False	0	0	0		
6	0	0	0	0	0	0	True	Min	0	None	0	True	True	False	False	False	0	0	0		
7	0	0	0	0	0	0	False	None	0	None	0	True	False	False	False	False	0	0	0		
8	0	0	0	0	0	0	False	None	0	None	0	True	False	False	False	False	0	0	0		
9	0	0	0	0	0	0	False	None	0	None	0	False	False	False	False	False	0	0	0		
10	0	0	0	0	0	0	False	None	0	None	0	False	False	False	False	False	0	0	0		
11	0	0	0	0	0	0	False	None	0	None	0	False	False	False	False	False	0	0	0		
12	0	0	0	0	0	0	False	None	0	None	0	False	False	False	False	False	0	0	0		
13	0	0	0	0	0	0	False	None	0	None	0	False	False	False	False	False	0	0	0		
14	0	0	0	0	0	0	False	None	0	None	0	False	False	False	False	False	0	0	0		
15	0	0	0	0	0	0	False	None	0	None	0	False	False	False	False	False	0	0	0		
16	0	0	0	0	0	0	False	None	0	None	0	False	False	False	False	False	0	0	0		

Vehicle Detector Phase Assignment

Veh Det	Assign Phase	Mode	Switch Phase	Extend	Delay	Volume	Occupy	Lock	Call	Pass	Added Initial	Queue	Fail	QLimit
1	1	0	0	0	0	0	0	0	1	1	1	0	255	0
2	2	0	0	0	0	0	0	0	1	1	1	0	255	0

4/10/23,	9:21 AM					RptAll	Data_22_2	0230410	_0921	.html			
3	3	0	0	0	0	0	0	0	1	1	1	0	255 0
4	4	0	0	0	0	0	0	0	1	1	1	0	255 0
5	5	0	0	0	0	0	0	0	1	1	1	0	255 0
6	6	0	0	0	0	0	0	0	1	1	1	0	255 0
7	7	0	0	0	0	0	0	0	1	1	1	0	255 0
8	8	0	0	0	0	0	0	0	1	1	1	0	255 0
12	2	0	0	0	0	0	0	0	1	1	1	0	255 0
16	6	0	0	0	0	0	0	0	1	1	1	0	255 0

16	6	0	0	0	0	0	0	0	1	1	1	0	255	0
					Ped	estrian De	etector							
Veh Det	Assign Phase	Mode	Switch Phase	Extend	Delay	Volume	Occupy	Lock	Call	Pass	Added Initial	Queue	Fail	QLimit
1	1	1	0	0	0	0	0	0	1	0	0	0	255	0
2	2	1	0	0	0	0	0	0	1	0	0	0	255	0
3	3	1	0	0	0	0	0	0	1	0	0	0	255	0
4	4	1	0	0	0	0	0	0	1	0	0	0	255	0
5	5	1	0	0	0	0	0	0	1	0	0	0	255	0
6	6	1	0	0	0	0	0	0	1	0	0	0	255	0
7	7	1	0	0	0	0	0	0	1	0	0	0	255	0
8	8	1	0	0	0	0	0	0	1	0	0	0	255	0

Phase Data Bank 2:

Phase Timing

Phase	Min Green	Passag	e Max	l Max	2 DM	AX D	STP/10 Ye	1/10 Re		reen Yo Oelay D	elay C)ffset (Walk	Ped Clr	Alt Walk		Flash Walk		Actuated Rest in Walk
1	10	40	25	30	0	0	40	10	0	0	0	0	(0	0	0	0	0	0	False	0	False
2	15	50	35	50	0	0	40	10	0	0	0	0	(0	0	7	8	0	0	False	0	False
3	10	40	25	30	0	0	40	10	0	0	0	0	(0	0	0	0	0	0	False	0	False
4	15	50	35	50	0	0	40	10	0	0	0	0	(0	0	7	8	0	0	False	0	False
5	10	40	25	30	0	0	40	10	0	0	0	0	(0	0	0	0	0	0	False	0	False
5	15	50	35	50	0	0	40	10	0	0	0	0	(0	0	7	8	0	0	False	0	False
7	10	40	25	30	0	0	40	10	0	0	0	0	(0	0	0	0	0	0	False	0	False
8	15	50	35	50	0	0	40	10	0	0	0	0	(0	0	7	8	0	0	False	0	False
9	0	0	0	0	0	0	30	0	0	0	0	0	(0	0	0	0	0	0	False	0	False
10	0	0	0	0	0	0	30	0	0	0	0	0	(0	0	0	0	0	0	False	0	False
11	0	0	0	0	0	0	30	0	0	0	0	0	(0	0	0	0	0	0	False	0	False
12	0	0	0	0	0	0	30	0	0	0	0	0	(0	0	0	0	0	0	False	0	False
13	0	0	0	0	0	0	30	0	0	0	0	0	(0	0	0	0	0	0	False	0	False
14	0	0	0	0	0	0	30	0	0	0	0	0	(0	0	0	0	0	0	False	0	False
15	0	0	0	0	0	0	30	0	0	0	0	0	(0	0	0	0	0	0	False	0	False
16	0	0	0	0	0	0	30	0	0	0	0	0	(0	0	0	0	0	0	False	0	False
Phase	Added	Max	Time	Car	Time	Min	Non-Act	Voh	Recal	1 Dad	Ped	Non	Duol	Last	Co	ndit N	Jo	Omit	M:	Omit	A 3376	S Updat
Hube																			VIIIII			
		Initial		B4	to											rvice S			Minus Yel			
			B4		to		Response					l Lock			Sei	rvice S G	Simu Sap				Flasl	ı Grn
1			B4	B4	to		Response		Delay		l Recal Delay	l Lock	Entr	y Car	Sei	rvice S G C	Simu				Flasl	ı Grn
	Initial	Initial	B4 Redu	B4 Redu	to Redu	Gap		Recall	Delay	Recal	Recal Delay	l Lock False	Entr	y Car Pass	Sei e Fal	rvice S G C Ise F	Simu Sap Out	0	Yel	Call	Flasl	ı Grn
2	Initial 0	Initial 0	B4 Redu 0	B4 Redu 0	to Redu 0	Gap 0	Response	Recall None	Delay	Recal None	Recal Delay 0 0	False	Entr	y Car Pass e Fals	Sei e Fal e Fal	rvice S G C Ise F	Simu Sap Out Salse	0 0	Yel 0	Call 0	Flasl	ı Grn
2	Initial 0 0	Initial 0 0	B4 Redu 0 0	B4 Redu 0	to Redu 0	Gap 0 0	Response False True	Recall None None	Delay	None None	Recal Delay 0 0 0	False False False	Entr	y Car Pass e Fals e Fals	Sei e Fal e Fal	rvice S G C Ise F Ise F Ise F	Simu Sap Out Salse Salse	0 0 0	Yel 0 0	Call 0 0	Flasl	ı Grn
2 3 4	Initial 0 0 0	Initial 0 0 0 0	B4 Redu 0 0 0	B4 Redu 0 0 0	to Redu 0 0 0	Gap 0 0 0 0	False True False	None None None	0 0 0 0	None None None	Recal Delay 0 0 0 0	False False False False	Entr	y Car Pass e Fals e Fals e Fals	Ser e Fal e Fal e Fal	rvice S C Ise F Ise F Ise F	Simu Sap Out Salse Salse	0 0 0 0	Yel 0 0 0	Call 0 0 0	Flasl	ı Grn
2 3 4 5	Initial 0 0 0 0 0	Initial O O O O	B4 Redu 0 0 0 0	B4 Redu 0 0 0 0	to Redu 0 0 0 0	Gap 0 0 0 0	False True False False	None None None None	0 0 0 0 0	None None None None	Recal Delay 0 0 0 0 0 0	False False False False False False	Entry False False False False False False	y Car Pass e Fals e Fals e Fals	Sei e Fal e Fal e Fal e Fal	rvice S G C C F Ise F Ise F Ise F Ise F	Simu Gap Out False False False False	0 0 0 0 0	Yel 0 0 0 0 0	0 0 0 0	Flasl	ı Grn
2 3 4 5	Initial 0 0 0 0 0 0	0 0 0 0 0	B4 Redu 0 0 0 0 0	B4 Redu 0 0 0 0 0	to Redu 0 0 0 0 0	Gap 0 0 0 0 0 0	False True False False False	None None None None None	Delay 0 0 0 0 0 0 0 0	None None None None None	0 0 0 0 0 0	False False False False False False False False	Entry False False False False False False	y Car Pass e Fals e Fals e Fals e Fals	Ser e Fal e Fal e Fal e Fal e Fal	rvice S G C C S S S S S S S S S S S S S S S S	Gap Out False False False False	0 0 0 0 0	Yel 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Call 0 0 0 0 0 0	Flasl	ı Grn
2 3 4 5 5 7	Initial 0 0 0 0 0 0 0 0	Initial 0 0 0 0 0 0 0 0	B4 Redu 0 0 0 0 0 0	B4 Redu 0 0 0 0 0 0	to Redu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Gap 0 0 0 0 0 0 0 0	False True False False False True	None None None None None	0 0 0 0 0 0	None None None None None None None	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	False False False False False False False False	Entry False False False False False False False False	y Car Pass e Fals e Fals e Fals e Fals e Fals	Serial Se	rvice S C C C S S S S S S S S S S S S S S S S	Gap Dut False False False False False	0 0 0 0 0	Yel 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Call 0 0 0 0 0 0 0	Flasl	ı Grn
2 3 4 5 6 7	Initial 0 0 0 0 0 0 0 0 0 0	Initial 0 0 0 0 0 0 0 0 0 0	B4 Redu 0 0 0 0 0 0 0	B4 Redu 0 0 0 0 0 0 0	to Redu 0	Gap 0 0 0 0 0 0 0 0 0 0 0	False True False False False True False False True False	None None None None None None	Delay 0 0 0 0 0 0 0 0 0 0 0 0	None None None None None None None	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	False False False False False False False False False	Entry False False False False False False False False False	y Car Pass e Fals e Fals e Fals e Fals e Fals e Fals	Sei	rvice S C C C Slse F Ise F	Gap Out False False False False False False	0 0 0 0 0 0	Yel 0 0 0 0 0 0 0 0 0 0 0 0	Call 0 0 0 0 0 0 0 0 0	Flasl	ı Grn
2 3 4 5 5 6 7 3	Initial 0 0 0 0 0 0 0 0 0 0 0	Initial 0 0 0 0 0 0 0 0 0 0 0 0	B4 Redu 0 0 0 0 0 0 0 0	B4 Redu 0 0 0 0 0 0 0 0	to Redu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Gap 0 0 0 0 0 0 0 0 0 0 0 0	False True False False False True False False False True False False	None None None None None None None	Delay 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	None None None None None None None None	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	False	Entry False	y Car Pass e Fals e Fals e Fals e Fals e Fals e Fals e Fals	Sei	rvice S G C C Ise F	Simu Gap Dut Galse	0 0 0 0 0 0 0 0	Yel 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Call 0 0 0 0 0 0 0 0 0 0 0	Flasl	ı Grn
2 3 4 5 5 7 3 9	Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Initial 0 0 0 0 0 0 0 0 0 0 0 0 0	B4 Redu 0 0 0 0 0 0 0 0 0	B4 Redu 0 0 0 0 0 0 0 0 0	to Redu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Gap 0 0 0 0 0 0 0 0 0 0 0 0 0	False True False False False True False False False False False False	None None None None None None None None	Delay 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	None None None None None None None None	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	False	Entre	y Car Pass e Fals e Fals e Fals e Fals e Fals e Fals e Fals e Fals	Sei e Fal e Fal e Fal e Fal e Fal e Fal e Fal e Fal	rvice S C C S S S S S S S S S S S	Simu Sap Out False	0 0 0 0 0 0 0 0	Yel 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Call 0 0 0 0 0 0 0 0 0 0 0 0 0	Flasl	ı Grn
2 3 4 5 6 7 3 8 9	Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B4 Redu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B4 Redu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	to Redu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Gap 0 0 0 0 0 0 0 0 0 0 0 0 0 0	False True False False False True False False False False False False False	None None None None None None None None	Delay 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	None None None None None None None None	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	False	Falso Falso Falso Falso Falso Falso Falso Falso Falso Falso	y Car Pass e Fals e Fals e Fals e Fals e Fals e Fals e Fals e Fals e Fals	Ser e Fal e Fal e Fal e Fal e Fal e Fal e Fal e Fal e Fal	rvice S C C C Ise F	Gimu Gap Out False	0 0 0 0 0 0 0 0 0	Yel 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Call 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Flasl	ı Grn
1 1 2 2 3 3 3 4 4 4 5 5 5 6 6 7 7 8 8 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10	Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	O O O O O O O O O O O O O O O O O O O	B4 Redu 0 0 0 0 0 0 0 0 0 0 0	B4 Redu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	to Redu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Gap 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	False True False	None None None None None None None None	Delay 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	None None None None None None None None	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	False	Falso	y Car Pass e Fals e Fals e Fals e Fals e Fals e Fals e Fals e Fals e Fals e Fals	e Fal	rvice S C C C Ise F	Gap Dut Calse Calse Calse Calse Calse Calse Calse Calse Calse Calse	0 0 0 0 0 0 0 0 0 0 0	Yel 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Call 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Flasl	ı Grn
2 3 4 5 7 8 9 10 11	Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	O O O O O O O O O O O O O O O O O O O	B4 Redu 0 0 0 0 0 0 0 0 0 0 0 0	B4 Redu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	to Redu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Gap 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	False True False	None None None None None None None None	Delay 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	None None None None None None None None	Recal Delay 0	False	Entry Falsace	y Car Pass e Fals e Fals	e Fal	rvice S C C C Ise F	Gap Dut Galse Galse Galse Galse Galse Galse Galse Galse Galse Galse Galse	0 0 0 0 0 0 0 0 0 0 0	Yel 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Call 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Flasl	

16	0	0	0	0	0	0	False	None 0	None 0	False False False False	False 0	0	0
								Vehicle I	Detector Phase	e Assignment			

Veh Det	Assign Phase	Mode	Switch Phase	Extend	Delay	Volume	Occupy	Lock	Call	Pass	Added Initial	Queue	Fail	QLimit
1	1	0	0	0	0	0	0	0	1	1	1	0	255	0
2	2	0	0	0	0	0	0	0	1	1	1	0	255	0
3	3	0	0	0	0	0	0	0	1	1	1	0	255	0
4	4	0	0	0	0	0	0	0	1	1	1	0	255	0
5	5	0	0	0	0	0	0	0	1	1	1	0	255	0
6	6	0	0	0	0	0	0	0	1	1	1	0	255	0
7	7	0	0	0	0	0	0	0	1	1	1	0	255	0
8	8	0	0	0	0	0	0	0	1	1	1	0	255	0

Pedestrian Detector

Veh Det	Assign Phase	Mode	Switch Phase	Extend	Delay	Volume	Occupy	Lock	Call	Pass	Added Initial	Queue	Fail	QLimit
1	1	1	0	0	0	0	0	0	1	0	0	0	255	0
2	2	1	0	0	0	0	0	0	1	0	0	0	255	0
3	3	1	0	0	0	0	0	0	1	0	0	0	255	0
4	4	1	0	0	0	0	0	0	1	0	0	0	255	0
5	5	1	0	0	0	0	0	0	1	0	0	0	255	0
6	6	1	0	0	0	0	0	0	1	0	0	0	255	0
7	7	1	0	0	0	0	0	0	1	0	0	0	255	0
8	8	1	0	0	0	0	0	0	1	0	0	0	255	0

Phase Data Bank 3:

Phase Timing

Phase	Min Green		Max1	Max2	DMAX	DSTP/10) Yel/10	Red/10		Yellow Delay	Offset		Green	Bike Psg	Walk	Ped Clr	Alt Walk	Alt Ped Clr	Flash Walk		Actuate Rest in Walk
1	10	40	25	30	0	0	40	10	0	0	0	0	0	0	0	0	0	0	False	0	False
2	15	50	35	50	0	0	40	10	0	0	0	0	0	0	7	8	0	0	False	0	False
3	10	40	25	30	0	0	40	10	0	0	0	0	0	0	0	0	0	0	False	0	False
4	15	50	35	50	0	0	40	10	0	0	0	0	0	0	7	8	0	0	False	0	False
5	10	40	25	30	0	0	40	10	0	0	0	0	0	0	0	0	0	0	False	0	False
6	15	50	35	50	0	0	40	10	0	0	0	0	0	0	7	8	0	0	False	0	False
7	10	40	25	30	0	0	40	10	0	0	0	0	0	0	0	0	0	0	False	0	False
8	15	50	35	50	0	0	40	10	0	0	0	0	0	0	7	8	0	0	False	0	False
9	0	0	0	0	0	0	30	0	0	0	0	0	0	0	0	0	0	0	False	0	False
10	0	0	0	0	0	0	30	0	0	0	0	0	0	0	0	0	0	0	False	0	False
11	0	0	0	0	0	0	30	0	0	0	0	0	0	0	0	0	0	0	False	0	False
12	0	0	0	0	0	0	30	0	0	0	0	0	0	0	0	0	0	0	False	0	False
13	0	0	0	0	0	0	30	0	0	0	0	0	0	0	0	0	0	0	False	0	False
14	0	0	0	0	0	0	30	0	0	0	0	0	0	0	0	0	0	0	False	0	False
15	0	0	0	0	0	0	30	0	0	0	0	0	0	0	0	0	0	0	False	0	False
16	0	0	0	0	0	0	30	0	0	0	0	0	0	0	0	0	0	0	False	0	False

Phase	Added Initial	Initial		B4		Gap	Non-Act Response		Recall Delay		Ped Recall Delay		Dual Entry		Condit Service			Minus Yel		AWS Flash Output	
1	0	0	0	0	0	0	False	None	0	None	0	False	False	False	False	False	0	0	0		
2	0	0	0	0	0	0	True	None	0	None	0	False	False	False	False	False	0	0	0		
3	0	0	0	0	0	0	False	None	0	None	0	False	False	False	False	False	0	0	0		
4	0	0	0	0	0	0	False	None	0	None	0	False	False	False	False	False	0	0	0		
5	0	0	0	0	0	0	False	None	0	None	0	False	False	False	False	False	0	0	0		
6	0	0	0	0	0	0	True	None	0	None	0	False	False	False	False	False	0	0	0		
7	0	0	0	0	0	0	False	None	0	None	0	False	False	False	False	False	0	0	0		
8	0	0	0	0	0	0	False	None	0	None	0	False	False	False	False	False	0	0	0		
9	0	0	0	0	0	0	False	None	0	None	0	False	False	False	False	False	0	0	0		
10	0	0	0	0	0	0	False	None	0	None	0	False	False	False	False	False	0	0	0		
11	0	0	0	0	0	0	False	None	0	None	0	False	False	False	False	False	0	0	0		

12	0	0	0	0	0	0	False	None 0	None	0	False False False	False	False 0	0	0	
13	0	0	0	0	0	0	False	None 0	None	0	False False False	False	False 0	0	0	
14	0	0	0	0	0	0	False	None 0	None	0	False False False	False	False 0	0	0	
15	0	0	0	0	0	0	False	None 0	None	0	False False False	False	False 0	0	0	
16	0	0	0	0	0	0	False	None 0	None	0	False False False	False	False 0	0	0	

Vehicle Detector Phase Assignment

Veh Det	Assign Phase	Mode	Switch Phase	Extend	Delay	Volume	Occupy	Lock	Call	Pass	Added Initial	Queue	Fail	QLimit
1	1	0	0	0	0	0	0	0	1	1	1	0	255	0
2	2	0	0	0	0	0	0	0	1	1	1	0	255	0
3	3	0	0	0	0	0	0	0	1	1	1	0	255	0
4	4	0	0	0	0	0	0	0	1	1	1	0	255	0
5	5	0	0	0	0	0	0	0	1	1	1	0	255	0
6	6	0	0	0	0	0	0	0	1	1	1	0	255	0
7	7	0	0	0	0	0	0	0	1	1	1	0	255	0
8	8	0	0	0	0	0	0	0	1	1	1	0	255	0

Pedestrian Detector

Veh Det	Assign Phase	Mode	Switch Phase	Extend	Delay	Volume	Occupy	Lock	Call	Pass	Added Initial	Queue	Fail	QLimit
1	1	1	0	0	0	0	0	0	1	0	0	0	255	0
2	2	1	0	0	0	0	0	0	1	0	0	0	255	0
3	3	1	0	0	0	0	0	0	1	0	0	0	255	0
4	4	1	0	0	0	0	0	0	1	0	0	0	255	0
5	5	1	0	0	0	0	0	0	1	0	0	0	255	0
6	6	1	0	0	0	0	0	0	1	0	0	0	255	0
7	7	1	0	0	0	0	0	0	1	0	0	0	255	0
8	8	1	0	0	0	0	0	0	1	0	0	0	255	0

Phase Data Bank 4:

Phase Timing

Phase	Min Green	Passage	Max1	Max2	DMAX	DSTP/10) Yel/10	Red/10			Offset			Bike Psg	Walk	Ped Clr	Alt Walk	Alt Ped Clr	Flash Walk		Actuated Rest in Walk
1	10	40	25	30	0	0	40	10	0	0	0	0	0	0	0	0	0	0	False	0	False
2	15	50	35	50	0	0	40	10	0	0	0	0	0	0	7	8	0	0	False	0	False
3	10	40	25	30	0	0	40	10	0	0	0	0	0	0	0	0	0	0	False	0	False
4	15	50	35	50	0	0	40	10	0	0	0	0	0	0	7	8	0	0	False	0	False
5	10	40	25	30	0	0	40	10	0	0	0	0	0	0	0	0	0	0	False	0	False
6	15	50	35	50	0	0	40	10	0	0	0	0	0	0	7	8	0	0	False	0	False
7	10	40	25	30	0	0	40	10	0	0	0	0	0	0	0	0	0	0	False	0	False
8	15	50	35	50	0	0	40	10	0	0	0	0	0	0	7	8	0	0	False	0	False
9	0	0	0	0	0	0	30	0	0	0	0	0	0	0	0	0	0	0	False	0	False
10	0	0	0	0	0	0	30	0	0	0	0	0	0	0	0	0	0	0	False	0	False
11	0	0	0	0	0	0	30	0	0	0	0	0	0	0	0	0	0	0	False	0	False
12	0	0	0	0	0	0	30	0	0	0	0	0	0	0	0	0	0	0	False	0	False
13	0	0	0	0	0	0	30	0	0	0	0	0	0	0	0	0	0	0	False	0	False
14	0	0	0	0	0	0	30	0	0	0	0	0	0	0	0	0	0	0	False	0	False
15	0	0	0	0	0	0	30	0	0	0	0	0	0	0	0	0	0	0	False	0	False
16	0	0	0	0	0	0	30	0	0	0	0	0	0	0	0	0	0	0	False	0	False

Phase	Added	Max	Time	Car	Time	Min	Non-Act	Veh	Recall	Ped	Ped	Non	Dual	Last	Condit	No	Omit	Minus	Omit	AWS	Update
	Initial	Initial	B4	B4	to	Gap	Response	Recall	Delay	Recall	Recall	Lock	Entry	Car	Service	Simu		Yel	Call	Flash	Grn
			Redu	Redu	Redu						Delay			Pass		Gap Out				Output	t Phase
1	0	0	0	0	0	0	False	None	0	None	0	False	False	False	False	False	0	0	0		
2	0	0	0	0	0	0	True	None	0	None	0	False	False	False	False	False	0	0	0		
3	0	0	0	0	0	0	False	None	0	None	0	False	False	False	False	False	0	0	0		
4	0	0	0	0	0	0	False	None	0	None	0	False	False	False	False	False	0	0	0		
5	0	0	0	0	0	0	False	None	0	None	0	False	False	False	False	False	0	0	0		
6	0	0	0	0	0	0	True	None	0	None	0	False	False	False	False	False	0	0	0		
7	0	0	0	0	0	0	False	None	0	None	0	Falce	Falce	Falce	Falce	Falce	0	0	0		

Startup Time	Startup State		Auto Ped Clr	-	Sequence	Special Sequence	Test A = Flash	ABC Input(Entry) Modes	ABC Output(O/STS) Modes	D Input(Entry) Modes	D Output (O/STS) Modes	Aux Switch
6	Flash	40.0	0	0	1	0	0	0	0	0	0	0
Ring		Inpu	t Respon	se				Output	Selection			
1		1						1				
2		2						2				
3		0						0				
4		0						0				
								Remo	ote Flash			
LoadSwi	itch 1	2 3	4 5	5 6	7 8	9 10	11 12	13 14 15	16 17 18	19 20 21	22 23 24 2	25 26
Flash	Dark	Dark Da	ırk Dark I	Dark Dar	k Dark Dar	k Dark Darl	k Dark Da	rk Dark Dark Da	rk Dark Dark Dark	Dark Dark Dark	Dark Dark Dark I	Dark Darl
Alt	0	0 0	0 (0	0 0	0 0	0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0
								Cabi	net Flash			
LoadSwi	itch		1 2 :	3 4 5	6 7 8 9	10 11	12 13	14 15 16	5 17 18 19	20 21 22	23 24 25	26
Cabinet	Flash											
								Flash Enti	y/Exit Phases			

Overlap Data

False

False

False

False

False

False

False

False

Entry

Exit

Standard

False

+Grn Phases

None

-G/Y Phases

None

-Ped Phases

None

Trail Grn Preempt

Parents

4

Trail Grn / 10

0

Trail Yel / 10

40

Overlap

В

D	8	0	40	20	0	None	None	None
					FYA			
Overlap		Delay	Perm Phases	Prot Phases	-Ped Phases	Perm Overlaps	Prot C	verlaps
					PED			
Overlap		Parent	Ped Walk 1		Ped Walk 2	Ped Clear 1	Ped Clea	ur 2
					PRI			
Overlap			Transit Yel / 10			Transit Red / 10		

0

Trail Red / 10

20

Ring

Phase	Ring	Concur Phases
1	1	1, 6
2	1	2, 5, 6
2	1	3, 8
3	1	4, 7, 8
5	$\frac{1}{2}$	2, 5
3	$\frac{2}{2}$	
6	_	1, 2, 6
/ 0	$\frac{2}{2}$	4,7
8	$\frac{2}{2}$	3, 4, 8
9	0	9
10	0	10
11	0	11
12	0	12
13	0	13
14	0	14
15	0	15
16	0	16

Sequence Data

Ring 1									Sequence	ce 1							
1	Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
7 8 6 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ring																
Chase 1 2 4 3 0 0 0 0 0 0 0 0 0	1	1	2	4	3	0	0	0	0	0	0	0	0	0	0	0	0
Phase 1 2 3 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	7	8	6	5	0	0	0	0	0	0	0	0	0	0	0	0
Phase 1 2 3 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Phase Ring 1	4	0	0	0	0	0	0	0	-		0	0	0	0	0	0	0
Ring 1									Sequence	ce 2							
1 2 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
2	Ring																
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	1				0							-		0	0	
Phase 1 2 3 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	6	5	7	8	0	0	0	0	0	0	0	0	0	0	0	0
Sequence 3 Phase 1 2 3 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Phase Ring Phase Ring 2 1 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4	0	0	0	0	0	0	0	-	-	0	0	0	0	0	0	0
Ring 2 1 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										ce 3							
2 1 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
2	Ring																
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1		1			0		0	0	0	0	0	0	0			0
A	2	5	6	7	8	0	0	0	0	0	0	0	0	0	0	0	0
Sequence 4 Phase Ring 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Ring 1 2 4 3 0 0 0 0 0 0 0 0 0 0 0 0 2 6 5 7 8 0 0 0 0 0 0 0 0 0 0 0 0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Phase 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Ring 1 2 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 6 5 7 8 0 0 0 0 0 0 0 0 0 0 0 0 0	4	0	0	0	0	0	0	0	-	-	0	0	0	0	0	0	0
Ring 1 2 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 2 6 5 7 8 0 0 0 0 0 0 0 0 0 0 0 0 0																	
1 1 2 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
2 6 5 7 8 0 0 0 0 0 0 0 0 0	Ring																
	1	1	2	4	3	0	0	0	0	0	0	0	0	0	0	0	0
	2																
	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

10,20, 0.2	_							T CPU WIDO	1tu	.0200110_	_0021.110					
4	0	0	0	0	0	0	0	0 Sequence	0 e 5	0	0	0	0	0	0	0
hase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
ing																
	1	2	4	3	0	0	0	0	0	0	0	0	0	0	0	0
	6	5	7	8	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0 Sequence	0 se 6	0	0	0	0	0	0	0
hase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
ing						_										
	1	2	4	3	0	0	0	0	0	0	0	0	0	0	0	0
	6	5	7	8	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0 Sequence	0 e 7	0	0	0	0	0	0	0
hase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
ling																
	1	2	4	3	0	0	0	0	0	0	0	0	0	0	0	0
	6	5	7	8	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0 Sequence	0 e 8	0	0	0	0	0	0	0
hase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
ing	1	2	4	2	0		0	0	0	0	0		0	0	0	
	$-\frac{1}{6}$	5	$-\frac{4}{7}$	$-\frac{3}{8}$	$\frac{0}{0}$	$-\frac{0}{0}$	$\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	$\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	$\frac{0}{0}$	0
	0	$-\frac{5}{0}$	$-\frac{7}{0}$	$-\frac{8}{0}$	0	$\frac{0}{0}$	0	$-\frac{0}{0}$	$-\frac{0}{0}$	$\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$			0	0
		$-\frac{0}{0}$			0	$\frac{0}{0}$	$\frac{0}{0}$	$-\frac{0}{0}$					0	$-\frac{0}{0}$	0	0
	0		0	0	0	0		Sequenc		0	0	0	0	0	0	0
hase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Ring	1		4		0				0	0			0		0	
	$\frac{1}{\epsilon}$	5	$-\frac{4}{7}$	$\frac{3}{2}$	$\frac{0}{0}$	$\frac{0}{0}$	0	0	0	0	0	$-\frac{0}{0}$	0	$\frac{0}{0}$	0	$\frac{0}{0}$
	6		7	8	$\frac{0}{0}$	$\frac{0}{0}$	0	0	0	0	0	0	0	$\frac{0}{0}$	0	0
	$-\frac{0}{0}$	0	$-\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	0	$\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	0	$\frac{0}{0}$	0	0
	U		0	U	U	U	U	Sequence		_			0	0	0	0
hase ling	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
9	1	2	4	3	0	0	0	0	0	0	0	0	0	0	0	0
	$-\frac{1}{6}$	$-\frac{2}{5}$. 7	8	0	$-\frac{\sigma}{0}$	$-\frac{\sigma}{0}$	0	$-\frac{0}{0}$	0	0	0	0	0	0	$-\frac{0}{0}$
	$-\frac{\sigma}{0}$	$-\frac{3}{0}$	0	0	0	0	$-\frac{\sigma}{0}$	0	$-\frac{0}{0}$	0	0	0	0	0	$-\frac{\sigma}{0}$	$-\frac{\circ}{0}$
	0	0	0	0	0	0	0	0 Sequence	0	0	0	0	0	0	0	0
hase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
ing																
	1	2	4	3	0	0	0	0	0	0	0	0	0	0	0	0
•	6	5	7	8	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0 Sequence	0 e 12	0	0	0	0	0	0	0
hase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
ing																
	1	2	4	3	0	0	0	0	0	0	0	0	0	0	0	0
	6	5	7	8	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0 Sequence	0 e 13	0	0	0	0	0	0	0
hase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
ing	1	2	4	3	0	0	0	0	0	0	0	0	0	0	0	0
			•			~	~					~		~		~

2	6	5	7	8	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
								Sequenc	e 14							
Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Ring																
1	1	2	4	3	0	0	0	0	0	0	0	0	0	0	0	0
2	6	5	7	8	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
								Sequenc	e 15							
Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Ring																
1	1	2	4	3	0	0	0	0	0	0	0	0	0	0	0	0
2	6	5	7	8	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
								Sequenc	e 16							
Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Ring																
1	1	2	4	3	0	0	0	0	0	0	0	0	0	0	0	0
2	6	5	7	8	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Port 1 and ITS Data

4/10/23, 9:21 AM

Address	Device Present	Basic Detection	Msg 40 Frame Enables	
0	True	False	False	
1	True	False	False	
8	True	False	False	
9	True	False	False	
16	True	False	False	
18	True	False	False	

Port Configuration

Port Comm

Port	Baud Rate	Data Bits	Parity	CTS	DCD	RTS
1	0	0	0	False	False	False
2	0	0	0	False	False	False
3	0	0	0	False	False	False
4	0	0	0	False	False	False
5	0	0	0	False	False	False

	Scoot
Phases	Det
Stage A	RPLY
Stage B	Phases
Stage C	PHSMODE
Stage D	COORD PH
Stage E	Mode:
Stage F	Msg Type:
Stage G	
Stage H	

SPaT Data

ID	Destination IP	DST Port	Enabled
1	0.0.0.0	1034	0
2	0.0.0.0	1034	0
3	0.0.0.0	1034	0
4	0.0.0.0	1034	0
5	0.0.0.0	1034	0

4/10/23, 9	:21 AM	RptAllData_22_20230410_0921.htr	nl	
6	0.0.0.0	1034	0	
7	0.0.0.0	1034	0	
8	0.0.0.0	1034	0	
9	0.0.0.0	1034	0	
10	0.0.0.0	1034	0	
11	0.0.0.0	1034	0	
12	0.0.0.0	1034	0	
13	0.0.0.0	1034	0	
14	0.0.0.0	1034	0	
15	0.0.0.0	1034	0	
16	0.0.0.0	1034	0	
		System		

Backup Time 900.0

Output Mapping Configuration

Load Switch	Red	Mode	Yellow	Mode	Green	Mode	FIO
1	Phase Vehicle 1	Red	Phase Vehicle 1	Yellow	Phase Vehicle 1	Green	1
2	Phase Vehicle 2	Red	Phase Vehicle 2	Yellow	Phase Vehicle 2	Green	2
3	Phase Vehicle 3	Red	Phase Vehicle 3	Yellow	Phase Vehicle 3	Green	3
4	Phase Vehicle 4	Red	Phase Vehicle 4	Yellow	Phase Vehicle 4	Green	4
5	Phase Vehicle 5	Red	Phase Vehicle 5	Yellow	Phase Vehicle 5	Green	5
6	Phase Vehicle 6	Red	Phase Vehicle 6	Yellow	Phase Vehicle 6	Green	6
7	Phase Vehicle 7	Red	Phase Vehicle 7	Yellow	Phase Vehicle 7	Green	7
8	Phase Vehicle 8	Red	Phase Vehicle 8	Yellow	Phase Vehicle 8	Green	8
9	Phase Pedestrian 2	Dont Walk	Phase Pedestrian 2	Ped Clear	Phase Pedestrian 2	Walk	9
10	Phase Pedestrian 4	Dont Walk	Phase Pedestrian 4	Ped Clear	Phase Pedestrian 4	Walk	10
11	Phase Pedestrian 6	Dont Walk	Phase Pedestrian 6	Ped Clear	Phase Pedestrian 6	Walk	11
12	Phase Pedestrian 8	Dont Walk	Phase Pedestrian 8	Ped Clear	Phase Pedestrian 8	Walk	12
13	Overlap A	Red	Overlap A	Yellow	Overlap A	Green	$-\frac{12}{13}$
14	Overlap B	Red	Overlap B	Yellow	Overlap B	Green	$\frac{13}{14}$
15	Overlap C	Red	Overlap B Overlap C	Yellow	Overlap B Overlap C	Green	15
16	Overlap D	Red	Overlap C Overlap D	Yellow	Overlap D	Green	$-\frac{15}{16}$
	Phase Pedestrian 1	Dont Walk	Phase Pedestrian 1		Phase Pedestrian 1		
17	Phase Pedestrian 3	Dont Walk Dont Walk	Phase Pedestrian 1 Phase Pedestrian 3	Ped Clear	Phase Pedestrian 3	Walk	$-\frac{17}{18}$
18				Ped Clear		Walk	
19	Phase Pedestrian 5	Dont Walk	Phase Pedestrian 5	Ped Clear	Phase Pedestrian 5	Walk	19
20	Phase Pedestrian 7	Dont Walk	Phase Pedestrian 7	Ped Clear	Phase Pedestrian 7	Walk	20
21	Phase Status 1	On	Phase Status 1	Next	Phase Status 1	Check	21
22	Phase Status 2	On	Phase Status 2	Next	Phase Status 2	Check	22
23	Phase Status 3	On	Phase Status 3	Next	Phase Status 3	Check	23
24	Phase Status 4	On	Phase Status 4	Next	Phase Status 4	Check	24
25	Phase Status 5	On	Phase Status 5	Next	Phase Status 5	Check	25
26	Phase Status 6	On	Phase Status 6	Next	Phase Status 6	Check	26
27	Phase Status 7	On	Phase Status 7	Next	Phase Status 7	Check	27
28	Phase Status 8	On	Phase Status 8	Next	Phase Status 8	Check	28
29	None	None	None	None	None	None	29
30	None	None	None	None	None	None	30
31	None	None	None	None	None	None	31
32	None	None	None	None	None	None	32

Unit Bank: 1

Peer to Peer Sources	
Timeout	

PeerID	IP		Timeout	Pee	r Name	
1	127.0.0	.1	30	RR	eag-2243	
			Peer to Peer Functi	ons		
FunctionID	SourceID	Source Func	Source Index	Input Func	Input Index	Fail Mode

Unit Bank: 2

Peer to Peer Sources

							Peer t	o Peer S	ources							
PeerID				IP	Tim	eout				Pee	r Name					
							Peer to	Peer Fu	inctions							
Function	ID	Sour	ceID	Sour	ce Func		Source	Index		Input Fu	inc	Inpu	t Index	F	ail Mode	e
J nit Ba ı	nk: 3															
							Peer t	o Peer S	ources							
PeerID				IP	Tim	eout				Pec	r Name					
							Peer to	Peer Fu	inctions							
Function	ID	Sour	ceID	Sour	ce Func		Source	Index		Input Fu	inc	Inpu	t Index	F	ail Mode	Э
U nit Ba ı	nk: 4															
							Peer t	o Peer S	ources							
PeerID				IP	Tim	eout				Pee	r Name					
							Peer to	Peer Fu	ınctions							
Function	ID	Sour	ceID	Sour	ce Func		Source			Input Fu	inc	Inpu	ıt Index	F	ail Mode	e
Coord D)ata															
							C	oord Set	ıın							
Operatio	n M	Iode	Max	Correc	ction	Offs		Forc	-	x Dwell	Y	ield Peri	od	Manual	Pattern	
Auto		erm	Inhibit	Dwell		End	Green	Plan	0		0			1		
							F	attern Da	ıta							
Pattern	Cycle Len	gth Co	ord Mode	Max M	lode Co	r Mode				Spec F	unc Tin	ne Offset	Sequence	e R2 Laş	g R3 Lag	g R4 L
1	130		0	0		0	0		0	0		100	2	0	0	0
Phase	1	2	3	4	5	6	7	8	9	10	_11	12	13	14	15	16
Fime Mode	21 None	48 None	26 None	35 None	None	52 None	None 22	39 None	0 None	0 None	0 None	0 None	0 None	0 None	0 None	0 None
Coord	False	True	False	False	False	True	False	False	False	False	False	False	False	False	False	False
DCP	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
P.RED.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
P.EXT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pattern	Cycle Len	gth Co	ord Mode	Max M	lode Coi	r Mode	Coord O	ffset Fo	rce Mode	Spec F	unc Tin	ne Offset	Sequence	e R2 Las	R3 Las	• R4 L
2	150	igui co	0	0		0	0	nset 10	0	0	4111	68	3	0	0	0
Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Гime	39	45	27	39	19	65	20	46	0	0	0	0	0	0	0	0
Mode	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None
Coord OCP	False False	True False	False False	False False	False False	True False	False False	False False	False False	False False	False False	False False	False False	False False	False False	False False
P.RED.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
P.EXT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pattern	Cycle Len	oth Ca	ord Mada	Mov M	Iode Co	r Modo	Coord	ffeet Ea	rce Modo	Snac E	une Ti-	ne Officet	Seguene	e Dila	7 D 2 I ~	T D/I I
3	180	igui C0	ora Mode	0	ioue Col	0	Coord O	11501 FO	0	Spec F	une IIII	163	Sequence 2	$\frac{e^{-R/2} Lag}{0}$	$\frac{g}{0}$ R3 Lag	$\frac{g}{0}$ R4 L8
Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Гіте	29	77	30	44	24	82	29	45	0	0	0	0	0	0	0	0
Mode	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None
Coord	False	True	False	False	False	True	False	False	False	False	False	False	False	False	False	False
DCP P.RED.	False 0	False 0	False 0	$\frac{\text{False}}{0}$	False 0	$\frac{\text{False}}{0}$	$\frac{\text{False}}{0}$	False 0	False 0	False 0	False 0	$\frac{\text{False}}{0}$	False 0	False 0	False 0	$\frac{\text{False}}{0}$
P.EXT	$-\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{\sigma}{0}$	$-\frac{0}{0}$	$-\frac{\sigma}{0}$	$-\frac{0}{0}$	0	$-\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	$\frac{0}{0}$	0	$-\frac{0}{0}$
_																
Pattern	Cycle Len	gth Co	ord Mode	Max M	lode Co	r Mode	Coord O	ffset Fo	rce Mode	Spec F	unc Tin	ne Offset	Sequence	e R2 Lag	g R3 Lag	g R4 La

1 11450		-	J	-	J	v	,	U	,	10			10	4-4		10
Time	21	48	26	35	17	52	22	39	0	0	0	0	0	0	0	0
Mode	None															
Coord	False	True	False	False	False	True	False									
DCP	False															
P.RED.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PEYT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

					DS	Т					
Cycle Ze	ero: 1 day	, 0:00	DST Type:	0		TimeZ	oneDiff: 0				
Entry Number	Begin Month		Begin Day s Of Week	Begin Day Of Month	Begin Seconds To Transition		End Occurrences	End Day Of Week	End Day O Month	F End Seconds To Transition	Seconds To Adjust
1	3	2	1	1	7200	1	1	1	1	7200	3600
2	14	1	1	1	0	1	1	1	1	0	0
					Sched	ules					
	M	onth		Day of Mo		ares				Day	of Week
Schedule			7 8 9 10 11		6 7 8 9 10 11 12	3 14 15	16 17 18 19	20 21 22 2	3 24 25 26 27	•	
1	1 X	XXXXX	XXXXX	XXXXXX	XXXXXXXX	XXX	X X X X	X X X X	X X X X X	XXXX	X X X X X
2	2 X	XXXXX	XXXXX	XXXXX	X X X X X X X X Day P		XXXX	XXXX	XXXX	XXXXX	2
Event			Hour		Minute				Action		
1			0		0				254		
2			6		0				2		
3 4			$\frac{9}{14}$		$\frac{0}{0}$				$-\frac{1}{3}$		
5			19		$\frac{0}{0}$				$-\frac{3}{11}$		
6			21		0				254		
7			0		0				0		
8			0		0				0		
9			0		0				0		
10			0		0				0		
11			0		0				0		
12 13			$\frac{0}{0}$		$\frac{0}{0}$				$-\frac{0}{0}$		
14			$-\frac{0}{0}$		$\frac{0}{0}$				$-\frac{0}{0}$		
15			0		$\frac{0}{0}$				0		
					Day P	an 2					
Event			Hour		Minute				Action		
1			0		0				254		
2			0		0				0		
3 4			$\frac{0}{0}$		$\frac{0}{0}$				$-\frac{0}{0}$		
5			$\frac{0}{0}$		$\frac{0}{0}$				$-\frac{0}{0}$		
6			$ \frac{\circ}{0}$		0				0		
7			0		0				0		
8			0		0				0		
9			0		0				0		
10			0		0				0		
11			0		0				0		
12 13			$\frac{0}{0}$		0				$-\frac{0}{0}$		
13 14			$\frac{0}{0}$		$\frac{0}{0}$				$-\frac{0}{0}$		
15			$-\frac{0}{0}$		$\frac{0}{0}$				$-\frac{0}{0}$		

Action Pattern Aux1 Aux2 Aux3 SP1 SP2 SP3 SP4 SP5 SP6 SP7 SP8 DIM Det1 Det2 Det3 Ph1 Ph2 Ph3 Ph4 Ph5 Ph6 Ph7 Ph8 Ph9 Ph10 Ph11 Ph12 Ph13 Ph 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22	22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
33	33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
254	254	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

		Sp	ecia	l Fı	ınct	ion	Ma	ps													Pha	se]	Fun	ctic	ns					
	1	2	3	4	5	6	7	8	9	10	11	12	1.	3 1	4	15	16		1	2	3	4	5	6	7	8	9	10	11	12
Special Function 1	1	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	Phase 1 Max 2	1	0	0	0	0	0	0	0	0	0	0	0
Special Function 2	0	1	0	0	0	0	0	0	0	0	0	0	0	0		0	0	Phase 2 Max 2	0	1	0	0	0	0	0	0	0	0	0	0
Special Function 3	0	0	1	0	0	0	0	0	0	0	0	0	0	0		0	0	Phase 3 Max 2	0	0	1	0	0	0	0	0	0	0	0	0
Special Function 4	0	0	0	1	0	0	0	0	0	0	0	0	0	0		0	0	Phase 4 Max 2	0	0	0	1	0	0	0	0	0	0	0	0
Special Function 5	0	0	0	0	1	0	0	0	0	0	0	0	0	0		0	0	Phase 5 Max 2	0	0	0	0	1	0	0	0	0	0	0	0
Special Function 6	0	0	0	0	0	1	0	0	0	0	0	0	0	0		0	0	Phase 6 Max 2	0	0	0	0	0	1	0	0	0	0	0	0
Special Function 7	0	0	0	0	0	0	1	0	0	0	0	0	0	0		0	0	Phase 7 Max 2	0	0	0	0	0	0	1	0	0	0	0	0
Special Function 8	0	0	0	0	0	0	0	1	0	0	0	0	0	0		0	0	Phase 8 Max 2	0	0	0	0	0	0	0	1	0	0	0	0

Preempt Configuration

							Pı	reempt 1 I	Data						
DET	DELAY	N	MXCAL	DB/10	N	LOCK	EX	ΓND	L OUT	SR	MOD	LINK#	Γ	URAT	GAT
248	0		0	0		0		0	0		0	0		0	0
MIN	MIN	DWL	EXT	SEL PED	SI	EL	SEL	TRK	TRK PED	-	ΓRK	TRK	RET	PED	RET
GRN	WLK	GRN	PED	CLR	YEI	L/10	RED/10	GRN	CLR	Y	EL/10	RED/10	CL	.R	YEL/10
10	10	10	0	8	4	0	20	10	8		40	20	8	3	40
Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Exit	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Calls	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Vehicle															
Track Gree	n 0	0	0	0	0	0	0	0	4	4	4	4	4	4	4
Dwell	0	0	0	0	0	0	0	0	4	4	4	4	4	4	4
Cycle	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ped															
Track Gree	n 3	0	3	0	3	0	3	0	3	3	3	3	3	3	3
Dwell	3	0	3	0	3	0	3	0	3	3	3	3	3	3	3
Cycle	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Overlap															
Track Gree	n 4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Dwell	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Cycle	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Trail	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

							P	reempt 2 I	Data						
DET	DELAY	N	IXCAL	DB/10	N	LOCK	EX	TND	L OUT	SR	MOD	LINK#	Г	URAT	GAT
249	0		0	0		0		0	0		0	0		0	0
MIN GRN	MIN WLK	DWL GRN	EXT PED	SEL PED CLR		EL L/10	SEL RED/10	TRK GRN	TRK PED CLR		ΓRK EL/10	TRK RED/10	RET CL		RET YEL/10
10	10	10	0	8	4	10	20	10	8		40	20	8	3	40
Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Exit	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Calls	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Vehicle															
Track Gree	n 0	0	0	0	0	0	0	0	4	4	4	4	4	4	4
Dwell	0	0	0	0	0	0	0	0	4	4	4	4	4	4	4
Cycle	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ped															
Track Gree	n 3	0	3	0	3	0	3	0	3	3	3	3	3	3	3

10/23, 9.2	I AIVI						KPIAIID	ala_ZZ_Z	0230410_092	. 1 . 1 1 1 1 1 1 1					
Dwell	3	0	3	0	3	0	3	0	3	3	3	3	3	3	3
Cycle	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Overlap															
Track Gre	een 4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Dwell	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Cycle	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Trail	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DET	DELAY		AVCAI	DD/10	N.	LOCK		reempt 3 I		CD	MOD	I INIZ#		NIID AT	CAT
DET	DELAY		MXCAL	DB/10	IN	LOCK		ΓND	L OUT	SK	MOD	LINK#	L	DURAT	GAT
250	0	DIVI	0	0	CI	0		0 TD1/	0		0	0	DET	0	0
MIN GRN	MIN WLK	DWL GRN	EXT PED	SEL PED CLR	SI	EL L/10	SEL RED/10	TRK GRN	TRK PED CLR		ΓRK EL/10	TRK RED/10	RET CL		RET YEL/10
10	10	10	0	8		0	20	10	8	1.	40	20	8		40
Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Exit	$\frac{1}{0}$	$-\frac{2}{0}$	$-\frac{5}{0}$	0	0	$-\frac{\sigma}{0}$	0	$-\frac{\sigma}{0}$	0	0	0	0	0	$-\frac{1}{0}$	$\frac{10}{0}$
Calls	0	0	0	0	0	0	0	0	0	0	0	0	0	$\overline{0}$	0
Vehicle															
Track Gre	een 0	0	0	0	0	0	0	0	4	4	4	4	4	4	4
Dwell	0	0	0	0	0	0	0	0	4	4	4	4	4	4	4
Cycle	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ped															
Track Gre	een 3	0	3	0	3	0	3	0	3	3	3	3	3	3	3
Dwell	3	0	3	0	3	0	3	0	3	3	3	3	3	3	3
Cycle	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Overlap															
Track Gre	een 4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Dwell	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Cycle	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Trail	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DET	DELAY		MXCAL	DB/10	N.	LOCK		eempt 4 I FND	Data L OUT	CD	MOD	LINK#		OURAT	GAT
251	DELAY 0	I.	MACAL 0	0	IN	0		0 0		SK	0 0	0	L	0	0 GAI
		DWI			CI				0 TDV DED				DET		
MIN GRN	MIN WLK	DWL GRN	EXT PED	SEL PED CLR	SI VEI	EL/10	SEL RED/10	TRK GRN	TRK PED CLR		ΓRK EL/10	TRK RED/10	RET CL		RET YEL/10
10	10	10	0	8		0	20	10	8		40	20	8		40
Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Exit	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Calls	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Vehicle															
Track Gre	een 0	0	0	0	0	0	0	0	4	4	4	4	4	4	4
Dwell	0	0	0	0	0	0	0	0	4	4	4	4	4	4	4
Cycle Ped	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Track Gre	een 3	0	3	0	3	0	3	0	3	3	3	3	3	3	3
Dwell	3	$\frac{0}{0}$	$\frac{3}{3}$	$\frac{0}{0}$	$-\frac{3}{3}$	$-\frac{0}{0}$	$\frac{3}{3}$	$\frac{0}{0}$	$\frac{3}{3}$	$\frac{3}{3}$	$-\frac{3}{3}$	$-\frac{3}{3}$	$-\frac{3}{3}$	$-\frac{3}{3}$	$-\frac{3}{3}$
~ ** C11	ی		$-\frac{3}{0}$	$\frac{0}{0}$	$-\frac{3}{0}$	$-\frac{0}{0}$	$\frac{3}{0}$	$-\frac{0}{0}$	$\frac{3}{0}$	$-\frac{3}{0}$	$-\frac{3}{0}$	$-\frac{3}{0}$	$-\frac{3}{0}$	$-\frac{3}{0}$	$\frac{3}{0}$
Cycle	n	()				U	v	9	v	-	,	v	9	3	J
-	0	0	O	O											
Overlap						4	4	4	4	4	4	4	4	4	4
Overlap Track Gre		4 4	4 4	4 4	4 4	4	4 4	4 4	4	4	4	4 4	4	4 4	4
Overlap Track Gre Dwell	een 4	4	4	4	4										
Overlap Track Gre Dwell Cycle	een 4 4	44	44	4 4	4	4	4	4	4	4	4	4	4	4	4
Overlap Track Gre Dwell Cycle Trail	een 4 4 0 0	4 4 0 0	4 4 0 0	4 4 0 0	4 4 0 0	4 0 0	4 0 0	4 0 0 reempt 5 I	4 0 0	0 0	4 0 0	4 0 0	4 0 0	4 0 0	4 0 0
Overlap Track Gre Dwell Cycle Trail	een 4 4 0 0	4 4 0 0	4 4 0 0	4 4 0 0 0	4 4 0 0	4 0 0	4 0 0 • Pr	4 0 0 reempt 5 I	4 0 0 0 Data L OUT	0 0	4 0 0	4 0 0	4 0 0	4 0 0 0	4 0 0 0
Overlap Track Gre Dwell Cycle Trail DET 252	DELAY	4 4 0 0	4 4 0 0 0	4 4 0 0 0 DB/10	4 4 0 0	4 0 0 0 LOCK 0	4 0 0 Pr EX	4 0 0 0 reempt 5 Ι ΓΝΟ	4 0 0 0 Data L OUT	4 0 0 SR	4 0 0 0 MOD	4 0 0 LINK#	4 0 0	4 0 0 0 DURAT 0	4 0 0 0 GAN
	een 4 4 0 0	4 4 0 0	4 4 0 0	4 4 0 0 0	4 4 0 0 0	4 0 0 0 LOCK 0	4 0 0 • Pr	4 0 0 reempt 5 I	4 0 0 0 Data L OUT	4 0 0 SR	4 0 0	4 0 0	4 0 0	4 0 0 0 DURAT 0 PED	4 0 0 0

Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Exit	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Calls	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Vehicle															
Track Green	n 0	0	0	0	0	0	0	0	4	4	4	4	4	4	4
Dwell	0	0	0	0	0	0	0	0	4	4	4	4	4	4	4
Cycle	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ped															
Track Green	n 3	0	3	0	3	0	3	0	3	3	3	3	3	3	3
Dwell	3	0	3	0	3	0	3	0	3	3	3	3	3	3	3
Cycle	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Overlap															
Track Green	n 4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Dwell	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Cycle	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Trail	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Ü	v		Ü	ŭ	Ů					, and the second	v		ŭ	
DET	DELAY		1XCAL	DB/10	N	LOCK		reempt 6 D	Data L OUT	SR	MOD	LINK#		URAT	GAT
253	0	IV.	0	0	11	0)	0	SIC	0	0		0	0 OA1
		Dun			CT					-	rk.	TRK	RET		
MIN GRN	MIN WLK	DWL GRN	EXT PED	SEL PED CLR	SI YEI		SEL RED/10	TRK GRN	TRK PED CLR		. KK EL/10	RED/10	KE I CL		RET YEL/10
10	10	10	0	8 8		·0	20	10	8 ELK		40	20	8		40
10	10	10	V	O	7	.0	20	10	O		1 0	20	O	,	40
Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Exit	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Calls	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Vehicle															
Track Green	n 0	0	0	0	0	0	0	0	4	4	4	4	4	4	4
Dwell	0	0	0	0	0	0	0	0	4	4	4	4	4	4	4
Cycle	$\frac{1}{0}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ped		3	3	J	J	Ū	O	J	J	J	J	J	,	5	3
Track Green	n 3	0	3	0	3	0	3	0	3	3	3	3	3	3	3
Dwell	3	$\frac{\sigma}{0}$	$\frac{3}{3}$	$-\frac{0}{0}$	3	$-\frac{\sigma}{0}$	3	$-\frac{0}{0}$	$\frac{3}{3}$	3	$-\frac{3}{3}$	3	$-\frac{3}{3}$	$-\frac{3}{3}$	$\frac{3}{3}$
Cycle	$\frac{3}{0}$	$\frac{\sigma}{0}$	$-\frac{3}{0}$	$-\frac{0}{0}$	$-\frac{3}{0}$	$-\frac{\sigma}{0}$	$\frac{3}{0}$	$-\frac{\sigma}{0}$	$\frac{3}{0}$	$\frac{3}{0}$	$-\frac{3}{0}$	$\frac{3}{0}$	$-\frac{3}{0}$	$-\frac{3}{0}$	$-\frac{3}{0}$
	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Overlap	1		4		4		4		4	4	4	4	4	4	4
Track Green		4	4	4	$-\frac{4}{4}$	$-\frac{4}{4}$	4	4	4	4	4	4	4	$-\frac{4}{4}$	4
Dwell	4	$\frac{4}{2}$	4	4	4	$-\frac{4}{2}$	4	4	4	4	4	4	$-\frac{4}{2}$	$-\frac{4}{2}$	4
Cycle	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Trail	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
							Pr	eempt 7 D	Data						
DET	DELAY	N	IXCAL	DB/10	N	LOCK	EXT	ΓND	L OUT	SR	MOD	LINK#	Γ	URAT	GAT
0	0		0	0		0	()	0		0	0		0	0
MIN	MIN	DWL	EXT	SEL PED	SI	EL	SEL	TRK	TRK PED	7	RK	TRK	RET	PED	RET
GRN	WLK	GRN	PED	CLR	YEI	L/10	RED/10	GRN	CLR		EL/10	RED/10	CL	.R	YEL/10
10	10	10	0	8	4	0	20	10	8		40	20	8	3	40
Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Exit	$-\frac{1}{0}$	$-\frac{2}{0}$	$-\frac{3}{0}$	$-\frac{4}{0}$	$-\frac{5}{0}$	$-\frac{0}{0}$	$\frac{\prime}{0}$	$-\frac{\mathbf{o}}{0}$	$-\frac{9}{0}$	0	$-\frac{11}{0}$	$\frac{12}{0}$	$-\frac{15}{0}$	$-\frac{14}{0}$	$-\frac{15}{0}$
Calls	$-\frac{0}{0}$	$\frac{\sigma}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	0	$-\frac{\sigma}{0}$	0	$-\frac{0}{0}$	$\frac{\sigma}{0}$	0	$-\frac{\sigma}{0}$	0	$-\frac{\sigma}{0}$	$-\frac{0}{0}$	$\frac{\sigma}{0}$
Vehicle		U	U	V	U	U	U	U	U	v	U	J	U	U	U
Track Green	n 0	0	0	0	0	0	0	0	4	4			1		4
										4	$-\frac{4}{4}$	$-\frac{4}{4}$	$-\frac{4}{4}$	$-\frac{4}{4}$	
Dwell	0	$\frac{0}{0}$	$\frac{0}{0}$	0	0	0	0	$\frac{0}{0}$	4	$\frac{4}{2}$	$-\frac{4}{0}$	$\frac{4}{0}$	$-\frac{4}{2}$	$-\frac{4}{2}$	$-\frac{4}{2}$
Cycle	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ped															
Track Greei		0	3	0	3	0	3	0	3	3	3	3	3	3	3
	3	0		0		0		0		3			3		3
-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
A 1															
Overlap															
_	n 4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Dwell Cycle	3	0	3	0	3	0	3	0	3 0	3	3 0	3 0	3	3	
Overlap Track Green Dwell	n 4	4	$\frac{4}{4}$	$\frac{4}{4}$	$-\frac{4}{4}$	$-\frac{4}{4}$	$\frac{4}{4}$	$-\frac{4}{4}$	$-\frac{4}{4}$	$\frac{4}{4}$	$-\frac{4}{4}$	$-\frac{4}{4}$	$-\frac{4}{4}$	$-\frac{4}{4}$	$\frac{4}{4}$

	0 0 DELAY 0 MIN WLK	0 0	0 0 MXCAL	0 0	0	0	0	0 0	0 0	0	0	0	0	0	0
DET 0 MIN GRN 10	DELAY 0 MIN WLK			0	0	0		0	0	0	0	0	0	0	0
0 MIN GRN 10	0 MIN WLK	N	AYCAI												
0 MIN GRN 10	0 MIN WLK	N	ЛХСАІ					eempt 8 I							
MIN GRN 10 Phase	MIN WLK			DB/10	NI	LOCK		ΓND	L OUT	SR	MOD	LINK#		URAT	GAT
GRN 10 Phase	WLK		0	0		0		0	0		0	0		0	0
10 Phase		DWL	EXT	SEL PED	SE		SEL DED/10	TRK	TRK PED		TRK	TRK	RET		RET (10)
Phase	10	GRN 10	PED 0	CLR 8	YEL 40		RED/10 20	GRN 10	CLR 8	Y	EL/10 40	RED/10 20	CL 8		YEL/10 40
	$\frac{1}{0}$	$\frac{2}{0}$	$\frac{3}{2}$	$-\frac{4}{0}$	5	$\frac{6}{2}$	7	8	9	10	$\frac{11}{0}$	12	13	$\frac{14}{0}$	15
Calls	$-\frac{0}{0}$	$-\frac{0}{0}$	$\frac{0}{0}$	$\frac{0}{0}$	0	$-\frac{0}{0}$	$\frac{0}{0}$	$-\frac{0}{0}$	$\frac{0}{0}$	$\frac{0}{0}$	$-\frac{0}{0}$	$\frac{0}{0}$	$\frac{0}{0}$	$-\frac{0}{0}$	$\frac{0}{0}$
Vehicle	0	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Track Green	0	0	0	0	0	0	0	0	4	4	4	4	4	4	4
Dwell	$\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	$\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	4	$-\frac{4}{4}$	$-\frac{4}{4}$	4	$-\frac{4}{4}$	$-\frac{4}{4}$	$-\frac{4}{4}$
Cycle	$-\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	$\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{4}{0}$	$-\frac{4}{0}$	$-\frac{4}{0}$	$-\frac{4}{0}$	$-\frac{4}{0}$	$-\frac{4}{0}$	$-\frac{4}{0}$
	0	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Ped Track Green		0		0	2		2			2		2			
		-	$-\frac{3}{2}$	0	$-\frac{3}{2}$	$-\frac{0}{0}$	$\frac{3}{2}$	0	$\frac{3}{2}$	$\frac{3}{2}$	$-\frac{3}{2}$	$\frac{3}{2}$	$-\frac{3}{2}$	$\frac{3}{2}$	$-\frac{3}{2}$
Dwell Cycle	$\frac{3}{0}$	$\frac{0}{0}$	$\frac{3}{0}$	$\frac{0}{0}$	$\frac{3}{0}$	$-\frac{0}{0}$	$\frac{3}{0}$	$\frac{0}{0}$	$\frac{3}{0}$	$\frac{3}{0}$	$-\frac{3}{0}$	$\frac{3}{0}$	3	$-\frac{3}{0}$	$\frac{3}{0}$
Cycle Overlap	U	0	0	U	U	0	0	U	0	0	0	U	0	0	0
	4		4	4	4		4	4	4	4		4		4	
Track Green		$-\frac{4}{4}$	4	4	$-\frac{4}{4}$	$-\frac{4}{4}$	$\frac{4}{4}$	4	4	4	$-\frac{4}{4}$	4	$-\frac{4}{4}$	$-\frac{4}{4}$	$-\frac{4}{4}$
Dwell	$\frac{4}{2}$	$-\frac{4}{2}$	4	4	$-\frac{4}{2}$	$-\frac{4}{2}$	4	$\frac{4}{2}$	4	$\frac{4}{2}$	$-\frac{4}{2}$	4	$-\frac{4}{2}$	$-\frac{4}{2}$	4
Cycle	0	$\frac{0}{0}$	0	0	$\frac{0}{0}$	$\frac{0}{0}$	0	$\frac{0}{0}$	0	0	$\frac{0}{0}$	0	0	$\frac{0}{0}$	$\frac{0}{0}$
Trail	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DET	DEL AV		AVCAL	DD/10	NII	OCK		eempt 9 I		CD	MOD	I DIIZ#		NIID AT	
DET	DELAY	IN .	MXCAL	DB/10	NI	LOCK			L OUT	SK	MOD	LINK#	L	URAT	GAT 0
0	0	DIVI	0	0		0		0	0		0	0	D.E.E.	0	-
	MIN WLK	DWL GRN	EXT PED	SEL PED CLR	SE YEL		SEL RED/10	TRK GRN	TRK PED CLR		ΓRK EL/10	TRK RED/10	RET CL		RET YEL/10
10	10	10	0	8	40		20	10	8 8	1.	40	20	- 8		40
Dhass	1				_			0		10	11	12	13	14	15
Phase	1	$\frac{2}{0}$	$\frac{3}{0}$	$-\frac{4}{0}$	5	6	7	8	9	10	$\frac{11}{0}$	12	13	$-\frac{14}{0}$	15
Exit Calls	$\frac{0}{0}$	$\frac{0}{0}$	$\frac{0}{0}$	$\frac{0}{0}$	0	$-\frac{0}{0}$	$\frac{0}{0}$	$\frac{0}{0}$	$\frac{0}{0}$	$\frac{0}{0}$	$-\frac{0}{0}$	$\frac{0}{0}$	$\frac{0}{0}$	$-\frac{0}{0}$	$\frac{0}{0}$
Vehicle	0	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Track Green	0	0	0	0	0	0	0	0		4		4	1		
Dwell	$\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	$\frac{0}{0}$	$-\frac{0}{0}$	$\frac{4}{4}$	$-\frac{4}{4}$	$-\frac{4}{4}$	$-\frac{4}{4}$	$-\frac{4}{4}$	$-\frac{4}{4}$	$-\frac{4}{4}$
	$-\frac{0}{0}$	$-\frac{0}{0}$	$\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	$\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{4}{0}$	0	$-\frac{4}{0}$	$\frac{4}{0}$	$-\frac{4}{0}$	$-\frac{4}{0}$	$-\frac{4}{0}$
Cycle	0	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Ped Track Green	3	0	3	0	3	0	3	0	3	3	3	3	3	3	3
Dwell	3	$-\frac{0}{0}$	$\frac{3}{3}$	$-\frac{0}{0}$	$-\frac{3}{3}$	$-\frac{0}{0}$	$-\frac{3}{3}$	$-\frac{0}{0}$	$-\frac{3}{3}$	$-\frac{3}{3}$	$-\frac{3}{3}$	$\frac{3}{3}$	$-\frac{3}{3}$	$-\frac{3}{3}$	$-\frac{3}{3}$
Cycle	$-\frac{3}{0}$	$-\frac{0}{0}$	$-\frac{3}{0}$	$-\frac{0}{0}$	$-\frac{3}{0}$	$-\frac{0}{0}$	$\frac{3}{0}$	$-\frac{0}{0}$	$-\frac{3}{0}$	$-\frac{3}{0}$	$-\frac{3}{0}$	$-\frac{3}{0}$	$-\frac{3}{0}$	$-\frac{3}{0}$	$-\frac{3}{0}$
Overlap		U	U	U	U	U	U	U	U	U	U	U	U	U	U
Track Green	4		4	4	4	4	4	4	4	4	4	4	4	4	
Dwell	4	$\frac{4}{4}$	$\frac{4}{4}$	$\frac{4}{4}$	$-\frac{4}{4}$	$-\frac{4}{4}$	$\frac{4}{4}$		$\frac{4}{4}$	4	$-\frac{4}{4}$	$\frac{4}{4}$	$-\frac{4}{4}$	$-\frac{4}{4}$	$\frac{4}{4}$
Cycle	$-\frac{4}{0}$	$\frac{4}{0}$	$\frac{4}{0}$	$-\frac{4}{0}$	$-\frac{4}{0}$	$-\frac{4}{0}$	$\frac{4}{0}$	$\frac{4}{0}$	$-\frac{4}{0}$	$-\frac{4}{0}$	$-\frac{4}{0}$	$-\frac{4}{0}$	$-\frac{4}{0}$	$-\frac{4}{0}$	$\frac{4}{0}$
	$-\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	$\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$
Trail	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
DET	DELAY	x	MXCAL	DB/10	NII	LOCK		eempt 10 : ΓND	Data L OUT	CD	MOD	LINK#		URAT	GAT
0	0	IN .	0	0	111	0))	0	ЯC	0 0	0	L	0	0 OA1
		DWI			SE		SEL	TRK	TRK PED		ΓRK	TRK	ргт		RET
	MIN WLK	DWL GRN	EXT PED	SEL PED CLR	SE YEL		SEL RED/10	GRN	CLR		EL/10	RED/10	RET CL		YEL/10
10	10	10	0	- B	40		20	10	8		40	20	8		40
Phase	1	2	3	4	_		7	8	9	10	11	12	13	14	15
Exit	$\frac{1}{0}$	$-\frac{2}{0}$	$-\frac{3}{0}$	$-\frac{4}{0}$	$-\frac{5}{0}$	$-\frac{6}{0}$	$\frac{7}{0}$	$-\frac{8}{0}$	0	$-\frac{10}{0}$	$-\frac{\Pi}{0}$	$\frac{12}{0}$	$-\frac{13}{0}$	$-\frac{14}{0}$	$\frac{15}{0}$
Calls	$-\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	$\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	$\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$	$-\frac{0}{0}$
Vehicle		J	U	V	v	U	U	J	V	v	U	U	J	U	J

l/10/23, 9:21	AM						RptAllD	ata 22 2	0230410_09	21.htm	ı				
Track Gree		O	0	0	0	0	0	0	4	4	4	4	4	4	4
Dwell	0	0		$\frac{\circ}{0}$	0			0	4			4			
Cycle	$-\frac{0}{0}$	$\frac{0}{0}$	$\frac{0}{0}$	$\frac{0}{0}$	$-\frac{0}{0}$	$\frac{0}{0}$	$\frac{0}{0}$	$-\frac{0}{0}$	$\frac{4}{0}$	$-\frac{4}{0}$	$-\frac{4}{0}$	$-\frac{4}{0}$	$-\frac{4}{0}$	$-\frac{4}{0}$	$-\frac{4}{0}$
Ped	0	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Track Gree	en 3	0	3	0	3	0	3	0	3	3	3	3	3	3	3
Dwell	$\frac{3}{3}$	$-\frac{0}{0}$	3	$-\frac{0}{0}$	$-\frac{3}{3}$	$-\frac{0}{0}$	$\frac{3}{3}$	0	$-\frac{3}{3}$	3	$-\frac{3}{3}$	3	$-\frac{3}{3}$	$\frac{3}{3}$	$\frac{3}{3}$
Cycle	$-\frac{3}{0}$	$-\frac{0}{0}$	$\frac{3}{0}$	$-\frac{0}{0}$	$-\frac{3}{0}$	$-\frac{0}{0}$	$\frac{3}{0}$	0	$-\frac{3}{0}$	$-\frac{3}{0}$	$-\frac{3}{0}$	0	$-\frac{3}{0}$	$-\frac{3}{0}$	$-\frac{3}{0}$
Overlap	0	V	O	O	Ü	U	V	O	O	Ū	U	V	Ū	O	U
Track Gree	en 4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Dwell	4	4	4	.	4	$\frac{1}{4}$	4	4	.	4	4	4	4	$\frac{1}{4}$	4
Cycle	$\frac{1}{0}$	0	0	$\frac{1}{0}$	0	$-\frac{1}{0}$	0	0	$\frac{1}{0}$	0	0	0	0	$-\frac{\cdot}{0}$	0
Trail	0	0	0	$\frac{\circ}{0}$	0	$-\frac{\sigma}{0}$	0	0	$\frac{\circ}{0}$	0	$ \frac{0}{0}$	0	$-\frac{0}{0}$	$-\frac{\sigma}{0}$	$\frac{0}{0}$
11411	ŭ	Ü	Ŭ	v	Ü	Ū		eempt 11		Ü	Ü	V	Ü	v	Ü
DET	DELAY	N	MXCAL	DB/10	N	ILOCK		ΓND	L OUT	SF	RMOD	LINK#		DURAT	GAT
0	0		0	0		0)	0		0	0		0	0
MIN	MIN	DWL	EXT	SEL PED	S	EL	SEL	TRK	TRK PED)	TRK	TRK	RET	PED	RET
GRN	WLK	GRN	PED	CLR		L/10	RED/10	GRN	CLR		EL/10	RED/10		LR	YEL/10
10	10	10	0	8	4	10	20	10	8		40	20		8	40
Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Exit	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Calls	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Vehicle															
Track Gree	en 0	0	0	0	0	0	0	0	4	4	4	4	4	4	4
Dwell	0	0	0	0	0	0	0	0	4	4	4	4	4	4	4
Cycle	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ped															
Track Gree	en 3	0	3	0	3	0	3	0	3	3	3	3	3	3	3
Dwell	3	0	3	0	3	0	3	0	3	3	3	3	3	3	3
Cycle	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Overlap															
Track Gree	en 4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Dwell	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Cycle	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Trail	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
							D	4 13 1	D-4-						
DET	DELAY	· \	MXCAL	DB/10		ILOCK		eempt 12] ΓΝD	L OUT	CI	RMOD	LINK#		DURAT	GAT
0	0	1	0	0	1	0)	0	51	0	0		0	0
MIN	MIN	DWL	EXT	SEL PED	C	EL	SEL	TRK	TRK PED		TRK	TRK	DET	PED	RET
GRN	WLK	GRN	PED	CLR		L/10	RED/10	GRN	CLR		EL/10	RED/10		LR	YEL/10
10	10	10	0	8		10	20	10	8		40	20		8	40
Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Exit	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Calls	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Vehicle															
Track Gree	en 0	0	0	0	0	0	0	0	4	4	4	4	4	4	4
Dwell	0	$\frac{0}{0}$	$\frac{0}{0}$	0	0	$-\frac{\sigma}{0}$	$\frac{0}{0}$	0	4	4	4	4	4	4	4
Cycle	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ped															
Track Gree	en 3	0	3	0	3	0	3	0	3	3	3	3	3	3	3
Dwell	3	0	3	0	3	0	3	0	3	3	3	3	3	3	3
Cycle	$-\frac{\delta}{0}$	$\frac{0}{0}$	$\frac{0}{0}$	0	0	0	$\frac{\delta}{0}$	0	$-\frac{\delta}{0}$	$-\frac{\delta}{0}$	$\frac{\delta}{0}$	0	$-\frac{\delta}{0}$	0	$-\frac{\delta}{0}$
Overlap		-	*	-	•	-	-		-	-	-	•	-	•	-
Track Gree	en 4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Dwell	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Cycle	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Trail	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	*		-	-		-	•	-	-	-	-	-	-		

N- Lock	Delay	Extend D P	efault attern	Min Grn	Max Grn	No Lock		ockoutA	LockoutB	3 Overlap	Pre Grn	Recall Ex	xCoPhas	eSvc Signa Type		p ankout
None	None	None N	one	None	None	None	e N	lone	None	None	None	None No	one	None	No	one
Phase		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CO-Ph	ase	None	None	None	None	None	None	None	None	None	None	None	None	None	None	Non
QJ-Pha	ise	None	None	None	None	None	None	None	None	None	None	None	None	None	None	Non
Detecto	or	1		2	3		4		5		6		7	8		9
Detecto Numbe		None		None	No	one	Nor	ne	None		None	1	None	No	ne	N
								I	Bank: 1							
PR. De	ets	PE		1A		2A		3A		4A		5A		6A		BU
ΓSD		0		0		0		0		0		0		0		0
ΓED		0		0		0		0		0		0		0		0
ΓTL		0		0		0		0		0		0		0		0
Phase		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Exit Ca		False			False	False	False		False	False	False		False	False	False	False
Phase (False			False	False	False		False	False	False		False	False	False	False
Ped On Recove		False False			False False	False False	False False		False False	False False	False False		False False	False False	False False	False False
	-															
	Alt Se q 0	Min Wa		Ped Skip	FPF Ov False		FPW Lv True	False F		$\frac{\mathbf{Retu}}{0}$	ırn Ped	Wait Pe	d Overri	de Alt So False	eq Enabl	led Fo
	0	0	0	0			True		4150	0	, ,	· ·		T disc		1.
Queue			1		2			3		4			5		6	
Queue			0		0			0		0			0		0	
Queue			0		0			0		0			0		0	
Queue '	Time		0		0			0	2 1 2	0			0		0	
PR. De	ets	PE		1A		2A		3A	Bank: 2	4A		5A		6A		BU
TSD		0		0		0		0		0		0		0		0
TED		0		0		0		0		0		0		0		0
TTL		0		0		0		0		0		0		0		0
Phase		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Exit Ca		False			False	False	False		False	False	False		False	False	False	False
Phase (False			False	False	False		False	False	False		False	False	False	False
Ped On		False			False	False	False		False	False	False		False	False	False	False
Recove	ery	False	e False	False	False	False	False	False	False	False	False	False	False	False	False	False
													d Overri	de Alt So	eq Enabl	
0 (0	0	0	0	False		True	False F	False 0	0	0	0		False		Fa
Queue			1		2			3		4			5		6	
Queue			0		0			0		0			0		0	
Queue			0		0			0		0			0		0	
Queue '	Time		0		0			0		0			0		0	
DD -		DE.							Bank: 3							D.T.
PR. De	ets	PE		$-\frac{1A}{0}$		2A		$\frac{3A}{0}$		4A		5A		6A		BU
TSD		0		0		0		0		0		0		0		0
TED		0		0		0		0		0		0		0		0
TTL		0		0		0		0		0		0		0		0
Phase Exit Ca		1 False	2 False	3 False	4 False	5 False	6 False	7 False	8 False	9 False	10 False	11 False	12 False	13 False	14 False	15 False

Phase Om	nit	False	e Fa	lse	False	False	False	False	False	False	False	False	False	False	False	False	False
Ped Omit		False	e Fa	lse	False	False	False	False	False	False	False	False	False	False	False	False	False
Recovery		False	e Fa	lse	False	False	False	False	False	False	False	False	False	False	False	False	False
Level Alt	t Seq	Min Wa	alk Fro	eq I	Ped Skip	FPF Ove	rride	FPW Lvl	CPE Peo	d Meth	od Retur	n Ped	Wait Ped	l Override	Alt Se	q Enabled	Fo
0 0		0	0	()	False		True	False Fal	se 0	0	0	0		False		Fa
Queue			1			2			3		4			5		6	
Queue Ph	ase		0			0			0		0			0		0	
Queue De	et		0			0			0		0			0		0	
Queue Tir	me		0			0			0		0			0		0	
									Ba	nk: 4							
PR. Dets		PE			1A		2A		3A		4A		5A	6	A	В	U
TSD		0			0		0		0		0		0	0		0	
TED		0			0		0		0		0		0	0		0	
TTL		0			0		0		0		0		0	0		0	

Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Exit Call	False														
Phase Omit	False														
Ped Omit	False														
Recovery	False														

Level A	Alt Seq	Min '	Walk	Freq	Ped Skip	FPF Override	FPW Lvl	CPE	Ped	Method	Return	Ped Wait	Ped Override	Alt Seq Enabled	Fo
0 0)	0		0	0	False	True	False	False	0	0	0	0	False	Fa
Queue			1			2		3			4		5	6	
Queue P	Phase		0			0		0			0		0	0	
Queue I	Det		0			0		0			0		0	0	
Queue T	Гіте		0			0		0			0		0	0	

N- I Lock	Delay E		Default Pattern	Min Grn	Max Grn	No Loci		Lockout <i>!</i>	A Lockout	B Overlap	Pre Grn	Recall E	ExCoPhas	eSvc Signa Type		lp ankout
None 1	None N	None	None	None	None	None	e 1	None	None	None	None	None N	lone	None	. N	one
Phase		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CO-Phas	se	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None
QJ-Phas	e	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None
Detector	r	1		2	3		4		5		6		7	8		9
Detector Number		None		None	No	one	No	one	None		None		None	No	ne	No
									Bank: 1							
PR. Det	s	PE		1A		2A		3A		4A		5A		6A		BU
TSD		0		0		0		0		0		0		0		0
														_		

PR. Dets	PE	1A	2A	3A	4A	5A	6A	BU
TSD	0	0	0	0	0	0	0	0
TED	0	0	0	0	0	0	0	0
TTL	0	0	0	0	0	0	0	0

Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Exit Call	False														
Phase Omit	False														
Ped Omit	False														
Recovery	False														

Level A	Alt Seq	Min Walk	Freq	Ped Skip	FPF Override	FPW Lvl	CPE	Ped	Method	Return	Ped Wait	Ped Override	Alt Seq Enabled	Fo
0 (0	0	0	0	False	True	False	False	0	0	0	0	False	Fa
Queue		1			2		3			4		5	6	
Queue l	Phase	0			0		0			0		0	0	

Queue Det	0			0			0		0			0		0	
Queue Time	0			0			0		0			0		0	
							В	ank: 2							
PR. Dets	PE		1A		2A		3A		4A		5A	6	6A	-	BU
TSD	0		0		0		0		0		0	0)		0
TED	0		0		0		0		0		0	0)		0
TTL	0		0		0		0		0		0	C)		0
Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Exit Call	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
Phase Omit	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
Ped Omit	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
Recovery	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
Level Alt Seq	Min Walk	Freq I	Ped Skip	FPF Ove	erride	FPW Lvl	CPE P	ed Meth	ıod Retu	ırn Ped	Wait Pe	d Override	e Alt S	eq Enable	ed Fo
0 0	0	0 0)	False		True	False Fa	alse 0	0	0	0		False		Fa
Queue	1			2			3		4			5		6	
Queue Phase	0			0			0		0			0		0	
Queue Det	0			0			0		0			0		0	
Queue Time	0			0			0		0			0		0	
							В	ank: 3							
PR. Dets	PE		1A		2A		3A		4A		5A	ϵ	6 A		BU
TSD	0		0		0		0		0		0	()	(0
TED	0		0		0		0		0		0	()	(0
TTL	0		0		0		0		0		0	C)		0
Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Exit Call	False	False	False	False	False		False	False	False	False	False	False	False	False	False
Phase Omit	False	False	False	False	False		False	False	False	False	False	False	False	False	False
Ped Omit	False	False	False	False	False		False	False	False	False	False	False	False	False	False
Recovery	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
Level Alt Seq					erride							d Override			
0 0	0	0 0)	False		True	False Fa	ilse 0	0	0	0		False		Fa
Queue	1			2			3		4			5		6	
Queue Phase	0			0			0		0			0		0	
Queue Det	0			0			0		0			0		0	
Queue Time	0			0			0		0			0		0	
PR. Dets	PE		1A		2A		3A	ank: 4	4A		5A		6A		BU
TSD	0		$\frac{\mathbf{n}}{0}$		$\frac{2A}{0}$		$\frac{3\mathbf{A}}{0}$		0		$\frac{3A}{0}$				0
TED	0		0		0		0		0		0				0
TTL	0		0		0		0		0		0	(0
Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Exit Call	False	False	False	False	False		False	False	False	False	False	False	False	False	False
Phase Omit	False	False	False	False	False		False	False	False	False	False	False	False	False	False
Ped Omit	False	False	False	False	False		False	False	False	False	False	False	False	False	False
Recovery	False	False	False	False	False		False	False	False	False	False	False	False	False	False
Level Alt Seq	Min Walls	Frea I	Ped Skin	FPF Ow	erride	FPW I vl	CPF P	d Matl	nod Reti	ırn Pad	Wait Pa	d Overrida	Alt S	eg Enahl	ed Fo
$\frac{\mathbf{Lever}}{0} \frac{\mathbf{Art Seq}}{0}$	0	$\frac{\mathbf{rreq}}{0}$		False		True	False Fa		0	0	0	O TOITIU	False		Fa
Queue	1			2			3		4			5		6	
Queue Phase	$\frac{1}{0}$			$-\frac{2}{0}$			0		$\frac{1}{0}$			$-\frac{3}{0}$		$\frac{0}{0}$	
Queue Det	$-\frac{0}{0}$			0			0		$-\frac{0}{0}$			0		$\frac{0}{0}$	
Queue Time															
Queue 11me	0			0			0		0			0		0	

Lock	Extend Defa Patt		Min Grn	Max Grn	No Lock	cout	LockoutA	Lockout		Grn	Recall Ex	xCoPhase	Svc Signa Type	Bl	ankout
None None	None Non	e	None	None	None	e 1	None	None	None	None	None No	one	None	No	one
Phase			3	4	5	6	7	8	9	10	11	12	13	14	15
CO-Phase			None	None	None	None	None	None	None	None	None	None	None	None	Non
QJ-Phase	None :	None	None	None	None	None	None	None	None	None	None	None	None	None	None
Detector	1	2		3		4		5		6	-	7	8		9
Detector	None	N	one	No	ne	No	ne	None		None	1	None	No	ne	N
Number															
PR. Dets	PE		1A		2A		$\frac{1}{3A}$	Bank: 1	4A		5A		6A		BU
TSD	0		0		0		0		0		0		0		0
TED	0		0		0		0		0		0		0		0
TTL	0		0		0		0		0		0		0		0
Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Exit Call	False	False	False	False	False	False	False	False	False	False	False	False	False	False	Fals
Phase Omit	False	False	False	False	False	False		False	False	False	False	False	False	False	Fals
Ped Omit	False	False	False	False	False	False		False	False	False	False	False	False	False	Fals
Recovery	False	False	False	False	False	False	e False	False	False	False	False	False	False	False	Fals
Level Alt Seq	Min Walk	Freq F	ed Skip		erride	FPW L			hod Ret		Wait Pe	d Overric		eq Enabl	ed F
0 0	0	0 0)	False		True	False I	alse 0	0	0	0		False		Fa
Queue	1			2			3		4			5		6	
Queue Phase	0			0			0		0			0		0	
Queue Det	0			0			0		0			0		0	
Queue Time	0			0			0		0			0		0	
PR. Dets	PE		1A		2A		$-\frac{1}{3A}$	Bank: 2	4A		5A		6A		BU
TSD	$-\frac{\mathbf{r}\mathbf{E}}{0}$		$\frac{1A}{0}$		$\frac{2\mathbf{A}}{0}$		$-\frac{\mathbf{3A}}{0}$		$\frac{\mathbf{A}\mathbf{A}}{0}$		$-\frac{3\mathbf{A}}{0}$		$\frac{\mathbf{o}\mathbf{A}}{0}$		$\frac{\mathbf{b}\mathbf{c}}{0}$
TED	0		0		0		0		0		0		0		0
TTL	0		0		0		0		0		0		0		0
Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Exit Call	False	False	False	False	False	False		False	False	False	False	False	False	False	False
Phase Omit	False	False	False	False	False	False		False	False	False		False	False	False	Fals
Ped Omit	False	False	False	False	False	False	False	False	False	False	False	False	False	False	Fals
Recovery	False	False	False	False	False	False	False	False	False	False	False	False	False	False	Fals
Level Alt Seq												d Overric		eq Enabl	
A A	0		v .	Folco		True	False I	False 0	0	0	0		False		Fa
0 0	V	0 0	,	False											
	1	0 0	•	2			3		4			5		6	
Queue Queue Phase		0 0					3 0		0			5 0		0	
Queue Queue Phase Queue Det	1 0 0	0 0		2 0 0			3 0 0		0			0		0	
Queue Phase Queue Det Queue Time	1 0	0 0		2 0			3 0		0			0		0	
Queue Queue Phase Queue Det Queue Time	1 0 0 0	0 0		2 0 0			3 0 0 0	Bank: 3	0 0 0		5A	0 0 0	6A	0 0	BII
Queue Queue Phase Queue Det Queue Time	1 0 0 0	0 0	1A	2 0 0	2A		3 0 0 0 0	Bank: 3	0 0 0		5A	0 0 0	6A	0 0	BU 0
Queue Queue Phase Queue Det Queue Time PR. Dets	1 0 0 0	0 0		2 0 0			3 0 0 0	Bank: 3	0 0 0		5A 0 0	0 0 0	6A 0 0	0 0	BU 0 0
Queue Phase Queue Det Queue Time PR. Dets TSD TED	1 0 0 0 0	0 0	1A 0	2 0 0	2A 0		3 0 0 0 0 3A	Bank: 3	0 0 0 0 4 A		0	0 0 0	0	0 0	0
Queue Phase Queue Phase Queue Det Queue Time PR. Dets TSD TED TTL	1 0 0 0 0		1A 0 0 0	2 0 0 0	2A 0 0		3 0 0 0 3A 0 0		0 0 0 0	10	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
Queue Phase Queue Phase Queue Det Queue Time PR. Dets TSD TED TTL	1 0 0 0 0 PE 0 0	2	1A 0 0 0	2 0 0 0	2A 0 0 0	6	3 0 0 0 3A 0 0	8	0 0 0 4 A 0 0 0	10 False	0 0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0
Queue Phase Queue Phase Queue Det Queue Time PR. Dets TSD TED TTL	1 0 0 0 0		1A 0 0 0	2 0 0 0	2A 0 0		3 0 0 0 3A 0 0 0		0 0 0 0		0 0 0 11 False	0 0 0	0 0 0	0 0 0	0 0 0

10/23,	9:21 AM						R	ptAllData_	_22_2023	30410 <u></u> 09	21.html					
Dagari		Folgo	Folgo		Folgo	False		False	False	False	False	False	False	False	Folgo	Lalas
Recov	ery	False	False	False	False	False	False	False	raise	False	False	False	False	False	False	False
Level	Alt Seq	Min Walk	Freq	Ped Skip	FPF Ove	erride	FPW Lvl	CPE Pe	ed Met	hod Retu	ırn Ped	Wait Pe	d Override	Alt S	eq Enable	ed Fo
0	0	0	0	0	False		True	False Fa	alse 0	0	0	0		False		Fa
Queu	e	1			2			3		4			5		6	
Queue	Phase	0			0			0		0			0		0	
Queue	Det	0			0			0		0			0		0	
Queue	Time	0			0			0		0			0		0	
								В	ank: 4							
PR. D	ets	PE		1A		2A		3A		4A		5A	6	δA		BU
TSD		0		0		0		0		0		0	()		0
TED		0		0		0		0		0		0	()	,	0
TTL		0		0		0		0		0		0	C)		0
Phase	;	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Exit C	Call	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
Phase	Omit	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
Ped O	mit	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
Recov	ery	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
Level	Alt Seq	Min Walk	Freq	Ped Skip	FPF Ove	erride	FPW Lvl	CPE Pe	ed Met	hod Retu	ırn Ped	Wait Pe	d Override	Alt S	eq Enable	ed Fo
0	0	0	0	0	False		True	False Fa	alse 0	0	0	0		False		Fa
Queu	e	1			2			3		4			5		6	
Queue	Phase	0			0			0		0			0		0	
Queue	Det	0			0			0		0			0		0	
Queue	Time	0			0			0		0			0		0	

N- Dela Lock	y Extend l	Default Pattern	Min Grn	Max Grn	No Loci		ockoutA	Lockoutl	B Overla	Pre Grn	Recall E	xCoPhas	eSvc Signa Type		lp lankout
None None	e None	None	None	None	Non	e N	lone	None	None	None	None N	one	None	N	one
Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CO-Phase	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None
QJ-Phase	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None
Detector	1		2	3		4		5		6		7	8		9
Detector Number	None		None	No	one	No	ne	None		None		None	No	ne	No
								Bank: 1							
PR. Dets	PE		1A		2A		3A		4A		5A		6A		BU
TSD	0		0		0		0		0		0		0		0
TED	0		0		0		0		0		0		0		0
TTL	0		0		0		0		0		0		0		0
Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Exit Call	Fals	se False	False	False	False	False	False	e False	False	False	False	False	False	False	False
Phase Omit	Fals	se False	e False	False	False	False	False	e False	False	False	False	False	False	False	False
Ped Omit	Fals	se False	e False	False	False	False	False	e False	False	False	False	False	False	False	False
Recovery	Fals	se False	False	False	False	False	False	False	False	False	False	False	False	False	False
Level Alt S	eq Min W	alk Freq	Ped Skip	FPF Ov	erride	FPW Lv	l CPE	Ped Met	hod Ret	urn Ped	l Wait Pe	d Overri	de Alt S	eq Enab	led F
0 0	0	0	0	False		True	False	False 0	0	0	0		False		Fa
Queue		1		2			3		4			5		6	
Queue Phase	;	0		0			0		0			0		0	
Queue Det		0		0			0		0			0		0	
~ 		^		^			^		_					_	

Queue Time 0 0 0 0 0 0

(
DD Dots	DE		1 4		24			ank: 2	4.4		<u> </u>		<u> </u>		BU
PR. Dets TSD	$-\frac{\mathbf{PE}}{0}$		$\frac{1A}{0}$		2A 0		$\frac{\mathbf{3A}}{0}$		$\frac{4\mathbf{A}}{0}$		5A 0		$\frac{\mathbf{6A}}{0}$		$\frac{\mathbf{BU}}{0}$
TED	$-\frac{0}{0}$		0		0		0		0		0		0		$\frac{0}{0}$
TTL	$-\frac{0}{0}$		0		0		0		0		0		0		0
TIL	O		O		O		O .		O		U		O		U
Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Exit Call	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
Phase Omit	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
Ped Omit	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
Recovery	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
Level Alt Seq	Min Walk	Freq F	ed Skip	FPF Ov	erride	FPW Lvl	CPE P	ed Met	hod Retu	rn Ped	Wait Pe	d Overrio	de Alt S	eq Enabl	led Fo
0 0	0	0 0)	False		True	False Fa	alse 0	0	0	0		False		Fa
Queue	1			2		-	3		4			5		6	
Queue Phase	0			0		(0		0			0		0	
Queue Det	0			0			0		0			0		0	
Queue Time	0			0			0		0			0		0	
							В	ank: 3							
PR. Dets	PE		1A		2A		3A		4A		5A		6A		BU
TSD	0		0		0		0		0		0		0		0
TED	0		0		0		0		0		0		0		0
TTL	0		0		0		0		0		0		0		0
Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Exit Call	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
Phase Omit	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
Ped Omit	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
Recovery	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
Level Alt Seq			Ped Skip		erride	FPW Lvl					Wait Pe	d Overrio			led Fo
0 0	0	0 0)	False		True	False Fa	alse 0	0	0	0		False		Fa
Queue	1			2			3		4			5		6	
Queue Phase	0			0			0		0			0		0	
Queue Det	0			0		(0		0			0		0	
Queue Time	0			0			0		0			0		0	
								ank: 4							
PR. Dets	PE		1A		2A		3A		4A		5A		6A		BU
TSD	0		0		0		0		0		0		0		0
TED	$-\frac{0}{0}$		0		0		$\frac{0}{0}$		0		0		0		$\frac{0}{0}$
TTL	U		0		U		U		U		U		0		U
Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Exit Call	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
Phase Omit	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
Ped Omit	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
Recovery	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
Level Alt Seq	Min Walk	Freq F	ed Skip	FPF Ov	erride	FPW Lvl			hod Retu	rn Ped	Wait Pe	d Overrio	de Alt S	eq Enabl	led Fo
0 0	0	0 0)	False		True	False Fa	alse 0	0	0	0		False		Fa
Queue	1			2			3		4			5		6	
Queue Phase	0			0			0		0			0		0	
Queue Det	0			0			0		0			0		0	
Queue Time	0			0			0		0			0		0	

N- Lock			tern	Min Grn	Max Grn	No Lock	out		LockoutB		Grn	Recall Ex		Туре	Bla	ankout
None	None 1	None No	ne	None	None	None	N	one	None	None	None	None No	one	None	e No	one
Phase		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CO-Ph	ase	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None
QJ-Pha	ase	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None
Detect	or	1	2		3		4		5		6	7	7	8		9
Detecto Numbe		None	N	one	No	ne	Non	.e	None		None	1	None	No	ne	No
								J	Bank: 1							
PR. De	ets	PE		1A		2A		3A		4A		5A		6A		BU
TSD		0		0		0		0		0		0		0		0
TED		0		0		0		0		0		0		0		0
TTL		0		0		0		0		0		0		0		0
Phase		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Exit Ca		False	False	False	False	False	False	False		False	False		False	False	False	False
Phase (False	False	False	False	False	False	False		False	False		False	False	False	False
Ped On		False False	False False	False False	False False	False False	False False	False False		False False	False False		False False	False False	False False	False False
Recove																
	_	Min Wall											d Overrio		-	
0	0	0	0 0		False		True	False F	alse 0	0	0	0		False		Fa
Queue		1			2			3		4			5		6	
Queue		0			0			0		0			0		0	
Queue		0			0			0		0			0		0	
Queue	Time	0			0			0		0			0		0	
PR. De	ete	PE		1A		2A		$-\frac{I}{3A}$	Bank: 2	4A		5A		6A		BU
TSD	cts	0		0		0		0		0		0		0		0
TED		0		0		0		0		0		$-\frac{\circ}{0}$		0		0
TTL		0		0		0		0		0		0		0		0
Phase		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Exit Ca	all				False	False			False	г.	False	False	- r 1	False	False	False
Phase (False	False	False	raise	1 4100	False	False	1 arse	False	1 alse	1 aisc	False		raise	
	Omit	False	False False	False	False	False	False False	False		False	False		False	False	False	False
Ped On									False			False		False False		
	nit	False	False	False	False	False	False	False	False False	False	False	False False	False		False	False False
	mit ery Alt Seq	False False Min Walk	False False False Freq P	False False False	False False False FPF Ov	False False False	False False False FPW Lvl	False False False False	False False False Ped Metl	False False False	False False False urn Ped	False False False Wait Pe	False False False	False False Alt S	False False False	False False False
Recove Level	mit ery	False False False	False False False	False False False	False False False	False False False	False False False	False False False	False False False Ped Metl	False False False	False False False	False False False	False False False	False False	False False False	False False False
Recove Level 0 Queue	mit ery Alt Seq 0	False False False Min Wall 0	False False False Freq P	False False False	False False False False FPF Ov False	False False False	False False False FPW Lvl	False False False False 1 CPE F False F	False False False Ped Metl	False False False Following False A A	False False False urn Ped	False False False Wait Pe	False False False d Overrid	False False Alt S	False False False	False False False
Recove Level 0 Queue Queue	nit ery Alt Seq 0 Phase	False False False Min Wall 0	False False False Freq P	False False False	False False False FPF Ov False 2 0	False False False	False False False FPW Lvl	False False False I CPE F False F	False False False Ped Metl	False False False hod Retu 0 4 0	False False False urn Ped	False False False Wait Pe	False False False d Overrid 5	False False Alt S	False False False False 6 0	False False False
Recove Level 0 Queue Queue Queue	Alt Seq 0 Phase Det	False False False Min Wall 0 1 0 0	False False False Freq P	False False False	False False False FPF Ov False 0 0	False False False	False False False FPW Lvl	False False False I CPE F False F	False False False Ped Metl	False False False hod Rete 0 4 0 0	False False False urn Ped	False False False Wait Pe	False False False d Overrio 5 0 0	False False Alt S	False False False False 6 0 0	False False False
Recove Level 0 Queue Queue	Alt Seq 0 Phase Det	False False False Min Wall 0	False False False Freq P	False False False	False False False FPF Ov False 2 0	False False False	False False False FPW Lvl	False False False I CPE F False F 3 0 0 0	False False False Ped Metl	False False False hod Retu 0 4 0	False False False urn Ped	False False False Wait Pe	False False False d Overrid 5	False False Alt S	False False False False 6 0	False False False
Recove Level 0 Queue Queue Queue Queue	nit ery Alt Seq 0 Phase Det Time	False False False Min Wall 0 1 0 0 0	False False False Freq P	False False False Ped Skip	False False False FPF Ov False 0 0	False False False	False False False FPW Lvl	False False False I CPE F False F 3 0 0 0	False False False Ped Metl	False False False O 4 0 0 0 0	False False False urn Ped	False False False O	False False False 6 Overrid 5 0 0 0	False False de Alt S False	False False False False 6 0 0 0	Falso Falso Falso Falso Fa
Recove Level 0 Queue Queue Queue Queue PR. De	nit ery Alt Seq 0 Phase Det Time	False False False Min Wall 0 1 0 0	False False False Freq P	False False False False Yed Skip	False False False FPF Ov False 0 0	False False False	False False False FPW Lvl	False False False I CPE F False F 3 0 0 0 1 3A	False False False Ped Metl	False False False O 4 0 0 0 4 1	False False False urn Ped	False False False O	False False False 6 Overrid 5 0 0 0	False False de Alt S False	False False False 6 0 0 0	False False False
Recove Level 0 Queue Queue Queue Queue PR. De	nit ery Alt Seq 0 Phase Det Time	False False False Min Wall 0 1 0 0 0 PE	False False False Freq P	False False False Ped Skip	False False False FPF Ov False 0 0	False False False False 24	False False False FPW Lvl	False False False I CPE F False F 3 0 0 0 1 3A	False False False Ped Metl	False False False O 4 0 0 0 0	False False False urn Ped	False False False O	False False False 6 Overrid 5 0 0 0	False False de Alt S False	False False False 6 0 0 0	Falso Falso Falso Falso BU
Recove Level 0 Queue Queue Queue PR. De TSD TED	nit ery Alt Seq 0 Phase Det Time	False False False Min Wall 0 1 0 0 0 PE	False False False Freq P	False False False Ped Skip	False False False FPF Ov False 0 0	False False False erride 2A	False False False FPW Lvl	False False False I CPE F False F 3 0 0 0 1 3A	False False False Ped Metl	False False False hod Rete 0 4 0 0 0 4 0 0	False False False urn Ped	False False False O 5A	False False False 6 Overrid 5 0 0 0	False False de Alt S False	False False False 6 0 0 0	Falso Falso Falso Ied Fa Fa
Recove Level 0 Queue Queue Queue PR. De TSD TED TTL	nit ery Alt Seq 0 Phase Det Time	False False False Min Wall 0 1 0 0 0 PE 0 0 0	False False False O O O	False False False False Ped Skip 1A 0 0 0	False False False FPF Ov False 0 0 0	False False False False Perride 2A 0 0 0	False False False FPW Lvl	False False False I CPE F False F 3 0 0 0 1 3A 0 0 0	False False False Ped Metl False 0	False False False hod Retu 0 4 0 0 0 0 0 0 0 0 0 0 0	False False False Urn Ped 0	False False False False False	False False False d Overrid 5 0 0 0	False False de Alt S False 6A 0 0 0	False False False 6 0 0 0	Falso Falso Falso Bed Fo Fa
Recove Level 0 Queue Queue Queue PR. De TSD TED TTL Phase	nit ery Alt Seq 0 Phase Det Time	False False False Min Wall 0 1 0 0 0 PE 0 0 0 1	False False False False Freq P 0 0	False False False Ped Skip 1A 0 0 0	False False False FPF Ov False 0 0 0	False False False False Perride 2A 0 0 0 5	False False False False FPW Lvi	False False False I CPE F False F 3 0 0 0 1 3A 0 0 7	False False False Ped Metl False 0	False False False hod Reti 0 4 0 0 0 0 7 9	False False False False O	False False False False 5A 0 0 11	False False False d Overrid 5 0 0 0	False False de Alt S False 6A 0 0 13	False False False False 6 0 0 0	False False False BU 0 0 15
Recove Level 0 Queue Queue Queue TSD TED TTL Phase Exit Ca	nit ery Alt Seq 0 Phase Det Time	False False False Min Wall 0 1 0 0 0 PE 0 0 1 False	False False False O O O	False False False False Ped Skip 1A 0 0 0	False False False FPF Ov False 2 0 0 0 4 False	False False False False Perride 2A 0 0 0	False False False FPW Lvl	False False False I CPE F False F 3 0 0 0 1 3A 0 0 0	False False False Ped Metl False 0 Bank: 3	False False False hod Retu 0 4 0 0 0 0 0 0 0 0 0 0 0	False False False Urn Ped 0	False False False False False	False False False d Overrid 5 0 0 0	False False de Alt S False 6A 0 0 0	False False False 6 0 0 0	False False False BU 0 0 15 False
Recove Level 0 Queue Queue Queue PR. De TSD TED TTL Phase	Alt Seq 0 Phase Det Time ets	False False False Min Wall 0 1 0 0 0 PE 0 0 0 1	False False False False Freq P 0 0	False False False Ped Skip 1A 0 0 False	False False False FPF Ov False 0 0 0	False False False False Paride 2A 0 0 5 False	False False False False FPW Lvl True 6 False	False	False False False Ped Metl False 0 Bank: 3	False False False False hod Reti 0 0 4 0 0 0 4A 0 0 0 False	False False False False 10 False	False False False False False 1 Wait Pe 0 5A 0 0 0 11 False False	False False False d Overrid 5 0 0 0 The state of the st	False False de Alt S False 6A 0 0 13 False	False False False eq Enable 0 0 0 14 False	False False False BU 0 0 15

recovery raise raise

$\frac{\mathbf{Lever}}{0} \frac{\mathbf{Resc}}{0}$	eq Min Walk		0	False		True	False F		0	0	0	u Overri	False	-	ed F
_															
Queue	1			2			3		4			5		6	
Queue Phase				0			0		0			$\frac{0}{0}$		0	
Queue Det	$\frac{0}{0}$			0			$\frac{0}{0}$		$\frac{0}{0}$			0		$\frac{0}{0}$	
Queue Time	0			0					U			0		0	
PR. Dets	PE		1A		2A		$\frac{1}{3A}$	Bank: 4	4A		5A		6A		BU
TSD	0		0		0		0		0		0		0		0
TED	0		0		0		0		0		0		0		0
TTL	0		0		0		0		0		0		0		0
Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Exit Call	False	False	False	False	False	False	False	False	False	False	False	False	False	False	Fals
Phase Omit	False	False	False	False	False	False	False	False	False	False	False	False	False	False	Fals
Ped Omit	False	False	False	False	False	False	False	False	False	False	False	False	False	False	Fals
Recovery	False	False	False	False	False	False	False	False	False	False	False	False	False	False	Fals
Level Alt Se	q Min Walk	Freq	Ped Skip	FPF Ov	erride	FPW Lvl	CPE P	ed Met	hod Ret	urn Ped	Wait Pe	d Overri	de Alt S	eq Enabl	ed F
0 0	0	0	0	False		True	False F	alse 0	0	0	0		False	1	F
Queue	1			2			3		4			5		6	
Queue Phase	0			0			0		0			0		0	
Queue Det	0			0			0		0			0		0	
Priority 6															
-	y Extend Def		Min	Max	No		ockoutA	LockoutE	3 Overlap		Recall Ex	«CoPhase	_	-	
Lock		tern	Min Grn None	Max Grn None	No Lock None	kout		LockoutE None	Overlap None	Grn	Recall Ex		Svc Sign Type None	Bla	nkou
Lock None None	Patr None Non	tern ne	Grn None	Grn None	Lock None	cout e No	one]	None	None	Grn None	None No	one	Type None	e Bla e No	nkou ne
Lock None None Phase	Patte None Non	tern ne 2	Grn None	Grn None	None	cout No	one 1	None 8	None 9	Grn None	None No	12	None None	e Bla e No	nkou ne 15
Lock None None Phase CO-Phase	Patre None None	tern ne	Grn None	Grn None	Lock None	cout e No	one]	None	None	Grn None	None No	one	Type None	e Bla e No	nkou ne
Lock	Patre None None	tern ne 2 None None	Grn None 3 None	Grn None 4 None	None 5 None	kout No 6 None	7 None	None 8 None	None 9 None	Grn None 10 None	None None	12 None None	None Type None	Bla No 14 None	ne 15 Non
Lock None None Phase CO-Phase QJ-Phase Detector Detector	Patrice None None None None	tern ne 2 None None	Grn None 3 None None	Grn None 4 None None	None None None None	cout 6 None None	7 None None	None 8 None None	None 9 None	Grn None 10 None None	None None None None	12 None None	None None None 8	Bla No 14 None	nkou ne 15 Non Non
Lock None None Phase CO-Phase QJ-Phase Detector Detector Number	None None None None None None None	tern ne 2 None None	Grn None 3 None None None	Grn None 4 None None 3	None 5 None None ne	cout e No 6 None None	7 None None	None 8 None None 5	None 9 None None	Grn None 10 None None 6	None None None None	None None	None None 8 No	e Bla e No 14 None None	ne 15 Non Non
None None Phase CO-Phase QJ-Phase Detector Detector Number	None None None None PE	tern ne 2 None None	Grn None 3 None None None 1A	Grn None 4 None None 3	None None None None None	cout e No 6 None None	7 None None	None 8 None None 5 None	None 9 None None	Grn None 10 None None 6	None None None None 5A	None None	Type None 13 None None 8 No	e Bla e No 14 None None	ne 15 Non Non
Lock None None Phase CO-Phase QJ-Phase Detector Detector Number PR. Dets TSD	None None None None None PE 0	tern ne 2 None None	Grn None 3 None None None 1A 0	Grn None 4 None None 3	None None None None None	cout e No 6 None None	7 None None 8 4 5 6 6 6 7 None 8 8 9 10 10 10 10 10 10 10 10 10	None 8 None None 5 None	None 9 None None	Grn None 10 None None 6	None None None None 5A	None None	Type None None None 8 No 6A	e Bla e No 14 None None	ne 15 Non Non 9 N
Lock None None Phase CO-Phase QJ-Phase Detector Detector Number PR. Dets TSD TED	None None None None PE	tern ne 2 None None	Grn None 3 None None None 1A	Grn None 4 None None 3	None None None None None	cout e No 6 None None	7 None None	None 8 None None 5 None	None 9 None None	Grn None 10 None None 6	None None None None 5A	None None	Type None 13 None None 8 No	e Bla e No 14 None None	ne 15 Non Non
Lock None None Phase CO-Phase QJ-Phase Detector Detector Number PR. Dets TSD TED TTL	None None None None PE 0 0	tern 2 None None	Grn None 3 None None None 1A 0 0 0	Grn None 4 None None 3	Lock None 5 None None 2A 0 0 0	cout e No 6 None None	7 None None 8 8 8 8 9 10 10 10 10 10 10 10 10 10	None 8 None None 5 None	None 9 None None 4A 0 0	Grn None 10 None None 6 None	None None 11 None None 5A 0 0 0	None None	Type None 13 None None 8 No 6A 0 0	e Bla e No 14 None None	ne 15 Non Non 9 N BU 0 0 0
Lock None None Phase CO-Phase QJ-Phase Detector Detector Number PR. Dets TSD TED TTL Phase	None None None PE 0 0 0 1	tern 2 None None	Grn None 3 None None None 1A 0 0 0 3	Grn None 4 None None 3 No	Lock None 5 None None me 2A 0 0 0 5	6 None A None	7 None None e B 3A 0 0 0	None 8 None None 5 None 8ank: 1	None 9 None None 4A 0 0 9	Grn None 10 None None 6 None	None None None None None SA 0 0 0 11	None None 12 None None 14 None	Type None None None 8 No 6A 0 0 0 13	e Bla e No 14 None None	15 Non
Lock None None Phase CO-Phase QJ-Phase Detector Detector Number PR. Dets TSD TED TTL Phase Exit Call	None None None PE 0 0 0 1 False	tern 2 None None 2 T	Grn None 3 None None None 1A 0 0 0 3 False	Grn None 4 None None	None None None None 2A 0 0 False	6 None None 4 None False	7 None None False	None 8 None None 5 None 8ank: 1	None 9 None None 0 0 0	Grn None 10 None None 6 None	None None None None None SA 0 0 0 11 False	None None 12 None None 12 False	Type None None None 8 No 6A 0 0 0 T3 False	e Bla e No 14 None None	ne 15 Non Non 9 N BU 0 0 15 Fals
Lock None None Phase CO-Phase QJ-Phase Detector Detector Number PR. Dets TSD TED TTL Phase Exit Call Phase Omit	None None None PE 0 0 0 1 False False	tern Property of the second s	Grn None 3 None None None 1A 0 0 0 False False	Grn None 4 None None 3 No 4 False False	None None None 2A 0 0 5 False False	6 None None 6 False False	one 7 None None 8 3A 0 0 7 False False	None 8 None None 5 None 8ank: 1	None 9 None None 4A 0 0 0 9 False False	Mone 10 None None 6 None 10 False False	None None None None SA 0 0 11 False False	None 12 None None 14 None The state of the	Type None None None 8 No 6A 0 0 13 False False	e Bla e No 14 None None	ne 15 Non Non 9 N BU 0 0 0 15 Fals Fals
Lock None None Phase CO-Phase QJ-Phase Detector Detector Number PR. Dets TSD TED TTL Phase Exit Call Phase Omit Ped Omit	None None None PE 0 0 0 1 False	tern 2 None None 2 T	Grn None 3 None None None 1A 0 0 0 3 False	Grn None 4 None None 3 No 4 False	None None None None 2A 0 0 False	6 None None 4 None False	7 None None False	None 8 None None 5 None 8ank: 1	None 9 None None 4A 0 0 0 9 False	Grn None 10 None None 6 None	None None None None None SA 0 0 0 11 False	None None 12 None None 12 False	Type None None None 8 No 6A 0 0 0 T3 False	e Bla e No 14 None None 14 False False	ne 15 Non Non 9 N BU 0 0 15 Fals
Lock None None Phase CO-Phase QJ-Phase Detector Detector Number PR. Dets TSD TED TTL Phase Exit Call Phase Omit Ped Omit Recovery	None None None None None PE 0 0 1 False False False	tern ne 2 None None 2 False False False	Grn None 3 None None None 1A 0 0 0 3 False False False False	Grn None 4 None None 3 No 4 False False False False	None None None None Parity of the parity	6 None A None 6 False False False False	7 None None 8 3A 0 0 7 False False False False	None 8 None None 5 None 8 Bank: 1	None 9 None None 4A 0 0 0 9 False False False False	Grn None 10 None None 6 None 10 False False False	None None None None None 5A 0 0 0 11 False False False False	None None 12 None None Thome	None None None 8 No 6A 0 0 13 False False False False	14 None None 14 False False False False	ne 15 Non Non 9 N BU 0 0 0 15 Fals Fals Fals
Lock None None Phase CO-Phase QJ-Phase Detector Detector Number PR. Dets TSD TED TTL Phase Exit Call Phase Omit Ped Omit Recovery Level Alt Se	None None None None None PE 0 0 1 False False False False	tern ne 2 None None 2 False False False False False	Grn None 3 None None None 1A 0 0 0 3 False False False False	Grn None 4 None None 3 No 4 False False False False	None None None None 2A 0 0 5 False False False False False	6 None A None 6 False False False False	7 None None 8 3A 0 0 7 False False False False	None 8 None None 5 None 8 False False False False False False	None 9 None None 4A 0 0 0 9 False False False False	Grn None 10 None None 6 None 10 False False False	None None None None None 5A 0 0 0 11 False False False False	None None 12 None None Thome	None None None 8 No 6A 0 0 13 False False False False	14 None None 14 False False False False	ne 15 Non Non 9 N BU 0 0 0 15 Fals Fals Fals
Lock None None Phase CO-Phase QJ-Phase Detector Detector Number PR. Dets TSD TED TTL Phase Exit Call Phase Omit Ped Omit Recovery Level Alt Se	None None None None None None PE 0 0 1 False False False False	tern ne 2 None None 2 False False False False False	Grn None 3 None None None 1A 0 0 0 3 False False False False False	Grn None 4 None None 3 No 4 False False False False	None None None None 2A 0 0 5 False False False False False	6 None None 4 None False False False False France F	7 None None 8 3A 0 0 0 7 False False False False	None 8 None None 5 None 8 False False False False False False	None 9 None None 4A 0 0 0 9 False False False False hod Rete	Mone None None None None None None None Palse False False False False False	None None None None None 5A 0 0 0 11 False False False False False	None None 12 None None Thome	None None None None Road None None Road Road None Road Road Road Road Road Road Road Road	14 None None 14 False False False False	ne 15 Non Non 9 N BU 0 0 0 15 Fals Fals Fals Fals
Lock None None Phase CO-Phase QJ-Phase Detector Detector Number PR. Dets TSD TED TTL Phase Exit Call Phase Omit Ped Omit Recovery Level Alt Se 0 Queue Queue Phase	Patrice None None None None None PE 0 0 0 1 False False False False False Talse	tern ne 2 None None 2 False False False False False	Grn None 3 None None None 1A 0 0 0 3 False False False False False	Grn None 4 None None 3 No 4 False False False False False	None None None None 2A 0 0 5 False False False False False	6 None None 4 None False False False False Fralse Fralse	7 None None 8 3A 0 0 0 7 False False False False False False False False False	None 8 None None 5 None 8 False False False False False False	None 9 None None 4A 0 0 0 9 False False False False hod Reta	Mone None None None None None None None Palse False False False False False	None None None None None 5A 0 0 0 11 False False False False False	12 None None 12 None Table False False False False False False	None None None None Road None None Road Road None Road Road Road Road Road Road Road Road	14 None None 14 False False False False False	ne 15 Non Non 9 N BU 0 0 0 15 Fals Fals Fals Fals
Lock None None Phase CO-Phase QJ-Phase Detector Detector Number PR. Dets TSD TED TTL Phase Exit Call Phase Omit Ped Omit Recovery Level Alt Se 0 0 Queue	Patrice None None None None None PE 0 0 0 1 False False False False False Talse	tern ne 2 None None 2 False False False False False	Grn None 3 None None None 1A 0 0 0 3 False False False False False	Grn None 4 None None 3 No 4 False False False False False False False FPF Ov False	None None None None 2A 0 0 5 False False False False False	6 None None 4 None False False False False Frue	7 None None 8 3A 0 0 0 7 False False False False False False False False Salse False False False False False False False False	None 8 None None 5 None 8 False False False False False False	None 9 None None 4A 0 0 0 9 False False False False follow 4	Mone None None None None None None None Palse False False False False False	None None None None None 5A 0 0 0 11 False False False False False	12 None None 12 False False False False For the second of	None None None None Road None None Road Road None Road Road Road Road Road Road Road Road	te Bla e No 14 None None one 14 False False False False False	ne 15 Non Non 9 N BU 0 0 0 15 Fals Fals Fals Fals

Bank: 2

Queue Phase Queue Time PR. Dets TSD TED TTL Phase Exit Call Phase Omit Ped Omit Recovery Level Alt Seq 0 0 Queue Queue Phase Queue Det Queue Time	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 False False False	1A 0 0 0 3 False False False False	2 0 0 0 0 4 False False False False False O 0		6 False False False False Fruse	3A 0 0 7 False False False False	8 False False False False	4 0 0 0 0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0	10 False False False Irn Ped V	5A 0 0 0 11 False False False Wait Pec	12 False False False	6A 0 0 0 13 False False False False False	-	BU 0 0 0 15 Fals Fals Fals Fals
Queue Phase Queue Det Queue Time PR. Dets TSD TED TTL Phase Exit Call Phase Omit Ped Omit Recovery Level Alt Seq 0 0 Queue Queue Phase	PE 0 0 0 1 False False False Valse In the control of the control	2 False False False False Freq Po	0 0 0 3 False False False False	0 0 0 4 False False False False False	0 0 0 5 False False False False	6 False False False False Fruse Fruse	B. 3A. 0 0 7 False False False False False False	8 False False False False	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	False False False False False	0 0 0 11 False False False False	12 False False False False 5 0	0 0 0 13 False False False False	14 False False False False False O	0 0 0 15 Fals Fals Fals
Queue Phase Queue Det Queue Time PR. Dets TSD TED TTL Phase Exit Call Phase Omit Ped Omit Recovery Level Alt Seq 0 0 Queue	PE 0 0 0 1 False False False False False In the second of the second o	2 False False False False Freq Po	0 0 0 3 False False False False	0 0 0 4 False False False False False	0 0 0 5 False False False False	6 False False False False Fruse	B. 3A 0 0 0 Talse False	8 False False False False	0 0 0 0 4A 0 0 0 False False False False False	False False False False False	0 0 0 11 False False False False	12 False False False False Salse False False	0 0 0 13 False False False False	0 0 0 14 False False False False False	0 0 0 15 Fals Fals Fals
Queue Phase Queue Det Queue Time PR. Dets TSD TED TTL Phase Exit Call Phase Omit Ped Omit Recovery Level Alt Seq	PE 0 0 0 1 False False False False Min Walk	2 False False False False Freq Po	0 0 0 3 False False False False	0 0 0 4 False False False False	0 0 0 5 False False False False	6 False False False False	B. 3A. 0 0 0 False False False CPE Pe	8 False False False False	0 0 0 0 4A 0 0 0 9 False False False	False False False False False	0 0 0 11 False False False False	0 0 0 12 False False False False	0 0 0 13 False False False False	0 0 0 14 False False False False	0 0 0 15 Fals Fals Fals
Queue Phase Queue Det Queue Time PR. Dets TSD TED TTL Phase Exit Call Phase Omit Ped Omit	PE 0 0 0 Talse False False False	2 False False False	0 0 0 0 3 False False False	0 0 0 4 False False False	0 0 0 5 False False False	6 False False False	B. 3A 0 0 0 7 False False False	8 False False False	0 0 0 4A 0 0 0 9 False False False	False False	0 0 0 11 False False False	0 0 0 12 False False False	0 0 0 13 False False False	0 0 0 14 False False False	0 0 0 15 Fals Fals Fals
Queue Phase Queue Det Queue Time PR. Dets TSD TED TTL Phase Exit Call Phase Omit Ped Omit	PE 0 0 0 Talse False False False	2 False False False	0 0 0 0 3 False False False	0 0 0 4 False False False	0 0 0 5 False False False	6 False False False	B. 3A 0 0 0 7 False False False	8 False False False	0 0 0 4A 0 0 0 9 False False False	False False	0 0 0 11 False False False	0 0 0 12 False False False	0 0 0 13 False False False	0 0 0 14 False False False	0 0 0 15 Fals Fals Fals
Queue Phase Queue Det Queue Time PR. Dets TSD TED TTL Phase Exit Call Phase Omit	0 0 0 PE 0 0 0 0 False False	2 False False	0 0 0 0 3 False False	0 0 0 4 False False	0 0 0 5 False False	6 False False	B. 3A 0 0 0 7 False False	8 False False	0 0 0 4A 0 0 0 9 False False	False False	0 0 0 11 False False	0 0 0 12 False False	0 0 0 0 13 False False	0 0 0 14 False False	0 0 0 15 Fals
Queue Phase Queue Det Queue Time PR. Dets TSD TED TTL Phase Exit Call	0 0 0 0 PE 0 0	2	0 0 0 0	0 0 0	0 0 0 5	6	B. 3A 0 0 0	8	0 0 0 0 4A 0 0 0		0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0
Queue Phase Queue Det Queue Time PR. Dets TSD TED TTL	0 0 0 0 PE 0 0		0 0 0	0 0 0	0 0 0	(B. 3A 0 0 0		0 0 0	10	0 0 0	0 0 0	0 0 0	0 0	0 0 0
Queue Phase Queue Det Queue Time PR. Dets TSD TED	0 0 0 0 PE 0		0	0	0	(B. 3A 0		0 0 0 0 4A 0		0 0	0 0 0	0 0	0	0
Queue Phase Queue Det Queue Time PR. Dets TSD TED	0 0 0 0 PE 0		0	0	0	(B. 3A 0		0 0 0 0 4A 0		0 0	0 0 0	0 0	0	0
Queue Phase Queue Det Queue Time PR. Dets TSD	0 0 0 0 PE 0		0	0	0	(B. 3A		0 0 0		0	0 0 0	0	0	0
Queue Phase Queue Det Queue Time PR. Dets	0 0 0			0		(B. 3A		0 0 0			0 0 0		0	
Queue Phase Queue Det	0			0		()))	ank· 4	0			0		0	
Queue Phase Queue Det	0			0		())		0			0		0	
Queue Phase	0			0		()		0			0		0	
-															
Level Alt Seq	Min Walk	Freq P	ed Skip	FPF Ove		FPW Lvl	CPE Per False Fa		Retu	rn Ped V	Wait Peo	d Overrid	le Alt S False	eq Enabl	ed]
Recovery	False	False	False	False	False	False	False	False	False	False	False	False	False	False	Fal
Ped Omit	False	False	False	False	False	False	False	False	False	False	False	False	False	False	Fals
Phase Omit	False	False	False	False	False	False	False	False	False	False	False	False	False	False	Fal
Phase Exit Call	Talse	2 False	3 False	4 False	5 False	6 False	7 False	8 False	9 False	10 False	11 False	Talse	Talse	14 False	15 Fal
		_	2			-		0		10		12	10	- 4.4	
TTL	$-\frac{\sigma}{0}$		$\frac{0}{0}$		0		0		0		0		0		0
TED	0		$\frac{0}{0}$		0		$\frac{0}{0}$		0		0		0		0
PR. Dets TSD	$-\frac{\mathbf{PE}}{0}$		1A 0		$\frac{2\mathbf{A}}{0}$		$\frac{\mathbf{3A}}{0}$		$\frac{\mathbf{4A}}{0}$		$\frac{\mathbf{5A}}{0}$		$\frac{\mathbf{6A}}{0}$		$\frac{\mathbf{BU}}{0}$
								ank: 3							
Queue Time	0			0		()		0			0		0	
Queue Det	0			$-\frac{\sigma}{0}$)		$\frac{3}{0}$			0		0	
Queue Phase	$\frac{1}{0}$			$-\frac{2}{0}$			3		$\frac{4}{0}$			5 0		6 0	
0 0	0	0 0		False		Γrue	False Fa		0	0	0		False	_	F
Level Alt Seq															
Ped Omit Recovery	False False	False False	False False	False False	False False	False False	False False	False False	False False	False False	False False	False False	False False	False False	Fal Fal
Phase Omit	False	False	False	False	False	False	False	False	False	False	False	False	False	False	Fal
Exit Call	False	False	False	False	False	False	False	False	False	False	False	False	False	False	Fal
Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Th.I	U		U		U		U		U		U		U		U
	$-\frac{0}{0}$		0		0		$\frac{0}{0}$		0		0		0		0
TED TTL	0														
TTL	0		$\frac{1A}{0}$		$\frac{2\mathbf{A}}{0}$		$\frac{3\mathbf{A}}{0}$		4A 0 0		$\frac{5\mathbf{A}}{0}$		$\frac{6\mathbf{A}}{0}$		$\frac{\mathbf{BU}}{0}$

Pat	tern	Grn	Grn	Lock	cout				Grn			Туре	e Bl	ankou
None Nor	ne	None		None	e N	one 1	None	None	None	None N	one			one
				_			_	_						
														15
														Nor
None	None	None	None	None	None	None	None	None	None	None	None	None	None	Non
1			3		4		5		6			8		9
None	N	lone	No	one	Non	e	None		None		None	No	one	N
DE		1.4		24			Bank: 1	44		5.4		61		BU
														$\frac{\mathbf{BC}}{0}$
														0
0		0		0		0		0		0		0		0
1				_			0	0	10	11	12	12	14	15
														15 Fals
														Fals
														Fals
False	False	False	False	False	False	False	False	False	False	False	False	False	False	Fals
Min Wall	. Ewas I	Dad Clrin	EDE O	ouwid o	EDW L	CDE D	od Mot	had Date	uum Dad	Wait De	d Owenut	do A14 C	aa Enabl	lad E
0		-						noa Ket O	urn Pea 0	wait Pe	a Overri		-	led F F
0			0			0		0			0		0	
PE		1A		2A			Bank: 2	4A		5A		6A		BU
0		0		0		0		0		0		0		0
0		0		0		0		0		0		0		0
0		0		0		0		0		0		0		0
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
False	False	False	False	False	False	False	False	False	False	False	False	False	False	Fals
False	False	False	False	False	False	False	False	False	False	False	False	False	False	Fals
False	False	False	False	False	False	False	False	False	False	False	False	False	False	Fals
False	False	False	False	False	False	False	False	False	False	False	False	False	False	Fals
											d Overri		_	
0	0 ()	False		True	False F	alse 0	0	0	0		False	;	F
1			2			3		4			5		6	
0			0			0		0			0		0	
0			0			0		0			0		0	
0			0			0		0			0		0	
DF		1.4		2.4			Bank: 3	4.4		5 A		61		BU
														$\frac{\mathbf{BU}}{0}$
														0
0		0		0		0		0		0		0		0
1	2	3			6	7	Q	0	10	11	12	13	14	15
False	False	False	False	False	False	False	False	False	False	False	False	False	False	Fals
	1 0150	1 4150									False			Fals
	Falce	Falco	Falco	Hales	HOLCO	Halco	Halea	Halea						
False False	False False	False False	False False	False False	False False	False False	False False	False False	False False	False False	False	False False	False False	Fals
	None None None None None None None None None None PE 0 0 0 1 False	None None	None None None None None None None None None PE 1A 0 0 0 0 0 0 0 0 0 0 False False False False False False </td <td>None None None None None None None None None None None None None I 2 3 3 None None None None I 2 3 4 PE 1A 0 0 0 0 0 0 0 0 0 0 1 2 3 4 False False False False False False False False False False False False False False False False I 2 3 4 PE 1A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>None None None<td>None None None None None 1 2 3 4 5 6 None None None None None None None 1 2 3 4 A A None None None None None PE 1A 2A A A 0 0 0 0 O 0 0 0 0 O 0 0 0 O O 0 0 0 O O 1 2 3 4 5 6 False False False False False False False False False False False False False False False False False False False False False False False False</td><td>None None <t< td=""><td> None</td><td> None</td><td> None</td><td> None</td><td> None</td><td> None</td><td> None</td></t<></td></td>	None None None None None None None None None None None None None I 2 3 3 None None None None I 2 3 4 PE 1A 0 0 0 0 0 0 0 0 0 0 1 2 3 4 False False False False False False False False False False False False False False False False I 2 3 4 PE 1A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	None None <td>None None None None None 1 2 3 4 5 6 None None None None None None None 1 2 3 4 A A None None None None None PE 1A 2A A A 0 0 0 0 O 0 0 0 0 O 0 0 0 O O 0 0 0 O O 1 2 3 4 5 6 False False False False False False False False False False False False False False False False False False False False False False False False</td> <td>None None <t< td=""><td> None</td><td> None</td><td> None</td><td> None</td><td> None</td><td> None</td><td> None</td></t<></td>	None None None None None 1 2 3 4 5 6 None None None None None None None 1 2 3 4 A A None None None None None PE 1A 2A A A 0 0 0 0 O 0 0 0 0 O 0 0 0 O O 0 0 0 O O 1 2 3 4 5 6 False False False False False False False False False False False False False False False False False False False False False False False False	None None <t< td=""><td> None</td><td> None</td><td> None</td><td> None</td><td> None</td><td> None</td><td> None</td></t<>	None	None	None	None	None	None	None

/10/23,	9:21 AM							R	RptAllData	a_22_	_202304	10_0921.	ntml					
Levei	An Seq	IVIII	waik	r req	геа экір	rrr uv	erriae	rrw Lvi	Cre r	ea	wiemou	кештп	rea	wan 1	ea Overria	ie Ait S	eq Enabi	ea ro
0	0	0		0	0	False		True	False F	alse	0	0	0	C)	False		Fa
Queu	e		1			2			3			4			5		6	
Queue	e Phase		0			0			0			0			0		0	
Queue	e Det		0			0			0			0			0		0	
Queue	e Time		0			0			0			0			0		0	
									F	3ank:	4							
PR. D	ets	PE			1A		2A		3A		44	\		5A		6A		BU
TSD		0			0		0		0		0			0		0		0
TED		0			0		0		0		0			0		0		0
TTL		0			0		0		0		0			0		0		0
Phase	;	1		2	3	4	5	6	7	8	9	9 1	0	11	12	13	14	15
Exit C	Call	F	alse	False	e False	False	False	False	False	Fa	alse l	False I	alse	False	False	False	False	False
Phase	Omit	F	alse	False	e False	False	False	False	False	Fa	alse l	False I	alse	False	False	False	False	False
Ped C	mit	F	alse	False	e False	False	False	False	False	Fa	alse l	False I	alse	False	False	False	False	False
Recov	ery	F	alse	False	e False	False	False	False	False	Fa	alse 1	False I	alse	False	False	False	False	False
Level	Alt Seq	Min	Walk	Freq	Ped Skip	FPF Ov	erride	FPW Lvl	CPE P	ed	Method	Return	Ped	Wait I	ed Overrid	le Alt S	eq Enabl	ed Fo
0	0	0		0	0	False		True	False F	alse	0	0	0	C)	False		Fa
Queu	e		1			2			3			4			5		6	
Queue	e Phase		0			0			0			0			0		0	
Queue	e Det		0			0			0			0			0		0	
Queue	e Time		0			0			0			0			0		0	

N- Lock	Delay	Extend	l Defai Patte		Min Grn	Max Grn	No Loc	kout	LockoutA	Lockout	B Overla	Pre Grn	Recall E	xCoPhas	eSvc Signa Type		lp lankout
None	None	None	None		None	None	Non	e	None	None	None	None	None N	one	None	N	one
Phase		1	2		3	4	5	6	7	8	9	10	11	12	13	14	15
CO-Pha	se	None	e N	one	None	None	None	None	None	None	None	None	None	None	None	None	None
QJ-Phas	e	Non	e N	lone	None	None	None	None	None	None	None	None	None	None	None	None	None
Detecto	r	1			2	3		4		5		6	,	7	8		9
Detector		None	e		None	No	ne	No	one	None		None]	None	No	ne	No
Number																	
										Bank: 1							
PR. Det	S	PE			1A		2A		3A		4A		5A		6A		BU
TSD		0			0		0		0		0		0		0		0
TED		0			0		0		0		0		0		0		0
TTL		0			0		0		0		0		0		0		0
Phase		1		2	3	4	5	6	7	8	9	10	11	12	13	14	15
Exit Cal	1	Fa	ılse	False	False	False	False	Fals	e False	False	False	False	False	False	False	False	False
Phase O	mit	Fa	ılse	False	False	False	False	Fals	e False	False	False	False	False	False	False	False	False
Ped Om	it	Fa	ılse	False	False	False	False	Fals	e False	False	False	False	False	False	False	False	False
Recover	У	Fa	ılse	False	False	False	False	Fals	e False	False	False	False	False	False	False	False	False
Level A	Alt Sec	Min V	Walk	Freq	Ped Skip	FPF Ov	erride	FPW L	vl CPE	Ped Met	thod Ret	urn Pec	l Wait Pe	d Overri	de Alt S	eq Enab	oled Fo
0 0		0		0	0	False		True	False	False 0	0	0	0		False		Fa
Queue			1			2			3		4			5		6	
Queue F	hase		0			0			0		0			0		0	
Queue I	Det		0			0			0		0			0		0	
Queue T	ime		0			0			0		0			0		0	

Bank: 2

PR. Dets	PE		1 A		2A		3A		4A		5A		6A		BU
TSD	0		0		0		0		0		0		0		0
TED	0		0		0		0		0		0		0		0
TTL	0		0		0		0		0		0		0		0
Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Exit Call	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
Phase Omit	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
Ped Omit	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
Recovery	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
Level Alt Seq												d Overrid			
0 0	0	0 0		False	7	True	False Fa	alse 0	0	0	0		False		Fa
Queue	1			2			3		4			5		6	
Queue Phase	0			0			0		0			0		0	
Queue Det	0			0		•	0		0			0		0	
Queue Time	0			0			0		0			0		0	
								ank: 3							
PR. Dets	PE		1A		2A		3A		4A		5A		6A		BU
TSD	0		0		0		0		0		0		0		0
TED	0		0		0		0		0		0		0		0
TTL	0		0		0		0		0		0		0		0
Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Exit Call	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
Phase Omit	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
Ped Omit	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
Dagariami	E-1			- 1	- 1								- 1		- 1
	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
Level Alt Seq			ed Skip		erride l			ed Metl						eq Enab	
Level Alt Seq	Min Walk	Freq P	ed Skip	FPF Ove	erride l	FPW LvI True	CPE Po	ed Metl	hod Retu 0	ırn Ped	Wait Peo	l Overrid	le Alt S	eq Enab	led Fo
Level Alt Seq 0 0 Queue	Min Walk 0	Freq P	ed Skip	FPF Over	erride l	FPW LvI True	CPE Po	ed Metl	hod Retu 0	ırn Ped	Wait Peo	d Overrid	le Alt S	eq Enab	led Fo
Level Alt Seq 0 0 Queue Queue Phase	Min Walk 0 1 0	Freq P	ed Skip	FPF Over	erride l	FPW Lvl	CPE Po False Fa	ed Metl	0 Retu	ırn Ped	Wait Peo	5 0	le Alt S	eq Enab	led Fo
Level Alt Seq 0 0 Queue Queue Phase Queue Det	Min Walk 0 1 0 0	Freq P	ed Skip	FPF Over False 2 0 0	erride l	FPW Lvl True	CPE Po False Fa 3 0	ed Metl	hod Retu 0 4 0 0	ırn Ped	Wait Peo	5 0 0	le Alt S	6 0	led Fo
Level Alt Seq 0 0 Queue Queue Phase Queue Det	Min Walk 0 1 0	Freq P	ed Skip	FPF Over	erride l	FPW Lvl True	CPE Po False Fa 3 0 0	Metlalse 0	0 Retu	ırn Ped	Wait Peo	5 0	le Alt S	eq Enab	led Fo
Level Alt Seq 0 0 Queue Queue Phase Queue Det Queue Time	Min Walk 0 1 0 0 0	Freq P	ed Skip	FPF Over False 2 0 0	erride I	FPW Lvl True	CPE Po False Fa 3 0 0 0	ed Metl	0 4 0 0 0	Ped V	Wait Peo	5 0 0	False	6 0	led Fo Fa
Level Alt Seq 0 0 Queue Queue Phase Queue Det Queue Time PR. Dets	Min Walk 0 1 0 0 0 0 PE	Freq P	'ed Skip	FPF Over False 2 0 0	erride I	FPW Lvl True	CPE Po False Fa 3 0 0 0 0 B	Metlalse 0	hod Retu 0 4 0 0 0	Ped v	Wait Peo 0	5 0 0	False	6 0	led Fo Fa
Level Alt Seq 0 0 Queue Queue Phase Queue Det Queue Time PR. Dets TSD	Min Walk 0 1 0 0 0 0 0	Freq P	Ped Skip 1A 0	FPF Over False 2 0 0	2A	FPW Lvl True	CPE Po False Fa 3 0 0 0 0 0 8 3A 0	Metlalse 0	hod Retu 0 4 0 0 0	Ped V	SA 0	5 0 0	False 6A	6 0	eled Fo Fa
Level Alt Seq 0 0 Queue Queue Phase Queue Det Queue Time PR. Dets TSD TED	Min Walk 0 1 0 0 0 0 PE	Freq P	'ed Skip	FPF Over False 2 0 0	erride I	FPW Lvl True	CPE Po False Fa 3 0 0 0 0 B	Metlalse 0	hod Retu 0 4 0 0 0	o Ped v	Wait Peo 0	5 0 0 0	False	6 0	led Fo Fa
Recovery Level Alt Seq 0 0 Queue Queue Phase Queue Det Queue Time PR. Dets TSD TED TTL Phase	Min Walk 0 1 0 0 0 0 0 PE 0 0	Freq P	1A 0 0	FPF Over False 2 0 0	2A 0 0	FPW Lvl True	CPE Po False	Metlalse 0	hod Retu 0 4 0 0 0 0	o Ped v	5A 0 0	5 0 0 0	False 6A 0 0	6 0	Fa Fa Fa Fa Fa Fa Fa Fa
Level Alt Seq 0 0 Queue Queue Phase Queue Det Queue Time PR. Dets TSD TED TTL Phase	Min Walk 0 1 0 0 0 0 0 PE 0 0 0	Freq P	1A 0 0	FPF Over False 2 0 0 0	2A 0 0	FPW LvI	CPE Po False	ed Metalalse 0	### A #### A ### A #### A ### A ##### A #### A #### A #### A #### A #### A ######	o Ped V	5A 0 0	5 0 0 0	6A 0 0	6 0 0 0	BU 0 0 0
Level Alt Seq 0 0 Queue Queue Phase Queue Det Queue Time PR. Dets TSD TED TTL Phase Exit Call	Min Walk 0 1 0 0 0 0 0 PE 0 0 0 0	Freq P 0 0	1A 0 0 0	FPF Over False 2 0 0 0 0	2A 0 0 0	FPW LvI	CPE Po False	ed Metalalse 0	hod Retu 0 4 0 0 0 0	10	5A 0 0 11	5 0 0 0	6A 0 0 0 13	6 0 0 0 0	BU 0 0 0 15
Level Alt Seq 0 0 Queue Queue Phase Queue Det Queue Time PR. Dets TSD TED TTL Phase Exit Call Phase Omit	Min Walk 0 1 0 0 0 0 0 PE 0 0 0 0 False	Freq P 0 0	1A 0 0 0 False	FPF Over False 2 0 0 0 4 False	2A 0 0 0 5 False	FPW LvI Frue 6 False	CPE Po False Fa 3 0 0 0 0 8 3A 0 0 0 7 False	ank: 4	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 False	5A 0 0 11 False	5 0 0 0 0	6A 0 0 0 Talse	6 0 0 0 0 14 False	BU 0 0 0 False False False
Level Alt Seq 0 0 Queue Queue Phase Queue Det Queue Time PR. Dets TSD TED TTL Phase Exit Call Phase Omit Ped Omit	Min Walk 0 1 0 0 0 0 0 PE 0 0 0 1 False False	Freq P 0 0 2 False False	1A 0 0 0 False False	FPF Over False 2 0 0 0 4 False False	2A 0 0 0 5 False False	FPW LvI Frue 6 False False	CPE Po False Fa 3 0 0 0 B 3A 0 0 7 False False	ank: 4 8 False False	hod Retu 0 4 0 0 0 4 0 0 0 False False	10 False False	5A 0 0 11 False False	5 0 0 0	False 6A 0 0 0 13 False False	6 0 0 0 0 14 False False	BU 0 0 0 False False False False
Level Alt Seq 0 0 Queue Queue Phase Queue Det Queue Time PR. Dets TSD TED TTL Phase Exit Call Phase Omit Ped Omit Recovery Level Alt Seq	Min Walk 0 1 0 0 0 0 PE 0 0 0 1 False False False False	Freq P 0 0 0 2 False False False False	1A 0 0 0 5 False False False False	FPF Over	2A 0 0 0 5 False False False False	FPW LvI Frue 6 False False False False False	CPE Po False False 7 False False False False False False	ank: 4 8 False False False False False	## A	10 False False False False	Vait Pec 0	5 0 0 0 0	6A 0 0 13 False False False False False	eq Enab	BU 0 0 0 Talse False False False
Level Alt Seq 0 0 Queue Queue Phase Queue Det Queue Time PR. Dets TSD TED TTL Phase Exit Call Phase Omit Ped Omit Recovery Level Alt Seq	Min Walk 0 1 0 0 0 0 PE 0 0 0 1 False False False False	Preq P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1A 0 0 0 3 False False False False	FPF Over False 2 0 0 0 4 False False False False False	2A 0 0 0 5 False False False False	FPW LvI Frue 6 False False False False	CPE Po False Fa 3 0 0 0 0 B 3A 0 0 0 7 False False False False	ank: 4 8 False False False False False	Note	10 False False False False	Vait Pec 0	5 0 0 0 0	6A 0 0 13 False False False False False	eq Enab	BU 0 0 0 15 False False False False led Fo
Level Alt Seq 0 0 Queue Queue Phase Queue Det Queue Time PR. Dets TSD TED TTL Phase Exit Call Phase Omit Ped Omit Recovery Level Alt Seq 0 0	Min Walk 0 1 0 0 0 0 PE 0 0 0 1 False False False False Min Walk	Freq P 0 0 0 2 False False False False	1A 0 0 0 3 False False False False	FPF Over	2A 0 0 0 5 False False False False	FPW LvI Frue 6 False False False False Fruse	CPE Po False False 7 False False False False False False	ank: 4 8 False False False False False	## A	10 False False False False	Vait Pec 0 5A 0 0 11 False False False False Wait Pec	5 0 0 0 0	6A 0 0 13 False False False False False	eq Enab	BU 0 0 0 15 False False False False led Fo
Level Alt Seq 0 0 Queue Queue Phase Queue Det Queue Time PR. Dets TSD TED TTL Phase Exit Call Phase Omit Ped Omit Recovery Level Alt Seq 0 0 Queue	Min Walk 0 1 0 0 0 0 PE 0 0 1 False False False False False Value Min Walk 0	Freq P 0 0 0 2 False False False False	1A 0 0 0 3 False False False False	FPF Over False 4 False False False False False False False	2A 0 0 0 5 False False False False	6 False False False False Fruse	CPE Po False False 7 False False False False False False False False False	ank: 4 8 False False False False False	## A	10 False False False False	Vait Pec 0 5A 0 0 11 False False False False Wait Pec	5 0 0 0 0	6A 0 0 13 False False False False False	eq Enab	BU 0 0 0 Talse False False False
Level Alt Seq 0 0 Queue Queue Phase Queue Det Queue Time PR. Dets TSD TED TTL Phase Exit Call Phase Omit Ped Omit Recovery Level Alt Seq	Min Walk 0 1 0 0 0 0 PE 0 0 1 False False False False False Talse Talse Talse Talse Talse	Freq P 0 0 0 2 False False False False	1A 0 0 0 3 False False False False	FPF Over False 4 False False False False False False False False	2A 0 0 0 5 False False False False	6 False False False Fruse	CPE Po False False 7 False	ank: 4 8 False False False False False	## A	10 False False False False	Vait Pec 0 5A 0 0 11 False False False False Wait Pec	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6A 0 0 13 False False False False False	eq Enab	BU 0 0 0 15 False False False False led Fo

N-	Dela	y Exten	d Default	Min	Max	No	Lockout	A Lockout	B Overla	p Pre	Reca	II ExCoPhaseSv	c Signal	Olp
Lock			Pattern	Grn	Grn	Lockout				Grn			Type	Blankout
* *	* *	* *	* *	* *	* *	* *	* *	* *	* *		* *	* *		* *

	None Noi	ne	None	None	None	e No	one i	None	None	None	None N	one	None	e No	one
Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CO-Phase	None	None	None	None	None	None	None	None	None	None	None	None	None	None	Nor
QJ-Phase	None	None	None	None	None	None	None	None	None	None	None	None	None	None	Non
Detector	1	2		3		4		5		6		7	8		9
Detector	None		lone	No	nne	None	Р.	None		None		None	No	nne	$-\frac{1}{N}$
Number	rione	1	vone.	110	,,,,,	11011	-	rvone		rone		tone	110	,,,,,	1,
DD D /	DE.		-					ank: 1					-		DII
PR. Dets	PE		$\frac{1A}{0}$		$\frac{2A}{0}$		$\frac{3A}{0}$		4A		5A		6A		BU
TSD	0		0		$-\frac{0}{0}$		0		0		$\frac{0}{0}$		0		0
TED	0		0				$\frac{0}{0}$		0		$\frac{0}{0}$		0		$\frac{0}{0}$
TTL	0		0		0		0		0		0		0		U
Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Exit Call	False	False	False	False	False	False	False	False	False	False	False	False	False	False	Fals
Phase Omit	False	False	False	False	False	False	False	False	False	False	False	False	False	False	Fals
Ped Omit	False	False	False	False	False		False	Fals							
Recovery	False	False	False	False	False	False	False	False	False	False	False	False	False	False	Fals
Level Alt Seq	Min Walk	Freq I	Ped Skip	FPF Ov	erride	FPW Lvl	CPE P	ed Met	hod Ret	urn Ped	Wait Pe	d Overri	de Alt S	eq Enabl	led F
0 0	0	0 ()	False		True	False Fa	alse 0	0	0	0		False	1	F
Queue	1			2			3		4			5		6	
Queue Phase	0			0			0		0			0		0	
Queue Det	0			0			0		0			0		0	
Queue Time	0			0			0		0			0		0	
								Sank: 2					-		
PR. Dets	PE		$\frac{1A}{0}$		$\frac{2A}{0}$		$\frac{3A}{0}$		4A		5A		6A		BU
TSD	0		0		$\frac{0}{0}$		0		0		0		0		0
TED TTL	$-\frac{0}{0}$		$\frac{0}{0}$		$-\frac{0}{0}$		$-\frac{0}{0}$		$-\frac{0}{0}$		$\frac{0}{0}$		$\frac{0}{0}$		$\frac{0}{0}$
Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Exit Call	False	False	False	False	False		False	Fals							
Phase Omit	False	False	False	False			False			False	False			False	Fals
Ped Omit	False	False	False	False	False		False	Fals							
Recovery	False	False	False	False	False	False	False	False	False	False	False	False	False	False	Fals
Level Alt Seq												d Overri			
0 0	0	0 ()	False		True	False Fa	alse 0	0	0	0		False	!	Fa
Queue	1			2			3		4			5		6	
Queue Phase	0			0			0		0			0		0	
Queue Det	0			0			0		0			0		0	
Queue Time	0			0			0		0			0		0	
DD D 4	DE		1.4		2.4			Sank: 3	4.4		-		<u> </u>		DFT
PR. Dets	PE		$\frac{1A}{0}$		$\frac{2A}{0}$		$\frac{3A}{0}$		4A		5A		6A		$\frac{\mathbf{BU}}{\mathbf{O}}$
TSD	0		$\frac{0}{0}$		$-\frac{0}{0}$		$\frac{0}{0}$		0		$\frac{0}{0}$		$\frac{0}{0}$		$\frac{0}{0}$
TED	0		$\frac{0}{0}$				$\frac{0}{0}$		0		$\frac{0}{0}$		$\frac{0}{0}$		$\frac{0}{0}$
TTL	0		0		0		0		0		0		0		0
	-1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Phase	1		False	False	False	False	False	False	False	False	False	False	False	False	Fals
	False	False	raise												
Exit Call		False False	False	False	False	False	False	False	False	False	False	False	False	False	Fals
Phase Exit Call Phase Omit Ped Omit	False				False False		False False	Fals Fals							
Exit Call Phase Omit	False False	False	False	False		False									

file:///C:/Program Files (x86)/ITS Software/TACTICS Central/Report Data/Intersection/22/RptAllData_22_20230410_0921.html

True

False False 0

False

Fa 29/34

False

0123, 9.21 AI	VI U			1 4150		1140	tpiAiiDai	d_22_202 . u.sc = 0	30410 <u></u> 08	72 I.IIIIIII	v		1 4150		
Queue	1			2			3		4			5		6	
Queue Phase	$\frac{1}{0}$			0			0		0			0		$\frac{0}{0}$	
Queue Det	$\frac{0}{0}$			0			0		0			0		0	
Queue Time	0			0			0		0			0		0	
]	Bank: 4							
PR. Dets	PE		1A		2A		3A		4A		5A		6A		BU
ΓSD	0		0		0		0		0		0		0		0
ΓED	0		0		0		0		0		0		0		0
ΓTL	0		0		0		0		0		0		0		0
Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Exit Call	False	False	False	False	False	False	False	False	False	False	False	False	False	False	Fals
Phase Omit	False	False	False	False	False	False	False	False	False	False	False	False	False	False	Fals
Ped Omit	False	False	False	False	False	False	False	False	False	False	False	False	False	False	Fals
Recovery	False	False	False	False	False	False	False	False	False	False	False	False	False	False	Fals
Level Alt Se												d Overri			
0 0	0	0	0	False		True	False I	alse 0	0	0	0		False		Fa
Queue	1			2			3		4			5		6	
Queue Phase	0			0			0		0			0		0	
Queue Det	0			0			0		0			0		0	
Queue Time	0			0			0		0			0		0	
Lock		ttern	Min Grn	Max Grn	No Lock	kout		Lockoutl		Grn			eSvc Signa Type	Bla	ankout
None None	None No	ne	None	None	None	e N	one	None	None	None	None N	one	None	e No	one
Phase CO-Phase	None 1	None 2	None 3	4 None	5 None	None	7 None	8 None	9 None	10 None	11 None	None	None	14 None	15 Non-
QJ-Phase	None	None	None	None	None	None	None	None	None	None	None	None	None	None	Non
Detector	1		<u>}</u>	3		4		5		6	,	7	8		9
Detector	None	N	None	No	one	Non	e	None		None	1	None	No	ne	N
Number							,								
PR. Dets	PE		1A		2A		3A	Bank: 1	4A		5A		6A		BU
TSD	0		0		0		0		0		0		0		0
TED	0		0		0		0		0		0		0		0
TTL	0		0		0		0		0		0		0		0
Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Exit Call	False	False	False	False	False	False	False	False	False	False	False	False	False	False	Fals
Phase Omit	False	False	False	False	False		False	False	False	False	False	False	False	False	Fals
Ped Omit	False	False	False	False	False		False	False	False	False		False	False	False	Fals
Recovery	False	False	False	False	False		False	False	False	False		False	False	False	Fals
Level Alt Se	q Min Wall	k Freq	Ped Skip	FPF Ov	erride	FPW Lvl	CPE I	Ped Met	hod Ret	urn Ped	Wait Pe	d Overri	de Alt S	eq Enabl	led F
0 0	0	0	0	False		True	False I	False 0	0	0	0		False		F
Queue	1			2			3		4			5		6	
Queue Phase	0			0			0		0			0		0	
Queue Det	0			0			0		0			0		0	
Queue Time	0			0			0		0			0		0	
PR. Dets	PE		1A		2A		3A	Bank: 2	4A		5A		6A		BU
TSD	0		0		$\frac{2\pi}{0}$		$-\frac{3n}{0}$		0		0		0		0
	-		-		-		-		-		-		-		-

TED	0		0		0		0		0		0		0		0
ΓTL	0		0		0		0		0		0		0		0
Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Exit Call	False	False	False	False	False	False	False	False	False	False	False	False	False	False	Fals
Phase Omit	False	False	False	False	False	False	False	False	False	False	False	False	False	False	Fals
Ped Omit	False	False	False	False	False	False	False	False	False	False	False	False	False	False	Fals
Recovery	False	False	False	False	False	False	False	False	False	False	False	False	False	False	Fals
Level Alt Seq			•									d Overrid		-	
0 0	0	0 0		False	7	True	False Fa	alse 0	0	0	0		False		F
Queue	1			2			3		4			5		6	
Queue Phase	0			0			0		0			0		0	
Queue Det Queue Time	$\frac{0}{0}$			$-\frac{0}{0}$			0		$-\frac{0}{0}$			$-\frac{0}{0}$		$\frac{0}{0}$	
Queue Tille	U			U		,		1 2	U			U		U	
PR. Dets	PE		1A		2A		$\frac{B}{3A}$	ank: 3	4A		5A		6A		BU
TSD	0		0		0		0		0		0		0		0
TED	0		0		0		0		0		0		0		0
TTL	0		0		0		0		0		0		0		0
Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Exit Call	False	False	False	False	False	False	False	False	False	False	False	False	False	False	Fals
Phase Omit	False	False	False	False	False	False	False	False	False	False	False	False	False	False	Fals
	i dibe												т 1	г 1	E a la
	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
Ped Omit Recovery		False False	False False	False False	False False	False False	False False	False False	False False	False	False False	False	False	False	False
Ped Omit	False False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
Ped Omit Recovery	False False	False	False Ped Skip	False	False	False	False	False	False	False	False	False	False	False eq Enabl	False
Ped Omit Recovery Level Alt Seq 0 0	False False Min Walk	False Freq P	False Ped Skip	False FPF Ove	False	False FPW Lvl True	False CPE Pe	False	False	False	False Wait Peo	False	False	False eq Enabl	False
Ped Omit Recovery Level Alt Seq 0 0 Queue Queue Phase	False False Min Walk 0	False Freq P	False Ped Skip	False FPF Ove	False	False FPW Lvl True	False False False False False	False	False nod Retu 0 4 0	False	False Wait Peo	False	False	False eq Enable	False
Ped Omit Recovery Level Alt Seq 0 0 Queue Queue Phase Queue Det	False False Min Walk 0	False Freq P	False Ped Skip	False FPF Over	False	False FPW Lvl Frue	False CPE Pe False Fa	False	False Retu 0	False	False Wait Peo	False d Overrid	False	False eq Enable	False
Ped Omit Recovery Level Alt Seq 0 0 Queue Queue Phase Queue Det	False False Min Walk 0 1 0	False Freq P	False Ped Skip	False False 2 0	False	False FPW Lvl Frue	False CPE Po False Fa	False	False nod Retu 0 4 0	False	False Wait Peo	False d Overrid 5 0	False	False eq Enable 6 0	False
Ped Omit Recovery Level Alt Seq 0 0 Queue Queue Phase Queue Det Queue Time	False False Min Walk 0 1 0 0 0	False Freq P	False Ped Skip	False FPF Over False 2 0 0	False erride H	False FPW Lvl Frue	False CPE Po False Fa 3 0 0 0 B	False	False Retu 0 4 0 0 0	False	False Wait Peo	False d Overrid 5 0 0 0	False le Alt S False	False eq Enable 6 0 0 0	False ed Fo Fa
Ped Omit Recovery Level Alt Seq 0 0 Queue Queue Phase Queue Det Queue Time	False False False Min Walk 0 1 0 0 0 PE	False Freq P	False Ped Skip	False FPF Over False 2 0 0	False erride F	False FPW Lvl Frue	False CPE Po False Fa 3 0 0 0 B 3A	False ed Meth alse 0	False nod Retu 0 4 0 0 0	False	False Wait Pec 0	False d Overrid 5 0 0 0	False le Alt S False	False eq Enable 6 0 0	Falso ed Fo Fa
Ped Omit Recovery Level Alt Seq 0 0 Queue Queue Phase Queue Det Queue Time PR. Dets TSD	False False False Min Walk 0 1 0 0 0 PE 0	False Freq P	False Ped Skip 1A 0	False FPF Over False 2 0 0	False erride F	False FPW Lvl Frue	False CPE Po False Fa 3 0 0 0 B 3A 0	False ed Meth alse 0	False Retu 0 4 0 0 0 4A 0	False	False Wait Pec 0 5A 0	False d Overrid 5 0 0 0	False le Alt S False 6A	False eq Enable 6 0 0 0	Falso Fa
Ped Omit Recovery Level Alt Seq 0 0 Queue Queue Phase	False False False Min Walk 0 1 0 0 0 PE	False Freq P	False Ped Skip	False FPF Over False 2 0 0	False erride F	False FPW Lvl Frue	False CPE Po False Fa 3 0 0 0 B 3A	False ed Meth alse 0	False nod Retu 0 4 0 0 0	False	False Wait Pec 0	False d Overrid 5 0 0 0	False le Alt S False	False eq Enable 6 0 0	Falso ed Fo Fa
Ped Omit Recovery Level Alt Seq 0 0 Queue Queue Phase Queue Det Queue Time PR. Dets TSD TED TTL	False False False False 0 1 0 0 0 PE 0 0	False Freq P	False Ped Skip 1A 0 0	False FPF Over False 2 0 0	False erride H 2A 0 0	False FPW Lvl Frue	False CPE Po False Fa 3 0 0 0 B 3A 0 0	False ed Meth alse 0	False Retu 0 4 0 0 4 0 0 0 4A 0 0 0	False	False Wait Peo 0 5A 0 0	False d Overrid 5 0 0 0	False False 6A 0 0	False eq Enable 6 0 0	Falso Falso Fal
Ped Omit Recovery Level Alt Seq 0 0 Queue Queue Phase Queue Det Queue Time PR. Dets TSD TED TTL Phase	False False False False O 0 0 PE 0 0 0 0	Freq P 0 0	False Ped Skip 1A 0 0 0	False FPF Over False 2 0 0 0	False Perride F 2A 0 0 0	False FPW Lvl Frue	False CPE Po False Fa 3 0 0 0 0 B 3A 0 0 0 0	False ed Meth alse 0	False Retu 0 4 0 0 4A 0 0 0 0 0 0 0 0 0 0 0 0 0 0	False Irn Ped V 0	False Wait Pec 0 5A 0 0 0	False d Overrid 5 0 0 0	False False 6A 0 0 0	False eq Enable 6 0 0 0	Falso Falso Fal
Ped Omit Recovery Level Alt Seq 0 0 Queue Queue Phase Queue Det Queue Time PR. Dets TSD TED TTL Phase Exit Call	False False False False False 1 0 0 0 0 PE 0 0 0 1	False Freq P 0 0	False Ped Skip 1A 0 0 0 3	False FPF Over False 0 0 0	False erride	False FPW Lvl Frue	False CPE Po False Fa 3 0 0 0 0 B 3A 0 0 0 7	False ed Methalse 0 ank: 4	False Retu 0 4 0 0 4 0 0 0 0 4 0 0 0 0 9	False orn Ped V	False Wait Pec 0 5A 0 0 11	False d Overrid 5 0 0 0	False False 6A 0 0 13	False eq Enable 6 0 0 0	Falso Falso BU 0 0 Talso Falso
Ped Omit Recovery Level Alt Seq 0 0 Queue Queue Phase Queue Det Queue Time PR. Dets TSD TED TTL Phase Exit Call Phase Omit Ped Omit	False False False False Min Walk 0 1 0 0 0 PE 0 0 0 False False False False	False Freq P 0 0 2 False False False	False Ped Skip 1A 0 0 0 False False False	False FPF Over False 2 0 0 0 4 False False False False	False Particle False False False False False	False FPW Lvl True 6 False False False	False CPE Po False Fa 3 0 0 0 B 3A 0 0 0 7 False False False False	False ed Methalse 0 ank: 4 8 False False False False	False Retu 0 4 0 0 4A 0 0 0 False False False False	False 10 False False False	False Wait Peo 0 5A 0 0 0 11 False False False	False 5 0 0 0 12 False False False False	False False 6A 0 0 0 13 False False False	False eq Enable 6 0 0 0 14 False False False	False BU 0 0 False False False
Ped Omit Recovery Level Alt Seq 0 0 Queue Queue Phase Queue Det Queue Time PR. Dets TSD TED	False False False False Min Walk 0 1 0 0 0 PE 0 0 0 False False False	False Freq P 0 0	False Ped Skip 1A 0 0 0 False False False	False FPF Over False 2 0 0 0 4 False False	False Particle False False False False False	False FPW Lvl True 6 False False	False CPE Po False Fa 3 0 0 0 B 3A 0 0 7 False False False	False ed Methalse 0 ank: 4 8 False False	False Retu 0 4 0 0 0 4A 0 0 0 False False False	False O 10 False False	False Wait Peo 0 5A 0 0 0 11 False False	False 5 0 0 0 12 False False False	False False 6A 0 0 13 False False	False eq Enable 6 0 0 0 14 False False	False BU 0 0 False False False
Ped Omit Recovery Level Alt Seq 0 0 Queue Queue Phase Queue Det Queue Time PR. Dets TSD TED TTL Phase Exit Call Phase Omit Recovery Level Alt Seq	False False False Min Walk 0 1 0 0 0 PE 0 0 1 False False False False False False Min Walk	False Freq P 0 0 0 2 False False False False Freq P	False Ped Skip 1A 0 0 0 3 False False False False False	False FPF Over False 2 0 0 0 0 4 False False False False False False	False Partide False False False False False False False False False False	False FPW Lvl Frue 6 False False False False False	False CPE Po False Fa 3 0 0 0 B 3A 0 0 0 7 False False False False CPE Po CPE PO	False ed Meth alse 0 ank: 4 8 False False False False False False	False Retu 0 4 0 0 4A 0 0 0 False False False False False False	False 10 False False False False False	False Wait Pec 0 5A 0 0 11 False False False False False	False 5 0 0 0 12 False False False False False	False False 6A 0 0 13 False False False False False	False eq Enable 6 0 0 0 14 False False False False False False	False False BU 0 0 15 False False False False
Ped Omit Recovery Level Alt Seq 0 0 Queue Queue Phase Queue Det Queue Time PR. Dets TSD TED TTL Phase Exit Call Phase Omit Ped Omit Recovery Level Alt Seq	False False False Min Walk 0 1 0 0 0 PE 0 0 0 1 False False False False False	False Freq P 0 0 2 False False False False	False Ped Skip 1A 0 0 0 3 False False False False False	False FPF Over False 2 0 0 0 4 False False False False False False	False Partide False False False False False False False False False False	False FPW Lvl True 6 False False False False False	False CPE Po False Fa 3 0 0 0 B 3A 0 0 0 7 False False False False False	False ed Meth alse 0 ank: 4 8 False False False False False False	False Retu 0 4 0 0 4A 0 0 0 False False False False False	False 10 False False False False False	False Wait Peo 0 5A 0 0 11 False False False False	False 5 0 0 0 12 False False False False False	False False 6A 0 0 0 13 False False False False False	False eq Enable 6 0 0 0 14 False False False False False False	False False BU 0 0 15 False False False False
Ped Omit Recovery Level Alt Seq 0 0 Queue Queue Phase Queue Det Queue Time PR. Dets TSD TED TTL Phase Exit Call Phase Omit Recovery Level Alt Seq 0 0 Queue	False False False False False I 0 0 0 0 PE 0 0 1 False False False False False False Talse Talse False False Talse	False Freq P 0 0 0 2 False False False False Freq P	False Ped Skip 1A 0 0 0 3 False False False False False	False FPF Over False 4 False	False Partide False False False False False False False False False False	False FPW LvI frue 6 False False False False Fruse Fruse Fruse	False CPE Po False Fa 3 0 0 0 0 B 3A 0 0 0 7 False	False ed Meth alse 0 ank: 4 8 False False False False False False	False Retu 0 4 0 0 0 4A 0 0 0 9 False False False False False False 4 0 4	False 10 False False False False False	False Wait Pec 0 5A 0 0 11 False False False False False	False d Overrid 5 0 0 0 0 12 False False False False False False False False	False False 6A 0 0 13 False False False False False	False eq Enable 6 0 0 0 14 False False False False False False	False False BU 0 0 15 False False False False
Ped Omit Recovery Level Alt Seq 0 0 Queue Queue Phase Queue Det Queue Time PR. Dets TSD TED TTL Phase Exit Call Phase Omit Recovery Level Alt Seq	False False False False Min Walk 0 1 0 0 0 0 PE 0 0 1 False False False False False False False	False Freq P 0 0 0 2 False False False False Freq P	False Ped Skip 1A 0 0 0 3 False False False False False	False FPF Over False 4 False False False False False False False	False Partide False False False False False False False False False False	False FPW LvI frue 6 False False False False False Farse	False CPE Po False Fa 3 0 0 0 B 3A 0 0 0 7 False False False False False False False False False	False ed Meth alse 0 ank: 4 8 False False False False False False	False Tod Return 0 4 0 0 0 4 0 0 0 4 0 0 0 False False False False False False False False False	False 10 False False False False False	False Wait Pec 0 5A 0 0 11 False False False False False	False d Overrid 5 0 0 0 0 12 False False False False False d Overrid	False False 6A 0 0 13 False False False False False	False eq Enable 6 0 0 0 14 False False False False False False	Falso BU 0 0 15 Falso Falso Falso Falso

N-	Delay Extend	d Default	Min	Max	No	Lockout	A Lockout	B Overla	p Pre	Recal	ExCoPhaseSv	c Signal	Olp
Lock		Pattern	Grn	Grn	Lockout				Grn			Type	Blankout
None	None None	None	None	None	None	None	None	None	None	None	None	None	None

QJ-Phase None No Detector 1 Detector None Number PR. Dets PE TSD 0 TED 0 TTL 0 Phase 1 2 Exit Call False Phase Omit False Recovery False Level Alt Seq Min Walk I Queue Phase 0 Queue Time 0 PR. Dets PE TSD 0 TTL 0 Phase 1 Queue Time 0 PR. Dets PE TSD 0 TED 0 TTL 0 Phase 1 Exit Call False 1 Queue Phase 0 Queue Time 0 PR. Dets PE TSD 0 TED 0 TTL 0 Phase 1 Exit Call False 1 Exit Call False 1 Exit Call False 1 Exit Call False 1 County False 1 Exit Call F	None None None None 2 None 1A 0 0 0 0 2 False	False Fals False Fals False Fals	e False False e False False e False False	e False False e False False e False False Ped Method Retu		12 13 None None None None 7 8 None No 6A 0 0 0 0 0 12 13 False False False False False False	99 me N BU 0 0 0 0 14 15 False False
QJ-Phase None No Detector 1 Detector None Number PR. Dets PE TSD 0 TED 0 TTL 0 Phase 1 2 Exit Call False Phase Omit False Ped Omit False Recovery False Level Alt Seq Min Walk I Queue Phase 0 Queue Time 0 PR. Dets PE TSD 0 TTL 0 Phase 1 Queue Time 0 Queue Time 0 PR. Dets PE TSD 0 TTL 0 Phase 1 2 Exit Call False 1 Ped Omit False 1 Queue Phase 0 Queue Time 0 PR. Dets PE TSD 0 TTL 0 Phase 1 2 Exit Call False 1 Exit Call False 1 Exit Call False 1 Exit Call False 1 Coulomber False 1 Exit Call False 1	None None 2 None 1A 0 0 0 2 Salar False	None None 3 None 2A 0 0 0 0 4 5 False OFPF Override False	None None 4 None 3A 0 0 0 0 6 7 e False False e False False e False False False False False False	None None 5 None Bank: 1 4A 0 0 0 0 8 9 e False False	None None 6 None 5A 0 0 0 10 11 False False False False False False False False	None None 7 8 None No 6A 0 0 0 12 13 False False False False	None Non 9 nne N BU 0 0 0 14 15 False False
PR. Dets Ped Omit Queue Phase Queue Time PR. Dets PE TSD Queue Time Ped Omit Phase Queue Time Ped Omit Queue Time Queue Time Ped Omit PR. Dets Ped Omit Palse Queue Time Queue Time Queue Time Ped Omit Palse Ped Omit Phase Queue Time Ped Omit Phase Queue Time Ped Omit Phase Queue Time Ped Omit Phase Ped Omit Phase Ped Omit Palse Ped Omit Palse Ped Omit Palse Ped Omit Palse Ped Omit Poucue Time Queue Phase Queue Time Queue Phase Queue Time Queue Time Queue Phase Queue Time	None 1A 0 0 0 0 2 3 False	None 2A 0 0 0 0 4 5 False OFPF Override False	None 3A 0 0 0 0 6 7 e False False e False False e False False False False False False	None Bank: 1 4A 0 0 0 0 8 9 e False False	None 5A 0 0 0 0 10 11 False False False False False False	None No 6A 0 0 0 12 13 False False False False	BU 0 0 0 0 14 15 False False
PR. Dets PSD OFFED	1A 0 0 0 0 2 3 False False False False False False False False	2A 0 0 0 0 4 5 False OFPF Override False	3A 0 0 0 0 6 7 e False False e False False e False False False FFW Lvl CPE	### Bank: 1 4A	5A 0 0 0 0 10 11 False False False False False False	6A 0 0 0 0 12 13 False False False False	BU 0 0 0 0 14 False Fals
FISD 0 FIED 0 FITL 0 Final False Final Fin	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 7 e False False e False False e False False False False FFW Lvl CPE	4A 0 0 0 0 8 9 e False False e False False e False False False False False False	0 0 0 10 11 False False False False False False	0 0 0 12 13 False False False False	0 0 0 14 15 False False
TSD 0 TED 0 TTL 0 Phase 1 2 Exit Call False Phase Omit False Ped Omit False Dueue Phase OQueue Time 0 PR. Dets Ped Omit False Dueue Phase Omit Palse Det OQueue Time 1 Control of the ped Omit False Dueue Phase Omit False Dueue Phase OOTL OOTL OOTL OOTL OOTL OOTL OOTL OOT	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 7 e False False e False False e False False False False FFW Lvl CPE	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 10 11 False False False False False False	0 0 0 12 13 False False False False	0 0 0 14 15 False False
TED 0 TTL 0 Phase 1 2 Exit Call False Phase Omit False Ped Omit False Ped Omit Palse Ped On O O O O O O O O O O O O O O O O O O	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 7 e False False e False False e False False False False FFW Lvl CPE	0 0 8 9 e False False e False False e False False e False False False False	0 0 11 False False False False False	0 0 12 13 False False False	0 0 14 15 False False
Phase 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 2 3 False	4 5 False Fals False Fals False Fals False Fals False Fals • FPF Override False 2 0	6 7 e False False e False False e False False False False FPW Lvl CPE	8 9 e False False	10 11 False False False False False False	0 12 13 False False False	0 14 15 False False
Exit Call False Phase Omit False Ped Omit False Recovery False Level Alt Seq Min Walk I 0 0 0 0 Queue Phase 0 Queue Phase 0 Queue Time 0 PR. Dets PE TSD 0 TTL 0 Phase 1 Exit Call False Phase Omit False Ped Omit False Recovery False Level Alt Seq Min Walk I 0 0 0 0 Queue Phase 0 Phase 1 Exit Call False Phase Omit False Recovery False Level Alt Seq Min Walk I 0 0 0 0 Queue Phase 0 Queue Phase 0 Queue Phase 0 Queue Phase 0 Queue Time 0	False	False Fals False Fals False Fals False Fals False Fals FPF Override False 2 0	e False False e False False e False False e False False FPW Lvl CPE	e False False e False False e False False e False False Ped Method Reta	False False False False False False	False False False	False False
Phase Omit False Ped Omit False Recovery False Level Alt Seq Min Walk I 0 0 0 0 Queue 1 Queue Phase 0 Queue Time 0 PR. Dets PE TSD 0 TTL 0 Phase 1 Exit Call False Phase Omit False Ped Omit False Recovery False Level Alt Seq Min Walk I 0 0 0 0 Queue Time 0 Queue Time 0 Phase 1 2 Exit Call False Phase Omit False Ped Omit False Recovery False Level Alt Seq Min Walk I 0 0 0 0 Queue 1 Queue Phase 0 Queue Det 0 Queue Time 0	False False False False False False False False	False Fals False Fals False Fals FPF Override False 2 0	e False False e False False e False False FPW Lvl CPE	e False False e False False e False False Ped Method Retu	False False False	False False	
Ped Omit False Recovery False Recovery False Level Alt Seq Min Walk I 0 0 0 0 0 Queue I Queue Phase 0 Queue Det 0 Queue Time 0 PR. Dets PE TSD 0 TTL 0 Phase 1 2 Exit Call False Phase Omit False Ped Omit False I Recovery False Level Alt Seq Min Walk I 0 0 0 0 0 Queue Phase 0 Queue Det 0 Queue Time 0 PR. Dets PE TSD 0 Recovery False I Cueue Phase 0 Queue Phase 0 Queue Phase 0 Queue Time 0	False False False False Freq Ped Skip	False Fals False False FPF Override False 2 0	FPW Lvl CPE	e False False False False Ped Method Return	False False		False False
Recovery False Level Alt Seq Min Walk I 0 0 0 0 0 Queue	False False Freq Ped Skip	False False FPF Override False 2 0	FPW Lvl CPE	False False Ped Method Retu		False False	I WIDO
Level Alt Seq Min Walk I 0 0 Queue 1 Queue Phase 0 Queue Det 0 Queue Time 0 PR. Dets PE TSD 0 TED 0 TTL 0 Phase 1 Exit Call False Phase Omit False Ped Omit False Recovery False Level Alt Seq Min Walk 0 0 Queue 1 Queue Phase 0 Queue Det 0 Queue Time 0 PR. Dets PE TSD 0	Freq Ped Skip	FPF Override False 2 0	FPW Lvl CPE	Ped Method Ret	False False		False False
Queue Phase 0 Queue Det 0 Queue Time 0 PR. Dets PE TSD 0 TED 0 TTL 0 Phase 1 2 Exit Call False Phase Omit False Ped Omit False Ped Omit False Det Omit Fal		False 2 0				False False	False False
Queue Phase 0 Queue Det 0 Queue Time 0 PR. Dets PE TSD 0 TED 0 TTL 0 Phase 1 2 Exit Call False Phase Omit False Ped Omit False Ped Omit False Det O O O O O Queue Alt Seq Min Walk I Queue Phase 0 Queue 1 Queue Phase 0 Queue Det 0 Queue Time 0	0 0	2 0	True False	E 1 0 0	ırn Ped Wait Pe	ed Override Alt S	eq Enabled Fo
Queue Phase 0 Queue Time 0 PR. Dets PE TSD 0 TED 0 TTL 0 Phase 1 2 Exit Call False 1 Phase Omit False 1 Recovery False 1 Level Alt Seq Min Walk I 0 0 0 0 0 Queue Phase 0 Queue Phase 0 Queue Det 0 Queue Time 0		0		False 0 0	0 0	False	Fa
Queue Det 0 Queue Time 0 PR. Dets PE TSD 0 TED 0 TTL 0 Phase 1 2 Exit Call False 1 Phase Omit False 1 Recovery False 1 Level Alt Seq Min Walk I 0 0 0 0 Queue 1 Queue Phase 0 Queue Det 0 Queue Time 0			3	4		5	6
PR. Dets PE TSD 0 TED 0 TTL 0 Phase 1 Exit Call False Phase Omit False Ped Omit Recovery False Level Alt Seq 0 0 Queue 1 Queue Phase Queue Det Queue Time 0 PR. Dets PE TSD 0		0	0	0		0	0
PR. Dets PE TSD 0 TED 0 TTL 0 Phase 1 2 Exit Call False Phase Omit False Ped Omit False Recovery False Level Alt Seq Min Walk 0 0 Queue 1 Queue Phase 0 Queue Det 0 Queue Time 0 PR. Dets PE TSD 0		U	0	0		0	0
TSD 0 TED 0 TTED 0 TTL 0 Phase 1 2 Exit Call False Dear False Dear False Dear Dear Dear Dear Dear Dear Dear Dea		0	0	0		0	0
TSD 0 TED 0 TED 0 TTL 0 Phase 1 2 Exit Call False Dead of the ped Omit Fal	1A	2A	3A	Bank: 2 4A	5A	6A	BU
TED 0 TTL 0 Phase 1 2 Exit Call False Dead of the ped Omit False Dead of t	$\frac{1}{0}$	$\frac{2\mathbf{A}}{0}$	$\frac{3A}{0}$	$\frac{\mathbf{7A}}{0}$	$\frac{3\mathbf{A}}{0}$	$\frac{\mathbf{o}\mathbf{A}}{0}$	$\frac{\mathbf{BC}}{0}$
Phase 1 2 Exit Call False Phase Omit False Ped Omit	$\frac{0}{0}$	$\frac{0}{0}$	0	$\frac{0}{0}$	$\frac{0}{0}$	$\frac{0}{0}$	$\frac{0}{0}$
Exit Call False Phase Omit False Ped	$\frac{0}{0}$	0	0	0	$\frac{0}{0}$	$\frac{0}{0}$	$-\frac{0}{0}$
Exit Call False Phase Omit False Ped Omit False Recovery False Pevel Alt Seq Min Walk I O O O O O O O O O O O O O O O O O O			6 7	9 0	10 11	12 12	
Phase Omit False Ped Omit False Recovery False Level Alt Seq Min Walk I 0 0 0 0 Queue 1 Queue Phase 0 Queue Det 0 Queue Time 0	2 3 Enlar	4 5 Ealan Ealan	6 7	8 9	10 11 Ealan	12 13 Felse	14 15 Felse Fels
Ped Omit False Recovery False Level Alt Seq Min Walk I 0 0 0 0 Queue 1 Queue Phase 0 Queue Det 0 Queue Time 0 PR. Dets PE TSD 0	False False				False False	False False	False False
Recovery False Level Alt Seq Min Walk I 0 0 0 Queue 1 Queue Phase 0 Queue Det 0 Queue Time 0 PR. Dets PE TSD 0	False False				False False	False False	False False
Level Alt Seq Min Walk I 0 0 0 Queue 1 Queue Phase 0 Queue Det 0 Queue Time 0 PR. Dets PE TSD O	False False False				False False False	False False False	False False False
Queue 1 Queue Phase 0 Queue Det 0 Queue Time 0 PR. Dets PE TSD 0							
Queue Phase 0 Queue Det 0 Queue Time 0 PR. Dets PE TSD 0	$\frac{1}{0}$ red Skip	False		False 0 0	0 0	False	
Queue Phase 0 Queue Det 0 Queue Time 0 PR. Dets PE TSD 0		2	3	4		5	6
Queue Det 0 Queue Time 0 PR. Dets PE TSD 0		0	0	0		0	0
Queue Time 0 PR. Dets PE TSD 0		0	0	0		0	0
TSD 0		0	0	0		0	0
TSD 0		-		Bank: 3			
	1A	2A	3A	4A	5A	6A	BU
	0	0	0	0	0	0	0
TED 0 TTL 0	$\frac{0}{0}$	$\frac{0}{0}$	$\frac{0}{0}$	$\frac{0}{0}$	$\frac{0}{0}$	$\frac{0}{0}$	$\frac{0}{0}$
	2 3 False False	$\frac{4}{\text{False}} \frac{5}{\text{Fals}}$	$\frac{6}{\text{False}} = \frac{7}{\text{False}}$	8 9 False False	$ \begin{array}{cc} $	$ \begin{array}{cc} $	$\frac{14}{\text{False}} \frac{15}{\text{False}}$
	1 4150 1 4150				False False	False False	False False
					False False	False False	False False
	False False						
Recovery False		False Fals	e False False	e False False	False False	False False	False False

Queue	1	2	3	4	5	6
Queue Phase	0	0	0	0	0	0
Queue Det	0	0	0	0	0	0
Queue Time	0	0	0	0	0	0

				Bar	1K: 4			
PR. Dets	PE	1A	2A	3A	4A	5A	6A	BU
TSD	0	0	0	0	0	0	0	0
TED	0	0	0	0	0	0	0	0
TTL	0	0	0	0	0	0	0	0

Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Exit Call	False														
Phase Omit	False														
Ped Omit	False														
Recovery	False														

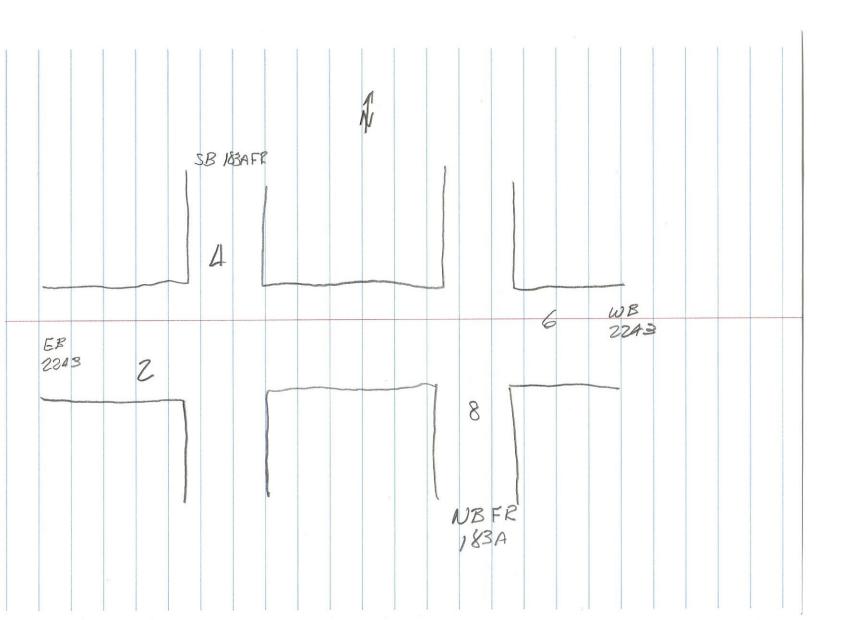
Level	Alt Seq	Min '	Walk	Freq	Ped Skip	FPF Override	FPW Lvl	CPE	Ped	Method	Return	Ped Wait	Ped Override	Alt Seq Enabled	Fo
0	0	0		0	0	False	True	False	False	0	0	0	0	False	Fa
Queue	:		1			2		3			4		5	6	
Queue	Phase		0			0		0			0		0	0	
Queue	Det		0			0		0			0		0	0	
Queue	Time		0			0		0			0		0	0	

N- Lock	Delay	Extend	Default Pattern	Min Grn	Max Grn	No Locl	l kout	Lockout <i>!</i>	Lockout	B Overla	p Pre Grn	Recall	ExCoPhase	eSvc Signa Type		lp ankout
None	None	None	None	None	None	None	e l	None	None	None	None	None	None	None	No	one
Phase		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CO-Pha	ase	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None
QJ-Pha	se	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None
Detecto	or	1		2	3		4		5		6		7	8		9
Detecto Numbe		None	;	None	No	ne	No	ne	None		None		None	No	ne	No

				Bar	nk: 1			
PR. Dets	PE	1A	2A	3A	4A	5A	6A	BU
TSD	0	0	0	0	0	0	0	0
TED	0	0	0	0	0	0	0	0
TTI	0	0	0	0	0	0	0	0

Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Exit Call	False														
Phase Omit	False														
Ped Omit	False														
Recovery	False														

Level	Alt Seq	Min '	Walk	Freq	Ped Skip	FPF Override	FPW Lvl	CPE	Ped	Method	Return	Ped Wait	Ped Overr	ide Al	lt Seq Enabled	l Fo
0	0	0		0	0	False	True	False	False	0	0	0	0	Fa	alse	Fa
Queu	e		1			2		3			4		5		6	
Queue	Phase		0			0		0			0		0		0	
Queue	Det		0			0		0			0		0		0	
Queue	Time		0			0		0			0		0		0	


Bank: 2

PR. Dets	PE	1A	2A	3A	4A	5A	6A	BU
TSD	0	0	0	0	0	0	0	0
TED	n	n	n	n	n	n	Λ	Λ

/10/23, 9:21 AM	1					R	ptAllData_	_22_2023	0410_09	21.html					
ענוו	υ		U		U		v		v		U		v		U
TTL	0		0		0		0		0		0		0		0
Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Exit Call	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
Phase Omit	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
Ped Omit	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
Recovery	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
Level Alt Seq												d Overric			
0 0	0	0 0)	False		True	False Fa	alse 0	0	0	0		False		Fa
Queue	1			2			3		4			5		6	
Queue Phase	0			0			0		0			0		0	
Queue Det Queue Time	$\frac{0}{0}$			$\frac{0}{0}$			0		$\frac{0}{0}$			$-\frac{0}{0}$		$\frac{0}{0}$	
Ç	·			·				ank: 3	·					, and the second	
PR. Dets	PE		1A		2A		3A	ank. J	4A		5A		6A		BU
TSD	0		0		0		0		0		0		0		0
TED	0		0		0		0		0		0		0		0
TTL	0		0		0		0		0		0		0		0
Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Exit Call	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
Phase Omit	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
Ped Omit	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
0 0 Queue	0	0 0)	False 2		True	False Fa	alse 0	0 	0	0	5	False	6	Fa
Queue Phase	0			$\frac{2}{0}$			0		0			$\frac{3}{0}$		0	
Queue Det	$-\frac{\sigma}{0}$			0			0		$-\frac{0}{0}$			0		0	
Queue Time	$\frac{0}{0}$			0			0		0			0		0	
							В	ank: 4							
PR. Dets	PE		1A		2A		3A		4A		5A		6A		BU
TSD	0		0		0		0		0		0		0		0
TED	0		0		0		0		0		0		0		0
TTL	0		0		0		0		0		0		0	1	0
Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Exit Call	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
Phase Omit	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
Ped Omit	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
Recovery	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
Level Alt Seq												d Overrid		_	
0 0	0	0 0)	False		True	False Fa	alse 0	0	0	0		False		Fa
Queue	1			2			3		4			5		6	
Queue Phase	0			0			0		0			0		0	
Queue Det	0			0			0		0			0		0	
Queue Time	0			0			0		0			0		0	

87	TRAI	FIC	SIC	GNA	L IN	TEF	RSE	CTIC	ON:			T	DAT	ΓE:	To	RP:	L	OC:	VF	RS:	HU	B:	ZON	E:	SEC	: EN	IGIN	NEER					C	ITY	OF	AL	JST	IN				T	7	· N	ī
	FM :	22	1	3 6	3	119	2	18	33	Δ		2	-	2007	L											1	_		_	_		SIC		_	_		-	HAS	on facilities were	-	-		Ц	1	1
	1 141 /		-		_	-	_	70				_			2 +	PHA	SEI	MOE	DE				+ ACT	СО	NFIG	-	+	2 #3	#4	#5	-	LITE				/E C	ON	TRO				TEF	RS		- 8
	L DINC	4. [4			NGS		E d 1	6 0	O f		_		TUP TRT	+		1 1	to 30		-	PHA		ΛD	-		1	+	+-	+	+-		NTF		-		FR	EE	PLN:	-	CHE	-	CHE	D.I.	1	-
PHASE 1	RING	_		١,	a, z,	D, 4	, c, .	5, d, (0, 6,	, 0, 1		PE		1111	+			to 30		\dashv	PRE					+	+	+	+	+	1017		_	+7-	-			had 4.	-	-	-	ORD	-	NFIC	7
PHASE	-	_							-		-	_		ASH	+						CAE	_				+	+	+	+	+	TR	ANS					Т		-	_	-	LAS			
2	RING	-										_	_	I/EN	_							_	TOR	-		+	+	+	+	+	_	NCH			-		1		-	O RE			+		
			+ P	1 #	+ PI	AN	MC	DDE		-			310700	/EXI	-				-	_	COC					+	+	1	T	T		X D					_		_	SH		-	\dashv	-	_
	PLAN	MA		PH		PH		OL	T	ACT	T	_	T		_		Tox	· O. F	НО	LD/				-	,	SCH	ED	ULE		-	and the late of the late of				SP	PECI	AL F	FUN	CTIC	NS		AL	IXIL	IARY	_
	MODE	GF	_30,2492	DAT	Share 19	SEC		DATA		CONF	1	ENA	'	OFF	'	VAR	CY	CLE	YI	_D	ΕV	ΕN	VA F	IR.	M S	S N	1 7	ΓW	T	F	S	F	PL	1	2	3	4	5	6	7	8	1	2	3	4
1	FREE	NO	NE	1	T	1	十	1	\top		T		T	0	T	5	1	90			1	ΕN	NA	0	0)	< X		< X	X	X	Х		1												
2													I								2																								
3																					3			1			\perp	_				_				_		1		111			_	_	_
4											1		1		1		-				4			×			+	\bot	_	-		-		L.	02	_	_	+	_			_	4	-	_
5					4		_		+		+		+		+		-		-		5			-	+	-	+	+	+-	+-	-	-		-		-	-	+	-	\vdash		-	+	+	_
6					+		\dashv		+		+		+		+		+		-		6 7		-+	+	+	+-	+	+	+	+	+	+		_	-	-	+	+			\dashv	\dashv	+	+	-
8		_	\dashv		+		+		+		+		+		+		+		-	-	8		-+	+	+	+	+	+	+	+	+	-	-			+	-	-					+	+	_
9			\dashv		\dashv	-	+		+		+		+		+	-	+		 	_	9			+	-	+	+	+	1	+		1				 		+	7			\neg	\dashv	\neg	
10			寸		1		+		\top		+		T		T						10		4255				T		T	T.				- 100											1
20				71/2022	T				T		T		0		T						11							I		I										er er e					
33				10000000																	12											_					100							1	
Щ	PHAS			2	_	_		6	-	8 9	-	-				STREET, SQUARE,	STATISTICS.	THE OWNER OF TAXABLE PARTY.	STREET, SQUARE, SQUARE,	-	-	v.		-	TORS	-	-	-	marine marc	5		-				Name and Address of the Owner, where	-	113	14	15	OCCUPATION AND DESCRIPTION AND	17	STREET, SQUARE,	of the local division in which the	المسالية
ES	TABLE	_	0	0	0	0	0	0 (0	0 0	+	0 0	C	0	+	0	0	0	0	0	0	FR	CALL			T _X	_	(X			_		X	X	X	-	1			X	X		X	X	$\frac{X}{X}$
PRIORITY SEQUENCI	TABLE	_	\vdash	+	+	+	+		+	+	+	+	+	+	+	-	+	\vdash			\neg	LE T	EXTE		1	$+\hat{x}$		C X		_	_		X	X		_	_	-	_	_	$\hat{\mathbf{x}}$		_		X
PR	TABLE	-		\neg	\dashv	1	1		\top	十	+		T	+	1		1					V RAI	ADD				× ×		T										8						
_ w					TON	E: Z	ZER	O DE	NO	TES												PΔ	RED																						- 2
· 05 ,,	PHAS		1	2	3	4	5	6	7	8 9	1	0 11	1:	2 13	3 1	4 15	16	17	18	19	20		YEL				\perp													-16			_	1	
ED MS	ENABLI				_						1		_	_	_		_	_					CALL			_	+		_	-	_	1	_	٠.		-					-		\dashv	+	
PED PRAMS	CALLPI	_		-	+	-	+	_	+		+	-	+	+	+	_	-	-	-	_	-		SWT		-	5	+	+	+	+	-	-	\vdash		-	-	-	+-			\dashv	+	+	+	_
	OVERL	-	A C I	NC	DIA	CDA	B.A.	NILIA	ADE	Der	ED	DECE	ENIT	CDI	EEN	LTIM	F /9	ECO	NIDS	.,	-	ш	DEL/	-	\r	+	+	+	+	+	-	-	\vdash		-	\vdash		-	Y. C.	\vdash	\dashv	1	\dashv	+	_
\vdash	OL		ASI	-	hase	and the second	VIVI -	_)L C	-	CLI	KESL	-141	4	MAN COLUMN	TIIVI	L (0		183	A STATE OF THE PARTY OF THE PAR	-	T	DEL	1	-	1		OL	F	十				otorio ma	C	DL E		+				NB 1	83A		1
	→				dvan			- ✓	•	-				H		LΒ		-	100			-	OL B					•		OL	C	•	_		4			OL	С	←	-				
P L	Ω^{-1}			Cle	aran	се		() ³	_1			_		♦					^					ġ.			,	,		OL	D	企				FM 2	243	OL	D	企			٠.	3 1	
A N _						E	BF	M 22	243		그) Or											ase 5				1-	;							-11								e.	4	1
1 1	→			O	LF	1 L	2	-		-		OL	. G			20			-	OL			ance				-	•							-			1		*			Ol	F	Ļ
	OL A				-	1	-	OL A	N. S.						-	3 183						Cle	aranc	е		-	OL (To the same	0	_	9			4	L G	SMAN	2	₩,	5	+		4	+		٥ ٥
2	1	+	4	+		2	13	5	+	4		+	2	-	15		+	4		+	2		1	-,-	+	4		+	2	\vdash	J		+	-4		+		+-'	3			4	7		_
3						+								+																									1 1 1 1 1 1						
1		-				\top								T			er messe	*	4. 4	-																-						<u></u>		•	
5																													77-						2%		No.	1							
						-													j											-								\vdash				- 39			_
7						+								+							-			_			-			+				-			-	+							_
+		tours area	- 8 - 8 - 8 - 8			+							_	-						Ų.	171		50 - MA	-	-	-			-	1								+	-70-10-4						_
\vdash						+							_	+						-	-					· i	-			+		-			1.0	٠,	-	-	-		+				
	100				-		-	Miles de Mar								-	_	-	1000	and love.				-		- Wes		STATE OF THE PARTY.				7/	E 1000-03		Section 1	-	W			U.S. Carlo	Speciality			AND SECTION	_

FLAG	S	PH	ASES			PH	ASE	DA	TA		T		Γ				_			511.7	DILLO	BULO	DI I		11.44		40	DUA	15		DUA	In	40	DU 47	DI 140
OMITPHA			7, 9-20				TAB			PH 1	F	PH 2	PH	3	PH 4	PH	5	PH	6	PH 7	PH 8	PH 9	PH 1	٥١٢	H 11	PH	12	PH 1	3 P	H 14	PH 15	PH	16	PH 17	PH 18
OMIT PE			1-20		-		#	1		ш							ш																		
MIN REC			4, 5, 6,	8					\neg	EB ADV	2	13		- 1	က	>	CLEARANCE		43		65											İ	- 1		=
MAXREC		1, 2,	7, 0, 0,				PHA	SE	- 1	AD A	E B	2243			SB US 183	A	RA	WB	22.		NB S 183														
SOFT RO						ii.	TIMI		- 1	EB ADV		FM			Sn	WB ADV	EA	>	FM 2243		N SU														
CDT'L SF										2	3						리																		
PED REC	Value and the second					MIN	GRI	EEN		1.0	T	9.0			9.0	1.0	0	9.0	0		9.0														
DUAL ET		2,	4, 6, 8			PAS	SSAC	GE		0.0		3.0			3.0	0.	0	3.0	0		3.0														
SIMGAP						MAX	KGRI	N 1		1.0		18.0			21.0	1.	0	13.	.0		21.0														
REDRES	т					MA)	KGR	N 2																											
AUTO PE	ED						NDSI		′																	342			_						
REST W							. CH			4.0	_	4.0			4.0	4.	_	4.0			4.0			_					_				_		
PED REC							CL	R		2.0		2.0			2.0	2.	0	2.0	0		2.0					_	_		_				_		
RED LOC						WA					1						_		_					4			_		_				_		
YEL LOC	K						CLI				_						_							4			_		+				-		
NO EXT			1, 5				DED				_								_					_		_			+			-	_		
NO ADD	-						ETC				_						_							+		-	_					-	-		
NOGAPF							E BE				_								-					-		_	-		-			+	-		
NOMAX	-		1, 5			1.00	X IN																			-		-	+					17 10	47 40
2+3+		PHA	ASE	1.	2		THE REAL PROPERTY.					10	11	12	13 14	15	16	17	-		PH	ASE	1	2 3	4	5	6	7 1	3 9	10	11 12	2 13	14	15 16	17 18
MIN SP		PLAN	1	7	15		15		15	1									_	MIN	PLAN			_				-	_	-		+	_	_	
NOM SI		CYCLE	90	7	19		21		15	2			Ш			\sqcup		\sqcup	_	NOM	CYCLE			4	_		_	_	+	-		+	-	_	
MAX SF	PLIT			7	24		27	7	19	2	7									MAX							_		_	-		+	_		
		PLAN																		MIN	PLAN							_	\perp	_		1	_		
		CYCLE																		NOM	CYCLE														
NO	TE:									8										MAX					,									1	
	120 =	PLAN					\Box				1								\neg	MIN	PLAN														
	MODE	CYCLE		-			\vdash	\neg		_	+	+				\Box			\dashv	NOM	CYCLE										7				
	1 33 =	CICLL		+-	 		\vdash		\dashv	\dashv	+	+	\vdash	-	_	+	_	\vdash	\neg	MAX	0.011			+	1				\top			\top			
FLASH				\vdash	-	-	\vdash	-	\vdash		+	-		-		\vdash			$\overline{}$	MIN	PLAN	r	\vdash	+	+	\vdash		\dashv	+	+		+			
		PLAN		-	-				\dashv		+	-	\vdash	_	-	+		\vdash	-				\vdash	+	+-	\vdash		-	+	+		+	\dashv	-	
		CYCLE		_							_	_			_	\vdash			_	NOM	CYCLE	L		-	-	\vdash	_	\dashv	+	-		+	\dashv		
																		- 12		MAX				_			_		_			\perp			
Chan	ge ONL`	Y the follo	owing:		1	1	2	3	3	4		5	6		7	8		9		10	11	12	13		14	1	5	16		17	18	1	9	20	21
	FUNCT	ION TYP	È	V	EH	VE	EH	VE	EH	VEH	1	VEH	VE	Н	VEH	VE	Н	VE	Н	VEH	VEH	VEH											_		
10	FUNCT	ION IND	EX															-						_					\perp			<u> </u>	_		
JT ÆLS	UNIT																												_			_	_		
2 Z	CONNE	CTOR /	BUI																					4		_	-		_				-		
INPU	PIN																				ļ			_			_		+				_		
INPU		IEL IN 1											_											4			_		+			-	-		
"		IEL IN 2						-								<u> </u>			_					_			-		_			-	-		
	LOGIC										_		_			_								_			_		+	47	40	-	1	00	0.1
		3.5		L	1	- 3	2	3	3	4		5	6		7	8		9		10	11	12	13	_	14	1	5	16	_	17	18	19	9	20	21
		ION TYP											1								i i			4			_		+				\dashv		-
LS		ION IND									\bot					-								+		_	-		+	-	-		\dashv		
OUTPUT		CTOR /	BUI 1	_							1		ـ					-	_		-		-	+		-	-		+			-	\dashv		
ES	PIN 1			-							\bot		-			-							-	+		-			+			-	\dashv		
ΣŦ		ECTOR /	BUI 2	_							+		-			-		<u> </u>			-			-	-	-	_		+		-	-	\dashv		
0	PIN 2	-0767	DI II O	-					_		+		-			-					-			+		-	-		+			-	\dashv		
		ECTOR /	BUI 3	-							+		-			-			_		-	-	-	+		-	_		+				\dashv	-	
	PIN 3			1		1					1		1			1		l			1	1	1												

ě.

Traffic Impact Analysis

Appendix I | MSTA Queue Calculations

				BASIS - Leande Urban Charter	. 2.00 i W Dis	Thosai Concuie				Version:	: 04012021
		MSTA S	School Que					Calcı	ulations	V CI SIOI1.	. 0101202
AM PM Avg. PM Cars / Cars / Car At one Student Student Length Time	Grade Lev	Student	Number of Buses	Staff Members	Student Drivers	PM Total Vehicles	PM Peak Vehicles	Average Queue Length	Total AM Trips	Total PM Trips	High Dema Length
== 0.40/ 00.450/ 00.40 40.050/		110	•								30%
55.94% 39.15% 22.19 48.67%	K - 10	140		17		55	27	599	157	110	779
52.91% 47.50% 22.19 46.12%	11th	17	Ī	17	5	7	4	89	18	19	115
			<u> </u>	2							
50.08% 47.58% 22.83 55.71%	12th	16			14	3	2	46	16	20	60
		470		2	10	0.5	00		400	440	054
	Sum	>> 173			19	65	33	734	190	149	954 221
					Grade K-10					1	221
			AM T	rips Generated	0.00011.0		PM T	rips Generated	d		
	Directio	n Parents	Buses	Staff	Trips	Parents	Buses	Staff	Trips		
	IN	78			78	55			55		
	OUT	78	0.04.16	10 Trips	78 157	55	DMIC	10 Trips	55 110		267
			AIVI N-	to trips	157	ı	PIVI N-	to trips	110		207
					Grade 11						1
<u>NOTES</u>			AM T	rips Generated			PM T	rips Generated	d		
	Direction Parents	Buses	Staff	Student Dvr	Trips	Parents	Buses	Staff	Student Dvr	Trips	
Average Queue Length does not	IN 7 OUT 7			4	11 7	7			5	7 12	41
include an alternative traffic pattern required for high traffic demand days	7		AM 11	th Trips	18	,		PM 1	1th Trips	19	37
which is usually 30% additional length.			7.00	po		1			rai riipo		<u> </u>
					Grade 12						
Average Queue Length does not			M Trips Genera					VI Trips Genera			
include the Student Loading Zone.			Staff	Student Dvr	Trips 14	Parents	Buses	Staff	Student Dvr	Trips	4
include the Student Loading Zone. Peak traffic volumes at schools	Direction Parents	Buses	- Ctu			3				3	4
include the Student Loading Zone. Peak traffic volumes at schools normally occur within a 30-minute	IN 2	Buses	- Ciuii	12		3			14	17	
include the Student Loading Zone. Peak traffic volumes at schools normally occur within a 30-minute		Buses			2	3		PM 1:	14 2th Trips	17 20	36
include the Student Loading Zone. Peak traffic volumes at schools normally occur within a 30-minute	IN 2	Buses		th Trips	2 16	3		PM 12	2th Trips	20	36
include the Student Loading Zone. Peak traffic volumes at schools	IN 2	Buses			2	3		All PM TRIPS			36

							Type:	Urban Charter		missal Schedule				Version	: 0401202
						MSTA S	chool Que	ue Input				Calcu	llations		
AM Cars / Student	PM Cars / Student	Avg. Car Length	PM At one Time		Grade Level	Student Population	Number of Buses	Staff Members	Student Drivers	PM Total Vehicles	PM Peak Vehicles	Average Queue Length	Total AM Trips	Total PM Trips	High Dema Length
FF 0.40/	00.450/	00.40	40.070/		16 40	040	_	ı	1	00	44	0.10	005	100	30%
55.94%	39.15%	22.19	48.67%		K - 10	210	L	26	J	83	41	910	235	166	1183
52.91%	47.50%	22.19	46.12%		11th		ı		l e						
50.08%	47.58%	22.83	55.71%		12th										
					Sum >>	210				83	41	910	235	166	1183
						2.0							200	.00	273
									Grade K-10					ı	
								rips Generated				rips Generated			
					Direction	Parents 117	Buses	Staff	Trips 117	Parents 83	Buses	Staff	Trips 83	4	
					OUT	117			117	83			83	i	AD1
							AM K-	10 Trips	235		PM K-	10 Trips	166		401
					1										,
	NO	TES					AM T	rips Generated			PM T	rips Generated			
	<u></u>	<u></u>		Direction	Parents	Buses	Staff		Trips	Parents	Buses	Staff		Trips	11
		ngth <u>does</u>		IN											
		e traffic pat		OUT			A N A 1 1	th Trips				DM 11	Ith Trips		
		fic demand additional					AIVI I I	ui riips				FIVIT	штиръ		
		ngth does													
		oading Zor					VI Trips Genera	ted				VI Trips Genera	ted		
		at schools a 30-minu		Direction IN	Parents	Buses	Staff		Trips	Parents	Buses	Staff		Trips	41
		n a 30-minu ng a PHF of		OUT											1
		J	'				AM 12	th Trips				PM 12	2th Trips		
								In	117				In	83	
							All AM TRIPS	Out	117			AII PM TRIPS	Out	83	11

						MOTA		Urban Charter				0-1	1-4!	Version	: 0401202
						MSIAS	chool Que	ue Input					lations		
AM Cars / Student	PM Cars / Student	Avg. Car Length	PM At one Time		Grade Level	Student Population	Number of Buses	Staff Members	Student Drivers	PM Total Vehicles	PM Peak Vehicles	Average Queue Length	Total AM Trips	Total PM Trips	High Dem Length
55.94%	39.15%	22.19	48.67%		K - 10	180	l			71	35	777	201	142	30% 101
								22							
52.91%	47.50%	22.19	46.12%		11th										
50.08%	<i>17</i> 58%	22.83	55.71%		12th		T		<u> </u>					1	
30.0070	47.5070	22.03	33.7 170		12(11		<u> </u>								
					Sum >>	180				71	35	777	201	142	1010
									Grade K-10					7	233
							AM T	rips Generated	Grade K-10		PM T	rips Generated			
					Direction	Parents	Buses	Staff	Trips	Parents	Buses	Staff	Trips	1	
					IN	101			101	71			71	1	
					OUT	101			101	71			71		AD'
							AM K-	I0 Trips	201	l	PM K-	10 Trips	142		343
															1
	NO:	<u>TES</u>					AM T	rips Generated			PM T	rips Generated			
				Direction	Parents	Buses	Staff		Trips	Parents	Buses	Staff		Trips	
		igth <u>does</u> traffic pat		IN OUT											-
required fo				33.			AM 11	th Trips				PM 11	th Trips		1
which is us	*		•				,								
Average Q							M Trips Genera				D.	VI Trips Genera	4		
include the Peak traffic				Direction	Parents	Buses	Staff	leu	Trips	Parents	Buses	Staff	lea	Trips	-
normally oc				IN	i di elles	Duses	Ctan		11109	i di elits	Duses	Otan		irips	11
time period				OUT											
							AM 12	th Trips				PM 12	th Trips		
							All AM	ln	101			All PM	In	71	
							TRIPS	Out Total	101 201			TRIPS	Out Total	71 142	343

				BASIS - Leande Urban Charter						Version:	0401202
		MSTA S	chool Que	ue Input				Calcu	ulations		
	Grade Level	Student Population	Number of Buses	Staff Members	Student Drivers	PM Total Vehicles	PM Peak Vehicles	Average Queue Length	Total AM Trips	Total PM Trips	High Dema Length
		101	1			===				101	30%
	K - 10	131	2	16		52	26	5//	147	104	750
	11th	17	I	10	5	7	4	89	18	19	115
				2							
	12th	17			14	3	2	46	17	20	60
	Sum >>	165		2	10	62	30	711	191	1/13	926
	Julii >>	103			19	02	32	711	101	143	214
					Grade K-10						
			Buses	Staff			Buses	Staff			
									_		ADT
	001	10	AM K-	10 Trips	147	- JZ	PM K-	10 Trips	104		251
								·		ı	_
					Grade 11						
Direction	Daranta	Pucos			Tring	Baranta		•		Trino	1
		buses	Stati	4			buses	Stair	Student DVr		
OUT	7				7	7			5	12	11
			AM 11	th Trips	18			PM 1	1th Trips	19	37
	1				Crade 42						.
		ΔΙ	M Trins General	ted	Grade 12		Pi	M Trins Genera	ated		1
Direction	Parents				Trips	Parents		•		Trips	
IN	3		1	12	15	3				3	
OUT	3				3	3			14	17	
			AM 12	th Trips	17			PM 1	2th Trips	20	37
			All AM	In Out	99 83			All PM	In Out	62 81	
	Direction IN	Direction Parents IN 7 OUT 7 Direction Parents IN 7 OUT 7	Student Population	Student Population Number of Buses	Name	MSTA School Queue Input	MSTA School Queue Input Grade Level Student Population Number of Staff Members Drivers Student Drivers Vehicles	MSTA School Queue Input PM PM Peak Vehicles Vehicles	MSTA School Queue Input Calculation Ca	MSTA School Queue Input Calculations	MSTA School Queue Input Grade Level Student Population Number of Buses Staff Members Student Population Number of Buses Staff Members Student Population Peak Vehicles Vehicles

Colliers Engineering & Design is a trusted provider of multi-discipline engineering, design and consulting services providing customized solutions for public and private clients through a network of offices nationwide.

For a full listing of our office locations, please visit colliersengineering.com

1 877 627 3772

Civil/Site • Traffic/Transportation • Governmental • Survey/Geospatial Infrastructure • Geotechnical/Environmental • Telecommunications • Utilities/Energy