

MATKINHOOVER.COM

Balcones FlatsJarrell, Texas

Sewage Collection System Plan

March 2025 TBPE # F-4512 MHE 2992.00

February 27, 2025

Edwards Aquifer Protection Program Texas Commission on Environmental Quality Austin Regional Office 12100 Park 35 Circle Austin, Texas 78753

Re:

Balcones Flats

Jarrell, Texas

Organized Sewage Collection System Plan

Please find attached one (1) digital copy the Balcones Flats Development Sewer, Collection System Plan (SCS). The SCS has been prepared in accordance with the Texas Commission on Environmental Quality (30 TAC 217) and current policies for development over the Edwards Aquifer Recharge Zone.

This Organized Sewage Collection System Plan applies to a 23.028-acre tract located in the city limits of Jarrell, TX just southeast of the intersection between CR 487 and C. Bud Stockton Loop. This plan has already been approved by TCEQ but was not built and the permit expired, the previous approval letter from TCEQ is attached behind this page.

Please review the attached SCS information for the items it is intended to address, and if acceptable, provide a written approval of the plan in order that construction may begin at the earliest opportunity.

Appropriate review fees \$650.00 paid on first submission and an additional \$9.50 has been included with the NOD1 and fee application are included. If you have any questions regarding this information, please call our office.

Sincerely,

Matkin Hoover Engineering & Surveying

TBPE Firm No. F-4512

Garrett Keller, P.E. President & COO

Texas Commission on Environmental Quality

Edwards Aquifer Application Cover Page

Our Review of Your Application

The Edwards Aquifer Program staff conducts an administrative and technical review of all applications. The turnaround time for administrative review can be up to 30 days as outlined in 30 TAC 213.4(e). Generally administrative completeness is determined during the intake meeting or within a few days of receipt. The turnaround time for technical review of an administratively complete Edwards Aquifer application is 90 days as outlined in 30 TAC 213.4(e). Please know that the review and approval time is directly impacted by the quality and completeness of the initial application that is received. In order to conduct a timely review, it is imperative that the information provided in an Edwards Aquifer application include final plans, be accurate, complete, and in compliance with 30 TAC 213.

Administrative Review

- Edwards Aquifer applications must be deemed administratively complete before a technical review can begin. To be considered administratively complete, the application must contain completed forms and attachments, provide the requested information, and meet all the site plan requirements. The submitted application and plan sheets should be final plans. Please submit one full-size set of plan sheets with the original application, and half-size sets with the additional copies.
 - To ensure that all applicable documents are included in the application, the program has developed tools to guide you and web pages to provide all forms, checklists, and guidance. Please visit the below website for assistance: http://www.tceq.texas.gov/field/eapp.
- 2. This Edwards Aquifer Application Cover Page form (certified by the applicant or agent) must be included in the application and brought to the administrative review meeting.
- 3. Administrative reviews are scheduled with program staff who will conduct the review. Applicants or their authorized agent should call the appropriate regional office, according to the county in which the project is located, to schedule a review. The average meeting time is one hour.
- 4. In the meeting, the application is examined for administrative completeness. Deficiencies will be noted by staff and emailed or faxed to the applicant and authorized agent at the end of the meeting, or shortly after. Administrative deficiencies will cause the application to be deemed incomplete and returned.
 - An appointment should be made to resubmit the application. The application is re-examined to ensure all deficiencies are resolved. The application will only be deemed administratively complete when all administrative deficiencies are addressed.
- 5. If an application is received by mail, courier service, or otherwise submitted without a review meeting, the administrative review will be conducted within 30 days. The applicant and agent will be contacted with the results of the administrative review. If the application is found to be administratively incomplete, it can be retrieved from the regional office or returned by regular mail. If returned by mail, the regional office may require arrangements for return shipping.
- 6. If the geologic assessment was completed before October 1, 2004 and the site contains "possibly sensitive" features, the assessment must be updated in accordance with the *Instructions to Geologists* (TCEQ-0585 Instructions).

Technical Review

1. When an application is deemed administratively complete, the technical review period begins. The regional office will distribute copies of the application to the identified affected city, county, and groundwater conservation district whose jurisdiction includes the subject site. These entities and the public have 30 days to provide comments on the application to the regional office. All comments received are reviewed by TCEQ.

- 2. A site assessment is usually conducted as part of the technical review, to evaluate the geologic assessment and observe existing site conditions. The site must be accessible to our staff. The site boundaries should be clearly marked, features identified in the geologic assessment should be flagged, roadways marked and the alignment of the Sewage Collection System and manholes should be staked at the time the application is submitted. If the site is not marked the application may be returned.
- 3. We evaluate the application for technical completeness and contact the applicant and agent via Notice of Deficiency (NOD) to request additional information and identify technical deficiencies. There are two deficiency response periods available to the applicant. There are 14 days to resolve deficiencies noted in the first NOD. If a second NOD is issued, there is an additional 14 days to resolve deficiencies. If the response to the second notice is not received, is incomplete or inadequate, or provides new information that is incomplete or inadequate, the application must be withdrawn or if not withdrawn the application will be denied and the application fee will be forfeited.
- 4. The program has 90 calendar days to complete the technical review of the application. If the application is technically adequate, such that it complies with the Edwards Aquifer rules, and is protective of the Edwards Aquifer during and after construction, an approval letter will be issued. Construction or other regulated activity may not begin until an approval is issued.

Mid-Review Modifications

It is important to have final site plans prior to beginning the permitting process with TCEQ to avoid delays.

Occasionally, circumstances arise where you may have significant design and/or site plan changes after your Edwards Aquifer application has been deemed administratively complete by TCEQ. This is considered a "Mid-Review Modification". Mid-Review Modifications may require redistribution of an application that includes the proposed modifications for public comment.

If you are proposing a Mid-Review Modification, two options are available to you:

- You can withdraw your application, and your fees will be refunded or credited for a resubmittal.
- TCEQ can continue the technical review of the application as it was submitted, and a modification application can be submitted at a later time.

If the application is withdrawn, the resubmitted application will be subject to the administrative and technical review processes and will be treated as a new application. The application will be redistributed to the effected jurisdictions.

Please contact the regional office if you have questions. If your project is located in Williamson, Travis, or Hays County, contact TCEQ's Austin Regional Office at 512-339-2929. If your project is in Comal, Bexar, Medina, Uvalde, or Kinney County, contact TCEQ's San Antonio Regional Office at 210-490-3096

Please fill out all required fields below and submit with your application.

1. Regulated Entity Name: Balcones Flats			2. Regulated Entity No.:						
3. Customer Name: Strategic Metal Solutions, LLC		4. Customer No.: 605875822							
5. Project Type: (Please circle/check one)	New		Modification Extension I		Exception				
6. Plan Type: (Please circle/check one)	WPAP	CZP([SCS]	UST	AST	EXP	EXT	Technical Clarification	Optional Enhanced Measures
7. Land Use: (Please circle/check one)	Residen	tial	Non-residential			8. Sit	e (acres):	23.028	
9. Application Fee:	\$650.00)	10. Permanent B		MP(s):	N/A		
11. SCS (Linear Ft.):	194.69		12. AST/UST (No		. Tan	Tanks): N/A			
13. County:	William	son	14. Watershed:				Salado Creek		

Application Distribution

Instructions: Use the table below to determine the number of applications required. One original and one copy of the application, plus additional copies (as needed) for each affected incorporated city, county, and groundwater conservation district are required. Linear projects or large projects, which cross into multiple jurisdictions, can require additional copies. Refer to the "Texas Groundwater Conservation Districts within the EAPP Boundaries" map found at:

http://www.tceq.texas.gov/assets/public/compliance/field_ops/eapp/EAPP%20GWCD%20map.pdf

For more detailed boundaries, please contact the conservation district directly.

Austin Region					
County:	Hays	Travis	Williamson		
Original (1 req.)	_	_	_ <u>X</u> _		
Region (1 req.)	_	_	_ <u>X</u> _		
County(ies)	_	_	<u>X</u>		
Groundwater Conservation District(s)	Edwards Aquifer AuthorityBarton Springs/ Edwards AquiferHays TrinityPlum Creek	Barton Springs/ Edwards Aquifer	NA		
City(ies) Jurisdiction	AustinBudaDripping SpringsKyleMountain CitySan MarcosWimberleyWoodcreek	AustinBee CavePflugervilleRollingwoodRound RockSunset ValleyWest Lake Hills	AustinCedar ParkFlorenceGeorgetown _X_JarrellLeanderLiberty HillPflugerville Round Rock		

San Antonio Region						
County:	Bexar	Comal	Kinney	Medina	Uvalde	
Original (1 req.)	_	_	_	_		
Region (1 req.)	_	_		_		
County(ies)		_	_			
Groundwater Conservation District(s)	Edwards Aquifer Authority Trinity-Glen Rose	Edwards Aquifer Authority	Kinney	EAA Medina	EAA Uvalde	
City(ies) Jurisdiction	Castle HillsFair Oaks RanchHelotesHill Country VillageHollywood ParkSan Antonio (SAWS)Shavano Park	BulverdeFair Oaks RanchGarden RidgeNew BraunfelsSchertz	NA	San Antonio ETJ (SAWS)	NA	

I certify that to the best of my knowledge, that the application is complete and accurate. This application is hereby submitted to TCEQ for administrative review and technical review.			
Garrett Keller, P.E.			
Print Name of Customer/Authorized Agent 3/10/25			
Signature of Customer/Authorized Agent Date			

FOR TCEQ INTERNAL USE ONLY				
Date(s)Reviewed:	Date Administratively Complete:			
Received From:	Correct Number of Copies:			
Received By:	Distribution Date:			
EAPP File Number:	Complex:			
Admin. Review(s) (No.):	No. AR Rounds:			
Delinquent Fees (Y/N):	Review Time Spent:			
Lat./Long. Verified:	SOS Customer Verification:			
Agent Authorization Complete/Notarized (Y/N):	Payable to TCEQ (Y/N):			
Core Data Form Complete (Y/N):	Check: Signed (Y/N):			
Core Data Form Incomplete Nos.:	Less than 90 days old (Y/N):			

Balcones Flats Residential Subdivision SCS

Section 2 – General Information

General Information Form

Texas Commission on Environmental Quality

For Regulated Activities on the Edwards Aquifer Recharge and Transition Zones and Relating to 30 TAC §213.4(b) & §213.5(b)(2)(A), (B) Effective June 1, 1999

To ensure that the application is administratively complete, confirm that all fields in the form are complete, verify that all requested information is provided, consistently reference the same site and contact person in all forms in the application, and ensure forms are signed by the appropriate party.

Note: Including all the information requested in the form and attachments contributes to more streamlined technical reviews.

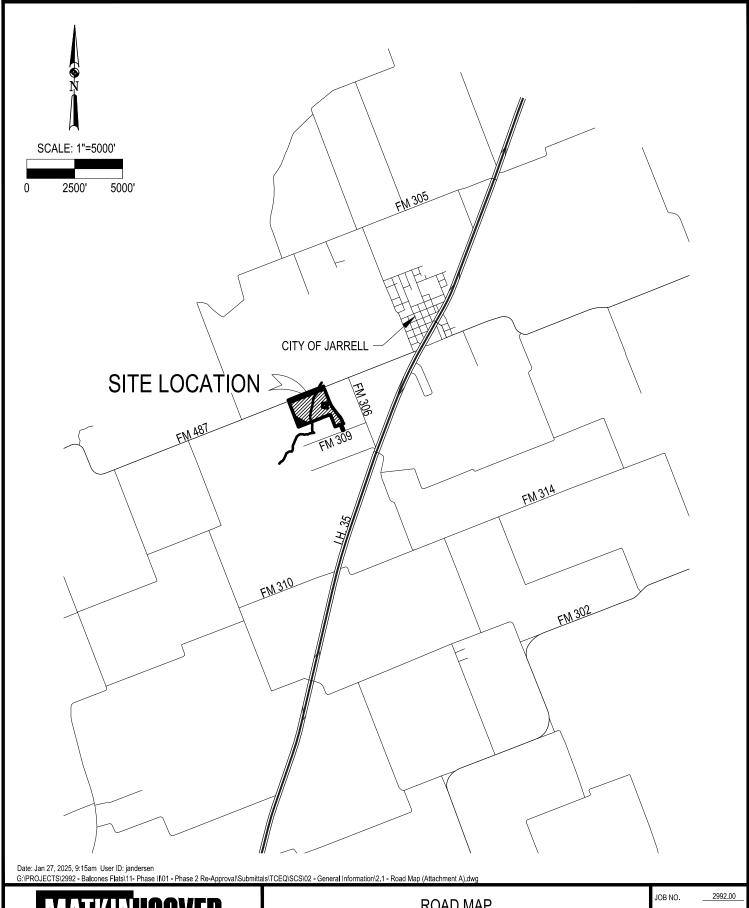
Signature

To the best of my knowledge, the responses to this form accurately reflect all information requested concerning the proposed regulated activities and methods to protect the Edwards Aquifer. This General Information Form is hereby submitted for TCEQ review. The application was prepared by:

	s proper early.
	nt Name of Customer/Agent: <u>Garrett Keller, P.E.</u> te: <u>3/</u> 10/25
Sig	nature of Customer/Agent:
P	roject Information
1.	Regulated Entity Name: Balcones Flats
2.	County: Williamson
3.	Stream Basin: Salado Creek
4.	Groundwater Conservation District (If applicable): N/A
5.	Edwards Aquifer Zone:
	Recharge Zone Transition Zone
6.	Plan Type:
	WPAPSCSModificationASTUSTException Request
	1 of

7.	Customer (Applicant):	
	Contact Person: Evan Horn Entity: Strategic Metal Solutions, LLC Mailing Address: PO Box 689 City, State: Marble Falls TX Telephone: (512) 966 - 7434 Email Address: evan@strategictx.com	Zip: <u>78654</u> FAX: <u>N/A</u>
3.	Agent/Representative (If any):	
	Contact Person: <u>Garrett Keller</u> Entity: <u>Matkin Hoover Engineering & Surveying</u> Mailing Address: <u>1701 Williams Dr</u> City, State: <u>Georgetown, Texas</u> Telephone: <u>830 - 249 - 0600</u> Email Address: <u>GKeller@matkinhoover.com</u>	Zip: <u>78626</u> FAX: <u>830 - 249 - 0099</u>
€.	Project Location:	
	 ☐ The project site is located inside the city limits ☐ The project site is located outside the city limit jurisdiction) of ☐ The project site is not located within any city's 	s but inside the ETJ (extra-territorial
10.	The location of the project site is described beldetail and clarity so that the TCEQ's Regional suboundaries for a field investigation.	
	In Jarrell Texas just southeast of the intersection Loop.	on between CR 487 and C. Bud Stockton
11.	Attachment A – Road Map. A road map show project site is attached. The project location are the map.	_
12.	Attachment B - USGS / Edwards Recharge Zon USGS Quadrangle Map (Scale: 1" = 2000') of th The map(s) clearly show:	
	 ☑ Project site boundaries. ☑ USGS Quadrangle Name(s). ☑ Boundaries of the Recharge Zone (and Trange) ☑ Drainage path from the project site to the I 	
13.	The TCEQ must be able to inspect the project Sufficient survey staking is provided on the pro the boundaries and alignment of the regulated features noted in the Geologic Assessment.	ject to allow TCEQ regional staff to locate

Sur	vey staking will be completed by this date:
nar	achment C – Project Description. Attached at the end of this form is a detailed rative description of the proposed project. The project description is consistent oughout the application and contains, at a minimum, the following details:
	Area of the site Offsite areas Impervious cover Permanent BMP(s) Proposed site use Site history Previous development Area(s) to be demolished
15. Existing	project site conditions are noted below:
	Existing commercial site Existing industrial site Existing residential site Existing paved and/or unpaved roads Undeveloped (Cleared) Undeveloped (Undisturbed/Uncleared) Other:
Prohibi	ited Activities
	a aware that the following activities are prohibited on the Recharge Zone and are not posed for this project:
	Waste disposal wells regulated under 30 TAC Chapter 331 of this title (relating to Underground Injection Control);
(2)	New feedlot/concentrated animal feeding operations, as defined in 30 TAC §213.3;
(3)	Land disposal of Class I wastes, as defined in 30 TAC §335.1;
(4)	The use of sewage holding tanks as parts of organized collection systems; and
	New municipal solid waste landfill facilities required to meet and comply with Type I standards which are defined in §330.41(b), (c), and (d) of this title (relating to Types of Municipal Solid Waste Facilities).
` '	New municipal and industrial wastewater discharges into or adjacent to water in the state that would create additional pollutant loading.
·	aware that the following activities are prohibited on the Transition Zone and are proposed for this project:


(1) Waste disposal wells regulated under 30 TAC Chapter 331 (relating to Underground

Injection Control);

- (2) Land disposal of Class I wastes, as defined in 30 TAC §335.1; and
- (3) New municipal solid waste landfill facilities required to meet and comply with Type I standards which are defined in §330.41 (b), (c), and (d) of this title.

Administrative Information

18. The	e fee for the plan(s) is based on:
	For a Water Pollution Abatement Plan or Modification, the total acreage of the site where regulated activities will occur. For an Organized Sewage Collection System Plan or Modification, the total linear footage of all collection system lines. For a UST Facility Plan or Modification or an AST Facility Plan or Modification, the total number of tanks or piping systems. A request for an exception to any substantive portion of the regulations related to the protection of water quality. A request for an extension to a previously approved plan.
19. 🔀	Application fees are due and payable at the time the application is filed. If the correct fee is not submitted, the TCEQ is not required to consider the application until the correct fee is submitted. Both the fee and the Edwards Aquifer Fee Form have been sent to the Commission's:
	 ☐ TCEQ cashier ☐ Austin Regional Office (for projects in Hays, Travis, and Williamson Counties) ☐ San Antonio Regional Office (for projects in Bexar, Comal, Kinney, Medina, and Uvalde Counties)
20. 🔀	Submit one (1) original and one (1) copy of the application, plus additional copies as needed for each affected incorporated city, groundwater conservation district, and county in which the project will be located. The TCEQ will distribute the additional copies to these jurisdictions. The copies must be submitted to the appropriate regional office.
21. 🔀	No person shall commence any regulated activity until the Edwards Aquifer Protection Plan(s) for the activity has been filed with and approved by the Executive Director.

MATKIN HOOVER

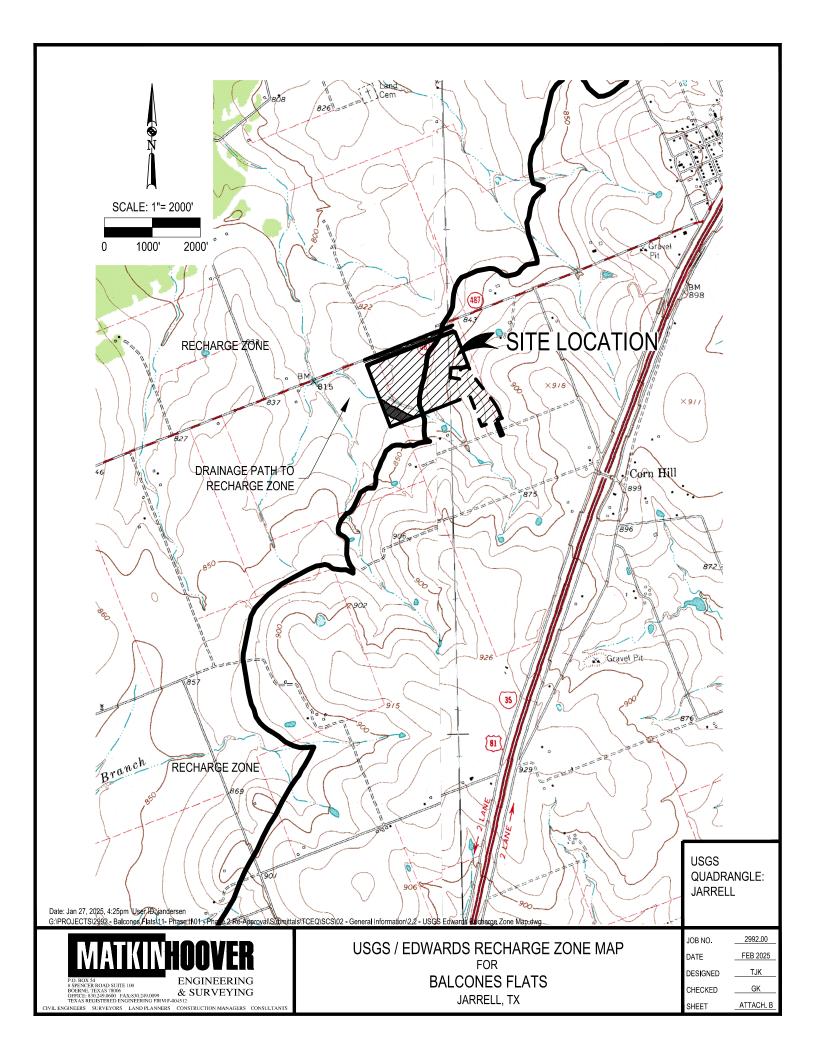
P.O. BOX 54

8 SPENCER ROAD SUITE 100

BOERNE, TEXAS 78006

OFFICE: \$30,240,000 FAX:\$30,249,0099

CHYLLENGINEERS SURVEYORS LAND PLANNERS CONSTRUCTION MANAGERS CONSULTANTS


ROAD MAP FOR BALCONES FLATS JARRELL, TX
 JOB NO.
 2992.00

 DATE
 FEB 2025

 DESIGNED
 TJK

 CHECKED
 GK

 SHEET
 ATTACH. A

BALCONES FLATS PROJECT DESCRIPTION

The proposed Balcones Flats Subdivision is located in Jarrell, TX just southeast of the intersection between CR 487 and C. Bud Stockton Loop. The project area is 68.70 acres of undeveloped/uncleared land. A portion of this property is located within Zone 'A' of the FEMA Floodplain as denoted herein, and as defined by Federal Emergency Management Administration Flood Hazard Boundary Map, community panel number 48491C0125E, dated effective September 26, 2008. 32.94 acres of the property lies within the Edwards Aquifer Recharge Zone and drains into Salado Creek while the other 35.76 acres of the property does not lie within the Edwards Aquifer jurisdiction.

The proposed development called "Balcones Flats" is a 3-phase residential subdivision. Phase 1 of the development will consist of 91 single family residential tracts with 47' and 52' frontage (ranging from 3500ft² to 6000ft² in size) and one open space lot with a lift station. Phase 2 of the development will consist of 108 single family residential tracts with three open space lots. Phase 3 of the development will consist of an approximate 300-unit multi-family development that will be permitted at a later date. The proposed site is currently undeveloped and has historically been used for agriculture and livestock resources. The proposed development will include the construction of roads, utilities, detention/water quality ponds, entrance monuments, TxDOT improvements and other appurtenances. Upon completion the subdivision will have 22.87 acres (33.3%) of impervious cover and 9.26 acres (28.1%) of impervious cover within the Edwards Aquifer Recharge Zone. Mitigation will be provided by a water quality pond that has been sized to account for the proposed impervious cover for the single-family homes within the EARZ of the development (Water Quality Pond F). The proposed pond has been sized in order to accommodate the TCEQ requirement of 80% TSS Removal. Separate calculations are provided within this submittal.

The second phase Balcones Flats is a 23.028-acre tract of land. Included within the second phase 194.69 LF of sanitary sewer within the Edwards Aquifer Recharge Zone and will be constructed to drain to the sewage collection system in phase 1. This submittal is to re-permit the sewer system located in phase 2, but the system has been sized for ultimate development. The letter of the previous approval for this development has been included after the executive summary letter for this site. No change has been made to the plans from its previous approval.

The BMPs for this project have been designed in accordance with the TCEQ Technical Guidance Manual RG-348(2005) to remove over 80% of the increased TSS for the entire project.

Jon Niermann, *Chairman*Emily Lindley, *Commissioner*Bobby Janecka, *Commissioner*Toby Baker, *Executive Director*

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Protecting Texas by Reducing and Preventing Pollution

July 9, 2021

Mr. Margarito Espinoza Espinoza Stone 101 W. 4th St. Jarrell, TX 76537

Re: Edwards Aquifer, Williamson County

NAME OF PROJECT: Balcones Flats Phase II; Located S.E. of C. Bud Stockton Loop and F.M. 487; Jarrell, Texas

TYPE OF PLAN: Request for Approval of an Organized Sewage Collection System (SCS) Plan; 30 Texas Administrative Code (TAC) Chapter 213 Edwards Aquifer

Edwards Aquifer Protection Program ID No. 11002524; Regulated Entity No. RN110816170

Dear Mr. Espinoza:

The Texas Commission on Environmental Quality (TCEQ) has completed its review of the organized sewage collection system plans and specifications for the referenced project submitted to the Austin Regional Office on behalf of Espinoza Stone by Matkin Hoover Engineering and Surveying on May 12, 2021. Final review of the SCS was completed after additional material was received on June 30, 2021. As presented to the TCEQ, the construction documents were selected and were prepared by a Texas Licensed Professional Engineer to be in general compliance with the requirements of 30 TAC Chapter 213 and Chapter 217. Therefore, based on the Texas Licensed Professional Engineer's concurrence of compliance, the planning materials for construction of the proposed sewage collection system and pollution abatement measures are hereby approved subject to applicable state rules and the conditions in this letter. The applicant or a person affected may file with the chief clerk a motion for reconsideration of the executive director's final action on this Edwards Aquifer protection plan. A motion for reconsideration must be filed no later than 23 days after the date of this approval letter. This approval expires (2) two years from the date of this letter unless, prior to the expiration date, more than 10 percent of construction has commenced, or an extension of time has been requested.

PROJECT DESCRIPTION

The proposed sewage collection system will provide disposal service for a single-family residential development. The gravity SCS system will include the piping outlined in the table below.

Pipe Diameter	Linear Feet	Pipe Material/Specifications
8" Gravity	194.69	SDR-26, Class 160/ASTM D2241

The system will be connected to an existing City of Jarrell wastewater line for conveyance to the City of Jarrell Wastewater Treatment Plant for treatment and disposal. The project is located within the City of Jarrell and will conform to all applicable codes, ordinances, and requirements of the City of Round Rock.

GEOLOGY

According to the Geologic Assessment included with the application, the soils consist of Austin-Whitewright, Denton silty clay, Heiden clay and Houston Black clay. The surficial geologic units consist of Del Rio Clay, Buda Limestone, Eagle Ford group and Austin Chalk. No sensitive features were observed within 50 feet of the SCS. The TCEQ site assessment conducted on June 29, 2021 revealed the site to be generally as described.

SPECIAL CONDITIONS

I. It is emphasized that where wastewater lines must bridge faults, caverns, sinkholes, or solution features the lines shall be constructed in a manner that will maintain the structural integrity of the pipe. When such sensitive features area encountered, 30 TAC §213.5(f)(2) requires that all regulated activities near the feature must be immediately suspended and the owner/developer shall immediately notify the Austin Regional Office. Additionally, when such geologic features are encountered which are bridged by construction, the location and extend of those features must be assessed by a geologist and must be reported to the Austin Regional Office in writing within two working days of discovery as required by 30 TAC §213.5(c)(3)(K). Construction may not resume in the area of the feature until the executive director has reviewed and approved the methods proposed to protect the aquifer from any potential adverse impacts. See Standard Condition 10 below.

STANDARD CONDITIONS

- 1. Pursuant to Chapter 7 Subchapter C of the Texas Water Code, any violations of the requirements in 30 TAC Chapter 213 may result in administrative penalties.
- 2. The holder of the approved Edwards Aquifer protection plan must comply with all provisions of 30 TAC Chapter 213 and all best management practices and measures contained in the approved plan. Additional and separate approvals, permits, registrations and/or authorizations from other TCEQ Programs (i.e., Stormwater, Water Rights, UIC) can be required depending on the specifics of the plan.
- 3. In addition to the rules of the Commission, the applicant may also be required to comply with state and local ordinances and regulations providing for the protection of water quality.

Prior to Commencement of Construction:

- 4. All contractors conducting regulated activities at the project location shall be provided a copy of this notice of approval. At least one complete copy of the approved SCS plan and this notice of approval shall be maintained at the project location until all regulated activities are completed.
- 5. Modification to the activities described in the referenced SCS application following the date of approval may require the submittal of a plan to modify this approval, including the

Mr. Margarito Espinoza Page 3 July 9, 2021

payment of appropriate fees and all information necessary for its review and approval prior to initiating construction of the modifications.

6. The applicant must provide written notification of intent to commence construction, replacement, or rehabilitation of the referenced project. Notification must be submitted to the Austin Regional Office no later than 48 hours prior to commencement of the regulated activity. Written notification must include the date on which the regulated activity will commence, the name of the approved plan and program ID number for the regulated activity, and the name of the prime contractor with the name and telephone number of the contact person. The executive director will use the notification to determine if the approved plan is eligible for an extension.

7. Temporary erosion and sedimentation (E&S) controls, i.e., silt fences, rock berms, stabilized construction entrances, or other controls described in the approved application, must be installed prior to construction and maintained during construction. Temporary E&S controls may be removed when vegetation is established and the construction area is stabilized. The TCEQ may monitor stormwater discharges from the site to evaluate the adequacy of temporary E&S control measures. Additional controls may be necessary if

excessive solids are being discharged from the site.

During Construction:

8. During the course of regulated activities related to this project, the applicant or his agent shall comply with all applicable provisions of 30 TAC Chapter 213 and Chapter 217. The applicant shall remain responsible for the provisions and conditions of this approval until such responsibility is legally transferred to another person or entity, upon which that person or entity shall assume responsibility for all provisions and conditions of this approval.

9. If sediment escapes the construction site, the sediment must be removed at a frequency sufficient to minimize offsite impacts to water quality (e.g., fugitive sediment in street being washed into surface streams or sensitive features by the next rain). Sediment must be removed from sediment traps or sedimentation ponds not later than when design capacity has been reduced by 50 percent. Litter, construction debris, and construction chemicals

shall be prevented from becoming stormwater discharge pollutants.

10. If any sensitive feature (caves, solution cavities, sink holes, etc.) is discovered during construction, all regulated activities near the feature must be suspended immediately. The applicant or his agent must immediately notify the Austin Regional Office of the discovery of the feature. Regulated activities near the feature may not proceed until the executive director has reviewed and approved the methods proposed to protect the feature and the aquifer from potentially adverse impacts to water quality. The plan must be sealed, signed, and dated by a Texas Licensed Professional Engineer.

11. The following records shall be maintained by the applicant and made available to the executive director upon request: the dates trenching activities occur, the dates when construction activities temporarily or permanently cease on a portion of the site, and the

dates when stabilization measures are initiated and completed.

12. Stabilization measures shall be initiated as soon as practicable in portions of the site where construction activities have temporarily or permanently ceased, and construction activities will not resume within 21 days. When the initiation of stabilization measures by the 14th day is precluded by weather conditions, stabilization measures shall be initiated as soon as practicable.

13. Intentional discharges of sediment laden stormwater during construction are not allowed. If dewatering of excavated areas becomes necessary, the discharge will be filtered through appropriately selected temporary best management practices. These may include vegetative

filter strips, sediment traps, rock berms, sit fence rings, etc.

14. No part of the system shall be used as a holding tank for a pump-and-haul operation.

After Completion of Construction:

15. Certification by a Texas Licensed Professional Engineer of the testing of sewage collection systems required by 30 TAC Chapter 213 and Chapter 217 shall be submitted to the Austin Regional Office within 30 days of test completion and prior to the new sewage collection system being put into service. The certification should include the project name as it appeared on the approved application, the program ID number, and two copies of a site plan sheet(s) indicating the wastewater lines and manholes that were tested and are being certified as complying with the appropriate regulations. The engineer must certify in writing that all wastewater lines have passed all required testing to the appropriate regional office within 30 days of test completion and prior to use of the new collection system. Should any test result fail to meet passing test criteria and then subsequently pass testing, the result(s) and an explanation of what repair, adjustment, or other means were taken to facilitate a subsequent passing result shall be provided.

Every five years after the initial certification, the sewage collection system shall be retested. Any lines that fail the test must be repaired and retested. Certification that the system continues to meet the requirements of 30 TAC Chapter 213 and Chapter 217 shall be submitted to the Austin Regional Office. The certification should include the project name as it appeared on the approved application, the program ID number and two copies of a site plan sheet(s) indicating the wastewater lines and manholes that were tested and are being certified as complying with the appropriate regulations. Should any test result fail to meet passing test criteria, and then subsequently pass testing, the result(s) and an explanation of what repair, adjustment, or other means were taken to facilitate a subsequent passing result shall be provided.

16. If ownership of this organized sewage collection system is legally transferred (e.g., developer to city or Municipal Utility District), the new owner(s) is required to comply with all terms of the approved Edwards Aquifer protection plan. If the new owner intends to commence any new regulated activity on the site, a new Edwards Aquifer protection plan that specifically addresses the new activity must be submitted to the executive director. Approval of the plan for the new regulated activity by the executive director is required prior to commencement of the new regulated activity.

17. An Edwards Aquifer protection plan approval or extension will expire and no extension will be granted if more than 50 percent of the total construction has not been completed within ten years from the initial approval of a plan. A new Edwards Aquifer protection plan must be submitted to the Austin Regional Office with the appropriate fees for review and approval by the executive director prior to commencing any additional regulated activities.

This action is taken under authority delegated by the Executive Director of the Texas Commission on Environmental Quality. If you have any questions or require additional information, please contact Colin Gearing of the Edwards Aquifer Protection Program of the Austin Regional Office at (512) 339-2929.

Sincerely,

Zuin Dur

Lillian Butler, Section Manager Edwards Aquifer Protection Program

Texas Commission on Environmental Quality

LIB/cmg

Balcones Flats Residential Subdivision SCS

Section 3 – Geologic Assessment

Geologic Assessment

Texas Commission on Environmental Quality

For Regulated Activities on The Edwards Aquifer Recharge/transition Zones and Relating to 30 TAC §213.5(b)(3), Effective June 1, 1999

To ensure that the application is administratively complete, confirm that all fields in the form are complete, verify that all requested information is provided, consistently reference the same site and contact person in all forms in the application, and ensure forms are signed by the appropriate party.

Note: Including all the information requested in the form and attachments contributes to more streamlined technical reviews.

Signature

To the best of my knowledge, the responses to this form accurately reflect all information requested concerning the proposed regulated activities and methods to protect the Edwards Aquifer. My signature certifies that I am qualified as a geologist as defined by 30 TAC Chapter 213.

Print Name of Geologist: <u>D Bryan Pairsh</u> Telephone: <u>512-535-4368</u>

Date: <u>05/22/2019</u> Fax: <u>512-535-4451</u>

Representing: <u>Capitol Environmental, Inc TBPG Firm Registration #50389</u> (Name of Company and TBPG or TBPE registration number)

Signature of Geologist:

Regulated Entity Name: Balcones Flats

Project Information

1. Date(s) Geologic Assessment was performed: May 21, 2019

2. Type of Project:

WPAP
SCS
UST

Location of Project:

Recharge Zone
Transition Zone
Contributing Zone within the Transition Zone

- 4. Attachment A Geologic Assessment Table. Completed Geologic Assessment Table (Form TCEQ-0585-Table) is attached.
- 5. Soil cover on the project site is summarized in the table below and uses the SCS Hydrologic Soil Groups* (Urban Hydrology for Small Watersheds, Technical Release No. 55, Appendix A, Soil Conservation Service, 1986). If there is more than one soil type on the project site, show each soil type on the site Geologic Map or a separate soils map.

Table 1 - Soil Units, Infiltration Characteristics and Thickness

Soil Name	Group*	Thickness(feet)
Austin- Whitewright (AWC2) 1-5%		
slope	С	1-10'
Denton silty clay (Dnc) 3- 5% slope	D	1-10'
Heiden clay (HeB) 1-3% slope	D	1-10'

Soil Name	Group*	Thickness(feet)
Houston Black clay (HuB) 1- 3% slope	D	1-10'

- * Soil Group Definitions (Abbreviated)
 - A. Soils having a high infiltration rate when thoroughly wetted.
 - B. Soils having a moderate infiltration rate when thoroughly wetted.
 - C. Soils having a slow infiltration rate when thoroughly wetted.
 - D. Soils having a very slow infiltration rate when thoroughly wetted.
- 6. Attachment B Stratigraphic Column. A stratigraphic column showing formations, members, and thicknesses is attached. The outcropping unit, if present, should be at the top of the stratigraphic column. Otherwise, the uppermost unit should be at the top of the stratigraphic column.
- 7. Attachment C Site Geology. A narrative description of the site specific geology including any features identified in the Geologic Assessment Table, a discussion of the potential for fluid movement to the Edwards Aquifer, stratigraphy, structure(s), and karst characteristics is attached.
- 8. Attachment D Site Geologic Map(s). The Site Geologic Map must be the same scale as the applicant's Site Plan. The minimum scale is 1": 400'

Applicant's Site Plan Scale: 1" = 100' Site Geologic Map Scale: 1" = 100'

Site Soils Map Scale (if more than 1 soil type): 1'' = 100'

- 9. Method of collecting positional data:
 - Global Positioning System (GPS) technology.

	Other method(s). Please describe method of data collection:	
10	$\overline{igstyle Z}$ The project site and boundaries are clearly shown and labeled on the Site Geologic Ma	p.
11	igstyle igytyle igstyle igstyle igstyle igytyle igstyle igytyle igstyle igytyle	
12	Geologic or manmade features were discovered on the project site during the field investigation. They are shown and labeled on the Site Geologic Map and are described in the attached Geologic Assessment Table.	Ł
	Geologic or manmade features were not discovered on the project site during the field investigation.	ł
13	$\overline{igstyle Z}$ The Recharge Zone boundary is shown and labeled, if appropriate.	
14	All known wells (test holes, water, oil, unplugged, capped and/or abandoned, etc.): If applicable, the information must agree with Item No. 20 of the WPAP Application Section.	
	 There are 2 (#) wells present on the project site and the locations are shown and labeled. (Check all of the following that apply.) The wells are not in use and have been properly abandoned. The wells are not in use and will be properly abandoned. The wells are in use and comply with 16 TAC Chapter 76. There are no wells or test holes of any kind known to exist on the project site. 	
A	lministrative Information	
15	Submit one (1) original and one (1) copy of the application, plus additional copies as needed for each affected incorporated city, groundwater conservation district, and county in which the project will be located. The TCEQ will distribute the additional copies to those jurisdictions. The copies must be submitted to the appropriate regions	al

office.

Geologic Assessment Balcones Flats FM 487 & C Bud Stockton Loop Jarrell, Williamson County, Texas Capitol Environmental, Inc. Registered Geosciences Firm Texas Registration No. 50389

Attachment A – Geologic Table

The character is a constant of the constant	GEOLOGIC ASSESSMENT TABLE	ESSMENT TABLE	TABLE		l J		Б	ROJ	PROJECT NAME: BALCONES FLATS	\ME	: BA	CONI	ES FI	ATS.						
5 5 6 6 7 8 8 8 9 10 11 TREND S	LOCATION	N	i		ļ		FEATL	JRE (HARAC	TER	ISTIC	(0			EVAL	UATIC	N P	HYSIC	X X S	ETTING
TREND TREND SENSTRY TOTAL SENSTRUTY CACCHMENTAREA	1B* 1C* 2A 2B	2A		2B		3	4		2	5A	9	7	8A	8B	6	10		11		12
2 10	FEATURE ID LATITUDE LONGITUDE FEATURE POINTS FORMATION	FEATURE POINTS TYPE	POINTS		FORMA	NOIL	DIMENSIOI	NS (FEET)			DENSITY (NO/FT)			RELATIVE INFILTRATION RATE	TOTAL	SENSITIV		CHMENT AF (ACRES)		OPOGRAPHY
1 305										10									9	
305 F 35 40 X X X X X X X X X X X X X X X X X X																				
	30.810861 -97.62801 O 5 Kdr	0 2	2		Kdı		Stream	peq	305				Ь	32	40		×	×		reambed
× 2 32 × 32 × 32 × 33 × 34 × 35 × 35 × 35 × 35 × 35 × 35	30.813889 -97.629167 MB 30 Kdr	MB 30	30		Kdr		Waterw	ell					×	2	32	×		×		Hilltop
	30.815001 -97.625555 MB 30 Kdr	MB 30	30		Kdr		Waterw	ell					×	2	32	×		×		Hilltop
						-														
						-														

*DATUM:	*DATUM: NAD 83 StatePlane Texas Central	
2A TYPE	TYPE	2B POINTS
O	Cave	30
SC	Solution cavity	20
SF	Solution-enlarged fracture(s)	20
ш	Fault	20
0	Other natural bedrock features	2
MB	Manmade feature in bedrock	30
SW	Swallow hole	30
SH	Sinkhole	20
СО	Non-karst closed depression	2
Z	Zone, clustered or aligned features	30

8A INFILLING	N None, exposed bedrock	C Coarse - cobbles, breakdown, sand, gravel	Loose or soft mud or soil, organics, leaves, sticks, dark colors	Fines, compacted clay-rich sediment, soil profile, gray or red colors	Vegetation. Give details in narrative description	FS Flowstone, cements, cave deposits	X Other materials	
	Z	ပ	0	ш	>	FS	×	

Cliff, Hilltop, Hillside, Drainage, Floodplain, Streambed 12 TOPOGRAPHY

I have read, I understood, and I have followed the Texas Commission on Environmental Quality's Instructions to Geologists. The

information presented here complies with that document and is a true representation of the conditions observed in the field. My signature certifies that I am qualified as a geologist as defined by 30 TAC Chapter 213.

Date:

o Sheet:

TCEQ-0585-Table (Rev. 10-01-04)

FEATURE: F-1

Scour, no evidence of karst involvement (10) Soil-Floored Non-karst Feature Mannade feature in soil, Non-karst Closed Depression Non-karst Foature Types Probability of rapid infiltration is low Manmade Features (9b) Vogotation suggests low infiltration (11) Karst feature is plugged Slow or Background Infiltration (8a) Interpreted karst origin has low probability of rapid infiltration minimal permeability (13) Feature is clay lined. (12) Intact limestone, Other Natural Bedrock Features 2 Fault. Vuggy and Reef Rock or zone including these Geologist or his client choose to do 9 the assessment, evidence shows additional investigation to refine that rapid infiltration is not likely Z Probability of rapid infiltration is intermediate feature types Small natural catchment area \(\bar{\pi}\) (7) Sapping of fines through epikarst (8a) Interpreted karst origin suggests capacity for rapid infiltration of Capacity for Rapid Infiltration Indirect or Inferential Evidence (9b) Vegelation indicates capacity for rapid infiltration Z **Ses** Cave, solution cavity, solution enlarged fracture, swallow hole, sinkhole, or zone including these Feature Types of Karst Origin 8 Large natural catchment area Probability of rapid infiltration is high Direct Evidence of Rapid Infiltration Channels, litter, etc., indicates flow feature types Decreased flow down gradient in a closed depression 4) Brief duration of ponding \$ € Z Points assigned: Flow observed Air movement Feature Type

Figure 1: Assessing the Probabily that Kapid Intitration May Occur at a Feature

Figure 1: Assessing the Probabily that Kapid Intitration May Occur at a Feature

Scour, no evidence of karst involvement (10) Soil-Floored Non-karst Feature Non-karst Closed Depression Non-karst Foature Types Probability of rapid infiltration is low Manmade Features (9b) Vogotation suggests low infiltration (11) Karst feature is plugged Manmade feature in soil Slow or Background Infiltration (8a) Interpreted karst origin has low probability of rapid infiltration minimal permeability (13) Feature is clay lined. (12) Intact limestone, Other Natural Bedrock Features 2 Fault. Vuggy and Reef Rock or zone including these Geologist or his client choose to do 9 the assessment, evidence shows additional investigation to refine that rapid infiltration is not likely Z Probability of rapid infiltration is high | Probability of rapid infiltration is intermediate feature types Small natural catchment area \(\bar{\pi}\) (7) Sapping of fines through epikarst (8a) Interpreted karst origin suggests capacity for rapid infiltration of Capacity for Rapid Infiltration Indirect or Inferential Evidence (9b) Vegelation indicates capacity for rapid infiltration Z **Ses** Cave, solution cavity, solution enlarged fracture, swallow hole, sinkhole, or zone including these Feature Types of Karst Origin 엉 Large natural catchment area <u>8</u> Direct Evidence of Rapid Infiltration Channels, litter, etc., indicates flow feature types Flow observed
 Decreased flow down gradient
 Channels, litter, etc., indicates in a closed depression (5) Air movement (4) Brief duration of ponding \$ € Ź Points assigned: **%** Feature Type

TCEQ-0585-Instructions (Rev. 10-01-04)

GWDB Reports and Downloads

Well Basic Details

Scanned Documents

State Well Number	5811601
	55.155.
County	Williamson
River Basin	Brazos
Groundwater Management Area	8
Regional Water Planning Area	G - Brazos G
Groundwater Conservation District	
Latitude (decimal degrees)	30.813889
Latitude (degrees minutes seconds)	30° 48' 50" N
Longitude (decimal degrees)	-97.629167
Longitude (degrees minutes seconds)	097° 37' 45" W
Coordinate Source	+/- 5 Seconds
Aquifer Code	218EDRDA - Edwards and Associated Limestones
Aquifer	Edwards (Balcones Fault Zone)
Aquifer Pick Method	
Land Surface Elevation (feet above sea level)	830
Land Surface Elevation Method	Interpolated From Topo Map
Well Depth (feet below land surface)	209
Well Depth Source	Driller's Log
Drilling Start Date	
Drilling End Date	7/18/1980
Drilling Method	Mud (Hydraulic) Rotary
Borehole Completion	Open Hole

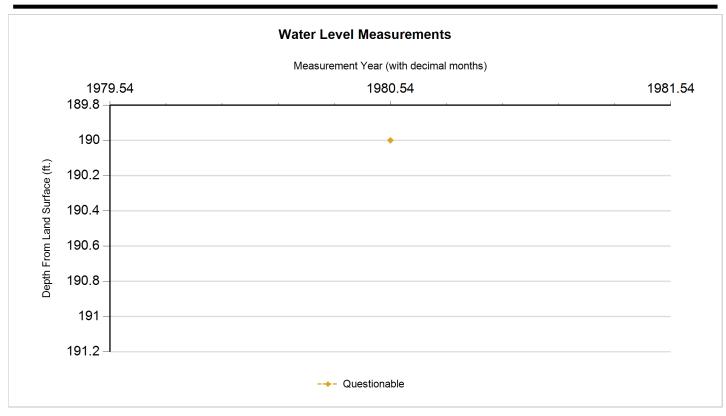
Well Type	Test Hole
Well Use	Plugged or Destroyed
Water Level Observation	Miscellaneous Measurements
Water Quality Available	No
Pump	None
Pump Depth (feet below land surface)	
Power Type	
Annular Seal Method	
Surface Completion	
Owner	State of Texas
Driller	Texas Dept.of Water Resources
Other Data Available	Caliper; Gamma Ray; Gamma- Gamma; Neutron
Well Report Tracking Number	
Plugging Report Tracking Number	
U.S. Geological Survey Site Number	
Texas Commission on Environmental Quality Source Id	
Groundwater Conservation District Well Number	
Owner Well Number	
Other Well Number	
Previous State Well Number	
Reporting Agency	Texas Water Development Board
Created Date	7/18/1980
Last Update Date	9/16/2014

Remarks Test Hole ZK-15. Destroyed.

Casing						
Diameter (in.)	Casing Type	Casing Material	Schedule	Gauge	Top Depth (ft.)	Bottom Depth (ft.)
3	Blank	Steel			0	50
	Open Hole				50	209

Well Tests - No Data

Lithology - No Data


Annular Seal Range - No Data

Borehole - No Data Plugged Back - No Data

Filter Pack - No Data Packers - No Data

Status Code	Date	Time	Water Level (ft. below land surface)	Change value in () indicates rise in level	Water Elevation (ft. above sea level)	#	Measuring Agency	Method	Remark ID	Comments
Q	7/17/1980		190		640	1	Other or Source of Measurement Unknown	Unknown	17	

Code Descriptions

Status Code	Status Description	Remark ID	Remark Description
Q	Questionable	17	Measurement before well completion

Water Quality Analysis - No Data Available

GWDB DISCLAIMER: Except where noted, all of the information provided in the Texas Water Development Board (TWDB) Groundwater Database (http://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp) is believed to be accurate and reliable; however, the TWDB assumes no responsibility for any errors appearing in rules or otherwise. Further, TWDB assumes no responsibility for the use of the information provided. PLEASE NOTE that users of these data are responsible for checking the accuracy, completeness, currency and/or suitability of all information themselves. TWDB makes no guarantees or warranties as to the accuracy, completeness, currency, or suitability of the information provided via the Groundwater Database (GWDB). TWDB specifically disclaims any and all liability for any claims or damages that may result from providing GWDB data or the information it contains. For additional information or answers to questions concerning the TWDB GWDB, contact the Groundwater Data Team at GroundwaterData@twdb.texas.gov.

WELL SCHEDULE

Aquifer(s		Project No Field No./Owr				4		
l. Location:		tion,Block						
2. <u>Owner:</u>	TOWR		Address:				· · -	
Driller:_	TOWR		Address:					
3. Land Surfa	ace Elevation: 83	ft. above ms1 o	determined by	7000				
4. <u>Drilled:</u>	July 18_191	80 _; Dug, Cable To	ool, Rotary, Air	>				
		Meas _ft.			CAS	ING, BLANK	PIPE & WEI	LL SCREEN
6. Borehole (Completion: Open Hol	e, Straight Wall, Und	derreamed, Gravel	Packed -	Diam.	Type		40 ft.
7. <u>Pump</u> : Mi	fr. None	Type_	None_		(in.)	-1 \	from	to
No. Sta	ages, Bowls	Diamin., Sett	:ing	ft.	3	Stel	+2	50
Co1umn	Diam	in., Length Tailpipe		ft.				
8. <u>Motor</u> : Mi	fr <u>None</u>	Fuel N	026 HE	· None				
9. Yield: Fl	lowgpm, Pump	gpm, Meas.,	Rept., Est	Date				
10. Performance	ce Test: Date	Length of Test	Made by		 			
Static	Levelft. Pum	ping Level ft.	Drawdown	_ft.				<u> </u>
Product	tiongp	m Specific Capacity		ıρm/ft.				
ll. Quality:	(Remarks on taste, od	or, color, etc.)		<u>-</u>				<u> </u>
Analyse	es_							<u> </u>
Date	Labora	tory	TDSSp Con	ıd				
N Compate	Labora	tory	TDSSp Con	id		·		
12. Other data	a available as circle	d: Pumping test, Powe	r & Yield Test,	Drillers			 	
Logs, Form	nation Samples, Geoph	ysical Log(s) 7/	77 <u>8</u>				<u> </u>	
		rept. 7-17 198	(type)	0	which i	s 🖒 ft	above below Lar	nd Surface
Tyl Macor Eore			above — below — — —	·			above Lar	
1/4 Use: Dom		y, Ind., Irr., Observ		et Hole Oil	_	#B**		. //
15. Recorded b	GUD	Source of	of data: Rice	Can land	L	Date	7/18/8	/
		Edwards 20		A 1	<i>i i</i>			stroxed
TO. Reliates	Top of	16	t s res	placed a		-		
		G.T. 26					ZIS	
17. Location o		æn≒ -	エルろ	5	· ·	₹3. † - 79. #		
. Location C	J. J.C.C.		[<i>[J2]</i>	A.				
			ALL T)			
•	+	1.3	DIN) Jer	Leil N				
•		RM 487						
	(ZV	-SEKIZI					,	
		- L.1-	÷/////				٧.	
	destro	100 See						
	other	Sch. 58-11-60	2		W/L 0	bs. Well	W/Q Obs	. Well
TDWR-0308	- 111 44	20 00					58-11	

WELL SCHEDULE

	Aquifer(s) EQUIDED) Project No. Outerap 3 hours s	State Wel	ı ю. <u>58</u> _	11	-601
	Field No./Owner's Well No. ZK415	County	بالمالملا	amsoa_	
1.	Location: t, t, Section ,Block ,Survey	_,Longi tu	de	_,Latitude_	· =
					· – – – .
2.	Owner: TOWRAddress:				
	Tenant (other): Address:				
	Driller: TOWRAddress:		_ ~ _ _		
3.	Land Surface Elevation: 830 ft. above ms) determined by 7000		 _	~ -	
4.	Drilled: JULY 18 1980; Dug, Cable Tool Rotary, Alr.				
	Depth: Rept. 25 _ ft. Heas. 209 _ ft.			PIPE & WEL	
6.	Borehole Completion: Open Hole, Straight Wall, Underreamed, Gravel Packed	Diam.	Type		40 ft. (feet)
7.	Pump: Mfr. None Type None	(in.)	-1 \	from	to
	No. Stages, Bowls Diamin., Settingft.	3	Stee!	+2	50
	Column Diamin., Length Tailpipeft.		······································		
В.	Motor: Mfr. None Fuel None HP. Mone	 			
9.	Yield: Flow gpm, Pump gpm, Meas., Rept., Est. Date				ļ
10.	Performance Test: Date Length of Test Made by	<u> </u>		-	
	Static Levelft. Pumping Levelft. Drawdownft.				
	Productiongpm Specific Capacitygpm/ft.		······	ļ	
11.	Quality: (Remarks on taste, odor, color, etc.)	ļi		 	
	Analyses			 	
	DateLaboratoryTDSSp Cond	ļ		 	
	DateSp Cond	\		<u> </u>	
	Other data available as circled: Pumping test, Power & Yield Test, Orillers			 	
<	logo, Pormation Samples Geophysical Logos)_ // 7/80	L		<u> </u>	
13.	Water Level(s): 190 ft. rept. 7-17 1980 above LSD	which	is_ Q_ _fi	above below Lai	nd Surface
				. above La	
14.	Hear han Senet Bublic Supply Ind Jen Manual D Debar (San Hale Dil	Test, e	tc.)		
15.	Recorded by: 640 Source of data: Ric Gen Lyis	iŁ	Date:_	7/18/8	1
	Remarks:				
17.	Location or Sketch:				
		-			
	1 13 All Nerrell A	,			
				7	
	ZK-US RM 487		ع	-la	y
	ZK-15" ////			•	

W/L Obs. Well _____ W/Q Obs. Well ____ State Well No. _58-/1-60/_

Scour, no evidence of karst involvement (10) Soil-Floored Non-karst Feature Non-karst Closed Depression Non-karst Foature Types Probability of rapid infiltration is low Manmade Features (9b) Vogotation suggests low infiltration (11) Karst feature is plugged Manmade feature in soil Slow or Background Infiltration (8a) Interpreted karst origin has low probability of rapid infiltration minimal permeability (13) Feature is clay lined. (12) Intact limestone, Other Natural Bedrock Features 2 Fault. Vuggy and Reef Rock or zone including these Geologist or his client choose to do 9 the assessment, evidence shows additional investigation to refine that rapid infiltration is not likely Z Probability of rapid infiltration is high | Probability of rapid infiltration is intermediate feature types Small natural catchment area \(\bar{\pi}\) (7) Sapping of fines through epikarst (8a) Interpreted karst origin suggests capacity for rapid infiltration of Capacity for Rapid Infiltration Indirect or Inferential Evidence (9b) Vegelation indicates capacity for rapid infiltration Z **Ses** Cave, solution cavity, solution enlarged fracture, swallow hole, sinkhole, or zone including these Feature Types of Karst Origin 엉 Large natural catchment area <u>8</u> Direct Evidence of Rapid Infiltration Channels, litter, etc., indicates flow feature types Flow observed
 Decreased flow down gradient
 Channels, litter, etc., indicates in a closed depression (5) Air movement (4) Brief duration of ponding \$ € Ź Points assigned: **%** Feature Type

Figure 1: Assessing the Probabily that Kapid Intitration May Occur at a Feature

GWDB Reports and Downloads

Well Basic Details

Scanned Documents

State Well Number	5811603
County	Williamson
River Basin	Brazos
Groundwater Management Area	8
Regional Water Planning Area	G - Brazos G
Groundwater Conservation District	
Latitude (decimal degrees)	30.815001
Latitude (degrees minutes seconds)	30° 48' 54" N
Longitude (decimal degrees)	-97.625555
Longitude (degrees minutes seconds)	097° 37' 32" W
Coordinate Source	+/- 5 Seconds
Aquifer Code	218EDRDA - Edwards and Associated Limestones
Aquifer	Edwards (Balcones Fault Zone)
Aquifer Pick Method	
Land Surface Elevation (feet above sea level)	840
Land Surface Elevation Method	Interpolated From Topo Map
Well Depth (feet below land surface)	262
Well Depth Source	Measured
Drilling Start Date	
Drilling End Date	4/16/1981
Drilling Method	Air Rotary
Borehole Completion	Open Hole

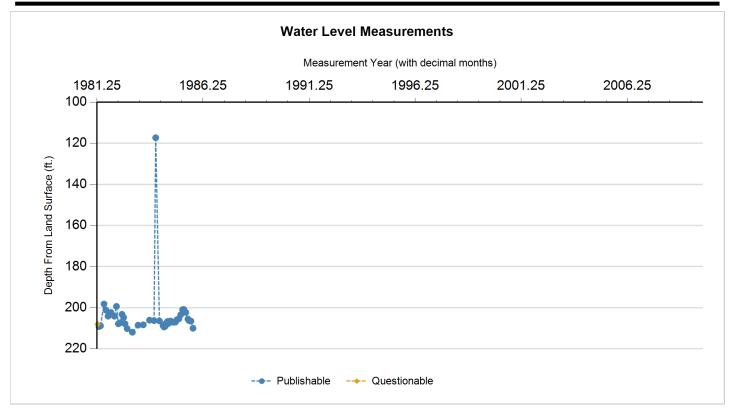
Well Type	Test Hole
Well Use	Plugged or Destroyed
Water Level Observation	Miscellaneous Measurements
Water Quality Available	No
Pump	None
Pump Depth (feet below land surface)	
Power Type	
Annular Seal Method	
Surface Completion	
Owner	State of Texas
Driller	Texas Dept.of Water Resources
Other Data Available	Caliper; Gamma Ray; Gamma- Gamma; Neutron
Well Report Tracking Number	
Plugging Report Tracking Number	
U.S. Geological Survey Site Number	
Texas Commission on Environmental Quality Source Id	
Groundwater Conservation District Well Number	
Owner Well Number	
Other Well Number	
Previous State Well Number	
Reporting Agency	Texas Water Development Board
Created Date	4/16/1981
Last Update Date	10/21/2009

Remarks Test Hole ZK-21. Unable to locate well in Oct. 2009.

Casing						
Diameter (in.)	Casing Type	Casing Material	Schedule	Gauge	Top Depth (ft.)	Bottom Depth (ft.)
3	Blank	Steel			0	210
3	Screen				210	262

Well Tests - No Data

Lithology - No Data


Annular Seal Range - No Data

Borehole - No Data Plugged Back - No Data

Filter Pack - No Data Packers - No Data

Status Code	Date	Time	Water Level (ft. below land surface)	Change value in () indicates rise in level	Water Elevation (ft. above sea level)	Meas #	Measuring Agency	Method	Remark ID	Comments
Q	4/15/1981		208		632	1	Other or Source of Measurement Unknown	Unknown	17	
Р	5/7/1981		209.15	1.15	630.85	1	Texas Water Development Board	Steel Tape		
Р	6/4/1981		208.8	(0.35)	631.2	1	Texas Water Development Board	Steel Tape		
Р	8/4/1981		198.19	(10.61)	641.81	1	Texas Water Development Board	Steel Tape		
Р	9/8/1981		201.17	2.98	638.83	1	Texas Water Development Board	Steel Tape		
Р	10/14/1981		204.1	2.93	635.9	1	Texas Water Development Board	Steel Tape		
Р	11/5/1981		203.1	(1.00)	636.9	1	Texas Water Development Board	Steel Tape		
Р	12/3/1981		202.3	(0.80)	637.7	1	Texas Water Development Board	Steel Tape		
Р	1/27/1982		204.12	1.82	635.88	1	Texas Water Development Board	Steel Tape		
Р	3/3/1982		199.35	(4.77)	640.65	1	Texas Water Development Board	Steel Tape		
Р	4/6/1982		207.79	8.44	632.21	1	Texas Water Development Board	Steel Tape		
Р	5/5/1982		207.35	(0.44)	632.65	1	Texas Water Development Board	Steel Tape		
Р	6/8/1982		203.18	(4.17)	636.82	1	Texas Water Development Board	Steel Tape		
Р	7/7/1982		204.75	1.57	635.25	1	Texas Water Development Board	Steel Tape		
Р	7/30/1982		207.8	3.05	632.2	1	Texas Water Development Board	Steel Tape		
Р	9/8/1982		210.17	2.37	629.83	1	Texas Water Development Board	Steel Tape		
Р	12/7/1982		211.92	1.75	628.08	1	Texas Water Development Board	Steel Tape		
Р	3/10/1983		208.48	(3.44)	631.52	1	Texas Water Development Board	Steel Tape		
Р	6/9/1983		208.32	(0.16)	631.68	1	Texas Water Development Board	Steel Tape		
Р	9/27/1983		206.04	(2.28)	633.96	1	Texas Water Development Board	Steel Tape		
Р	12/15/1983		206.26	0.22	633.74	1	Texas Water Development Board	Steel Tape		

Status Code	Date	Time	Water Level (ft. below land surface)	Change value in () indicates rise in level	Water Elevation (ft. above sea level)	Meas #	Measuring Agency	Method	Remark ID	Comments
Р	1/8/1984		117.34	(88.92)	722.66	1	Texas Water Development Board	Recorder (Float or Transducer)		
Р	3/12/1984		206.4	89.06	633.6	1	Texas Water Development Board	Steel Tape		
Р	5/15/1984		208.75	2.35	631.25	1	Texas Water Development Board	Steel Tape		
Р	6/1/1984		209.36	0.61	630.64	1	Texas Water Development Board	Steel Tape		
Р	6/18/1984		209.1	(0.26)	630.9	1	Texas Water Development Board	Steel Tape		
Р	7/2/1984		207.64	(1.46)	632.36	1	Texas Water Development Board	Steel Tape		
Р	7/16/1984		208.05	0.41	631.95	1	Texas Water Development Board	Steel Tape		
Р	7/30/1984		206.7	(1.35)	633.3	1	Texas Water Development Board	Steel Tape		
Р	8/13/1984		207.68	0.98	632.32	1	Texas Water Development Board	Steel Tape		
Р	8/28/1984		206.62	(1.06)	633.38	1	Texas Water Development Board	Steel Tape		
Р	9/13/1984		206.58	(0.04)	633.42	1	Texas Water Development Board	Steel Tape		
Р	9/26/1984		206.47	(0.11)	633.53	1	Texas Water Development Board	Steel Tape		
Р	10/10/1984		206.96	0.49	633.04	1	Texas Water Development Board	Steel Tape		
Р	11/15/1984		207.05	0.09	632.95	1	Texas Water Development Board	Steel Tape		
Р	12/18/1984		207	(0.05)	633	1	Texas Water Development Board	Steel Tape		
Р	1/8/1985		205.8	(1.20)	634.2	1	Texas Water Development Board	Steel Tape		
Р	2/12/1985		205.37	(0.43)	634.63	1	Texas Water Development Board	Steel Tape		
Р	3/13/1985		203.45	(1.92)	636.55	1	Texas Water Development Board	Steel Tape		
Р	4/16/1985		200.89	(2.56)	639.11	1	Texas Water Development Board	Steel Tape		
Р	5/8/1985		200.85	(0.04)	639.15	1	Texas Water Development Board	Steel Tape		
Р	6/10/1985		202.28	1.43	637.72	1	Texas Water Development Board	Steel Tape		
Р	7/18/1985		205.48	3.20	634.52	1	Texas Water Development Board	Steel Tape		
Р	8/6/1985		206.24	0.76	633.76	1	Texas Water Development Board	Steel Tape		
Р	9/10/1985		206.5	0.26	633.5	1	Texas Water Development Board	Steel Tape		
Р	10/15/1985		209.97	3.47	630.03	1	Texas Water Development Board	Steel Tape		
Χ	10/15/2009					1	Texas Water Development Board		29	

Code Descriptions

Status Code	Status Description
Р	Publishable
Q	Questionable
Χ	No Measurement

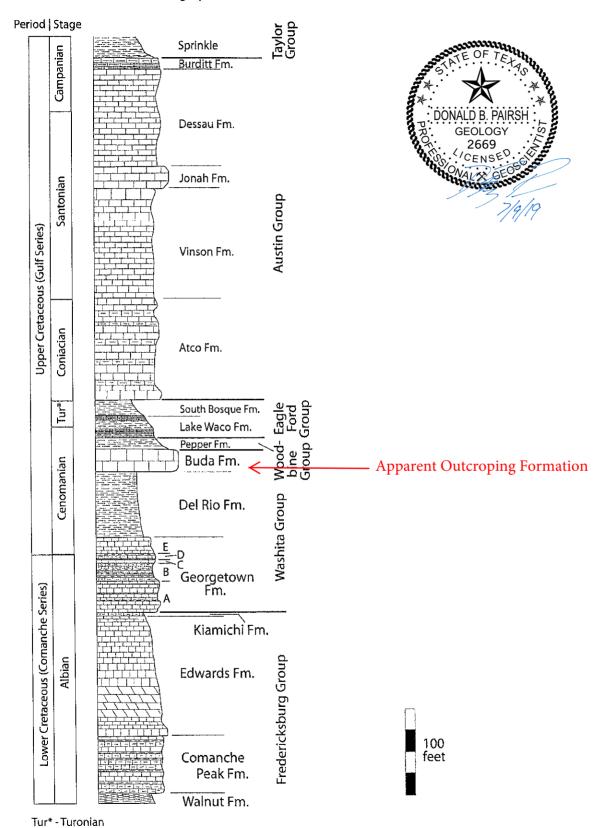
Remark ID	Remark Description			
17	Measurement before well completion			
29	Unable to locate well			

Water Quality Analysis - No Data Available

GWDB DISCLAIMER: Except where noted, all of the information provided in the Texas Water Development Board (TWDB) Groundwater Database (http://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp) is believed to be accurate and reliable; however, the TWDB assumes no responsibility for any errors appearing in rules or otherwise. Further, TWDB assumes no responsibility for the use of the information provided. PLEASE NOTE that users of these data are responsible for checking the accuracy, completeness, currency and/or suitability of all information themselves. TWDB makes no guarantees or warranties as to the accuracy, completeness, currency, or suitability of the information provided via the Groundwater Database (GWDB). TWDB specifically disclaims any and all liability for any claims or damages that may result from providing GWDB data or the information it contains. For additional information or answers to questions concerning the TWDB GWDB, contact the Groundwater Data Team at GroundwaterData@twdb.texas.gov.

TEXAS DEPARTMENT OF WATER RESOURCES 1861 72 8dV

WELL SCHEDULE


٠.٠	7.3	170	
ij.	1	130	ВЫ

					Ç	RECEIVE	
	Aquifer(s)_EOWARQS		,				_
		Field No./Owner's Well	No. Z/K-2	_ County_	Million	nsòa_	
١.	Location:i,i,Section						
2.	Owner: TOWR						
	Tenant (other):						
	Driller: TOWA						
	Land Surface Elevation: 840 f						
	Drilled: 4/16 1981 ;		<u>Y. Air?</u>				
	Depth: Rept. 261 ft. Heas.		• •		SING, BLANK ted From <u>¢</u>		
	Borehole Completion: Open Hole, Stra			Diam. (in.)	Туре	Setting from	(feet)
7.	Pump: Afr. Mac			3	Blan 4	+1.5	
	No. Stages, Bowls Diam		- 	3	Slotted	2/0	262
	Column Diamin., Le				<u> </u>	~~	AVE
	Motor: Mfr. 1/01e			1			
	Yield: Flowgpm, Pump			ı			
10.	Performance Test: DateLen						
	Static Levelft. Pumping Le			h			
- •	Productiongpm Spe			******			
11.	Quality: (Remarks on taste, odor, col	or, etc.)					
	Analyses DateLaboratory	The	Sn Cand				
	DateLaboratory			1			
12	Other data available (as circled): Pumpin			ļ.			
12.	Formation Samples, Geophysical Logis		Dimero Log	<u> </u>			<u>L</u>
	——————————————————————————————————————	\ type				above .	
13.	Water Level(s): 208 ft. rept.	7/0 1901 ebelts		which	15	below Land	1 Surface
		· · · · · · · · · · · · · · · · · · ·				below Land	Survace
14.	Use: Dom., Stock, Public Supply, Ind.	, irr.c observation, of	ner clest hole,		Date:	4/,7	7
	Recorded by: 640		N/101 - 525	בתומקיבות	bate:	- 11164	F/
16.	Remarks:						
		 7	TH. 35				
17	Location or Sketch:		<i>00</i>				
.,.		الإلال المسلمان المسلمان المسلمان	ĺ	Λ		_	
	R.m. 487		Tarrell	4	- محر	- los	2
	-		/ June	1		0	•
	<i>A</i>	~~(N		_	
		· W/			Obs. Well L		
TO	VR-0308	H^{**}		Sta	te Well No.	78-11.	603

Geologic Assessment Balcones Flats FM 487 & C Bud Stockton Loop Jarrell, Williamson County, Texas Capitol Environmental, Inc. Registered Geosciences Firm Texas Registration No. 50389

Attachment B – Stratigraphic Column

Generalized Stratigraphic Column of the Round Rock Area

Source:
Bedrock Geology of Round Rock and Surrounding Areas, Williamson and Travis Counties, Texas
By: Todd B. Housh

Geologic Assessment Balcones Flats FM 487 & C Bud Stockton Loop Jarrell, Williamson County, Texas Capitol Environmental, Inc. Registered Geosciences Firm Texas Registration No. 50389

Attachment C - Site Geology

Capitol Environmental, Inc. Registered Geosciences Firm Texas Registration No. 50389

NARRATIVE DESCRIPTION OF SITE-SPECIFIC GEOLOGY BALCONES FLATS 70 ACRE TRACT JARRELL, WILLIAMSON COUNTY, TEXAS 5/21/2019

LOCATION

The subject site is an approximate 70 acres, more or less, tract of land located at FM 487 & C Bud Stockton Loop in Jarrell, Williamson County, Texas at approximately 30.812473° North Latitude and approximately -97.622572° West Longitude. The western portion of this tract location lies within the designated Edwards Aquifer Recharge Zone. Therefore, future intended development of the site must conform to criteria in accordance with the Texas Commission on Environmental Quality (TCEQ) Edwards Aquifer Protection Program Rules in accordance with Title 30 of the Texas Administrative Code, Section 213 (30 TAC§ 213).

EXPLANATION OF ASSESSMENT

This assessment follows general guidelines contained in Texas Commission on Environmental Quality (TCEQ) "Instruction for Geologist for Geologic Assessments on the Edwards Aquifer Recharge/Transition Zones" (TCEQ Guidance 0585). The site is located on an area of the recharge zone that may contain karst features formed by selective solutioning of limestone minerals by water. Karst features may be expressed as surface features but more commonly tend to persist with depth. This assessment documents the presence or absence of site conditions that were present at the time the site visit that was performed on 5/21/2019. The site visit consisted of a walk through survey that consisted of a non-intrusive visual observation or survey of readily accessible, easily visible surface property conditions that were present on the subject property at the time of the site visit. Intrusive subsurface testing such as excavation, cave mapping, infiltrometer test, geophysical studies or tracer studies are not required for the geologic assessment of any feature in accordance with this practice.

A sensitive geologic or manmade feature, for the purpose of this practice is a feature on the recharge zone or transition zone of the Edwards Aquifer with a <u>superficial</u> appearance that suggest a potential for hydraulic interconnectedness between the surface and the Edwards Aquifer and that has the apparent potential for rapid infiltration into the subsurface.

PHYSICAL DESCRIPTION OF SITE

The subject site is currently undeveloped land being utilized for agricultural purposes.

SURFACE DRAINAGE

After reviewing the project site topographic survey, storm water runoff appears to flow toward the Northwest.

SOIL DESCRIPTION

The site soil is composed of:

Austin-Whitewright complex, 1 to 5 percent slopes, eroded (AwC2), Hydrologic Group C

Geologic Assessment Balcones Flats FM 487 & C Bud Stockton Loop Jarrell, Williamson County, Texas Capitol Environmental, Inc. Registered Geosciences Firm Texas Registration No. 50389

The Austin series consists of moderately deep, well drained, moderately slowly permeable soils that formed in chalk and interbedded marl. These soils are on nearly level to sloping erosional uplands. Slopes range from 0 to 8 percent. Well drained; medium to rapid runoff; moderately slow permeability.

Denton silty clay, 3 to 5 percent slopes (DnC), Hydrologic Group D

The Denton series consist of deep, well drained, slowly permeable soils that formed in clayey materials over residuum weathered from limestone bedrock. These nearly level or gently sloping soils are on uplands and have slopes ranging from 0 to 5 percent. Well drained; medium surface runoff; slow permeability.

Heiden clay, 1 to 3 percent slopes (HeB), Hydrologic Group D

The Heiden series consists of deep and very deep to mudstone, well drained, very slowly permeable soils that formed in clayey residuum weathered from mudstone. These nearly level to moderately steep soils occur on footslopes of base slopes, shoulders of interfluves, and backslopes of side slopes of ridges on dissected plains. Slopes range from 0.5 to 20 percent. Mean annual precipitation is about 889 mm (35 in) and the mean annual temperature is about 20 degrees C (68 degrees F). Well drained. Permeability is very slow. Runoff is high on 0.5 to 1 percent slopes and very high on 1 to 20 percent slopes. Infiltration is rapid when the soil is dry and cracked, but very slow when the soil is wet.

Houston Black clay, 1 to 3 percent slopes (HuB), Hydrologic Group D

The Houston Black series consists of very deep, moderately well drained, very slowly permeable soils that formed in clayey residuum derived from calcareous mudstone of Cretaceous Age. These nearly level to moderately sloping soils occur on interfluves and side slopes on upland ridges and plains on dissected plains. Slopes are mainly 1 to 3 percent but range from 0 to 8 percent. Mean annual precipitation is about 889 mm (35 in) and the mean annual air temperature is about 20.6 degrees C (69 degrees F). Moderately well drained. Permeability is very slow. Surface runoff is high on 0 to 1 percent slopes and very high on slopes greater than 1 percent. Water enters the soil rapidly when it is dry and cracked, and very slowly when it is moist.

GEOLOGY

The site is located on the:

Del Rio Clay (Kdr)

The Del Rio Clay consist of calcareous and gypsiferous, becoming less calcareous and more gypsiferous upward, pyrite common, blocky, medium gray, weathers light gray to yellowish gray; some thin lenticular beds of highly calcareous siltstone; marine mega fossils include abundant Exogyra arietina and other pelecypods; thickness 40-70 feet.

Buda Limestone (Kbu)

The Buda Limestone consist of fine grained, bioclastic, commonly glauconitic, pyritiferous, hard, massive, poorly bedded to nodular, thinner bedded and argillaceous near upper contact, light gray

Capitol Environmental, Inc. Registered Geosciences Firm Texas Registration No. 50389

to pale orange; weathers dark gray to brown; burrows filled with chalky marl, abundant pelecypods; thickness up to 45 feet, locally absent to north.

Eagle Ford Group (Kef)

The Eagle Ford Group consist of shale and limestone. Upper part-shale, compact, silty, contains fossil fish teeth and bones, 10 feet or more thick; middle part-silty limestone grading to calcareous siltstone, flaggy, medium gray, weathers pale yellowish brown, 5 feet thick. Lower part-shale, calcareous, dark gray, 7-50 feet thick. Thickness of Eagle Ford Group 25-65 feet.

Austin Chalk (Kau)

The Austin Chalk consist of Chalk and marl; chalk mostly microgranular calcite with minor Foraminifera tests and Inoceramus prisms, averages about 85 percent calcium carbonate, ledge forming grayish white to white; alternates with marl, bentonitic seams locally recessive, medium gray; pyrite nodules common, weather to limonite; thickness 325-420 feet.

STRUCTURAL TREND and FEATURES:

The subject site is located on the Edwards Plateau within the Balcones / Ouachita structural province in central Texas. The Balcones / Ouachita structural province is an arcuate band of mostly down-to-the-coast normal faults that sub-parallels the Gulf of Mexico. In Williamson County, the regional structural trend of the Balcones / Ouachita province is generally southwest to northeast.

(Source: "Lineament Analysis and Inference of Geologic Structure-Examples from the Balcones/Ouachita Trend of Texas." Curan, Woodfruff, Jr, and Thompson, 1982)

The site is located in the vicinity of mapped regional faulting. No surface expressions of local structural features were observed during this assessment.

SITE SPECIFIC GEOLOGIC FEATURE DESCRIPTIONS Identified 5/21/2019

To the extent that surface property features were readily accessible and observable at the time the site was evaluated on <u>5/21/2019</u> no geologic features were identified on the subject tract of except for the following:

<u>F-1 O:</u>

Other Natural Bedrock Feature - Streambed: This feature is a natural drainage way designated as an Intermittent Stream by the USGS National Hydrography Dataset (NHD). In accordance with TCEQ Edwards Aquifer Protection Program Guidance, Streambeds, including dry drainages, are significant because runoff is focused to them. Not only are features in streambeds and natural drainage ways likely to receive large volumes of recharge, but they are likely to be part of hydrologically integrated flow paths because past flow has preferentially enlarged and maintained conduits. Therefore, this feature is identified as a sensitive feature at this time.

F-2 MB: Manmade Feature, Water Well: Per Texas Water Development Board (TWDB) Groundwater Database (GWDB), this feature (State Well # 58-11-601) was a test well "test hole" owned by the State of Texas, drilled by the Texas Department of Water Resources on July 18,1980 and subsequently plugged and abandoned on April 15, 1981. There was no identifiable surface expression of this well at the time the site was evaluated on 5/21/2019. Assuming that this water well was properly plugged and abandoned in accordance with Texas Department of Licensing and

Regulation Water Well Drillers and Pump Installers 16 TAC § 76 (TOC § 1901.255 Plugging Water Wells), this feature should not have a potential for hydraulic interconnectedness between the surface and the Edwards Aquifer. Therefore, this feature is not identified as a sensitive feature at this time.

F-3 MB:

Manmade Feature, Water Well: Per Texas Water Development Board (TWDB) Groundwater Database (GWDB), this feature (State Well # 58-11-603) was a test well "test hole" owned by the State of Texas, drilled by the Texas Department of Water Resources on April 16,1981 and used to mointor water levels until September 15, 1985. TWDB records for this well show a Well Use designation of "Plugged or Destroyed" which indicates the well was plugged and abandoned sometime after the last water level reading conducted September 15, 1985 although a definitive plugging date is not located in available file. A remark logged to file by the TWDB states "Unable to locate well in Oct. 2009". There was no identifiable surface expression of this well at the time the site was evaluated on 5/21/2019. Assuming that this water well was properly plugged and abandoned in accordance with Texas Department of Licensing and Regulation Water Well Drillers and Pump Installers 16 TAC § 76 (TOC § 1901.255 Plugging Water Wells), this feature should not have a potential for hydraulic interconnectedness between the surface and the Edwards Aquifer. Therefore, this feature is not identified as a sensitive feature at this time.

OBSERVATIONS

To the extent that surface property features were readily accessible and observable at the time the site was evaluated on <u>5/21/2019</u> no sensitive features were identified on the subject tract of land that has observed potential to affect recharge to the Edwards Aquifer except for the following:

F-1 O:

Other Natural Bedrock Feature - Streambed: This feature is a natural drainage way designated as an Intermittent Stream by the USGS National Hydrography Dataset (NHD). In accordance with TCEQ Edwards Aquifer Protection Program Guidance, Streambeds, including dry drainages, are significant because runoff is focused to them. Not only are features in streambeds and natural drainage ways likely to receive large volumes of recharge, but they are likely to be part of hydrologically integrated flow paths because past flow has preferentially enlarged and maintained conduits. Therefore, this feature is identified as a sensitive feature at this time.

CONCLUDING STATEMENTS

The Client understands that no non-intrusive visual observation or survey can wholly eliminate uncertainty regarding the possible presence of geologic conditions in connection with the subject property. Due to the inherent limits in connection with the agreed Scope of Work, this report does not address uncertainty about site conditions across those portions of the subject property not specifically addressed in this report.

Development of the site is planned. Additional modification of site surface conditions can be expected as construction proceeds. Unsuspected solution enlarged fractures, caves and cavities may be discovered during construction operations.

This assessment does not address the possible presence of subsurface conditions that may be exposed during construction operations. Should solution features or conditions be exposed during construction operations that indicate a potential for hydraulic interconnectedness between

the surface and the Edwards Aquifer, operations in the vicinity of the feature should be halted and the Texas Commission on Environmental Quality (TCEQ) Edwards Aquifer Protection Program should be contacted immediately in accordance with 30 TAC §213.5(f)(2).

Respectfully,

D Bryan Pairsh, P.G. Project Geologist

Capitol Environmental, Inc TBPG Firm Registration #50389

Austin, Texas

Geologic Assessment Balcones Flats FM 487 & C Bud Stockton Loop Jarrell, Williamson County, Texas Capitol Environmental, Inc. Registered Geosciences Firm Texas Registration No. 50389

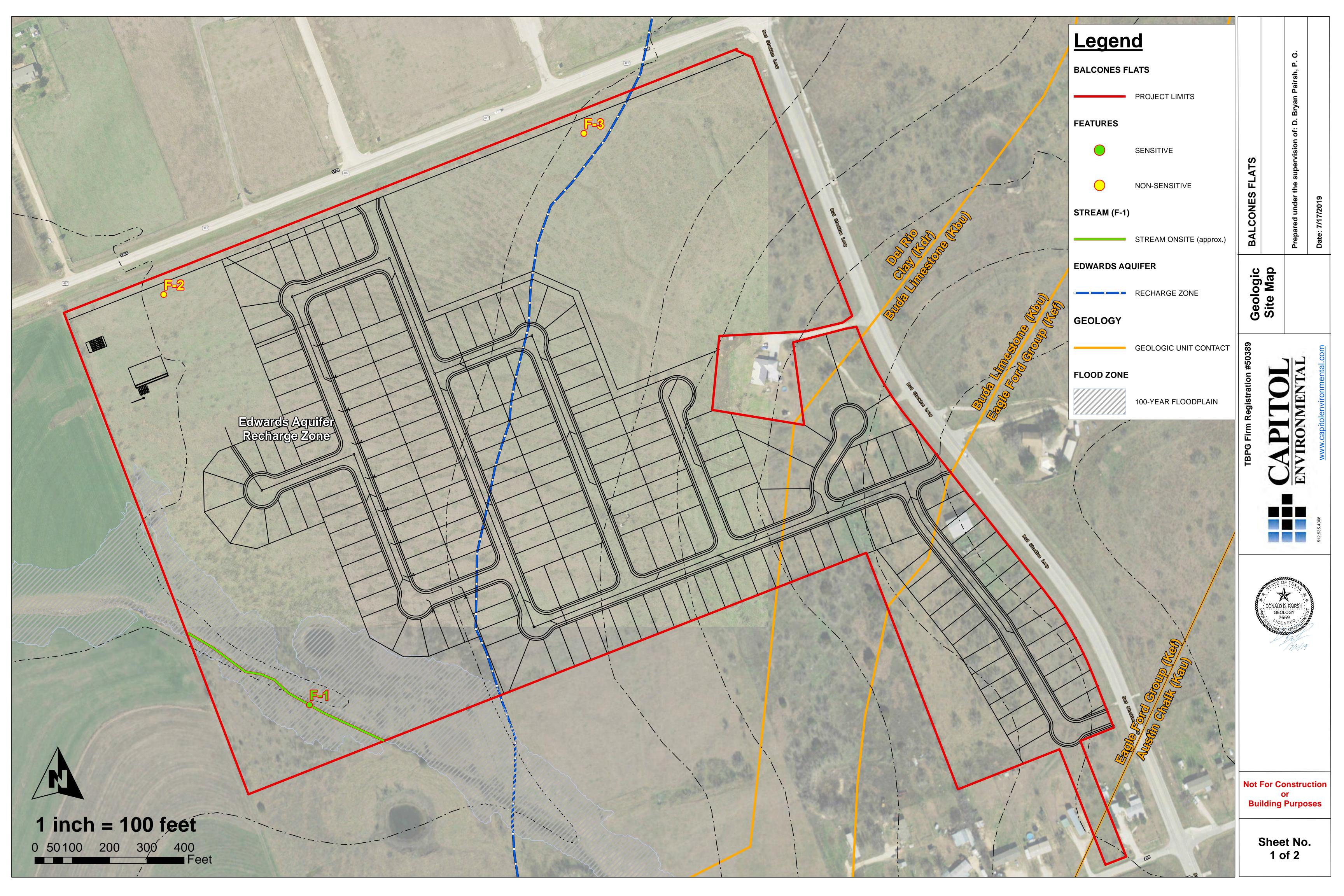
DISCLAIMER:

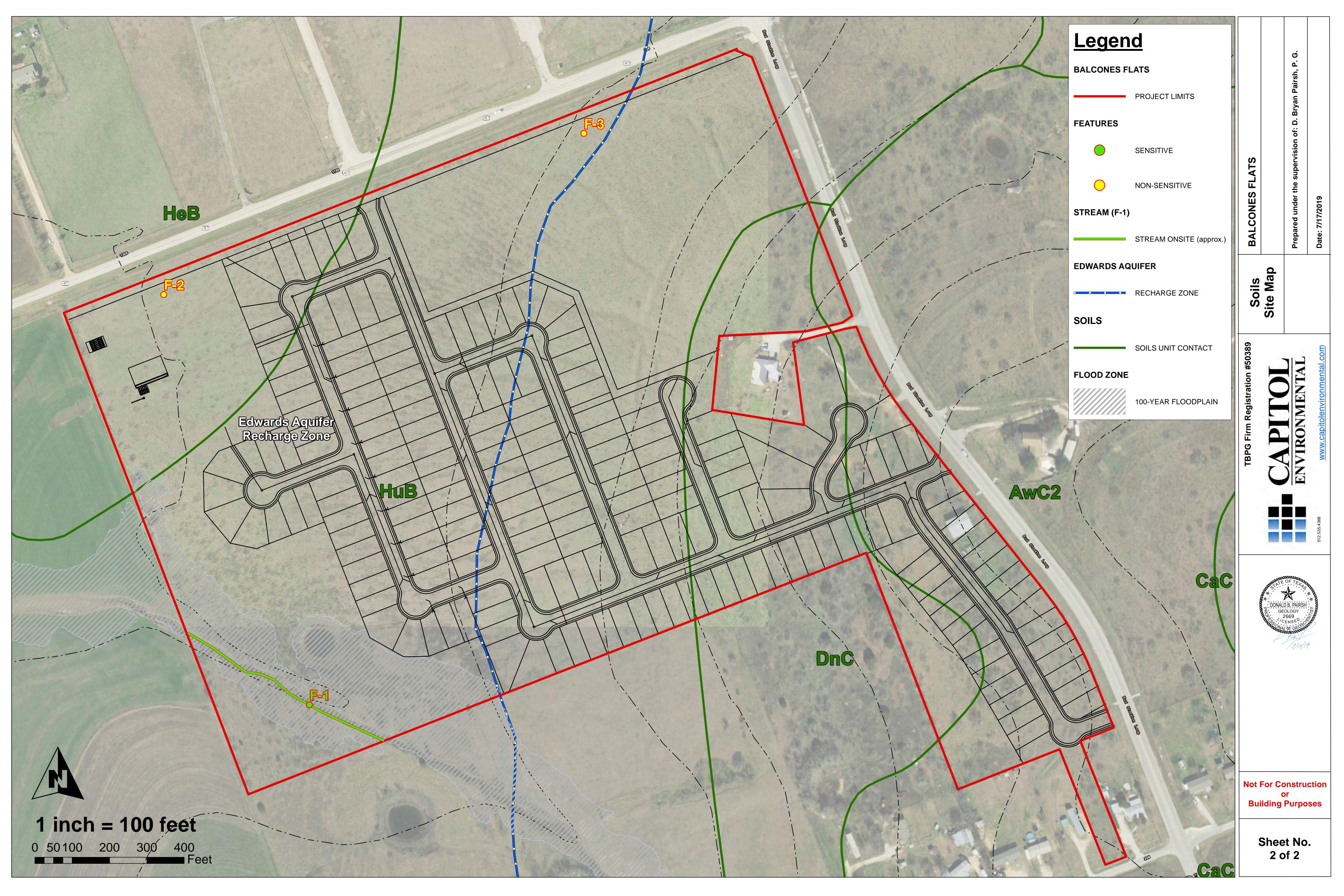
Under standard geologic assessment practice, this assessment is an assessment of surface property conditions that were readily accessible and easily visible at the time of the assessment.

Services performed under this contract were conducted in a manner consistent with the level of care and skill ordinarily exercised by members of the profession currently practicing under similar conditions. Under standard geologic assessment practice, information developed in this report represents an assessment of environmental conditions observed as present or absent on portions of the surface of the subject property at the time of the assessment. The field observations, measurements and research reported in this report are considered sufficient in detail and scope to form a contained assessment of discrete portions of the subject property. Capitol warrants that the findings and conclusions contained in this report have been prepared in accordance with generally accepted methods normal for the subject site described in this report.

Not every property will warrant the same level of assessment. Consistent with good commercial and customary practice, the appropriate level of assessment will be guided by the type of property subject to assessment, the expertise and risk tolerance of the Client and information developed in the course of the inquiry. The Assessment has been developed to provide the Client with information regarding apparent indications of the presence of absence of geologic conditions relating to the surface of the subject site. The Geologic Assessment report is necessarily limited to the conditions observed and to the information available at the time the work was performed. Due to the limited nature of the work, there is a possibility that conditions may exist in connection with the subject site which could not be identified within the scope of this assessment practice or which were not easily visible or not disclosed at the time the report was prepared.

It is also possible that assessment methods employed at the time the report was prepared may be later superseded by more discrete assessment methods. The definition of a "sensitive geologic feature" and / or a "critical environmental feature" can also change statutorily over time. Capitol does not warrant the content or findings of this report in the event of changes in conditions in connection with the subject property; in the event of changes in assessment methods; or in the event of changes in statute that may apply to the subject property in the future.


In preparing this report, Capitol has relied on information derived from third party sources and personal interviews, as well as other investigative work. Except as set forth in this report, Capitol has made no independent investigation as to the accuracy or completeness of the information derived from third party sources.


This report does not address uncertainty about site conditions across those portions of the subject property not specifically assessed in this report. The Client understands that no surface assessment can wholly eliminate uncertainty regarding the possible presence of geologic conditions at depth in connection with the subject property. The Client should recognize that conditions elsewhere in the assessment area may differ from those at the study /sample locations, and that surface conditions described in the assessment practice herein may change at depth. This assessment should not to be used as a basis for engineering design.

This report was prepared for the Client, to identify the presence or absence of geologic conditions on surface portions of the subject property. Any use of this report for other purposes or any use of information presented in this report by other parties other than the Client is the Client's responsibility.

Capitol Environmental, Inc. Registered Geosciences Firm Texas Registration No. 50389

Attachment D – Site Geologic Map & Site Soil Site Map

Organized Sewage Collection System Application

Texas Commission on Environmental Quality

For Regulated Activities on the Edwards Aquifer Recharge Zone and Relating to 30 TAC §213.5(c), Effective June 1, 1999

To ensure that the application is administratively complete, confirm that all fields in the form are complete, verify that all requested information is provided, consistently reference the same site and contact person in all forms in the application, and ensure forms are signed by the appropriate party.

Note: Including all the information requested in the form and attachments contributes to more streamlined technical reviews.

Regulated Entity Name: Balcones Flats

1. Attachment A – SCS Engineering Design Report. This Engineering Design Report is provided to fulfill the requirements of 30 TAC Chapter 217, including 217.10 of Subchapter A, §§217.51 – 217.70 of Subchapter C, and Subchapter D as applicable, and is required to be submitted with this SCS Application Form.

Customer Information

2. The entity and contact person responsible for providing the required engineering certification of testing for this sewage collection system upon completion (including private service connections) and every five years thereafter to the appropriate TCEQ region office pursuant to 30 TAC §213.5(c) is:

Contact Person: Evan Horne

Entity: Strategic Metal Solutions, LLC

Mailing Address: PO Box 689

City, State: Marble Falls, Tx Zip: 78654
Telephone: (512) 966-7434 Fax: _____

Email Address: evan@strategictx.com

The appropriate regional office must be informed of any changes in this information within 30 days of the change.

3. The engineer responsible for the design of this sewage collection system is:

Contact Person: Garrett Keller, P.E.

Texas Licensed Professional Engineer's Number: 111511

Entity: MatkinHoover Engineering & Surveying

Mailing Address: 1701 Williams Dr

City, State: Georgetown, Texas Zip: 78628
Telephone: (830) 249-0600 Fax:____

Email Address:gkeller@matkinhoover.com

Project Information

	_					
4.		ype of development to be served (estimated future population to be served, e allowance for institutional and commercial flows):				
	Multi-family: Commercial Industrial	Number of single-family Number of residential u m (not associated with a	units:			
5.	The character and vo	olume of wastewater is	shown below:			
	100% Domestic		30,240 gallons/c	lay		
	% Industrial		gallons/d	ay		
	% Commingled	t	gallons/d	ау		
	Total gallons/day	/: <u>30,240</u>				
6.	Existing and anticipa additional capacity w		17,271 gallons/day. Th	is will be addressed by:		
7.			s required for constructi located on the Recharg	-		
		ation for this developmoroval letter is attached	ent was approved by let	ter dated <u>11/05/2019</u> .		
			ent was submitted to th	e TCEQ on, but		
	has not been approved.					
	A WPAP application is required for an associated project, but it has not been submitted.There is no associated project requiring a WPAP application.					
8.	Pipe description:					
<u>Ta</u>	ble 1 - Pipe Descrij	ption	,	,		
	Pipe					
	Diameter(Inches)	Linear Feet (1)	Pipe Material (2)	Specifications (3)		
	8	194.69	SDR 26 Class 160	ASTM D2241		

Total Linear Feet: <u>194.69</u>

- (1) Linear feet Include stub-outs and double service connections. Do not include private service laterals.
- (2) Pipe Material If PVC, state SDR value.
- (3) Specifications ASTM / ANSI / AWWA specification and class numbers should be included.

9.	•	lant. The treatment facili		y or Jarrell WWTP
	ExistingProposed			
10.	All components of the	nis sewage collection sys	tem will comply with:	
		ound Rock standard spec fications are attached.	ifications.	
11.	No force main(s)	and/or lift station(s) are	associated with this se	wage collection system.
		ind/or lift station(s) is ass Force Main System Appl		=
ΑI	ignment			
12.		viations from uniform gra	•	ction system without
13.	There are no dev	viations from straight alig	nment in this sewage c	ollection system
	without Manhol collection system allowing pipe cu For curved sewe	lustification and Calculates. A justification for devenous mithout manholes with rvature is attached. In lines, all curved sewer less for the wastewater co	viations from straight al documentation from p ine notes (TCEQ-0596) a	ignment in this sewage ipe manufacturer
M	anholes and	Cleanouts		
14.	_	an-outs exist at the end o		nese locations are listed
Tal	ole 2 - Manholes a	nd Cleanouts		Manhole or Clean-
	Line	Shown on Sheet	Station	out?
	D	CU203 Of CU206	3+80.00	МН
	D	CU203 Of CU206	1+75.31	МН
		Of		

Of

	Line	Shown on Sheet	Station	Manhole or Clean- out?				
	Line	Of	Station	outr				
		Of						
		Of						
L		OI .						
15. 📐	15. $igwidge$ Manholes are installed at all Points of Curvature and Points of Termination of a sewer line.							
16.	16. The maximum spacing between manholes on this project for each pipe diameter is no greater than:							
	Pipe Dian	neter (inches)	Max. Ma	nhole Spacing (feet)				
		5 - 15		500				
		6 - 30		800				
		6 - 48		1000				
	_	≥54		2000				
	maximum spacing between manholes on this project (for each pipe diameter used) is greater than listed in the table above. A justification for any variance from the maximum spacing is attached, and must include a letter from the entity which will operate and maintain the system stating that it has the capability to maintain lines with manhole spacing greater than the allowed spacing.							
17.	All manholes wil	l be monolithic, cast-in-p	olace concrete.					
		ast manholes is requestend construction drawings						
Site	e Plan Requ	irements						
Items	18 - 25 must be ir	ncluded on the Site Plan.						
18. 🔀	The Site Plan mu	st have a minimum scale	e of 1" = 400'.					
	Site Plan Scale: 1	." = <u>100</u> '.						
19.	19. The Site Plan must include the sewage collection system general layout, including manholes with station numbers, and sewer pipe stub outs (if any). Site plan must be overlain by topographic contour lines, using a contour interval of not greater than ten feet and showing the area within both the five-year floodplain and the 100-year floodplain of any drainage way.							
20. La	iteral stub-outs:							
	=	II lateral stub-outs are slouts will be installed duri		nis sewer collection				

	oosed water lines:	
If not shown on the Site sewer systems.	ition system for this project is sh Plan, a Utility Plan is provided sh nes associated with this project.	
22. 100-year floodplain:		
floodplain, either natura lined channels construct After construction is com have water-tight manhol and labeled on the Site F constructed above sewe	•	not include streets or concrete- in the 100-year floodplain will the table below and are shown
Table 3 - 100-Year Floodpla Line	Sheet	Station
-	of	to
floodplain, either natura lined channels construct After construction is comencased in concrete or construction and lined channels construct	nplete, all sections located within apped with concrete. These loca d labeled on the Site Plan. (Do r	not include streets or concrete on the 5-year floodplain will be nations are listed in the table
After construction is comfloodplain, either natura lined channels construct After construction is comencased in concrete or construction and lined channels construction	lly occurring or man-made. (Do ed above sewer lines.) uplete, all sections located within apped with concrete. These located d labeled on the Site Plan. (Do r	not include streets or concrete on the 5-year floodplain will be nations are listed in the table
After construction is comfloodplain, either natura lined channels construct After construction is comencased in concrete or construction and lined channels construct Table 4 - 5-Year Floodplain	lly occurring or man-made. (Do ed above sewer lines.) aplete, all sections located within apped with concrete. These located d labeled on the Site Plan. (Do red above sewer lines.)	not include streets or concrete of the 5-year floodplain will be ations are listed in the table not include streets or concrete-
After construction is comfloodplain, either natura lined channels construct After construction is comencased in concrete or construction and lined channels construct Table 4 - 5-Year Floodplain	Ily occurring or man-made. (Do ed above sewer lines.) aplete, all sections located within apped with concrete. These located labeled on the Site Plan. (Do red above sewer lines.) Sheet	not include streets or concrete to the 5-year floodplain will be actions are listed in the table not include streets or concrete-
After construction is comfloodplain, either natura lined channels construct After construction is comencased in concrete or construction and lined channels construct Table 4 - 5-Year Floodplain	Ily occurring or man-made. (Do ed above sewer lines.) uplete, all sections located within apped with concrete. These located labeled on the Site Plan. (Do red above sewer lines.) Sheet of	not include streets or concrete on the 5-year floodplain will be ations are listed in the table not include streets or concrete-
After construction is comfloodplain, either natura lined channels construct After construction is comencased in concrete or construction and lined channels construct Table 4 - 5-Year Floodplain	Ily occurring or man-made. (Do ed above sewer lines.) uplete, all sections located within apped with concrete. These located labeled on the Site Plan. (Do red above sewer lines.) Sheet of	not include streets or concern the 5-year floodplain will be tions are listed in the table not include streets or concre

sheet of the construction plans and specifications are dated, signed, and sealed by the

Texas Licensed Professional Engineer responsible for the design on each sheet.

Items 26 - 33 must	be included on the	Plan and Profi	le sheets.	
sewer lines rated pipe t variance fro	are listed in the tab to be installed show	ole below. These on on the plan a consure rated pip	e lines must have t nd profile sheets.	er lines within 9 feet of the type of pressure Any request for a est include a variance
	e no water line cros e no water lines wit	-	oposed sewer lines	5.
Table 5 - Water I	Line Crossings			, ,
Line	Station or Closest Point	Crossing or Parallel	Horizontal Separation Distance	
required by A portion of the table be provided of the table be provided of the table be a portion of the table by the table be a portion of the table by the tab	this sewer line is with 30 TAC Chapter 21 of this sewer line is well at less than 1500 felow and labeled on this sewer line is well be provided at less means is described of this sewer line is well be ger than 1500 feet less was sever line is well at less wer line is well at less well	7. vithin the 100-y coot intervals. To the appropriate vithin the 100-y is than 1500 fee on the followir vithin the 100-y	rear floodplain and These water-tight note profile sheets. The profile sheets and rear floodplain and ret intervals. A descript page.	vever, there is no
Line	Manho	ole	Station	Sheet

Line	Manhole	Station	Sheet					
28. Drop manholes:	28. Drop manholes: There are no drop manholes associated with this project.							
=	h enter new or existing i		tructures" higher than					
	the manhole invert are							
	ile sheets. These lines n	neet the requirements o	f 30 TAC					
§217.55(I)(2)(H).	able 7 - Drop Manholes							
Line	Manhole	Station	Sheet					
29. Sewer line stub-outs	(For proposed extensio	ns):						
	nd markings of all sewer ub-outs are to be installe n.							
30. Lateral stub-outs (Fo	or proposed private servi	ice connections):						
 ☐ The placement and markings of all lateral stub-outs are shown and labeled. ☐ No lateral stub-outs are to be installed during the construction of this sewage collection system. 								
31. Minimum flow veloc	ity (From Appendix A)							
	Assuming pipes are flowing full; all slopes are designed to produce flows equal to or greater than 2.0 feet per second for this system/line.							
32. Maximum flow veloc	city/slopes (From Appen	dix A)						
	are flowing full, all slope al to 10 feet per second	•	ce maximum flows of					
Attachment D – Assuming pipes a	Calculations for Slopes fare flowing full, some slo	for Flows Greater Than popes produce flows which	•					

Table 8 - Flows Greater Than 10 Feet per Second

Line	Profile Sheet	Station to Station	FPS	% Slope	Erosion/Shock Protection

33.	Assuming pipes are flowing full, where flows are \geq 10 feet per second, the provisions noted below have been made to protect against pipe displacement by erosion and/or shock under 30 TAC §217.53(I)(2)(B).
	Concrete encasement shown on appropriate Plan and Profile sheets for the locations listed in the table above.
	 Steel-reinforced, anchored concrete baffles/retards placed every 50 feet shown on appropriate Plan and Profile sheets for the locations listed in the table above. N/A

Administrative Information

- 34. The final plans and technical specifications are submitted for TCEQ review. Each sheet of the construction plans and specifications are dated, signed, and sealed by the Texas Licensed Professional Engineer responsible for the design on each sheet.
- 35. Standard details are shown on the detail sheets, which are dated, signed, and sealed by the Texas Licensed Professional Engineer, as listed in the table below:

Table 9 - Standard Details

Standard Details	Shown on Sheet
Lateral stub-out marking [Required]	CU503 of CU504
Manhole, showing inverts comply with 30 TAC §217.55(I)(2) [Required]	CU503 of CU504
Alternate method of joining lateral to existing SCS line for potential future connections [Required]	N/A of N/A
Typical trench cross-sections [Required]	CU504 of CU504
Bolted manholes [Required]	CU504 of CU504
Sewer Service lateral standard details [Required]	CU503 of CU504
Clean-out at end of line [Required, if used]	CU503 of CU504
Baffles or concrete encasement for shock/erosion protection [Required, if flow velocity of any section of pipe >10 fps]	N/A of N/A
Detail showing Wastewater Line/Water Line Crossing [Required, if crossings are proposed]	CU502 of CU504
Mandrel detail or specifications showing compliance with 30 TAC §217.57(b) and (c) [Required, if Flexible Pipe is used]	CU504 of CU504

Standard Details	Shown on Sheet
Drop manholes [Required, if a pipe entering a manhole is more than 24 inches above manhole invert]	N/A of N/A

36. $igotimes$ All organized sewage collection system general construction notes (TCEQ-05)	596) are
included on the construction plans for this sewage collection system.	

37. 🔀 All p	oposed sewer lines will	be sufficiently surve	eyed/staked to allow	an assessment
prior	to TCEQ executive dire	ctor approval. If the	e alignments of the pr	roposed sewer lines
are r	ot walkable on that dat	e, the application w	vill be deemed incomp	olete and returned.

	Survey staking was	completed or	n this d	ate:
\Box	Saivey staking was	completed of	i cilis a	

- 38. Submit one (1) original and one (1) copy of the application, plus additional copies as needed for each affected incorporated city, groundwater conservation district, and county in which the project will be located. The TCEQ will distribute the additional copies to these jurisdictions. The copies must be submitted to the appropriate regional office.
- 39. Any modification of this SCS application will require TCEQ approval, prior to construction, and may require submission of a revised application, with appropriate fees.

Signature

To the best of my knowledge, the responses to this form accurately reflect all information requested concerning the proposed regulated activities and methods to protect the Edwards Aquifer. This **Organized Sewage Collection System Application** is hereby submitted for TCEQ review and executive director approval. The system was designed in accordance with the requirements of 30 TAC §213.5(c) and 30 TAC §217 and prepared by:

Print Name of Licensed Professional Engineer: Garrett Keller, PE

Date: 2/27/2025

Place engineer's seal here:

Signature of Licensed Professional Engineer:

Appendix A-Flow Velocity Table

Flow Velocity (Flowing Full) All gravity sewer lines on the Edwards Aquifer Recharge Zone shall be designed and constructed with hydraulic slopes sufficient to give a velocity when flowing full of not less than 2.0 feet per second, and not greater than 10 feet per second. The grades shown in the following table are based on Manning's formula and an n factor of 0.013 and shall be the minimum and maximum acceptable slopes unless provisions are made otherwise.

Table 10 - Slope Velocity

Pipe Diameter(Inches)	% Slope required for minimum flow velocity of 2.0 fps	% Slope which produces flow velocity of 10.0 fps		
6	0.50	12.35		
8	0.33	8.40		
10	0.25	6.23		
12	0.20	4.88		
15	0.15	3.62		
18	0.11	2.83		
21	0.09	2.30		
24	0.08	1.93		
27	0.06	1.65		
30	0.055	1.43		
33	0.05	1.26		
36	0.045	1.12		
39	0.04	1.01		
>39	*	*		
		1		

^{*}For lines larger than 39 inches in diameter, the slope may be determined by Manning's formula (as shown below) to maintain a minimum velocity greater than 2.0 feet per second when flowing full and a maximum velocity less than 10 feet per second when flowing full.

$$v = \frac{1.49}{n} \times R_h^{0.67} \times \sqrt{S}$$

Figure 1 - Manning's Formula

v = velocity (ft/sec)
n = Manning's roughness coefficient
(0.013)
Rh = hydraulic radius (ft)
S = slope (ft/ft)

The following Engineering Design Report (EDR) for the Balcones Flats Phase II Development Sewage Collection System, is in compliance with the 30 TAC Chapter 217, Subchapter A, Rule 217.10 "Final Engineering Design Report", and 30 TAC Chapter 217, Subchapter C, Rule 217.55 "Manholes and Related Structures". Information provided on this form will follow the order provided by item (e) "The report for a wastewater collection system must include the following:", located in 30 TAC Chapter 217, Subchapter A, Rule 217.10 "Final Engineering Design Report". The intent of the design report is to meet the Texas Commission on Environmental Quality (TCEQ) plan review of SCS applications.

This project consists of 194.69 LF of proposed sewer line into the existing City of Jarrell Wastewater Treatment Plant. The sewage collection system will service approximately 30,240 GPD.

- $(\underline{e-1})$ **X** Map showing the current service area, the proposed service area, and any area proposed for future expansion.
 - Attachment "Wastewater Collection System"- shows the current service area for the City of Jarrell WWTP.
- (e-2) X The topographical features of the current, the proposed, and any future service areas. (Refer to Attachment "Sewage Collection Site Plan" and "Balcones Flats Phase II Sanitary Sewer Plan and Profile Sheets: CU202-CU206 for Topographic details)
- (e-3) X A description of how the design flow was determined. (Attachment "General Notes Sheet C-001")

The design flow for Balcones Flats Phase II Development, SCS, was derived using the DACS; Water, Reuse Water, and Wastewater; (00295200).DOC for the City of Round Rock

- Inflow/Infiltration rates are derived from a section of the City of Round Rock which includes an approximation of 750 gallons/acre/day. This provides a multiplier of 0.01721 gpd/ft2, for a contributing area of \pm 23.028 acres.
- Peak dry weather flow calculations are derived from formula provided by the City of Round Rock provided below. The PDWF is derived from the formula:
 - Qpdwf = $([18 + (0.018 \times F) 0.5] / [4 + (0.018 \times F) 0.5]) \times F$
 - Where: F = 80 gal./person/day x No. of LUEs x 3.5/1440 = average dry weather flow in gpm
- Peak wet weather flow is obtained by adding inflow and infiltration to the peak dry weather flow. Refer to attachment for site residential, and the associated flow values used for design.

- Flow for the 50-year lifetime of the system is obtained by assuming a manning's roughness coefficient of 0.013 when determining capacity of the system. The appropriate conservative "n" value for minimum slope design of PVC sewer pipe is 0.009. As the pipe degrades over time the roughness coefficient will increase to approximately 0.013. Sizing the system using the 50-year "n" value and 65% full will yield the most conservative capacity and calculation have been provided within this report (Refer to Minimum and Maximum Slope Table and Calculation.)
- (e-4) X The minimum and maximum grades for each size and type of pipe. (Refer to Attachment "General Notes Sheet C-001 Minimum and Maximum Slope Table & Calculations Below")

Pipe sizing and minimum/maximum grades for Balcones Flats Phase II SCS, was derived using the DACS; Water, Reuse Water, and Wastewater; (00295200).DOC

• "Percent Pipe Full at Design Flow", requires a minimum diameter of six (6) inches for all gravity lines sewer mains. Balcones Flats Phase II Development sanitary sewer system contains 8" lines. Minimum allowable slopes for mains conform with the DACS; Water, Reuse Water, and Wastewater; (00295200).DOC provided and shown on (Refer to Attachment "General Notes Sheet C-001 – Minimum and Maximum Slope Table & Calculations Below")

	14111111	iuiii a	na maxin	iuiii Sio	ретац	ne & v	Calculation	s beio	w")				
				Peak [ry Weather	Minimum	and Maximum Flov	v Capacitie:	3				
Capacity Calc	ulation:								Manning's	"n" value:	n =	0.013	
				Minimum Slo	pe Values p	er Append	ix A, Flow Velocity 1	Table					
	Main Size (in.)	Inside dia (in.)	Min Slope (%)	Area (ft^2)	Hydraulic Radius (ft)	R^(2/3) (ft)	S^(1/2) (ft/ft)	Q (Full) (cfs)	Max Pipe %	Flow Velocity	Q max at min slope (gpm)		
SDR 26, CL 160	8	7.715	2.00	0.32	0.16	0.30	0.141	1.56	65.00	4.76	568.00	FlowRate	> 2fps (Acceptable)
				Maximum Slo	pe Values p	er Append	lix A, Flow Velocity	Table					
	Main Size (in.)	Inside dia (in.)	Max Slope (%)	Area (ft^2)	Hydraulic Radius (ft)	R^(2/3) (ft)	S^(1/2) (ft/ft)	Q (Full) (cfs)	Max Pipe %	Flow Velocity	Q max at max slope (gpm)		
SDR 26, CL 160	8	7.715	2.00	0.32	0.16	0.30	0.141	1.56	65.00	4.76	568.00	FlowRate	< 10fps (Acceptable)
Capacity Calc	culation:			Minimum Slo	pe Values p	er Append	lix A, Flow Velocity 1	lable	Manning's	"n" value:	n =	0.013	
	Main Size (in.)	Inside dia (in.)	Min Slope (%)	Area (ft^2)	Hydraulic Radius (ft)	R^(2/3) (ft)	S^(1/2) (ft/ft)	Q (Full) (cfs)	Max Pipe %	Flow Velocity	Q max at min slope (gpm)		
SDR 26, CL 160	8	7.715	2.00	0.32	0.16	0.30	0.141	1.56	85.00	2.78	772.00	Qpw < 859	% Qfull (Acceptable)
				Maximum Slo	pe Values p	er Append	lix A, Flow Velocity	Table					
	Main Size (in.)	Inside dia (in.)	Max Slope (%)	Area (ft^2)	Hydraulic Radius (ft)	R^(2/3) (ft)	S^(1/2) (ft/ft)	Q (Full) (cfs)	Max Pipe %	Flow Velocity	Q max at max slope (gpm)		
SDR 26, CL 160	8	7.715	2.00	0.32	0.16	0.30	0.141	1.56	85.00	4.76	772.00	FlowRate	< 10fps (Acceptable)
DACS; Water, Re Note:		Vater, Reus	water; (00295200 e Water, and Wast			_		ne peak WW	F (design flo	w) is not to	exceed 85	percent of	the capacity of the pipe
			is to be 10ft/s with	out pipe protect	ion								

- (e-5) X Calculations of expected minimum and maximum velocities in the system for each size and type of a pipe. (Refer to attachment "General Notes Sheet C-001 -Flow Velocity Table & Calculations Above")
- Minimum maximum velocities for Balcones Flats Phase II SCS, was derived using DACS; WATER, REUSE WATER, AND WASTEWATER; (00295200).DOC, "Minimum and Maximum Slope for Gravity Sewer".
 - "Design Velocities" requires a minimum design velocity calculated using the Peak Dry Weather flow not be less than two (2) feet per second (fps). The maximum design velocity calculated using the Peak Wet Weather Flow should not exceed ten (10) fps. Slopes per pipe diameter size comply with Appendix A, listed above to meet minimum and maximum velocity requirements.
- (e-6) X The proposed system's effect on an associated existing system's capacity.

 The proposed flow for the entire system will discharge at peak wet weather flow rate of 397.11 (Refer to attachment "City of Jarrell Serviceability Letter").
- (e-7) X The existing and anticipated inflow and infiltration, the hydraulic effect of the inflow and infiltration on the proposed and existing systems, any inflow and infiltration flow rate monitoring, and any inflow and infiltration abatement measures.
- The Balcones Flats Phase II sanitary sewer design complies with design standards to prevent infiltration into the system. This is will be prevented through sealing manholes (where required), by means of gasketing and bolts shown in the utility detail sheets attached
- (e-8) A description of the ability of the existing and proposed trunk and interceptor wastewater collection systems and lift stations to handle the peak flow. (Refer to attachment "City of Jarrell Serviceability Letter").
- (e-9) X The capability of the receiving treatment facility to receive and adequately treat the anticipated peak flow. The proposed system for the entire site will discharge at peak wet weather flow rate of 397.11 gpm (Refer to attachment "City of Jarrell Serviceability Letter").
- (e-10) X An engineering analysis showing compliance with structural design, minimization of odor-causing conditions, and the pipe design requirements of 217.55 of this title (relating to Manholes and Related Structures)

30 TAC 217, Subchapter C, Rule 217.55 Manholes and Related Structures

217.55(a) Manholes for the proposed wastewater system are included at all points of change in alignment, grade, size, intersection of all pipes, and at the end of all pipes that may be extended at a future date. (Complied – Refer to SCS Site Plan)

- 217.55(b) Manholes placed at the end of a wastewater collection system pipe that may be extended in the future must include pipe stub outs with plugs (Complied Refer to SCS Site Plan)
- 217.55(c) A clean-out with watertight plugs may be installed in lieu of a manhole at the end of a wastewater collection system pipe if no extensions are anticipated. (Complied Refer to SCS Site Plan)
- 217.55(d) Cleanout installations must pass all applicable testing requirements outlined for gravity collection pipes in 217.57 of this title (relating to Testing Requirements for Installation of Gravity Collection System Pipes). (Complied Refer to SCS Site Plan)
- 217.55(e) A manhole must be made of monolithic, cast-in-place concrete, fiberglass, pre-cast concrete, high density polyethylene, or equivalent material that provides adequate structural integrity. (Pre-cast Concrete. Location in submittal: CU503)
- 217.55(f) The use of bricks to adjust a manhole cover to grade or construct a manhole is prohibited. (Complied)
- 217.55(g) Manholes may be spaced no further apart than the distances specified in the following table for a wastewater collection system with straight alignment and uniform grades, unless a variance based on the availability of cleaning equipment that is capable of servicing greater distances is granted by the executive director.

The maximum manhole spacing allowed by the TCEO are as follows:

Pipe Diameter (in)	Maximum Manhole Spacing (ft)
6 - 15	500
18 - 30	800
36 - 48	1000
54 or Larger	2000

Indicate what the maximum spacing in this project will be for each proposed diameter of pipe.

Pipe Diameter: 8" Max. Spacing: 204.69'

- 217.55(h) Tunnels are exempt from manhole spacing requirements because of construction constraints. (N/A)
- 217.55(i) An intersection of three or more collection pipes must have a manhole. (Complied)
- 217.55(j) A manhole must not be located in the flow path of a watercourse, or in an area where ponding of surface water is probable. (See below)

- Manhole covers which lie within a 100-year flood plain must be sealed and gasketed or otherwise provided with adequate protection against inflow. Such measures should also be provided to any manholes lying in drainage ways or streets subject to carrying drainage flows. Will this requirement be met? <u>N/A</u>
 - (k) The inside diameter of a manhole must be no less than 48 inches. A manhole diameter must be sufficient to allow personnel and equipment to enter, exit, and work in the manhole and to allow proper joining of the collection system pipes in the manhole wall.

(1) Manhole Covers:

- (A)A manhole where personnel entry is anticipated requires at least a 30 inch diameter clear opening. (Complied Refer to Sheet CU503)
- (B) A manhole located within a 100-year flood plain must have a means of preventing inflow. (N/A No manholes are within the 100-year flood plain. Refer to FEMA F.I.R.M. Map #48491C0125E dated 9-26-2008).
- (C)A manhole cover construction must be constructed of impervious material. (Complied)
- **(D)**A manhole cover that is located in a roadway must meet or exceed the American Association of State Highways and Transportation Officials standard M-306 for load bearing. **(Complied)**

(2) Manhole Inverts:

- (A) The bottom of a manhole must contain a U-shaped channel that is a smooth continuation of the inlet and outlet pipes. (Complied Refer to Sheet CU503)
- (B) A manhole connected to a pipe less than 15 inches in diameter must have a channel depth equal to at least half the largest pipe's diameter. (Complied Refer to Sheet CU503)
- (C)A manhole connected to a pipe at least 15 inches in diameter but not more than 24 inches in diameter must have a channel depth equal to at least three-fourths of the largest pipe's diameter. (N/A)
- (D)A manhole connected to a pipe greater than 24 inches in diameter must have a channel depth equal to at least the largest pipe's diameter. (N/A)
- (E) A manhole with pipes of different sizes must have the tops of the pipes at the same elevation and flow channels in the invert sloped on an even slope from pipe to pipe. (Complied)
- (F) A bench provided above a channel must slope at a minimum of 0.5 inch per foot. (Complied)

- **(G)** An invert must be filleted to prevent solids from being deposited if a wastewater collection system pipe enters a manhole higher than 24 inches above a manhole invert. **(Complied)**
 - **(H)**A wastewater collection system pipe entering a manhole more than 24 inches above an invert must have a drop pipe. **(Complied)**
 - (m) The inclusion of steps in a manhole is prohibited. (N/A)
 - (n) Connections. A manhole-pipe connection must use watertight, size-on-size resilient connectors that allow for differential settlement and must conform to American Society for Testing and Materials C-923. (Location in submittal: Plan sheet <u>CU503</u>)
 - (o) Venting. An owner must use an alternate means of venting if manholes are at more than 1,500 foot intervals and gasketed manhole covers are required for more than three manholes in sequence. (N/A)
 - (p) Cleanouts. The size of a cleanout must be equal to the size of the wastewater collection system main. (Complied)

Structural Analysis of Wastewater System, 30 TAC, 217.53 Pipe Design. Proposed Pipe Information:

S-1) List all the pipe diameters proposed for this project. Specify the total linear feet of pipe proposed for each listed diameter, the pipe material proposed for each diameter, the national standard specifications (ASTM, AWWA, ANSI, etc...) which govern each proposed pipe material and the appropriate national standard specifications for joints which correspond to each of these proposed materials.

Pipe Diameter	Linear Feet	Pipe Material	National Standard		National	Standard
			Specification for		for	Pipe
			Pipe Material		Join	its
8"	194.69	PVC SDR 26	ASTM D-2241 AS		ASTM D-3	139

Utility Trench Information:

- S-2) For purposes of TCEQ review, flexible materials include, but are not limited to, plastics, PVC, ABS, fiberglass, and, polyethylene. If the design does not include flexible pipe, skip to T13. If the design includes flexible pipe materials, the specified bedding must comply with ASTM D-2321 class IA, IB, II or III for materials and densification. A minimum of 6 inches of bedding is required for all pipe. Will the proposed project comply with these requirements? **Yes**
- S-3) The trench width must be minimized while still allowing adequate width for proper compaction of backfill, and while still ensuring that at least 6 inches of backfill exists on each side of the pipe. Will this be accomplished? **Yes**

- S-4) For each diameter of pipe, indicate minimum and maximum trench width: Pipe Diameter: <u>8"</u> Min. Trench Width: <u>24"</u> Max. Trench Width: <u>36"</u>
- S-5) Will the trench walls be vertical to at least one foot above the pipe? <u>Yes</u>

Location in submittal: Plan sheets CU503

S-6) Will the backfill be free of stones greater than 6 inches in diameter and free of organic or any other unstable material? **Yes**

General Requirements: 30 TAC 217.53

Structural Analysis: 30 TAC 217.53(k) Flexible Pipe Design Live Load Analysis:

For the purposes of this application, the minimum depth of burial for gravity sanitary sewer pipe, from the ground surface to the crown of the pipe (H) is 2 feet. Does the submitted design comply with this minimum H? **Yes**

Live Load due to H-25 or HS-25 vehicle loading per AASHTO Table 5-3 (N/A)

Live Load due to 100-yr surface water elevation in water quality pond (See Attachment for L₁ calculation) N/A

- S-7) Indicate maximum anticipated L_1 as determined in T63: N/A
- S-8) Are all proposed flexible pipe materials capable of supporting this L_1 ? N/A
- S-9) Indicate source of maximum L₁: N/A

Buckling Analysis:

S-10) Calculate allowable and predicted buckling pressure based on Moser's book. Predicted and allowable buckling pressures must be calculated for each size of pipe and type of flexible pipe material. For the purposes of this application form, the buckling analysis must be performed using the method outlined below. The method of calculating allowable buckling pressure provided below is only valid for lines which are installed at depths of 2 ft \leq H \leq 80 feet, and where the groundwater elevation is below the ground surface.

(Areas where groundwater elevation is below the ground surface)

$$q_a = 0.4 \sqrt[2]{32 * R_W * B' * (E * \frac{I}{D^3})}$$
 Equation (1)
 $q_a = 0.4 \sqrt[2]{32 * 1.00 * 0.88 * (400,000 * \frac{0.00193}{8^3})} = 116.35 (8" PVC SDR 26 160 PSI)$

See attachment for q_a calculation.

$$R_W = 1 - 0.33 * (h_W/h)$$
 Equation (2)

For unsaturated: $R_W = 1 - 0.33 * (0/188.88) = 1.00$ (8" PVC SDR 26 160 PSI) For fully saturated hw = h: $R_w = 1 - 0.33 * (1) = 0.67$ N/A

$$B' = \frac{1}{1 + 4 * e^{-0.213 H}}$$
 Equation (3)

See attachment for B' calculation. *

$$I = (t^3/12)(inches^4/Linch)$$
 Equation (4)
See attachment for I calculation.

qa = allowable buckling pressure, pounds per square inch (psi)

h = height of soil surface above top of pipe in inches (in)

hw = height of water surface above top of pipe in inches (in) (groundwater elevation)

Rw = Water buoyancy factor. If hw = 0, Rw = 1. If $0 \le hw \le h$ (groundwater elevation is between the top of the pipe and the ground surface), calculate Rw with Equation 2

H = Depth of burial in feet (ft) from ground surface to crown of pipe.

B' = Empirical coefficient of elastic support

Eb = modulus of soil reaction for the bedding material (psi)

E = modulus of elasticity of the pipe material (psi)

I = moment of inertia of the pipe wall cross section per linear inch of pipe, inch^4/linear inch = inch^3. For solid wall pipe, I can be calculated with equation 4. If the pipe used is not solid wall pipe (for example a pipe with a ribbed cross section), the proper moment of inertia formula must be obtained from the manufacturer.

t = pipe structural wall thickness (in)

D = mean pipe diameter (in)

a) Calculate pressure applied to pipe under installed conditions:

$$q_P = \gamma_w * h_w + R_w * \left(\frac{W_c}{D}\right) + L_1$$
 Equation (5)

 $q_P = 0.0361 * 0 + 1 * \left(\frac{92.21}{8}\right) + 0 = 11.95$ ("Worst Case" Max. Depth of Cover - 8" PVC SDR 26 160 PSI)

$$W_c = \gamma_s * H * (D + t)/144$$
 Equation (6)

 $W_c = 125 * 13.20 * \frac{8+0.332}{144} = 92.21$ ("Worst Case" Max. Depth of Cover - 8" PVC SDR 26 160 PSI)

qp = pressure applied to pipe under installed conditions (psi)

 $\gamma w = 0.0361$ pounds per cubic inch (pci), specific weight of water

ys = specific weight of soil in pounds per cubic foot (pcf)

Wc = vertical soil load on the pipe per unit length in pounds per linear inch (lb/in)

L1 = Live load as determined in T63 (see attached Capacity Design)

S-11) Report qa and qp for each pipe diameter proposed and for each type of pipe material proposed:

$$\gamma$$
s = 125 pcf; hw = 0; t = 0.332" (8" PVC SDR 26 160 PSI);

Pipe Diameter: 8" Pipe Material: PVC SDR 26 160 PSI qa: 140.24 qp: 11.95

S-12) If $q_a \ge q_p$, specified pipe is acceptable for the proposed installation. If $q_a \le q_p$, the wall thickness of the pipe must be increased and/or a pipe with a larger modulus of elasticity (E) must be used. Make the appropriate modifications and repeat the buckling analysis, showing that for the upgraded pipe, $q_a \ge q_p$. Does all the pipe proposed for this project meet these requirements? **Yes**

Wall Crushing:

S-13) If no concrete cradled flexible pipe is proposed for the submitted project, skip to T73. If any flexible pipe will be installed in rigid cradle (e.g. concrete), calculate the maximum depth that the pipe can be buried before wall crushing (or failure by ring compression) will occur using the method outlined below. It should be noted that cement stabilized sand or soil is not considered a rigid cradle for purposes of TCEQ review: No concrete cradle proposed, calculations shown for information only.

$$H = (24* P_c* A)/(\gamma_s* D_o)$$
 Equation (7)

$$H = (24 * 4000 * 3.984)/(125 * 8) = 382.46$$
 (8" PVC SDR 26 160 PSI)

D_o = outside pipe diameter, in.

P_c = compressive stress or hydrostatic design basis (HDB). For typical PVC pipe assume 4,000 psi. For any other pipe material the HDB must be supplied by the pipe manufacturer.

A = surface area of the pipe wall, in. 2 /ft

 γ_s = specific weight of soil in pounds per cubic foot (pcf)

H = Depth of burial in feet (ft) from ground surface to crown of pipe.

24 = conversions and coefficients

S-14) Will all pipe installations proposed for this project have an H less than or equal to the maximum allowable H calculated in S-13 and greater than or equal to 2 feet? **Yes** Report maximum allowable H, (H_a), and the maximum H which is proposed, (H), for each proposed pipe diameter and each type of flexible pipe material. **N/A**

Pipe Diameter: 8" Pipe Material: PVC SDR 26 ASTM D-2241 Ha: 382.46ft H: 13.20ft

Tensile Strength:

S-15) The project specifications need to indicate minimum allowable tensile **strength** in psi for each flexible pipe material. If PVC pipe is proposed, specify cell class:

Pipe Material: <u>PVC SDR 26</u> Tensile Strength: <u>7,100</u> Cell Class (PVC only): <u>12364/12454</u> "Handbook of PVC Pipe, Design and Construction" Table 2.1 pg. 14-15.

Strain:

S-16) Are the conditions of this installation such that strain-related failure will not be a problem? <u>Yes</u> If any proposed flexible pipe material is considered to be susceptible to strain-related failure at less than 5% long-term deflection provide analysis for predicted strain due to hoop stress and bending strain.

Deflection Analysis:

S-17) Indicate Eb (modulus of soil reaction for the bedding material) in psi. If Eb is greater than 750 psi, justification must be provided: 2,000 psi

How was Eb determined or estimated? "AWWA, M23 Manual" Table 4-5 pg. 30.

S-18) Indicate E'n (modulus of soil reaction for the in-situ soil) in psi: 5000 psi

How was E'n determined or estimated? <u>"Table 5 - E'native for Various Native Soil Conditions"</u> (Reference: American Concrete Pipe Association, Page 20)

S-19) Calculate the ratio of bedding modulus to soil modulus:

Eb/E'n = 2000 psi / 5000 psi = 0.40

If this ratio is greater than 1.25, a zeta factor must be calculated, where zeta is a factor which corrects for the effect of in-situ soil on pipe stability. If the ratio of bedding modulus to soil modulus is less than or equal to 1.25, assume zeta = 1.0.

S-20) Where native soil is significantly weaker than bedding material, or where predicted deflection approaches 5%, the effect of native soil must be quantified using Leonhardt's Zeta factor. Zeta must be determined for each diameter of pipe and corresponding trench width. Zeta may be estimated graphically or calculated

directly. If zeta is estimated graphically, identify the source for tables, figures, etc...(including page numbers and table numbers or figure numbers for each source) which were used to estimate zeta.

Calculations:

zeta=
$$\frac{1.44}{f + (1.44 - f)*(E_b/E_{n'})}$$
 Equation (8)

$$zeta = \frac{1.44}{1.01 + (1.44 - 1.01) * (\frac{2000}{5000})} = 1.00$$
 8" PVC SDR 26 160 PSI

$$f = \frac{b/d_a - 1}{1.154 + 0.444^* (b/d_a - 1)}$$
 Equation (9)

$$f = \frac{\frac{24}{8} - 1}{1.154 + 0.444 * (\frac{24}{8} - 1)} = 1.01$$
 8" PVC SDR 26 160 PSI

f = pipe/trench width coefficient

b = trench width

d_a = pipe diameter

 E_b = modulus of soil reaction for the bedding material (psi)

 E'_n = modulus of soil reaction for the in-situ soil (psi)

- S-21) For each size of pipe, report zeta factor determined:
 Pipe Diameter: 8" Trench Width: 24" zeta: 1.00
- S-22) Determine pipe stiffness (P_s) in psi. P_s can be determined either by parallel plate test at 5% deflection, based on manufacturer's data or national reference standards; or, calculated using either equation 10 or equation 11. As an example, the minimum pipe stiffness at 5% deflection for PVC pipe less than 15 inches in diameter meeting ASTM D 3034, is 46 psi for SDR-35 and 115 psi for SDR 26. If equation 11 is used,

the ring stiffness constant (RSC) is provided by the pipe manufacturer. Show calculations, or provide proper references, for each size of pipe and for each flexible pipe material.

$$P_s = \frac{EI}{0.149 * r^3}$$
 Equation (10)

or

$$P_s = 0.80 * RSC * (8.337/D)$$
 Equation (11)

E = modulus of elasticity of the pipe material (psi)

I = moment of inertia of the pipe wall cross section per linear inch of pipe, inch⁴/linear inch = inch³. For solid wall pipe, I can be calculated with equation 4. If the pipe used is not solid wall pipe (for example a pipe with a ribbed cross section), the proper moment of inertia formula must be obtained from the manufacturer.

D = mean pipe diameter (in)

r = mean radius (in)

S-23) Report P_s for each pipe size and each type of flexible pipe material as determined.

Pipe Diameter: 8" Pipe Material: PVC SDR 26 ASTM 2241 P_s: 160 psi

S-24)Because the terms in the denominator of the modified Iowa formula (Equation 13) are added, it is theoretically possible to have zero pipe stiffness (P_s =0) and still predict flexible pipe deflections less than 5%. In order to ensure that the stiffness being provided to the installation has a reasonable contribution from pipe stiffness, and does not rely solely on the stiffness provided by the soil stiffness factor (SSF), the ratio of P_s /SSF must be calculated. If P_s /SSF < 0.15, S-22 and S-23 must be repeated such that a higher stiffness pipe is chosen for each portion of the project where P_s /SSF < 0.15. The P_s /SSF ratio(s) must then be recalculated for the new higher stiffness pipe. This process must be repeated until P_s /SSF \geq 0.15 exists for all proposed pipe sizes and for all types of flexible pipe materials.

$$\frac{P_s}{SSF} = \frac{P_s}{(0.061^* zeta^* E_b)} \ge 0.15$$
 Equation (12)

$$\frac{P_S}{SSF} = \frac{160}{(0.061*1.00*2000)} = 1.31$$
 (8" PVC SDR 26 160 PSI)

 $E_b = \text{modulus of soil reaction for the bedding material (psi) [from T76]}$

zeta = 1.0, or a value calculated with the method in T79

SSF = soil stiffness factor $(0.061*zeta*E_b)$

S-25) Indicate the final values calculated for P_s/SSF for each diameter of pipe and for each pipe material:

Pipe Diameter: **8**" Pipe Material: **PVC SDR 26 ASTM D-2241** P_s/SSF: **1.31**

- S-26) Do all proposed pipe sizes and flexible pipe materials have a pipe stiffness to soil stiffness factor ratio of greater than or equal to 0.15? <u>Yes</u>
- S-27) Calculate and report predicted deflection. Predicted deflection must be calculated for each size of pipe and type of flexible pipe material. For the purposes of this application form, predicted deflection must be calculated using the method outlined below. Show calculations and report calculated maximum deflection for each size of pipe and type of flexible pipe material. Maximum allowable deflection in installed lines is 5%, as determined by the deflection analysis and verified by a mandrel test. Some conservatism should be employed in determining allowable predicted deflections. This conservatism is necessary to allow for variability in the quality of installation.

$$\Delta Y/D(\%) = \frac{K * (L_p + L_1) * 100}{(0.149 * P_s) + (0.061 * zeta * E_b)}$$
 Equation (13)

$$\frac{\Delta Y}{D(\%)} = \frac{0.11*(13.28+0.00)*100}{(0.149*180)+(0.061\&1.00*2000)} = 0.84\%$$
 (8" PVC SDR 26 160 PSI)

 $\%\Delta Y/D$ = Predicted % vertical deflection under load.

 ΔY = Change in vertical pipe diameter under load

^{*}See attachment for calculation.*

D = Undeflected mean pipe diameter (in)

$$L_p = \frac{\gamma_s * H}{144} * 1.5$$
 Equation (14)

$$L_p = \frac{125*13.2}{144} * 1.5 = 17.1875$$
 (8" PVC SDR 26 160 PSI, H=15.74 ft)

K = Bedding angle constant. Assumed to be 0.110 unless otherwise justified.

 γ_s = Unit weight of soil (pcf). γ_s less than 120 pcf must be justified.

H = Depth of burial (ft) from ground surface to crown of pipe.

L_p = Prism load (psi). If prism load is calculated using Marston's load formula, or other formulas less conservative than the one provided above, the load should be multiplied by a deflection lag factor D_L = 1.5 to account for long-term deflection of the pipe as the bedding consolidates S-27) Report the final pipe diameters, types of pipe material proposed for each diameter, type of pipe material, pipe stiffness for each pipe material (P_s), zeta factors assumed or calculated for each pipe diameter, modulus of the pipe bedding material (E_b) and % deflection predicted for each pipe size and type of pipe material.

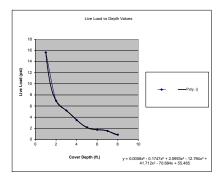
	Type of Pipe Material	Ps (psi)	zeta Factor Assumed or Calculated	Eb (psi)	% Deflection
Pipe Diameter 1	8" PVC SDR 26/ASTM D-2241	160	1.00	2000	1.00

S-28) Do all pipes proposed for this project have a maximum predicted deflection of 5.0%? Yes

217.10(e)(11) X A description of the areas not initially served by a project, and the projected means of providing service to these areas, including special provisions incorporated in the present plans for future expansion.

- Refer to Attachment "CU201."
- 217.10(e)(12) N/A The calculations and curves showing the operating characteristics of all system lift stations at minimum, maximum, and design flows during both present and future conditions.

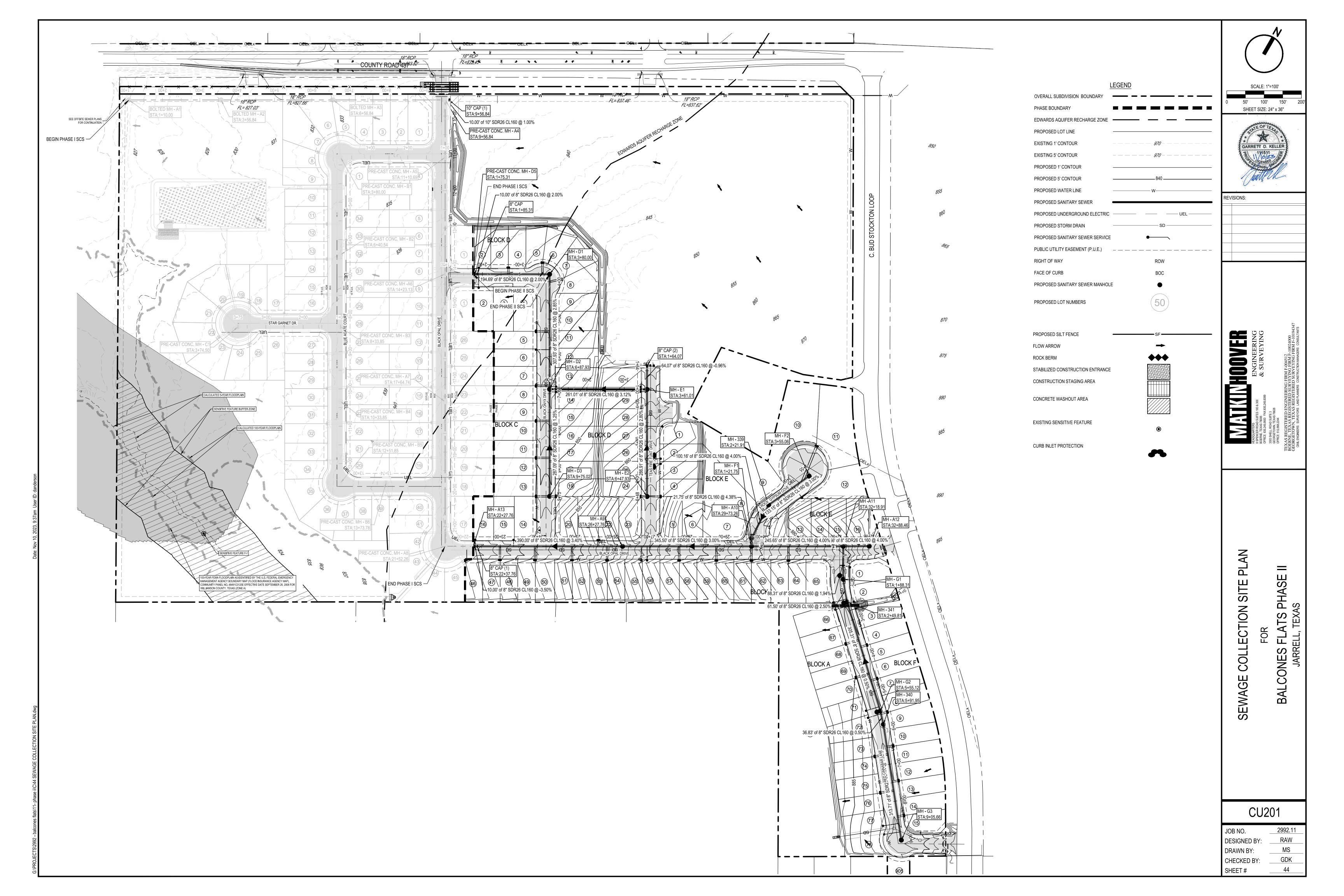
BALCONES FLATS PHASE I DESIGN REPORT

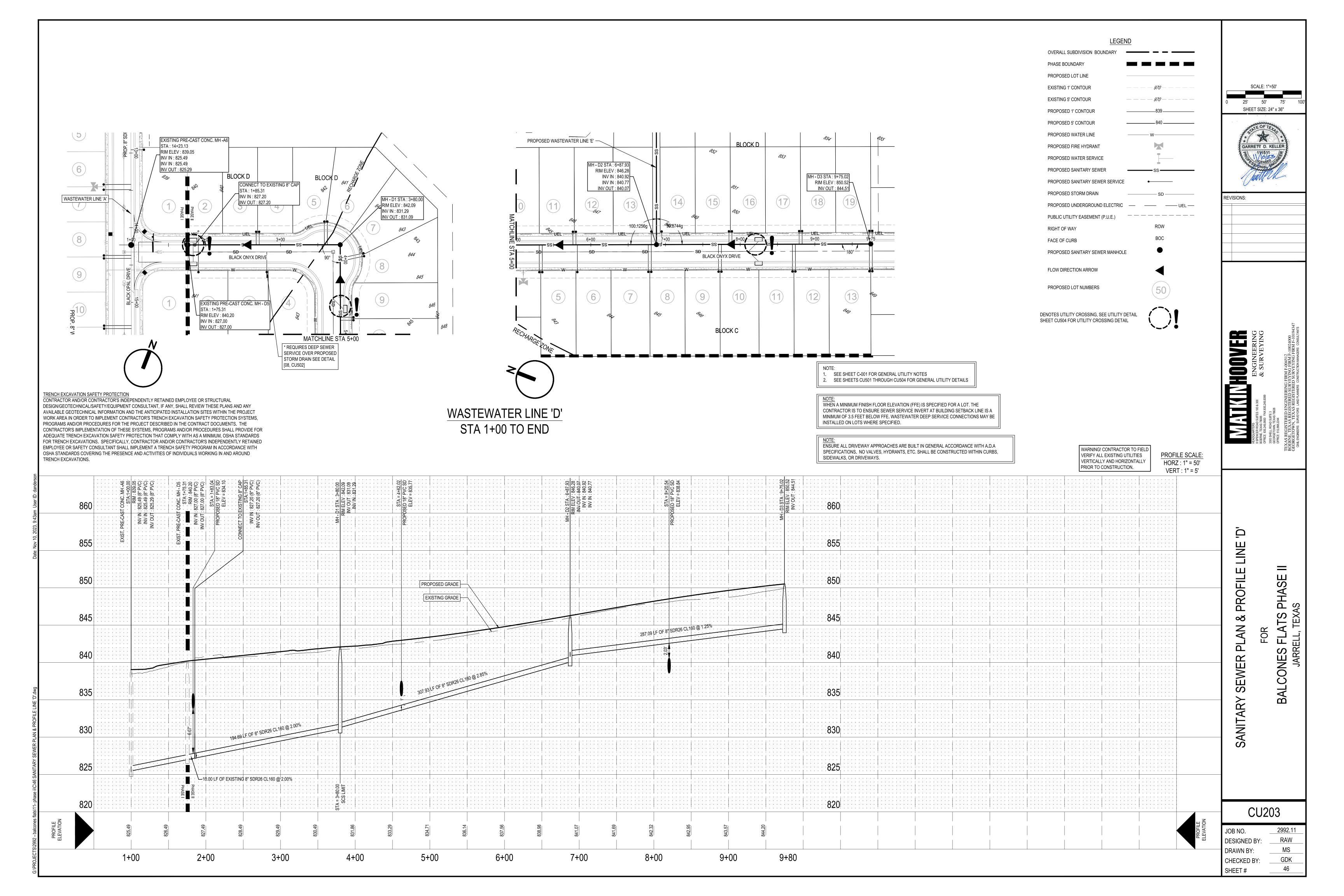

217.10(e)(13) N/A The safety considerations incorporated into a project design entrances, working areas, and explosion prevention	, including ventilation,
Place engineer's seal here:	STEE OF TEN
Garrett Keller, P.E. Print Name of Licensed Professional Engineer	GARRETY D. KELLER
Signature of Licensed Professional Engineer Date	S COMPANY OF THE PARTY OF THE P

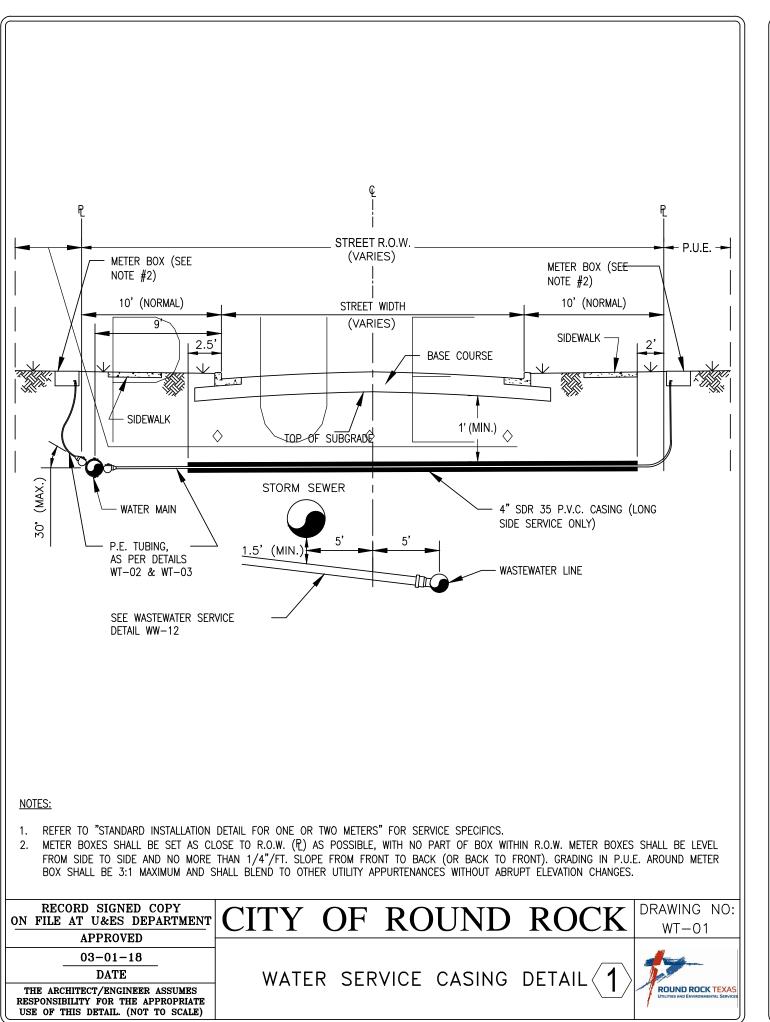
			SDR 26 160 PSI
		SDR 26 160 PSI Worse Case Line D, Sta: 18+78.43 (Deepest Depth of Cover)	Line D, Sta: 3+74.50 (Minimum Depth of Cover and Max Live Load)
		General	400000
	E (psi) = Eb (psi) =	400000 2000	400000 2000
	E'n (psi) =	5000	5000
	Ys (pcf) =	125	125
	Yw (pci) = (pcf) =	0.0361 62.4	0.0361 62.4
	b (min trench width)(in) =	24	24
	Pc = K =	4000	4000 0.11
	Total length of Pipe (ft.)	194.69	194.69
	SCS Cost	\$97.35	\$97.35
	Type of Pipe	ASTM 2241	ASTM 2241
	SDR	26 CL 160	26 CL 160
	D (Pipe Diameter) (in)	8	8
	length of Pipe (LF) Do (outside Dia.) (in)	194.69 8	194.69 8
	T (thickness) (in)	0.332	0.332
	(Fill Height) H (ft)	13.20	11
	(Fill Height) h (in)	158.40	132.00
	hw (in) Pipe Stiffness Ps (psi)	160	160
Equations	Surface Water Depth (SWD) (in)	0	0
T68) Allowable Buckling Pressure			
$q_a = 0.4 * \sqrt[2]{32 * R_w * B' * E_b * (E * I/D^3)}$ Allowable Buckling Pressure (psi)	qa	140.24	132.76
p = 1 - 0 33 * (t /b)	Rw	1.00	1.00
Water Buoyancy Factor I $B' = \frac{I}{I + 4} * e^{-0.213 \ H}$ Empirical Coefficient of Elisatic Support	В'	0.81	0.72
I = (t ³ /12)(inches ⁴ /Linch) Moment of Inertia of the Pipe Wall Cross Section (in^3)		0.00305	0.00305
$L_1 = \frac{\gamma_w * SWD}{144}$	L _i	0.00	0.00
Live Load (psi) $q_p = \gamma_w * h_w + R_w * (W_c/D) + L_l$ Pressure Applied to Pipe Under Installed Conditions (psi)	qp	11.95	9.96
Pressure Applied to Pipe Under Installed Conditions (psi) $W_c = \gamma_x * H * (D + t)/144$ Vertical Sail Load on the Pipe (liblin)	Wc	92.21	76.84
	TEST: if qa <qp td="" wrong<=""><td>Acceptable</td><td>Acceptable</td></qp>	Acceptable	Acceptable
T71) Concrete Cradle	Ha	382.46	382.46
$H_a = (24 * P_c * A)/(\gamma_x * D_o)$	A	3.984	3.984
	Test if Hp>Ha	Acceptable	Acceptable
T78) Ratio of Bedding Modulus to Soil Modulus			
	Eb/E'n	0.40	0.40
T79) Zeta Factor			
$zeta = \frac{1.44}{f + (1.44 - f)^* (E_b / E_{s'})}$	zeta	1.00	1.00
$f = \frac{b/d_n - I}{1.154 + 0.444 * (b/d_n - I)}$	f	1.01	1.01
T83) Pipe Stiffness			
$\frac{P_s}{SSF} = \frac{P_s}{(0.061 * zeta * E_b)} \ge 0.15$	SSF	122.00	122.00
SSF (0.061 * zeta * E _b)	Ps/SSF	1.31	1.31
	Test if >0.15	Acceptable	Acceptable
T86) Deflection			
T86) Deflection $\Delta Y / D (\%) = \frac{K * (L_p + L_1) * 100}{(0.440 * D) + (0.004 * cm * E_p)}$			
$\Delta Y / D$ (%) = $\frac{K * (L_p + L_1) * 100}{(0.149 * P_s) + (0.061 * zeta * E_b)}$	ΔΥ	122.00	122.00
(2			
	D(%)	145.84	145.84
	ΔY/D(%)	0.84%	0.84%
v * H			
$L_p = \frac{\gamma_s * H}{144} \times 1.5$			
$L_p = \frac{{\gamma_s}^* H}{144} x1.5$ Note: Deflection Lag Factor = 1.5 (as shown above)	Lp	Acceptable	Acceptable

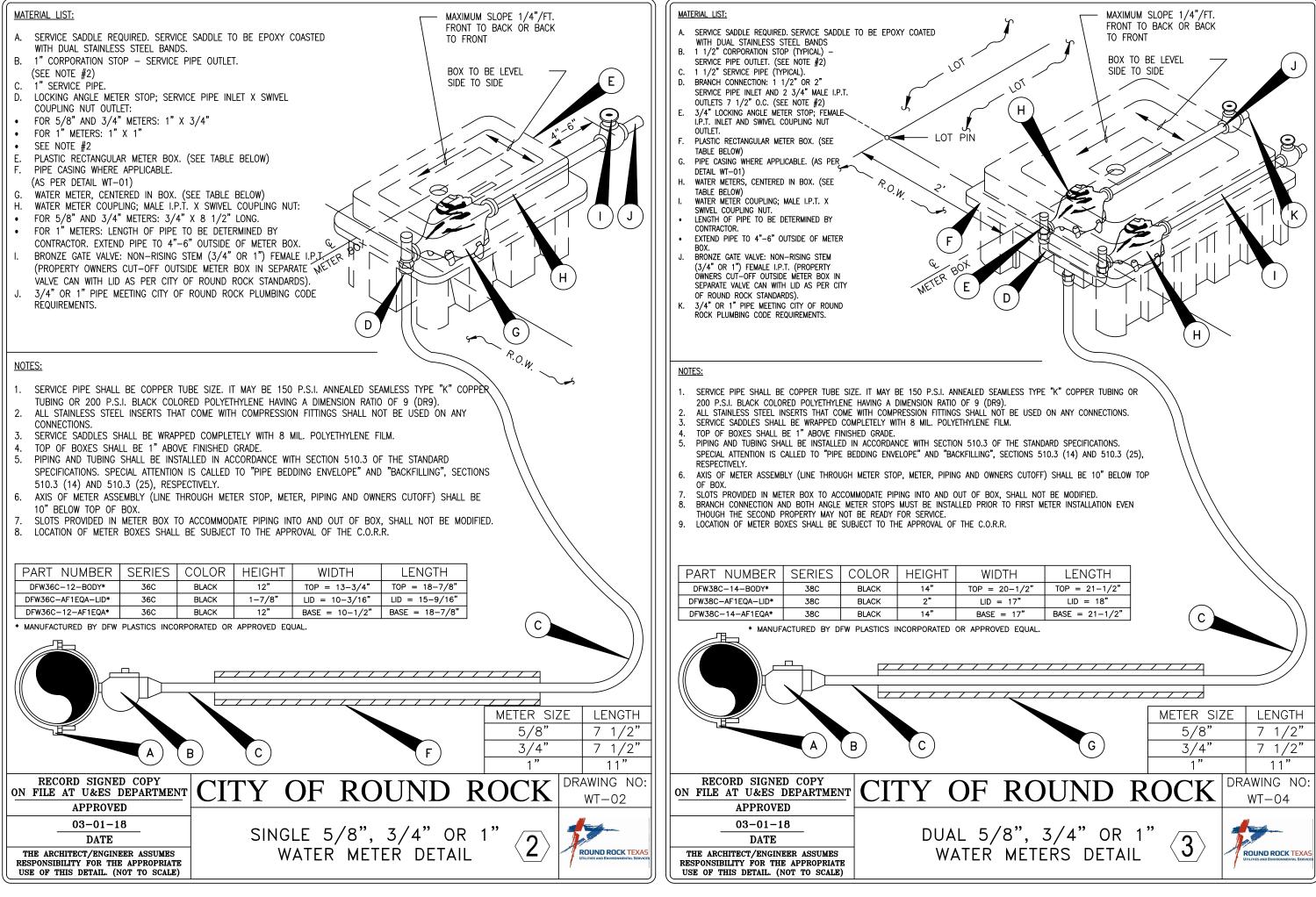
T-63) Live Load Analysis

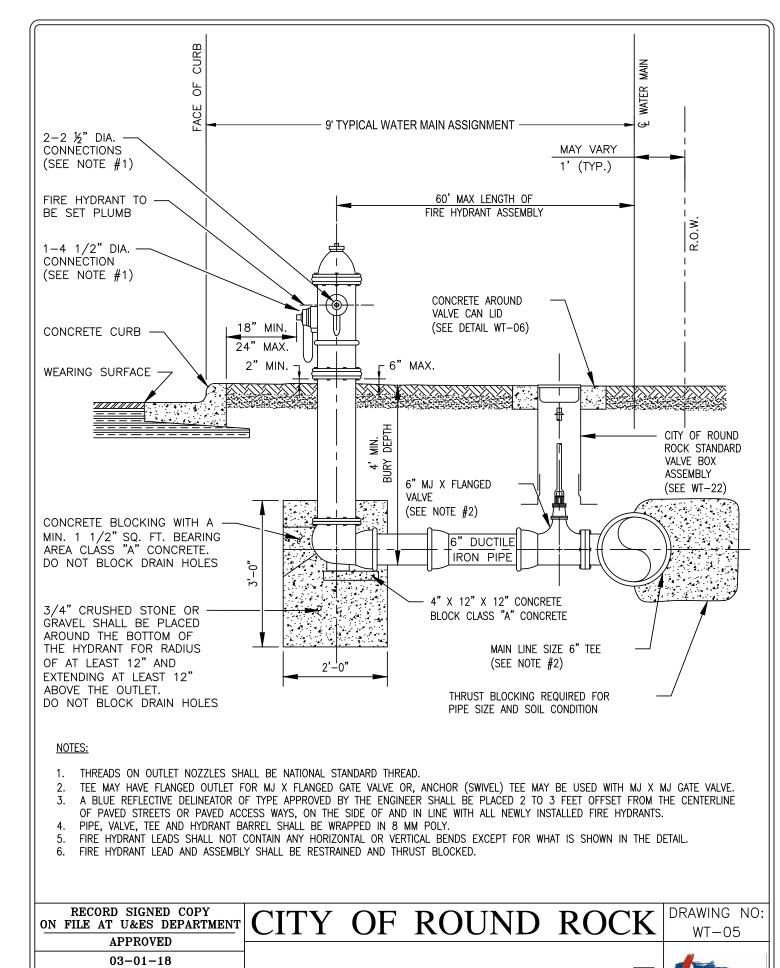
Vehic	le Live Load (Lv)	1
Cover(ft)	Live Load (psi)	1
1	15.63	1
2	6.95	
3	5.21	
4	3.48	
5	2.18	
6	1.74	
7	1.53	
8	0.86	I


(min depth of cover, ft.)

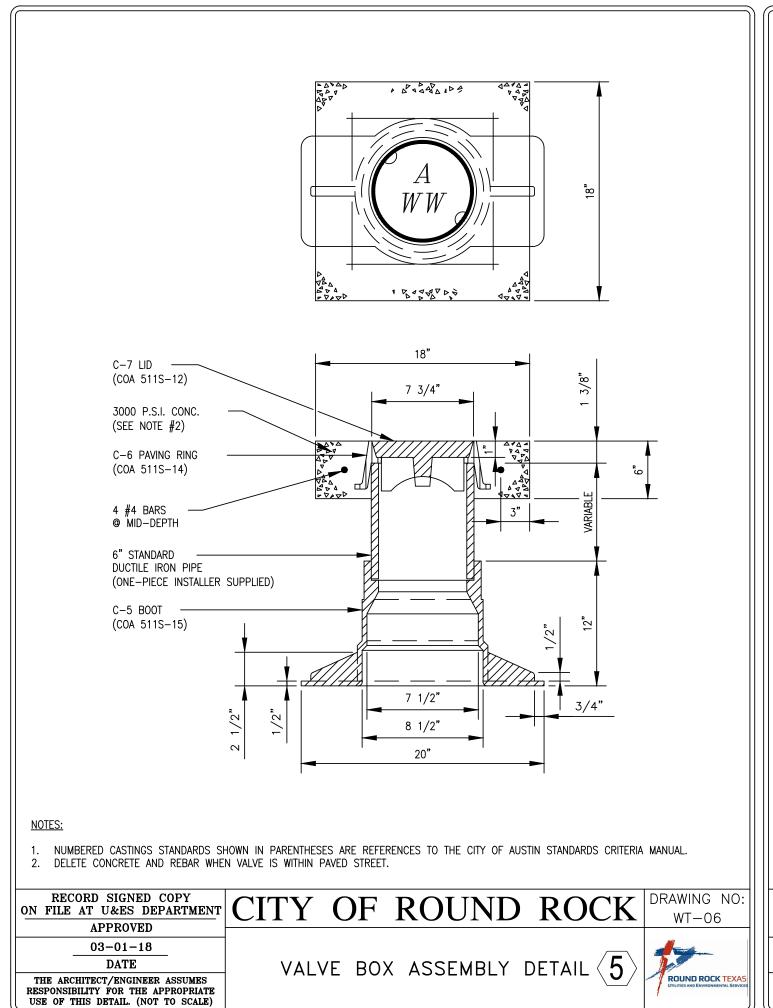


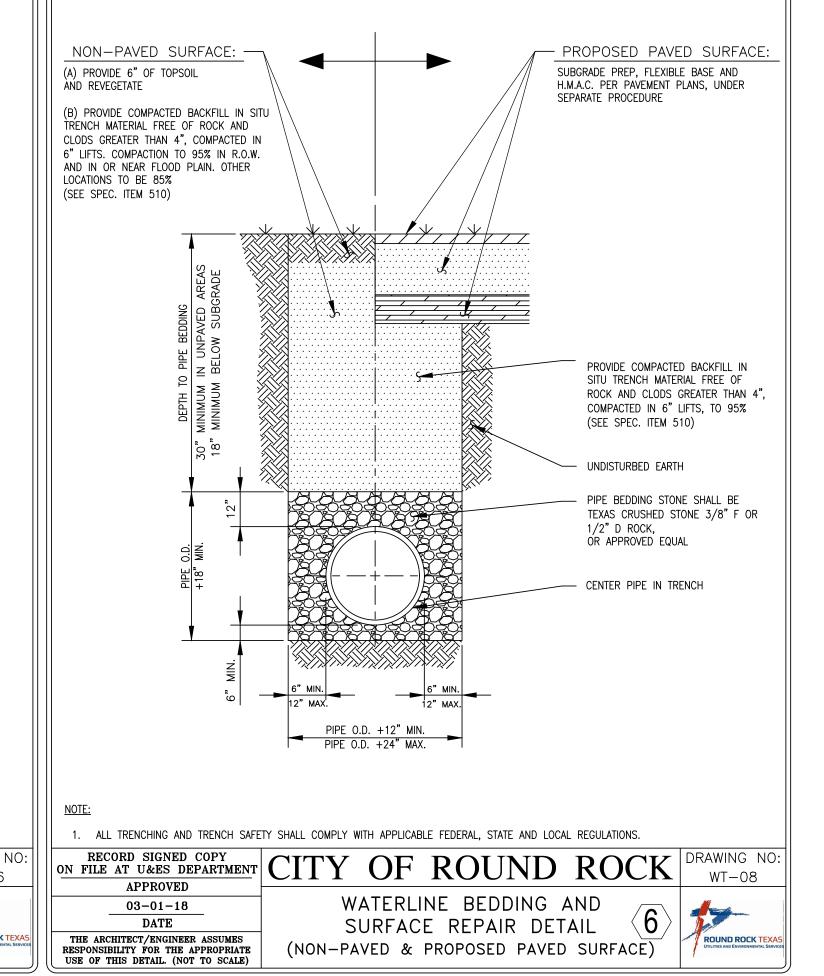

Peak Dry Weather Flow (PDWF) / Peak Wet Weather Flow (PWWF) For Balcones Flats On-Site Sewer System				
PDWF				
GPD	535,119			
GPM	371.61			
INFILTRATION				
GPD / acre	750			
GPM acre	0.52			
DRAIN AREA (ACRES)	44.39			
TOTAL (GPM)	23.12			
PWWF (GPM)	394.72			


FLOW CAPACITIES From MH - D5 to MH-D1						
Pipe Material	Inside Diameter (in.)	Min Slope Q 65% (%) Full (gpm)		Max Slope (%)	Max Flow Velocity (f/s)	
SDR 26, CL 160	7.715	2.00	568.00	2.00	4.76	
Pipe Material	Inside Diameter (in.)	Min Slope (%)	Q 85% Full (gpm)	Max Slope (%)	Max Flow Velocity (f/s)	
SDR 26, CL 160	7.715	2.00	772.00	2.00	4.76	


Note: Manning's "n" value = 0.013

FIRE HYDRANT ASSEMBLY DETAIL $\langle m{4}
angle$

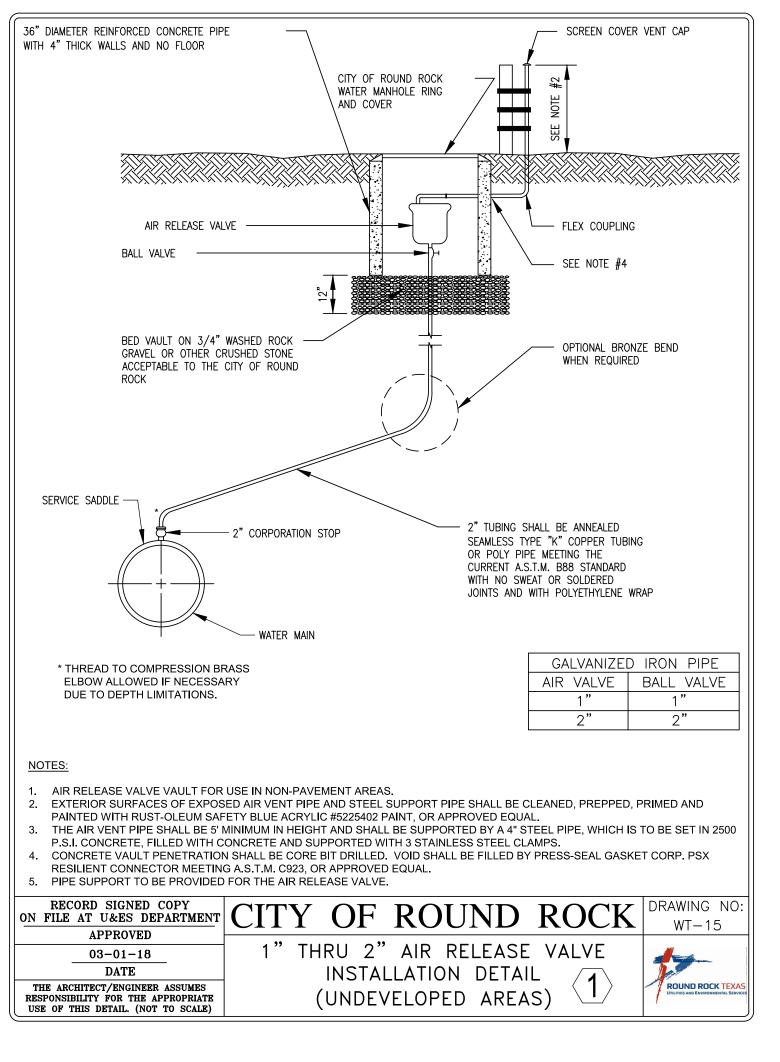

ROUND ROCK TE

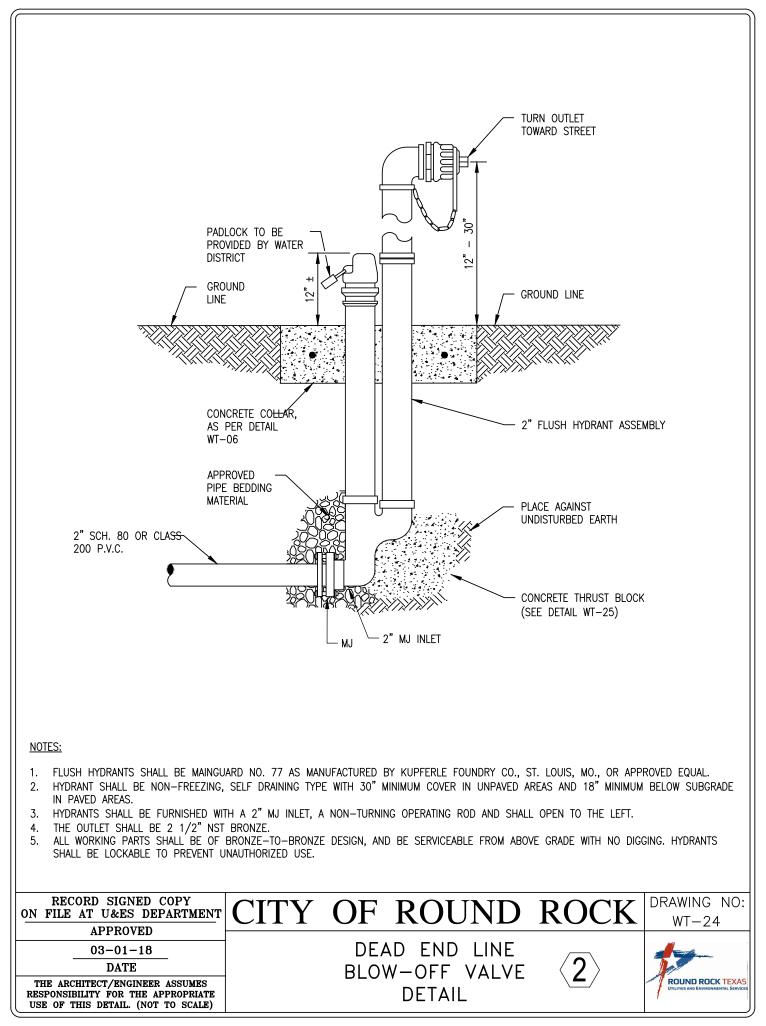

DATE

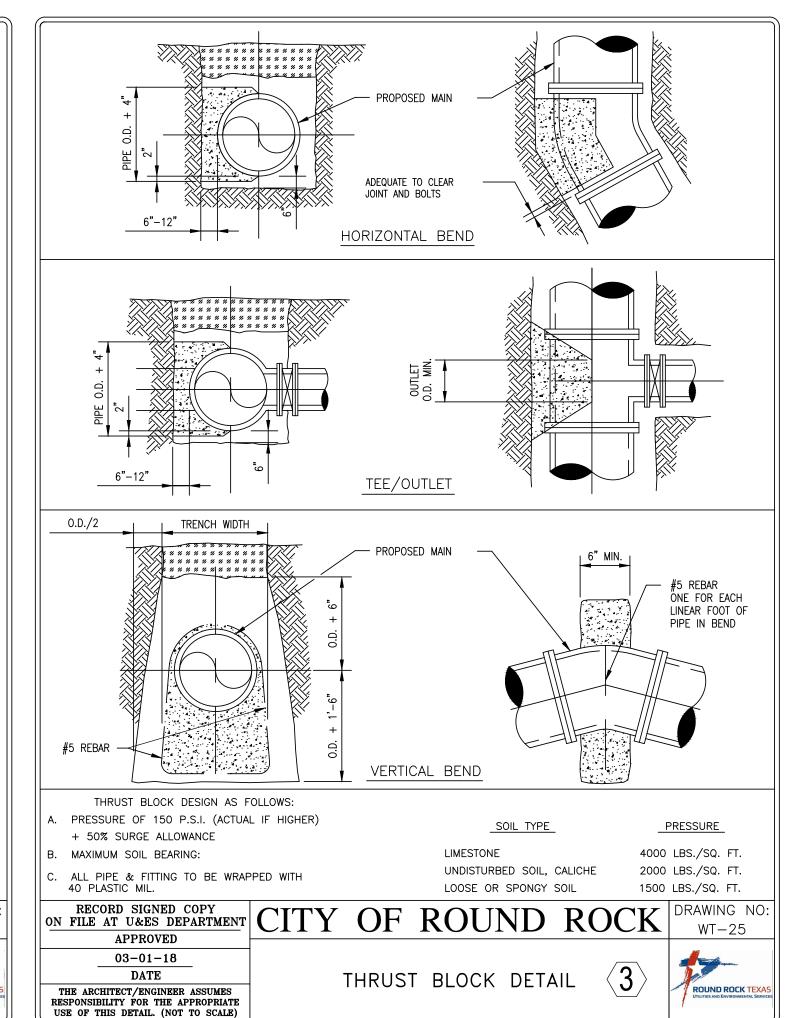
THE ARCHITECT/ENGINEER ASSUMES

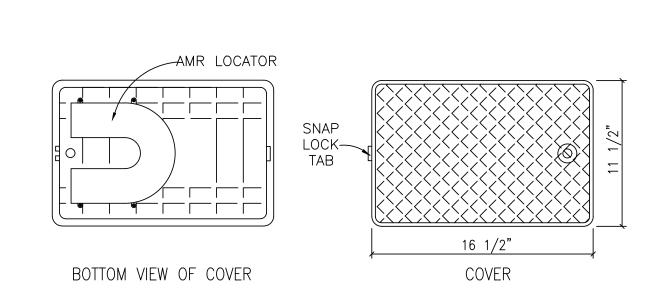
RESPONSIBILITY FOR THE APPROPRIATE

USE OF THIS DETAIL. (NOT TO SCALE)

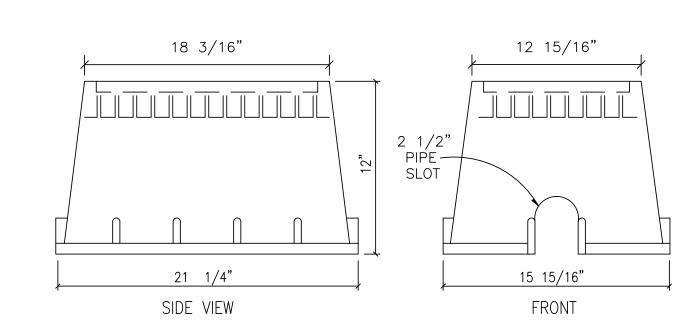

AIL CIVIL


JOB NO.	2992.11
DESIGNED BY:	RAW
DRAWN BY:	MS
CHECKED BY:	GDK
SHEET#	50

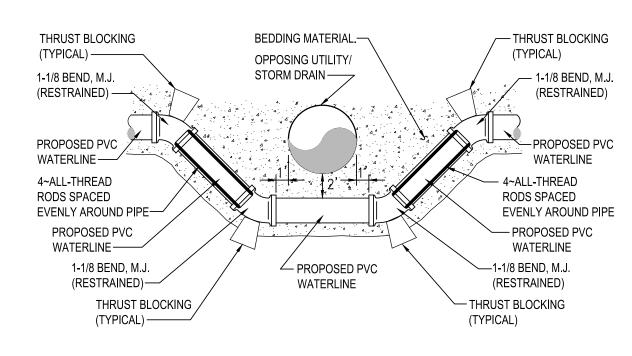

SHEET SIZE: 24" x 36"


HOOVERING & SURVEYING

CU501



DFW PLASTINCS, INC. PART NO. 1200.SBAMR, BLACK BOX, BLACK COVER AND 2 1/2" PIPE SLOT OR APPROVED EQUAL.


STORM DRAINS, WATER, SEWER, GAS, ELECTRIC, PHONE, CATV.

12" MIN. SEPERATION

OPPOSING UTILITY/DRAIN

- NOTE:
 1. IF EITHER UTILITY SHOWN IS SEWER, REFER TO 30 TAC CHAPTER.
 290.44(e) AND 217.13 APPENDIX E FOR TCEQ SEPARATION DISTANCE AND PROTECTION REQUIREMENTS.
- 2. IF SEPARATION CANNOT BE ATTAINED, CONTRACTOR SHALL COORDINATE WITH PROJECT ENGINEER AND APPLICABLE UTILITY COMPANY FOR ALTERNATE MEASURES.
- 3. IF SEPARATION CANNOT BE ATTAINED FOR WATERLINE, REFER TO TYPICAL WATER LOWERING DETAIL.

5 TYPICAL UTILITY CROSSING DETAILS

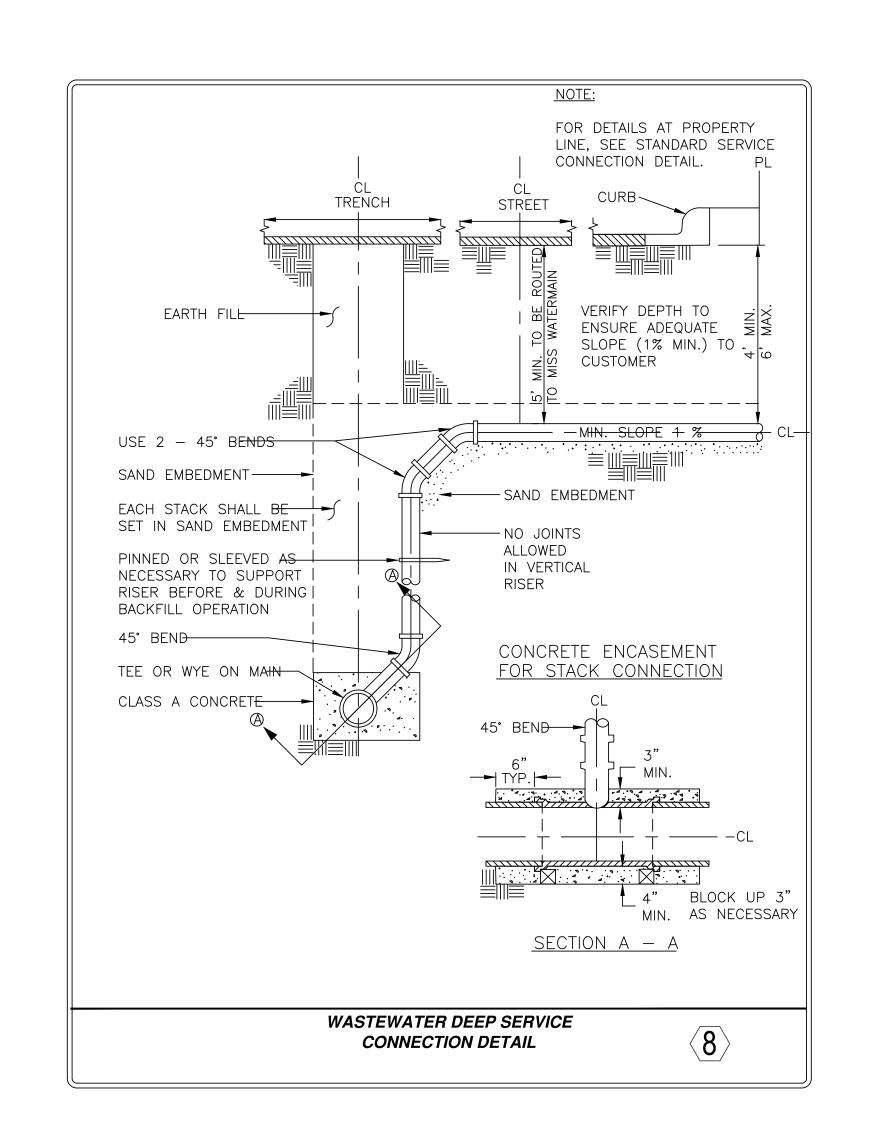
NOTES:

1. REFER TO TYPICAL UTILITY CROSSING DETAIL ON THIS SHEET FOR INSTALLATION AT SEWER AND WATER CROSSINGS.

6 TYPICAL WATER LOWERING DETAIL N.T.S.

PIPE SIZE	JOINT TYPE	MINIMUM REQUIRED RESTRAINED LENGTH
8 INCH	90° BEND	5 FEET
8 INCH	45° BEND	5 FEET
8 INCH	DEAD END (GATE VALVE)	12 FEET
8 INCH X 8 INCH	TEE	* 5 FEET (MAIN) 5 FEET (BRANCH)

NOTES:
1. CONTRACTOR TO MAXIMIZE JOINT SPACING FROM FITTING AND VALVES WHERE POSSIBLE.
2. CALCULATIONS SPECIFIC TO THIS PROJECT SPECIFIED PIPE EMBEDMENT AND A 150 PSI


* CALCULATION BASED ON JOINTS ON THE MAIN BRANCH A MINIMUM OF 5 FEET FROM THE TEE.

3. RESTRAINED LENGTH REFERS TO A DISTANCE FROM A FITTING WHERE ALL JOINTS WITHIN THIS DISTANCE MUST BE RESTRAINED. THE RESTRAINED LENGTH DOES NOT SPECIFY THE JOINT RESTRAINT TYPE OR METHOD. JOINT RESTRAINT TYPE AND METHODS SHALL BE INCLUDED IN PROJECT SUBMITTALS, AND APPROVED BY ENGINEER PRIOR TO CONSTRUCTION.

OPERATING PRESSURE.

4. ALL-THREADED RODS SHALL BE USED FOR JOINT RESTRAINTS WHERE FITTINGS ARE WITHIN 5 FEET OF EACH OTHER. INDIVIDUAL JOINT HARNESSES OR BOLT-ON FLANGE ASSEMBLIES CAN BE INSTALLED ELSEWHERE.

7 JOINT RESTRAINT CALCULATION TABLE

4 METER BOX (NON-TRAFFIC AREAS)

502

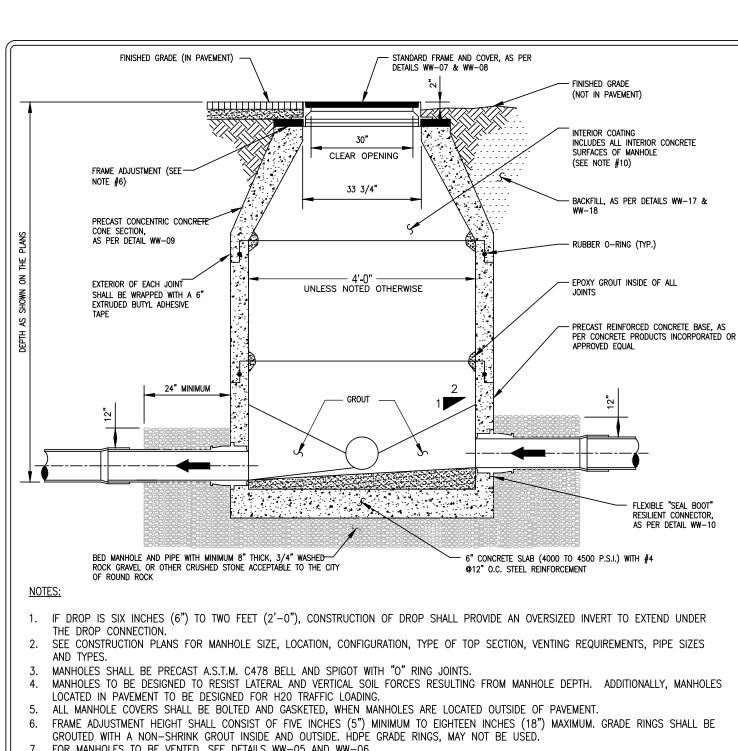
SHEET SIZE: 24" x 36"

REVISIONS:

DETAILS (SHEET 2)
FOR

CIVIL UTILITY DETAILS (SHEET
FOR
BALCONES FLATS PHASE II

CU502

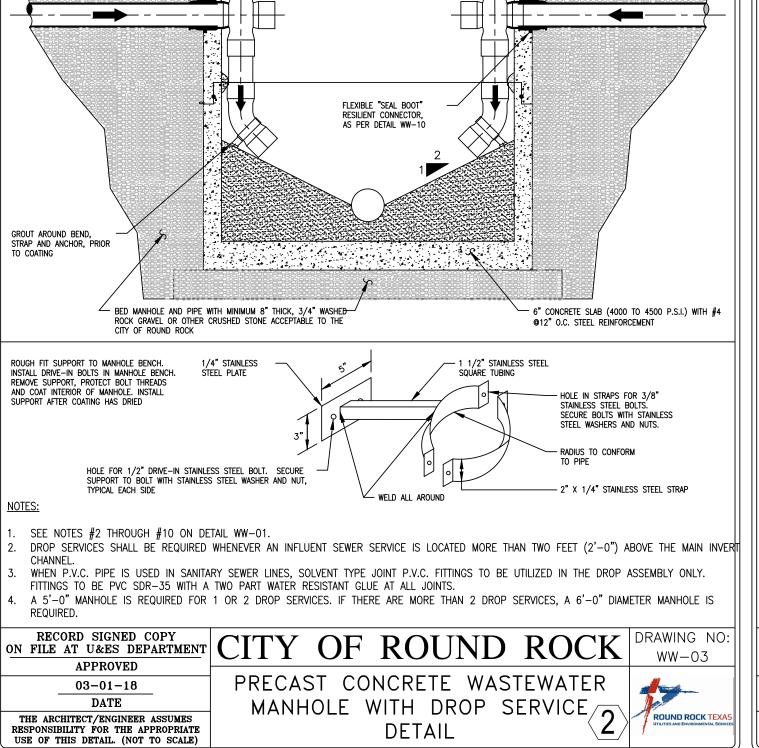

JOB NO. 2992.11

DESIGNED BY: RAW

DRAWN BY: MS

CHECKED BY: GDK

SHEET # 51



FOR MANHOLES TO BE VENTED, SEE DETAILS WW-05 AND WW-06. 3. A FLOW CHANNEL SHALL BE CONSTRUCTED INSIDE MANHOLE TO DIRECT INFLUENT INTO THE FLOW STREAM. ALL P.V.C. PIPE SHALL BE REMOVED FROM INVERT.

. BASE SECTION SHALL BE DESIGNED FOR H20 LOADING, PLUS EARTH LOAD AT 130 PCF. 10. ENTIRE INTERIOR CONCRETE SURFACES OF WASTEWATER MANHOLES TO BE COATED WITH RAVEN 405, SPRAYWALL, OR APPROVED EQUAL, (WITH A UNIFORM THICKNESS OF 124 MILS AND A MINIMUM THICKNESS OF 100 MILS, APPLIED AFTER MANHOLE HAS PASSED THE VACUUM TEST). FOR REHABILITATING MANHOLES 1/2" MINIMUM THICKNESS CALCIUM ALUMINATE CEMENTITIOUS COATING AND OTHER INTERIOR

SURFACES MAY BE COATED IF RECOMMENDED BY COATING MANUFACTURER. (IN LIEU OF INTERIOR COATINGS NEW PRECAST MANHOLES CONTAINING CONSHIELD WILL BE ACCEPTED PROVIDING THE MANUFACTURER STENCILS "CONSHIELD" ON THE INSIDE AND OUTSIDE OF ALL MANHOLE SECTIONS.)

ON FILE AT U&ES DEPARTMENT CITY OF ROUND ROCK RECORD SIGNED COPY APPROVED 03-01-18 PRECAST CONCRETE WASTEWATER DATE THE ARCHITECT/ENGINEER ASSUMES MANHOLE DETAIL RESPONSIBILITY FOR THE APPROPRIATE USE OF THIS DETAIL. (NOT TO SCALE)

CLEAR OPENING

33 3/4"

(SEE NOTE #4)

(NOT IN PAVEMENT) FRAME ADJUSTMENT

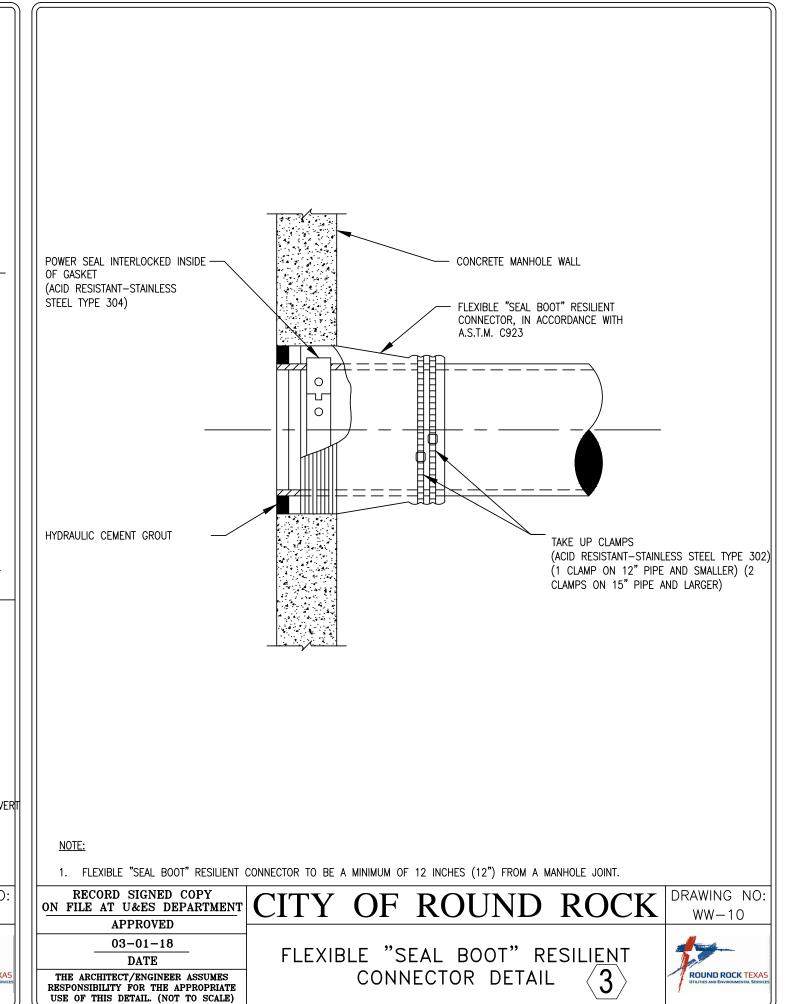
SECTION, AS PER DETAIL WW-09

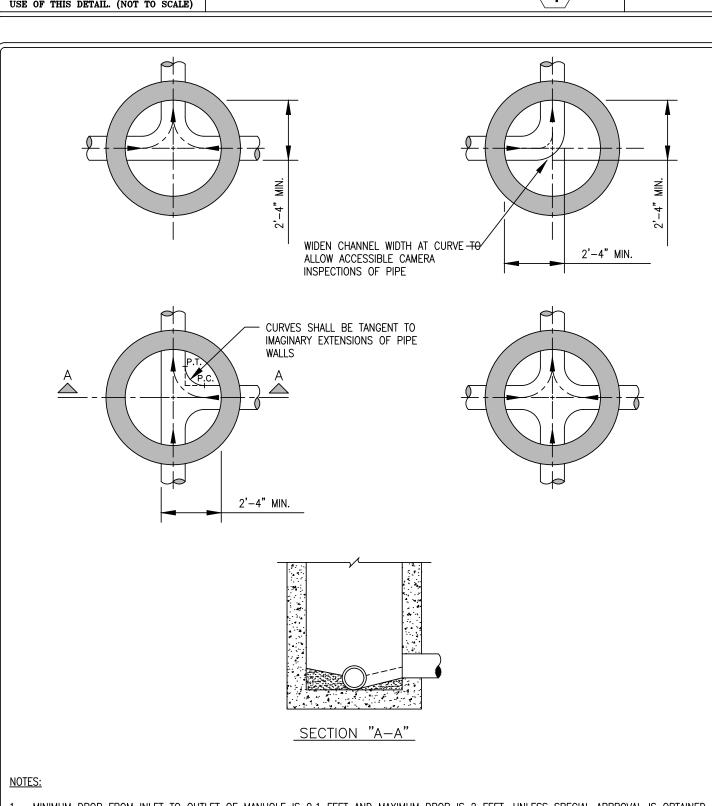
(SEE DETAIL WW-01)

- RUBBER O-RING (TYP.)

- BACKFILL, AS PER DETAILS WW-17 &

PRECAST CONCENTRIC CONCRETE CONE


STANDARD FRAME AND COVER, AS PER DETAILS WW-07 & WW-08

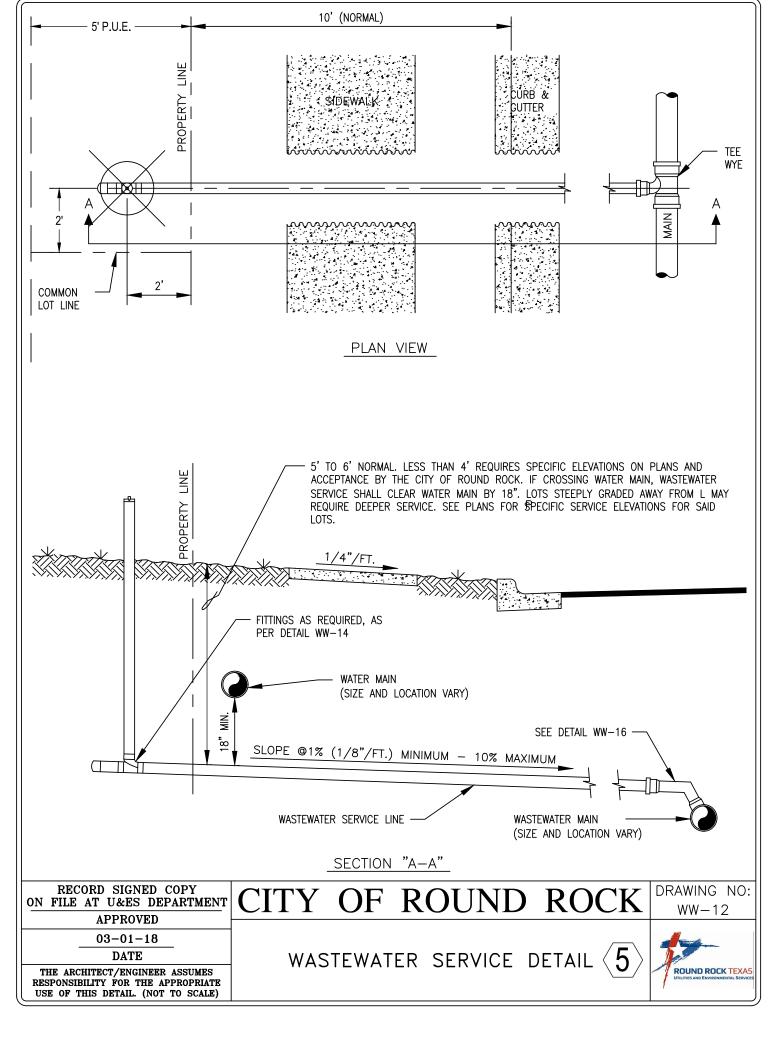

(IN PAVEMENT)

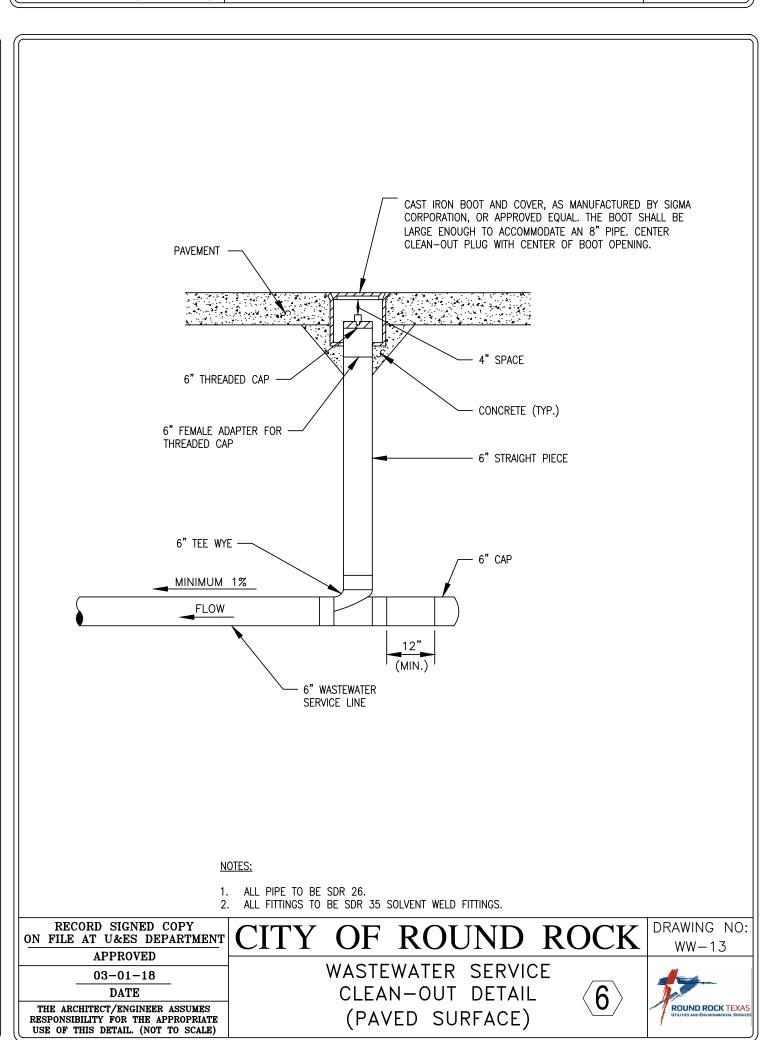
INSTALL CROSS, STRAIGHT PIECE AND 45'
BEND. ALL JOINTS SHALL BE GLUED TOGETHER,
INSTALLED 1" MINIMUM TO 2" MAXIMUM FROM
INTERIOR MANHOLE WALL AND THE 45' BEND SHALL
BE SECURED TO THE BASE WITH A STAINLESS

STEEL STRAP AND ANCHOR. (SEE DETAIL BELOW)
PIPE SHALL BE SECURED TO WALL AT 8'-O" O.C.
INTERVALS WITH STAINLESS STEEL STRAP AND
ANCHOR.

BED 1'-0" ABOVE PIPE -

MINIMUM DROP FROM INLET TO OUTLET OF MANHOLE IS 0.1 FEET AND MAXIMUM DROP IS 2 FEET, UNLESS SPECIAL APPROVAL IS OBTAINED FROM THE CITY OF ROUND ROCK.


INVERT CHANNELS TO BE CONSTRUCTED FOR SMOOTH FLOW WITH NO OBSTRUCTIONS. SPILLWAYS SHALL BE CONSTRUCTED BETWEEN PIPES WITH DIFFERENT INVERT ELEVATIONS PROVIDING FOR SMOOTH FLOW.

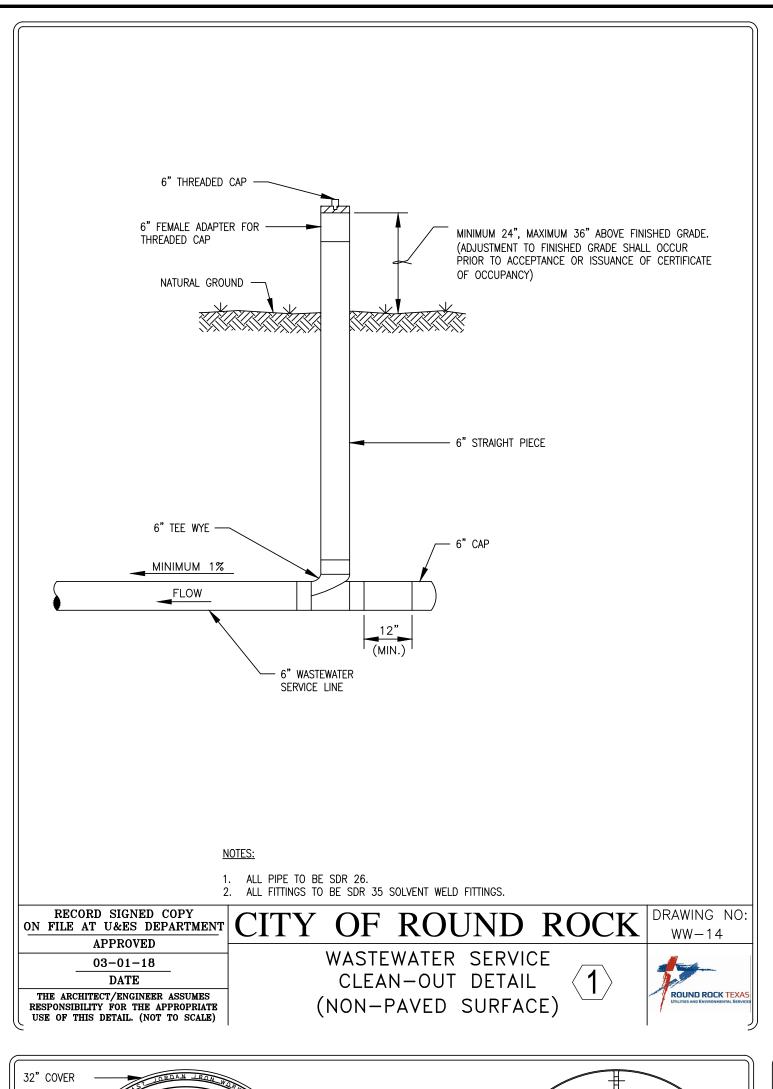

CHANNELS FOR FUTURE CONSTRUCTIONS, SHALL BE CONSTRUCTED WITH PIPE EXTENDING 3' BEYOND EXTERIOR OF MANHOLE WALL, WITH GLUED

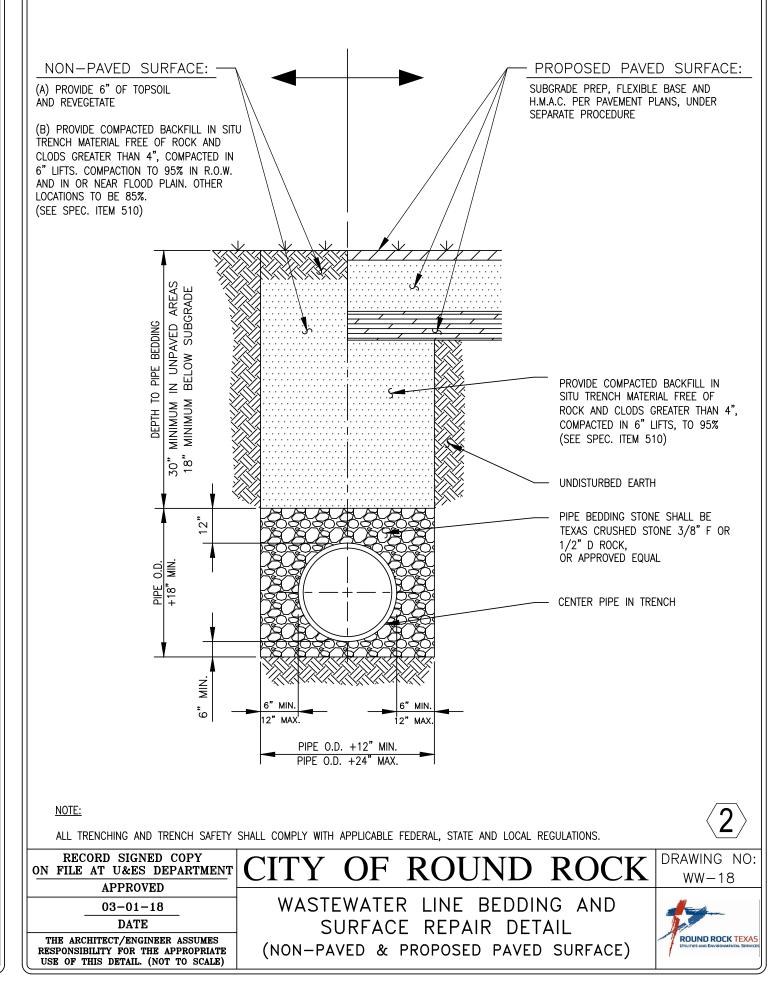
SLOPE MANHOLE BENCH AT 2:1 SLOPE FROM MANHOLE WALL TO CHANNEL.

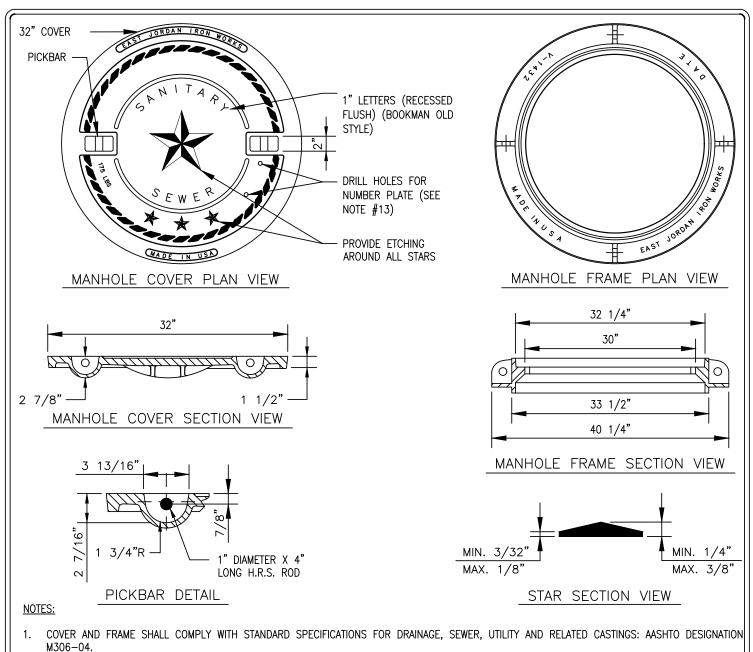
INVERT CHANNEL SHALL BE A MINIMUM OF 1/2 THE DIAMETER OF THE LARGEST PIPE OR FOUR INCHES (4") DEEP.

RECORD SIGNED COPY ON FILE AT U&ES DEPARTMENT APPROVED	CITY OF ROUND ROCK	DRAWING NO: WW-11
03-01-18 DATE	WASTEWATER FLOW PATTERNS FOR	
THE ARCHITECT/ENGINEER ASSUMES RESPONSIBILITY FOR THE APPROPRIATE USE OF THIS DETAIL. (NOT TO SCALE)	INVERT CHANNELS DETAIL 4	ROUND ROCK TEXAS UTILITIES AND ENVIRONMENTAL SERVICES

SHEET SIZE: 24" x 36"




HOOVER ENGINEERING & SURVEYING


DETAILS CIVIL

CU503

2992.11 JOB NO. **DESIGNED BY** DRAWN BY: GDK CHECKED BY: SHEET#

MANHOLE COVER SHALL BE MODEL NUMBER: V-1432-3 (PRODUCT NUMBER: 41432059), AS MANUFACTURED BY EAST JORDAN IRON WORKS

MANHOLE FRAME SHALL BE MODEL NUMBER: V-1432 (PRODUCT NUMBER: 41432010), AS MANUFACTURED BY EAST JORDAN IRON WORKS

MANHOLE COVER AND FRAME ASSEMBLY, IF ORDERED AS A SET, SHALL BE MODEL NUMBER: V-1432 (PRODUCT NUMBER: 41432089), AS

MANUFACTURER SHALL DRILL 2-3/16" X 1/2" DEEP HOLES FOR A MANHOLE NUMBER PLATE TO BE PROVIDED BY THE CITY OF ROUND ROCK.

THE TOP HOLE SHALL BE DRILLED 1" O.C. FROM THE BOTTOM OF THE PICKBAR AND THE BOTTOM HOLE SHALL BE DRILLED 4" O.C. FROM THE

MANHOLE COVER WEIGHT SHALL BE 175 LBS. FOR DUCTILE IRON. WEIGHT SHALL BE CAST ON BOTH TOP AND BOTTOM OF COVER.

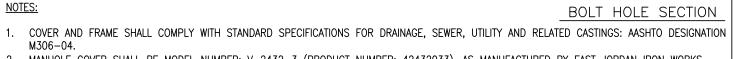
MANUFACTURER SHALL REMOVE EXCESS IRON AND MACHINE FINISH SEATING SURFACES TO NOTED DIMENSIONS.

COVER SHALL BE DIPPED IN A WATER-BASED ASPHALTIC COATING, PRIOR TO SHIPMENT FROM FOUNDRY.

INCORPORATED, OR APPROVED EQUAL.

INCORPORATED, OR APPROVED EQUAL.

TOP HOLE.


MANUFACTURED BY EAST JORDAN IRON WORKS INCORPORATED, OR APPROVED EQUAL.

MANUFACTURER SHALL CERTIFY THAT EACH MANHOLE COVER MEETS HS-20 LOADING.

MANHOLE COVERS SHALL BE CAST WITH TWO 1" DIAMETER STEEL PICKBARS.

FILLETS SHALL BE 1/4" RADIUS UNLESS OTHERWISE SPECIFIED.

ALL CORNERS AND EDGES SHALL HAVE A 1/16" MINIMUM AND 1/8" MAXIMUM RADIUS.

STAR SECTION VIEW

1" LETTERS (RECESSED

FLUSH) (BOOKMAN OLD

NUMBER PLATE (SEE

- PROVIDE ETCHING

MANHOLE COVER PLAN VIEW

MANHOLE COVER SECTION VIEW

PICKBAR DETAIL

USE OF THIS DETAIL. (NOT TO SCALE)

LONG H.R.S. ROD

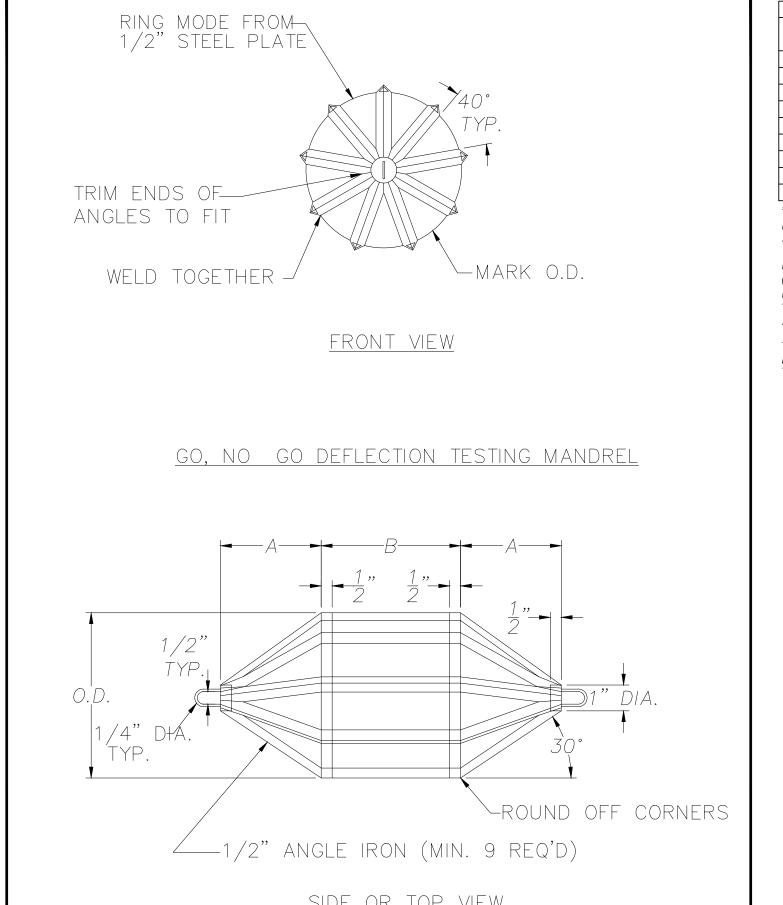
AROUND ALL STARS

MANHOLE FRAME PLAN VIEW

33 1/2"

40 1/4"

MANHOLE FRAME SECTION VIEW


- MANHOLE COVER SHALL BE MODEL NUMBER: V-2432-3 (PRODUCT NUMBER: 42432033), AS MANUFACTURED BY EAST JORDAN IRON WORKS INCORPORATED, OR APPROVED EQUAL. MANHOLE FRAME SHALL BE MODEL NUMBER: V-2432 (PRODUCT NUMBER: 42432010), AS MANUFACTURED BY EAST JORDAN IRON WORKS
- INCORPORATED, OR APPROVED EQUAL. MANHOLE COVER AND FRAME ASSEMBLY, IF ORDERED AS A SET, SHALL BE MODEL NUMBER: V-2432 (PRODUCT NUMBER: 42432073), AS MANUFACTURED BY EAST JORDAN IRON WORKS INCORPORATED, OR APPROVED EQUAL.
- ALL CORNERS AND EDGES SHALL HAVE A 1/16" MINIMUM AND 1/8" MAXIMUM RADIUS. MANHOLE COVERS SHALL BE CAST WITH TWO 1" DIAMETER STEEL PICKBARS.
- MANHOLE COVER WEIGHT SHALL BE 175 LBS. FOR DUCTILE IRON. WEIGHT SHALL BE CAST ON BOTH TOP AND BOTTOM OF COVER. MANUFACTURER SHALL CERTIFY THAT EACH MANHOLE COVER MEETS HS-20 LOADING. 9. FILLETS SHALL BE 1/4" RADIUS UNLESS OTHERWISE SPECIFIED.

MAX. 1/8

- 10. MANUFACTURER SHALL REMOVE EXCESS IRON AND MACHINE FINISH SEATING SURFACES TO NOTED DIMENSIONS.
- 11. COVER SHALL BE DIPPED IN A WATER-BASED ASPHALTIC COATING, PRIOR TO SHIPMENT FROM FOUNDRY. 12. BOLTS SHALL BE 5/8"-11NC X 2" LONG HEX STAINLESS STEEL WITH WASHER.
- 13. MANUFACTURER SHALL DRILL 2-3/16" X 1/2" DEEP HOLES FOR A MANHOLE NUMBER PLATE TO BE PROVIDED BY THE CITY OF ROUND ROCK. THE TOP HOLE SHALL BE DRILLED 1" O.C. FROM THE BOTTOM OF THE PICKBAR AND THE BOTTOM HOLE SHALL BE DRILLED 4" O.C. FROM THE TOP HOLE.

RECORD SIGNED COPY ON FILE AT U&ES DEPARTMENT	CITY OF ROUND ROCK DRAWING WW-07	
APPROVED	CITT OF ROUND ROCK WW-07	
03-01-18	BOLTED WASTEWATER MANHOLE	
DATE	BOLTED WASTEWATER MANHOLE	
THE ARCHITECT/ENGINEER ASSUMES RESPONSIBILITY FOR THE APPROPRIATE	COVER AND FRAME DETAIL (4) ROUND ROCK	1 270 13

RECORD SIGNED COPY	CITY OF DOLLNID DOCK	DRAWING NO:
ON FILE AT U&ES DEPARTMENT APPROVED	CITY OF ROUND ROCK	WW-08
02-01-19		
DATE	NON-BOLTED WASTEWATER MANHOLE	
THE ARCHITECT/ENGINEER ASSUMES RESPONSIBILITY FOR THE APPROPRIATE	COVER AND FRAME DETAIL $\langle 5 \rangle$	ROUND ROCK TEXAS UTILITIES AND ENVIRONMENTAL SERVICES

40°		10" 7" 7.	5 5.62 5" 7.52 5" 9.41 9" 11.19	7.37 9.21 10.96	6.81 8.70 10.48	4.79 6.66 8.50 10.25
RIM ENDS OF		15" 10" 1 18" 12" 13 21" 14" 1 24" 16" 1 27" 18" 2 *MINIMUM LENGTH	1" 13.70 .5" 16.75 6" 19.74 8" 22.21 0" 25.03	13.42	12.99 16.04 19.03 21.50 24.32	12.71
WELD TOGETHER — MARK C).D.	NOTE: SDR-26 MANDREL PVC PIPES AND FI (15") IN DIAMETER PVC PIPES AND FI TWENTY-SEVEN IN ASTM F-679. THIS INFORMATION DEFLECTION TESTIL TCEQ CHAPTER 21	TTINGS SIX IN SHALL CONF TTINGS EIGHT CHES (27") II IS PROVIDED NG SHALL BE	NCHES (6") FORM TO AS EEN INCHES N DIAMETER AS A REFI	TO FIFTEEI STM D-303 S (18") TO S SHALL CC	N INCHES 4. ONFORM TO
go, no go deflection testing m	1ANDREL					
1/2" TYP. 1/4" DHA. TYP.	D1" DIA. 30° ID OFF CORNERS					
1/2" ANGLE IRON (MIN. 9 REQ'	D)					
<u>SIDE OR TOP VIEW</u>						
DRAWING NAME: GO, NO GO DEFLECTIO	on testing mandrel $\langle 3 \rangle$				Cone Shap End Cap w/ Banding (Bo	ed EPDM Rubber / Stainless Steel oth Ends)
STEEL PIPE CASING/WATER MAIN	Restrained Joints	Curbs & paver	nent, etc.		Re	estrained Joints

900 pipe one joint

1" Runners _ As Required

Steel Band

SIZES 4" THRU 12"

Bends, M.J.-

UNION PACIFIC R	UNION PACIFIC RAILROAD CROSSING CASING REQUIREMENTS				
Nom. Dia. Steel	Steel Pipe	Pipe Weight			
Conduit (Inches)	Thickness (Inches)	(Lbs./Ft.)			
18	0.375	70.59			
24	0.438	110.22			
30	0.50	157.53			
36	0.562	212.70			
42	0.625	276.18			
48	0.625	316.53			

Pipe Thickness

0.375

0.375

0.375

0.375

0.375

0.375

0.375

Pipe Size

12

16

20

30

WATER MAINS IN CONDUIT			
Water Main Size (Inches)	Nom. Dia. Steel (Inches)	Steel Pipe Thickness (Inches)	Pipe Weight (Lbs./Ft.)
6	18	0.375	70.59
8	24	0.375	94.62
12	24	0.375	94.62
16	30	0.375	118.65
20	36	0.438	166.19
24	42	0.438	194.02
30	48	0.50	259.02
36	54	0.50	291.07

Thickness (Inches)	(Lbs./Ft.)	
0.375	70.59	
0.375	94.62	
0.375	94.62	
0.375	118.65	
0.438	166.19	Notes: 1. Fittings shall be paid for by separate payment item
0.438	194.02	2. Joint restraints shall be approved, as specified
0.50	259.02	in Material Specification Item 95-10 3. Casing insulators in accordance to SAWS Standard
0.50	291.07	Material Specification 05-31

Pipe Weight

(Lbs./Ft.)

25.03

33.04

45.55

62.58

78.60

94.62

118.65

8"	8"	2 TOP, 2 BOTTOM
12"	8"	2 TOP, 2 BOTTOM
16"	8"	2 TOP, 4 BOTTOM
20"	8"	2 TOP, 4 BOTTOM
24"	8"	2 TOP, 4 BOTTOM
30"	12"	2 TOP, 4 BOTTOM
36"	12"	2 TOP, 4 BOTTOM

SIZES 14" THRU 36"

C900 pipe one joint

PER TIE

As Required

- Bends, M.J.

INSTALLATION OF PIPE IN CONDUIT

6 INSTALLATION OF PIPE IN BORE

PVC PVC PVC PVC (SDR-35) (SDR-26) 6" 4" 4.5" 5.62 5.50

CHART "1"

in casing

*

(Place as Required)

└ Steel Pipe

C900 pipe in casing

-Restrain all Joints-

SHEET SIZE: 24" x 36"

(SHE AIL DET, UTILITY CIVIL

CU504

2992.11 JOB NO. RAW **DESIGNED BY** DRAWN BY: GDK CHECKED BY: SHEET#

Temporary Stormwater Section

Texas Commission on Environmental Quality

for Regulated Activities on the Edwards Aquifer Recharge Zone and Relating to 30 TAC §213.5(b)(4)(A), (B), (D)(I) and (G); Effective June 1, 1999

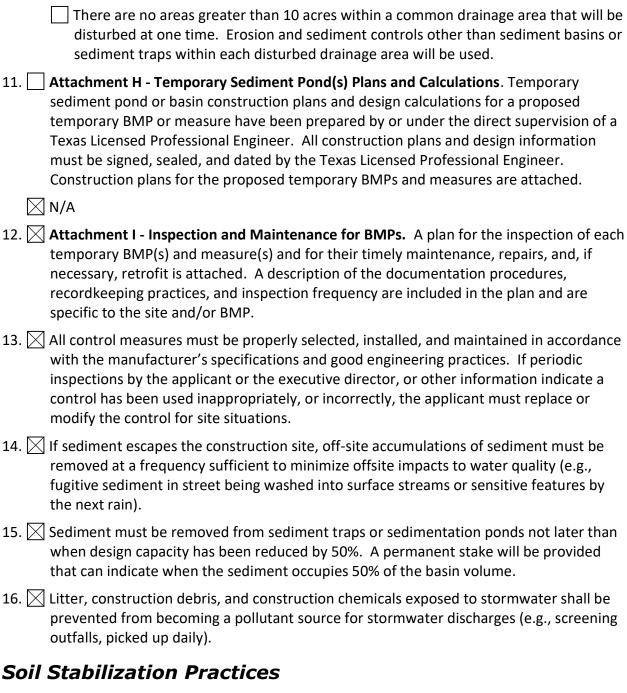
To ensure that the application is administratively complete, confirm that all fields in the form are complete, verify that all requested information is provided, consistently reference the same site and contact person in all forms in the application, and ensure forms are signed by the appropriate party.

Note: Including all the information requested in the form and attachments contributes to more streamlined technical reviews.

Signature

To the best of my knowledge, the responses to this form accurately reflect all information requested concerning the proposed regulated activities and methods to protect the Edwards Aquifer. This **Temporary Stormwater Section** is hereby submitted for TCEQ review and executive director approval. The application was prepared by:

Print Name of Customer/Agent: Garrett Keller, P.E.
Date: 3/10/25
Signature of Customer/Agent:
Muthell
Regulated Entity Name: Balcones Flats
Project Information
Potential Sources of Contamination
Examples: Fuel storage and use, chemical storage and use, use of asphaltic products, construction vehicles tracking onto public roads, and existing solid waste.
1. Fuels for construction equipment and hazardous substances which will be used during construction:
The following fuels and/or hazardous substances will be stored on the site:
These fuels and/or hazardous substances will be stored in:
Aboveground storage tanks with a cumulative storage capacity of less than 250 gallons will be stored on the site for less than one (1) year.


	 Aboveground storage tanks with a cumulative storage capacity between 250 gallons and 499 gallons will be stored on the site for less than one (1) year. Aboveground storage tanks with a cumulative storage capacity of 500 gallons or more will be stored on the site. An Aboveground Storage Tank Facility Plan application must be submitted to the appropriate regional office of the TCEQ prior to moving the tanks onto the project.
	Evels and hazardous substances will not be stored on the site.
2.	Attachment A - Spill Response Actions. A site specific description of the measures to be taken to contain any spill of hydrocarbons or hazardous substances is attached.
3.	Temporary aboveground storage tank systems of 250 gallons or more cumulative storage capacity must be located a minimum horizontal distance of 150 feet from any domestic, industrial, irrigation, or public water supply well, or other sensitive feature.
4.	Attachment B - Potential Sources of Contamination. A description of any activities or processes which may be a potential source of contamination affecting surface water quality is attached.
S	equence of Construction
5.	Attachment C - Sequence of Major Activities. A description of the sequence of major activities which will disturb soils for major portions of the site (grubbing, excavation, grading, utilities, and infrastructure installation) is attached.
	 For each activity described, an estimate (in acres) of the total area of the site to be disturbed by each activity is given. For each activity described, include a description of appropriate temporary control measures and the general timing (or sequence) during the construction process that the measures will be implemented.
6.	Name the receiving water(s) at or near the site which will be disturbed or which will receive discharges from disturbed areas of the project: <u>Salado Creek</u>

Temporary Best Management Practices (TBMPs)

Erosion control examples: tree protection, interceptor swales, level spreaders, outlet stabilization, blankets or matting, mulch, and sod. Sediment control examples: stabilized construction exit, silt fence, filter dikes, rock berms, buffer strips, sediment traps, and sediment basins. Please refer to the Technical Guidance Manual for guidelines and specifications. All structural BMPs must be shown on the site plan.

7. Attachment D – Temporary Best Management Practices and Measures. TBMPs and measures will prevent pollution of surface water, groundwater, and stormwater. The construction-phase BMPs for erosion and sediment controls have been designed to retain sediment on site to the extent practicable. The following information is attached:

	 A description of how BMPs and measures will prevent pollution of s groundwater or stormwater that originates upgradient from the site across the site. A description of how BMPs and measures will prevent pollution of s 	e and flows
	groundwater that originates on-site or flows off site, including pollucontaminated stormwater runoff from the site.	tion caused by
	A description of how BMPs and measures will prevent pollutants from surface streams, sensitive features, or the aquifer.	m entering
	A description of how, to the maximum extent practicable, BMPs and maintain flow to naturally-occurring sensitive features identified in geologic assessment, TCEQ inspections, or during excavation, blastic construction.	either the
3.	The temporary sealing of a naturally-occurring sensitive feature which a to the Edwards Aquifer as a temporary pollution abatement measure d construction should be avoided.	
	Attachment E - Request to Temporarily Seal a Feature. A request seal a feature is attached. The request includes justification as to w and practicable alternative exists for each feature.	hy no reasonable
	There will be no temporary sealing of naturally-occurring sensitive f site.	eatures on the
€.	Attachment F - Structural Practices. A description of the structural pra used to divert flows away from exposed soils, to store flows, or to othe discharge of pollutants from exposed areas of the site is attached. Plac structural practices in floodplains has been avoided.	rwise limit runoff
10.	Attachment G - Drainage Area Map. A drainage area map supporting t requirements is attached:	he following
	For areas that will have more than 10 acres within a common draina disturbed at one time, a sediment basin will be provided.	_
	For areas that will have more than 10 acres within a common drainadisturbed at one time, a smaller sediment basin and/or sediment trused.	
	For areas that will have more than 10 acres within a common draina	_
	disturbed at one time, a sediment basin or other equivalent control attainable, but other TBMPs and measures will be used in combinat down slope and side slope boundaries of the construction area.	
	There are no areas greater than 10 acres within a common drainage disturbed at one time. A smaller sediment basin and/or sediment t	
	used in combination with other erosion and sediment controls with drainage area.	

Examples: establishment of temporary vegetation, establishment of permanent vegetation, mulching, geotextiles, sod stabilization, vegetative buffer strips, protection of trees, or preservation of mature vegetation.

17. Attachment J - Schedule of Interim and Permanent Soil Stabilization Practices. A schedule of the interim and permanent soil stabilization practices for the site is attached.

- 18. Records must be kept at the site of the dates when major grading activities occur, the dates when construction activities temporarily or permanently cease on a portion of the site, and the dates when stabilization measures are initiated.
- 19. Stabilization practices must be initiated as soon as practicable where construction activities have temporarily or permanently ceased.

Administrative Information

- 20. All structural controls will be inspected and maintained according to the submitted and approved operation and maintenance plan for the project.
- 21. If any geologic or manmade features, such as caves, faults, sinkholes, etc., are discovered, all regulated activities near the feature will be immediately suspended. The appropriate TCEQ Regional Office shall be immediately notified. Regulated activities must cease and not continue until the TCEQ has reviewed and approved the methods proposed to protect the aquifer from any adverse impacts.
- 22. Silt fences, diversion berms, and other temporary erosion and sediment controls will be constructed and maintained as appropriate to prevent pollutants from entering sensitive features discovered during construction.

BALCONES FLATS SPILL RESPONSE ACTIONS (ATTACHMENT A)

General Response Actions

- 1. All leaks and spills should be cleaned immediately.
- 2. Rags, mops, and absorbent material may all be used to cleanup a spill.
- 3. If these materials are used to clean a hazardous material, then they must be disposed of as hazardous waste.
- 4. Never hose down or bury dry material spills.

Minor Spills

If a minor spill occurs (typically small quantities of oil, gasoline, etc.) the following actions should be taken.

- 1. Contain the spread of the spill
- 2. Recover spilled materials
- 3. Clean the contaminated area and properly dispose of contaminated materials

Semi-Significant Spills

If a semi-significant spill occurs the following actions should be taken.

- 1. Contain spread of the spill
- 2. Notify the project foreman immediately.
- 3. If the spill occurs on paved or impermeable surfaces, clean up using "dry" methods (absorbent materials, cat litter and/or rags). Contain the spill by encircling with absorbent materials and do not let the spill spread widely.
- 4. If the spill occurs in dirt areas, immediately contain the spill by constructing an earthen dike. Dig up and properly dispose of contaminated soil.
- 5. If the spill occurs during rain, cover spill with tarps or other material to prevent contaminating runoff.

Significant/Hazardous Spills

If a significant or hazardous spill occurs in reportable quantities the following actions should be taken.

- 1. Notify the TCEQ by telephone as soon as possible and within 24 hours at (512) 339-2929 (Austin) or (210) 490-3096 (San Antonio) between 8 am and 5 pm. After hours, contact the Environmental Release Hotline at 1-800-832-8224. It is the contractor's responsibility to have all emergency phone numbers at the construction site.
- 2. For spills of federal reportable quantities, in conformance with the requirements in 40 CFR parts 110, 119, and 302, the contactor should notify the National Response Center at 1-800-424-8802.
- 3. Notification should first be made by telephone and followed up with a written report.
- 4. The services of a spills contractor or a Haz-Mat team should be obtained immediately. Construction personnel should not attempt to clean up until the appropriate and qualified staffs have arrived at the job site.
- 5. Other agencies which may need to be consulted include, but are not limited to, the City Police Department, County Sheriff Office, Fire Departments, etc.

BALCONES FLATS POTENTIAL SOURCES OF CONTAMINATION (ATTACHMENT B)

Potential sources of contamination that may occur are:

- Oil, grease, fuel, and hydraulic fluid from construction equipment and vehicle drippings
- Miscellaneous trash and litter from construction workers and material wrappings
- Construction debris
- Excess application of fertilizers, herbicides, and pesticides

Preventative measures that will be taken to reduce contamination are:

- Vehicle maintenance will be performed within the construction staging area
- Trash containers will be placed throughout the site to encourage proper trash disposal if necessary
- Construction debris will be monitored daily be the contractor. Debris will be collected weekly and placed in disposal bins. Situations requiring immediate attention will be addressed on a case by case basis
- Fertilizers, herbicides, and pesticides will be applied only when necessary and in accordance with manufacturer's directions

BALCONES FLATS SEQUENCE OF MAJOR ACTIVITIES (ATTACHMENT C)

Roads and Utility Construction Phase II

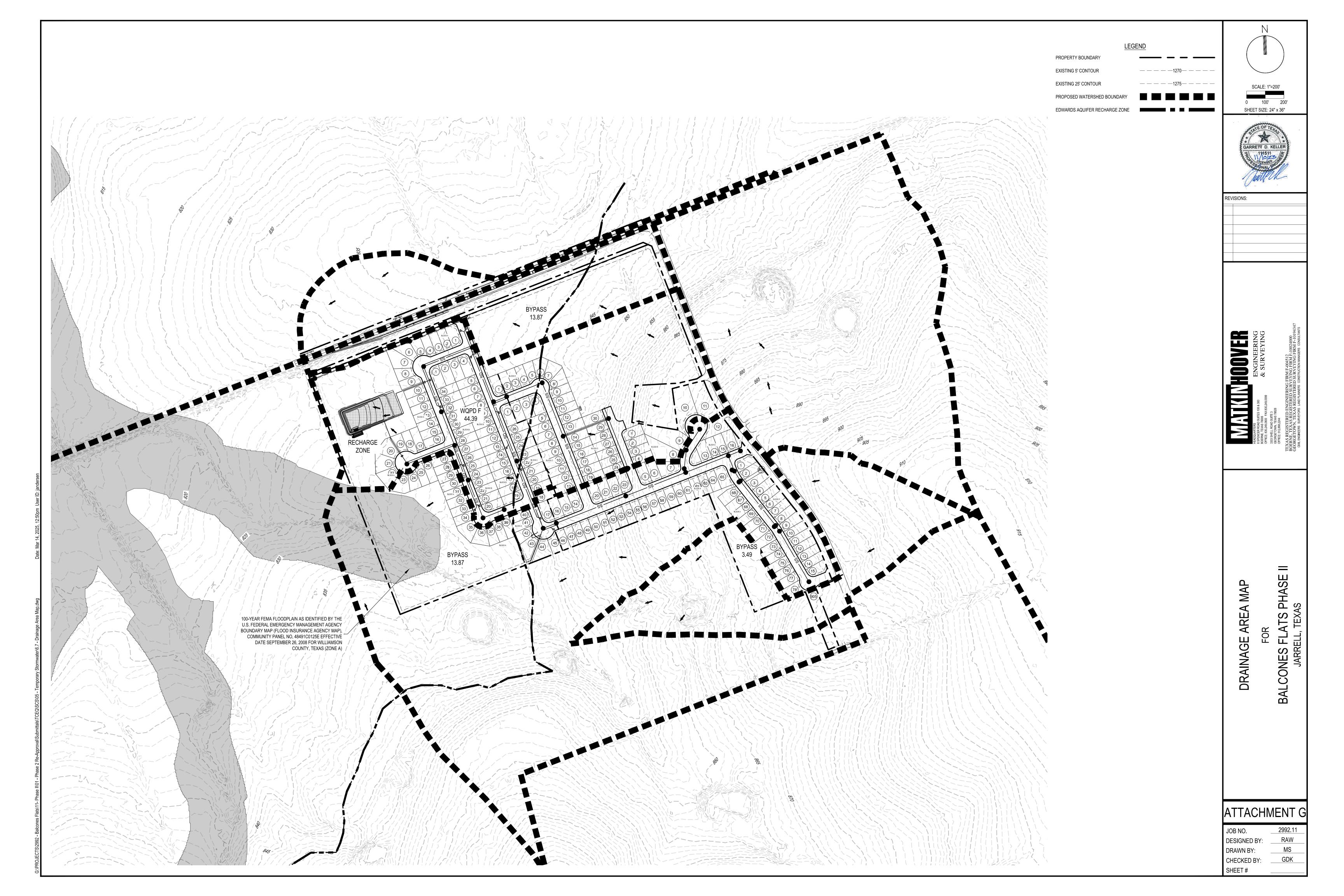
- 1. Mobilization of the contractor's equipment. (.5 acres disturbed)
- 2. Installation of temporary best management practices as described in attachment "D" of this section (Silt Fence, Construction Entrance, and Rock Berms).
- 3. Construction of roads.
 - a. Within Phase II (2.64) acres disturbed)
- 4. Trenching and installation of utilities
 - a. Within Phase II (1.79) acres disturbed)
- 5. Establishment of permanent soil stabilization on disturbed areas for road and utility construction.
- 6. Construction single family residential homes.
 - a. Phased with builder takedown.
- 7. Establishment of permanent soil stabilization on disturbed areas for house construction.

BALCONES FLATS TEMPORARY BEST MANAGEMENT PRACTICES AND MEASURES (ATTACHMENT D)

- **a.** All upgradient stormwater entering the site will be treated by the BMPs that will prevent pollution of surface water or groundwater that originates on-site or flows off site. See a list of these BMPs in section "b."
- **b.** The BMPs that will prevent pollution of surface water or groundwater that originates on-site or flows off site are:
 - i. **Temporary Construction Entrance/Exit** The installation of a stabilized construction entrance/exit will reduce the dispersion of sediment from the site. See Sheet 2 of the SCS Site Plan which contains a copy of Section 1.4.2 from the Edwards Aquifer Rules: Technical Guidance on Best Management Practices for materials, installation, common trouble points, inspection and maintenance.
 - ii. **Silt Fence** The erection of silt fence along the boundary of construction activities will provide temporary erosion and sedimentation control. See Sheet 2 of the SCS Site Plan which contains a copy of Section 1.4.3 from the Edwards Aquifer Rules: Technical Guidance on Best Management Practices for materials, installation, common trouble points, inspection and maintenance.
 - iii. Rock Berm The use of rock berms throughout the site will provide temporary erosion and sedimentation control. See Sheet 2 of the WPAP Site Plan which contains a copy of Section 1.4.5 from the Edwards Aquifer Rules: Technical Guidance on Best Management Practices for materials, installation, common trouble points, inspection and maintenance.
 - iv. **Inlet Protection** The installation of inlet protection consisting of permeable barriers will provide removal of sediment prior to it entering storm drain inlets. Install protection at storm sewer inlets that are operable during construction. Inlet protection materials should be approved by local jurisdiction prior to installation and should ensure that flows are treated and able to enter the storm drain without causing local flooding.
 - v. **Construction Staging Area** The construction staging area will provide onsite pollution prevention.
 - vi. Concrete Truck Washout Pit A concrete truck washout pit aids in the final cleanup and prevents unnecessary discharge of concrete residue from contaminating the storm water runoff. See Sheet 2 of the SCS Site Plan which contains a copy of Section 1.4.18 from the Edwards Aquifer Rules: Technical Guidance on Best Management Practices for materials, installation, common trouble points, inspection and maintenance.
- **c.** Silt fence and rock berms (see section "b") will be used to prevent sediment-laden runoff from entering sensitive features on this site and surface streams off the site.

BALCONES FLATS TEMPORARY BEST MANAGEMENT PRACTICES AND MEASURES (ATTACHMENT D)

d. The flow to the natural sensitive features on this site, to a maximum practical extent, will not be disturbed. No clearing, excavation or grading will occur within the buffer zone of the sensitive feature. If another naturally occurring sensitive feature is identified during construction all activity will be stopped and the contractor should notify TCEQ.


BALCONES FLATS STRUCTURAL PRACTICES (ATTACHMENT F)

Structural practices installed to prevent the runoff of pollutants from exposed areas of the site are:

- Silt fence
- Stabilized Construction Entrance/Exit
- Construction Staging Area
- Concrete Truck Washout Pit
- Rock Berm

For the majority of the disturbed soil within the limits of this project, silt fence will capture and hold sediment laden runoff.

Placement of these structure practices within the floodplain will be avoided.

BALCONES FLATS INSPECTION AND MAINTENANCE FOR BMPs (ATTACHMENT I)

Designated and qualified person(s) shall inspect Pollution Control Measures every seven days and within 24 hours after a storm event. An inspection report that summarized the scope of the inspection, names and qualifications of personnel conducting the inspection, date of inspection, major observations, and actions taken as a result of the inspection shall be recorded and maintained as part of the Storm Water T.P.D.E.S. Plan. A copy of the inspection report form is provided as page 2 of this attachment. Inspection and Maintenance Guidelines are as follows:

Construction Entrance:

- (1) The entrance should be maintained in a condition, which will prevent tracking or flowing of sediment onto public rights-of-way. This may require periodic top dressing with additional stone as conditions demand and repair and/or cleanout of any measures used to trap sediment.
- (2) All sediment spilled, dropped, washed or tracked onto public rights-of-way should be removed immediately by contractor.
- (3) When necessary, wheels should be cleaned to remove sediment prior to entrance onto public right-of-way.
- (4) When washing is required, it should be done on an area stabilized with crushed stone that drains into an approved sediment trap or sediment basin.
- (5) All sediment should be prevented from entering any storm drain, ditch or water course by using approved methods.

Inlet Protection:

- (1) Inspection should be made weekly and after each rainfall. Repair or replacement should be made promptly as needed by the contractor.
- (2) Remove sediment when buildup reaches a depth of 3 inches. Removed sediment should be deposited in a suitable area and in such a manner that it will not erode.
- (3) Check placement of device to prevent gaps between device and curb.
- (4) Inspect filter fabric and patch or replace if torn or missing.
- (5) Structures should be removed and the area stabilized only after the remaining drainage area has been properly stabilized.

Silt Fence:

- (1) Inspect all fencing weekly, and after any rainfall.
- (2) Remove sediment when buildup reaches 6 inches.
- (3) Replace any torn fabric or install a second line of fencing parallel to the torn section.
- (4) Replace or repair any sections crushed or collapsed in the course of construction activity. If a section of fence is obstructing vehicular access, consider relocating it to a spot where it will provide equal protection, but will not obstruct vehicles. A triangular filter dike may be preferable to a silt fence at common vehicle access points.

BALCONES FLATS INSPECTION AND MAINTENANCE FOR BMPs (ATTACHMENT I)

(5) When construction is complete, the sediment should be disposed of in a manner that will not cause additional siltation and the prior location of the silt fence should be revegetated. The fence itself should be disposed of in an approved landfill.

Temporary/Permanent Vegetation:

- (1) Permanent vegetation should be inspected weekly and after each rain event to locate and repair any erosion.
- (2) Erosion from storms or other damage should be repaired as soon as practical by regrading the area and applying new seed.
- (3) If the vegetated cover is less than 80%, the area should be reseeded.

Rock Berm:

- (1) Inspection should be made weekly and after each rainfall by the responsible party. For installations in streambeds, additional daily inspections should be made.
- (2) Remove sediment and other debris when buildup reaches 6 inches and dispose of the accumulated silt in an approved manner that will not cause any additional siltation.
- (3) Repair any loose wire sheathing.
- (4) The berm should be reshaped as needed during inspection.
- (5) The berm should be replaced when the structure ceases to function as intended due to silt accumulation among the rocks, washout, construction traffic damage, etc.
- (6) The rock berm should be left in place until all upstream areas are stabilized and accumulated silt removed.

BALCONES FLATS INSPECTION AND MAINTENANCE FOR BMPs (ATTACHMENT I)

INSPECTION REPORT				
Approved Inspection intervals:				
i. Conducted once every 7 days AND within 24 hours				
after rainfall event greater than 0.5 inch				
	8			
PROJECT NAME				
REPORT # DATE				
INSPECTOR	TITLE			
REASON FOR INSPECTION (CHECK	ONE) Weekly Or ½	2" Rain		
DATE OF LAST RAINFALL	AMOUNT			
SITE O	CONDITIONS:			
EROSION AND SEDIMENTATION	IN CONFORMANCE	EFFECTIVE		
CONTROLS				
Concrete Washout Area	Yes/No/Na	Yes/No		
Construction Entrance	Yes/No/Na	Yes/No		
Permanent Vegetation	Yes/No/Na	Yes/No		
		Yes/No		
Rock Berm	Yes/No/Na	Yes/No		
RECOMMENDED REMEDIAL A	ACTIONS:			
COMMENTS.				
COMMENTS:				
"I certify under penalty of law that the my direction or supervision with a system designathered and evaluated the information submitted who manage the system or those persons dire information submitted is, to the best of my known aware that there are significant penalties for fine and imprisonment."	signed to assure that qualified personitted. Based on my inquiry of the petty responsible for gathering the intowledge and belief, true, accurate,	onnel properly person or persons aformation, the and complete. I am		
INSPECTOR:	DATE:			

BALCONES FLATS SCHEDULE OF INTERIM AND PERMANENT SOIL STABILIZATION PRACTICES (ATTACHMENT J)

Soil stabilization practices will be used to reduce the amount of erosion from the site. Only the areas essential for immediate construction should be cleared. This will keep a buffer zone around the area of construction as these areas will remain undisturbed until construction begins there.

Interim soil stabilization areas are determined in the field. Temporary vegetation will be used as an aid to control erosion on critical sites during establishment period of protective vegetation when construction is temporarily ceased.

Permanent soil stabilization areas are indicated on the included Site Plan. Permanent seeding will take place in these areas when construction is permanently ceased.

Stabilization practices should be installed according to the following rules:

- Stabilization measures shall be initiated as soon as practical in portions of the site where construction activities have temporarily or permanently ceased, but in no case more than 14 days after the construction activity in that portion of the site has temporarily or permanently ceased.
- Where the initiation of stabilization measures by the 14th day after construction activity temporarily or permanently ceased is precluded by weather conditions, stabilization measures shall be initiated as soon as practical.
- In areas experiencing droughts where the initiation of stabilization measure by the 14th day after construction activity has temporarily or permanently ceased is precluded by seasonal arid conditions, stabilization measures shall be initiated as soon as practical.

Application Fee Form

Texas Commission on Environmental Quality Name of Proposed Regulated Entity: Balcones Flats Regulated Entity Location: Jarrell Texas Name of Customer: Strategic Metal Solutions, LLC Contact Person: Evan Horne Phone: (512) 966-7434 Customer Reference Number (if issued):CN 605875822 Regulated Entity Reference Number (if issued):RN ______ **Austin Regional Office (3373)** Travis X Williamson Havs San Antonio Regional Office (3362) Medina Uvalde Bexar Comal Kinney Application fees must be paid by check, certified check, or money order, payable to the Texas Commission on Environmental Quality. Your canceled check will serve as your receipt. This form must be submitted with your fee payment. This payment is being submitted to: Austin Regional Office San Antonio Regional Office Mailed to: TCEQ - Cashier Overnight Delivery to: TCEQ - Cashier **Revenues Section** 12100 Park 35 Circle Mail Code 214 Building A, 3rd Floor P.O. Box 13088 Austin, TX 78753 Austin, TX 78711-3088 (512)239-0357 Site Location (Check All That Apply): Recharge Zone Contributing Zone **Transition Zone** Type of Plan Size Fee Due Water Pollution Abatement Plan, Contributing Zone Plan: One Single Family Residential Dwelling Acres Water Pollution Abatement Plan, Contributing Zone Plan: Multiple Single Family Residential and Parks Acres Water Pollution Abatement Plan, Contributing Zone Plan: Non-residential Acres Sewage Collection System 194.69 L.F. | \$ 650.00 Lift Stations without sewer lines Acres | \$ Tanks | \$ Underground or Aboveground Storage Tank Facility Each | \$ Piping System(s)(only) Each | \$ Exception

	/ /2	
Signature: _		

Each

Extension of Time

Date:

Application Fee Schedule

Texas Commission on Environmental Quality

Edwards Aquifer Protection Program 30 TAC Chapter 213 (effective 05/01/2008)

Water Pollution Abatement Plans and Modifications

Contributing Zone Plans and Modifications

	Project Area in	
Project	Acres	Fee
One Single Family Residential Dwelling	< 5	\$650
Multiple Single Family Residential and Parks	< 5	\$1,500
	5 < 10	\$3,000
	10 < 40	\$4,000
	40 < 100	\$6,500
	100 < 500	\$8,000
	≥ 500	\$10,000
Non-residential (Commercial, industrial,	< 1	\$3,000
institutional, multi-family residential, schools, and	1 < 5	\$4,000
other sites where regulated activities will occur)	5 < 10	\$5,000
	10 < 40	\$6,500
	40 < 100	\$8,000
	≥ 100	\$10,000

Organized Sewage Collection Systems and Modifications

Project	Cost per Linear Foot	Minimum Fee- Maximum Fee
Sewage Collection Systems	\$0.50	\$650 - \$6,500

Underground and Aboveground Storage Tank System Facility Plans and Modifications

Project	Cost per Tank or Piping System	Minimum Fee- Maximum Fee
Underground and Aboveground Storage Tank Facility	\$650	\$650 - \$6,500

Exception Requests

Project	Fee				
Exception Request	\$500				

Extension of Time Requests

Project	Fee
Extension of Time Request	\$150

Agent Authorization Form

For Required Signature
Edwards Aquifer Protection Program
Relating to 30 TAC Chapter 213
Effective June 1, 1999

	Evan Horne	
	Print Name	
	Owner	
	Title - Owner/President/Other	
of	Strategic Metal Solutions, LLC	
	Corporation/Partnership/Entity Name	
have authorized	Garrett Keller, PE	
	Print Name of Agent/Engineer	
of	Matkin Hoover Engineering & Surveying	
	Print Name of Firm	

to represent and act on the behalf of the above named Corporation, Partnership, or Entity for the purpose of preparing and submitting this plan application to the Texas Commission on Environmental Quality (TCEQ) for the review and approval consideration of regulated activities.

I also understand that:

- 1. The applicant is responsible for compliance with 30 Texas Administrative Code Chapter 213 and any condition of the TCEQ's approval letter. The TCEQ is authorized to assess administrative penalties of up to \$10,000 per day per violation.
- 2. For those submitting an application who are not the property owner, but who have the right to control and possess the property, additional authorization is required from the owner.
- 3. Application fees are due and payable at the time the application is submitted. The application fee must be sent to the TCEQ cashier or to the appropriate regional office. The application will not be considered until the correct fee is received by the commission.
- 4. A notarized copy of the Agent Authorization Form must be provided for the person preparing the application, and this form must accompany the completed application.
- 5. No person shall commence any regulated activity on the Edwards Aquifer Recharge Zone, Contributing Zone or Transition Zone until the appropriate application for the activity has been filed with and approved by the Executive Director.

SIGNATURE PAGE:

Applicant's Signature

Date

THE STATE OF <u>Texas</u> §
County of <u>Williamson</u> §

BEFORE ME, the undersigned authority, on this day personally appeared <u>From Horne</u> known to me to be the person whose name is subscribed to the foregoing instrument, and acknowledged to me that (s)he executed same for the purpose and consideration therein expressed.

GIVEN under my hand and seal of office on this // day of April , 2025

NOTARY PUBLIC

Typod or Printed Name of Notes

HADEN SIMMONS
My Notary ID # 134834447
Expires April 3, 2028

MY COMMISSION EXPIRES: April 34 2028

TCEQ Core Data Form

For detailed instructions on completing this form, please read the Core Data Form Instructions or call 512-239-5175.

SECTION I: General Information

1. Reason for Submission (If other is checked please describe in space provided.)

Renewal (Core Data Form should be submitted with the renewal form)							Other				
2. Customer Reference Number (if issued) Eollow this link to some for CN or RN number Central Registry CN 605875822					I numbers in	3. Re	3. Regulated Entity Reference Number (if issued) RN				
ECTION	N II:	Custome	Inform	ation	L						
4. General Cu	stomer li	nformation	5. Effective D	Date for Cu	istomer Info	rmation	Updates (mm/dd	/уууу)			
New Custor	ner			ner Informat	tion	Cha	nge in Regulated Er	ntity Own	ership		
Change in Le	egal Name	(Verifiable with the T	exas Secretary of	State or Tex	as Comptrolle	er of Public	c Accounts)				
(SOS) or Texa	s Comptr	ubmitted here may oller of Public Acco ne (If an individual, p	unts (CPA).				If new Customer				
Strategic Metal	Solutions,	LLC									
7. TX SOS/CP	A Filing N	umber	8. TX State Ta	ax ID (11 d	igits)		9. Federal Tax ID			10. DUNS Number (if	
			32077030347				(9 digits)		applicable)		
							86-1202483				
11. Type of C	ustomer:	☐ Corpor	ation						ership: General Limited		
Government: [City 🗌	County Federal	Local 🗌 State [Other		Sole P	☐ Sole Proprietorship ☐ Other:				
12. Number o	of Employ	rees					13. Independe	ntly Ow	ned and Ope	erated?	
□ 0-20 □ 21-100 □ 101-250 □ 251-500 □ 501 and higher							☐ Yes ☐ No				
14. Customer	Role (Pro	posed or Actual) – as	it relates to the R	Regulated Er	ntity listed on	this form.	Please check one o	f the follo	owing		
⊠Owner □ Occupationa	al Licensee	☐ Operator ☐ Responsible P		ner & Opera CP/BSA App			Other	:			
	358 Alsa	το Λνο									
15. Mailing	JJO Alsa	CC AVE									
Address:	City	Jarrell		State	TX	ZIP	76537		ZIP + 4		
16. Country N	/lailing In	formation (if outsid	e USA)		17.	E-Mail A	ddress (if applicat	ole)	<u> </u>		

TCEQ-10400 (11/22) Page 1 of 3

16. Telephone Number			19. Extension of	Code		20. Fd.	x Number (ij t	иррпсиые)			
(512) 966-7434				(() -			
ECTION III: I	Regula	ited Ent	tity Inforn	nation							
21. General Regulated En						tion is al	so required.)				
New Regulated Entity [Update to	Regulated Entity	Name Update t	o Regulated	Entity Inform	ation					
The Regulated Entity Nan as Inc, LP, or LLC).	ne submitted	d may be upda	ited, in order to med	et TCEQ Cor	e Data Star	ndards (removal of o	rganization	nal endings such		
22. Regulated Entity Nam	e (Enter name	e of the site whe	re the regulated action	is taking pla	ice.)						
Balcones Flats PH II											
23. Street Address of											
	he Regulated Entity:										
(<u>No PO Boxes)</u>	City		State		ZIP			ZIP + 4			
24. County	Williamson										
		If no Stre	et Address is provid	led, fields 2	5-28 are re	quired.					
25. Description to						6					
Physical Location:	North on 135	from Austin, IX	turn East on CR 487 tl	ne property v	vill be on the	South					
26. Nearest City						State		Nea	rest ZIP Code		
arrell					TX			76537			
Latitude/Longitude are re used to supply coordinate	-	-	-		Pata Standa	rds. (Ge	eocoding of th	ne Physical	Address may b		
27. Latitude (N) In Decima	al:	30.818989		28. L	ongitude (V	V) In De	cimal:	97.61173	1		
Degrees	Minutes		Seconds	Degre	Degrees		Minutes		Seconds		
30	4	19	8.36		97	36			42.23		
29. Primary SIC Code	30.	Secondary SIC	Code 31. Primary NAIC			S Code 32. Secondary NAICS Code					
4 digits)	(4 di	gits)	(5 or 6 digits)			(5 or 6 digits)					
5552											
33. What is the Primary B	usiness of t	his entity? (D	not repeat the SIC o	r NAICS descr	iption.)						
and development of single-fa	amily homes										
34. Mailing	358 Alsace	Ave									
Address:	City	Jarell	State	тх	ZIP	76537	7	ZIP + 4			
35. E-Mail Address:		strateqictx.com									
36. Telephone Number			37. Extension or	Code	38. F	ax Num	ber (if applical	ble)			
			T		1,						

TCEQ-10400 (11/22) Page 2 of 3

Dam Safety	☐ Dam Safety ☐ Districts			☑ Edwards Aquifer ☐			☐ Industrial Hazardous Waste		
☐ Municipal Solid Waste ☐ New Source Review Air			OSSF			etroleum Storage Tank	☐ PWS		
Sludge		Storm Water	☐ Title V Air		☐ Ti	ires	Used Oil		
☐ Voluntary Clea	nup		☐ Wastewater Agricu	ılture	☐ Water Rights		Other:		
SECTION	IV: Pı	reparer Inf	<u>formation</u>						
40. Name: G		41. Title: President							
42. Telephone Nu	ımber	43. Ext./Code	44. Fax Number	45. E-Ma	ail Ac	ddress			
(830) 249-0600	Taylor Have to		(830) 249-0099	gkeller@matkinhoover.com					
CECTION	\/. A.	ıthorizod (Signature						
		uthorized S		ion provided i	n this	s form is true and complete	e, and that I have signature authority		
o submit this form o	n behalf of t	he entity specified in Se	ection II, Field 6 and/or as r	equired for th	e upd	lates to the ID numbers ide	entified in field 39.		
Company: Matkin Hoover Engineering & Surveying						President			
Name (In Print): Coursett Kellers						Phone:	(830) 249-600		
Signature:						Date:	3/31/25		