

TCEQ Core Data Form

For detailed instructions regarding completion of this form, please read the Core Data Form Instructions or call 512-239-5175.

SECTION I: General Information

1. Reason fo	or Submis	sion (If other is c	hecked pleas	e descri	ibe in space	provided.)				
New Permit, Registration or Authorization (Core Data Form should be submitted with the program application.)											
Renewal (Core Data Form should be submitted with the renewal form)							Ot	her			
2. Customer	^r Referenc	e Number <i>(if i</i> ss	sued)		this link to se		. Regu	lated	Entity Referenc	e Number (if issued)
CN 6001	30652				or RN numbe ntral Registry*		RN				
SECTION	II: Cu	stomer Info	ormation								
4. General C	ustomer l	nformation	5. Effective	e Date f	or Custome	r Informa	tion L	Jpdate	s (mm/dd/yyyy)		
New Cust		ne (Verifiable wit			to Customer y of State or			oller of I	•	-	Entity Ownership
-	-	,			•				,		active with the
Texas Sec	retary o	f State (SOS)	or Texas C	Compti	roller of P	ublic A	ccou	nts (C	CPA).		
6. Customer	Legal Nar	ne (If an individua	l, print last nam	ne first: e	g: Doe, John)		<u>lf ne</u>	ew Cus	tomer, enter prev	ious Custom	er below:
7. TX SOS/C	PA Filing	Number	8. TX State	Tax ID	(11 digits)		9. Federal Tax ID (9 digits) 10. DUNS Number (if applic			S Number (if applicable)	
11. Type of (Customer:	Corporat	ion		🗌 Individ	lual	Partnership: 🗌 General 🗌 Limited				
Government:	City 🗌 🤇	County 🗌 Federal	State 🗌 Othe	r	Sole F	roprietor	ship		Other:		
12. Number	of Employ	ees					13. Independently Owned and Operated?				ited?
0-20	21-100	101-250	251-500			and higher Yes No					
14. Custome	e r Role (Pro	pposed or Actual) -	- as it relates to	the Reg	ulated Entity I	isted on th	is form	n. Please	e check one of the	following	
☐Owner ☐Occupatio	Owner Operator Owner & Operator Occupational Licensee Responsible Party Voluntary Cleanup Applicant Other:										
15. Mailing											
Address:	City			St	tate	Z	ΊP			ZIP + 4	
16. Country	Mailing In	formation (if outsi	ide USA)			17. E-N	lail Ad	ddress	(if applicable)		
16. Country Mailing Information (if outside USA) 17. E-Mail Address (if applicable)											
18. Telephor	ne Numbe	r		19. Ex	tension or	Code			20. Fax Numbe	er (if applical	ble)
()	-								()	-	

SECTION III: Regulated Entity Information

 21. General Regulated Entity Information (If 'New Regulated Entity" is selected below this form should be accompanied by a permit application)

 ○ New Regulated Entity
 ○ Update to Regulated Entity Name
 ○ Update to Regulated Entity Information

 The Regulated Entity Name submitted may be updated in order to meet TCEQ Agency Data Standards (removal)

of organizational endings such as Inc, LP, or LLC).

22. Regulated Entity Name (Enter name of the site where the regulated action is taking place.)

CoSA Canyon Golf Road Sidewalk Project

23. Street Address of	Not Ap	plicable								
the Regulated Entity:										
(No PO Boxes)	City		State		ZIP			ZIP	+ 4	
24. County	Bexar									
	E	Inter Physical L	ocation Descript	tion if no st	reet add	ress is pr	ovided.			
25. Description to Physical Location:	On the east and west side of Canyon Golf Rd between Stone Oak Pkwy and Wilderness Oak.									
26. Nearest City						State	;		Nea	rest ZIP Code
San Antonio						TX			782	58
27. Latitude (N) In Decin	nal:	29.6433		28.	ongitud	e (W) In I	Decimal:	-98.4	812	
Degrees	Minutes		Seconds	Degr	ees		Minutes		1	Seconds
29		38	35.88		-98			28		52.32
29. Primary SIC Code (4	digits) 30 .	Secondary SIC	Code (4 digits)	31. Prima (5 or 6 digi	-	S Code	32. S (5 or 6		y NAI	CS Code
1611	16	29	237310				238	238990		
33. What is the Primary	Business o	f this entity?	(Do not repeat the SIC	or NAICS de	scription.)					
Sidewalk Improven	nents									
				PO	Box 8399	66				
34. Mailing										
Address:	City	San Antoni	io State	ТХ	ZIP		78283	ZIP	+ 4	3966
35. E-Mail Address:	1		Ca	armen.Vare	la-Rivas	@sananto	onio.gov			
36. Telepho	36. Telephone Number			on or Code			38. Fax Nu	mber (if	appli	cable)
(210) 2					(21	0)366-1	980			
9. TCEQ Programs and ID Numbers Check all Programs and write in the permits/registration numbers that will be affected by the updates submitted on this rm. See the Core Data Form instructions for additional guidance.										
Dam Safety			🛛 Edwards Aqu	lifer	Emissions Inventory Air			Industrial Hazardous Waste		
Municipal Solid Waste	🗌 New S	ource Review Air	OSSF		Petroleum Storage Tank			D PWS		

SECTION IV: Preparer Information

Storm Water

U Waste Water

40. Name:	Elvis Trevi	ño		41. Title:	Project Manager
42. Tele	phone Number	43. Ext./Code	44. Fax Number	45. E-Mail	Address
(210)	366-1988	8114	(210)366-1980	etrevino	@maesce.com

Wastewater Agriculture

Tires

Water Rights

Used Oil

Other:

Title V Air

SECTION V: Authorized Signature

46. By my signature below, I certify, to the best of my knowledge, that the information provided in this form is true and complete, and that I have signature authority to submit this form on behalf of the entity specified in Section II, Field 6 and/or as required for the updates to the ID numbers identified in field 39.

Company:	Maestas & Associates, LLC	Job Title:	Project N		
Name (In Print):	Elvis Treviño		Phone:	(210) 366- 1988	
Signature:	Uno lina			Date:	6/1/2023

Sludge

Voluntary Cleanup

CoSA Canyon Golf Road Sidewalk Project

WPAP Application

June 2023

Prepared for:

City of San Antonio

Public Works Department

Prepared by:

Texas Commission on Environmental Quality Edwards Aquifer Application Cover Page

Our Review of Your Application

The Edwards Aquifer Program staff conducts an administrative and technical review of all applications. The turnaround time for administrative review can be up to 30 days as outlined in 30 TAC 213.4(e). Generally administrative completeness is determined during the intake meeting or within a few days of receipt. The turnaround time for technical review of an administratively complete Edwards Aquifer application is 90 days as outlined in 30 TAC 213.4(e). Please know that the review and approval time is directly impacted by the quality and completeness of the initial application that is received. In order to conduct a timely review, it is imperative that the information provided in an Edwards Aquifer application include final plans, be accurate, complete, and in compliance with <u>30 TAC 213</u>.

Administrative Review

1. <u>Edwards Aquifer applications</u> must be deemed administratively complete before a technical review can begin. To be considered administratively complete, the application must contain completed forms and attachments, provide the requested information, and meet all the site plan requirements. The submitted application and plan sheets should be final plans. Please submit one full-size set of plan sheets with the original application, and half-size sets with the additional copies.

To ensure that all applicable documents are included in the application, the program has developed tools to guide you and web pages to provide all forms, checklists, and guidance. Please visit the below website for assistance: <u>http://www.tceq.texas.gov/field/eapp</u>.

- 2. This Edwards Aquifer Application Cover Page form (certified by the applicant or agent) must be included in the application and brought to the administrative review meeting.
- 3. Administrative reviews are scheduled with program staff who will conduct the review. Applicants or their authorized agent should call the appropriate regional office, according to the county in which the project is located, to schedule a review. The average meeting time is one hour.
- 4. In the meeting, the application is examined for administrative completeness. Deficiencies will be noted by staff and emailed or faxed to the applicant and authorized agent at the end of the meeting, or shortly after. Administrative deficiencies will cause the application to be deemed incomplete and returned.

An appointment should be made to resubmit the application. The application is re-examined to ensure all deficiencies are resolved. The application will only be deemed administratively complete when all administrative deficiencies are addressed.

- 5. If an application is received by mail, courier service, or otherwise submitted without a review meeting, the administrative review will be conducted within 30 days. The applicant and agent will be contacted with the results of the administrative review. If the application is found to be administratively incomplete, it can be retrieved from the regional office or returned by regular mail. If returned by mail, the regional office may require arrangements for return shipping.
- 6. If the geologic assessment was completed before October 1, 2004 and the site contains "possibly sensitive" features, the assessment must be updated in accordance with the *Instructions to Geologists* (TCEQ-0585 Instructions).

Technical Review

- 1. When an application is deemed administratively complete, the technical review period begins. The regional office will distribute copies of the application to the identified affected city, county, and groundwater conservation district whose jurisdiction includes the subject site. These entities and the public have 30 days to provide comments on the application to the regional office. All comments received are reviewed by TCEQ.
- 2. A site assessment is usually conducted as part of the technical review, to evaluate the geologic assessment and observe existing site conditions. The site must be accessible to our staff. The site boundaries should be

clearly marked, features identified in the geologic assessment should be flagged, roadways marked and the alignment of the Sewage Collection System and manholes should be staked at the time the application is submitted. If the site is not marked the application may be returned.

- 3. We evaluate the application for technical completeness and contact the applicant and agent via Notice of Deficiency (NOD) to request additional information and identify technical deficiencies. There are two deficiency response periods available to the applicant. There are 14 days to resolve deficiencies noted in the first NOD. If a second NOD is issued, there is an additional 14 days to resolve deficiencies. If the response to the second notice is not received, is incomplete or inadequate, or provides new information that is incomplete or inadequate, the application must be withdrawn or will be denied. Please note that because the technical review is underway, whether the application is withdrawn or denied **the application fee will be forfeited**.
- 4. The program has 90 calendar days to complete the technical review of the application. If the application is technically adequate, such that it complies with the Edwards Aquifer rules, and is protective of the Edwards Aquifer during and after construction, an approval letter will be issued. Construction or other regulated activity may not begin until an approval is issued.

Mid-Review Modifications

It is important to have final site plans prior to beginning the permitting process with TCEQ to avoid delays.

Occasionally, circumstances arise where you may have significant design and/or site plan changes after your Edwards Aquifer application has been deemed administratively complete by TCEQ. This is considered a "Mid-Review Modification". Mid-Review Modifications may require redistribution of an application that includes the proposed modifications for public comment.

If you are proposing a Mid-Review Modification, two options are available:

- If the technical review has begun your application can be denied/withdrawn, your fees will be forfeited, and the plan will have to be resubmitted.
- TCEQ can continue the technical review of the application as it was submitted, and a modification application can be submitted at a later time.

If the application is denied/withdrawn, the resubmitted application will be subject to the administrative and technical review processes and will be treated as a new application. The application will be redistributed to the affected jurisdictions.

Please contact the regional office if you have questions. If your project is located in Williamson, Travis, or Hays County, contact TCEQ's Austin Regional Office at 512-339-2929. If your project is in Comal, Bexar, Medina, Uvalde, or Kinney County, contact TCEQ's San Antonio Regional Office at 210-490-3096

Please fill out all required fields below and submit with your application.

1. Regulated Entity Name: CoSA Canyon Golf Road Sidewalk Project						2. Regulated Entity No.:				
3. Customer Name: C	City of Sa	n Anto	onio			4. Cu	4. Customer No.: 600130652			
5. Project Type: (Please circle/check one)	New		Modification		Extension		Exception			
6. Plan Type: (Please circle/check one)	WPAP	CZP	SCS	UST	AST	EXP	EXT	Technical Clarification	Optional Enhanced Measures	
7. Land Use: (Please circle/check one)	Resider	Residential Non-residential			tial	8. Site (acres):		e (acres):	1.072	
9. Application Fee:	\$500		10. Permanent H			BMP(s	5):	Shared Use Pat	h Vegetative Filter Strip	
11. SCS (Linear Ft.):	-		12. A	ST/US	ST (N	o. Tanks):				
13. County:Bexar14. Watershed:			hed:	Salado Creek						

Application Distribution

Instructions: Use the table below to determine the number of applications required. One original and one copy of the application, plus additional copies (as needed) for each affected incorporated city, county, and groundwater conservation district are required. Linear projects or large projects, which cross into multiple jurisdictions, can require additional copies. Refer to the "Texas Groundwater Conservation Districts within the EAPP Boundaries" map found at:

http://www.tceq.texas.gov/assets/public/compliance/field_ops/eapp/EAPP%20GWCD%20map.pdf

For more detailed boundaries, please contact the conservation district directly.

Austin Region					
County:	Hays	Travis	Williamson		
Original (1 req.)			_		
Region (1 req.)			_		
County(ies)					
Groundwater Conservation District(s)	Edwards Aquifer Authority Barton Springs/ Edwards Aquifer Hays Trinity Plum Creek	Barton Springs/ Edwards Aquifer	NA		
City(ies) Jurisdiction	Austin Buda Dripping Springs Kyle Mountain City San Marcos Wimberley Woodcreek	Austin Bee Cave Pflugerville Rollingwood Round Rock Sunset Valley West Lake Hills	Austin Cedar Park Florence Georgetown Jerrell Leander Liberty Hill Pflugerville Round Rock		

	Sa	an Antonio Region			
County:	Bexar	Comal	Kinney	Medina	Uvalde
Original (1 req.)	<u>_X</u>		_		
Region (1 req.)	_ <u>X</u>				
County(ies)	<u>_X</u>				
Groundwater Conservation District(s)	<u>x</u> Edwards Aquifer Authority Trinity-Glen Rose	Edwards Aquifer Authority	Kinney	EAA Medina	EAA Uvalde
City(ies) Jurisdiction	Castle Hills Fair Oaks Ranch Helotes Hill Country Village Hollywood Park x_San Antonio (SAWS) Shavano Park	Bulverde Fair Oaks Ranch Garden Ridge New Braunfels Schertz	NA	San Antonio ETJ (SAWS)	NA

I certify that to the best of my knowledge, that the application is complete and accurate. This application is hereby submitted to TCEQ for administrative review and technical review.

Elvis Treviño, PE

Print Name of Customer/Authorized Agent

Signature of Customer/Authorized Agent

6/1/2023 Date

FOR TCEQ INTERNAL USE ONLY		
Date(s)Reviewed; Date Administratively Complete:		
Received From:	Correct Number of Copies:	
Received By:	Distribution Date:	
EAPP File Number:	Complex:	
Admin. Review(s) (No.):	No. AR Rounds:	
Delinquent Fees (Y/N):	Review Time Spent:	
Lat./Long. Verified:	SOS Customer Verification:	
Agent Authorization Complete/Notarized (Y/N):	Payable to TCEQ (Y/N):	
Core Data Form Complete (Y/N):	Check: Signed (Y/N):	
Core Data Form Incomplete Nos.:	Less than 90 days old (Y/N):	

General Information Form

Texas Commission on Environmental Quality

For Regulated Activities on the Edwards Aquifer Recharge and Transition Zones and Relating to 30 TAC §213.4(b) & §213.5(b)(2)(A), (B) Effective June 1, 1999

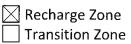
To ensure that the application is administratively complete, confirm that all fields in the form are complete, verify that all requested information is provided, consistently reference the same site and contact person in all forms in the application, and ensure forms are signed by the appropriate party.

Note: Including all the information requested in the form and attachments contributes to more streamlined technical reviews.

Signature

To the best of my knowledge, the responses to this form accurately reflect all information requested concerning the proposed regulated activities and methods to protect the Edwards Aquifer. This **General Information Form** is hereby submitted for TCEQ review. The application was prepared by:

Print Name of Customer/Agent: Elvis Treviño, PE


Date: 06/01/2023

Signature of Customer/Agent:

Twino

Project Information

- 1. Regulated Entity Name: CoSA Canyon Golf Road Sidewalk Project
- 2. County: <u>Bexar</u>
- 3. Stream Basin: San Antonio River Basin
- 4. Groundwater Conservation District (If applicable): N/A
- 5. Edwards Aquifer Zone:

6. Plan Type:

WPAP
SCS
Modification

AST UST Exception Request

TCEQ-0587 (Rev. 02-11-15)

1 of 4

7.	Customer (Applicant):
	Contact Person: Justin Gawik, PE Entity: <u>City of San Antonio</u>
	Mailing Address: <u>100 W. Houston St.</u> <u>15th Floor</u> <u>210-207-4406</u>
	City, State: San Antonio, Texas Zip: 78205
	Telephone: 210-207-0614 FAX: 210-2074406
	Email Address: justin.gawlik@sanantonid.gov
8.	Agent/Representative (If any):
	Contact Person: Elvis Treviñe, PE Jose L. REYES, P.E., CFM
	Entity: <u>Maestas & Associates, LLC.</u>
	Mailing Address: 8122 Datapoint Drive, Suite 840
	City, State: San Antonio, Texas Zip: 78229
	Telephone: 210-366-1988 FAX: 210-366-1980
	Email Address: etrevino@maesce_om
9.	Project Location:
	 The project site is located inside the city limits of <u>City of San Antonio</u>. The project site is located outside the city limits but inside the ETJ (extra-territorial jurisdiction) of The project site is not located within any city's limits or ETJ.
4.0	
10.	The location of the project site is described below. The description provides sufficient detail and clarity so that the TCEQ's Regional staff can easily locate the project and site boundaries for a field investigation.
	<u>The project is located along Canyon Golf Rd between Stone Oak Pkwy and</u> approximately 2390' south of Wilderness Oak.
11.	Attachment A – Road Map. A road map showing directions to and the location of the project site is attached. The project location and site boundaries are clearly shown on the map.
12.	Attachment B - USGS / Edwards Recharge Zone Map. A copy of the official 7 ½ minute USGS Quadrangle Map (Scale: 1" = 2000') of the Edwards Recharge Zone is attached. The map(s) clearly show:
	\boxtimes Project site boundaries.

Project site boundaries.
 USGS Quadrangle Name(s).
 Boundaries of the Recharge Zone (and Transition Zone, if applicable).
 Drainage path from the project site to the boundary of the Recharge Zone.

13. The TCEQ must be able to inspect the project site or the application will be returned. Sufficient survey staking is provided on the project to allow TCEQ regional staff to locate the boundaries and alignment of the regulated activities and the geologic or manmade features noted in the Geologic Assessment.

- Survey staking will be completed by this date: <u>10-1-2023</u>
- 14. Attachment C Project Description. Attached at the end of this form is a detailed narrative description of the proposed project. The project description is consistent throughout the application and contains, at a minimum, the following details:
 - Area of the site
 Offsite areas
 Impervious cover
 Permanent BMP(s)
 Proposed site use
 Site history
 Previous development
 Area(s) to be demolished

15. Existing project site conditions are noted below:

	Existing commercial site
	Existing industrial site
	Existing residential site
\boxtimes	Existing paved and/or unpaved roads
	Undeveloped (Cleared)
	Undeveloped (Undisturbed/Uncleared)
	Other:

Prohibited Activities

- 16. I am aware that the following activities are prohibited on the Recharge Zone and are not proposed for this project:
 - (1) Waste disposal wells regulated under 30 TAC Chapter 331 of this title (relating to Underground Injection Control);
 - (2) New feedlot/concentrated animal feeding operations, as defined in 30 TAC §213.3;
 - (3) Land disposal of Class I wastes, as defined in 30 TAC §335.1;
 - (4) The use of sewage holding tanks as parts of organized collection systems; and
 - (5) New municipal solid waste landfill facilities required to meet and comply with Type I standards which are defined in §330.41(b), (c), and (d) of this title (relating to Types of Municipal Solid Waste Facilities).
 - (6) New municipal and industrial wastewater discharges into or adjacent to water in the state that would create additional pollutant loading.
- 17. I am aware that the following activities are prohibited on the Transition Zone and are not proposed for this project:
 - (1) Waste disposal wells regulated under 30 TAC Chapter 331 (relating to Underground Injection Control);

- (2) Land disposal of Class I wastes, as defined in 30 TAC §335.1; and
- (3) New municipal solid waste landfill facilities required to meet and comply with Type I standards which are defined in §330.41 (b), (c), and (d) of this title.

Administrative Information

18. The fee for the plan(s) is based on:

- For a Water Pollution Abatement Plan or Modification, the total acreage of the site where regulated activities will occur.
- For an Organized Sewage Collection System Plan or Modification, the total linear footage of all collection system lines.
- For a UST Facility Plan or Modification or an AST Facility Plan or Modification, the total number of tanks or piping systems.
- A request for an exception to any substantive portion of the regulations related to the protection of water quality.
- A request for an extension to a previously approved plan.
- 19. Application fees are due and payable at the time the application is filed. If the correct fee is not submitted, the TCEQ is not required to consider the application until the correct fee is submitted. Both the fee and the Edwards Aquifer Fee Form have been sent to the Commission's:

] TCEQ cashier

 Austin Regional Office (for projects in Hays, Travis, and Williamson Counties)
 San Antonio Regional Office (for projects in Bexar, Comal, Kinney, Medina, and Uvalde Counties)

- 20. Submit one (1) original and one (1) copy of the application, plus additional copies as needed for each affected incorporated city, groundwater conservation district, and county in which the project will be located. The TCEQ will distribute the additional copies to these jurisdictions. The copies must be submitted to the appropriate regional office.
- 21. No person shall commence any regulated activity until the Edwards Aquifer Protection Plan(s) for the activity has been filed with and approved by the Executive Director.

GENERAL INFORMATION FORM ATTACHMENTS

ATTACHMENT A – ROAD MAP

Attached.

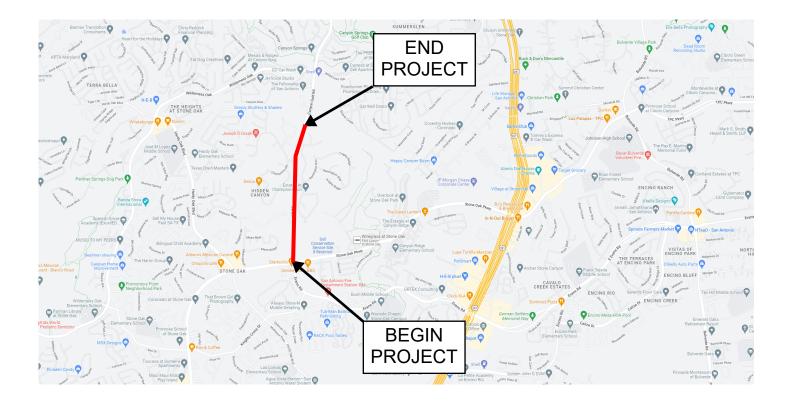
ATTACHMENT B – USGS/EDWARDS AQUIFER RECHARGE ZONE MAP

Attached.

ATTACHMENT C - PROJECT DESCRIPTION

The City of San Antonio is placing approximately 374 LF of four-foot sidewalk with a 2.1-foot (minimum) shared use path natural vegetative filter strip on the west side of the sidewalk and 3,009 LF of four-foot sidewalk with a 2.1-foot (minimum) shared use path natural vegetative filter strip on the east side of the sidewalk along the west side of Canyon Golf Rd from Stone Oak Pkwy to south of Wilderness Oak, 3,790 LF of four-foot sidewalk with 2.1-foot (minimum) shared use path natural vegetative filter strip on the west side of the sidewalk along the sidewalk with 2.1-foot (minimum) shared use path natural vegetative filter strip on the west side of the sidewalk with 2.1-foot (minimum) shared use path natural vegetative filter strip on the west side of the sidewalk along the east side of the Canyon Golf Rd from Stone Oak Pkwy to south of Wilderness Oak. The 7,173 LF of the proposed sidewalk will connect to the existing sidewalks along the project limits. The purpose of the project is to provide continuous sidewalk access in the area and provide ADA compliant sidewalks along the project limits.

The project area within the Recharge Zone is 1.072 acres; 7,173 linear feet of sidewalk and shared use path natural vegetative filter strip combination. All elements of the improvements drain to Mud Creek.

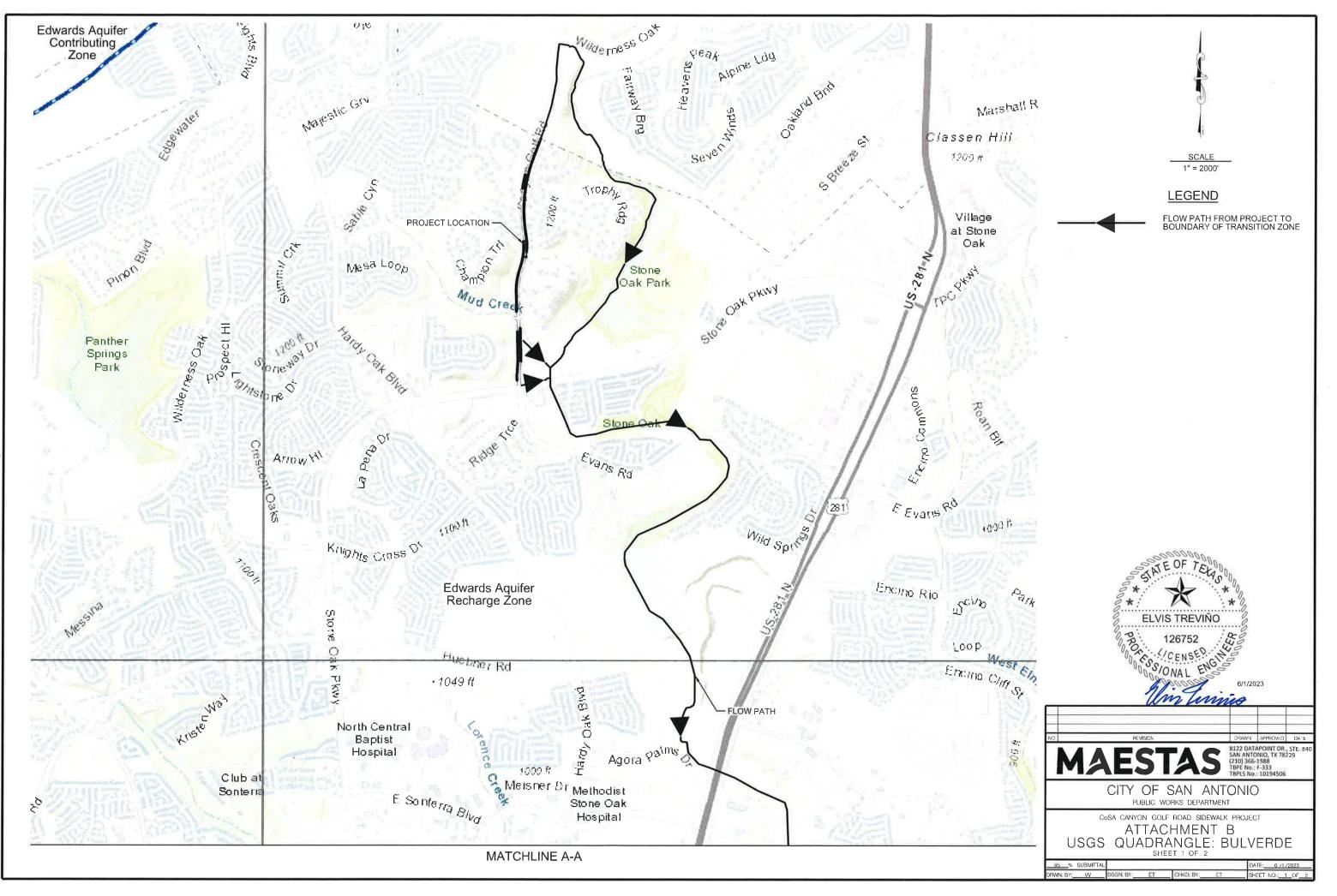

The proposed BMP is a shared use path natural vegetative filter strip along the proposed sidewalk segments.

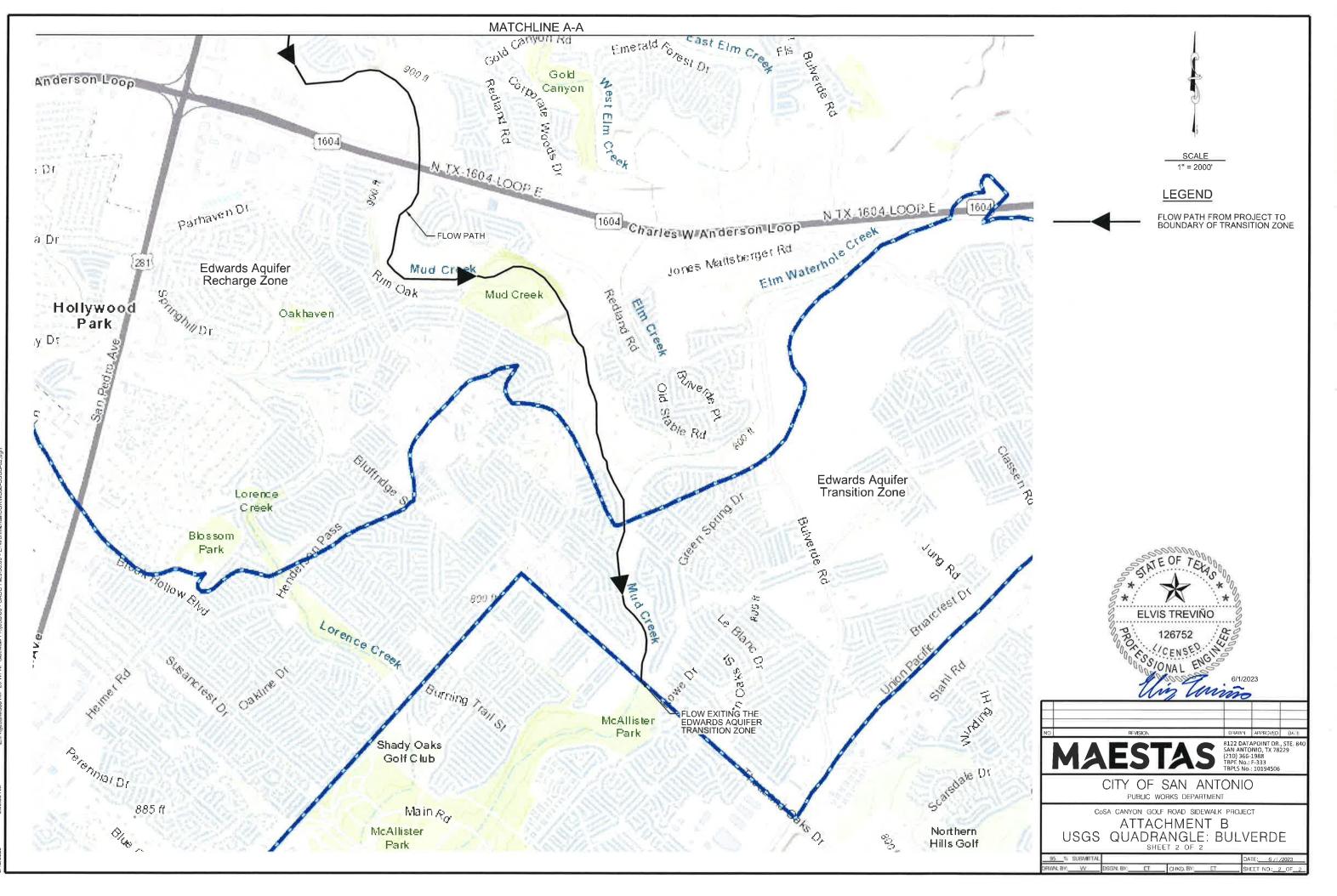
The existing curb along the proposed sidewalk will prevent off-site runoff from affecting the new impervious cover and natural vegetative filter strip. There is no concentration of flow within the shared use path natural VFS treatment area.

The total project area draining into the Recharge Zone is 1.072 acres, 0 acres of which is existing impervious cover (0% impervious cover) for predevelopment conditions. Approximately 29,645 square feet of new impervious cover will be added resulting in 0.68 acres of total impervious cover yielding a post development percent impervious cover equal to 63.5%.

The sidewalk will be constructed in the City of San Antonio right-of-way. The road was originally platted on November 13th, 1986, recorded in Volume 9515 Pages 37-39. The property adjacent to the project was originally platted on December 20th, 1990, recorded in Volume 9522 Page 182 of the Bexar County Records and amendment platted on August 10th, 2012, recorded in Volume 9643 Page 192. And another property adjacent to the project was originally platted on February 12th, 2007 recorded in Volume 9574 Page 61.

CoSA Canyon Golf Road Sidewalk Project

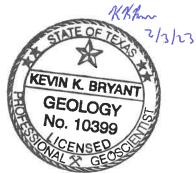

LEGEND


WPAP PROJECT SITE

ATTACHMENT A

PROJECT LOCATION

COSA CANYON GOLF ROAD SIDEWALK PROJECT



GEOLOGIC ASSESSMENT

CoSA Canyon Golf Road Sidewalk Project San Antonio, Bexar County, Texas Terracon Project No. 90227627, Task 1

February 3, 2023

Prepared For:

Maestas & Associates, LLC. 8122 Datapoint Drive, Suite 840 San Antonio, Texas 78229

Prepared by:

Terracon Consultants, Inc. 6911 Blanco Road San Antonio, Texas 78216

February 3, 2023

Mr. Elvis Trevino, P.E. Maestas & Associates, LLC. 8122 Datapoint Drive, Suite 840 San Antonio, Texas 78229

Phone:(210) 366-1988Email:etrevino@maesce.com

RE: Geologic Assessment CoSA Canyon Golf Road Sidewalk Project (Maestas Project No. M308) San Antonio, Bexar County, Texas Terracon Project No. 90227627, Task 1

Dear Mr. Trevino:

Enclosed is the Geologic Assessment conducted at the above-referenced site at the request of Maestas & Associates, LLC. This study was performed by Mr. Ramiro Aguinaga Jr. and Justin Turknett, a Geoscientist-in-Training (GIT) under the direct supervision of Mr. Kevin K. Bryant, a Professional Geoscientist (P.G.). The attached report has been prepared in accordance with Title 30 of the Texas Administration Code Chapter 213: *Permanent Rules for the Edwards Aquifer*. We appreciate the opportunity to provide these services to you. Please contact the undersigned if you have questions regarding technical aspects of this report.

Sincerely, Terracon Consultants, Inc.

Field Geologist

Phyllis Primrose, P.G. Program Manager, Quality Reviewer

Attachments:

Kevin Bryant, P.G. Senior Project Manager Technical Reviewer

Geologic Assessment Form Geologic Assessment Table (Attachment A of the Geological Assessment Form) Stratigraphic Column (Attachment B of the Geological Assessment Form) Geologic Assessment Narrative Text (Attachment C of the Geological Assessment Form) Site Photographs Site Geologic Maps Exhibits 1.1 through 1.12 (Attachment D of the Geological Assessment Form)

Copies Submitted:

Maestas & Associates (1 digital)

 Terracon Consultants, Inc.
 6911 Blanco Road, San Antonio, Texas 78216

 P [210] 641-2112
 F [210] 641-2124
 Professional Geoscientist Firm License No. 50058

terracon.com

Geologic Assessment

Texas Commission on Environmental Quality

For Regulated Activities on The Edwards Aquifer Recharge/transition Zones and Relating to 30 TAC §213.5(b)(3), Effective June 1, 1999

To ensure that the application is administratively complete, confirm that all fields in the form are complete, verify that all requested information is provided, consistently reference the same site and contact person in all forms in the application, and ensure forms are signed by the appropriate party.

Note: Including all the information requested in the form and attachments contributes to more streamlined technical reviews.

Signature

To the best of my knowledge, the responses to this form accurately reflect all information requested concerning the proposed regulated activities and methods to protect the Edwards Aquifer. My signature certifies that I am qualified as a geologist as defined by 30 TAC Chapter 213.

Print Name of Geologist: Kevin K. Bryant

Telephone: 210-641-2112

Date: February 3, 2023

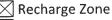
Fax: 210-641-2124

AST UST

Representing: <u>Terracon Consultants, Inc. (TBPG No. 50058)</u> (Name of Company and TBPG or TBPE registration number)

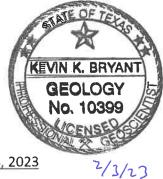
Signature of Geologist:

Regulated Entity Name: CoSA Canyon Golf Road Sidewalk Project


Project Information

- 1. Date(s) Geologic Assessment was performed: January 6 and 28, 2023
- 2. Type of Project:

\boxtimes	WPAP


SCS

3. Location of Project:

] Transition Zone

Contributing Zone within the Transition Zone

TCEQ-0585 (Rev.02-11-15)

- 4. X Attachment A Geologic Assessment Table. Completed Geologic Assessment Table (Form TCEQ-0585-Table) is attached.
- 5. Soil cover on the project site is summarized in the table below and uses the SCS Hydrologic Soil Groups* (Urban Hydrology for Small Watersheds, Technical Release No. 55, Appendix A, Soil Conservation Service, 1986). If there is more than one soil type on the project site, show each soil type on the site Geologic Map or a separate soils map.

Table 1 - Soil Units, InfiltrationCharacteristics and Thickness

Soil Name	Group*	Thickness(feet)
TaD	D	1

- * Soil Group Definitions (Abbreviated)
 - A. Soils having a high infiltration rate when thoroughly wetted.
 - B. Soils having a moderate infiltration rate when thoroughly wetted.
 - C. Soils having a slow infiltration rate when thoroughly wetted.
 - D. Soils having a very slow infiltration rate when thoroughly wetted.
- 6. Attachment B Stratigraphic Column. A stratigraphic column showing formations, members, and thicknesses is attached. The outcropping unit, if present, should be at the top of the stratigraphic column. Otherwise, the uppermost unit should be at the top of the stratigraphic column.
- 7. X Attachment C Site Geology. A narrative description of the site specific geology including any features identified in the Geologic Assessment Table, a discussion of the potential for fluid movement to the Edwards Aquifer, stratigraphy, structure(s), and karst characteristics is attached.
- 8. Attachment D Site Geologic Map(s). The Site Geologic Map must be the same scale as the applicant's Site Plan. The minimum scale is 1": 400'

Applicant's Site Plan Scale: 1" = <u>40</u>' Site Geologic Map Scale: 1" = <u>40</u>' Site Soils Map Scale (if more than 1 soil type): 1" = <u>NA</u>'

9. Method of collecting positional data:

🔀 Global Positioning System (GPS) technology.

Other method(s). Please describe method of data collection: _____

- 10. The project site and boundaries are clearly shown and labeled on the Site Geologic Map.
- 11. Surface geologic units are shown and labeled on the Site Geologic Map.

12. Geologic or manmade features were discovered on the project site during the field investigation. They are shown and labeled on the Site Geologic Map and are described in the attached Geologic Assessment Table.

Geologic or manmade features were not discovered on the project site during the field investigation.

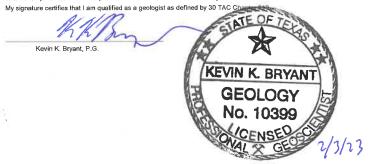
- 13. The Recharge Zone boundary is shown and labeled, if appropriate.
- 14. All known wells (test holes, water, oil, unplugged, capped and/or abandoned, etc.): If applicable, the information must agree with Item No. 20 of the WPAP Application Section.

There are _____ (#) wells present on the project site and the locations are shown and labeled. (Check all of the following that apply.)

] The wells are not in use and have been properly abandoned.

] The wells are not in use and will be properly abandoned.

The wells are in use and comply with 16 TAC Chapter 76.


 \square There are no wells or test holes of any kind known to exist on the project site.

Administrative Information

15. Submit one (1) original and one (1) copy of the application, plus additional copies as needed for each affected incorporated city, groundwater conservation district, and county in which the project will be located. The TCEQ will distribute the additional copies to these jurisdictions. The copies must be submitted to the appropriate regional office.

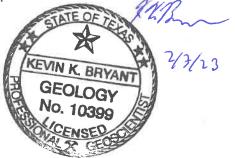
	LOCATION			FEATURE CHARACTERISTICS								1	EVALUATION PHYSICAL SETTING							
1A	2A 2B 3 4							5A 8	8	6 7	8A	88	9		10		1	12		
FEATURE ID	LATITUDE	LONGITUDE	FEATURE TYPE	POINTS	FORMATION		DIMENSIONS (FEET)		TREND (DEGREES)	DOM	DENSITY (NO/FT)	APERTURE (FEET)	INFILL	RELATIVE INFILTRATION RATE	TOTAL	SENS	SITIVITY	CATCHME (ACF	NT AREA	TOPOGRAPHY
						x	Y	z		10						<40	>40	<1.8	<u>>1.6</u>	
S-1	29° 39' 8.4168"	-98° 28' 49.7388"	MB	30	Kk/Kgru	?	?	?	_				Х	6	36	X			X	Hilltop to Hillside
S-2	29° 39' 16.6284"	-98° 28' 50.4696"	MB	30	Kk	?	?	?					Х	6	36	X			Х	Hilltop to Hillside
S-3	29° 39' 20.1954"	-98° 28' 50.5842"	MB	30	Kk	?	?	?					Х	6	36	X			X	Hilltop to Hillside
S-4	29° 39' 20.3178"	-98° 28' 50.5266"	MB	30	Kk	?	?	?					Х	6	36	X			X	Hilltop to Hillside
S-6	29° 39' 34.794"	-98° 28' 46.0194"	MB	30	Kk	~3,831	?	?					Х	7	37	X			Х	Hilltop to Hillside
S-7	29° 39' 34.689"	-98° 28' 45.9516"	MB	30	Kk	?	?	?					Х	6	36	X			X	Hilltop to Hillside
S-8	29° 39' 26.4306"	-98° 28' 49.926"	MB	30	Kk	1.5	2	?					Х	6	36	X			X	Hilltop
S-9	29° 39' 25.2648"	-98° 28' 50.3214"	MB	30	Kk	?	?	?					Х	6	36	X			X	Hilltop to Hillside
S-10	29° 39' 8.6358"	-98° 28' 50.4798"	MB	30	Kk	~1,049	≥0.67-2.5	≥0.67-2.5					Х	8	38	X			X	Hillside
S-12	29° 38' 45.7476"	-98° 28' 51.477"	MB	30	Kgru/Qal	?	?	?					Х	9	39	X			X	Hilltop to Hillside
S-13	29° 38' 45.7476"	-98° 28' 51.477"	MB	30	Qal	12	≥0.83	~ ≥8-9					Х	9	39	X			X	Hillside
S-14	29° 39' 21.2034"	-98° 28' 48.612"	MB	30	Kk	?	?	?					Х	6	36	X		X		Hilltop
ATUM: N	AD 83																			
	AD 03		8A INFILLING																	
	Cave	TYPE		N None, exposed bedrock																
	Solution cavity			C Coarse - cobles, breakdown, sand, gravel																
	Solution-enlarged fracture	e(s)		O Loose or soft mud or soil, organics, leaves, sticks, dark colors																
	Fault	-(-)		F Fines, compacted clay-rich sediment, soil profile, gray or red colors																
	Other natural bedrock fea	itures		V Vegetation. Give details in narrative description																
	Manmade feature in bedr	ock		FS Flowstone, cements, cave deposits																
	Swallow hole			X Other materials																
	Sinkhole																			
	Non-karst closed depress	sion		12 TOPOGRAPHY																
	Zone, clustered or aligned		Cliff, Hilltop, Hillside, Drainage, Floodplain, Streambed																	

I have read, I understood, and I have followed the Texas Commission on Environmental Quality's Instructions to Geologists. The information presented here complies with that document and is a true representation of the conditions observed in the field.

Date: February 3, 2023

Sheet _____ of ____

TCEQ-0585-Table (Rev. 10-01-04)



STRATIGRAPHIC COLUMN

CoSA Canyon Golf Sidewalk Project San Antonio, Bexar County, Texas Terracon Project No 90227627, Task 1

	Hydrogeologic subdivision			- fe	Group, similar, member	Hydro- logic function	Thickness (feet)	Lithology	Field Identification	Cavern development	Porosity/ permeability type										
2018	Upp confi	Eagle Ford Group			CU	30 50	Brown, flaggy shale and argiliaceous limestone	Thin flagstones; petroliferous	None	Primary porosity lost/ low permeability											
Upper Cretaceous	uni				CU	40 50	Buff, light gray, dense mudstone	Porcelaneous limestone with calcits-filled veins	Minor surface karst	Low porosity/low permeability None/primary upper confining unit											
5					CU	40 50	Blue-green to yellow-brown clay	Fossiliferous; Ilymatogyra arietina	None												
	I			orget		Karst AQ; not karst CU	2 - 20	Reddish-brown, gray to light tan marly limestone	Marker fossil; Waconella wacoensis	None	Low porosity/low permeability										
Lower Cretaceous	n				Cyclic and marine members, undivided	AQ	80 - 90	Mudstone to packstone; miliolid grainstone; chert	Thin graded cycles; massive beds to relatively thin beds; crossbeds	Many subsurface; might be associated with earlier karst development	Laterally extensive; both fabric and not fabric/water-yielding										
	ш			Person Formation	Leached and collapsed members, undivided	AQ	70 - 90 20 - 24	Crystalline limestone; mudstone to grainstone; chert; collapsed breccia beda; stromatolitic limestone		Extensive lateral development; large rooms	Majority not fabric/one of the most permeable										
	īV	Edwards aquifier	Group		Regional dense member	CU		Dense, argillaceous mudstone	Wispy iron-oxide stains	Very few; only vertical fracture enlargement	Not fabric/low permeability; vertical barrier										
	v	Edward	Edwards Group	ainer Formation	Orainstone AQ member		50 - 60	Miliolid grainstone; mudstone to wackestone; chert	White crossbedded grainstone	Few	Not fabric/ recrystallization reduces permeability										
	VI				ainer Formation	Kainer Formation	ation	ation	ation	ation	ation	ation	ation	nation	Kirschberg evaporite member	AQ	50 - 60	Highly altered crystalline limestone; chalky studienc; chert	Boxwork voids, with neospar and travertine frame	Probably extensive cave development	Majority fabric/one of th most permeable
	VШ						Dolomitic member	AQ	110 - 130	Mudstone to grainstone; crystalline limestone; chert	Massively bedded light gray, Toucasia abundant	Caves related to structure or bedding planes	Mostly not fabric; some bedding plane- fabric/water-yielding								
	VIII			×	Basal nodular member	Karst AQ; not karst CU	50 - 60	Shaly, nodular limestone; mudstone and miliolid grainstone	Massive, nodular and mottled, Exogyra texana	Large lateral caves at surface; a few caves near Cibolo Creek	Pabric; stratigraphically controlled/large condui flow at surface; no permeability in subsurface										
	confi	Lower confining unit Upper member of the Glen Rose Limestone				CU; evaporite beds AQ	350 - 500	Yellowish tan, thinly bedded limestone and marl	Stair-step topography: alternating limestone and marl	Some surface cave development	Some water production a evaporite beds/relatively impermeable										

The stratigraphy of the site is indicated by the red box based on observations made in the field and information provided in the *Geologic Framework and Hydrogeologic Characteristics of the Outcrops of the Edwards Aquifer Recharge Zone, Bexar County, Texas* (USGS, 1995). Please note that the Alluvium (Qal), believed to be present in some of the southern portions of the site, is not depicted on the stratigraphic column above.

Responsive - Resourceful - Reliable

CoSA Canyon Golf Road Sidewalk Project San Antonio, Bexar County, Texas Maestas Project No. M308 Terracon Project No. 90227627, Task 1 February 3, 2023

INTRODUCTION

Maestas and Associates, LLC. (Client) retained Terracon Consultants, Inc. (Terracon) to conduct a Geologic Assessment (GA) of approximately 4,637 linear feet where sidewalks will be installed along both sides of Canyon Golf Road between Stone Oak Parkway and the San Antonio city limits located in San Antonio, Bexar County, Texas. The site boundary is shown on Exhibit 1.1 through 1.12. The site is located on the designated Edwards Aquifer Recharge Zone (EARZ).

EXPLANATION OF ASSESSMENT

This assessment follows general guidelines contained in the Texas Commission on Environmental Quality (TCEQ) "*Instructions to Geologists for Geologic Assessments on the Edwards Aquifer Recharge/Transition Zones*" (TCEQ Guidance 0585, dated October 4, 2004). The EARZ is known to contain karst features formed by selective dissolving of carbonate minerals by water. Karst features may be formed and be visible at the ground surface but more commonly tend to be smaller at the surface and develop with depth. Because the site is located on the EARZ, future development of the site must comply with the TCEQ Edwards Aquifer Protection Program Rules specified in Title 30 of the Texas Administrative Code (TAC), Chapter 213 (30 TAC 213).

The assessment consisted of a pedestrian survey of the subject property and non-intrusive visual observations of readily accessible and visible surface conditions to identify the presence of geologic and man-made features. Geologic or man-made features, for the purposes of this assessment, are those features that are visible at the ground surface or have been mapped within the EARZ which have a potential for hydraulic interconnectedness between the surface and the Edwards Aquifer. In accordance with the GA guidelines, intrusive subsurface testing, such as excavation, cave mapping, infiltrometer testing, geophysical studies, or tracer studies, was not required or conducted for the GA of features identified at the site.

The GA was performed by Mr. Ramiro Aguinaga Jr. on January 6 and Justin Turknett on January 28, 2023, under the direct supervision of Mr. Kevin Bryant, a Professional Geoscientist (P.G.). Phyllis Primrose, a P.G., was the quality reviewer.

GENERAL SITE DESCRIPTION

The site is located in San Antonio, Texas along the east and west sides of Canyon Golf Road between Stone Oak Parkway and the city limits of San Antonio. A sidewalk is proposed at the site which requires a Water Pollution Abatement Plan (WPAP). The proposed length of the sidewalk is approximately 4,637 linear feet in length; the proposed width of the sidewalk was not provided but was assumed to be the standard 4 feet. The site is located on the designated EARZ.

According to Light Detection and Ranging (LiDAR) elevation data obtained from the Strategic Mapping Program (StratMap) Central Texas Lidar, available from the Texas Natural Resources Information System (TNRIS), the topography of the site ranges between approximately 1,036 feet to 1,253 feet above mean sea level (amsl).

Historical aerial photographs, available through Google Earth Pro software, were reviewed during this assessment. According to the aerial photographs, dated between 1995 and 2022, the site appears relatively unchanged as grassy medians along Canyon Golf Road.

According to the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) 48029C0140G (dated September 29, 2010), the site is not zoned for potential flood hazards.

According to the website of the Texas Water Development Board (TWDB), water wells have not been mapped within the boundary of the project site.

SOIL DESCRIPTION

Based on a review of the United States Department of Agriculture (USDA) *Web Soil Survey*, the soil type mapped at the site is the Eckrant Rock outcrop association, (8-30% slopes) (TaD).

The TaD soils are mapped throughout the site. These soils have a typical profile of very cobbly clay from 0 to 7 inches below ground surface (bgs) and extremely cobbly clay from 7 to 12 inches bgs before encountering bedrock. The TaD soils are naturally well drained, runoff is high, and capacity of the most limiting layer to transmit water is very low to moderately low (Ksat 0.06 to 0.57 inches per hour). Accordingly, these soils are classified as Soil Group D, having a very slow infiltration rate when thoroughly wetted.

NARRATIVE DESCRIPTION OF SITE GEOLOGY

Several published sources were reviewed to assist in identifying the underlying geology of the site, including maps from the U.S. Geological Survey (USGS) and the Bureau of Economic Geology (BEG). The documents listed below were reviewed as a part of this GA.

February 3, 2023 - Project No. 90227627, Task 1

- Geologic Atlas of Texas, San Antonio Sheet (Barnes, 1983).
- Geologic Map of the Edwards Aquifer Recharge Zone, South-Central Texas (Blome and others, 2005).
- Miscellaneous Map No. 39, Geologic Map of the New Braunfels, Texas, 30 x 60 Minute Quadrangle (Collins, 2000).
- Geologic Map of the Bulverde Quadrangle, Texas (Collins, 1994).
- Geologic Framework and Hydrogeologic Characteristics of the Edwards Aquifer Recharge Zone, Bexar County, Texas (Small and Hanson, 1995).

Based on the review of these documents, the northern portion of the site is most likely located on the Kainer Formation (Kk) of the Cretaceous Edwards Limestone. The southern portion of the site is most likely located on Quaternary Alluvium (Qal) and what is believed to be the Cavernous hydrostratigraphic member (Kgrc) of the Cretaceous Upper Glen Rose Limestone (Kgru).

The Qal is unconsolidated gravel, sand, silt and clay along streams, rivers, and minor drainages. The Qal contains clasts that are mainly carbonate and chert with some local bedrock outcrops that are undivided.

The Cretaceous Kainer Formation (Kk) of the Edwards Limestone contains mudstones, crystalline limestone, and *miliolid* grainstone. The formation is commonly fossiliferous with characteristic rudistid-rich mudstones and wackestones grading into intertidal and supratidal dolomitic mudstones and associated evaporates and *miliolid* grainstones. Other fossils include gastropods and oysters. Chert is common throughout the unit in varying amounts. The limestone and dolostone of the formation represent cyclic subtidal to tidal flat depositional environments. Regionally, the Kainer formation ranges from 250-feet to over 300-feet thick.

The Kgru consists of alternating and interfingered mudstone, clay, and wackestone to grainstone. The Kgru is relatively thinly bedded, dolomitic, and relatively devoid of fossils. The Kgru contains some intervals of disturbed bedding and collapse breccia likely cause by evaporite solution. Regionally, the average thickness of the Kgru is 400 feet.

The Kgrc consists of alternating and interfingered mudstone, clay, and wackestone to grainstone. An abundance of caves is indicative of the member's generally well-developed fracture, channel, and cavern porosity. The characteristic features that differ between the Cavernous and underlying Camp Bullis members of the Upper Glen Rose Formation is the large number of caves in the Cavernous member as both members are indistinguishable on the basis of lithology, and both members are relatively devoid of fossils. Regionally, the Kgrc can be as thick as approximately 115 feet in some places.

Review of *The Caves and Karst of Texas* (Veni and Elliot, 1994) and *The Caves of Bexar County* (Veni, 1988) indicates that caves have not been mapped on the project site.

SITE-SPECIFIC GEOLOGIC FEATURE DESCRIPTIONS

The following is a description of the features identified during literature research and observations made during the field reconnaissance at the site. Observations of the site were made to identify features such as caves, solution cavities, solution-enlarged fractures, faults, other natural bedrock features, man-made features in bedrock, swallow holes, sinkholes, non-karst closed depressions, and zone/clustered/aligned features, using the survey guidance from the TCEQ *Instructions to Geologists for Geologic Assessments* as revised October 1, 2004. Features identified at the site are listed in the following subsections. If geologic features were identified, the sidewalls and floors of the features were probed by hand using a 4.5-foot long, 3/8-inch diameter metal soil probe.

Initially, a number of potential recharge features were identified during the site reconnaissance. However, upon further evaluation, some of these identified areas were either beyond the boundaries of the project site or did not meet the criteria for potential recharge features and have, therefore, been removed from this report. The numbering system of the individual features discussed below has been preserved so as to relate to the field markings, such as stakes and flagging, that may have been used to mark potential features at the site.

For the purposes of completing the GA forms and associated table included at the end of this report text, each feature has been assigned a point value where higher values indicate an increased probability for rapid infiltration into the subsurface. As required by the TCEQ survey guidance documents, some features not readily identifiable in the field, such as mapped faults, have also been included in this section, if applicable. Exhibits 1.1 through 1.12, attached at the end of this report, depicts the locations of the geologic and man-made features discussed below.

Feature Assessment

S-1, S-4, S-7, and S-9

Man-Made Borings in Bedrock: These features are utility boxes and manways associated with communication lines observed in the field. Feature S-1 is a metal communication manway owned by AT&T and is approximately 3 feet in diameter and an AT&T metal utility box, approximately 3.5-feet wide by 5.5-feet long in size. Feature S-4 is an unmarked, aboveground communication box, approximately 2.5-feet wide and by 3.5-feet long in size. Feature S-7 is a broadband communication box, approximately 1.5-feet wide by 2.5-feet long in size and an AT&T communication box, approximately 1-foot wide by 1-foot long. Feature S-9 is a Spectrum communication line identified by the observation of pin flags. The depth, diameter, and distance of the communication lines traveling across the site are unknown. However, the catchment area of the communication lines is believed to be greater than 1.6 acres. Detectable voids, conduits, or depressions were not noted in the vicinity of the boxes, manways, and flagging. Sunken soil, differential vegetation patterns, or other visual indicators of concentrated subsurface drainage were not noted in the vicinity of the boxes and manways. The boxes and manways at the site are located on both hilltop and hillside topography. Typically, communication lines are installed into

CoSA Canyon Golf Sidewalk Project February 3, 2023 Project No. 90227627, Task 1

trenches excavated into near surface soils and shallow bedrock. Once the communication lines have been installed, select fill materials, such as sand or pea-gravel, are typically used to backfill around the utility lines although backfilling using excavated materials removed during the trench excavation is also common. Given the lack of evidence regarding concentrated flow in the subsurface in the vicinity of the communication line boxes, manways, and flagging and the lack of subsided soil or other depressions in the vicinity of the communication line boxes, manways, and flagging and the lack of subsided soil or other depressions in the subsurface in the feature to the Edwards Aquifer is believed to be low – scoring 36 points on the Geological Assessment Table. Therefore, these features would not be considered sensitive.

- S-2 Man-Made Boring in Bedrock: This feature is an electrical meter that is owned and operated by City Public Service (CPS). A small, unmarked plastic cover was a few feet west of the electrical meter and is likely associated with the electrical meter. The depth, length, and diameter of the electrical line are unknown. However, the catchment area of this feature is believed to be greater than 1.6 acres. Detectable voids, conduits, or depressions were not noted in the vicinity of the electric meter. Sunken soil, differential vegetation patterns, or other visual indicators of concentrated subsurface drainage were not noted in the vicinity of the electrical meter. The electrical meter is located in hilltop to hillside topography. Typically, electrical lines are installed into trenches excavated into near surface soils and shallow bedrock. Once the electrical lines have been installed, select fill materials, such as sand or pea-gravel, are typically used to backfill around the utility lines although backfilling using excavated materials removed during the trench excavation is also common. Given the lack of evidence regarding concentrated flow in the subsurface and the lack of subsided soil or other depressions in the vicinity of the electrical meter, the potential recharge into the feature to the Edwards Aguifer is believed to be low – scoring 36 points on the Geological Assessment Table. Therefore, this feature would not be considered sensitive.
- S-3 Man-Made Boring in Bedrock: This feature is a large, unmarked utility box observed in the field, approximately 3.5-feet wide by 5.5-feet long in size. The utility box was sealed and could not be opened on the day of field activities; therefore, confirmation of the type of utility could not be completed. The depth, diameter, and distance of the suspected utility line traveling across the site are unknown. However, the catchment area of the feature is believed to be greater than 1.6 acres. Detectable voids, conduits, or depressions were not noted in the vicinity of the utility box. Sunken soil, differential vegetation patterns, or other visual indicators of concentrated subsurface drainage were not noted in the vicinity of the utility box. The feature is located on a hilltop to hillside topography. Typically, utility lines are installed into trenches excavated into near surface soils and shallow bedrock. Once the utility lines have been installed, select fill materials, such as sand or pea-gravel, are typically used to backfill around the utility lines although backfilling using excavated materials removed during the trench excavation is also common. Given the lack of evidence regarding concentrated flow in the subsurface in the vicinity of the unmarked

utility box and the lack of subsided soil or other depressions in the vicinity of the unmarked utility box, the potential recharge into the feature to the Edwards Aquifer is believed to be low – scoring 36 points on the Geological Assessment Table. Therefore, this feature would not be considered sensitive.

- S-6 Man-Made Boring in Bedrock: This feature is a gas line that is owned and operated by City Public Service (CPS). The depth, length, and diameter of the gas line are unknown, but it is believed that the gas line crosses the site in several places and also runs parallel to the site along the eastern side of Canyon Golf Road. However, the catchment area of this feature is believed to be greater than 1.6 acres. Detectable voids, conduits, or depressions were not noted in the vicinity of the gas line. Sunken soil, differential vegetation patterns, or other visual indicators of concentrated subsurface drainage were not noted in the vicinity of the gas line. The gas line is located in hilltop to hillside topography. Typically, gas lines are installed into trenches excavated into near surface soils and shallow bedrock. Once the gas lines have been installed, select fill materials, such as sand or pea-gravel, are typically used to backfill around the utility lines although backfilling using excavated materials removed during the trench excavation is also common. Given the lack of evidence regarding concentrated flow in the subsurface along the length of the gas line and the lack of subsided soil or other depressions in the vicinity of the gas line, the potential recharge into the feature to the Edwards Aquifer is believed to be low – scoring 37 points on the Geological Assessment Table. Therefore, this feature would not be considered sensitive.
- S-8 Man-Made Boring in Bedrock: This feature is an unmarked utility box observed in the field. approximately 1.5-feet wide by 2-feet long in size. The depth, diameter, and direction/distance of the associated utility line traveling across the site are unknown. However, the catchment area of the utility box line feature is believed to be greater than 1.6 acres. Detectable voids, conduits, or depressions were not noted in the vicinity of the unmarked utility box. Sunken soil, differential vegetation patterns, or other visual indicators of concentrated subsurface drainage were not noted in the vicinity of the unmarked utility box. The utility box at the site is located on a hilltop topography. Typically, utility lines are installed into trenches excavated into near surface soils and shallow bedrock. Once the utility lines have been installed, select fill materials, such as sand or pea-gravel, are typically used to backfill around the utility lines although backfilling using excavated materials removed during the trench excavation is also common. Given the lack of evidence regarding concentrated flow in the subsurface in the vicinity of the unmarked utility box and the lack of subsided soil or other depressions in the vicinity of the unmarked utility box, the potential recharge into the feature to the Edwards Aquifer is believed to be low – scoring 36 points on the Geological Assessment Table. Therefore, this feature would not be considered sensitive.

Geologic Assessment

CoSA Canyon Golf Sidewalk Project February 3, 2023 Project No. 90227627, Task 1

- S-10 Man-Made Boring in Bedrock: Feature S-10 is a series of water lines owned by the San Antonio Water System (SAWS). During the field assessment, a fire hydrant and several water main manways were observed in the vicinity of the mapped water lines. According to the SAWS Water Block Map #164662 (dated September 07, 2022), the water lines consist of either 8-inch diameter or 30-inch diameter ductile iron pipes. The water lines cross the site at various locations and the total length of water lines crossing the site is estimated to be approximately 1,049 linear feet. The depth of each water line is unknown. The catchment area of the water line feature is believed to be greater than 1.6 acres. Detectable voids, conduits, or depressions were not noted in the vicinity of the water lines. Sunken soil, differential vegetation patterns, or other visual indicators of concentrated subsurface drainage were not noted in the vicinity of the water lines. The water lines at the site are located on a hillside topography. Typically, water lines are installed into trenches excavated into near surface soils and shallow bedrock. Once the water lines have been installed, select fill materials, such as sand or pea-gravel, are typically used to backfill around the utility lines although backfilling using excavated materials removed during the trench excavation is also common. Given the lack of evidence regarding concentrated flow in the subsurface along the water lines and the lack of subsided soil or other depressions in the vicinity of the water lines, the potential recharge into the feature to the Edwards Aquifer is believed to be low - scoring 38 points on the Geological Assessment Table. Therefore, these features would not be considered sensitive.
- S-12 Man-Made Boring in Bedrock: This feature is a stormwater drain inlet. The stormwater drain inlet is located along Canyon Golf Road on the southern portion of the site. The length, width, and depth of the stormwater drain on site are unknown. The catchment area of the stormwater drain feature is believed to be greater than 1.6 acres. Detectable voids, conduits, or depressions were not noted in the vicinity of the stormwater drain inlet. Sunken soil, differential vegetation patterns, or other visual indicators of concentrated subsurface drainage were not noted in the vicinity of the stormwater drain inlet. The stormwater drain inlet at the site is located on a hilltop to hillside topography. Typically, stormwater drains are installed into trenches excavated into near surface soils and shallow bedrock. Once the stormwater drains have been installed, select fill materials, such as sand or pea-gravel, are typically used to backfill around the stormwater drains although backfilling using excavated materials removed during the trench excavation is also common. Given the lack of evidence regarding concentrated flow in the subsurface along the length of the stormwater drain inlet and the lack of subsided soil or other depressions in the vicinity of the stormwater drain inlet, the potential recharge into the feature to the Edwards Aquifer is believed to be low – scoring 39 points on the Geological Assessment Table. Therefore, this feature would not be considered sensitive.
- S-13 Man-Made Boring in Bedrock: This feature is a manway for a sanitary sewer line. The sanitary sewer line is owned by the SAWS. According to the SAWS Sewer Block Map #164658 (dated July 07, 2022), the sanitary sewer line is a 10-inch diameter PVC pipe, and the depth is approximately 8- to 9-feet bgs. The length of the sanitary sewer line

Geologic Assessment

CoSA Canyon Golf Sidewalk Project February 3, 2023 Project No. 90227627, Task 1

crossing the site is approximately 12 feet. The catchment area of the sanitary sewer line feature is believed to be greater than 1.6 acres. Detectable voids, conduits, or depressions were not noted in the vicinity of the mapped sanitary sewer line. Sunken soil, differential vegetation patterns, or other visual indicators of concentrated subsurface drainage were not noted in the vicinity of the mapped sanitary sewer line. The sanitary sewer line observed at the site is located on a hilltop topography. Typically, sanitary sewer lines are installed into trenches excavated into near surface soils and shallow bedrock. Once the sanitary sewer lines have been installed, select fill materials, such as sand or pea-gravel, are typically used to backfill around the utility lines although backfilling using excavated materials removed during the trench excavation is also common. Given the lack of evidence regarding concentrated flow in the subsurface along the length of the sanitary sewer line, the potential recharge into the feature to the Edwards Aquifer is believed to be low – scoring 39 points on the Geological Assessment Table. Therefore, this feature would not be considered sensitive.

S-14 Man-Made Boring in Bedrock: This feature is a green, unmarked utility box observed in the field, approximately 1.5-feet wide by 1-feet long in size. The utility box is suspected to be associated with a nearby sprinkler system. The depth, diameter, and distance of the suspected utility line traveling across the site are unknown. However, the catchment area of the feature is believed to be less than 1.6 acres. Detectable voids, conduits, or depressions were not noted in the vicinity of the utility box. Sunken soil, differential vegetation patterns, or other visual indicators of concentrated subsurface drainage were not noted in the vicinity box. The feature is located on a hilltop topography. Given the lack of evidence regarding concentrated flow in the subsurface in the vicinity of the unmarked utility box, the potential recharge into the feature to the Edwards Aquifer is believed to be low – scoring 36 points on the Geological Assessment Table. Therefore, this feature would not be considered sensitive.

COMMENTS AND OBSERVATIONS

Slight modification of the site topography or surface water flow during construction is anticipated. Within the Edwards Aquifer Recharge and Transition Zones, potential recharge features lacking visible surface expression (such as subsurface solution enlarged fractures, caves, cavities, and other karst features) are often present which would not be identifiable during the site inspection. Accordingly, this assessment does not address the possible presence of subsurface conditions that may be exposed during excavation or other construction activities. Should solution features or conditions be exposed during construction, construction should be halted and the TCEQ Edwards Aquifer Protection Program should be contacted and notified of the site conditions immediately in accordance with 30 TAC §213.5(f)(2).

REFERENCES

- Barnes, V.E., 1983, Geologic Atlas of Texas, San Antonio Sheet: Bureau of Economic Geology, Scale 1:250,000.
- Blome, C.D., Faith, J.R., Pedraza, D.E., Ozuna, G.B., Cole, J.C., Clark, A.K., Small, T.A., and Morris, R.R., 2005, Geologic Map of the Edwards Aquifer Recharge Zone, South-Central Texas: U.S. Geological Survey Scientific Investigations Map 2873, Version 1.1, 1 pl., scale 1:200,000.
- Clark, Allen K.; Golab, J.A., and Morris, R.R, 2016, Geologic Framework and Hydrostratigraphy of the Edwards and Trinity Aquifers within the Northern Bexar and Comal Counties, Texas. U.S. Geological Survey Scientific Investigations Map 3366.
- Collins, E., 2000, Miscellaneous Map No. 39, Geologic Map of the New Braunfels, Texas, 30 x 60 Minute Quadrangle: Geologic Framework of an Urban-Growth Corridor along the Edwards Aquifer, South-Central Texas. The University of Texas at Austin, Bureau of Economic Geology.
- Collins, E., 1994, Geologic Map of the Bulverde Quadrangle, Texas. University of Texas at Austin, Bureau of Economic Geology.
- Federal Emergency Management Agency, *Flood Insurance Rate Map Panel No.* 48029C0140G, dated September 29, 2010.
- Google. Google Earth Pro Software. V. 7.3.3.7786 (64-bit), accessed December 22, 2022.
- San Antonio Water System, Sewer Block Map 164658, July 7, 2022.
- San Antonio Water System, Sewer Block Map 164660, July 7, 2022.
- San Antonio Water System, Sewer Block Map 164662, July 7, 2022.
- San Antonio Water System, *Sewer Block Map 164664, July 7, 2022.*
- San Antonio Water System, Water Block Map 164658, September 7, 2022.
- San Antonio Water System, Water Block Map 164660, September 7, 2022.
- San Antonio Water System, Water Block Map 164662, September 7, 2022.
- San Antonio Water System, Water Block Map 164664, September 7, 2022.
- Small, Ted A. and John A. Hanson, 1995, Geologic Framework and Hydrogeologic Characteristics of the Edwards Aquifer Recharge Zone, Bexar County, Texas, U.S. Geological Survey, Water Resources Investigations 95-4030.
- Texas Natural Resources Information System, Strategic Mapping Program, Central Texas Lidar, (<u>https://data.tnris.org/</u>), accessed December 22, 2022.
- Texas Water Development Board, Water Data Interactive, Groundwater Data Viewer (<u>https://www3.twdb.texas.gov/apps/waterdatainteractive/groundwaterdataviewer</u>), accessed December 22, 2022.
- U.S. Department of Agriculture. Web Soil Survey (<u>https://websoilsurvey.sc.egov.usda.gov</u>), accessed December 22, 2022.
- Veni and Elliot, 1994 The Caves and Karst of Texas, 1994 NSS Convention Guidebook.
- Veni, 1988, The Caves of Bexar County, Second Edition, Texas Memorial Museum Speleological Monographs, 2.

Photo #1: View of the central portion of the site on the east side of Canyon Golf Road, looking north.

Photo #2: View of the northern portion of the site on the east side of Canyon Golf Road, looking south.

Photo #3: View of the central portion of the site on the west side of Canyon Golf Road, looking south.

Photo #4: View of the southern portion of the site on the east side of Canyon Golf Road, looking south.

Photo #5: View of AT&T manway at the location of feature S-1.

Photo #6: View of CPS electrical meter at the location of feature S-2.

Photo #7: View of unmarked utility box, suspected of containing an underground utility line, at the location of feature S-3.

Photo #8: View of telecommunications box at the location of feature S-4. Feature S-3 visible to the right of the telecommunications box.

Photo #9: View of SAWs water manways and pipes (feature S-10).

Photo #10: View of SAWS water line installation (feature S-10) and AT&T utility box (feature S-1).

Photo #11: View of CPS gas line at the location of feature S-6, and telecommunication boxes at the location of feature S-7.

Photo #12: Alternate view of the CPS gas line at the location of feature S-6, and telecommunication boxes at the location of feature S-7.

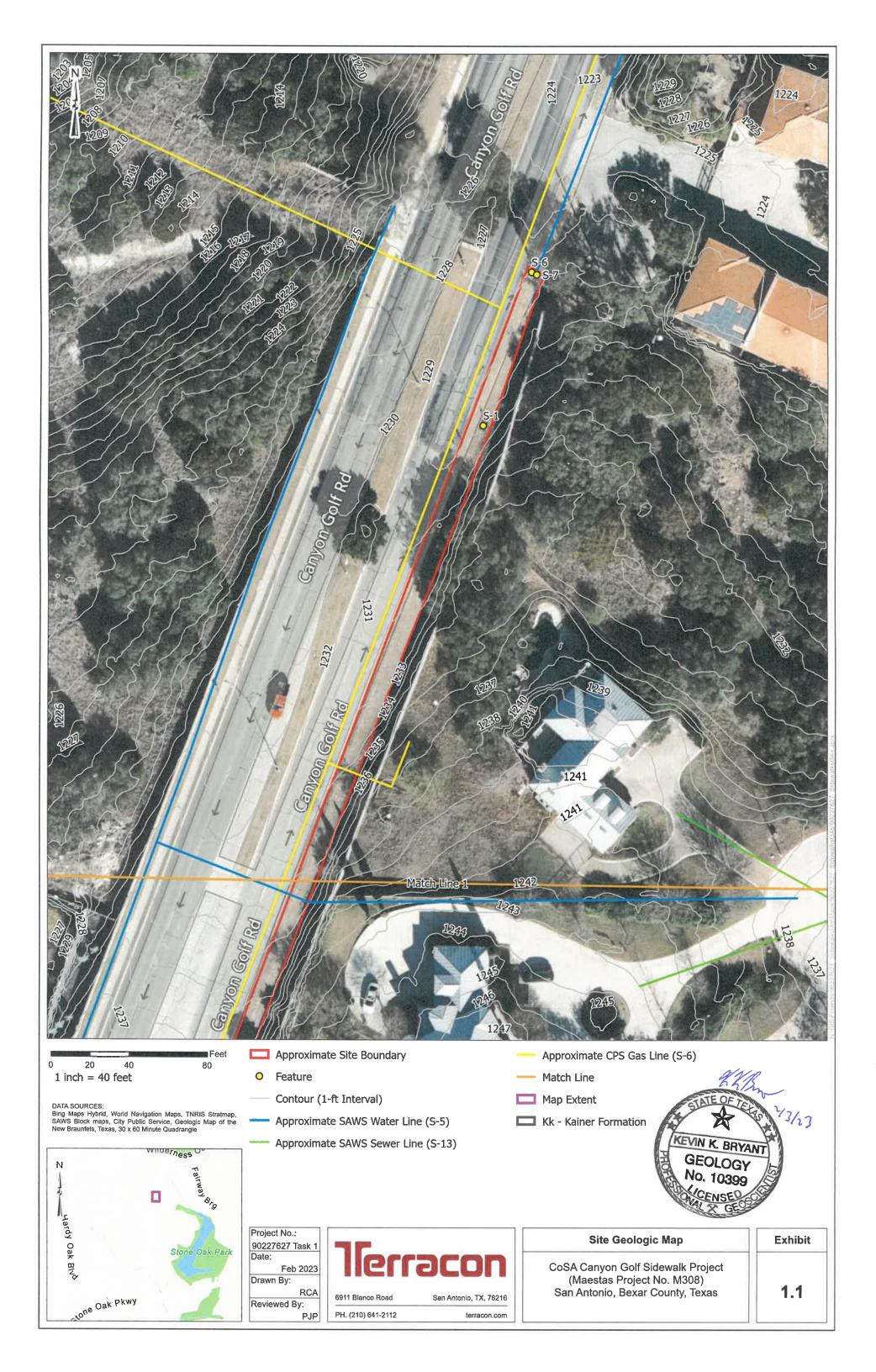
Photo #13: View of unmarked utility box at the location of feature S-8.

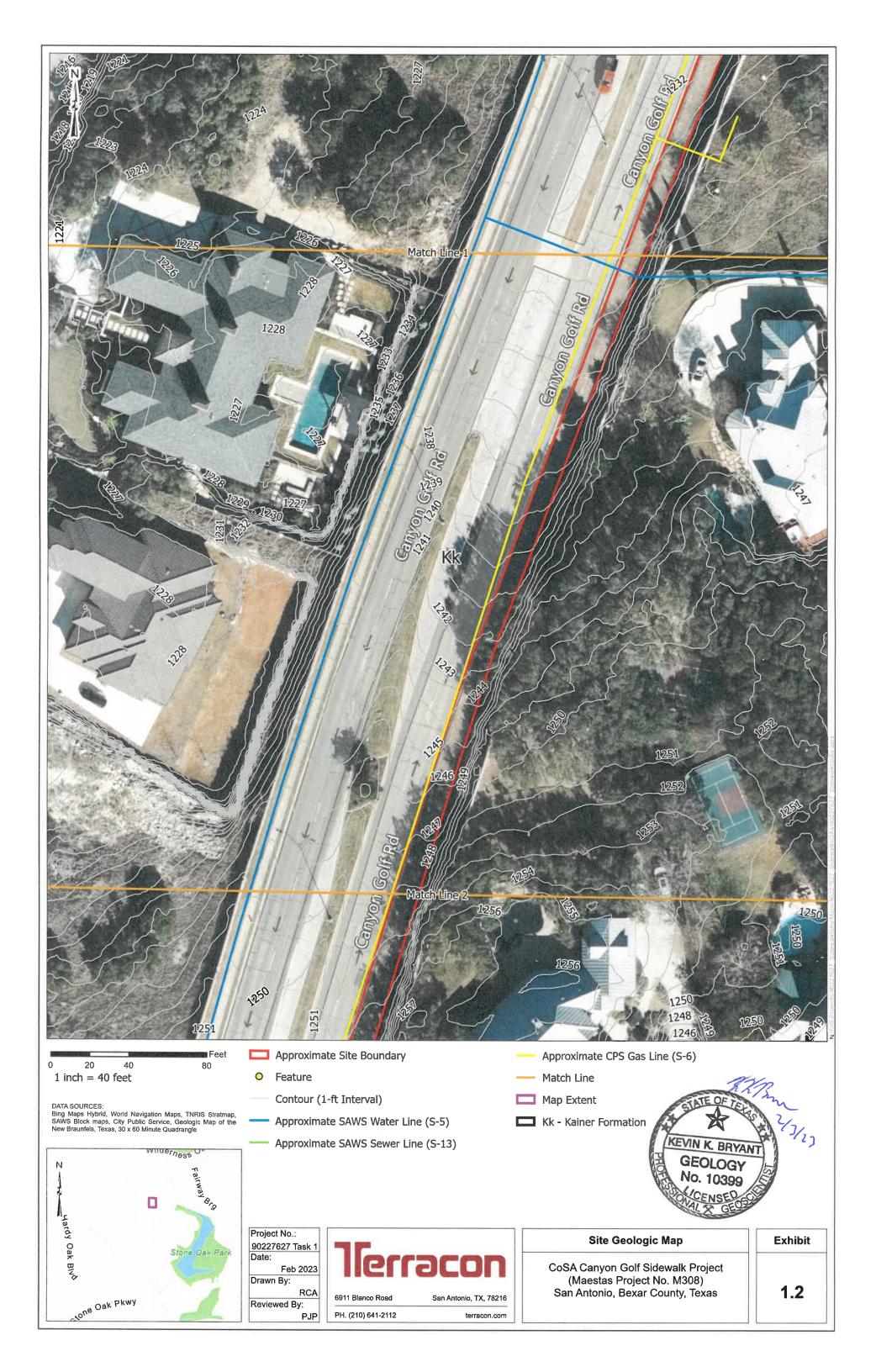
Photo #14: View of Spectrum communication flagging at the location of feature S-9.

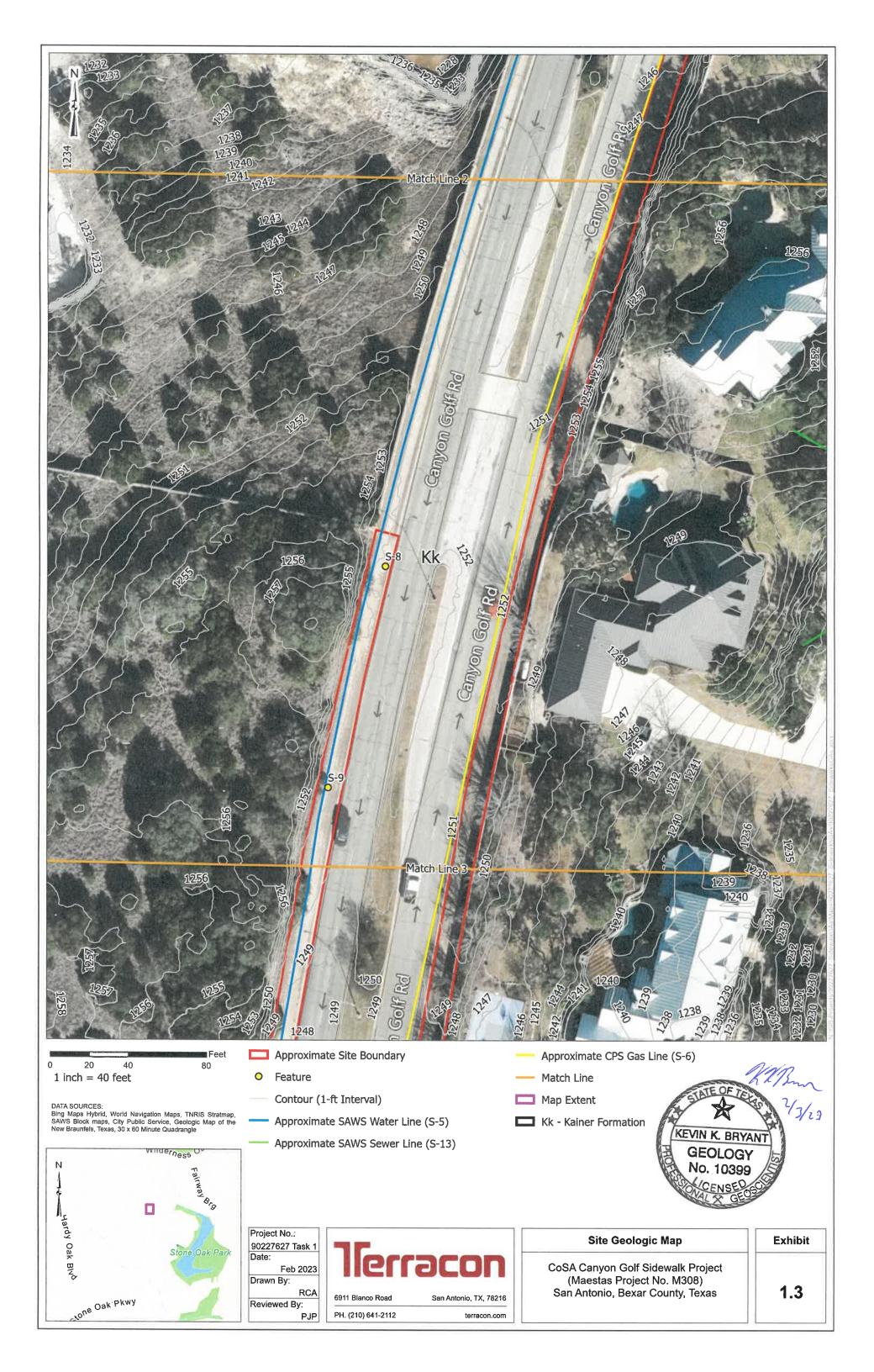
Photo #15: View of fire hydrant at the location of feature S-10.

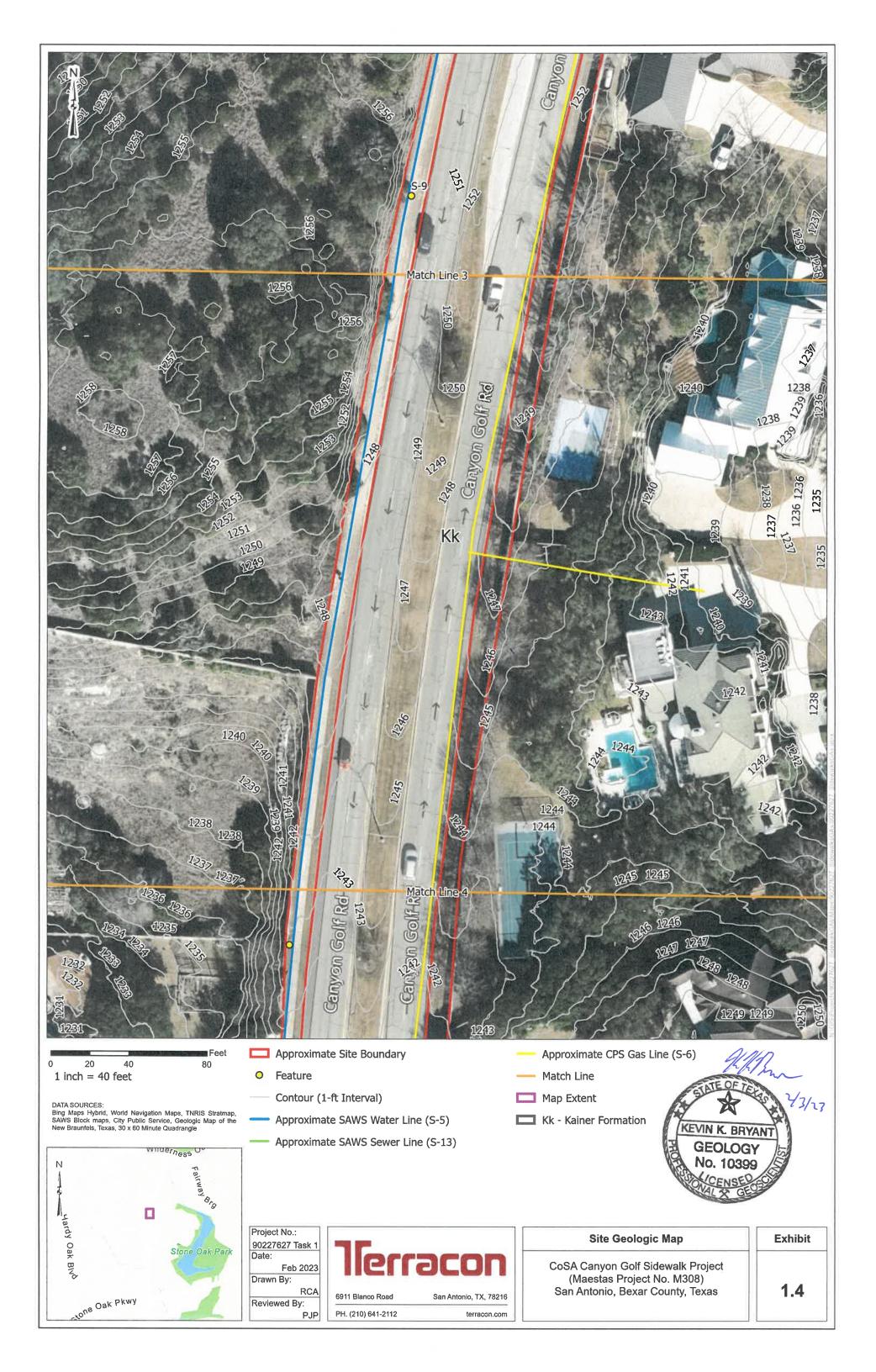
Photo #16: View of stormwater inlets at the location of feature of feature S-12.

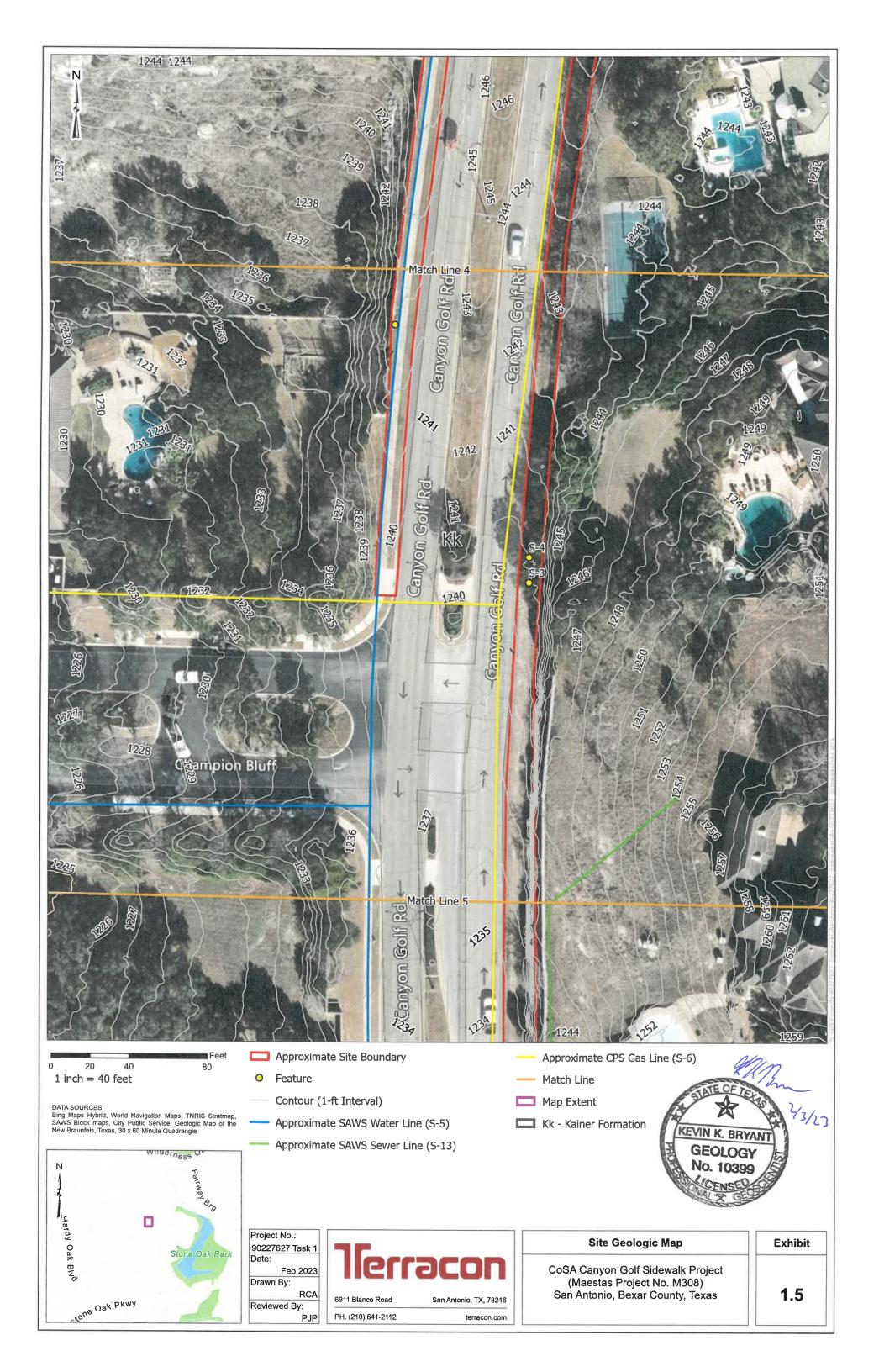
Photo #17: View of sanitary sewer manway at the location of feature S-13.

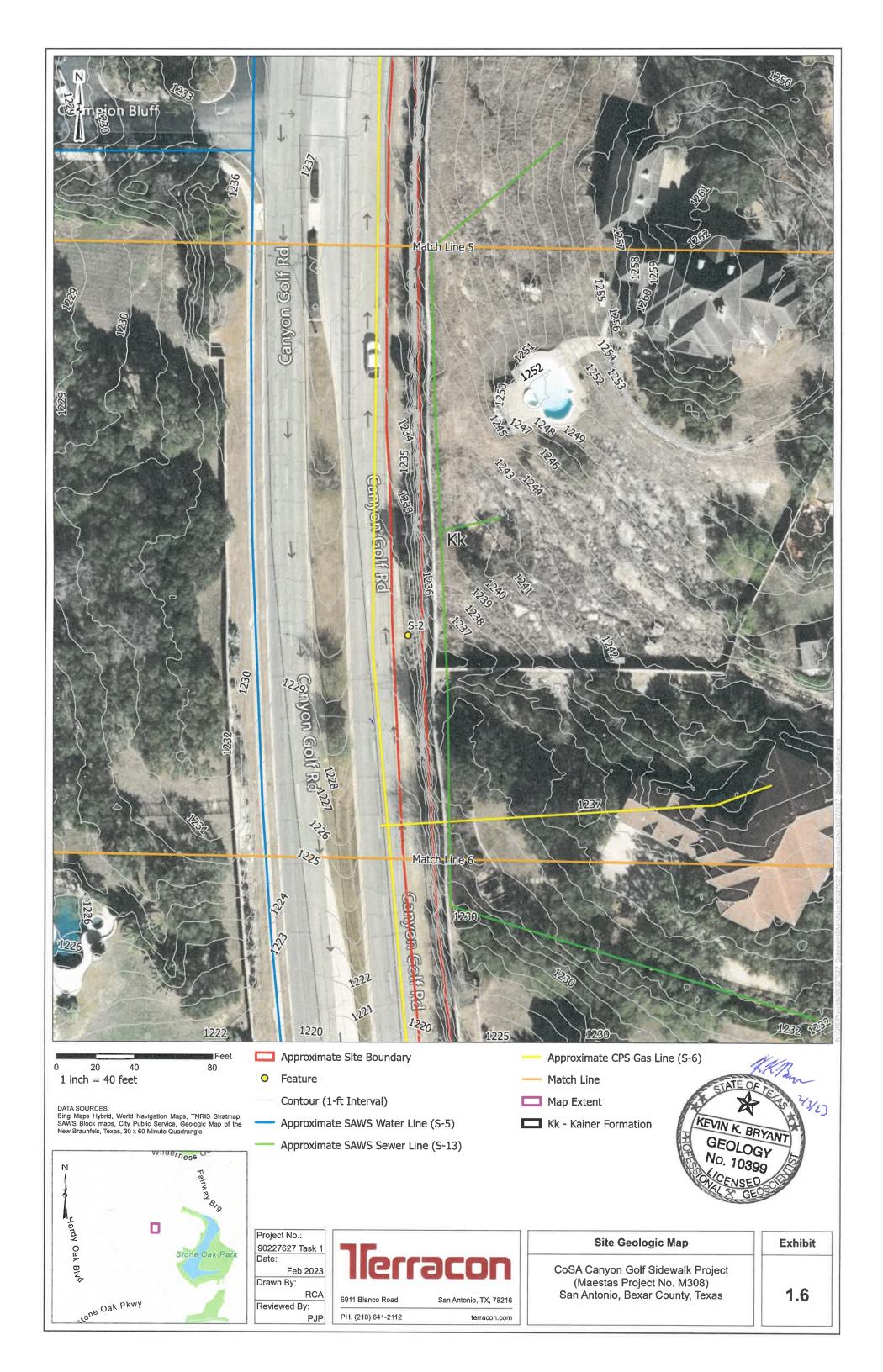


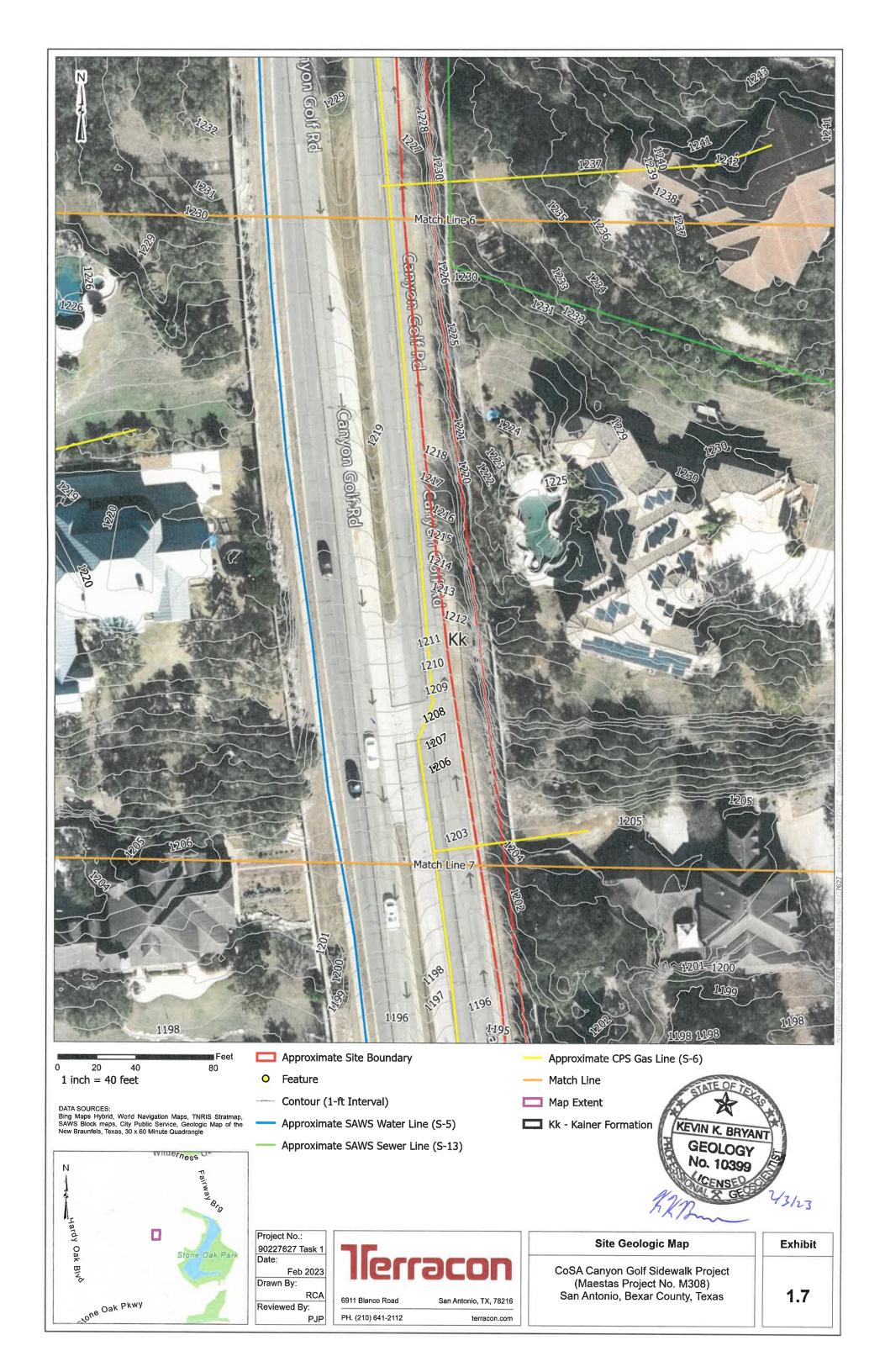

Photo #18: View looking north of existing sidewalk just north of Champion Bluff on the west side of Canyon Golf Road.

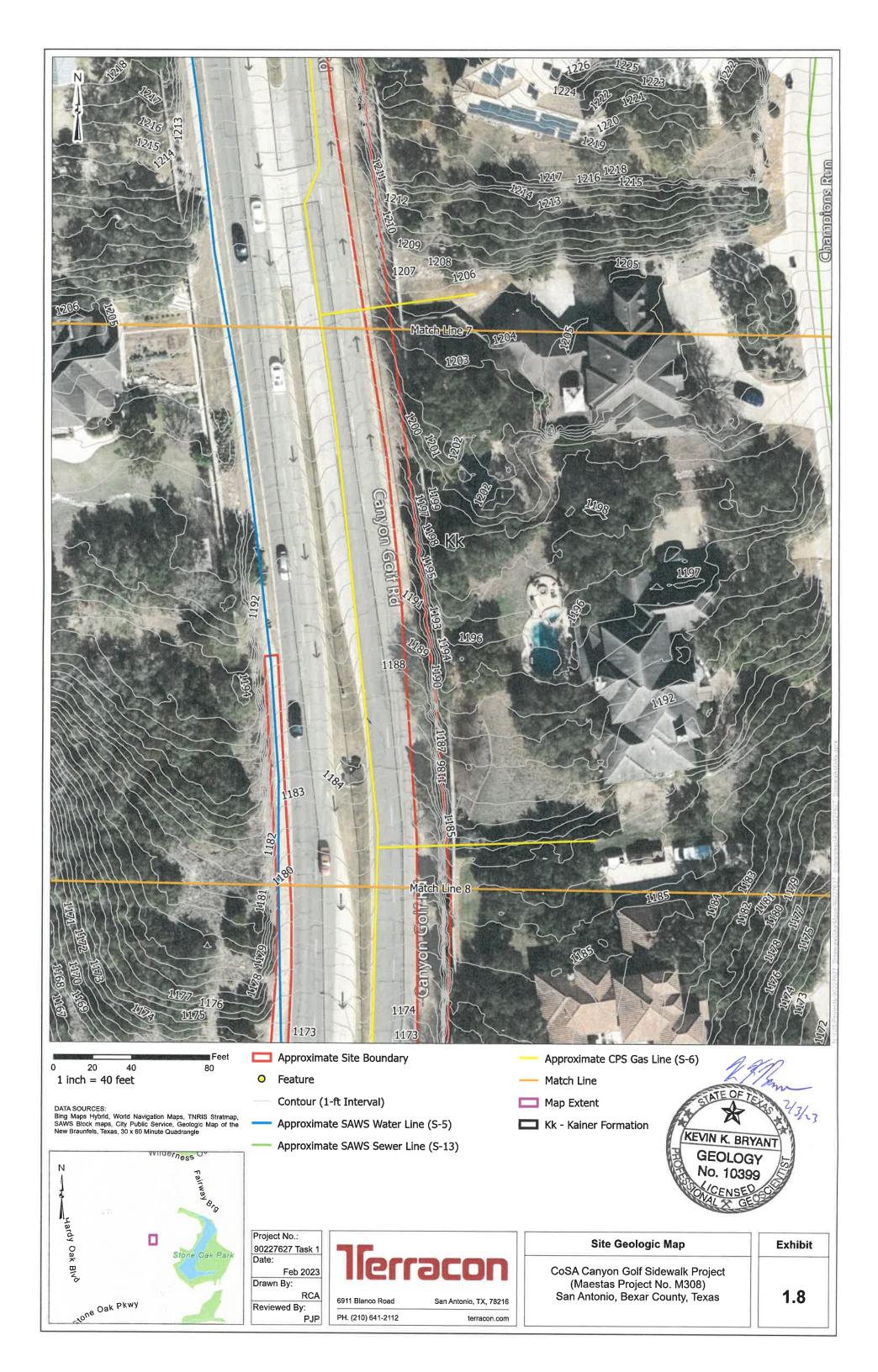


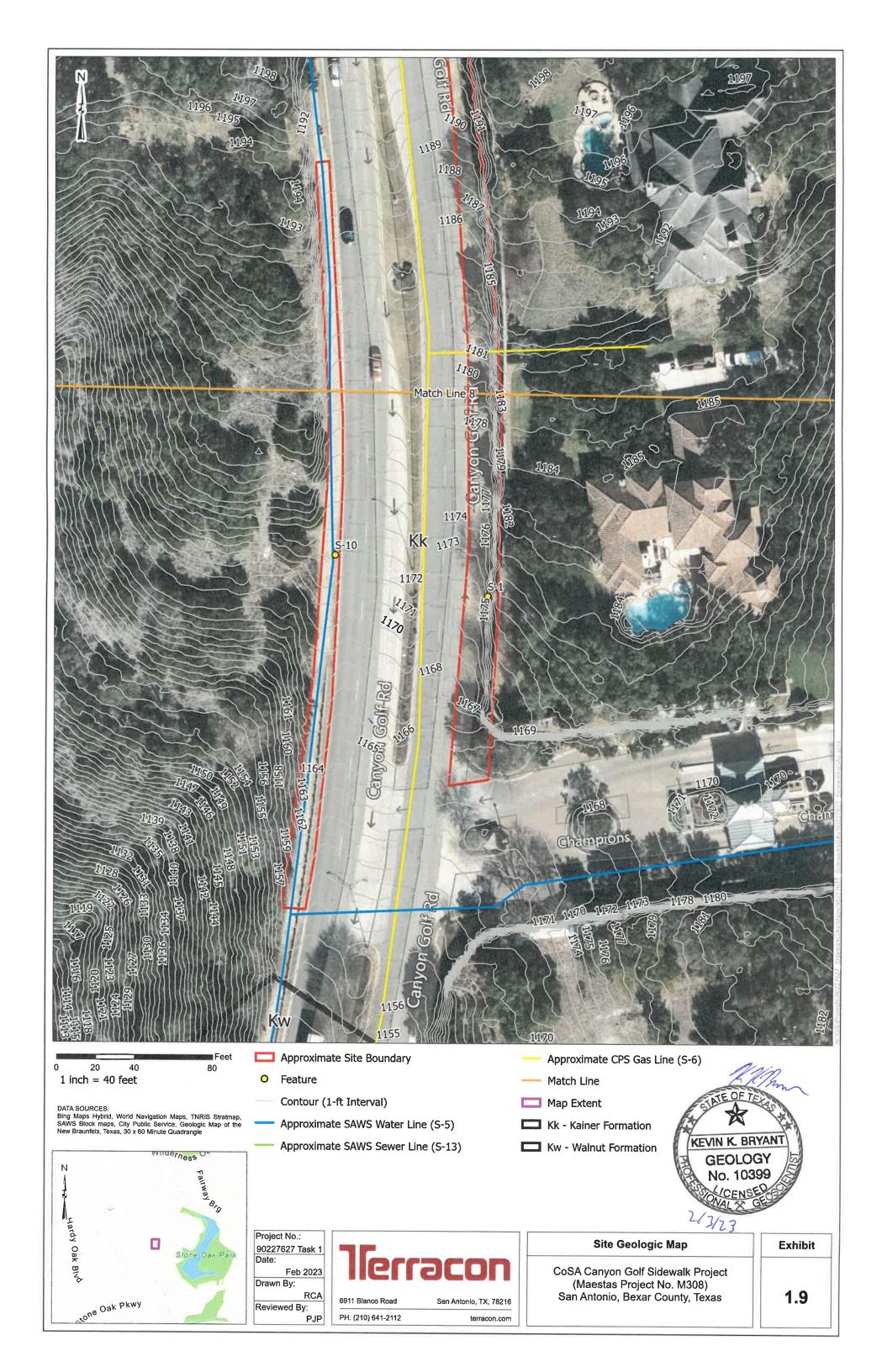


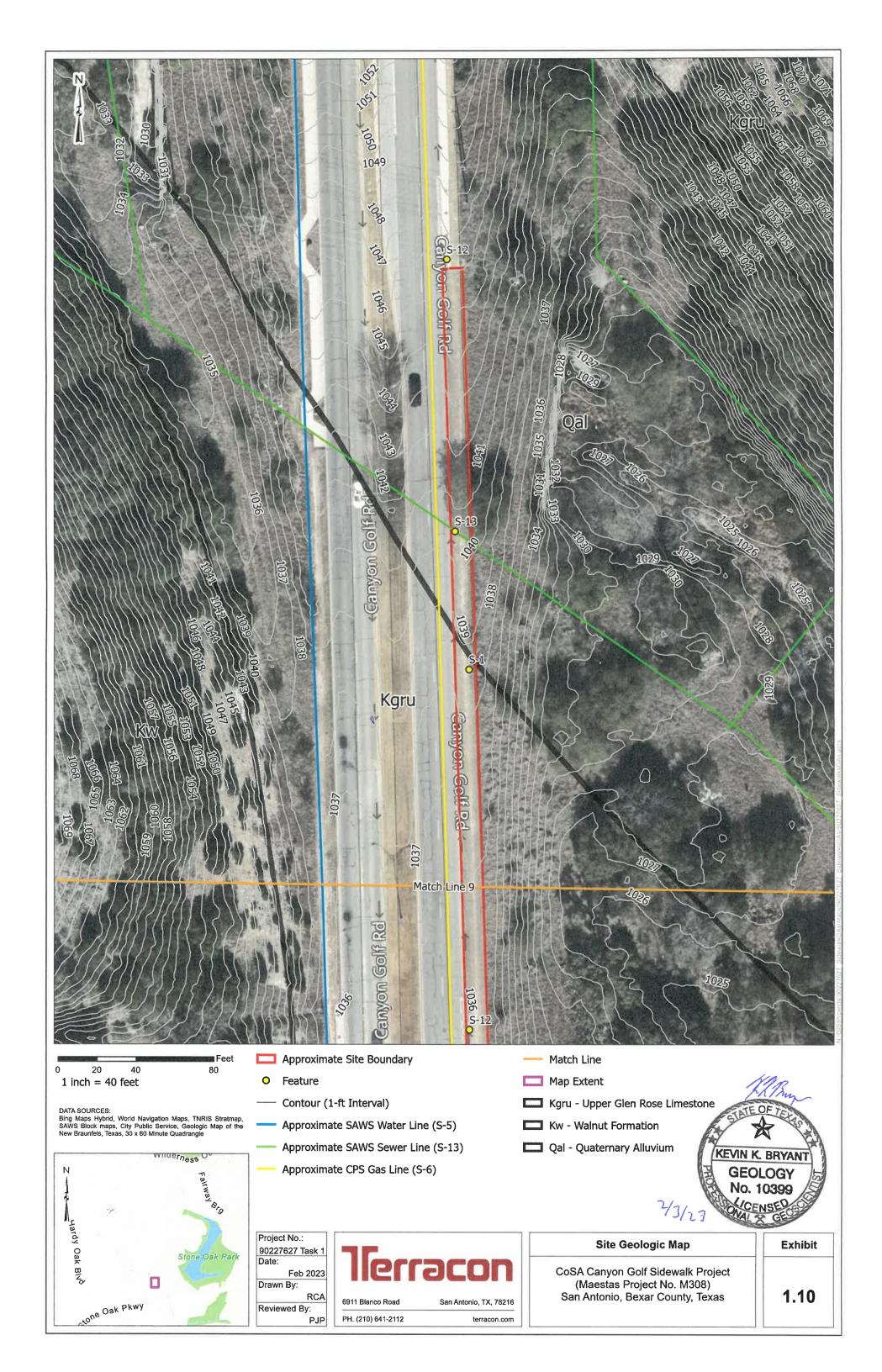

Photo #19: View of green manway at the location of feature S-14.

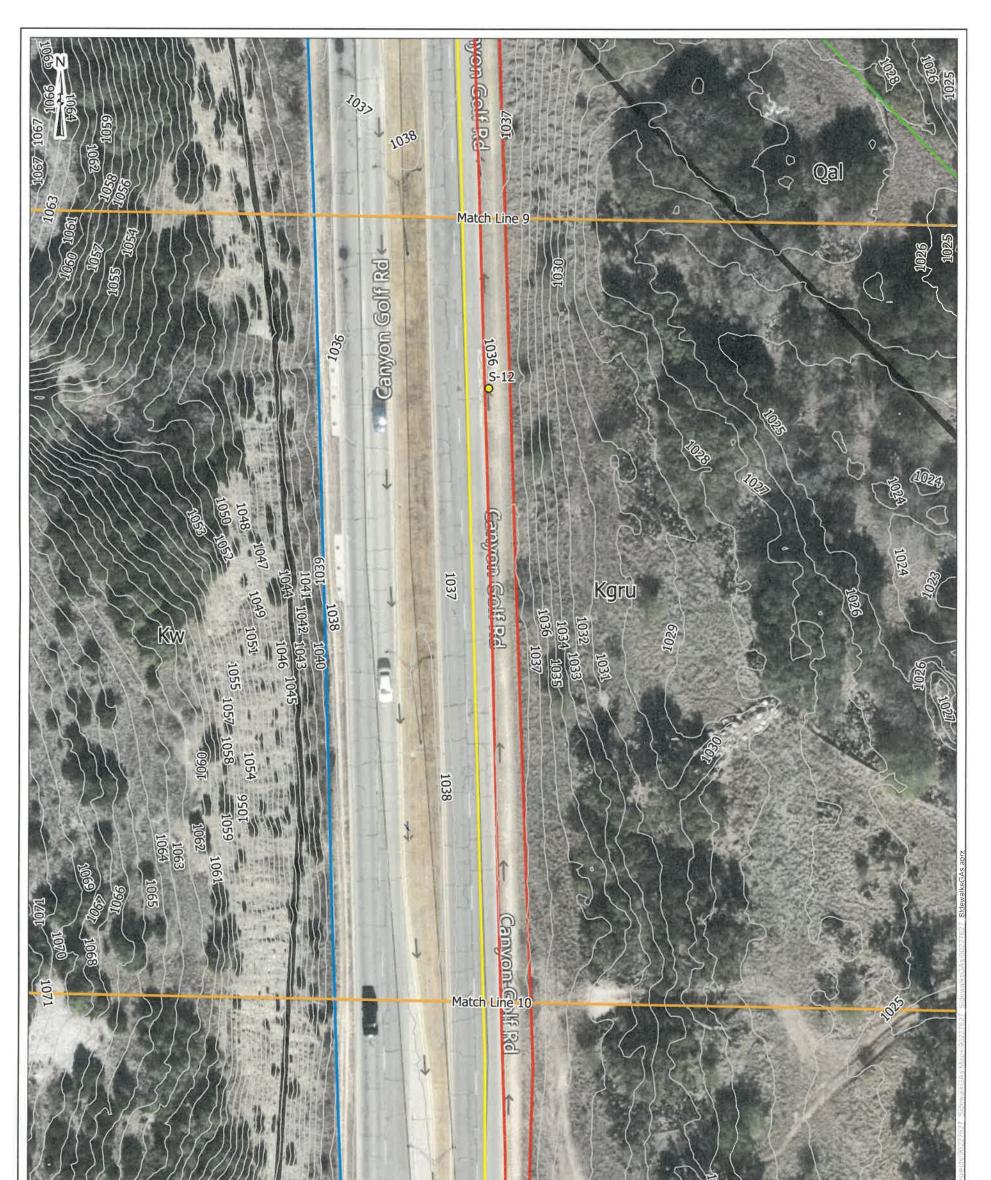


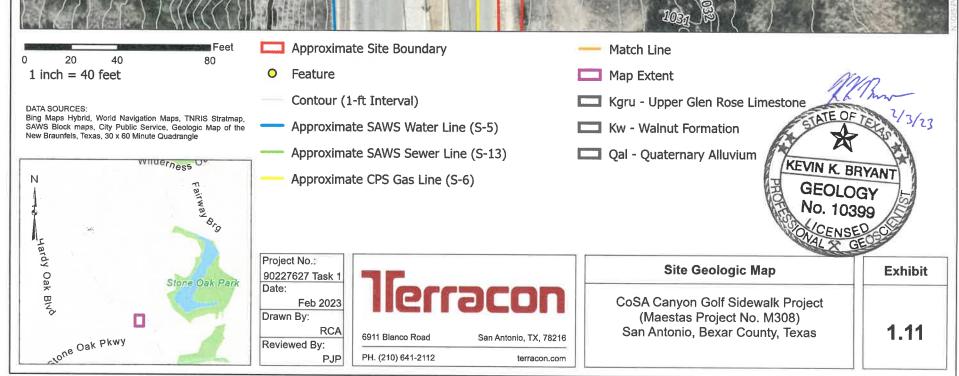


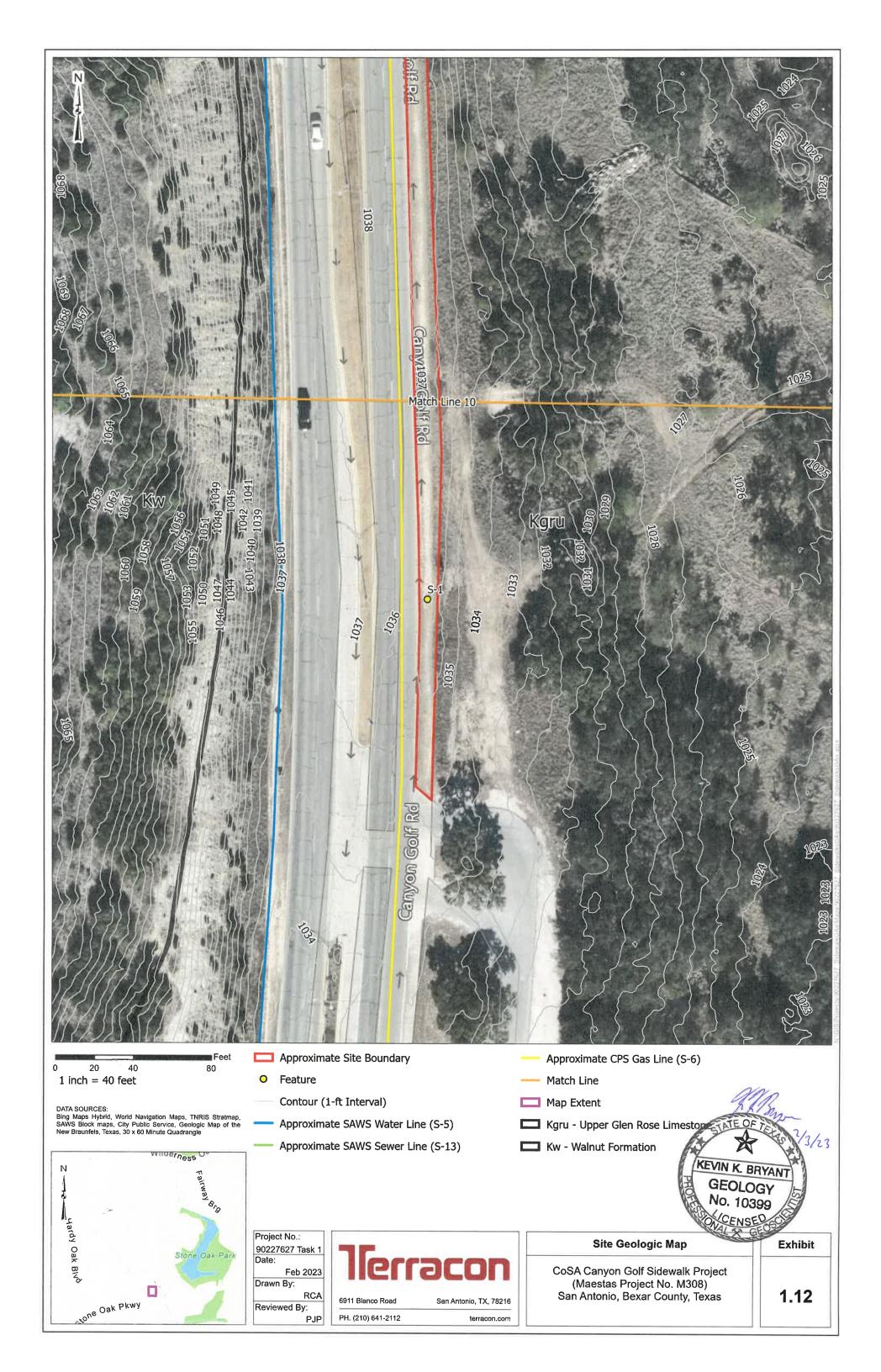












Recharge and Transition Zone Exception Request Form

Texas Commission on Environmental Quality 30 TAC §213.9 Effective June 1, 1999

To ensure that the application is administratively complete, confirm that all fields in the form are complete, verify that all requested information is provided, consistently reference the same site and contact person in all forms in the application, and ensure forms are signed by the appropriate party.

Note: Including all the information requested in the form and attachments contributes to more streamlined technical reviews.

Signature

To the best of my knowledge, the responses to this form accurately reflect all information requested concerning the proposed regulated activities and methods to protect the Edwards Aquifer. This **Recharge and Transition Zone Exception Request Form** is hereby submitted for TCEQ review and executive director approval. The request was prepared by:

Print Name of Customer/Agent: <u>Elvis Treviño, PE</u> Date: <u>06/01/2023</u> Signature of Customer/Agent:

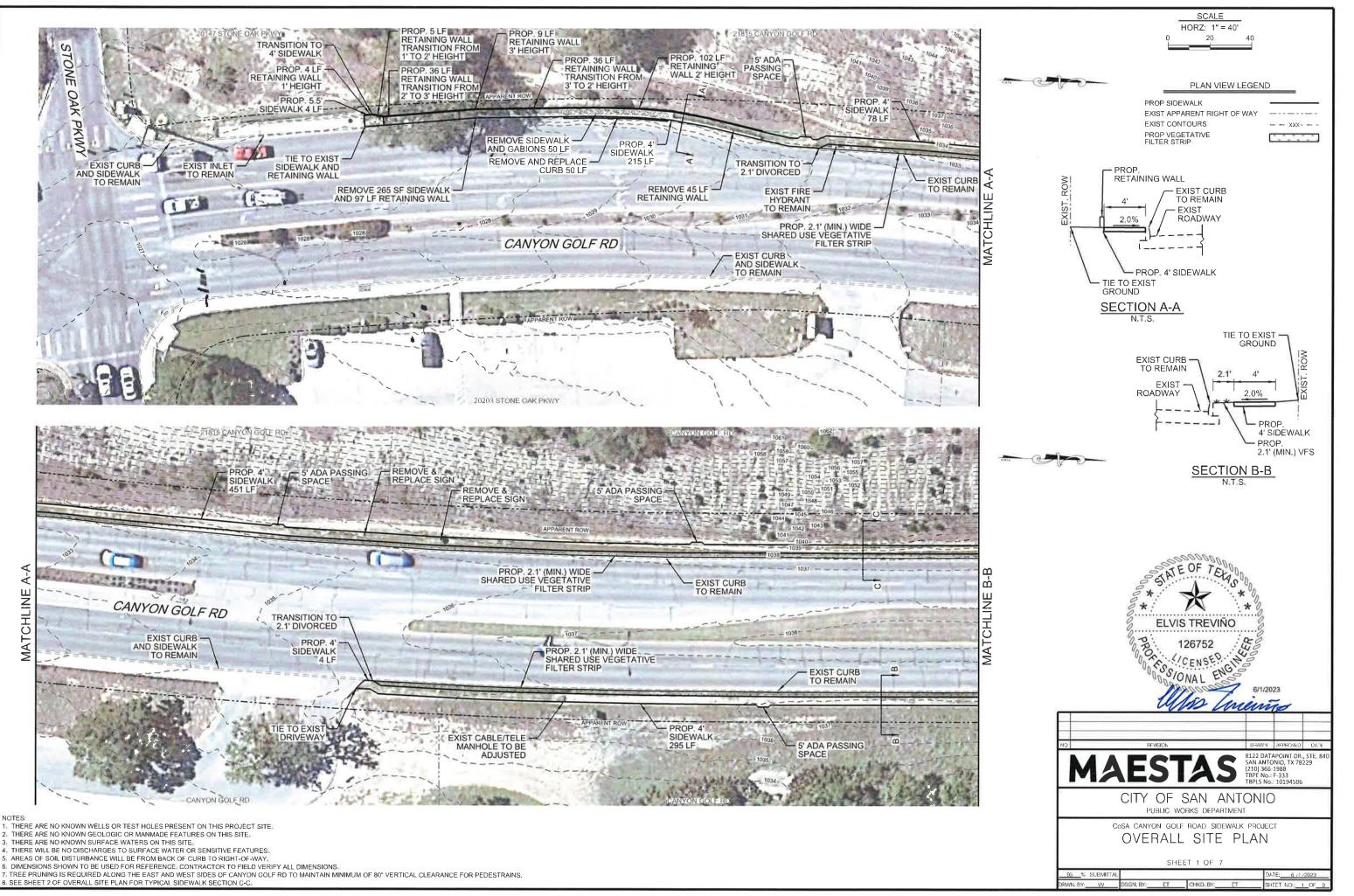
Regulated Entity Name: CoSA Canyon Golf Road Sidewalk Project

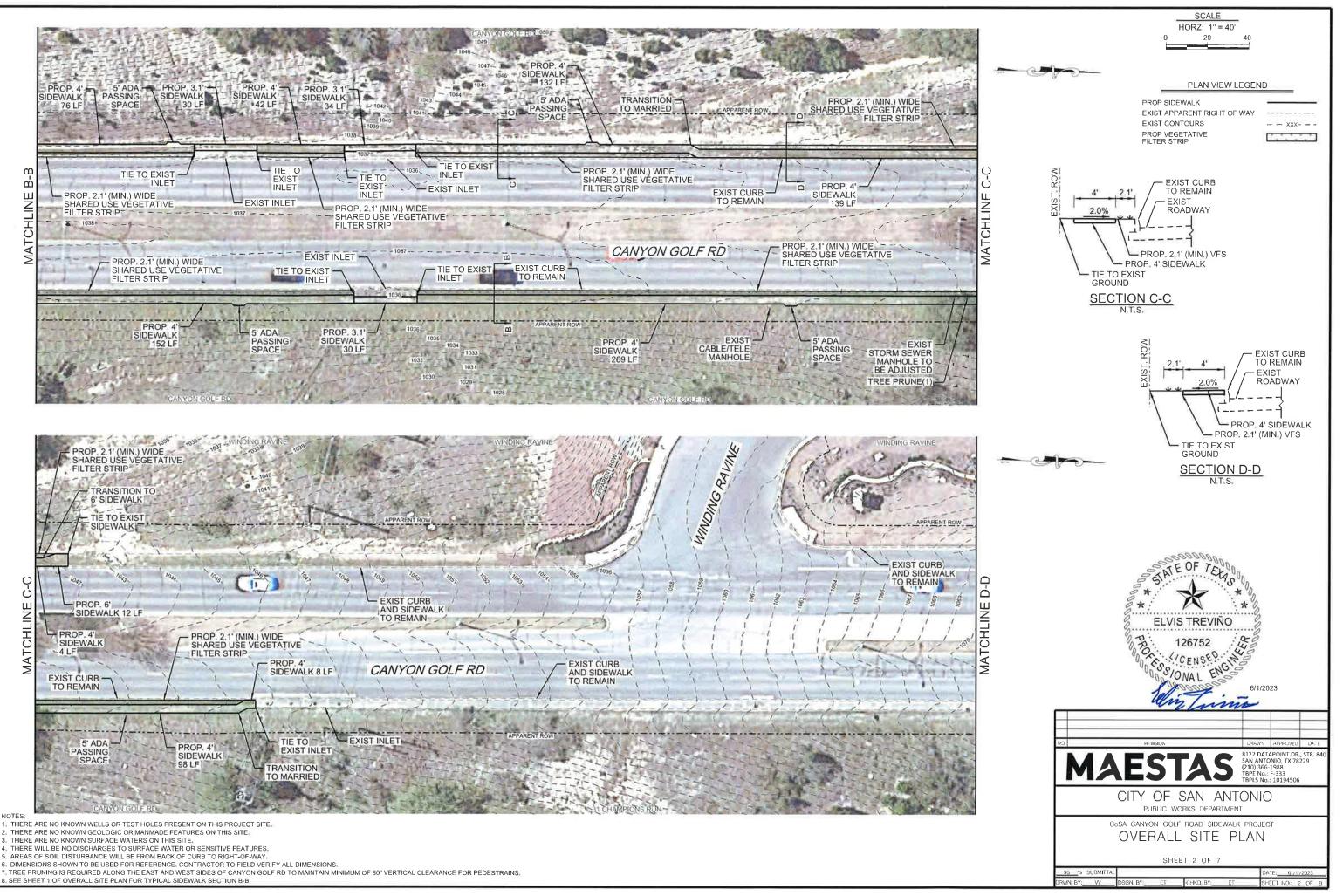
Exception Request

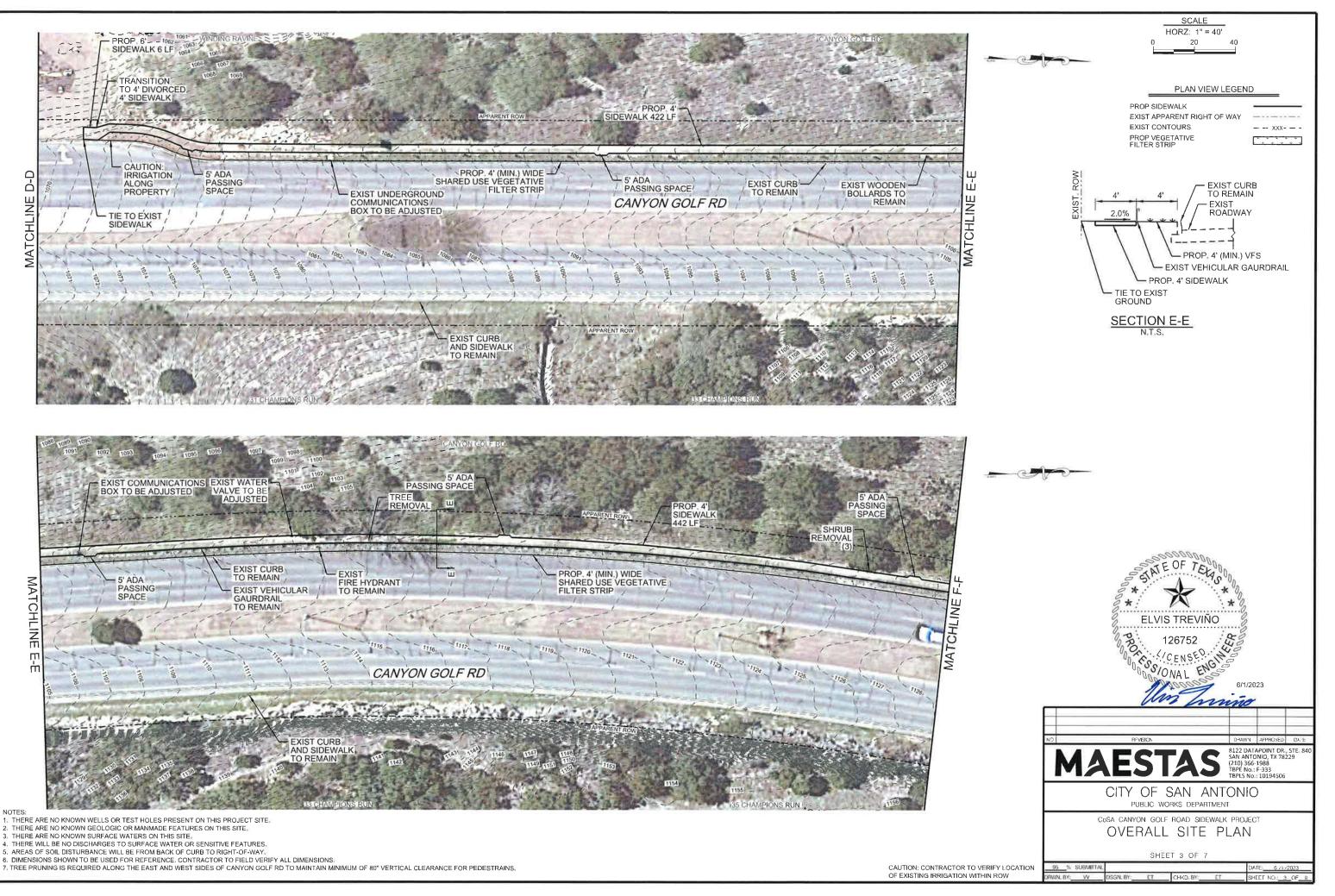
- 1. Attachment A Nature of Exception. A narrative description of the nature of each exception requested is attached. All provisions of 30 TAC §213 Subchapter A for which an exception is being requested have been identified in the description.
- 2. X Attachment B Documentation of Equivalent Water Quality Protection. Documentation demonstrating equivalent water quality protection for the Edwards Aquifer is attached.

Administrative Information

- 3. Submit one (1) original and one (1) copy of the application, plus additional copies as needed for each affected incorporated city, groundwater conservation district, and county in which the project will be located. The TCEQ will distribute the additional copies to these jurisdictions. The copies must be submitted to the appropriate regional office.
- 4. The applicant understands that no exception will be granted for a prohibited activity in Chapter 213.
- 5. The applicant understands that prior approval under this section must be obtained from the executive director for the exception to be authorized.


RECHARGE AND TRANSITION ZONE EXCEPTION REQUEST ATTACHMENTS

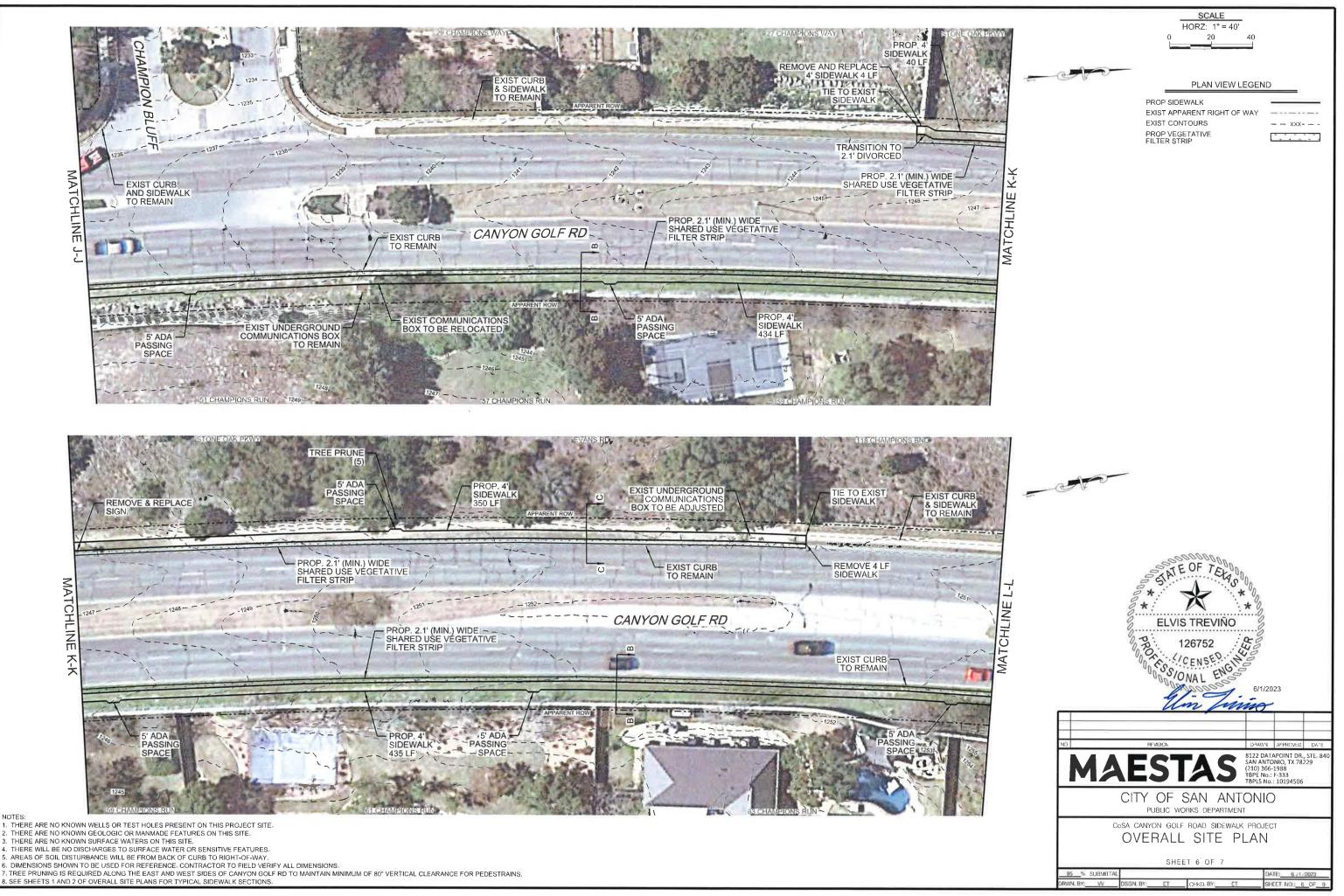

ATTACHMENT A – Nature of Exception

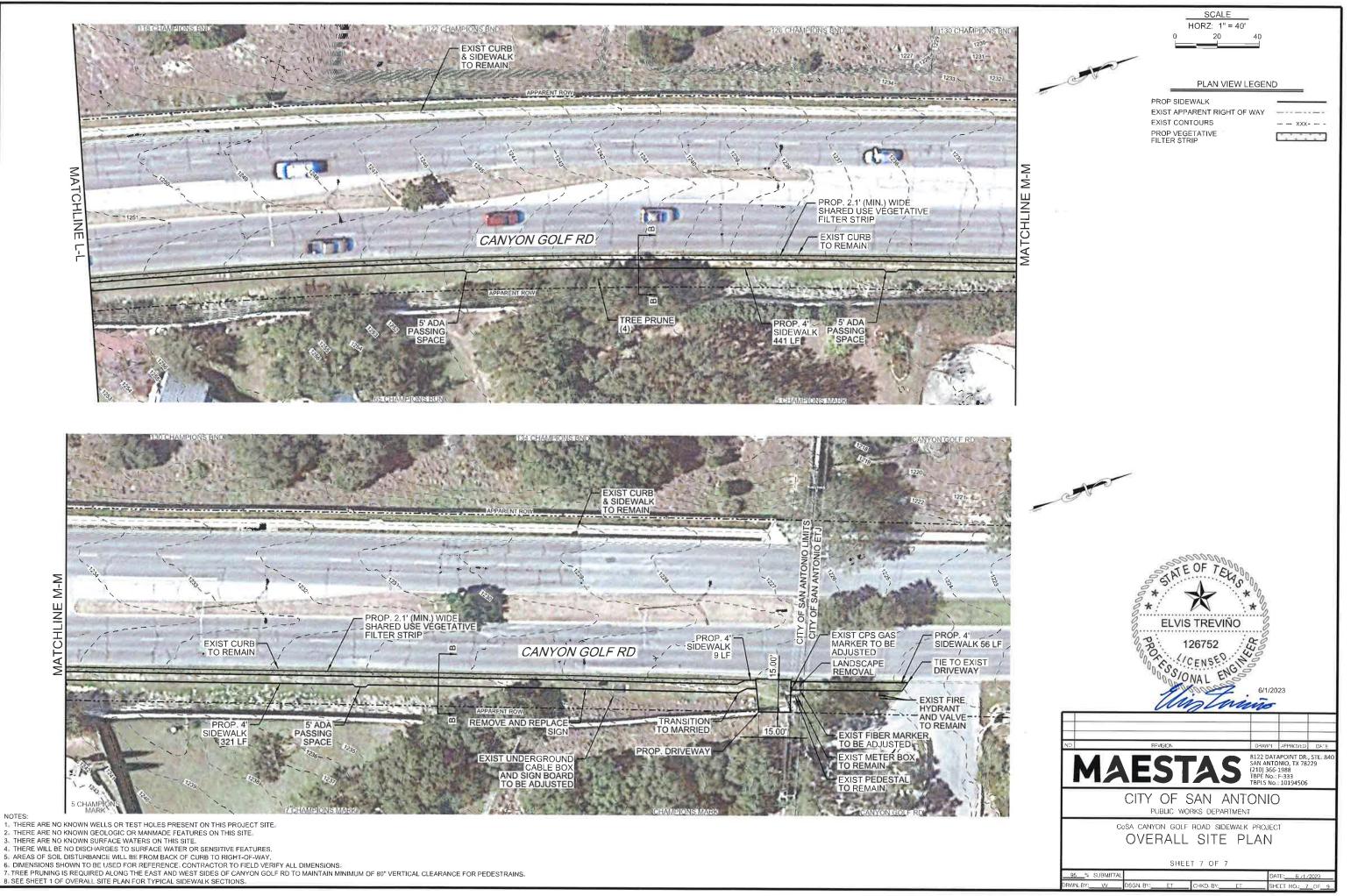

In accordance with the provisions of 30 TAC 213.9, the City of San Antonio requests an exception to being classified as a regulated activity under 30 TAC 213.3(28). Regulated activity is defined in 30 TAC 213.3(28) as any construction-related or post construction activity on the recharge zone of the Edwards Aquifer having the potential for polluting the Edwards Aquifer and hydrologically connected surface streams. The project area within the Recharge Zone is 1.072 acres and all elements of the improvements drain to Mud Creek. The City of San Antonio is proposing to install approximately 7,173 linear feet of sidewalk and shared use path vegetative filter strip combination along the east and west sides of Canyon Golf Rd between Stone Oak Pkwy and approximately 2,390 LF south of Wilderness Oak. The exception request demonstrates equivalent water quality protection for the Edwards Aquifer. The activities proposed will be implemented with a minimum disturbance area requiring permanent and temporary stabilization measures.

ATTACHMENT B – Documentation of Equivalent Water Quality Protection

This project will increase the impervious cover, soil disturbance is limited, and temporary stormwater controls will be implemented until sufficient soil stabilization has been established. This project proposes a total of 0.68 acres of new impervious cover to be treated by a shared use path vegetative filter strip. Furthermore, by proposing a shared use path vegetative filter strip this project will provide an equivalent water quality protection.

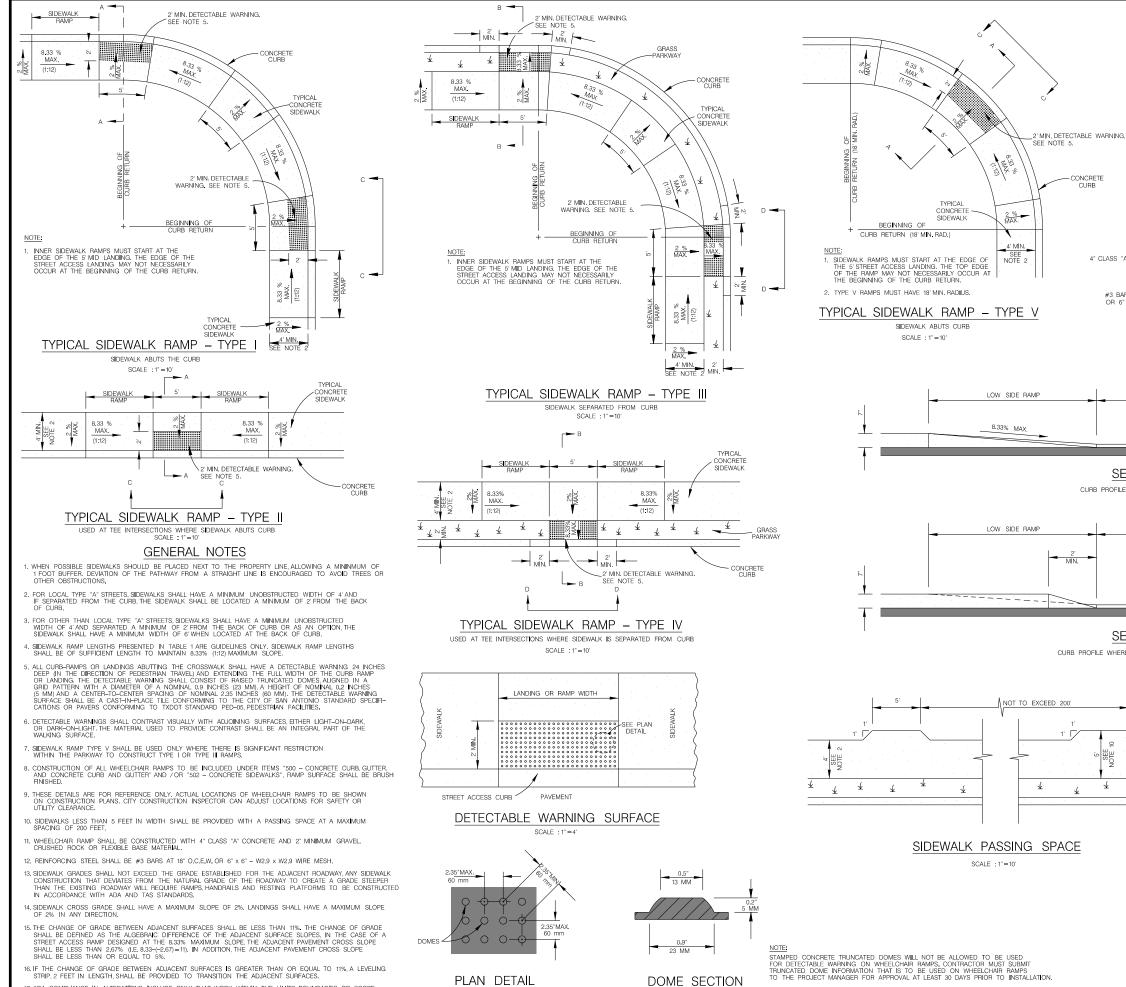
NOTES:


	SCALE	
	HORZ: 1" = 40'	
0	20	40



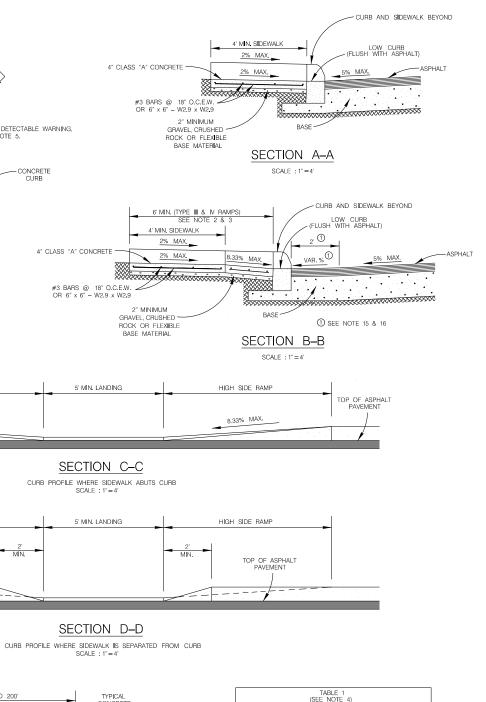
8. SEE SHEET 1 OF OVERALL SITE PLAN FOR TYPLICAL SIDEWALK SECTIONS.


SCALE HORZ: 1" = 40' 20 PLAN VIEW LEGEND PROP SIDEWALK EXIST APPARENT RIGHT OF WAY -----EXIST CONTOURS -- - xxx- -- -PROP VEGETATIVE FILTER STRIP A **ELVIS TREVIÑO** PROF 126752 SSIONAL ENG lin 6/1/2023 lunio 8122 DATAPOINT DR., STE. 840 SAN ANTONIO, TX 78229 (210) 366-1988 TBPE No.: F-333 TBPLS No.: 10194506 CITY OF SAN ANTONIO PUBLIC WORKS DEPARTMENT CoSA CANYON GOLF ROAD SIDEWALK PROJECT OVERALL SITE PLAN SHEET 5 OF 7 95 % SUBMITTA DATE: WN BY: ET CHKD_BY; SHEET NO .:



NOTES

NOTES:



NO SCALE

17. ADA COMPLIANCE IN ALTERATIONS INCLUDE ONLY THAT WORK WITHIN THE LIMITS, BOUNDARIES OR SCOPE OF A PLANNED PROJECT.

NO SCALE

4

TABLE 1 (SEE NOTE 4)								
GUTTER	SIDEWALK RAMP LENGTH (1:12)							
SLOPE	LOW SIDE	HIGH SIDE						
1%	5'-6"	7'–2"						
2%	5'-0"	8'-4"						
3%	4'-6"	10'-0"						
4%	4'-2"	12'-6"						
5%	3'-10"	16'8"						

MAY 2009						
	CITY OF	-	-			
WHEE	LCHAIR	R	AMP	STAND	ARDS	
% SUBMITTAL	PROJECT NO.				DATE.	
DRWN. BY: V. VASQUEZ	DSGN. BY:		CHKD. BY: P	R.S. HOSSEINI, P.E.	SHEET NO. <u>9</u> OF	9

Temporary Stormwater Section

Texas Commission on Environmental Quality

for Regulated Activities on the Edwards Aquifer Recharge Zone and Relating to 30 TAC §213.5(b)(4)(A), (B), (D)(I) and (G); Effective June 1, 1999

To ensure that the application is administratively complete, confirm that all fields in the form are complete, verify that all requested information is provided, consistently reference the same site and contact person in all forms in the application, and ensure forms are signed by the appropriate party.

Note: Including all the information requested in the form and attachments contributes to more streamlined technical reviews.

Signature

To the best of my knowledge, the responses to this form accurately reflect all information requested concerning the proposed regulated activities and methods to protect the Edwards Aquifer. This **Temporary Stormwater Section** is hereby submitted for TCEQ review and executive director approval. The application was prepared by:

Print Name of Customer/Agent: Elvis Treviño, PE

Date: 06/01/2023

Signature of Customer/Agent:

This Trinto

Regulated Entity Name: CoSA Canyon Golf Road Sidewalk Project

Project Information

Potential Sources of Contamination

Examples: Fuel storage and use, chemical storage and use, use of asphaltic products, construction vehicles tracking onto public roads, and existing solid waste.

1. Fuels for construction equipment and hazardous substances which will be used during construction:

The following fuels and/or hazardous substances will be stored on the site: _____

These fuels and/or hazardous substances will be stored in:

Aboveground storage tanks with a cumulative storage capacity of less than 250 gallons will be stored on the site for less than one (1) year.

Aboveground storage tanks with a cumulative storage capacity between 250 gallons and 499 gallons will be stored on the site for less than one (1) year.
 Aboveground storage tanks with a cumulative storage capacity of 500 gallons or

more will be stored on the site. An Aboveground Storage Tank Facility Plan application must be submitted to the appropriate regional office of the TCEQ prior to moving the tanks onto the project.

Fuels and hazardous substances will not be stored on the site.

- 2. Attachment A Spill Response Actions. A site specific description of the measures to be taken to contain any spill of hydrocarbons or hazardous substances is attached.
- 3. Temporary aboveground storage tank systems of 250 gallons or more cumulative storage capacity must be located a minimum horizontal distance of 150 feet from any domestic, industrial, irrigation, or public water supply well, or other sensitive feature.
- 4. Attachment B Potential Sources of Contamination. A description of any activities or processes which may be a potential source of contamination affecting surface water quality is attached.

Sequence of Construction

5. Attachment C - Sequence of Major Activities. A description of the sequence of major activities which will disturb soils for major portions of the site (grubbing, excavation, grading, utilities, and infrastructure installation) is attached.

For each activity described, an estimate (in acres) of the total area of the site to be disturbed by each activity is given.

For each activity described, include a description of appropriate temporary control measures and the general timing (or sequence) during the construction process that the measures will be implemented.

6. Name the receiving water(s) at or near the site which will be disturbed or which will receive discharges from disturbed areas of the project: <u>Mud Creek</u>

Temporary Best Management Practices (TBMPs)

Erosion control examples: tree protection, interceptor swales, level spreaders, outlet stabilization, blankets or matting, mulch, and sod. Sediment control examples: stabilized construction exit, silt fence, filter dikes, rock berms, buffer strips, sediment traps, and sediment basins. Please refer to the Technical Guidance Manual for guidelines and specifications. All structural BMPs must be shown on the site plan.

7. Attachment D – Temporary Best Management Practices and Measures. TBMPs and measures will prevent pollution of surface water, groundwater, and stormwater. The construction-phase BMPs for erosion and sediment controls have been designed to retain sediment on site to the extent practicable. The following information is attached:

	A description of how BMPs and measures will prevent pollution of surface wate groundwater or stormwater that originates upgradient from the site and flows across the site.	er,
	A description of how BMPs and measures will prevent pollution of surface wate groundwater that originates on-site or flows off site, including pollution caused contaminated stormwater runoff from the site.	
	A description of how BMPs and measures will prevent pollutants from entering surface streams, sensitive features, or the aquifer.	
	A description of how, to the maximum extent practicable, BMPs and measures maintain flow to naturally-occurring sensitive features identified in either the geologic assessment, TCEQ inspections, or during excavation, blasting, or construction.	will
8.	The temporary sealing of a naturally-occurring sensitive feature which accepts recht to the Edwards Aquifer as a temporary pollution abatement measure during active construction should be avoided.	-
	Attachment E - Request to Temporarily Seal a Feature. A request to tempora seal a feature is attached. The request includes justification as to why no reaso and practicable alternative exists for each feature.	•
	There will be no temporary sealing of naturally-occurring sensitive features on site.	the
9.	Attachment F - Structural Practices. A description of the structural practices that we used to divert flows away from exposed soils, to store flows, or to otherwise limit redischarge of pollutants from exposed areas of the site is attached. Placement of structural practices in floodplains has been avoided.	
10.	Attachment G - Drainage Area Map. A drainage area map supporting the following requirements is attached:	2
	For areas that will have more than 10 acres within a common drainage area disturbed at one time, a sediment basin will be provided.	
	For areas that will have more than 10 acres within a common drainage area disturbed at one time, a smaller sediment basin and/or sediment trap(s) will be used.	<u>}</u>
	For areas that will have more than 10 acres within a common drainage area disturbed at one time, a sediment basin or other equivalent controls are not attainable, but other TBMPs and measures will be used in combination to prote down slope and side slope boundaries of the construction area.	ect
	There are no areas greater than 10 acres within a common drainage area that we disturbed at one time. A smaller sediment basin and/or sediment trap(s) will be used in combination with other erosion and sediment controls within each dist drainage area.	e

There are no areas greater than 10 acres within a common drainage area that will be disturbed at one time. Erosion and sediment controls other than sediment basins or sediment traps within each disturbed drainage area will be used.

- 11. Attachment H Temporary Sediment Pond(s) Plans and Calculations. Temporary sediment pond or basin construction plans and design calculations for a proposed temporary BMP or measure have been prepared by or under the direct supervision of a Texas Licensed Professional Engineer. All construction plans and design information must be signed, sealed, and dated by the Texas Licensed Professional Engineer. Construction plans for the proposed temporary BMPs and measures are attached.
 - 🛛 N/A
- 12. Attachment I Inspection and Maintenance for BMPs. A plan for the inspection of each temporary BMP(s) and measure(s) and for their timely maintenance, repairs, and, if necessary, retrofit is attached. A description of the documentation procedures, recordkeeping practices, and inspection frequency are included in the plan and are specific to the site and/or BMP.
- 13. All control measures must be properly selected, installed, and maintained in accordance with the manufacturer's specifications and good engineering practices. If periodic inspections by the applicant or the executive director, or other information indicate a control has been used inappropriately, or incorrectly, the applicant must replace or modify the control for site situations.
- 14. If sediment escapes the construction site, off-site accumulations of sediment must be removed at a frequency sufficient to minimize offsite impacts to water quality (e.g., fugitive sediment in street being washed into surface streams or sensitive features by the next rain).
- 15. Sediment must be removed from sediment traps or sedimentation ponds not later than when design capacity has been reduced by 50%. A permanent stake will be provided that can indicate when the sediment occupies 50% of the basin volume.
- 16. 🖂 Litter, construction debris, and construction chemicals exposed to stormwater shall be prevented from becoming a pollutant source for stormwater discharges (e.g., screening outfalls, picked up daily).

Soil Stabilization Practices

Examples: establishment of temporary vegetation, establishment of permanent vegetation, mulching, geotextiles, sod stabilization, vegetative buffer strips, protection of trees, or preservation of mature vegetation.

17. Attachment J - Schedule of Interim and Permanent Soil Stabilization Practices. A schedule of the interim and permanent soil stabilization practices for the site is attached.

- 18. Records must be kept at the site of the dates when major grading activities occur, the dates when construction activities temporarily or permanently cease on a portion of the site, and the dates when stabilization measures are initiated.
- 19. Stabilization practices must be initiated as soon as practicable where construction activities have temporarily or permanently ceased.

Administrative Information

- 20. \square All structural controls will be inspected and maintained according to the submitted and approved operation and maintenance plan for the project.
- 21. If any geologic or manmade features, such as caves, faults, sinkholes, etc., are discovered, all regulated activities near the feature will be immediately suspended. The appropriate TCEQ Regional Office shall be immediately notified. Regulated activities must cease and not continue until the TCEQ has reviewed and approved the methods proposed to protect the aquifer from any adverse impacts.
- 22. Silt fences, diversion berms, and other temporary erosion and sediment controls will be constructed and maintained as appropriate to prevent pollutants from entering sensitive features discovered during construction.

TEMPORARY STORMWATER SECTION ATTACHMENTS

ATTACHMENT A — Spill Response Actions

The Contractor is required to remediate any spills, and to immediately report spills (including sanitary sewer discharge) of reportable quantities to the following:

*To the National Response Center at (800) 424-8802,

*To the Edwards Aquifer Authority at (210) 222-2204,

*To the San Antonio Water Systems (SAWS) at (210) 704-7297 and one of the following:

To the State Emergency Response Center (800) 832-8224 (if after hours), or to the TCEQ San Antonio Regional Office (210) 490-3096 (if during business hours).

This section describes measures to prevent or reduce the discharge of pollutants to drainage systems or watercourses from leaks and spills by reducing the chance for spills, stopping the source of spills, containing, and cleaning up spills, properly disposing of spill materials, and training employees.

The following steps will help reduce the storm water impacts of leaks and spills: Education

- (1) Be aware that different materials pollute in different amounts. Make sure that each employee knows what a "significant spill" is for each material they use, and what is the appropriate response for "significant" and "insignificant" spills. Employees should also be aware of when spill must be reported to the TCEQ. Information available in 30 TAC 327.4 and 40 CFR 302.4.
- (2) Educate employees and subcontractors on potential dangers to humans and the environment from spills and leaks.
- (3) Hold regular meetings to discuss and reinforce appropriate disposal procedures (incorporate into regular safety meetings).
- (4) Establish a continuing education program to indoctrinate new employees.
- (5) Have contractor's superintendent or representative oversee and enforce proper spill prevention and control measures.

General Measures

- (1) To the extent that the work can be accomplished safely, spills of oil, petroleum products, and substances listed under 40 CFR parts 110,117, and 302, and sanitary and septic wastes should be contained and cleaned up immediately.
- (2) Store hazardous materials and wastes in covered containers and protect from vandalism.
- (3) Place a stockpile of spill cleanup materials where it will be readily accessible.
- (4) Train employees in spill prevention and cleanup.

- (5) Designate responsible individuals to oversee and enforce control measures.
- (6) Spills should be covered and protected from storm water runoff during rainfall to the extent that it does not compromise clean-up activities.
- (7) Do not bury or wash spills with water.
- (8) Store and dispose of used clean up materials, contaminated materials, and recovered spill material that is no longer suitable for the intended purpose in conformance with the provisions in applicable BMPs.
- (9) Do not allow water used for cleaning and decontamination to enter storm drains or watercourses. Collect and dispose of contaminated water in accordance with applicable regulations.
- (10) Contain water overflow or minor water spillage and do not allow it to discharge into drainage facilities or watercourses.
- (11) Place Material Safety Data Sheets (MSDS), as well as proper storage, cleanup, and spill reporting instructions for hazardous materials stored or used on the project site in an open, conspicuous, and accessible location.
- (12) Keep waste storage areas clean, well-organized, and equipped with ample cleanup supplies as appropriate for the materials being stored. Perimeter controls, containment structures, covers, and liners should be repaired or replaced as needed to maintain proper function.

Cleanup

- (1) Clean up leaks and spills immediately.
- (2) Use a rag for small spills on paved surfaces, a damp mop for general cleanup, and absorbent material for larger spills. If the spilled material is hazardous, then the used cleanup materials are also hazardous and must be disposed of as hazardous waste.
- (3) Never hose down or bury dry material spills. Clean up as much of the material as possible and dispose of properly. See the waste management BMPs in this section for specific information.

Minor Spills

- (1) Minor spills typically involve small quantities of oil, gasoline, paint, etc. which can be controlled by the first responder at the discovery of the spill.
- (2) Use absorbent materials on small spills rather than hosing down or burying the spill.
- (3) Absorbent materials should be promptly removed and disposed of properly.
- (4) Follow the practice below for a minor spill:
- (5) Contain the spread of the spill.
- (6) Recover spilled materials.
- (7) Clean the contaminated area and properly dispose of contaminated materials.

Semi-Significant Spills

Semi-significant spills still can be controlled by the first responder along with the aid of other personnel such as laborers and the foreman, etc. This response may require the cessation of all other activities.

Spills should be cleaned up immediately:

- (1) Contain spread of the spill.
- (2) Notify the project foreman immediately.
- (3) If the spill occurs on paved or impermeable surfaces, clean up using "dry" methods (absorbent materials, cat litter and/or rags). Contain the spill by encircling with absorbent materials and do not let the spill spread widely.
- (4) If the spill occurs in dirt areas, immediately contain the spill by constructing an earthen dike. Dig up and properly dispose of contaminated soil.
- (5) If the spill occurs during rain, cover spill with tarps or other material to prevent contaminating runoff.

Significant/Hazardous Spills

For significant or hazardous spills that are in reportable quantities:

- (1) Notify the TCEQ by telephone as soon as possible and within 24 hours at 210-490-3096 (San Antonio) between 8 AM and 5 PM. After hours, contact the Environmental Release Hotline at 1-800-832-8224. It is the contractor's responsibility to have all emergency phone numbers at the construction site.
- (2) For spills of federal reportable quantities, in conformance with the requirements in 40 CFR parts 110,119, and 302, the contractor should notify the National Response Center at (800) 424-8802.
- (3) Notification should first be made by telephone and followed up with a written report.
- (4) The services of a spill's contractor or a Haz-Mat team should be obtained immediately. Construction personnel should not attempt to clean up until the appropriate and qualified staffs have arrived at the job site.
- (5) Other agencies which may need to be consulted include, but are not limited to, the City Police Department, County Sheriff Office, Fire Departments, etc.

More information on spill rules and appropriate responses is available on the TCEQ website at: http://www.tnrcc.state.tx.us/enforcement/emergency_response.html

Vehicle and Equipment Maintenance

- (1) If maintenance must occur onsite, use a designated area and a secondary containment, located away from drainage courses, to prevent the run-on of storm water and the runoff of spills.
- (2) Regularly inspect onsite vehicles and equipment for leaks and repair immediately
- (3) Check incoming vehicles and equipment (including delivery trucks, and employee and subcontractor vehicles) for leaking oil and fluids. Do not allow leaking vehicles or equipment onsite.
- (4) Always use secondary containment, such as a drain pan or drop cloth, to catch spills or leaks when removing or changing fluids.
- (5) Place drip pans or absorbent materials under paving equipment when not in use.
- (6) Use absorbent materials on small spills rather than hosing down or burying the spill. Remove the absorbent materials promptly and dispose of properly.

- (7) Promptly transfer used fluids to the proper waste or recycling drums. Do not leave full drip pans or other open containers lying around.
- (8) Oil filters disposed of in trashcans or dumpsters can leak oil and pollute storm water. Place the oil filter in a funnel over a waste oil-recycling drum to drain excess oil before disposal. Oil filters can also be recycled. Ask the oil supplier or recycler about recycling oil filters.
- (9) Store cracked batteries in a non- leaking secondary container. Do this with all cracked batteries even if you think all the acid has drained out. If you drop a battery, treat it as if it is cracked. Put it into the containment area until you are sure it is not leaking.

Vehicle and Equipment Fueling

- (1) If fueling must occur on site, use designated areas, located away from drainage courses, to prevent the run-on of storm water and the runoff of spills.
- (2) Discourage "topping off" of fuel tanks.
- (3) Always use secondary containment, such as a drain pan, when fueling to catch spills/ leaks.

ATTACHMENT B — Potential Sources of Contamination

Potential sources of contamination include the hydrocarbons, hydraulic fluid and fuels required to service and operate the construction equipment, the materials and liquids used to conduct paving operations, various paints and solvents, and soil disturbed and mobilized during excavation. Additional sources of contamination include spills associated with vehicle accidents that might occur within the boundaries of the project.

ATTACHMENT C — Sequence of Major Events

- 1. Install erosion and sedimentation controls down-slope of work area and initiate SWPPP inspection and maintenance activities. Post the required SWPPP site notification.
- Provide written notification to the TCEQ 48 hours prior to commencement of construction. Schedule an on-site pre-construction coordination meeting, if applicable.
- 3. Begin phased construction including the following:
 - Phase 1: Construct sidewalk and vegetative filter strip along the entire length of the project. (1.072 acres) (12 weeks).
- 4. Remove temporary erosion/sedimentation controls once disturbed areas are revegetated. Restore all areas disturbed by the removal of E&S controls.
- 5. Provide final notification of completion of construction in compliance with TCEQ and SWPPP requirements.

The receiving waters are Mud Creek.

ATTACHMENT D – Temporary Best Management Practices

During the construction phase, the BMPs selected for the water quality protection include the following:

- Silt fences on the upstream side of disturbed areas to route flow around work area limiting the flow over the work area.
- Curb Inlet Gravel Filters installed along the gutter line of Canyon Golf Rd at the sidewalk drains to limit pollutants leaving the site along the curb and gutter.
- Construction exits will be used to minimize offsite tracking of sediment. The locations of all temporary BMPs are shown on the Temporary Erosion and Sedimentation Control Plan sheets. Standard details show information relevant to BMP installation and maintenance. The locations of staging areas will be determined by the contractor. Appropriate erosion controls will be utilized to prevent sediment discharges from the staging areas.

The locations of all temporary BMPs are shown on the WPAP SW3P plan sheets. Standard details show information relevant to BMP installation and maintenance. The locations of staging areas will be determined by the contractor. Appropriate erosion control will be utilized to prevent sediment discharges from staging areas.

Texas Commission on Environmental Quality Water Pollution Abatement Plan General Construction Notes

- 1. A written notice of construction must be submitted to the TCEQ regional office at least 48 hours prior to the start of any regulated activities. This notice must include: the name of the approved project; - the activity start date; and - the contact information of the prime contractor.
- 2. All contractors conducting regulated activities associated with this project must be provided with complete copies of the approved Water Pollution Abatement Plan (WPAP) and the TCEQ tter indicating the specific conditions of its approval. During the course of these regulated activities, the contractors are required to keep on-site copies of the approved plan and approval letter.
- 3. If any sensitive feature(s) (caves, solution cavity, sink hole, etc.) is discovered during construction, all regulated activities near the sensitive feature must be suspended immediately. The appropriate TCEQ regional office must be immediately notified of any sensitive features encountered during construction. Construction activities may not be resumed until the TCEQ has reviewed and approved the appropriate protective measures in order to protect any sensitive feature and the Edwards Aquifer from potentially adverse impacts to water quality.
- 4. No temporary or permanent hazardous substance storage tank shall be installed within 150 feet of a water supply source, distribution system, well, or sensitive feature.
- 5. Prior to beginning any construction activity, all temporary erosion and sedimentation (E&S) control measures must be properly installed and maintained in accordance with the manufacturers specifications. If inspections indicate a control has been used inappropriately, or incorrectly, the applicant must replace or modify the control for site situations. These controls must remain in place until the disturbed areas have been permanently stabilized.

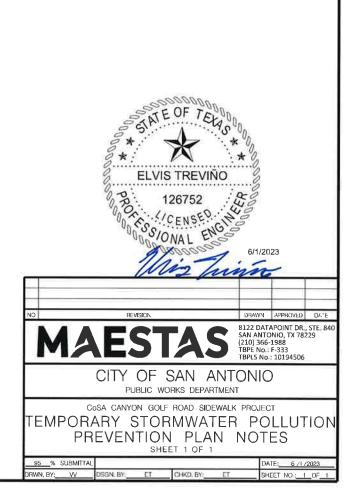
6. Any sediment that escapes the construction site must be collected and properly disposed of before the next rain event to ensure it is not washed into surface streams, sensitive features, etc.

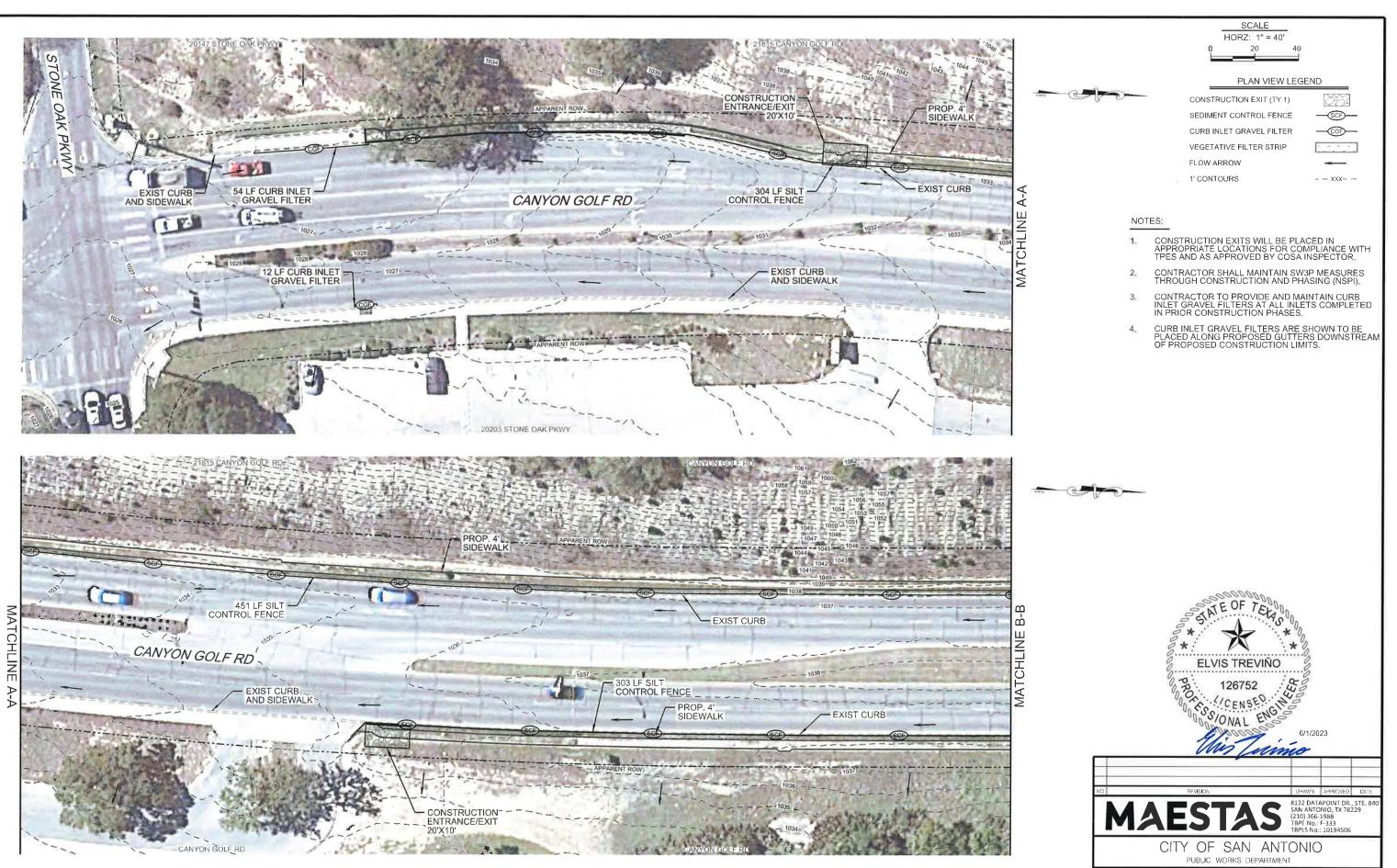
7. Sediment must be removed from the sediment traps or sedimentation basins no later than when it occupies 50% of the basin's design capacity.

8. Litter, construction debris, and construction chemicals exposed to stormwater shall be prevented from being discharged offsite,

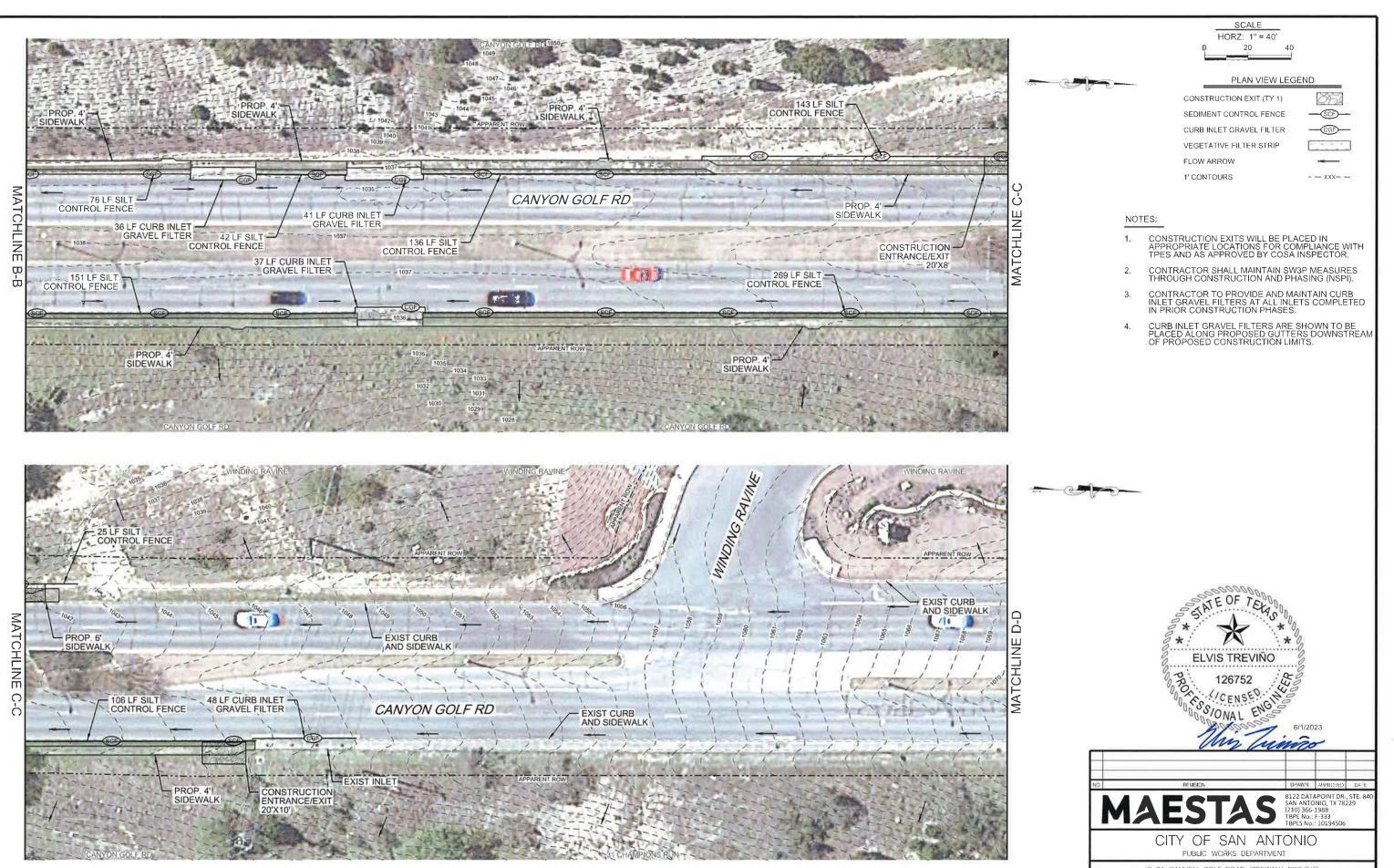
- 9. All excavated material that will be stored on-site must have proper E&S controls. For storage or disposal of spoils at another site on the Edwards Aquifer Recharge Zone, the owner of the site must receive approval of a water pollution abatement plan for the placement of fill material or mass grading prior to the placement of spoils at the other site.
- 10. If portions of the site will have a cease in construction activity lasting longer than 14 days, soil stabilization in those areas shall be initiated as soon as possible prior to the 14th day of inactivity. If activity will resume prior to the 21st day, stabilization measures are not required. If drought conditions or inclement weather prevent action by the 14th day, stabilization measures shall be initiated as soon as possible

11. The following records should be maintained and made available to the TCEQ upon request:

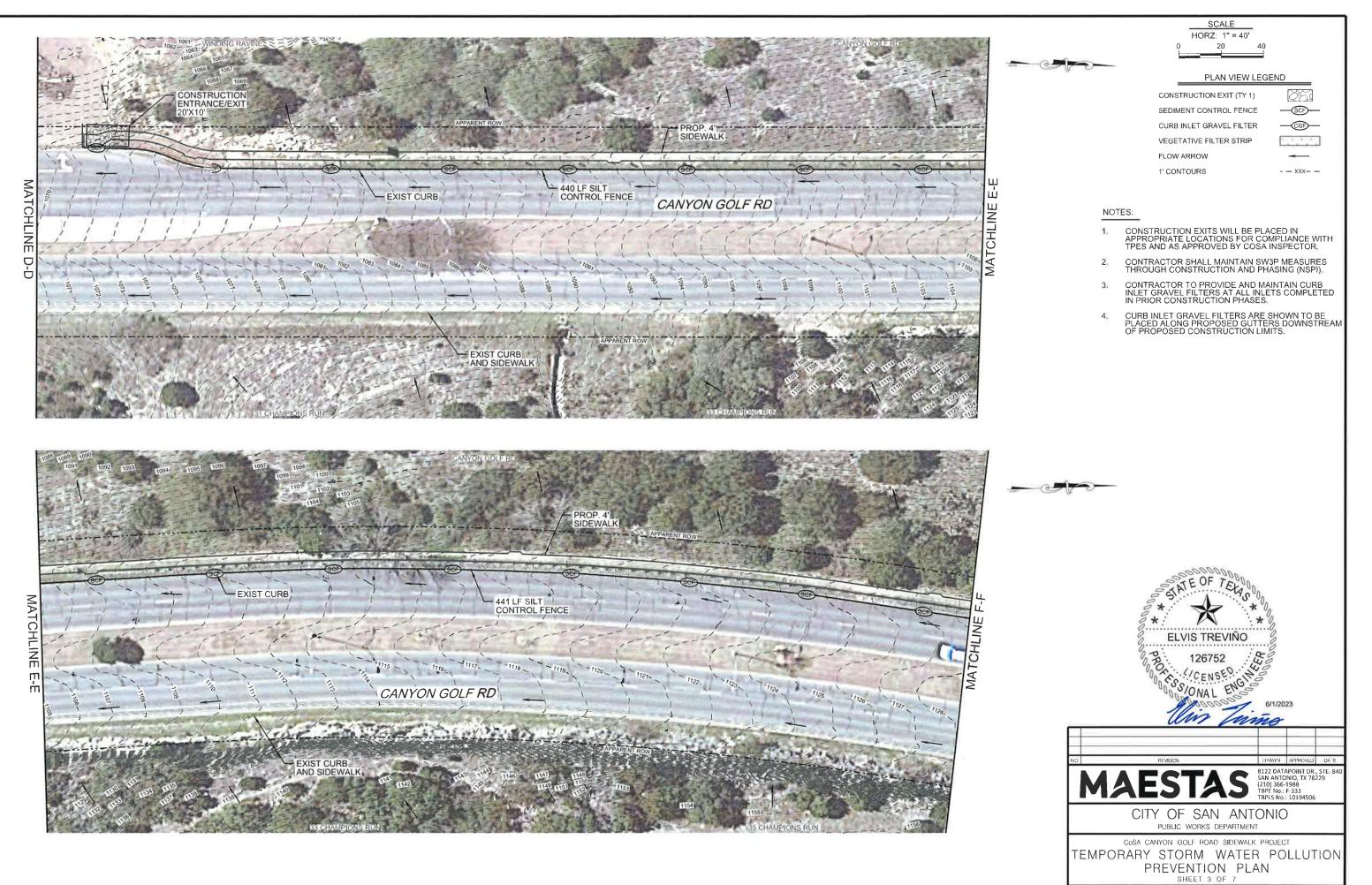

-the dates when major grading activities occur; -the dates when construction activities temporarily or permanently cease on a portion of the site; and -the dates when stabilization measures are initiated


12. The holder of any approved Edward's Aquifer protection plan must notify the appropriate regional office in writing and obtain approval from the executive director prior to initiating any of the following: A. any physical or operational modification of any best management practices (BMPs) or structure(s), including but not limited to temporary or permanent ponds, dams, berms, silt fences, and diversionary structures;

B. any change in the nature or character of the regulated activity from that which was originally approved;


C. any change that would significantly impact the ability to prevent pollution of the Edwards Aquifer; or D. any development of land previously identified as undeveloped in the approved contributing zone plan.

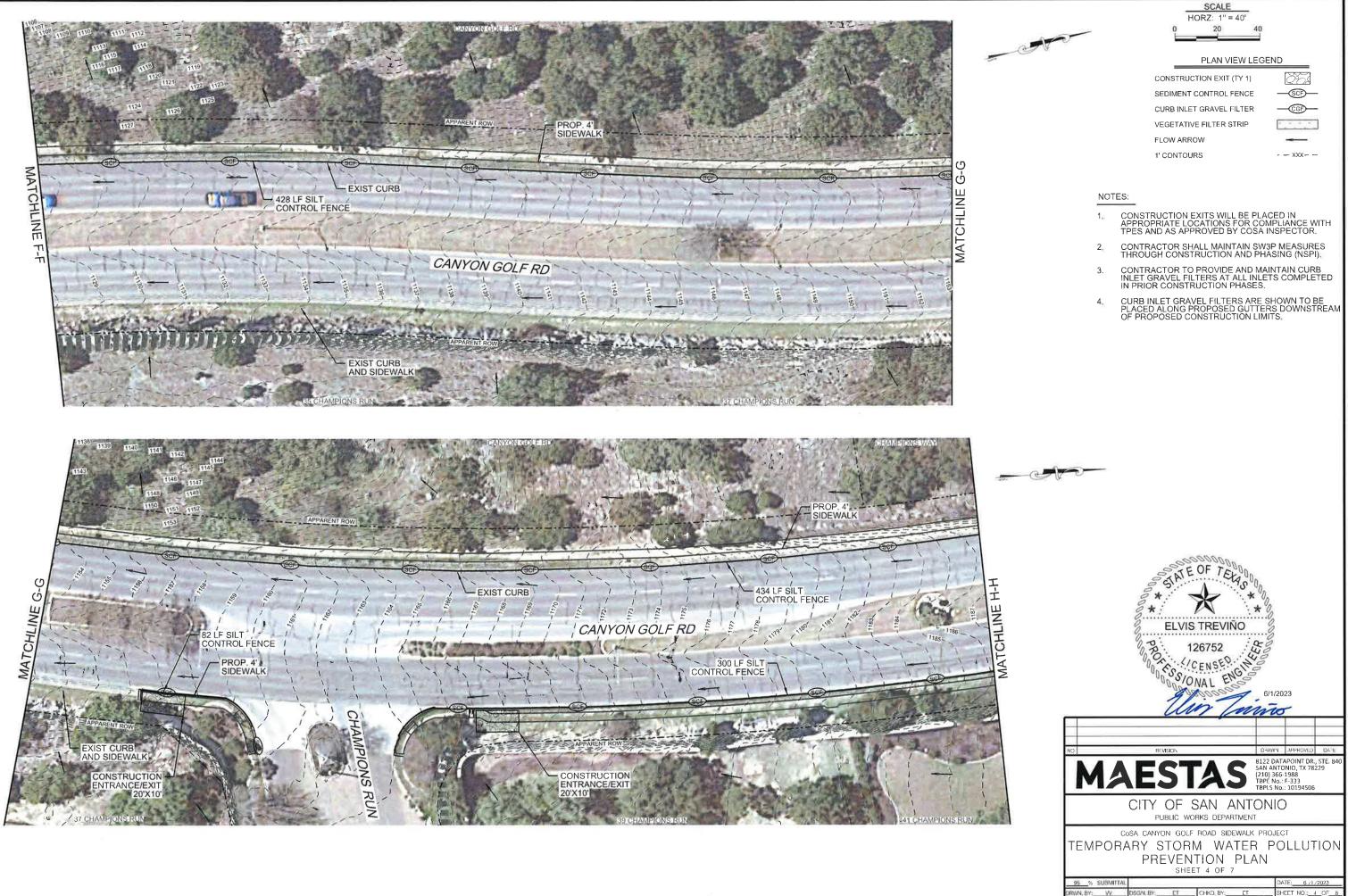
Austin Regional Office	San Antonio Regional Office
12100 Park 35 Circle, Bldg A	14250 Judson Road
Austin, Texas 78753-1808	San Antonio, Texas 78233-4480
Phone (512) 339-2929	Phone (210) 490-3096
Fax (512) 339-3795	Fax (210) 545-4329

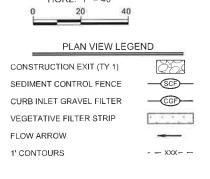


PUBLIC WORKS DEPARTMENT COSA CANYON GOLF ROAD SIDEWALK PROJECT TEMPORARY STORM WATER POLLUTION PREVENTION PLAN SHEET 1 OF 7 255 % SUBMITTAL DATE: 6./1/2023 DRVM. BY V DISGN. BY ET CHKD. BY ET SHEET NO: 1 OF 8

3 9:04:33 AM

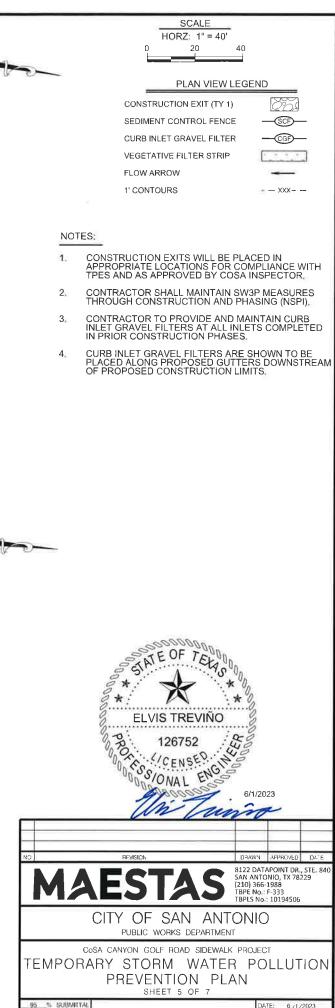
CITY OF SAN ANTONIO PUBLIC WORKS DEPARTMENT CGSA CANYON GOLF ROAD SIDEWALK PROJECT TEMPORARY STORM WATER POLLUTION PREVENTION PLAN SHEET 2 OF 7 95 SUBMITAL DRIVE, W. DSGN, BY. _____ CHKD, BY. _____ SHEET NO: 2, OF B

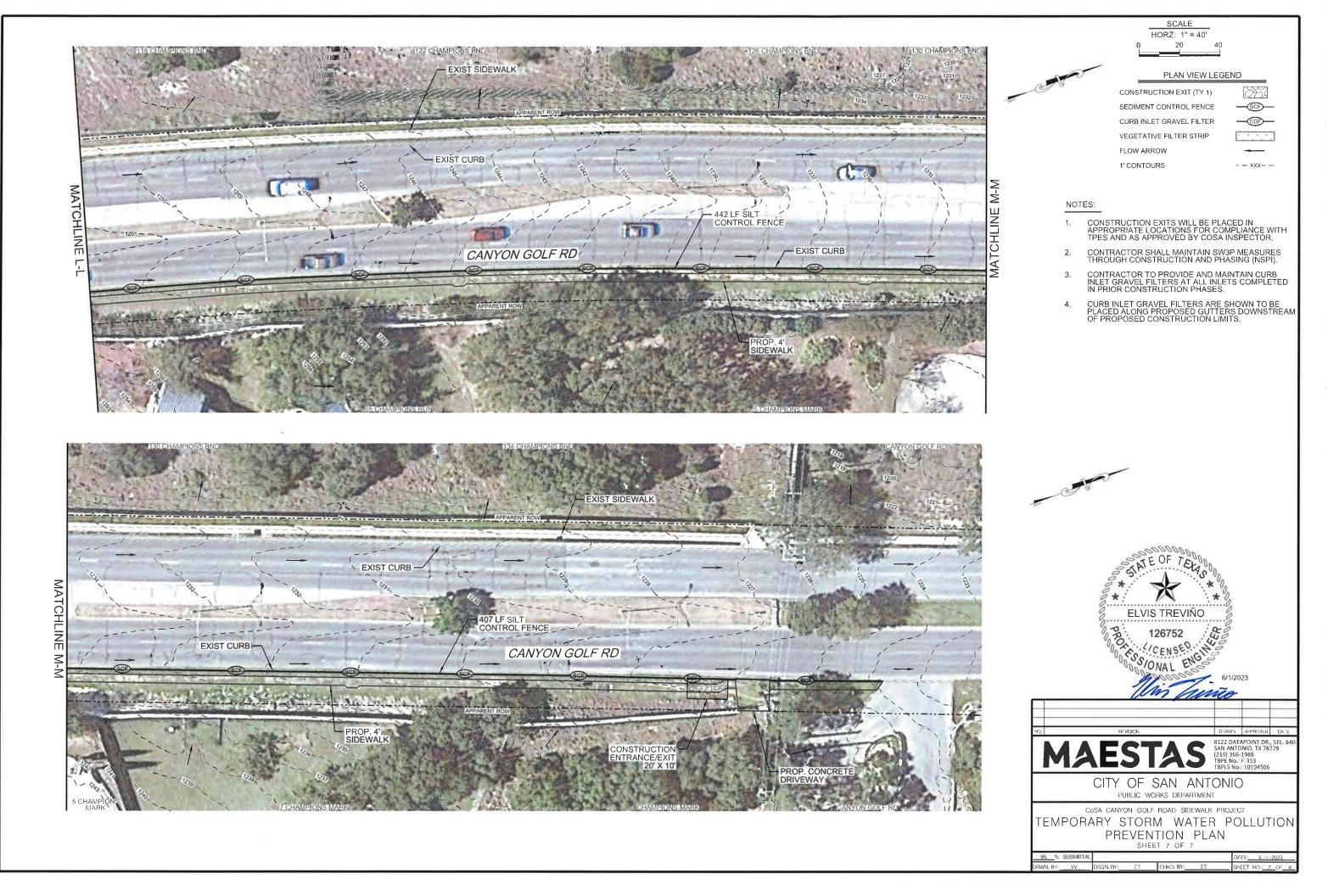

95 % SUBMITTAL

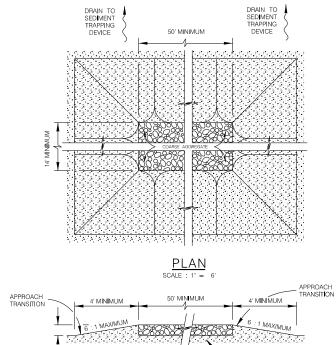

DATE: 6 /1 /2023 SHEET NO : 3 01

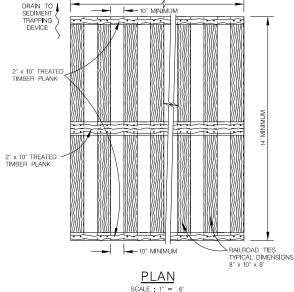
CHICO I

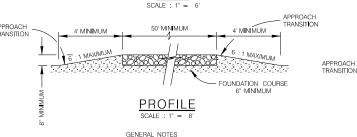
רקובראואאטטט ואור גא עיראר אעפאנג דרקובנא עס י נאטט דוונציטס טט - בזועונטוודיפוופוויניטאאטטאייזיי.

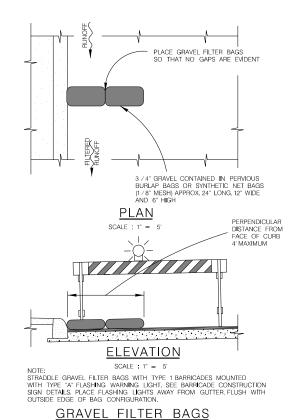

/2023 9:04:43 AM Z:Projects/M308 H


9:05:04 AM ZAProjects/M308 IMP 23 WPAP Side




SHEET 5 OF 7							
	%	SUBMITTAL					DATE: 6 /1/2023
	DRWN, BY	W	DSGN. BY:	ET	CHKD, BY:	ET	SHEET NO : 5 OF


023 9:05:14 AM



50' MINIMUN

- 1. THE LENGTH OF THE TYPE 1 CONSTRUCTION EXIT SHALL BE AS INDICATED ON THE PLANS, BUT NOT LESS THAN 50'.
- 2. THE COARSE AGGREGATE SHOULD BE OPEN GRADED WITH A SIZE OF 4" TO 8"
- 3. THE APPROACH TRANSITIONS SHOULD BE NO STEEPER THAN 6 :1 AND CONSTRUCTED AS DIRECTED BY THE ENGINEER.
- 4. THE CONSTRUCTION EXIT FOUNDATION COURSE SHALL BE FLEXIBLE BASE, BITUMINOUS CONCRETE, PORTLAND CEMENT CONCRETE OR OTHER MATERIAL AS APPROVED BY THE ENGINEER.
- 5. THE CONSTRUCTION EXIT SHALL BE GRADED TO ALLOW DRAINAGE TO A SEDIMENT TRAPPING DEVICE.
- 6. THE GUIDELINES SHOWN HEREON ARE SUGGESTIONS ONLY AND MAY BE MODIFIED BY THE ENGINEER.

CONSTRUCTION EXIT - TYPE 1

4. THE APPROACH TRANSITIONS SHOULD BE NO STEEPER THAN 6 :1 AND CONSTRUCTED AS DIRECTED BY THE ENGINEER.

50° MINIMUM

<u>PROFILE</u>

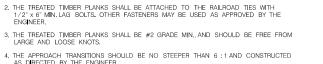
SCALE : 1" = 6

GENERAL NOTES

1 THE LENGTH OF THE TYPE 2 CONSTRUCTION EXIT SHALL BE AS INDICATED ON THE PLANS, BUT NOT LESS THAN 50'.

4' MINIMUN


MAXIMUN


- 7. THE GUIDELINES SHOWN HEREON ARE SUGGESTIONS ONLY AND MAY BE MODIFIED BY THE ENGINEER.

CONSTRUCTION EXIT - TYPE 2

- 5. THE CONSTRUCTION EXIT FOUNDATION COURSE SHALL BE FLEXIBLE BASE, BITUMINOUS CONCRETE, PORTLAND CEMENT CONCRETE OR OTHER MATERIAL AS APPROVED BY THE ENGINEER.

- 6. THE CONSTRUCTION EXIT SHOULD BE GRADED TO ALLOW DRAINAGE TO A SEDIMENT TRAPPING DEVICE.

2. THE TYPE 3 CONSTRUCTION EXIT MAY BE CONSTRUCTED FROM OPEN GRADED CRUSHED STONE WITH A SIZE OF 2 TO 4 INCHES SPREAD A MINIMUM OF 4 INCHES THICK TO THE LIMITS SHOWN ON THE PLANS. 3. THE TREATED TIMBER PLANKS SHALL BE #2 GRADE MIN., AND SHOULD BE FREE FROM LARGE AND LOOSE KNOTS.

R.O.W. LINE

- DISTURBED SOIL

1/2" MINIMUM THICKNESS PLYWOOD OR PRESSED -WAFER BOARD SHEETS

TRANSITION

4' MINIMUM

- FOUNDATION COURSE 6" MINIMUM

ХІМі н

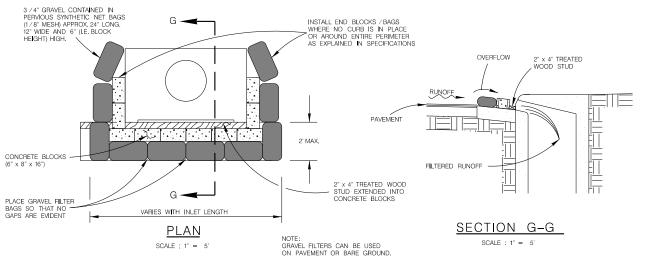
1/2" MINIMUM THICKNESS PLYWOOD OR PRESSED WAFER BOARD SHEETS

4. THE GUIDELINES SHOWN HEREON ARE SUGGESTIONS ONLY AND MAY BE MODIFIED BY THE ENGINEER.

SECTION A-A

GENERAL NOTES

SCALE : 1" = 2'


PAVED BOADW

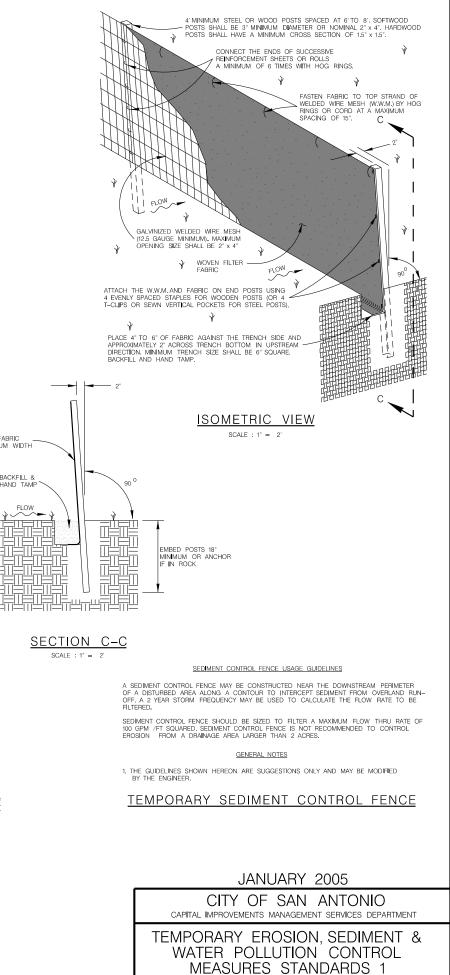
<u>plan</u>

SCALE : 1" = 20

CONSTRUCTION EXIT - TYPE 3

CURB INLET GRAVEL FILTER

SEE NOTE 2


2" x 8" TREATED TIMBERS NAILED ONTO ABUTTED ENDS OF WOOD SHEETS

2" x 8" TREATED TIMBERS - NAILED ONTO ABUTTED ENDS OF WOOD SHEETS

16 PENNY NAILS @ 1'ON CENTERS

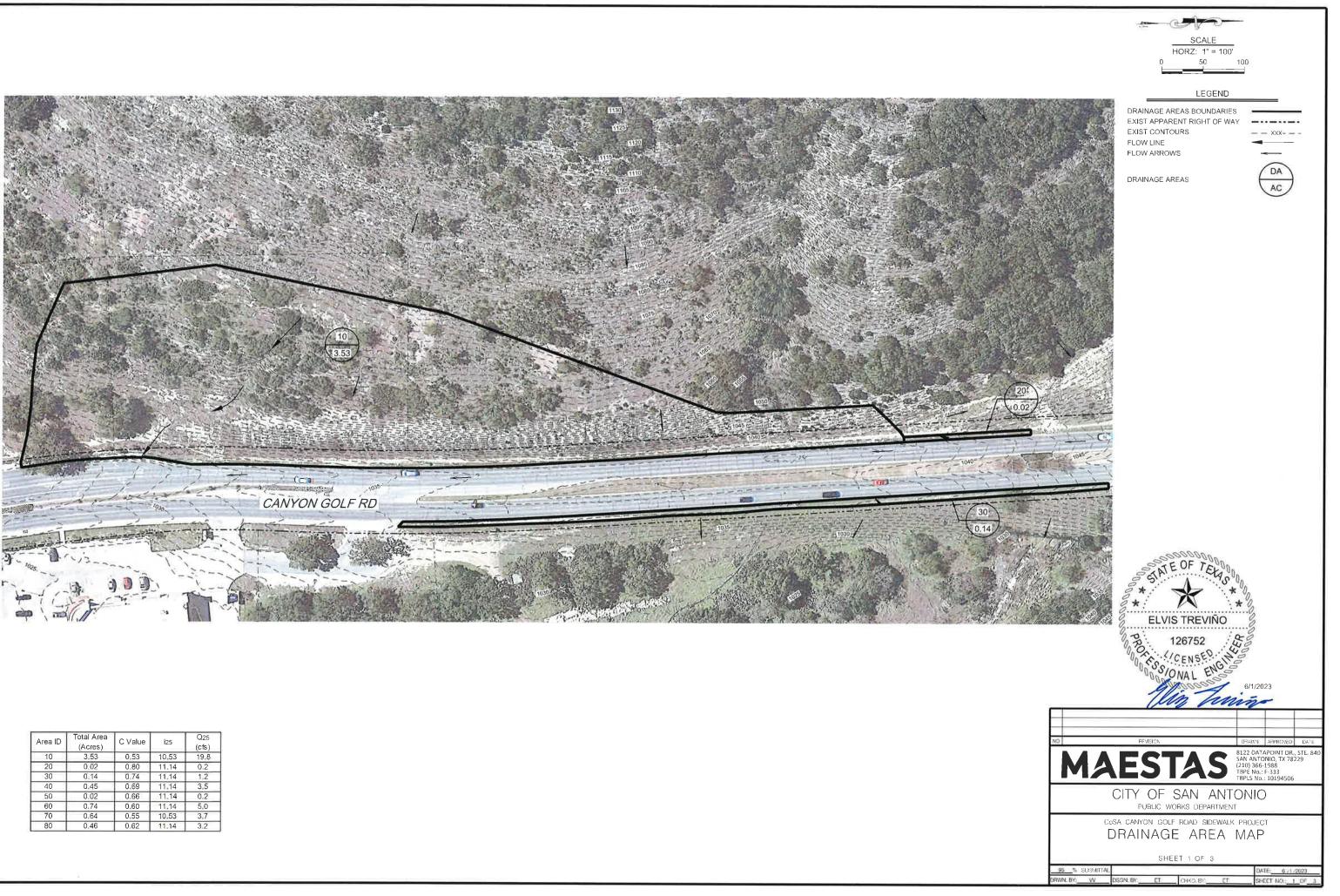
DISTURBED

SOIL AREA

95 % SUBMITTAL PROJECT NO.

SHEET NO 8 OF

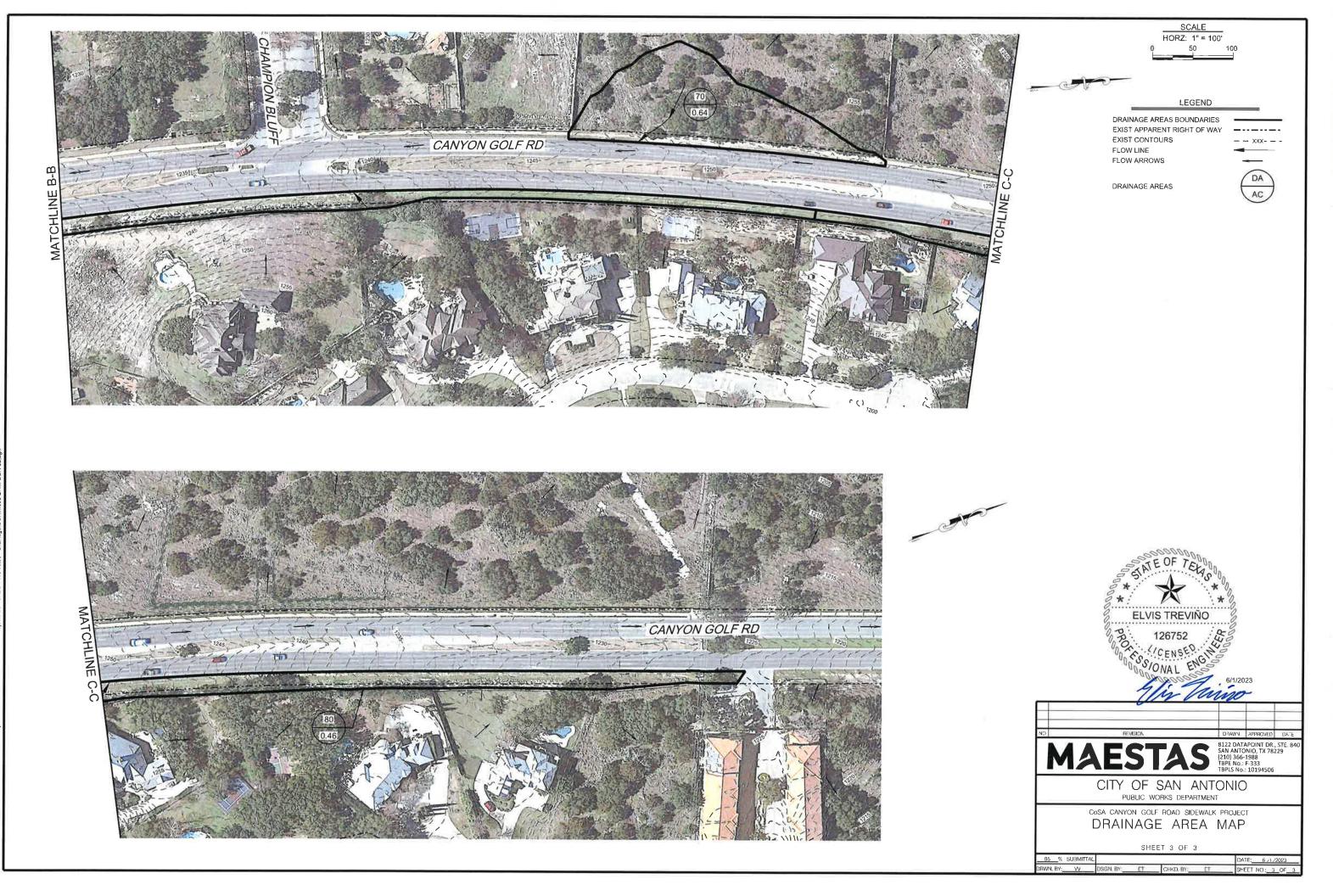
ATTACHMENT E – Request to Temporarily Seal a Feature


Not applicable.

ATTACHMENT F – Structural Practices


Sediment generated by the proposed activities will be controlled through the use of silt fencing and gravel filter bags. Construction vehicle traffic will be routed in a manner to avoid, where possible, creating loose sediment or mud that could enter waterways. The vegetative filter strips shall be installed using sod to have immediate sediment reduction.

ATTACHMENT G – Drainage Area Map


Attached – see the following sheet.

<u></u>		-		-
Area ID	Total Area	C Value	25	Q25
7 fied ib	(Acres)	O vuide	125	(cfs)
10	3.53	0.53	10.53	19.8
20	0,02	0.80	11.14	0.2
30	0.14	0.74	11.14	1.2
40	0.45	0.69	11.14	3.5
50	0.02	0.66	11.14	0.2
60	0.74	0,60	11.14	5.0
70	0,64	0.55	10.53	3.7
80	0.46	0.62	11.14	3.2

5/12/2023

ATTACHMENT H – Temporary Sediment Pond Plan and Calculations

Sediment ponds are not planned for this project.

ATTACHMENT I – Inspection and Maintenance

Key to maintaining the performance of and efficiency of the temporary BMPs is inspection and repair when needed. The project will use an established schedule of inspection to identify the weak or failing sections of the sediment controls and institute repairs immediately to ensure the continued performance of the installed BMPs. BMPs will be inspected at least weekly and after each rain event. Damaged BMPs will either be repaired or replaced as needed. Staging of the project activities will also be used to reduce the amount of ground damage to minimize the potential for sediment to enter the waterways. The areas adjacent to creeks and drainage ways shall have priority followed by protecting storm sewer inlets. If storms damage the BMPs, efforts will be made to immediately to restore them to original performance levels.

Silt Fence

- (1) Inspection will be made weekly or after each rainfall event and repair or replacement should be made promptly as needed by the contractor.
- (2) Remove sediment when buildup reaches 6 inches. Accumulated silt will be removed after each rainfall and disposed of in a manner which will not cause additional siltation.
- (3) Replace any torn fabric or install a second line of fencing parallel to the torn section.
- (4) Dikes will be Inspected and realigned as needed to prevent gaps between sections.
- (5) Replace or repair any sections crushed or collapsed during construction activity. If a section of fence is obstructing vehicular access, consider relocating it to a spot where it will provide equal protection, but will not obstruct vehicles. A triangular filter dike may be preferable to a silt fence at common vehicle access points.
- (6) When construction is complete, the sediment should be disposed of in a manner that will not cause additional siltation and the prior location of the silt fence should be revegetated. The fence itself should be disposed of in an approved landfill.

Construction Exit

- (1) Inspection will be made weekly or after each rainfall event and repair or replacement should be made promptly as needed by the contractor.
- (2) The entrance should be maintained in a condition which will prevent tracking or flowing of sediment onto public rights-of-way. This may require periodic top dressing with additional stone as conditions demand and repair and/or cleanout of any measures used to trap sediment.
- (3) All sediment spilled, dropped, washed, or tracked onto public rights-of-way should be removed immediately by contractor.
- (4) When necessary, wheels should be cleaned to remove sediment prior to entrance onto public right-of-way.

- (5) When washing is required, it should be done on an area stabilized with crushed stone that drains into an approved sediment trap or sediment basin.
- (6) All sediment should be prevented from entering any storm drain, ditch, or water course by using approved methods.

Gravel Filter Bags

- (1) Inspections should be made weekly and after each rainfall by the responsible party. For installations in streambeds, additional daily inspections should be made. Repair or replacement should be made promptly as needed by the contractor.
- (2) Remove sediment when buildup reaches a depth of 3 inches. Removed sediment should be deposited in a suitable area and in such a manner that it will not erode.
- (3) Check placement of device to prevent gaps between device and curb.
- (4) Any loose gravel and torn bags will be repaired.
- (5) The berm will be reshaped as needed during inspection.
- (6) The berm will be replaced when the structure ceases to function as intended due to silt accumulation among the rocks, washout, construction traffic damage, etc.
- (7) The rock filter bags will be left in place until all upstream areas are stabilized and accumulated silt removed.

ATTACHMENT J – Schedule of Interim and Permanent Soil Stabilization Practices

Interim on-site stabilization measures, which are continuous, will include minimizing soil disturbances by exposing the smallest practical area of land required for the shortest period of time and maximizing use of natural vegetation. As soon as practical, all disturbed soil will be stabilized as per project specifications in accordance with pages 1-35 to 1-60 of TCEQ's Technical Guidance Manual (TGM) RG-348 (2005). Mulching, netting, erosion blankets and seeding are acceptable.

The management of land by using ground cover reduces erosion by reducing the flow rate of runoff and the raindrop impact. Bare soils should be seeded or otherwise stabilized within 14 calendar days after final grading or where construction activity has temporarily ceased for more than 21 days. Stabilization will involve simply sodding and fertilizing. Sediment that has escaped the site due to the failure of sediment and erosion controls should be removed as soon as possible to minimize offsite impacts. Permission should be obtained from adjacent landowners prior to offsite sediment removal.

Permanent Stormwater Section

Texas Commission on Environmental Quality

for Regulated Activities on the Edwards Aquifer Recharge Zone and Relating to 30 TAC §213.5(b)(4)(C), (D)(Ii), (E), and (5), Effective June 1, 1999

To ensure that the application is administratively complete, confirm that all fields in the form are complete, verify that all requested information is provided, consistently reference the same site and contact person in all forms in the application, and ensure forms are signed by the appropriate party.

Note: Including all the information requested in the form and attachments contributes to more streamlined technical reviews.

Signature

To the best of my knowledge, the responses to this form accurately reflect all information requested concerning the proposed regulated activities and methods to protect the Edwards Aquifer. This **Permanent Stormwater Section** is hereby submitted for TCEQ review and executive director approval. The application was prepared by:

Print Name of Customer/Agent: Elvis Treviño, PE

Date: 06/01/2023

Signature of Customer/Agent

Regulated Entity Name: CoSA Canyon Golf Road Sidewalk Project

Permanent Best Management Practices (BMPs)

Permanent best management practices and measures that will be used during and after construction is completed.

1. Permanent BMPs and measures must be implemented to control the discharge of pollution from regulated activities after the completion of construction.

🗌 N/A

2. These practices and measures have been designed, and will be constructed, operated, and maintained to insure that 80% of the incremental increase in the annual mass loading of total suspended solids (TSS) from the site caused by the regulated activity is removed. These quantities have been calculated in accordance with technical guidance prepared or accepted by the executive director.

The TCEQ Technical Guidance Manual (TGM) was used to design permanent BMPs and measures for this site.

A technical guidance other than the TCEQ TGM was used to design permanent BMPs and measures for this site. The complete citation for the technical guidance that was used is: _____

- N/A
- 3. Owners must insure that permanent BMPs and measures are constructed and function as designed. A Texas Licensed Professional Engineer must certify in writing that the permanent BMPs or measures were constructed as designed. The certification letter must be submitted to the appropriate regional office within 30 days of site completion.

____ N/A

- 4. Where a site is used for low density single-family residential development and has 20 % or less impervious cover, other permanent BMPs are not required. This exemption from permanent BMPs must be recorded in the county deed records, with a notice that if the percent impervious cover increases above 20% or land use changes, the exemption for the whole site as described in the property boundaries required by 30 TAC §213.4(g) (relating to Application Processing and Approval), may no longer apply and the property owner must notify the appropriate regional office of these changes.
 - The site will be used for low density single-family residential development and has 20% or less impervious cover.
 - The site will be used for low density single-family residential development but has more than 20% impervious cover.
 - The site will not be used for low density single-family residential development.
- 5. The executive director may waive the requirement for other permanent BMPs for multifamily residential developments, schools, or small business sites where 20% or less impervious cover is used at the site. This exemption from permanent BMPs must be recorded in the county deed records, with a notice that if the percent impervious cover increases above 20% or land use changes, the exemption for the whole site as described in the property boundaries required by 30 TAC §213.4(g) (relating to Application Processing and Approval), may no longer apply and the property owner must notify the appropriate regional office of these changes.
 - Attachment A 20% or Less Impervious Cover Waiver. The site will be used for multi-family residential developments, schools, or small business sites and has 20% or less impervious cover. A request to waive the requirements for other permanent BMPs and measures is attached.
 - The site will be used for multi-family residential developments, schools, or small business sites but has more than 20% impervious cover.
 - The site will not be used for multi-family residential developments, schools, or small business sites.
- 6. Attachment B BMPs for Upgradient Stormwater.

	 A description of the BMPs and measures that will be used to prevent pollution of surface water, groundwater, or stormwater that originates upgradient from the site and flows across the site is attached. No surface water, groundwater or stormwater originates upgradient from the site and flows across the site, and an explanation is attached. Permanent BMPs or measures are not required to prevent pollution of surface water, groundwater, or stormwater that originates upgradient from the site and flows across the site, and an explanation is attached.
7.	Attachment C - BMPs for On-site Stormwater.
	 A description of the BMPs and measures that will be used to prevent pollution of surface water or groundwater that originates on-site or flows off the site, including pollution caused by contaminated stormwater runoff from the site is attached. Permanent BMPs or measures are not required to prevent pollution of surface water or groundwater that originates on-site or flows off the site, including pollution caused by contaminated stormwater runoff.
8.	Attachment D - BMPs for Surface Streams. A description of the BMPs and measures that prevent pollutants from entering surface streams, sensitive features, or the aquifer is attached. Each feature identified in the Geologic Assessment as sensitive has been addressed.
	□ N/A
9.	The applicant understands that to the extent practicable, BMPs and measures must maintain flow to naturally occurring sensitive features identified in either the geologic assessment, executive director review, or during excavation, blasting, or construction.
	 The permanent sealing of or diversion of flow from a naturally-occurring sensitive feature that accepts recharge to the Edwards Aquifer as a permanent pollution abatement measure has not been proposed. Attachment E - Request to Seal Features. A request to seal a naturally-occurring sensitive feature, that includes, for each feature, a justification as to why no reasonable and practicable alternative exists, is attached.
10.	Attachment F - Construction Plans. All construction plans and design calculations for the proposed permanent BMP(s) and measures have been prepared by or under the direct supervision of a Texas Licensed Professional Engineer, and are signed, sealed, and dated. The plans are attached and, if applicable include:
	 Design calculations (TSS removal calculations) TCEQ construction notes All geologic features All proposed structural BMP(s) plans and specifications
	□ N/A

in	ttachment G - Inspection, Maintenance, Repair and Retrofit Plan. A plan for the spection, maintenance, repairs, and, if necessary, retrofit of the permanent BMPs and easures is attached. The plan includes all of the following:
\geq	Prepared and certified by the engineer designing the permanent BMPs and measures Signed by the owner or responsible party
_	Procedures for documenting inspections, maintenance, repairs, and, if necessary retrofit A discussion of record keeping procedures
N/	/A
re	ttachment H - Pilot-Scale Field Testing Plan. Pilot studies for BMPs that are not acognized by the Executive Director require prior approval from the TCEQ. A plan for lot-scale field testing is attached.
🔀 N/	/Α
of	ttachment I -Measures for Minimizing Surface Stream Contamination. A description the measures that will be used to avoid or minimize surface stream contamination and changes in the way in which water enters a stream as a result of the construction and development is attached. The measures address increased stream flashing, the

creation of stronger flows and in-stream velocities, and other in-stream effects caused

_____N/A

degradation.

Responsibility for Maintenance of Permanent BMP(s)

by the regulated activity, which increase erosion that results in water quality

Responsibility for maintenance of best management practices and measures after construction is complete.

14. The applicant is responsible for maintaining the permanent BMPs after construction until such time as the maintenance obligation is either assumed in writing by another entity having ownership or control of the property (such as without limitation, an owner's association, a new property owner or lessee, a district, or municipality) or the ownership of the property is transferred to the entity. Such entity shall then be responsible for maintenance until another entity assumes such obligations in writing or ownership is transferred.

🗌 N/A

15. A copy of the transfer of responsibility must be filed with the executive director at the appropriate regional office within 30 days of the transfer if the site is for use as a multiple single-family residential development, a multi-family residential development, or a non-residential development such as commercial, industrial, institutional, schools, and other sites where regulated activities occur.

___ N/A

PERMANENT STORMWATER SECTION ATTACHMENTS

ATTACHMENT A - 20% or Less Impervious Cover Waiver

Not applicable.

ATTACHMENT B - BMPs for Upgradient Stormwater

Under proposed conditions, offsite surface water will flow through the project limits on the west and east side of Canyon Golf Rd into the road. From these areas will enter and remain in the street and will be finally allowed to enter the Mud Creek from the east side of the Canyon Golf Rd. The proposed sidewalk will slope towards the vegetated filter strip along the east and west sides of the sidewalk, allowing the runoff from the proposed segment of sidewalk to pass the proposed BMP.

ATTACHMENT C – BMPs for On-site Stormwater

Treatment for the runoff from the drainage area on the newly constructed sidewalk shall be addressed by vegetative filter strip placed on the east side for 2,397 LF of sidewalk and on the west side for 148 LF of sidewalk along west side of the Canyon Golf Rd from Stone Oak Pkwy to south of Wilderness Oak. And vegetative filter strip placed on west side of sidewalk along east side of the Canyon Golf Rd from Stone Oak Pkwy to South of Wilderness Oak.

ATTACHMENT D – BMPS FOR SURFACE STREAMS

No sensitive geologic features exist on the project site. The proposed project will only create new pedestrian impervious cover and will not treat storm-water runoff from Canyon Golf Rd prior to being discharged into the existing channel located to the south of the proposed improvements. The nature of the sidewalk improvement should not increase risk to surface streams. Treatment of the sidewalk by vegetative filter strip will provide protection to surface streams.

Action plan if sensitive features are encountered:

- 1. Immediately stop construction in the vicinity of the feature.
- 2. Notify TCEQ San Antonio Regional office staff.
- 3. Contact a qualified professional Geologist (and Karst biologist, if necessary) to assess the sensitivity of the feature.
- 4. If necessary, install temporary erosion and sedimentation controls to protect the feature from surface contamination.
- 5. Develop and submit to the TCEQ for review a feature closer and/or protection plan.
- 6. Commence construction in the vicinity of the feature only after the feature closure/protection plans has been approved by the TCEQ and the feature has been permanently protected from surface contamination.

ATTACHMENT E – Request to Seal Features

Not applicable.

ATTACHMENT F – Construction Plans/Design Calculations

Attached. See Site Plan and Storm Water Pollution Prevention Plan.

Texas Commission on Environmental Quality TSS Removal Calculations 04-20-2009 Project Name: Canyon Golf Road Sidewalk Project Date Prepared: 6/1/2023 Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell. Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348. Characters shown in red are data entry fields. Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spreadsheet. 1. The Required Load Reduction for the total project: Calculations from RG-348 Pages 3-27 to 3-30 Page 3-29 Equation 3.3: $L_M = 27.2(A_N \times P)$ where: L_{M TOTAL PROJECT} = Required TSS removal resulting from the proposed development = 80% of increased load A_N = Net increase in impervious area for the project P = Average annual precipitation, inches Site Data: Determine Required Load Removal Based on the Entire Project Bexar County = Total project area included in plan * = 1.07 acres Predevelopment impervious area within the limits of the plan * = 0.00 acres Total post-development impervious area within the limits of the plan* = 0.68 lacres Total post-development impervious cover fraction * = 0.63 **ELVIS TREVIÑO** 30 inches 126752 CENSED UII23 555 L_{M TOTAL PROJECT} = lbs. * The values entered in these fields should be for the total project area. Number of drainage basins / outfalls areas leaving the plan area = 8 2. Drainage Basin Parameters (This information should be provided for each basin): Drainage Basin/Outfall Area No. = 10 Total drainage basin/outfall area = 3.53 acres Predevelopment impervious area within drainage basin/outfall area = 0.00 acres Post-development impervious area within drainage basin/outfall area = 0.10 acres Post-development impervious fraction within drainage basin/outfall area = 0.03 L_{M THIS BASIN} = 85 lbs. 3. Indicate the proposed BMP Code for this basin. Proposed BMP = Vegetated Filter Strips Removal efficiency = 85 percent Aqualogic Cartridge Filter Bioretention Contech StormFilter Constructed Wetland Extended Detention Grassy Swale Retention / Irrigation Sand Filter

4. Calculate Maximum TSS Load Removed (L_R) for this Drainage Basin by the selected BMP Type.

RG-348 Page 3-33 Equation 3.7: L_R = (BMP efficiency) x P x (A_L x 34.6 + A_P x 0.54)

Stormceptor Vegetated Filter Strips

Vortechs Wet Basin Wet Vault

where:

 A_{C} = Total On-Site drainage area in the BMP catchment area

A_I = Impervious area proposed in the BMP catchment area

 A_P = Pervious area remaining in the BMP catchment area

 L_R = TSS Load removed from this catchment area by the proposed BMP

A _C =	3.53	acres
A _I =	0.10	acres
A _P =	3.43	acres
L _R =	139	lbs

5. Calculate Fraction of Annual Runoff to Treat the drainage basin / outfall area

Desired L _{M THIS BASIN} =	85	lbs.		
		100.		
F =	0.61			
6. Calculate Capture Volume required by the BMP Type for this drainage be	asin / outfa	ll area.	Calculations from RG-348	Pages 3-34 to 3-36
= Rainfall Depth = Post Development Runoff Coefficient	0.60 0.05	inches		
On-site Water Quality Volume =		cubic feet		
	Calculation	ns from RG-348	Pages 3-36 to 3-37	
Off-site area draining to BMP =	0.00	acres		
Off-site Impervious cover draining to BMP =		acres		
Impervious fraction of off-site area =				
Off-site Runoff Coefficient =				
Off-site Water Quality Volume =	0	cubic feet		
Storage for Sediment =	84			
Total Capture Volume (required water quality volume(s) x 1.20) =		cubic feet		
The following sections are used to calculate the required water quality vol	ume(s) for t	the selected BN	AP.	
The values for BMP Types not selected in cell C45 will show NA.	Destand			0.404-0.40
7. Retention/Irrigation System	Designed a	as Required in R	G-348 Page	es 3-42 to 3-46
Required Water Quality Volume for retention basin =	NA	cubic feet		
Irrigation Area Calculations:				
Soil infiltration/permeability rate =	0.1	in/hr	Enter determined permea	bility rate or assumed value of 0.1
Irrigation area =		square feet	t	
	NA	acres		
8. Extended Detention Basin System	Designed a	as Required in R	G-348 Page	es 3-46 to 3-51
	Ŭ		Ŭ	
Required Water Quality Volume for extended detention basin =	NA	cubic feet		
0 Filter and for Cond Filters	Designed	Demuined in D	D 240	
9. Filter area for Sand Filters	Designed	as Required in R	G-340 Page	es 3-58 to 3-63
9A. Full Sedimentation and Filtration System				
Water Quality Volume for sedimentation basin =	NA	cubic feet		
Minimum filter basin area =	NA	square feet	t	
Maximum sedimentation basin area = Minimum sedimentation basin area =		•	For minimum water depth For maximum water dept	

9B. Partial Sedimentation and Filtration System

Water Quality Volume for combined basins =	NA	cubic feet		
Minimum filter basin area =	NA	square feet		
Maximum sedimentation basin area = Minimum sedimentation basin area =			For minimum water For maximum water	
10. Bioretention System	Designed as	Required in R	G-348	Pages 3-63 to 3-65
Required Water Quality Volume for Bioretention Basin =	NA	cubic feet		
11. Wet Basins	Designed as	Required in R	G-348	Pages 3-66 to 3-71
Required capacity of Permanent Pool = Required capacity at WQV Elevation =		cubic feet cubic feet		pacity is 1.20 times the WQV IId be the Permanent Pool Capacity /.
12. Constructed Wetlands	Designed as	Required in R	G-348	Pages 3-71 to 3-73
Required Water Quality Volume for Constructed Wetlands =	NA	cubic feet		
<u>13. AquaLogic[™] Cartridge System</u>	Designed as	Required in R	G-348	Pages 3-74 to 3-78
** 2005 Technical Guidance Manual (RG-348) does not exempt the required	d 20% increas	e with mainte	nance contract with	AquaLogic [™] .
Required Sedimentation chamber capacity = Filter canisters (FCs) to treat WQV = Filter basin area (RIA _F) =	NA	cubic feet cartridges square feet		
14. Stormwater Management StormFilter® by CONTECH				
Required Water Quality Volume for Contech StormFilter System =	NA	cubic feet		
THE SIZING REQUIREMENTS FOR THE FOLLOWING BMPs / LOAD REMOV	VALS ARE BA	ASED UPON F	LOW RATES - NOT C	ALCULATED WATER QUALITY VOLUMES
15. Grassy Swales	Designed as	Required in R	G-348	Pages 3-51 to 3-54
Design parameters for the swale:				
Drainage Area to be Treated by the Swale = A = Impervious Cover in Drainage Area = Rainfall intensity = i = Swale Slope = Side Slope (z) = Design Water Depth = y = Weighted Runoff Coefficient = C =	= 1 = 1 =	acres acres .1 in/hr ft/ft ft		
A_{CS} = cross-sectional area of flow in Swale = P_W = Wetted Perimeter = R_H = hydraulic radius of flow cross-section = A_{CS}/P_W = n = Manning's roughness coefficient =	#DIV/0! #DIV/0!	sf feet feet .2		
15A. Using the Method Described in the RG-348				
Manning's Equation: $\Omega = 1.40 \text{ A}_{\odot} \text{ P}_{\odot}^{2/3} \text{ S}^{0.5}$	5			

Manning's Equation: $Q = 1.49 A_{CS} R_{H}^{2/3} S^{0.5}$

b = <u>0.134 x Q</u> - zy	=	#DIV/0!	feet
y ^{1.67} S ^{0.5}			

 $\mathbf{Q} = \mathbf{CiA} = \# \mathbf{D} | \mathbf{V} / 0 !$

To calculate the flow velocity in the swale:

V (Velocity of Flow in the swale) = Q/A_{CS} = #DIV/0! ft/sec

To calculate the resulting swale length:

L = Minimum Swale Length = V (ft/sec) * 300 (sec) = #DIV/0! feet

If any of the resulting values do not meet the design requirement set forth in RG-348, the design parameters must be modified and the solver rerun.

cfs

15B. Alternative Method using Excel Solver

Design Q = CiA =	#DIV/0! cfs			
Manning's Equation Q = Swale Width=	0.00 cfs 6.00 ft	Error 1 =	#DIV/0!	

Instructions are provided to the right (green comments).

Flow Velocity	#DIV/0!	ft/s
Minimum Length =	#DIV/0!	ft

Instructions are provided to the right (blue comments).

Design Width =		ft		
Design Discharge =	0.0	0 cfs	Error 2 =	#DIV/0!
Design Depth =	0.3	3 ft		
Flow Velocity =	#DIV/0!	cfs		
Minimum Length =	#DIV/0!	ft		

lbs

0.04 cubic feet/sec

If any of the resulting values do not meet the design requirement set forth in RG-348, the design parameters may be modified and the solver rerun. If any of the resulting values still do not meet the design requirement set forth in RG-348, widening the swale bottom value may not be possible.

16. Vegetated Filter Strips Designed as Required in RG-348 Pages 3-55 to 3-57 There are no calculations required for determining the load or size of vegetative filter strips. The 80% removal is provided when the contributing drainage area does not exceed 72 feet (direction of flow) and the sheet flow leaving the impervious cover is directed across 15 feet of engineered filter strips with maximum slope of 20% or across 50 feet of natural vegetation with a maximum slope of 10%. There can be a break in grade as long as no slope exceeds 20%. If vegetative filter strips are proposed for an interim permanent BMP, they may be sized as described on Page 3-56 of RG-348. 17. Wet Vaults Designed as Required in RG-348 Pages 3-30 to 3-32 & 3-79

> Required Load Removal Based upon Equation 3.3 = NA

First calculate the load removal at 1.1 in/hour

RG-348 Page 3-30 Equation 3.4: Q = CiA

C = runoff coefficient for the drainage area = 0.04 i = design rainfall intensity = 1.1 in/hour A = drainage area in acres = 1 acres

C = Runoff Coefficient = $0.546 (IC)^2 + 0.328 (IC) + 0.03$

Q = flow rate in cubic feet per second =

To solve for bottom width of the trapezoidal swale (b) using the Excel solver: Excel can simultaneously solve the "Design Q" (C217) vs "Manning's Q" (C219) by varying the "Swale Width" (C220). The required "Swale Width" occurs when the "Design Q" = "Manning's Q"

First, highlight Cell F219 (Error 1 value). The equation showing in the fx screen for Cell F219 should be "= \$C\$217-\$C\$219" Then click on "Tools" and "Solver". The "Solver Parameters" screen pops up. The value in the "Set Target cell" should be \$F\$219 "Error 1 =" The value in the "By Changing Cells" should be \$C\$220 "Swale Width" Click on solve.

The resulting "Swale Width" must be less than 10 feet to meet the requirements of the TGM. If the resulting "Swale Width" exceeds 10 feet then the design parameters must be revised and the solver run again. If there is not the option for "Solver" under "Tools"

Click on "Tools" and "Add Ins" and then check "Solver Add-in" Then proceed as instructed above.

If you would like to increase the bottom width of the trapezoidal swale (b): Excel can simultaneously solve the "Design Q" (C217) vs "Design Discharge" (C232) by varying the "Design Depth" (C233). The required "Design Depth" for a 10-foot bottom width occurs when the "Design Q" (C217) = the "Design Discharge" (C232). First set the desired bottom width in Cell C231. Highlight Cell F232. The equation showing in the fx screen for Cell F232 should be "= \$C\$217-\$C\$232" Click on "Tools" and "Solver". The "Solver Parameters" screen pops up. The value in the "Set Target cell" should be \$F\$232 "Error 2" The value in the "By Changing Cells" should be \$C\$233 "Design Depth" Click on solve. The resulting "Design Depth" must be equal to or less than 0.33 feet to meet the requirements of the TGM. If the resulting "Design Depth" exceeds 0.33 feet then the design parameters must be revised and the solver run again. First set the desired bottom width in Cell C231. Highlight Cell F232. The equation showing in the fx screen for Cell F232 should be "= \$C\$217-\$C\$232" Click on "Tools" and "Solver". The "Solver Parameters" screen pops up.

The value in the "Set Target cell" should be \$F\$232 "Error 2" The value in the "By Changing Cells" should be \$C\$233 "Design Depth" Click on solve.

The resulting "Design Depth" must be equal to or less than 0.33 feet to meet the requirements of the TGM. If the resulting "Design Depth" exceeds 0.33 feet then the design parameters must be revised and the solver run again.

RG-348 Page 3-31 Equation 3.5: $V_{OR} = Q/A$			
Q = Runoff rate calculated above = A = Water surface area in the wet vault =		4 cubic feet/sec 0 square feet	
V _{OR} = Overflow Rate =	0.0	0 feet/sec	
Percent TSS Removal from Figure 3-1 (RG-348 Page 3-31) =	5	3 percent	
Load removed by Wet Vault =	#VALUE!	lbs	
If a bypass occurs at a rainfall intensity of less than 1.1 in/hours Calculate the efficiency reduction for the actual rainfall intensity rate			
Actual Rainfall Intensity at which Wet Vault bypass Occurs =	0.	5 in/hour	
Fraction of rainfall treated from Figure 3-2 RG-348 Page 3-32 = Efficiency Reduction for Actual Rainfall Intensity =		<mark>5</mark> percent 3 percent	
Resultant TSS Load removed by Wet Vault =	#VALUE!	lbs	
18. Permeable Concrete	Designed as I	Required in RG-348	Pages 3-79 to 3-83
PERMEABLE CONCRETE MAY ONLY BE USED ON THE CONTRIBUTING ZO	DNE		
19. BMPs Installed in a Series	Designed as I	Required in RG-348	Pages 3-32
Michael E. Barrett, Ph.D., P.E. recommended that the coeffic	ient for E ₂ b	e changed from 0.5 to 0.65	i on May 3, 2006
E _{TOT} = [1 - ((1 - E ₁) X (1 - 0.65E ₂) x (1 - 0.25E ₃))] X 100 =	86.3	8 percent NET EFFICI	ENCY OF THE BMPs IN THE SERIES
EFFICIENCY OF FIRST BMP IN THE SERIES = E_1 =	75.0	0 percent	
EFFICIENCY OF THE SECOND BMP IN THE SERIES = E_2 =	70.0	0 percent	
EFFICIENCY OF THE THIRD BMP IN THE SERIES = E_3 =	0.0	0 percent	
THEREFORE, THE NET LOAD REMOVAL WOULD BE: $(A_1 AND A_P VALUES ARE FROM SECTION 3 ABOVE)$			
L _R = E _{TOT} X P X (A _I X 34.6 X A _P X0.54) =	141.5	4 lbs	
20. Stormceptor			
Required TSS Removal in BMP Drainage Area= Impervious Cover Overtreatment=	NA 0.0000	lbs ac	
TSS Removal for Uncaptured Area = BMP Sizing	0.00	lbs	
Effective Area =	NA	EA	
Calculated Model Size(s) = Actual Model Size (if multiple values provided in Calculated	#N/A		
Model Size or if you are choosing a larger model size) =	0	Model Size	
Surface Area =	#N/A	ft ²	
Overflow Rate =	#VALUE!	V _{or}	
Rounded Overflow Rate = BMP Efficiency % =	#VALUE! #VALUE!	V _{or} %	
L _R Value =	#VALUE!	lbs	
TSS Load Credit =	#VALUE!	lbs	
Is Sufficient Treatment Available? (TSS Credit <u>></u> TSS Uncapt.)	#VALUE!		
TSS Treatment by BMP (LM + TSS Uncapt.) =	#VALUE!		

. Vortech				
	Required TSS Removal in BMP Drain	age Area=	NA	lbs
	Impervious Cover Over	treatment=	0.0000	ac
	TSS Removal for Uncaptu	red Area =	0.00	lbs
	BMP Sizing			
	Effect	tive Area =	NA	EA
	Calculated Mode	∍l Size(s) =	#N/A	
	Actual Model Size (if choosing larger mo	idel size) =	Vx1000	Pick Model Size
	Surfa	ace Area =	7.10	ft ²
	Overf	low Rate =	#VALUE!	V _{or}
	Rounded Overf	low Rate =	#VALUE!	V _{or}
	BMP Effic	ciency % =	#VALUE!	%
		L _R Value =	#VALUE!	lbs
	TSS Loa	ad Credit =	#VALUE!	lbs
	Is Sufficient Treatment Available? (TSS Credit \geq TS	S Uncapt.)	#VALUE!	
	TSS Treatment by BMP (LM + TSS	Uncapt.) =	#VALUE!	

Texas Commission on Environmental Quality TSS Removal Calculations 04-20-2009 Project Name: Canyon Golf Road Sidewalk Project Date Prepared: 6/1/2023 Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell. Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348. Characters shown in red are data entry fields. Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spreadsheet. 1. The Required Load Reduction for the total project: Calculations from RG-348 Pages 3-27 to 3-30 Page 3-29 Equation 3.3: L_M = 27.2(A_N x P) where: L_{M TOTAL PROJECT} = Required TSS removal resulting from the proposed development = 80% of increased load A_N = Net increase in impervious area for the project P = Average annual precipitation, inches Site Data: Determine Required Load Removal Based on the Entire Project County = Bexar Total project area included in plan * = 1.07 acres Predevelopment impervious area within the limits of the plan * = 0.00 acres Total post-development impervious area within the limits of the plan* = 0.68 lacres Total post-development impervious cover fraction * : 0.63 **ELVIS TREVIÑO** 126752 CENSED SS/ONAL ENG 6/1/23 Min Mino D: 30 inches 555 lbs. L_{M TOTAL PROJECT} = * The values entered in these fields should be for the total project area. Number of drainage basins / outfalls areas leaving the plan area = 8 2. Drainage Basin Parameters (This information should be provided for each basin): Drainage Basin/Outfall Area No. = 20 Total drainage basin/outfall area = 0.02 acres Predevelopment impervious area within drainage basin/outfall area = 0.00 acres Post-development impervious area within drainage basin/outfall area = 0.01 acres Post-development impervious fraction within drainage basin/outfall area = 0.68 L_{M THIS BASIN} = 12 lbs. 3. Indicate the proposed BMP Code for this basin. Proposed BMP = Vegetated Filter Strips Removal efficiency = 85 percent Aqualogic Cartridge Filter Bioretention Contech StormFilter Constructed Wetland Extended Detention Grassy Swale Retention / Irrigation Sand Filter Stormceptor Vegetated Filter Strips Vortechs Wet Basin

4. Calculate Maximum TSS Load Removed (L_R) for this Drainage Basin by the selected BMP Type.

RG-348 Page 3-33 Equation 3.7: L_R = (BMP efficiency) x P x (A_I x 34.6 + A_P x 0.54)

Wet Vault

 A_{C} = Total On-Site drainage area in the BMP catchment area

A_I = Impervious area proposed in the BMP catchment area

 A_P = Pervious area remaining in the BMP catchment area

 L_R = TSS Load removed from this catchment area by the proposed BMP

0.02	acres
0.01	acres
0.01	acres
13	lbs
	0.01 0.01

Desired L _{M THIS BASIN} =	12	lbs.		
F =	0.93			
		l area	Calculations from RG-34	19 Deges 2 24 to 2 26
6. Calculate Capture Volume required by the BMP Type for this drainage back		<u>i died.</u>	Calculations from KG-34	48 Pages 3-34 to 3-36
Rainfall Depth = Post Development Runoff Coefficient = On-site Water Quality Volume =	0.48	inches cubic feet		
	Calculation	s from RG-348	Pages 3-36 to 3-37	
Off-site area draining to BMP		acres		
Off-site Impervious cover draining to BMP = Impervious fraction of off-site area =		acres		
Off-site Runoff Coefficient =				
Off-site Water Quality Volume =	0	cubic feet		
Storage for Sediment =	17			
Total Capture Volume (required water quality volume(s) x 1.20) =		cubic feet		
The following sections are used to calculate the required water quality volutions for BMP Types not selected in cell C45 will show NA.	ume(s) for t	he selected BN	IP.	
7. Retention/Irrigation System	Designed a	s Required in R	G-348 P	ages 3-42 to 3-46
Required Water Quality Volume for retention basin =		cubic feet		•
Irrigation Area Calculations:				
Soil infiltration/permeability rate = Irrigation area =		in/hr square feet acres		neability rate or assumed value of 0.1
8. Extended Detention Basin System	Designed a	is Required in R	G-348 Pa	ages 3-46 to 3-51
Required Water Quality Volume for extended detention basin =	NA	cubic feet		
9. Filter area for Sand Filters	Designed a	s Required in R	G-348 P	ages 3-58 to 3-63
9A. Full Sedimentation and Filtration System				
Water Quality Volume for sedimentation basin =	NA	cubic feet		
Minimum filter basin area =	NA	square feet		
Maximum sedimentation basin area = Minimum sedimentation basin area =		•	For minimum water de For maximum water de	

Water Quality Volume for combined basins =	NA	cubic feet		
Minimum filter basin area =	NA	square feet		
Maximum sedimentation basin area = Minimum sedimentation basin area =			For minimum water For maximum water	
10. Bioretention System	Designed as	Required in R	G-348	Pages 3-63 to 3-65
Required Water Quality Volume for Bioretention Basin =	NA	cubic feet		
11. Wet Basins	Designed as	Required in R	G-348	Pages 3-66 to 3-71
Required capacity of Permanent Pool = Required capacity at WQV Elevation =		cubic feet cubic feet		pacity is 1.20 times the WQV IId be the Permanent Pool Capacity /.
12. Constructed Wetlands	Designed as	Required in R	G-348	Pages 3-71 to 3-73
Required Water Quality Volume for Constructed Wetlands =	NA	cubic feet		
<u>13. AquaLogic[™] Cartridge System</u>	Designed as	Required in R	G-348	Pages 3-74 to 3-78
** 2005 Technical Guidance Manual (RG-348) does not exempt the required	d 20% increas	e with mainte	nance contract with	AquaLogic [™] .
Required Sedimentation chamber capacity = Filter canisters (FCs) to treat WQV = Filter basin area (RIA _F) =	NA	cubic feet cartridges square feet		
14. Stormwater Management StormFilter® by CONTECH				
Required Water Quality Volume for Contech StormFilter System =	NA	cubic feet		
THE SIZING REQUIREMENTS FOR THE FOLLOWING BMPs / LOAD REMOV	VALS ARE BA	ASED UPON F	LOW RATES - NOT C	ALCULATED WATER QUALITY VOLUMES
15. Grassy Swales	Designed as	Required in R	G-348	Pages 3-51 to 3-54
Design parameters for the swale:				
Drainage Area to be Treated by the Swale = A = Impervious Cover in Drainage Area = Rainfall intensity = i = Swale Slope = Side Slope (z) = Design Water Depth = y = Weighted Runoff Coefficient = C =	= 1 = 1 =	acres acres .1 in/hr ft/ft ft		
A_{CS} = cross-sectional area of flow in Swale = P_W = Wetted Perimeter = R_H = hydraulic radius of flow cross-section = A_{CS}/P_W = n = Manning's roughness coefficient =	#DIV/0! #DIV/0!	sf feet feet .2		
15A. Using the Method Described in the RG-348				
Manning's Equation: $\Omega = 1.40 \text{ A}_{\odot} \text{ P}_{\odot}^{2/3} \text{ S}^{0.5}$	5			

b = <u>0.134 x Q</u> - zy	=	#DIV/0!	feet
y ^{1.67} S ^{0.5}			

 $\mathbf{Q} = \mathbf{CiA} = \# \mathbf{D} | \mathbf{V} / 0 !$

To calculate the flow velocity in the swale:

V (Velocity of Flow in the swale) = Q/A_{CS} = #DIV/0! ft/sec

To calculate the resulting swale length:

L = Minimum Swale Length = V (ft/sec) * 300 (sec) = #DIV/0! feet

If any of the resulting values do not meet the design requirement set forth in RG-348, the design parameters must be modified and the solver rerun.

cfs

15B. Alternative Method using Excel Solver

Design Q = CiA =	#DIV/0! cfs			
Manning's Equation Q = Swale Width=	0.00 cfs 6.00 ft	Error 1 =	#DIV/0!	

Instructions are provided to the right (green comments).

Flow Velocity	#DIV/0!	ft/s
Minimum Length =	#DIV/0!	ft

Instructions are provided to the right (blue comments).

Design Width =		ft		
Design Discharge =	0.0	0 cfs	Error 2 =	#DIV/0!
Design Depth =	0.3	3 ft		
Flow Velocity =	#DIV/0!	cfs		
Minimum Length =	#DIV/0!	ft		

lbs

If any of the resulting values do not meet the design requirement set forth in RG-348, the design parameters may be modified and the solver rerun. If any of the resulting values still do not meet the design requirement set forth in RG-348, widening the swale bottom value may not be possible.

16. Vegetated Filter Strips Designed as Required in RG-348 Pages 3-55 to 3-57 There are no calculations required for determining the load or size of vegetative filter strips. The 80% removal is provided when the contributing drainage area does not exceed 72 feet (direction of flow) and the sheet flow leaving the impervious cover is directed across 15 feet of engineered filter strips with maximum slope of 20% or across 50 feet of natural vegetation with a maximum slope of 10%. There can be a break in grade as long as no slope exceeds 20%. If vegetative filter strips are proposed for an interim permanent BMP, they may be sized as described on Page 3-56 of RG-348. 17. Wet Vaults Designed as Required in RG-348 Pages 3-30 to 3-32 & 3-79

Required Load Removal Based upon Equation 3.3 = NA

First calculate the load removal at 1.1 in/hour

RG-348 Page 3-30 Equation 3.4: Q = CiA

C = runoff coefficient for the drainage area = C = Runoff Coefficient = $0.546 (IC)^2 + 0.328 (IC) + 0.03$ 0.50 i = design rainfall intensity = 1.1 in/hour A = drainage area in acres = 1 acres

Q = flow rate in cubic feet per second = 0.55 cubic feet/sec First, highlight Cell F219 (Error 1 value). The equation showing in the fx screen for Cell F219 should be "= \$C\$217-\$C\$219" Then click on "Tools" and "Solver". The "Solver Parameters" screen pops up. The value in the "Set Target cell" should be \$F\$219 "Error 1 =" The value in the "By Changing Cells" should be \$C\$220 "Swale Width" Click on solve. The resulting "Swale Width" must be less than 10 feet to meet the requirements of the TGM. If the resulting "Swale Width" exceeds 10 feet then the design parameters must be revised and the solver run again. If there is not the option for "Solver" under "Tools"

Excel can simultaneously solve the "Design Q" (C217) vs "Manning's Q" (C219) by varying the "Swale Width" (C220).

Click on "Tools" and "Add Ins" and then check "Solver Add-in" Then proceed as instructed above.

To solve for bottom width of the trapezoidal swale (b) using the Excel solver:

The required "Swale Width" occurs when the "Design Q" = "Manning's Q"

If you would like to increase the bottom width of the trapezoidal swale (b): Excel can simultaneously solve the "Design Q" (C217) vs "Design Discharge" (C232) by varying the "Design Depth" (C233). The required "Design Depth" for a 10-foot bottom width occurs when the "Design Q" (C217) = the "Design Discharge" (C232). First set the desired bottom width in Cell C231. Highlight Cell F232. The equation showing in the fx screen for Cell F232 should be "= \$C\$217-\$C\$232" Click on "Tools" and "Solver". The "Solver Parameters" screen pops up. The value in the "Set Target cell" should be \$F\$232 "Error 2" The value in the "By Changing Cells" should be \$C\$233 "Design Depth" Click on solve. The resulting "Design Depth" must be equal to or less than 0.33 feet to meet the requirements of the TGM. If the resulting "Design Depth" exceeds 0.33 feet then the design parameters must be revised and the solver run again. First set the desired bottom width in Cell C231. Highlight Cell F232. The equation showing in the fx screen for Cell F232 should be "= \$C\$217-\$C\$232" Click on "Tools" and "Solver". The "Solver Parameters" screen pops up.

The value in the "Set Target cell" should be \$F\$232 "Error 2" The value in the "By Changing Cells" should be \$C\$233 "Design Depth" Click on solve.

The resulting "Design Depth" must be equal to or less than 0.33 feet to meet the requirements of the TGM. If the resulting "Design Depth" exceeds 0.33 feet then the design parameters must be revised and the solver run again.

RG-348 Page 3-31 Equation	3.5: V _{OR} = Q/A				
Q = Runoff rate cal A = Water surface area in			5 cubic feet/se 0 square feet	ec	
V _{OR} = 0	Overflow Rate =	0.0	0 feet/sec		
Percent TSS Removal from Figure 3-1 (RG-34	8 Page 3-31) =	5	3 percent		
Load removed	by Wet Vault =	#VALUE!	lbs		
If a bypass occurs at a rainfall intensity of less than 1.1 in/he Calculate the efficiency reduction for the actual rainfall inter					
Actual Rainfall Intensity at which Wet Vault by	/pass Occurs =	0.:	5 in/hour		
Fraction of rainfall treated from Figure 3-2 RG-3 Efficiency Reduction for Actual Rai	48 Page 3-32 = nfall Intensity =		5 percent 3 percent		
Resultant TSS Load removed	by Wet Vault =	#VALUE!	lbs		
18. Permeable Concrete	C	Designed as F	Required in R	G-348	Pages 3-79 to 3-83
PERMEABLE CONCRETE MAY ONLY BE USED ON THE CO	NTRIBUTING ZO	NE			
19. BMPs Installed in a Series	C	Designed as F	Required in R	G-348	Pages 3-32
Michael E. Barrett, Ph.D., P.E. recommended	that the coeffici	ent for E ₂ be	e changed fro	om 0.5 to 0.65 on Ma	ay 3, 2006
E _{TOT} = [1 - ((1 - E ₁) X (1 - 0.65E ₂) x (1 - 0.	25E ₃))] X 100 =	86.3	8 percent	NET EFFICIENCY	OF THE BMPs IN THE SERIES
EFFICIENCY OF FIRST BMP IN THE	SERIES = E ₁ =	75.0	0 percent		
EFFICIENCY OF THE SECOND BMP IN THE	SERIES = E_2 =	70.0	0 percent		
EFFICIENCY OF THE THIRD BMP IN THE	SERIES = E_3 =	0.0	0 percent		
THEREFORE, THE NET LOAD REMOVAL WO (A ₁ AND A _P VALUES ARE FROM SECTION 3 A					
$L_{R} = E_{TOT} X P X (A_{I} X 34)$	6 X A _P X0.54) =	13.1	0 lbs		
20. Stormceptor					
Required TSS Removal in BMP Impervious Cover	•	NA 0.0000	lbs ac		
TSS Removal for Unc BMP Sizing		0.00	lbs		
	Effective Area =	NA	EA		
Actual Model Size (if multiple values provide		#N/A			
Model Size or if you are choosing a large	er model size) =	0	Model Size		
	Surface Area =	#N/A	ft ²		
	Overflow Rate = Overflow Rate =	#VALUE! #VALUE!	V _{or} V _{or}		
	P Efficiency % =	#VALUE!	v or %		
	L _R Value =	#VALUE!	lbs		
TS	S Load Credit =	#VALUE!	lbs		
Is Sufficient Treatment Available? (TSS Credit	<u>></u> TSS Uncapt.)	#VALUE!			
TSS Treatment by BMP (LM +	TSS Uncapt.) =	#VALUE!			

. Vortech				
	Required TSS Removal in BMP Drain	age Area=	NA	lbs
	Impervious Cover Over	treatment=	0.0000	ac
	TSS Removal for Uncaptu	red Area =	0.00	lbs
	BMP Sizing			
	Effect	tive Area =	NA	EA
	Calculated Mode	∍l Size(s) =	#N/A	
	Actual Model Size (if choosing larger mo	idel size) =	Vx1000	Pick Model Size
	Surfa	ace Area =	7.10	ft ²
	Overf	low Rate =	#VALUE!	V _{or}
	Rounded Overf	low Rate =	#VALUE!	V _{or}
	BMP Effic	ciency % =	#VALUE!	%
		L _R Value =	#VALUE!	lbs
	TSS Loa	ad Credit =	#VALUE!	lbs
	Is Sufficient Treatment Available? (TSS Credit \geq TS	S Uncapt.)	#VALUE!	
	TSS Treatment by BMP (LM + TSS	Uncapt.) =	#VALUE!	

Texas Commission on Environmental Quality						
TSS Removal Calculations 04-20-2009				Project Name: Date Prepared:	Canyon Golf Road S 6/1/2023	Sidewalk Project
Additional information is provided for cells with a red Text shown in blue indicate location of instructions in the Characters shown in red are data entry fields. Characters shown in black (Bold) are calculated fields	Technical G	uidance M	lanual - RG-3	48.		adsheet.
1. The Required Load Reduction for the total project:	Ca	alculations f	rom RG-348		Pages 3-27 to 3-30	
Page 3-29 Equation	n 3.3: L _M = 27	.2(A _N x P)				
where: L _{M TOT} ,	A _N = Ne	et increase i		a for the project	development = 80% of in	creased load
Site Data: Determine Required Load Removal Based on the Er Total project area included Predevelopment impervious area within the limits of t Total post-development impervious area within the limits of Total post-development impervious cover $L_{M TOT}$ * The values entered in these fields should be for the total project	County = in plan * = the plan * = fraction * = P =	Bexar 1.07 0.00 0.68 0.63 30 555	acres acres acres inches lbs.			ELVIS TREVIÑO
Number of drainage basins / outfalls areas leaving the	plan area =	8				Un Vinis
2. Drainage Basin Parameters (This information should be provided in the provi	ded for each h	acin):				
Drainage Basin/Outfall		30				
Total drainage basin/ou Predevelopment impervious area within drainage basin/ou Post-development impervious area within drainage basin/ou Post-development impervious fraction within drainage basin/ou L _M	utfall area = utfall area =	0.14 0.00 0.08 0.56 66	acres acres acres Ibs.			
3. Indicate the proposed BMP Code for this basin.						
	sed BMP = Ve efficiency =	getated Fil 85	ter Strips percent		Aqualogic Cartridge Filter Bioretention Contech StormFilter Constructed Wetland Extended Detention Grassy Swale Retention / Irrigation Sand Filter Stormceptor Vegetated Filter Strips Vortechs Wet Basin	

4. Calculate Maximum TSS Load Removed (L_R) for this Drainage Basin by the selected BMP Type.

RG-348 Page 3-33 Equation 3.7: L_R = (BMP efficiency) x P x (A_I x 34.6 + A_P x 0.54)

Wet Vault

 A_{C} = Total On-Site drainage area in the BMP catchment area

A_I = Impervious area proposed in the BMP catchment area

 A_P = Pervious area remaining in the BMP catchment area

 L_R = TSS Load removed from this catchment area by the proposed BMP

A _C =	0.14	acres
A _I =	0.08	acres
A _P =	0.06	acres
L _R =	72	lbs

Desired L _{M THIS BASIN} =	= 66	lbs.		
F =				
				-
6. Calculate Capture Volume required by the BMP Type for this drainage b	asin / outfa	all area.	Calculations from RG-348	Pages 3-34 to 3-36
Rainfall Depth =	= 2.00	inches		
Post Development Runoff Coefficient =				
On-site Water Quality Volume =	410	cubic feet		
	Calculatio	ns from RG-348	Pages 3-36 to 3-37	
Off-site area draining to BMP =	0.00	acres		
Off-site Impervious cover draining to BMP =		acres		
Impervious fraction of off-site area =				
Off-site Runoff Coefficient = Off-site Water Quality Volume =		cubic feet		
	Ū	cubic leet		
Storage for Sediment =	= 82			
Total Capture Volume (required water quality volume(s) x 1.20) =				
The following sections are used to calculate the required water quality vol The values for BMP Types not selected in cell C45 will show NA.	ume(s) for	the selected BM	IP.	
7. Retention/Irrigation System	Designed	as Required in R	G-348 Pages	3-42 to 3-46
			Ŭ	
Required Water Quality Volume for retention basin =	= NA	cubic feet		
Irrigation Area Calculations:				
Soil infiltration/permeability rate =	0.1	in/hr	Enter determined permeab	ility rate or assumed value of 0.1
Irrigation area =	= NA	square feet		
	NA	acres		
8. Extended Detention Basin System	Designed	as Required in R	G-348 Pages	3-46 to 3-51
			J	
Required Water Quality Volume for extended detention basin =	= NA	cubic feet		
9. Filter area for Sand Filters	Designed	as Required in R	G-348 Pages	3-58 to 3-63
	Deelghou	do required in re		
9A. Full Sedimentation and Filtration System				
Water Quality Volume for sedimentation basin =	· NA	cubic feet		
Minimum filter basin area =	= NA	square feet		
Maximum sedimentation basin area = Minimum sedimentation basin area =		•	For minimum water depth of For maximum water depth	
		394410 1661	· ·· maximum water depth	

Water Quality Volume for combined basins =	NA	cubic feet		
Minimum filter basin area =	NA	square feet		
Maximum sedimentation basin area = Minimum sedimentation basin area =			For minimum water For maximum water	
10. Bioretention System	Designed as	Required in R	G-348	Pages 3-63 to 3-65
Required Water Quality Volume for Bioretention Basin =	NA	cubic feet		
11. Wet Basins	Designed as	Required in R	G-348	Pages 3-66 to 3-71
Required capacity of Permanent Pool = Required capacity at WQV Elevation =		cubic feet cubic feet		pacity is 1.20 times the WQV IId be the Permanent Pool Capacity /.
12. Constructed Wetlands	Designed as	Required in R	G-348	Pages 3-71 to 3-73
Required Water Quality Volume for Constructed Wetlands =	NA	cubic feet		
<u>13. AquaLogic[™] Cartridge System</u>	Designed as	Required in R	G-348	Pages 3-74 to 3-78
** 2005 Technical Guidance Manual (RG-348) does not exempt the required	d 20% increas	e with mainte	nance contract with	AquaLogic [™] .
Required Sedimentation chamber capacity = Filter canisters (FCs) to treat WQV = Filter basin area (RIA _F) =	NA	cubic feet cartridges square feet		
14. Stormwater Management StormFilter® by CONTECH				
Required Water Quality Volume for Contech StormFilter System =	NA	cubic feet		
THE SIZING REQUIREMENTS FOR THE FOLLOWING BMPs / LOAD REMOV	VALS ARE BA	ASED UPON F	LOW RATES - NOT C	ALCULATED WATER QUALITY VOLUMES
15. Grassy Swales	Designed as	Required in R	G-348	Pages 3-51 to 3-54
Design parameters for the swale:				
Drainage Area to be Treated by the Swale = A = Impervious Cover in Drainage Area = Rainfall intensity = i = Swale Slope = Side Slope (z) = Design Water Depth = y = Weighted Runoff Coefficient = C =	= 1 = 1 =	acres acres .1 in/hr ft/ft ft		
A_{CS} = cross-sectional area of flow in Swale = P_W = Wetted Perimeter = R_H = hydraulic radius of flow cross-section = A_{CS}/P_W = n = Manning's roughness coefficient =	#DIV/0! #DIV/0!	sf feet feet .2		
15A. Using the Method Described in the RG-348				
Manning's Equation: $\Omega = 1.40 \text{ A}_{\odot} \text{ P}_{\odot}^{2/3} \text{ S}^{0.5}$	5			

b = <u>0.134 x Q</u> - zy	=	#DIV/0!	feet
y ^{1.67} S ^{0.5}			

 $\mathbf{Q} = \mathbf{CiA} = \# \mathbf{D} | \mathbf{V} / 0 !$

To calculate the flow velocity in the swale:

V (Velocity of Flow in the swale) = Q/A_{CS} = #DIV/0! ft/sec

To calculate the resulting swale length:

L = Minimum Swale Length = V (ft/sec) * 300 (sec) = #DIV/0! feet

If any of the resulting values do not meet the design requirement set forth in RG-348, the design parameters must be modified and the solver rerun.

cfs

15B. Alternative Method using Excel Solver

Design Q = CiA =	#DIV/0! cfs		
Manning's Equation Q = Swale Width=	0.00 cfs 6.00 ft	Error 1 =	#DIV/0!

Instructions are provided to the right (green comments).

Flow Velocity	#DIV/0!	ft/s
Minimum Length =	#DIV/0!	ft

Instructions are provided to the right (blue comments).

Design Width =		ft		
Design Discharge =	0.0	0 cfs	Error 2 =	#DIV/0!
Design Depth =	0.3	3 ft		
Flow Velocity =	#DIV/0!	cfs		
Minimum Length =	#DIV/0!	ft		

lbs

1 acres

0.42 cubic feet/sec

If any of the resulting values do not meet the design requirement set forth in RG-348, the design parameters may be modified and the solver rerun. If any of the resulting values still do not meet the design requirement set forth in RG-348, widening the swale bottom value may not be possible.

16. Vegetated Filter Strips Designed as Required in RG-348 Pages 3-55 to 3-57 There are no calculations required for determining the load or size of vegetative filter strips. The 80% removal is provided when the contributing drainage area does not exceed 72 feet (direction of flow) and the sheet flow leaving the impervious cover is directed across 15 feet of engineered filter strips with maximum slope of 20% or across 50 feet of natural vegetation with a maximum slope of 10%. There can be a break in grade as long as no slope exceeds 20%. If vegetative filter strips are proposed for an interim permanent BMP, they may be sized as described on Page 3-56 of RG-348. 17. Wet Vaults Designed as Required in RG-348 Pages 3-30 to 3-32 & 3-79

Required Load Removal Based upon Equation 3.3 = NA

First calculate the load removal at 1.1 in/hour

RG-348 Page 3-30 Equation 3.4: Q = CiA C = runoff coefficient for the drainage area = 0.38 i = design rainfall intensity =

A = drainage area in acres =

C = Runoff Coefficient = $0.546 (IC)^2 + 0.328 (IC) + 0.03$ 1.1 in/hour

Q = flow rate in cubic feet per second =

To solve for bottom width of the trapezoidal swale (b) using the Excel solver: Excel can simultaneously solve the "Design Q" (C217) vs "Manning's Q" (C219) by varying the "Swale Width" (C220). The required "Swale Width" occurs when the "Design Q" = "Manning's Q"

First, highlight Cell F219 (Error 1 value). The equation showing in the fx screen for Cell F219 should be "= \$C\$217-\$C\$219" Then click on "Tools" and "Solver". The "Solver Parameters" screen pops up. The value in the "Set Target cell" should be \$F\$219 "Error 1 =" The value in the "By Changing Cells" should be \$C\$220 "Swale Width" Click on solve.

The resulting "Swale Width" must be less than 10 feet to meet the requirements of the TGM. If the resulting "Swale Width" exceeds 10 feet then the design parameters must be revised and the solver run again. If there is not the option for "Solver" under "Tools"

Click on "Tools" and "Add Ins" and then check "Solver Add-in" Then proceed as instructed above.

If you would like to increase the bottom width of the trapezoidal swale (b): Excel can simultaneously solve the "Design Q" (C217) vs "Design Discharge" (C232) by varying the "Design Depth" (C233). The required "Design Depth" for a 10-foot bottom width occurs when the "Design Q" (C217) = the "Design Discharge" (C232). First set the desired bottom width in Cell C231. Highlight Cell F232. The equation showing in the fx screen for Cell F232 should be "= \$C\$217-\$C\$232" Click on "Tools" and "Solver". The "Solver Parameters" screen pops up. The value in the "Set Target cell" should be \$F\$232 "Error 2" The value in the "By Changing Cells" should be \$C\$233 "Design Depth" Click on solve. The resulting "Design Depth" must be equal to or less than 0.33 feet to meet the requirements of the TGM. If the resulting "Design Depth" exceeds 0.33 feet then the design parameters must be revised and the solver run again. First set the desired bottom width in Cell C231. Highlight Cell F232. The equation showing in the fx screen for Cell F232 should be "= \$C\$217-\$C\$232" Click on "Tools" and "Solver". The "Solver Parameters" screen pops up.

The value in the "Set Target cell" should be \$F\$232 "Error 2" The value in the "By Changing Cells" should be \$C\$233 "Design Depth" Click on solve.

The resulting "Design Depth" must be equal to or less than 0.33 feet to meet the requirements of the TGM. If the resulting "Design Depth" exceeds 0.33 feet then the design parameters must be revised and the solver run again.

RG-348 Page 3-31 Equation 3.5: $V_{OR} = Q/A$			
Q = Runoff rate calculated above = A = Water surface area in the wet vault =		2 cubic feet/sec 0 square feet	
V _{OR} = Overflow Rate =	0.0	0 feet/sec	
Percent TSS Removal from Figure 3-1 (RG-348 Page 3-31) =	5	3 percent	
Load removed by Wet Vault =	#VALUE!	lbs	
If a bypass occurs at a rainfall intensity of less than 1.1 in/hours Calculate the efficiency reduction for the actual rainfall intensity rate			
Actual Rainfall Intensity at which Wet Vault bypass Occurs =	0.	5 in/hour	
Fraction of rainfall treated from Figure 3-2 RG-348 Page 3-32 = Efficiency Reduction for Actual Rainfall Intensity =		5 percent 3 percent	
Resultant TSS Load removed by Wet Vault =	#VALUE!	lbs	
18. Permeable Concrete	Designed as I	Required in RG-3	Pages 3-79 to 3-83
PERMEABLE CONCRETE MAY ONLY BE USED ON THE CONTRIBUTING Z	ONE		
<u>19. BMPs Installed in a Series</u>	Designed as I	Required in RG-	348 Pages 3-32
Michael E. Barrett, Ph.D., P.E. recommended that the coeffic	cient for E ₂ b	e changed from	0.5 to 0.65 on May 3, 2006
E _{TOT} = [1 - ((1 - E ₁) X (1 - 0.65E ₂) x (1 - 0.25E ₃))] X 100 =	86.3	8 percent N	ET EFFICIENCY OF THE BMPs IN THE SERIES
EFFICIENCY OF FIRST BMP IN THE SERIES = E_1 =	75.0	0 percent	
EFFICIENCY OF THE SECOND BMP IN THE SERIES = E_2 =	70.0	0 percent	
EFFICIENCY OF THE THIRD BMP IN THE SERIES = E_3 =	0.0	0 percent	
THEREFORE, THE NET LOAD REMOVAL WOULD BE: $(A_I AND A_P VALUES ARE FROM SECTION 3 ABOVE)$			
L _R = E _{TOT} X P X (A ₁ X 34.6 X A _P X0.54) =	72.9	8 lbs	
20. Stormceptor			
Required TSS Removal in BMP Drainage Area= Impervious Cover Overtreatment=	NA 0.0000	lbs	
TSS Removal for Uncaptured Area =	0.00	ac Ibs	
BMP Sizing Effective Area =	NA	EA	
Calculated Model Size(s) =	#N/A		
Actual Model Size (if multiple values provided in Calculated Model Size or if you are choosing a larger model size) =	0	Model Size	
Surface Area =	#N/A	ft ²	
Overflow Rate =	#VALUE!	V _{or}	
Rounded Overflow Rate =	#VALUE!	V _{or}	
BMP Efficiency % = L _R Value =	#VALUE! #VALUE!	% lbc	
	#VALUE!	lbs	
TSS Load Credit =	#VALUE!	lbs	
Is Sufficient Treatment Available? (TSS Credit <u>></u> TSS Uncapt.)	#VALUE!		
TSS Treatment by BMP (LM + TSS Uncapt.) =	#VALUE!		

. Vortech				
	Required TSS Removal in BMP Drain	age Area=	NA	lbs
	Impervious Cover Over	treatment=	0.0000	ac
	TSS Removal for Uncaptu	red Area =	0.00	lbs
	BMP Sizing			
	Effect	tive Area =	NA	EA
	Calculated Mode	∍l Size(s) =	#N/A	
	Actual Model Size (if choosing larger mo	idel size) =	Vx1000	Pick Model Size
	Surfa	ace Area =	7.10	ft ²
	Overf	low Rate =	#VALUE!	V _{or}
	Rounded Overf	low Rate =	#VALUE!	V _{or}
	BMP Effic	ciency % =	#VALUE!	%
		L _R Value =	#VALUE!	lbs
	TSS Loa	ad Credit =	#VALUE!	lbs
	Is Sufficient Treatment Available? (TSS Credit \geq TS	S Uncapt.)	#VALUE!	
	TSS Treatment by BMP (LM + TSS	Uncapt.) =	#VALUE!	

Texas Commission on Environmental Quality TSS Removal Calculations 04-20-2009 Project Name: Canyon Golf Road Sidewalk Project Date Prepared: 6/1/2023 Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell. Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348. Characters shown in red are data entry fields. Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spreadsheet. 1. The Required Load Reduction for the total project: Calculations from RG-348 Pages 3-27 to 3-30 Page 3-29 Equation 3.3: L_M = 27:2(A_N x P) where: L_{M TOTAL PROJECT} = Required TSS removal resulting from the proposed development = 80% of increased load A_N = Net increase in impervious area for the project P = Average annual precipitation, inches Site Data: Determine Required Load Removal Based on the Entire Project Bexar County = Total project area included in plan * = 1.07 acres Predevelopment impervious area within the limits of the plan * = 0.00 acres Total post-development impervious area within the limits of the plan* = 0.68 lacres Total post-development impervious cover fraction * = 0.63 30 **ELVIS TREVIÑO** inches PROK 126752 555 L_{M TOTAL PROJECT} = lbs. CENSED GUILZ * The values entered in these fields should be for the total project area. Number of drainage basins / outfalls areas leaving the plan area = 8 2. Drainage Basin Parameters (This information should be provided for each basin): Drainage Basin/Outfall Area No. = 40 Total drainage basin/outfall area = 0.45 acres Predevelopment impervious area within drainage basin/outfall area = 0.00 acres Post-development impervious area within drainage basin/outfall area = 0.17 acres Post-development impervious fraction within drainage basin/outfall area = 0.37 L_{M THIS BASIN} = 137 lbs. 3. Indicate the proposed BMP Code for this basin. Proposed BMP = Vegetated Filter Strips Removal efficiency = 85 percent Aqualogic Cartridge Filter Bioretention Contech StormFilter Constructed Wetland Extended Detention Grassy Swale Retention / Irrigation Sand Filter Stormceptor Vegetated Filter Strips Vortechs Wet Basin

4. Calculate Maximum TSS Load Removed (L_R) for this Drainage Basin by the selected BMP Type.

RG-348 Page 3-33 Equation 3.7: $L_R = (BMP \text{ efficiency}) \times P \times (A_I \times 34.6 + A_P \times 0.54)$

Wet Vault

 A_{C} = Total On-Site drainage area in the BMP catchment area

A_I = Impervious area proposed in the BMP catchment area

 A_P = Pervious area remaining in the BMP catchment area

 L_R = TSS Load removed from this catchment area by the proposed BMP

A _C =	0.45	acres
A _I =	0.17	acres
A _P =	0.28	acres
L _R =	152	lbs

Desired L _{M THIS BASIN} =	137	lbs.		
		103.		
F =	0.90			
6. Calculate Capture Volume required by the BMP Type for this drainage ba	asin / outfa	<u>III area.</u>	Calculations from RG-348	Pages 3-34 to 3-36
Rainfall Depth =		inches		
Post Development Runoff Coefficient = On-site Water Quality Volume =	0.29 814	cubic feet		
	Calculation	ns from RG-348	Pages 3-36 to 3-37	
Off-site area draining to BMP =		acres		
Off-site Impervious cover draining to BMP =		acres		
Impervious fraction of off-site area = Off-site Runoff Coefficient =				
Off-site Water Quality Volume =		cubic feet		
	400			
Storage for Sediment =		auchia fa at		
Total Capture Volume (required water quality volume(s) x 1.20) = The following sections are used to calculate the required water quality volu-	977 ume(s) for	cubic feet the selected BN	IP.	
The values for BMP Types not selected in cell C45 will show NA.				
7. Retention/Irrigation System	Designed	as Required in R	G-348 Pages	s 3-42 to 3-46
Required Water Quality Volume for retention basin =	NA	cubic feet		
Irrigation Area Calculations:				
Soil infiltration/permeability rate =	0.1	in/hr	Enter determined permeab	bility rate or assumed value of 0.1
Irrigation area =		square feet acres		
8. Extended Detention Basin System	Designed	as Required in R	G-348 Pages	s 3-46 to 3-51
Required Water Quality Volume for extended detention basin =	NA	cubic feet		
9. Filter area for Sand Filters	Designed	as Required in R	G-348 Pages	s 3-58 to 3-63
9A. Full Sedimentation and Filtration System				
Water Quality Volume for sedimentation basin =	NA	cubic feet		
water guarity volume for sedimentation basin -	AN			
Minimum filter basin area =	NA	square feet		
Maximum sedimentation basin area = Minimum sedimentation basin area =		•	For minimum water depth For maximum water depth	

Water Quality Volume for combined basins =	NA	cubic feet		
Minimum filter basin area =	NA	square feet		
Maximum sedimentation basin area = Minimum sedimentation basin area =			For minimum water For maximum water	
10. Bioretention System	Designed as	Required in R	G-348	Pages 3-63 to 3-65
Required Water Quality Volume for Bioretention Basin =	NA	cubic feet		
11. Wet Basins	Designed as	Required in R	G-348	Pages 3-66 to 3-71
Required capacity of Permanent Pool = Required capacity at WQV Elevation =		cubic feet cubic feet		pacity is 1.20 times the WQV IId be the Permanent Pool Capacity /.
12. Constructed Wetlands	Designed as	Required in R	G-348	Pages 3-71 to 3-73
Required Water Quality Volume for Constructed Wetlands =	NA	cubic feet		
<u>13. AquaLogic[™] Cartridge System</u>	Designed as	Required in R	G-348	Pages 3-74 to 3-78
** 2005 Technical Guidance Manual (RG-348) does not exempt the required	d 20% increas	e with mainte	nance contract with	AquaLogic [™] .
Required Sedimentation chamber capacity = Filter canisters (FCs) to treat WQV = Filter basin area (RIA _F) =	NA	cubic feet cartridges square feet		
14. Stormwater Management StormFilter® by CONTECH				
Required Water Quality Volume for Contech StormFilter System =	NA	cubic feet		
THE SIZING REQUIREMENTS FOR THE FOLLOWING BMPs / LOAD REMOV	VALS ARE BA	ASED UPON F	LOW RATES - NOT C	ALCULATED WATER QUALITY VOLUMES
15. Grassy Swales	Designed as	Required in R	G-348	Pages 3-51 to 3-54
Design parameters for the swale:				
Drainage Area to be Treated by the Swale = A = Impervious Cover in Drainage Area = Rainfall intensity = i = Swale Slope = Side Slope (z) = Design Water Depth = y = Weighted Runoff Coefficient = C =	= 1 = 1 =	acres acres .1 in/hr ft/ft ft		
A_{CS} = cross-sectional area of flow in Swale = P_W = Wetted Perimeter = R_H = hydraulic radius of flow cross-section = A_{CS}/P_W = n = Manning's roughness coefficient =	#DIV/0! #DIV/0!	sf feet feet .2		
15A. Using the Method Described in the RG-348				
Manning's Equation: $\Omega = 1.40 \text{ A}_{\odot} \text{ P}_{\odot}^{2/3} \text{ S}^{0.5}$	5			

b = <u>0.134 x Q</u> - zy	=	#DIV/0!	feet
y ^{1.67} S ^{0.5}			

 $\mathbf{Q} = \mathbf{CiA} = \# \mathbf{D} | \mathbf{V} / 0 !$

To calculate the flow velocity in the swale:

V (Velocity of Flow in the swale) = Q/A_{CS} = #DIV/0! ft/sec

To calculate the resulting swale length:

L = Minimum Swale Length = V (ft/sec) * 300 (sec) = #DIV/0! feet

If any of the resulting values do not meet the design requirement set forth in RG-348, the design parameters must be modified and the solver rerun.

cfs

15B. Alternative Method using Excel Solver

Design Q = CiA =	#DIV/0! cfs			
Manning's Equation Q = Swale Width=	0.00 cfs 6.00 ft	Error 1 =	#DIV/0!	

Instructions are provided to the right (green comments).

Flow Velocity	#DIV/0!	ft/s
Minimum Length =	#DIV/0!	ft

Instructions are provided to the right (blue comments).

Design Width =		ft		
Design Discharge =	0.0	0 cfs	Error 2 =	#DIV/0!
Design Depth =	0.3	3 ft		
Flow Velocity =	#DIV/0!	cfs		
Minimum Length =	#DIV/0!	ft		

If any of the resulting values do not meet the design requirement set forth in RG-348, the design parameters may be modified and the solver rerun. If any of the resulting values still do not meet the design requirement set forth in RG-348, widening the swale bottom value may not be possible.

16. Vegetated Filter StripsDesigned as Required in RG-348Pages 3-55 to 3-57There are no calculations required for determining the load or size of vegetative filter strips.
The 80% removal is provided when the contributing drainage area does not exceed 72 feet (direction of flow) and
the sheet flow leaving the impervious cover is directed across 15 feet of engineered filter strips with maximum slope of 20% or
across 50 feet of natural vegetation with a maximum slope of 10%. There can be a break in grade as long as no slope exceeds 20%.If vegetative filter strips are proposed for an interim permanent BMP, they may be sized as described on Page 3-56 of RG-348.17. Wet VaultsDesigned as Required in RG-348Pages 3-30 to 3-32 & 3-79

Required Load Removal Based upon Equation 3.3 = NA

First calculate the load removal at 1.1 in/hour

 RG-348 Page 3-30 Equation 3.4: Q = CiA

 C = runoff coefficient for the drainage area =
 0.23
 C = Runoff Coefficient = 0.546 (IC)² + 0.328 (IC) + 0.03

 i = design rainfall intensity =
 1.1 in/hour
 1.1 in/hour

 A = drainage area in acres =
 1 acres

 Q = flow rate in cubic feet per second =
 0.25 cubic feet/sec

lbs

The value in the "Set Target cell" should be \$F\$219 "Error 1 =" The value in the "By Changing Cells" should be \$C\$220 "Swale Width" Click on solve. The resulting "Swale Width" must be less than 10 feet to meet the requirements of the TGM. If the resulting "Swale Width" exceeds 10 feet then the design parameters must be revised and the solver run again. If there is not the option for "Solver" under "Tools" Click on "Tools" and "Add Ins" and then check "Solver Add-in" Then proceed as instructed above. If you would like to increase the bottom width of the trapezoidal swale (b): Excel can simultaneously solve the "Design Q" (C217) vs "Design Discharge" (C232) by varying the "Design Depth" (C233). The required "Design Depth" for a 10-foot bottom width occurs when the "Design Q" (C217) = the "Design Discharge" (C232). First set the desired bottom width in Cell C231. Highlight Cell F232. The equation showing in the fx screen for Cell F232 should be "= \$C\$217-\$C\$232" Click on "Tools" and "Solver". The "Solver Parameters" screen pops up. The value in the "Set Target cell" should be \$F\$232 "Error 2" The value in the "By Changing Cells" should be \$C\$233 "Design Depth" Click on solve. The resulting "Design Depth" must be equal to or less than 0.33 feet to meet the requirements of the TGM. If the resulting "Design Depth" exceeds 0.33 feet then the design parameters must be revised and the solver run again. First set the desired bottom width in Cell C231. Highlight Cell F232. The equation showing in the fx screen for Cell F232 should be "= \$C\$217-\$C\$232" Click on "Tools" and "Solver". The "Solver Parameters" screen pops up. The value in the "Set Target cell" should be \$F\$232 "Error 2" The value in the "By Changing Cells" should be \$C\$233 "Design Depth" Click on solve.

Excel can simultaneously solve the "Design Q" (C217) vs "Manning's Q" (C219) by varying the "Swale Width" (C220).

First, highlight Cell F219 (Error 1 value). The equation showing in the fx screen for Cell F219 should be "= \$C\$217-\$C\$219"

The resulting "Design Depth" must be equal to or less than 0.33 feet to meet the requirements of the TGM. If the resulting "Design Depth" exceeds 0.33 feet then the design parameters must be revised and the solver run again.

To solve for bottom width of the trapezoidal swale (b) using the Excel solver:

Then click on "Tools" and "Solver". The "Solver Parameters" screen pops up.

The required "Swale Width" occurs when the "Design Q" = "Manning's Q"

RG-348 Page 3-31 Equation 3.5: V _{OR} = Q/A			
Q = Runoff rate calculated above = A = Water surface area in the wet vault =	•	5 cubic feet/sec <mark>0</mark> square feet	
V _{OR} = Overflow Rate =	0.0	0 feet/sec	
Percent TSS Removal from Figure 3-1 (RG-348 Page 3-31) =	5	3 percent	
Load removed by Wet Vault =	#VALUE!	lbs	
If a bypass occurs at a rainfall intensity of less than 1.1 in/hours Calculate the efficiency reduction for the actual rainfall intensity rate			
Actual Rainfall Intensity at which Wet Vault bypass Occurs =	0.	5 in/hour	
Fraction of rainfall treated from Figure 3-2 RG-348 Page 3-32 = Efficiency Reduction for Actual Rainfall Intensity =		5 percent 3 percent	
Resultant TSS Load removed by Wet Vault =	#VALUE!	lbs	
18. Permeable Concrete	Designed as I	Required in RG-34	8 Pages 3-79 to 3-83
PERMEABLE CONCRETE MAY ONLY BE USED ON THE CONTRIBUTING ZO	DNE		
19. BMPs Installed in a Series	Designed as I	Required in RG-34	8 Pages 3-32
Michael E. Barrett, Ph.D., P.E. recommended that the coeffic	ient for E ₂ b	e changed from 0	.5 to 0.65 on May 3, 2006
$E_{TOT} = [1 - ((1 - E_1) X (1 - 0.65E_2) x (1 - 0.25E_3))] X 100 =$	86.3	8 percent NE	T EFFICIENCY OF THE BMPs IN THE SERIES
EFFICIENCY OF FIRST BMP IN THE SERIES = E_1 =	75.0	0 percent	
EFFICIENCY OF THE SECOND BMP IN THE SERIES = E_2 =	70.0	0 percent	
EFFICIENCY OF THE THIRD BMP IN THE SERIES = E_3 =	0.0	0 percent	
THEREFORE, THE NET LOAD REMOVAL WOULD BE: $(A_1 \text{ AND } A_P \text{ VALUES ARE FROM SECTION 3 ABOVE})$			
L _R = E _{TOT} X P X (A _I X 34.6 X A _P X0.54) =	154.2	8 lbs	
20. Stormceptor			
Required TSS Removal in BMP Drainage Area= Impervious Cover Overtreatment= TSS Removal for Uncaptured Area =	NA 0.0000 0.00	lbs ac lbs	
BMP Sizing Effective Area =	NA	EA	
Calculated Model Size (if multiple values provided in Calculated	#N/A		
Model Size or if you are choosing a larger model size) =	0	Model Size	
Surface Area =	#N/A	ft ²	
Overflow Rate =	#VALUE!	V _{or}	
Rounded Overflow Rate = BMP Efficiency % =	#VALUE! #VALUE!	V _{or} %	
L _R Value =	#VALUE!	lbs	
TSS Load Credit =	#VALUE!	lbs	
Is Sufficient Treatment Available? (TSS Credit <u>></u> TSS Uncapt.)	#VALUE!		
TSS Treatment by BMP (LM + TSS Uncapt.) =	#VALUE!		

. Vortech				
	Required TSS Removal in BMP Drain	age Area=	NA	lbs
	Impervious Cover Over	treatment=	0.0000	ac
	TSS Removal for Uncaptu	red Area =	0.00	lbs
	BMP Sizing			
	Effect	tive Area =	NA	EA
	Calculated Mode	∍l Size(s) =	#N/A	
	Actual Model Size (if choosing larger mo	idel size) =	Vx1000	Pick Model Size
	Surfa	ace Area =	7.10	ft ²
	Overf	low Rate =	#VALUE!	V _{or}
	Rounded Overf	low Rate =	#VALUE!	V _{or}
	BMP Effic	ciency % =	#VALUE!	%
		L _R Value =	#VALUE!	lbs
	TSS Loa	ad Credit =	#VALUE!	lbs
	Is Sufficient Treatment Available? (TSS Credit \geq TS	S Uncapt.)	#VALUE!	
	TSS Treatment by BMP (LM + TSS	Uncapt.) =	#VALUE!	

Texas Commission on Environmental Quality

TSS Removal Calculations 04-20-2009

Project Name: Canyon Golf Road Sidewalk Project Date Prepared: 6/1/2023

Wet Basin Wet Vault

Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell. Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348. Characters shown in red are data entry fields.

Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spreadsheet.

1. The Required Load Reduction for the total project:	Calculation	ns from RG-348	Pages 3-27 to 3-30	
Page 3-29 Equation 3.3:	L _M = 27.2(A _N x F	²)		
	A _N = Net increas	SS removal resulting from the pro se in impervious area for the project nual precipitation, inches		eased load
Site Data: Determine Required Load Removal Based on the Entire Pr Cour Total project area included in plan Predevelopment impervious area within the limits of the plan Total post-development impervious area within the limits of the plan Total post-development impervious cover fraction L _{M TOTAL PROJE} * The values entered in these fields should be for the total project area Number of drainage basins / outfalls areas leaving the plan area	hty = Bexar 1.07 1.4 = 1.07 1.4 = 0.00 1.4 = 0.68 1.4 = 0.63 1.5 = 30 1.5 = 555 1.5 = 555	acres acres acres inches lbs.		ELVIS TREVINO B 126752 CENSES CENSES CONSCIONAL ENG CONSCIONAL ENG CONSCIONAL CONSC
2. Drainage Basin Parameters (This information should be provided for	each basin):			V
Total drainage basin/outfall Area N Total drainage basin/outfall are Predevelopment impervious area within drainage basin/outfall are Post-development impervious area within drainage basin/outfall are Post-development impervious fraction within drainage basin/outfall are L _{M THIS BAS}	$a_{a} = 0.02$ $a_{a} = 0.00$ $a_{a} = 0.01$ $a_{a} = 0.29$	acres acres acres Ibs.		
3. Indicate the proposed BMP Code for this basin.				
Proposed BM Removal efficient	IP = Vegetated cy = 85	Filter Strips percent	Aqualogic Cartridge Filter Bioretention Contech StormFilter Constructed Wetland Extended Detention Grassy Swale Retention / Irrigation Sand Filter Stormceptor Vegetated Filter Strips Vortechs	

4. Calculate Maximum TSS Load Removed (L_R) for this Drainage Basin by the selected BMP Type.

RG-348 Page 3-33 Equation 3.7: $L_R = (BMP \text{ efficiency}) \times P \times (A_I \times 34.6 + A_P \times 0.54)$

 A_{C} = Total On-Site drainage area in the BMP catchment area

A_I = Impervious area proposed in the BMP catchment area

 A_P = Pervious area remaining in the BMP catchment area

 L_R = TSS Load removed from this catchment area by the proposed BMP

A _C =	0.02	acres
A _I =	0.01	acres
A _P =	0.02	acres
L _R =	6	lbs

Desired L _{M THIS BASIN} =	6	lbs.		
F =	0.93			
			O destations from DO 040	Damas 0.0444 0.00
6. Calculate Capture Volume required by the BMP Type for this drainage ba	asin / outra	<u>li area.</u>	Calculations from RG-348	Pages 3-34 to 3-36
Rainfall Depth =	2.20	inches		
Post Development Runoff Coefficient =	0.25			
On-site Water Quality Volume =	49	cubic feet		
	Calculation	ns from RG-348	Pages 3-36 to 3-37	
Off-site area draining to BMP =	0.00	acres		
Off-site Impervious cover draining to BMP =		acres		
Impervious fraction of off-site area = Off-site Runoff Coefficient =				
Off-site Water Quality Volume =		cubic feet		
	-			
Storage for Sediment =				
Total Capture Volume (required water quality volume(s) x 1.20) =		cubic feet		
The following sections are used to calculate the required water quality vol The values for BMP Types not selected in cell C45 will show NA.	ume(s) for t	the selected DM	IF.	
7. Retention/Irrigation System	Designed a	as Required in R	G-348 Pages	3-42 to 3-46
Required Water Quality Volume for retention basin =	NA	cubic feet		
Irrigation Area Calculations:				
Soil infiltration/permeability rate =	0.1	in/hr	Enter determined permeab	ility rate or assumed value of 0.1
Irrigation area =		square feet acres		
		acies		
8. Extended Detention Basin System	Designed a	as Required in R	G-348 Pages	3-46 to 3-51
Required Water Quality Volume for extended detention basin =	NA	cubic feet		
9. Filter area for Sand Filters	Designed a	as Required in R	G-348 Pages	3-58 to 3-63
9A. Full Sedimentation and Filtration System				
Water Quality Valume for acdimentation basin -	NA	cubic feet		
Water Quality Volume for sedimentation basin =	NA			
Minimum filter basin area =	NA	square feet		
Maximum sedimentation basin area = Minimum sedimentation basin area =		•	For minimum water depth of For maximum water depth	

Water Quality Volume for combined basins =	NA	cubic feet		
Minimum filter basin area =	NA	square feet		
Maximum sedimentation basin area = Minimum sedimentation basin area =			For minimum water For maximum water	
10. Bioretention System	Designed as	Required in R	G-348	Pages 3-63 to 3-65
Required Water Quality Volume for Bioretention Basin =	NA	cubic feet		
11. Wet Basins	Designed as	Required in R	G-348	Pages 3-66 to 3-71
Required capacity of Permanent Pool = Required capacity at WQV Elevation =		cubic feet cubic feet		pacity is 1.20 times the WQV IId be the Permanent Pool Capacity /.
12. Constructed Wetlands	Designed as	Required in R	G-348	Pages 3-71 to 3-73
Required Water Quality Volume for Constructed Wetlands =	NA	cubic feet		
<u>13. AquaLogic[™] Cartridge System</u>	Designed as	Required in R	G-348	Pages 3-74 to 3-78
** 2005 Technical Guidance Manual (RG-348) does not exempt the required	d 20% increas	e with mainte	nance contract with	AquaLogic [™] .
Required Sedimentation chamber capacity = Filter canisters (FCs) to treat WQV = Filter basin area (RIA _F) =	NA	cubic feet cartridges square feet		
14. Stormwater Management StormFilter® by CONTECH				
Required Water Quality Volume for Contech StormFilter System =	NA	cubic feet		
THE SIZING REQUIREMENTS FOR THE FOLLOWING BMPs / LOAD REMOV	VALS ARE BA	ASED UPON F	LOW RATES - NOT C	ALCULATED WATER QUALITY VOLUMES
15. Grassy Swales	Designed as	Required in R	G-348	Pages 3-51 to 3-54
Design parameters for the swale:				
Drainage Area to be Treated by the Swale = A = Impervious Cover in Drainage Area = Rainfall intensity = i = Swale Slope = Side Slope (z) = Design Water Depth = y = Weighted Runoff Coefficient = C =	= 1 = 1 =	acres acres .1 in/hr ft/ft ft		
A_{CS} = cross-sectional area of flow in Swale = P_W = Wetted Perimeter = R_H = hydraulic radius of flow cross-section = A_{CS}/P_W = n = Manning's roughness coefficient =	#DIV/0! #DIV/0!	sf feet feet .2		
15A. Using the Method Described in the RG-348				
Manning's Equation: $\Omega = 1.40 \text{ A}_{\odot} \text{ P}_{\odot}^{2/3} \text{ S}^{0.5}$	5			

b = <u>0.134 x Q</u> - zy	=	#DIV/0!	feet
y ^{1.67} S ^{0.5}			

To calculate the flow velocity in the swale:

 $\mathbf{Q} = \mathbf{CiA} = \# \mathbf{D} | \mathbf{V} / 0 !$

V (Velocity of Flow in the swale) = Q/A_{CS} = #DIV/0! ft/sec

To calculate the resulting swale length:

L = Minimum Swale Length = V (ft/sec) * 300 (sec) = #DIV/0! feet

If any of the resulting values do not meet the design requirement set forth in RG-348, the design parameters must be modified and the solver rerun.

cfs

15B. Alternative Method using Excel Solver

Design Q = CiA =	#DIV/0! cfs		
Manning's Equation Q = Swale Width=	0.00 cfs 6.00 ft	Error 1 =	#DIV/0!

Instructions are provided to the right (green comments).

Flow Velocity	#DIV/0!	ft/s
Minimum Length =	#DIV/0!	ft

Instructions are provided to the right (blue comments).

Design Width =		ft		
Design Discharge =	0.0	0 cfs	Error 2 =	#DIV/0!
Design Depth =	0.3	3 ft		
Flow Velocity =	#DIV/0!	cfs		
Minimum Length =	#DIV/0!	ft		

If any of the resulting values do not meet the design requirement set forth in RG-348, the design parameters may be modified and the solver rerun. If any of the resulting values still do not meet the design requirement set forth in RG-348, widening the swale bottom value may not be possible.

16. Vegetated Filter Strips Designed as Required in RG-348 Pages 3-55 to 3-57 There are no calculations required for determining the load or size of vegetative filter strips. The 80% removal is provided when the contributing drainage area does not exceed 72 feet (direction of flow) and the sheet flow leaving the impervious cover is directed across 15 feet of engineered filter strips with maximum slope of 20% or across 50 feet of natural vegetation with a maximum slope of 10%. There can be a break in grade as long as no slope exceeds 20%. If vegetative filter strips are proposed for an interim permanent BMP, they may be sized as described on Page 3-56 of RG-348. 17. Wet Vaults Designed as Required in RG-348 Pages 3-30 to 3-32 & 3-79

Required Load Removal Based upon Equation 3.3 = NA lbs First calculate the load removal at 1.1 in/hour RG-348 Page 3-30 Equation 3.4: Q = CiA C = runoff coefficient for the drainage area = C = Runoff Coefficient = $0.546 (IC)^2 + 0.328 (IC) + 0.03$ 0.17 i = design rainfall intensity = 1.1 in/hour A = drainage area in acres = 1 acres 0.19 cubic feet/sec

To solve for bottom width of the trapezoidal swale (b) using the Excel solver: Excel can simultaneously solve the "Design Q" (C217) vs "Manning's Q" (C219) by varying the "Swale Width" (C220). The required "Swale Width" occurs when the "Design Q" = "Manning's Q"

First, highlight Cell F219 (Error 1 value). The equation showing in the fx screen for Cell F219 should be "= \$C\$217-\$C\$219" Then click on "Tools" and "Solver". The "Solver Parameters" screen pops up. The value in the "Set Target cell" should be \$F\$219 "Error 1 =" The value in the "By Changing Cells" should be \$C\$220 "Swale Width" Click on solve.

The resulting "Swale Width" must be less than 10 feet to meet the requirements of the TGM. If the resulting "Swale Width" exceeds 10 feet then the design parameters must be revised and the solver run again. If there is not the option for "Solver" under "Tools"

Click on "Tools" and "Add Ins" and then check "Solver Add-in" Then proceed as instructed above.

If you would like to increase the bottom width of the trapezoidal swale (b): Excel can simultaneously solve the "Design Q" (C217) vs "Design Discharge" (C232) by varying the "Design Depth" (C233). The required "Design Depth" for a 10-foot bottom width occurs when the "Design Q" (C217) = the "Design Discharge" (C232). First set the desired bottom width in Cell C231. Highlight Cell F232. The equation showing in the fx screen for Cell F232 should be "= \$C\$217-\$C\$232" Click on "Tools" and "Solver". The "Solver Parameters" screen pops up. The value in the "Set Target cell" should be \$F\$232 "Error 2" The value in the "By Changing Cells" should be \$C\$233 "Design Depth" Click on solve. The resulting "Design Depth" must be equal to or less than 0.33 feet to meet the requirements of the TGM. If the resulting "Design Depth" exceeds 0.33 feet then the design parameters must be revised and the solver run again. First set the desired bottom width in Cell C231. Highlight Cell F232. The equation showing in the fx screen for Cell F232 should be "= \$C\$217-\$C\$232" Click on "Tools" and "Solver". The "Solver Parameters" screen pops up.

The value in the "Set Target cell" should be \$F\$232 "Error 2" The value in the "By Changing Cells" should be \$C\$233 "Design Depth" Click on solve.

The resulting "Design Depth" must be equal to or less than 0.33 feet to meet the requirements of the TGM. If the resulting "Design Depth" exceeds 0.33 feet then the design parameters must be revised and the solver run again.

Q = flow rate in cubic feet per second =

RG-348 Page 3-31 Equation 3.	5: V _{OR} = Q/A				
Q = Runoff rate calcul A = Water surface area in th) cubic feet/se) square feet	ec	
V _{OR} = Ov	erflow Rate =	0.00) feet/sec		
Percent TSS Removal from Figure 3-1 (RG-348	Page 3-31) =	50	B percent		
Load removed by	y Wet Vault =	#VALUE!	lbs		
If a bypass occurs at a rainfall intensity of less than 1.1 in/hou Calculate the efficiency reduction for the actual rainfall intensi					
Actual Rainfall Intensity at which Wet Vault byp	ass Occurs =	0.5	5 in/hour		
Fraction of rainfall treated from Figure 3-2 RG-348 Efficiency Reduction for Actual Rainf			5 percent 3 percent		
Resultant TSS Load removed by	y Wet Vault =	#VALUE!	lbs		
18. Permeable Concrete	D	esigned as F	Required in RC	G-348	Pages 3-79 to 3-83
PERMEABLE CONCRETE MAY ONLY BE USED ON THE CONT		NE			
19. BMPs Installed in a Series	D	esigned as F	Required in RC	G-348	Pages 3-32
Michael E. Barrett, Ph.D., P.E. recommended th	nat the coeffici	ent for E ₂ be	changed fro	m 0.5 to 0.65 on Ma	y 3, 2006
E _{TOT} = [1 - ((1 - E ₁) X (1 - 0.65E ₂) x (1 - 0.25	5E ₃))] X 100 =	86.38	3 percent	NET EFFICIENCY (OF THE BMPs IN THE SERIES
EFFICIENCY OF FIRST BMP IN THE SE	ERIES = E ₁ =	75.00) percent		
EFFICIENCY OF THE SECOND BMP IN THE SE	ERIES = E_2 =	70.00) percent		
EFFICIENCY OF THE THIRD BMP IN THE SE	ERIES = E ₃ =	0.00) percent		
THEREFORE, THE NET LOAD REMOVAL WOUL $(A_1 AND A_P VALUES ARE FROM SECTION 3 ABC)$					
L _R = E _{TOT} X P X (A ₁ X 34.6)	X A _P X0.54) =	6.57	7 lbs		
20. Stormceptor					
Required TSS Removal in BMP Dra Impervious Cover Ov	0	NA 0.0000	lbs ac		
TSS Removal for Uncar BMP Sizing	otured Area =	0.00	lbs		
Eff	ective Area =	NA	EA		
Calculated Mo Actual Model Size (if multiple values provided	in Calculated	#N/A			
Model Size or if you are choosing a larger	model size) =	0	Model Size		
	urface Area =	#N/A	ft ²		
	erflow Rate = erflow Rate =	#VALUE! #VALUE!	V _{or} V _{or}		
	Efficiency % =	#VALUE!	%		
	L _R Value =	#VALUE!	lbs		
TSSI	Load Credit =	#VALUE!	lbs		
Is Sufficient Treatment Available? (TSS Credit <u>></u> 1	TSS Uncapt.)	#VALUE!			
TSS Treatment by BMP (LM + TS	SS Uncapt.) =	#VALUE!			

. Vortech				
	Required TSS Removal in BMP Drain	age Area=	NA	lbs
	Impervious Cover Over	treatment=	0.0000	ac
	TSS Removal for Uncaptu	red Area =	0.00	lbs
	BMP Sizing			
	Effect	tive Area =	NA	EA
	Calculated Mode	∍l Size(s) =	#N/A	
	Actual Model Size (if choosing larger mo	idel size) =	Vx1000	Pick Model Size
	Surfa	ace Area =	7.10	ft ²
	Overf	low Rate =	#VALUE!	V _{or}
	Rounded Overf	low Rate =	#VALUE!	V _{or}
	BMP Effic	ciency % =	#VALUE!	%
		L _R Value =	#VALUE!	lbs
	TSS Loa	ad Credit =	#VALUE!	lbs
	Is Sufficient Treatment Available? (TSS Credit \geq TS	S Uncapt.)	#VALUE!	
	TSS Treatment by BMP (LM + TSS	Uncapt.) =	#VALUE!	

Texas Commission on Environmental Quality TSS Removal Calculations 04-20-2009 Project Name: Canyon Golf Road Sidewalk Project Date Prepared: 6/1/2023 Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell. Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348. Characters shown in red are data entry fields. Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spreadsheet. 1. The Required Load Reduction for the total project: Calculations from RG-348 Pages 3-27 to 3-30 Page 3-29 Equation 3.3: $L_M = 27.2(A_N \times P)$ where: L_{M TOTAL PROJECT} = Required TSS removal resulting from the proposed development = 80% of increased load A_N = Net increase in impervious area for the project P = Average annual precipitation, inches Site Data: Determine Required Load Removal Based on the Entire Project County = Bexar Total project area included in plan * = 1.07 acres Predevelopment impervious area within the limits of the plan * = 0.00 acres Total post-development impervious area within the limits of the plan* = 0.68 acres Total post-development impervious cover fraction * : 0.63 **ELVIS TREVIÑO** P 30 inches 126752 Aling Tuining 555 lbs. L_{M TOTAL PROJECT} = * The values entered in these fields should be for the total project area. Number of drainage basins / outfalls areas leaving the plan area = 8 2. Drainage Basin Parameters (This information should be provided for each basin): Drainage Basin/Outfall Area No. = 60 Total drainage basin/outfall area = 0.74 acres Predevelopment impervious area within drainage basin/outfall area = 0.00 acres Post-development impervious area within drainage basin/outfall area = 0.18 acres Post-development impervious fraction within drainage basin/outfall area = 0.24 L_{M THIS BASIN} = 144 lbs: 3. Indicate the proposed BMP Code for this basin. Proposed BMP = Vegetated Filter Strips Removal efficiency = 85 percent Aqualogic Cartridge Filter Bioretention Contech StormFilter Constructed Wetland Extended Detention Grassy Swale Retention / Irrigation Sand Filter Stormceptor Vegetated Filter Strips Vortechs Wet Basin

Wet Vault

4. Calculate Maximum TSS Load Removed (L_R) for this Drainage Basin by the selected BMP Type.

RG-348 Page 3-33 Equation 3.7: L_R = (BMP efficiency) x P x (A_I x 34.6 + A_P x 0.54)

 A_{C} = Total On-Site drainage area in the BMP catchment area

A_I = Impervious area proposed in the BMP catchment area

 A_P = Pervious area remaining in the BMP catchment area

 L_R = TSS Load removed from this catchment area by the proposed BMP

A _C =	0.74	acres
A _I =	0.18	acres
A _P =	0.57	acres
L _R =	163	lbs

Desired L _{M THIS BASIN} =	144	lbs.		
F =	0.88			
6. Calculate Capture Volume required by the BMP Type for this drainage ba	asin / outfall	area.	Calculations from RG-348	Pages 3-34 to 3-36
Rainfall Depth =		inches		
Post Development Runoff Coefficient = On-site Water Quality Volume =	0.22 905	cubic feet		
	Calculations	from RG-348	Pages 3-36 to 3-37	
Off-site area draining to BMP =		acres		
Off-site Impervious cover draining to BMP = Impervious fraction of off-site area =		acres		
Off-site Runoff Coefficient =				
Off-site Water Quality Volume =	0	cubic feet		
Storage for Sediment =	181			
Total Capture Volume (required water quality volume(s) x 1.20) =	1086	cubic feet		
The following sections are used to calculate the required water quality volu	ume(s) for th	ne selected BN	IP.	
The values for BMP Types not selected in cell C45 will show NA. 7. Retention/Irrigation System	Designed as	Required in R	G-348 Pages	3-42 to 3-46
<u>r. Retention/ingation bystem</u>	Designed at		-0-0-0 1 ages	
Required Water Quality Volume for retention basin =	NA	cubic feet		
Irrigation Area Calculations:				
Soil infiltration/permeability rate =	0.1	in/hr	Enter determined permeabi	lity rate or assumed value of 0.1
Irrigation area =	NA NA	square feet acres		
8. Extended Detention Basin System	Designed as	s Required in R	G-348 Pages	3-46 to 3-51
o. Extended Detention Dasin bystem	Designed at		-0-0-0 1 ages	
Required Water Quality Volume for extended detention basin =	NA	cubic feet		
9. Filter area for Sand Filters	Designed as	s Required in R	G-348 Pages	3-58 to 3-63
9A. Full Sedimentation and Filtration System				
Water Quality Volume for sedimentation basin =	NA	cubic feet		
Minimum filter basin area =	NA	square feet		
Maximum sedimentation basin area = Minimum sedimentation basin area =		•	For minimum water depth o For maximum water depth o	

Water Quality Volume for combined basins =	NA	cubic feet		
Minimum filter basin area =	NA	square feet		
Maximum sedimentation basin area = Minimum sedimentation basin area =			For minimum water For maximum water	
10. Bioretention System	Designed as	Required in R	G-348	Pages 3-63 to 3-65
Required Water Quality Volume for Bioretention Basin =	NA	cubic feet		
11. Wet Basins	Designed as	Required in R	G-348	Pages 3-66 to 3-71
Required capacity of Permanent Pool = Required capacity at WQV Elevation =		cubic feet cubic feet		pacity is 1.20 times the WQV IId be the Permanent Pool Capacity /.
12. Constructed Wetlands	Designed as	Required in R	G-348	Pages 3-71 to 3-73
Required Water Quality Volume for Constructed Wetlands =	NA	cubic feet		
<u>13. AquaLogic[™] Cartridge System</u>	Designed as	Required in R	G-348	Pages 3-74 to 3-78
** 2005 Technical Guidance Manual (RG-348) does not exempt the required	d 20% increas	e with mainte	nance contract with	AquaLogic [™] .
Required Sedimentation chamber capacity = Filter canisters (FCs) to treat WQV = Filter basin area (RIA _F) =	NA	cubic feet cartridges square feet		
14. Stormwater Management StormFilter® by CONTECH				
Required Water Quality Volume for Contech StormFilter System =	NA	cubic feet		
THE SIZING REQUIREMENTS FOR THE FOLLOWING BMPs / LOAD REMOV	VALS ARE BA	ASED UPON F	LOW RATES - NOT C	ALCULATED WATER QUALITY VOLUMES
15. Grassy Swales	Designed as	Required in R	G-348	Pages 3-51 to 3-54
Design parameters for the swale:				
Drainage Area to be Treated by the Swale = A = Impervious Cover in Drainage Area = Rainfall intensity = i = Swale Slope = Side Slope (z) = Design Water Depth = y = Weighted Runoff Coefficient = C =	= 1 = 1 =	acres acres .1 in/hr ft/ft ft		
A_{CS} = cross-sectional area of flow in Swale = P_W = Wetted Perimeter = R_H = hydraulic radius of flow cross-section = A_{CS}/P_W = n = Manning's roughness coefficient =	#DIV/0! #DIV/0!	sf feet feet .2		
15A. Using the Method Described in the RG-348				
Manning's Equation: $\Omega = 1.40 \text{ A}_{\odot} \text{ P}_{\odot}^{2/3} \text{ S}^{0.5}$	5			

b = <u>0.134 x Q</u> - zy	=	#DIV/0!	feet
y ^{1.67} S ^{0.5}			

To calculate the flow velocity in the swale:

 $\mathbf{Q} = \mathbf{CiA} = \# \mathbf{D} | \mathbf{V} / 0 !$

V (Velocity of Flow in the swale) = Q/A_{CS} = #DIV/0!

To calculate the resulting swale length:

L = Minimum Swale Length = V (ft/sec) * 300 (sec) = #DIV/0! feet

If any of the resulting values do not meet the design requirement set forth in RG-348, the design parameters must be modified and the solver rerun.

cfs

ft/sec

15B. Alternative Method using Excel Solver

Design Q = CiA =	#DIV/0! cfs		
Manning's Equation Q = Swale Width=	0.00 cfs 6.00 ft	Error 1 =	#DIV/0!

Instructions are provided to the right (green comments).

Flow Velocity	#DIV/0!	ft/s
Minimum Length =	#DIV/0!	ft

Instructions are provided to the right (blue comments).

Design Width =		ft		
Design Discharge =	0.0	0 cfs	Error 2 =	#DIV/0!
Design Depth =	0.3	3 ft		
Flow Velocity =	#DIV/0!	cfs		
Minimum Length =	#DIV/0!	ft		

If any of the resulting values do not meet the design requirement set forth in RG-348, the design parameters may be modified and the solver rerun. If any of the resulting values still do not meet the design requirement set forth in RG-348, widening the swale bottom value may not be possible.

16. Vegetated Filter Strips Designed as Required in RG-348 Pages 3-55 to 3-57 There are no calculations required for determining the load or size of vegetative filter strips. The 80% removal is provided when the contributing drainage area does not exceed 72 feet (direction of flow) and the sheet flow leaving the impervious cover is directed across 15 feet of engineered filter strips with maximum slope of 20% or across 50 feet of natural vegetation with a maximum slope of 10%. There can be a break in grade as long as no slope exceeds 20%. If vegetative filter strips are proposed for an interim permanent BMP, they may be sized as described on Page 3-56 of RG-348. 17. Wet Vaults Designed as Required in RG-348 Pages 3-30 to 3-32 & 3-79

Required Load Removal Based upon Equation 3.3 = NA lbs First calculate the load removal at 1.1 in/hour RG-348 Page 3-30 Equation 3.4: Q = CiA C = runoff coefficient for the drainage area = C = Runoff Coefficient = $0.546 (IC)^2 + 0.328 (IC) + 0.03$ 0.14 i = design rainfall intensity = 1.1 in/hour A = drainage area in acres = 1 acres 0.15 cubic feet/sec

To solve for bottom width of the trapezoidal swale (b) using the Excel solver: Excel can simultaneously solve the "Design Q" (C217) vs "Manning's Q" (C219) by varying the "Swale Width" (C220). The required "Swale Width" occurs when the "Design Q" = "Manning's Q"

First, highlight Cell F219 (Error 1 value). The equation showing in the fx screen for Cell F219 should be "= \$C\$217-\$C\$219" Then click on "Tools" and "Solver". The "Solver Parameters" screen pops up. The value in the "Set Target cell" should be \$F\$219 "Error 1 =" The value in the "By Changing Cells" should be \$C\$220 "Swale Width" Click on solve.

The resulting "Swale Width" must be less than 10 feet to meet the requirements of the TGM. If the resulting "Swale Width" exceeds 10 feet then the design parameters must be revised and the solver run again. If there is not the option for "Solver" under "Tools"

Click on "Tools" and "Add Ins" and then check "Solver Add-in" Then proceed as instructed above.

If you would like to increase the bottom width of the trapezoidal swale (b): Excel can simultaneously solve the "Design Q" (C217) vs "Design Discharge" (C232) by varying the "Design Depth" (C233). The required "Design Depth" for a 10-foot bottom width occurs when the "Design Q" (C217) = the "Design Discharge" (C232). First set the desired bottom width in Cell C231. Highlight Cell F232. The equation showing in the fx screen for Cell F232 should be "= \$C\$217-\$C\$232" Click on "Tools" and "Solver". The "Solver Parameters" screen pops up. The value in the "Set Target cell" should be \$F\$232 "Error 2" The value in the "By Changing Cells" should be \$C\$233 "Design Depth" Click on solve. The resulting "Design Depth" must be equal to or less than 0.33 feet to meet the requirements of the TGM. If the resulting "Design Depth" exceeds 0.33 feet then the design parameters must be revised and the solver run again. First set the desired bottom width in Cell C231. Highlight Cell F232. The equation showing in the fx screen for Cell F232 should be "= \$C\$217-\$C\$232" Click on "Tools" and "Solver". The "Solver Parameters" screen pops up.

The value in the "Set Target cell" should be \$F\$232 "Error 2" The value in the "By Changing Cells" should be \$C\$233 "Design Depth" Click on solve.

The resulting "Design Depth" must be equal to or less than 0.33 feet to meet the requirements of the TGM. If the resulting "Design Depth" exceeds 0.33 feet then the design parameters must be revised and the solver run again.

Q = flow rate in cubic feet per second =

RG-348 Page 3-31 Equation 3.5: V _{OR} = Q/	٩		
Q = Runoff rate calculated above A = Water surface area in the wet vault		5 cubic feet/sec <mark>0</mark> square feet	
V _{OR} = Overflow Rate	= 0.0	0 feet/sec	
Percent TSS Removal from Figure 3-1 (RG-348 Page 3-31)	= 5	3 percent	
Load removed by Wet Vault	= #VALUE!	lbs	
If a bypass occurs at a rainfall intensity of less than 1.1 in/hours Calculate the efficiency reduction for the actual rainfall intensity rate			
Actual Rainfall Intensity at which Wet Vault bypass Occurs	= 0.	<mark>5</mark> in/hour	
Fraction of rainfall treated from Figure 3-2 RG-348 Page 3-32 Efficiency Reduction for Actual Rainfall Intensity		<mark>5</mark> percent 3 percent	
Resultant TSS Load removed by Wet Vault	= #VALUE!	lbs	
18. Permeable Concrete	Designed as	Required in RG-348	Pages 3-79 to 3-83
PERMEABLE CONCRETE MAY ONLY BE USED ON THE CONTRIBUTING	ZONE		
19. BMPs Installed in a Series	Designed as	Required in RG-348	Pages 3-32
Michael E. Barrett, Ph.D., P.E. recommended that the coef	ficient for E ₂ b	e changed from 0.5	to 0.65 on May 3, 2006
E _{TOT} = [1 - ((1 - E ₁) X (1 - 0.65E ₂) x (1 - 0.25E ₃))] X 100	= 86.3	8 percent NET E	EFFICIENCY OF THE BMPs IN THE SERIES
EFFICIENCY OF FIRST BMP IN THE SERIES = E_1	= 75.0	0 percent	
EFFICIENCY OF THE SECOND BMP IN THE SERIES = E_2	= 70.0	0 percent	
EFFICIENCY OF THE THIRD BMP IN THE SERIES = E_3	= 0.0	0 percent	
THEREFORE, THE NET LOAD REMOVAL WOULD BE: $(A_1 \text{ AND } A_P \text{ VALUES ARE FROM SECTION 3 ABOVE})$			
L _R = E _{TOT} X P X (A _I X 34.6 X A _P X0.54)	= 165.7	3 lbs	
20. Stormceptor			
Required TSS Removal in BMP Drainage Area Impervious Cover Overtreatment		lbs ac	
TSS Removal for Uncaptured Area		lbs	
BMP Sizing Effective Area		EA	
Calculated Model Size(s) Actual Model Size (if multiple values provided in Calculate			
Model Size or if you are choosing a larger model size)		Model Size	
Surface Area		ft ²	
Overflow Rate		V _{or}	
Rounded Overflow Rate BMP Efficiency %		V _{or} %	
L _R Value		lbs	
TSS Load Credit	= #VALUE!	lbs	
Is Sufficient Treatment Available? (TSS Credit <u>></u> TSS Uncapt	.) #VALUE!		
TSS Treatment by BMP (LM + TSS Uncapt.)	= #VALUE!		

. Vortech				
	Required TSS Removal in BMP Drain	age Area=	NA	lbs
	Impervious Cover Overt	treatment=	0.0000	ac
	TSS Removal for Uncapture	red Area =	0.00	lbs
	BMP Sizing			
	Effect	tive Area =	NA	EA
	Calculated Mode	el Size(s) =	#N/A	
	Actual Model Size (if choosing larger mo	del size) =	Vx1000	Pick Model Size
	Surfa	ace Area =	7.10	ft ²
	Overf	low Rate = #	VALUE!	V _{or}
	Rounded Overf	low Rate = #	VALUE!	V _{or}
	BMP Effic	ciency % = #	VALUE!	%
	I	L _R Value = #	VALUE!	lbs
	TSS Loa	ad Credit = #	VALUE!	lbs
	Is Sufficient Treatment Available? (TSS Credit \geq TS	S Uncapt.) #	VALUE!	
	TSS Treatment by BMP (LM + TSS	Uncapt.) = #	VALUE!	

Texas Commission on Environmental Quality	3	
TSS Removal Calculations 04-20-2009		Project Name: Canyon Golf Road Sidewalk Project Date Prepared: 6/1/2023
Additional information is provided for cells with a red to Text shown in blue indicate location of instructions in the Te Characters shown in red are data entry fields. Characters shown in black (Bold) are calculated fields.	chnical Guidance Manual - I	RG-348.
1. The Required Load Reduction for the total project:	Calculations from RG-34	48 Pages 3-27 to 3-30
Page 3-29 Equation	3.3: L _M = 27.2(A _N x P)	
Site Data: Determine Required Load Removal Based on the Enti	A _N = Net increase in impervio P = Average annual precipit e Project County = Bexar plan * = 1.07 acres plan * = 0.00 acres	
Total post-development impervious cover fra L _{M TOTAL} * The values entered in these fields should be for the total project	P = <u>30</u> inches ROJECT = 555 lbs.	126752 55 000555/ONAL ENG 6/1/23
Number of drainage basins / outfalls areas leaving the pla	n area = 8	1mm mmo
2. Drainage Basin Parameters (This information should be provide	d for each basin):	
Drainage Basin/Outfall Ar	ea No. = 70	
Total drainage basin/outfa Predevelopment impervious area within drainage basin/outfa Post-development impervious area within drainage basin/outfa Post-development impervious fraction within drainage basin/outfa L _{M TF}	II area = 0.00 acres II area = 0.04 acres	
3. Indicate the proposed BMP Code for this basin.		
Propose Removal eff	BMP = Vegetated Filter Strips ciency = 85 percent	Aqualogic Cartridge Filter Bioretention Contech StormFilter Constructed Wetland Extended Detention Grassy Swale Retention / Irrigation Sand Filter Stormceptor Vegetated Filter Strips Vortechs Wet Basin Wet Vault

4. Calculate Maximum TSS Load Removed (L_R) for this Drainage Basin by the selected BMP Type.

RG-348 Page 3-33 Equation 3.7: L_R = (BMP efficiency) x P x (A₁ x 34.6 + A_P x 0.54)

 A_{C} = Total On-Site drainage area in the BMP catchment area

A_I = Impervious area proposed in the BMP catchment area

 A_P = Pervious area remaining in the BMP catchment area

 L_R = TSS Load removed from this catchment area by the proposed BMP

0.64	acres
0.04	acres
0.60	acres
40	lbs
	0.04 0.60

Desired L _{M THIS BASIN} =	30	lbs.		
F =	0.75			
6. Calculate Capture Volume required by the BMP Type for this drainage ba		area	Calculations from RG-348	Pages 3-34 to 3-36
	uomi voutium			1 4900 0 04 10 0 00
Rainfall Depth = Post Development Runoff Coefficient = On cite Water Quality Valuma	0.08	inches cubic feet		
On-site Water Quality Volume =	170	cubic leet		
	Calculations	from RG-348	Pages 3-36 to 3-37	
Off-site area draining to BMP = Off-site Impervious cover draining to BMP =		acres		
Impervious fraction of off-site area		acres		
Off-site Runoff Coefficient =		and the fact		
Off-site Water Quality Volume =	0	cubic feet		
Storage for Sediment =				
Total Capture Volume (required water quality volume(s) x 1.20) =		cubic feet	D	
The following sections are used to calculate the required water quality volu The values for BMP Types not selected in cell C45 will show NA.	ume(s) for tr	ie selected bivi	r.	
7. Retention/Irrigation System	Designed as	s Required in R	G-348 Pages	3-42 to 3-46
Required Water Quality Volume for retention basin =	NA	cubic feet		
Irrigation Area Calculations:				
Soil infiltration/permeability rate =		in/hr	Enter determined permeab	ility rate or assumed value of 0.1
Irrigation area =	NA NA	square feet acres		
8. Extended Detention Basin System	Designed as	s Required in R	G-348 Pages	3-46 to 3-51
Required Water Quality Volume for extended detention basin =	NA	cubic feet		
9. Filter area for Sand Filters	Designed as	s Required in R	G-348 Pages	3-58 to 3-63
9A. Full Sedimentation and Filtration System				
Water Quality Volume for sedimentation basin =	NA	cubic feet		
Minimum filter basin area =	NA	square feet		
Maximum sedimentation basin area = Minimum sedimentation basin area =			For minimum water depth For maximum water depth	

Water Quality Volume for combined basins =	NA	cubic feet		
Minimum filter basin area =	NA	square feet		
Maximum sedimentation basin area = Minimum sedimentation basin area =			For minimum water For maximum water	
10. Bioretention System	Designed as	Required in R	G-348	Pages 3-63 to 3-65
Required Water Quality Volume for Bioretention Basin =	NA	cubic feet		
11. Wet Basins	Designed as	Required in R	G-348	Pages 3-66 to 3-71
Required capacity of Permanent Pool = Required capacity at WQV Elevation =		cubic feet cubic feet		pacity is 1.20 times the WQV IId be the Permanent Pool Capacity /.
12. Constructed Wetlands	Designed as	Required in R	G-348	Pages 3-71 to 3-73
Required Water Quality Volume for Constructed Wetlands =	NA	cubic feet		
<u>13. AquaLogic[™] Cartridge System</u>	Designed as	Required in R	G-348	Pages 3-74 to 3-78
** 2005 Technical Guidance Manual (RG-348) does not exempt the required	d 20% increas	e with mainte	nance contract with	AquaLogic [™] .
Required Sedimentation chamber capacity = Filter canisters (FCs) to treat WQV = Filter basin area (RIA _F) =	NA	cubic feet cartridges square feet		
14. Stormwater Management StormFilter® by CONTECH				
Required Water Quality Volume for Contech StormFilter System =	NA	cubic feet		
THE SIZING REQUIREMENTS FOR THE FOLLOWING BMPs / LOAD REMOV	VALS ARE BA	ASED UPON F	LOW RATES - NOT C	ALCULATED WATER QUALITY VOLUMES
15. Grassy Swales	Designed as	Required in R	G-348	Pages 3-51 to 3-54
Design parameters for the swale:				
Drainage Area to be Treated by the Swale = A = Impervious Cover in Drainage Area = Rainfall intensity = i = Swale Slope = Side Slope (z) = Design Water Depth = y = Weighted Runoff Coefficient = C =	= 1 = 1 =	acres acres .1 in/hr ft/ft ft		
A_{CS} = cross-sectional area of flow in Swale = P_W = Wetted Perimeter = R_H = hydraulic radius of flow cross-section = A_{CS}/P_W = n = Manning's roughness coefficient =	#DIV/0! #DIV/0!	sf feet feet .2		
15A. Using the Method Described in the RG-348				
Manning's Equation: $\Omega = 1.40 \text{ A}_{\odot} \text{ P}_{\odot}^{2/3} \text{ S}^{0.5}$	5			

b = <u>0.134 x Q</u> - zy	=	#DIV/0!	feet
y ^{1.67} S ^{0.5}			

 $\mathbf{Q} = \mathbf{CiA} = \# \mathbf{D} | \mathbf{V} / 0 !$

To calculate the flow velocity in the swale:

V (Velocity of Flow in the swale) = Q/A_{CS} = #DIV/0! ft/sec

To calculate the resulting swale length:

L = Minimum Swale Length = V (ft/sec) * 300 (sec) = #DIV/0! feet

If any of the resulting values do not meet the design requirement set forth in RG-348, the design parameters must be modified and the solver rerun.

cfs

15B. Alternative Method using Excel Solver

Design Q = CiA =	#DIV/0! cfs		
Manning's Equation Q = Swale Width=	0.00 cfs 6.00 ft	Error 1 =	#DIV/0!

Instructions are provided to the right (green comments).

Flow Velocity	#DIV/0!	ft/s
Minimum Length =	#DIV/0!	ft

Instructions are provided to the right (blue comments).

Design Width =		ft		
Design Discharge =	0.0	0 cfs	Error 2 =	#DIV/0!
Design Depth =	0.3	3 ft		
Flow Velocity =	#DIV/0!	cfs		
Minimum Length =	#DIV/0!	ft		

If any of the resulting values do not meet the design requirement set forth in RG-348, the design parameters may be modified and the solver rerun. If any of the resulting values still do not meet the design requirement set forth in RG-348, widening the swale bottom value may not be possible.

16. Vegetated Filter Strips Designed as Required in RG-348 Pages 3-55 to 3-57 There are no calculations required for determining the load or size of vegetative filter strips. The 80% removal is provided when the contributing drainage area does not exceed 72 feet (direction of flow) and the sheet flow leaving the impervious cover is directed across 15 feet of engineered filter strips with maximum slope of 20% or across 50 feet of natural vegetation with a maximum slope of 10%. There can be a break in grade as long as no slope exceeds 20%. If vegetative filter strips are proposed for an interim permanent BMP, they may be sized as described on Page 3-56 of RG-348. 17. Wet Vaults Designed as Required in RG-348 Pages 3-30 to 3-32 & 3-79 lbs

Required Load Removal Based upon Equation 3.3 = NA

First calculate the load removal at 1.1 in/hour

RG-348 Page 3-30 Equation 3.4: Q = CiA

C = runoff coefficient for the drainage area = 0.05 i = design rainfall intensity = 1.1 in/hour A = drainage area in acres = 1 acres

Q = flow rate in cubic feet per second =

To solve for bottom width of the trapezoidal swale (b) using the Excel solver: Excel can simultaneously solve the "Design Q" (C217) vs "Manning's Q" (C219) by varying the "Swale Width" (C220). The required "Swale Width" occurs when the "Design Q" = "Manning's Q" First, highlight Cell F219 (Error 1 value). The equation showing in the fx screen for Cell F219 should be "= \$C\$217-\$C\$219"

Then click on "Tools" and "Solver". The "Solver Parameters" screen pops up. The value in the "Set Target cell" should be \$F\$219 "Error 1 =" The value in the "By Changing Cells" should be \$C\$220 "Swale Width" Click on solve.

The resulting "Swale Width" must be less than 10 feet to meet the requirements of the TGM. If the resulting "Swale Width" exceeds 10 feet then the design parameters must be revised and the solver run again. If there is not the option for "Solver" under "Tools"

Click on "Tools" and "Add Ins" and then check "Solver Add-in" Then proceed as instructed above.

If you would like to increase the bottom width of the trapezoidal swale (b): Excel can simultaneously solve the "Design Q" (C217) vs "Design Discharge" (C232) by varying the "Design Depth" (C233). The required "Design Depth" for a 10-foot bottom width occurs when the "Design Q" (C217) = the "Design Discharge" (C232). First set the desired bottom width in Cell C231. Highlight Cell F232. The equation showing in the fx screen for Cell F232 should be "= \$C\$217-\$C\$232" Click on "Tools" and "Solver". The "Solver Parameters" screen pops up. The value in the "Set Target cell" should be \$F\$232 "Error 2" The value in the "By Changing Cells" should be \$C\$233 "Design Depth" Click on solve. The resulting "Design Depth" must be equal to or less than 0.33 feet to meet the requirements of the TGM. If the resulting "Design Depth" exceeds 0.33 feet then the design parameters must be revised and the solver run again. First set the desired bottom width in Cell C231. Highlight Cell F232. The equation showing in the fx screen for Cell F232 should be "= \$C\$217-\$C\$232" Click on "Tools" and "Solver". The "Solver Parameters" screen pops up.

The value in the "Set Target cell" should be \$F\$232 "Error 2" The value in the "By Changing Cells" should be \$C\$233 "Design Depth" Click on solve.

The resulting "Design Depth" must be equal to or less than 0.33 feet to meet the requirements of the TGM. If the resulting "Design Depth" exceeds 0.33 feet then the design parameters must be revised and the solver run again.

0.06 cubic feet/sec

C = Runoff Coefficient = $0.546 (IC)^2 + 0.328 (IC) + 0.03$

RG-348 Page 3-31 Equation 3.5: V _{OR} = Q/A			
Q = Runoff rate calculated above = A = Water surface area in the wet vault =		6 cubic feet/sec <mark>0</mark> square feet	
V _{OR} = Overflow Rate =	0.0	0 feet/sec	
Percent TSS Removal from Figure 3-1 (RG-348 Page 3-31) =	5	3 percent	
Load removed by Wet Vault =	#VALUE!	lbs	
If a bypass occurs at a rainfall intensity of less than 1.1 in/hours Calculate the efficiency reduction for the actual rainfall intensity rate			
Actual Rainfall Intensity at which Wet Vault bypass Occurs =	0.	<mark>5</mark> in/hour	
Fraction of rainfall treated from Figure 3-2 RG-348 Page 3-32 = Efficiency Reduction for Actual Rainfall Intensity =		<mark>5</mark> percent 3 percent	
Resultant TSS Load removed by Wet Vault =	#VALUE!	lbs	
18. Permeable Concrete	Designed as l	Required in RG-348	Pages 3-79 to 3-83
PERMEABLE CONCRETE MAY ONLY BE USED ON THE CONTRIBUTING ZO	DNE		
<u>19. BMPs Installed in a Series</u>	Designed as I	Required in RG-348	Pages 3-32
Michael E. Barrett, Ph.D., P.E. recommended that the coeffic	ient for E ₂ b	e changed from 0.5 to 0).65 on May 3, 2006
E _{TOT} = [1 - ((1 - E ₁) X (1 - 0.65E ₂) x (1 - 0.25E ₃))] X 100 =	86.3	8 percent NET EFF	ICIENCY OF THE BMPs IN THE SERIES
EFFICIENCY OF FIRST BMP IN THE SERIES = E_1 =	75.0	0 percent	
EFFICIENCY OF THE SECOND BMP IN THE SERIES = E_2 =	70.0	0 percent	
EFFICIENCY OF THE THIRD BMP IN THE SERIES = E_3 =	0.0	0 percent	
THEREFORE, THE NET LOAD REMOVAL WOULD BE: $(A_1 \text{ AND } A_P \text{ VALUES ARE FROM SECTION 3 ABOVE})$			
L _R = E _{TOT} X P X (A _I X 34.6 X A _P X0.54) =	40.8	4 lbs	
20. Stormceptor			
Required TSS Removal in BMP Drainage Area= Impervious Cover Overtreatment= TSS Removal for Uncaptured Area =	NA 0.0000 0.00	lbs ac lbs	
BMP Sizing	NA	EA	
Effective Area = Calculated Model Size(s) =	#N/A	EA	
Actual Model Size (if multiple values provided in Calculated Model Size or if you are choosing a larger model size) =	0	Model Size	
Surface Area =	#N/A	ft ²	
Overflow Rate =	#VALUE!	V _{or}	
Rounded Overflow Rate =	#VALUE!	V _{or}	
BMP Efficiency % = L _R Value =	#VALUE! #VALUE!	% Ibs	
TSS Load Credit =	#VALUE!	lbs	
Is Sufficient Treatment Available? (TSS Credit <u>></u> TSS Uncapt.)	#VALUE!		
TSS Treatment by BMP (LM + TSS Uncapt.) =	#VALUE!		

. Vortech				
	Required TSS Removal in BMP Drain	age Area=	NA	lbs
	Impervious Cover Over	treatment=	0.0000	ac
	TSS Removal for Uncaptu	red Area =	0.00	lbs
	BMP Sizing			
	Effect	tive Area =	NA	EA
	Calculated Mode	∍l Size(s) =	#N/A	
	Actual Model Size (if choosing larger mo	idel size) =	Vx1000	Pick Model Size
	Surfa	ace Area =	7.10	ft ²
	Overf	low Rate =	#VALUE!	V _{or}
	Rounded Overf	low Rate =	#VALUE!	V _{or}
	BMP Effic	ciency % =	#VALUE!	%
		L _R Value =	#VALUE!	lbs
	TSS Loa	ad Credit =	#VALUE!	lbs
	Is Sufficient Treatment Available? (TSS Credit \geq TS	S Uncapt.)	#VALUE!	
	TSS Treatment by BMP (LM + TSS	Uncapt.) =	#VALUE!	

21. Vortech

Texas Commission on Environmental Quality			
TSS Removal Calculations 04-20-2009			Project Name: Canyon Golf Road Sidewalk Project Date Prepared: 6/1/2023
Additional information is provided for cells with a red tri Text shown in blue indicate location of instructions in the Tec Characters shown in red are data entry fields. Characters shown in black (Bold) are calculated fields.	chnical Guidan	ce Manual - RG-34	48.
1. The Required Load Reduction for the total project:	Calculat	ions from RG-348	Pages 3-27 to 3-30
Page 3-29 Equation 3	.3: L _M = 27:2(A _N	x P)	
Site Data: Determine Required Load Removal Based on the Entire	$A_{N} = \text{Net incre}$ $P = \text{Average}$ $P \text{roject}$ $County = \text{Bex}$ $Dan * = 1.0$ $plan * = 0.6$ $County = 0.6$ $Roject = 55$ $Roject = 55$ $rea.$ $n \text{ area } = 8$	ease in impervious are annual precipitation, i 7 acres 0 acres 8 acres 3 inches 5 lbs.	
Drainage Basin/Outfall Are	ea No. = 80		
Total drainage basin/outfal Predevelopment impervious area within drainage basin/outfal Post-development impervious area within drainage basin/outfal Post-development impervious fraction within drainage basin/outfal L _{M THI} <u>3. Indicate the proposed BMP Code for this basin.</u>	l area = 0.0 l area = 0.1	0 acres 0 acres 1	
Proposed Removal effic	BMP = <mark>Vegetat</mark> iency = 85		Aqualogic Cartridge Filter Bioretention Contech StormFilter Constructed Wetland Extended Detention Grassy Swale Retention / Irrigation Sand Filter Stormceptor Vegetated Filter Strips Vortechs Wet Basin

4. Calculate Maximum TSS Load Removed (L_R) for this Drainage Basin by the selected BMP Type.

RG-348 Page 3-33 Equation 3.7: L_R = (BMP efficiency) x P x (A_I x 34.6 + A_P x 0.54)

Wet Vault

where:

 A_{C} = Total On-Site drainage area in the BMP catchment area

A_I = Impervious area proposed in the BMP catchment area

 A_P = Pervious area remaining in the BMP catchment area

 L_R = TSS Load removed from this catchment area by the proposed BMP

0.46	acres
0.10	acres
0.36	acres
91	lbs
	0.10 0.36

5. Calculate Fraction of Annual Runoff to Treat the drainage basin / outfall area

- Calculate Fraction of Annaar Kallon to Freat the drainage basin / Calculate				
Desired L _{M THIS BASIN} =	80	lbs.		
F =	0.87			
6. Calculate Capture Volume required by the BMP Type for this drainage ba	asin / outfal	l area.	Calculations from RG-348	Pages 3-34 to 3-36
Rainfall Depth =	1.44	inches		
Post Development Runoff Coefficient =	0.21			
On-site Water Quality Volume =	504	cubic feet		
	Calculation	s from RG-348	Pages 3-36 to 3-37	
Off-site area draining to BMP =	0.00	acres		
Off-site Impervious cover draining to BMP =		acres		
Impervious fraction of off-site area =				
Off-site Runoff Coefficient =	0.00			
Off-site Water Quality Volume =	0	cubic feet		
Storage for Sediment =	101			
Total Capture Volume (required water quality volume(s) x 1.20) =	604	cubic feet		
The following sections are used to calculate the required water quality volu	ume(s) for t	he selected BN	IP.	
The values for BMP Types not selected in cell C45 will show NA.				
7. Retention/Irrigation System	Designed a	s Required in R	G-348 Pages 3	3-42 to 3-46
Required Water Quality Volume for retention basin =	NA	cubic feet		
Irrigation Area Calculations:				
Soil infiltration/permeability rate =	0.1	in/hr	Enter determined permeabil	ity rate or assumed value of 0.1
Irrigation area =		square feet acres		
8. Extended Detention Basin System	Designed a	s Required in R	G-348 Pages 3	3-46 to 3-51
Required Water Quality Volume for extended detention basin =	NA	cubic feet		
9. Filter area for Sand Filters	Designed a	s Required in R	G-348 Pages 3	3-58 to 3-63
9A. Full Sedimentation and Filtration System				
		and to fact		
Water Quality Volume for sedimentation basin =	NA	cubic feet		
Minimum filter basin area =	NA	square feet		
Maximum sedimentation basin area = Minimum sedimentation basin area =			For minimum water depth of For maximum water depth o	

9B. Partial Sedimentation and Filtration System

Water Quality Volume for combined basins =	NA	cubic feet		
Minimum filter basin area =	NA	square feet		
Maximum sedimentation basin area = Minimum sedimentation basin area =			For minimum water For maximum water	
10. Bioretention System	Designed as	Required in R	G-348	Pages 3-63 to 3-65
Required Water Quality Volume for Bioretention Basin =	NA	cubic feet		
11. Wet Basins	Designed as	Required in R	G-348	Pages 3-66 to 3-71
Required capacity of Permanent Pool = Required capacity at WQV Elevation =		cubic feet cubic feet		pacity is 1.20 times the WQV IId be the Permanent Pool Capacity /.
12. Constructed Wetlands	Designed as	Required in R	G-348	Pages 3-71 to 3-73
Required Water Quality Volume for Constructed Wetlands =	NA	cubic feet		
<u>13. AquaLogic[™] Cartridge System</u>	Designed as	Required in R	G-348	Pages 3-74 to 3-78
** 2005 Technical Guidance Manual (RG-348) does not exempt the required	d 20% increas	e with mainte	nance contract with	AquaLogic [™] .
Required Sedimentation chamber capacity = Filter canisters (FCs) to treat WQV = Filter basin area (RIA _F) =	NA	cubic feet cartridges square feet		
14. Stormwater Management StormFilter® by CONTECH				
Required Water Quality Volume for Contech StormFilter System =	NA	cubic feet		
THE SIZING REQUIREMENTS FOR THE FOLLOWING BMPs / LOAD REMOV	VALS ARE BA	ASED UPON F	LOW RATES - NOT C	ALCULATED WATER QUALITY VOLUMES
15. Grassy Swales	Designed as	Required in R	G-348	Pages 3-51 to 3-54
Design parameters for the swale:				
Drainage Area to be Treated by the Swale = A = Impervious Cover in Drainage Area = Rainfall intensity = i = Swale Slope = Side Slope (z) = Design Water Depth = y = Weighted Runoff Coefficient = C =	= 1 = 1 =	acres acres .1 in/hr ft/ft ft		
A_{CS} = cross-sectional area of flow in Swale = P_W = Wetted Perimeter = R_H = hydraulic radius of flow cross-section = A_{CS}/P_W = n = Manning's roughness coefficient =	#DIV/0! #DIV/0!	sf feet feet .2		
15A. Using the Method Described in the RG-348				
Manning's Equation: $\Omega = 1.40 \text{ A}_{\odot} \text{ P}_{\odot}^{2/3} \text{ S}^{0.5}$	5			

Manning's Equation: $Q = 1.49 A_{CS} R_{H}^{2/3} S^{0.5}$

b = <u>0.134 x Q</u> - zy	=	#DIV/0!	feet
y ^{1.67} S ^{0.5}			

 $\mathbf{Q} = \mathbf{CiA} = \# \mathbf{D} | \mathbf{V} / 0 !$

To calculate the flow velocity in the swale:

V (Velocity of Flow in the swale) = Q/A_{CS} = #DIV/0! ft/sec

To calculate the resulting swale length:

L = Minimum Swale Length = V (ft/sec) * 300 (sec) = #DIV/0! feet

If any of the resulting values do not meet the design requirement set forth in RG-348, the design parameters must be modified and the solver rerun.

cfs

15B. Alternative Method using Excel Solver

Design Q = CiA =	#DIV/0! cfs			
Manning's Equation Q = Swale Width=	0.00 cfs 6.00 ft	Error 1 =	#DIV/0!	

Instructions are provided to the right (green comments).

Flow Velocity	#DIV/0!	ft/s
Minimum Length =	#DIV/0!	ft

Instructions are provided to the right (blue comments).

Design Width =		ft		
Design Discharge =	0.0	0 cfs	Error 2 =	#DIV/0!
Design Depth =	0.3	3 ft		
Flow Velocity =	#DIV/0!	cfs		
Minimum Length =	#DIV/0!	ft		

lbs

If any of the resulting values do not meet the design requirement set forth in RG-348, the design parameters may be modified and the solver rerun. If any of the resulting values still do not meet the design requirement set forth in RG-348, widening the swale bottom value may not be possible.

16. Vegetated Filter Strips Designed as Required in RG-348 Pages 3-55 to 3-57 There are no calculations required for determining the load or size of vegetative filter strips. The 80% removal is provided when the contributing drainage area does not exceed 72 feet (direction of flow) and the sheet flow leaving the impervious cover is directed across 15 feet of engineered filter strips with maximum slope of 20% or across 50 feet of natural vegetation with a maximum slope of 10%. There can be a break in grade as long as no slope exceeds 20%. If vegetative filter strips are proposed for an interim permanent BMP, they may be sized as described on Page 3-56 of RG-348. 17. Wet Vaults Designed as Required in RG-348 Pages 3-30 to 3-32 & 3-79

> Required Load Removal Based upon Equation 3.3 = NA

First calculate the load removal at 1.1 in/hour

RG-348 Page 3-30 Equation 3.4: Q = CiA C = runoff coefficient for the drainage area = 0.12 i = design rainfall intensity = 1.1 in/hour A = drainage area in acres =

C = Runoff Coefficient = $0.546 (IC)^2 + 0.328 (IC) + 0.03$ 1 acres

Q = flow rate in cubic feet per second = 0.14 cubic feet/sec To solve for bottom width of the trapezoidal swale (b) using the Excel solver: Excel can simultaneously solve the "Design Q" (C217) vs "Manning's Q" (C219) by varying the "Swale Width" (C220). The required "Swale Width" occurs when the "Design Q" = "Manning's Q"

First, highlight Cell F219 (Error 1 value). The equation showing in the fx screen for Cell F219 should be "= \$C\$217-\$C\$219" Then click on "Tools" and "Solver". The "Solver Parameters" screen pops up. The value in the "Set Target cell" should be \$F\$219 "Error 1 =" The value in the "By Changing Cells" should be \$C\$220 "Swale Width" Click on solve.

The resulting "Swale Width" must be less than 10 feet to meet the requirements of the TGM. If the resulting "Swale Width" exceeds 10 feet then the design parameters must be revised and the solver run again. If there is not the option for "Solver" under "Tools"

Click on "Tools" and "Add Ins" and then check "Solver Add-in" Then proceed as instructed above.

If you would like to increase the bottom width of the trapezoidal swale (b): Excel can simultaneously solve the "Design Q" (C217) vs "Design Discharge" (C232) by varying the "Design Depth" (C233). The required "Design Depth" for a 10-foot bottom width occurs when the "Design Q" (C217) = the "Design Discharge" (C232). First set the desired bottom width in Cell C231. Highlight Cell F232. The equation showing in the fx screen for Cell F232 should be "= \$C\$217-\$C\$232" Click on "Tools" and "Solver". The "Solver Parameters" screen pops up. The value in the "Set Target cell" should be \$F\$232 "Error 2" The value in the "By Changing Cells" should be \$C\$233 "Design Depth" Click on solve. The resulting "Design Depth" must be equal to or less than 0.33 feet to meet the requirements of the TGM. If the resulting "Design Depth" exceeds 0.33 feet then the design parameters must be revised and the solver run again. First set the desired bottom width in Cell C231. Highlight Cell F232. The equation showing in the fx screen for Cell F232 should be "= \$C\$217-\$C\$232" Click on "Tools" and "Solver". The "Solver Parameters" screen pops up.

The value in the "Set Target cell" should be \$F\$232 "Error 2" The value in the "By Changing Cells" should be \$C\$233 "Design Depth" Click on solve.

The resulting "Design Depth" must be equal to or less than 0.33 feet to meet the requirements of the TGM. If the resulting "Design Depth" exceeds 0.33 feet then the design parameters must be revised and the solver run again.

RG-348 Page 3-31 Equation 3.5: V _{OR} = Q/A	N Contraction of the second
Q = Runoff rate calculated above = A = Water surface area in the wet vault =	
V _{OR} = Overflow Rate =	= 0.00 feet/sec
Percent TSS Removal from Figure 3-1 (RG-348 Page 3-31) =	= 53 percent
Load removed by Wet Vault =	= #VALUE! Ibs
If a bypass occurs at a rainfall intensity of less than 1.1 in/hours Calculate the efficiency reduction for the actual rainfall intensity rate	
Actual Rainfall Intensity at which Wet Vault bypass Occurs =	0.5 in/hour
Fraction of rainfall treated from Figure 3-2 RG-348 Page 3-32 = Efficiency Reduction for Actual Rainfall Intensity =	
Resultant TSS Load removed by Wet Vault =	#VALUE! Ibs
18. Permeable Concrete	Designed as Required in RG-348 Pages 3-79 to 3-83
PERMEABLE CONCRETE MAY ONLY BE USED ON THE CONTRIBUTING Z	'ONE
19. BMPs Installed in a Series	Designed as Required in RG-348 Pages 3-32
Michael E. Barrett, Ph.D., P.E. recommended that the coeffic	icient for E ₂ be changed from 0.5 to 0.65 on May 3, 2006
E _{TOT} = [1 - ((1 - E ₁) X (1 - 0.65E ₂) x (1 - 0.25E ₃))] X 100 =	86.38 percent NET EFFICIENCY OF THE BMPs IN THE SERIES
EFFICIENCY OF FIRST BMP IN THE SERIES = E_1 =	= 75.00 percent
EFFICIENCY OF THE SECOND BMP IN THE SERIES = E_2 =	= 70.00 percent
EFFICIENCY OF THE THIRD BMP IN THE SERIES = E_3 =	= 0.00 percent
THEREFORE, THE NET LOAD REMOVAL WOULD BE: $(A_1 AND A_P VALUES ARE FROM SECTION 3 ABOVE)$	
L _R = E _{TOT} X P X (A _I X 34.6 X A _P X0.54) =	= 92.94 lbs
20. Stormceptor Required TSS Removal in BMP Drainage Area=	- NA Ibs
Impervious Cover Overtreatment= TSS Removal for Uncaptured Area =	= 0.0000 ac
BMP Sizing Effective Area = Calculated Model Size(s) =	NA EA
Actual Model Size (if multiple values provided in Calculated Model Size or if you are choosing a larger model size) =	1
Surface Area =	
Overflow Rate = Rounded Overflow Rate =	
BMP Efficiency % =	
L _R Value =	
TSS Load Credit =	= #VALUE! Ibs
Is Sufficient Treatment Available? (TSS Credit <u>></u> TSS Uncapt.)) #VALUE!
TSS Treatment by BMP (LM + TSS Uncapt.) =	= #VALUE!

. Vortech				
	Required TSS Removal in BMP Drain	age Area=	NA	lbs
	Impervious Cover Over	treatment=	0.0000	ac
	TSS Removal for Uncaptu	red Area =	0.00	lbs
	BMP Sizing			
	Effect	tive Area =	NA	EA
	Calculated Mode	∍l Size(s) =	#N/A	
	Actual Model Size (if choosing larger mo	idel size) =	Vx1000	Pick Model Size
	Surfa	ace Area =	7.10	ft ²
	Overf	low Rate =	#VALUE!	V _{or}
	Rounded Overf	low Rate =	#VALUE!	V _{or}
	BMP Effic	ciency % =	#VALUE!	%
		L _R Value =	#VALUE!	lbs
	TSS Loa	ad Credit =	#VALUE!	lbs
	Is Sufficient Treatment Available? (TSS Credit \geq TS	S Uncapt.)	#VALUE!	
	TSS Treatment by BMP (LM + TSS	Uncapt.) =	#VALUE!	

21. Vortech

Texas Commission on Environmental Quality Water Pollution Abatement Plan General Construction Notes

- 1. A written notice of construction must be submitted to the TCEQ regional office at least 48 hours prior to the start of any regulated activities. This notice must include: the name of the approved project; the activity start date; and - the contact information of the prime contractor.
- 2. All contractors conducting regulated activities associated with this project must be provided with complete copies of the approved Water Pollution Abatement Plan (WPAP) and the TCEQ atter indicating the specific conditions of its approval. During the course of these regulated activities, the contractors are required to keep on-site copies of the approved plan and approval letter.
- 3. If any sensitive feature(s) (caves, solution cavity, sink hole, etc.) is discovered during construction, all regulated activities near the sensitive feature must be suspended immediately. The appropriate TCEQ regional office must be immediately notified of any sensitive features encountered during construction. Construction activities may not be resumed until the TCEQ has reviewed and approved the appropriate protective measures in order to protect any sensitive feature and the Edwards Aquifer from potentially adverse impacts to water quality.
- 4. No temporary or permanent hazardous substance storage tank shall be installed within 150 feet of a water supply source, distribution system, well, or sensitive feature.
- 5. Prior to beginning any construction activity, all temporary erosion and sedimentation (E&S) control measures must be properly installed and maintained in accordance with the manufacturers specifications. If inspections indicate a control has been used inappropriately, or incorrectly, the applicant must replace or modify the control for site situations. These controls must remain in place until the disturbed areas have been permanently stabilized.

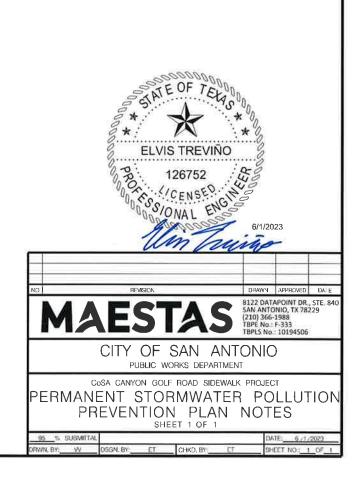
6. Any sediment that escapes the construction site must be collected and properly disposed of before the next rain event to ensure it is not washed into surface streams, sensitive features, etc.

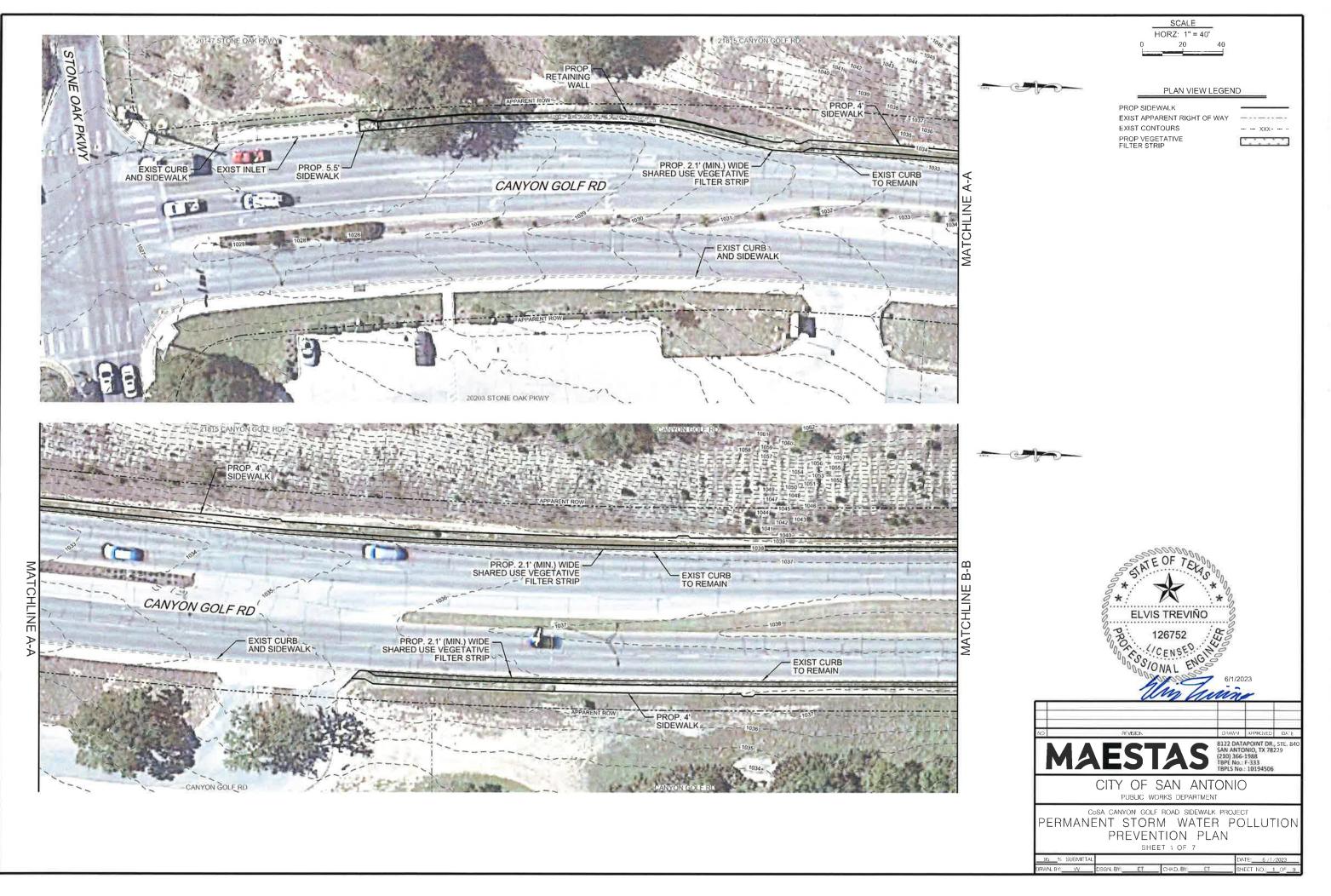
7. Sediment must be removed from the sediment traps or sedimentation basins no later than when it occupies 50% of the basin's design capacity.

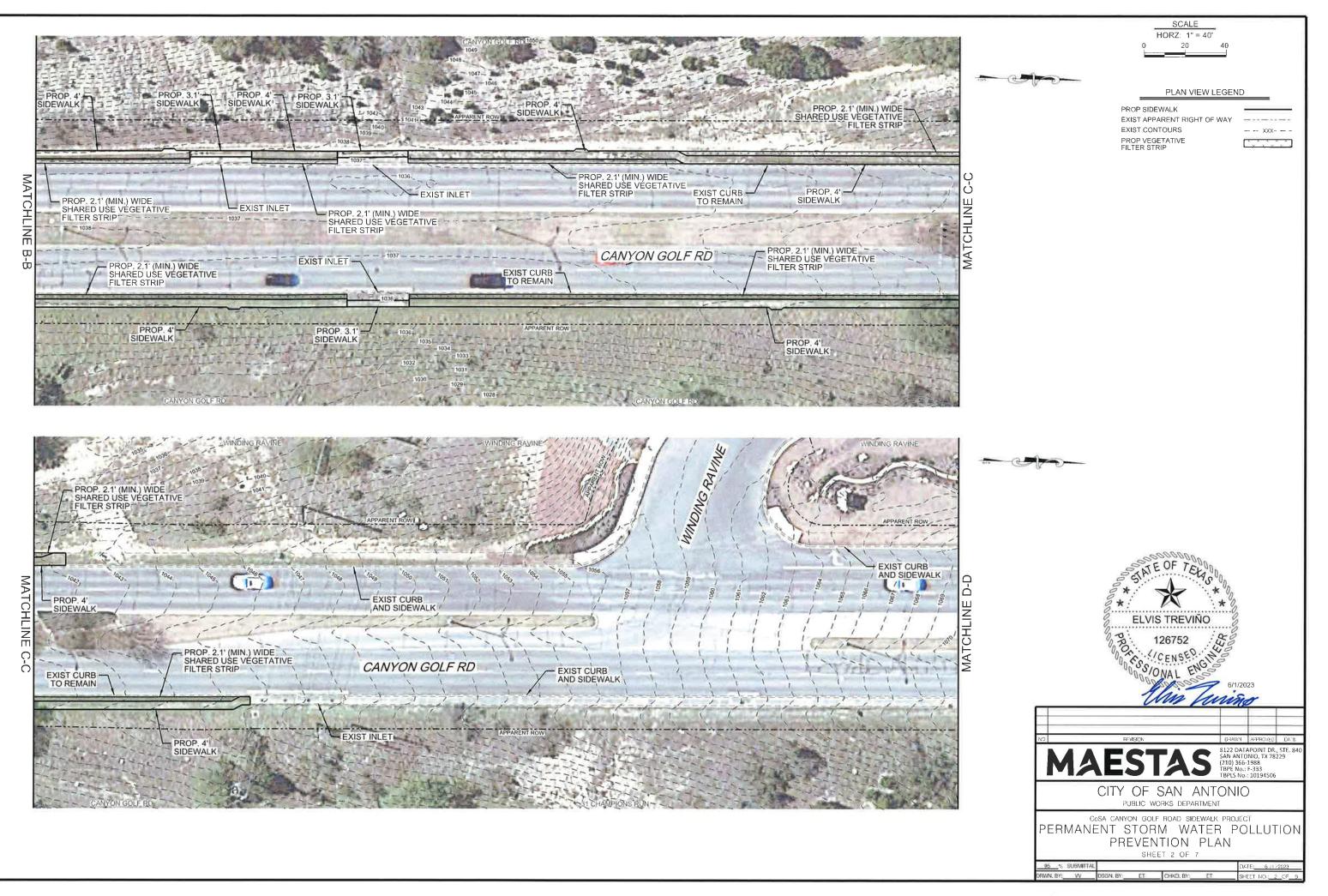
8. Litter, construction debris, and construction chemicals exposed to stormwater shall be prevented from being discharged offsite.

- 9. All excavated material that will be stored on-site must have proper E&S controls. For storage or disposal of spoils at another site on the Edwards Aquifer Recharge Zone, the owner of the site must receive approval of a water pollution abatement plan for the placement of fill material or mass grading prior to the placement of spoils at the other site.
- 10. If portions of the site will have a cease in construction activity lasting longer than 14 days, soil stabilization in those areas shall be initiated as soon as possible prior to the 14th day of inactivity. If activity will resume prior to the 21st day, stabilization measures are not required. If drought conditions or inclement weather prevent action by the 14th day, stabilization measures shall be initiated as soon as possible.

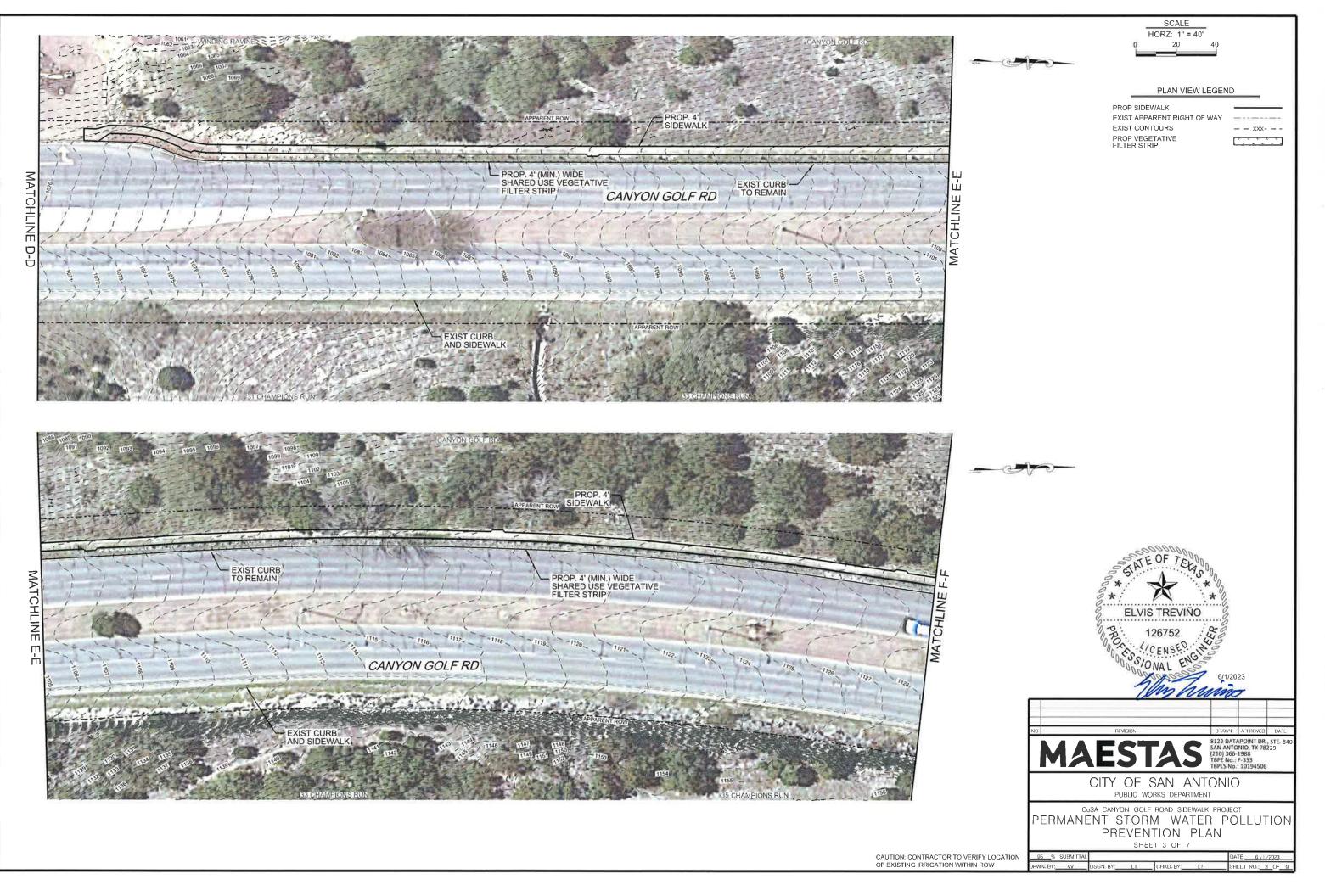
11. The following records should be maintained and made available to the TCEQ upon request:


-the dates when major grading activities occur; -the dates when construction activities temporarily or permanently cease on a portion of the site; and -the dates when stabilization measures are initiated.


12. The holder of any approved Edward's Aquifer protection plan must notify the appropriate regional office in writing and obtain approval from the executive director prior to initiating any of the following: A. any physical or operational modification of any best management practices (BMPs) or structure(s), including but not limited to temporary or permanent ponds, dams, berms, silt fences, and diversionary structures;


B. any change in the nature or character of the regulated activity from that which was originally approved;

C. any change that would significantly impact the ability to prevent pollution of the Edwards Aquifer or D. any development of land previously identified as undeveloped in the approved contributing zone plan.


Austin Regional Office	San Antonio Regional Office
12100 Park 35 Circle, Bldg A	14250 Judson Road
Austin, Texas 78753-1808	San Antonio, Texas 78233-4480
Phone (512) 339-2929	Phone (210) 490-3096
Fax (512) 339-3795	Fax (210) 545-4329

3 9:07:10 AM

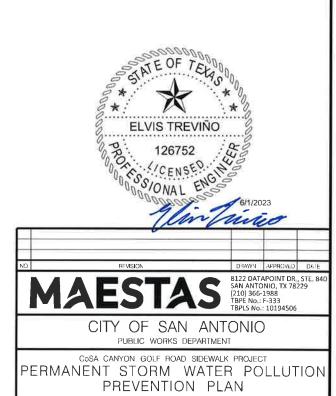
ZhProjectsIM308 IMP 23 WPAP Sidewalk Projects/06 - CADD Files/06,60 - Environmental/CGR/M308-PERM-SW3P-CGF

23 9:07:20 AM

	SCALE	
	HORZ: 1" = 40'	
)	20	40

I AM Z.\Projects\M308 IMP 23 WPAP Sklewalk Projects\06 - CADD Files\06.60 - Environmentaf\CGR\M308-PER\N-SW3P-C

Investigation of the second seco

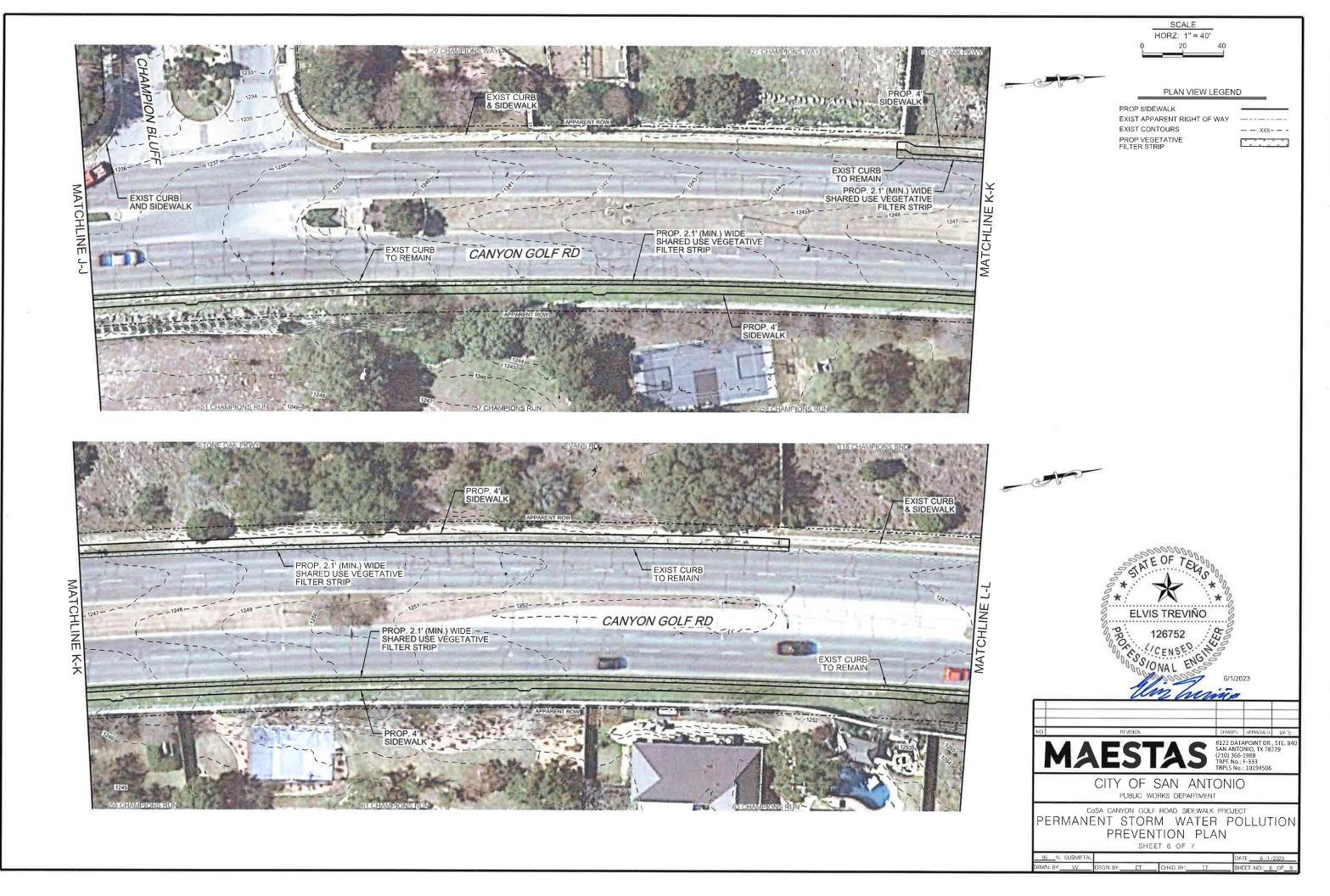

9414	J.	

	SCALE		
	HORZ: 1" = 40'		
)	20	40	

PLAN VIEW LEGEND

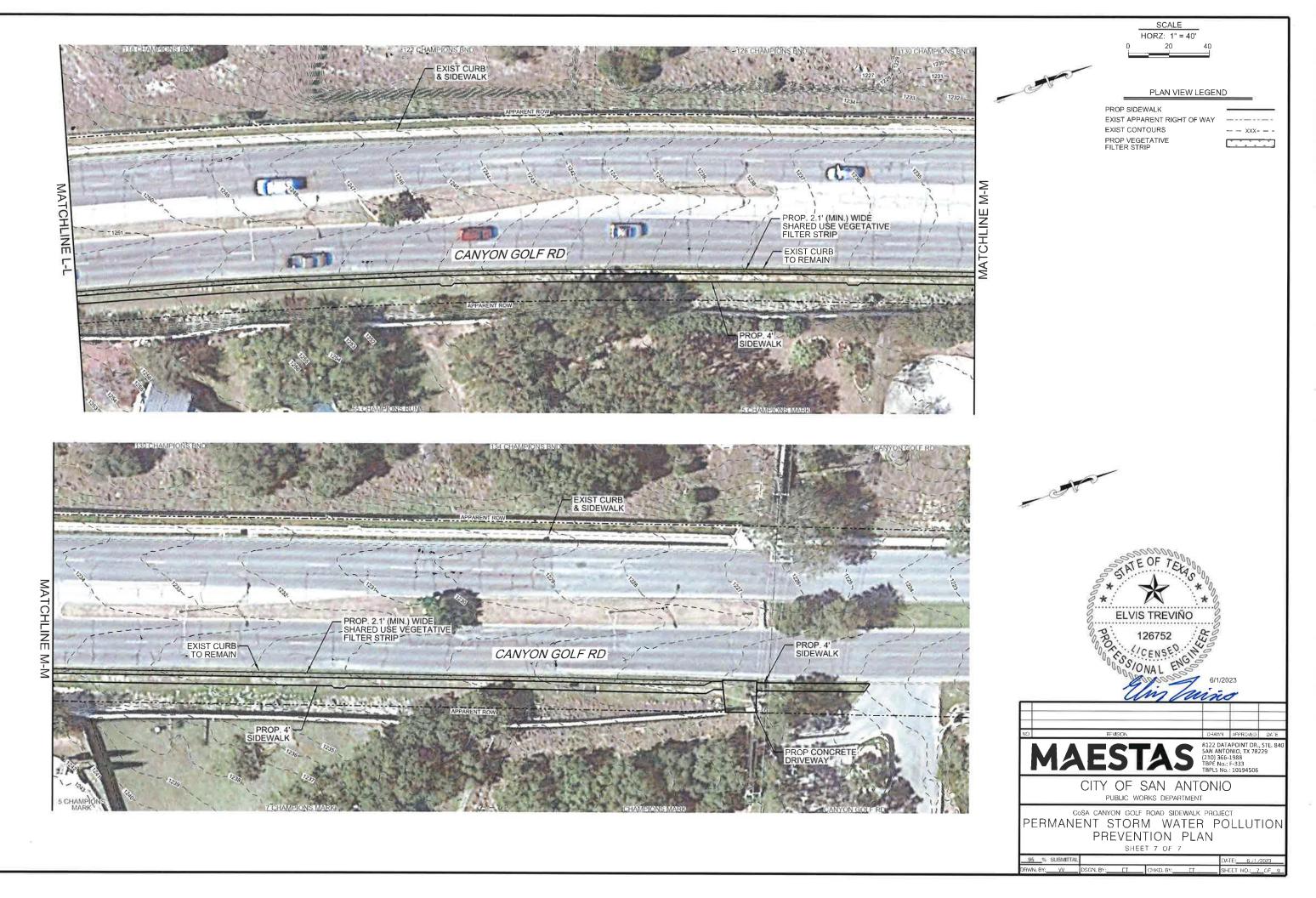
PROP SIDEWALK EXIST APPARENT RIGHT OF WAY EXIST CONTOURS PROP VEGETATIVE FILTER STRIP

SHEET 5 OF 7


CHKD. B

ET

DATE: 6 /1 /2023 SHEET NO : 5 OF


95 % SUBMITTA

NN BY:

AM Z: Projects/M308 IMP 23 WPAP Sidewalk Projects/06 - CADD Files/06.60 - Environmental/CGR/M308-PERM-SW3P-CGR-G

9-07-52 AM

9:08:02 AM Z:\Projec

ATTACHMENT G – Maintenance Plan

Attached following this page.

Attachment G

Maintenance Plan and Schedule for Permanent Erosion Controls

Vegetative Filter Strips

PROJECT NAME: CoSA Canyon Golf Road Sidewalk Project

LOCATION: Along the east and west sides of Canyon Golf Rd between Stone Oak Pkwy and south of Wilderness Oak.

CITY, STATE ZIP: San Antonio, TX 78258

Vegetative filter Strips:

Once a vegetated area is well established, little additional maintenance is generally necessary. The key to establishing a viable vegetated feature is the care and maintenance it receives in the first few months after it is planted. Once established, all vegetated BMPs require some basic maintenance to ensure the health of the plants including:

Inspections: BMP facilities shall be inspected at least twice a year to evaluated facility operation. Additional inspections shall occur after periods of heavy rain. The filter strip will be checked for uniformity of grass cover, debris and litter, and areas of sediment accumulation. Bare spots and areas of erosion identified during semi-annual inspections will be replanted and restored to meet specifications. Construction of a level spreader device may be necessary to reestablish shallow overland flow.

Records

The City of San Antonio shall keep records of the inspections on forms that shall be retained. Efforts will be made by the City to keep WPAP maintenance plans for WPAPs in the same region together for better coordination.

The inspection shall note at a minimum:

- uniformity of grass cover,
- debris and litter, and
- areas of sediment accumulation.
- Address if remediation was done during the inspection or if a task order needs to be established to replanting and restore filter strip to meet the specifications.
- Or other task order to remain in compliance with the WPAP permit.

	Sediment	
	Removal:	Remove sediment in vegetative filter strip when they build up to 3 inches at any spot or cover vegetation. Excess sediment should be removed by hand or with flat-bottomed shovels. If areas are eroded, they should be filled, compacted, and reseeded so that the final grade is level with the bottom of the swale. Sediment removal will be performed as needed based on the inspections in the inspection section.
	Pest	
	Management:	The integrated pest management plan (IMP) shall assess if there are excessive pests during each inspection. Problem insects and weeds will be controlled with minimal or no use of insecticides and herbicides.
	Debris and Litter	
	Removal:	Trash tends to accumulate in vegetated areas, particularly along highways. Any filter strip structures (i.e., level spreaders) should be kept free of obstructions to reduce floatables being flushed downstream, and for aesthetic reasons. The need for this practice is determined through periodic inspection but should be performed no less than 4 times per year.
	Mowing:	Grass areas in and around vegetative filter strips must be mowed at least twice annually to limit vegetation height to 18 inches. Grass cuttings should be collected and disposed of offsite, or a mulching mower can be used. Regular mowing should also include weed control practices; however, herbicide use should be kept to a minimum.
Grass Res	eeding	
And Mulc	hing:	A healthy dense grass should be maintained on the filter strip. If areas are eroded, they should be filled, compacted, and reseeded so that the final grade is level. Grass damaged during the sediment removal process should be promptly replaced using the same seed mix used during filter strip establishment.
		If possible, flow should be diverted from the damaged areas until the grass is firmly established. Bare spots and areas of erosion identified during semi- annual inspections must be replanted and restored to meet specifications. Corrective maintenance, such as weeding, or replanting should be done more frequently in the first two to three years after installation to ensure stabilization. Dense vegetation may require irrigation immediately after planting, and during particularly dry periods, particularly as the vegetation is initially established.

An amended copy of this document will be provided to TCEQ within thirty (30) days of any changes in the following information:

Responsible Party for Maintenance: City of San Antonio

Contact Person:

Justin Gawlik, PE

Address:

100 W. Houston Street, 15th Floor

City, State Zip:

San Antonio, TX 78205

Telephone Number:

(210) 207-0614

Signature of the Responsible Party:

The Maintenance Plan and Schedule for Permanent Erosion Control has been prepared by Elvis Treviño, PE and is certified to be in compliance with TCEQ regulations.

Elvis Treviño, PE

ATTACHMENT H – Pilot-Scale Field Testing Plan

Not applicable.

ATTACHMENT I – Measures for Minimizing Surface Stream Contamination

The proposed Canyon Golf Rd improvements will create only new impervious cover for pedestrians and will not increase risk to local streams. Treatment will be provided at the vegetative filter strip prior to entering the existing channel.

Agent Authorization Form For Required Signature Edwards Aquifer Protection Program Relating to 30 TAC Chapter 213 Effective June 1, 1999 Justin Gawlik, PE, Print Name

Public Works Engineer	
Title - Owner/President/Other	

of <u>The City of San Antonio</u> Corporation/Partnership/Entity Name

have authorized <u>Elvis Treviño, PE</u> Print Name of Agent/Engineer

of <u>Maestas & Associates, LLC</u> Print Name of Firm

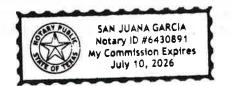
to represent and act on the behalf of the above-named Corporation, Partnership, or Entity for the purpose of preparing and submitting this plan application to the Texas Commission on Environmental Quality (TCEQ) for the review and approval consideration of regulated activities.

I also understand that:

- 1. The applicant is responsible for compliance with 30 Texas Administrative Code Chapter 213 and any condition of the TCEQ's approval letter. The TCEQ is authorized to assess administrative penalties of up to \$10,000 per day per violation.
- 2. For those submitting an application who are not the property owner, but who have the right to control and possess the property, additional authorization is required from the owner.
- 3. Application fees are due and payable at the time the application is submitted. The application fee must be sent to the TCEQ cashier or to the appropriate regional office. The application will not be considered until the correct fee is received by the commission.
- 4. A notarized copy of the Agent Authorization Form must be provided for the person preparing the application, and this form must accompany the completed application.
- 5. No person shall commence any regulated activity on the Edwards Aquifer Recharge Zone, Contributing Zone or Transition Zone until the appropriate application for the activity has been filed with and approved by the Executive Director.

SIGNATURE PAGE:

Applidant's Signature


31.23

Date

THE STATE OF <u>Texas</u> §
County of <u>Bexar</u> §

BEFORE ME, the undersigned authority, on this day personally appeared <u>Justin Gawlik</u> known to me to be the person whose name is subscribed to the foregoing instrument and acknowledged to me that (s)he executed same for the purpose and consideration therein expressed.

GIVEN under my hand and seal of office on this $\frac{3151}{2}$ day of M_{ay} , 223.

an guarra

San Juana Garcia Typed or Printed Name of Notary

MY COMMISSION EXPIRES: July 10, 2026

Application Fee Form

Texas Commission on Environmental Quality					
Name of Proposed Regulated Entity: CoSA Canyon Golf Road Sidewalk Project					
Regulated Entity Location: Along Ca			d Wilderness Oak.		
Name of Customer: City of San Ant	onio				
Contact Person: Elvis Treviño, PE	Pho	ne: <u>210-366-1988</u>			
Customer Reference Number (if iss	ued):CN <u>600130652</u>				
Regulated Entity Reference Numbe	r (if issued):RN	_			
Austin Regional Office (3373)					
Hays	Travis	w	liliamson		
San Antonio Regional Office (3362					
🖂 Bexar	Medina		valde		
 Comal	 Kinney				
Application fees must be paid by ch	eck, certified check,	or money order, payab	ole to the Texas		
Commission on Environmental Qu					
form must be submitted with your					
🗌 Austin Regional Office	\boxtimes s	San Antonio Regional C	Office		
Mailed to: TCEQ - Cashier		Overnight Delivery to:	TCEQ - Cashier		
Revenues Section	1	L2100 Park 35 Circle			
Mail Code 214	E	Building A, 3rd Floor			
P.O. Box 13088	A	Austin, TX 78753			
Austin, TX 78711-3088 (512)239-0357					
Site Location (Check All That Apply	·):				
Recharge Zone	Contributing Zone	🗌 Transi	ition Zone		
Type of Plan		Size	Fee Due		
Water Pollution Abatement Plan, Co	ontributing Zone				
Plan: One Single Family Residential	Dwelling	N/A Acres	\$		
Water Pollution Abatement Plan, Co	ontributing Zone				
Plan: Multiple Single Family Resider	N/A Acres	\$			
Water Pollution Abatement Plan, Contributing Zone					
Plan: Non-residential X.XX Acres \$					
Sewage Collection System	N/A L.F.	\$			
Lift Stations without sewer lines		N/A Acres	\$		
Underground or Aboveground Stora	age Tank Facility	N/A Tanks	\$		
Piping System(s)(only)		N/A Each	\$		
Exception					
		1 Each	\$ 500		
Extension of Time		1 Each N/A Each	\$ 500 \$		

Signature: Min Turno

Date: <u>06/01/2023</u>

Application Fee Schedule

Texas Commission on Environmental Quality

Edwards Aquifer Protection Program 30 TAC Chapter 213 (effective 05/01/2008)

Water Pollution Abatement Plans and Modifications

Contributing Zone Plans and Modifications

Project	Project Area in Acres	Fee
One Single Family Residential Dwelling	< 5	\$650
Multiple Single Family Residential and Parks	< 5	\$1,500
	5 < 10	\$3,000
	10 < 40	\$4,000
	40 < 100	\$6,500
	100 < 500	\$8,000
	≥ 500	\$10,000
Non-residential (Commercial, industrial, institutional,	< 1	\$3,000
multi-family residential, schools, and other sites	1 < 5	\$4,000
where regulated activities will occur)	5 < 10	\$5,000
	10 < 40	\$6,500
	40 < 100	\$8,000
	≥ 100	\$10,000

Organized Sewage Collection Systems and Modifications

Project	Cost per Linear Foot	Minimum Fee- Maximum Fee
Sewage Collection Systems	\$0.50	\$650 - \$6,500

Underground and Aboveground Storage Tank System Facility Plans and Modifications

Project	Cost per Tank or Piping System	Minimum Fee- Maximum Fee
Underground and Aboveground Storage Tank Facility	\$650	\$650 - \$6,500

Exception Requests

Project	Fee
Exception Request	\$500

Extension of Time Requests

Project	Fee
Extension of Time Request	\$150