

WATER QUALITY-BASED EFFLUENT LIMITS

WQBELs

Cole Gray, DrPH October 2023

Water Quality-Based Effluent Limits (WQBELs)

Effluent limitations designed to protect the quality of the receiving water.

Developed for:

- Domestic discharges > 1 MGD or designated as a "major" facility
- Domestic discharges with reasonable potential to have toxic pollutants present in the wastewater
- Industrial facilities
- No stormwater

The water quality goals for a water body are defined in 30 TAC Chapter 307 (TSWQS)

Permit limits apply to discharges.

Water quality criteria apply to water bodies.

Texas Surface Water Quality Standards criteria do not apply directly to a discharge.

What factors influence water quality-based permit limits?

- Numerical criteria (toxic pollutants)
- 2. Water body quality
- 3. Effluent fraction (mixing)
- 4. Bioavailable fraction

Numerical criteria for aquatic life and human health protection.

Found in Texas Surface Water Quality Standards (30 TAC Chapter 307 Section 6 – Toxic Materials)

Parameter	CASRN	Freshwater Acute Criteria	Freshwater Chronic Criteria	Saltwater Acute Criteria	Saltwater Chronic Criteria
Acrolein	107-02-8	3.0	3.0		0000
Aldrin	309-00-2	3.0		1.3	2.00A
Aluminum (d)	7429-90-5	991w		(A.S.)	
Arsenic (d)	7440-38-2	340w	150w	149w	78w
Cadmi <mark>um</mark> (d)	7440-43-9	(1.136672- (ln(hardness)(0.041838))) (we ^{(0.9789(ln(hardness))-3.866)})	(1.101672- (ln(hardness)(0.041838))) (we ^{(0.7977(ln(hardness) -3.909)})	33w	7.9w
Carbaryl	63-25-2	2.0	2.0	1.6	
Chlordane	57-74-9 and 12789-03-6	2.4	0.004	0.09	0.004

Numerical criteria for toxic materials can change over time.

Criteria revisited every three years

Pollutant	2018 Criteria	2022 Criteria	% Change
Aldrin Freshwater, acute	3.0 µg/L	3.0 µg/L	No change
Tetrachloroethylene Human health, fish only	280 µg/L	237 µg/L	-15 %
Benzo(a)anthracene Human health, fish only	0.025 µg/L	0.103 µg/L	+412%

Numerical criteria for human health protection reflect exposure.

Table 2. Criteria for Human Health Protection

Criteria in Water for Specific Toxic Materials HUMAN HEALTH PROTECTION (All values are listed or calculated in micrograms per liter unless otherwise noted)

		\mathbf{A}	В
Parameter	CASRN	Water and Fish	Fish Only
		μg/L	μg/L
Acrylonitrile	107-13-1	1.0	115
Aldrin	309-00-2	1.146E-05	1.147E-05
Anthracene	120-12-7	1,109	1,317
Antimony	7440-36-0	$6^{\scriptscriptstyle 1}$	1,071
Arsenic (d)	7440-38-2	10^{1}	
Barium (d)	7440-39-3	2,0001	4-4
Benzene	71-43-2	51	581

Not all numerical criteria are expressed in the same way.

- Most criteria are for total concentrations.
- Some metals criteria are for dissolved concentrations:
 - aluminum
 - arsenic
 - cadmium
 - chromium (tri and hex)
 - copper

- lead
- nickel
- silver (free ion)
- zinc

Permit limits are written for total concentrations.

Water Body Quality

Critical values for water quality parameters for each classified segment are found in Procedures to Implement the Texas Surface Water Quality Standards (IPs), June 2010, Appendix D.

- TSS
- pH
- Total hardness
- Total dissolved solids (TDS)
- Chloride
- Sulfate

Criteria for pentachlorophenol are affected by pH.

Acute criterion = $e^{(1.005(pH)-4.869)}$

Chronic criterion = $e^{(1.005(\mathbf{pH})-5.134)}$

Pentachlorophenol is more toxic at lower pH values.

For pH of 3:

Acute criterion = 0.157

Chronic criterion = 0.120

For pH of 6:

Acute criterion = 3.19

Chronic criterion = 2.45

Some freshwater criteria depend on the hardness of the receiving water.

These include:

- cadmium
- chromium (trivalent)
- copper

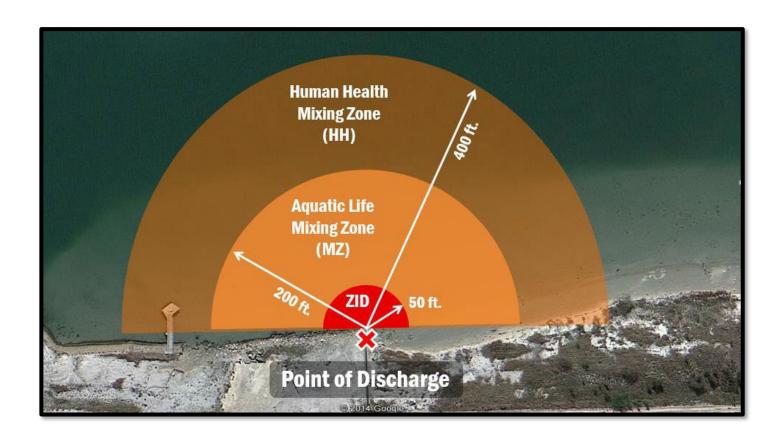
- lead
- nickel
- zinc

Example: copper

Acute criterion = $0.960 \text{me}^{(0.9422(\ln(\text{hardness}))-1.6448)}$

Chronic criterion = 0.960me(0.8545 (ln(hardness))-1.6463)

Metals affected by hardness are more toxic in soft water.


Freshwater criteria are lower at smaller hardness values.

Example: copper

Segment Number	Water Body Name	Hardness (mg/L of CaCO ₃)	Acute Criterion (µg/L)	Chronic Criterion (µg/L)
0505	Sabine River Above Toledo Bend Reservoir	42	6.27	4.51
1412	Colorado River Below Lake J. B. Thomas	310	41.2	24.8

Effluent fractions help convert numerical criteria into limits.

Numerical criteria apply at the edge of each zone:

Texas assumes critical low flow or low mixing conditions.

Expressed as:

 Critical effluent percentages
 (lakes, bays, estuaries, wide tidal rivers)

or

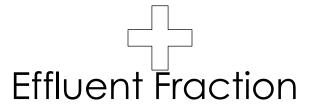
Critical flows (streams, rivers, narrow tidal rivers)

Resulting effluent fractions depend on the type of water body.

Water Body	Zone of Initial Dilution (Acute)	Mixing Zone (Chronic)	Human Health Mixing Zone
Stream	$Q_{\rm E}$	$Q_{\rm E}$	$Q_{\rm E}$
Least simple	$\overline{Q_E + 0.25(7Q2)}$	$\overline{\mathrm{Q_E}+7\mathrm{Q2}}$	$\overline{Q_E + HM}$
Lake	60 %	15 %	8 %
(default)	effluent	effluent	effluent
Wide tidal	30 %	8 %	4 %
(default)	effluent	effluent	effluent
Intermittent	100 %	100 %	100 %
Most simple	effluent	effluent	effluent

Metals criteria may be expressed as a dissolved concentration because local water quality affects toxicity.

Conversion from dissolved criteria to total limits uses ambient <u>total</u> <u>suspended solids (TSS)</u> of the nearest downstream classified segment.


Dissolved fraction = bioavailable fraction.

$$\frac{C_d}{C_T} = \frac{1}{1 + (Kp \times TSS \times 10 - 6)} \qquad K_p = 10^b \times (TSS)^m$$

Putting It All Together

Numerical Criteria

Bioavailable Fraction

Four steps in calculating WQBELs for aquatic life and human health:

- Step 1: Calculate waste load allocation WLA
- Step 2: Calculate long-term average LTA
- Step 3: Calculate effluent limits:
 - daily average (DLY AVG)
 - daily maximum (DLY MAX)
- Step 4: Compare WQBELs for <u>aquatic life</u> and <u>human health</u>

TexTox Example

PERMIT INFORMATION

Permittee Name:

TEXTOX MENU #8 - INTERMITTENT STREAM WITHIN 3 MILES OF A LAKE/RESERVOIR

9

No

ABC Industry, Inc. **TPDES Permit No:** WQ0005555000 **Outfall No:** 001 Prepared by: Cole Gray 10/01/2023 Date: DISCHARGE INFORMATION *Intermittent Receiving Waterbody:* ditch TSS (mg/L) (Intermittent): 13 pH (Standard Units) (Intermittent): Hardness (mg/L as CaCO₃) (Intermittent): 44 Chloride (mg/L) (Intermittent): 57 Effluent Flow for Aquatic Life (MGD) 0.65 % Effluent for Acute Aquatic Life (Intermittent): 100 Lake/Reservoir within 3 miles: Clean Lake Segment No.: 1009 TSS (mg/L) (Lake/Reservoir): 13 pH (Standard Units) (Lake/Reservoir): Hardness (mg/L as CaCO3) (Lake/Reservoir): 44 Chloride (mg/L) (Lake/Reservoir): 57 % Effluent for Chronic Aquatic Life (Lake/Reservoir): 19 % Effluent for Acute Aquatic Life (Lake/Reservoir): 74 Effluent Flow for Human Health (MGD): 0.65

% Effluent for Human Health (Lake/Reservoir):

Public Water Supply Use?

TexTox Example (Continued)

CALCULATE DISSOLVI	CALCULATE DISSOLVED FRACTION (AND ENTER WATER EFFECT RATIO IF APPLICABLE):							
Stream/River Metal	Intercept (b)	Slope (m)	Partition Coefficient (Kp)	Dissolved Fraction (Cd/Ct)	Cd/Ct Source	Water Effect Ratio (WER)	WER Source	
Aluminum	N/A	N/A	N/A	1.00	Assumed	1.00	Assumed	
Arsenic	5.68	-0.73	73590.43	0.51	-	1.00	Assumed	
Cadmium	6.60	-1.13	219403.73	0.26	-	1.00	Assumed	
Chromium (Total)	6.52	-0.93	304812.44	0.20	-	1.00	Assumed	
Chromium (+3)	6.52	-0.93	304812.44	0.20	-	1.00	Assumed	
Chromium (+6)	N/A	N/A	N/A	1.00	Assumed	1.00	Assumed	
Copper	6.02	-0.74	156921.31	0.33	-	1.00	Assumed	
Lead	6.45	-0.80	362114.00	0.18	-	1.00	Assumed	
Mercury	N/A	N/A	N/A	1.00	Assumed	1.00	Assumed	
Nickel	5.69	-0.57	113514.75	0.40	-	1.00	Assumed	
Selenium	N/A	N/A	N/A	1.00	Assumed	1.00	Assumed	
Silver	6.38	-1.03	170859.19	0.31	-	1.00	Assumed	
Zinc	6.10	-0.70	209044.94	0.27	-	1.00	Assumed	

Aquatic Life: Calculated Daily Average and Daily Maximum Effluent Limitations

Parameter	FW Acute Criterion (int. stream) (ug/L)	FW Acute Criterion (lake) (ug/L)	FW Chronic Criterion (lake) (ug/L)	WLAa (int. stream)	WLAa (lake)	WLAc (lake)	LTAa (int. stream)	LTAa (lake)	LTAc (lake)	Daily Avg. (ug/L)	Daily Max. (ug/L)
Aldrin	3.0	3.0	N/A	3.00	4.05	N/A	1.72	1.30	N/A	1.91	4.03
Aluminum	991	991	N/A	991	1339	N/A	568	429	N/A	630	1333
Arsenic	340	340	150	665	899	1545	381	288	942	423	895
Cadmium	3.86	3.86	0.14	14.9	27.9	3.92	8.52	8.94	2.39	3.51	7.43
Carbaryl	2.0	2.0	N/A	2.00	2.70	N/A	1.15	0.865	N/A	1.27	2.69
Chlordane	2.4	2.4	0.004	2.40	3.24	0.021	1.38	1.04	0.013	0.019	0.040
Chlorpyrifos	0.083	0.083	0.041	0.083	0.112	0.216	0.048	0.036	0.132	0.053	0.112
Chromium (+3)	290.9	290.9	37.8	1443	5986	3033	827	1915	1850	1216	2572
Chromium (+6)	15.7	15.7	10.6	15.7	21.2	55.8	9.00	6.79	34.0	9.98	21.1
Copper	6.55	6.55	4.69	19.9	41.1	115	11.4	13.2	70.0	16.8	35.5

Human Health: Calculated Daily Average and Daily Maximum Effluent Limitations

Parameter	Water and Fish Criterion (ug/L)	Fish Only Criterion (ug/L)	WLAh	LTAh	Daily Avg. (ug/L)	Daily Max. (ug/L)
Acrylonitrile	0.80	3.8	42.2	39.3	57.7	122
Aldrin	0.00094	0.0010	0.011	0.010	0.015	0.032
Anthracene	5,569	N/A	N/A	N/A	N/A	N/A
Antimony	6	1,071	11900	11067	16268	34418
Arsenic	10	N/A	N/A	N/A	N/A	N/A
Barium	2,000	N/A	N/A	N/A	N/A	N/A
Benzene	5	513	5700	5301	7792	16486
Benzidine	0.00086	0.0020	0.022	0.021	0.030	0.064
Benzo(a)anthracene	0.68	3.28	36.4	33.9	49.8	105
Benzo(a)pyrene	0.068	0.33	3.67	3.41	5.01	10.6

Laboratory Analysis Example Worksheet 2.0, Table 2

Pollutant	Sample 1 (µg/L)	Sample 2 (µg/L)	Sample 3 (µg/L)	Sample 4 (µg/L)	Average (µg/L)	MAL (µg/L)
Aluminum	21.9	18.6	28	14	20.625	2.5
Antimony	3.2	3.1	0.717	0.68	1.92425	5
Arsenic	1.2	1.2	1.1	1.1	1.15	0.5
Barium	234.5	230.3	255	233	238.2	3
Beryllium	<0.4	<0.4	<0.1	<0.1	<0.4	0.5
Cadmium	<4	<4	<1	<1	<4	1
Chromium	<0.4	<0.4	5.47	2.12	7.99	3
Chromium (+6)	<1	<1	<0.5	<0.5	<1	3
Chromium (+3)	<1	<1	<1	<1	<1	N/A
Copper	12.7	13.6	10.5	11.9	12.175	2
Cyanide, avail.	<10	<10	<6	<6	<10	2/10
Lead	0.5	<0.4	0.6	0.2	0.375	0.5
Mercury	1.59	1.07	1.03	1.20	1.2226	0.005/0.000
Nickel	1.3	1.4	2.3	1.3	1.55	2
Selenium	<0.4	<0.4	0.194	0.20	0.1985	5
Silver	<0.4	<0.4	<0.2	<0.2	<0.4	0.5
Thallium	<0.4	<0.4	<0.2	<0.2	<0.4	0.5
Zinc,	52.6	26.0	14	9	25.4	5.0

70% & 85% of Calculated Daily Average Effluent Limits

Aquatic Life						
Parameter	70%	85%				
Aluminum	441	535				
Arsenic	296	359				
Cadmium	2.46	2.99				
Chromium (+3)	851	1033				
Chromium (+6)	6.99	8.48				
Copper	11.7	14.3				
Cyanide (free)	20.4	24.7				
Lead	26.3	31.9				
Mercury	1.07	1.30				
Nickel	341	414				
Selenium	8.90	10.8				
Silver	3.09	3.75				
Zinc	128	156				

Human Health						
Parameter	70%	85%				
Arsenic	N/A	N/A				
Barium	N/A	N/A				
Cadmium	N/A	N/A				
Chromium (+6)	5338	6482				
Cyanide (free)	N/A	N/A				
Lead	318	387				
Mercury	0.130	0.158				
Nickel	61202	74317				
Selenium	N/A	N/A				
Thallium	2.45	2.97				

Compare Pollutant Analysis to TexTox

If the pollutant analysis is above 70% of the calculated daily average

add monitoring requirements.

If the pollutant analysis is above **85%** of the calculated daily average

→ add permit limits.

Compare Pollutant Analysis to TexTox (Cont.)

Worksheet 2.0, Table 1

Pollutant	Average (µg/L)	MAL (µg/L)
Aluminum	20.6	2.5
Cadmium	<4	1
Copper	12.2	2
Mercury	1.23	0.005

70% & 85% of Calculated Daily Average

Aquatic Life									
Parameter 70% 85%									
Aluminum	441	535							
Cadmium	2.46	2.99							
Copper	11.7	14.3							
Mercury	1.07	1.30							

Human Health									
Parameter 70% 85%									
Cadmium	N/A	N/A							
Mercury	0.130	0.158							

Existing Permit Limitations

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

Outfall Number 001

 During the period beginning upon the date of permit issuance and lasting through the date of permit expiration, the permittee is authorized to discharge process waste water subject to the following effluent limitations:

The daily average flow of effluent shall not exceed 0.650 million gallons per day (MGD). The daily maximum flow shall not exceed 1.04 MGD.

25	Dis	scharge Limitations	Minimum Self-Monitoring Requirements			
Effluent Characteristics	Daily Average	Daily Maximum	Single Grab	Report Daily Average ar	nd Daily Maximum	
	mg/L	mg/L	mg/L	Measurement Frequence	y Sample Type	
Flow	0.650 MGD	1.04 MGD	N/A	Continuous	Totalizing Meter	
Total Suspended Solids	N/A	100	100	1/week	Composite	
Chemical Oxygen Demand	N/A	200	200	1/week	Composite	
Oil and Grease	N/A	15	15	1/week	Composite	
Total Aluminum	1.246	2.635	3.738	1/week	Composite	
Dissolved Oxygen	5.0, minimum	N/A	5.0, minimum	1/week	Grab	

- The pH must not be less than 6.0 standard units nor greater than 9.0 standard units and must be monitored 1/day¹ by grab sample.
- 3. There must be no discharge of floating solids or visible foam in other than trace amounts and no discharge of visible oil.
- Effluent monitoring samples must be taken at the following location: at Outfall 001, prior to commingling with any other waste streams entering into the ditch.

Draft Permit Limitations

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

Outfall Number 001

 During the period beginning upon the date of permit issuance and lasting through the date of permit expiration, the permittee is authorized to discharge process waste water subject to the following effluent limitations:

The daily average flow of effluent shall not exceed 0.650 million gallons per day (MGD). The daily maximum flow shall not exceed 1.04 MGD.

18 To	Dis	charge Limitations	Minimum Self-Monitori	ng Requirements		
Effluent Characteristics	Daily Average	Daily Maximum	Single Grab	Report Daily Average and Daily Maximu		
Program to the control of the contro	mg/L	mg/L	mg/L	Measurement Frequency	Sample Type	
Flow	0.650 MGD	1.04 MGD	N/A	Continuous	Totalizing Meter	
Total Suspended Solids	N/A	100	100	1/week	Composite	
Chemical Oxygen Demand	N/A	200	200	1/week	Composite	
Oil and Grease	N/A	15	15	1/week	Composite	
Total Aluminum	0.630	1.333	1.89	1/week	Composite	
Total Copper	Report	Report	N/A	2/month	Composite	
Total Mercury ¹	Report	Report	N/A	1/week	Composite	
Total Mercury ²	0.000185	0.000392	0.000555	1/week	Composite	
Dissolved Oxygen	5.0, minimum	N/A	5.0, minimum	1/week	Grab	

- 2. The pH must not be less than 6.0 standard units nor greater than 9.0 standard units and must be monitored 1/day by grab sample.
- 3. There must be no discharge of floating solids or visible foam in other than trace amounts and no discharge of visible oil.
- 4. Effluent monitoring samples must be taken at the following location: at Outfall 001, prior to commingling with any other waste streams entering into the ditch.

Page 2 of TPDES Permit No. WQ0005555000

ABC Industry, Inc.

¹ The limit is effective from the date of permit issuance and lasting through three years from the date of permit issuance.

² The limit is effective from three years from the date of permit issuance and lasting through the date of permit expiration.

My draft permit includes a new or more stringent WQBEL

What can I do?

Call your permit writer!

Why did I receive this limit?

♦ New limit

Average concentration from application is ≥ 85% of calculated daily average WQBEL

 More stringent limit
 Calculated WQBELs are more stringent than existing limits

Site-Specific Standards

Site-specific Standards –

Adopted in Appendix E of the Standards

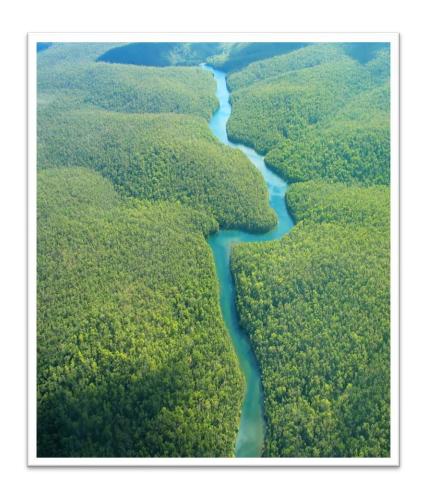
- Change in criterion
- Water Effect Ratio
- Site-specific hardness
- Site-specific TSS
- Dissolved fraction available (metals)

30 TAC § 307: Appendix E

SEGMENT	TPDES	FACILITY	PARAMETER	SITE-SPECIFIC ADJUSTMENT FACTOR	ADDITIONAL SITE- SPECIFIC CONSIDERATIONS
1412	01768- 000	ALON USA	Selenium	Acute Criterion = 219 µg/L Chronic Criterion = 7.5 µg/L	
1201	00007- 000	Dow Chemical	Copper ^{1,3}	1.6	
1013	NA	NA	Copper ^{1,2}	1.8	
1006	01031- 000	NRG Texas Power LLC	Copper ^{1,3}	2.4	TSS=14.75 mg/L Dissolved Fraction Available = 87%
0604	10447- 001	City of Rusk	Copper ^{1,3}	4.3	Hardness = 40 mg/L

- 1 Results based on a water-effect ratio study.
- 2 Site-specific criteria apply to the entire water body.
- 3 Site-specific criteria may only be used in the evaluation of permit limits for the facility listed under the TPDES and Facility columns.

Site-Specific Standard Example


Parameter	FW Acute Criterion (int. stream) (ug/L)	FW Acute Criterion (lake) (ug/L)	Criterion	WLAa (int. stream)	WLAa (lake)	WLAc (lake)	LTAa (int. stream)	LTAa (lake)	LTAc (lake)	Daily Avg. (ug/L)	Daily Max. (ug/L)
Selenium	20	20	5	20.00	27.03	26.32	11.46	8.65	16.05	12.71	26.90

Parameter	FW Acute	FW	FW								
	Criterion	Acute	Chronic	WLAa	\\/\ \ \ \ \	\\/ \	LTAa	LTAa	ITAG	Daily	Daily
	(int.	Criterion	Criterion	(int.	WLAa (lake)	WLAc (lake)	(int. (lake	(laka)	LTAC	Avg.	Max.
	stream)	(lake)	(lake)	stream)				(lake)	(lake)	(ug/L)	(ug/L)
	(ug/L)	(ug/L)	(ug/L)								
Selenium	219	219	7.5	219.00	295.9 5	39.47	125.49	94.70	24.08	35.40	74.89

Effluent fraction – river or stream:

♦ Critical flows

- Stream type which criteria apply?
 - intermittent acute (no dilution)
 - perennial chronic, acute, HH
 - intermittent with perennial pools – chronic (no dilution), acute (no dilution), HH
- Stream flows 7Q2, HM

Effluent fraction – lake or bay:

- Option: Relocate Outfall
- Narrow arm → smaller mixing zones
 - = larger effluent fractions
 - = more stringent permit limits
- Wider area → larger mixing zones
 - = smaller effluent fractions
 - = higher permit limits

Any Questions?

Water Quality Division Mainline 512-239-4671

My Contact Info: 512-239-4736 cole.gray@tceq.texas.gov