Compiled Technically Complete Copy

PERMIT AMENDMENT APPLICATION

MESQUITE CREEK LANDFILL COMAL AND GUADALUPE COUNTIES, TEXAS

MSW PERMIT NO. 66C

VOLUME III OF IV

Physical Site Address: 1700 Kohlenberg Rd New Braunfels, TX 78130 (830) 625-7894

Prepared for: Waste Management of Texas, Inc.

Prepared by:

8627 N Mopac Expy, Suite 300 Austin, Texas 78759 (512) 451-4003

Submitted October 2023 Revised November 2023; February 2024; April 2024 Compiled Technically Complete Copy

PERMIT AMENDMENT APPLICATION

MESQUITE CREEK LANDFILL COMAL AND GUADALUPE COUNTIES, TEXAS

MSW PERMIT NO. 66C

VOLUME III OF IV

Physical Site Address: 1700 Kohlenberg Rd New Braunfels, TX 78130 (830) 625-7894

Prepared for: Waste Management of Texas, Inc.

Prepared by:

Geosyntec Consultants, Inc.

Texas Board of Professional Engineers Firm Registration No. F-1182 8217 Shoal Creek Blvd, Suite 200 Austin, TX 78757 (512) 451-4003

THE ABOVE SEAL APPLIES TO THIS BINDER TITLE PAGE ONLY, AND IS FOR PERMITTING PURPOSES ONLY.

EACH INDIVIDUAL ENGINEERING REPORT OR PLAN AND EACH ENGINEERING DRAWING WITHIN THE APPLICATION IS SIGNED, SEALED, AND DATED BY THE RESPONSIBLE ENGINEER AS REQUIRED BY THE TEXAS ENGINEERING PRACTICE ACT.

October 2023

OVERALL TABLE OF CONTENTS

VOLUME I of IV

COVER LETTER TCEQ CORE DATA FORM MAILING LABELS – PRE-PRINTED COPY OF E-PAY RECEIPT – TCEQ APPLICATION FEE PAYMENT PLAIN LANGUAGE SUMMARY – ENGLISH PLAIN LANGUAGE SUMMARY – SPANISH PUBLIC INVOLVEMENT PLAN (FORM TCEQ-20960) REGULATORY CHECKLIST

PART I and PART II – SITE AND APPLICANT INFORMATION, EXISTING CONDITIONS SUMMARY, AND CHARACTER OF THE FACILITY AND SURROUNDING LAND

PART I APPLICATION F	ORM
PART II APPLICATION H	FORM
PART I /II SUPPLEMENT	AL TECHNICAL REPORT & APPENDICES
SUPPLEMENTAL TH	ECHNICAL REPORT
APPENDIX I/IIA	GENERAL LOCATION MAPS
APPENDIX I/IIB	ADJACENT LAND OWNERSHIP MAP AND LIST
APPENDIX I/IIC	PERMIT BOUNDARY, PROPERTY OWNERSHIP, AND EASEMENT INFORMATION
APPENDIX I/IID	PROPERTY OWNER AFFIDAVIT AND LEGAL AUTHORITY

FOR PERMIT PURPOSES ONLY

GEOSYNTEC CONSULTANTS, INC. TEXAS ENG. FIRM REGISTRATION NO. F-1182 THIS SEAL APPLIES TO THIS TABLE OF CONTENTS PAGE ONLY.

EACH INDIVIDUAL ENGINEERING REPORT OR PLAN AND EACH ENGINEERING DRAWING WITHIN THE APPLICATION IS SIGNED, SEALED, AND DATED BY THE RESPONSIBLE ENGINEER AS REQUIRED BY THE TEXAS ENGINEERING PRACTICE ACT.

THE RESPONSIBLE GEOSCIENTIST HAS SIGNED, SEALED, AND DATED APPLICABLE ITEMS AS REQUIRED BY THE TEXAS GEOSCIENCE PRACTICE ACT.

Master Permit App Table of Contents Permit 66C

Geosyntec Consultants October 2023 Page No. TOC-1

APPENDIX I/IIE	EVIDENCE OF COMPETENCY
APPENDIX I/IIF	APPOINTMENT LETTERS
APPENDIX I/IIG	WASTE ACCEPTANCE PLAN
APPENDIX I/IIH	TRANSPORTATION
APPENDIX I/II-I	AIRPORTS AND AVIATION
APPENDIX I/IIJ	GEOLOGY AND SOILS
APPENDIX I/IIK	GROUNDWATER AND SURFACE WATER
APPENDIX I/IIL	WETLANDS DOCUMENTATION
APPENDIX I/IIM	ENDANGERED AND THREATENED SPECIES DOCUMENTATION
APPENDIX I/IIN	TEXAS HISTORICAL COMMISSION (THC), ANTIQUITIES CODE DOCUMENTATION
APPENDIX I/IIO	ALAMO AREA COUNCIL OF GOVERNMENTS (AACOG) DOCUMENTATION

VOLUME II of IV

PART III – SITE DEVELOPMENT PLAN

PART III SITE DEVELOPMENT PLAN NARRATIVE REPORT

ATTACHMENT 1 GENERAL FACILITY DESIGN

ATTACHMENT 2 FACILITY SURFACE WATER DRAINAGE REPORT

- ATT. 2A Surface Water Management System Drawings
- ATT. 2B On-Site Drainage Analysis Hydrology
- ATT. 2C On-Site Analysis and Design Final Cover Surface Water Drainage System

FOR PERMIT PURPOSES ONLY

GEOSYNTEC CONSULTANTS, INC. TEXAS ENG. FIRM REGISTRATION NO. F-1182 THIS SEAL APPLIES TO THIS TABLE OF CONTENTS PAGE ONLY.

EACH INDIVIDUAL ENGINEERING REPORT OR PLAN AND EACH ENGINEERING DRAWING WITHIN THE APPLICATION IS SIGNED, SEALED, AND DATED BY THE RESPONSIBLE ENGINEER AS REQUIRED BY THE TEXAS ENGINEERING PRACTICE ACT.

THE RESPONSIBLE GEOSCIENTIST HAS SIGNED, SEALED, AND DATED APPLICABLE ITEMS AS REQUIRED BY THE TEXAS GEOSCIENCE PRACTICE ACT.

Master Permit App Table of Contents Permit 66C

Geosyntec Consultants October 2023 Page No. TOC-2

- ATT. 2D On-Site Analysis and Design Culverts and Perimeter Drainage Channels
- ATT. 2E On-Site Analysis and Design Active Face Surface Water Controls
- ATT. 2F Intermediate Cover Erosion and Sediment Control Plan (ICESCP)

ATTACHMENT 3 WASTE MANAGEMENT UNIT DESIGN

- ATT. 3A Landfill Design Drawings
- ATT. 3B Volume and Site Life Estimate
- ATT. 3C Liner Quality Control Plan (LQCP)
- ATT. 3D Geotechnical Report and Analyses of Landfill Design
 - 3D.1 Geotechnical Report

VOLUME III of IV

- 3D.2 Slope Stability Analysis
- 3D.3 Settlement Analysis
- 3D.4 Liner Uplift and Ballast Calculations and Pressure Relief/Dewatering System Design
- ATT. 3E Leachate and Contaminated Water Management Plan
 - 3E.1 Leachate and Contaminated Water Management Drawings
 - 3E.2 Leachate Generation Rates and Head on Liner (HELP Model Calculations)
 - 3E.3 Leachate Collection Geosynthetic Drainage Layer Design
 - 3E.4 Leachate Collection Corridor and Sideslope Chimney Drain Pipe Design
 - 3E.5 Leachate Collection Sump Design
 - 3E.6 Leachate Collection and Riser Pipe Strength Design
 - 3E.7 Evaluation of Leachate Collection System Materials Compatibility with Municipal Solid Waste Leachate

FOR PERMIT PURPOSES ONLY

GEOSYNTEC CONSULTANTS, INC. TEXAS ENG. FIRM REGISTRATION NO. F-1182 THIS SEAL APPLIES TO THIS TABLE OF CONTENTS PAGE ONLY.

EACH INDIVIDUAL ENGINEERING REPORT OR PLAN AND EACH ENGINEERING DRAWING WITHIN THE APPLICATION IS SIGNED, SEALED, AND DATED BY THE RESPONSIBLE ENGINEER AS REQUIRED BY THE TEXAS ENGINEERING PRACTICE ACT.

THE RESPONSIBLE GEOSCIENTIST HAS SIGNED, SEALED, AND DATED APPLICABLE ITEMS AS REQUIRED BY THE TEXAS GEOSCIENCE PRACTICE ACT.

Geosyntec Consultants October 2023 Page No. TOC-3

Master Permit App Table of Contents Permit 66C

- ATT. 3F Final Cover Erosion Analysis
- ATT. 3G Final Cover Drainage Layer Design

ATTACHMENT 4 GEOLOGY REPORT

- ATT. 4A Geology Report Drawings
- ATT. 4B Soil Boring Plan
- ATT. 4C Boring Logs

VOLUME IV of IV

- ATT. 4D Monitor Well Data Sheets
- ATT. 4E Groundwater Maps
- ATT. 4F Groundwater Quality Data
- ATT. 4G Slug Test Data

ATTACHMENT 5 GROUNDWATER MONITORING PLAN

- ATT. 5A Groundwater Monitoring System Drawings
- ATT. 5B Monitoring Well Construction Logs
- ATT. 5C Groundwater Sampling and Analysis Plan (GWSAP)
- ATTACHMENT 6 LANDFILL GAS MANAGEMENT PLAN
 - ATT. 6A Landfill Gas Management Drawings
 - ATT. 6B. Gas Monitoring Probe Installation Documentation
 - ATT. 6C Sample Landfill Gas Monitoring Form
 - ATT. 6D Existing Gas Control System Information

ATTACHMENT 7 CLOSURE PLAN

- ATT. 7A Closure Plan Form TCEQ-20720
- ATT. 7B Final Cover Quality Control Plan (FCQCP)

FOR PERMIT PURPOSES ONLY

GEOSYNTEC CONSULTANTS, INC. TEXAS ENG. FIRM REGISTRATION NO. F-1182

Master Permit App Table of Contents Permit 66C

THIS SEAL APPLIES TO THIS TABLE OF CONTENTS PAGE ONLY.

EACH INDIVIDUAL ENGINEERING REPORT OR PLAN AND EACH ENGINEERING DRAWING WITHIN THE APPLICATION IS SIGNED, SEALED, AND DATED BY THE RESPONSIBLE ENGINEER AS REQUIRED BY THE TEXAS ENGINEERING PRACTICE ACT.

THE RESPONSIBLE GEOSCIENTIST HAS SIGNED, SEALED, AND DATED APPLICABLE ITEMS AS REQUIRED BY THE TEXAS GEOSCIENCE PRACTICE ACT.

Geosyntec Consultants October 2023 Page No. TOC-4

ATTACHMENT 8POST-CLOSURE PLANATTACHMENT 9COST ESTIMATES FOR CLOSURE AND POST-CLOSURE CARE

PART IV - SITE OPERATING PLAN

SITE OPERATING PLAN (SOP) APPENDIX IV-A SPECIAL WASTE ACCEPTANCE PLAN (SWAP) APPENDIX IV-B REGULATED ASBESTOS-CONTAINING MATERIAL (RACM) MANAGEMENT PLAN APPENDIX IV-C LIQUID WASTE SOLIDIFICATION PLAN

FOR PERMIT PURPOSES ONLY

GEOSYNTEC CONSULTANTS, INC. TEXAS ENG. FIRM REGISTRATION NO. F-1182 Master Permit App Table of Contents Permit 66C THIS SEAL APPLIES TO THIS TABLE OF CONTENTS PAGE ONLY.

EACH INDIVIDUAL ENGINEERING REPORT OR PLAN AND EACH ENGINEERING DRAWING WITHIN THE APPLICATION IS SIGNED, SEALED, AND DATED BY THE RESPONSIBLE ENGINEER AS REQUIRED BY THE TEXAS ENGINEERING PRACTICE ACT.

THE RESPONSIBLE GEOSCIENTIST HAS SIGNED, SEALED, AND DATED APPLICABLE ITEMS AS REQUIRED BY THE TEXAS GEOSCIENCE PRACTICE ACT.

> Geosyntec Consultants October 2023 Page No. TOC-5

Mesquite Creek Landfill MSW Permit No. 66C Part III, Attachment 3D.2

ATTACHMENT 3D.2 SLOPE STABILITY ANALYSIS

Geosyntec Consultants October 2023 Page No. 3D.2-Cvr

			Geos	synt	ec⊳
			CC	onsulta	ants
			1	of	76
Written by: P. Pandey	Date: 7/3/2023	Reviewed by & S. Graves Revised by:	Date:	7/16/20 2/7/202	23; 4
Client: WMTX P	roject: <u>Mesquite Creek La</u>	andfill Project No	.: GW8636	Phase No	o.: <u>05</u>

SLOPE STABILITY ANALYSIS

1. INTRODUCTION

1.1 <u>Purpose</u>

The purpose of this calculation package is to present the slope stability analysis of the Mesquite Creek Landfill (site). Analyses were performed along initial, interim, and final landfill slopes, which were developed based on critical combinations of slope geometry and shear strength properties. Slope stability factors of safety (FS) are evaluated herein for a variety of potential sliding failure scenarios.

1.2 Seismic Stability Requirements

Geosyntec performed an evaluation of the seismicity of the site area to assess whether the site is in a seismic impact zone and, accordingly, whether seismic slope stability analyses would be necessary. The Federal Subtitle D Regulation (40 CFR §258.14) and TCEQ MSW Rule 30 TAC §330.557 define a seismic impact zone as an area with a 10% or greater probability that the maximum horizontal acceleration (MHA) in lithified earth material exceeds 0.10g in 250 years. The regulations further require that landfills located in a seismic impact zone should be designed to resist the MHA occurring in bedrock (i.e., lithified material) at the site.

Values of MHA having a certain probability of exceedance (P_e) are generally determined from United States Geologic Survey (USGS) National Seismic Hazard Maps. Note that current National Seismic Hazard Maps present MHA values for a seismic risk level of 2% probability that the MHA will be exceeded in 50 years (i.e., P_e = 2% in 50 years). A seismic risk level of P_e = 2% in 50 years is approximately statistically equivalent to P_e = 10% in 250 years. According to the 2014 and 2018 USGS National Seismic Hazard Maps, the MHA at the site (98.02° W, 29.73° N) corresponding to P_e = 2% in 50 years is approximately 0.0243g (Figure 1A) based on the long-term models. Based on the low seismicity of the area and the MHA of less than 0.10g in 250 years, it is concluded

		(Geosynte					
						CC	onsu	ltants	5	
						2	of	76		
Written by: P. Pandey		Date: 7/3/2023	Reviewed by & Revised by:	S. Graves		Date:	7/16/ 2/7/2	2023; 024		
Client: WMTX	Project:	Mesquite Creek L	andfill	Project No.	<u>GW8</u>	8636	Phase	No.: <u>0</u>	5	

that the site is <u>not</u> located in a seismic impact zone and, therefore, does not require seismic stability analyses.

It is also noted that the USGS has also published hazard maps based on short-term induced seismicity models. These maps convey the probability of minor-damage ground shaking induced by human activities (e.g., deep fluid injection such as for oil/gas fracking wells). While assessing short-term induced seismicity is not required under the above-referenced regulations, Geosyntec checked the latest (2018) USGS short-term induced seismicity model map and confirmed that the site is <u>not</u> located within an area of increased activity (i.e., elevated probability) of short-term human-induced ground shaking (Figure 1B).

Based on the above information, the remainder of this calculation package presents the static slope stability analyses.

1.3 <u>Method</u>

The static limit equilibrium slope stability of the landfill components was analyzed using the computer program $Slide2^{\circ}$ (Rocscience). A two-dimensional effective stress analysis was performed using the method of slices. The program generates circular and non-circular (block-type) potential failure surfaces and calculates the factor of safety (FS) for each of these surfaces using Spencer's method (Spencer, 1967), as implemented in Slide2^{\circ}.

Two types of slope stability analyses were performed: (i) "forward-analyses" using the sitespecific measured interface testing results provided by the facility, measured shear strengths of the site-specific strata from the geotechnical investigation, and strengths obtained from published literature, and (ii) "back-analyses" to establish the minimum allowable interface strength requirements for shear surfaces that pass through the liner or final cover system that would meet the minimum target factors of safety. The back-calculated minimum strength values for the liner system and final cover system are incorporated in Part III (Site Development Plan (SDP)), Attachments 3C (Liner Quality Control Plan (LQCP)) and 7B (Final Cover Quality Control Plan (FCQCP)).

1.4 <u>Analysis Scenarios</u>

The components of the landfill for which static slope stability analyses were performed are:

- excavation slope of expansion area, next to the existing landfill (Permit No. MSW-66B);
- liner system sideslope prior to waste placement (i.e., short-term liner veneer stability);
- interim landfill slopes during waste placement operations;
- final landfill slopes with liner system, cover system, and foundation soils at the final closure/post-closure (long-term) condition; and

				Geos	synt	iec C	
					CC 3	of of	ants 76
Written by: P. Pandey		Date: 7/3/2023	Reviewed by & Revised by:	S. Graves	Date:	7/16/20 2/7/202	D23; 24
Client: WMTX I	Project:	Mesquite Creek La	andfill	Project No.:	GW8636	Phase N	lo.: <u>05</u>

• final cover system slope on its own, to check final cover veneer stability.

Conceptual illustrations of the analysis scenarios described above are provided in Figures 2A through 2H.

1.5 <u>Selection of Minimum Factors of Safety</u>

The slope stability factor of safety (FS) is evaluated for cross-sections that represent critical combinations of geometry and shear strength. Minimum acceptable calculated factors of safety for landfill slope stability depend on project-specific conditions and uncertainties. Consistent with industry standards for waste containment design and related recommendations in technical literature, this includes making a distinction in allowable target factors of safety between short-term interim scenarios vs. long-term (final) slope conditions. The target minimum factors of safety selected for this project are as follows:

- For slopes under interim conditions (i.e., landfill slopes during construction or operation), the minimum FS is 1.25 under peak (P) shear strength conditions. This FS is based on recommendations by Duncan (1992).
- For slopes under final conditions (i.e., slopes in their finished grades, either at the end of operation, or during closure/post-closure), the minimum FS is 1.5 under peak (P) shear strength conditions (EPA, 2004). Note that the factors of safety recommended in the EPA Technical Guidance Document (2004) references Duncan (1992) which recommends considering the uncertainty of strength measurements and the consequences of failure into the factor of safety, and the FS for this project was selected accordingly.
- Also, other minimum FS targets are established for sliding scenarios along liner system interfaces that could have residual (hereafter, "large-displacement") (LD) strengths mobilized [i.e., strains beyond the peak strength condition, resulting in lower mobilized strengths]. This is to provide additional confidence in the reliability of the design and is based on standard industry practices for landfill design [Stark and Choi (2004)]. For cases considered herein with shear surfaces that pass along a liner or final cover system interface, target factors of safety when using LD strengths along appropriate portions of the interface where relatively large strains are possible are also set, as follows:
 - For analyses of interface sliding during interim conditions, the target minimum calculated factor of safety using LD strengths is 1.0; and
 - For analyses of interface sliding at final conditions, the target minimum factor of safety using LD strengths is 1.1.

		Geos	synte	ec ^D	
			CO	onsultar	nts
			4	of 76	
Written by: P. Pandey	Date: 7/3/2023	Reviewed by & S. Graves Revised by:	Date:	7/16/2023 2/7/2024	;
Client: WMTX F	Project: <u>Mesquite Creek L</u>	andfill Project N	lo.: <u>GW8636</u>	Phase No.:	05

 Note that this approach of analyzing LD strengths for interim conditions may be overly conservative and could have been justifiably omitted but was included for completeness. This is because large displacements are typically induced by longterm behavior such as creep that would not be expected to occur in the short-term period when interim conditions exist.

2. CRITICAL CROSS-SECTIONS

Slope stability analyses were performed for seven cross-sections carefully chosen from different areas and conditions at the landfill to evaluate the different configurations of the various components of the landfill judged to capture the range of worst-case or potentially worst-case scenarios. These sections are termed "critical cross-sections," because they have the potential to produce the lowest factors of safety because of their combination of geometry and materials present – and are therefore carried forward for analysis. For example, a landfill location having the tallest and steepest waste slope represents a potential critical location because, all things being equal, it would be expected to produce a lower factor of safety than a location having slopes not as steep or tall. By selecting several cross-sections for analysis, this allows for multiple verifications to check several locations, conditions, and sliding modes (i.e., more than just one cross-section) to help provide confidence that the analysis does indeed capture the worst-case. The critical cross-sections selected for analysis are summarized below.

- Section A: critical section for excavation slope geometry and liner system veneer, occurring in Unit 2, Phase VII (i.e., proposed expansion area).
- Section B: critical section for excavation slope geometry occurring in Unit 2, Phase VIII (i.e., proposed expansion area).
- Section C: critical section for landfill geometry at interim conditions (i.e., tall, steepest, and unbuttressed landfill waste slope), occurring across Unit 2, Phase VIII at the development stage portrayed on Drawing I/IIA-23 in Part I/II.
- Section D: critical section for landfill geometry at interim conditions (i.e., tallest, steepest and unbuttressed landfill waste slope), occurring across Unit 2, Phase XII at the development stage portrayed on Drawing I/IIA-25 in Part I/II.
- Section E: critical section for final landfill geometry, and cover system veneer, in expansion area (i.e., maximum landfill elevation).
- Section F: critical section for final landfill geometry in the Unit 1, Phase V landfill area which has already been constructed and final covered, as a check to assess and confirm stability of the existing unit.

					Geosyntec					
					CC	ltants				
					5	of	76			
Written by: P. Pandey		Date: 7/3/2023	Reviewed by & s	S. Graves	Date:	7/16/ 2/7/2	2023; 024			
Client: WMTX F	Project:	Mesquite Creek La	andfill	_Project No.:	GW8636	Phase	No.: <u>05</u>			

• Section G: critical section for final landfill geometry, and cover system veneer, in existing Unit 2 landfill area.

The critical cross-sections are identified on Figures 3A, 3B and 3C of this calculation package and are described in more detail below.

2.1 <u>Initial Landfill Slopes (Excavation)</u>

This case refers to the short-term stability of the initial excavation slopes prior to sideslope liner construction. The critical cross-section for initial landfill slope occurs along Section A which is the longest and steepest excavation slope in the expansion area and is next to the existing Unit 2 landfill area (analyzed for a condition with waste having been placed). Additionally, Section B was also evaluated as an additional check for the initial condition. The interior landfill liner sideslope is inclined at a slope ratio of 3H:1V based on the landfill grading plans presented in Part III (SDP), Attachment 3A. The stability of initial excavation slopes was evaluated using both circular and block-type slip surfaces passing through the adjacent waste and the foundation soil strata.

2.2 Interim Landfill Slopes (Waste Slopes During Operations)

These cases refer to stability of interim landfill conditions (including the liner and the waste mass slopes) as waste placement is progressing. For analysis, the interim waste slopes will be inclined at 3H:1V in interior portions of the landfill. Two interim cases (Cross-Sections C and D) were analyzed, to account for differing conditions as development occurs so as to encompass the critical conditions for slope height, liner configuration, and unbuttressed interim waste slopes. One case (Section C in this analysis) is for the development stage represented on Drawing I/IIA-23 in Part I/II, with waste filling and an interim waste slope occurring at Unit 2, Phase VIII with an interim crest of slope elevation at approximately 786.5 feet above mean sea level (ft MSL) and a liner elevation at the toe-of-slope of approximately 673.3 ft MSL. The other case (Section D in this analysis) is for the development stage represented on Drawing I/IIA-25 in Part I/II, with waste filling and an interim slope occurring at Unit 2, Phase XII with a crest of slope elevation at approximately elevation 786.5 ft MSL and a liner elevation at the toe-of-slope of approximately elevation 657.5 ft MSL. The stability of the interim landfill slopes was evaluated using both circular and block-type slip surfaces passing through the waste and/or the weakest liner material. Undrained soil strengths were considered herein as they would be the appropriate and more critical case for interim (short-term) conditions.

			Geos	synte	CD
			CO	onsultant	ts
			6	of 76	
Written by: P. Pandey	Date: 7/3/2023	Reviewed by & S. Graves Revised by:	Date:	7/16/2023; 2/7/2024	
Client: WMTX F	Project: <u>Mesquite Creek L</u>	andfill Project No	o.: <u>GW8636</u>	Phase No.: (05

2.3 <u>Final Landfill Slopes (Final Closure and- Post Closure Conditions)</u>

These cases refer to stability of the overall landfill (including the final cover system, waste mass, liner system, and underlying/adjacent foundation soil strata) when constructed to final closure conditions. The final landfill slopes in the proposed expansion area and existing Unit 2 landfill area were evaluated for both short-term conditions (representing the time of closure when landfilling has just been completed) and long-term (representing long-term/post-closure) final closure conditions. The stability of the landfill at final grades was evaluated for critical Section E, and critical Section G in the proposed expansion area and existing Unit 2 landfill area, respectively. Additionally, the long-term/post-closure conditions were evaluated for Section F from the existing Unit 1 landfill area which has been filled and is final covered. The sections were evaluated using both circular and block-type slip surfaces that pass through the final cover system, waste mass, through the underlying/adjacent foundation soil strata, and/or through the weakest liner material. It is noted that compacted fill will be used to construct perimeter berms and to replace unsuitable subgrade (if any) beneath the liner system. As a simplifying assumption, compacted fill was not modeled in the slope stability analyses. This decision was made based on the geometry of the selected cross-sections that have perimeter berms of minimal size, as well as no known locations of unsuitable subgrade beneath the liner system. To the extent that the cross-section geometry includes the presence of the small perimeter berm, it was not differentiated in the analysis, but instead simply assigned the Stratum I/II material properties because those properties are representative, and because further differentiation would have a negligible effect on long-term global slope stability.

2.4 Liner and Final Cover System Veneer

These cases refer to the veneer stability analysis of the liner system and final cover system along their longest and steepest slopes.

For the liner veneer stability analysis, the critical slope was identified to be along Section A which is the tallest 3H:1V sideslope with a height of 61.8 ft. For the final cover veneer stability analysis, the critical slope was identified to be along Section E with a 3.5H:1V sideslope that reaches a maximum height of approximately 115.8 ft in the proposed expansion area and along Section G with a 3H:1V sideslope that reaches a maximum height of approximately 158.5 ft in the existing Unit 2 landfill area.

					Geos	s y L i onsu	ltants	5
					7	of	76	_
Written by: P. Pandey		Date: 7/3/2023	Reviewed by & Revised by:	S. Graves	Date:	7/16/ 2/7/2	2023; 024	
Client: WMTX	Project:	Mesquite Creek L	andfill	Project No.	: GW8636	Phase	No.: <u>05</u>	5

Coormtoo

3. LINER AND FINAL COVER SYSTEM

Liner System

The liner system for the proposed expansion disposal cells and existing Unit 2 landfill area consists of the following components, from top to bottom:

- 2-ft thick protective cover soil;
- double-sided geocomposite drainage layer;
- 60-mil textured HDPE geomembrane liner; and
- 2-ft thick compacted clay liner.

It is noted that Unit 1, which is filled and final covered, was constructed using a Pre-Subtitle D liner system in Phases I and II, while Phases III and V employed Subtitle D liner system. The Subtitle D liner system in Unit 1, Phase V which has been reevaluated as a confirmatory check, and included in this calculation package, consisted of following components, from top to bottom:

- 2-ft thick protective cover;
- leachate collection system:
 - on side slope of Phase V, double-sided geocomposite (i.e., geonet with geotextile bonded to its top and bottom surfaces); and
 - on the floor of Phase V, nonwoven geotextile filter layer over geonet drainage layer;
- 60-mil HDPE geomembrane liner (smooth on floor and textured on side slopes);
- GCL; and
- 0.5-ft thick prepared subgrade.

Final Cover System

The standard Subtitle D final cover system cross-section, as shown on Drawing 3A-13 in Attachment 3 of the Site Development Plan (SDP), consists of the following components from top to bottom:

- 2-ft thick vegetative soil/cover soil;
- geocomposite layer;
- 40-mil LLDPE geomembrane liner (textured on sideslopes); and
- 1.5-ft thick compacted soil liner.

					Geosynt				
					consult				
					8	of	76		
Written by: P. Pandey		Date: 7/3/2023	Reviewed by & S. Revised by:	Graves	Date:	7/16/ 2/7/2	2023; 024		
Client: WMTX	Project:	Mesquite Creek La	andfill F	Project No.:	GW8636	Phase	No.: <u>05</u>		

It is noted that the Pre-subtitle D areas in Unit 1 have already been final capped with a final cover system consisting of a 1.5-ft thick layer of compacted soil, overlain by a 6-in layer of topsoil. The Subtitle D areas in Unit 1 have already been final capped with a final cover system consisting of 1.5-ft thick layer of compacted clay, overlain by a 2.5 ft thick vegetative soil/cover soil. The existing and now installed Pre-Subtitle D and Subtitle D final cover systems in Unit 1 are shown on Drawing 3A-13 in Part III (SDP), Attachment 3A. At Unit 2, a water-balance soil-only final cover is proposed as an allowable alternative final cover system. For all of the soil-only final cover systems (existing as-installed, and proposed), the soil components have higher strengths than the weakest interface in the standard final cover system will be considered herein, as it represents the critical case.

4. MATERIAL PARAMETERS

4.1 **Foundation Soils**

The geotechnical site characterization of the foundation soils beneath the site is presented in Attachment 3D.1 of this permit amendment application. The foundation soils beneath the site were investigated in 2022-2023 as part of this permit design, and by previous site investigations. The subsurface soils are divided into four strata (I through IV) as described in Attachment 3D.1.

Geotechnical laboratory tests conducted during the 2022-2023 site investigation and previous site investigation programs included water content and index property tests, one-dimensional (1-D) consolidation tests, permeability tests, unconsolidated undrained (UU) triaxial compression tests, consolidated undrained (CU) triaxial compression tests, and unconfined compression (UC) tests. The results from these tests were used to establish the unit weight and the shear strength (i.e., the drained cohesion and friction angle, c' and ϕ ', and the undrained cohesion and friction angle, c and (b) properties of the foundation strata. It is noted that Stratum IV measured considerably high undrained shear strength of 45,835 psf and 61,704 psf during the 2022-2023 investigation and in the range of 37,900 psf to 113,000 psf during the 2004-2005 site investigation - indicating the stratum to be highly competent and more rock-like (i.e., claystone) than soil-like. However, for the purpose of analysis, an undrained shear strength of 6,500 psf was selected as a highly conservative approach, as this assumption is approximately one order of magnitude lower than the average strength value of about 66,690 psf calculated from the actual strength tests on this stratum. Finally, it is noted that for instances where material-specific data were not obtained during the site investigation and testing program, values consistent with previous local experience or published literature for similar soil strata were selected for design.

			Geos	tec⊳	
			CO	onsul	ltants
			9	of	76
Written by: P. Pandey	Date: 7/3/2023	Reviewed by & S. Graves Revised by:	Date:	7/16/2 2/7/2	2023; 024
Client: WMTX F	Project: <u>Mesquite Creek L</u>	andfill Project No	o.: GW8636	Phase	No.: <u>05</u>

4.2 Liner and Final Cover System

The liner system and final cover system have soil components and geosynthetic components. A discussion of the selection of the unit weight and shear strength values used for the slope stability analysis is provided below.

4.2.1. Final Cover System Soil

On-site soil (generally classified as CL to CH material) will likely be used as the compacted soil and cover soils in the final cover system. The moist unit weight of these soils was selected to be 120 pcf.

The drained and undrained shear strength properties of these materials was selected using the values recommended by NAVFAC (1986). For the purpose of analysis, the drained parameters were conservatively assumed to be equal to average reported values for CH soils (Table 1), which typically have lower drained strengths than CL soils. Accordingly, the final cover system soils were modeled with an average drained friction angle, φ' , of 19° and a cohesion, c', of 230 psf for long-term stability analysis.

For the short-term stability, the final cover system soils were modeled using undrained strength. Typical undrained shear strengths (i.e., cohesion) for CL soils range from 270 psf for saturated conditions to 1,800 psf for as-compacted conditions (Table 1); for CH soils, saturated and as-compacted strengths respectively range from 230 psf to 2,150 psf. Because the upper cover soil layers may be only lightly to moderately compacted, the cover may not achieve the full "as-compacted" strengths indicated in Table 1. Based on the above rationale, an undrained shear strength of 800 psf was selected for the final cover system soils. This value is considered a reasonable yet conservative short-term strength for design because it is substantially lower than the typical strength achieved by "as-compacted" soils indicated in Table 1, and in actuality the compacted soil layer will be well-compacted, and the erosion layer will receive some compaction via its placement (as well as from placement of overlying materials, as applicable).

For the limit equilibrium analyses performed using the Slide2 computer program, the final cover system is conceptualized as a single layer as a simplifying assumption for the global stability analysis, and assigned the conservative strength parameters detailed earlier. The geosynthetic layers, despite their presence in the cover system, are not modeled in the global analysis because they provide negligible contribution to the driving and resisting forces of global movement scenarios. However, it is noted that the analysis does not disregard the influence of geosynthetics in the final cover, and the sliding potential through a weakest interface within the composite final cover system is specifically evaluated through a veneer analysis presented herein.

		Geos	syntec		
			C	onsultants)
			10	of 76	_
Written by: P. Pandey	Date: 7/3/2023	Reviewed by & S. Graves Revised by:	Date:	7/16/2023; 2/7/2024	
Client: WMTX H	Project: Mesquite Creek L	andfill Project N	o.: <u>GW8636</u>	Phase No.: 05	_

4.2.2. Liner System Soil

The compacted clay liner and the liner protective cover soil layer will be constructed of on-site soil generally classified as CL to CH material. The moist unit weight of the soil liner system was selected to be 120 pcf.

As with the final cover soils, the drained and undrained parameters for liner system soils were selected using NAVFAC (1986). Given that the same basic material classifications will be used for both final cover system soils and liner system soils, the liner system soils were assigned the same shear strength properties as the final cover system soils (typical average drained friction angle, φ' , of 19° and a cohesion, c', of 230 psf and undrained shear strength parameter of 800 psf) With respect to the undrained strength, it is important to note that the actual in-service properties, particularly of the compacted clay liner, would very likely be higher since (similar to the discussion above for the cover soils) the material will undergo a rigorous compaction process as well as subsequent loading that would result in strength gain over time. As such, the parameters used here are conservative short-term strengths assumed for design.

In context of the liner system, which is a composite system including geosynthetic material layers (as detailed in Section 3), the potential for sliding on interfaces between different layers is an important consideration to be analyzed for global stability. In general terms, the overall analysis is governed by the weakest interface within the system, thus producing the lowest calculated factor of safety. Accordingly, for the limit equilibrium analyses performed using the Slide2 computer program, the liner system is modeled in a simplified manner as a single layer for the global stability analysis, and is assigned the strength properties of the weakest interface (discussed in the subsequent section). This simplification imparts conservatism in the analysis because the intrinsic strengths of the liner soil components would be higher than the weakest interface in the liner system. Also note that the strength parameters of liner system soils are specifically used in the evaluation of veneer stability of liner system.

4.2.3 Interface Shear Strength

The liner configuration proposed for the expansion area has the same components as the liner recently constructed at Unit 2, Phase V South. Site-specific liner interface test results from the adjacent cell (as documented in its approved liner evaluation reports) were provided by the facility (see Appendix 2) and used for the slope stability analyses of the expansion area presented herein. The critical liner system interface identified in the test results (which was between the textured geomembrane and clay) was assigned in the model (see Section 4.4).

For existing Unit 1 and Unit 2 landfill areas, the test results and critical interface obtained during the construction phase have been assigned in the model. For the analysis of existing Unit 1, the critical interface of smooth HDPE geomembrane and geonet was identified for the floor liner

				Geos	syntec					
					C	onsu	ltants	3		
					11	of	76			
Written by: P. Pandey		Date: 7/3/2023	Reviewed by & S. Revised by:	. Graves	Date:	Date: 7/16/2023; 2/7/2024				
Client: WMTX	Project:	Mesquite Creek La	andfill	Project No.:	GW8636	Phase	No.: <u>0</u> :	5		

system of Unit 1, Phase V. For the sideslope liner, the critical interface was identified between GCL and the overlying textured geomembrane at low stresses and between GCL and the underlying soil at higher stresses. Therefore, respective interface properties were assigned in the model to reevaluate the stability of Unit 1 landfill area in a post-closure condition. Likewise, test results and critical interface identified for Unit 2 (which was between textured geomembrane and clay soil) was assigned in the model for post closure evaluation of existing Unit 2 area.

For the final cover system, the interface strength parameters were selected based on published literature for the forward-analysis, in consideration of the low normal stresses of the final cover loads.

The parameters used in the forward-analysis represent the values that were directly measured and/or would reasonably be expected to be met, but they are not necessarily the lowest tolerable strengths that would still produce an acceptable factor of safety. For this reason, back-analyses of the lowest allowable interface shear strengths were also performed, so that these minimum required values may be incorporated into the LQCP and FCQCP.

As additional demonstration that all interfaces have been considered to identify and focus on the critical (weakest) interface, the following table provides a summary of the typical interface strength characteristics between relevant geosynthetics and soil interfaces (i.e., those that are included in or generally consistent with/analogous to the interfaces at the site). This tabulated information is based on a large body of published technical literature and, importantly, also includes site-specific test interface strength data. The relevant soil-geosynthetic and geosynthetic geosynthetic interfaces are:

- cover soil-geotextile (of the geocomposite drainage layer);
- geotextile (of the geocomposite drainage layer)-textured HDPE geomembrane;
- textured HDPE geomembrane-compacted soil liner (i.e., "clay"); and
- geotextile (of underdrain system geocomposite) and native soil (which is predominantly cohesive materials).

The table indicates that the geomembrane-clay interface is the most critical (weakest), with a peak interface strength envelope having a friction angle typically ranging from 8.2° to 10.9°. This finding aligns with our basis for stating above that the critical interface is identified as the textured geomembrane-compacted soil. Note that the analysis presented subsequently (including selected parameters for interfaces) use the best-fit strength envelope (including friction and adhesion) as measured during site-specific interface testing. The table below is only for general comparison purposes to help confirm the critical interface based on typical strength values/ranges for the various relevant interfaces.

			Geos	syntec	>
			CO	onsultants	
			12	of 76	
Written by: P. Pandey	Date: 7/3/2023	Reviewed by & S. Graves Revised by:	Date:	7/16/2023; 2/7/2024	
Client: WMTX Project	ct: <u>Mesquite Creek L</u> a	andfill Project N	o.: <u>GW8636</u>	Phase No.: 05	

Interfaces	δp	δld	References
Textured HDPE Geomembrane-Clay	8.2 -10.9	5-9.4	Site-specific interface strength test data (expressed on a secant friction angle basis); along with publications by Feng and Cheng (2014); Feng and Lu (2015)
Textured HDPE Geomembrane-Clay ¹	9.1-10.9	NR	Marriapan et al (2011)
Textured HDPE Geomembrane-Geotextile	17-32	10-19	Stark et al (1996); Dixon (2006); Feng and Lu (2015); Bacas et al (2015); Cen et al (2018)
Textured HDPE Geomembrane- Geocomposite ²	19.6	8.6	Site-specific interface strength test data
Geotextile-Silty Clay	30-40	NR	Athanasopoulos (1996)
Geotextile-Clay (Saturated)	NR	>24	Mitchell et al (1990)
Non-woven Geotextile-Coarse soils/sand)	16.4-38	34.2	Dixon (2006); Choudhary and Krishna (2016); Tuna and Altun (2012); Ferreira et al (2015)
Non-woven Geocomposite-Sand	35.8	30.2	Vieira et al (2013)

NR= Not Reported

Notes:

1. The Mariappan et al (2011) results are shown above as a separate table entry because their tested interfaces included soil mixtures including bentonite additives. While this is not proposed for this facility, the results are informative (and help confirm the typical ranges for analogous interface conditions).

2. The site-specific testing of the geomembrane-geocomposite interface was conducted using a double sided geocomposite (i.e., the textured geomembrane was in contact with the non-woven geotextile component of the geocomposite drainage layer).

4.3 <u>Waste</u>

Municipal solid waste (MSW) will be placed in the landfill. Typically, the unit weight of MSW, as reported in technical literature based on waste composition studies, is about 65-80 pcf. For slope stability analysis, the unit weight of the waste was selected to be 80 pcf.

Shear Strength

The shear strength parameters of the waste material were selected based on published information on the shear strength of MSW waste (Kavazanjian et al., 1995). A bilinear effective-stress shear strength envelope was used to model the waste and is defined as: (i) a cohesion of 501 psf and a friction angle of zero degrees for normal stresses up to 772 psf; and (ii) a cohesion of zero and a friction angle of 33° for normal stresses greater than 772 psf.

					Geosyntec				
						COI	nsul	tants	S
					1	3	of	76	
Written by: P. Pandey		Date: 7/3/2023	Reviewed by & Revised by:	S. Graves	Date: 7/16/ 2/7/2			2023; 024	
Client: WMTX P	Project:	Mesquite Creek La	andfill	Project No.	: <u>GW863</u>	<u>6</u> P	hase 1	No.: <u>0</u> :	5

. . .

4.4 <u>Summary of Material Parameters Used in Stability Analysis</u>

The following tables presented below summarize the soil, waste and interface parameters used in the stability analysis.

Coll Louon	Total Unit	Drained	Strength	Undrained Strength		
Son Layer	Weight, γ (pcf)	c' (psf)	φ' (degrees)	c (psf)	φ (degrees)	
Final Cover System Soils ²	120	230	19	800	0	
Liner System Soils ³	120	230	19	800	0	
Stratum I/II	120	500	19	5000	0	
Stratum III	127	900	20	4000	0	
Stratum IV ⁴	124	900	20	6500	0	
Waste Material	80	For σ_v ' For σ_v '	< 772 psf, c' > 772 psf, c	= 501 psf and = 0 psf and	$d \phi' = 0^{\circ}$ $\phi' = 33^{\circ}$	

NOTE:

1. γ = moist unit weight; c' = effective-stress cohesion; ϕ ' = effective-stress friction angle; c = undrained cohesion; and ϕ = undrained friction angle

2. The final cover system is modeled as a single layer for the global stability analysis in Slide2 (Refer Section 4.2.1 for detailed discussion)

- 3. The liner system soil properties are specifically used for the liner veneer analysis. For the global stability scenarios, the liner system is modeled as a single layer assigned the unit weight indicated above, and assigned the weakest interface strength (Refer Section 4.2.2 for detailed discussion).
- 4. Stratum IV measured considerably higher undrained shear strength of 45,835 psf and 61,704 psf during the recent lab testing and 37,900 psf to 113,000 psf during the previous site investigation indicating the stratum to be highly competent. However, for the purpose of analysis, an undrained shear strength of 6500 psf was selected, which is approximately one order of magnitude lower than the calculated average strength value of about 66,690 psf, and therefore is a very conservative approach.

			Geos	consultants			
			14	of 76			
Written by: P. Pandey	Date: 7/3/2023	Reviewed by & S. Gra Revised by:	ves Date:	7/16/2023 2/7/2024	;		
Client: WMTX I	Project: <u>Mesquite Creek L</u>	andfill Proje	ect No.: GW8636	Phase No.:	05		

lo o or mato o D

		Liner and Fi	nal Cover Sy	stem	
	Forward-A	Analysis, Enve	lope at High	Normal Stress	es
	Peak In	terface	LD Interface		Comments
	Param	neters	Paran	neters	
Liner System	Friction Angle (degrees)	Adhesion (psf)	Friction Angle (degrees)	Adhesion (psf)	
		UNIT 2 E	xpansion Are	ea	
Side Slope	Note 2		8.5	361	Site-specific interface
Floor	9.4	609	8.5	361	strength testing (2021)
UN	IT 1, Phase V	(Constructed	l and Final C	overed Landfi	ill Area)
Side Slope		_	10	266	Measured during Unit 1,
Floor	Not	e 3	9	204	Phase V construction (2005)
		UNIT 2, Phas	se I (Constru	cted)	
Side Slope		2	6.8	329	Measured during Unit 2,
Floor	Not	e 3	6.8	329	(2009)
Forv	ward-Analysis	s, Envelope at	Low Normal	Stresses [Ven	eer Case]
Liner System	34.8	Zero ⁽⁴⁾	No	ote 2	Site-specific interface strength testing (2021)
Final Cover System	26	Zero ⁽⁴⁾	No	ote 2	Howell and Kirsten (2016)

Notes:

- a) For side slope liner of Unit 1 Phase V, GCL and the overlying textured geomembrane at low stresses; and GCL and the underlying soil at higher stresses; For floor liner of Unit 1, smooth HDPE geomembrane and geonet; and
- b) For Unit 2, the clay soil-textured geomembrane interface.
- 2. Peak strengths are not used for the high normal stress cases for the liner side slopes. Instead, these areas are conservatively assigned LD conditions under high normal stresses because of the potential for detrimental shear displacement that may possibly occur along the weakest interface on sideslopes, resulting in the mobilization of LD strengths on sideslopes as discussed in Stark and Choi (2004). On the other hand, the low normal stress cases for the veneer analyses (where there is minimal load on the interface) are evaluated using the peak secant friction angle rather than LD strengths based on the short-term condition (for the liner veneer), and the absence of large detrimental shear displacement under low normal stresses for final covers (also discussed in Stark and Choi, 2004).
- 3. The long-term stability pertains to the scenario where the shear resistance may gradually decrease from its peak value during the post closure period, potentially resulting in the mobilization of LD strength.

^{1.} The critical (i.e., lowest) liner system interface shear strength taken from site-specific lab test results was:

						Ge	syn	/ntec		
						consultants				
							15	of	76	_
Written by: P. Pandey		Date:	7/3/2023	Reviewed by &Revised by:	S. Graves		Date:	7/16/2023; 2/7/2024		
Client: WMTX I	Project:	Mesq	<u>uite Creek L</u>	andfill	_Project No.	: <u>GW8</u>	636	Phase	No.: <u>05</u>	_

Therefore, the existing Unit 1 and Unit 2 landfill areas were analyzed only under the LD/LD scenario (see Section 6.3) for the representative post-closure condition.

4. The low normal stress veneer cases were performed using a secant friction angle (assuming zero adhesion).

5. GROUNDWATER ELEVATION

The LQCP (Attachment 3C of Part III (SDP)) presents a conservatively developed seasonal high groundwater table map. Based on this map, portions of the landfill may be constructed below the seasonal high-water table. The LQCP provides further discussion on observed and measured groundwater as it relates to excavation and liner stability, and the Geology Report (Part III, Attachment 4) provides more in-depth discussion on hydrogeology at the site. In summary, the subsurface strata have low permeability and do not appear to have a continuous zone of saturation. That said, the conceptual site model of the site hydrogeology is that there is an unconfined waterbearing zone at the site. Namely, the lower part of Stratum III exhibits a greater occurrence of secondary features (e.g., higher density of fractures, seams, and fissures), which allows it to contain and transmit groundwater. Piezometers and monitoring wells screened at the base of Stratum III generally do contain sufficient quantities of groundwater for gauging and/or sampling and analysis purposes. Groundwater occurs as unconfined conditions at the lower part of Stratum III, where it is perched above the lower confining unit (aquiclude) of Stratum IV.

Based on the foregoing, a piezometric groundwater level using the seasonal high groundwater table was included in our analyses of the final landfill slopes in the post-closure condition. This assumption for analysis of long-term final conditions is considered appropriate, but conservative, given the likelihood that construction of the lined landfill will significantly reduce (or even eliminate) the ability for groundwater to be recharged because the source of recharge, namely infiltration percolating downward from the ground surface, will be blocked by the presence of the landfill and its liner system leading to an expected lowering of groundwater levels over time. By accounting for the seasonal high groundwater table in the stability analyses for long-term conditions, this represents a worst-case assumption as compared to if the stability analysis was performed with a reduced or eliminated groundwater table. Additionally, it is noted that the landfill design and operation as reflected elsewhere in this permit amendment application addresses short-term stability through a pressure relief system (i.e., underdrain) that will be installed in appropriate locations of future cells to collect and control groundwater adjacent to the liner until sufficient ballast is present to resist the theoretical uplift. This information is presented in Attachment 3D.4.

Also, on a related topic of piezometric head potential and its effect on the stability analyses, to account for the potential leachate buildup within the leachate collection system drainage layer within the landfill, a piezometric level was modeled at 0.017 ft (0.2 inches) above the top of the

			Geos	syr	ntec⊳	
			C	onsultants		
			16	of	76	
Written by: P. Pandey	Date: 7/3/2023	Reviewed by & S. Graves Revised by:	Date:	7/16 2/7/2	/2023; 2024	
Client: WMTX F	Project: <u>Mesquite Creek L</u>	andfill Project N	Io.: <u>GW8636</u>	Phase	No.: <u>05</u>	

liner for applicable analyses. Additionally, the final cover system veneer stability analysis incorporates a piezometric head of about 0.2 inches, which is conservatively more than the peak average head calculated in the final cover drainage layer design calculation package (Part III (SDP), Attachment 3G).

			Geo	syntec			
			С	onsul	ltants		
			17	of	76		
Written by: P. Pandey	Date: 7/3/2023	Reviewed by & S. Graves	S Date:	7/16/2 2/7/20	2023; 024		
Client: WMTX	Project: <u>Mesquite Creek</u>	Landfill Project	No.: GW8636	Phase ?	No.: <u>05</u>		

6. **RESULTS AND CONCLUSIONS**

6.1 Initial Landfill Slopes (Excavation)

A summary of the evaluated initial excavation slope stability scenarios and calculated factors of safety is presented in the following table. The Slide2[©] computer output and figures that illustrate each of the shear surface scenarios and show the critical shear surface for each scenario are presented in Appendix 3D.2-1. It is noted that results for critical shear surfaces passing through interim waste slopes are provided in Section 6.2.

Initial Landfill Slopes Shear Surface Scenario	Calculated FS (✓ if OK)	d FS X) Target FS				
Section A: Stability of Initial Landfill Slope in Phase VII with Adjacent Existing Unit 2 Waste Slope (short-term, undrained strengths) (See Pages 40-41 for Slide2 [©] outputs)						
3H:1V sideslope: Circular shear surfaces through the existing landfill and foundation soils	3.05 ✓	1.25				
3H:1V sideslope: Block-type shear surfaces through the existing landfill and foundation soils	3.03 ✓	1.25				
Section B: Stability of Initial Landfill Slope in Phase VIII with Adjacent Ex (short-term, undrained strengths) (See Pages 42-43 for Slide2 [©] outputs)	xisting Unit 2 Was	ste Slope				
3H:1V sideslope: Circular shear surfaces through the existing landfill and foundation soils	3.21 ✓	1.25				
3H:1V sideslope: Block-type shear surfaces through the existing landfill and foundation soils	3.22 ✓	1.25				

As shown above, for each considered shear surface scenario, the calculated factor of safety of the initial landfill configuration exceeds the target minimum calculated factor of safety.

					Geosynte				
					CO	consultant			
					18	of	76		
Written by: P. Pandey		Date: 7/3/2023	Reviewed by & Revised by:	S. Graves	Date:	7/16 2/7/2	/2023; 2024		
Client: WMTX	Project:	Mesquite Creek L	andfill	Project No.:	GW8636	Phase	No.: <u>0</u>	5	

6.2 Interim Landfill Slopes (Waste Slopes During Operations)

Three scenarios were considered for the interim landfill slopes:

- circular shear surfaces through the interim waste slope;
- circular shear surfaces through interim waste slope and liner system, and;
- block-type shear surfaces through the waste and along liner system.

Consistent with Stark and Poeppel (1994) and Stark and Choi (2004), for the interface sliding scenarios, peak shear strengths were used on the floor liner system, and large-displacement strengths were used on the sideslope liner system. Under this "P/LD" assumption and for an interim case, the minimum calculated factor of safety should meet or exceed 1.25. Also, interface scenarios were included using large-displacement strengths on both the floor and side slopes to represent a conservative worst-case (that is unlikely to manifest under the short-term duration of the interim conditions). Under this "LD/LD" assumption and for an interim case, the minimum calculated factor of safety should meet or exceed 1.0. A summary of the evaluated interim waste slope stability scenarios and calculated factors of safety is presented in the following table. The analyses presented below correspond to shear surfaces through the waste slopes and liner system materials using the site-specific interface data. The Slide2[©] output and figures that illustrate each of the shear surface scenarios and show the critical shear surface for each scenario are presented in Appendix 3D.2-1.

Interim Landfill Slopes Shear Surface Scenario	Calculated FS (√ if OK)	Target FS			
Section C: Stability of Interim Landfill Slopes (short-term, undrained strengths) (See Pages 44-46 for Slide2 [©] outputs)					
Circular shear surfaces through interim waste slope	2.11 🗸	1.25			
Circular shear surfaces through interim waste slope and liner system using site specific interface testing results (LD/LD scenario)	2.02 🗸	1.0			
Block-type shear surfaces through the waste and along liner system using site specific interface testing results (P/LD scenario)	1.37 🗸	1.25			
Block-type shear surfaces through waste and along liner system using site specific interface testing results (LD/LD scenario)	1.20 🗸	1.0			
Section D: Stability of Interim Landfill Slopes (short-term, undrained stren Slide2 [©] outputs)	gths) (See Pages	47-49 for			
Circular shear surfaces through interim waste slope	2.09 ✓	1.25			

					Geos	onsu	ltants
					19	of	76
Written by: P. Pandey		Date: 7/3/2023	Reviewed by &Revised by:	S. Graves	Date:	7/16/ 2/7/2	2023; 024
Client: WMTX	Project:	Mesquite Creek La	andfill	Project No.	: <u>GW8636</u>	Phase	No.: <u>05</u>

Interim Landfill Slopes Shear Surface Scenario	Calculated FS (√ if OK)	Target FS
Circular shear surfaces through interim waste slope and liner system (LD/LD scenario)	2.02 🗸	1.0
Block-type shear surfaces through interim waste slope and along the liner using specific interface testing results (P/LD scenario)	1.65 ✓	1.25
Block-type shear surfaces through interim waste slope and along the liner using specific interface testing results (LD/LD scenario)	1.43 🗸	1.0

Notes:

a) P/LD represents a scenario when peak shear strength is assigned for floor liner system and large displacement shear strength is assigned for sideslope.

b) LD/LD represents a scenario when large displacement shear strength is assigned for floor and sideslope liner system.

As shown above, for each considered shear surface scenario, the calculated factor of safety of the interim landfill configuration exceeds the target minimum calculated factor of safety. Additionally, the minimum interface shear strength of the liner system required to achieve the target calculated factor of safety for critical Section C was back-calculated for block-type shear surfaces passing through the waste and along the liner system and are summarized below. These values were further assigned in the final conditions to verify its adequacy in the overall final slope stability.

Back-Analysis Shear Surface Scenario	Back- Calculated Interface Friction Angle (assuming no adhesion)
Interim Landfill Slopes (See Pages 50-51 for Slide2 [©] outputs)	
<u>Section C</u> : Block-type shear surfaces through the waste and along the liner system (LD/LD Scenario), producing minimum acceptable interim and large displacement FS of 1.0	$\delta_{LD}\!\!= 9.8^{o}$
Section C: Block-type shear surfaces through the waste and along the liner system (P/LD Scenario), producing minimum acceptable interim FS of 1.25.	$\delta_p = 15.5^{\circ}$

			Geos	synte	ec C	
			C	consultants		
			20	of 7	5	
Written by: P. Pandey	Date: 7/3/2023	Reviewed by & S. Graves Revised by:	Date:	7/16/202 2/7/2024	3;	
Client: WMTX I	Project: <u>Mesquite Creek L</u>	andfill Project 1	No.: <u>GW8636</u>	Phase No.	: <u>05</u>	

6.3 <u>Final Landfill Slopes and Foundation (Final Closure and Post Closure Conditions)</u>

Three scenarios were considered for final landfill slopes and foundation soils at the time of closure (i.e., short-term stability) and for post-closure conditions (i.e., long-term stability):

- circular shear surfaces through the waste;
- circular shear surfaces through the waste and liner system; and
- block-type shear surfaces through the waste and along liner system.

It is noted that the short-term stability of final landfill slopes representing the time immediately after the landfill closure was analyzed only under P/LD scenario as the large displacement strengths typically mobilize in the longer-term and may not exist in the short-term condition right after closure. The long-term stability, on the other hand, was evaluated under LD/LD scenario considering that the shear resistance could reduce from peak value in the longer-term post-closure period, potentially resulting in the mobilization of LD strength. The results of the analysis are summarized below. The Slide2[©] computer output and figures that illustrate each of the shear surface scenarios and show the critical shear surface for each scenario are presented in Appendix 3D.2-1.

	Final Landfill Slopes Shear Surface Scenario	Calculated FS (✓ if OK)	Targe t FS
	Section E: Stability of Final Landfill Slopes in the Proposed Expansion Area (sh strengths) (See Pages 52-53 for Slide2 [©] outputs)	ort-term, und	rained
	3.5H:1V Slope- Circular shear surfaces through the waste	2.44 🗸	1.5
n Area)	Circular shear surface through the waste and liner system using site-specific interface testing results (P/LD scenario)	2.62 ✓	1.5
kpansio	Block-type shear surfaces through the waste and along the liner system using site specific interface testing results (P/LD scenario)	1.94 🗸	1.5
NIT-2 (E3	Section E: Stability of Final Landfill Slopes in the Proposed Expansion Area (lo strengths) (See Pages 54-55 for Slide2 [©] outputs)	ng-term, draiı	ned
n	3.5H:1V Slope- Circular shear surfaces through the waste	2.39 ✓	1.1
	Circular shear surface through the waste and liner system using site-specific interface testing results (LD/LD Scenario)	2.53 ✓	1.1

Geosyntec consultants 21 of 76 Written by: P. Pandey Date: 7/3/2023 Reviewed by & S. Graves Date: 7/16/2023; Written by: P. Pandey Date: 7/3/2023 Reviewed by & S. Graves Date: 7/16/2023; Client: WMTX Project: Mesquite Creek Landfill Project No.: GW8636 Phase No.: 05

	Final Landfill Slopes Shear Surface Scenario	Calculated FS (✓ if OK)	Targe t FS
	Block-type shear surfaces through the waste and along the liner system using site specific interface testing results (LD/LD Scenario)	1.79 ✓	1.1
hase V	Section F: Stability of Final Landfill Slopes in the Existing Unit 1, Phase V area strengths) (See Pages 56-57 for Slide2 [©] outputs)	l (long-term, d	rained
-1, P	3H:1V Slope- Circular shear surfaces through the waste and foundation	2.48 🗸	1.1
LINN	Block-type shear surfaces through the waste and along the liner system using site specific interface testing results (LD/LD Scenario)	1.58 🗸	1.1
	Section G: Stability of Final Landfill Slopes in the Existing Unit 2, Phase I area strengths) (See Pages 58-59 for Slide2 [®] outputs)	(long-term, dı	rained
Area)	3H:1V Slope- Circular shear surfaces through the waste	2.53 ✓	1.1
(Existing	Circular shear surface through the waste and liner system using site-specific interface testing results (LD/LD Scenario)	2.48 🗸	1.1
UNIT-2 (Block-type shear surfaces through the waste and along the liner system using site specific interface testing results (LD/LD Scenario)	1.30 ✓	1.1

As shown above, for each considered shear surface scenario, the calculated factor of safety of the final landfill configuration exceeds the target minimum calculated factor of safety.

The table below presents and compares the calculated factor of safety in the final condition for the proposed expansion area (i.e., Section E) when the back-calculated minimum strength envelopes (expressed as secant friction angles, assuming zero adhesion) from Section 6.2 were used. In all cases, the back-calculated envelopes required as minimums for the previously presented interim case met the minimum requirement for the final slope cases. In other words, the interim case was more critical for the interface sliding scenarios, so those strengths become a project specification (requirement), and using such strengths, the final conditions are less critical, and the factor of safety goes up.

					Geos	Syr	lieu	
					C	onsu	iltants	
					22	of	76	
Written by: P. Pandey		Date: 7/3/2023	Reviewed by & Revised by:	S. Graves	Date:	7/16 2/7/2	5/2023; 2024	
Client: WMTX	Project:	Mesquite Creek L	andfill	Project No	.: <u>GW8636</u>	Phase	e No.: <u>05</u>	

Coormtoop

Shear Surface Scenario (See Pages 60-61 for Slide2 [©] outputs)	Minimum Secant Angles (Using Back calculated Values from Interim case)	Calculated FS (✓ if OK)	Target FS
Final Landfill Slopes- Section E Short term			
Block-type shear surfaces through the waste and along the liner (P/LD Scenario)	$\begin{array}{l} \delta_{p} = 15.5^{o} \\ \delta_{LD} = 9.8^{o} \end{array}$	1.97 🗸	1.5
Final Landfill Slopes- Section E Long term			
Block-type shear surfaces through the waste and along the liner (LD/LD Scenario)	$\delta_{LD}=$ 9.8°	1.65 🗸	1.1

6.4 Liner and Final Cover System Veneer Stability

The veneer stability analysis for the proposed expansion area was performed using two different methods. The first method was a forward analysis using the peak strength from tests during the construction of an adjacent cell and from published literature (see Section 4.2 and 4.4). The second method was a back-analysis, targeting the minimum design calculated factors of safety. In addition to the expansion area, a final cover veneer analysis was evaluated for the existing Unit 2 landfill area which has not been final covered yet.

The liner system stability represents an interim condition for the relatively short period between the liner system installation and waste placement against the liner system; therefore, the target minimum calculated factor of safety is 1.25 using peak strengths. The final cover system will be constructed on 3H:1V waste slopes in the existing Unit 2 area and 3.5H:1V waste slopes in the expansion area. Because the final cover system stability represents a long-term condition, the target minimum calculated factor of safety is 1.5 using peak strengths. The results of the analysis are summarized below. The Slide2[©] computer output and figures that illustrate each of the scenarios and show the critical shear surface for each scenario are presented in Appendix 3D.2-1.

Shear Surface Scenario (See Pages 62-65 for Slide2 [©] outputs)	Calculated FS (✓ if OK)	Target FS
Section A: 3H:1V Liner Veneer Analysis (Undrained cover soil)		
Using site specific measured peak interface value for low normal stresses i.e., $\delta_p {=}~34.8^{\circ}$	2.36 🗸	1.25
Section E: 3.5H:1V Final Cover Veneer Analysis (Drained cover soil) ¹		

					Geos	yri	
					CC	onsu	ltants
					23	of	76
Written by: P. Pandey		Date: 7/3/2023	Reviewed by & Revised by:	S. Graves	Date:	7/16/2 2/7/2	2023; 024
Client: WMTX	Project:	Mesquite Creek La	ndfill	_Project No.:	GW8636	Phase	No.: <u>05</u>

Coostantoc

Using published peak interface value expected for low normal stresses i.e., $\delta_p{=}26^o$	1.75 ✓	1.5
Section G: 3H:1V Final Cover Veneer Analysis (Drained cover soil) ¹		
Using published peak interface value expected for low normal stresses i.e., $\delta_p {=}~26^{\rm o}$	1.74 🗸	1.5
Section E: 3.5H:1V Final Cover Veneer Analysis (Undrained cover soil) ¹		
Using published peak interface value expected for low normal stresses i.e., $\delta_p{=}26^{\rm o}$	1.91 🗸	1.5

Note:

1. Because the final cover system will have no or limited amount detrimental shear displacement along the weakest interface, the veneer stability was evaluated for peak interface strength only, as recommended by Stark and Choi (2004).

As shown above, for each considered shear surface scenario, the calculated factor of safety for the final landfill configuration is greater than the target minimum calculated factor of safety.

The table below presents the back-calculated interface strength parameters from the veneer analyses.

Shear Surface Scenario (See Pages 66-69 for Slide2 [©] outputs)	Back-calculated Interface Friction Angle
Section A: 3H:1V Liner Veneer Analysis (Undrained cover soil)	
Peak interface value at low normal stresses producing minimum acceptable interim FS of 1.25	δ p=18.3°
Section E: 3.5H:1V Final Cover Veneer Analysis (Drained cover soil)	
Peak interface value at low normal stresses producing minimum acceptable FS of 1.5	δp= 22.3°
Section G: 3H:1V Final Cover Veneer Analysis (Drained cover soil)	
Peak interface value at low normal stresses producing minimum acceptable FS of 1.5	δp=21.4°
Section E: 3.5H:1V Final Cover Veneer Analysis (Undrained cover soil)	
Peak interface value at low normal stresses producing minimum acceptable FS of 1.5	δp= 20.4°

From the table above, the back-calculated peak friction angles to achieve the target minimum calculated factors of safety is 18.3° (assuming zero adhesion), for the liner system veneer stability. Additionally, for the final cover system veneer stability, the back-calculated peak friction angle to achieve the target minimum calculated factor of safety is 22.3° (assuming zero adhesion). It should

					Geosynte		
					CC	onsu	ltants
					24	of	76
Written by: P. Pandey		Date: 7/3/2023	Reviewed by & Revised by:	S. Graves	Date:	7/16/ 2/7/2	/2023; 2024
Client: WMTX	Project:	Mesquite Creek	Landfill	Project No.:	GW8636	Phase	No.: <u>05</u>

be recognized that these strengths correspond to low normal stress conditions, and that other combinations of friction angle and adhesion (i.e., a somewhat lower friction angle combined with adhesion) can produce an acceptable factor of safety.

7. INTERFACE STRENGTH VALUES FOR LQCP AND FCQCP

Based on the results of the stability analyses the following minimum interface strength values are incorporated into the LQCP and FCQCP.

	Normal	Peak Effective-Stress Interface Strength ⁽¹⁾		Large-Displacement Effective- Stress Interface Strength ⁽¹⁾		
	Stress (psf)	Shear Strength (psf)	Equivalent Secant Friction Angle (°)	Shear Strength (psf)	Equivalent Secant Friction Angle (°)	
Liner System ⁽³⁾	500	165	18.3	N/A ⁽²⁾	N/A ⁽²⁾	
	7,500	2,080	15.5	1,295	9.8	
	15,000	4,160	15.5	2,591	9.8	
Final Cover System ⁽⁴⁾ (on 3H:1V and 3.5H:1V slopes)	500	205	22.3	N/A ⁽²⁾	N/A ⁽²⁾	

Notes:

- 1. The equivalent secant friction angles given above are presented only for convenience. The actual required strength envelope is formed by the listed shear strength values (psf) corresponding to each normal stress increment (psf), which could be achieved by friction or adhesion (or any combination thereof) meeting or exceeding the specified shear strength. It should be recognized that, because the liner system strength envelope has multiple normal stress increments, it is possible that an alternate envelope could be acceptable even if one or two stress increments do not achieve the specified shear strength. If such conditions are measured, a re-analysis of slope stability may be performed by a qualified Texas Professional Engineer as a "forward-analysis" using the actual as-measured interface shear strength envelope and the applicable critical cross-section(s). The results should demonstrate that the calculated factors of safety meet or exceed the minimum criteria specified herein.
- 2. As explained previously in this calculation package, the large displacement strength at the low normal stress increment is not applicable ("N/A").
- 3. For the liner system, the geomembrane-clay interface is judged as the most critical (i.e., weakest) interface as explained previously in Section 4.2. It should be recognized that the strengths reported above represent the minimum required envelope for all liner system interfaces, but as further explained in Section 4.2, all the other interfaces typically possess much higher strengths than the geomembrane-clay interface. Therefore, the strengths reported above have been incorporated into the LQCP as part of associated testing specified for the most critical interface (namely, the geomembrane-clay interface) because if it can be verified that this critical interface is sufficient, then one can be confident that all the other stronger liner system interfaces also possess adequate strength.
- 4. For the final cover system, the geomembrane-compacted soil interface is judged as the most critical (i.e., weakest) interface as explained previously in Section 4.2. It should be recognized that the strengths reported above represent the minimum required envelope for all final cover system interfaces, but as further explained in Section 4.2, all the other interfaces typically possess much higher strengths than the geomembrane-compacted soil interface. Therefore, the strengths reported above have been incorporated into the FCQCP as part of associated testing specified for the most critical interface (namely, the geomembrane-compacted soil interface) because if it can be verified that this critical interface is sufficient, then one can be confident that all the other stronger final cover system interfaces also possess adequate strength.

			Geos	synte	
			25	of 76	15
Written by: P. Pandey	Date: 7/3/2023	Reviewed by & S. Grave Revised by:	s Date:	7/16/2023; 2/7/2024	
Client: WMTX I	Project: <u>Mesquite Creek I</u>	Andfill Project	No.: <u>GW8636</u>	Phase No.: (05

8. **REFERENCES**

Athanasopoulos, G. A. (1996). Results of direct shear tests on geotextile reinforced cohesive soil. *Geotextiles and Geomembranes*, *14*(11), 619-644.

Bacas, B. M., Cañizal, J., & Konietzky, H. (2015). Frictional behaviour of three critical geosynthetic interfaces. *Geosynthetics International*, 22(5), 355-365.

Cen, W. J., Wang, H., & Sun, Y. J. (2018). Laboratory investigation of shear behavior of highdensity polyethylene geomembrane interfaces. *Polymers*, *10*(7), 734.

Choudhary, A. K., & Krishna, A. M. (2016). Experimental investigation of interface behaviour of different types of granular soil/geosynthetics. *International Journal of Geosynthetics and Ground Engineering*, *2*, 1-11.

Dixon, N., Jones, D. R. V., & Fowmes, G. J. (2006). Interface shear strength variability and its use in reliability-based landfill stability analysis. *Geosynthetics International*, *13*(1), 1-14.

Duncan, J. M. (1992). "State-of-the-Art: Static Stability and Deformation Analysis", Stability and Performance of Slope and Embankments-II, Geotechnical Special Publication No. 31, R. B. Seed and R.W. Boulanger (editors), ASCE, New York, N, Vol. 1., pp. 222-266.

EPA (2004). "Technical Guidance Document: RCRA/CERCLA Final Cover Systems." EPA 540-R-04-007 draft.

Feng, S. J., & Cheng, D. (2014). Shear strength between soil/geomembrane and geotextile/geomembrane interfaces. In *Tunneling and Underground Construction* (pp. 558-569).

Feng, S. J., & Lu, S. F. (2016). Repeated shear behaviors of geotextile/geomembrane and geomembrane/clay interfaces. *Environmental Earth Sciences*, 75, 1-13.

Ferreira, F. B., Vieira, C. S., & Lopes, M. D. L. (2015). Direct shear behaviour of residual soilgeosynthetic interfaces–influence of soil moisture content, soil density and geosynthetic type. *Geosynthetics International*, 22(3), 257-272.

Howell, G. C., & Kirsten, A. H. (2016, March). Interface shear: Towards understanding the significance in geotechnical structures. In *Proceedings of the First Southern African Geotechnical Conference* (p. 267). CRC Press.

Kavazanjian Jr., E., Matasovic, N., Bonaparte, R., and Schmertmann, G. (1995). "Evaluation of MSW Properties for Seismic Analysis", *Proceedings, Geoenvironmental 2000, Vol II*, New Orleans, LA, Feb, pp. 1126-1141.

					Geosyn			tec	
								ants	
					26	of	76		
Written by: P. Pandey		Date: 7/3/2023 Reviewed by & S. Graves Revised by:		Date	:: 7/1 <u>2/7</u>	6/2023; //2024			
Client: WMTX	Project:	Mesquite Creek L	andfill	Project No	.: <u>GW8636</u>	Phas	se No.: <u>(</u>	05	

Mariappan, S., Kamon, M., Ali, F. H., Katsumi, T., Akai, T., Inui, T., & Nishimura, M. (2011). Performances of landfill liners under dry and wet conditions. *Geotechnical and Geological Engineering*, *29*, 881-898. Mitchell, J. K., Seed, R. B., & Seed, H. B. (1990). Kettleman Hills waste landfill slope failure. I: Liner-system properties. *Journal of geotechnical engineering*, *116*(4), 647-668.

Naval Facilities Engineering Command (NAVFAC) (1986). "Foundations & Earth Structures", Design Manual DM 7.02.

Stark, T. D., Williamson, T. A., & Eid, H. T. (1996). HDPE geomembrane/geotextile interface shear strength. *Journal of Geotechnical Engineering*, *122*(3), 197-203.

Stark, T. D., & Choi, H. (2004). Peak versus residual interface strengths for landfill liner and cover design. *Geosynthetics International*, *11*(6), 491-498.

Spencer, E. (1967). "A Method of Analysis of the Stability of Embankments Assuming Parallel Inter-Slice Forces," *Geotechnique*, Vol. 17, No. 1, pp. 11-26.

Tuna, S. C., & Altun, S. (2012). Mechanical behaviour of sand-geotextile interface. *Scientia Iranica*, 19(4), 1044-1051.

Vieira, C. S., Lopes, M. L., & Caldeira, L. (2013, September). Soil-geosynthetic interface shear strength by simple and direct shear tests. In *Proceedings of the 18th international conference on soil mechanics and geotechnical engineering, Paris* (pp. 3497-3500).

			Geosyntee		
			consultant		
			27	of	76
Written by: P. Pandey	Date: 7/3/2023	Reviewed by & S. Graves Revised by:	Date:	7/16/2 2/7/20	2023; 024
Client: WMTX F	Project: <u>Mesquite Creek L</u>	andfill Project N	o.: <u>GW8636</u>	Phase	No.: <u>05</u>

TABLES

			Geosyntee		
			CO	onsultants	3
			28	of 76	_
Written by: P. Pandey	Date: 7/3/2023	Reviewed by & S. Graves Revised by:	Date:	7/16/2023; 2/7/2024	
Client: WMTX	Project: <u>Mesquite Creek L</u>	andfill Project N	o.: <u>GW8636</u>	Phase No.: 05	5

Table 1. Typical Properties of Compacted Soils (after NAVFAC, 1986).

		Range of	Range of	Typical Strength Characteristics			
Group Symbol	Soil Type	Maximum Dry Unit Weight (pcf)	Optimum Moisture Content (%)	Cohesion, as compacted (psf)	Cohesion, saturated (psf)	φ, Effective- Stress Envelope (degrees)	tan(ø)
SP	Poorly graded clean sands, sand-gravel mix.	100 - 120	12-21	0	0	37	0.74
SM	Silty sands, poorly graded sand-silt mix.	110 - 125	11 - 16	1,050	420	34	0.67
SM-SC	Sand-silt clay mix with slightly plastic fines	110 - 130	11 - 15	1,050	300	33	0.66
SC	Clayey sands, poorly-graded sand-clay mix.	105 - 125	11 - 19	1,550	230	31	0.60
ML	Inorganic silts and clayey silts	95 - 120	12 - 24	1,400	190	32	0.62
CL	Inorganic clays of low to medium plasticity	95 - 120	12 - 24	1,800	270	28	0.54
СН	Inorganic clays of high plasticity	75 - 105	19 - 36	2,150	230	19	0.35
			Geos	tec⊳			
------------------------------	----------------------------------	---	--------------------	------------------	----------------		
			C	tants			
			29	of	76		
Written by: P. Pandey	Date: 7/3/2023	Reviewed by & S. Graves Revised by:	Date:	7/16/2 2/7/20	2023;)24		
Client: WMTX F	Project: <u>Mesquite Creek L</u>	andfill Project 1	No.: GW8636	Phase 1	No.: <u>05</u>		

FIGURES

Figure 1A. 2014¹ USGS National Seismic Hazard Map showing maximum horizontal acceleration (as a fraction of standard gravity, g) with 2% probability of exceedance in 50 years.

Note:

1. It is noted that as of August 2023, a more recent seismic hazard map dated 2018 is also available from the USGS website. Based on a comparison of the 2014 and 2018 maps, the peak ground accelerations are consistent for the site vicinity and for Texas in general. The 2014 map also identifies areas where suspected nontectonic earthquakes have been detected, and therefore is used as the base map on this above figure based on the added information included (see also Figure 1B for a more recently published "short-term induced seismicity" map).

Figure 1B. 2018 USGS Short-term Induced Seismicity Models showing chance of potentially minor damage* ground shaking in 2018.

*Note: USGS refers to minor-damage ground shaking as equivalent to Modified Mercalli Intensity VI, which is defined as: "Felt by all, many frightened. Some heavy furniture moved; a few instances of fallen plaster. Damage slight."

			Geos	synte	C
			consulta		ts
			32	of 76	
Written by: P. Pandey	Date: 7/3/2023	Reviewed by & S. Graves Revised by:	Date:	7/16/2023 2/7/2024	;
Client: WMTX H	Project: <u>Mesquite Creek La</u>	andfill Project N	o.: <u>GW8636</u>	Phase No.:	05

Figure 2A. Illustration of circular shear surface through existing landfill and initial excavation slope in proposed expansion area.

Figure 2B. Illustration of block-type shear surface through existing landfill and initial excavation slope in proposed expansion area.

			Geos	Syntec ^C	
			33	of 76	
Written by: P. Pandey	Date: 7/3/2023	Reviewed by & S. Graves Revised by:	Date:	7/16/2023; 2/7/2024	
Client: WMTX F	Project: <u>Mesquite Creek L</u>	andfill Project N	o.: <u>GW8636</u>	Phase No.: 05	

Figure 2C. Illustration of shallow, block-type shear surface through sideslope liner (i.e., liner veneer).

Figure 2D. Illustration of circular shear surface through interim waste slopes.

			Geos	Geosyntee		
			34	of 76	\$	
Written by: P. Pandey	Date: 7/3/2023	Reviewed by & S. Graves Revised by:	Date:	7/16/2023; 2/7/2024	_	
Client: WMTX F	Project: <u>Mesquite Creek L</u>	andfill Project N	No.: <u>GW8636</u>	Phase No.: 05	5	

Figure 2E. Illustration of block-type shear surface through interim waste slopes.

Figure 2F. Illustration of circular shear surface through final waste slopes and foundation.

			Geosyntee		
			35	of 76	
Written by: P. Pandey	Date: 7/3/2023	Reviewed by & S. Graves Revised by:	Date:	7/16/2023; 2/7/2024	
Client: WMTX H	Project: <u>Mesquite Creek L</u>	andfill Project No	o.: <u>GW8636</u>	Phase No.: 05	

Figure 2G. Illustration of block-type shear surface through final waste slopes and foundation.

Figure 2H. Illustration of shallow, block-type shear surface through final cover system.

Figure 3A. Locations of the stability cross-sections in relation to overall base liner grading plan.

Figure 3B. Locations of the stability cross-sections in relation to final cover grading plan in Unit 2

				Geo			osyntec ^u				
					C	onsu	ltants				
					38	of	76				
Written by: P. Pandey		Date: 7/3/2023	Reviewed by & Revised by:	S. Graves	Date:	7/16/ 2/7/2	/2023; 2024				
Client: WMTX	Project:	Mesquite Creek La	andfill	Project No.:	<u>GW8636</u>	Phase	No.: <u>05</u>				

Figure 3C. Locations of the stability cross-section in relation to final cover grading plan in Unit 1

			Geos	syn	ntec⊳
			C	ltants	
			39	of	76
Written by: P. Pandey	Date: 7/3/2023	Reviewed by & S. Graves Revised by:	Date:	7/16/ 2/7/2	/2023; 2024
Client: WMTX F	Project: <u>Mesquite Creek L</u>	andfill Project N	Io.: <u>GW8636</u>	Phase	No.: <u>05</u>

APPENDIX 1 OF ATTACHMENT 3D.2

SLIDE OUTPUT Initial Excavation Landfill Slopes Interim Landfill Slopes Final Landfill Slopes Liner and Final Cover Veneer Analyses

			Geos	tec⊳	
			CO	onsult	tants
			40	of	76
Written by: P. Pandey	Date: 7/3/2023	Reviewed by & S. Graves Revised by:	Date:	7/16/2 2/7/20	023; 24
Client: WMTX F	Project: <u>Mesquite Creek La</u>	andfill Project No	o.: GW8636	Phase N	Jo.: <u>05</u>

INITIAL EXCAVATION LANDFILL SLOPES

<u>Section A, Circular Shear Surfaces through</u> <u>Existing Landfill and Foundation Soils</u>

			Geos	syn	ıtec⊳
			CO	onsu	ltants
			41	of	76
Written by: P. Pandey	Date: 7/3/2023	Reviewed by & S. Graves Revised by:	Date:	7/16/ 2/7/2	/2023; 2024
Client: WMTX	Project: Mesquite Creek La	andfill Project No	o.: GW8636	Phase	No.: 05

Section A, Block-type Shear Surfaces through Existing Landfill and Foundation Soils

			Geos	ecÞ	
			consultar		
			42	of 7	6
Written by: P. Pandey	Date: 7/3/2023	Reviewed by & S. Graves Revised by:	Date:	7/16/202 2/7/2024	:3;
Client: WMTX F	Project: <u>Mesquite Creek L</u>	andfill Project No	o.: GW8636	Phase No	.: <u>05</u>

<u>Section B, Circular Shear Surfaces through</u> <u>Existing Landfill and Foundation Soils</u>

			Geos	CD		
			consul		tants	
			43	of 76		
Written by: P. Pandey	Date: 7/3/2023	Reviewed by & S. Graves Revised by:	Date:	7/16/2023; 2/7/2024		
Client: WMTX I	Project: <u>Mesquite Creek La</u>	andfill Project No	o.: GW8636	Phase No.: 0	05	

<u>Section B, Block-type Shear Surfaces through</u> <u>Existing Landfill and Foundation Soils</u>

			Geos	itec ^D	
			C	ltants	
			44	of	76
Written by: P. Pandey	Date: 7/3/2023	Reviewed by & S. Graves Revised by:	Date:	7/16/ 2/7/2	/2023; 2024
Client: WMTX F	Project: <u>Mesquite Creek L</u>	andfill Project N	Io.: <u>GW8636</u>	Phase	No.: <u>05</u>

INTERIM LANDFILL SLOPES

Section C, Short-Term Stability, Circular Shear Surfaces through Interim Waste Slope and Liner System using Site Specific Interface Results (LD/LD Scenario)

			Geos	itec [▶]	
			C	ltants	
			45	of	76
Written by: P. Pandey	Date: 7/3/2023	Reviewed by & S. Graves Revised by:	Date:	7/16/ 2/7/2	/2023; 2024
Client: WMTX F	Project: <u>Mesquite Creek L</u>	andfill Project No	o.: <u>GW8636</u>	Phase	No.: <u>05</u>

<u>Section C, Short-Term Stability, Block-type Shear Surfaces through the Waste and along Liner System</u> <u>using Site Specific Interface Results (P/LD scenario)</u>

					Geosyntee consultant		
					46	of	76
Written by: P. Pandey		Date: 7/3/2023	Reviewed by & S	5. Graves	Date:	7/16/ 2/7/2	/2023; 2024
Client: WMTX	Project:	Mesquite Creek L	andfill	_Project No.:	GW8636	Phase	No.: <u>05</u>

<u>Section C, Short-Term Stability, Block-type Shear Surfaces through the Waste and along Liner System</u> <u>using Site Specific Interface Results (LD/LD scenario)</u>

			Geos	Geosyntee		
			47	of	76	
Written by: P. Pandey	Date: 7/3/2023	Reviewed by & S. Graves Revised by:	Date:	7/16/ 2/7/2	2023; 024	
Client: WMTX	Project: <u>Mesquite Creek La</u>	andfill Project No	o.: GW8636	Phase	No.: <u>05</u>	

<u>Section D, Short-Term Stability, Circular Shear Surfaces through Interim Waste Slope and Liner System</u> <u>using Site Specific Interface Results (LD Strength for Floor Liner System)</u>

			Geos	ntec ^D		
			C	consultan		
			48	of	76	
Written by: P. Pandey	Date: 7/3/2023	Reviewed by & S. Graves Revised by:	Date:	7/16/ 2/7/2	/2023; 2024	
Client: WMTX	Project: <u>Mesquite Creek La</u>	andfill Project No	o.: GW8636	Phase	No.: <u>05</u>	

<u>Section D, Short-Term Stability, Block- type Shear Surface through the Waste and along Liner System</u> <u>using Site Specific Interface Results (Peak Strength for Floor Liner System)</u>

					Geos	itec	D	
					consultan			
					49	of	76	
Written by: P. Pandey		Date: 7/3/2023	Reviewed by &Revised by:	S. Graves	Date:	7/16/ 2/7/2	/2023; 2024	_
Client: WMTX	Project:	Mesquite Creek La	andfill	Project No.	: <u>GW8636</u>	Phase	No.: <u>05</u>	_

<u>Section D, Short-Term Stability, Block-type Shear Surfaces through the Waste and along Liner System</u> <u>using Site Specific Interface Results (LD Strength for Floor Liner System)</u>

			Geos		
			C	onsul	ltants
			50	of	76
Written by: P. Pandey	Date: 7/3/2023	Reviewed by & S. Graves Revised by:	Date:	7/16/2 2/7/2	2023; 024
Client: WMTX F	Project: <u>Mesquite Creek L</u>	andfill Project N	lo.: <u>GW8636</u>	Phase	No.: <u>05</u>

BACK ANALYSES OF MINIMUM REQUIRED INTERFACE STRENGTHS

Section C, Block Type Shear Surface through the Waste and along the Liner System (Minimum LD Strength δ_{LD}= 9.8° under LD/LD scenario)

			Geos	Geosynte consultant		
			C			
			51	of	76	
Written by: P. Pandey	Date: 7/3/2023	Reviewed by & S. Graves Revised by:	Date:	7/16/ 2/7/2	/2023; 2024	
Client: WMTX	Project: <u>Mesquite Creek La</u>	andfill Project No	o.: <u>GW8636</u>	Phase	No.: <u>05</u>	

Section C, Block Type Shear Surface through Waste and along the Liner System (Minimum PeakStrength δ_p = 15.5° under P/LD scenario)

			Geos	Geosynte		
			C	onsu	ltants	
			52	of	76	
Written by: P. Pandey	Date: 7/3/2023	Reviewed by & S. Graves Revised by:	Date:	7/16/ 2/7/2	/2023; 2024	
Client: WMTX F	Project: <u>Mesquite Creek L</u>	andfill Project N	No.: <u>GW8636</u>	Phase	No.: <u>05</u>	

FINAL LANDFILL SLOPES- PROPOSED EXPANSION AREA

Section E, Short-Term Stability, Circular Shear Surface through the Waste and Liner System using Site Specific Interface Results (P/LD Scenario)

			Geos	syntec	
			53	of 76	
Written by: P. Pandey	Date: 7/3/2023	Reviewed by & S. Grave Revised by:	s Date:	7/16/2023; 2/7/2024	-
Client: WMTX F	Project: <u>Mesquite Creek L</u>	andfill Project	No.: <u>GW8636</u>	Phase No.: 05	_

<u>Section E, Short-Term Stability, Block- type Shear Surface</u> <u>through the Waste and along the Liner using Site Specific Interface Results (P/LD Scenario)</u>

			Geos	tec [▶]		
			C	consultant		
			54	of	76	
Written by: P. Pandey	Date: 7/3/2023	Reviewed by & S. Graves Revised by:	Date:	7/16/ 2/7/2	/2023; 2024	
Client: WMTX	Project: <u>Mesquite Creek L</u>	andfill Project N	o.: <u>GW8636</u>	Phase	No.: <u>05</u>	

Section E, Long-Term Stability, Circular Shear Surface through the Waste and Liner System using Site Specific Interface Results (LD/LD Scenario)

			Geos	Syntec ^C		
			55	of	76	
Written by: P. Pandey	Date: 7/3/2023	Reviewed by & S. Graves Revised by:	Date:	7/16/ 2/7/2	/2023; 2024	
Client: WMTX I	Project: <u>Mesquite Creek L</u>	andfill Project No	o.: <u>GW8636</u>	Phase	No.: <u>05</u>	

<u>Section E, Long-Term Stability, Block- type Shear Surface through the Waste and along the Liner using</u> <u>Site Specific Interface Results (LD/LD Scenario)</u>

		G				Geosyntec			
					С	onsı	ıltant	S	
					56	of	76	_	
Written by: P. Pandey		Date: 7/3/2023	Reviewed by & Revised by:	S. Graves	Date:	7/16 2/7/	5/2023; 2024		
Client: WMTX F	Project:	Mesquite Creek La	andfill	Project No.	: <u>GW8636</u>	Phase	e No.: <u>0</u>	5	

FINAL LANDFILL SLOPE- EXISTING UNIT 1 AREA

Section F, Long-Term Stability, Circular Shear Surface through the Waste and Foundation

			Geosynte		
			57	of	76
Written by: P. Pandey	Date: 7/3/2023	Reviewed by & S. Graves Revised by:	Date:	7/16/ 2/7/2	/2023; 2024
Client: WMTX I	Project: <u>Mesquite Creek La</u>	andfill Project N	o.: <u>GW8636</u>	Phase	No.: <u>05</u>

Section F, Long-Term Stability, Block- type Shear Surface through the Waste and along the Liner using Site Specific Interface Results (LD/LD Scenario)

			Geos	syr	ntec
			C	ltants	
			58	of	76
Written by: P. Pandey	Date: 7/3/2023	Reviewed by & S. Graves Revised by:	Date:	7/16/ 2/7/2	/2023; 2024
Client: WMTX F	Project: <u>Mesquite Creek L</u>	andfill Project	No.: GW8636	Phase	No.: <u>05</u>

FINAL LANDFILL SLOPE- EXISTING UNIT 2 AREA

<u>Section G, Long-Term Stability, Circular Shear Surface through the Waste and Liner System using Site</u> <u>Specific Interface Results (LD/LD Scenario)</u>

			Geos	Syntec ^D
			59	of 76
Written by: P. Pandey	Date: 7/3/2023	Reviewed by & S. Graves Revised by:	Date:	7/16/2023; 2/7/2024
Client: WMTX	Project: <u>Mesquite Creek L</u>	andfill Project N	lo.: <u>GW8636</u>	Phase No.: 05

<u>Section F, Long-Term Stability, Block- type Shear Surface through the Waste and along the Liner using</u> <u>Site Specific Interface Results (LD/LD Scenario)</u>

			Geos	lec			
			consulta			ants	
			60	of	76		
Written by: P. Pandey	Date: 7/3/2023	Reviewed by & S. Graves Revised by:	Date:	7/16/ 2/7/2	2023; 024		
Client: WMTX I	Project: <u>Mesquite Creek L</u>	andfill Project	No.: GW8636	Phase	No.: <u>0</u> ;	5	

USING BACK CALCULATED INTERFACE STRENGTHS IN FINAL SLOPES

<u>Section E, Short-Term Stability, Block-type Shear Surfaces through the Waste and along the Liner (P/LD</u> <u>Scenario Using Back calculated $\delta_p = 15.5^\circ; \delta_{LD} = 9.8^\circ$ under P/LD Scenario)</u>

			Geos	syn	tec
			C	onsul	ltants
			61	of	76
Written by: P. Pandey	Date: 7/3/2023	Reviewed by & S. Graves Revised by:	Date:	7/16/2 2/7/2	2023; 024
Client: WMTX	Project: <u>Mesquite Creek L</u>	andfill Project No	o.: GW8636	Phase	No.: <u>05</u>

Section E, Long-Term Stability, Block-type Shear surfaces through the Waste and along the Liner (Using Back calculated δ_{LD} = 9.8° under LD/LD Scenario)

			Geos	syntec
			C	onsultants
			62	of 76
Written by: P. Pandey	Date: 7/3/2023	Reviewed by & S. Graves Revised by:	Date:	7/16/2023; 2/7/2024
Client: WMTX	Project: <u>Mesquite Creek L</u>	andfill Project N	o.: <u>GW8636</u>	Phase No.: 05

LINER AND FINAL COVER SYSTEM VENEER ANALYSIS

Section A: Liner Veneer Analysis (Undrained cover soil and Peak Interface Strength i.e., δ_p= 34.8°)

					Geosynte			
					CC	onsu	ltants	\$
					63	of	76	_
Written by: P. Pandey		Date: 7/3/2023	Reviewed by & S. Revised by:	Graves	Date:	7/16/ 2/7/2	2023; 024	
Client: WMTX	Project:	Mesquite Creek L	andfill	Project No.:	GW8636	Phase	No.: <u>05</u>	<u>,</u>

Section E: Final Cover Veneer Analysis (Drained cover soil and Peak Interface Strength)

			Geosynte		
			C	lltants	
			64	of	76
Written by: P. Pandey	Date: 7/3/2023	Reviewed by & S. Graves Revised by:	Date:	7/16 2/7/2	/2023; 2024
Client: WMTX F	Project: <u>Mesquite Creek L</u>	andfill Project N	o.: <u>GW8636</u>	Phase	No.: <u>05</u>

Section G: Final Cover Veneer Analysis (Drained cover soil and Peak Interface Strength)

					Geo		yn nsul	l tec ltants	D
					65	5	of	76	
Written by: P. Pandey		Date: 7/3/2023	Reviewed by & Revised by:	S. Graves	Da	te:	7/16/2 2/7/2	2023; 024	
Client: WMTX F	Project:	Mesquite Creek I	andfill	Project No.	GW8636	<u>5</u> F	Phase	No.: <u>05</u>	

Section E: Final Cover Veneer Analysis (Undrained cover soil and Peak Interface Strength)

					6608	syn	ltente	
					66	of	76	_
Written by: P. Pandey		Date: 7/3/2023	Reviewed by & Revised by:	S. Graves	Date:	7/16/ 2/7/2	2023; 024	
Client: WMTX	Project:	Mesquite Creek L	andfill	Project No.:	GW8636	Phase	No.: <u>05</u>	

BACK ANALYSES OF MINIMUM REQUIRED INTERFACE STRENGTHS FROM VENEER STABILITY

<u>Section A: Liner Veneer Analysis (Undrained cover soil and Peak Interface Strength)</u> <u>Minimum Calculated Peak Strength δ_p= 18.3°</u>

			Geo	syntec	
			С	onsultants	
			67	of 76	
Written by: P. Pandey	Date: 7/3/2023	Reviewed by & S. Grave Revised by:	s Date:	7/16/2023; 2/7/2024	
Client: WMTX I	Project: <u>Mesquite Creek I</u>	Landfill Project	No.: GW8636	Phase No.: 05	

<u>Section E: Final Cover Veneer Analysis (Drained cover soil and Peak Interface Strength)</u> <u>Minimum Calculated Peak Strength δ_p= 22.3°</u>

			Geos	syn	tec⊳
			CO	onsu	ltants
			68	of	76
Written by: P. Pandey	Date: 7/3/2023	Reviewed by & S. Graves Revised by:	Date:	7/16/ 2/7/2	/2023; 2024
Client: WMTX F	Project: <u>Mesquite Creek L</u>	andfill Project No	o.: GW8636	Phase	No.: <u>05</u>

<u>Section G: Final Cover Veneer Analysis (Drained cover soil and Peak Interface Strength)</u> <u>Minimum Calculated Peak Strength δ_p= 21.4°</u>

			Geos	syn	tec
			CO	onsul	tants
			69	of	76
Written by: P. Pandey	Date: 7/3/2023	Reviewed by & S. Graves Revised by:	Date:	7/16/2 2/7/20	2023;)24
Client: WMTX F	Project: <u>Mesquite Creek L</u>	andfill Project No	o.: <u>GW8636</u>	Phase 1	No.: <u>05</u>

<u>Section E: Final Cover Veneer Analysis (Undrained cover soil and Peak Interface Strength)</u> <u>Minimum Calculated Peak Strength δ_p= 20.4°</u>

APPENDIX 2 OF ATTACHMENT 3D.2

Site-Specific Critical Interface Strengths (provided by facility)

<u>Critical Interface for Proposed Expansion Area (Based on site specific test results of</u> <u>adjacent cell)</u>

Specimen No.		-	1	2	3
Normal Stress		psf	500	7,500	15,000
Box Edge Dimer	nsion	in	12	12	12
Bearing Slide Re	esistance	lbs	13	79	151
Poak	Shear Stress	psf	348	2,518	2,775
Feak	Secant Angle	deg.	34.8	18.6	10.5
Large	Shear Stress	psf	258	1,831	2,442
Displacement	Secant Angle	deg.	27.3	13.7	9.2
Asperity Height,	Avg. of 5 Meas.	mils	25	27	28

Page 1 of 1

The testing herein is based upon accepted industry practice as well as the test method listed, Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes calima as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reportuciton of this report, except in rull, without prior approval of TRI.

TRI ENVIRONMENTAL, INC.

9063 BEE CAVES RD. - AUSTIN, TX 78733 - USA | PH: 800.880.TEST OR 512.263.2101

<u>Critical Interface for floor liner of Unit 1, Phase V (Based on site specific test results</u> <u>obtained during the construction)</u>

INTERFACE FRICTION TEST REPORT

Client: Geosyntec Consultants Project: Comal County Test Date: 10/17-10/18/05 TRI Log#: E2201-76-04 Test Method: ASTM D 5321

Tested Interface: Single-sided Geocomposite net side vs. 60 mil smooth HDPE Geomembrane

RESULTS: Maximum Friction Angle and Y	-intercep	ot			
Regression Friction Angle (degrees):		12.3			
Y-intercept or Regression Adhesion (psf):		24			
Regression Line:	Y=	0.218	* X +	24	
Regression Coefficient (r squared):		1.000			

John M. Allen, E.I.T., 10/18/2005 Quality Review/Date

Slipped between smooth geomembrane and single-sided geocomposite.

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

9063 Bee Caves Road D Austin, TX 78733-6201 D (512) 263-2101 D (512) 263-2558 D 1-800-880-TEST

INTERFACE FRICTION TEST REPORT

Client: Geosyntec Consultants Project: Comal County Test Date: 10/17-10/18/05

TRI Log#: E2201-76-04 Test Method:

ASTM D 5321

Tested Interface: Single-sided Geocomposite net side vs. 60 mil smooth HDPE Geomembrane

Trial Number	1	2
Bearing Slide Resistance (lbs)	29	63
Normal Stress (psf)	2160	5760
Large Displacment Shear Stress (psf)	510	1202
Corrected Shear Stress (psf)	481	1139
Secant Angle (degrees)	12.6	11.2

RESULTS: Large Displacement Friction Angle and Y-intercept at 3.3-in. of Displacement						
Regression Friction Angle (degrees):		9.0 204				
Regression Line: Regression Coefficient (r squared):	Y=	0.158 0.985	* X +	204		

John M. Allen, E.I.T., 10/18/2005 Quality Review/Date

Slipped between smooth geomembrane and single-sided geocomposite.

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

9063 Bee Caves Road | Austin, TX 78733-6201 | (512) 263-2101 | (512) 263-2558 | 1-800-880-TEST

<u>Critical Interface for sideslope liner of Unit 1, Phase V (Based on site specific test results</u> <u>obtained during the construction)</u>

ESULIS: Maximum Friction Angle and Y-Intercept							
Regression Friction Angle (degrees): Y-intercept or Regression Adhesion (psf):		10.0 372					
Regression Line: Regression Coefficient (r squared):	Y=	0.176 0.951	* X +	372			
Slipped between GCL	ped between GCL Cast Control C						

& GM for low point. Mid & high sheared soil

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

9063 Bee Caves Road 🗆 Austin, TX 78733-6201 🗆 (512) 263-2101 🗆 (512) 263-2558 🗆 1-800-880-TEST

INTERFACE FRICTION TEST REPORT

Client: Geosyntec Consultants Project: Comal County Test Date: 7/19-7/20/05 TRI Log#: E2201-76-04 Test Method: ASTM D 6243 SIDESLOPE - USE I DISPLACEMENT V41

Tested Interface: GSE Textured 60 mil HDPE Geomembrane 102118727 vs. Bentofix NSE GCL 31733 - Woven down (Floating) vs. Soil

Trial Number	1	2	3	
Bearing Slide Resistance (Ibs)	15	63	111	
Normal Stress (psf)	720	5760	10800	
Large Displacment Shear Stress (psf)	276	1610	2150	
Corrected Shear Stress (psf)	261	1547	2039	
Secant Angle (degrees)	19.9	15.0	(10.7)	E

RESULTS: Large Displacement Friction A at 3.3-in. of Displacement	ngle and	Y-intercept	t		
Regression Friction Angle (degrees): Y-intercept or Regression Adhesion (psf): Regression Line: Regression Coefficient (r squared):	Y=	10.0 266 0.176 0.938	* X +	266	
			SRA	07/20/05	

Slipped between GCL & GM for low point. Mid & high sheared soil

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

9063 Bee Caves Road D Austin, TX 78733-6201 D (512) 263-2101 D (512) 263-2558 D 1-800-880-TEST

Quality Review/Date

<u>Critical Interface for Unit 2, Phase I (Based on site specific test results obtained during the</u> <u>construction</u>)

Interface Friction Test Report

Client: Waste Management Inc. Project: Mesquite Creek Test Date: 01/23/09-1/29/09 TRI Log#: E2308-93-07 Test Method: ASTM D 5321 John M. Allen, P.E., 01/27/2009 Quality Review/Date

	i col Dala			
Specimen No.	1	2	3	4
Bearing Slide Resistance (lbs)	13	32	79	127
Normal Stress (psf)	500	2500	7500	12500
Corrected Peak Shear Stress (psf)	373	733	1314	1796
Corrected Large Displacement Shear Stress (psf)	308	686	1301	1767
Peak Secant Angle (degrees)	36.7	16.3	9.9	8.2
Large Displacement Secant Angle (degrees)	31.6	15.3	9.8	8.0
Asperity (mils)	19.8	20.6	20.4	20.4

Soil Cl	naracterization perfromed by	TRI, E2308-82-10
USCS:	Proctor Type:	standard
LL:	Max. Dry Density (pcf):	101.5
PL:	Optimum Moisture Content:	20.9

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

9063 Bee Caves Road 🛛 Austin, TX 78733-6201 🗠 (512) 263-2101 🗠 (512) 263-2558 🔾 1-800-880-TEST

Mesquite Creek Landfill MSW Permit No. 66C Part III, Attachment 3D.3

ATTACHMENT 3D.3

SETTLEMENT ANALYSIS

Geosyntec Consultants October 2023 Page No. 3D.3-Cvr

SETTLEMENT ANALYSIS MESQUITE CREEK LANDFILL

GEOSYNTEC CONSULTANTS, INC. TX ENG FIRM REGISTRATION NO. 1182 FOR PERMIT PURPOSES ONLY; CALCULATION PAGES 1 THROUGH 26

1 INTRODUCTION

The purpose of this calculation package is to evaluate the effect of estimated settlements on the grades and strains in the liner system at the Mesquite Creek Landfill (site). Analyses were performed at sections along the leachate collection corridor at the base of the proposed expansion area as well as along a section in the existing Unit 2 landfill area.

The design criteria are that the liner system, and its associated leachate collection system drainage layer should maintain positive drainage towards the leachate collection sumps under post-settlement conditions. Also, calculated tensile strains due to differential settlement should not exceed tolerable strains for the liner system components.

2. METHOD OF ANALYSIS

2.1 Primary and Secondary Settlement

As the site subsurface soil conditions above claystone are primarily clay materials, the settlement analysis is based on one-dimensional (1-D) consolidation theory. According to this mechanism, primary consolidation of a given soil layer (and its associated settlement) is caused by an increase in effective vertical stress resulting from loading on the layer, resulting in the expulsion (drainage) of pore water from the soil matrix. Secondary settlement is a mechanism of ongoing (time-dependent) settlement from compression of the soil matrix, independent of load.

				Geos	syn	tec	
				CO	onsul	tants	
				2	of	26	
Written by: P. Pand	ey	Date: 06/28/2023	Reviewed by: S. Graves	Date:	7/23/2	2023	
Client: WMTX	Project:	Mesquite Creek Landfill	Project No	.: GW8636	Phase N	No.: 05	

Settlements resulting from primary consolidation were calculated using the general form of the settlement equation as given below [Holtz and Kovacs, 1981]:

$$S_p = \frac{C_r}{1 + e_o} H \log \left(\frac{\sigma'_{vo} + \Delta \sigma}{\sigma'_{vo}} \right) \qquad \text{for } \sigma'_{vo} + \Delta \sigma < p_c' \qquad (1)$$

$$S_{p} = \frac{C_{c}}{1 + e_{o}} H \log\left(\frac{\sigma_{vo}' + \Delta\sigma}{p_{c}'}\right) + \frac{C_{r}}{1 + e_{o}} H \log\left(\frac{p_{c}'}{\sigma_{vo}'}\right) \text{ for } \sigma_{vo}' + \Delta\sigma > p_{c}'$$
(2)

where: S_p = primary settlement;

C_c = compression index;

- C_r = recompression index;
- e_o = initial void ratio;
- H = initial thickness of compressible layer;
- σ'_{vo} = initial vertical effective stress;

p_c' = preconsolidation pressure; and

 $\Delta \sigma$ = increment of vertical effective stress.

In Equations 1 and 2, the modified compression index, $C_{c\epsilon}$, and the modified recompression index, $C_{r\epsilon}$, can be used. These parameters are defined below [Holtz and Kovacs, 1981]:

$$C_{c\varepsilon} = \frac{C_c}{1 + e_o}$$
(3)

$$C_{re} = \frac{C_r}{1 + e_o}$$
(4)

Settlements resulting from secondary compression were calculated according to the following equation [Holtz and Kovacs, 1981]:

$$S_{t} = C_{\alpha\varepsilon} H \log\left(\frac{t_{2}}{t_{1}}\right)$$
(5)
where:
$$C_{\alpha\varepsilon} = \frac{C_{\alpha}}{1+e_{0}}$$
(6)

and S_t = time-dependent secondary settlement;

 $C_{\alpha\varepsilon}$ = modified secondary compression index;

H = initial thickness of compressible layer;

 t_1 = time when secondary compression is assumed to begin; and

 t_2 = time of interest for which secondary settlements are calculated.

2.2 **Total Settlement**

Total settlement is the sum of the primary consolidation settlement and secondary compression, calculated as shown in Equation (7) below:

$$S_t = S_p + S_S \tag{7}$$

Where:

 S_t = total long-term settlement,

 S_p = primary consolidation settlement, and

 $S_{\rm s}$ = secondary compression.

2.3 **Differential Settlement and Strain in the Liner**

Differential settlement is defined as the difference in calculated settlement between two adjacent points. Where there are differentials, this can cause strain in the liner due to the uneven settlement causing elongation of the liner between settlement points. The tensile strains are calculated using Equation (8) below:

$$\varepsilon = \frac{L_1 - L_2}{L_1} \tag{8}$$

where:

 ε = Tensile strain in liner system between two adjacent points;

 L_1 = Distance between two points in their pre-settlement positions; and

 L_2 = Distance between two points in their post-settlement positions.

For calculations performed according to the above equation for strain, negative values would be indicative of a lengthening of the liner between points (i.e., if $L_2 > L_1$), producing tensile strains. Positive values would indicate compressive strains (shortening of the liner between points).

				Geos	syn	tec
				CC	onsul	tants
				4	of	26
Written by: P. Pande	ey	Date: 06/28/2023	Reviewed by: <u>S. Graves</u>	Date:	7/23/2	2023
Client: WMTX	Project:	Mesquite Creek Landfill	Project No.:	GW8636	Phase N	No.: <u>05</u>

3. DEVELOPMENT OF CROSS-SECTIONS FOR ANALYSIS

Settlement analyses were considered along cross-sectional profiles or "lines" in the existing Unit 2 area and the expansion area, incorporating critical combinations of landfill slopes/geometry, the representative underlying layers beneath the liner, groundwater conditions, and a broad variation of differential loads caused by the variation of waste thickness across each cross-section. To generate these cross-sections, the following landfill design features were used: (i) overall base liner grading plan (Drawing 3A-4B in Part III, Attachment 3A); and (ii) overall final cover grading plan (Drawing 3A-5B in Part III, Attachment 3A).

Also, the subsurface layering derived from the geologic characterization of the site (e.g., geologic cross-sections in Part III, Attachment 4) was used to add the layer(s) of materials beneath the cross-sections, to the extent they will be present after construction (e.g., some of the subsurface layers will be excavated as part of liner construction, and therefore will not be present beneath the liner). The groundwater conditions, to the extent they may be present, were set based on the seasonal high groundwater table map presented in Part III, Attachment 3C.

Figures 1 and 2 included with this calculation package present the locations of the three crosssections that were considered, referred to as Line A, Line B, and Line C. Additionally, Figure 3 illustrates the depth of Stratum III (which is a potentially compressible strata) below the liner system of the proposed expansion area. The cross-sections are described in more detail below, to explain the rationale for their selection as potentially critical cross-sections for the settlement analysis.

3.1 <u>Line A</u>

Line A is a cross-section oriented in a northwest-southeast direction, located along the leachate collection corridor in Unit 2, Phase XI (see Figures 1 and 2). Line A was selected for consideration because it is along the minimum slope of the leachate collection system (i.e., the 1% slope of the leachate collection corridor (with a portion in the middle that transitions to 3%)). Additionally, Line A is at a location where the final cover system will be at its peak (highest) elevation; here, waste will be at its thickest, so the corridor will be subjected to the landfill's highest load. At Line A, Stratum I and II will have been completely removed below the base of the landfill. Additionally, the base of the landfill at Line A (and for all new floor areas of Phase VII through Phase XIV) will be founded over a partially excavated Stratum III that is over consolidated and potentially compressible (see Figure 3).

			Geos	syn	tec
			CO	onsul	tants
			5	of	26
Written by: <u>P. Pandey</u>	Date: 06/28/2023	Reviewed by: <u>S. Graves</u>	Date:	7/23/2	2023
Client: WMTX Project	Mesquite Creek Landfill	Project No.	: <u>GW8636</u>	Phase N	No.: <u>05</u>

3.2 <u>Line B</u>

Line B is a cross-section oriented in a northwest-southeast direction, located along the leachate corridor in Unit 2, Phase VIII (see Figures 1 and 2). Line B was selected because it is along another location where the leachate collection system is at its minimum slope of 1% (with a portion in the middle that transitions to 8%), and also to assess a case with the thickest potentially compressible Stratum III beneath the base of landfill (see Figure 3), and where loads due to overlying waste thickness will be relatively high.

3.3 <u>Line C</u>

Line C is a cross-section oriented in a northeast-southwest direction, located along the leachate corridor in the existing Unit 2 landfill area, Phase III (see Figures 1 and 2). Line C was selected because it is representative critical section for existing Unit 2 landfill area with the thicker Stratum III soil underneath the floor liner and relatively high loads due to overlying waste thickness. Line C is in a portion of the landfill that has already been constructed under previous MSW Permit No. 66B, and that included a settlement analysis as part of the previously-approved permit design. No changes to the existing area Unit 2 base grades or final cover grades are proposed by the lateral expansion permit amendment application. Nevertheless, a re-analysis of this cross-section location was included herein for completeness.

3 MATERIAL PROPERTIES

3.1 Overview of the Layer Materials

The natural subsurface strata at the site can be summarized as follows:

- Stratum I: Surficial fine-grained Quaternary weathered soil deposits, generally dry, brown to dark gray medium to high-plasticity clay, stiff to hard in consistency (with occasional thin gravelly clay zones).
- Stratum II: Quaternary-Tertiary alluvium (possibly equivalent to Uvalde Gravel), generally clayey gravel to gravelly clay, dry, white or gray limestone gravel and/or chert gravel within a dark brown clay matrix, commonly cemented by caliche and firm in consistency.

				UCUS,	y i ii		
				CO	nsult	ants	
				6	of	26	
Written by: P. Pandey		Date: 06/28/2023	Reviewed by: <u>S. Graves</u>	Date:	7/23/20)23	
Client: WMTX	Project:	Mesquite Creek Landfill	Project No.:	<u>GW8636</u> P	hase N	o.: <u>05</u>	

• Stratum III: Weathered Lower Taylor Group, brownish yellow/yellow to light gray weathered and oxidized calcareous clay/claystone with thin bedding planes, very stiff to hard in consistency.

Coostator

• Stratum IV: Unweathered Lower Taylor Group, dry, calcareous green-gray to dark gray unweathered/unoxidized claystone, very hard in consistency.

Strata I, II and III are the potentially compressible materials beneath the liner that could experience settlement if there is an increase in effective stress due to landfill loading.

As mentioned, Stratum I and Stratum II have been (or will be) largely excavated (removed) to obtain the liner floor elevations, and therefore most of the landfill will be founded on the potentially compressible Stratum III (with a few areas founded on competent and incompressible Stratum IV claystone (see Figure 3)).

The landfill -related materials that will provide load on the underlying strata are:

- liner system soils;
- waste (and the daily/intermediate cover soils included in the waste mass); and
- final cover system soils.

The material properties selected for the analyses were primarily derived from the results of the laboratory tests performed on site-specific soil samples, as presented in Part III, Attachment 3D.1 (Geotechnical Report). Some of the material properties were assigned using information presented in published technical literature. The properties that were selected and used in the settlement analysis are presented in Table 1 of this calculation package, with citations provided when obtained from technical literature.

3.2 Unit Weights

Soils

Based on the geotechnical laboratory tests conducted on the undisturbed soil samples from Stratum I, II and Stratum III (Part III, Attachment 3D.1), the average bulk unit weights were calculated and used for the respective subsurface layers. For liner system and final cover system materials, a unit weight of 120 pounds per cubic feet (pcf) was selected based on typical (but probably somewhat conservative/high) compacted properties for such materials.

				Geos	syn	tec
				CO	onsul	tants
				7	of	26
Written by: P. Pande	ey	Date: 06/28/2023	Reviewed by: <u>S. Graves</u>	Date:	7/23/2	2023
Client: WMTX	Project:	Mesquite Creek Landfill	Project No.	.: <u>GW8636</u>	Phase N	No.: <u>05</u>

Waste

A unit weight of 80 pcf was used for the waste. This is consistent with the unit weight used in the slope stability analysis (Part III, Attachment 3D.2), and is a typical long-term unit weight for municipal solid waste reported in technical literature accounting for observations where waste tends to densify over time as additional load is placed above it and as it degrades.

3.3 Consolidation Properties

Stratum III. As noted previously, Strata I and II have been, or will be, essentially or entirely removed from beneath the liner in the existing Unit 2 landfill areas and new floor cells. As such, the focus is loading of and potential consolidation/settlement of Stratum III. The compressibility properties for Stratum III (preconsolidation pressure, primary compression and recompression indices) were derived from the 1-D consolidation test results performed on samples collected from Stratum III during the subsurface investigation (results presented in the Geotechnical Report, Part III, Attachment 3D.1). Based on the measured consolidation properties, the compressibility of the layers is defined as "very slightly compressible" according to Coduto et al. (2011).

It is noted that Stratum IV, which lies underneath Stratum III, is a competent unweathered claystone (based on field assessment during site investigation and as summarized in boring logs) and was therefore considered incompressible bedrock for the settlement evaluation.

4. CALCULATIONS AND RESULTS OF ANALYSIS

The settlement and strain calculations were performed by spreadsheet-based computations using the methods, equations, layers, and material properties described herein. These calculations are presented in Appendix 1 of this package. As shown, the total thickness of waste was subdivided into several sub-layers and settlement of each sub-layer was calculated at its mid-height. Also, it should be recognized that the calculations were performed with a built-in assumption that the entire new load (i.e., new waste and final cover) is instantaneously applied. This is a conservative assumption used to simplify the analysis.

For the secondary compression component in the settlement analyses, t_1 was set such that it represents the time based on the starting time/year when the liner was installed, and new load is applied that would result in the settlement of underlying subsurface materials. Time t_2 , on the other hand represents an estimate of the duration of site life plus a 30-year post closure period. With this rationale, for "Line A and B" which is located in Phase VIII and Phase XI of proposed new cells, t_1 was set at year 1 and t_2 was set at 54 years [assuming the liner will be placed in 2024, plus the projected remaining site life and post-closure period]. As for the existing Unit 2 landfill

				Geos	syn	tec
				CC	onsul	tants
				8	of	26
Written by: P. Pande	У	Date: 06/28/2023	Reviewed by: <u>S. Graves</u>	Date:	7/23/2	2023
Client: WMTX	Project:	Mesquite Creek Landfill	Project No.:	GW8636	Phase N	lo.: <u>05</u>

area where the liner system already exists with the documented installation year of 2015 for Phase III, t_1 was set at 1 year and t_2 was set at 57 years [approximate age of landfill, plus projected remaining site life and post-closure period]. This considered timeframe, t_2 will take into account the secondary compression that has/ or will be occurred after the liner construction in Phase III, Unit 2 area.

The results of the analysis presented in Appendix 1 reveal the following:

- The calculated total settlement along the leachate corridor at Line A range from 0.00 (where it cuts into and rests on the incompressible Stratum IV) to 0.21 feet. Tensile strains are negligible, and the area with 1% slope changed to 0.98% and 3% slope changed to 2.97% slope under post-settlement conditions (i.e., minimal change, and no grade reversals).
- The calculated total settlement along the leachate corridor at Line B range from 0.03 to 0.35 feet. These results are similar in magnitude to the settlements along Line A, but slightly higher due to the presence of the relatively thicker Stratum III underneath the liner. Tensile strains are negligible; the area with 1% slope changed to 0.93% and the area with 8% slope changed to 7.97% slope under post-settlement conditions (i.e., minimal change, and no grade reversals).
- At the existing Unit 2 landfill area (represented by Line C), the calculated total settlement along the leachate corridor range from 0.06 to 1.0 feet. Tensile strains are negligible, and the slope changes from 1% under pre-settlement conditions to 0.77% under post-settlement conditions (i.e., minimal change, and no grade reversals).

To assess the adequacy of the calculated strains, typical allowable tensile strains in compacted clay liners are up to about 1.0% (Koerner and Daniel, 1993). Allowable strains in geosynthetics materials are even higher (e.g., the yield strain of HDPE geomembranes is about 12%). The computed tensile strains are less than allowable tensile strains of the liner materials.

5. CONCLUSIONS

The results of the analyses presented herein reveal the following:

• The expansion area (Unit 2, Phase VII through XIV) is designed to be founded well into Stratum III, (potentially compressible stratum); however, the calculations presented herein reveal that the liners are not expected to undergo settlement to any significant degree (i.e., the settlements are relatively small, and are tolerable).

			Geos	syn	tec⊳
			CC	onsul	tants
			9	of	26
Written by: <u>P. Pandey</u>	Date: 06/28/2023	Reviewed by: <u>S. Graves</u>	Date:	7/23/2	2023
Client: WMTX Project	: Mesquite Creek Landfill	Project No.	: <u>GW8636</u>	Phase N	lo.: <u>05</u>

- The calculated post-settlement slopes along critical points of the leachate collection corridors will provide positive drainage to the leachate collection sumps. There are no predicted grade reversals (minimum calculated post-settlement slope is 0.77% in the existing Unit 2 area and 0.93% in the expansion area where the pre settlement slope is 1%, which is acceptable)
- The stretch of leachate corridor in the expansion area of Unit 2 Phase XI and Phase VIII was transitioned to 3% and 8% slopes, respectively, in the middle portions of these and adjacent cells to minimize excavating into the harder Stratum IV claystone for constructability purposes. The calculations reveal that this situation will not cause excessive differential settlements between adjacent areas founded on more compressible Stratum III. There are no predicted grade reversals (minimum calculated post-settlement slope is 2.97% and 7.97% respectively, which is acceptable).

				Geos	syn	tec	
				CO	onsul	tants	
				10	of	26	
Written by: P. Pande	ey	Date: 06/28/2023	Reviewed by: S. Graves	Date:	7/23/2	2023	
Client: WMTX	Project:	Mesquite Creek Landfill	Project No	: GW8636	Phase N	No.: 05	

REFERENCES

Coduto, DP, Yeung, M.R., Kitch, W.A. *Geotechnical Engineering: Principles and Practices*, 2nd Ed. Prentice Hall, Table 10.2, 2011.

Holtz, R.D., and Kovacs, W.D. An Introduction to Geotechnical Engineering, Prentice-Hall, Englewood Cliffs, New Jersey, 1981.

Koerner, R.M., Designing with Geosynthetics. 4th ed. Prentice Hall, 1998. Print.

Koerner, R. M., & Daniel, D. E. (1993). Technical equivalency assessment of GCLs to CCLs. *Geosynthetic Liner Systems: innovations, concerns and designs*, 265-285.

Qian, X., Koerner, R.M., and Gray, D.H., *Geotechnical Aspects of Landfill Design and Construction*. Prentice Hall, New Jersey.2002.

Page 11 of 26 7/4/2023

TABLES

Material and Parameter	Parameter Value	Basis
Liner System Soil Layers; Final Cover Sy	stem Soil Lay	ers
• Unit Weight (γ_{cover} , γ_{pc} and γ_{liner})	120 pcf	• Assumed typical values for onsite soils.
Waste		
 Unit Weight (γ_{waste}) 	80 pcf	• Typical value reported in literature for municipal solid waste (and consistent with the slope stability analyses)
Stratum I/II		
• Unit Weight (γ _{waste})	120 pcf	• Typical values for onsite soils; also consistent to laboratory measurements Stratum I/II soils.
Stratum III		
• Dry Unit Weight (γ _d)	104.6	
• Void Ratio (e)	0.64	
• Moisture Content (w)	21.3%	 Based on laboratory measurements for one-
• Unit Weight (γ)	126.9	dimensional consolidation (see Part III,
• Preconsolidation Pressure (σ' _p)	10,000	Attachment 3D.1, Geotechnical Report)
• Compression Index (C _c)	0.094	
• Recompression Index (C _r)	0.034	
 Modified Compression Index (C_{cε}) 	0.057	• Calculated using Equation 6
• Modified Recompression Index (C _{rε})	0.021	Calculated using Equation 7
 Secondary Compression Index (C_α) 	0.005	• Assumed to be 5% of C _c from Holtz and Kovacs, 1981.
 Modified Secondary Compression Index (C_{αε}) 	0.0029	• Calculated using C_{α} with $e = 0.64$

Table 1. Material Properties Used in Settlement Analysis

Page 13 of 26 7/4/2023

FIGURES

Figure 1. Location of the cross-sections in relation to overall base grading plan in the existing Unit 2 landfill area and proposed expansion area

Figure 2. Location of the cross-sections in relation to final cover grading plan in the existing Unit 2 landfill area and proposed expansion area

Color	Stratum	Min. Thickness (ft)	Max Thickness (ft)	Phase VII
	Ш	0	5	
	Ш	5	10	
	Ш	10	15	
	Ш	15	20	
	Ш	20	25	
	III	25	40	Phase IX g
	III	40	88	
				Phase XII Phase XII Phase XIII Phase XIII Phase XIV Phase XV

Page 17 of 26 7/4/2023

APPENDIX 1 OF ATTACHMENT 3D.3

Result of Settlement Analysis

SPREAD	DSHEET 1: EXPANSION AREA .: MESQUITE CREEK LAND	., PHASE X F ILL, Settl	I ement Calcu	lation					
	Point #	1	2	3	4	5	6	7	8
	Distance (ft)	0.0	490.1	683.9	771.6	970.5	1087.5	1275.0	1402.8
	Final Cover Soil, y _{cover} (pcf)	120	120	120	120	120	120	120	120
	Liner System Soils, yliner (pcf)	120	120	120	120	120	120	120	120
ights	Protective Cover Soil, γ_{pc} (pcf)	120	120	120	120	120	120	120	120
it we				1			1		
Uni	Waste, ywaste (pcf)	80	80	80	80	80	80	80	80
	Stratum I/II Soil (pcf)	120.0	120.0	120.0	120.0	120.0	120.0	120.0	120.0
	Stratum III Soil (pcf)	127.0	127.0	127.0	127.0	127.0	127.0	127.0	127.0
	1								
SU	Water table Elevation (ft msl)	691.1	697.5	692.9	690.2	683.3	678.9	671.9	667.8
nditio o Cell action	Pre- construction Natural G.S Elevation (ft msl)	711.5	698.4	695.6	693.0	687.4	683.9	677.6	674.3
al Co rior tc onstru	Stratum II- III Interface (ft msl)	700.0	694.9	688.7	686.0	679.2	675.4	669.5	665.9
C P	Stratum III- IV Interface (ft msl)	639.93	640.1	640.0	640.0	626.2	620.0	615.5	612.4
s at	Water table Elevation (ft msl)	648.44	643.5	641.6	639.0	683.3	631.8	630.0	628.7
ltion tion	Top of final cover (ft msl)	765.6	789.9	780.2	775.9	765.9	760.1	750.7	714.2
ondi end strue	Top of waste (ft msl)	762.1	786.4	776.7	772.4	762.4	756.6	747.2	710.7
al C Con	Top of bottom liner (ft msl)	650.4	645.5	643.6	641.0	635.0	633.8	632.0	630.7
Fin	Top of Subgrade (ft msl)	648.4	643.5	641.6	639.0	633.0	631.8	630.0	628.7
	Γ	r	r	T	Γ	r	r	r	
	Total Waste (ft)	109.7	138.9	131.1	129.4	125.4	120.8	113.3	78.1
ses	Final Cover Soil (ft)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
nes	Bottom Liner Soil (ft)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
hick	Protective Cover Soil (ft)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
H	Excavated Stratum I/II	11.5	3.5	6.9	7.0	8.3	8.5	8.1	8.4
	Excavated Stratum III	51.6	51.4	47.1	47.0	46.2	43.6	39.5	37.2
,	SUBGRADE RESTS ON	Stratum III	Stratum III	Stratum III	Stratum IV	Stratum III	Stratum III	Stratum III	Stratum III
Sublayer	Compressible Stratum III Soil (ft)	8.5	3.4	1.6	0.0	6.8	11.8	14.5	16.3

1-D Consolidation Theory (Plastic Method)												
Consolidation Properties- Compressible S	tratum III S	oil										
Modified Primary Compression Index, $C_{c\epsilon}$	0.057	0.057	0.057	0.057	0.057	0.057	0.057	0.057				
Modified Recompression Index, $C_{r\epsilon}$	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021				

Precons	olidation Pressure, pc' (psf)	10000	10000	10000	10000	10000	10000	10000	10000
Modifie Index, C	d Secondary Compression	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
Compr	essible Stratum III Soil								
	Sub Layer	1							
	Final Midpoint Elevation, yres-mf (ft)	644.19	641.83	640.82	638.96	629.61	625.92	622.71	620.53
ssee	Initial Total Stress, σ_i (psf)	8466.1	7155.0	6903.8	6811.5	7282.2	7305.7	6915.9	6764.9
Stre	Final Total Stress, σ_f (psf)	10216.4	12226.0	11489.5	11251.2	11365.6	11312.0	10883.3	8179.9
01	Initial Effective Stress, σ' _i (psf)	5540.5	3681.8	3657.1	3612.3	3934.8	4002.0	3846.1	3816.5
	Final Effective Stress, σ'_{f} (psf)	9950.9	12119.3	11440.8	11251.2	8018.1	10942.9	10431.2	7671.3
Settlem	ents-Compressible Stratum III S	Sublayer							
OCR		1.80	2.72	2.73	2.77	2.54	2.50	2.60	2.62
Primary	Settlement, (ft)	0.05	0.05	0.02	0.00	0.04	0.13	0.14	0.10
Seconda years) (1	ary Settlement ($t_1 = 1$ year, $t_2 = 54$ ft)	0.04	0.02	0.01	0.00	0.03	0.06	0.07	0.08
Total Se	ettlement (ft)	0.09	0.06	0.03	0.00	0.08	0.18	0.21	0.19
TOTAI	L SETTLEMENT	0.09	0.06	0.03	0.00	0.08	0.18	0.21	0.19
Post set	tlement liner elev. (ft msl)	650.35	645.48	643.57	640.96	634.92	633.65	631.74	630.49

GRADES AND STRAINS BASED ON CALCULATED SETTLEMENT													
Initial Liner Segment Length, L1 (ft)	490.0855	193.8167	87.8127	198.8983	117.1018	187.4874	127.7393						
Post Settle. Liner Segment Length, L ₂ (ft)	490.0852	193.8164	87.8118	198.9007	117.1029	187.4877	127.7391						
Post Settlement Liner Strain (+ comp, - tension)	-0.0001%	-0.0002%	-0.001%	0.0012%	0.0009%	0.0002%	-0.0002%						
Pre-Settlement Slope (+ up, - down)	-1.00%	-1.00%	-3.01%	-3.00%	-1.00%	-1.00%	-0.99%						
Post Settlement Slope	-0.99%	-0.99%	-2.97%	-3.04%	-1.08%	-1.02%	-0.98%						
Grade Difference (+ steeper, - milder)	0.006%	0.015%	0.034%	0.040%	0.085%	0.016%	0.016%						

Mesquite Creek Landfill, Expansion Area, Phase XI Leachate Corridor Settlement Profile

Distance (ft)

SPREADSHEET 2: EXPANSION AREA, PHASE VIII LINE B: MESQUITE CREEK LANDFILL, Settlement Calculation

r		r		1		1	r	1	1
	Point #	1	2	3	4	5	6	7	8
	Distance (ft)	0.0	87.3	599.3	851.3	1162.9	1249.1	1373.9	1478.2
	Final Cover Soil, ycover (pcf)	120	120	120	120	120	120	120	120
	Liner System Soils, yliner (pcf)	120	120	120	120	120	120	120	120
ghts	Protective Cover Soil, ypc (pcf)	120	120	120	120	120	120	120	120
wei									
Unit	Waste, ywaste (pcf)	80	80	80	80	80	80	80	80
	Stratum I/II Soil (pcf)	120.0	120.0	120.0	120.0	120.0	120.0	120.0	120.0
	Stratum III Soil (pcf)	127.0	127.0	127.0	127.0	127.0	127.0	127.0	127.0
<u>I</u>	Water table Elevation (ft msl)	680.7	681.6	684.3	683.2	674.5	672.9	668.4	664.2
nditic Cell action	Pre- construction Natural G.S Elevation (ft msl)	699.9	705.7	709.5	698.0	676.0	673.3	665.7	664.8
l Co or to nstri	Stratum II- III Interface (ft msl)	685.5	689.9	700.0	694.8	676.0	673.3	668.6	664.2
<u>Pri</u> Co	Stratum III- IV Interface (ft	628.6	631.2	643 7	650.0	629.8	623.1	610.0	607.7
II	msl)	020.0	051.2	045.7	050.0	027.0	023.1	010.0	007.7
		I							
n at	Water table Elevation (ft msl)	664.3	663.5	658.5	656.0	631.1	630.3	629.0	628.0
ition 1 of ctio	Top of final cover (ft msl)	743.1	767.1	790.0	777.4	771.4	771.7	740.1	713.7
cond e enc stru	Top of waste (ft msl)	739.6	763.6	786.5	773.9	767.9	768.2	736.6	710.2
al C Con	Top of bottom liner (ft msl)	666.3	665.5	660.5	658.0	633.1	632.3	631.0	630.0
Fin	Top of Subgrade (ft msl)	664.3	663.5	658.5	656.0	631.1	630.3	629.0	628.0
	Total Waste (ft)	71.3	96.2	124.0	113.9	132.8	134.0	103.6	78.2
es	Final Cover Soil (ft)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
ness	Bottom Liner Soil (ft)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
nick	Protective Cover Soil (ft)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Ē	Excavated Stratum I/II	14.5	15.9	9.5	3.3	0.0	0.0	-3.0	0.7
	Excavated Stratum III	21.2	26.4	41.5	38.8	44.9	43.1	39.6	36.2
	SUBGRADE RESTS ON	Stratum III							
Sublayer	Compressible Stratum III Soil (ft)	35.7	32.3	14.8	6.0	1.3	7.2	19.0	20.3

1-D Consolidation Theory (Plastic Method)											
Consolidation Properties- Compressible Str	atum III So	<u>il</u>									
Modified Primary Compression Index, Cce	0.057	0.057	0.057	0.057	0.057	0.057	0.057	0.057			

Modifie	d Recompression Index, Cre	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021
Precons	olidation Pressure, pc' (psf)	10000	10000	10000	10000	10000	10000	10000	10000
Modifie Cαε	d Secondary Compression Index,	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
Compr	essible Stratum III Soil								
	Sub Layer	1							
s	Final Midpoint Elevation, yres-mf (ft)	646.43	647.33	651.07	653.00	630.46	626.65	619.50	617.82
esse	Initial Total Stress, σ_i (psf)	6694.6	7305.1	7350.2	5696.1	5787.2	5924.6	5883.2	5963.1
Str	Final Total Stress, σ_f (psf)	8875.9	10642.3	11761.7	10393.0	11603.4	12074.0	10395.3	8444.6
	Initial Effective Stress, σ'_i (psf)	4557.4	5168.9	5277.9	3813.5	3040.3	3036.7	2831.8	3071.5
	Final Effective Stress, o'f (psf)	7760.8	9636.1	11300.6	10205.8	11562.8	11849.4	9802.5	7811.8
Settlem	ents-Compressible Stratum III S	ublayer							
OCR		2.19	1.93	1.89	2.62	3.29	3.29	3.53	3.26
Primary	Settlement, (ft)	0.17	0.18	0.13	0.06	0.02	0.11	0.22	0.17
Seconda years) (1	ary Settlement (t_1 = 1 year, t_2 = 54 (t_1)	0.18	0.16	0.07	0.03	0.01	0.04	0.10	0.10
Total Se	ettlement (ft)	0.35	0.35	0.21	0.09	0.03	0.14	0.31	0.27
TOTAI	L SETTLEMENT	0.35	0.35	0.21	0.09	0.03	0.14	0.31	0.27
Post set	tlement liner elev. (ft msl)	665.95	665.10	660.25	657.91	633.08	632.11	630.69	629.69

GRADES AND STRAINS BASED ON CALCULATED SETTLEMENT													
Initial Liner Segment Length, L1 (ft)	87.3061	511.9803	252.0870	312.5646	86.2393	124.7263	104.3652						
Post Settle. Liner Segment Length, L ₂ (ft)	87.3061	511.9790	252.0859	312.5598	86.2405	124.7281	104.3648						
Post Settlement Liner Strain (+ comp, - tension)	0.0000%	-0.0003%	-0.0005%	-0.0015%	0.0014%	0.0015%	-0.0004%						
Pre-Settlement Slope (+ up, - down)	-1.0%	-1.0%	-1.0%	-8.0%	-1.0%	-1.0%	-1.0%						
Post Settlement Slope	-0.97%	-0.95%	-0.93%	-7.97%	-1.12%	-1.14%	-0.96%						
Grade Difference (+ steeper, - milder)	0.00%	0.03%	0.05%	0.02%	0.13%	0.14%	0.04%						

SPREAD	DSHEET 3: EXISTING UNIT 2	AREA, PHA FILL, Settl	ASE III ement Calcu	lation				
	Point #	1	2	3	4	5	6	7
	Distance (ft)	0.0	229.9	408.8	483.2	685.2	921.4	1071.0
						1		
	Final Cover Soil, y _{cover} (pcf)	120	120	120	120	120	120	120
	Liner System Soils, yliner (pcf)	120	120	120	120	120	120	120
ghts	Protective Cover Soil, γ_{pc}	120	120	120	120	120	120	120
wei					I	I		
Unit	Waste, ywaste (pcf)	80	80	80	80	80	80	80
	Stratum I/II Soil (pcf)	120.0	120.0	120.0	120.0	120.0	120.0	120.0
	Stratum III Soil (pcf)	127.0	127.0	127.0	127.0	127.0	127.0	127.0
		1	I	I	1	I	I	I
SU	Water table Elevation (ft msl)	644.4	632.8	629.9	630.4	637.3	647.5	646.4
nditio Cell ction	Pre- construction Natural G.S Elevation (ft msl)	649.9	636.0	643.3	647.4	662.3	661.3	655.9
l Coi lor to nstru	Stratum II- III Interface (ft	649.9	636.0	643.1	643.3	651.3	658.0	655.9
<u>Initia</u> Co	Stratum III- IV Interface (ft msl)	595.8	584.5	580.0	580.0	594.1	606.9	608.2
	· ·							
s at	Water table Elevation (ft msl)	624.2	621.9	620.1	619.4	617.3	615.0	613.5
ition l of ctior	Top of final cover (ft msl)	715.4	777.4	786.3	790.0	779.8	732.1	700.3
ondi enc	Top of waste (ft msl)	711.9	773.9	782.8	786.5	776.3	728.6	696.8
al C Con	Top of bottom liner (ft msl)	626.2	623.9	622.1	621.4	619.3	617.0	615.5
Fin	Top of Subgrade (ft msl)	624.2	621.9	620.1	619.4	617.3	615.0	613.5
	Total Waste (ft)	83.7	148.0	158.7	163.1	155.0	109.6	79.3
S	Final Cover Soil (ft)	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Jess	Bottom Liner Soil (ft)	2.0	2.0	2.0	2.0	2.0	2.0	2.0
nickı	Protective Cover Soil (ft)	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Ì	Excavated Stratum I/II	0.0	0.0	0.2	4.0	11.0	3.4	0.0
	Excavated Stratum III	25.7	14.1	23.0	23.9	33.9	43.0	42.4
	SUBGRADE RESTS ON	Stratum III	Stratum III	Stratum III	Stratum III	Stratum III	Stratum III	Stratum III
Sublayer	Compressible Stratum III Soil (ft)	28.4	37.4	40.1	39.4	23.3	8.0	5.3

1-D Consolidation Theory (Plastic Meth	iod)						
Consolidation Properties- Compressible S	tratum III S	<u>oil</u>					
Modified Primary Compression Index, Cce	0.057	0.057	0.057	0.057	0.057	0.057	0.057

Mate	1 December 2 Index C	0.021	0.021	0.021	0.021	0.021	0.021	0.021
Niodille	a Recompression index, $C_{r\epsilon}$	10000	10000	10000	10000	10000	10000	10000
Modifie	d Secondary Compression	10000	10000	10000	10000	10000	10000	10000
Index, C	ζαε	0.003	0.003	0.003	0.003	0.003	0.003	0.003
Compr	essible Stratum III Soil							-
	Sub Layer			1				
	Final Midpoint Elevation, yres-mf (ft)	609.98	603.17	600.05	599.68	605.71	610.96	610.86
ssee	Initial Total Stress, σ_i (psf)	5074.6	4170.6	5491.9	6026.4	7104.8	6375.2	5723.1
Stre	Final Total Stress, σ_f (psf)	9401.5	15114.2	16141.4	16451.2	14775.4	10176.3	7579.0
	Initial Effective Stress, σ' _i (psf)	2929.3	2322.3	3627.7	4108.0	5136.1	4095.4	3503.2
	Final Effective Stress, $\sigma'_{\rm f}$ (psf)	8514.8	13946.1	14890.0	15222.9	14049.7	9925.8	7415.2
Settlem	ents-Compressible Stratum III S	Sublayer						
OCR		3.41	4.31	2.76	2.43	1.95	2.44	2.85
Primary	Settlement, (ft)	0.28	0.81	0.77	0.73	0.34	0.06	0.04
Seconda years) (1	ary Settlement (t_1 = 1 year, t_2 = 57 ft)	0.14	0.19	0.20	0.20	0.12	0.04	0.03
Total Se	ettlement (ft)	0.42	1.00	0.97	0.93	0.46	0.11	0.06
TOTAI	L SETTLEMENT	0.42	1.00	0.97	0.93	0.46	0.11	0.06
Post set	tlement liner elev. (ft msl)	625.77	622.89	621.13	620.43	618.88	616.86	615.42
GRAD	ES AND STRAINS BASED ON	CALCULA	ATED SETT	LEMENT				
Initial L	iner Segment Length, L1 (ft)		229.8665	178.9590	74.4397	201.9611	236.2299	149.6344
Post Set (ft)	ttle. Liner Segment Length, L ₂		229.8730	178.9587	74.4393	201.9569	236.2266	149.6339
Post Set tension)	ttlement Liner Strain (+ comp, -		0.003%	0.000%	-0.001%	-0.002%	-0.001%	0.000%
Pre-Sett	lement Slope (+ up, - down)		-1.00%	-1.00%	-0.99%	-1.00%	-1.00%	-1.00%
Post Set	ttlement Slope		-1.25%	-0.98%	-0.94%	-0.77%	-0.86%	-0.96%
Grade D	Difference (+ steeper, - milder)		0.252%	0.017%	0.054%	0.233%	0.148%	0.033%

Mesquite Creek Landfill, Unit 2 Area, Phase III Leachate Corridor Settlement Profile

ATTACHMENT 3D.4 LINER UPLIFT AND BALLAST CALCULATIONS AND PRESSURE RELIEF/DEWATERING SYSTEM DESIGN

Geosyntec Consultants October 2023 Page No. D.4-Cvr

TABLE OF CONTENTS

ATTACHMENT 3D.4.1 LINER UPLIFT AND BALLAST CALCULATIONS

ATTACHMENT 3D.4.2 PRESSURE RELIEF/DEWATERING SYSTEM DESIGN

REFER TO EACH SUB-ATTACHMENT (REPORT OR CALCULATION) WITHIN ATTACHMENT 3D.4 FOR THE RESPONSIBLE PROFESSIONAL ENGINEER'S (P.E.'S) SEAL AND SIGNATURE.

> Geosyntec Consultants October 2023 Page No. 3D.4-TOC

ATTACHMENT 3D.4 LINER UPLIFT AND BALLAST CALCULATIONS AND PRESSURE RELIEF/DEWATERING SYSTEM DESIGN

Geosyntec Consultants October 2023 Page No. D.4-Cvr

TABLE OF CONTENTS

ATTACHMENT 3D.4.1 LINER UPLIFT AND BALLAST CALCULATIONS

ATTACHMENT 3D.4.2 PRESSURE RELIEF/DEWATERING SYSTEM DESIGN

REFER TO EACH SUB-ATTACHMENT (REPORT OR CALCULATION) WITHIN ATTACHMENT 3D.4 FOR THE RESPONSIBLE PROFESSIONAL ENGINEER'S (P.E.'S) SEAL AND SIGNATURE.

> Geosyntec Consultants October 2023 Page No. 3D.4-TOC

ATTACHMENT 3D.4.1

LINER UPLIFT AND BALLAST CALCULATIONS

Geosyntec Consultants October 2023 Page No. 3D.4.1-Cvr

LINER UPLIFT AND BALLAST CALCULATIONS

GEOSYNTEC CONSULTANTS, INC. TX ENG FIRM REGISTRATION NO. 1182 FOR PERMIT PURPOSES ONLY. CALCULATION PAGES 1 THROUGH 15

1. **INTRODUCTION**

The purpose of this calculation package is to evaluate the potential for liner uplift based on the highest groundwater conditions at the proposed Unit 2 lateral expansion area at the Mesquite Creek Landfill ("Site"), and to calculate the thickness of ballast required to resist the worst-case uplift pressures that may act on the liner system (i.e., based on the historical fluctuations of groundwater and the resulting seasonal high groundwater table levels at the Site). This includes calculating the waste thickness, if any, required for ballast in the proposed expansion cells (Unit 2 Phase VII through Phase XIV).

2. METHODOLOGY

The Texas Commission on Environmental Quality (TCEQ) recommends a minimum factor of safety (FS_{min}) against liner system uplift of 1.2 if no ballast is required or if soils are used as ballast. Alternatively, if waste is selected as ballast, the required FS_{min} is 1.5. Based on the calculations presented herein computed at several critical (worst-case) locations, ballast is required in Unit 2 Phases VII through XIV. For the purpose of these calculations, it is assumed that if ballast is calculated to be required and it will be accomplished using waste (and if necessary, also final cover soils), the required FS_{min} is 1.5. However, if only soil is used as ballast, the required FS_{min} is 1.2.

The required thickness of ballast on the liner system to achieve a selected FS_{min} value can be calculated using the following steps:

• Select critical point(s) for evaluation of a cell based on local groundwater conditions with respect to landfill base and/or sidewall (i.e., sideslope) elevations, top of liner, and critical subsurface strata. Evaluate the elevations of the seasonal high groundwater

		Geosyntec [▶]
		consultants
		2 of 15
Written by: P. Pandey	Date: 7/1/2023 Reviewed by: S. Graves	Date: 8/3/2023
Client: WMTX Project:	Mesquite Creek Landfill Expansion Project No.:	GW8636 Phase No.: 05

table (SHGT) (synonymous with the term "historical high" groundwater levels used herein). Or, use observed groundwater levels if conditions are intermittent and not represented by a continuous water table.

- Select the required long-term factor of safety against uplift (1.2 or 1.5) depending on the ballast material.
- Calculate the maximum hydrostatic uplift force, U_N, acting normal to the bottom of the liner at each point:

 $U_N = \gamma_w \times H_{wt}$

where: γ_w = unit weight of water; and H_{wt} = vertical distance from the bottom of the liner to the seasonal high groundwater table at that point.

- Evaluate the unit weight of the liner system and ballast materials (soil, waste, and/or final cover soils).
 - <u>Waste</u> For municipal solid waste, TCEQ requires in 30 TAC §330.337(h)(2) that the unit weight of waste used as ballast material be selected as 1,200 pounds per cubic yard, or 44 pounds per cubic foot (pcf). Hence, 44 pcf will be used as the unit weight of waste in these calculations, although the unit weight of the typical municipal solid waste as placed and compacted at the Mesquite Creek Landfill is likely higher than 44 pcf.
 - <u>Protective Cover and Topsoil</u> Assume loose dumped unit weight of protective cover soil as 70% of the typical in-situ unit weight. If material is lightly compacted during placement, 80% of the typical in-situ or standard Proctor maximum unit weight may be used. From these guidelines and the anticipated light compaction during placement (e.g., dozer), a value of 96 pcf was selected for the unit weight of the protective cover and/or topsoil materials in both the liner and final cover systems (as applicable).
 - <u>Compacted Clay Liner</u> The compacted clay liner material will be compacted to at least 95% of its standard Proctor maximum dry density. A value of 120 pcf was selected for computing the resistance to uplift by the compacted clay liner.
 - <u>Compacted Soil Final Cover</u> The compacted soil final cover material will be compacted to at least 95% of its standard Proctor maximum dry density. A value of 120 pcf was selected for computing the resistance to uplift by the compacted soil final cover.

				Ge	OS	yn	.tec ▷
					CO	nsul	tants
					3	of	15
Written by: <u>P. Pandey</u>	Date: 7/1/2023	Reviewed by:	S. Graves		Date:	8/3/2	2023
Client: WMTX Project:	Mesquite Creek Landfil	ll Expansion	Project No.:	GW8636]	Phase 1	No.: <u>05</u>

 <u>Leachate Sump Gravel</u> – A value of 100 pcf was selected for computing the resistance to uplift by the 4-ft thick coarse aggregate (gravel) layer in a leachate collection sump (for points evaluated at the sumps).

For the calculations presented subsequently, waste and final cover soils will be considered as ballast for Unit 2 Phase VII through Phase XIV. When possible, the total unit weight of soil layers used for ballast should be verified by laboratory or field data. It should be noted that Mesquite Creek Landfill is a Type I municipal solid waste landfill with a composite liner system at all of Unit 2. The geomembrane liner and the geocomposite drainage layer, which are a part of the liner system, do not contribute significant resistance to the uplift force from the hydrostatic pressure and were therefore not included in the analysis (i.e., they have negligible weight).

• Calculate the resisting force, R_N, provided by the liner system, acting normal to the liner system at each point:

$$R_{N(liner)} = \Sigma(\gamma_{il} \times T_{il}) \times \cos \beta$$

where: R_N = normal resisting force; γ_{il} = total unit weight of the ith liner system component; and T_{il} = vertical thickness of the ith liner system component. It is noted that the slope of the liner system (i.e., β) is taken as zero for the calculation since the evaluation points (with the maximum head) are all either in the cell floor or toe of the sideslope. Additionally, R_N (liner) includes the resistance due to 4' gravel for the sump locations.

• Calculate the provided FS without ballast at each point:

$$FS = R_{N (liner)} / U_N = \Sigma(\gamma_{il} \times T_{il}) \times \cos\beta / (\gamma_w \times H_{wt})$$

If the provided FS is greater than or equal to FS_{min} , then no ballast is required. If FS is less than the FS_{min} , then ballast is required.

• If ballast is required, calculate the required vertical thickness, T_{ib}, of the soil or waste ballast materials required to achieve the target factor of safety:

$$\Sigma(\gamma i_b \times T i_b) \times \cos\beta = ((FS_{min} \times U_N) - R_{N(liner)})$$

where: γ_{ib} = total unit weight of the ith ballast component (soil or waste); and T_{ib} = vertical thickness of the ith ballast component.

							Ge	CONSU <u>4</u> of Date: <u>8/3</u> <u>6</u> Phas	yn	tec
								CO	nsu	ltants
								4	of	15
Written by: <u>P. Pandey</u>		Date:	7/1/2023		Reviewed by:	S. Graves		Date	8/3/2	2023
Client: WMTX	Project:	Mesqu	ite Creek I	Landfill E	xpansion	Project No.:	GW8636		Phase	No.: <u>05</u>

• If the proposed soil or waste ballast does not provide the resisting force needed, calculate the additional R_N, provided by the final cover system soils, acting normal to the final cover system at each point:

 $R_{N(cover)} = \Sigma(\gamma_{ic} \times T_{ic}) \times \cos \beta$

where: γ_{ic} = total unit weight of the ith final cover system component; T_{ic} = vertical thickness of the ith final cover system component; and β = the slope of the liner system.

• Calculate the R_N of the soil or waste ballast:

 $R_{N(b)} = (\gamma_{ib} \times T_{ib}) \times \cos \beta$

where: γ_{ib} = total unit weight of the ith ballast component; T_{ib} = vertical thickness of the ith ballast component; and β = the slope of the liner system.

• Calculate the combined R_N:

 $R_{N(total)} = R_{N(liner)} + R_{N(cover)} + R_{N(b)}$

• Re-calculate the FS considering the total ballast (liner soils, soil or waste ballast, and final cover soils):

 $FS = R_{N(total)} / U_N$

3. SELECTION OF ANALYSIS CASES

The approach for this calculation package is to select critical locations for analysis along the bottom of the liner system of the yet-to-be-constructed cells (i.e., Unit 2 Phase VII through Phase XIV), and calculate the uplift forces and resulting ballast thickness requirements (if any) given the selected input parameters. Specific conditions that exist at particular points of interest are evaluated individually to calculate the required ballast at each point, using the methodology described previously.

Section 10.2 of the Liner Quality Control Plan (LQCP) presents a discussion on the Site subsurface stratigraphy and hydrogeology, and an evaluation of the possible areas where groundwater may be present that could be sufficient to exert a hydrostatic uplift force on the liner. In summary, majority of the landfill base (as well as sideslopes) in new cells (Phase VII through XIV) are located in Stratum III (potential water-bearing zone, where groundwater is perched above the confining and

		Geosyntec [▶]
		consultants
		5 of 15
Written by: <u>P. Pandey</u>	Date: 7/1/2023 Reviewed by: S. Graves	Date: <u>8/3/2023</u>
Client: WMTX Project	Mesquite Creek Landfill Expansion Project No.:	GW8636 Phase No.: <u>05</u>

unsaturated claystone of Stratum IV). As such, portions of the sideslopes and base of landfill liner will encounter zones with the potential for groundwater to be present. Additional discussion on groundwater conditions and observations during site investigations and historical construction excavations are provided in the LQCP and are not repeated here. Ultimately, based on the available information the development of uplift pressures on the liner system may not occur, but nevertheless has been conservatively assumed to exist as a possibility. The Unit 2 lateral expansion area has been evaluated accordingly to calculate the thickness of ballast required to resist the worst-case uplift pressures that may act on the liner system. The design of pressure relief system that will be installed in future cells and will be operated until sufficient ballast is present to resist the theoretical uplift is part of a companion calculation package to this (Attachment 3D.4.2).

The base liner system grading plan and final cover grading plan at Unit 2 are presented in Part III, Attachment 3A, Drawings 3A-4B and 3A-5B, respectively. The SHGT map is presented in Drawing 3C-1 of the LQCP. Additionally, geologic cross-sections and a contour map of the top of Stratum III and Stratum IV (i.e., unweathered claystone) were developed for the Site using the boring logs in Part III, Attachment 4C and are provided in the Geology Report (Part III, Attachment 4A). Landfill cross-sections are provided in the Waste Management Unit Design (Part III, Attachment 3A). A general concept-level illustration of the typical liner conditions for Unit 2 Phase VII through Phase XIV are presented on Figure 1 below.

Figure 1: Typical Layout at Liner Conditions for New Cells in Phase VII through Phase XIV

		Geosyntec [▶]
		consultants
		6 of 15
Written by: <u>P. Pandey</u>	Date: 7/1/2023 Reviewed by: S. Graves	Date: <u>8/3/2023</u>
Client: WMTX Project:	Mesquite Creek Landfill Expansion Project No.:	GW8636 Phase No.: 05

From the above illustration, it is evident that the critical condition would be where the groundwater head (H_{wt}) is the greatest (thereby requiring the greatest amount of ballast). The bottom of the base liner system and SHGT map were used to identify these critical points with the greatest height of the groundwater table at different locations in the expansion area. In total, 22 evaluation points (five at the interior cell floor; eight at the sump location and nine on the opposite end of the cell) were selected for analysis (see Figure 2 below). Further, the elevations of the various surfaces (i.e., bottom of clay liner, top of waste, top of final cover, SHGT elevation, top of confining Stratum IV) at the critical locations required for the analysis were determined using the available liner system and final cover grading plans, SHGT map, Stratum IV structure map and geologic and landfill cross-sections.

Figure 2: Approximate Location of Critical Cases Selected for Analysis in Phase VII through XIV

		Geosyntec
		consultants
		7 of 15
Written by: <u>P. Pandey</u>	Date: 7/1/2023 Reviewed by: S. Graves	Date: <u>8/3/2023</u>
Client: WMTX Project:	Mesquite Creek Landfill Expansion Project No.:	GW8636 Phase No.: 05

The SHGT and bottom of liner system elevations used to evaluate the need for ballast at the 22 evaluation points at the slope toe and interior cell floor locations shown in Figure 2 are as follows:

Locations	SHGT Elevation	Bottom of Clay Liner	Maximum Potential
	(ft, MSL)	Elevation	Groundwater Head H _{wt} , (ft)
		(ft, MSL)	
	<u>A</u>	t the sump locations	
S1 (Phase XIV)	669.9	626.0	43.8
S2 (Phase XIII)	668.5	625.4	43.1
S3 (Phase XII)	665.5	624.7	40.8
S4 (Phase XI)	667.8	624.7	43.1
S5 (Phase X)	668.2	625.1	43.1
S6 (Phase IX)	665.2	624.1	41.1
S7 (Phase VIII)	664.2	624.0	40.3
S8 (Phase VII)	659.5	633.8	25.7
	At the slope toe	(In western side of expans	<u>ion area)</u>
T1 (Phase XIV)	692.5	654.4	38.1
T2 (Phase XIV)	700.0	651.1	48.9
T3 (Phase XIII)	699.3	650.2	49.1
T4 (Phase XII)	698.4	648.3	50.2
T5 (Phase XI)	696.6	648.4	48.2
T6 (Phase X)	691.6	650.7	40.9
T7 (Phase IX)	690.1	649.9	40.1
T8 (Phase VIII)	680.9	664.3	16.6
T9 (Phase VII)	660.0	642.8	17.2
	At	the interior cell floor	
I1 (Phase XIV)	698.6	643.6	55.0
I2 (Phase XIII)	699.3	642.3	57.0
I3 (Phase XII)	699.5	644.5	55.0
I4 (Phase XI)	699.3	644.2	55.1
I5 (Phase X)	698.1	641.1	57.0

As noted earlier, the majority of the landfill base will rest within Stratum III where there is potential groundwater presence (and above the unweathered claystone layer (Stratum IV) beneath the Site). Normally, the critical point of any given cell for uplift and ballast purposes is the low point at the

		Geosyntec [▷]
		consultants
		8 of 15
Written by: <u>P. Pandey</u>	Date: 7/1/2023Reviewed by: S. Grav	es Date: <u>8/3/2023</u>
Client: WMTX Project:	Mesquite Creek Landfill Expansion Project N	o.: GW8636 Phase No.: 05

sumps. However, this may not always be the case, depending on how the groundwater levels vary across a cell relative to the landfill base grades. A review of the bottom of liner system and SHGT map indicates that the sump locations may not necessarily be the most critical points for ballast since the theoretical seasonal high-water level rises towards the center of the landfill area. Therefore, to be thorough, the analysis herein evaluates sump locations, plus interior floor areas and at toe of the cell sideslope on the other end of the cells (e.g., the high end, opposite from the sumps).

4. **CALCULATIONS**

The following section presents the calculations of the required thickness of ballast to resist uplift at the critical locations along the liner system. Using the methodology described previously, the equations were coded into a spreadsheet solution to perform these calculations and evaluate whether the design thickness (i.e., minimum thickness) of the liner system is sufficient to resist uplift, or whether additional ballast (i.e., soil or waste) is needed. In the next subsections that follow, several sample calculations for a few point locations are provided, showing the numbers plugged-in to the equations, to check and help validate the spreadsheet solution. The tabulated results for all analysis cases are also presented in Table 1.

				At the sun	ip location	15		
Phase	XIV	XIII	XII	XI	Х	IX	VIII	VII
Location Point	S 1	S2	S3	S4	S5	S6	S 7	S8
SHGT Elevation (ft, MSL)	669.9	668.5	665.5	667.8	668.2	665.2	664.2	659.5
Bottom of Clay Liner Elev (ft, MSL)	626.0	625.4	624.7	624.7	625.1	624.1	624.0	633.8
Top of Final Cover Elev (ft, MSL)	729.6	724.5	719.7	714.2	715.8	718.5	714.2	709.1
Height of water (ft)	43.8	43.1	40.8	43.1	43.1	41.1	40.3	25.7
U _N (Uplift Pressure, psf)	2733.1	2689.4	2545.9	2689.4	2689.4	2564.6	2514.7	1603.7
R _N _Liner Only								
R _N Liner Compacted Clay	240.0	240.0	240.0	240.0	240.0	240.0	240.0	240.0
R _N Liner Protective Cover	192.0	192.0	192.0	192.0	192.0	192.0	192.0	192.0
R _N Sump Gravel	400	400	400	400	400	400	400	400
Total R _{N (liner+gravel)} , (psf)	832.0	832.0	832.0	832.0	832.0	832.0	832.0	832.0
F.S_Liner Only (i.e., No Ballast)	0.30	0.31	0.33	0.31	0.31	0.32	0.33	0.52
Need Ballast (?)	YES	YES	YES	YES	YES	YES	YES	YES
Required WASTE ballast thickness								
$Tb_{min}(ft)$	74.3	72.8	67.9	72.8	72.8	68.5	66.8	35.8
Corresponding waste elevation (ft, MSL) for target F.S 1.5	708.3	706.1	700.5	705.5	705.9	700.7	698.8	677.6

							Ge	os	yn	tec	D
								СО 9	nsu of	ltants 15	_
Written by: P. Pandey		Date:	7/1/2023		Reviewed by:	S. Graves		_Date:	8/3/2	2023	-
Client: WMTX	Project:	Mesau	ite Creek L	andfill Ex	xpansion	Project No.:	GW8636]	Phase	No.: 05	

	At the opposing cell ends toe-of-slope									
Phase	XI	V	XIII	XII	XI	Х	IX	VIII	VII	
Location Point	T1	T2	T3	T4	T5	T6	T7	T8	T9	
SHGT Elevation (ft, MSL)	692.5	700.0	699.3	698.4	696.6	691.6	690.1	680.9	660.0	
Bottom of Clay Liner Elev (ft, MSL)	654.4	651.1	650.2	648.3	648.4	650.7	649.9	664.3	642.8	
Top of Final Cover Elev (ft, MSL)	740.7	770.9	759.9	764.4	765.7	775.0	781.1	743.1	772.2	
Height of water (ft)	38.1	48.9	49.1	50.2	48.2	40.9	40.1	16.6	17.2	
U _N (Uplift Pressure, psf)	2377.4	3051.4	3063.8	3132.5	3007.7	2552.2	2502.2	1035.8	1073.3	
R _N _Liner Only										
R _N Liner Compacted Clay	240.0	240.0	240.0	240.0	240.0	240.0	240.0	240.0	240.0	
R _N Liner Protective Cover	192.0	192.0	192.0	192.0	192.0	192.0	192.0	192.0	192.0	
Total R _{N (liner)} , (psf)	432.0	432.0	432.0	432.0	432.0	432.0	432.0	432.0	432.0	
F.S_Liner Only (i.e., No Ballast)	0.18	0.14	0.14	0.14	0.14	0.17	0.17	0.42	0.40	
Need Ballast (?)	YES	YES	YES	YES	YES	YES	YES	YES	YES	
Required WASTE ballast thickness										
$Tb_{min}(ft)$	71.2	94.2	94.6	97.0	92.7	77.2	75.5	25.5	26.8	
Corresponding waste elevation (ft, MSL) for target F.S 1.5	729.6	749.3	748.8	749.2	745.2	731.9	729.4	693.8	673.6	

٩t	the	opposing	cell	ends	toe-of-slo	pe

(< 1.2)

		Interior cell floor locations							
Phase	XIV	XIII	XII	XI	Х	Ĩ .			
Location Point	I1	I2	13	I4	I5				
SHGT Elevation (ft, MSL)	698.6	699.3	699.5	699.3	698.1				
Bottom of Clay Liner Elev (ft, MSL)	643.6	642.3	644.5	644.2	641.1				
Top of Final Cover Elev (ft, MSL)	786.9	781.7	783.4	786.9	776.0				
Height of water (ft)	55.0	57.0	55.0	55.1	57.0				
UN (Uplift Pressure, psf)	3432.0	3556.8	3432.0	3438.2	3556.8				
R_N_Liner Only									
R _N Liner Compacted Clay	240.0	240.0	240.0	240.0	240.0				
R _N Liner Protective Cover	192.0	192.0	192.0	192.0	192.0				
Total R _{N (liner)} , (psf)	432.0	432.0	432.0	432.0	432.0				
F.S_Liner Only (i.e., No Ballast)	0.13	0.12	0.13	0.13	0.12	(< 1.2)			
Need Ballast (?)	YES	YES	YES	YES	YES				
Required WASTE ballast thickness									
$Tb_{min}(ft)$	107.2	111.4	107.2	107.4	111.4				
Corresponding waste elevation (ft, MSL) for target F.S 1.5	754.8	757.7	755.6	755.6	756.5				
			1	1	L	_			

mic all fla . 1. ÷ ..

4.1 <u>Uplift Calculations at the sump location of Phase XIV (Point S1)</u>

The height of the water table above the analysis location is calculated as follows:

			Geosyntec [▷]			
			consultants			
			10 of 15			
Written by: <u>P. Pandey</u>	Date: 7/1/2023	Reviewed by: S. Graves	Date: <u>8/3/2023</u>			
Client: WMTX Project	t: Mesquite Creek Land	Ifill Expansion Project No.:	GW8636 Phase No.: 05			

 $H_{wt} = 669.9 \, ft \, MSL - 626.0 \, ft \, MSL = 43.8 \, ft$

The uplift force acting normal to the liner system at the sump location ($\beta = 0.0^{\circ}$) is computed as:

$$U_N = (H_{wt} \times \gamma_w) = (43.8 \, ft \times 62.4 \, pcf) = 2733.1 \, psf$$

It is noted that the initial uplift resistance at the sump location will be provided by the compacted clay liner with a vertical thickness of 2.0 feet, protective cover with a vertical thickness of 2.0 feet, and the leachate collection sump gravel with a vertical thickness of 4.0 feet; and is computed as follows:

 $R_{N(liner)} = (\gamma_{il} \times T_{il}) \times \cos\beta$ $R_{N(liner)} = (120 \text{ pcf} \times 2.0 \text{ ft} + 96 \text{ pcf} \times 2.0 \text{ ft} + 100 \text{ pcf} \times 4 \text{ ft}) \times \cos(0.0^\circ) = 832 \text{ psf}$

The calculated factor of safety is:

 $FS = R_{N (liner)} / U_N = 832 \text{ psf} / 2733.1 \text{ psf} = 0.30 < 1.2$ (Waste ballast required)

The total vertical thickness of waste ballast required to meet $FS_{min} = 1.5$ is:

 $T_{b, min} = (FS_{min} \times U_N) / (\gamma_{wb} \times \cos \beta)$ $T_{b, min} = (1.5 \times 2733.1 \text{ psf} - 832 \text{ psf}) / (44 \text{ pcf} \times \cos 0.0^\circ) = 74.3 \text{ ft}$

Therefore, at the sump location of Phase XIV, approximately 74.3 feet of waste ballast is required over the uplift evaluation point to achieve a calculated FS of 1.5. The corresponding waste elevation for this FS value is approximately 708.3 ft MSL [626.0 MSL + liner system vertical thickness (4.0 feet) + leachate collection sump gravel thickness (4.0 feet) + waste ballast thickness (74.3 feet)].

4.2 <u>Uplift Calculations at the toe of the slope on the other end of cell (western side) of</u> <u>Phase XIV (Point T2)</u>

The height of the water table above the analysis location is calculated as follows:

 $H_{wt} = 700.0 \text{ ft } MSL - 651.1 \text{ ft } MSL = 48.9 \text{ ft}$

The uplift force acting normal to the liner system ($\beta = 0.0^{\circ}$) is computed as:

		Geosyntec
		consultants
		11 of 15
Written by: <u>P. Pandey</u>	Date: 7/1/2023 Reviewed by: S. Graves	Date: <u>8/3/2023</u>
Client: WMTX Proje	ct: Mesquite Creek Landfill Expansion Project No.:	: GW8636 Phase No.: 05

$$U_N = (H_{wt} \times \gamma_w) = (48.9 \, ft \times 62.4 \, pcf) = 3051.4 \, psf$$

The uplift resistance available from the compacted clay sideslope liner with a vertical thickness of 2.0 feet and protective cover with a vertical thickness of 2.0 feet acting normal to the liner system, is computed as follows:

 $R_{N (liner)} = (\gamma_{il} \times T_{il}) \times \cos\beta$ $R_{N (liner)} = (120 \text{ pcf} \times 2.0 \text{ ft} + 96 \text{ pcf} \times 2.0 \text{ ft}) \times \cos(0.0^\circ) = 432 \text{ psf}$

The calculated factor of safety is:

$$FS = R_{N (liner)} / U_N = 432 \text{ psf} / 3051.4 \text{ psf} = 0.14 < 1.2$$
 (Waste ballast required)

The total vertical thickness of waste ballast required to meet $FS_{min} = 1.5$ is:

 $T_{b, min} = (FS_{min} \times U_N) / (\gamma_{wb} \times \cos \beta)$ $T_{b, min} = (1.5 \times 3051.4 \text{ psf} - 432 \text{ psf}) / (44 \text{ pcf} \times \cos 0.0^\circ) = 94.2 \text{ ft}$

Therefore, at the other end cell in Phase XIV, approximately 94.2 feet of waste ballast is required over the uplift evaluation point to achieve a calculated FS of 1.5. The corresponding waste elevation for this FS value is approximately 749.3 ft MSL [651.1 ft MSL + liner system vertical thickness (4.0 feet) + waste ballast thickness (94.2 feet)].

4.3 <u>Uplift Calculations at the interior cell floor of Phase XIV (Point I1)</u>

The height of the water table above the analysis location is calculated as follows:

$$H_{wt} = 698.6 \, ft \, MSL - 643.6 \, ft \, MSL = 55.0 \, ft$$

The uplift force acting normal to the liner system ($\beta = 0.0^{\circ}$) is computed as:

$$U_N = (H_{wt} \times \gamma_w) = (55 \, ft \times 62.4 \, pcf) = 3432.0 \, psf$$

The uplift resistance available from the compacted clay sideslope liner with a vertical thickness of 2.0 feet and protective cover with a vertical thickness of 2.0 feet acting normal to the liner system, is computed as follows:

					Ge	OS	ytt	lec.
						CO	nsul	tants
						12	of	15
Written by: <u>P. Pandey</u>	Date:	7/1/2023	Reviewed by:	S. Graves		Date:	8/3/2	023
Client: WMTX P	roject: <u>Mesq</u> i	uite Creek Land	fill Expansion	Project No.:	GW8636	F	hase l	No.: <u>05</u>

loor mtool

 $R_{N(liner)} = (\gamma_{il} \times T_{il}) \times \cos\beta$ $R_{N(liner)} = (120 \text{ pcf} \times 2.0 \text{ ft} + 96 \text{ pcf} \times 2.0 \text{ ft}) \times \cos(0.0^\circ) = 432 \text{ psf}$

The calculated factor of safety is:

 $FS = R_{N (liner)} / U_N = 432 \text{ psf} / 3432.0 \text{ psf} = 0.13 < 1.2 (Waste ballast required)$

The total vertical thickness of waste ballast required to meet $FS_{min} = 1.5$ is:

 $T_{b, min} = (FS_{min} \times U_N) / (\gamma_{wb} \times \cos \beta)$ $T_{b, min} = (1.5 \times 3432.0 \text{ psf} - 432 \text{ psf}) / (44 \text{ pcf} \times \cos 0.0^\circ) = 107.2 \text{ ft}$

Therefore, at the interior cell floor of Phase XIV, approximately 107.2 feet of waste ballast is required over the uplift evaluation point to achieve a calculated FS of 1.5. The corresponding waste elevation for this FS value is approximately 754.8 ft MSL [643.6 ft MSL + liner system vertical thickness (4.0 feet) + waste ballast thickness (107.2 feet)].

5. CONCLUSIONS AND RECOMMENDATIONS

Results and conclusions of the analysis presented herein are summarized below and in Table 1:

- Based on the SHGT elevations and soil properties assumed herein and as shown in Table 1, ballast is required. Further, the use of waste ballast is found to be sufficient to meet the factor of safety requirements.
- Table 1 provides the eventual (as-permitted) final thickness of waste at each point, and from comparison to the required waste-as-ballast thickness, shows that the waste ballast requirements are feasible (and that the final-condition factor of safety against uplift exceeds the minimum required value).
- An underdrain system will be installed beneath the liner system (floor and sideslopes) in Unit 2 Phase VII through XIV. The underdrain will be operated until sufficient ballast has been placed to resist uplift forces on the liner system, at which point its operation will be discontinued. The underdrain system design is presented in Part III, Attachment 3D.4.2. Engineering drawings of the underdrain system are provided in Part III, Attachment 3A. The material properties and installation requirements of the underdrain components are provided in the LQCP (Part III, Attachment 3C).

						Ge	osyı	ntec⊳
							cons	ultants
							13 of	f 15
Written by: <u>P. Pandey</u>		Date:	7/1/2023	Reviewed by:	S. Graves		Date: <u>8/3</u>	3/2023
Client: WMTX	Project:	Mesqu	ite Creek Lar	ndfill Expansion	Project No.:	GW8636	Phas	se No.: <u>05</u>

Table 1. Summary of Ballast Calculations with Calculated Ballast Thicknesses

			А	t the sum	p location	l		
	Point S1 Phase XIV	Point S2 Phase XIII	Point S3 Phase XII	Point S4 Phase XI	Point S5 Phase X	Point S6 Phase IX	Point S7 Phase VIII	Point S8 Phase VII
Seasonal High Groundwater Table (ft MSL)	669.9	668.5	665.5	667.8	668.2	665.2	664.2	659.5
Bottom of Clay Liner (ft MSL)	626.0	625.4	624.7	624.7	625.1	624.1	624.0	633.8
Height of Groundwater at Critical Location (ft)	43.8	43.1	40.8	43.1	43.1	41.1	40.3	25.7
Unit Weight of Compacted Clay Liner (pcf)	120	120	120	120	120	120	120	120
Unit Weight of Protective Cover/Topsoil (pcf)	96	96	96	96	96	96	96	96
Unit Weight of Water (pcf)	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4
Unit Weight of Compacted Soil Final Cover (pcf)	120	120	120	120	120	120	120	120
H: V of Sideslope Liner	3:1	3:1	3:1	3:1	3:1	3:1	3:1	3:1
Vertical Thickness of Compacted Clay Liner (ft)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Vertical Thickness of Protective Cover (ft)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Sump Gravel Thickness	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Vertical Thickness of Waste Ballast (ft)	74.3	72.8	67.9	72.8	72.8	68.5	66.8	35.8
Vertical Thickness of Final Cover Compacted Soil (ft)	1.56	1.56	1.56	1.56	1.56	1.56	1.56	1.56
Vertical Thickness of Final Cover Protective Cover and Topsoil (ft)	2.08	2.08	2.08	2.08	2.08	2.08	2.08	2.08
Uplift Force Acting Normal to Liner, U _N (psf)	2733.1	2689.4	2545.9	2689.4	2689.4	2564.6	2514.7	1603.7
Resisting Force Acting Normal to Liner, R _N (psf)	4099.7	4034.2	3818.9	4034.2	4034.2	3847.0	3772.1	2405.5
Factor of Safety Against Uplift, FS	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Final Resisting Force Against Uplift, R _N (psf)*	5262.9	5068.4	4886.7	4647.4	4700.2	4858.6	4675.1	4019.5
Target Factor of Safety	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Permitted waste thickness	91.91	87.49	83.36	77.92	79.12	82.72	78.55	63.65
Factor of Safety Against Uplift Under Final Conditions, FS*	1.93	1.88	1.92	1.73	1.75	1.89	1.86	2.51
OK?	OK	OK	OK	OK	OK	OK	OK	OK

Notes:

1. * Indicates this value was calculated considering liner soil materials, permitted waste thickness, and final cover soil materials as ballast under final built conditions

			Geosyntec [▶]
			consultants
	D		14 of 15
Written by: <u>P. Pandey</u>	Date: <u>7/1/2023</u>	Reviewed by: S. Graves	Date: 8/3/2023
Client: WMIX Project:	Mesquite Creek Landi	III Expansion Project No.:	GW8030 Phase No.: U5

			At the slo	ope toe (I	n Wester	n side of t	he cell)		
	Point T1 Phase XIV	Point T2 Phase XIV	Point T3 Phase XIII	Point T4 Phase XII	Point T5 Phase XI	Point T6 Phase X	Point T7 Phase IX	Point T8 Phase VIII	Point T9 Phase VII
Seasonal High Groundwater Table (ft MSL)	692.5	700.0	699.3	698.4	696.6	691.6	690.1	680.9	660.0
Bottom of Clay Liner (ft MSL)	654.4	651.1	650.2	648.3	648.4	650.7	649.9	664.3	642.8
Height of Groundwater at Critical Location (ft)	38.1	48.9	49.1	50.2	48.2	40.9	40.1	16.6	17.2
Unit Weight of Compacted Clay Liner (pcf)	120	120	120	120	120	120	120	120	120
Unit Weight of Protective Cover/Topsoil (pcf)	96	96	96	96	96	96	96	96	96
Unit Weight of Water (pcf)	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4
Unit Weight of Compacted Soil Final Cover (pcf)	120	120	120	120	120	120	120	120	120
H: V of Sideslope Liner	3:1	3:1	3:1	3:1	3:1	3:1	3:1	3:1	3:1
Vertical Thickness of Compacted Clay Liner (ft)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Vertical Thickness of Protective Cover (ft)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Vertical Thickness of Waste Ballast (ft)	71.2	94.2	94.6	97.0	92.7	77.2	75.5	25.5	26.8
Vertical Thickness of Final Cover Compacted Soil (ft)	1.56	1.56	1.56	1.56	1.56	1.56	1.56	1.56	1.56
Vertical Thickness of Final Cover Protective Cover and Topsoil (ft)	2.08	2.08	2.08	2.08	2.08	2.08	2.08	2.08	2.08
Uplift Force Acting Normal to Liner, U _N (psf)	2377.4	3051.4	3063.8	3132.5	3007.7	2552.2	2502.2	1035.8	1073.3
Resisting Force Acting Normal to Liner, R _N (psf)	3566.2	4577.0	4595.8	4698.7	4511.5	3828.2	3753.4	1553.8	1609.9
Factor of Safety Against Uplift, FS	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
Final Resisting Force Against Uplift, R _N (psf)*	4280.4	5753.0	5307.3	5591.6	5640.4	5948.8	6254.6	3951.2	6176.3
Target Factor of Safety	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Permitted waste thickness	78.67	112.14	102.1	108.47	109.58	116.59	123.54	71.19	121.76
Factor of Safety Against Uplift Under Final Conditions, FS*	1.80	1.89	1.73	1.79	1.88	2.33	2.50	3.81	5.75
OK?	OK	OK	OK	OK	OK	OK	OK	OK	OK

Notes:

1. * Indicates this value was calculated considering liner soil materials, permitted waste thickness, and final cover soil materials as ballast under final built conditions

 Geosyntec
 consultants

 15
 of
 15

 Written by:
 P. Pandey
 Date:
 7/1/2023
 Reviewed by:
 S. Graves
 Date:
 8/3/2023

Client: WMTX Project:	Mesquite Creek Landfill Expansion	Project No.: GW8636	Phase No.: 05
-----------------------	-----------------------------------	---------------------	---------------

		Inte	erior cell floor		
	Point I1 Phase XIV	Point I2 Phase XIII	Point I3 Phase XII	Point I4 Phase XI	Point I5 Phase X
Seasonal High Groundwater Table (ft MSL)	698.6	699.3	699.5	699.3	698.1
Bottom of Clay Liner (ft MSL)	643.6	642.3	644.5	644.2	641.1
Height of Groundwater at Critical Location (ft)	55.0	57.0	55.0	55.1	57.0
Unit Weight of Compacted Clay Liner (pcf)	120	120	120	120	120
Unit Weight of Protective Cover/Topsoil (pcf)	96	96	96	96	96
Unit Weight of Water (pcf)	62.4	62.4	62.4	62.4	62.4
Unit Weight of Compacted Soil Final Cover (pcf)	120	120	120	120	120
H: V of Sideslope Liner	3:1	3:1	3:1	3:1	3:1
Vertical Thickness of Compacted Clay Liner (ft)	2.0	2.0	2.0	2.0	2.0
Vertical Thickness of Protective Cover (ft)	2.0	2.0	2.0	2.0	2.0
Vertical Thickness of Waste Ballast (ft)	107.2	111.4	107.2	107.4	111.4
Vertical Thickness of Final Cover Compacted Soil (ft)	1.5	1.5	1.5	1.5	1.5
Vertical Thickness of Final Cover Protective Cover and Topsoil (ft)	2.0	2.0	2.0	2.0	2.0
Uplift Force Acting Normal to Liner, U _N (psf)	3432.0	3556.8	3432.0	3438.2	3556.8
Resisting Force Acting Normal to Liner, R _N (psf)	5148.0	5335.2	5148.0	5157.4	5335.2
Factor of Safety Against Uplift, FS	1.50	1.50	1.50	1.50	1.50
Final Resisting Force Against Uplift, R _N (psf)*	6778.3	6606.7	6586.9	6751.9	6410.9
Target Factor of Safety	1.5	1.5	1.5	1.5	1.5
Permitted waste thickness	135.78	131.88	131.43	135.18	127.43
Factor of Safety Against Uplift Under Final Conditions, FS*	1.98	186	1.92	1.96	1.80
OK?	ОК	ОК	ОК	OK	OK

Notes:

1. * Indicates this value was calculated considering liner soil materials, permitted waste thickness, and final cover soil materials as ballast under final built conditions

ATTACHMENT 3D.4.2

PRESSURE RELIEF / DEWATERING SYSTEM DESIGN

Geosyntec Consultants October 2023 Page No. 3D.4.2-Cvr

					Geos	syntec	>
				Page	C(1	onsultants of 20	
Written by: P. Pando	ey Date:	7/19/2023	Reviewed Revised by:	& S. Graves	Date:	8/3/2023; 2/7/2024	-
Client: WMTX	Project: Mesquite C	reek Landfill E	Expansion Pro	ject No.: <u>GV</u>	V8636 Phas	e No.: 05	-

HYDRAULIC CAPACITY OF PRESSURE RELIEF / DEWATERING SYSTEM FOR PHASE VII THROUGH XIV

FOR PERMIT PURPOSES ONLY; CALCULATION PAGES 1 THROUGH 20

GEOSYNTEC CONSULTANTS, INC. TX ENG FIRM REGISTRATION NO. 1182

1. INTRODUCTION

From the results presented in Attachment 3D.4.1 (Liner Uplift and Ballast Calculations), waste ballast is required in Unit 2 Phase VII through XIV to resist the calculated potential uplift pressures that may act on the liner system constructed below the seasonal high-water table. At these locations, a pressure relief/dewatering system (hereafter referred to as an underdrain system) will be installed underneath the liner system and operated until sufficient ballast has been placed, at which point its operation may be discontinued. The purpose of this calculation package is to estimate the unit rate of groundwater inflow from the water bearing zone to the bottom of the liner system (both in the cell floor and on the side slope) at locations in Phase VII through XIV requiring waste ballast, and to size the underdrain components (i.e., calculate the hydraulic capacity of the underdrain required to intercept and collect this groundwater seepage without the buildup of excess head on the liner system).

2. METHODOLOGY

The methodology used to design the dewatering system for each area involved following steps:

1. Estimation of representative flow depth and hydraulic conductivity of the water bearing zone and generation of a flow net diagram.

				(Geos	yntec⊳
				Page	CO 2	onsultants
Written by: P. Pandey	Date:	7/19/2023	Reviewed Revised by:	& S. Graves	Date:	8/3/2023; 2/7/2024
Client: <u>WMTX</u> Project:	Mesquite C	reek Landfill	Expansion Pro	oject No.: <u>GW8</u>	8636 Phase	No.: <u>05</u>

- 2. Calculation of inflow into the side slope and cell floor liner system due to groundwater in the water bearing zone.
- 3. Estimation of underdrain strips spacing in the side slope and cell floor.
- 4. Sizing of appropriate geocomposite to handle inflow with appropriate factor of safety (FS) taking into account partial reduction factors due to creep, chemical clogging and/or precipitation of chemicals, and biological clogging.
- 5. Estimation of maximum flow rate in centerline and sideslope toe drains leading to sump for water collection.
- 6. Recommendation for temporary dewatering pump sizing and operation to remove the water collected in the sump.

3. CALCULATIONS

The critical location for the underdrain system design basis occurs where the required hydraulic capacity of the underdrain needs to be the highest, corresponding to where seasonal-high groundwater table elevations are the highest. In the assessment of various points in the ballast calculations (Attachment 3D.1), two locations in the interior cell floor were identified to be potentially critical with highest seasonal high groundwater head of 57 feet. However, it is noted that the water bearing stratum beneath these locations is relatively thin (i.e., on the order of about one foot). Since the majority of interior cell floor will undergo excavation to reach depths nearing the upper boundary of the "rock-like" and very low permeability (not water-bearing) claystone, which essentially confines the groundwater and acts as an aquiclude, and because recharge from above will be eliminated via the liner, the predominant flow is expected to occur via groundwater flowing in a lateral direction. Accordingly, a cross-sectional flow net was employed to model the groundwater condition and prepare the underdrain system design.

The flow rate of groundwater into the liner system can be calculated using a cross-sectional flow net and the following equation (Harr 1962):

 $Q = k\Delta h \frac{N_F}{N_D}$ Where, Q = Flow rate k = Hydraulic conductivity Δh = Change in head

					Geos	syntec
				Page	3 C	onsultants of 20
Written by: P. Pandey	Date:	7/19/2023	Reviewed Revised by:	& S. Graves	Date:	8/3/2023; 2/7/2024
Client: <u>WMTX</u> Project:	Mesquite C	reek Landfill	E xpansion Pro	oject No.: <u>GW</u>	8636_Phas	e No.: <u>05</u>

 N_F = Number of flow lines

 N_D = Number of equipotential head drops

An underdrain system will be installed around all perimeter sideslopes and the cell floor of Unit 2 Phase VII through XIV based on the documented presence of groundwater in the water-bearing zone (Stratum III) above the confining layer of unweathered claystone (Stratum IV). Note that the critical hydraulic capacity of the sideslope underdrain occurs in Phase XII where the difference between the seasonal high groundwater table (SHGT) elevation (approximately 698.4 feet mean sea level (ft msl)) and the elevation of the bottom of the clay liner (approximately 648.3 ft msl) in the northwestern slope is the highest (i.e., water head = 50.2 ft). The elevation of top of Stratum IV (i.e., confining layer) at this location is 642.1 ft msl. For the cell floor, the critical hydraulic capacity occurs in Phase XIV where the lateral flow could potentially be encountered along three exterior perimeter sideslopes of that cell, and with a maximum water head of 48.9 ft, 38.1 ft, and 43.8 ft. Although the hydraulic capacity required at other points along the sideslope and the cell floor liner of Phase VII through XIV varies and would be less than this critical case, an underdrain system design based on the critical case is presented herein, to be used throughout the sideslope and cell floor locations of Unit 2 Phase VII through XIV. This calculation is performed under the assumption that a continuous column of groundwater is present above the top of the confining layer all the way up to the SHGT. This is believed to be conservative because the SHGT in the Unit 2 expansion area for which these calculations pertain is a calculated surface that is substantially higher than observed groundwater levels to-date; and also, because site investigation observations during drilling and construction activities over time have revealed that there does not appear to be a continuous saturated zone across the site throughout the materials above the confining layer.

				(Geos	syntec
				Page	C 4	of 20
Written by: P. Pandey	Date:	7/19/2023	Reviewed Revised by:	& S. Graves	Date:	8/3/2023; 2/7/2024
Client: WMTX Project:	Mesquite C	reek Landfill I	Expansion Pro	oject No.: GW8	636 Phas	se No.: 05

Figure 1: Critical Sections for Underdrain System Design in Phase VII through Phase XIV

				(Geos	syntec [⊳]
				Page	5 CC	onsultants of 20
Written by: P. Pandey	Date:	7/19/2023	Reviewed Revised by:	& S. Graves	Date:	8/3/2023; 2/7/2024
Client: <u>WMTX</u> Project:	Mesquite C	reek Landfill l	E xpansion Pro	oject No.: <u>GW</u>	8636_Phase	No.: <u>05</u>

Step 1: Hydraulic Conductivity Estimation and Flow Net Construction

For the cases where horizontal permeability is not equal to vertical permeability (i.e., anisotropic condition), the equivalent cross-sectional hydraulic conductivity, $k_{equivalent}$ given by the following equation is used:

 $\begin{aligned} k_{equivalent} &= \sqrt{k_{horizontal} k_{vertical}} \\ &= \sqrt{(2.5 \times 10^{-6})(4.2 \times 10^{-9})} \\ &= 1 \times 10^{-7} \text{ cm/s} = 1 \times 10^{-9} \text{ m/s} \end{aligned}$

where $k_{horizontal} = 2.5 \times 10^{-6}$ cm/s from slug test results and $k_{vertical} = 4.2 \times 10^{-9}$ cm/s from laboratory tests.

Because the results obtained from slug tests offer an estimation of the hydraulic conductivity in the horizontal direction and representative of the in-situ permeability at the field-scale, they were utilized in the calculations presented herein.

Additionally, the coordinate system in the horizontal or x direction was transformed to a coordinate system equivalent to the vertical coordinates to develop a flow net for anisotropic conditions. The relationship between the actual x coordinates and the transformed x or x' coordinates is (Harr 1962):

$$x' = x \sqrt{\frac{k_{vertical}}{k_{horizontal}}} = x \sqrt{\frac{4.2 \times 10^{-9}}{2.5 \times 10^{-6}}} = 0.04 \ x = \frac{1}{25} \ x$$

Based on the calculation above, coordinates in the x direction will be reduced by 1/25 of their actual value when drawn on a flow net. For example, if one inch is equal to 10 feet in the vertical (z) direction, then one inch is equal to 250 feet in the x direction. Figure 2a through 2d presents the flow nets for the analyzed sections, with this exaggeration reflected (which distorts the vertical direction and exaggerates the appearance of the liner sideslope angle).

					Geo	syntec ^c
				Page	C 6	onsultants of 20
Written by: P. Pandey	Date:	7/19/2023	Reviewed Revised by:	& S. Graves	Date:	8/3/2023; 2/7/2024
Client: <u>WMTX</u> Proje	ect: Mesquite C	reek Landfill l	E xpansion Pro	oject No.: <u>GW</u>	V 8636 Phas	se No.: 05

no flow boundary

Figure 2b: Flow Net for Section B-B' (at evaluation point T2)

					Geos	syntec
				Page	7 7	onsultants of 20
Written by: P. Pandey	Date:	7/19/2023	Reviewed Revised by:	& S. Graves	Date:	8/3/2023; 2/7/2024
Client: <u>WMTX</u> Project:	Mesquite C	reek Landfill I	Expansion Pro	oject No.: <u>GW</u>	8636 Phas	e No.: <u>05</u>

Step 2: Estimation of Sideslope and Cell Floor Flow Rate

a. <u>Critical Sideslope Inflow Rate (From Section A-A' – Figure 2a)</u>

Flow depth (Δ h) = 698.4 ft - 648.3 ft = 50.1 ft = 15.28 m

No. of flow channels allowing seepage to the side slope, N $_{F, side slope} = 3$

No. of equipotential head drops, $N_D = 4$

						Geos	syntec
					Page	C 8	onsultants of 20
Written by:	P. Pandey	Date:	7/19/2023	Reviewed Revised by:	& S. Graves	Date:	8/3/2023; 2/7/2024
Client: W	MTX Project:	Mesquite Ci	reek Landfill I	E xpansion Pro	oject No.: <u>GW</u>	8636 Phas	e No.: 05

 $Q_{IN,sideslope} = k\Delta h \frac{N_F}{N_D}$ $Q_{IN,sideslope} = 1 \times 10^{-9} \frac{m}{s} \times 15.28 \times \frac{3}{4}$ $Q_{IN,sideslope} = 1.15 \times 10^{-8} m^3/s \text{ per meter of slope}$

b. <u>Critical Cell floor Inflow Rate (From Section B-B', C-C' and D-D'- Figure 2b through 2d)</u>

- I. Inflow from Northwestern Slope (Section B-B') Flow depth (Δ h) = 700 ft - 651.1 ft = 48.9 ft = 14.91 m No. of flow channels allowing seepage to the cell floor, N_{F, cell floor} = 0 $Q_{IN,I,cell floor} = 0$
- II. Inflow from Western Slope (Section C-C')

Flow depth (Δ h) = 692.5 ft - 654.4 ft = 38.1 ft = 11.62 m

No. of flow channels allowing seepage to the cell floor, N $_{F, cell floor} = 1$

No. of equipotential head drops, $N_D = 3$

$$Q_{IN,sideslope} = k\Delta h \frac{N_F}{N_D}$$

$$Q_{IN,sideslope} = 1 \times 10^{-9} \frac{m}{s} \times 11.62 \times \frac{1}{3}$$

$$Q_{IN,II,cell\ floor} = 3.87 \times 10^{-9} \ m^3/s \text{ per meter of slope}$$

III. Inflow from Southeastern Slope (Section D-D')

Flow depth (Δ h) = 669.8 ft - 626 ft = 43.8 ft = 13.3 m

No. of flow channels allowing seepage to the cell floor, N $_{F, cell floor} = 1$

No. of equipotential head drops, $N_D = 3$

$$Q_{IN,sideslope} = k\Delta h \frac{N_F}{N_D}$$

$$Q_{IN,sideslope} = 1 \times 10^{-9} \frac{m}{s} \times 13.3 \times \frac{1}{3}$$

$$Q_{IN,III,sideslope} = 4.43 \times 10^{-9} m^3/s \text{ per meter of slope}$$

					Geos	syntec ^D
				Page	CC 9	onsultants
Written by: P. Pandey	Date:	7/19/2023	Reviewed Revised by:	& S. Graves	Date:	8/3/2023; 2/7/2024
Client: <u>WMTX</u> Project:	Mesquite C	reek Landfill I	E xpansion Pro	oject No.: <u>GW</u>	78636 Phase	No.: <u>05</u>

Total cell inflow rate $Q_{IN,cell floor} = (3.87 \times 10^{-9} m^3/s) + (4.43 \times 10^{-9} m^3/s) = 8.3 \times 10^{-9} m^3/s$ per meter of slope.

Step 3: Underdrain Spacing and Required Flow Rate Estimation

The spacing of the underdrain geocomposite strips is determined using the following equation (Cedergren, 1967):

$$Q = k \frac{h^2}{b}$$

Where Q =volumetric flow rate per unit width; k = hydraulic conductivity; h = driving head; and b = maximum length of drainage path as shown in the sketch below:

a. Sideslope Underdrain Design

Based on the cross-sectional flow nets, the maximum flow to the side slope is $1.15 \times 10^{-8} m^3/s$ per meter of slope. The spacing of the underdrain strips is designed in such a way that the allowable excess head (or the uplift head) is adequately resisted by the weight of the liner system (compacted clay and protective cover) (i.e., with a F.S of 1.2). It is noted that the protective cover will be 2.1 ft thick in the vertical direction on the sideslope, with a selected unit weight of approximately 96 pcf. Likewise, compacted clay will be 2.1 ft thick in the vertical direction on the sideslope, with the selected unit weight of approximately 120 pcf. Therefore, the allowable uplift head is given by:

					Geos	syntec
				Page	C(10	onsultants of 20
Written by: P. Pandey	Date:	7/19/2023	Reviewed Revised by:	& S. Graves	Date:	8/3/2023; 2/7/2024
Client: <u>WMTX</u> Project:	Mesquite C	reek Landfill 1	Expansion Pro	oject No.: <u>GW</u>	8636 Phase	e No.: <u>05</u>

$$h = \frac{2.1 \times 96 + 2.1 \times 120}{1.2 \times 62.4} = 6.05 \text{ ft} = 1.84 \text{ m}$$

Therefore, maximum drainage path:

$$b = k \frac{h^2}{Q} = 2.5 \times 10^{-8} \, m/s \ \times \frac{1.84^2}{1.15 \times 10^{-8} \, m^3/s} = 7.36 \, \mathrm{m}$$

Because the flow path of the groundwater from the subsurface to the underdrain strips will primarily be in the horizontal plane, the horizontal hydraulic conductivity of Stratum III was used for the calculation of spacing.

The maximum spacing (edge-edge) of the geocomposite strips on the sideslope is twice the maximum drainage path length, therefore:

Maximum spacing of geocomposite Strips = 2×7.36 m = 14.7 m \approx 14.5 m (i.e., 47.6 ft maximum edge-to-edge spacing). Note that the engineering drawings in Part III, Attachment 3A and Figure 4 at the end of this package show a 45 ft (i.e., 13.7 m) maximum edge-to-edge spacing (the spacing was rounded down slightly for convenience/practicality).

Each geocomposite drainage strip will accept a fraction of the total flow to the sideslope. Assuming the flow to the sideslope is uniformly distributed, each drainage strip will drain a sideslope area with a length equal to the length of the sideslope (assumed for conservatism although the entire slope may not have water in its perimeter sideslope) in Phase XII and a width equal to the width of the strip plus the distance to the adjacent drainage strip. Assuming the width of the underdrain strip as 7 ft (i.e., 2.1 m), the required flow capacity of the geocomposite drainage strip is:

 $Q_{\text{IN, sideslope strip}} = Q_{\text{IN, sideslope}} \times (2b + w) = 1.15 \times 10^{-8} \ m^3/s \times (13.7 + 2.1)$

 $Q_{\text{IN, sideslope strip}} = 1.82 \times 10^{-7} \ m^3/s$

b. Cell Floor Underdrain Design

Based on the cross-sectional flow nets, the maximum flow to the cell floor of Phase XIV is $8.35 \times 10^{-9} m^3/s$ per meter of side slope. Because the cell floor will be graded at 5% and

				(Geos	syntec⊳
				Page	CC 11	of 20
Written by: P. Pandey	Date:	7/19/2023	Reviewed Revised by:	& S. Graves	Date:	8/3/2023; 2/7/2024
Client: <u>WMTX</u> Project: <u>M</u>	lesquite C	reek Landfill	Expansion Pro	oject No.: <u>GW</u>	<u>8636</u> Phase	: No.: <u>05</u>

sloped towards the centerline, the underdrain strips are recommended to be placed accordingly (i.e., sloped at 5% allowing the incoming water to be drained to the centerline drain which will be installed beneath the liner system, aligned under the leachate corridor). The flow into the centerline drain will ultimately be directed to the underdrain sump constructed at the lowest point of the cell (see Figures 3 and 4). The required hydraulic capacity calculated for the floor geocomposite strips is presented below:

Figure 3. Cell floor - example of underdrain strips layout

[Note – in Figure 3, the underdrain strip locations are examples of a couple of adjacent strips to portray the concept. The strips would then repeat in this manner throughout the rest of the cell floors (to provide complete cell floor coverage in evenly spaced strips), according to the required spacing calculated herein. Please see attached Figure 4 at the end of this calculation package for an example underdrain system layout for a full cell.]

Q total, cell floor = $8.3 \times 10^{-9} m^3/s \times 781.5 m$ (exterior toe perimeter= 2562.3 ft)

Page 12 of 20						Geos	syntec
					Page	C0 12	onsultants of 20
Written by: P. Pandey Date: 7/19/2023 Reviewed & S. Graves Date: 8/3/2023 Revised by:	Written by: P. Pandey	Date:	7/19/2023	Reviewed Revised by:	& S. Graves	Date:	8/3/2023; 2/7/2024

Q total, cell floor = $6.48 \times 10^{-6} m^3/s$

Assuming the flow is distributed uniformly throughout the cell floor, inflow into the bottom of liner system on either side of the centerline gravel drain is equivalent to the half of the total inflow:

Q half, cell floor = $\frac{6.48 \times 10^{-6} m^3/s}{2} \frac{m^3}{s} = 3.24 \times 10^{-6} m^3/s$

Therefore, volumetric flow per unit width of centerline from each side of the cell is given by:

$$Q_{\text{IN, centerline}} = \frac{3.24 \times 10^{-6} \text{ m}^3/\text{s}}{\text{length of centerline toe drain (468.6 m)}}$$

 $Q_{IN, \text{ centerline}} = 6.91 \times 10^{-9} m^3/s$ per m of centerline drain

where, length of centerline drain= 1536.5 ft $\approx 468.6~m$

As stated earlier, the spacing of the underdrain strips is designed in such a way that the allowable excess head (or the uplift head) is well resisted by the weight of the liner system (compacted clay and protective cover) with a F.S of 1.2. Therefore, the allowable uplift head from 2 ft thick protective cover and 2 ft compacted clay in the cell floor with the corresponding unit weight of 96 pcf and 120 pcf, respectively is given by:

$$h = \frac{2 \times 96 + 2 \times 120}{1.2 \times 62.4} = 5.77 \text{ ft} = 1.76 \text{ m}$$

Therefore, maximum drainage path:

$$b = k \frac{h^2}{q} = 2.5 \times 10^{-8} m/s \times \frac{1.76^2}{6.91 \times 10^{-9} m^3/s} = 11.2 m$$

Because the flow path of the groundwater from the subsurface to the underdrain strips will primarily be in the horizontal plane, the horizontal hydraulic conductivity of Stratum III was used for the calculation of spacing.
				(Geos	syntec⊳
				Page	CO 13	onsultants
Written by: P. Pandey	Date:	7/19/2023	Reviewed Revised by:	& S. Graves	Date:	8/3/2023; 2/7/2024
Client: <u>WMTX</u> Project:	Mesquite C	reek Landfill	E xpansion Pro	oject No.: <u>GW8</u>	8636 Phase	No.: <u>05</u>

The maximum spacing (edge-edge) of the geocomposite strips on the floor is twice the maximum drainage path length, therefore:

Maximum spacing of geocomposite strips = $2 \times 11.2 \text{ m} = 22.4 \text{ m} \approx 22 \text{ m}$ on each side of the centerline (i.e., 72.2-ft maximum edge-to-edge spacing). Note that the engineering drawings in Part III, Attachment 3A and Figure 4 at the end of this package show a 72 ft (i.e., 21.9 m) maximum edge-to-edge spacing (the spacing was rounded down slightly for convenience/practicality).

Each geocomposite drainage strip will drain a fraction of total flow from each half of the cell into the centerline drain. Assuming the flow is uniformly distributed, each drainage strip will drain a floor area with a length equal to average length of the strip and width equal to width of the strip plus the distance to the adjacent drainage strip. Assuming the width of the underdrain strip as 7 ft (i.e., 2.1 m), the required flow capacity of the floor geocomposite drainage strip is:

$$Q_{\text{IN, cell floor strip}} = Q_{\text{IN, centerline}} \times (2b + w) = 6.91 \times 10^{-9} \ m^3 / s \times (21.9 + 2.1)$$
$$Q_{\text{IN, cell floor strip}} = 1.66 \times 10^{-7} \ m^3 / s$$

Step 4: The minimum baseline product transmissivity of geocomposite (θ_{GC}) required to convey the maximum flow calculated in Step 3 is computed based on the required flow rate (Q_{GC}) and thickness (t) of the geocomposite (Koerner, 2005). The overall FS for the design is defined as the ratio of the allowable flow rate (Q_{allow}) to the required flow rate obtained from design of the actual system ($Q_{required}$):

$$FS = \frac{Q_{allow}}{Q_{required}}$$

$$Q_{allow} = Q_{GC} \frac{1}{(RF_{CR} \times RF_{CC} \times RF_{BC})}$$

Thus,

					Geos	syntec
				Page	C(14	onsultants of 20
Written by: P. Pandey	Date:	7/19/2023	Reviewed Revised by:	& S. Graves	Date:	8/3/2023; 2/7/2024
Client: WMTX Project:	Mesquite C	reek Landfill I	Expansion Pro	oject No.: GW	8636 Phase	e No.: 05

$Q_{GC} = (Q_{required} \times FS) \times (RF_{CR} \times RF_{CC} \times RF_{BC})$

where:

FS = 2.0 (overall factor of safety for design) $Q_{required} = 9.89 \times 10^{-8} \text{ (Maximum inflow rate calculated in Step 3)}$ $RF_{CR} = 1.5 \text{ (reduction factor for creep deformation)}$ $RF_{CC} = 1.2 \text{ (reduction factor for chemical clogging)}$ $RF_{BC} = 1.2 \text{ (reduction factor for biological clogging)}$

 $Q_{GC} = (1.82 \times 10^{-7} \ m^3/s \times 2) \times (1.5 \times 1.2 \times 1.2)$

$$Q_{GC} = 7.86 \times 10^{-7} m^3 / s$$

Assuming thickness of typical geocomposite as 0.2 inches (0.005 m), the transmissivity is given as:

$$\theta_{GC} = \frac{Q_{GC}}{t} = \frac{7.86 \times 10^{-7} m^3/s}{0.005 m} = 1.6 \times 10^{-4} m^2/s$$

Therefore, the geocomposite (including geotextiles bonded to the geonet core) to be used for design should have a minimum θ_{GC} (transmissivity at 100-hours when placed between two steel plates and subjected to the expected normal stress and gradient) greater than $1.6 \times 10^{-4} \text{ m}^2/\text{s}$. Further, the geocomposite should be able to provide this transmissivity at a minimum stress of 8,912 psf (based on the maximum case with about 111.4 ft of waste required to provide the necessary ballast, and a waste unit weight (γ_{waste}) of 80 pcf) [conservatively using same γ_{waste} as is used for settlement analysis rather than the 44 pcf used in the liner uplift calculations solely for computation of stress purposes for establishing the transmissivity condition]. Geocomposite products can readily achieve this minimum θ_{GC} value.

Manufacturers of geocomposite drainage materials often present the hydraulic capacities of their product by reporting the transmissivity between two steel plates for a short duration (i.e., 15-minute) test. These index transmissivities (θ_{INDEX}) are usually higher than those obtained using the site-specific boundary condition of soil on both sides of the geocomposite because the steel plates provide minimal amounts of intrusion into the

				(Geos	yntec ^D
				Page	CC 15	onsultants of 20
Written by: P. Pandey	Date:	7/19/2023	Reviewed Revised by:	& S. Graves	Date:	8/3/2023; 2/7/2024
Client: <u>WMTX</u> Project:	Mesquite C	reek Landfill l	Expansion Pro	oject No.: <u>GW</u>	8636 Phase	No.: <u>05</u>

drainage layer. To compare the specified θ_{GC} of the underdrain drainage layer with θ_{INDEX} reported by the manufacturer, a reduction factor can be applied to θ_{GC} to account for geotextile intrusion into the geonet core of the geocomposite. The index transmissivity, θ_{INDEX} , which accounts for intrusion can be estimated as:

$$\theta_{INDEX} = \theta_{GC} \times RF_{INT}$$

where:

 $RF_{INT} = 1.5$ (reduction factor for geotextile intrusion).

$$\theta_{INDEX} = 1.6 \times 10^{-4} \frac{m^2}{s} \times 1.5 = 2.4 \times 10^{-4} m^2/s$$

[Note: nothing in this calculation precludes installation of a geocomposite drainage layer having greater transmissivity than the minimum value computed herein (for example, it may be practical to use the same geocomposite drainage layer product and material specifications (per the LQCP) as will be used for the leachate collection drainage layer, provided that it meets or exceeds the minimum transmissivity for the underdrain, as indicated herein).]

Step 5: Gravel Toe Drain and Centerline Drain Inflow Rates

The underdrain system will include a 2 ft x 1 ft gravel drain installed along the interior toe of the perimeter sideslopes (referred to as sideslope toe drain) and along the centerline of cell floor (referred to as centerline drain) [illustrated on the landfill design drawing details in Part III, Attachment 3A]. These drains are designed to collect and convey the incoming water from the geocomposite strips installed at the side slopes and cell floor to a designated low point (underdrain sump) of the respective cell.

The peak flow rate through the gravel drains occurs in Phase XIV, where the maximum number of underdrain strips are placed to facilitate inflow from the water bearing zone and are contributing to the flow through the gravel drains. Consequently, the calculation of the maximum flow through the centerline drain is based on the estimated flow through 15

				(Geos	syntec⊳
				Page	CC 16	onsultants
Written by: P. Pandey	Date:	7/19/2023	Reviewed Revised by:	& S. Graves	Date:	8/3/2023; 2/7/2024
Client: <u>WMTX</u> Project:	Mesquite C	reek Landfill l	E xpansion Pro	oject No.: <u>GW8</u>	B636 Phase	No.: <u>05</u>

underdrain strips spaced at 45 ft max edge-edge spacing in the sideslope and 42 underdrain strips spaced at 72 ft max edge-edge spacing in the cell floor. Likewise, the maximum flow for the sideslope toe drain occurs along the longest flow path on the southwest perimeter slope through 40 underdrain strips positioned with a maximum edge-edge spacing of 45 ft. The maximum flow is estimated as below:

 $Q_{,max} = (N_{sideslope} X Q_{IN,sideslope \ strip}) + (N_{cell \ floor} X Q_{IN,cell \ floor \ strip})$ where $Q_{,max} =$ Maximum flow through gravel toe drain

N_{sideslope} = Number of contributing sideslope strips

N_{cell floor} = Number of contributing cell floor strips

 $Q_{IN,sideslope\ strip}$ = Flow through sideslope underdrain strip

 $Q_{IN,cell\ floor\ strip} =$ Flow through cell floor underdrain strip

Therefore

 $Q_{Sideslope \ toe \ drain, \ max} = 40 \ X \ (1.82 \times 10^{-7} \frac{m^3}{s})$ = 7.28 × 10⁻⁶ m³/s (0.115 gpm) $Q_{Centerline \ drain, \ max} = 15 \ X \ (1.82 \times 10^{-7} \frac{m^3}{s}) + 42 \ X \ (1.66 \times 10^{-7} \frac{m^3}{s})$ = 9.71 × 10⁻⁶ m³/s (0.154 gpm)

The underdrain system layout for Unit 2, Phase XIV is presented in Figure 4 of this calculation package. This is the largest cell and thus was used as the basis for design. The layout shown on Figure 4 is given as an example, and these features, spacing, and layout approach will similarly apply to all cells in the Unit 2 expansion area (Phases VII through XIV).

Step 6: Centerline and Sideslope Toe Drain Flow Capacity Analysis

These drains are designed to have 1% (min) slope towards the low points and will consists of a clean coarse gravel as a drainage media (same aggregate as will be used for the leachate collection corridors and sumps, as specified in the Liner Quality Control Plan),

					Geos	syntec [▷]
				Page	C0 17	onsultants of 20
Written by: P. Pandey	Date:	7/19/2023	Reviewed Revised by:	& S. Graves	Date:	8/3/2023; 2/7/2024
Client: <u>WMTX</u> Project:	Mesquite C	reek Landfill	E xpansion Pro	oject No.: <u>GW</u>	7 8636 Phase	e No.: <u>05</u>

encased within a geotextile filter. The hydraulic conductivity of clean coarse gravel is ranges from about 1 to 100 cm/s, with a logarithmic average of 10 cm/s (Das, 2011; Holtz and Kovacs, 1981). For the analysis presented herein, the average value of 10 cm/s was reduced by a factor of 10, to use the lower-bound value of 1 cm/s. This assumption is considered reasonable as it not only provides substantial safety margin from the typically observed permeability of clean gravel but also reflects the lower end of the permeability range.

The flow capacity of the gravel drain is determined as

$$Q = k I A$$

$$Q = \left(1 \frac{cm}{s} \times \frac{1 m}{100 cm}\right) \times (0.01) \times \left(2 ft X \frac{0.3048 m}{1 ft}\right) X \left(1 ft X \frac{0.3048 m}{1 ft}\right)$$

$$Q = 1.85 \times 10^{-5} m^3 / s (0.29 gpm)$$

Where Q = Flow through gravel drainage media

k = Hydraulic conductivity of drainage media = 1 cm/s

I = Hydraulic gradient (equivalent to the minimum slope) = 0.01

A =Cross sectional area of gravel drain

Comparison between the estimated maximum total flow through the sideslope toe drain (0.115 gpm) vs. the gravel drain capacity at 1% slope (0.29 gpm) reveals that the gravel toe drain has adequate hydraulic capacity to convey the maximum estimated maximum toe drain flow.

Similarly comparison between the estimated maximum total flow through the centerline drain (0.154 gpm) vs. the gravel drain capacity at its minimum 1% slope (0.29 gpm) reveals that the gravel centerline drain has adequate hydraulic capacity to convey the maximum estimated maximum centerline drain flow.

<u>Step 7</u>: The underdrain sump at the site will have dimensions of 3 ft depth, 10 ft width, and 10 ft length. Then:

Volume of sump (*V*) = $3 \times 10 \times 10 = 300 \, ft^3$

Assuming porosity of soil as 0.3, the flow is expected as:

				(Geos	syntec ^C
				Page	CC 18	onsultants of 20
Written by: P. Pandey	Date:	7/19/2023	Reviewed Revised by:	& S. Graves	Date:	8/3/2023; 2/7/2024
Client: WMTX Project:	Mesquite C	reek Landfill l	Expansion Pro	oject No.: GW 8	8636 Phase	No.: 05

Sump capacity = $300 ft^3 \times 0.3 = 90 ft^3$ (670 gallons)

Time to fill sump, $t = \frac{670 \text{ gallons}}{(0.115+0.154) \text{ gpm}} = 2481.5 \text{ minutes} (\approx 41 \text{ hours})$

As an example, for pump sizing, using a pump with pumping rate of 20 gpm, the time to empty the sump is 33.5 minutes. So, for this example, approximately one pump cycle in a 20 hours interval would be required to empty the temporary dewatering sump at the facility.

4. CONCLUSION

To collect seepage from the water bearing zones control buildup of hydraulic heads beneath the liner system, temporary underdrain systems as presented above will be used in Phase VII through XIV until sufficient ballast has been placed.

Engineering details presenting the underdrain system design, consistent with the spacing/layout presented herein, are provided in Part III, Attachment 3A (Landfill Design Drawings). Also, the underdrain components (geocomposite, drainage aggregate, etc.) should meet the material properties (and be installed) as set forth in the Liner Quality Control Plan (Part III, Attachment 3C).

				(Geos	syntec ^D
				Page	CC 19	onsultants
Written by: P. Pandey	Date:	7/19/2023	Reviewed Revised by:	& S. Graves	Date:	8/3/2023; 2/7/2024
Client: <u>WMTX</u> Project:	Mesquite C	reek Landfill	Expansion Pro	oject No.: <u>GW8</u>	8636 Phase	No.: <u>05</u>

REFERENCES

Cedergren, H.R., (1967), Seepage, Drainage, and Flow nets, John Wiley and Sons, Inc., New York, pp. 133-344.

Das, Braja M., (2010) *Principles of Geotechnical Engineering*, Seventh Edition, Cengage Learning.

Harr, M.E., (1962), *Groundwater and Seepage*, Dover Publications, Inc., New York, pp-21-33.

Holtz, R. D., Kovacs, W. D., & Sheahan, T. C. (1981). An introduction to geotechnical engineering (Vol. 733). Englewood Cliffs: Prentice-Hall.

Koerner, R.M., (2005), Designing with Geosynthetics, Fifth Edition, Prentice Hall, NJ.

Figure 4. Typical Underdrain Layout

Mesquite Creek Landfill MSW Permit No. 66C Part III, Attachment 3E

ATTACHMENT 3E

LEACHATE AND CONTAMINATED WATER MANAGEMENT PLAN

Geosyntec Consultants October 2023 Page No. 3E-Cvr

PART III – ATTACHMENT 3E LEACHATE AND CONTAMINATED WATER **MANAGEMENT PLAN**

MESQUITE CREEK LANDFILL COMAL AND GUADALUPE COUNTIES, TEXAS PERMIT AMENDMENT APPLICATION **MSW PERMIT NO. 66C**

Prepared for: Waste Management of Texas, Inc.

Prepared by:

Geosyntec[▷] consultants

8627 N Mopac Expy, Suite 300

FOR PERMIT PURPOSES ONLY

Austin, Texas 78759 (512) 451-4003

> Submitted October 2023 Revised February 2024; April 2024

TABLE OF CONTENTSLEACHATE AND CONTAMINATED WATER MANAGEMENT PLAN

1. IN	TRODUCTION1
1.1	Purpose and Scope1
1.2	Leachate Management System Drawings1
2. LI G	EACHATE, GAS CONDENSATE, AND CONTAMINATED WATER ENERATION
2.1	Definitions and Overview of Generation Process2
2.2	Leachate Generation
2.3	Surface Water Generation and Management (Including Contaminated Water)
2.3 2.3	3.1 Uncontaminated Surface Water Management 4/15/2024 3.2 Contaminated Water 3
2.4	Gas Condensate Management
3. LI	EACHATE COLLECTION SYSTEM
3.1	Description of Existing Leachate Collection System
3.2	Proposed System Layout and Design Details
3.3	Leachate Drainage Layer
3.4	Leachate Collection Corridor and Sideslope Chimney Drain7
3.5	Leachate Collection Sumps8
4. LI	EACHATE REMOVAL AND TRANSMISSION SYSTEM9
4.1	Leachate Pumps and Riser Pipes9
4.2	Leachate Transmission10
5. LI	EACHATE AND CONTAMINATED WATER STORAGE
5.1	Leachate Sumps11
5.2	Storage Tanks11
5.3	Leachate Evaporation Ponds11
6. LI	EACHATE AND GAS CONDENSATE RECIRCULATION
6.1	General Recirculation Requirements
6.2	Recirculation Rates

6.3	Operational Procedures for Recirculation	14
LEA	CHATE AND CONTAMINATED WATER DISPOSAL	16
LON	NG-TERM PERFORMANCE AND OPERATIONS	.17
8.1	Design Provisions for Compatibility and Long-Term Performance	17
8.2	Operation and Maintenance (Including Performance Monitoring and Inspections)	17
REF	FERENCES	18
	 6.3 LEA LON 8.1 8.2 REF 	 6.3 Operational Procedures for Recirculation

TABLES

Table 3E-1 Allowable Leachate Recirculation Rates

ATTACHMENTS

Attachment 3E.1	Leachate and Contaminated Water Management Drawings
Attachment 3E.2	Leachate Generation Rates and Head on Liner (HELP Model Calculations)
Attachment 3E.3	Leachate Collection Geosynthetic Drainage Layer Design
Attachment 3E.4	Leachate Collection Corridor and Sideslope Chimney Drain Pipe Design
Attachment 3E.5	Leachate Collection Sump Design
Attachment 3E.6	Leachate Collection and Riser Pipe Strength Design
Attachment 3E.7	Evaluation of Leachate Collection System Materials Compatibility with
	Municipal Solid Waste Leachate

FOR PERMIT PURPOSES ONLY

GEOSYNTEC CONSULTANTS, INC. TEXAS ENG. FIRM REGISTRATION NO. F-1182

1. INTRODUCTION

1.1 <u>Purpose and Scope</u>

The purpose of this Leachate and Contaminated Water Management Plan is to describe how leachate and contaminated water (as well as gas condensate) generated at the Mesquite Creek Landfill (the facility) will be managed. The plan provides information on the collection, removal, transmission, storage, and disposal of these wastewaters generated during the active (including final closure) and post-closure periods of the landfill. Specifically, this plan addresses the following:

- leachate, gas condensate, and contaminated water generation and management;
- leachate collection system design and operation, including:
 - o components and layout;
 - drainage media design and performance (including depth of leachate over the liner);
 - collection pipe design (hydraulic capacity, resistance to clogging, strength);
 - o sump design;
 - chemical resistance and long-term durability;
- leachate removal system design and operation;
- leachate, gas condensate, and contaminated water storage;
- leachate and gas condensate recirculation;
- leachate, gas condensate, and contaminated water disposal; and
- long-term performance (including design and operating provisions).

1.2 Leachate Management System Drawings

A series of drawings presenting the layout of the leachate management system and details on its design features and components are provided on Drawings 3E-1A through 3E-9 included in Attachment 3E.1 of this plan.

2. LEACHATE, GAS CONDENSATE, AND CONTAMINATED WATER GENERATION

2.1 <u>Definitions and Overview of Generation Process</u>

Leachate is a liquid that has passed through or emerged from solid waste and contains soluble, suspended, or miscible materials removed from such waste. The general process for leachate generation is water from precipitation infiltrating into the landfill and percolating through the waste. As such, leachate is generated in the normal course of operations of a municipal solid waste landfill; and the quantity of leachate produced depends on the climate, type of cover and associated management practices, grading/layout/topography of the landfill, construction and landfilling sequence and procedures, cover material characteristics, and waste characteristics.

Gas condensate is the liquid generated as a result of any gas recovery process at a municipal solid waste facility. In general, gas condensate liquid is generated as water vapor contained within the landfill gas condenses within a landfill gas collection system.

Contaminated water is leachate, gas condensate, or water that has come into contact with waste. For example, contaminated water is generated when stormwater runoff comes into contact with solid waste at the active working face of the landfill. As stated by 30 TAC §330.165(a) and (c), stormwater runoff from areas that have intact daily cover or intact intermediate cover is not considered as having come into contact with the working face or leachate (i.e., is not contaminated water).

2.2 Leachate Generation

Modeling of leachate generation rates was performed using the Hydrologic Evaluation of Landfill Performance (HELP) computer model (Version 3.95 D) developed by Dr. Klaus Berger of the University of Hamburg, Institute of Soil Science and the U.S. Army Corps of Engineers, Waterways Experiment Station (Berger and Schroeder, 2013) as a windows-based program that maintains consistency with the methodology of U.S. Environmental Protection Agency (USEPA) HELP model version 3.07 (Schroeder et al., 1994a, 1994b).

The HELP program is a quasi two-dimensional hydrologic model of water movement across, into, through, and out of landfills. The program accepts climatologic, soil, and design data, and uses a solution technique that accounts for the effects of surface storage, runoff, infiltration, evapotranspiration, soil moisture storage, and vertical and lateral drainage.

Leachate generation was evaluated using HELP for active (initial and intermediate) and closed/post-closure landfill conditions. Operating conditions with and without leachate recirculation were considered. An explanation of the landfill scenarios that were analyzed, a description of the input parameters that were used, and printouts of HELP model output are included in Attachment 3E.2 (Leachate Generation Rates and Head on Liner (HELP Model

Calculations)). The analyses demonstrate that the leachate collection system is designed to maintain less than a 30-centimeter depth of leachate over the liner, and the results are used to design and develop specifications for the geocomposite drainage layer (discussed subsequently).

2.3 <u>Surface Water Generation and Management (Including Contaminated Water)</u>

Throughout the life of the facility, best management practices will be used to manage surface water, minimize its potential to come into contact with waste, and minimize contaminated water generation at the facility. Also, leachate and gas condensate will be collected and segregated from surface water to minimize contaminated water generation at the facility, using the techniques and measures for leachate and gas condensate management discussed throughout this plan.

2.3.1 Uncontaminated Surface Water Management

The landfill and adjacent areas will be graded with temporary and permanent drainage features to provided run-on/off controls for stormwater. Daily cover, intermediate cover, and final cover will be graded and maintained to promote runoff, minimize the area of exposed waste, and prevent ponding of surface water. Runoff from disturbed areas outside the limits of waste disposal and from landfill areas having intact daily cover, intermediate cover, or final cover is "clean" (not contaminated) and will be managed via facility's surface water management system and discharged in accordance with the facility's Texas Pollutant Discharge Elimination System (TPDES) Multi-Sector General Permit.

At the active working face, a system of temporary diversion berms will be constructed as needed to minimize the possibility of clean stormwater run-on becoming contaminated water. These temporary diversion berms will be constructed up-gradient from and adjacent to the working face with earthen material, and will route (divert) clean stormwater runoff into the surface water management system and away from the active working face. This configuration is illustrated on Drawing 3E-9, which provides requirements for sizing of the berms (which varies depending on their slope configuration and the contributing up-gradient drainage area). The design calculations for sizing of the diversion berms are provided in the On-Site Design – Active Face Surface Water Controls calculation package (Attachment 2E of the Facility Surface Water Drainage Report in Part III, Attachment 2).

2.3.2 Contaminated Water

A system of temporary containment berms will be constructed around the down-gradient portions of the active face (and situated over lined areas) to collect and contain surface water that has come into contact with waste (i.e., contaminated water). Also, similar containment berms will be constructed elsewhere at the facility wherever they are needed to collect and contain contaminated water. Drawing 3E-9 illustrates the containment berms and provides the required size of the berms (which varies depending on the size of the working face and the containment area). As mentioned, the design calculations for sizing of the diversion berms are provided in the On-Site Design –

Active Face Surface Water Controls calculation package (Attachment 2E of the Facility Surface Water Drainage Report in Part III, Attachment 2).

Contaminated water that collects at the active working face may evaporate or be absorbed into the waste and become leachate; however, contaminated water is not allowed to remain ponded, nor is it allowed to cause nuisance conditions (e.g., odors) or the attraction of vectors. The provisions of Sections 16 and 17 of the Site Operating Plan (SOP) will be followed with respect to the control of odors and vectors as it relates to increased potential caused by contaminated water. At on-site haul roads over waste, and only on such roads located over Unit 2 (which is a Subtitle D-lined landfill) areas and within interior landfill areas (not on exterior facing slopes), contaminated water is also allowed to be applied to the roads for surficial dust control (but only if the quantity is minimized to the extent that it does not recirculate into the landfill, runoff, or pond when applied). If contaminated water generation occurs in areas adjacent to the active working face or in other facility operations areas, contaminated water management measures will be implemented in a similar manner as those for the active working face.

Contaminated water at the working face and any other areas of the facility where it is generated will be removed by pumps or tanker/vacuum trucks and will be stored and disposed of as set forth in this plan. Note that recirculation of contaminated water into the waste mass is not allowed. Contaminated water (generally when in small quantities for practicality purposes) may also be taken to the on-site solidification area for solidification followed by on-site disposal of solidified material (having no free liquids) in the landfill. Storage of contaminated water is addressed in Section 5 of this plan. Off-site disposal, including prohibitions on off-site discharge, is addressed in Section 7 of this plan.

2.4 Gas Condensate Management

The facility operates a landfill gas collection and control system (GCCS), as described in Part III, Attachment 6 (Landfill Gas Management Plan). Gas condensate generated at the facility will be collected at low points in the GCCS and will be periodically removed and transferred into the leachate management system, where it will be handled in the same manner as leachate, as described subsequently in this document.

3. LEACHATE COLLECTION SYSTEM

3.1 Description of Existing Leachate Collection System

The existing landfill includes a "pre-Subtitle D" area: Unit 1, Phases I and II. Construction of the pre-Subtitle D area pre-dated the RCRA Subtitle D regulations promulgated in the early 1990s, and as such, they are built with a liner system that has a clay liner without an overlying geomembrane. Unit 1, Phase II has a leachate collection system whereby the clay liner was graded to drain towards a leachate collection pipe located on the west perimeter of the phase. Leachate can also be removed from this phase via two leachate manholes located along the pipe. A leachate pipe was also installed on the east perimeter of Unit 1, Phase II, between Phases I and II.

The remainder of the landfill (i.e., Unit 1, Phases III and V, and all of Unit 2) is designed and has been or is being constructed with a Subtitle D-compliant liner system (with composite liner and leachate collection and removal system). Unit 1 is final covered, and as such, the liner and leachate collection system for Unit 1, Phases III and V has been constructed and waste placement is complete in these phases (as well as for all of Unit 1). Note that there is no Unit 1, Phase IV. The leachate management system plan for the Subtitle D areas of Unit 1 area is shown on Drawing 3E-1A.

Additionally, the liner and leachate collection system for Unit 2, Phases I through VI-North has been constructed, and waste is currently being placed in Unit 2, Phase VI. The leachate management system plan for the Unit 2 area is shown on Drawing 3E-1B.

Each phase is equipped with a sump at the low point of the phase, where leachate removal is performed using a submersible pump that withdraws leachate and transfers it to the existing onsite leachate evaporation ponds. The remainder of this section describes the proposed leachate collection system of the proposed and to-be-constructed Unit 2, Phases VII through XIV.

3.2 <u>Proposed System Layout and Design Details</u>

Primarily, leachate collection at the landfill will be accomplished via the leachate collection system of drainage layers and piping that are sloped and graded to flow by gravity to low points in each phase (i.e., sumps). At the sumps, leachate will be removed and managed via storage (e.g., on-site leachate evaporation ponds or leachate storage tanks) and disposal as described subsequently in this plan.

The leachate management system plan for the Unit 2 area is shown on Drawing 3E-1B. Unit 2, Phases I through VI, will continue to operate as previously designed and constructed, collecting and draining leachate to a sump in each of these phases, where it will be pumped out consistent with current practices and as described herein. Finally, proposed Unit 2, Phases VII through XIV, will also drain leachate to a sump in each of these phases before being pumped out for management as described herein.

Engineering drawings showing the design features and details of the leachate management system are presented in Drawings 3E-2 through 3E-9. Design calculations for the leachate collection system are provided in Attachments 3E.2 through 3E.7 of this plan. Consistent with 30 TAC §330.331(a)(2) and §330.333, the layout and materials of the leachate collection system were designed (as demonstrated in Attachment 3E.2) and will be constructed to maintain less than a 30 cm (12 in.) depth of leachate over the liner.

3.3 Leachate Drainage Layer

The proposed liner system for Unit 2, Phases VII through XIV, includes a drainage layer for leachate collection, composed of a double-sided geocomposite. Liner system details are presented as part of the Landfill Design Drawings in Part III, Attachment 3A. Details specific to leachate collection on the liner are presented on the drawings in Attachment 3E.1 (e.g., Drawing 3E-3).

Leachate percolating through the waste will be collected in the drainage layer above the liner and will flow by gravity to a leachate collection corridor, sideslope chimney drain, or directly into a sump, based on the geometry and grades of each given phase. As shown on Drawing 3E-1B, the leachate collection system on the landfill floor of the proposed expansion area (Unit 2, Phases VII through XIV) slopes at 5% (minimum) towards a leachate collection corridor. The maximum drainage length along the floor is approximately 425 ft, which occurs in Phase XIV. The Unit 2, Phases VII through XIV, sideslopes are configured at 33% (3H:1V) maximum, with a maximum drainage length of approximately 210 ft along the 3H:1V sideslopes.

The HELP model was used to calculate the minimum allowable design transmissivity of the geosynthetic drainage layer based on meeting the regulatory required criterion of maintaining less than 30 cm (12 in.) of head on the liner, as described and demonstrated in Attachment 3E.2 (Leachate Generation Rates and Head on Liner (HELP Model Calculations)). No additional inflow was calculated for a hypothetical case of groundwater potentially flowing into the landfill. This was judged appropriate for this design because the landfill floor (critical location for leachate collection where it will congregate and could build up the largest head on the liner) and sideslopes will have an underdrain system installed and operating to prevent buildup of hydrostatic pressures beneath the liner during the active period of landfill operation when leachate generation rates are the highest. Furthermore, by the presence of the Subtitle D compacted clay liner and geomembrane, there would be an inability for groundwater to migrate readily into the leachate collection system to any significant degree (negligible for the purposes of the design presented herein).

A factor of safety and additional reduction factors accounting for creep, clogging, and intrusion were applied to the design transmissivity to obtain the minimum specified index transmissivity, as described in Attachment 3E.3 (Leachate Collection Geosynthetic Drainage Layer Design). By inspection of Figure 1 in Attachment 3E.3, the most critical operation condition for the geocomposite drainage layer is the intermediate condition in the new fill area, NF3; due to the change in geocomposite transmissivity as a function of stress, the critical condition occurs where

the difference between required θ_{100} and measured θ_{100} is the least, not necessarily at the largest calculated transmissivity (e.g., NF1). Based on the foregoing, the resulting minimum specified transmissivity of the geosynthetic drainage layer is 6.2 x 10⁻⁴ m²/s at an applied stress of at least 15,200 psf at a gradient of 0.05.

This value is used as a construction specification (incorporated into the Liner Quality Control Plan (LQCP) in Part III, Attachment 3C) for the liner system geocomposite drainage layer.

3.4 <u>Leachate Collection Corridor and Sideslope Chimney Drain</u>

The leachate collection corridors will receive collected leachate from the floor drainage layer and will convey it to the leachate collection sumps. As shown on Drawing 3E-1B, a leachate collection corridor is centrally located within Unit 2, Phases VII through XIV, and slopes at 1% towards a sump.

The proposed leachate collection corridor consists of a perforated 6-in. diameter high-density polyethylene (HDPE) standard dimension ratio (SDR)-11 pipe embedded within a granular drainage media encased within a geotextile filter (Drawing 3E-2). Attachment 3E.3 (Leachate Collection Geosynthetic Drainage Layer Design) presents calculations supporting the specified geotextile filter. Additionally, the structural stability (i.e., strength) of the proposed leachate collection pipe is evaluated in Attachment 3E.6 (Leachate Collection and Riser Pipe Strength Design).

The granular drainage media (i.e., coarse aggregate) of the leachate collection system must (i) have a maximum particle size less than or equal to 2 in., (ii) have a maximum percent passing #4 sieve of 10%, (iii) have a maximum percent passing #200 sieve (i.e., percent fines) of 3%, and (iv) contain less than 15% calcium carbonate. The pipe perforations have been sized to be resistant to clogging based on their diameter compared to the surrounding granular material gradation. As an additional measure to prevent clogging, the perforated pipes are surrounded by granular drainage material wrapped by a geotextile filter. The granular material will extend vertically through the protective cover layer to create a drainage pathway to allow leachate to more easily flow into the corridor. The leachate collection pipes will include cleanout access points. As shown on Drawing 3E-3, Detail 5, the sideslope riser area and riser pad will include a leachate collection system cleanout pipe that connects to and allows access to the leachate collection corridor piping.

At the toe-of-slope of the liner sideslopes, leachate chimney drains will receive and collect leachate from the sideslope drainage layer and convey it to the leachate collection corridors or the leachate collection sumps. As shown on Drawing 3E-1B, the sideslope chimney drains will be located along the toe-of-slope of sideslopes around the perimeter of the waste footprint in Unit 2, Phases VII through XIV.

Like the leachate collection corridors, the sideslope chimney drains have a minimum slope of 1%, consist of the same type of perforated 6-in. diameter HDPE SDR-11 pipe embedded within a

granular drainage media wrapped by a geotextile filter, and extend vertically through the protective cover layer to create a drainage pathway (Drawing 3E-2).

The leachate collection corridors and sideslope chimney drains are designed to convey the peak daily volumetric flow rates of leachate they are expected to collect. Attachment 3E.4 (Leachate Collection Corridor and Sideslope Chimney Drain Pipe Design) presents the peak daily leachate collection rates for the leachate collection corridor and the sideslope chimney drain.

3.5 <u>Leachate Collection Sumps</u>

Leachate generated within each phase ultimately drains to the leachate collection sump located at the low point of the phase. The sumps are backfilled with the same granular drainage material as the leachate collection corridors. Each sump has the shape of an inverted truncated pyramid with a square base. The base dimensions are 20 ft by 20 ft, and the sump is 4 ft deep. The base of the sump slopes up to meet the floor of each phase at an angle of 3H:1V. Assuming a granular drainage material porosity of 0.3, the effective volume of the sump is 7,580 gallons. The Leachate Collection Sump Design calculations are provided in Attachment 3E.5. Design details illustrating the proposed leachate collection sumps are provided in Drawing 3E-3.

4. LEACHATE REMOVAL AND TRANSMISSION SYSTEM

4.1 Leachate Pumps and Riser Pipes

Leachate will be removed from each phase by a submersible pump lowered into a sump through an HDPE riser pipe (Drawing 3E-4). Leachate riser pipes will be located on liner sideslopes and extend up from the sumps to the landfill perimeter (Drawing 3E-1B). Riser pipe structural stability (i.e., strength) calculations are included in Attachment 3E.6. The lower portion of the riser within the sump is perforated with holes, allowing the leachate to flow to the pump in the riser. Consistent with the leachate collection corridor pipes and chimney drain pipes, the riser pipe perforations have been sized to be resistant to clogging based on their diameter compared to the surrounding granular material gradation. As an additional measure to prevent clogging, the perforated pipes are surrounded by granular drainage material wrapped by a geotextile filter. The sump riser pipes are of a large enough diameter that they can be accessed from the landfill perimeter at the riser pad and cleaned as needed.

As described previously in this plan, the leachate collection and removal system is designed and will be constructed to maintain less than a 30 cm (12 in., i.e., one foot) depth of leachate over the liner. The submersible pumps will be operated manually or automatically (e.g., through a level switch and controller system) to withdraw accumulated leachate from each sump. If automated systems are used, pressure transducers are typically used on the pumps or as an independent sensor to measure the depth of the leachate in the sump, and can be integrated with a control system to automatically trigger the level switch to maintain acceptably low leachate levels. Under this method, the pumps are set to switch on and off at desired depths to provide for a pump operating range, while maintaining acceptably low leachate levels. The maximum (highest) pump-on level should be set at the elevation of the lip (i.e., top) of the sump so as to maintain free drainage conditions of the leachate collection system drainage layer beyond the sump, and consistent with the basis of design to maintain a maximum head buildup outside of the sump of less than one foot. Based on the sump design (e.g., see Drawing 3E.3), the lip of the sump is 4-ft above the base of the sump, using the top of geomembrane liner around the top edge of the sump as the basis for this measurement. The pump-off level should be set at a desired low depth at an elevation somewhat higher than the base of the sump (e.g., typically set at an elevation just above the intake of the pump based on pump manufacturer's recommendations).

Inspections of the leachate pump control systems (to verify the pumps are operable and to check head levels (i.e., leachate depths) will be conducted at the frequency indicated in Section 8.2.

Note that the sump capacity and pumping scenario presented in Attachment 3E.5 were performed using an assumed operating range consistent with this description (which is intended to demonstrate functionality of the design under a hypothetical but reasonable representation of a typical operating range consistent with the foregoing). Under manual operation mode, pumps are kept in the off position and then are monitored regularly (See Section 8.2 for inspection frequency applicable when the system is operating in manual mode) to manually check leachate levels using

the same pump-on criteria as described above for automated operations; then pumps are turned on manually as needed based on the observed leachate levels to maintain acceptably low heads. Leachate pumped out of the sump will be transferred to the storage system features as described in Section 5.

The pumping rate will vary depending on the capacity of the installed pumps and the leachate generation quantities (inflow rate into the sumps). The design calculations (e.g., see sump design in Attachment 3E.5) indicate, for the phase receiving the largest estimated flow, the predicted flowrates may vary from about 7 gallons per minute (gpm) on an average day to about 73 gpm on a peak day. Calculations are presented for an example case using an 80-gpm pump, not presented as a required size, but instead provided as a reasonableness check and as guidance to the operator to confirm that the sump capacity and pump cycle times would keep up with peak flows, and operate acceptably, under such scenario.

4.2 Leachate Transmission

Leachate withdrawn from each sump will be conveyed into a transmission system (forcemain piping), or may be directly transferred (pumped) into tanker trucks. The purpose of a transmission system is to provide for leachate withdrawal into an integrated system of connected piping that conveys all such leachate flows to the storage system features described in Section 5, or into recirculation system features described in Section 6. The forcemain layout is shown on the leachate management system plans (Drawings 3E-1A and 3E-1B). These drawings show the alignment route of forcemain piping in existing landfill areas and the proposed (i.e., Unit 2, Phases VII through XIV) expansion area. As shown, the general approach is to use a leachate forcemain pipeline aligned along the landfill perimeter, into which piping is connected at the riser pad area of each Subtitle D phase to tie-in withdrawal piping from the sumps to the forcemain. The forcemain pipe is routed either to Leachate Evaporation Ponds A, B, and C or Leachate Evaporation Pond D or E (or may be tied-together to route to all ponds). The forcemain may also be extended from the landfill area to future leachate storage tanks to provide flexibility of storage capacity and management locations. Details of the leachate transmission system are shown on Drawings 3E-4 and 3E-8. As shown, the forcemain pipe will be dual-contained, and will consist of a 4-in. (nominal) diameter HDPE carrier pipe and an 8-in. (nominal) diameter HDPE secondary containment pipe (Drawing 3E-4). The forcemain pipe will be made from HDPE, which is chemically resistant to MSW leachate.

If the system head of the leachate transmission system (forcemain) increases in the future to levels that cause excess flow resistance, additional flow capacity may be added to the existing forcemain system by increasing the carrier pipe diameter, by installing one or more pump stations along the forcemain system, by installing a parallel forcemain system, or by using larger pumps (higher-head/flowrate) in one or more sumps. Manholes may be installed to provide adequate maintenance access for the system.

5. LEACHATE AND CONTAMINATED WATER STORAGE

5.1 Leachate Sumps

As previously discussed, leachate generated within each phase ultimately drains to the leachate collection sump located at the low point of the phase. As such, the leachate sumps represent interim storage locations for leachate, at the points where accumulated leachate will be withdrawn and transferred into the transmission system (or directly into tanker trucks). The sumps are sized to provide adequate storage capacity, in conjunction with the pump withdrawal rates and cycle times, as demonstrated in the calculations provided in Attachment 3E.5.

5.2 <u>Storage Tanks</u>

There are no existing leachate storage tanks at the facility. Leachate and contaminated water storage tanks may be added in the future as part of site operations for additional flexibility (e.g., added capacity, availability for on-site storage of contaminated water, etc.). Refer to Section 7 for leachate and contaminated water disposal requirements. If storage tanks are to be added, a permit modification requesting authorization to install and operate such tanks will be submitted to TCEQ, and once approved, they will be installed and managed in accordance with the following minimum criteria:

- The tanks will be equipped with a liquid-level indicator; and when the tanks are almost full, pumping into the tanks will be ceased until the tank(s) are emptied (either by transferring liquid to the leachate evaporation pond(s) or via off-site disposal per Section 7 of this plan).
- The storage tanks will be surrounded by 2-ft (min) tall earthen berms for secondary containment. If a spill occurs from a storage tank, the remaining liquid in the storage tank will be emptied by pumping it to an appropriate leachate evaporation pond, into an intact tank, or directly into tanker trucks.
- For small spills, the liquid within the secondary containment will be treated as contaminated water and will be cleaned using sorbent materials. For larger spills, the liquid will be pumped to an appropriate leachate evaporation pond, into an intact tank, or directly into tanker trucks. Any soil with visible signs of contamination will be removed and disposed of at the working face of the landfill.

5.3 <u>Leachate Evaporation Ponds</u>

Leachate Evaporation Ponds A, B, and C, located northwest of Unit 2, Phase I (see Drawing 3E-1A), are existing double-lined ponds and will remain in-service. The layout of the ponds is shown on Drawing 3E-5; the liner system is summarized below, and design details are shown on the drawings in Attachment 3E.1.

Leachate Evaporation Ponds D and E are proposed double-lined ponds; Leachate Evaporation Pond D would be located adjacent to and east of Unit 2, Phases VI and VII, and Leachate

Evaporation Pond E would be located adjacent to and south of Unit 2, Phase XIV. These ponds are being presented as possible future ponds to provide additional leachate storage and evaporation capacity as part of the Unit 2, Phases VII through XIV, expansion. The decision on if/when to install these ponds will depend on leachate generation rates vs. the capacity of existing on-site storage areas. The proposed layout of Leachate Evaporation Ponds D and E are shown on Drawings 3E-6 and 3E-7, respectively. The liner system is summarized below, and design details are shown on the drawings in Attachment 3E.1 (e.g., Drawing 3E-8).

Leachate will be transported from the leachate sumps into the leachate evaporation ponds via the methods described in Section 4.2 (i.e., via forcemain piping; or by tanker truck into which the leachate is pumped and then transported to the evaporation ponds). The leachate evaporation ponds may receive and store only leachate and/or gas condensate, where such waters will evaporate naturally; mechanical aerators may also be used. The operating level in the ponds shall be such that a minimum of two (2) feet (ft) of freeboard is maintained under normal operating conditions, as described further below.

The existing and proposed pond liners consists of, from top to bottom:

- 60-mil textured HDPE geomembrane;
- GCL; and
- 60-mil textured HDPE geomembrane.

The pond liner will be constructed and documented in accordance with the Liner Quality Control Plan (Part III, Attachment 3C). Weathering and exposure to ultraviolet (UV) light is not expected to degrade the exposed portions of the upper HDPE geomembrane during the lifetime of the landfill or post-closure period. Based on information in the technical literature, HDPE geomembranes with the carbon black content and dispersion, UV resistance, and sheet density specified for this project have an estimated projected life in excess of 100 years for resistance to weathering (GSE Lining Technology, 2002).

The design of the ponds and their 2-ft (min) freeboard requirement for normal operating conditions of the ponds has been established to provide a margin of safety (vertical buffer) to safeguard against "abnormal" operations should they arise (wind and wave action, rainfall, equipment malfunctions, human error). The ponds are designed with elevated berms above surrounding grades (thus, the ponds will not receive stormwater run-on). The 25-year, 24-hour design storm depth is 8.9 inches, and therefore by operating the ponds with at least the specified minimum freeboard, ample freeboard will be available that is more than adequate to receive and accommodate the 25-year, 24-hour rainfall while preventing overtopping from this rainfall event. The evaporation pond liquid levels (adequacy of freeboard) and liner integrity will be checked at the frequency indicated in Section 8.2. Following an event that causes an abnormal condition that temporarily raises the pond level above the normal operating level, the 2 feet of freeboard will be restored by either: (i) removing liquid from the pond via tanker trucks; or (ii) temporarily ceasing inflows into the pond and instead using another pond or on-site storage tanks as appropriate, thereby allowing evaporation to lower the water level down to normal operations with 2 feet (min) of freeboard prior to resuming inflows to that pond.

6. LEACHATE AND GAS CONDENSATE RECIRCULATION

6.1 <u>General Recirculation Requirements</u>

Leachate and gas condensate can be managed through recirculation at the facility. However, there are certain constraints on how and where the recirculation can occur and the quantities which can be recirculated. The general requirements are outlined below, and additional details and operational procedures for recirculation are presented in the remainder of this section.

- Landfill Unit 1 is complete and final-covered. Leachate recirculation will not be performed into Unit 1.
- At Landfill Unit 2, recirculation will be accomplished by reintroducing the collected leachate and/or gas condensate derived from a landfill unit at the facility back into a landfill unit at the facility that is designed and constructed with a leachate collection system and a composite liner. As such, and pursuant to 30 TAC §330.177, recirculation may occur into waste at Unit 2 since it is designed and has or will be constructed to "Subtitle D" standards [per 30 TAC §330.331(a)(2) and (b); and 30 TAC §330.333].
- Typical recirculation methods include, but are not limited to, spray application on the active working face, vertical recharge wells into the waste, horizontal infiltration trenches into the waste, or drip irrigation into the waste. Recirculation must not exceed the moisture holding capacity of the landfill, and must not cause seeps or ponding, or nuisance conditions, or interfere with facility operations, as further elaborated on subsequently in this section.
- Contaminated water cannot be recirculated.
- Locations where recirculation takes place via infiltration trenches or vertical recharge wells will be located at least 100 feet away from sideslopes, as a general preventative measure to provide a buffer/set-back from the landfill edges/limits of waste, and also specifically to minimize the potential for formation of leachate/gas condensate seeps on landfill sideslopes. It will also be limited to areas where waste depths exceed 50 feet.
- Recirculation quantities will not exceed the peak and average daily limits discussed in the following subsection.

6.2 <u>Recirculation Rates</u>

Daily limits for recirculation, on a per acre basis, were developed using the HELP model (Attachment 3E.2). The limits coincide with recirculation quantities that resulted in acceptably-

low calculated heads of leachate on the liner. The allowable recirculation limits are shown in Table 3E-1. The allowable average rate is the amount of leachate that can be recirculated in a given area on a consecutive day basis. The allowable peak recirculation rate is the maximum amount of combined quantity of leachate and/or gas condensate that can be recirculated in a given area in one day on an intermittent basis and in the absence of any recent or forecasted rain event. The peak recirculation rate cannot be conducted in a given area on a consecutive-day basis.

TABLE 3E-1. ALLOWABLE RECIRCULATION RATES

Allowable Average Recirculation Rate	Allowable Peak Recirculation Rate
(gal/acre/day)	(gal/acre/day)
300	2,000

Note: The total volume of leachate and/or gas condensate recirculation onsite at this landfill shall not exceed 100,000 gallons per day (gpd).

6.3 **Operational Procedures for Recirculation**

Leachate to be recirculated will be obtained from various points along the leachate management system, such as from sumps, the forcemain, or from on-site leachate storage areas (tanks or leachate evaporation ponds). For example, a recirculation pipeline and valves may be connected to the leachate forcemain at a convenient tie-in point such as a riser area and/or at a valve manhole, thereby allowing the leachate/gas condensate to be diverted into the recirculation pipeline that extends to the planned recirculation area of the landfill. As another example, leachate may be pumped from an on-site leachate storage tank or evaporation pond into a recirculation pipeline that extends to the planned recirculation area of the landfill. As an additional example, leachate may be loaded into tanker trucks and transported to the planned recirculation area. Similarly, gas condensate to be recirculated will be obtained from various points along the gas collection system such as at one or more gas condensate sumps, or from gas condensate that has been conveyed to the on-site storage tanks, or from gas condensate contained in an on-site leachate evaporation pond.

The following procedures will be used during recirculation:

- Contaminated water shall not be recirculated. Therefore, any storage area holding contaminated water (or comingled waters including contaminated water) must not be used for recirculation.
- Containment and diversion berms should be in-place (per Section 2.3 and Drawing 3E-9 of this plan) around the recirculation receiving area when surface-application methods will be used (e.g., spray application or drip irrigation).
- Recirculation will be conducted in a manner that does not result in ponding or seeps. If ponding or seeps occur, recirculation in that area will be discontinued until the condition subsides and is remedied.

- Recirculation must be managed in a way that minimizes odors and vectors. The provisions of the SOP on odor management and vector control are applicable to recirculation operations. In addition, the following procedures will be implemented:
 - Spray application will only be performed in areas set-back a minimum of 100 feet from the perimeter limit of waste, and only on days and times when the wind speed is less than or equal to 15 miles per hour.
 - The sprayers will be oriented downwards towards the waste (not projected upward).
- Surface-application methods (spray or drip irrigation) will not be performed when standing water exists or during rain events.

Recirculation volumes will be monitored at the facility and will not exceed the rates specified above. The facility will maintain records of the volumes recirculated into the landfill, using either flowmeters connected to recirculation pipes, or by manual methods based on the capacity and number of tanker truck loads used.

Consistent with the 30 TAC §330.177 operational standards for recirculation, the owner or operator is not required to characterize leachate and/or gas condensate that is being recirculated into an approved Type I landfill unit at this facility (i.e., the on-site Subtitle D-lined landfill phases described herein). Off-site disposal, and any associated characterization requirements pertaining to leachate and/or gas condensate, is discussed in Section 7 of this plan.

7. LEACHATE AND CONTAMINATED WATER DISPOSAL

As already discussed, leachate and gas condensate will be managed by storing it in the appropriate on-site lined pond(s) where it can evaporate, transferring it into on-site storage tanks, or it may be recirculated. Contaminated water will be transferred to on-site storage tanks or directly removed from the site via tanker trucks.

Ultimately, excess amounts leachate and gas condensate beyond the on-site capacity at the facility to store and evaporate will be disposed of off-site at a duly-authorized publicly owned treatment works (POTW), or other similar and duly-authorized wastewater treatment/disposal facility. Contaminated water will be disposed of off-site at a duly-authorized POTW, or similar and duly-authorized wastewater treatment/disposal facility. Transportation for off-site disposal will be by tanker truck. Sampling and analysis to characterize such liquids will be performed as required by the receiving facility. The results of any characterization/monitoring required by the receiving facility, a copy of the disposal agreement, and documentation of disposal will be placed in the Site Operating Record.

NOTE: The MSW facility must be operated in accordance with 30 TAC §330.207 (Contaminated Water Management) including provisions for proper management of liquids resulting from operation of the facility (including contaminated water, leachate, and gas condensate), obtaining specific written authorization from the TCEQ under TPDES authority prior to off-site discharge, and disposal at a treatment facility. The MSW facility must also be operated in accordance with 30 TAC §330.15(h) regarding prohibitions on discharge of solid wastes or pollutants into waters of the state or the United States. As such, the following general prohibitions shall apply regarding management for prevention of discharge of pollutants including but not limited to leachate, gas condensate, and contaminated water:

The MSW facility shall not cause:

- 1. a discharge of solid wastes or pollutants adjacent to or into waters of the state, including wetlands, that is in violation of the requirements of Texas Water Code, §26.121;
- 2. a discharge of pollutants into waters of the United States, including wetlands, that violates any requirements of the Federal Clean Water Act, including, but not limited to, the National Pollutant Discharge Elimination System requirements, under §402, as amended, or Texas Pollutant Discharge Elimination System requirements;
- 3. a discharge of dredged or fill material to waters of the United States, including wetlands, that is in violation of the requirements under Federal Clean Water Act, §404, as amended; and
- 4. a discharge of a nonpoint source pollution into waters of the United States, including wetlands, that violates any requirement of an area-wide or state-wide water quality management plan that has been approved under Federal Clean Water Act, §208 or §319, as amended.

8. LONG-TERM PERFORMANCE AND OPERATIONS

8.1 Design Provisions for Compatibility and Long-Term Performance

As explained herein and demonstrated in the calculation packages provided in Attachments 3E.2 through 3E.7, the leachate management system has been designed to function through the active life, scheduled closure, and post-closure care period of the landfill, considering the factors listed below.

- The leachate collection and removal systems are designed and will be constructed of materials that are chemically resistant to the leachate expected to be generated.
- The leachate collection and removal systems are of sufficient strength and thickness to withstand the maximum expected loads (pressures exerted by overlying wastes, waste cover materials, and any equipment used at the landfill).
- The leachate collection and removal systems are designed and will be operated in consideration of the estimated rates of leachate generation and removal, capacity of sumps, pipe layout/grading, pipe material and strength, sump materials and strength, drainage media specifications and performance to resist clogging, with collection pipes having perforation size and surrounding gravel and filters to resist clogging and that are able to be cleaned out, while maintaining sufficient flow capacity under the expected loads.

In addition to the leachate management system being designed to exceed anticipated chemical and physical demands, operational procedures will be implemented to ensure these systems remain functional through the life of the landfill and post-closure period as outlined below.

8.2 **Operation and Maintenance (Including Performance Monitoring and Inspections)**

Operation and maintenance of the leachate management system will be performed during the active life, scheduled closure, and post-closure care period of the landfill. Operational procedures will be as described previously throughout this document for the various system components (e.g., see Section 4.1 for leachate sump operations, Section 5.3 for leachate evaporation ponds). During the active life, routine inspection will be made on at least a monthly basis, regardless of whether the system is operating in automatic or manual mode, to assess the operation and performance of the leachate management system. This will include monthly at minimum (or when in manual

pump system operation mode, more frequently if warranted¹) inspection checks of the leachate pump control systems (to verify the pumps are operable and to check head levels (i.e., leachate depths) in the sumps), any exposed piping and forcemain manholes, liquid levels/freeboard in the evaporation ponds, integrity of exposed portions of the evaporation pond liner, and associated appurtenances. Abnormal flow rates, damaged components, excessive leachate depths in sumps, evaporation pond freeboard less than the specified minimum, or other anomalies will be noted and addressed. Damaged or inoperable features will be repaired as necessary to restore function.

During the post-closure period, performance monitoring and inspections of the leachate management system will be performed as described in Part III, Attachment 8, (Post-Closure Care Plan).

Results of the monitoring and inspection activities will be documented in the facility's Site Operating Record.

9. **REFERENCES**

Berger, K. and Schroeder, P.R. "*The Hydrologic Evaluation of Landfill Performance (HELP) Model, User's Guide for HELP-D (Version 3.95 D),*" Institute of Soil Science, University of Hamburg & Environmental Laboratory, U.S. Army Corps of Engineers, Waterways Experiment Station, 2013.

GSE Lining Technology, "UV Resistance for GSE Geomembranes," GSE Technical Note TN003, 2002.

Schroeder, P.R., Lloyd, C.M., and Zappi, P.A., "*The Hydrologic Evaluation of Landfill Performance (HELP) Model, User's Guide for Version 3*," U.S. Environmental Protection Agency, Office of Research and Development, Washington, D.C., Report No. EPA/600/R094/168a, 1994a.

Schroeder, P.R., Dozier, T.S., Zappi, P.A., McEnroe, B.M., Sjostrom, J.W., and Peyton, R.L., "*The Hydrologic Evaluation of Landfill Performance (HELP) Model Engineering Documentation for Version 3*," U.S. Environmental Protection Agency, Office of Research and Development, Washington, D.C., Report No. EPA/600/R-94/168b, 1994b, 116 p.

¹ When in manual pumping mode: The frequency of manual pumping and leachate depth checks is dependent on the observed leachate generation rates, which will vary over time based on many factors including but not limited to climate, depth and moisture characteristics of waste, cover, and operational cell configuration. Leachate generation rates are typically highest when a cell is placed into initial operation, and decrease over time to eventually become negligible during the post-closure care period. As such, the operator should use an observational approach to establish the appropriate frequency of depth checks and pumping when operating the system in manual mode, with the objective of achieving equivalent effectiveness (and depth criteria) as when operating the system in automated mode. During the active life of the landfill, the minimum frequency of depth checks is on a monthly basis in both automatic and manual mode; but, when in manual mode the depth checks and associated manual pumping should be conducted more frequently (e.g., biweekly or weekly, as appropriate) if observations reveal a faster rate of sump filling that would fill up the sump more often than monthly.

Mesquite Creek Landfill MSW Permit No. 66C Part III, Attachment 3E.1

ATTACHMENT 3E.1

LEACHATE AND CONTAMINATED WATER MANAGEMENT DRAWINGS

LIST OF DRAWINGS					
Drawing No.	Title	Drawing Date (latest revision)			
3E-1A	Leachate Management System Plan – Unit 1	October 2023			
3E-1B	Leachate Management System Plan – Unit 2	October 2023			
3E-2	Leachate Management System Details I	February 2024			
3E-3	Leachate Management System Details II	February 2024			
3E-4	Leachate Management System Details III	October 2023			
3E-5	Leachate Evaporation Pond A, B, and C	October 2023			
3E-6	Leachate Evaporation Pond D	October 2023			
3E-7	Leachate Evaporation Pond E	October 2023			
3E-8	Leachate Evaporation Pond Details	February 2024			
3E-9	Contaminated Run-On and Runoff Details	February 2024			

Geosyntec Consultants Submitted October 2023; Revised February 2024 Page No. 3E.1-Cvr

	7			8	L
			LEGEND		
	5	580	EXISTING GROUND ELEVAT (FT, MSL) (NOTES 1, 2)	ON CONTOUR	
			EXISTING ROAD		
			EXISTING VEGETATION / TR	EE	
	X	x	EXISTING FENCE		A
			EXISTING BUILDING		
	×		EXISTING WATER LINE		
	A 13- ¹		SITE GRID		
	\		PERMIT BOUNDARY		
	_ · _	· · <u> </u>	LIMIT OF WASTE		_
			PHASE/CELL BOUNDARY		
	3	390)	EXISTING BASE GRADES		
	LC	LC	LEACHATE COLLECTION SY	STEM CORRIDOR	
			LEACHATE COLLECTION SU	MP AND RISER PIPE	
		- FM	LEACHATE FORCEMAIN		в
			LEACHATE COLLECTION CH	IMNEY DRAIN	
	<u> </u>		100-YEAR FLOOD LIMITS (NO	DTE 9)	
NC	DTES:				
1.	THIS DRAWING PRESENTS THE LAY CONVEYANCE, AND STORAGE. REF (PART III, ATTACHMENT 3E) FOR A D	OUT OF THE LEACHAT FER TO THE LEACHATE DESCRIPTION OF THESI	E MANAGEMENT FEATURES AND CONTAMINATED WATE E SYSTEM COMPONENTS AF	FOR COLLECTION, R MANAGEMENT PLAN ID THEIR FUNCTION.	
2.	EXISTING BASE GRADES SHOWN ON	N THIS DRAWING REPR	ESENT TOP OF CLAY LINER		
3.	UNIT 1 OF THE EXISTING LANDFILL H HAVE PRE-SUBTITLE D CLAY LINERS MANHOLES SHOWN. THERE IS NO U LINER SYSTEMS.	HAS BEEN CONSTRUCT S WITHOUT LEACHATE UNIT 1, PHASE IV. ALL	TED AND FINAL COVERED. U COLLECTION SYSTEMS EXC OTHER PHASES OF UNITS 1	INIT 1, PHASES I AND II EPT FOR THE PIPING AND AND 2 HAVE SUBTITLE D	
4.	UNIT 2, PHASES VII THROUGH XIV AF A SUBTITLE D LINER SYSTEM HAVIN	RE THE PROPOSED EX NG A COMPOSITE LINER	PANSION AREA, EACH OF W R AND LEACHATE COLLECT!	HICH WILL BE LINED WITH ON SYSTEM.	с
5.	SEE DRAWING I/IIA-22 FOR TABULAT REFER TO DRAWINGS I/IIA-23 THROU REPRESENTATIVE FILLING SEQUEN	TED INFORMATION OF UGH I/IIA-25 FOR EXAM ICES AND THEIR LAYOU	THE LANDFILL EXPANSION D IPLE PHASE DEVELOPMENT JT CONFIGURATION.	EVELOPMENT STAGES. LAYOUT PLANS SHOWING	
6.	DUAL CONTAINMENT PIPING TO BE I PLACED WITHIN LINED FOOTPRINT.	USED FOR ALL LEACH	ATE FORCEMAIN PIPELINES	UNLESS CARRIER PIPE IS	
7.	LEACHATE IS ROUTED INTO EXISTIN OF AT AN AUTHORIZED FACILITY.	NG LEACHATE EVAPOR	ATION PONDS VIA FORCEM	AIN PIPING OR DISPOSED	L
8.	AIR RELEASE MANHOLES MAY BE PI LEAK DETECTION SUMPS AND CLEA ALIGNMENT.	LACED PERIODICALLY	AT HIGH POINTS ALONG TH ED PERIODICALLY ALONG TH	E FORCEMAIN ALIGNMENT. IE FORCEMAIN	
9.	THERE ARE NO FEMA-DESIGNATED		N AREAS OR FLOODWAYS A	T THE SITE, AS	

9. THERE ARE NO FEMA-DESIGNATED TOU-TEAR FLOODPLAIN AREAS OR FLOODWAYS AT THE SITE, AS DOCUMENTED IN PARTS UII, APPENDIX VIIA, DRAWING VIIA-16. SITE-SPECIFIC 100-YEAR FLOOD LEVEL AT MESQUITE CREEK AND ITS CORRESPONDING LIMITS, AS SHOWN HEREON, WERE COMPUTED FOR THE 100-YEAR, 24-HOUR STORM EVENT USING THE LATEST AVAILABLE NOAA ATLAS 14 PRECIPITATION DATA. THE CALCULATED FLOOD LEVEL IS ELEVATION 606.0 FT, MSL. NOTE THAT THIS IS SLIGHTLY HIGHER THAN THE FREEDOM LAKE FLOOD POOL THAT EXTENDS ONTO THE SITE (ELEVATION 605.1 FT, MSL ACCORDING TO THE YORK CREEK WATERSHED CONSERVATION DISTRICT). AS SHOWN, NO WASTE DISPOSAL LIMITS ENCROACH ON THE SITE-SPECIFIC CALCULATED 100-YEAR FLOOD LIMITS. FURTHERMORE, THESE ADJACENT LANDFILL AREAS ARE PROTECTED BY PERIMETER BERMS WITH ELEVATIONS HIGHER THAN THE FLOOD LEVEL, THESE PARTS OF THE FACILITY ARE EXISTING (CONSTRUCTED AS AUTHORIZED BY PREVIOUS TCEQ PERMITS), AND NO CHANGES ARE PROPOSED.

5 SCALE IN FEET SCALE IN FEET SCALE IN FEET SCALE IN FEET FOR PERMIT PURPOSES ONLY								
REV	DATE	DESCRIPTION					DRN APP	
Consultants, Inc. WASTE MANAGEMENT WASTE MANAGEMENT OF TEXAS, INC. 1700 KOHLENBERG ROAD NEW BRAUNFELS, TEXAS 78130 NEW BRAUNFELS, TEXAS 78130 PHONE 330,625,7894								
MESQUITE CREEK LANDFILL EXPANSION PERMIT AMENDMENT APPLICATION - MSW PERMIT NO. 66C								
PROJECT N	0.: GW8636	DESIGN BY:	SMG	REVIEWED BY:	YB	PART NO.:	DRAWING:	
FILE:	GW8636P3E-1B	DRAWN BY:	JJV / KH	APPROVED BY:	SMG		3E-1A	
-		7				8		

ARE F	PROPOSED		E OF / 10/11/202	3	ANGES	
0 	300' SCALE IN FE	600'	SCOTT M. GRAVES 86557 SCONAL ENSE FOR PERMIT PURPOSES ONLY	- -		E
						1
REV	DATE		DESCRIPTION	DRN	APP	
	WASTE N 17 NEW	MANAGEMENT OF TE 00 KOHLENBERG RO/ BRAUNFELS, TEXAS ; PHONE: 830.625.7894	AD CEOSY KANNIC, AD STAD 78130 COMM C	CONSULTANTS, INC. CONSULTANTS, INC. CONSULTANTS, INC. CONSULTANTS, INC. CONSULTANTS, INC. CONSULTANTS, INC. CONSULTANTS, INC.	1182	
TITLE:	LE	EACHATE	MANAGEMENT SYSTEM PLAN	UNIT 2		
PROJECT:		MEGO				ľ

MESQUITE CREEK LANDFILL EXPANSION PERMIT AMENDMENT APPLICATION - MSW PERMIT NO. 66C

PROJEC	T NO.: GW8636	DESIGN BY:	SMG	REVIEWED BY:	YB	PART NO.:	DRAWING:
FILE:	GW8636P3E-1A	DRAWN BY:	JJV / KH	APPROVED BY:	SMG		<u>3E-1B</u>
1		7				8	

NOTES: 1. TOPOGRAPHIC BASE MAP OF EXISTING SITE CONDITIONS WAS GENERATED BY PHOTOGRAMMETRIC METHODS BASED ON AN AERIAL SURVEY FLOWN ON 01 FEBRUARY 2022 BY HYDREX ENVIRONMENTAL. EXISTING TOPOGRAPHY IN OBSCURED AREAS AND / OR OUTSIDE OF PROPERTY WHERE SHOWN SUPPLEMENTED WITH THE UNITED STATES GEOLOGIC SURVEY (USGS) 3DEP PROGRAM, 3 METER RESOLUTION LIDAR FLOWN IN 2011. ELEVATIONS ARE IN FEET ABOVE MEAN SEA LEVEL (FT. MSL), AS DEFINED BY THE NORTH AMERICAN VERTICAL DATUM OF 1988. COORDINATE GRID REPRESENTS SITE COORDINATES BASED ON TEXAS CENTRAL ZONE (4203) COORDINATE SYSTEM, NORTH AMERICAN DATUM OF 1983 (NAD-83). 3. PROPOSED LEACHATE EVAPORATION POND E IS OPTIONAL AND WILL BE CONSTRUCTED AS NEEDED BASED ON ACTUAL FACILITY LEACHATE GENERATION QUANTITIES. 1111 OF 12/11/2023 \bigstar SCOTT M. GRAVES WER 86557 CENSE IN STONAL ONAL FOR PERMIT PURPOSES ONLY REV DATE DESCRIPTION DRN APP Geosyntec^D CODSULTANTS, INC. GEOSYNTEC CONSULTANTS, INC. TEXAS ENG. FIRM REGISTRATION NUMBER 1182 8217 SHARL CRESSTRATION NUMBER 1182 8217 SHARL CRESS 78757 PHONE: 512.451.4003 700 KOHLENBERG ROAD NEW BRAUNFELS, TEXAS 78130 PHONE: 830.625.7894 ITLE: LEACHATE EVAPORATION POND E ROJEC MESQUITE CREEK LANDFILL EXPANSION PERMIT AMENDMENT APPLICATION - MSW PERMIT NO. 66C ROJECT NO .: GW8636 REVIEWED BY: PART NO.: DRAWING: DESIGN BY: SMG YB 3E-7 FILE: GW8636P3E-7 DRAWN BY: JJV / KH PPROVED BY: SMG

PREVIOUSLY FILLED AREA (ABOVE SUBTITLE D LINER)

NOT TO SCALE (N.T.S.)

DIVE	DIVERSION BERM SIZING CRITERIA												
DEPTH OF CHANNEL	DIVERSION BERM FLOW LINE SLOPE	MAXIMUM PREDICTED FLOW VELOCITY	MAXIMUM PREDICTED FLOW RATE	MAXIMUM DRAINAGE AREA									
(FT)	(%)	(FT/S)	(CFS)	(AC)									
	0.5%	5.9	100.8	18.2									
25	1.0%	8.3	142.5	25.8									
2.5	1.5%	10.2	174.5	31.6									
	2.0%	11.7	201.6	36.5									

2

NOTES:

- 1. THE DIVERSION BERMS ARE SIZED TO CONTAIN SURFACE WATER FROM THE 25-YEAR, 24-HOUR RAINFALL EVENT. DRAINAGE CALCULATIONS AND SIZING DESIGN ARE PROVIDED IN PART III, ATTACHMENT 2E.
- OPERATOR WILL USE THIS TABLE AND THE ACTUAL FLOW LINE SLOPE TO DETERMINE THE MAXIMUM ALLOWABLE DRAINAGE AREA CONTRIBUTING RUNOFF TO A GIVEN BERM.

CONTAINMENT BERM DRAINAGE AREA	CONTAMINATED WATER STORAGE AREA	MINIMUM REQUIRED BERM HEIGHT								
(AC)	(AC)	(FT)								
	0.10	4.7								
0.50	0.25	2.5								
	0.50	1.7								
	0.10	8.4								
1.0	0.25	4.0								
	0.50	2.5								
	0.25	5.5								
1.5	0.50	3.2								
	0.75	2.5								
	0.25	6.9								
2.0	0.50	4.0								
	0.75	3.0								
	0.40	6.6								
3.0	0.75	4.0								
	1.00	3.2								
	0.50	6.9								
4.0	0.75	5.0								
	1.00	4.0								

NOTES:

1. THE CONTAINMENT BERM HEIGHT INCLUDES 1.0 FT OF FREEBOARD, AND BERMS ARE SIZED TO CONTAIN SURFACE WATER FROM THE 25-YEAR, 24-HOUR RAINFALL EVENT. DRAINAGE CALCULATIONS AND SIZING DESIGN ARE PROVIDED IN PART III, ATTACHMENT 2E.

2. OPERATOR WILL USE THIS TABLE AND ACTUAL WORKING FACE/DRAINAGE AREA SIZE AND STORAGE AREA SIZE TO DETERMINE THE APPROPRIATE MINIMUM CONTAINMENT BERM SIZE.

4

RUN-ON BERM SIZING CRITERIA											
RUN-ON BERM DRAINAGE AREA	RUN-ON WATER STORAGE AREA	MINIMUM REQUIRED BERM HEIGHT									
(AC)	(AC)	(FT)									
	0.25	6.9									
2.0	0.50	4.0									
	0.75	3.0									
	0.50	6.9									
4.0	0.75	5.0									
	1.00	4.0									
	1.00	8.4									
10.0	2.00	4.7									
	3.00	3.5									
	2.00	6.6									
15.0	3.00	4.7									
	4.00	3.8									
	2.00	8.4									
20.0	3.00	5.9									
	4.00	4.7									
	3.00	7.2									
25.0	4.00	5.6									
	5.00	4.7									
	3.00	8.4									
30.0	4.00	6.6									
	5.00	5.5									

NOTES:

5

THE RUN-ON BERM HEIGHT INCLUDES 1.0 FT OF FREEBOARD AND BERMS ARE SIZED TO CONTAIN SURFACE WATER FROM THE 25-YEAR, 24-HOUR RAINFALL EVENT.DRAINAGE CALCULATIONS AND SIZING DESIGN ARE PROVIDED IN PART III, ATTACHMENT 2E.

OPERATOR WILL USE THIS TABLE AND ACTUAL DRAINAGE AREA SIZE AND STORAGE AREA SIZE TO DETERMINE THE APPROPRIATE MINIMUM RUN-ON BERM SIZE.

PERMIT DRAWING

6

				7				8			1
		- RUN-	ON BEF	RM DRAINAG	GE AREA -						A
ΞR	STORAG	E AREA		•							
											L
EV	ENT ATER										
SIZI O\	NG /ERALL										
						3					
						1					в
											L
											с
											L
0\	/ERALL NO	TE:									
1.		RM MAY PRO			NS (CONTAINM	ENT ON ONE SID		N STORAGE/		ION ON	D
_	DRAWIN	G.									
2.	REFER T	O PART IV (SITE OP	ERATING PLA	N) FOR WORKIN	NG FACE SIZE RE	EQUIREMENTS				
					TATE.	A LET	2/19/20	24			L
					*						
				i	SCOTT I	M. GRAVES	11				
					PO	NSEP. CH					
					5510	NAL EN	mb				Е
				F	OR PERMIT	PURPOSES OF	NLY				
	1	FEB. 2024			RESPONSE TO	D TECHNICAL NOD 1			JJV/KH	SMG	
	REV	DATE	_		DES	CRIPTION	_		DRN	APP	
		V	V	$\overline{\mathcal{M}}$	L.		Geos	ynteo	,D		-
		WASTE N		AGEMENT	* C		GEOSYNT TEXAS ENG. FIRM	INSULTANT	STS, INC.	1182	
		170 NEW E	00 KOHLEN BRAUNFEL PHONE: 83	BERG ROAD S, TEXAS 78130 0.625.7894			8217 SHOA AUS PH	L CREEK BLVD, STIN, TEXAS 787 ONE: 512.451.40	SUITE 200 57 03	1102	
	TITLE:	CC	ONTA	MINATE	ED RUN-C	ON AND R	UNOFF	DETAIL	s		1
	PROJECT:		-					-			F
		PERM	N 11 AN	IESQUITI /IENDMF	E CREEK I NT APPI II	LANDFILL I CATION - M	=XPANSI(ISW PFRI	ON TIM	66C		
	DRO IFOT ::					PEVIEWED DY				DAM/IN/C	
G	FILE:	GW8636P3E	50 E-9	DRAWN BY:	JJV / KH	APPROVED BY:	SMG			<u>3E-9</u>	
	-			7				8			╀

Mesquite Creek Landfill MSW Permit No. 66C Part III, Attachment 3E.2

ATTACHMENT 3E.2

LEACHATE GENERATION RATES AND HEAD ON LINER (*HELP* MODEL CALCULATIONS)

Geosyntec Consultants October 2023 Page No. 3E.2-Cvr

consultants

							Page	3E.2-1	of	3E.2-33
Written by:	Y. Bholat		Date:	2/13/23	Reviewed & Revised by:	S. Graves		Da	ite:	8/3/23; 2/19/24
Client:	WMTX	Project:	Mesqui	te Creek	Project No.:	GW8636		Task N	0.:	05

ATTACHMENT 3E.2 LEACHATE GENERATION RATES AND HEAD ON LINER (*HELP* MODEL CALCULATIONS)

INTRODUCTION

The purposes of this analysis are to:

- estimate the design leachate collection rates in the leachate collection system for various operation conditions;
- calculate the design hydraulic conductivity and transmissivity of the leachate drainage layer in the leachate collection system;
- evaluate the maximum leachate head on the liner system for compliance with the Texas Commission on Environmental Quality (TCEQ) regulations, which require the maximum head of leachate to be less than 30 cm (12 in.) [30 TAC §330.331(a)(2)]; and
- evaluate the implementation of leachate recirculation.

METHOD OF ANALYSIS

The leachate collection rates and maximum leachate head on the liner system were estimated using the Hydrologic Evaluation of Landfill Performance (*HELP*) computer model, Version 3.95 D, developed by Dr. Klaus Berger of the University of Hamburg, Institute of Soil Science. *HELP* simulates hydrologic processes for a landfill by performing daily, sequential water balance analyses using a quasi-two-dimensional, deterministic approach (Berger and Schroeder, 2013; Schroeder et al., 1994a, 1994b).

The hydrologic processes considered in the *HELP* model include precipitation, surface-water evaporation, runoff, infiltration, plant transpiration, soil water evaporation, soil water storage,

						Page	3E.2-2	of	3E.2-33
Written by:	Y. Bholat		Date:	2/13/23	Reviewed by:	S. Graves	Da	ate:	8/3/23
Client:	WMTX	Project:	Mesqui	te Creek	Project No.:	GW8636	Task N	o.:	05

vertical drainage (saturated and unsaturated), lateral drainage (saturated), vertical drainage (saturated) through compacted soil liners, and leakage through geomembranes.

The volumetric flow rate from the leachate collection system for a given plan area of liner system was calculated as:

$$Q = q_i \times A_d \tag{1}$$

where:

Q = volumetric flow rate of leachate from a given plan area of liner system;

q_i = unitized flow rate from the leachate collection system drainage layer as calculated using the *HELP* model (see Appendix 3E.2-1); and

 A_d = plan area of liner system drained by the leachate collection system drainage layer.

ANALYSIS CASES AND SCENARIOS

The Mesquite Creek Landfill consists of two areas: referred to in this calculation package as the "New Fill (NF)" and "Existing Fill (EF)" areas. These areas are further described below.

- The New Fill is the proposed lateral expansion area and consists of Phases VII through XIV.
- The Existing Fill area consists of Unit 2 Phases I through VI.

The base grades with Unit 2 Phase designations are shown on Drawing 3E-1B. The Existing Fill area has the base grades constructed (in all areas except Phase VI South, currently under construction in Fall 2023). The New Fill area has not been constructed.

Five scenarios representing the range of configurations and conditions at the landfill over time as it is operated and closed were considered herein for the New Fill area; one additional scenario was evaluated for leachate recirculation. Additionally, one critical scenario was evaluated for the Existing Fill area. The leachate generation rate and maximum leachate head on the floor of the liner system were calculated. These conditions are as follows.

						Page	3E.2-3	of	3E.2-33
Written by:	Y. Bholat		Date:	2/13/23	Reviewed by:	S. Graves	Da	ate:	8/3/23
Client:	WMTX	Project:	Mesquit	te Creek	Project No.:	GW8636	Task N	o.:	05

- New Fill Area
 - Case (NF1) Initial conditions: 6-inches of daily cover soil on 10-ft of waste overlying 2-ft of protective cover on top of the liner system.
 - Case (NF2) Intermediate conditions: 12-inches of intermediate cover soil on 75-ft of waste overlying 2-ft of protective cover on top of the liner system.
 - Case (NF2-R) Same condition as Case NF2, except that a specified percentage of the leachate collected in the geocomposite drainage layer is recirculated back into the waste.
 - Case (NF3) Intermediate conditions: 12-inches of daily cover soil on 150-ft of waste overlying 2-ft of protective cover on top of the liner system.
 - Case (NF4) Final condition after to installation of final cover: standard Subtitle D final cover system on 150-ft of waste overlying 2-ft of protective cover on top of the liner system.

One additional case (NF5) was modeled to assess the required drainage layer transmissivity for the sideslope liner system. This case was the same as case NF3 for the New Fill area, except that the sideslope liner system slope and drainage length rather than the floor liner system slope and drainage length were input into the model and the average material thickness over the slope was used. Recirculation of leachate in the waste above the sideslope is not proposed, so recirculation was not considered in the *HELP* model evaluations of the sideslope liner system. The sideslope conditions is:

- Case (NF5) Intermediate conditions: 12-inches of intermediate cover soil on 65-ft of waste overlying 2-ft of protective cover on top of the liner system.
- Existing Fill Area
 - Case (EF1) Initial conditions (i.e., the critical condition): 6-inches of daily cover soil on 10-ft of waste overlying 2-ft of protective cover on top of the liner system.

Case EF1 was selected to check and confirm adequate performance in existing areas of Unit 2 (previously designed and approved under the previous permit, and not being changed), and therefore only the most critical case governing head-on-liner and drainage layer design was evaluated for this area.

						Page	3E.2-4	of	3E.2-33
Written by:	Y. Bholat		Date:	2/13/23	Reviewed by:	S. Graves	Da	ate:	8/3/23
Client:	WMTX	Project:	Mesquit	te Creek	Project No.:	GW8636	Task N	lo.:	05

Case NF2-R was used to assess the maximum volume of leachate that could be recirculated without exceeding the allowable leachate head on the liner (i.e., 12 in. or the thickness of drainage layer, whichever is less). To evaluate the effects of leachate recirculation, the *HELP* model's default recirculation method was used. This method assumes that a specified percentage of leachate collected from the lateral drainage layer is stored during the day and then uniformly distributed the next day into a specified layer, assumed to be the waste layer for the calculations herein. The percentage of recirculated leachate remains constant on a daily basis (i.e., the recirculated leachate volume varies depending on how much is collected) and was calculated by varying the percentage until the allowable hydraulic head on the liner was obtained.

The allowable recirculation rates obtained from *HELP* do not consider the initially dry conditions of the waste. The initial water contents of all of the materials were calculated by *HELP* and are based on near steady-state conditions as calculated by *HELP*. The calculated recirculation rates are also based only on the criteria of not exceeding the maximum allowable head on the liner system. Other factors that may control the amount of leachate that can be recirculated, such as slope stability, preferential flow within the waste, and gas well performance, are not considered herein.

The liner system of the cells at the landfill consists of the following components, from top to bottom:

- Protective cover: 2-ft thick soil;
- Geocomposite drainage layer (Double-sided);
- 60-mil thick textured high-density polyethylene (HDPE) geomembrane liner; and
- 2-ft thick compacted clay liner.

The standard Subtitle D final cover system consists of the following components, from top to bottom:

- 0.5-ft thick topsoil layer;
- 1.5-ft thick protective cover soil layer;
- Geocomposite drainage layer (Double-sided when textured geomembrane is used);
- 40-mil thick textured LLDPE geomembrane cover; and
- 1.5-foot thick compacted soil.

						Page	3E.2-5	of	3E.2-33
Written by:	Y. Bholat		Date:	2/13/23	Reviewed by:	S. Graves	D	ate:	8/3/23
Client:	WMTX	Project:	Mesqui	te Creek	Project No.:	GW8636	Task N	lo.:	05

PARAMETERS USED IN ANALYSIS

The *HELP* model requires the input of daily weather data, vegetation data, soils data, and landfill design data. The input data are described in this section and summarized on the *HELP* model output presented in Appendix 3E.2-1.

Weather Data

Synthetic weather data was generated for the Mesquite Creek Landfill using climate data for San Antonio, Texas and adjusted using normal mean monthly weather data for nearby New Braunfels, Texas. Simulation periods of 30 years, 40 years, and 70 years were used to synthetically generate precipitation data for initial, intermediate, and final cover conditions, respectively. The peak daily rainfall from the synthetically generated precipitation record was manually increased to model the impact of the 25-year, 24-hour storm event. The 25-year, 24-hour storm intensity was estimated to be 8.90 in. based on information from the NOAA Atlas 14 Point Precipitation Frequency Estimates (NOAA Hydrometeorological Design Studies Center, retrieved 3-Oct-2022) as shown in Table 3E.2-1.

Vegetation Data

For final cover system cases, the final cover system ground surface was assumed to have good vegetation, with a maximum leaf area index of 3.0. For intermediate conditions, poor grass with a maximum leaf index of 1.0 was assumed. For initial conditions, the vegetative cover was assumed to be bare ground with a maximum leaf index of 0. An evaporative zone depth of 10 in. was selected for all cases.

Soils Data

Cover Soil for Final Cover System

The cover soil of the final cover system was modeled as a vertical percolation layer with *HELP* material texture 24 (representative of low-density CL soil).

Geosynthetic Drainage Layer for Final Cover System

A stand-alone design calculation package for sizing of the final cover system drainage layer geocomposite is presented in Part III, Attachment 3G. The final cover geosynthetic drainage layer modeled in this package is solely for purposes of evaluating the final closure/post-closure condition of the overall landfill with final cover, as it relates to design and performance of the leachate collection system (bottom liner). The geocomposite drainage layer was modeled as a lateral

						Pag	ge 3E.2-6	of 3E.2-33
Written by:	Y. Bholat		Date:	2/13/23	Reviewed by:	S. Graves	Date	: 8/3/23
Client:	WMTX	Project:	Mesqui	te Creek	Project No.:	GW8636	Task No.	05

drainage layer with *HELP* material texture 20 (representative of 0.2-in. thick geonet drainage layer).

Geomembrane Cover for Final Cover System

The geomembrane cover was modeled as a flexible membrane liner with *HELP* material texture 36 (representative of LLDPE geomembrane), installation condition = good, pinhole defect frequency = 2 per acre, and installation defect frequency = 2 per acre. This hole frequency is an assumption for design purposes only and is not a reflection of the expected or allowable hole density.

Compacted Soil for Final Cover System

The compacted soil cover was modeled as a vertical percolation layer with *HELP* material texture 16, representative of heavily compacted clay soil, but with the hydraulic conductivity adjusted to 1×10^{-5} cm/s based on the specified requirements for the infiltration layer of the final cover system.

Daily and Intermediate Cover Soil

The daily and intermediate cover layers were modeled as vertical percolation layers with *HELP* material texture 15 (representative of low-density CH soil).

Waste

The waste layer was modeled as a vertical percolation layer with *HELP* material texture 18 (representative of municipal solid waste with $k = 1.0 \times 10^{-3}$ cm/s).

Protective Cover Layer for Liner System

The protective cover layer is modeled as a vertical percolation layer with *HELP* material texture 25 (representative of clayey protective cover material with $k = 3.6 \times 10^{-6}$ cm/s).

Geosynthetic Drainage Layer for Liner System

The leachate collection system consists of a geocomposite drainage layer responsible for lateral drainage of percolating and collected leachate. The geocomposite drainage layer of the liner system was modeled as a lateral drainage layer with *HELP* material texture 20 (representative of 0.2-in. thick geonet drainage layer). The design hydraulic conductivity (k) of the drainage layer was back-calculated for cases NF1, NF2, NF3, and NF5 by varying k until the peak monthly average head on the geomembrane liner was such that the peak daily average head was maintained within the drainage layer (i.e., equal to or less than the thickness of the geocomposite = 0.2 in.), and the peak daily maximum head did not exceed the regulatory maximum of 12 in.

						Page	3E.2-7 of	3E.2-33
Written by:	Y. Bholat		Date:	2/13/23	Reviewed & Revised by:	S. Graves	Date:	8/3/23; 2/19/24
Client:	WMTX	Project:	Mesqui	te Creek	Project No.:	GW8636	Task No.:	05

It is noted that the default *HELP* model value for the geocomposite drainage layer hydraulic conductivity was selected for the recirculation case, NF2-R, and the final cover case, NF4. Additionally, for the critical existing fill case, EF1, a hydraulic conductivity typical of that used previously at the site was used in the *HELP* model.

Geomembrane Liners for Liner System

The geomembrane layer was modeled as geomembrane liner with *HELP* material texture 35 (representative of HDPE geomembrane), installation condition = good, pinhole defect frequency = 2 per acre, and installation defect frequency = 2 per acre. This hole frequency is an assumption for design purposes only and is not a reflection of the expected or allowable hole density.

Compacted Soil Liner for Liner System

The 2-ft compacted clay liner was modeled as a barrier soil liner with *HELP* material texture 16 (representative of heavily compacted clay soil) having a hydraulic conductivity of 1.0×10^{-7} cm/s.

Landfill Design Data

The design data required by the *HELP* model consists of: (i) the slope and slope length of the surface of the top layer; (ii) the slope and slope length of lateral drainage layers (geosynthetic drainage component) in the final cover system and liner system; (iii) the percentage of runoff that can be directed off of the landfill whether as clean surface water or as leachate running off the waste to a storm water storage area; and (iv) vegetation and soil surface condition of the top layer. It was assumed that the potential runoff is zero percent for floor cases, whereas potential runoff was increased for intermediate and final cover conditions. Runoff is modeled by the *HELP* model based on the underlying principles of the USDA Soil Conservation Service (SCS) curve number method presented in Section 4 of the National Engineering Handbook (USDA, SCS, 1985) as coded into *HELP* using surface slope, slope length, material texture, and vegetation. The landfill design parameters used in the analysis are presented in Table 3E.2-2.

RESULTS OF ANALYSIS

The results of the *HELP* model analysis are summarized below. The output files are presented in Appendix 3E.2-1.

					Page	3E.2-8 of	3E.2-33
Written by:	Y. Bholat		Date: 2/13/23	Reviewed by:	S. Graves	Date:	8/3/23
Client:	WMTX	Project:	Mesquite Creek	Project No.:	GW8636	Task No.:	05

Estimated Leachate Collection Rates - With No Recirculation

The estimated leachate collection rates for cases with no recirculation are shown in Table 3E.2-3.

For the cases analyzed, the largest average annual collection rate is calculated to be 646 gallons per acre per day (gpad); this corresponds to the initial condition in the new and existing fill areas (NF1, EF1).

The maximum daily collection rate for the cases analyzed is calculated to be 12,280 gpad; this corresponds to the initial condition in the new and existing fill areas (NF1, EF1).

Estimated Leachate Collection Rates - With Recirculation

The estimated leachate collection rates for the case with recirculation are shown in Table 3E.2-4. For Case NF2-R and with 50% of the collected leachate being recirculated, the calculated annual average leachate collection is 388 gpad and the peak daily leachate collection rate is 2,184 gpad.

Drainage Layer Design Hydraulic Conductivity and Transmissivity

As discussed, the design hydraulic conductivity of the leachate drainage layer was calculated for cases NF1, NF2, NF3, and NF5 by varying hydraulic conductivity until the peak daily average head on the geomembrane liner was less than or equal to the thickness of the geosynthetic drainage layer (i.e., 0.20 in.). The transmissivity was calculated by multiplying the drainage layer hydraulic conductivity by its thickness. Results for each case are presented in Table 3E.2-5. The largest computed required design hydraulic conductivity and transmissivity are 5 cm/s and 2.5 × 10⁻⁴ m²/s, respectively.

For the critical existing fill case, EF1, it is noted that a hydraulic conductivity and transmissivity typical of that used previously at the site was used in the *HELP* model to confirm that the computed peak daily average head on the geomembrane liner was less than or equal to the thickness of the geosynthetic drainage layer (i.e., 0.20 in.).

Head of Leachate in Drainage Layer

The hydraulic heads on top of the geomembrane calculated using the *HELP* model are summarized in Table 3E.2-6. For conditions without leachate recirculation, the calculated annual average heads on the geomembrane range from 0.0 to 0.02 in. For the case with leachate recirculation, the calculated annual average head is 0.03 in.

						Page	3E.2-9	of	3E.2-33
Written by:	Y. Bholat		Date:	2/13/23	Reviewed by:	S. Graves	Da	ate:	8/3/23
Client:	WMTX	Project:	Mesqui	te Creek	Project No.:	GW8636	Task N	lo.:	05

Considering all cases analyzed, the maximum calculated peak daily average head on the geomembrane is 0.17 inches. The maximum calculated peak daily average head (as well as the peak daily maximums) on the geomembrane is less than the allowable hydraulic head of 30 cm (12 in.). The calculated peak daily average heads are less than or equal to the thickness of a geocomposite drainage layer (0.2 in.) on the landfill floor and on the landfill sideslope. Thus, flow is predicted to occur within the drainage layer.

Recirculation of Leachate

The facility may conduct leachate recirculation. The *HELP* model for this recirculation case was run for the intermediate new fill condition (i.e., NF2-R); the annual average and peak daily *HELP* model results for this case are shown in Table 3E.2-4. The average rate of recirculation on an annual basis is 50% of the collected leachate or 388 gpad. This rate results in a calculated peak average head of 0.17 in.

SUMMARY AND CONCLUSIONS

The *HELP* model was used to estimate the design leachate collection rates, calculate the design inplane hydraulic conductivity and transmissivity of the geosynthetic drainage layer, calculate the maximum leachate head on the liner system, and evaluate the implementation of leachate recirculation. Parameters for various design and operational/post-closure conditions that characterize the site over time were input into the model.

For cases without recirculation, (i) the average annual collection rate is calculated to be 646 gpad for the initial condition in the new fill and existing fill areas (NF1, EF1) and (ii) the maximum daily collection rate is calculated to be 12,280 gpad for the initial condition in the new fill and existing fill areas (NF1, EF1).

For the recirculation option, (i) the average annual collection rate is calculated to be 388 gpad and (ii) the maximum daily collection rate is calculated to be 2,184 gpad.

For all cases, the calculated head of leachate on the liner is less than the regulatory maximum of 30 cm (12 in.).

REFERENCES

Berger, Klaus, Schroeder, P.R. "The Hydrologic Evaluation of Landfill Performance (HELP) Model, User's Guide for HELP-D (Version 3.95 D)," Institute of Soil Science, University of

						Page	3E.2-10	of	3E.2-33
Written by:	Y. Bholat		Date:	2/13/23	Reviewed by:	S. Graves	Da	ite:	8/3/23
Client:	WMTX	Project:	Mesqui	te Creek	Project No.:	GW8636	Task N	o.:	05

Hamburg & Environmental Laboratory, U.S. Army Corps of Engineers, Waterways Experiment Station, 2013.

Schroeder, P.R., Lloyd, C.M., and Zappi, P.A., "*The Hydrologic Evaluation of Landfill Performance (HELP) Model, User's Guide for Version 3*," U.S. Environmental Protection Agency, Office of Research and Development Washington, D.C., Report No. EPA/600/R094/168a, 1994a.

Schroeder, P.R., Dozier, T.S., Zappi, P.A., McEnroe, B.M., Sjostrom, J.W., and Peyton, R.L., "*The Hydrologic Evaluation of Landfill Performance (HELP) Model Engineering Documentation for Version 3*," U.S. Environmental Protection Agency, Office of Research and Development, Washington, D.C., Report No. EPA/600/R-94/168b, 1994b, 116 p.

consultants

					Page	3E.2-11 of	3E.2-33
Written by	Y. Bholat		Date: 2/13/23	Reviewed by:	S. Graves	Date:	8/3/23
Client:	WMTX	Project:	Mesquite Creek	Project No.:	GW8636	Task No.:	05

TABLE 3E.2-1. POINT PRECIPITATION FREQUENCY ESTIMATE FOR THE SITE

PDS-ba	sed point	precipita	tion frequ	iency est	imates w	/ith 90%	confiden	ce interv	als (in i	nches) ¹
Duration				Average r	ecurrence	interval (y	ears)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.440	0.525	0.660	0.776	0.940	1.07	1.21	1.35	1.54	1.70
	(0.333-0.581)	(0.399-0.682)	(0.502-0.866)	(0.582-1.03)	(0.684-1.29)	(0.758-1.51)	(0.832-1.75)	(0.906-2.01)	(1.00-2.38)	(1.07-2.68)
10-min	0.699	0.837	1.05	1.24	1.50	1.72	1.93	2.15	2.44	2.65
	(0.529-0.924)	(0.635-1.09)	(0.801-1.38)	(0.930-1.65)	(1.10-2.07)	(1.22-2.43)	(1.33-2.81)	(1.45-3.20)	(1.58-3.75)	(1.68-4.19)
15-min	0.894	1.06	1.32	1.55	1.87	2.13	2.39	2.67	3.05	3.34
	(0.677-1.18)	(0.806-1.38)	(1.01-1.74)	(1.16-2.07)	(1.36-2.57)	(1.51-3.00)	(1.65-3.47)	(1.79-3.97)	(1.98-4.69)	(2.12-5.28)
30-min	1.26	1.49	1.86	2.17	2.61	2.95	3.31	3.70	4.26	4.71
	(0.955-1.67)	(1.13-1.94)	(1.41-2.44)	(1.63-2.89)	(1.89-3.57)	(2.09-4.16)	(2.28-4.80)	(2.49-5.51)	(2.77-6.57)	(2.98-7.45)
60-min	1.63	1.94	2.44	2.87	3.48	3.95	4.46	5.04	5.87	6.56
	(1.23-2.15)	(1.48-2.52)	(1.86-3.20)	(2.15-3.82)	(2.52-4.76)	(2.79-5.57)	(3.08-6.47)	(3.39-7.50)	(3.81-9.06)	(4.15-10.4)
2-hr	1.94	2.40	3.07	3.69	4.60	5.36	6.20	7.17	8.60	9.79
	(1.48-2.55)	(1.81-3.05)	(2.34-3.99)	(2.78-4.89)	(3.36-6.29)	(3.81-7.54)	(4.30-8.95)	(4.83-10.6)	(5.60-13.2)	(6.22-15.4)
3-hr	2.11	2.66	3.45	4.21	5.35	6.33	7.45	8.73	10.6	12.2
	(1.61-2.76)	(1.99-3.34)	(2.64-4.47)	(3.18-5.56)	(3.93-7.31)	(4.53-8.90)	(5.17-10.7)	(5.89-12.9)	(6.94-16.3)	(7.79-19.2)
6-hr	2.40	3.12	4.12	5.09	6.60	7.94	9.50	11.3	14.0	16.3
	(1.85-3.13)	(2.33-3.84)	(3.15-5.28)	(3.87-6.69)	(4.89-9.00)	(5.72-11.1)	(6.63-13.6)	(7.65-16.5)	(9.15-21.3)	(10.4-25.4)
12-hr	2.72 (2.10-3.52)	3.58 (2.67-4.36)	4.76 (3.66-6.07)	5.93 (4.53-7.75)	7.75 (5.76-10.5)	9.37 (6.77-13.1)	11.3 (7.89-16.0)	13.5 (9.18-19.7)	16.9 (11.1-25.6)	19.8 (12.7-30.7)
24-hr	3.07	4.06	5.44	6.80	8.90	10.8	12.9	15.5	19.6	23.0
	(2.38-3.95)	(3.05-4.92)	(4.21-6.90)	(5.22-8.83)	(6.65-12.0)	(7.81-14.9)	(9.11-18.3)	(10.6-22.5)	(12.9-29.4)	(14.8-35.5)
2-day	3.51	4.63	6.22	7.75	10.1	12.1	14.5	17.4	21.8	25.6
	(2.73-4.49)	(3.52-5.61)	(4.84-7.85)	(5.98-10.0)	(7.57-13.5)	(8.85-16.7)	(10.3-20.5)	(11.9-25.1)	(14.4-32.7)	(16.5-39.3)
3-day	3.82	5.02	6.73	8.36	10.9	13.0	15.5	18.4	22.9	26.8
	(2.99-4.88)	(3.84-6.08)	(5.26-8.47)	(6.48-10.8)	(8.15-14.4)	(9.48-17.8)	(11.0-21.7)	(12.7-26.5)	(15.2-34.3)	(17.4-41.0)
4-day	4.07	5.32	7.11	8.81	11.4	13.6	16.1	19.1	23.6	27.5
	(3.19-5.18)	(4.08-6.45)	(5.57-8.93)	(6.84-11.3)	(8.57-15.1)	(9.94-18.6)	(11.4-22.6)	(13.2-27.4)	(15.7-35.2)	(17.8-41.9)
7-day	4.64	5.98	7.93	9.75	12.5	14.8	17.4	20.4	24.8	28.6
	(3.65-5.89)	(4.63-7.26)	(6.25-9.93)	(7.60-12.5)	(9.43-16.5)	(10.9-20.1)	(12.4-24.2)	(14.1-29.1)	(16.6-36.8)	(18.6-43.4)
10-day	5.12	6.53	8.60	10.5	13.3	15.7	18.4	21.3	25.7	29.3
	(4.04-6.48)	(5.09-7.95)	(6.80-10.8)	(8.21-13.4)	(10.1-17.6)	(11.6-21.3)	(13.1-25.5)	(14.8-30.4)	(17.2-38.0)	(19.1-44.4)
20-day	6.63 (5.26-8.34)	8.18 (6.50-10.1)	10.6 (8.44-13.2)	12.7 (9.97-16.1)	15.7 (11.9-20.5)	18.1 (13.3-24.3)	20.7 (14.8-28.5)	23.6 (16.4-33.4)	27.8 (18.7-40.8)	31.2 (20.4-47.0)
30-day	7.89	9.54	12.2	14.5	17.6	20.0	22.6	25.4	29.5	32.8
	(6.28-9.88)	(7.65-11.8)	(9.78-15.2)	(11.4-18.3)	(13.4-22.9)	(14.8-26.8)	(16.2-31.1)	(17.8-35.9)	(19.9-43.2)	(21.5-49.2)
45-day	9.65 (7.70-12.0)	11.5 (9.27-14.2)	14.5 (11.7-18.0)	17.0 (13.4-21.4)	20.4 (15.6-26.5)	23.0 (17.0-30.7)	25.6 (18.5-35.2)	28.4 (19.9-40.1)	32.3 (21.8-47.1)	35.3 (23.2-52.7)
60-day	11.2 (8.97-14.0)	13.2 (10.7-16.3)	16.5 (13.3-20.5)	19.2 (15.2-24.2)	22.9 (17.5-29.7)	25.7 (19.1-34.3)	28.5 (20.6-39.0)	31.3 (22.0-43.9)	34.9 (23.6-50.7)	37.6 (24.7-56.0)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

consultants

					Page	3E.2-12 of	3E.2-33
Written by:	Y. Bholat		Date: 2/13/23	Reviewed & Revised by:	S. Graves	Date:	8/3/23; 2/19/24
Client:	WMTX	Project:	Mesquite Creek	Project No.:	GW8636	Task No.:	05

 TABLE 3E.2-2.
 SUMMARY OF HELP MODEL INPUT DATA

Area	Ca Do	ise ID and escription	Simulation Period (yrs)	Waste Height (ft)	Leachate Drainage Layer Slope Length (ft) ¹	Leachate Drainage Layer Slope (%) ¹	Percent of Surface Area Allowing Runoff (%) ²	Surface Slope Length (ft) ³	Surface Slope (%) ³	Vegetation Cover	SCS Runoff Curve Numbers	Evaporative Zone Depth (in)	Max leaf Index
	1	Floor	30	10	425	5	0	425	5	Bare Ground	96.6	10	0
	2	Floor	40	75	425	5	50	425	5	Poor	93.3	10	1
New	2R	Floor	40	75	425	5	50	425	5	Poor	93.3	10	1
(NF)	3	Floor	40	150	425	5	50	886	5	Poor	93.1	10	1
	4	Floor	70	150	425	5	100	886	5	Good Grass	86.2	10	3
	5	Sideslope	40	65	210	33.3	50	886	5	Poor	93.1	10	1
Existing Fill (EF)	1	Floor	30	10	160	5	0	160	5	Bare Ground	96.8	10	0

Notes:

1. Leachate drainage layer slope length and slope are measured from the leachate management system design drawings (Drawing 3E-1B in Part III, Attachment 3E.1) as follows:

a. For Cases NF1 through NF4: Phase XIV floor;

b. For Case NF5: Phase XIV sideslope; and

c. For Case EF1: Phase VI floor.

2. The selected values for Percent of Surface Area Allowing Runoff are judged as a conservative basis of the leachate management system analysis and design (i.e., allowing less runoff results in more leachate generation).

3. The surface slope length and slope are conservatively selected as follows.

- a. For Cases NF1 through NF2R and EF1, the values were based on filling waste in a layer of uniform thickness, oriented parallel to the liner system.
- b. For Cases NF3 through NF5, the values were based on the longest (i.e., conservative) distance from the landfill ridgeline to the crest of sideslope from the overall final cover grading plan (Drawing 3A-5B in Part III, Attachment 3A.

					G	consultants	
					Page	3E.2-13 of 3E.2-33	
Written by:	Y. Bholat		Date: 2/13/23	Reviewed by:	S. Graves	Date: 8/3/23	
Client:	WMTX	Project:	Mesquite Creek	Project No.:	GW8636	Task No.: 05	

TABLE 3E.2-3.LEACHATE GENERATION RATESFOR CASES WITHOUT LEACHATE RECIRCULATION

(A) ANNUAL AVERAGE

4 100		Casa ID	Total Leachate Collected			
Alca		Case ID	(in./ac./yr)	(gpad)		
	1	Floor	8.7E+00	646		
	2	Floor	5.2E+00	388		
New Fill (NF)	3	Floor	5.3E+00	393		
(1.1.)	4	Floor	2.0E-05	1		
	5		5.3E+00	393		
Existing Fill (EF)	ng Fill 1 Floor F) 1		8.7E+00	646		

(B) PEAK DAILY

A #20		Casa ID	Total Leachate Collected			
Area		Case ID	(in./ac./day)	(gpad)		
	1	Floor	4.5E-01	12,280		
	2	Floor	1.6E-01	4,270		
New Fill (NF)	3	Floor	1.6E-01	4,396		
(111)	4	Floor	0	0		
	5	Sideslope	1.5E-01	4,186		
Existing Fill (EF)	Existing Fill 1 Floor		4.5E-01	12,280		

Note: gpad = gallons per acre per day

TABLE 3E.2-4. LEACHATE GENERATION AND RECIRCULATION RATESFOR CASES WITH LEACHATE RECIRCULATION

(A) ANNUAL AVERAGE

Area	Case ID		Total Le Colle	eachate cted	Recirculated from Leachate Drainage Layer			
			(in./ac./yr)	(gpad)	(in./ac./yr)	(gpad)		
New Fill (NF)	2R	Floor	5.2E+00	388	5.2E+00	388		

(B) PEAK DAILY

Area	Case ID		Total Lea Collect	chate ed	Recirculated from Leachate Drainage Layer			
			(in./ac./day)	(gpad)	(in./ac./day)	(gpad)		
New Fill (NF) 2R		Floor	8.0E-02	2,184	8.0E-02	2,184		

Note: gpad = gallons per acre per day

						Page	3E.2-15	of	3E.2-33
Written by:	Y. Bholat		Date:	2/13/23	Reviewed by:	S. Graves	Da	ite:	8/3/23
Client:	WMTX	Project:	Mesquit	te Creek	Project No.:	GW8636	Task N	o.:	05

TABLE 3E.2-5A.LEACHATE DRAINAGE LAYER DESIGN HYDRAULIC
CONDUCTIVITY AND TRANSMISSIVITY

Area	Case		Design Hydraulic Conductivity (cm/s)	Leachate Drainage Layer Thickness (in.)	Design Transmissivity (m ² /s)	
	1	Floor	5.0E+00	0.2	2.5E-04	
New Fill (NF)	2	Floor	1.4E+00	0.2	7.1E-05	
	3	Floor	1.5E+00	0.2	7.6E-05	
	5	Slope	1.2E-01	0.2	6.1E-06	

Notes:

1. Design hydraulic conductivities and transmissivities shown here are not specifications for the geocomposite drainage layer. The design for sizing and providing the required product specifications for the geocomposite drainage layer are presented in Attachment 3E.3.

2. Design transmissivity = design hydraulic conductivity × drainage layer thickness.

TABLE 3E.2-5B. LEACHATE DRAINAGE LAYER HYDRAULIC CONDUCTIVITYAND TRANSMISSIVITY (EXISTING FILL AREA)

Area	C	Case	Hydraulic Conductivity (cm/s)	Leachate Drainage Layer Thickness (in.)	Transmissivity (m²/s)	
Existing Fill (EF)	1	Floor	6.8E+00	0.25	4.3E-04	

Notes:

1. Hydraulic conductivities and transmissivities shown here are typical for geocomposite material used previously at the site.

2. Transmissivity = hydraulic conductivity × drainage layer thickness.

						Page	3E.2-16 of	3E.2-33
Written by	: Y. Bholat		Date:	2/13/23	Reviewed & Revised by:	S. Graves	Date:	8/3/23; 2/19/24
Client:	WMTX	Project:	Mesquit	te Creek	Project No.:	GW8636	Task No.:	05

TABLE 3E.2-6. CALCULATED LEACHATE HEAD ON TOP OF GEOMEMBRANE

	Case		Head on Top of Geomembrane (in.)					
Area			Annual Average	Peak Daily Average	Peak Daily Maximum			
	1	Floor	0.01	0.14	0.27			
	2	Floor	0.02	0.17	0.33			
New Fill	2R	Floor	0.03	0.17	0.34			
(NF)	3	Floor	0.01	0.16	0.32			
	4 ⁽²⁾	Floor	0.00	0.00	0.00			
	5	Slope	0.02	0.16	0.32			
Existing Fill (EF)	1	Floor	0.00	0.10	0.08			

Notes:

1. Case EF1 uses a hydraulic conductivity value typical for geocomposite material used previously at the site.

2. Refer to Table 3E.2-3 for the Case 4 (final cover installed) leachate generation rates.

consultants

						Page	3E.2-17	of	3E.2-33
Written by:	Y. Bholat		Date:	2/13/23	Reviewed by:	S. Graves	Da	te:	8/3/23
Client:	WMTX	Project:	Mesquite	e Creek	Project No.:	GW8636	Task No	o.:	05

APPENDIX 3E.2-1

HELP MODEL COMPUTER PROGRAM OUTPUT FILES

******	***************************************	*****
*		*
*		*
*	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	*
*		*
*	HELP Version 3.95 D (10 August 2012)	*
*	developed at	*
*	Institute of Soil Science, University of Hamburg, Germany	*
*	based on	*
*	US HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)	3
*	DEVELOPED BY ENVIRONMENTAL LABORATORY	3
*	USAE WATERWAYS EXPERIMENT STATION	3
*	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	3
*		3
*		*
******	***************************************	******
******	***************************************	******

TIME: 15.56 DATE: 13.02.2023

TITLE: Mesquite_Creek_LF - NF_01

1.72

2.01

2.14

2.21

WEATHER DATA SOURCES

NOTE:	PRECIPITATI COEFFICIE	ION DATA WAS ENTS FOR	5 SYNTHETICALLY SAN ANTONIO	GENERATED	USING
	NORMAL ME	EAN MONTHLY	PRECIPITATION	(INCHES)	
JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC

2.00

3.30

3.63

2.46

3.44

2 42

2.49

3.45

TYPE 1 - VERTICAL	PEF	RCOLATION LAYER	
MATERIAL TEXTU	IRE	NUMBER 18	
THICKNESS	=	120.00 INCHES	
POROSITY	=	0.6710 VOL/VOL	
FIELD CAPACITY	=	0.2920 VOL/VOL	
WILTING POINT	=	0.0770 VOL/VOL	
INITIAL SOIL WATER CONTENT	=	0.2936 VOL/VOL	
EFFECTIVE SAT. HYD. CONDUCT.	=	0.1000E-02 CM/	SEC

LAYER 3

TYPE 1 - VERTICAL PERCOLATION LAYER NUMBER 25 THICKNESS 24.00 INCHES POROSITY = 24.00 INCHES FIELD CAPACITY = 0.4370 VOL/VOL WILTING POINT = 0.3260 VOL/VOL INITIAL SOLI WATER CONTENT = 0.3260 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= = 0.3260 OL/VOL

LAYER 4

TYPE 2 - LATERA	L DRAI	ENAGE LAY	ER
MATERIAL TEXT	URE NU	JMBER 20	
THICKNESS	=	0.20	INCHES
POROSITY	=	0.8500	VOL/VOL
FIELD CAPACITY	=	0.0100	VOL/VOL
WILTING POINT	=	0.0050	VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.0100	VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT	.=	5.000	CM/SEC
SLOPE	=	5.00	PERCENT
DRAINAGE LENGTH	=	425.0	FEET

LAYER 5

TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 35 THICKNESS = 0.06 INCHES EFFECTIVE SAT. HYD. CONDUCT.= 0.2000E-12 CM/SEC FML PINHOLE DENSITY = 2.00 HOLES/ACRE

NOTE:	TEMPERATURE DAT	A WAS	SYNTHETICALLY	GENERATED	USING
	COEFFICIENTS	FOR	SAN ANTONIO	TE)	(AS

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
52.20	56.00	62.80	69.80	76.60	82.40
84.50	85.10	79.90	71.30	61.00	53.50

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR SAN ANTONIO TEXAS AND STATION LATITUDE = 29.70 DEGREES

LAYER DATA 1

VALID FOR 30 YEARS

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER

MATENIAL IL	VIONE I	NOPIDER 15	
THICKNESS	=	6.00	INCHES
POROSITY	=	0.4750	VOL/VOL
FIELD CAPACITY	=	0.3780	VOL/VOL
WILTING POINT	=	0.2650	VOL/VOL
INITIAL SOIL WATER CONTEN	T =	0.3559	VOL/VOL
EFFECTIVE SAT. HYD. CONDU	CT.=	0.1700E	-04 CM/SEC

LAYER 2

FML INSTALLATION DEFECTS = 2.00 HOLES/ACRE FML PLACEMENT QUALITY = 3 - GOOD

LAYER 6

	TYPE 3 -	BARRIER	SOIL LINER	
	MATERIAL	TEXTURE	NUMBER 16	
THICKNESS		=	24.00	INCHES
POROSITY		=	0.4270	VOL/VOL
FIELD CAPACITY	Y	=	0.4180	VOL/VOL
WILTING POINT		=	0.3670	VOL/VOL
INITIAL SOIL N	WATER CONT	TENT =	0.4270	VOL/VOL
EFFECTIVE SAT	. HYD. COM	NDUCT.=	0.1000	E-06 CM/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA 1

VALID FOR 30 YEARS

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #15 WITH BARE GROUND CONDITIONS, A SURFACE SLOPE OF 5.% AND A SLOPE LENGTH OF 425. FEET.

SCS RUNOFF CURVE NUMBER	=	96.60	
FRACTION OF AREA ALLOWING RUNOFF	=	0.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	=	1.000	ACRES
EVAPORATIVE ZONE DEPTH	=	10.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	=	3.184	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE	=	5.534	INCHES
FIELD CAPACITY OF EVAPORATIVE ZONE	=	3.436	INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE	=	1.898	INCHES
SOIL EVAPORATION ZONE DEPTH	=	10.000	INCHES
INITIAL SNOW WATER	=	0.122	INCHES
INITIAL INTERCEPTION WATER	=	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	=	57.767	INCHES
TOTAL INITIAL WATER	=	57.889	INCHES
TOTAL SUBSURFACE INFLOW	=	0.00	INCHES/YEAR

Calculation Page 3E.2-19 Reviewed 8/3/23 57.280

EVAPOTRANSPI	RATION DATA	1	

VALID FOR 30 YEARS

NOTE:	EVAPOTRA	NSPIRATIO	ON DATA W	AS (OBTAINED	FF	ROM	
	SAN AN	TONIO	TEX	AS				
STA	TION LAT	ITUDE				=	29.70	DEGREES
MAX	IMUM LEA	F AREA IN	NDEX			=	0.00	
STA	RT OF GR	OWING SEA	ASON (JUL	IAN	DATE)	=	35	
END	OF GROW	ING SEAS	ON (JULIA	N DA	ATE)	=	350	
EVA	PORATIVE	ZONE DEF	PTH			=	10.0	INCHES
AVE	RAGE ANN	UAL WIND	SPEED			=	9.40	MPH
AVE	RAGE 1ST	QUARTER	RELATIVE	HUN	MIDITY	=	66.0	%
AVE	RAGE 2ND	QUARTER	RELATIVE	HUN	MIDITY	=	68.0	%
AVE	RAGE 3RD	QUARTER	RELATIVE	HUN	MIDITY	=	66.0	%
AVE	RAGE 4TH	QUARTER	RELATIVE	HUN	MIDITY	=	67.0	%

FINAL WATER STORAGE AT END OF YEAR 30

LAYE	R (INCHES)	(VOL/VOL)
1	2.1784	0.3631
2	35.7973	0.2983
3	9.0548	0.3773
4	0.0020	0.0100
5	0.0000	0.0000
6	10.2480	0.4270
TOTAL WATER IN LAYER	5 57.280	
SNOW WATER	0.000	
INTERCEPTION WATER	0.000	

-

AVERAGE MON	THLY VALUES I	N INCHES	FOR YEARS	1 THR	OUGH 30	
	JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
PRECIPITATION						
TOTALS	1.74 2.15	1.68 1.90	2.24 4.13	1.92 3.38	2.83 2.38	3.81 2.23
STD. DEVIATIONS	1.18 2.03	0.88 2.16	1.40 2.36	1.49 2.10	1.75 1.95	2.30 1.20
RUNOFF						
TOTALS	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000
STD. DEVIATIONS	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000
POTENTIAL EVAPOTRA	NSPIRATION					
TOTALS	3.138 8.938	3.473 8.340	5.201 6.524	6.261 5.001	7.746 3.652	8.403 2.916
STD. DEVIATIONS	0.372 0.943	0.301 0.890	0.614 0.727	0.719 0.604	0.907 0.424	0.918 0.286
ACTUAL EVAPOTRANSP	IRATION					
TOTALS	1.453 1.746	1.461 1.641	1.776 2.065	1.655 2.229	2.180 1.454	2.580 1.471
STD. DEVIATIONS	0.672 1.292	0.761 1.454	1.004 1.183	1.099 1.009	1.166 0.927	1.229 0.705
LATERAL DRAINAGE C	OLLECTED FROM	LAYER 4				
TOTALS	0.7357 0.9773	0.4889 0.6655	0.7264 0.4346	0.5875 1.1946	0.4632 1.0774	0.5119 0.8188
STD. DEVIATIONS	0.6961 0.8986	0.5495 0.9599	2.0187 0.5817	1.2656 1.2242	0.8349 0.9995	0.5798 0.9710
PERCOLATION/LEAKAG	E THROUGH LAY	ER 6				
TOTALS	0.0000 0.0000	0.0000	0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000

*****	*******	******
PEAK DAILY VALUES FOR YEARS	1 THROUGH	30
	(INCHES)	(CU. FT.)
PRECIPITATION	8.90	32306.998
RUNOFF	0.000	0.0000
DRAINAGE COLLECTED FROM LAYER 4	0.45219	1641.45459
PERCOLATION/LEAKAGE THROUGH LAYER 6	0.000000	0.00116
AVERAGE HEAD ON TOP OF LAYER 5	0.136	
MAXIMUM HEAD ON TOP OF LAYER 5	0.273	
LOCATION OF MAXIMUM HEAD IN LAYER 4 (DISTANCE FROM DRAIN)	0.0 FEET	
SNOW WATER	23.66	85869.7969
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.	4197
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.	1898
*** Maximum heads are computed using M	lcEnroe's equa	tions. ***
Reference: Maximum Saturated Dept by Bruce M. McEnroe, U	h over Landfi Niversity of	ll Liner Kansas

TOTAL FINAL WATER

by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

STD. DEVIATIONS	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000
AVERAGES OF	MONTHLY	AVERAGE	D DAILY HEA	DS (INCHE	s)	
DAILY AVERAGE HEAD ON TOP	OF LAYE	R 5				
AVERAGES	0.0071 0.0095	0.0052	0.0070 0.0044	0.0059 0.0116	0.0045 0.0108	0.0051 0.0079
STD. DEVIATIONS	0.0067 0.0087	0.0058 0.0093	0.0196 0.0058	0.0127 0.0119	0.0081 0.0100	0.0058 0.0094
******	******	******	********	*******	******	******
*****	******	******	*******	******	******	******
AVERAGE ANNUAL TOTALS	& (STD)		NIC) EOD VE	ADC 1	TUPOLICU	20
				AN3 1		50
		INCHES	5	CU. FEE	T	PERCENT
PRECIPITATION	30.	INCHES	5.727)	CU. FEE 110266	T .1	PERCENT
PRECIPITATION RUNOFF	 30.1	INCHES 38 (000 (5.727) 0.0000)	CU. FEE 	T .1 :	PERCENT 100.00 0.000
PRECIPITATION RUNOFF POTENTIAL EVAPOTRANSPIRATI	30. 0,1	INCHES 38 (000 (595 (5.727) 0.0000) 6.7884)	CU. FEE 110266 252628	T .1 : .00	PERCENT 100.00 0.000
PRECIPITATION RUNOFF POTENTIAL EVAPOTRANSPIRATION	30. 30. 0. 0N 69.	INCHES 38 (000 (595 (711 (5.727) 0.0000) 6.7884) 6.2812)	CU. FEE 110266 0 252628 78809	.1 2 .00 .27	PERCENT 100.00 0.000 71.472
PRECIPITATION RUNOFF POTENTIAL EVAPOTRANSPIRATI ACTUAL EVAPOTRANSPIRATION LATERAL DRAINAGE COLLECTED FROM LAYER 4	30. 0.1 0N 69. 21.	INCHE5 38 (000 (595 (711 (68196 (5.727) 0.0000) 6.7884) 6.2812) 6.23129)	CU. FEE 110266 0 252628 78809 31515	T .1 .00 .27 .44 .498	PERCENT 100.00 0.000 71.472 28.58131
PRECIPITATION RUNOFF POTENTIAL EVAPOTRANSPIRATI ACTUAL EVAPOTRANSPIRATION LATERAL DRAINAGE COLLECTED FROM LAYER 4 PERCOLATION/LEAKAGE THROUG LAYER 6	 30. 0. 0. 21. 8. H 0.	INCHES 38 (000 (595 (711 (68196 (00001 (5.727) 0.0000) 6.7884) 6.2812) 6.23129) 0.00000)	CU. FEE 110266 0 252628 78809 31515 0	T .1 .00 .27 .44 .498	PERCENT 100.00 0.000 71.472 28.58131 0.00003
PRECIPITATION RUNOFF POTENTIAL EVAPOTRANSPIRATI ACTUAL EVAPOTRANSPIRATION LATERAL DRAINAGE COLLECTED FROM LAYER 4 PERCOLATION/LEAKAGE THROUG LAYER 6 AVERAGE HEAD ON TOP OF LAYER 5	 30. 0. 0N 69. 21. 8. H 0.	INCHES 38 (000 (595 (711 (68196 (00001 (007 (5.727) 0.0000) 6.7884) 6.2812) 6.23129) 0.00000) 0.0005)	CU. FEE 110266 0 252628 78809 31515 0	T .1 : .00 .27 .44 .498 : .033	PERCENT 100.00 0.000 71.472 28.58131 0.00003
PRECIPITATION RUNOFF POTENTIAL EVAPOTRANSPIRATI ACTUAL EVAPOTRANSPIRATION LATERAL DRAINAGE COLLECTED FROM LAYER 4 PERCOLATION/LEAKAGE THROUG LAYER 6 AVERAGE HEAD ON TOP OF LAYER 5 CHANGE IN WATER STORAGE	 30. 0. 0. 21. 8. H 0. 0. 0.	INCHES 38 (000 (595 (711 (68196 (00001 (0007 (020 (5.727) 0.0000) 6.7884) 6.2812) 6.23129) 0.00000) 0.005) 5.7034)	CU. FEE 110266 0 252628 78809 31515 0 -73	T .1 : .00 .27 .44 .498 : .033	PERCENT 100.00 0.000 71.472 28.58131 0.00003

Calculation Page 3E.2-20 Reviewed 8/3/23

******	***************************************	*******
******	***************************************	*******
**		**
**		**
**	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	**
**		**
**	HELP Version 3.95 D (10 August 2012)	**
**	developed at	**
**	Institute of Soil Science, University of Hamburg, Germany	**
**	based on	**
**	US HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)	**
**	DEVELOPED BY ENVIRONMENTAL LABORATORY	**
**	USAE WATERWAYS EXPERIMENT STATION	**
**	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	**
**		**
**		**
******	***************************************	******
******	***************************************	******
TIME:	15.59 DATE: 13.02.2023	

PRECIPITATION DATA FILE:	C:\PRECIP-40yr.d4
TEMPERATURE DATA FILE:	C:\TEMP-40yr.d7
SOLAR RADIATION DATA FILE:	C:\SOLAR-40yr.d13
EVAPOTRANSPIRATION DATA F. 1	C:\Evapotranspiration-LAI_1.d11
SOIL AND DESIGN DATA FILE 1	C:\SOILS - NF_02.d10
OUTPUT DATA FILE:	C:\OUT - NF_02.out
********	**********

TITLE: Mesquite_Creek_LF - NF_02

WEATHER DATA SOURCES

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR SAN ANTONIO TEXAS

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
1.72	2.49	2.00	3.63	3.44
2.01	3.45	3.30	2.46	2.42
	FEB/AUG 1.72 2.01	FEB/AUG MAR/SEP 1.72 2.49 2.01 3.45	FEB/AUG MAR/SEP APR/OCT 1.72 2.49 2.00 2.01 3.45 3.30	FEB/AUG MAR/SEP APR/OCT MAY/NOV 1.72 2.49 2.00 3.63 2.01 3.45 3.30 2.46

TYPE 1 - VERTICAL	. PEI	RCOLATION LAYER
MATERIAL TEXT	URE	NUMBER 18
THICKNESS	=	900.00 INCHES
POROSITY	=	0.6710 VOL/VOL
FIELD CAPACITY	=	0.2920 VOL/VOL
WILTING POINT	=	0.0770 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.2927 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT	. =	0.1000E-02 CM/SEC

LAYER 3

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 25 THICKNESS = 24.00 INCHES POROSITY = 0.4370 VOL/VOL FIELD CAPACTY = 0.370 VOL/VOL WILTING POINT = 0.2660 VOL/VOL INTIAL SOIL WATER CONTENT = 0.3609 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.3609 -655 CMSCH

LAYER 4

TYPE 2 - LATERA	L DRA	INAGE LAYE	R
MATERIAL TEXT	URE N	UMBER 20	
THICKNESS	=	0.20	INCHES
POROSITY	=	0.8500	VOL/VOL
FIELD CAPACITY	=	0.0100	VOL/VOL
WILTING POINT	=	0.0050	VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.0132	VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT	.=	1.400	CM/SEC
SLOPE	=	5.00	PERCENT
DRAINAGE LENGTH	=	425.0	FEET

LAYER 5

TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 35 THICKNESS = 0.06 INCHES EFFECTIVE SAT. HYD. CONDUCT.= 0.2000E-12 CM/SEC FML PINHOLE DENSITY = 2.00 HOLES/ACRE

	COEFFIC	CIENTS FOR	SAN ANTONIO	TEXAS	5
	NORMAL MEAN	MONTHLY TEMP	ERATURE (DEGR	EES FAHRENHEI	IT)
AN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING

JAN, JUL	TED/A00	TIAN, JET	ALIO OCT	1141/100	JON/ DEC
52.20	56.00	62.80	69.80	76.60	82.40
84.50	85.10	79.90	71.30	61.00	53.50

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR SAN ANTONIO TEXAS AND STATION LATITUDE = 29.70 DEGREES

LAYER DATA 1

VALID FOR 40 YEARS

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL	TEXTURE	NUMBER 15			
THICKNESS	=	12.00	INCHES		
POROSITY	=	0.4750	VOL/VOL		
FIELD CAPACITY	=	0.3780	VOL/VOL		
WILTING POINT	=	0.2650	VOL/VOL		
INITIAL SOIL WATER CONT	ENT =	0.3612	VOL/VOL		
EFFECTIVE SAT. HYD. CON	IDUCT.=	0.1700	E-04 CM/SE	2	
NOTE: SATURATED HYDRAULI	C CONDU	CTIVITY IS	MULTIPLIED	BY	1.80
FOR ROOT CHANNEL	S IN TO	HALF OF F	VAPORATTVE	ZONE	

LAYER 2

FML INSTALLATION DEFECTS = 2.00 HOLES/ACRE FML PLACEMENT QUALITY = 3 - GOOD

LAYER 6

	TYPE 3 -	BARRIER	SOIL LINER	
	MATERIAL	TEXTURE	NUMBER 16	
THICKNESS		=	24.00	INCHES
POROSITY		=	0.4270	VOL/VOL
FIELD CAPACITY	Y	=	0.4180	VOL/VOL
WILTING POINT		=	0.3670	VOL/VOL
INITIAL SOIL N	WATER CONT	FENT =	0.4270	VOL/VOL
EFFECTIVE SAT	. HYD. COM	NDUCT.=	0.1000	E-06 CM/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA 1

VALID FOR 40 YEARS

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #15 WITH A POOR STAND OF GRASS, A SURFACE SLOPE OF 5.% AND A SLOPE LENGTH OF 425. FEET.

SCS RUNOFF CURVE NUMBER	=	93.34	
FRACTION OF AREA ALLOWING RUNOFF	=	50.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	=	1.000	ACRES
EVAPORATIVE ZONE DEPTH	=	10.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	=	3.579	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE	=	4.750	INCHES
FIELD CAPACITY OF EVAPORATIVE ZONE	=	3.780	INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE	=	2.650	INCHES
SOIL EVAPORATION ZONE DEPTH	=	10.000	INCHES
INITIAL SNOW WATER	=	0.000	INCHES
INITIAL INTERCEPTION WATER	=	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	=	287.868	INCHES
TOTAL INITIAL WATER	=	287.868	INCHES
TOTAL SUBSURFACE INFLOW	=	0.00	INCHES/YEAR

Calculation Page 3E.2-21 Reviewed 8/3/23 286.111

EVAPOTRANSPI	RATION DATA	1	

VALID FOR 40 YEARS

NOTE:	EVAPO	DTRA	SPIRATIO	ON DATA W	AS	OBTAINE	D FI	ROM	
	SAI	AN AN	ONIO	TEX	AS				
ST	ATION	LAT:	TUDE				=	29.70	DEGREES
MA	XIMUM	LEAF	AREA IM	IDEX			=	1.00	
ST	ART OF	GRO	WING SEA	ASON (JUL	IAI	N DATE)	=	35	
EN	D OF (GROW	ING SEASO	ON (JULIA	NI	DATE)	=	350	
EV	APORA	TIVE	ZONE DEF	PTH			=	10.0	INCHES
AV	ERAGE	ANN	JAL WIND	SPEED			=	9.40	MPH
AV	ERAGE	1ST	QUARTER	RELATIVE	н	JMIDITY	=	66.0	%
AV	ERAGE	2ND	QUARTER	RELATIVE	н	JMIDITY	=	68.0	%
AV	ERAGE	3RD	QUARTER	RELATIVE	н	JMIDITY	=	66.0	%
AV	ERAGE	4TH	QUARTER	RELATIVE	н	JMIDITY	=	67.0	%

FINAL WATER STORAGE AT END OF YEAR 40

	LAYER	(INCHES)	(VOL/VOL)
	1	3.7205	0.3100
	2	262.8000	0.2920
	3	9.3259	0.3886
	4	0.0161	0.0807
	5	0.0000	0.0000
	6	10.2480	0.4270
TOTAL WATER IN	LAYERS	286.111	
SNOW WATER		0.000	
INTERCEPTION WA	TER	0.000	

AVERAGE MONTHLY	VALUES I	N INCHES	FOR YEARS	1 THR	DUGH 40	
	JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
PRECIPITATION						
TOTALS	1.91	1.57	2.37	1.86	2.93	3.79
	2.14	1.91	3.84	3.47	2.35	2.25
STD. DEVIATIONS	1.31	0.84	1.48	1.39	1.72	2.83
	2.13	1.91	2.27	2.00	1.81	1.22
RUNOFF						
TOTALS	0.162	0.082	0.337	0.169	0.419	0.957
	0.485	0.264	0.686	0.592	0.301	0.234
STD. DEVIATIONS	0.247	0.095	0.518	0.311	0.517	1.189
	1.140	0.521	0.741	0.603	0.484	0.257
POTENTIAL EVAPOTRANSPI	RATION					
TOTALS	3.153	3.521	5.254	6.376	7.897	8.501
	9.017	8.366	6.561	5.040	3.649	2.946
STD. DEVIATIONS	0.350	0.296	0.510	0.521	0.615	0.711
	0.827	0.776	0.663	0.538	0.374	0.274
ACTUAL EVAPOTRANSPIRAT	ION					
TOTALS	1.455	1.281	1.673	1.744	2.179	2.314
	1.488	1.569	2.061	1.992	1.394	1.384
STD. DEVIATIONS	0.607	0.685	0.877	1.047	1.129	1.260
	1.004	1.252	1.055	0.878	0.774	0.628
LATERAL DRAINAGE COLLE	CTED FROM	LAYER 4				
TOTALS	0.6908	0.5146	0.3833	0.3978	0.3376	0.2252
	0.5065	0.3856	0.2102	0.4221	0.6003	0.5282
STD. DEVIATIONS	0.7920	0.5277	0.6095	0.5126	0.5797	0.3063
	0.6889	0.6262	0.3512	0.5298	0.5878	0.5802
PERCOLATION/LEAKAGE TH	ROUGH LAY	ER 6				
TOTALS	0.0000 0.0000	0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000

PEAK DAILY VALUES FOR YEARS	1 THROUGH 4	10					
	(INCHES)	(CU. FT.)					
PRECIPITATION	8.90	32306.998					
RUNOFF	5.671	20584.7715					
DRAINAGE COLLECTED FROM LAYER 4	0.15724	570.77814					
PERCOLATION/LEAKAGE THROUGH LAYER 6	0.000000	0.00142					
AVERAGE HEAD ON TOP OF LAYER 5	0.169						
MAXIMUM HEAD ON TOP OF LAYER 5	0.332						
LOCATION OF MAXIMUM HEAD IN LAYER 4 (DISTANCE FROM DRAIN)	5.7 FEET						
SNOW WATER	1.68	6105.5332					
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.4	1649					
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.2	2650					
*** Maximum heads are computed using McEnroe's equations. ***							
Reference: Maximum Saturated Dept	n over Landti	LI LINEr					

TOTAL FINAL WATER

by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

STD. DEVIATIONS	0.0000 0.0000	0.0000 0.0000	0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000
AVERAGES OF	MONTHLY	AVERAGE	D DAILY HEA	ADS (INCHI	S)	
DAILY AVERAGE HEAD ON TOP	P OF LAYE	R 5				
AVERAGES	0.0239 0.0175	0.0195	0.0133 0.0075	0.0142 0.0146	0.0117 0.0215	0.0081 0.0183
STD. DEVIATIONS	0.0274 0.0239	0.0200 0.0217	0.0211 0.0126	0.0183 0.0183	0.0201 0.0210	0.0110 0.0201
*******	*******	******	********	*******	******	******
**************************************	********* & (STD	*********	·**********	*******	*******	*********
AVENAGE ANNOAE TOTAES	α (5151	DEVIAII	UNS) FUR TE	AND I	тякоодя	40
		INCHE	S	CU. FEI	ET	PERCENT
PRECIPITATION		INCHE	5.616)	CU. FEI	ET	PERCENT 100.00
PRECIPITATION RUNOFF	 30. 4.	INCHE .38 (5.616)	CU. FEI 11028	ET	PERCENT 100.00 15.430
PRECIPITATION RUNOFF POTENTIAL EVAPOTRANSPIRAT:	 30. 4. ION 70.	INCHE .38 (.688 (.281 (5.616) 5.2305)	CU. FEI 	5.8 :: 7.38	PERCENT 100.00 15.430
PRECIPITATION RUNOFF POTENTIAL EVAPOTRANSPIRATION	30. 4. ION 70. 20.	INCHE .38 (.688 (.281 (.536 (5.616) 1.9820) 5.2305) 5.3597)	CU. FEI 11028 1701 25512 7454	5.8 7.38	PERCENT 100.00 15.430 67.592
PRECIPITATION RUNOFF POTENTIAL EVAPOTRANSPIRATION LATERAL DRAINAGE COLLECTED FROM LAYER 4	 30. 4. ION 70. 20. D 5.	INCHE 38 (688 (281 (536 (20219 ((1.9820) (1.9820) (5.2305) (5.3597) (4.58375)	CU. FEI 11028 1701 25512 7454 1888	5.8 7.38 1.11 3.88 3.965	PERCENT 100.00 15.430 67.592 17.12276
PRECIPITATION RUNOFF POTENTIAL EVAPOTRANSPIRATION LATERAL DRAINAGE COLLECTED FROM LAYER 4 PERCOLATION/LEAKAGE THROUG LAYER 6	 30. 4. ION 70. 20. D 5. SH 0.	INCHE 38 (688 (281 (536 (20219 (00002 (5.2305) 4.58375) 0.00001)	CU. FEI 11028 1701: 25512: 7454: 1888:	THOUGH	PERCENT 100.00 15.430 67.592 17.12276 0.00005
PRECIPITATION RUNOFF POTENTIAL EVAPOTRANSPIRATION LATERAL DRAINAGE COLLECTED FROM LAYER 4 PERCOLATION/LEAKAGE THROUG LAYER 6 AVERAGE HEAD ON TOP OF LAYER 5	 30. 4. ION 70. 20. D 5. SH 0. 0.	INCHE 38 (688 (281 (536 (20219 (00002 (.015 (5.616) 5.2305) 5.3597) 4.58375) 0.00001) 0.013)	CU. FEI 11028: 1701: 25512: 7454: 1888:	TROUGH	PERCENT 100.00 15.430 67.592 17.12276 0.00005
PRECIPITATION RUNOFF POTENTIAL EVAPOTRANSPIRATION LATERAL DRAINAGE COLLECTED FROM LAYER 4 PERCOLATION/LEAKAGE THROUG LAYER 6 AVERAGE HEAD ON TOP OF LAYER 5 CHANGE IN WATER STORAGE	 30. 4. ION 70. 20. D 5. GH 0. 0. -0.	INCHE 38 (688 (281 (536 (20219 (00002 (015 (044 (5.616) 5.8200) 5.2305) 5.3597) 4.58375) 0.00001) 0.013) 2.7123) 	CU. FEI 11028: 1701: 25512: 7454: 1888: (7.38 1.11 3.88 3.965 3.059	PERCENT 100.00 15.430 67.592 17.12276 0.00005 -0.145

Calculation Page 3E.2-22 Reviewed 8/3/23

3.44

3.63

***************************************	*****
*****	*****
**	**
**	**
** HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	**
**	**
** HELP Version 3.95 D (10 August 2012)	**
** developed at	**
** Institute of Soil Science, University of Hamburg, Germany	**
** based on	**
** US HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)	**
** DEVELOPED BY ENVIRONMENTAL LABORATORY	**
** USAE WATERWAYS EXPERIMENT STATION	**
** FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	**
**	**
**	**
***************************************	*****
***************************************	*****

TIME: 13.26 DATE: 5.04.2023

PRECIPITATION DATA FILE:		C:\PRECIP-40yr.d4
TEMPERATURE DATA FILE:		C:\TEMP-40yr.d7
SOLAR RADIATION DATA FILE:		C:\SOLAR-40yr.d13
EVAPOTRANSPIRATION DATA F.	1:	C:\Evapotranspiration-LAI_1.d11
SOIL AND DESIGN DATA FILE	1:	C:\SOILS - NF_02R_r1.d10
OUTPUT DATA FILE:		C:\OUT - NF_02R_r1.out

TITLE: Mesquite_Creek_LF - NF_02R

WEATHER DATA SOURCES

NOTE:	PRECIPITATION DATA WA	S SYNTHETICALLY	GENERATED USING
	COEFFICIENTS FOR	SAN ANTONIO	TEXAS
	NORMAL MEAN MONTHLY	PRECIPITATION	(INCHES)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC

	TYPE 1 - VERTIC	AL PER	RCOLATION LA	AYER		
	MATERIAL TE	XTURE	NUMBER 18			
	THICKNESS	=	900.00	INCHES		
	POROSITY	=	0.6710	VOL/VOL		
	FIELD CAPACITY	=	0.2920	VOL/VOL		
	WILTING POINT	=	0.0770	VOL/VOL		
	INITIAL SOIL WATER CONTEN	IT =	0.2930	VOL/VOL		
	EFFECTIVE SAT. HYD. CONDU	CT.=	0.1000	E-02 CM/SE	C	
N	OTE: 50.00 PERCENT OF TH	IE DRAI	ENAGE COLLEG	CTED FROM	LAYER #	‡4
	IS RECIRCULATED IN	ITO THE	IS LAYER.			

LAYER 3

TYPE 1 - VERTICAL	PERC	OLATION LA	YER
MATERIAL TEXTU	JRE N	IUMBER 25	
THICKNESS	=	24.00	INCHES
POROSITY	=	0.4370	VOL/VOL
FIELD CAPACITY	=	0.3730	VOL/VOL
WILTING POINT	=	0.2660	VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.4199	VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT	. =	0.36008	-05 CM/SEC

LAYER 4

TYPE 2 - LATERAL DRAINAGE LAYER

MATERIAL 1	TEXTURE	NUMBER 2	0
THICKNESS	=	0.20	INCHES
POROSITY	=	0.850	0 VOL/VOL
FIELD CAPACITY	=	0.010	0 VOL/VOL
WILTING POINT	=	0.005	0 VOL/VOL
INITIAL SOIL WATER CONTE	NT =	0.010	3 VOL/VOL
EFFECTIVE SAT. HYD. COND	DUCT.=	1.40	0 CM/SEC
SLOPE	=	5.00	PERCENT
DRAINAGE LENGTH	=	425.0	FEET
		NACE COLL	COTED EDOM THE

NOTE: 50.00 PERCENT OF THE DRAINAGE COLLECTED FROM THIS LAYER IS RECIRCULATED INTO LAYER # 2.

2.21	2.01	3.45	3.30	2.46	2.42	
NOTE:	TEMPERATURE	DATA WAS SY	NTHETICALLY	GENERATED US	ING	
	COEFFICIE	NTS FOR S	AN ANTONIO	TEXAS		
NC	RMAL MEAN MC	NTHLY TEMPER	ATURE (DEGRE	ES FAHRENHET	T)	
					,	
ΠΔΝ/ΠΗ	EER/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC	
57447 502					5511/520	
52 20	56 00	62 80	69 80	76 60	82 40	
94 60	95 10	70.00	71 20	61 00	62.40	
84.50	85.10	75.50	/1.50	01.00	33.30	

2.00

2.14

1.72

2.49

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR SAN ANTONIO TEXAS AND STATION LATITUDE = 29.70 DEGREES

LAYER DATA 1

VALID FOR 40 YEARS

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 15 THICKNESS = 12.00 INCHES POROSITY = 0.4750 VOL/VOL FIELD CAPACITY = 0.3780 VOL/VOL MULTING POINT = 0.2650 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3612 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT... = 0.1700E-04 CM/SEC NOTE: SATURATEH HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 1.80 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 5

TYPE 4 - FLEXIB	LE I	MEMB	RANE LI	NER
MATERIAL TEXT	URE	NUM	IBER 35	
THICKNESS	=		0.06	INCHES
EFFECTIVE SAT. HYD. CONDUCT	. =		0.2000	E-12 CM/SEC
FML PINHOLE DENSITY	=		2.00	HOLES/ACRE
FML INSTALLATION DEFECTS	=		2.00	HOLES/ACRE
FML PLACEMENT OUALITY	=	3 -	GOOD	

LAYER 6

TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 16 THICKNESS = 24.00 INCHES POROSITY = 0.4270 VOL/VOL FIELD CAPACITY = 0.4380 VOL/VOL WILTING POINT = 0.3670 VOL/VOL INITIAL SOIL WATER CONTENT = 0.4270 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.1000E-06 CM/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA 1

VALID FOR 40 YEARS

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #15 WITH A POOR STAND OF GRASS, A SURFACE SLOPE OF 5.% AND A SLOPE LENGTH OF 425. FEET.

SCS RUNOFF CURVE NUMBER	=	93.34	
FRACTION OF AREA ALLOWING RUNOFF	=	50.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	=	1.000	ACRES
EVAPORATIVE ZONE DEPTH	=	10.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	=	3.579	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE	=	4.750	INCHES
FIELD CAPACITY OF EVAPORATIVE ZONE	=	3.780	INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE	=	2.650	INCHES
SOIL EVAPORATION ZONE DEPTH	=	10.000	INCHES

Calculation Page 3E.2-23 Reviewed 8/3/23

INITIAL SNOW WATER	=	0.000	INCHES	
INITIAL INTERCEPTION WATER	=	0.000	INCHES	
INITIAL WATER IN LAYER MATERIALS	=	288.394	INCHES	
TOTAL INITIAL WATER	=	288.394	INCHES	
TOTAL SUBSURFACE INFLOW	=	0.00	TNCHES/YEAR	

EVAPOTRANSPIRATION DATA 1

VALID FOR 40 YEARS

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINE	DF	ROM	
SAN ANTONIO TEXAS			
STATION LATITUDE	=	29.70	DEGREES
MAXIMUM LEAF AREA INDEX	=	1.00	
START OF GROWING SEASON (JULIAN DATE)	=	35	
END OF GROWING SEASON (JULIAN DATE)	=	350	
EVAPORATIVE ZONE DEPTH	=	10.0	INCHES
AVERAGE ANNUAL WIND SPEED	=	9.40	MPH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY	=	66.0	%
AVERAGE 2ND QUARTER RELATIVE HUMIDITY	=	68.0	%
AVERAGE 3RD QUARTER RELATIVE HUMIDITY	=	66.0	%
AVERAGE 4TH QUARTER RELATIVE HUMIDITY	=	67.0	%

FINAL WATER	STORAGE AT	END OF YEAR 4	0
LAYER	(INCHES)	(VOL/VOL)	
1	3.7205	0.3100	
2	262.8000	0.2920	
3	9.7030	0.4043	
4	0.0244	0.1221	
5	0.0000	0.0000	

	6	10.2480	0.4270	
TOTAL WATE	R IN LAYERS	286.496		
SNOW WATER	l	0.000		
INTERCEPTI	ON WATER	0.000		
TOTAL FINA	L WATER	286.496		
*****	*****	*****	*****	******

PEAK DAILY VALUES FOR YEARS 1 THROUGH 40

	(INCHES)	(CU. FT.)
PRECIPITATION	8.90	32306.998
RUNOFF	5.671	20584.7715
DRAINAGE RECIRCULATED INTO LAYER 2	0.08041	291.87537
DRAINAGE COLLECTED FROM LAYER 4	0.08041	291.87537
DRAINAGE RECIRCULATED FROM LAYER 4	0.08041	291.87537
PERCOLATION/LEAKAGE THROUGH LAYER 6	0.00000	0.00145
AVERAGE HEAD ON TOP OF LAYER 5	0.173	
MAXIMUM HEAD ON TOP OF LAYER 5	0.341	
LOCATION OF MAXIMUM HEAD IN LAYER 4 (DISTANCE FROM DRAIN)	4.6 FEET	
SNOW WATER	1.68	6105.5332
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.	4649
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.	2650

*** Maximum heads are computed using McEnroe's equations. ***

Reference:	Maximum Saturated Depth over Landfill Liner
	by Bruce M. McEnroe, University of Kansas
	ASCE Journal of Environmental Engineering
	Vol. 119, No. 2, March 1993, pp. 262-270.

***************************************	*******

AVERAGE MONTHLY	VALUES I	N INCHES	FOR YEARS	1 THR	OUGH 40	
	JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
PRECIPITATION						
TOTALS	1.91	1.57	2.37	1.86	2.93	3.79
	2.14	1.91	3.84	3.47	2.35	2.25
STD. DEVIATIONS	1.31	0.84	1.48	1.39	1.72	2.83
	2.13	1.91	2.27	2.00	1.81	1.22
RUNOFF						
TOTALS	0.162	0.082	0.337	0.169	0.419	0.957
	0.485	0.264	0.686	0.592	0.301	0.234
STD. DEVIATIONS	0.247	0.095	0.518	0.311	0.517	1.189
	1.140	0.521	0.741	0.603	0.484	0.257
POTENTIAL EVAPOTRANSPI	RATION					
TOTALS	3.153	3.521	5.254	6.376	7.897	8.501
	9.017	8.366	6.561	5.040	3.649	2.946
STD. DEVIATIONS	0.350	0.296	0.510	0.521	0.615	0.711
	0.827	0.776	0.663	0.538	0.374	0.274
ACTUAL EVAPOTRANSPIRAT	ION					
TOTALS	1.455	1.281	1.673	1.744	2.179	2.314
	1.488	1.569	2.061	1.992	1.394	1.384
STD. DEVIATIONS	0.607	0.685	0.877	1.047	1.129	1.260
	1.004	1.252	1.055	0.878	0.774	0.628

TOTALS	0.5724 0.4324	0.5150 0.4003	0.4867 0.2977	0.4367 0.3892	0.3795 0.4749	0.3162 0.5044
STD. DEVIATIONS	0.4415 0.4270	0.3843 0.4354	0.4076 0.3213	0.3844 0.3797	0.3981 0.3877	0.3443 0.3889
LATERAL DRAINAGE COLL	ECTED FROM	LAYER 4				
TOTALS	0.5724 0.4324	0.5150 0.4003	0.4867 0.2977	0.4367 0.3892	0.3795 0.4749	0.3162 0.5044
STD. DEVIATIONS	0.4415 0.4270	0.3843 0.4354	0.4076 0.3213	0.3844 0.3797	0.3981 0.3877	0.3443 0.3889
LATERAL DRAINAGE RECI	RCULATED FR	OM LAYER	4 INTO L	. 2		
TOTALS	0.5724 0.4324	0.5150 0.4003	0.4867 0.2977	0.4367 0.3892	0.3795 0.4749	0.3162 0.5044
STD. DEVIATIONS	0.4415 0.4270	0.3843 0.4354	0.4076 0.3213	0.3844 0.3797	0.3981 0.3877	0.3443 0.3889
PERCOLATION/LEAKAGE T	HROUGH LAYE	R 6				
TOTALS	0.0000 0.0000	0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000
STD. DEVIATIONS	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000	0.0000	0.0000 0.0000
AVERAGES	OF MONTHLY	AVERAGED	DAILY HE	ADS (INCH	 ES)	
DAILY AVERAGE HEAD ON	TOP OF LAY	ER 5				
AVERAGES	0.0396 0.0300	0.0392 0.0277	0.0337 0.0213	0.0313 0.0270	0.0263 0.0340	0.0226 0.0349

0.0306 0.0293 0.0282 0.0275 0.0276 0.0246 0.0296 0.0302 0.0230 0.0263 0.0278 0.0269

STD. DEVIATIONS

Calculation Page 3E.2-24 Reviewed 8/3/23

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 40

	INC	IES		CU. FEET	PERCENT
PRECIPITATION	30.38	(5.616)	110285.8	100.00
RUNOFF	4.688	(1.9820)	17017.38	15.430
POTENTIAL EVAPOTRANSPIRATION	70.281	(5.2305)	255121.11	
ACTUAL EVAPOTRANSPIRATION	20.536	(5.3597)	74543.88	67.592
DRAINAGE RECIRCULATED INTO LAYER 2	5.20538	(3.71299)	18895.516	17.13323
LATERAL DRAINAGE COLLECTED FROM LAYER 4	5.20538	(3.71299)	18895.518	17.13323
DRAINAGE RECIRCULATED FROM LAYER 4 INTO L. 2	5.20538	(3.71299)	18895.518	17.13323
PERCOLATION/LEAKAGE THROUGH LAYER 6	0.00003	(0.00002)	0.111	0.00010
AVERAGE HEAD ON TOP OF LAYER 5	0.031	(0.022)		
CHANGE IN WATER STORAGE	-0.047	(4.7004)	-172.26	-0.156
******	********	***	******	*****	*****
***************************************	*******	***	******	******	*****

Calculation Page 3E.2-25 Reviewed 8/3/23

*******	******	******	******
*******	******	******	*******
**			**
**			**
**	HYDROLOGIC EVALUATION OF L	ANDFILL PERFORMANCE	**
**			**
**	HELP Version 3.95 D	(10 August 2012)	**
**	developed	at	**
**	Institute of Soil Science, Unive	rsity of Hamburg, Germany	**
**	based o	n	**
**	US HELP MODEL VERSION 3.07	(1 NOVEMBER 1997)	**
**	DEVELOPED BY ENVIRONME	NTAL LABORATORY	**
**	USAE WATERWAYS EXPER	IMENT STATION	**
**	FOR USEPA RISK REDUCTION EN	IGINEERING LABORATORY	**
**			**
**			**
*******	******	*****	******
*******	******	*****	******
TIME: 16	.05 DATE: 13.02.2023		

PRECIPITATION DATA FILE:		C:\PRECIP-40yr.d4	
TEMPERATURE DATA FILE:		C:\TEMP-40yr.d7	
SOLAR RADIATION DATA FILE:		C:\SOLAR-40yr.d13	
EVAPOTRANSPIRATION DATA F.	1:	C:\Evapotranspiration-LAI_1.d11	
SOIL AND DESIGN DATA FILE	1:	C:\SOILS - NF_03.d10	
OUTPUT DATA FILE:		C:\OUT - NF_03.out	

TITLE: Mesquite_Creek_LF - NF_03

WEATHER DATA SOURCES

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR SAN ANTONIO TEXAS

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

AN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
2.14	1.72	2.49	2.00	3.63	3.44
2.21	2.01	3.45	3.30	2.46	2.42

TYPE 1 - VERTICAL	PEI	RCOLATION L	AYER
MATERIAL TEXT	ΓURE	NUMBER 18	
THICKNESS	=	1800.00	INCHES
POROSITY	=	0.6710	VOL/VOL
FIELD CAPACITY	=	0.2920	VOL/VOL
WILTING POINT	=	0.0770	VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.2924	VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT	Γ.=	0.1000	E-02 CM/SEC

LAYER 3

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 25 = 24.00 INCHES = 0.4370 VOL/VOL THICKNESS POROSITY FIELD CAPACITY 0.3730 VOL/VOL WILTING POINT = INITIAL SOIL WATER CONTENT = EFFECTIVE SAT. HYD. CONDUCT.= 0.2660 VOL/VOL 0.4093 VOL/VOL 0.3600E-05 CM/SEC

LAYER 4

TYPE 2 - LATERA	L DRA	INAGE LAYE	R
MATERIAL TEXT	URE N	JMBER 20	
THICKNESS	=	0.20	INCHES
POROSITY	=	0.8500	VOL/VOL
FIELD CAPACITY	=	0.0100	VOL/VOL
WILTING POINT	=	0.0050	VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.0122	VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT	. =	1.500	CM/SEC
SLOPE	=	5.00	PERCENT
DRAINAGE LENGTH	=	425.0	FEET

LAYER 5

TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 35 = 0.06 INCHES AT. HYD. CONDUCT.= 0.2000E-12 CM/SEC DENSITY = 2.00 HOLES/ACRE THTCKNESS EFFECTIVE SAT. HYD. CONDUCT.= FML PINHOLE DENSITY =

	COEFFIC	CIENTS FOR	SAN ANTONIO	TEXAS	5
	NORMAL MEAN	MONTHLY TEMP	ERATURE (DEGR	EES FAHRENHEI	ET)
JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
52.20	56.00	62.80	69.80	76.60	82.40
84.50	85.10	79.90	71.30	61.00	53.50

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR SAN ANTONIO TEXAS AND STATION LATITUDE = 29.70 DEGREES

LAYER DATA 1

VALID FOR 40 YEARS

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL	TEXTURE	NUMBER 15		
THICKNESS	=	12.00	INCHES	
POROSITY	=	0.4750	VOL/VOL	
FIELD CAPACITY	=	0.3780	VOL/VOL	
WILTING POINT	=	0.2650	VOL/VOL	
INITIAL SOIL WATER CONTE	ENT =	0.3617	VOL/VOL	
EFFECTIVE SAT. HYD. CONE	DUCT.=	0.1700	E-04 CM/SE	С
NOTE: SATURATED HYDRAULIC	CONDUC	CTIVITY IS	MULTIPLIED	BY 1.80
FOR ROOT CHANNELS	5 IN TOP	HALF OF E	VAPORATIVE	ZONE.

LAYER 2

 FML INSTALLATION DEFECTS
 =
 2.00

 FML INSTALLATION DIALITY
 =
 3 - GOOD
 HOLES/ACRE

LAYER 6

	TYPE 3 -	BARRIER	SOIL LINE	R	
	MATERIAL	TEXTURE	NUMBER 1	.6	
THICKNESS		=	24.00	INCHES	
POROSITY		=	0.427	0 VOL/VOL	
FIELD CAPACIT	Y	=	0.418	0 VOL/VOL	
WILTING POINT		=	0.367	0 VOL/VOL	
INITIAL SOIL I	WATER CONT	FENT =	0.427	0 VOL/VOL	
EFFECTIVE SAT	. HYD. COM	NDUCT.=	0.100	0E-06 CM/SE	С

GENERAL DESIGN AND EVAPORATIVE ZONE DATA 1

VALID FOR 40 YEARS

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #15 WITH A POOR STAND OF GRASS, A SURFACE SLOPE OF 5.% AND A SLOPE LENGTH OF 886. FEET.

SCS RUNOFF CURVE NUMBER	=	93.10	
FRACTION OF AREA ALLOWING RUNOFF	=	50.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	=	1.000	ACRES
EVAPORATIVE ZONE DEPTH	=	10.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	=	3.584	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE	=	4.750	INCHES
FIELD CAPACITY OF EVAPORATIVE ZONE	=	3.780	INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE	=	2.650	INCHES
SOIL EVAPORATION ZONE DEPTH	=	10.000	INCHES
INITIAL SNOW WATER	=	0.000	INCHES
INITIAL INTERCEPTION WATER	=	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	=	550.690	INCHES
TOTAL INITIAL WATER	=	550.690	INCHES
TOTAL SUBSURFACE INFLOW	=	0.00	INCHES/YEAR

Calculation Page 3E.2-26 Reviewed 8/3/23 548,911

EVAPOTRANSPIRATION DAT	A 1

VALID FOR 40 YEARS

NOTE:	EVAPO	DTRA	VSPIRATIO	ON DATA W	٩S	OBTAINE	D FI	ROM	
	SAM	AN1	FONIO	TEX	٩S				
ST	ATION	LAT	ETUDE				=	29.70	DEGREES
MA	XIMUM	LEAF	AREA IN	NDEX			=	1.00	
ST	ART OF	GRO	DWING SEA	ASON (JUL	IAN	I DATE)	=	35	
EN	DOFO	GROW:	ING SEAS	ON (JULIA	NE	DATE)	=	350	
EV	APORAT	IVE	ZONE DEF	PTH			=	10.0	INCHES
AV	ERAGE	ANN	JAL WIND	SPEED			=	9.40	MPH
AV	ERAGE	1ST	QUARTER	RELATIVE	ΗL	JMIDITY	=	66.0	%
AV	ERAGE	2ND	QUARTER	RELATIVE	ΗL	JMIDITY	=	68.0	%
AV	ERAGE	3RD	QUARTER	RELATIVE	ΗL	JMIDITY	=	66.0	%
AV	ERAGE	4TH	QUARTER	RELATIVE	ΗL	JMIDITY	=	67.0	%

FINAL WATER STORAGE AT END OF YEAR 40

LAYER	(INCHES)	(VOL/VOL)
1	3.7183	0.3099
2	525.6000	0.2920
3	9.3291	0.3887
4	0.0153	0.0765
5	0.0000	0.0000
6	10.2480	0.4270
TOTAL WATER IN LAYERS	548.911	
SNOW WATER	0.000	
INTERCEPTION WATER	0.000	

-

AVERAGE MONTHL	Y VALUES I	N INCHES	FOR YEARS	1 THR	OUGH 40	
	JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
PRECIPITATION						
TOTALS	1.91	1.57	2.37	1.86	2.93	3.79
	2.14	1.91	3.84	3.47	2.35	2.25
STD. DEVIATIONS	1.31	0.84	1.48	1.39	1.72	2.83
	2.13	1.91	2.27	2.00	1.81	1.22
RUNOFF						
TOTALS	0.158	0.077	0.330	0.162	0.409	0.946
	0.478	0.257	0.671	0.579	0.295	0.227
STD. DEVIATIONS	0.243	0.091	0.514	0.306	0.512	1.183
	1.137	0.515	0.732	0.600	0.483	0.253
POTENTIAL EVAPOTRANSP	IRATION					
TOTALS	3.153	3.521	5.254	6.376	7.897	8.501
	9.017	8.366	6.561	5.040	3.649	2.946
STD. DEVIATIONS	0.350	0.296	0.510	0.521	0.615	0.711
	0.827	0.776	0.663	0.538	0.374	0.274
ACTUAL EVAPOTRANSPIRA	TION					
TOTALS	1.446	1.292	1.674	1.746	2.174	2.327
	1.497	1.565	2.073	1.985	1.392	1.389
STD. DEVIATIONS	0.608	0.690	0.878	1.052	1.126	1.263
	1.010	1.247	1.052	0.876	0.776	0.624
LATERAL DRAINAGE COLL	ECTED FROM	LAYER 4				
TOTALS	0.6939	0.5127	0.3785	0.4002	0.3408	0.2838
	0.5161	0.3943	0.2190	0.4230	0.5975	0.5178
STD. DEVIATIONS	0.7360	0.4969	0.5934	0.5020	0.5928	0.5260
	0.6750	0.6366	0.3628	0.5323	0.5635	0.5331
PERCOLATION/LEAKAGE T	HROUGH LAY	ER 6				
TOTALS	0.0000	0.0000	0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000

PEAK DAILY VALUES FOR YEARS	1 THROUGH	10		
	(INCHES)	(CU. FT.)		
PRECIPITATION	8.90	32306.998		
RUNOFF	5.655	20528.8066		
DRAINAGE COLLECTED FROM LAYER 4	0.16185	587.50482		
PERCOLATION/LEAKAGE THROUGH LAYER 6	0.000000	0.00137		
AVERAGE HEAD ON TOP OF LAYER 5	0.162			
MAXIMUM HEAD ON TOP OF LAYER 5	0.321			
LOCATION OF MAXIMUM HEAD IN LAYER 4 (DISTANCE FROM DRAIN)	0.0 FEET			
SNOW WATER	1.75	6340.7095		
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.4	1649		
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.2	2650		
*** Maximum heads are computed using Me	cEnroe's equa	tions. ***		
Reference: Maximum Saturated Dept by Bruce M. McEnroe, U	h over Landfi niversity of H	ll Liner Kansas		

TOTAL FINAL WATER

by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

STD. DEVIATIONS	0.0000 0.0000	0.000	90 90	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000
AVERAGES OF	MONTHLY	AVERAG	GED	DAILY HEA	DS (INCHE	s)	
DAILY AVERAGE HEAD ON TO	P OF LAYE	R 5					
AVERAGES	0.0224 0.0167	0.018	32 27	0.0122 0.0073	0.0134 0.0137	0.0110 0.0200	0.0095 0.0167
STD. DEVIATIONS	0.0238 0.0218	0.017 0.020	76 96	0.0192 0.0121	0.0168 0.0172	0.0192 0.0188	0.0176 0.0172
*****	*******	******	***	******	*******	******	*******
*****	*******	******	***	******	******	******	*******
AVERAGE ANNUAL TOTALS	& (STD.	DEVIAT	ION	IS) FOR YEA	ARS 1	THROUGH	40
		INCH	IES		CU. FEE	T 	PERCENT
PRECIPITATION	30	. 38	(5.616)	110285	.8 1	100.00
RUNOFF	4	. 590	(1.9707)	16661	.23	15.107
POTENTIAL EVAPOTRANSPIRAT	ION 70	.281	(5.2305)	255121	.11	
ACTUAL EVAPOTRANSPIRATION	20	.559	(5.3633)	74628	.43	67.668
LATERAL DRAINAGE COLLECTED FROM LAYER 4	D 5.	. 27754	(4.55713)	19157	.471 1	17.37076
PERCOLATION/LEAKAGE THROUG LAYER 6	GH Ø	.00002	(0.00001)	0	.057	0.00005
AVERAGE HEAD ON TOP OF LAYER 5	0	.014	(0.012)			
CHANGE IN WATER STORAGE	-0	.044	(3.1527)	-161	.43	-0.146
***************************************	********	****** ******	**** ****	*********	********* ******	******* ******	********** ******

Calculation Page 3E.2-27 Reviewed 8/3/23

3.44

3.63

***************************************	*****
*****	*****
**	**
**	**
** HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	**
**	**
** HELP Version 3.95 D (10 August 2012)	**
** developed at	**
** Institute of Soil Science, University of Hamburg, Germany	**
** based on	**
** US HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)	**
** DEVELOPED BY ENVIRONMENTAL LABORATORY	**
** USAE WATERWAYS EXPERIMENT STATION	**
** FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	**
**	**
**	**
***************************************	*****
***************************************	*****

TIME: 16.06 DATE: 13.02.2023

PRECIPITATION DATA FILE:		C:\PRECIP-70yr.d4
TEMPERATURE DATA FILE:		C:\TEMP-70yr.d7
SOLAR RADIATION DATA FILE:		C:\SOLAR-70yr.d13
EVAPOTRANSPIRATION DATA F.	1:	C:\Evapotranspiration-LAI_3.d11
SOIL AND DESIGN DATA FILE	1:	C:\SOILS - NF_04.d10
DUTPUT DATA FILE:		C:\OUT - NF_04.out
		-

TITLE: Mesquite_Creek_LF - NF_04

WEATHER DATA SOURCES WEATHER DATA SOURC

NOTE:	PRECIPITATION DATA WA	S SYNTHETICALLY	GENERATED USING
	COEFFICIENTS FOR	SAN ANTONIO	TEXAS
	NORMAL MEAN MONTHLY	PRECIPITATION	(INCHES)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC

LAYER	2
-------	---

TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 20 = 0.20 INCHES = 0.8500 VOL/VOL ITT = 0.0100 VOL/VOL (NT = 0.0323 VOL/VOL IL WATER CONTENT = 0.0323 VOL/VOL AT. HYD. CONDUCT.= 10.00 CM/SEC = 5.00 PERCENT NGTH = 886.0 FEET THICKNESS IHICKNESS = POROSITY = FIELD CAPACITY = WILTING POINT = INITIAL SOIL WATER CONTENT = EFFECTIVE SAT. HYD. CONDUCT.= SLOPE = DRAINAGE LENGTH =

LAYER 3

TYPE 4 - FLEXI	BLE M	EMBRANE LI	INER
MATERIAL TEX	TURE	NUMBER 36	5
THICKNESS	=	0.04	INCHES
EFFECTIVE SAT. HYD. CONDUC	T.=	0.4000	E-12 CM/SEC
FML PINHOLE DENSITY	=	2.00	HOLES/ACRE
FML INSTALLATION DEFECTS	=	2.00	HOLES/ACRE
FML PLACEMENT QUALITY	=	3 - GOOD	

LAYER 4

TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 0 = 0.4270 VOL/VOL Y = 0.4180 VOL/VOL Y = 0.3670 VOL/VOL WATER CONTENT = 0.4270 VOL/VOL . HYD. CONDUCT.= 0.1000E-04 CM/SEC THICKNESS POROSITY FIELD CAPACITY WILTING POINT = INITIAL SOIL WATER CONTENT = EFFECTIVE SAT. HYD. CONDUCT.=

LAYER 5

TYPE 1 - VERTICAL PERCOLATION LAYER

2.21	2.01	5.45	5.50	2.40	2.42	
NOTE:	TEMPERATURE	DATA WAS SY	'NTHETICALLY	GENERATED US	SING	
	COEFFICIE	ENTS FOR S	SAN ANTONIO	TEXAS	5	
NC	ORMAL MEAN MO	NTHLY TEMPER	ATURE (DEGRE	ES FAHRENHEI	(T)	
JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC	
52.20	56.00	62.80	69.80	76.60	82.40	
84.50	85.10	79.90	71.30	61.00	53.50	

2.00

2.49

2.14

1.72

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR SAN ANTONIO TEXAS AND STATION LATITUDE = 29.70 DEGREES

LAYER DATA 1 ------

VALID FOR 70 YEARS

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 24 THICKNESS = 24.00 INCHES POROSITY = 0.3650 VOL/VOL FIELD CAPACITY = 0.3650 VOL/VOL WILTING POINT = 0.2020 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3169 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT 0.2700E-05 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 4.20					
MATERIAL TEXTURE NUMBER 24 THICKNESS = 24.00 INCHES POROSITY = 0.3650 VOL/VOL FIELD CAPACITY = 0.3650 VOL/VOL WILTING POINT = 0.2202 VOL/VOL INITIAL SOL WATER CONTENT = 0.3169 VOL/VOL EFFECTIVE SAT. HYD, CONDUCT. 0.2700E-05 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 4.20	TYPE 1 - VERTI	CAL PERC	OLATION LA	AYER	
THICKNESS = 24.00 INCHES POROSITY = 0.3650 VOL/VOL FIELD CAPACITY = 0.3650 VOL/VOL WILTING POINT = 0.2020 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3169 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT. = 0.2080E-05 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 4.20	MATERIAL T	EXTURE N	IUMBER 24		
POROSITY = 0.3658 VOL/VOL FIELD CAPACITY = 0.3050 VOL/VOL WILTING POINT = 0.2020 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3169 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT,= 0.2700E-05 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 4.20	THICKNESS	=	24.00	INCHES	
FIELD CAPACITY = 0.3050 VOL/VOL WILTING POINT = 0.2020 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3169 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.2700E-05 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 4.20	POROSITY	=	0.3650	VOL/VOL	
WILTING POINT = 0.2020 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3169 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.2700E-05 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 4.20	FIELD CAPACITY	=	0.3050	VOL/VOL	
INITIAL SOIL WATER CONTENT = 0.3169 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.2700E-05 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 4.20	WILTING POINT	=	0.2020	VOL/VOL	
EFFECTIVE SAT. HYD. CONDUCT.= 0.2700E-05 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 4.20	INITIAL SOIL WATER CONTE	NT =	0.3169	VOL/VOL	
NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 4.20	EFFECTIVE SAT. HYD. COND	UCT.=	0.2700	E-05 CM/SE	2
	NOTE: SATURATED HYDRAULIC	CONDUCT	IVITY IS N	MULTIPLIED	BY 4.20
FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.	FOR ROOT CHANNELS	IN TOP	HALF OF E	VAPORATIVE	ZONE.

TURE	NUMBER	18	
=	1800.0	9	INCHES
=	0.6	710	VOL/VOL
=	0.2	920	VOL/VOL
=	0.0	770	VOL/VOL
=	0.2	920	VOL/VOL
т –	0 10	AAAF	-02 CM/SEC
	TURE = = = = = T =	TURE NUMBER = 1800.00 = 0.6 = 0.2 = 0.0 = 0.2 T = 0.1	TURE NUMBER 18 = 1800.00 = 0.6710 = 0.2920 = 0.0770 = 0.2920 T = 0 10005

LAYER 6

TYPE 1 - VERTICAL	PEF	RCOLATION LAYER
MATERIAL TEXTU	JRE	NUMBER 25
THICKNESS	=	24.00 INCHES
POROSITY	=	0.4370 VOL/VOL
FIELD CAPACITY	=	0.3730 VOL/VOL
WILTING POINT	=	0.2660 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.3730 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT.	=	0.3600E-05 CM/SEC

LA	YE	R	7

TYPE 2 - LATERA	L DRAI	NAGE LAY	R
MATERIAL TEXT	JRE NU	IMBER 20	
THICKNESS	=	0.20	INCHES
POROSITY	=	0.8500	VOL/VOL
FIELD CAPACITY	=	0.0100	VOL/VOL
WILTING POINT	=	0.0050	VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.0100	VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT	.=	10.00	CM/SEC
SLOPE	=	5.00	PERCENT
DRAINAGE LENGTH	=	425.0	FEET

LAYER 8

TYPE 4 - FLEXIB MATERIAL TEXTU	LE MEMI URE NUI	BRANE LINER MBER 35
THICKNESS	=	0.06 INCHES
EFFECTIVE SAT. HYD. CONDUCT.	. =	0.2000E-12 CM/SEC
FML PINHOLE DENSITY	=	2.00 HOLES/ACRE
FML INSTALLATION DEFECTS	=	2.00 HOLES/ACRE
FML PLACEMENT QUALITY	= 3	- GOOD

Calculation Page 3E.2-28 Reviewed 8/3/23

VALID FOR 70 YEARS

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINE	DF	ROM	
SAN ANTONIO TEXAS			
STATION LATITUDE	=	29.70	DEGREES
MAXIMUM LEAF AREA INDEX	=	3.00	
START OF GROWING SEASON (JULIAN DATE)	=	35	
END OF GROWING SEASON (JULIAN DATE)	=	350	
EVAPORATIVE ZONE DEPTH	=	10.0	INCHES
AVERAGE ANNUAL WIND SPEED	=	9.40	MPH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY	=	66.0	%
AVERAGE 2ND QUARTER RELATIVE HUMIDITY	=	68.0	%
AVERAGE 3RD QUARTER RELATIVE HUMIDITY	=	66.0	%
AVERAGE 4TH QUARTER RELATIVE HUMIDITY	=	67.0	%

FINAL WATER	STORAGE AT	END OF YEAR 70
LAYER	(INCHES)	(VOL/VOL)
1	6.6519	0.2772
2	0.0020	0.0100
3	0.0000	0.0000
4	7.6860	0.4270
5	525.6000	0.2920
6	8.9520	0.3730
7	0.0020	0.0100
8	0.0000	0.0000
9	10.2480	0.4270
TOTAL WATER IN LAYERS	559.142	

****** EVAPOTRANSPIRATION DATA 1

	SNOW WATER	0.000
	INTERCEPTION WATER	0.000
	TOTAL FINAL WATER	559.142
***	******	*******

PEAK DAILY VALUES FOR YEARS 1 THROUGH 70

		(INCHES)	(CU. FT.)
PRECIPITATION		8.90	32306.998
RUNOFF		8.373	30394.7441
DRAINAGE COLLECTED FROM LAYER 2		0.10984	398.72354
PERCOLATION/LEAKAGE THROUGH LAYER	4	0.000003	0.00980
AVERAGE HEAD ON TOP OF LAYER 3		0.034	
MAXIMUM HEAD ON TOP OF LAYER 3		0.130	
LOCATION OF MAXIMUM HEAD IN LAYER (DISTANCE FROM DRAIN)	2	0.0 FEET	
DRAINAGE COLLECTED FROM LAYER 7		0.00000	0.00968
PERCOLATION/LEAKAGE THROUGH LAYER	9	0.000000	0.00002
AVERAGE HEAD ON TOP OF LAYER 8		0.000	
MAXIMUM HEAD ON TOP OF LAYER 8		0.000	
LOCATION OF MAXIMUM HEAD IN LAYER (DISTANCE FROM DRAIN)	7	0.0 FEET	
SNOW WATER		1.35	4913.8022
MAXIMUM VEG. SOIL WATER (VOL/VOL)		0	.3650
MINIMUM VEG. SOIL WATER (VOL/VOL)		0	.2020

*** Maximum heads are computed using McEnroe's equations. ***

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270. ****

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 70

	JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
PRECIPITATION						
TOTALS	2.04	1.52	2.36	1.83	3.15	3.86
	2.36	2.22	3.83	3.76	2.42	2.23
STD. DEVIATIONS	1.44	0.93	1.64	1.39	1.80	2.89
	2.17	2.05	2.20	2.33	1.84	1.33
RUNOFF						
TOTALS	0.545	0.309	0.987	0.554	1.262	2.038
	1.207	0.815	1.651	1.796	0.940	0.734
STD. DEVIATIONS	0.719	0.423	1.144	0.766	1.144	2.124
	1.659	1.210	1.417	1.631	1.110	0.792
POTENTIAL EVAPOTRANS	PIRATION					
TOTALS	3.200	3.585	5.309	6.444	7.941	8.624
	9.168	8.483	6.698	5.171	3.685	3.031
STD. DEVIATIONS	0.213	0.258	0.324	0.324	0.311	0.305
	0.261	0.312	0.360	0.269	0.225	0.208
ACTUAL EVAPOTRANSPIR	ATION					
TOTALS	1.242	1.161	1.802	1.360	1.825	1.837
	1.169	1.448	2.044	1.658	1.222	1.240
STD. DEVIATIONS	0.460	0.499	0.680	0.738	0.803	0.968

LAYER 9

	TYPE 3 -	BARRIER	SOIL LINEF	1
	MATERIAL	TEXTURE	NUMBER 16	
THICKNESS		=	24.00	INCHES
POROSITY		=	0.4270	VOL/VOL
FIELD CAPACITY	Y	=	0.4186	VOL/VOL
WILTING POINT		=	0.3670	VOL/VOL
INITIAL SOIL N	WATER CONT	FENT =	0.4270	VOL/VOL
EFFECTIVE SAT	. HYD. COM	NDUCT.=	0.1000	E-06 CM/SEC

****** GENERAL DESIGN AND EVAPORATIVE ZONE DATA 1

VALID FOR 70 YEARS

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #24 WITH A GOOD STAND OF GRASS, A SURFACE SLOPE OF 5.% AND A SLOPE LENGTH OF 886. FEET.

86.17

10.000

0.000

=

=

_

86.17 100.0 PERCENT 1.000 ACRES 10.0 INCHES 3.060 INCHES 3.050 INCHES 3.050 INCHES 2.020 INCHES

560.100 INCHES 560.100 INCHES 0.00 INCHES

PERCENT

INCHES

INCHES

INCHES INCHES/YEAR

SCS RUNOFF CURVE NUMBER = FRACTION OF AREA ALLOWING RUNOFF = AREA PROJECTED ON HORIZONTAL PLANE = EVAPORATIVE ZONE DEPTH = INITIAL WATER IN EVAPORATIVE ZONE = FIELD CAPACITY OF EVAPORATIVE STORAGE = FIELD CAPACITY OF EVAPORATIVE STORAGE = SOIL EVAPORATION ZONE DEPTH = NITITAL STORM WATEP =

SOLL EVAPORATION ZONE DEPTH INITIAL SNOW WATER INITIAL INTERCEPTION WATER INITIAL WATER IN LAVER MATERIALS TOTAL INITIAL WATER TOTAL SUBSURFACE INFLOW

Calculation Page 3E.2-29

	0.735	1.034	0.905	0.720	0.555	0.390	
LATERAL DRAINAGE COLLE	CTED FROM	LAYER 2					
TOTALS	0.1875 0.0064	0.1437 0.0012	0.0943 0.0037	0.0280 0.0191	0.0004 0.1136	0.0034 0.1433	
STD. DEVIATIONS	0.2319 0.0334	0.1931 0.0090	0.1272 0.0164	0.0611 0.0738	0.0026 0.2478	0.0209 0.2246	
PERCOLATION/LEAKAGE TH	ROUGH LAYE	R 4					
TOTALS	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000	
STD. DEVIATIONS	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000	
LATERAL DRAINAGE COLLE	CTED FROM	LAYER 7					
TOTALS	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000	0.0000 0.0000	0.0000	
STD. DEVIATIONS	0.0000 0.0000	0.0000 0.0000	0.0000	0.0000 0.0000	0.0000 0.0000	0.0000	
PERCOLATION/LEAKAGE TH	ROUGH LAYE	R 9					
TOTALS	0.0000 0.0000	0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000	
STD. DEVIATIONS	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	
AVERAGES	OF MONTHLY	AVERAGED	DAILY HE	ADS (INCH	ES)		
DAILY AVERAGE HEAD ON TOP OF LAYER 3							
AVERAGES	0.0019 0.0001	0.0016	0.0010 0.0000	0.0003 0.0002	0.0000 0.0012	0.0000 0.0014	
STD. DEVIATIONS	0.0023 0.0003	0.0022 0.0001	0.0013 0.0002	0.0006 0.0007	0.0000 0.0026	0.0002 0.0023	

DAILY AVERAGE HEAD ON TOP OF LAYER 8

				Revie	wed 8	3/3/23
AVERAGES	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
STD. DEVIATIONS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
*****	*****	*****	*******	******	******	*******

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 70

	INC	HES		CU. FEET	PERCENT
PRECIPITATION	31.58	(5.884)	114630.8	100.00
RUNOFF	12.838	(3.8797)	46602.66	40.655
POTENTIAL EVAPOTRANSPIRATION	71.340	(1.0382)	258963.58	
ACTUAL EVAPOTRANSPIRATION	18.010	(2.6992)	65374.62	57.031
LATERAL DRAINAGE COLLECTED FROM LAYER 2	0.74465	(0.55290)	2703.083	2.35808
PERCOLATION/LEAKAGE THROUGH LAYER 4	0.00002	(0.00002)	0.083	0.00007
AVERAGE HEAD ON TOP OF LAYER 3	0.001	(0.000)		
LATERAL DRAINAGE COLLECTED FROM LAYER 7	0.00002	(0.00002)	0.082	0.00007
PERCOLATION/LEAKAGE THROUGH LAYER 9	0.0000	(0.00000)	0.001	0.0000
AVERAGE HEAD ON TOP OF LAYER 8	0.000	(0.000)		
CHANGE IN WATER STORAGE	-0.014	(0.5222)	-49.70	-0.043
***************************************	**********	*** ***	**********	******	**********

Calculation Page 3E.2-30 Reviewed 8/3/23

******	*******************************	***************************************	******
******	******	*****	******
**			**
**			**
**	HYDROLOGIC EVALUATION OF	LANDETLL PERFORMANCE	**
**			**
**	HELP Version 3.95 D	(10 August 2012)	**
**	develop	ed at	**
**	Institute of Soil Science, Uni	versity of Hamburg, Germany	**
**	based	lon	**
**	US HELP MODEL VERSION 3.	07 (1 NOVEMBER 1997)	**
**	DEVELOPED BY ENVIRON	MENTAL LABORATORY	**
**	USAE WATERWAYS EXP	ERIMENT STATION	**
**	FOR USEPA RISK REDUCTION	ENGINEERING LABORATORY	**
**			**
**			**
******	******	*****	******
******	******	*****	******
гтмε• 1	6 07 DATE: 13 02 2023		

PRECIPITATION DATA FILE:	C:\PRECIP-40yr.d4
FEMPERATURE DATA FILE:	C:\TEMP-40yr.d7
SOLAR RADIATION DATA FILE:	C:\SOLAR-40yr.d13
EVAPOTRANSPIRATION DATA F. 1:	C:\Evapotranspiration-LAI_1.d11
SOIL AND DESIGN DATA FILE 1:	C:\SOILS - NF_05.d10
DUTPUT DATA FILE:	C:\OUT - NF_05.out

TITLE: Mesquite_Creek_LF - NF_05

WEATHER DATA SOURCES

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR SAN ANTONIO TEXAS

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
2.14	1.72	2.49	2.00	3.63	3.44
2.21	2.01	3.45	3.30	2.46	2.42

TYPE 1 - VERTICAL	PERC	OLATION L	AYER
MATERIAL TEXT	JRE N	UMBER 18	
THICKNESS	=	780.00	INCHES
POROSITY	=	0.6710	VOL/VOL
FIELD CAPACITY	=	0.2920	VOL/VOL
WILTING POINT	=	0.0770	VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.2928	VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT	. =	0.1000	E-02 CM/SEC

LAYER 3

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 25 THICKNESS = 24.00 INCHES POROSITY = 0.4370 VOL/VOL FIELD CAPACTY = 0.370 VOL/VOL WILTING POINT = 0.2660 VOL/VOL INTIAL SOIL WATER CONTENT = 0.3698 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.3609 0.3709 0.3709

LAYER 4

TYPE 2 - LATERA	L DRA	INAGE LAYE	R
MATERIAL TEXT	URE N	JMBER 20	
THICKNESS	=	0.20	INCHES
POROSITY	=	0.8500	VOL/VOL
FIELD CAPACITY	=	0.0100	VOL/VOL
WILTING POINT	=	0.0050	VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.0123	VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT	.=	0.1200	CM/SEC
SLOPE	=	33.30	PERCENT
DRAINAGE LENGTH	=	210.0	FEET

LAYER 5

TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 35 THICKNESS = 0.06 INCHES EFFECTIVE SAT. HYD. CONDUCT.= 0.2000E-12 CM/SEC FML PINHOLE DENSITY = 2.00 HOLES/ACRE

NOTE:	TEMPERATURE DATA WAS	SYNTHETICALLY	GENERATED USING
	COEFFICIENTS FOR	SAN ANTONIO	TEXAS

	NORMAL MEAN	MONTHLY TEMPE	RATURE (DEGRI	EES FAHRENHE.	11)
JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
52.20 84.50	56.00 85.10	62.80 79.90	69.80 71.30	76.60 61.00	82.40 53.50

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR SAN ANTONIO TEXAS AND STATION LATITUDE = 29.70 DEGREES

LAYER DATA 1

.....

VALID FOR 40 YEARS

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL T	EXTURE	NUMBER 1	5		
THICKNESS	=	12.00	INCHES		
POROSITY	=	0.475	0 VOL/VOL		
FIELD CAPACITY	=	0.378	0 VOL/VOL		
WILTING POINT	=	0.265	0 VOL/VOL		
INITIAL SOIL WATER CONTE	NT =	0.361	7 VOL/VOL		
EFFECTIVE SAT. HYD. COND	UCT.=	0.170	0E-04 CM/SE	С	
NOTE: SATURATED HYDRAULIC	CONDUC	CTIVITY IS	MULTIPLIED	BY 1	. 80
FOR ROOT CHANNELS	IN TOP	P HALF OF	EVAPORATIVE	ZONE.	

LAYER 2

FML INSTALLATION DEFECTS = 2.00 HOLES/ACRE FML PLACEMENT QUALITY = 3 - GOOD

LAYER 6

	TYPE 3 -	BARRIER	SOIL LINER	
	MATERIAL	TEXTURE	NUMBER 16	
THICKNESS		=	24.00	INCHES
POROSITY		=	0.4270	VOL/VOL
FIELD CAPACITY	Y	=	0.4180	VOL/VOL
WILTING POINT		=	0.3670	VOL/VOL
INITIAL SOIL N	WATER CONT	FENT =	0.4270	VOL/VOL
EFFECTIVE SAT	. HYD. COM	NDUCT.=	0.1000	E-06 CM/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA 1

VALID FOR 40 YEARS

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #15 WITH A POOR STAND OF GRASS, A SURFACE SLOPE OF 5.% AND A SLOPE LENGTH OF 886. FEET.

SCS RUNOFF CURVE NUMBER	=	93.10	
FRACTION OF AREA ALLOWING RUNOFF	=	50.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	=	1.000	ACRES
EVAPORATIVE ZONE DEPTH	=	10.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	=	3.584	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE	=	4.750	INCHES
FIELD CAPACITY OF EVAPORATIVE ZONE	=	3.780	INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE	=	2.650	INCHES
SOIL EVAPORATION ZONE DEPTH	=	10.000	INCHES
INITIAL SNOW WATER	=	0.000	INCHES
INITIAL INTERCEPTION WATER	=	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	=	252.848	INCHES
TOTAL INITIAL WATER	=	252.848	INCHES
TOTAL SUBSURFACE INFLOW	=	0.00	INCHES/YEAR

Calculation Page 3E.2-31 Reviewed 8/3/23 251.071

EVAPOTRANSPIRATION DATA 1

VALID FOR 40 YEARS

NOTE: EVAPOTRANSPIRA	ATION DATA WAS OBTAIN	ED F	ROM	
SAN ANTONIO	TEXAS			
STATION LATITUDE		=	29.70	DEGREES
MAXIMUM LEAF ARE	A INDEX	=	1.00	
START OF GROWING	SEASON (JULIAN DATE)	=	35	
END OF GROWING SI	EASON (JULIAN DATE)	=	350	
EVAPORATIVE ZONE	DEPTH	=	10.0	INCHES
AVERAGE ANNUAL W	IND SPEED	=	9.40	MPH
AVERAGE 1ST QUAR	FER RELATIVE HUMIDITY	=	66.0	%
AVERAGE 2ND QUAR	FER RELATIVE HUMIDITY	=	68.0	%
AVERAGE 3RD QUAR	FER RELATIVE HUMIDITY	=	66.0	%
AVERAGE 4TH QUAR	TER RELATIVE HUMIDITY	=	67.0	%

FINAL WATER STORAGE AT END OF YEAR 40

	LAYER	(INCHES)	(VOL/VOL)
	1	3.7183	0.3099
	2	227.7600	0.2920
	3	9.3291	0.3887
	4	0.0157	0.0784
	5	0.0000	0.0000
	6	10.2480	0.4270
TOTAL WATER IN I	AYERS	251.071	
SNOW WATER		0.000	
INTERCEPTION WA	TER	0.000	

AVERAGE MONTHL	Y VALUES IN	I INCHES	FOR YEARS	1 THR	OUGH 40	
	JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
PRECIPITATION						
TOTALS	1.91	1.57	2.37	1.86	2.93	3.79
	2.14	1.91	3.84	3.47	2.35	2.25
STD. DEVIATIONS	1.31	0.84	1.48	1.39	1.72	2.83
	2.13	1.91	2.27	2.00	1.81	1.22
RUNOFF						
TOTALS	0.158	0.077	0.330	0.162	0.409	0.946
	0.478	0.257	0.671	0.579	0.295	0.227
STD. DEVIATIONS	0.243	0.091	0.514	0.306	0.512	1.183
	1.137	0.515	0.732	0.600	0.483	0.253
POTENTIAL EVAPOTRANSP	IRATION					
TOTALS	3.153	3.521	5.254	6.376	7.897	8.501
	9.017	8.366	6.561	5.040	3.649	2.946
STD. DEVIATIONS	0.350	0.296	0.510	0.521	0.615	0.711
	0.827	0.776	0.663	0.538	0.374	0.274
ACTUAL EVAPOTRANSPIRA	TION					
TOTALS	1.446	1.292	1.674	1.746	2.174	2.327
	1.497	1.565	2.073	1.985	1.392	1.389
STD. DEVIATIONS	0.608	0.690	0.878	1.052	1.126	1.263
	1.010	1.247	1.052	0.876	0.776	0.624
LATERAL DRAINAGE COLL	ECTED FROM	LAYER 4				
TOTALS	0.7148	0.5223	0.3863	0.4070	0.3289	0.2245
	0.5027	0.3892	0.2155	0.4373	0.6083	0.5408
STD. DEVIATIONS	0.8071	0.5255	0.6244	0.5244	0.5341	0.3056
	0.6953	0.6338	0.3552	0.5569	0.5789	0.5987
PERCOLATION/LEAKAGE T	HROUGH LAYE	R 6				
TOTALS	0.0000 0.0000	0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000

STD. DEVIATIONS	0.0000 0.0000	0.000 0.000	0 0	0.0000 0.0000	0.0000 0.0000	0.000 0.000	0.0000 0.0000
AVERAGES OF	MONTHLY	AVERAG	ED	DAILY HEA	DS (INCHE	s)	
DAILY AVERAGE HEAD ON TOP OF LAYER 5							
AVERAGES	0.0237 0.0167	0.019 0.012	0 9	0.0128 0.0074	0.0140 0.0145	0.010 0.020	9 0.0077 9 0.0180
STD. DEVIATIONS	0.0268 0.0231	0.019 0.021	1 1	0.0207 0.0122	0.0180 0.0185	0.017 0.019	7 0.0105 9 0.0199
AVERAGE ANNUAL TOTALS	& (STD.	DEVIAT	10	NS) FOR YE	ARS 1	THROUG	H 40
		INCH	ES		CU. FEE	т	PERCENT
PRECIPITATION	30	. 38	(5.616)	110285	.8	100.00
RUNOFF	4	. 590	(1.9707)	16661	.23	15.107
POTENTIAL EVAPOTRANSPIRAT	ON 70	.281	(5.2305)	255121	.11	
ACTUAL EVAPOTRANSPIRATION	20	559	(5.3633)	74628	.43	67.668
LATERAL DRAINAGE COLLECTED FROM LAYER 4	5	.27750	(4.61820)	19157	.320	17.37062
PERCOLATION/LEAKAGE THROUG LAYER 6	GH 0	.00002	(0.00001)	e	.058	0.00005
AVERAGE HEAD ON TOP OF LAYER 5	0	.015	(0.013)			
CHANGE IN WATER STORAGE	-0	.044	(2.6282)	-161	.30	-0.146

*****	******	*****
PEAK DAILY VALUES FOR YEARS	1 THROUGH 40	
	(INCHES)	(CU. FT.)
PRECIPITATION	8.90	32306.998
RUNOFF	5.655	20528.8066
DRAINAGE COLLECTED FROM LAYER 4	0.15413	559.50995
PERCOLATION/LEAKAGE THROUGH LAYER 6	0.000000	0.00134
AVERAGE HEAD ON TOP OF LAYER 5	0.159	
MAXIMUM HEAD ON TOP OF LAYER 5	0.323	
LOCATION OF MAXIMUM HEAD IN LAYER 4 (DISTANCE FROM DRAIN)	0.0 FEET	
SNOW WATER	1.75	6340.7095
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.464	9
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.265	0

TOTAL FINAL WATER

*** Maximum heads are computed using McEnroe's equations. ***

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

Calculation Page 3E.2-32 Reviewed 8/3/23

*****	*****	*****	******
*			**
*			**
* HYDROLOGIO	EVALUATION OF LAN	DFILL PERFORMANCE	**
*			**
* HELP Versi	ion 3.95 D	(10 August 2012)	**
*	developed a	at ,	**
* Institute of So	il Science, Univers	ity of Hamburg, G	ermany **
*	based on	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	**
* US HELP MO	DEL VERSION 3.07	(1 NOVEMBER 1997)	**
* DEVELO	OPED BY ENVIRONMENT	AL LABORATORY	**
* USAI	E WATERWAYS EXPERIM	1ENT STATION	**
* FOR USEPA F	RISK REDUCTION ENGI	NEERING LABORATOR	Y **
*			**
*			**
*****	*****	*****	******
*****	*****	*****	******

TIME:	21.29	DATE:	8.02.2023
PRECIP	ITATION	DATA FILE:	C:\PRECIP-30yr.d4

TEMPERATURE DATA FILE:		C:\TEMP-30yr.d7
SOLAR RADIATION DATA FILE:		C:\SOLAR-30yr.d13
EVAPOTRANSPIRATION DATA F.	1:	C:\Evapotranspiration-LAI_0.d11
SOIL AND DESIGN DATA FILE	1:	C:\SOILS - EF_01.d10
OUTPUT DATA FILE:		C:\OUT - EF_01.out

TITLE: Mesquite_Creek_LF - EF_01

2.01

2.21

WEATHER DATA SOURCES

NOTE:	PRECIPITAT COEFFICI	ION DATA WAS ENTS FOR	5 SYNTHETICALLY SAN ANTONIO	GENERATED	USING S
	NORMAL M	EAN MONTHLY	PRECIPITATION	(INCHES)	
JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
2.14	1.72	2.49	2.00	3.63	3.44

3 30

2.46

2.42

3.45

TYPE 1 - VERTICAL	PERCOL	ATION LA	YER
MATERIAL TEXTU	RE NUM	BER 18	
THICKNESS	= 1	20.00	INCHES
POROSITY	=	0.6710	VOL/VOL
FIELD CAPACITY	=	0.2920	VOL/VOL
WILTING POINT	=	0.0770	VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.2936	VOL/VOL
EFFECTIVE SAT, HYD, CONDUCT,	=	0.1000E	-02 CM/SEC

LAYER 3

TYPE 1 - VERTICAL PERCOLATION LAYER NUMBER 25 THICKNESS 24.00 INCHES POROSITY = 24.00 INCHES FIELD CAPACITY = 0.4370 VOL/VOL WILTING POINT = 0.3260 VOL/VOL INITIAL SOLI WATER CONTENT = 0.3260 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= = 0.3260 OL/VOL

LAYER 4

TYPE 2 - LATERA	L DRAI	NAGE LAYE	ER
MATERIAL TEXT	URE NU	JMBER 20	
THICKNESS	=	0.25	INCHES
POROSITY	=	0.8500	VOL/VOL
FIELD CAPACITY	=	0.0100	VOL/VOL
WILTING POINT	=	0.0050	VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.0100	VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT	.=	6.780	CM/SEC
SLOPE	=	5.00	PERCENT
DRAINAGE LENGTH	=	160.0	FEET

LAYER 5

TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 35 THICKNESS = 0.06 INCHES EFFECTIVE SAT. HYD. CONDUCT.= 0.2000E-12 CM/SEC FML PINHOLE DENSITY = 2.00 HOLES/ACRE

NOTE:	TEMPERATURE	DATA WA	5 SYNTHETICALLY	GENERATED USING
	COEFFICIE	NTS FOR	SAN ANTONIO	TEXAS

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
52.20	56.00	62.80	69.80	76.60	82.40
84.50	85.10	79.90	71.30	61.00	53.50

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR SAN ANTONIO TEXAS AND STATION LATITUDE = 29.70 DEGREES

LAYER DATA 1

VALID FOR 30 YEARS

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER

PATENIAL	LATONE	NOPIDER 15	
THICKNESS	=	6.00	INCHES
POROSITY	=	0.4750	VOL/VOL
FIELD CAPACITY	=	0.3780	VOL/VOL
WILTING POINT	=	0.2650	VOL/VOL
INITIAL SOIL WATER CONTE	NT =	0.3559	VOL/VOL
EFFECTIVE SAT. HYD. COND	UCT.=	0.17008	-04 CM/SEC

LAYER 2

FML INSTALLATION DEFECTS=2.00HOLES/ACREFML PLACEMENT QUALITY=3 - GOOD

LAYER 6

	TYPE 3 -	BARRIER	SOIL LINER	
	MATERIAL	TEXTURE	NUMBER 16	
THICKNESS		=	24.00	INCHES
POROSITY		=	0.4270	VOL/VOL
FIELD CAPACITY	Y	=	0.4180	VOL/VOL
WILTING POINT		=	0.3670	VOL/VOL
INITIAL SOIL N	WATER CONT	TENT =	0.4270	VOL/VOL
EFFECTIVE SAT	. HYD. COM	NDUCT.=	0.1000	E-06 CM/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA 1

VALID FOR 30 YEARS

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #15 WITH BARE GROWND CONDITIONS, A SURFACE SLOPE OF 5.% AND A SLOPE LENGTH OF 160. FEET.

SCS RUNOFF CURVE NUMBER	=	96.75	
FRACTION OF AREA ALLOWING RUNOFF	=	0.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	=	1.000	ACRES
EVAPORATIVE ZONE DEPTH	=	10.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	=	3.184	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE	=	5.534	INCHES
FIELD CAPACITY OF EVAPORATIVE ZONE	=	3.436	INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE	=	1.898	INCHES
SOIL EVAPORATION ZONE DEPTH	=	10.000	INCHES
INITIAL SNOW WATER	=	0.122	INCHES
INITIAL INTERCEPTION WATER	=	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	=	57.767	INCHES
TOTAL INITIAL WATER	=	57.890	INCHES
TOTAL SUBSURFACE INFLOW	=	0.00	INCHES/YEAR

Calculation Page 3E.2-33 Reviewed 8/3/23 57.281

EVAPOTRANSPIRATION DAT	A 1

VALID FOR 30 YEARS

NOTE: EVAPOT	RANSPIRATION DATA WAS	OBTAINED F	ROM	
SAN	ANTONIO TEXAS			
STATION L	ATITUDE	=	29.70	DEGREES
MAXIMUM L	EAF AREA INDEX	=	0.00	
START OF	GROWING SEASON (JULIAN	DATE) =	35	
END OF GF	ROWING SEASON (JULIAN D	ATE) =	350	
EVAPORATI	IVE ZONE DEPTH	=	10.0	INCHES
AVERAGE A	ANNUAL WIND SPEED	=	9.40	MPH
AVERAGE 1	LST QUARTER RELATIVE HU	MIDITY =	66.0	%
AVERAGE 2	2ND QUARTER RELATIVE HU	MIDITY =	68.0	%
AVERAGE 3	3RD QUARTER RELATIVE HU	MIDITY =	66.0	%
AVERAGE 4	1TH QUARTER RELATIVE HU	MIDITY =	67.0	%

FINAL WATER STORAGE AT END OF YEAR 30

L	AYER	(INCHES)	(VOL/VOL)
-	1	2.1784	0.3631
	2	35.7973	0.2983
	3	9.0548	0.3773
	4	0.0025	0.0100
	5	0.0000	0.0000
	6	10.2480	0.4270
TOTAL WATER IN LA	YERS	57.281	
SNOW WATER		0.000	
INTERCEPTION WATE	R	0.000	

	AVERAGE	MONTHLY	VALUES I	IN INCHES	FOR YEARS	1 THR	OUGH 30	
			JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
PRECIP	ITATION							
тота	LS		1.74 2.15	1.68 1.90	2.24 4.13	1.92 3.38	2.83 2.38	3.81 2.23
STD.	DEVIATIO	DNS	1.18 2.03	0.88 2.16	1.40 2.36	1.49 2.10	1.75 1.95	2.30 1.20
RUNOFF								
тота	LS		0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000
STD.	DEVIATIO	DNS	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000
POTENT	IAL EVAP	OTRANSPI	RATION					
ТОТА	LS		3.138 8.938	3.473 8.340	5.201 6.524	6.261 5.001	7.746 3.652	8.403 2.916
STD.	DEVIATIO	ONS	0.372 0.943	0.301 0.890	0.614 0.727	0.719 0.604	0.907 0.424	0.918 0.286
ACTUAL	EVAPOTR	ANSPIRAT	ION					
тота	LS		1.453 1.746	1.461 1.641	1.776 2.065	1.655 2.229	2.180 1.454	2.580 1.471
STD.	DEVIATI	ONS	0.672 1.292	0.761 1.454	1.004 1.183	1.099 1.009	1.166 0.927	1.229 0.705
LATERA	L DRAINA	GE COLLE	CTED FROM	1 LAYER 4	1			
ТОТА	LS		0.7360 0.9771	0.4904 0.6620	0.7235 0.4365	0.5884 1.1964	0.4616 1.0759	0.5157 0.8186
STD.	DEVIATI	ONS	0.6938 0.8991	8 0.5562 L 0.951	2 2.0073 5 0.5861	1.2753	0.8271 0.9954	0.5864 0.9721
PERCOL	PERCOLATION/LEAKAGE THROUGH LAYER 6							
тота	LS		0.000	0.000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000

*****	*****	****
PEAK DAILY VALUES FOR YEARS	1 THROUGH	30
	(INCHES)	(CU. FT.)
PRECIPITATION	8.90	32306.998
RUNOFF	0.000	0.0000
DRAINAGE COLLECTED FROM LAYER 4	0.45219	1641.45544
PERCOLATION/LEAKAGE THROUGH LAYER 6	0.000000	0.00033
AVERAGE HEAD ON TOP OF LAYER 5	0.099	
MAXIMUM HEAD ON TOP OF LAYER 5	0.076	
LOCATION OF MAXIMUM HEAD IN LAYER 4 (DISTANCE FROM DRAIN)	0.0 FEET	
SNOW WATER	23.66	85869.7969
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.4	197
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.1	1898

TOTAL FINAL WATER

*** Maximum heads are computed using McEnroe's equations. ***

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

STD. DEVIATIONS	0.0000 0. 0.0000 0.	0000 0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	
AVERAGES OF	MONTHLY AVE	RAGED	DAILY HEA	DS (INCHE	5)		
DAILY AVERAGE HEAD ON TO	OF LAYER	5					
AVERAGES	0.0036 0.	- 0027	0.0040	0.0031	0.0023	0.0026	
	0.0048 0.	0033	0.0023	0.0061	0.0055	0.0039	
STD. DEVIATIONS	0.0034 0.	0035	0.0123	0.0069	0.0042	0.0031	
	0.0044 0.	0049	0.0030	0.0065	0.0051	0.0045	
*****	*****	****	******	*******	******	******	
*****	******	****	******	*******	******	******	
ΔVERAGE ΔΝΝΙΔΙ ΤΟΤΔΙS	& (STD DEV		NS) FOR VE	ΔRS 1	THROUGH	30	
	I	NCHES		CU. FEE	г	PERCENT	
PRECIPITATION	30.38	(5.727)	110266	.1	100.00	
RUNOFF	0.000	(0.0000)	0	.00	0.000	
POTENTIAL EVAPOTRANSPIRAT	LON 69.595	(6,7884)	252628	.27		
		,	,				
ACTUAL EVAPOTRANSPIRATION	21.711	(6.2812)	78809	.44	71.472	
LATERAL DRAINAGE COLLECTER FROM LAYER 4	8.681	96 (6.22992)	31515	.518	28.58133	
PERCOLATION/LEAKAGE THROU LAYER 6	GH 0.000	00 (0.00000)	0	.009	0.00001	
AVERAGE HEAD ON TOP OF LAYER 5	0.004	(0.003)				
CHANGE IN WATER STORAGE	-0.020	(5.7028)	-73	.65	-0.067	

*****	******	*****	*****	*******	******	*****	

Mesquite Creek Landfill MSW Permit No. 66C Part III, Attachment 3E.3

ATTACHMENT 3E.3

LEACHATE COLLECTION SYSTEM GEOSYNTHETIC DRAINAGE LAYER DESIGN

Geosyntec Consultants October 2023 Page No. 3E.3-Cvr

							Page	3E.3-1	of	3E.3-14
Written by:	Y. Bholat		Date:	2/15/23	Reviewed by:	S. Graves		Dat	e:	8/3/2023
Client:	WMTX	Project:	Mesqui	te Creek	Project No.:	GW8636		Task N	o.:	05

ATTACHMENT 3E.3 LEACHATE COLLECTION SYSTEM GEOSYNTHETIC DRAINAGE LAYER DESIGN

PURPOSE

The purpose of this calculation package is to present the design of the geosynthetic drainage layer component of the liner system for the Mesquite Creek Landfill. The geocomposite drainage layer will be comprised of an HDPE geonet core with a needle punched non-woven geotextile bonded to its top and bottom surfaces (i.e., a double-sided geocomposite). The drainage layer will be located between a 2-ft thick protective layer (soil) and an HDPE geomembrane.

The design criteria evaluated include: (i) filtration capability and specifications for the geotextile component of the geocomposite drainage layer; (ii) survivability specifications for the geotextile component; and (iii) hydraulic capacities of the geosynthetic drainage layer and testing conditions for verifying that the required capacities are achieved.

METHOD OF ANALYSIS

Geotextile Filtration

The filtration characteristics of the geotextile component of the geocomposite layer are evaluated using a retention criterion, a permeability criterion, a porosity criterion, and a thickness criterion based on methods proposed by Holtz et al. (1998) and Giroud (2010). These criteria are summarized below in Table 1.

			Page	3E.3-2 of 3E.3-14
Written by:	Y. Bholat	Date: 2/15/23	Reviewed by: S. Graves	Date: 8/3/2023
Client:	WMTX	Project: Mesquite Creek	Project No.: GW8636	Task No.: 05

Table 1. Filtration Criteria for Geotextile Components (adapted from Holtz et al., 1998; and Giroud, 2010)

1. Retention Criterion

1.1 Soils with less than 50% particles < 0.075 mm (US Sieve No. 200)

Density in	dex of the soil	Linear coefficient of uniformity of the soil			
(Relativ	ve density)	$1 < C'_u < 3$	$C'_{u} > 3$		
loose soil	$I_D \leq 35\%$	$O_{95} \le (C'_u)^{0.3} d'_{85}$	$O_{95} < \frac{9}{(C'_u)^{1.7}} d'_{85}$		
medium dense soil	$35\% < I_D < 65\%$	$O_{95} \le 1.5 \ (C'_u)^{0.3} \ d'_{85}$	$O_{95} < \frac{13.5}{(C'_u)^{1.7}} d'_{85}$		
dense soil	$I_D \geq 65\%$	$O_{95} \le 2 (C'_u)^{0.3} d'_{85}$	$O_{95} < \frac{18}{(C'_{\mu})^{1.7}} d'_{85}$		

1.2 Soils with more than 50% particles < 0.075 mm (US Sieve No. 200)

 $O_{95} \le 210 \ \mu m$ (US Sieve No. 70)

2 Permeability Criterion

 $k_{\text{geotextile}} \ge \max(i_{\text{soil}} k_{\text{soil}}, k_{\text{soil}})$

3. Porosity Criterion

Nonwoven geotextiles: $n_g \ge 55\%$

4. Thickness Criterion

Nonwoven geotextiles: $N_{\text{constrictions}} \ge 25$

Notes:

- O₉₅ is the apparent opening size (AOS) of the geotextile

$$C'_{u}$$
 = linear coefficient of uniformity = $\sqrt{d'_{100}/d'_{0}}$

where d'_{100} and d'_0 is the top and bottom extremities, respectively, of a line drawn through the soil particle-size distribution curve and tangent at d_{50} .

- d'₈₅ is the "linear particle size" for which 85% of particles are finer by weight, derived from the straight line drawn through the soil particle-size distribution curve.
- I_D = relative density or density index = $(e_{max} e)/(e_{max} e_{min})$, where e = soil void ratio; e_{min} = soil minimum void ratio, and e_{max} = soil maximum void ratio.
- $k_{geotextile}$ = geotextile hydraulic conductivity; k_{soil} = soil hydraulic conductivity; i_{soil} = hydraulic gradient in the soil next to the geotextile,
- porosity, ng (dimensionless) is calculated as follows: ng = $1 \mu_g/(\rho_g t_g)$, where: μ_g = geotextile mass per unit area, ρ_g = polymer density, and t_g = geotextile thickness
- Number of constrictions (N_{constrictions}) is calculated as follows: (N_{constrictions}) = $\mu_g / [\rho_g d_f \sqrt{1 n_g}]$, where:

 μ_g = geotextile mass per unit area; ρ_g = polymer density; d_f = geotextile fiber diameter; and n_g = geotextile porosity.

					Page	3E.3-3 o	f 3E.3-14
Written by:	Y. Bholat		Date: 2/15/23	Reviewed by:	S. Graves	Date:	8/3/2023
Client:	WMTX	Project:	Mesquite Creek	Project No.:	GW8636	Task No.:	05

Geotextile Survivability

Survivability requirements (grab, tear, and puncture strengths) are considered so that the geotextile component of the geocomposite will have adequate resistance to stresses applied to the geotextile during construction (i.e., when concentrated stresses should be the highest), using the method presented in GRI-GT13 (2017). The procedure involves two steps: (i) establish the required degree of survivability as a function of subgrade conditions, type of construction equipment operation above the geotextile, and lift thickness using Table 2; and (ii) establish the recommended minimum values of certain mechanical strength properties (i.e., grab strength, puncture resistance, and trapezoidal tear strength) using Table 3. The survivability requirements are then compared to characteristics of geotextile products on the current market to check that products are available to meet the calculated minimum strengths.

Drainage Layer Hydraulic Capacity

The drainage layer hydraulic capacity design evaluation is performed using the design-by-function concept presented by Koerner (2005) and based on Darcy's equation (flow rate = hydraulic conductivity \times hydraulic gradient \times cross-sectional area of flow) for hydraulic flow in porous, saturated media. The approach herein then follows the design methodologies presented in Giroud et al. (2000) and GRI-GC8 (2013).

The design method involves the following steps:

Step 1) Calculate the required (design) transmissivity (θ_{req}) based on results of leachate generation calculations using the USEPA Hydrologic Evaluation of Landfill Performance (*HELP*) model.

Step 2) Apply a global factor of safety (FS) to find the allowable flow rate and corresponding "Long-Term In-Soil" (LTIS) transmissivity (θ_{LTIS}).

Step 3) Apply partial reduction factors (RFs) for creep, chemical clogging, and biological clogging to account for the long-term decrease in flow capacity behavior, and calculate the baseline flow rate and corresponding baseline transmissivity (θ_{100}).

Step 4) Determine the critical operational case for θ_{100} by comparing required θ_{100} to typical θ_{100} for biplanar geocomposites at various loading conditions.

Step 5) Identify GRI-GC8 test conditions to measure θ_{100} . The resulting θ_{100} from Step 4 is a product specification for the baseline laboratory test transmissivity that should be achieved if tested in accordance with GRI-GC8, Part 6 (2013). Therefore, it is necessary to identify test conditions which simulate site-specific loading conditions and boundary conditions.

Step 6) Calculate the index transmissivity that corresponds to the baseline transmissivity from previous steps. Geocomposite manufacturers typically provide product index transmissivities

						Page	3E.3-4	of 3E.3-14
Written by:	Y. Bholat		Date: 2/15/23	Reviewed by:	S. Graves		Date	: 8/3/2023
Client:	WMTX	Project:	Mesquite Creek	Project No.:	GW8636		Task No	o.: 05

based on laboratory tests in which the drainage layer is sandwiched between two steel plates as opposed to site specific boundary conditions. The index transmissivity is determined by applying a reduction factor to θ_{100} to account for geotextile/soil intrusion.

Table 2. Required Degree of Survivability as a Function of Subgrade Conditions,
Construction Equipment, and Lift Thickness (GRI-GT13)*

Subgrade Conditions	Low ground- pressure equipment (≤ 3.6 psi)	Medium ground- pressure equipment (> 3.6 psi, ≤ 7.3 psi)	High ground- pressure equipment (> 7.3 psi)
Subgrade has been cleared of all obstacles except grass, leaves, and fine wood debris. Surface is smooth and level so that any shallow depressions and humps do not exceed 18 in. in depth or height. All larger depressions are filled. Alternatively, a smooth working table may be placed.	Low	Moderate	High
Subgrade has been cleared of obstacles larger than small to moderate-sized tree limbs and rocks. Tree trunks and stumps should be removed or covered with a partial working table. Depressions and humps should not exceed 18 in. in depth or height. Larger depressions should be filled.	Moderate	High	Very High
Minimal site preparation is required. Trees may be felled, delimbed, and left in place. Stumps should be cut to project not more than ± 6 in. above subgrade. Fabric may be draped directly over the tree trunks, stumps, large depressions and humps, holes, stream channels, and large boulders. Items should be removed only if placing the fabric and cover material over them will distort the finished road surface.	High	Very High	Not Recommended

* Recommendations are for 6 to 12 in. initial lift thickness. For other initial lift thicknesses:

12 to 18 in.: reduce survivability requirement one level;

18 to 24 in.: reduce survivability requirement two levels;

> 24 in.: reduce survivability requirement three levels

			Page	3E.3-5 of 3E.3-14
Written by:	Y. Bholat	Date: 2/15/23	Reviewed by: S. Graves	Date: 8/3/2023
Client:	WMTX	Project: Mesquite Creek	Project No.: GW8636	Task No.: 05

 Table 3. GRI-GT13 Geotextile Strength Property Requirements

			Class 1 (high)		Class 2 (moderate)		Class 3 (low)	
Tests	Test Methods	Units	Elongation < 50%	Elongation $\geq 50\%$	Elongation < 50%	Elongation $\geq 50\%$	Elongation < 50%	Elongation $\geq 50\%$
Grab Tensile Strength	ASTM D 4632	lb	315	203	248	158	180	113
Trapezoid Tear Strength	ASTM D 4533	lb	112	79	90	56	68	41
CBR Puncture Strength	ASTM D 6241	lb	630	440	500	320	380	230
Permittivity	ASTM D 4491	sec ⁻¹	0.02	0.02	0.02	0.02	0.02	0.02
Apparent Opening Size	ASTM D 4751	in.	0.024	0.024	0.024	0.024	0.024	0.024
Ultraviolet stability ⁽²⁾	ASTM D 7238	% Ret. @ 500 hrs	50	50	50	50	50	50

Notes: ⁽¹⁾ All values are minimum average roll values (MARV) except AOS, which is a maximum average roll value (MaxARV) and UV stability which is a minimum average value.

⁽²⁾ Evaluation to be on 2-in. strip tensile specimens after 500 hours exposure.

FILTRATION EVALUATION RESULTS

Geotextile Retention

The geotextile must have openings that are small enough to retain fine-grained soil particles so that they do not enter the leachate collection drainage layer, which could result in clogging or flow capacity reduction of the drainage layer. Therefore, the apparent opening size (AOS, hereafter referred to as O_{95}) of the geotextile must be less than a maximum value.

The O₉₅ is calculated depending on the type of soil used for the protective cover as follows:

If the soil used for the protective cover is fine grained, i.e., more than 50 percent of particles are finer than 0.075 mm (U.S. Sieve No. 200) (e.g., a CL soil), then by applying the criterion in Table 1, O₉₅ is calculated as:

 $O_{95} \le 210 \ \mu m$ (U.S. Sieve No. 70)

							Page	3E.3-6	of	3E.3-14
Written by:	Y. Bholat		Date: 2/1	15/23	Reviewed by:	S. Graves		Date	e: 8	8/3/2023
Client:	WMTX	Project:	Mesquite Cr	reek	Project No.:	GW8636		Task N	o.:	05

This criterion will be used because the geocomposite drainage layer of the liner leachate collection system will be overlain by non-specified protective cover soil layer, expected to be relatively fine grained.

The range of geotextile mass per unit areas anticipated for use as the leachate drainage layer or drainage layer component are 6 to 16 oz/yd² (200 to 540 g/m²). Typical O₉₅ for 6 to 16 oz/yd² geotextiles on the current market range from 70 to 100 μ m (IFAI, 2004); thus, products are available that can meet this specification.

Geotextile Permeability

The protective cover soil will be non-specified (i.e., no specified permeability requirement). Based on on-site soils, it is anticipated that the hydraulic conductivity of the protective cover will fall within the range of 1×10^{-7} to 1×10^{-5} cm/s. The geotextile must have openings that are large enough to allow infiltrating water to pass through the retained soil/geotextile interface without significant flow impedance. Thus, the hydraulic conductivity or permeability of the geotextile must be greater than a minimum required value. The hydraulic gradient in the protective cover is assumed to be <10 based on typical values in Giroud (2010). A hydraulic gradient of 10 will be used in the calculations.

Applying the permeability criterion, the calculated hydraulic conductivity of the geotextile, $k_{geotextile}$, is:

$$\begin{array}{l} k_{geotextile} \ \geq max \ (i_{soil} \ k_{soil}, \ k_{soil}) \\ \geq 10 \times (1 \times 10^{-5} \ cm/s) = 0.0001 \ cm/s \end{array}$$

This requirement is readily achievable by most geotextiles. Note that some manufacturers report the permeability property as a related parameter "permittivity" (Ψ), which is defined as Ψ =k/t – as permittivity is the preferred industry standard for specifying water flow requirements through geotextile fabrics. Based on the range of geotextile mass per unit areas and thicknesses anticipated for the project (6 to 16 oz/yd² (200 to 540 g/m²) and 1.3 to 5.7 mm, respectively), typical k_{geotextile} values (calculated from typical permittivities and thicknesses) for needle punched non-woven geotextiles are 0.2 to 0.4 cm/s. Therefore, nonwoven needle punched geotextiles within the anticipated range for this project are well above the minimum required permeability value. In terms of water flow characteristics, a permittivity value of at least 0.02 sec⁻¹ would be needed per Table 3, but this value has been increased to a minimum of 1.2 sec⁻¹ based on typical industry standards and product capabilities.

Geotextile Porosity

The geotextile filter must have enough openings so that blocking some of them will not significantly clog the geotextile and inhibit flow into the geonet. Thus, the porosity of the

						Page	3E.3-7	of	3E.3-14
Written by:	Y. Bholat		Date: 2/15/23	Reviewed by:	S. Graves		Date	e: _ 1	8/3/2023
Client:	WMTX	Project:	Mesquite Creek	Project No.:	GW8636		Task No	o.:	05

geotextile must be greater than a minimum value. As shown in Table 1, for non-woven geotextiles, the geotextile porosity n_g is required to be:

 $n_g > 55\%$

The porosity criterion requirements apply for the geotextile component of the geocomposite drainage layer. Geotextile porosity is not a property that is directly measured or reported by manufacturers, however it can be calculated as indicated in Table 1 (i.e., $n_g = 1 - \mu_g/(\rho_g t_g)$). Typical resulting n_g values for non-woven geotextiles are 50 to 95%. Based on the geotextile density of polypropylene or polyethylene and the range of mass per unit areas and thicknesses anticipated for the project (6 to 16 oz/yd² (200 to 540 g/m²) and 1.3 to 5.7 mm, respectively), the calculated n_g values range from approximately 80% to 90%, which is well in excess of the minimum porosity required to prevent clogging.

Geotextile Thickness

For non-woven geotextiles, such as those proposed for the final cover system geocomposite drainage layer, the geotextile filter must be thick enough to have a sufficient number of constrictions. From Table 1, the number of constrictions, $N_{constrictions}$, needs to be at least 25.

The number of constrictions in non-woven geotextiles is a function of mass per unit area, porosity, polymer density, and geotextile fiber diameter:

$$N_{\text{constrictions}} = \mu_g / (\rho_g d_f \sqrt{1 - n_g})$$

Based on data for non-woven needlepunched geotextiles presented by Palmeira and Gardoni (2000) and Faure et al. (2006), as well as data compiled by Geosyntec from manufacturers, most non-woven needlepunched geotextiles that have at least 25 constrictions have a minimum thickness of 2.3 mm. The thickness of non-woven geotextiles is typically not measured or reported by manufacturers but tends to be correlated to mass per unit area. The minimum mass per unit area specified herein is expected to meet or exceed this thickness, and therefore have the minimum number of constrictions.

SURVIVABILITY EVALUATION RESULTS

Survivability refers to the ability of the geotextile to withstand the stresses during installation and handling in the field. The degree of survivability is first evaluated using Table 2 with the anticipated installation conditions. The following conditions are conservatively assumed to apply: (i) smooth and level subgrade condition; (ii) initial lift thickness of soil placed above geotextile is 12 in.; and (iii) maximum equipment ground pressure of 5 psi (35 kPa) (i.e., medium (per Table 2 definition) ground-pressure equipment is used). Using Table 2, a "moderate" degree of survivability is used.

			Page	3E.3-8 of 3E.3-14
Written by:	Y. Bholat	Date: 2/15/23	Reviewed by: S. Graves	Date: 8/3/2023
Client:	WMTX	Project: Mesquite Creek	Project No.: GW8636	Task No.: 05

In the second step, the minimum required values for the mechanical properties of the geotextile are established from Table 3 based on the "moderate" or "Class 2" survivability requirement established from Table 2. Table 3 provides minimum required values for two ranges of geotextile extensibility. Values were selected for the more extensible range because this range is applicable to non-woven materials that are required for the geotextile. These survivability requirements, which are outlined in Table 3, apply for the geotextile component of the geocomposite drainage layer.

HYDRAULIC CAPACITY EVALUATION

Step 1) Calculate Required (Design) Transmissivity, θ_{req}

As presented in Attachment 3E.2, the *HELP* model was used to calculate the required (design) inplane hydraulic conductivity and equivalent transmissivity of the leachate drainage layer. The required transmissivity is based on maintaining the peak daily average head on the liner less than or equal to the thickness of the geocomposite and a peak daily maximum head less than 12 inches on both the floor slopes and the side slopes. The required (design) transmissivity, θ_{req} , was calculated for each condition, and the results are repeated below.

		Waste + Protective	Soil Cover	Design
Area	Case ID	C = D d (0)		Iransmissivity
		Cover Depths (ft)	Depth (It)	$\theta_{req} \left(m^{2} / s ight)$
	NF1	12	0	2.5E-04
New Fill	NF2	77	0	7.1E-05
(NF)	NF3	152	0	7.6E-05
	NF5	67	0	6.1E-06

It is noted that NF4 was omitted from this calculation because, by inspection, it is not critical for sizing of the leachate drainage layer due to the presence of the final cover system which significantly limits infiltration and resulting flows to the leachate collection drainage layer. A stand-alone design calculation package for sizing of the final cover system drainage layer geocomposite is presented in Part III, Attachment 3G.

Step 2) Calculate Allowable "Long Term In Soil" Transmissivity, θ_{LTIS}

The allowable "Long Term In Soil" transmissivity, θ_{LTIS} is calculated by applying a factor of safety to increase the minimum required transmissivity. This factor of safety accounts for unknown loading conditions or uncertainties in design methods. For leachate drainage layers, a factor of safety (FS) of 2 was used.

$$\theta_{\rm LTIS} = \theta_{\rm req} \times FS \tag{1}$$

					Page	3E.3-9 of	f 3E.3-14
Written by:	Y. Bholat		Date: 2/15/23	Reviewed by:	S. Graves	Date:	8/3/2023
Client:	WMTX	Project:	Mesquite Creek	Project No.:	GW8636	Task No.:	05

The θ_{LTIS} was calculated for each condition, as shown below.

Area	Case ID	$\theta_{LTIS} \ (m^{2}/s)$
	NF1	5.1E-04
New Fill	NF2	1.4E-04
(NF)	NF3	1.5E-04
	NF5	1.2E-05

Step 3) Calculate Baseline Geocomposite Transmissivity, θ₁₀₀

Factors which account for additional long-term transmissivity reduction due to creep, chemical clogging, and biological clogging were applied to determine the minimum baseline product transmissivity, θ_{100} , for laboratory testing results as shown in Eqns. 2 and 3.

$$\theta_{\rm LTIS} = \frac{\theta_{100}}{RF_{CR}RF_{CC}RF_{BC}} \tag{2}$$

where RF_{CR} = reduction factor for creep, RF_{CC} = reduction factor for chemical clogging and/or precipitation of chemicals, and RF_{BC} = reduction factor for biological clogging.

Creep is the long-term reduction in thickness of the drainage layer under a sustained compressive stress. For landfill leachate collection systems, Koerner (2005) recommends that reduction factors for creep range from 1.4 to 2.0. For these design computations, the reduction factors for creep were assigned to increase from initial operational conditions through final cover conditions, since creep is a long-term phenomenon.

GRI (2013) provides guidance for clogging reduction factors for landfill leachate collection systems. Chemical and biological clogging is expected to increase over time as leachate passes through the geocomposite. Thus, the reduction factors for clogging are assumed to increase from initial operational conditions through final cover conditions. GRI (2013) recommends a chemical clogging reduction factor between 1.5 and 2.0 and a biological clogging reduction factor between 1.1 and 1.3. The selected values depend on the case being analyzed (varying from lower reduction factors to higher for short-term vs. long-term cases), as tabulated below.

Rearranging Eqn. 2 and substituting θ_{LTIS} and the reduction factors above, we obtain the following equation:

$$\theta_{100} = \theta_{\text{LTIS}} \times (\text{RF}_{\text{CR}} \times \text{RF}_{\text{CC}} \times \text{RF}_{\text{BC}})$$
(3)

						Page	3E.3-10	of	3E.3-14
Written by:	Y. Bholat		Date: 2/15/23	Reviewed by:	S. Graves		Date	: 8	8/3/2023
Client:	WMTX	Project:	Mesquite Creek	Project No.:	GW8636		Task No	o.:	05

The θ_{100} was calculated for each condition, as shown below.

Area	Case ID	$\theta_{LTIS} (m^2/s)$	RF _{CR}	RF _{CC}	RF _{BC}	$\begin{array}{c} \theta_{100} \\ (m^2/s) \end{array}$
	NF1	5.1E-04	1	1	1	5.1E-04
New Fill	NF2	1.4E-04	1.4	1.5	1.1	3.3E-04
(NF)	NF3	1.5E-04	1.4	1.5	1.1	3.5E-04
	NF5	1.2E-05	1.4	1.5	1.1	2.8E-05

Step 4) Calculate the Critical Operation Case for θ_{100}

Geosyntec contacted GSE Lining Technology, Inc. to obtain θ_{100} data for a common biplanar geocomposite on the market. The data correspond to the product, FabriNet, a geocomposite with non-woven geotextile on both sides of the geonet. This does not constitute a specification or endorsement of this product; it is merely intended to compare the required transmissivities to a commercially available product to check reasonableness of the design and availability of products. The FabriNet geocomposite transmissivity was measured at a gradient of 0.1 while sandwiched between sand and a geomembrane for a seating time of 100 hours under five different normal stresses.

To compare the required θ_{100} to the typical θ_{100} on the market, the expected normal stress for each condition must be calculated. The stress can be determined from the thickness of fill to be placed above the drainage layer as follows:

$$p = \gamma_{waste} \times h_{waste} + \gamma_{cover} \times h_{cover}$$
(4)

where: p represents the normal stress, γ_{waste} and h_{waste} represent density and thickness of the waste and the protective cover soil, respectively, and γ_{cover} and h_{cover} represent density and thickness of the final cover soil, respectively. The stress was calculated for each condition, as shown below. The unit weights were assumed as 100 pcf for waste/protective cover.

Area	Case ID	Waste + Protective Cover Depths (ft)	Stress (psf)	$ \theta_{100} \\ (m^{2}/s) $
	NF1	12	1,200	5.1E-04
New Fill	NF2	77	7,700	3.3E-04
(NF)	NF3	152	15,200	3.5E-04
	NF5	67	6,700	2.8E-05

The required (minimum) θ_{100} is plotted versus the calculated stress in Figure 1. The expected θ_{100} data for a typical biplanar geocomposite is shown for reference. As shown in this figure, the

							Page	3E.3-11	of	3E.3-14
Written by:	Y. Bholat		Date:	2/15/23	Reviewed by:	S. Graves		Date	e: <u>8</u>	8/3/2023
Client:	WMTX	Project:	Mesquit	te Creek	Project No.:	GW8636		Task N	o.:	05

required θ_{100} is less than θ_{100} for a typical biplanar geocomposite at corresponding stress conditions. Therefore, the proposed geocomposite should provide adequate hydraulic capacity for operation conditions.

As shown in Figure 1, the required θ_{100} for all cases are less than θ_{100} for typical biplanar geocomposites at corresponding stress conditions. Therefore, the proposed geocomposite should provide adequate hydraulic capacity. By inspection of Figure 1, the most critical operation condition for the geocomposite drainage layer is the intermediate condition, NF3. The critical condition occurs where the difference between required θ_{100} and measured θ_{100} is the least. The required θ_{100} is 3.5 x 10⁻⁴ m²/s [use as geocomposite specification] and the applied stress is approximately 15,200 psf.

Figure 1. Comparison of Required θ_{100} to Typical θ_{100} Test Results at Various Normal Stresses.

Note: The typical product information shown does not constitute an endorsement of these products, nor does this require the use of any specific manufacturer or product. This information is presented for comparison purposes only.

Step 5) Identify Site-Specific Conditions for Evaluating θ₁₀₀

The testing conditions to be used in evaluating θ_{100} using GRI Standard GC8, Part 6 are: (i) the testing configuration (i.e., stratum configuration); (ii) the applied stress; and (iii) the hydraulic gradient. These conditions are specified below.

- The testing configuration for transmissivity testing of the leachate drainage layer geocomposite should consist of a 60-mil HDPE geomembrane on one side of the geocomposite specimen (to simulate site-specific liner design) and soil material consistent with the site-specific clayey soil on the other side of the geocomposite specimen (to simulate the clayey soil protective cover layer). The clayey soil material should be compacted to a dry density ranging from 85 to 95% of the standard Proctor maximum dry density, and to a moisture content of plus or minus 5% of the standard Proctor optimum moisture content of the material.
- The stress to be applied in testing the leachate drainage layer should be equivalent to the stress at the most critical condition found in Step 4. As noted in Step 4, the most critical condition for the geocomposite occurs during Case NF3. Therefore, the stress on the leachate drainage layer geocomposite material to be used in determining θ_{100} is approximately 15,200 psf (may be rounded slightly up or down).
- The leachate drainage layer slopes at about 5% on the cell floor. Therefore, the hydraulic gradient to be used in determining θ_{100} for the geocomposite is 0.05.

Step 6) Determine Index Transmissivity, θ_{INDEX}, Based on θ₁₀₀

Manufacturers of geocomposite and geotextile drainage materials often present the hydraulic capacities of their product by reporting the transmissivity between two steel plates for a short duration test. These transmissivities are usually higher than those obtained using the site-specific boundary condition of soil on one side and a geomembrane on the other side, because the steel plates provide minimal amounts of intrusion into the drainage layer.

To compare the specified θ_{100} of the leachate drainage layer with index values reported by the manufacturer, a factor can be applied to account for the reduction of the transmissivity that may be experienced due to intrusion when testing the drainage layer with boundary materials other than steel plates. The index transmissivity, θ_{INDEX} , which accounts for intrusion can be determined as shown in Eqn. 5:

$$\theta_{\rm INDEX} = \theta_{100} \times \rm RF_{\rm INT} \tag{5}$$

where RF_{INT} is the intrusion reduction factor.

				Page	3E.3-13 c	of 3E.3-14
Written by:	Y. Bholat	Date: 2/15/23	Reviewed by: S. Graves		Date:	8/3/2023
Client:	WMTX	Project: Mesquite Creek	Project No.: GW863	5	Task No.:	05
					-	

Koerner (2005) recommends using an intrusion reduction factor (RF_{INT}) between 1.5 and 2.0. An intrusion factor of 1.75 was selected for this design computation. The index transmissivity θ_{INDEX} for the geocomposite at the critical condition specified in Step 4 (NF3) is found to be: $\theta_{INDEX} = 3.5 \times 10^{-4} \text{ m}^2/\text{s} \times 1.75 = 6.2 \times 10^{-4} \text{ m}^2/\text{s}$

CONCLUSIONS

Based on the evaluations herein, the following specifications are recommended for the leachate drainage layer.

- Retention, Filtration, and Water Flow of and through Geotextile:
 - Apparent Opening Size, $0_{95} \le 210 \ \mu m$ (U.S. Sieve No. 70)
 - Geotextile Permittivity, $\Psi \ge 1.2 \text{ sec}^{-1}$
- Survivability (Mechanical) Properties of Geotextile:
 - \circ Grab Strength = 158 lbs
 - \circ Trapezoid Tear Strength = 56 lbs
 - \circ CBR Puncture Strength = 320 lbs
- Hydraulic Capacity of Geocomposite Drainage Layer:
 - \circ $\theta_{100} = 3.5 \times 10^{-4} \text{ m}^2/\text{s}$ (when tested with an applied stress of 15,200 psf at a gradient of 0.05, and using site specific clayey soils on one side of the geocomposite, and a 60-mil HDPE geomembrane on the other side of the geocomposite)
 - o or $\theta_{INDEX} = 6.2 \times 10^{-4} \text{ m}^2/\text{s}$ (when tested between two steel plates with an applied stress of approximately 15,200 psf at a gradient of 0.05).

				Page 3E.3-14	of 3E.3-14
Written by:	Y. Bholat	Date: 2/15/2	B Reviewed by: S. Graves	Date:	8/3/2023
Client:	WMTX	Project: Mesquite Creek	Project No.: GW8636	Task No.:	05

REFERENCES

Faure, Y.H, Baudoin, P., and Pierson, O., "A Contribution for Predicting Geotextile Clogging During Filtration of Suspended Solids", *Geotextiles and Geomembranes*, 24(1), 2006, pp. 11-20.

Geosynthetic Research Institute (GRI), "Standard Guide for Determination of the Allowable Flow Rate of a Drainage Geocomposite", *GRI Standard GC8*, 2013.

Geosynthetic Research Institute (GRI), "Standard Specification for Test Methods and Properties for Geotextiles Used as Separation Between Subgrade Soil and Aggregate", *GRI Standard GT-13*, 2017.

Giroud, J.P., "Development of Criteria for Geotextiles and Granular Filters", *Proceedings of the 9th International Conference on Geosynthetics*, Guaruja, Brazil, Vol. 1, 2010, pp. 45-64.

Giroud, J.P., Zornberg, J.G., and Zhao, A., "Hydraulic Design of Geosynthetic and Granular Liquid Collection Layers", *Geosynthetics International*, Special Issue on Liquid Collection Systems, Vol. 7, Nos. 4-6, 2000, pp. 285-380.

Holtz, R.D., Christopher, B.R., and Berg, R.R., "Geosynthetic Design and Construction Guidelines Participant Notebook, National Highway Institute (NHI) Course No. 13213", U.S. Department of Transportation, Federal Highway Administration, Rep. No. FHWA-HI-95-038, 1998.

Industrial Fabrics Association International (IFAI), *Geosynthetics Specifier's Guide 2015*, Roseville, MN, January 2015.

Koerner, R.M., "Designing with Geosynthetics", Fifth Edition, Prentice Hall, 2005, 767 p.

Palmeira, E.M. and Gardoni, M.G., "The Influence of Partial Clogging and Pressure on the Behavior of Geotextiles in Drainage Systems", *Geosynthetics International*, Vol. 7, Nos. 4-6, 2000, pp. 403-431.

Mesquite Creek Landfill MSW Permit No. 66C Part III, Attachment 3E.4

ATTACHMENT 3E.4

LEACHATE COLLECTION CORRIDOR AND SIDESLOPE CHIMNEY DRAIN PIPE DESIGN

Geosyntec Consultants October 2023 Page No. 3E.4-Cvr

							Ge	Geosyntec [▶]			
								con	sulta	ants	
							Page	3E.4-1	of	3E.4-3	
Written by:	Y. Bholat		Date:	2/16/23	Reviewed by:	S. Graves		Dat	e: <u>8</u>	/3/23	
Client:	WMTX	Project:	Mesqui	te Creek	Project No.:	GW8636		Task N	o.:	05	

ATTACHMENT 3E.4 LEACHATE COLLECTION CORRIDOR AND SIDESLOPE CHIMNEY DRAIN PIPE DESIGN

PURPOSE

The purpose of this analysis is to evaluate the hydraulic flow capacity of the leachate collection corridors and sideslope chimney drains of the Mesquite Creek Landfill. The leachate collection corridor collects leachate from the floor drainage layer while the sideslope chimney drain collects leachate from the sideslope drainage layer; both the leachate collection corridor and sideslope chimney drain convey leachate to the leachate collection sump.

The leachate collection corridor is centrally located within each cell and slopes at 1% (min) towards the sump. In general, the sideslope chimney drain will be located along the toe of slope of perimeter sideslopes in the Unit 2 area and will slope at a minimum of 1%.

The leachate collection corridor and sideslope chimney drain consist of a perforated high-density polyethylene (HDPE) standard dimension ratio (SDR)-11 pipe embedded within a granular drainage media encased within a geotextile filter. For each design, the granular drainage media extends vertically through the protective cover layer to create a chimney drain.

METHODS OF ANALYSIS

The pipe flow capacity should be greater than the leachate flow entering the pipe. The pipe flow capacity is calculated using Manning's equation (from Chow, V.T., *Open Channel-Hydraulics*, McGraw-Hill, 1959) as follows:

$$Q_p = \frac{1.486R_h^{0.66}i_p^{0.5}A_p}{n}$$
(1)

			Page	3E.4-2 of 3E.4-3
Written by:	Y. Bholat	Date: 2/16/23	Reviewed by: S. Graves	Date: 8/3/23
Client:	WMTX	Project: Mesquite Creek	Project No.: GW8636	Task No.: 05

where:

 $Q_p = pipe$ flow capacity, cfs;

 R_h = hydraulic radius, ft (i.e., ratio of the flow area to the perimeter of the wetted area,

 $\frac{B_i}{\Lambda}$, where B_i is pipe inner diameter, ft);

i_p = hydraulic gradient (i.e., slope of the pipe);

 $A_p = cross-sectional area of the pipe, ft^2; and$

n = Manning's roughness coefficient.

For a pipe with a circular cross section that is flowing full, Manning's equation assumes steady uniform fully turbulent conditions.

For the leachate collection corridor, the critical condition is in Phase XIV which will have the largest contributing area of water flowing into the leachate collection pipe. The peak daily leachate generation rates for the cases analyzed in Attachment 3E.2 are presented below in gallons per acre per day (gpad), in addition to the contributing area and peak daily leachate generation of each scenario. As shown, the peak daily leachate generation rate for the leachate collection corridor is 104,520 gallons per day (gpd).

Case	Peak Daily Leachate Generation Rate (gpad)	Area	Peak Daily Leachate Generation (gpd)
NF1	12,280	1.79	21,981
NF2	4,270	3.14	13,408
NF3	4,396	7.87	34,597
NF5	4,186	8.25	34,535
		Total:	104,520

For the leachate chimney drain, the critical condition is in Phase XIV which will have the largest sideslope contributing area of water flowing into the leachate chimney drain. The peak daily leachate generation rate for Phase XIV is 4,186 gpad. With a contributing area of 5.9 acres, the peak daily leachate generation rate for the leachate chimney drain is 24,697 gpd.

					Page	3E.4-3	of 3E.4-3
Written by:	Y. Bholat	Date:	2/16/23 Revi	ewed by: S. Graves		Date	: 8/3/23
Client:	WMTX	Project: Mesquite	Creek Proje	ect No.: GW8636		Task No	o.: 05

CALCULATIONS

As discussed, the proposed leachate collection and sideslope chimney drain pipe is a perforated 6inch diameter HDPE SDR-11 pipe. The flow capacity is calculated using Eqn. 1, where:

n = Manning's roughness coefficient = 0.009 s/ft^{0.33} (from Chow, 1959)

$$i_p$$
 = hydraulic gradient = 1.0 percent
 $B_i = 5.42$ in. / 12 in./ft = 0.4517 ft
 R_h = hydraulic radius = $\frac{B_i}{4} = \frac{0.4517 \text{ ft}}{4} = 0.113 \text{ ft}$
 A_p = cross-sectional area of the pipe = $\frac{\pi B_i^2}{4} = \frac{\pi (0.4517 \text{ ft})^2}{4} = 0.16 \text{ ft}^2$

Based on the parameters above, the flow capacity of the 6 in. diameter pipe is calculated as follows:

$$Q_p = \frac{1.486 R_h^{0.66} i_p^{0.5} A_p}{n}$$
$$Q_p = \frac{1.486 (0.113)^{0.66} (0.01)^{0.5} (0.16)}{(0.009)}$$
$$Q_p = 0.627 \text{ ft}^{3/\text{s}} = 405,292 \text{ gpd}$$

Comparison between the peak daily flow rate of leachate into the leachate collection corridor and the calculated pipe flow capacity indicates that the leachate collection corridor possesses sufficient capacity to convey the peak daily leachate generated at the facility [the flow capacity far exceeds the predicted worst-case peak flow rates].

SUMMARY AND CONCLUSIONS

The highest peak daily leachate collection rates from the leachate collection corridor and the sideslope chimney drain are 104,520 and 24,697 gpd, respectively. The proposed 6-in. diameter collection pipe with a calculated flow capacity equal to 405,292 gpd has adequate hydraulic capacity to convey the peak daily leachate generated, with substantial excess capacity (i.e., the pipes have 3.9x to 16.4x, respectively, the required minimum capacity).

Mesquite Creek Landfill MSW Permit No. 66C Part III, Attachment 3E.5

ATTACHMENT 3E.5

LEACHATE COLLECTION SUMP DESIGN

Geosyntec Consultants October 2023 Page No. 3E.5-Cvr

				Ge	consultants
				Page	3E.5-1 of 3E.5-5
Written by: Y. Bholat		Date: 2/21/23	Reviewed by:	Scott Graves	Date: 8/3/23
Client: WMTX	Project:	Mesquite Creek	Project No.:	GW8636	Task No.: 05

ATTACHMENT 3E.5 LEACHATE COLLECTION SUMP DESIGN

TX ENG. FIRM REGISTRATION NO. F-1182

INTRODUCTION

The purpose of this calculation package is to provide design calculations for the leachate collection sumps that will be located at the low point of each phase of Unit 2 at the Mesquite Creek Landfill. Leachate will flow into each given sump from a leachate collection corridor, a sideslope chimney drain(s), and the floor and sideslope drainage layer immediately adjacent to the sump. Leachate will be removed from the sumps and pumped into the leachate transmission system (LTS) or directly transferred into tanker trucks. Specifically in this package, calculations are performed to compute the capacity of the leachate sumps; this information can be used to ensure that the leachate sumps provide adequate leachate storage capacity so that the selected submersible pump does not cycle on and off too frequently. The sump also effectively serves as a flow equalization element in the leachate collection system that stabilizes/attenuates leachate flows the landfill phase into the LTS.

METHOD OF ANALYSIS

The proposed sump is the shape of an inverted truncated pyramid with a square base. The volume of a truncated pyramid is:

$$V = \frac{1}{3} \left(A_1 + A_2 + \sqrt{A_1 A_2} \right) H$$
 (Eqn. 1)

where:

- V = Volume of truncated pyramid;
- $A_1 = Area of base;$
- $A_2 = Area of top; and$
- H = Height of truncated pyramid.

						Page	3E.5-2	of 3E.5-5
Written by:	Y. Bholat		Date:	2/21/23	Reviewed by:	Scott Graves	Date:	8/3/23
Client: WN	ΙТХ	Project:	Mesquit	te Creek	Project No.:	GW8636	Task No	.: 05

The volume of the solid particles of the granular drainage material reduces the volume available for leachate storage. The effective volume of leachate storage in the sump is:

$$V_s = Vn \tag{Eqn. 2}$$

where:

 $V_s =$ Effective volume of sump; and

n = Porosity of granular drainage material.

The pump-on duration is equal to the amount of time it takes to pump down the leachate level from the pump turn on level to the pump turn off level. The pump-on duration is:

$$t_1 = V_s / (Q_{pump} - Q_{in})$$
 (Eqn. 3)

where:

The pump-off duration is equal to the amount of time it takes for the sump to fill up from the pump-off level to the pump-on level. The pump-off duration is:

$$t_2 = V_s / Q_{in} \tag{Eqn. 4}$$

where:

 $t_2 = pump-off duration.$

CALCULATIONS

Total Volume of Sump

The proposed leachate collection sump will be 4 ft deep and will have a 20 ft x 20 ft square base with a sideslope of 3 horizontal to 1 vertical (3H:1V) to meet the landfill floor, as shown in Figure 3E.5-1 below. The submersible pump "turn off" level is typically 18 inches above the base of the sump, so the operating depth of the sump is 2.5 ft. Based on this, these calculations are performed assuming the lower 18 inches of the sump will not contribute to the operating storage volume of the sump.

				Page	3E.5-3 of	3E.5-5
Written by: Y. Bholat		Date: 2/21/23	Reviewed by:	Scott Graves	Date:	8/3/23
Client: WMTX	Project:	Mesquite Creek	Project No.:	GW8636	Task No.:	05

Plan View

Elevation View

From the figure above, the operating parameters are:

$$A_1 = 29' \times 29' = 841 \text{ ft}^2;$$

 $A_2 = 44' \times 44' = 1936 \text{ ft}^2;$ and
 $H = 2.5'.$

Therefore, the total operating volume of the sump is:

$$V = \frac{1}{3} \left(A_1 + A_2 + \sqrt{A_1 A_2} \right) H$$

V = (0.333)(841 ft² + 1936 ft² + [(841 ft²)(1936 ft²)]^{0.5})(2.5')
V = 3378 ft³

				Page	3E.5-4 o	f 3E.5-5
Written by: Y. Bholat		Date: 2/21/23	Reviewed by:	Scott Graves	Date:	8/3/23
Client: WMTX	Project:	Mesquite Creek	Project No.:	GW8636	Task No.:	05

Effective Volume of Sump

The sump will be filled with granular drainage media with particle diameters ranging from 3/8 inches (D₅) to 3 inches (D₁₀₀). The porosity of the granular drainage material is assumed to be 0.3. Therefore, the effective volume of the sump is:

$$V_{s} = V n$$

$$V_{s} = (3378 \text{ ft}^{3})(0.3)$$

$$\underline{V_{s} = 1013 \text{ ft}^{3}}$$

$$V_{s} = (1013 \text{ ft}^{3}) (7.48 \text{ gal/ft}^{3})$$

$$\underline{V_{s} = 7577 \text{ gallons}}$$

Pump-on/Pump-off Duration

From Attachment 3E.4, the calculated maximum peak daily leachate generation rate (Q_{in}) is approximately 104,520 gpd (72.6 gpm) and occurs in Phase XIV. A typical submersible leachate sump pump operates at (Q_{pump}) approximately 80 gpm. Therefore, for the peak daily case, the pump-on duration is:

$$t_1 = V_s/(Q_{pump} - Q_{in})$$

$$t_1 = 7577 \text{ gal}/(80 \text{ gpm} - 72.6 \text{ gpm})$$

$$t_1 = 1,022 \text{ min}$$

$$t_1 = 17 \text{ hr}$$

and the pump-off duration is:

$$t_{2} = V_{s}/Q_{in}$$

$$t_{2} = 7577 \text{ gal}/72.6 \text{ gpm}$$

$$t_{2} = 104 \text{ min}$$

$$t_{2} = 1.7 \text{ hr}$$

With a pump-on duration of 17 hrs and a pump-off duration of 1.7 hrs, a full on and off pump cycle is 18.7 hr. Most pump manufacturers recommend that the sump pump cycle time be more than 15 min, so a cycle time of 18.7 hrs is an acceptable cycle time for the peak daily condition.

For the average daily case, the pump-on duration is:

$$t_{1} = V_{s}/(Q_{pump} - Q_{in})$$

$$t_{1} = 7577 \text{ gal}/(80 \text{ gpm} - 7 \text{ gpm})$$

$$t_{1} = 104 \text{ min}$$

$$t_{1} = 1.7 \text{ hr}$$

					Page	3E.5-5 o	f 3E.5-5
Written by:	Y. Bholat		Date: 2/21/23	Reviewed by:	Scott Graves	Date:	8/3/23
Client: WN	ИТХ	Project:	Mesquite Creek	Project No.:	GW8636	Task No.:	05

and the pump-off duration is:

 $t_2 = V_s/Q_{in} \\ t_2 = 7577 \text{ gal}/7 \text{ gpm} \\ t_2 = 1082 \text{ min} \\ t_2 = 18.0 \text{ hr}$

With a pump-on duration of 1.7 hrs and a pump-off duration of 18.0 hrs, a full on and off pump cycle is 19.7 hr. Since most pump manufacturers recommend that sump pump cycle times be more than 15 min, a cycle time of 19.7 hrs is an acceptable cycle time for the average daily condition.

CONCLUSIONS

Calculation presented herein indicate that, for a given submersible sump pump of 80 gpm, the proposed leachate sump has adequate storage capacity to provide acceptable pump cycle times considering peak and average daily operation rates. This does not represent a required or minimum pump size, but merely is an indication of predicted flows and operating conditions based on HELP modeling, to facilitate pump selection and operational expectations.

ATTACHMENT 3E.6

LEACHATE COLLECTION AND RISER PIPE STRENGTH DESIGN

Geosyntec Consultants October 2023 Page No. 3E.6-Cvr

ATTACHMENT 3E.6 LEACHATE COLLECTION AND RISER PIPE STRENGTH DESIGN

INTRODUCTION

The purpose of this analysis is to evaluate the ability of the leachate collection and riser pipes at the Mesquite Creek Landfill to resist applied loads with adequate factors of safety. The leachate collection pipes within the landfill phases are evaluated for 6" diameter standard dimension ratio (SDR)-11 perforated high-density polyethylene (HDPE). The riser pipes within these phases are evaluated for 24" diameter SDR-11 HDPE.

The function of leachate collection pipes is to convey leachate collected by the leachate drainage layer to the sump. The riser pipes extend from the sump to the top of the perimeter sideslope with a pump placed inside the riser pipe in each sump to transfer the liquid out of the sump (e.g., to the leachate transmission system (LTS) forcemain). The collection and riser pipes must have adequate structural resistance to withstand the applied loads.

METHODS OF ANALYSES

Four potential strength failure mechanisms are considered for plastic pipes: (i) wall crushing; (ii) wall buckling; (iii) excessive ring deflection; and (iv) excessive bending strain. These mechanisms are evaluated below using methods presented in the technical literature for flexible plastic pipes [Uni-Bell PVC Pipe Association (Unibell), 1991; and Chevron Phillips Chemical Company (CPChem), 2002]. The design methods for flexible plastic pipe are applicable for both PVC and HDPE pipes (U.S. Army Corps of Engineers, 1997).

Stresses on Leachate Collection Pipe and Riser Pipe

Stresses applied to the pipes are estimated for the post-closure condition. Stresses during construction are expected to be significantly lower than the post-closure stresses. During post-

					Page	3E.6-2	of 3E.6-17
Written by: Y. Bholat		Date: 2/21/23	Reviewed by:	S. Graves		Date:	8/3/23
Client: WMTX	Project:	Mesquite Creek	Project No.:	GW8636		Task No.:	05

closure condition, the stress applied to the pipe is due to the overburden materials above the pipe (i.e., waste material and daily, intermediate, and final cover soils). This stress is calculated as follows:

$$\sigma_{\max} = \gamma_p D_p \tag{Eqn. 1}$$

where:

 σ_{max} = stress on the pipe, psf;

 γ_p = average unit weight of the overburden materials, pcf; and

 D_p = thickness of the overburden materials, ft.

The influence of holes on the pipe stress is not normally accounted for in the design process (Bonaparte et al., 2002) and is not done so here. Instead, perforation locations that have been demonstrated to be less critical in terms of stress concentrations (Brachman and Krushelnitzky, 2002) have been specified (i.e., perforations are located at the pipe shoulders and haunches).

The structural resistance of the 6" diameter leachate collection pipes is evaluated under loading from 190 ft of waste (the greatest waste thickness) and liner system and cover system materials. This is also a representative loading condition for the leachate chimney drain pipes.

The structural resistance of the 24" diameter riser pipes is evaluated under loading from 140 ft of waste (the greatest waste thickness at sump) and liner system and cover system materials.

Wall Crushing

Wall crushing can occur when the stress in the pipe wall, due to external vertical pressure, exceeds the compressive strength of the pipe material. The factor of safety against pipe wall crushing may be calculated using the following equation (Phillips 66, 1991):

$$FS_{wc} = \frac{2\sigma_{y}}{(SDR - 1)\sigma_{max}}$$
(Eqn. 2)

where:

FS_{wc} = factor of safety against pipe wall crushing;

 σ_y = compressive yield strength of the pipe, psf;

SDR = standard dimension ratio of the pipe; and

					Page	3E.6-3	of 3E.6-17
Written by: Y. Bholat		Date: 2/21/23	Reviewed by:	S. Graves		Date:	8/3/23
Client: WMTX	Project:	Mesquite Creek	Project No.:	GW8636		Task No.:	05

 σ_{max} = maximum stress applied to the pipe, psf.

Wall Buckling

Wall buckling (a longitudinal wrinkling in the pipe wall) can occur when the external vertical pressure exceeds the critical buckling pressure of the pipe/bedding aggregate system. The factor of safety against pipe wall buckling may be calculated using the following equation:

$$FS_{wb} = \frac{1.2}{\sigma_{max}} \left[\frac{E'E}{(SDR)^3} \right]^{1/2}$$
(Eqn. 3)

where:

 FS_{wb} = factor of safety against pipe wall buckling;

 σ_{max} = maximum stress applied to the pipe, psi;

 $E' = f(E_s, v, k) =$ modulus of soil reaction for pipe bedding material, psi;

E = modulus of elasticity of the pipe material, psi; and

SDR = standard dimension ratio of the pipe.

The modulus of soil reaction, E', for pipe bedding material is a representative parameter of soil stiffness, which is related to the overburden stress. The modulus of soil reaction is calculated using the Young's modulus of the pipe bedding material (E_s), Poisson's ratio of the pipe bedding material (ν), and an empirical factor (k) based on test data.

The following equation was used to calculate the constrained modulus of the bedding material:

$$M_{s} = \frac{E_{s}(1-\nu)}{(1+\nu)(1-2\nu)}$$
(Eqn. 4)

where:

 M_s = constrained modulus, psi;

 $E_s =$ Young's modulus, psi; and

v = Poisson's ratio.

					Page	3E.6-4	of 3E.6-17
Written by: Y. Bholat		Date: 2/21/23	Reviewed by:	S. Graves		Date:	8/3/23
Client: WMTX	Project:	Mesquite Creek	Project No.:	GW8636		Task No.:	05

The Young's modulus and Poisson's ratio were taken from data presented by Selig (1990) for soils at various overburden stress levels. The values are based on a sand or gravel (having a classification of SP, SW, GP, or GW as defined by the Unified Soil Classification System (USCS)) bedding material compacted to 85% ASTM D698 at a stress level of 60 psi, the highest stress considered in the Selig (1990) table (Table 3E.6-1). It is assumed that this material will be an AASHTO No. 57 stone or similar material. It is noted that the maximum applied stresses on the pipes are higher than 60 psi, as shown in the calculations below. It is therefore anticipated that the constrained modulus will be even higher than the values calculated for a stress level of 60 psi.

The modulus of soil reaction can then be calculated based on the constrained modulus of the bedding material (M_s) and an empirically derived factor (k).

$$E' = k \times M_s \tag{Eqn. 5}$$

The value of k may vary from 0.7 to 2.3 (Selig, 1990). For the analysis herein, an average value of k = 1.5 is used.

Ring Deflection

Excessive ring deflection is a horizontal over-deflection of the pipe causing a reversal of curvature of the pipe wall. This can occur if large external vertical pressures are applied to the pipe/bedding aggregate system. Excessive ring deflection can also lead to substantial loss in flow capacity. Ring deflection is calculated using the Modified Iowa Equation (Mosher, 1990; Koerner, 1998):

$$\Delta X = \frac{D_L K W_c}{(EI/r^3) + (0.061E')}$$
(Eqn. 6)

where:

 ΔX = horizontal deflection or change in diameter, in.;

 D_L = deflection lag factor;

K = bedding constant;

W_c = Marston's prism load per unit length of pipe, psi;

E = short-term modulus of elasticity of the pipe, psi;

E' = modulus of soil reaction for bedding material, psi;

				Page	3E.6-5 of	3E.6-17
Written by: Y. Bholat		Date: 2/21/23	Reviewed by: S.	. Graves	Date:	8/3/23
Client: WMTX	Project:	Mesquite Creek	Project No.: G	W8636	Task No.:	05

I = moment of inertia of the pipe wall per unit length, in. $^{4}/in.;$ and

 $r = mean radius of the pipe \left[\frac{D_{od} - t}{2}\right], in.$

For non-pressure heavy wall HDPE pipe, CPChem (2002) does not recommend a specific "allowable deflection," but instead recommends the bending strain at the predicted deflection be calculated and compared to the allowable strain.

Bending Strain

When a pipe deflects under load, bending strains are induced in the pipe wall. Bending strain occurs in the pipe wall as external pressures are applied to the pipe/bedding aggregate system. Bending strain is calculated using the following equation (Mosher, 1990):

$$\varepsilon_{\rm b} = f_{\rm d} \times \frac{\mathbf{t} \cdot \Delta \mathbf{y}}{\mathbf{D}^2} \tag{Eqn. 7}$$

where:

 ε_b = bending strain, percent;

 f_d = deformation shape factor (CPChem, 2002) recommends a value of 6 for elliptical cross-sections);

t = minimum wall thickness, in.;

 $\Delta y =$ vertical deflection, in.; and

D = mean pipe diameter, in.

The following are recommendations for allowable bending strain from the literature and manufacturers:

- A maximum allowable bending strain of 5% is recommended in Wilson-Fahmy and Koerner (1994), based on ASSHTO guidelines for long term use of smooth polyethylene pipes;
- A maximum allowable bending strain of 4.2% is recommended as conservative in CPChem (2002) [it is noted that allowable strains up to 8% are reported in literature as acceptable for a design period of 50 years]; and

						constituints	
					Page	3E.6-6 o	f 3E.6-17
Written by: Y. Bholat		Date: 2/21/23	Reviewed by:	S. Graves		Date:	8/3/23
Client: WMTX	Project:	Mesquite Creek	Project No.:	GW8636		Task No.:	05

Based on the above information, a maximum allowable strain of 4.2% is selected for the HDPE leachate collection system and riser pipes on this project.

CALCULATIONS

Calculations were carried out for the 6" leachate collection pipe; and 24" leachate riser pipe under expected maximum loads at landfill final grades (i.e., design loading). In addition, the maximum heights of waste that the leachate collection and riser pipes can accommodate with adequate factors of safety and allowable strains were calculated (i.e., hypothetical heights even greater than those proposed, to give a sense for the additional capacity that the pipes could withstand). The input parameters and calculated and allowable factors of safety, deflections, and strains are presented in the following calculation sheets.

					Page	3E.6-7	of 3E.6-17
Written by: Y. Bholat		Date: 2/21/23	Reviewed by:	S. Graves		Date:	8/3/23
Client: WMTX	Project:	Mesquite Creek	Project No.:	GW8636		Task No.	05

6" SDR-11 HDPE Leachate Corridor (design loading)

Г

Mesquite Creek Landfill - Pipe Strength Design

Input	Parame	ters			
Waste					
	$d_c =$	190	ft		
	$\gamma_{avg} =$	100	pcf		
Pipe	e				
-	SDR =	11			
	$D_{od} =$	6.625	in.		
	t _{min} =	0.602	in.		
	E=	31.648	psi		
	$\sigma_v =$	1500	psi		
	$D_{I} =$	1.25	1		
	К =	0.11			
	k =	1.5			
Beddir	ıg Soil	110			
	E. =	4700	psi		
	v =	0.28	F		
	·	0.20			
Color	latad Da	nomoto	140		
Calcu		121.0	<u>.15</u>		
	M –	6000	psi		
	$IVI_s =$	0009	ps1		
	E = W =	9013	psi lb/in		
	w _c -	0/4	10/III. : 4/:		
		2.01	in./m.		
	Imean -	5.01	ш. :		
a.	SA =	639./	psi		
<u>Stren</u>	gth Che	<u>cks</u>			
Wall C	rushing				
	FG		$2\sigma_{\rm y}$		
	$FS_{WC} =$	(SDR	$(-1)\sigma_m$	ax	
	$FS_{WC} =$	2.3	≥1.5		
Wall B	Buckling				
]	$FS_{wb} = -$	$\frac{1.2}{\sigma_{\text{max}}}$	$\frac{E'E}{SDR^3}$	1/2	
Rina d	FS _{wb} =	4.2 (Madifie	≤ 1.5 d Iowa F	avati	on)•
Γ	ejiceiion	DI	<u></u>	<i>q</i>	/
4	$\Delta X = \overline{(E)}$	$\frac{D_L r}{1/r^3}$ +	$\frac{c}{(0.061 \text{ H})}$	Ξ')	
Change Ring d	e in diame eflection,	ter, $\Delta X = \Delta X\% =$	0.211 3.18	m. %	
Pipe w	all bendir	ng strain,	ε _b .		
	ε _b =	$= 6 \cdot \frac{t_{min}}{1}$	$\frac{1}{D^2}$		$\Delta y = D =$

<u>Varaia</u>	ible Definition
$d_c = m$	aximum thickness of overlying materials, ft;
$\gamma_{avg} = a$	average unit weight of overlying materials (waste
	liner and cover), pcf;
SDR =	standard dimension ratio of the pipe;
$D_{od} = 0$	outer diameter of pipe, in [CPChem, 2002];
$t_{min} = t$	ninimum thickness of the pipe, in. [CPChem,
2002]	
E = lor	ng-term modulus of elasticity of the pipe material
[a	fter 50 years based on SA, Phillips 66, 1991], ps
$\sigma_{\rm y} = c \sigma$	ompressive yield strength of the pipe;
$D_L = d$	eflection lag factor (assume 1.25) [Wilson-Fahm
1	and Koerner, 1994];
K = be	edding constant ($0^\circ \Rightarrow 0.110$) [Wilson-Fahmy
an	d Koerner, 1994; Figure 2];
k = an	empirically derived factor for calculating E
(range	s
be	tween 0.7 and 2.3, Selig, 1990);
$E_s = Y_s$	oung's modulus of the bedding material, psi;
v = Po	isson's ratio of the bedding material;
$\sigma_{max} =$	maximum stress applied to the pipe, psi;
$M_s = c$	onstrained modulus of the bedding material;
E' = th	e modulus of soil reaction for pipe bedding
n	naterial [Selig, 1990; Table 2], psi;
$W_c = N$	Marston's prism load per unit length of pipe, lb/in
	[Wilson -Fahmy and Koerner, 1994]
=	$(\gamma_{avg}) (d_c) (D_{od});$
I = the	moment of inertia of the pipe wall per unit lengt
(t _m	$\sin^3/12$), in. ⁴ /in.;
r _{mean} =	mean radius = $(D_{od} - t_{min})/2$, in.
$S_A = =$	$(\text{SDR-1})\sigma_{\text{max}}$ /2
FS _{WC} =	= factor of safety against wall crushing
$FS_{wb} =$	factor of safety against wall buckling
$\Delta X = I$	naximum horizontal deflection or change in
(diameter, in;
ΔX% =	= the ring deflection, %.
	$= 100(\Delta X/D_{od})$
$\varepsilon_b = B \varepsilon$	ending strain, %;
$\Delta y = V$	Vertical deflection, in. = ΔX ;
D = di	ameter = Mean diameter (D_{od} - t_{min}), in.;

Bending strain, $\varepsilon_b = 2.10$ %

Allowable wall ring bending strain: from 4.2 to 8% (8% for 50 year design life) - [CPChem, 2002]

0.211 in.

6.02 in.

					Page	3E.6-8	of 3E.6-17
Written by: Y. Bholat		Date: 2/21/23	Reviewed by:	S. Graves		Date:	8/3/23
Client: WMTX	Project:	Mesquite Creek	Project No.:	GW8636		Task No.:	05

6" SDR-11 HDPE Leachate Corridor (maximum allowable loading)

Mesquite Creek Landfill - Pipe Strength Design

Input Parameters
Waste
$d_c = 288 \text{ ft}$
$\gamma_{avg} = 100 \text{ pcf}$
Pipe
SDR = 11
$D_{od} = 6.625$ in.
$t_{min} = 0.602$ in.
E = 28.286 psi
$\sigma_{\rm r} = 1500 \rm psi$
$D_{\rm r} = 1.25$
V = 0.11
K = 0.11
K = 1.5
Beading Soli
$E_{\rm s} = 4700 \text{ ps}_1$
v = 0.28
~
Calculated Parameters
$\sigma_{\rm max}$ = 200.0 psi
M _s = 6009 psi
E'= 9013 psi
$W_c = 1,325 \text{ lb/in.}$
$I = 0.01818 \text{ in.}^4/\text{in.}$
$r_{mean} = 3.01$ in.
SA = 1,000.0 psi
Strength Checks
Wall Crushing
27
$FS_{WC} = \frac{20y}{100000000000000000000000000000000000$
$^{\text{WC}}$ (SDR -1) σ_{max}
$FS_{WC} = 1.5 \ge 1.5$
W. H. D I.P.
wall buckling
$1.2 \begin{bmatrix} E'E \end{bmatrix}^{1/2}$
$FS_{wb} = \frac{1}{\sigma} \frac{1}{\sigma}$
$FS_{wb} = 2.6 \ge 1.5$
Ring deflection (Modified Iowa Equation):
$D_L KW_c$
$\Delta X = \frac{1}{(EL/r^3) + (0.061 E')}$
Change in diameter, $\Delta X = 0.320$ in.
Ring deflection, $\Delta X\% = 4.84\%$
Pipe wall bending strain, ε_b .
$t_{\rm min} \cdot \Delta y$ Δy
$\left \varepsilon_{\rm b}=6\cdot\frac{c_{\rm min}}{2}\right $
D^2

Varaiable Definition	
$d_c = maximum$ thickness of overlying materials, ft;	
γ_{avg} = average unit weight of overlying materials (wa liner and cover), pcf;	aste
SDR = standard dimension ratio of the pipe;	
D_{od} = outer diameter of pipe, in [CPChem, 2002];	
t_{min} = minimum thickness of the pipe, in. [CPChem,	
2002]	
E = long-term modulus of elasticity of the pipe mate	ria
[after 50 years based on S _A . Phillips 66, 1991].	ps
$\sigma_{\rm u}$ = compressive yield strength of the pipe:	1
$D_r = deflection \log factor (assume 1.25) [Wilson-Fa$	hm
and Koerner 1994].	
$K = bedding constant (0^{\circ} => 0.110)$ [Wilson-Fahmy	
and Koerner 1994: Figure 21:	
k = an empirically derived factor for calculating F'	
(ranges	
hetween 0.7 and 2.3 Salia 10000	
$E = V_{0,1} m_0 d_1 h_2 + f_1 h_2 h_2 d_1 h_2 m_0 t_2 m_0 t_1 h_2 h_2 d_1 h_2 h_2 d_1 h_2 h_2 h_2 h_2 h_2 h_2 h_2 h_2 h_2 h_2$	
$E_s = 10 \text{ mg s modulus of the badding material, psi,}$	
v = Poisson's ratio of the bedding material;	
$\sigma_{\text{max}} = \text{maximum stress applied to the pipe, psi;}$	
$M_s = constrained modulus of the bedding material;$	
E' = the modulus of soil reaction for pipe bedding	
material [Selig, 1990; Table 2], psi;	<i></i>
$W_c = Marston's prism load per unit length of pipe, lt$	5/1n
[Wilson -Fahmy and Koerner, 1994]	
$= (\gamma_{avg}) (d_c) (D_{od});$	
I = the moment of inertia of the pipe wall per unit le	ng
$(t_{min}^{3}/12), m.^{4}/m.;$	
$r_{mean} = mean radius = (D_{od} - t_{min})/2$, m.	
$S_A = = (SDR-1)\sigma_{max} / 2$	
FS_{WC} = factor of safety against wall crushing	
rS_{wb} = factor of safety against wall buckling	
$\Delta X = \max \min m$ horizontal deflection or change in	
diameter, in;	
$\Delta X\%$ = the ring deflection, %.	
$= 100(\Delta X/D_{od})$	
ε_b = Bending strain, %;	
$\Delta y = Vertical deflection, in. = \Delta X;$	
$D = diameter = Mean diameter (D_{od}-t_{min}), in.;$	

$$\label{eq:second} \begin{bmatrix} \varepsilon_b = 6 \cdot \frac{t_{min} \cdot \Delta y}{D^2} & \Delta y = & 0.320 \text{ in.} \\ D = & 6.02 \text{ in.} \end{bmatrix}$$

Bending strain, $\varepsilon_b =$ 3.19 %

Allowable wall ring bending strain: from 4.2 to 8% (8% for 50 year design life) - [CPChem, 2002]

					Page	3E.6-9 o	f 3E.6-17
Written by: Y. Bholat		Date: 2/21/23	Reviewed by:	S. Graves		Date:	8/3/23
Client: WMTX	Project:	Mesquite Creek	Project No.:	GW8636		Task No.:	05

24" SDR-11 HDPE Riser Pipe (design loading)

Mesquite Creek Landfill - Pipe Strength Design

Inpu	t Parame	ters		
Waste	е			
	$d_c =$	140	ft	
	$\gamma_{avg} =$	100	pcf	
Pipe	1415		1	
1	SDR =	17		
	D _{ad} =	18.000	in.	
	t _{min} =	1.059	in.	
	F=	33 604	nsi	
	σ=	1500	psi	
	$D_r =$	1.25	Por	
	K =	0.11		
	k =	1.5		
Redd	ing Soil	1.5		
Deau	F_ =	4700	nsi	
	v =	0.28	PBI	
	v	0.20		
Cala	ulatad Da			
Calc	<u>mateu ra</u>	<u>rame te</u>	<u>: IS</u>	
	$o_{max} =$	97.2	psi	
	$M_s =$	6009	psi	
	E =	9013	ps1	
	$W_c =$	1,/50	lb/m.	
	1=	0.09892	in. '/in.	
	r _{mean} =	8.47	m.	
	SA =	777.8	psı	
Stre	ngth Che	cks		
Wall	Crushing			
			2σ.,	
	$FS_{WC} =$		<u>y</u> 1)	
		(SDR	$-1\sigma_{max}$	
	$FS_{WC} =$	1.9	≥1.5	
Wall	Buckling			
		12 [$E'E^{-1/2}$	
	$FS_{wb} = -$	1.2		
		σ_{\max}	SDR ^y]	
	$FS_{wb} =$	3.1	≥1.5	
Ring	deflection	Modifie	d Iowa Equat	ion):
	4 37	DLF	W _c	
	$\Delta A = \overline{I_{\rm F}}$	$(/r^3)_{+}$	(0.061 F)	
	<u> </u>		(0.001 L)	
Cnang	de in diamei	$\Delta \mathbf{V} 0 / =$	0.433 m.	
rang	uenection,	ΔA%) =	2.41 %	
Pipe	wall bendir	ıg strain,	<i>Eb</i> .	
		, t _{mir}	$\cdot \Delta y$	Δy

Varaiable Definition
$\overline{d_c} = maximum \text{ thickness of overlying materials, ft};$
γ_{avg} = average unit weight of overlying materials (waster liner and cover) perf.
SDP = standard dimension ratio of the nine:
$D_{\rm c} = $ outer diameter of nine in [CPChem 2002]:
$D_{od} = $ but in thickness of the nine in [CPChem
r_{\min} minimum the kness of the pipe, in: [effenen, 2002]
$F = \log_{10} term modulus of elasticity of the nine material$
[after 50 years based on S. Phillins 66 1991] nsi
$\sigma = \text{compressive yield strength of the nine:}$
$D_r = deflection lag factor (assume 1.25) [Wilson-Fahm]$
and Koerner, 1994]:
K = bedding constant (0° => 0.110) [Wilson-Fahmy
and Koerner, 1994; Figure 2];
k = an empirically derived factor for calculating E
(ranges
between 0.7 and 2.3, Selig, 1990);
E_s = Young's modulus of the bedding material, psi;
v = Poisson's ratio of the bedding material;
$\sigma_{max} = maximum stress applied to the pipe, psi;$
M_s = constrained modulus of the bedding material;
E' = the modulus of soil reaction for pipe bedding
material [Selig, 1990; Table 2], psi;
W _c = Marston's prism load per unit length of pipe, lb/in [Wilson -Fahmy and Koerner, 1994]
$=$ (γ_{avg}) (d _c) (D _{od});
I = the moment of inertia of the pipe wall per unit lengt
$(t_{min}^{3}/12), in.^{4}/in.;$
$r_{mean} = mean radius = (D_{od} - t_{min})/2$, in.
$S_A = = (SDR-1)\sigma_{max} / 2$
FS_{WC} = factor of safety against wall crushing
$FS_{wb} = factor of safety against wall buckling$
$\Delta X = maximum$ horizontal deflection or change in
$\Delta X_0 = 4h a \sin a - 4a - 4a - 6a - 6a - 6a - 6a - 6a - $
$\Delta X\% = \text{the ring deflection}, \%$.
$= 100(\Delta X/D_{od})$
$b_b = Denoting Stram, %;$ Av = Vertical deflection in = AV;
D = diameter = Mean diameter (D, -t, -) in :
D diameter – Wean diameter (D_{od} - t_{min}), III.,

$$\label{eq:states} \boxed{ \begin{split} \epsilon_b &= 6 \cdot \frac{t_{min} \cdot \Delta y}{D^2} \\ \end{split} } \qquad \begin{array}{c} \Delta y = & 0.433 \text{ in.} \\ D = & 16.94 \text{ in.} \\ \end{array} }$$

Bending strain, $\varepsilon_b =$ 0.96 %

Allowable wall ring bending strain: from 4.2 to 8% (8% for 50 year design life) - [CPChem, 2002]

					Page	3E.6-10	of 3E.6-17
Written by: Y. Bholat		Date: 2/21/23	Reviewed by:	S. Graves		Date:	8/3/23
Client: WMTX	Project:	Mesquite Creek	Project No.:	GW8636		Task No.	05

24" SDR-11 HDPE Riser Pipe (maximum allowable loading)

Mesquite Creek Landfill - Pipe Strength Design

Input I	<u>Parameters</u>	
Waste		
	$d_c = 180 \text{ ft}$	
	$\gamma_{avg} = 100 \text{ pcf}$	
Pipe	-	
•	SDR = 17	
	$D_{od} = 18.000$ in.	
	$t_{min} = 1.059$ in	
	F = 32.025 nsi	
	$\sigma = 1500 \text{ psi}$	
	$D_{\rm r} = 1.25$	
	$V_{-} = 0.11$	
	K = 0.11	
D.J.J	K = 1.3	
Deaaing	<i>z Soli</i>	
	$E_{\rm s} = 4700 \rm psi$	
	v = 0.28	
a		
Calcul	ated Parameters	
	$\sigma_{\text{max}} = 125.0 \text{ psi}$	
	$M_{s} = 6009 \text{ ps1}$	
	E' = 9013 psi	
	$W_c = 2,250 \text{ lb/in.}$	
	$I = 0.09892 \text{ in.}^4/\text{in.}$	
	$r_{mean} = 8.47$ in.	
	SA = 1,000.0 psi	
Streng	th Checks	
Wall Cr	rushing	
	2σ.,	
F	$S_{WC} = \frac{-y}{(CDD - 1)}$	
	$(SDR - 1)\sigma_{max}$	
	$FS_{WC} = 1.5 \ge 1.5$	
Wall Bu	uckling	
	$1.2 \ [E'E]^{1/2}$	
\mathbf{F}	$S_{wb} = \frac{1}{\sigma} \left[\frac{1}{c D D^3} \right]$	
	$FS_{wb} = 2.3 \ge 1.5$	
Ring de	flection (Modified Iowa Equat	ion):
	\mathbf{v}_{-} $\mathbf{D}_{\mathrm{L}}\mathbf{KW}_{\mathrm{c}}$	
	$A = \frac{1}{(FL/r^3) + (0.061 F')}$	
Change	in diameter, $\Delta X = 0.55$ / in.	
King det	$\text{Hection}, \Delta X\% = 3.10 \%$	
Pipe wa	ll bending strain, ε_b .	
	$t_{\rm min} \cdot \Delta y$	Δу
	$\varepsilon_b = 6 \cdot \frac{1}{D^2}$	D

Varaiable Definition
$d_c = maximum$ thickness of overlying materials, ft;
γ_{avg} = average unit weight of overlying materials (waste, liner and cover), pcf;
SDR = standard dimension ratio of the pipe;
D _{od} = outer diameter of pipe, in [CPChem, 2002];
t_{min} = minimum thickness of the pipe, in. [CPChem,
2002]
E = long-term modulus of elasticity of the pipe material [after 50 years based on S _A , Phillips 66, 1991], psi;
$\sigma_{\rm y}$ = compressive yield strength of the pipe;
D_L = deflection lag factor (assume 1.25) [Wilson-Fahmy and Koerner, 1994]:
$K = bedding constant (0^{\circ} \Rightarrow 0.110)$ [Wilson-Fahmy
and Koerner, 1994; Figure 2];
k = an empirically derived factor for calculating E
(ranges
between 0.7 and 2.3, Selig, 1990);
E_s = Young's modulus of the bedding material, psi;
v = Poisson's ratio of the bedding material;
$\sigma_{max} = maximum stress applied to the pipe, psi;$
$M_s = constrained modulus of the bedding material;$
E' = the modulus of soil reaction for pipe bedding
material [Selig, 1990; Table 2], psi;
$W_c = Marston's prism load per unit length of pipe, ib/m. [Wilson -Fahmy and Koerner, 1994]$
$= (\gamma_{\rm avg}) (d_{\rm c}) (D_{\rm od});$
I = the moment of inertia of the pipe wall per unit length
$(t_{min}^{3}/12), in.^{4}/in.;$
$r_{mean} = mean radius = (D_{od} - t_{min})/2$, in.
$S_A = = (SDR-1)\sigma_{max}/2$
FS_{WC} = factor of safety against wall crushing
$FS_{wb} = factor of safety against wall buckling$
$\Delta X = \max \min $
$\Delta X^{0/2}$ = the ring deflection $\frac{9}{2}$
$\Delta X / 0 = $ the ring deflection, /0. = 100(A X / D)
$= 100(\Delta \Lambda/D_{od})$
$\delta_b = \text{Dending Strain, 70,}$ $\Delta v = \text{Vertical deflection in } = \Delta X^2$
D = diameter = Mean diameter (D + t +) in :
D dameter weat dameter $(D_{od} - t_{mn})$, in.,

0.557 in. $\Delta y =$ D =16.94 in.

Bending strain, $\varepsilon_b =$ 1.23 %

Allowable wall ring bending strain: from 4.2 to 8% (8% for 50 year design life) - [CPChem, 2002]

					Page	3E.6-11 c	of 3E.6-17
Written by: Y. Bholat		Date: 2/21/23	Reviewed by:	S. Graves		Date:	8/3/23
Client: WMTX	Project:	Mesquite Creek	Project No.:	GW8636		Task No.:	05

SUMMARY AND CONCLUSIONS

6" SDR-11 HDPE Leachate Collection Pipes

Under the design loading resulting from a total waste height of 190 ft on top of the leachate corridor pipe in Unit 2, Phase VI, the pipe strength evaluation is summarized as follows:

- Factor of safety against pipe wall crushing, $FS_{wc} = 2.3$ (OK)
- Factor of safety against pipe wall buckling, $FS_{wb} = 4.2$ (OK)
- Ring deflection = 3.18 % (OK)
- Bending strain = 2.10 % (OK)

The back-calculated maximum height of waste over the corridor that would result in acceptable factors of safety and allowable strains is 288 ft. This is in excess of that proposed but is provided here as an indication of the tallest waste height that the design could tolerate.

Under the design loading resulting from a total waste height of 140 ft on top of the riser pipe in Unit 2, Phase VI, the pipe strength evaluation is summarized as follows:

- Factor of safety against pipe wall crushing, FSwc = 1.9 (OK)
- Factor of safety against pipe wall buckling, FSwb = 3.1 (OK)
- Ring deflection = 2.41 % (OK)
- Bending strain = 0.96 % (OK)

The back-calculated maximum height of waste over the riser pipes that would result in acceptable factors of safety and allowable strains is 180 ft. This is in excess of that proposed but is provided here as an indication of the tallest waste height that the design could tolerate.

Based on the above results, the specified pipes are anticipated to perform as designed.

					Page	3E.6-12 o	f 3E.6-17
Written by: Y. Bholat		Date: 2/21/23	Reviewed by:	S. Graves		Date:	8/3/23
Client: WMTX	Project:	Mesquite Creek	Project No.:	GW8636		Task No.:	05

REFERENCES

- Bonaparte, R., Daniel, D.E., and Koerner, R.M., "Assessment and Recommendations for Improving the Performance of Waste Containment Systems", U.S. Environmental Protection Agency, Washington, D.C., EPA/600/R-02/099, Dec 2002.
- Brachman, R.W.I, and Krushelnitzky, R.P., "Stress Concentrations Around Circular Holes in Perforated Drainage Pipes", *Geosynthetics International*, Vol. 9, No. 2, 2002, pp. 189-213.
- CPChem, "Engineering Manual", CPChem Performance Pipe, Chevron Phillips Chemical Company LP, Plano, TX, 2002.
- Koerner, R.M., "Designing with Geosynthetics", Fourth Edition, 1998.
- Mosher, A., "Buried Pipe Design", McGraw-Hill, New York, 1990, 219 p.
- Phillips 66, "Driscopipe System Design", Manufacturers' literature, No. 1089-91 A17, Phillips 66, 1991.
- Selig, E.T., "Soil Properties for Plastic Pipe Installations," Buried Plastic Pipe Technology, ASTM STP1093, Buczala and Cassady, Ed., Oct. 1990, pp. 141-158.
- Uni-Bell PVC Pipe Association, "Deflection, the Pipe/Soil Mechanism", Uni-TR-1-97, Uni-Bell Plastic Pipe Association, 1997.
- Uni-Bell PVC Pipe Association, "Handbook of PVC Pipe, Design and Construction", Uni-Bell Plastic Pipe Association, 1991.
- US Army Corps of Engineers, "Conduits, Culverts, and Pipes", EM 1110-2-2902, 1997.
- Wilson-Fahmy, R.F., and Koerner, R.M., "Finite Element Analysis of Plastic Sewer Pipe Behavior in Leachate Collection and Removal Systems", Geosynthetic Research Institute - Drexel University, Philadelphia, PA, June 1994, 105 p.

					Page	3E.6-13 o	f 3E.6-17
Written by: Y. Bholat		Date: 2/21/23	Reviewed by:	S. Graves		Date:	8/3/23
Client: WMTX	Project:	Mesquite Creek	Project No.:	GW8636		Task No.:	05

TABLES

						Page	3E.6-14 of	f 3E.6-17
Written by	: Y. Bholat		Date: 2/21/23	Reviewed by:	S. Graves		Date:	8/3/23
Client:	WMTX	Project:	Mesquite Creek	Project No.:	GW8636		Task No.:	05

Table 3E.6-1. Modulus of Soil Reaction for Pipe Bedding Material
(from Selig, 1990)

		Soil Ty	pe: SW, S	P, GW, GP		
Stress level	2	5% D698			85% D698	
psi (kPa)	E _s	В	Vs	Es	В	Vs
1 (7)	1600 (11)	2800 (19)	0.40	1300 (9)	900 (6)	0.26
5 (34)	4100 (28)	3300 (23)	0.29	2100 (14)	1200 (8)	0.21
10 (70)	6000 (41)	3900 (27)	0.24	2600 (18)	1400 (10)	0.19
20 (140)	8600 (59)	5300 (37)	0.23	3300 (23)	1800 (12)	0.19
40 (280)	13000 (90)	8700 (60)	0.25	4100 (28)	2500 (17)	0.23
60 (410)	16000 (110)	13000 (90)	0.29	4700 (32)	3500 (24)	0.28
	Soil Ty	pe: GM, SM,	ML, and	GC, SC with	< 20% fines	
Stress level	9	95% D698			85% D698	
psi (kPa)	Es	В	Vs	Es	В	Vs
1 (7)	1800 (12)	1900 (13)	0.34	600 (4)	400 (3)	0.25
5 (34)	2500 (17)	2000 (14)	0.29	700 (5)	450 (3)	0.24
10 (70)	2900 (20)	2100 (14)	0.27	800 (6)	500 (3)	0 23
20 (140)	3200 (22)	2500 (17)	0.29	850 (6)	700 (5)	0.30
40 (280)	3700 (25)	3400 (23)	0.32	900 (6)	1200 (8)	0.38
60 (410)	4100 (28)	4500 (31)	0.35	1000 (7)	1800 (12)	0.41
		Soil Ty	pe: CL, N	AH, GC, SC		
Stress level		95% D698			85% D698	
psi (kPa)	Es	В	V _S	Es	В	v _s
1 (7)	400 (3)	800 (6)	0.42	100 (1)	100 (1)	0.33
5 (34)	800 (6)	900 (6)	0.35	250 (2)	200 (1)	0.29
10 (70)	1100 (8)	1000 (7)	0.32	400 (3)	300 (2)	0.28
20 (140)	1300 (9)	1100 (8)	0.30	600 (4)	400 (3)	0.25
40 (280)	1400 (10)	1600 (11)	0.35	700 (5)	800 (6)	0.35
60 (410)	1500 (10)	2100 (14)	0.38	800 (6)	1300 (9)	0.40

Note: Units of Es and B are psi (MPa).

					Page	3E.6-15 of	f 3E.6-17
Written by: Y. Bholat		Date: 2/21/23	Reviewed by:	S. Graves		Date:	8/3/23
Client: WMTX	Project:	Mesquite Creek	Project No.:	GW8636		Task No.:	05

FIGURES

Figure 3E.6-1. Time Dependent Modulus of Elasticity for Polyethylene Pipe (from Phillips 66, 1991)

Project No.: <u>GW8636</u> Ta ng Constant K 0.110 0.108 0.105	isk No.: <u>05</u>
ng Constant K 0.110 0.108 0.105	
K 0.110 0.108 0.105	
K 0.110 0.108 0.105	
0.110 0.108 0.105	
0.110 0.108 0.105	
0.110 0.108 0.105	
0.108	
0.105	
0.105	
0.102	
0.096	
0.090	
0.083	
Angle	
\wedge	
	0.096 0.090 0.083 Bedding Angle

Figure 3E.6-2. Bedding Constant (from Wilson-Fahmy and Koerner, 1994)

Mesquite Creek Landfill MSW Permit No. 66C Part III, Attachment 3E.7

ATTACHMENT 3E.7

EVALUATION OF LEACHATE COLLECTION SYSTEM MATERIALS COMPATIBILITY WITH MUNICIPAL SOLID WASTE LEACHATE

Geosyntec Consultants October 2023 Page No. 3E.7-Cvr

					C	reo:	synte onsulta	C ^D nts	
						Page	3E.7-1	of 3E.	.7-6
Written by: Y. Bholat		Date:	2/21/23	Reviewed by:	S. Graves		Date:	8/3/23	
Client: WMTX	Project:	Mesqui	te Creek	Project No.:	GW8636		Task No.	: 05	

ATTACHMENT 3E.7 EVALUATION OF LEACHATE COLLECTION SYSTEM MATERIALS COMPATIBILITY WITH MUNICIPAL SOLID WASTE LEACHATE

GEOSYNTEC CONSULTANTS, INC. TX ENG FIRM REGISTRATION NO. F-1182

INTRODUCTION

The purpose of this attachment is to evaluate and demonstrate the chemical compatibility (resistance to degradation) of the specified leachate collection system (LCS) and associated removal system materials with the expected leachate to be generated. This evaluation addresses compatibility of: (i) high-density polyethylene (HDPE) (which in addition to being used in the geonet of the geocomposite drainage layer of the LCS and in LCS piping, is also a component of the liner system (i.e., the geomembrane liner)); (ii) polypropylenes and polyesters (geotextile components used in the LCS); and (iii) coarse aggregates that will be used in the LCS.

TYPICAL MSW LEACHATE

Table 1 provides typical municipal solid waste (MSW) leachate constituents and their respective concentration ranges. The data were compiled by the United States Environmental Protection Agency (USEPA) [2002] in a study of leachates from MSW across the country. The concentrations of constituents in the leachate generated at the Mesquite Creek Landfill are expected to be comparable to the concentrations presented in the USEPA [2002] study.

PROPOSED LEACHATE COLLECTION SYSTEM COMPONENTS

The following materials are proposed for use in the LCS:

• HDPE, to be used for the geomembrane liner, the geonet component of LCS geocomposite, and LCS piping;

				Page	3E.7-2 o	f 3E.7-6
Written by: Y. Bho	lat	Date: 2/21/23	Reviewed by:	S. Graves	Date:	8/3/23
Client: WMTX	Project:	Mesquite Creek	Project No.:	GW8636	Task No.:	05

- polypropylene (PP) or polyester (PET), to be used for the geotextile component of the LCS geocomposite; and
- coarse aggregate, to be used for leachate collection corridors, sumps, and related LCS features.

COMPATIBILITY INFORMATION

HDPE (Geomembranes, Geonets, and Pipes)

Geomembranes, geonets, and pipes proposed for use in the liner system and LCS at the facility will be composed of Polyethylene (i.e., HDPE). HDPE is by far the most widely used compound for these components of MSW landfills and is routinely recommended or specified in EPA guidance documents on landfills, associated rules and regulations, and published technical literature. HDPE is the industry standard for such components of MSW landfills, and is widely recognized as the recommended choice for use according to the current state of engineering practice, based in part on its good compatibility with MSW leachates.

Polyethylene used for producing geomembranes, geonets, and pipes is essentially chemically inert [Apse, 1989]. Polyethylene does not react, i.e., undergo a change in its molecular structure, with organic chemicals such as solvents [USEPA, 1988; Apse, 1989]. In fact, it reacts only with some inorganic chemicals, such as sulfuric acid, nitric acid, and oxygen; however, such reactions can take place only with a very high concentration of the chemical and a significant source of energy. These conditions are not present in MSW waste disposal facilities [Haxo and Haxo, 1989]. Also, polyethylene can absorb solvents, which cause it to swell, but the solvents (e.g., trichloroethylene, methylene chloride, benzene, etc.) must be present at a high concentration to cause appreciable swelling [Brydson, 1982; Harper, 1975; Seymour and Carraher, 1981; and Billmeyer, 1984]. At the concentration levels typically observed in MSW landfills, i.e., very low to trace concentrations, swelling of polyethylene materials is generally not expected to occur.

In an early study, Haxo et al. [1985] immersed for up to 31 months several different polymeric materials in MSW leachate. (It should be noted that USEPA 9090 compatibility tests typically last for 4 months.) Of the materials tested, the polyethylene material exhibited the least property change by immersion in the leachate. In fact, hardness of the material did not change. (Hardness is a test used to indicate whether the material has been softened by a leachate. The absence of change indicates that the material has not absorbed leachate.) In addition, consistent with the absence of absorption of leachate, the modulus of the sample did not change after 31 months of exposure. The results support the compatibility of polyethylene material with MSW leachate.

					Page	3E.7-3	of 3E.7-6
Written by: Y. Bholat		Date: 2/21/23	Reviewed by:	S. Graves		Date:	8/3/23
Client: WMTX	Project:	Mesquite Creek	Project No.:	GW8636		Task No.:	05

An extensive literature survey was conducted by Schwope et al. [1985] on the chemical resistance of different polymeric materials used for producing geomembranes. The survey indicates that polyethylene materials are compatible with MSW leachates. This conclusion is supported by testing performed by Geosyntec in the 1980s and 1990s, when for various past projects, Geosyntec oversaw the laboratory testing of numerous USEPA 9090 compatibility tests on HDPE geomembranes exposed to MSW leachates. These tests reveal that HDPE geomembranes are chemically compatible with MSW leachates.

The chemical characteristics of typical MSW leachate, such as that expected to be generated by a Type I MSW landfill such as this facility, are presented in Table 1 of this package. Inspection of the constituents and concentrations of typical MSW leachate reveals that the constituents have very low (trace) concentrations, in comparison to the types of chemicals for which HDPE would be potentially incompatible when present in very high concentrations or their pure chemical (undiluted) form.

In summary, the results of extensive chemical compatibility testing of HDPE with a wide range of MSW leachates and related chemical constituents as reported in technical literature demonstrate that the properties of HDPE polymer that is used in geomembranes, geonets, and pipes is not affected by exposure to MSW leachates, indicating that HDPE materials are chemically compatible with the wastes and MSW leachate expected to be generated at the landfill.

Polypropylene and Polyester (Geotextiles)

Most geotextiles are composed of polypropylene (PP); some geotextiles (or geotextile seaming threads) are composed of polyester (PET), and geotextiles made of these polymers are the industry standard for such components of MSW landfill LCSs. They are widely recognized as the recommended choice for use according to the current state of engineering practice, based in part on their good compatibility with MSW leachates.

For example, both PP and PET geotextiles are resistant to organic chemicals at the concentration levels that are typically present in MSW landfill leachates. Neither PP nor PET react (i.e., undergo a change in molecular structure) with organic chemicals. Only when they are exposed to organic chemicals at very high concentrations may they absorb the chemicals and be affected [Brydson, 1982; Harper, 1975; Seymour and Carraher, 1981; Schneider, 1989; and Billmeyer, 1984]. Such absorption leads to the swelling of the fibers of the geotextiles, causing the geotextiles to weaken, compromising their performance. Importantly, geotextiles are not exposed to highly concentrated or pure (undiluted) organic chemicals in an MSW landfill environment. Instead, there may be dilute, very low (trace) concentrations of organic constituents.

							Page	3E.7-4	of	3E.7-6
Written by	7: Y. Bholat		Date:	2/21/23	Reviewed by:	S. Graves		Date	e: _	8/3/23
Client:	WMTX	Project:	Mesquit	e Creek	Project No.:	GW8636		Task No	0.:	05

In summary, the results of chemical compatibility testing of PP and PET with a wide range of chemicals as reported in technical literature demonstrate that the properties of PP and PET polymers that are used in geotextiles would not be affected by exposure to the low concentrations present in MSW leachates. As such, the geotextiles proposed for use in the LCS at this facility are chemically compatible with the wastes and leachate expected to be generated at the landfill.

Coarse Aggregate

The LCS will include drainage stone (i.e., coarse aggregate) in certain features, such as leachate collection corridors, chimney drains, and sumps. The specifications for coarse aggregate are provided in the Liner Quality Control Plan (LQCP). The typical consideration when selecting drainage stone for LCS components of MSW landfills is to avoid material with excessive calcium carbonate content (e.g., limestone), due to the possibility of dissolution over time when exposed to the somewhat acidic environment of an MSW landfill. For the LCS of this landfill, the coarse aggregate material will be natural granular drainage stone material specified (and confirmed by testing) to have less than 15% calcium carbonate content as determined in accordance with ASTM D 3042 using a pH of 4.0 (to simulate an acidic environment as can be observed in MSW leachate). To be conservative, this specified pH is harsher (i.e., more acidic) by more than an order of magnitude below the minimum pH of MSW landfill leachates measured by USEPA [2002].

Thus, provisions are in place for evaluating chemical compatibility of the coarse aggregate for each liner construction project. Only material meeting the specifications shall be used.

							Page	3E.7-5	of	3E.7-6
Written by:	Y. Bholat		Date:	2/21/23	Reviewed by:	S. Graves		Dat	e: 8	8/3/23
Client: W	МТХ	Project:	Mesquit	te Creek	Project No.:	GW8636		Task N	o.:	05

REFERENCES

Apse, J.I., "Polyethylene Resins for Geomembrane Applications", *Durability and Aging of Geosynthetics*, R.M. Koerner, Editor, Elsevier, New York, 1989, pp. 159-176.

Billmeyer, F.W., "*Textbook of Polymer Science 3rd Edition*", Wiley-Interscience, New York, NY, USA, 1984, 578 p.

Brydson, J.A., "Plastics Materials Fourth Edition", Butterworths, London, UK, 1982, 800 p.

Harper, C.A., "*Handbook of Plastics and Elastomers*", McGraw-Hill, New York, NY, USA, 1975, 12 Chapters plus Glossary.

Haxo, H.E. and Haxo, P.D., "Environmental Conditions Encountered By Geosynthetics in Waste Containment Applications", *Durability and Aging of Geosynthetics*, R.M. Koerner, Editor, Elsevier, New York, NY, USA, 1989, pp. 28-47.

Haxo, H.E., White, R.M., Haxo, P.D., and Fong, M.A., "Liner Materials Exposed to Municipal Solid Waste Leachate", *Waste Management and Research*, 1985, Vol. 3, pp. 41-54.

Schneider, H., "Long-term Performance of Polypropylene Geosynthetics", *Durability and Aging of Geosynthetics*, R.M. Koerner, Editor, Elsevier, New York, NY, USA, 1989, pp. 95-109.

Schwope, A.D., Costas, P.P., and Lyman, W.J., "*Resistance of Flexible Membrane Liners to Chemicals and Wastes*", A.D. Little Inc., Cambridge, MA, 1985, 217 p.

Seymour, R.B. and Carraher, C.E., "Polymer Chemistry, An Introduction", Marcel Dekker, New York, NY, USA, 1981, 564 p.

USEPA, "Assessment and Recommendations for Improving the Performance of Waste Containment Systems", USEPA 600/R-02/029, United States Environmental Protection Agency, Cincinnati, OH, Dec 2002, 1029 p.

USEPA, "*Lining of Waste Containment and Other Impoundment Facilities*", EPA/600/2-88/052, Sep. 1988, 12 Chapters plus 13 appendices.

					Page	3E.7-6	of 3E.7-6
Written by: Y. Bholat		Date: 2/21/23	Reviewed by:	S. Graves		Date:	8/3/23
Client: WMTX	Project:	Mesquite Creek	Project No.:	GW8636		Task No.	: 05

Table 1. Summary of MSW Landfill Leachate Chemistry [after USEPA, 2002]

	Wa	ste Type				W	SW			
	Number of	Landfills		10 Pre-	-1990			26 Pos	t-1990	
			Average	Minimum	Maximum	No. of	Average	Minimum	Maximum	No. of
Parameter	Units	MCLs				Landfills				Landfills
Нд	pH units		6.62	6.30	7.20	8	6.79	5.90	8.09	22
Specific conductance	μmhos/cm		6,588	3,438	8,983	8	3,693	597	13,548	22
TDS	mg/l		5,487	2,740	8,640	0	2,758	480	8,621	21
COD	mg/l		3,878	804	8,267	6	1,939	< 10	6,800	22
BOD ₅	mg/l		2,281	< 2	4,510	10	976	< 2	4,700	18
TOC	mg/l		1,509	4	2,852	8	527	24	2,609	21
Alkalinity	mg/l		2,295	1,508	3,278	7	1,536	203	5,800	22
Chloride	mg/l		801	199	2,263	10	463	5	1,625	25
Sulfate	mg/l		274	< 23	1,943	10	205	< 7	1,376	24
Calcium	mg/l		444	261	610	9	398	66	1,994	22
Magnesium	mg/l		153	84	279	9	83	10	191	21
Sodium	mg/l		532	225	1,115	8	282	ო	1,219	23
Arsenic	l/Bri	50	19	< 4	78	10	23	< 2	236	21
Cadmium	l/gu	5	∞ v	~ ~	< 17	8	< 7	, v	< 20	22
Chromium	l/gu	100	68	5	320	10	38	ო	06	21
Lead	l/gu		36	-	06	7	15	-	50	22
Nickel	l/gu		56	27	98	6	82	10	220	20
Benzene	l/gu	5	< 17	ი ა	< 36	7	< 19	< 2	< 100	21
1,1-Dichloroethane	l/gu		88	< 5 <	294	8	66	< 2	260	22
1,2-Dichloroethane	l/gu	5	< 33	< 4	< 100	9	< 16	v v	< 100	20
cis-1,2-Dichloroethylene	l/Bri	70	< 64	< 53	< 75	2	< 57	v v	436	13
trans-1,2-Dichloroethylene	l/gu	100	< 51	< 32	< 100	4	< 18	v v	< 110	16
Ethylbenzene	l/Bri	700	40	د د 5	87	7	35	, v	118	22
Methylene chloride	l/gu		435	< 5 <	1,303	8	334	, v	4,150	22
1,1,1-Trichloroethane	l/gu	200	< 68	< 5 <	100	9	< 55	, v	270	20
Trichloroethylene	l/gu	5	< 56	< 5 <	114	7	< 24	~ ~	100	19
Toluene	l/gu	1,000	491	< 5 <	959	7	228	, v	740	22
Vinyl chloride	l/gu	2	< 49	< 7	< 100	9	< 34	ი ა	< 300	20
Xylenes	hg/l	10,000	117	< 5	277	6	83	< 5	220	20
Notes: (1) " " = not analyzed	; < = more tha	n 50% of	measurem	nents report	ed as non-	detect.				

Mesquite Creek Landfill MSW Permit No. 66C Part III, Attachment 3F

ATTACHMENT 3F

FINAL COVER EROSION ANALYSIS

Geosyntec Consultants October 2023 Page No. 3F-Cvr

					(Ceos	Syntec ^D onsultants
					Page	1	of 20
Written by:	P. Pandey	Date:	8/4/2023	Reviewed & Revised by:	S. Graves	Date:	8/9/2023; 2/19/2024
Client: W	MTX Project:	Mesqui	te Creek LF	Proje	ect No.: <u>GW8</u>	636 Phas	se No.: 05

FINAL COVER EROSION ANALYSIS MESQUITE CREEK LANDFILL

GEOSYNTEC CONSULTANTS, INC. TX ENG FIRM REGISTRATION NO. F-1182

1 PURPOSE

The purpose of this calculation package is to present the evaluation of the long-term effects of erosion and soil loss for the completed landfill final cover system of the Mesquite Creek Landfill (site) in the New Braunfels, Texas area. This package provides calculations for the annual soil loss from the final cover top deck surfaces sloped with a maximum grade of 5% and the external final cover sideslopes with a maximum grade of 3H:1V (horizontal: vertical) (i.e., 33.3%) as shown on the overall final cover grading plan (Drawing 3A-5B of the Landfill Design Drawings in Part III, Attachment 3A). The estimated amount of erosion was calculated using the Revised Universal Soil Loss Equation (RUSLE). Flow velocities on final cover surfaces are also calculated and compared to permissible velocity values as another approach to assessing potential erodibility.

2 CALCULATION METHODOLOGY

The method to calculate the soil erosion loss over the project area was obtained from the guidance document *Predicting Soil Erosion by Water: A Guide to Conservation Planning With the Revised Universal Soil Loss Equation (RUSLE)* [United States Department of Agriculture (USDA), 1997], as well as previously published information provided by USDA. This document presents the RUSLE methodology and guidance for each of the equation's parameters. The RUSLE is described as follows:

$$\mathbf{A} = \mathbf{R} \times \mathbf{K} \times \mathbf{L}\mathbf{S} \times \mathbf{C} \times \mathbf{P}$$

where:

A = the computed spatial average annual soil loss (tons/acre/year),

		consi	ıltan	lts
Page	2	of	20	

				Page	2 0	01 20
Written by: <u>P. Pan</u>	dey Date:	8/4/2023	Reviewed by:	S. Graves	Date:	8/9/2023
Client: <u>WMTX</u> F	Project: <u>Mesqu</u>	ite Creek LF	Projec	t No.: <u>GW86</u>	36 Phase	No.: <u>05</u>

R = the average annual rainfall runoff erosivity factor,

K = the soil erodibility factor,

LS = the topographic factor,

C = the cover management factor, and

P = the erosion control practice factor.

To assess whether flow velocities are within permissible ranges, the velocities are estimated using guidance provided by Texas Department of Transportation (TxDOT) (2019) and USDA (2010), for sheet flow and shallow concentrated flow, respectively. TxDOT (2019) indicates that sheet flow velocities (for distances up to 100 ft) may be estimated based on slope and surface conditions using Manning's kinematic solution [adopted from USDA's (1986) TR-55 *Urban Hydrology for Small Watersheds*] to estimate sheet flow travel time:

where:
$$T_t = \frac{0.007(nL)^{0.8}}{P^{0.5}S^{0.4}}$$

 $n =$ travel time for sheet flow (hr.);
 $n =$ roughness coefficient;
 $L =$ flow length (ft);

P =rainfall (in.); and

S = slope of hydraulic grade line (land slope, ft/ft).

The sheet flow velocity (V) is computed from the travel time for sheet flow using:

 $V = L / T_t$

where: V = sheet flow velocity (ft); L = flow length (ft); and

 T_t = travel time for sheet flow (hr).

Roughness coefficient values for sheet flow are provided in Table 3F-1. A rainfall depth of 8.9 inches is selected based on the 25-year, 24-hour event obtained from the Atlas 14 point-precipitation frequency estimate for the site (NOAA, 2018). It is noted that the selection of the 25-year, 24-hour rainfall depth is a minor deviation from the sheet flow velocity calculation method presented in TxDOT (2019) (and derived from USDA's (1986) TR-55),

			(Geos	syntec▷
				С	onsultants
			Page	3	of 20
Written by: <u>P. Pandey</u>	Date: <u>8/4/2023</u>	Reviewed by:	S. Graves	Date:	8/9/2023
Client: <u>WMTX</u> Project:	Mesquite Creek LF	Proje	ct No.: <u>GW</u>	<u>8636</u> Phas	se No.: <u>05</u>

and was made by Geosyntec for these velocity calculation purposes to add more conservatism to the analysis. The selection of a larger rainfall depth will result in a faster travel time (i.e., a higher velocity over a given length) relative to what would be calculated by adhering to the aforementioned references' methodology, which call for the use of a smaller (2-year, 24-hour) storm event to compute sheet flow velocities using this Manning's kinematic solution.

For shallow concentrated flow, the velocity is estimated using the equation provided by USDA (2010), as follows:

$$V = K_v \times S^{1/2}$$

where:

V = shallow concentrated flow velocity (ft/s), $K_v =$ velocity factor (ft/s), and S = slope (ft/ft).

The velocity factor (K_v) is selected from the description of the surface cover as provided in Table 3F-2. The estimates of sheet flow and shallow concentrated flow velocities are compared to a permissible non-erodible velocity, which was selected based on recommendations from USDA for soil channels lined with Bermudagrass, a vegetation locally-adapted to the Comal/Guadalupe County areas of Texas and that is representative of the grass type/characteristics that may be used as permanent landfill cover vegetation. For channels with slopes greater than 10%, a velocity of four (4) ft/sec in easily eroded soils and six (6) ft/sec in erosion-resistant soils are recommended (USDA, 2007). An average value of five (5) ft/sec was selected as the permissible non-erodible velocity for this analysis – considered appropriate and somewhat conservative given that the topsoil available for use at the site are primarily cohesive and more erosion-resistant, which could potentially justify selection of 6 ft/sec as being permissible.

3 RUSLE INPUT PARAMETERS

3.1 Rainfall Runoff Erosivity Factor (R)

The rainfall runoff erosivity factor is defined as the average annual rainfall erosion index specific for the project area. Based on USDA (1997), the value was determined to be approximately 265 for the site location on the border of Comal and Guadalupe Counties,

			(Geos	syntec▷
				С	onsultants
			Page	4	of 20
Written by: <u>P. Pandey</u>	Date: <u>8/4/2023</u>	Reviewed by:	S. Graves	Date:	8/9/2023
Client: <u>WMTX</u> Project:	Mesquite Creek LF	Projec	ct No.: <u>GW</u>	<u>8636</u> Pha	se No.: <u>05</u>

Texas, as shown in Figure 3F-1 at the end of this document.

3.2 Soil Erodibility Factor (K)

The soil erodibility factor is a function of the physical and chemical properties of the soil and is specific to the source of the cover material. The soil erodibility factor can be thought of as the ease with which soil is detached by splash during rainfall or by surface flow. The soils to be used for the final cover system of the landfill are expected to come from native surficial soils available at the project site or from similar local off-site sources. For soil loss calculation purposes, assessments were made of on-site soils and those nearby, using the Comal, Guadalupe, and Hays County soil surveys (USDA,2023). This information shows that the site and nearby area have soils of a number of soil classifications of native soils, with by far the most prevalent being Ferris and Heiden soils (map symbol FhF3) in the existing Unit 2 area and Heiden clay (map symbol HeC3 and HeD3) and Houston black clay (map symbol HoB) in the proposed expansion area. A soil survey map of the site vicinity is provided as Figure 3F-2 at the end of this document.

The Web Soil Survey tool operated by the USDA Natural Resources Conservation Service (NRCS) [USDA (2023)] was consulted for information on the corresponding soil erodibility factors of these soils. The value of K for soils near the surface of the project location (candidate soils that may be used to construct the final cover system) varies from 0.20 to 0.32 – but is almost entirely dominated by soils with a K factor of 0.24. The value reflects the erodibility of the fine-earth fraction for material less than two mm in size (using the Kf erosion factors provided in Table 3F-3). A K factor of 0.24 was selected for the analysis based on such soils being by far the most prevalent soil types on-site and in the immediate vicinity.

3.3 Topographic Factor (LS)

The slope length factor and slope steepness factor are typically combined into one topographic factor, LS, to facilitate field application of these equation components. USDA (1997) presents values of the LS factor for slope lengths in feet up to 1,000 feet and percent slopes up to 60%, as shown in Table 3F-4, for soils with vegetated cover with consolidated soil conditions.

The longest slope lengths for the sideslope and top deck surfaces of the final cover system

				Geo	syntec	
				С	onsultants	
			Page	5	of 20	-
Written by: <u>P. Pandey</u>	Date: <u>8/4/2023</u>	Reviewed by:	S. Graves	Date:	8/9/2023	-
Client: <u>WMTX</u> Project:	Mesquite Creek LF	Proje	ct No.: <u>GW</u>	7 <mark>8636_</mark> Pha	se No.: <u>05</u>	-

were used to select the LS factor for each area, and these lengths were applied to compute the soil loss for both portions of the landfill. The top deck surface will consist of a 5% slope with the maximum design slope length (i.e., between terraces) not exceeding 250 ft in both the existing Unit 2 area and the proposed expansion area. For the sideslopes, there will be drainage benches/terraces with a typical design spacing at a horizontal interval of 90 ft in both the areas (rounded up to a maximum spacing of 120-ft to check and account for a greater potential spacing should minor adjustments become necessary). Also, the critical scenario for the sideslopes is at the 3H:1V (33.3%) slopes in the existing Unit 2 area, because they are steeper than the 3.5H:1V (28.6%) slopes in the expansion area (and the steeper slope will result in a larger LS factor for a given slope length). If it can be demonstrated that the maximum sideslope bench/terrace spacing on the steeper 3H:1V slopes can result in acceptably low soil loss, then by definition the soil loss would be even less (i.e., also acceptable) on 3.5H:1V slopes with such bench/terrace spacing. Based on these slope lengths; the following LS factors were selected from Table 3F-4 (by interpolation):

- Sideslopes 3H:1V (33.3%) over the maximum landfill design slope length (between benches/terraces) of 120 ft, LS = 6.14.
- Top Deck -5% slope over the maximum landfill design slope length (between terraces) of 250 ft, LS = 0.78.

3.4 Cover Management Factor (C)

The cover management factor is a function of the type of land cover, based on three factors: (i) the vegetal material in direct contact with the soil surface, (ii) the canopy cover, and (iii) the effects at and beneath the surface. The final cover is categorized as having no appreciable canopy with a ground cover of grass, grass-like plants, decaying compacted duff or litter ("litter" is an agronomic term which refers to mulch, leaves, and similar organic matter) at least 2 inches deep. For the "base case" (which represents a reasonable expectation of the long-term post-closure ground cover condition) there is assumed to be 92% ground cover. This is considered a reasonable and appropriate long-term condition because of the climate and the Post-Closure Plan's requirements for ongoing inspections, maintenance and mowing, and repairs. This results in a C value interpolated from Table 3F-5 (USDA, 1977) of C = 0.005.

Also, a computation was performed for hypothetical scenarios on the top deck to assess

				Geos	syntec ^D
			Page	6	of 20
Written by: P. Pandey	Date: <u>8/4/2023</u>	Reviewed by:	S. Graves	Date:	8/9/2023
Client: <u>WMTX</u> Project:	Mesquite Creek LF	Proje	ct No.: <u>GW</u>	7 <mark>8636</mark> Phas	se No.: <u>05</u>

whether the soil loss would be tolerable on top deck areas having only 70% ground cover (i.e., a C value of 0.028 at 70% cover, from Table 3F-5). Even though the expected long-term post-closure condition is the "base case" with 92% ground cover, this additional case was performed for comparison purposes and to evaluate sensitivity of this parameter to variation, as discussed subsequently in the conclusions and recommendations.

3.5 Erosion Control Practice Factor (P)

The erosion control practice factor considers topographical practices that will reduce erosion by altering runoff drainage patterns. This factor generally applies to agricultural cropping practices and usually not taken into account for landfill design. Therefore, a P factor of one (1) is selected, which is the largest (worst-case) value.

3.6 Tolerable Soil Loss (T)

The calculated soil loss should be compared to the tolerable (i.e., permissible) soil loss (T). Several sources of information exist to select the permissible soil loss. TCEQ guidance (2018) suggests that landfill final cover designs should have a permissible soil loss rate based on information provided by the NRCS for major soil types, but that permissible soil loss for a landfill final cover should not exceed 3 tons/acre/year. The USDA soil-specific survey of Comal, Guadalupe, and Hays County soils (USDA, 2023) lists the "T" factors recommended for each soil type. This value represents the maximum average annual rate of soil erosion "*that can occur without affecting crop productivity over a sustained period*." For the landfill case, the term "crop productivity" refers to vegetation sustainability (lack of excessive erosion).

According to the USDA (2023) Soil Survey of the site area, USDA's recommended permissible soil loss rate for the soils located at and near the site is predominantly between 3 and 5 tons/acre/year. To be conservative and maintain consistency with recommendations in the TCEQ (2018) guidance, the lower permissible soil loss value of 3 tons/acre/year will be used as the comparison criteria for this evaluation. However, it is important to recognize that the area/site-specific USDA soil survey indicates the properties of these soils can potentially tolerate even greater soil loss without affecting long term conditions.

4 FLOW VELOCITY PARAMETERS

4.1 Watercourse (i.e., Surface) Slope

The slopes for estimating the maximum flow velocities on final cover slopes are as follows:

- Top Deck 5% slope;
- Sideslopes 3H:1V (33.3%) slope.

4.2 Surface Condition

For sheet flow velocity calculation purposes, the surface condition of the cover is assumed to be grass or grass-like plants bearing the most resemblance to a "short grass prairie" condition for the basis of selecting the roughness coefficient (Table 3F-1). From Table 3F-1, a roughness coefficient of 0.15 would be recommended for short grass prairie. However, to add conservatism to the sheet flow velocity analysis, an even lower roughness coefficient of 0.139 was selected– corresponding to a weighted average between short grass prairie and bare soil based on the assumed long-term ground coverage percentage presented previously. This is particularly conservative compared to the possible selection of much higher roughness coefficients for dense grass or Bermudagrass in Table 3F-1 that could be justifiably used to as the basis for the long-term condition (which if used, would result in lower calculated velocities).

To estimate shallow concentrated flow velocities for flow distances more than 100 ft using USDA (2010), a velocity factor (K_v) of 6.962 is selected from Table 3F-2 for a "short-grass pasture" condition, considered appropriate yet conservative given the surface condition/roughness to which this condition correlates. The velocity factor is applied with the slope to estimate the velocity of shallow concentrated flow over the final cover condition (after 100 ft of sheet flow).

5 **RESULTS**

5.1 <u>RUSLE</u>

Applying the RUSLE with the parameters defined above, the computed soil loss in tons/acre/year is calculated as follows:

$$\mathbf{A} = \mathbf{R} \times \mathbf{K} \times \mathbf{LS} \times \mathbf{C} \times \mathbf{P}$$

				CC	onsultants
			Page	8	of 20
Written by: <u>P. Pandey</u>	Date: <u>8/4/2023</u>	Reviewed by:	S. Graves	Date:	8/9/2023
Client: <u>WMTX</u> Project:	Mesquite Creek LF	Proje	ct No.: <u>GW8</u>	<u>636</u> Phas	e No.: <u>05</u>

• Sideslopes, Base Design Case (92% ground cover, maximum spacing of 120 ft between benches/terraces):

 $A = 265 \times 0.24 \times 6.14 \times 0.005 \times 1 = 1.95$ tons/acre/year.

Top Deck, Base Design Case with 92% ground cover, maximum landfill design spacing of 250 ft between terraces:
 A 265 × 0.24 × 0.78 × 0.005 × 1 = 0.25 terrafeers/second

 $A = 265 \times 0.24 \times 0.78 \times 0.005 \times 1 = 0.25$ tons/acre/year.

Top Deck, Hypothetical Case with 70% ground cover, maximum landfill design spacing of 250 ft between terraces:
 A = 265 × 0.24 × 0.78 × 0.028 × 1 = 1.36 tons/acre/year.

As shown above, the estimated soil losses for all cases are less than the tolerable soil loss of 3 tons/acre/year.

5.2 Erodible Velocity

The estimated velocities are as follows:

Top Deck Slopes (5%): For sheet flow (length up to 100 ft)

• $V = L / T_t = 100 / [0.007 \times (0.139 \times 100)^{0.8} / (8.9^{0.5} \times 0.05^{0.4})] = 0.4 \text{ ft/s.}$

For distances greater than 100-ft on the top deck, where flow becomes shallow concentrated flow, the velocity estimates are calculated as:

• $V = K_v \times S^{1/2} = 6.962 \times 0.05^{1/2} = 1.6$ ft/s.

Sideslopes (33.3%): For sheet flow (length up to 100 ft)

• $V = L / T_t = 100 / [0.007 \times (0.139 \times 100)^{0.8} / (8.9^{0.5} \times 0.333^{0.4})] = 0.9 \text{ ft/s.}$

For distances greater than 100-ft on the sideslopes, where flow becomes shallow concentrated flow, the velocity estimates are calculated as:

•
$$V = K_v \times S^{1/2} = 6.962 \times 0.333^{1/2} = 4.0$$
 ft/s.

As shown above, the estimated flow velocities for all cases are less than the permissible nonerosive velocity of 5 ft/s.

					(Geo:	syntec Donsultants
					Page	9	of 20
Written by:	P. Pandey	Date:	8/4/2023	Reviewed & Revised by:	S. Graves	Date:	8/9/2023; 2/19/2024
Client: <u>W</u>	MTX Project:	Mesqui	te Creek LF	Proje	ect No.: <u>GW8</u>	<u>636</u> Pha	se No.: <u>05</u>

6 CONCLUSIONS

Conclusions: Based on the analyses presented herein, the following conclusions are drawn:

- Overall, the calculated soil loss from top deck and sideslope areas of the final cover system design is below the permissible soil loss values (T) recommended by USDA (2023) for the area/site-specific soils and is also below the permissible soil loss value of 3 tons/acre/year suggested by TCEQ (2018).
- The calculated velocities for the top deck and sideslope final cover ground surfaces are less than the permissible non-erosive velocity of five (5) ft/sec, which is acceptable.
- To provide effective erosional stability against soil loss, a maximum slope length (i.e., horizontal spacing between terraces) of 250-ft on the 5% top deck was checked and confirmed to be acceptable, and the results show that an even greater spacing could be tolerated. The design layout has been prepared to use a nominal top deck terrace horizontal spacing of about 250 feet.
- To provide effective erosional stability against soil loss, the maximum horizontal spacing of the final cover sideslope drainage benches/terraces on the 3H:1V (as well as the less critical 3.5H:1V) external sideslopes is recommended as 120 ft or less. The design layout has been prepared to meet this spacing.

<u>Recommendations:</u> As discussed, in addition to the base case (expected long-term conditions), another hypothetical scenario was evaluated to assess the effect of changes to the top deck ground cover on the calculated annual soil loss. Based on this assessment, the following practical recommendations are provided for long-term cover final at the facility:

- It is recommended that the minimum percentage of ground cover of the external sideslopes of the landfill final cover should be 92%. The basis for this recommendation is that the calculations resulted in an estimated acceptable soil loss within the tolerable range with a 92% ground cover. Please see the discussion in the subsection below for further clarification on the intended usage of results.
- It is recommended that the minimum percentage of ground cover of the top deck of the landfill final cover should be 70%. The basis for this recommendation is

				CO	onsultants
			Page	10	of 20
Written by: <u>P. Pandey</u>	Date: <u>8/4/2023</u>	Reviewed by:	S. Graves	Date:	8/9/2023
Client: <u>WMTX</u> Project:	Mesquite Creek LF	Proje	ct No.: <u>GW8</u>	636_Phas	e No.: <u>05</u>

that the calculations resulted in an estimated acceptable soil loss below the tolerable range with a 70% ground cover. Please see the discussion in the subsection below for further clarification on the intended usage of results.

<u>Discussion - Use of Results</u>: The following discussion was added to clarify the calculated soil loss and soil stabilization (ground cover) practices and to further explain the basis for the calculation and the intended usage of results. For context, as indicated in Chapter 1 of the RUSLE Handbook, (USDA (1997):

The erosion rate for a given site results from a combination of many physical and management variables. Actual field measurements of soil loss would not be feasible for each level of these factors that occurs under field conditions. Soil-loss equations were developed to enable conservation planners, environmental scientists, and others concerned with soil erosion to extrapolate limited erosion data to the many localities and conditions that have not been directly represented in the research.

RUSLE is an erosion model designed to predict the <u>longtime average</u> <u>annual soil loss</u> (A) [emphasis added] carried by runoff from a specific field slope in specified cropping management systems as well as from rangeland... RUSLE users need to be aware that A (in addition to being a longtime average annual soil loss) is the average loss over a field slope and that <u>the losses at various points on the slope may vary differently from one</u> <u>another</u> [emphasis added].

The above limitations and clarifications from USDA should be kept in mind by field inspection personnel when reviewing site conditions and deciding on whether to take any corrective actions to take at a given point in time. Under long-term conditions after final closure, the Post-Closure Plan's requirements for ongoing inspections and for maintenance/repairs will be followed.

				CC	Justiliants
			Page	11	of 20
Written by: <u>P. Pandey</u>	Date: <u>8/4/2023</u>	Reviewed by:	S. Graves	Date:	8/9/2023
Client: <u>WMTX</u> Project:	Mesquite Creek LF	Projec	ct No.: <u>GW8</u>	636 Phase	e No.: <u>05</u>

7 REFERENCES

- NOAA (2018). *Point Precipitation Frequency Estimates*, Atlas 14, Volume 11, Version 2, National Oceanic and Atmospheric Administration, available online at <u>https://hdsc.nws.noaa.gov/hdsc/pfds/</u>. Accessed August 2023.
- TCEQ (2018). Surface Water Drainage and Erosional Stability Guidelines for a Municipal Solid Waste Landfill, Texas Commission on Environmental Quality, Waste Permits Division, Regulatory Guidance RG-417, revised May 2018.
- TxDOT (2019). *Hydraulic Design Manual*, Texas Department of Transportation, September 2019.
- USDA (1977). Procedure for Computing Sheet and Rill Erosion on Project Areas, United States Department of Agriculture, Soil Conservation Services, Engineering Division and Ecological Sciences and Technology Division, Technical Release No. 51, Revision 2.
- USDA (1986). Urban Hydrology for Small Watersheds, Technical Release 55 (TR-55), United States Department of Agriculture, Science and Education Administration, Agriculture Handbook Number 537.
- USDA (1997). Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE), United States Department of Agriculture, Agricultural Research Service, Agriculture Handbook Number 703.
- USDA (2007). Stream Restoration Design (National Engineering Handbook 654). Chapter 8 Threshold Channel Design. May 2008.
- USDA (2010). Hydrology (National Engineering Handbook 630). Chapter 15 Time of Concentration. May 2010.
- USDA (2023). Web Soil Survey, Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture, available online at <u>http://websoilsurvey.nrcs.usda.gov</u>, accessed January 2023.

TABLES

- Table 3F-1. Sheet Flow Roughness Coefficients for Calculating Sheet Flow Travel Time (from TxDOT, 2019)
- Table 3F-2. Equations and Assumptions Relating Shallow Concentrated Flow Velocity to Surface Slope (from USDA, 2010)
- Table 3F-3. Soil Erodibility Factor K for Site Soils (from USDA, 2023)
- Table 3F-4. Values for Topographic Factor, LS, for Moderate Ratio of Rill to Interrill Erosion (from USDA, 1997)
- Table 3F-5. C Factor Cover Values for Permanent Pasture, Rangeland, Idle Land, and Grazed Woodland (from USDA, 1977)

	Surface description	n _{ol}
Smooth surfaces (concrete, asphalt, gravel, or bare soil)		0.011
Fallow (no residue)		0.05
Cultivated soils:	Residue $cover \le 20$ %	0.06
	Residue cover > 20%	0.17
Grass:	Short grass prairie	0.15
	Dense grasses	0.24
	Bermuda	0.41
Range (natural):		0.13
Woods:	Light underbrush	0.40
	Dense underbrush	0.80

Table 3F-1. Sheet Flow Roughness Coefficients for Calculating Sheet Flow TravelTime (from TxDOT, 2019)

Flow type	Depth (ft)	Manning's <i>n</i>	Velocity equation (ft/s)
Pavement and small upland gullies	0.2	0.025	$V = 20.328(s)^{0.5}$
Grassed waterways	0.4	0.050	$V=16.135(s)^{0.5}$
Nearly bare and untilled (overland flow); and alluvial fans in western mountain regions	0.2	0.051	$V=9.965(s)^{0.5}$
Cultivated straight row crops	0.2	0.058	V=8.762(s) ^{0.5}
Short-grass pasture	0.2	0.073	$V=6.962(s)^{0.5}$
Minimum tillage cultivation, contour or strip-cropped, and woodlands	0.2	0.101	V=5.032(s) ^{0.5}
Forest with heavy ground litter and hay meadows	0.2	0.202	$V=2.516(s)^{0.5}$

Table 3F-2. Equations and Assumptions Relating Shallow Concentrated FlowVelocity to Surface Slope (from USDA, 2010)

Table 3F-3. Soil Erodibility Factor K for Site Soils(from USDA, 2023)

	Summary by Map Unit — Comal and Hays Counties, Texas (TX604)		
Summary by Map Unit - Com	al and Hays Counties, Texas (TX604)			
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
DAM	Dams		1.0	0.0%
FeF4	Ferris clay, 5 to 20 percent slopes, severely eroded	.24	37.2	1.8%
HeB	Heiden clay, 1 to 3 percent slopes	.24	16.3	0.8%
HeC3	Heiden clay, 3 to 5 percent slopes, eroded	.24	168.1	8.3%
HeD3	Heiden clay, 5 to 8 percent slopes, eroded	.24	17.2	0.8%
HoB	Houston Black clay, 1 to 3 percent slopes	.24	179.2	8.9%
HvB	Houston Black gravelly clay, 1 to 3 percent slopes	82.7	4.1%	
HvD	Houston Black gravelly clay, 3 to 8 percent slopes	.24	108.6	5.4%
Pt	Pits		39.4	2.0%
TaB	Tarpley clay, 1 to 3 percent slopes	.28	0.2	0.0%
Tn	Tinn clay, 0 to 1 percent slopes, frequently flooded	.24	28.9	1.4%
W	Water		8.3	0.4%
Subtotals for Soil Survey A	687.1	34.0%		
Summary by Map Unit — Gua	dalupe County, Texas (TX187)			
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
AIE3	Altoga silty clay, 5 to 12 percent slopes, eroded	.32	12.2	0.6%
BrA	Branyon clay, 0 to 1 percent slopes	.20	34.6	1.7%
DAM	Dams		1.9	0.1%
FhF3	Ferris and Heiden soils, 5 to 20 percent slopes, eroded	.24	328.9	16.3%
HeC	Heiden clay, 3 to 5 percent slopes	.24	52.1	2.6%
HeC3	Heiden clay, 3 to 5 percent slopes, eroded	.24	102.2	5.1%
HeD3	Heiden clay, 5 to 8 percent slopes, eroded	.24	135.8	6.7%
НоВ	Houston Black clay, 1 to 3 percent slopes	.24	525.3	26.0%
НрВ	Houston Black gravelly clay, 1 to 3 percent slopes	.24	20.8	1.0%
HpC	Houston Black gravelly clay, 3 to 5 percent slopes	.24	19.1	0.9%
QeF	Queeny gravelly loam, 5 to 20 percent slopes	.28	8.6	0.4%
QgC	Quihi soils, 1 to 5 percent slopes	.32	25.1	1.2%
Tr	Tinn clay, 0 to 1 percent slopes, occasionally flooded	.24	8.0	0.4%
Tw	Tinn clay, 0 to 1 percent slopes, frequently flooded	.24	38.1	1.9%
W	Water		21.0	1.0%
Subtotals for Soil Survey A		1,333.8	66.0%	
Totals for Area of Interest		2,020.9	100.0%	

Description - K Factor, Rock Free

Table 3F-4. Values for Topographic Factor, LS, for Low Ratio of Rill to Interrill Erosion1(from USDA, 1997)

	Horizontal slope length (ft)																
Slope (%)	<3	6	9	12	15	25	50	75	100	150	200	250	300	400	600	800	1000
0.2	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
0.5	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
1.0	0.12	0.12	0.12	0.12	0.12	0.13	0.13	0.14	0.14	0.15	0.15	0.15	0.15	0.16	0.16	0.17	0.17
2.0	0.20	0.20	0.20	0.20	0.20	0.21	0.23	0.25	0.26	0.27	0.28	0.29	0.30	0.31	0.33	0.34	0.35
3.0	0.26	0.26	0.26	0.26	0.26	0.29	0.33	0.36	0.38	0.40	0.43	0.44	0.46	0.48	0.52	0.55	0.57
4.0	0.33	0.33	0.33	0.33	0.33	0.36	0.43	0.46	0.50	0.54	0.58	0.61	0.63	0.67	0.74	0.78	0.82
5.0	0.38	0.38	0.38	0.38	0.38	0.44	0.52	0.57	0.62	0.68	0.73	0.78	0.81	0.87	0.97	1.04	1.10
6.0	0.44	0.44	0.44	0.44	0.44	0.50	0.61	0.68	0.74	0.83	0.90	0.95	1.00	1.08	1.21	1.31	1.40
8.0	0.54	0.54	0.54	0.54	0.54	0.64	0.79	0.90	0.99	1.12	1.23	1.32	1.40	1.53	1.74	1.91	2.05
10.0	0.60	0.63	0.65	0.66	0.68	0.81	1.03	1.†9	1.31	1.51	1.67	1.80	1.92	2.13	2.45	2.71	2.93
12.0	0.61	0.70	0.75	0.80	0.83	1.01	1.31	1.52	1.69	1.97	2.20	2.39	2.56	2.85	3.32	3.70	4.02
14.0	0.63	0.76	0.85	0.92	0.98	1.20	1.58	1.85	2.08	2.44	2.73	2.99	3.21	3.60	4.23	4.74	5.18
16.0	0.65	0.82	` 0.94	1.04	1.12	1.38	1.85	2.18	2.46	2.91	3.28	3.60	3.88	4.37	5.17	5.82	6.39
20.0	0.68	0.93	1.11	1.26	1.39	1.74	2.37	2.84	3.22	3.85	4.38	4.83	5.24	5.95	7.13	8.10	8.94
25.0	0.73	1.05	1.30	1.51	1.70	2.17	3.00	3.63	4.16	5.03	5.76	6.39	6.96	7.97	9.65	11.04	12.26
30.0	0.77	1.16	1.48	1.75	2.00	2.57	3.60	4.40	5.06	6.18	7.11	7.94	8.68	9.99	12.19	14.04	15.66
40.0	0.85	1.36	1.79	2.17	2.53	3.30	4.73	5.84	6.78	8.37	9.71	10.91	11.99	13.92	17.19	19.96	22.41
50.0	0.91	1.52	2.06	2.54	3.00	3.95	5.74	7.14	8.33	10.37	12.11	13.65	15.06	17.59	21.88	25.55	28.82
60.0	0.97	1.67	2.29	2.86	3.41	4.52	6.63	8.29	9.72	12.16	14.26	16.13	17.84	20.92	26.17	30.68	34.71

Values for topographic factor, LS, for low ratio of rill to interrill erosion.¹

¹Such as for rangeland and other consolidated soil conditions with cover (applicable to thawing soil where both interrill and rill erosion are significant).

Table 3F-5. C Factor Cover Values for Permanent Pasture, Rangeland, Idle Land,and Grazed Woodland1

Vegetal Canopy	Cover That Contacts the Surface								
Type and Height of Raised Canopy-2/	Canopy 3/ Cover -	Type ^{4/}	Percent Ground Cover						
	%		0	20	40	60	80	95-100	
No appreciable canopy	ý	G	.45	. 20	.10	.042	.013	.003	
		W	.45	.24	.15	.090	.043	.011	
Canopy of tall weeds	25	G	.36	.17	.09	.038	.012	.003	
(0.5 m fall ht.)	50	W G	.36	.20	.13	.082	.041	.011	
	75	W G W	.26	.16	.11	.075	.039	.011	
		W	.1/	.12	.09	.007	.038	.011	
Appreciable brush or bushes	25	G W	.40	.18	.09	.040	.013	.003	
(2 m fall ht.)	50	G	.34	.16	.085	.038	.012	.003	
	75	G W	.28	.14	.08	.036	.012	.003	
Trees but no appre-	25	G	.42	.19	.10	.041	.013	.003	
ciable low brush (4 m fall ht.)	50	W G	.42 .39	.23	.14	.087 .040	.042	.011	
	75	W G	. 39	.21	.14 .09	.085	.042	.011	
		W	.36	.20	.13	.083	.041	.011	

(from USDA, 1977)

 $\frac{1}{All}$ values shown assume: (1) random distribution of mulch or vegetation, and (2) mulch of appreciable depth where it exists. Idle land refers to land with undisturbed profiles for at least a period of three consecutive years. Also to be used for burned forest land and forest land that has been harvested less than three years ago.

 $\frac{2}{4}$ Average fall height of waterdrops from canopy to soil surface: m = meters.

<u>3</u>/Portion of total-area surface that would be hidden from view by canopy in a vertical projection, (a bird's-eye view).

 $\frac{4}{6}$: Cover at surface is grass, grasslike plants, decaying compacted duff, or litter at least 2 inches deep.

W:Cover at surface is mostly broadleaf herbaceous plants (as weeds with little lateral-root network near the surface), and/or undecayed residue.

FIGURES

- Figure 3F-1. Average Annual Erosivity Factor, R, Isoerodent Map (from USDA, 1996)
- Figure 3F-1-2. Soil Survey Map (from USDA, 2023)

Figure 3F-1. Average Annual Rainfall Runoff Erosivity Factor, R, Isoerodent Map (from USDA, 1997)

Figure 2F-2-1. USDA Soil Survey Map

Mesquite Creek Landfill MSW Permit No. 66C Part III, Attachment 3G

ATTACHMENT 3G

FINAL COVER SYSTEM DRAINAGE LAYER DESIGN

Geosyntec Consultants October 2023 Page No. 3G-Cvr

						G	eosy	n sult	tec ^D tants
						Page	1	of	21
Written by:	Y. Bholat		Date:	02/13/23	Reviewed by:	Scott Graves	Date	e: _	8/4/23
Client:	WMTX	Project:	Mesqui	te Creek	Project No.:	GW8636	Task No	.:	05

ATTACHMENT 3G FINAL COVER SYSTEM DRAINAGE LAYER DESIGN

GEOSYNTEC CONSULTANTS, INC. TX ENG FIRM REGISTRATION NO. F-1182 FOR PERMIT PURPOSES ONLY SEALED FOR CALCULATION PAGES 1 THROUGH 21

PURPOSE

The purpose of this calculation package is to present the design of the geocomposite drainage layer of the standard Subtitle D final cover system at the Mesquite Creek Landfill. The geocomposite drainage layer will be located between a 2-ft thick layer of overlying soil (i.e., the vegetated erosion layer) and a 40-mil (minimum) thick linear low-density polyethylene (LLDPE) geomembrane beneath the geocomposite. The geocomposite drainage layer will be composed of a high-density polyethylene (HDPE) geonet core with a needle punched nonwoven geotextile bonded to one or both sides. On final cover sideslopes (3.5H:1V slopes), because textured geomembrane will be used, the drainage layer will be a double-sided geocomposite (geotextiles bonded to both sides). On final cover top slopes, the flatter (5%) slopes enable use of either a smooth or a textured geomembrane, and accordingly, the drainage layer may be either a single-sided or double-sided geocomposite. The computations presented herein are applicable to the final cover drainage layer, irrespective of whether it is a single-sided or double-sided geocomposite.

The design criteria evaluated herein include: (i) filtration capability and specifications for the geotextile component of the geocomposite drainage layer; (ii) survivability specifications for the geotextile component; and (iii) hydraulic capacities and drainage lengths of the geosynthetic drainage layer and testing conditions for verifying that the required capacities are achieved.

METHOD OF ANALYSIS

Geotextile Filtration

The filtration characteristics of the geotextile component of the geocomposite layer are evaluated using a retention criterion, a permeability criterion, a porosity criterion, and a thickness criterion

consultants

						Page	2	of	21
Written by:	Y. Bholat		Date:	02/13/23	Reviewed by:	Scott Graves	D	ate:	8/4/23
Client:	WMTX	Project:	Mesquit	te Creek	Project No.:	GW8636	Task N	No.:	05

based on methods proposed by Holtz et al. (1998) and Giroud (2010). These criteria are summarized below in Table 1.

Table 1. Filtration Criteria for Geotextile Components (adapted from Holtz et al., 1998; and Giroud, 2010)

1. Retention Criterion

11	Soils with less	than 50%	narticles <	< 0 075 mm	(US Sieve	No. 200)
1.1	Sons with less	$5 \operatorname{man} 50/0$	particies	< 0.075 mm		110.2001

Density in	dex of the soil	Linear coefficient of uniformity of the soil				
(Relativ	ve density)	$1 < C'_u < 3$	$C'_{u} > 3$			
loose soil	$I_D \leq 35\%$	$O_{95} \le (C'_u)^{0.3} d'_{85}$	$O_{95} < \frac{9}{(C'_u)^{1.7}} d'_{85}$			
medium dense soil	$35\% < I_D < 65\%$	$O_{95} \le 1.5 \ (C'_u)^{0.3} \ d'_{85}$	$O_{95} < \frac{13.5}{(C'_u)^{1.7}} d'_{85}$			
dense soil	$I_D \geq 65\%$	$O_{95} \le 2 (C'_u)^{0.3} d'_{85}$	$O_{95} < \frac{18}{(C'_u)^{1.7}} d'_{85}$			

1.2 Soils with more than 50% particles < 0.075 mm (US Sieve No. 200) $O_{95} \le 210 \ \mu m$ (US Sieve No. 70)

2 Permeability Criterion

 $k_{geotextile} \ge max (i_{soil} k_{soil}, k_{soil})$

3. Porosity Criterion

Nonwoven geotextiles: $n_g \ge 55\%$

consultants

						Page	3	of	21
Written by:	Y. Bholat		Date:	02/13/23	Reviewed by:	Scott Graves	D	ate:	8/4/23
Client:	WMTX	Project:	Mesquit	te Creek	Project No.:	GW8636	Task N	No.:	05

Table 1 (Continued). Filtration Criteria for Geotextile Components (adapted from Holtz et al., 1998; and Giroud, 2010)

4. Thickness Criterion

Nonwoven geotextiles: $N_{\text{constrictions}} \ge 25$

Notes: - O₉₅ is the apparent opening size (AOS) of the geotextile

- C'_u = linear coefficient of uniformity = $\sqrt{d'_{100}/d'_0}$

where d'_{100} and d'_0 is the top and bottom extremities, respectively, of a line drawn through the soil particle-size distribution curve and tangent at d_{50} .

- d'₈₅ is the "linear particle size" for which 85% of particles are finer by weight, derived from the straight line drawn through the soil particle-size distribution curve.
- I_D = relative density or density index = $(e_{max} e)/(e_{max} e_{min})$, where e = soil void ratio; e_{min} = soil minimum void ratio, and e_{max} = soil maximum void ratio.
- $k_{geotextile}$ = geotextile hydraulic conductivity; k_{soil} = soil hydraulic conductivity; i_{soil} = hydraulic gradient in the soil next to the geotextile
- porosity, n_g (dimensionless) is calculated as follows: $n_g = 1 \mu_g/(\rho_g t_g)$, where: μ_g = geotextile mass per unit area, ρ_g = polymer density, and t_g = geotextile thickness
- Number of constrictions (N_{constrictions}) is calculated as follows: (N_{constrictions}) = $\mu_g/[\rho_g d_f \sqrt{1-n_g}]$, where: μ_g = geotextile mass per unit area; ρ_g = polymer density; d_f = geotextile fiber diameter; and n_g = geotextile porosity.

Geotextile Survivability

Survivability requirements (grab, tear, and puncture strengths) are considered so that the geotextile component of the geocomposite will have adequate resistance to stresses applied to the geotextile during construction (i.e., when concentrated stresses should be the highest), using the method presented in GRI-GT13 (2017). The procedure involves two steps: (i) establish the required degree of survivability as a function of subgrade conditions, type of construction equipment operation above the geotextile, and lift thickness using Table 2; and (ii) establish the recommended minimum values of certain mechanical strength properties (i.e., grab strength, puncture resistance, and trapezoidal tear strength) using Table 3. The survivability requirements are then compared to characteristics of geotextile products on the current market to check that products are available to meet the calculated minimum strengths.

Drainage Layer Hydraulic Capacity and Drainage Length Determination

The drainage layer hydraulic capacity design evaluation is performed using the design-by-function concept presented by Koerner (2005) and based on Darcy's equation (flow rate = hydraulic conductivity \times hydraulic gradient \times cross-sectional area of flow) for hydraulic flow in porous,

0 0 1 1 0 0 1 1 0 0 1 1 0 0

						Page	4	of	21
Written by:	Y. Bholat		Date:	02/13/23	Reviewed by:	Scott Graves	Da	te:	8/4/23
Client:	WMTX	Project:	Mesquit	te Creek	Project No.:	GW8636	Task N	0.:	05

saturated media. The approach herein is based on the design methodologies presented in Giroud et al. (2000) and GRI-GC8 (2013).

The hydraulic design method involves the following steps:

Step 1) Identify a candidate geocomposite product that represents a commonly-used or readilyavailable biplanar geocomposite material on the market that also meets the various other (e.g, type, filtration, and survivability) property requirements specified herein. Obtain the baseline transmissivity (θ_{100}) that such a product is reported to achieve at boundary conditions representative of those that will be experienced for this final cover.

Step 2) Apply partial reduction factors (RFs) for creep, chemical clogging, and biological clogging to the θ_{100} to account for the potential long-term decrease in flow capacity, resulting in the "Long-Term In-Soil" (LTIS) transmissivity (θ_{LTIS}).

Step 3) Divide the θ_{LTIS} by a global factor of safety (FS) to obtain the required design transmissivity (θ_{req}) to be used in the USEPA Hydrologic Evaluation of Landfill Performance (HELP) model.

Step 4) Run the HELP model using the required design transmissivity (θ_{req}) and for the site-specific conditions (climate, overlying soil layers, slope angles, and slope lengths between drainage exit points of the geocomposite).

Step 5) Compare the calculated peak daily average head in the geocomposite drainage layer to the thickness of the layer.

Step 6) If the peak daily average head exceeds the thickness of the drainage layer, reduce the drainage length of the layer and repeat Steps 4 and 5 by varying the drainage length in an iterative process until acceptable results are obtained. This will result in a determination of the maximum allowable drainage lengths (i.e., the maximum distance between required geocomposite "daylighting" (i.e., exit points) along the slope, such as at surface drainage features).

Step 7) After acceptable results are confirmed, prepare the recommended specified index transmissivity value for the geocomposite, and associated boundary conditions, for inclusion in the Final Cover Quality Control Plan (FCQCP).

						Page	5	of	21
Written by:	Y. Bholat		Date:	02/13/23	Reviewed by:	Scott Graves	Da	ite:	8/4/23
Client:	WMTX	Project:	Mesquite	e Creek	Project No.:	GW8636	Task N	0.:	05

Table 2. Required Degree of Survivability as a Function of Subgrade Conditions, Construction Equipment, and Lift Thickness (GRI-GT13)*

Subgrade Conditions	Low ground- pressure equipment (≤ 3.6 psi)	Medium ground- pressure equipment (> 3.6 psi, ≤ 7.3 psi)	High ground- pressure equipment (> 7.3 psi)
Subgrade has been cleared of all obstacles except grass, weeds, leaves, and fine wood debris. Surface is smooth and level so that any shallow depressions and humps do not exceed 18 in. in depth or height. All larger depressions are filled. Alternatively, a smooth working table may be placed.	Low	Moderate	High
Subgrade has been cleared of obstacles larger than small to moderate-sized tree limbs and rocks. Tree trunks and stumps should be removed or covered with a partial working table. Depressions and humps should not exceed 18 in. in depth or height. Larger depressions should be filled.	Moderate	High	Very High
Minimal site preparation is required. Trees may be felled, delimbed, and left in place. Stumps should be cut to project not more than ± 6 in. above subgrade. Fabric may be draped directly over the tree trunks, stumps, large depressions and humps, holes, stream channels, and large boulders. Items should be removed only if placing the fabric and cover material over them will distort the finished road surface.	High	Very High	Not Recommended

* Recommendations are for 6 to 12 in. initial lift thickness. For other initial lift thicknesses:

12 to 18 in.: reduce survivability requirement one level;

18 to 24 in.: reduce survivability requirement two levels;

> 24 in.: reduce survivability requirement three levels

						Page	6	of	21	
Written by:	Y. Bholat		Date:	02/13/23	Reviewed by:	Scott Graves	D	ate:	8/4/23	
Client:	WMTX	Project:	Mesqui	te Creek	Project No.:	GW8636	Task N	No.:	05	

 Table 3. GRI-GT13 Geotextile Strength Property Requirements

					Geotextile Cla	assification (1)		
			Cla (hi	ss 1 gh)	Cla (mod	ss 2 erate)	Cla (lo	ss 3 vw)
Tests	Test Methods	Units	Elongation < 50%	Elongation $\geq 50\%$	Elongation < 50%	Elongation $\geq 50\%$	Elongation < 50%	Elongation $\geq 50\%$
Grab Tensile Strength	ASTM D 4632	lb	315	203	248	158	180	113
Trapezoid Tear Strength	ASTM D 4533	lb	112	79	90	56	68	41
CBR Puncture Strength	ASTM D 6241	lb	630	440	500	320	380	230
Permittivity	ASTM D 4491	sec ⁻¹	0.02	0.02	0.02	0.02	0.02	0.02
Apparent Opening Size	ASTM D 4751	in.	0.024	0.024	0.024	0.024	0.024	0.024
Ultraviolet stability ⁽²⁾	ASTM D 7238	% Ret. @ 500 hrs	80	80	70	70	60	60

⁽¹⁾ All values are minimum average roll values (MARV) except AOS, which is a maximum average roll value Notes: (MaxARV) and UV stability which is a minimum average value.

⁽²⁾ Evaluation to be on 2-in. strip tensile specimens after 500 hours exposure.

FILTRATION EVALUATION RESULTS

Geotextile Retention

The geotextile must have openings that are small enough to retain fine-grained soil particles so that they do not enter the geocomposite drainage layer, which could result in clogging or flow capacity reduction of the drainage layer. Therefore, the apparent opening size (AOS, hereafter referred to as O₉₅) of the geotextile must be less than a maximum value.

The geocomposite drainage layer in the final cover system will be overlain by a layer of cover soil. At least the upper 6-in. of this soil layer will be topsoil, and the lower portion will be protective cover. The typical Unified Soil Classifications specified for the protective cover, based on material availability on-site, are CL or CH. The soil layer will be spread over the cover system

consultants

						Page	7	of	21
Written by:	Y. Bholat		Date:	02/13/23	Reviewed by:	Scott Graves	Da	te:	8/4/23
Client:	WMTX	Project:	Mesqui	te Creek	Project No.:	GW8636	Task No	0.:	05

geosynthetics with a low ground-pressure bulldozer. It is anticipated that the soil placed with this technique will have a medium-dense relative density (i.e., it will not be heavily compacted).

The O₉₅ is calculated depending on the type of soil used for the protective cover as follows.

If the soil used for the protective cover is fine grained, i.e., more than 50% of particles are finer than 0.075 mm (U.S. Sieve No. 200) (e.g., a CL soil), then by applying the criterion in Table 1, O₉₅ is calculated as:

 $O_{95} \le 210 \ \mu m$ (U.S. Sieve No. 70)

The range of geotextile mass per unit areas anticipated for use as a filtration layer or drainage layer component are 6 to 16 oz/yd² (200 to 540 g/m²). Typical O₉₅ values for 6 to 16 oz/yd² geotextiles on the current market range from 90 to 850 μ m (IFAI, 2015); thus, products are available that can meet this specification.

Geotextile Permeability

The top side of the geotextile will be in contact with protective cover soil (fine-grained clayey onsite soil). Based on the Unified Soil Classifications specified for the protective cover, it is anticipated that the hydraulic conductivity of the protective cover will fall within the range of 1×10^{-7} to 1×10^{-4} cm/s (more likely at the lower range of permeability). The geotextile must have openings that are large enough to allow infiltrating water to pass through the retained soil/geotextile interface without significant flow impedance. Thus, the hydraulic conductivity or permeability of the geotextile must be greater than a minimum required value. The hydraulic gradient in the protective cover is assumed to be <10 based on typical values in Giroud (2010). A hydraulic gradient of 10 will be used in the calculations.

Applying the permeability criterion of Table 1, and using the governing case (largest potential permeability in the anticipated range) the calculated hydraulic conductivity of the geotextile, $k_{geotextile}$, is:

$$\begin{split} k_{\text{geotextile}} &\geq \max \; (i_{\text{soil}} \; k_{\text{soil}}, \; k_{\text{soil}}) \\ &\geq 10 \times (1 \times 10^{-4} \; \text{cm/s}) = 1 \times 10^{-3} \; \text{cm/s} \end{split}$$

This requirement is achievable by most geotextiles. Note that some manufacturers report the permeability property as "permittivity" (Ψ), which is defined as Ψ =k/t. Based on the range of geotextile mass per unit areas and thicknesses anticipated for the project (6 to 16 oz/yd² (200 to 540 g/m²) and 1.3 to 5.7 mm, respectively), typical k_{geotextile} values (calculated from typical

CO	nsu	Itai	nts

						Page	8	of	21
Written by:	Y. Bholat		Date:	02/13/23	Reviewed by:	Scott Graves	D	ate:	8/4/23
Client:	WMTX	Project:	Mesqui	te Creek	Project No.:	GW8636	Task N	No.:	05

permittivities and thicknesses) for needle punched nonwoven geotextiles are 0.2 to 0.4 cm/s. Therefore, nonwoven needle punched geotextiles within the anticipated range for this project are well above the minimum required permeability value.

Geotextile Porosity

The geotextile filter must have enough openings so that blocking some of them will not significantly clog the geotextile and inhibit flow into the geonet. Thus, the porosity of the geotextile must be greater than a minimum value. As shown in Table 1, for nonwoven geotextiles, the geotextile porosity ng is required to be:

$$n_g > 55\%$$

The porosity criterion requirements apply for the geotextile component of the geocomposite drainage layer. Geotextile porosity is not a property that is directly measured or reported by manufacturers, however it can be calculated as indicated in Table 1 (i.e., $n_g = 1 - \mu_g/(\rho_g t_g)$). Typical resulting ng values for nonwoven geotextiles are 50% to 95%. Based on the geotextile density of polypropylene or polyethylene and the range of mass per unit areas and thicknesses anticipated for the project (6 to 16 oz/yd^2 (200 to 540 g/m^2) and 1.3 to 5.7 mm, respectively), the calculated ng values range from approximately 80% to 90%, which is well in excess of the minimum porosity required to prevent clogging.

Geotextile Thickness

For nonwoven geotextiles, such as those proposed for the final cover system geocomposite drainage layer, the geotextile filter must be thick enough to have a sufficient number of constrictions. From Table 1, the number of constrictions, N_{constrictions}, needs to be at least 25.

The number of constrictions in nonwoven geotextiles is a function of mass per unit area, porosity, polymer density, and geotextile fiber diameter:

$$N_{\text{constrictions}} = \mu_g / (\rho_g d_f \sqrt{1 - n_g})$$

Based on data for nonwoven needle punched geotextiles presented by Palmeira and Gardoni (2000) and Faure et al. (2006), as well as data compiled by Geosyntec from manufacturers, most nonwoven needle punched geotextiles that have at least 25 constrictions have a minimum thickness of 2.3 mm. The thickness of nonwoven geotextiles is typically not measured or reported by manufacturers but tends to be correlated to mass per unit area. The minimum mass per unit area specified herein is expected to meet or exceed this thickness, and therefore have the minimum number of constrictions.

						Page	9	of	21	
Written by:	Y. Bholat		Date:	02/13/23	Reviewed by:	Scott Graves	D	ate:	8/4/23	
Client:	WMTX	Project:	Mesquit	e Creek	Project No.:	GW8636	Task N	No.:	05	

SURVIVABILITY EVALUATION RESULTS

Survivability refers to the ability of the geotextile to withstand the stresses during installation and handling in the field. The degree of survivability is first evaluated using Table 2 with the anticipated installation conditions. The following conditions are conservatively assumed to apply: (i) smooth and level subgrade condition; (ii) initial lift thickness of protective cover placed above geotextile is 12 in.; and (iii) maximum equipment ground pressure of 5 psi (i.e., use the middle column for equipment from Table 2 is used). Using Table 2, a "moderate" degree of survivability is used.

In the second step, the minimum required values for the mechanical properties of the geotextile are established from Table 3 based on the "moderate" or "Class 2" survivability requirement. The chart provides minimum required values for two ranges of geotextile extensibility. Values were selected for the more extensible range because this range is applicable to nonwoven materials that are required for the geotextile. These survivability requirements, which are outlined in Table 3, apply for the geotextile component of the geocomposite drainage layer.

HYDRAULIC CAPACITY EVALUATION

Step 1) Identify θ₁₀₀ of Geocomposite

Geosyntec contacted the geocomposite manufacturer, SKAPS Industries, to obtain typical θ_{100} data for a common biplanar geocomposite on the market. The data correspond to the product, TN 270-2-8, a geocomposite with nonwoven geotextile on both sides of the geonet. This does not constitute a recommendation of this product, nor a requirement for its use; it is merely intended as a starting point for the design calculation. The TN 270-2-8 geocomposite transmissivity was measured at a gradient of 0.1 while sandwiched between soil and a geomembrane for a seating time of 100 hours under four different normal stresses. This information is presented on Figure 1. The projectspecific stresses on the final cover geocomposite due to the overlying soil layers will be approximately 120 pcf × 2 ft = 240 psf.

Using Figure 1, the product is capable of achieving a θ_{100} under very low stresses and similar boundary conditions of approximately 9×10^{-4} m²/s. To add more conservatism, reduce this value to 5×10^{-4} m²/s before proceeding to the steps below (which effectively will add another factor of safety to the computation).

					Page	10 of	21
Written by:	Y. Bholat		Date: 02/13/23	Reviewed by:	Scott Graves	Date:	8/4/23
Client:	WMTX	Project:	Mesquite Creek	Project No.:	GW8636	Task No.:	05

Figure 1. Typical θ_{100} Test Results at Various Normal Stresses.

Note: The typical product information shown does not constitute an endorsement of these products, nor does this require the use of any specific manufacturer or product. This information is presented for design purposes only.

Step 2) Apply Reduction Factors to Convert to θ_{LTIS}

The θ_{100} was converted to θ_{LTIS} using the equation below to account for potential long-term transmissivity reduction due to creep, chemical clogging, and biological clogging.

$$\theta_{LTIS} = \frac{\theta_{100}}{RF_{CR}RF_{CC}RF_{BC}}$$

Where RF_{CR} = reduction factor for creep, RF_{CC} = reduction factor for chemical clogging and/or precipitation of chemicals, and RF_{BC} = reduction factor for biological clogging.

Creep is the long-term reduction in thickness of the drainage layer under a sustained compressive stress. For landfill final cover systems, Koerner (2005) recommends that reduction factors for creep range from 1.2 to 1.4. The reduction factor for creep for the final cover system geocomposite of this analysis was selected as 1.3.

consultants

						Page	11	of	21
Written by:	Y. Bholat		Date:	02/13/23	Reviewed by:	Scott Graves	Da	ate:	8/4/23
Client:	WMTX	Project:	Mesqui	te Creek	Project No.:	GW8636	Task N	0.:	05

GRI (2013) provides guidance for clogging reduction factors for landfill final cover systems. Chemical and biological clogging can increase over time as infiltrating water passes through the geocomposite. GRI (2013) recommends a chemical clogging reduction factor between 1.0 and 1.2 and a biological clogging reduction factor between 1.2 and 3.5 at final conditions. Based on recommendations by GRI, a chemical clogging reduction factor of 1.2 is selected. The final cover geocomposite is potentially susceptible to biological clogging due to root penetrations from the vegetative cover; therefore, a biological clogging factor of 3.0 is selected, which is close to the upper bound of the recommended range.

Case Designation	$\theta_{100} \ (m^{2}/s)$	RF _{CR}	RF _{CC}	RF _{BC}	RF _{total}	θ_{LTIS} (m ² /s)
Final Cover Drainage Layer	5×10-4	1.3	1.2	3.0	4.7	1.1×10 ⁻⁴

Step 3) Obtain Required Design Transmissivity (θ_{req}) for Use in HELP Model

In addition to the reduction factors applied above, a global (overall) factor of safety of 2.0 will be used for this design. Dividing θ_{LTIS} by the FS yields a θ_{req} of 5.5 x 10⁻⁵ m²/s to be used in the HELP model runs.

Steps 4 through 6) HELP Model Runs

The HELP model (version 3.95 D) was used to evaluate drainage layer design under a 30-year post-closure simulation of the following final cover cases used as initial trials:

- Case F_TOP. Landfill top-deck (5% slope at longest top-deck drainage length of approximately 886 ft);
- Case F_SIDE1. Landfill sideslope (3.5H:1V slope at longest sideslope drainage length established for the design between geocomposite daylight points of 410 ft); and
- Case F_SIDE2. Identical to Case F_SIDE1, but with the peak daily drainage collected from the drainage layer of Case F_TOP added as subsurface inflow [0.048 in/day * 365 days/yr = 17.6 in/yr (rounded up)] into the drainage layer of Case F_SIDE2; this generates a worst-case combined flow to assess whether the sideslope can receive peak daily drainage flow from the top deck in addition to that generated on the sideslopes.

The input factors were consistent with those used for the final cover layers and general site conditions used in the leachate generation HELP modeling presented in Part III, Attachment 3E, with the exception that: (i) the design transmissivity was established as described above; and (ii) the drainage lengths were set as described above.

0 0 1 1 0 0 1 1 0 0 1 1 0 0

						Page	12	of 21
Written by:	Y. Bholat		Date:	02/13/23	Reviewed by:	Scott Graves	Date	8/4/23
Client:	WMTX	Project:	Mesquit	te Creek	Project No.:	GW8636	Task No.:	05

As Step 5, comparison of the results of these initial trials revealed that peak average daily heads in the drainage layer did not exceed the thickness of the drainage layer for all cases, which is acceptable. Therefore, no iterations are needed for trials with different drainage lengths (i.e., no Step 6).

Step 7) Provide Recommendations for Geocomposite Specification

The results of the above evaluation demonstrate that a θ_{100} value of 5 × 10⁻⁴ m²/s is acceptable for the final cover conditions, including slopes and drainage lengths indicated above. Thus, the final cover system geocomposite should meet or exceed a θ_{100} value of 5 × 10⁻⁴ m²/s when tested for transmissivity as indicated below.

- Testing configuration using 40-mil LLDPE geomembrane on one side of the geocomposite specimen (to simulate site-specific final cover design) and soil representative of the protective cover on the other side of the geocomposite specimen.
- The stress to be applied for the test is approximately 240 psf, and the hydraulic gradient should be 0.05 (or may be 0.28 if testing a product that will only be used on the sideslopes).

Alternatively, as part of a construction-phase quality control and quality assurance testing process, it is more practical to conduct a short-term transmissivity test on the order of 15 minutes in duration, on a geocomposite sandwiched between two steel plates. These transmissivities are higher than those that would be obtained using the site-specific boundary conditions because the short duration test does not experience the time-delayed intrusion of the geotextile into the transmissive core resulting from the deformation of the geotextile under sustained loading. Additionally, the steel plate boundary condition of the short duration test will not experience as much reduction in transmissivity due to particle migration into the transmissive core.

To obtain the index transmissivity, θ_{INDEX} , which accounts for intrusion and particulate clogging, can be determined using the following equation:

$$\theta_{\text{INDEX}} = \theta_{100} * \text{RF}_{\text{INT}} \text{RF}_{\text{PC}}$$

Koerner (2005) recommends using an intrusion reduction factor (RF_{INT}) between 1.3 and 1.5. An intrusion factor of 1.4 is selected for the final cover geocomposite drainage layer. The geotextile is expected to adequately retain particulates to avoid potential clogging of the transmissive core; however, a particulate clogging reduction factor (RF_{PC}) of 1.1 is applied. The index transmissivity, θ_{INDEX} , for the final cover geocomposite drainage layer is found to be:

$$\theta_{\text{INDEX}} = 5 \times 10^{-4} \text{ (m}^2\text{/s)} \times 1.4 \times 1.1$$

						Page	13	of	21
Written by:	Y. Bholat		Date:	02/13/23	Reviewed by:	Scott Graves	Da	ite:	8/4/23
Client:	WMTX	Project:	Mesqui	te Creek	Project No.:	GW8636	Task N	o.:	05

 $\theta_{\rm INDEX} = 7.7 \times 10^{-4} \, {\rm m}^2/{\rm s}$

CONCLUSIONS

Based on the evaluations herein, the final cover drainage layer design will meet the relevant design criteria when the following final cover system drainage layer geocomposite specification is used.

- Filtration of Geotextile Components:
 - Apparent Opening Size, $O_{95} \le 210 \ \mu m$ (U.S. Sieve No. 70)
 - Geotextile Water Permeability, $k_{geotextile} \ge 1 \times 10^{-3}$ cm/s for geotextile component of the geocomposite overlain by the protective cover
- Survivability (Mechanical) Properties of Geotextile Components:
 - \circ Grab Tensile Strength = 158 lbs
 - \circ Trapezoid Tear Strength = 56 lbs
 - \circ CBR Puncture Strength = 320 lbs
- Hydraulic Capacity (Transmissivity) of Geocomposite Drainage Layer
 - \circ $\theta_{INDEX} = 7.7 \times 10^{-4} \text{ m}^2/\text{s}$ (when tested between two steel plates with an applied stress of 240 psf at a gradient of 0.05 (or may use gradient of 0.28 if testing a product that will only be used on the sideslopes).
- Evaluated for a maximum drainage length of top-deck (5%) areas between geocomposite daylight points of 886-ft.
- Evaluated for a maximum drainage length of sideslope (3.5H:1V) areas between geocomposite daylight points of 410-ft.

						Page	14 c	of 21
Written by:	Y. Bholat		Date:	02/13/23	Reviewed by:	Scott Graves	Date:	8/4/23
Client:	WMTX	Project:	Mesquit	e Creek	Project No.:	GW8636	Task No.:	05

REFERENCES

Faure, Y.H, Baudoin, P., and Pierson, O., "A Contribution for Predicting Geotextile Clogging During Filtration of Suspended Solids", *Geotextiles and Geomembranes*, 24(1), 2006, pp. 11-20.

Geosynthetic Research Institute (GRI), "Standard Guide for Determination of the Allowable Flow Rate of a Drainage Geocomposite", *GRI Standard GC8*, 2013.

Geosynthetic Research Institute (GRI), "Standard Specification for Test Methods and Properties for Geotextiles Used as Separation Between Subgrade Soil and Aggregate", *GRI Standard GT-13*, 2017.

Giroud, J.P., "Development of Criteria for Geotextiles and Granular Filters", *Proceedings of the 9th International Conference on Geosynthetics*, Guaruja, Brazil, Vol. 1, 2010, pp. 45-64.

Giroud, J.P., Zornberg, J.G., and Zhao, A., "Hydraulic Design of Geosynthetic and Granular Liquid Collection Layers", *Geosynthetics International*, Special Issue on Liquid Collection Systems, Vol. 7, Nos. 4-6, 2000, pp. 285-380.

Holtz, R.D., Christopher, B.R., and Berg, R.R., "Geosynthetic Design and Construction Guidelines Participant Notebook, National Highway Institute (NHI) Course No. 13213", U.S. Department of Transportation, Federal Highway Administration, Rep. No. FHWA-HI-95-038, 1998.

Industrial Fabrics Association International (IFAI), *Geosynthetics Specifier's Guide 2015*, Roseville, MN, January 2015.

Kim, B., Prezzi, M., Salgado, R., "Geotechnical Properties of Fly and Bottom Ash Mixtures for Use in Highway Embankments", *Journal of Geotechnical and Geoenvironmental Engineering*, July 2005, pp. 914-924.

Koerner, R.M., "Designing with Geosynthetics", Fifth Edition, Prentice Hall, 2005, 767 p.

Palmeira, E.M. and Gardoni, M.G., "The Influence of Partial Clogging and Pressure on the Behavior of Geotextiles in Drainage Systems", *Geosynthetics International*, Vol. 7, Nos. 4-6, 2000, pp. 403-431.

						Page	15	of	21
Written by:	Y. Bholat		Date:	02/13/23	Reviewed by:	Scott Graves	Da	ite:	8/4/23
Client:	WMTX	Project:	Mesquit	te Creek	Project No.:	GW8636	Task N	o.:	05

APPENDIX 3G-1

HELP MODEL COMPUTER PROGRAM OUTPUT FILES

Page 16 of 21
Tuge Te el 21
Reviewed 8/4/23

 HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE HELP Version 3.95 D (10 August 2012) developed at Institute of Soil Science, University of Hamburg, Germany based on US HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) DEVELOPED VERY ION VERVITA LABORATORY USAE WATERWAYS EXPERIMENT STATION FOR USEPA RISK REDUCTION ENGINEERING LABORATORY 	** ** ** ** ** ** ** ** ** ** **
 HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE HELP Version 3.95 D (10 August 2012) developed at Institute of Soil Science, University of Hamburg, Germany based on US HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) DEVELOPED BY ENVIRONMENTAL LABORATORY USAE WATERWAYS EXPERIMENT STATION FOR USEPA RISK REDUCTION ENGINEERING LABORATORY 	** ** ** ** ** **
 ** HELP Version 3.95 D (10 August 2012) ** developed at ** Institute of Soil Science, University of Hamburg, Germany ** based on ** US HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) ** DEVELOPED BY ENVIRONMENTAL LABORATORY ** USAE WATERWAYS EXPERIMENT STATION ** FOR USEPA RISK REDUCTION ENGINEERING LABORATORY ** 	** ** ** ** **
 ** HELP Version 3.95 D (10 August 2012) developed at institute of Soil Science, University of Hamburg, Germany ** Dased on ** US HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) ** DEVELOPED BY ENVIRONMENTAL LABORATORY ** USAE WATERWAYS EXPERIMENT STATION ** FOR USEPA RISK REDUCTION ENGINEERING LABORATORY ** 	** ** ** ** **
 developed at Institute of Soil Science, University of Hamburg, Germany based on US HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) DEVELOPED BY ENVIRONMENTAL LABORATORY USAE WATERWAYS EXPERIMENT STATION FOR USEPA RISK REDUCTION ENGINEERING LABORATORY 	** ** ** **
 Institute of Soil Science, University of Hamburg, Germany based on US HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) DEVELOPED BY ENVIRONMENTAL LABORATORY USAE WATERNAYS EXPERIMENT STATION FOR USEPA RISK REDUCTION ENGINEERING LABORATORY * 	** ** ** **
 ** based on US HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) ** DEVELOPED BY ENVIRONMENTAL LABORATORY ** USAE WATERWAYS EXPERIMENT STATION ** FOR USEPA RISK REDUCTION ENGINEERING LABORATORY ** 	** ** **
 US HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) DEVELOPED BY ENVIRONMENTAL LABORATORY USAE WATERWAYS EXPERIMENT STATION FOR USEPA RISK REDUCTION ENGINEERING LABORATORY ** 	**
<pre>** DEVELOPED BY ENVIRONMENTAL LABORATORY ** USAE WATERWAYS EXPERIMENT STATION ** FOR USEPA RISK REDUCTION ENGINEERING LABORATORY ** **</pre>	**
** USAE WATERWAYS EXPERIMENT STATION ** FOR USEPA RISK REDUCTION ENGINEERING LABORATORY **	
** FOR USEPA KISK KEDUCIION ENGINEEKING LABOKAIOKY **	**
**	**
**	**
	~~ *******
***************************************	*******
OLAR RADIATION DATA FILE: C:\SOLAR-30yr.dl3 VAPOTRANSPIRATION DATA F. 1: C:\Evapotranspiration-LAI_3-EVAP24.dl1 OIL AND DESIGN DATA FILE 1: C:\SOILS - F_TOP.dl0 WIPUT DATA FILE: C:\OUT - F_TOP.out	*****
TITLE: Mesquite_Creek_LF - F_TOP	
***************************************	******
WEATHER DATA SOURCES	

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC

1.72	2.49	2.00	3.63	3.44	
2.01	3.45	3.30	2.46	2.42	
	1.72 2.01	1.72 2.49 2.01 3.45	1.72 2.49 2.00 2.01 3.45 3.30	1.72 2.49 2.00 3.63 2.01 3.45 3.30 2.46	1.72 2.49 2.00 3.63 3.44 2.01 3.45 3.30 2.46 2.42

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR SAN ANTONIO TEXAS

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

14N/100	FFB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
52.20	56.00	62.80	69.80	76.60	82.40
84.50	85.10	79.90	71.30	61.00	53.50

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR SAN ANTONIO TEXAS AND STATION LATITUDE = 29.70 DEGREES

LAYER DATA 1

VALID FOR 30 YEARS

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTIC	CAL PERC	OLATION LAYER	
MATERIAL TE	EXTURE N	IUMBER 24	
THICKNESS	=	24.00 INCHES	
POROSITY	=	0.3650 VOL/VOL	
FIELD CAPACITY	=	0.3050 VOL/VOL	
WILTING POINT	=	0.2020 VOL/VOL	
INITIAL SOIL WATER CONTEN	NT =	0.2963 VOL/VOL	
EFFECTIVE SAT. HYD. CONDU	JCT.=	0.2700E-05 CM/SEC	
NOTE: SATURATED HYDRAULIC	CONDUCT	IVITY IS MULTIPLIED BY 4.20	
FOR ROOT CHANNELS	IN TOP	HALF OF EVAPORATIVE ZONE.	

VALID FOR 30 YEARS

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #24 WITH AN EXCELLENT STAND OF GRASS, A SURFACE SLOPE OF 5.% AND A SLOPE LENGTH OF 886. FEET.

SCS RUNOFF CURVE NUMBER	=	83.29	
FRACTION OF AREA ALLOWING RUNOFF	=	100.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	=	1.000	ACRES
EVAPORATIVE ZONE DEPTH	=	24.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	=	7.112	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE	=	8.760	INCHES
FIELD CAPACITY OF EVAPORATIVE ZONE	=	7.320	INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE	=	4.848	INCHES
SOIL EVAPORATION ZONE DEPTH	=	24.000	INCHES
INITIAL SNOW WATER	=	0.000	INCHES
INITIAL INTERCEPTION WATER	=	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	=	14.800	INCHES
TOTAL INITIAL WATER	=	14.800	INCHES
TOTAL SUBSURFACE INFLOW	=	0.00	INCHES/YEAR

EVAPOTRANSPIRATION DATA 1

VALID FOR 30 YEARS

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED	ΣF	ROM	
SAN ANTONIO TEXAS			
STATION LATITUDE	=	29.70	DEGREES
MAXIMUM LEAF AREA INDEX	=	3.00	
START OF GROWING SEASON (JULIAN DATE)	=	35	
END OF GROWING SEASON (JULIAN DATE)	=	350	
EVAPORATIVE ZONE DEPTH	=	24.0	INCHES
AVERAGE ANNUAL WIND SPEED	=	9.40	MPH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY	=	66.0	%
AVERAGE 2ND QUARTER RELATIVE HUMIDITY	=	68.0	%
AVERAGE 3RD QUARTER RELATIVE HUMIDITY	=	66.0	%
AVERAGE 4TH QUARTER RELATIVE HUMIDITY	=	67.0	%

TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS = 0.20 INCHES POROSITY = 0.8500 VOL/VOL FIELD CAPACITY = 0.0100 VOL/VOL WILTING POINT = 0.0100 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 1.080 CM/SEC SLOPE = 5.00 PECEVIT DRAINAGE LENGTH = 886.0 FEET

LAYER 2

LAYER 3

TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 36 THICKNESS = 0.04 INCHES EFFECTIVE SAT. HYD. CONDUCT. 0.4000E-12 CM/SEC FML PINHOLE DENSITY = 2.00 HOLES/ACRE FML PINSTALLATION DEFECTS = 2.00 HOLES/ACRE FML PLACEMENT QUALITY = 3 - GOOD

LAYER 4

TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 0 THICKNESS = 18.00 INCHES POROSITY = 0.4180 VOL/VOL FIELD CAPACITY = 0.4180 VOL/VOL WILITING POINT = 0.3670 VOL/VOL INITIAL SOIL WATER CONTENT = 0.4270 VOL/VOL EFFECTIVE SAT. HYD. CONDUCT.= 0.1000E-04 CM/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA 1

Page 17 of 21

4720.1436

Reviewed 8/4/23 0.0 FEET

0.3403

0.2020

1.30

***************************************	***

FINAL WATER	R STORAGE AT E	ND OF YEAR 30	
LAYER	(INCHES)	(VOL/VOL)	
1	6.2794	0.2616	
2	0.0020	0.0100	
3	0.0000	0.0000	
4	7.6860	0.4270	
TOTAL WATER IN LAYERS	13.967		
SNOW WATER	0.000		
INTERCEPTION WATER	0.000		
TOTAL FINAL WATER	13.967		
******	*****	*****	*****

PEAK DAILY VALUES FOR YEARS 1 THROUGH 30

PRECIPITATION

DRAINAGE COLLECTED FROM LAYER 2

AVERAGE HEAD ON TOP OF LAYER 3

MAXIMUM HEAD ON TOP OF LAYER 3

PERCOLATION/LEAKAGE THROUGH LAYER 4

LOCATION OF MAXIMUM HEAD IN LAYER 2

RUNOFF

(INCHES)

8.90

8.343

0.04816

0.000010

0.140

0.274

(CU. FT.)

32306.998

30283.5547

174.82446

0.03461

***	Maximum hea	ds are computed using McEnroe's equations. ***
	Reference:	Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.
*******	********	*****************

(DISTANCE FROM DRAIN)

MAXIMUM VEG. SOIL WATER (VOL/VOL)

MINIMUM VEG. SOIL WATER (VOL/VOL)

SNOW WATER

AVERAGE MONTHLY	VALUES I	N INCHES	FOR YEARS	1 THR	.0UGH 30	
	JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
PRECIPITATION						
TOTALS	1.74 2.15	1.68 1.90	2.24 4.13	1.92 3.38	2.83 2.38	3.81 2.23
STD. DEVIATIONS	1.18 2.03	0.88 2.16	1.40 2.36	1.49 2.10	1.75 1.95	2.30 1.20
RUNOFF						
TOTALS	0.395 1.052	0.290 0.713	0.837 1.775	0.598 1.431	1.129 0.871	2.023 0.673
STD. DEVIATIONS	0.533 1.657	0.320 1.328	0.912 1.477	0.819 1.276	1.128 1.141	1.724 0.646
POTENTIAL EVAPOTRANSPI	RATION					
TOTALS	3.216 9.186	3.519 8.564	5.305 6.682	6.439 5.124	7.948 3.734	8.629 2.987
STD. DEVIATIONS	0.209	0.225	0.319	0.283	0.278	0.258

	0.301	0.296	0.329	0.301	0.220	0.222				
ACTUAL EVAPOTRANSPIRAT	EON									
TOTALS	1.111	1.199	2.266	2.180	1.617	1.772				
	1.116	1.292	2.025	1.668	1.129	1.138				
STD. DEVIATIONS	0.413	0.469	0.494	0.790	0.716	0.897				
	0.687	1.033	0.953	0.718	0.562	0.367				
LATERAL DRAINAGE COLLEG	LATERAL DRAINAGE COLLECTED FROM LAYER 2									
TOTALS	0.0310	0.0421	0.0298	0.0021	0.0000	0.0000				
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0013				
STD. DEVIATIONS	0.1450	0.1230	0.0793	0.0109	0.0000	0.0000				
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0071				
PERCOLATION/LEAKAGE TH	ROUGH LAYE	R 4								
TOTALS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000				
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000				
STD. DEVIATIONS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000				
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000				
AVERAGES (OF MONTHLY	AVERAGED	DAILY HE	ADS (INCH	ES)					
DAILY AVERAGE HEAD ON ⁻	FOP OF LAY	ER 3								
AVERAGES	0.0029	0.0043	0.0028	0.0002	0.0000	0.0000				
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001				
STD. DEVIATIONS	0.0136	0.0125	0.0074	0.0011	0.0000	0.0000				
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0007				
*******	******	******	*******	******	*****	******				

	PRECIPITATION	30.38	(5.727)	110266.1	100.00
	RUNOFF	11.785	(3.7537)	42778.28	38.795
	POTENTIAL EVAPOTRANSPIRATION	71.333	(0.9604)	258939.95	
	ACTUAL EVAPOTRANSPIRATION	18.513	(2.9419)	67202.67	60.946
	LATERAL DRAINAGE COLLECTED FROM LAYER 2	0.10627	(0.27691)	385.776	0.34986
	PERCOLATION/LEAKAGE THROUGH LAYER 4	0.00002	(0.00006)	0.086	0.00008
	AVERAGE HEAD ON TOP OF LAYER 3	0.001	(0.002)		
	CHANGE IN WATER STORAGE	-0.028	(0.8701)	-100.72	-0.091
2	******	*******	***	*****	*****	******
,	******	********	***	*******	*****	*******

	0.301	0.296	0.329	0.301	0.220	0.222	
JAL EVAPOTRANSPIRATION							
		1 100	2 266	2 100	1 (17	1 770	
JIALS	1.111	1.292	2.266	2.180	1.129	1.138	

	0.0013	0.0000	0.0000	0.0000	0.0000	0.0000
A	0.0000	0.0000	0.0109	0.0793	0.1230	0.1450
	0.0071	0.0000	0.0000	0.0000	0.0000	0.0000
CI					4	DUGH LAYER
**:	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
**:	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

CU. FEET

PERCENT

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 30

INCHES

Page 18 of 21
Tuge to et £1
Reviewed 8/4/23

**	****	**********	***********	*****	********
					**
**					**
"* Н	YDROLOGIC EV	ALUATION OF	LANDFILL PERF	DRMANCE	**
*					**
* н	ELP Version	3.95 D	(10 Augus	t 2012)	**
*		develope	d at		**
* Institu	te of Soil S	cience, Univ	ersity of Ham	ourg, Germany	**
*		based	on		**
* U:	S HELP MODEL	VERSION 3.0	7 (1 NOVEMBE	R 1997)	**
*	DEVELOPED	BY ENVIRONM	ENTAL LABORAT	ORY	**
*	USAE WA	TERWAYS EXPE	RIMENT STATIO	N	**
· FO	R USEPA RISK	REDUCTION E	NGINEERING LA	BORATORY	**
¢					**
					**
****	****	*****	****	*****	******
IME: 20.53	DATE: 13.02	.2023			
RECIPITATION DAT. EMPERATURE DATA OLAR RADIATION D, VAPOTRANSPIRATION OIL AND DESIGN D, UTPUT DATA FILE:	A FILE: FILE: ATA FILE: N DATA F. 1: ATA FILE 1:	C:\PRECIP-3 C:\TEMP-30y C:\SOLAR-30 C:\Evapotra C:\SOILS - C:\OUT - F_	0yr.d4 r.d7 yr.d13 nspiration-LA F_SIDE1.d10 SIDE1.out	I_3-EVAP24.d11	
*****	********	*******	*******	******	********
	uite Ceall II				
TITLE: Mesq	uite_treek_t	F - F_SIDE1			
TITLE: Mesq	**************************************	F - F_SIDE1	*****	****	*******

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC

1.72	2.49	2.00	3.63	3.44		
2.01	3.45	3.30	2.46	2.42		
	1.72 2.01	1.72 2.49 2.01 3.45	1.72 2.49 2.00 2.01 3.45 3.30	1.72 2.49 2.00 3.63 2.01 3.45 3.30 2.46		

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR SAN ANTONIO TEXAS

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
52.20	56.00	62.80	69.80	76.60	82.40
84.50	85.10	79.90	71.30	61.00	53.50

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR SAN ANTONIO TEXAS AND STATION LATITUDE = 29.70 DEGREES

LAYER DATA 1

VALID FOR 30 YEARS

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL	L PERCOLATION LAYER
MATERIAL TEXT	TURE NUMBER 24
THICKNESS	= 24.00 INCHES
POROSITY	= 0.3650 VOL/VOL
FIELD CAPACITY	= 0.3050 VOL/VOL
WILTING POINT	= 0.2020 VOL/VOL
INITIAL SOIL WATER CONTENT	= 0.2963 VOL/VOL
EFFECTIVE SAT. HYD. CONDUCT	T.= 0.2700E-05 CM/SEC
NOTE: SATURATED HYDRAULIC CC	CONDUCTIVITY IS MULTIPLIED BY 4.20
FOR ROOT CHANNELS IN	N TOP HALF OF EVAPORATIVE ZONE.

VALID FOR 30 YEARS

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SIL DATA BASE USING SOIL TEXTURE #24 WITH AN EXCELLENT STAND OF GRASS, A SURFACE SLOPE OF 29.% AND A SLOPE LENGTH OF 410. FEET.

SCS RUNOFF CURVE NUMBER	=	84.68	
FRACTION OF AREA ALLOWING RUNOFF	=	100.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	=	1.000	ACRES
EVAPORATIVE ZONE DEPTH	=	24.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	=	7.111	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE	=	8.760	INCHES
FIELD CAPACITY OF EVAPORATIVE ZONE	=	7.320	INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE	=	4.848	INCHES
SOIL EVAPORATION ZONE DEPTH	=	24.000	INCHES
INITIAL SNOW WATER	=	0.000	INCHES
INITIAL INTERCEPTION WATER	=	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	=	14.799	INCHES
TOTAL INITIAL WATER	=	14.799	INCHES
TOTAL SUBSURFACE INFLOW	=	0.00	INCHES/YEAR

EVAPOTRANSPIRATION DATA 1 _____

VALID FOR 30 YEARS

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED	D FI	ROM	
SAN ANTONIO TEXAS			
STATION LATITUDE	=	29.70	DEGREES
MAXIMUM LEAF AREA INDEX	=	3.00	
START OF GROWING SEASON (JULIAN DATE)	=	35	
END OF GROWING SEASON (JULIAN DATE)	=	350	
EVAPORATIVE ZONE DEPTH	=	24.0	INCHES
AVERAGE ANNUAL WIND SPEED	=	9.40	MPH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY	=	66.0	%
AVERAGE 2ND QUARTER RELATIVE HUMIDITY	=	68.0	%
AVERAGE 3RD QUARTER RELATIVE HUMIDITY	=	66.0	%
AVERAGE 4TH QUARTER RELATIVE HUMIDITY	=	67.0	%

TYPE 2 - LATERAL DRAINAGE LAYER
 TYPE 2
 LATERAL DRAINAGE LATER

 MATERIAL TEXTURE NUMBER
 0

 =
 0.20
 INCHES

 =
 0.8590
 VOL/VOL

 Y
 =
 0.0100
 VOL/VOL
 THICKNESS POROSITY FIELD CAPACITY WILTING POINT = INITIAL SOIL WATER CONTENT = EFFECTIVE SAT. HYD. CONDUCT.= 0.0050 VOL/VOL 0.0100 VOL/VOL 1.080 CM/SEC 28.60 PERCENT 410.0 FEET SLOPE DRAINAGE LENGTH = 410.0

LAYER 2

LAYER 3 -----

TYPE 4 - FLEXIBLE MEMBRANE LINER TYPE 4 - FLEXIBLE MEMBKANE LINEK MATERIAL TEXTURE NUMBER 36 THICKNESS = 0.04 INCHES EFFECTIVE SAT. HYD. CONDUCT. = 0.4000E-12 CM/ FML PINHOLE DENSITY = 2.00 HOLES/A FML INSTALLATION DEFECTS = 2.00 HOLES/A 0.4000E-12 CM/SEC 2.00 HOLES/ACRE HOLES/ACRE FML PLACEMENT QUALITY = 3 - GOOD

LAYER 4

TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 0 = 18.00 THICKNESS = = TNCHES POROSITY FIELD CAPACITY 0.4270 VOL/VOL 0.4180 VOL/VOL = WILTING POINT = INITIAL SOIL WATER CONTENT = EFFECTIVE SAT. HYD. CONDUCT.= 0.3670 VOL/VOL 0.4270 VOL/VOL

******* GENERAL DESIGN AND EVAPORATIVE ZONE DATA 1

0.1000E-04 CM/SEC

Page 19 of 21

4720.1436

Reviewed 8/4/23

0.3403

0.2020

1.30

*******	***************************************	**********************	*********

FINAL WATER	STORAGE AT E	ND OF YEAR 30	
LAYER	(INCHES)	(VOL/VOL)	
1	6.2792 0.0020	0.2616 0.0100	
3	0.0000	0.0000	
4	7.6860	0.4270	
TOTAL WATER IN LAYERS	13.967		
SNOW WATER	0.000		
INTERCEPTION WATER	0.000		
TOTAL FINAL WATER	13.967		
*****	******	*****	*****

PEAK DAILY VALUES FOR YEARS 1 THROUGH 30

PRECIPITATION

DRAINAGE COLLECTED FROM LAYER 2

AVERAGE HEAD ON TOP OF LAYER 3

MAXIMUM HEAD ON TOP OF LAYER 3

PERCOLATION/LEAKAGE THROUGH LAYER 4

LOCATION OF MAXIMUM HEAD IN LAYER 2

RUNOFF

(INCHES)

8.90

8.343

0.06946

0.000001

0.018

0.246

(CU. FT.)

32306.998

30283.5684

252.14235

0.00537

***	Maximum hea	ds are computed using McEnroe's equations. ***
	Reference:	Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.
*******	*********	***********

(DISTANCE FROM DRAIN)

MAXIMUM VEG. SOIL WATER (VOL/VOL)

MINIMUM VEG. SOIL WATER (VOL/VOL)

SNOW WATER

AVERAGE MONTHL	Y VALUES I	N INCHES	FOR YEARS	5 1 THR	ROUGH 30	
	JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
PRECIPITATION						
TOTALS	1.74	1.68	2.24	1.92	2.83	3.81
	2.15	1.90	4.13	3.38	2.38	2.23
STD. DEVIATIONS	1.18	0.88	1.40	1.49	1.75	2.30
	2.03	2.16	2.36	2.10	1.95	1.20
RUNOFF						
TOTALS	0.395	0.290	0.837	0.598	1.129	2.023
	1.052	0.713	1.775	1.431	0.871	0.673
STD. DEVIATIONS	0.532	0.320	0.912	0.819	1.128	1.724
	1.657	1.328	1.477	1.277	1.141	0.646
POTENTIAL EVAPOTRANSP	IRATION					
TOTALS	3.216	3.519	5.305	6.439	7.948	8.629
	9.186	8.564	6.682	5.124	3.734	2.987
STD. DEVIATIONS	0.209	0.225	0.319	0.283	0.278	0.258

	0.301	0.296	0.329	0.301	0.220	0.222
ACTUAL EVAPOTRANSPIRATIC	N					
TOTALS	1.111 1.116	1.199 1.292	2.267 2.025	2.178 1.668	1.616 1.129	1.772 1.138
STD. DEVIATIONS	0.413 0.687	0.469 1.033	0.495 0.953	0.789 0.718	0.715 0.562	0.897 0.367
LATERAL DRAINAGE COLLECT	ED FROM L	AYER 2				
TOTALS	0.0313 0.0000	0.0466 0.0000	0.0248 0.0000	0.0009 0.0000	0.0000 0.0000	0.0000 0.0015
STD. DEVIATIONS	0.1476 0.0000	0.1354 0.0000	0.0669 0.0000	0.0051 0.0000	0.0000 0.0000	0.0000 0.0082
PERCOLATION/LEAKAGE THRC	UGH LAYER	4				
TOTALS	0.0000 0.0000	0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000
STD. DEVIATIONS	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000
AVERAGES OF	MONTHLY	AVERAGED	DAILY HEA	DS (INCHE	s)	
DAILY AVERAGE HEAD ON TO	P OF LAYE	RЗ				
AVERAGES	0.0003 0.0000	0.0004 0.0000	0.0002 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000
STD. DEVIATIONS	0.0012 0.0000	0.0012 0.0000	0.0005 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0001
******	*****	******	******	******	******	******

PRECIPITATION	30.38	(5.727)	110266.1	100.00		
RUNOFF	11.787	(3.7528)	42788.33	38.805		
POTENTIAL EVAPOTRANSPIRATION	71.333	(0.9604)	258939.95			
ACTUAL EVAPOTRANSPIRATION	18.512	(2.9412)	67196.79	60.941		
LATERAL DRAINAGE COLLECTED FROM LAYER 2	0.10512	(0.27510)	381.586	0.34606		
PERCOLATION/LEAKAGE THROUGH LAYER 4	0.00000	(0.00001)	0.009	0.00001		
AVERAGE HEAD ON TOP OF LAYER 3	0.000	(0.000)				
CHANGE IN WATER STORAGE	-0.028	(0.8700)	-100.63	-0.091		

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 30

INCHES	CU. FEET	PERCENT

Page 20 of 21	Page	20	of	21
---------------	------	----	----	----

*******	*****
*******	*****
**	**
**	**
** HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	**
**	**
** HELP Version 3.95 D (10 August 2012)	**
** developed at	**
** Institute of Soil Science, University of Hamburg, Germany	**
** based on	**
** US HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)	**
** DEVELOPED BY ENVIRONMENTAL LABORATORY	**
** USAE WATERWAYS EXPERIMENT STATION	**
** FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	**
**	**
**	**
******	*****
***************************************	*****
TIME: 21.02 DATE: 13.02.2023	
PRECIPITATION DATA FILE: C:\PRECIP-30yr.d4	**
TEMPERATURE DATA FILE: C:\TEMP-30yr.d7	
SOLAR RADIATION DATA FILE: C:\SOLAR-30yr.d13	
EVAPOTRANSPIRATION DATA F. 1: C:\Evapotranspiration-LAI_3-EVAP24.d11	
SOIL AND DESIGN DATA FILE 1: C:\SOILS - F_SIDE2.d10	
OUTPUT DATA FILE: C:\OUT - F_SIDE2.out	
*******	*****
TITLE: Mesquite_Creek_LF F_SIDE2	

WEATHER DATA SOURCES

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR SAN ANTONIO TEXAS

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

JAN/JUL FEI	B/AUG MA	R/SEP A	PR/OCT M	MAY/NOV :	JUN/DEC

			Revi	ewed 8/4/23
1.72	2.49	2.00	3.63	3.44
2.01	3.45	3.30	2.46	2.42
	1.72 2.01	1.72 2.49 2.01 3.45	1.72 2.49 2.00 2.01 3.45 3.30	Revi 1.72 2.49 2.00 3.63 2.01 3.45 3.30 2.46

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR SAN ANTONIO TEXAS

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
52.20	56.00	62.80	69.80	76.60	82.40
84.50	85.10	79.90	71.30	61.00	53.50

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR SAN ANTONIO TEXAS AND STATION LATITUDE = 29.70 DEGREES

LAYER DATA 1

VALID FOR 30 YEARS

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTIC	AL PERG	COLATION LA	YER	
MATERIAL TE	XTURE N	UMBER 24		
THICKNESS	=	24.00	INCHES	
POROSITY	=	0.3650	VOL/VOL	
FIELD CAPACITY	=	0.3050	VOL/VOL	
WILTING POINT	=	0.2020	VOL/VOL	
INITIAL SOIL WATER CONTEN	T =	0.2963	VOL/VOL	
EFFECTIVE SAT. HYD. CONDUC	CT.=	0.27008	-05 CM/SE	с
NOTE: SATURATED HYDRAULIC (CONDUCT	IVITY IS M	ULTIPLIED	BY 4.20
FOR ROOT CHANNELS	IN TOP	HALF OF E\	/APORATIVE	ZONE.

VALID FOR 30 YEARS

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #24 WITH AN EXCELLENT STAND OF GRASS, A SURFACE SLOPE OF 29.% AND A SLOPE LENGTH OF 410. FEET.

SCS RUNOFF CURVE NUMBER	=	84.68	
FRACTION OF AREA ALLOWING RUNOFF	=	100.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	=	1.000	ACRES
EVAPORATIVE ZONE DEPTH	=	24.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	=	7.111	INCHES
JPPER LIMIT OF EVAPORATIVE STORAGE	=	8.760	INCHES
FIELD CAPACITY OF EVAPORATIVE ZONE	=	7.320	INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE	=	4.848	INCHES
SOIL EVAPORATION ZONE DEPTH	=	24.000	INCHES
INITIAL SNOW WATER	=	0.000	INCHES
INITIAL INTERCEPTION WATER	=	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	=	14.809	INCHES
FOTAL INITIAL WATER	=	14.809	INCHES
TOTAL SUBSURFACE INFLOW	=	17.60	INCHES/YEAR

EVAPOTRANSPIRATION DATA 1

VALID FOR 30 YEARS

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINE	DF	ROM		
SAN ANTONIO TEXAS				
STATION LATITUDE	=	29.70	DEGREES	
MAXIMUM LEAF AREA INDEX	=	3.00		
START OF GROWING SEASON (JULIAN DATE)	=	35		
END OF GROWING SEASON (JULIAN DATE)	=	350		
EVAPORATIVE ZONE DEPTH	=	24.0	INCHES	
AVERAGE ANNUAL WIND SPEED	=	9.40	MPH	
AVERAGE 1ST QUARTER RELATIVE HUMIDITY	=	66.0	%	
AVERAGE 2ND QUARTER RELATIVE HUMIDITY	=	68.0	%	
AVERAGE 3RD QUARTER RELATIVE HUMIDITY	=	66.0	%	
AVERAGE 4TH QUARTER RELATIVE HUMIDITY	=	67.0	%	

 The first of the firs THICKNESS POROSITY FIELD CAPACITY WILTING POINT = INITIAL SOIL WATER CONTENT = EFFECTIVE SAT. HYD. CONDUCT.= 0.0050 VOL/VOL 0.0612 VOL/VOL 1.080 CM/5 28.60 PERCENT 410.0 FEET CM/SEC SLOPE DRAINAGE LENGTH

SUBSURFACE INFLOW

LAYER 2 ----

TYPE 2 - LATERAL DRAINAGE LAYER

LAYER 3

_

17.60 INCHES/YR

TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 36 = 0.04 INCHES THICKNESS = EFFECTIVE SAT. HYD. CONDUCT.= 0.4000E-12 CM/SEC FML PINHOLE DENSITY = 2.00 FML INSTALLATION DEFECTS = 2.00 FML PLACEMENT QUALITY = 3 = 2.00 HOLES/ACRE HOLES/ACRE

LAYER 4

TYPE 3 - BARRIER SOIL LINER TYPE 3 - BARKIER SULL LINER MATERIAL TEXTURE NUMBER 0 = 18.00 INCHES = 0.4270 VOL/VOL THICKNESS POROSITY FIELD CAPACITY = FIELD CAPACITY = INITIAL SOIL WATER CONTENT = EFFECTIVE SAT. HYD. CONDUCT.= 0.4180 VOL/VOL 0.3670 VOL/VOL 0.4270 VOL/VOL 0.1000E-04 CM/SEC

Page 21 of 21 Reviewed 8/4/23

			LOCATION OF MAXIMUM HEAD IN LAYER 2 (DISTANCE FROM DRAIN)	0 0 FFFT	
			(DISTANCE FROM DRAIN)	0.0 1221	
******	******	*********	SNOW WATER	1.30	4720.1436
FINAL WATE	R STORAGE AT EN	D OF YEAR 30	MAXIMUM VEG. SOIL WATER (VOL/VOL)	0	. 3403
LAYER	(INCHES)	(VOL/VOL)	MINIMUM VEG. SOIL WATER (VOL/VOL)	0	. 2020
1	6.2792	0.2616	*** Maximum heads are computed using	g McEnroe's equa	ations. ***
2	0.0122	0.0612	Reference: Maximum Saturated De by Bruce M. McEnnoe	epth over Landf:	ill Liner Kansas
3	0.0000	0.0000	ASCE Journal of Env: Vol. 119, No. 2, Mar	ronmental Engin	neering 52-270.
4	7.6860	0.4270	******	****	****
TOTAL WATER IN LAYERS	13.977				
SNOW WATER	0.000				
INTERCEPTION WATER	0.000		***************************************	*******	******
TOTAL FINAL WATER	13.977		AVERAGE MONTHLY VALUES IN INCHES F	DR YEARS 1 TH	HROUGH 30
******	******	************	JAN/JUL FEB/AUG I	MAR/SEP APR/OC	T MAY/NOV JUN/DEC

PEAK DAILY VALUES FOR YEARS	1 THROUGH	30
	(INCHES)	(CU. FT.)
PRECIPITATION	8.90	32306.998
RUNOFF	8.343	30283.5684
DRAINAGE COLLECTED FROM LAYER 2	0.11763	427.00015
PERCOLATION/LEAKAGE THROUGH LAYER 4	0.000002	0.00861
AVERAGE HEAD ON TOP OF LAYER 3	0.030	
MAXIMUM HEAD ON TOP OF LAYER 3	0.243	

	JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
PRECIPITATION						
TOTALS	1.74	1.68	2.24	1.92	2.83	3.81
	2.15	1.90	4.13	3.38	2.38	2.23
STD. DEVIATIONS	1.18	0.88	1.40	1.49	1.75	2.30
	2.03	2.16	2.36	2.10	1.95	1.20
RUNOFF						
TOTALS	0.395	0.290	0.837	0.598	1.129	2.023
	1.052	0.713	1.775	1.431	0.871	0.673
STD. DEVIATIONS	0.532	0.320	0.912	0.819	1.128	1.724
	1.657	1.328	1.477	1.277	1.141	0.646
POTENTIAL EVAPOTRANS	PIRATION					
τοτλί ς	3 216	3 519	5 305	6 139	7 9/8	8 629
TOTALS	9,186	8.564	6.682	5.124	3.734	2.987
	5.100	0.004	OOL	- · · · · ·	2.104	2.507

STD. DEVIATIONS	0.209	0.225	0.319	0.283	0.278	0.258				
	0.301	0.296	0.329	0.301	0.220	0.222				
ACTUAL EVAPOTRANSPIRATION										
TOTALS	1.111	1.199	2.267	2.178	1.616	1.772				
	1.116	1.292	2.025	1.668	1.129	1.138				
STD. DEVIATIONS	0.413	0.469	0.495	0.789	0.715	0.897				
	0.687	1.033	0.953	0.718	0.562	0.367				
SUBSURFACE INFLOW INTO L	AYER 2									
TOTALS	1.4948	1.3614	1.4948	1.4466	1.4948	1.4466				
	1.4948	1.4948	1.4466	1.4948	1.4466	1.4948				
LATERAL DRAINAGE COLLECT	ED FROM L	AYER 2								
TOTALS	1.5246	1.4066	1.5181	1.4460	1.4933	1.4451				
	1.4933	1.4933	1.4451	1.4933	1.4451	1.4948				
STD. DEVIATIONS	0.1476	0.1407	0.0669	0.0051	0.0000	0.0004				
	0.0000	0.0000	0.0004	0.0000	0.0004	0.0081				
PERCOLATION/LEAKAGE THRO	OUGH LAYER	4								
TOTALS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000				
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000				
STD. DEVIATIONS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000				
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000				
AVERAGES OF	MONTHLY	AVERAGED	DAILY HEA	DS (INCHE	s)					

AVERAGES	0.0125	0.0126	0.0124	0.0122	0.0122	0.0122
	0.0122	0.0122	0.0122	0.0122	0.0122	0.0122
STD. DEVIATIONS	0.0012	0.0012	0.0005	0.0000	0.0000	0.0000
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001

-

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 30

	INC	IES		CU. FEET	PERCENT
PRECIPITATION	30.38	(5.727)	110266.1	100.00
RUNOFF	11.787	(3.7528)	42788.33	38.805
POTENTIAL EVAPOTRANSPIRATION	71.333	(0.9604)	258939.95	
ACTUAL EVAPOTRANSPIRATION	18.512	(2.9412)	67196.79	60.941
SUBSURFACE INFLOW INTO LAYER 2	17.61126			63928.855	57.97690
LATERAL DRAINAGE COLLECTED FROM LAYER 2	17.69844	(0.27557)	64245.332	58.26390
PERCOLATION/LEAKAGE THROUGH LAYER 4	0.00039	(0.00001)	1.426	0.00129
AVERAGE HEAD ON TOP OF LAYER 3	0.012	(0.000)		
CHANGE IN WATER STORAGE	-0.028	(0.8700)	-100.63	-0.091
******	******	***	******	******	*****
******	*******	***	*******	******	*****

Mesquite Creek Landfill MSW Permit No. 66C Part III, Attachment 4

ATTACHMENT 4

GEOLOGY REPORT

Geosyntec Consultants October 2023 Page No. III-4-Cvr

PART III – ATTACHMENT 4 GEOLOGY REPORT

MESQUITE CREEK LANDFILL COMAL AND GUADALUPE COUNTIES, TEXAS PERMIT AMENDMENT APPLICATION MSW PERMIT NO. 66C

Prepared for: Waste Management of Texas, Inc.

Prepared by:

Geosyntec^D consultants

Texas Board of Professional Geoscientists Firm Registration No. 50256 8217 Shoal Creek Blvd, Suite 200 Austin, Texas 78757 (512) 451-4003

October 2023

TABLE OF CONTENTSGEOLOGY REPORT

1.	INTI	RODUCTION	1
	1.1 1.2	Scope Report Organization	1 1
2.	REG	GIONAL GEOLOGY AND HYDROGEOLOGY	2
	2.1 2.2 2.3	Regional Physiography and Topography Regional Geologic Setting and Structural Geology Regional Geology and Lithology	2 3 4
3.	GEC	DLOGIC PROCESSES	9
	3.13.2	Fault and Seismic Data Simic Data 3.1.1 Fault Data 3.1.2 Seismic Data 3.1.3 Erosion Potential Unstable Areas GEOLOGY 1000 CENSE	
4.	REG	GIONAL AQUIFERS	13
	4.1 4.2 4.3 4.4	Edwards Aquifer GEOSYNTEC CONSULTANTS, INC. TEXAS GEOSCIENCE FIRM REGISTRATION #50256 Trinity Aquifer Other Aquifers Nearby Well Information and Local Groundwater Use 4.4.1 Water Wells and Local Groundwater Usage 4.4.2 Oil and Gas Wells Within One Mile	14 16 17 17 17 18
5.	SUB	SURFACE INVESTIGATION REPORT	19
	5.1	 Drilling and Sampling	19 23 24 25 26 27 27 28
6.	GEC	DTECHNICAL DATA	28
7.	GRC	OUNDWATER INVESTIGATION REPORT	29
	7.1 7.2	Overview of Hydrogeologic Findings – Previous Site Investigations Geosyntec (2022-2023) Site Investigation	29 30

7.3	Monite	oring Well and Piezometer Construction Details	
7.4	Groun	dwater Observations	
	7.4.1	Water Levels During Drilling – Soil Borings	
	7.4.2	Water Levels During Drilling and After Installation – Wells and	
		Piezometers	
	7.4.3	Historical Water Levels in Monitoring Wells and Piezometers	
	7.4.4	Groundwater Quality Data	31
7.5	Hydra	ulic Conductivity of Site Soils	32
7.6	Hydro	geologic Interpretation	
	7.6.1	Strata I and II – Discontinuous and Unsaturated Site Soils	
	7.6.2	Stratum III – Uppermost Aquifer	
	7.6.3	Stratum IV – Lower Confining Unit	34
	7.6.4	Groundwater Flow Patterns	34
	7.6.5	Groundwater Flow Gradient and Seepage Velocity	35
	7.6.6	Potential Impact of Landfill on Groundwater Flow Regime	
	7.6.7	Most Likely Pathway for Potential Pollutant Migration	
7.7	Arid E	Exemption (Not Requested)	
REF	ERENC	CES	

TABLES

8.

Table 4-1	Regional Stratigraphic Column in Site Vicinity					
Table 4-2	Hydraulic Properties of Regional Aquifers in Site Vicinity					
Table 4-3	Water Wells Within a One-Mile Radius of the Site					
Table 4-4	Summary of Borings					
Table 4-5	Generalized Site Stratigraphy TEXAS GEOSCIENCE FIRM REGISTRATION #50256					
Table 4-6a	Summary of Existing Monitoring Well and Piezometer Construction Details					
Table 4-6b	Summary of Old (No Longer in Existence) Monitoring Well and Piezometer					
	Construction Details					
Table 4-7a	Water Level Measurements During Drilling – Soil Borings					
Table 4-7bWater Level Measurements During Drilling and After Installation –						
	Piezometers and Monitoring Wells					
Table 4-8a	Monitoring Well Water Level Measurements (Existing Wells in Unit 1 -					
	Screened in Stratum III)					
Table 4-8b	Monitoring Well Water Level Measurements (Existing Wells in Unit 2 -					
	Screened in Stratum III)					

Attachment 4 Geology Report

MATTHEW WISSLER

Table 4-8c	Piezometer Water Level Measurements (Geosyntec 2023 Piezometers Screened in Stratum III)
Table 4-9a	Summary of Hydraulic Conductivity Tests – Laboratory (Undisturbed Samples)
Table 4-9b	Summary of Hydraulic Conductivity Tests – Field Permeability (Slug Testing)
FIGURES	

- Figure 4-1 Map of Edwards Aquifer
- Figure 4-2 Map of Trinity Aquifer

ATTACHMENTS

Attachment 4AGeology Report DrawingsAttachment 4BSoil Boring PlanAttachment 4CBoring LogsAttachment 4DPiezometer and Well LogsAttachment 4EGroundwater MapsAttachment 4FGroundwater Quality DataAttachment 4GSlug Test Data

GEOSYNTEC CONSULTANTS, INC. TEXAS GEOSCIENCE FIRM REGISTRATION #50256

1. INTRODUCTION

1.1 <u>Scope</u>

This Geology Report was prepared for the Mesquite Creek Landfill (the "Site") in conjunction with municipal solid waste (MSW) permit amendment application No. 66C, which proposes to laterally expand the existing landfill. The facility is an existing Type I MSW disposal facility (landfill) located in Comal and Guadalupe Counties, Texas, approximately 5 miles northeast of the central business district of the City of New Braunfels. This Geology Report has been prepared by a qualified professional geoscientist (PG), who is also a qualified groundwater scientist, and presents the information required by 30 TAC §330.63(e) regarding geological and hydrogeological information for the region and for the Site (and provides reference to where the geotechnical information). This report includes site-specific subsurface data collected by Geosyntec Consultants, Inc. (Geosyntec) in 2022-2023 as part of this proposed lateral expansion project. This report also incorporates and includes relevant data from previous subsurface investigation studies, as prepared by Geosyntec (2005) or otherwise compiled and included in MSW Permit No. 66B.

1.2 <u>Report Organization</u>

The remainder of this attachment is organized as follows:

- regional geology and hydrogeology and history is presented in Section 2;
- the geologic processes, including a discussion of fault and seismic data as well as unstable areas, are discussed in Section 3;
- regional aquifers are described in Section 4;
- the subsurface investigation report, outlining historical and recent investigations as well as a summary of the underlying Site stratigraphy, is presented in Section 5;
- Section 6 provides a reference to geotechnical data;
- groundwater occurrence, water levels, and the Site's hydrogeology is presented in Section 7; and
- references are listed in Section 8.

Additionally, tables are embedded in the report as relevant and other attachments, including drawings, are at the end of this report.

2. REGIONAL GEOLOGY AND HYDROGEOLOGY

2.1 <u>Regional Physiography and Topography</u>

The Site straddles the Comal-Guadalupe County-line (eastern Comal County and northnorthwestern Guadalupe County). As shown on Drawing 4A-1, the Site is located in the Blackland Belt (Texas Almanac, 2021), hereafter called the "Blackland Prairie" sub-province after Wermund (1996), southeast of the Balcones Escarpment sub-province. The Blackland Prairie is the westernmost sub-province of the Gulf Coastal Plain physiographic province of Texas and is characterized by a rolling surface terrain covering deep black, fertile clayey soils. Native vegetation types include grasses, brush, and mesquite trees (and much of the Blackland Prairie has been cleared of natural vegetation and cultivated for crops).

The Gulf Coastal Plain is characterized by a heterogeneous mixture of sand, silt, clay, and gravel sediments that pinches out northwest of this province along the Balcones Escarpment (approximately 5 to 10 miles west-northwest of the Site) and thickens to a cumulative thickness exceeding 10,000 ft near the Texas coastline (Spearing, 1991). The Balcones Escarpment marks an abrupt change in topography between the Gulf Coastal Plain and Edwards Plateau physiographic provinces. It was formed in the Cretaceous Period (144 to 65 million years ago) when the rocks comprising the Edwards Plateau were uplifted. The escarpment is superimposed on a curved band of normal faults along the eastern and southern boundaries of the Edwards Plateau (see Drawing 4A-1). This regional-scale faulting occurs in a generally northeastward trending line across central Texas.

The overall topography is related to the geologic structure of the region. The Balcones Fault Zone bisects Comal County and separates the Edwards Plateau in the northwest part of the county (upthrown side of the fault zone) from the Gulf Coastal Plain in the southeast part of Comal County and continuing in Guadalupe County and further to the southeast (downthrown side of the fault zone). The Edwards Plateau is a relatively flat-lying area with southward dipping beds of limestones and dolomites. Streams incise the limestone formations to form rugged hills. Elevations in the Edwards Plateau range from approximately 3,000 to 450 ft above mean sea level (ft, MSL) (Wermund, 1996). The Balcones Fault Zone is characterized by fault blocks and stair-step topography. To the south and east of this zone (including the Site location), the Blackland Prairie physiographic sub-province has a gentle undulating terrain, regionally sloping to the south and having elevations ranging from 1,000 to 450 ft, MSL (Wermund, 1996).

The regional topography of eastern Comal County and north-northwestern Guadalupe County ranges in elevation from approximately 1,000 ft, MSL to 500 ft, MSL, and is drained by tributaries of the Guadalupe and Blanco Rivers (both part of the Guadalupe River Basin). The main drainage streams of the area generally flow to the southeast. In the immediate Site vicinity, Mesquite Creek crosses through the central portion of the Site flowing north-northeast and passes through a surface water body (pond) identified on USGS maps as the "Soil Conservation Service Site 4 Reservoir" (also known locally as "Freedom Lake") approximately 0.3 miles north-northeast of the Site.

Beyond Freedom Lake, Mesquite Creek enters York Creek at a point approximately three miles northeast of the Site. York Creek is a tributary of the San Marcos River, part of the Guadalupe River Basin. A portion of the proposed expansion area (east-southeast of the topographic ridge on the expansion property) is part of the Alligator Creek watershed. Alligator Creek passes approximately one mile south of the Site and flows southeast, where it enters Geronimo Creek at a point approximately four miles southeast of the Site. Geronimo Creek is also part of the Guadalupe River Basin (joining the Guadalupe River about three miles southeast of Seguin).

2.2 <u>Regional Geologic Setting and Structural Geology</u>

This section presents an overview of the regional geologic setting/history and structural geology at the Site and its nearby vicinity, based primarily on the published geology map and report by Collins (2000), supplemented by other references where cited. Regionally, Cretaceous (144 to 65 million years old), Tertiary (65 to 1.8 million years old), and Quaternary (1.8 million years to present) limestone, marls, calcareous marine clays, and fluvial deposits comprise the primary rock types that outcrop in the area.

The geologic setting is dominated by Cretaceous carbonate rocks deposited in a marine environment on the San Marcos Platform depositional province, a southeastern-trending platform area of the broader Texas Platform between the East Texas and Maverick Basins. Northwest of the Balcones Escarpment belt, the outcrop belt consists mostly of cyclic, shallow, subtidal to tidalflat limestones, dolomitic limestones and dolomite. Southeast of the Balcones Escarpment (i.e., on the downthrown side of the Balcones Fault Zone where the Site is situated), the outcrop belt is made up of poorly exposed shelf limestone, argillaceous limestone, marl, and claystone to mudstone of the Cretaceous-age Taylor and Navarro Groups and lower Tertiary Midway Group. The Taylor, Navarro, and Midway units are commonly covered by Quaternary sand and gravel of the Leona Formation, locally deposited older gravel, and younger sand and gravel of terraces of main drainageways.

Comal County is bisected to the west of the Site by the Balcones Fault Zone. This zone is approximately 175 miles long and up to 20 miles wide, located in a southwest-to-northeast trending band on the eastern edge of the Edwards Plateau along the Balcones Escarpment. The Site is on the eastern edge of this inactive fault zone (or could be considered just outside the Balcones Fault Zone, as mapping of the specific lateral extents are inexact). Further south in Guadalupe County and south of San Antonio, a second fault zone, the inactive Luling Fault Zone, is present. These fault zones are inactive. The last episode of movement of the Balcones Fault Zone is thought to have occurred approximately 15-20 million years ago [Collins (2000); Jones et al. (2011)].

The sedimentary rock units in Comal County and Guadalupe County strike northeast and dip south-southeast toward the Gulf of Mexico at a rate slightly greater than the dip of the land surface approximately 100 feet (ft) per mile in southeastern Comal County and northern Guadalupe County; increasing to approximately 180 ft per mile in the southeastern part of Guadalupe County (Shafer, 1966).

2.3 <u>Regional Geology and Lithology</u>

The Site is largely located on outcrops (where present) of fine-grained Quaternary deposits and gravelly-clayey Quaternary-Tertiary alluvium deposits, underlain by Cretaceous Taylor Group clay/claystone sediments. The Collins (2000) map [published as Bureau of Economic Geology, New Braunfels 30 x 60 Minute Quadrangle], with identification of the Site location shown, is presented on Drawing 4A-2 of this report. It was constructed by Collins (2000) using field mapping, interpretation of aerial photographs, review of existing maps and reports, and digitization of map data. The stratigraphic relationships of these and underlying formations are shown in Table 4-1, which presents a generalized stratigraphic column for the geologic units in the facility area, from the land surface of Quaternary deposits down to the Cow Creek Formation [which represents the oldest Cretaceous Formation in the Collins (2000) study, at a depth of over approximately 1,850 ft below ground surface (bgs) in the Site vicinity]. A regional geologic cross section by Collins (2000) is presented on Drawing 4A-3.

	Stratigraphic	Approx.	Approx.		
Period/	Unit	Typical Depth	Thickness	Depositional	Character of Material
Epoch	(Group or	of Occurrence	Beneath	Facies	Character of Material
_	Formation)	(ft, bgs)	Site (ft)		
Quaternary	Stream, terrace		15 (where present)	Fluvial	Locally – clay.
	and undivided	0 (at surface)			Regionally - silt, sand, gravel,
	alluvium				and/or clay.
Quaternary -Tertiary	Undifferentiated				Locally – clayey gravel to
	gravelly alluvium	0 (at sumface) to	10 (where present)	Fluvial	gravelly clay.
	(possibly	0 (at surface) to			Regionally - pebble-to-cobble-
	equivalent to	/			sized chert and limestone,
	Uvalde Gravel)				commonly cemented by caliche
	Upper Taylor	0 (at surface) to 10	50 (where present)	Shelf	Clay-claystone and mud-
	Group (includes				mudstone, some thin siltstone
	Navarro Group)	10			and sandstone beds.
	Lower Taylor				
	Group (includes		290	Shelf	Marl argillaceous limestone
Upper	undivided	10 to 15			limestone some chalky clay-
Cretaceous	Anacacho and	10 00 10			claystone and mud-mudstone.
	Pecan Gap				
	Formations)				
	Austin Group	200	100	Open shelf	Thin to thick bedded chalk,
	(Undivided)	300			limestone and argillaceous
	El- El				limestone.
Upper Cretaceous	Eagle Ford	400	30	Shelf	Calcareous and sandy shale and
	(Undivided)				some argillaceous limestone.
	Buda Limestone	430	65	Open shelf	Dense hard limestone
	Dudu Einiestone	150	05	Shelf mud	
	Del Rio	495	50	and silt:	Blue clay, weathering greenish and yellowish brown.
	Formation			prodelta	
	Georgetown	545	30	Open shelf	Argillaceous limestone and
	Formation				marl.
				Shallow-	II-ndi
	Edwards Group Limestone (Undivided)	575		marine	limestone and dolomite and some thin-bedded limestone and marly limestone.
			470	subtidal to	
Lower				tidal-flat	
				cycles	
	Walnut Formation	1045	50	Shelf	Walnut limestone, marl
				Shallow-	
Cretaceous	Glen Rose Formation		720	marine	Massive limestone with alternating beds of less resistant marly limestone.
		1095		subtidal to	
-				tidal-flat	
				cycles; local	
	TT 11			reefs	
	Hensell	1815	80	Nearshore	Sandy limestone, some also
	Formation	-	-	marine	dolomitic.
	Cow Creek	1895	75	High-energy	Fossiliferous limestone

TABLE 4-1 REGIONAL STRATIGRAPHIC COLUMN IN SITE VICINITY [from Collins (2000) Shafer (1966)]

The regional stratigraphic units above the basement (pre-Cretaceous) rocks are described below, based on Collins (2000) and others where cited. Note that not all stratigraphic units mentioned below are present beneath the Site (some are nearby but not on-site – e.g., see Drawings 4A-2 and 3), but their information is included for a more complete description of the regional geologic stratigraphic units in the region.

Lower Cretaceous rocks include the Cow Creek Formation, the Hensell Formation, the Glen Rose Formation, the Walnut Formation, the Edwards Group Limestone, and the Georgetown Formation. The Cow Creek, Hensell, and lower member of the Glen Rose are part of the middle Trinity Aquifer group (Jones et al., 2011) (described in more detail in Section 4 of this report). The Edwards Group and Georgetown Formation comprise the Edwards Aquifer (described in more detail in Section 4 of this report).

The Cow Creek Formation is primarily a fossiliferous limestone, and is more clayey with sandy and dolomitic intervals in the lower part of the unit. The upper part is well inducated with massive to thick beds (Collins, 2000). Limited amounts of groundwater in Comal and Guadalupe Counties have been obtained from the Cow Creek Formation (Maclay and Small, 1986).

The Hensell Formation is composed of sandy limestone and sandy dolomitic limestone, and regionally can yield water to wells. The Hensell deposits thin downdip by laterally grading and interfingering into marine Glen Rose deposits.

The Glen Rose Formation is characterized by limestone, dolomitic limestone, argillaceous limestone, and some marl. Outcrops of the Glen Rose form a stair-step topography characterized by alternating resistant and recessive beds (Collins, 2000). The Glen Rose is divided into lower and upper units; the lower unit is more permeable (part of the middle Trinity Aquifer, yielding sufficient groundwater for stock and domestic use where it outcrops), contains localized massive beds, and is fossiliferous. Fossils include mollusks, rudistids, oysters, and echinods. Between the lower and upper units is a fossiliferous nodular limestone containing the echinoid *Salenia texana*. The upper unit of the Glen Rose is a confining bed, with little vertical permeability, composed of limestone, dolomite, shale, and marl.

The Walnut Formation is a limestone, marl, and dolomitic formation sometimes included with the Kainer Formation (lower Edwards Group), or referred to as the nodular member of the Edwards Aquifer (Maclay and Small, 1986). Contact with the underlying Glen Rose is gradational.

The Cretaceous-age Edwards Aquifer and associated units include the Edwards Group Limestone and the overlying Georgetown Formation. These formations were deposited in open deep marine to restricted evaporite dominated supratidal flat environments (Maclay and Small, 1986). The formations are generally described as a gray to white, hard, dense, semi-crystalline limestone and dolomite. The thickness increases downdip and varies from approximately 450 ft to over 600 ft (Hamilton et al., 2004). In many places, partial solution of the limestone has occurred resulting in irregularly distributed voids. These voids are often interconnected and form conduits which follow fractures that are associated with and parallel to faults. The Georgetown Formation unconformably overlies the Edwards Limestone and both have very similar lithologies, and are best distinguished by faunal differences. The Georgetown Formation is thin across the San Marcos Arch, generally less than 30 ft, and consists primarily of open, marine-shelf limestone and some marl (Collins, 2000), having negligible porosity and little permeability (Maclay and Small, 1986). The Edwards Group limestones have significant porosity and high permeabilities and in the outcrop zones located approximately 4 miles or more northwest of the Site (i.e., the recharge zone), can yield groundwater in significant quantities to springs and wells.

Overlying the Georgetown Formation are Upper Cretaceous strata, which represent marine shelf deposition. Regional regression and transgression during the beginning of the Late Cretaceous resulted in deposition of the Del Rio Formation clay and the Buda Limestone, respectively (Collins, 2000). The Del Rio Formation conformably overlies the Georgetown Formation. It is comprised of calcareous, fossiliferous clay-claystone to mud-mudstone, pyrite and contains less gypsum with depth. It weathers light gray to yellowish gray; and the Del Rio is a confining bed with negligible permeability (Maclay and Small, 1986).

Buda Limestone conformably overlies the Del Rio Formation clay, and the contact is marked by distinct lithologic differences. The Buda Limestone thickens slightly to the west and downdip with thicknesses ranging from approximately 40 ft to a maximum thickness of 65 ft (Collins, 2000). The Buda Limestone was deposited in a marine shelf environment and is composed of hard, dense limestone in the upper part and soft, chalky limestone in the lower part (Collins, 2000). Glauconite and fossils are common.

Overlying the Buda Limestone is the Eagle Ford Formation (often referred to as "Eagle Ford Shale"). The Eagle Ford is a low-permeability confining bed composed of shale to mudstone, siltstone, and limestone. The lower part of the unit is siltstone and some very fine-grained sandstone, which is overlain by dark gray shale to mudstone.

The Austin Group (often referred to as "Austin Chalk") unconformably overlies the Eagle Ford Formation. The Austin Group consists of thin-to thick bedded chalk, limestone, and argillaceous limestone. The chalk is mostly microgranular calcite, along with some foraminiferal tests (Collins, 2000). Fossils are abundant in particular beds. The Austin Group may yield small quantities of groundwater to wells in the general San Marcos Platform/Balcones Fault Zone region (although no such wells are known to exist locally).

The Taylor and Navarro Groups are the uppermost thick shelf and prodelta deposits of the lowermost Upper Cretaceous, which unconformably overlies the Austin Group. The Taylor Group is subdivided into the Lower and Upper Taylor Groups. The Lower Taylor Group includes marls, and limestones, clay-claystones, and mud-mudstones that weathers to black clayey soil, and is usually unsaturated. Collins (2000) also assigned the Pecan Gap and Anacacho Formations, not divided or separately identified, to the Lower Taylor Group, while Maclay and Small (1986) identified the Anacacho Limestone as a separate unit underlying the Taylor Group. Shafer (1966)
grouped the Anacacho Limestone and Taylor Marl (Group) together. The Anacacho Formation thins toward the east, while the Pecan Gap thins toward the west (Collins, 2000). The Anacacho Limestone is generally a brittle, white, marly chalk with marine megafossils and shell fragments. The Lower Taylor Group is low-permeability, not known to yield usable quantities of groundwater to wells, and functions as a confining bed, noted by Maclay and Small (1986) as being a "major barrier to vertical cross-formational flow".

Where present in the area, Upper Taylor Group (including Navarro) strata overlie the Lower Taylor Group. These Upper Taylor Group sediments and are deeper water marine deposits (Maclay and Small, 1986), and are undivided on geologic maps because they have similar lithologies and soils, making them extremely difficult to differentiate (Collins, 2000). The material is composed of clay-claystone and mud-mudstone, weathering to black clayey soil, and is usually unsaturated. The Upper Taylor Group is low-permeability, not known to yield usable quantities of groundwater to wells, and functions as a confining bed, noted by Maclay and Small (1986) as being a "major barrier to vertical cross-formational flow".

Topographic high areas at and around the Site have surficial deposits of Quaternary-Upper Tertiary (Pliocene-Pleistocene) gravels and sands, attributed by Collins (2000) as possibly equivalent to the upper Tertiary-Quaternary Uvalde Gravel. Thicknesses generally range from several ft to more than 10 ft. This formation consists of pebble to cobble-sized chert and limestone, although quartz and metamorphic rock also exist at some locations, and often contained within a silty/clayey matrix. Regionally, these deposits are commonly cemented by caliche. The formation is of low to moderate permeability, generally unsaturated, and is not known to yield usable quantities of groundwater to wells.

Quaternary alluvial deposits at the ground surface in the region include the Pleistocene-age Leona Formation, probable Holocene terrace alluvium and stream-bed alluvium, and undivided slopewash and terrace alluvium. These deposits have variable composition, made up of silt, sand, gravel, and/or clay. Where composed of sands and gravels, the permeabilities are moderate to high; and if the deposit is broad and thick enough (generally adjacent to larger streams) areas of saturation can form and function as a local aquifer that can produce usable groundwater from shallow water wells. The Leona Formation can be 60-ft thick in some locations and may represent older Quaternary fluvial deposits. Younger stream terraces are inset against the Leona Formation and older Tertiary and Cretaceous strata. Terrace deposits along the larger streams such as the Blanco and Guadalupe Rivers may be as thick as 20 ft. Stream-bed alluvium is generally very thin and areas mapped as such commonly include local bedrock outcrops.

3. GEOLOGIC PROCESSES

3.1 Fault and Seismic Data

3.1.1 Fault Data

Fault evaluations have been conducted previously for this Site by McBride and Ratliff (1988), Rust Environment & Infrastructure (1994), and Geosyntec (2005), who investigated: (i) published geologic maps and information on the structural and seismic history of the Comal and Guadalupe County areas; (ii) evidence of displacement of surficial deposits observed during field reconnaissance and review of boring logs; and (iii) evaluation of lineaments on aerial photographs and topographic maps. One inactive subsurface fault was observed in the field during construction in the 1990 timeframe near the northern Site boundary (Unit 1), in an area excavated for landfill development at that time. The area was investigated and documented by Hydro-Search and MFG (1990) and showed no displacement of overlying strata, demonstrating that movement of the fault ceased before deposition of the strata in late Tertiary to early Quaternary time about 2.5 million years ago. The outcome of the previous site-specific evaluations cited above are that no Holocene faults were identified.

For this permit amendment application, Geosyntec reviewed relevant published information and site-specific data, including the previous evaluations by others. More specifically, Geosyntec's fault area evaluation was conducted to check for evidence of faulting at the Site and in the vicinity, to assess whether: (i) the Site is situated in an area that could potentially be subject to differential subsidence or active geologic faulting; (ii) the landfill units and lateral expansion areas are located within 200 ft of a fault that has had displacement in Holocene time; and (iii) there are any active faults known to exist within ½ mile of the Site. The evaluation indicated the facility is not situated in a fault area, there are no faults that have displaced in Holocene time within 200 ft of the solid waste units and lateral expansion area, and there no active faults known to exist within ½ mile of the Site. Therefore, the Site is in compliance with 30 TAC §330.555 (and without the need for demonstrations or detailed fault studies). The basis for this finding is elaborated on below.

As mentioned, the regional structural geologic setting of the Site is on or just outside of the eastern edge of the inactive Balcones Fault Zone, and not within the inactive Luling Fault Zone (which is further to the east). Faults associated with the Balcones Fault Zone are generally normal faults with the downthrown side to the east or southeast. Inspection of the geologic map (Drawing 4A-2) shows the location of mapped or inferred faults being more prevalent in areas three or more miles to the west of the Site. According to Collins (2000), most movement of the Balcones Fault Zone occurred during the late Oligocene or early Miocene epochs (around 20 million years ago). Similarly, Jones et al. (2011) (citing Young, 1972) indicate that the last episode of movement in the fault zone is thought to have occurred in the late early Miocene, approximately 15 million years ago.

The published regional geologic map on Drawing 4A-2 also indicates the presence of an inferred normal fault on the extreme eastern edge of the Site. During Geosyntec's 2022-2023 hydrogeologic site investigation (discussed in more detail subsequently in Section 5 of this report), borings were drilled on both sides of this line, and no evidence of this potential fault was detected at the depths investigated. For example, comparison of the strata thicknesses/contact elevations and material composition on either side of this inferred feature did not reveal stratigraphic offsets or differences in strata composition/physical properties. Thus, this inferred fault on the published map could not be confirmed by the site-specific investigation, and even if it were to be present at or near the Site, the large body of knowledge on area geology and faulting indicate that the geologic age and origin of such a fault would make it inactive.

A fault search using the United States Geological Survey (USGS) interactive mapping tool for U.S. Quaternary Faults (differentiating between Latest Quaternary <15,000 years through Late and Undifferentiated Quaternary <1.6 million years) revealed no such faults at or near the Site, nor is the Site located in a classified area (Class A, B, or C) of potential tectonic faults or deformation. This was corroborated by inspection of the published USGS map of young faults in the United States by Howard et al. (1978), which reveal no geologically-recent faulting in the area. Furthermore, the seismic impact zone evaluation described subsequently in this report also provides evidence of the lack of seismicity in this area, helping support the aseismic nature of this region, and inactivity of ancient faults in the area; and inability for reactivation of old faults due to natural or human-induced activities.

Aerial photographs of the Site and surrounding area were also reviewed by Geosyntec. No unusual ground-expressions of scarps or lineaments were interpreted within 200 ft of the Site, nor are there other indications of active faulting evident from comparisons of current and historical aerial photographs. No evidence of structural damage to buildings on the property potentially indicative of vertical subsurface displacement was identified. No evidence of faulting was found by examination of area roadways for vertical offsets or profile anomalies; no structural influence of structural influence of structural relief or topographic features such as sag ponds or truncated alluvial spurs were observed on the Site.

As part of Geosyntec's site investigation for this permit amendment application, integrated with previous data, no evidence of vertical displacement or stratigraphic offsets indicative of faults was identified from the Site borings and resulting geologic cross-sections and layer maps generated from these data and included in Attachment 4A of this report, other than the aforementioned inactive subsurface fault identified at Unit 1.

The area on-site and nearby the facility also has very few groundwater withdrawal wells, and no active oil and gas wells (as mapped and noted on Drawing 4A-8 in Attachment 4A of this report). From this, it is apparent that here are no known mineral withdrawal activities occurring on-site and in the nearby area. Published information from local groundwater conservation districts indicate the Site and nearby region is not in an area known to experience subsidence, due to the

well-compacted and rigid geologic framework in the region [Comal Trinity Groundwater Conservation District (2018); Guadalupe County Groundwater Conservation District (2018)]. Accordingly, differential subsidence or faulting from such activities that would adversely impact the integrity of the landfill liners is not expected. Additionally, none of the previous site-specific subsurface investigations have revealed evidence of subsidence beneath the facility.

3.1.2 Seismic Data

A seismic impact zone is defined as an area with a 10% or greater probability that the maximum horizontal acceleration in lithified earth material (i.e., the peak ground acceleration (PGA)), expressed as a percentage of the earth's gravitational pull (g), will exceed 0.10g in 250 years. The USGS publishes seismic hazard maps which present PGA values for a seismic risk level of 2% probability that the PGA will be exceeded in 50 years (i.e., probability of exceedance (PE) of 2% in 50 years). This is approximately statistically equivalent to a PE of 10% in 250 years. Drawing 4A-4 in Attachment 4A of this report presents a USGS seismic hazard map that includes PGA contours, and from this one is able to identify the location of seismic impact zones (i.e., those areas on the PE of 2% in 50 years-map located within PGA contours of 0.10g or greater). The Site location is shown on Drawing 4A-4. As indicated, the Site is located in an area with an approximate PGA of 0.0243g, and accordingly the Site in not located in a seismic impact zone.

3.1.3 Erosion Potential

An assessment was made of the potential for the geologic process of erosion at the Site and its vicinity. In general, the process of potential erosion stems from overland surface water flow causing soil loss and gully formation, or from fluvial action (meandering streams changing course). This assessment was not an engineering evaluation of the surface water drainage design and engineered erosion-resistant features of the landfill itself (which are addressed in Part III, Attachment 2), but rather for the geologic processes of potential erosion. From this assessment, it is concluded that there is minimal potential for active geologic erosion occurring in and around the Site. The area terrain is rolling to flat, with low relief (ground surface generally sloping at 3% to 10% or flatter in some areas). With this gentle topography and the near-surface Taylor Group stiff to very hard clay and claystone materials (resistant to erosion), excessive erosion due to surface-water processes such as overland flow, channeling, and gullying is not anticipated. Examination of aerial photographs over time did not reveal significant changes in the drainage patterns or stream alignments of Mesquite Creek or other tributaries/drainageways on-site or nearby, and revealed good vegetation coverage in the area to provide resistance against widespread or significant erosion. Furthermore, the Site is not located in a Federal Emergency Management Agency (FEMA) mapped 100-year floodway or floodplain, as addressed in the Part I/II Report (e.g., Section 11.1 and on Drawing I/IIA-16). The existing and proposed development of the waste disposal areas are at elevations above (and set-back from) streams and creeks (e.g., Mesquite Creek), thus providing a margin of safety and protection against potential stream migration and associated bank erosion towards the Site.

3.2 <u>Unstable Areas</u>

Based on the soils and geology discussed in this report, and the geotechnical characteristics of the subsurface as described in the Geotechnical Report in Part III, Attachment 3D.1, the underlying soils at the facility are not soft or weak, and are not expected to exhibit poor foundation conditions, nor landslides, nor experience any meaningful differential settlement. Collins (2000) descriptions and mapping of regional geology reveals no karst terrain (exposed or near-surface soluble bedrock that can experience dissolution leading to formation of sinkholes, cover-collapses, or similar features) at the Site or nearby. This is corroborated by the Comal County Regional Habitat Conservation Plan map of potential karst habitat zones, which indicates the nearest potential karst area being the Edwards Aquifer recharge (outcrop) zone located west of the City of New Braunfels, 4 miles or more west of the Site. The Site is not in an area susceptible to mass movement such as landslides because of the relatively low relief of the topography and the stiff cohesive nature and consistency of the soils.

Furthermore, there are also no on-site or local geomorphologic features, nor human-made features/events that could be indicative of unstable areas or likely to lead to erosion, collapse, or other instability. As described above in the fault discussion, the Site is not in an area known to experience subsidence or of a geologic characteristic that could be subject to subsidence, there is minimal groundwater withdrawal in the immediate area, and there are no active oil and/or gas wells in the vicinity. Additionally, Part III, Attachment 3D presents slope stability and settlement analyses, showing adequate calculated factors of safety against sliding of the waste mass and foundation and minimal foundation settlement beneath the Site due to the loads induced by the landfill – indicating that mass movement of the landfill is not expected. The stiff clays underlain by claystones that are the predominant soil/rock type encountered at the facility will provide a stable foundation for cell construction. For the foregoing reasons, the Site is in compliance with 30 TAC §330.559, and is not located in an unstable area.

4. **REGIONAL AQUIFERS**

The Texas Water Development Board (TWDB) recognizes nine (9) major aquifers and 22 minor aquifers in Texas. From evaluation of TWDB maps of these regional major and minor aquifers, there are two (2) regional aquifers in the general Site vicinity: (i) the Edwards Aquifer (a major aquifer of the State of Texas); and (ii) the Trinity Aquifer (a major aquifer of the State of Texas); The location of the Site in relation to these aquifers is presented below in Figures 4-1 and 4-2 for the Edwards Aquifer and Trinity Aquifer, respectively. These figures show that according to the TWDB, neither regional aquifer (i.e., the outcrop or subsurface portion of the aquifer) is present beneath the Site (discussed in more detail in Sections 4.1 and 4.2).

Figure 4-1. Map of Edwards Aquifer (Balcones Fault Zone Portion) [from TWDB, George et al. (2011)]

Figure 4-2. Map of Trinity Aquifer [from TWDB, George et al. (2011)]

4.1 Edwards Aquifer

The principal perennial aquifer in the region is the Edwards Aquifer (Balcones Fault Zone). The Edwards Aquifer comprises the Edwards Group Limestone and the overlying Georgetown Formation limestone. As shown on Figure 4-1, the nearest portion of the Edwards Aquifer is approximately 4 miles or more northwest of the Site (i.e., the outcrop, or recharge zone). The TWDB-mapped extent of this regional aquifer is not present beneath the Site, even though the Edwards formations continue in the subsurface beneath the Site, dipping to the southeast under confined conditions.

The aquifer is primarily recharged via infiltration along the outcrop of the formations approximately 4 miles or more northwest of the Site. There, in the Balcones Fault Zone, a series of faults have exposed the aquifer at the surface. Approximately 85% of surface recharge to the aquifer is derived from streams draining the Edwards Plateau (Hamilton et al., 2004). These streams lose all or most of their base-flow as they cross the recharge zone, where stream beds are composed of porous and fractured limestone. The remaining 15% of surface recharge is derived from direct precipitation on the recharge zone (Hamilton et al., 2004).

The flow system of the Edwards aquifer is complex, particularly during periods of heavy recharge to the aquifer or discharge from the aquifer. Water levels are typically highest in the spring and then decline during the summer before rebounding in the fall and winter (Hamilton et al., 2004). The aquifer may reach more average conditions of equilibrium during winters when the recharge and discharge are small. A published potentiometric surface map for the Edwards Aquifer was presented by Maclay and Small (1986) and is based on July 1974 water levels (see Drawing 4A-6). An updated potentiometric surface map of the Edwards Aquifer was published by Lindgren et al. (2004) using 2001 potentiometric data, and is presented in Drawing 4A-7. As shown, groundwater flow direction in the Edwards Aquifer, while variable, is generally to the northeast in the unconfined (recharge) areas in the general area.

In the region, the Edwards Aquifer is under both unconfined and confined conditions, depending on location, and contains both a fresh water and saline water zone, the interface of which is known as the "bad-water" line. The bad-water line is determined by the concentration of total dissolved solids (TDS) in the groundwater. The fresh-water zone up-dip from this boundary is defined where TDS concentrations are less than 1,000 milligrams per liter (mg/L), and the saline zone down-dip from the boundary is defined where TDS concentrations exceed 1,000 mg/L. The saline portion of the aquifer formations have water of marginal quality for usage. Additional characteristics of the Edwards Aquifer are presented below in Table 4-2.

The Site is down-dip from the bad-water line in an area where the subsurface Edwards formations are confined and the water is characterized as saline with high sulfate and dissolved solids concentrations (Maclay and Small, 1986) (i.e., the Site is on the "bad water" side of the aquifer). At the Site, the top of the Edwards formations are approximately 500 to 600 feet below ground surface (ft bgs) (see Table 4-1 and Drawing 4A-3). Here, the upper Glen Rose Formation and Del Rio Formation serve as lower and upper confining layers, respectively. As described by Maclay and Small (1986), the upper Glen Rose Formation generally has little vertical permeability and is a confining bed, with vertical groundwater movement restricted by marls with negligible permeability. The Del Rio Formation also has little permeability as it is composed of clay and includes beds of thin, nearly impermeable limestone in the lower portion of the unit. Furthermore, the formations above the Glen Rose at the Site include overlying low-permeability and non-waterbearing strata (including but not limited to the clays/claystones of the Taylor Group). As such, the Edwards formations are confined above and below, and not hydraulically connected to any other aquifer beneath the Site.

4.2 <u>Trinity Aquifer</u>

Formations attributed to the middle Trinity Aquifer (lower Glen Rose Limestone, Hensell Sand, Cow Creek Formation) are present in the general Site area, further below (i.e., deeper than) the Edwards Aquifer. As shown on Figure 4-2, the closest portion of the Trinity Aquifer to the Site is the subsurface zone located near the northwestern tip of the facility permit boundary and in locations further west-northwestward in the central Texas Hill Country. The TWDB-mapped extent of this regional aquifer is not present beneath the Site, even though the Trinity formations continue to dip to the southeast under confined conditions. Relative to the Edwards Aquifer, only limited amounts of groundwater in Comal and Guadalupe Counties have been obtained from the Cow Creek Formation and the lower section of the Glen Rose Limestone underlying the Edwards Aquifer (Maclay and Small, 1986). As noted above, the Glen Rose Limestone generally has little permeability, and vertical movement is restricted by marls with negligible permeability. This maintains a lack of hydraulic connection between the overlying Edwards Aquifer and underlying Trinity Aquifer formations in the Site area. Additional characteristics of the Trinity Aquifer are presented below in Table 4-2.

HYDRAULIC PR	OPERTI	ES OF	RE	GION	AL A	QUIFEI	RS II	N SI	TE	VIC	INI	TY	
from George et al. (20	11); Macla	y and	Sma	11 (198	86); Jo	nes et al.	(201	1);	Kell	ey et	t al.	(20	14)
			• •	a		-							

TABLE 4-2

Parameter	Edwards Aquifer (Major Aquifer)	Trinity Aquifer (Major Aquifer) ["Hill Country" portion near Site]			
Composition	Limestone, dolomite, marl	Limestone, marl, sand, shale			
Transmissivity (typical range)	$1.2 \ x \ 10^6 \ -1.6 \ x \ 10^6 \ ft^2/d$	$100 - 5.8 \text{ x } 10^4 \text{ ft}^2/\text{d}$			
Hydraulic Conductivity (typical range)	50 – 1,000 ft/d	5 – 150 ft/d			
Water Table/Confined	Confined	Confined			
Aquifer Interconnectivity None (Maclay and Small, 19		None (Maclay and Small, 1986)			
Regional Water Table or Potentiometric Surface Map	See Drawing 4A-6 and 4A-7 in Attachment 4A	Not provided			
Groundwater Flow Rate (typical range)	2-31 ft/d	Published flow velocity data of aquifer in Site area not available (estimated spring discharges in northwest Comal Country over 20 miles away from Site are about 150-300 gpm).			
Water Quality	Slightly to moderately saline	Slightly to moderately saline			
Total Dissolved Solids (typical range)	1,000 – 5,000 mg/L	1,000 – 3,000 mg/L			
Areas of Recharge Within 5- Miles	Edwards Aquifer recharge zone (outcrop) at \geq 4 miles west- northwest of Site	None			
Present Primary Use of Groundwater Within 5-Miles	Public Supply, Domestic, Irrigation	None within 5-miles			
Identification of Water Wells Within 1-Mile	Two (2) unused & abandoned wells (See Drawing 4A-8 in Attachment 4A)	None			

Notes: $ft^2/d = feet$ squared per day; ft/d = feet per day; mg/L = milligrams per liter.

4.3 Other Aquifers

For information, it is also noted that according to the TWDB, the outcrop (i.e., recharge zone) of the Carrizo-Wilcox Aquifer occurs in southeastern portions of Guadalupe County, more than approximately nine (9) miles away from the Site. The Site is not above or near the outcrop (recharge) zone or subsurface zone of the Carrizo-Wilcox Aquifer, nor the recharge zone of any other aquifer classified by the TWDB as a major or minor aquifer of Texas. The published regional geologic map shows the presence of the Leona Formation (a Quaternary sand, silt, and gravel alluvial formation) over 1,200 ft south of the Site. While this formation is not a TWDB recognized aquifer, there are a few shallow water wells completed in gravels of this formation in the general area (discussed in the next section of this report), indicating that it is a local aquifer south of the Site.

4.4 <u>Nearby Well Information and Local Groundwater Use</u>

4.4.1 Water Wells and Local Groundwater Usage

A water well search of the available records from the TWDB and the Texas Commission on Environmental Quality (TCEQ) revealed that a total of nine (9) water wells were located within a one-mile radius of the facility permit boundary. The locations of these wells are shown on Drawing 4A-8; as shown, one water well (unused/abandoned) is located on-site in the southern portion of the expansion area, and there are no other water wells within 500-ft of the Site. Information about each of the nearby wells within one mile of the facility, including the type of well (i.e., groundwater usage) is summarized below in Table 4-3.

Map ID	Depth Drilled (ft bgs)	Type of Well	Completion Material/Formation ⁽¹⁾						
6824301	650	Unused/Abandoned	Edwards						
6824302	600	Oil Test Well (Unused/Abandoned)	Edwards						
6824303	Not reported	Domestic, Stock	Gravel (Leona)						
6824304	38	Domestic, Stock, Irrigation	Gravel (Leona)						
6824305	32	Domestic, Stock	Gravel (Leona)						
68-24-3	44	Domestic	Gravel (Leona)						
291255	56	Domestic	Leona						
68-24-2A	100	Domestic	Limestone (unknown, possibly claystones of Taylor Group)						
6824610	36	Domestic	Gravel (Leona)						

TABLE 4-3
WATER WELLS WITHIN A ONE-MILE RADIUS OF THE SITE

Note:

1. Completion formation was not reported on the State of Texas well logs, but was inferred based on drilled depth, material description (if noted), and local hydrogeology.

Of these nearby wells, the predominant groundwater usage locally is from wells south of the Site in shallow gravel deposits likely to be part of the Leona Formation, which is not present on-site. The two (2) deep wells drilled to the Edwards Aquifer as noted in Table 4-3 are unused and appear to have been abandoned, which is consistent with their locations being on the "bad-water" side of the aquifer where the water quality is saline and typically unusable for domestic, stock, or irrigation.

4.4.2 Oil and Gas Wells Within One Mile

An oil and gas well search was conducted by reviewing available records from the Railroad Commission of Texas (RRC). There are no known oil and gas wells on-site or within 500-ft of the facility, nor are they any known active oil and gas wells within a one-mile radius of the facility permit boundary. As shown on Drawing 4A-8, RRC records show is one oil and gas well (Map ID 187) located along Schwarzlose Road approximately 2,500 ft southeast of the Site; the wellhead could not be located by pedestrian survey, confirming it is inactive or otherwise may have been plugged/abandoned.

5. SUBSURFACE INVESTIGATION REPORT

5.1 Drilling and Sampling

Investigations of subsurface geology and geotechnical conditions at the Site have been conducted over time as described in the following sections of this report. Boreholes advanced at the Site are summarized in Table 4-4 below. Additionally, the location of each borehole is presented on Drawing 4A-9A and 4A-9B and the boring logs are included in Attachment 4C. Results of laboratory tests performed on samples as part of these investigations to characterize the geotechnical properties of the subsurface strata can be found in the Geotechnical Report (Part III, Attachment 3D.1).

Boring	Northing ³	Easting ³	Surface Elevation (ft, MSL)	Total Depth of Boring (ft)	Bottom of Boring Elevation (ft, MSL)	Depth Below EDE ¹ (ft)	Drilled by ²
CB-1	13818690.8	2274791.0	670.0	60.0	610.0	-50.0	MRA [1987]
CB-2	13817699.1	2275753.2	623.0	40.0	583.0	-23.0	MRA [1987]
CB-3	13817202.0	2277006.0	632.0	60.0	572.0	-12.0	MRA [1987]
CB-4	13816510.4	2277509.9	604.0	60.0	544.0	16.0	MRA [1987]
CB-5	13817118.0	2278151.8	605.0	60.0	545.0	15.0	MRA [1987]
B-6/P-6	13817869.5	2277502.9	638.0	80.0	558.0	2.0	MRA [1987]
B-7/P-7	13818645.6	2276699.7	664.0	80.0	584.0	-24.0	MRA [1987]
B-8	13818827.8	2275873.5	638.0	80.0	558.0	2.0	MRA [1987]
B-9	13818810.5	2275359.3	640.0	80.0	560.0	0.0	MRA [1987]
B-10/P-10	13818187.4	2275250.2	642.0	80.0	562.0	-2.0	MRA [1987]
B-11	13818273.3	2275758.9	628.0	75.5	552.5	7.5	MRA [1987]
B-12	13817701.1	2276456.4	642.0	80.0	562.0	-2.0	MRA [1987]
B-13	13817132.6	2276308.5	626.0	80.0	546.0	14.0	MRA [1987]
B-14/P-14	13816748.3	2276753.3	604.0	50.0	554.0	6.0	MRA [1987]
B-15	13817062.0	2277640.3	606.0	80.0	526.0	34.0	MRA [1987]
PZ-1	13818483.1	2276848.2	662.6	57.0	605.6	-45.6	MFG [1990]
PZ-2	13818510.9	2275457.0	633.2	70.5	562.7	-2.7	MFG [1990]
PZ-3	13818828.2	2275991.9	643.9	32.5	611.4	-51.4	MFG [1990]
PZ-4	13817665.5	2277682.0	627.5	50.4	577.1	-17.1	MFG [1990]
PZ-5	13817073.4	2277530.2	614.0	51.4	562.6	-2.6	MFG [1990]
GP-1	13818826.2	2275954.2	641.9	24.0	617.9	-57.9	FM [1991]
GP-2	13818783.0	2276542.2	662.8	35.0	627.8	-67.8	FM [1991]
GP-3	13817930.8	2277413.0	641.0	22.0	619.0	-59.0	FM [1991]
GP-4	13817122.7	2278237.6	602.8	36.0	566.8	-6.8	FM [1991]
GP-5	13816548.8	2277564.5	602.5	37.0	565.5	-5.5	FM [1991]
GP-6	13817111.4	2276368.4	623.9	44.0	579.9	-19.9	FM [1991]

TABLE 4-4SUMMARY OF BORINGS

Attachment 4 Geology Report

Boring	Northing ³	Easting ³	Surface Elevation (ft, MSL)	Total Depth of Boring (ft)	Bottom of Boring Elevation (ft, MSL)	Depth Below EDE ¹ (ft)	Drilled by ²
PZ-6	13816630.1	2277407.7	602.7	24.0	578.7	-18.7	MFG [1991]
PZ-7	13816846.0	2277914.4	601.7	28.0	573.7	-13.7	MFG [1991]
PZ-8	13816851.8	2277922.8	600.7	63.5	537.2	22.9	MFG [1991]
PZ-9	13817410.2	2276071.5	621.9	56.0	565.9	-5.9	MFG [1991]
PZ-10	13817418.6	2276066.0	622.0	80.0	542.0	18.0	MFG [1991]
PZ-11	13818288.0	2277059.1	659.7	50.0	609.7	-49.7	MFG [1991]
PZ-12	13818280.2	2277068.5	660.1	68.0	592.1	-32.1	MFG [1991]
SB-1/MW-1	13818827.6	2276471.6	662.4	45.0	617.4	-57.4	SD [1992]
SB-2/MW-2	13817476.5	2277889.5	615.6	35.0	580.6	-20.6	SD [1992]
SB-3/MW-3	13816695.3	2277745.6	603.5	34.0	569.5	-9.5	SD [1992]
SB-4/MW-4	13816747.5	2276733.9	605.3	30.0	575.3	-15.3	SD [1992]
SB-5/MW-5	13818768.9	2274725.7	670.5	60.0	610.5	-50.5	SD [1992]
PZ-1M	13817724.3	2277295.5	644.2	45.0	599.2	-39.2	SD [1992]
SB-6/MW-6	13817972.8	2275468.2	632.9	63.5	569.4	-9.4	REI [1995]
GP-6R	13817050.8	2276398.8	623.5	43.3	580.2	-20.2	REI [1995]
	In	vestigations (Generally Cove	ering the Ex	isting Unit 2 A	rea	
GB-01	13816876.5	2278393.2	595.4	95.0	500.4	83.6	GC [2004]
GB-02	13816525.6	2277962.4	599.5	70.5	529.0	55.0	GC [2004]
GB-03	13815970.6	2277506.7	607.7	104.5	503.2	80.8	GC [2004]
GB-04	13814602.4	2278766.5	668.2	145.0	523.2	60.8	GC [2004]
GB-05	13815229.1	2279182.7	640.5	115.0	525.5	58.5	GC [2004]
GB-06	13815883.3	2279871.8	646.0	124.0	522.0	62.0	GC [2004]
GB-07	13816405.0	2278500.4	602.9	59.0	543.9	40.1	GC [2004]
GB-08	13816002.2	2278101.0	623.8	71.5	552.3	31.7	GC [2004]
GB-09	13815699.8	2279256.0	638.7	89.0	549.7	34.3	GC [2004]
GB-10	13815451.5	2278556.9	648.7	99.0	549.7	34.3	GC [2004]
GB-11	13815865.0	2278665.3	617.2	90.0	527.2	56.8	GC [2004]
GB-12	13815351.5	2278055.8	639.6	119.0	520.6	63.4	GC [2004]
GB-13	13816271.9	2279036.3	618.8	95.0	523.8	60.3	GC [2004]
GB-14	13815300.7	2279853.7	679.8	136.0	543.8	40.2	GC [2004]
GB-15/MW- 16	13815626.5	2280863.5	643.4	144.0	499.4	84.6	GC [2004]
GB-16	13815064.2	2280568.1	679.5	139.0	540.5	43.5	GC [2004]
GB-17	13814631.0	2280885.4	654.4	134.0	520.4	63.6	GC [2004]
GB-18	13814753.6	2280137.3	694.2	149.0	545.2	38.8	GC [2004]
GB-19	13814291.2	2279905.5	688.7	150.0	538.7	45.3	GC [2004]
GB-20	13814134.9	2279345.2	675.9	169.0	506.9	77.1	GC [2004]
GB-21	13813671.2	2280075.2	709.0	187.0	522.0	62.0	GC [2004]
GB-22	13814811.4	2279501.0	656.5	140.0	516.5	67.5	GC [2004]
GB-23	13814122.2	2280492.8	689.5	185.0	504.5	79.5	GC [2004]

TABLE 4-4SUMMARY OF BORINGS

Boring	Northing ³	Easting ³	Surface Elevation (ft, MSL)	Total Depth of Boring (ft)	Bottom of Boring Elevation (ft, MSL)	Depth Below EDE ¹ (ft)	Drilled by ²
GB-24	13815567.3	2280399.1	677.5	155.0	522.5	61.5	GC [2004]
GP-7	13817956.2	2275490.2	632.0	22.0	610.0	-26.0	GC [2005]
MW-7	13816870.1	2277942.3	589.8	40.0	549.8	34.2	MFG [2006]
MW-8	13816463.6	2277485.6	588.8	40.0	548.8	35.2	MFG [2006]
GP-5A	13815940.0	2277535.0	609.1	52.0	557.1	26.9	GC [2009]
GP-8	13816.6	2277112.0	605.3	49.0	556.3	27.7	GC [2009]
GP-9	13817505.0	2275964.0	625.0	48.0	577.0	7.0	GC [2009]
GP-10	13818348.0	2276992.0	663.9	47.5	616.4	-32.4	GC [2009]
GP-11	13817459.0	2277906.0	615.9	57.0	558.9	25.1	GC [2009]
GP-12	13816475.0	2278886.0	610.0	31.0	579.0	5.0	GC [2009]
GP-13	13816023.0	2279585.0	639.9	62.0	577.9	6.1	GC [2009]
GP-20	13814695.0	2278675.0	664.2	65.0	599.2	-15.2	GC [2009]
GP-21	13815429.0	2277985.0	637.8	49.0	588.8	-4.8	GC [2009]
MW-2A	13817069.0	2278162.0	609.0	37.0	572.0	12.0	GC [2009]
MW-7A	13816498.0	2277256.0	603.4	27.0	576.4	7.6	GC [2009]
MW-8A	13817143.0	2276302.0	625.5	55.0	570.5	13.5	GC [2009]
MW-9	13817565.0	2275906.0	626.0	50.0	576.0	8.0	GC [2009]
MW-10	13814602.0	2278767.0	670.5	57.0	613.5	-29.5	GC[2009]
MW-11	13814064.0	2279299.0	679.0	63.0	616.0	-32.0	GC [2009]
MW-18	13815985.8	2279745.5	635.1	60.0	575.1	8.9	GC [2009]
MW-19	13816167.0	2279219.0	633.2	55.0	578.2	5.8	GC [2009]
MW-20	13816584.0	2278784.0	606.3	40.0	566.3	17.7	GC [2009]
MW-21	13816481.0	2278358.0	606.8	43.0	563.8	20.2	GC [2009]
MW-22	13816113.0	2278083.0	612.2	37.0	575.2	8.8	GC [2009]
MW-23	13816006.0	2277841.0	621.2	35.0	586.2	-2.2	GC [2009]
GP-14	13815798.2	2280540.8	657.7	56.0	601.7	-17.7	TT [2013]
GP-19	13814102.7	2279257.6	676.5	56.0	620.5	-36.5	TT [2013]
GP-15	13815411.4	2280910.4	637.7	33.0	604.7	-20.7	TT [2016]
MW-17	13815851.0	2280330.0	655.4	63.0	592.4	-8.4	TT [2016]
GP-16	13814396.7	2280879.4	654.8	31.5	623.3	-39.3	TT [2018]
GP-17	13813948.3	2280401.6	699.8	77.5	622.3	-38.3	TT [2018]
GP-18	13813461.0	2279899.2	708.7	75.0	633.7	-49.7	TT [2018]
MW-12	13813666.3	2280080.1	709.3	76.0	633.3	-49.3	TT [2018]
MW-13	13814058.7	2280515.9	688.7	56.0	632.7	-48.7	TT [2018]
MW-14	13814514.5	2280890.1	654.0	57.5	596.5	-12.5	TT [2018]
MW-15	13815072.8	2280885.4	647.2	53.0	594.2	-10.2	TT [2018]
MW-4A	13813671.2	2280075.2	609.4	30.0	579.4	4.6	BBA [2020]

TABLE 4-4SUMMARY OF BORINGS

Boring	Northing ³	Easting ³	Surface Elevation (ft, MSL)	Total Depth of Boring (ft)	Bottom of Boring Elevation (ft, MSL)	Depth Below EDE ¹ (ft)	Drilled by ²					
Investigations Generally Covering the Unit 2 Expansion Area												
GB-25	13813774.9	2280750.8	661.7	87.0	574.7	35.3	GC [2022-2023]					
GB-26	13813561.9	2280316.8	702.3	102.0	600.3	9.7	GC [2022-2023]					
GB-27	13813170.6	2280703.6	662.4	113.0	549.4	60.6	GC [2022-2023]					
GB-28	13814021.3	2279217.2	685.2	85.0	600.2	9.8	GC [2022-2023]					
GB-29	13813630.3	2279604.1	712.2	112.0	600.2	9.8	GC [2022-2023]					
GB-30	13813239.2	2279990.9	696.1	96.0	600.1	9.9	GC [2022-2023]					
GB-31	13812797.3	2280376.2	669.0	69.0	600.0	10.0	GC [2022-2023]					
GB-32	13812557.9	2280894.4	651.9	77.0	574.9	35.1	GC [2022-2023]					
GB-33	13813500.9	2278691.2	702.2	153.0	549.2	60.8	GC [2022-2023]					
GB-34	13813081.8	2279095.1	711.0	142.0	569.0	41.0	GC [2022-2023]					
GB-35	13812718.9	2279464.8	709.7	110.0	599.7	10.3	GC [2022-2023]					
GB-36	13812327.8	2279851.6	681.8	107.0	574.8	35.2	GC [2022-2023]					
GB-37	13811937.0	2280238.4	668.8	120.0	548.8	61.2	GC [2022-2023]					
GB-38	13812980.5	2278165.1	707.6	133.0	574.6	35.4	GC [2022-2023]					
GB-39	13812552.5	2278572.8	707.4	115.0	592.4	17.6	GC [2022-2023]					
GB-40	13812198.5	2278938.7	693.0	144.0	549.0	61.0	GC [2022-2023]					
GB-41	13811767.5	2279327.5	676.8	77.0	599.8	10.2	GC [2022-2023]					
GB-42	13811416.4	2279712.4	663.2	88.0	575.2	34.8	GC [2022-2023]					
GB-43	13812460.1	2277639.1	709.3	109.0	600.3	9.7	GC [2022-2023]					
GB-44	13812069.0	2278025.9	711.7	137.0	574.7	35.3	GC [2022-2023]					
GB-45	13811716.4	2278424.5	711.5	112.0	599.5	10.5	GC [2022-2023]					
GB-46	13811287.2	2278799.4	685.2	110.0	575.2	34.8	GC [2022-2023]					
GB-47	13810896.1	2279186.2	670.9	71.0	599.9	10.1	GC [2022-2023]					
GB-48	13811939.7	2277113.0	707.9	159.0	548.9	61.1	GC [2022-2023]					
GB-49	13811548.7	2277499.8	703.2	103.0	600.2	9.8	GC [2022-2023]					
GB-50	13811157.6	2277886.6	688.6	114.0	574.6	35.4	GC [2022-2023]					
GB-51	13810766.7	2278273.4	676.5	76.0	600.5	9.5	GC [2022-2023]					
GB-52	13810376.6	2278659.2	667.6	119.0	548.6	61.4	GC [2022-2023]					

TABLE 4-4SUMMARY OF BORINGS

[SEE NEXT PAGE FOR TABLE 4-4 NOTES]

Table 4-4 Notes:

- EDE = Elevation of Deepest Excavation. Negative values indicate depth above the EDE. The EDEs specific
 to each area, used as the basis for this table, are presented below. For the Unit 2 expansion area, the basis
 for the depths of new borings in the approved Soil Boring Plan were based on a preliminary estimate of the
 deepest planned excavation in the expansion area. However, the subsequent landfill design prepared for this
 area of the Site (as presented in this permit amendment application) will result in a shallower actual landfill
 excavation depth. Thus, the elevation listed below is the drilling basis EDE, and not the actual landfill design
 EDE for the Unit 2 expansion area.
 - a. Existing Unit 1 approximate EDE (including sumps) = 560 ft, MSL
 - b. Existing Unit 2 approximate EDE (including sumps) = 584 ft, MSL
 - c. Unit 2 Expansion Area preliminary design-basis EDE = 610 ft, MSL
- MRA = McBride-Ratcliff and Associates; MFG = McCulley, Frick & Gilman; SD = SEC Donahue; REI = Rust E&I; FM = Fugro-McClelland; GC = Geosyntec Consultants, Inc.; TT = TetraTech; BBA = Bullock, Bennett & Associates
- 3. Coordinates refer to Texas State Plane, North American Datum (NAD)-83, Texas Central Zone.

5.1.1 Geosyntec 2022-2023 Subsurface Investigation

A field subsurface exploration program to investigate the geotechnical and hydrogeologic characteristics of the expansion area of the Site was conducted by Geosyntec between and December 2022 and February 2023 (with ongoing water level monitoring thereafter), in accordance with the Soil Boring Plan approved by TCEQ on 4 October 2022. A copy of the approved Soil Boring Plan is provided in Attachment 4B of this report. Per the approved Soil Boring Plan, 28 borings were drilled to investigate and characterize the subsurface of the expansion area (see above Table 4-4):

- all 28 borings were drilled to at least five (5) ft below elevation 610 ft, MSL (the basis for the depths of new borings in the approved Soil Boring Plan based on a preliminary estimate of the deepest planned excavation in the expansion area, even though the subsequent landfill design prepared for this area of the Site as presented in this permit amendment application) will result in a shallower landfill excavation depth);
- 15 of 28 borings were drilled to at least 30 ft below elevation 610 ft, MSL; and
- of the 15 deeper borings, six (6) were drilled to a depth of at least 30-ft below the existing Unit 2 elevation of deepest excavation (EDE) of 584 ft, MSL.

Consistent with 30 TAC §330.63(e)(4)(B) and the approved Soil Boring Plan, the borings were sufficiently deep to allow identification of the uppermost aquifer and the aquiclude at the lower boundary (with no interconnected aquifers identified).

30 TAC §330.63(e)(4)(B) further notes that aquifers more than 300 ft below the EDE and where travel times for constituents to the aquifer are in excess of 30 years plus the estimated life of the Site need not to be identified by borings. According to published TWDB maps, there are no usable regional or local aquifers beneath the Site – as described in Section 4, and given the poor water quality of formations associated with the Edwards Aquifer beneath the Site; and the much deeper confined and not hydraulically connected Trinity formations. The first perennial aquifer below

the Site is the Edwards Aquifer, as described in Section 4.1, whose water-bearing formations are located approximately 500 to 600-ft below ground surface (i.e., more than 400-ft below the overall facility EDE of elevation 560 ft, MSL which occurs in the now complete and final-covered Unit 1). As part of this investigation, no soil borings were advanced to the top of the Edwards formations based on: (i) the sufficiency of regional data that exists to accurately locate the formation; and (ii) the low-permeability confining formations that separate the bottom of the facility from the Edwards Aquifer; and (iii) studies that indicate groundwater in this part of the Edwards Aquifer does not recharge from above; instead it is recharged from areas northwest of the Site.

The 28 borings of Geosyntec's 2022-2023 subsurface exploration program, designated as Borings B-25 through B-52, were drilled to depths ranging from 69 ft bgs to 159 ft bgs using established field exploration methods. Specifically, the borings were advanced using a combination of (i) 6-inch diameter hollow-stem auger; and (ii) and 2-inch (approx.) diameter NQ/NQ2 coring. Samples were collected using a combination of Shelby tubes, split spoons, and NQ/NQ2 core barrels. Additionally, pocket penetrometer and standard penetration tests (SPTs) were performed in the field. Lithology was logged by a qualified geologist or engineer in accordance with 30 TAC §330.63(e)(4) and consistent with established description procedures. After completing the drilling and sampling at each boring, the borehole was plugged in accordance with appropriate rules, namely in accordance with the abandonment requirements in 16 TAC §76.72 and the plugging standards in 16 TAC §76.104 (as applicable).

As noted in Table 4-7, no groundwater was observed during drilling in any of the recent borings. Also, after-equilibrium (i.e., static) groundwater level measurements in the boreholes were not possible for this program because of the wet coring/wash rotary methods used during drilling; however, piezometers were installed to obtain static/ongoing groundwater levels at select locations – providing an indication of longer term static/after-equilibrium groundwater levels in the area investigated. Specifically, piezometers were installed at twelve (12) of the boring locations (GB-25, GB-30, GB-32, GB-33, GB-35, GB-37, GB-39, GB-41, GB-45, GB-48, GB-50, and GB-52). These are described in more detail in Section 7. Monitor Well Data Sheets for the newly installed piezometers are provided in Attachment 4D.

5.1.2 **Previous Site Investigations**

The Mesquite Creek Landfill has been characterized based on a number of previous investigations at the Site over time, as summarized below in chronological order.

• In 1987, 15 borings (CB-1 to CB-5; B-6 to B-15) were drilled at the Site by McBride-Ratcliff to characterize the stratigraphy and assess the soils for use as in-situ or constructed liners (Hydro-Search and MFG, 1990, revised 1991). Piezometers were installed in four of the borings.

- Between April 1990, September 1991, and October 1991, McCulley, Frick, and Gilman (MFG) installed a total of 12 piezometers (PZ-1 to PZ-12). The data from the piezometers would be used to develop a groundwater monitoring system for the Site (Geosyntec, 2006).
- In 1991, Fugro-McClelland installed 6 gas monitoring probes (GP-1, GP-2, GP-3, GP-4, GP-5, GP-6).
- In February 1992, SEC Donohue installed five (5) groundwater monitoring wells (MW-1, MW-2, MW-3, MW-4, and MW-5) and one (1) piezometer (PZ-1M) at the Site.
- One (1) additional groundwater monitoring well (MW-6), and one (1) replacement gas monitoring probe (GP-6R) were installed in November 1995 by Rust E&I.
- In 2004, 24 borings (GB-1 through GB-24) were drilled at the Site by Geosyntec as a part of a soil boring plan associated with the permit amendment application MSW-66B. Fifteen (15) piezometers were installed during this investigation at the corresponding boring locations of: GB-01, GB-02, GB-03, GB-04, GB-05, GB-06, GB-09, GB-11, GB-12, GB-13, GB-15, GB-17, GB-20, GB-21 and, GB-22.
- In October 2005, Geosyntec installed one (1) gas monitoring probe (GP-7).
- In March 2009, Geosyntec installed nine (9) gas monitoring probes (GP-5A, GP-8 through GP-13, GP-20 and GP-21) and eleven (11) groundwater monitoring wells (MW-2A, MW-7A, MW-8A, MW-9, MW-11, MW-18 TO MW-23).
- In December 2013, Tetra Tech installed two (2) gas monitoring probes (GP-14 and GP-19).
- In January 2016, Tetra Tech installed one (1) gas monitoring probe (GP-15) and one (1) groundwater monitoring well (MW-17).
- In April 2018, Tetra Tech installed three (3) gas monitoring probes (GP-16, GP-17, GP-18) and three (3) groundwater monitoring wells (MW-13, MW-14, MW-15) at the Site. Also, one (1) groundwater monitoring well (MW-12) was installed in May 2018 to replace the previous MW-12 which had been using the GB-21 location.
- In 2020, Bullock, Bennett & Associates, LLC installed one (1) groundwater monitoring well (MW-4A) to replace monitoring well MW-4.

5.2 <u>Site Stratigraphy and Structure</u>

Eight (8) geologic cross-sections were developed for this Geology Report based on observations and conclusions interpreted from borehole logs, from the previously-described subsurface investigations, and from the findings from Geosyntec's 2022-2023 site investigation. Drawing 4A-10 presents a plan view of the locations where the cross-sections are located, and the geologic cross-sections are presented on Drawings 4A-11 through 4A-16. Based on the data and consistent with past characterizations, the subsurface stratigraphy at the Site has been subdivided into four strata referred to as Stratum I through IV. The generalized Site stratigraphy of the subsurface

strata is summarized in Table 4-5 below and is discussed in more detail subsequently. Hydrogeologic characteristics of these strata are addressed in Section 7.

Stratum	Geologic Description	Physical Description	Thickness (ft)
Stratum I	Surficial soil layer (fine-grained Quaternary weathered deposits)	Brown to dark gray, medium to high plasticity clay (with occasional thin gravelly zones), stiff to hard in consistency	0-14.5
Stratum II	Quaternary-Tertiary alluvium (possibly equivalent to Uvalde Gravel) ¹	Dark brown clay matrix with white or gray limestone and/or chert gravel, clayey gravel to gravelly clay, commonly cemented by caliche, firm in consistency	0 – 16
Stratum III	Weathered Lower Taylor Group (Clay)	Brownish yellow to light gray calcareous clay, weathered and oxidized very stiff to hard in consistency	13.5 - 73.5
Stratum IV	Unweathered Lower Taylor Group (Claystone)	Green to dark gray calcareous claystone, unweathered/ unoxidized, very hard in consistency	Note 1

TABLE 4-5 GENERALIZED SITE STRATIGRAPHY

Notes:

1. Site borings did not completely penetrate Stratum IV because the drilling depths terminated before the bottom of the stratum was reached. The maximum thickness that has been investigated at the Site to-date is approximately 130 ft into Stratum IV. Stratum IV is part of the Lower Taylor Group that is estimated to be approximately 290-ft thick beneath the Site. Stratum IV acts as an aquiclude that confines groundwater (to the extent present) above it and prevents hydraulic interconnection with deeper aquifers.

From the Site data, Strata I and II were not found at all areas of the Site. Strata III and IV are continuously present across the Site (present beneath all investigated locations). The top and bottom surfaces of Stratum III generally mimic the surface topography. Structure maps (Top of Stratum III and Top of Stratum IV contour maps) are provided as Drawings 4A-17 and 4A-18.

5.2.1 Stratum I: Fine-Grained Quaternary Soil Deposits

Stratum I is typified by an unsaturated brown to dark gray, medium to high plasticity clay, which is stiff to hard in consistency. At the ground surface, the material appearance is that of a rich clayey topsoil typical of the Blackland Prairie of this area. The cross-sections (Drawings 4A-11 to 4A-16) indicate that, prior to landfill development, Stratum I was mostly present across the Site, though sometimes not encountered in the Unit 2 existing and proposed expansion areas. Within the footprint of the existing landfill, Stratum I has been completely removed by landfill development. Similarly, the planned depth of the phases in the expansion area will completely

remove Stratum I from within the footprint of the Unit 2 landfill expansion area. Hydrogeologic characteristics of this stratum are addressed in Section 7.

5.2.2 Stratum II: Quaternary-Tertiary Alluvium

Stratum II is a surficial layer of pebble to cobble-sized chert and limestone embedded within a soil matrix of dark brown clay (and commonly cemented by caliche). Under natural (pre-development) conditions, this stratum was sporadically absent or present across the existing Site; but is notably present on the natural topographic ridges (highs) along much of the east-southeastern portions of the Unit 2 area. These observations correlate well to Collins' (2000) descriptions and mapped extent of alluvial outcrops along topographic highs, possibly equivalent to the upper Tertiary-Quaternary Uvalde Gravel, in this part of the Site. It is also noted that in discrete areas associated with the Mesquite Creek stream and its tributaries, deposits of Quaternary alluvium are present – composed of silt, sand, gravel, and some clay. In previous site investigations and maintained in this permit amendment application for continuity, these localized, discrete alluvial deposits have been assigned to Stratum II based on similar geologic age and morphology. Similar to Stratum I, Stratum II (where present) has been completely removed by landfill development within the footprint of the existing landfill and will be completely removed within the footprint of the Unit 2 expansion area. Hydrogeologic characteristics of this stratum are addressed in Section 7.

5.2.3 Stratum III: Weathered Clay - Lower Taylor Group

Stratum III corresponds to weathered and oxidized Lower Taylor Group material (weathered into a clayey soil, and with thin bedding planes). A contour map of the top of Stratum III is included as Drawing 4A-17. As shown, the top of the Stratum III surface exhibits undulations, but generally follows a pattern that resembles natural surface topography. The base of Stratum III and top of Stratum IV is transitional as the material grades from being clay (soil-like) to claystone (rock-like). A color change from a lighter yellowish brown to green-gray to dark gray, with varying amounts of mottling (color variegation), provides evidence of the transition and downward limit of oxidation. The color change, presence, density of secondary features, and hardness were used as the markers for defining what was designated as the base of Stratum III for mapping and crosssection development purposes, and generally coincided with where the drilling methods switched from hollow stem augers to rock coring. Secondary features such as variations in cementation, and presence of high angle gypsum-filled clay fractures and calcite seams, are more prevalent near the bottom of Stratum III. Some of the fractures and calcite seams appeared to be water-bearing, or at least have the potential to transmit water, in contrast to the tighter (less fractured or weathered, more cemented and rock-like) Stratum IV claystone described subsequently. The base of the landfill is keyed-in to (i.e., founded within) Stratum III in a large majority of the landfill areas, with the few exceptions being localized instances where the base grades encountered and are founded on the upper portion of the Stratum IV claystone. Hydrogeologic characteristics of Stratum III are addressed in Section 7.

5.2.4 Stratum IV: Unweathered Claystone - Lower Taylor Group

Stratum IV corresponds to the homogenous, unweathered, primarily unoxidized, dry, green-gray to dark gray claystone of the Lower Taylor Group. A contour map of the top of Stratum IV is included as Drawing 4A-18. As shown, the top of Stratum IV surface exhibits undulations, but generally follows a pattern that resembles natural surface topography. Stratum III and Stratum IV are from the same geologic formation, and only differ based on their degree of oxidation and weathering. The Bottom of Stratum III / Top of Stratum IV for mapping and cross-section development was interpreted based on the aforementioned change in color, density of secondary features, and hardness. Stratum IV differed from Stratum III in that secondary features such as heterogeneous cementation; and presence of fractures, seams, and fissures; became less frequent at the interpreted top of Stratum IV (and decreasing in frequency with depth into Stratum IV where the claystone was harder, more massive, and more rock-like).

The deepest boring from Site subsurface investigations penetrated approximately 130 ft into this stratum at boring GB-23. Occasionally, deeper parts of the landfill base are founded on Stratum IV, but excavation into Stratum IV has generally been avoided (i.e., most of the liner grades are in Stratum III, above the top of Stratum IV, to the extent practicable). Hydrogeologic characteristics of this stratum are addressed in Section 7.

6. GEOTECHNICAL DATA

The geotechnical report, data, and analyses that address the information required by 30 TAC §330.63(e)(5) and that describe the geotechnical properties of the subsurface soil materials and presents conclusions about the suitability of the soils and strata for the uses for which they are intended are presented in Part III, Attachment 3D.

7. GROUNDWATER INVESTIGATION REPORT

This section provides the groundwater investigation report, which discusses groundwater occurrence at the Site and presents the hydrogeologic characteristics of the stratigraphic layers beneath the Site based on previous and recent site investigations.

7.1 <u>Overview of Hydrogeologic Findings – Previous Site Investigations</u>

Previous site investigations have been conducted under MSW Permits 66, 66A, and 66B as summarized in Section 5.1.2. The interpretation of these results (hydrogeologic site characterization) is provided in the Geology Report and Groundwater Characterization Report, both by Geosyntec (2005). Geosyntec's Groundwater Characterization Report (2005, last revised February 2021) also presents the groundwater monitoring system for the existing facility as approved by TCEQ in accordance with 30 TAC Chapter 330, Subchapter J under MSW Permit No. 66B. An overview of the hydrogeologic findings from previous site investigations is as follows:

- Strata I and II (recent fine-grained deposits and alluvium) are first encountered at the ground surface and are described as a dark gray to brown medium to high plasticity clay, and a clayey gravel to a gravelly clay, respectively. Previous site investigations have indicated that Strata I and II are consistently dry to moist (but in all cases, unsaturated). These strata have low hydraulic conductivity, and neither Stratum I nor Stratum II readily yield or transmit water (only small localized seeps have been occasionally observed during construction excavations). These strata have been entirely excavated and removed from within the landfill footprint. As such, their discontinuous nature and lack of a zone of saturation (groundwater) results in Strata I and II not behaving as, nor being designated as, the uppermost aquifer at the Site.
- Stratum III consists of weathered/oxidized clays of the Lower Taylor Group. The lower part of Stratum III exhibits a greater occurrence of secondary features (e.g., higher density of fractures, seams, and fissures), allowing it to contain and transmit groundwater. Notwithstanding this, Stratum III is a low-permeability formation even within its more fractured and potentially water-bearing zone, with investigations usually reporting initial observations of moist to dry soil and minimal notably wet or saturated material; there may not be a distinct, continuous zone of saturation within Stratum III.
- Groundwater is first encountered in the lower part of Stratum III, and piezometers and monitoring wells screened at the base of Stratum III generally contain sufficient quantities of groundwater for gauging and/or sampling and analysis purposes. As such, Stratum III is the groundwater-bearing zone where groundwater is first encountered at the Site, that has been designated under the current permit (66B) as the uppermost aquifer for the groundwater monitoring program. Groundwater occurs as unconfined conditions in the lower part of Stratum III, where it is perched above the lower confining unit (aquiclude) of

the thick, massive, less-fractured, and very low permeability Stratum IV unweathered claystone.

The groundwater monitoring system in effect under MSW Permit No. 66B was developed and approved based on the hydrogeologic framework summarized above, and is described in more detail in Attachment 5 (Groundwater Monitoring Plan). In brief, the current Unit 1 system is composed of one (1) background upgradient monitoring well and seven (7) downgradient wells, and the current Unit 2 monitoring system is composed of two (2) background upgradient monitoring wells and twelve (12) downgradient wells – all of which are screened at the base of Stratum III.

7.2 Geosyntec (2022-2023) Site Investigation

Twelve (12) piezometers were installed in the expansion area as part of Geosyntec's 2022-2023 site investigation (GB-25(P), GB-30(P), GB-32(P), GB-33(P), GB-35(P), GB-37(P), GB-39(P), GB-41(P), GB-45(P), GB-48(P), GB-50(P), and GB-52(P)). The lithology of each boring was used to determine the screened intervals of the piezometers. The field observations and hydrostratigraphic data from the piezometers installed in 2023 revealed that Stratum III is the uppermost continuous water-bearing zone, and all twelve (12) piezometers were installed accordingly, to screen the lower portion of Stratum III. This is consistent with the approved Soil Boring Plan for this project (Attachment 4B), and these observations agree with earlier reports and findings used to characterize the Site and develop the groundwater monitoring program.

The piezometers installed by Geosyntec were constructed using flush threaded 2-in. diameter schedule 40 PVC, with a 10-ft long, 0.010-in. slotted screen and a flush threaded bottom cap. The filter pack, consisting of 20/40 sand, generally extended from just below the screen to about 2-ft above the screen. The annular space above the filter pack between the PVC and the borehole was backfilled using a bentonite grout slurry tremied in a bottom to top manner. Metal protective casings with locking caps were cemented in place after completion of the piezometer(s). Additional piezometer construction details are shown on the piezometer data sheets in Attachment 4D.

The piezometers were developed utilizing surging and purging techniques. Each piezometer was surged at least once, followed by purging with a bailer or submersible pump. Any water added to the piezometer to facilitate development was removed by pumping or bailing. Surging and purging continued until the groundwater was visibly less turbid. After development, water levels were taken in these piezometers (along with currently existing monitoring wells in the Unit 2 area) on a monthly basis between March and August 2023.

7.3 <u>Monitoring Well and Piezometer Construction Details</u>

Groundwater monitoring well and piezometer construction details are summarized in Tables 4-6a (data for wells and piezometers that are currently in existence) and 4-6b (data for wells and

piezometers that have been decommissioned and are no longer in existence) – both of which are included at the end of this section. Piezometer and monitoring well installation logs/data sheets are provided in Attachment 4D. Monitoring well and piezometer locations at the Site are presented on Drawing 4A-9A and 4A-9B.

7.4 <u>Groundwater Observations</u>

7.4.1 Water Levels During Drilling – Soil Borings

Water level measurements during drilling observed in soil borings are tabulated in Table 4-7a, presented at the end of this section. These data were obtained from field observations, as noted on boring logs (Attachment 4C). Initial water levels represent the elevation where water was initially observed (if present) during drilling. Static water levels, where noted, represent the measured water elevation after a more extended period of time. As previously explained in Section 5.1.1, after-equilibrium (i.e., static) groundwater level measurements were not always possible because of the wet coring/wash rotary methods used during drilling; however, piezometers were installed to take static/ongoing groundwater levels at select locations as discussed below.

7.4.2 Water Levels During Drilling and After Installation – Wells and Piezometers

Initial and static water level measurements in piezometers and monitoring wells observed are tabulated in Table 4-7b, presented at the end of this section. These data were obtained from field observations, as noted on boring logs of the boreholes at which the piezometers/monitoring wells were installed (Attachment 4C), or from piezometer/well installation logs (Attachment 4D). Initial water levels represent the elevation where water was initially observed during installation or development (pre-installation or pre-development). Static water levels, where noted in Table 4-7b, represent the latest available water level measurement at each location.

7.4.3 Historical Water Levels in Monitoring Wells and Piezometers

Historical water level measurements from groundwater monitoring events at Site monitoring wells between are presented in Tables 4-8a and 4-8b, for wells around Unit 1 and Unit 2, respectively. Also note that Unit 2 wells were gauged monthly between March and August 2023 as part of Geosyntec's site investigation; these measurements are included in Table 4-8b.

Table 4-8c presents historical water level measurements in each of the twelve (12) piezometers installed by Geosyntec to characterize groundwater flow characteristics in the expansion area.

Historical and recently-developed groundwater maps are presented in Attachment 4E.

7.4.4 Groundwater Quality Data

Groundwater monitoring analytical data of the groundwater quality, obtained from chemical analysis of groundwater samples collected over the past several years (representative of recent

conditions and latest available information) during semi-annual monitoring events under the current-permitted program are provided in Attachment 4F. This groundwater quality information as it relates to the current status of groundwater monitoring at the Site, and design of the groundwater monitoring program is discussed further in Attachment 5 (Groundwater Monitoring Plan).

7.5 Hydraulic Conductivity of Site Soils

The hydraulic conductivity of each of the four strata (Stratum I through IV) encountered in the subsurface was measured from undisturbed samples (Shelby tube specimens). A summary of the laboratory hydraulic conductivity test results are tabulated in Table 4-9a (with full laboratory test results for tests performed by Geosyntec [2022-2023] provided in Part III, Attachment 3D.1, Appendix 1).

The in-situ field permeability of the water-bearing zones beneath the Site was measured by performing slug tests. The slug test results are summarized in Table 4-9b, with backup data included in Attachment 4G. Inspection of Tables 4-9a and 4-9b reveals the following:

- Laboratory-scale vertical hydraulic conductivity of Stratum I was measured; results from four samples were in the 10⁻⁸ to 10⁻⁹ cm/s range and had an average of 1.0 x 10⁻⁸ cm/s. Three samples oriented on the horizontal axis were in the 10⁻⁸ to 10⁻¹⁰ cm/s range and had an average of 9.6 x 10⁻¹⁰ cm/s.
- One laboratory-scale vertical hydraulic conductivity test of Stratum II was measured at 3.1 x 10⁻⁸ cm/s. Two samples oriented on the horizontal axis had an average of 1.1 x 10⁻⁸ cm/s. Note that these samples were composed of mostly clay (with gravel) from which an undisturbed specimen could be obtained, and it is possible based on its composition that on a macro-scale (field-scale), the Stratum II formation may have an in-situ hydraulic conductivity greater than was obtained from the laboratory samples. However, the absence of groundwater during the various site investigations and the observations that the gravel sized particles are embedded within a clay matrix (thus filling most available pore space with low-permeability material) provide a sound indication that Stratum II does not contain, transmit, or yield groundwater to any appreciable degree.
- Laboratory-scale vertical hydraulic conductivity of Stratum III was measured; results from five samples were in the 10⁻⁹ cm/s range and had an average of 1.8 x 10⁻⁹ cm/s. Five samples oriented on the horizontal axis were in the 10⁻⁸ to 10⁻⁹ cm/s range and had an average of 4.2 x 10⁻⁹ cm/s. These samples did not specifically target fractured zones of Stratum III (which were instead tested via slug tests as discussed below), and provide an indication of the hydraulic conductivity of the formation at locations where few secondary features are present.

- Field-scale hydraulic conductivity of the water-bearing zone (i.e., bottom portions) of Stratum III from slug testing was measured as being substantially more permeable than the results from the lab tests with an average measured value of 1.5 x 10⁻⁶ cm/s. As these slug tests were performed in the water-bearing zones within the formation that were observed to have a greater density of secondary features, the results appear sound and logical. The slug tests were influenced by a larger volume of surrounding formation materials (i.e., a larger equivalent sample size was characterized), and thus the measured values are considered more representative of the field-scale behavior that would affect groundwater movement.
- Laboratory-scale vertical hydraulic conductivity of Stratum IV was measured; results from three samples were in the 10⁻⁸ to 10⁻⁹ cm/s range and had an average of 1.3 x 10⁻⁸ cm/s. Samples oriented on the horizontal axis were attempted to be prepared from undisturbed specimens, but could not be reliably obtained tested due to the rock-like nature of the material and the associated difficulty in trimming a testable sample (resulting in excessive disturbance of the sample during the attempts to trim the hard rock-like specimen). However, field-scale hydraulic conductivity of the upper portion of Stratum IV from slug testing in piezometers in the Unit 1 area was able to be measured by MFG (1991) with reported results in the 10⁻⁶ to 10⁻⁷ cm/s range with an average of 7.1 x 10⁻⁷ cm/s.

The hydraulic conductivity data were used to prepare the hydrogeologic interpretation of the Site as discussed subsequently.

7.6 <u>Hydrogeologic Interpretation</u>

7.6.1 Strata I and II – Discontinuous and Unsaturated Site Soils

As previously discussed, investigations of Strata I and II revealed conditions that are consistently dry to moist (unsaturated) and layers that are discontinuous across the Site. During construction of existing landfill cells, occasional small pockets of seepage were sometimes observed on excavation sideslopes at Stratum II, but only in isolated instances (not in an interconnected, recurring, or widespread manner). As the landfill continues to be developed, more and more areas of Strata I and/or II will be removed via excavations for cell construction. These conditions will limit the ability for surface water and precipitation to infiltrate and migrate downward to supply recharge into Strata I and/or II. For these reasons, Strata I and II are not groundwater-bearing zones, and do not contain, transmit, or yield groundwater to any appreciable degree.

7.6.2 Stratum III – Uppermost Aquifer

Consistent with previous investigations by Geosyntec and others, the recent data collected during the site investigation of the expansion area have confirmed that Stratum III is the uppermost waterbearing zone where groundwater is first encountered beneath the Site (i.e., uppermost aquifer for groundwater monitoring purposes). The lower part of Stratum III exhibits a greater occurrence of secondary features (e.g., higher density of fractures, seams, and fissures), allowing it to contain and transmit groundwater. Furthermore, piezometers and monitoring wells screened at the base of Stratum III generally contain sufficient quantities of groundwater for gauging and/or sampling and analysis purposes – i.e., the presence of groundwater has been observed and measured over time. Groundwater occurs as unconfined conditions at the lower part of Stratum III, where it is perched above the lower confining unit (aquiclude) of the thick, massive, less-fractured, and very low permeability Stratum IV unweathered claystone.

Notwithstanding the above, it should be recognized that Stratum III is a clay formation, and in a relative sense to other types of more granular soils typically thought of as usable aquifers, Stratum III has low permeability. Even within its more fractured and potentially water-bearing zone, site investigations have usually reported initial observations of generally moist to dry soil conditions (few indications of wet or saturated material). Installed piezometers generally have been slow to fill with groundwater, indicating there is slow rate of groundwater movement, and that there may not be a distinct, continuous zone of saturation within Stratum III.

The presence of groundwater and capacity for water movement within Stratum III is likely dependent on secondary features, notably degree of cementation, fracture density, interconnection (or lack thereof), orientation, and the extent that the fractures have been filled by secondary mineralization. Slug tests in Stratum III show a comparatively higher average hydraulic conductivity (1.5×10^{-6} cm/s) relative to the underlying aquiclude – about two orders of magnitude (i.e., 100x) greater than the measured vertical hydraulic conductivity of underlying Stratum IV. This helps explain the observed flow regime, with groundwater in Stratum III accumulating in a perched manner above the lower confining unit, preferentially flowing laterally following the slopes and orientation of the confining unit surface (and also generally mimicking patterns of surface topography, albeit in a subdued manner).

7.6.3 Stratum IV – Lower Confining Unit

Stratum IV is the lower confining unit (aquiclude) beneath the Site, and is part of the approximately 290-ft thick low-permeability claystone of the Lower Taylor Group. The formation is composed of unweathered, primarily unoxidized, minimally fractured (and decreasing fracture density with depth), continuous, tight claystone, dry/unsaturated, and with low hydraulic conductivity. As such, Stratum IV acts as an aquiclude that confines groundwater above it and prevents hydraulic interconnection with deeper aquifers.

7.6.4 Groundwater Flow Patterns

Groundwater maps are provided in Attachment 4E. These maps in Attachment 4E include historically-generated groundwater table/potentiometric contours from previous hydrogeologic investigations and from the ongoing groundwater monitoring program. Attachment 4E maps also include recently-generated potentiometric contours of water levels in Stratum III from readings taken on a monthly basis between March 2023 and August 2023 using a measurement dataset that

includes both existing Unit 2 monitoring wells (screened in Stratum III) and expansion-area piezometers (also screened in Stratum III), to provide an illustration of groundwater flow patterns across all of Unit 2.

As discussed previously, the surface of the lower confining unit (top of Stratum IV) generally mimics natural surface topography. The resulting flow regime for groundwater perched in the unconfined uppermost water-bearing zone of Stratum III is strongly influenced by the top of Stratum IV contours – generating groundwater flow patterns in directions that generally follow the slopes and orientation of the confining unit surface (and also generally mimicking patterns of surface topography, albeit in a subdued manner).

The groundwater flow direction at Unit 1 is south-southeasterly (towards Mesquite Creek). The groundwater flow direction at existing areas of Unit 2 is primarily north-northwesterly (towards Mesquite Creek), with minor components of flow on the east side of existing Unit 2 being towards the northeast and east. The groundwater flow direction at the Unit 2 expansion area is primarily towards the east, and based on the flow regime described above it is possible there could be a component of flow towards the southeast (flowing away from the natural topographic (high) ridge located on the northwest edge of the expansion area). The flow patterns and directions of groundwater flow in Stratum III appear to be relatively consistent (stable) over time.

7.6.5 Groundwater Flow Gradient and Seepage Velocity

Horizontal groundwater flow (i.e., seepage) velocity is calculated using the following equation derived from Darcy's Law [Freeze and Cherry, 1979]:

The hydraulic gradient (ft/ft), which also can be expressed as percent (%) is the difference in hydraulic head (ft) between a pair of wells selected for the computation, divided by the distance (ft) between the pair of wells selected for the computation. Using the hydraulic conductivity data and potentiometric maps, the groundwater flow gradients and seepage velocities in the uppermost aquifer (i.e., Stratum III) are presented below for several cases (in order to provide a range of representative conditions).

• The average hydraulic conductivity of Stratum III from slug tests taken at the Site is 1.5 x 10⁻⁶ cm/s (see Table 4-9b). Examination of groundwater potentiometric maps presented in Attachment 4E reveals typical hydraulic gradients across the Site generally range from about 0.015 to 0.03 ft/ft. Effective porosity values for clay can range from 0.01 to 0.18 and average 0.06, as reported by McWhorter and Sunada (1977). An effective porosity of

0.05 (slightly below this reported average, but a typical value used in various investigations for the Site, and reasonable for such clays) is used in this calculation. Input of these hydraulic conductivity and effective porosity values into the equation above, and using a hydraulic gradient of 0.03 ft/ft (3%) [taken as the July 2023 groundwater map difference in groundwater levels at the existing Unit 2 area of about 72.6-ft between MW-11 and MW-21, located about 2,593-ft apart – and rounded up slightly from 0.028 ft/ft to 0.03 ft/ft], the average seepage velocity of groundwater in the water-bearing zone of Stratum III at the Site is approximately 9.0 x 10^{-7} cm/s (2.6 x 10^{-3} ft/d), or about 0.9 feet per year (ft/yr).

- Focusing on the existing Unit 1 area, using the December 2022 groundwater map provided in Attachment 4E, a typical recent average hydraulic gradient across the existing Unit 1 landfill area is about 0.015 ft/ft (1.5%) [taken as the difference in groundwater levels of about 37.3-ft between MW-01 and MW-07A, located about 2,458-ft apart]. As noted above, a hydraulic conductivity of 1.5 x 10⁻⁶ cm/s and a porosity of 0.05 were also selected. Input of these values into the equation above, the average seepage velocity of Stratum III groundwater at the existing Unit 1 landfill area is approximately 4.6 x 10⁻⁷ cm/s (1.3 x 10⁻³ ft/d), or about 0.5 ft/yr.
- Focusing on the proposed Unit 2 expansion area south-southeast of existing Unit 2, using a subset of data representative of the expansion area, Stratum III has a slightly higher average measured hydraulic conductivity of 4.6 x 10⁻⁶ cm/s from slug tests in that portion of the Site. Using the July 2023 groundwater map provided in Attachment 4E, a typical recent average hydraulic gradient across the Unit 2 expansion area is about 0.029 ft/ft (2.9%) [taken as the difference in groundwater levels of about 69.2-ft between GB-33(P) and GB-32(P), located about 2,394-ft apart]. Input of these values into the equation above and using a porosity of 0.05, the average seepage velocity of Stratum III groundwater at the Unit 2 expansion area is approximately 2.7 x 10⁻⁶ cm/s (7.5 x 10⁻³ ft/d), or about 2.8 ft/yr.

7.6.6 Potential Impact of Landfill on Groundwater Flow Regime

As the landfill has been and continues to be developed across the Site, the engineering controls (liner system, surface-water management system, final cover system) will be robust and long-term hydraulic barriers and management systems that will effectively eliminate the possibility of Stratum III from being recharged from areas directly above the landfill footprint. The potential impact on the groundwater flow regime in Stratum III would be a lowering of the potentiometric surface in Stratum III, which may also flatten (decrease) the hydraulic gradient, ultimately reducing the groundwater flow rate and seepage velocity in the water-bearing zone at the Site (particularly in Unit 2 areas) – but following flow directions similar to those presented herein. This is elaborated on further below.

With respect to recharge potentially occurring from areas beyond the limits of the landfill units, Strata I and II are not water-bearing zones and are already discontinuous across the Site

(outcropping at the ground surface in certain areas of the Site), and will eventually be completely removed from within the landfill footprint as development progresses. As a result, less water will ultimately infiltrate into (recharge) Strata I and/or II, and less water will be available to potentially accumulate within or migrate through these layers.

In the Unit 1 and adjacent areas, Stratum III may receive some of its recharge from up-gradient (off-site) areas to the north. Since Unit 1 was the first area constructed many decades ago and is now completed and final-covered, the long-term groundwater flow regime and any affects caused by the landfill have already developed (as evidenced by the generally consistent groundwater flow trends over time at Unit 1) and groundwater conditions in this area are expected to remain consistent in the future.

At Unit 2 and its proposed expansion area, there are very limited up-gradient (off-site) areas expected to contribute recharge to Stratum III. As described herein, Unit 2 will be constructed on topographic high ridges that fall-off (slope downward) in various directions away from Unit 2. The flow regime described in this report is groundwater flowing in the lower part of Stratum III following patterns based on the impermeable top of Stratum IV that resemble natural topography. Under natural (pre-development) conditions at Unit 2, the source of groundwater and its ongoing recharge into Stratum III was essentially from the overlying land (vertical infiltration, which eventually reached the confining layer, built up a hydraulic head, and started migrating laterally due to the preferentially higher permeability in the horizontal direction). As such, that source and mechanism of groundwater recharge will be essentially removed at Unit 2 via the aforementioned landfill engineering controls and hydraulic barriers (liner system, etc.). In the Unit 2 areas of the Site, Stratum III may continue receiving some recharge, albeit in lesser amounts, from perimeter Site areas that are not lined, and also potentially from limited up-gradient (off-site) areas in the extreme southwest corner of the Unit 2 expansion where the natural topographic high ridgeline will still exist. These conditions explain the rationale for the expected lowering over time of the potentiometric surface in Stratum III at Unit 2, flattening (decreasing) the hydraulic gradient, and ultimately a reduction in the groundwater flow rate and seepage velocity in the water-bearing zone at the Site (but maintaining similar flow directions as those presented herein).

The groundwater monitoring program (presented in Attachment 5) for Stratum III, the uppermost aquifer at the Site, has been designed in consideration of any potential impacts to the groundwater flow regime due to the presence of the landfill, as described above.

7.6.7 Most Likely Pathway for Potential Pollutant Migration

An analysis of the most likely pathway for potential pollutant migration is presented in Attachment 5, in conjunction with the explanation of the basis for the design of the groundwater monitoring program. The resulting proposed groundwater monitoring program and groundwater sampling and analysis plan (GWSAP) required by 30 TAC §330.63(f) is provided in Attachment 5.

7.7 Arid Exemption (Not Requested)

An arid exemption is not being requested for this facility, and as such, the information required by 30 TAC \$330.63(e)(6) is not applicable to this report.

8. **REFERENCES**

Banks Environmental Data, Inc., 2022a. Oil and Gas Well Report, Mesquite Creek Landfill.

Banks Environmental Data, Inc., 2022b. Water Well Report, Mesquite Creek Landfill.

Bullock, Bennett & Associates, LLC (BBA). Groundwater Data Review and Statistics Report., First Semi Annual Detection Monitoring Event in 2019 at Mesquite Creek Landfill, Permit No. MSW 66B. Prepared for Waste Management of Texas, Inc., New Braunfels, Texas, July 2019.

Bullock, Bennett & Associates, LLC (BBA). Groundwater Data Review and Statistics Report., First Semi Annual Detection Monitoring Event in 2020 at Mesquite Creek Landfill, Permit No. MSW 66B. Prepared for Waste Management of Texas, Inc., New Braunfels, Texas, August 2020.

Bullock, Bennett & Associates, LLC (BBA). Groundwater Data Review and Statistics Report., First Semi Annual Detection Monitoring Event in 2021 at Mesquite Creek Landfill, Permit No. MSW 66B. Prepared for Waste Management of Texas, Inc., New Braunfels, Texas, July 2021.

Bullock, Bennett & Associates, LLC (BBA). Groundwater Data Review and Statistics Report., First Semi Annual Detection Monitoring Event in 2022 at Mesquite Creek Landfill, Permit No. MSW 66B. Prepared for Waste Management of Texas, Inc., New Braunfels, Texas, September 2022.

Collins, E.W., 2000. *Geologic Map of the New Braunfels, Texas, 30 x 60 Minute Quadrangle: Geologic Framework of an Urban-Growth Corridor along the Edwards Aquifer, South-Central Texas*, Bureau of Economic Geology Miscellaneous Map No. 39 (Map and 39p Booklet (report)).

Comal Trinity Groundwater Conservation District, 2018. Management Plan.

Freeze, R.A., and Cherry, J.A., 1979. Groundwater, Prentice-Hall, Englewood Cliffs, NJ.

George, P.G., Mace, R.E., Petrossian, R., 2011. *Aquifers of Texas*, Report No. 380, Texas Water Development Board, July.

Geosyntec Consultants, Inc., 2005. *Permit Amendment Application, MSW Permit No. 66B*, prepared for Waste Management of Texas, Inc., Mesquite Creek Landfill, Comal and Guadalupe Counties, Texas (revised and Technically Complete July 2006).

Geosyntec Consultants, Inc., 2022. *Soil Boring Plan, Mesquite Creek Landfill*. September 2022 (approved by TCEQ October 4, 2022).

Guadalupe County Groundwater Conservation District, 2018. Management Plan.

Hamilton, J.M., Johnson, S., Esquilin, R., Thompson, E.L., Wiatrek, A., Luevano, G., Gregory, D., Burgoon, C., Mireles, J., Gloyd, R., Sterzenback, J., Mendoza, R., Hoyt, J.R., and Parker, E., *"Edwards Aquifer Authority Hydrologic Data Report for 2003,"* Edwards Aquifer Authority, June 2004, 188 p.

Howard, K.A., 1978, *Preliminary Map of Young Faults in the United States as a Guide to Possible Fault Activity*, United States Geological Survey.

Hydro-Search, Inc., and McCulley, Frick & Gilman, Inc, (MFG). *Comal County Landfill Phase II Hydrogeological Report*, prepared for Waste Management of Texas Inc., Irving, Texas, August 1990 (revised July, 1991).

Jones, I.C., Anaya, R., and Wade, S., *Groundwater Availability Model for the Hill Country Portion of the Trinity Aquifer, Texas:* Texas Water Development Board Report 377, 2011, 165 pp.

Kelley, V.A., Ewing, J., Jones, T.L., Young, S.C., Deeds, N., and Hamlin, S., eds., *Updated Groundwater Availability Model of the Northern Trinity and Woodbine Aquifers:* Vol 1, Austin, Texas, Intera, 2014, 990 pp.

Lindgren, R.J., Dutton, A.R., Hovorka, S.D., Worthington, S.R.H., and Painter, S., "Conceptualization and Simulation of the Edwards Aquifer," San Antonio Region, Texas, U.S. Geological Survey Scientific Investigations Report, 2004, 143 pp.

Maclay, R.W. and Small, T.A., "Carbonate Geology and Hydrology of the Edwards Aquifer, San Antonio Area, Texas," Texas Water Development Board Report 296, November 1986.McBride-Ratliff Associates, Inc., 1988 Geologic and Geotechnical Study, Permit No. MSW-66.

McBride-Ratliff Associates, Inc., 1988. Geologic and Geotechnical Study, Permit No. MSW-66.

McWhorter, David B., and Daniel K. Sunada, 1977. *Ground-water hydrology and hydraulics*. Water Resources Publication.

Metroplex Industries, Inc., "Technically Complete Permit Amendment Application For the Comal County Landfill, Comal County, New Braunfels, Texas Natural Resource Conservation Commission, Municipal Solid Waste Facility-Type I Permit Application No. MSW-66A," prepared for Waste Management of Texas Inc., Houston, Texas, Technically Complete July 29, 2002.

MFG, Inc., "Groundwater Data Review and Statistics Report, Second Semi-Annual Detection Monitoring Event in 2004, Comal County Landfill, Permit No. MSW 66A", prepared for Waste Management of Texas, Inc., Austin Texas, January, 2005.

Rust Environment & Infrastructure, Inc, *Location Restrictions Demonstrations for Comal County Landfill, Permit No. 66*, prepared for Waste Management of Texas Inc., Comal County Landfill, Comal County, Texas, March 1994.

Shafer, G.H., 1966. *Ground-Water Resources of Guadalupe County, Texas* Texas Water Development Board, Report 19, prepared by the U.S. Geological Survey in cooperation with the Texas Water Development Board, Guadalupe-Blanco River Authority, and the Guadalupe County Commissioner's Court, 95 p.

Spearing, D., "Roadside Geology of Texas," Mountain Press Publishing Company, 1991, 432 p.

Tetratech. Groundwater Data Review and Statistics Report., First Semi Annual Detection Monitoring Event in 2015 at Mesquite Creek Landfill, Permit No. MSW 66B. Prepared for Waste Management of Texas, Inc., New Braunfels, Texas, July 2015. Tetratech. Groundwater Data Review and Statistics Report., First Semi Annual Detection Monitoring Event in 2016 at Mesquite Creek Landfill, Permit No. MSW 66B. Prepared for Waste Management of Texas, Inc., New Braunfels, Texas, July 2016.

Tetratech. Groundwater Data Review and Statistics Report., First Semi Annual Detection Monitoring Event in 2017 at Mesquite Creek Landfill, Permit No. MSW 66B. Prepared for Waste Management of Texas, Inc., New Braunfels, Texas, May 2017.

Tetratech. Groundwater Data Review and Statistics Report., First Semi Annual Detection Monitoring Event in 2018 at Mesquite Creek Landfill, Permit No. MSW 66B. Prepared for Waste Management of Texas, Inc., New Braunfels, Texas, June 2018.

Texas Almanac, Physical Regions of Texas, https://www.texasalmanac.com/articles/physical-regions, reviewed by D.R. Butler, 2021.

Wermund, E. G., 1996. *Physiography of Texas and Physiography Map of Texas*. Bureau of Economic Geology, The University of Texas at Austin.

Young, K., 1972. Mesozoic History, Llano Region: in Barnes, V. E., Bell, W. C., Clabaugh, S. E., and Cloud, P. E., eds., Geology of the Llano Region and Austin Area, Field Excursion, The University of Texas at Austin, Bureau of Economic Geology Guidebook 13, 77 p.

TABLES 4-6 THROUGH 4-9

[Tables 4-1 to 4-5 were presented earlier, embedded within the narrative text]

October 2023 Page No. 4 - 42

TABLE	4-6 a
-------	--------------

		Ground	Top of	Total	Total Filter		Screen					
Well ID	Installation Date	Surface Elev. (ft, MSL)	Casing Elev. (ft, MSL)	Depth (ft, BGS)	Top Elev.	Bottom Elev.	Top Elev.	Bottom Elev.	Length (ft)	Stratum Screened		
Unit 1 Area												
MW-1	2/20/1992	662.4	664.9	45.0	635.9	619.4	631.9	621.9	10	III		
MW-2A	3/17/2009	609.0	611.8	37.0	585.0	572.0	583.0	572.9	10	III		
MW-3	2/18/1992	603.5	606.0	34.0	591.0	574.5	587.0	577.0	10	III		
MW-4A	5/11/2020	609.4	610.9	30.0	592.4	579.4	590.4	580.4	10	III		
MW-6	11/8/1995	632.9	635.3	63.5	593.9	567.9	591.9	581.9	10	III		
MW-7A	3/11/2009	603.4	606.3	27.0	592.9	576.4	591.4	581.4	10	III		
MW-8A	3/19/2009	625.5	628.5	55.0	585.5	570.5	583.5	573.5	10	III		
MW-9	3/24/2009	626.0	629.1	50.0	592.0	576.0	589.5	579.5	10	III		
	1	1	1	Unit 2 Ex	xisting Ar	ea	1	1	1			
MW-10	11/4/2009	670.5	673.5	57.0	627.0	613.5	625.0	615.0	10	III		
MW-11	3/5/2009	679.0	682.1	63.0	635.0	616.0	633.0	618.0	15	III		
MW-12	5/23/2018	709.3	712.2	76.0	647.8	633.3	645.8	635.8	10	III		
MW-13	4/10/2018	688.7	691.4	56.0	648.7	632.7	645.7	635.7	10	III		
MW-14	4/10/2018	654.0	656.7	57.5	615.0	596.5	612.0	602.0	10	III		
MW-15	4/11/2018	647.2	650.2	53.0	608.2	594.2	604.7	594.7	10	III		
MW-16	1/21/2005	643.4	646.5	58.0	597.7	585.4	595.7	585.7	10	III		
MW-17	1/25/2016	655.4	659.1	63.0	608.4	592.4	605.4	595.4	10	III		
MW-18	3/18/2009	635.1	638.2	60.0	588.1	575.1	586.1	576.1	10	III		
MW-19	3/2/2009	633.2	636.3	55.0	600.2	578.2	598.7	578.7	20	III		
MW-20	3/3/2009	606.3	609.5	40.0	583.3	566.3	581.8	566.8	15	III		
MW-21	3/10/2009	606.8	609.6	43.0	575.8	563.8	574.3	564.3	10	III		
MW-22	3/10/2009	612.2	615.8	37.0	587.7	575.2	586.2	576.2	10	III		
MW-23	3/6/2009	621.2	624.2	35.0	600.2	586.2	597.2	587.2	10	III		
		1	i	Unit 2 Exp	pansion A	rea	1					
GB-25(P)	2/6/2023	662.6	665.8	58.0	617.6	604.6	614.6	604.6	10	III		
GB-30(P)	2/7/2023	695.1	698.4	45.0	663.1	650.1	660.1	650.1	10	III		
GB-32(P)	1/27/2023	652.3	655.2	50.0	615.3	602.3	612.3	602.3	10	III		
GB-33(P)	2/8/2023	702.9	705.7	64.0	651.9	638.9	648.9	638.9	10	III		
GB-35(P)	2/8/20023	709.0	711.7	60.0	662.0	649.0	659.0	649.0	10	III		
GB-37(P)	1/26/2023	668.9	671.1	55.0	626.9	613.9	623.9	613.9	10	III		
GB-39(P)	1/30/2023	707.4	709.9	60.0	660.4	647.4	657.4	647.4	10	III		
GB-41(P)	1/26/2023	676.2	678.4	60.0	629.2	616.2	626.2	616.2	10	III		
GB-45(P)	2/9/2023	711.4	713.7	62.0	662.4	649.4	659.4	649.4	10	III		
GB-48(P)	2/10/2023	708.5	710.8	60.0	661.5	648.5	658.5	648.5	10	III		
GB-50(P)	2/1/2023	689.6	691.4	65.0	637.6	624.6	634.6	624.6	10	III		
GB-52(P)	1/31/2023	668.0	670.2	60.0	621.0	608.0	618.0	608.0	10	III		

Notes:

1. ft, MSL indicates feet below mean sea level, ft, BGS indicates feet below ground surface.
TABLE 4-6b

SUMMARY OF OLD (NO LONGER IN EXISTENCE) MONITORING WELL AND PIEZOMETER CONSTRUCTION DETAILS

Well ID	Installation	Ground Surface	Top of Casing Elev.	Total Depth	Filte	er Pack	Screen			Stratum
	Date	Elev. (ft, MSL)	(ft, MSL)	(ft, BGS)	Top Elev.	Bottom Elev.	Top Elev.	Bottom Elev.	Length (ft)	Screened
P-6	12/5/1987	638.5	641.8	45.0	618.5	593.5	598.5	593.5	5	III
P-7	12/5/1987	664.0	666.0	78.0	611.0	586.0	591.0	586.0	5	IV
P-10	12/7/1987	642.0	644.0	74.0	582.0	568.0	573.0	568.0	5	IV
P-14	12/7/1987	604.0	606.0	27.0	592.0	577.0	582.0	577.0	5	III
PZ-2	4/25/1990	633.6	635.6	62.5	585.8	571.1	583.6	573.6	10	IV
PZ-3	4/24/1990	643.9	646.3	27.5	630.9	617.9	628.9	618.9	10	III
PZ-4	4/27/1990	627.5	629.6	44.5	607.8	585.5	605.5	590.5	15	III
PZ-5	4/27/1990	614.0	616.1	27.5	600.6	588.0	599.0	589.0	10	III
PZ-6	9/26/1991	602.7	605.6	23.0	594.7	580.7	593.2	583.2	10	III
PZ-7	9/25/1991	601.7	604.4	28.0	589.2	574.4	587.2	577.2	10	III
PZ-8	9/25/1991	600.7	604.8	63.5	553.7	538.7	551.2	541.2	10	IV
PZ-9	9/27/1991	621.9	625.3	56.0	582.9	569.9	579.9	569.9	10	III
PZ-10	9/27/1991	622.0	624.9	80.0	557.0	542.5	555.0	545.0	10	IV
PZ-11	10/1/1991	659.7	662.8	50.0	626.7	613.7	623.7	613.7	10	III
PZ-12	9/30/1991	660.1	663.0	68.0	608.1	593.6	606.1	596.1	10	IV
MW-2	2/19/1992	615.6	618.7	35.0	599.1	582.6	595.1	585.1	10	III
MW-4	2/19/1992	605.3	608.3	30.0	593.8	577.3	589.8	579.8	10	III
PZ-1M	2/18/1992	644.9	647.0	45.0	616.9	600.9	612.9	602.9	10	III
MW-5	2/21/1992	668.2	671.4	60.0	622.2	608.2	618.2	608.2	10	IV
MW-7	4/5/2006	589.8	592.2	36.6	568.8	553.2	565.2	553.2	12	III
MW-8	4/5/2006	588.8	591.5	38.1	565.8	550.7	563.2	550.7	12.5	III
GB-01 (P)	12/20/2004	595.4	598.8	26.0	581.6	569.4	579.4	569.4	10	III
GB-02 (P)	12/17/2004	599.6	602.7	27.0	584.6	572.6	582.6	572.6	10	III
GB-03 (P)	12/15/2004	607.6	610.9	27.0	592.9	580.6	590.6	580.6	10	III
GB-04 (P)	12/17/2004	668.2	671.3	62.0	618.3	606.2	616.2	606.2	10	III
GB-05 (P)	1/5/2005	640.5	643.3	65.0	587.5	575.5	585.5	575.5	10	III
GB-06 (P)	1/28/2005	646.0	649.3	45.0	613.0	601.0	611.0	601.0	10	III
GB-09 (P)	12/22/2004	638.7	641.7	54.0	596.7	584.7	594.7	584.7	10	III
GB-11 (P)	12/20/2004	617.2	620.2	45.0	583.5	572.2	582.2	572.2	10	III
GB-12 (P)	12/16/2004	639.6	642.8	60.0	591.8	579.6	589.6	579.6	10	III
GB-13 (P)	1/21/2005	619.5	621.9	61.5	570.0	558.0	568.0	558.0	10	III
GB-17 (P)	1/24/2005	654.4	657.3	64.0	602.4	590.4	600.4	590.4	10	III
GB-20 (P)	12/13/2004	675.8	678.7	69.0	619.3	606.8	616.8	606.8	10	III
GB-21 (P)	1/10/2005	709.1	712.2	73.5	647.9	635.6	645.6	635.6	10	III
GB-22 (P)	1/10/2005	657.8	659.4	69.0	601.3	588.8	598.8	588.8	10	III

Notes:

1. No record on the construction details was located for previous piezometer PZ-1.

Boring	Surface Elevation (ft, MSL)	Total Depth (ft)	Initial Water Level (ft, MSL) ¹	Static Water Level (ft, MSL) ²
	-	Unit 1 Area	·	·
CB-1	670.0	60.0	DRY	DRY
CB-2	623.0	40.0	DRY	DRY
CB-3	632.0	60.0	DRY	DRY
CB-4	604.0	60.0	DRY	DRY
CB-5	605.0	60.0	DRY	DRY
B-6	638.0	80.0	DRY	626.0
B-7	664.0	80.0	DRY	635.1
B-8	638.0	80.0	DRY	595.0
B-9	640.0	80.0	DRY	581.6
B-10	642.0	80.0	DRY	572
B-11	628.0	75.5	DRY	DRY
B-12	642.0	80.0	DRY	632.5
B-13	626.0	80.0	DRY	DRY
B-14	604.0	50.0	DRY	556
B-15	606.0	80.0	DRY	544.6
GP-1	641.9	24.0	DRY	NA
GP-2	662.8	35.0	DRY	NA
GP-3	641.0	22.0	DRY	NA
GP-4	602.8	36.0	DRY	NA
GP-5	602.5	37.0	DRY	NA
GP-6	623.9	44.0	DRY	NA
SB-1	662.4	45.0	DRY	DRY
SB-2	615.6	35.0	DRY	591.0
SB-3	603.5	34.0	593.6	597.2
SB-4	605.3	30.0	DRY	576.6
SB-5	670.5	60.0	DRY	DRY
SB-6	632.9	63.5	DRY	DRY
GP-6R	623.5	43.3	DRY	NA
	L	Init 2 Existing A	1rea	
GB-01	595.4	95.0	DRY	DRY
GB-02	599.5	70.5	DRY	DRY
GB-03	607.7	104.5	DRY	DRY
GB-04	668.2	145.0	DRY	DRY
GB-05	640.5	115.0	601.5	DRY
GB-06	646.0	124.0	607.4	DRY
GB-07	602.9	59.0	DRY	DRY
GB-08	623.8	71.5	DRY	DRY

TABLE 4-7aWATER LEVEL MEASUREMENTS DURING DRILLING - SOIL BORINGS

Attachment 4 Geology Report

WATER LEVEL MEASUREMENTS DURING DRILLING - SOIL BORINGS									
Boring	Surface Elevation (ft, MSL)	Total Depth (ft)	Initial Water Level (ft, MSL) ¹	Static Water Level (ft, MSL) ²					
GB-09	638.7	89.0	604.7	DRY					
GB-10	648.7	99.0	608.7	DRY					
GB-11	617.2	90.0	DRY	DRY					
GB-12	639.6	119.0	DRY	DRY					
GB-13	618.8	95.0	573.8	DRY					
GB-14	679.8	136.0	DRY	DRY					
GB-15	643.4	144.0	603.1	DRY					
GB-16	679.5	139.0	DRY	DRY					
GB-17	654.4	134.0	DRY	DRY					
GB-18	694.2	149.0	653.2	DRY					
GB-19	688.7	150.0	DRY	DRY					
GB-20	675.9	169.0	621.7	DRY					
GB-21	709.0	187.0	654.0	DRY					
GB-22	656.5	140.0	DRY	DRY					
GB-23	689.5	185.0	DRY	DRY					
GB-24	677.5	155.0	652.5	DRY					
GP-5A	609.1	52.0	DRY	NA					
GP-8	605.3	49.0	DRY	NA					
GP-9	625.0	48.0	DRY	NA					
GP-10	663.9	47.5	DRY	NA					
GP-11	615.9	57.0	DRY	NA					
GP-12	610.0	31.0	DRY	NA					
GP-13	639.9	62.0	DRY	NA					
GP-20	664 2	65.0	DRY	NA					
GP-21	637.8	49.0	DRY	NA					
GP-14	657.7	56.0	DRY	NA					
GP-19	676.5	56.0	DRY	NA					
GP-15	637.7	33.0	DRY	NA					
GP-16	654.8	31.5	DRY	NA					
GP-17	699.8	77.5	DRY	NA					
GP-18	708 7	75.0	DRY	NA					
51 10	U	nit 2 Expansion	Area						
GB-25	662.5	86.7	DRY	DRY					
GB-26	702.4	102.3	DRY	DRY					
GB-27	662.8	113.4	DRY	DRY					
GB-28	685.5	85.2	DRY	DRY					
GB-29	712.5	112.2	DRY	DRY					
GB-30	696.6	96.1	DRY	DRY					
GB-31	668.2	69.0	DRY	DRY					

TABLE 4-7a

Boring	Surface Elevation (ft, MSL)	Total Depth (ft)	Initial Water Level (ft, MSL) ¹	Static Water Level (ft, MSL) ²
GB-32	652.7	76.9	DRY	DRY
GB-33	702.9	153.2	DRY	DRY
GB-34	711.6	142.5	DRY	DRY
GB-35	709.3	109.7	DRY	DRY
GB-36	681.7	106.8	DRY	DRY
GB-37	668.3	119.8	DRY	DRY
GB-38	708.0	132.6	DRY	DRY
GB-39	707.9	111.1	DRY	DRY
GB-40	692.8	144.0	DRY	DRY
GB-41	679.8	76.8	DRY	DRY
GB-42	663.1	88.2	DRY	DRY
GB-43	710.0	109.3	DRY	DRY
GB-44	710.0	136.7	DRY	DRY
GB-45	710.0	111.5	DRY	DRY
GB-46	686.8	110.2	DRY	DRY
GB-47	671.3	70.9	DRY	DRY
GB-48	707.5	158.9	DRY	DRY
GB-49	704.1	103.2	DRY	DRY
GB-50	689.1	113.6	DRY	DRY
GB-51	677.5	76.5	DRY	DRY
GB-52	667.1	118.6	DRY	DRY

 TABLE 4-7a

 WATER LEVEL MEASUREMENTS DURING DRILLING - SOIL BORINGS

Notes:

1. Observed water level during borehole advancement.

2. Static water level (after-equilibrium measurements) during or shortly after borehole advancement.

TABLE 4-7b

Well /Piez. ID	Surface Elev. (ft, MSL)	Total Depth (ft)	Initial Water Level (ft, MSL) ¹	Static Water Level (ft, MSL) ²	Status
P-6	638.0	80.0	DRY	634.6	Decommissioned
P-7	664.0	80.0	DRY	635.1	Decommissioned
P-10	642.0	80.0	DRY	566.7	Decommissioned
P-14	604.0	50.0	DRY	DRY	Decommissioned
PZ-1	662.6	57.0	DRY	655.0	Decommissioned
PZ-2	633.2	70.5	DRY	DRY	Decommissioned
PZ-3	643.9	32.5	DRY	637.5	Decommissioned
PZ-4	627.5	50.4	DRY	623.7	Decommissioned
PZ-5	614.0	51.4	DRY	603.2	Decommissioned
PZ-6	602.7	24.0	DRY	598.8	Decommissioned
PZ-7	601.7	28.0	DRY	594.4	Decommissioned
PZ-8	600.7	63.5	DRY	573.7	Decommissioned
PZ-9	621.9	56.0	DRY	DRY	Decommissioned
PZ-10	622.0	80.0	DRY	543.5	Decommissioned
PZ-11	659.7	50.0	575.6	653.0	Decommissioned
PZ-12	660.1	68.0	DRY	655.0	Decommissioned
MW-1	662.4	45.0	DRY	629.7	Existing Unit 1 Area
MW-2	615.6	35.0	DRY	602.2	Decommissioned
MW-3	603.5	34.0	593.6	597.9	Existing Unit 1 Area
MW-4	605.3	30.0	DRY	594.8	Decommissioned
MW-5	670.5	60.0	DRY	612.0	Decommissioned
MW-7	589.8	36.6	DRY	NA	Decommissioned
MW-8	588.8	38.1	DRY	NA	Decommissioned
PZ-1M	644.2	45.0	605.4	636.6	Decommissioned
MW-6	632.9	63.5	DRY	DRY	Existing Unit 1 Area
GB-01 (P)	595.4	26.0	DRY	588.0	Decommissioned
GB-02 (P)	599.6	27.0	DRY	593.1	Decommissioned
GB-03 (P)	607.6	27.0	DRY	601.2	Decommissioned
GB-04 (P)	668.2	62.0	DRY	657.6	Decommissioned
GB-05 (P)	640.5	65.0	601.5	621.1	Decommissioned
GB-06 (P)	646.0	45.0	607.4	632.9	Decommissioned
GB-09 (P)	638.7	54.0	604.7	631.3	Decommissioned
GB-11 (P)	617.2	45.0	DRY	597.6	Decommissioned
GB-12 (P)	639.6	60.0	DRY	609.3	Decommissioned
GB-13 (P)	619.5	61.5	573.8	603.9	Decommissioned
GB-15 (P)/ MW-16	643.4	57.7	603.1	632.3	Existing Unit 2 Area
GB-17 (P)	654.4	64.0	DRY	597.5	Decommissioned
GB-20 (P)	675.8	69.0	621.7	664.1	Decommissioned

WATER LEVEL MEASUREMENTS DURING DRILLING AND AFTER INSTALLATION -PIEZOMETERS AND MONITORING WELLS

Attachment 4 Geology Report

TABLE 4-7b

Well /Piez. ID	Surface Elev. (ft, MSL)	Total Depth (ft)	Initial Water Level (ft, MSL) ¹	Static Water Level (ft, MSL) ²	
GB-21 (P)	709.1	73.5	654.0	653.5	Decommissioned
GB-22 (P)	657.8	69.0	DRY	639.9	Decommissioned
MW-2A	609.0	37.0	572.7	595.4	Existing Unit 1 Area
MW-7A	603.4	27.0	582.2	593.7	Existing Unit 1 Area
MW-8A	625.5	55.0	573.5	DRY	Existing Unit 1 Area
MW-9	626.0	50.0	580.1	583.3	Existing Unit 1 Area
MW-11	679.0	63.0	617.8	666.3	Existing Unit 2 Area
MW-18	635.1	60.0	576.8	629.2	Existing Unit 2 Area
MW-19	633.2	55.0	579.6	596.0	Existing Unit 2 Area
MW-20	606.3	40.0	575.3	594.3	Existing Unit 2 Area
MW-21	606.8	43.0	564.7	594.2	Existing Unit 2 Area
MW-22	612.2	37.0	577.8	DRY	Existing Unit 2 Area
MW-23	621.2	35.0	587.8	600.0	Existing Unit 2 Area
MW-10	670.5	57.0	616.0	658.1	Existing Unit 2 Area
MW-17	655.4	35.0	DRY	637.2	Existing Unit 2 Area
MW-13	688.7	56.0	DRY	653.2	Existing Unit 2 Area
MW-14	654.0	57.5	DRY	602.7	Existing Unit 2 Area
MW-15	647.2	53.0	559.6	635.2	Existing Unit 2 Area
MW-12	709.3	76.0	DRY	651.6	Existing Unit 2 Area
MW-4A	609.4	30.0	583.9	595.3	Existing Unit 1 Area
GB-25(P)	662.6	58.0	609.3	618.8	Unit 2 Expansion Area
GB-30(P)	695.1	45.0	656.1	DRY	Unit 2 Expansion Area
GB-32(P)	652.3	50.0	603.2	605.9	Unit 2 Expansion Area
GB-33(P)	702.9	64.0	646.0	675.4	Unit 2 Expansion Area
GB-35(P)	709.0	60.0	649.2	650.4	Unit 2 Expansion Area
GB-37(P)	668.9	55.0	613.9	DRY	Unit 2 Expansion Area
GB-39(P)	707.4	60.0	650.8	651.9	Unit 2 Expansion Area
GB-41(P)	676.2	60.0	633.6	647.3	Unit 2 Expansion Area
GB-45(P)	711.4	62.0	649.6	DRY	Unit 2 Expansion Area
GB-48(P)	708.5	60.0	657.9	679.8	Unit 2 Expansion Area
GB-50(P)	689.6	65.0	665.4	664.3	Unit 2 Expansion Area
GB-52(P)	668.0	60.0	638.7	642.4	Unit 2 Expansion Area

WATER LEVEL MEASUREMENTS DURING DRILLING AND AFTER INSTALLATION -PIEZOMETERS AND MONITORING WELLS

Notes:

1. Observed water level during well and piezometer installation and/or initial development.

2. Static water level (after-equilibrium measurements) is last reading taken. The static water level in

newly installed piezometers [GB-25(P) through GB-52(P)] was obtained in August 2023.

3. NA= Not Available

TABLE 4-8a

MONITORING WELL WATER LEVEL MEASUREMENTS (EXISTING WELLS IN UNIT 1 - SCREENED IN STRATUM III)

Date	MW-1	MW-2A	MW-3	MW-4	MW-4A	MW-6	MW-7A	MW-8A	MW-9
3/1992	N/A	N/A	591.6	586.8	N/A	N/A	N/A	N/A	N/A
5/1992	641.8	N/A	598.4	589.0	N/A	N/A	N/A	N/A	N/A
7/1992	628.3	N/A	597.8	593.0	N/A	N/A	N/A	N/A	N/A
11/1992	629.8	N/A	596.1	592.2	N/A	N/A	N/A	N/A	N/A
3/1993	645.0	N/A	601.7	593.1	N/A	N/A	N/A	N/A	N/A
7/1993	644.7	N/A	599.0	593.6	N/A	N/A	N/A	N/A	N/A
10/1993	644.5	N/A	595.0	592.6	N/A	N/A	N/A	N/A	N/A
4/1994	644.5	N/A	594.3	592.1	N/A	N/A	N/A	N/A	N/A
7/1994	644.5	N/A	595.8	591.9	N/A	N/A	N/A	N/A	N/A
10/1994	645.5	N/A	601.6	592.4	N/A	N/A	N/A	N/A	N/A
1/1995	645.8	N/A	601.9	593.0	N/A	N/A	N/A	N/A	N/A
4/1995	644.8	N/A	601.8	593.5	N/A	N/A	N/A	N/A	N/A
11/1995	646.7	N/A	596.4	592.9	N/A	N/A	N/A	N/A	N/A
12/1995	631.5	N/A	583.1	589.0	N/A	N/A	N/A	N/A	N/A
5/1996	645.5	N/A	594.8	592.4	N/A	N/A	N/A	N/A	N/A
11/1996	645.5	N/A	596.4	592.8	N/A	N/A	N/A	N/A	N/A
2/1997	645.2	N/A	595.6	593.5	N/A	N/A	N/A	N/A	N/A
5/1997	642.7	N/A	595.2	593.3	N/A	N/A	N/A	N/A	N/A
11/1997	646.0	N/A	594.4	593.3	N/A	N/A	N/A	N/A	N/A
5/1998	647.3	N/A	595.3	589.3	N/A	N/A	N/A	N/A	N/A
6/1999	648.4	N/A	592.4	589.5	N/A	DRY	N/A	N/A	N/A
12/1999	648.2	N/A	589.2	589.4	N/A	DRY	N/A	N/A	N/A
6/2000	645.0	N/A	585.7	589.4	N/A	DRY	N/A	N/A	N/A
11/2000	644.8	N/A	585.0	589.2	N/A	DRY	N/A	N/A	N/A
6/2001	649.2	N/A	592.6	593.4	N/A	NM	N/A	N/A	N/A
9/2001	NM	N/A	592.3	NM	N/A	NM	N/A	N/A	N/A
12/2001	648.3	N/A	593.0	597.6	N/A	NM	N/A	N/A	N/A
2/2022	NM	N/A	592.0	NM	N/A	NM	N/A	N/A	N/A
5/2002	647.7	N/A	590.3	593.0	N/A	NM	N/A	N/A	N/A
7/2002	NM	N/A	580.8	NM	N/A	NM	N/A	N/A	N/A
12/2002	649.4	N/A	593.8	596.3	N/A	NM	N/A	N/A	N/A
1/2003	NM	N/A	589.7	NM	N/A	NM	N/A	N/A	N/A
4/2003	650.6	N/A	593.7	595.6	N/A	NM	N/A	N/A	N/A
10/2003	649.4	N/A	592.2	595.9	N/A	NM	N/A	N/A	N/A
5/2004	649.0	N/A	592.9	595.9	N/A	NM	N/A	N/A	N/A
11/2004	649.2	N/A	594.4	596.5	N/A	585.5	N/A	N/A	N/A
3/2005	649.6	N/A	594.4	598.5	N/A	DRY	N/A	N/A	N/A
5/2005	649.4	N/A	593.2	597.7	N/A	589.6	N/A	N/A	N/A
6/2005	649.6	N/A	593.1	597.9	N/A	588.6	N/A	N/A	N/A
11/2005	649.2	N/A	594.2	597.5	N/A	NM	N/A	N/A	N/A
6/2006	647.5	N/A	594.2	596.5	N/A	NM	N/A	N/A	N/A
12/2006	645.5	N/A	594.6	596.2	N/A	NM	N/A	N/A	N/A

Attachment 4 Geology Report

TABLE 4-8a

MONITORING WELL WATER LEVEL MEASUREMENTS (EXISTING WELLS IN UNIT 1 - SCREENED IN STRATUM III)

Date	MW-1	MW-2A	MW-3	MW-4	MW-4A	MW-6	MW-7A	MW-8A	MW-9
7/2007	631.2	N/A	598.3	598.6	N/A	NM	N/A	N/A	N/A
12/2007	647.8	N/A	594.8	597.6	N/A	NM	N/A	N/A	N/A
6/2008	647.0	N/A	593.6	596.9	N/A	NM	N/A	N/A	N/A
12/2008	645.6	N/A	592.1	595.7	N/A	NM	N/A	N/A	N/A
7/2009	644.5	NM	595.7	594.1	N/A	NM	N/A	N/A	N/A
11/2009	642.6	NM	597.0	594.1	N/A	NM	N/A	N/A	N/A
12/2009	632.2	NM	598.2	594.2	N/A	NM	N/A	N/A	N/A
6/2010	643.4	NM	594.7	595.1	N/A	NM	N/A	N/A	N/A
12/2010	642.6	NM	592.7	595.5	N/A	NM	N/A	N/A	N/A
9/2011	642.0	594.4	592.6	594.3	N/A	NM	592.8	DRY	DRY
12/2011	641.6	595.5	597.2	593.5	N/A	NM	592.3	DRY	DRY
3/2012	640.1	599.2	596.2	593.8	N/A	NM	600.6	DRY	DRY
5/2012	639.1	599.7	594.4	594.1	N/A	NM	600.1	DRY	587.6
11/2012	NM	596.4	NM	NM	N/A	NM	595.1	DRY	584.5
3/2013	638.9	596.4	594.8	594.0	N/A	NM	596.4	DRY	581.5
6/2013	NM	NM	NM	NM	N/A	NM	597.9	DRY	DRY
10/2013	632.7	597.4	591.9	593.5	N/A	DRY	599.0	DRY	DRY
6/2014	637.7	595.1	594.6	593.8	N/A	DRY	599.5	DRY	DRY
11/2014	636.3	593.3	591.7	592.7	N/A	DRY	593.8	DRY	DRY
5/2015	637.3	598.4	596.2	594.1	N/A	DRY	600.2	DRY	592.0
12/2015	635.6	595.2	594.8	593.3	N/A	DRY	595.7	DRY	587.2
6/2016	633.8	598.3	596.6	594.4	N/A	DRY	600.4	DRY	602.1
9/2016	630.8	596.4	594.1	594.4	N/A	DRY	595.3	DRY	589.5
3/2017	645.6	598.9	597.3	594.7	N/A	DRY	600.5	DRY	603.0
10/2017	632.9	596.9	595.8	591.5	N/A	DRY	598.9	DRY	587.5
4/2018	631.1	596.0	596.5	594.4	N/A	DRY	598.7	DRY	594.8
10/2018	632.8	597.2	594.7	593.9	N/A	DRY	596.8	DRY	585.7
5/2019	630.9	598.2	596.6	594.8	N/A	DRY	599.5	DRY	598.8
11/2019	630.8	595.8	591.8	N/A	N/A	DRY	592.0	DRY	585.6
5/2020	632.1	598.3	595.7	N/A	588.3	DRY	594.5	DRY	585.0
12/2020	632.7	596.3	594.4	N/A	593.2	DRY	589.6	DRY	582.0
4/2021	632.5	598.1	595.5	N/A	592.1	DRY	588.9	DRY	DRY
11/2021	630.1	597.9	599.1	N/A	597.2	DRY	600.1	DRY	586.2
7/2022	629.7	595.4	597.9	N/A	595.3	DRY	593.7	DRY	583.3

Notes:

1. Measurements are in feet above mean sea level (ft MSL)

2. N/A = Not Available (e.g., date is prior to well construction, well damaged/replaced, etc.).

3. NM = Not measured

TABLE 4-8b MONITORING WELL WATER LEVEL MEASUREMENTS (EXISTING WELLS IN UNIT 2 - SCREENED IN STRATUM III)

Date	MW-10	MW-11	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	MW-18	MW-19	MW-20	MW-21	MW-22	MW-23
9/2011	654.3	666.7	N/A	N/A	N/A	N/A	N/A	N/A	614.8	591.0	592.0	593.9	591.2	595.9
12/2011	653.3	666.3	N/A	N/A	N/A	N/A	N/A	N/A	620.8	591.9	596.8	593.9	591.2	596.1
3/2012	652.3	674.1	N/A	N/A	N/A	N/A	N/A	N/A	618.2	588.9	599.1	595.1	587.0	608.2
5/2012	652.8	672.7	N/A	N/A	N/A	N/A	N/A	N/A	623.7	594.8	598.9	596.0	591.3	610.1
11/2012	652.9	669.3	N/A	N/A	N/A	N/A	N/A	N/A	622.6	595.5	597.1	594.6	589.0	604.8
3/2013	652.9	667.6	N/A	N/A	N/A	N/A	N/A	N/A	623.2	591.3	595.8	594.6	588.1	602.3
6/2013	653.4	668.9	N/A	N/A	N/A	N/A	N/A	N/A	625.9	596.6	596.8	594.3	590.6	605.6
10/2013	651.2	663.0	N/A	N/A	N/A	N/A	N/A	N/A	618.5	592.1	596.0	593.1	586.7	606.5
6/2014	653.9	668.4	N/A	N/A	N/A	N/A	N/A	N/A	627.3	597.8	596.3	594.6	589.7	606.6
11/2014	652.4	664.8	N/A	N/A	N/A	N/A	N/A	N/A	625.5	594.0	590.3	593.5	586.7	600.0
5/2015	655.5	672.7	N/A	N/A	N/A	N/A	N/A	N/A	627.9	594.8	598.4	599.9	604.0	609.7
12/2015	651.6	670.9	N/A	N/A	N/A	N/A	N/A	N/A	627.7	595.7	597.2	594.6	587.6	602.9
6/2016	652.7	673.2	N/A	N/A	N/A	N/A	N/A	N/A	628.4	595.4	599.7	599.7	606.1	608.1
9/2016	653.2	670.1	N/A	N/A	N/A	N/A	N/A	N/A	627.1	592.9	598.6	595.6	587.3	605.0
3/2017	655.3	677.2	N/A	N/A	N/A	N/A	N/A	N/A	629.3	593.8	600.5	600.3	607.3	612.7
10/2017	656.0	673.2	N/A	N/A	N/A	N/A	632.1	636.7	629.2	594.6	598.8	596.7	589.2	604.9
4/2018	657.8	676.3	N/A	DRY	DRY	NM	634.4	639.5	630.6	595.1	599.6	598.7	602.0	607.7
10/2018	656.9	668.5	DRY	638.7	DRY	635.8	634.0	637.4	629.6	592.9	598.2	594.8	580.7	602.8
5/2019	658.7	674.1	DRY	655.2	DRY	638.0	637.1	641.9	630.8	595.9	599.5	598.9	600.6	607.9
11/2019	657.1	668.3	DRY	646.9	DRY	635.6	635.9	641.6	628.7	597.3	597.4	594.0	584.2	601.7
5/2020	656.4	669.8	648.1	647.9	DRY	642.7	634.8	641.9	630.1	595.2	600.8	599.9	586.8	609.7
12/2020	658.4	672.5	649.5	652.0	DRY	636.0	632.0	635.3	629.4	597.3	594.1	595.5	594.3	604.8
4/2021	657.2	667.4	649.0	650.5	DRY	637.5	632.4	644.8	630.2	592.4	596.1	594.1	584.6	599.4
11/2021	658.5	669.2	652.1	660.0	DRY	635.4	629.2	642.6	630.8	622.7	599.3	598.0	584.1	604.2
7/2022	659.4	667.3	647.5	654.4	DRY	636.4	633.1	642.6	627.2	595.4	594.7	595.5	585.6	601.6
3/2023	658.2	666.9	651.0	650.0	DRY	635.8	632.3	640.2	627.8	596.5	596.6	594.1	DRY	597.9
3/2023	658.0	666.9	651.2	649.9	DRY	635.2	632.5	639.9	628.8	596.6	597.0	594.3	DRY	598.1
5/2023	657.8	666.9	651.3	649.9	DRY	635.6	632.8	640.0	629.3	596.6	598.6	594.8	DRY	599.3
6/2023	657.5	669.8	651.6	657.3	602.6	635.9	633.8	640.0	629.7	596.6	598.7	595.8	DRY	604.9
7/2023	657.7	667.5	651.5	654.4	602.7	635.0	633.7	638.5	629.5	595.9	596.6	594.9	DRY	600.9
8/2023	658.1	666.3	651.6	653.2	DRY	635.2	632.3	637.2	629.2	596.0	594.3	594.2	DRY	600.0

Notes:

1. Measurements are in feet above mean sea level (ft MSL)

2. N/A = Not Available (e.g., date is prior to well construction, replacement well, etc.).

3. NM = Not measured

TABLE 4-8cPIEZOMETER WATER LEVEL MEASUREMENTS(PIEZOMETERS SCREENED IN STRATUM III)[GEOSYNTEC, 2023 PIEZOMETERS]

Date	GB-25 (P)	GB-30 (P)	GB-32 (P)	GB-33 (P)	GB-35 (P)	GB-37 (P)	GB-39 (P)	GB-41 (P)	GB-45 (P)	GB-48 (P)	GB-50 (P)	GB-52 (P)
3/2023	609.4	653.1	605.9	647.9	651.6	615.2	652.3	628.6	650.6	664.8	665.0	635.7
4/2023	612.1	652.1	605.9	665.3	651.2	614.7	652.2	639.1	650.2	673.7	665.4	640.0
5/2023	613.4	651.5	605.9	670.2	651.1	614.5	652.2	641.9	650.3	676.0	665.5	641.2
6/2023	615.1	650.8	605.9	674.1	651.0	614.4	652.2	644.8	653.6	678.2	665.6	642.2
7/2023	617.4	DRY	605.9	675.1	650.6	DRY	652.0	646.2	DRY	679.2	664.7	642.3
8/2023	618.8	DRY	605.9	675.4	650.4	DRY	651.9	647.3	DRY	679.8	664.3	642.4

Note:

1. Measurements are in feet above mean sea level (ft MSL).

Boring Number	Strata	Horizontal Hydraulic Conductivity ²	Vertical Hydraulic Conductivity ²
		k_h (cm/s)	k_v (cm/s)
	STRATUM	ΙΙ	
GB-36	Ι	3.4E-10	8.8E-09
GB-40	Ι		8.8E-08
GB-41	Ι	1.1E-08	1.4E-08
GB-52	Ι	2.4E-10	1.1E-09
	Stratum I Average ³ (Geosyntec, 2023)	9.6E-10	1.0E-08
	STRATUM	II	
GB-33	II	1.3E-09	3.1E-08
GB-37	II	9.7E-08	
	Stratum II Average ³ (Geosyntec, 2023)	1.1E-08	3.1E-08
	STRATUM	ĪII	
GB-33	III		1.2E-09
GB-37	III	1.6E-09	2.1E-09
GB-40	III	1.0E-08	1.4E-09
GB-41	III	3.7E-09	
GB-48	III	2.9E-09	1.1E-09
GB-52	III	7.2E-09	4.7E-09
	Stratum III Average ³ (Geosyntec, 2023)	4.2E-09	1.8E-09
MFG (1991) and	Geosyntec (2005) Stratum III Average ³		3.2E-08
	STRATUM	IV	
GB-27	IV		8.7E-09
GB-40	IV		5.5E-08
GB-48	IV		4.6E-09
	Stratum IV Average ³ (Geosyntec, 2023)		1.3E-08
	Geosyntec (2005) Stratum IV Average ³		6.1E-09

TABLE 4-9a SUMMARY OF HYDRAULIC CONDUCTIVITY TESTS - LABORATORY (UNDISTURBED SAMPLES)

Notes:

1. Conductivity values by Geosyntec [2023] measured in accordance with ASTM D 5084F.

2. The average hydraulic conductivities reported above were calculated as the geometric mean, based on recommendations by Domenico and Schwartz, <u>Physical and Chemical Hydrogeology</u>, 1990 [who state: "...*the "average" conductivity...is better described by the geometric mean...*"], because of the tendency of hydraulic conductivity properties of a formation to vary as a log-normal distribution.

3. Shaded table entries indicate parameters that were not obtained/tested at that Boring Number.

TABLE 4-9b

SUMMARY OF HYDRAULIC CONDUCTIVITY TESTS - FIELD PERMEABILITY (SLUG TESTING)

		Hydraulic permeability, k	x (cm/s)	C
Boring Number	Test Type	Bouwer and Rice (1976)	KGS Model (1994)	Source
		STRATUM III		
PZ-4	Slug In	4.7E-07		MFG (1991)
PZ-4	Slug Out	4.4E-07		MFG (1991)
P-6	Slug In	2.6E-06		MFG (1991)
P-6	Slug Out	3.0E-06		MFG (1991)
PZ-1	Slug Out	1.2E-07		MFG (1991)
PZ-3	Slug In	2.8E-08		MFG (1991)
PZ-3	Slug Out	4.5E-08		MFG (1991)
PZ-5	Slug In	4.1E-07		MFG (1991)
PZ-5	Slug Out	5.4E-07		MFG (1991)
PZ-6	Slug Out	1.3E-05		MFG (1991)
PZ-7	Slug Out	2.3E-06		MFG (1991)
PZ-11	Slug Out	4.9E-06		MFG (1991)
GB-01	Slug Out	1.1E-06		Geosyntec (2005)
GB-03	Slug Out	9.3E-06		Geosyntec (2005)
GB-04	Slug Out	6.7E-06		Geosyntec (2005)
GB-11	Slug Out	6.3E-06		Geosyntec (2005)
GB-13	Slug Out	3.1E-06		Geosyntec (2005)
GB-15	Slug Out	4.0E-07		Geosyntec (2005)
GB-21	Slug Out	3.1E-05		Geosyntec (2005)
GB-22	Slug Out	4.8E-07		Geosyntec (2005)
GB-33	Slug Out	5.9E-06	6.2E-06	Geosyntec (2023)
GB-41	Slug Out	5.1E-06	4.3E-06	Geosyntec (2023)
GB-50	Slug In	5.4E-06	4.1E-06	Geosyntec (2023)
GB-51	Slug Out	3.3E-06	3.6E-06	Geosyntec (2023)
STRATUM III AVERAGE ²				
		STRATUM IV		
P-7	Slug Out	2.0E-07		MFG (1991)
P-10	Slug Out	3.9E-07		MFG (1991)
PZ-12	Slug Out	4.5E-06		MFG (1991)
STRATUM IV AVERAGE ²		7.1	E-07	

Notes:

1. Hydraulic Conductivity values measured via slug testing procedures and evaluated using Bouwer and Rice (1976) or KGS (1994).

2. The average hydraulic conductivities reported above were calculated as the geometric mean, based on recommendations by Domenico and Schwartz, <u>Physical and Chemical Hydrogeology</u>, 1990 [who state: "...*the "average" conductivity...is better described by the geometric mean...*"], because of the tendency of hydraulic conductivity properties of a formation to vary as a log-normal distribution.

3. Shaded table entries indicate parameters that were not obtained/tested at that Boring Number.

Mesquite Creek Landfill MSW Permit No. 66C Part III, Attachment 4A

ATTACHMENT 4A

GEOLOGY REPORT DRAWINGS

LIST OF DRAWINGS								
Drawing No.	Title	Drawing Date (latest revision)						
4A-1	Physical Regions of Texas Map	October 2023						
4A-2	Geologic Vicinity Map	October 2023						
4A-3	Regional Geologic Cross Section	October 2023						
4A-4	Seismic Hazards Map	October 2023						
4A-5	Location and Extent of Edwards Aquifer	October 2023						
4A-6	Potentiometric Surface of Edwards Aquifer (July 1974)	October 2023						
4A-7	Potentiometric Surface of Edwards Aquifer (November 2001)	October 2023						
4A-8	Map of Area Wells	October 2023						
4A-9A	Boring and Well Location Map Unit 1	October 2023						
4A-9B	Boring and Well Location Map Unit 2	October 2023						
4A-10	Geologic Cross Section Location Map	February 2024						
4A-11	Geologic Cross Section A-A'	February 2024						
4A-12	Geologic Cross Section B-B'	February 2024						
4A-13	Geologic Cross Section C-C'	February 2024						
4A-14	Geologic Cross Section D-D' and E-E'	February 2024						
4A-15	Geologic Cross Section F-F'	February 2024						
4A-16	Geologic Cross Section G-G' and H-H'	February 2024						
4A-16A	Geologic Cross Section I-I'	February 2024						
4A-17	Top of Stratum III Map	October 2023						
4A-18	Top of Stratum IV Map	October 2023						

NOTE:

1. THIS PUBLISHED COLLINS (2000) MAP INDICATES THAT FAULTS SHOWN AS SOLID LINES ARE RELATIVELY MORE DISTINCT IN THE FIELD AND ON AERIAL PHOTOGRAPHS THAN WHERE THEY ARE DRAWN AS DASHED LINES.

 REV
 DATE
 DESCRIPTION
 DRN
 APP

 CONSULTATION

 WASTE MANAGEMENT

 WASTE MANAGEMENT

 WASTE MANAGEMENT OF TEXAS, INC.
 CONSULTANTS, INC.

 UWASTE MANAGEMENT OF TEXAS, INC.
 CONSULTANTS, INC.

 UWASTE MANAGEMENT OF TEXAS, INC.
 TEXAS PROF. GEOSCINITS FIRM REG. NO. 50256

 NEW BRAINELS, TEXAS, T8130
 TEXAS PROF. GEOSCINITS FIRM REG. NO. 50256

 NEW BRAINELS, TEXAS, T8130
 TEXAS TRACE

 PHONE: 830,625,7894
 TEXAS TRACE

 TITLE:

 GEOLOGIC VICINITY MAP

 ROJECT:

 MESQUITE CREEK LANDFILL EXPANSION

 PERMIT AMENDMENT APPLICATION - MSW PERMIT NO. 66C

PROJEC	CT NO.: GW8636	DESIGN BY:	MW	REVIEWED BY:	SMG/MW	PART NO.:	DRAWING:	
FILE:	GW8636P4A-2	DRAWN BY:	JJV / KH	APPROVED BY:	MW		<u>4A-2</u>	
		7				8	[

 ELEVATIONS ARE IN FEET ABOVE MEAN SEA LEVEL (FT, MSL). DRAWING COORDINATES ARE BASED ON TEXAS STATE PLANE SOUTH CENTRAL ZONE (4204) US FOOT COORDINATE SYSTEM, NORTH AMERICAN DATUM OF 1983 (NAD-83).

0 300' 600' SCALE IN FEET FOR PERMIT PURPOSES ONLY									
REV	DATE		DE	SCRIPTION			DRN APP		
WASTE MAAGEMENT Geosyntec WASTE MAAGEMENT OF TEXAS, INC. TEXAS PROF. GEOSVITE: CONSULTANTS, INC. VINSTE MAAGEMENT OF TEXAS, INC. TEXAS PROF. GEOSVITE: CONSULTANTS, INC. 1700 KOHLENBERG ROAD TEXAS PROF. GEOSVITE: CONSULTANTS, INC. NEW BRAUNFELS, TEXAS 78130 AUSTIN, TEXAS 78757 PHONE: 830.625.7894 PHONE: 512.451.4003									
IIILE:	BO	RING AN	ID WELL	LOCATIO	N MAP L	JNIT 1			
PROJECT:	N PERMIT A	MESQUITI MENDME	E CREEK NT APPLI	LANDFILL I CATION - M	EXPANSI ISW PER	ON MIT NO. 66	6C		
PROJECT	IO.: GW8636	DESIGN BY:	MW	REVIEWED BY:	PP/YB	PART NO.:	DRAWING:		

0 300' 600' SCALE IN FEET FOR PERMIT PURPOSES ONLY										
REV	DATE			DES	CRIPTION		C	RN APP		
TITLE:	КАЗТЕ МАЛАСЕМИЕНТ WASTE MANACEMENT OF TEXAS, INC. 1700 KOHLEMBERG ROAD NEW BRAUNFELS, TEXAS 78130 PHONE 352.457.003 TITLE:									
PROJECT: MESQUITE CREEK LANDFILL EXPANSION PERMIT AMENDMENT APPLICATION - MSW PERMIT NO. 66C										
PROJECT N	10.: GW86	36	DESIGN BY:	MW	REVIEWED BY:	PP/YB	PART NO.:	DRAWING:		
FILE:	GW8636P4A	A-8A	DRAWN BY:	JJV / KH	APPROVED BY:	MW		<u>4A-9B</u>		

400' 800' SCALE IN FEET											
ĺ				i oliti Elitili							
1	1	FEB. 2024		RESPONSE TO	D TECHNICAL NOD 1			JJV/KH	MW		
L	-	OCT. 2023		INITIAL SUB	BMITTAL TO TCEQ			JJV/KH	MW		
_	REV	DATE		DES	CRIPTION			DRN	APP		
L	WASTE MANAGEMENT WASTE MANAGEMENT WASTE MANAGEMENT OF TEXAS, INC. 1700 KOHLENBERG ROAD NEW BRAUNFELS, TEXAS 78130 NEW BRAUNFELS, TEXAS 78130 NEW BRAUNFELS, TEXAS 78140 NEW BRAUNFELS, TEXAS 78140 NEW BRAUNFELS, TEXAS 7814										
	GEOLOGIC CROSS SECTION LOCATION MAP									F	
	MESQUITE CREEK LANDFILL EXPANSION PERMIT AMENDMENT APPLICATION - MSW PERMIT NO. 66C										
	PROJECT N	o.: GW8636	DESIGN BY:	MW	REVIEWED BY:	PP/YB	PART NO.:	DF	AWING:		
i	FILE:	GW8636P4A-9	9 DRAWN BY:	JJV / KH	APPROVED BY:	MW		4/	<u> 4-10</u>		
_					·					<u> </u>	

LEGEND

WELL/PIEZOMETER OR B-9 BORING DESIGNATION GS 640.0 GROUND SURFACE ELEVATION (FT, MSL) - WELL SCREEN DRY FIRST ENCOUNTERED WATER ELEVATION (FT, MSL)

581.6 FINAL RECORDED WATER ELEVATION (FT, MSL) WATER ELEVATION NOT AVAILABLE NA

BOTTOM ELEVATION OF BORING (FT, MSL) BÉ 560

- STRATUM I UNSATURATED BROWN TO DARK GRAY CLAY WITH OCCASIONAL THIN GRAVEL STRATUM STRATUM II - UNSATURATED CLAYEY GRAVEL
- OR GRAVELLY CLAY STRATUM III - OXIDIZED CLAY OR CLAYSTONE WITH FRACTURES, BROWNISH YELLOW TO GRAY
- STRATUM IV UNOXIDIZED DARK GRAY CLAY OR CLAYSTONE
- APPROXIMATE GROUND SURFACE PRIOR TO LANDFILL DEVELOPMENT (NOTE 2)

- NOTES:
- 1. THE SOIL BORING/ROCK CORING INFORMATION IS REPRESENTATIVE OF SUBSURFACE CONDITIONS AT THE RESPECTIVE BORING LOCATIONS. SUBSURFACE CONDITIONS INTERPOLATED BETWEEN BORINGS ARE ESTIMATED, BASED ON ACCEPTED SOIL ENGINEERING PRINCIPALS AND GEOLOGIC JUDGMENT.
- 2. GROUND SURFACE ELEVATIONS IN UNDISTURBED AREAS ARE TAKEN FROM TOPOGRAPHIC MAP AS PRESENTED ON DRAWING 4A-9. IN AREAS WHERE SOIL OR WASTE FILLING HAS TAKEN PLACE, PREVIOUS GROUND SURFACE ELEVATIONS OF DISTURBED AREA WERE DERIVED USING CONTOUR MAP DEVELOPED USING PRE-LANDFILL TOPOGRAPHIC MAPS, USGS QUADRANGLES, AND BORING LOG SURFACE ELEVATIONS.
- PORTIONS OF CROSS SECTIONS MAY BE EXTRAPOLATED BENEATH OR BETWEEN AVAILABLE BORING INFORMATION BASED ON GEOLOGIC JUDGMENT OF SUBSURFACE TRENDS CONSIDERING INTERSECTING CROSS SECTIONS.

5

PERMIT DRAWING

Mesquite Creek Landfill MSW Permit No. 66C Part III, Attachment 4B

ATTACHMENT 4B SOIL BORING PLAN

Geosyntec Consultants October 2023 Page No. III-4B-Cvr Jon Niermann, *Chairman* Emily Lindley, *Commissioner* Bobby Janecka, *Commissioner* Toby Baker, *Executive Director*

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Protecting Texas by Reducing and Preventing Pollution

October 4, 2022

Mr. Steve Jacobs Director of Landfill Operations Waste Management of Texas, Inc. Mesquite Creek Landfill 1700 Kohlenberg Road New Braunfels, Texas 78130-3936

Via email

Subject: Mesquite Creek Landfill – Comal and Guadalupe Counties Municipal Solid Waste – Permit No. 66B Proposed Site Investigation – Revised Soil Boring Plan – Approval Tracking No. 27826700; RN100218676/CN600127856

Dear Mr. Jacobs:

On July 5, 2022, we received a soil boring plan (SBP) dated June 30, 2022, for a proposed expansion of the referenced municipal solid waste (MSW) Type I landfill facility. On September 14, 2022, we received revisions to the SBP, dated September 13, 2022, in response to comments in our email dated August 24, 2022. The original SBP and revisions were submitted on your behalf by Mr. Scott Graves, P.E., of Geosyntec Consultants, Inc., Austin, Texas. Our review of the revised plan indicates that it complies with the MSW regulations. This letter constitutes approval of your plan.

The revised SBP proposes 28 borings in an approximately 191-acre project area for a lateral expansion of existing Unit 2. All 28 borings will be drilled to depths at least 5 feet below the lowest elevation of the expansion area (lowest excavation elevation 610 feet above sea level). Eight of the 28 borings will be drilled to depths at least 30 feet below the lowest elevation of the expansion area excavation, and six of the 28 borings will be drilled to depths at least 30 feet below the Unit 2 elevation of deepest excavation (EDE, 584 feet above sea level).

Please be advised that under Title 30 Texas Administrative Code, Chapter 330, Section 330.63(e)(4)(B), the uppermost aquifer and any hydraulically interconnected aquifers below the site must be identified, as well as the underlying confining unit. It is anticipated that this SBP, when implemented, will accurately characterize the in-situ geologic, hydrologic, and engineering properties of the surface and subsurface strata at this site. Although this plan appears to comply with the MSW regulations concerning site investigations, additional soil borings and piezometers could be required should the data generated by this SBP prove to be inconclusive.

If you should find it necessary to modify this approved plan, another plan detailing any proposed modifications must be submitted for approval before implementation of the modifications.

P.O. Box 13087 • Austin, Texas 78711-3087 • 512-239-1000 • tceq.texas.gov

Mr. Steve Jacobs Page 2 October 4, 2022

If you have questions regarding this letter, please contact Mr. Danuel Gonzalez by telephone at (512) 239-0551, by email to **a second s**

Sincerely,

Gel J. al

Arten Avakian, P.G., Project Manager Municipal Solid Waste Permits Section Waste Permits Division Texas Commission on Environmental Quality

AJA/DG/gg

cc: Mr. Scott Graves, P.E., Geosyntec Consultants, Inc., Austin

engineers | scientists | innovators

SOIL BORING PLAN

Mesquite Creek Landfill New Braunfels, Comal and Guadalupe Counties, Texas

Physical Site Address

1700 Kohlenberg Road New Braunfels, TX 78130 (830) 625-7894

Prepared for

Waste Management of Texas, Inc.

Prepared by

Geosyntec Consultants, Inc. 8217 Shoal Creek Blvd, Suite 200 Austin, TX 78757 Texas Board of Professional Engineers Firm Registration No. F-1182 Texas Board of Professional Geoscientists Firm Registration No. 50256

Project Number GW8636

Submitted June 2022 Revised September 2022

GEOSYNTEC CONSULTANTS, INC. TEXAS GEOSCIENCE FIRM REGISTRATION #50256

TABLE OF CONTENTS

1.	INTI 1.1	INTRODUCTION									
	1.2	Site Su	ubsurface Overview								
2.	REG 2.1 2.2	IONAL Regior Regior	A GEOLOGY AND HYDROGEOLOGY								
3.	PRE	VIOUS	SITE EXPLORATIONS7								
4.	SITE 4.1	E STRA Site Se	TIGRAPHY AND HYDROGEOLOGY								
	4.2	Site H	ydrogeology13								
		4.2.1	Stratum I and II (Unsaturated Zone)13								
		4.2.2	Stratum III (Includes Uppermost Water Bearing Zone)14								
		4.2.3	Stratum IV (Aquiclude)14								
		4.2.4	Groundwater Monitoring System14								
5.	PRO	POSED	SITE EXPLORATION15								
	5.1	Propos	sed Borings15								
	5.2	Site In	vestigation Details17								
		5.2.1	Borings17								
		5.2.2	Piezometers								
		5.2.3	Water Levels								
		5.2.4	Slug Tests18								
		5.2.5	Soils Laboratory Testing19								
	5.3	Summ	ary of Proposed Site Exploration19								
	5.4	Ration	ale for Sufficiency of Proposed Number of Borings and Depths19								

6. REFERENCES.....

GEOSYNTEC CONSULTANTS, INC. TEXAS GEOSCIENCE FIRM REGISTRATION #50256

> October 2023 Page No. 4B-2

Mesquite Creek Landfill Soil Boring Plan

LIST OF TABLES

Table 1:	Local Stratigraphic Column in Site Vicinity
Table 2a:	Historical Borings – Unit 1 Area
Table 2b:	Historical Borings – Current Unit 2 Area
Table 3:	Generalized Site Stratigraphy
Table 4:	Proposed New Borings - Unit 2 Expansion Area

LIST OF FIGURES

Figure 1:	Site Location Map
-----------	-------------------

- Figure 2: Regional Geology Map
- Figure 3: Location Map of Previously Drilled Borings
- Figure 4: Location Map of Proposed Borings

LIST OF APPENDICES

Appendix A: I	Logs for I	Previously	Drilled	Borings
---------------	------------	------------	---------	---------

Appendix B: Previously Submitted Geologic Cross-Sections

Geosyntec⊳

consultants

GEOSYNTEC CONSULTANTS, INC. TEXAS GEOSCIENCE FIRM REGISTRATION #50256

1. INTRODUCTION

1.1 Terms of Reference

This Soil Boring Plan (SBP) was prepared by Geosyntec Consultants, Inc. (Geosyntec) at the request of Waste Management of Texas, Inc. (WMTX) for an expansion (and resulting increase in waste disposal capacity and site life) being considered for the Mesquite Creek Landfill (current Texas Commission on Environmental Quality (TCEQ) municipal solid waste (MSW) Permit No. 66B), located in Comal and Guadalupe Counties, Texas. The facility is an existing Type I MSW landfill that is currently in operation and has two disposal units: Unit 1 and Unit 2. Unit 1 has been closed with certified and approved final cover; Unit 2 is the active landfill unit. A Site Location Map is presented on Figure 1, and a Regional Geology Map is presented on Figure 2. As shown, the site is approximately two miles east of the I-35 Kohlenberg Road exit, northeast of the city of New Braunfels.

Under MSW Permit No. 66B, the current permit boundary area is 244.13 acres, and the current-permitted landfill footprint area is approximately 157.2 acres. The main objective of the proposed expansion being considered is to increase disposal capacity by laterally expanding to the south-southeast of the current permitted Unit 2 disposal footprint. Figures 3 and 4 present site layout plans that highlight the expansion area being considered. This proposed expansion would <u>add approximately 191.4 acres of property</u>, resulting in an increase of the permit boundary acreage from approximately 244.13 acres to approximately 435.5 acres. As shown on Figure 4, the waste disposal footprint of Unit 2 would be increased by up to approximately 163.9 acres, bringing the expanded Unit 2 waste disposal footprint to approximately 248.8 acres. This would result in a revised facility-wide landfill waste disposal footprint area (Unit 1 plus expanded Unit 2) of approximately 321.1 acres. Unit 1 would be unaffected/unchanged by this expansion. Note that the reported expansion acreages may change slightly as property boundary surveys are completed and the landfill expansion layout/design is prepared and finalized.

This SBP was prepared by Geosyntec in accordance with requirements set forth in Title 30 of the Texas Administrative Code (TAC), Chapter 330, Section §330.63(e)(4), to obtain the applicable information to establish the subsurface stratigraphy and geotechnical properties of the underlying strata beneath the proposed expansion area of the facility. The remainder of this SBP is organized as follows:

- an overview of the site subsurface conditions is presented in Section 1.2;
- a summary of the regional geology and hydrogeology is presented in Section 2;
- a summary of previous site investigations, along with a list of borings and their depth and bottom elevation, is presented in Section 3;
- a description of the site geology and hydrogeology based on results from previous site investigations is presented in Section 4;

- an evaluation of the required number of borings for the expansion area and resulting recommendations for this SBP are presented in Section 5;
- references are listed in Section 6; and
- figures and appendices of supporting information are included at the end of this plan.

1.2 Site Subsurface Overview

From the regional geology map presented on Figure 2, the majority of the site overlies the Cretaceous-aged Lower Taylor Group. The extreme eastern portion of the site is mapped as being on the Cretaceous-aged Upper Taylor Group. In places, these Taylor Group materials are overlain by Quaternary/Tertiary deposits. This includes deposits of Quaternary alluvium present in discrete areas where stream tributaries have flowed through the existing facility generally in and associated with the valley of Mesquite Creek between the landfill units. This also includes older Quaternary-Tertiary gravelly alluvium possibly equivalent to Uvalde Gravel.

From previous site-specific investigations, the site stratigraphy has been characterized into the following four (4) strata from the ground surface down:

- Stratum I uppermost fine-grained Quaternary weathered soil deposits, generally dry, brown to dark gray medium to high-plasticity clay, stiff to hard in consistency;
- Stratum II Quaternary-Tertiary gravelly alluvium possibly equivalent to Uvalde Gravel, generally dry, white or gray limestone gravel within a dark brown clay matrix, commonly cemented by caliche and firm in consistency;
- Stratum III oxidized Lower Taylor Group, gray or brownish yellow to yellow weathered clay with thin bedding planes, very stiff to hard in consistency, with water-filled fractures near its base (i.e., a water-bearing zone); and
- Stratum IV unoxidized Lower Taylor Group, dry, calcareous green-gray to dark gray un-weathered clay/claystone, hard in consistency.

2. REGIONAL GEOLOGY AND HYDROGEOLOGY

The information presented in this section is summarized from the Geology Report and Groundwater Characterization Report [Geosyntec (2006)] of the current approved permit, in which the regional information is based on published geologic and hydrogeologic reports, including Collins (2000). The Collins (2000) geologic map and its accompanying report was developed from many previous geologic investigations done within and near the study area, represents the latest available published regional geologic information of the vicinity.

2.1 Regional Setting and Geology

The facility is located in the Blackland Prairies sub-province, the most western subprovince of the Gulf Coastal Plain physiographic province of Texas. The Blackland Prairies sub-province is characterized by a hilly to rolling prairie surface covering deep clayey soils. Vegetation types include grasses, brush, and mesquite trees. The Gulf Coastal Plain is characterized by a heterogeneous mixture of sand, silt, clay, and gravel that pinches out northwest of this province along the Balcones Escarpment and thickens to a cumulative thickness exceeding 10,000 ft near the Texas coastline.

In terms of surface water drainage patterns, the site area is predominantly situated in the watershed of Mesquite Creek. Mesquite Creek crosses through the site and passes through Freedom Lake approximately 0.3 miles north-northeast of the site, where it continues flowing to the northeast and enters York Creek at a point approximately three miles northeast of the site. York Creek is a tributary of the San Marcos River, part of the Guadalupe River Basin. A portion of the proposed expansion area (east-southeast of the topographic ridge on the expansion property) is part of the Alligator Creek watershed. Alligator Creek passes approximately one mile south of the site and flows southeast, where it enters Geronimo Creek at a point approximately four miles southeast of the site. Geronimo Creek is part of the Guadalupe River Basin (joining the Guadalupe River about three miles southeast of Seguin).

Regional geology in the vicinity of the site, taken from the Geologic Map of the New Braunfels, Texas, 30 x 60-minute quadrangle by the Bureau of Economic Geology (Collins, 2000), is shown on Figure 2. From these maps, the geologic outcrops in this region in and around the site include Lower Taylor Group, Upper Taylor Group, older Alluvium (possibly Uvalde Gravel), younger Alluvium, further to the south (off-site), Leona Formation. The geologic setting of the site is within the Balcones Fault Zone, where movement occurred during late the Oligocene or early Miocene epochs (Collins, 2000). The published regional geologic map on Figure 2 also indicates the presence of an inferred normal fault on the eastern edge of the site. As addressed by Geosyntec (2006) as part of the previous permit amendment application, from the robust body of knowledge of this geologic setting, supported by stratigraphic evidence in and around the site (namely, the presence of Pliocene and younger deposits that do not show evidence of off-

set at the faults), such a potential fault would certainly be inactive, with no movement having occurred within the last approximately 16 million years at a minimum.

The generalized local stratigraphic column for geologic units in the site vicinity, from the Quaternary deposits down to the Cow Creek Formation [which represents the oldest Cretaceous Formation in the Collins (2000) study], is presented in Table 1.

Table 1	
Local Stratigraphic Column in Site Vicinity	

[From Geosyntec (2006) based on Collins (2000) and Shafer (1966)]

SYSTEM		STRATIGRAPHIC UNIT	APPROX. MAXIMUM THICKNESS BELOW SITE (FT)	APPROX. TYPICAL DEPTH OF OCCURRENCE (FT BELOW GROUND SURFACE)	CHARACTER OF MATERIAL	WATER-SUPPLY PROPERTIES
Quaternary		Stream, terrace and undivided alluvium	15	0	Locally – clay. Regionally - silt, sand, gravel, and some clay.	No wells known to yield water for stock and domestic needs.
Quaternary - Tertiary		Undifferentiated gravelly alluvium (possibly equivalent to Uvalde Gravel)	9	0 to 7	Locally – clayey gravel to gravelly clay. Regionally - pebble-to- cobble-sized chert and limestone, commonly cemented by caliche	Not known to yield significant quantities of water to wells.
		Upper Taylor Group (includes Navarro Group)	50 (est.)	0 to 10 (est.)	Clay-claystone and mud- mudstone, some thin siltstone and sandstone beds.	Not known to yield water to wells
		Lower Taylor Group (includes undivided Anacacho and Pecan Gap Formations)	290	10	Marl, argillaceous limestone, limestone, some chalky, clay- claystone and mud-mudstone.	Not known to yield water to wells
Cretace ous	p p e	Austin Chalk (Undivided)	100	300	Thin to thick bedded chalk, limestone and argillaceous limestone.	May yield small to moderate supplies of fresh to slightly saline water.
	r	Eagle Ford Shale (Undivided)	30	400	Calcareous and sandy shale and some argillaceous limestone.	Not known to yield water to wells
		Buda Limestone	65	430	Dense, hard limestone.	Not known to yield water to wells
		Del Rio Formation	50	495	Blue clay, weathering greenish and yellowish brown.	Not known to yield water to wells

SYSTEM		STRATIGRAPHIC UNIT	APPROX. MAXIMUM THICKNESS BELOW SITE (FT)	APPROX. TYPICAL DEPTH OF OCCURRENCE (FT BELOW GROUND SURFACE)	CHARACTER OF MATERIAL	WATER-SUPPLY PROPERTIES
		Georgetown Formation	30	545	Argillaceous limestone and marl	Yields water to wells
	L o w e r	Edwards Group Limestone (Undivided)	470	575	Hard semi-crystalline massive limestone and dolomite and some thin- bedded limestone and marly limestone.	Yields water for municipal, industrial, and irrigation supplies. Is the principal aquifer (Edwards Aquifer) in western Comal County, minor aquifer in Guadalupe County.
		Walnut Formation	50	1045	Walnut limestone, marl	Unknown
		Glen Rose Limestone	720	1095	Massive limestone with alternating beds of less resistant marly limestone.	Lower part- generally yields sufficient water in the outcrop for stock and domestic use. Water from deeper wells generally is more highly mineralized than is water from shallow wells.
		Hensell Formation	80	1815	Sandy limestone, some also dolomitic.	Yields water to wells
		Cow Creek Formation	75	1895	Fossiliferous limestone	Yields water to wells

2.2 Regional Hydrogeology

Typical water-supply properties of the stratigraphic units in the area are presented above in Table 1. The principal perennial aquifer in the region is the Edwards Aquifer, classified by the Texas Water Development Board (TWDB) as a major aquifer of Texas. The Edwards Aquifer comprises the Edwards Limestone and the overlying Georgetown Limestone. This aquifer is primarily recharged via infiltration along the outcrop of the formations approximately 5 miles or more northwest of the site (i.e., the recharge zone).

The Edwards Aquifer is under both unconfined and confined conditions, depending on location, and contains both a fresh water and saline water zone, the interface of which is known as the "bad-water" line. The bad-water line is determined by the concentration of total dissolved solids (TDS) in the groundwater. The fresh-water zone up-dip from this boundary is defined where TDS concentrations are less than 1,000 milligrams per liter (mg/L), and the saline zone down-dip from the boundary is defined where TDS concentrations exceed 1,000 mg/L.

The top of the Edwards Aquifer is approximately 500 to 600-ft below the site, and is down-dip from the bad-water line in an area where the Edwards Aquifer is confined and the water is saline (Geosyntec, 2006). Beneath the site, the Glen Rose Limestone and Del Rio Clay serve as lower and upper confining layers, respectively. As such, this indicates that the site is not over the recharge zone of the Edwards Aquifer, and that the Edwards Aquifer is confined above and below, and not hydraulically connected to any other aquifer beneath the site.

It is also noted that according to the TWDB, the outcrop (i.e., recharge zone) of the Carrizo-Wilcox Aquifer occurs in southeastern portions of Guadalupe County, more than 10 miles away from the site. The Mesquite Creek Landfill site is not above or near the recharge zone of the Carrizo-Wilcox Aquifer, nor the recharge zone of any other aquifer classified by the TWDB as a major or minor aquifer of Texas.

3. PREVIOUS SITE EXPLORATIONS

The Mesquite Creek Landfill has been characterized based on a number of previous investigations at the site over time, as summarized below in chronological order.

- In 1987, 15 borings (CB-1 to CB-5; B-6 to B-15) were drilled at the site by McBride-Ratcliff to characterize the site stratigraphy and assess the soils for use as in-situ or constructed liners (Hydro-Search and MFG, 1990, revised 1991). Piezometers were installed in four of the borings.
- Between April 1990, September 1991, and October 1991, McCulley, Frick, and Gilman (MFG) installed a total of 12 piezometers (PZ-1 to PZ-12). The data from the piezometers would be used to develop a groundwater monitoring system for the site (Geosyntec, 2006).
- In 1991, Fugro-McClelland installed 6 gas monitoring probes (GP-1, GP-2, GP-3, GP-4, GP-5, GP-6).
- In February 1992, SEC Donohue installed five (5) groundwater monitoring wells (MW-1, MW-2, MW-3, MW-4, and MW-5) and one (1) piezometer (PZ-1M) at the site.
- One (1) additional groundwater monitoring well (MW-6), and one (1) replacement gas monitoring probe (GP-6R) were installed in November 1995 by Rust E&I.
- In 2004, 24 borings (GB-1 through GB-24) were drilled at the site by Geosyntec as a part of a soil boring plan associated with the permit amendment application MSW-66B. Fifteen (15) piezometers were installed during this investigation at the corresponding boring locations of: GB-01, GB-02, GB-03, GB-04, GB-05, GB-06, GB-09, GB-11, GB-12, GB-13, GB-15, GB-17, GB-20, GB-21 and, GB-22.
- In October 2005, Geosyntec installed one (1) gas monitoring probe (GP-7).
- In March 2009, Geosyntec installed nine (9) gas monitoring probes (GP-5A, GP-8 through GP-13, GP-20 and GP-21) and eleven (11) groundwater monitoring wells (MW-2A, MW-7A, MW-8A, MW-9, MW-11, MW-18 TO MW-23).
- In December 2013, Tetra Tech installed two (2) gas monitoring probes (GP-14 and GP-19).
- In January 2016, Tetra Tech installed one (1) gas monitoring probe (GP-15) and one (1) groundwater monitoring well (MW-17).
- In April 2018, Tetra Tech installed three (3) gas monitoring probes (GP-16, GP-17, GP-18) and three (3) groundwater monitoring wells (MW-13, MW-14, MW-

15) at the site. Also, one (1) groundwater monitoring well (MW-12) was installed in May 2018 to replace the previous MW-12 which had been using the GB-21 location.

• In 2020, Bullock, Bennett & Associates, LLC installed one (1) groundwater monitoring well (MW-4A) to replace damaged monitoring well MW-4.

It is noted that many of the site piezometers and monitoring wells listed above have been plugged and abandoned over time. The current groundwater monitoring system at the site is described in Section 4.2.3.

The locations of the previously drilled (historical) borings listed above are shown on Figure 3, and the coordinates, depths, and bottom elevations of the borings are listed in Tables 2 a and 2b for borings in the vicinity of existing Units 1 and 2, respectively.

filstorical bornigs – Unit i Area								
Boring No.	Northing	Easting	Surface Elevation (ft, MSL)	Total Depth of Boring (ft bgs)	Bottom of Boring Elevation (ft, MSL)	Depth Below Unit 1 EDE ¹ (ft)		
		Investigations	generally cov	ering the Unit	1 Area	I		
	Mo	cBride-Ratcliff	and Associa	tes (MRA) 198	37 Borings			
CB-1	13818690.8	2274791.0	670.0	60	610	-50		
CB-2	13817699.1	2275753.2	623.0	40	583	-23		
CB-3	13817202.0	2277006.0	632.0	60	572	-12		
CB-4	13816510.4	2277509.9	604.0	60	544	16		
CB-5	13817118.0	2278151.8	605.0	60	545	15		
B-6/P-6	13817869.5	2277502.9	638.0	80	558	2		
B-7/P-7	13818645.6	2276699.7	664.0	80	584	-24		
B-8	13818827.8	2275873.5	638.0	80	558	2		
B-9	13818810.5	2275359.3	640.0	80	560	0		
B-10/ P-10	13818187.4	2275250.2	642.0	80	562	-2		
B-11	13818273.3	2275758.9	628.0	75.5	552.5	8		
B-12	13817701.1	2276456.4	642.0	80	562	-2		
B-13	13817132.6	2276308.5	626.0	80	546	14		
B-14/ P-14	13816748.3	2276753.3	604.0	50	554	6		
B-15	13817062.0	2277640.3	606.0	80	526	34		
McCulley, Frick & Gilman (MFG) 1990 Borings								
PZ-1	13818483.1	2276848.2	662.6	57	605.6	-45.6		
PZ-2	13818510.9	2275457.0	633.2	70.5	562.7	-2.7		
PZ-3	13818828.2	2275991.9	643.9	32.5	611.4	-51.4		

Table 2a Historical Borings – Unit 1 Area

Mesquite Creek Landfill Soil Boring Plan R1 Sep 2022

Geosyntec [▶]
consultants

Boring No.	Northing	Easting	Surface Elevation (ft, MSL)	Total Depth of Boring (ft bgs)	Bottom of Boring Elevation (ft, MSL)	Depth Below Unit 1 EDE ¹ (ft)				
PZ-4	13817665.5	2277682.0	627.5	50.4	577.1	-17.1				
PZ-5	13817073.4	2277530.2	614.0	51.4	562.6	-2.6				
Fugro-McClelland 1991 Borings										
GP-1	13818826.2	2275954.2	641.9	24	617.9	-57.9				
GP-2	13818783.0	2276542.2	662.8	35	627.8	-67.8				
GP-3	13817930.8	2277413.0	641.0	22	619.0	-59.0				
GP-4	13817122.7	2278237.6	602.8	36	566.8	-6.8				
GP-5	13816548.8	2277564.5	602.5	37	565.5	-5.5				
GP-6	13817111.4	2276368.4	623.9	44	579.9	-19.9				
			MFG 1991 B	orings						
PZ-6	13816630.1	2277407.7	602.7	24	578.7	-18.7				
PZ-7	13816846.0	2277914.4	601.7	28	573.7	-13.7				
PZ-8	13816851.8	2277922.8	600.7	63.5	537.2	22.9				
PZ-9	13817410.2	2276071.5	621.9	56	565.9	-5.9				
PZ-10	13817418.6	2276066.0	622.0	80	542.0	18.0				
PZ-11	13818288.0	2277059.1	659.7	50	609.7	-49.7				
PZ-12	13818280.2	2277068.5	660.1	68	592.1	-32.1				
		SEC	Donahue 19	92 Borings						
SB-1/MW-1	13818827.6	2276471.6	662.4	45	617.4	-57.4				
SB-2/MW-2	13817476.5	2277889.5	615.6	35	580.6	-20.6				
SB-3/MW-3	13816695.3	2277745.6	603.5	34	569.5	-9.5				
SB-4/MW-4	13816747.5	2276733.9	605.3	30	575.3	-15.3				
SB-5/MW-5	13818768.9	2274725.7	670.5	60	610.5	-50.5				
PZ-1M	13817724.3	2277295.5	644.2	45	599.2	-39.2				
		R	ust E&I 1995	Borings						
SB-6/MW-6	13817972.8	2275468.2	632.9	63.5	569.4	-9.4				
GP-6R	13817050.8	2276398.8	623.5	43.25	580.2	-20.2				

Notes:

1. Unit 1 EDE = Elevation of Deepest Excavation at Unit 1. Unit 1 EDE (including sumps) is approximately 560 ft, MSL. Negative values indicate depth above EDE.

- Coordinates (northings and eastings) correspond to Texas State Plane, Texas Central Zone (4203), North American Datum 83 (NAD 83). See Figure 3 for a site map showing the locations of these borings.
- 3. CB, B, SB, and GB refer to soil borings. P and PZ refer to piezometers. GP refers to gas monitoring probes. MW refers to groundwater monitoring wells.

Boring No.	Northing	Easting	Surface Elevation (ft, MSL)	Total Depth of Boring (ft bgs)	Bottom of Boring Elevation (ft, MSL)	Depth Below Unit 2 EDE ¹ (ft)					
	Investigations generally covering the current Unit 2 Area										
Geosyntec 2004 Borings											
GB-01	13816876.5	2278393.2	595.4	95	500.4	83.6					
GB-02	13816525.6	2277962.4	599.5	70.5	529.0	55.0					
GB-03	13815970.6	2277506.7	607.7	104.5	503.2	80.8					
GB-04	13814602.4	2278766.5	668.2	145	523.2	60.8					
GB-05	13815229.1	2279182.7	640.5	115	525.5	58.5					
GB-06	13815883.3	2279871.8	646.0	124	522.0	62.0					
GB-07	13816405.0	2278500.4	602.9	59	543.9	40.1					
GB-08	13816002.2	2278101.0	623.8	71.5	552.3	31.7					
GB-09	13815699.8	2279256.0	638.7	89	549.7	34.3					
GB-10	13815451.5	2278556.9	648.7	99	549.7	34.3					
GB-11	13815865.0	2278665.3	617.2	90	527.2	56.8					
GB-12	13815351.5	2278055.8	639.6	119	520.6	63.4					
GB-13	13816271.9	2279036.3	618.8	95	523.8	60.3					
GB-14	13815300.7	2279853.7	679.8	136	543.8	40.2					
GB-15	13815626.5	2280863.5	643.4	144	499.4	84.6					
GB-16	13815064.2	2280568.1	679.5	139	540.5	43.5					
GB-17	13814631.0	2280885.4	654.4	134	520.4	63.6					
GB-18	13814753.6	2280137.3	694.2	149	545.2	38.8					
GB-19	13814291.2	2279905.5	688.7	150	538.7	45.3					
GB-20	13814134.9	2279345.2	675.9	169	506.9	77.1					
GB-21	13813671.2	2280075.2	709.0	187	522.0	62.0					
GB-22	13814811.4	2279501.0	656.5	140	516.5	67.5					
GB-23	13814122.2	2280492.8	689.5	185	504.5	79.5					
GB-24	13815567.3	2280399.1	677.5	155	522.5	61.5					
		G	eosyntec 2005	5 Boring							
GP-7	13817956.2	2275490.2	632.0	22	610.0	-26.0					
		Ge	eosyntec 2009	Borings							
GP-5A	13815940.0	2277535.0	609.1	52	557.1	26.9					
GP-8	13816.6	2277112.0	605.3	49	556.3	27.7					

Table 2b Historical Borings – Current Unit 2 Area

Boring No.	Northing	Easting	Surface Elevation (ft, MSL)	Total Depth of Boring (ft bgs)	Bottom of Boring Elevation (ft, MSL)	Depth Below Unit 2 EDE ¹ (ft)
GP-9	13817505.0	2275964.0	625.0	48	577.0	7.0
GP-10	13818348.0	2276992.0	663.9	47.5	616.4	-32.4
GP-11	13817459.0	2277906.0	615.9	57	558.9	25.1
GP-12	13816475.0	2278886.0	610.0	31	579.0	5.0
GP-13	13816023.0	2279585.0	639.9	62	577.9	6.1
GP-20	13814695.0	2278675.0	664.2	65	599.2	-15.2
GP-21	13815429.0	2277985.0	637.8	49	588.8	-4.8
MW-2A	13817069.0	2278162.0	609.0	37	572.0	12.0
MW-7A	13816498.0	2277256.0	603.4	27	576.4	7.6
MW-8A	13817143.0	2276302.0	625.5	55	570.5	13.5
MW-9	13817565.0	2275906.0	626.0	50	576.0	8.0
MW-11	13814064.0	2279299.0	679.0	63	616.0	-32.0
MW-18	13815985.8	2279745.5	635.1	60	575.1	8.9
MW-19	13816167.0	2279219.0	633.2	55	578.2	5.8
MW-20	13816584.0	2278784.0	606.3	40	566.3	17.7
MW-21	13816481.0	2278358.0	606.8	43	563.8	20.2
MW-22	13816113.0	2278083.0	612.2	37	575.2	8.8
MW-23	13816006.0	2277841.0	621.2	35	586.2	-2.2
		Te	traTech 2013	Borings		
GP-14	13815798.2	2280540.8	657.7	56	601.7	-17.7
GP-19	13814102.7	2279257.6	676.5	56	620.5	-36.5
		Те	traTech 2016	Borings		
GP-15	13815411.4	2280910.4	637.66	33.0	604.7	-20.7
MW-17	13815851.0	2280330.0	655.42	63.0	592.4	-8.4
		Te	traTech 2018	Borings		
GP-16	13814396.7	2280879.4	654.8	31.5	623.3	-39.3
GP-17	13813948.3	2280401.6	699.8	77.5	622.3	-38.3
GP-18	13813461.0	2279899.2	708.7	75	633.7	-49.7
MW-13	13814058.7	2280515.9	688.7	56	632.7	-48.7
MW-14	13814514.5	2280890.1	654.0	57.5	596.5	-12.5
MW-15	13815072.8	2280885.4	647.2	53	594.2	-10.2
MW-12	13813666.3	2280080.1	709.3	76	633.3	-49.3
		Bullock, Ber	nnett & Asso	ciates 2020 Bo	ring	
MW-4A	13813671.2	2280075.2	609.4	30	579.4	4.6

Geosyntec^D consultants

Notes:

- 1. Unit 2 EDE = Elevation of Deepest Excavation at Unit 2. Unit 2 EDE (including sumps) is approximately 584 ft, MSL. Negative values indicate depth above EDE.
- Coordinates (northings and eastings) correspond to Texas State Plane, Texas Central Zone (4203), North American Datum 83 (NAD 83). See Figure 3 for a site map showing the locations of these borings.
- 3. CB, B, SB, and GB refer to soil borings. P and PZ refer to piezometers. GP refers to gas monitoring probes. MW refers to groundwater monitoring wells.

From the above Tables 2a and 2b, at least 98 borings have been drilled previously at the site.

Because this proposed future expansion would be adjacent to (and connected to) Unit 2, focusing on the current-permitted Unit 2 area of approximately 148.1 acres, the following takeaways are noted:

- the Unit 2 EDE is 584 ft, MSL;
- 57 borings have been drilled previously at the current Unit 2 area;
- 38 of these borings were drilled to a depth at least 5-ft below the Unit 2 EDE; and
- 24 of these borings were drilled to a depth least 30-ft below the Unit 2 EDE.

Boring logs for the items tabulated above, taken from information contained in the approved permit amendment application MSW-66B (Geosyntec, 2006), are provided in Appendix A. Copies of geologic cross-sections developed for permit amendment application MSW-66B (Geosyntec, 2006) are provided in Appendix B.

4. SITE STRATIGRAPHY AND HYDROGEOLOGY

4.1 Site Setting and Stratigraphy

The topography of the area surrounding the existing facility is composed of two natural hillsides with a valley associated with Mesquite Creek in the middle of the site. Predevelopment highest natural ground elevations range from approximately 665 ft, MSL on the northern portion of the site (i.e., Unit 1) to 712 ft, MSL on the southern side (i.e. Unit 2). The lowest natural ground surface elevation of approximately elevation 585 ft, MSL occurs in the middle of the site, along the northern property boundary (i.e., point at which Mesquite Creek leaves the property). The proposed lateral expansion area located south-southeast of Unit 2 is generally situated on a topographic ridge having a peak elevation of approximately 717 ft, MSL, sloping down to a lowest elevation to the southeast of approximately elevation 640 ft, MSL.

The general soil stratigraphy at the site based on previous investigations is presented below in Table 3.

Stratigraphic Layer	Description	Approx. Thickness Characterized To- Date (ft)
Stratum I- Fine grained Quaternary Deposits	Unsaturated brown to dark gray, stiff to hard clay	0-14.5
Stratum II- Quaternary- Tertiary Alluvium (possibly Uvalde Gravel)	Clayey gravel to gravelly clay.	0 to 9
Stratum III- Weathered clay/claystone of the Lower Taylor Group	Very stiff to hard oxidized clay/claystone	18- 58.5 ft
Stratum IV- Un-weathered claystone of the Lower Taylor Group	Green to dark gray very hard unoxidized claystone	Note 1

Table 3Generalized Site Stratigraphy

Note:

1. Previously installed site borings did not completely penetrate Stratum IV. Stratum IV is the lower confining unit at the site. Stratum IV is part of the lower Taylor Group that is estimated to be about 290 feet thick beneath the site.

4.2 Site Hydrogeology

4.2.1 Stratum I and II (Unsaturated Zone)

Stratum I and II (recent fine-grained deposits and alluvium possibly equivalent to Uvalde Gravel) are encountered at the ground surface and are described as a dark gray to brown

medium to high plasticity clay, and a clayey gravel to a gravelly clay, respectively. Stratum I is mostly continuous in the existing site except where removed by landfill excavation activities. Stratum II was less prevalent in existing site areas, but geologic maps (e.g., see Figure 2) suggest there are surficial deposits of this material on the topographic ridge of the proposed expansion area. Previous site investigations have indicated, Stratum I and II as being consistently dry (unsaturated) and no water bearing intervals within these strata.

4.2.2 Stratum III (Includes Uppermost Water Bearing Zone)

Stratum III consists of oxidized clays and claystone of the Lower Taylor Group, and the weathered and fractured lower portion of Stratum III is the uppermost water bearing zone at the facility. It ranges in thickness from about 15 to 63 feet across the entire site. The groundwater elevations in Stratum III generally mimic the natural ground surface topography at the site, as well as the elevation changes of the top of Stratum IV.

As groundwater is first encountered in secondary features within the lower part of Stratum III perched above Stratum IV, it is defined as the uppermost water-bearing zone (i.e., aquifer) at the site. Stratum III is directly underlain by the lower hydraulic conductivity and un-weathered tight clay/claystone of Stratum IV, which represents a lower confining unit to Stratum III, preventing potential hydraulic interconnectivity with other aquifers. Because the occurrence of groundwater in Stratum III is mainly dependent on secondary features, the depth to groundwater and extent of saturation within Stratum III is variable.

4.2.3 Stratum IV (Aquiclude)

The oxidized clays of Stratum III are underlain by Stratum IV, which is comprised of unoxidized claystone of the Lower Taylor Group. The full thickness of Stratum IV was not determined at this site because the drilling depths of previous investigations terminated before the bottom of the unit was reached. However, regional geologic information, as discussed herein, suggests that the thickness of this stratum exceeds 290 ft. The formation is composed of primarily unweathered, unfractured, tight claystone with low yield and low hydraulic conductivity, and as such, acts as an aquiclude that confines groundwater above it and prevents hydraulic interconnection with deeper aquifers.

4.2.4 Groundwater Monitoring System

As discussed, Stratum III is considered the uppermost water bearing zone beneath the site. The groundwater monitoring program at the facility in accordance with the current permit MSW-66B is composed of a system of 23 groundwater monitoring wells, screened at the base of Stratum III.

5. PROPOSED SITE EXPLORATION

5.1 **Proposed Borings**

For the proposed expansion, the permit boundary area will be increased by approximately 191.4 acres, as shown on Figures 3 and 4. As specified in 30 TAC 330.63(e)(4)(B), the minimum number of borings required by the TCEQ to characterize an area of 150-200 acres is twenty-three (23) to twenty-six (26) borings, with all borings drilled to at least 5 ft below the EDE and thirteen (13) to fifteen (15) borings drilled to at least 30 ft below the EDE. The deepest excavation depth of the proposed expansion area will be substantially shallower, with the expansion area designed with an EDE (including sumps) at no deeper than 610 ft, MSL.

To address the number and depth requirements, the following borings are proposed to characterize the approximately 191.4 acre expansion area:

- twenty-eight (28) new borings (GB-25 to GB-52);
- all 28 of which will be drilled to at least five (5) feet below the expansion area EDE;
- 15 of which will be drilled deeper, to a depth of at least 30 ft below the expansion area EDE; and
- of these deeper borings, six (6) will be extended even deeper, to reach a depth of at least 30-ft below the existing Unit 2 EDE of 584 ft, MSL.

The locations of the proposed borings are shown on Figure 4 (note that these proposed boring locations are approximate and may be adjusted based on actual site conditions such as drill rig accessibility). The target boring depth, target bottom elevation, and estimated depth below the EDE of the proposed expansion area design are summarized in Table 4.

As designed and based on the hydro stratigraphic units beneath the site previously investigated as described herein, the borings will be sufficiently deep enough to allow identification of the uppermost aquifer (30 TAC 330.63(e)(4)(B)) (i.e., the waterbearing zone of the lower part of Stratum III), and to identify the aquiclude (Stratum IV) at the lower boundary (which prevents hydraulic interconnection with deeper aquifers).

Focusing on the combined/expanded Unit 2 area (since this is the landfill unit being expanded) the acreage of the permit boundary of the existing and proposed expanded Unit 2 areas will be approximately 340 acres. Although the expansion area will be constructed substantially shallower than the existing landfill, when counting both previous and new proposed borings, this plan would result in a total of 44 borings drilled to at least 5-ft

below the overall Unit 2 EDE, and of these, 30 borings drilled to at least 30-ft below the overall Unit 2 EDE. This will provide ample data to establish subsurface stratigraphy and geotechnical properties, especially given the good understanding of the geologic framework below the site from the extensive investigations that have taken place and the thorough understanding of the regional and site-specific subsurface conditions.

Boring No.	Northing ²	Easting ²	Estimated Surface Elevation (ft, MSL)	Minimum Depth ³ (ft, bgs)	Minimum Bottom Elevation ³ (ft, MSL)	Depth Below Expansion Area EDE ¹ (ft)			
Proposed Borings									
GB-25	13813775	2280751	663	83	580	30			
GB-26	13813562	2280317	702	97	605	5			
GB-27 ⁴	13813171	2280704	663	109	554	56			
GB-28	13814021	2279217	685	80	605	5			
GB-29	13813630	2279604	712	107	605	5			
GB-30	13813239	2279991	697	92	605	5			
GB-31	13812848	2280378	668	63	605	5			
GB-32	13812558	2280894	653	73	580	30			
GB-33 ⁴	13813501 2278691 13813110 2279078	703	149	554	56				
GB-34		2279078	712	132	580	30			
GB-35	13812719	2279465	709	104	605	5			
GB-36	13812328	2279852	682	102	580	30			
GB-37 ⁴	13811937	2280238	668	114	554	56			
GB-38	13812980	2278165	708	128	580	30			
GB-39	13812589	2278552	708	103	605	5			
GB-40 ⁴	13812198	2278939	693	139	554	56			
GB-41	13811807	2279326	680	75	605	5			
GB-42	13811416	2279712	663	83	580	30			
GB-43	13812460	2277639	710	105	605	5			
GB-44	13812069	2278026	710	130	580	30			
GB-45	13811678	2278413	710	105	605	5			
GB-46	13811287	2278799	687	107	580	30			
GB-47	13810896	2279186	671	66	605	5			

Table 4							
Proposed New Borings – Unit 2 Expansion Area							

Mesquite Creek Landfill Soil Boring Plan R1 Sep 2022

Boring No.	Northing ²	Easting ²	Estimated Surface Elevation (ft, MSL)	Minimum Depth ³ (ft, bgs)	Minimum Bottom Elevation ³ (ft, MSL)	Depth Below Expansion Area EDE ¹ (ft)
GB-48 ⁴	13811940	2277113	708	154	554	56
GB-49	13811549	2277500	704	99	605	5
GB-50	13811158	2277887	689	109	580	30
GB-51	13810767	2278273	677	72	605	5
GB-52 ⁴	13810377	2278659	667	113	554	56

Notes:

- 1. The proposed expansion area design will have an EDE (including sumps) no deeper than 610 ft, MSL.
- 2. Coordinates (northings and eastings) correspond to Texas State Plane, Texas Central Zone (4203), North American Datum 83 (NAD 83). See Figure 4 for a site map showing the locations of these proposed borings. Borehole coordinates/locations are preliminary and based on an initial assessment of layout and drill rig accessibility; final as-drilled locations may be field adjusted but will be generally consistent with those shown on Figure 4. Final, as-installed boring locations will be surveyed, and that information will be included in the Geology Report.
- 3. Boring bottom elevations are minimums. The depths are also termed minimums, but are based on the difference between the surface elevation vs. the minimum bottom elevation. All borings should extend deep enough to identify the uppermost aquifer lower confining layer (expected to be the lower part of Stratum III, and Stratum IV, respectively).
- 4. The six (6) deepest proposed borings indicated above will be drilled first in the sequence of drilling.

5.2 Site Investigation Details

Drilling operations will be supervised by a professional geologist or engineer who is familiar with the geology of the area and licensed to practice in the state of Texas.

5.2.1 Borings

Twenty-eight (28) soil borings (GB-25 to GB-52) will be drilled as a part of the proposed site exploration program of the expansion area. Borings will be conducted in accordance with 30 TAC §330.63(e)(4)(C) using established field exploration methods (e.g., drilled using hollow stem augers, direct-push technology, air or mud rotary methods, sonic drilling, and/or by coring in harder clay-shale or rock materials). Sampling methods will include pushing thin-walled tubes, driving split spoons or similar sampling devices, coring, and collecting drill cuttings as appropriate. Lithology will be logged by a qualified geologist or engineer in accordance with 30 TAC §330.63(e)(4) and consistent with established description procedures. Boring logs prepared as part of a report of the

Mesquite Creek Landfill Soil Boring Plan

investigation (i.e., included in a Geology Report for a permit amendment application) must include a detailed description of materials encountered including any discontinuities such as fractures, fissures, slickensides, lenses, or seams. Except for borings in which piezometers will be installed (i.e., those which will be used for taking ongoing water level measurements), each boring will be plugged in accordance with rules of the commission (TCEQ), namely in accordance with the abandonment requirements in 16 TAC §76.72 and the plugging standards in 16 TAC §76.104 (as applicable).

5.2.2 Piezometers

To characterize the groundwater in the expansion area, several piezometers are planned to be installed. The anticipated screened zone for each piezometer will be in the lower weathered portion of Stratum III where groundwater is anticipated to be encountered at depths of about 35 ft below ground surface. Based on preliminary planning, it is estimated that piezometers may be installed in up to twelve (12) borehole locations as part of the proposed site exploration program. However, the number and location of piezometers, as well as the screened depth/interval(s), may change based on observations made during drilling.

5.2.3 Water Levels

Observations of groundwater encountered in the proposed borings will be noted, and the depth at which groundwater was first encountered will be recorded. After-equilibrium (or just prior to plugging) groundwater depth measurements in the proposed borings will also be taken when possible (e.g., if drilling using wet coring or mud rotary methods, groundwater depth measurements in the borehole will not be possible). Groundwater levels in the new piezometers will also be measured.

Groundwater levels and flow directions/conditions around the existing landfill have been characterized, measured, and mapped since the initial groundwater monitoring wells were installed. Thus, groundwater conditions are well understood. Groundwater levels from the existing monitoring well network, along with information from the proposed piezometers, will be used for groundwater characterization in the permit amendment application in accordance with 30 TAC 330.63(e)(5)(C) and (e)(5)(D).

5.2.4 Slug Tests

Horizontal hydraulic conductivities of Stratum III and IV have been measured from slug tests conducted by Geosyntec (2006) and MFG (1991). MFG performed slug tests at six (6) piezometers screened in Stratum III in the area of Unit 1. Geosyntec performed slug tests at eight (8) piezometers screened in Stratum III in the area of Unit 2. Given this availability of site-specific slug test data, additional slug tests may or may not be performed in newly installed piezometers. Performing additional slug test(s) in one (1)

or more of the proposed piezometers will be considered if lithologies appear to be significantly different than those previously characterized.

The previous data, supplemented by relevant data collected during this proposed investigation, will be used to provide the hydrogeologic characterization of the site for design of an appropriate groundwater monitoring system, and to provide an analysis of the most likely potential pathways for pollutant migration.

5.2.5 Soils Laboratory Testing

Geotechnical laboratory testing was conducted during the previous investigations at the site, with results compiled and presented in the Geotechnical Report section of the Geology Report of the current permit MSW-66B.

For the proposed soil boring program, laboratory testing sufficient to provide the required testing and characterization of site soils in the expansion area will be completed in accordance with 30 TAC 330.63(e)(5). The laboratory testing conducted on soils from the previous investigations will be supplemented with additional tests such that at least one (1) sample from each soil layer that will form the bottom and side of the proposed excavation and from soils layers that are less than 30 feet below the expansion area EDE has been evaluated in the new expansion area.

5.3 Summary of Proposed Site Exploration

In summary, data obtained from the proposed borings will supplement data from the previous site investigation and will be incorporated in the landfill design and forthcoming anticipated permit amendment application for the proposed expansion of the facility. Twenty-eight (28) additional borings (GB-25 to GB-52) will be drilled to address the requirements of 30 TAC §330.63(e)(4) for characterization of the expansion area, and to prepare the related contents of the permit amendment application regarding soil, geology, geotechnical, and groundwater monitoring topics. This new site subsurface investigation, along with the previously submitted geologic cross-sections and available data, will be used to confirm the uppermost groundwater bearing zone and lower confining unit at the site and adequately address the hydrogeologic characterization (e.g., hydraulic conductivities and lower confining unit and lack of any hydraulically interconnected aquifers), and establish the geotechnical properties of the soils and rocks beneath the facility.

5.4 Rationale for Sufficiency of Proposed Number of Borings and Depths

The rationale for the sufficiency of the proposed number of borings and depths, discussing how the Rule requirements of 30 TAC 330.63(e)(4)(A) and (B) are met, is presented below.

Mesquite Creek Landfill Soil Boring Plan

- There have already been 57 borings drilled at various locations and depths in the existing Unit 2 area, with 38 drilled to at least 5-ft below the existing Unit 2 EDE, and 24 drilled at least 30-ft below the existing Unit 2 EDE. The conceptual site model of the hydrogeologic setting, stratigraphy, presence of groundwater, uppermost aquifer, and lower confining unit at the site is well understood and is documented in the approved Permit 66B Geology Report. Per 30 TAC §330.63(e)(4)(A), the "general characteristics of a site" have been analyzed, as has "the heterogeneity of subsurface materials". No stratigraphic complexities were identified.
- The requirements of the graphic table in 30 TAC §330.63(e)(4)(B) for the number of borings and depths will be met for Unit 2, as illustrated below.
 - Considering Unit 2 in-total, for an approximately 340-acre area having an overall EDE of 584 ft, MSL, the total proposed plus existing borings meeting the graphic table requirements on a site-wide basis will be as follows:

Size of Area in	Number of	Min. No. of Borings 30 Feet below the Elev. of	ŧ	# OF BORINGS (EXISTING + PROPOSED) >5-FT	# OF BORINGS (EXISTING + PROPOSED) >30-FT
Acres	Borings	Deepest Excavation	۱L	BELOW EDE	BELOW EDE
5 or less	2-4	2			
5-10	4-6	3			
10-20	6-10	5			
20-50	10-15	7			
50-100	15-20	7-12			
100-150	20-23	12-13			
150-200	23-26	13-15			
200-250	26-29	15-16			
250-300	29-32	16-17			
300-350	32-35	17-18		44	30
350-400	35-38	18-20		<u>ــــــــــــــــــــــــــــــــــــ</u>	
400-450	38-42	20-21			
450-500	42-44	21-22			
500-550	44-47	22-24			
550-600	47-50	24-26	IL		
More than 600	Determined in consultation with the executive director				

TABLE OF BORINGS

* The executive director may approve different boring depths if site-specific conditions justify variances.

 Considering the Unit 2 expansion area as a stand-alone investigation for the planned landfill that will be situated on that parcel of property, for a 191.4 acre area with an EDE of 610 ft, MSL, the proposed new borings meeting the graphic table requirements will be as follows:

Size of Area in Acres	Number of Borings	Min. No. of Borings 30 Feet below the Elev. of Deepest Excavation	# OF PROPOSED BORINGS >5-FT BELOW EXPANSION AREA EDE	# OF PROPOSED BORINGS >30-FT BELOW EXPANSION AREA EDE
5 or less	2-4	2		
5-10	4-6	3		
10-20	6-10	5		
20-50	10-15	7		
50-100	15-20	7-12		
100-150	20-23	12-13		
150-200	23-26	13-15	28	15
200-250	26-29	15-16		
250-300	29-32	16-17		
300-350	32-35	17-18		
350-400	35-38	18-20		
400-450	38-42	20-21		
450-500	42-44	21-22		
500-550	44-47	22-24		
550-600	47-50	24-26		
More than 600	Determin with the e	ed in consultation executive director		

TABLE OF BORINGS

* The executive director may approve different boring depths if site-specific conditions justify variances.

- It is also noted that the rules allow the executive director to approve different boring depths if site-specific conditions justify variances, per the footnote included in the graphical table (and shown above). Although the above illustrations were prepared to demonstrate compliance with the graphic table in 30 TAC §330.63(e)(4)(B) when the program is considered in two different ways, to the extent that the proposed program could be considered a "hybrid" condition, the ability of the executive director to approve alternatives from the prescribed boring frequency and depths is noted; the information provided herein is believed to provide thorough justification on the sufficiency of the proposed soil boring plan.
- Specific to the Unit 2 expansion area, six (6) proposed borings will be drilled to a depth of at least 30-ft below the overall Unit 2 EDE. These borings are generally located near the corners and in the middle of the expansion area, so as to provide

completeness of coverage (i.e., bound the new area) of deep borings, to help supplement the existing information to depths >30-ft below the Unit 2 EDE regarding presence of groundwater and confining layer(s).

- These six (6) deepest proposed borings will be drilled first in the sequence of drilling, to allow for assessment of the observed conditions vs. expectations down to the deepest elevations of the investigation early-on in the program, so that modifications to the program can be made if conditions differ from the current conceptual site model described herein (described further below).
- Based on the extensive site data and characterized hydrogeologic setting, the uppermost aquifer is expected to be at the lower part of Stratum III, and Stratum IV has been well documented as a confining layer. The top of Stratum IV surface mimics the surface topography, and is at a relatively constant depth below ground surface of about 60-ft.
 - All of the borings in the Unit 2 expansion area were designed based on this, so as to ensure that the uppermost aquifer and the lower confining unit are reliably located and characterized.
 - As required by Table 4, all borings should extend deep enough to identify the uppermost aquifer lower confining layer (expected to be the lower part of Stratum III, and Stratum IV, respectively). Table 4 provides further provisions, requiring drilling deeper if these respective features are not encountered when the minimum depth is reached.

Also, although not foreseen at this time, additional borings may be added if supplemental design data is needed during the course of the site exploration program or preparing the upcoming permit amendment application. If so, those additional borings (over and above the minimums specified in this plan) will be performed in a manner consistent with the methodology specified herein (Section 5.2) without the need to submit a revision to this SBP. For example, if discontinuities or stratigraphic complexities are encountered to the extent that they require further investigation in order to describe them on boring logs and integrate the information into the site characterization of stratigraphy, groundwater occurrence and interconnectivity, and lower confining layer(s), additional borings may be added, or borings may extend deeper than the minimums.

If, after this SBP is approved, it becomes necessary because of site conditions to make modifications to the number of borings and/or depths presented herein (other than the discretionary addition of supplemental borings over and above the specified minimums, or drilling one or more proposed borings deeper than the specified minimums, as described in the preceding paragraph), details the proposed modifications will be provided to TCEQ for approval by the executive director pursuant to 30 TAC §330.63(e)(4)(E).

6. REFERENCES

Collins, E.W., "Geologic Map of the New Braunfels, Texas, 30 x 60 Minute Quadrangle: Geologic Framework of an Urban-Growth Corridor along the Edwards Aquifer, South-Central Texas", Bureau of Economic Geology Miscellaneous Map No. 39, 2000.

Geosyntec Consultants, Inc., "Permit Amendment Application, Mesquite Creek Landfill, TCEQ MSW Permit No. 66B, prepared for Waste Management of Texas, Inc., Technically Complete July 14, 2006.

Hydro-Search, Inc., and McCulley, Frick & Gilman, Inc, (MFG), "Comal County Landfill Phase II Hydrogeological Report", prepared for Waste Management of Texas Inc., Irving, Texas, August 1990 (revised July, 1991).

Shafer, G.H., "*Ground-Water Resources of Guadalupe County, Texas*" Texas Water Development Board, Report 19, prepared by the U.S. Geological Survey in cooperation with the Texas Water Development Board, Guadalupe-Blanco River Authority, and the Guadalupe County Commissioner's Court, 1966, 95 p.

FIGURES

October 2023 Page No. 4B-29

SOIL BORING PLAN APPENDICES A AND B LOGS OF PREVIOUSLY DRILLED BORINGS and GEOLOGIC CROSS SECTIONS

[These Soil Boring Plan appendices are omitted from MSW Permit Amendment Application No. 66C to avoid repetition because they present copies of items/data already included in Attachments 4C and 4A, respectively, of this Geology Report]

Mesquite Creek Landfill MSW Permit No. 66C Part III, Attachment 4C

ATTACHMENT 4C BORING LOGS

Geosyntec Consultants October 2023 Page No. 4C-Cvr

BORING LOGS FROM 2022-2023 Geosyntec (GB-25 to GB-52)

Geosyntec Consultants, Inc. Texas Board of Professional Geoscientists Firm Registration No. 50256

> October 2023 Page No. 4C-1

	Geo	OSYI consu	Itec ^D	8217 Shoal Creek Bl Suite 200 Austin, TX 78757 Phone: (512) 451-40 www.geosyntec.com	lvd 003	BORING: GB-25 START DATE: 1/6/2023 FINISH DATE: 1/9/2023 LOCATION: New Braunfels	GRO TOT	UND AL DI	SUR EPTH	S FAC 1: 8	6 HEE 5 E: 6 7 ft b	T 2 61.7 gs	OF ft M	3 SL
	GS F 3-GEOT	ORM: ECH3 BF	E	BOREHOLE LO	G	PROJECT: Mesquite Creek Landfill PROJECT NUMBER: GW8636	BOR	ING E	D WA	ATEI (FIL	R: No L: B	ot Ob entor	nite G	ed Grout
DEPTH (ft-bgs)	ELEVATION (ft)			DESCR 1) Soil Name (USCS) 2) Color 3) Moisture 4) Grain Size 5) Percentage	6) Plasticity 7) Density/Consis 8) Other (Mineral Discoloration, C	tency Content, Ddor, etc.)	STRATUM	GRAPHIC LOG	х түре	BLOWS PER 6"	RECOVERY (in) H	PERCENT FINES (%)	MOISTURE CONTENT (%)	PLASTICITY INDEX
	630 	(40') Mode staining	dark olive browr hard to very hard	n (2.5Y 3/3) to olive yello ; very stiff (PP > 4 tsf); n well & chert observed; so ell & chert observed; so	w (2.5Y 6/8) wit moist to dry (dry me caliche; fract	tures w/ calcite infill; moderate iron	Stratum IV Stratum II			9 16 17 19 11 27 32	17.5 22 24 24 24			
60 - CC	NTRAC	TOR: Texp	blor of Dallas, Inc	NORTHING	: 13813774.9	LOGGER: L. Varner	ە ا RE\	/iewi	ER: 1	W. E	 Burke	1		
DR SA DR	MPLING	T: CME 7 HD: HSA / G MTHD: S SIZE/TYPE	5 Truck Mounted Coring PT, Shelby Tube E: HSA 6" - NQ2	e, Core	: 2280750.8	NUTES:	EVIATIO	ONS		Oc Pag	tobe e No	r 202 5. 4C	23 -3	

	Geo		ec ^D	8217 Shoal Suite 200 Austin, TX 7 Phone: (512 www.geosyr	Creek Blv 78757 2) 451-400 ntec.com	d 13	BORING: GB-25 START DATE: 1/6/2023 FINISH DATE: 1/9/2023 LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	GRO TOTA DEP	UND AL DE TH TC	SUR EPTH	S FAC 1: 87	HEE E: 6 7 ft b R: No	T 3 61.7 f gs ot Obs	OF t MS	3 L d
	GS F 3-GEOT		В	OREHOL	ELOG	;)	PROJECT NUMBER: GW8636	BOR	ing e	BACK	٢	L: B	entoni	te Gr	out
DEPTH (ft-bgs)	ELEVATION (ft)			1) Soil Name (I 2) Color 3) Moisture 4) Grain Size 5) Percentage	DESCRII USCS)	PTION 6) Plasticity 7) Density/Consis 8) Other (Mineral O Discoloration, C	tency Content, Ddor, etc.)	STRATUM	GRAPHIC LOG	Түре	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)		PLASTICITY INDEX
65 - 70 - 75 - 80 - 85 -		(58') CLAY to C (62') Moderate t (weathered clay	CLAYSTONE fracturing fro stone) at fra	; very dark gre	eenish gray with signifi	y (GLEY1 3/10	GY); very hard; moist to dry <i>(cont.)</i> g at fracture planes and clay	Stratum IV			12 15 22 27	22.5 24 1118 60 83			
90- CC EC DF SA	DNTRAC QUIPMEI RILL MT MPLING RILL BIT	TOR: Texplor of NT: CME 75 Tru HD: HSA / Corin G MTHD: SPT, S SIZE/TYPE: HS	f Dallas, Inc. ick Mounted ig Shelby Tube, SA 6" - NQ2	NO E , Core	ORTHING: ASTING:	13813774.9 2280750.8	LOGGER: L. Varner NOTES:		/IEWE	= =R: \	W.B Oc Pag	tobe	r 202:	1 3 4	

03-GEOTECH3 BF

	Geo	Syntec consultants 8217 Shoal Creek Blvd Suite 200 Austin, TX 78757 Phone: (512) 451-4003 www.geosyntec.com	BORING: GB-26 START DATE: 1/16/2023 FINISH DATE: 1/16/2023 LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	GRO TOT/ DEP1	UND AL DE TH TC	SUR EPTH	S FAC I: 10 ATEF	HEE E: 7)2 ft R: N	T 2 702.3 bgs ot Obs	OF ft MS	4 L d
0	GS F 3-GEOT	BOREHOLE LOG	PROJECT NUMBER: GW8636	BOR	ING E	BACK	FIL	L: B	enton	ite Gr	rout
DEPTH (ft-bgs)	ELEVATION (ft)	DESCRIPTION1) Soil Name (USCS)6) Plasticity2) Color7) Density/Consis3) Moisture8) Other (Mineral4) Grain SizeDiscoloration, C5) Percentage	tency Content, Ddor, etc.)	STRATUM	GRAPHIC LOG	TYPE B	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)		PLASTICITY INDEX
- - - - - - - - - - - - - - - - - - -	- 670 - - - - - - - - - - - - - - - - - -	(16') CLAY; light olive brown (2.5Y 5/4) to light yellowish brown (2. some locations; firm to very hard; trace moist to dry <i>(cont.)</i> (30') Gray mottling and trace caliche	5Y 6/4) with light gray clay mottling at			X	9 10 14 18 6 10 15 22	24			-
- 45 - - - 50	- - - - - - - - - - - - -			Stratum III			11 19 25	24 24			-
	650 - - 645	(52') Crystallization; possibly calcite or selenite	enerally competent: moist to dry	~			25				-
	-		, ,,	Stratum				24			
	NTRAC UIPMEI ILL MT MPLING	CTOR: Texplor of Dallas, Inc.NORTHING: 13813561.9NT: CME 75 Truck MountedEASTING: 2280316.8HD: HSA / CoringSMTHD: SPT, Shelby Tube, CoreSIZE/TYPE: HSA 6" - NQ2	LOGGER: J. Geesin NOTES: SEE KEY SHEET FOR SYMBOLS AND ABBR		/IEWE	ER: \	V. B Oc Pag	tobe	er 202 5. 4C-	3	'

	Geo	OSyntec 8217 Shoal Creek Blvd suite 200 Austin, TX 78757 Phone: (512) 451-4003 www.geosyntec.com	BORING: GB-26 START DATE: 1/16/2023 FINISH DATE: 1/16/2023 LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	GRO TOTA	UND AL DE	SUR EPTH	S FAC 1: 10	HEE E: 7)2 ft R· N	T 3 702.3 bgs	B ft M	4 ISL
0	GS F 3-GEOT	ORM: TECH3 BF BOREHOLE LOG	PROJECT NUMBER: GW8636	BOR	ING E	BACH	(FIL	L: B	Sento	nite (Grout
DEPTH (ft-bgs)	ELEVATION (ft)	DESCRIPTION 1) Soil Name (USCS) 6) Plasticity 2) Color 7) Density/Consis 3) Moisture 8) Other (Mineral 4) Grain Size Discoloration, 0 5) Percentage	tency Content, Odor, etc.)	STRATUM	GRAPHIC LOG	rype g	BLOWS PER 6"	RECOVERY (in) a	PERCENT FINES (%)	MOISTURE CONTENT (%)	PLASTICITY INDEX
Decos BRAUNFELS.GPJ GEOSNTEC.GDT 05/09/23	640 	(58°) CLAY to CLAYSTONE; dark gray (2.5Y 4/1); very hard and ge (60°) Moderate fracturing from 60 to 102 ft bgs (65°) Occasionally clay lenses from 65 to 78.5 ft bgs	enerally competent; moist to dry (cont.)	Stratum IV			23 34 42 45	36 120 120			
03-GEOLECH3 BE CO EQ DR DR DR	NTRAC UIPMEI ILL MT MPLING ILL BIT	CTOR: Texplor of Dallas, Inc. NORTHING: 13813561.9 NT: CME 75 Truck Mounted EASTING: 2280316.8 "HD: HSA / Coring GMTHD: SPT, Shelby Tube, Core "SIZE/TYPE: HSA 6" - NQ2 Core	LOGGER: J. Geesin NOTES: SEE KEY SHEET FOR SYMBOLS AND ABBR		/IEWI	ER: '	W. E Oc Pag	Burke tobe e No	er 202 5. 40	23 ;-7	

(Geo	osvn	tec ^{>}	8217 Sh Suite 20	noal Creek Blv	d	BORING: GB-26 START DATE: 1/16/2023				Sł	HEE	т4	OF	4
		consul	ltants	Austin, T Phone: (www.ge	TX 78757 (512) 451-400 osyntec.com)3	FINISH DATE: 1/16/2023 LOCATION: New Braunfels	GRO TOT/	und Al de	SURI EPTH	ACE : 10	E: 7 2 ft l	02.3 bgs	ft MS	SL.
0	GS F 3-GEOT	ORM: ECH3 BF		BOREH	OLE LOO	;	PROJECT: Mesquite Creek Landfill PROJECT NUMBER: GW8636	DEP BOR	ING E) WA BACK	TER FILL	:: No .: Be	ot Obs enton	ite G	d rout
										SA	MPLE		LAB	RESU	LTS
DEPTH (ft-bgs)	ELEVATION (ft)			1) Soil Nai 2) Color 3) Moisturi 4) Grain S 5) Percent	DESCRI me (USCS) e ize tage	PTION 6) Plasticity 7) Density/Consis 8) Other (Mineral (Discoloration, C	tency Content, Jdor, etc.)	STRATUM	GRAPHIC LOG	ТҮРЕ	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)		PLASTICITY INDEX
-		(58') CLAY	to CLAYSTON	NE; dark gray	y (2.5Y 4/1); v	ery hard and ge	enerally competent; moist to dry (cont.)								
-	610										1	120			
- 95 —								2		_					_
-	605-							Stratum							
-	 - -											84			
100 – -	 - -														-
-	600-	(102') Borin	ng terminated.												
- 105 —	-														-
-	- 595														
-	-														
110 — -	 -														-
-	590														
- 115 –	-														-
-	- 585														
-	-														
120		TOR: Texplo	or of Dallas, In Truck Mounte	nc. ed	NORTHING: EASTING:	13813561.9 2280316.8	LOGGER: J. Geesin NOTES:	REV	/IEWE	ER: V	ו V. Bı	ı urke		<u> </u>	
SA DR	MPLING	G MTHD: SF SIZE/TYPE:	PT, Shelby Tub HSA 6" - NQ	be, Core 2			SEE KEY SHEET FOR SYMBOLS AND ABBR	EVIATIC	NS		Oct Page	obei e No	r 202 . 4C-	3 8	

	Geo	DSyntec consultants 8217 Shoal Creek Blvd Suite 200 Austin, TX 78757 Phone: (512) 451-4003 www.geosyntec.com	BORING: GB-27 START DATE: 12/7/2022 FINISH DATE: 12/8/2023 LOCATION: New Braunfels	GRO TOT/			S FAC I: 11	HEE E: 6 13 ft	62.4 bgs	OF ft MS	4 L
	GS F 3-GEOT	BOREHOLE LOG	PROJECT NUMBER: GW8636	BOR	ING B	ACK	FIL	L: B	enton	ite Gr	rout
	_					SA	AMPL	E	LAB	RESU	LTS
DEPTH (ft-bgs)	ELEVATION (ft)	1) Soil Name (USCS) 6) Plasticity 2) Color 7) Density/Consi 3) Moisture 8) Other (Minera 4) Grain Size Discoloration, 5) Percentage	stency Content, Odor, etc.)	STRATUM	GRAPHIC LOG	ТҮРЕ	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)		PLASTICITY INDEX
	-	(0') CLAY; very dark grey (2.5Y 3/1); organic; grasses and rootlets to fine sand; firm; very stiff (PP > 4.5 tsf); moist	; few coarse to fine gravel; trace coarse	Stratum I		X	2 3 7 14	18	95.7 1	8 78	52
5 -		(2') CLAY; light olive brown (2.5Y 5/3) to pale brown (2.5Y 7/3); w iron staining; fractures with some crystalline mineralization/lamina 4.5 tsf); trace moist	ith trace silt and fine sand; occasional tion (possibly calcite); very stiff (PP >				6				-
	655 -						11 13 13	20			
10-						V	10 14	23			-
	650	(11') Trace gray clay lamination					16 20	15			
15-		(14.6') Horizontal fracture with calcite mineralization		Stratum III			19 13 18 22	24 12			-
	645						27 32 50	23			
20 -	640					X	19 16 17 22	22			
25- 25-						V	8 17 42	20.5 23			-
	635 -						24	17			
		(29') Some fractures from 29 to 31 ft bgs with calcite mineralization TOR: Texplor of Dallas, Inc. NORTHING: 13813170.6	n LOGGER: G. Kumar; P. Pandey	REV	/IEWE	R: \	15 N. B	24 Burke	 •		
	QUIPMEI RILL MT MPLING RILL BIT	IT: CME 75 Truck Mounted EASTING: 2280703.6 HD: HSA / Coring G MTHD: SPT, Shelby Tube, Core SIZE/TYPE: HSA 6" - NQ2	NOTES:	eviatic	ONS		Oc Pag	tobe e No	er 202 5. 4C-	3 9	

	Ger	Syntec 8217 Shoal Creek Blvd Suite 200 Austin, TX 78757 Phone: (512) 451-4003 www.geosyntec.com	BORING: GB-27 START DATE: 12/7/2022 FINISH DATE: 12/8/2023 LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	GRO TOT/ DEP1	UND S AL DE FH TO	SUR PTH	S FAC 1: 11	HEE E: 6 13 ft R: No	62.4 1 662.4 1 bgs ot Obs	OF t MS	4 ∟ 1
0:	3-GEOT	BOREHOLE LOG	PROJECT NUMBER: GW8636	BOR	ING B	ACK	(FIL	L: B	entoni	te Gr	out
DEPTH (ft-bgs)	ELEVATION (ft)	DESCRIPTION1) Soil Name (USCS)6) Plasticity2) Color7) Density/Consis3) Moisture8) Other (Mineral4) Grain SizeDiscoloration, 45) Percentage	stency Content, Odor, etc.)	STRATUM	GRAPHIC LOG	S4 ITYPE	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)		PLASTICITY INDEX
	- 630 - - - - 625 - - - - - - - - - - - - - - - - - - -	 (2) CLAY; light olive brown (2.5Y 5/3) to pale brown (2.5Y 7/3); wi iron staining; fractures with some crystalline mineralization/laminat 4.5 tsf); trace moist (<i>cont.</i>) (33') Increased gravel content (34') Significant iron staining (37') Some fractures from 37 to 47 ft bgs with calcite infilling (37') Some fractures from 37 to 47 ft bgs with calcite infilling (50') Calcite inclusions from 50 to 55 ft bgs (55') Grades to dark greenish gray from 55 to 66 ft bgs 	th trace silt and fine sand; occasional ion (possibly calcite); very stiff (PP >	Stratum III			21 26 7 12 18 27 8 11 16 18 30 33 8 11 16 17 25 11 16 12 13 14 15 17 25 11 16 14 17 25 14 17 25 14 17 22	 24 20 8.5 24 			
	NTRAC UIPMEI ILL MT MPLING ILL BIT	TOR: Texplor of Dallas, Inc. NORTHING: 13813170.6 IT: CME 75 Truck Mounted EASTING: 2280703.6 HD: HSA / Coring MTHD: SPT, Shelby Tube, Core SIZE/TYPE: HSA 6" - NO2 NO2	LOGGER: G. Kumar; P. Pandey NOTES:	REV		 i R: \	W. B	tobe	er 202:	3	

(Geo	OSYN consul	tec ^D	8217 Shoal Creek Bl Suite 200 Austin, TX 78757 Phone: (512) 451-40 www.geosyntec.com	lvd 003	BORING: GB-27 START DATE: 12/7/2022 FINISH DATE: 12/8/2023 LOCATION: New Braunfels	GR0 TOT	UND AL DI	SUR	S F AC I: 11	HEE E: 6	ET 3	3 OI 4 ft N	: 4 //SL
	GS F	ORM:	В	OREHOLE LO	G	PROJECT: Mesquite Creek Landfill PROJECT NUMBER: GW8636	DEP BOR	TH TO ING E	D WA BACK	TEF	R: N L: E	ot O Sento	bser nite	ved Grout
			<u> </u>						S/	MPL	E	LA	BRE	SULTS
DEPTH (ft-bgs)	ELEVATION (ft)			DESCR 1) Soil Name (USCS) 2) Color 3) Moisture 4) Grain Size 5) Percentage	RIPTION 6) Plasticity 7) Density/Consis 8) Other (Mineral Discoloration, 0	tency Content, Ddor, etc.)	STRATUM	GRAPHIC LOG	ТҮРЕ	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	LIQUID LIMIT PLASTICITY INDEX
- - - 65 –	- 600 - -	(2') CLAY; iron stainin; 4.5 tsf); trac	light olive brown g; fractures with ce moist <i>(cont.)</i>	(2.5Y 5/3) to pale brow some crystalline minera	m (2.5Y 7/3); wi alization/laminat	th trace silt and fine sand; occasional ion (possibly calcite); very stiff (PP >	Stratum III		X	13 19 22 26	24			
- - - 70 –	- 595	(66') CLAY	STONE; dark gr hard; trace mois	eenish gray (GLEY1 4/ [.] t	10Y); occasiona	fractures with crystallized/mineralized						99.6	15.8	83 51
- - - 75	- 590	(70.7') Iron	staining								109			
- - - 80 –	585	- - -					Stratum IV							
	580										120			
- 90 - 00			or of Dallas. Inc.	NORTHING	: 13813170.6	LOGGER: G. Kumar: P. Pandev	RE		ER: \	V. B	urke			
EQ DR SA DR	UIPMEI ILL MT MPLING	NT: CME 75 THD: HSA / C G MTHD: SF SIZE/TYPE	5 Truck Mounted Coring PT, Shelby Tube : HSA 6" - NQ2	, Core	: 2280703.6	NOTES:	EVIATIO	DNS	P	Oc age	tobe No.	er 20 4C-	23	

	Ge	OSYN consul	tec ^D	8217 Suite Austir Phone www.	Shoal Creek B 200 1, TX 78757 a: (512) 451-40 geosyntec.com	9lvd 003 1	BORING: GB-27 START DATE: 12/7/2022 FINISH DATE: 12/8/2023 LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	GRO TOTA		SUR	S FAC 1: 11	E: 6	T 4 62.4 f	OF t MSI	4
0	GS F 3-GEOT	TORM: TECH3 BF		BORE	HOLE LO	G	PROJECT NUMBER: GW8636	BOR	ING B	AC	(FIL	L: B	entoni	te Gr	out
DEPTH (ft-bgs)	ELEVATION (ft)			1) Soil 2) Colo 3) Mois 4) Graii 5) Perc	DESCF Name (USCS) r ture n Size entage	6) Plasticity 7) Density/Consis 8) Other (Mineral Discoloration, 6	tency Content, Ddor, etc.)	STRATUM	GRAPHIC LOG	TYPE g	BLOWS PER 6"	RECOVERY (in) B	PERCENT FINES (%) MOISTURE CONTENT (%)	RESUL	PLASTICITY INDEX
- - - - - - - - - - - - - - - - - - -	- 570 - - 565 - - - - - - - - - - - - - - - - - -	(66') CLAYS infills; very h	TONE; dark lard; trace m	greenish g oist <i>(cont.)</i>	ray (GLEY1 4/	(10Y); occasiona	I fractures with crystallized/mineralized	Stratum IV				60			-
105 - - 110 - - - -	- 											96			-
		- (113') Boring - - - -	g terminated.												-
	NTRAC UIPMEI ILL MT MPLING ILL BIT	CTOR: Texplo NT: CME 75 THD: HSA / C G MTHD: SP SIZE/TYPE:	or of Dallas, li Truck Mount oring T, Shelby Tu HSA 6" - NC	nc. ed be, Core Q2	NORTHING EASTING	3: 13813170.6 5: 2280703.6	LOGGER: G. Kumar; P. Pandey NOTES: SEE KEY SHEET FOR SYMBOLS AND ABBR	RE	/IEWE	E R : \	W. B Oc Page	Burke tobe No.	r 2023 4C-12	3	

(- Ter	DSVNTEC ^D 8217 Shoal Creek Blvd Suite 200	BORING: GB-28 START DATE: 1/12/2023				S	HEE	т 1	OF	3
		ConsultantsAustin, TX 78757Phone: (512) 451-4003www.geosyntec.com	FINISH DATE: 1/13/2023 LOCATION: New Braunfels	GRO TOT/	und : Al de	SURI EPTH	FAC : 85	E: 6	85.2 1 gs	t MS	L
0:	GS F 3-GEOT	BOREHOLE LOG	PROJECT: Mesquite Creek Landfill PROJECT NUMBER: GW8636	DEP BOR	ing B	ACK	FILL	L: B	ot Obs entoni	te Gr	d rout
	t)	DESCRIPTION				SA	MPLE	=		RESU	LTS
DEPTH (ft-bgs	ELEVATION (fl	1) Soil Name (USCS)6) Plasticity2) Color7) Density/Cons3) Moisture8) Other (Minera4) Grain SizeDiscoloration,5) Percentage	istency I Content, Odor, etc.)	STRATUM	GRAPHIC LOG	ТҮРЕ	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)		PLASTICITY INDEX
-	685 -	(0') CLAY; black (2.5Y 2.5/1); organic; some silt and roots; trace g	gravel; soft (PP = 1.75 tsf); moist	Stratum I		X	3 4 5 5	12.5			
	- 680	(2') Sandy/Clayey calcareous GRAVEL (angular) and CALICHE w	ith some chert fragments; moist to dry				0	12			· ·
-	-			Stratum II		X	11 11 15	9.5 19			
10 — - -	675 — -						17				-
- - 15 -	- 670 - -	(13') CLAY; pale brown (2.5Y 7/3), olive yellow (2.5Y 6/6), and da inclusion at some locations; firm to very hard; very stiff (PP > 4.5 plasticity	rk gray (2.5Y 4/1); light gray clay tsf); moist to dry; low to medium			X	9 23 31 36	21.5			
- - 20 —	-						0	17			
-	-	(20') Moderate iron staining		Stratum III		X	11 15 30	24			
25	660						11				-
30-	-						17 22 28	24			
EQ	NTRAC UIPMEI III MT	I UK: I explor of Dallas, Inc. NORTHING: 13814021.3 IT: CME 75 Truck Mounted EASTING: 2279217.2 ID: HSA / Coring Coring Coring	NOTES:	RE\	IEWE	:R: V	v. B	urke			
SA DR	MPLING	STHE COUNTY STATES OF THE STAT	SEE KEY SHEET FOR SYMBOLS AND ABBR	EVIATIC	ONS	P	Oct age	tobe No.	r 202 4C-1	3	

(Geo	OSYN	Itec ^D	8217 Shoal Cre Suite 200 Austin, TX 787 Phone: (512) 4	eek Blvd 57 51-4003	BORING: GB-28 START DATE: 1/12/2023 FINISH DATE: 1/13/2023	GRO	UND	SUR	S FAC	HEE ⁻	т 2 (85.2 ff	DF	3
	GS F				c.com	LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	TOT/	AL DE	EPTH D WA	1: 85 ATEF	5 ft bo R: No	gs ot Obs	erved	
lacksquare	3-GEOT	ECH3 BF		OREHULE	LUG	PROJECT NUMBER: GW8636	BOR		BACK		L: Be	entoni	e Gro	out
DEPTH (ft-bgs)	ELEVATION (ft)			DI 1) Soil Name (USC 2) Color 3) Moisture 4) Grain Size 5) Percentage	ESCRIPTION S) 6) Plasticity 7) Density/Consis 8) Other (Mineral Discoloration,	stency Content, Odor, etc.)	STRATUM	GRAPHIC LOG	ТҮРЕ	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%) MOISTURE CONTENT (%)		PLASTICITY INDEX
	655 - - - - - - - - - - - - - - - - -	(13') CLAY inclusion a plasticity (<i>i</i> (49') 45-de	/; pale brown (2. t some locations cont.)	5Y 7/3), olive yello ; firm to very hard; h significant selen lark gray from 53 t	w (2.5Y 6/6), and dan very stiff (PP > 4.5 t ite infilling	k gray (2.5Y 4/1); light gray clay sf); moist to dry; low to medium	Stratum III			10 15 20 22 22 18 15 22 23	24	M No.		
55 - - - - - -	630 - - -								X	15 21 25 38	24			
CC EC		TOR: Texp	lor of Dallas, Inc 5 Truck Mounted	NORT	HING: 13814021.3	LOGGER: L. Varner; J. Geesin NOTES:	RE\	/IEW	ER: \	W. В	lurke			
DR SA DR	ILL MT MPLING	HD: HSA/ G MTHD: S SIZE/TYPE	Coring PT, Shelby Tube E: HSA 6" - NQ2	, Core		SEE KEY SHEET FOR SYMBOLS AND ABBR	EVIATIO	ONS	P	Oc Page	tobei No.	⁻ 2023 4C-14		

	Ge	OSVNTEC ^D 8217 Shoal Creek Blvd Suite 200	BORING: GB-28 START DATE: 1/12/2023				s	SHEE	ЕТ 3	6 OF	3
	00 5	Austin, 1X 78757 Phone: (512) 451-4003 www.geosyntec.com	FINISH DATE: 1/13/2023 LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	GRO TOT DEP	UND AL DI TH TC	SUR EPTH D W#	(FAC 1:8: ATEI) E: (5 ft t R: N	685.2 ogs lot Ot	2 ft M oserv	ISL red
	3-GEOT		PROJECT NUMBER: GW8636	BOR	ING E	BACH	KFIL	L: E	Bento	nite (Grout
DEPTH (ft-bgs)	ELEVATION (ft)	DESCRIPTION 1) Soil Name (USCS) 6) Plasticity 2) Color 7) Density/Cc 3) Moisture 8) Other (Min 4) Grain Size Discolorati 5) Percentage	nsistency eral Content, on, Odor, etc.)	STRATUM	GRAPHIC LOG	ZYPE	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	PLASTICITY INDEX
	625 - - - - - 620 -	(13') CLAY; pale brown (2.5Y 7/3), olive yellow (2.5Y 6/6), and inclusion at some locations; firm to very hard; very stiff (PP > 4. plasticity (cont.) (65') CLAYSTONE; dark gray (2.5Y 4/1); very hard; trace moist	dark gray (2.5Y 4/1); light gray clay 5 tsf); moist to dry; low to medium to dry	Stratum III		X	20 30 31 46	18			
	615-	(65.5') Crystallized deposition along fracture plane						115			
	610-	(73') Weathered zone from 73 to 73.5 ft bgs		Stratum IV							
- 80 - -	605							120			
85-	600 -	(85') Boring terminated.									
90 - CC EC		CTOR: Texplor of Dallas, Inc. NORTHING: 13814021 NT: CME 75 Truck Mounted EASTING: 2279217	.3 .2 LOGGER: L. Varner; J. Geesin NOTES:	RE	/iEWI	ER:	W. E	Burke	e		
DF SA DF	NPLIN NPLIN NLL BIT	THD: HSA / Coring G MTHD: SPT, Shelby Tube, Core F SIZE/TYPE: HSA 6" - NQ2	SEE KEY SHEET FOR SYMBOLS AND ABBR	EVIATIO	ONS	F	Oc Page	tobe No	er 20 . 4C-	23 15	

	Geo	Syntec consultants 8217 Shoal Creek Blvd Suite 200 Austin, TX 78757 Phone: (512) 451-4003 www.geosyntec.com	BORING: GB-29 START DATE: 1/12/2023 FINISH DATE: 1/12/2023 LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	GRO TOT, DEP	ound Al de Th to	SUR EPTH D W/	5 FAC 1: 1 ATEI	SHEE CE: 7 12 ft R: N	ET 1 712.2 bgs lot Ol	l OF 2 ft N bser	= 4 //SL ved
0	3-GEOT	BOREHOLE LOG	PROJECT NUMBER: GW8636	BOR	ING E	BACH	٢IL	L: E	Bento	nite	Grout
DEPTH (ft-bgs)	ELEVATION (ft)	DESCRIPTION1) Soil Name (USCS)6) Plasticity2) Color7) Density/Consis3) Moisture8) Other (Mineral4) Grain SizeDiscoloration, 45) Percentage	stency Content, Odor, etc.)	STRATUM	GRAPHIC LOG	ZYPE	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	PLASTICITY INDEX
- - - 5-	710-	(0') CLAY; light olive brown (2.5Y 5/4); some chert fragments; gras gravel; trace coarse to fine sand; firm; moist (0.5') Sandy/Clayey calcareous GRAVEL (sub rounded to angular) fragments; loose; dry	and CALICHE with some chert	- S			12 15 17 18 9 5 11 10	14.5 20			_
- - - 10 –	705			Stratum II			11 14 20 21 18 31 50	23 17			_
-	700-	(14') CLAY: light gray (2.5Y 7/2) to light glive brown (2.5Y 5/3), cal	iche lenses at shallow deoths:								
15 - - -	 695 	occasional iron staining; light gray clay inclusion at some locations to dry; low to high plasticity (17') Significant iron staining	; hard; very stiff (PP > 4.25 tsf); moist			X	12 16 19 22	20			-
- 02 	 690 			Stratum III		X	5 10 13 15	24			-
- 25 22 	685							22			
03-GEOTECH3 BF GL DB DB DB DB	ontrac Quipmei Rill Mt Mpline Rill Bit	TOR: Texplor of Dallas, Inc.NORTHING: 13813630.3IT: CME 75 Truck MountedEASTING: 2279604.1HD: HSA / CoringSMTHD: SPT, Shelby Tube, CoreSIZE/TYPE: HSA 6" - NQ2	LOGGER: L. Varner NOTES: SI - Stratum I SEE KEY SHEET FOR SYMBOLS AND ABBR		/IEW	ER: '	W. E Oc Page	Burke	er 20 . 4C-	23 16	

	Geo	Consultants 8217 Shoal Creek Blvd Suite 200 Austin, TX 78757 Phone: (512) 451-4003 www.geosyntec.com	BORING: GB-29 START DATE: 1/12/2023 FINISH DATE: 1/12/2023 LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	GRO TOT/ DEP1	UND AL DI TH TC	SUR EPTH D WA	S FAC 1: 1 ⁻¹	5 HEE 5 E : 7 12 ft R : N	T 2 712.2 bgs ot O	2 OF 2 ft N bserv	: 4 ISL /ed
0	GS F 3-GEOT		PROJECT NUMBER: GW8636	BOR	ING E	BAC	KFIL	L: B	Sento	nite	Grout
DEPTH (ft-bgs)	ELEVATION (ft)	DESCRIPTION 1) Soil Name (USCS) 6) Plasticity 2) Color 7) Density/Cons 3) Moisture 8) Other (Minera 4) Grain Size Discoloration, 5) Percentage	istency I Content, Odor, etc.)	STRATUM	GRAPHIC LOG	S TYPE	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	LIQUID LIMIT
	680	(14') CLAY; light gray (2.5Y 7/2) to light olive brown (2.5Y 5/3), ca occasional iron staining; light gray clay inclusion at some locations to dry; low to high plasticity <i>(cont.)</i> (38') Partially cemented and dry from 38 to 38.5 ft bgs	aliche lenses at shallow depths; ; hard; very stiff (PP > 4.25 tsf); moist			X	9 13 20 26 15 17 20 23	22 24 24		_	
45 - - 50 - - - - - - - - - - - - - - - - - -	- 665 - - - - - - - - - - - - - - - - - -	(48') Calcite mineralization		Stratum I		X	6 10 13 18	23			
60	655	(58') Fractures with significant selenite mineralization; TOR: Texplor of Dallas, Inc. NORTHING: 13813630.3 NT: CME 75 Truck Mounted EASTING: 2279604.1	LOGGER: L. Varner NOTES: SI - Stratum I	REV	/iewi		9 11 16 23 W. E	22.5 Burke	\$		
DR SA DR	MPLING	HD: HSA / Coring G MTHD: SPT, Shelby Tube, Core / SIZE/TYPE: HSA 6" - NQ2	SEE KEY SHEET FOR SYMBOLS AND ABBR	EVIATIC	ONS	F	Oc Page	tobe No.	er 20 4C-	23 17	

	Geo	OSYN consul	tec ^D	8217 Shoal Creek Blv Suite 200 Austin, TX 78757 Phone: (512) 451-400 www.geosyntec.com	rd 03	BORING: GB-29 START DATE: 1/12/2023 FINISH DATE: 1/12/2023 LOCATION: New Braunfels	GRO TOT/	und Al di	SUR	S RFAC H: 1	SHEE CE : 7 12 ft	T	3 OI 2 ft N	= 4 //SL
	GS F 3-GEOT	ORM: ECH3 BF	В	OREHOLE LOO	3	PROJECT: Mesquite Creek Landfill PROJECT NUMBER: GW8636	DEP BOR	TH TO ING E	D WA	ATEI KFIL	R: N .L: E	lot O Bento	bser nite	ved Grout
DEPTH (ft-bgs)	ELEVATION (ft)			DESCRI 1) Soil Name (USCS) 2) Color 3) Moisture 4) Grain Size 5) Percentage	PTION 6) Plasticity 7) Density/Consis 8) Other (Mineral Discoloration, C	tency Content, Ddor, etc.)	STRATUM	GRAPHIC LOG	S ALL	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	LIQUID LIMIT
	650 - - - - - - - - - - - - - - - - - -	(14') CLAY; occasional i to dry; low t (68.2') 45-d	; light gray (2.5Y iron staining; ligh o high plasticity	7/2) to light olive brown It gray clay inclusion at s (cont.)	(2.5Y 5/3), cal	iche lenses at shallow depths; hard; very stiff (PP > 4.25 tsf); moist	Stratum III		X	10 10 19 22	24 24			
	635 - - - - - - - - - - - - - - - - - -	weathered o	clay; very hard; r	noist to dry			Stratum IV				120			
CC EQ DR SA DR	NTRAC UIPMEI ILL MT MPLING ILL BIT	CTOR: Texplo NT: CME 75 HD: HSA/C G MTHD: SF SIZE/TYPE:	or of Dallas, Inc. Truck Mounted Coring PT, Shelby Tube HSA 6" - NQ2	NORTHING: EASTING: , Core	13813630.3 2279604.1	LOGGER: L. Varner NOTES: SI - Stratum I SEE KEY SHEET FOR SYMBOLS AND ABBR		/IEW	ER: F	W. E Oc Page	Burke	er 20 . 4C-	23	

	Geo	osynteo consultant	c D s	8217 Shc Suite 200 Austin, T Phone: (5 www.geo	oal Creek Blv) X 78757 512) 451-40 syntec.com	vd 03	BORING: GB-29 START DATE: 1/12/2023 FINISH DATE: 1/12/2023 LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	GRO TOT, DEP	UND AL DE TH TC	SUR EPTI D W/	S RFAC H: 1 ⁻¹ ATEI	SHEE CE : 7 12 ft R : N	T 4 712.2 bgs ot Ol	ft N	: 4 1SL ved
0:	GS F 3-GEOT	DRM: ECH3 BF	В	OREHO	DLE LOO	G	PROJECT NUMBER: GW8636	BOR	ING E	BACI	KFIL	L: B	ento	nite	Grout
DEPTH (ft-bgs)	ELEVATION (ft)			1) Soil Nam 2) Color 3) Moisture 4) Grain Siz 5) Percenta	DESCR ne (USCS) ze ige	IPTION 6) Plasticity 7) Density/Consis 8) Other (Mineral Discoloration, 6	tency Content, Ddor, etc.)	STRATUM	GRAPHIC LOG	S TYPE	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	PLASTICITY INDEX
	620 - - - - - - - - - - - - - - - - - -	(75') CLAY to CLA weathered clay; ver	YSTONE ry hard; n	; dark gray noist to dry	(2.5Y 4/1); ((cont.)	generally compe	tent but several fractures with	Stratum IV				120			
BEOSNTEC.GDT 05/09/2: 1	- 600	(112') Boring termi	inated.												
COS BRAUNFELS.GPJ (55 L	595 — -														
03-GEOTECH3 BF GE DB DB DB DB	NTRAC UIPMEI ILL MT MPLING ILL BIT	TOR: Texplor of Da NT: CME 75 Truck I HD: HSA / Coring G MTHD: SPT, She SIZE/TYPE: HSA 6	allas, Inc. Mounted Iby Tube, 6" - NQ2	Core	Northing: Easting:	13813630.3 2279604.1	LOGGER: L. Varner NOTES: SI - Stratum I SEE KEY SHEET FOR SYMBOLS AND ABBR	RE	/IEWI	ER: F	W. E Oc Page	Burke	er 20 4C-	23 19	

	Ge	consultants 8217 Shoal C Suite 200 Austin, TX 78 Phone: (512) www.geosynt	Creek Blvd 3757 9 451-4003 tec.com	BORING: GB-30 START DATE: 1/5/2023 FINISH DATE: 1/6/2023 LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	GRO TOTA			SH FACE : 96	HEET E: 69 ft bg	• 1 c 96.1 ft s	NF 4 MSL
0:	GS F 3-GEOT		E LOG	PROJECT NUMBER: GW8636	BOR	NG B	ACK	FILL	: Be	ntonite	Grout
DEPTH (ft-bgs)	ELEVATION (ft)	1) Soil Name (U 2) Color 3) Moisture 4) Grain Size 5) Percentage	DESCRIPTION SCS) 6) Plasticity 7) Density/Consist 8) Other (Mineral (Discoloration, C	tency Content, Jodor, etc.)	STRATUM	GRAPHIC LOG	SA LAPE	BLOWS PER 6"	RECOVERY (in)	MOISTURE CONTENT (%)	LIQUID LIMIT
	695 - - - - - - - - - - - - - - - - - -	(0') SILT and CLAY; light yellowish brown (stiff (PP > 4.5 tsf); dry (0.25') CLAY; olive yellow (2.5Y 6/6) to pale shallow depths; occasional iron staining; oc 4.5 tsf); trace moist to dry	2.5Y 6/4); organic; some e brown (2.5Y 8/2); som ccasional fractures with c	e coarse gravel and roots; firm; very e mottling and caliche lenses at calcite infilling; hard; very stiff (PP >	Stratum III			4 3 3 9 1 8 11 14 17 21 8 13 17 21 15 20 25	21 21 23.5		
DS BRAUNFELS.GPJ GEOSNTEC.GDT (- - 670 – - -								4		
03-GEOTECH3 BF GE BC DB DB DB DB	NTRAC UIPME ILL MT MPLING ILL BIT	CTOR: Texplor of Dallas, Inc. NOF NT: CME 75 Truck Mounted EA HD: HSA / Coring G G MTHD: SPT, Shelby Tube, Core SIZE/TYPE: HSA 6" - NQ2	RTHING: 13813239.2 ASTING: 2279990.9	LOGGER: L. Varner; G. Kumar NOTES: I - Stratum I SEE KEY SHEET FOR SYMBOLS AND ABBR		IEWE	R: V	V. Bu Octi	urke ober No. 4	2023 IC-20	

	Geo	consultants 8217 Shoal Creek Blvd Suite 200 Austin, TX 78757 Phone: (512) 451-4003 www.geosyntec.com	BORING: GB-30 START DATE: 1/5/2023 FINISH DATE: 1/6/2023 LOCATION: New Braunfels	GRO TOT/	UND AL DI	SUR	S (FAC 1: 96	5 HEE 5 ft b	ET 2	OF ft MS	4 5L
	GS F 3-GEOT		PROJECT: Mesquite Creek Landfill PROJECT NUMBER: GW8636	DEP [.] BOR	TH TO ING E	D WA BACH	ATEF KFIL	r: N L: E	lot Ob Bentor	serve nite G	ed Frout
DEPTH (ft-bgs)	ELEVATION (ft)	DESCRIPTION 1) Soil Name (USCS) 6) Plasticity 2) Color 7) Density/Consi: 3) Moisture 8) Other (Mineral 4) Grain Size Discoloration, 5) Percentage	stency Content, Odor, etc.)	STRATUM	GRAPHIC LOG	S. TYPE	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)		PLASTICITY INDEX
- - - - - - - - - - - - - - - - - - -	665	 (0.25') CLAY; olive yellow (2.5Y 6/6) to pale brown (2.5Y 8/2); son shallow depths; occasional iron staining; occasional fractures with 4.5 tsf); trace moist to dry <i>(cont.)</i> (30') Partially cemented lenses from 30 to 32 ft bgs; dry; friable; w (38') Dark greenish gray clay lens (40') Fractures with calcite infill at 40 and 41.5 ft bgs 	ne mottling and caliche lenses at calcite infilling; hard; very stiff (PP > eathered voids	Stratum III			16 34 31 45 21 26 27 31	24 24 24			-
	650	(45) CLATSTONE, dark greenish gray (GLETT 4/101), occassion		Stratum IV				118			
00 EQ DR SA BR BR	NTRAC UIPME ILL MT MPLIN ILL BIT	TOR: Texplor of Dallas, Inc.NORTHING: 13813239.2NT: CME 75 Truck MountedEASTING: 2279990.9HD: HSA / CoringBMTHD: SPT, Shelby Tube, CoreSIZE/TYPE: HSA 6" - NQ2	LOGGER: L. Varner; G. Kumar NOTES: I - Stratum I SEE KEY SHEET FOR SYMBOLS AND ABBR	REV	/IEWI	ER: [*]	W. E Oc Page	Burke	er 202 . 4C-2	23 21	

(Ge	OSYI consi	ultants	8217 Shoal Suite 200 Austin, TX 7 Phone: (512	Creek Blv 28757 2) 451-400	rd 03	BORING: GB-30 START DATE: 1/5/2023 FINISH DATE: 1/6/2023	GRO		SUR	S FAC	HEE1	• 3 c 96.1 ft	o f 4 MSL	•
	GS F	ORM:		BOREHOL	E LOG		PROJECT: Mesquite Creek Landfill PROJECT NUMBER: GW8636	DEP	TH TC	DWA	ATEF KFILI	R: No L: Be	t Obse ntonite	erved e Grou	ut
	-GEUI	ECH3 BF)	(S		F	LABR	FSUI T	<u> </u>
DEPTH (ft-bgs)	ELEVATION (ft)			1) Soil Name (L 2) Color 3) Moisture 4) Grain Size 5) Percentage	DESCRI JSCS)	PTION 6) Plasticity 7) Density/Consist 8) Other (Mineral (Discoloration, C	iency Content, Odor, etc.)	STRATUM	GRAPHIC LOG	ТҮРЕ	BLOWS PER 6"	RECOVERY (in)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTICITY INDEX
65- - - - - - - - - - - - - - - - - - -	635 - - - - - - - - - - - - - - - - - - -	(45') CLA	YSTONE; dark g	with moist, soft ontal)	LEY1 4/10	0Y); occassiona	I fractures; moist to dry <i>(cont.)</i>	Stratum IV				120 115 116.5 60			
CC EC		CTOR: Tex	plor of Dallas, In 75 Truck Mounte	c. NO	RTHING: ASTING:	13813239.2 2279990.9	LOGGER: L. Varner; G. Kumar NOTES: I - Stratum I	RE	/IEWE	ER: \	W. B	lurke	-		
DF SA DF	RILL MT	"HD: HSA / G MTHD: \$ T SIZE/TYP	/ Coring SPT, Shelby Tub PE: HSA 6" - NQ	e, Core 2			SEE KEY SHEET FOR SYMBOLS AND ABBR	EVIATIO	ONS	F	Oc Page	tober No. 4	2023 IC-22		

C	Ge	Osyntec ^D consultants	8217 Shoal Creek Blvd Suite 200 Austin, TX 78757 Phone: (512) 451-4003 www.geosyntec.com		BORING: GB-30 START DATE: 1/5/2023 FINISH DATE: 1/6/2023 LOCATION: New Braunfels	GRO TOT	UND AL DE	SUF	S RFAC H: 9	SHEE CE: (6 ft t	ET 4	I OF	= 4 //SL
0	GS F 3-GEOT	ORM: ECH3 BF	BOREHOLE LOG		PROJECT: Mesquite Creek Landfill PROJECT NUMBER: GW8636	BOR	ING E	BAC	KFIL	R: N .L: E	lot Or Bento	oser nite	vea Grout
DEPTH (ft-bgs)	ELEVATION (ft)		DESCRIPT 1) Soil Name (USCS) 6) 2) Color 7) 3) Moisture 8) 4) Grain Size 5) Percentage	FION Plasticity Density/Consist Other (Mineral (Discoloration, C	ency Content, Idor, etc.)	STRATUM	GRAPHIC LOG	ТҮРЕ	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	LIQUID LIMIT
- - - 95	- 605 - - -	(45') CLAYSTONE; dark g - - - -	reenish gray (GLEY1 4/10Y	'); occassiona	al fractures; moist to dry <i>(cont.)</i>	Stratum IV				72			-
- - - 100 —	600 <i>=</i> - - -	(96') Boring terminated.											-
- - - 105 —	595 - - -												-
- - - 110	590 - -												
TEC.GDT 05/09/23	- 585 - - -												
EOS BRAUNFELS: GPJ GEOSNI 	- 580 - -												
03-GEOTECH3 BF GI DC DC DC DC DC DC DC DC DC	NTRACUIPME	CTOR: Texplor of Dallas, Inc NT: CME 75 Truck Mounted THD: HSA / Coring G MTHD: SPT, Shelby Tube SIZE/TYPE: HSA 6" - NQ2	A NORTHING: 1 A EASTING: A, Core	3813239.2 2279990.9	LOGGER: L. Varner; G. Kumar NOTES: I - Stratum I SEE KEY SHEET FOR SYMBOLS AND ABBR	REV	/IEWE	ER:	W. E Oc Page	Burke Stobe	er 20: . 4C-:	23 23	

(Geo	Syntec consultants B217 Shoal Creek Blvd Suite 200 Austin, TX 78757 Phone: (512) 451-4003	BORING: GB-31 START DATE: 1/25/2023 FINISH DATE: 1/25/2023	GRO	UND	SUR	S	SHEE CE: (ET 1	l oi	= 3
		www.geosyntec.com	LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	TOT/ DEPT	AL DE TH TC	EPTH DW/	1 : 69 Atei	9 ft b R: N	ogs lot Ol	bser	ved
Lo	3-GEOT	BOREHOLE LOG	PROJECT NUMBER: GW8636	BOR	ING B	BAC	KFIL	L: E	Bento	nite	Grout
DEPTH (ft-bgs)	ELEVATION (ft)	DESCRIPTION1) Soil Name (USCS)6) Plasticity2) Color7) Density/Cons3) Moisture8) Other (Minera4) Grain SizeDiscoloration5) Percentage	istency I Content, Odor, etc.)	STRATUM	GRAPHIC LOG	түре	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	LIQUID LIMIT
- - 5-	- - 665 -	(0') CLAY; black (2.5Y 2.5/1); organic; trace silt and sand; some v tsf); dry	vhite mottling; hard; very stiff (PP > 4.5	Stratum I		X	7 9 10 11	10			
- - - 10-	- 660 — -	 (6') CLAY; pale brown (2.5Y 8/2) to light yellowish brown (2.5Y 6/ occasional iron staining; light gray clay inclusion at some locations very stiff (PP > 4.5 tsf); trace moist to dry (9.5') Trace iron staining 	 fine to coarse sand, trace silt; fractures with calcite infilling; hard; 			X	8 11 12 14	14			
- - 15 -	- 655 — -										
- - 20 - -	- 650 — - - -			Stratum III		X	5 12 19 23	24			
- 25 - - - -		(20.25)) Llogizantol faceture with establish astronomication					8 12 15	24			
30- CC EQ DR SA DR	NTRAC UIPMEI ILL MT MPLINO ILL BIT	TOR: Texplor of Dallas, Inc. NORTHING: 13812797.3 IT: CME 75 Truck Mounted EASTING: 2280376.2 HD: HSA / Coring MTHD: SPT, Shelby Tube, Core SIZE/TYPE: HSA 6" - NQ2	LOGGER: P. Pandey NOTES: SEE KEY SHEET FOR SYMBOLS AND ABBR		IEWE	ER:	²⁵ W. E Oc Page	Burke	er 20 4C-	23 24	

	Ge	OSYI consi	ltants	8217 Shoal Creek Bly Suite 200 Austin, TX 78757 Phone: (512) 451-40 www.geosyntec.com	vd 03	BORING: GB-31 START DATE: 1/25/2023 FINISH DATE: 1/25/2023 LOCATION: New Braunfels PRO JECT: Mesquite Creek Landfill	GRO TOT/			S FAC 1: 69	HEE E: 6) ft bo	T 2 69 ft I gs	OF VISL	3
	GS F 3-GEOT	ORM: FECH3 BF) BC	DREHOLE LOO	G	PROJECT NUMBER: GW8636	BOR	ING E	BACK	FILI	L: Be	entoni	te Gr	out
DEPTH (ft-bgs)	ELEVATION (ft)			DESCR 1) Soil Name (USCS) 2) Color 3) Moisture 4) Grain Size 5) Percentage	 6) Plasticity 7) Density/Consist 8) Other (Mineral Construction) 7) Discoloration, Construction 	tency Content, Jdor, etc.)	STRATUM	GRAPHIC LOG	SA EXPE	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)		PLASTICITY INDEX
35 -	- 635 - - 635 - 	(6') CLAY occasiona very stiff ((38') Sign (38.25') C (39') Dry,	; pale brown (2.5Y i l iron staining; light PP > 4.5 tsf); trace ificant iron staining alcite mineralizatior friable, weathered z); fine to coarse sand, trace silt; fractures with calcite infilling; hard; ft bgs			X	15 22 26 32	7			-		
45 -	625 - 620 	(48') Grac	les to dark gray clay		Stratum III		X	10 14 20 26	24 24					
60- CC EC DF SA DF	615- - 615- - 610- (58') CLAY to CLAYSTONE; very dark grey (5Y 3/1); occasional fractures and mineralization; very stiff 610- - 7 - 7 - 8000000000000000000000000000000000000													

OTECH3 BF GEOS BRAUNFELS.GPJ GEOSN

	Geo	OSyntec8217 Shoal Creek Blvd Suite 200 Austin, TX 78757 Phone: (512) 451-4003 www.geosyntec.com	BORING: GB-31 START DATE: 1/25/2023 FINISH DATE: 1/25/2023 LOCATION: New Braunfels	GRO TOT/	UND AL DE	SUR	SI FAC I: 69	HEE E: 6 ft be	T 3 69 ft I gs	of : //sl	3
	GS F 3-GEOT		PROJECT: Mesquite Creek Landfill PROJECT NUMBER: GW8636	DEP BOR	TH TO ING E	D WA	TER FILL	2: No _: Be	ot Obs entoni	erved te Gro	out
						S/	AMPLE	=	LAB	RESUL	TS
DEPTH (ft-bgs)	ELEVATION (ft)	DESCRIPTION 1) Soil Name (USCS) 6) Plasticity 2) Color 7) Density/Consi: 3) Moisture 8) Other (Mineral 4) Grain Size Discoloration, 5) Percentage	stency Content, Odor, etc.)	STRATUM	GRAPHIC LOG	TYPE	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)		PLASTICITY INDEX
- - - - - - - - - - - - - - - - - - -	- 605 - 605 - 600	(58') CLAY to CLAYSTONE; very dark grey (5Y 3/1); occasional fr (cont.) (69') Boring terminated.	actures and mineralization; very stiff	Stratum IV			11 12 27 29				
	 - 595 										
- 08											-
EOS BRAUNFELS.GPJ GEOSNIEC. 00 											
03-GEOTECH3 BF GI DA DA DA DA DA	ontrac Quipmei Rill Mt Mpling Rill Bit	CTOR: Texplor of Dallas, Inc.NORTHING: 13812797.3NT: CME 75 Truck MountedEASTING: 2280376.2HD: HSA / CoringG MTHD: SPT, Shelby Tube, CoreSIZE/TYPE: HSA 6" - NQ2	LOGGER: P. Pandey NOTES:		VIEWE	ER: \ P	V. Bi Oct	urke tobe No.	r 202: 4C-20	3	

(Geo	OSYI consu	Itec ^D	8217 Shoal Creek B Suite 200 Austin, TX 78757 Phone: (512) 451-40	lvd 003	BORING: GB-32 START DATE: 1/5/2023 FINISH DATE: 1/5/2023 LOCATION: New Braunfels	GRO	und Al de	SUR	5 FAC	SHEE CE: (ET 1	OF oft N	3 ISL
	GS F 3-GEOT	ORM: ECH3 BF) E	BOREHOLE LO	G	PROJECT: Mesquite Creek Landfill PROJECT NUMBER: GW8636	DEP BOR	TH TO ING B	D WA	ATEI KFIL	R : N .L: E	lot Ol Bento	oser\ nite (/ed Grout
DEPTH (ft-bgs)	ELEVATION (ft)			DESCF 1) Soil Name (USCS) 2) Color 3) Moisture 4) Grain Size 5) Percentage	6) Plasticity 7) Density/Consis 8) Other (Mineral Discoloration, 0	tency Content, Odor, etc.)	STRATUM	GRAPHIC LOG	TYPE 5	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	LIQUID LIMIT
- - - 5-	- 650 — - -	(0') CLAY 4.5 tsf); m	; very dark gray (; noist	2.5Y 3/1); organic; gras:	ses and rootlets;	; trace coarse gravel; very stiff (PP >	Stratum I		X	2 5 10 11	16			
- - - 10 - -	 645 - - - - 640 -	(6') CLAY and 45-de trace mois (8') Some	; light olive brown gree fracture plan to dry calcite and chert	(2.5Y 5/6) to pale olive nes (~1mm) with calcite inclusions	ome caliche; several vertical laminations l iron staining; very stiff (PP > 4.5 tsf);			X	6 8 9 9	11 21			-	
- 15 - - 20 -	- 	(20') Verti	cal fracture with o	calcite infilling		Stratum III		X	6 9 12 16	19 21			-	
- 25 - - - - - - - - - - - -	625 - - - - - -										23			
CO EQ DR SA DR	NTRAC UIPMEI ILL MT MPLING ILL BIT	CTOR: Text NT: CME 7 HD: HSA / G MTHD: S SIZE/TYP	plor of Dallas, Inc '5 Truck Mounted Coring SPT, Shelby Tube E: HSA 6" - NQ2	NORTHING	: 13812557.9 : 2280894.4	LOGGER: L. Varner; G. Kumar NOTES: SEE KEY SHEET FOR SYMBOLS AND ABBRE		/IEWE	ER: \ F	W. E Oc Page	Burke Stobe	e er 20 . 4C-	23 27	

	Geo	OSYNTEC consultants 8217 Shoal Creek Blvd Suite 200 Austin, TX 78757 Phone: (512) 451-4003 www.geosyntec.com	BORING: GB-32 START DATE: 1/5/2023 FINISH DATE: 1/5/2023 LOCATION: New Braunfels PRO JECT: Macquito Crack Londfill	GRO TOT/		SUR	S FAC 1: 77	E: 67 ft b	51.9 st C	e of	= 3 ISL
0	GS F 3-GEOT	ORM: TECH3 BF BOREHOLE LOG	PROJECT NUMBER: GW8636	BOR			FIL	L: B	ento	nite	Grout
DEPTH (ft-bgs)	ELEVATION (ft)	DESCRIPTION 1) Soil Name (USCS) 6) Plasticity 2) Color 7) Density/Co 3) Moisture 8) Other (Mine 4) Grain Size Discoloration 5) Percentage	nsistency ral Content, n, Odor, etc.)	STRATUM	GRAPHIC LOG	S/ LAPE	BLOWS PER 6"	RECOVERY (in) A	PERCENT FINES (%)	MOISTURE CONTENT (%)	LIQUID LIMIT
- - - 35 -	. 620 - . 615	(6') CLAY; light olive brown (2.5Y 5/6) to pale olive (5Y 6/4) with and 45-degree fracture planes (~1mm) with calcite infill; occasio trace moist to dry <i>(cont.)</i> (31') Calcite mineralization	some caliche; several vertical laminations nal iron staining; very stiff (PP > 4.5 tsf);			X	8 9 13 15	22			-
- - 40 - - -	 - 610 	(38') Grades to dark gray clay from 38 to 52 ft bgs with iron stai	ning at some locations	Stratum III		X	10 14 18 22	24			-
45 - - - 50 -	605						15 18 22 26	24			-
- 	. 595 – . 595 – 	(52') CLAY to CLAYSTONE; dark greenish gray (GLEY1 4/5GY (calcite and muscovite); very hard; trace moist to dry); minor fracturing with mineralized infills	Stratum IV				92			-
CC EQ DR SA DR	NTRAC UIPMEI RILL MT MPLING	CTOR: Texplor of Dallas, Inc. NORTHING: 13812557 NT: CME 75 Truck Mounted EASTING: 2280894 'HD: HSA / Coring GMTHD: SPT, Shelby Tube, Core SIZE/TYPE: HSA 6" - NQ2	9 4 NOTES: SEE KEY SHEET FOR SYMBOLS AND ABBR		/IEWE	E R: \	W. B Oc age	surke tobe No.	er 20 4C-	23 28	

	Geo	OSYNTEC consultants 8217 Shoal Creek Blvd Suite 200 Austin, TX 78757 Phone: (512) 451-4003 www.geosyntec.com	B: GB-32 DATE: 1/5/2023 DATE: 1/5/2023 ON: New Braunfels	GRO TOT/			SHI FACE : 77 f	EET 651 t bgs	3 0 .9 ft I	F 3 ASL
0	GS F 3-GEOT	TORM: TECH3 BF BOREHOLE LOG PROJECT	CT NUMBER: GW8636	BOR	ING B	ACK	FILL:	Bent	onite	Grout
DEPTH (ft-bgs)	ELEVATION (ft)	DESCRIPTION 1) Soil Name (USCS) 6) Plasticity 2) Color 7) Density/Consistency 3) Moisture 8) Other (Mineral Content, 4) Grain Size Discoloration, Odor, etc.) 5) Percentage		STRATUM	GRAPHIC LOG	SA LYPE	BLOWS PER 6" BLOWS PER 6" BLOWS PER 6"	PERCENT FINES (%)	MOISTURE CONTENT (%)	LIQUID LIMIT
- - - - - - - - - - - - - - - - - - -	- 590 - 590 - 585 - 580 	(52') CLAY to CLAYSTONE; dark greenish gray (GLEY1 4/5GY); minor fract (calcite and muscovite); very hard; trace moist to dry (cont.)	uring with mineralized infills	Stratum IV			7:	3		
		(77') Boring terminated.								
	ontrac Quipmei XILL MT MPLINC XILL BIT	CTOR: Texplor of Dallas, Inc.NORTHING: 13812557.9NT: CME 75 Truck MountedEASTING: 2280894.4'HD: HSA / CoringG MTHD: SPT, Shelby Tube, Core'SIZE/TYPE: HSA 6" - NQ2SEE KEY	R: L. Varner; G. Kumar		VIEWE	E R : V	V. Bur Octo age N	ke ber 2 o. 40	023 2-29	

	Ge	DSyntec 8217 Shoal Creek Blvd Suite 200 Austin, TX 78757 Phone: (512) 451-4003 www.geosyntec.com	BORING: GB-33 START DATE: 12/9/2022 FINISH DATE: 12/13/2022 LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	GRO TOT	UND AL DI	SUR EPTI	S RFAC H: 1:	SHEE CE: ↓ 53 ft R· N	ET 1 702.2 bgs	1 OF 2 ft N	= 6 ISL
0:	GS F 3-GEOT	DRM: ECH3 BF	PROJECT NUMBER: GW8636	BOR	ING E	BACI	KFIL	L: E	Bento	nite	Grout
DEPTH (ft-bgs)	ELEVATION (ft)	DESCRIPTION 1) Soil Name (USCS) 6) Plasticity 2) Color 7) Density/Consis 3) Moisture 8) Other (Mineral 4) Grain Size Discoloration, 6 5) Percentage	stency Content, Odor, etc.)	STRATUM	GRAPHIC LOG	түре	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	LIQUID LIMIT
-	-	(0') CLAY; black (2.5Y 2.5/1); organic; grasses and rootlets; trace (PP = 1.75 tsf); trace moist; highly plastic	fine gravel; trace medium sand; soft	tratum I		X	2 3 3	14	93.4	35.7	81 62
- - 5- - -	700 - - - - 695 -	(2') Clayey GRAVEL with chert; medium dense to loose; dry (8') Significant white caliche from 8 to 10 ft bgs; friable; dry		Stratum II S			6 17 14 9 8 8	10	19.4	27.4 6.1 9.6	59 31
	- - 690 - -	(10') Silty CLAY to CLAY; pale brown (2.5Y 8/2) to brownish yellow 6/2); trace chert fragments; trace coarse to fine gravel; iron stainin inclusions at some locations; some fractures with calcite mineralizatsf); hard; trace moist	v (10YR 6/8) and light olive gray (5Y g and occasional iron nodules; gray clay ation/lamination; very stiff (PP > 4.5	,			9 9 11 13 15 19	11.5		19.9	
-	685 -			=		X	9 13 15	22 15	98.5	20.4 20.3	90 63
3DT 05/09/23	- - 680 -			Stratum		X	4 9 10 13	21			
S BRAUNFELS.GPJ GEOSNTEC.G	- - - - - -						13 22 37 44				
	NTRAC UIPME ILL MT MPLING ILL BIT	TOR: Texplor of Dallas, Inc.NORTHING: 13813500.9NT: CME 75 Truck MountedEASTING: 2278691.2HD: HSA / CoringEASTING: 2278691.2S MTHD: SPT, Shelby Tube, CoreSIZE/TYPE: HSA 6" - NQ2	LOGGER: P. Pandey; G. Kumar NOTES: SEE KEY SHEET FOR SYMBOLS AND ABBR			ER:	W. E Oc Page	Burke	er 20)23 -30	

	Ge	OSYI consu	Itec ^D	8217 Shoal C Suite 200 Austin, TX 78 Phone: (512) www.geosynte	Creek Blvo 3757) 451-400 tec.com	t 3	BORING: START D FINISH D LOCATIO	GB-33 ATE: 12/9/2022 ATE: 12/13/2022 N: New Braunfels	GRC TOT		SUR EPTI	S RFAC H: 1	53 ft	ET 2 702.2 bgs	2 OF 2 ft N	= 6 ISL
	GS F 3-GEOT	ORM: ECH3 BF	B	OREHOLE	E LOG	i	PROJECT	NUMBER: GW8636	BOR	ING	BACI	KFIL	L: E	Bento	nite	Grout
DEPTH (ft-bgs)	ELEVATION (ft)			1) Soil Name (US 2) Color 3) Moisture 4) Grain Size 5) Percentage	DESCRIF SCS)	PTION 6) Plasticity 7) Density/Consis 8) Other (Mineral (Discoloration, C	ency Content, Idor, etc.)		STRATUM	GRAPHIC LOG	TYPE S	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	LIQUID LIMIT
35 - - - - - - - - - - - - - - - - - - -	670	(10') Silty 6/2); trace inclusions tsf); hard;	CLAY to CLAY; p e chert fragments; at some location trace moist <i>(cont</i>	usions from 54 to	7 8/2) to b fine grave s with cal	rownish yellow el; iron staining lcite mineraliza	(10YR 6/8) and occasi tion/laminat	and light olive gray (5Y onal iron nodules; gray clay ion; very stiff (PP > 4.5	Stratum III			19 21 35 37 15 20 26 32 13 21 25 30 13 14 26 32 13 21 25 30 13 14 26 38 13 15 21 18 25 18 25 18 25 18 25 18 25 18 27 18 27 18 27 18 27 18 26 37 50 13 14 15 14 26	16 18 24 24 17 24		MM NOT THE REPORT OF THE R	
60 - CC EC DR	NTRAC	TOR: Texp NT: CME 7 HD: HSA /	plor of Dallas, Inc 75 Truck Mounted Coring	NOR EA	rthing: Asting:	13813500.9 2278691.2	LOGGER: NOTES:	: P. Pandey; G. Kumar	RE	/IEW	/ER:	W. E	Burke	•	1	
DF		SIZE/TYPI	E: HSA 6" - NQ2	, 5010			SEE KEY SH	IEET FOR SYMBOLS AND ABBR	EVIATIO	ONS	F	Page	No.	4C-	23 31	

	Geo	Syntec consultants 8217 Shoal Creek Blvd Suite 200 Austin, TX 78757 Phone: (512) 451-4003 www.geosyntec.com	BORING: GB-33 START DATE: 12/9/2022 FINISH DATE: 12/13/2022 LOCATION: New Braunfels	GRO TOT/	UND AL D	SUR	S RFAC H: 1	53 ft	ET 3 702.2 bgs	3 O I 2 ft N	= 6 //SL
	GS F 03-GEOT	BOREHOLE LOG	PROJECT: Mesquite Creek Landfill PROJECT NUMBER: GW8636	BORI	ing e	D W/ BACI	ATEI KFIL	R: N L: E	lot O Bento	bser nite	ved Grout
DEPTH (ft-bgs)	ELEVATION (ft)	DESCRIPTION 1) Soil Name (USCS) 6) Plasticity 2) Color 7) Density/Cons 3) Moisture 8) Other (Minera 4) Grain Size Discoloration 5) Percentage	istency al Content, , Odor, etc.)	STRATUM	GRAPHIC LOG	TYPE	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	LIQUID LIMIT
65 -	 - 640 - 	 (10') Silty CLAY to CLAY; pale brown (2.5Y 8/2) to brownish yello 6/2); trace chert fragments; trace coarse to fine gravel; iron stainin inclusions at some locations; some fractures with calcite mineraliz tsf); hard; trace moist (<i>cont.</i>) (60.7') Horizontal fracture with some calcite inclusion (61') Grades to dark gray clay from 61 to 66 ft bgs 	w (10YR 6/8) and light olive gray (5Y ng and occasional iron nodules; gray clay zation/lamination; very stiff (PP > 4.5	Stratum III		X	16 23 28 35 26 30 40 50	17			
70 -		(66') CLAYSTONE; very dark greenish gray (GLEY1 3/10Y); very (70') Discoloration and fracture with calcite lamination	hard; trace moist					48	97.8	6.5	50 25
75 -	- 630 - 							120			
80 -	625 - - - - - - - - - - - - - - - - - - -			Stratum IV							
RAUNFELS.GPJ GEOSNTEC.GDT 05/0.	- - - - - - - - - - - - - - - - - - -							120			
03-GEOTECH3 BF GEOS B D D D D D D D D D D D D D D D D D D D	ONTRAC QUIPME RILL MT AMPLING RILL BIT	TOR: Texplor of Dallas, Inc. NORTHING: 13813500.9 IT: CME 75 Truck Mounted EASTING: 2278691.2 HD: HSA / Coring EASTING: 2278691.2 G MTHD: SPT, Shelby Tube, Core SIZE/TYPE: HSA 6" - NQ2	LOGGER: P. Pandey; G. Kumar NOTES: SEE KEY SHEET FOR SYMBOLS AND ABBRE		IEW	ER:	W. E Oc Page	Burke Stobe	e er 20 . 4C-)23 ·32	

	Geo	OSYT consu		8217 Sh Suite 20 Austin, T Phone: (www.ge	noal Creek Blv 0 FX 78757 (512) 451-400 osyntec.com	/d 03	BORING: GB-33 START DATE: 12/9/2022 FINISH DATE: 12/13/2022 LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	GRO TOT, DEP	OUND : AL DE	SUR EPTI D W/	S RFAC H: 1: ATEF	5 HEE 53 ft R: N	702.2 bgs	OF ft MS serve	6 .L d
0:	GS F 3-GEOT	ORM: ECH3 BF		BOREH		3	PROJECT NUMBER: GW8636	BOR	ING B		KFIL	L: B	enton	ite G	rout
DEPTH (ft-bgs)	ELEVATION (ft)			1) Soil Nai 2) Color 3) Moistur 4) Grain S 5) Percent	DESCRI me (USCS) e ize iage	 PTION 6) Plasticity 7) Density/Consis 8) Other (Mineral Discoloration, 6) 	tency Content, Ddor, etc.)	STRATUM	GRAPHIC LOG	TYPE S	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)		LTS
- - - 95 - - -	- 610 - - - 605 -	(66') CLAY	/STONE; very	dark greenish	n gray (GLEY	1 3/10Y); very f	hard; trace moist <i>(cont.)</i>					120			-
- 100 - - 105 - - - - -	- - 600 - - 595 -							Stratum IV				110			
COS BRAUNFELS.GPJ GEOSNIEC.GUI 05/09/23	- 590 - - 585 - -											120			
	NTRAC UIPMEI ILL MT MPLING ILL BIT	CTOR: Texp NT: CME 7: HD: HSA / G MTHD: S SIZE/TYPE	blor of Dallas, li 5 Truck Mount Coring PT, Shelby Tu E: HSA 6" - NC	nc. ed be, Core Q2	NORTHING: EASTING:	13813500.9 2278691.2	LOGGER: P. Pandey; G. Kumar NOTES: SEE KEY SHEET FOR SYMBOLS AND ABBR		/IEWE	ER: F	W. E Oc Page	Burke tobe No.	er 202 4C-3	3	

0	Geo			8217 Shoal Suite 200 Austin, TX Phone: (512	Creek Blv 78757 2) 451-400	d)3	BORING: GB-33 START DATE: 12/9/2022 FINISH DATE: 12/13/2022	GRO		SUR	S FAC	HEE1	г 5 (02.2 ft	DF MSL	6
	GS F	ORM:	F	www.geosy	ritec.com		LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill PROJECT NUMBER: GW8636	TOTA DEP BOR	al de Th TC ING B	PTH WA	I: 15 Ater (fili	53 ft b R: No L: Be	ogs It Obse entonit	erved e Gro	i
<u>_</u> 0:	3-GEOT	ECH3 BF								S/			LARE	ESUI	 TS
DEPTH (ft-bgs)	ELEVATION (ft)			1) Soil Name (2) Color 3) Moisture 4) Grain Size 5) Percentage	DESCRI (USCS)	PTION 6) Plasticity 7) Density/Consis 8) Other (Mineral Discoloration, C	tency Content, Ddor, etc.)	STRATUM	GRAPHIC LOG	ТҮРЕ	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%) MOISTURE CONTENT (%)		
- - 125 - - 130	- 580 — - - 575 — - - -	(66') CLA	YSTONE; very d	ark greenish gr	ay (GLEY1	1 3/10Y); very f	ard; trace moist <i>(cont.)</i>					120			
- - 135 — - - 140 —	- 570 - - 565 - - -							Stratum IV				120			
- - 145 -	- 560 - - 555											60 96			
150 – CO EQ DR SA DR	NTRAC UIPMEI ILL MT MPLINC ILL BIT	CTOR: Texp NT: CME 7 HD: HSA / G MTHD: S SIZE/TYPI	olor of Dallas, Inc 5 Truck Mounted Coring 6PT, Shelby Tube E: HSA 6" - NQ2	c. NC d E e, Core 2	DRTHING: Easting:	13813500.9 2278691.2	LOGGER: P. Pandey; G. Kumar NOTES: SEE KEY SHEET FOR SYMBOLS AND ABBR			R: \	W. B Oc Page	tober	- 2023 4C-34		

	Geo	OSYT consu	Itec ^D	8217 Shoal Cree Suite 200 Austin, TX 7875 Phone: (512) 45 www.geosyntec.	ek Blvd 7 1-4003 com	BORING: GB-33 START DATE: 12/9/2022 FINISH DATE: 12/13/2022 LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	GRC TOT DEP	OUND AL DI TH TO	SUF EPTI D W/	S RFAC H: 14 ATEI	53 ft R: N	ET 6 702.2 bgs lot Ot	ft M	6 SL ed
0	GS F 3-GEOT	ORM: ECH3 BF		BOREHOLE	LOG	PROJECT NUMBER: GW8636	BOR	ING E	BAC	KFIL	L: E	Bento	nite (Grout
DEPTH (ft-bgs)	ELEVATION (ft)			DE 1) Soil Name (USCS 2) Color 3) Moisture 4) Grain Size 5) Percentage	SCRIPTION 6) Plasticity 7) Density/Consis 8) Other (Mineral Discoloration, C	tency Content, Ddor, etc.)	STRATUM	GRAPHIC LOG	ТҮРЕ	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	LIQUID LIMIT
-	- - 550 —	(66') CLAY	'STONE; very c	ark greenish gray (G	GLEY1 3/10Y); very h	nard; trace moist <i>(cont.)</i>	Stratum IV				96			
- 155 —	-	(153') Bori	ng terminated.											-
-	- 545 -	-												
160	-													-
-	540 — -													
-	- - 535 –													
- 170 — -	-													-
C.GDT 05/09/23	530 — - -													
- 175 	- - 525 –													-
	NTRAC	TOR: Texp	lor of Dallas, In	c. NORTH	IING: 13813500.9	LOGGER: P. Pandey; G. Kumar	RE	VIEWI	ER:	W. E	Burke	 e		
DR DR DR DR DR DR	ILL MT	HD: HSA / G MTHD: S SIZE/TYPE	Coring PT, Shelby Tub HSA 6" - NQ	e, Core	ING. 2276091.2	SEE KEY SHEET FOR SYMBOLS AND ABBR	EVIATIO	ONS	F	Oc Page	tobe No.	er 202 . 4C-3	23 35	

	Geo	Syntec 8217 Shoal Creek Blvd Suite 200 Austin, TX 78757 Phone: (512) 451-4003 www.geosyntec.com	BORING: GB-34 START DATE: 12/21/2022 FINISH DATE: 12/22/2022 LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	GRO TOTA	UND S AL DEF TH TO	URFA PTH: WATE	SHEE .CE: 1 142 ft ER: N	ET 1 711.0 bgs lot Ob	OF ft MS	5 3L ad
03	GS F 3-GEOT	BOREHOLE LOG	PROJECT NUMBER: GW8636	BOR	ING BA	CKFI	LL: E	Bentor	nite G	rout
DEPTH (ft-bgs)	ELEVATION (ft)	DESCRIPTION 1) Soil Name (USCS) 6) Plasticity 2) Color 7) Density/Consis 3) Moisture 8) Other (Mineral 4) Grain Size Discoloration, 5) Percentage	stency Content, Odor, etc.)	STRATUM	GRAPHIC LOG	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%) REST	
	710 <u>-</u> - - 705	 (0') CLAY; black (10YR 2/1); organic; grasses and rootlets; little cosand; firm; soft (PP = 1 tsf); moist (1.25') Clayey GRAVEL (rounded to sub angular) with CALICHE a loose; dry (6') White caliche intermixed with sand and clay from 8 to 10 ft box 	arse to fine gravel; few coarse to fine nd chert; trace coarse to fine sand;	Stratum II SI		1 3 3 10 5 8 10 10 7 4 8	15.5 2 22.5			-
	- - - 700 -	 (8') CLAY; pale brown (2.5Y 8/3), olive yellow (2.5Y 6/6) to grayish (5Y 3/2); some caliche lenses at shallow depths; trace silt and fine staining and occasional iron nodules; occasional fractures with hea mineralization; hard; stiff to very stiff (PP > 3 tsf); trace moist (10') Moist and soft light gray clay inclusion/lamination from 10 to 2 	a brown (2.5Y 5/2), and dark olive gray sand; trace coarse to fine gravel; iron avy iron staining and/or calcite 27 ft bgs with occasional iron staining			9 9 7 10 11 13	13.5			-
	- - 695 - -			tum III		8 15 20 20	14.5 21.5			
20 -	- 690 — -			Stra		5 7 11 22	23			
	- 685 - -	(25.2') Iron nodules				5 8 10 12	23			
	NTRAC UIPMEI ILL MT MPLING ILL BIT	TOR: Texplor of Dallas, Inc. NORTHING: 13813081.8 IT: CME 75 Truck Mounted EASTING: 2279095.1 HD: HSA / Coring SMTHD: SPT, Shelby Tube, Core SIZE/TYPE: HSA 6" - NQ2 SIZE/TYPE: HSA 6" - NQ2	LOGGER: G. Kumar NOTES: SI - Stratum I SEE KEY SHEET FOR SYMBOLS AND ABBR			 R: W. C Pag	 Burke Octobe e No	 e er 202 . 4C-3	23	

	Geo	OSYN consu	Itec ^D	8217 Shoal Creek I Suite 200 Austin, TX 78757 Phone: (512) 451-4 www.geosyntec.cor	Blvd 1003 n	BORING: GB-34 START DATE: 12/21/2022 FINISH DATE: 12/22/2022 LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	GRO TOT/	UND S AL DE		S FAC I: 14	HEE E: 7 12 ft R· N	T 27711.00 bgs) ft N	= 5 /ISL	;)
	GS F 3-GEOT	ORM: ECH3 BF	В	OREHOLE LC)G	PROJECT NUMBER: GW8636	BOR	ING B	ACK	FIL	L: E	Bento	nite	Grou	ut
DEPTH (ft-bgs)	ELEVATION (ft)			DESC 1) Soil Name (USCS) 2) Color 3) Moisture 4) Grain Size 5) Percentage	RIPTION 6) Plasticity 7) Density/Consis 8) Other (Mineral Discoloration, C	tency Content, Ddor, etc.)	STRATUM	GRAPHIC LOG	TYPE	BLOWS PER 6"	RECOVERY (in) A	PERCENT FINES (%)	MOISTURE CONTENT (%)		PLASTICITY INDEX
35- 40- 45-	- 680 - 675 - 670 - 670 - 670 - 665 	(8') CLAY; (5Y 3/2); s staining an mineralizat (40') Some	pale brown (2.5% ome caliche lens id occasional iror tion; hard; stiff to	/ 8/3), olive yellow (2. es at shallow depths; nodules; occasional f very stiff (PP > 3 tsf); m 40 to 42 ft bgs	5Y 6/6) to gravish trace silt and fine ractures with hea trace moist <i>(cont</i>	brown (2.5Y 5/2), and dark olive gray sand; trace coarse to fine gravel; iron wy iron staining and/or calcite ;)	Stratum III			6 9 11 15 15 16 22	24 24 22	97.3	≥ 31.2	92	51 -
60- CC EC DF	660	CTOR: Texp NT: CME 7 HD: HSA /	lor of Dallas, Inc. 5 Truck Mounted Coring	NORTHIN	G: 13813081.8 G: 2279095.1	LOGGER: G. Kumar NOTES: SI - Stratum I	REV	ЛЕWE	ER: \	W. B	24 22.5 Burke	9			- - - - - - - - - - - - - - - - - - -
DF	RILL BIT	SIZE/TYPE	: HSA 6" - NQ2			SEE KEY SHEET FOR SYMBOLS AND ABBR	EVIATIC	NS	P	Oc age	No.	er 20 . 4C-	23 37		

(Ge	osyr	Itec ^D	8217 Shoal Creek Bl Suite 200 Austin, TX 78757 Bene: (512) 451 40	vd	BORING: GB-34 START DATE: 12/21/2022 FINISH DATE: 12/22/2022	GRO	UND	SUR	S	HEE	ET 3	3 OF D ft N	5 151		
		COIISC		www.geosyntec.com		LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	TOT/ DEP	AL DI TH TO	EPTH D W#	1 : 14 Atei	42 ft R: N	bgs lot O	bser	ved		
	03-GEOT	TECH3 BF	JE	BOREHOLE LO	G	PROJECT NUMBER: GW8636	BOR	ING E	BACH	(FIL	L: E	Bento	nite	Grout		
DEPTH (ft-bgs)	ELEVATION (ft)			DESCR 1) Soil Name (USCS) 2) Color 3) Moisture 4) Grain Size 5) Percentage	 IPTION 6) Plasticity 7) Density/Consis 8) Other (Mineral Discoloration, G 	tency Content, Ddor, etc.)	STRATUM	GRAPHIC LOG	S TYPE	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	PLASTICITY INDEX		
65-	- 650 - - 645 - 	(8') CLAY (5Y 3/2); s staining ar mineraliza (61.6') He (68') Grad	; pale brown (2.5 some caliche lens nd occasional iron ation; hard; stiff to avy calcite precip	Y 8/3), olive yellow (2.5Y ses at shallow depths; tra n nodules; occasional fra very stiff (PP > 3 tsf); tr itation from 50 to 62 ft b	(6/6) to grayish ace silt and fine actures with hea race moist (cont ngs	brown (2.5Y 5/2), and dark olive gray sand; trace coarse to fine gravel; iron wy iron staining and/or calcite ./	Stratum III		X	12 16 18 28	24					
70 - 75 - 80 -	- 640 - - 635 - 	(70') CLA weatherin	YSTONE; very da g; very hard; dry	ith crystallized/mineralized infills; some	ratum IV				113			-				
85-	- 630 - - 625 - 						Stra				117					
CC EC DF SA DF	ONTRAC QUIPME RILL MT AMPLING RILL BIT	CTOR: Texp NT: CME 7 THD: HSA / G MTHD: S SIZE/TYP	plor of Dallas, Inc '5 Truck Mounted Coring SPT, Shelby Tube E: HSA 6" - NQ2	a, Core	: 13813081.8 : 2279095.1	LOGGER: G. Kumar NOTES: SI - Stratum I SEE KEY SHEET FOR SYMBOLS AND ABBR		/IEW	ER:	W. E Oc Page	Burke	e er 20 . 4C-	23 38			
	Geo	OSYN consu	Itec ^C		8217 Sho Suite 200 Austin, T Phone: (! www.geo	oal Creek B) X 78757 512) 451-4(psyntec.com	lvd 003	BORING: GB-34 START DATE: 12/21/2022 FINISH DATE: 12/22/2022 LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	GRO TOT	UND AL DE	SUF EPT	RFA(H: 1 ATF	SHEE CE : 7 42 ft R : N	T 4 711.0 bgs	1 OF D ft M	= 5 ISL /ed
---	---	---	---	-----------------------------------	---	---	---	---	------------	--------------	------------	---------------------	---	----------------------------	-----------------------	--------------------------
0:	GS F 3-GEOT	ORM: ECH3 BF		BO	REHO	DLE LO	G	PROJECT NUMBER: GW8636	BOR	ING E	BAC	KFIL	L: E	Bento	nite	Grout
DEPTH (ft-bgs)	ELEVATION (ft)				1) Soil Nan 2) Color 3) Moisture 4) Grain Siz 5) Percenta	DESCF ne (USCS) ze age	6) Plasticity 7) Density/Consi 8) Other (Minera Discoloration,	stency I Content, Odor, etc.)	STRATUM	GRAPHIC LOG	Түре	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	
- - - - - - - - - - - - - - - - - - -	620 - - - 615 - - - - - - - - - - - - - - - - - -	(70') CLAY weathering	ŚTONE; ver g; very hard; c	y dark (dry <i>(cor</i>	gray (5Y nt.)	3/1); occas	ional fractures	with crystallized/mineralized infills; some					120			
- 105 - - - 110 -	- 605 - - - - - - - - - - - 	-							Stratum IV				71.5			
05 BKAUNFELS.GPJ GEOSNIEC.GD1 05/09/23													97			
	NTRAC UIPME ILL MT MPLING ILL BIT	CTOR: Texp NT: CME 7 THD: HSA / G MTHD: S SIZE/TYPE	lor of Dallas, 5 Truck Mour Coring PT, Shelby T E: HSA 6" - N	, Inc. nted Tube, Co NQ2	ore	NORTHING	: 13813081.8 : 2279095.1	LOGGER: G. Kumar NOTES: SI - Stratum I SEE KEY SHEET FOR SYMBOLS AND ABBR	RE	/IEWE	ER:	W. E Oc Page	Burke	er 20 . 4C-	23	

	GSF	DSYT consu	ltec ^C	>	8217 Sh Suite 20 Austin, Phone: (www.ge	noal Creek 10 TX 78757 (512) 451- osyntec.co	-4003 om	3		BORING: GB-34 START DATE: 12/21/2022 FINISH DATE: 12/22/2022 LOCATION: New Braunfels PROJECT: Mesquite Creek La	andfill	GRO TOT/ DEP	ound : Al de Th to	SUR EPTI	S RFAC H: 14 ATEI	SHEE CE: 7 42 ft R: N	711.(bgs lot O	5 OI	= 5	_ _
	3-GEOT	ECH3 BF		BU			UG		J	PROJECT NUMBER: GW863	00	BOR		AC		. L : B	sento	nite	Grou	۳J
DEPTH (ft-bgs)	ELEVATION (ft)				1) Soil Nai 2) Color 3) Moistur 4) Grain S 5) Percent	DES(me (USCS) e ize iage	CRIP	PTION 6) Plasticity 7) Density/Cor 8) Other (Mine Discoloratic	nsist eral (on, C	tency Content, Jdor, etc.)		STRATUM	GRAPHIC LOG	S TYPE	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)		PLASTICITY INDEX
- - - - - - - - - - - - - - - - - - -	590 - - 585 - 580 - - 580 - - - 575 - - - - - - - - - - - - - - - - - -	(70') CLAY weathering	ŚTONE; ver ; very hard;	ry dark dry <i>(co</i>	gray (5Y	′ 3/1); occa	asion	al fractures	s wi	ith crystallized/mineralized infills;	; some	Stratum IV				60				- - - - - - - - - - -
- 140 — -	- - 570 –																			_
	-	(142') Bori	ng terminate	:d.																_
	565 — - -																			
	NTRAC UIPMEI ILL MT MPLING ILL BIT	TOR: Texp NT: CME 79 HD: HSA / G MTHD: S SIZE/TYPE	lor of Dallas, 5 Truck Mou Coring PT, Shelby T E: HSA 6" - N	, Inc. nted Tube, C NQ2	Core	NORTHIN EASTIN	NG: NG:	13813081. 2279095.	.8	LOGGER: G. Kumar NOTES: SI - Stratum I SEE KEY SHEET FOR SYMBOLS AN	D ABBRE		/IEWE	E R :	W. E Oc Page	Burke	er 20 4C-	023 -40		

(Ge	osynt consulta	ec ^D	8217 Sho Suite 200 Austin, TX Phone: (5 www.geos	al Creek Blv (78757 12) 451-400 syntec.com	vd 03	BORING: GB-35 START DATE: 1/11/2023 FINISH DATE: 1/12/2023 LOCATION: New Braunfels	GRO TOT	und Al de	SUR	S FAC	HEE E : 7 10 ft	T 1 709.7 bgs	OF ft M	4 SL
	GS F 3-GEOT	ORM: ECH3 BF	E	BOREHO	LE LOO	<u> </u>	PROJECT: Mesquite Creek Landfill PROJECT NUMBER: GW8636	DEP [.] BOR	th to Ing e	D WA BACH	ATER (FIL	r: N L: B	ot Ob entor	iserv nite (ed Grout
										S	AMPL	E	LAE	B RES	ULTS
DEPTH (ft-bgs)	ELEVATION (ft)			1) Soil Name 2) Color 3) Moisture 4) Grain Size 5) Percentag	DESCRI e (USCS) e ge	 6) Plasticity 7) Density/Consis 8) Other (Mineral Objection) C 	tency Content, Jdor, etc.)	STRATUM	GRAPHIC LOG	ТҮРЕ	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%	LIQUID LIMIT PLASTICITY INDEX
		(0') CLAY; bla	ack (5Y 2.5/1)); organic; gra	asses and ro	potlets; some gr	avel and silt; very stiff (PP > 4.25 tsf);	/ .	• <u> </u>	М	3 4 6	12			
5-		(0.75') Sandy, fragments; de	/Clayey calca	reous GRAVE dry	EL (sub rou	nded and sub a	ngular) and CALICHE with chert	Stratum II			14 9 16 20 20 40 48 40 49	18			
10-	- 700	(10') CLAY; li locations; son plasticity to fri	ght olive brow ne mineralizat able	vn (2.5Y 5/4) tion and calcit	to light yellc te infill; firm	wish brown (2. to very hard; ve	5Y 6/4); iron staining at some ery stiff (PP > 4 tsf); moist to dry; low	_		X	10 14 15 20	21			-
20 - 25 -	690	(21') Moist an	d soft light gr	ay clay lamina	ation from 2	21 to 32 ft bgs		Stratum		X	7 10 14 18	24			
CC EC DF	ONTRAC QUIPME RILL MT	CTOR: Texplor NT: CME 75 T THD: HSA / Cor	of Dallas, Inc ruck Mounted ring	z. N	IORTHING: EASTING:	13812718.9 2279464.8	LOGGER: L. Varner NOTES: SI - Stratum I	RE	/IEWE	ER: \	W. E	Burke	; ;		
DF		SIZE/TYPE: F	, Sheiby Tube HSA 6" - NQ2				SEE KEY SHEET FOR SYMBOLS AND ABBR		ONS	F	Oc Page	tobe No.	er 202 4C-4	23 11	

(Geo	OSYT consu	Itec ^D	8217 Shoal C Suite 200 Austin, TX 78 Phone: (512)	Creek Blvo 3757 451-400	d 13	BORING: GB-35 START DATE: 1/11/2023 FINISH DATE: 1/12/2023	GRO	UND	SUR	S	HEE	т 2	OF ft MS	4 iL
	GS F	ORM:	В		E LOG]	PROJECT: Mesquite Creek Landfill PROJECT NUMBER: GW8636	DEP BOR	AL DE TH TC ING E	EPTF DWA BACH	1: 1 ATEF (FIL	ιοπ : Να L: Β	bgs ot Ob: enton	serve ite Gi	d rout
	3-GEOT						(S	AMPL	E	LAB	RESU	
DEPTH (ft-bgs)	ELEVATION (ft)			I) Soil Name (US 2) Color 3) Moisture 4) Grain Size 5) Percentage	DESCRIF SCS)	PTION 6) Plasticity 7) Density/Consist 8) Other (Mineral (Discoloration, C	iency Content, Idor, etc.)	STRATUM	GRAPHIC LOG	ТҮРЕ	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)		PLASTICITY INDEX
	675 675 670 6665 6665 - - 6660 -	(10') CLAN locations; plasticity to (50') Calci	Y; light olive brow some mineralizati o friable (<i>cont.</i>) te in filled fracture	n (2.5Y 5/4) to li ion and calcite in	ight yellov fill; firm t	wish brown (2. to very hard; ve	5Y 6/4); iron staining at some ry stiff (PP > 4 tsf); moist to dry; low	Stratum III			6 11 13 18 8 14 21 26 18 20 34	24 24 16.5 24			
- - - 55 - - - - -		(58') Grad	es to dark greenis	sh gray clay from	n 58 to 62	2 ft bgs						21			· · · · · · · · · · · · · · · · · · ·
	NTRAC	TOR: Text	olor of Dallas, Inc.	NOR	RTHING:	13812718.9	LOGGER: L. Varner	REV	/IEWE	ER: \	W. E	ı Burke	1	1	<u>'</u>
EQ	UIPMEI	NT: CME 7	5 Truck Mounted	EA	STING:	2279464.8	NOTES: SI - Stratum I								
DR SA DR	ILL MT MPLIN ILL BIT	hd: HSA/ G MTHD: S Size/Type	Coring SPT, Shelby Tube E: HSA 6" - NQ2	, Core			SEE KEY SHEET EOD SYMDOL S AND ADDD		NS	P	Oc Page	tobe No.	r 202 4C-4	3 2	
\square)	SEE NET SHEET FUR STMBULS AND ABBRI		σνı		~90			-	

(Geo	DSyntec Austin, TX 78757	BORING: GB-35 START DATE: 1/11/2023 EINISH DATE: 1/12/2023	GRO		SUR	S	HE	ET 3	B OF	= 4
		Consultants Phone: (512) 451-4003 www.geosyntec.com	LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill		AL DE		1: 1 ATEI	10 ft R: N	bgs ot Ol	bser	ved
	GS F 3-GEOT	BOREHOLE LOG	PROJECT NUMBER: GW8636	BOR	ING B	BACI	۲IL	L: E	Bento	nite	Grout
DEPTH (ft-bgs)	ELEVATION (ft)	DESCRIPTION1) Soil Name (USCS)6) Plasticity2) Color7) Density/Consi3) Moisture8) Other (Minera4) Grain SizeDiscoloration,5) Percentage	stency I Content, Odor, etc.)	STRATUM	GRAPHIC LOG	S IVPE	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	LIQUID LIMIT
		 (10') CLAY; light olive brown (2.5Y 5/4) to light yellowish brown (2 locations; some mineralization and calcite infill; firm to very hard; y plasticity to friable (cont.) (62') CLAY to CLAYSTONE; dark greenish gray (GLEY1 4/10Y); solution infilling and taxes purificulty bard. 	.5Y 6/4); iron staining at some /ery stiff (PP > 4 tsf); moist to dry; low several fractured zones with some	Stratum III			20 23 41 50	24			
- 65 - -	645	(65') Significant iron staining/yellow discoloration from 65 to 80 ft	bgs					36			
- 70 - - - -	640							117.5			
75 -	635			Stratum IV							
80	625 -							120			
- - 90-	620 -							120			
CC EC DF SA DF	ONTRAC QUIPMEI RILL MT MPLING RILL BIT	TOR: Texplor of Dallas, Inc. NORTHING: 13812718.9 IT: CME 75 Truck Mounted EASTING: 2279464.8 HD: HSA / Coring EASTING: 2279464.8 S MTHD: SPT, Shelby Tube, Core SIZE/TYPE: HSA 6" - NQ2	LOGGER: L. Varner NOTES: SI - Stratum I SEE KEY SHEET FOR SYMBOLS AND ABBR			ER:	W. E Oc Page	Burke	er 20 . 4C-	23 43	

	Geo	OSYNT consulta	ec ^D ants	8217 Shoal Suite 200 Austin, TX Phone: (512 www.geosy	Creek Blv 78757 2) 451-400 ntec.com	d)3	BORING: GB-35 START DATE: 1/11/2023 FINISH DATE: 1/12/2023 LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	GRO TOT/ DEP1	UND AL DE TH TC	SURF EPTH D WA	SH ACE : 110 TER:	EET 709 ft bgs Not C	4 OF .7 ft N	: 4 ISL /ed
0:	GS F 3-GEOT	ORM: ECH3 BF	В	OREHOL	E LOG	<u> </u>	PROJECT NUMBER: GW8636	BOR	ING E	ACK	FILL:	Bent	onite	Grout
DEPTH (ft-bgs)	ELEVATION (ft)			1) Soil Name (2) Color 3) Moisture 4) Grain Size 5) Percentage	DESCRII (USCS)	PTION 6) Plasticity 7) Density/Consis 8) Other (Mineral Discoloration, C	tency Content, Ddor, etc.)	STRATUM	GRAPHIC LOG	А ЦАРЕ	BLOWS PER 6"	PERCENT FINES (%)	MOISTURE CONTENT (%)	LIQUID LIMIT
- - 95 - 100 - - - - - - - - - - - - - - - - -	- - - 615 - - - - - - - - - - - - - - - - - -	(62') CLAY to calcite infilling	CLAYSTONE and trace pyr	E; dark greenis ite; very hard	sh gray (GL (cont.)	EY1 4/10Y); s	everal fractured zones with some	Stratum IV			5	1		· · · · · · · · · · · · · · · · · · ·
- 105 - - - 110 -	605 - - - - 600										12	0		
BRAUNFELS.GPJ GEOSNTEC.GDT 05/09/23	- - - 595 - - - -	(110') Boring t	terminated.											
120 EQ EQ DR SA DR	NTRAC UIPMEI ILL MT MPLING	TOR: Texplor NT: CME 75 Tr HD: HSA / Cor G MTHD: SPT, SIZE/TYPE: H	of Dallas, Inc. ruck Mounted ing Shelby Tube, ISA 6" - NQ2	, Core	Drthing: Easting:	13812718.9 2279464.8	LOGGER: L. Varner NOTES: SI - Stratum I SEE KEY SHEET FOR SYMBOLS AND ABBR		I IEWE	 ER: V Pa	 V. Bur Octo age N	 ke ber 2 o. 4C	023	

	Ge	consultants 8217 Shoal Creek Blvd Suite 200 Austin, TX 78757 Phone: (512) 451-4003 www.geosyntec.com	BORING: GB-36 START DATE: 1/17/2023 FINISH DATE: 1/17/2023 LOCATION: New Braunfels	GRO TOT/	UND AL DI	SUR	S FAC 1: 10	HEE E: 6	T 1 581.8 bgs	OF ft MS	4 SL
	GS F 3-GEOT		PROJECT: Mesquite Creek Landfill PROJECT NUMBER: GW8636	DEP ⁻ BOR	TH TO ING E	D WA BACH	ATEF (FIL	R: N L: E	ot Ob Sentor	serve nite G	ed Grout
DEPTH (ft-bgs)	ELEVATION (ft)	DESCRIPTION 1) Soil Name (USCS) 6) Plasticity 2) Color 7) Density/Consis 3) Moisture 8) Other (Mineral 4) Grain Size Discoloration, (5) Percentage	stency Content, Odor, etc.)	STRATUM	GRAPHIC LOG	TYPE g	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	
- - - 5-	680	(0') CLAY; very dark gray (2.5Y 3/1); organic; grasses and rootlets;	; some gravel and silt; stiff; moist	Stratum I		X	10 10 12 16	24	2	4.9	-
-	675-	(6') CLAY; light olive brown (2.5Y 5/4) to light yellowish brown (2.5 occasional iron staining; trace gravel; some occasional mineralizati	Y 6/4); orange and/or gray mottling; on and infilling; very stiff; moist to dry				5 8	24 24			
10 - -	670 -						11 13				-
15 - - - -	665 -			Stratum III			5 10 15	24			
CGDT 05/09/23	660 - - -						20				
OS BRAUNFELS.GPJ GEOSNTEC	655 -										
CC EC EC EC EC EC CC EC CC EC CC EC CC EC CC EC CC C	ONTRAC QUIPME RILL MT MPLIN RILL BIT	CTOR: Texplor of Dallas, Inc.NORTHING: 13812327.8NT: CME 75 Truck MountedEASTING: 2279851.6HD: HSA / CoringG MTHD: SPT, Shelby Tube, CoreSIZE/TYPE: HSA 6" - NQ2	LOGGER: J. Geesin NOTES: SEE KEY SHEET FOR SYMBOLS AND ABBR		/IEWI	ER: \ F	W. B Oc Page	Burke	er 202 4C-4	23	

	Ge	OSYI consu		8217 Shoal Creek B Suite 200 Austin, TX 78757 Phone: (512) 451-40 www.geosyntec.com	ilvd 003 1	BORING: GB-36 START DATE: 1/17/2023 FINISH DATE: 1/17/2023 LOCATION: New Braunfels	GRO TOT/	UND S AL DEI	SURFA	SHEI CE: 07 ft	ET 2 681.8 t bgs	ft MS	4 5L
	GS F 3-GEOT	ORM: FECH3 BF)В	OREHOLE LO	G	PROJECT: Mesquite Creek Landfill PROJECT NUMBER: GW8636	DEP	TH TO ING BA	WATE ACKFII	:R: N _L: E	lot Ot Bento	oserve nite G	ed Frout
	t			DESC	RIPTION				SAMP	LE		B RESU	JLTS
DEPTH (ft-bgs	ELEVATION (1			1) Soil Name (USCS) 2) Color 3) Moisture 4) Grain Size 5) Percentage	 6) Plasticity 7) Density/Consis 8) Other (Mineral Discoloration, C 	tency Content, Ddor, etc.)	STRATUM	GRAPHIC LOG	TYPE BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%	MOISTURE CONTENT	
-	650	(6') CLAY; occasiona (cont.) (32') Sand	; light olive brown I iron staining; trac I lens from 32 to 3	(2.5Y 5/4) to light yello ce gravel; some occasi 3 ft bos: mineralizatior	wish brown (2.5 onal mineralizati	Y 6/4); orange and/or gray mottling; on and infilling; very stiff; moist to dry			29	24			-
- - 35	· · ·			o (290, (27 38 39	24			-
- - 40 –	645 -	- - - - (40') Tracc	a on stallization						16				-
-	640	- - - -	e ciystainzation				_		20 28 36	24			-
45 - - -	635 -	-					Stratum I						-
50 - -	630 -	(52') Seler	nite lamination fro	m 52 to 54 ft bgs					7	24			-
- 55 -		-							14 19	24			-
- - 60 -	625												
CC EC DR SA DR	NTRAC UIPME XILL MT MPLIN XILL BIT	CTOR: Texp INT: CME 7 IND: HSA / G MTHD: S I SIZE/TYPI	blor of Dallas, Inc. 5 Truck Mounted Coring 6PT, Shelby Tube, E: HSA 6" - NQ2	NORTHING EASTING Core	3: 13812327.8 3: 2279851.6	LOGGER: J. Geesin NOTES: SEE KEY SHEET FOR SYMBOLS AND ABBR			R: W. O Page	Burk ctob	e er 202 . 4C-4	23 46	

	Geo	consultants 8217 Shoal Creek Blvd Suite 200 Austin, TX 78757 Phone: (512) 451-4003 www.geosyntec.com	BORING: GB-36 START DATE: 1/17/2023 FINISH DATE: 1/17/2023 LOCATION: New Braunfels	GRO TOT/	und Al de	SUR EPTH	S FAC I : 10	HEE E: 6)7 ft	T 3	OF ft MSI	4
	GS F 03-GEOT		PROJECT: Mesquite Creek Landfill PROJECT NUMBER: GW8636	DEPT BOR	rh tơ Ing e	D WA	ATER (FILI	R: N L: B	ot Obs enton	serveo ite Gr	d out
DEPTH (ft-bgs)	ELEVATION (ft)	DESCRIPTION 1) Soil Name (USCS) 6) Plasticity 2) Color 7) Density/Consis 3) Moisture 8) Other (Mineral 4) Grain Size Discoloration, 5) Percentage	stency Content, Odor, etc.)	STRATUM	GRAPHIC LOG	¢¢ TYPE	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)		PLASTICITY INDEX
	 - 620 	 (6') CLAY; light olive brown (2.5Y 5/4) to light yellowish brown (2.5 occasional iron staining; trace gravel; some occasional mineralizati <i>(cont.)</i> (60') Grades to dark gray from 60 to 64 ft bgs (63') Fracture with infilling (64') CLAY to CLAYSTONE; very dark gray (2.5Y 3/1); moderate f hard 	Y 6/4); orange and/or gray mottling; on and infilling; very stiff; moist to dry ractures and few weathered zones; very	Stratum III		X	12 17 25 36	24 24			
65 -	 - 615 	(67.5') Iron staining						400			
70 -	 - 610 							120			
75 -	 - 605 			Stratum IV							-
- 08/09/23	 _ 600 _ 							120			-
OS BRAUNFELS GPJ GEOSNTE(9 G	 _ 595 							120			-
03-GEOTECH3 BF GE	ontrac Quipmei Rill MT Ampling Rill Bit	TOR: Texplor of Dallas, Inc. NORTHING: 13812327.8 NT: CME 75 Truck Mounted EASTING: 2279851.6 HD: HSA / Coring BATHD: SPT, Shelby Tube, Core SIZE/TYPE: HSA 6" - NQ2 SIZE/TYPE: HSA 6" - NQ2	LOGGER: J. Geesin NOTES: SEE KEY SHEET FOR SYMBOLS AND ABBRE		IEWI	ER: \ P	W. B Oct	urke tobe No.	er 202 4C-4	3 7	

	Geo	OSYN consul	tec ^D	۶ ۶ ۴	8217 Sho Suite 200 Austin, T2 Phone: (5 www.geo	oal Creek Bl) X 78757 512) 451-40 syntec.com	vd 03	BORING: GB-36 START DATE: 1/17/2023 FINISH DATE: 1/17/2023 LOCATION: New Braunfels PROJECT: Measurite Creat Leastfill	GRO TOT		SUF	S RFAC H: 10	E: 607 ft	581.8 bgs	F OF	: 4 ISL
	GS F 3-GEOT	ORM: ECH3 BF		BO	REHC	DLE LO	G	PROJECT: Mesquite Creek Landini PROJECT NUMBER: GW8636	BOR	ING E		KFIL	L: B	ento	nite	Grout
F											s	AMPL	E	LĄ	BRE	SULTS
DEPTH (ft-bgs)	ELEVATION (ft)			1 2 3 4 5	1) Soil Nam 2) Color 3) Moisture 4) Grain Siz 5) Percenta	DESCR le (USCS) re ge	 Plasticity Plasticity Density/Consis Other (Mineral Discoloration, 	stency Content, Odor, etc.)	STRATUM	GRAPHIC LOG	ТҮРЕ	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	LIQUID LIMIT PLASTICITY INDEX
- - - 95 - - - - - - - - - - - - - - - - - -	590 590 - - - - - - - - - - - - - - - - - -	(64') CLAY f hard <i>(cont.)</i>	IO CLAYSTC	DNE; v	ery dark s	gray (2.5Y 3	3/1); moderate f	ractures and few weathered zones; very	Stratum IV				60			
- 105 - - - 110	 575 <u>-</u> 	(107') Boring	g terminated	1.									84			
EOSNTEC.GDT 05/09/23	570															
	565 - - - -	TOR: Texnlo	or of Dallas	Inc		NORTHING	13812327 R	LOGGER: J Geesin	RF\	/IEW/	ER	WF	Burke			
DB DB DB DR DR DR DR	UIPMEI XILL MT MPLINO XILL BIT	NT: CME 75 HD: HSA / C G MTHD: SP SIZE/TYPE:	Truck Moun oring T, Shelby Tu HSA 6" - N	ube, Co	ore	EASTING	: 2279851.6	NOTES:		ONS	F	Oc Page	tobe No.	er 20 4C-	23 48	

	Ge	DSyntec 8217 Shoal Creek Blvd Suite 200 Austin, TX 78757 Phone: (512) 451-4003 www.geosyntec.com	BORING: GB-37 START DATE: 12/8/2022 FINISH DATE: 12/9/2022 LOCATION: New Braunfels PROJECT: Mescuite Crock Landfill	GRO TOT		SUR EPTH	S FAC 1: 1:	SHEE CE: (20 ft	ET '	1 0 8 ft N	F 4
0:	GS F 3-GEOT	BOREHOLE LOG	PROJECT: Mesquite Creek Landhin PROJECT NUMBER: GW8636	BOR	ING E	BACH	KFIL	L: E	Bento	onite	Grout
DEPTH (ft-bgs)	ELEVATION (ft)	DESCRIPTION1) Soil Name (USCS)6) Plasticity2) Color7) Density/Consis3) Moisture8) Other (Mineral4) Grain SizeDiscoloration, 05) Percentage	stency Content, Odor, etc.)	STRATUM	GRAPHIC LOG	ТҮРЕ б	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	LIQUID LIMIT
- - - 5-	- - 665 -	(0') CLAY; very dark gray (2.5Y 3/1) to light olive brown (2.5Y 5/4); coarse to fine gravel; few coarse to fine sand; some silt; firm; soft t moist	organics; grasses and rootlets; few o very stiff (PP = 1.5 and PP > 4.5 tsf);	Stratum I		X	2 4 6 7 7 9 9	14 13 16	93.1 88.6	25.3	75 44
- - - 10	 660 	 (6.5') Sandy/Clayey calcareous GRAVEL (sub rounded and sub an caliche; dense to loose; dry (8.25') CLAY; pale brown (2.5Y 8/4), olive yellow (2.5Y 6/6), and d gravel and chert fragments; occasional iron staining and orange me 45-degree) with calcite mineralization/lamin 	gular) with chert fragments; some ark grayish brown (2.5Y 4/2); trace ottling; several fractures (horizontal and	Stratum II		X	9 12 14 16	6 18 15			
- - 15 -	- - 655 – - -	(15.5') 2" thick weathered zone; friable				X	6 9 13 17 18 18 16 19	24			
20 -	- 650 - -	(19') Heavy iron staining		Stratum III		X	5 9 11 14	24	95.5	17 21.3	60 32
AUNFELS.GPJ GEOSNIEC.GD1 09/	645	(25') Some fractures from 26 to 47 ft bgs with calcite mineralization	n			X	4 6 9 12	21.5	97.8	29	72 47
	NTRACUIPMEI	TOR: Texplor of Dallas, Inc.NORTHING: 13811937.0NT: CME 75 Truck MountedEASTING: 2280238.4HD: HSA / CoringGG MTHD: SPT, Shelby Tube, CoreSIZE/TYPE: HSA 6" - NQ2	LOGGER: P. Pandey; G. Kumar NOTES: SEE KEY SHEET FOR SYMBOLS AND ABBRE		/IEWI	ER: T	7 14 W. E Oc Page	Burke	e er 20 . 4C·)23 -49	

University Local RUM: New Waranties: Not Observed and the server of th	2 OF 4	т 2 68.8	HEE	S	SUR	UND	RO	G	BORING: GB-37 START DATE: 12/8/2022 FINISH DATE: 12/9/2022	osyntec consultants 8217 Shoal Creek Blvd Suite 200 Austin, TX 78757 Phone: (512) 451-4003	Suite 200 Austin, TX 78757 Phone: (512) 451-4003	ROUND SURF	SHE	ET 668	2 c) F MSI	4
Bit Interference Description Interference Interferen	js Observed	bgs ot Ol ento	20ft ≹:N ∎・⊑	1: 12 Ater Afeii	EPTH DWA	AL DI TH T(ING F	DT/ EP1	T D B	LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill PROJECT NUMBER: GW8636		WWW.geosyntec.com	OTAL DEPTH: DEPTH TO WA	: 120 f TER: N FILL ·	ft bg: Not (Bent	s Obse tonite	rvec	
OP DESCRIPTION OP									PROJECT NOIMBER. GW0030								
(8,25) CLAY pate from (2,57) 64/2), increases of the second of the se		PERCENT FINES (%)	RECOVERY (in)	BLOWS PER 6"	ТҮРЕ	GRAPHIC LOG	SIRALUM		tency Content, Ddor, etc.)	DESCRIPTION 1) Soil Name (USCS) 6) Plasticity 2) Color 7) Density/Consis 3) Moisture 8) Other (Mineral 4) Grain Size Discoloration, 5) Percentage	1) Soil Name (USCS) 6) Plasticity 2) Color 7) Density/Consistency 3) Moisture 8) Other (Mineral Content, 4) Grain Size Discoloration, Odor, etc.) 5) Percentage	STRATUM GRAPHIC LOG TYPE	BLOWS PER 6" RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)		PLASTICITY INDEX
45 - 620 - 50 - 615 - (55') Weathered claystone from 55 to 56.5 ft bgs; iron staining and orange mottling from 56.5 to 65 ft bgs (55') CLAY TO CLAYSTONE; greenish black (GLEY1 2.5/10Y); moderate fractures with calcite mineralization and/or iron staining; very hard; trace moist	1.8 33.3 84	99.8 :	21 21 24	22 29 6 9 11 13 13 17 12 16 19	X		Stratum III	t	ark grayish brown (2.5Y 4/2); trace ottling; several fractures (horizontal and	(8.25') CLAY; pale brown (2.5Y 8/4), olive yellow (2.5Y 6/6), and d gravel and chert fragments; occasional iron staining and orange m 45-degree) with calcite mineralization/lamin <i>(cont.)</i>	1) CLAY; pale brown (2.5Y 8/4), olive yellow (2.5Y 6/6), and dark grayish brown (2.5Y 4/2); trace and chert fragments; occasional iron staining and orange mottling; several fractures (horizontal and gree) with calcite mineralization/lamin (cont.)	Stratum II	22 29 6 9 11 13 21 17 12 24 19 24	99.8	B 33.3	84	
imineralization and/or iron staining; very hard; trace moist			23	7 12 14 18 8 12 16 18	X				orange mottling from 56.5 to 65 ft bgs	(55') Weathered claystone from 55 to 56.5 ft bgs; iron staining and	Weathered claystone from 55 to 56.5 ft bgs; iron staining and orange mottling from 56.5 to 65 ft bgs		7 12 14 18 23 8 12 16 18 23.5	5			-
							Stratum IV			mineralization and/or iron staining; very hard; trace moist	alization and/or iron staining; very hard; trace moist	Stratum IV					-
CONTRACTOR: Texplor of Dallas, Inc. NORTHING: 13811937.0 LOGGER: P. Pandey; G. Kumar REVIEWER: W. Burke EQUIPMENT: CME 75 Truck Mounted EASTING: 2280238.4 NOTES: NOTES: DRILL MTHD: HSA / Coring SAMPLING MTHD: SPT, Shelby Tube, Core October 20 DRILL BIT SIZEFTYPE: HSA 6" - NO2 DOGGER: P. Pandey; G. Kumar October 20	2023	r 20	tobe	W. E	ER: \	'IEWI	REV	I	LOGGER: P. Pandey; G. Kumar NOTES:	CTOR: Texplor of Dallas, Inc. NORTHING: 13811937.0 ENT: CME 75 Truck Mounted EASTING: 2280238.4 ITHD: HSA / Coring IG MTHD: SPT, Shelby Tube, Core IS SIZE/TYPE: HSA 6" - NO2 NO2	Texplor of Dallas, Inc. NORTHING: 13811937.0 LOGGER: P. Pandey; G. Kumar I ME 75 Truck Mounted EASTING: 2280238.4 NOTES: NOTES: SA / Coring ID: SPT, Shelby Tube, Core NOTES: NOTES:	REVIEWER: W	V. Burk	ke ber 2	2023		

	Ge	OSyntec8217 Shoal Creek Blvd Suite 200 Austin, TX 78757 Phone: (512) 451-4003 www.geosyntec.com	BORING: GB-37 START DATE: 12/8/2022 FINISH DATE: 12/9/2022 LOCATION: New Braunfels DROJECT: Newgruite Creak Londfill	GRO TOTA	UND AL DI	SUF	S RFAC H: 12	CE: (20 ft	ET 3	B OF B ft N	: 4 1SL
03	GS F 3-GEOT	ORM: EECH3 BF BOREHOLE LOG	PROJECT: Mesquite Creek Landfill PROJECT NUMBER: GW8636	BOR	ING E	BAC	KFIL	R: N L: E	Bento	oser nite	/ea Grout
DEPTH (ft-bgs)	ELEVATION (ft)	DESCRIPTION 1) Soil Name (USCS) 6) Plasticity 2) Color 7) Density/Consis 3) Moisture 8) Other (Mineral 0 4) Grain Size Discoloration, C 5) Percentage	tency Content, Ddor, etc.)	STRATUM	GRAPHIC LOG	ТҮРЕ	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	PLASTICITY INDEX
2EOS BRAUNFELS.GPJ GEOSNTEC.GDT 05/09/23	600	(56.5) CLAY TO CLAYSTONE; greenish black (GLEY1 2.5/10Y); mineralization and/or iron staining; very hard; trace moist (cont.) (60.5') Calcite precipitate (~ 3 mm) (63') Friable, shears easily from 63 to 65 ft bgs; significant weather	moderate fractures with calcite	Stratum IV				120	97.9	21.1	97 59
	NTRAC UIPME ILL MT MPLIN ILL BIT	CTOR: Texplor of Dallas, Inc. NORTHING: 13811937.0 NT: CME 75 Truck Mounted EASTING: 2280238.4 'HD: HSA / Coring GMTHD: SPT, Shelby Tube, Core 'SIZE/TYPE: HSA 6" - NQ2	LOGGER: P. Pandey; G. Kumar NOTES: SEE KEY SHEET FOR SYMBOLS AND ABBR		/IEWI	ER: 	W. E Oc Page	Burke	e er 20 . 4C-	23 51	

	Ge	OSyntec 8217 Shoal Creek Blvd suite 200 Austin, TX 78757 Phone: (512) 451-4003 www.geosyntec.com	BORING: GB-37 START DATE: 12/8/2022 FINISH DATE: 12/9/2022 LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	GRO TOTA	UND : AL DE	SUR EPTH	S FAC H: 12	HEE E: 6 20 ft R: N	568.8 bgs	B ft M	F 4 ISL
0	GS F 3-GEOT	ORM: ECH3 BF BOREHOLE LOG	PROJECT NUMBER: GW8636	BOR	ING B	AC	KFIL	L: B	ento	nite	Grout
DEPTH (ft-bgs)	ELEVATION (ft)	DESCRIPTION 1) Soil Name (USCS) 6) Plasticity 2) Color 7) Density/Consis 3) Moisture 8) Other (Mineral 4) Grain Size Discoloration, 5) Percentage	stency Content, Odor, etc.)	STRATUM	GRAPHIC LOG	rype I	BLOWS PER 6"	RECOVERY (in) a	PERCENT FINES (%)	MOISTURE CONTENT (%)	LIQUID LIMIT
- - 95 - 100 -	575 - - - - - - - - - - - - - - - - - -	(56.5') CLAY TO CLAYSTONE; greenish black (GLEY1 2.5/10Y); mineralization and/or iron staining; very hard; trace moist <i>(cont.)</i>	moderate fractures with calcite					116			
- - 105 - - 110 -	- 565 - - - - 560 - - -			Stratum IV				60			
BKAUNFELS.GPJ GEOSNIEC.GDT 05/09/23	- 555 - - - 550							109			
120- EQ EQ BR SA DR	NTRAC UIPME ILL MT MPLING	(120') Boring terminated. CTOR: Texplor of Dallas, Inc. NT: CME 75 Truck Mounted HD: HSA / Coring G MTHD: SPT, Shelby Tube, Core SIZE/TYPE: HSA 6" - NQ2	LOGGER: P. Pandey; G. Kumar NOTES: SEE KEY SHEET FOR SYMBOLS AND ABBR		VIEWE	E R : \	W. B Oc Page	Burke tobe No.	 er 20 4C-	23 52	

	Ge	Syntec 8217 Shoal Creek Blvd Suite 200 Austin, TX 78757 Phone: (512) 451-4003 Www.geosyntec.com	BORING: GB-38 START DATE: 12/19/2022 FINISH DATE: 12/20/2022 LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	GRO TOTA DEP	ound Al de Th to	SUR EPTH	S FAC 1: 1:	SHEE CE : 7 33 ft R: N	ET 1 707.6 bgs lot Ol	6 ft N	5 1SL ved
	GS F 3-GEOT	DRM: ECH3 BF	PROJECT NUMBER: GW8636	BOR	ING E	BACH	(FIL	L: E	Bento	nite	Grout
DEPTH (ft-bgs)	ELEVATION (ft)	DESCRIPTION1) Soil Name (USCS)6) Plasticity2) Color7) Density/Consi3) Moisture8) Other (Mineral4) Grain SizeDiscoloration,5) Percentage	stency I Content, Odor, etc.)	STRATUM	GRAPHIC LOG	TYPE 5	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	LIQUID LIMIT
- - 5-		(0') CLAY; very dark grey (10YR 3/1) to black (10YR 2/1); organic gravel; firm; soft (PP = 1.75 tsf); moist (1') Sandy/Clayey GRAVEL to Gravelly CLAY with chert and calic loose; dry	; grasses and rootlets; coarse to fine ne; coarse to fine sand and gravel;	stratum II SI			2 15 16 18 19 15 17	18 16 9		5.4	-
- - - 10 -	700 -	(7') White caliche intermixed with silty clay from 3 to 10.25 ft bgs	iron staining and mottling: occasional				19 23 22 27 13	20			-
- - - 15 -	- 695 - - -	(15') Moist and soft light gray clay inclusion/(amination from 15 to	22 ft bas				19 28 28 5	21			-
	690 -		22 11 093	II			9 11 14	18 16.5			
20 - 20.09/23	685			Stratun		X	5 8 12 16	22.5			-
	680	(25.5') Light grey clay inclusion with oxidized iron lamination (26.5') Dry, friable, weathered zone				X	8 17 35 45	24			-
D3-GEOTECH3 BF GL D4 D5 D6 D6 D6 D6	ontrac Quipmei Rill MT MPLING RILL BIT	TOR: Texplor of Dallas, Inc.NORTHING: 13812980.5NT: CME 75 Truck MountedEASTING: 2278165.1HD: HSA / CoringBMTHD: SPT, Shelby Tube, CoreSIZE/TYPE: HSA 6" - NQ2	LOGGER: G. Kumar NOTES: SI - Stratum I SEE KEY SHEET FOR SYMBOLS AND ABBR	RE	/IEWE	E R : \	W. E Oc Page	Burke	er 20 . 4C-	23 53	

	Geo	Syntec consultants 8217 Shoal Creek Blvd Suite 200 Austin, TX 78757 Phone: (512) 451-4003 www.geosyntec.com	BORING: GB-38 START DATE: 12/19/2022 FINISH DATE: 12/20/2022 LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	GRO TOTA DEPT	UND : AL DE TH TC	SUR EPTH	S FAC 1: 1: ATE	HEE E : 7 33 ft R : N	T 2 707.6 bgs ot Ob	OF ft M	5 SL ∋d
0:	GS F 3-GEOT	BOREHOLE LOG	PROJECT NUMBER: GW8636	BOR	NG B	BACK	KFIL	L: E	Sentor	nite G	Brout
DEPTH (ft-bgs)	ELEVATION (ft)	DESCRIPTION1) Soil Name (USCS)6) Plasticity2) Color7) Density/Consis3) Moisture8) Other (Mineral4) Grain SizeDiscoloration, 05) Percentage	stency Content, Odor, etc.)	STRATUM	GRAPHIC LOG	TYPE	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	
- - - - - - - - - - - - - - - - - - -	- 675 - - - - - - - - - - - - - - - - - -	 (10.25') CLAY; olive yellow (2.5Y 6/6) to pale olive (5Y 6/3); trace is trace chert fragments; hard; very stiff (PP > 4.5 tsf); trace moist (c) (30') Iron staining with iron nodules (41') Iron staining from 41 to 41.5 ft bgs; some gray mottling from - 	ron staining and mottling; occasional ont.) 41 to 51 ft bgs	Stratum III			13 20 24 35 12 17 21 24	24 18 24			
	- - - - - - - - - - - - - - - - - - -	(50.25') 45-degree fracture plane with calcite precipitation from 50	to 52 ft bgs				11 16 21 26	24			
EQ EQ DR SA DR	NTRAC UIPMEI ILL MT MPLING ILL BIT	CTOR: Texplor of Dallas, Inc.NORTHING: 13812980.5NT: CME 75 Truck MountedEASTING: 2278165.1HD: HSA / CoringSMTHD: SPT, Shelby Tube, CoreSIZE/TYPE: HSA 6" - NQ2		VIEWE	ER: \ F	W. E Oc Page	Surke	er 202 4C-5	23 54		

	Geo	Syntec consultants	BORING: GB-38 START DATE: 12/19/2022 FINISH DATE: 12/20/2022 LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	GRO TOTA DEP	UND AL DE	SUR EPTH	S FAC 1: 1:	HEE E : 7 33 ft R : N	T 3	DF 5 MSL erved
	GS F 3-GEOT	ORM: ECH3 BF BOREHOLE LOG	PROJECT NUMBER: GW8636	BOR	ING E	BACH	(FIL	L: B	entoni	e Grout
DEPTH (ft-bgs)	ELEVATION (ft)	DESCRIPTION 1) Soil Name (USCS) 6) Plasticity 2) Color 7) Density/Consis 3) Moisture 8) Other (Mineral 4) Grain Size Discoloration, 0 5) Percentage	stency Content, Odor, etc.)	STRATUM	GRAPHIC LOG	i TYPE	BLOWS PER 6"	RECOVERY (in) B	PERCENT FINES (%) MOISTURE CONTENT (%)	
-	-	(10.25') CLAY; olive yellow (2.5Y 6/6) to pale olive (5Y 6/3); trace i trace chert fragments; hard; very stiff (PP > 4.5 tsf); trace moist (c. (60') Grades to gray clay from 60 to 62 ft bgs	ron staining and mottling; occasional ont.)	Stratum III		X	25 27 30 40	23		
- - 65 - -		(62') CLAYSTONE; grey (5Y 5/1); occasional chert fragments; ver	y hard; trace moist	0			40	36		
- - 70 -	635 -							118.5		
- - 75 - - -	- - - 630	(76.5') 4 mm wide silver (lustrous) inclusion		Stratum IV						
- 80 -	- - - 625 -	(81.25') 45-degree fracture plane w/ relatively soft and moist gray o	clay deposition (~ 1 mm); iron staining					114.5		
	- 							111.5		
	NTRAC UIPMEI ILL MT MPLIN ILL BIT	CTOR: Texplor of Dallas, Inc.NORTHING: 13812980.5NT: CME 75 Truck MountedEASTING: 2278165.1HD: HSA / CoringTube, CoreS MTHD: SPT, Shelby Tube, CoreSIZE/TYPE: HSA 6" - NQ2	LOGGER: G. Kumar NOTES: SI - Stratum I SEE KEY SHEET FOR SYMBOLS AND ABBR	RE	/IEWE	ER:	W. B Oc Page	tobe	er 2023 4C-55	

	Geo	OSYT consu		8217 Sh Suite 20 Austin, ī Phone: (www.ge	noal Creek Blv 10 TX 78757 (512) 451-400 osyntec.com	/d 03	BORING: GB-38 START DATE: 12/19/2022 FINISH DATE: 12/20/2022 LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	GRC TOT DEP	OUND AL DE TH TC	SUR EPTH	S FAC I: 13 ATEF	HEE E: 7 33 ft R: No	T 4 07.6 fi bgs ot Obs	DF 5 MSL erved
0:	GS F 3-GEOT	ORM: ECH3 BF		BOREH		G	PROJECT NUMBER: GW8636	BOR	ing e	ACK	FILI	L: B	entoni	e Grout
DEPTH (ft-bgs)	ELEVATION (ft)			1) Soil Nar 2) Color 3) Moistur 4) Grain S 5) Percent	DESCRI me (USCS) e ize tage	IPTION 6) Plasticity 7) Density/Consis 8) Other (Mineral Discoloration, C	tency Content, Ddor, etc.)	STRATUM	GRAPHIC LOG	TYPE S	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	
- - - 95 - - - - - - - - - -	615	(62') CLAY	/STONE; grey	(5Y 5/1); occ	asional chert	fragments; very	/ hard; trace moist <i>(cont.)</i>				1	120		
105 - - 105 - -	- 605 - - - - - - - - - - - 							Stratum IV						
SNTEC.GDT 05/09/23	- - 595 -											120		
DEOS BRAUNFELS.GPJ GEC	- 590 – -	-					(117		
CO EQ DR SA DR	NTRAC UIPMEI ILL MT MPLING ILL BIT	CTOR: Texp NT: CME 7: THD: HSA / G MTHD: S SIZE/TYPE	blor of Dallas, li 5 Truck Mount Coring PT, Shelby Tu E: HSA 6" - NC	nc. ed be, Core 02	NORTHING: EASTING:	13812980.5 2278165.1	LOGGER: G. Kumar NOTES: SI - Stratum I SEE KEY SHEET FOR SYMBOLS AND ABBR			E R: \ P	W. B Oc Page	tobe No.	r 2023 4C-56	; ;

0	Geo	OSYI consu		8217 Shoal Creek Suite 200 Austin, TX 78757 Phone: (512) 451 www.geosyntec.c	< Blvd -4003	BORING: GB-38 START DATE: 12/19/2022 FINISH DATE: 12/20/2022 LOCATION: New Braunfels	GRO TOT	UND :	SURF	SHE ACE: 133 f	ET 707.	5 OF 6 ft M	= 5 1SL
	GS F 3-GEOT	ORM: ECH3 BF) E	BOREHOLE L	OG	PROJECT: Mesquite Creek Landfill PROJECT NUMBER: GW8636	DEP BOR	TH TC ING B	WA1	ER: ILL:	Not C Bento)bserv onite	ved Grout
DEPTH (ft-bgs)	ELEVATION (ft)			DES 1) Soil Name (USCS) 2) Color 3) Moisture 4) Grain Size 5) Percentage	CRIPTION 6) Plasticity 7) Density/Consis 8) Other (Mineral Discoloration, (tency Content, Ddor, etc.)	STRATUM	GRAPHIC LOG	SAN TYPE	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	LIQUID LIMIT
- - 125 - 130 - -	- 	(62') CLA`	YSTONE; grey (5Y 5/1); occasional ch	nert fragments; ver	y hard; trace moist <i>(cont.)</i>	Stratum IV			96	T		· · · · · · · · · · · · · · · · · · ·
- 135 - - 140 -	570 - - - - - - - - - - -	(133') Bori	ing terminated.										-
- - 145 - - - 150	565 - - - 560 - -											-	
CO EQ DR SA DR	NTRAC UIPMEI ILL MT MPLING ILL BIT	CTOR: Texp NT: CME 7 HD: HSA / G MTHD: S SIZE/TYPI	olor of Dallas, Ind 5 Truck Mounte Coring 6PT, Shelby Tub E: HSA 6" - NQ2	c. NORTHI d EASTI e, Core	NG: 13812980.5 NG: 2278165.1	LOGGER: G. Kumar NOTES: SI - Stratum I SEE KEY SHEET FOR SYMBOLS AND ABBR		/IEWE	R: W	. Burk Octob ge No	ke ber 20 b. 4C	023 -57	

	Geo	DSyntec consultants 8217 Shoal Creek Blvd Suite 200 Austin, TX 78757 Phone: (512) 451-4003 www.geosyntec.com	BORING: GB-39 START DATE: 12/20/2022 FINISH DATE: 12/21/2022 LOCATION: New Braunfels PRO JECT: Mesquite Creek Landfill	GRO TOT/		SURF	SH ACE 115	EET : 707 ft bg	1 0 7.4 ft I s	F 4
0:	GS F 3-GEOT	BOREHOLE LOG	PROJECT NUMBER: GW8636	BOR	ING B	ACK	FILL:	Ben	tonite	Grout
DEPTH (ft-bgs)	ELEVATION (ft)	DESCRIPTION 1) Soil Name (USCS) 6) Plasticity 2) Color 7) Density/Consis 3) Moisture 8) Other (Mineral 4) Grain Size Discoloration, 5) Percentage	stency Content, Odor, etc.)	STRATUM	GRAPHIC LOG	SA IVPE	BLOWS PER 6"	PERCENT FINES (%)	MOISTURE CONTENT (%)	LIQUID LIMIT
- - - 5-		(0') CLAY; black (10YR 2/1); organic; grasses and rootlets; few co sand; soft (PP = 0.75 tsf); moist (1') Clayey GRAVEL; coarse to fine grained (sub rounded to angula	arse to fine gravel; trace coarse to fine ar); loose; trace moist	Stratum II SI			1 3 11 11 9 10 9 (9 (11 8 11 9 (0 0 0 0 0 0 0 0 0 0 0 0 0	5		
-	700	(7') CLAY; light olive grey (5Y 6/2) and olive yellow (2.5Y 6/8) to gr staining and mottling; hard; medium stiff to very stiff (PP > 2.75 tsl	rayish brown (2.5Y 5/2); occasional iron f); trace moist				8	6		
10	- 	(10.25') Significant caliche lenses and iron staining (11') Moist and soft light olive gray clay inclusion from 10 to 20.25	ft bgs			X	4 6 7 1 9	8		
-	- 690 – -			Stratum III			3 4 6 8 15	1		
	685					X	8 11 15 17	4		
	680	(26') Several fracture from 26 to 52 ft bgs with some calcite minera	alization/lamination and/or iron staining				5 8 10 13 27	4		
	NTRAC UIPMEI ILL MT MPLING	TOR: Texplor of Dallas, Inc.NORTHING: 13812552.5IT: CME 75 Truck MountedEASTING: 2278572.8ID: HSA / CoringmTHD: SPT, Shelby Tube, CoreSIZE/TYPE: HSA 6" - NQ2	LOGGER: G. Kumar NOTES: SI - Stratum I SEE KEY SHEET FOR SYMBOLS AND ABBR		/IEWE	E R: V	/. Bui Octo age N	rke ber 2 lo. 40	2023 C-58	

	Ge	osyn	tec ^D	8217 Shoa Suite 200 Austin, TX Phone: (57 www.geos	al Creek Blv (78757 12) 451-400 syntec.com	d 13	BORING: GB-39 START DATE: 12/20/2022 FINISH DATE: 12/21/2022 LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	GRO TOT/ DEP	UND AL DE TH TC	SUR EPTH	S FAC 1: 1 ⁻¹	5HEE 5E: 7 15 ft R: N	ET 2 707.4 bgs lot O	2 OI 4 ft N bser	= 4 1SL ved
	GS F 3-GEOT	ORM:	В	BOREHO	LE LOG	;)	PROJECT NUMBER: GW8636	BOR	ING E	BAC	(FIL	L: E	Bento	nite	Grout
DEPTH (ft-bgs)	ELEVATION (ft)			1) Soil Name 2) Color 3) Moisture 4) Grain Size 5) Percentag	DESCRII (USCS)	PTION 6) Plasticity 7) Density/Consist 8) Other (Mineral (Discoloration, C	tency Content, Ddor, etc.)	STRATUM	GRAPHIC LOG	S LYPE	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	LIQUID LIMIT
	675	(7') CLAY; lig	ght olive grey (mottling; hard;	ayish brown (2.5Y 5/2); occasional iron ; trace moist <i>(cont.)</i>			X	9 14 15 17 8 8 11 12 17	23						
45 - 45 -	660	(50.25') Soft	and moist gree		Stratum III			9 12 15 20	22 24						
55 60 CCC EC BCR SAA	650 - 650 -	CTOR: Texplor NT: CME 75 T THD: HSA / CC	r of Dallas, Inc Truck Mounted oring T, Shelby Tube	LOGGER: G. Kumar NOTES: SI - Stratum I	REV	newi	ER:	W. E	Burke	er 20	23				

	Ge	OSYNTEC8217 Shoal Creek Blvd Suite 200 Austin, TX 78757 Phone: (512) 451-4003 www.geosyntec.com	BORING: GB-39 START DATE: 12/20/2022 FINISH DATE: 12/21/2022 LOCATION: New Braunfels PRO JECT: Mesquite Crock Landfill	GRO TOT		SUR EPTH	S RFAC H: 1	SHEE CE: 15 ft	ET 3	B OF	= 4 1SL
	GS F 3-GEO1	ORM: TECH3 BF BOREHOLE LOG	PROJECT: Mesquite Creek Landhin PROJECT NUMBER: GW8636	BOR	ING E		KFIL	L : E	Bento	nite	Grout
DEPTH (ft-bgs)	ELEVATION (ft)	DESCRIPTION 1) Soil Name (USCS) 6) Plasticity 2) Color 7) Density/Consi 3) Moisture 8) Other (Mineral 4) Grain Size Discoloration, 5) Percentage	stency Content, Odor, etc.)	STRATUM	GRAPHIC LOG	S IVPE	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	PLASTICITY INDEX
65 -	645 -	 (7') CLAY; light olive grey (5Y 6/2) and olive yellow (2.5Y 6/8) to g staining and mottling; hard; medium stiff to very stiff (PP > 2.75 ts (60') Grades to very dark gray from 60 to 67 ft bgs (60') CLAYSTONE; very dark gray (5Y 3/1): occasional fractures of the staining statement of the statement of th	rayish brown (2.5Y 5/2); occasional iron f); trace moist <i>(cont.)</i> vith iron staining and	Stratum III		X	13 15 19 22	24			-
70 -	635 - 635 -	crystallized/mineralized infills (calcite); very hard						36			-
80 -	630 -			Stratum IV							-
85 -	620 -							107.5			-
CC EC DF SA DF	ontrac Quipme Rill Mt Mplin Rill Bit	CTOR: Texplor of Dallas, Inc.NORTHING: 13812552.5NT: CME 75 Truck MountedEASTING: 2278572.8'HD: HSA / CoringG MTHD: SPT, Shelby Tube, Core'SIZE/TYPE: HSA 6" - NQ2	LOGGER: G. Kumar NOTES: SI - Stratum I SEE KEY SHEET FOR SYMBOLS AND ABBR	RE	/IEWI	ER: F	W. E Oc Page	Burke	e er 20 . 4C-	23 60	

	Ge	OSYN consu	Itec ^D	8217 Shoal Suite 200 Austin, TX Phone: (51 www.geosy	l Creek Blv 78757 2) 451-400 /ntec.com	rd 03	BORING: GB-39 START DATE: 12/20/2022 FINISH DATE: 12/21/2022 LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	GRC TOT	OUND AL DE	SUF EPTI	SRFAC	HEE E: 7 15 ft	707.4	OF ft MS	4 SL
0	GS F 3-GEOT	ORM: ECH3 BF		BOREHOL		3	PROJECT NUMBER: GW8636	BOR	ING E	BAC	KFIL	L: B	enton	ite G	rout
DEPTH (ft-bgs)	ELEVATION (ft)			1) Soil Name 2) Color 3) Moisture 4) Grain Size 5) Percentage	DESCRI (USCS)	PTION 6) Plasticity 7) Density/Consis 8) Other (Mineral Discoloration, C	tency Content, Ddor, etc.)	STRATUM	GRAPHIC LOG	TYPE S	BLOWS PER 6"	RECOVERY (in) A	PERCENT FINES (%)		PLASTICITY INDEX
-	- - 615 -	- (67') CLAY crystallized	'STONE; very d /mineralized inf	ark gray (5Y 3/ ills (calcite); ve	1); occasio ry hard <i>(co</i>	onal fractures w	ith iron staining and					100			
95	- - 610 -	-										103			
100 — - - -	- - 605 – -							Stratum IV				60			-
105	- - 600 – -														
110 -	- - 595 –											82			-
115	- - - 590 -	- (115') Borii - -	ng terminated.												-
	NTRAC UIPMEI ILL MT MPLING ILL BIT	CTOR: Texp NT: CME 75 THD: HSA / 0 G MTHD: S SIZE/TYPE	lor of Dallas, In 5 Truck Mounte Coring PT, Shelby Tub :: HSA 6" - NQ:	c. NC d I e, Core 2	ORTHING: EASTING:	13812552.5 2278572.8	LOGGER: G. Kumar NOTES: SI - Stratum I SEE KEY SHEET FOR SYMBOLS AND ABBR			= R :	W. E Oc Page	Burke	er 202 4C-6	3	

	Geo	OSYN consu	Itec ^D	8217 Sho Suite 200 Austin, T> Phone: (5 www.geos	al Creek Blv K 78757 12) 451-400 Syntec.com	/d 03	BORING START I FINISH I LOCATI	: GB-40 DATE: 12/15/202 DATE: 12/19/202 ON: New Braunf	22 22 els	GRO TOT/	UND AL DI	SUR	S RFAC H: 14	HEE E : 6 44 ft	593 f bgs	t MS	= 5	
	GS F 3-GEOT	ORM: ECH3 BF	E	BOREHO	LE LOC	3	PROJEC	CT: Mesquite Cre CT NUMBER: GV	ek Landfill V8636	DEP BOR	TH TO ING E	D W/ BACH	ATEI KFIL	R: N L: B	ot Ol Sento	bser nite	ved Grout	J
DEPTH (ft-bgs)	ELEVATION (ft)			1) Soil Nama 2) Color 3) Moisture 4) Grain Sizu 5) Percentag	DESCRI e (USCS) e ge	6) Plasticity 7) Density/Consist 8) Other (Mineral (Discoloration, C	ency Content,)dor, etc.)			STRATUM	GRAPHIC LOG	TYPE S	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	LIQUID LIMIT	
-	- - 690 	(0') CLAY; soft to very	black (10YR 2/ / stiff (PP > 1 tsi	1); organic; gr f); moist to dr	rasses and r y	rootlets; trace or	barse grave	el; few medium to) fine sand;	Stratum I		X	1 2 3 3	12.5 17	95.8 95.2	30.2 17.8	126 9 67 4	3 -
5	- - - - - - - -	(4.25) CAL		5Y 7/4).	Stratum II			13 15 16 5	18 17				-					
- 10 - -	 - 680	few coarse staining an (PP > 4.5 t (9') Moist a	and soft pale oliv	very stiff			X	8 10 12 16 10 12	21 15 23									
- 15 -	675						16 5 8 10 13	13 22										
- 20 – -		675 - (22') Mineralized calcite infill										X	6 7 12 16	18 23				
- - 25 - -	670	(24') Thick	silica based mir				X	8 11 16 27	16 24									
30- CC	665	CTOR: Texp	lor of Dallas, Inc	Kumar	REV	/IEWI	ER:	W. E	Burke	•]					
EQ DR SA DR	UIPMEI ILL MT MPLING	nt: CME 75 "HD: HSA / (G MTHD: SI " SIZE/TYPE	5 Truck Mounter Coring PT, Shelby Tube E: HSA 6" - NQ2	S AND ABBR	EVIATIC	ONS	F	Oc Page	tobe No.	er 20 4C-	23 62							

(Geo	Syntec consultants 8217 Shoal Creek Blvd Suite 200 Austin, TX 78757 Phone: (512) 451-4003	BORING: GB-40 START DATE: 12/15/2022 FINISH DATE: 12/19/2022	GRO	UND	SUR	S	HEE	ET 2	2 OI	= 5	
		www.geosyntec.com	LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	TOT/ DEPT	AL DE Fh to	EPTH DW/	H: 14 Atef	44 ft R: N	bgs lot O	bser	ved	
0	GS F 3-GEOT	BOREHOLE LOG	PROJECT NUMBER: GW8636	BOR	ING E	BACK	(FIL	L: E	Bento	nite	Grou	ıt
DEPTH (ft-bgs)	ELEVATION (ft)	DESCRIPTION 1) Soil Name (USCS) 6) Plasticity 2) Color 7) Density/Consi: 3) Moisture 8) Other (Mineral 4) Grain Size Discoloration, 5) Percentage	stency Content, Odor, etc.)	STRATUM	GRAPHIC LOG	¢ TYPE	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTICITY INDEX
-	- - 660 -	(8') CLAY; pale olive (5Y 6/4) to olive (5Y 5/6) and light olive brown few coarse gravel; little coarse to fine sand; some calcite infills and staining and mottling; several fractures with crystalline mineralizati (PP > 4.5 tsf); trace moist (<i>cont.</i>)	n (2.5Y 5/6) to pale brown (2.5Y 7/4); I chert fragments; occasional iron on/lamination (calcite); hard; very stiff			X	12 15 18 25 29	24 19	94.5	20.8 30.7	58	32 ·
35 - - - -	- - - 655	(35.5') Thick silica based mineralization		Stratum III		X	24 25 30	24				-
40 - - - 45	 650 	(41') Color grades to dark gray from 41 ft bgs and alternating light ft bgs	olive brown and dark gray from 41 to 65				22 26 50	7				-
- - - 50 -		(45') CLAYSTONE; greenish black (GLEY1 2.5/10Y) with alternat to 60 ft bgs; trace chert fragments; multiple fractures with crystalli moist	ng light olive brown (2.5Y 5/6) from 45 zed/mineralized infills; very hard; trace	NI mi				120				· · ·
	640			Stratu				120				
CC EQ DR SA DR	NTRAC UIPMEI ILL MT MPLING	CTOR: Texplor of Dallas, Inc.NORTHING: 13812198.5NT: CME 75 Truck MountedEASTING: 2278938.7HD: HSA / CoringG MTHD: SPT, Shelby Tube, CoreSIZE/TYPE: HSA 6" - NQ2	LOGGER: P. Pandey; G. Kumar NOTES: SEE KEY SHEET FOR SYMBOLS AND ABBR		VIEWE	ER: \ F	W. E Oc Page	Burke	e er 20 . 4C-	23 63		

(Geo	osyn	tec	8217 Sho Suite 200 Austin, T)	al Creek Blv	d	BORIN START FINISH	G: GB-40 DATE: 12/15/2022 DATE: 12/19/2022	GRC	OUND S	SUR	S	HEE	ET 3	OF	5 L	;]
		consu	Itants	Phone: (5 www.geos	512) 451-400 syntec.com	13	LOCAT	ION: New Braunfels	TOT		PTH	H: 14	44 ft	bgs		-	
0	GS F 3-GEOT	ORM: ECH3 BF	E	BOREHC	LE LOG	;	PROJE	CT NUMBER: GW8636	BOR	ING B		KFIL	L: E	lot Or Bento	nite (/ea Grou	Jt
											S	AMPL	E	LA	B RES	SULTS	s
(sbo	(H)				DESCRI	PTION				ŋ		-	((%)	NT (%)		X
H (ft-t	TION			1) Soil Nam 2) Color	e (USCS)	 6) Plasticity 7) Density/Consis 	tency		ATUM	IIC LO	ΡE) PER (ERY (ii	EINES	CONTE		ITY IND
DEPT	LEV#			3) Moisture 4) Grain Size	e	8) Other (Mineral Discoloration, C	Content, Ddor, etc.)		STR	RAPH	Ę	BLOWS	RECOV	RCENT	TURE (LIQUI	ASTIC
	ш			5) Percentaç	ge					U			-	ΒE	SIOW		Ы
-		(45') CLAY to 60 ft bgs	STONE; greenis ;; trace chert frag	sh black (GLI gments; mult	EY1 2.5/10Y tiple fractures) with alternatin s with crystalliz	ng light oli ed/minera	ve brown (2.5Y 5/6) from 45 lized infills; very hard; trace						89.7	11.8	71	44
-	- 1	moist (<i>cont</i>	.)														
-	630 -												120				
-	- 1																
65																	-
.	-																
-		1															
-	625-																
-																	
70 -													118				-
-																	
-																	
-	620 -																
-	-								≥								
75 -	-								tratum								-
-	-								l o								
-	-																
-	615-																
-	-																
80	-												111				-
-	-																
		1															
	010-																
85-																	
00-																	-
.	605-												113				
.																	
90 -																	_
		CTOR: Texpl	or of Dallas, Inc	1	NORTHING:	13812198.5 2278938 7		R: P. Pandey; G. Kumar	RE	/IEWE	R:	W. E	Burke	9			
		HD: HSA/(-				•									
SA DR	MPLIN	g mithd: Si Size/Type	- I, Snelby Tube : HSA 6" - NQ2	e, Core			SEE KEY	SHEET FOR SYMBOLS AND ABB	EVIATIO	ONS	F	Oc Page	tobe No.	er 20: . 4C-	23 64		
\subseteq)	ULE NET	GHEETT ON STWBUES AND ABBE		001		35		-			$ _$

	Geo	OSYN consul	tec ^D	8217 Sho Suite 200 Austin, TX Phone: (5 www.geos	pal Creek Blv X 78757 512) 451-400 syntec.com	d)3	BORING: GB-40 START DATE: 12/15/2022 FINISH DATE: 12/19/2022 LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	GRO TOT/ DEP	UND : AL DE	SURF PTH	SHE ACE: 144 TER:	693 ft bgs	4 OF ft MS	5 L
0	GS F 3-GEOT	ORM: ECH3 BF	E	BOREHC	DLE LOG	;)	PROJECT NUMBER: GW8636	BOR	ING B	ACK	FILL:	Bento	onite (Grout
DEPTH (ft-bgs)	ELEVATION (ft)			1) Soil Nam 2) Color 3) Moisture 4) Grain Siz 5) Percentag	DESCRII le (USCS) le ge	PTION 6) Plasticity 7) Density/Consis 8) Other (Mineral Discoloration, C	tency Content, Jdor, etc.)	STRATUM	GRAPHIC LOG	SA EAL	BLOWS PER 6" BLOWS PER 6" AI BLOWS PER 6" AI BLOWS PER (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	LIQUID LIMIT
- - - 95 - - - - - - - - - - - - - - - - - -	- 600 - - 595 - -	(45') CLAYS to 60 ft bgs; moist <i>(cont.</i>	STONE; greeni trace chert fra)	sh black (GLI	EY1 2.5/10Y tiple fractures) with alternatir s with crystalliz	ng light olive brown (2.5Y 5/6) from 45 ed/mineralized infills; very hard; trace				11:	3		
- - 105 - - 110	- 590 - - - 585 - -							Stratum IV			11	7		
BRAUNFELS.GPJ GEOSNIEC.GD1 05/09/23	- 580 - - - 575 -										11;	3		-
	NTRAC UIPMEI ILL MT MPLING ILL BIT	 CTOR: Texplo NT: CME 75 'HD: HSA / C G MTHD: SF SIZE/TYPE:	or of Dallas, Inc Truck Mounted Coring PT, Shelby Tube HSA 6" - NQ2	c. N d e, Core 2	Northing: Easting:	13812198.5 2278938.7	LOGGER: P. Pandey; G. Kumar NOTES:			ER: V	 /. Burl Octol	 ke ber 2(b. 4C)23 -65	

	Geo	osyntec ^D consultants	8217 Shoal Creek Blvd Suite 200 Austin, TX 78757 Phone: (512) 451-4003 www.geosyntec.com	BORING: GB-40 START DATE: 12/15/2022 FINISH DATE: 12/19/2022 LOCATION: New Braunfels PROJECT: Mesquite Creek Landfi	GRO TOT	DUND AL DI	SUF	S RFAC H: 14	E: 6 44 ft l	T 5 (93 ft N bgs	OF 5	•
03	GS F 3-GEOT	ORM: ECH3 BF	BOREHOLE LOG	PROJECT NUMBER: GW8636	BOF	RING E	BAC	KFIL	L: Be	entonit	e Gro	٦t
DEPTH (ft-bgs)	ELEVATION (ft)		DESCRIPTION 1) Soil Name (USCS) 6) Plasticity 2) Color 7) Density// 3) Moisture 8) Other (M 4) Grain Size Discolor 5) Percentage 5	y Consistency lineral Content, ation, Odor, etc.)	STRATUM	GRAPHIC LOG	TYPE	BLOWS PER 6"	RECOVERY (in) a	PERCENT FINES (%) AG MOISTURE CONTENT (%)	RESULT	PLASTICITY INDEX 8
- - - 125 - - - - - - - - - - - - - - - - - - -	- 570 - - 565 - - -	(45') CLAYSTONE; greeni to 60 ft bgs; trace chert fra moist <i>(cont.)</i>	sh black (GLEY1 2.5/10Y) with alte gments; multiple fractures with cry	ernating light olive brown (2.5Y 5/6) from 4 stallized/mineralized infills; very hard; trace	atum IV				118			
- - 135 - - - - -	560 - - 555 -				Str				103			
- - - 145 –	- - 550 -	(144') Boring terminated.										
	- - 545 -											
CO EQ DR SAI DR	NTRAC UIPMEI ILL MT MPLING ILL BIT	CTOR: Texplor of Dallas, Inc NT: CME 75 Truck Mounted HD: HSA / Coring G MTHD: SPT, Shelby Tube SIZE/TYPE: HSA 6" - NQ2	c. NORTHING: 1381215 d EASTING: 227893 e, Core	DOBLES: LOGGER: P. Pandey; G. Kumar 38.7 NOTES: SEE KEY SHEET FOR SYMBOLS AND ABBIN	RE		ER:	W. E Oc Page	Burke tobe	r 2023 4C-66	5	

	Geo	OSYN consul	tec ^D	8217 Shoal Creek Suite 200 Austin, TX 78757 Phone: (512) 451-4 www.geosyntec.co	Blvd 4003 m	BORING: GB-41 START DATE: 1/10/2023 FINISH DATE: 1/11/2023 LOCATION: New Braunfels	GRO TOT/	UND AL DE	SUR EPTH	S FAC 1: 77	5 HEE 5 E : 6 7 ft b	ET 1 676.8 ogs	I OI B ft N	= 3 //SL
	GS F 3-GEOT	ORM: ECH3 BF	В	OREHOLE LO	DG	PROJECT: Mesquite Creek Landfill PROJECT NUMBER: GW8636	DEP	TH TO ING E	D WA BACK	ATEF (FIL	R: N L: E	lot Ol Bento	bser nite	ved Grout
DEPTH (ft-bgs)	ELEVATION (ft)			DESC 1) Soil Name (USCS) 2) Color 3) Moisture 4) Grain Size 5) Percentage	6) Plasticity 7) Density/Consis 8) Other (Mineral Discoloration, 6	stency Content, Ddor, etc.)	STRATUM	GRAPHIC LOG	TYPE K	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	ADISTURE CONTENT (%)	LIQUID LIMIT
- - - 5-	- 675 - -	(0') CLAY; ((PP > 1.25)	very dark gray (2 ; moist; highly p	.5Y 3/1); organics; so astic	ome gravels, roots	and chert fragments; soft to very stiff	Stratum I		X	3 5 8 7	7	87.2	23.2	88 60
	- 670 - - -	(6') CALICH	IE with some ca	Icareous gravel and c	hert fragments, d	ry.	Stratum II		X	16 18 22 15	16.5			
	- 665 - -	(10') CLAY; fragments; o dry (11') Moist a (12') Some (13.5') Frac	light olive brown occasional calcit and soft pale oliv calcite mineraliz ture with calcite	n (2.5Y 5/4) to light ye e mineralization/lamir re clay inclusion from ation and iron staining infilling	ellowish brown (2. hation; firm to very 10 to 25 ft bgs g	5Y 6/4), trace iron staining and chert / hard; very stiff (PP > 4 tsf); moist to			X	6 9 12 14	17 22			
	- 660 — - -						Stratum III			7 11	16			
	655	(21.75') Iror	n precipitate in fr	acture						21 22 7 13	21.5			
30	650 — - -	(26') Calcite	e mineralization							15 18	24			
CO EQ DR SA DR	NTRAC UIPMEI ILL MT MPLING ILL BIT	CTOR: Texplo NT: CME 75 HD: HSA / C G MTHD: SP SIZE/TYPE:	or of Dallas, Inc. Truck Mounted Coring PT, Shelby Tube, HSA 6" - NQ2	NORTHIN EASTIN Core	G: 13811767.5 G: 2279327.5	LOGGER: L. Varner NOTES: SEE KEY SHEET FOR SYMBOLS AND ABBR		/IEWE	ER: \ P	W. E Oc Page	Burke	er 20 . 4C-	23 67	

EOTECH3 BF GEOS BRAUNFELS.GPJ GEOSNT

	Geo	DSyntec8217 Shoal Creek Blvd Suite 200consultantsAustin, TX 78757 Phone: (512) 451-4003 www.geosyntec.com	BORING: GB-41 START DATE: 1/10/2023 FINISH DATE: 1/11/2023 LOCATION: New Braunfels PRO JECT: Mescruito Crook Londfill	GRO TOTA		SUR	S FAC 1: 77	5HEE 5E: 6 7 ft b	676.8	OF ft MS	3 ĭ∟
03	GS F 3-GEOT	BOREHOLE LOG	PROJECT NUMBER: GW8636	BORI	NG E	BACK	(FIL	L: E	Sentor	ite G	rout
DEPTH (ft-bgs)	ELEVATION (ft)	DESCRIPTION 1) Soil Name (USCS) 6) Plasticity 2) Color 7) Density/Consis 3) Moisture 8) Other (Mineral 4) Grain Size Discoloration, 5) Percentage	stency Content, Odor, etc.)	STRATUM	GRAPHIC LOG	TYPE g	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)		PLASTICITY INDEX
	- 645 - - - 640 - - - - - - - - - - - - - - - - - -	 (10') CLAY; light olive brown (2.5Y 5/4) to light yellowish brown (2. fragments; occasional calcite mineralization/lamination; firm to ver dry (cont.) (34') Dry, friable zone 	.5Y 6/4), trace iron staining and chert y hard; very stiff (PP > 4 tsf); moist to	Stratum III		X	22 22 34 32 25 22 25 33	9 24 23	80 1	9.6 4	3 27
	630 - - 625 - 620 - - - - - - - - - - - - - - - - - -	(51') Fracture with light gray clay and coarse sand infill; some iron	staining	REV			9 12 18 22	24 Burke	3		
DR BR BR BR BR BR	UIPMEI ILL MT MPLING	NORTHING: 13817767.5 NT: CME 75 Truck Mounted HD: HSA / Coring S MTHD: SPT, Shelby Tube, Core SIZE/TYPE: HSA 6" - NQ2	NOTES:		NS	=r k : F	Oc Oc Page	tobe	er 202 4C-6	23	

	Geo	OSYI consu		8217 Shoal Cree Suite 200 Austin, TX 78757 Phone: (512) 457 www.geosyntec.o	k Blvd 7 1-4003 com	BORING: GB-41 START DATE: 1/10/2023 FINISH DATE: 1/11/2023 LOCATION: New Braunfels	GRO TOT	UND AL DE	SURF	SH ACE : 77 1	EET : 676 ft bgs	3 o 5.8 ft I	F 3 MSL
	GS F 3-GEOT	ORM: ECH3 BF) 🛛 В	OREHOLE L	.OG	PROJECT: Mesquite Creek Landfill PROJECT NUMBER: GW8636	DEP BOR	ING E	D WA	TER: FILL:	Not Ben	Obser tonite	ved Grout
DEPTH (ft-bgs)	ELEVATION (ft)			DES 1) Soil Name (USCS) 2) Color 3) Moisture 4) Grain Size 5) Percentage	SCRIPTION 6) Plasticity 7) Density/Consis 8) Other (Mineral Discoloration, 0	tency Content, Ddor, etc.)	STRATUM	GRAPHIC LOG	SA LAPE	BLOWS PER 6"	PERCENT FINES (%)	MOISTURE CONTENT (%)	LIQUID LIMIT
- - - 65 - - - - - - - - - - - 70 -	615 <u>-</u> - - 610 - - -	(10') CLA fragments dry (cont.) (62') CLA	Y; light olive brown; ; occasional calcit Y to CLAYSTONE	n (2.5Y 5/4) to light e mineralization/lan ; greenish black (G	yellowish brown (2. nination; firm to very LEY1 2.5/10Y); ver	5Y 6/4), trace iron staining and chert / hard; very stiff (PP > 4 tsf); moist to y hard; moist to dry	Stratum IV Stratum III			20 20 22 22 22	14		
- - 75 - - - - - - - - - - - -	605	(77') Borin	ng terminated.							14 18 23 20	-4		
80 - - - 85 - - - - 90	- 595 - - 590 - - - -												
CO EQ DR SA DR	NTRAC UIPMEI ILL MT MPLING ILL BIT	CTOR: Texp NT: CME 7 HD: HSA / G MTHD: S SIZE/TYPE	blor of Dallas, Inc. 5 Truck Mounted Coring SPT, Shelby Tube, E: HSA 6" - NQ2	NORTH EAST	ING: 13811767.5 ING: 2279327.5	LOGGER: L. Varner NOTES: SEE KEY SHEET FOR SYMBOLS AND ABBR		VIEWE	E R : V	/. Bu Octo age N	rke ober 2 No. 40	2023 C-69	

	Ge	OSYN consul	ltec ^D	8217 Shoal Creek Suite 200 Austin, TX 78757 Phone: (512) 451- www.geosyntec.co	Blvd -4003 om	BORING: GB-42 START DATE: 1/23/2023 FINISH DATE: 1/24/2023 LOCATION: New Braunfels BRO JECT: Measurite Creak Landfill	GRO TOT/	UND S AL DEI	URFA PTH: {	SHE CE: 38 ft	ET 1 663.2 bgs	1 OF 2 ft M	: 3 ISL
0:	GS F 3-GEOT	ORM: ECH3 BF	В	OREHOLE L	OG	PROJECT: Mesquite Creek Landhii PROJECT NUMBER: GW8636	BOR	ING BA		LL: E	Bento	nite	Grout
DEPTH (ft-bgs)	ELEVATION (ft)			DES 1) Soil Name (USCS) 2) Color 3) Moisture 4) Grain Size 5) Percentage	6) Plasticity 7) Density/Consis 8) Other (Mineral Discoloration, C	tency Content, Ddor, etc.)	STRATUM	GRAPHIC LOG	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	LIQUID LIMIT
- - 5- -	- - 660 - - - - - - - - - - - - - - - - - - -	(0') CLAY; plastic	black (2.5Y 2.5/	1); organic; fine to co	arse sand; soft to v	very stiff (PP > 1.5 tsf); moist; medium gments, dry	Stratum II Stratum I		4 7 16 20 9 17 9 11	9 21			
10 — - - 15 — - -	- - - - - - - - - - - - - - - - - - -	(10') CLAY mineralizati	; pale brown (2.5	5Y 7/4) to olive brown ard; very stiff (PP > 4	n (2.5Y 4/4); trace I.5 tsf); trace moist	silt; orange mottling; occasional calcite			3	18			
- 20 - - 25 - - - -	- - - 640 - - - - - - - - - - - - - - - - - -	(28') Iron si	taining and occa	sional iron nodules fr	om 28 to 50 ft bgs	; calcite veins	Stratum III		5 7 10	24			
30-	-						 		11	24			
CO EQ DR SA	NTRAC UIPMEI ILL MT MPLINO	TOR: Texpl NT: CME 75 HD: HSA/C G MTHD: SF	lor of Dallas, Inc. 5 Truck Mounted Coring PT, Shelby Tube	NORTHIN EASTIN	NG: 13811416.4 NG: 2279712.4	LOGGER: P. Pandey NOTES:	RE	/IEWEI	R: W. C	Burk ctob	e er 20	23	
	ILL BIT	SIZE/ TYPE	:: H5A 6" - NQ2)	SEE KEY SHEET FOR SYMBOLS AND ABBR	EVIATIC	NS	Pag	e No	. 4C-	70	

	Geo	OSYN consu	Itec ^D	8217 Shoal Creek B Suite 200 Austin, TX 78757 Phone: (512) 451-4 www.geosyntec.com	Blvd 003 1	BORING: GB-42 START DATE: 1/23/2023 FINISH DATE: 1/24/2023 LOCATION: New Braunfels PRO JECT: Mesquite Crock Landfill	GRO TOTA		SUR	S FAC 1: 88	HEE E: 6 3 ft b	T 2 63.2 gs	OF ft MS	3 5L
	GS F 03-GEOT	ORM: ECH3 BF	B	OREHOLE LO	G	PROJECT NUMBER: GW8636	BOR	ING B	BACK	FIL	L: B	enton	ite G	rout
DEPTH (ft-bgs)	ELEVATION (ft)			DESCF 1) Soil Name (USCS) 2) Color 3) Moisture 4) Grain Size 5) Percentage	6) Plasticity 7) Density/Consis 8) Other (Mineral (Discoloration, C	tency Content, Ddor, etc.)	STRATUM	GRAPHIC LOG	TYPE St	BLOWS PER 6"	RECOVERY (in) a	PERCENT FINES (%)		PLASTICITY INDEX
35 -		(10') CLAY mineralizat	/; pale brown (2. tion/deposition; h	5Y 7/4) to olive brown (ard; very stiff (PP > 4.5 eralization from 37 to 3	2.5Y 4/4); trace s 5 tsf); trace moist 88 ft bgs; iron stai	silt; orange mottling; occasional calcite (cont.)				8 12 16 19	24			· · · · · · · · · · · · · · · · · · ·
45 - 50 - 55 -	620 - 615 - 610 		es to dark gray fr	om 50 to 60 ft bgs			Stratum III			11 13 18 24	24 24 23			
60 - CC EC DF SA DF	605	(59') Calcit CTOR: Texp NT: CME 75 'HD: HSA / (G MTHD: SI 'SIZE/TYPE	te mineralization lor of Dallas, Inc. 5 Truck Mounted Coring PT, Shelby Tube E: HSA 6" - NQ2	along 45-degree plane NORTHING EASTING	3: 13811416.4 3: 2279712.4	LOGGER: P. Pandey NOTES: SEE KEY SHEET FOR SYMBOLS AND ABBRI		VIEWE	ER: \	13 16 24 29 W. B	24 Burke	r 202 4C-7	3	

	Geo	Syntec 8217 Shoal Creek Blvd Suite 200 Austin, TX 78757 Phone: (512) 451-4003 www.geosyntec.com	BORING: GB-42 START DATE: 1/23/2023 FINISH DATE: 1/24/2023 LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	GRO TOT/ DEP	UND : AL DE TH TC	SUR EPTH	SH FACI H: 88 ATER	HEE E: 60 ft bç :: Nc	τ 3 (63.2 ft gs ot Obse	DF MSL erved	3
0	GS F 3-GEOT	BOREHOLE LOG	PROJECT NUMBER: GW8636	BOR	ING B	AC	KFILL	.: Ве	entonit	e Gro	out
DEPTH (ft-bgs)	ELEVATION (ft)	DESCRIPTION 1) Soil Name (USCS) 6) Plasticity 2) Color 7) Density/Consis 3) Moisture 8) Other (Mineral 4) Grain Size Discoloration, 0 5) Percentage	stency Content, Odor, etc.)	STRATUM	GRAPHIC LOG	түре	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%) MOISTURE CONTENT (%)	ESUL LIQUD LIMIT	PLASTICITY INDEX
	- 600 - 595 - - - - -	(60') CLAYSTONE; very dark greenish gray (GLEY1 3/10Y); mode some locations; very hard; moist to dry (64') Weathered with iron staining (65') Yellow discoloration along 45-degree fracture plane	rate fractures with iron staining at					120			
75	590 - - - 585 - - - - - -			Stratum IV				120			
	580 - - 575	(88') Boring terminated.						87			
	NTRAC UIPMEI ILL MT MPLING ILL BIT	TOR: Texplor of Dallas, Inc. NORTHING: 13811416.4 NT: CME 75 Truck Mounted EASTING: 2279712.4 HD: HSA / Coring BMTHD: SPT, Shelby Tube, Core SIZE/TYPE: HSA 6" - NQ2 NQ2	LOGGER: P. Pandey NOTES:		/IEWE	:R : \ F	W. Bu W. Bu Oct Page	urke obei No.	- 2023 4C-72		

	Geo	DSyntec8217 Shoal Creek Blvd Suite 200 Austin, TX 78757 Phone: (512) 451-4003 www.geosyntec.com	BORING: GB-43 START DATE: 1/19/2023 FINISH DATE: 1/20/2023 LOCATION: New Braunfels PRO JECT: Mesquite Crock Landfill	GRO TOTA		SUR EPTI	S RFAC H: 1	SHEE CE: 1 09 ft	ET 1 709.3 bgs	OF ft MS	4 SL
03	GS F 3-GEOT	BOREHOLE LOG	PROJECT NUMBER: GW8636	BOR	ING E	BACI	KFIL	.L: E	Bentor	nite G	Grout
DEPTH (ft-bgs)	ELEVATION (ft)	DESCRIPTION 1) Soil Name (USCS) 6) Plasticity 2) Color 7) Density/Consis 3) Moisture 8) Other (Mineral 4) Grain Size Discoloration, 5) Percentage	stency Content, Odor, etc.)	STRATUM	GRAPHIC LOG	ТҮРЕ	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	
-	-	(0') CLAY; black (2.5Y 2.5/1); organic; fine to coarse sand; moist;	medium plastic	tratum I		M	2 2 5	18			
- - 5- -	- - 705 - -	(1.75') Sandy/Clayey calcareous GRAVEL and CALICHE with som	ne chert fragments; hard; dry	Stratum II St			18 22 17 11 15	20			
	-	(8') Significant white caliche mixed with clay;									
10 - - 15 -	700	(9') CLAY; light yellowish brown (2.5Y 6/4); trace silt and iron nodu staining and mineralization; hard; very stiff (PP > 4.5 tsf); trace mo	ıles; gray mottling; occasional iron ist				8 8 9 12	24			
-0.109/08/23	- 690 — - - - 685 —			Stratum III				24			
	680 – NTRAC UIPMEI ILL MT MPLING	TOR: Texplor of Dallas, Inc. NORTHING: 13812460.1 IT: CME 75 Truck Mounted EASTING: 2277639.1 HD: HSA / Coring S MTHD: SPT, Shelby Tube, Core	LOGGER: J. Geesin; P. Pandey NOTES:	RE\	VIEWI	ER:	12 20 24 33 W. E	24 Burke	er 202	23	

	Ge	OSYI consu	ltants	8217 Shoal Cree Suite 200 Austin, TX 78757 Phone: (512) 451 www.geosyntec.c	k Blvd , I-4003 xom	BORING: GB-43 START DATE: 1/19/2023 FINISH DATE: 1/20/2023 LOCATION: New Braunfels	GRO TOT	UND AL DI	SUR	S FAC 1: 10	5HEE 5E: 7 09 ft	T 2 709.3 bgs	ft M	4 SL
	GS F 3-GEOT	ORM: ECH3 BF	E	OREHOLE L	.OG	PROJECT: Mesquite Creek Landfill PROJECT NUMBER: GW8636	BOR	ING E	SACK	ATER (FIL	R: N L: B	ot Ot Bento	nite (red Grout
DEPTH (ft-bgs)	ELEVATION (ft)			DES 1) Soil Name (USCS) 2) Color 3) Moisture 4) Grain Size 5) Percentage	6) Plasticity 7) Density/Consis 8) Other (Mineral Discoloration, 6	stency Content, Odor, etc.)	STRATUM	GRAPHIC LOG	rype s	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	PLASTICITY INDEX
	675 675 6655 655 655	(9') CLAY; staining ar	light yellowish b d mineralization;	rown (2.5Y 6/4); trac hard; very stiff (PP ition	ninor fracturing with	n yellowish brown discoloration at some	Stratum IV Stratum III			11 18 22 27 17 19 26 34	24 24 24 24			
	ONTRAC	CTOR: Texp NT: CME 7 HD: HSA /	blor of Dallas, Inc 5 Truck Mounted Coring	NORTHI EASTI	NG: 13812460.1 NG: 2277639.1	LOGGER: J. Geesin; P. Pandey NOTES:	RE\	/IEWI	ER: V	W. E	Burke	9		
		G MIHD: S SIZE/TYPE	E: HSA 6" - NQ2	, Core		SEE KEY SHEET FOR SYMBOLS AND ABBR	EVIATIO	ONS	F	Oc Page	tobe No.	er 202 4C-	23 74	
	Geo	OSyntec 8217 Shoal Creek Blvd Suite 200 Austin, TX 78757 Phone: (512) 451-4003 www.geosyntec.com	BORING: GB-43 START DATE: 1/19/2023 FINISH DATE: 1/20/2023 LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	GRO TOT/ DEP	UND AL DE	SUR EPTI	SH RFACI H: 10 ATER	HEET =: 70 9 ft b : No	3 C 09.3 ft 1gs t Obse	F 4 MSL				
----------------------------------	---------------------------------------	---	---	--------------------	--------------	-------------	------------------------------	---------------------------------	--	--------------				
0	GS F 3-GEOT	ORM: ECH3 BF	PROJECT NUMBER: GW8636	BOR			KFILL	: Be	ntonite	Grout				
DEPTH (ft-bgs)	ELEVATION (ft)	DESCRIPTION 1) Soil Name (USCS) 6) Plasticity 2) Color 7) Density/Consis 3) Moisture 8) Other (Mineral 4) Grain Size Discoloration, 6 5) Percentage	tency Content, Odor, etc.)	STRATUM	GRAPHIC LOG	S TYPE	BLOWS PER 6"	RECOVERY (in)	MOISTURE CONTENT (%)	LIQUID LIMIT				
- - - 65 - - -	- - - 645 -	(57') CLAYSTONE; very dark gray (2.5Y 3/1); minor fracturing with locations; very hard; moist to dry <i>(cont.)</i> (63.2') Yellowish brown discoloration with selenite crystallization	n yellowish brown discoloration at some					120						
- 70 - -	- 640 													
- 75	- 635 - -	(76.2') Weathered and yellowish brown discoloration/ iron staining		Stratum IV				20						
80	630 - - 625							20						
	620	TOR: Texplor of Dallas, Inc. NORTHING: 13812460.1	LOGGER: J. Geesin; P. Pandey	REV		R:	W. Bı	urke						
EQ DR DR DR DR DR	UIPMEI ILL MT MPLINO ILL BIT	NT: CME 75 Truck Mounted EASTING: 2277639.1 HD: HSA / Coring G MTHD: SPT, Shelby Tube, Core SIZE/TYPE: HSA 6" - NQ2	NOTES:	EVIATIC	DNS	F	Oct Page	ober No. 4	2023 4C-75					

	Geo	Consultants	8217 Shoal Creek Blvd Suite 200 Austin, TX 78757 Phone: (512) 451-4003 www.geosyntec.com	BORING: GB-43 START DATE: 1/19/2023 FINISH DATE: 1/20/2023 LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	GRO TOTA	UND : AL DE	SUF EPTI	S RFAC H: 10	HEE E : 7 09 ft	709.3 bgs	ft MS	4 SL
0	GS F 3-GEOT	ORM: ECH3 BF	BOREHOLE LOG	PROJECT NUMBER: GW8636	BOR	ING B	BAC	KFIL	L: B	Bentor	nite G	rout
DEPTH (ft-bgs)	ELEVATION (ft)		DESCRIPTION 1) Soil Name (USCS) 6) Plasticity 2) Color 7) Density/Consis 3) Moisture 8) Other (Mineral 4) Grain Size Discoloration, 5) Percentage	stency Content, Odor, etc.)	STRATUM	GRAPHIC LOG	түре	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	LTS
- - - 95 - - - - - - - - - - - - - - - - - - -	- - 615 - - 610 -	(57') CLAYSTONE; very locations; very hard; mois	dark gray (2.5Y 3/1); minor fracturing wit st to dry <i>(cont.)</i>	h yellowish brown discoloration at some	Stratum IV				118			
- - 105 - -	- 605 - -								90			
	- 600 - - -	(109') Boring terminated.										-
S BRAUNFELS.GPJ GEOSNIEC.GUI US	- 595 - - 590											-
	NTRAC UIPMEI ILL MT MPLING ILL BIT	TOR: Texplor of Dallas, In NT: CME 75 Truck Mount HD: HSA / Coring G MTHD: SPT, Shelby Tu SIZE/TYPE: HSA 6" - NC	nc. NORTHING: 13812460.1 ed EASTING: 2277639.1 be, Core	LOGGER: J. Geesin; P. Pandey NOTES:		/IEWE	ER:	W. E Oc Page	Burke	er 202	23	1

(Ge	osyntec	8217 Shoal Creek Blvd Suite 200 Austin, TX 78757		BORING: GB-44 START DATE: 1/4/2023	GPO			SHE	ET 1		5
		consultants	Phone: (512) 451-4003 www.geosyntec.com	J	LOCATION: New Braunfels	TOT/	AL DE	PTH:	137 fi	bgs	TT IVI	SL
0	GS F 3-GEOT	FORM:	BOREHOLE LOG		PROJECT: Mesquite Creek Landfill PROJECT NUMBER: GW8636	DEP BOR	ING B	ACKFI	:R: № LL: [lot Oi Bento	oserv nite (ed Grout
							-	SAMF	PLE	LA	BRES	ULTS
DEPTH (ft-bgs)	ELEVATION (ft)		DESCRIPTION 1) Soil Name (USCS) 6) Plasti 2) Color 7) Dens 3) Moisture 8) Other 4) Grain Size Discording 5) Percentage Discording	icity ity/Consist r (Mineral (oloration, C	tency Content, Jdor, etc.)	STRATUM	GRAPHIC LOG	TYPE BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%	LIQUID LIMIT PLASTICITY INDEX
-	710-	(0') Sandy/Clayey calcarec clay; medium dense; hard; (2') White dry caliche from	ous GRAVEL and CALICHE with moist to dry	some ch	nert fragments; some organic black			1 6 11 27 7 6 7 6	5			
5-	705-	-				Stratum II		97	10			
- - 10 -		- - - (10.5') CLAY; olive brown	(2.5Y 4/3) to olive yellow (2.5Y 6	e (5Y 5/3); trace silt and chert			10 9	18			-	
	700	fragments; minor fracture - > 1.5 tsf); moist - -	planes with calcite mineralization	ı/ińfilling	and iron staining; soft to very stiff (PP			4 5 7 10	19			
-	- 695 - -	-						4 6 9 11	22			
20-	- 690 –	-				Stratum II		5	20			-
- - 25								8 11 13	23			-
- - - 30 -	685	(29') Heavy iron staining						6 11 14 14	24 24			
CC EC DR SA DR	NTRAC UIPME XILL MT MPLIN XILL BIT	CTOR: Texplor of Dallas, Inc NT: CME 75 Truck Mounter THD: HSA / Coring G MTHD: SPT, Shelby Tube T SIZE/TYPE: HSA 6" - NQ2	c. NORTHING: 13812 d EASTING: 2278 e, Core 2	2069.0 8025.9	LOGGER: L. Varner; G. Kumar NOTES: SEE KEY SHEET FOR SYMBOLS AND ABBR		/IEWE	R: W. C Pag	Burk Octob e No	e er 20 . 4C-	23 77	

	Geo	DSyntec8217 Shoal Creek Blvd Suite 200 Austin, TX 78757 Phone: (512) 451-4003 www.geosyntec.com	BORING: GB-44 START DATE: 1/4/2023 FINISH DATE: 1/4/2023 LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	GRO TOTA	UND AL DE	SUR EPTH	S FAC 1: 1:	HEE E : 7 37 ft R : N	T 2	OF ft MS	5 L
03	GS F 3-GEOT	DRM: ECH3 BF BOREHOLE LOG	PROJECT NUMBER: GW8636	BOR	ING E	BACK	KFIL	L: E	Benton	ite Gr	rout
DEPTH (ft-bgs)	ELEVATION (ft)	DESCRIPTION 1) Soil Name (USCS) 6) Plasticity 2) Color 7) Density/Consis 3) Moisture 8) Other (Mineral 4) Grain Size Discoloration, 4 5) Percentage	stency Content, Odor, etc.)	STRATUM	GRAPHIC LOG	S TYPE	BLOWS PER 6"	RECOVERY (in) A	PERCENT FINES (%)		PLASTICITY INDEX
COS BRAUNFELS: GPU GEOSNIEC: GD1 09/09/23	680 - - - - - - - - - - - - - - - - - -	(10.5') CLAY; olive brown (2.5Y 4/3) to olive yellow (2.5Y 6/6), oliv fragments; minor fracture planes with calcite mineralization/infilling > 1.5 tst); moist (cont.)	e (5Y 5/3); trace silt and chert and iron staining; soft to very stiff (PP	Stratum II			7 10 13 17 15 21 25 50	24			
	NTRAC UIPMEI ILL MT MPLINC ILL BIT	TOR: Texplor of Dallas, Inc.NORTHING: 13812069.0NT: CME 75 Truck MountedEASTING: 2278025.9HD: HSA / Coring3 MTHD: SPT, Shelby Tube, CoreSIZE/TYPE: HSA 6" - NQ2	LOGGER: L. Varner; G. Kumar NOTES: SEE KEY SHEET FOR SYMBOLS AND ABBR		VIEW	E R : \ P	W. B Oc Page	Burke	er 202 . 4C-7	3 8	

	Geo	DSyntec8217 Shoal Creek Blvd Suite 200 Austin, TX 78757 Phone: (512) 451-4003 www.geosyntec.com	BORING: GB-44 START DATE: 1/4/2023 FINISH DATE: 1/4/2023 LOCATION: New Braunfels PROJECT: Magguide Created an effill	GRO TOTA		SUR	S FAC 1: 13	HEE E: 7 37 ft	T 3 C	NF 5 MSL
	GS F 3-GEOT	BOREHOLE LOG	PROJECT: Mesquite Creek Landini PROJECT NUMBER: GW8636	BORI	ING E		KFILI	L: Be	entonite	e Grout
DEPTH (ft-bgs)	ELEVATION (ft)	DESCRIPTION1) Soil Name (USCS)6) Plasticity2) Color7) Density/Consis3) Moisture8) Other (Mineral4) Grain SizeDiscoloration, 15) Percentage	stency Content, Odor, etc.)	STRATUM	GRAPHIC LOG	λ ν λ	BLOWS PER 6"	RECOVERY (in)	MOISTURE CONTENT (%)	LIQUID LIMIT
-	650 -	 (10.5') CLAY; olive brown (2.5Y 4/3) to olive yellow (2.5Y 6/6), olive fragments; minor fracture planes with calcite mineralization/infilling > 1.5 tsf); moist (<i>cont.</i>) (60') Color grades to dark greenish gray (61.75') Heavy iron staining (62') CLAYSTONE; dark greenish gray (GLEY1 4/10Y); trace cher with calcite infilling in some locations; dry 	e (5Y 5/3); trace silt and chert g and iron staining; soft to very stiff (PP t fragments inclusion; minor fracture	Stratum III			15 22 28 34	24 36		
65	645							120		
	640									
- - - - 80 –	635			Stratum IV				118		
NIEC.GD1 05/09/23										
LEOS BRAUNFELS.GPJ GEOS.	625 - - - - -							120		
	ontrac Quipmei Rill MT MPLING Rill Bit	CTOR: Texplor of Dallas, Inc. NORTHING: 13812069.0 NT: CME 75 Truck Mounted EASTING: 2278025.9 HD: HSA / Coring SMTHD: SPT, Shelby Tube, Core SIZE/TYPE: HSA 6" - NQ2 SMERICE	LOGGER: L. Varner; G. Kumar NOTES: SEE KEY SHEET FOR SYMBOLS AND ABBR		NS	ER: \ F	W. B Oc Page	tobe No.	r 2023 4C-79	

	Geo	OSYN consul	tec [¢]	>	8217 Sł Suite 20 Austin, Phone: www.ge	noal Creeł)0 TX 78757 (512) 451 cosyntec.c	k Blvo -400 com	d 3		BORING: GB-44 START DATE: 1/4/2023 FINISH DATE: 1/4/2023 LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	GRO TOTA DEP	UND : AL DE	SUF EPTI	S RFAC H: 1:	SHEE CE : 7 37 ft R: N	T 4 711.7 bgs ot O	ft OF	= 5 1SL /ed	
0	GS F 3-GEOT	ORM: ECH3 BF		BC	REH	OLE L	.OG	;		PROJECT NUMBER: GW8636	BOR	ING B	AC	KFIL	L: B	Bento	nite	Grout	J
DEPTH (ft-bgs)	ELEVATION (ft)				1) Soil Na 2) Color 3) Moistur 4) Grain S 5) Percen	DES ime (USCS) re Size tage	SCRI	PTION 6) Plasticity 7) Density/Cons 8) Other (Miner Discoloration	siste al Co n, Od	ency ontent, dor, etc.)	STRATUM	GRAPHIC LOG	түре	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)		
- - - 95 - - - - - - - - - - - - - - - - - -	- 620 - - 615 - - - -	(62') CLAY with calcite	STONE; dar infilling in sc	rk gree ome lo	nish gra cations;	y (GLEY1 dry <i>(cont.</i>	4/10))Y); trace che	ert f	fragments inclusion; minor fracture					120				_
- - 105 - - 110	610 - - - 605 - - - -										Stratum IV				120				-
COS BRAUNFELS. CPJ GEOSNTEC. GDT 05/09/23 1112	- 600 - - - 595 - - -														120				_
03-GEOTECH3 BF GI DA DA DA DA DA	NTRAC UIPMEI ILL MT MPLING ILL BIT	TOR: Texplo NT: CME 75 HD: HSA/C G MTHD: SF SIZE/TYPE:	or of Dallas, Truck Mour Coring 2T, Shelby T : HSA 6" - N	, Inc. nted ſube, C NQ2	Core	NORTHI	NG: NG:	13812069.0 2278025.9		LOGGER: L. Varner; G. Kumar NOTES: SEE KEY SHEET FOR SYMBOLS AND ABBR	REV	/IEWE	R:	W. E Oc Page	Burke	er 20 4C-	23 80		

	Geo	osynt consult	ec ^D	82 S A P W	217 Sho suite 200 Justin, TX hone: (5 ww.geos	al Creek E K 78757 12) 451-4 syntec.con	003 n		BORING: GB-44 START DATE: 1/4/2023 FINISH DATE: 1/4/2023 LOCATION: New Braunfels PROJECT: Mesquite Creek Land	GRC TOT	OUND AL DI	SUF EPT	RFAC H: 1:	SHEE CE: 7 37 ft R: N	711.7 bgs	5 OF 7 ft N	5 5
03	GS F 3-GEOT	ORM: ECH3 BF		BOF	REHC	DLE LC	G		PROJECT NUMBER: GW8636	BOF		BAC	KFIL	.L: B	Bento	nite	Grou
DEPTH (ft-bgs)	ELEVATION (ft)			1) 2) 3) 4) 5)) Soil Nam) Color) Moisture) Grain Siz) Percentaç	DESC e (USCS) e ge	6) Plastici 7) Density 8) Other (1 Discolo	ty //Consis Mineral vration, C	tency Content, Ddor, etc.)	STRATUM	GRAPHIC LOG	TYPE	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	
- - - - - - - - - - - - - - - - - - -	- 590 - - - - - - - - - - - - - - - - - -	(62') CLAYS	TONE; dark	greenia me loca	sh gray ((GLEY1 4,	/10Y); trace	e cheri	t fragments inclusion; minor fracture	Stratum IV				120 60 79			
	573	(137') Boring	terminated.	nc.		NORTHING	3 : 138120 3 : 22780	069.0	LOGGER: L. Varner; G. Kumar NOTES:	RE		ER:	W. E	Burke	9		
	NTRAC UIPMEI ILL MT MPLING ILL BIT	TOR: Texplor NT: CME 75 T HD: HSA / Co G MTHD: SPT SIZE/TYPE:	of Dallas, Ii Truck Mount rring T, Shelby Tu HSA 6" - NC	nc. ted ibe, Col Q2	re	NORTHING EASTING	3: 138120 3: 22780	069.0 025.9	LOGGER: L. Varner; G. Kumar NOTES:	I RE		ER:	U W. E Oc Page	Burke	e er 20 . 4C-	 23 81	

(Ge	OSYNt consulta	ec ^D	8217 Sho Suite 200 Austin, T2 Phone: (5 www.geos	oal Creek Blv X 78757 512) 451-400 syntec.com	rd 03	BORING: GB-45 START DATE: 1/3/2023 FINISH DATE: 1/3/2023 LOCATION: New Braunfels	GRO TOT/	UND AL DE	SUR	S FAC I: 1 ⁻	HEE E: 7	T 1 11.5 bgs	OF ft N	4 ISL
	GS F 3-GEOT	ORM: ECH3 BF	B	BOREHC	DLE LOO	3	PROJECT: Mesquite Creek Landfill PROJECT NUMBER: GW8636	DEP BOR	ING E	BACK	FIL	R: No L: B	ot Ot entor	nite	red Grout
DEPTH (ft-bgs)	ELEVATION (ft)			1) Soil Nam 2) Color 3) Moisture 4) Grain Siz 5) Percentag	DESCRI e (USCS) e ge	PTION 6) Plasticity 7) Density/Consis 8) Other (Mineral Discoloration, C	tency Content, Ddor, etc.)	STRATUM	GRAPHIC LOG	λ λ	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	LIQUID LIMIT PLASTICITY INDEX
-	- - 710 -	(0') CLAY to S = 1 tsf); moist (1') Sandy/Cla dry	vey calcareou	ack (10YR 2) us GRAVEL	/1); organic; and CALICF	trace coarse to	fine gravel and chert nodules; soft (PP nert fragments; medium dense; hard;	S			2 3 5 13 8 8	16			
- 5- -	- - 705 –	(0.0) Dry canc		a with day a	in graver no	11 3.5 10 10.25	1 093	Stratum II			8 8 9 9 9	18 22			-
- - 10 –	$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$													21	37 17
- - 15	-										4	13.25 24			-
- - - 20 –	695 - -							atum III			9 15 7	16			
-	- 690 -							Str		M	12 15 18	23			
25 - - -	- 685 – -									X	5 10 13 18	24			-
30- CC EQ DR SA DR	NTRACUIPME	CTOR: Texplor of NT: CME 75 Tr HD: HSA / Cor G MTHD: SPT, SIZE/TYPE: H	of Dallas, Inc ruck Mounted ing Shelby Tube ISA 6" - NQ2	e, Core	NORTHING: EASTING:	13811716.4 2278424.5	LOGGER: L. Varner; G. Kumar NOTES: SI - Stratum I SEE KEY SHEET FOR SYMBOLS AND ABBRI		/IEWE	E R: \ P	W. E Oc	20 Burke	r 202 4C-8	23	

	Ge	OSYT consu	ltants	8217 Shoal Creek E Suite 200 Austin, TX 78757 Phone: (512) 451-4 www.geosyntec.cor	Blvd 003 n	BORING: GB-45 START DATE: 1/3/2023 FINISH DATE: 1/3/2023 LOCATION: New Braunfels	GRO TOT/	UND S	SUR	S FAC I: 11	HEE E: 7	T 2 711.5 bgs	OF ft M	4 SL
	GS F 3-GEOT	ORM: ECH3 BF	B	OREHOLE LC	G	PROJECT: Mesquite Creek Landfill PROJECT NUMBER: GW8636	DEP BOR	TH TO ING B	ACK	(TEF	R: N L: B	ot Ok Sentor	nite C	ed Grout
DEPTH (ft-bgs)	ELEVATION (ft)			DESC 1) Soil Name (USCS) 2) Color 3) Moisture 4) Grain Size 5) Percentage	6) Plasticity 7) Density/Consis 8) Other (Mineral Discoloration, (tency Content, Ddor, etc.)	STRATUM	GRAPHIC LOG	Sł IVPE	BLOWS PER 6"	RECOVERY (in) B	PERCENT FINES (%)	MOISTURE CONTENT (%)	PLASTICITY INDEX
- - - 35 - -	680	(10.25') C some loca	LAY; olive yellow tions; some iron i	(2.5Y 6/8) to light olive mottling; very stiff (PP	e brown (2.5Y 5/4 > 4.5 tsf); trace r	 i); with trace gravel and calcite veins at noist to dry (cont.) 				7 13 15 20	23		_	- - - -
40	670 670 - - - - - - - - - - - - - - - - - -	_ (40') Calci _ _ _ _	te veins from 40	to 42 ft bgs			Stratum III			6 11 15 20	24			-
- 50 — - 55 — - - - - - -	660	. (50') Some	e cemented lense	es from 50 to 52 ft bgs						30 26 50	22 23			
60 CO EQ DR SA DR	DNTRAC QUIPME XILL MT MPLING XILL BIT	TOR: Texp NT: CME 7 THD: HSA / G MTHD: S SIZE/TYPI	olor of Dallas, Inc 5 Truck Mounted Coring 6PT, Shelby Tube E: HSA 6" - NQ2	. NORTHING EASTING	3: 13811716.4 3: 2278424.5	LOGGER: L. Varner; G. Kumar NOTES: SI - Stratum I SEE KEY SHEET FOR SYMBOLS AND ABBR		/IEWE	ER: \ P	W. B Oc age	Burke tobe No.	er 202 4C-8	23	1

	Geo	Syntec consultants 8217 Shoal Creek Blvd Suite 200 Austin, TX 78757 Phone: (512) 451-4003 www.geosyntec.com	BORING: GB-45 START DATE: 1/3/2023 FINISH DATE: 1/3/2023 LOCATION: New Braunfels	GROU TOTA	UND S	URFA	SHEE CE : 7 12 ft	2 T 3 211.5 f bgs	OF 4 t MSL
	GS F 3-GEOT		PROJECT: Mesquite Creek Landfill PROJECT NUMBER: GW8636	DEPT	'H TO NG BA	WATE ACKFIL	R: N .L: B	ot Obs entoni	erved te Grout
DEPTH (ft-bgs)	ELEVATION (ft)	DESCRIPTION 1) Soil Name (USCS) 6) Plasticity 2) Color 7) Density/Consi 3) Moisture 8) Other (Minera 4) Grain Size Discoloration, 5) Percentage	stency Content, Odor, etc.)	STRATUM	GRAPHIC LOG	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	RESULTS X3DU LIVI INIT LIVI INIT
65 -	650	 (10.25') CLAY; olive yellow (2.5Y 6/8) to light olive brown (2.5Y 5/some locations; some iron mottling; very stiff (PP > 4.5 tsf); trace (61') Calcite vein at 45-degree (62') CLAYSTONE; dark gray (2.5Y 4/1); pale olive yellow color m fractures with calcite/gray clay infilling; very hard; trace moist (63.5') Multiple fractures from 63.5 to 67.5 ft bgs with olive yellow mineralization 	4); with trace gravel and calcite veins at moist to dry <i>(cont.)</i> ottling/discoloration at some locations; discoloration and/or calcite based	Stratum III		8 22 28 45	36		
70 -				Stratum IV			119.5	87.3 2.	9 61 41
80 -		(83.25') Iron staining from 83.25 to 89 ft bgs					118		
90- CC EC DF	DNTRAC QUIPMEI RILL MT	CTOR: Texplor of Dallas, Inc. NORTHING: 13811716.4 NT: CME 75 Truck Mounted EASTING: 2278424.5 HD: HSA / Coring ONTUB ONTION: CORT OF DALLAS, INC. ONTUB	LOGGER: L. Varner; G. Kumar NOTES: SI - Stratum I	REV	IEWE	R: W. I	 Burke	 •	
DF	RILL BIT	SINT D: SPT, Shelby Tube, Core SIZE/TYPE: HSA 6" - NQ2	SEE KEY SHEET FOR SYMBOLS AND ABBR	EVIATIO	NS	O Page	ctobe ∋ No.	er 202: 4C-84	3 4

	Geo	OSYN consu	ltec ^D	8217 Suite Austir Phone www.	Shoal Creek B 200 n, TX 78757 e: (512) 451-4 geosyntec.com	ilvd 003 1	BORING: GB-45 START DATE: 1/3/2023 FINISH DATE: 1/3/2023 LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	GRO TOT, DEP	ound Al de Th to	SUR EPTI	S RFAC H: 1 ⁻ ATE	SHEE CE: 7 12 ft R: N	T 4 711.5 bgs lot Ol	ft M	4 SL ed
0	GS F 3-GEOT	ORM: ECH3 BF		BORE	HOLE LO	G	PROJECT NUMBER: GW8636	BOR	ING E	ACI	KFIL	.L: B	Bento	nite C	Grout
DEPTH (ft-bgs)	ELEVATION (ft)			1) Soil 2) Colo 3) Mois 4) Grain 5) Perc	DESCI Name (USCS) or sture n Size ventage	6) Plasticity 7) Density/Consis 8) Other (Mineral Discoloration, 0	tency Content, Ddor, etc.)	STRATUM	GRAPHIC LOG	түре	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	
- - - 95 - - - - - - - - - - - - - - - - - -	- 620 - - - 615 - - - - - - - - - - - - - - - - - -	(62') CLAY fractures w	STONE; dark	gray (2.5Y y clay infilli	4/1); pale olive	e yellow color mo trace moist <i>(cont</i>	ttling/discoloration at some locations;	Stratum IV				54			
- 105 - - 110 -	- - - - - - - - - - - - - - 											109			
		(112') Borii	ng terminated												
	NTRAC UIPMEI ILL MT MPLING ILL BIT	TOR: Texp NT: CME 75 HD: HSA / 0 G MTHD: S SIZE/TYPE	lor of Dallas, I 5 Truck Moun Coring PT, Shelby Tu :: HSA 6" - No	nc. ted Ibe, Core Q2	NORTHING EASTING	: 13811716.4 : 2278424.5	LOGGER: L. Varner; G. Kumar NOTES: SI - Stratum I SEE KEY SHEET FOR SYMBOLS AND ABBR	RE	/IEWE	ER: F	W. E Oc Page	Burke	er 20 . 4C-	23 85	

	Geo	OSYNTEC consultants 8217 Shoal Creek Blvd Suite 200 Austin, TX 78757 Phone: (512) 451-4003 www.geosyntec.com	BORING: GB-46 START DATE: 1/18/2023 FINISH DATE: 1/19/2023 LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	GRO TOT/ DEP	UND AL DI TH TC	SUR EPTH	S FAC 1: 1 ⁻¹	5 HEE 5 E : (10 ft R : N	585.2 bgs	OF ft M	4 SL ed
	GS F 3-GEOT		PROJECT NUMBER: GW8636	BOR	ING E	BACK	(FIL	L: E	Bento	nite C	Grout
DEPTH (ft-bgs)	ELEVATION (ft)	DESCRIPTION 1) Soil Name (USCS) 6) Plasticity 2) Color 7) Density/Consi 3) Moisture 8) Other (Mineral 4) Grain Size Discoloration, 5) Percentage	stency Content, Odor, etc.)	STRATUM	GRAPHIC LOG	S TYPE	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	PLASTICITY INDEX
	685 -	(0') CLAY; very dark gray (5Y 3/1); organics; some gravel; few me plastic	dium to fine sand; stiff; moist; medium	tratum I				24			
- - 5	- - - 680 –	(2') CLAY; light olive brown (2.5Y 5/4) to light yellowish brown (2.5 nodules; trace sand; some crystalline mineralization/lamination (se	FY 6/4); occasional iron staining and elenite); hard; very stiff; moist	Ŭ.		X	10 15 21 26	24			-
-	-							24			
-	-					V	7 11 16	24			
10 - - -	675 - - -						20				-
15 — - -	670 - -			Stratum III							-
20 -	- 665 - -	(20') Sand lenses				X	5 10 15 21	24			-
	- 660 - - -										-
DR DR DR DR DR DR	NTRAC UIPMEI ILL MT MPLIN(ILL BIT	CTOR: Texplor of Dallas, Inc. NORTHING: 13811287.2 NT: CME 75 Truck Mounted EASTING: 2278799.4 HD: HSA / Coring GMTHD: SPT, Shelby Tube, Core SIZE/TYPE: HSA 6" - NQ2	LOGGER: J. Geesin NOTES:		/IEWI	ER: \	W. E Oc Page	Burke	er 202	23 86	ı

C	<i>ie</i>	OSYI consu	Itec ^D	8217 Shoal Creek B Suite 200 Austin, TX 78757 Phone: (512) 451-4 www.geosyntec.cor	Blvd 1003 n	BORING: GB-46 START DATE: 1/18/2023 FINISH DATE: 1/19/2023 LOCATION: New Braunfels	GRO TOT/	und Al de	SUR	S FAC 1: 1	HEE E: 6	т 2 85.2 bgs	OF ft M	4 SL
03-	GS F -GEOT	ORM: ECH3 BF) B	OREHOLE LC)G	PROJECT: Mesquite Creek Landfill PROJECT NUMBER: GW8636	DEP BOR	TH TO ING E	D WA BACH	ATEF (FIL	R: No L: B	ot Ob entor	serve nite C	ed Grout
DEPTH (ft-bgs)	ELEVATION (ft)			DESC 1) Soil Name (USCS) 2) Color 3) Moisture 4) Grain Size 5) Percentage	RIPTION 6) Plasticity 7) Density/Consis 8) Other (Mineral Discoloration, C	tency Content, Ddor, etc.)	STRATUM	GRAPHIC LOG	TYPE g	BLOWS PER 6"	RECOVERY (in) a	PERCENT FINES (%)	MOISTURE CONTENT (%)	PLASTICITY INDEX
	655 - - - 650 - - - - - - - - - - - - - - - - - -	(2') CLAY; nodules; tr (31') Calca (40') Seler (40') Seler	; light olive brown race sand; some of areous gravel lens nite deposition ny selenite crystals	(2.5Y 5/4) to light yell crystalline mineralizati ses and crystalline min	owish brown (2.5 on/lamination (sel leralization	Y 6/4); occasional iron staining and enite); hard; very stiff; moist <i>(cont.)</i>	=		X	7 13 17 25 25 15 20 26 50	24 24 24			
	640 - - - - - - - - - - - - - - - - - -	(50') Vertio	cal crystalline lam	ination from 50 to 51	ft bgs; friable and	dry from 51 to 52 ft bgs	Stratum			23 23 50	12			
CON EQU DRIL SAM DRIL	ITRAC JIPMEI _L MT IPLING _L BIT	CTOR: Texp NT: CME 7 THD: HSA / G MTHD: S SIZE/TYPI	olor of Dallas, Inc. 5 Truck Mounted Coring 6PT, Shelby Tube E: HSA 6" - NQ2	NORTHIN EASTIN	G: 13811287.2 G: 2278799.4	LOGGER: J. Geesin NOTES:		/IEWI	E R : \	W. E Oc Page	Burke tobe No.	r 202 4C-8	23 37	

	Ge	OSYI consi	Itec ^C	8217 Sh Suite 20 Austin, 1 Phone: (www.geo	noal Creek Blv 0 TX 78757 (512) 451-400 osyntec.com	rd 03	BORING: GB-46 START DATE: 1/18/202 FINISH DATE: 1/19/2023 LOCATION: New Braunf	3 3 jels	GRO TOT	ound Al de	SUR	S RFAC H: 1 ⁻	SHEE CE: (10 ft	ET 3	3 OF 2 ft N	= 4 ISL
	GS F 3-GEO1	ORM: FECH3 BF		BOREH	OLE LOO	G D	PROJECT: Mesquite Cre PROJECT NUMBER: GV	V8636	BOR	ING E		KFIL	L : E	Bento	nite	Grout
DEPTH (ft-bgs)	ELEVATION (ft)			1) Soil Nar 2) Color 3) Moisture 4) Grain Si 5) Percent	DESCRI me (USCS) e ize age	PTION 6) Plasticity 7) Density/Consis 8) Other (Mineral Discoloration, C	tency Content, Odor, etc.)		STRATUM	GRAPHIC LOG	S LYPE	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	LIQUID LIMIT
65 - - - 70 - - - - - - - - - - - - - - - - - - -		(2') CLAY nodules; 1 (61') Frac	(; light olive bro trace sand; so ture with heav (; YSTONE; dar cturing; some vy iron staining	own (2.5Y 5/4) me crystalline r ry crystalline mi k gray (2.5Y 3/ weathering; ver g from 69 to 70	to light yellow mineralization ineralization 1) with heavy ry hard; dry 0 ft bgs	ish brown (2.5 //amination (sel	Y 6/4); occasional iron stain enite); hard; very stiff; mois	ing and t (<i>cont.</i>)	Stratum IV Stratum II			17 23 50	22 24 120 120			
90 - CC		CTOR: Tex	plor of Dallas,	Inc.	NORTHING:	13811287.2	LOGGER: J. Geesin		RE	/IEWI	ER:	W. E	Burke	 e		
EC DF SA DF	QUIPME RILL MT MPLIN RILL BIT	NT: CME 7 THD: HSA / G MTHD: \$ T SIZE/TYP	75 Truck Mour / Coring SPT, Shelby T 'E: HSA 6" - N	nted Tube, Core NQ2	EASTING:	2278799.4	NOTES:	LS AND ABBR		DNS	F	Oc Page	tobe No	er 20 . 4C-	23 88	

	Ger	OSYC consu		8217 Shoa Suite 200 Austin, TX Phone: (51 www.geosy	al Creek Blv 78757 12) 451-400 yntec.com	d)3	BORING: (START DA FINISH DAT LOCATION PROJECT:	GB-46 TE: 1/18/2023 TE: 1/19/2023 I: New Braunfels Mesquite Creek Landfill	GRO TOT, DEP	UND AL DE TH TC	SURI EPTH	SH FACE : 110 TER:	EET : 685) ft bg Not (4 o 5.2 ft l s Obse	F 4
0	3-GEOT	ECH3 BF		BOREHO		;		NUMBER: GW8636	BOR	ING B		FILL	Ben	tonite	Grout
DEPTH (ft-bgs)	ELEVATION (ft)			1) Soil Name 2) Color 3) Moisture 4) Grain Size 5) Percentage	DESCRI	 PTION 6) Plasticity 7) Density/Consis 8) Other (Mineral e Discoloration, C 	tency Content, Ddor, etc.)		STRATUM	GRAPHIC LOG	SA	BLOWS PER 6"	PERCENT FINES (%)	MOISTURE CONTENT (%)	
- - - 95 - - - - - - - - - - - - - - - - - - -	595 - - - 590 - - - 585 - - - - -	(65') CLA' minor frac	/STONE; dark turing; some w	gray (2.5Y 3/1) eathering; very	with heavy hard; dry <i>(c</i>	iron staining ar	nd yellow disco	oloration in upper zones;	Stratum IV			e e	10		
105 — - - 110 —		(110') Bori	ng terminated.									1.	20		
S.GPJ GEOSNIEC.GD1 05/09/23	- - - 570 - -														
DB-GEOTECH3 BF GEOS BRAUNFEL DD DD DD DD DD DD DD DD DD DD DD	NTRAC UIPMEI ILL MT MPLING ILL BIT	CTOR: Texp NT: CME 7 HD: HSA / G MTHD: S SIZE/TYPI	olor of Dallas, Ir 5 Truck Mounte Coring 9T, Shelby Tut E: HSA 6" - NC	nc. N ed pe, Core 22	orthing: Easting:	13811287.2 2278799.4	LOGGER: NOTES:	J. Geesin		/IEWE	E R : V	V. Bu Octo age N	rke bber 2	2023	

出 03-GEOTECH3

(Ge	osyr	Rec 8217 Shoal Creek Blvd Suite 200 Austin, TX 78757 Decret (512) 451 4002	BORING: GB-47 START DATE: 1/10/2023 FINISH DATE: 1/10/2023	GRO	UND	SUR	S	SHEE CE: (ET 2	2 OF	3 ISL
	GS F		BOPEHOLELOC	LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	TOT/ DEPT	AL DE TH TO		H: 7 [°] Atei	1 ft k R: N	ogs lot Ol	oser\	/ed
0	3-GEOT	ECH3 BF		PROJECT NUMBER: GW0030					.L.: C			
DEPTH (ft-bgs)	ELEVATION (ft)		DESCRIPTION 1) Soil Name (USCS) 2) Color 3) Moisture 4) Grain Size 5) Percentage	tency Content, Jdor, etc.)	STRATUM	GRAPHIC LOG	ТҮРЕ	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	LIQUID LIMIT
	- 640 - - 635 - - 630 - 	(7') CLAY; iron stainir moist to dr (38') Some	light yellowish brown (2.5Y 6/4) to light olive brown (2.5Y ig; some fractures with calcite mineralization/lamination; y ; low to high plasticity <i>(cont.)</i> e heavy calcite mineralization from 38 to 40 ft bgs	Y 5/3); trace mica and iron nodules; very hard; very stiff (PP > 4.5 tsf);	=		X	9 11 16 23	20.5			
45 - - - - - - - - - - - - - - - - - -	625 - 620 	(48') Color	grades to greenish gray from 48 to 60 ft bgs		Stratum		X	9 11 14 21	24 24			
60 – CC EQ DR SA DR		CTOR: Texp NT: CME 7: THD: HSA / G MTHD: S SIZE/TYPE	Nor of Dallas, Inc. NORTHING: 13810896.1 5 Truck Mounted EASTING: 2279186.2 Coring PT, Shelby Tube, Core 5: HSA 6" - NQ2	LOGGER: L. Varner NOTES: SEE KEY SHEET FOR SYMBOLS AND ABBR		/IEWE	ER: '	W. E Oc	24 Burke	e er 20 . 4C-	23 91	

	Geo	OSyntec 8217 Shoal Creek Blvd Suite 200 Austin, TX 78757 Phone: (512) 451-4003 www.geosyntec.com	BORING: GB-47 START DATE: 1/10/2023 FINISH DATE: 1/10/2023 LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	GRO TOTA	UND AL DI TH TC	SUR EPTH	S FAC 1: 71	5HEE 5E: 6 1 ft b 7: N	570.9 0gs	ft M	3 SL ed
0:	GS F 3-GEOT	ORM: ECH3 BF BOREHOLE LOG	PROJECT NUMBER: GW8636	BOR	ING E	BACK	(FIL	L: E	Bentor	nite C	Grout
DEPTH (ft-bgs)	ELEVATION (ft)	DESCRIPTION 1) Soil Name (USCS) 6) Plasticity 2) Color 7) Density/Consis 3) Moisture 8) Other (Mineral 4) Grain Size Discoloration, C 5) Percentage	tency Content, Ddor, etc.)	STRATUM	GRAPHIC LOG	is TYPE	BLOWS PER 6"	RECOVERY (in) B	PERCENT FINES (%)	MOISTURE CONTENT (%)	
	610	(60') CLAY; greenish gray (GLEY1 5/10Y) to very dark greenish gra brittle zones; very hard; trace moist to dry (71') Boring terminated.	ay (GLEY1 3/10Y); some weathered/	Stratum IV		X	16 17 21 26 26 14 19 22 30	24			
- 75 - -	- - 595 -										
- 80 -	- - 590 – -										
85 -	- - 585 - - -										
	NTRAC UIPMEI ILL MT MPLING ILL BIT	CTOR: Texplor of Dallas, Inc. NORTHING: 13810896.1 NT: CME 75 Truck Mounted EASTING: 2279186.2 HD: HSA / Coring G MTHD: SPT, Shelby Tube, Core SIZE/TYPE: HSA 6" - NQ2	LOGGER: L. Varner NOTES: SEE KEY SHEET FOR SYMBOLS AND ABBR		/IEWI	ER: \	W. B Oc Page	Burke	er 202 4C-9	23	'

	Geo	DSyntec consultants 8217 Shoal Creek Blvd Suite 200 Austin, TX 78757 Phone: (512) 451-4003 www.geosyntec.com	BORING: GB-48 START DATE: 12/13/2022 FINISH DATE: 12/14/2022 LOCATION: New Braunfels	GRO TOT	UND AL DI	SUR	S RFAC H: 1	SHEE SE: 59 ft	T 1 707.9 bgs	OF ft M	6 SL
0:	GS F 3-GEOT	BOREHOLE LOG	PROJECT: Mesquite Creek Landfill PROJECT NUMBER: GW8636	BOR	ING E	BACH	KFIL	L : E	Bentor	serv nite C	ea Grout
DEPTH (ft-bgs)	ELEVATION (ft)	DESCRIPTION 1) Soil Name (USCS) 6) Plasticity 2) Color 7) Density/Consi 3) Moisture 8) Other (Minera 4) Grain Size Discoloration, 5) Percentage	istency I Content, Odor, etc.)	STRATUM	GRAPHIC LOG	TYPE S	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	
-		(0') CLAY; black (10YR 2/1); organic; grasses and rootlets; little c coarse to fine sand; soft (PP = 1.25 tsf); moist	oarse to medium grained gravel; trace	stratum I		X	1 1 3	14	95.7 3	3.8 7	71 39
- - 5 -	. 705 	(2') Silty GRAVEL with Sand (round to sub angular); caliche with s	some chert fragments; moist to dry	Stratum II Stratum II			2 16 13 14 15 12 15 13 10	15 20 22	46.7	7.7	18 -
- 10 — -	 	(10.25') Significant white, dry caliche intermixed with clay from 10 (12') CLAY; yellow (2.5Y 8/6) to light yellowish brown (2.5Y 6/4), a	.25 to 12 ft bgs and to pale olive (5Y 6/4); trace coarse				20 30 40 41 10 20 22 25	22 24			
- - 15 -	695 — - - - -	rounded gravel; iron staining/nodules and orange mottling; thin gra 4.5 tsf); trace moist (14.7') Heavy iron staining at some locations from 14.7 to 23 ft bg	ay clay lamination; hard; very stiff (PP >			X	8 15 18 18	19.5 24 11			
- - 20 — -	. 690 – - - -	(18') Vertical thin grey clay lamination from 18 to 45 ft bgs		ratum III		X	10 17 22 31	24 15			
25	- 685 – 			Ñ		X	12 21 25 34	24 16			
	680 -					X	14 23 29 33	24			
	NTRAC UIPMEI ILL MT MPLINC	TOR: Texplor of Dallas, Inc.NORTHING: 13811939.7IT: CME 75 Truck MountedEASTING: 2277113.0ID: HSA / CoringFMTHD: SPT, Shelby Tube, CoreSIZE/TYPE: HSA 6" - NQ2	LOGGER: G. Kumar; P. Pandey NOTES:	RE	/IEWI	ER: T	W. E Oc Page	Burke	er 202 4C-9	23	-

(Geo	OSynte consultan	C ^D Sui Aus ts Pho	17 Shoal Creek Blv te 200 stin, TX 78757 one: (512) 451-400	/d 03	BORING: GB-48 START DATE: 12/13/2022 FINISH DATE: 12/14/2022 LOCATION: New Braunfels	GRO TOT/		SUR	S FAC	HEE E: 7	T 2 707.9	OF ft MS	6 SL
	GS F	ORM:	BOR		 G	PROJECT: Mesquite Creek Landfill PROJECT NUMBER: GW8636	DEP	TH TC	D WA	TEF	R: N L: B	ot Ob entor	serve nite G	ed Grout
									SA	MPL	E	LAE	3 RESI	JLTS
DEPTH (ft-bgs)	ELEVATION (ft)		1) S 2) C 3) M 4) G 5) P	DESCRI oil Name (USCS) lolor loisture irrain Size ercentage	 6) Plasticity 7) Density/Consis 8) Other (Mineral Discoloration, Context) 	tency Content, Ddor, etc.)	STRATUM	GRAPHIC LOG	ТҮРЕ	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	PLASTICITY INDEX
- - - - - - - - - - - - - - - - - - -	- 675 - - 670 - - - - - - - - - - - - - - - - - -	(12') CLAY; yellov rounded gravel; in 4.5 tsf); trace moi	w (2.5Y 8/6) to li ron staining/nodi ist <i>(cont.)</i>	ight yellowish brow les and orange m	/n (2.5Y 6/4), a ottling; thin gray	nd to pale olive (5Y 6/4); trace coarse / clay lamination; hard; very stiff (PP >				14 19 25 29 12 19 25 30 8 13 20 20	24 17 24 24 24	1	7.4	
45 - - 50	- - 660 — - -	(44.5') Chert fragi	ments; trace coa	arse rounded grave	el with iron nodu	ules	Stratum III			10 13 21 20	24	98.7 1	9.1 5	- 50 26 -
-	- 655 — -	(51.3') Horizontal	fracture with 5	mm moist grey incl	lusion					15 18 23	24 20	1	7.3	
55 - - - - -	- - 650 -	(54.3') Iron stainir	ng; grey mottling					20 25 30	24			-		
CC EQ DR SA DR	NTRAC UIPMEI ILL MT MPLINC ILL BIT	CTOR: Texplor of D NT: CME 75 Truck HD: HSA / Coring G MTHD: SPT, Sh SIZE/TYPE: HSA	Dallas, Inc. k Mounted nelby Tube, Core k 6" - NQ2	NORTHING: EASTING:	13811939.7 2277113.0	LOGGER: G. Kumar; P. Pandey NOTES: SEE KEY SHEET FOR SYMBOLS AND ABBR		VIEWE	ER: \ P	V. B Oc age	Burke tobe No.	er 202 4C-9	23	

	Ge	OSYN consul		8217 Sho Suite 200 Austin, T2 Phone: (5 www.geo	oal Creek Blv) X 78757 512) 451-400 syntec.com	rd 03	BORING: GB-48 START DATE: 12/13/2022 FINISH DATE: 12/14/2022 LOCATION: New Braunfels PRO JECT: Meenuite Crock Landfill	GRO TOTA			S FAC 1: 1:	59 ft	ET 3 707.9 bgs	ft M	6 ISL
0	GS F 3-GEOT	ORM: ECH3 BF	E	BOREHC	DLE LOG	3	PROJECT NUMBER: GW8636	BOR	ING E	BACK	(FIL	L: E	Bento	nite (Grout
DEPTH (ft-bgs)	ELEVATION (ft)			1) Soil Nam 2) Color 3) Moisture 4) Grain Siz 5) Percenta	DESCRI ne (USCS) re ge	PTION 6) Plasticity 7) Density/Consist 8) Other (Mineral (Discoloration, C	tency Content, Jdor, etc.)	STRATUM	GRAPHIC LOG	ίς τγρε	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	LIQUID LIMIT
- - - - - - - - - - - - - - - - - - -	- 645 - - - - - - - - - - - - - - - - - - -	(12') CLAY rounded gra 4.5 tsf); tra (60') Grade (62') CLAY dry	; yellow (2.5Y 8 avel; iron stainir ce moist <i>(cont.)</i> is to dark gray o STONE; dark g	v(6) to light yeing/nodules are slay from 60 to reenish gray	ellowish brow nd orange mo <u>o 62 ft bgs</u> (GLEY1 4/10	n (2.5Y 6/4), ar ottling; thin gray	hered zones; very hard; trace moist to	Stratum IV Stratum II			26 33 34 45	24 36			
CC EQ DR SA DR DR	NTRAC UIPMEI ILL MT MPLIN ILL BIT	CTOR: Texpl NT: CME 75 HD: HSA / (G MTHD: SF SIZE/TYPE	or of Dallas, Inc Truck Mounted Coring PT, Shelby Tube : HSA 6" - NQ2	2. I d e, Core 2	Northing: Easting:	13811939.7 2277113.0	LOGGER: G. Kumar; P. Pandey NOTES: SEE KEY SHEET FOR SYMBOLS AND ABBR	RE	/IEWI	ER: \ F	W. E Oc Page	Burke	er 20: . 4C-	23 95	

	Geo	OSyntec ^D consultants	8217 Shoal Creek Blvd Suite 200 Austin, TX 78757 Phone: (512) 451-4003 www.geosyntec.com		BORING: GB-48 START DATE: 12/13/2022 FINISH DATE: 12/14/2022 LOCATION: New Braunfels PROJECT: Masquite Creek Landfill	GRO TOTA	UND : AL DE	SUR	SH FACI 1: 15:	HEET E : 70 ⁻ 9 ft bg	4 c 7.9 ft gs	MSL	
0:	GS F 3-GEOT	ORM: TECH3 BF	BOREHOLE LOG		PROJECT NUMBER: GW8636	BOR	ING B		FILL	: Ber	ntonite	Grou	ıt
DEPTH (ft-bgs)	ELEVATION (ft)		DESCRIPTION 1) Soil Name (USCS) 6) Plastic 2) Color 7) Densii 3) Moisture 8) Other 4) Grain Size Discol 5) Percentage	icity ity/Consistr (Mineral C Ioration, O	ency Content, Idor, etc.)	STRATUM	GRAPHIC LOG	S	BLOWS PER 6"	RECOVERY (in) PERCENT FINES (%)		ESULTS	PLASTICITY INDEX
- - 95 - - - 100	- 615 -	(62') CLAYSTONE; dark dry <i>(cont.)</i>	greenish gray (GLEY1 4/10Y); sor	me weat	hered zones; very hard; trace moist to				1	20	9 10.2	54	23
- - - 105 - - - - - - - - - - - - - - - - - - -	- 605 - 600 					Stratum IV			1	16			-
SKAUNFELS.GPJ GEOSNIEC.GD1 05/09/23	. 595 . 595 								4	20			-
	UIPMEI	CTOR: Texplor of Dallas, I NT: CME 75 Truck Moun HD: HSA / Coring G MTHD: SPT, Shelby Tu SIZE/TYPE: HSA 6" - No	nc. NORTHING: 13811 ted EASTING: 2277 ibe, Core	1939.7 7113.0	LOGGER: G. Kumar; P. Pandey NOTES:	RE	/IEWE	R: \	W. Bu	urke	2023	<u> </u>	

	Ge	OSyntec ^D consultants	8217 Shoal Creek Blvo Suite 200 Austin, TX 78757 Phone: (512) 451-400 www.geosyntec.com	d 3	BORING: GB-48 START DATE: 12/13/2022 FINISH DATE: 12/14/2022 LOCATION: New Braunfels BPO JECT: Macquite Creak Landfill	GRO TOTA		SURF	SHE ACE: 159 f	ET 5	5 OF	6 SL
0	GS F 3-GEOT		OREHOLE LOG	;)	PROJECT NUMBER: GW8636	BOR	NG B			Bento	nite (eu Grout
								SAN	IPLE	LA	B RES	ULTS
DEPTH (ft-bgs)	ELEVATION (ft)		DESCRIF 1) Soil Name (USCS) 2) Color 3) Moisture 4) Grain Size 5) Percentage	 Plasticity Plasticity Density/Consist Other (Mineral Quincoloration, Culture) 	tency Content, Ddor, etc.)	STRATUM	GRAPHIC LOG	TYPE PLOWED FILL	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%	LIQUID LIMIT PLASTICITY INDEX
-	-	(62') CLAYSTONE; dark gr dry (cont.)	reenish gray (GLEY1 4/10)Y); some weat	thered zones; very hard; trace moist to							
- - 125 — -	- 585 - - -								120			
- - 130 —	- 580 — - -								115			
- - 135 -	- 575 - -					Stratum IV						
- - 140 — -	- 570 - -								117			
	- 565 - -	· · ·										
	- 560 – -								60			
	NTRAC UIPMEI ILL MT MPLING ILL BIT	CTOR: Texplor of Dallas, Inc NT: CME 75 Truck Mounted HD: HSA / Coring G MTHD: SPT, Shelby Tube SIZE/TYPE: HSA 6" - NQ2	NORTHING: EASTING:	13811939.7 2277113.0	LOGGER: G. Kumar; P. Pandey NOTES: SEE KEY SHEET FOR SYMBOLS AND ABBR		IEWE	R: W	. Burk Octob ge No	er 20 0. 4C-	23 97	

	Geo	Consultants 8217 Shoa Suite 200 Austin, TX Phone: (51 www.geos	al Creek Blvd 78757 12) 451-4003 yntec.com	BORING: GB-48 START DATE: 12/13/2022 FINISH DATE: 12/14/2022 LOCATION: New Braunfels PROJECT: Mesquite Crock Landfill	GRO TOT		SUR	S FAC 1: 15	HEE E: 7 59 ft	T 6	OF ft MS	6 L
0	GS F 3-GEOT	DRM: ECH3 BF BOREHO	LE LOG	PROJECT: Mesquite Creek Landin PROJECT NUMBER: GW8636	BOR	ING E	ACK	(FILI	L: B	enton	ite Gr	out
DEPTH (ft-bgs)	ELEVATION (ft)	1) Soil Name 2) Color 3) Moisture 4) Grain Size 5) Percentage	DESCRIPTION (USCS) 6) Plasticity 7) Density/Consis 8) Other (Mineral O Discoloration, C e	tency Content, Ddor, etc.)	STRATUM	GRAPHIC LOG	TYPE g	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)		PLASTICITY INDEX
- - - 155 - - - -	- 555 - - - 550	(62') CLAYSTONE; dark greenish gray (dry <i>(cont.)</i>	GLEY1 4/10Y); some wea	thered zones; very hard; trace moist to	Stratum IV				101			-
- 160 — -	-	(159') Boring terminated.										-
- - 165 — -	545 - -											
-	- 540 — -											
170 -	-											-
	- 535 -											-
	- 530 – -											
03-GEOTECH3 BF GE DB DB DB DB	NTRAC UIPMEI ILL MT MPLING ILL BIT	TOR: Texplor of Dallas, Inc. N NT: CME 75 Truck Mounted HD: HSA / Coring G MTHD: SPT, Shelby Tube, Core SIZE/TYPE: HSA 6" - NQ2	ORTHING: 13811939.7 EASTING: 2277113.0	LOGGER: G. Kumar; P. Pandey NOTES: SEE KEY SHEET FOR SYMBOLS AND ABBRI		/IEWE	ER: \ P	W. B Oc Page	tobe No.	er 202 4C-9	3	

	Ge	OSYNTEC consultants 8217 Shoal Creek Blvd Suite 200 Austin, TX 78757 Phone: (512) 451-4003 www.geosyntec.com	BORING: GB-49 START DATE: 1/20/2023 FINISH DATE: 1/23/2023 LOCATION: New Braunfels	GRO TOT	ound Al de	SUR	S FAC 1: 1	SHEE CE: 7 03 ft	ET 1 703.2 bgs	0 F 2 ft N	: 4 ISL
	GS F 3-GEOT		PROJECT: Mesquite Creek Landfill PROJECT NUMBER: GW8636	BOR	TH TO ING E	D WA	ATE KFIL	R: N .L: E	lot Ot Bento	nite	/ed Grout
DEPTH (ft-bgs)	ELEVATION (ft)	DESCRIPTION 1) Soil Name (USCS) 6) Plasticity 2) Color 7) Density/Cons 3) Moisture 8) Other (Minera 4) Grain Size Discoloration, 5) Percentage	istency I Content, Odor, etc.)	STRATUM	GRAPHIC LOG	TYPE	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	LIQUID LIMIT
- - - 5 - - - -		 (0') CLAY; black (10YR 2/1); organics; grasses and rootlets; trace sand; very stiff (PP > 4.5 tsf); moist to dry (0.75') Sandy/Clayey calcareous GRAVEL and CALICHE with sor loose; friable; dry (8') Significant white, dry caliche intermixed with clay from 8 to 10 	e coarse gravel; few medium to fine ne chert fragments; medium dense to ft bgs	Stratum II SI			2 3 5 14 17 14 15 12 3 3 5 6	12 11 20			
10- - - - 15- - - - - - - - - - - - - - -		(10') CLAY; yellowish brown (10YR 5/6), olive (5Y 5/6) to light oliv lamination at some locations; some calcite mineralization/lamination tsf); trace moist	ve brown (2.5Y 5/4); trace silt; gray clay on; hard; stiff to very stiff (PP > 3.25	Stratum III		X	4 7 8 12	24			-
25- 	680 - 680 - 675 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TOR: Texplor of Dallas, Inc. NORTHING: 13811548.7 NT: CME 75 Truck Mounted EASTING: 2277499.8 HD: HSA / Coring G MTHD: SPT, Shelby Tube, Core SIZE/TYPE: HSA 6" - NQ2	LOGGER: P. Pandey; J. Geesin NOTES: SI - Stratum I SEE KEY SHEET FOR SYMBOLS AND ABBR	REV	//EWI	F	W. E	24 Burke ≥ No	er 200. . 4C-5	23	

	Geo	OSYN consu	ltec ^D	8217 Shoal Cr Suite 200 Austin, TX 787 Phone: (512) 4 www.geosynte	reek Blvd 757 451-4003 cc.com		BORING: GB-49 START DATE: 1/20/2023 FINISH DATE: 1/23/2023 LOCATION: New Braunfels	GRO TOT/	UND AL DE	SUR EPTH	S FAC I: 10	HEE E: 7)3 ft	т 2 03.2 f bgs	OF t MSI	4
	GS F 3-GEOT	ORM: ECH3 BF	В	OREHOLE	LOG		PROJECT: Mesquite Creek Landfill PROJECT NUMBER: GW8636	DEP BOR	TH TO ING E	D WA BACK	(TEF	R: No L: B	ot Obs entoni	ervec te Gr	l out
DEPTH (ft-bgs)	ELEVATION (ft)			1) Soil Name (US0 2) Color 3) Moisture 4) Grain Size 5) Percentage	DESCRIPTION CS) 6) Plasti 7) Dens 8) Other Disco	l sity/Consist r (Mineral C oloration, O	ency Content, dor, etc.)	STRATUM	GRAPHIC LOG	ZYPE	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)		PLASTICITY INDEX
	670 670 6665 6665 - 6660	(10') CLAY lamination tsf); trace r (30') Vertic	^r ; yellowish brown at some location noist <i>(cont.)</i> al calcite laminat	n (10YR 5/6), oliv s; some calcite m ion from 38 to 40 ft b	re (5Y 5/6) to li ineralization/la	ight olive amination	brown (2.5Y 5/4); trace silt; gray clay ; hard; stiff to very stiff (PP > 3.25	Stratum III		X	7 8 12 18		We		
45	655	(48') Friabl (53') CLAY zones ; trac	e; grades to gray /STONE; greenis ce chert fragmen	clay from 48 to 5 h black (GLEY1 2 ts; very hard; trac	53 ft bgs 2.5/10Y) with s ce moist	some iror	n staining/yellow discoloration in upper			X	33 50	16			
55	645 -	(54.25') He CTOR: Texp NT: CME 75	eavy iron staining lor of Dallas, Inc. 5 Truck Mounted	NORT	THING: 1381 ⁻¹ STING: 2277	1548.7 7499.8	LOGGER: P. Pandey; J. Geesin NOTES: SI - Stratum I	Stratum IV		ER: \	<i>.</i> В	120 Jurke			- - - - - -
DF SA DF	NPLIN MPLIN NLL BIT	HD: HSA/(G MTHD: SI SIZE/TYPE	Coring PT, Shelby Tube :: HSA 6" - NQ2	, Core			SEE KEY SHEET FOR SYMBOLS AND ABBRI	EVIATIC	ONS	Pa	Oc Ige N	tobe No. 4	r 2023 C-100	3	

DTECH3 BF GEOS BRAUNFELS.GPJ GEOSNTEC.GDT

(Ge	DSyntec Site 200 Austin TX 78757	BORING: GB-49 START DATE: 1/20/2023				S	HEE	т 3	6 OF	4	Ī
		consultants Phone: (512) 451-4003 www.geosyntec.com	FINISH DATE: 1/23/2023 LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	GRO TOTA	UND : AL DE TH TC	SUR EPTH) W/	EFAC 1: 10 1: 10	;E: 7 03 ft ⋜: №	703.2 bgs ot O ^l	? ft M	ISL ved	
	GS F 3-GEOT		PROJECT NUMBER: GW8636	BOR	ING B	AC	KFIL	L: B	ento	nite (Grout	J
	_					S	AMPL	E	LA	B RES	BULTS	
DEPTH (ft-bgs)	ELEVATION (ft)	1) Soil Name (USCS) 6) Plasticity 2) Color 7) Density/Cons 3) Moisture 8) Other (Minera 4) Grain Size Discoloration 5) Percentage	stency I Content, Odor, etc.)	STRATUM	GRAPHIC LOG	ТҮРЕ	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%	LIQUID LIMIT PI ASTICITY INDEX	
	-	(53') CLAYSTONE; greenish black (GLEY1 2.5/10Y) with some in zones ; trace chert fragments; very hard; trace moist (<i>cont.</i>)	on staining/yellow discoloration in upper									-
	640-							120				
65 -						Н						_
.												-
·	-											-
· ·	635-											-
	1 -											-
70-] -											-
	620											
	- 030-											
75 -				atum IV								_
				Str								
.	-											
·	625 -											
·	-											
80 -	-											-
] -											
	620-											
85 -	-					Ц						_
	-							100				
	615-							001				
90 - CC EC) DNTRAC QUIPME	NORTHING: 13811548.7 NT: CME 75 Truck Mounted EASTING: 2277499.8	LOGGER: P. Pandey; J. Geesin NOTES: SI - Stratum I	RE\	/IEWE	R:	W. E	Burke	;	<u> </u>)
DF SA	RILL MT	HD: HSA / Coring G MTHD: SPT, Shelby Tube, Core					Oc	tobe	er 20	23		
DF	RILL BIT	SIZE/TYPE: HSA 6" - NQ2	SEE KEY SHEET FOR SYMBOLS AND ABBR	EVIATIO	ONS	Pa	age l	No. 4	4C-1	01		J

	Geo	consultants	BORING: GB-49 START DATE: 1/20/2023 FINISH DATE: 1/23/2023 LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	GRO TOT	UND AL DE	SUR EPTH	SH FACI 1: 10: TER	HEE1 E: 70 3 ft b	7 4 0 03.2 ft 0gs t Obse	DF 4 MSL erved		
0;	GS F 3-GEOT		BOREHOLE LOG		PROJECT NUMBER: GW8636	BOR			FILL	: Be	entonit	e Grout
DEPTH (ft-bgs)	ELEVATION (ft)		DESCRIPTION 1) Soil Name (USCS) 2) Color 3) Moisture 4) Grain Size 5) Percentage	ity //Consist Mineral (pration, C	tency Content, Jdor, etc.)	STRATUM	GRAPHIC LOG	2 TYPE	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%) MOISTURE CONTENT (%)	
- - - 95 - - - - -	- 	(53') CLAYSTONE; greeni zones ; trace chert fragme	sh black (GLEY1 2.5/10Y) with so nts; very hard; trace moist <i>(cont.)</i>	ome iro	n staining/yellow discoloration in upper	Stratum IV			1	106		
100	- - - - - - - - -	(103') Boring terminated.										
- - 110 - - - -	595 — - - -											
ELS.GPJ GEOSNIEC.GUI 109/03	590											
03-GEOTECH3 BF GEOS BRAUNT D D D D D D D D D D D D D D D D D D D	585 - NTRAC UIPMEI ILL MT MPLING ILL BIT	TOR: Texplor of Dallas, Inc NT: CME 75 Truck Mounted HD: HSA / Coring 3 MTHD: SPT, Shelby Tube SIZE/TYPE: HSA 6" - NQ2	c. NORTHING: 138115 d EASTING: 22774 e, Core	548.7 199.8	LOGGER: P. Pandey; J. Geesin NOTES: SI - Stratum I SEE KEY SHEET FOR SYMBOLS AND ABBR		/IEWI	E R: \	V. Bu Octu ge N	urke ober	2023 C-102	

	Ge	OSyntec 8217 Shoal Creek Blvd suite 200 Austin, TX 78757 Phone: (512) 451-4003 www.geosyntec.com	BORING: GB-50 START DATE: 1/9/2023 FINISH DATE: 1/10/2023 LOCATION: New Braunfels PRO JECT: Mescuite Crock Landfill	GRO TOT/		SUR	S FAC 1: 1 ⁻¹	E: 6	588.6 bgs	OF ft MS	4 L
0:	GS F 3-GEOT	ORM: ECH3 BF BOREHOLE LOG	PROJECT NUMBER: GW8636	BOR	ING E	BACK	KFIL	L: B	Benton	ite Gr	rout
DEPTH (ft-bgs)	ELEVATION (ft)	DESCRIPTION 1) Soil Name (USCS) 6) Plasticity 2) Color 7) Density/Consis 3) Moisture 8) Other (Mineral 4) Grain Size Discoloration, 6 5) Percentage	stency Content, Odor, etc.)	STRATUM	GRAPHIC LOG	S	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)		PLASTICITY INDEX
-	-	(0') CLAY; bluish black (GLEY2 2.5/10B); organic; some silt and romoist	oots; trace fine sand; soft (PP = 1 tsf);	Stratum I			1 2 3 4	12			
- 5 -	- 685 - - -	 (3') CLAY; olive gray (5Y 4/2) and light yellowish brown (2.5Y 6/4) mottling; caliche lenses at shallow zones; some fracturing with calc very stiff (PP > 4.5 tsf); dry to moist; low to medium plastic (5') Some caliche lenses from 5 to 7 ft bgs 	to olive brown (2.5Y 4/4); significant cite infill and/or iron staining; very hard;			X	5 6 7	13 16			-
- - 10 –	- 680 - - -						5 7 8 12	20.5			-
- - 15 — -	- 675 - -			atum III				17			
- - 20 – ເຄ	- 670 - -			Str		X	4 9 14	24			-
LS.GPJ GEOSNIEC.GD1 U2/U2/	- 665 - -							18			-
SEOS BRAUNFEL	660 -						9 16 18 20	23			
CO EQ DR SA DR	NTRAC UIPMEI ILL MT MPLIN ILL BIT	FIOR: 1explor of Dallas, Inc. NORTHING: 13811157.6 NT: CME 75 Truck Mounted EASTING: 2277886.6 HD: HSA / Coring G MTHD: SPT, Shelby Tube, Core SIZE/TYPE: HSA 6" - NQ2 SIZE/TYPE: HSA 6" - NQ2	NOTES:		NEWI	ER: V	VV. E Oc age I	surke tobe	er 202 4C-10	3 3	

	Ge	OSyntec8217 Shoal Creek Blvd Suite 200consultantsAustin, TX 78757 Phone: (512) 451-4003 www.geosyntec.com	BORING: GB-50 START DATE: 1/9/2023 FINISH DATE: 1/10/2023 LOCATION: New Braunfels PROJECT: Mescuito Crock Londfill	GRO TOTA		SUR	SI FAC 1: 11	HEE E: 68 4 ft k	T 2 (88.6 ft ogs	DF 4	•
0	GS F 3-GEOT	ORM: ECH3 BF BOREHOLE LOG	PROJECT: Mesquite Creek Landhin PROJECT NUMBER: GW8636	BOR	NG E	BACK	FILL	.: Be	entonit	e Gro	ut
DEPTH (ft-bgs)	ELEVATION (ft)	DESCRIPTION 1) Soil Name (USCS) 6) Plasticity 2) Color 7) Density/Consis 3) Moisture 8) Other (Mineral 4) Grain Size Discoloration, 0 5) Percentage	stency Content, Odor, etc.)	STRATUM	GRAPHIC LOG	TYPE	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%) MOISTURE CONTENT (%)	ESULT	PLASTICITY INDEX
- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	(3') CLAY; olive gray (5Y 4/2) and light yellowish brown (2.5Y 6/4) mottling; caliche lenses at shallow zones; some fracturing with calc very stiff (PP > 4.5 tsf); dry to moist; low to medium plastic <i>(cont.)</i> (34') Fracture with heavy calcite mineralization (41.5') Trace calcite mineralization	to olive brown (2.5Y 4/4); significant cite infill and/or iron staining; very hard;	tum III		X	7 13 19 24 17 39 44 49	22.5 13 24			
AUNFELS.GPU GEOSNIEC.GD1 05/09/23	- 640 - - - 635 - - - - - - - - - - - - - - - - - - -	(49') Vertical fracture with heavy iron staining from 49 to 50 ft bgs		Str		X	35 39 37 50	22.5			
		CTOR: Texplor of Dallas, Inc. NORTHING: 13811157.6	LOGGER: L. Varner	REV	/IEWE	ER: \	N. B	urke			
EQ DR SA DR DR	UIPME ILL MT MPLING ILL BIT	NT: CME 75 Truck Mounted EASTING: 2277886.6 HD: HSA / Coring G MTHD: SPT, Shelby Tube, Core SIZE/TYPE: HSA 6" - NQ2	NOTES:	EVIATIO	NS	Pa	Oct ge N	obei lo. 4	r 2023 C-104		

	Geo	DSyntec 8217 Shoal Creek Blvd suite 200 Austin, TX 78757 Phone: (512) 451-4003 www.geosyntec.com	BORING: GB-50 START DATE: 1/9/2023 FINISH DATE: 1/10/2023 LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	GRO TOT/	UND AL DI	SUR EPTH	S FAC 1: 1	SHEE CE: (14 ft R· N	ET 3	B OI 6 ft N	= 4 ASL
0	GS F 3-GEOT	DRM: ECH3 BF BOREHOLE LOG	PROJECT NUMBER: GW8636	BOR		BACH	KFIL	L: E	Bento	nite	Grout
DEPTH (ft-bgs)	ELEVATION (ft)	DESCRIPTION1) Soil Name (USCS)6) Plasticity2) Color7) Density/Consi3) Moisture8) Other (Minera4) Grain SizeDiscoloration,5) Percentage	stency I Content, Odor, etc.)	STRATUM	GRAPHIC LOG	S TYPE	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	LIQUID LIMIT
- - - 65	625	 (3') CLAY; olive gray (5Y 4/2) and light yellowish brown (2.5Y 6/4) mottling; caliche lenses at shallow zones; some fracturing with cal very stiff (PP > 4.5 tsf); dry to moist; low to medium plastic (cont.) (60') Lens of dark gray clay (61.5') 45-degree fracture with calcite infilling (65') CLAYSTONE; dark greenish gray (GLEY1 4/10Y), several fr and iron precipitation at some locations; very hard 	to olive brown (2.5Y 4/4); significant cite infill and/or iron staining; very hard; acture zones with calcite mineralization	Stratum III			8 14 20 24	24			
- - 70 -	620							120			
- - 75 -	615-			ratum IV							
- 80 — - - -	610-			St				112			
- 85 - - -								110.5			
DR DR	ontrac Quipmei Rill MT MPLING Rill Bit	TOR: Texplor of Dallas, Inc. NT: CME 75 Truck Mounted HD: HSA / Coring S MTHD: SPT, Shelby Tube, Core SIZE/TYPE: HSA 6" - NQ2	LOGGER: L. Varner NOTES: SEE KEY SHEET FOR SYMBOLS AND ABBR		/IEWI	ER: Pa	W. E Oc age l	Burke Stobe	e er 20 4C-1	23 05	-

	Geo	Osynte consulta	BORING: GB-50 START DATE: 1/9/2023 FINISH DATE: 1/10/2023 LOCATION: New Braunfels PROJECT: Mesquite Creek Landf	GRO TOT	DUND AL DI	SUF EPTI	S RFAC H: 1 ⁻¹ ATEF	E: 6 614 ft R: No	T 4 88.6 f bgs ot Obs	OF t MSI ervec	4				
0:	GS F 3-GEOT	ORM: ECH3 BF	B	OREHO		G	PROJECT NUMBER: GW8636	BOF	ring e	BAC	KFIL	L: B	entoni	te Gr	out
DEPTH (ft-bgs)	ELEVATION (ft)			1) Soil Name 2) Color 3) Moisture 4) Grain Size 5) Percentage	DESCRI (USCS)	 PTION 6) Plasticity 7) Density/Consis 8) Other (Mineral Discoloration, Construction) 	tency Content, Ddor, etc.)	STRATUM	GRAPHIC LOG	TYPE S	BLOWS PER 6"	RECOVERY (in) a	PERCENT FINES (%)	RESUL	PLASTICITY INDEX
- - - - - - - - - - - - - - - - - - -		(65') CLAYSTC and iron precipi (91') Moderatel	DNE; dark gri itation at son y weathered	eenish gray ((ne locations; v fracture zone	GLEY1 4/10 /ery hard (c	0Y), several fra	cture zones with calcite mineralizatic	Stratum IV				110.5			
- 105	- - 580 - - - - 575 -	(114') Boring te	erminated.									108			-
	570 – 570 – NTRAC UIPMEI ILL MT MPLING	TOR: Texplor of NT: CME 75 Tru HD: HSA / Corir MTHD: SPT, S SIZE/TYPE: HS	f Dallas, Inc. uck Mounted ng Shelby Tube, SA 6" - NQ2	, Core	ORTHING: EASTING:	13811157.6 2277886.6	LOGGER: L. Varner NOTES: SEE KEY SHEET FOR SYMBOLS AND AB	RE		ER:	W. E	Burke	r 2023 C-100	3	

	Geo	OSYN consul		8217 Shoal Creek B Suite 200 Austin, TX 78757 Phone: (512) 451-4 www.geosyntec.com	Blvd 003 1	BORING: GB-51 START DATE: 1/25/2023 FINISH DATE: 1/25/2023 LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	GRO TOT/ DEP	UND AL DE TH TC	SUR EPTH	5 FAC 1: 70	SHEE CE: (6 ft t R: N	ET 1 676.5 ogs lot Ol	5 ft M	: 3 ISL /ed
0	GS F 3-GEOT	ORM: ECH3 BF	<u> </u>	BOREHOLE LO	G	PROJECT NUMBER: GW8636	BOR	ING E	BACK	KFIL	.L: E	Bento	nite	Grout
DEPTH (ft-bgs)	ELEVATION (ft)			DESCF 1) Soil Name (USCS) 2) Color 3) Moisture 4) Grain Size 5) Percentage	 RIPTION 6) Plasticity 7) Density/Consis 8) Other (Mineral Discoloration, 0) 	stency Content, Odor, etc.)	STRATUM	GRAPHIC LOG	S TYPE	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	LIQUID LIMIT
-	- 675 - -	(0') CLAY; (PP > 1.25	black (2.5Y 2.5/ tsf); moist	(1); organic; grasses an	d rootlets; trace t	fine to coarse sand; soft to very stiff	Stratum I			1 2 5 6	21			
5	- - 670 –	(4') CLAY; trace iron s very stiff (P	light olive browr taining; occasio P > 4.5 tsf); tra	n (2.5Y 5/3) to olive yello nal trace chert fragmen ce moist	oft gray clay inclusion at some location; as with calcite mineralization/lamination;					10			-	
- 10	- - 665 -							X	5 8 10 15	13 20			-	
- 15 - - -	- - 660 - -						Stratum III							-
20	- 655 — - -	(20') Calcite	e mineralization	at some locations (alon	45-degree planes) from 20 to 44 ft bgs			X	7 9 11 14	24			-	
	- 650 - -													
CO EQ DR SA DR	NTRAC UIPMEI ILL MT MPLING ILL BIT	CTOR: Texpl NT: CME 75 HD: HSA / (G MTHD: SF SIZE/TYPE	or of Dallas, Inc Truck Mountec Coring PT, Shelby Tube HSA 6" - NQ2	NORTHING EASTING Core	3: 13810766.7 3: 2278273.4	LOGGER: P. Pandey NOTES: SEE KEY SHEET FOR SYMBOLS AND ABBR		/IEWI	E R : \ Pa	W. E Oc age l	Burke	e er 20 4C-1	23 07	

BEOTECH3 BF GEOS BRAUNFELS.GPJ GEOSNT

	Geo	BOREHOLE LOG BOREHOLE LOG										SUR EPTH	S FAC 1: 70	HEE E: 6 5 ft b	T 2	5 ft N	ISL	•
	GS F 3-GEOT	ORM: ECH3 BF) <u> </u>	OREHOLI	E LOG	;)	PROJECT	NUMBER: G	W8636	BOR		BACK	KFIL	L: B	ento	nite	Gro	Jt
DEPTH (ft-bgs)	ELEVATION (ft)			1) Soil Name (U 2) Color 3) Moisture 4) Grain Size 5) Percentage	DESCRIF SCS)	PTION 6) Plasticity 7) Density/Consist 8) Other (Mineral (Discoloration, C	ency Content, Idor, etc.)			STRATUM	GRAPHIC LOG	i TYPE	BLOWS PER 6"	RECOVERY (in) a	PERCENT FINES (%)	MOISTURE CONTENT (%)		PLASTICITY INDEX
35 - 40 - 45 - 50 -		(4') CLAY trace iron very stiff ((42.5') Sig	; light olive brown staining; occasion PP > 4.5 tsf); trad	(2.5Y 5/3) to oli nal trace chert fr ce moist <i>(cont.)</i> ystals; chert frag	ive yellow ragments; gments; fi	(2.5Y 6/6); so ; some fracture ine to coarse s	ft gray clay i s with calcit and; trace s	nclusion at sor e mineralization	ne location; n/lamination;	Stratum III			11 18 22 27 11 21 29 21 30 37 46	24 24 24		M		
60- 60-	620	- - - - 	olor of Dallas Inc	NOF	STHING	13810766 7		P. Pandev		RF\		R:	WF	Burke				
EC DF SA DF	QUIPMEI RILL MT MPLING RILL BIT	NT: CME 7 THD: HSA / G MTHD: S SIZE/TYP	75 Truck Mounted Coring SPT, Shelby Tube E: HSA 6" - NQ2	, Core	ASTING:	2278273.4	NOTES:	IEET FOR SYMBC	OLS AND ABBRI		NS	Pa	Oc age I	tobe	er 20 1C-1	23 08		

	Geo	OSYT consu	Itec ^D	8217 Shoal Creek E Suite 200 Austin, TX 78757 Phone: (512) 451-4 www.geosyntec.cor	Blvd .003 n	BORING: GB-51 START DATE: 1/25/2023 FINISH DATE: 1/25/2023 LOCATION: New Braunfels	GRO TOT/	und Al de	SURI	SH =ACI : 76	HEET E: 67 ft bg	76.5 ft	F 3 MSL
	GS F 3-GEOT	ORM: ECH3 BF) B	OREHOLE LC)G	PROJECT: Mesquite Creek Landfill PROJECT NUMBER: GW8636	DEP BOR	TH TO ING B	D WA	FILL	: No .: Be	t Obse ntonite	rved e Grout
DEPTH (ft-bgs)	ELEVATION (ft)			DESC 1) Soil Name (USCS) 2) Color 3) Moisture 4) Grain Size 5) Percentage	6) Plasticity 7) Density/Consis 8) Other (Mineral Discoloration, 0	tency Content, Ddor, etc.)	STRATUM	GRAPHIC LOG	SA LAPE	BLOWS PER 6"	RECOVERY (in)	MOISTURE CONTENT (%)	LIQUID LIMIT
- - - - - - - - - - - - - - - - - - -	615 - - - - - - - - - - - - - - - - - -	(4') CLAY; trace iron very stiff ((62') CLA [*]	; light olive brown staining; occasior PP > 4.5 tsf); trac Y to CLAYSTONE	(2.5Y 5/3) to olive yell hal trace chert fragmer ce moist <i>(cont.)</i> E; dark gray (5Y 4/1); v	ow (2.5Y 6/6); so nts; some fracture rery hard; very sti	oft gray clay inclusion at some location; es with calcite mineralization/lamination; ff (PP > 4.5 tsf); trace moist	Stratum IV Stratum II			14 23 25 28 12 18 22 24 15 17	24		
80 	- 600 - - - 595 - - - - - - - - - - - - - - - - - - -	(76') Borin	ng terminated.	NORTHIN	3: 13810766.7	LOGGER: P. Pandey	REV			23 33 У. Вц	urke		
EQ DR SA DR	UIPMEI ILL MT MPLINO ILL BIT	ACTOR: Texplor of Dallas, Inc. NORTHING: 13810766.7 IENT: CME 75 Truck Mounted EASTING: 2278273.4 ITHD: HSA / Coring October October 2023 NG MTHD: SPT, Shelby Tube, Core October 2023 SIT SIZE/TYPE: HSA 6" - NQ2 Description Page No. 4C-109											

	Geo	DSyntec 8217 Shoal Creek Blvd Suite 200 Austin, TX 78757 Phone: (512) 451-4003 www.geosyntec.com	BORING: GB-52 START DATE: 12/14/2022 FINISH DATE: 12/15/2022 LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	GRO TOTA	UND AL DE	SUF EPTI	S RFAC H: 1 ATE	SHEE CE: (19 ft R : N	ET /	1 0 6 ft 1 bser	F 4 MSL
0	GS F 3-GEOT	DRM: ECH3 BF BOREHOLE LOG	PROJECT NUMBER: GW8636	BOR	ING E	BACI	KFIL	.L: E	Bento	onite	Grout
DEPTH (ft-bgs)	ELEVATION (ft)	DESCRIPTION1) Soil Name (USCS)6) Plasticity2) Color7) Density/Cons3) Moisture8) Other (Minere4) Grain SizeDiscoloration5) Percentage	istency al Content, , Odor, etc.)	STRATUM	GRAPHIC LOG	ТҮРЕ	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	LIQUID LIMIT
	- 	(0') CLAY; black (10YR 2/1); organic; grasses and rootlets; few n sand; some caliche lenses; soft to very stiff (PP > 1.25 tsf); moist	nedium to fine gravel; little coarse to fine	Stratum I		X	1 2 3 5 7	12 16.5	95.8	23.1	58 32
5-	- 	(4.5') CALICHE mixed with clay; trace sand; friable		Stratum II			12 14	18 15		14.2	-
- 10 –	-	 (8') CLAY; light yellowish brown (2.5Y 6/4) to light olive brown (2. fine sand; iron staining and mottling; gray clay inclusions/laminati hard; very stiff (PP > 4.5 tsf); trace moist (8.5') Iron nodules and staining 	5Y 5/6), and pale olive (5Y 6/4); trace on; some fractures and mineralization;			X	7 9 10 15	18 14	97.4	18.6 28.7	56 31
- - 15	655					X	12 12 14 20	24			
	650 -	(16') Large chert fragment		=		X	10 11 13 18	24			
- 20 – -	- - - -	(21.75') 1/2" iron nodule with heavy iron staining		Stratun		X	7 20 18 23	20.5 24			-
- 25 -	645	, , , , , , , , , , , , , , , , , , ,				X	17 16 16	13.5 22			-
	640						18				
CC EC DR SA DR	NTRAC UIPMEI ILL MT MPLINC ILL BIT	TOR: Texplor of Dallas, Inc. NORTHING: 13810376.6 IT: CME 75 Truck Mounted EASTING: 2278659.2 HD: HSA / Coring FMTHD: SPT, Shelby Tube, Core SIZE/TYPE: HSA 6" - NQ2	LOGGER: G. Kumar; P. Pandey NOTES: SEE KEY SHEET FOR SYMBOLS AND ABBR		/IEWI	ER: Pa	W. E Oc age	Burko ctobe No.	e er 20 4C-1)23 10	

OTECH3 BF GEOS BRAUNFELS.GPJ GE
(Geo	osyn	tec⊳	8217 Shoal Creek B Suite 200 Austin, TX 78757	lvd	BORING: GB-52 START DATE: 12/14/2022				SHE	et 2	2 OF	4
	GSE	consul	tants	Phone: (512) 451-40 www.geosyntec.com	003	FINISH DATE: 12/15/2022 LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	GRO TOT/ DEPT	UND S AL DE TH TO	URFA PTH: WATI	CE: 119 f ER: N	667.6 t bgs Not Ol	6 ft M bserv	ISL red
	3-GEOT	ECH3 BF	В	OREHOLE LO	G	PROJECT NUMBER: GW8636	BOR	ING BA		LL: [Bento	nite (Grout
DEPTH (ft-bgs)	ELEVATION (ft)			DESCF 1) Soil Name (USCS) 2) Color 3) Moisture 4) Grain Size 5) Percentage	6) Plasticity 7) Density/Consis 8) Other (Mineral Discoloration, C	tency Content, Ddor, etc.)	STRATUM	GRAPHIC LOG	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	PLASTICITY INDEX
	635	(8') CLAY; li fine sand; irr hard; very st (30') Trace o (34') Thick s (41.25') 3/4"	ight yellowish br on staining and tiff (PP > 4.5 tst coarse to fine sa silica based min	own (2.5Y 6/4) to light mottling; gray clay incli); trace moist (cont.) and and chert fragment eralization from 34 to 3 h heavy iron staining	olive brown (2.5 usions/lamination s; iron staining 6 ft bgs; thin gre	Y 5/6), and pale olive (5Y 6/4); trace h; some fractures and mineralization; y clay lamination along vertical plane	Stratum III		9 9 12 12 16 9 9 12 16 16 16 16 16	23 18 23 24 24 24 24 24 24 24 24 24 24 24		MC	
60 - CO EQ DR SA	NTRAC UIPMEI ILL MT MPLING	CTOR: Texplo NT: CME 75 HD: HSA / C G MTHD: SP	or of Dallas, Inc. Truck Mounted coring 'T, Shelby Tube	NORTHING EASTING	: 13810376.6 : 2278659.2	LOGGER: G. Kumar; P. Pandey NOTES:	REV	/IEWE	 R: W.	Burk Burk	 e er 20	23	
DR	ILL BIT	SIZE/TYPE:	HSA 6" - NQ2)	SEE KEY SHEET FOR SYMBOLS AND ABBR	EVIATIC	NS	Page	No.	4C-1	11	

EOTECH3 BF GEOS BRAUNFELS.GPJ GEOSNT

(Ge	OSYN consu	ltec ^D	8217 Shoal Creel Suite 200 Austin, TX 78757 Phone: (512) 451	k Blvd , -4003	BORING: GB-52 START DATE: 12/14/2022 FINISH DATE: 12/15/2022 LOCATION: New Braunfels	GRO	UND AL DI	SUF	S RFAC H: 1	SHEE CE: (19 ft	ET :	3 O 6 ft I	F 4	4
	GS F 3-GEOT	ORM: ECH3 BF	В	OREHOLE L	. OG	PROJECT: Mesquite Creek Landfill PROJECT NUMBER: GW8636	DEP BOR	TH TO ING E	D W/ BACI	ATE KFIL	r: N .L: E	lot O Bento	bser onite	ved Gro	out
DEPTH (ft-bgs)	ELEVATION (ft)			DES 1) Soil Name (USCS) 2) Color 3) Moisture 4) Grain Size 5) Percentage	6) Plasticity 7) Density/Consi 8) Other (Mineral Discoloration,	stency Content, Odor, etc.)	STRATUM	GRAPHIC LOG	ТҮРЕ	BLOWS PER 6"	RECOVERY (in)	PERCENT FINES (%)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTICITY INDEX
- - - 65 –	605	(8') CLAY; fine sand; i hard; very s	light yellowish br ron staining and stiff (PP > 4.5 tst	own (2.5Y 6/4) to lig mottling; gray clay ii); trace moist <i>(cont.</i>	ght olive brown (2.5 nclusions/laminatic)	iY 5/6), and pale olive (5Y 6/4); trace n; some fractures and mineralization;	Stratum III		X	9 14 15 23 12 16 22 27	22 22 23.5				_
- - - 70	600	(66') CLAY crystallized	STONE; greenis /mineralized infil	h black (GLEY1 2.5 Is and gray clay lami	/10Y); moderate fr ination; very hard; :	actures with iron staining, some weathering; trace moist to dry					45	98.7	16	66	32
- - 75 -	595						2				95				-
- - 80 - - -	590	-					Stratum								_
85 - - - - 90	580 -	-									120				-
CC EQ DR SA DR	ontrac Quipmei Rill Mt Mpline Rill Bit	CTOR: Texp NT: CME 75 THD: HSA / (G MTHD: SI SIZE/TYPE	lor of Dallas, Inc. 5 Truck Mounted Coring PT, Shelby Tube : HSA 6" - NQ2	NORTHI EASTI	NG: 13810376.6 NG: 2278659.2	LOGGER: G. Kumar; P. Pandey NOTES: SEE KEY SHEET FOR SYMBOLS AND ABBR		/IEWI	ER: Pa	W. E Oc age	Burke ctobe No. 4	e er 20 4C-1)23 12		

OTECH3 BF GEOS BRAUNFELS.GPJ GEOSNT

	GSE	OSYN consu		8217 Shoal Cr Suite 200 Austin, TX 787 Phone: (512) 4 www.geosynte	reek Blvd 757 451-4003 ec.com		BORING: GB-52 START DATE: 12/14/2022 FINISH DATE: 12/15/2022 LOCATION: New Braunfels PROJECT: Mesquite Creek Landfill	GRO TOT DEP	UND : AL DE TH TC	SURF PTH: WA	SHE ACE: 119 TER:	667. ft bgs Not C	4 O 6 ft N 5 Obser	= 4 //SL ved
	3-GEOT	ECH3 BF		OREHOLE	LOG]	PROJECT NUMBER: GW8636	BOR	ING B	ACK	FILL:	Bent	onite	Grout
DEPTH (ft-bgs)	ELEVATION (ft)			1) Soil Name (US0 2) Color 3) Moisture 4) Grain Size 5) Percentage	DESCRIPT CS) 6) 7) 8)	TION) Plasticity) Density/Consist) Other (Mineral 0 Discoloration, C	ency Content, Idor, etc.)	STRATUM	GRAPHIC LOG	SA I		PERCENT FINES (%)	MOISTURE CONTENT (%)	LIQUID LIMIT
95 -	575 -	(66') CLAY crystallized (cont.)	STONE; greenis /mineralized infil	h black (GLEY1 : ls and gray clay la	2.5/10Y); amination	moderate fra ; very hard; so	ctures with iron staining, ome weathering; trace moist to dry	>			11,	1		-
105 -	560 -							Stratum			11:	2		-
115- 120- CC	550 - - - - - - - - - - - - - - - - - - -	(119') Borir (119') Borir	ng terminated.	NOR	THING: 1	13810376.6	LOGGER: G. Kumar; P. Pandey	REV		ER: M	/. Burl	ke		
DF SA DF	RILL MT	THD: HSA/(GMTHD: SI SIZE/TYPE	Coring PT, Shelby Tube HSA 6" - NQ2	, Core		2210039.2	SEE KEY SHEET FOR SYMBOLS AND ABBR	EVIATIO	ONS	Paç	Octol le No.	oer 20 . 4C-	023 113	

HISTORICAL BORING LOGS UNDER PERMIT 66B

1987 McBride-Ratcliff and Associates (CB-1 to CB-5; B-6 to B-15) 1990-1991 McCulley, Frick & Gilman (PZ-1 to PZ-12) 1991 Fugro-McClelland (GP-1 to GP-6) 1992 SEC Donahue (SB-1 to SB-5; PZ-1M) 1996 RUST (MW-6; GP-6R) 2004-2005 Geosyntec (GB-1 to GB-24) 2006 McCulley, Frick & Gilman (MW-7 and MW-8) 2009 Geosyntec (GP-5A; GP-07 to GP-13; GP-20; GP-21; MW-2A; MW-7A; MW-8A; MW-9 to MW-11; MW-18 to MW-23) 2013 Tetra Tech (GP-14; GP-19) 2016 Tetra Tech (GP-15; MW-17) 2018 Tetra Tech (GP-16 to GP-18; MW-12 to MW-15) 2020 Bullock, Bennett & Associates (MW-4A)

ŝ

Ρ	ROJEC	:Т:	Ne Co	w B mal	raun Cou	fels nty,	Lan Tex	lfi as	11			BORING NO. <u>CB-1</u> FILE NO 87-051
с	LIENT	ž	Wa Ho	ste ust	Man on,	ageme Texas	nt	of	Nor	th	Ал	erica DATE <u>2-11-87</u>
	FIEL	D	DATA		LAB	ORAT	ORY	DA	ГА			DRY AUGERED 0 TO 40 FEET
ы		S	ance			416	-	ATT	ERB	E RG S	· % - •^	WASH BORED 40 TO 60 FEET FREE WATER ENCOUNTERED YES NO
YMB	PTH :el)	MPLF	Hesis	Instruc	, PCF	e Strer F	×	1.	2	Inde	oo sie	AT FT. DEPTH.
SOIL S	DEI (fé	SA	inerration (N) or	nisture Co	ry Densin	ampressiv	ailure Stra	Lidi.	Plas	Plasticity	inus No. 21	WATER AT FT. AFTER
			4	z	a	Ŭ	u.	LL	PL	PI	X	DESCRIPTION OF STRATUM
V			1.25	42								Stiff, dark gray, CLAY (CH)
V	- 5 -		2.00				2	ó3	33	40		Very stiff to hard, tan, CLAY (CH)
R.][Hard, tan, SILTY CLAY (CL)
			4.5+	20		2						
	- 10	H										
]							ж			
		ľ	4.5+					43	22	21		
	- 15											
R												
			4.5+	14			2					
R	- 20			-								
R												
R			4.5+	15								
R	- 25											
R		$\left\ \right\ $										
			4.5+	19								
R	- 30											
R	-											
R			4.5+					41	18	23		
R	- 35											
R												
8	10		4.5+	18								
	- 40		• 51	CKE	VSIDE		JRÊ				(N	PENETRATION RESISTANCE STANDARD PENETRATION RESISTANCE (SPT)
			() CO G.S. GR	NFIN AIN S	ING PI	RESSUR	E, PS	1			TS	SF - POCKET PENETROMETER OR TORVANE ESTIMATED UNCONFINED COMPRESSIVE STRENGTH, TONS PER SQ. FOOT Page No. 4C-115

1	POJE	ст	N C	ew B omal	raun . Cou	fels ntv.	Lan Tex	dfi as	.11			BORING NOCB-1
		TE	- נ.ז	aeto	Mar				N	÷ 1-	Α.	FILE NO. 87-051
			H	oust	on,	ageme Texas	:11C	or	NOL	cn	АШ	Page 2 of 2
	FIE	LD	DATA	T	LAB	ORAT	ORY	' DA	ТА			DRY AUGERED 0 TO 40 FEET
			ų				_	ATT	ER8	ERC	%	WASH BORED 40 TO 60 FEET
1BO1	-	L.FS	-	=	5	fithe	*	-		×		FREE WATER ENCOUNTERED YES NO
SYN	EPTI (Isel)	AMP	1 10	Conte	11V. PG	ve Si	Line,	pint	110	ly fad	200 5	AT FT. DEPTH.
SOIL		s	1111	hoisiure **	ry Dens	011101455	arture St	Ē	-I-J	Plastici	INUS NO.	WATER AT FT. AFTER
		\mathbf{H}	/ <u>-</u>	2	<u> </u>	U	<u>u</u>	LL	Ρι	PI	Ĩ	DESCRIPTION OF STRATUM
B		4										Hard, tan. SILTY CLAY (CL)
B												
B	45	-	4.5+	21			•	41	20	21		
R		$\left \right $										
B												
H	- 50-		4.5+	16				55	21	34	- (
H		$\left\ \right\ $				·						
B		1										
H	- 55 -		4.5+									
臣		11										
K		Ц					•					::
K	- 60-	Щ	4.5+	18								-tan & gray @ 59'
		11										Completion Depth 60.
												(
	- /-											1
	_											
	_											
		•	SLIC) CON 5.S. GRA	CKENS IFININ VIN SIZ	IDED IG PRE ZE	FAILUR	RE , PSI				(N) TSF	PENETRATION RESISTANCE STANDARD PENETRATION RESISTANCE (SPT) POCKET PENETROMETER OR TORVANE October 2023 ESTIMATED UNCONFINED COMPRESSIVE Page No. 4C-116 STRENGTH, TONS PER SO. FOOT

Р	ROJE	ст.	Ne Co	w B: mal	raun: Coui	fels nty,	Lano Texa	dfi as	11			BORING NO. CB-2
с	LIENT	ŧ	Wa Ho	ste usto	Mana on, 1	igeme Iexas	nt «	of I	Nor	ch	Ame	PILE NO87-051 DATE2-11-87
	FIE	D	DATA	T	LAB	ORAT	ORY	DA	ТА			DRY AUGERED 0 TO 40 FEET
			90			4	_	ATT		ERG 'S	% -	WASH BORED TO FEET
MBO	H L	PLES	esistan SF	tue	CF	l fue su di	*			cie k	Sieve	FREE WATER ENCOUNTERED YES NO
L SY)EPT (feet	SAM	1 10	Cont	sity. F	tive S TSF	train	րութ	astic	IV II	200	AT FT. DEPTH.
SOIL	J		enetrat (N	Anisture	bry Den	ompres	adure S	-	ā	Plastic	inus No.	WATER AT FT. AFTER
		\cup	a	2	<u> </u>	0	u	LL	PL	PI	2	DESCRIPTION OF STRATUM
			3.0	29								Very stiff, dark gray, CLAY (CH)
V			2.75	30	12							-gravelly below 4'
	- 5 -	Π										Firm clayey GRAVEL
1		Ŀ										Very stiff, tan & gray CLAY (CH)
			2.75	22								w/scattered seams of gypsum
VA	- 10-	Π										
\sim		Ш									10 10	-hard below 13'
\mathcal{V}			4.5+	31								
VA	- 15-	Π										
VA		Ц										
			4.5+	36				105	39	66		
	- 20-	Π										
		Ц										
			4.5+	30								
	- 25-	Π										6
			4.5+	30				87	32	55		
	- 30-											
\square												
	- 25-		4.5+	29								¥.
	32-											
N												
	- 40-		4.5+	29	_							
		(9 SL1) COI G.S. GR	CKEN NFINI AIN SI	SIDED NG PR IZE	FAILU	RE E, PSI				(N) TSI	PENETRATION RESISTANCE STANDARD PENETRATION RESISTANCE (SPT) POCKET PENETROMETER OR TORVANE ESTIMATED UNCONFINED COMPRESSIVE October 2023 STRENGTH, TONS PER SO. FOOT Page No. 4C-117

P	ROJE	ст:	New Com	Bra al (unfe Count	els La :y, Te	and: exa:	fil: 5	1			BORING NO. CB-3
c	LIENT	ī);	Was	te M	lanag	;ement	: oi	E No	ortl	ת A	mer	FILE NO. <u>87-051</u> DATE <u>2-9-87</u>
			Hou	ston	1, Te	Xas						Page 1 of 2
-	FIE		DATA	-	LAB	ORAT	ORY	DA	TA			DRY AUGERED 0 TO 40 FEET
_			a K			4	-		IMIT	ERC	% -	
MBO	H.	PLES	11113	Ive	ц,	fran	*			te x	Sieve	FREE WATER ENCOUNTERED YES NO
L SΥ	T99) (feel	SAM	1 10	Cont	11V. F	TSF TSF	Irain	Frint	astic	I A	200	AT FT. DEPTH.
SOI	3		וען וריואוייייייייייייייייייייייייייייייייי	Anisture	Dry Den	onpres	allure S	Ľ	ā	Plastic	linus No.	WATER AT FT. AFTER
		\setminus	-	4				LL	PL	PI	2	DESCRIPTION OF STRATUM
			2.5					104	40	64		Very stiff, black, CLAY (CH)
		Π										-becomes gravelly below 2'
	=			16			-					
	- 3 -	Π										Firm clayey GRAVEL
		Ш										Very stiff, tan and gray, CLAY (CH)
	10		2.5	33								
1	- 10-	Π										
$\langle \rangle$, si		
			3.75	37	1							
1	- 15-	Π				1						
1												hand hal 101
N			4.0	35				93	37	56		-nard below 18.
1	- 20-	Π										
1												1
1			4.5+	34								1
1	- 25-											
1												
			4.5+	32				89	38	51		
	. 30-											
	_	2	. 5+	31								-w/gypsum
	35-											
2												
ZF	40	4	.5+	31								
	→∪		SI 10	KENIG	1050	EALLUS					(NI)	PENETRATION RESISTANCE
		(G) CON	FININ	G PAE	SSURE,	PSI		-		TSF	POCKET PENETROMETER OR TORVANE ESTIMATED UNCONFINED COMPRESSIVE October 2023
							4-0		_		·	STRENGTH, TONS PER SO. FOOT Page No. 4C-118

Р	ROJE	CT:	New Coma	Bra al C	unfe lount	els La y, Te	andf exas	111 5	L			BORING NO
c	LIEN	Γč	Wast Hous	te M ston	anag , Te	ement xas	: of	No	orth	ı Ar	ner	ica FILE NO. <u>87-051</u> DATE <u>2-9-87</u>
	FIE	D	DATA	T	LAB	ORAT	ORY	DA	TA		11	DRY AUGERED 0 TO 40 FEET
								AT	FERB	EAG	2	WASH BORED 40 TO 60 FEET
Ъ		ES	1 gure			416u	-	-		1.		FREE WATER ENCOUNTERED YES NO
YME	PTH (12)	MPL	1Sr 1Sr	nten	PCF.	Stre	*	2	y	Inde	0 Sie	
DIL S	11 (11	SA	N IN	°C °C	Alisua	TSI	Sira	Ligu	Plase	Ation	10. 20	
S			ener	401811	0 ^ U	ampi	aitur			Plas	inus h	WATER AT FT. AFTER
		\downarrow	/. <u>~</u>	4		0		LL	PL	PI	1	DESCRIPTION OF STRATUM
\vee												Hard, tan and gray, CLAY (CH) w/gypsum seams
\mathcal{V}		$\left\ \right\ $										
\mathcal{V}			4.5+	31								
	- 45-	П										
			4.5+					83	37	46		
	- 50-	H						00	51	70		
N		11										
N			4 5±	30								
V	- 55-		4.97	30								
V												
0							•					
1	- 60-		4.5+					79	39	40		
												Completion Depth 60'
												4
t												
ŀ												
ļ												
ŀ												
F												
E												£
ŀ												
		• (G	SLIC) CON I.S. GRA	KENS FININ IN SIZ	IDED IG PRE ZE	FAILUF	RE , PSI				(N) TSF	PENETRATION RESISTANCE STANDARD PENETRATION RESISTANCE (SPT) POCKET PENETROMETER OR TORVANE ESTIMATED UNCONFINED COMPRESSIVE October 2023 STRENGTH, TONS PER SQ. FOOT Page No. 4C-119

	PROJ	EC	τ:	New Com	Bra al (aunfe Count	els L Ly, To	and: exa:	fil s	1			BORING NO. CB-4
	CLIER	JT	:	Was Hou	te M stor	lanag 1, Te	gement exas	t o:	EN	ort	h A	meı	FILE NO. <u>87-051</u> DATE <u>2-9-87</u>
L	FI	EL	D DA	ATA		LAB	ORAT	ORY	' DA	TA			DRY AUGERED 0 TO 13 FEET
				ä				_		TERE	ERC	%	WASH BORED 13 TO 40 FEET
ABOI			LES	sistant If	1	4	it fue a	*	-	1	ž		FREE WATER ENCOUNTERED YES NO
NY S	EPT.		AMF	un Ne ur TS	Conte	117. P(tve Si	I	pint	13 LIC	IV Ind	200 S	AT FT. DEPTH,
SOIL			S	(N)	Maisture	Dry Dens	L	ailure St	Ľ	Ĩ	Plastici	linus No.	WATER AT FT. AFTER
	-	4	4	-	-				LL	PL	PI		DESCRIPTION OF STRATUM
P			2	.25	34				71	27	44		Very stiff, black, CLAY (CH) w/calcareous modules
P	- 5		1.	. 50	30								
ľ				· · · · · · · · · · · · · · · · · · ·								_	Firm, black, clavey GRAVEL
K	-										<u>.</u>		
H	- 10	2	4	.5+	13								Hard, tan and light gray, SILTY CLAY (CL)
K		1									(* 1		
Ŕ		t		50+									
R	- 15	f	4										
H													
K			4.	5+	15			•					
¥	- 20												
H	\square												
Y			4.	5+					41	19	22		
H	- 25												
H		+											
H			4.	5+	17								
H	- 30	T	ľ										
H				-				+	+	-	-	-	-dark gray, fissile
H			4.	5+	17								
H	- 35		ĺ.										
H		U	6										
H	_ 40		4	5+				3	19 1	.9	20		
			• () G.S.	SLICI CONF GRAI	KENS ININ N SIZ	IDED I G PRE E	AILUR	E PSI				(N) TSF	PENETRATION RESISTANCE STANDARD PENETRATION RESISTANCE (SPT) POCKET PENETROMETER OR TORVANE October 2023 ESTIMATED UNCONFINED COMPRESSIVE Page No. 4C-120 STRENGTH, TONS PER SQ. FOOT

LUG UF DUNING

P	RO.	JEC	:T∦		Nev Coi	w : ma	Bran 1 Co	unfe ount	ls La y, Te	ndf xas	ill				BORING NO. <u>CB-4</u> FILE NO. <u>87-051</u>
с	LIE	NT			Wa. Ho	st us	e M ton	anag , Te	ement xas	of	No	rth	Ал	er	ica DATE <u>2-9-87</u> Page 2 of 2
	F	IEL	D	DA	TA	4		LAB	ORATO	DRY	DA	Γ A			DRY AUGERED 0 TO 13 FEET
				I	9				£	-	ATT	ERBI	E A G S	% - %	WASH BORED 13 TO 60 FEET
MBOI	E	();	APLES		Resistan	2	nent	PCF	Streng	*	2	ų	Index	O Sleve	AT FT. DEPTH.
OIL S	DEP	(lei	SAN		tration .	5 N	ture Co	Density	ipressive TSI	ure Stra	Lidu	Plase	Instanty	18 No. 20	WATER AT FT. AFTER
S					Pene		Mais	λ	Con	La L		PI	e Pl	Minu	DESCRIPTION OF STRATUM
AN	+		+	\vdash	_	-						-	-	-	Hard, dark gray, SILTY CLAY (CL)
R	1	_	-												
	E	-													
H.		_	-	4	5	5+	16								
R	8	45													
R	Ţ]												
K	8			1			17								
R	£	50		ĺ	+.2) +	1,								
R			-												
R	╟														
	F				4.5	5+	15						15		
H	ł	55	+												
R	£	_													
	1		-							-					
	t	60			4.	5+	16						-		Completion Depth 60!
ľ	1	00	_							1					Compretion Depth 00
	F	-	1												
												1			
	F		+						1						
	E			1											
	-		-												
	t														
	F		_												
	F	_													
	F														
	\mathbf{F}	•	-							Ť					
	F								÷.						
	\mathbf{F}		-												
		•) 3.S.	SL CC		INSIDI NING I SIZE	ED FAIL	URE RE, P	 SI			((1	PENETRATION RESISTANCE N) - STANDARD PENETRATION RESISTANCE (SPT) SF - POCKET PENETROMETER OR TORVANE ESTIMATED UNCONFINED COMPRESSIVE October 2023 STRENGTH, TONS PER SQ. FOOT Page No. 4C-121

PI	ROJEC	: T :	New Coma	Bra 1 C	unfe ount	ls La y, Te	ndf xas	ill				BORING NO. <u>CB-5</u> FILE NO. <u>87-051</u>
с	LIENT	3	Wast Hous	e M ton	anag , Te:	ement xas	of	No	rth	Am	er	ica DATE <u>2-10-87</u>
	FIEL	D	DATA	Ī	LAB	ORATO	DRY	DA'	ТА			DRY AUGERED 0 TO 15 FEET
L SYMBOL	DEPTH (feet)	SAMPLFS	tion Acostanie 11 or 154	e Content Se	nsity, PCF	usive Strength TSF	Strain % 1	ATTL	ER8I	EAG Napul Aro	a. 200 Sieve - %	WASH BORED 15 TO 60 FEET FREE WATER ENCOUNTERED YES <u>NO</u> AT FT. DEPTH.
SOI			Penetra	Mostur	Dry De	Compre	Failure		81	Plast	Minus N	WATER AT FT. AFTER
1		¥									-	Stiff, black, CLAY (CH)
V			1.5	40				89	35	54		
V			1.5	17								
ľ	- 5 -	T										Firm, black, clayey, GRAVEL
IN												
R			4.5+	16								Hard, tan and light gray, SILTY CLAY (CL)
R		Π										
R												-
R			4.5+					29	17	12		
R	- 15	Π										
H		Ш										
X			4.5+									
W	- 20	Π										
X												
			4.5+	15								
R	- 23											
R												-dark gray below 2/
R	30		4.5+					40	18	22		
R	<u> </u>											
	25		4.5+	16								
		$\left\ \right\ $										
2		1										
	L 40		4.5+	18								
		*	• SLI () CO G.S. GR	ICKEN NFIN AIN S	NSIDE(ING PF SIZE	D FAILL	JAE E, PS	1			(N T 5	PENETRATION RESISTANCE STANDARD PENETRATION RESISTANCE (SPT) F- POCKET PENETROMETER OR TORVANE ESTIMATED UNCONFINED COMPRESSIVE October 2023 STRENGTH, TONS PER SQ. FOOT Page No. 4C-122
							Mc	Bric	le-R	Rato	liff	and Associates, Inc.

LUG OF DURING

Р	ROJE	ст	:	New Coma	Bran 1 Co	unfe ount	ls La y, Te	ndf xas	i11				BORING NO. <u>CB-5</u> FILE NO. 87-051
с	LIEN	IT:		Wast Hous	e Ma ton	anag , Te	ement xás	of	No	rth	Am	er	ica DATE 2-11-87 Page 2 of 2
	FIE	ELC	DD	ATA		LAB	ORATO	DRY	DAT	ГА			DRY AUGERED 0 TO 40 FEET
		T	Τ	e.				-	ATT L	ERBI	E R G S	% -	WASH BORED 15 TO 60 FEET
MBOL	=			esistani Sf	lent	PCF	Irenyl	*			nclex	Sieve	FREE WATER ENCOUNTERED YES NO
IL SY	DEPT		SAM	ation H NI or T	re Con	nsily.	TSF	a Strain	Liquid	Plastic	ticity I	No. 200	AT FILDEPIH.
SO				enetra 1	401610	7. Do	outro	allure			Ples	Ainus	WATER AT FLAFTER
		7	1	e.	2	-	0	<u> </u>	LL	PL	PI	4	DESCRIPTION OF STRATUM
X	1												Hard, dark gray, SILIY CLAY (CL)
X		_											
B			7	۸ 5±					37	17	20		
R	- 4	5-	Δ	4.JT					1,1	τ,			
R	<u>}</u>	-											
B									2				
R	1-	-	M	N=50+	16								
R	- 5	0-	1	4.5 +									
R	1												
			H	1-50+									
R	- 5	5-	A	4.5+					43	19	24		-
R													
R													
R	-			4.5+	14								
	r - 6	0 -											Completion Depth 60'
	-	_											
1													
	-	-											
	-			- 4									
													*
	_												
	L	-	11										
		_						2					×
	-	3.											
													12 C
	-												
	F	_	1										
				• SLI () CO G.S. GR	ICKEI NFIN AIN S	NSIDE IING P SIZE	D FAIL	URE RE, PS	11			(N T:	STANDARD PENETRATION RESISTANCE (SPT) SF - POCKET PENETROMETER OR TORVANE ESTIMATED UNCONFINED COMPRESSIVE STRENGTH, TONS PER SQ. FOOT October 2023 Page No. 4C-123
								Mo	Bric	Je-F	Rato	liff	and Associates, Inc.

				SOIL E	BC	REHOL	ELC)G										
	E AND LO	DCATIO	л		Т	DRILLING METHO	D: Dry	Auger	0-8	0.	0'	B	ORIN	g no B-	-6			
^{omal}	Co.	Land	fill		t								_	_				
.uth	of F	M_11	01 0	n Kohlenberg Ln.	- 4						-		HEET				3	
New B	raunf	els,	Tex	as		SAMPLING METH	HOD: 0-	-10' Co	onti	nu	ous		1	OF	3	_		1
						10-80' @	5' int	ervals	3			_	0			_		
											r	- 5	TARI		FINIS			
				-	ļ	WATER LEVEL				-		-			I IIVIE		r o	
					ļ	TIME				_			7:30	2+	3:4	된		
						DATE									1 / 1	- /	7 ~	
DATUM	MS	L		ELEVATION 638		CASING DEPTH					L	11.	./1.	// .	11/1		L E	4
DRILL AIC	SIM	CO 2	2800		SU	AFACE CONDITIO	NS Dam	tan d	<u>s li</u>	gh	t gra	<u>y, 1</u>	la	ck (CLAY	-	0.	1
ANGLE]	Level		BEA.	RING ENE	W	/chert gra	vel & d	cobbles	5.	No	vege	tati	lon	-		_	ģ	4
SAMPLE	HAMMER	TORC	UE	FTLBS								1				_	TN	
H _									DB1	μ	50	H	EST	AESU		-	5) a
DON	च€स	ರ		SAMF	LE I				AND	2	0 L N N N	%	AIT .			2	ç	, e
ATIN /	S/ VV	MB.		a).	AN	D			EA	g	N C N	EN	E E	2%	알	F	-	l Ö
PT+	NN	ŝ		DESCRIPTI	ON	OF MATERIAL			MPL	IS N	50	ATE	ant	ASI	P S S S S S S S S S S S S S S S S S S S	벓		
DE DE	-00 a								SAI	0		₹ŏ	Ĕ	말고	50	0H	-	
		v .							1		_		-	1				
-	(27%)	N	#1	Medium tan & ligh	ıt	gray CLAY	(CH) "	FILL"	8 1		=		8					
-	• 1	7		below 2" of soft	Ъ1	ack clay					_							
Ξ	(27%)	-	#2	Medium black CLAY	(1			=							
	•										=	10	0.2	20				2
5	(27%)	~~	#3	Medium black CLAY	Č						=	40	103	120				0 C
	(0/8)	11	11.1		1.4	abb aren C	TAV (C	ц)		1	=							
31	(24%)	1	#4	Very stiff tan &	11	gnt gray C	LAI (C	п)			-							
E	161.77		# c	Word ton & light		AN CLAY M	loccas	ional			=							U.
上 io	(04%)	11	1#5	cilt partings & y	81 707	ticle gyns	um nar	tings			_	30						
		11	1	SIIC parcings & v	/=1	LICIE BJP5	um pur				=							
=		1									_							
E											=							
E	(56%)	11	#6	Very stiff tan &	li	ght gray C	LAY				=							Ĩ
= 15		1		w/gypsum partings	5 &	pockets					Ξ							
F											=							
F		11	1								-							
E		11									=	22	02	20				
E 200	(60%)		#7	Hard tan & light	gr	ay CLAY w	/occas	ional			_	1 22	02	100				á
E		11	1	gypsum partings	-	-	•											
Ę٠ .		1	1								_							키 쿡
E		11									=						Į,	
E 25	(697)	1	4.9	Vory stiff grav &	c +	an CLAY w	/frequ	ent			=		1	1			Ē	6
E 23	(00%)	11	10	ferrous partings	ى تە م	occasional	evosu	n			Ξ						1 1	: ~
E		11	2	nartinge	a	0000000000	. 6) F	_									10	김 구
F				parerugs							-							
F		VI	1						1			122					Ĩ	a
E 30'	(76%)	11	1#9	Hard black CLAY	w/	frequent g	ypsum	&	1		_	132					1	ц Ц
E		1		occasional silt	par	tings			1		=							3 4
H		1	1			3 3 3 36			1		=							٦ ĉ
		11									Ξ	8						5
		1						-										
E-35	(76%)		#10	Hard tan & gray (CLA	Y w/freque	nt gyp	sum &			-							
F		1	1	occasional ferrow	us	partings,	STICKE	usiaes										
-	1	11	1							_		1		_	1	Oct	l ober 2	2023

Printed on recycled paper.

.....

14

Page No. 4C-124

				SOIL B	OREHOL	ELO	G										
SITE NAM	ME AND L	OCATIC	N		DRILLING METHO	oo: Dry	Aug	er (0-8	0'	E	BORIN) .			
°oma.	1 Co.	Land	fill	L									3-	-6	_		a.
outl	h of F	M 11	01 c	on Kohlenberg Ln. #	2						-	SHEE	г				
aw]	Braunf	els,	Tex	tas	SAMPLING METH	HOD: 0-1	0' C	ont	inu	ous		2	05	3			
		a		×.	10-80' @	5' inter	vals				-		DRILL	NG			F
												STAR	TT	FINIS	SH .		
								1	_	1		TIME	+	TIM	E	t	4
					WATER LEVEL			-	-		-	. 20			_	2	
					TIME						<u> '</u> -			5:45	рш	Ē	
					DATE				_		-	11	-	11_1	7_0	, P	
DATUM	MSL			ELEVATION 638	CASING DEPTH			ą.,			1	1-1	/ I.	11-1	. / - 0	۲ (
DRILL RI	G SI	MCO :	2800) 5	URFACE CONDITION	NS SEE	page	1								ິບ	
ANGLE	Leve	1	BEA	ARING ENE													_
SAMPLE		TORO	UE	FTLBS													HE 4
	1	—	17.17					1		. 1	1	TEST	RESU	LTS			S
E C	ZES	3						g	L H	0g		*	1				C I
	de la	0 g		SAMPLE	NUMBER			4	2	S/FC	× 1	Ę					S S
H H N	SAL	X		A				E H	2	Š	щ		5%	lsĘ	τo		-
EP1	SSE	50		DESCRIPTION	OF MATERIAL			W	SAS	EQ	ES.	۲Ľ	NA SF	¦¦	THE ST		
<u> </u>	6							N S	Ľ		l≥Ω	Ĕ	57	50	o≓		
	T	TTA	-									1	1				
Ξ.										-	1						
= 40	(567)	11	#11	Hand bluck to donk	ATAN CI AV	(CH) w/					21	07	24				
- 40	(50%)		* 1 1	hard black to dark	gray CLAI					-	121	91	34				
		VA		occasional gypsum	a ierrous p	artings	,			=							, L
<u>_</u>		VA		SLICKENSIDES						_							
-		VA								-		1					Č
-			#1.0			15											Ċ
+5	(78%)	11	#12	Hard black to tan &	gray CLAY	w/frequ	ent				1						-
		VA		terrous & occasiona	al gypsum pa	artings,				Ξ							C
		VA		slickensides													
		VA								_					1		
Ecol	1/2022	4	11				۱	L		_							
= 50-	(78%)	11	#13	Hard black CLAY (C	H) w/occasi	onal		Г		-	30						
		VA		ferrous partings,	laminated					Ξ							а ^с
		$V\Lambda$								-							
Ξ		VA							11	-							
<u> </u>	(65%)	1	#14	Hard black CLAY w/f	requent sil	t parti	ngs.	1		_	28	97	40				
			50 - 1	laminated			8-,			=		[
=		VA		20021100000						-							
=		VA								-		1 1				¢	
_		IN								=						0	
- 60	(487)	1	#15	Hard black CLAY w/c	ccasional e		ting			_	29					Ê	
= 00	(40%)		8±-4	L laminated slicks	ncidee	ere ber		1		-						e e	<u> </u> '
E	12	VA		d faminated, Sticke	instues					=			1 1			÷	•
_		$V\Lambda$								=						4	: .
=		VA								=						Į.	
-65	(527)	1	#16	Hard block CTAY 11/f	request cil	t narti	n 0 6			_							1 1
= 00	(52%)		10	hard black CLAP W/I	requent sri	parti	ngs,			=							, , ,
=				laminated, slickens	itaes					=						i	-
=		VA								-						į	ц c
=		IN								\equiv						Š	
70	(227)	1A	#17	Hard black CLAY w/f	request cil	t parti	125-			_	25	87	31			-	ן ד
		1/2	/	laminated elickens	ides	- Porce				\equiv		ľ	[
		11		TOWENCICAL STICKGUS						=							
_		VA								-							
=		VA								Ξ							
									1		1	·	J				

					S	SOIL	B	ORE	EHOI	EL	OG											
SITE NAN	JE AND I	OCATI	ION					DRILL	NG METH	oo: Di	cy Au	ger	0-	-80	1	E	ORIN	IG NC).			
" Coma	1 Co.	Land	dfil	1												1 A		B-6				<u>e</u>
Sout	h of 1	FM 11	101 d	on Ko	hlenbe	erg La	. #2	1								5	5HEE1	-			1	
New 1	Braun	fels	, Ter	xas				SAMP	LING MET	HOD:)-10'	Co	nti	nu	ous		3	OF	3		8	
								I	0-80'	@ 5' :	inter	val	s				C	RILLI	NG			
																	STAR	тТ	FINI	SH		N
						-		NAVA TE		T	T	T	-		T		TIME		TIM	Æ		e L
	~										+	+	1111->	-		\dashv_7	. 20	-	2.1			닅
												-					DATE		DA			Rai
							•					-				-1	1_1	-	11_	17	7	E
DATUM	MS	L			ELEVAT	ION 63	8	CASIN	IG DEPTH	1	1			-	1		1-1	<u>/ </u>	11-	1/-	27	Sa
DRILL AK	G	SIMCO	0				SL	JRFACE	CONDITIC	INS SE	е ра	ge	1	-								
ANGLE	Le	vel	BEA	ARING	ENE											ū.						ا ا
SAMPLE	HAMME	R TORC	QUE			FTLBS																Ē
F	100-												81		E.		TEST	RESU	JLTS			õ
H HZ	ATT A	7				C 1			•				9	٩ ۲		*	8					с с
THE A	NAN NAN	MBK				34			-			i.	A A	5	ISIE	Ę	N		× ا	50		ž
H	N SSS	SYI		11		DESCRIF	TION	OF MA	TERIAL				3.E	Ž	δz	E E] g	12%	EF.	部		1
190 190	265												WV	Š	з	Į₹ģ	D D	2	SPO	IES		ő
												1/3	<u>s</u>				1 -	1 4 3	1	1.1		
-	1	11	1												Ξ							
E		11	1												=							
E -	1	11	1										- 1		-		c.					
E		11	2																			Ç
E 75	(61%)	11	#18	Hard	black	c CLAY	(C)	H) w/	slicke	enside	s &						1					L
1-		11		lami	nae							- 6										(
		11	1												=							
+		VL	1					•							=						1	
F		11	2												_		b -					(
E 80	(30%)	14	#19	Hard	grav	sandy	CLA	Y (C	L) w/f	requer	it	1			_	12	39	19		82	5	
=	1	1		gyps	um pai	tings	, la	mina	e	•												
F		11		071	•	0									-		1					
-		T													Ξ							
E					Bot	ton @	80.								=							4
F																	1					
F													1		-							
E	1														_							
E			4												=							
E			1												_							=
E			- · -		<i>ti</i> :																	80
E															-				6 1			旨
E_															_							욉
E			1											8	=							
E															=							<u>4</u>
F	1														=							let
F															=							·]
E			1										J		=		1					
F	ł							0							Ξ		1		1 1			BΥ
F			1												Ξ		1				!	ດ
E													4		=		1					5 S
Ę															=							S
8. I.																						ì
E .															=							
-															_							
E															=			1				
E		1													=				6 1			
-	L	1			_									2		1	Octo	ber 2	023			

ê 5

: .

Printed on recycled paper.

2				SOIL E	30	OREHOL	ELC	DG							4			
SITE NAM	E AND L	OCATIO	N N			DRILLING METHO	D: Dry	Augen	r 0-	80	1	E	BORIN	G NC).			
* • • • • • •	0		e - 1 1]	B-7			1	
, E 15		Land	111 01	L Kablanhawé In	40					_		9	SHEET	-				
LII J B	raunf.			n Kontenberg Ln.	74	SAMPLING METH	HOD: 0-	10' Co	onti	nu	ous		1	OF	3			
· D	Launi	стэ,	161	145		10-80' @	5' int	ervals	5				0	RILLI	NG			
								19					STAR	τ	FINISH		N	
				2 4	Ĵ	WATER LEVEL							TIME		TIME	1	Le L	
		×				TIME		1				-3	:55 ₁	2 m d	11:20a	þ	Ē	
						DATE			1		1		DATE		DATE		~~~	
	MG	т		661		CASING DEPTH			1		1		1-13	7 1	1-18-	7	E	
DATUM	115			ELEVATION 004	-	CASING DEPTH		n tan	2 0	T 21	U CTA	V W	/1 + +			ſ	လိ	
	3 5	IMCO			50	AFACE CONDITION	13 Dan	p can	u g	La.	y CLA	u w	/ +	uest	JONE			
ANGLE	Leve	1	36/	ARING NW		& chert cot	obles									1	_œ'	2
SAMPLE	HAMMER	TORC	UE	FTLBS						r	r	-	-		and the second	1	LN I	4
F	400-									ω	20	-	TEST	RESL	LTS	1	8	a k
ШŶ	an An An An An An An An An An An An An An	5		SAME		NUMBER			2	μ.		*	~ 1		8 8		Ű	ç
ZI¥		ΒΨ		5.44	AN	1D			œ	0	CXS	"Į	E	0.	<u>~</u> _≤_~			
臣글	222	≿		DESCRIPTI	оN	OF MATERIAL			PLE	1	l≧g		l ₽	STI %		ł.	E	
(El	99 <i>E</i>								AN	ပ်	=	SS	ğ	EP	25 24		ä	
													_	_		1		
-	(397)	1-4	# 1	Hard tap & light	~~	av CLAY (CH) w/pr	avel			=	30						
= 0		h_1	# 1 # 0		5-		FIL	4	1		=	1.0						
	(39%)	r, >	#2	Very stiff black	СĿ	AI W/sand d	grave	T-5TP1	1									
Ξ)		1 r																
_ 5	(39%)	1.1	#3	Stiff light gray	CL	AY w/sand &	grave	1 &				40						
-		1. 1		calcareous pocket	s.	Tan CLAY	@ 6'				=	1.				1		a a
	(52%)	17	#4	Stiff tan CLAY (CH	I)	w/occasion	al calo	areou	\$		Ξ					1		Ċ
				pockets. Tan & 1	ig	ht gray CLA	AY @ 8'		1		=							
-			(•				=							U
${10}$	(52%)		#5	Very stiff tan CL	AY	w/gypsum s	seams &				<u> </u>	38				1		
-		11	1	calcareous nodule	s,	slickensid	les		1					10				1
-		11																
Ξ									1		=							
=											=						í	ĺ l
<u>-</u> 15	(52%)	11	#6	Very stiff tan CL	AY				1		=		76	36				
Ξ		11		•					1		=					1		1
–														8 1				
Ξ		\vee									=							
= 20	16573	11	#7	Very and ff ton CI	×۷	w/froquent		-			_	34						
= 20	(05%)	11	ar I	very still tan CL	AI ai	w/llequent	- gypsu	ш			=	1-					uo	2
=				partings, slicken	ST	ues	2				=						sdu	È
<u> </u>		11	8								-					1	IOL	Ī
Ξ		1									=						Ē	
-25	(787)	11	H Q	Vorw stiff top CI	۸v	w/frequent	- avnsu	T	1			1					Ŧ	
= 25	(10%)	11	10	very still tall the	ai	doe	- 67950				=		1 3				Jel	à
Ξ		11		partings, silter	51	062					=							
_		11		5													ا <u>ج</u> ا	
Ξ		11							. *		Ξ						В	-
	(787)	11	VIQ.	Very stiff tan CT	۵v	w/frequent	gynsii	m			-	35	93	38			Ĕ	
= 50	(10%)	11	1	nartinge elickon	ei.	des	- 67 P 0 0	-				Γ		ſ		1	Ő	L L
- e		11	1	Parcings, streken	<u>ل</u> د				1								2	č
		11									=					1		
		11									=							
5د	(83%)	11	#10	Hard tan & light	g	ray CLAY w/	freque	nt	1									
=		11	1	gypsum partings,	S	lickensides	5					1						
	Ł	///	1						1		I —			1		1		

				SOIL I	BC	DREHOL	ELC	G										
SITE NAME	ANDLO	CATIO	N			DRILLING METHO	D: Dry	Auger	0-8	0'		В	ORING	NO.				
Comal	Co. I	Land:	fill										В	-7				
Juth	of F	11	01 o	n Kohlenberg Ln.	#2							S	HEET		•			
New B:	rauníe	els,	Tex	as		SAMPLING METH	10D: 0-1	0' Cor	ntin	uo	15		2	OF	3		1	
						10-80'	35'in	terva	Ls				DF		1G			
											(á	S	TART	10	FINIS	н	N	
				1.00		WATER LEVEL							TIME		TIM	E	Ire	
						TIME						3:	:55p	m 1	1:2	Oan	am	
						DATE						1	DATE		DAT	E	æ	
	M	C T		664		CASING DEPTH						\neg 11	L-17	1	1-1	8-8	am a	
DATUM	STM	CO 2	800	ELEVATION 004	SL	RFACE CONDITIO	NS Se	e page	e 1					1.97			03	
DRILL HIG	SIM	0 2	DEA		-													ء
ANGLE	Level	7000		FT -1 85	-												NTF	C
SAMPLE		ТОНС	06	11(55					1		-	T	EST	RESU	LTS		ð	4
5	ZES								g-	EP.	0U 20	*	% _			8	0	Ę
EO TE	KER.	BOL		SAN	IPLE	NUMBER			I ₹	L U	IS/F	Ę	N.	0.		-2(Ž	-
	SAI SAI	ΝX		DESCRIPT		OF MATERIAL			PLE	Ž.	oz	TER	<u>e</u>	STIC %		¥ l	קר	
(ELE	NUC N			DESCH		•			MA	ð	ē	NS	P	LE ^R	SP	ΨË	ä	
									1 0/	-		_						
_		VI	411	Hand brown CLAN	'ru) w/frequer	n silt				=	32	, u)					
F		11	#11	nard brown CLAI	, on	/ w/rreque					=							
E-40	(83%)			parcings							=							L
=		VA									=							L
E	1 1	VD							i.									(
+											Ξ							Ċ
_ 45	(83%)	1.1	#12	Hard brown CLAY	w/i	frequent si	lt par	tings	1		-		97	40				
F		1		& occasional gyp	sui	n partings					=							(
F		4			-	and the second second second			t		-							
E		1	1															
= 50	(027)		#12	Hard dark gray (Τ.Δ.	v (СН) w/fr	equent	silt			=	30						
	(05%)	11	1112	nartings, occasi	011	al ferrous	partin	gs,						4				
Ε	1	11	1	laminae, slicker	si	des	•	-			=							1
E	1	11								1	=							1
F		11	1								=	20	110	3%				1
E 55	(74%)		#14	Hard dark gray (LA	Y w/frequer	t silt					29	10	54	1			
E		11		partings,													E C	
E		11	1	•							-		1				oso	
F	1	11	1								=							1
E 60	(747)		#15	Hard gray CLAY w	J/⊆	lickensides	from	58'			=	29					Th	il –
E	(/4/0)	01	1"10	to 59.5'. Dark	gr	av CLAY w/c	occasio	nal			=							
=		11	2	silt partings fi	com	-59:5' - 60)'. ⁻				1 -		1				Jef	1.
F	1			Separated by 1"	fe	rrous seam.												¢
Ε		1	1	•							Ξ		110	27	1			۲ ۲
65	(61%)] #16	Hard gray CLAY							=		10	134			ž	j.
F		1	2								=						Ç	<u>،</u>
E-		VI	1			2					=			1			Ľ,	j
E		1	2								=	1					Š	វ
.70	(35%)		#17	Hard gray CLAY							=	28						•
1		43	A								Ξ							
E.		1	1								=							
=		1			æ1	-					Ξ							
			1						1				Octo	ber 2	2023			

Printed on recycled paper.

Page No. 4C-128

					Ş	SOIL	B	OREHOL	ELO	CG										
SITE NAM		OCATI	ON					DRILLING METHO	Dr: Dr	Aug	er 0-	-80	1	B	ORIN	G NO).			
' Comal	Co.	Land	fill	- 17 - 1-	1	T –	40									B- 7	7			E.
outh	OI F		01 C	on Kon	Teupé	erg Ln.	if Z	141 C						S	HEET	•	_			
1 20 0	Launt	e15,	TEN	45				SAMPLING MET	нор: 0.	-10'	Conti	nu	ous		د	OF	1			
								10-80' @	5' in	cerva	ls				C	RILLI	NG			
12														5	TAR		FINIS	ы	0	0
						-		WATER LEVEL							TIME		TIM	E	- E	3
								TIME						3	:55	m	11:2	0am	μa	
								DATE							DATE		DAT			
DATUM	MS	L			ELEVAT	ION 664		CASING DEPTH									11-1	8-8	/ °	5
DRILL RIG	s SI	MCO	2800)			SL	JRFACE CONDITIO	NS S	ee pa	ge l				-					
ANGLE	Level	•	BEA	RING	NW												_	_	a	
SAMPLE	HAMMEF	TORC	DUE			FTLBS					_	1		-		_			TIM	
te	100										III O	Ψ	50	-	TEST 8	RESL	LTS	_	Č	3 *
HO	역면문	ō				SAN	IPLE	NUMBER			ANIC	3	N N N	8	۹۲.			8	ġ	Ş,
	S S S S S S S S S S S S S S S S S S S	WW					A	ND			E	102	N CAS	e La	E	2%	s₹	Fo	-	∃ [®]
	No.	o				DESCRIP	TION	OF MATERIAL			MBW	SASI		NAN PROPERTY		Set in	PC F	點		
ă,)								S S S	10		30	Ĕ	23	លិល	P#	-	-
		VT										1	-							
F		11											Ξ							
F 75	(35%)	11	#18	Hard	gray	CLAY (CH) laminated	Ι,				-							
E		1	1	slick	ensid	les														
E			{										=							Ċ
F .		11	1																	ç
80	(292)	11	#19	Hard	orav	CLAY.	ໄລຫ	vinated & s	licken	sides			=							C
- -	(23/8)	1	1	nard	6-47								Ξ							ĉ
F		11	1										_							
E					3	Bottom	<u>a</u> 8	NO.					=		k .					
ŧ						JOCCOM							Ξ							
E													=							
E													=		£					1
F			k.										Ξ							1
E													=							
E												1	-		1					
ŧ.													Ξ							1.1
F				+															5	5
E													· =							
F													_						i L	į, į
F													=						E	-1
E													=						4	티
E													=							۳ i
ŧ	6												Ξ							
E						÷							=						2	5
E													=						ç	
F													Ξ						Ş	1 2
Ħ													=						Č	วี 🕴
												-							-	- 1
		1		55									Ξ							
Ē		1											=							
=													=							
—									~	1200			L_ <u></u> _L		Oc	tober	2023			
							I	Printed on recycled	paper.)				F	Page N	No. 40	C-129			

×.

SOIL BO	DREHOLE LOG								
	DRILLING METHOD: Dry Aug	er 0-7	0'	BOF		NO.			
	NX coring 70'-80'					_B-8			
mal Co. Landill.					EET		.		
New Braunfels, Texas	SAMPLING METHOD: 0-10' CO	ntinuo	us	1	0.01	OF	3	Ĭ	
	10'-80' @ 5' interval	s		- CT				62	
				TI	ME		ME	뉟	
-	WATER LEVEL			-h.,	0	 ,,,	15-1	Ran	
	TIME			1 0	ATE	D/	TE	E	
				111	-21	111-	24-8	7 ⁸	
DATUM MSL ELEVATION 638		I CT AV	/ch	art	ara	vol	2		(
DRILL RIG SIMCO 2800	cobbles FILL	K CLAI	w/en	PLL	gra	VPI	a		
ANGLE Level BEARING E	CODDIES. 1152							ЧТР	100
SAMPLE HAMMER TORQUE		5	_	TE	ST R	SULTS		ð	4
		UN UN	00 NO	%	L %		00	0 0	, C
	NUMBER	E D	VS/I CAS	ž	E I		FL	L	•
	OF MATERIAL	ASIN	ČZ ■		9		LE FO		
		UVS SAN	-	3°S	9	김국 망망	타		
					1		1		
(94%) 2 #1 Hard black & tan CI	AY (CH) FILL from 0-1'		=	31	35 3				
(46%) #2 Hard tan & gray CLA	AY (CH)		-		1	-			_
EIM			=						C C
5 12/30 Very dense chert G	AVEL (GW) w/minor	1							ċ
28(942) amounts of clay			=		- 1				C
	*		-		. 1				C
4/5/9 14 Very stiff tan & 1:	ight gray silty CLAY		Ξ	18					ū
E (83%) w/gravel	(CL) (CL) (CLAY w/chalk		_						
F10 (94%) Hard tan & light gi	ray silly chain w/ chain		Ξ						
E NN POCKETS			_						
		1	Ξ						
	CIAV (CW) w/frequent		_	31				1	1
=15 (29%) 16 Hard tan & light g	ray CLAI (CH) W/IIequent	1	Ξ						
E Chark pockets			_						
			=						
			_	18					i l
20 (46%)	AY w/occasional		=	10					뒷 :
E chalk pockets			=					4	3
			=						
			E	19	58	20		4	มี
25 (69%) 18 Hard light gray &	light tan CLAY		-	1					ין
			Ξ						;
			=						ā
			Ξ		1 1			1 8	ב
30 (71%) #9 Hard light gray &	light tan CLAY		=	18					ე ე
			=						J J
			=						
			=	18	58	9		198	
-35 (66%) 10 Hard light gray &	Light tan CLAI		=	ſ	٢	[]			
			=						
					Octo	ber 202	23		

Page No. 4C-130

BFE NAME AND LOCATION mail Co. Landfill uth of FN 1101 on Kohlenberg Ln. sev Braunfels, Texas District Stress (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)					SO	IL BO	OREHOL	ELO	CG										
mal Co. Landfill uch of FM 1101 on Kohlenberg Ln. #2 #2 FX coring 70'-80' #### #### aev Braunfels, Texas - <td< th=""><th>SITE NA</th><th>ME AND I</th><th>OCATI</th><th>ION</th><th></th><th></th><th>DRILLING METHO</th><th>DD: E</th><th>ry Au</th><th>ger</th><th>0-7</th><th>'0'</th><th>E</th><th>ORIN</th><th>IG NC</th><th>).</th><th>_</th><th></th><th></th></td<>	SITE NA	ME AND I	OCATI	ION			DRILLING METHO	DD: E	ry Au	ger	0-7	'0 '	E	ORIN	IG NC).	_		
ath of FM 1010 on Kohlenberg In. #2 #AWERKO WETHOD: 0-10' Continuous 2 or 3 awer Braunfels, Texas		Ca	Tand	£ - 1 1			NX cori	ing 70'	-80'						E	3-8			ï
Heil Braunfels, Texas Exercise Method: 0-10' Continuous 2 or 3 10'-80' @ 5' intervals DBLANG MATER LEVEL Intervals Intervals MATER LEVEL Intervals<	mai urb	L LO. D of F	Land Mili	Ol on Ko	hlenherg	In #2							5	SHEET					
Indian Color I	ULL New F	r or r Sraunf	els.	Texas	mrenberg	LLL. 77 6	SAMPLING METH	HOD: 0-	10' Co	onti	nuc	us		2	2 OF	3			1
START FNSH DATEM MSL ELEVATON 638 SAMPE DATE <			<u> </u>	101100		6	10'-80' @	5' in	terval	ls				C	AILL	NG			
UNTER LEVEL Tree Price							1					1	1	STAR	тТ	FINIS	SH		ġ
International production Pride Pri						1				1		1		TIME		TIM	E		
JANTER JANTER<							TIME						-۵.	10-	h	1.1	500		R al
DATUM MSL ELEVATION 638 CASHO DEPTH 11-21 11-24-67 7 DMAL NG SINCO 2800 SUPACE CONDITIONS See page 1 11-21 11-24-67 <							DATE				-		- 1	DATE		DAT	TE I	8	=
DATAM RSL ELEVITION D3B CASING D2011 L <thl< th=""> <thl< td=""><td></td><td></td><td></td><td></td><td></td><td>(</td><td>UATE</td><td></td><td></td><td>-</td><td></td><td></td><td>-</td><td>1-2</td><td>1 1</td><td>1-2</td><td>4-8</td><td>7 0</td><td>20</td></thl<></thl<>						(UATE			-			-	1-2	1 1	1-2	4-8	7 0	20
OPALE, Rick SIMPLE LANAWER TORQUE SUPPLE COMMONS See page 1 MOLE LEVEN SEARING 5 SUPPLE NUMBER State of the search of the sear	DATUM	M	SL		ELEVATION	638	CASING DEPTH			<u> </u>		I		1-2		1-2	4-9	<i>'</i>	
ANGE LEV91 PEARING L Image:	DRILL RI	G S	IMCO	2800		SL	RFACE CONDITIO	NS Se	e page	≥ 1	_		_	_					1.
ANAMLE HAMMARE TOROUE FTLIS under HAMMARE TOROUE FTLIS under HAMMARE TOROUE SAMPLE MAMBER AND DESCRIPTION OF MATERIAL under Hamman Book of the state	ANGLE	Lev	el	BEARING	E													a	
ALL ALL <td>SAMPLE</td> <td>HAMME</td> <td>R TORC</td> <td>QUE</td> <td>FTi</td> <td>BS</td> <td></td> <td>Ē</td> <td>;</td>	SAMPLE	HAMME	R TORC	QUE	FTi	BS												Ē	;
use of visiting of a state of a sta		1								III		F I		TEST	RESL	ILTS		ç	Į į
SAMEL NUMBER AND I	l liz	1 342	-							l ₽	١Å	02 02	2	*			8	ر د	י כ א
11 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 14 <td< td=""><td></td><td></td><td>780</td><td></td><td></td><td>SAMPLE</td><td>NUMBEH</td><td></td><td></td><td> ₹ m</td><td>1É </td><td>S/F</td><td>5</td><td>IN</td><td></td><td></td><td>2</td><td></td><td>ź</td></td<>			780			SAMPLE	NUMBEH			₹ m	1É	S/F	5	IN			2		ź
bd 265 1 1000 Hold Hold Hold Hold Hold Hold Hold Hold		N SSO	S							LE	۲ <u>ی</u>	8z	LEY E	0	21°	읎	盐		L L
40 (697) \$11 Hard light tan CLAY (CH) laminated 20 23	65	0 SE			Dea					AMF	∛	ыо	ξŏ.	0 Q		PO No	E BH	ā	5
40 (697) #11 Hard light tan CLAY (CH) laminated 20 23 23 23 23 23 23 23 23 23 17 17 55 177 13 Hard gray CLAY 14 Hard gray CLAY 17 57 18 17 57 18 17 57 18 17 16 17 17 17 17 57 18 17 17 57 18 17 17 57 18 16 10 1										S S			20	13	لعع	00	YT	-	
40 (697) #11 Hard light tan CLAY (CH) laminated 1 20 23 23 45 (74Z) #12 Hard tan CLAY, laminated, w/gypsum seams 17 23 17 17 50 (29Z) #13 Hard gray CLAY (CH) laminated, very dry 17 57 18 17 55 (17Z) #14 Hard gray CLAY 1 57 18 17 60 (0Z) NO RECOVERY 1 11 57 18 13 65 (0Z) NO RECOVERY 1 11 14 14 14 14 14 14 70 (0Z) NO RECOVERY 1 11 14 <t< td=""><td>-</td><td>T</td><td>VI</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td>-</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td></t<>	-	T	VI	1						1		-		1					
40 (69Z) #11 Hard light tan CLAY (CH) laminated 20 23 45 (74Z) #12 Hard tan CLAY, laminated, w/gypsum seams 23 23 50 (29Z) #13 Hard gray CLAY (CH) laminated, very dry 17 57 18 55 (17Z) #14 Hard gray CLAY 117 57 18 60 (0Z) NO RECOVERY 117 57 18 65 (0Z) NO RECOVERY 117 57 18 70 (0Z) NO RECOVERY 117 57 18	E		11]								=							
45 (74Z) #12 Hard tan CLAY, laminated, w/gypsum seams 50 (29Z) #13 Hard gray CLAY (CH) laminated, very dry 55 (17Z) #14 Hard gray CLAY 60 (0Z) NO RECOVERY NO RECOVERY NO RECOVERY NO RECOVERY NO RECOVERY NO RECOVERY	E 40	(69%)	11	#11 Hard	l light ta	n CLAY	(CH) lamin	ated				_	20						
45 (74%) #12 Hard tan CLAY, laminated, w/gypsum seams 50 (29%) #13 Hard gray CLAY (CH) laminated, very dry 55 (17%) #14 Hard gray CLAY 60 (0%) NO RECOVERY 65 (0%) NO RECOVERY NO RECOVERY NO RECOVERY NO RECOVERY NO RECOVERY	E		11	4	Ģ							=							5
45 (74%) #12 Hard tan CLAY, laminated, w/gypsum seams 23 23 23 50 (29%) #13 Hard gray CLAY (CH) laminated, very dry 17 17 57 18 55 (17%) #14 Hard gray CLAY 11 57 18 14 60 (0%) NO RECOVERY 11 17 14 14 65 (0%) NO RECOVERY 11 17 18 14 70 (0%) NO RECOVERY 11 11 14 14 70 (0%) NO RECOVERY 11 11 14 14	E		11	1								1							
45 (742) #12 Hard tan CLAY, laminated, w/gypsum seams 23 23 23 50 (297) #13 Hard gray CLAY (CH) laminated, very dry 17 17 57 18 55 (172) #14 Hard gray CLAY 114 Hard gray CLAY 111 17 57 18 16 60 (02) NO RECOVERY 111<	E		11	1															C
45 (74%) #12 Hard tan CLAY, laminated, w/gypsum seams 23 23 23 23 50 (29%) #13 Hard gray CLAY (CH) laminated, very dry 17 17 17 55 17%) 55 17%) 57 18 96			11	1								=							с С
50 (292) #13 Hard gray CLAY (CH) laminated, very dry 17 55 (172) #14 Hard gray CLAY 17 55 (172) #14 Hard gray CLAY 117 60 (02) NO RECOVERY 111 65 (02) NO RECOVERY 111 70 (02) NO RECOVERY 111	45	(747)	11	#12 Hard	tan CLAY	lami	nated, w/or	ກຣາເຫຼຣ	eams			_	23				5 (C
50 (297) #13 Hard gray CLAY (CH) laminated, very dry 17 17 55 (172) #14 Hard gray CLAY 111 57 18 60 (02) NO RECOVERY 111 17 18 111 65 (02) NO RECOVERY 111 111 111 111 111 111 111 70 (02) NO RECOVERY 111 11		(14%)	11	ALL HALD		, 1801	matta, w/g)	poum o	cumo			=			i i				$\overline{\alpha}$
50 (297) #13 Hard gray CLAY (CH) laminated, very dry 17 17 17 55 (172) #14 Hard gray CLAY 111 57 18 111 60 (02) NO RECOVERY 111 57 18 111 117 141 65 (02) NO RECOVERY 1111 1111 1111 1111 <td>E</td> <td></td> <td>11</td> <td>4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Ο.</td>	E		11	4								_							Ο.
50 (29%) #13 Hard gray CLAY (CH) laminated, very dry 17 17 55 (17%) #14 Hard gray CLAY 117 57 18 60 (0%) NO RECOVERY 117 57 18 17 65 (0%) NO RECOVERY 117 17 17 17 17 70 (0%) NO RECOVERY 117 17 17 18 17 100 114 Hard gray CLAY 114 18 17 17 18 17 60 (0%) NO RECOVERY 111 17 18 17 17 17 65 (0%) NO RECOVERY 111	-		11	1						1		-							
50 (29%) #13 Hard gray CLAY (CH) laminated, very dry 17 17 17 55 (17%) #14 Hard gray CLAY 117 57 18 18 60 (0%) NO RECOVERY 111 57 18 111 17 65 (0%) NO RECOVERY 1111 1111 1111	E		11	1									с і						
30 (23x) (13x) (113) hard gray CLAY 1	E 50	(207)	11	HI2 Uand		v (cm)	1		d			_	17						
55 (172) #14 Hard gray CLAY 11111 57 18 10 18 60 (02) NO RECOVERY 11111 57 18 14 <t< td=""><td>E 30</td><td>(29%)</td><td>11</td><td>nis nard</td><td>i gray CLA</td><td>I (CH)</td><td>laminated</td><td>, very</td><td>ary</td><td></td><td></td><td>-</td><td>11</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	E 30	(29%)	11	nis nard	i gray CLA	I (CH)	laminated	, very	ary			-	11						
55 (172) #14 Hard gray CLAY 111 57 18 111 111 57 18 111	E		11									\equiv							1
55 (17%) #14 Hard gray CLAY 1 57 18 1<	E		11	4								_			Ê Y				1
55 (172) #14 Hard gray CLAY 1 57 18 60 (02) NO RECOVERY 1 </td <td>E</td> <td></td> <td>11</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>11</td> <td>\equiv</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	E		11	1							11	\equiv							
60 (0Z) NO RECOVERY IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	E 55	(17%)	11	#14 Hard	grav CLA	Y						_		57	18				1
60 (0Z) NO RECOVERY IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	E		11	1	- <u>-</u>	-						=							
60 (0Z) NO RECOVERY 65 (0Z) NO RECOVERY 70 (0Z) NO RECOVERY	E		11									=						5	
60 (0Z) NO RECOVERY 65 (0Z) NO RECOVERY 70 (0Z) NO RECOVERY	-		11	4 -								-						00	
60 (0Z) NO RECOVERY IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	E		11	1				5				=							
65 (0%) NO RECOVERY 70 (0%) NO RECOVERY	E 60	(07)	11	NO REC	OVERV			5				_							計算
65 (07) NO RECOVERY	E	10%)	11		OVERI							=						F	1 5
65 (0Z) NO RECOVERY 70 (0Z) NO RECOVERY	E		11	2								\equiv						بل ل	1
65 (07) NO RECOVERY 70 (07) NO RECOVERY	E	1	11									-						a	3
65 (0Z) NO RECOVERY 70 (0Z) NO RECOVERY	E	1		4								\equiv						2	1 5
TO (0%) NO RECOVERY	Ere	100	11	1 10 550	OVENY							_							
70 (0Z) NO RECOVERY	E	(0%)	//	NO REC	OVERY	50						_						2	
TO (0Z) NO RECOVERY	E	1	11	1						t I		=							5 -
E 70 (0Z) NO RECOVERY	E	1	11															Ĭ	<u>ן</u>
70 (0Z) NO RECOVERY	E	1	11									_						C C	5 2
	100	1										_						Č	2 2
	70	(0%)	11	NO REC	OVERY					1		=						-	-
		1	11	1								\equiv		ŝ.					
	E		11	1						ł		_							
	E	1	11									_							
				4		141	34												

				SO	IL E	30	REHOL	ELO	DG										
SITE NAM	ME AND L	OCATI	ON				RILLING METHO	D: Di	v Aug	er ()-8(0'	E	BORIN	G NO	•			
່	Co	Tand	(fil)											. E	3-8				
outh	1 00. 1 of F	M 11	Ol on Koh	lenherg	Ln.	22							5	SHEET					T
New F	Sraunf	els.	Texas			5	SAMPLING METH	10D: ()-10'	Cont	:in:	uous		3	OF	3			
		,					10'-80'	@ 5' i	nterv	als				C	RILLI	NG			
													-	STAR	T	FINIS	я		62
					-			[T		T	-	TIME		TIM	E		뉘
						H	THE						-Ь.	.10-		1.1	5.01		ап
						-	IME				1.77		-	DATE					~
				af		-	DATE			+			-1	11-2	51 h	1-2	4-8	7	аш
DATUM	M	SL		ELEVATION	638		CASING DEPTH		l	1		1			- 1-		- 4	·	4
DRILL RI	G SIM	CO 2	.800			SURF	ACE CONDITION	NS SE	e pag	e l									
ANGLE	Le	vel	BEARING	E															<u>_ا</u>
SAMPLE	HAMMER	TORC		FTI	.85														Ē
⊢	dr.e.									EI I		E		TEST	RESU	LTS			ğ
l HZ		ರ			SANAD					2	ΥPE	0 U U U	*	1%			8		٥ ٥
Z Z		MB			SAIVIE	AND				œ	5	CAS	_±	W	0.	ح	ĸ		Ž,
E E	274	sγ		DE	SCRIPTIC	ON OF	MATERIAL			PLE	NS I	ðz		le	STIC 1 %		配		
	205									NA N	ð	Ē	₹õ	ğ	AL IN	SPO	副		ä
		I								1 01	_								
		11	1																
Ε		11	1				,					=							
-75	(100%	11	#15 Hard	gray CLA	Y (C	H) 1	w/strong	organi	c or			_				0 0			
E		11	hydro	carbon o	dor							=							ç
E		11	1																C
-		11	1									=							č
- 0.0	1000	11					s:					=						÷	ì
L90	(100%	11	#16 Hard	gray CLA	Ľ.							=	6 8						7
E		11								+		=							Ľ
E				Bottom	@ 80	o'						-							
E																	- 1		
E												_							
E .			ļ									=							
F																			I.
F												-							81. L
F			1																
F			ļ																
E												-							
E			.									_							E i
E												=							1 080
E			1				33	8 💌				=							
F												-							i Li
Þ												=							
F	1											_							a r
-												=	8 8						n ·
F			1									=							5
E					5							=							≿' -
E												-	13				- 8		ш
<u> </u>	1		1									_			<i>.</i>				Щ.
E												=							ğ ł
2												_							2
	1											=							
F	1											=							
E	1											=							
Ε			1									=							
	1	1	L								1		I				Oct	ober	2023

				SOIL	30	DREHOL	ELC	DG									÷.	
	E AND LO	CATIO	0N			DRILLING METHO	D: Dr	v Auger	0-3	8'		BC	RING	NO.				
			£411			NX corin	ng 58'-	-80'			_	St	B	-9		_		9 D
a. - H	L CO. L > of FY	and.	01 01	n Kohlenberg Ln.	#2			101 0				- ~	1	05	3			
New H	Braunfe	ls,	Tex	as		SAMPLING METH		10° Con	CIN	100		+			G	-	N	12
						10'-80' (<u>a 5' 1</u>	nterval	.5			S	TART	T	FINIS		fre	
												-	TIME	1	TIME		am	
						WATER LEVEL			_		1	11	:55	anl	:15	DI	R	
						TIME						1	DATE	T	DAT	E	San	
				(10		DATE DATE							1-2	2411	-25	-87		
DATUM	M	SL		ELEVATION 640	C CI	IREACE CONDITION	NS Drv	black	cla	v	FILL	w/c	hei	:t				
DRILL RI	G SIM	CO 2	2800		- 30	gravel & C	obbles	01001									_l	h
ANGLE	5°		BEA	RING W	-	graver u c	000101										NTF	GC
SAMPLE	HAMMER	TORC	JUE	F1LB5				1	5		F	T	EST	RESU	LTS	_	ō	ie.
ti-	200								G	Berry		*	T %			00	U	102
EN C	Lage H	ğ		SAN	IPLE	NUMBER			× ۲	5	CAS	"ż	LIM <u></u>	0.	₀≿ا	11	LIN	•
NIN N	CON IS	λW				ND			PLE	SIN	ŠZ	NTER	B	II %	N N N	罰	- HIL	
EPT (ELE	N N N N N N N N N N N N N N N N N N N	Ś		DESCRIP					SAM	ð	8	\$° S	ā	F	99	神	Δ	
	ā		I									_	-	1		-		
_	(1007	4.~	4.1	Hard black CLAY	(CH) FILL W	chert	gravel			Ξ							
F	(100%	1.5	4# I	£ cobbles				-			_	1						
E	(887)	5.0	#2	Hard black CLAY	F	ILL w/chert	grave	1 &			=	11/						ſ.
E	(00%)	77	7	cobbles							Ξ						5	5
— 5	(18%)	1º	#3	Hard black CLAY	F	ILL to 5'					=							ć.
		11			()	•• \			8		=							\subset
	(76%)		#4	Hard black CLAY	(C. 'T A'	n) « V w/sand.	gravel	. &			Ξ	1						5
1	(65%)	1	if 5	Hard dark gray C	55	1 w/32112,	0			1	=							
E		1	2	CODDIES					1		=	1						
E	'		2								Ξ							
F		VI							1		-							
E	_	K	<u> </u>								=						1 0	i
E	1	H	N.			cilty CLAY	r (CL))		1	=							
= 15	5 ((18%)	N	N#6	Hard dry light		artings	, ,				=							
E		N	Ø	W/Irequent chain	C P	arcings					1							
E		R	N								Ξ							
E		05	X	1.2			TAV (I	сн)			-						5	a a
E 20	0 (71%)	1	#7	Hard light tan	&]	light gray		(11)			1						bsd	1 5
E		1					2				\equiv						EO	三吉
É			1						1	1	=						1 1	Ĭ
E		1	2						1									
E,	5 (887	1	#8	Hard light tan	& 2	light gray	CLAY					1 112	5 54	+ 11.9			Jef	8
= 1	5 (00%	V	1			•												24
E			2		2						-					- 22	≿	<u>'</u>
E											1 =							,)
E.		.V	1	T 1 1daha ton	СТ	AV w/minute	ferro	us			18	19)					i bu
E 3	0 (65%		19	mara light tan	ш.					î.	194	10					j č	ATI
F			1	harricies													-	
		V	1															
							~		а	а		1 11	7					
E 3	35 (71%		#1	0 Hard light tan	CL	AY w/minute	ierro	ous			-		·					
E		1	1	particles							-							
Ē							/	2			1		_	Octob	ber 20	23		

					SOI	LB	0	REHO	LELC	DG									
SITE NAM	ME AND L	OCATI	ON				T	ORILLING METH	OD: Dry	Auge	r 0.	-58	1	E	ORIN	G NO			
l Comaj	1 Co.	Land	lfill				F	NX corin	1g 58'-8	30'						B-9			i.
jout	h of H	FM 11	.01 on	Kohlen	berg I	.n. #	2							5	HEET				έ. Έ
New 2	Brauní	els,	Texas	S			-	SAMPLING MET	HOD: 0-	-10' 0	ont	inu	ous	-	2	05	3		
							-	10'-80'	@ 5' in	iterva	ls					RILLI	NG		N
							F		-	-1.5				5	TAR	r T	FINIS	SH	re
						-	H		1 1		T		T		TIME	-	TIM	IE	L ma
£							H	WATER LEVEL			-			\neg	1.5			e	Ŗ
							\vdash				-			- ±	DATE	Jan.	DA	<u>) pm</u> TE	E
						~ ~ ~	H	DATE	-		-			-1	1-2	4	11-	25-	دن 87
DATUM	MSI			ELEV	ATION	640		CASING DEPTH			<u> </u>			1-	1 2.				
DRILL RI	G S]	IMCO	2800			5	SUHP	FACE CONDITIC	See See	e page	1			() () () () () () () () () ()					
ANGLE	5°		BEARIN	NG W			_	and the second second							-				œ
SAMPLE	HAMMER	TORC	NUE		FTLB	s											_		L L
H-	-100										118		50		EST	RESU	LTS		8
N)		5						JMBER			G V	YPI	0.12	8	T %			00	0 0
NIK.	NAM	Ψ.				A	AND				B	10	VS/ CA:	z,	E I	Q.	∠	C.V.	Ž
	NNN NNN	γs			DESC	RIPTION		F MATERIAL			IPLE	NIS	SS		9	ESE SE	NH NH	E Sta	
	1000										SAN	ပ်	ສ້	N N N N N N N N N N N N N N N N N N N	Ē	LEC	ч Я С Я	T	ä
	1													_					
E		\overline{V}											· =						
E .		VA										1	\equiv						
E 40	(65%)	11	#11 Ha	ard tan	CLAY	(CH)) พ	v/occasion	nal gyp	sum				18	60	21			
E			ро	ockets							6 a.		=						
		11																	
4		VA											=						
		11											=	22	72	25			
+ ^{−45}	(47%)	11	#12 St	tiff tar	ı & gr	ay CL	LAY	Y					1	133	12	25			
F		11			77								=						
E		11									T.								
E													1						
E	(267)	1	#12 11-		5	CT A	A 37	(CH) NOT	v thinl	7									
	(30%)	1	HIJ Ha	ard tan	& gra	у СLА	AI	(Ch) Ver	y chini	Y .			=	19	63	23			
F			De	aded									=		1				
F		11							a.				-						
F		VA											=						
- 55	(0%)	11	NO RE	ECOVERY									-						
E													=					1 (1	
E			96										_						5
E		VI											=						C C
		1							č.				=						
<u>60</u>	(100%	11	#14 Ha	ard gray	7 CLAY	, mas	ssi	ively bed	ded				-						Ę
ŧ.		11											=					6 8	-
F		11											-						
E		11											-						d L
E		1											_						
E ⁶⁵	(100%	11	#15 Ha	ard gray	7 CLAY	, mas	ssi	ive, stru	cturele	SS			=						ž
E		11									1		=						
<u>+</u> -		11				÷							-						ΞE
Þ		11											Ξ						ğ
70	(100%	11	#16 Ha	ard gray	7 CLAY	w/oc	cca	asional g	ypsum				_						
. ×		11	pá	artings		. –		0.			E.	£ 1							8
F		11		0-	20								-						14
E		1	i.		73	a T							Ξ						
E		11							*E				=						
	· · · · · · · · · · · · · · · · · · ·	111										20000							

ł

トレンシュー

.....

::::

1.1

	SOIL BO	DREHOLE	LOG							
SITE NAME AND LO	OCATION Landfill	DRILLING METHOD: NX coring	Dry Aug 58'-80'	er O	-58'		ORIN	g no. 3 <u>B-9</u>		
South of Fi	M 1101 on Kohlenberg Ln. #2	SAMPLING METHOD	0-101	² ont	1.2.1.0.1.0		знаат З		3	
New Braunf	els, Texas	101-901 0 51	interval	Jone.	Inuous				G	
		10 -80 @ 5	Incerva.	15			START		FINISH	
		WATER LEVEL	1	[1		TIME		TIME	
		TIME				1	1:55	aml	:15pm	
		DATE					DATE		DATE	_
DATUM MS	L ELEVATION 640	CASING DEPTH				μ	1-24		1-25-8	7
DRILL RIG S	IMCO 2800 SU	RFACE CONDITIONS	See page	<u>e 1</u>						
ANGLE 5°	BEARING W									
SAMPLE HAMMER	TORQUE FTLBS			- I						
DEPTH IN FEET (ELEVATION) BLOWS/ AMPLER (RECOVERY)	J B B S S S S S S S S S S S S S S S S S	NUMBER ID OF MATERIAL		SAMPLER AND BI	CASING TYPE BLOWS/FOOT ON CASING	WATER CONTENT %	110011 WILL %	PLASTIC LINIT %	SPCIFIC GRAVITY OTHER 76915- 200	
75 (100%	#17 Hard gray CLAY (CH) gypsum parting #18 Hard gray CLAY Bottom @ 80'	massive w/occa	asional							

ī

÷

÷.

ş

3

· · · · · · ·

	SOIL BO	OREHOL	ELC	DG									
SITE NAME AND LOCAT	TION	DRILLING METHO	D: D	Augor	0-	681		Te).		
	46411	NX corin	a 68'-	80'	<u> </u>	00		-		B_1	0		
Jual Co. Land	dilli 101 en Keblenberg In d'2		5 00			-			SHEET	- <u>-</u>		3	
Nou Brounfold	Towar	SAMPLING METH	IOD:					-	1		3	1	
New braunters	, 16245					-					NG	N	
					_				TAD		ENICH	Le L	
	_				T		<u> </u>		TINAG		TINAS		
		WATER LEVEL						-			0 . / E	Ra	
		TIME							: : >:	bur	.2:45pm	E	
		DATE							DATE		DATE	Sa	
DATUM MSL	ELEVATION 642	CASING DEPTH						1	1-2	25 1	2-1-87		
DRILL RIG SIMCO	2800 st	JRFACE CONDITION	vs Dr	y blac	k Cl	LAY	w/cl	hert	: cc	bbl	.es.		
ANGLE \$ 5°	BEARING NW	Abundant g	rass &	shrub	S W	/2"	of	tops	soil			1	
SAMPLE HAMMER TOP	BOUE FTLBS											I E	4 4
					5	Π		1	TEST	RESL	JLTS	1 S	÷
					Q	ピ	22		*				ž
	SAMPLE	NUMBER			¥	≿	ASIL	×	ŧ	1	5	D N	č
	IA	ND			EB	2	ŠČ	E S		2%	25 46		
	DESCRIPTION	OF MATERIAL			MPI	NS I	De la	15N	1 Z	AST 1	52 25		
					SA	0		30	Ĕ	22	100 05		
110021-		Villand 5		٢.	-		_	17	50	b7		ł	
E (100%)	I Hard black CLAY (CH,) w/sand œ §	gravei	œ			\equiv	1	10	F'			
E	calcareous nodules	······································					_						
E (54%)	2 Hard dark brown CLA	i w/sand a	gravei							6			G
													2
⊢ 5 (17%)	#3 Hard light tan CLAY	w/sand, gr	avel,	&	-		_						σ
	cobbles, & frequent	calcareous	poćké	ts			=						3
(46%)	4 Hard light tan CLAY	(CH) w/calo	careous	5		1	_					8	
F	nodules						-						<u></u> .
E (38%)	5 Hard light tan & li	ght gray CL	AY w/s	ilt			_	μ5					
	pockets						_						
	2						_			1			
	2						-		1				
							=	1					8
E15 (467)	6 Hard light tan & li	oht grav CL	AY				_		56	19			É.
	io nara right can a ri	gint gruf of					=		[Γ			
					1 1		=						ĺ.
FI	2						-						1
							—		1				>
F20 (56Z)	7 Hard light tan CLAY						-	14				5	ä
F	, mara right can obir		\tilde{S}				-					sd	E
E I V							_		Ρ.,			E	Ť
EIV							=	1				뷥	Ľ
EIV							=			1		اسا	
25 (61%)	8 Hard light gray & t	an CLAY					-	16	59	20		e L	~
							=					ר	а Г
							_						35
							=						-
Fac Land							=						-
F-30 (1/%)	9 Hard light tan & gr	ay CLAY					-	18				5	щ
	N N						—					^{(m}	AT
							-		1			1	Ę.
	2											0	
E35 (567)	#10 Hard light gray & +	an CLAY											
	argue gray a ta												
FIV					10 0	n î	j.	1	2	i.		ī	
								_		_	0	ctoher 20	1773

SOIL BOREHOLE LOG			
SITE NAME AND LOCATION DRILLING METHOD: Drv Auger 0-68'	BORING	NO.	
NX coring 68'-80'		B-10	4 1
Smal Co. Landilli	SHEET		
New Braunfels, Texas	2	OF 3	4 .1
10'-80' @ 5' intervals			le2
	START	FINISH	
WATER LEVEL		HME	Ra
TIME	11:55	ipn12:45	
DATE			l v
DATUM MSL ELEVATION 642 CASING DEPTH	11-23	12-1-0	₽ /
DRILL RIG SIMCO 2800 SURFACE CONDITIONS See page 1			-
ANGLE 5 BEARING NW			- <u>c</u> '·
SAMPLE HAMMER TORQUE FTLBS			- <u>z</u>
	TEST	RESULTS	- X
	° ⊥ ₹		S g (
			Ē
		PCH NITS	E E
	50 7		4 -
40 (56Z) #11 Hard tan & gray CLAY (CH)	18 59	20	
(5 (227)) #12 Yorn stiff ton & gray CLAY	20		
- 45 (22%) #12 Very Still tail & gray Obal			ت
50 (33%) #13 Hard tan & gray CLAY	10		
55 (44%) #14 Hard tan & gray CLAY w/occasional gypsum	20 68	23	
seams			Ę
			080
E (0 (447) #15 Hard gray (TAY (CH)	18		· 1
			Je
E^{65} (0%)			Å
			G
			8 0 0 0
	11 54	24	2
70 (100%) #16 Hard gray CLAY, slickensided	11104	147	
	3		
E VA			tohor 2022

2

¢

					S	SOIL	BC	DREHO	LEL	OG										
TE NAM	E AND LO	CATIC	0N					DRILLING METH	OD:]	Dry Aug	er	0-6	8'	В	ORIN	g NO	•			
.ma]	Co. I	and	Eill					NX cori	ng 68'	-80'					.B	-10			ð.	
Juch	of F	4 11(01 on	Koh.	lenbe	rg Ln.	#2							s	HEET	•				
New B	raunfe	ls,	Texas	5		•	- 3	SAMPLING MET	нор: 0-	-10' Co	nti	nuc	us		3	OF	3		E E	
								10'-80'	@ 5' in	nterval	.s				C	RILLI	NG			
														s	TAR	г	FINIS	H	EZ	
						2 <u>-</u>									TIME		TIME		늰	
								TINAE						-h:	55r	m 1	2:45	5 pm	an	
								DATE					1	-	DATE		DAT		Ĩ	
											-			—h1	-25	5 1	2-1-	-81	<u>jan</u>	
DATUM	MSI	-			ELEVAT	ICN 642	1	CASING DEPTH			<u> </u>							-	21	
SRILL RIC	3	SIMC	0 2800	0			SU	IRFACE CONDITION	JNS Se	e page	1		0.0					-		ے
ANGLE	< 5°		BEAR	NG	NW		_											-	щ	ec]
SAMPLE	HAMMER	TORC	UE			FTLBS							T	1		-			Ň	e
F	dre										E C	μ	20	-		HESU		-	ö	01
Ĵ.	에 바 에 바 다	ਰ				SAN	4P1 F	NUMBER			IJ Z Z	ĽΣ		%	Ē			8	ğ	0
Alic	NAC NAC	MBM				0/11	4A	ND			5	9	NA S	E L	l ₹	28	⊔≦⊆	20	Ę	
E<	878 878	S∖				DESCRIP	TION	OF MATERIAL			JPL	ASIL	ČZ	ATAN N	3	ASI I	EŠŠ		믭	
	102E		þ								SAA	0	-	<u></u> ≩ö	2	<u>ک</u> ه ا	្រភួ	5 ₽		
	L											-			1	T	TT			
-		11											=	5						
-								、 ·	-1:			1	=							
-75	(100%	11	#17 H	ard	gray	CLAY (CH,) massive,	STICKE	ensided			=							4
-		1									1		=					1		S
-		11													ł					σ.
5			1										=					1		<u>.</u>
	1000	\overline{V}		1		CTAV -			enside	d			-		1				10	Ξ
- 80	1(100%	11	10 H	ard	gray	للاو المبلي	ass	ive, sile	CENDIAC	4			=				1 1			S
		11									†		=							
-					Bott	:om @ 8	0'						=		ġ.					
-											1		=							
-									**				Ξ							
-		6																	1	i
<u> </u>	1											1	-							
-												1	=							
2			2										_							
-			1									1	=							
-				22									=						e	₹
_													-						100	
-									÷				_		Î.			1 8	d	₹
Ξ.			1										=						lou	С С
-																			F	ł
=			1										=						ff	
=																			Je	87
Ξ													1 =							니
Ξ.																1			' _ح ا	
-			- 14																8	-1
-	1												-							
=													1 =						99	Ш
-													1 =							DA
	1												=							
-	-												=				$= \frac{1}{2}$			
-			1							12			-							
_																				
			1						_	-	0	1	1.00			Octo	ber 20	23	1	
1 million 1										1					-					

Printed on recycled paper.

					S	OIL	B	DREHOL	ELC	DG											
		CATI	DN					DRILLING METHO	D: Dry	Auger	0-7	5'	_	В	ORING	G NO	•	-			
_ 1	<u> </u>	r	-				()									B –1	11			1	
.ai		Land M 11	01 6	L DR Ko	hlenher	a In	#2							S	HEET						
New B	raunf.	els.	Tex.		ITENDET	5 5	"	SAMPLING METH	HOD: 0-	-10' C	onti	nu	ous		1	OF		3			
new L			101					10'-75'	@ 5'	interv	als				D	RILLI	NG				
												_		S	TART		FINIS	ы		N H	
						-		WATER LEVEL							TIME		ΠM	E	-	1	ŝ
								TIME						3:	25 ₁	ם מכ	11:5	50a			
								DATE							DATE		DAT	re	•		
D . T. D .	MSL					N 628	3	CASING DEPTH						11	-19) 1	11-1	.9-8	7 კ	29	
DAILL RIC	S	IMCC	280	00	La		SU	RFACE CONDITIO	NS Dr	y blac	k CL	AY	@ su	rfac	e v	7/				Ĩ.	1
ANGLE	Lev	el	BEA	ARING	W		1	approximat	ely l"	of dr	y 10	os	e top	soj	1.	Tı	rees	,			
SAMPLE	HAMMER	TORC	UE		Fĭ	L8S		shrubs & t	all gra	ass.									E		ch
						_					118		+		EST	RESU	LTS		Ş	Ş	te
л Г		Ļ									2	툇		*	Τ %			9	Ċ	5	ore.
ATIO TIO		MBC				SAN					A R	5	CAS/F	"ż	Ī	0.	"≿	50	4		ပိ
, EV	C S S S	sγ				DESCRIP	TION	OF MATERIAL			IPLE	NIS	ŠS	NTER		STI 12%	NHO	聖	Ē		
	°j6€										NYS	ΰ	ē~	¥0 X0	Ę		9 S R	2E	Z	ĩ	
	L						_				1					-					
E	(59%)		#1	Hard	black	CLAY	(CI	H) coarse g	gravel	@ 1'			_								
E	(59%)		#2	Hard	black	CLAY,	w/	fine to co	arse s	and &			_	21	92	28					
-	(22.07			grav	rel								Ξ							1	
=	10/0/	\mathcal{L}	112	V		abart		AVET (CW)					=							ļ	Ś
F 5	13464		# 1	Very	dense dense	chert	. GR	AVEL (GW)					-	8				202		(σ
•	26		174	very	uense	CHELL	. 60						=							0	
x	20												-							(\Box
Þ		11	1				-				1										ົດ
F 10	(507)	1)	17			ע די						_	24							
E 10	(39%)	11	1#5	very	SEIII		1 a a	. (CH) W/II	equent	•			=			1					
E			1	cal	careous	noau	Tes						=								
E	~	11	1										=								
E													=							Ĩ.	
F-15	(82%)	1	#6	Hard	i tan to	brow	<i>m</i> 0	LAY w/freq	uent		1		-		106	32					
E	,	11	1	calc	areous	chalk	c pc	ckets					=								
E		11	2				-						=								
E													Ξ								
E		11	1					_		-											μ
F 20	(94%)	1.	#7	Hard	l tan &	brown	ı CI	AY w/light	gray	clay			=	28		1				5	þ
E				part	ings &	slick	kens	sides			1		=	1						sdi	풎
E	(1	1										-							<u></u>	0
E		1	2								1		E				1		Ĩ	F	
-25	(94%)	1	#8	Hard	i tan &	brown	ı CI	LAY w/frequ	ent gy	psum				31					1 1	비	~
F			1	part	ings &	chall	c se	eams, slick	enside	s,	1	1	=							9	8
E		VI	1	occa	isional	silt _.	par	tings					_								19
E		11														1				BΥ	-
F.	1	1	1					ATT - 10					=							n.	-
E ³⁰	(94%)	11	#9	Hard	i tan &	brown	ı CI	AI W/ITEQU	ent gy	psum		I.	-							361	Ш
E.		11		part	ings															ŏ	N.
													£	2						-	_
•		1	1								i i	a l	i — i		I	1.					
E-35	(94%)	11	#10	Hard	i tan &	brown	: CI	AY w/frequ	ent gy	psum			=	30	$ ^{\mu}$	10					
E	1			part	ings &	frequ	ient	: silt part	ings				=								
-	1	1	1									1			1	1	1	L		000	~~

			SOIL	B	OREHOL	ELC	DG										
SITE NAM	AE AND L		N		DRILLING METHO	D: Dry	Auger	-0	75.	5'	В	ORIN	G NO	•			
mal	Co.	Landf	ill										B-1	.1			
Juth	of F	M 110	l on Kohlenberg Ln.	#2							s	HEET					
New B	raunī	els,	Texas		SAMPLING MET	HOD: 0-	10' Co	nti	nuo	us	-	2	OF	3			
					10'-85	5' @ 5'	inter	val	s		-		RILLI	NG	_		
								-			s	TAR	r T	FINIS	н		
			÷			r		1		1		TIME		TIM	E	. ei	
					WATER LEVEL						┥.	0.5		1.5		급	1
1					TIME					-	-13:		m	1:5	Uan	Rai	
					DATE				-		⊢,	1.0		1 2		- E	l
DATUM	MSL		ELEVATION 628	B.,	CASING DEPTH			1			11	-19	<u> </u>	1-2	<u>0-9</u>	Sai	l
DRILL RK	s S	IMCO	2800	SU	IRFACE CONDITIO	NS S	ee pag	ge l									ł
ANGLE	Lev	el	BEARING W														j
SAMPLE	HAMMER	TCROU	E FTLBS													Ĩ	
L	1000							BI		E.	1	EST	RESU	LTS		ō	-
N)								g	ξ.		%	»" ►			8	g	
ATIO		EN I	54					₹ E	5	CAS	_±	M	0.		5	Ž,	į
E S	N S S S	SΥ	DESCRIF	TION	OF MATERIAL			E E	NS S	δz	TER	<u>a</u>	STIC	똜	乾	<u>קר</u>	ć
(EL	015E							AM	ð	E	ΧÓ	ğ	N N	SP GP GP	5 ₽	Ъ	
		1						50									
-		VA								=							
F		VA.								=		1					
E-40	(82%)		11 Hard brown CLAY	(CH	I) w/freque	nt gyp	sum			_	29				8		
E		VA	partings & occas	iona	al silt par	tings				=							a
E_		VA								_							ц С
-		1								-							ň
/ -	((= = =)	1		GT 1		1-											ċ
-45 H	(65%)	VA	12 Hard tan & gray	CLA.	i w/irequer	it siit	c			-	1						$\overline{\alpha}$
F		VA	partings & occas	101	ai gypsum j	parting	5	1		=							v
E		11						1		0							
E		VA										l.					
E50	(297)	1 Ait	13 Hard gray CTAY (сн)	slickensid	led				_	17						
E °	(11	is hard gray comi (on į	STICKCHOIC					—	2						
F										=							
F		VA								_							
E		1								=							
E-55	(41%)	1/1	14 Hard grav CLAY,	sli	ckensided &	a crude	ly			-	18	67	22				
E	ſ		laminated				-			=		-					
E			-							=						r R	á
E		1A				*				_						bsd	Ę
E.			8							Ξ						EO	Ì
F60	(41%)		15 Hard gray CLAY,	šli	ckensided (x crude	ly			=						цЪ Ц	L C
F		VA	laminated													ų.	
E		V/A								-						ef	
E					-					-						Ч	La La
E-65	(352)	1	16 Hard gray CLAY	sli	ckensided.	crudel	v					69	22	898 V			6
E	(33%)	VA	laminated w/orga	nic	or hydrocz	arbon o	dor			=						Ŗ	÷ 7.
F	1	N	Tamanatod #/OLED		51 inju2000					=	1		ų.			0	Ξ
F	1							1		=					i k	ы В	ц
F		11						1		Ξ		1	1			กั	۵TI
70	(35Z)	IN	17 Hard grav CLAY.	sli	ckensided &	k crude	ly			-	17	1					2
-	ſ	1	laminated				-		• •								
E	1																
E		VA			ş ş		3					1	1				
F		VA										0	tobe	2023			
-				_							Г	2000	No 4	C 140			

Printed on recycled paper.

No. 4C-140 ge

			SOIL BO	OREHOL	ELC	DG							17.6			
SITE NAM		CATIO	N	DRILLING METHO	D: Dra	Auger	- 0-	75.	5'	B	ORIN	G NO				
mal	Co. I	andf	ill .								E	3-11		_	1	ß
Jth	of FM	1 110)1 on Kohlenberg In. #2							S	HEET					
New B	raunfe	els,	Texas	SAMPLING METH	HOD: 0-	-10' Co	nri	nuo	us		3	OF	3	_		
				10'-75.5	5' @ 5	inter	val	s			¢	RILLI	NG	_		
								_	·	S	TART	r .	FINIS	н	2	
			1773	WATER LEVEL			-	_		-	IME		TIME		Ire	
				TIME						3:	55p	2m 1	1:5	0an	ШB	
				DATE			-			4.	DATE		DAI			
DATUM	MSL		ELEVATION 628	CASING DEPTH			<u> </u>		I		.1-1	.9 1	1-2	0-8	San /	
DRILL RIG	S S	IMCO	2800 si	JRFACE CONDITIO	NS Se	e page	<u> </u>				-			_	0.	
ANGLE	Leve	<u>1</u>	BEARING W					-			-	-	-	-	æ	
SAMPLE	HAMMER	TORO	UE FTLBS							1	0.5%	-		_	LNC LNC	÷
F	-107						18	w	50		EST	RESU	T	0	8	T D
HIN HIN		5	SAMPLE	NUMBER			NA	ΪĮ	SIN	%	ALT .			12	U Z	e re
NIK I	NON VIEW	٩ų –	A	ND			5	Ÿ	N C N	μ N N	E	2%	₽Ę	۳þ		2
LET L	No.	ίδ	DESCRIPTION	OF MATERIAL			MPI	SASI		AT	١,	NIT N	Par S =	15日	L H	
							Ś	Ů		50	Þ	Ē	00	24	_	
		T.A						Π	-							
E	50 71			11 (lequar	a inch)			Ξ							
- 75	50 B1	5"	no recovery. One such	AY (CH)		•	1		-							~
F	LOF 2	11	piece of very hard of						=							
F		\square					ŧ.		_							σ
<u>.</u>			Bottom @ 75.	.51					<u> </u>							3
			10 A	8					_							\subset
E	1 1								Ξ							Ū.
E							1		_							
F									=							
E																
F							r -		=		1					
F					12				=							Ē.
E									-							
E								11	=							
E									Ξ							
F									=							
F									_						5	i á
E		1 1			Ξ.				=				1 1		DSU	1 8
E					-				Ξ						Ē	
F															۲ ۲	
F									=						4	
E									-						a	il c
E							1		Ξ							c
E.							1		-						,	1 5
E	1								=		1					2 2
E	1														ļ	į.,
E																ź ŗ
									-						-	i č
F									=							
Ε			2	2 12					=							
=									=							2000
														Uc	Loper 2	<u> 1</u> 023

Printed on recycled paper.

BTE NAME AND LOGATION PHLING METHOD: Dry Auger 0-80' BORNA 00. 'Small Co. Landfill Bill Bill <t< th=""><th>SOIL BO</th><th>DREHOLE LOG</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	SOIL BO	DREHOLE LOG									
Junch of FM 1101 on Kohlenberg Ln. #2 3-12 Seter New Braunfels, Texas 10'-60' 0-10' Continuous 1 or 3 10'-60' 0 5' intervals South of FM 101 on Kohlenberg Ln. #2 0-10	SITE NAME AND LOCATION	DRILLING METHOD: Dry Auge	r 0-80'		ac	RING	NO.				
Juste of FM 1101 on Kohlenberg Ln. #2 #447 New Braunfels, Texas 10'-80' @ 5' intervals 0 of 3 July Hold 10'-80' @ 5' intervals 0 of 3 July Hold 10'-80' @ 5' intervals 0 of 3 July Hold 10'-80' @ 5' intervals 0 of 3 July Hold 10'-80' @ 5' intervals 0 of 3 July Hold 10'-80' @ 5' intervals 0 of 3 July Hold 10'-80' @ 5' intervals 0 of 3 July Hold 10'-80' @ 5' intervals 0 of 3 July Hold 10'-80' @ 5' intervals 0 of 3 July Hold 10'-80' @ 5' intervals 0 of 3 July Hold 10'-80' @ 5' intervals 0 of 3 July Hold 10'-80' @ 5' intervals 0 of 3 July Hold 10'-80' @ 5' intervals 0 of 3 July Hold 10'-80' @ 5' intervals 0 of 3 July Hold 10'-80' @ 5' intervals 0 of 3 July Hold 10'-80' @ 5' intervals 0 of 3 July Hold 10'-80' @ 5' intervals 0 of 3 July Hold Sameter Annow 10'-80' @ 5' intervals 0 of 3 July Hold Sameter Annow 10' of 3 0 of 3 July Hold Sameter Annow 10' of 3 July Hold <t< td=""><td>lomal Co. Landfill</td><td>a</td><td></td><td></td><td></td><td></td><td>.B-</td><td>12</td><td>_</td><td></td><td></td></t<>	lomal Co. Landfill	a					.B-	12	_		
New Braunfels, Texas New Braunfels, Texas Automod Methodo 0-10' Continuous 1 or 3 J0-807 0-807 0-807 0-807 MSL ELEVATION 642 0-10' Continuous 1 or 3 MATEM LEVEL 0-10' Continuous 12:1506 6:0528 ORLING SIMCO 2800 Supract compones Black clay 6 tan clay w/sand. NAME MAMMAR TOROUS Fridage and tan clay w/sand. Teamesurfs Supract MAMMAR TOROUS Fridage and tan clay w/sand. Teamesurfs Supract MAMMAR TOROUS Fridage and tan clay w/sand. Teamesurfs Supract MAMMAR TOROUS Fridage and tan clay w/sand. Teamesurfs Supract Construct Fridage and tan clay w/sand. Teamesurfs Supract MAMMAR TOROUS Fridage and tan clay w/sand. Teamesurfs Supract MAMMAR TOROUS Fridage and tan clay w/sand. Teamesurfs Supract MAMMAR TOROUS Fridage and tan clay w/sand. Teamesurfs <	outh of FM 1101 on Kohlenberg Ln. #2				SF	EET					
IDGO' @ 5' intervals DALLAG IDGO' @ 5' intervals START IDGO' @ 5' intervals Start <t< td=""><td>New Braunfels, Texas</td><td>SAMPLING METHOD: 0-10' CO</td><td>ntinuou</td><td>IS</td><td></td><td>1</td><td>OF</td><td>3</td><td></td><td></td><td></td></t<>	New Braunfels, Texas	SAMPLING METHOD: 0-10' CO	ntinuou	IS		1	OF	3			
MSL ELEVATION 642 SAME MARE DATAM MSL ELEVATION 642 CASE on Construct on Construction of the Constructi		10'-80' @ 5' interval.	s			DF		IG			
WATER LEVEL Thet Thet Thet DATUM MSL ELEVATION 642 CASING CEPTH 12:15:m 6:105:m 6:05:m DPL: MO SIMCO J200 SIMCO 200 SUBJECT 200 Black clav 6 tan clav V/Serc Date ANGLE Level 220.000 SIMCO 200 FrUBS VERETAIL SUBJECT 200 Damp soil V/Serc SAMEL HAVEL SIMCO 200 FrUBS VERETAIL SUBJECT 200 SUBJECT 200 SUBJECT 200 SAMEL Level 200 SAME NUMBER SUBJECT 200 SUBJECT 200 SUBJECT 200 SUBJECT 200 SAMEL HAVEL SIMCO 200 SUBJECT 200 SUBJECT 200 SUBJECT 200 SUBJECT 200 SAMEL SAMEL SUBJECT 200 SUBJECT 200 SUBJECT 200 SUBJECT 200 SUBJECT 200 SAMEL SAMEL SUBJECT 200 SUBJECT 200 SUBJECT 200 SUBJECT 200 SUBJECT 200 SUBJECT 200 SUBJECT 200 SUBJECT 200 SUBJECT 200 SUBJECT 200 SUBJECT 200 SUBJECT 200 SUBJECT 200 SUBJECT 200 SUBJECT 200 SUBJECT 200 SUBJECT 200 SUBJECT 200 SUBJECT 200 SUBJECT 200 SUBJECT 200 SUBJECT 200 SUBJECT 200 SUBJECT 200 SUBJECT 200 SUBJECT 200					ST	TART		FINIS	4	2	
The 12:150m 6:050m Ferrica DATLMA MSL ELEVATION 642 CASHO CAPTIAL 11-20 12:150m 6:050m Ferrica DPRL HOW LAWLE SAMPLE NAMEEN N gravel, 6 transmitterials. Damp soil w/seco MARLE Lavel asANNA N gravel, 6 transmitterials. Damp soil w/seco MARLE MARLE NAMPLE NAMEEN N gravel, 6 gravel, 6 OCSCAPPTION OF MATERIAL USSCAPPTION OF MATERIAL gravel, 6 gravel, 6 OSSCAPPTION OF MATERIAL Gravel & Sono PARLE gravel, 6 (02) -, 7 H1 Auger sample, no recovery from shelby tube gravel, 6 (0352) -, 42 Medium black CLAY W/sand, gravel, 6 gravel, 6 (152) -, 7 grandics FILL gravel, 6 (10) (762) 0% Very stiff tan 6 light gray CLAY (CH) gravel 6 (10) (762) 0% Very stiff tan 6 light gray CLAY (CH) gravel 6 (10) (762) 0% Very stiff tan 6 light gray CLAY (CH) gravel 6 (11) 0% 11/235 gravel 11/235 (22) 0% Very stiff tan 6 light gray CLAY (CH) gravel 11/235 (WATER LEVEL			1 1	IME		TIME		Ir	
DATEM MSL DATE		TIME			12	:15	DN	6:0	5pm	ШB	
OATUM MSL ELEVATION 642 Dark of CONDITIONS Black clay 6 tan clay w/sand. OPALING STHCO 2800 SIMPLE SUMPLY STHCO 2800 Simple Stack clay 6 tan clay w/sand. MANUE Level BZAPROK N gravel, 6 trash materials. Damp soil w/zero SAMPLE HAMMER TORCUS PT-LBS Yegetation. Test results Test results MANUE Sample FAMMER TORCUS PT-LBS Yegetation. Test results Test results Sample HAMMER TORCUS PT-LBS Yegetation. Test results Test results Test results Sample HAMMER TORCUS PT-LBS Yegetation. Test results Test results Test results Sample HAMMER TORCUS PT-LBS Sample RAMER ALSO AND CLAY W/SAMER		DATE				ATE		DATI		M	
DRUL MG SIMCO 2800 BurkAct Coxonosa Black clav 6 tan tol w/sand. AMAGE Level EXAMO N gravel. & trash materials. Damp soil w/zero SAMUE I-Avana N gravel. & trash materials. Damp soil w/zero SAMUE I-Avana N gravel. & trash materials. Damp soil w/zero SAMUE I-Avana N gravel. & trash materials. Damp soil w/zero SAMUE I-Avana N gravel. & trash materials. Damp soil w/zero SAMUE I-Avana N gravel. & trash materials. Damp soil w/zero SAMUE I-Avana SameLe NAMEER State I-Avana State I-Avana SAMUE I-Avana <	MSL ELEVATION 642	CASING DEPTH			μ1	-20	1	1-20	0-87	San	
SIMPLE Lavel 3 starsh materials. Damp soil w/zero SAMPLE Lavel 3 starsh materials. Damp soil w/zero MODE Level 3starsh vegetation. Terrest vegetation. Market Frammer CRCUE Terrest vegetation. Terrest vegetation. Terrest vegetation. Market Starsh materials. Damp soil w/zero Terrest vegetation. Terrest vegetation. Market Starsh materials. June Starsh materials. Damp soil w/zero Terrest vegetation. Market Starsh materials. June Starsh materials. Damp soil w/zero Terrest vegetation. Market Starsh materials. June Starsh materials. Damp soil w/zero Terrest vegetation. Market Starsh materials. June Starsh materials. Damp soil w/zero Terrest vegetation. Market Starsh materials. June Starsh materials. June Starsh materials. June Starsh materials. June Starsh materials. Market Starsh materials. June Starsh materials. June Starsh materials. June Starsh materials. June Starsh materials. Market Starsh materials. June Starsh materials. Market Starsh materials. June Starsh material	DBILL RIG STMCO 2800 SU	JRFACE CONDITIONS Black cla	y & tar	n cla	v w	/sa	nd,	4			
SAMPLE NUMBER as of the second se	ANGLE I AVA J BEARING N gr	avel, & trash materials	. Damp	o soi	lw	/ze:	ro		_	ا <u>م</u>	
understand understand <td>SAMPLE HAMMER TORQUE FTLBS VE</td> <td>getation.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>IIN</td> <td>4</td>	SAMPLE HAMMER TORQUE FTLBS VE	getation.								IIN	4
Image: Section of the section of th					71	ESTF	RESU	LTS	_	8	- i
Ling AND AND Ling <					~	۲ ۲			ß	5	į
EXAMPLE		ND	g g		"Ľ	Ξ	<u>9</u>	ئ∠	++	, EP	c
SEE 33 3 32 32 32 32 33 32 33 <td< td=""><td></td><td>OF MATERIAL</td><td>APLE</td><td></td><td></td><td>9</td><td>LI ST</td><td>ΩŽ</td><td></td><td>臣</td><td></td></td<>		OF MATERIAL	APLE			9	LI ST	ΩŽ		臣	
(02) 4.7 #1 Auger sample, no recovery from shelby tube Loose black & brown CLAY(CH) w/limestone sand, gravel & cobbles FILL 34 (352) 4.2 Medium black CLAY w/sand, gravel, & organics FILL 34 (277) #3 Medium black CLAY w/sand, gravel, & organics FILL 34 (762) #4 Medium gray CLAY (CH) w/sand, gravel, & cobbles w/l" calcareous chalk seam @ 8' 29 10 (702) #5 Stiff gray CLAY (CH) w/rsand, gravel achalk partings & seams. Tan CLAY @ 9.5' 32, 78 26 (297) #6 Very stiff tan & light gray CLAY (CH) 32, 78 26 15 w/chert cobbles 1 32, 78 26 20 (412) #7 Very stiff tan & light gray CLAY (CH) 32 78 26 25 (597) #8 Very stiff light brown CLAY w/occasional ferrous parting @ 20' 27 36 11235 36 30 (762) #9 Hard brown CLAY w/frequent gypsum partings & ferrous partings, slickensided 36 36 36			SAN SAN	•	38	9	53	P.B	ڳ ٿ	Δ	
(07) 2.7 #1 Auger sample, no recovery from shelby tube Loose black & brown CLAY(CH) w/limestone sand, gravel & cobbles FILL 34 (352) 4.2 Medium black CLAY w/sand, gravel, & organics FILL 34 (272) 7.3 Medium black CLAY w/sand, gravel, & organics FILL 34 (762) #4 Medium gray CLAY (CH) w/sand, gravel & cobbles w/l" calcareous chalk seam @ 8' 29 10 (702) #5 Stiff gray CLAY (CH) w/frequent chalk partings & seams. Tan CLAY @ 9.5' 32 78 26 15 (292) #6 Very stiff tan & light gray CLAY (CH) 32 78 26 20 (412) #7 Very stiff light brown CLAY w/occasional ferrous parting @ 20' 27 11235 36 30 (762) #9 Hard brown CLAY w/frequent gypsum partings & ferrous parting % 20' 36 11235 36						- 1		- 1	-		
Loose black & brown CLAY (CH) w/limestone sand, gravel & cobbles FILL (357) 4 #2 Medium black CLAY w/sand, gravel, & organics FILL (762) #4 Medium gray CLAY (CH) w/sand, gravel & cobbles w/l" calcareous chalk seam @ 8' (762) #5 Stiff gray CLAY (CH) w/frequent chalk partings & seams. Tan CLAY @ 9.5' (292) #6 Very stiff tan & light gray CLAY (CH) w/chert cobbles 47 Very stiff tan & light gray CLAY (CH) 48 Very stiff light brown CLAY w/occasional ferrous parting @ 20' 30 (767) #9 Hard brown CLAY w/frequent gypsum partings & ferrous partings, slickensided 34 34 34 34 34 34 34 34 34 34	(0%) (1)	covery from shelby tube	8	=	1 1						
(35%) -> sand, gravel & cobbles FILL (35%) #22 Medium black CLAY w/sand, gravel, & organics FILL (76%) #4 Medium gray CLAY (CH) w/sand, gravel, & organics FILL (76%) #4 Medium gray CLAY (CH) w/sand, gravel, & cobbies w/1" caicareous chalk seam @ 8' 10 (70%) #5 Stiff gray CLAY (CH) w/sand, gravel, & grav	Loose black & brown	A CLAY (CH) w/limestone		_							
(352) * #2 Medium black CLAY w/sand, gravel, a 10 organics FILL (762) #4 Medium black CLAY w/sand, gravel, a 10 29 29 10 (702) #5 Stiff gray CLAY (CH) w/sand, gravel a 10 29 (10 (702) #5 Stiff gray CLAY (CH) w/sand, gravel a 10 29 (292) #6 Very stiff tan & light gray CLAY (CH) 32, 78 26 (292) #6 Very stiff tan & light gray CLAY (CH) 32, 78 26 15 w/chert cobbles 32, 78 26 20 (41Z) #7 Very stiff tan & light gray CLAY (CH) 32, 78 26 25 (597) #8 Very stiff light brown CLAY w/occasional ferrous parting @ 20' 27 27 27 30 (767) #9 Hard brown CLAY w/frequent gypsum partings & ferrous partings & ferrous partings & slickensided 36 36	sand, gravel & cobt	oles FILL		=	34						С
S (2772) #3 Medium Black CLAY w/sand, gravel, & organics FILL 29 (762) #4 Medium gray CLAY (CH) w/sand, gravel & cobbies w/l" calcareous chalk seam @ 8' 29 29 10 (702) #5 Stiff gray CLAY (CH) w/frequent chalk partings & seams. Tan CLAY @ 9.5' 32.78 26 (2922) #6 Very stiff tan & light gray CLAY (CH) 32.78 26 15 w/chert cobbles 32.78 26 20 (412) #7 Very stiff tan & light gray CLAY (CH) 21 227 32.78 26 230 (762) #8 Very stiff light brown CLAY w/occasional ferrous parting @ 20' 30 (762) #9 Hard brown CLAY w/frequent gypsum partings & ferrous partings, slickensided =35 (942) #10 Very stiff tan & light gray CLAY w/* frequent gypsum partings & slickensided 36	E (35%) 2 #2 Medium black CLAY v	/sand, gravel, «		_	54						C
(2/2) #3 Pieddum Diack CLAY (SH) w/sand, gravel & organics FIL 29 (76Z) #4 Medium gray CLAY (CH) w/sand, gravel & cobbies w/1" calcareous chalk seam @ 5' 29 10 (70Z) #5 Stiff gray CLAY (CH) w/sand, gravel & seam @ 5' 29 (29Z) #6 Very stiff tan & light gray CLAY (CH) 32, 78 26 (29Z) #6 Very stiff tan & light gray CLAY (CH) 32, 78 26 (29Z) #6 Very stiff tan & light gray CLAY (CH) 32, 78 26 (29Z) #6 Very stiff tan & light gray CLAY (CH) 32, 78 26 (29Z) #6 Very stiff tan & light gray CLAY (CH) 32, 78 26 20 (41Z) #7 Very stiff light brown CLAY w/occasional ferrous parting @ 20' 27 27 30 (76Z) #9 Hard brown CLAY w/frequent gypsum partings & ferrous partings, slickensided 36 36	E 5 Complete States Fills	Acond gravel &		_							C
(76Z) #4 Medium gray CLAY (CH) w/sand, gravel & cobbles w/1" calcareous chalk seam (0.8") 29 10 (70Z) #5 Stiff gray CLAY (CH) w/frequent chalk partings & seams. Tan CLAY (0.9.5") 32.78 26 (29Z) #6 Very stiff tan & light gray CLAY (CH) w/chert cobbles 32.78 26 20 (41Z) #7 Very stiff tan & light gray CLAY (CH) 32.78 26 25 (59Z) #8 Very stiff light brown CLAY w/occasional ferrous parting 0.20" 27 30 (76Z) #9 Hard brown CLAY w/frequent gypsum partings & ferrous partings, slickensided 36	(27%) #3 Medium Black CLAI V	V/Sallu, graver, u									Ċ
(10.47) 10 (10.47) 10 (10.47) 10 (10.47) 10 (10.47) 10 10 (10.47) 10 10 (10.47) 10 11	(767) #4 Medium gray CLAY (TH) w/sand, gravel &		-	29						Z
10 (702) #5 Stiff gray CLAY (CH) w/frequent chalk partings & seams. Tan CLAY @ 9.5' 15 (292) #6 Very stiff tan & light gray CLAY (CH) w/chert cobbles 15 (292) #6 Very stiff tan & light gray CLAY (CH) w/chert cobbles 20 (412) #7 Very stiff tan & light gray CLAY (CH) 20 (412) #7 Very stiff light brown CLAY w/occasional ferrous parting @ 20' 230 (76Z) #9 Hard brown CLAY w/frequent gypsum partings & ferrous partings, slickensided 330 (76Z) #10 Very stiff tan & light gray CLAY w/ frequent gypsum partings & slickensided	E cobbies w/l" caican	ceous chalk seam @ 8'			111111111						U
partings & seams. Tan CLAY @ 9.5' (297) #6 Very stiff tan & light gray CLAY (CH) 15 (297) 16 Very stiff tan & light gray CLAY (CH) 17 W/chert cobbles 20 (41%) 17 Very stiff tan & light gray CLAY (CH) 20 (41%) 17 Very stiff light brown CLAY w/occasional ferrous parting @ 20' 230 (76%) 49 Hard brown CLAY w/frequent gypsum partings & ferrous partings, slickensided 330 (76%) 410 Very stiff tan & light gray CLAY w/ 11235 36	10 (70%) #5 Stiff gray CLAY (C	H) w/frequent chalk									
20 (41%) #6 Very stiff tan & light gray CLAY (CH) w/chert cobbles 32,78 26 20 (41%) #7 Very stiff tan & light gray CLAY (CH) 11235 90 25 (59%) #8 Very stiff light brown CLAY w/occasional ferrous parting @ 20' 27 11235 90 30 (76%) #9 Hard brown CLAY w/frequent gypsum partings & ferrous partings, slickensided 11235 90 35 (94%) #10 Very stiff tan & light gray CLAY w/- frequent gypsum partings & slickensided 36	partings & seams.	Tan CLAY @ 9.5'									
(297) #6 Very stiff tan & light gray CLAY (CH) -15 (297) #7 Very stiff tan & light gray CLAY (CH) -20 (41%) #7 Very stiff tan & light gray CLAY (CH) -25 (59%) #8 Very stiff light brown CLAY w/occasional ferrous parting @ 20' -30 (76%) #9 Hard brown CLAY w/frequent gypsum partings & ferrous partings, slickensided -35 (94%) #10 Very stiff tan & light gray CLAY w/- frequent gypsum partings & slickensided				Ξ							
(292) #6 Very stiff tan & light gray CLAY (CH) w/chert cobbles 20 (412) #7 Very stiff tan & light gray CLAY (CH) 20 (412) #7 Very stiff tan & light gray CLAY (CH) 25 (592) #8 Very stiff light brown CLAY w/occasional ferrous parting @ 20' 30 (762) #9 Hard brown CLAY w/frequent gypsum partings & ferrous partings, slickensided 35 (947) #10 Very stiff tan & light gray CLAY w/- frequent gypsum partings & slickensided		CLAY (CH)		=	32	78	26				ő
15 W/Chert Cooples 20 (41%) #7 Very stiff tan & light gray CLAY (CH) -25 (59%) #8 Very stiff light brown CLAY w/occasional ferrous parting @ 20' 30 (76%) #9 Hard brown CLAY w/frequent gypsum partings & ferrous partings, slickensided -30 (76%) #10 Very stiff tan & light gray CLAY w/ frequent gypsum partings & slickensided	= (29%) #6 Very stiff tan & 13	ight gray CLAI (Ch)		_	52,		~ ~				
20 (41%) #7 Very stiff tan & light gray CLAY (CH) 25 (59%) #8 Very stiff light brown CLAY w/occasional ferrous parting @ 20' 30 (76%) #9 Hard brown CLAY w/frequent gypsum partings & ferrous partings, slickensided =35 (94%) #10 Very stiff tan & light gray CLAY w/ frequent gypsum partings & slickensided	E W/Chert Cobbles			Ξ							É
20 (41%) #7 Very stiff tan & light gray CLAY (CH) 111235 25 (59%) #8 Very stiff light brown CLAY w/occasional ferrous parting @ 20' 27 30 (76%) #9 Hard brown CLAY w/frequent gypsum partings & ferrous partings, slickensided 11235 99 35 (94%) #10 Very stiff tan & light gray CLAY w/ frequent gypsum partings & slickensided 36				_							Ë.
20 (41%) #7 Very stiff tan & light gray CLAY (CH) 25 (59%) #8 Very stiff light brown CLAY w/occasional ferrous parting @ 20' 30 (76%) #9 Hard brown CLAY w/frequent gypsum partings & ferrous partings, slickensided 35 (94%) #10 Very stiff tan & light gray CLAY w/~ frequent gypsum partings & slickensided				=							
20 (41%) #7 Very stiff tan & light gray CLAY (CH) 25 (59%) #8 Very stiff light brown CLAY w/occasional ferrous parting @ 20' 30 (76%) #9 Hard brown CLAY w/frequent gypsum partings & ferrous partings, slickensided 31 (76%) #10 Very stiff tan & light gray CLAY w/~ frequent gypsum partings & slickensided	E I VI -			=				1 1		uo	i
25 (59%) #8 Very stiff light brown CLAY w/occasional ferrous parting @ 20' 30 (76%) #9 Hard brown CLAY w/frequent gypsum partings & ferrous partings, slickensided 35 (94%) #10 Very stiff tan & light gray CLAY w/ frequent gypsum partings & slickensided	20 (41%) #7 Very stiff tan & 1:	ight gray CLAY (CH)		Ξ						sd	!
25 (59%) #8 Very stiff light brown CLAY w/occasional ferrous parting @ 20' 30 (76%) #9 Hard brown CLAY w/frequent gypsum partings & ferrous partings, slickensided =35 (94%) #10 Very stiff tan & light gray CLAY w/ frequent gypsum partings & slickensided				=						UO	
 25 (59%) #8 Very stiff light brown CLAY w/occasional ferrous parting @ 20' 30 (76%) #9 Hard brown CLAY w/frequent gypsum partings & ferrous partings, slickensided 35 (94%) #10 Very stiff tan & light gray CLAY w/~ frequent gypsum partings & slickensided 				-					î N	T	6
 25 (59%) #8 Very stiff light brown CLAY w/occasional ferrous parting @ 20' 30 (76%) #9 Hard brown CLAY w/frequent gypsum partings & ferrous partings, slickensided 35 (94%) #10 Very stiff tan & light gray CLAY w/ frequent gypsum partings & slickensided 				Ξ						ff	
ferrous parting @ 20' Farrous parting @ 20' Hard brown CLAY w/frequent gypsum partings & ferrous partings, slickensided HI1235 HI2	25 (59%) #8 Very stiff light b	rown CLAY w/occasional		_	27					Je	ť
30 (76%) #9 Hard brown CLAY w/frequent gypsum partings & ferrous partings, slickensided 35 (94%) #10 Very stiff tan & light gray CLAY w/- frequent gypsum partings & slickensided	E ferrous parting @	20'		=							\$
30 (76%) #9 Hard brown CLAY w/frequent gypsum partings & ferrous partings, slickensided 35 (94%) #10 Very stiff tan & light gray CLAY w/- frequent gypsum partings & slickensided			1	=			1				1.
30 (76%) #9 Hard brown CLAY w/frequent gypsum partings & ferrous partings, slickensided 35 (94%) #10 Very stiff tan & light gray CLAY w/ frequent gypsum partings & slickensided			1 1 1	=						6	•
E 35 (94%) // 10 Very stiff tan & light gray CLAY w/- frequent gypsum partings & slickensided	En large land have and have	frequent avacum parting		_		111	35			G	52
(94%) #10 Very stiff tan & light gray CLAY w/- frequent gypsum partings & slickensided	E ^{JU} (/06) Ary Hard brown CLAI W/	. slickensided	1			1 1 1	1			Ő	ł
(94%) #10 Very stiff tan & light gray CLAY w/ frequent gypsum partings & slickensided	- Greitous partings	, _=		_						<u>ر</u>	, î
35 (94%) #10 Very stiff tan & light gray CLAY w/- frequent gypsum partings & slickensided				=	5						
35 (94%) //10 Very stiff tan & light gray CLAY W/ frequent gypsum partings & slickensided				=	24						
E frequent gypsum partings & slickensided = =	35 (94%) /10 Very stiff tan & 1	ight gray CLAY W/		=	30						
	E I frequent gypsum pa	rtings & stickensided		\equiv							

~

October 2023 Page No. 4C-142

-			SOIL B	OREHOL	ELC	DG								
SITE NAM	E AND L	OCATIO	DN	DRILLING METHOD	D: D:	ry Aug	er C)-8	0'	E	ORIN	G NO	•	
Comal	Co.	Land	lfill									3-1	12	
Juth	ı of F	M 11	01 on Kohlenberg Ln. #	2						5	HEET			
New E	Braunf	els,	Texas	SAMPLING METHO	DD: 0-	10' Co	ntin	iuo	us		2	OF	3	
				10'-80' @	5' i	nterva	ls				C	AILLI	NG	
				10 00 0						5	TAR		FINIS	н
			-				1		1		TIME		TIM	E
			*				-			-,	1.5			
										-+-	DATE		DAT	E
								-		-1	1-18	a 1	11-1	9-4
DATUM	MS	SL.	ELEVATION 642	CASING DEPTH	e c		<u> </u>							-1
DAILL RIC	<u>s SI</u>	MCO	2800	URFACE CONDITION	5 50	ee pag	e I	-						
ANGLE	Lev	rel	BEARING N					_	_					
SAMPLE	HAMMER	TORC	DUE FTLBS											
E.	Jac						I	ш	50		EST	RESU	LTS	_
HO I		5	SAMPLE	NUMBER			QN N	Įξ	0 Ž Ž	8	l ∾ L			8
NIN IN	NAM NO	MB	A	ND			EB	g	NS VS	L.	E F	0.	ا≾₀	N.
E S S	N N N N N N N N N N N N N N N N N N N	Ś	DESCRIPTION	OF MATERIAL	05		JPL	ASIA	Sc	NTE	3	12	활	虹
UE EE	JOS C						SAA	Ô		<u></u> ≩8	3	물론	8 9 9 9 9	ኞ ቹ
								1						
-	0	11												
	(007)	11			1				_					
- 40	(88%)	11	Fil Hard tan & brown Cl	LAY (CH) SIIC	ckensi	des w/			-		99	32		
			a single 1" thick p	gypsum seam										
- 1														
		VI												
- 45	(94Z)	11	#12 Hard tan & brown C	LAY w/freque	nt gy	osum				130				
	(34%)	11	seams		87					100				
									=					
-		11												
1		1							=					
- 50	(88%)	11	#13 Hard tan & brown CJ	LAY w/freque	nt gy	osum				31	91	32		
			seams & occasional	silt partin	.gs				_					
		11		•	-				_					
		11							=					
		11							=					
- 55	(88%)	11	#14 Very stiff light b:	rown & tan C	LAY w	/			=		90	30		
		11	frequent gypsum par	rtings, many	ferro	ous			=					
- 1		1	partings & slicken:	sided										
		//		8		8			Ξ			8		
60	(000)	11	#15 Hand 14 abs 1	ن / ۲۸ TA					_					
- 00	(88%)	11	WIJ HARD LIGHT Drown &	can CLAI W/	STICK	=11-			=	29				
		1	sides & frequent g	ypsum partin	22				=					
-		11							=					
		11							=					
- 65	(417)	11	#16 Hard black CIAV (CH) crudely la	minat	ed w/			=					
		11	occasional eilt pa	rtings										
		11	l seconda site pa						Ξ					
		11							=					
		11				,	1		=	1				
70	(15%)	11	#17 Hard gray CLAY, cri	udely lamina	ted w	/	6		=	134				
-		11	occasional silt par	rtings					=					
		11							_	6				
		11						1	=		2			
		11		<u> </u>					=					

October 2023 Page No. 4C-143

いいいい い

•

SOIL BO	DREHOLE LO	DG											
SITE NAME AND LOCATION	DRILLING METHOD: Dry	Auger	c 0-	80	1	8	ORIN	G NO					
mal Co. Landfill							B-	-12		_			
Luth of FM 1101 on Kohlenberg Ln. #2						s	HEET					au.	
New Braunfels, Texas	SAMPLING METHOD: 0-	-10' Co	onti	nuc	ous	_	3	OF	3			1	
	10'-80' @ 5' in	terval	Ls				C	AILLI	NG			h.	
						s	TAR	r	FINIS	SH			
	WATER LEVEL						TIME		TIM	E	re 1		
	TIME					11	1:55	an	3:0	Opt			
	DATE						DATE		DAT	E	Ra	1	
DATING MSL ELEVATION 642	CASING DEPTH					11	-18	3 1	11-1	9-8	7 5		
DRILL RIG SIMCO 2800 SU	RFACE CONDITIONS SE	e page	e 1								ŝ	<i>i</i>	
ANGLE Level BEARING N											~	ر ا	£
SAMPLE HAMMER TORQUE FTLBS											TP		۲ ۵
			811		F	Т	EST	RESL	LTS		ç	į	4
			₽	ЧŽ	00 02	%	L %			8	Ċ	ין מ קריים ב	ζ
			H ×	5	CAS	L	ž	0.	<u> </u>	~	N	1	•
	OF MATERIAL		PL E	NS.	čz	TER	1 g	511 %	뺤	黥	1	į	
			MAR	δ	ā	NO N	ğ	[₹ E	9 S B	δΨ	č	د	
										_			
					=								
#18 Hard dark gray CLAY	(CH) W/Crude Ia	ninae,			=							c	-
slickensided					Ξ							Č	3
												Č	5
					=	1 1						C	Y
-80 (357) Hard dark gray CLAY	w/crude laminae.					31					- S.,	C	-
E slickesided	w/clude 101100,				=	1						ō	7
			t		Ξ								
	•				=								
F													
E													
EIII					=							a	
E								ŧ.					
					Ξ			1					
					=								
					=			E.					
F					=		1	1					2
E					=		1				9		r
EIII	8				=		1				Ì		Ē.
EIII					=			1			ļ	1	5
			5		=			1				1	-
					_						u u	-	
	2				=						u	1 5	R 7
F							1					י וי	9
E .			1		=						;	<u>, '</u>	1
EIII					_				1			<u> </u>	=
					-						1	ជ្	••
					-				1		2	ฐี	110
- I I												2	ĉ
					=				1				
					=								
					=								
					Ξ								
			1	1	L	_	1	_	-		J	0000	

Printed on recycled paper.

			SOIL	BC	DREHOL	ELC)G						512 for 1			
SITE NAM	E AND LO	DCATION			DRILLING METHO	D: Dry	Auger	0-8	80'		B	ORIN	G NO			
nal	Co. I	Landfi	11 .										:B-1	3	1	í.
lth	of F	1 1101	on Kohlenberg Ln	. #2							s	HEET				
New B	raunfe	els, Te	exas		SAMPLING METH	HOD: 0-	10' Co	ntii	auo	us		1	OF	3		
					10'-80' (95'in	terval	.s				D	RILLI	NG		
											s	TART	Г.	FINISH		
				-	WATER LEVEL						_	TIME		TIME	8	
					TIME						12	:15	ртб	:05pm	1r.	
					DATE	•						DATE		DATE	аш	
DATUM	MSI		ELEVATION 62	6	CASING DEPTH	11					μ1	-20) 1	1-20-8	7 🚆	
DRILL RIC	3	SIMCO	2800	รบ	IRFACE CONDITIO	NS Dry	black	: cla	ay	supp	orti	ng	3	tall	San	
ANGLE	Lev	vel e	BEARING ENE		grass shrul	os & tr	ees.	Cher	rt	grav	el &	: CO	bb1	.es		ع
SAMPLE	HAMMER	TORQUE	FTLBS		within the	clay.									Ē	U a
	irr -							EI I		5	1	EST	RESU	LTS	l <u></u>	i i
HIN HIN		5	5.		NUMBER			QN ₽	Ξ		%	IT %		8	0	Col
₹ Z	AMI O VE	MB		AN	1D			EA	Ş	N N	E L	LIM	28	5 1×1		
LEY LEY	No.	δ	DESCR	IPTION	OF MATERIAL			NPLI	ASI	δZ ZO	ATE	9 N	AST	E A C	물	
	BLOE							SAN	Ö	-	Šΰ	2	문국	35 5#		
	L	1771										<u> </u>	1			
F	(94%)	#1	Stiff black CLA	Y (CH	() w/organi	CS & Si	and			=						
E	(007)	1	particles	/ah	art cand (lover	r			_	24					
E	(88%)		hard gray LLAI	w/cn	ert sand,)	graver	a			Ξ	27					\subseteq
E 5	17/19	112	Dense chert GRA	VFL.	(GW) cobbl	es w/cl	nalk			Ξ						77
	24		Dense chert dan							Ξ						3
	4/5/7	#4	Firm chert GRAV	EL &	cobbles w	/chalk										\subset
E	(88%)	#5	Very stiff tan	CLAY	(CH) w/fre	quent	chalk			=	26	86	27			2
F.			partings. Ligh	t gr	ay & tan Cl	LAY @ 1	0'			_						
E^{10}										=			ł			
E		$\langle \rangle$								Ξ						
F										=						
E		VA I			•					=						I
E15	(88%)	16	Hard tan & brow	n CL	AY w/slick	ensides				-		116	32			
F										Ξ					1	
F		VA								-						
E		$\langle \rangle$								=					1	
Ein	(9/7)	CAH7	Hard brown CLAY	- fr	iable, sli	ckensid	ed.			_	32	300			5	á
F ²⁰	(94%)	VA'	occasional silt	, 11 nar	tings		,			=	-				bsd	1 5
ŧ.			Acceptower pric	pur						=					EO	Ē
E	1									=					다 1	
E		VA.								=						
− 25	(94%)	18	Hard brown CLAY	, fr	iable, sli	ckensid	es			Ξ					Jel	5
F			occasional silt	par	tings					=						1
E		VA		× *												
E		1								=						=
<u> </u>	(94%)	119	Very stiff brow	m &	tan CLAY, s	slicker	sided			-	β4 [·]	113	42			
E	1	IN	w/occasional si	lt o	r gypsum pa	artings				=						ATF
		$\langle \rangle$			-	-										2
	1									Ξ	Ĩ					
Ear	101-	VA.	0 11		TAV _1-1-1		/			_	26					
E-35	(94%)		U Hara gray & bro	wn C	LAI, SLICK	ensideo Finge	w/	1		=	٢					
=		11	occasional silt	. Or	Sypsum par					=		00	ober	2023		
Lat											F	Page	No 4	C-145		

					S	OIL	BC	DREHOL	ELO	DG										
SITE NAM	AE AND L	OCATI	ON		-			DRILLING METHO	D: D:	cy Aug	er ()-8()'	9	ORIN	G NO	•			
omal	Co.	Land	fill	1											7	3-13	3			
Jouth	n of F	M 11	.01 c	on Koh	lenbe	rg Ln.	#2							s	HEET					Ŧ
New B	Braunf	els,	Tex	xas		0		SAMPLING MET	HOD: 0-	-10' C	onti	nu	ous		2	OF	3			1
								10'-80'	a 5' in	nterva	ls				D	RILLI	NG		ł	N
									-					5	TART	-	FINIS	я		4
								WATER LEVEL			T		1		TIME		TIM	E		
								TIME							2:15		5:05		Ē	4
								DATE			1		1		DATE		DAT	E	1	u p
	м	CT				626		CASING DEPTH			1		1	1	1-20		1-2	0-8	7°	2
DRILL BIC	G	STMC	0 25	900	ELEVAIN	010 020	SU	RFACE CONDITIO	NS See	Dage	1									
ANGLE	Le	vel	D ZC		ENE		-			E-A-										
SAMPLE	HAMMEE	TORC			F	TLBS	-				12								a E	<u> </u>
00000							L				E	Π		1	TEST	RESU	LTS	-	Č	į į
E C	ARE S										9	Ĕ	8g		%			8		
	MPI	VBO				SAN	IPLE				A F	E	S/F	۰ ۲	IMI		_	3		
EVA	WS/ SA	SYN				DESCRIPT		OF MATERIAL			PLEF	NS N	SZ	TEA	Q L	5 TIC	탒	다.에 및 H	-	
EF D	06E					00001		-			AMI	Š	щo	No.	DO.	Nil A	SPC DAPC	휪	2	Ē
			-				_				S S			<u> </u>						
-		11											-							
E													=							
E-40	(94%)		#11	Hard	brown	& tan	CL	AY (CH) cru	idely	-	Ľ.		=							
E		1		lamina	ated,	w/fred	quer	nt silt par	tings	δ.			=	÷.						7 1
F		1		gypsu	m sear	ns.							_							Ġ
* <u>e</u>											1		_							r n
- 15	1017	11	412	11	b	5	CT	AV article 1		atod			_						14	\subset
E ⁴⁵	(94%)	11	#12	Hard	brown	a can	ц) 10	AI, CIUUEI	y lami	ame			=							ប៊
E	6	11		w/lre	quenc	SILL	par	cings a gy	psum s	sama			_							•
F		11	1										-							
F		11											=							
E 50	(94%)	1.	#13	Very	stiff	brown	CL	AY w/frequ	ent fe	rrous			-	33						
E		11	1	parti	.ngs,	silt p	art	ings & gyp	sum pa:	rtings	1		=	8 3						6
E		11		also	slick	enside	s													
F		1	4								1		_							
E 55	(66Z)	11	#14	Hard	dark	erav C	LAY	×					_	32	97-	37				
=	(00%)	VZ									·		=							
F		11		-									-					. 1		
=		11	1								1		_							ã c
E		11	2										=	1					j.	
<u> </u>	(66%)	11	#15	Hard	dark	gray C	LAY	(CH) crude	ely lam	inated	1		_	29	108	44			ŧ	-] ī
E		11	1	w/occ	asion	al sil	t p	ockets							1				2 2	1
F		11	1										Ξ						-	2 ~
E		1											1							ά
E	1/71 7		1470	TT3)l-	· · C	T A 37		-lu ba	idad			_	27						l č
	(/1%)	11	1.10	nard	dark	gray C	LAI	, very thi	UTA DE	Ided			=	1-1						ã -
F													=						Ģ	ר ה
E		1	1										=						Ş	วี่ ะ
		11	1										=						ľ	
70	(56%)	1	#17	Hard	dark	gray C	LAY	, very thi	nly be	ided										
Ē		1	1										Ξ						1.00	
E		11	1										=		1	1				
E		1		x ==									=							
	ŧ.	11														1	1			

October 2023 Page No. 4C-146
					SO	IL I	BC	OREHOL	ELC	DG											
	AE AND L	QCATI	N					DRILLING METHO	D: D:	ry Aug	ger	0-8	0'	в	ORIN).				
Comal	L Co.		fill	Vahla		T										.B-	13			1	
	n or r Reausf		.UI on Toya	KOUTE	enberg	Ln.	#4							s	HEET						
2W 1	JLAUIII	ers,	IEVG:	3				SAMPLING MET	-0D: 0-	10' Co	nti	nuo	us		3	OF	3				
							1	10'-80'	@ 5' i	nterva	ıls				0	RILLI	NG				
														s	TAR	т	FINI	ян		N	
6						-		WATER LEVEL							TIME		TIM	18		Le	
								TIME						1:	2:1	5pm	6:0	5pm		me	
								DATE			6				DATE		DA	TE		æ	
	MS	ST.		C 1 C	NATION	626		CASING DEPTH						-1	1-2	0	11-	20-	87	an	
	3 51	MCO	2800	ELC	EVATION		su	RFACE CONDITIO	NS S	e pag	re l									S	
ANGLE	Lev	rel	BEADIN		ENE		-			id par											
ANGLE					ET -l	R\$					_	-	_							Ë,	
SAMPLE	HAMMEN	TORC	102		F1L	.0.3						Π		1 7	FST	BESI	I TS			N	
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	ZES										80	ш	5g		*	T	I	2		õ	ŝ
щõ	affe	BOL				SAM	PLE I	NUMBER		1	₹	2		х 1	1 1 1			3		9 Z	į
¥I¥ ₩>	SAN	ΥM					AN	ID			EB	2 Z		ш	0 El	2%	양년	とわ	8	Ē	
ELE	No.	N N			DES	SCRIPT	ION	OF MATERIAL			MPI	SASI	ы Б С	N I I	UNC.	NITS N	l 5₹	この		E	
	ā						_				SA	Ľ		30	Ĕ	로크	20	PŦ			
							-				1	T				1			l.		
E		11											=								
E 75	(53%)	11	#18 Ha	ard da	ark gra	ay Cl	LAY	(CH) verv	thinly				-								
E		11	b	habba	0 - ·	· ·		()					=								
E		11		euueu									Ξ						i N		S
F		11											=								σ
								•0					=								CT CT
80	(53%)	11	#19 Ha	ard da	ark gra	ay Cl	LAY	, very thi	nly be	ided	1		_	24							
E		11											=								C.
E				Ŧ	Bottom	a 8	0'				1										
E				-	JOLLOW	6 0	0				3		-								
E.													=								
F																	1				
F											1		=			1				ĩ	
F											1	1									
E												Ľ	=								
E		1 .											=								
E		1 3											Ξ								
E			-																		2
F											1		=							100	2
E.									а С		1	1	Ξ							đ	1
E													-				1			P	ō
F												ł.	-							H	
E											1		=							H	
E			1									1					1			Je	r
E											1			1							9
E																				2	2
E																				8	-
E	1												_							Ë	
F												1								S	Ë
7	1												=				1			2	Ž
				÷)									=					1			
F	1		i (a										=								
-						2	2														
F						2	ň.										1				
														J				-	1		

Printed on recycled paper.

SOIL BOREHOLE LOG									
SITE NAME AND LOCATION DRILLING METHOD: DTV AU	ger C)-2	8'		BORIN		Э.		
'omal Co. Landfill NX coring 28'-50	1					В	-14		20
outh of FM 1101 on Kohlenberg Ln. #2					SHEE	T			Ē.,
New Braunfels, Texas SAMPLING METHOD: 0-10'	Conti	nu	ous		1	OF	2	2	
10'-50' @ 5' inter	vals					DRILL	ING		Ĺ
					STAR	т	FINIS	SH	
WATER LEVEL					TIME		TIM	IE	1
TIME				l	2:4	9 m o 0	9:00)am	ĺ –
DATE					DAT	E	DA	TE	
DATUMA MSL ELEVATION 604 CASING DEPTH				_μ	2-3		12-4	-87	1
DRILL BIG STACO 2800 SURFACE CONDITIONS Dry hla	ck cl	av	w/tr		3	t = 11	1		
ANGLE Level BEARING F grass 20' W of cree	kbed.		Condi	tio	ns :	sim	ilar		Ĺ
SAMPLE HAMMER TOBOUE FTLBS to those @ CB-11.	no du i					<u> </u>	LIGI	-	Ì
	1=	T		T	TEST	BESI	II TS		
		별	69		8	T			Ĺ
	I₹	12		×	Ę			50	l l
	LEA	2 Z	Š	l a l		2%	말	¢.a	1
	MP.	SAS	20 E	IN	JUC	AS I		쁊	1
	ŝ	<u> </u>		٥٤	Ĕ	123	ចត	94	
		T	_		T				
(71%) #1 Stiff black CLAY (CH) below 1" of topsoil	•		=	26					
- (71%) 2 Hard black CLAY w/sand pockets	Ť.		_	20					
			=						
	6		=						1
5 (65%) 3 Hard black CLAY w/calcareous nodules			-	23	87	31			l I
10/13 144 Firm chert GRAVEL (GW) w/calcareous	-		-						
- 13 nodules & clay layers			_						TC.
24/23 Dense chert GRAVEL w/minor calcareous			-	15					- 2
_10 20 material. Finer than # 4.			_						
			=						ł
			=						
= [/]			=						
= //			=						ĺ –
15 (76%) ////6 Very stiff tan & gray CLAY (CH)				35	101	1 32			1
w/occasional chalk pockets			\equiv						
			_						
			_	1					
									1
20 (44%) #7 Hard brown & light gray CLAY			-	32	91	28			1
			=	1		8 1			l -
			_	1	Τ.				
			—						
			T						
25 (94%) 8 Hard tan silty CLAY w/frequent gypsum			-	15					
partings			-						
	-			1		ľ.			
			=		1				
-30; (10%) Hard gray SANDSTONE (SW) extremely fine				12					
			=						
- 1 1000			-						
			-						
= 1 1000			Ξ						
-35 (100% 10 Hard gray silty CLAY (CL) w/frequent				14	41	18			
mollusc shells & occasional pyrite			-						1
			_			B			

e

5

÷.

Page No. 4C-148

• • • • •

10. 10. 10. 10.

1.1

				6	SO	LB	30	REHOL	ELO	DG										
								BILLING METHO	D: D		- 0	-28	3'	BC		NO.	5			
ITE NAME	AND LO	CATIO	N				F	NY coring	28'-	50'	1 0			-	F	3-14			r	
:1	Co. L	and	fill			T /	" <u>}</u>	MA COLIN	5 20					Sł	HEET					
i ih	of FM		01 01	n Koni	Lenberg	∦ .11⊾	1		OD: 0	-10' Co	onti	nu	bus_		2	CF.	2			
New B	raunie	us,	Iexa	45			F	10-50' @	5' in	tervals	3				D	AILUN	١G			
								10 50 0						S	TART	•	FINIS	н	N	
						-		ALATER LEVEL		T					TIME		TIM	E	Íre	
							H	TIME						12	2:40	Dong	9:00)am	E E	
							F	DATE						1	DATE		DAT	E	~	
				_		604	- E	CASING DEPTH						12	2-3		12-4	4-8	San	
DATUM	MS	L CTMC	28	E00	LEVATION		SUR	FACE CONDITION	vs Se	e page	1									
DRILL RIG	Lev	SINC		BING	E														œ	
ANGLE	Lev	TODO			- FT -	BS				P									Ē	-r
SAMPLE	HAMMEH	TOHC					_				LI8		E.	T	EST	RESU	LTS		8	te(
Ц.	ZUSS										2	YP6		%	ž L			8	ត្	re
TOT	VER	BOI				SAMP	N BLE	UMBER			H	101	VS/	"t	Ξ	0%	ي≿	1 C	Ľ	C
H H	SAI	ΝXS			DE	SCRIPTIC	ON C	F MATERIAL			APLE	A SIN	SS	NIE	g	AST	EN EN EN EN EN EN EN EN EN EN EN EN EN E	話		
(ELI)	25C										SAA	0		Šΰ	Ê	5	ູນດ	ф#		
	-		L								1	1		-	1	1		1		
-		N											=							
Ξ.,	(007)	RN	1	Uand	aran ci	1++ 0	T.A.	y (CL) ve:	cv		1			14	41	18				
-40	(90%)	RD-	#11	Hard	gray si		-od	ominately	mollu	sc			Ξ	1						л С
=			1	IOSSI	LIETTOU (s)	is (pr	ceu.	Ominacerv					_						1	4 E
		HК	Ľ	211677									-							Ċ.
		B	1					¥2					=							\subseteq
. ,5	(100%	50	#12	Hard	gray si	ilty (CLA	Y, very fo	ssilf	errous			Ξ							5
F		H	1										=						1	
E		B											-							
E	1	R	N										E						1	
F	1000	KK	1 412	Trand		;1+v (CT.A	Y. verv f	ossilf	errous			1 =	15	5					
E 50	(100)	HA	¶#13		gray 5. caciona	l nvr	ite	veinlets					=							ĩ
E		DA1	ł.	w/ucu	Castona.	L PJ1-							_							
F		INC	4				EO						Ξ							
F					Bot	tom @	50)*					_							- t
E											1		=						-	1
E													=						so	
E				325									Ē						dua	<u> </u>
F									<u>.</u>										Lhc	<u> </u>
E															1					U O
E		1												11					P P	
E								5 4 1					1 -						1 7	1
F		1											1						1	8
E													1 =	11						1 4
E													=	11						12-
F													=] [6	נ
F													=							, щ
E													=	11					Ĭ	N N
													-							
E													1							
E					18 a	,e							=	-						
F														11	-	Octo	ber 2	023		
-	_	_	_							\sim					D -		10	440		

Page No. 4C-149

Printed on recycled paper.

			SOIL E	30	OREHOL	ELC	DG									
SITE NAM	AE AND L	OCATION			DRILLING METHO	D: Drv	Augel	- 0-	-38	r	6	BORIN	G NO	÷		
'omnl	Ca	Landfil	1		NX coring	38'-8	0'					. E	3-15	5		
South	of F	M 1101	on Kohlenberg In.	#2								SHEET	-		1	1
New B	raunf	els. Te:	xas	" -	SAMPLING METH	IOD: 0-	101 0	nei				1	OF	3		1
1					10'-80' @	5' in	torval		min	uis			RILLI	NG		N
					10 - 50	<u> </u>	LEIVAL					STAR	T	FINIS	SH	re
			-					1		r		TIME	-	TIM	E	E
					TIME			-		1	-	• 1.0-		• 1 0		R
					DATE					-		DATE		DA	FE FE	am
			(0)		CASING DEPTH			-			-	121	. .	2_2	_0-	S
DATUM	M	SL 280	ELEVATION DUD	SI			www.doo							2-2	-0/	1
DHILL HIS	5 51	MCU 280		30	ilty olay w	/abund	ant ch	lp D	ari	and L	an (x DI	ACK	CL obb	ay	
ANGLE	Leve		AHING W	5	IILY CLAY W	/ abund		IELL	30	inu,	gra	VET	a c	.000	Tes	ď
SAMPLE	HAMMER	TORQUE	FTLBS					LE.			1					- N
in a la l	25							E O	щ	50	1	ESI	HESC	LIS	0	8
HO	निर्मेस	1 ŭ	SAMP	PLE	NUMBER			Ā	Τζ	SIL	%	Į			20	ğ
4 H N	102 N	X		AN				EB	SN 10	ŠČ	E S	5	2%	5Ę	¢4	L.
ELE	SZE	S S	DESCRIPTI	ON	OF MATERIAL			MPI	SAS	og B	No.	IJ.	AS.	PCF F	Ha	Bill
<u> </u>	ā							SA	Ľ		Sõ	13	22	ଉପ	97	u
L	Lean	171.					•		T	—		1				
	(0%)	111	Damp tan & black	CL.	AY (CH) w/cl	nert gi	avel		Ê.	=	1.5	1				
=	(33%)	AH 2	Medium tan CLAY w	/c.	hert sand &	grave	Тα	ć –	5	-	12					
F			CODDIES									1				
E 5	(897)	113	Hard tan CLAY (CH)) <	lickenside	i. chai	Lk I					102	37			
	(0)/0)		pockets	_		-,				-						
	(100%	#4	Very stiff tan &	gr	ay CLAY w/c	alcare	ous			=						î.
E		VA	nodules & gypsum	Ų	2											
E										=						
10	(100%	#5	Very stiff tan &	gr.	ay CLAY w/c	alcare	ous				33				12	
F		VA	nodules & gypsum	pa	rtings					-		F .)				
E			82)											5 1		
F										200	~					30
F 15	(100%	1.16	Hard light gray &	t	an CLAY w/m	ollusc				-	31	50	17			
E			shells							=						
E									8	_						
E		VA .								=			1 3	0		
F.										_						sol
E ²⁰	(17%)	NN	Hard tan CLAY; dis	st	urbed sampl	e				=	1.5	20	17			뷥
=	(50%)	NN 8	Hard tan silty CL	AY	(CL) w/moi	lusc s	beils			=	L.	100	1			욉
=										=						
E		KN0								Ξ						Efi
-25	(31%)	NN#9	Hard gray & tan si	li ;	ghtly silty	CLAY				-	18					<u>ام</u>
E		DO -	6 - X							=		8 8		1 3		
F		KN0								=						
E		MM								=						B
E-30	(447)	DNN#10	Very stiff tan & o	or:	av slightly	siltv				_	17	÷.,		6 1		G
F		HTHI I	CLAY w/frequent mo	01	lusc shells					=						θŗ
22 (N	1	NN	·					ľ		-						
				-			·	-		=						
E.		HAND				、				=	6	10				
E	(19%)	BON'II	very still gray s:	11)	CY LLAI (CL) very				Ξ	۴٥	F ⁴ U				
E			chinty bedded							=		Oct	ober	2023		
L	1	LOLOU		-					1		F	age N	10 40	-150	1	

ł

t

いっとうしょう

. . .

717

Printed on recycled paper.

						SC)IL	BC	ORE	HOI	EL	OG									
SITE NAM	E AND LO		0N						DRILLIN	G METH	D: D	ry Aug	er C	-38	31	8	ORIN	G NO			
- mal	Coll	and	£;11	1					NX	coring	g 38'-	80'						.B-1	5		÷ 1
Jurb	of Fi	uand. Mili	01 C	L DD KO	hlan	hara	Ι'n	#2			<u>v</u>					S	HEET				
New B	raunfe	els.	Tex	kas	III CIII	Derg	LI 1 6	" ~	SAMPL	ING MET	нор: 0	-10' C	onti	nuc	ous		2	OF	3		1
1		, ,	2 64	140					1	01-80	1 @ 51	inter	vals				D	RILLI	NG		
								- J		0 00						s	TART	r T	FINIS	SH	
							-	- 1			1		1				TIME		TIM	E	ez
									WATE	LEVEL			-				10-	- 2	.10		1 T
																	DATE		DAT	TE	Ran
									0/				+			\neg	2-1	1	2 - 2	-81	E
DATUM	MSL				ELEV	ATION	606		CASING	S DEPTH			<u> </u>								Sai
DRILL AK	3 SI	IMCO	280	00				SU	JAFACE (SUNDITIC	NS Se	e page	1							-	2
ANGLE	Leve	el	BEA	ARING	W			-					_	_		-			- 1 - 1 - C	_	e' i
SAMPLE	HAMMER	TORQ	UE			FT.	-L8S						1.5			1					IN
F														l u l	50		EST	AESU	LTS	0	υ Β
ШŃ		5					SAN	APLE	NUMBER	a a a a a a a a a a a a a a a a a a a			I Z	۱۶	N N N N N N N N N N N N N N N N N N N	%				20	Ģ,
ZY	NAN VAN	WB					••••	AN	ND				E	9	S S S S S	L'	E	2.	₀≿	T (Ē.
	NON NAZE	Š				D	ESCRIP	TION	OF MAT	ERIAL			APLI	A SIL	SC	N THE	3	1ST	E₹	野	В
	0.04												SAN	Ů	ш 	38	2	EP	66	6H	Δ
																_	r	1	-		
-		(NN													=						
E							-		(12	1.2	10			
E-40	(100%	LAN	#12	Hard	gra	y si	lty	CLA	Y (CI	_) mas	ssive,				-	13	44	19			
E		KNO		freq	uent	sma	11 m	011	usc s	hells					=		11				c
E_		HN																			- ج
			-												=						<
262							/		(e)								1				C
-45	(100%	V/)	#13	Hard	gra	y CL	AY (CH)													ā
F		11													=						J
—		11													-		8				
F		V/													=		1	5			
E		1				- 07	4 37			frod	wont e				-	17					
E 50	(95%)	11	#14	Hard	i gra	y CL	AY,	mas	sive,	rred	uent s	marr			_	1					
E		11		TIOM	.usc	snei	.LS								=						
F		1)												=						
E.		11													=						
55	(100%	1/	#15	Hard	l gra	y CL	AY								-						
F		11	1																		
F		VI] 3	1											=						i
		K]										1								
E		KN									÷				=	1.0					Por .
E-60	(95%)	(NON	#16	Hard	i gra	y si	lty	CLA	Y (CL	.) w/f	requen	t –	-		-	13					EH (
E		11	1	moll	.usc	shel	1 &	pyr	ite v	reinle	ts										44 44
E		V																1			Je
Þ		11													=		1	1			
F		11	1					>							=		1		1		
F 65	(837)	11	117	Hard	i gra	y CI	AY (CH)							=				1		L ∠
F		11																1			
Ē		1	1												1				1		U U I
F		VI	1																1		l g
70	(100%	11	#18	Hard	i gra	y CI	LAY W	/fr	equer	nt sma	ill mol	lusc			-				1		
	1	11	4	shel	lls &	ved	inlet	s o	of_py1	tite					=						
F			1												E						
F		1	1												=						
F		11	1												=	1	1				
E		11													1	_	-	-	-	Jotobo	r 2023

October 2023 Page No. 4C-151

	SOIL	BC	DREHOL	ELC	DG										
SITE NAME AND LO	CATION		DRILLING METHO	D: Dry	Auge	r 0-	-38	T	E	BORIN).			
			NX corir	ig 38'-	-80'						·R	15		6	
omal Co. La	andfill "								1	SHEET	F		_	1	
South of FM	liul on Kohlenberg Ln.	ŦFZ	SAMPLING METH	-0 : O	-10' Co	onti	nu	ous		3	OF	3			
New braunie.	is, lexas		10'-80'	@ 5' i	nterva	als.				C		NG	_		
										STAR	тТ	FINIS	SH	N	
			WATER LEVEL							TIME		TIM	E	1L	
			TIME						-2	:101		2:10	חת	ад	
			DATE			1				DATE		DAT	TE	E E	
MSI	FLEWATION 606		CASING DEPTH						-h.	2-1		2-2	_8+	Sar	
DRILL RIG SI	MC0 2800	SU	RFACE CONDITION	ns Se	e page	e 1			ي جار	-		4-4			
ANGLE Leve	1 BEARING W														2
SAMPLE HAMMER	TORQUE FTLBS	1												ТЪ	ç
		L				5	Π	. 1	1 1	TEST	RESL	LTS		NO	ŝ
	_					ģ	۲,	02		*	1		8	O U	Ś
	SAN	1PLE I	NUMBER			NY R	Ě	S/F	1	MIT	1		5	NO N	
ECO ELSE	DESCRIPT		OF MATERIAL			LEF	Ni	Š₽	E	0	5%	땂	\$4	Ē	
						AMF	¥ S	щo	150	ß	N.	CH2	Han I	БА	
l-						0					143		<u>T1</u>		
E								_							
E TE LINGE						li i		=							
E /5 (100%)	#19 Hard gray CLAY (CH)	massive, 1	requer	10			-							
EI	Small molluse she	err:	s a pyrice	vernre											C C
E															č
								_							C
- 80 (100%)	#20 Hard gray CLAY, 1	mas	sive w/moll	usc sh	ells			-						Ξ.	C
E	& pyrite veinlet:	s						-							บิ
E						Ļ		_							
E	Bottom	a 8	0'					—							
EII			-					=	1 3						
EII								=							
E								=						1	
FII								-							
EII								Ξ							
E								-						_	
F								-						S01	ó
E								Ξ						QL	Ę
EII								_						hod	ž
=								-					- 1	5	
E														ĒĒ	
EII								Ξ						r r	~
E								=							α
FI								1						~	ົ່
E								Ξ						В	-
E								Ξ						EC .	
E								=						ų,	Ę
								_							č
								=							
E		÷.,	÷					Ξ							
			2		00			=							
E								=		Oc	tober	2023			
111		-	•	()					P	Page	No. 40	C-152			
		Pr	miles on recycled pa	фен. (🐾 🌖			244				÷				

	WASTE MANAGEMENT OF NORTH AMERICA COMAL COUNTY LANDFILL			GEC	0L00	GIC LO	OĢ OF NO.		E L
BORI	NG LOCATION N: 726,500 ; E: 1,965,000			ELEVA	TION	AND C	DATUM (662.6	3 AT NGVD
DRILL	ING AGENCY Jones Environmental DRILLER Ric 3	Sones		DATE ST	ARTED	4/23	190	DATE FIN	SHED 4/23/90
DRILL	ING METHOD Hollow ston anger		1	ARILL BIT	9'i	nch		COMPLET	ON DEPTH 57 FF
SIZE	AND TYPE OF CASING 1 14" Triloc PVC	· · · · · · · · · · · · · · · · · · ·		OGGE	D 81	1		CHECK	ED BY
SAMP	PLING METHOD continuous coring			R.C	-Sr	nyth		1.1	1.Scanlon
SAMP	PLER TYPE split barnell LENGTH 2.5 ft	DROP				1			
IC		UTH	OLOGY		TO		CORIN	G	
LEE	DESCRIPTION	U.S.C.S	GRAPH	10 Z HE	DEPT FEET	RUN NO.	PERCENT	PERCENT	REMARKS
				18.8		· · ·	RECOVERY	RQU	
1-	0.0-2.1 <u>Fill Material:</u> mixture of CH ciay (very dark gray (10YR3/1) and CL ciay (olive brown (2.5Y 5/4)); extremely soft; flat chert pebble (1.5 inches in diameter) at 0.75 feet BGL; layer of caliche at base (1.9 to 2.1 ft BGL); no apparent bedding.	СН	11111	11111	1	- 1	%		T Fill 0.0'-2.1'
2-	2.1-5.0 <u>CH Clay;</u> very dark gray (10YR 3/1); extremely soft; medium plasticity; non-swelling; moderate reaction to	CH			2-				- * -
3-					3	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -			Layer I
4					4	2	92		2.1-5.0
5	5.0-6.0 <u>CH Clay:</u> light olive brown (2.5Y 5/4) and brownish yellow (10YR 6/8); extremely soft; unconsolidated; high plasticity; 20-30% oxidized clay pebbles and 1-5% chert	CH			5				Layer Ita
6	- foot thick.		_		6	3	96		5.0-6.0
7-	6.0-10.0 <u>CH Clay:</u> brownish yellow (10R 6/8) and light olive brown (2.5y 5/4); extremely soft; high plasticity; very thinly laminated bedding planes (fissile texture) broken apart due to cracking and swelling of montmorillionitic	СН			7			•	
8-	clays giving cores a block texture; organic material or manganese oxides concentrated along small, high angle fractures usually near gypsum-filled fractures; crystalline gypsum in nearly vertical fractures up to 1.0 foot long;				8	4	; 92		6.0'- 42.0
9	שיטאפון וומטנעוס אאמטווע.				9		/-		
10	10.0-15.0 <u>CH Clay:</u> same description as 6.0-10.0.	СН			10				Split spoon
11 -	as above. Blow counts = 5,8,9,12. Lab results; LL(%) = 98, PI(%) = 68, MC(%) = 35.6; Percent passing #200 sieve = 99.7.				1	5	80		taken for lab analysis.
12					12	6	100		
13					13	7	20		
14					14	Í	00	Octob Page No	er 2023 4C-153

	COMAL COUNTY LANDFILL	LOCATION NO. PZ-1	-
DEPTH (FEET)	DESCRIPTION	LITHOLOGY # 3 CORING U.S.C.S. CRAPHIC O CORING CLASS LOG 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
15 -	15.0-20.0 <u>CH Clay:</u> olive brown (2.5Y 4/4) and brownish yellow (10YR 6/8); extremely soft; high plasticity; very thinty laminated bedding planes (fissile texture) broken apart due to cracking and swelling of montmorilionite clays giving cores a blocky texture; organic material or manganese oxides concentrated along small, high ang fractures usually near gypsum-filled fractures; crystallin gypsum in nearly vertical fractures up to 1.0 foot long; broken fracture spacing.	rt CH 15 8 96	
20 -	20.0-22.5 <u>CH Clay:</u> same description as above. Fracture spacin		
	22.5-25.0 <u>CH Clay:</u> same description as 15.0-20.0. Fracture	CH 10 96 Layer 10 96 II 6.0'-4z.0	ó
75	25.0-27.5 <u>CH Clay:</u> same description as 15.0-20.0. Fracture		-
	27.5-30.0 <u>CH Clay:</u> same description as 15.0-20.0. Very oxidized layer from 28.2-29.0 feet with abundant gypsum-filled	a C4	
	30.0-32.0 <u>CH Clay:</u> same description as 15.0-20.0. Fracture spacing = 8 to 10 inches (unbroken).	CA 3 88 October 2023 Page No. 4C-154	
30+	Split spoon sample taken for laboratory analysis. Blow counts = 10,12,13,17. Lab results: LL(%)=103, P!(%)=70, MC(%)=34.2; Percent passing #200 sieve = 99.7.	14 80 Split spool taken for lab analysis.	10

	COMAL COUNTY LANDFILL			LC	DCA	TION	NO. P	z-1	
DEPTH (FEET)	DESCRIPTION	LITH U.S.C.S GLASS	IOLOGY	EZONETER	DEPTH	RUN NO	CORING PERCENT RECOVERY	PERCENT	REMARKS
33-	32.0-35.0 <u>CH Clay:</u> brownish yellow (10YR 6/8) and light olive brown (2.5Y 5/4); extremely soft; high plasticity; trace inoceramus shells; very thinly laminated bedding planes (fissile texture) broken apart due to cracking and swelling of montmortilionitic clays giving cores a block texture; organic material or manganese oxides concentrated along small, high angle fractures usually near gypsum- filled fractures; 33.5-34.0 foot interval is highly oxidized with a 0.03 foot wide, horizontal gypsum filled fracture in center; other fractures are up to 4 inches long and are nearly vertical to 45 decreas: Easture seasing = 0.5 to 5	CH			33	15	100 92		Layer
	 35.0-37.5 <u>CH Clay:</u> same lithologic description as 32.0-35.0; 1.5 inch wide gypsum layer in base cap of sampler; 0.05 foot wide, 45 degree gypsum layer in center of oxidized layer = 0.4 feet wide; 5-10% mm wide clay-filled fractures; Fracture spacing = 8 to 10 inches (unbroken). 	сн	<u>}</u> }			17	96		G.Ó-42.Ó
	37.5-40.0 <u>CH Clay:</u> same lithologic description as 32.0-35.0. 45- 60° gypsum layers up to 3 inches long (i.e., across sampling tube); oxidized layer up to 1 foot long with gypsum layer in middle; Fracture spacing = 8 to 10 inches (unbroken).	CH				18	92	a a	
	40.0-42.0 <u>CH Clay:</u> pushed a Shelby Tube sampler for laboratory analyses. Same lithologic descriptions 32.0- 35.0. Laboratory results: not analyzed.	сн			40	-19	80		Shelby tube taken for
	42.0-45.0 <u>CH Clay:</u> dark grayish brown (2.5y 4/2); extremely soft; high plasticity; oxidation is confined to thin layers instead of occurring throughout the interval as in clay above; swelling and cracking on surface of core is not as apparent as above; wide (0.07 foot) gypsum filled fracture with very little oxidization on either size.	СҢ				20	100 ; 92	e	lab analysis.
	45.0-47.5 <u>CH Clay</u> ; dark olive gray (5Y 3/2) with minor localized brownish yellow (10YR 6/8) in oxidized zones; very soft; high plasticity; gypsum filled fracture (45°) from 46.5 - 46.8 feet BGL with minor (0.2 foot thick) oxidized material on either side.	сн			45	t t			Layer IV
	47.5-50.0 <u>CH Clay:</u> dark olive gray (5y 3/2) and dark grayish brown(2.5y 4/2); highly compacted; soft; medium plasticity; 0.4 foot thick, slightly oxidized layer with thin (2mm) wide gypsum vein in center.	CH	£			22	92		42.0- 57.0
	· · ·					23	96	October age No. 4	2023 C-155

		3								2.
	COMAL COUNTY LANDFILL				LC	CAT	ΓΙΟΝ	NO. P	z-1	
ĒΞ			LITH	OLOGY	E S	EF		CORING		
	DESCRIPTION		QASS	LOG		EP B	RUN NO.	RECOVERY	ROD	REMARKS
51	50.0-55.0 <u>CH Clay;</u> dark olive gray (5Y 3/2) and dark grayish brown (2.5Y 4/2); highly compacted; soft; medium plasticity; completely unoxidized; fissile texture.		CH			51-	24	92		Layer-II 42.0-57.0
	1						25	92		
55	55.0-57.0 <u>CH Clay:</u> dark olive gray (5Y 3/2) and dark grayish brown (2.5Y 4/2); highly compacted; soft; medium plasticity; completely unoxidized; fissile texture. Blow counts = 12, 22, 23, 30.		CH			55	.26	80		Split span taken for lab analysic
57+	i j					57	2a)		P	
	•							a.		
		8			8				×	
	*							F	Octope Page No. 4	or 2023 IC-156

SORING LOCATION N: 733,800 j E: 1,823,200 ELEVATION AND DATUM G33.2.2 DRILLING AGENCY Spaces Environmental PORILLER R:c. Jones DRILLING AGENCY Spaces Environmental PORILLER R:c. Jones DRILLING AGENCY Spaces Environmental PORILLER R:c. Jones DRILLING AGENCY Spaces Environmental Port Port DRILLING AGENCY Spaces Environmental Port Port Size AND TYPE OF CASING 1 1/4 % TF: igo PVC SAMPLIAG METHOD contrinuous coring (0-12.#) 5.5. every 5/(12.# To.s) SAMPLER TYPE split bearnell DESCRIPTION DESCRIPTION DESCRIPTION CORING DESCRIPTION DESCRIPTION DESCRIPTION CORING CORING CORING CORING DESCRIPTION DESCRIPTION CORING CORING CORING CORING CORING CORING CORING <th>2 ft NGN</th> <th>PZ-2</th> <th>NO. I</th> <th>TION</th> <th>OCA</th> <th>L</th> <th></th> <th></th> <th></th> <th>COMAL COUNTY LANDFILL</th>	2 ft NGN	PZ-2	NO. I	TION	OCA	L				COMAL COUNTY LANDFILL
DRILLING AGENCY Torves Environmental [DRILLER R: Jones Datt Stantod / 24/90 Datt Reso DRILLING METHOD Hollow Stern curder Deal BT 9 inck comparison SIZE AND TYPE OF CASING 1 /4 4 "Triloc PVC LOGGED BY CHECKEI SAMPLING METHOD continuous coring (0-12.5') S.S. every 5 '(12.5-02.5) R.C. Smyth T.M. SAMPLER TYPE split box controls DESCRIPTION UNRCIN2.5, 2.0 More 5 5 ft CORING 0.0-2.5 CH Clay, very dark gray (10/R 3/1); medium plasticity; extremely soit; moderate reaction to 10% HC; trace very fine-grained to fine-grained quart sand; 1-5% granule-sized oxidized clay and chert gravel; abundant roots. CH I 2 2.5-4.5 CM silty Clay: dark gray(10/R 8/1); extremely soit; thigh plasticity; moderate reaction to 10% HC; trace very fine-grained to fine-grained quart sand; 1-5% granule-sized oxidized clay and chert gravel; angular to subangouldit, fist; size range is 5 to 50 mm; completely unanouldit, fist; size range is 5 to 50 mm; completely unanouldit, fist; size range is 5 to 50 mm; completely unanouldit, fist; size range is 5 to 50 mm; completely unanouldit, fist; size range is 5 to 50 mm; completely unanouldit, fist; size range is 5 to 50 mm; completely unanouldited; 1-5% very stick; clay and chert pravel; angular to subangouldited; 1-5% very stick; clay and prove the size range is 5 to 50 mm; completely unanouldited; 1-5% very stick; clay and prove stick; size incorrent size range is 5 to 50 mm; completely unanouldited; 1-5% very stick; clay and chert pravel; angular to subangouldited; 1-5% very stick; clay and chert pravel; angular to subangouldited; 1-5% very stick; clay and chert pravel; size range is 5 to 50 mm; completely unanouldited; 1-5% very stick; clay	C TT NO	22 7.	ATUM	AND D	NON	EVAT	EL		3,200	IG LOCATION N: 733,800 : E: 1,823
DRILLING METHOD Hollow stern curger DRIL BY 9 Incl. connection SIZE AND TYPE OF CASING ½ 4 "Triloc PVC SAMPLING METHOD continuous coring (0-12.5') S.s. every 5'(12.5-70.5) SAMPLING METHOD continuous coring (0-12.5') S.s. every 5'(12.5-70.5) SAMPLER TYPE Split barrell UNIT () LOGGED BY CORING UNIT () LOGGED BY UNIT () LOGGED BY CORING UNIT () LOGGED BY UNIT () LOGGED BY CORING CORING CORING CORING CORING Contrinvolts () CORING () Contact () Cort () Contact () Contact	HEDA /OF	DATE FINIS	90	1241	ATED	TE STA	DA	mes	DRILLER Ric Jo	ING AGENCY Jones Environmental
Size AND TYPE OF CASING 1/4 // Triloc PVC LOCGED BY CHECKEI SAMPLING METHOD contribuous coring (0-12.5') S.S. every 5'(12.5-10.5) R.C. Smyth T, M. SAMPLER TYPE Split bornell Uniting 15, 2.0 More 25 Ft T, M. DESCRIPTION Users over 25 ft CORING CORING 0.0-2.5 CH Clay, very dark gray (10YR 3/1); medium plasticity: extremely solt; moderate reaction to 10% HC; trace limestone and chert gravel; abundant roots. CH I I I G8 2 2.5-4.5 CM silty Clay; dark grayish brown (2.5Y 4/2) and brownish yellow (10YR 6/8); extremely solt; moderate reaction to 10% HC; trace limestone and chert gravel; abundant roots. CH I I I G8 4 4.5-6.5 GW Gravel; white and gray (10YR 8/1 and 6/1); coarse limestone and chert gravel; angular to subangular; flat; size range is 5 to 50 mm; completely unconsolidated; 1- 5% very sticky clay matrix; abundant roots. G G 3 84 7 8 5.57.5 No recovery; Driller noted that we were out of the gravel layer. Probably in the calichified claystone. 7 8 </td <td>- T/25/</td> <td>COMPLETI</td> <td>10</td> <td>ncl</td> <td>9;</td> <td>LBT</td> <td>DR</td> <td></td> <td></td> <td>ING METHOD Hollow stern anger</td>	- T/25/	COMPLETI	10	ncl	9;	LBT	DR			ING METHOD Hollow stern anger
SAMPLING METHOD continuous coring (0-12.5') 5.5. every 5'(12.5-0.5) R.C. Smyth SAMPLER TYPE Split bournell Unreall Unreall DESCRIPTION User 5 ft 0.0-2.5 CH Clay, very dark gray (10YR 3/1); medium plasticity; extremely soft; moderate reaction to 10% HCl; trace limestone and chert gravel; abundant roots. CH 1 1 1 2.5.4.5 CM silty Clay; dark grayish brown (2.5Y 4/2) and brownish yellow (10YR 6/8); extremely soft; moderate reaction to 10% HCl; trace limestone and chert gravel; abundant roots. CH 3 grained to fine-grained unit sand; 1-5% granule-sized oxidized clay and chert pebbles; trace incoramus fragments; abundant roots. CH 4 4.5-6.5 GW Gravej; white and gray (10YR 8/1 and 6/1); coarse limestone and chert gravel; angular to subangular; flat; size range is 5 to 50 mm; completely unconsolidated; 1- 5% very sticky clay matrix; abundant roots. GW 6 6.5-7.5 No recovery; Driller noted that we were out of the gravel layor. Probably in the calichified claystone. GW 7 7 8 4 8 5-100 CL caliche Claystone; white (10YR 8/1); very sort; chality; strong reaction to 10% HCl; no apparent bedding. GW CL F 9 8-510.0 CL calchec claystone; wellow (25Y 7/6); GU GU F 9 8-10.0 CL calclaystone; wellow (25Y 7/6); GU	D BY	CHECK		inch	BY	GGE			IC	AND TYPE OF CASING 14" TFILOC PV
SAMPLER TYPE ≤pl, + bcurrel1 LUNCIN7.5, 2, 0 proc ∞ 5 ft UTHOLOGY Image: Control with the control withe control with the control with the control with the control with	Scale	TH	rt ∣	Sm	RC	5)	5-10.	5%	2.5') S.S. every	LING METHOD continuous coring (0-12
Image: State of the state of the gravel layer. Probably in the calichified clayettor. Image: State of the state of the gravel layer. Probably in the calichified clayettor. Image: State of the state of the gravel layer. Probably in the calichified clayettor. 9 8-510.0 CL caliche Clayetone: while (10YR 8/1); very soft; chalky; strong reaction to 10% HC; big of the state of the gravel layer. Probably in the calichified clayettor. Image: State of the state of the gravel layer. Probably in the calichified clayettor. 9 8-510.0 CL caliche Clayetone: while (10YR 8/1); very soft; chalky; strong reaction to 10% HC; the strate of the deding. Image: State of the strate of the gravel layer. Probably in the calichified clayetone. 9 8-510.0 CL caliche Clayetone: while (10YR 8/1); very soft; chalky; strong reaction to 10% HC; the strate of the deding. Image: State of the strate of the gravel layer of the gravel layer. Probably in the calichified clayetone. 9 8-510.0 CL caliche Clayetone: while (10YR 8/1); very soft; chalky; strong reaction to 10% HC; the strate of the deding. Image: State of the strate of the gravel layer. Probably in the calichified clayetone.		1.1		·y		5	f+	P~5	LENGTH 2.5, 2.0 DRO	LER TYPE split barrell
Image: State Stat		<u> </u> ;	CORING			= =	DLOCY	UTH		
 a.s.s a.s.s b.o.2.5 c.t.ss b.o.2.5 c.t.ss c.t.ss c.t.ss b.o.2.5 c.t.ss c.t.ss b.o.2.5 c.t.ss c.t.ss c.t.ss b.o.2.5 c.t.ss c.t.ss b.o.2.5 c.t.ss c.t.ss b.o.2.5 c.t.ss c.t.ss c.t.ss b.o.2.5 c.t.ss c.t.ss c.t.ss b.o.2.5 c.t.ss c.t.ss b.o.2.5 c.t.ss c.t.ss b.o.2.5 c.t.ss c.t.ss b.o.2.5 c.t.ss c.t.ss c.t.ss b.o.2.5 c.t.ss c.t.ss c.t.ss b.o.2.5 c.t.ss c.t.ss c.t.ss b.o.2.5 c.t.ss c.t.ss c.t.ss c.t.ss d.t.ss <lid.t.ss< li=""> <lid.t.ss< li=""> <lid.t.ss< li=""></lid.t.ss<></lid.t.ss<></lid.t.ss<>	PELLA	PERCENT	PERCENT		Æ	LE 10	CRAPHO	USC		DESCRIPTION
 0.0-2.5 <u>CH Clay:</u> very dark gray (10YR 3/1); medium plasticity; extremely soft; moderate reaction to 10% HCl; trace limestone and chert gravel; abundant roots. 2.54.5 <u>CM slity Clay:</u> dark grayish brown (2.5Y 4/2) and brownish yellow (10YR 6/3); extremely soft; high plasticity; moderate reaction to 10% HCl; trace very fine-grained to fine-grained quartz sand; 1-5% granule-sized oxidized clay and chert pebbles; trace inoceramus fragments; abundant roots. 4.56.5 <u>GW Gravel</u>: white and gray (10YR 8/1 and 6/1); coarse limestone and chert gravel; angular to subangular; flat; size range is 5 to 50 mm; completely unconsolidated; 1-5% very sticky clay matrix; abundant roots. 6.57.5 No recovery; Driller noted that we were out of the gravel layer. Probably in the calichified claystone. 7.58.5 split-spoon samples (2-67) wrapped in foll in brass for laboratory. Biow counts = 19,50. Laboratory results: LL(%) = 36, P1(%) = 7.5, Percent passing #200 size = 98.5. 8.5-10.0 <u>CL caliche Claystone</u>; white (10YR 8/1); very soft; chalky; strong reaction to 10% HCl; no apparent bedding. 10.0-12.5 <u>CL calicher claystone</u>; wellow (2.5Y 7/6); UCM) 	REMAR	RQD	RECOVERY	RUN NO.	25	PICZC	LOC	ana		
plasticity: extremely soft; moderate reaction to 10% HCI; trace limestone and chert gravel; abundant roots. 2.5-4.5 <u>CM slity Clay:</u> dark grayish brown (2.5Y 4/2) and brownish yellow (10YR 6/8); extremely soft; high plasticity; moderate reaction to 10% HCI; trace very fine- grained to fine-grained quarts stand; 1-5% granule-sized oxidized clay and chert pebbles; trace inoceramus fragments; abundant roots. 4.5-6.5 <u>GW Gravel:</u> white and gray (10YR 8/1 and 6/1); coarse limestone and chert gravel; angular to subangular; flat; size range is 5 to 50 mm; completely unconsolidated; 1- 5% very sticky clay matrix; abundant roots. 6.5-7.5 No recovery; Driller noted that we were out of the gravel layer. Probably in the calichified claystone. 7.5-8.5 split-spoon samples (2-67) wrapped in foil in brass for laboratory. Blow counts = 19,50. Laboratory results: LL(%) = 36, Pl(%) = 7.5, Percent passing #200 sieve = 98.5. 8.5-10.0 <u>CL caliche Claystone</u> ; while (10YR 8/1]; very soft; chalky; strong reaction to 10% HCI; no apparent bedding. 10.0-12.5 <u>CL calcareous Claystone</u> ; yellow (2.5Y 7/6);								1	nedium	0.0-2.5 <u>CH Clay:</u> very dark gray (10YR 3/1); m
1 Lass infestorie and cherr gravel; adurdant roots. 2.5-4.5 <u>CM silty Clay</u> : dark grayish brown (2.5Y 4/2) and brownish yellow (10YR 6/8); extremely soft; high plasticity; moderate reaction to 10% HCI; trace very fine-grained to fine-grained quarts zand; 1-5% granule-sized oxidized clay and cherr pebbles; trace incoeramus fragments; abundant roots. 4.5-6.5 <u>GW Gravel</u> : white and gray (10YR 8/1 and 6/1); coarse limestone and cherr gravel; angular to subangular; flat; size range is 5 to 50 mm; completely unconsolidated; 1-5% very sticky clay matrix; abundant roots. 6.5-7.5 No recovery; Driller noted that we were out of the gravel layer. Probably in the calichified claystone. 7.5-8.5 split-spoon samples (2-67) wrapped in foli in brass for laboratory. Blow counts = 19,50. Laboratory results: LL(%) = 36, PI(%) = 19, MC(%) = 7.5, Percent passing #200 sieve = 98.5. 8.5-10.0 <u>CL caliche Claystone</u> ; white (10YR 8/1]; very soft; chalky; strong reaction to 10% HCI; no apparent bedding. 10.0-12.5 <u>CL calcareous Claystone</u> ; yellow (2.5Y 7/6); were very trace in the trace within a were were were were were were were we					t			CH	action to 10% HCI;	plasticity; extremely soft; moderate rea
 2.5-4.5 <u>CM slity Clay:</u> dark grayish brown (2.5Y 4/2) and brownish yellow (10YR 6/8); extremely soft; high plasticity; moderate reaction to 10% HCI; trace very fine- grained to fine-grained quartz sand; 1-5% granule-sized oxidized clay and chent pebbles; trace inoceramus fragments; abundant roots. 4.5-6.5 <u>GW Gravel</u>: white and gray (10YR 8/1 and 6/1); coarse limestone and chent gravel; angular to subangular; flat; size range is 5 to 50 mm; completely unconsolidated; 1- 5% very sticky clay matrix; abundant roots. 6.5-7.5 No recovery; Driller noted that we were out of the gravel layer. Probably in the calichified claystone. 7.5-8.5 split-spoon samples (2-6') wrapped in foll in brass for laboratory. Blow counts = 19,50. Laboratory results: LL(%)=36, Pl(%)=19, MC(%)= 7.5, Percent passing #200 sieve = 98.5. 8.5-10.0 <u>CL caliche Claystone</u>; white (10YR 8/1); very soft; chalky; strong reaction to 10% HCI; no apparent bedding. 10.0-12.5 <u>CL calcareous Claystone</u>; yellow (2.5Y 7/6); motion the transformed to the tr	Lover			a 1, 1	11		1		Kant foots.	
 2 2.5.4.5 <u>CM slity Clay;</u> dark grayish brown (2.5Y 4/2) and brownish yellow (10YR 6/8); extremely soft; high plasticity; moderate reaction to 10% HCl; trace very fine- grained to fine-grained quartz sand; 1-5% granule-sized oxidized clay and chert pebbles; trace inoceramus tragments; abundant roots. 4.5.6.5 <u>GW Gravel</u>: white and gray (10YR 6/1 and 6/1); coarse limestone and chert gravel; angular to subangular; flat; size range is 5 to 50 mm; completely unconsolidated; 1- 5% very sticky clay matrix; abundant roots. 6.5.7.5 No recovery; Driller noted that we were out of the gravel layer. Probably in the calichified claystone. 7.5.8.5 split-spoon samples (2-6") wrapped in foll in brass for laboratory. Blow counts = 19,50. Laboratory results: LL(%) = 36, Pl(%) = 19, MC(%) = 7.5, Percent passing #200 sieve = 98.5. 8.5.10.0 <u>CL caliche Claystone;</u> white (10YR 8/1); very soft; chally; strong reaction to 10% HCl; no apparent bedding. 10.0-12.5 <u>CL calcareous Claystone;</u> yellow (2.5Y 7/6); (1).0-12.5 <u>CL calcareous Claystone;</u> yellow (2.5Y 7/6); 			68		· I			1		
 2.5-4.5 <u>CW silv Clay:</u> dark grayish brown (2.5Y 4/2) and brownish yellow (10YR 6/8); extremely soft; high plasticity; moderate reaction to 10% HCI; trace very fine-grained to fine-grained quartz sand; 1-5% granule-sized oxidized clay and chert pebbles; trace inoceramus fragments; abundant roots. 4.5-6.5 <u>GW Gravel:</u> white and gray (10YR 8/1 and 6/1); coarse limestone and chert gravel; angular to subangular; flat; size range is 5 to 50 mm; completely unconsolidated; 1-5% very sticky clay matrix; abundant roots. 6.5-7.5 No recovery; Driller noted that we were out of the gravel layer. Probably in the calichified claystone. 7.5-8.5 split-spoon samples (2-67) wrapped in foli in brass for laboratory. Blow counts = 19,50. Laboratory results: LL(%)=36, Pl(%)=19, MC(%)= 7.5, Percent passing #200 sieve = 98.5. 8.5-10.0 <u>CL caliche Claystone:</u> white (10YR 8/1); very soft; chalky; strong reaction to 10% HCI; no apparent bedding. 9. 10.0-12.5 <u>CL calicenceus Claystone:</u> yellow (2.5Y 7/6); with the full of the transmitter of the transmitte	0.0-	1			ł			1		
 2.5-4.5 <u>CW silvy Clay:</u> dark grayish brown (2.5Y 4/2) and brownish yellow (10YR 6/8): extremely soft; high plasticity; moderate reaction to 10% HCI; trace very fine- grained to fine-grained quartz sand; 1-5% granule-sized oxidized clay and chert pebbles; trace inoceramus fragments; abundant roots. 4.5-6.5 <u>GW Gravel</u>: white and gray (10YR 8/1 and 6/1); coarse limestone and chert gravel; angular to subangular; flat; size range is 5 to 50 mri; completely unconsolidated; 1- 5% very sticky clay matrix; abundant roots. 6.5-7.5 No recovery; Driller noted that we were out of the gravel layer. Probably in the calichified claystone. 7.5-8.5 split-spoon samples (2-67) wrapped in foil in brass for laboratory. Blow counts = 19,50. Laboratory results: LL(%)=36, Pl(%)=19, MC(%)= 7.5, Percent passing #200 sieve = 98.5. 8.5-10.0 <u>CL caliche Claystone</u>; while (10YR 8/1); very soft; chalky; strong reaction to 10% HCI; no apparent bedding. 10.0-12.5 <u>CL calceneous Claystone</u>; yellow (2.5Y 7/6); were the provide to the structure to context of the structure to context of				-	2			1		-
 3 plasticity: moderate reaction to 10% HCl; trace very fine-grained to fine-grained quartz sand; 1-5% granule-sized oxidized clay and chert pebbles; trace inoceramus fragments; abundant roots. 4.5-6.5 <u>GW Gravel</u>: white and gray (10YR 8/1 and 6/1); coarse limestone and chert gravel; angular to subangular; flat; size range is 5 to 50 mm; completely unconsolidated; 1-5% very sticky clay matrix; abundant roots. 6.5-7.5 No recovery; Driller noted that we were out of the gravel layer. Probably in the calichified claystone. 7.5-8.5 split-spoon samples (2-67) wrapped in foll in brass for laboratory. Blow counts = 19,50. Laboratory results: LL(%)=36, PI(%)=19, MC(%)= 7.5, Percent passing #200 sieve = 98,5. 8.5-10.0 <u>CL caliche Claystone</u>; white (10YR 8/1); very soft; chalky; strong reaction to 10% HCl; no apparent bedding. 10.0-12.5 <u>CL calcerous Claystone</u>; yellow (2.5Y 7/6); unverte the tweer were for the gravel to the tweere out of the diageneric to the tweere out of the tweere outs the tweere set of the tweere tweere the tweere set of the tweere out of the gravel tayer. Probably in the calichified claystone. 9 8.5-10.0 <u>CL caliche Claystone</u>; white (10YR 8/1); very soft; chalky; strong reaction to 10% HCl; no apparent bedding. 10.0-12.5 <u>CL calcerous Claystone</u>; yellow (2.5Y 7/6); the tweere tweere the tweere tweere the tweere tweere the tweere tweere the tweere tweete tweet					ŧ			CH	(4/2)	2.5-4.5 CH silty Clay: dark grayish brown (2.5Y
grained to fine-grained quartz sand; 1-5% granule-sized oxidized clay and chert pebbles; trace inoceramus fragments; abundant roots. 4.5-6.5 <u>GW Gravel</u> : white and gray (10YR 8/1 and 6/1); coarse limestone and chert gravel; angular to subangular; flat; size range is 5 to 50 mm; completely unconsolidated; 1-5% very sticky clay matrix; abundant roots. 6.5-7.5 No recovery; Driller noted that we were out of the gravel layer. Probably in the calichified claystone. 7.5-8.5 split-spoon samples (2-6') wrapped in foll in brass for laboratory. Blow counts = 19,50. Laboratory results: LL(%)=36, PI(%)=19, MC(%)= 7.5, Percent passing #200 sieve = 98.5. 8.5-10.0 <u>CL caliche Claystone</u> ; white (10YR 8/1); very soft; chalky; strong reaction to 10% HCl; no apparent bedding. 10.0-12-5 <u>CL calcareous Claystone</u> ; yellow (2.5Y 7/6); with the calichified taystone.	1 aver				21				Ci; trace very fine-	plasticity; moderate reaction to 10% H0
4 4 4 4 4.5-6.5 <u>GW Gravel:</u> white and gray (10YR 8/1 and 6/1); coarse limestone and chert gravel; angular to subangular; flat; size range is 5 to 50 mm; completely unconsolidated; 1-5% very sticky clay matrix; abundant roots. 6.5-7.5 No recovery; Driller noted that we were out of the gravel layer. Probably in the calichified claystone. 7 7.5-8.5 split-spoon samples (2-6) wrapped in foil in brass for laboratory. Blow counts = 19,50. Laboratory results: LL(%)=36, Pl(%)=19, MC(%)= 7.5, Percent passing #200 sieve = 98.5. 8.5-10.0 <u>CL caliche Claystone</u> ; white (10YR 8/1); very soft; chalky; strong reaction to 10% HCl; no apparent bedding. 10.0-125 <u>CL caliceneous Claystone</u> ; yellow (2.5Y 7/6); UD -125 <u>CL caliceneous Claystone</u> ; yellow (2.5Y 7/6); UD -125 <u>CL caliceneous Claystone</u> ; yellow (2.5Y 7/6); UD -125 <u>CL caliceneous Claystone</u> ; yellow (2.5Y 7/6); UD -125 <u>CL caliceneous Claystone</u> ; yellow (2.5Y 7/6); UD -125 <u>CL caliceneous Claystone</u> ; yellow (2.5Y 7/6); UD -125 <u>CL caliceneous Claystone</u> ; yellow (2.5Y 7/6); UD -125 <u>CL caliceneous Claystone</u> ; yellow (2.5Y 7/6); UD -125 <u>CL caliceneous Claystone</u> ; yellow (2.5Y 7/6); UD -125 <u>CL caliceneous Claystone</u> ; yellow (2.5Y 7/6); UD -125 <u>CL caliceneous Claystone</u> ; yellow (2.5Y 7/6); UD -125 <u>CL caliceneous Claystone</u> ; yellow (2.5Y 7/6); UD -125 <u>CL caliceneous Claystone</u> ; yellow (2.5Y 7/6); UD -125 <u>CL caliceneous Claystone</u> ; yellow (2.5Y 7/6); UD -125 <u>CL caliceneous Claystone</u> ; yellow (2.5Y 7/6); UD -125 <u>CL caliceneous Claystone</u> ; yellow (2.5Y 7/6); UD -125 <u>CL caliceneous Claystone</u> ; yellow (2.5Y 7/6); UD -125 <u>CL caliceneous Claystone</u> ; yellow (2.5Y 7/6); UD -125 <u>CL caliceneous Claystone</u> ; yellow (2.5Y 7/6); UD -125 <u>CL caliceneous Claystone</u> ; yellow (2.5Y 7/6); UD -125 <u>CL caliceneous Claystone</u> ; yellow (2.5Y 7/6); UD -125 <u>CL caliceneous Claystone</u> ; yellow (2.5Y 7/6); UD -125 <u>CL caliceneous Claystone</u> ; yellow (2.5Y 7/6); UD -125 <u>CL caliceneous Claystone</u> ; yellow (2.5Y 7/6); UD -125 <u>CL cali</u>	Luyer.				>Ţ		H)-		5% granule-sized	grained to fine-grained quartz sand; 1-5
 4.5-6.5 <u>GW Gravel:</u> white and gray (10YR 8/1 and 6/1); coarse limestone and chert gravel; angular to subangular; fiat; size range is 5 to 50 mm; completely unconsolidated; 1-5% very sticky clay matrix; abundant roots. 6.5-7.5 No recovery; Driller noted that we were out of the gravel layer. Probably in the calichified claystone. 7.5-8.5 split-spoon samples (2-6") wrapped in foll in brass for laboratory. Blow counts = 19,50. Laboratory results: LL(%)=36, PI(%)=19, MC(%)= 7.5, Percent passing #200 sieve = 98.5. 8.5-10.0 <u>CL caliche Claystone</u>; white (10YR 8/1); very soft; chalky; strong reaction to 10% HCI; no apparent bedding. 10.0-125 <u>CL calicreous Claystone</u>; yellow (2.5Y 7/6); upt table down and the foll in the data down apparent bedding. 	2.5-4		96	2	Į		口	1	inoceramus	Oxidized clay and chert pebbles; trace i fragments: abundant roots.
 4.5-6.5 <u>GW Gravel</u>: white and gray (10YR 8/1 and 6/1); coarse limestone and chert gravel; angular to subangular; flat; size range is 5 to 50 mm; completely unconsolidated; 1-5% very sticky clay matrix; abundant roots. 6.5-7.5 No recovery; Driller noted that we were out of the gravel layer. Probably in the calichified claystone. 7.5-8.5 split-spoon samples (2-6') wrapped in foll in brass for laboratory. Blow counts = 19,50. Laboratory results: LL(%)=36, Pl(%)=19, MC(%)= 7.5, Percent passing #200 sieve = 98.5. 8.5-10.0 <u>CL caliche Claystone</u>: white (10YR 8/1); very soft; chalky; strong reaction to 10% HCI; no apparent bedding. 10.0-12.5 <u>CL calcareous Claystone</u>: yellow (2.5Y 7/6); unscent data there are the view of the weight of the view of the	1		10	~	4‡					
 5 6 6 6 7 6 7 6 7 6 7 7 6 7 7 8 6 7 8 7 8 8 8 9 8 9 9<					ŧ			GW	and 6/1); coarse	4.5-6.5 <u>GW Gravel</u> : white and gray (10YR 8/1 a
 5% very sticky clay matrix; abundant roots. 6.5-7.5 No recovery; Driller noted that we were out of the gravel layer. Probably in the calichified claystone. 7 7.5-8.5 split-spoon samples (2-67) wrapped in foll in brass for laboratory. Blow counts = 19,50. Laboratory results: LL(%)=36, Pl(%)=19, MC(%)= 7.5, Percent passing #200 sieve = 98.5. 8.5-10.0 <u>CL caliche Claystone:</u> white (10YR 8/1); very soft; chalky; strong reaction to 10% HCl; no apparent bedding. 10.0-12.5 <u>CL calcareous Claystone:</u> yellow (2.5Y 7/6); UL 	Laver				-1		000		subangular; flat; unconsolidated: 1-	size range is 5 to 50 mm; completely u
 6.5-7.5 No recovery; Driller noted that we were out of the gravel layer. Probably in the calichified claystone. 7.5-8.5 split-spoon samples (2-6") wrapped in foll in brass for laboratory. Blow counts = 19,50. Laboratory results: LL(%)=36, PI(%)=19, MC(%)= 7.5, Percent passing #200 sieve = 98.5. 8.5-10.0 <u>CL caliche Claystone:</u> white (10YR 8/1); very soft; chalky; strong reaction to 10% HC; no apparent bedding. 10.0-12.5 <u>CL calcareous Claystone:</u> yellow (2.5Y 7/6); CL PH (2.5Y 7/6); PR (2.5Y 7	-10				5‡		0/00		oots.	5% very sticky clay matrix; abundant ro
 6.5-7.5 No recovery; Driller noted that we were out of the gravel layer. Probably in the calichified claystone. 7 7.5-8.5 split-spoon samples (2-6") wrapped in foll in brass for laboratory. Blow counts = 19,50. Laboratory results: LL(%)=36, PI(%)=19, MC(%)= 7.5, Percent passing #200 sieve = 98.5. 8.5-10.0 <u>CL caliche Claystone:</u> white (10YR 8/1); very soft; chalky; strong reaction to 10% HCl; no apparent bedding. 10.0-12.5 <u>CL calcareous Claystone:</u> yellow (2.5Y 7/6); unsuled the three matrices in the stress in	4.5-6				ţ		000	1		1
 6.5-7.5 No recovery; Driller noted that we were out of the gravel layer. Probably in the calichified claystone. 7 7.5-8.5 split-spoon samples (2-6") wrapped in foll in brass for laboratory. Blow counts = 19,50. Laboratory results: LL(%)=36, PI(%)=19, MC(%)= 7.5, Percent passing #200 sieve = 98.5. 8.5-10.0 <u>CL caliche Claystone:</u> white (10YR 8/1); very soft; chalky; strong reaction to 10% HCl; no apparent bedding. 10.0-12.5 <u>CL calcareous Claystone:</u> yellow (2.5Y 7/6); unsuled that there may find the following in the strength of the following in the strength of the following in the strength of the strength of the following in the strength of the strength of the strength of the following in the strength of the strength o			0/1		6‡		010	ſ		
7 7.5-8.5 split-spoon samples (2-6') wrapped in foll in brass for laboratory. Blow counts = 19,50. Laboratory results: LL(%) = 36, Pl(%) = 19, MC(%) = 7.5, Percent passing #200 sieve = 98.5. 8.5-10.0 <u>CL caliche Claystone:</u> white (10YR 8/1); very soft; chalky; strong reaction to 10% HCl; no apparent bedding. 10.0-12.5 <u>CL calcareous Claystone:</u> yellow (2.5Y 7/6); transfer three manifest the form			84	3	ţ		600	1	out of the	0.5-7.5 No recovery; Driller noted that we were our gravel laver. Probably in the calichified
 7.5-8.5 split-spoon samples (2-6") wrapped in foil in brass for laboratory. Blow counts = 19,50. Laboratory results: LL(%)=36, Pl(%)=19, MC(%)= 7.5, Percent passing #200 sieve = 98.5. 8.5-10.0 <u>CL caliche Claystone:</u> white (10YR 8/1); very soft; chalky; strong reaction to 10% HCl; no apparent bedding. 10.0-12.5 <u>CL calcareous Claystone:</u> yellow (2.5Y 7/6); UCL IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	个				_‡			1		
8 10.0-12.5 CL calcareous Claystone: yellow (2.5Y 7/6); 0 10.0-12.5 CL calcareous Claystone: yellow (2.5Y 7/6);					7‡			2	i i	7585 solitennon samplas /a en
$\begin{cases} & \text{Laboratory results: LL(%)=36, Pl(%)=19, MC(%)=7.5,} \\ \text{Percent passing $$200 sieve = 98.5.} \\ 8.5-10.0 & \underline{\text{CL caliche Claystone: white (10YR 8/1); very soft;} \\ \text{chalky; strong reaction to 10% HCl; no apparent bedding.} \\ \hline 10.0-12.5 & \underline{\text{CL calcareous Claystone: yellow (2.5Y 7/6);} \\ \hline 10.0-12.5 & \underline{\text{CL calcareous Claystone: yellow (2.5Y 7/6);} \\ \hline 10.0-12.5 & \underline{\text{CL calcareous Claystone: yellow (2.5Y 7/6);} \\ \hline 10.0-12.5 & \underline{\text{CL calcareous Claystone: yellow (2.5Y 7/6);} \\ \hline 10.0-12.5 & \underline{\text{CL calcareous Claystone: yellow (2.5Y 7/6);} \\ \hline 10.0-12.5 & \underline{\text{CL calcareous Claystone: yellow (2.5Y 7/6);} \\ \hline 10.0-12.5 & \underline{\text{CL calcareous Claystone: yellow (2.5Y 7/6);} \\ \hline 10.0-12.5 & \underline{\text{CL calcareous Claystone: yellow (2.5Y 7/6);} \\ \hline 10.0-12.5 & \underline{\text{CL calcareous Claystone: yellow (2.5Y 7/6);} \\ \hline 10.0-12.5 & \underline{\text{CL calcareous Claystone: yellow (2.5Y 7/6);} \\ \hline 10.0-12.5 & \underline{\text{CL calcareous Claystone: yellow (2.5Y 7/6);} \\ \hline 10.0-12.5 & \underline{\text{CL calcareous Claystone: yellow (2.5Y 7/6);} \\ \hline 10.0-12.5 & \underline{\text{CL calcareous Claystone: yellow (2.5Y 7/6);} \\ \hline 10.0-12.5 & \underline{\text{CL calcareous Claystone: yellow (2.5Y 7/6);} \\ \hline 10.0-12.5 & \underline{\text{CL calcareous Claystone: yellow (2.5Y 7/6);} \\ \hline 10.0-12.5 & \underline{\text{CL calcareous Claystone: yellow (2.5Y 7/6);} \\ \hline 10.0-12.5 & \underline{\text{CL calcareous Claystone: yellow (2.5Y 7/6);} \\ \hline 10.0-12.5 & \underline{\text{CL calcareous Claystone: yellow (2.5Y 7/6);} \\ \hline 10.0-12.5 & \underline{\text{CL calcareous Claystone: yellow (2.5Y 7/6);} \\ \hline 10.0-12.5 & \underline{\text{CL calcareous Claystone: yellow (2.5Y 7/6);} \\ \hline 10.0-12.5 & \underline{\text{CL calcareous Claystone: yellow (2.5Y 7/6);} \\ \hline 10.0-12.5 & \underline{\text{CL calcareous Claystone: yellow (2.5Y 7/6);} \\ \hline 10.0-12.5 & \underline{\text{CL calcareous Claystone: yellow (2.5Y 7/6);} \\ \hline 10.0-12.5 & \underline{\text{CL calcareous Claystone: yellow (2.5Y 7/6);} \\ \hline 10.0-12.5 & \underline{\text{CL calcareous Claystone: yellow (2.5Y 7/6);} \\ \hline 10.0-12.5 & \underline{\text{CL calcareous Claystone: yellow (2.5Y 7/6);} \\ \hline 10.0-12.5 & \underline{\text{CL calcareous Claystone: yellow (2.5Y 7/6);} \\ \hline 10.0-12.5 & \text{CL calcareous Claystone: yellow (2.5Y 7$	sal'i a				ł			FL	50.	brass for laboratory. Blow counts = 19.
9 8.5-10.0 CL caliche Claystone: white (10YR 8/1); very soft; chalky; strong reaction to 10% HCl; no apparent bedding. 0 9 5 100 10.0-12.5 CL calcareous Claystone: yellow (2.5Y 7/6); 0 0 0 0	plit Sp		Im	4	xt				9, MC(%)= 7.5,	Laboratory results: LL(%)=36, PI(%)=19
9 = 8.5-10.0 <u>CL caliche Claystone:</u> white (10YR 8/1); very soft; chalky; strong reaction to 10% HCl; no apparent bedding. 10.0-12.5 <u>CL calcareous Claystone:</u> yellow (2.5Y 7/6);	lab anal	1			٥ł		$+ \pi$			Percent passing #200 sieve = 98.5.
7 chalky; strong reaction to 10% HCl; no apparent bedding. 10.0-12.5 CL calcareous Claystone: yellow (2.5Y 7/6);		ł			Ł		11	CL); very soft;	8.5-10.0 CL caliche Claystone: white (10YR 8/1)
10.0-12.5 <u>CL calcareous Claystone:</u> yellow (2.5Y 7/6);			100	r -	9†		11	-	apparent	chalky; strong reaction to 10% HCl; no a
10 ⁺ 10.0-12.5 <u>CL calcareous Claystone:</u> yellow (2.5Y 7/6);			~~	2	ł				190	boading,
					юŁ			CI	Y 7/6);	10.0-12.5 CL calcareous Claystone: yellow (2.5Y
penetrometer >4.5;	LOVER				٣Ŧ			1	ocket	very son; strong reaction to 10% HCl; po penetrometer >4.5:
					Ŧ		17			· · · · · · · · · · · · · · · · · · ·
	6.5-46		22	6	117					an a
	1		22	v	ŧ					
		- a			<u>,</u> ‡		71			
12.5-13.0 <u>CL calcareous Claystone: same description as</u>					4	ľ			lotion as	12.5-13.0 CL calcareous Claystone: same descri
above; sampled with split-spoon. Blow counts = 50/5			20	7	ł				counts = 50/5	above; sampled with split-spoon. Blow c
$13 \pm 13 \pm 80$			80	+	3‡					Inches.
13.0-15.0 drilled					ţ					13.0-15.0 drilled
				0	4					
		Octob Page No		0	4†	1		i s	24	
	er 2023 4C-157			-		-				

а

e,

	COMAL COUNTY LANDFILL				LO	CA.	ΓΙΟΝ	NO. P	z- <u>2</u>	
DEPTH (FEET)	DESCRIPTION	ן ע. מ	ITH(S.C.S. ASS	GRAPHIC LOG	PIEZOMETER COMPLETION	DEPTH (FEET)	RUN NO.	PERCENT RECOVERY	PERCENT	REMARKS
16-	15.0-16.0 <u>CL calcareous Claystone:</u> yellow (2.5Y 7/6); very soft; strong reaction to 10% HCl; pocket penetrometer >4.5. Blow counts = 38, 50/5 inches.	С	L			16	9	90		Hammered splitspan sampler.
	15.0-20.0 drilled						10		-	
20+	20.0-21.5 <u>CL calcareous Claystone:</u> yellow (2.5Y 7/6) and pale yellow (2.5Y 7/4); change from more oxidized to less oxidized claystone emphasized by change in color very soft; strong reaction to 10% HCl; rock expands in split spoon sampler and makes it difficult to get "shoes off; Blow counts = 22,35,46.		L			20	11	100		Hæmmered splitspoon sampler. Layer:
25+	20.0-25.0 drilled					25	12		i St	6.5-46.5
	 25.0-26.5 <u>CL calcareous Claystone:</u> pale yellow (2.5Y 7/4) very soft; strong reaction to 10% HCL; rock expands in split spoon sampler; Blow counts = 22,32,37. 25.0-30.0 drilled 	c					13	100 ,		Hammered split spoon sampler.
							14		e e	
30	 Succession of the second state of the					30	15	100 Pay	October 2 ge No. 4C	Hanmer eplit sp sampler. 2023 -158

ež.

COMAL COUNTY LANDFILL LOCATION NO. PZ-2 PEZOMETER COMPLETION DEPTH (FEET) LITHOLOGY CORING DEPTH (FEET) U.S.C.S. GRAPHIC DESCRIPTION PERCENT PERCENT REMARKS RUN NO. ass LOG RECOVERY ROD 50.0-55.0 drilled 53 53 24 C 55-55.0-55.5 CL calcareous Claystone: greenish gray (5GY 5/1); 59 split-spoo 25 100 average hardness; strong reaction to 10% HCI; fissile texture; Blow counts = 50. 55.0-60.0 drilled (time = 1845-1915); drilling got easier at 56.5 feet BGL (probably in softer yellow claystone). layer'II 46.5'-70.5' 26 W 60.0-61.0 CL calcareous Claystone: greenish gray (5GY 5/1) CL æ and pale yellow (2.5Y 7/4); average hardness; strong Hammered 271 100 reaction to 10% HCI; fissile texture; Blow counts = split spaan 40,50/3 inches. 60.0-65.0 drilled 28 i 65 29 Hammered split spoon 65.0-65.5 CL calcareous Claystone: greenish gray (5GY 5/1); 00 С average hardness; breaks up into 0.2 to 0.5 foot wide "chips" when split spoon sampler is hammered in; strong reaction to 10% HCI; trace inoceramus and oyster shells; fissile and greasy textures; hydrocarbon odor. Blow counts = 50/6 inches. 65.0-70.0 drilled; strong hydrocarbon odor in cuttings. 30 70.0-70.5 CL calcareous Claystone: same description as 65.0-65.5; Blow counts = 50/6 inches. October 2023 Page No. 4C-160 31, 100, 70

	8			8						
N	ASTE MANAGEMENT OF NORTH AMERICA			G		.00		OG OF	COR	E 2
BORIN	G LOCATION NUTCA ODD (E: 1 977 000	_		FLEN		ON		DATING	10.0	
DRILL	NG AGENCY Jones Environmente O DRILLER Bic J	nes	-	DATE	STAR		1/24	190	DATE FIN	6 H NGVD
DRILLI	NG METHOD Hollow stem anger	123	-	DAGET	BIT <	3 1	nch		COMPLET	ION DEPTH 32,51
SIZE	AND TYPE OF CASING 1 1/4 + Triloc PVC			LOG	CED	BY	1011		CHECH	ED BY
SAMPI	ING METHOD continuous coring			R	,C.	S	nyth	\sim		M. Scanlor
SAMP	LER TYPE split barrel. LENCTH 2.5 ft DRO	°					,			
≣≘		ШТН	OLOG	Y U	NOL I	:E		CORIN	G	
ġĘ	DESCRIPTION	avez 0.2522	LOC	HC	COUPL	<u>ië</u>	RUN NO.	RECOVERY	RQD	REMARKS
1	 0.0-0.15 <u>Fill:</u> mottled, very dark grayish brown (10YR 3/2) and white (10YR 8/1); extremely soft; strong reaction to 10% HCI; calcareous sandy clay with trace chert pebbles; sand: very fine-grained quartz. 0.15-0.5 <u>CH Clay:</u> very dark gray (10YR 3/1); extremely soft; 	FI CH CH			2		- 1	96		Layer IFa 0.5-4.1
3	 moderate reaction to 10% HCl; medium plasticity; 5-10% chert and limestone pebbles (size: 10 to 50 mm). 0.5-4.1 <u>CH Clay</u>: light olive brown (2.5Y 5/4) and brownish yellow (10YR 6/8); extremely soft; abundant granule sized, oxidized clay pebbles and trace chert pebbles in silty clay matrix; high plasticity; pocket penetrometer reading = 1.75. 	Gw		000	2	3	2	96		
	4.1-6.3 <u>GW Gravel</u> : white and gray (10YR 8/1 and 6/1); coarse limestone and chert gravel with trace fossil fragments, gravel ranges from 5 to 50 mm in sized and consists of angular (almost looks brecciated), flat pebbles; totally unconsolidated; clay matrix is <20%.		000000	100000	4		3	52		4.1-7.0
7‡	6.3-7.5 No recovery. Limestone gravel jammed split-barrel sampler.		K		F	7‡				-*-
8 9 1	 7.5-10.0 <u>CL caliche Claystone:</u> yellow (2.5Y 7/6) dominant with white (10YR 8/1) filling in fractures; very soft; much more altered than underlying similar rock; chalky; strong reaction to 10% HCl; low to medium plasticity; unbroken fracture spacing; pocket penetrometer = 2.25. 	a	A H H H		00		4	%		
0	10.0-15.0 <u>CL calcareous Claystone:</u> yellow (2.5Y 7/6) and pale yellow (2.5Y 7/4) with occasional white (10YR 8/1) and yellow (10YR 7/8) filling In fractures; very soft to soft; low	cL	1 1 1		ĸ					Layer I
2+	penetrometer is off scale (>4.5); fractures are nearly vertical to horizontal and range from 0.01 to 0.05 inches in diameter; Fracture spacing = 2 to 10 inches (unbroken to broken).				12	24	5	100		7.0-32.5
3					13	3				
41 1	2 ⁸ 4 4 41		il.		14	H	4		Octol Page No	ber 2023 . 4C-161

 ∞ . \odot

	COMAL COUNTY LANDFILL		-	1.00	:AT	ION		7-2	
		LUTH	YOCY	<u>e</u> <u>z</u>			COPINIC	2-5	T
DEPTH (FEET)	DESCRIPTION	U.S.C.S. Q.ASS	GRAPHIC	PLIONER	(FEET)	RUN NO	PERCENT	PERCENT	REMARKS
6 - -	15.0-17.5 <u>CL calcareous Claystone:</u> yellow (2.5Y 7/6) and pale yellow (2.5Y 7/4) with occasional white (10YR 8/1) and yellow (10YR 7/8) filling in fractures; very soft to soft; low to medium plasticity; strong reaction to 10% HCl; pocket penetrometer is off scale (>4.5); 0.1 foot diameter fracture filled with white clay and surrounded by more oxidized orange material occurs at 15.5-16.0 feet BGL; Fracture spacing >6 Inches (unbroken).	CL			6	7	100		Shelbytube
	 T7.5-18.0 Shelby Tube Sample pushed for laboratory vertical hydraulic conductivity measurement. Lithology is same as above. Kv = 8 x 10⁻⁶ cm/sec 					9	100		splitspon for lab analysis.
20-	LL(%) = 38, PL(%) = 18, Pl(%) = 20 18.0-19.0 Split Spoon Sample; Blow counts = 28,50; Lithology is same as above. Laboratory results: LL(%) = 43, Pl(%) = 19, MC(%) = 15.2;				20	10	50		
	Percent passing #200 sieve = 98.9. 19.0-22.5 <u>CL calcareous Claystone:</u> yellow (2.5Y 7/6) and pale yellow (2.5Y 7/4) with occasional white (10YR 8/1) and yellow (10YR 7/8) filling in fractures; very soft to soft; low to medium plasticity; strong reaction to 10% HCI: white clay-filled vertical fracture from 20 0-22 5 that	CL]{	96		Layer <u>1</u> 7.0-32.5
~	is lined with a network of reddish roots. 22.5-25.0 Sampler not latching on or disengaging too soon so just got cuttings in sampler; same lithloogic description as above; cuttings felt damp.					12	·0	1	R.
	 25.0-27.5 No recovery in sampler during first run; augers are jammed with claystone that fell out of sampler on previous run. Went back in hole and picked up 0.5 feet (CL calcareous Claystone): same lithology as 19.0-22.5. 27.5-32.5 CL calcareous Claystone: pale yellow (2.5Y 7/4); same 	CL		=2	5	13	20	а ж.	
	unit as above but less oxidized; very soft; low to medium plasticity; strong reaction to 10% HCI; more highly oxidized yellow layer (10YR 7/8) from 30.0-30.5 lined with white (10YR 8/1), this is probably a sealed fracture; Fracture spacing > 6 inches (unbroken).	Ch-							2
30-				2		14	96		
32+	2010 1 (1993) 2 (1993)			3		15	96	October	2023

Sal.

W	ASTE MANAGEMENT OF NORTH AMERICA COMAL COUNTY LANDFILL			G	EO L		GIC L	OG OF I NO.		е 4
BORING	G LOCATION N; 645, 800 : E: 2.044.500			ELE	VAT	ION	AND (DATUM		I GE LE MUST
DRILLIN	NG AGENCY JONES ENVIRONMENTER DRILLER BIC ST	ines	-	DAT	E STA	RTED	1/2 -	100	DATE FU	ID TT NGVI
DRILUN	NG METHOD Hollow stem auger		-	DRILL	. BIT	9	inch	150	COMPLE	TIZTION DEPTH 50,44
SIZE A	NO TYPE OF CASING 1 1/4" TO'LOC PVC			LOC	GGEC	81			CHECI	KED BY
SAMPL	ING METHOD continuous coring		_		R.(c. 9	Sm	th	T.	M. Scanlo
SAMPL	ER TYPE split barrel LENGTH Z.S. Ft OAH	×	-		•••		1		1	
		UTH	OLOC	Y	5 8			CORIN	G	
(1333) (1661)	DESCRIPTION	USC: QASS	LORUP	746C G	PLZONET	DEPTH (FEET)	RUN NO.	PERCENT	PERCENT	REMARKS
1 + 2 +	0.0-2.5 <u>Fill:CL Clay:</u> light olive brown (2.5Y 5/4) and brownish yellow (10YR 6/8); extremely soft; oxidized clay pebbles and chert pebbles in a silty clay matrix; not well laminated as in other intervals.	FI	11111	11111		1-	- 1	40		Fill 0.2-2.5
3+	2.5-5.0 <u>CH Clay:</u> very dark gray (10YR 3/1); extremely soft; medium plasticity; moderate reaction to 10% HCl; blocky; trace limestone pebbles ranging in size from 2 t 5 mm.	СН	1411			3	2	100		LayerI 25-50
5 +	5.0-7.5 <u>CH Clay:</u> light olive brown (2.5Y 5/4) and brownish yellow (10YR 6/8); extremely soft; unconsolidated; high plasticity; 20-30% oxidized clay pebbles and 1-5% chert pebbles up to 5mm in diameter in a silty clay matrix; caliche layers at 6 and 7 feet BGL	СҢ	0 0		1	5	3	96		Layer II. 5.0'-7.5
7 8 1	7.5-10.0 <u>CH Clay</u> : brownish yellow (10R 6/8) and light olive brown (2.5Y 5/4); extremely soft; high plasticity; very thinky laminated bedding planes (fissile texture) broken apart due to cracking and swelling of montmortilionitic clays giving clay a block texture; organic material or manganese oxides concentrated along small, high angle frontures usually page groups filed frontures or shills.	СН	• • • • • •			7	-		×	Layer III
9	gypsum in nearly vertical fractures up to 1.0 foot long; fracture spacing > 6 inches (unbroken).		B			7	4	76		7.5-49.2
(0+) +	10.0-11.5 Shelby tube sample pushed for laboratory vertical hydraulic conductivity measurements. Same lithology as above.									shelby tube fo
2	Kv = not analyzed. 11.5-12.5 <u>CH Clay:</u> same lithology as 7.5-10.0.	СН					5	100		Gnalyses
3	12.5-15.0 Lost sample on fist run, recovered 0.6 feet. Lithology same as 7.5-10.0.					3	6	1000		G.
4			_		F	1	7	40	Octd Page No	per 2023 . 4C-163

	ş.,			100					1
	COMAL COUNTY LANDFILL			L	OCA	TION	NO. P	z-4	0
DEPTH (FEET)	DESCRIPTION	ד <u>וו</u> מ.איי מ.איי	HOLOGI	PEZOMETER	DEPTH		CORING	PERCENT ROD	REMARKS
	 32.5-35.0 <u>CH Clay:</u> Same lithology as above; fractures are oriented from 45 degrees to horizontally; fractue spacing = 2.5 inches (broken); pocket penetrometer is off scale (>4.5). 	, Ct	TH R			-16	92		
35-	35.0-37.5 <u>CH Clay:</u> Same lithology as above; 1% gypsum-filled fractures from horizontal to 60 degrees; fracture spacing = 2.5 inches (broken); oxidized at base; top of shoe had wet clay in it, could have been false; pocket penetrometer >4.5.				35	} +17	92		
	 37.5-40.0 <u>CH Clav:</u> Same lithology as above; 1-5% gypsum- filled fractures running vertically (up to 0.3' wide); trace of oxidation staining. 		ł			<u> </u>	-		Layer III
	40.0-42.5 <u>CH Clay:</u> Same lithology as above; gypsum- impregnated zone from 40.3-40.8'; fracture spacing = 1 to 2.7 Inches (very broken to broken); associated minor oxidation just below gypsum area.	СН				18	88		7,5-49,2
40	42.5-45.0 <u>CH Clay:</u> light olive brown (2.5Y 5/4) and minor yellowish brown (10YR 6/8); very soft; high plasticity; trace organic filled laminae; very thinly laminated bedding planes (fissile taxture) broken apart due to cracking and swelling of montmorillionitic clays giving clay a block texture; organic material or manganese oxides concentrated along small, high angle fractures; trace oxidation; no gypsum; rounded clay pebble at base; fracture spacing = 2.5 feet (unbroken).	CH			40	19	92		
	 45.0-47.5 <u>CH Clay:</u> Same lithology as above; three 0.02 foot wide gypsum-filled fractures; fracture spacing = 0.5 feet (unbroken). 47.5-48.8 CH Clay: Same lithology as above; vertical gypsum- 	СН				20	88		
15	filled fracture 0.5 feet long and 0.04 feet wide; 0.1 foot thick horizontal gypsum layer at base of interval, directly on top of slitstone layer.		a -		45				140
Ŧ	48.8-49.2 <u>ML clayey Siltstone:</u> yellow (2.5Y 7/6); soft; low plasticity; strong reaction to 10% HCl; 1-10% fossil fragments (mollusks); trace very fine-grained quartz sand.	CH	\			21	92		
	49.2-50.4 <u>CL calcareous Claystone:</u> greenish gray (5GY 5/1); average hardness; strong reaction to 10% HCl; trace mollusk shells; Blow counts = 50/5 inches.		-{			-			м. 96
	Note: Near the T.D., sampler got jammed in lead auger when being retracted so all augers came out of the hole. The last 2.5 foot sample was obtained with split-spoon sampler.	ML				22	92		<u>×</u>
0		CL			50	23	100	Octo Page No	49.2-50.4 ber 2023

	3									
	WASTE MANAGEMENT OF NORTH AMERICA COMAL COUNTY LANDFILL		n dan baran	GE		GIC L	OG OF I NO.		E	-
30	RING LOCATION N: 587,800 ; E: 2,032,000			ELEN		AND	DATUM			
DR	LUNG AGENCY JODES EDVICENMENTA DRILLER Ric	The	5	DATE	STAR TED	Alor	lan	DIT. C	OTT NGVD	
DRI	LUNG METHOD Hollow stem auger			OPUL	BT 9	7/25	20	COMPLET	9/27/90	2
SIZ	E AND TYPE OF CASING 1 14" Triloc PVC			LOGO	ED B	Y		CHECK		-
SAN	APUNG METHOD cont. coring (0-32 ft): S.S. EVERY 5'	132-0	51. 4 Gt	R	<u>ر</u> <	Smith		TA	A Scala	
SAI	APLER TYPE Split barrel LENGTHY. 5, 7.0	DROP A	5ft	1 1	1 - / -		n.	· · · /	1.300101	
-		U	HOLO	SY g	z		CORIN	G	T	-
135	DESCRIPTION	U.S.	C.S. ORA	PHC	HIJ HIJ		PERCENT	PERCENT	REMARKS	
		a	55 U	×	3000	INCH NO.	RECOVERY	ROD		
1	0-5.0 <u>Fill: CL Clay:</u> light olive brown (2.5Y 5/4) and brownish yellow (10YR 6/8); extremely soft; oxidized clay pebble and chert pebbles in a silty clay matrix; not well laminated as in other Intervals.	F			1		96			
3		ł			2.				 Fill	
4					4-	2	%		0.0-7.3	
5	5.0-7.3 <u>Fill: CL Clay:</u> light olive brown (2.5Y 5/4) and brownish yellow (10YR 6/8); extremely soft; oxidized clay pebble and chert pebbles in a silty clay matrix; not well laminated as in other intervals.	s [+]			5-					
6	‡ <u> </u>				6	2	ar			
7	7.3-8.2 <u>GW Gravel</u> : white (10YR 8/1), light gray (10YR 6/1) and olive brown (2.5Y 5/4); coarse limestone and chert gravel; angular to subangular; flat pebbles; size range 2 to 60 mm; 75-80% pebbles in 20% caliche and clay matrix; trace inoceramus shells;	is .	10	1 100	7-	С Э 	76		Layer II	
8	8.2-10.5 CH Clay: brownish yellow (10R 6/8) & light olive brown	GW	100	50	8-	-	1		7.3-8.2	
9	 (2.5Y 5/4); extremely soft; high plasticity; strong reactio to 10% HCl; very thinky laminated bedding planes (fissile texture) broken apart due to cracking and swelling of montmonillionitic clays giving cores a block texture; organic material or manganese oxides concentrated 				9-	4	56		Layer III/1	
10	along small, high angle fractures usually near gypsum- filled fractures; 5-10% caliche pockets dispersed throughout.				10	5	00		8.2-28.3	
11 -	10.5-12.5 Split spoon samples; Same lithology as above. LL(%) = 97, Pl(%) = 69, MC(%) = 34.2; Percent passing #200 sieve = 99.2. Blow counts = 6,9,10,14.	1	R			6		4	split spoon samples taken for	
12- 13- 14-	12.5-18.0 <u>CH Clay:</u> brownish yellow (10R 6/8) & light olive brown (2.5Y 5/4); extremely soft; high plasticity; strong reaction to 10% HCl; very thinly laminated bedding planes (fissile texture) broken apart due to cracking and swelling of montmorillionitic clays giving cores a block texture; organic material or manganese oxides concentrated along small, high angle fractures usually near gypsum- filled fractures; gypsum fractures; fracture spacing = 1.1 feet (unbroken).	СН			12+ 13+	7	%	Pag	lab analysis, October 2023 e No. 4C-166	

Ť.

	COMAL COUNTY LANDFILL	- I	0.00-1				NU. P.		1
06PTH (FEET)	DESCRIPTION	LITH U.S.C.S QASS	OLOGY CRAPHIC LOG	PICZONCTER	DEPTH (FEET)	RUN NO.	CORING PERCENT RECOVERY	PERCENT ROD	REMARKS
7.5	18.0-28.3 <u>ML clayey Siltstone:</u> yellow (2.5y 7/6); extremely soft to soft; low to medium plasticity; strong reaction to 10% HCi; 1-5% fossils (mega mollusk shells and inoceramus fragments); trace limonite nodules, amount of silt	0	-		17:5	8	5L 28		
20		ML			20-	10	84		Layer III/III
						11	28		8.2-28
ļ	28.3-32.0 <u>CL calcareous Claystone:</u> greenish gray (5GY 5/1) and vellow (2.5Y 7/6): very soft: strong reaction to 10% HCI:				-	-12	72		
30+	trace small and mega mollusk fragments.	CL			Ð	13	96		K
	32.0-35.0 Drilled				-	14	100		Z/√I 28.3-51:
	35.0-36.0 Split spoon sample; Same lithology as above; Blow counts = 24,28; LL(%)=39, Pl(%)=23, MC(%)=13.3; Percent passing #200 sieve = 88.8.	a				15	-	1	splitspoon
ļ	35.0-40.0 Drilled					17	×		
40	40.0-40.85 <u>CL calcareous Claystone:</u> greenish gray (5GY 5/1); very soft; strong reaction to 10% HCl; trace small and mega mollusk fragments. Blow counts = 39, 50/3 inches.	CL			40	18	85		split spoor
	40.0-45.0 Drilled 45.0-45.5 <u>CL calcareous Claystone:</u> greenish gray (5GY 5/1); ver	y				19	-		
Ţ	45.0-50.0 Drilled	CL				20	ન્ક		splitspoo
ļ	50.0-51.4 <u>CL calcareous Claystone:</u> greenish gray (5GY 5/1); ver soft; strong reaction to 10% HCl; trace small and mega mollusk fragments. Blow counts = 25, 50/6 inches.	У				ุ่ม		Octo Page No	ber 2023 . 4C-167

Gas Migration Monitor Well Installation Comal County Landfill Comal County, Texas

	ТҮРЕ:	8" Hollow Stem Auger	LOCATION: North: C+9 East: 28+4	0	
OEPTH, FT	SYMBOL	STRATUM DESCRIPTION		ELEU. (ft)	GAS MIGRATION MONITOR WELL
		SURF. EL. 641.9 ft Job No. 10	001-1466		
- 5 -		Dark brown fat CLAY, w/ few limestone fragments. (F soil) Brown CLAYEY GRAVEL. (Alluvium)	Cesidual 6	37.9 4.0	
- 10		Light tan fat CLAY, w/ some gravel, calcareous pocket (Pecan Gap)	ts. 6	33.9 8.0	
15-		Tan fat CLAY, moist. (Pecan Gap)	6	29.9 12.0	
- 20 -			6	517.9 24.0	
- 30 -					
- 35 -					
- 40 -					
45 -		- -			
CON DA	MPLET TE: 7-	ION DEPTH: 24.0 ft DEPTH TO WATER -24-91 DATE: 7-24-91 PLATE 1	: Dry		1

.-

I

i

.

Gas Migration Monitor Well Installation Comal County Landfill Comal County, Texas

t, FT Bol	LES	STRATUM DESCRIPTION	OEPTH/	GAS MIGRATION MONITOR WELL
DEPT) SYH	SAH		LAYER ELEU.	
		SURF. EL. 662.8 ft ± Job No. 1001-1466		
-///		Dark brown fat CLAY, w/ few limestone fragments and		
		calcareous particles. (Residual soll)		
5 - <i>M</i>		taking and many salassays halow 6.0 fs		単度
		- lighter and more calcareous below 5.0 ft.	6.0	
Ŵ		Tan fat CLAY, moist. (Pecan Gap)	655.8	
10-1//			7.0	
- M				
-				
is-1//				
Ŵ				
- M				
20-///				
- VII				
Ŵ				
25 - 1				
- 1				
. 1				
10 - <i>11</i>			·	
- ¥				
s III			627.8	
	\mathbb{Z}		35.0	<u></u>
1				
<u>ل</u>				
Ĭ				
]				
5-				
1				
}				
	ᇁ	ION DEDTH: 25.0.4		
		73-91 DEFIN: JOLUTIC DEPTH TO WATER: Dry		
	• •			

- - ·

.....

•

.. ..

)

-

Gas Migration Monitor Well Installation Comal County Landfill

Coma	l County,	Texas

-.

.

	TYP	E:	8" Hollow Stem Auger	LOCAT North: East	ION: Fence+13 11+68	
0EPTH, FT	SYMBOL	SAMPLES	STRATUM DESCRIPTION		AYER DEPTH/ Elev. (ft)	GAS MIGRATION MONITOR WELL
			SURF. EL. 641.0 [t t Job No. 10	01-1466		
F	¥///		fragments, and calcareous particles. (Residual Soil)		638.0	
- 5			Light brown fat CLAY. (Pecan Gap)		3.0	
- 10						
.) f						
- 20 ·					619.0	
- 25					22.0	
- 30			· · ·			
- 35						
	-				1	
- 40 ·	- - - -					
- 45 -	4 4 4 4					
	1					
CO	MPLI	ETI	ON DEPTH: 22.0 ft DEPTH TO WATER:	Dry	<u>-</u>	
DA	TE:	7-	24-91 DATE: 7-24-91			
			PLATE 3			

•

Gas Migration Monitor Well Installation Comal County Landfill Comal County, Texas

	TYP	E:	8" Hollow Stem Auger LOCA North East	TION: : Fence+1: 0+22	5
H, FT	1BOL	PLES	STRATUM DESCRIPTION	DEPTH/ (rt)	GAS MIGRATION MONITOR WELL
DEPT	s۲)	SAH		LAYER ELEU.	FT1
			SURF. EL. 602.8 ft - Job No. 1001-1466		
ł	¥//		very dark brown fat CLAT. (Residual soil)		
İ.				598.3	
Ē	}		Brown CLAYEY GRAVEL. (Alluvium)	4.5	
L 10.			Tan fat CLAY. (Pecan Gap)	594.3 8.5	
	¥//		- dry and hard at 11.0 ft - slight amount of water added to soften the clay.		
+ 15-	<u>V</u>				
-	-				
- 20 -	<u> </u>				
	¥//				
- 25 -					
ŀ			- interbedded tan and gray clay transitional zone below 27.0		
- 30 -					
- 35 -			Gray CLAYSTONE. (Pecan Gap)	568.3	
		1		566.8 36.0	<u></u>
- 40 -	Ī			2010	
45 -					
CON	I MPLE	 :TI	ON DEPTH: 36.0 ft DEPTH TO WATER Dev		
DA	TE:	7-2	22-91 DATE: 7-22-91		
			PLATE 4		

- --

......

1

/

Gas Migration Monitor Well Installation Comal County Landfill Comal County, Texas

. . .

- -- -

.

. ..

DEPT	SYMBOL	STRATUM DESCRIPTION	LAYER DEPTI ELEV. (ft	MONITOR WEL
		SURF. EL. 602.5 ft + Job Ho. 1001-1466		
- 5 - 1		Dark brown fat CLAY, w/ some limestone fragments and particles. (Residaul soil)	596.5	
- 10		Brown fat CLAY. (Pecan Gap)	6.0 594.5 8.0	
20-11				
30		- interbedded tan and gray clay transitional zone below 28.0 ft. Gray CLAYSTONE. (Pecan Gap)	570.5	
35			565.5 37.0	
45 -				

October 2023 Page No. 4C-173

WA	STE MANAGEMENT OF NORTH AMERIC					RING	<u> </u>		7 0	
BORIN	NG LOCATION: Comal County Landfill		200			TINC	, 	P	2-0	
ORILL	ING COMPANY: Jones Environmental Orilling Inc.		LEV	ATION	1 GI (#	E: I +	49 - 2 -	+ 7		
ILL.	ER: K. Seevers, L. Taylor		ATE	STAF		-26-01	602.66	ELEVATIO	N, TOC (f	LNGVO): 605.
URILL	ING METHOD: Nobile 8-61 Hollow Stem Auger		RIL	BIT	9 10 00	29-26-91 DATE COMPLETED: 9-26-91				
SIZE AND TYPE OF CASING: 2 in. sch. 40, PVC, flush-threaded						, 5 378	- III	TOTAL DE	TH (ft.8	GL): 24
SAMPL	ING METHOD: 2' Split Barrel (SB)	G	FOL	OGIST	· A Aa	oridae		GEOPHYS.	L0G: <i>no</i>	N
ER		-F		SAM	D. De	eriage		LOGGER: n	one	
DEP (fee	DESCRIPTION	nscs	CLASS	METHO	X REC	DEPTH (feet)	PIEZ	OMETER/WELL		REMARKS
2	CL CLAY, black (7.5YR,N2); silty; organic; roots; soft; no reaction to 10% HCL; dry; sparse chert cobbles	c		S8	55	- 2-	Î		etua Lay	ver I, 0.0ft -
4-	CH CLAY, dark olive gray (5Y,3/2); reactive to HCL 10%	下	н	S8	100		casing		cement	
6-	(10YR,6/1), and olive brown (2.5Y,5/4); coarse limestone and chert gravel, angular to subangular, 2-60mm; 75-80% pebbles in clay/chalk matrix; strong reaction to 10% HCL	G	~ [Sð	100	6	. sch40, PVC		X 302 Lay: 8.0f	er II, 3.2ft - t
8-	CH CLAY, pale vellow (2.5% 7/4h see 5			Sð	80	_	— 2 in	開 囲 -	dy 1	
0+	CH CLAY, pale yellow (2.5Y,7/4): light gray			SB	50		\downarrow			
- 	(2.5Y,7/6) on outside & limonite stained yellow (2.5Y,7/6) on outside of fracture planes; v. strong reaction to 10% HCL; soft; some FeO2 nodules,<2cm; gypsum in fracture planes; some			sa	100	10-	← gasing ←			1.445
4	fractures; some chalky calc nodules; v. sparse mollusk shells, <1cm		:	88	100		0 slotted .		90	
j		Сн	5	88	100	6-1	PVC 0.01		la-nuec .	
			s	8	100		n. sch40		8.0ft	- 24.0ft
	·		s	8	00				. •	
1	CH CLAY, light vellowish brown (a strate)		S	3 1	00		dwns 🔸			
-	blocked w/ gray (5Y,6/1); reacts to 10% HCL; soft but harder than clays above		Sa	3	40			*	Chips 2	22-23ft
	rotal Depth = 24ft BGL				26			<u> </u>		
					28				Octob	er 2023
oiec	t No. 91-2221 McCulley, Frick	& G	ilm	an,	Inc.			 She	et l of	40-1/4

WA	WASTE MANAGEMENT OF NORTH AMERICA				LOG OF BORING PZ-7								
BORIN	NG LOCATION: Comal County Landfill	c	OORDI	NATES.	N-E : /	1 + 40 - 1	0 + 63						
DRILL	ING COMPANY: Jones Environmental Drilling Inc.	E	LEVAT	ION, GL	(ft.NGV	D): 601.72	ELEVAT	ION T	OC (II NGVD)				
ORILL	ER: K. Seevers, L. Taylor	D	ATE S	TARTED	9-25-	-91	DATE C	OMPLE	TED: 9-25-01				
DRILL	ING METHOD: Nobile 8-61 Hollow Stem Auger	0	RILL 8	IT: 9 in,	00, 3	3/8 in. 10	TOTAL	DEPTH	(ft BGL): 28				
SIZE	AND TYPE OF CASING: 2 in. sch. 40, PVC, flush threaded	01	RILL F	LUID: na	ne		GEOPHY	S. L06	: 00				
SAMPL	ING METHOD: Split Barrel (SB), Split Spoon (SS)	OLOG	IST: 8. 6	Beverid	ge	LOGGER	none						
ER				SAMPLING		1			1				
DEP1 (lee	DESCRIPTION	nscs	CLASS	ГНОО X R	DEPTH DEPTH		ZOMETER/W ONSTRUCTIO	ELL	REMARKS				
	CL CLAY, pale yellow (2.5Y,7/4); roots; strong reaction to 10% HCL; soft; moist		s	6B 10	0	= 1		Î					
2-	roots; rich; no reaction to 10% HCL; soft; dry; sparse chert cobbles, < 4cm	C			-+ a			ntonite	Layer I, 0.0ft - 4.8ft				
4-	CH CLAY, dark olive gray (5Y,3/2); calc & chert fragments & nodules; strongly reactive to 10% HCL: olastic: moist: soft: soft: soft:	С			4			d, 5% be					
6-	GW GRAVEL, white (10YR,8/1), light gray (10YR,6/1), and olive brown (2.5Y,5/4); coarse		s	B 10	0 	casing		portian					
8-	mestone and chert gravel; dry; poorly sorted; 2–60mm; 75–85% pebbles in caliche/clay matrix; strong reaction to 10% HCL	G	's	B 100		40, PVC		nt-95%	Layer II, 4.8ft - 8.5ft				
10-	CH CLAY, pale yellow (2.5Y,7/4); 2-50mm mollusk fragments; some organic laminations; tr. FeO2 staining; tr. limonite; reacts to 10%		S	3 90		2 in. sch		- Ceme					
12-1	HCL CH CLAY, pale yellow (2.5Y,7/4); fractures		SE	3 100				llets	Т.				
	limonite yellow (2.5y,7/6) on inside and limonite yellow (2.5y,7/6) on outside of fracture planes ; tr. FeO2 staining; strong reaction to 10% HCL		SE	3 100	- 12-		田田	ad y					
			SB	100	+ 14-	1+							
10-			SB	100	- 16-	casing -							
18-		Сн			18-	slotted			、				
20-					20-	C 0.010		19-18/4	Layer III/IV, 8.5ft - 28.0ft				
22-			S8	100	- 22-	h40, PV		- Sai					
4-			S8	90	24	2 in. sc							
			SB	50	- 24-	+	Ξ						
-	- CH CLAY, light vellowish brown (2.5% 8/4)		SS	100	- 26	twns -			I				
148	blocked w/ gray (5Y,5/1), 70/30; clay reacts			$ \rightarrow $	- 28-	-		Ŷ	Chips/Cave-in, 27.3-28.011				
01	Total Depth = 28ft 8GL				30 -				October 2023 Page No. 4C-175				
Proje	Ct No. 91-2221 McCulley, Frick	& 0	Gilma	an, In	C.		5	Sheel	tlofl				

	STE MANAGEMENT OF NORTH AMERIC	A L	LOG OF BORING PZ-8							
OBU	ING COMPANY, Inc. County Landfill	ĊĊ	ORDIN	ATES. N-	-E:0+	- 30 - 0	+ 61			
JRILI	ER: K Seevers I Taulos	EL	EVATIO)n, gl (f	t.NGVD)	: 600.65	ELEVATION	, TOC (ILNGVD): 80		
IORU	ING METHOD: Hobie D. Churt	DA	DATE STARTED: 9-23-91 DATE COMPLETED: 9-25-9							
SIZE	AND TYPE OF CASING: 2 is and 10 out of	DR	DRILL BIT: 9 in. 00, 3 3/8 in. ID TOTAL DEPTH ([LBGL]: 63							
SAMPI	ING METHOD: South Research (SD) a min	OR	ILL FLU	ID: none	2		GEOPHYS. L	.06: <i>no</i>		
	Split Spoon (SS)	GE	OLOGIS	T: <i>B. Be</i>	veridge		LOGGER: no	ne		
DEPTH (leel)	DESCRIPTION	nscs		MPLING	OEPTH (feel)	PIEZ	OMETER/WELL	REMARKS		
2-	CL CLAY, pale yellow (2.5Y,7/4); roots; strong reaction to 10% HCL; soft; chert cobbles CL CLAY, black (7.5YR,N2); silty; organic; roots; soft; no reaction to low low	CL	SB	100		Î		1		
4	CH CLAY, dark olive gray (5Y,3/2); 5% calc fragments; slight response to 10% HCL; soft	СН	SB	100	- 2-			Layer I, 0.0ft 4.0ft		
6-	(10YR,8/1), and olive brown (2.5Y,5/4); coarse limestone and chert gravel, angular to subangular, 2–60mm; 75–85% pebbles in caliche/clay matrix; strong peoplets in		SB	100	- 4					
8-1	HCL	GW	\$8	100	8			Layer II, 4.0ft 8.5ft		
0-	CH CLAY, pale yellow (2.5Y,7/4), mottled with light gray (10YR,7/1); limonite stain, yellow (2.5Y,7/6); light gray in fractures; v. sparse FeO2 nodules; v. sparse calc nodules; v.		SB	100	10-			1		
2-	strong reaction to 10% HCL; trace mollusk fragments; soft		SB	100	12-					
4-			SB	100	14-	C casing	5% heat			
			SB	100	16-	sch40, PV	X Portland			
			SB	100	8-	2 in.	ement-95			
		СН	SB	100	0-		0	Layer III/IV.		
	×		SB		2-			8.5ft – 40.ift		
		L	SB					a		
			S8·	00 26	Ī					
	CH CLAY, light yellowish brown (2.5Y,6/4), blocked w/ gray (5Y 5/1) 80/40%		58 1	00 28				*		
	fractures filled w/ gypsum; clay reacts to 10% HCL: sparse Fe02 nodules; soft	s	8	50 30				October 2023 Page No. 4C-176		
0160	McCulley, Frick &	s Gil	man,	Inc.			Shee	tlof2		

WASTE MANAGEMENT OF NORTH AMERICA			OG OF	BO	RING		PZ-8			
DEPTH (feet)	DESCRIPTION	nscs	SAMF SAMF	LING	DEPTH (leel)	PIEZOMETER	R/WELL TION	REMARKS		
32- - - 34-	see above description		58 58	0	- 32- - 32- - 34-		onite	Laver III/IV.		
36- - 			SB	100	- 36- - - - 38-	esing	portland, 5% bent	8.5ft - 40.1ft		
40	CH CALCAREOUS CLAYSTONE, gray (5Y,5/1); strong reaction to 10% HCL; trace mollusk fragments; friable but harder than clays		SB SS	0	40-1-	sch40, PVC c	Cement-95% p			
42 44 46 	above; each SS sample = 100 blows w/ hammer	СН	SS SS SS		$\begin{array}{c} 42 \\ 44 \\ 46 \\ 48 \\ 50 \\ 52 \\ 54 \\ 56 \\ 51 \\ 52 \\ 54 \\ 56 \\ 68 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -$	* sump * 2 in. sch40, PVC 0.010 slotted casing * 2 in.	Sand-16/40	Layer V/VI, 40.1ft - 63.5ft		
-	Total Depth = 63 5ft 961			6	4		Chips	October 2023 Page No. 4C-177		
Proje	McCulley, Frick	& G	Gilman, Inc. Sheet 2 of					2 of 2		

BORIN	IG LOCATION: Comal County Landfill	IUA	LOG OF BORING PZ-9							
ORILL	ING COMPANY: Jones Environmental Drilling Inc.		ELEVATION CL (4 NOVO) $2000000000000000000000000000000000000$							
DRILL	ER: K. Seevers, L. Taylor		DATE STARTED & CE AL							
DRILL	ING METHOD: Mobile 8-61 Hollow Stem Auger			L DIT.	(TED: 9	DATE COM	PLETED: 9-27-91			
SIZE A	AND TYPE OF CASING: 2 in. sch. 40, PVC, flush threaded	-	DOT	1 5111	9 m. OL), 3 3/6	3 in. 10	TOTAL DEP	PTH (ft.BGL): 58	
SAMPL	ING METHOD: Spill Barrel (SB)		GEO	CFLUI	U: none			GEOPHYS.	L0G: <i>no</i>	
==			1950	06131	: 8. 8e	veridge		LOGGER: no	one	
	DESCRIPTION		USCS CLASS	METHOD	X REC	DEPTH (feet)	PIEZO	DMETER/WELL	REMARKS	
5	CH CLAY, black (7.5YR,N2): silty; organic; roots; soft; some chert pebbles <4cm, angula subangular; moist; elastic CH CLAY, v. dark gray (5Y,3/1); silty: chert pebbles, angular to subangular, more chert towards bottom	r /	Сн	SB SB	100	- 2-	Î		Layer I, 0.0ft	
4	GW GRAVEL, white (10YR,8/1), light gray (10YR,6/1), and olive brown (2.5Y,5/4); coarse limestone and chert gravel, angular to subangular, 0.2–6cm; 80% pebbles in clay & chalk matrix; strong reaction to 10% HCL		GW	SB	100	4			Layer II. 2.7ft 8.0ft	
	CH CLAY W/ CHALK, pale olive (5Y,6/3) w/ 20% calc chalk CH CLAY, pale olive (5Y,6/3) w/ 5-10% oxidation, brownish yellow (10YR,6/6); tr. black organic staining; friable; soft; mod.			SB	100	8 10 10				
	nodules; vertical & high angle fractures filled w/ It. gray clay (IOYR,6/I) and gypsum in fracture planes; more oxidation towards bottom of layer			58 58 58 1			- 2 in. sch40, PVC casing	ement-93% Dortland 7% hadroning	Layer III/IV,	
		СН	s s	8 10 3 10	00 			Ce	8.0ft - 51.8ft	
			S	3 10						
			SE	10	0 26-					
			58 58	100	28-				October 2023	
					30	1 1			Page No. 4C-178	

•

WA	STE MANAGEMENT OF NORTH AMERICA	L	0G 0	F BOF	RING		PZ-9	Z-9	
DEPTH (feel)	DESCRIPTION	USCS	SAM METHO	IPLING D % REC	OEPTH (feel)	PIEZOMETER/W CONSTRUCTIO	ELL N	REMARKS	
	CH CLAY, olive gray (5Y,5/2), gray (5Y,5/1); friable; It. gray (2.5Y,N6) and yellowish brown (IOYR,5/8) oxidation w/ gypsum in high angle fractures; reacts to IOX HCL CH CLAYSTONE, dark gray (5Y,4/1); reacts to IOX HCL; soft but harder than clays above; massive Total Depth = 56ft BGL	CH	SAM METHO SB SB <	PLING X REC 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 5 100 5 100 5 100 5 100 5 100 5 100 5 100 5 100 5 100 5 100 5 100 5 100 5 100 5 100 5 100 5 100 5 100 5 100 5 100 5 100	HI930	PIEZOMETER/MICONSTRUCTION CONSTRUCTION Construction Interview Interview <td> chips> Sand-16/40 ZT</td> <td>REMARKS</td>	chips> Sand-16/40 ZT	REMARKS	
0 2 4				60 62	- Tırı Tırı			October 2023	
Proje	ct No. 91-2221 McCulley, Frick &	G	Gilman, Inc.						

WASTE MANAGEMENT OF NORTH AMERICA	110						7 10	
BORING LOCATION: Comal County Landfill				TINC		٣	2-10	
DRILLING COMPANY: Jones Environmental Drilling Inc.	ELE	VATION	ES, N-	E: M+3	1 - 17+7	7		
DRILLER: K. Seevers, L. Taylor	DAT	DATE STARTED: 9-26-91 DATE CONSISTED: 0.00						
DRILLING METHOD: Mobile B-61 Hollow Stem Auger	ORIL	DATE COMPLETED: 9-20-97 DATE COMPLETED: 9-20-97						
SIZE AND TYPE OF CASING: 2 in. sch. 40, PVC, flush threaded	DRIL): none	, 0 3/0		GEOPHYS		HGL): 80
SAMPLING METHOD: Split Barrel (SB)	GEO	OGIST:	B. Bey	reridae		LOGGER A	000. 10	
DESCRIPTION	USCS CLASS	SAMP	LING X REC	DEPTH (feet)	PIEZ	OMETER/WEL		REMARKS
CH CLAY, black (7.5YR,N2); silty; organic; roots; soft; some chert pebbles <4cm, angular subangular; moist; elastic CH CLAY, v. dark gray (5Y,3/1); silty; chert	сн	SB	100	- 2-	Î		La 2.5	yer I. 0.0ft - ift
4- GW GRAVEL, white (IOYR,8/I), light gray	C14	SB	100	- 4-				
6 limestone and chert gravel, angular to subangular, 2-60mm; 75-85% pebbles in clay & chalk matrix; strong reaction to 10% HCL		SB	100	· 6-			6.1	ft
8 CH CLAY W/ CHALK, pale olive (5Y,6/3), w/ 20% calc chaik CH CLAY pale olive (5Y,6/3), w/		SB	100	8-				
oxidation, brownish yellow (IOYR,6/6); tr. 10- black organic staining; friable; soft; mod. reaction to 10% HCL; v. sparse calc chalk		SB	100	10-				
12-		SB	100	12-			nite —	
14-		SB	100		casing -		5% benlo	
16-		S8	100		h40, PVC		or lland,	
18-		SB	100		- 2 in. sc		1 206-10	
20-	ж Г	58 1	00				6.lft	r III/IV. - 52.5ft
	5	58 1	00					
(10YR,6/1) and gypsum in fracture planes, more oxidation towards bottom	9	8 10	20	2				
	s	8 10	0 2	4				
	s	8 10	0 26				1	12
	S	3 10	0 20				Oct	ober 2023
Project No. 91-2221 McCulley, Frick &	Giln	nan,	Inc.			She	et I of	3

WAS	STE MANAGEMENT OF NORTH AMERICA	L	og ol	F 80	RING		PZ-10			
DEPTH (feet)	DESCRIPTION	USCS	SAM METHO	PLING	DEPTH (feel)	PIEZOM	eter/well Truction	REMARKS		
32-	CH CLAY, olive gray (5Y,5/2), gray (5Y,5/1); friable; It. gray (2.5Y,N6) and yellowish brown (10YR,5/8) oxidation w/ gypsum in high angle fractures; reacts to 10% HCL		SB	100	- 32-					
34-			SB	85	- 34-					
36-			SB	60	26					
38-			SB	100	- 30					
40-			S8	100	- 38-			Layer III/IV, 8.lft - 52.5ft		
42-			SB	65	- 40					
44			SB	100	42-1			noite —		
46			SB	0	44	- Guise		5X Dentc		
		сн	SB	100	46	40, PVC c		portland		
50			SB	100	48	2 in. sch				
			SB	100	50			5		
	CH CLAYSTONE, dark gray (5Y,4/1); reacts to 10% HCL; soft but harder than clays above; massive		SB	100	52-					
4	×		SB	100	54					
		İ	SB	100	56-			*		
8		ľ	SB		i8-1 1			Layer V/VI. 52.5ft - 80.0ft		
0		F	SB	6	0					
2-1		$\left \right $	SB		2-			October 2023 Page No. 4C-181		
Proje	ct No. 91-2221 McCulley, Frick	 & G	ilman	Inc.	4 -	<u>#</u>	She	et 2 of 3		

	THE MANAGE	MENT OF NORTH AMERICA)g of	F 80	RING		PZ	2-10
DEPTH		DESCRIPTION	USCS CLASS	SAM METHO	PLING	DEPTH (feet)	PIE CO	ZOMETER/WELL DNSTRUCTION	REMARKS
66-	see above de:	scription		SB	100	- 66			Pellets, 63-65ft
68-		ана на селото на селото на селото на селото на селото на селото на селото на селото на селото на селото на село Селото на селото на с		S8	100	- 68	+		
70-				SB	100	- 70-	ed casing		
72_			Сн	SB	100	.72-	.010 slotte		Layer V/VI, 52.5ft - 80.0ft
74-				SB	100	74	40, PVC 0		- Sand-k
76-				SB	100	76-	2 in. sch		
78-				sə	100	78-	+ e		
80 -	` Total Depth = 8	Oft BGL		SB	100	80			Chips, 79.5-80ft
82-					8	32-			
84-		×			ε	34-			
86-					8	6-			
88-					8	8-			
20-					90				
2-]					92	2			
4-1					94				
;					96				
Projec					98	-			October 2023 Page No. 4C-182
		Giln	Gilman, Inc. Sheet 3 of 3						
WA	SIE MANAGEMENT OF NORTH AMERIC.	4 L	LOG OF BORING PZ-11						
--------	---	-------	---------------------	-----------	-----------------	------------	-------------	-----------	-------------------------------
BORIN	IG LOCATION: Comal County Landfill	CO	ORDINAT	ES, N-	E : <i>ZER</i>	20 + 7 -	16 + 77		
	ING COMPANY: Jones Environmental Drilling Inc.	EL	EVATION	I, GL (ft	.NGVD):	659.74	ELEVATION	I, TOC	(It.NGVD):
RILL	ING METHON: Mobile Bast Vollow Star Augos	DA	TE STAR	TED: 9	-30-91		DATE COMP	LETE	D: <i>10-1-91</i>
IZE	AND TYPE OF CASING: 2 in sch 40 BVC thick throaded	DR	ILL BIT:	9 in. 0[7, 3 3/8	in. ID	TOTAL DEP	TH (f	t.8GL): <i>50</i>
AMPL	ING METHOD: Solit Barrel (SB)			U: none	,		GEOPHYS. L	.0G: n	0
		- 66	ULUGISI	B. Bei	veridge		LOGGER: no	ne	
(leel)	DESCRIPTION	nscs	METHO	X REC	DEPTH (feel)	PIEZO	OMETER/WELL		REMARKS
	CL CLAY, organic, dark gray (5Y,4/1); roots; limestone & chert pebbles .2-2cm; reacts to 10% HCL	С	. SB	40	-	1		Î	
4	CH CLAY, dark gray (10YR,4/1); limestone cobbles & pebbles, subangular (5cm) at 2ft; slight reaction to 10% HCL		SB	10	- 2-				Layer 1/11, 0.0f - 5.5ft
	CH CLAY, light yellowish brown (2.5Y,6/3,4),		SB	100	- 4			.	
	(10YR,6/8) outside fractures; It. gray (2.5Y,N7/) in fracture planes; v. sparse black		SB	100					
1111	reaction to 10% HCL		SB	100	- 10				
			SB	100	12			nite	(
			SB	100		casing -		5% bento	
	2		S8	100	16	440, PVC		portland,	
	2		S8	100		- 2 in. sc		15.	ayer III/IV. 5ft - 46.0ft
			SB	100	20				
		,	SB	100	20-1				
			S8	100					
			SB	100	-				
			SB	80					
			SB	95 3				 Paç	October 2023 ge No. 4C-183
roje	ct No. 91-2221 McCulley, Frick	& G	ilman	, Inc		Í	She	et 1	of 2

- Luc		Ţ.				
	ASTE MANAGEMENT OF NORTH AMERICA	L	og of	F BORING	P	Z-11
	DESCRIPTION	nscs	SAM	PLING HIdag X REC	PIEZOMETER/WELL CONSTRUCTION	REMARKS
32- 34- 36- 38- 40- 42- 44- 5-	CH CLAYSTONE, dark gray (5Y,4/1): soft but harder than clays above; wet from 41.9 to 42.0ft CH CLAY, limonite oxidized brownish yellow (IOYR,6/6): gypsum in fractures: soft	CH	SB SB SB SB SB SB SB	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 -	- 2 in. sch40, PVC 0.010 slotted casing	Layer III/IV, 5.5ft - 46.0ft
48-	CH CLAYSTONE, dark gray (5Y,4/1); soft but harder than other clays above; massive		SB SB	46		Layer V/VI. 46.0ft - 50.0ft
50 52 54 54 56 58- 60 58-	Total Depth = 50ft BGL			50 52 52 54 54 56 58 58 58 58 58 58 58 58 58 58 50 50 54 54 56 50 50 54 50 54 54 56 50 50 54 50 54 50 50 54 50 50 52 50 50 50 50 50 50 50 50 50 50 50 50 50		Cave-in 49.5-50ft
Projec	St No. 91-2221 McCulley, Frick &	Giln	nan, 1	Inc.	Shee	t 2 of 2

WAS	STE MANAGEMENT OF NORTH AMERICA	LOG OF BORING PZ-12							·12		
BORIN	G LOCATION: Comal County Landfill	coo	RDINAT	ES, N-I	E : ZER	10 + 7 -	16 + 6	5			
ORILL	ING COMPANY: Jones Environmental Drilling Inc.	ELE	VATION	, GL (ft	NGVD):	660.12	ELEV	ATION, T	OC (fLNGVD):		
ORILLI	ER: K. Seevers, L. Taylor	DAT	E STAR	TED: <i>9</i> -	-30-91	-theorem 14 Mar	DATE	COMPLE	TED: <i>9-30-9</i> 1		
DRILL	ING METHOD: Mobile B-61 Hollow Stem Auger	ORI	LL BIT:	9 in. 00), 3 3/8	t in. ID	TOTA	L DEPTH	(ft.8GL): <i>68</i>		
SIZE	AND TYPE OF CASING: 2 in. sch. 40, PVC, flush threaded	ORI	L FLUI): none			GEOP	HYS. LOG	: <i>по</i>		
SAMPL	ING METHOD: Split Barrel (SB)	GEO	LOGIST	: 8. 8ev	veridge		LOGG	ER: <i>none</i>			
DEPTH (feet)	DESCRIPTION	USCS U ASS	SAM	LING	DEPTH (feet)	PIEZ COI	OMETER	R/WELL TION	REMARKS		
	CL CLAY, organic, dark gray (5Y,4/1); roots; limestone & chert pebbles (.2-2cm); reacts to 10% HCL	CL	SB	100		1					
5-	CL CLAY, pale yellow (2.5Y,5/3) & oxidized brownish yellow (10YR,6/8); calc chalk nodules; reacts to 10% HCL		SB	100	- 2				Layer 1/11, 0.01 - 4.2ft		
4-	CH CLAY, dark gray (10YR,4/1); sparse limestone pebbles, subangular, <1cm; slight reaction to 10% HCL	220	S8	100	- 4						
6- - g -	CH CLAY, light yellowish brown (2.5Y,6/3,4), olive yellow (2.5Y,6/6); intermittent limonite esp. at hi angle fractures; brownish yellow (10YR,6/8) outside fractures, It. gray		SB	100	- 6-						
10-1	(2.5Y,N7/) in fracture planes; v. sparse black organic staining; v. soft; friable; slight reaction to 10% HCL		SB	100	- 8						
12-			SB	100	- 10 -			nite	t		
4			SB	100	- 14	casing -		5% bento			
6		Сн	SØ	100	- 16-	ch40, PVC		portland,	4.2ft - 46.2ft		
8-1	5		SB	100	- 18-	- 2 ln. s		ment - 95%			
			S8	100	20			Cer	1		
2		ŕ	58	80	22						
			S8	100							
	2		SB	100	26						
			SB	100							
, -			S8	100	30 -				October 2023 Page No. 4C-185		
Project No. 91-2221 McCulley, Frick			ick & Gilman, Inc. Sheet 1 of 3					et I of 3			

111.4	WASTE MANAGEMENT OF NODTH ANEDI								and the second se
	SIE MANAGEM	ENT OF NORTH AMERICA		og of	F 80	RING		PZ	-12
(feet)		DESCRIPTION	USCS USCS	SAMI METHOD	PLING	DEPTH (feet)	PIEZOME	TER/WELL RUCTION	REMARKS
32	see above desc	ription		SB	100	- 32-			
34-				SB	100	- 34-			
36-		2		58	100	- 36-			
38-				55	100	- 38-		ft heaton	
40				SB	100	• 40-	VC casing -	SK portland	
				SB	100	42-	n. sch40, P	Cement-9	
,6				SØ	100	44	2 i		
48	gypsum in fractur above; reacts to CH CLAY, limonite	oark gray (5Y,4/1); tr. 'e: soft but harder than clays 10% HCL oxidized brownish vellow	СН	S8	100	48-			
50	(10YR,6/6);some) caliche; soft; read CH CLAYSTONE, c	pale yellow (2.57,8/3) cts to 10% HCL dark gray (57,4/1): reacts to		SB	20	50-			
52-			-	SB	100	52-		· · · · · · · · · · · · · · · · · · ·	
54-		ž	-	SB	100	54	*		Layer V/VI, 46.2ft - 68.0/t
56-			$\left \right $	SB	95	56-	d casing -		
58-			-	SB	85	i8	010 statte	and-16/40	
60 - - -			-	SB	95		40, PVC 0.	S:	
-5-1			-	SB		2-	Z IN. SCN.		October 2023
Proje	ا G ھ	ilman,	Inc	<u>4 </u>	: = 	Shee	Page No. 4C-186		

WAS	STE MANAGEMEN	IT OF NORTH AMERICA	LO	LOG OF BORING				PZ-12					
PTH ()a		DESCRIPTION	SS SS	SAMP	LING	PTH set)	PIEZ	DMETER/WELL	BEMA				
)EI		DESCRIPTION	S 5	METHOD	X REC	₩.	10D	ISTRUCTION					
	(* 16 21			SB	85		€ dwn	ene !					
66-	see above descrip	otion	Сн			- 66	_¥_		Layer V/VI, 46.2ft - 68.0ft				
68-				58	50	- 68-		Chip					
1	Total Depth = 681	t BGL				-							
70-						70-							
72-						72-							
]							
74-					1	74-							
76-						76-							
						-							
78-						78— 							
80-						80-			ų.				
-						-							
82-						82							
84-						84-							
-													
80-		-1				-08	#;)		8				
88-						88-							
			~			-							
90-		39				-00							
92-						92-							
-													
34-													
۔ ۲ ⁻⁹⁶		· · ·				96–							
98 -						98			October 2023 Page No. 4C-187				
Pro	oject No. 91-2221	8 (Gilma	n, In	ic.		Shee	et 3 of 3					

	SOIL	BOREH	IOLEI	_0G									٦	
NUME AND LOCATON		DALLAG		bllow	- Sr	ет			800	246 1	vo.		4	
ll, New Braunfel	Comal County s. Texas	Auger	. w/s.25	Augen	cs				S	SB -	• 1	_		2
cad approximately	eight miles	SAMPLING	METHOD: (ontinu	JOUS			-	ະ ເ	ET		-	٦ -	
rtheast of New Braun	fels, Texas,	w/5'	Split-sp	oon						07-	rva.	1	1 3	1
ong th fior and nonit	enterg Lane.								STAP	AT	Fr	VSH	- 2	
		WATER LE	MEL Dry	Dry	1)ry	Dry		Tim	ŧ	T	ME	1 :	1.
		OATE	2/20	$\frac{1}{2/2}$		$\frac{1}{2}$	4:(10	10:4	47	12	:00	1. 4	1
u MSL	ELEVATION 662.	36 CASING DE	ртн 0	43	+ + 4	43'	4	2	21	20	21	20	L S	1
Vertical SEASING		SURFACE CON	omons Da	amp, t	an c.	lay,	sof	t gr	our	d		20	-	6
LE HANNER TOROUS	FLJBS	· · ·											1	e l
1.45-11] Ę	- Jun
	54442				5		100	-	TEST	RES	T	-	ģ	Вга
NSI NEW	5.000	ANO		3.42	X	Įξ	ASIN	× +	Ě	1			9	Ŋ
SSS S	DESCRET	ON OF MATERIAL	-		Per	NIS	Nov Nov	IFD.	0	¦⋛⋨	똜	E.	Ē	Ne
					3AM	5	a~	XÓ	5 S	酒	GPCI	91H	DAI	
10 - 5'				•	1-	TT			-					
	dary gray	LAL: mixtu	re of cl	ay (CH	l) vei	-1								
	(2.5 ¥ 5/4	(10 IK 5/1); w/chert	pebbles	ive br	own							·		
	to 10% HCL	•	peoores	, 110 1	eact.		Ξ							~-i
1.5 - 1.5	(TAV (CT).	1 · / 7 /				11	1							6
	soft; mode	DLACK (/.)	O R, NZ	; silt	У		Ξ							0
					1		Ξ							
1.3 - 3.5	CLAY (CH):	light oliv	re brown	and b	røwni	sh	Ξ							S
	Jerrow (10	IK 0/0) SC	ort; plas	stic.		11	-							
3.5 - 9.5'	CLAY (CH):	black (7.5	5 YR, N2)	manga	anese		T							
	oxides, 2 m	m average,	moderat	e read	tion		E							
	to tow hop.						-						1	1
9.5 - 10'	CLAY, CALICH	E MIX (CL)	: (2.5 Y	5/4)	and									
	(10 YR 8/1)	, strong r	reaction	to 10%	HCL	+ 1	31				-1			
55 10 - 30 '	CLAY (CH):	light oliv	e brown	(2.5)	5/6		31							
	and brownis	h yellow (10 YR 6/	8); so	of t	ľΙ	31		1				d	θ.
1 per	fracture vo	ains; gyps	um cryst	als al	ong		=						Iso	IX'C
	no split-sp	oon recove	s to HUL	- (15	24		E						귀	ъ
	above).	2	-)	<u>5</u> 5 U.	y;	as .	ΞI						(L)	
30 - 40'	(TAV (CH)	licht alde	24 1 2223	(a			=							2
	and brownish	n vellow (10 + 6/3	(2.5 Y)	5/4	2	Ξ						and -	2
5	HCL reaction	verticl	o fractur	es	, s	-ron	8						Å	22
40 - 45'	CLAVSTONE (C						=						0	
	hard, strong	reaction	to 107	ay (5	Υ,	5/2)	IE;		-	-			00	ш ¹
	mollusca fra	gments.	~~ IV/e [ioc, t	ace	1	31	ľ					2	ŏ
							E							
			(A)			-	=							
					1		=					Page	Dctober 2 e No 4C-	2023 -188
									_					

3

SOIL B	OREHOLE LOG]
Hanagement, Inc Comal County	Auger, w/8.25 Augers	Stem	BORING NO. SB - 2	
cated approximately eight miles ortheast of New Braunfels, Texas,	W/5' Split-spoon	us	SIEET 1 OF 1 OPELLING	111,
long in fior and kontenberg bane.	WATER LEVEL Dry 31.7 TIME 12:45 8:00	0 29.8 24.63 8:30 9:00	START FRESH TIME TIME 11:12 12:45	
MSL ELEVATION 615.63	CASENG DEPTH 0 33"	2/23 2/24 33' 33' clay, soft s	0ATE 0ATE 2/19 2/19	Envi
LE Vertical BEARING PLE HANNER TORQUE FL-LAS				R B
ALLES SAMPLE ALLES SAMPLE SAMPLE SAMPLE ALL DESCRIPTION	NAMBER NO OF MATERIAL	AMMPLEN AND DIT CASING TYPE DLOWDFOOT DON CASINGT	CONTENT * CONTEN	DRILLING CONT New Braur
0 -9' CLAY (CL): I roots; occast 0 9 - 17.5' CLAY (CH): I and light of soft; plast filled fract 0 52 17.5 - 19' NO RECOVERY: recovery syst 5 19 - 30.5' CLAY (CH): recovery syst 5 19 - 30.5' CLAY (CH): recovery syst 0 55 30.5 - 33' SILTSTONE (N plasticity; HCL. 3 -35' CLAYSTONE (C (5 Y, 5/1); to 10% HCL.	black, (7.5 R, N2); silt ssional pebble. brownish yellow (10 YR 6 live brown (2.5 Y 5/4); ic; crystalline gypsum - tures; slightly moist. : gravel jammed 5' stem. brownish yellow and lig ; soft; plastic; crystal lled fractures. 4L): clayey; yellow; low strong reaction to 10% CALCAREOUS: gray hard; strong reaction	(8)		LOGGED BY E. Hudson те 2/19/92 СНК'D BY SL _ J 941
	70			October 2023

Pad	е	No.	4C-1	89

SOI	ĹΒ	OREHOI	EL	OG									٦	
i name and vocation		ORELING METHO		11					807	216				
'anagement. Inc Comal Com ill New Braunfels Toxas	inty	Auger, w	/8.25 /	Augers	Sto	ണ		_	50.0	5B -	- <u>3</u>			,
ocated approximately eight mile	s	SAMPLING METT	+00: COT	tinuo	110				SHEE	т] .	
ortheast of New Braunfels, Texa	is,	w/5' Spli	it-spor		us				1	0	r 1	_	1 =	1
long FM 1101 and Kohlenberg Lan	ie.	w/ 5 Spil	11-5000	511		-		\rightarrow	STA	0921	Leva -		L E	1
		WATER LEVEL	9.81	6 36	TE	3	7 6	29	TIM	14 E	FEVE	SH	17	1
		TIME	11:05	8:10	8	30	9	00	8:3		9:(20	0	a -
VOT		DATE	2/18	2/19		72	1 27	24	DAT	Ε	DA	TE	1.4	
UN MOL . ELEVATION 60	3.48	CASING DEPTH	0	29'		0	20		2/1	0	2/1	18	ង	
Failing F-6	SU	REACE CONDITION	es Dan	p, tai	n cl	ay	, sof	t gr	oun	d		10	1	0
LE Vertical BEARING		•			1				-			7	1	e]
FTLB:		•											E	ц ц
2 42 」					5		F.		TEST	RES	ATS		N	raı
	MPLE N	NUMBER			13	Ę	02	1 *	1	-				B
					5	ļè	ž	15	Ē	0,	مكا	-	Ĭ	Nev.
		OF MATERIAL			Ę	A SIL	23	E.	3	E ST	ŝ	ST3	등	~
					1 S	0] <u>₹</u>	2	23	68	121	õ	
0 - 4' CLAY (C silty,	L): pa prgani	ale yellow, ic; roots; s	(2.5 Y	7/4) noist.	;			Γ						
$0 \begin{array}{ c c c c c } 50 \\ \hline 4 - 6' \\ \hline CLAY (C) \\ \hline roots \\ \hline \end{array}$	L): bl	Lack (7.5 R	, N2);	organ	c;		ПП			lpan -				41
6 - 9' CRAVET	(CU) -	elive brown	. (2 5	V 5/	<u> </u>		E							0.0
Coarse of the sub-	hert	and limesto	n(2.5)	i, 5/2 igular);		Ξ							5
in clay	matri	ix; saturate	d; rea	ction	5		П							0,
5 HUL.				- (1)			Ę							
) 53 9 - 26.5 CLAY (C light g	i): pa :ay (1	ale yellow ($10 \text{ YR}, 7/1$),	2.5 Y,	7/4) ous			Ξ						I	1
5 staining ted/dry	; sof	t; alternat	ing sa i to HC	tura- L;										
vertical	frac	ctures.					=							
$\begin{bmatrix} 26.5 - 29' & \text{CLAY} & (Clay) \\ (2.5 \text{ Y},) \end{bmatrix}$	l): li 6/4),	ght yellowi and light	sh bro. olive	wn brown			III							۲.
i (2.5 Y, HCL; ver	5/4), tical	hard, read fractures.	tion t	0			IIII				•		dsor	O'XH
) 29 - 34' CLAYSTOP	E (CH), CALCAREC	US: er	av			TT						· Hu	0
(5 Y, 5)	1); h	ard, strong	react	ion			E						Ш	32
casts, a	nd no	olds.	Smelles	, 1,	•			3						18/
							Ē						EO BY	7
							Ξ	1.	1				000	ATE.
		1 2					E						Ē	۵
		3.8C					=							
							=					Jo	October 2	2023

ł

Page No. 4C-190

÷

÷

+)

	SOIL B	OREHOLE LO	DG		¥.							
E NAME AND LOCATION		DALLING METHOD: HOL	low - :	Ster	1		8095). _ /	\neg		
Wanazement, Inc.	infels. Texas	Auger, w/8.25 A	ugers				SHEE	JD T	- 4	-		
ocated approximate	ely eight miles	SAMPLING METHOD: CON	tinuou	s			1	OF	: 1		ΞÌ	
ortheast of New Br	caunfels, Texas,	w/5' Split-spoo	n 🖂	. 2)	e.	1.11		Cart.	Na		:d	
long for 1101 and 6		WITTER OF L DRY	Dry	26	00 28	75	STAR		FINC	54		
	- <u>a</u> 1	TIME 8.15	8.40	20	30 10.	10	1		5-2		្ព	
	2011 - 1012 - 1002 - 1002 - 1002 - 1002 - 1002 - 1002 - 1002 - 1002 - 1002 - 1002 - 10	DATE 2/19	2/21	2/	24 2/	26	DAT	Ē	DA	TE	- El	
WSL .	ELEVATION 605.32	CASING DEPTH 0	28'	2	8' 2	3'	2/1	9	2/:	19	ല	l n
HE Vertical BEAR	NG	REACE CONOMIONS Dam	p, tan	cla	y, sof	t gr	oun	d			1	els
APLE HASINER TOROUE	FTLBS	*									ъ	nfe
- *-			1	5	L.		TEST	RESL	LTS		.NO	rau
BOL NOT	SAMPLE	NUMBER		ş	PYPE BINO	\$	1 2	-			0 0	E 3
SYM RESS	AN		1	EN	L DN	EP 1	IM	2*	₀≿	Co.	.LIN	Nei
				AMP	e A B	1XS	50	ST I	P C F	EST.	DAIL	
				0 -								
0 - 6	CLAY (CL): t	plack (7.5 R, N2);										
> 58	to HCL.	s; slill, no react								1		
10												41
6 - 9	GRAVEL (GW):	white and gray () coarse limestone	LO YR		E	1						6
	chert gravel	; angular to subar	gular		=						12	7
	2-60 mm, unc	onsolidated in les	ss than	i I	=							Ы
20	20% clay mat	rix.			Ξ							
9 - 1	5' NO RECOVERY:	sampling system/h	oit		Ξ							
25	above bit o	working of gravel	cobble	s	=							
30 50		andra.	. 1		Ξ						1	,
15 - 3	27.5' CLAY (CH): 1	ight olive brown (2.5 Y		E							
35	ferrous stai	ning: soft, plasti		st:	E							
*	reaction to	HCL.		1	=							
10 27.5	- 30' CLAVSTONE (C	H) CALCAREOUS. or	- 312		E							Å
	(5 Y, 5/1);	hard strong reacti	ion		=				254		Son	0.~
	to HCL; (Aug	ers stuck at 30').			1 =						ipn	R
50					1. 3							
						ŀ					띡	2
55					E				- 5			676
					E						2	5
					:=						Ö	
			1								305	щ
	• 1				=		-				ŏ	٩N
					E							
					=							
					Ξ							
							Pa	Octo	ober 2 0. 4C-	191		

5	OIL BOI	REHOL	ELC)G									
AND LOCATION	Country	ALLNG METH	^{оо:} Но]]	05 -	Ste	m		804	245 P	-0.	-		
Ll, New Braunfels, Tex. cared approximately eight	as miles s	AUPER. W	100: Cont	inuou	ıs			<u>SI</u> SPER	<u>В -</u> ет	<u>s</u>	-	1,	
ong FM 1101 and Kohlenberg	Lane.	w/S' Spli	it-spoon					STA	CRE	Fires	- H	Dril	
	ļ.	TIME OATE	2/21	Dry 2:00	D1 5:	58	- 4 - •	7:3	€ 30 7€	11:0	€ 45 F	viro -	
← Failing F-6 E Vertical BEARING	N 644.24 CA	LSING DEPTH	0 S Damp	60' , tan	cla	io' iy, s	oft g	 cout	- /21 Nd	2/2	Ц	ភ្ន	ຸ
LE HANNER TOROUS	-L85	· · ·									•		fel
DLOWS/ APA	SAMPLE NUM AND DESCRIPTION OF W	BER MTERINI,			DAMREN AND DA	CASING TYPE	WAIFENT	LIOUID LIMIT % 2		SPCIFIQ SAXVITY ATLED	TEST3	DRILLING CONTR	New Brauni
$ \begin{array}{c} 0 - 5' & \text{CLA} \\ \text{roo} \\ 5 - 10' & \text{CLA} \\ \text{plas} \\ 10 - 44.5' & \text{CLA} \\ \text{y, s} \\ \text{stai} \\ 5/1) \\ \text{part} \\ 44.5 - 49' & \text{CLA} \\ (5 \text{ y} \\ \text{to H} \\ 49 - 50' & \text{CLA} \\ (5 \text{ y} \\ \text{so'} \\ \end{array} $	Y (CL): blac ts, w/chert Y (CL): ligh (CL): ligh (CL): ligh (CL): ligh (CL): ligh (CL): ligh (CL): friabl (CL): ligh (CL), frequ (CH): ligh (CL): ligh (CL	ck (7.5 R gravel a ht olive errous stati the olive h errous stati the olive h occassion CALCAREC d, strong t olive b ; reaction res CALCAREC d; dry; t	k, N2); o nd cobbl brown (2 aining; brown, (ferrous t gray (onal bla DUS: gra g reacti brown (2 on to HCI DUS: gray thin bedo	2.5 Y, 2.5 Y, ck y on .5 Y, ded	ic;							LUGGED BY E. HUDSON	DATE 2/21/92 СНК'D ВУ SL 10941.

e

.

SOIL B	OREHOLE LOG				
 Anagement, Inc Comal County 11, New Braunfels, Texas x. ed approximately eight miles wrtheast of New Braunfels, Texas, ong FM 1101 and Kohlenberg Lane. 	Auger. w/8.25 Augers	Stem	007 	PZ - 1M FZ - 1M FET OF 1 OF1LING	ri11,
MSL ELEVATION 644.24 RAG Failing F-6 SU E Vertical BEARING RE HAMMER TOROUE FTLBS	WATER LEVEL 39.75 16.84 TIME 5:15 7:49 OATE 2/18 2/19 CASING DEPTH 0 44.5' RFACE CONDITIONS Damp, tar	12.41 12 9.00 9. 2/25 2/ 44.5' 44 clay, so	51 25 25 26 5' 2/ 26 5' 2/ 1 5' 2/ 1 5' 2/ 1 5' 2/ 5' 5' 2/ 5' 5' 2/ 5' 5' 2/ 5' 5' 2/ 5' 5' 5' 2/ 5' 5' 5' 5' 5' 5' 5' 5' 5' 5'	RT FRESH RE THE 20 5:00 TE DATE 18 2/18 IND TRESUITS	CONTR Enviro - D Braunfels
	NUMBER D OF MATERIAL	AMMALEN AN CASING TY	KONFENT N. KONTENT N.	Ends Tio BRCIFIC BRCIFIC DI HER	DRILLING New
0 - 1.5' FILL MATERIAN black (7.5 R, 1.5 - 15' FILL MATERIAN (10 YR 6/8) ar ferrous stain 15 - 44.5' CLAY (CH): li 5/4) with bro along bedding 15' - 34.5'; 44.5 - 45' CLAYSTONE (CH (5 Y, 5/1); h to 10% HCL; d	L: mixture of clay (CH) , N2); and gravel. L: clay, brownish yellow and light gray (5 Y, 5/1 wing; soft; moist. Ight olive brown (2.5 Y wwnish yellow, (10YR 6/3 ; planes; stiff; dry saturated 34.5' - 39.75 L), CALCAREOUS: gray ard; strong reaction ty.				LOGGED BY E. Hudson DATE 2/18/92 CHK'D BY SL 10941.

Page No. 4C-193

.

				DRILLING MET	HOD: Ho	llowstem A	luger	- 6 (5/8-In	ch	_	ROHI	ING	RUMB	5n.	1	
E NAME A	NO LO	CATION:		diameter OD wi	in cooth	-Dil	_					M	W-	0			a 0
Comal New Br	Coun	ty Land	dfill xas				_						5h	eet I (0/4		
Monito	ing s	System	Upgrade	SAMPLING MET	HOD: C	ontinuous					-		D	AILLI	NG		les
Projec	(#8	8660.4	100	Five-foot split	barrei :	samplei				STA	TIC	ST	ART	T	FINIS	ы	ocia
				NATER 15	VEI		DR	TY	DRY	OF	IY	Т	IME		TIM	E	ASS
				TIME		9:45	7:1	4	7:19	12:	18	l i	1:30		9;4	5	3
				DATE		11/8/95	11/9/	95	11/10/8	5 11/13	/95	D	ATE		DAT	ε	8
				CASING DE	PTH] w/	7/9	5	11/8/	95	Ě
ГUM:			ELEVATION: 632.00		SURFAC	E CONDIT	IONS.	: Fla	t, clay	suriac	e at	edge	e of	Deon			2
LL AIG: C	ME -	75, Truck			southwe	estern per	imeter	of	andfill			_	_				TOR
SLE:		00015	ft -ibs														RAC
		JHOUE.							w		L	T	EST	RESU		S	IN
λ 	≿			CD107101				311 311	비비	SIN(1~	*	, x	2×2	₽Ľ	EST	0.0
11 A 11 NPL	اير <u>قا</u>	180	DES	OF				NDE	뉟	CA	LEE VIE		Ę	AST	AV1	RI	ILLEN.
LEN	U U U	sγ	м.	ATENIAL		×.		N N	SAM	SB	₹	No F	5	52	SPI	HE	DRI
6 B	"											1					1
		71	CLAX moderate alive brown	$rac{15Y}{4/4}$, with r	oots				NA								
		14	LLAT: MODELALE ONVE DOWN	- 2-inch diamete	or orimari	ly chert.			N/I								
		(D)	clay is olive black (5Y	2/1)		.,			111	-			1				
2	72	4	CLAY (CH) w/ some rock	iragments, dark y	ellowish	orange			ŀΧ				7				Ł
	1 '2	$\langle \rangle$	(IOYR 8/8) white callo	the, roots, very s	tiff, dry												ł.
,	1	$\langle A \rangle$							1/ \	1	11				ľ.		
4	1		as above w/ color cl	hange lo olive bli	ack (5¥ 2	/I), w/ reu	2		1								
e		VA	noques and stailing		I di uni	01			N I					1			
5		100	GRAVEL; white nodules, ch (INYR R/R) clay, dry	ert, intermixed w	/ UK. YEL	01.					11						
6		6/2							IV		1E						
7	54	61					1		X		11					1	
		100							IA	-	11						1
8		6/2									11			1.			
0		6A								5	11			1	1		
		1A	CLAY (CH): moderate oliv	e brown (5Y 4/4)	and dk.	yel. or.				7 -	11						
10		VA	[IOYR 8/6] mottled,)	MnO_2 and FeO_2 s	taining, t	blocky			A	A .	11						
	-l	VA	structure, dry						11	-	11				1		
		1/2	inter shares to list	ot alive area (5)	8/1) slici	kensided		1	IX		-						
12	100	VA	cleavage planes, m	inor FeO2 stainin	g, dry				10		11						
-13	1	VA		-					V		-				1	-	
	1								V	1	-11	11					
- 14		VA				-1		-	-	7	E						1
- 15		K/A	as above, primarily	It. olive gray W/	some dk.	, yel. or		1	A	A	3			1	1		
		VA	staining, Mruz stai	mig, mone, dry					11	//	-						
- 10		VA						1		11	E						ſ
- 17	100										-		1				
- 18	e (VA							V	1	E						
8 - 1	1	VA	# FeOn stain I-inch	thick @ 18.5 fl.					V	N	L						
2			ο···Ζ····						U U	9	_						

•

Page No. 4C-194

YE NAME AND LOCATION: Comal County Landfill New Braunfels, Texas Monitoring System Upgra Project # 88680.400 DATUM: ELE CATUM: ELE SAMPLE HAMMER TORQUE: ftlbs 100 100	ed EVATION: 632.88 ed BEARING: s. DES M/ dk. yel. or. weathered @ 80 to 80.5 : fracture w/ crystaliz: plane and in bedding : long 80° fracture fro	CALLING MET alameter OD w SAMPLING ME Five-foot spli WATER LE TIME DATE CASING DI SCRIPTION OF ATERIAL d zone around fr sation & oxidation planes om 62 5 to 63 5 to	HOD: Holio ith tooth-D THOD: Con t barrel sai VEL EPTH SURFACE southwest - acture w/ 2° along fract	mpler INI 0RY 9:45 1/8/95 CONDITI ern perin	DRY 7:14 11/9/95 IONS: F1 meter of	DRY 7:19 11/10/8 at, clay andfill 3dAL 31 HWYS	STATI ORY 12:18 5 11/13/5 surface	WATER CONTENT %	Sh Sh STAR TIME 11:30 DATE 11/7/6 Ige of TEST OINDIJ	-6 DRILLI T T So road	of 4 NG FINIS TIM 0:4 DAT 11/8/	
Comal County Landfill New Braunfels, Texas Monitoring System Upgra Project # 88680.400	ed EVATION: 632.88 ed BEARING: s. DES M/ dk. yet or. weathered @ 80 to 80.5 : fracture w/ crystaliz, plane and in bedding : long 80° fracture fro	SAMPLING ME SAMPLING ME Five-foot spil WATER LE TIME DATE CASING DI SCRIPTION OF ATERIAL d zone around fr sation & oxidation planes om 62.5 to 63.5 to	THOD: Con L Darrel SB/ VEL L PTH SURFACE SOUTHWEST SOUTHWEST ACTURE #/ 2 along fract	mpler INJ DRY 9:45 1/8/95 CONDITI ern perim	DRY 7:14 11/9/95 IONS: F1 meter of VUDRY	DRY 7:19 11/10/09 at, clay andfill Sather Sa	STATI ORY 12:18 5 II/13/5 surface ON Cysing	WATER Soutent & Content & Content &	Sh C STAR TIME 11:30 DATE 11/7/E Ige of TEST OINDIT	Peet 4 DRILLI T T S S S S S S S S S S S S S S S S S	OF 4 NG FINIS 0:4 DAT N/8/	R TESTS R 86 8 9 4
New Braunfeis, Texas Monitoring System Upgra Project # 88680.400	ed BEARING: s. DES M/ cdk. yel. or. weathered 9 80 to 80.5 : fracture w/ crystaliz/ plane and in bedding : long 80° fracture fro	SAMPLING ME Five-tool split WATER LE TIME DATE CASING DI SCRIPTION OF ATERIAL d zone around fr sation & oxidation planes om 62 5 to 63 5 to	THOD: Con L barrel sai VEL EPTH SURFACE southwest - acture w/ 2° along fract	mpler INI DRY 9:45 1/8/95 CONDITI tern perin	DRY 7:14 11/9/95 IONS: F1 meter of UNS: ST	DRY 7:19 11/10/8 at, clay andfill 3dkL 3 3dkL 3dkL 3dkL 3dkL 3dkL 3dkL 3dkL 3dkL	STATI ORY 12:18 5 11/13/0 surface	WATER CONTENT & 00	Sh C STAR TIME 11:30 DATE 11:30 DATE 11:30 DATE 11:30 DATE 11:30 DATE 11:30 DATE 11:30 DATE 11:30 DATE	PRILLI T T S S A RESU	of 4 NG FINIS TIM 0:4 DAT 11/8/ JLTS DILIS	R TESTS 6 8 6 7 4
Monitoling System Opgic Project # 88680.400 DATUM: ELE RAILL RIG: CME - 75, Truck mounte INGLE: SAMPLE HAMMER TORQUE: ftlbs ISMMPLE HAMER TORQUE: ftlbs <	EVATION: 632.88 ed BEARING: s. DES M/ ck. yet or. weathered @ 80 to 80.5 : fracture w/ crystaliz: plane and in bedding : long 80° fracture fro	HATER LE Five-foot spil WATER LE TIME DATE CASING DI CASING	VEL IL barrel sør VEL IL EPTH SURFACE southwest southwest	mpler INI DRY 0:45 1/8/95 CONDITI tern perim	DRY 7:14 11/9/95 IONS: F1 meter of UNSS: F1	DRY 7:19 11/10/95 at, clay andfill SAMPLE TYPE	STATI ORY 12:18 SII/13/5 SULTACE	WATER CONTENT & CONTENT &	TIME 11:30 DATE 11/7/E Ige of TEST OINDIT	RESU	NG FINIS TIM 9:4 DAT N/8/	R TESTS 6 8 5 4 4
DATUM: ELE RATUM: ELE RATUM: ELE RATUM: CME - 75, Truck mounte NGLE: SAMPLE HAMMER TORQUE: f1Ibs HIJANOS NO HIJANOS HI	EVATION: 632.88 ed BEARING: s. DES M/ : dk. yet. or. weathered @ 80 to 80.5 : fracture w/ crystaliz/ plane and in bedding : long 80° fracture fro	WATER LE TIME DATE CASING DI CASING	VEL	INI DRY 0:45 I/8/95 CONDITI Iern perin	DRY 7:14 11/9/95 IONS: F1 meter of	DRY 7:19 11/10/8 at. clay andfill 3d/L JJdHYS	STATI ORY 12:18 Surface	WATER T T T T T T T T T T T T T T T T T T	STAR TIME 11:30 DATE 11/7/E Ige of TEST OINDIJ	AESU AESU AESU	FINIS TIM 0:4 DAT 11/8/	R TESTS 66 7 26 7 26 7 26 7 26 7 26 7 26 7 26
DATUM: ELE IRILL RIG: CME - 75, Truck mounte INGLE: INGLE: SAMPLE HAMMER TORQUE: ftlbs 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	EVATION: 632.88 ed BEARING: s. DES M/ c. dk. yel. or. weathered @ 80 to 80.5 : fracture w/ crystaliz: plane and in bedding : long 80° fracture fro	WATER LE TIME DATE CASING DI CASING CASI	VEL	DRY 9:45 1/8/95 CONDITI tern perim	DRY 7:14 11/9/95 IONS: F1 meter of UNS: S1 HUNG V	DRY 7:19 11/10/8! at, clay andfill SAMPLE LLAFE	ORY 12:18 3 11/13/5 surface ON Cysing	WATER CONTENT &	TIME 11:30 DATE 11/7/E 1ge of TEST 0[n0[]	F road		R TESTS
DATUM: ELE RILL RIG: CME - 75, Truck mounte INGLE: SAMPLE HAMMER TORQUE: ftIbs H3JAWES NO -61 -61 -62 -33 -64 -65 -66	EVATION: 632.88 ed BEARING: s. DES M/ : dk. yet or. weathered @ 80 to 80.5 : fracture w/ crystaliz/ plane and in bedding : long 80° fracture fro	TIME DATE CASING DI CASING DI CASING DI CASING DI OF ATERIAL d zone around fr sation & oxidation planes om 62.5 to 63.5 to	SURFACE SOUTHWEST	9:45 1/8/95 CONDITI tern perim	7:14 11/9/95 IONS: F1 meter of UNS SAMPLE RUNA	7:19 11/10/8 at, clay andfill SAMPLE LAPE S	BI OMS/FT BI OMS/FT Sing CASING ON CASING	WATER CONTENT & 00 TE	11:30 DATE 11/7/E Ige of TEST OINDIJ	ASTIC AE2	9:4 DAT 11/8/1 JLTS	R TESTS
DATUM: ELE IRILL RIG: CME - 75, Truck mounter INGLE: Index of the second se	EVATION: 632.88 ed BEARING: s. DES dk. yel. or. weathered & 80 to 80.5 : fracture w/ crystalize plane and in bedding : long 80° fracture fro	DATE CASING DI CASING DI SCRIPTION OF ATERIAL d zone around fr ation & oxidation planes om 62.5 to 63.5 to	SURFACE SOUTHWEST	CONDITI tern perim	IDNS: FI meter of BIJ WN BIJ BUN BIJ BUN BIJ BUN BIJ BUN BIJ BUN BIJ BUN BIJ BUN BIJ BUN BIJ BUN BIJ BIJ BIJ BIJ BIJ BIJ BIJ BIJ BIJ BIJ	at, clay landfill JALL JAMPES	BIOMS/FT BILOWS/FT ON CASING	WATER CONTENT & 00 at 0		ASTIC ASTIC AE21 AE21	DAT 11/8/ 11/8/	R TESTS
DATUM: ELE RATUM: ELE RATUM: CME - 75, Truck mounte INGLE: SAMPLE HAMMER TORQUE: (1Ibs 19/SM018 -61 -61 -62 33 -64 -65 -66	EVATION: 632.88 ed BEARING: s. DES be dk. yet or. weathered & 80 to 80.5 : fracture w/ crystaliza plane and in bedding : long 80° fracture fro	CASING DI SCRIPTION OF ATERIAL d zone around fr ation & oxidation planes om 62.5 to 63.5 to	SURFACE southwest	CONDIT lern perim	IONS: FI	SAMPLE TYPE	BLOWS/FT ON CASING ON CASING	WATER CONTENT & 09 te		ASTIC ASTIC	11/8/11 ILIC TS	R TESTS
ATOM: ELE PATOM:	ed BEARING: s. DES M/ : dk. yel. or. weathered @ 80 to 80.5 : fracture w/ crystaliz/ plane and in bedding : long 80° fracture fro	SCRIPTION OF ATERIAL d zone around fr ation & oxidation planes om 62.5 to 63.5 to	SURFACE southwest	CONDITI lern perkr	SAMPLER	at, clay andfill XAMFE TYPE SAMPLE	BLOWS/FT ON CASING ON CASING	WATER CONTENT &		ASTIC MIT & STIC	IFIC STIT	R TESTS
HILL HIS. LME - 75, (TOLK MOUTH INGLE: SAMPLE HAMMER TORQUE: ftIbs 13340114 AU 10802 (AP) SMOUE: ftIbs 1334014 AU 1080 AU 1000 AU	BEARING: S. DES M/ dk. yel. or. weathered @ 80 to 80.5 : fracture w/ crystaliza plane and in bedding : long 80° fracture fro	SCRIPTION OF ATERIAL d zone around fr ation & oxidation) planes om 62 5 to 63 5 to	acture w/ 2°	iern perk	SAMPLER	SAMPLE TYPE	BL OMS/FT ON CASING	WATER CONTENT X		ASTIC MIT & STIC	IFIC SIT	R TESTS
INDLE. SAMPLE HAMMER TORQUE: 100	DES DES M : dk. yet or. weathered @ 80 to 80.5 : fracture w/ crystaliz/ plane and in bedding : long 80° fracture fro	SCRIPTION OF ATERIAL d zone around fr ation & oxidation planes om 62.5 to 63.5 to	acture w/ 2 along fract	· min.	SAMPLER	SAMPLE TYPE	BLOWS/FT ON CASING	WATER CONTENT X	LIMIT & LIMIT	ASTIC ASTIC	IFIC STITY	R TESTS
-61 -61 -62 -61 -62 -63 -64 -65 -66	DES M/ dk. yel. or. weathered @ 80 to 80.5 : fracture w/ crystaliz/ plane and in bedding : long 80° fracture fro	SCRIPTION OF ATERIAL d zone around fr ation & oxidation planes om 62.5 to 63.5 to	acture w/ 2° along fract		SAMPLER	SAMPLE TYPE	BL OWS/FT ON CASING	WATER CONTENT X	LIMIT & UIUDI	ASTIC ASTIC	IFIC	R TESTS
- 61 - 62 - 61 - 62 - 63 - 64 - 65 - 66 - 66	DES M/ dk. yet or. weathered @ 80 to 80.5 : fracture w/ crystaliza plane and in bedding : long 80° fracture fro	SCRIPTION OF ATERIAL d zone around fr ation & oxidation planes om 62.5 to 63.5 to	acture w/ 2' along fract		SAMPLER	SAMPLE TYP	BL OWS/FT ON CASING	WATER CONTENT X		ASTIC MIT X	IFIC	r tests
-61 -61 -62 -63 -64 -65 -66 -65 -66 -65 -66 -65 -66 -65 -66 -65 -66 -65 -66 -65 -66 -65 -66 -65 -65	DES M/ dk. yel. or. weathered @ 80 to 80.5 : fracture w/ crystaliz/ plane and in bedding : long 80° fracture fro	d zone around fr ation & oxidation planes om 62 5 to 63.5 to	acture w/ 2 along fract		SAMPL	SAMPLE	BLOWS ON CAS	WATER CONTENI		ASTI MIT :	ШE	R TE
-61 -62 33 -64 -65 -66	M/ dk. yel, or. weathered @ 80 to 80.5 : fracture w/ crystaliz, plane and in bedding : long 80" fracture fro	ATERIAL d zone around fr ation & oxidation) planes om 62.5 to 63.5 to	acture w/ 2 along fract	້. ກ່ານ.	SA SA	SAME	ы В С	CONT	<u> </u>	1421	021	
-61 -62 -63 -64 -65 -66	: dk. yel. or. weathered @ 80 to 80.5 : fracture w/ crystaliza plane and in bedding : long 80° fracture fro	d zone around fr ation & oxidation planes om 62.5 to 63.5 to	acture w/ 2 along fract	- ກ່າກ.		<u></u>		0		25	SPE GR/	H
-61 -62 -62 -63 -64 -65 -68	dk. yel, or. weathered 8 80 to 80.5 1 fracture w/ crystalize plane and in bedding 1 long 80° fracture fro	d zone around fr ation & oxidation planes om 62.5 to 63.5 to	acture w/ 2 along fract	ຳ ກ່າວ.								5
-67 -68 -89 -70 -71 -72 -73 -74 -75 -76 -77 -78	TOCK not weathered : TO @ 83.5 leet; hole	caves to 58.25	n/ oxidation nes – surrou	unding								

Page No. 4C-197

.....

Project: WMTX - Mesquite Creek Landfill		Key to Log
Project Location: New Braunfels, TX Project Number: GT 3435		Sheet 1 of 1
Elevation, feet Depth, feet Sample Type Consistency Sampling Resistance, blows/foot Stratum Field USCS Graphic Log	FERIAL DE	Driven/Rec Permeability (cm/s) Pocket Pen. LL. % DI% Disture Content % Content %
1 2 3 4 5 6 7 8	9	10 11 12 13 14 15 16
COLUMN DESCRIPTIONS		
 <u>Elevation, feet:</u> Elevation (MSL, feet) <u>Depth, feet:</u> Depth in feet below the ground surface. 	9 <u>M</u> en co	ATERIAL DESCRIPTION: Description of material accountered. May include consistency, moisture, alor, and other descriptive text.
3 Sample Type: Type of soil sample collected at the depth interval shown.	10 <u>Dr</u>	iven/Rec: Sampler Driven/Recovered (inches)
4 <u>Consistency:</u> Relative consistency of the subsurface material.	11 <u>Pe</u> de	ermeability (cm/s): Vertical hydraulic conductivity etermined in accordance with ASTM D5084
5 Sampling Resistance, blows/foot: Number of blows to advance driven sampler foot (or distance shown) beyond seating interval using the hammer identified on the boring log.	12 Po me so 13 LL	ocket Pen.: The reading from a hand held tool used for easuring unconfined compressive strength of cohesive ills <u>-, %:</u> Liquid Limit, expressed as a water content
6 Stratum: Stratum designation based on site stratigraphy	14 PI	<u>%:</u> Plasticity index
7 Field USCS: USCS symbol of the subsurface material.	15 Mc	oisture Content %: Moisture Content
8 Graphic Log: Graphic depiction of the subsurface material encountered.	16 <u>Pie</u> pie sa	ezometer Completion: Graphical representation of ezometer installed upon completion of drilling and mpling.
FIELD AND LABORATORY TEST ABBREVIATIONS		
LL: Liquid Limit, percent PI: Plasticity Index, percent TYPICAL MATERIAL GRAPHIC SYMBOLS		
Claystone Fat CLAY, CLAY	w/SAND, SA	ANDY CLAY (CH) 💹 Clayey SAND to Sandy CLAY (SC-CL)
Well graded GRAVEL (GW)	CLAY w/SAN	ND, SANDY CLAY
Clayey GRAVEL (GC)	ML)	SILT to CLAY (CL/ML)
Silty SAND (SM)	to Gravelly C	CLAY (GC-CL)
Lean CLAY, CLAY w/SAND, SANDY CLAY (CL) Clayey GRAVEL	to Gravelly C	CLAY (GC-CH)
TYPICAL SAMPLER GRAPHIC SYMBOLS		OTHER GRAPHIC SYMBOLS
2-inch-OD unlined split Shelby Tube (Thin-walled, Spoon (SPT)		— ₩ Water level (at time of drilling, ATD)
		 Water level (after waiting a given time) Minor change in material properties within a stratum
		 Inferred or gradational contact between strata
		Queried contact between strata
GENERAL NOTES		
 Soil classifications are based on the Unified Soil Classification System. De be gradual. Descriptions on these loss apply only of the specific boring leasting and it 	escriptions an	nd stratum lines are interpretive, and actual lithologic changes may
 Descriptions on these logs apply only at the specific boring locations and a representative of subsurface conditions at other locations or times. 	מנ נוופ נווחפ (חנ	e borniga were auvanceu. They are not warranted to be

Date(s) Drilled	11/0	2-11/	03/04					Logged By Taylor Johnston	Checked By Jar	et N	leau	IX				
Drilling Method	Holl	ow S	item Au	ger/Cor	е			Drill Bit Size/Type 8 inch	Total Depth of Borehole 95 f	eet	bgs					
Drill Rig	CMI	E 75						Drilling GeoProjects/ Jose Landezos	Approximate Surface Elevation	59	5.38	feet	MSI	-		
Ground	water	Level	NA					Sampling SPT, Tube, Other	Hammer 140 lb	, 30	in d	rop,	auto	trip		
and Dat Borehol	e Mea e Gr	out t	0 27'					Location Northing 13.816.876.45. Easting 2.	278,393.23							
Backfill					_		_				-	_	-1	_	_	Г
Elevation, feet	Depth, feet	Sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Field USCS	Graphic Log	MATERIAL DESCRIPTION		Driven/Rec	Permeability (cm/s)	Pocket Pen.	LL, %	PI%	Moisture Content %	-Piezometer
95.4	0—			1110	1	СН		Grass		17/24		.75				N.
		N	soπ	1110	Ц	GC- CH		 dark brown, fat, wet clay (10YR 3/1) dark brown clay with gravel (large to trace), moist (10 	OYR 3/1) -							
4	-	N	soft	1133						21/24		2.5				
Ξ	8	N							G							
90.4—	5—	0	soft	1235				<u>-</u>	3	22/24		1.5				
2	8	3		1 15 53		GC		- aravel with some dark brown clay moist		26/24		15+				
-			hard	31	"			gravel with some dark brown day most	-			4.0+				
	1	N	hard	8 16 10	й	GC-CH		dark brown mojet clay		19/24		4.5+	104	77	9.3	
85.4-	10-	Ŋ	nara	22	, ii	GC		gravel with some dark brown clay, moist	7							
100000 14		N	hard	3 10 17 30				light brownish yellow, lean clay moist (10YR6/4)	7 .	22/24		4.5+				
-		N							:0 .							
3		N	hard	8 17 21 25					10	22/24		4.5+				
	45	N		NA					-		2.5E-9					
80.4	15-	\square		NA					-							1
-		N	hard	5 15 16				light yellowish brown (25Y 6/3) moist -		25/24		4.5+				
- 24		N		20				-	-							1.1.1
-	χ,	0	hard	5 13 18 22				r.		23/24		4.5+				1
75.4—	20-	3		4 12 19				-	-	24/24		45.				
2		N	hard	24								4.5+				1914
		N	hard	5 16 22						24/24		4.5+				
]		S	TIGIU	31	IV	CL		- gray clay (2.5Y 5/1), dry								
70.4—	25-			9 33 50/5"				_	-	17/18	1	4.5+	53	36	14.1	101
-		500	bard	35	IV	Claysion	•	claystone, dry (2.5Y 5/1)		12/121		4.5+				
2			naru	50/3.5"			1			1						
9)		very hard	core			1			85/84	4					
							1									

Elevation, feet Depth, feet Sample Type Field USCS Graphic Log Driven/Rec Permeability (cm/s) Pocket Pen. Piezometer Completion Consistency Sampling Resistance, blows/foot PI% Moisture Content ? Stratum LL, % MATERIAL DESCRIPTION 565.4-30claystone, dry (2.5Y 5/1) (cont.) very hard core 560.4 35 60/60 ery hard core 555.4-40very hard core IV claystone, grading to dark gray (2.5Y 4/1) 45-550.4-60/60 ery hard core 50-545.4 ery hard core 540.4 55 59/6 ery hard core 60-535.4ery hard core ١V shell fragments very hard core 530.4 65

Project: WMTX-Mesquite Creek Landfill Project Location: New Braunfels, TX

Project Number: GT 3435

n, feet	set	Type	incy	g toe,		scs	Log		Sec	bility	Pen.			e 1 %	eter tion
Elevation	Depth, fe	Sample.	Consiste	Samplin Resistar blows/fo	Stratum	Field US	Graphic	MATERIAL DESCRIPTION	Driven/	Permea (cm/s)	Pocket	% 'TT	%Id	Moistur Content	Piezom Comple
530.4	65- - -		very hard	core	īv	Claystone		calcite vein	59/6	D					
525.4— _ _ _	70— - -		very hard	core				,	60/6	D					
 520.4 	- 75— - -		very hard	core					- 60/6	D					
 515.4 	80		very hard	core					60/6	o					
510.4— - -	85		very hard	core					59/6	0					
505.4 	90— - -		very hard	core					- - 72/	72 2 16-5					
500.4 - -	95—				IV			Bottom of Boring at 95 feet bgs		÷					
495.4	100-						<u> </u>								

Date(s) Drilled	10/0	4-10/	06/04					Logged By Taylor Johnston Checked By	Jane	et N	leau	IX				
Drilling	Holl	ow S	tem Au	uger, Co	ore			Drill Bit 4 1/4 inch ID, Hollow Stem Total Depth . Size/Type Auger of Borehole	70.5	fee	t bg	s				
Drill Rig	СМ	E 75						Drilling Geoprojects/ Jose Landezos Approximate Contractor 2551W Surface Eleva	ition	59	9.54	feet	MSI	L		
Ground	valer e Mea	Level	NA					Sampling Method(s) SPT, Grab, Other Hammer Data 140) Ib,	30	in d	rop,	auto	o trip		
Borehol	^e Gr	out to	o 28'					Location Northing 13,816,525.58 Easting 2,277,962.38								
	-	П		1												
ation, feet	th, feet	ıple Type	sistency	npling istance, vs/foot	tum	a USCS	phic Log			/en/Rec	meability Vs)	cket Pen.	%	,0	isture ntent %	zometer
Шe	Dep	San	Con	San Res blov	Stra	Fiel	Gra	MATERIAL DESCRIPTION		Ď	bei Ccu	Poe	Ę	Ъľ	≩ບິ	Êů
599.5-	0	N	acít	NA	1	СН		grass, dark brown CLAY	7	l						
	1	N	SOIL					dark brown fat CLAY, moist	3							
-	æ			NA				=	-				77	52	24.2	
	15	N						-	-							
594.5—	5	N														
2-	-	3	bord	10 20	B	GW		A 2.5" section of GRAVEL in sample, white, some dark brown clay								
		N	hard	26 50/4"			5	2 2	-				43	27	14.0	
	ŝ	511111	nard	50/5			R.A.	_	-							
589.5—	10-				ill	CL		yelllow mottled light gray CLAY (10YR 7/8 and 10YR 7/1), gravel at	-							
-		N	hard	18 19				 10.5', becoming pale brown at 14 feet, moist 								
		N	bard	9 14 22				-]		z.3E-8		52	35	14,7	
			naru	28				-								
584.5	15-		hard	50/5".5"					-							
-		S	hard	42 44 43 45				-	-							10.0
		3		9 22 27	-111	CL		brownish yellow (10YR 6/8) CLAY, moist								
Ī			hard	31												
579.5-	20-	N	hard	7 15 28	111	CL		brownish yellow (10YR 6/8) CLAY, mottled with light gray (10YR — 7/1), moist	-							
	5			31					-							E
-	14	0	hard	6 16 21 25					-							目目
-	3	ľ	hard	5 16 24 28	ш	CL		yellowish brown CLAY (10YR 5/4) and light gray (10YR 7/1), - crystallized calcite seams, dry	1				60	41	19.2	initi i
574.5	25-	3		12 21	IV	CL		dark gray CLAY (10YR 4/1) and light gray calcite seams							1	E
		N	hard	32 41				no water on 10/5/04								1111
	3		hard	13 33 50/4.5"	IV	Clayslon		CLAYSTONE, friable, dry, greenish gray (Gley 10 5/1), some silt	-							-
-			hard	35 50/5"	IV	Clayston	1	more silt with depth	-							
569.5-	30-															

Elevation, feet Sample Type Graphic Log Driven/Rec Permeability (cm/s) Piezometer Completion Pocket Pen. Consistency Moisture Content % Depth, feet Sampling Resistance, blows/foot Field USCS Stratum LL, % PI% MATERIAL DESCRIPTION 569.5-30-CLAYSTONE, friable, dry, greenish gray (Gley 10 5/1), some silt 33 50/4" hard (cont.) 12,1 42 25 hard 31 50/4' i٧ Clays start coring at 32 feet greenish gray CLAYSTONE, dry 24/2 564.5 35 60/60 11.7 36/3 53 34 559.5-40 60 61 554.5-45 60/60 60/49 32 11.4 50 50 549.5-24/25 1 8E-11.9 544.5 55 36/25 ١V greenish gray CLAYSTONE (Gley /10Y 5/1), hard, some silt 13,3 56 37 60 539.5-IV Clays No recovery from 62-67 -lost the core down the hole and a rock caved in on top of it-have to drill it out to 67 ft 60/0 534.5 65

Boring GB-02

Elevation, feet	Depth, feet Samole Type	Consistency	Sampling Resistance, blows/foot	Stratum	Field USCS	Graphic Log	MATERIAL DESCRIPTION	Driven/Rec	Permeability (cm/s)	Pocket Pen.	LL, %	PI%	Moisture Content %	Piezometer Completion
534.5 (- - - 529.5 (- - - - - -	- - - - - - - - - - - - - -		50/5"		Claystone Claystone Claystone		CLAYSTONE, friable, dry, greenish gray (Gley 10 5/1), some silt (cont.) No recovery - a large gravel was all that came up with some mud cuttings on it. greenish gray CLAYSTONE (Gley 10Y5/1), some silt Bottom of Boring at 70.5 feet bgs	- 60/0 - 60/0 - 60/0						
524.5— - - - 519.5— - - -	75													
514.5 - - - 509.5 -	85- - - 90-											a		
504.5	95													

Boring GB-03

Date(s) Drilled 11/04-11/05/04 Checked By Janet Meaux Logged By Taylor Johnston Total Depth of Borehole 104.5 feet bgs Drill Bit 4 1/4 inch ID, Hollow Stem Drilling Method Hollow Stem Auger/Core Size/Type Auger Drill Rig CME 75 Approximate Surface Elevation 607.74 feet MSL Drilling **Geoprojects/ Jose Landezos** Contractor 2551W Туре Hammer Data 140 lb, 30 in drop, auto trip Groundwater Level and Date Measured NA Sampling Method(s) SPT, Tube, Other Data Borehole Backfill Grout Location Northing 13,815,970.63 Easting 2,277,506.65

Elevation, feet	Depth, feet	Sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Fleid USCS	Graphic Log	MATERIAL DESCRIPTION	Driven/Rec	Permeability (cm/s)	Pocket Pen.	LL, %	PI%	Moisture Content %	A TIMIN
7.7	0	g	edium sti	f1 3 5 7	1	СН		GRASS wet, dark brown, fat, CLAY (10YR 3/3)	24/20		1.5				and the second sec
-		ľ.	stiff	1468					- 24/20		2.0				
2.7-	5-		stiff	2479					24/17		NR	69	46	28	
-			ery stiff	2 6 13 23	11	GC		_ gravel, some CLAY, dark brown, moist	_ 24/24		2.25				
-			ery stiff	4 12 12 18	m	CL		 light yellowish brown lean CLAY, moist 	24/15	,	4.5+				20000
-7.7	10—		hard	6 17 24 36					_ 24/23	•	4.5+				
-			hard	7 18 27 28	10	CL		trace shell fragments, gray root seam at 13'	_ 24/23	3	4.5+				
2.7-	- 15—	X	hard	7 17 24 30					24/2	2	4.5+				
-		X							16/1	3 7E-5		38	21	14.5	5
-			hard	8 20 27 33	m	CL		light yellowish brown CLAY, dry	24/2	4	4.5+				
-7.7	20—		hard	8 16 24 32					24/2	3	4.5+				
			hard	9 18 25 31				-	_ 24/2	6	4.5+				
2.7-	25—		hard	7 17 25 32		CL		dark gray CLAY (2.5YR 4/1), dry, possible fracture at 25.75 feet, 20 degrees, no water	24/2	0	4.5+	61	41	19	}
		Ü	hard	15 28 42 40	911	Clayslone		light yellowish brown (25Y 6/3) CLAY, moist dark gray CLAYSTONE, some silt (2.5Y 5/1), dry	24/2	5	4.5+				
]	-		ery hard	core	ш	Clayslone		dark gray CLAYSTONE, (0.5Y 4/1), weathered, some silt	78/7	o					100 March 100 Ma

Elevation, feet	Depth, feet	Sample Type	Consistency	Sampting Resistance, blows/foot	Stratum	Field USCS	Graphic Log	MATERIAL DESCRIPTION	Driven/Rec	Permeability (cm/s)	Pocket Pen.	LL, %	PI%	Moisture Content %	Piezometer Completion
577.7	30-				11===1	Claystone		dark gray CLAYSTONE, some silt (2.5Y 5/1), dry (cont.)							
	1 N 1		very hard	core	IV	Clayslone		dark gray CLAYSTONE three possible horizontal fractures, 2 inches apart	76/70						
572.7-	35—				IV	Claystone		same as above, left some in the hole, unweathered							
-			very hard	core					60/41						
567.7—	40—				IV	Claystone		_ recovered what was in hole, unweathered							
1 1 1 1 1			very hard	core					60/78						
562.7— - -	45— - -		very hard	core					60/58	8					
557.7— - -	50— - - -		very hard	core					60/55	9 26E-9				11.8	
- 552.7— - -	55— - -		very hard	core					60/61	1					
	60		very harc	core	łV	Clayston		CLAYSTONE, dry, dark gray (2.5Y4/1), some silt	60/5:	9					
-			yopu bara	core				-	60/6	3					
542.7—	65-		very narc												

Boring GB-03

Elevation, feet Depth, feet Sample Type Pocket Pen. Field USCS Graphic Log Driven/Rec Permeability (cm/s) Piezometer Completion Consistency Sampling Resistance, blows/foot Moisture Content % Stratum N, % PI% MATERIAL DESCRIPTION 542.7-65-IV same as above 60/6 ery hard core 537.7 70 60/5 core ery hard 532.7-75ery hard core 527.7-80core ry hard 522.7-85-60/59 ry hard core 517.7-90ery hard core 95-512.7-60/59 very hard core 12.2 core very hard 507.7- 100

Project: WMTX - Mesquite Creek Landfill Project Location: New Braunfels, TX

Project Number: GT 3435

Elevation, feet	Depth, feet	Sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Field USCS	Graphic Log	MATERIAL DESCRIPTION	Driven/Rec	Permeability (cm/s)	Pocket Pen.	LL, %	PI%	Moisture Content %	Piezometer Completion
507.7	100— - -		very hard	core	IV	Claysiona		same as above 	60/54	6 3E-9				12.2	
502.7— - -	105— - -				IV	Claystone		Bottom of Boring at 104.5 feet bgs							
- 497.7— - -	- 110— -														
- 492.7— -	- 115— -														
- - 487.7 -	- 120— -														
- 482.7— -	- 125—														
- - 477.7— -	- - 130— -														
- - 472.7—	- - 135—							-							

-Т т

Т

т

Date(s) Drilled 10/12-10/18/04	Logged By Taylor Johnston/Trent McDaniel	Checked By Janet Meaux
Drilling	Drill Bit 4 1/4 inch ID, Hollow Stem	Total Depth
Method Hollow Stem Auger/Core	Size/Type Auger	of Borehole 145 feet bgs
Drill Rig	Drilling Geoprojects/ Jose Landezos	Approximate
Type CME 75	Contractor 2551W	Surface Elevation 668.17 feet MSL
Groundwater Level	Sampling	Hammer
and Date Measured NA	Method(s) SPT, Tube, Other	Data 140 lb, 30 in drop, auto trip
Borehole Backfill grout to 63'	Location Northing 13,814,621.77 Easting 2	2,278,786.32

Elevation, feet	Depth, feet	Sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Field USCS	Graphic Log	MATERIAL DESCRIPTION		Driven/Rec	Permeability (cm/s)	Pocket Pen.	rr, %	PI%	Moisture Content %	Piezometer Completion
668.2	0	111	very stiff	5 8 14 21	ï	СН		Dark grayish brown fat CLAY (10YR 4/2) moist, roots				1				21.28 L
-			hard	18 17 14 14	Ŧ	CL		wet, dark brown, fat CLAY (10YR 3/3)					51	30	19,7	
663.2—	5-		very stiff	5 10 13 22	1 W	CH CL		- dark brown fat CLAY (10YR 3/3) moist, some gravel	7							
			hard	10 20 33 40	-111	CL		pale yellow (5Y 8/4) CLAY, moist, lean. some white chalk grading to very stiff, dry CLAY, no chalk, yellow (2.5 Y7/6)					47	29	12,0	
-	10-		hard	6 17 26 41					1							
-			hard	7 12 27 41	10	CL		yellow CLAY, lean, dry (2.5Y 7/6)								
-			hard	13 24 37 49				-	1997 - 194							
653.2—	15		hard	10 27 35 47				_								
-	×	X						grading brownish yellow (10YR 6/6) and some iron staining, dry	3							
-			hard	15 27 36 44	113			some mottled light gray CLAY (7.5 YR 7/1) dry	2				49	30	16.2	
	- 20		hard	11 31 35 42	III	CL		pale yellow (5Y 7/3) dry	-							
			hard	8 16 24 39	m	CL		pale yellow	-							
643.2—	25		hard	9 20 26 39	10	CL		pale yellow	-							
	-		hard	10 18 24 30	DI	CL		pale yellow CLAY (2.5Y 7/4), dry								
638 2-	-		hard	8 24 30 38									58	38	15.4	
JULI	00															

Elevation, feet	Depth, feet	Sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Field USCS	Graphic Log	MATERIAL DESCRIPTION		Driven/Rec	Permeability (cm/s)	Pocket Pen.	LL, %	PI%	Moisture Content %	Piezometer
38.2-	30-		hard	9 23 27 33	ш	CL		pale yellow (5Y 8/4) CLAY, moist, lean. some white chalk (cont.)	-							
-			hard	22 23 31												
33.2-	35-		hard	8 19 34 38												
			hard	17 27 39 50/5"	ш	Claystone		} large vertical calcite seam, 6 inches long	-							
-	- 40-		hard	11 24 34 44				_ calcite seam at 40.5 ft	-							
1			hard	12 30 40 50/5"	ш	CL		 some gray color (Gley 1N 5/0), stiff, still gray from 42-48' 								
	10.10		hard	17 39 50/5.5"					-							
623.2— -	45		hard	14 30 40 50/4.5*				-	-							
	1 1		hard	20 36 41 50/5"	ш	CL		hard, pale vellow (2.5Y 7/3)	-				56	37	18.0	
- 618.2—	- 50—	Ï	hard	11 46 50 50/6"					, I							
		Ï	hard	14 39 50/4.5"		CL		 calcite seam, horizontal, 0.25 inch thick 51.8' gray CLAY 	-							141 - 24
-			hard	17 34 41 50/4"	ш	CL		alternating pale yellow and gray calcite vein at 54.4 ft	-							A THE R
613.2	55		harđ	14 30 40 50/5.5" 26 36				_ vertical calcite seam at 56.3 ft -	-							in the second
-		11	nard	50/5.5"	щ	CL		tums gray	-							1.
- 608.2—	- 60—		hard	50/5.5"	111	CL		pale yellow to 61 ft	-							
	1		hard	50/5" 21 40	١v	Claysione		 61.2 tt - horizontal calcite vein 61.5 ft gray clay CLAYSTONE, dry, dark gray (2.5Y4/1), some silt 	-							
-			nard hard	50/4.5" 16 41 50/5"					1				62	42	14.9	

Boring GB-04 Sheet 3 of 5

Elevation, feet Piezometer Completion Sample Type Graphic Log Driven/Rec Permeability (cm/s) Pocket Pen. Consistency Field USCS Sampling Resistance, blows/foot Depth, feet Moisture Content Stratum LL, % P1% MATERIAL DESCRIPTION 603.2-65-62 42 hard IV CLAYSTONE, dry, dark gray (2.5Y4/1), some silt (cont.) 30 50/5.5" hard IV some silt 598.2-70 large shell (bivalve w/partial calcite replacement), some shell IV 84/82 38 7.8 4.5+ 56 fragments 593.2-75 4.5+ 588.2-80possible 60 and 45 degree fractures, clay filled, no water IV 60/60 4.5+ IV same as above - grading dary gray (Gley 1N 4/0) 583.2-85-60/6 4.5+ 578.2-90 4.5+ 95-573.2 15,9 60/60 4.5+ 65 45 4.5 568.2 100

Boring GB-04

Sheet 4 of 5

Elevation, feet Sample Type Consistency Graphic Log Driven/Rec Permeability (cm/s) Pocket Pen. Piezometer Completion Sampling Resistance, blows/foot Field USCS Depth, feet Stratum Moisture Content % PI% Ë MATERIAL DESCRIPTION 100-568.2-IV CLAYSTONE, dry, dark gray (2.5Y4/1), some silt (cont.) 6/06 4.5+ ١V Clayste same as above 105 563.2-15.6 38 60/60 4.5+ 58 558.2-110 60/58 2.8E-4.5+ 69 48 15,1 553.2-115 4.5+ 548.2-120 IV same as above, trace pyrite at 120.5 feet trace shell fragments at 121 ft 60/60 4.5+ IV same as above - trace shell fragments trace small discontinouous silt lenses at 128.5 ft 543.2-125 4.5+ 538.2-130 60/57 4.5+ 4.5+ 50/6 533.2 135

Project: WMTX - Mesquite Creeek Landfill Project Location: New Braunfels, TX

Project Number: GT 3435

Elevation, feet	Depth, feet	Sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Field USCS	Graphic Log	MATERIAL DESCRIPTION	Driven/Rec	Permeability (cm/s)	Pocket Pen.	LL, %	PI%	Moisture Content %	Plezometer Completion
533.2	135— - - - 140—				ſV	Claystone		CLAYSTONE, dry, dark gray (2.5Y4/1), some silt (cont.)	60/60		4.5+				
- - - 523.2—	- - - 145-				IV	Claystone		Bottom of Boring at 145 feet bas	72/72		4.5+	50	32	12,9	
- - - 518.2—	- - 150—														
- - - 513.2—	- - 155—														
- - - 508.2—	- - 160—							- · · · · ·							
503.2-	- - 165														
498.2	- - 170—														

Project: WMTX - Mesquite Creek Landfill Project Location: New Braunfels, TX

Project Number: GT 3435

Date(s) Drilled 10/19-10/20/04	Logged By Trent McDaniel	Checked By Janet Meaux
Drilling	Drill Bit 4 1/4 inch ID, Hollow Stem	Total Depth
Method Hollow Stem Auger, Core	Size/Type Auger	of Borehole 115 feet bgs
Drill Rig	Drilling Geoprojects/ Jose Landezos	Approximate
Type CME 75	Contractor 2551W	Surface Elevation 640.54 feet MSL
Groundwater Level	Sampling	Hammer
and Date Measured 39' in fractures	Method(s) SPT, Other	Data 140 lb, 30 in drop, auto trip
Borehole Backfill Grout	Location Northing 13,815,207.26 Easting 2	2,279,121.48

	hard stiff very stiff very stiff very stiff	3 11 21 14 5 5 6 4 4 6 7 11 5 10 15 20 4 12 17 21 4 10 16 22	I III Stiff III	EE GC CL CL		GRAVEL, some grass, some dark brown fat clay, moist CLAY, some silt, moist, moderate stiff, very dark gray (Gley1 N3/0) grayish brown GRAVEL, some clay (10YR5/2) quartz gravel CLAY, some silt and chalk, moist, trace gravel, light gray (Gley1N7/0) mottled with brownish yellow (10YR6/8) no chalk	24/16 - 24/21 - 24/21 - 24/24 - 24/24	3	1.75 1.75 2.0 4.0	68 53	45	18.5
IN IN AND AND AND AND AND AND AND AND AND AN	stiff stiff very stiff very stiff	14 5 5 6 4 4 6 7 11 5 10 15 20 4 12 17 21 4 10 16 22	II Stiff III	CL CL		grayish brown GRAVEL, some clay (10YR5/2) quartz gravel CLAY, some silt and chalk, moist, trace gravel, light gray (Gley1N7/0) mottled with brownish yellow (10YR6/8) no chalk	24/21 24/15 24/24		1.75 2.0 4.0	68 53	45 35	18.5
	stiff stiff very stiff very stiff	5564 467 11 51015 20 41217 21 41016 22	stiff JII	CL		CLAY, some silt and chalk, moist, trace gravel, light gray (Gley1N7/0) mottled with brownish yellow (10YR6/8)	_ 24/21 _ 24/19 _ 24/24	9	1.75 2.0 4.0	68 53	45 35	18.5
	stiff very stiff very stiff very stiff	4 6 7 11 5 10 15 20 4 12 17 21 4 10 16 22	stiff III III	CL		no chalk	24/19		2.0 4.0	53	35	18
	very stiff very stiff very stiff	5 10 15 20 4 12 17 21 4 10 16 22	ш	CL		no chalk	_ 24/24		4.0	53	35	18
	very stiff very stiff	4 12 17 21 4 10 16 22	m m	CL		no chalk	1					E I
11111	very stiff	4 10 16 22	Ш)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	_ 24/24		4.0			
Ï				CL		grading light gray (Gley1N7/0) mottled with olive yellow (2.5Y6/6)	24/24		4.0	62	43	20.4
	very stiff	4 11 17	HI BI	CL CL		possible vertical fracture	_ 24/24		4.5			
	hard	20 6 16 23 34	ш	CL		some black staining	24/24		4.5+			
	hard	8 18 26 42	m	CL		 possible 70 degree fracture clay filled no water, grading light yellowish brown (2.5Y6/4) 	_ 24/24		4.5+			
	very stiff	5 11 17 23					24/24		4.5			
	hard	7 17 23 27	10	CL		possible 70 degree and 20 degree fractures, clay filled, no water	24/23		4.5			
	hard	18 20 26 27	ш	CL		 possible 70 degree fracture, clay filled, no water, trace calcite, some black staining 	_ 24/24		4.5+			
	hard	7 17 24 27	111	CL		possible 80 degree fracture, clay filled, no water, grading light gray (Gley1N7/0) with brownish yellow mottle (10YR6/6)	24/23		4.5+	55	36	19.7
	hard	10 15 24 33	ju	CL		some iron staining	- 24/24		4.5+			
	hard	11 20 24 30	ш	CL		trace calcite	24/23		4.5+			
		hard very stiff hard hard hard hard	hard 8 18 26 very stiff 5 11 17 hard 7 17 23 hard 18 20 26 27 18 20 hard 7 17 24 hard 10 15 24 33 11 20 hard 11 20	hard 8 18 26 42 III very stiff 5 11 17 23 III hard 7 17 23 27 III hard 18 20 26 27 III hard 7 17 24 27 III hard 10 15 24 33 III hard 11 20 24 30 III	hard 8 18 26 42 III CL very stiff 5 11 17 23 77 III CL hard 7 17 23 77 III CL hard 18 20 26 27 III CL hard 17 223 27 III CL hard 18 20 26 27 III CL hard 10 15 24 33 III CL hard 12 4 33 III CL hard 12 4 33 III CL	hard 8 18 26 42 III CL very stiff 5 11 17 23 III L hard 7 17 23 27 III CL hard 18 20 26 27 III CL hard 10 15 24 33 III CL hard 12 120 24 30 III CL	hard8 18 26IIICLpossible 70 degree fracture clay filled no water, grading light yellowish brown (2.5Y6/4)very stiff5 11 17 23IIICLpossible 70 degree and 20 degree fractures, clay filled, no waterhard7 17 23 277IIICLpossible 70 degree fracture, clay filled, no water, trace calcite, some black staininghard18 20 26 27IIICLpossible 70 degree fracture, clay filled, no water, trace calcite, some black staininghard7 17 24 27IIICLpossible 80 degree fracture, clay filled, no water, grading light gray (Gley1N7/0) with brownish yellow mottle (10YR6/6) some iron staininghard10 15 24 33IIICLtrace calcitehard11 20 24 30IIICLtrace calcite	hard8 18 26 42IIICLpossible 70 degree fracture clay filled no water, grading light yellowish brown (2.5Y6/4)24/24very stiff5 11 17 2311CLpossible 70 degree and 20 degree fractures, clay filled, no water24/24hard7 17 23 277IIICLpossible 70 degree and 20 degree fractures, clay filled, no water24/24hard18 20 26 27IIICLpossible 70 degree fracture, clay filled, no water, trace calcite, some black staining24/24hard7 17 24 27IIICLpossible 80 degree fracture, clay filled, no water, grading light gray (Gley1N7/0) with brownish yellow mottle (10YR6/6)24/24hard10 15 24 30IIICLtrace calcite24/24hard11 20 24 30IIICLtrace calcite24/24	hard8 18 26IIICLpossible 70 degree fracture clay filled no water, grading light yellowish brown (2.5Y6/4)24/24very stiff5 11 17 2311CLpossible 70 degree and 20 degree fractures, clay filled, no water24/24hard7 17 23 26 27IIICLpossible 70 degree and 20 degree fractures, clay filled, no water24/24hard18 20 26 27IIICLpossible 70 degree fracture, clay filled, no water, trace calcite, some black staining24/24hard7 17 24 27IIICLpossible 80 degree fracture, clay filled, no water, grading light gray (Gley IN7/0) with brownish yellow mottle (10YR6/6)24/24hard10 15 24 30IIICLsome iron staining24/24hard11 20 24 30IIICLtrace calcite24/24	hard8 18 26IIICLpossible 70 degree fracture clay filled no water, grading light yellowish brown (2.5Y6/4)24/244.5+very stiff5 11 17 2311CLpossible 70 degree and 20 degree fractures, clay filled, no water24/244.5hard7 17 23 26 27IIICLpossible 70 degree and 20 degree fractures, clay filled, no water24/244.5hard18 20 26 27IIICLpossible 70 degree fracture, clay filled, no water, trace calcite, some black staining24/244.5+hard7 17 24 27IIICLpossible 80 degree fracture, clay filled, no water, grading light gray (Gley1N7/0) with brownish yellow mottle (10YR6/6)24/244.5+hard10 15 24 33IIICLtrace calcite24/244.5+hard11 20 24 30IIICLtrace calcite24/234.5+	hard8 18 26IIICLpossible 70 degree fracture clay filled no water, grading light yellowish brown (2.5Y6/4)24/244.5+very stiff5 11 17 231124/244.5hard7 17 23 27IIICLpossible 70 degree and 20 degree fractures, clay filled, no water some black staining24/244.5hard18 20 26 27IIICLpossible 70 degree fracture, clay filled, no water, trace calcite, some black staining24/244.5+hard7 17 24 27IIICLpossible 80 degree fracture, clay filled, no water, grading light gray (Gley1N7/0) with brownish yellow mottle (10YR6/6) some iron staining24/244.5+hard10 15 24 33IIICLtrace calcite24/244.5+hard11 20 24 30IIICLtrace calcite24/244.5+	hard8 18 26IIICLpossible 70 degree fracture clay filled no water, grading light yellowish brown (2.5Y6/4)24/244.5+very stiff5 11 17 231124/244.5hard7 17 23IIICLpossible 70 degree and 20 degree fractures, clay filled, no water24/244.5hard18 20IIICLpossible 70 degree fracture, clay filled, no water, trace calcite, some black staining24/244.5+hard18 20IIICLpossible 70 degree fracture, clay filled, no water, trace calcite, some black staining24/244.5+hard7 17 24IIICLpossible 80 degree fracture, clay filled, no water, grading light gray (Gley1N7/0) with brownish yellow mottle (10YR6/6)24/244.5+hard10 15IIICLtrace calcite24/244.5+hard11 20 24 30IIICLtrace calcite24/234.5+

Boring GB-05 Sheet 2 of 4

Elevation, feet	Depth, feet	Sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Field USCS	Graphic Log	MATERIAL DESCRIPTION		Driven/Rec	Permeability (cm/s)	Pocket Pen.	LL, %	P1%	Moisture Content %	Diazomatar
10.5-	30-	IJ	hard	7 16 21 29		CL CL		CLAY, some silt and chalk, moist, trace gravel, light gray (Gley1N7/0) mottled with brownish yellow (10YR6/8) (cont.)		24/23		4.5+				
-		Ï	hard	9 21 26 32	111	CL		possible 10 degree and horizontal fractures, calcite filled, no water	10 E	24/23		4.5+				
-)5.5—	- 35—	Ï	hard	10 19 25 35	III.	CL		possible horizontal fracture, calcite filled, no water	1	24/23		4.5+				
-		X	hard	12 23 30 43	H	CL		grading light yellowish brown (10YR6/4), possible 30 degree, 10 degree and horizontal fractures, calcite filled, no water		24/24		4.5+	60	40	18.5	
_		Ĭ	hard	12 24 33 40	ш	CL		possible 30 degree horizontal fractures, calcite filled, water present in fractures	10 10	24/24		4.5+				
00.5—	40	Ï	hard	10 33 33 38	RI	CL		alternating layers 6" to 8" of light yellowish brown (10YR6/4) and dark gray (Gley1N4/0), some silt, possible 30 degree fracture at 40.75' calcite filled, water present.		24/24		4.5+				
-	1		hard	14 29 30 42	u	CL		 possible 30 degree fracture, calcite filled, water present 	а 11 – 11 – 11	24/24		4.5+				
95.5—	- 45—	Î	hard	12 26 33 40	10	CL		possible 45 degree and 30 degree fractures, calcite filled, water present	i li a	24/24		4.5+				
-		Ï	hard	13 34 39 50/5	DI	CL		 Driller Reports 2.5' of water in borehole, possible 30 degree and horizontal fractures, calcite filled and water present 	10 IV	23/24		4.5+				
	50	Ï	hard	13 25 29 38	111	CL		light yellowish brown (10YR6/4), possible horizontal fracture at 48.75', calcite filled, water present	0 0	24/24		4.5+				
90.5-	50	Ï	hard	14 27 42 50/5.5	ш	CL		grades olive yellow (2.5Y6/6) at 50', possible 70 degree fracture, - calcite filled, trace water present 7" length, 51.4' grades dark gray (Gley1N4/0)	a a 1	Z3 5/24		4.5+	60	41	13,8	
	8	Ï	hard	11 50/6"					10 N	12/12		4.5+				
- 85.5—	55—		hard	13 50/5.5"				- 	Ţ	0.9015		4.5+				No.
	2 00% - 3			core					11 11 11	48/60						A Lange
380 5	60				ш	CL		grading olive (5Y5/4), possible 80 degree fracture, calcite filled, 60 — to 61' in length	l u							
-	-			core					11 - 2401 - Î	60/59			58	38	18 3	The Design of the Price
-				core	ш	CL		possible 80 degree fracture at 64', calcite filled	10 - 10	60/60						

Elevation, feet	Depth, feet	Sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Fleid USCS	Graphic Log	MATERIAL DESCRIPTION	Driven/Rec	Permeability (cm/s)	Pocket Pen.	LL, %	PI%	Moisture Content %	Piezometer Completion
575.5	65 - -			core		Claystone		dark gray (Gley1N4/0) CLAYSTONE, trace iron staining	60/60						
- 570.5 - -	70			core					60/60						
565.5	75			core					60/60			65	43	18.1	
560.5— - - -	80-			core					60/60						
\$55.5— - - -	85			core					60/60						
550.5— - - -	90			core					60/58						
545.5— - - -	95			core	IV	Claystone			60/60						
540.5	100			core						I					

Project Number: GT 3435

Elevation. feet	Depth, feet	Sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Field USCS	Graphic Log	MATERIAL DESCRIPTION	Driven/Rec	Permeability (cm/s)	Pocket Pen.	LL, %	PI%	Moisture Content %	Piezometer Completion
540.5-	-100 - - -	7		core	IV	Claystone		dark gray (Gley1N4/0) CLAYSTONE, trace iron staining (cont.)	60/60						
535.5–	- 105			core	IV	Claystona		trace shell fragments	60/60						
530.5-	- 110			core					72/72						
525.5-	115-				IV	Claystone		Bottom of Boring at 115 feet bgs							
520.5-	- 120							-							
- 515.5– - -	- 125														
510.5-	- 130														
505.5	135														

Drilled	01/2	4-01	/26/05					Logged By Taylor Johnston	Checked By Ja	net	Meau	лх				
Drilling Method	Holl	ow S	Stem Au	uger, Co	оге			Drill Bit 4 1/4 inch ID, Hollow Stem Size/Type Auger	Total Depth of Borehole 12	4 fee	t bg	s				
Drill Rig Type	СМІ	E 75						Drilling Geoprojects/ Jose Landezos Contractor 2551W	Approximate Surface Elevatio	n 64	5.97	' feet	MS			
Ground and Da	lwater te Mea	Level	39.29					Sampling Method(s) SPT, Tube, Other	Hammer Data 140 II	o, 30	in d	lrop,	auto	o trip)	
Boreho Backfill	^{le} Gr	out t	o 48' fr	om Tota	l De	pth		Location Northing 13,815,883.30 Easting 2,2	279,871.78							
Elevation, feet	Depth, feet	Sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Field USCS	Graphic Log	MATERIAL DESCRIPTION		Driven/Rec	Permeability (cm/s)	Pocket Pen.	LL, %	PI%	Moisture Content %	Piezometer
646-	0-				1	СН		GRASS						_		4
-	-	\mathbf{N}	very stiff	3712 17	1	сн		very dark brown (10YR2/2), fat CLAY, moist, roots p	resent	- 24/17		3.75				2
		N	stiff	467	W	CL		 grades to brown (10YR4/3) lean CLAY, moist, brownish yellow (10YR6/6) 		24/20		3.5				
		Σ	0 till	11		a										
641—	5		very stiff	2 7 11 15	m			grades yellow (2.5Y //6) lean CLAY	-	24/20		3.0				
1			hard	6 17 26 35	30	CL- ML		grades light yellowish brown (2.5Y6/4), lean CLAY, r -	noist, some silt	24/26		4.5+	40	22	14.8	
54	-		hard	5 21 31 45				-		24/23 5		4.5+				
636-	10		hard	8 19 28 38	W	CL		grades mottled light gray (2.5Y7/1) and light yellowis - (2.5Y6/4), lean CLAY, some silt, moist	h brown	24/24 5		4.5+				
5-	-		hard	6 22 34 41				-		_ 24/25		4.5				
631—	15		hard	6 20 30 38					-	24/26		4.5+	57	39	18.7	
2			hard	4 15 31 22				-		24/26		4.5+				
-		N	hard	2 12 23						24/23.5		4.5+				
626—	20			30					-	-						
-		X						-		_ 24/20						
			hard	6 20 27 37						_ 24/25	5	4.5+				
621—	25—		hard	11 22 27 33				-		24/25	5	4.5+				
			hard	19 27 31 47						_ 24/23		4.5+				
646	20		hard	11 17 25 30				-		24/25		4.5+				

Boring GB-06

Elevation, feet Sample Type Graphic Log Permeability (cm/s) Piezometer Completion Consistency Fleid USCS Pocket Pen Sampling Resistance, blows/foot Driven/Rec Depth, feet Stratum Moisture Content LL, % PI% **MATERIAL DESCRIPTION** 616-30-CL III lean CLAY, moist, brownish yellow (10YR6/6) (cont.) 10 19 CL Ш 4/2 4.5+ hard possible horizontal fracture, dry 27 33 CL ĊĹ Ш possible horizontal fracture, dry 11 25 CL 24/25 hard Ш 4.5+ 42 50/6 possible horizontal fracture, dry calcite seam, 80 degree, 1.3" in length m CL 12 30 43 calcite seam, 85 degree, 1.6" in length hard 4.5+ 611 35 50/4.5 22 37 22/2 16.6 4.5+ 53 36 hard 49 50/4 16 36 44 Ш CL 4.5+ hard horizontal calcite seam, wet, possible fracture 50/5.5 CL III horizontal calcite seam, wet, possible fracture, grades gray (5Y5/1) 606 40 15 32 lean CLAY ш CL 7 5/18 4.5+ hard 50/5.5 grades light yellowish brown (10YR6/4), lean CLAY CL Ш grades gray (Y5/1), lean CLAY 16 49 65/1 4.5+ hard 50/4.5 ∛ Javst possible 45 degree fracture, calcite lined, dry, grades light 601-45 yellowish brown (2.5Y6/4) Gray (5Y5/1) CLAYSTONE 6/6 59 44 17.5 core IV Mechanical Fractures, all 50 degree on the same side, probably from the core barrel. 596-50 a)/6 core 591-55 core 586-60 core core 581 65

Elevation, feet Depth, feet Sample Type Graphic Log Consistency Field USCS Driven/Rec Permeability (cm/s) Pocket Pen. PI% Moisture Content % Piezometer Completion Sampling Resistance, blows/foot Stratum LL, % MATERIAL DESCRIPTION 65-581īV Clavst Gray (5Y5/1) CLAYSTONE (cont.) core 576 70 90/6 core 571-75 соге 60/E 566-80-1.1E-8 18,1 60/60 core 561-85 60/6 core 556-90-60/6: core 551-95 SU 16 core соге 546-100

511-135

Piezometer Completion

Elevation, feet Sample Type Consistency Field USCS Graphic Log Sampling Resistance, blows/foot Driven/Rec Permeability (cm/s) Pocket Pen. P1% Moisture Content % Depth, feet Stratum LL, % MATERIAL DESCRIPTION 546-100-Gray (5Y5/1) CLAYSTONE (cont.) core 541-105-60/63 core 536-110core 531-115 core 60/6 526-120-60/61 core Bottom of Boring at 124 feet bgs 125-521-130-516-

Drilled 11/03-11/04/04 Logged By Taylor Johnston Checked By Janet Meaux Drilling Method Hollow Stem Auger/Core Drill Bit Size/Type Auger 4 1/4 inch ID, Hollow Stem Size/Type Auger Total Depth of Borehole 59 feet bgs Drill Rig Type CME 75 Drilling Groundwater Level and Date Measured Drilling Method(s) Geoprojects/ Jose Landezos Contractor 2551W Approximate Surface Elevation Data 602.86 feet M Borehole Backfill Grout Sampling Method(s) SPT, Tube, Grab, Other Hammer Data 140 lb, 30 in drop, a Borehole Backfill Grout Solution Size/Type Solution Size/Type Solution Size/Type Solution Size/Type Solution Size/Type Method(s) SPT, Tube, Grab, Other Hammer Data 140 lb, 30 in drop, a Borehole Backfill Grout Solution Size/Type Solution Size/Type Solution Size/Type Matterial Description Solution Size/Type Solution Size/Type Solution Size/Type Solution Size/Type Solution Size/Type Matterial Description Solution Size/Type Solution Size/Type Solution Size/Type Solution Size/Type Solution Size/Type Solution Size/Type Solution Solution Size/Type Soluti	MSL uuto trip %Id	oisture ontent % ezometer ompletion
Drilling Method Hollow Stem Auger/Core Drill Bit Size/Type Auger Total Depth of Borehole 59 feet bgs Drill Rig Type CME 75 Drilling Contractor 2551W Geoprojects/ Jose Landezos Approximate Surface Elevation 602.86 feet M Groundwater Level and Date Measured NA Sampling Method(s) SPT, Tube, Grab, Other Harmer Data 140 lb, 30 in drop, a Borehole Backfill Grout Location Northing 13,816,404.97 Easting 2,278,500.35 9 Image: Size Color Size Color Size Color Size Color Image: Size Color Size Color Size Color Size Color Image: Size Color Size Color Size Color Size Color Image: Size Color Size Color Size Color Size Color Image: Size Color Size Color Size Color Size Color Image: Size Color Size Color Size Color Size Color Image: Size Color Size Color Size Color Size Color Size Color Image: Size Color Size Color Size Color Size Color Size Color Size Color Image: Size Color Size Color Size Color Size Color	MSL uto trip %Id	oisture ontent % ezometer ompletion
Drilling Type CME 75 Drilling Contractor 2551W Geoprojects/ Jose Landezos Contractor 2551W Approximate Surface Elevation 602.86 feet M Groundwater Level and Date Measured and Date Measured Backfill NA Sampling Method(s) SPT, Tube, Grab, Other Hammer Data 140 lb, 30 in drop, a Borehole Backfill Grout Location Northing 13,816,404.97 Easting 2,278,500.35 0 Matterial Description Operating Surface Ilevation Data Operating Surface Ilevation Surface Ilevation Operating Surface Ilevation Data Operating Surface Ilevatio Data Operating Surface Ilevation Data	MSL uto trip %Id	oisture ontent % ezometer ompletion
Groundwater Level and Date Measured Borehole Backfill NA Sampling Method(s) SPT, Tube, Grab, Other Hammer Data 140 lb, 30 in drop, a Borehole Backfill Grout Location Northing 13,816,404.97 Easting 2,278,500.35 Image: Start and	Luto trip %Id	oisture ontent % ezometer ompletion
Borehole Backfill Grout Location Northing 13,816,404.97 Easting 2,278,500.35 Image: State of the stat	LL, % PI%	oisture ontent % ezometer ompletion
Depth, feet Elevation, feet Consistence, Sample Type Elevation, feet Consistence, Stratum Consistence, Consecutive, Conseconsecutive, Consecutive, Consecutive, Consecutive,	LL, % PI%	oisture ontent % ezometer ompletion
Depth, feet Type Elevation, feet Consistence, Sample Type Consistence, Consistence, Consistence, Constraining Constrai	LL, % PI%	oisture ontent % ezometer ompletion
iotex attractive	LL, % PI%	oisture ontent ezome omplet
画のののでのです。 のののでので、 のののでのので、 のののので、 のののののののののののののののののののののののののののののののののののの	ъ Е	
stiff 1358 CH GRASS		≥0 ĒŬ
6 8 10 I CL light olive brown (2.5Y5/6), lean CLAY, moist		
	75 50	
	15 55	
hard 20 50/5" GC GRAVEL, some light olive brown (2.5Y5/6), lean clay, moist		
0 III CL olive yellow(2.5Y6/6), lean CLAY, moist		
	48 31	15.4
587.9 15 hard 33 44 4.5+		
some grave!		
hard 29 III CL grades light yellowish brown (2.5Y6/3), lean CLAY, some gravel, 4.5+		
582.9 20 005.8 moist -		
arades light vellowish brown (2.5Y6/3), lean CLAY, moist, no gravel		
577.9 25 hard 12.23 36 50/5" - 23/24 4.5+		
	19 32	16
572.9 30 101 50/5 4.5+		

Date(s) Drilled 10/06-10/07/04 Checked By Janet Meaux Logged By Taylor Johnston Total Depth of Borehole 4 1/4 inch ID, Hollow Stem Method Hollow Stem Auger, Core Drill Bit 71.5 feet bgs Size/Type Auger Drill Rig CME 75 Geoprojects/ Jose Landezos Approximate Drilling 623.83 feet MSL Contractor 2551W Surface Elevation Туре Hammer Data 140 lb, 30 in drop, auto trip Sampling Method(s) SPT, Grab, Other Groundwater Level dry at drilling and Date Measured Data Borehole Grout Location Northing 13,816,002.19 Easting 2,278,101.00 Backfill Elevation, feet Sample Type Piezometer Completion g Permeability (cm/s) Pocket Pen. Consistency Sampling Resistance, blows/foot Field USCS Driven/Rec * Depth, feet Moisture Content Stratum Graphic I % PI% Ę MATERIAL DESCRIPTION 623.8-0 CH GRASS I stiff Brown (10YR4/3), wet, fat CLAY 1569 11 GC CL GRAVEL, some lean clay, light yellowish brown (2.5Y6/3), moist III CL yellow (2.5Y7/8), lean CLAY, moist 7 27 hard 50/3.5" 618.8 Ш CL grades few shell fragments, yellow (2.5Y7/6), moist 7 27 hard 50/6" 613.8· 10

111 CL grades pale yellow (2.5Y7/4), moist hard 20 50/5" 15 CL 111 grades dry 10 20 hard 29 31 20 16 32 hard 50/5.5

608.8-

603.8

598.8

593.8

25

30

20 30 42

50/5.5

11 20

33 38

hard

hard

5 25 29 hard 32 4 15 27 hard 27

33 19 7.9

Elevation, feet Driven/Rec Permeability (cm/s) Sample Type Graphic Log Fleid USCS Consistency Piezometer Completion Depth, feet Sampting Resistance, blows/foot Pocket Pen. PI% Moisture Content % Stratum LL, % MATERIAL DESCRIPTION 65-558.8grades greenish gray (Gley1 10Y6/1) CLAYSTONE, some silt (cont.) K core 60/60 core 90/60 553.8 70 IV Bottom of Boring at 71.5 feet bgs 548.8-75 543.8-80-538.8-85 533.8-90 528.8-95 523.8 100

Date(s) Drilled 10/21-10/22/04 Checked By Janet Meaux Logged By Trent McDaniel Drilling Method Hollow Stem Auger, Core Total Depth of Borehole 89 feet bgs Drill Bit 4/14 inch ID, Hollow Stem Size/Type Auger Drill Rig CME 75 Approximate Surface Elevation 638.66 feet MSL Drilling Geoprojects/ Jose Landezos Contractor 2551W Туре Hammer Data 140 lb, 30 in drop, auto trip Sampling Method(s) SPT, Grab, Other Groundwater Level water present in fractures and Date Measured at 34' Borehole Backfill Grout Location Northing 13,815,699.84 Easting 2,279,256.03

	Elevation, feet	Depth, feet	Sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Field USCS	Graphic Log	MATERIAL DESCRIPTION	Driven/Rec	Permeability (cm/s)	Pocket Pen.	LL, %	PI%	Moisture Content %	Plezometer Completion
63	8.7	0	N	stiff	5456	L	CL		grass covered CLAY	24/2	3	1.5	46	27	13.2	
	-	-				m	GL		rootiets	-						
	-	-							gravel, moist							
63	37_	5	1	verv stiff	4 11 17	HI.	CL		grades pale yellow (5Y8/4), mottled with light gray (5Y7/1), some — chalk, moist	24/2	3	1.75				
Ĩ	_	_		rory can	25				-							
	-	-							e i i i i i i i i i i i i i i i i i i i				50	33	13.1	
	85								-							
62	8.7-	10-	Ŋ	hard	8 15 17	HI	CL		grades olive yellow (2.5Y6/6), mottled with gray (2.5Y6/1), trace — chalk, moist –	24/2	4	4.0				
	-	-	~		20				-							
	a n M	-														
	1	-		6		m	CI									
62	3.7—	15-	3	very stiff	3 13 14 21		0L		possible 70 degree fractore, ciay filled, no water	24/2	4	4.5+	55	38	18	
	-	1							_	1						
]	1														
	-	۰.							- ,							
61	8.7—	20-	N	very stiff	4 12 17 25	10	CL		possible 70 degree fracture, clay and organic filled, no water	24/2	3	4.5+				
		1		6]						
	-								-							
	-	-	1			m	CL		possible 80 degree fracture, clay and organic filled, no water, some							
61	3.7—	25—	N	hard	8 17 27 24				- iron staining -	24/2	4	4.5+				
	1								-							
	-	-	8						-							
	-			hard	12 23 31 42	ш	CL		grading light yellowish brown (2.5Y6/4), slightly moist to dry	24/2	4	4.5+				
60	8.7_	30						1/2///		4						1.1.1.1.2.1.2.1.1
L												_			_	

Elevation, feet	Depth, feet	Sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Field USCS	Graphic Log	MATERIAL DESCRIPTION		Driven/Rec	Permeability (cm/s)	Pocket Pen.	LL, %	PI%	Moisture Content %	Piezometer Completion
608.7 - -	30		hard	12 23 31 42	111	CL		grades to pale yellow (5Y7/4), some chalk, some calcareous gravel, moist (cont.)		24/24		4.5+	64	43	13,8	
- 603.7 -	- 35— -		hard	10 23 35 46	16	CL		grading light brownish gray (2.5Y6/5), some iron staining, possible — 70 degree fractures, calcite filled, water present		24/24		4.5+		10		
- 598.7 -	- 40 -		hard	8 24 33 33	ш	CL		possible 30 degree fracture, calcite filled, water present, trace shell — fragments								
- - 593.7— - -	- 45— -		hard	11 30 50/6"	01 18	CL CL		dark gray (Gley1N4/0), lean CLAY, some silt, mottled light – yellowish brown (2.5Y6/4), wet possible 45 degree fracture calcite filled, water present		18/20		4.5+				
- - 588.7— - -	- 50— -		hard	12 26 32 46		CL CL CL		grades dark gray CLAY possible 45 degree fracture, clacite filled, water present grades light yellowish brown (2.5Y6/4), CLAY		24/24		4.5+				
583.7-			hard	13 33 50/6"	IV	Claystone		dark gray (Gley1N4/0), CLAYSTONE		18/18		4.5+				
- - 578.7— -	- - - 60—		hard	14 50/6"					- F. L. W. S.	12/12		4.5+	61	43	14.3	
- - 573.7	- - 65—			core						60/58		4.5+	55	37	16.9	

Boring GB-09

Elevation, feet	Depth, feet	Sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Field USCS	Graphic Log	MATERIAL DESCRIPTION	Driven/Rec	Permeability (cm/s)	Pocket Pen.	LL, %	P1%	Moisture Content %	Piezometer Completion
573.7-	65 - -			core	IV.	Claystone		dark gray (Gley1N4/0), CLAYSTONE (cont.)	60/58		4.5+				
568.7	70— - -			core					60/58		4.5+				
563.7— - -	75			core					60/59		4.5+				
558.7— - -	80			core					60/60	1.9E-9	4.5+	65	44	16.6	
553.7— - -	85			core					60/60		4.5+				
- 548.7 - -	90-				IV	Claystone		Bottom of Boring at 89 feet bgs							
- 543.7 - -	95														
538.7_	100								1						

Date(s) Drilled 10/22-10/26/04	Logged By Trent McDaniel, Taylor Johnston	Checked By Janet Meaux
Drilling Method Hollow Stem Auger, Core	Drill Bit 4 1/4 inch ID, Hollow Stem Size/Type Auger	Total Depth of Borehole 99 feet bgs
Drill Rig Type CME 75	Drilling Geoprojects/ Jose Landezos Contractor 2551W	Approximate Surface Elevation 648.65 feet MSL
Groundwater Level and Date Measured NA	Sampling Method(s) SPT, Grab, Other	Hammer 140 lb, 30 in drop, auto trip
Drilling Method Hollow Stem Auger, Core Drill Bit Size/Type 4 1/4 inch ID, Hollow Stem Auger Total Depth of Borehole 99 feet bgs Drill Rig Type CME 75 Drilling Contractor Geoprojects/ Jose Landezos Contractor Approximate Surface Elevation 648.65 feet Groundwater Level and Date Measured NA Sampling Method(s) SPT, Grab, Other Hammer Data 140 lb, 30 in drop, Borehole Backfill Grout Location Northing 13,815,451.54 Easting 2,278,556.87	,278,556.87	

Elevation, feet Sample Type Consistency Graphic Log Permeability (cm/s) Sampling Resistance, blows/foot Field USCS Pocket Pen. Piezometer Completion Driven/Rec Depth, feet Stratum Moisture Content LL, % PI% **MATERIAL DESCRIPTION** 30-618.6-6 16 25 III CL grading light yellowish brown (2.5Y6/4), possible 70 degree 24/23 4.5+ hard 37 fracture, clay filled, no water (cont.) III CL grades trace calcite 7 21 32 613.6 35hard 37 CL ш 11 30 42 possible 45 degree fracture, calcite filled, water present 608.6 4.5+ 40 hard 50/5.5 Ш CL grades dark gray (Gley1N4/0), lean CLAY, some silt ш CL grades alternating layers of dark gray CLAY (Gley1N4/0), and light 10 27 23/24 603.6 45 hard yellowish brown (2.5Y6/4) 4.5+ 42 50/5 Ш CL grades dark gray (GleyN4/0), CLAY, some silt 20 45 hard 17/17 4.5+ 598.6 50 50/4" 111 CL grades brownish yellow (10YR6/6), calcite seam from 52-52.3' 17 43 13.6 hard 4.5+ 49 31 50/4.5 III CL grades dark gray (Gley1N4/0), CLAY ш CL grades brownish yellow (10YR6/6), CLAY Ш dark gray (GleyN4/0), CLAYSTONE, some silt 593.6 55 core 588.6-60 IN IV Clays grades yellowish brown (10YR5/4), CLAYSTONE grades to dark gray CLAYSTONE, (GleyN4/0), possible 50 degree 1/86, n/973 core fracture core 583.6 65

Elevation feet	Depth, feet	Sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Field USCS	Graphic Log	MATERIAL DESCRIPTION		Driven/Rec	Permeability (cm/s)	Pocket Pen.	LL, %	%Id	Moisture Content %	Piezometer Completion
583.6-	- 65- 	/		core	īV	Claystone		grades to dark gray CLAYSTONE, (GleyN4/0), possible 50 degree fracture (cont.)	3 I I	60760. 60/58						
578.6-	- 70- - 70- 			core				Image: Section 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	at a c l l a	60/53, 60/53						
573.6-	- 75-			core					and an an E	60/61, 60/61						
568.6-	- 80 - 80 			core					r r ar a l r	60/60, 60/50						
563.6-	- 85			core					ar ar ar 3	60/60, 60/60						
558.6-	- 90 			core						60/57, 80/53						
553.6-	- 95 			core	IV	Claystone		Bottom of Boring at 99 feet bas		60/60, 60/59						
548.6-	100-					ï				1 I	<u> </u>					

Date(s) Drilled 10/27-10/28/04 Checked By Janet Meaux Logged By Taylor Johnston Total Depth of Borehole 90 feet bgs Drill Bit 4 1/4 inch ID, Hollow Stem Drilling Method Hollow Stem Auger, Core Size/Type Auger Drill Rig CME 75 Approximate Surface Elevation 617.2 feet MSL Drilling Geoprojects/ Jose Landezos Туре Contractor 2551W Sampling Method(s) SPT, Grab, Other Hammer Groundwater Level NA and Date Measured 140 lb, 30 in drop, auto trip Data Borehole Backfill Grout Location Northing 13,815,865.03 Easting 2,278,665.34

Elevation, feet	Depth, feet	Sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Field USCS	Graphic Log	MATERIAL DESCRIPTION	Driven/Rec	Permeability (cm/s)	Pocket Pen.	LL, %	PI%	Moisture Content %	Diazomatac
-	0 - -	111	hard	3916 19	m	CH CL		topsoil Yellow (10YR7/6) mottled with white, lean CLAY, moist	24/24		4.5+	65	45	22,1	- 4-45 00000
- 2.2— - -	5		very hard	6 16 23 36	2 a 2	CL CL CL		brownish yellow (10YR6/6), lean CLAY, moist grades some chert gravel, moist grades brownish yellow (10YR6/6), lean CLAY, moist	24/24		4.5+				
)7.2— — —	- 10_ -		very hard	6 50/5"					11/12		4.5+				
- 2.2- -	- 15— -	111.	very hard	9 22 32 43					24/24		4.5+				
7.2	- 20— -	111.	very hard	7 14 21 27				-	24/24		4.5+	52	35	18,9	
2.2-	- 25— -	111	very hard	4 17 20 33					24/24		4.5+				
- 87.2_			very hard	9 28 36 50/5.5					23 524		4.5+				

Elevation, feet	Depth, feet	Sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Fleid USCS	Graphic Log	MATERIAL DESCRIPTION	Driven/Rec	Permeability (cm/s)	Pocket Pen.	LL, %	PI%	Moisture Content %	Piezometer Completion
587.2	30—		very hard	9 28 36 50/5.5	m	CL		brownish yellow lean CLAY	23 5/24		4.5+				
- - 582.2— - -	- - 35— -		very hard	14 43 50/5"					17/17		4.5+				
577.2-	-		very hard	14 39 50/4"		CL		grades gray (10YR5/1), moist	16/18		4.5+				TUTU
		$\overline{\top}$		00,1		CL		grades brownish yellow (10YR6/6), lean CLAY, moist horizontal calcite seam							
- - 572.2 - -	- - 45- -		very hard very hard	11 29 50/5" 18 35 50/5.5	ш IV	CL Clayslone		vertical calcite seam grades grayish brown (10YR5/2), CLAY very dark gray (Gley1 3/N), CLAYSTONE, dry	17/19		4.5+ 4.5+	60	43	16.4	
- 567.2 - -	50— - - -			core	IV IV	SC-CL Claystone		tan layer	180/53, 60/53	24E-9				9.8	
562.2	55— - -			core	IV	Claystone		Very dark gray (Gley1 3/N), CLAYSTONE, dry, some silt	60/59 60/59						
557.2 - - -	60— - - -			core					60/59, 60/59						
552.2	65—														1003000

Elevation, feet Driven/Rec Permeability (cm/s) Sample Type Graphic Log Consistency Pocket Pen. Piezometer Completion Depth, feet Sampling Resistance, blows/foot Field USCS PI% Moisture Content ? Stratum LL, % **MATERIAL DESCRIPTION** 65-552.2very dark gray (Gley1 3/N), CLAYSTONE, dry (cont.) 60/59, 60/59 core 547.2 70-60/59, 60/59 core 75-542.2-60/59, 60/59 core 537.2-80-60/58, 60/58 core 532.2-85-72/68. 72/64 core 527.2-90-IV Bottom of Boring at 90 feet bgs 522.2-95-517.2-100

Date(s) Drilled	10/8	-10/	12/04					Logged By Taylor Johnston	Checked By J	anet	Mea	ux				
Drilling Method	Holl	ow	Stem A	uger, Co	ore		-	Drill Bit 4 1/4 inch ID, Hollow Stem Size/Type Auger	Total Depth of Borehole 1	19 fee	t bg	s				
Drill Rig Type	СМ	E 75						Drilling Geoprojects/ Jose Landezos Contractor 2551W	Approximate Surface Elevati	on 63	39.6 1	feet	MS	L		
Ground and Dat	water te Mea	Leve	l NA					Sampling Method(s) SPT, Grab, Other	Hammer Data 140	Ib, 30	in c	lrop,	auto	o trip)	
Borehol Backfill	^e Gr	out						Location Northing 13,815,315.49 Easting 2,2	78,055.83							
		<u> </u>								Т	Г					
n, fee	eet	Type	ency	ot e,		scs	Bo] :			Rec	ability	Pen.			e t%	eter
evatio	epth, t	ample	onsist	amplir esista ows/fo	tratum	eld Us	raphic			riven/	ermeč :m/s)	ocket	Ľ, %	%	onten	iezom
田 639.6	<u>م</u> –0	ů	Ö	0 2 2 0 2 2	S.	E	U	MATERIAL DESCRIPTION		<u> </u>	a.9	•		4	20	
						Сп		dark grayish brown (2.5Y4/2) fat CLAY, moist		4						
3	1									-						
-	-							-		-						
634.6-	5	1	verv hard	10 18	131	CL		pale yellow (5Y7/4), lean CLAY, moist, some calcite					j p			
-		1		29 36				-		-						
-	- 8							-		-						
-	8							-								
-		1		9 19 31	ш	CL		grades olive yellow (2.5Y6/6), lean CLAY, moist								
629.6	10	\mathcal{N}	very naro	46												
-	5									-					40.0	
	2.									-			57	40	12.0	
3	- 14	5		0.03.25		0		-		-						
624.6—	15—		very hard	9 23 35 42	(900)	CL		grades pale yellow (5Y7/4), lean CLAY, moist		-						
		T														
	1									-						
-	80. 2				m	CL		pale vellow (2.5Y7/4), mottled with light grav (2.5Y7/1) lean CLAY	-						
619.6—	20—		very hard	9 19 33 40	1.275			moist	, iour ob (1,	-						
-	- 21 3									-						
1																
																88
614.6—	25—		very hard	7 24 34		1000		-		_						
-	1	1		45				-		-						88
9	9 <u>2</u>									-						
-	<u> </u>	-]						88
609.6	30-		very hard	7 22 30 34												

Elevation, feet Sample Type Consistency Graphic Log Permeability (cm/s) Sampling Resistance, blows/foot Field USCS Pocket Pen. Piezometer Completion Driven/Rec Depth, feet Stratum Moisture Content LL, % PI% MATERIAL DESCRIPTION 609.6-30-7 22 30 34 CL 10 pale yellow (5Y7/4), lean CLAY, moist, some calcite (cont.) ery hard 18.2 63 47 ery hard 6 17 26 604.6 35 Ш CL calcite nodules present very hard 8 21 29 599.6 40 III CL calcite seam horizontal ery hard 8 22 28 594.6 45 Ш CL calcite seams at 45' and 45.5', dry, no water III CL dark greenish gray (Gley1 4/1), moist, CLAY pale yellow (2.5Y7/4), CLAY, moist Ш CL ery hard 8 26 38 dark greenish gray CLAY (Gley1 4/1) 54 72 pale yellow (2.5Y7/4), CLAY, moist 111 ÇL dark greenish gray (Gley1 4/1), CLAY, moist, calcite seam 8 24 42 50/4.2 calcite seam 589.6 ery hard 50 pale yellow (2.5Y7/4), CLAY, moist CL 111 dark greenish gray (Gley1 4/1), CLAY, dry bluish gray (Gley2 5/1), CLAY pale olive (5Y6/3), CLAY, dry Ш CL greenish gray (Gley2 5/1 5BG), CLAY, dry, calcite seam 3/93 3/88 core 584.6 55 grades to pale olive (5Y6/3), CLAY, dry possible 30 degree fracture, calcite lined, dry CL ш grades to greenish gray (Gley2 5/1 5BG) grades to pale olive (5Y6/3), CLAY, dry possible 70 degree calcite seam, horizontal calcite seam 81 CŁ possible 85 degree fracture, dry 579.6 60 IV two possible 70 degree fractures, dry greenish gray (Gley2 6/1 5BG), CLAYSTONE, dry 120/132 core 574.6

	Elevation, feet	Depth, feet	Sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Field USCS	Graphic Log	MATERIAL DESCRIPTION	Driven/Rec	Permeability (cm/s)	Pocket Pen.	LL, %	%Id	Moisture Content %	Piezometer Completion
5	74.6	65— - -	7		core	V	Claystone		greenish gray (Gley2 6/1 5BG), CLAYSTONE, dry (cont.)	120/132, 120/132						
5	- 69.6 - -	70			core					60/77, 60/77						
5	- 64.6	- 75— -														
5	- 59.6 -	- - 80			core					1201121. 1201121						
5	54.6	- 85— -	7		core					48/48. 48/39						
5	- - 49.6	- - 90-			core					60/60, 60/12						
5	- - 44.6 - -	- - 95 -			core					120487, 120487						
5	39.6	- 100														

Elevation, feet Depth, feet Sample Type Piezometer Completion Consistency Graphic Log Driven/Rec Permeability (cm/s) Sampling Resistance, blows/foot Field USCS Pocket Pen. PI% Moisture Content % Stratum LL, % MATERIAL DESCRIPTION 539.6-100-120/87 greenish gray (Gley2 6/1 5BG), CLAYSTONE, dry (cont.) core 60/61 core 105 534.6 0/92 0/92 core 529.6-110-524.6-115 56/61 66/61 core IV Bottom of Boring at 119 feet bgs 120-519.6-125 514.6 509.6-130-504.6 135

ate(s) Vrilled	10/2	8-10	/29/04					Logged By Taylor Johnston	Checked By J	anet	Mea	ux			
rilling lethod	Holl	low S	Stem A	uger, Co	ore			Drill Bit 4 1/4 inch ID, Hollow Stem Size/Type Auger	Total Depth of Borehole 9	5 fee	t bg:	5			
rill Rig	СМ	E 75						Drilling Geoprojects/ Jose Landezos Contractor 2551W	Approximate Surface Elevati	ion 6	18.7	5 feet	MS	L	
Froundy	water e Mea	Level	45' oi	n 10/29/	05			Sampling Method(s) SPT, Grab, Other	Hammer Data 140	lb, 3	0 in	drop,	auto	o trip	•
orehole	^e Gr	out						Location Northing 13,816,217.85 Easting 2,2	279,036.29						
ion, feet	feet	e Type	stency	ing ance, foot	E	scs	ic Log			/Rac	ability	t Pen.			ure nt %
Elevat	Depth,	Sampl	Consis	Sampl Resist blows/	Stratu	Field (Graph	MATERIAL DESCRIPTION		Driver	Perme	Pocke	LL, %	PI%	Moist
8.8	0—		Firm	126	Т	СН		GRASS		24/1		0.25			
]	-	1	FIIM	12		CH		very dark brown (10YR3/1), fat CLAY, moist, weathe	red, few roots	-		0.25			
-					'			grades dark yellowish brown(10YR4/6), fat CLAY		-					
- 3.8—	- 5—	Ï	hard	2 7 12 14	ЯĻ	CL		- _ brownish yellow (10YR6/6), lean CLAY, moist to wet,	some calcite	24/2	6	3.5			
-	1												54	37	18.8
2	1													07	
3.8-	10—	N	hard	4 10 14 20	យ	CL		grades no calcite		24/2	4	4.5+			
	-									-					
-	-									-					
3.8—	15—		ery hard	11 35 42 50/4	m	CL		grading light yellowish brown (10YR6/4), lean CLAY,	dry	22/2	7	4.5+			
-	1														
-	~]									-			42	27	15 1
-	20	1	on hord	12 34						24/2	4	4.5+			
-0.0	-	N	erynaru	48 50/4						-		1.0			
-															
-	5	1		12.20				_		-					
3.8-	25—		ery hard	47 50/4				<u>-</u>		22/;	6	4.5+			
-	-									-					
	2		on herd	18 37						-		4.5+			

Elevation, feet	Depth, feet	Sample Type Consistency	Sampling Resistance, blows/foot	Stratum	Field USCS	Graphic Log	MATERIAL DESCRIPTION		Drlven/Rec	Permeability (cm/s)	Pocket Pen.	LL, %	Ы%	Moisture Content %	Piezometer Completion
588.8-	30	very hard	- W 37 50W	ш	CL		brownish yellow (10YR6/6), lean CLAY, moist to wet, some calcite (cont.)		16/21		4.5+				
- - 583.8— - -	- - 35	Very hard	15 37 50/5.5				 		¥Ê 579		4.5+				
- 578.8— -	40	Very hard	15 32 38 50/55						23 624		4.5+	52	32	17.3	
- 573.8— - -	- 45— -	very hard	10 27 50/6" 15 48 50/3"	III III	CL CL		horizontal calcite seam dark greenish gray (Gley1 4/1), wet, CLAY water in hole sample is wet at 46', grades light yelloiwsh brown (10YR6/4), wet, CLAY at 46.4'		16/19 15/18		4.5+ 4.5+				
- 568.8— - -		Very hard	17 48 50/4" core		CL		Ight yellowish brown (10YR6/4), wet, CLAY calcite seam 30 degrees 6" in length, 50.5 grades to dark greenish gray (Gley1 4/1), CLAY, wet		16/18 54/43, 54/42		4.5+				
	- 55 - -		core	ш Ш	CL CL		grades light yellowish brown (10YR6/4), CLAY, wet at 55', 70 degree calcite seam at 56' dark greenish gray (Gley1 4/1), CLAY, wet	rotori rollor	60/72, 60/72						
558.8— - - -	60— - - -		core	IV	Claysione		 light yellowish brown (10YR6/4), CLAY, wet dark greenish gray (Gley1 4/1), CLAYSTONE 		60/58, 60/58	1 3E-8				17.0	
553.8	65—		core									I,			

Elevation, feet Depth, feet Sample Type Pocket Pen. Graphic Log Consistency Field USCS Driven/Rec Permeability (cm/s) Piezometer Completion Sampling Resistance, blows/foot Moisture Content ° Stratum LL, % PI% MATERIAL DESCRIPTION 553.8-TV. V dark greenish gray (Gley1 4/1), CLAYSTONE (cont.) 60/60, 60/60 1 JE-8 соге 17.0 548.8-70 1/50 соге 543.8 75-50/58 60/58 core 538.8-80-60/61, 60/59 core 533.8 85 120/119 core 528.8 90 12/13, 12/13 core 95 523.8 IV Bottom of Boring at 95 feet bgs 518.8 100

Date(s) Drilled	11/8	-11/	10/05					Logged By Taylor Johnston	Checked By Jar	net	Mea	ux				
Drilling Method	Holl	low \$	Stem A	uger, Co	ore			Drill Bit 4 1/4 inch ID, Hollow Stem Size/Type Auger	Total Depth of Borehole 136	fee	et bg	s				
Drill Rig Type	см	E 75						Drilling Geoprojects/ Jose Landezos Contractor 2551W	Approximate Surface Elevation	67	79.76	6 feet	MS	L		
Ground and Da	water te Mea	Level	NA					Sampling Method(s) SPT, Grab, Other	Hammer Data 140 lb	, 30) in c	irop,	auto	o trip)	
Boreho Backfill	^{le} Gr	out						Location Northing 13,815,300.71 Easting 2,2	279,853.74							
											Γ			_		
on, fee	feet	Type	tency	oote		scs	: Log			Rec	ability	Pen.			t%	eter etion
levati	epth,	ample	onsis	ampll esista ows/f	tratun	eld U	raphi			riven/	erme: m/s)	ocket	. %	%	onter	omple
679.8	0 0	Ő	0	00K2	Ś	Ē	U	MATERIAL DESCRIPTION			<u> </u>	ď	Ξ	۵.	Συ	₽ 0
-	_	\mathbb{N}	hard	2 10 9		GC CH		GRASS dark brown (10)/R3/3) fat CLAY moist	/A	24/18		2.75				
				0	n.	СП		chert gravel, some dark brown (10YR3/3), CLAY, mo	ist /7							
						UL.		light olive brown (2.5Y5/6/), fat CLAY, moist	/-							
		-						light yellowish brown (2.5Y6/4), lean CLAY, moist, so white	me chalk,							
674.8—	5—	\mathbf{N}	hard	10 13						24/21		3.0				
-				1012												
=									-							
3	3								4							
	32								-							
669.8—	10—	\sim	ery hard	8 13 22 23						24/18		2.0				
=	-			20				7	-							
5	12								-					40	20.6	
	4								3 -				69	49	20.6	
-	-							-	-							
664.8—	15—	\mathbf{N}	ery hard	9 20 30 50/6					-	24/24		4.5+				
	- 3			00/0					-							- 1
- 2	1							-								
-	8	4							-							
	s e	-			m	CI		grades vellow (2 5X7/4) Jose CLAX, moist	-							
659.8—	20—		ery hard	34 46 50/6"		ŰL.		grades yellow (2.317/4), lean CLAT, moist		18/21		4.5+				
									-							
-	2								2 <u>-</u>							
-	-								-							
-	8	~														
654.8—	25—	1	ery hard	11 49 50/4.5					-	16.518		4.5+				
-	4	-							-							
	4								-							- 1
-	-	÷.						- 5-1	-							
-	-	100		16 37 40		101010			2	22/24		4.5.				
649.8	30	m	ery nard	50/5						23/24		4.5+				
										_				_	_	

Elevation, feet Sample Type Consistency Graphic Log Driven/Rec Permeability (cm/s) Field USCS Pocket Pen. Sampling Resistance, blows/foot Piezometer Completion Depth, feet PI% Moisture Content % Stratum ۲**۲**, % MATERIAL DESCRIPTION 649.8-30light yellowish brown (2.5Y6/4), lean CLAY, moist, some chalk, white (cont.) 16 37 40 50/5 111 CL 23/24 4.5+ ery hard 14 41 17/20 4.5+ ery hard 35-50/5" 644.8 12 48 50/5.5 4.5+ ry hard 639.8-40 52 36 14.8 ery hard 8 26 42 50/5.5 4.5+ 634.8 45 4 45 ery hard 17/20 4.5+ 50-50/5" 629.8 Ш CL calcite seam 70 degree, grades dark gray (2.5Y4/1), dry 12.4 57 35 15 50/5.5" IV dark gray (2.5Y4/1), dry, CLAYSTONE 4.5+ 5/ ery hard 624.8 55-18/46, 18/46 core IV possible horizontal fracture, dry 619.8-60 core core 614.8 65

Elevation, feet	Depth, feet	Sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Field USCS	Graphic Log	MATERIAL DESCRIPTION	Driven/Rec	Permeability (cm/s)	Pocket Pen.	LL, %	PI%	Moisture Content %	Piezometer Completion
614.8	65— - -			core	IV	Clayslone		few shell fragments in sample	60/62, 60/62						
- 609.8 - - -				core	IV	Claystone		dark gray (2.5Y4/1), dry, CLAYSTONE	60/59, 60/59						
604.8— - -	75— - -			core					60/60, 60/59						
- 599.8 - - -	- 80 - - -			core					60/59, 60/59						
594.8— - - -	85— - - -			core					60/47. 60/46						
589.8— - - -	90			core					60/72, 60/72						
584.8— - - -	95— - - -			core					60/59 60/59 60/50 60/60						
579.8	100—			0010					1			J			

Elevation, feet	Sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Field USCS	Graphic Log	MATERIAL DESCRIPTION	Driven/Rec	Permeability (cm/s)	Pocket Pen.	LL, %	PI%	Moisture Content %	Piezometer Completion
579.8—100- - - -			core	IV	Claystone		dark gray (2.5Y4/1), dry, CLAYSTONE (cont.)	60/60, 60/60						1
- 574.8— 105- - - -			core					60/80, 60/60						
- 569.8— 110- - - -			core					60/68, 60/58						
564.8— 115- - - - -			core					60/54, 60/54						
559.8— 120- - - -			core					60/65, 60/65						
554.8— 125- - - -			core					60/59, 80/59						
549.8— 130- - - -			core					72/72, 72/72						
544.8 135	-													

Boring GB-14

Elevation, feet	Depth, feet	Sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Field USCS	Graphic Log	MATERIAL DESCRIPTION	Driven/Rec	Permeability (cm/s)	Pocket Pen.	LL, %	PI%	Moisture Content %	Piezometer Completion
544.8-	135-				IV	Claystone		dark gray (2.5Y4/1), dry, CLAYSTONE (cont.)							
								Bottom of Boring at 136 feet bgs							
8	-														
10	- 1														
539.8—	140-														
8													1		
534.8-	145-														
12															
2	1 -							-							
529.8-	150-														
8	-														
	-														
8	6							-							
	155														
524.0-	155-							-							
								-							
2	<u> </u>														
	203							-							
519.8-	160-														
8								-							
3								-							
								-:							
514.8—	165-														
	3							-							
509.8-	170-														

Date(s) Drilled 12/06-12/08/04		Logged By Amy Howard	Checked By Jar	net l	leau	IX		_		_
Drilling Method Hollow Stem Auger, Core		Drill Bit 4 1/4 inch ID, Hollow Stem Size/Type Auger	Total Depth of Borehole 144	fee	t bg:	5				
Drill Rig Type CME 75		Drilling Geoprojects/ Jose Landezos Contractor 2551W	Approximate Surface Elevation	64	3.39	feet	MS	L		
Groundwater Level and Date Measured 40'		Sampling Method(s) SPT, Tube, Other	Hammer Data 140 Ib	, 30	in d	гор,	auto	o trip		
Borehole Backfill Grout		Location Northing 13,815,626.49 Easting 2,	280,863.47							
ion, fe ifeet le Typ ling fance, m m m	hic Log			n/Rec	eabilit)	et Pen			ure ent %	pletion
Elevat Depth Samp blowssist Stratu	Graph	MATERIAL DESCRIPTION		Drive	Perm (cm/s	Pock	г г , %	PI%	Conte	Com
643.4 0				-	-					\pm

Eleva	Dept	Sam	Cons	Sam Resi blow	Strat	Field	Grap	MATERIAL DESCRIPTION		Driv	Ccm (cm	Poc	Ę	PI%	20 20 20	i
13.4-	0		very stiff	799 14	1	СН		GRASS brown (10YR4/3), fat CLAY, some silt, slightly moist	_	24/17		1.5				
2		Z	stiff	259 13	(HE)	CL		pale yellow (2.5Y8/3), lean CLAY, few silt, dry, some calcite, friable	-	24/23		2.0				20000000
.4-	5		very stiff	3 8 10 14				grades few iron staining	1	24/21		3.0	50	36	17.0	20000000
1. N. N.		111	very hard	8 12 18 24	8	CL		grades no calcite, dry to slightly moist, trace iron fragments	00 JU - 30	24/26		4.5+				000000000000000000000000000000000000000
.4-	- 10		hard	68				grades some iron nodules, moist to dry	ľ.	12/12		4.5+				000000000
			very stiff	5 9 16 19					10 - 20	24/24		2.5				NAMES OF A DESCRIPTIONO
			very stiff	6 9 12 23					2	24/24		4.5+				XXXXXXXXXX
3.4—	- 15		hard	14 13 24 26					-	24/24		4.5+				NAMES OF A DESCRIPTIONO
-	8		hard	11 32 38 50/3.5				 possible 80 degree fracture at 15.5', clay filled grades yellow (10YR7/6), trace silt, trace calcareous nodules and shale fragments 		21 5/26		4.5+				XXXXXXXXXXXX
- 8.4— -	 20		hard	34 36 50/6"	H	CL		grades light greenish gray (Gley1 8/1), dry, friable	n l	24/15 18/24	1.0E-8	3.0	40	24	14.9	CONTRACTOR OF THE OWNER OWN
1 - 3 - 3 - 3 -			hard	14 32 50/6"	m	CL		calcite fragments	1 1 1	18/20		4.5+				Contraction of the local division of the loc
.4—	25-	1		core				grades high yellowish brown (2.5Y6/4), lean CLAY, some silt, dry, some iron nodules	-	4.5/6 60/64,						
1	-			core	m	CL		possible fracture at 26.5', organic filled	2	00/61						
1				core					3	60/48, 60/34						

Elevation, feet	Depth, feet	Sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Field USCS	Graphic Log	MATERIAL DESCRIPTION		Driven/Rec	Permeability (cm/s)	Pocket Pen.	LL, %	PI%	Moisture Content %	Piezometer
613.4	30— - -			core	Ħ	CL.		pale yellow (2.5Y8/3), lean CLAY, few silt, dry, some calcite, friable (cont.) possible 80 degree fracture at 32', 3" length, moist	- 65	0/48. 0/34						
608.4— - -	35—			core					- 60	0/61, 0/57						
- 603.4— - -	40			core		CL		possible 60 degree fracture at 38', calcite filled, moist possible horizontal fracture, calcite filled, 39.7' possible 80 degree fracture calcite filled, moist , possible 15" vertical fracture at 40.3', calcite filled, wet at 42.8'	6	0/59, 0/51			61	41	18,7	
- - 598.4—	45—				II IN	CL		dark greenish gray (Gley1 4/1), CLAY, moist grades yellowish brown(2.5Y6/4), CLAY, dry possible 80 degree fracture at 44.8', calcite filled								
-				core	W	CL		possible 80 degree fracture at 46 - 46.2', calcite filled, 2" length, - moist greenish gray (Gley1 5/1), CLAYSTONE, dry to slighly moist	6	0/58.						
- 593.4— - -	50— - -			core	ш	CL		greenish gray (Gley1 5/1), CLAY		0/63, Ю/68						
- - 588.4—	- - 55—				H	CL		yellowish brown (2.5Y6/4), CLAY possible 10 degree fracture, 2 " length, wet, calcite filled greenish gray (Gley1 5/1), dry to moist, CLAY								Triffing trans
	1 R M			core	₩	Claystone		possible fracture 85 degree, calcite filled greenish gray (Gley1 5/1), CLAYSTONE, dry to moist		0/69, 60/59						
583.4— - -	60— - -			core						60/59, 50/58						
	-			core				-	-	50/58. 60/58						

Elevation, feet **59** Depth, feet Sample Type Consistency Graphic Log Field USCS Sampling Resistance, blows/foot Driven/Rec Permeability (cm/s) Pocket Pen. Piezometer Completion PI% Moisture Content % Stratum LL, % **MATERIAL DESCRIPTION** 578.4-NNNN greenish gray (Gley1 5/1), CLAYSTONE, dry to moist (cont.) 60/58, 60/68 core 573.4 70 30/50 60/50 core 568.4 75 60/62, 60/59.5 core 563.4 80-60/50, 60/59 core 558.4 85-60/60, 60/60 2 9É-9 15.2 core 553.4-90-60/60 60/60 core 548.4 95core 0/61 30/53 core 543.4 100

Elevation, feet	Depth, feet	Sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Field USCS	Graphic Log	MATERIAL DESCRIPTION	Driven/Rec	Permeability (cm/s)	Pocket Pen.	LL, %	P1%	Moisture Content %	Piezometer Completion
543.4 - -	100— - -	Ī		core	77	Claystone		greenish gray (Gley1 5/1), CLAYSTONE, dry to moist (cont.)	60/61. 60/59						
	 105 - -			core					8059 5 8059 5						
533.4— - - -	110— - - -			core					60/61, 60/60						
528.4— - - -	115— - - -			core					60/60, 60/60						
523.4— - -	120			core					6029 5, 6059 5						
518.4— - - -	125— - - -			core					60/60, 60/58						
513.4— - - -	130— - - -			core					50/64, 60/62 60/62. 60/62.						
508.4	135—										I	L	I		1000000

Elevation, feet	Depth, feet	Sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Field USCS	Graphic Log	MATERIAL DESCRIPTION	Driven/Rec	Permeability (cm/s)	Pocket Pen.	LL, %	PI%	Moisture Content %	Piezometer Completion
508.4 - - - 503.4 - -	135— - - 140— -			core		Claystone Claystone Claystone		greenish gray (Gley1 5/1), CLAYSTONE, dry to moist (cont.) grades trace iron nodules grades no trace iron nodules	60/52 60/55 60/51, 60/58						
- 498.4— - - 493.4—	- 145— - - 150—				ıv	Claystone		Bottom of Boring at 144 feet bgs							
- - - 488.4— - -	- - 155— - -														
- 483.4 - - 478.4 - -	160— - - 165—														
- 473.4—	. 170–														

Boring GB-16

Drilling	Halle		tom A					Drill Bit 4 1/4 inch ID, Hollow Stem Total	Depth 139	fee	t ha				_	_
Method Drill Ria		5w 8	stem Al	iyer, Co	ле			Size/Type Auger of Bo Drilling Geoprojects/ Jose Landezos Appro	oximate	60	. Dy:	fact	Mei			
Гуре	CME	75			_	_		Contractor 2551W Surfa	ce Elevation	67	9.51	reet	MSI	-		_
and Dat	e Meas	surec	NA					Method(s) SPT, Grab, Other Data	140 lb	, 30	in d	rop,	auto	trip		
Borehol Backfill	^e Gro	out						Location Northing 13,815,064.25 Easting 2,280,56	8.09							
Elevation, feet	Depth, feet	Sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Field USCS	Graphic Log	MATERIAL DESCRIPTION		Driven/Rec	Permeability (cm/s)	Pocket Pen.	LL, %	PI%	Moisture Content %	Piezometer
79.5	0	N			T	СН		GRASS		26185		4.5				
		\mathcal{N}	medium	2356				dark gray (10YR4/1) CLAY, moist, rootlets, few gravel				1.5				
1		1			m	CL		dark grayish brown (10YR4/2), lean CLAY, moist,	-							
]]															
4.5-	5	N	stiff	246	8	CL		grades grayish brown (2.5Y5/2), moist, some iron staining, f calcite nodules, some silt	ew —	24/26		1.5				
-	-	1		10]	C		andos toss itos staising	÷							
-	-				-				=	8			101	72	36.4	
-	-							-	-					12		
÷	-	1						-	2							
9.5-	10-	\mathbb{N}	stiff	4 11 16 20				-	-	24/17		4.5+				
24	-	~			Ш	CL		grades some iron staining	-							
-	-															
5	-							-	-							
1	-	N		5 40 44				-	-							
.5—	15	N	stiff	5 10 14				-	-	24/28		3.0				
-	f							-	-							
-								-								
1	, B							-	-	8						
-	1	1		1 10 15				-	-							
.5—	20-	1	stiff	23		~		-		24/25		3.0				
-	f					CL		 possible horizontal fracture at 20.6', calcite filled, dry light vellowish brown (2.5YR6/3), moist, CLAX, some sit 								
3	100								-				93	69	32.7	
-								-	-							
-	-	1		4 11 23	Ш	CL		yellow (10YR7/6), CLAY, dry, some silt, some iron nodules,	trace	22/24						
1.5—	25-	1	hard	50/4				- caicile nodules		2029		4.5+				
82	2							-	-							
-								-	-							
								-								
	-	11	hard	21 32 40						24/27		4.5+				

Elevation, feet	Depth, feet	Sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Field USCS	Graphic Log	MATERIAL DESCRIPTION	Driven/Rec	Permeability (cm/s)	Pocket Pen.	LL, %	PI%	Moisture Content %	Piezometer Completion
649.5	30-		hard	21 32 40 50/6	UF UF	CL		dark grayish brown (10YR4/2), lean CLAY, moist, (cont.)	24/27		4.5+				
- - 644.5 - -	- - 35		hard	24 50/6"	10			grades trace silt, dry	12/15		4.5+				
2	-			00 50/01	HU	CL		dark greenish (Glev1 4/1) CLAY, dry	12/13		4.5+		ł		
639.5	40-		hard	23 50/6"											
				core				-	4856						
634.5—	45														
				core	III IV	CL Claystone		yellow (10YR7/6). CLAY, dry, some iron staining dark greenish gray (Gley1 4/), CLAYSTONE, dry	60/59			51	36	11,6	
- - 629.5— -	- - 50—			core	IV	Claystone		– possible 60 degree fracture, CLAY filled, dry –	- 0058. 0054.5						
	8	Σ						-	-						
- 624.5— - -	55— -			core	IV	Claystone	3	grades greenish gray (Gley1 5/1), CLAYSTONE, dry	60/57 60/57	2					
	60— - -			core					- 60/23 60/20						
614.5	65-			core	IV	Clayston	. //		60/78	l, 3					
0000	224534														

Elevation, feet Sample Type Consistency Sampling Resistance, blows/foot Field USCS Graphic Log Driven/Rec Permeability (cm/s) Pocket Pen. Piezometer Completion Depth, feet PI% Moisture Content ? Stratum LL, % MATERIAL DESCRIPTION 65-614.5grades greenish gray (Gley1 5/1), CLAYSTONE, dry (cont.) 60/78, 60/78 core 609.5-70 60/58, 60/58 core 604.5 75 60/61.5. 60/58 5 core 599.5-80-60/57 5, 80/57 5 core 594.5 85 60/61, 60/60 core IV shell fragments present IV grades dark greenish gray (Gley1 4/1), CLAYSTONE, dry 589.5 90 60/62, 60/58 core 584.5 95 0/67 50/62 core IV grades shell fragments core 579.5 100

Elevation, feet	Depth, feet	Sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Field USCS	Graphic Log	MATERIAL DESCRIPTION	Driven/Rec	Permeability (cm/s)	Pocket Pen.	LL, %	Ы%	Moisture Content %	Piezometer Completion
579.5	100— - -	7		core	IV	Claystone		grades greenish gray (Gley1 5/1), CLAYSTONE, dry (cont.)	60/62. 60/60						
- 574.5 - -	- 105 - -			core					60/63, 60/61						
				core					60/60, 60/58						
- 564.5 - - -	115			core	IV	Claystone		grades no shell fragments	60/50, 60/60						
559.5— - -	120—			core					60/60 60/60						
- 554.5— -	125			core	IV	Claystone		grades trace iron nodules	60/63, 60/62						
- 549.5— -	- - - - -			core	IV	Claystone		no iron nodules	60/58, 80/58						
544.5	135			core					60/61, 60/60						

Elevation, feet	Depth, feet	Sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Field USCS	Graphic Log	MATERIAL DESCRIPTION	Driven/Rec	Permeability (cm/s)	Pocket Pen.	LL, %	Ы%	Moisture Content %	Piezometer Completion
544.5	135— - -			core	IV	Claystone		grades greenish gray (Gley1 5/1), CLAYSTONE, dry (cont.)	60/61, 60/60						
- 539.5— -	- 140— -				IV	Claystone		Bottom of Boring at 139 feet bgs							
- 534.5 -	- - 145— -														
- - 529.5— -	- - 150—														
- 524.5—	- - 155— -														
- - 519.5—	- - 160														
- - 514.5—	- - 165—														
- - 509.5								-							

	Date(s) onlided 01/18-01/20/05 Logged By Taylor Johnston Checked By Janet Meaux Drilled Method Hollow Stem Auger, Core Drill Bit Size/Type Auger 4 1/4 inch ID, Hollow Stem Size/Type Auger Total Depth of Borehole 134 feet bgs Drill Rig Type CME 75 Drilling Contractor 2551W Geoprojects/ Jose Landezos Contractor 2551W Approximate Surface Elevation 654.41 feet MSL Borehole and Date Measured NA Sampling Method(s) SPT, Other Hammer Data 140 lb, 30 in drop, auto trip Borehole ackfill Grout Location Northing 13,814,630.98 Easting 2,280,885.41 140 lb, 30															
Date(s) Drilled	01/1	8-01	/20/05					Logged By Taylor Johnston	Checked By Jar	net M	leau	IX				
Drilling Method	Holl	ow S	Stem Au	iger, Co	ore			Drill Bit 4 1/4 inch ID, Hollow Stem Size/Type Auger	Total Depth of Borehole 134	fee	t bg	5				
Drill Rig	CME	E 75						Drilling Geoprojects/ Jose Landezos Contractor 2551W	Approximate Surface Elevation	65	4.41	feet	MS	-		
Groundy	vater I	Level	NA					Sampling Method(s) SPT, Other	Hammer Data 140 lb	, 30	in d	rop,	auto	o trip)	
Borehole	^e Gro	out						Location Northing 13,814,630.98 Easting 2,3	280,885.41							
Dackin	_	_					1					-			-	—
feet	t.	/pe	Ś	aī.		s	ß			ų	lity	Ŀ,				56
ation,	h, fee	ple T)	sisten	pling stanc s/foot	Ę	IUSC	hicL			en/Re	neabi 's)	ket P ₆	%		sture tent %	comet
Eleva	Dept	Sam	Cons	Sam Resi blow	Strat	Field	Grap	MATERIAL DESCRIPTION		Driv	Perr (cm/	Pocl	Ē	PI%	В С В О	Plez
654.4	0—			269	Ţ.	СН		GRASS	/	24/22		25				
	1		stiff	14				very dark gray (2.5Y3/1), moist to wet, fat CLAY, few	gravel			2.0				
		1	very stiff	5 13 17					-	24/23		4.5+				
-	-	1		14												
649.4—	5—		stiff	268 10	UI.	CL		 light yellowish brown (2.5Y6/4), lean CLAY, wet 	-	24/22		2.25				
-	÷	\mathfrak{Z}		5 10 14	æ	CL		grades moist	-	24/25					0.0.7	
3	3		very stiff	18						24125		3.75	59	43	22.1	
		S														
644.4-	10-							-	-							
5	-		very stiff	2 10 10 15					-	24/24		2.75				
-	12							a i								
-	а <u>1</u>		very stiff	379 13					-	24/25		4.0				
-		Ň	r	268						24/25		3.0				
639.4-	15-		sum	11					-			0.0				
_			very stiff	6912 15				grades olive yellow (2.5Y6/6), moist, lean CLAY	-	24/27		3.5	78	62	25.7	
-	۰	2	verv stiff	3611					-	24/24		4.5+				
-	•		stiff	21699 13					-	24/25		3.0				
634.4—	20—			5822	m	CL		horizontal calcite vein, moist	-	04.00-						
-			very stiff	36						24/2/		4.5+				
		N	yony stiff	7 12 15						24/27		4.5+				
		Σ	very sun	19	10	CL		grades light olive brown (2.5Y5/3), lean CLAY, some	e silt, moist -							
629.4—	25—		very stiff	5 10 16					-	24/24		4.5+	94	57	35.5	;
-					m	CL		grades dark gravish brown (2.5Y4/2). lean CLAY. dr	y							
-	5		very stiff	8 13 17 21						24/27		4.5+				
3				14 18	Ш			 horizontal calcite seam, dry 		24/27		45.				
2			hard	20 22	ш	CL		horizontal calcite seam		24/21		4.5+				

											Γ					
Elevation, feet	Depth, feet	Sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Field USCS	Graphic Log	MATERIAL DESCRIPTION		Driven/Rec	Permeability (cm/s)	Pocket Pen.	LL, %	%Id	Moisture Content %	Piezometer Completion
624.4	30-		very stiff	4 13 16 24	111 111	CL CL		light yellowish brown (2.5Y6/4), lean CLAY, wet (cont.)		24/26		4.5+				
4	-		hard	8 16 21 24	ม m	CL CL		Vertical calcite seam, 6" length, dry	-	24/26		4.5+				
- 619.4—	35—		hard	5 19 24 30	ш Ш	CL CL		- calcite seam 20 degree, dry calcite seam 30 degree, dry	-	24/26		4.5+				
90 	-		hard	8 16 24 26	m	CL		calcite seam, 45 degree, dry		24/27		4.5+				
ж ж	_		hard	7 16 22 22		CL CL CL		Horizontal calcite seam, dry horizontal calcite seam, dry		24/26		4.5+				
614.4—	40		hard	10 18 21 22	m	ČĹ		 horizontal calcite seam 1/4" thick calcite seam 45 degree calcite seam, 45 degree, dry 	-	24/27		4.5+				
	-		hard	11 17 23 25		CL CL CL		vertical and horizontal calcite seams horizontal calcite seam, dry		24/27		4.5+	97	69	33.1	
609.4—	45-		hard	7 16 21 25	ш Ш	CL CL		calcite seam, 45 degree, dry horizontal calcite seam, dry	+	24/26		4.5+				
5	-		hard	12 20 28 35	枥	&Ł		horizontal calcite seam, dry	_/_	24/26		4.5+				
604.4	-		harđ	12 22 26 30	IK	CL		brown (2.5Y4.2) mottle with dark gray (10YR4/1) calcite seam, 50 degree, dry	-	24/27		4.5+				
а З			hard	8 19 25 33	111	CL		calcite seam, 50 degree, dry		24/27		4.5+				
2			hard	9 19 20 26	111 111	CL		grades dark grayish brown (2.5Y4/2) and alternates to gray – (2.5Y5/1) mottled with light olive brown (2.5Y5/3), dry, CLAY calcite seam 45 degree, dry	-	24/27		4.5+				
599.4	55		hard	9 20 25 30	111	CL		grades dark grayish brown (2.5Y4/2), CLAY, dry, vertical calcite seam, 10" length		24/27		4.5+				
-	. V.		hard	16 22 27 43	m	CL		calcite seam, 60 degree, dry	_	24/28		4.5+				
- 594.4—	60—		hard	7 18 26 40	11	ĉŁ		 calcite seam, 20 degree, dry grades very dark gray (5Y3/1), CLAY, dry 		24/27		4.5+				- tititit
3			hard	14 26 32 36	ш	CL		_ grades olive (5Y4/2), CLAY	-	24/26		4.5+				
-	-		hard	6 14 20 32		CL CL Claystone		grades light olive brown (2.5Y5/4), CLAY, dry	-	24/26		4.5+				
589.4	65-		hard	15 28 35 43						24/27		4.5+	96	66	23.8	

Project: WMTX - Mesquite Creek Landfill Project Location: New Braunfels, TX

Project Number: GT 3435

Boring GB-18

Date(s) Drilled 11/29/-12/01/04 Logged By Taylor Johnston Checked By Janet Meaux Drill Bit Total Depth of Borehole 149 feet bgs Method Hollow Stem Auger, Core 4 1/4 inch ID, Hollow Stem Size/Type Auger Drill Rig CME 75 Drilling Approximate **Geoprojects/ Jose Landezos** Surface Elevation 694.21 feet MSL Туре Contractor 2551W Sampling Method(s) SPT, Grab, Other Hammer Groundwater Level and Date Measured NA 140 lb, 30 in drop, auto trip Data Borehole Grout Location Northing 13,814,753.59 Easting 2,280,137.34

Elevation, feet	Depth, feet	Sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Field USCS	Graphic Log	MATERIAL DESCRIPTION		Driven/Rec	Permeability (cm/s)	Pocket Pen.	LL, %	PI%	Moisture Content %	Plezometer Completion
664.2	30—		hard	10 22 29 41	10	CL		yellow (10YR8/8), lean CLAY, moist, some chert gravel (cont.)	-	24/25		4.5+				
- - 659.2— -	- - 35— -		hard	12 37 50/4.5"						+8 5/20		4.5+				
654.2	-		hard	24	w	CL		- problems with hammer, could not get a second blow count, hit it 12" anyway to help get a sample		12/14		4.5+				
-	-							-	3							
- - 649.2—	- - 45—		hard	19 49 50/5.5"	411	CL		 grades wet 		17 507		4.5+				
्म 				core					1. M.	42/46, 42/46						
- 644.2— -	- 50			core						60/59, 60/59			48	29	13.2	
_					IV	Claystone		greenish gray (Gley1 5/1), CLAYSTONE	-							
639.2				core	IV	Claystone		- possible 70 degree hairline fracture, dry		60/59, 60/59						
- 634.2— - -	- 60- - -			core	īv	Claystone				60/60, 60/59						
629.2	65—	7		core					_1	60/59, 60/59						

Elevation, feet Depth, feet Sample Type Consistency Field USCS Graphic Log Driven/Rec Permeability (cm/s) Piezometer Completion Pocket Pen. Sampling Resistance, blows/foot Moisture Content % Stratum ۲۲' % PI% MATERIAL DESCRIPTION 65-629.2-IV same as above 0/59, 30/59 core 624.2 70 соге 619.2-75 core 614.2-80-60/59, 60/59 core 609.2-85 50/60 60/60 core 90-604.2-0/59 0/59 core 599.2-95 50/59, 60/59 соге 0/59 10/69 core 594.2 100

Elevation, feet	Sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Field USCS	Graphic Log	MATERIAL DESCRIPTION		Driven/Rec	Permeability (cm/s)	Pocket Pen.	ц. %	РІ%	Moisture Content %	Piezometer Completion
594.2-100- 			core	IV	Claystone		same as above		60/59, 60/59						
589.2— 105- - - - -			core						60/59, 80/59						
584.2— 110- - - -			core					-	60/59, 60/59						
579.2— 115- - - -	-		core					-	60/50, 60/50						
574.2— 120- - - 569.2— 125- - - -			core					-	120117						
564.2— 130- - - - -	-		core					-	60/61, 60/50 60/59, 60/59						
559.2-135-				<u> </u>		<u> ///</u>			<u> </u>	I					

Elevation, feet Depth, feet Samnle Tyne	Consistency	Sampling Resistance, blows/foot	Stratum	Field USCS	Graphic Log	MATERIAL DESCRIPTION	Driven/Rec	Permeability (cm/s)	Pocket Pen.	LL, %	PI%	Moisture Content %	Piezometer Completion
559.2 135 		core	N	Ciaystone		greenish gray (Gley1 5/1), CLAYSTONE (cont.)	60/59, 50/59 60/60, 60/60 60/54,	4 72-9				16.2	
544.2 150 539.2 155 			V	Claystone		Bottom of Boring at 149 feet bgs							

Boring GB-19

Date(s) Drilled 11/16-11/17/04 Logged By Trent McDaniel Checked By Janet Meaux Total Depth of Borehole 150 feet bgs 4 1/4 inch ID, Hollow Stem Drilling Method Hollow Stem Auger, Core Drill Bit Size/Type Auger Drill Rig CME 75 Geoprojects/ Jose Landezos Drilling Approximate Surface Elevation 688.73 feet MSL Contractor 2551W Туре Hammer Data 140 lb, 30 in drop, auto trip Sampling Method(s) SPT, Tube, Grab, Other Groundwater Level NA and Date Measured Borehole Grout Location Northing 13,814,291.18 Easting 2,279,905.54 Backfill

Elevation, feet	Depth, feet	Sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Field USCS	Graphic Log	MATERIAL DESCRIPTION		Driven/Rec	Permeability (cm/s)	Pocket Pen.	LL. %	PI%	Moisture Content %	Piezometer Completion
658.7-	30—		hard	9 11 28 50/5	111	CL		light gray (5Y7/2), CLAY, some silt, trace sand, moist to dry (cont.)	120	23/24		4.5+				
- - 653.7— - -	- - 35 -	1111	hard	10 28 39 47	H	CL		grades trace iron nodules, trace very fine grained sand, possible 80 degree fracture at 34.5', organic and clay filled, no water		24/24		4.5+	43	27	16.6	
- 648.7— -	40	111	hard	10 30 40 49	III	CL		grades pale yellow (2.5Y7/4), no sand, possible 80 degree fracture — at 39.5', clay and organic filled, no water	i i î i	24/24		4.5+				
- - 643.7— -	- 45—		hard	21 50/5"	ш	CL		grades dark gray (Gley1N4/0), CLAY, some silt, dry	i li ne s	11/12		4.5+				
- - - 638.7— - - - -	50			core					a cara 1 s or a	60/60			60	40	16.2	
633.7— - -	55			соге						60/60						
628.7— - - -	60			core						60/60						
623.7	65			core						60/60						

Elevation. feet	Depth, feet	Sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Field USCS	Graphic Log	MATERIAL DESCRIPTION		Uriven/Rec	Permeability (cm/s)	Pocket Pen.	LL, %	PI%	Moisture Content %	Piezometer Completion
623.7-	65-				10 10	CL CL		light gray (5Y7/2), CLAY, some silt, trace sand, moist to dry (cont.) grades light olive brown (2.5Y5/6), possible vertical fracture from								
				core				- 67' to 69'	- 60	/60						
618.7-	70-				Ш	CL		sample is divided vertically, possible fracture, one half is olive — brown (2.5Y5/6), the other half is dark gray (Gley1N4/0), contact is	-							
				core				very sharp, no indications of filling or water, trace ironite nodules in - sample	60	/62			60	38	19.0	
	-								-							
613.7-	75-				IV	Claystone		dark gray (Gley1N4/0), CLAYSTONE, dry —								
				core					60	0/60						
									-							
608.7-	80-			core				-	- 64	0/60						
				COIC					-							
603.7-	85-				IV	Claystone		grades trace shell fragments	-							
1				core					- 6)/60						
									-							
598.7-	90-								-							
				core					- 64)/60						
				Ę.					-							
593.7-	95-			core				-	-6	0/60						
				- COIC	IV	Claystone		driller reports loss of water pressure at 98 feet								
588.7-	- - 100-			core					- 6	0/60						
	100-															

Elevation, feet	Jepth, feet Sample Type	Consistency	ampling Resistance, blows/foot	Stratum	Field USCS	Sraphic Log	MATERIAL DESCRIPTION	Driven/Rec	Permeability (cm/s)	Pocket Pen.	LL, %	PI%	Molsture Content %	Piezometer Completion
588.7 - - - -	0	U	core	IV	Claystone		dark gray (Gley1N4/0), CLAYSTONE, dry	60/60						
- 583.7— 10: - - -	5		core					60/60						
578.7— 110	0 - -		core					60/60						
573.7— 11! - - -	5		соге					60/60						
568.7— 124	0		core					60/60						
563.7— 12 - - -	5		соге					60/60						
558.7— 13 - - - -	0 		core					60/60						
553.7— 13	5		core											

Elevation, feet	Depth, feet	Sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Field USCS	Graphic Log	MATERIAL DESCRIPTION	Driven/Rec	Permeability (cm/s)	Pocket Pen.	LL, %	PI%	Molsture Content %	Piezometer Completion
553.7	135— - - 140—	7		core	IV	Claystone		dark gray (Gley1N4/0), CLAYSTONE, dry (cont.)	60/60						
	- - - 145—			core					60/60						
- - 538.7—	- - - 150—			core	١V	Claystone		Bottom of Boring at 150 feet bgs	72/74						
- - 533.7— -	- - 155— -														
- 528.7— -	- - 160 - -			5											
- 523.7— - -	- 165— - -														
518.7	170—														

Boring GB-20

Logged By Trent McDaniel, Taylor Date(s) Drilled 11/11-11/15/04 Checked By Janet Meaux Johnston 4 1/4 inch ID, Hollow Stem Total Depth of Borehole 169 feet bgs Drill Bit Drilling Method Hollow Stem Auger, Core Size/Type Auger Drill Rig CME 75 Drilling Geopro Contractor 2551W Approximate Geoprojects/ Jose Landezos Surface Elevation 675.86 feet MSL Туре Hammer Data 140 lb, 30 in drop, auto trip Groundwater Level NA and Date Measured Sampling Method(s) SPT, Grab, Other Borehole Backfill Grout Location Northing 13,814,134.94 Easting 2,279,345.16

Elevation, feet	Depth, feet	Sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Field USCS	Graphic Log	MATERIAL DESCRIPTION		Drlven/Rec	Permeability (cm/s)	Pocket Pen.	LE, %	PI%	Moisture Content %	Piezometer Completion
675.9	0		medium	1358	J	СН		GRASS Black (10YR2/1), fat CLAY, some roots, moist		24/15		1.75				1.62
1			very stiff	7 12 11 16		GC CH		white (10YR8/1), gravel, some black (10YR2/1), CLAY, moist	-	24/6		2.5				
- 670.9—	5		stiff	8 10 3 3		UII		- Very dalk brown (101R2/2), lat CLAT, moist		24/3.5		2.25				
	-	Ï	hard	9 17 24 30	1	СН		grades brown (10YR5/3), fat CLAY, moist, some gravel	2	24/4		.5				
)	-	Ï	hard	8 32 43 50/5.5"	m	CL		pale yellow (2.5Y7/3), lean CLAY, moist -	-	23.5/6		2.5				
665.9	10		hard	11 47 50/3"						15/4		2.25				
- 655.9— -	20—		hard	43 50/3"	ы).	CL		grades brown (10YR4/3), lean CLAY, moist	-	9/4		4.5+				
		11	hard	12 30 43 50/5.5*	ΠĽ			grades pale yellow (2.5Y7/3), lean CLAY, moist	1	23 5/25		4.5+				
- 650.9 - -	25	111	hard	9 32 44 50/6"				-		24/		4.5+				
645.9			hard	10 24 40 50/6"						24/25		4.5+				

Elevation, feet	Depth, feet	Sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Fleld USCS	Graphic Log	MATERIAL DESCRIPTION		Driven/Rec	Permeability (cm/s)	Pocket Pen.	LL, %	PI%	Moisture Content %	Piezometer
645.9			hard	10 24 40 50/6"	10	CL		grades brown (10YR4/3), lean CLAY, moist (cont.)		24/25		4.5+				
- 640.9— -	35-		hard	7 22 37 46						24/25		4.5+				
- 635.9— - -	40	Ï	hard	8 26 36 45		CL		horizontal calcite seam		24/25		4.5+				
 630.9— - -	45	11	hard	9 30 42 50/6"	ш	CL		- calcite nodule -		24/25		4.5+				
- 625.9— - -	50	Ĭ	hard	13 35 44 50/4.5"	111	CL		- calcite seam, 25 degree	a a a f a	22.5/26		4.5+				
- 620.9— - -	55-		hard	10 36 50/5" core	m	CL		54.2' grades grayish brown (10YR5/2), 54.7' grades brownish yellow (10YR6/6), wet, 54.9' horizontal calcite seam, 55.3' grayish brown (10YR5/2), clay, wet, 55.5' grades brownish yellow (10YR6/6) clay, 55.7' grades grayish brown (10YR5/2)		17/20 42/43, 42/43		4.5+				
- 615.9 - -	- 60			core	ш	CL		58.5 grades brownish yellow (10YR6/6), clay, 58.6' grayish brown (10YR5/2), clay, 59' brownish yellow (10YR6/6), clay, horizontal – calcite seam, 59.1' grades gray (2.5Y5/1), clay, 60.1' grades brownish yellow (10YR6/6), 60.2' grades gray (2.5Y5/1), CLAY		60/59, 60/58						
-	65	Z		core					-	60/59. 60/59						

Elevation, feet	Depth, feet	Sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Field USCS	Graphic Log	MATERIAL DESCRIPTION	Driven/Rec	Permeability (cm/s)	Pocket Pen.	LL, %	P1%	Moisture Content %	Piezometer Completion
610.9-	65— -				H	CL		grades brownish yellow (10YR6/6), CLAY							
-	1 1 1			core	١V	Claystone		gray (2.5Y5/1), CLAYSTONE, dry, unweathered	60/59, 60/59						
605.9— - - -	70— - -			core					60/59, 60/59						
600.9— - -	75			core					60/59, 60/59						
595.9	80			core					60/56, 60/56						
590.9— - - -	85 - - -			core					60/62. 60/52						
585.9	90			core					90/59, 80/57						
580.9— - - -	95			core					60/58 50/58						
575.9-1	100-4		Į			-				1			l	8	200000

Project: WMTX - Mesquite Creek Landfill Project Location: New Braunfels, TX

Project Number: GT 3435

Elevation, feet	Depth, feet	Sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Field USCS	Graphic Log	MATERIAL DESCRIPTION	Driven/Rec	Permeability (cm/s)	Pocket Pen.	LL, %	PI%	Moisture Content %	Piezometer Completion
575.9	100				IV	Claystone	Y	gray (2.5Y5/1), CLAYSTONE, dry, unweathered (cont.)							
-	11 - 11 - 11 - 11 - 11 - 11 - 11 - 11	Ĺ		core					60/59						
570.9— - -	105			core					60/60						
565.9— - -	110			core					60/60						
560.9— - -	115			core					60/60						
555.9— - - -	120			core					60/60						
550.9— - - -	125— - - -			core					60/60						
545.9— - - -	130— - - -			core					60/60						
540.9	135—									L					<u></u>

Elevation, feet	Depth, feet	sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Field USCS	Graphic Log	MATERIAL DESCRIPTION	Driven/Rec	Permeability (cm/s)	Pocket Pen.	LL, %	PI%	Moisture Content %	Piezometer Completion
540.9 13	-			core	īV	Claystone		gray (2.5Y5/1), CLAYSTONE, dry, unweathered (cont.)	60/60						
535.9— 14 - - -	40 - -			core				······································	60/60						
530.9- 14	45			core					60/60						
525.9— 11 - - -	50			core					60/60						
520.9— 11 - - -	55 - - -			core					60/60						
515.9— 11	60— - -			core					60/60						
510.9— 11 - - -	65— - -			core	N	Claysteen			60/60						

Boring GB-21

Amy Howard, Trent McDaniel, Date(s) Drilled 12/10/04-01/04/05 Checked By Janet Meaux Logged By Ed Dolan, Taylor Johnston Drilling Method Hollow Stem Auger, Core Total Depth of Borehole 187 feet bgs Drill Bit 4 1/4 inch ID, Hollow Stem Size/Type Auger Drill Rig CME 75 Geoprojects/ Jose Landezos Surface Elevation 709 feet MSL Drilling Contractor 2551W Туре Hammer Data 140 lb, 30 in drop, auto trip Groundwater Level and Date Measured 55' Sampling Method(s) SPT, Other Data Borehole Backfill Grout Location Northing 13,813,671.19 Easting 2,280,075.19

Elevation, feet	Depth, feet	Sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Field USCS	Graphic Log	MATERIAL DESCRIPTION		Driven/Rec	Permeability (cm/s)	Pocket Pen.	LL, %	PI%	Moisture Content %	Piezometer Completion
709	0		very stiff	2616 16	111 111	CL CL		GRASS very dark brown (1.5YR2.5/2), CLAY, few silt, trace gravel, few		24/24		1.0				¥.
-	1.1.	X	hard	3 20 26 32				grades very pale brown (10YR8/3), CLAY, dry, friable	5	24/21		2.0				
704—	- 5—	X	hard	4 31 40 50/3"	ar.	CL		grades some iron staining	-	21/20		0.25				
-	diamina di		hard	21 50/6"					-	12/12		0.5				
-	ti Minuli		hard	24 46 41 50/4	111	CL		grades olive yellow (2.5Y6/8), CLAY, few silt, moist		24/22		0.0	25	10	7.1	
699— _	10—		hard	14 39 41 17		운		 4" calcareous layer, wet		24/22		1.0				
-	المتراكب		hard	4 6 26 32		UL		grades light yellowish brown (2.5Y6/3), CLAY, few silt, moist	-	24/22		1.75				
- 694—	15—		hard	12 24 40 40	HI	CL		grades light olive gray (5Y6/2), CLAY, few silt, trace iron nodules, ← trace chert fragments, moist	Æ	24/22		4.5+	69	46	21,5	
1 25 24	, 8 1.41.4	111	hard	16 36 43 50/3"				-	-	21/17		4.5+				
- 689— -				core						72/0					- 10000 (1000) - 1000 (1000) - 100	
-					UI IH	CL CL		grades light olive brown (2.5Y5/3), CLAY, some silt, few gravel no gravel								
684— - -	25			core					3	60/56						
-	20			core					(7)=	60/24						

Elevation, feet Sample Type Permeability (cm/s) Graphic Log Pocket Pen. Piezometer Completion Consistency Field USCS Driven/Rec Sampling Resistance, blows/foot Depth, feet Moisture Content Stratum ۲**۲**, % PI% MATERIAL DESCRIPTION 30-679-111 CL very dark brown (1.5YR2.5/2), CLAY, few silt, trace gravel, few rootlets, moist (cont.) 0/24 core 35 674 III. CL possible horizontal fracture, ironite filled core 669 40-60/3[.] 59 23.2 81 core 111 CL grades light olive brown (2.5Y5/3) mottled and light gray (Gley1 7/N), some iron nodules 664 45 core 659 50 60/7 core 111 CL possible horizontal fracture, two possible 30 degree fractures, 654 55 calcite filled, water present 60/6 core CL III possible horizontal, 30 degree, and 80 degree fractures, calcite 649 60 filled, water present 22.7 60/6 3 8E-76 54 core grades alternating 6" thick layers of light olive brown (2.5Y5/3) and Ш CL core dark gray (Gley1 4/N), possible horizontal fractures, calcite filled 644 65 moist, may contain water

609 100 IV Corport Corport For any state of the state o	Elevation, feet	Depth, feet	Sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Field USCS	Graphic Log	MATERIAL DESCRIPTION		Driven/Rec	Permeability (cm/s)	Pocket Pen.	LL, %	PI%	Moisture Content %	Piezometer Completion
604 105- core V classical core a 599 110- core V classical a a 599 110- core V classical a a 599 110- core V classical a a 599 115- core V classical a a 599 115- core V classical a a 599 110- core V classical a a 599 115- core V classical a a 589 120- core V classical a a 580	609	100			core	IV IV	Clayslone		trace shell fragments		30/57						
599 110 core IV Cayatese possible 45 degree and 60 degree fractures, not filled, possible eost 594 115 core IV Cayatese driller reports loss of water in formation accore 589 120 core IV Cayatese driller reports loss of water in formation accore 589 120 core IV Cayatese driller reports loss of water in formation accore 584 125 core IV Cayatese Sample broken into small pieces at 124'-125' accore 579 130 core IV Cayatese Sample broken into small pieces at 124'-125' accore	604	105— - -			core						60/59						
594 115 core IV cisysteme driller reports loss of water in formation 500 589 120 core IV cisysteme 60/29 60/29 584 125 core IV cisysteme 5306 5306 584 125 core IV cisysteme 5306 5306 579 130 core IV cisysteme 5306 5306	599— - -	110— - -			core	īV	Claystone		 possible 45 degree and 60 degree fractures, not filled, possible slickensides in fracture plane 		60/54						
589 120 60/29 60/29 60/29	- 594— - -	- 115 -			core	١v	Claystone		driller reports loss of water in formation		36/36						
584-125- core IV Claystone Sample broken into small pieces at 124'-125' 579-130- core 24/4, 24/4	- 589— - -	- 120— -			core						60/29	ł					
	- - 584 -	- - 125— -		-	core	IV	Claystone		Sample broken into small pieces at 124'-125'		36/36						
	- - 579—	- - 130—	Ζ		core					-	24/4, 24/4						
574 135 core 600, 600 600, 4860, 4862				ŝ	core						60/0, 60/0 48/60, 48/52						

Elevation, feet Sample Type Permeability (cm/s) Graphic Log Piezometer Completion Consistency Sampling Resistance, blows/foot Field USCS Pocket Pen. Driven/Rec Depth, feet Moisture Content Stratum LL, % PI% MATERIAL DESCRIPTION 135-574-IV 48/60, 48/52 IV highly weathered claystone, little silt core 569-140 IV dark gray moderately unweathered claystone, little silt 65/87. 65/67 core 564 145 54/51. 54/51 core IV At 147.5 feet possible 40 degree fracture IV Clayst From 148.5-148.75 soft, weathered to clay 48/45, 45/20 2.7E-6 22.7 559-150 core IV From 150.2-150.8 soft, weathered to clay IV potential horizontal fracture 155 78/0, 78/0 554core IV soft, completely weathered 16/58, 58/56 160 549core 66/45, 66/45 core 544 165 IV dark gray, moderately weak, slightly weathered siltstone 30/30, 30/21 core ł٧ From 169.5 - 172, 60 degree fracture, 30 degree fracture, 40 core degree fracture, SAA 539

Depth, feet Sample Type Elevation, feet Driven/Rec Permeability (cm/s) Plezometer Completion Consistency Graphic Log Pocket Pen. Sampling Resistance, blows/foot Fleld USCS Moisture Content % Stratum LL, % PI% **MATERIAL DESCRIPTION** 539-170-30/30. 30/25 core 50/60, 60/60 core 534 175 60/37, 60/37 core 529-180-60/0, 60/0 core 524-185 ١V Bottom of Boring at 187 feet bgs 519-190-514-195-200 509-504 205

Boring GB-22

Date(s) Drilled 11/10-11/11/04 Checked By Janet Meaux Logged By Taylor Johnston Total Depth of Borehole 4 1/4 inch ID, Hollow Stem Drilling Method Hollow Stem Auger, Core Drill Bit 140 feet bgs Size/Type Auger Geoprojects/ Jose Landezos Approximate Drill Rig Surface Elevation 656.53 feet MSL Drilling **CME 75** Contractor 2551W Type Hammer Sampling Method(s) SPT, Tube, Grab, Other Groundwater Level 140 lb, 30 in drop, auto trip and Date Measured NA Data Borehole Grout Location Northing 13,814,811.40 Easting 2,279,501.03

Elevation, feet	Depth, feet	Sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Field USCS	Graphic Log	MATERIAL DESCRIPTION	Driven/Rec	Permeability	Pocket Pen.	LL, %	%id	Moisture Content %	Piezometer
26.5 - - -	30		hard	6 16 26 32	m	CL		light yellowish brown (2.5Y6/4), lean CLAY, moist (cont.)	24/	25	4.5+	52	36	19.2	
- 21.5— - -	- 35 - -	11	hard	9 26 35 43	111	CL		possible 45 degree fractures, 35.5', and 36'	24/	27	4.5+				
- 516.5—	40-		hard	12 40 50/6"	m	CL		– grades gray (2.5Y5/1), dry	- 18/	19	4.5+				
-				core	HI HI	CL CL		 grades pale yellow (2.5Y7/3) possible horizontal fracture, 70 degree calcite seam, 1/4" thick, moist 	- 42/4 42/	13, 38					
- - 611.5—	- - 45—					CL CL CL		grades gray grades pale yellow grades gray, dry	_						
	-			core	61	CL		 horizontal calcite seam, possible fracture, dry - 	1 88	8. 19					
506.5— _ _	50			core	III.	CL		grades pale yellow, possible horizontal fracture at 51.2, calcite lined	- 88	59. 59					
-	ж 							grades pale yellow grades gray, possible horizontal fracture at 52.5', calcite lined grades pale yellow	-						
601.5— - -	55— - -			core				— grades gray 	88	59. 59		67	46	20.2	11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
- 596.5—	- 60—				u	CL		grades pale yellow	1						
				core	H	CL		grades gray, possible 60 degree, 6" in length, fracture, calcite lined	60	59					1.10 1.10
-	3			core				_	- 60 60	60, /60					1.1.1

Elevation, feet Depth, feet Sample Type Graphic Log Driven/Rec Permeability (cm/s) Piezometer Completion Consistency Field USCS Pocket Pen Sampling Resistance, blows/foot Stratum Moisture Content LL. % PI% MATERIAL DESCRIPTION 591.5-65-CL 111 light yellowish brown (2.5Y6/4), lean CLAY, moist (cont.) 60/60 60/60 core Ш CL grades pale yellow IV Clavs gray (2.5Y5/1), CLAYSTONE, dry 586.5 70 60/36 60/34 core 581.5-75-60/58, 60/58 core IV possible horizontal fracture 576.5-80 60/59 core IV possible horizontal fracture 571.5-85 0/73, 90/67 core 566.5 90-60/59, 60/58 core 561.5 95 0/64, 6**0/60** core core 556.5 100

Elevation, feet Depth, feet Sample Type Driven/Rec Permeability (cm/s) Field USCS Graphic Log Pocket Pen. Piezometer Completion Consistency Sampling Resistance, blows/foot Moisture Content % Stratum רר' % PI% MATERIAL DESCRIPTION 556.5-100-IV Clay gray CLAYSTONE 6059 6059 core 551.5-105-059 core 546.5-110-60/59, 60/59 core 541.5 115 60/59 60/59 core 536.5-120-0053 core 531.5-125 60/59, 60/59 core 526.5-130 60/0 60/0 core соге 521.5 135

Elevation, feet	Depth, feet	Sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Field USCS	Graphic Log	MATERIAL DESCRIPTION	Driven/Rec	Permeability (cm/s)	Pocket Pen.	LL, %	P1%	Moisture Content %	Piezometer Completion
521.5— - - - 516.5— - -	135— - - 140— -			core	IV IV IV	Claystone		gray CLAYSTONE (cont.) picked up the missing core from above Bottom of Boring at 140 feet bgs	80/69, 50/59 12/81, 12/81						
- 511.5— - - -	- 145— - -														
506.5— - - 501.5— -															
- 496.5— - -															
491.5— - - 486.5—	165														

Date(s) Drilled Checked By Janet Meaux Logged By Taylor Johnston 01/11-01/13/05 Total Depth of Borehole 185 feet bgs Drill Bit 4 1/4 inch ID, Hollow Stem Drilling Method Hollow Stem Auger, Core Size/Type Auger Geoprojects/ Jose Landezos Drill Rig Approximate Drilling Surface Elevation 689.5 feet MSL **CME 75** Contractor 2551W Туре Hammer Data 140 lb, 30 in drop, auto trip Sampling Method(s) SPT, Tube, Grab, Other Groundwater Level NA and Date Measured Borehole Backfill Grout Location Northing 13,814,122.25 Easting 2,280,492.82

65

Elevation, feet Sample Type Graphic Log Permeability (cm/s) Pocket Pen. Piezometer Completion Consistency Sampling Resistance, blows/foot Field USCS Driven/Rec Moisture Content % Depth, feet Stratum LL, % PI% MATERIAL DESCRIPTION 30-659.5-5 15 23 33 111 CL yellow (2.57/6), lean CLAY, some white chalky, calcite, moist (cont.) 24/26 4.5+ hard 3.9E-75 53 27.4 CL light yellowish brown (2.5Y6/4), dry, lean CLAY III 7 23 30 24/25 4.5+ hard 654.5 35 40 16 32 50/4" 16/22 4.5+ hard 649.5-40-HI CL grades light olive brown (2.5Y5/4), lean CLAY, dry 3 16 22 24/27 4.5+ hard 644.5 45 28 9 21 27 39 24/24 4.5+ 639.5hard 50 III CL possible 70 degree fracture, 51.8' horizontal calcite seam 58 25.1 82 dark gray (Gley1 4/N), CLAYSTONE, dry IV 5 25 42 22 5/2 4.5+ hard 634.5 55 50/4.5 36/36 36/22 core IV Clayston highly fractured zone, for 6" 629.5 60 60/0, 60/0 core 60/54 core 624.5

Elevation, feet Depth, feet Sample Type Driven/Rec Permeability (cm/s) Graphic Log Pocket Pen. Piezometer Completion Consistency Field USCS Sampling Resistance, blows/foot Moisture Content % Stratum LL, % PI% MATERIAL DESCRIPTION 624.5-65-١V dark gray (Gley1 4/N), CLAYSTONE, dry (cont.) IV possible 40 degree fracture, 67.5' possible 70 degree fracture 60/54. 60/39 core IV possible 55 degree fracture at 69', possible 55 degree fracture at 69.5' 619.5-70 60/54, 60/32 core iV possible horizontal fracture 614.5-75 60/20. 60/20 core IV highly fractured, weathered, zone, 12" in length 609.5 80 60/0, 60/0 core 604.5-85 60/58, 60/58 core 599.5-90 50/58, 60/56 core IV possible 70 degree fracture at 93.1', possible 70 degree fracture at 93.3' 594.5-95 60/18, 60/17 core IV possible 20 degree fracture core 589.5 100

Boring GB-23

Elevation, feet Sample Type Driven/Rec Permeability (cm/s) Piezometer Completion Graphic Log Consistency Pocket Pen. Sampling Resistance, blows/foot Field USCS Depth, feet PI% Moisture Content % Stratum LL, % MATERIAL DESCRIPTION 100-589.5-IV dark gray (Gley1 4/N), CLAYSTONE, dry (cont.) 0/28, 90/28 core 24/68, 24/62 105 core 584.5 36/28, 36/28 core 579.5 110 60/50 60/52 core possible 45 degree fractures at 114.2', 114.7', and 115.3' IV Clayslor 574.5 115 60/19 соге ł٧ Clayslon very weathered, soft spot, wet and sticky, 6" in length 569.5-120-60/12_ 60/6 core 564.5 125 IV Clavslo possible 70 degree fracture 50108 core 559.5 130-60/45, 60/43 1 8E-4 25,8 core v2: core 554.5 135

Boring GB-23

Elevation, feet Depth, feet Sample Type Driven/Rec Permeability (cm/s) Consistency Graphic Log Field USCS Sampling Resistance, blows/foot Pocket Pen Plezometer Completion PI% Moisture Content % Stratum LL, % **MATERIAL DESCRIPTION** 554.5-135-IV Y dark gray (Gley1 4/N), CLAYSTONE, dry (cont.) IV highly fractured, weathered zone, 12" in length 60/22. 60/22 core 549.5 140 IV possible 20 degree fracture 60/58, 60/42 core 544.5 145 60/33 60/33 соге IV possible 70 degree fracture 539.5-150 60/107 80/107 core 155 534.5-60/57, 60/57 соге 529.5-160-84/54, 84/29 core 165 524.5core 519.5 170

Boring GB-23

Elevation, feet	Depth, feet	Sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Field USCS	Graphic Log	MATERIAL DESCRIPTION	Driven/Rec	Permeability (cm/s)	Pocket Pen.	LL, %	PI%	Moisture Content %	Piezometer Completion
519.5-1	70			соге	IV	Claystone		dark gray (Gley1 4/N), CLAYSTONE, dry (cont.)	60/50, 60/50						
	-			core					36/0, 36/0						
514.5— 1 - - -	175— - -			core					48/69, 48/63						
- 509.5— 1 - -	- 180— - -			core					60/0, 60/0						
1		Ζ		core				-	24/53. 24/27						
504.5-1	185				١٧		-4//	Bottom of Boring at 185 feet bgs							
								-							
499.5	190-														
-	•														
494.5-1	195														
-															
489.5—2	200-														
-	-														
484.5-1	205									1					

Boring GB-24

Date(s) Drilled 12/01-12/03/04 Logged By Taylor Johnston Checked By Janet Meaux Drilling Method Hollow Stem Auger, Core Total Depth of Borehole 155 feet bgs Drill Bit 4 1/4 inch ID, Hollow Stem Size/Type Auger Drill Rig CME 75 Drilling **Geoprojects/ Jose Landezos** Approximate Surface Elevation 677.47 feet MSL Contractor 2551W Type Hammer Data 140 lb, 30 in drop, auto trip Sampling Method(s) SPT, Tube, Grab, Other Groundwater Level and Date Measured NA Borehole Grout Location Northing 13,815,567.29 Easting 2,280,399.13 Backfill

Boring GB-24

Elevation, feet Sample Type Graphic Log Piezometer Completion Consistency Permeability (cm/s) Pocket Pen. Sampling Resistance, blows/foot Field USCS Driven/Rec Moisture Content % Depth, feet Stratum LL, % PI% MATERIAL DESCRIPTION 30-647.5 CL 10 33 49 111 very pale brown (10YR8/4), lean CLAY, moist (cont.) 20 5/2 4.5+ 66 46 19.5 hard 50/3.5" Ű. CL grades pale yellow (2.5Y8/4), lean CLAY, wet 10 28 hard 21/23 4.5+ 35 642.5 49 50/3 ΪŪ. CL possible 70 degree and 30 degree fractures organic filled, no water 36/37. 36/37 core IB CL grades very pale brown (10YR8/3), possible vertical fracture, no calcite, no water, 6' in length 637.5 40 core 632.5-45 60/58 60/59 core Ш CL possible horizontal fracture, calcite filled, no water 50 627.5 60/59, 60/59 core ш CL possible 85 degree fracture 1/4" thick and 2' in length, calcite filled, no water 622.5 55 60/59. 60/59 17.2 63 45 core CL 111 possible vertical fracture, 6" in length Ű. CL possible vertical fracture 2' in length, calcite filled 617.5 60 core IV grayish green (Gley1 5/1), CLAYSTONE 38 14.0 60/55 54 core 612.5 65

Elevation, feet Sample Type Permeability (cm/s) Piezometer Completion Pocket Pen. Consistency Graphic Log Sampling Resistance, blows/foot Field USCS Moisture Content % Drlven/Rec Depth, feet Stratum LL, % PI% MATERIAL DESCRIPTION 612.5-65grayish green (Gley1 5/1), CLAYSTONE (cont.) 60/59, 60/59 38 14.0 54 core 607.5-70 core ١V Clayslo grades light yellowish brown (2.5Y6/4), possible vertical fracture, IV Claystor calcite filled 602.5 75 possible vertical fracture, 6" in length, calcite filled, no water 60.59 60.57 core 597.5-80 50/60 60/60 core 592.5 85core 587.5 90 0000 соге 582.5 95 core core 577.5 100

Boring GB-24 Sheet 4 of 5

Elevation, feet	Sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Field USCS	Graphic Log		MATERIAL DESCRIPTION		Driven/Rec	Permeability (cm/s)	Pocket Pen.	LL, %	P1%	Moisture Content %	Piezometer Completion
577.5100 			core	V	Clayslone		same as above			60/59, 60/59						
- 572.5— 105 - - -			core				-		-	60/64, 60/64						
567.5— 110 - - -			core						-	60/69, 60/59						
562.5— 115 - - - -	-		core						-	60/60, 60/58						
557.5— 120 - - - - -			core				-		-	60/58, 60/58						
552.5— 125 - - - -			core				-		н - - - -	60/59, 60/59						
547.5— 130 - - -			core						-	60/59 60/59						
542.5-135			core			1				60/61						I

Boring GB-24

Sheet 5 of 5

Elevation, feet	Depth, feet	Sample Type	Consistency	Sampling Resistance, blows/foot	Stratum	Field USCS	Graphic Log	MATERIAL DESCRIPTION	Driven/Rec	Permeability (cm/s)	Pocket Pen.	rr, %	PI%	Moisture Content %	Piezometer Completion
542.5	135			core	IV	Claystone		grayish green (Gley1 5/1), CLAYSTONE (cont.)	60/61, 60/61						
537.5— - -	140— - -			core					60/60, 60/60						
- 532.5— - -	- 145— - -			core					60/59, 60/59						
- 527.5— - -				core					72/72, 72/70						
				C	١V	Claystone		Bottom of Boring at 155 feet bgs							
- 517.5— -	 160— -														
- - 512.5	- 165—														
- - 507.5	170														

				LOC	ΞO	FΒ	OR	ING	MW	/ - 8		
										(Page 1 of 1)	
	WM - 10 New E	Comal County Landfill 00 Kohlenberg Rd. Braunfels, Texas 78130	Date : Borehole Diameter : Drilling Method : Sampling Method :	: 4/5/2006 : 8.25 inch : Hollow Stem : 2" x 2.5' Spli : Bagar Come	I Auge	r on		Drilling Driller Driller Northi	g Com	pany se No.	: Vortex Drilling Co. : John Egan Talbot : 3180-M : 13816463.5700 : 2277495 6410	
		Project No.020685	Geologist	Roger Gome	ez, ivif			Easur	ig		2277485.6410	
Depth in Feet	Surf. Elev.588.78	DESC	RIPTION		NSCS	GRAPHIC	Samples	Recovery (ft/ft)	OVM (ppmv)	Well: Elev.	MW-8 (TOC): 591.48	
0	- 588.78	(0-2.0) - SOIL, OH, silty clay, bla soft, medium plasticity.	ack, organic rich, slightl	y moist,	FILL			Grab		0.0	Concrete	
5-												
10-	- 578.78	(7.5-25.0) - SILTY CLAY, CL, ye hard towards base, some clay fr to medium plasticity.	ellow to dark tan, dry, fir actures with silt in-filling	rm to g, low				1.0/2.5			Cement/Bentonite	
15	- 573.78	8						1.7/2.5			Casing	
					CL			1.6/2.5 1.5/2.5				
20	- 568.78							1.7/2.5			Bentonite Seal	
25-	- 563.78	(25.0-32.5) - WEATHERED CL4 partings, brittle, hard, dry, oxidiz	AYSTONE, brown to gra to unoxidizing transiti	ay, clay ion				1.7/2.5 2.0/2.5				
30-	- 558.78	zone, no plasticity.		CLA	YSTO						Sand Pack	
		(32.5-40.0) - CLAYSTONE, gray fissile, dry, massive, consolidate	/ to dark gray, unoxidize d, very hard,.	ed,							2" Slotted Screen	
	- 553.78	8									Silt Sump	
40-	40 548.78											
Well Co	mpletion:			37.0 - 40.	0' bgs	Bento	nite ch	ips				
0 - 2.0' 2.0 - 19 19.0 - 2 23.0 - 3	0 - 2.0' bgs Concrete 0 - 25.62' bgs 2" FTJ Sch. 40 PVC 2.0 - 19.0' bgs Bentonite chips, hydrated, PDSCo 25.62 - 35.62' bgs FTJ sch 40 PVC, 0.010" slots 23.0 - 37.0' bgs 10/20 Grade Filter Sand, Southern Filter Media 35.62 - 38.12' bgs 2" FTJ Sch. 40 PVC: Silt Sump											

Log of Boring GP-5A

Date Drille	(s) d 03	/09/:	2009					Logged By Mohammad Z. Islam	Checked By Scott N	I. Grave	s, P.E.
Drillir Meth	od Re	otary	Wasl	h				Drill Bit Size/Type 6 inch	Total Depth of Borehole 52 feet	bgs	
Drill I Type	^{Rig} M	obil	B59					Drilling Contractor Total Support Services, Inc.	Approximate Surface Elevation 60	9.07 f ee	t MSL
Grou and i	ndwat Date M	er Le easu	red No	ot Enco	untered	ł		Sampling Method(s) SPT	Hammer Data 140 lb, 30	in drop	, safety
Borei Back	hole fill	Vell	Comp	letion				Location N 13,815,940, E 2,277,535			
<u> </u>		ř									
5		Type		o te	e tency	Symbo	c Log			Conter	
iter of	יבראמת	ample	ample	ampli tesista tows/f	telativ	SCS	iraphi			Vater (REMARKS AND
609.1-	י ק 0	200	02	이뜨 고	<u>ш</u> О	СН		MATERIAL DESCRIPTION		>%	UTHER TESTS
	-	-							-		
]								-		
]							-	_		
604.1-	- 5					сн		Mud appears to be light tan color.			
	-	1						· · · · · · · · · · · · · · · · · · ·	-		
]]							_		
	4	4							-		
599.1-	10-	-				сн		Mud appears to be tan color.			
		-							-		
ab.tpl]]							-		
9-1L	-	-					<i>.</i>				
ූ 594.1	- 15-	-				сн		Same as above.			
gs Bo	-	-							-		
SP all t]							1		
) seqo		-					<i>.</i>		_		
se 589.1-	20-	-				сн		Same as above.			
log log]							-		
ion\Bor		_									
istaliati		-					<i>.</i>		-		
1 684.1	25-					сн		Same as above			
MW an]										
12009	-	-							-		
omalCo	-								-		
Ŭ 579.1	J 30-			I				den den skonsk men er den som er er er er er er er er er er er er er			
P:/Pro											

Project: Gas Probe Installation,Mesquite Creek Landfill. Project Location: 1000 Kohlenberg Lane, New Braunfels, TX Project Number: TXL0054-01

Log of Boring GP-5A

	Depth, feet	Sample Type	Sample Number	Sampling Resistance, blows/foot	Relative Consistency	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	Water Content, %	REMARKS AND OTHER TESTS
574.1-	- 30					СН		Mud appears to be light grey color. Mud appears to be grey color		
569.1- 564.1-	- 40 - 45				c	CH		Same as above		
5P all.bgs (Boring Log - 1 Lab.tpl) 59 - 1-	- 50		1 0/225*,	39, 50/5", 50/3", 50/2.5". 50/2.3", 50/2.3",	C 50/2.3",	aystor		Same as above. Bottom of Boring at 52 feet bgs.		
GP Installation/Boring kog/Gas Probes C -1.7629	- 55									
Projects/ComalCo/2009 M/V and	 65									

Gas Probe Data Sheet

Permittee or Site Name: WMTX - Mesquite Creek Landfill

County: <u>Comal</u> Date of Gas Probe Installation:<u>10/06/05</u> Gas ProbeLatitude:<u>29 44' 24.77"</u> Longitude: <u>98 01' 57.38"</u> Northing: <u>13817956.20</u> Easting: <u>2275490.16</u>

MSW Permit No. 00A
Gas Probe I.D. No.: GP-07
Monitor Well Driller
Name: GeoProjects/ Lee Gebbert
License No.: 2525W

NOW DOWNLOOK

NOTES:

Report all depths from Surface Elevation and all Elevations relative to Mean Sea Level (MSL), to nearest hundredth of a foot. Diameter of boring should be at least 4 inches larger than diameter of well casing. Use flush screw joint casing only, 2-inch diameter or larger, with o-rings or PTFE tape in joints (4-inch diameter recommend).

Well development should continue until water is clear, and pH and conductivity are stable.

Geologist, Hydrologist, or Engineer Supervising Gas Probe Installation: <u>Janet Meaux</u> Static Water Level Elevation (with respect to MSL) after Well Development: <u>NA</u> Name of Geologic Formation(s) in which Well is completed: <u>Lower Taylor Group (Stratum III of site-specific characterization)</u>

 Type of Locking Device: Padlock
 Type of Casing Protection: Metal Stick-Up

 Concrete Surface Pad (with steel reinforcement) Dimensions: <u>4'x4'</u>

TCEQ-10308

Log of Boring GP-8

Date(s Drilled	⁾ 03/16/2009		Logged By Mohammad Z. Islam	Checked By Scott M. Graves, P.E.
Drilling Method	Hollow Stem Auger		Drill Bit Size/Type 8 inch	Total Depth of Borehole 49 feet bgs
Drill Ri Type	^g Mobil B59		Drilling Contractor Total Support Services, Inc.	Approximate Surface Elevation 605.34 feet MSL
Ground and Da	twater Level Not Encour	ntered	Sampling Method(s) Other	Hammer Data N/A
Boreho Backfill	Well Completion		Location N 13,816,626, E 2,277,112	
_		-		
n, féc	ot e	Symbo Log		
evatic	mple sista	SCS (
面 605.3—	ద్రు సిజిచ్	ភ័ ច	MATERIAL DESCRIPTION	
_		СН	Grass	
-	-			
-	-		-	-
-	-		-	-
600.3	5	сн	Black CLAY with some gravel	
			-	
			-	
_	-		- -	
595.3—	10			
-	- 1		I an and light grey CLAY mix with calcite seam	
	-		-	
-	-		•	
a tpl]	a		-	
영 590.3 旧	15	сн	Tan CLAY with trace silt	
w) sgd			-	
t SP all	-			
t opes (-			
لم ۲.8585.3	20	сн	Tan CLAY with trace silt	
ypol e	-		-	
- Borin	-		-	
I llation				
132 0.580.3	25-		-	
D Pu		СН	Tan and grey CLAY mix with trace silt	
MW.	-			
- 5002	-			
	-			
ບັງ 575.3 ຊື	30	V///		<u> </u>
?.\Proje				

Project: Mesquite Creek Landfill, Gas Probe Installation Project Location: 1000 Kohlenberg Lane, New Braunfels, TX Project Number: TXL0054-01

Log of Boring GP-8

			1	1	T				
, feet	ŧ	ype	_8 ⁵ 5	lođ	Бо-				
Elevation	Depth. fe	Sample 1	Sampling Resistant blows/foc	uscs sy	Graphic I	MATERIAL DESCRIPTION	Well Log	REMARKS AND OTHER TESTS	
D/ 9.9	30-			СН		Same as above			1
-	1 '					-			
-] .			Clavstone	4				
] .					- Hast and bry data grey operior one manuace and -			
	20					-			
5/0.3-	35-			Claystone		Same as above			
						-			
		4		Clavstone		Same as above			
EGE 2	40		6 9 9			-			
000.3	40-			Claystone		Same as above			
				Clavstone		Same as above			
560.2	45								
560.3	45			Claystone		Same as above			
) E		
				Claystone		Same as above			
<u> </u>									
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50					Bottom of Boring at 49 feet bgs			
						-			
v] sgd 1									
Pall.	-								
1 098 G									
01 6550 3	55								
	-								
o; Bu;	_								
	_								
	_								
545 3-	60—								
	-								
						· -			
	-								
540.3	65								
Jects									
DIAL:									

	Date(s Drilled	^{;)} 03/2	25/20	09			Logged By Mohammad Z. Islam	Che	cked	By Scott M. Graves, P.E.
	Drilling Metho	d Holl	low \$	Stem Auger			Drill Bit Size/Type 8 Inch	Tota of B	l Dep oreho	th le 48 feet bgs
	Drill Ri Type	^g Moi	bil B	59			Drilling Contractor Total Support Services, Inc.	Appi Surfi	roxima ace E	ate levation 624.98 feet MSL
	Ground and Da	dwater ate Mea	Leve asure	d Not Encou	intered		Sampling Method(s) Core	Ham Data	imer	N/A
	Boreho Backfil	^{sle} We	ell Ce	ompletion			Location N 13,817,505, E 2,275,964			
(ГТ		I			T		
	Elevation, feet	Depth, feet	Sample Type	Sampling Resistance, blows/foot	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION		Well Log	REMARKS AND OTHER TESTS
	62 5	0			СН		Medium stiff light grey CLAY between 0 and 3 ft,			
		-		Core			medium stiff black CLAY between 3 and 5 ft, few gravel.	-		
		1		Core	СН		No sample recovered, drill cutting appears to be light grey CLAY.			No sample recovered, a 3.5 in. gravel plugged at the sampler tip.
g a.tp]]	615	10		Core	сн		Medium stiff light tan CLAY with trace silt.			2 ft sample recovered.
s Probes GP all.bgs [well ic				Core	СН		Medium stiff tan and light grey CLAY with trace silt			
Boring log\Ga	-	-		Core	СН		Same as above			
ⁿ Installation\	-			Core	СН		Same as above			
MW and GF	-	-		Core	СН		Same as above			
omaiCo\2005	-	-		Core	СН		Same as above			
P:\Projects\(293	30								

Project: Gas Probe Installation,Mesquite Creek Landfill. Project Location: 1000 Kohlenberg Lane, New Braunfels, TX Project Number: TXL0054-01

Log of Boring GP-9

Log of Boring GP-10

Date(s	^{s)} 03/24	/2009			Logged By Mohammad Z. islam	Chec	ked I	By Scott M. Graves, P.E.
Drilling Metho	g Hollo	w Stem Auger			Drill Bit Size/Type 8 Inch	Total of Bo	Dept	^h 47.5 feet bgs
Drill R Type	^{ig} Mobi	I B59			Drilling Contractor Total Support Services, Inc.	Appr Surfa	oxima ce El	evation 663.94 feet MSL
Groun and D	idwater L ate Meas	evel sured Not Enco	untered		Sampling Method(s) Core	Ham Data	ner	N/A
Boreh Backfi	ole Wel	I Completion			Location N 13,818,348, E 2,276,992			
	Г	T		1				
5 Elevation, feet	Depth, feet	sample type Sampling Resistance, blows/foot	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	10201	MALI FOR	REMARKS AND OTHER TESTS
-		Core	СН		edium stiff light grey CLAY between 0 and 3 ft, edium stiff black CLAY between 3 and 5 ft.	- 43 - 43 -		KG30r660bidk calcite seam near 3 ft bgs
658.9 - - -	5	Core	сн	- Me	edium stiff light grey and tan CLAY with trace silt			3 ft sample recovered
653.9 	10	Core	СН	- oc	edium stiff light grey and tan CLAY with trace silt, cassional catcite seam			4 ft sample recovered
648.9 	15 	Core	СН	- Sa 	ime as above			3 ft sample recovered
-43.9 - - -	20 - - -	Core	СН		me as above			
638.9 - -	25 - -	Core	СН	Sa 	me as above		語の語を	
-		Core		- Me 000	courn sum light grey and tan CLAY with trace silt, cassional calcite mix, damp			

Project: Gas Probe Installation, Mesquite Creek Landfill. Project Location: 1000 Kohlenberg Lane, New Braunfels, TX Project Number: TXL0054-01

Log of Boring GP-10

	Elevation, feet	Depth, feet	Sample Type	Sampling Resistance, blows/foot	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	Well Log	REMARKS AND OTHER TESTS	
633	3.9	30	7	Соге	СН		Same as above			
	1 1	-		Core	СН		- Same as above -			
628	9 	3 5		Core	СН		Same as above			
622	-			Core	СН		Same as above			
523	-	-	7	Core	СН		Same as above			
	-			Core	СН		- Same as above -			
618	9 . - -	45 -	7	Core	Claystone		Medium stiff grey CLAYSTONE with trace silt, damp.			
[p]	-	-					Bottom of Boring at 47.5 feet bgs			
e 613 steps	⊢-e , −	50 -								
oes GP all by	-	-								
og/Gas Prot		55— 								
ation\Boring	-	-					· · ·			
nd GP Install: 903	- - -	60				-				
0\2009 MW a	-	-					·			
scts/ComalC	۔ 	 65					-			
P:/Proj										

Log of Boring GP-11

Drille	ed 03	8/16/20	009			Logged By Mohammad Z. Islam	Checked By Scott M. Graves, P.E.
Drilli Meth	ng nod H	ollow	Stem Auger			Drill Bit Size/Type 8 inch	Total Depth of Borehole 57 feet bgs
Drill Type	Rig M	obil E	359			Drilling Contractor Total Support Services, Inc.	Approximate Surface Elevation 615.86 feet MSL
Grou	indwat Date N	er Leve leasure	^{el} ed Not Encou	ntered		Sampling Method(s) Other	Hammer Data N/A
Bore Back	hole fill	Vell C	ompletion			Location N 13,817,459, E 2,277,906	
				1			
i	Elevation, teet	Depth, feet Sample Type	Sampling Resistance, blows/foot	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	REMARKS AND OTHER TESTS
615.9				СН		Grass	
610.9		-				Light tan and black CLAY mix with trace silt	
610.5		-		СН		Medium stiff light tan CLAY with trace silt	
e.509	- 10 - - - -	-		СН		Medium stiff tan CLAY mix with trace silt	
5600.9-	- 15 - -	-		СН		Stiff tan CLAY with trace silt	
Probes GP a	-	-7		СН		Same as above	
oring log\Gas 6'64	-			сн		Tan and grey CLAY mix with trace silt	
Installation/B	-	-7		СН		Light tan CLAY with trace silt, medium stiff	
4.090.9-	- 25- -			СН		Hard and dry tan CLAY with trace silt	
Comatco/2002	- - - 30-	1		СН		Same as above	

Project: Gas Probe Installation, Mesquite Creek Landfill. Project Location: 1000 Kohlenberg Lane, New Braunfels, TX Project Number: TXL0054-01

Log of Boring GP-11

				1			
1							
			-				
, fee	L te	_8's	A E	ទី			
ation	h, fe Die I	stang stang	s S	hic I		۲ <u>و</u>	
Ëeč	Sam Dept	Blow	nsc	Grap	MATERIAL DESCRIPTION	Mell	REMARKS AND OTHER TESTS
585.9	30		СН		Same as above	e -	
-		4	U.S.				
-					-		
- 1		7	СН		_ Same as above		
-					_		
580.9	35					2月2	
-		4	Сн		Hard dry grey and tan CLAY with trace silt		
_							
_			Claystone		- Hard grey CLAYSTONE with trace silt		
5/5.9	40	7	Claystone		Same as above		
-	1						
-			Clavatona				
-			Claystone		- Same as above -		
					-		
570. 9	45-	7	Claystone		Same as above		
-					-		
-	-		-				
-	-	4	Claystone		Same as above		
	-				-		
565.9	50		Claystone				
_	-						
-	-				a		
_	-	7	Claystone		_ Same as above _		
_	-						
560. 9 —	55-		Ciavetono		Dens as show		
			Caystone		Same as above		
_	_				Bottom of Boring at 57 feet bgs.		
_	_				_		
655 9	60						
]							
1 7]				-		
1 1					-		
-	-						

Log of Boring GP-12

Date(s) Drilled 03/18/2009	Logged By Mohammad Z. Islam	Checked By Scott M. Graves, P.E.
Drilling	Drill Bit	Total Depth
Method Hollow Stem Auger	Size/Type 8 inch	of Borehole 31 feet bgs
Drill Rig	Drilling	Approximate
Type Mobil B59	Contractor Total Support Services, Inc.	Surface Elevation 610.03 feet MSL
Groundwater Level	Sampling	Hammer
and Date Measured Not Encountered	Method(s) Core	Data N/A
Borehole Backfill Well Completion	Location N 13,816,475, E 2,278,886	

	Elevation, feet	Depth, feet	Sample Type	Sampling Resistance, blows/foot	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION		Well Log		REMARKS AND OTHER TESTS	
	-	-		Core	СН		Medium stiff tan and light grey CLAY with calcite mix				Only 1.5 ft sample recovered	
	605	5		Core	СН		Appeares to be light grey CLAY with occassional gravel mix				Very small amount of sample recovered	
a.tpl}	600 <u></u> - - -	10 		Core	СН		Hard and dry tan CLAY with calcite mix, occassional gravel	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Section 2 Sectio	Only 1 ft of sample recovered, a 3-in gravel piece came out with the sample.	
all.bgs [well log	595	15		Core	СН		Hard and dry tan CLAY with calcite mix, trace silt	1 1 1 1 1 Starter C. 6. 2				
as Probes GP	- - 590	- - 20		Core	сн		- Same as above -	Constraints				
Boring log(G	-	-		Core								
Instaliation)	-	-		Core	СН		Same as above	24/12-42				
9 MW and GP	585	25 		Core	СН		Same as above			ويتورد ويترونه		
ComalCo\200	580-	-		Core	СН		Same as above					
P;\Projects\		~~	_						 			

Project: Gas Probe Installation, Mesquite Creek Landfill. Project Location: 1000 Kohlenberg Lane, New Braunfels, TX Project Number: TXL0054-01

Log of Boring GP-12

Sheet 2 of 2

	089 Elevation, feet	Depth. feet	Sample Type	Sampling Resistance, blows/foot	L USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	Well Log	REMARKS AND OTHER TESTS	
	-			Core			Same as above (cont.) Bottom of Boring at 31 feet bgs			
		35	.							
	1									
	570-	40								
	-	-								
	-	-								
	 565	- 45								
	-	-								
		-								
og a.tpf]		- 50								
gs [well k	-	-								
GP all b	-	-								
s Probes	-	- 55								
ig log\Ga	-	-								
tion/Borin	-	-								
^o Installal	550									
W and G	-									
V2009 MI	-	-								
ComalCo	545-	-					-			
Projects										

Log of Boring GP-13

Dri	ate(s) illed	03/23/	2009		Logged By Mohammad Z. Islam	Checked By Scott M. Graves, P.E.
Dri Me	illing ethod	Hollov	w Stem Auger		Drill Bit Size/Type 8 inch	Total Depth of Borehole 62 feet bgs
Dri Ty	ill Rig /pe	Mobil	B59		Drilling Contractor Total Support Services, Inc.	Approximate Surface Elevation 639.87 feet MSL
Gro an	ound d Dat	water Le te Measu	vel Ired Not Enco	untered	Sampling Method(s) Core	Hammer Data N/A
Bo Ba	orehol ackfill	^{le} Well	Completion		Location N 13,816,023, E 2,279,585	
		T			l	
	Elevation, feet	Jepth, feet samole Tvpe	sampling Resistance, Ilows/foot	JSCS Symbo Staphic Log		
639.	.9-	0		СН	Dry light grey clay with some silt occassional gravel	Only about 2 ft
		- - - -	Core		- mix	sample recovered
634.	.9 - - -	5	Core	СН	Dry and stiff tan CLAY with trace silt 	
629.	- - e. -	- 10 - - - -	Core	сн	Dry and stiff tan CLAY with calcite mix	
re bol llew] sbq;	e. -	15	Core	сн	Stiff tan CLAY with trace silt	
Probes GP at		-	Core	СН	_ Same as above	
Soring log/Gas		-	Core	СН	Same as above	
Installation/E	-		Core	СН	- Same as above -	
9 MW and GF	-		Core	СН	Same as above 	
comalCo/200	-	-7	Core	СН	- Same as above	

Project: Gas Probe Installation,Mesquite Creek Landfill. Project Location: 1000 Kohlenberg Lane, New Braunfels, TX Project Number: TXL0054-01

000010010

Clop.

à

Log of Boring GP-13

Elevation, feet	Depth, feet	Sample Type	Sampling Resistance, blows/foot	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	Well Log	REMARKS AND OTHER TESTS
;09. 9 	30		Core	СН		Same as above		
-			Core	СН		- Same as above		
604. 9 - -	35 -		Core	СН		Tan CLAY with ocassional calcite seam		
-	-		Core	СН		Tan CLAY with trace silt		
599.9— -	40— -		Core	СН		Tan CLAY with trace silt, occassional calcite seam		
-	-		Core	Claystone		 Hard dark grey CLAYSTONE with trace silt, dry 		
594.9 - -	45		Core	Claystone		Same as above		
-	-	7	Core	Claystone		- Same as above -		
	50		Core	Claystone		Same as above -		
	-		Core	Claystone		- Same as above -		
-	-		Core	Claystone		Same as above		
- - 79. 9	 60		Core	Claystone		- Same as above		
-	-		Core	Claystone		Same as above Bottom of Boring at 62 feet bgs		
	-					· · · ·	-	

Log of Boring GP-20

Date(s) Drilied	03/2	:5/20	009			Logged By Mohammad Z. Islam	Che	ecke	ked By Scott M. Graves, P.E.			
Drilling Method	Holl	ow	Stem Auger			Drill Bit Size/Type 8 inch	Tota of B	Total Depth of Borehole 65 feet bgs				
Drill Rig Type	Mot	oil E	359		-	Drilling Contractor Total Support Services, Inc.	App	Approximate Surface Elevation 664.17 feet MSL				
Ground and Dat	water te Mea	Leve	el ed Not Encou	ntered		Sampling Method(s) Core	Han Dat	Hammer Data N/A				
Borehole Backfill	^{ie} We	ell C	ompletion			Location N 13,814,695, E 2,278,675						
-												
Elevation, feet	Depth, feet	Sample Type	Sampling Resistance, blows/foot	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION		Well Log	REMARKS AND OTHER TESTS			
			Core	СН		Medium stiff black clay with some silt.			About 2.5 ft sample recovered			

Elev	Dept	Sam	Sam Blow	nsc	Grap	MATERIAL DESCRIPTION		VALUE	REMARKS AND OTHER TESTS	
664.2	0	T		СН		Medium stiff black clay with some silt.	1		About 2.5 ft sample recovered	
-	-		Core				-			
659.2	- 5			СН					Drilling very bard at	
-	_			GI					8 ft.	
-	-		Core				New S	2		
- 654.2	- 10			сн		Dry and stiff tan CLAY with calcite mix	1			
-	-						1-1-1			
	-		Core				contraction of the second second second second second second second second second second second second second s			
14	15			сн		Same as above.				
lew] sgd.l	-		Core				1-1-1-			
bes GP al	-	7	Core	СН		Medium stiff tan CLAY with trace silt, occassional calcite seam.				
644.2	20			сн		Same as above	5.800 m			
loring log	-		Core				1			
stallation/I	-		Core	СН		Same as above	1222			
й 639.2 —	25	7		сн		Same as above	1.5	TTTTT		
09 MW 8	-		Core	СН			1-1-22			
malCo\20	-		Core	011		Same as above				
ပို 634.2	30		t		<u>//A</u>		1			
й а										

Project: Gas Probe Installation,Mesquite Creek Landfill. Project Location: 1000 Kohlenberg Lane, New Braunfels, TX Project Number: TXL0054-01

Log of Boring GP-20

Elevation, feet	Depth, feet	Sample Type	Sampling Resistance, blows/foot	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	Weil Log	REMARKS AND OTHER TESTS	
-			Core	СН		Same as above - -			
-		7	Core	СН		Same as above			
629.2— - -	35	7	Core	СН		Same as above			
-		7	Core	СН		- Same as above			
624. 2	40	7	Core	сн		Same as above			
-	-	7	Core	сн		Same as above			
619.2 	45	7	Core	СН		Same as above			
-	-	7	Core	сн		Same as above			
614.2—	50	7	Core	СН		Same as above			
	-	7	Core	Claystone		Hard tan CLAY with trace silt between 52.5 and 53.5 ft, hard dark grey CLAYSTONE with trace silt between 53.5 and 55 ft			
609.2 	55		Core	Claystone		Hard tan CLAY with trace silt between 55 and 56 ft, hard dark grey CLAYSTONE with trace silt between 56 and 57.5 ft.			
	-		Core	Claystone		Grey and tan CLAY mix with trace silt			
604 <i>.</i> 2—	60		Core	Claystone		Same as above			
-	-		Core	Claystone		Hard dark grey CLAY with trace silt			
 599.2	65					Bottom of Boring at 65 feet bgs			

Log of Boring GP-21

Date(s) Drilled 03/18/2009	Logged By Mohammad Z. Islam	Checked By Scott M. Graves, P.E.
Drilling	Drill Bit	Total Depth
Method Hollow Stem Auger	Size/Type 8 Inch	of Borehole 49 feet bgs
Drill Rig	Drilling	Approximate
Type Mobil B59	Contractor Total Support Services, Inc.	Surface Elevation 637.79 feet MSL
Groundwater Level	Sampling	Hammer
and Date Measured Not Encountered	Method(s) Core	Data N/A
Borehole Backfill Well Completion	Location N 13,815,429, E 2,277,985	•

6	Elevation, feet	Depth, feet	Sample Type	Sampling Resistance, biows/foot	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	Welt I on	REMARKS AND OTHER TESTS	
				Core	СН		Medium stiff tan CLAY with occassional gravel mix		Only 1.5 ft sample recovered	
6	32.8 	5		Core	СН		Stiff tan CLAY with occassional calcite seam			
61	27.8 	10			СН		Stiff tan CLAY with trace silt		Only 2.5 ft sample recovered	
og a.tp)		- - 15		Core						
P all bgs [well ic	1 1	-		Core	СН		Stiff tan CLAY with trace silt			
plGas Probes G	-	- 20		Core	сн		Same as above			
llation/Boring lo	-	-		Core	сн		Same as above			
WW and GP Inste 9	2.8	25		Core	сн		Same as above			
ComatCo\2009 N	- - 7.8	-	7	Core	сн		Same as above			
P:\Projects\								 		

Project: Gas Probe Installation,Mesquite Creek Landfill. Project Location: 1000 Kohlenberg Lane, New Braunfels, TX Project Number: TXL0054-01

Log of Boring GP-21

Ground Water Monitoring Well Installation, Mesquite Creek Project: Landfill. Project Location: 1000 Kohlenberg Lane, New Braunfels, TX Project Number: TXL0054-01

Log of Boring MW-2A

Date(s) 03/17/2009	Logged By Mohammad Z. Islam	Checked By Edward B. Dolan, P.G.			
Drilling Method Hollow Stem Auger	Drill Bit Size/Type 8 Inch HSA	Total Depth of Borshole 37 feet bgs			
Drill Rig Type Mobil B59	Drilling Contractor Total Support Services, Inc.	Approximate Surface Elevation 608.97 feet MSL			
Groundwater Level and Date Measured Not yet measured	Sampling Method(s) SPT	Hammer 140 lb, 30 in drop, safety			
Borehole Backfill Well Completion	Location N 13,617,069, E 2,278,162				

Project: Ground Water Monitoring Well Installation, Mesquite Creek Project Location: 1000 Kohlenberg Lane, New Braunfeis, TX Project Number: TXL0054-01

Log of Boring MW-2A

Ground Water Monitoring Well Installation, Mesquite Creek Project: Landfill. Project Location: 1000 Kohlenberg Lane, New Braunfels, TX Project Number: TXL0054-01

Log of Boring MW-7A

Date(s) Drilled 03/11/2009	Logged By Mohammad Z. Islam	Checked By Edward B. Dolan, P.G.			
Drilling Method Rotary Wash	Drill Bit Size/Type 6 Inch tricone bit	Total Depth of Borehole 27 feet bgs			
Drill Rig Type Mobil B59	Drilling Contractor Total Support Services, Inc.	Approximate Surface Elevation 603.4 feet MSL			
Groundwater Level and Date Measured Not yet measured	Sampling Method(s) SPT	Hammer 140 ib, 30 in drop, safety			
Borehole Backfill Well Completion	Location N 13,816,498, E 2,277,256				

	5 Elevation, feet		Uepar, reet	Sample Type Sampfing Resistance, blows/foot	USCS Symbol	Graphic Lod	MATERIAL DESCRIPTION			WHE LOG	REMARKS AND OTHER TESTS		
	-		1 1 1		СН		(Mud appears to be blackish color.)		1.2	1. 2			
	98.4 - - - -	5-			СН		Same as above						
.bgs [well kg a.tpl] 01	93. 4 - - -	10-	10			СН		(Mud appears to be light tan color, broken stone - chips came out with the mud slurry.)	Carry State and Car				
IC WELEY MODIFICING WELL BI	58.4	16			СН		(Mud appears to be tan color.)	A STATE AND A STATE AND A STATE AND A STATE AND A STATE AND A STATE AND A STATE AND A STATE AND A STATE AND A S					
	53. 4- - -	20 -		40, 50/4", 50/5", 50/4.3".	CH Claystone		Stiff tan and grey CLAY mix with trace slit. Hard grey CLAYSTONE with trace slit.	またのの					
	- - -8,4 -	- 2 5		25, 50/5.5", 50/3.5", 50/2.5".	Claystone		Same as above	のないのでの目的に					
A STATE OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER		-			Clayatone	- 12	Same as above. Bottom of Boring at 27 feet bgs.	<u>.</u>	52.5				
67	3.4_]	30						L			L		

Project: Ground Water Monitoring Well Installation, Mesquite Creek Project Location: 1000 Kohlenberg Lane, New Braunfels, TX Project Number: TXL0054-01

Log of Boring MW-8A

Date(s) Drilled 03/19/2009	Logged By Mohammad Z. Islam	Checked By Edward B. Dolan, P.G.			
Drilling	Drill Bit	Total Depth			
Method Hollow Stem Auger	Size/Type 8 Inch HSA	of Borehole 55 feet bgs			
Drill Rig	Drilling	Approximate			
Type Mobil B59	Contractor Total Support Services, Inc.	Surface Elevation 625.52 feet MSL			
Groundwater Level	Sampling	Hammer			
and Date Measured Not yet measured	Method(s) Core	Data N/A			
Borehole Backfill Well Completion	Location N 13,817,143, E 2,276,302				

	Elevation feet	Deoth. freet	Sample Type	Sampling Resistance, biows/foot	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	Weit Log	REMARKS AND OTHER TESTS	
	- - - -			Core	СН		Dry light tan CLAY with some gravel between 0 and - 2.5 ft, black grey clay with trace slit between 2.5 and 5 ft. -	12.		
				Core	СН		Dry and stiff light tan CLAY with some gravel and - trace slit. -		3 ft sample recovered.	
bgs [weif tog a. tpf] co	15. 6 - - -	10		Core	СН		Dry and stiff tan CLAY with trace slit, occassional calcite mix.		2.5 ft sample recovered.	
1 water monitoring well all. 00	10.5 - - -	15		Core	сн		Same as above		2.5 ft sample recovered.	
tatation/Boring log/Groun		20 - - -		Core	сн		Same as above			
Wand GP In	0.5	25	7	Core	сн		Same as above			
comalCol2009 M		-	7	Core	сн		Same as above. 			
Propodal		30		f				_		,

Pro Pro Pro	ject: ject L ject P	Groi Lanc Loca	ind Water fill. ition: 100 ber: TXL	Monitoring 0 Kohienb .0054-01	Log of Boring MW-8A Sheet 2 of 2					
Flavoritori Flavoritori	Depth, feet	Sample Type	Samping Resistance, blowarfoot	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION		Well Log	REMARKS AND OTHER TESTS	
540.0			Соге	СН		Same as above.	-			
			Core	СН		- Same as above.	-			
590.6-	35-		Core	СН		Same as above.				
-		7	Core	СН		Same as above.	-			
585 <i>.</i> 5	40	7	Core	СН		Tan CLAY with trace silt.				
-		7	Core	СН		Same as above.				
580.6 - - -	45- - -	7	Core	СН		Tan CLAY with trace slit, occassional calcite seam.				
Lings (well too	-	7	Core	СН		Same as above.				
e 576.5 16 26 26 26 26 27 27 27 27 27 27 27 27 27 27 27 27 27	50	7	Core	СН		Same as above.				
nd water mor	-		Core			Hard and dark grey CLAYSTONE with trace slit.	يدا ي ها. و			
2570.6 26 26	55					Bottom of Boring at 55 feet bgs.		24.40 M		
	-						-			
-	-									
-	-				-		-			
	¢0									

•

Ground Water Monitoring Well Installation, Mesquite Creek Project: Landfill. Project Location: 1000 Kohlenberg Lane, New Braunfels, TX

Project Number: TXL0054-01

Log of Boring MW-9

Dete(s) Drilled 03/24/2009	Logged By Mohammed Z. Islam	Checked By Edward B. Dolan, P.G.
Drilling	Drill Bit	Total Depth
Method Hollow Stem Auger	Size/Type 8 inch HSA	of Borehole 50 feet bgs
Drill Rig	Drilling	Approximate
Type Mobil B59	Contractor Total Support Services, Inc.	Surface Elevation 626 feet MSL
Groundwater Level	Sampling	Hammer N/A
and Date Measured Not yet measured	Method(s) Core	Data N/A
Borehole Backfili Well Completion	Location N 13,617,565, E 2,275,906	

Log of Boring MW-9

591 -	30 - - - 35 - - - - - - - - - - - - - - -	Core Core Core Core	сн сн сн	Same as above. Same as above. Light tan CLAY with occassional calcite seam. Same as above.		
	- - - 35- - - - - - - - - - - - - - - -	Core Core Core	сн сн сн	- Same as above. Light tan CLAY with occassional calcite seam.		:
591 - - 586 -	35- - - 40-	Core Core	сн сн	Light tan CLAY with occassional calcite seam.		
- - - 586	40	Core	сн	Same as above.		
586	40					
		Core	СН	Same as above.		
-	1	Core	сн	- Tan CLAY with calcite mix, trace silt, a 4 in. CLAYSTONE seam at about 44 ft.		
581- 5	4 5	Core	Claystone CH	Dark grey CLAYSTONE with trace slit.		
	-7	Core	Claystone	Dark grey CLAYSTONE with trace sit.		
576 (50-			Bottom of Boring at 50 feet bgs.	-	
				N	-	
571— 6	66					
	-				-	
- 566 6	50			• 	-	
- 561 64	.6			 	-	

Project: WMTX Mesquite Creek Landfill. Project Location: 1700 Kohlenberg Lane, New Braunfels, TX Project Number: TXL0076-02

Log of Boring MW-10

Date(s) Drilled 11/04/2009	Logged By Mohammad Z. Islam	Checked By Scott M. Graves, P.E.
Drilling Method Hollow Stem Auger	Drill Bit Size/Type	Total Depth of Borehole 57 feet bgs
Drill Rig Type Mobil B57	Drilling Contractor Total Support Services, Inc.	Approximate Surface Bevation 670.48 feet MSL
Groundwater Level 28.5 feet measured on and Date Measured 11/06/2009	Sampling Method(s) SPT	Hammer 140 lb, 30 in drop, safety
Borehole Backfill Well Completion	Location N 13,814,602, E 2,278,767	

Bevation, feet	⁰ Depth, feet	Sample Type	Sampling Resistance, blows/foot	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	Well Log		REMARKS AND OTHER TESTS	
670.3 - - -				СН		(Drill outtings appear to be black CLAY, damp.) - - - - -				
665.5— - - -	5— - - -			СН		 (Drill cuttings appear light tan CLAY, medium				
660.5 — - - -	10— - - -			СН		— (Drill cuttings appear to be tan CLAY, trace silt, — dry.) - - - -				
655.5 — 	15— - -			СН		— Same as above —				
650.5	20		12, 14, 27	СН		Tan CLAY with trace silt, medium stiff and dry. - - - -				
645.5	25			СН		— (Drill cuttings appear to be medium stiff tan — CLAY.) - - - - - - - - - - - - - - - - - - -				
640.5	30 —						 1 8	***	20	

Project: WMTX Mesquite Creek Landfill. Project Location: 1700 Kohlenberg Lane, New Braunfels, TX Project Number: TXL0076-02

Log of Boring MW-10

Bevation, feet	Depth, feet	Sample Type	Sampling Resistance, blows/foot	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	Well Log	REMARKS AND OTHER TESTS	
640.3 — - - 635.5 — - - -	30		8, 10, 16	сн		Tan CLAY with caloite seams at 36 and 36.5 ft, — medium stiff and dry.			
- 630.5 - - - -	- 40 — - - -			сн		- (Drill outtings appear to be tan CLAY.) — 			
625.5— - - - - 620.5—	45— - - 50—		12, 17, 22	сн		 Tan CLAY with a calcite searn at 46 ft oriented at 46 degree, hard and dry. 			
- - 615.5 -	- - - 55—		14, 18, 31	сн Claystone		- 			
- - 610.5— -	- - 60 — -		19, 26, 34	Clays lone	-72	Stiff grey CLAYSTONE with trace silt, water level at - approximately 58 ft. - Bottom of boring at 57 ft bgs. 	- - - - -		
- - 605.5	- 65—					5.7 23			

Log of Boring MW-11

Date(s) 03/05/2009	Logged By Mohammad Z. islam	Checked By Edward B. Dolan, P.G.
Drilling Method Rotary Wash	Driff Bit Size/Type 6 inch tricone bit	Total Depth of Borehole 63 feet bgs
Drill Rig Type Mobil B59	Drilling Contractor Total Support Services, Inc.	Approximate Surface Elevation 679 feet MSL
Groundwater Level and Date Measured Not yet measured	Sampling Method(s) SPT	Hammer 140 lb, 30 in drop, safety
Borehole Backfill Well Completion	Location N 13,814,064, E 2,279,299	

	Elevation. feet	Depth, feet	Sample Type	Sampling Resistance, blows/foot	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	Well Log		REMARKS AND OTHER TESTS	
	- - - 674				СН		[Mud appears to be dark and black color (top soll)].	2	Х.		
	- - - 669	- - - 10			CH		(Mud appears to be light tan color.)				
ait.bgs (weif tog a.tpf)	- - - - 664	- - - 15			CT CT		-				
ound water monitoring well	- - - 659	- - - 20			CT CT		(Mud appears to be tan color.)				
P Installation/Boring top/Gr	- - - 5	- - - 25									
ComalCo/2009 MW and G	- - - -	30			Сп						
P. UProjects					·						

Log of Boring MW-18

Date(s) Drilled 03/20/2009-	Logged By Mohammad Z. Islam	Checked By Edward B. Dolan, P.G.
Drilling	Drill Bit	Total Depth
Method Hollow Stem Auger	Size/Type 8 Inch HSA	of Borehole 60 feet bgs
Drill Rig	Drilling	Approximate
Type Mobil B59	Contractor Total Support Services, Inc.	Surface Elevation 635.12 feet MSL
Groundwater Level	Sampling	Hammer N/A
and Date Measured Not yet measured	Method(s) Core	Data N/A
Borehole Backfill Well Completion	Location N 13,815,968, E 2,279,746	

	Elevation fact	Denth feet	Sample Type	Sampling Resistance, blows/foot	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION		Well Log	REMARKS AND OTHER TESTS	
				Core	СН		Damp and black CLAY with some gravel.	C X			
	6 30.1	- 5 		Core	СН		Damp and light grey CLAY with trace slit between 5 - and 4 ft, dry and tan CLAY with trace slit between 4 - and 5 ft. 				
s (well log a tol)	325.1 - - -	- 10		Core	СН		Medium stiff tan CLAY with occassional calcite mix.				
ater monitoring well all by		16— 		Core	СН		Same as above				
listion/Boring log/Ground w	 15.1 -	20 - -		Core	СН		Dry medium stiff tan CLAY with trace slit.				
2009 MW and GP Insta	- 10.1 - - -	25		Core	сн сн		Moist medium stiff tan CLAY with trace slit, occassional calcite mix.				
P. Projects (ComerCo)	- 	30		Core			-				

Log of Boring MW-18

	205	Elevation, feet	. 20	Depth, feet	Sample Type	Sampling Resistance, blows/foot	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION		Weil Log	REMARKS AND OTHER TESTS	
	303.	-	30	-		Core	СН		Same as above.	-			
				-		Core	сн		- Stiff tan CLAY with horizontal calcite seam.	1			
	: 0 0.	ا 1 -	35	-		Core	СН		Same as above				
					7	Core	сн		Same as above.	-			
5	95.1		40-		7	Core	СН		Tan CLAY with trace slit between 40.0 and 41.5 ft, dark grey CLAY between 41.5 ft and 42.5 ft.				
		-			7	Core	СН		Mixture of tan and grey CLAY with trace silt.	-			
g a tp]	90.1		45-			Core	СН		Tan CLAY with trace silt, occassional calcite seam.	-	222		
ali bos (weli lo Vi	35.1	-	50			Core	СН		Same as above.				
onitoring well						Core	СН		Same as above	194-196			
ound water m	0.1-		55-			Core	СН						
ABoring log/Gr		-	•			Core	Claugtons		Tan CLAY with trace silt between 55.0 and 55.5 ft, dark grey CLAY with trace silt between 55.5 and 52.5 ft.				
OP Installation	5.1-		- - 03			Core	CH		Hard dark grey CLAYSTONE with trace slit.				
2009 MW and (-						Boword of Boring at 60 test Dgs -				
ecta/Coma/Co	0.1],	 65						•				

Log of Boring MW-19

Date(s) Drilled 03/02/2009	Logged By Mohammad Z. Islam	Checked By Edward B. Dolan, P.G.
Drilling	Drill Bit	Total Depth
Method Hollow Stem Auger	Size/Type 8 Inch HSA	of Borehole 55 feet bgs
Drill Rig	Drilling	Approximate
Type Mobil B59	Contractor Total Support Services, Inc.	Surface Elevation 633.19 feet MSL
Groundwater Level	Sampling	Hammer
and Date Measured Not yet measured	Method(s) SPT	Data 140 lb, 30 in drop, safety
Borshole Backfill Well Completion	Location N 13,816,167, E 2,279,219	

Log of Boring MW-20

Date(s) Drilled 03/03/2009	Logged By Mohammad Z. Islam	Checked By Edward B. Dolan, P.G.
Drii#ng Method Rotary Wash	Drill Bit Size/Type 10 inch drag bit	Total Depth of Borehole 40 feet bgs
Drill Rig Type Mobil 859	Drilling Contractor Total Support Services, Inc.	Approximate Surface Elevation 606.32 feet MSL
Groundwater Level and Date Measured Not yet measured	Sampling Method(s) SPT	Hammer 140 lb, 30 in drop, safety
Borehole Backfill Well Completion	Location N 13,816,684, E 2,278,784	

	Depth. feet	Sample Type	Samping Resistance, biowarfoot	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	Well Log	REMARKS AND OTHER TESTS	
				СН		[Mud appears to be dark and black color (top soil).]			
601 .3 -	- 6- 			СН		(Mud appears to be black color.)			
596.3~ 태명 후 다	- 10			СН		(Mud appears to be light tan color.)			
stq 19 fen bilogical	15			сн		(Mud appears to be tan CLAY.)			
nBoring logiGround wete	- 20			сн		Same as above.			
marCoi2009 M/W and GP Installation	25			СН		Same as above			
576.3	30		L						

Log of Boring MW-21

Date(s) Drilled 03/10/2009	Logged By Mohammad Z. Islam	Checked By Edward B. Dolan, P.G.
Drilling Method Rotary Wash	Drill Bit Size/Type 6 Inch tricone bit	Total Depth of Borehole 43 feet bgs
Drill Rig Type Mobil B59	Drilling Contractor Total Support Services, Inc.	Approximate Surface Elevation 605.84 feet MSL
Groundwater Level and Date Measured Not yet measured	Sampling Method(s) SPT	Hammer 140 lb, 30 In drop, safety
Borehole Backfill Well Completion	Location N 13,816,481, E 2,278,358	

		Elevation, feet	Ceptin, reef	Satisfyed 1 ype	Sampling Resistance, biows/foot	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	Welt Log	REMARKS AND OTHER TESTS	
	601. 8	- 5				СН		(Mud appears to be light tan color.)			
ia Ia	96.8 -	- - - - - - -				сн		Same as above			
ionitoring well all bgs [well log a on	91.8-	- - - -				сн		Same as above			
tion/Boring log/Ground water m	8 6.8 -	- 20-				сн					
maiCol2009 MW and GP Installa		- 25		6,	, 15, 21, 27.	СН		- Medium stiff tan CLAY with trace silt. -			
Projectation	6.8	30	1		L			·····			

Log of Boring MW-22

Date(s) Drilled 03/10/2009	Logged By Mohammad Z. Islam	Checked By Edward B. Dolan, P.G.
Drilling	Drill Bit	Total Depth
Method Rotary Wash	Size/Type 6 inch tricone bit	of Borehole 37 feet bgs
Drill Rig	Drilling	Approximate
Type Mobil 859	Contractor Total Support Services, Inc.	Surface Elevation 612.21 feet MSL
Groundwater Level	Sampling	Hammer
and Date Measured Not yet measured	Method(s) SPT	Data 140 lb, 30 in drop, safety
Borehole Backfill Well Completion	Location N 13,816,113, E 2,278,083	

Log of Boring MW-22

Log of Boring MW-23

Date(s) Drilled 03/06/2009	Logged By Mohammad Z. Islam	Checked By Edward B. Dolan, P.G.
Drilling Method Rotary Wash	Drill Bit Size/Type 6 Inch tricone bit	Total Depth of Borehole 35 feet bga
Drill Rig Type Mobil B59	Drilling Contractor Total Support Services, Inc.	Approximate Surface Elevation 621.21 feet MSL
Groundwater Level and Date Measured Not yet measured	Sampling Method(s) SPT	Hammer 140 lb, 30 in drop, safety
Borehole Backfill Well Completion	Location N 13,816,006, E 2,277,841	•

Log of Boring MW-23

6	Æ	TE 89 Bl Au (5	TRA 11 N. dg. 2, ustin, 1 12) 33	TECH, II Capital Suite 23 exas 78 8-1667	NC. of Tx Hwy 110 3759	Mesquite Creek Landfill MSW Permit 66B New Braunfels/Comal/Guadalupe Counties				LOG OF BORING: GP-14			
DAT HOL DRI SAM LOG	E: EDIA LLING PLIN GED	G N BY	ETER ETHO IETH	: DD: IOD: aman	12/4/13 8" HSA SPT tha K. Abbott	DRILLING COMPANY: Vortex Drilling, Inc. T DRILLER: Jim Neal T DRILLER'S LICENSE #: 4868 WPKT S DRILLING RIG: Mobile Drill B59 D LATITUDE: 29.734163 C LONGITUDE: -98.016748 S			TOTAL TOP O SURFA DEPTH CASIN SURFA	DEPTH: F CASING: ACE ELEVAT TO WATER G DIAMETER ACE COMPLI	56' 660.57' ION: 657.72' : Dry @ Completion R: 2" ETION: Anodized Riser		
-		1 1			r	FIELD D	ATA						
Depth (feet)	Sample	Sampler Type	Recovery %	Lithology	MAT	TERIAL DESCRIPTIO	N	Depth (feet)	Elevation (feet MSL)	WELL C DETA DRILLI	ONSTRUCTION NLS AND/OR NG REMARKS		
0 -	0-2.5	X	20%		FAT CLAY (with silt and	CH) medium stiff to stiff, da roots, moist.	rk brown,	0 -	660 -		Anodized Aluminum Riser 4'x4'x6" Reinforced Concrete Surface Pad Concrete Seal		
5 -	5-7.5		100%		SILT (ML) st	iff, light tan to white, heavily anted/friable, dry.	/ calcareous,	5 -	652		Bentonite Chip Seal		
10 -	10-12.5		100%		SILTY CLAY calcareous n flecks in she	(CL) stiff, tan to light brow naterial; mineralization (bla ar zones), with some gray	n, with some ck and red weathered	10 -	648 - - 				
15 -	15-17.5		100%		zones.			15 -	640				
20 -	20-22.5		100%		SILTY CLAY oxidation and	(CL) very stiff, tan, with zo mineralization, gray weat	nes of nered zones,	20 -	636		2" diameter Schedule 40 PVC Casing		
25 -	25-27.5	X	100% 100%		damp.			25 -	632 -		20/40 Sand Filter Pack		
30 -	30-32.5 32.5-35	X	100% 100%		medium stiff	to very stiff @ 32', more FAT CLA	Y (CH), damp.	30 -	624				
40 -	35-37.5 37.5-40	X	100% 100%					40 -	620		2" diameter Schedule 40 PVC 0.010" Slotted Screen		
45 -	40-42.5 42.5-45	X	100% 100%		calcite miner	alization zone @ 40.5' - 46'.		45 -	616				
50 -	45-47.5 47.5-50	X	100% 100%		FAT CLAY (C SILT (CL).	CH) stiff to very stiff, gray b	rown, some	50 -	612 - - - - -				
55 -	50-52.5 52.5-55	X	100% 100%		CLAYSTONE silt, homogen	E very stiff to hard, dark gra lous.	y, with some	55 -	604 -		Bottom Cap @ 55'		
60	Ground	Nator	l avel D	ata		Sampler Turo		60	600 -				
V Fre	e water fi	irst er	counte	ered 🔻	Water Level after 15	minutes Split Spoon Auger s	helby Tube No Recovery 🚺 Cuti	ings	Update:	12/12/13	Page 1 of 1		

C	Æ	TE 89 BI Au (5	ETRA 011 N. dg. 2, ustin, 1 12) 33	TECH, I Capital Suite 23 Texas 78 8-1667	NC. of Tx Hwy 10 8759	Mesquite Cree MSW Permi New Braunfels/Comal/Gu	ek Landfill 17 66B Jadalupe Counties	5		LOG OF E GP-	BORING: 19
DAT HOI DRI SAM LOC	TE: LE DIA LLING MPLIN GGED	ME MI G N BY	ETER ETHO NETH : S	: DD: IOD: aman	12/4/13 8" HSA SPT tha K. Abbott	DRILLING COMPANY:Vortex Drilling, Inc.DRILLER:Jim NealDRILLER'S LICENSE #:4868 WPKTDRILLING RIG:Mobile Drill B59LATITUDE:29.729532LONGITUDE:-98.020837			OTAI OP C URF EPTI ASIN	L DEPTH: DF CASING: ACE ELEVATI H TO WATER: IG DIAMETER ACE COMPLE	56' 679.18' ON: 676.52' Dry @ Completion :: 2" CTION: Anodized Riser
	_					FIELD DA	ATA				
Depth (feet)	Sample	Sampler Type	Recovery %	Lithology	MAT	ERIAL DESCRIPTION	N	Depth (feet)	Elevation (feet MSL)	WELL CC DETA DRILLIN	DNSTRUCTION ILS AND/OR IG REMARKS
0 ·	0-2.5	X	100%		FAT CLAY (CH) soft to medium stiff, ver	ry dark	0	680		Anodized Aluminum Riser 4'x4'x6" Reinforced Concrete Surface Pad
5 -	2.5-5	Ø	100%		FAT CLAY (zones of cal	CH) medium stiff, gray brow careous silt/chalk, with some	n, with e oxidation,	5 -	672		Concrete Seal Bentonite Chip Seal
10	7.5-10	Ŕ	100%		SILT (ML) st calcareous n	gravel. iff, light tan to white, with ab naterial, with some CLAY, v	oundant /	10	668 -		
10	10-12.5	Х	100%	Ш	(transition).	T (MI) loose to medium sti	ff light tan		664 -		
15 -	12.5-15	Ø	100%		and white, fri	able, heavily calcareous/ch dation staining.	alky, with	15 _	-		
	17.5-20		100%		SILTY CLAY occasional w	(CL) very stiff, light brown, eathered gray zones.	with	-	660 -		
20 -	20-22.5	Х	100%		3			20 -	656 -		2" diameter Schedule 40 PVC
25 -	22.5-25	X	100%					25	652 -		ousing
	27.5-30	\ominus	100%						648 -		20/40 Sand Filter
30 -	30-32.5	\Diamond	100%		- very stiff to h	ard, more FAT CLAY (CH)/less S	LT (ML) @	30 -	1		Pack
	32.5-35	X	100%		31.			-	644 -		
35 -	35-37.5	Х	100%		horizontal zo @ 35'-51'.	nes of calcite mineralization/cryst	allization, wet	35 -	640 -		2" diameter
40 -	37.5-40	Х	100%					40 -	636		0.010" Slotted Screen
	40-42.5	X	100%					-			
45 -	42.5-45	Å	100%					45 -	632 -		
	45-47.5	Θ	100%		FAT CLAY (CH) stiff to medium stiff, gra	iy-brown,	-	628		
50 -	50-52.5	Θ	100%		with some SI	LI. ne 50'-52.5'.		50 -	-		
55 -	52.5-55	X	100%		CLAYSTON	E hard, dark gray, homogen	IOUS.	55	624 -		Bottom Cap @ 55'
60	-							60	620 <u>-</u>		
▽ Fr	Ground I ee water f	Nater first e	Level D	ata ered 🔻	Water Level after 15	Sampler Type minutes Split Spuon Auger st	elby Tube 📉 No Recovery 🚺 Cutting	gs.			
Project	No. 11	4-021	563			Tetra Tech, I	nc.		Update:	12/12/13	Page 1 of 1

6	ſĿ	TE 89 Bld Au (5	ETRA 11 N. dg. 2, Istin, 1 12) 33	TECH, II Capital Suite 23 Texas 78 8-1667	NC. of Tx Hwy 10 1759	Mesquite Cre MSW Perm New Braunfels/Comal/G	ek Landfill Nr 66B uadalupe Counties		LOG OF BORING: GP-15			
DAT HOL DRIL SAM LOG	E: E DI/ LINC PLIN GED	AME G M BY:	TER THO IETH	: DD: IOD: Ryan C	1/25/16 8" HSA SPT C. Dickerson	DRILLING COMPANY: Vortex Drilling, Inc. 1 DRILLER: Jim Neal 1 DRILLER'S LICENSE #: 4868 WKPT 5 DRILLING RIG: Mobile Drill B59 1 LATITUDE: 29.73309 0 LONGITUDE: -98.0156 5			L DEPTH: DF CASING: ACE ELEVATIC H TO WATER: IG DIAMETER: ACE COMPLET	33' 640.88' DN: 637.66' Dry @ Completion 2" 'ION: Anodized Riser		
	<u> </u>	<u>т</u> т		T		FIELD D						
Depth (feet)	Sample	Sampler Type	Recovery %	Lithology	MAT	TERIAL DESCRIPTIO	N	(feet) Elevation (feet MSL)	WELL COI DETAIL DRILLING	NSTRUCTION S AND/OR B REMARKS		
0		XX			FAT CLAY (yellowish-bro	(CH) medium stiff, tan and g own mottling, roots @ 0'-6.0	gray, with)', moist.			Anodized Aluminum Riser 4'x4'x6" Reinforced Concrete Surface Pad Concrete Seal Bentonite Chip Seal 2" diameter Schedule 40 PVC Casing		
10 -		X X X			SILTY CLAY yellowish-bro trace root ma fragments @	Y (CL) medium stiff, tan and own mottling, occasional cry aterial @ 6.0' - 10.0', trace s 0 6.0' - 10.0'.	gray, with ystallization, shell			20/40 Sand Filter Pack 2" diameter Schedule 40 PVC 0.010" Slotted Screen		
15 -						CHRISTIAN GEOLO No. 50 CHRISTIAN	M. LLULL DGY 5 884	68.00				
20					large shell fragme	ents @ 21.0' - 21.5'.	-26-16					
25 —		X			SILTY CLAY gray, with occ trace shell fra	(CL) medium stiff, light tan ccasional oxidation staining agments, moist.	and light throughout, 25	414.00				
- 30		X X			SILTY CLAY yellowish-bro throughout, fr	(CL) soft to medium stiff, ta own, with occasional oxidati friable, trace calcareous ma	an and on staining terial.	001.00		Bottom Cap @ 30'		
Ground Water Level Data V Free water first encountered V Water Level after 15 r					Water Level after 15	minutes	ry Tube No Recovery					
Project N	o. 11	4-0217	70	•••		Tetra Tech, I	nc.	Update:	2/18/2016	Page 1 of 1		

	ł	TETRA 8911 N Bidg. 2 Austin, (512) 3	TECH, I Capital Suite 23 Texas 78 38-1667	NC. of Tx Hwy 110 3759	M New	Iesquite Cre MSW Perm V Braunfels/Comal/G	ek Landfi nit 66B Suadalupe Count	 ies	LOG OF BORING: MW-17			
DATI HOLI DRIL SAMI LOG	E: E DIAN LING N PLING GED B	IETEI NETH METH Y:	R: OD: HOD: Ryan (1/25/16 8" HSA SPT C. Dickerson	DRILLING COMPANY: Vortex Drilling, Inc. DRILLER: Jim Neal DRILLER'S LICENSE #: 4868 WKPT DRILLING RIG: Mobile Drill B59 LATITUDE: 29.73431 LONGITUDE: -98.01741			TOTA TOP (SURF DEPT CASII SURF	L DEPTI OF CASI ACE EL H TO WA NG DIAN	H: NG: EVATIO ATER: IETER: IMPLET	63' 658.69' DN: 655.42' Dry @ Completion 2" FION: Anodized Riser	
	·····	- <u></u>		·····	• • • • •	FIELD D	ΑΤΑ	r		1		
Depth (feet)	Sample	Recovery %	Lithology	MAT	TERIAL DESCRIPTION 통할			(feet MSL)	WI C	ELL CO DETAIL RILLING	NSTRUCTION LS AND/OR G REMARKS	
				FAT CLAY ((grading to lig SILTY CLAY abundant cal SILTY CLAY mottling, grad SILTY CLAY occasional yo SILTY CLAY occasional op fragments. - organic material (- black streaks throw - zones of FAT CLA - moist @ 37.0'. - 0.5' crystalline len:	CH) sti (CL) r (CL) r edium ding to (CL) n ellowis (CL) s xidation 15.0' - 1' ughout @ 2	ff, dark brown, with a nedium stiff, light brus as material. stiff to stiff, tan, ligh SILTY CLAY (CL). nedium stiff, tan and h-brown mottling. tiff, tan and gray, blu n staining throughou 7.5'.	some silt, own, t gray d gray, d gray, ocky, it, trace shell OF 75000 it, trace shell IAN M. LLULL COLOGY o. 5884 ENSE SCORE	0 5 10 15 20 25 30 35				Anodized Aluminum Riser 4'x4'x6" Reinforced Concrete Surface Pad Concrete Seal Cement/Bentonite Grout 2" diameter Schedule 40 PVC Casing
40 -							2.26-16	40 45				Bentonite Chip Seal 20/40 Sand Filter
50 -	50 - SILTY CLAY gray bands common cry transition zc - dark gray layers - 4" crystalline len					edium stiff to stiff, ta ers, with oxidation st lenses (0.5") within 5', 51.2' - 52.0' & 57.0' - 57.5'.	an with dark aining, tan layers,	50 ·	4			Pack 2" diameter Schedule 40 PVC 0.010" Slotted Screen
60 -	X	r I purch D	••••••	CLAYSTONE	very s	tiff to hard, dark gra	y, uniform.	60 ·	- 585.59 			Sump/Silt Trap @ 60'-61.5' Bottom Cap @ 61.5'-62'
V Free water first encountered V Water Level after 15 mi					ninutes	Sampler Type	ntry Table N Ho Recovery PEC o	Alings.			····	
Project No	. 114-02	1770	·			Tetra Tech, i	nc,		Update:	2/12/2016		Page 1 of 1

		TI 89 Bi	ETRA 1 911 N. da. 2. (FECH, II Capital (Suite 23	NC. of Tx Hwy 10	Mesquite Cr	eek Landfi			LOG OF B	ORING:	
	C	Ai (5	ustin, T 12) 33	exas 78 8-1667	759	MSW Per New Braunfels/Comai	Guadalupe Count	ies		GP-1	6 ,	
DATI HOLI DRIL SAM LOG	E: E DI/ LINC PLIN GED	AME 9 Mi 16 N 18 Y	ETER ETHC NETH : F	:)D: OD: Ryan C	4/10/18 8" HSA SPT 2. Dickerson	DRILLING COMPANY:Vortex Drilling, Inc.DRILLER:Jim NealDRILLER'S LICENSE #:4868 WKPTDRILLING RIG:Mobile Drill B59LATITUDE:-98.00565857LONGITUDE:29.43490904			TOTA TOP C SURF, DEPTI CASIN SURF,	L DEPTH: DF CASING: ACE ELEVATIO H TO WATER: NG DIAMETER: ACE COMPLE	31.5' 657.54' DN: 654.81' Dry @ Completion 2" 'ION: Anodized Riser	
						FIELD	DATA					
Depth (feet)	Sample	Sampler Type	Recovery %	Lithology	MAT	FERIAL DESCRIPTI	ON	Depth	(feet) Elevation (feet MSL)	WELL CO DETAIL DRILLIN	NSTRUCTION S AND/OR G REMARKS	
									658 656		Anodized Aluminum Riser	
0 -		\square			FAT CLAY: Darl gravel and plant	k brown, soft to medium stiff, w t material, trace brown SILT, sli	ith abundant chert ghtly moist.	0	654		Concrete Seal	
		Ň			FAT CLAY: Brow calcareous mate	wn with tan mottling, soft to me erial throughout, slightly moist.	dium stiff, with		652 650		Bentonite Chip Seal	
5		M			SILTY CLAY: Lig stiff, with occasion slightly moist.	ght brown with gray and yellow onal calcareous material and o	sh brown mottling, xidation staining,	5	648		2" diameter Schedule 40 PVC Casing	
10 -		$\left \right\rangle$				SINEO	F TEXAS	10	644			
- 15 — -		N			Slightly moist @ 1	15' CHRIST	AN M. LLULL	15	640 638		20/40 Sand Filter Pack	
-		\bigwedge			Shell fragment @	19.5'	AL ALS		636			
20		M			Abundant iron oxid Light tan SILT @ 2	dation @ 19.75'	6-6-11	20	634 632		2" diameter Schedule 40 PVC 0.010" Slotted Screen	
25 -		Λ			Large shell fragme	ent @ 23.75'		25	630			
					Abundant calcite c Abundant iron oxic	zystallization @ 25'-29' tation @ 25'-28'		30	628 626 624		Bottom Cap @ 30.5'	
1		Δ							1 1			
G	round \	Vater	Level Da	ita		Sampler Type					· · · · · · · · · · · · · · · · · · ·	
V Free	water f	irst en	counter	red 🔻 '	Water Level after 15 i	minutes 🛛 Sett Spoon 🛄 Auger	Shathy Tube No Recovery C.	itings			hab an 2002	
Project No	o. 11	/-2402	212			Tetra Tec	h, Inc.		Update:	5/29/2018 OC	100 00 40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

DATE: 4/9/18 HOLE DAMETER: 4/9/18 HOLE DAMETER: 10/08 COMPANY: Vortex Diffing. Inc. DRILLING RETHOD: HSA SAMPLING METHOD: SPT LOGGED BY: Ryan C. Dickerson UNITUDE: 98 01/05 LOGGED BY: Ryan C. Dickerson HATERIAL DESCRIPTION			ETRA T 911 N. (Idg. 2, 8 ustin, Te (12) 338	ECH, I Capital Suite 23 exas 78 8-1667	NC. of Tx Hwy 310 3759	Mesquite Cre MSW Perm New Braunfels/Comal/G	ek Landfil <i>it 66B</i> uadalupe Counti	l es	LOG OF BORING: GP-17			
FIELD DATA Image: Non-Section of the section of t	DATI HOLI DRIL SAM LOG	E: E DIAME LING MI PLING N GED BY	ETER: ETHO METH : F	: DD: OD: Ryan (4/9/18 8" HSA SPT C. Dickerson	DRILLING COMPANY: DRILLER: DRILLER'S LICENSE #: DRILLING RIG: LATITUDE: LONGITUDE:	Vortex Drilling, In Jim Neal 4868 WKPT Mobile Drill B59 -98.0102046 29.4344689	9 5 1	TOTAL TOP O SURFA DEPTH CASIN SURFA	DEPTH: F CASING: CE ELEVAT I TO WATER G DIAMETER CE COMPLI	77.5' 701.98' ION: 699.78' : Dry @ Completion R: 2" ETION: Anodized Riser	
Normer Big Big MATERIAL DESCRIPTION Big WELL CONSTRUCTION DETAILS AND/ORD 0		r				FIELD D	ATA					
0 FAT CLAY: Dark brown, medium siff, with abundant gravel and Sill TL QIAP. That big rays and yellowish brown medium, gravel and Sill TL QIAP. That big rays and yellowish brown medium, gravel and Sill TL QIAP. That big rays and yellowish brown medium, gravel and Sill TL QIAP. That big rays and yellowish brown medium. 0 </td <td>Depth (feet)</td> <td>Sample Sampler Type</td> <td>Recovery %</td> <td>Lithology</td> <td>MAT</td> <td colspan="3"></td> <td>(reet) Elevation (feet MSL)</td> <td>WELL C DETA DRILLI</td> <td>ONSTRUCTION ILS AND/OR NG REMARKS</td>	Depth (feet)	Sample Sampler Type	Recovery %	Lithology	MAT				(reet) Elevation (feet MSL)	WELL C DETA DRILLI	ONSTRUCTION ILS AND/OR NG REMARKS	
Ground Water Level Data Sampler Type ✓ Free water first encountered ▼ Water Level after 15 minutes ✓ Image: State Space Image: State Spac	0 - 5 - 10 - 15 - 20 - 25 - 30 - 35 - 35 - 35 - 40 - 55 - 55 - 60 - 55 - 55 - 55 - 60 - 76 - 76 - 76 - 76 - 78 - 78 - 78 - 78 - 78 - 78 - 78 - 78				FAT CLAY: Darn plant material. SILT: Light tan, layers. SILTY CLAY: Tr stiff, blocky, with staining, occasion - Light tan SILT @ - Occasional thin, t - Small shell fragme - Large shell fragme SILTY CLAY: Da oxidation staining SILTY CLAY: Da oxidation staining SILTY CLAY: Lig medium stiff, blo oxidation staining fragments, slight - Abundant calcite c - Transition zone @ CLAYSTONE: D material, hormoge - Weathered bands	k brown, medium stiff, with abund loose, with trace brown silt, abund an with gray and yellowish brown in h occasional iron and manganese onal iron nodules, occasional shell 26.5'-26.75' brown SILT layers @ 27'-40' ents becoming more abundant @ 34.5' ent @ 42.25' ark gray and light brown, very stiff, g, slightly moist. ght brown with gray and yellowish ocky, with occasional iron and mar g, occasional iron nodules, occasi thy moist. crystallization @ 56'-60' @ 59.75'-62': Alternating layers of light brown lark gray, very stiff to hard, brittle, eneous. @ 67' and 68.5'	ant gravel and Jant calcareous mottling, medium oxidation Il fragments. EOF TEXAS INTE	0 5 10 15 30 35 40 45 55 60 65 70 75 80	700 -696 -688 -688 -688 -688 -688 -688 -688 -688 -6668 -6668 -6668 -6664 -6664 -6664 -6664 -6644 -664		Anodized Aluminum Riser Concrete Seal Bentonite Chip Seal 2" diameter Schedule 40 PVC Casing 20/40 Sand Filter Pack 2" diameter Schedule 40 PVC 0.010" Slotted Screen	
Project No. 117-2402212 Tetra Tech, Inc. Update: 5/29/2018 October 20/999 1 of 1	G V Free	water first er	Level Da	ta ed 🔽	Water Level after 15	minutes	by Tubes N His Ressaure FBCT - curt					
	Project No	o. 117-2402	2212			Tetra Tech, I	nc.		Update: 5	i/29/2018 Oct	ober 2027399e 1 of 1	

Page No. 4C-349

T	t	TE 89 Blu Au (5	ETRA 011 N. dg. 2, ustin, 1 12) 33	TECH, II Capital Suite 23 Fexas 78 8-1667	NC. of Tx Hwy 110 8759	M Nev	lesquite Cre MSW Perm v Braunfels/Comal/G	ek Landfi hit 66B uadalupe Count	II ies		LOG)F B GP-1	ORING: 18
DATE HOLE DRILI SAMF LOGO	E: E DI, LIN(PLIN GED	ame g me Ng N) by:	ETER ETHC NETH	:: DD: IOD: Ryan (4/9/18 8" HSA SPT C. Dickerson	DRILLING COMPANY:Vortex Drilling, Inc.DRILLER:Jim NealDRILLER'S LICENSE #:4868 WKPTDRILLING RIG:Mobile Drill B59LATITUDE:-98.01077945LONGITUDE:29.43399063			TOTAL TOP O SURFA DEPTH CASIN SURFA	DEPTH: F CASING CE ELE I TO WA G DIAME ACE CON	G: VATIO TER: TER: IPLE1	75' 710.61' DN: 708.69' Dry @ Completion 2" FION: Anodized Riser	
							FIELD D	ΑΤΑ					
Depth (feet)	Sample	Sampler Type	Recovery %	Lithology	MAT	TERIA	AL DESCRIPTIO	N	Depth (feet)	(feet MSL)	WEL D DR	L COI ETAIL	NSTRUCTION LS AND/OR G REMARKS
0		X			FAT CLAY: Dar SILTY CLAY: Li dark brown mot SILTY CLAY: Li layers througho SILTY CLAY: T	k brown, ight gray tling, sof ight tan, ut. an, with g	, stiff, with calcareous ma and yellowish-brown, wit t, abundant chert gravel t soft, with abundant white gray and yellowish-brown	terial throughout. h occasional hroughout. calcareous mottling, very	0 5 10	712 708 704 704 700 696			Anodized Aluminum Riser Concrete Seal Bentonite Chip Seal 2" diameter Schedule 40 PVC Casing
					iron oxidation st	ionai caid taining, s	slightly moist.	TEXAS N.M.LUUL OLOGY 0.5884	15 20 25 30				20/40 Sand Filter Pack 2" diameter Schedule 40 PVC 0.010" Slotted Screen
35 35 40 -		XXX			- Occasional calcite	e crystalliza ark gray,	ation @ 33'-43'	CENSE CONTRACTOR	35 40				
⁴⁰					streaking. SILTY CLAY: Ta occasional calca SILTY CLAY: Lig very stiff, with oc staining, iron ox	an, with g areous m ght brow ccasional idation st	gray mottling, very stiff, w naterial throughout. n, with gray and yellowish I calcareous material, ma taining, shell fragments @	eathered, n-brown mottling, nganese 2 46.25'-51',	45 50				
55 - - 60 -					Shell fragments @	Q 56'-63'			55 · 60 ·	652 648			
65 - - - - 70 -		Å			CLAYSTONE: D homogeneous. SILT: Dark gray	ark gray and tan,	, very stiff to hard, with tra	ace tan silt, n staining, dry.	65 ·	644			
75 -	haug		Level D		CLAYSTONE: D	ark gray,	, very stiff to hard, with tra	ace tan silt,	75 -	636			Bottom Cap @ 74'
	vater	first en	counter	red 🔻	Water Level after 15	minutes	Spill Spill Spoon	by Tuble No Recovery	Allings				
Project No.	. 11	7-2402	212				Tetra Tech, I	nc.		Update: 5	/29/2018	Oc Page N	tober 2023 1 of 1

	TE Bid Aus (51)	TRA TECH, 11 N Capita g. 2, Suite 2 stin, Texas 7 2) 338-1667	INC I of Tx Hwy 2310 78759	Mesquite Cree <i>MSW Permit</i> New Braunfels/Comal/Gua	k Landfill 66B Idalupe Counties		LOG OF BORING: MW-12			
DATI HOLI DRIL SAM LOG	E: E DIAME LING ME PLING MI GED BY:	TER: THOD: ETHOD: Ryan	5/23/18 8" HSA SPT C. Dickerson	DRILLING COMPANY: V DRILLER: DRILLER'S LICENSE #: DRILLING RIG: LATITUDE: LONGITUDE:	/ortex Drilling, Inc. Jim Neal 4868 WKPT Mobile Drill B59 -98.018257 29.728313	TOTAL TOP OF SURFA DEPTH CASING SURFA	DEPTH: CASING: CE ELEVATIC TO WATER: DIAMETER: CE COMPLET	76' 712.22' DN: 709.31' Dry @ Completion 2" 'ION: Anodized Riser		
				FIELD DA						
Depth (feet)	Sample Sampler Type	Recovery % Lithology	MAT	FERIAL DESCRIPTION	Dept	(feet MSL) (feet MSL)	WELL COM DETAIL DRILLING	NSTRUCTION S AND/OR B REMARKS		
			FAT CLAY: Dar gravel. SILTY CLAY: Yi mottling, soft to SILTY CLAY: Li SILTY CLAY: To to stiff, occasion iron oxide staini - Very stiff @ 43' SILTY CLAY: Lig occasionally hea station occasionally hea	k brown, stiff, calcareous material, so ellowish-brown to light gray, with dar medium stiff. ght tan, heavily calcareous. an and light brown with gray mottling hally heavily calcareous zones, mang ng, occasional shell fragments through the characteristic of the construction (CHRISTIAN M GEOLO No. 58 VICEN CHRISTIAN M GEOLO No. 58 VICEN CHRISTIAN M GEOLO No. 58 VICEN CHRISTIAN M GEOLO No. 58 VICEN The fragments @ 42'-42.5'	ome chert k brown , medium stiff anese and ghout. 11 24 24 24 24 24 24 24 24 24 24 24 24 24	712 708 708 708 700 696 696 692 692 692 692 688 680 680 676 672 672 6664 6664 6660 6660 6660 6660 6660 6660 6660 6660 700 6660 700 6660 700 6660 700 6660 700 6660 700 6660 700 6660 700 660 700 660 700 660 700 672 700 660 700 672 700 660 700 700 700 700 700 700 700 700 700 688 700 688 700 672 700 6664 700 6664 700 6660 700 700 6660 700 700 6660 700 700 700 700 700 700 6664 700 700 6660 700		Anodized Aluminum Riser Concrete Seal 2" diameter Schedule 40 PVC Casing Cement/Bentonite Grout		
			Slightly moist @ 4 Large shell fragme Occasional calcite Transition zones a Calcite crystallizati Pyrite nodule @ 67 CLAYSTONE: Da	7.75' Ints @ 48' crystallization @ 49.75' temating layers of brown and gray day @ 66'-7; an @ 66.75' Firk gray, very stiff to hard, homogene	2.5' 65 2005. 75 80	656 652 648 644 644 644 636 632		Bentonite Chip Seal 20/40 Sand Filter Pack 2" diameter Schedule 40 PVC 0.010" Slotted Screen Bottom Cap @ 73.5'-73.8'		
Gr	ound Water Lev	untered 🛡	Water Level after 15 n	ninutes Sampler Type						
Project No.	117-240221	2		Totro Tach Int			2048			
				ietra iech, Inc.		Update: 6/1.	/2018 Oct	Page 1 of 1 tober 2023		

	ſŁ	TE 89 BI Au (5	ETRA 911 N. Idg. 2, ustin, 12) 33	TECH, Capital Suite 2 Texas 7 8-1667	INC. of Tx Hwy 310 8759	Mesquite Cre MSW Perm New Braunfels/Comal/G	ek Landfi bit 66B wadalupe Count	LOG OF BORING: MW-13							
DATE: 4/10/18 HOLE DIAMETER: 8" DRILLING METHOD: HSA SAMPLING METHOD: SPT LOGGED BY: Ryan C. Dickerse						DRILLING COMPANY:Vortex Drilling, Inc.DRILLER:Jim NealDRILLER'S LICENSE #:4868 WKPTDRILLING RIG:Mobile Drill B59LATITUDE:-98.01007379LONGITUDE:29.43457739				TOTAL DEPTH:56'TOP OF CASING:691.38'SURFACE ELEVATION:688.70'DEPTH TO WATER:Dry @ CompletioCASING DIAMETER:2"SURFACE COMPLETION:Anodized Rise					
Depth (feet)	Sample	Sampler Type	Recovery %	Lithology	MAT	TERIAL DESCRIPTIO	ION								
0					FAT CLAY: Darl	k brown, soft, with abundant large	chert oravel	0			Anodized Aluminum Riser Concrete Seal				
		X			abundant plant r SILTY CLAY: Lig	material, slightly moist. ght tan and white, soft, with abund	dant calcareous			Cement/Bentonite					
5 -		Ħ			SILTY CLAY: Lid	st. oht brown to tan with grav and ve	lowish-brown	5	- 684 -		Grout Bentonite Chip Seal				
		Ň			mottling, medium occasional clays	n stiff to stiff, with occasional calc stone gravel and iron oxidation sta	areous layers, ining thoughout.	1	680						
		М						10			2" diameter Schedule 40 PVC				
15 -		Α						15			Casing				
		Х							672						
20 -		$\overline{\mathbf{A}}$			SILTY CLAY: Lig verv stiff, with oc	ant brown with gray and yellowish casional iron oxidation staining a	20	668							
25 -		Ň			material through along fracture pla	out, gray weathering and mangan	05	1 664							
		M													
30 -		$\left(\right)$				SIMEOF	TEXAS A	30							
-		X			- Occasional shell fri	agments @ 32'-37.5'	N.M. LLULL		656						
35 -		$\overline{\mathbf{A}}$				B GEC	LOGY E	35	652						
40 -		Δ				Prose Lice	ENSED	40	648		20/40 Sand Filter				
		X			Occasional shell fra	agments @ 41.5'-45'	6618				Pack				
45 -	ĥ				 Transition zone @ Abundant calcite cr 	45'-52.5': Alternating layers of light brown ar rystallization @ 45.5'-49.5'	45 ·			2" diameter Schedule 40 PVC					
50 -		Δ						50 -	640		0.010" Slotted Screen				
		X			CLAYSTONE: Da	irk grav, very stiff to hard, with oc	casional		636		Sump/Silt Trap @				
55 -		E			calcareous materi	ial and shell fragments, homogen	eous.	55 -	632		53'-54' Bottom Cap @ 54'				
- 60															
Gi	round W	ater Lo	evel Da	ta		Sampler Type		60	d.	······					
	water fir	st enc	ounter	ed 🔻 ۱	Water Level after 15 m	ninutes 🛛 Spill Spoon 🚺 Augur 📰 Shalling	Tube No Recovery	9 1							
Project No	. 117-	-24022	12			Tetra Tech, In	c.		Update: 5	/29/2018	Page 1 of 1				

Page No. 4C-352

TETRA TECH, INC. 8911 N. Capital of Tx Hwy Bldg. 2, Suite 2310 Austin, Texas 78759 (512) 338-1667						Nev	Mesquite Creek Landfill MSW Permit 66BLOG OF BORING: MW-14New Braunfels/Comal/Guadalupe CountiesMW-14						RING:				
DATI HOL DRIL SAM LOG	E: E DI/ LINC PLIN GED	Ame G Mi Ig N By:	ETER ETHC NETH : F	: DD: IOD: Ryan (4/10/18 8" HSA SPT C. Dickerson	DRII DRII DRII DRII LAT LON	LLING C LLER: LLER'S I LLING R ITUDE: IGITUDE	OMPANY: LICENSE #: LIG:	Vortex Drilling, Jim Neal 4868 WKP Mobile Drill I -98.00564 29.43502	Inc. 7 359 49 577	TC TC SL DE C/ SL	DTAI DP C JRF/ EPTI ASIN JRF/	L DEPT OF CAS ACE EL H TO W IG DIA! ACE CO	'H: ING: EVAT ATER METEF OMPLE	ION : [R: ETIC	57.5' 656.69' I: 654.012' Dry @ Completior 2" DN: Anodized Riser	1 1
Depth (feet)	Sample	Sampler Type	Recovery %	Lithology	MAT							Elevation (feet MSL)	W	ELL CO DETA DRILLII	ons Ils Ng F	TRUCTION AND/OR REMARKS	
1											6	56				Anodized Aluminum Riser	
0 -		X			FAT CLAY: Dari abundant plant r	c brown naterial	, medium s I, abundant	stiff, with abund t calcareous ma	ant chert gravel, aterial.	0		52 _			3	Concrete Seal Cement/Bentonite Grout	
5 -		Ħ								5		48 _				Bentonite Chip Seal	
10 -		Å			SILT: Light tan to with trace crushe	o white, ed clays	, loose, with stone, heav	AY throughout,	10		44 _				2" diameter		
15 -		Å			SILTY CLAY: Lig mottling, stiff, wit material and she fracture planes.	15	- - - - -	40 _				Schedule 40 PVC Casing					
20 -		Å			Abundant shell fra	gments @) 18'-22.5'		20	63	× -			SI	TE OF TEXAS		
		Å			SII T: Light top 1											DISTIAN M. LLULL	A
		M			SILTY CLAY: Lig occasional iron o	ht brow	n with tan	mottling, mediu trace shell frag	um stiff, with ments, slightly	-	62	28 -				GEOLOGY	121
30 -		$\left \right\rangle$			moist. – Abundant calcite c	rystallizati	ion @ 30'-42.5	5		30	62	24 - - - -				NO. 3004	7
- 35 — -		$\left\{ \right\}$								35	62	20 - 00 			(1-6-18	
40 -		$\left(\right)$			Trees					40	- 	⁶ – 1 2 ·				20/40 Sand Filter Pack	
45 -		$\left \right $			I ransition zone @	42'-52': A	Arremating laye	ers of light brown an	d dark gray clay.	45	60	8 				2" diameter Schedule 40 PVC	
50 -		Å								50	604	4			0.	010" Slotted Screen	
55 -	55 - CLAYSTONE: Dark gray, very stiff to hard, with occasional calcareous material, homogeneous.									55	600	• • • • • •		J		Sump/Silt Trap @ 52'-53' Bottom Cap @ 53'	
60			ľ								596	• -]					
G	round V	Vater L	.evel Da	ta			Sampler	г Туре		1 00							
	water fi	rst end	counter	ed 🔻	Water Level after 15 m	ninutes	Split Spoor	m Auger in Shell	hy Tube 🚺 No Recovery	Cuttings							
Project No	o. 117	-24022	212					Tetra Tech, li	nc.		Up	date: 5	/29/2018		octob	Page 1 of 1	

TETRA TECH, INC. 8911 N. Capital of Tx Hwy Bldg. 2, Suite 2310 Austin, Texas 78759 (512) 338-1667							Mesquite Creek Landfill MSW Permit 66B New Braunfels/Comai/Guadalupe Counties					LOG OF BORING: MW-15				
DATE: 4/11/18 HOLE DIAMETER: 8" DRILLING METHOD: HSA SAMPLING METHOD: SPT LOGGED BY: Ryan C. Dickerson							DRILLING COMPANY: Vortex Drilling, Inc. DRILLER: Jim Neal DRILLER'S LICENSE #: 4868 WKPT DRILLING RIG: Mobile Drill B59 LATITUDE: -98.00564535 LONGITUDE: 29.43557832				TOTAL DEPTH:53'TOP OF CASING:650.24'SURFACE ELEVATION:647.19'DEPTH TO WATER:Dry @ CompletionCASING DIAMETER:2"SURFACE COMPLETION:Anodized Riser					
Depth (feet)	Sample	Sampler Type	Recovery %	Lithology	МАТ						(reet) Elevation (feet MSL)	WI	ELL COI DETAIL RILLING	NSTRUCTION S AND/OR 3 REMARKS		
					FAT CLAY: Dar occasional cher SILTY CLAY: Li stiff, with occasi common calcite brown mottling, s	k brown, t gravel i ght brow onal calo crystalli, gray wea	n to tan with abundan and calcareous material, c careous material, c zation throughout, athering along fract	nt plant aterial. mottling occasic clure pla stiff, with casional	naterial, , soft to medium n staining, onal yellowish nes, moist. h gray mottling (4.5 A. LUUL S884	0 5 10 15 20 25 30 35	644 644 644 640 636 632 628 628 628 624 62			Anodized Aluminum Riser Concrete Seal Cement/Bentonite Grout Bentonite Chip Seal 2" diameter Schedule 40 PVC Casing		
40 — - - 45 —					- Transition zone @	45'-51.75':	: Alternating layers of lig	ght brown a	-6-18 and dark gray clay.	40 45				20/40 Sand Filter Pack 2" diameter Sebodule 40 PV/C		
50 - 55 - 55 -		A X			CLAYSTONE: Da calcareous mater	ark gray, ial, hom		Sump/Silt Trap @ 52.5'-53.5' Bottom Cap @ 53.5'								
G V Free	round V water fi	vater Lo	evel Da ounter	ita ied 🔻	Water Level after 15 n	ninutes	Sampler Type	Shaby	Tube No Recovery	ttings						
Project No	b. 117	-24022	12		NUMBER DECISION		Tetra	a Tech, in	с.		Update:	5/29/2018	Oc	Page 1 of 1		

Page No. 4C-354

Bullo	ck, Ben 165 N. Berti	nett & Associates Lampasas Street ram, TX 78605	, LLC	LOG OF BORING MW-4A (Page 1 of 1)							
MES	QUITE C	REEK LANDFILL	Top of C	2020 742.96 6763.87 7	Drilling Company : Vortex Drilling Driller : James E Neal License No. : 4868 Drilling Method : Hollow Stem Auger - 8.25" Sampling Method : Cuttinge						
	Project	No.19338-20			1			vietnou . Cullings			
DEPTH (feet)	Surface Elevation	DESCRIPTIC	USCS (ft/ft)				WEL	L DIAGRAM/REMARKS			
0.0 2.0	- 608	(0-12) - Clay (CL), Firm, N Dark Brown, Rounded, M Plasticity, Low Toughness	Aoderate, edium s, Moist		5/5						
4.0	- 606										
6.0	- 604			CL				Well Construction: Riser ~3' AGL - 19' BGL Cement: 0' - 2' BGL Bentonite chins seal: 2 - 17' BGI			
- - - 8.0	- 602				5/5			Screen: 19' - 29' BGL 20/40 Silica Sand: 17' - 30' BGL Sump: 29' - 30' BGL			
- 10.0	- 600										
- - - 12.0	- 598	(12-18) - Clay (CL), Firm,	Moderate		- 5/5						
- 	- 596	Cementation, Light Browr Medium Plasticity, Low To Moist	n, Rounded, oughness,								
- 16.0	- 594			CL				TE OF TE			
18.0	- 592	(18-27) - Clay (CL), Firm,	Moderate		5/5			*			
20.0	- 590	Plasticity, Low Toughness	s, Moist								
22.0	- 588			CL	5/5			CENSEP SOL			
24.0	- 586							(inig & Gennett 06/12/2020			
26.0	- 584							/ /			
- - 28.0 -	- 582 - 580	(27-30) - Clay (CL) Moder Cementation, Gray, More Medium Plasticity, Low To Slightly Moist	rate Angular, bughness,	CL	- 5/5						
30.0						\mathbb{K}					