

Sustainability in Action

January 30, 2025

Michael Smith Project Manager MC-124 Texas Commission on Environmental Quality 12100 Park 35 Circle Austin, Texas 78753

Re: Response to Notice of Deficiency Letter – Limited Scope Major Permit Amendment Application Southwest Landfill Randall County, Texas MSW Permit No.: 1663C Tracking No. 29885599

Dear Mr. Smith:

On behalf of Southwest Landfill TX, LP, please find enclosed one original and three copies of the replacement pages for the referenced Limited Scope Major Permit Amendment application. The attached replacement pages were developed to incorporate comments included in your letter dated November 8, 2024.

The response letter contains each comment identified by the TCEQ (in bold) and a response to each.

1. Part III, Appendix IIIB.

a. Throughout. Identify which constituents in tables are provided at half the reporting level because they were non-detects during laboratory testing.

Response:

a. Table 2-2 in Appendix IIIB has been revised to specify which constituents are reported at half the reporting limits because they were non-detect during laboratory testing.

The footnote 2 in Tables 4-1, 5-1, and 6-3 reference Table 2-2. Footnote 3 for Table 2-2 was updated to provide clarification of how the site specific leachate quality was selected.

b. Tables 2-2, 4-1, 5-1, and 6-3. Correct the page footers to reflect the first revision, October 2024. Additionally, reflect the revision date in response to this NOD if necessary.

Response:

- b. The revision numbers for Tables 2-2, 4-1, 5-1, and 6-3 were revised to "Rev 1." The dates for Tables 2-2 and 6-3 were updated to reflect the second NOD revision date. Tables 4-1 and 5-1 were revised to reflect the October 2024 date.
- c. Table 6-3. Correct the calculated Cp based on the site-specific concentration of arsenic in leachate provided during the first revision.

Response:

- c. Table 6-3 was revised to reflect the correct Cp value of 2.3E-06 mg/L.
- d. Table 6-4. Revise the initial contaminant concentrations and subsequent calculations to reflect TCEQ's historical guidance, TWC (1993). Explain which and how initial concentrations were selected for contaminants without TCEQ's historical guidance (1993).

Response:

d. The C_o values were updated in Table 6-4 to reflect the leachate quality information historically used for POC demonstrations in Texas as presented in Table 2-2. The subsequent calculations in Table 6-4 were revised to reflect the updated C_o values. Contaminants without any historical guidance were not calculated, which is consistent with recent POC demonstrations submitted to TCEQ.

After reviewing the 2018 POC demonstration, it was found that the MCL concentrations were inadvertently used as the initial concentrations (C_o) instead of the historical guidance concentrations in Tables 4-2 and 5-2. The subsequent calculations in these Tables were also revised.

2. Part III, Appendix IIIB, Section 6.

a. Identify the range of groundwater gradients observed in Stratum II and associated dilution attenuation factors for the proposed Subtitle D alternative liner design (ALD) based on groundwater contour maps that cover the entire 1663C facility.

Response:

- a. A new section has been added to Appendix IIIB-D named "Additional Demonstrations" to evaluate the scenarios requested. In this section, a demonstration was performed to evaluate the DAF at minimum and maximum groundwater gradients, which shows that the demonstration is in compliance with the POC requirements specified in Title 30 TAC §330.331(a)(1).
- b. Identify the range of hydraulic conductivities observed in Stratum II and associated dilution attenuation factors for the proposed Subtitle D ALD based on groundwater contour maps that cover the entire 1663C facility.

Response:

- b. A new section has been added to Appendix IIIB-D named "Additional Demonstrations" to evaluate the scenarios requested. In this section, a demonstration was performed to evaluate the DAF at the minimum and maximum observed hydraulic conductivities in Stratum II. The results of this demonstration show that the demonstration is in compliance with the POC requirements specified in Title 30 TAC §330.331(a)(1).
- c. Perform side gradient modeling for the proposed Subtitle D ALD because it was described on the figures for the proposed GCL overliner ALD and contributed to the GCL overliner ALD justification and approval. The presence of a groundwater gradient in one direction does not preclude contaminant diffusion in a transverse direction.

Response:

c. MW-21 was projected onto Section A to evaluate transverse contaminant diffusion in the alternative liner areas. Case I through IV in Appendix IIIB-D (Figures 3 through 6) have been updated to include the calculated DAF of MW-21. Additionally, the additional demonstrations presented in Appendix IIIB-D also calculated the DAF for MW-21. The results of this demonstration show that the demonstration is in compliance with the POC requirements specified in Title 30 TAC §330.331(a)(1).

Additionally, the 1.0×10^7 DAF contour callout was updated to correct an inconsistency on Figures 4 and 6.

3. Part III, Appendix IIIB, Section 6.2. Perform non-HELP leachate infiltration rate calculations and identify the associated dilution attenuation factors for the proposed Subtitle D ALD because they were described in Appendix IIIB, Section 5.2 and Appendix

> IIIB-C for the GCL overliner ALD and contributed to the GCL overliner ALD justification and approval. These calculations are described in TCEQ's historical guidance documents TWC (1993) and TNRCC (1998).

Response:

A new section has been added to Appendix IIIB-D named "Additional Demonstrations" to evaluate the scenarios requested. In this section, a demonstration was performed to evaluate the DAF, assuming that the alternative liner leachate collection system does not function as designed and allows a buildup of 12 inches of head on the alternative liner and overliner systems. The results of this demonstration show that the demonstration is in compliance with the POC requirements specified in Title 30 TAC §330.331.

- 4. Part III, Appendix IIIE, Geotechnical Report, Section 5.5.1.
 - a. Revise the Rankine-Block analyses to consider sliding parallel to the current liner and proposed alternative liner. Include the factor of safety against sliding within the compacted clay liner or protective cover based on their peak undrained shear strength (1,000 psf cohesion and zero degrees of friction angle) and total stresses.

Response:

a. Numerous changes have been made to Appendix IIIE to address the comment, including adding stability analyses incorporating the total stress values referenced in the comment into interim, final cover, and overliner analyses. Note that the interim slope analysis also required (in order to meet the minimum factor of safety of 1.3 for total stress), reducing the maximum interim slope length from 590 feet to 575 feet in Appendix IIIE. We also have reduced the required minimum factor of safety for total stress in the interim condition from 1.5 (for long term stress conditions) to 1.3 (for short term stress conditions), consistent with other stability analyses and demonstrations prepared by WCG for multiple landfills in Texas. Components included in this response include Appendix IIIE text revisions (including Tables 5-3 and 5-4 as referenced in comment 4.b below) and Appendix IIIE-A revisions (which include revised input and output data tables, revised stability section figures, and updated XSTABL computer stability models incorporating the referenced total stress values). Overall, the included revisions demonstrate that the landfill is stable when total stress conditions are imposed on the translational block analyses.

> b. Tables 5-3 and 5-4. Clarify which factors of safety were computed using peak or residual strengths and total or effective stresses.

Response:

- b. Tables 5-3 and 5-4 have been updated with the new factors of safety derived in response to comment 4.a above, as well as providing clarification regarding the various stress conditions used in the analyses presented in the tables.
- Part III, Appendix IIIE, Geotechnical Report, p IIIE-A-4-11. Provide a clean copy that include the revisions presented on the marked-up copy.

Response:

c. For clarity the previous redline strikeout version and a clean version of page IIIE-A-4-11 has been included in this response.

During the course of your review, if you need additional information or have any questions, please call.

Sincerely,

Brian Danko Environmental Manager

- Attachment: Limited Scope Major Permit Amendment Replacement Pages (1 original and 3 copies)
- cc: TCEQ Region 1 Kyle Gould, P.E., Weaver Consultants Group, LLC

SOUTHWEST LANDFILL RANDALL COUNTY, TEXAS TCEQ PERMIT NO. MSW-1663C

SECTION 305.62(j)(2) LIMITED SCOPE MAJOR PERMIT AMENDMENT

ALTERNATIVE LINER DESIGN SECTORS 17D THROUGH 29

Prepared for

Southwest Landfill TX, LP

June 2024 Revised October 2024

Revised January 2025

Prepared by

Weaver Consultants Group, LLC 01/30/2025 TBPE Registration No. F-3727 6420 Southwest Boulevard, Suite 206 Fort Worth, Texas 76109 817-735-9770

Project No. 0120-094-11-140

ATTACHMENT 1

SECTION 305.62(J)(2) LIMITED SCOPE MAJOR PERMIT AMENDMENT REPLACEMENT PAGES (REDLINE/STRIKEOUT VERSION)

PAGE REVISION DATE: 01/2025

Applicant Signature Page

Site Operator (Permittee or Registrant Name) or Authorized Signatory

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Name: Brian Danko	Title: Environmental Manager
Email Address: bdanko@republicservices.com	
Signature. Li Contractor	Date: 11 501

Authorization by Facility Owner for Operator to Submit Application

To be completed by the facility owner if the application is submitted by an operator who is not the facility owner.

I am the owner of the facility that is the su operator, pursuant to 30 TAC 305.43(c).	bject of this application, and authorize the to submit this application
Name:	Title:
Email Address:	
Signature:	Date:
Notary SUBSCRIBED AND SWORN to before me b On this 30^{+h} day of 30^{+h} day of 30^{+h} day of 10^{-10} day of	y the said <u>Brian Danko</u> f <u>August, 2026</u>
Stacy M. Willia Notary Public in and for Tarrant	(notary's jurisdiction, including county and state)

Note: Application Must Bear Signature & Seal of Notary Public

TCEQ-00650 (Rev. 10-24-23)

Part I Application for New Permit, Permit Amendment, or Registration for MSW Facility

Page 12 of 15

SOUTHWEST LANDFILL RANDALL COUNTY, TEXAS TCEQ PERMIT NO. MSW-1663C

LIMITED SCOPE MAJOR PERMIT AMENDMENT APPLICATION

PART III – SITE DEVELOPMENT PLAN APPENDIX IIIB OVERLINER POINT OF COMPLIANCE DEMONSTRATION

Prepared for

Southwest Landfill TX, LP

TCEQ Approved February 20, 2020

Revised January 2025

Weaver Consultants Group, LLC TBPE Registration No. F-3727 6420 Southwest Boulevard, Suite 206 Fort Worth, Texas 76109 817-735-9770

WCG Project No. 0120-094-11-140

This document is intended for permitting purposes only.

Table 2-2
Chemical Constituent Concentrations in Leachate

Constituent	MCL Listed in §330.331(a) (1) (mg/l)	Site Specific Leachate Quality ^{1, 2,3} (mg/l)	Leachate Quality Information Historically Used for POC Demonstrations in Texas (mg/l)	DAF Range (from Site Specific Data to Historically Used Data) ⁴
Arsenic	0.05	0.0855	5.0	<1 to 100
Barium	1.0	7.450	100.0	7.45 to 100
Benzene ²	0.005	0.0025	0.814	<1 to 163
Cadmium ²	0.01	0.0001	1.0	<1 to 100
Carbon tetrachloride ²	0.005	0.0025	0.5	<1 to 100
Chromium (hexavalent)	0.05	0.0126	5.0	<1 to 100
2,4-Dichlorophenoxy acetic acid ²	0.1	0.0005	10.0	<1 to 100
1,4-Dichlorobenzene ²	0.075	0.0025	7.5	<1 to 100
1,2-Dichloroethane ²	0.005	0.0025	0.5	<1 to 100
1,1-Dichloroethylene ²	0.007	0.0025	0.7	<1 to 100
Endrin ²	0.0002	0.00005	0.05	<1 to 250
Fluoride	4	0.94		<1
Lindane ²	0.004	0.000025	0.4	<1 to 100
Lead ²	0.05	0.0025	5.0	<1 to 100
Mercury ²	0.002	0.0001	0.2	<1 to 100
Methoxychlor ²	0.1	0.00025		<1
Nitrate ²	10	0.00005		<1
Selenium ²	0.01	0.0005	1.0	<1 to 100
Silver ²	0.05	0.00025	5.0	<1 to 100
Toxaphene ²	0.005	0.0005	0.5	<1 to 100
1,1,1-Trichloroethane ²	0.2	0.0025		<1
Trichloroethylene	0.005	0.0025	1.3	<1 to 260
2,4,5-Trichlorophenoxy acetic acid ²	0.01	0.0005	1.0	1 to 100
Vinyl Chloride ²	0.002	0.001	0.2	<1 to 100

Leachate concentrations obtained from historical leachate samples provided by the site.
For constituents not detected at reporting limits, one-half of the reporting limit is listed.

The constituents not detected at reporting mines, one nan of the reporting mine is instead. The constituents represent the highest values reported from laboratory testing from a leachate sample in June 2017 from the shared sump in Sectors 7 and 10 and annual historical leachate sampling for constituents tested. The leachate sample 3 was collected from the shared sump in Sectors 7 and 10.

⁴ This column illustrates the range of DAFs needed for each constituent.

Table 4-1 Summary of Constituent Levels at the POC (Using Site Specific Leachate Data)

Constituent	C _{BG} , Background Concentration ¹ (mg/l)	C _P (mg/l) (Constituent Concentration at the POC due to Estimated Leachate Percolation)	=	C _o ²	(/ DAF ³ mg/l)	C _{BG} + C _P = C _T at POC (mg/l)	MCL (mg/l) Listed in §330.331(a)(1)	C _T at POC < MCL
Arsenic	0.0056	6.81E-06	=	0.0855	/	12,552	0.0056	0.05	Yes
Barium	0.07	1.16E-04	=	7.450	/	12,552	0.07	1.0	Yes
Benzene	0.0005	1.99E-07	=	0.0025	/	12,552	0.0005	0.005	Yes
Cadmium	0.001	7.97E-09	=	0.0001	/	12,552	0.001	0.01	Yes
Carbon tetrachloride	0.0025	1.99E-07	=	0.0025	/	12,552	0.0025	0.005	Yes
Chromium (hexavalent)	0.010	1.0E-06	=	0.0126	/	12,552	0.01	0.05	Yes
2,4-Dichlorophenoxy acetic acid	0.09	3.98E-08	=	0.0005	/	12,552	0.09	0.1	Yes
1,4-Dichlorobenzene	0.001	1.99E-07	=	0.0025	/	12,552	0.001	0.075	Yes
1,2-Dichloroethane	0.0005	1.99E-07	=	0.0025	/	12,552	0.0005	0.005	Yes
1,1-Dichloroethylene	0.0014	1.99E-07	=	0.0025	/	12,552	0.0014	0.007	Yes
Endrin	0.00005	3.98E-09	=	0.00005	/	12,552	0.0001	0.0002	Yes
Fluoride	3.85	7.49E-05	=	0.94	/	12,552	3.85	4	Yes
Lindane	0.0005	1.99E-09	=	0.000025	/	12,552	0.0005	0.004	Yes
Lead	0.0075	1.99E-07	=	0.0025	/	12,552	0.0075	0.05	Yes
Mercury	0.0001	7.97E-09	=	0.0001	/	12,552	0.0001	0.002	Yes
Methoxychlor	0.00025	1.99E-08	=	0.00025	/	12,552	0.0003	0.1	Yes
Nitrate	3.6	3.98E-09	=	0.00005	/	12,552	3.6	10	Yes
Selenium	0.005	3.98E-08	=	0.0005	/	12,552	0.005	0.01	Yes
Silver	0.005	1.99E-08	=	0.00025	/	12,552	0.005	0.05	Yes
Toxaphene	0.0005	3.98E-08	=	0.0005	/	12,552	0.0005	0.005	Yes
1,1,1-Trichloroethane	0.0005	1.99E-07	=	0.0025	/	12,552	0.0005	0.2	Yes
Trichloroethylene	0.0025	1.99E-07	=	0.0025	/	12,552	0.0025	0.005	Yes
2,4,5-Trichlorophenoxy acetic acid	0.0005	3.98E-08	=	0.0005	/	12,552	0.0005	0.01	Yes
Vinyl Chloride	0.001	7.97E-08	=	0.001	/	12,552	0.001	0.002	Yes

¹ Background concentrations have been obtained from Table 1-1.

² Leachate concentrations (C₀, Site Specific Concentrations) represent levels obtained from the leachate sample analysis results provided in Table 2-2.

³ DAF value for Case II presented on Figure 3-7.

Table 4-2Summary of Constituent Levels at the POC(Using Historical Guidance Information)

Constituent	C _{BG} , Background Concentration ¹ (mg/l)	C _P (mg/l) (Constituent Concentration at the POC)		Co ² / DAF ³ (mg/l)	C _{BG} + C _P = C _T ² at POC (mg/l)	MCL (mg/l) Listed in §330.331(a)(1)	C⊤ at POC < MCL
Arsenic	0.0056	4.0E-04	=	5.0 /12,552	0.006	0.05	Yes
Barium	0.07	8.0E-03	=	100.0 /12,552	0.078	1.0	Yes
Benzene	0.0005	6.5E-05	=	0.814 /12,552	0.001	0.005	Yes
Cadmium	0.001	8.0E-05	=	1.0 /12,552	0.001	0.01	Yes
Carbon tetrachloride	0.0025	4.0E-05	=	0.5 /12,552	0.003	0.005	Yes
Chromium (hexavalent)	0.010	4.0E-04	=	5.0 /12,552	0.010	0.05	Yes
2,4-Dichlorophenoxy acetic acid	0.09	8.0E-04	=	10.0 /12,552	0.091	0.1	Yes
1,4-Dichlorobenzene	0.001	6.0E-04	=	7.5 /12,552	0.002	0.075	Yes
1,2-Dichloroethane	0.0005	4.0E-05	=	0.5 /12,552	0.001	0.005	Yes
1-1-Dichloroethylene	0.0014	5.6E-05	=	0.7 /12,552	0.001	0.007	Yes
Endrin	0.00005	4.0E-06	=	0.05 /12,552	0.000	0.0002	Yes
Fluoride	3.85		=	/12,552		4	Yes
Lindane	0.0005	3.2E-05	=	0.4 /12,552	0.001	0.004	Yes
Lead	0.0075	4.0E-04	=	5.0 /12,552	0.008	0.05	Yes
Mercury	0.0001	1.6E-05	=	0.2 /12,552	0.000	0.002	Yes
Methoxychlor ⁴	0.00025		=	/12,552		0.1	Yes
Nitrate ⁴	3.6		=	/12,552		10	Yes
Selenium	0.005	8.0E-05	=	1.0 /12,552	0.005	0.01	Yes
Silver	0.005	4.0E-04	=	5.0 /12,552	0.005	0.05	Yes
Toxaphene	0.0005	4.0E-05	=	0.5 /12,552	0.001	0.005	Yes
1,1,1-Trichloroethane ⁴	0.0005		=	/12,552		0.2	Yes
Trichloroethylene	0.0025	1.0E-04	=	1.3 /12,552	0.003	0.005	Yes
2,4,5-Trichlorophenoxy acetic acid	0.0005	8.0E-05	=	1.0 /12,552	0.001	0.01	Yes
Vinyl Chloride	0.001	1.6E-05	=	0.2 /12,552	0.001	0.002	Yes

¹ Background concentrations have been obtained from Table 1-1.

² C_P represents chemical concentrations estimated by the fate and transport model or the POC. Initial concentrations, C₀, has been reproduced from historical standard information utilized by TCEQ as discussed in Section 1.3. Total concentration for each constituent at the POC is the sum of C_P and the background concentration, C_{BG}.

³ DAF value for Case II presented on Figure 3-7.

Table 5-1Summary of Constituent Levels at the POC(Using Site Specific Leachate Data)

Constituent	C _{BG} , Background Concentration ¹ (mg/l)	C _P (mg/l) (Constituent Concentration at the POC due to Estimated Leachate Percolation)	=	C _o ² / (mg/l)	DAF ³)	C _{BG} + C _P = C _T at POC (mg/l)	MCL (mg/l) Listed in §330.331(a)(1)	C _T at POC < MCL
Arsenic	0.0056	8.81E-06	=	0.0855 / 9	9,702	0.0056	0.05	Yes
Barium	0.07	7.68E-04	=	7.450 / 9	9,702	0.07	1.0	Yes
Benzene	0.0005	2.58E-07	=	0.0025 / 9	9,702	0.0005	0.005	Yes
Cadmium	0.001	1.03E-08	=	0.0001 / 9	9,702	0.001	0.01	Yes
Carbon tetrachloride	0.0025	2.58E-07	=	0.0025 / 9	9,702	0.0025	0.005	Yes
Chromium (hexavalent)	0.010	1.30E-06	=	0.0126 / 9	9,702	0.01	0.05	Yes
2,4-Dichlorophenoxy acetic acid	0.09	5.15E-08	=	0.0005 / 9	9,702	0.09	0.1	Yes
1,4-Dichlorobenzene	0.001	2.58E-07	=	0.0025 / 9	9,702	0.001	0.075	Yes
1,2-Dichloroethane	0.0005	2.58E-07	=	0.0025 / 9	9,702	0.0005	0.005	Yes
1,1-Dichloroethylene	0.0014	2.58E-07	=	0.0025 / 9	9,702	0.0014	0.007	Yes
Endrin	0.00005	5.15E-09	=	0.00005 / 9	9,702	0.0001	0.0002	Yes
Fluoride	3.85	9.69E-05	=	0.94 / 9	9,702	3.85	4	Yes
Lindane	0.0005	2.58E-09	=	0.000025 / 9	9,702	0.0005	0.004	Yes
Lead	0.0075	2.58E-07	=	0.0025 / 9	9,702	0.0075	0.05	Yes
Mercury	0.0001	1.03E-08	=	0.0001 / 9	9,702	0.0001	0.002	Yes
Methoxychlor	0.00025	2.58E-08	=	0.00025 / 9	9,702	0.0003	0.1	Yes
Nitrate	3.6	5.15E-09	=	0.00005 / 9	9,702	3.6	10	Yes
Selenium	0.005	5.15E-08	=	0.0005 / 9	9,702	0.005	0.01	Yes
Silver	0.005	2.58E-08	=	0.00025 / 9	9,702	0.005	0.05	Yes
Toxaphene	0.0005	5.15E-08	=	0.0005 / 9	9,702	0.0005	0.005	Yes
1,1,1-Trichloroethane	0.0005	2.58E-07	=	0.0025 / 9	9,702	0.0005	0.2	Yes
Trichloroethylene	0.0025	2.58E-07	=	0.0025 / 9	9,702	0.0025	0.005	Yes
2,4,5-Trichlorophenoxy acetic acid	0.0005	5.15E-08	=	0.0005 / 9	9,702	0.0005	0.01	Yes
Vinyl Chloride	0.001	1.03E-07	=	0.001 / 9	9,702	0.001	0.002	Yes

¹ Background concentrations have been obtained from Table 1-1.

² Leachate concentrations (Co, Site Specific Concentrations) represent levels obtained from the leachate sample analysis results provided in Table 2-2.

³ DAF value for Case II presented on Figure 3 in Appendix IIIB-C.

Table 5-2Summary of Constituent Levels at the POC(Using Historical Guidance Information)

Constituent	C _{BG} , Background Concentration ¹ (mg/l)	C _P (mg/l) (Constituent Concentration at the POC)	=	Co ² / DAF ³ (mg/l)	C _{BG} + C _P = C _T ² at POC (mg/l)	MCL (mg/l) Listed in §330.331(a)(1)	C⊤ at POC < MCL
Arsenic	0.0056	5.2E-04	=	5.0 / 9,702	0.006	0.05	Yes
Barium	0.07	1.0E-02	=	100.0 / 9,702	0.080	1.0	Yes
Benzene	0.0005	8.4E-05	=	0.814 / 9,702	0.001	0.005	Yes
Cadmium	0.001	1.0E-04	=	1.0 / 9,702	0.001	0.01	Yes
Carbon tetrachloride	0.0025	5.2E-05	=	0.5 / 9,702	0.003	0.005	Yes
Chromium (hexavalent)	0.010	5.2E-04	=	5.0 / 9,702	0.011	0.05	Yes
2,4-Dichlorophenoxy acetic acid	0.09	1.0E-03	=	10.0 / 9,702	0.091	0.1	Yes
1,4-Dichlorobenzene	0.001	7.7E-04	=	7.5 / 9,702	0.002	0.075	Yes
1,2-Dichloroethane	0.0005	5.2E-05	=	0.5 / 9,702	0.001	0.005	Yes
1-1-Dichloroethylene	0.0014	7.2E-05	=	0.7 / 9,702	0.001	0.007	Yes
Endrin	0.00005	5.2E-06	=	0.05 / 9,702	0.000	0.0002	Yes
Fluoride	3.85		=	/ 9,702		4	¥es
Lindane	0.0005	4.1E-05	=	0.4 / 9,702	0.001	0.004	Yes
Lead	0.0075	5.2E-04	=	5.0 / 9,702	0.008	0.05	Yes
Mercury	0.0001	2.1E-05	=	0.2 / 9,702	0.000	0.002	Yes
Methoxychlor ⁴	0.00025		=	/ 9,702		0.1	Yes
Nitrate ⁴	3.6		=	/ 9,702		10	Yes
Selenium	0.005	1.0E-04	=	1.0 / 9,702	0.005	0.01	Yes
Silver	0.005	5.2E-04	=	5.0 / 9,702	0.006	0.05	Yes
Toxaphene	0.0005	5.2E-05	=	0.5 / 9,702	0.001	0.005	Yes
1,1,1-Trichloroethane ⁴	0.0005		=	/ 9,702		0.2	¥es
Trichloroethylene	0.0025	1.3E-04	=	1.3 / 9,702	0.003	0.005	Yes
2,4,5-Trichlorophenoxy acetic acid	0.0005	1.0E-04	=	1.0 / 9,702	0.001	0.01	Yes
Vinyl Chloride	0.001	2.1E-05	=	0.2 / 9,702	0.001	0.002	Yes

¹ Background concentrations have been obtained from Table 1-1.

² C_P represents chemical concentrations estimated by the fate and transport model or the POC. Initial concentrations, C₀, has been reproduced from historical standard information utilized by TCEQ as discussed in Section 1.3. Total concentration for each constituent at the POC is the sum of C_P and the background concentration, C_{BG}.

³ DAF value for Case II presented on Figure 3 in Appendix IIIB-C.

Table 6-3Summary of Constituent Levels at the POC(Using Site Specific Leachate Data)

Constituent	C _{BG} , Background Concentration ¹ (mg/l)	C _P (mg/l) (Constituent Concentration at the POC due to Estimated Leachate Percolation)	=	Co² (n	/ DAF ³ ng/l)	C _{BG} + C _P = C _T at POC (mg/I)	MCL (mg/l) Listed in §330.331(a)(1)	C⊤ at POC < MCL
Arsenic	0.0056	2.3E-05 6	=	0.0855	/ 3,656	0.0056	0.05	Yes
Barium	0.07	2.0E-03	=	7.450	/ 3,656	0.07	1.0	Yes
Benzene	0.0005	6.8E-07	=	0.0025	/ 3,656	0.0005	0.005	Yes
Cadmium	0.001	2.7E-08	=	0.0001	/ 3,656	0.001	0.01	Yes
Carbon tetrachloride	0.0025	6.8E-07	=	0.0025	/ 3,656	0.0025	0.005	Yes
Chromium (hexavalent)	0.010	3.4E-06	=	0.0126	/ 3,656	0.01	0.05	Yes
2,4-Dichlorophenoxy acetic acid	0.09	1.4E-07	=	0.0005	/ 3,656	0.09	0.1	Yes
1,4-Dichlorobenzene	0.001	6.8E-07	=	0.0025	/ 3,656	0.001	0.075	Yes
1,2-Dichloroethane	0.0005	6.8E-07	=	0.0025	/ 3,656	0.0005	0.005	Yes
1,1-Dichloroethylene	0.0014	6.8E-07	=	0.0025	/ 3,656	0.0014	0.007	Yes
Endrin	0.00005	1.4E-08	=	0.00005	/ 3,656	0.0001	0.0002	Yes
Fluoride	3.85	2.6E-04	=	0.94	/ 3,656	3.85	4	Yes
Lindane	0.0005	6.8E-09	=	0.000025	/ 3,656	0.0005	0.004	Yes
Lead	0.0075	6.8E-07	=	0.0025	/ 3,656	0.0075	0.05	Yes
Mercury	0.0001	2.7E-08	=	0.0001	/ 3,656	0.0001	0.002	Yes
Methoxychlor	0.00025	6.8E-08	=	0.00025	/ 3,656	0.0003	0.1	Yes
Nitrate	3.6	1.4E-08	=	0.00005	/ 3,656	3.6	10	Yes
Selenium	0.005	1.4E-07	=	0.0005	/ 3,656	0.005	0.01	Yes
Silver	0.005	6.8E-08	=	0.00025	/ 3,656	0.005	0.05	Yes
Toxaphene	0.0005	1.4E-07	=	0.0005	/ 3,656	0.0005	0.005	Yes
1,1,1-Trichloroethane	0.0005	6.8E-07	=	0.0025	/ 3,656	0.0005	0.2	Yes
Trichloroethylene	0.0025	6.8E-07	=	0.0025	/ 3,656	0.0025	0.005	Yes
2,4,5-Trichlorophenoxy acetic acid	0.0005	1.4E-07	=	0.0005	/ 3,656	0.0005	0.01	Yes
Vinyl Chloride	0.001	2.7E-07	=	0.001	/ 3,656	0.001	0.002	Yes

¹ Background concentrations have been obtained from Table 1-1.

² Leachate concentrations (Co, Site Specific Concentrations) represent levels obtained from the leachate sample analysis results provided in Table 2-2.

³ DAF value for Case II presented on Figure 6 in Appendix IIIB-D.

Table 6-4Summary of Constituent Levels at the POC(Using Historical Guidance Information)

Constituent	C _{BG} , Background Concentration ¹ (mg/l)	C _P (mg/l) (Constituent Concentration at the POC)	=	Co² (m	/ DAF ³ g/l)	C _{BG} + C _P = C _T ² at POC (mg/l)	MCL (mg/l) Listed in §330.331(a)(1)	C⊤ at POC < MCL
Arsenic	0.0056	1.4E-03	=	5.0	/ 3,656	0.007	0.05	Yes
Barium	0.07	2.7E-02	=	100.0	/ 3,656	0.097	1.0	Yes
Benzene	0.0005	2.2E-04	=	0.814	/ 3,656	0.001	0.005	Yes
Cadmium	0.001	2.7E-04	=	1.0	/ 3,656	0.001	0.01	Yes
Carbon tetrachloride	0.0025	1.4E-04	=	0.5	/ 3,656	0.003	0.005	Yes
Chromium (hexavalent)	0.010	1.4E-03	=	5.0	/ 3,656	0.011	0.05	Yes
2,4-Dichlorophenoxy acetic acid	0.09	2.7E-03	=	10.0	/ 3,656	0.093	0.1	Yes
1,4-Dichlorobenzene	0.001	2.1E-03	=	7.5	/ 3,656	0.003	0.075	Yes
1,2-Dichloroethane	0.0005	1.4E-04	=	0.5	/ 3,656	0.001	0.005	Yes
1-1-Dichloroethylene	0.0014	1.9E-04	=	0.7	/ 3,656	0.002	0.007	Yes
Endrin	0.00005	1.4E-05	=	0.1	/ 3,656	0.000	0.0002	Yes
Fluoride	3.85		=		/ 3,656		4	Yes
Lindane	0.0005	1.1E-04	=	0.4	/ 3,656	0.001	0.004	Yes
Lead	0.0075	1.4E-03	=	5.0	/ 3,656	0.009	0.05	Yes
Mercury	0.0001	5.5E-05	=	0.2	/ 3,656	0.000	0.002	Yes
Methoxychlor ⁴	0.00025		=		/ 3,656		0.1	Yes
Nitrate ⁴	3.6		=		/ 3,656		10	Yes
Selenium	0.005	2.7E-04	=	1.0	/ 3,656	0.005	0.01	Yes
Silver	0.005	1.4E-03	=	5.0	/ 3,656	0.006	0.05	Yes
Toxaphene	0.0005	1.4E-04	=	0.5	/ 3,656	0.001	0.005	Yes
1,1,1-Trichloroethane ⁴	0.0005		=		/ 3,656		0.2	Yes
Trichloroethylene	0.0025	3.6E-04	=	1.3	/ 3,656	0.003	0.005	Yes
2,4,5-Trichlorophenoxy acetic acid	0.0005	2.7E-04	=	1.0	/ 3,656	0.001	0.01	Yes
Vinyl Chloride	0.001	5.5E-05	=	0.2	/ 3,656	0.001	0.002	Yes

¹ Background concentrations have been obtained from Table 1-1.

² C_P represents chemical concentrations estimated by the fate and transport model or the POC. Initial concentrations, C₀, has been reproduced from historical standard information utilized by TCEQ as discussed in Section 1.3. Total concentration for each constituent at the POC is the sum of C_P and the background concentration, C_{BG}.

³ DAF value for Case II presented on Figure 6 in Appendix IIIB-D.

APPENDIX IIIB-D

ALTERNATIVE LINER POINT OF COMPLIANCE DEMONSTRATION

Includes pages IIIB-D-1 through IIIB-D-641

NEVZAT TURAN 84059 01/30/2025

CONTENTS

FIGURES		IIIB-D-1
Figure 1	Typical Section Sequence of Events	IIIB-D-2
Figure 2	Typical Section Sequence of Events	IIIB-D-3
Figure 3	Case I	IIIB-D-4
Figure 4	Case II	IIIB-D-5
Figure 5	Case III	IIIB-D-6
Figure 6	Case IV	IIIB-D-7

HELP MODEL ANALYSIS

IIIB-D-8

ADDITIONAL DEMONSTRATIONS

IIIB-D-62

HELP MODEL ANALYSIS

ADDITIONAL DEMONSTRATIONS

The purpose of modeling the following additional demonstrations is to evaluate the alternative liner POC demonstrations shown in Figures 3 through 6 under various conditions, that includes varying groundwater gradients, minimum and maximum observed hydraulic conductivities, and assuming that the alternative liner leachate collection system does not function as designed allowing a buildup of 12 inches of head on the liner system.

Groundwater Gradients Demonstration

The groundwater elevation maps from the semi-annual groundwater reports, provided by Hydrex Environmental from June 2020 through June 2024, were analyzed to assess changes in groundwater gradients over time. The groundwater gradients vary from 0.0053 ft/ft to 0.0056 ft/ft along Section A, which is shown on Figure 3-2 in Appendix IIIB. The Case III model presented on Figure 5 in Appendix IIIB-D was chosen for this evaluation as the demonstration represents the lowest DAF under expected groundwater flow conditions (i.e., groundwater flow toward north). Case III was run with a gradient of 0.0058 which represents the maximum gradient observed. An additional run with a gradient of 0.0052 was run to represent the minimum gradient. The results are presented in Table 1 below which show the design is complainant with §330.311(a)(1).

Case	Groundwater Gradient (ft/ft)	Calculated DAF ¹	Minimum Required DAF	Design Compliant with §330.331(a)(1)
Casa III	0.0058	16,031	260	Yes
Case III	0.0052	12,704	260	Yes

Table 1Groundwater Gradients Demonstration Results

¹ For each model, the groundwater well with the lowest calculated DAF is shown in the table.

Additionally, the Case IV model presented on Figure 6 in Appendix IIID artificially reverses the groundwater flow to the south using a conservative gradient of 0.0029. This condition results in a DAF of 3,656 which is presented on Figure 6 in Appendix IIIB-D.

Q:\ALLIED\SOUTHWEST\LSMPA 2024\TECH NOD\APP IIIB - RLSO.DOC

Hydraulic Conductivity Demonstration

The minimum and maximum observed hydraulic conductivities in Stratum II were analyzed to assess the impacts of hydraulic conductivity on the modeled concentrations. As shown in Tables 4-3 and 4-4 in Appendix IIIG, the maximum hydraulic conductivity is 2.08x10⁻³ cm/s while the minimum is 2.45x10⁻⁵ cm/s within Stratum II. Case III, presented in Figure 5 in Appendix IIIB-D, was chosen for this evaluation. The results are presented in Table 2 below which show the design is complainant with §330.311(a)(1).

Table 2Minimum and Maximum observed Hydraulic conductivityDemonstration Results

Case	Hydraulic Conductivity (cm/sec)	Calculated DAF ¹	Minimum Required DAF	Design Compliant with §330.331(a)(1)	
Case III	2.08x10 ⁻³	16,031	260	Yes	
	2.45x10 ⁻⁵	20,666	260	Yes	

 1 For each model, the groundwater well with the lowest calculated DAF is shown in the table.

Non-functioning Leachate Collection System Demonstration

This demonstration modifies Case IV in Appendix IIIB-D to assume that the alternative liner leachate collection system does not function as designed and allows a buildup of 12 inches of head on the alternative liner and overliner systems, which will increase the percolation rate in these areas. The assumed leakage through the overliner calculations on Page IIIB-C-1 was applied to the alternative liner areas. The calculation assumes 12 inches of head on the liner and 4 defects per acre for a resulting percolation of 0.066 mm/yr. The results are presented in Table 3 below which show the design is complainant with \$330.311(a)(1).

Table 3Non-functioning Leachate Collection System Demonstration Results

Case	Percolation ² (mm/yr)	Calculated DAF ¹	Minimum Required DAF	Design Compliant with §330.331(a)(1)	
Case IV	0.066	1,466	260	Yes	

1 For each model, the groundwater well with the lowest calculated DAF is shown in the table.

2 The percolation is applied to both overliner and alternative liner areas.

Summary

Therefore, the demonstration supports the fact that the site design is in compliance with the POC requirements specified in Title 30 TAC §330.331.

SOUTHWEST LANDFILL RANDALL COUNTY, TEXAS TCEQ PERMIT NO. MSW-1663C

LIMITED SCOPE MAJOR PERMIT AMENDMENT APPLICATION

PART III – SITE DEVELOPMENT PLAN

APPENDIX IIIE

Prepared for

Southwest Landfill TX, LP

TCEQ Approved February 20, 2020

Revised February 2025

Prepared by

Weaver Consultants Group, LLC TBPE Registration No. F-3727 6420 Southwest Blvd., Suite 206 Fort Worth, Texas 76109 817-735-9770

WCG Project No. 0120-094-11-140

This document is intended for permitting purposes only.

		5.5.1 Stability Analysis Using XSTABL5.5.2 Infinite Slope Stability Analysis	IIIE-21 IIIE- 23 22
6	SET	FLEMENT, STRAIN, AND HEAVE ANALYSIS	IIIE-24
	6.1	General	IIIE-24
	6.2	Foundation Heave	IIIE-24
	6.3	Foundation Settlement and Strain	IIIE-25
	6.4	Overliner Settlement	IIIE-25
	6.5	Final Cover Settlement and Strain	IIIE-26

7 CONCLUSIONS AND RECOMMENDATIONS

IIIE-27

APPENDIX IIIE-A Slope Stability Analysis

APPENDIX IIIE-B Foundation Settlement and Heave Analysis

APPENDIX IIIE-C Laboratory Test Results

TABLES

<u>Page No.</u>
IIIE-2
IIIE-7
IIIE-8
IIIE-10
ed IIIE-18
IIIE-21
IIIE-22
IIIE- 22 23

2. Simplified Bishop Method – This method uses the method of slices to discretize the soil mass for determining the factor of safety.

In general, the stability of various critical sections were analyzed under static condition for short-term (excavation and construction) and long-term (after construction) safety. The slope stability analyses are provided in Appendix IIIE-A. The stability of the various liner and final cover configurations with the geosynthetic components were also evaluated by using infinite slope stability analysis (refer to Appendix IIIE-A).

The stability analysis has been developed using demonstrations showing that, for each analyzed section, the forces resisting movement of the slopes are higher than the forces that potentially create movement. Therefore, the ratio of forces resisting movement to the forces potentially creating movement is defined as the factor of safety (FS). When the FS is equal to or greater than 1.0, it means that the slope is stable. In the slope stability analysis a factor of safety greater than 1.0 is desired. The FS value is increased for the increased uncertainty for the system analyzed. A factor of safety of 1.5 has been used for slopes that will stay in place long term, including interim and final cover configurations subjected to effective (rotational failure) and peak (translational or block failure) conditions. A factor of safety of 1.3 is acceptable for total stress conditions that will be in place for a short period of time such that pore pressures cannot fully dissipate and including both interim and final conditions. A factor of safety of 1.1 is acceptable for analyses performed incorporating residual stress.

5.2 Sections Selected for Analysis

Slope stability analyses were performed on critical sections to evaluate the stability of the excavation, interim fill, overliner, and final cover configuration slopes. The geometries of the slopes analyzed were determined by reviewing the proposed excavation plan and final contour plan. The evaluation locations were selected to analyze critical slopes consisting of profiles that include the landfill configuration as well as natural materials at the toe and below the landfill excavation. The interim fill slope was analyzed using an assumed profile as discussed in Section 4.3. Figures showing the location of the cross sections are included in Appendix IIIE-A (refer to Appendix IIIE-A-1 for the excavation slope stability analysis, Appendix IIIE-A-2 for the interim condition slope stability analysis, and Appendix IIIE-A-3 for the final landfill slopes stability analysis, including overliner stability analysis).

5.3 Configurations Analyzed

The excavation, interim, overliner, and final landfill configurations were modeled to represent critical slope conditions, and the analysis was performed using circular and block failure surfaces. The maximum final fill and overliner slopes will be 4 horizontal to 1 vertical (4H:1V), while interim slopes, liner slopes, and excavation slopes will be as steep as 3H:1V. The excavation, liner, and interim fill slopes were

analyzed with a slope angle of 3H:1V and a 4H:1V final side slope was used to evaluate final cover and overliner. A copy of the top of liner plan and final completion plan showing the locations of the cross sections selected for analysis are included in Appendix IIIE-A. Additionally, the configurations analyzed are graphically illustrated in Appendix IIIE-A. The interim condition was analyzed considering a 3H:1V slope with a horizontal length of approximately 590575 feet. If the horizontal length of actual interim slopes longer than 590575 feet is developed during site operations, an additional analysis will be completed at that time and maintained in the Site Operating Record.

5.4 Input Parameters

The cross sections for slope stability analysis were developed from the proposed excavation plan and the landfill completion plan (see Drawings A.1 and A.5 in Appendix IIIA-A – Liner, Overliner, and Final Cover System Details). The soil parameters were selected based on a review of the boring logs and laboratory test results from the subsurface investigation studies at the site and upon engineering judgment and experience with similar materials. The groundwater surface indicated in the analysis is obtained from Appendix IIIG-Geology Report (Figure IIIG-D-14) and represents the highest measured groundwater levels. Table 5-1 summarizes the unit weights and strength parameters used for the stability analyses for the evaluated landfill slopes (excavation, interim, overliner, and final cover slopes).

Table 5-1 (Continued) Summary of Material Weight and Strength Parameters Used in the Slope Stability Analysis

Strength Parameters						Comments	
Solid Waste						See comments listed under Solid Waste above.	
Material Strength Parameters			Interface Strength Parameters]	
Cohesion (lb/ft²)		Friction Angle (degrees)	Unit Weight (Ib/ft ³)	Adhesio (lb/ft²)	'n	Friction Angle (degrees)	
288		23	59	Interface stren applicable to because the intr and final cover not a critical int	gth parat the soli- erface bet and over terface.	meters are not d waste layer ween the waste liner systems is	
			Liner System	T			The liner system includes a 2-foot-thick compacted clay (compacted clay is 3 feet thick is a geometry on the floor of the landfill and textured on the 2H1W sideslanes) drainage geo
Material	Strength	Parameters		Interface S	Strength F	Parameters	3H:IV sideslopes), and a 2-foot-thick protective cover soil layer. This system is modeled as
Cohesion (lb/ft²)		Friction Angle (degrees)	Unit Weight (Ib/ft ³)	Adhesio (lb/ft²)	'n	Friction Angle (degrees)	compacted clay liner and the soil protective cover. In addition, both a translational and an infini interface strength requirements for each layer of the liner system. The minimum interface strength
Protective Cover			120	Floor Grades	0	22	For the rotational global stability analysis, the liner system is modeled as two layers: the com geosynthetic layers are not included in the global analysis because they provide a negligible strength values calented for the liner system represent strength values two calented for the liner system.
Effective Stress	100	16					various permit applications approved by TCEQ. Duncan and Wright (2005) provides a compre- system. In Chapter 5 – Shear Strengths of Soil and Municipal Solid Waste, a significant amount of
Total Stress	1,000	0					The results indicate that the lowest cohesion value for compacted cohesive soils is 9 kPa (1) degrees. Therefore, selected values of 100 lb/ft ² for cohesion and 16 degrees of friction angle co
Liner System (Typical) Effective Stress	100	16	120	3H:1V Sideslope	100	16	in the slope stability analysis are subject to verification at the time of each liner construction. strength tests required for soil used for liner construction. Protective cover and compacted cl liner system construction. The global stability analysis is included in Appendices IIIE-A-1 and II
Total Stress	1,000	0					The interface slope stability analysis, which is performed using an infinite slope stability analys
Liner System				Peak Stress			system, was developed to show that certain landfill components that are placed on top of each not experience sliding failure due to the lack of strength between these components. The
Analysis)				Floor Grades	188	11	represent the interfaces with the lowest strength at the floor and sideslopes (refer to Append
				3H:1V Sideslope	200	15	strength parameters were developed using materials from Geosynthetic Research Institute (GRI Geosynthetic and Geosynthetic-to-Soil Interfaces" by George R. Koerner, GRI, Folsom, PA, June 1- interface friction) used for the application were selected based on published data, it should be
				<u>Residual Stress</u>			verified at the time of each liner construction event to ensure that the as-built strength parameters design (refer to Appendix IIID). As noted in Appendix IIID, Table 6-1, the strength parameters of the streng
				Floor Grades	188	9	parameters to provide for a conservative design.
				3H:1V Sideslope	80	10	The translational slope stability analysis was performed using simplified Janbu Method using slope stability analysis discussed above. The purpose of this analysis is to test the critical interfatilite-A-1. IIIE-A-2, and IIIE-A-3 for more information – i.e., the loading conditions reflect different stability analysis and the stability of the st
				<u>Total Stress</u>			analysis. However, for the translational analysis, the liner system strength parameters are translational stability analysis uses modified liner system strength parameters to reflect the in
				Floor Grades	1000	0	parameters will also be tested and verified at the time of each liner construction event to ens
				3H:1V Sideslope	1000	0	

¹ Liners on the sideslopes and floor grades are listed separately due to different strength characteristics for clay/smooth geomembrane interfaces. The overliner was modeled with clay/textured geomembrane interface for sideslope and top deck areas.

for the Class 1 liner) layer, 60-mil geomembrane (smooth ocomposite (single-sided on floor grades and double-sided on two layers for the global stability analysis: the 3-foot-thick ite stability analysis were performed to establish the minimum ngth requirements are specified in Appendix IIID.

pacted clay liner and the soil protective cover layer. The two contribution to the forces that are resisting movement. The industry and these same strength values have been used in ehensive discussion regarding strength parameters for a liner of data are presented and evaluated for compacted clay liners. .87 lb/ft²) and the lowest reported friction angle value is 19 conservatively represent the liner system. Soil properties used Section 2.4.3 in Appendix IIID – LQCP includes the material lay liner soil unit weight values are based on experience with IE-A-3.

sis procedure by Duncan, Buchianani, and De Wet for the liner other, such as a geomembrane and compacted clay layer will interface strength values presented in this table represent clay liner interface on floor grades. These strength values dix IIIE-A-4 for the complete evaluation of interfaces that will tained from the document referenced in this paragraph). The I) publications (e.g., "Direct Shear Database of Geosynthetic-to-4, 2005). Although the strength parameters (i.e., adhesion and noted that these strength parameters will also be tested and meters meet or exceed the strength parameters used for the neters listed are for the interfaces with the lowest strength

the Rankine Blocks. This analysis is similar to the interface aces under a variety of loading conditions (refer to Appendices ferent landfill configurations). XSTABL is also used for this modified to reflect the interface strength parameters. The nterface strength parameters. As noted above, these strength sure that the as-built strength parameters meet or exceed the

Table 5-3Summary of Slope Stability Analysis forIntermediate Cover Slopes

	Mathed of	Minimu of S Gener	Factor of Safety Acceptable		
Slope Designation	Analysis	Peak / Effective	Residual / Total	Dook /	Bosidual (
		Suess	Suess	Peak /	Residual /
		1.5	1.5 1.1/1.3	Effective	Total
Interim Fill Slope A-1	Bishop-Circular	1.56 1.60 (effect)	1.60 1.56 (total)	YES	YES
Interim Fill Slope A-2	Rankine-Block	1.42 1.53 (peak)	1.42 1.44 (residual)	YES	YES
Interim Fill Slope A-2	Rankine-Block		1.30 (total)	YES	YES

¹ Factor of Safety for temporary slopes is 1.5-

² Block analysis performed for peak and residual stresses.

Recommended Minimum Factor of Safety for stability analysis using peak stress is 1.5 and residual stress is 1.1.

Interim slope stability analyses were developed for the 2025 LSMPA to incorporate a revised maximum horizontal length of slope of 575 feet at a 3H:1V maximum outer slope.

Computer-generated slope stability analysis output is included in Appendix IIIE-A. As shown in Table 5-2, the minimum calculated factor of safety for excavation, liner, and interim slopes is 1.56, which is an acceptable factor of safety recommended for short-term slope stability. Long-term landfill slope stability has been estimated for the closed (final cover and overliner) condition. The minimum calculated factor of safety for the closed condition is 1.61, which is higher than the recommended factor of safety of 1.5 for long-term slope stability.

5.5.2 Infinite Slope Stability Analysis

Infinite slope stability analysis for the liner and final cover systems has been included in this design in addition to block method analysis (i.e., Rankine Block) discussed in the previous section. The infinite liner and overliner stability analyses address anchor trench design, stability of cover and drainage material on anchored geosynthetics, and shear forces within the liner system. The infinite final cover slope stability analysis addresses the shear forces within the final cover system. These calculations are presented in Appendix IIIE-A-4. As demonstrated in Appendix IIIE-A-4, the liner and cover systems are structurally stable using the strength parameters, which will be verified during each construction event. Prior to each construction event for liner, overliner, and final cover, the POR will perform interface strength testing using the actual material that will be used for each construction event.

Table 5-4 **Summary of Slope Stability Analysis** for the Final Landfill Configuration

	Method of	Minimum Fa Gene	Acceptable Factor		
Slope Designation	Analysis	Total / Effective Stress	Residual / Total Stress	Peak / Residual / Effective Total	
Final Cover Slope A-1	Bishop-Circular	2.43 (effect)	2.38 (total)	YES	YES
Final Cover Slope A-2	Rankine-Block-3	2.23 (peak)	2 . 09 (residual)	YES	YES
Final Cover Slope A-2	Rankine-Block ⁻³		2.05 (total)	YES	YES
Final Cover Slope B-1	Bishop-Circular	2.26 (effect)	2.27 (total)	YES	YES
Final Cover Slope B-2	Rankine-Block	2.67 (peak)	2.55 (residual)	YES	YES
Final Cover Slope B-2	Rankine-Block		2.81 (total)	YES	YES
Final Cover Slope C-1	Bishop-Circular	2.62 (effect)	2.69 (total)	YES	YES
Final Cover Slope C-2	Rankine-Block	4.05 (peak)	3.96 (residual)	YES	YES
Final Cover Slope C-2	Rankine-Block		3.86 (total)	YES	YES
Final Cover Slope D-1	Bishop-Circular	2.62 (effect)	2.71 (total)	YES	YES
Final Cover Slope D-2	Rankine-Block	3.1 (peak)	2.71 (residual)	YES	YES
Final Cover Slope D-2	Rankine-Block		2.79 (total)	YES	YES
Overliner Slope A-1	Bishop-Circular	2.61 (effect)	2.71 (total)	YES	YES
Overliner Slope A-2	Rankine-Block	2.17 (peak)	1.72 (residual)	YES	YES
Overliner Slope A-2	Rankine-Block		2.39 (total)	YES	YES
Overliner Slope B-1	Bishop-Circular	2.35 (effect)	2.35 (total)	YES	YES
Overliner Slope B-2	Rankine-Block	3.27 (peak)	3.06 (residual)	YES	YES
Overliner Slope B-2	Rankine-Block		3.49 (total)	YES	YES
Overliner Slope C-1	Bishop-Circular	2.55 (effect)	2.56 (total)	YES	YES
Overliner Slope C-2	Rankine-Block	2.05(residual)	1.61 (residual)	YES	YES
Overliner Slope C-2	Rankine-Block		2.26 (total)	YES	YES
Overliner Slope D-1	Rankine-Block	6.19 (residual)	4.41 (residual)	YES	YES
Overliner Slope D-1	Rankine-Block		15.5 (total)	YES	YES

¹ Recommended Minimum Factor of Safety for long term stability analysis using effective stress is 1.5 and short term stability analysis using total stress is 1-3. 2

Recommended Minimum Factor of Safety for stability analysis using peak stress is 1.5 and residual stress is 1.1.

³ Rankine Block analysis uses interface strength values where applicable.

APPENDIX IIIE-A

SLOPE STABILITY ANALYSIS

Includes page IIIE-A-1

APPENDIX IIIE-A-2

INTERIM LANDFILL CONFIGURATION STABILITY ANALYSIS

Includes pages IIIE-A-2-1 through IIIE-A-2-3949

	3780
	3760
	3740
	3720
	3700
	3680
	3660
	3640
	3620
	3600
ECTIVE	3580
	3560
	3540
	3520
GRADE	3500
	3480

	.5/80
	0,00
	3760
	3740
	3720
	0720
	3700
	3680
	3660
	3640
	3620
	3600
IIVE	3580
	3560
	3540
	3520
ADE	3500
	3480

	PF	REPARE	D FOR			
IWES	ST	LA	ND	FILL	ΤX,	LP
		REVISI	ONS			
ATE	DESCRIPTION					
2024		ę	SEE LIST	OF REV	ISIONS	

MAJOR PERMIT AMENDMENT SLOPE STABILITY INTERIM COVER SECTION A-A

SOUTHWEST LANDFILL RANDALL COUNTY, TEXAS

WWW.WCGRP.COM

SHEET IIIE-A-2-4

Derivation of Slope Stability Parameters:

Laboratory testing data are provided in Appendix IIIE-C. The following includes material strength properties based on the laboratory testing results from each subsurface unit.

		Moist	Saturated
Material		Unit Weight	Unit Weight
		(pcf)	(pcf)
Stratum I (Clay)		122.5	
Stratum I (Caliche)		121.9	
Stratum II (Sand)		122.5	127.0
Stratum III (Shale)		138.4	139.0

The strength parameters for the in-situ soils were selected based on the following:

Stratum I (Clay and Caliche)

A triaxial shear tests was performed on Stratum I samples which resulted in cohesion and friction angle values listed in the table below. The values in the table will be used for both Clay and Caliche. Moist unit weight and saturated unit weight values are calculated from the dry unit weight, the moisture content, and the void ratio obtained from the triaxial shear test. These unit weight values conservatively compare to the average obtained from all laboratory testing performed on the material.

	Total	Stress	Effective Stress		
	Cohesion (lb/ft ²)	Friction Angle	Cohesion (lb/ft ²)	Friction Angle	
Triaxial Shear Test G-5	100 26.0		100	27.1	

Stratum II (Sand)

Triaxial shear tests and direct shear tests were performed on the Stratum II (sand) samples which resulted in cohesion and friction angle values listed in the table below. Stratum II is modeled using a cohesion of 1,200 psf and a friction angle of 26.7° conservatively. Moist unit weight values are calculated from each pair of moisture content and dry unit weight obtained from all laboratory testing performed on the material. These moist unit weight values were then averaged and this value is used in the slope stability analysis.

	Cohesion (lb/ft ²)	Friction Angle	Cohesion (lb/ft ²)	Friction Angle
Triaxial Shear Test G-3	1620 (total)	40.9 (total)	3020 (effective)	35.0 (effective)
Direct Shear Test WB-121	900 (residual)	26.9 (residual)	1200 (peak)	26.7 (peak)

Stratum III (Shale)

The slope stability analysis indicates no failure surface through this stratum as the top of this stratum is located a minimum of 74 feet below the elevation of the deepest excavation. The laboratory testing for shear strength is reported on page IIIE-18.

	Effectiv	Effective Stress		Total Stress		
Material	Cohesion (psf)	Friction Angle (degrees)	Cohesion (psf)	Friction Angle (degrees)		
Stratum I (Clay)	100	26	100	27.1		
Stratum I (Caliche)	100	26	100	27.1		
Stratum II (Sand)	1,200	26.7	1,200	26.7		
Stratum III (Shale)	500	33	5,000	0		

Slope stability strength parameters for constructed soil materials were selected as follows based on engineering judgment. Prior to construction, laboratory tests will be performed to verify the assumed strength parameter values using project-specific soil materials. If test results differ from the assumed values, this analysis will be updated for acceptable factor of safety values.

Material	Moist Unit Weight (pcf)	Cohesion (psf)	Friction Angle (degrees)
Clay Liner ⁽¹⁾	120	100	16
Protective Cover	120	100	16

1. A cohesion of 100 psf and internal friction angle of 16 degrees (effective stress) and a cohesion of 1,000 psf and internal friction angle of 0 degrees (total stress) is used for the clay liner for simplified Bishop Method of the slope stability analysis.

2. For translational (block) stability analysis, the strength parameters of the weakest interface were used to model the liner. The values used for the interim slope stability analysis are highlighted in the table below titled "Minimum Required Interface Strength Values". <u>Note that both total and residual stress analyses were performed for the translational analyses.</u>

Solid waste data used in this analysis are listed below.

	Moist Unit		Friction
Soil Description	Weight	Cohesion	Angle
	(pcf)	(psf)	(degrees)
Solid Waste	59	288	23

This information was derived from several references. Reference 3 provides a summary of several studies that have been completed to develop the shear strength parameters for MSW (refer to Chapter 6.7 in Ref. 3). MSW shear strength parameters reported in technical literature references vary widely, with friction angles as low as 10° and as high as 53° and cohesion values varying from 0 psf to 1,400 psf. Many of the lower values are directly contradicted by observations of actual stable landfill slopes. A summary of a few of the studies completed is listed below.

Reference	Data Type	Results
Pagotto & Rimoldi (1987)	Back-calculation from plate bearing tests	$\phi = 22,^{\circ} c = 605 \text{ psf}$ (29 kPa)
Landva & Clark (1990)	Laboratory direct shear tests on MSW	$\phi = 24,^{\circ} c = 460 \text{ psf}$ (22 kPa) to $\phi = 39,^{\circ}$ c = 400 psf (19 kPa)
Richardson & Reynolds (1991)	Large direct shear tests performed in-situ	$\phi = 18^{\circ} \text{ to } 43,^{\circ}$ c = 210 psf (10 kPa)

To provide for a conservative analysis, a cohesion of 288 psf and a friction angle of 23° were selected.

The moist unit weight is calculated at the midpoint of the average depth to represent the average unit weight of waste/cover soil within the landfill, consistent with what is used in the site life calculations in Appendix IIIM.

Factor of Safety Summary for Slope Stability

Description		Minimum Factor of Safety Recommended Minimum						
Slope Designation	Method of Analysis	Generated		Factor of Safety		Generated Factor of Safety Acceptable Factor of Safety		ctor of Safety
		Total	Effective	Total	Effective	Total	Effective	
Interim A-1	Bishop-Circular	1.56 <u>1.56</u>	1.60 <u>1.60</u>	1.5	<u>1.5 1.3</u>	YES	YES	

Description	Description		Minimum Factor of Safety		Recommended Minimum			
Slope Designation Method of Analysis	Ge	enerated	Factor o	of Safety	Acceptable Fac	ctor of Safety		
	Peak	Residual/Total	Peak	Residual/ Total	Peak	Residual/ Total		
Interm A-2	Rankine-Block	1.52 <u>1.53</u>	<u>1.42</u> <u>1.44 (Residual)</u> <u>1.30 (Total)</u>	1.5	<u>1.1/1.3</u>	YES	YES	

Minimum Required Interface Strength Parameters

Landfill Component			Pe	ak	Residual	
		Interface		Friction Angle (degrees)	Adhesion (psf)	Friction Angle (degrees)
Liner Protective Cover/Geocomposite			100	18	80	14
Liner (Note 1, 3)		Geonet/Smooth Geomembrane	188	11	188	9
Liner (Note 3)		Geonet/Textured Geomembrane	0	13	0	10
Liner		Geocomposite/Textured Geomembrane	100	21	80	10
Liner		Smooth Geomembrane/Clay Liner	100	13	80	8
Liner (Note 2)		Textured Geomembrane/Clay Liner	200	15	80	10
Liner		Clay Internal	100	16	100	12
Liner		Smooth Geomembrane/Geosynthetic Clay Liner	100	16	80	10
Liner		Textured Geomembrane/Geosynthetic Clay Liner	100	18	80	10
Liner		Geosynthetic Clay Liner Internal	100	24	380	11
Liner/Protective Cover (N	lote 4)	Clav Internal/Protective Cover (Total Stress)			<u>1000</u> (Total Only)	(Total Only)

1. Interface parameters used for translational block analysis of cell floor.

2. Interface parameters used for translational block analysis of cell sideslope (3H:1V typical).

3. Interface parameters derived from GRI Report #30 (Ref. 5).

4. Total stress values assumed for both rotational and translational analysis of interim conditions. Effective, peak and residual stresses also analyzed.

SLOPE STABILITY XSTABL OUTPUT FILES

IIIE-A-2-8

XSTABL File: INT-A1E4 1-27-25 9:10

**	***************	**
*	XSTABL	*
*		*
*	Slope Stability Analysis	*
*	using the	*
*	Method of Slices	*
*		*
*	Copyright (C) 1992 - 2013	*
*	Interactive Software Designs, Inc.	*
*	Moscow, ID 83843, U.S.A.	*
*	,,	*
*	All Rights Reserved	*
*		*
*	Ver. 5.209 96 - 2083	*
**	******	**

Problem Description : SWLF LSMPA INTERIM A1E4 EFFECT NOD2

SEGMENT BOUNDARY COORDINATES

3 SURFACE boundary segments

x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
.0	3553.3	27.8	3553.1	1
27.8	3553.1	602.8	3745.0	2
602.8	3745.0	1045.6	3745.0	2
	x-left (ft) .0 27.8 602.8	x-left y-left (ft) (ft) .0 3553.3 27.8 3553.1 602.8 3745.0	x-left y-left x-right (ft) (ft) (ft) .0 3553.3 27.8 27.8 3553.1 602.8 602.8 3745.0 1045.6	x-left y-left x-right y-right (ft) (ft) (ft) (ft) (ft) .0 3553.3 27.8 3553.1 27.8 3553.1 602.8 3745.0 602.8 3745.0 1045.6 3745.0

21 SUBSURFACE boundary segments

Segment	x-left	y-left	x-right	y-right	Soil Unit
No.	(ft)	(ft)	(ft)	(ft)	Below Segment
1	27.8	3553.1	30.9	3553.1	1
2	30.9	3553.1	39.7	3556.0	4
3	39.7	3556.0	45.6	3558.0	3
4	45.6	3558.0	603.0	3744.0	5
5	603.0	3744.0	1045.6	3744.0	5
6	45.6	3558.0	245.6	3554.0	3
7	245.6	3554.0	445.6	3558.0	3

8	445.6	3558.0	645.6	3554.0	3
9	645.6	3554.0	845.6	3558.0	3
10	845.6	3558.0	1045.6	3554.0	3
11	39.7	3556.0	245.6	3552.0	4
12	245.6	3552.0	445.6	3556.0	4
13	445.6	3556.0	645.6	3552.0	4
14	645.6	3552.0	845.6	3556.0	4
15	845.6	3558.0	1045.6	3552.0	4
16	30.9	3553.1	245.6	3549.1	1
17	245.6	3549.1	445.6	3553.1	1
18	445.6	3553.1	645.6	3549.1	1
19	645.6	3549.1	845.6	3553.1	1
20	845.6	3553.1	1045.6	3549.1	1
21	.0	3549.0	1045.6	3549.0	2

ISOTROPIC Soil Parameters

5 Soil unit(s) specified

Soil	Unit	Weight	Cohesion	Friction	Pore Pr	essure	Water
Unit	Moist	Sat.	Intercept	Angle	Parameter	Constant	Surface
No.	(pcf)	(pcf)	(psf)	(deg)	Ru	(psf)	No.
1	122.5	127.0	1200.0	26.70	.000	.0	1
2	116.0	120.0	100.0	16.00	.000	.0	0
3	120.0	125.0	100.0	16.00	.000	.0	0
4	120.0	125.0	100.0	16.00	.000	.0	0
5	59.0	59.0	288.0	23.00	.000	.0	0

1 Water surface(s) have been specified

Unit weight of water = 62.40 (pcf)

Water Surface No. 1 specified by 2 coordinate points

***************************************	****

Point	x-water	y-water
No.	(ft)	(ft)
1	.00	3500.00
2	1045.60	3511.60

A critical failure surface searching method, using a random technique for generating CIRCULAR surfaces has been specified. 100 trial surfaces will be generated and analyzed. 10 Surfaces initiate from each of 10 points equally spaced along the ground surface between x = 20.0 ft and x = 40.0 ft Each surface terminates between x = 620.0 ft and x = 640.0 ft Unless further limitations were imposed, the minimum elevation at which a surface extends is y = .0 ft * * * * * DEFAULT SEGMENT LENGTH SELECTED BY XSTABL * * * * * 20.0 ft line segments define each trial failure surface. _____ ANGULAR RESTRICTIONS _____ The first segment of each failure surface will be inclined within the angular range defined by : Lower angular limit := -45.0 degrees Upper angular limit := -5.0 degrees Factors of safety have been calculated by the :

The most critical circular failure surface is specified by 36 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	22.22	3553.14
2	41.62	3548.28
3	61.17	3544.07
4	80.85	3540.50
5	100.64	3537.58
6	120.51	3535.32
7	140.45	3533.72
8	160.42	3532.77
9	180.42	3532.48
10	200.42	3532.86
11	220,39	3533.89
12	240.32	3535.58
13	260.18	3537.93
14	279.96	3540.93
15	299.62	3544.58
16	319.15	3548.88
17	338.53	3553.82
18	357.74	3559.40
19	376.75	3565.61
20	395.55	3572.44
21	414.11	3579.89
22	432.41	3587.94
23	450.44	3596.60
24	468.18	3605.85
25	485.60	3615.67
26	502.68	3626.07
27	519.42	3637.02
28	535.78	3648.52
29	551.76	3660.56
30	567.32	3673.11
31	582.47	3686.17
32	597.18	3699.72
33	611.43	3713.76
34	625.21	3728.25
35	638.51	3743.19
36	640.01	3745.00

**** Simplified BISHOP FOS = 1.606 ****

The following is a summary of the TEN most critical surfaces

Problem Description : SWLF LSMPA INTERIM A1E4 EFFECT NOD2

	FOS	Circle	Center	Radius	Initial	Terminal	Resisting Moment
	(BISHOP)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft-lb)
1.	1,606	179.15	4138.74	606.26	22.22	640.01	7.213E+08
2.	1.607	173.62	4120.47	587.74	20.00	625.82	6.664E+08
з.	1.607	170.34	4159.63	623.80	24.44	636.27	7.056E+08
4.	1.607	180.17	4111.68	580.44	22.22	630.02	6.797E+08
5.	1.610	158.67	4171.98	632.80	26.67	625.73	6.621E+08
6.	1.610	189.09	4124.46	589.13	35.56	639.58	6.852E+08
7.	1.610	184.55	4110.81	580.81	22.22	635.65	7.029E+08
8.	1.612	170.56	4155.96	617.70	31.11	631.76	6.730E+08
9.	1.612	187.92	4128.90	591.83	37.78	638.21	6.737E+08
10.	1.612	186.89	4110.01	581.32	20.00	639.25	7.215E+08

* * * END OF FILE * * *

XSTABL File: INT-A1T4 1-27-25 9:14

**	***********	**
*	ХЅТАВЬ	*
*		*
*	Slope Stability Analysis	*
*	using the	*
*	Method of Slices	*
*		*
*	Copyright (C) 1992 - 2013	*
*	Interactive Software Designs, Inc.	*
*	Moscow, ID 83843, U.S.A.	*
*		*
*	All Rights Reserved	*
*	C	*
*	Ver. 5.209 96 - 2083	*
**	*****	**

Problem Description : SWLF LSMPA INTERIM A1T4 TOTAL NOD2

SEGMENT BOUNDARY COORDINATES

3 SURFACE boundary segments

x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
.0	3553.3	27.8	3553.1	1
27.8	3553.1	602.8	3745.0	2
602.8	3745.0	1045.6	3745.0	2
	x-left (ft) .0 27.8 602.8	x-left y-left (ft) (ft) .0 3553.3 27.8 3553.1 602.8 3745.0	x-left y-left x-right (ft) (ft) (ft) .0 3553.3 27.8 27.8 3553.1 602.8 602.8 3745.0 1045.6	x-left y-left x-right y-right (ft) (ft) (ft) (ft) (ft) .0 3553.3 27.8 3553.1 27.8 3553.1 602.8 3745.0 602.8 3745.0 1045.6 3745.0

21 SUBSURFACE boundary segments

Segment	x-left	y-left	x-right	y-right	Soil Unit
No.	(ft)	(ft)	(ft)	(ft)	Below Segment
1	27.8	3553.1	30.9	3553.1	1
2	30.9	3553.1	39.7	3556.0	4
3	39.7	3556.0	45.6	3558.0	3
4	45.6	3558.0	603.0	3744.0	5
5	603.0	3744.0	1045.6	3744.0	5
6	45.6	3558.0	245.6	3554.0	3
7	245.6	3554.0	445.6	3558.0	3

8	445.6	3558.0	645.6	3554.0	3
9	645.6	3554.0	845.6	3558.0	3
10	845.6	3558.0	1045.6	3554.0	3
11	39.7	3556.0	245.6	3552.0	4
12	245.6	3552.0	445.6	3556.0	4
13	445.6	3556.0	645.6	3552.0	4
14	645.6	3552.0	845.6	3556.0	4
15	845.6	3558.0	1045.6	3552.0	4
16	30.9	3553.1	245.6	3549.1	1
17	245.6	3549.1	445.6	3553.1	1
18	445.6	3553.1	645.6	3549.1	1
19	645.6	3549.1	845.6	3553.1	1
20	845.6	3553.1	1045.6	3549.1	1
21	.0	3549.0	1045.6	3549.0	2

ISOTROPIC Soil Parameters

5 Soil unit(s) specified

Soil	Unit	Weight	Cohesion	Friction	Pore Pr	Pore Pressure	
Unit	Moist	Sat.	Intercept	Angle	Parameter	Constant	Surface
No.	(pcf)	(pcf)	(psf)	(deg)	Ru	(psf)	No.
1	122.5	127.0	1200.0	26.70	.000	.0	1
2	116.0	120.0	100.0	16.00	.000	.0	0
3	120.0	125.0	100.0	16.00	.000	.0	0
4	120.0	125.0	1000.0	.00	.000	.0	0
5	59.0	59.0	288.0	23.00	.000	.0	0

1 Water surface(s) have been specified

Unit weight of water = 62.40 (pcf)

Water Surface No. 1 specified by 2 coordinate points

******	*****
PHREATIC	SURFACE,

Point	x-water	y-water
No.	(ft)	(ft)
1	.00	3500.00
2	1045.60	3511.60

A critical failure surface searching method, using a random technique for generating CIRCULAR surfaces has been specified.

100 trial surfaces will be generated and analyzed.

10 Surfaces initiate from each of 10 points equally spaced along the ground surface between x = 40.0 ft and x = 80.0 ft

Each surface terminates between x = 600.0 ft and x = 640.0 ft

Unless further limitations were imposed, the minimum elevation at which a surface extends is y = .0 ft

* * * * * DEFAULT SEGMENT LENGTH SELECTED BY XSTABL * * * * *

19.0 ft line segments define each trial failure surface.

ANGULAR RESTRICTIONS

The first segment of each failure surface will be inclined within the angular range defined by :

Lower angular limit := -45.0 degrees Upper angular limit := -5.0 degrees

Negative effective stresses were calculated at the base of a slice. This warning is usually reported for cases where slices have low self weight and a relatively high "c" shear strength parameter. In such cases, this effect can only be eliminated by reducing the "c" value. *************

USER SELECTED option to maintain strength greater than zero

Factors of safety have been calculated by the :

* * * * * SIMPLIFIED BISHOP METHOD * * * * *

The most critical circular failure surface is specified by 33 coordinate points

Point No.	x-surf (ft)	y-surf (ft)
	(/	x y
1	80.00	3570.52
2	98.29	3565.39
3	116.78	3560.98
4	135.42	3557.30
5	154.18	3554.35
6	173.06	3552.14
7	192.00	3550.66
8	210.98	3549.93
9	229.98	3549.94
10	248.97	3550.70
11	267.91	3552.20
12	286.78	3554.44
13	305.54	3557.41
14	324.18	3561.12
15	342.65	3565.55
16	360.94	3570.70
17	379.01	3576.57
18	396.84	3583.14
19	414.40	3590.40
20	431.66	3598.34
21	448.60	3606.95
22	465.18	3616.22
23	481.40	3626.12
24	497.21	3636.66
25	512.59	3647.81
26	527.53	3659.55
27	542.00	3671.86
28	555.98	3684.74
29	569.44	3698.15
30	582.36	3712.07

31	594.73	3726.49
32	606.53	3741.39
33	609.17	3745.00

**** Simplified BISHOP FOS = 1.562 ****

The following is a summary of the TEN most critical surfaces

Problem Description : SWLF LSMPA INTERIM A1T4 TOTAL NOD2

	FOS	Circle	Center	Radius	Initial	Terminal	Resisting
	(BISHOP)	x-coord	y-coord		x-coord	x-coord	Moment
		(ft)	(ft)	(ft)	(ft)	(ft)	(ft-1b)
1.	1.562	220.15	4035.20	485.35	80.00	609.17	4.326E+08
2.	1.592	215.90	4103.50	552.58	75.56	636.31	5.443E+08
з.	1.606	198.89	4089.32	552.68	44.44	631.07	6.198E+08
4.	1.609	195.19	4121.61	582.79	44.44	639.95	6.567E+08
5.	1.609	192.75	4082.62	544.55	44.44	620.02	5.800E+08
6.	1.611	200.56	4093.37	559.72	40.00	638.58	6.632E+08
7.	1.613	183.30	4085.71	547.62	40.00	611.90	5.645E+08
8.	1,616	197.00	4045.96	513.38	40.00	612.95	5.672E+08
9.	1.616	205.58	4052.51	522.28	40.00	627.68	6.217E+08
10.	1.619	187.51	4136.41	592.71	48.89	632.52	6.215E+08

* * * END OF FILE * * *

XSTABL File: INT-A2P4 1-27-25 9:12

**	******	**
*	XSTABL	*
*		*
*	Slope Stability Analysis	*
*	using the	*
*	Method of Slices	*
*		*
*	Copyright (C) 1992 - 2013	*
*	Interactive Software Designs, Inc.	*
*	Moscow, ID 83843, U.S.A.	*
*	······································	*
*	All Rights Reserved	*
*	0	*
*	Ver. 5.209 96 - 2083	*
**	*****	**

Problem Description : SWLF LSMPA INTERIM A2P4 PEAK NOD2

SEGMENT BOUNDARY COORDINATES

3 SURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	.0	3553.3	27.8	3553.1	1
2	27.8	3553.1	602.8	3745.0	2
3	602.8	3745.0	1045.6	3745.0	2

22 SUBSURFACE boundary segments

Segment	x-left	y-left	x-right	y-right	Soil Unit
No.	(ft)	(ft)	(ft)	(ft)	Below Segment
1	27.8	3553.1	30.9	3553.1	1
2	30.9	3553.1	38.5	3555.6	4
3	38.5	3555.6	39.9	3556.1	6
4	39.9	3556.1	45.6	3558.0	3
5	45.6	3558.0	603.0	3744.0	5
6	603.0	3744.0	1045.6	3744.0	5
7	45.6	3558.0	245.6	3554.0	3

8	245.6	3554.0	445.6	3558.0	3
9	445.6	3558.0	645.6	3554.0	3
10	645.6	3554.0	1045.6	3556.1	3
11	39.9	3556.1	245.6	3552.0	6
12	245.6	3552.0	445.6	3556.0	6
13	445.6	3556.0	645.6	3552.0	6
14	645.6	3552.0	1045.6	3556.0	6
15	38.5	3555.6	245.6	3551.5	4
16	245.6	3551.5	445.5	3555.5	4
17	445.5	3555.5	645.5	3551.5	4
18	645.5	3551.5	1045.6	3555.5	4
19	30.9	3553.1	245.5	3549.0	1
20	245.5	3549.0	445.4	3553.0	1
21	445.4	3553.0	645.4	3549.0	1
22	645.4	3549.0	1045.6	3553.0	1

ISOTROPIC Soil Parameters

6 Soil unit(s) specified

Soil	Unit	Weight	Cohesion	Friction	Pore Pr	essure	Water
Unit	Moist	Sat.	Intercept	Angle	Parameter	Constant	Surface
No.	(pcf)	(pcf)	(psf)	(deg)	Ru	(psf)	No.
1	122.5	127.0	1200.0	26.70	.000	.0	1
2	116.0	120.0	100.0	16.00	.000	.0	0
3	120.0	125.0	100.0	16.00	.000	.0	0
4	120.0	125.0	188.0	11.00	.000	.0	0
5	59.0	59.0	288.0	23.00	.000	.0	0
6	120.0	125.0	188.0	11.00	.000	.0	0

1 Water surface(s) have been specified

Unit weight of water = 62.40 (pcf)

Water Surface No. 1 specified by 2 coordinate points

PHREATIC SURFACE,

Point	x-water	y-water
No.	(ft)	(ft)

1.003500.0021045.603511.60

A critical failure surface searching method, using a random technique for generating sliding BLOCK surfaces, has been specified.

The active and passive portions of the sliding surfaces are generated according to the Rankine theory.

100 trial surfaces will be generated and analyzed.

2 boxes specified for generation of central block base

* * * * * DEFAULT SEGMENT LENGTH SELECTED BY XSTABL * * * * *

Length of line segments for active and passive portions of sliding block is 39.0 ft

Вох	x-left	y-left	x-right	y-right	Width
no.	(ft)	(ft)	(ft)	(ft)	(ft)
1	195.0	3552.8	215.0	3552.4	.5
2	525.0	3554.1	545.0	3553.8	.5

Factors of safety have been calculated by the :

* * * * * SIMPLIFIED JANBU METHOD * * * * *

The 10 most critical of all the failure surfaces examined are displayed below - the most critical first

Failure surface No. 1 specified by 16 coordinate points

Point	x-surf	y-surf	
No.	(ft)	(ft)	
1	139.33	3590.32	

	2	140.29	3589.60	
	3	159.94	3576.59	
	4	192.46	3555.06	
	5	195.19	3553.00	
	6	195.67	3552.61	
	7	525.18	3553.94	
	8	525.56	3554.40	
	9	527.05	3556.37	
	10	548.57	3588.89	
	11	570.10	3621.41	
	12	591.62	3653.94	
	13	613.15	3686.46	
	14	634.67	3718.98	
	15	651.23	3744.00	
	16	651.99	3745.00	
**	Corrected	JANBU FOS ≔	1.534 **	(Fo factor = 1.084)

Failure surface No. 2 specified by 16 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	139.14	3590.26
2	140.11	3589.54
3	159.66	3576.59
4	192.18	3555.07
5	194.91	3553.01
6	195.43	3552.58
7	531.98	3554.10
8	532.12	3554.27
9	533.60	3556.24
10	555.13	3588.76
11	576.65	3621.28
12	598.18	3653.80
13	619.70	3686.33
14	641.23	3718.85
15	657.88	3744.00
16	658.63	3745.00

** Corrected JANBU FOS = 1.538 ** (Fo factor = 1.084)

Failure surface No. 3 specified by 16 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	140.94	3590.86

	2	141.90	3590.13	
	3	162.44	3576.54	
	4	194.96	3555.01	
	5	197.69	3552.96	
	6	198.15	3552.58	
	7	527.55	3554.09	
	8	527.77	3554.36	
	9	529.25	3556.33	
	10	550.78	3588.85	
	11	572.30	3621.37	
	12	593.83	3653.89	
	13	615.35	3686.41	
	14	636.88	3718.93	
	15	653.47	3744.00	
	16	654.22	3745.00	
**	Corrected	JANBU FOS ≍	1.539 **	(Fo factor = 1.084)

Failure surface No. 4 specified by 16 coordinate points

oint x-surf		y-surf
No.	(ft)	(ft)
1	139.02	3590.22
2	139.99	3589.50
3	159.47	3576.60
4	191.99	3555.07
5	194.72	3553.01
6	195.07	3552.73
7	531.99	3553.85
8	532.33	3554.27
9	533.82	3556.24
10	555.34	3588.76
11	576.87	3621.28
12	598.39	3653.80
13	619.92	3686.32
14	641.44	3718.84
15	658.10	3744.00
16	658.85	3745.00

** Corrected JANBU FOS = 1.540 ** (Fo factor = 1.084)

Failure surface No. 5 specified by 16 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	141.77	3591.14

	2	142.73	3590.41	
	3	163.73	3576.51	
	4	196.25	3554.99	
	5	198.98	3552.93	
	6	199.41	3552.57	
	7	528.78	3553.98	
	8	529.07	3554.33	
	9	530.55	3556.30	
	10	552.08	3588.82	
	11	573.60	3621.34	
	1.2	595.13	3653.87	
	13	616.66	3686.39	
	14	638.18	3718.91	
	15	654.79	3744.00	
	16	655.54	3745.00	
**	Corrected	JANBU FOS =	1.541 **	(Fo factor = 1.084)

Failure surface No. 6 specified by 16 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	142.54	3591.39
2	143.50	3590.67
3	164.92	3576.49
4	197.44	3554.96
5	200.17	3552.91
6	200.72	3552.45
7	536.86	3553.77
8	537.19	3554.17
9	538.67	3556.14
10	560.20	3588.66
11	581.73	3621.18
12	603.25	3653.70
13	624.78	3686.22
14	646.30	3718.75
15	663.02	3744.00
16	663.77	3745.00

** Corrected JANBU FOS = 1.542 ** (Fo factor = 1.084)

Failure surface No. 7 specified by 16 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	143.25	3591.63

	2	144.21	3590.91	
	3	166.03	3576.47	
	4	198.55	3554.94	
	5	201.28	3552.88	
	6	201.79	3552.47	
	7	527.63	3554.30	
	8	527.68	3554.36	
	9	529.17	3556.33	
	10	550.69	3588.85	
	11	572.22	3621.37	
	12	593.74	3653.89	
	13	615.27	3686.41	
	14	636.79	3718.94	
	15	653.38	3744.00	
	16	654.14	3745.00	
**	Corrected	JANBU FOS =	1.543 **	(Fo factor = 1.084)
Fail	lure surfac	e No. 8 specif	ied by 16 coo	ordinate points
	Point	x-surf	y-surf	
	No	(++)	· (f+)	

POINT	x-surt	y-surr	
No.	(ft)	(ft)	
1	143.42	3591.69	
2	144.38	3590.96	
3	166.28	3576.46	
4	198.81	3554.94	
5	201.54	3552.88	
6	201.98	3552.51	
7	527.94	3554.18	
8	528.08	3554.35	
9	529.56	3556.32	
10	551.09	3588.84	
11	572.62	3621.36	
12	594.14	3653.89	
13	615.67	3686.41	
14	637.19	3718.93	
15	653.79	3744.00	
16	654.54	3745.00	

** Corrected JANBU FOS = 1.543 ** (Fo factor = 1.084)

Failure surface No. 9 specified by 16 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	141.29	3590.98

	2	142.25	3590.25	
	3	162.99	3576.53	
	4	195.51	3555.00	
	5	198.24	3552.94	
	6	198.64	3552.62	
	7	533.30	3553.96	
	8	533.53	3554.24	
	9	535.01	3556.21	
	10	556.54	3588.73	
	11	578.06	3621.25	
	12	599.59	3653.78	
	13	621.11	3686.30	
	14	642.64	3718.82	
	15	659.31	3744.00	
	16	660.06	3745.00	
**	Corrected	JANBU FOS =	1.544 **	(Fo factor = 1.084)

Failure surface No.10 specified by 16 coordinate points

	Point	x-surf	y-surf				
	No.	(ft)	(ft)				
	1	142 03	3501 52				
	1 2	142.93	3500 90				
	2	145.69	3590.00				
	3	102.23	35/0.48				
	4	198.05	3554.95				
	5	200.78	3552.89				
	6	201.31	3552.46				
	7	538.75	3553.68				
	8	539.12	3554.13				
	9	540.60	3556.10				
	10	562.13	3588.62				
	11	583.66	3621.14				
	12	605.18	3653.66				
	13	626.71	3686.19				
	14	648.23	3718.71				
	15	664.97	3744.00				
	16	665.73	3745.00				
**	Corrected	JANBU FOS =	1.544 **	(Fo	factor	= 1.084)

The following is a summary of the TEN most critical surfaces Problem Description : SWLF LSMPA INTERIM A2P4 PEAK NOD2

	Modified JANBU FOS	Correction Factor	Initial x-coord (ft)	Terminal x-coord (ft)	Available Strength (lb)
1.	1.534	1.084	139.33	651.99	9.994E+05
2.	1.538	1.084	139.14	658.63	1.019E+06
з.	1.539	1.084	140.94	654.22	1.006E+06
4.	1.540	1.084	139.02	658.85	1.022E+06
5.	1.541	1.084	141.77	655.54	1.009E+06
6.	1.542	1.084	142.54	663.77	1.029E+06
7.	1.543	1.084	143.25	654.14	1.003E+06
8.	1.543	1.084	143.42	654.54	1.005E+06
9.	1.544	1.084	141.29	660.06	1.024E+06
10.	1.544	1.084	142.93	665.73	1.035E+06

* * * END OF FILE * * *

XSTABL File: INT-A2R4 1-27-25 9:15

***	******	**
*	XSTABL	*
*		*
*	Slope Stability Analysis	*
*	using the	*
*	Method of Slices	*
*		*
*	Copyright (C) 1992 - 2013	*
*	Interactive Software Designs, Inc.	*
*	Moscow, ID 83843, U.S.A.	*
*		*
*	All Rights Reserved	*
*		*
* \	Ver. 5.209 96 - 2083	*
***	*****	**

Problem Description : SWLF LSMPA INTERIM A2T4 RESID NOD2

SEGMENT BOUNDARY COORDINATES

3 SURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	.0	3553.3	27.8	3553.1	1
2	27.8	3553.1	602.8	3745.0	2
3	602.8	3745.0	1045.6	3745.0	2

22 SUBSURFACE boundary segments

Segment	x-left	y-left	x-right	y-right	Soil Unit
No.	(ft)	(ft)	(ft)	(ft)	Below Segment
1	27.8	3553.1	30.9	3553.1	1
2	30.9	3553.1	38.5	3555.6	4
3	38.5	3555.6	39.9	3556.1	6
4	39.9	3556.1	45.6	3558.0	3
5	45.6	3558.0	603.0	3744.0	5
6	603.0	3744.0	1045.6	3744.0	5
7	45.6	3558.0	245.6	3554.0	3

8	245.6	3554.0	445.6	3558.0	3
9	445.6	3558.0	645.6	3554.0	3
10	645.6	3554.0	1045.6	3556.1	3
11	39.9	3556.1	245.6	3552.0	6
12	245.6	3552.0	445.6	3556.0	6
13	445.6	3556.0	645.6	3552.0	6
14	645.6	3552.0	1045.6	3556.0	6
15	38.5	3555.6	245.6	3551.5	4
16	245.6	3551.5	445.5	3555.5	4
17	445.5	3555.5	645.5	3551.5	4
18	645.5	3551.5	1045.6	3555.5	4
19	30.9	3553.1	245.5	3549.0	1
20	245.5	3549.0	445.4	3553.0	1
21	445.4	3553.0	645.4	3549.0	1
22	645.4	3549.0	1045.6	3553.0	1

ISOTROPIC Soil Parameters

1

6 Soil unit(s) specified

Soil	Unit	Weight	Cohesion	Friction	Pore Pr	essure	Water
Unit	Moist	Sat.	Intercept	Angle	Parameter	Constant	Surface
No.	(pcf)	(pcf)	(psf)	(deg)	Ru	(psf)	No.
1	122.5	127.0	1200.0	26.70	.000	.0	1
2	116.0	120.0	100.0	16.00	.000	.0	0
3	120.0	125.0	100.0	16.00	.000	.0	0
4	120.0	125.0	188.0	9.00	.000	.0	0
5	59.0	59.0	288.0	23.00	.000	.0	0
6	120.0	125.0	188.0	9.00	.000	.0	0

1 Water surface(s) have been specified

Unit weight of water = 62.40 (pcf)

Water Surface No. 1 specified by 2 coordinate points

***************************************	******

Point	x-water	y-water
No.	(ft)	(ft)

1	.00	3500.00
2	1045.60	3511.60

A critical failure surface searching method, using a random technique for generating sliding BLOCK surfaces, has been specified.

The active and passive portions of the sliding surfaces are generated according to the Rankine theory.

100 trial surfaces will be generated and analyzed.

2 boxes specified for generation of central block base

* * * * * DEFAULT SEGMENT LENGTH SELECTED BY XSTABL * * * * *

Length of line segments for active and passive portions of sliding block is 39.0 ft

Box no.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Width (ft)
1	195.0	3552.8	215.0	3552.4	.5
2	525.0	3554.1	545.0	3553.8	.5

Factors of safety have been calculated by the :

* * * * * SIMPLIFIED JANBU METHOD * * * * *

The 10 most critical of all the failure surfaces examined are displayed below - the most critical first

Failure surface No. 1 specified by 16 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	139.34	3590.32

	2	140.30	3589.60	
	3	159.96	3576.59	
	4	192.48	3555.06	
	5	195.21	3553.00	
	6	195.67	3552.61	
	7	525.18	3553.94	
	8	525.57	3554.40	
	9	527.06	3556.37	
	10	548.58	3588.89	
	11	570.11	3621.41	
	12	591.64	3653.94	
	13	613.16	3686.46	
	14	634.69	3718.98	
	15	651.25	3744.00	
	16	652.00	3745.00	
**	Corrected	JANBU FOS =	1.444 **	(Fo factor = 1.084)
Fail	ure surface	e No. 2 speci	fied by 16 co	ordinate points
	.			
	Ροιητ	x-surf	y-surf	
	No.	x-surf (ft)	y-surf (ft)	
	No.	x-surf (ft)	y-surf (ft)	
	Point No. 1	x-surf (ft) 142.55	y-surf (ft) 3591.40	
	Point No. 1 2	x-surf (ft) 142.55 143.51	y-surf (ft) 3591.40 3590.67	
	Point No. 1 2 3	x-surf (ft) 142.55 143.51 164.94	y-surf (ft) 3591.40 3590.67 3576.49	
	Point No. 1 2 3 4	x-surf (ft) 142.55 143.51 164.94 197.46	y-surf (ft) 3591.40 3590.67 3576.49 3554.96	
	Point No. 1 2 3 4 5	x-surf (ft) 142.55 143.51 164.94 197.46 200.19	y-surf (ft) 3591.40 3590.67 3576.49 3554.96 3552.91	
	Point No. 1 2 3 4 5 6	x-surf (ft) 142.55 143.51 164.94 197.46 200.19 200.72	y-surf (ft) 3591.40 3590.67 3576.49 3554.96 3552.91 3552.45	
	Point No. 1 2 3 4 5 6 7	x-surf (ft) 142.55 143.51 164.94 197.46 200.19 200.72 536.86	y-surf (ft) 3591.40 3590.67 3576.49 3554.96 3552.91 3552.45 3553.77	
	Point No. 1 2 3 4 5 6 7 8	x-surf (ft) 142.55 143.51 164.94 197.46 200.19 200.72 536.86 537.20	y-surf (ft) 3591.40 3590.67 3576.49 3554.96 3552.91 3552.45 3553.77 3554.17	
	Point No. 1 2 3 4 5 6 7 8 9	x-surf (ft) 142.55 143.51 164.94 197.46 200.19 200.72 536.86 537.20 538.69	y-surf (ft) 3591.40 3590.67 3576.49 3552.91 3552.45 3553.77 3554.17 3556.14	
	Point No. 1 2 3 4 5 6 7 8 9 10	x-surf (ft) 142.55 143.51 164.94 197.46 200.19 200.72 536.86 537.20 538.69 560.21	y-surf (ft) 3591.40 3590.67 3576.49 3554.96 3552.91 3552.45 3553.77 3554.17 3556.14 3588.66	
	Point No. 1 2 3 4 5 6 7 8 9 10 11	x-surf (ft) 142.55 143.51 164.94 197.46 200.19 200.72 536.86 537.20 538.69 560.21 581.74	y-surf (ft) 3591.40 3590.67 3576.49 3554.96 3552.91 3552.45 3553.77 3554.17 3556.14 3588.66 3621.18	
	Point No. 1 2 3 4 5 6 7 8 9 10 11 12	x-surf (ft) 142.55 143.51 164.94 197.46 200.19 200.72 536.86 537.20 538.69 560.21 581.74 603.26	y-surf (ft) 3591.40 3590.67 3576.49 3554.96 3552.91 3552.45 3553.77 3554.17 3556.14 3588.66 3621.18 3653.70	
	Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13	x-surf (ft) 142.55 143.51 164.94 197.46 200.19 200.72 536.86 537.20 538.69 560.21 581.74 603.26 624.79	y-surf (ft) 3591.40 3590.67 3576.49 3554.96 3552.91 3552.45 3553.77 3554.17 3556.14 3588.66 3621.18 3653.70 3686.22	
	Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	x-surf (ft) 142.55 143.51 164.94 197.46 200.19 200.72 536.86 537.20 538.69 560.21 581.74 603.26 624.79 646.31	y-surf (ft) 3591.40 3590.67 3576.49 3552.91 3552.45 3553.77 3554.17 3556.14 3588.66 3621.18 3653.70 3686.22 3718.75	
	Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	x-surf (ft) 142.55 143.51 164.94 197.46 200.19 200.72 536.86 537.20 538.69 560.21 581.74 603.26 624.79 646.31 663.03	y-surf (ft) 3591.40 3590.67 3576.49 3552.91 3552.45 3553.77 3554.17 3556.14 3588.66 3621.18 3653.70 3686.22 3718.75 3744.00	
	Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	x-surf (ft) 142.55 143.51 164.94 197.46 200.19 200.72 536.86 537.20 538.69 560.21 581.74 603.26 624.79 646.31 663.03 663.78	y-surf (ft) 3591.40 3590.67 3576.49 3552.91 3552.45 3553.77 3554.17 3556.14 3588.66 3621.18 3653.70 3686.22 3718.75 3744.00 3745.00	

** Corrected JANBU FOS = 1.445 ** (Fo factor = 1.084)

Failure surface No. 3 specified by 16 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	142.94	3591.53

	2	143.90	3590.80	
	3	165.55	3576.48	
	4	198.07	3554.95	
	5	200.80	3552.89	
	6	201.31	3552.46	
	7	538.75	3553.68	
	8	539.13	3554.13	
	9	540.62	3556.10	
	10	562.14	3588.62	
	11	583.67	3621.14	
	12	605.19	3653.66	
	13	626.72	3686.19	
	14	648.25	3718.71	
	15	664.99	3744.00	
	16	665.74	3745.00	
**	Corrected	JANBU FOS =	1.446 **	(Fo factor = 1.084)

Failure surface No. 4 specified by 16 coordinate points

Point	x-surf	y-surf	
No.	(ft)	(ft)	
1	139.16	3590.26	
2	140.12	3589.54	
3	159.68	3576.59	
4	192.20	3555.07	
5	194.93	3553.01	
6	195.43	3552.58	
7	531.98	3554.10	
8	532.12	3554.27	
9	533.61	3556.24	
10	555.13	3588.76	
11	576.66	3621.28	
12	598.18	3653.80	
13	619.71	3686.33	
14	641.24	3718.85	
15	657.88	3744.00	
16	658.64	3745.00	

** Corrected JANBU FOS = 1.446 ** (Fo factor = 1.084)

Failure surface No. 5 specified by 16 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	143.01	3591.55

	2	143.97	3590.83	
	3	165.65	3576.47	
	4	198.18	3554.95	
	5	200.91	3552.89	
	6	201.43	3552.44	
	7	540.76	3553.85	
	8	540.97	3554.09	
	9	542.45	3556.06	
	10	563.98	3588.58	
	11	585.51	3621.11	
	12	607.03	3653.63	
	13	628.56	3686.15	
	14	650.08	3718.67	
	15	666.85	3744.00	
	16	667.60	3745.00	
**	Corrected	JANBU FOS =	1.448 **	(Fo factor = 1.084)

Failure surface No. 6 specified by 16 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	140.95	3590.86
2	141.91	3590.14
3	162.45	3576.54
4	194.97	3555.01
5	197.70	3552.95
6	198.15	3552.58
7	527.55	3554.09
8	527.77	3554.36
9	529.26	3556.33
10	550.78	3588.85
11	572.31	3621.37
12	593.83	3653.89
13	615.36	3686.41
14	636.89	3718.93
15	653.48	3744.00
16	654.23	3745.00

** Corrected JANBU FOS = 1.449 ** (Fo factor = 1.084)

Failure surface No. 7 specified by 16 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	141.78	3591.14

	2	142.74	3590.41	
	3	163.74	3576.51	
	4	196.26	3554.99	
	5	198.99	3552,93	
	6	199.41	3552.57	
	7	528.78	3553.98	
	8	529.08	3554.33	
	9	530.56	3556.30	
	10	552.09	3588.82	
	11	573.62	3621.34	
	12	595.14	3653.87	
	13	616.67	3686.39	
	14	638.19	3718.91	
	15	654.80	3744.00	
	16	655.55	3745.00	
**	Corrected	JANBU FOS =	1.449 **	(Fo factor = 1.084)

Failure surface No. 8 specified by 16 coordinate points

Point	x-surf	y-surf	
No.	(ft)	(ft)	
1	141.63	3591.09	
2	142.59	3590.36	
3	163.51	3576.52	
4	196.03	3554.99	
5	198.76	3552.93	
6	199.20	3552.56	
7	540.79	3553.75	
8	541.08	3554.09	
9	542.56	3556.06	
10	564.09	3588.58	
11	585.61	3621.10	
12	607.14	3653.63	
13	628.66	3686.15	
14	650.19	3718.67	
15	666.96	3744.00	
16	667.71	3745.00	

** Corrected JANBU FOS = 1.450 ** (Fo factor = 1.084)

Failure surface No. 9 specified by 16 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	139.03	3590.22

	2	139,99	3589.50			
	3	159.48	3576.60			
	4	192.01	3555.07			
	5	194.74	3553.01			
	6	195.07	3552.73			
	7	531.99	3553.85			
	8	532.34	3554.27			
	9	533.83	3556.24			
	10	555.35	3588.76			
	11	576.88	3621.28			
	12	598.41	3653.80			
	13	619.93	3686.32			
	14	641.46	3718.84			
	15	658.11	3744.00			
	16	658.86	3745.00			
**	Corrected	JANBU FOS =	1.450 **	(Fo factor = 1.084)		
Fail	lure surface	No.10 specif	ied by 16 co	ordinate points		
		_	-			
	Point	x-surf	y-surf			

	POINC	x-suri	y-suri	
	No.	(ft)	(ft)	
	1	120.07		
	T	139.97	5590.55	
	2	140.93	3589.81	
	3	160.94	3576.57	
	4	193.46	3555.04	
	5	196.19	3552.98	
	6	196.65	3552.59	
	7	539.65	3554.01	
	8	539.74	3554.12	
	9	541.23	3556.09	
	10	562.75	3588.61	
	11	584.28	3621.13	
	12	605.80	3653.65	
	13	627.33	3686.17	
	14	648.85	3718.69	
	15	665.60	3744.00	
	16	666.36	3745.00	
**	Corrected	JANBU FOS =	1.451 **	(Fo factor = 1.084)

The following is a summary of the TEN most critical surfaces Problem Description : SWLF LSMPA INTERIM A2T4 RESID NOD2

	Modified JANBU FOS	Correction Factor	Initial x-coord (ft)	Terminal x-coord (ft)	Available Strength (1b)
1.	1.444	1.084	139.34	652.00	9.268E+05
2.	1.445	1.084	142.55	663.78	9.492E+05
з.	1.446	1.084	142.94	665.74	9.538E+05
4.	1.446	1.084	139.16	658.64	9.442E+05
5.	1.448	1.084	143.01	667.60	9.589E+05
6.	1.449	1.084	140.95	654.23	9.329E+05
7.	1.449	1.084	141.78	655.55	9.350E+05
8.	1.450	1.084	141.63	667.71	9.632E+05
9.	1.450	1.084	139.03	658.86	9.484E+05
10.	1.451	1.084	139.97	666.36	9.630E+05

* * * END OF FILE * * *

IIIE-A-2-40

XSTABL File: INT-A2T4 1-27-25 9:11

***	*************	**
*	ХЅТАВЬ	*
*		*
*	Slope Stability Analysis	*
*	using the	*
*	Method of Slices	*
*		*
*	Copyright (C) 1992 - 2013	*
*	Interactive Software Designs, Inc.	*
*	Moscow, ID 83843, U.S.A.	*
*		*
*	All Rights Reserved	*
*	5	*
*	Ver, 5,209 96 - 2083	*
***	******	**

Problem Description : SWLF LSMPA INTERIM A2T4 TOTAL NOD2

SEGMENT BOUNDARY COORDINATES

3 SURFACE boundary segments

x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
.0	3553.3	27.8	3553.1	1
27.8	3553.1	602.8	3745.0	2
602.8	3745.0	1045.6	3745.0	2
	x-left (ft) .0 27.8 602.8	x-left y-left (ft) (ft) .0 3553.3 27.8 3553.1 602.8 3745.0	x-left y-left x-right (ft) (ft) (ft) .0 3553.3 27.8 27.8 3553.1 602.8 602.8 3745.0 1045.6	x-left y-left x-right y-right (ft) (ft) (ft) (ft) .0 3553.3 27.8 3553.1 27.8 3553.1 602.8 3745.0 602.8 3745.0 1045.6 3745.0

22 SUBSURFACE boundary segments

Segment	x-left	y-left	x-right	y-right	Soil Unit
No.	(ft)	(ft)	(ft)	(ft)	Below Segment
1	27.8	3553.1	30.9	3553.1	1
2	30.9	3553.1	38.5	3555.6	4
3	38.5	3555.6	39.9	3556.1	6
4	39.9	3556.1	45.6	3558.0	3
5	45.6	3558.0	603.0	3744.0	5
6	603.0	3744.0	1045.6	3744.0	5
7	45.6	3558.0	245.6	3554.0	3

IIIE-A-2-41

8	245.6	3554.0	445.6	3558.0	3
9	445.6	3558.0	645.6	3554.0	3
10	645.6	3554.0	1045.6	3556.1	3
11	39.9	3556.1	245.6	3552.0	6
12	245.6	3552.0	445.6	3556.0	6
13	445.6	3556.0	645.6	3552.0	6
14	645.6	3552.0	1045.6	3556.0	6
15	38.5	3555.6	245.6	3551.5	4
16	245.6	3551.5	445.5	3555.5	4
17	445.5	3555.5	645.5	3551.5	4
18	645.5	3551.5	1045.6	3555.5	4
19	30.9	3553.1	245.5	3549.0	1
20	245.5	3549.0	445.4	3553.0	1
21	445.4	3553.0	645.4	3549.0	1
22	645.4	3549.0	1045.6	3553.0	1

......

ISOTROPIC Soil Parameters

6 Soil unit(s) specified

Soil	Unit	Weight	Cohesion	Friction	Pore Pr	essure	Water
Unit	Moist	Sat.	Intercept	Angle	Parameter	Constant	Surface
No.	(pcf)	(pcf)	(psf)	(deg)	Ru	(psf)	No.
1	122.5	127.0	1200.0	26.70	.000	.0	1
2	116.0	120.0	100.0	16.00	.000	.0	0
3	120.0	125.0	100.0	16.00	.000	.0	0
4	120.0	125.0	1000.0	.00	.000	.0	0
5	59.0	59.0	288.0	23.00	.000	.0	0
6	120.0	125.0	1000.0	.00	.000	.0	0

1 Water surface(s) have been specified

Unit weight of water = 62.40 (pcf)

Water Surface No. 1 specified by 2 coordinate points

Point	x-water	y-water
No.	(ft)	(ft)

1	.00	3500.00
2	1045.60	3511.60

A critical failure surface searching method, using a random technique for generating sliding BLOCK surfaces, has been specified.

The active and passive portions of the sliding surfaces are generated according to the Rankine theory.

100 trial surfaces will be generated and analyzed.

2 boxes specified for generation of central block base

* * * * * DEFAULT SEGMENT LENGTH SELECTED BY XSTABL * * * * *

Length of line segments for active and passive portions of sliding block is 39.0 ft

Вох	x-left	y-left	x-right	y-right	Width
no.	(ft)	(ft)	(ft)	(ft)	(ft)
1	195.0	3552.8	215.0	3552.4	.5
2	525.0	3554.1	545.0	3553.8	.5

Factors of safety have been calculated by the :

* * * * * SIMPLIFIED JANBU METHOD * * * * *

The 10 most critical of all the failure surfaces examined are displayed below - the most critical first

Failure surface No. 1 specified by 16 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	142.99	3591.54

	2	143.95	3590.82	
	3	165.62	3576.47	
	4	198.15	3554.95	
	5	200.88	3552.89	
	6	201.31	3552.46	
	7	538.75	3553.68	
	8	539.20	3554.13	
	9	540.68	3556.10	
	10	562.21	3588.62	
	11	583.73	3621.14	
	12	605.26	3653.66	
	13	626.78	3686.18	
	14	648.31	3718.71	
	15	665.05	3744.00	
	16	665.81	3745.00	
**	Corrected	JANBU FOS =	1.305 **	(Fo factor = 1.084)

Failure surface No. 2 specified by 16 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	142.60	3591.41
2	143.56	3590.69
3	165.02	3576.49
4	197.54	3554.96
5	200.27	3552.90
6	200.72	3552.45
7	536.86	3553.77
8	537.26	3554.17
9	538.74	3556.14
10	560.27	3588.66
11	581.79	3621.18
12	603.32	3653.70
13	624.85	3686.22
14	646.37	3718.74
15	663.09	3744.00
16	663.84	3745.00

** Corrected JANBU FOS = 1.306 ** (Fo factor = 1.084)

Failure surface No. 3 specified by 16 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	148.74	3593.46

	2	149.71	3592.74	
	3	174.55	3576.30	
	4	207.07	3554.77	
	5	209.80	3552.71	
	6	210.24	3552.27	
	7	542.57	3553.65	
	8	542.97	3554.05	
	9	544.45	3556.02	
	10	565.98	3588.54	
	11	587.50	3621.07	
	12	609.03	3653.59	
	13	630.55	3686.11	
	14	652.08	3718.63	
	15	668.87	3744.00	
	16	669.63	3745.00	
** Fail	Corrected ure surface	JANBU FOS = e No. 4 specif	1.306 ** Fied by 16 cc	(Fo factor = 1.084) pordinate points
	Point	x-surf	v-surf	
	No.	(ft)	(ft)	
		()	(/	
	1	143.06	3591.57	
	2	144.02	3590.84	
	3	165.73	3576.47	
	4	198.25	3554.95	
	5	200.98	3552.89	
	6	201.43	3552.44	
	7	540.76	3553.85	
	8	541.00	3554.09	
	9	542.49	3556.06	
	10	564.02	3588.58	
	11	585.54	3621.11	

3653.63

3686.15

3718.67

3744.00

3745.00

1.307 **

(Fo factor = 1.084)

Failure surface No. 5 specified by 16 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	149.52	3593.72

607.07

628.59

650.12

666.88

667.64

12

13

14

15

16

** Corrected JANBU FOS =

IIIE-A-2-45

	2	150.48	3593.00	
	3	175.75	3576.27	
	4	208.27	3554.75	
	5	211.00	3552.69	
	6	211.46	3552.23	
	7	542.38	3553.88	
	8	542.55	3554.06	
	9	544.04	3556.03	
	10	565.56	3588.55	
	11	587.09	3621.07	
	12	608.62	3653.60	
	13	630.14	3686.12	
	14	651.67	3718.64	
	15	668.45	3744.00	
	16	669.21	3745.00	
**	Corrected	JANBU FOS =	1.308 **	(Fo factor = 1.084)
Fail	ure surface	e No. 6 specif	ied by 16 coor	dinate points
	Point	x-surf	y-surf	

ροιητ	x-surt	y-surt
No.	(ft)	(ft)
1	141.67	3591.10
2	142.63	3590.38
3	163.57	3576.52
4	196.09	3554.99
5	198.82	3552.93
6	199.20	3552.56
7	540.79	3553.75
8	541.13	3554.09
9	542.61	3556.06
10	564.14	3588.58
11	585.66	3621.10
12	607.19	3653.62
13	628.71	3686.15
14	650.24	3718.67
15	667.01	3744.00
16	667.76	3745.00

** Corrected JANBU FOS = 1.308 ** (Fo factor = 1.084)

Failure surface No. 7 specified by 16 coordinate points

Point	x-surf	y-surf	
No.	(ft)	(ft)	
1	148.58	3593.41	

2	149.54	3592.68	
3	174.29	3576.30	
4	206.81	3554.78	
5	209.54	3552.72	
6	209.97	3552.29	
7	543.00	3553.79	
8	543.25	3554.05	
9	544.74	3556.02	
10	566.26	3588.54	
11	587.79	3621.06	
12	609.32	3653.58	
13	630.84	3686.10	
14	652,37	3718.62	
15	669.16	3744.00	
16	669.92	3745.00	
Failure surface	e No. 8 spec:	ified by 15 co	ordinate points
Point	x-surf	v-surf	
No.	(ft)	(ft)	
1	150 25	2502 07	
1	150.25	2502 21	
2	176 88	3576 25	
1	200.00	355/ 72	
-+ 5	209.40	3552 67	
5	212.19	3552.07	
7	544.07	3554.03	
, 8	545.55	3556.00	
9	567.08	3588.52	
10	588.60	3621.04	

Failure surface No. 9 specified by 16 coordinate points

3686.09

3718.61 3744.00

3745.00

1.310 **

(Fo factor = 1.084)

Point	x-surf	y-surf	
No.	(ft)	(ft)	
1	140.01 140.97	3590.55	

631.65

653.18

669.98

670.74

12

13

14

15

** Corrected JANBU FOS =

	3	161.00	3576.57	
	4	193.53	3555.04	
	5	196.26	3552.98	
	6	196.65	3552.59	
	7	539.65	3554.01	
	8	539.76	3554.12	
	9	541.24	3556.09	
	10	562.77	3588.61	
	11	584.29	3621.13	
	12	605.82	3653.65	
	13	627.34	3686.17	
	14	648.87	3718.69	
	15	665.62	3744.00	
	16	666.37	3745.00	
**	Corrected	JANBU FOS =	1.312 **	(Fo factor = 1.084)
Fail	ure surface	e No.10 specif	ied by 16 co	pordinate points
	Point	x-surf	v-surf	
	No.	(ft)	(ft)	
	1	149.60	3593.75	
	2	150.56	3593.02	
	3	175.87	3576.27	
	4	208.39	3554.74	
	5	211.12	3552.69	
	6	211.44	3552.37	
	7	542.06	3553.63	
	8	542.50	3554.06	
	9	543.98	3556.03	
	10	565.51	3588.55	
	11	587.04	3621.08	
	12	608.56	3653.60	
	13	630.09	3686.12	
	14	651.61	3718.64	
	15	668.40	3744.00	
	16	669.15	3745.00	
**	Corrected	JANBU FOS =	1.313 **	(Fo factor = 1.084)

The following is a summary of the TEN most critical surfaces Problem Description : SWLF LSMPA INTERIM A2T4 TOTAL NOD2

IIIE-A-2-48

	Modified JANBU FOS	Correction Factor	Initial x-coord (ft)	Terminal x-coord (ft)	Available Strength (lb)
1.	1.305	1.084	142.99	665.81	8.383E+05
2.	1.306	1.084	142.60	663.84	8.359E+05
з.	1.306	1.084	148.74	669.63	8.362E+05
4.	1.307	1.084	143.06	667.64	8.423E+05
5.	1.308	1.084	149.52	669.21	8.355E+05
6.	1.308	1.084	141.67	667.76	8.462E+05
7.	1.308	1.084	148.58	669.92	8.386E+05
8.	1.310	1.084	150.25	670.74	8.378E+05
9.	1.312	1.084	140.01	666.37	8.486E+05
10.	1.313	1.084	149.60	669.15	8.392E+05

* * * END OF FILE * * *

APPENDIX IIIE-A-3

OVERLINER AND FINAL LANDFILL CONFIGURATION STABILITY ANALYSIS

Includes pages IIIE-A-3-1 through IIIE-A-3-221306

FINAL COVER SECTION A-1

 -3740
3720
-3700
-3680
-3660
 -3640
-3620
-3620
-3620 -3600 -3580
-3620 -3600 -3580 -3560
-3620 -3600 -3580 -3560 -3540
-3620 -3600 -3580 -3560 -3540 -3520
-3620 -3600 -3580 -3560 -3540 -3520 -3500

	PREPARED FOR						
WEST		LANDFILL	ΤX,	LP			
	REVISIONS						
TE	DESCRIPTION						
2025	025 SEE LIST OF REVISIONS						

TBPE REGISTRATION NO. F-3727

SLOPE STABILITY FINAL COVER SECTION A-A

MAJOR PERMIT AMENDMENT

SOUTHWEST LANDFILL RANDALL COUNTY, TEXAS

WWW.WCGRP.COM

2

- TOP OF OVERLINER GRADE	-3740
	3720
	. 3700
	-3680
	-3660
	-3640
FILL	-3620
	3600
	-3580
	-3560
	-3540
	-3520
	3500

MAJOR PERMIT AMEN	DMENT
SLOPE STABILITY	
FINAL COVER SECTIO	N B-B
SOUTHWEST LANDFILL	
RANDALL COUNTY, TEX/	45

WWW.WCGRP.COM

.

<u>_____</u>

	- 3780	
	- 3760	
	- 3740	
	- 3720	
	- 3700	
	- 3680	
	-3660	Ň-
	7640	Ŀ,
-~	- 3040	LION
	-3620	×.
	-3600	
	-3580	
	-3560	
	=	
	- 3540	
	- 3540 - 3520	
	- 3540 - 3520 - 3500	

	- 3/80	
	-3760	
	- 3740	
	- 3720	
	- 3700	
	- 3700	
	- 3680	MSL
	-3660	Ŀ
-~`	-3640	, N
`	-3620	VATI
	-3600	لیا ب_
	- 3580	
	-3560	
	- 3540	
	- 3520	
	5520	
	-3500	

PREPARED FOF	, FILL TX, LP	MAJOR PERMIT AMENDMENT SLOPE STABILITY							
REVISIONS		T FINAL COVER SECTION C-							
DATE E	DESCRIPTION								
/2025 SEE LI	ST OF REVISIONS	SOUTHWEST LANDFILL RANDALL COUNTY, TEXAS							
		WWW.WCGRP.COM	SHEET IIIE-A-3-7						

FINAL COVER SECTION D-1

3580
3560
3500
3480

 3720
 3700
 3680
 3660
 3640
 3620
 3600
 3580
 3560
3540

3480

____ 3740

	F1	REFAR	VED F	OR				
WES	ST	L	٩N	DF		L	ΤX,	LP
		REVI	SIONS					
ATE				DES	CRIP	TION		
2025			SEE	LIST	OF I	REVIS	SIONS	

Weaver Consultants Group

MAJOR PERMIT AMENDMENT SLOPE STABILITY FINAL COVER SECTION D-D

> SOUTHWEST LANDFILL RANDALL COUNTY, TEXAS

WWW.WCGRP.COM

<u>?</u>?

PREPARED FOR MAJOR PERMIT AMENDMENT VEST LANDFILL TX, LP SLOPE STABILITY REVISIONS OVERLINER SECTIONS 25 SEE LIST OF REVISIONS SOUTHWEST LANDFILL RANDALL COUNTY, TEXAS WWW.WCGRP.COM SHEET IIIE-A-3-9			NID E. POE 81734				
REVISIONS OVERLINER SECTIONS 25 SEE LIST OF REVISIONS SOUTHWEST LANDFILL RANDALL COUNTY, TEXAS	PREPARED FOR VEST LANDFILL TX, LP	MAJOR PERMIT AMENDMENT SLOPE STABILITY					
DESCRIPTION 25 SEE LIST OF REVISIONS SOUTHWEST LANDFILL RANDALL COUNTY, TEXAS WWW.WCGRP.COM SHEET IIIE-A-3-9	REVISIONS	OVERLII	NER SECTIONS				
25 SEE LIST OF REVISIONS SOUTHWEST LANDFILL RANDALL COUNTY, TEXAS WWW.WCGRP.COM SHEET IIIE-A-3-9	DESCRIPTION						
WWW.WCGRP.COM SHEET IIIE-A-3-9	25 SEE LIST OF REVISIONS	SOUTH	WEST LANDFILL				
WWW.WCGRP.COM SHEET IIIE-A-3-9		RANDALI	LUUNIT, IEXAS				
		WWW.WCGRP.COM	SHEET IIIE-A-3-9				

1111

2

IWES	ST	L	A	N	D	FI	LI	L	1	ГХ	, ,	l	_P
		RE	VISIC	NS									
DATE					DE	SC	RIPT	ION					
/2025			S	EE L	.IST	го	FΒ	EVIS	510	NS			

TBPE REGISTRATION NO. F-3727

WWW.WCGRP.COM

	P	REPA	RED	FOR	2							
IWES	ST	L	A1	٩C)F	ΊL	L.		ТΧ	, ,	L	P.
		REV	/1510	NS								
ATE		DESCRIPTION										
2025		SEE LIST OF REVISIONS										

TBPE REGISTRATION NO. F-3727

MAJOR PERMIT AMENDMENT SLOPE STABILITY OVERLINER SECTIONS

SOUTHWEST LANDFILL RANDALL COUNTY, TEXAS

WWW.WCGRP.COM

(SEE LIST OF REVISIONS)

LIST OF REVISIONS:

1. UPDATED SAFETY FACTORS.

 $/ \Lambda$ RESIDUAL/TOTAL CRITICAL FAILURE SURFACE FACTOR OF SAFETY = 4.41/15.5 3720 3680 3660 3640 3620 3600 3580 🗄 3540 3520

	PREPAR	ED FOR			
HWES	ST LA	NDFI	LL	ΤX,	LP
	REVIS	SIONS			
DATE		DESCR	IPTION		
/2025		SEE LIST OF	REVIS	SIONS	

MAJOR PERMIT AMENDMENT SLOPE STABILITY OVERLINER SECTIONS

SOUTHWEST LANDFILL RANDALL COUNTY, TEXAS

WWW.WCGRP.COM

SOUTHWEST LANDFILL 0120-094-11-107-01 APPENDIX IIIE-A-3 FINAL CONFIGURATION AND OVERLINER SLOPE STABILITY ANALYSIS

Derivation of Slope Stability Parameters:

Laboratory testing data are provided in Appendix IIIE-C. The following includes material strength properties based on the laboratory testing results from each subsurface unit.

		Moist	Saturated
Material		Unit Weight	Unit Weight
		(pcf)	(pcf)
Stratum I (Clay)		122.5	
Stratum I (Caliche)		121.9	
Stratum II (Sand)		122.5	127.0
Stratum III (Shale)		138.4	139.0

The strength parameters for the in-situ soils were selected based on the following:

Stratum I (Clay and Caliche)

A triaxial shear test was performed on Stratum I samples which resulted in cohesion and friction angle values listed in the table below. The values in the table will be used for both Clay and Caliche. Moist unit weight and saturated unit weight values are calculated from the dry unit weight, the moisture content, and the void ratio obtained from the triaxial shear test. These unit weight values conservatively compare to the average obtained from all laboratory testing performed on the material.

	Total	Stress	Effective Stress	
	Cohesion	Cohesion Friction		Friction
	(lb/ft^2)	Angle	(lb/ft^2)	Angle
Triaxial Shear Test G-5	100	26.0	100	27.1

Stratum II (Sand)

A triaxial shear tests and direct shear tests were performed on the Stratum II (sand) samples which resulted in cohesion and friction angle values listed in the table below. Stratum II is modeled using a cohesion of 1,200 psf and a friction angle of 26.7° conservatively. Moist unit weight values are calculated from each pair of moisture content and dry unit weight obtained from all laboratory testing performed on the material. These moist unit weight values were then averaged and this value is used in the slope stability analysis.

	Cohesion	Friction	Cohesion	Friction
	(lb/ft ²)	Angle	(lb/ft ²)	Angle
Triaxial Shear Test G-3	1620	40.9	3020	35.0
	(total)	(total)	(effective)	(effective)
Direct Shear Test WB-121	900 (residual)	26.9 (residual)	1200 (peak)	26.7 (peak)

Shale

The slope stability analysis indicate no failure surface through this stratum as the top of this stratum is located minimum of 74 feet below the elevation of the deepest excavation. The laboratory testing for shear strength is reported on page IIIE-18.

	Effectiv	ve Stress	Total Stress		
Material	Cohesion (psf)	Friction Angle (degrees)	Cohesion (psf)	Friction Angle (degrees)	
Stratum I (Clay)	100	26	100	27.1	
Stratum I (Caliche)	100	26	100	27.1	
Stratum II (Sand)	1,200	26.7	1,200	26.7	
Stratum III (Shale)	500	33	5,000	0	

SOUTHWEST LANDFILL 0120-094-11-107-01 APPENDIX IIIE-A-3 FINAL CONFIGURATION AND OVERLINER SLOPE STABILITY ANALYSIS

Slope stability strength parameters for constructed soil materials were selected as follows based on engineering judgment. Prior to construction, laboratory tests will be performed to verify the assumed strength parameter values using project-specific soil materials. If test results differ from the assumed values, this analysis will be updated for acceptable factor of safety values.

Material	Moist Unit Weight	Cohesion	Friction Angle
	(pcf)	(psf)	(degrees)
Final Cover System	116	100	16
Clay Liner ⁽¹⁾	120	100	16
Protective Cover	120	100	16
Overliner Protective Cover ⁽²⁾	120	100	16

1. A cohesion of 100 psf and internal friction angle of 16 degrees (effective stress) and a cohesion of 1,000 psf and internal friction angle of 0 degrees (total stress) is used for the clay liner for simplified Bishop Method of the slope stability analysis.

2. For translational (block) stability analysis, the strength parameters of the weakest interface were used to model the liner. The values used for the final slope stability analysis are highlighted in the table below titled "Minimum Required Interface Strength Values"<u>Note that both total and residual stress analyses</u> were performed for the translational analyses.

3. A cohesion of 100 psf and internal friction angle of 16 degrees is used for the overliner for Simplified Bishop method of the slope stability analysis. For global translational stability analysis, the strength parameters of the weakest interface were used to model the overliner. For peak values, an adhesion of 100 psf and an interface friction angle of 18 degrees (textured geomembrane/GCL) is used in the Rankine Block method of the slope stability analysis to represent the weakest interface. For residual values, an adhesion of 80 psf and an interface friction angle of 8 degrees (smooth geomembrane/GCL) is used.

	Moist Unit		Friction
Soil Description	Weight	Cohesion	Angle
	(pcf)	(psf)	(degrees)
Solid Waste	59	288	23

This information was derived from several references. Reference 3 provides a summary of several studies that have been completed to develop the shear strength parameters for MSW (refer to Chapter 6.7 in Ref. 3). MSW shear strength parameters reported in technical literature references vary widely, with friction angles as low as 10° and as high as 53° and cohesion values varying from 0 psf to 1400 psf. Many of the lower values are directly contradicted by observations of actual stable landfill slopes. A summary of a few of the studies completed is listed below.

Reference	Data Type	Results
Pagotto & Rimoldi (1987)	Back-calculation from plate bearing tests	$\phi = 22,^{\circ} c = 605 \text{ psf}$ (29 kPa)
Landva & Clark (1990)	Laboratory direct shear tests on MSW	$\phi = 24,^{\circ} c = 460 \text{ psf}$ (22 kPa) to $\phi = 39,^{\circ}$ c = 400 psf (19 kPa)
Richardson & Reynolds (1991)	Large direct shear tests performed in-situ	$\phi = 18^{\circ} \text{ to } 43,^{\circ}$ c = 210 psf (10 kPa)

To provide for a conservative analysis, a cohesion of 288 psf and a friction angle of 23° were selected.

The moist unit weight is calculated at the midpoint of the average depth to represent the average unit weight of waste/cover soil within the landfill, consistent with what is used in the site life calculations in Appendix IIIM.

Factor of Safety Summary for Long-Ferm Slope Stability								
	Description	Minimum Factor		Recommended Minimum		Acceptable Factor of Safety		
		of Safety	of Safety Generated		Factor of Safety		Acceptable Factor of Safety	
Slope Designation	Method of Analysis	Effective	Total	Effective	Total	Effective	Total	
		Stress	Stress	Stress	Stress	Stress	Stress	
Final Cover A-1	Bishop-Circular	2.43	2.38	1.5	<u>1.3</u> 1.5	YES	YES	
Final Cover B-1	Bishop-Circular	2.26	2.27	1.5	<u>1.3</u> 1.5	YES	YES	
Final Cover C-1	Bishop-Circular	2.62	2.69	1.5	<u>1.3</u> 1.5	YES	YES	
Final Cover D-1	Bishop-Circular	2.62	2.71	1.5	<u>1.3</u> 1.5	YES	YES	
Overliner A-1	Bishop-Circular	2.61	2.71	1.5	<u>1.3</u> 1.5	YES	YES	
Overliner B-1	Bishop-Circular	2.35	2.35	1.5	<u>1.3</u> 1.5	YES	YES	
Overliner C-1	Bishop-Circular	2.55	2.56	1.5	1.3 1.5	YES	YES	

Factor of Safety Summary for Long-Term Slope Stability

Description		Minimum Factor		Recommended Minimum		Acceptable Factor of Safety		
		of Safety Generated		Factor	Factor of Safety		receptable Factor of Safety	
Slope Designation	Method of Analysis	Peak	Residual/ Total	Peak	Residual/ Total	Peak	Residual	
Final Cover A-2	Rankine-Block	2.23	2.09/2.05	1.5	<u>1.1</u> 1.0 / <u>1.3</u>	YES	YES	
Final Cover B-2	Rankine-Block	2.67	2.55/2.81	1.5	<u>1.1</u> 1.0 / <u>1.3</u>	YES	YES	
Final Cover C-2	Rankine-Block	4.05	3.96/3.86	1.5	<u>1.1</u> 1.0 / <u>1.3</u>	YES	YES	
Final Cover D-3	Rankine-Block	3.10	2.71 <u>/2.79</u>	1.5	<u>1.1</u> 1.0 / <u>1.3</u>	YES	YES	
Overliner A-2	Rankine-Block	2.17	1.72/2.39	1.5	<u>1.1</u> 1.0 / <u>1.3</u>	YES	YES	
Overliner B-2	Rankine-Block	3.27	3.06/3.49	1.5	<u>1.1</u> 1.0 / <u>1.3</u>	YES	YES	
Overliner C-2	Rankine-Block	2.05	1.61/2.26	1.5	<u>1.1</u> 1.0 / <u>1.3</u>	YES	YES	
Overliner D-1	Rankine-Block	6.19	4.41/15.5	1.5	<u>1.1</u> 1.0 / <u>1.3</u>	YES	YES	

Minimum Required Interface Strength Parameters

		Peak		Residual	
Landfill Component	Interface		Friction Angle (degrees)	Adhesion (psf)	Friction Angle (degrees)
Liner/Overliner/FC Systems	Protective Cover/Geocomposite	100	18	80	14
Liner/FC Systems (Notes 1, 3)	Geonet/Smooth Geomembrane	188	11	188	9
Liner/FC Systems (Note 3)	Geonet/Textured Geomembrane	0	13	0	10
Liner/Overliner/FC Systems	Geocomposite/Textured Geomembrane	100	21	80	10
Liner/FC Systems	Smooth Geomembrane/Clay Liner	100	13	80	8
Liner/FC Systems (Note 2)	Textured Geomembrane/Clay Liner	200	15	80	10
Liner/Overliner Systems	Textured Geomembrane/Geosynthetic Clay Liner	100	18	80	10
Liner/Protective Cover (Note 4)	Clay Internal/Protective Cover (Total Stress)			1000 (Total Only)	0 (Total Only)

1. Interface parameters used for translational block analysis of cell floor.

2. Interface parameters used for translational block analysis of cell sideslope (3H:1V typical).

3. Interface parameters derived from GRI Report #30 (Ref. 5).

4. Total stress values assumed for both rotational and translational anlaysis of final cover conditions. Effective, peak and residual stresses also analyzed.

ADDITIONAL TRANSITIONAL (BLOCK) STABILITY ANALYSES INCORPORATING TOTAL STRESS PARAMETERS

FCA-2T2 1-26-25 11:32

XSTABL File: FCA-2T2 1-26-25 11:32

**	******	**
*	ХЅТАВЬ	*
*		*
*	Slope Stability Analysis	*
*	using the	*
*	Method of Slices	*
*		*
*	Copyright (C) 1992 - 2013	*
*	Interactive Software Designs, Inc.	*
*	Moscow, ID 83843, U.S.A.	*
*		*
*	All Rights Reserved	*
*	č	*
*	Ver. 5.209 96 - 2083	*
**	******	**

Problem Description : SWLF LSMPA SEC A-2T2 TOTAL NOD2

SEGMENT BOUNDARY COORDINATES

11 SURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	.0	3607.6	93.9	3610.0	1
2	93.9	3610.0	114.9	3611.7	1
3	114.9	3611.7	137.6	3619.3	1
4	137.6	3619.3	152.6	3619.3	1
5	152.6	3619.3	161.6	3616.3	1
6	161.6	3616.3	164.6	3616.3	1
7	164.6	3616.3	173.6	3619.3	1
8	173.6	3619.3	173.9	3619.4	1
9	173.9	3619.4	247.6	3630.0	5
10	247.6	3630.0	535.6	3702.0	5
11	535.6	3702.0	823.4	3716.4	5

18 SUBSURFACE boundary segments

Segment	x-left	y-left	x-right	y-right	Soil Unit
No.	(ft)	(ft)	(ft)	(ft)	Below Segment

1	173.9	3619.4	183.4	3619.4	8
2	183.4	3619.4	189.7	3619.4	7
3	189.7	3619.4	198.4	3619.4	6
4	198.4	3619.4	248.3	3626.5	6
5	248.3	3626.5	536.1	3698.5	6
6	536.1	3698.5	823.4	3712.9	6
7	189.7	3619.4	298.7	3583.0	7
8	298.7	3583.0	823.3	3593.5	7
9	183.4	3619.4	298.4	3581.0	8
10	298.4	3581.0	823.4	3591.5	9
11	173.6	3619.3	204.4	3609.2	1
12	204.4	3609.2	248.4	3594.5	2
13	248.4	3594.5	298.0	3578.0	3
14	298.0	3578.0	823.4	3588.5	3
15	.0	3602.3	160.0	3606.0	2
16	160.0	3606.0	204.4	3609.2	2
17	.0	3589.3	181.6	3594.5	3
18	181.6	3594.5	248.4	3594.5	3

ISOTROPIC Soil Parameters

9 Soil unit(s) specified

Soil	Unit	Weight	Cohesion	Friction	Pore Pr	essure	Water
Unit	Moist	Sat.	Intercept	Angle	Parameter	Constant	Surface
No.	(pcf)	(pcf)	(psf)	(deg)	Ru	(psf)	No.
1	122.5	122.5	100.0	27.10	.000	.0	0
2	121.9	121.9	100.0	27.10	.000	.0	0
3	122.5	127.0	1200.0	26.70	.000	.0	1
4	122.5	127.0	1200.0	26.70	.000	.0	0
5	116.0	120.0	100.0	16.00	.000	.0	0
6	59.0	59.0	288.0	23.00	.000	.0	0
7	120.0	125.0	100.0	16.00	.000	.0	0
8	120.0	125.0	1000.0	.00	.000	.0	0
9	120.0	125.0	1000.0	.00	.000	.0	0

1 Water surface(s) have been specified

Unit weight of water = 62.40 (pcf)

Water Surface No. 1 specified by 2 coordinate points

Р	PHREATIC SURFACE,					
*******	********	*****				
Point No.	x-water (ft)	y-water (ft)				
1 2	.00 823.40	3518.60 3522.00				

A critical failure surface searching method, using a random technique for generating sliding BLOCK surfaces, has been specified.

The active and passive portions of the sliding surfaces are generated according to the Rankine theory.

100 trial surfaces will be generated and analyzed.

2 boxes specified for generation of central block base

* * * * * DEFAULT SEGMENT LENGTH SELECTED BY XSTABL * * * * *

Length of line segments for active and passive portions of sliding block is 22.0 ft

Вох	x-left	y-left	x-right	y-right	Width
no.	(ft)	(ft)	(ft)	(+t)	(+t)
1	298.8	3580.5	318.8	3580.9	5.0
2	488.8	3584.3	508.7	3584.7	5.0

Factors of safety have been calculated by the :

* * * * * SIMPLIFIED JANBU METHOD * * * * *

The 10 most critical of all the failure surfaces examined are displayed below - the most critical first

Failure surface No. 1 specified by 19 coordinate points

	Point	x-surf	y-surf
	No.	(ft)	(ft)
	1	229.33	3627.37
	2	233.32	3624.37
	3	237.86	3621.37
	4	256.20	3609.22
	5	274.55	3597.08
	6	292.89	3584.94
	7	297.90	3581.17
	8	299.09	3579.98
	9	503.71	3583.67
	10	505.18	3585.14
	11	506.71	3587.16
	12	518.85	3605.51
	13	530.99	3623.85
	14	543.13	3642.20
	15	555.28	3660.55
	16	567.42	3678.89
	17	579.56	3697.24
	18	581.92	3700.80
	19	584.68	3704.46
**	Corrected	JANBU FOS =	2.058 **

(Fo factor = 1.085)

Failure surface No. 2 specified by 19 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	229.08	3627.34
2	233.07	3624.33
3	237.24	3621.57
4	255.59	3609.43
5	273.93	3597.29
6	292.28	3585.14
7	297.28	3581.37
8	298.87	3579.78
9	495.76	3583.04
10	497.71	3584.99
11	499.23	3587.01
12	511.38	3605.36
13	523.52	3623.70
14	535.66	3642.05
15	547.81	3660.40
16	559.95	3678.74

	17	572.09	3697.09	
	18	574.29	3700.41	
	19	577.05	3704.07	
**	Corrected	JANBU FOS =	2.059 **	(Fo factor = 1.085)

Failure surface No. 3 specified by 19 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	228.81	3627.30
2	232.80	3624.29
3	236.58	3621.79
4	254.92	3609.65
5	273.27	3597.51
6	291.61	3585.37
7	296.62	3581.59
8	299.47	3578.74
9	488.98	3582.77
10	491.06	3584.85
11	492.59	3586.88
12	504.73	3605.23
13	516.88	3623.57
14	529.02	3641.92
15	541.16	3660.26
16	553.30	3678.61
17	565.45	3696.95
18	567.51	3700.07
19	570.27	3703.73

** Corrected JANBU FOS = 2.059 ** (Fo factor = 1.086)

Failure surface No. 4 specified by 19 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	232.74	3627.86
2	236.73	3624.85
3	244.89	3619.45
4	263.24	3607.31
5	281.58	3595.17
6	299.93	3583.02
7	302.50	3581.08
8	305.11	3578.48
9	502.48	3582.43
10	505.19	3585.14

**	Corrected	JANBU FOS =	2.065 **	(Fo factor = 1.085)
	19	584.69	3704.46	
	18	581.93	3700.80	
	17	579.57	3697.24	
	16	567.43	3678.89	
	15	555.29	3660.55	
	14	543.15	3642.20	
	13	531.00	3623.85	
	12	518.86	3605.51	
	11	506.72	3587.16	

Failure surface No. 5 specified by 19 coordinate points

	Point	x-surf	y-surf	
	No.	(ft)	(ft)	
	1	232.09	3627.77	
	2	236.09	3624.76	
	3	244.13	3619.44	
	4	262.48	3607.29	
	5	280.82	3595.15	
	6	299.17	3583.01	
	7	301.75	3581.07	
	8	304.52	3578.29	
	9	500.60	3583.00	
	10	502.68	3585.09	
	11	504.21	3587.11	
	12	516.35	3605.46	
	13	528.50	3623.80	
	14	540.64	3642.15	
	15	552,78	3660.50	
	16	564.92	3678.84	
	17	577.07	3697.19	
	18	579.37	3700.67	
	19	582.13	3704.33	
**	Corrected	JANBU FOS =	2.067 **	(Fo factor = 1.085)

Failure surface No. 6 specified by 19 coordinate points

Point No.	x-surf (ft)	y-surf (ft)
1	231.44	3627.68
2	235.43	3624.67
3	243.03	3619.64
4	261.37	3607.50

	5	279.72	3595.36	
	6	298.06	3583.21	
	7	300.93	3581.05	
	8	303.00	3578.98	
	9	504.51	3583.50	
	10	506.17	3585.16	
	11	507.70	3587.18	
	12	519.84	3605.53	
	13	531.98	3623.87	
	14	544.12	3642.22	
	15	556.27	3660.56	
	16	568.41	3678.91	
	17	580.55	3697.26	
	18	582.93	3700.85	
	19	585.69	3704.51	
** (Corrected	JANBU FOS =	2.067 **	(Fo factor = 1.085)
Failur	re surface Point	No. 7 specif	Fied by 19 co v-surf	ordinate points
	No.	(ft)	(ft)	
			()	
	1	230.34	3627.52	
	2	234.33	3624.51	
	3	240.32	3620.54	
	4	258.67	3608.40	
	5	277.02	3596.26	
	6	295.36	3584.11	
	7	299.47	3581.02	
	8	299.63	3580.86	
	9	501.23	3582.61	
	10	503.72	3585.11	
	11	505.25	3587.13	
	12	517.39	3605.48	
	13	529.53	3623.82	
	14	541.68	3642.17	
	15	553.82	3660.52	
	16	565.96	3678.86	
	17	578.10	3697.21	

** Corrected JANBU FOS = 2.067 ** (Fo factor = 1.085)

3700.72

3704.38

Failure surface No. 8 specified by 19 coordinate points

Point x-surf y-surf

580.43

583.19

18

19

	No.	(ft)	(ft)	
	1	222 72	2627 86	
	T	232.72	502/.00	
	2	236.71	3624.85	
	3	244.87	3619.45	
	4	263.21	3607.31	
	5	281.56	3595.17	
	6	299.90	3583.02	
	7	302.48	3581.08	
	8	305.23	3578.33	
	9	504.48	3584.46	
	10	505.16	3585.14	
	11	506.69	3587.16	
	12	518.83	3605.51	
	13	530.97	3623.85	
	14	543.12	3642.20	
	15	555.26	3660.54	
	16	567.40	3678.89	
	17	579.55	3697.24	
	18	581.90	3700.80	
	19	584.66	3704.45	
**	Corrected	JANBU FOS =	2.076 **	(Fo factor = 1.085)

.

Failure surface No. 9 specified by 19 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
		2627 00
1	232.33	3627.80
2	236.32	3624.80
3	244.40	3619.44
4	262.75	3607.30
5	281.10	3595.16
6	299.44	3583.01
7	302.02	3581.07
8	302.39	3580.70
9	501.18	3582.25
10	504.04	3585.11
11	505.57	3587.14
12	517.71	3605.49
13	529.86	3623.83
14	542,00	3642.18
15	554.14	3660.52
16	566.28	3678.87
17	578.43	3697.21
18	580.76	3700.74
19	583.52	3704.40

** Corrected JANBU FOS = 2.078 ** (Fo factor = 1.085)

Failure surface No.10 specified by 19 coordinate points

	Point	x-surf	y-surf	
	No.	(ft)	(ft)	
	1	231.40	3627.67	
	2	235.39	3624.66	
	3	242.93	3619.67	
	4	261.28	3607.53	
	5	279.62	3595.39	
	6	297.97	3583.24	
	7	300.88	3581.05	
	8	302.44	3579.49	
	9	497.06	3584.36	
	10	497.69	3584.99	
	11	499.21	3587.01	
	12	511.36	3605.36	
	13	523.50	3623.70	
	14	535.64	3642,05	
	15	547.78	3660.40	
	16	559.93	3678.74	
	17	572.07	3697.09	
	18	574.27	3700.41	
	19	577.03	3704.07	
	19	2	2.2.00	
**	Corrected	JANBU FOS =	2.086 **	(Fo factor = 1.085)

The following is a summary of the TEN most critical surfaces Problem Description : SWLF LSMPA SEC A-2T2 TOTAL NOD2

	Modified JANBU FOS	Correction Factor	Initial x-coord (ft)	Terminal x-coord (ft)	Available Strength (lb)
1.	2,058	1.085	229.33	584.68	5.002E+05
2.	2.059	1.085	229.08	577.05	4.903E+05
з.	2.059	1.086	228.81	570.27	4.814E+05
4.	2.065	1.085	232.74	584.69	5.029E+05
5.	2.067	1.085	232.09	582.13	4.998E+05
6.	2.067	1.085	231.44	585.69	5.038E+05
7.	2.067	1.085	230.34	583.19	4.993E+05
8.	2.076	1.085	232.72	584.66	5.023E+05

9.	2.078	1.085	232.33	583.52	5.009E+05
10.	2.086	1.085	231.40	577.03	4.923E+05

* * * END OF FILE * * *

XSTABL File: FCB-2T2 1-26-25 11:41

*******	**
* XSTABL	*
*	*
* Slope Stability Analysis	*
* using the	*
* Method of Slices	*
*	*
* Copyright (C) 1992 - 2013	*
* Interactive Software Designs, Inc.	*
* Moscow, ID 83843, U.S.A.	*
*	*
* All Rights Reserved	*
*	*
* Ver. 5.209 96 - 2083	*
*****	**

Problem Description : SWLF LSMPA SEC B-2T2 TOTAL NOD2

SEGMENT BOUNDARY COORDINATES

9 SURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	.0	3602.7	35.7	3603.6	1
2	35.7	3603.6	45.0	3602.4	1
3	45.0	3602.4	68.0	3602.2	1
4	68.0	3602.2	80.8	3604.4	1
5	80.8	3604.4	168.4	3604.5	1
6	168.4	3604.5	172.4	3602.6	1
7	172.4	3602.6	180.4	3604.6	1
8	180.4	3604.6	570.0	3702.0	4
9	570.0	3702.0	1026.7	3724.8	4

32 SUBSURFACE boundary segments

Segment	x-left	y-left	x-right	y-right	Soil Unit
No.	(ft)	(ft)	(ft)	(ft)	Below Segment
1	180.4	3604.6	188.4	3604.6	1
2	188.4	3604.6	194.8	3604.6	7
----	-------	--------	--------	--------	---
3	194.8	3604.6	194.9	3604.6	6
4	194.9	3604.6	570.5	3698.5	5
5	570.5	3698.5	1026.7	3721.3	5
6	194.9	3604.6	201.1	3604.6	6
7	201.1	3604.6	257.5	3585.8	6
8	257.5	3585.8	355.6	3587.2	6
9	355.6	3587.2	413.2	3606.4	6
10	413.2	3606.4	419.0	3608.3	9
11	419.0	3608.3	553.6	3642.0	9
12	553.6	3642.0	634.8	3652.0	9
13	634.8	3652.0	782.8	3689.0	9
14	782.8	3689.0	1026.7	3701.9	9
15	413.2	3606.4	419.5	3606.4	6
16	194.9	3604.6	257.2	3583.8	7
17	257.2	3583.8	356.0	3585.2	8
18	356.0	3585.2	419.5	3606.4	7
19	419.5	3606.4	553.9	3640.0	5
20	553.9	3640.0	635.1	3650.0	5
21	635.1	3650.0	783.1	3687.0	5
22	783.1	3687.0	1026.7	3699.9	5
23	419.5	3606.4	425.8	3606.4	7
24	188.4	3604.6	231.7	3590.2	1
25	231.7	3590.2	256.9	3581.8	2
26	256.9	3581.8	356.3	3583.2	2
27	356.3	3583.2	425.8	3606.4	2
28	425.8	3606.4	459.4	3595.2	2
29	459.4	3595.2	1026.7	3596.2	2
30	.0	3585.1	133.8	3588.2	2
31	133.8	3588.2	157.3	3590.2	2
32	157.3	3590.2	231.7	3590.2	2

ISOTROPIC Soil Parameters

9 Soil unit(s) specified

Soil	Unit	Weight	Cohesion	Friction	Pore Pr	essure	Water
Unit	Moist	Sat.	Intercept	Angle	Parameter	Constant	Surface
No.	(pcf)	(pcf)	(psf)	(deg)	Ru	(psf)	No.
1	121.9	121.9	100.0	26.00	.000	.0	0
2	122.5	127.0	1200.0	26.70	.000	.0	1
3	122.5	127.0	1200.0	26.70	.000	.0	0
4	116.0	120.0	100.0	16.00	.000	.0	0
5	59.0	59.0	288.0	23.00	.000	.0	0
6	120.0	125.0	100.0	16.00	.000	.0	0
7	120.0	125.0	1000.0	.00	.000	.0	0

8	120.0	125.0	1000.0	.00	.000	.0	0
9	120.0	125.0	1000.0	.00	.000	.0	0

1 Water surface(s) have been specified

Unit weight of water = 62.40 (pcf)

Water Surface No. 1 specified by 2 coordinate points

No.	(ft)	(+t)	
1	.00	3516.00	
2	1026.70	3520.00	

A critical failure surface searching method, using a random technique for generating sliding BLOCK surfaces, has been specified.

The active and passive portions of the sliding surfaces are generated according to the Rankine theory.

100 trial surfaces will be generated and analyzed.

2 boxes specified for generation of central block base

* * * * * DEFAULT SEGMENT LENGTH SELECTED BY XSTABL * * * * *

Length of line segments for active and passive portions of sliding block is 25.0 ft

Box	x-left	y-left	x-right	y-right	Width
no.	(ft)	(ft)	(ft)	(ft)	(ft)
1	257.5	3583.8	267.5	3584.0	4.0

IIIE-A-3-237

Factors of safety have been calculated by the :

* * * * * SIMPLIFIED JANBU METHOD * * * * *

The 10 most critical of all the failure surfaces examined are displayed below - the most critical first

Failure surface No. 1 specified by 13 coordinate points

Point	x-surf	y-surf	
No.	(ft)	(ft)	
4	245 22	2612 22	
T	215.32	3013.33	
2	218.93	3610.61	
3	234.45	3600.33	
4	255.30	3586.53	
5	257.85	3584.61	
6	347.00	3584.49	
7	347.59	3585.08	
8	349.12	3587.11	
9	362.91	3607.95	
10	376.71	3628.80	
11	390.51	3649.65	
12	393.57	3654.27	
13	396.93	3658.73	

** Corrected JANBU FOS = 2.816 ** (Fo factor = 1.088)

Failure surface No. 2 specified by 14 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	214.22	3613.05
2	217.83	3610.33
3	231.40	3601.35
4	252.25	3587.55
5	257.23	3583.80
6	257.64	3583.38
7	344.99	3584.23
8	345.82	3585.06
9	347.35	3587.08
10	361.14	3607.93

.

	11	374.94	3628.78	
	12	388.74	3649.62	
	13	391.47	3653.74	
	14	394.83	3658.21	
**	Corrected	JANBU FOS =	2.818 **	(Fo factor = 1.088)

Failure surface No. 3 specified by 14 coordinate points

	Point No.	x-surf (ft)	y-surf (ft)	
	1	214.95	3613.24	
	2	218.57	3610.52	
	3	233.45	3600.67	
	4	254.29	3586.87	
	5	258.34	3583.82	
	6	259.60	3582.56	
	7	345.39	3584.10	
	8	346.36	3585.06	
	9	347.89	3587.09	
	10	361.68	3607.94	
	11	375.48	3628.78	
	12	389.28	3649.63	
	13	392.11	3653.90	
	14	395.47	3658.37	
**	Corrected	JANBU FOS =	2.819 **	(Fo factor = 1.088)

Failure surface No. 4 specified by 14 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	215.37	3613.34
2	218.98	3610.62
3	234.60	3600.28
4	255.44	3586.49
5	258.97	3583.83
6	260.65	3582.14
7	344.37	3583.22
8	346.21	3585.06
9	347.74	3587.09
10	361.54	3607.93
11	375.33	3628.78
12	389.13	3649.63
13	391.93	3653.86
14	395.30	3658.32

** Corrected JANBU FOS = 2.821 ** (Fo factor = 1.089)

Failure surface No. 5 specified by 13 coordinate points

	Point	x-surf	y-surf	
	No.	(ft)	(ft)	
	1	214.90	3613.23	
	2	218.52	3610.50	
	3	233.31	3600.71	
	4	254.15	3586.92	
	5	257.92	3584.08	
	6	343.75	3583.36	
	7	345.43	3585.05	
	8	346.96	3587.08	
	9	360.76	3607.92	
	10	374.56	3628.77	
	11	388.35	3649.62	
	12	391.01	3653.63	
	13	394.37	3658.09	
**	Corrected	JANBU FOS =	2.823 **	(1

** Corrected JANBU FOS = 2.823 ** (Fo factor = 1.089)

Failure surface No. 6 specified by 14 coordinate points

	Point	x-surf	y-surf	
	No.	(ft)	(ft)	
	1	215.08	3613.27	
	2	218.70	3610.55	
	3	233.81	3600.55	
	4	254.65	3586.75	
	5	258.54	3583.82	
	6	260.36	3582.00	
	7	343.43	3583.67	
	8	344.80	3585.04	
	9	346.33	3587.07	
	10	360.13	3607.91	
	11	373.92	3628.76	
	12	387.72	3649.61	
	13	390.26	3653.44	
	14	393.62	3657.91	
**	Corrected	JANBU FOS =	2.833 **	(Fo factor = 1.089)

Failure surface No. 7 specified by 13 coordinate points

IIIE-A-3-240

Point No.	x-surf (ft)	y-surf (ft)	
1	217.12	3613.78	
2	220.73	3611.06	
3	238.02	3599.62	
4	258.86	3585.82	
5	260.05	3584.93	
6	346.19	3583.53	
7	347.75	3585.08	
8	349.27	3587.11	
9	363.07	3607.96	
10	376.87	3628.80	
11	390.67	3649.65	
12	393.76	3654.31	
13	397.12	3658.78	
Corrected	JANBU FOS =	2.838 **	(Fo factor = 1.089)

Failure surface No. 8 specified by 14 coordinate points

Point No.	x-surf (ft)	y-surf (ft)
1	215.33	3613.33
2	218.94	3610.61
3	234.49	3600.32
4	255.34	3586.52
5	258.92	3583.82
6	260.72	3582.02
7	345.38	3584.87
8	345.57	3585.05
9	347.09	3587.08
10	360.89	3607.93
11	374.69	3628.77
12	388.49	3649.62
13	391.17	3653.67
14	394.53	3658.13

**

** Corrected JANBU FOS = 2.838 ** (Fo factor = 1.088)

Failure surface No. 9 specified by 13 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	215.67	3613.42

	2	219.28	3610.70	
	3	235.44	3600.00	
	4	256.29	3586.20	
	5	259.30	3583.94	
	6	343.72	3583.07	
	7	345.70	3585.05	
	8	347.23	3587.08	
	9	361.03	3607.93	
	10	374.83	3628.77	
	11	388.63	3649.62	
	12	391.33	3653.71	
	13	394.70	3658.17	
**	Corrected	JANBU FOS =	2.841 **	(Fo factor = 1.089)

Failure surface No.10 specified by 14 coordinate points

	Point	x-surf	y-surf	
	No.	(ft)	(ft)	
		244 07	2612 02	
	1	214.07	3013.02	
	2	217.68	3610.30	
	3	231.00	3601.48	
	4	251.85	3587.68	
	5	256.84	3583.92	
	6	257.54	3583.23	
	7	341.00	3583.65	
	8	342.35	3585.01	
	9	343.88	3587.03	
	10	357.68	3607.88	
	11	371.47	3628.73	
	12	385.27	3649.57	
	13	387.35	3652.71	
	14	390.72	3657.18	
**	Corrected	JANBU FOS =	2.849 **	(Fo factor = 1.089)

The following is a summary of the TEN most critical surfaces Problem Description : SWLF LSMPA SEC B-2T2 TOTAL NOD2

Modified	Correction	Initial	Terminal	Available
JANBU FOS	Factor	x-coord	x-coord	Strength
		(ft)	(ft)	(lb)

1.	2.816	1.088	215.32	396.93	2.137E+05
2.	2,818	1.088	214.22	394.83	2.132E+05
з.	2.819	1.088	214.95	395.47	2.145E+05
4.	2.821	1.089	215.37	395.30	2.149E+05
5.	2.823	1.089	214.90	394.37	2.116E+05
6.	2.833	1.089	215.08	393.62	2.127E+05
7.	2.838	1.089	217.12	397.12	2.135E+05
8.	2,838	1.088	215.33	394.53	2.134E+05
9.	2.841	1.089	215.67	394.70	2.132E+05
10.	2.849	1.089	214.07	390.72	2.083E+05

* * * END OF FILE * * *

IIIE-A-3-244

XSTABL File: FCC-2T2 1-26-25 11:47

**	******	**
*	XSTABL	*
*		*
*	Slope Stability Analysis	*
*	using the	*
*	Method of Slices	*
*		*
*	Copyright (C) 1992 - 2013	*
*	Interactive Software Designs, Inc.	*
*	Moscow, ID 83843, U.S.A.	*
*		*
*	All Rights Reserved	*
*	.	*
*	Ver. 5.209 96 - 2083	*
**	*****	**

Problem Description : SWLF LSMPA SEC C-2T2 TOTAL NOD2

SEGMENT BOUNDARY COORDINATES

11 SURFACE boundary segments

Segment	x-left	y-left	x-right	y-right	Soil Unit
No.	(ft)	(ft)	(ft)	(ft)	Below Segment
1	.0	3622.9	73.9	3623.0	2
2	73.9	3623.0	74.8	3623.3	2
3	74.8	3623.3	88.3	3627.8	2
4	88.3	3627.8	96.8	3630.7	1
5	96.8	3630.7	105.2	3631.0	1
6	105.2	3631.0	136.0	3634.0	1
7	136.0	3634.0	166.0	3634.0	1
8	166.0	3634.0	170.0	3632.0	1
9	170.0	3632.0	178.4	3634.1	1
10	178.4	3634.1	450.0	3702.0	4
11	450.0	3702.0	1710.0	3765.0	4

16 SUBSURFACE boundary segments

Segment	x-left	y-left	x-right	y-right	Soil Unit
No.	(ft)	(ft)	(ft)	(ft)	Below Segment

1	178.3	3634.1	181.0	3634.1	1
2	181.0	3634.1	190.5	3634.1	7
3	190.5	3634.1	192.9	3634.1	6
4	192.9	3634.1	450.5	3698.5	5
5	450.5	3698.5	1710.0	3761.5	5
6	192.7	3634.1	196.9	3634.1	6
7	196.9	3634.1	382.2	3572.3	6
8	382.2	3572.3	1710.0	3545.7	6
9	190.5	3634.1	381.9	3570.3	7
10	381.9	3570.3	1710.0	3543.7	8
11	181.0	3634.1	199.8	3627.8	1
12	199.8	3627.8	253.3	3610.0	2
13	253.3	3610.0	381.4	3567.3	3
14	381.4	3567.3	1710.0	3540.7	3
15	88.3	3627.8	199.8	3627.8	2
16	.0	3610.0	253.3	3610.0	3

ISOTROPIC Soil Parameters

8 Soil unit(s) specified

Soil	Unit	Weight	Cohesion	Friction	Pore Pr	essure	Water
Unit	Moist	Sat.	Intercept	Angle	Parameter	Constant	Surface
No.	(pcf)	(pcf)	(psf)	(deg)	Ru	(psf)	No.
1	122.5	122.5	100.0	26.00	.000	.0	0
2	121.9	121.9	100.0	26.00	.000	.0	0
3	122.5	127.0	1200.0	26.70	.000	.0	1
4	116.0	120.0	100.0	16.00	.000	.0	0
5	59.0	59.0	288.0	23.00	.000	.0	0
6	120.0	125.0	100.0	16.00	.000	.0	0
7	120.0	125.0	1000.0	.00	.000	.0	0
8	120.0	125.0	1000.0	.00	.000	.0	0

.

1 Water surface(s) have been specified

Unit weight of water = 62.40 (pcf)

Water Surface No. 1 specified by 2 coordinate points

Point No.	x-water (ft)	y-water (ft)
1	.00	3514.00
2	1710.00	3506.60

A critical failure surface searching method, using a random technique for generating sliding BLOCK surfaces, has been specified.

The active and passive portions of the sliding surfaces are generated according to the Rankine theory.

100 trial surfaces will be generated and analyzed.

2 boxes specified for generation of central block base

* * * * * DEFAULT SEGMENT LENGTH SELECTED BY XSTABL * * * * *

Length of line segments for active and passive portions of sliding block is 29.0 ft

Вох	x-left	y-left	x-right	y-right	Width
no.	(ft)	(ft)	(ft)	(ft)	(ft)
1	382.2	3569.8	392.2	3569.6	5.0
2	432.2	3568.8	442.2	3568.6	5.0

** ** Factor of safety calculation for surface # 18 ** failed to converge within FIFTY iterations ** ** ** ** ** The last calculated value of the FOS was 4.1247 ** This will be ignored for final summary of results **

The trial failure surface in question is defined by the following 19 coordinate points

Point x-surf y-surf

No.	(ft)	(ft)
1	264.63	3655.66
2	268.24	3652.94
3	269.40	3652.17
4	293.58	3636.16
5	317.77	3620.16
6	341.95	3604.15
7	366.13	3588.14
8	390.31	3572.14
9	391.40	3571.32
10	432.32	3566.32
11	435.23	3569.23
12	436.72	3571.21
13	452.73	3595.39
14	468.73	3619.57
15	484.74	3643.76
16	500.74	3667.94
17	516.75	3692.12
18	523.39	3702.15
19	526.15	3705.81

**	Factor of safety calculation for surface # 23	**
**	failed to converge within FIFTY iterations	**
**	5	**
**	The last calculated value of the FOS was 4.3289	**
**	This will be ignored for final summary of results	**
*****	***************************************	****

The trial failure surface in question is defined by the following 19 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	264 31	3655 58
2	267.93	3652.86
3	268.95	3652.18
4	293.14	3636.17
5	317.32	3620.16
6	341.50	3604.16
7	365.68	3588.15
8	389.87	3572.15
9	390.22	3571.88
10	432.90	3568.29
11	433.87	3569.26
12	435.36	3571.24
13	451.36	3595.42

14	467.37	3619.60
15	483.37	3643.78
16	499.38	3667.97
17	515.39	3692.15
18	521.96	3702.07
19	524.72	3705.74

*****	***************************************	***
**	Factor of safety calculation for surface # 32	**
**	failed to converge within FIFTY iterations	**
**	5	**
**	The last calculated value of the FOS was 4.5109	**
**	This will be ignored for final summary of results	**
*****	***************************************	***

The trial failure surface in question is defined by the following 19 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	265.21	3655.80
2	268.82	3653.08
3	270.22	3652.15
4	294.41	3636.15
5	318.59	3620.14
6	342.77	3604.13
7	366.95	3588.13
8	391.14	3572.12
9	391.75	3571.66
10	435.60	3568.63
11	436.18	3569.21
12	437.67	3571.19
13	453.68	3595.37
14	469.68	3619.55
15	485.69	3643.74
16	501.70	3667.92
17	517.70	3692.10
18	524.38	3702.20
19	527.14	3705.86

*****	***************************************	****
**	Factor of safety calculation for surface # 67	**
**	failed to converge within FIFTY iterations	**
**	C C	**
**	The last calculated value of the FOS was 4.0711	**
**	This will be ignored for final summary of results	**
*****	***************************************	****

IIIE-A-3-249

The trial failure surface in question is defined by the following 19 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	265.84	3655.96
2	269.45	3653.24
3	271.12	3652.13
4	295.30	3636.13
5	319.48	3620.12
6	343.67	3604.12
7	367.85	3588.11
8	392.03	3572.10
9	392.15	3572.02
10	440.54	3568.38
11	441.26	3569.11
12	442.75	3571.09
13	458.76	3595.27
14	474.77	3619.45
15	490.77	3643.63
16	506.78	3667.82
17	522.78	3692.00
18	529.71	3702.46
19	532.47	3706.12

**	Factor of safety calculation for surface # 69	**	
**	failed to converge within FIFTY iterations	**	
**	U U	**	
**	The last calculated value of the FOS was 3.8621	**	
**	This will be ignored for final summary of results	**	
*****	***************	****	

The trial failure surface in question is defined by the following 19 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	264.50	3655.62
2	268.11	3652.90
3	269.21	3652.17
4	293.39	3636.17
5	317.58	3620.16
6	341.76	3604.15
7	365.94	3588.15
8	390.13	3572.14

9	391.64	3571.00
10	432.51	3567.65
11	434.11	3569.25
12	435.60	3571.23
13	451.61	3595.41
14	467.61	3619.60
15	483.62	3643.78
16	499.63	3667.96
17	515.63	3692.14
18	522.21	3702.09
19	524.97	3705.75

**	Factor of safety calculation for surface # 85	**
**	failed to converge within FIFTY iterations	**
**		**
**	The last calculated value of the FOS was 3.9094	**
**	This will be ignored for final summary of results	**
****	***************************************	*****

The trial failure surface in question is defined by the following 20 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	263.36	3655.34
2	266.97	3652.62
3	267.59	3652.20
4	291.78	3636.20
5	315.96	3620.19
6	340.14	3604.19
7	364.33	3588.18
8	388.51	3572.17
9	391.24	3570.11
10	391.55	3569.81
11	432.27	3567.50
12	434.03	3569.26
13	435.51	3571.23
14	451.52	3595.41
15	467.53	3619.60
16	483.53	3643.78
17	499.54	3667.96
18	515.55	3692.15
19	522.12	3702.08
20	524.88	3705.74

** ** Factor of safety calculation for surface # 86 ** ** failed to converge within FIFTY iterations ** ** The last calculated value of the FOS was ** ** 4.0808 This will be ignored for final summary of results ** **

The trial failure surface in question is defined by the following 19 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	264.71	3655.68
2	268.33	3652.96
3	269.52	3652.17
4	293.71	3636.16
5	317.89	3620.15
6	342.07	3604.15
7	366.25	3588.14
8	390.44	3572.14
9	391.94	3571.00
10	432.79	3566.53
11	435.49	3569.23
12	436.97	3571.20
13	452,98	3595.39
14	468.99	3619.57
15	484.99	3643.75
16	501.00	3667.93
17	517.01	3692.12
18	523.65	3702.16
19	526.41	3705.82

**	Factor of safety calculation for surface # 92	**
**	failed to converge within FIFTY iterations	**
**	C	**
**	The last calculated value of the FOS was 4.1527	**
**	This will be ignored for final summary of results	**
*****	***************************************	****

The trial failure surface in question is defined by the following 18 coordinate points

Point No.	x-surf (ft)	y-surf (ft)	
1	265.73	3655.93	
2	269.34	3653.21	

3	270.96	3652.14
4	295.14	3636.13
5	319.32	3620.12
6	343.51	3604.12
7	367.69	3588.11
8	391.87	3572.11
9	391.96	3572.04
10	433.59	3569.61
11	434.82	3571.25
12	450.83	3595.43
13	466.83	3619.61
14	482.84	3643.79
15	498.85	3667.98
16	514.85	3692.16
17	521.40	3702.05
18	524.16	3705.71

Factors of safety have been calculated by the :

* * * * * SIMPLIFIED JANBU METHOD * * * * *

The 10 most critical of all the failure surfaces examined are displayed below - the most critical first

Failure surface No. 1 specified by 19 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	256.12	3653.53
2	259.73	3650.81
3	277.70	3638.91
4	301.89	3622.91
5	326.07	3606.90
6	350.25	3590.90
7	374.44	3574.89
8	379.44	3571.12
9	382.54	3568.02
10	432.29	3567.27
11	434.28	3569.25
12	435.76	3571.23
13	451.77	3595.41
14	467.78	3619.59
15	483.78	3643.77
16	499.79	3667.96
17	515.80	3692.14

	18 19	522.38 525.14	3702.10 3705.76	
**	Corrected J	ANBU FOS =	3.867 **	(Fo factor = 1.085)

Failure surface No. 2 specified by 19 coordinate points

Point	x-surf	y-surf	
No.	(ft)	(ft)	
1	256.53	3653.63	
2	260.15	3650.91	
3	278.85	3638.53	
4	303.03	3622.53	
5	327.21	3606.52	
6	351.39	3590.52	
7	375.58	3574.51	
8	380.58	3570.74	
9	382.24	3569.08	
10	435.70	3567.33	
11	437.55	3569.19	
12	439.04	3571.16	
13	455.05	3595.34	
14	471.06	3619.53	
15	487.06	3643.71	
16	503.07	3667.89	
17	519.07	3692.07	
18	525.82	3702.27	
19	528.58	3705.93	

** Corrected JANBU FOS = 3.879 ** (Fo factor = 1.086)

Failure surface No. 3 specified by 19 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	256.69	3653.67
2	260.31	3650.95
3	279.29	3638.39
4	303.47	3622.38
5	327.66	3606.37
6	351.84	3590.37
7	376.02	3574.36
8	381,02	3570.59
9	382.34	3569.27
10	439.69	3567.72
11	441.09	3569.11

	12	442.58	3571.09	
	13	458.58	3595.27	
	14	474.59	3619.46	
	15	490.60	3643.64	
	16	506.60	3667.82	
	17	522.61	3692.00	
	18	529.52	3702.45	
	19	532.28	3706.11	
**	Corrected	JANBU FOS =	3.880 **	(Fo factor = 1.086)

Failure surface No. 4 specified by 19 coordinate points

	Point	x-surf	y-surf	
	No.	(ft)	(ft)	
	1	257.17	3653.79	
	2	260.79	3651.07	
	3	280.63	3637.94	
	4	304.81	3621.93	
	5	328.99	3605.93	
	6	353.17	3589.92	
	7	377.36	3573.92	
	8	382.16	3570.29	
	9	384.30	3568.16	
	10	440.09	3567.52	
	11	441.67	3569.10	
	12	443.16	3571.08	
	13	459.17	3595.26	
	14	475.18	3619.44	
	15	491.18	3643.63	
	16	507.19	3667.81	
	17	523.19	3691.99	
	18	530.14	3702.48	
	19	532,90	3706.14	
**	Corrected	JANBU FOS =	3.899 **	(Fo factor = 1.086)

Failure surface No. 5 specified by 19 coordinate points

Point No.	x-surf (ft)	y-surf (ft)
1	257.19	3653.80
2	260.80	3651.08
3	280.67	3637.92
4	304.85	3621.92
5	329.04	3605.91

6	353.22	3589.91	
7	377.40	3573.90	
8	382.19	3570.29	
9	385.06	3567.42	
10	438.13	3567.15	
11	440.12	3569.13	
12	441.60	3571.11	
13	457.61	3595.29	
14	473.62	3619.48	
15	489.62	3643.66	
16	505.63	3667.84	
17	521.64	3692.02	
18	528.51	3702.40	
19	531.26	3706.06	
** Corrected	JANBU FOS =	3.901 **	(Fo factor = 1.086)
Failure surface	e No. 6 specit	fied by 19 co	ordinate points
Point	x-surf	v-surf	
No.	(ft)	(ft)	
		、	
1	257.49	3653.87	
2	261.10	3651.15	
3	281.49	3637.65	
4	305.67	3621.64	
5	329.86	3605.64	
6	354.04	3589.63	
7	378.22	3573.63	
8	382.66	3570.28	
9	385.35	3567.59	
10	439.07	3566.51	
11	441.66	3569.10	
12	443.15	3571.08	
13	459.16	3595.26	
14	475.16	3619.44	
15	491.17	3643.63	
16	507.18	3667.81	
17	523.18	3691.99	
18	530.13	3702.48	
19	532.89	3706.14	
** Corrected	JANBU FOS =	3.908 **	(Fo factor = 1.086)

Failure surface No. 7 specified by 19 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)

	1	257.36	3653.84	
	2	260.97	3651.12	
	3	281.15	3637.77	
	4	305.33	3621.76	
	5	329.51	3605.75	
	6	353.69	3589.75	
	7	377.88	3573.74	
	8	382.46	3570.29	
	9	382.62	3570.13	
	10	438.45	3566.74	
	11	440.83	3569.12	
	12	442.31	3571.10	
	13	458.32	3595.28	
	14	474.33	3619.46	
	15	490.33	3643.64	
	16	506.34	3667.83	
	17	522.35	3692.01	
	18	529.25	3702.44	
	19	532.01	3706.10	
**	Corrected	JANBU FOS =	3.909 **	(Fo factor = 1.086)

Failure surface No. 8 specified by 18 coordinate points

	Point	x-surf	y-surf	
	No.	(ft)	(ft)	
	1	255.90	3653.47	
	2	259.51	3650.75	
	3	277.09	3639.12	
	4	301.27	3623.11	
	5	325.45	3607.11	
	6	349.63	3591.10	
	7	373.82	3575.10	
	8	378.82	3571.33	
	9	382.41	3567.73	
	10	435.69	3569.78	
	11	436.77	3571.21	
	12	452.77	3595.39	
	13	468.78	3619.57	
	14	486.78	3643.75	
	15	500.79	3667.94	
	16	516 80	3692 12	
	17	523 43	3702 15	
	18	526 19	3705 81	
	10	520,15	J,0J.01	
**	Corrected	JANBU FOS =	3.910 **	(Fo factor = 1.086)

Failure surface No. 9 specified by 19 coordinate points

	Point	x-surf	y-surf	
	No.	(ft)	(ft)	
	1	256.88	3653,72	
	2	260.49	3651.00	
	3	279.80	3638.21	
	4	303.99	3622.21	
	5	328.17	3606.20	
	6	352.35	3590.20	
	7	376.54	3574.19	
	8	381.54	3570.42	
	9	383.77	3568.18	
	10	433.47	3569.07	
	11	433.67	3569.26	
	12	435.15	3571.24	
	13	451.16	3595.42	
	14	467.17	3619.60	
	15	483.17	3643.79	
	16	499.18	3667.97	
	17	515.19	3692.15	
	18	521.75	3702.06	
	19	524.51	3705.73	
**	Corrected	JANBU FOS =	3.910 **	(Fo factor = 1.086)

Failure surface No.10 specified by 19 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	257.43	3653.86
2	261.04	3651.14
3	281.33	3637.70
4	305.52	3621.70
5	329.70	3605.69
6	353.88	3589.69
7	378.06	3573.68
8	382.57	3570.29
9	385.42	3567.44
10	440.08	3568.48
11	440.72	3569.12
12	442.21	3571.10
13	458.21	3595.28
14	474.22	3619.46
15	490.23	3643.65
16	506.23	3667.83

	17	522.24	3692.01	
	18	529.14	3702.43	
	19	531.90	3706.09	
**	Corrected	JANBU FOS =	3.912 **	(Fo factor = 1.086)

The following is a summary of the TEN most critical surfaces Problem Description : SWLF LSMPA SEC C-2T2 TOTAL NOD2

	Modified JANBU FOS	Correction Factor	Initial x-coord (ft)	Terminal x-coord (ft)	Available Strength (lb)
1.	3.867	1.085	256.12	525.14	6.139E+05
2.	3.879	1.086	256.53	528.58	6.197E+05
з.	3.880	1.086	256.69	532.28	6.249E+05
4.	3.899	1.086	257.17	532.90	6.280E+05
5.	3.901	1.086	257.19	531.26	6.264E+05
6.	3.908	1.086	257.49	532.89	6.294E+05
7.	3.909	1.086	257,36	532.01	6.270E+05
8.	3.910	1.086	255.90	526.19	6.256E+05
9.	3.910	1.086	256.88	524.51	6.156E+05
10.	3.912	1.086	257.43	531.90	6.273E+05

* * * END OF FILE * * *

FCD-2T2 1-26-25 11:54

XSTABL File: FCD-2T2 1-26-25 11:54

*********	******	**
*	ХЅТАВЬ	*
*		*
* Slor	oe Stability Analysis	*
*	using the	*
*	Method of Slices	*
*		*
* Copy	/right (C) 1992 - 2013	*
* Interact	ive Software Designs, Inc.	*
* Moso	COW, ID 83843, U.S.A.	*
*	····, ··· · · · · · · · · · · · · · ·	*
* A	ll Rights Reserved	*
*		*
* Ver. 5.209	96 - 2083	*
***********	·	**

Problem Description : SWLF LSMPA SEC D-2T2 TOTAL NOD2

SEGMENT BOUNDARY COORDINATES

8 SURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	.0	3625.9	60.2	3625.9	2
2	60.2	3625.9	60.3	3625.9	2
3	60.3	3625.9	89.9	3636.2	1
4	89.9	3636.2	119.9	3636.2	1
5	119.9	3636.2	123.9	3634.2	1
6	123.9	3634.2	132.0	3636.2	1
7	132.0	3636.2	395.2	3702.0	5
8	395.2	3702.0	770.1	3720.7	5

18 SUBSURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	131.9	3636.2	135.1	3636.2	1
2	135.1	3636.2	144.6	3636.2	8

3	144.6	3636.2	146.5	3636.2	7
4	146.5	3636.2	395.7	3698.5	6
5	395.7	3698.5	770.1	3717.2	6
6	146.3	3636.2	150.9	3636.2	7
7	150.9	3636.2	395.2	3554.7	7
8	395.2	3554.7	770.1	3558.5	7
9	144.6	3636.2	394.9	3552.7	8
10	394.9	3552.7	770.1	3556.5	9
11	135.1	3636.2	165.9	3625.9	1
12	165.9	3625.9	192.9	3616.9	2
13	192.9	3616.9	363.7	3560.1	3
14	363.7	3560.1	393.7	3550.1	4
15	393.7	3550.1	394.4	3549.7	3
16	394.4	3549.7	770.1	3556.5	3
17	60.3	3625.9	165.9	3625.9	2
18	.0	3616.9	192.9	3616.9	3

ISOTROPIC Soil Parameters

9 Soil unit(s) specified

Soil	Unit	Weight	Cohesion	Friction	Pore Pr	essure	Water
Unit	Moist	Sat.	Intercept	Angle	Parameter	Constant	Surface
No.	(pcf)	(pcf)	(psf)	(deg)	Ru	(psf)	No.
1	122.5	122.5	100.0	26.00	.000	.0	0
2	121.9	121.9	100.0	26.00	.000	.0	0
3	122.5	127.0	1200.0	26.70	.000	.0	1
4	122.5	127.0	1200.0	26.70	.000	.0	0
5	116.0	120.0	100.0	16.00	.000	.0	0
6	59.0	59.0	288.0	23.00	.000	.0	0
7	120.0	125.0	100.0	16.00	.000	.0	0
8	120.0	125.0	1000.0	.00	.000	.0	0
9	120.0	125.0	1000.0	.00	.000	.0	0

1 Water surface(s) have been specified

Unit weight of water = 62.40 (pcf)

Water Surface No. 1 specified by 2 coordinate points

Point	x-water	y-water
No.	(ft)	(ft)
1	.00	3502.00
2	770.10	3500.10

A critical failure surface searching method, using a random technique for generating sliding BLOCK surfaces, has been specified.

The active and passive portions of the sliding surfaces are generated according to the Rankine theory.

100 trial surfaces will be generated and analyzed.

2 boxes specified for generation of central block base

* * * * * DEFAULT SEGMENT LENGTH SELECTED BY XSTABL * * * * *

Length of line segments for active and passive portions of sliding block is 19.0 ft

Box no.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Width (ft)
1	180.0	3624.4	200.0	3617.7	5.0
2	320.0	3577.7	340.0	3571.0	5.0

Factors of safety have been calculated by the :

* * * * * SIMPLIFIED JANBU METHOD * * * * *

The 10 most critical of all the failure surfaces examined are displayed below - the most critical first

Failure surface No. 1 specified by 17 coordinate points

	Point	x-surf	y-surf	
	No.	(ft)	(ft)	
	1	155.35	3642.04	
	2	158.97	3639.32	
	3	160.81	3638.09	
	4	176.66	3627.61	
	5	180.83	3624.46	
	6	332.49	3571.58	
	7	333.95	3573.03	
	8	335.21	3574.71	
	9	345.70	3590.56	
	10	356.18	3606.40	
	11	366.67	3622.24	
	12	377.16	3638.09	
	13	387.64	3653.93	
	14	398.13	3669.78	
	15	408.62	3685.62	
	16	417.88	3699.61	
	17	420.64	3703.27	
**	Corrected	JANBU FOS =	2.797 **	(Fo factor = 1.088)

Failure surface No. 2 specified by 18 coordinate points

	Point	x-surf	y-surf	
	No.	(ft)	(ft)	
	1	154.58	3641.84	
	2	158.19	3639.12	
	3	158.66	3638.81	
	4	174.51	3628.32	
	5	179.51	3624,55	
	6	180.29	3623.78	
	7	334.98	3571.75	
	8	335.69	3572.45	
	9	336.95	3574.13	
	10	347.44	3589.98	
	11	357.93	3605.82	
	12	368.41	3621.66	
	13	378.90	3637.51	
	14	389.39	3653.35	
	15	399.87	3669.19	
	16	410.36	3685.04	
	17	420.08	3699.72	
	18	422.84	3703.38	
**	Corrected	JANBU FOS =	2.822 **	(Fo factor = 1.088)

Failure surface No. 3 specified by 17 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	156.16	3642.24
2	159.77	3639.52
3	163.05	3637.35
4	178.90	3626.86
5	183.59	3623.32
6	332.44	3571.23
7	334.17	3572.96
8	335.43	3574.64
9	345.92	3590.48
10	356.41	3606.33
11	366.89	3622.17
12	377.38	3638.01
13	387.87	3653.86
14	398.35	3669.70
15	408.84	3685.54
16	418.16	3699.62
17	420.92	3703.28

** Corrected JANBU FOS = 2.824 ** (Fo factor = 1.088)

Failure surface No. 4 specified by 18 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	157.75	3642.64
2	161.36	3639.91
3	167.46	3635.88
4	183.30	3625.39
5	185.09	3624.04
6	337.38	3569,99
7	338.80	3571.41
8	340.07	3573.09
9	350.56	3588.94
10	361.04	3604.78
11	371.53	3620.62
12	382.02	3636.47
13	392.50	3652.31
14	402.99	3668.15
15	413.48	3684.00
16	423.96	3699.84
17	424.01	3699.91
18	426.77	3703.57

** Corrected JANBU FOS = 2.826 ** (Fo factor = 1.088)

Failure surface No. 5 specified by 17 coordinate points

	Point	x-surf	y-surf	
	No.	(ft)	(ft)	
	1	161.43	3643.56	
	2	165.04	3640.83	
	3	177.68	3632.47	
	4	193.53	3621.98	
	5	198.52	3618.22	
	6	336.70	3572.04	
	7	336.76	3572.10	
	8	338.02	3573.78	
	9	348.51	3589.62	
	10	358.99	3605.46	
	11	369.48	3621.31	
	12	379.97	3637.15	
	13	390.45	3652.99	
	14	400.94	3668.84	
	15	411.43	3684.68	
	16	421.42	3699.78	
	17	424.18	3703.45	
**	Corrected	JANBU FOS =	2.829 **	(Fo factor = 1.088)

Failure surface No. 6 specified by 18 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	155.48	3642.07
2	159.10	3639.35
3	161.17	3637.97
4	177.02	3627.49
5	182.02	3623.72
6	183.64	3622.10
7	328.30	3574.81
8	328.38	3574.89
9	329.64	3576.57
10	340.13	3592.41
11	350.62	3608.26
12	361.10	3624.10
13	371.59	3639.94
14	382.08	3655.79
15	392.56	3671.63

	16	403.05	3687.48	
	17	410.85	3699.26	
	18	413.61	3702.92	
**	Corrected	JANBU FOS =	2.830 **	(Fo factor = 1.088)

Failure surface No. 7 specified by 18 coordinate points

Point	x-surf	y-surf	
No.	(ft)	(ft)	
1	155.83	3642.16	
2	159.44	3639.44	
3	162.14	3637.65	
4	177.98	3627.17	
5	182.98	3623.40	
6	186.43	3619.95	
7	335.76	3572.26	
8	335.89	3572.39	
9	337.15	3574.07	
10	347.64	3589.91	
11	358.13	3605.75	
12	368.61	3621.60	
13	379.10	3637.44	
14	389.59	3653.28	
15	400.07	3669.13	
16	410.56	3684.97	
17	420.33	3699.73	
18	423.09	3703.39	

** Corrected JANBU FOS = 2.831 ** (Fo factor = 1.088)

Failure surface No. 8 specified by 18 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	155.40	3642.05
2	159.02	3639.33
3	160.95	3638.05
4	176.80	3627.56
5	181.80	3623.79
6	184.20	3621.39
7	335.79	3571.29
8	336.63	3572.14
9	337.90	3573.82
10	348.39	3589.66
11	358.87	3605.50

	12	369.36	3621.35	
	13	379.85	3637.19	
	14	390.33	3653.03	
	15	400.82	3668.88	
	16	411.31	3684.72	
	17	421.27	3699.78	
	18	424.03	3703.44	
**	Corrected	JANBU FOS =	2.835 **	(Fo factor = 1.088)

Failure surface No. 9 specified by 18 coordinate points

Point	x-surf	y-surf	
No.	(ft)	(ft)	
1	157.18	3642.49	
2	160.79	3639.77	
3	165.88	3636.41	
4	181.72	3625.92	
5	186.72	3622.15	
6	187.91	3620.96	
7	333.02	3571.97	
8	334.05	3573.00	
9	335.32	3574.68	
10	345.80	3590.52	
11	356.29	3606.37	
12	366.78	3622.21	
13	377.26	3638.05	
14	387.75	3653.90	
15	398.24	3669.74	
16	408.72	3685.58	
17	418.01	3699.61	
18	420.77	3703.28	

Failure surface No.10 specified by 18 coordinate points

(Fo factor = 1.088)

Point No.	x-surf (ft)	y-surf (ft)
1	161.28	3643.52
2	164.89	3640.80
3	177.28	3632.60
4	193.12	3622.11
5	198.10	3618.36
6	338.24	3570.90
7	338.77	3571.43

** Corrected JANBU FOS = 2.837 **

	8	340.03	3573.10	
	9	350.52	3588.95	
	10	361.01	3604.79	
	11	371.49	3620.64	
	12	381.98	3636.48	
	13	392.47	3652.32	
	14	402.95	3668.17	
	15	413.44	3684.01	
	16	423.93	3699.85	
	17	423.97	3699.91	
	18	426.72	3703.57	
**	Connected	JANRII EOS -	2 940 **	(Fo factor - 1.088)
	Connecteu	JANDU FUS -	2.040	$(10 \ 1000)$

The following is a summary of the TEN most critical surfaces Problem Description : SWLF LSMPA SEC D-2T2 TOTAL NOD2

	Modified JANBU FOS	Correction Factor	Initial x-coord (ft)	Terminal x-coord (ft)	Available Strength (lb)
1.	2.797	1.088	155.35	420.64	4.044E+05
2.	2.822	1.088	154.58	422.84	4.157E+05
з.	2.824	1.088	156.16	420.92	4.087E+05
4.	2.826	1.088	157.75	426.77	4.227E+05
5.	2.829	1.088	161.43	424.18	4.141E+05
6.	2.830	1.088	155.48	413.61	3.941E+05
7.	2.831	1.088	155.83	423.09	4.156E+05
8.	2.835	1.088	155.40	424.03	4.184E+05
9.	2.837	1.088	157.18	420.77	4.101E+05
10.	2.840	1.088	161.28	426.72	4.214E+05

* * * END OF FILE * * *

XSTABL File: OL-A1T2 1-26-25 13:29

**	******	**
*	XSTABL	*
*		*
*	Slope Stability Analysis	*
*	using the	*
*	Method of Slices	*
*		*
*	Copyright (C) 1992 - 2013	*
*	Interactive Software Designs, Inc.	*
*	Moscow, ID 83843, U.S.A.	*
*		*
*	All Rights Reserved	*
*	ö	*
*	Ver. 5.209 96 - 2083	*
**	*****	**

Problem Description : SWLF LSMPA OL SEC A-A1T2 TOTAL NOD2

SEGMENT BOUNDARY COORDINATES

11 SURFACE boundary segments

Segment	x-left	y-left	x-right	y-right	Soil Unit
No.	(ft)	(ft)	(ft)	(ft)	Below Segment
1	٥	2611 A	20 1	3620 7	1
T	.0	2011.0	29.1	3020.7	1
2	29.1	3620.7	44.1	3620.7	Т
3	44.1	3620.7	53.1	3617.7	1
4	53.1	3617.7	56.1	3617.7	1
5	56.1	3617.7	59.3	3618.8	1
6	59.3	3618.8	64.1	3617.1	1
7	64.1	3617.1	121.7	3620.6	4
8	121.7	3620.6	124.6	3620.8	8
9	124.6	3620.8	126.5	3621.3	5
10	126.5	3621.3	347.7	3676.6	4
11	347.7	3676.6	524.5	3686.5	4

42 SUBSURFACE boundary segments

Segment	x-left	y-left	x-right	y-right	Soil Unit
No.	(ft)	(ft)	(ft)	(ft)	Below Segment

IIIE-A-3-271
1	126.5	3621.3	129.7	3621.3	5
2	129.7	3621.3	130.3	3621.2	5
3	124.6	3620.8	126.4	3630.2	8
4	121.7	3630.2	124.2	3619.8	9
5	66.7	3616.3	124.2	3619.8	9
6	124.2	3619.8	124.8	3619.8	8
7	124.8	3619.8	126.4	3620.2	8
8	126.4	3620.2	130.3	3621.2	5
9	130.3	3621.2	347.9	3675.6	9
10	347.9	3675.6	524.5	3685.5	9
11	130.3	3621.2	137.7	3618.7	5
12	137.7	3618.7	151.1	3623.1	5
13	151.1	3623.1	188.2	3625.0	5
14	188.2	3625.0	322.5	3631.3	5
15	126.4	3620.2	137.7	3616.5	8
16	137.7	3616.5	151.5	3621.1	8
17	151.5	3621.1	188.3	3622.9	8
18	188.3	3622.9	322.5	3629.2	8
19	124.2	3619.8	137.7	3615.3	9
20	137.7	3615.3	151.7	3620.0	9
21	151.7	3620.0	188.3	3621.8	9
22	188.3	3621.8	322.5	3628.1	9
23	66.7	3616.3	100.8	3604.9	1
24	100.8	3604.9	137.0	3592.8	2
25	137.0	3592.8	145.5	3590.0	3
26	145.5	3590.0	223.5	3590.0	3
27	223.5	3590.0	322.5	3623.0	3
28	322.5	3623.0	334.9	3623.0	5
29	334.9	3623.0	424.8	3583.3	5
30	424.8	3583.3	454.0	3592.9	5
31	454.0	3592.9	458.6	3594.0	5
32	458.6	3594.0	524.5	3595.2	5
33	322.5	3623.0	327.0	3621.0	3
34	327.0	3621.0	334.5	3621.0	6
35	334.5	3621.0	424.7	3581.2	6
36	424.7	3581.2	458.8	3592.0	7
37	458.8	3592.0	524.5	3593.3	7
38	327.0	3621.0	424.5	3578.0	3
39	424.5	3578.0	459.2	3589.0	3
40	459.2	3589.0	524.5	3590.3	3
41	.0	3602.6	100.8	3604.9	2
42	.0	3589.6	137.0	3592.8	3

ISOTROPIC Soil Parameters

9 Soil unit(s) specified

Soil	Unit	Weight	Cohesion	Friction	Pore Pr	essure	Water
Unit	Moist	Sat.	Intercept	Angle	Parameter	Constant	Surface
No.	(pcf)	(pcf)	(psf)	(deg)	Ru	(psf)	No.
1	122.5	122.5	100.0	26.00	.000	.0	0
2	121.9	121.9	100.0	26.00	.000	.0	0
3	122.5	127.0	1200.0	26.70	.000	.0	1
4	116.0	120.0	100.0	16.00	.000	.0	0
5	120.0	125.0	100.0	16.00	.000	.0	0
6	120.0	125.0	1000.0	.00	.000	.0	0
7	120.0	125.0	1000.0	.00	.000	.0	0
8	120.0	125.0	1000.0	.00	.000	.0	0
9	59.0	59.0	288.0	23.00	.000	.0	0

1 Water surface(s) have been specified

Unit weight of water = 62.40 (pcf)

Water Surface No. 1 specified by 2 coordinate points

******	******	*****	******	*******

Point	x-water	y-water
No.	(ft)	(ft)
1	.00	3518.70
2	524.50	3520.80

A critical failure surface searching method, using a random technique for generating sliding BLOCK surfaces, has been specified.

The active and passive portions of the sliding surfaces are generated according to the Rankine theory.

100 trial surfaces will be generated and analyzed.

2 boxes specified for generation of central block base

* * * * * DEFAULT SEGMENT LENGTH SELECTED BY XSTABL * * * * *

Length of line segments for active and passive portions of sliding block is 16.0 ft

Box no.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Width (ft)
1	161.6	3622.1	181.6	3623.1	3.2
2	301.4	3628.7	321.4	3629.7	3.2

USER SELECTED option for unrestricted values of strength

Factors of safety have been calculated by the :

* * * * * SIMPLIFIED JANBU METHOD * * * * *

The 10 most critical of all the failure surfaces examined are displayed below - the most critical first

Failure surface No. 1 specified by 11 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	154.33	3628.26
2	155.38	3627.47
3	161.19	3623.62
4	162.31	3622.78
5	320.40	3629.18
6	321.98	3631.28

7		330	.81		3644.63	2		
8		339	.64		3657.90	5		
9		348	.47		3671.30	3		
10	I.	351	.45		3675.80	3		
11		352	.24		3676.8	5		
		552	• - •		207010			
** Corre	cted	JANBU	FOS	=	2.399	**	(Fo factor = 1.	070)
Failure su	rface	No. 2	spe	ecifi	ied by :	11 c	coordinate points	
			•		2		·	
Poi	nt	x-s	urf		y-sur	F		
No	••	(f	t)		(ft)			
		•	•		• •			
1		156	.22		3628.7	3		
2		157	.26		3627.9	4		
-		163	.61		3623.7	4		
4	_	163	.65		3623.7	1		
5		318	.78		3630.2	1		
-		310	50		3631 1	5		
7	,	328	. 20		3644 5	a		
7	,	220	16		2657 0	1		
2	1	227	.10		2671 1	+ ^		
5		345	.99		2675 6	9 ~		
16)	348	.95		30/5.0	0		
11	•	349	.74		36/6./	T		
** Corre	cted	JANBU	FOS	=	2.409	**	(Fo factor = 1.	.070)
Failure su	Irface	e No. 3	spe	ecifi	ied by	11 c	coordinate points	
Poi	.nt	X-S	urf		y-sur	f		
No).	(f	t)		(ft)			
-		4	- F.4		2620 0	-		-
1	-	157	.51		3629.0	5		
2	<u>-</u>	158	.56		3628.2	6		
Э	5	165	.26		3623.8	3		
4	÷	167	.12		3622.4	3		
5	5	318	.21		3630.5	6		
e	5	318	.63		3631.1	2		
7	,	327	.46		3644.4	6		
8	3	336	.29		3657.8	0		
9)	345	.12		3671.1	5		
10)	348	.08		3675.6	1		
11	-	348	.87		3676.6	7		
** Corre	ected	JANBU	FOS	=	2.410	**	(Fo factor = 1	.070)

Failure surface No. 4 specified by 11 coordinate points

	Point	x-surf	y-surf	
	No.	(ft)	(ft)	
	1	154.47	3628.29	
	2	155.51	3627.50	
	3	161.37	3623.63	
	4	163.45	3622.06	
	5	314.06	3630.45	
	6	314.41	3630.92	
	7	323.24	3644.26	
	8	332.07	3657.60	
	9	340.90	3670.95	
	10	343.20	3674.43	
	11	344.18	3675.72	
**	Corrected	JANBU FOS =	2.414 **	(Fo factor = 1.069)
Entl		ALC: The second of the second of the second seco	"	and described and the first of the second
Latt	ure surtace	e No. 5 specif	чеа бу тт со	ordinate points
Fatt	ure surtace	e No. 5 specif	-ied by ii co	ordinate points
Fall	Point	x-surf	y-surf	ordinate points
Latt	Point No.	x-surf (ft)	y-surf (ft)	ordinate points
Latt	Point No.	x-surf (ft)	y-surf (ft)	ordinate points
Fall	Point No. 1	x-surf (ft) 158.15	y-surf (ft) 3629.21	ordinate points
Fall	Point No. 1 2	x-surf (ft) 158.15 159.20	y-surf (ft) 3629.21 3628.42	ordinate points
Fall	Point No. 1 2 3	x-surf (ft) 158.15 159.20 166.08	y-surf (ft) 3629.21 3628.42 3623.87	ordinate points
Fall	Point No. 1 2 3 4	x-surf (ft) 158.15 159.20 166.08 167.25	y-surf (ft) 3629.21 3628.42 3623.87 3622.99	ordinate points
Latt	Point No. 1 2 3 4 5	x-surf (ft) 158.15 159.20 166.08 167.25 317.26	y-surf (ft) 3629.21 3628.42 3623.87 3622.99 3629.48	ordinate points
ra11	Point No. 1 2 3 4 5 6	x-surf (ft) 158.15 159.20 166.08 167.25 317.26 318.49	y-surf (ft) 3629.21 3628.42 3623.87 3622.99 3629.48 3631.11	ordinate points
Latt	Point No. 1 2 3 4 5 6 7	x-surf (ft) 158.15 159.20 166.08 167.25 317.26 318.49 327.33	y-surf (ft) 3629.21 3628.42 3623.87 3622.99 3629.48 3631.11 3644.45	ordinate points
Latt	Point No. 1 2 3 4 5 6 7 8	x-surf (ft) 158.15 159.20 166.08 167.25 317.26 318.49 327.33 336.16	<pre>'led by ll co y-surf (ft) 3629.21 3628.42 3623.87 3622.99 3629.48 3631.11 3644.45 3657.80</pre>	ordinate points
Latt	Point No. 1 2 3 4 5 6 7 8 9	x-surf (ft) 158.15 159.20 166.08 167.25 317.26 318.49 327.33 336.16 344.99	<pre>'led by ll co y-surf (ft) 3629.21 3628.42 3623.87 3622.99 3629.48 3631.11 3644.45 3657.80 3671.14</pre>	ordinate points
Latt	Point No. 1 2 3 4 5 6 7 8 9 10	x-surf (ft) 158.15 159.20 166.08 167.25 317.26 318.49 327.33 336.16 344.99 347.94	<pre>'led by ll co y-surf (ft) 3629.21 3628.42 3623.87 3622.99 3629.48 3631.11 3644.45 3657.80 3671.14 3675.60</pre>	ordinate points
Latt	Point No. 1 2 3 4 5 6 7 8 9 10 11	x-surf (ft) 158.15 159.20 166.08 167.25 317.26 318.49 327.33 336.16 344.99 347.94 348.74	<pre>Jea by II co y-surf (ft) 3629.21 3628.42 3623.87 3622.99 3629.48 3631.11 3644.45 3657.80 3671.14 3675.60 3676.66</pre>	ordinate points
Latt	Point No. 1 2 3 4 5 6 7 8 9 10 11	x-surf (ft) 158.15 159.20 166.08 167.25 317.26 318.49 327.33 336.16 344.99 347.94 348.74	y-surf (ft) 3629.21 3628.42 3623.87 3622.99 3629.48 3631.11 3644.45 3657.80 3671.14 3675.60 3676.66	ordinate points
**	Point No. 1 2 3 4 5 6 7 8 9 10 11 Corrected	<pre>x No. 5 specif x-surf (ft) 158.15 159.20 166.08 167.25 317.26 318.49 327.33 336.16 344.99 347.94 348.74 JANBU FOS =</pre>	<pre>Jed by II co y-surf (ft) 3629.21 3628.42 3623.87 3622.99 3629.48 3631.11 3644.45 3657.80 3671.14 3675.60 3676.66 2.426 **</pre>	(Fo factor = 1.071)

Failure surface No. 6 specified by 11 coordinate points

Point No.	x-surf (ft)	y-surf (ft)		
1	155.94	3628.66		
2	156.98	3627.87		
3	163.25	3623.72		
4	164.38	3622.87		
5	312.66	3630.77		
6	312.71	3630.84		

	7	321,54	3644.18	
	8	330.37	3657.53	
	9	339.20	3670.87	
	19	341.23	3673.93	
	11	342.21	3675.23	
	TT	J+2.21	5075.25	
**	Corrected	JANBU FOS =	2.427 **	(Fo factor = 1.069)
Fail	ure surface	No. 7 specif	ied by 11 co	ordinate points
	Point	x-surf	v-surf	
	No.	(ft)	(ft)	
	1101	(10)	(1-2)	
	1	154.27	3628.24	
	2	155.32	3627.45	
	3	161.12	3623.61	
	4	161.82	3623.08	
	5	311.69	3629.90	
	6	312.39	3630.83	
	7	321.22	3644.17	
	8	330.05	3657.51	
	9	338.88	3670.85	
	10	340.86	3673.84	
	11	341.84	3675.13	
**	Corrected	JANBU FOS =	2.431 **	(Fo factor = 1.070)
Fail	ure surface.	No. 8 speci	Fied by 11 co	ordinate points
	Point	v-surf	v-surf	
	No	(ft)	(ft)	
	10.	(10)	(10)	
	1	157.87	3629.14	
	2	158.91	3628.35	
	3	165.72	3623.85	
	4	165.76	3623.82	
	5	315.59	3629.91	
	6	316.42	3631.01	
	7	325.25	3644.36	
	8	334.08	3657.70	
	Q Q	342.91	3671.04	
	10	345.54	3675.01	
	11	346.52	3676.30	
**	Corrected	JANBU FOS =	2.432 **	(ro factor = 1.0/0)

Failure surface No. 9 specified by 11 coordinate points

Ро	int	x-surf	y-su	٦f				
N	ο.	(ft)	(ft))				
	1	164.89	3630.9	90				
	2	165.94	3630.3	11				
	3	174.70	3624.	31				
	4	175.50	3623.	71				
	5	320.59	3630.	58				
	6	321.08	3631.3	23				
	7	329.91	3644.	58				
	8	338.74	3657.	92				
	9	347.58	3671.	26				
1	0	350.55	3675.	75				
1	1	351.34	3676.	80				
** Corr	ected	JANBU FOS	= 2.435	**	(Fo	factor	= 1.071)	
Failure s	urface	No.10 spe	cified by	11 cc	ordina	te poin	ts	
De	int.	y cupf	V-CU	nf				
PC N		X-Sul 1 (£+)	y-su (£+	• • \				
N	0.	(10)	(it)				
	1	161.39	3630.	02				
	2	162.44	3629.	23				
	3	170.23	3624.	08				
	4	172.25	3622.	55				
	5	315.86	3629.	47				
	6	317.05	3631.	04				
	7	325.88	3644.	39				
	, א	334.71	3657.	73				
	۵ ۵	343 54	3671	. 2 07				
1	â	346 27	3675	19				
-	.0	540.27	5075.					
-	-	347 24	3676	49				
		347.24	3676.	49				

The following is a summary of the TEN most critical surfaces Problem Description : SWLF LSMPA OL SEC A-A1T2 TOTAL NOD2

Modified	Correction	Initial	Terminal	Available
JANBU FOS	Factor	x-coord	x-coord	Strength
		(ft)	(ft)	(lb)

1.	2.399	1.070	154.33	352.24	1.264E+05
2.	2.409	1.070	156.22	349.74	1.180E+05
з.	2.410	1.070	157.51	348.87	1.197E+05
4.	2.414	1.069	154.47	344.18	1.160E+05
5.	2.426	1.071	158.15	348.74	1.210E+05
6.	2.427	1.069	155.94	342.21	1.109E+05
7.	2.431	1.070	154.27	341.84	1.123E+05
8.	2.432	1.070	157.87	346.52	1.151E+05
9.	2.435	1.071	164.89	351.34	1.190E+05
10.	2.445	1.072	161.39	347.24	1.205E+05

* * * END OF FILE * * *

XSTABL File: OL-B1T2 1-26-25 13:33

*****	***************	**
*	XSTABL	*
*		*
*	Slope Stability Analysis	*
*	using the	*
*	Method of Slices	*
*		*
*	Copyright (C) 1992 - 2013	*
* I	nteractive Software Designs, Inc.	*
*	Moscow, ID 83843, U.S.A.	*
*		*
*	All Rights Reserved	*
*	5	*
* Ve	r. 5.209 96 - 2083	*
****	*****	**

Problem Description : SWLF LSMPA OL SEC B-B1T2 TOTAL NOD2

SEGMENT BOUNDARY COORDINATES

8 SURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	.0	3604.5	39.4	3604.5	1
2	39.4	3604.5	43.4	3602.6	1
3	43.4	3602.6	51.4	3604.6	1
4	51.4	3604.6	59.4	3604.6	1
5	59.4	3604.6	65.7	3604.6	6
6	65.7	3604.6	65.8	3604.6	5
7	65.8	3604.6	441.6	3698.5	9
8	441.6	3698.5	1138.7	3733.4	9

27 SUBSURFACE boundary segments

Segment	x-left	y-left	x-right	y-right	Soil Unit
No.	(ft)	(ft)	(ft)	(ft)	Below Segment
1	65.8	3604.6	70.0	3604.6	5
2	70.0	3604.6	441.6	3697.5	4

3	441.6	3697.5	1138.7	3732.4	4
4	70.0	3604.6	72.1	3604.6	5
5	72.1	3604.6	128.5	3585.8	5
6	128.5	3585.8	226.6	3587.2	5
7	226.6	3587.2	284.2	3606.4	5
8	284.2	3606.4	289.9	3608.3	8
9	289.9	3608.3	424.5	3642.0	8
10	424.5	3642.0	505.7	3652.0	8
11	505.7	3652.0	653.8	3689.0	8
12	653.8	3689.0	1138.6	3714.7	8
13	65.7	3604.6	128.2	3583.8	6
14	128.2	3583.8	226.9	3585.2	7
15	226.9	3585.2	290.5	3606.4	6
16	290.5	3606.4	424.9	3640.0	4
17	424.9	3640.0	506.1	3650.0	4
18	506.1	3650.0	654.1	3687.0	4
19	654.1	3687.0	1138.7	3712.7	4
20	59.4	3604.6	102.7	3590.2	1
21	102.7	3590.2	127.9	3581.8	2
22	127.9	3581.8	227.3	3583.2	2
23	227.3	3583.2	296.8	3606.4	2
24	296.8	3606.4	330.3	3595.2	2
25	330.3	3595.2	1138.7	3596.6	2
26	.0	3588.1	28.3	3590.2	2
27	28.3	3590.2	102.7	3590.2	2

ISOTROPIC Soil Parameters

9 Soil unit(s) specified

Soil	Unit	Weight	Cohesion	Friction	Pore Pr	essure	Water
Unit	Moist	Sat.	Intercept	Angle	Parameter	Constant	Surface
No.	(pcf)	(pcf)	(psf)	(deg)	Ru	(psf)	No.
1	121.9	121.9	100.0	26.00	.000	.0	0
2	122.5	127.0	1200.0	26.70	.000	.0	1
3	122.5	127.0	1200.0	26.70	.000	.0	0
4	59.0	59.0	288.0	23.00	.000	.0	0
5	120.0	125.0	100.0	16.00	.000	.0	0
6	120.0	125.0	1000.0	.00	.000	.0	0
7	120.0	125.0	1000.0	.00	.000	.0	0
8	120.0	125.0	1000.0	.00	.000	.0	0
9	116.0	120.0	100.0	16.00	.000	.0	0

1 Water surface(s) have been specified

Unit weight of water = 62.40 (pcf)

1 .00 3514.00 2 1139.10 3506.60

A critical failure surface searching method, using a random technique for generating sliding BLOCK surfaces, has been specified.

The active and passive portions of the sliding surfaces are generated according to the Rankine theory.

100 trial surfaces will be generated and analyzed.

2 boxes specified for generation of central block base

* * * * * DEFAULT SEGMENT LENGTH SELECTED BY XSTABL * * * * *

Length of line segments for active and passive portions of sliding block is 26.0 ft

Вох	x-left	y-left	x-right	y-right	Width
no.	(ft)	(ft)	(ft)	(ft)	(ft)
1	290.2	3607.3	309.6	3612.2	2.0
2	615.0	3678.3	634.4	3683.1	2.0

Factors of safety have been calculated by the :

* * * * * SIMPLIFIED JANBU METHOD * * * * *

The 10 most critical of all the failure surfaces examined are displayed below - the most critical first

Failure surface No. 1 specified by 11 coordinate points

Point No.	x-surf (ft)	y-surf (ft)
1	235.61	3647.03
2	236.63	3646.26
3	249.50	3637.74
4	271.18	3623.39
5	292.86	3609.04
6	292.95	3608.94
7	615.05	3677.57
8	617.38	3679.90
9	631.73	3701.58
10	635.45	3707.21
11	636.24	3708.24

** Corrected JANBU FOS = 3.496 ** (Fo factor = 1.048)

Failure surface No. 2 specified by 11 coordinate points

	Point	x-surf	y-surf	
	No.	(+t)	(+t)	
	1	240.62	3648.28	
	2	241.64	3647.51	
	3	254.50	3639.00	
	4	276.19	3624.64	
	5	297.87	3610.29	
	6	297.91	3610.25	
	7	615.34	3677.43	
	8	617.95	3680.04	
	9	632.31	3701.73	
	10	635.95	3707.23	
	11	636.73	3708.27	
**	Corrected	JANBU FOS =	3.526 **	(Fo factor = 1.048)

Failure surface No. 3 specified by 11 coordinate points

Point x-surf y-surf

No.	(ft)	(ft)	
1	237 05	3617 39	
2	237.05	3646 62	
2	250.07	3638,10	
4	272 62	3623 75	
5	294.30	3609.40	
6	294.50	3609.19	
7	617 04	3679.29	
, 8	617.74	3679.99	
g	632.09	3701.67	
10	635.77	3707.22	
11	636.55	3708.26	
**	050.00	2,00120	
** Corrected	JANBU FOS =	3.529 **	(Fo factor = 1.048)
-			
Failure surface	No. 4 specif	Fied by <mark>11 co</mark> o	ordinate points
Point	x-surf	y-surf	
No.	(ft)	(ft)	
1	234.83	3646.84	
2	235.86	3646.06	
3	248.72	3637.55	
4	270.40	3623.20	
5	292.09	3608.85	
6	292.19	3608.74	
7	631.86	3682.87	
8	632.72	3683.73	
9	647.07	3705.42	
10	648.70	3707.87	
11	649.48	3708.91	
** Corrected	JANBU FOS =	3.531 **	(Fo factor = 1.047)

Point No.	x-surf (ft)	y-surf (ft)
1	232.79	3646.32
2	233.81	3645.55
3	246.68	3637.04
4	268.36	3622.69
5	290.04	3608.34
6	290.42	3607.96
7	624.98	3681.20
8	625.79	3682.00

	9	640.14	3703.68	
	10	642.71	3707.57	
	11	643.49	3708.61	
**	Corrected	JANBU FOS =	3.532 **	(Fo factor = 1.047)

Failure	surface	No.	6	specified	by	11	coordinate	points
---------	---------	-----	---	-----------	----	----	------------	--------

Point No.	x-surf (ft)	y-surf (ft)	
1	236.62	3647.28	
2	237.64	3646.51	
3	250.51	3637.99	
4	272.19	3623.64	
5	293.87	3609.29	
6	294.03	3609.13	
7	621.01	3679.91	
8	622.21	3681.11	
9	636.56	3702.79	
10	639.62	3707.41	
11	640.40	3708.45	

** Corrected JANBU FOS = 3.533 ** (Fo factor = 1.048)

Failure surface No. 7 specified by 11 coordinate points

	Point No.	x-surf (ft)	y-surf (ft)	
	1	236 88	3647 35	
	1 2	230.00	2646 59	
	2	257.91	3040.36	
	3	250.77	3038.00	
	4	272.45	3623.71	
	5	294.14	3609.36	
	6	294.23	3609.26	
	7	628.76	3682.02	
	8	629.73	3682.99	
	9	644.08	3704.67	
	10	646.11	3707.74	
	11	646.90	3708.78	
**	Corrected	JANBU FOS =	3.542 **	(Fo factor = 1.047)

Failure surface No. 8 specified by 11 coordinate points

Point x-surf y-surf

	No.	(ft)	(ft)	
	1	235.11	3646.90	
	2	236.13	3646.13	
	3	249.00	3637.62	
	4	270.68	3623.27	
	5	292.36	3608.92	
	6	292.90	3608.38	
	7	625.92	3681.95	
	8	626.04	3682.06	
	9	640.39	3703.75	
	10	642.93	3707.58	
	11	643.71	3708.62	
**	Corrected	JANBU FOS ≕	3.556 **	(Fo factor = 1.048)

Failure surface No. 9 specified by 11 coordinate points

	Point	x-surf	y-surf	
	No.	(ft)	(ft)	
	1	241.37	3648,47	
	2	242.39	3647.70	
	3	255.26	3639.18	
	4	276.94	3624.83	
	5	298.62	3610.48	
	6	298.78	3610.32	
	7	623.57	3681.20	
	8	623.91	3681.53	
	9	638.26	3703.21	
	10	641.09	3707.49	
	11	641.87	3708.53	
**	Corrected	JANBU FOS =	3.561 **	(Fo factor = 1.048)

Failure surface No.10 specified by 11 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	241.46	3648.49
2	242.48	3647.72
3	255.35	3639.21
4	277.03	3624.86
5	298.71	3610.51
6	299.03	3610.18
7	616.17	3677.71
8	618.69	3680.23

	9	633.04	3701.91	
	10	636.58	3707.26	
	11	637.37	3708.30	
**	Corrected	JANBU FOS =	3.562 **	(Fo factor = 1.049)

The following is a summary of the TEN most critical surfaces Problem Description : SWLF LSMPA OL SEC B-B1T2 TOTAL NOD2

	Modified JANBU FOS	Correction Factor	Initial x-coord (ft)	Terminal x-coord (ft)	Available Strength (lb)
1.	3.496	1.048	235.61	636.24	5.416E+05
2.	3.526	1.048	240.62	636.73	5.326E+05
з.	3.529	1.048	237.05	636.55	5.381E+05
4.	3.531	1.047	234.83	649.48	5.491E+05
5.	3.532	1.047	232.79	643.49	5.556E+05
6.	3.533	1.048	236.62	640.40	5.425E+05
7.	3.542	1.047	236.88	646.90	5.442E+05
8.	3.556	1.048	235.11	643.71	5.523E+05
9.	3,561	1.048	241.37	641.87	5.309E+05
10.	3.562	1.049	241.46	637.37	5.380E+05

* * * END OF FILE * * *

0L-C1T2 1-26-25 13:35

XSTABL File: OL-C1T2 1-26-25 13:35

**	*****	**
*	ХЅТАВЬ	*
*		*
*	Slope Stability Analysis	*
*	using the	*
*	Method of Slices	*
*		*
*	Copyright (C) 1992 - 2013	*
*	Interactive Software Designs, Inc.	*
*	Moscow, ID 83843, U.S.A.	*
*		*
*	All Rights Reserved	*
*	0	*
*	Ver. 5.209 96 - 2083	*
**	*****	**

Problem Description : SWLF LSMPA OL SEC C-C1T2 TOTAL NOD2

SEGMENT BOUNDARY COORDINATES

2 SURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	.0	3560.3	458.7	3713.2	9
2	458.7	3713.2	853.9	3714.2	9

20 SUBSURFACE boundary segments

Segment	x-left	y-left	x-right	y-right	Soil Unit
No.	(ft)	(ft)	(ft)	(ft)	Below Segment
1	.0	3560.3	3.0	3560.3	5
2	3.0	3560.3	458.4	3712.1	4
3	458.4	3712.1	853.9	3713.2	4
4	3.0	3560.3	155.3	3560.0	5
5	155.3	3560.0	336.9	3620.0	8
6	336.9	3620.0	342.8	3622.4	8
7	342.8	3622.4	609.0	3689.0	8
8	609.0	3689.0	854.4	3702.0	8

9	.0	3558.3	155.7	3558.0	7
10	155.7	3558.0	343.3	3620.5	6
11	343.3	3620.5	609.3	3687.0	4
12	609.3	3687.0	853.9	3700.0	4
13	.0	3553.3	156.2	3550.0	3
14	156.2	3550.0	285.8	3598.2	3
15	285.8	3598.2	315.2	3608.0	2
16	315.2	3608.0	352.7	3620.5	1
17	352.7	3620.5	613.6	3609.6	1
18	613.6	3609.6	853.9	3605.3	2
19	315.2	3608.0	613.6	3609.6	2
20	285.8	3598.2	854.0	3596.7	3

ISOTROPIC Soil Parameters

9 Soil unit(s) specified

Soil	Unit	Weight	Cohesion	Friction	Pore Pr	essure	Water
Unit	Moist	Sat.	Intercept	Angle	Parameter	Constant	Surface
No.	(pcf)	(pcf)	(psf)	(deg)	Ru	(psf)	No.
1	122.5	122.5	100.0	26.00	.000	.0	0
2	121.9	121.9	100.0	26.00	.000	.0	0
3	122.5	127.0	1200.0	26.70	.000	.0	1
4	59.0	59.0	288.0	23.00	.000	.0	0
5	120.0	125.0	100.0	16.00	.000	.0	0
6	120.0	125.0	1000.0	.00	.000	.0	0
7	120.0	125.0	1000.0	.00	.000	.0	0
8	120.0	125.0	1000.0	.00	.000	.0	0
9	116.0	120.0	100.0	16.00	.000	.0	0
7 8 9	120.0 120.0 116.0	125.0 125.0 120.0	1000.0 1000.0 100.0	00. 00. 16.00	.000 .000 .000	.0 .0 .0	0 0 0

1 Water surface(s) have been specified

Unit weight of water = 62.40 (pcf)

Water Surface No. 1 specified by 2 coordinate points

Point	x-water	y-water
No.	(ft)	(ft)

1	.00	3515.40
2	853.90	3518.20

A critical failure surface searching method, using a random technique for generating sliding BLOCK surfaces, has been specified.

The active and passive portions of the sliding surfaces are generated according to the Rankine theory.

100 trial surfaces will be generated and analyzed.

2 boxes specified for generation of central block base

* * * * * DEFAULT SEGMENT LENGTH SELECTED BY XSTABL * * * * *

Length of line segments for active and passive portions of sliding block is 31.0 ft

Box no.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Width (ft)
1	343.0	3621.5	362.4	3626.3	2.0
2	556.4	3674.8	575.9	3679.7	2.0

Factors of safety have been calculated by the :

* * * * * SIMPLIFIED JANBU METHOD * * * * *

The 10 most critical of all the failure surfaces examined are displayed below - the most critical first

Failure surface No. 1 specified by 10 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	290.01	3656.97

	2	290.93	3656.28	
	3	316.53	3639.34	
	4	342.38	3622.23	
	5	343.65	3620.95	
	6	556.58	3674.23	
	7	558.78	3676.44	
	8	575.89	3702.29	
	9	582.62	3712.45	
	10	583.42	3713.52	
**	Corrected	JANBU FOS =	2.263 **	(Fo factor = 1.060)

Failure surface No. 2 specified by 10 coordinate points

Point No.	x-surf (ft)	y-surf (ft)	
1	289.78	3656.89	
2	290.70	3656.20	
3	316.31	3639.25	
4	342.16	3622.14	
5	343.07	3621.23	
6	563.22	3675.95	
7	565.34	3678.08	
8	582.45	3703.93	
9	588.10	3712.46	
10	588.91	3713.53	

** Corrected JANBU FOS = 2.295 ** (Fo factor = 1.059)

Failure surface No. 3 specified by 10 coordinate points

	Point No.	x-surf (ft)	y-surf (ft)	
	1	289.70	3656.87	
	2	290.62	3656.17	
	3	316.23	3639.22	
	4	342.08	3622.11	
	5	343.42	3620.78	
	6	563.20	3676.93	
	7	564.02	3677.75	
	8	581.13	3703.60	
	9	587.00	3712.46	
	10	587.80	3713.53	
**	Corrected	JANBU FOS =	2.297 **	(Fo factor = 1.059)

Failure surface No. 4 specified by 10 coordinate points

	Point No.	x-surf (ft)	y-surf (ft)	
	1	292.28	3657.73	
	2	293.20	3657.03	
	3	318.93	3640.00	
	4	344.78	3622.89	
	5	346.05	3621.62	
	6	558.88	3675.54	
	7	560.11	3676.77	
	8	577.22	3702.62	
	9	583.73	3712.45	
	10	584.53	3713.52	
**	Corrected	JANBU FOS =	2.309 **	(Fo factor = 1.060)

Failure surface No. 5 specified by 10 coordinate points

Point No.	x-surf (ft)	y-surf (ft)	
	(,	(/	
1	293.46	3658.12	
2	294.38	3657.43	
3	320.21	3640.33	
4	346.06	3623.22	
5	347.28	3622.00	
6	560.08	3675.47	
7	561.81	3677.19	
8	578.92	3703.04	
9	585.15	3712.45	
10	585.96	3713.52	

** Corrected JANBU FOS = 2.318 ** (Fo factor = 1.060)

Failure surface No. 6 specified by 10 coordinate points

Point No.	x-surf (ft)	y-surf (ft)
1	290.04	3656.98
2	290.96	3656.29
3	316.55	3639.35
4	342.40	3622.24
5	343.28	3621.36
6	571.01	3678.10

	7	572.87	3679.96	
	8	589.98	3705.81	
	9	594.40	3712.48	
	10	595.20	3713.55	
**	Corrected	JANBU FOS =	2.327 **	(Fo factor = 1.058)
Fail	ure surface	e No. 7 specif	ied by 11 co	ordinate points
	Point	x-surf	y-surf	
	No.	(ft)	(ft)	
	1	294.35	3658.42	
	2	295.27	3657.72	
	3	295.33	3657.68	
	4	321.18	3640.57	
	5	347.03	3623.46	
	6	348.55	3621.94	
	7	567.96	3677.09	
	8	570.15	3679.28	
	9	587.26	3705.13	
	10	592.12	3712.47	
	11	592.93	3713.54	

** Corrected JANBU FOS = 2.328 ** (Fo factor = 1.059)

Failure surface No. 8 specified by 10 coordinate points

	Point No.	x-surf (ft)	y-surf (ft)	
	1	290.79	3657.23	
	2	291.71	3656.54	
	3	317.30	3639.60	
	4	343.15	3622.49	
	5	343.81	3621.84	
	6	568.58	3677.09	
	7	570.98	3679.49	
	8	588.09	3705.34	
	9	592.81	3712.47	
	10	593.62	3713.54	
**	Corrected	JANBU FOS =	2.330 **	(Fo factor = 1.058)

Failure surface No. 9 specified by 10 coordinate points

Point x-surf y-surf

	No.	(ft)	(ft)	
	1	292.86	3657.92	
	2	293.78	3657.23	
	3	319.57	3640.16	
	4	345.42	3623.05	
	5	346.53	3621.94	
	6	564.49	3676.79	
	7	565.92	3678.22	
	8	583.03	3704.07	
	9	588,59	3712.46	
	10	589.39	3713.53	
**	Corrected	JANBU FOS =	2.334 **	(Fo factor = 1.059)

Failure surface No.10 specified by 10 coordinate points

	Point	x-surf	y-surf	
	No.	(ft)	(ft)	
	1	290.90	3657.27	
	2	291.82	3656.57	
	3	317.42	3639.63	
	4	343.27	3622.52	
	5	344.60	3621.18	
	6	570.68	3678.90	
	7	571.37	3679.59	
	8	588.48	3705.44	
	9	593.14	3712.47	
	10	593.94	3713.54	
**	Corrected	JANBU FOS =	2.336 **	(Fo factor = 1.058)

The following is a summary of the TEN most critical surfaces Problem Description : SWLF LSMPA OL SEC C-C1T2 TOTAL NOD2

	Modified JANBU FOŚ	Correction Factor	Initial x-coord (ft)	Terminal x-coord (ft)	Available Strength (lb)
1.	2.263	1.060	290.01	583.42	3.205E+05
2.	2.295	1.059	289.78	588.91	3.253E+05
3.	2.297	1.059	289.70	587.80	3.244E+05
4.	2.309	1.060	292.28	584.53	3.190E+05

5.	2.318	1.060	293.46	585.96	3.192E+05
6.	2.327	1.058	290.04	595.20	3.306E+05
7.	2.328	1.059	294.35	592.93	3.250E+05
8.	2.330	1.058	290.79	593.62	3.283E+05
9.	2.334	1.059	292.86	589.39	3.227E+05
10.	2.336	1.058	290.90	593.94	3.286E+05

* * * END OF FILE * * *

XSTABL File: OL-D1T2 1-26-25 13:36

*****	*
* XSTABL	*
*	*
* Slope Stability Analysis	*
* using the	*
* Method of Slices	*
*	*
* Copyright (C) 1992 - 2013	*
* Interactive Software Designs, Inc.	*
* Moscow, ID 83843, U.S.A.	*
*	*
* All Rights Reserved	*
*	*
* Ver. 5.209 96 - 2083	*
******	*

Problem Description : SWLF LSMPA OL SEC D-D1T2 TOTAL NOD2

SEGMENT BOUNDARY COORDINATES

7 SURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	.0	3604.7	71.6	3609.2	1
2	71.6	3609.2	81.9	3610.5	1
3	81.9	3610.5	97.0	3610.0	1
4	97.0	3610.0	109.3	3607.9	1
5	109.3	3607.9	111.3	3608.0	5
6	111.3	3608.0	465.3	3696.5	5
7	465.3	3696.5	757.0	3712.7	5

9 SUBSURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	109.3	3607.9	112.4	3607.2	1
2	112.4	3607.2	419.2	3683.9	3
3	419.2	3683.9	429.4	3686.5	4

4	429.4	3686.5	465.8	3695.6	3
5	465.8	3695.6	757.5	3711.7	3
6	429.4	3686.5	757.5	3702.2	4
7	419.2	3683.9	757.2	3700.2	3
8	109.3	3607.9	165.8	3592.0	1
9	165.8	3592.0	757.2	3592.0	1

ISOTROPIC Soil Parameters

5 Soil unit(s) specified

Soil	Unit	Weight	Cohesion	Friction	Pore Pr	essure	Water
Unit	Moist	Sat.	Intercept	Angle	Parameter	Constant	Surface
No.	(pcf)	(pcf)	(psf)	(deg)	Ru	(psf)	No.
1	122.5	127.0	1200.0	26.70	.000	.0	1
2	122.5	127.0	1200.0	26.70	.000	.0	0
3	59.0	59.0	288.0	23.00	.000	.0	0
4	120.0	125.0	1000.0	.00	.000	.0	0
5	116.0	120.0	100.0	16.00	.000	.0	0

1 Water surface(s) have been specified

Unit weight of water = 62.40 (pcf)

Water Surface No. 1 specified by 2 coordinate points

Point No.	x-water (ft)	y-water (ft)
1	.00	3518.60
2	757.20	3521.30

A critical failure surface searching method, using a random technique for generating sliding BLOCK surfaces, has been specified.

The active and passive portions of the sliding surfaces are generated according to the Rankine theory.

100 trial surfaces will be generated and analyzed.

2 boxes specified for generation of central block base

* * * * * DEFAULT SEGMENT LENGTH SELECTED BY XSTABL * * * * *

Length of line segments for active and passive portions of sliding block is 22.0 ft

Box	x-left	y-left	x-right	y-right	Width
no.	(ft)	(ft)	(ft)	(ft)	(ft)
1	439.5	3686.0	449.4	3686.6	2.0
2	707.2	3699.1	717.2	3699.5	2.0

**	Factor of safety calculation for surface # 1	**
**	failed to converge within FIFTY iterations	**
**		**
**	The last calculated value of the FOS was 21.8099	**
**	This will be ignored for final summary of results	**
*****	***************************************	****

The trial failure surface in question is defined by the following 8 coordinate points

Point No.	x-surf (ft)	y-surf (ft)
1	435.62	3689.08
2	436.64	3688.31
3	438.71	3686.95
4	440.32	3685.34
5	714.52	3699.90
6	714.78	3700.16
7	721.09	3709.69
8	721.89	3710.75

2	439.78	3689.10
3	442.74	3687.14
4	443.45	3686.43
5	712.61	3699.94
6	712.73	3700.06
7	719.04	3709.58
8	719.83	3710.64

** Factor of safety calculation for surface # 100 ** ** failed to converge within FIFTY iterations ** ** ** ** The last calculated value of the FOS was 24.6188 ** ** This will be ignored for final summary of results **

The trial failure surface in question is defined by the following 8 coordinate points

Point No.	x-surf (ft)	y-surf (ft)
1	442.13	3690.71
2	443.15	3689.94
3	447.07	3687.35
4	447.43	3686.99
5	714.54	3699.69
6	715.02	3700.17
7	721.33	3709.70
8	722.13	3710.76

Factors of safety have been calculated by the :

* * * * * SIMPLIFIED JANBU METHOD * * * * *

The 10 most critical of all the failure surfaces examined are displayed below - the most critical first

Failure surface No. 1 specified by 7 coordinate points

Point No.	x-surf (ft)	y-surf (ft)	
1	441.79	3690.62	
2	442.82	3689.85	

	3	446.51	3687.41	
	4	715.76	3700.20	
	5	715.77	3700.20	
	6	722.09	3709.75	
	7	722.88	3710.81	
**	Corrected	JANBU FOS =	15.557 **	(Fo factor = 1.017)
Fail	ure surface	e No. 2 speci	fied by 8 cc	oordinate points
	Point No.	x-surf (ft)	y-surf (ft)	

	1	437.33	3689.51	
	2	438.35	3688.74	
	3	440.90	3687.05	
	4	442.62	3685.33	
	5	714.07	3698.52	
	6	715.76	3700.20	
	7	722.08	3709.74	
	8	722.88	3710.80	
**	Corrected	JANBU FOS =	20.443 **	(Fo factor = 1.019)

Failure surface No. 3 specified by 8 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	437.05	3689.44
2	438.07	3688.67
3	440.54	3687.03
4	442.33	3685.24
5	713.13	3698.72
6	714.55	3700.14
7	720.86	3709.68
8	721.66	3710.74

** Corrected JANBU FOS = 20.596 ** (Fo factor = 1.019)

Failure surface No. 4 specified by 8 coordinate points

Point No.	x-surf (ft)	y-surf (ft)	
1	435.24	3688.99	
2	436.27	3688.22	

	2	120 22	2686 02
	7	430.22	2605 21
	4 5	439.03	3608 40
	5	707.25	
	7	708.00	
	2 2	714.94	5709.55 5710.41
	0	/15./4	5710.41
**	Corrected	JANBU FOS =	20.802 ** (Fo factor = 1.019)
Fail	ure surface	No. 5 spec	ified by 8 coordinate points
	Point	x-surf	v-surf
	No.	(ft)	(ft)
		(/	(
	1	440.79	3690.37
	2	441.81	3689.60
	3	445.35	3687,26
	4	447.04	3685.57
	5	715.98	3698.72
	6	717.55	3700.29
	7	723.88	3709.84
	0	724 60	
	0	/24.68	3/10.91
**	° Corrected	JANBU FOS =	3710.91 20.895 ** (Fo factor = 1.019)
** Failu	° Corrected ure surface	724.68 JANBU FOS = No. 6 speci	3710.91 20.895 ** (Fo factor = 1.019) ified by 8 coordinate points
** Failı	o Corrected ure surface Point	724.68 JANBU FOS = No. 6 spect	3710.91 20.895 ** (Fo factor = 1.019) ified by 8 coordinate points
** Failı	o Corrected ure surface Point No.	724.68 JANBU FOS = No. 6 speci x-surf (ft)	3710.91 20.895 ** (Fo factor = 1.019) ified by 8 coordinate points y-surf (ft)
** Failı	o Corrected ure surface Point No.	724.68 JANBU FOS = No. 6 spect x-surf (ft)	3710.91 20.895 ** (Fo factor = 1.019) ified by 8 coordinate points y-surf (ft)
** Failı	o Corrected ure surface Point No. 1	724.68 JANBU FOS = No. 6 spect x-surf (ft) 435.62	3710.91 20.895 ** (Fo factor = 1.019) ified by 8 coordinate points y-surf (ft) 3689.08
** Failı	o Corrected ure surface Point No. 1 2	<pre>/24.68 JANBU FOS = No. 6 speci x-surf (ft) 435.62 436.64</pre>	3710.91 20.895 ** (Fo factor = 1.019) ified by 8 coordinate points y-surf (ft) 3689.08 3688.31
** Failı	o Corrected ure surface Point No. 1 2 3	724.68 JANBU FOS = No. 6 speci x-surf (ft) 435.62 436.64 438.71	3710.91 20.895 ** (Fo factor = 1.019) ified by 8 coordinate points y-surf (ft) 3689.08 3688.31 3686.95
** Failı	o Corrected ure surface Point No. 1 2 3 4	<pre>/24.68 JANBU FOS = No. 6 speci x-surf (ft) 435.62 436.64 438.71 440.32</pre>	3710.91 20.895 ** (Fo factor = 1.019) ified by 8 coordinate points y-surf (ft) 3689.08 3688.31 3686.95 3685.34
** Failı	o Corrected ure surface Point No. 1 2 3 4 5	<pre>/24.68 JANBU FOS = No. 6 speci x-surf (ft) 435.62 436.64 438.71 440.32 714.52</pre>	3710.91 20.895 ** (Fo factor = 1.019) ified by 8 coordinate points y-surf (ft) 3689.08 3688.31 3686.95 3685.34 3699.90
** Failı	o Corrected ure surface Point No. 1 2 3 4 5 6	<pre>/24.68 JANBU FOS = No. 6 speci x-surf (ft) 435.62 436.64 438.71 440.32 714.52 714.78</pre>	3/10.91 20.895 ** (Fo factor = 1.019) ified by 8 coordinate points y-surf (ft) 3689.08 3688.31 3686.95 3685.34 3699.90 3700.16
** Failı	o Corrected ure surface Point No. 1 2 3 4 5 6 7	<pre>724.68 JANBU FOS = No. 6 speci x-surf (ft) 435.62 436.64 438.71 440.32 714.52 714.78 721.09</pre>	3/10.91 20.895 ** (Fo factor = 1.019) ified by 8 coordinate points y-surf (ft) 3689.08 3688.31 3686.95 3685.34 3699.90 3700.16 3709.69
** Failı	o Corrected ure surface Point No. 1 2 3 4 5 6 7 8	<pre>724.68 JANBU FOS = No. 6 speci x-surf (ft) 435.62 436.64 438.71 440.32 714.52 714.78 721.09 721.89</pre>	3/10.91 20.895 ** (Fo factor = 1.019) ified by 8 coordinate points y-surf (ft) 3689.08 3688.31 3686.95 3685.34 3699.90 3700.16 3709.69 3710.75
** Failu	Corrected ure surface Point No. 1 2 3 4 5 6 7 8	724.68 JANBU FOS = No. 6 spect x-surf (ft) 435.62 436.64 438.71 440.32 714.52 714.78 721.09 721.89	3/10.91 20.895 ** (Fo factor = 1.019) ified by 8 coordinate points y-surf (ft) 3689.08 3688.31 3686.95 3685.34 3699.90 3700.16 3709.69 3710.75
** Failu	Corrected ure surface Point No. 1 2 3 4 5 6 7 8 Corrected	724.68 JANBU FOS = No. 6 speci x-surf (ft) 435.62 436.64 438.71 440.32 714.52 714.78 721.09 721.89 JANBU FOS =	3/10.91 20.895 ** (Fo factor = 1.019) ified by 8 coordinate points y-surf (ft) 3689.08 3688.31 3686.95 3685.34 3699.90 3700.16 3709.69 3710.75 500.000 ** (Fo factor = 1.017)

Failure surface No. 7 specified by 8 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	443.42	3691.03

2	444.45	3690.26
3	448.73	3687.43
4	448.85	3687.31
5	716.60	3699.25
6	717.65	3700.29
7	723.97	3709.85
8	724.77	3710.91

** Corrected JANBU FOS = 500.000 ** (Fo factor = 1.019)

Failure surface No. 8 specified by 8 coordinate points

Point No.	x-surf (ft)	f y-surf (ft)	
1	437.68	3689.60	
2	438.71	3688.83	
3	441.36	3687.07	
4	442.23	3686.20	
5	715.60	3700.08	
6	715.73	3700.20	
7	722.05	3709.74	
8	722.84	3710.80	

** Corrected JANBU FOS = 500.000 ** (Fo factor = 1.017)

Failure surface No. 9 specified by 8 coordinate points

y-surf	x-surf	Point
(ft)	(ft)	No.
3690.60	441.72	1
3689.83	442.74	2
3687.32	446.54	3
3685.88	447.97	4
3700.12	715.98	5
3700.22	716.07	6
3709.76	722.39	7
3710.82	723.19	8

** Corrected JANBU FOS = 500.000 ** (Fo factor = 1.017)

Failure surface No.10 specified by 8 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)

1	441.45	3690 51
-		5050.54
2	442.47	3689.77
3	446.20	3687.30
4	447.37	3686.13
5	715.50	3699.52
6	716.20	3700.22
7	722.52	3709.77
8	723.32	3710.83

** Corrected JANBU FOS = 500.000 ** (Fo factor = 1.018)

The following is a summary of the TEN most critical surfaces Problem Description : SWLF LSMPA OL SEC D-D1T2 TOTAL NOD2

	Modified JANBU FOS	Correction Factor	Initial x-coord (ft)	Terminal x-coord (ft)	Available Strength (lb)
1.	15.557	1.017	441.79	722.88	1.590E+05
2.	20.443	1.019	437.33	722.88	2.831E+05
з.	20.596	1.019	437.05	721.66	2.821E+05
4.	20.802	1.019	435.24	715.74	2.782E+05
5.	20.895	1.019	440.79	724.68	2.808E+05
6.	500.000	1.017	435.62	721.89	2.835E+05
7.	500.000	1.019	443.42	724.77	2.770E+05
8.	500.000	1.017	437.68	722.84	2.817E+05
9.	500.000	1.017	441.72	723.19	2.777E+05
10.	500.000	1.018	441.45	723.32	2.782E+05

* * * END OF FILE * * *

APPENDIX IIIE-A-4

INFINITE SLOPE STABILITY ANALYSIS

Includes pages IIIE-A-4-1 through IIIE-A-4-13

SOUTHWEST LANDFILL 0120-094-11-107-11 APPENDIX IIIE-A-4 INFINITE SLOPE STABILITY ANALYSIS SUMMARY

Component/Interface	Cohesion (p	Strength Pa Cohesion/Adhesion (psf)		arameters Friction Angle (deg)		γ	β	T (ft)	r _u	b	А	В	Factor of Safety Generated		Recommended Minimum Factor of Safety		Acceptable Factor of Safety	
	Peak	Residual	Peak	Residual	(ff)	(pcf)	(deg)	(ff)					Peak	Residual	Peak	Residual	Peak	Residual
Liner System (3H:1V Maximum	Slope)	-		-														-
Composite Liner																		
Protective Cover/Geocomposite	100	80	18	14	2	120	18.43	0	0.00	3.0	1.0	3.3	2.35	1.85	1.5	1.0	YES	YES
Geocomposite/Textured Geomembrane	100	80	21	10	2	120	18.43	0	0.00	3.0	1.0	3.3	2.53	1.63	1.5	1.0	YES	YES
Textured Geomembrane/Clay Liner	200	80	15	10	2	120	18.43	0	0.00	3.0	1.0	3.3	3.55	1.63	1.5	1.0	YES	YES
Clay Liner/Subgrade (Note 1)	<u>200</u>	<u>100</u>	<u>18</u>	<u>12</u>	<u>2</u>	<u>120</u>	<u>18.43</u>	<u>0</u>	<u>0.00</u>	<u>3.0</u>	<u>1.0</u>	<u>3.3</u>	<u>3.72</u>	<u>2.01</u>	<u>1.5</u>	<u>1.0</u>	<u>YES</u>	<u>YES</u>
Clay Liner Internal	100	-	16	-	2	120	18.43	0	0.00	3.0	1.0	3.3	2.24	-	1.5	-	YES	-
Textured Geomembrane / Geosynthetic Clay Liner	100	0	18	0	2	120	18.43	0	0.00	3.0	1.0	3.3	2.35	-	1.5	-	YES	-
Geosynthetic Clay Liner Internal	100	-	24	-	2	120	18.43	0	0.00	3.0	1.0	3.3	2.71	-	1.5	-	YES	-
Geosynthetic Clay Liner/Subgrade	<u>100</u>	<u>80</u>	<u>25</u>	<u>12</u>	<u>2</u>	<u>120</u>	<u>18.43</u>	<u>0</u>	<u>0.00</u>	<u>3.0</u>	<u>1.0</u>	<u>3.3</u>	<u>2.77</u>	<u>1.74</u>	<u>1.5</u>	<u>1.0</u>	<u>YES</u>	<u>YES</u>
Overliner System (25 Percent M	aximum S	lope)																-
Protective Cover/Geocomposite	100	80	18	14	2	120	11.31	0	0.00	5.0	1.0	5.3	3.83	3.01	1.5	1.0	YES	YES
Geocomposite/Textured Geomembrane	100	80	21	10	2	120	11.31	0	0.00	5.0	1.0	5.3	4.13	2.65	1.5	1.0	YES	YES
Textured Geomembrane/ Geosynthetic Clay Liner	100	80	18	10	2	120	11.31	0	0.00	5.0	1.0	5.3	3.83	2.65	1.5	1.0	YES	YES
Geosynthetic Clay Liner Internal	100	-	24	-	2	120	11.31	0	0.00	5.0	1.0	5.3	4.43	-	1.5	-	YES	-
Geosynthetic Clay Liner/Subgrade	100	100	25	12	2	120	11.31	0	0.00	5.0	1.0	5.3	4.54	3.27	1.5	1.0	YES	YES

<u>Notes</u>

1. Clay liner to subgrade interface assumes that clay is founded on granular or sandy soils. In the event clay liner is founded on predominantly clayey soil, the interface for infinite slope stability analysis would be represented by the "Clay Liner Internal" analysis above.

ATTACHMENT 2

SECTION 305.62(J)(2) LIMITED SCOPE MAJOR PERMIT AMENDMENT REPLACEMENT PAGES (CLEAN VERSION)

THIS ATTACHMENT INCLUDES ONLY CLEAN VERSIONS OF THE PAGES WITH REDLINE/STRIKEOUT INCLUDED IN ATTACHMENT 1.

SOUTHWEST LANDFILL RANDALL COUNTY, TEXAS TCEQ PERMIT NO. MSW-1663C

LIMITED SCOPE MAJOR PERMIT AMENDMENT APPLICATION

PART III – SITE DEVELOPMENT PLAN APPENDIX IIIB OVERLINER POINT OF COMPLIANCE DEMONSTRATION

Prepared for

Southwest Landfill TX, LP

TCEQ Approved February 20, 2020

Revised January 2025

Weaver Consultants Group, LLC TBPE Registration No. F-3727 6420 Southwest Boulevard, Suite 206 Fort Worth, Texas 76109 817-735-9770

WCG Project No. 0120-094-11-140

This document is intended for permitting purposes only.

Table 2-2
Chemical Constituent Concentrations in Leachate

Constituent	MCL Listed in §330.331(a) (1) (mg/l)	Site Specific Leachate Quality ^{1, 3} (mg/l)	Leachate Quality Information Historically Used for POC Demonstrations in Texas (mg/l)	DAF Range (from Site Specific Data to Historically Used Data) ⁴
Arsenic	0.05	0.0855	5.0	<1 to 100
Barium	1.0	7.450	100.0	7.45 to 100
Benzene ²	0.005	0.0025	0.814	<1 to 163
Cadmium ²	0.01	0.0001	1.0	<1 to 100
Carbon tetrachloride ²	0.005	0.0025	0.5	<1 to 100
Chromium (hexavalent)	0.05	0.0126	5.0	<1 to 100
2,4-Dichlorophenoxy acetic acid ²	0.1	0.0005	10.0	<1 to 100
1,4-Dichlorobenzene ²	0.075	0.0025	7.5	<1 to 100
1,2-Dichloroethane ²	0.005	0.0025	0.5	<1 to 100
1,1-Dichloroethylene ²	0.007	0.0025	0.7	<1 to 100
Endrin ²	0.0002	0.00005	0.05	<1 to 250
Fluoride	4	0.94		<1
Lindane ²	0.004	0.000025	0.4	<1 to 100
Lead ²	0.05	0.0025	5.0	<1 to 100
Mercury ²	0.002	0.0001	0.2	<1 to 100
Methoxychlor ²	0.1	0.00025		<1
Nitrate ²	10	0.00005		<1
Selenium ²	0.01	0.0005	1.0	<1 to 100
Silver ²	0.05	0.00025	5.0	<1 to 100
Toxaphene ²	0.005	0.0005	0.5	<1 to 100
1,1,1-Trichloroethane ²	0.2	0.0025		<1
Trichloroethylene	0.005	0.0025	1.3	<1 to 260
2,4,5-Trichlorophenoxy acetic acid ²	0.01	0.0005	1.0	1 to 100
Vinyl Chloride ²	0.002	0.001	0.2	<1 to 100

Leachate concentrations obtained from historical leachate samples provided by the site.
 For constituents not detected at reporting limits, one-half of the reporting limit is listed.

³ The constituents represent the highest values reported from laboratory testing from a leachate sample in June 2017 from the shared sump in Sectors 7 and 10 and annual historical leachate sampling for constituents tested.

⁴ This column illustrates the range of DAFs needed for each constituent.

Table 4-1 Summary of Constituent Levels at the POC (Using Site Specific Leachate Data)

Constituent	C _{BG} , Background Concentration ¹ (mg/l)	C _P (mg/l) (Constituent Concentration at the POC due to Estimated Leachate Percolation)	=	C _o ²	(/ DAF ³ mg/l)	C _{BG} + C _P = C _T at POC (mg/l)	MCL (mg/l) Listed in §330.331(a)(1)	C _T at POC < MCL
Arsenic	0.0056	6.81E-06	=	0.0855	/	12,552	0.0056	0.05	Yes
Barium	0.07	1.16E-04	=	7.450	/	12,552	0.07	1.0	Yes
Benzene	0.0005	1.99E-07	=	0.0025	/	12,552	0.0005	0.005	Yes
Cadmium	0.001	7.97E-09	=	0.0001	/	12,552	0.001	0.01	Yes
Carbon tetrachloride	0.0025	1.99E-07	=	0.0025	/	12,552	0.0025	0.005	Yes
Chromium (hexavalent)	0.010	1.0E-06	=	0.0126	/	12,552	0.01	0.05	Yes
2,4-Dichlorophenoxy acetic acid	0.09	3.98E-08	=	0.0005	/	12,552	0.09	0.1	Yes
1,4-Dichlorobenzene	0.001	1.99E-07	=	0.0025	/	12,552	0.001	0.075	Yes
1,2-Dichloroethane	0.0005	1.99E-07	=	0.0025	/	12,552	0.0005	0.005	Yes
1,1-Dichloroethylene	0.0014	1.99E-07	=	0.0025	/	12,552	0.0014	0.007	Yes
Endrin	0.00005	3.98E-09	=	0.00005	/	12,552	0.0001	0.0002	Yes
Fluoride	3.85	7.49E-05	=	0.94	/	12,552	3.85	4	Yes
Lindane	0.0005	1.99E-09	=	0.000025	/	12,552	0.0005	0.004	Yes
Lead	0.0075	1.99E-07	=	0.0025	/	12,552	0.0075	0.05	Yes
Mercury	0.0001	7.97E-09	=	0.0001	/	12,552	0.0001	0.002	Yes
Methoxychlor	0.00025	1.99E-08	=	0.00025	/	12,552	0.0003	0.1	Yes
Nitrate	3.6	3.98E-09	=	0.00005	/	12,552	3.6	10	Yes
Selenium	0.005	3.98E-08	=	0.0005	/	12,552	0.005	0.01	Yes
Silver	0.005	1.99E-08	=	0.00025	/	12,552	0.005	0.05	Yes
Toxaphene	0.0005	3.98E-08	=	0.0005	/	12,552	0.0005	0.005	Yes
1,1,1-Trichloroethane	0.0005	1.99E-07	=	0.0025	/	12,552	0.0005	0.2	Yes
Trichloroethylene	0.0025	1.99E-07	=	0.0025	/	12,552	0.0025	0.005	Yes
2,4,5-Trichlorophenoxy acetic acid	0.0005	3.98E-08	=	0.0005	/	12,552	0.0005	0.01	Yes
Vinyl Chloride	0.001	7.97E-08	=	0.001	/	12,552	0.001	0.002	Yes

¹ Background concentrations have been obtained from Table 1-1.

² Leachate concentrations (C₀, Site Specific Concentrations) represent levels obtained from the leachate sample analysis results provided in Table 2-2.

³ DAF value for Case II presented on Figure 3-7.

Table 4-2Summary of Constituent Levels at the POC(Using Historical Guidance Information)

Constituent	C _{BG} , Background Concentration ¹ (mg/l)	C _P (mg/l) (Constituent Concentration at the POC)		C	o ² / DAF ³ (mg/l)	C _{BG} + C _P = C _T ² at POC (mg/l)	MCL (mg/l) Listed in §330.331(a)(1)	C⊤ at POC < MCL
Arsenic	0.0056	4.0E-04	=	5.0	/12,552	0.006	0.05	Yes
Barium	0.07	8.0E-03	=	100.0	/12,552	0.078	1.0	Yes
Benzene	0.0005	6.5E-05	=	0.814	/12,552	0.001	0.005	Yes
Cadmium	0.001	8.0E-05	=	1.0	/12,552	0.001	0.01	Yes
Carbon tetrachloride	0.0025	4.0E-05	=	0.5	/12,552	0.003	0.005	Yes
Chromium (hexavalent)	0.010	4.0E-04	=	5.0	/12,552	0.010	0.05	Yes
2,4-Dichlorophenoxy acetic acid	0.09	8.0E-04	=	10.0	/12,552	0.091	0.1	Yes
1,4-Dichlorobenzene	0.001	6.0E-04	=	7.5	/12,552	0.002	0.075	Yes
1,2-Dichloroethane	0.0005	4.0E-05	=	0.5	/12,552	0.001	0.005	Yes
1-1-Dichloroethylene	0.0014	5.6E-05	=	0.7	/12,552	0.001	0.007	Yes
Endrin	0.00005	4.0E-06	=	0.05	/12,552	0.000	0.0002	Yes
Fluoride	3.85	-	=		/12,552		4	
Lindane	0.0005	3.2E-05	=	0.4	/12,552	0.001	0.004	Yes
Lead	0.0075	4.0E-04	=	5.0	/12,552	0.008	0.05	Yes
Mercury	0.0001	1.6E-05	=	0.2	/12,552	0.000	0.002	Yes
Methoxychlor ⁴	0.00025		=		/12,552		0.1	
Nitrate ⁴	3.6		=		/12,552		10	
Selenium	0.005	8.0E-05	=	1.0	/12,552	0.005	0.01	Yes
Silver	0.005	4.0E-04	=	5.0	/12,552	0.005	0.05	Yes
Toxaphene	0.0005	4.0E-05	=	0.5	/12,552	0.001	0.005	Yes
1,1,1-Trichloroethane ⁴	0.0005		=		/12,552		0.2	
Trichloroethylene	0.0025	1.0E-04	=	1.3	/12,552	0.003	0.005	Yes
2,4,5-Trichlorophenoxy acetic acid	0.0005	8.0E-05	=	1.0	/12,552	0.001	0.01	Yes
Vinyl Chloride	0.001	1.6E-05	=	0.2	/12,552	0.001	0.002	Yes

¹ Background concentrations have been obtained from Table 1-1.

² C_P represents chemical concentrations estimated by the fate and transport model or the POC. Initial concentrations, C₀, has been reproduced from historical standard information utilized by TCEQ as discussed in Section 1.3. Total concentration for each constituent at the POC is the sum of C_P and the background concentration, C_{BG}.

³ DAF value for Case II presented on Figure 3-7.

Table 5-1Summary of Constituent Levels at the POC(Using Site Specific Leachate Data)

Constituent	C _{BG} , Background Concentration ¹ (mg/l)	C _P (mg/l) (Constituent Concentration at the POC due to Estimated Leachate Percolation)	=	C _o ² / (mg/l	DAF ³)	C _{BG} + C _P = C _T at POC (mg/l)	MCL (mg/l) Listed in §330.331(a)(1)	C⊤ at POC < MCL
Arsenic	0.0056	8.81E-06	=	0.0855 / 9	9,702	0.0056	0.05	Yes
Barium	0.07	7.68E-04	=	7.450 / 9	9,702	0.07	1.0	Yes
Benzene	0.0005	2.58E-07	=	0.0025 / 9	9,702	0.0005	0.005	Yes
Cadmium	0.001	1.03E-08	=	0.0001 / 9	9,702	0.001	0.01	Yes
Carbon tetrachloride	0.0025	2.58E-07	=	0.0025 / 9	9,702	0.0025	0.005	Yes
Chromium (hexavalent)	0.010	1.30E-06	=	0.0126 / 9	9,702	0.01	0.05	Yes
2,4-Dichlorophenoxy acetic acid	0.09	5.15E-08	=	0.0005 / 9	9,702	0.09	0.1	Yes
1,4-Dichlorobenzene	0.001	2.58E-07	=	0.0025 / 9	9,702	0.001	0.075	Yes
1,2-Dichloroethane	0.0005	2.58E-07	=	0.0025 / 9	9,702	0.0005	0.005	Yes
1,1-Dichloroethylene	0.0014	2.58E-07	=	0.0025 / 9	9,702	0.0014	0.007	Yes
Endrin	0.00005	5.15E-09	=	0.00005 / 9	9,702	0.0001	0.0002	Yes
Fluoride	3.85	9.69E-05	=	0.94 / 9	9,702	3.85	4	Yes
Lindane	0.0005	2.58E-09	=	0.000025 / 9	9,702	0.0005	0.004	Yes
Lead	0.0075	2.58E-07	=	0.0025 / 9	9,702	0.0075	0.05	Yes
Mercury	0.0001	1.03E-08	=	0.0001 / 9	9,702	0.0001	0.002	Yes
Methoxychlor	0.00025	2.58E-08	=	0.00025 / 9	9,702	0.0003	0.1	Yes
Nitrate	3.6	5.15E-09	=	0.00005 / 9	9,702	3.6	10	Yes
Selenium	0.005	5.15E-08	=	0.0005 / 9	9,702	0.005	0.01	Yes
Silver	0.005	2.58E-08	=	0.00025 / 9	9,702	0.005	0.05	Yes
Toxaphene	0.0005	5.15E-08	=	0.0005 / 9	9,702	0.0005	0.005	Yes
1,1,1-Trichloroethane	0.0005	2.58E-07	=	0.0025 / 9	9,702	0.0005	0.2	Yes
Trichloroethylene	0.0025	2.58E-07	=	0.0025 / 9	9,702	0.0025	0.005	Yes
2,4,5-Trichlorophenoxy acetic acid	0.0005	5.15E-08	=	0.0005 / 9	9,702	0.0005	0.01	Yes
Vinyl Chloride	0.001	1.03E-07	=	0.001 / 9	9,702	0.001	0.002	Yes

¹ Background concentrations have been obtained from Table 1-1.

² Leachate concentrations (Co, Site Specific Concentrations) represent levels obtained from the leachate sample analysis results provided in Table 2-2.

³ DAF value for Case II presented on Figure 3 in Appendix IIIB-C.

Table 5-2Summary of Constituent Levels at the POC(Using Historical Guidance Information)

Constituent	C _{BG} , Background Concentration ¹ (mg/l)	C _P (mg/l) (Constituent Concentration at the POC)	=	Co ² / DAF ³ (mg/l)	C _{BG} + C _P = C _T ² at POC (mg/l)	MCL (mg/l) Listed in §330.331(a)(1)	C⊤ at POC < MCL
Arsenic	0.0056	5.2E-04	=	5.0 / 9,702	0.006	0.05	Yes
Barium	0.07	1.0E-02	=	100.0 / 9,702	0.080	1.0	Yes
Benzene	0.0005	8.4E-05	=	0.814 / 9,702	0.001	0.005	Yes
Cadmium	0.001	1.0E-04	=	1.0 / 9,702	0.001	0.01	Yes
Carbon tetrachloride	0.0025	5.2E-05	=	0.5 / 9,702	0.003	0.005	Yes
Chromium (hexavalent)	0.010	5.2E-04	=	5.0 / 9,702	0.011	0.05	Yes
2,4-Dichlorophenoxy acetic acid	0.09	1.0E-03	=	10.0 / 9,702	0.091	0.1	Yes
1,4-Dichlorobenzene	0.001	7.7E-04	=	7.5 / 9,702	0.002	0.075	Yes
1,2-Dichloroethane	0.0005	5.2E-05	=	0.5 / 9,702	0.001	0.005	Yes
1-1-Dichloroethylene	0.0014	7.2E-05	=	0.7 / 9,702	0.001	0.007	Yes
Endrin	0.00005	5.2E-06	=	0.05 / 9,702	0.000	0.0002	Yes
Fluoride	3.85		=	/ 9,702		4	
Lindane	0.0005	4.1E-05	=	0.4 / 9,702	0.001	0.004	Yes
Lead	0.0075	5.2E-04	=	5.0 / 9,702	0.008	0.05	Yes
Mercury	0.0001	2.1E-05	=	0.2 / 9,702	0.000	0.002	Yes
Methoxychlor ⁴	0.00025		=	/ 9,702		0.1	
Nitrate ⁴	3.6		=	/ 9,702		10	
Selenium	0.005	1.0E-04	=	1.0 / 9,702	0.005	0.01	Yes
Silver	0.005	5.2E-04	=	5.0 / 9,702	0.006	0.05	Yes
Toxaphene	0.0005	5.2E-05	=	0.5 / 9,702	0.001	0.005	Yes
1,1,1-Trichloroethane ⁴	0.0005		=	/ 9,702		0.2	
Trichloroethylene	0.0025	1.3E-04	=	1.3 / 9,702	0.003	0.005	Yes
2,4,5-Trichlorophenoxy acetic acid	0.0005	1.0E-04	=	1.0 / 9,702	0.001	0.01	Yes
Vinyl Chloride	0.001	2.1E-05	=	0.2 / 9,702	0.001	0.002	Yes

¹ Background concentrations have been obtained from Table 1-1.

² C_P represents chemical concentrations estimated by the fate and transport model or the POC. Initial concentrations, C₀, has been reproduced from historical standard information utilized by TCEQ as discussed in Section 1.3. Total concentration for each constituent at the POC is the sum of C_P and the background concentration, C_{BG}.

³ DAF value for Case II presented on Figure 3 in Appendix IIIB-C.

Table 6-3Summary of Constituent Levels at the POC(Using Site Specific Leachate Data)

Constituent	C _{BG} , Background Concentration ¹ (mg/l)	C _P (mg/l) (Constituent Concentration at the POC due to Estimated Leachate Percolation)	=	Co² (n	/ DAF ³ ng/l)	С _{вG} + С _P = С _T at POC (mg/I)	MCL (mg/l) Listed in §330.331(a)(1)	C⊤ at POC < MCL
Arsenic	0.0056	2.3E-05	=	0.0855	/ 3,656	0.0056	0.05	Yes
Barium	0.07	2.0E-03	=	7.450	/ 3,656	0.07	1.0	Yes
Benzene	0.0005	6.8E-07	=	0.0025	/ 3,656	0.0005	0.005	Yes
Cadmium	0.001	2.7E-08	=	0.0001	/ 3,656	0.001	0.01	Yes
Carbon tetrachloride	0.0025	6.8E-07	=	0.0025	/ 3,656	0.0025	0.005	Yes
Chromium (hexavalent)	0.010	3.4E-06	=	0.0126	/ 3,656	0.01	0.05	Yes
2,4-Dichlorophenoxy acetic acid	0.09	1.4E-07	=	0.0005	/ 3,656	0.09	0.1	Yes
1,4-Dichlorobenzene	0.001	6.8E-07	=	0.0025	/ 3,656	0.001	0.075	Yes
1,2-Dichloroethane	0.0005	6.8E-07	=	0.0025	/ 3,656	0.0005	0.005	Yes
1,1-Dichloroethylene	0.0014	6.8E-07	=	0.0025	/ 3,656	0.0014	0.007	Yes
Endrin	0.00005	1.4E-08	=	0.00005	/ 3,656	0.0001	0.0002	Yes
Fluoride	3.85	2.6E-04	=	0.94	/ 3,656	3.85	4	Yes
Lindane	0.0005	6.8E-09	=	0.000025	/ 3,656	0.0005	0.004	Yes
Lead	0.0075	6.8E-07	=	0.0025	/ 3,656	0.0075	0.05	Yes
Mercury	0.0001	2.7E-08	=	0.0001	/ 3,656	0.0001	0.002	Yes
Methoxychlor	0.00025	6.8E-08	=	0.00025	/ 3,656	0.0003	0.1	Yes
Nitrate	3.6	1.4E-08	=	0.00005	/ 3,656	3.6	10	Yes
Selenium	0.005	1.4E-07	=	0.0005	/ 3,656	0.005	0.01	Yes
Silver	0.005	6.8E-08	=	0.00025	/ 3,656	0.005	0.05	Yes
Toxaphene	0.0005	1.4E-07	=	0.0005	/ 3,656	0.0005	0.005	Yes
1,1,1-Trichloroethane	0.0005	6.8E-07	=	0.0025	/ 3,656	0.0005	0.2	Yes
Trichloroethylene	0.0025	6.8E-07	=	0.0025	/ 3,656	0.0025	0.005	Yes
2,4,5-Trichlorophenoxy acetic acid	0.0005	1.4E-07	=	0.0005	/ 3,656	0.0005	0.01	Yes
Vinyl Chloride	0.001	2.7E-07	=	0.001	/ 3,656	0.001	0.002	Yes

¹ Background concentrations have been obtained from Table 1-1.

² Leachate concentrations (Co, Site Specific Concentrations) represent levels obtained from the leachate sample analysis results provided in Table 2-2.

³ DAF value for Case II presented on Figure 6 in Appendix IIIB-D.

Table 6-4Summary of Constituent Levels at the POC(Using Historical Guidance Information)

Constituent	C _{BG} , Background Concentration ¹ (mg/l)	C _P (mg/l) (Constituent Concentration at the POC)	=	Co² (m	/ DAF ³ g/l)	C _{BG} + C _P = C _T ² at POC (mg/l)	MCL (mg/l) Listed in §330.331(a)(1)	C⊤ at POC < MCL
Arsenic	0.0056	1.4E-03	=	5.0	/ 3,656	0.007	0.05	Yes
Barium	0.07	2.7E-02	=	100.0	/ 3,656	0.097	1.0	Yes
Benzene	0.0005	2.2E-04	=	0.814	/ 3,656	0.001	0.005	Yes
Cadmium	0.001	2.7E-04	=	1.0	/ 3,656	0.001	0.01	Yes
Carbon tetrachloride	0.0025	1.4E-04	=	0.5	/ 3,656	0.003	0.005	Yes
Chromium (hexavalent)	0.010	1.4E-03	=	5.0	/ 3,656	0.011	0.05	Yes
2,4-Dichlorophenoxy acetic acid	0.09	2.7E-03	=	10.0	/ 3,656	0.093	0.1	Yes
1,4-Dichlorobenzene	0.001	2.1E-03	=	7.5	/ 3,656	0.003	0.075	Yes
1,2-Dichloroethane	0.0005	1.4E-04	=	0.5	/ 3,656	0.001	0.005	Yes
1-1-Dichloroethylene	0.0014	1.9E-04	=	0.7	/ 3,656	0.002	0.007	Yes
Endrin	0.00005	1.4E-05	=	0.1	/ 3,656	0.000	0.0002	Yes
Fluoride	3.85		=		/ 3,656		4	
Lindane	0.0005	1.1E-04	=	0.4	/ 3,656	0.001	0.004	Yes
Lead	0.0075	1.4E-03	=	5.0	/ 3,656	0.009	0.05	Yes
Mercury	0.0001	5.5E-05	=	0.2	/ 3,656	0.000	0.002	Yes
Methoxychlor ⁴	0.00025		=		/ 3,656		0.1	
Nitrate ⁴	3.6		=		/ 3,656		10	
Selenium	0.005	2.7E-04	=	1.0	/ 3,656	0.005	0.01	Yes
Silver	0.005	1.4E-03	=	5.0	/ 3,656	0.006	0.05	Yes
Toxaphene	0.0005	1.4E-04	=	0.5	/ 3,656	0.001	0.005	Yes
1,1,1-Trichloroethane ⁴	0.0005		=		/ 3,656		0.2	
Trichloroethylene	0.0025	3.6E-04	=	1.3	/ 3,656	0.003	0.005	Yes
2,4,5-Trichlorophenoxy acetic acid	0.0005	2.7E-04	=	1.0	/ 3,656	0.001	0.01	Yes
Vinyl Chloride	0.001	5.5E-05	=	0.2	/ 3,656	0.001	0.002	Yes

¹ Background concentrations have been obtained from Table 1-1.

² C_P represents chemical concentrations estimated by the fate and transport model or the POC. Initial concentrations, C₀, has been reproduced from historical standard information utilized by TCEQ as discussed in Section 1.3. Total concentration for each constituent at the POC is the sum of C_P and the background concentration, C_{BG}.

³ DAF value for Case II presented on Figure 6 in Appendix IIIB-D.

CONTENTS

FIGURES		IIIB-D-1
Figure 1	Typical Section Sequence of Events	IIIB-D-2
Figure 2	Typical Section Sequence of Events	IIIB-D-3
Figure 3	Case I	IIIB-D-4
Figure 4	Case II	IIIB-D-5
Figure 5	Case III	IIIB-D-6
Figure 6	Case IV	IIIB-D-7

HELP MODEL ANALYSIS

IIIB-D-8

ADDITIONAL DEMONSTRATIONS

IIIB-D-62

	DRAFT X FOR PERMITTING PURPOSES ONL' ISSUED FOR CONSTRUCTION	AFT R PERMITTING PURPOSES ONLY SUED FOR CONSTRUCTION					
	DATE: 05/2024 FILE: 0120-094-11 CAD: FIG 6-TYP SECTION.dwg	DRAWN BY: JDW DESIGN BY: BPY REVIEWED BY: KDG	NO.	DA 01/2			
D-7	Weaver Consulta tbpe registration no.	ants Group F-3727					

ADDITIONAL DEMONSTRATIONS

The purpose of modeling the following additional demonstrations is to evaluate the alternative liner POC demonstrations shown in Figures 3 through 6 under various conditions, that includes varying groundwater gradients, minimum and maximum observed hydraulic conductivities, and assuming that the alternative liner leachate collection system does not function as designed allowing a buildup of 12 inches of head on the liner system.

Groundwater Gradients Demonstration

The groundwater elevation maps from the semi-annual groundwater reports, provided by Hydrex Environmental from June 2020 through June 2024, were analyzed to assess changes in groundwater gradients over time. The groundwater gradients vary from 0.0053 ft/ft to 0.0056 ft/ft along Section A, which is shown on Figure 3-2 in Appendix IIIB. The Case III model presented on Figure 5 in Appendix IIIB-D was chosen for this evaluation as the demonstration represents the lowest DAF under expected groundwater flow conditions (i.e., groundwater flow toward north). Case III was run with a gradient of 0.0058 which represents the maximum gradient observed. An additional run with a gradient of 0.0052 was run to represent the minimum gradient. The results are presented in Table 1 below which show the design is complainant with §330.311(a)(1).

Case	Groundwater Gradient (ft/ft)	Calculated DAF ¹	Minimum Required DAF	Design Compliant with §330.331(a)(1)	
Case III	0.0058	16,031	260	Yes	
	0.0052	12,704	260	Yes	

Table 1Groundwater Gradients Demonstration Results

¹ For each model, the groundwater well with the lowest calculated DAF is shown in the table.

Additionally, the Case IV model presented on Figure 6 in Appendix IIID artificially reverses the groundwater flow to the south using a conservative gradient of 0.0029. This condition results in a DAF of 3,656 which is presented on Figure 6 in Appendix IIIB-D.

Hydraulic Conductivity Demonstration

The minimum and maximum observed hydraulic conductivities in Stratum II were analyzed to assess the impacts of hydraulic conductivity on the modeled concentrations. As shown in Tables 4-3 and 4-4 in Appendix IIIG, the maximum hydraulic conductivity is 2.08x10⁻³ cm/s while the minimum is 2.45x10⁻⁵ cm/s within Stratum II. Case III, presented in Figure 5 in Appendix IIIB-D, was chosen for this evaluation. The results are presented in Table 2 below which show the design is complainant with §330.311(a)(1).

Table 2Minimum and Maximum observed Hydraulic conductivityDemonstration Results

Case	Hydraulic Conductivity (cm/sec)	Calculated DAF ¹	Minimum Required DAF	Design Compliant with §330.331(a)(1)
Casa III	2.08x10 ⁻³	16,031	260	Yes
Case III	2.45x10 ⁻⁵	20,666	260	Yes

 1 For each model, the groundwater well with the lowest calculated DAF is shown in the table.

Non-functioning Leachate Collection System Demonstration

This demonstration modifies Case IV in Appendix IIIB-D to assume that the alternative liner leachate collection system does not function as designed and allows a buildup of 12 inches of head on the alternative liner and overliner systems, which will increase the percolation rate in these areas. The assumed leakage through the overliner calculations on Page IIIB-C-1 was applied to the alternative liner areas. The calculation assumes 12 inches of head on the liner and 4 defects per acre for a resulting percolation of 0.066 mm/yr. The results are presented in Table 3 below which show the design is complainant with \$330.311(a)(1).

Table 3Non-functioning Leachate Collection System Demonstration Results

Case	Percolation ² (mm/yr)	Calculated DAF ¹	Minimum Required DAF	Design Compliant with §330.331(a)(1)
Case IV	0.066	1,466	260	Yes

1 For each model, the groundwater well with the lowest calculated DAF is shown in the table.

2 The percolation is applied to both overliner and alternative liner areas.

Summary

Therefore, the demonstration supports the fact that the site design is in compliance with the POC requirements specified in Title 30 TAC §330.331.

SOUTHWEST LANDFILL RANDALL COUNTY, TEXAS TCEQ PERMIT NO. MSW-1663C

LIMITED SCOPE MAJOR PERMIT AMENDMENT APPLICATION

PART III – SITE DEVELOPMENT PLAN

APPENDIX IIIE

Prepared for

Southwest Landfill TX, LP

TCEQ Approved February 20, 2020

Revised February 202

Prepared by

Weaver Consultants Group, LLC TBPE Registration No. F-3727 6420 Southwest Blvd., Suite 206 Fort Worth, Texas 76109 817-735-9770

WCG Project No. 0120-094-11-140

This document is intended for permitting purposes only.

		5.5.1 Stability Analysis Using XSTABL5.5.2 Infinite Slope Stability Analysis	IIIE-21 IIIE-22
6	SET	FLEMENT, STRAIN, AND HEAVE ANALYSIS	IIIE-24
	6.1	General	IIIE-24
	6.2	Foundation Heave	IIIE-24
	6.3	Foundation Settlement and Strain	IIIE-25
	6.4	Overliner Settlement	IIIE-25
	6.5	Final Cover Settlement and Strain	IIIE-26

7 CONCLUSIONS AND RECOMMENDATIONS

IIIE-27

APPENDIX IIIE-A Slope Stability Analysis

APPENDIX IIIE-B Foundation Settlement and Heave Analysis

APPENDIX IIIE-C Laboratory Test Results

TABLES

<u>Tabl</u>	e	<u>Page No.</u>
2-1	Geotechnical Test Methods Performed	IIIE-2
3-1	Typical Properties of On-Site Materials	IIIE-7
3-2	Typical Soil Requirements for Landfill Construction	IIIE-8
4-1	Liner Properties	IIIE-10
5-1	Summary of Material Weight and Strength Parameters Used in the Slope Stability Analysis	IIIE-18
5-2	Summary of Slope Stability Analysis for the Excavation Configuration	IIIE-21
5-3	Summary of Slope Stability Analysis for Interim Landfill Configurations	IIIE-22
5-4	Summary of Slope Stability Analysis for the Final Landfill Configuration	IIIE-23
	DAVID E. POE 81734 (/CENSE V/A L) 01/30/2025	

2. Simplified Bishop Method – This method uses the method of slices to discretize the soil mass for determining the factor of safety.

In general, the stability of various critical sections were analyzed under static condition for short-term (excavation and construction) and long-term (after construction) safety. The slope stability analyses are provided in Appendix IIIE-A. The stability of the various liner and final cover configurations with the geosynthetic components were also evaluated by using infinite slope stability analysis (refer to Appendix IIIE-A).

The stability analysis has been developed using demonstrations showing that, for each analyzed section, the forces resisting movement of the slopes are higher than the forces that potentially create movement. Therefore, the ratio of forces resisting movement to the forces potentially creating movement is defined as the factor of safety (FS). When the FS is equal to or greater than 1.0, it means that the slope is stable. In the slope stability analysis a factor of safety greater than 1.0 is desired. The FS value is increased for the increased uncertainty for the system analyzed. A factor of safety of 1.5 has been used for slopes that will stay in place long term, including interim and final cover configurations subjected to effective (rotational failure) and peak (translational or block failure) conditions. A factor of safety of 1.3 is acceptable for total stress cannot fully dissipate and including both interim and final conditions. A factor of safety of 1.1 is acceptable for analyses performed incorporating residual stress.

5.2 Sections Selected for Analysis

Slope stability analyses were performed on critical sections to evaluate the stability of the excavation, interim fill, overliner, and final cover configuration slopes. The geometries of the slopes analyzed were determined by reviewing the proposed excavation plan and final contour plan. The evaluation locations were selected to analyze critical slopes consisting of profiles that include the landfill configuration as well as natural materials at the toe and below the landfill excavation. The interim fill slope was analyzed using an assumed profile as discussed in Section 4.3. Figures showing the location of the cross sections are included in Appendix IIIE-A (refer to Appendix IIIE-A-1 for the excavation slope stability analysis, Appendix IIIE-A-2 for the interim condition slope stability analysis, and Appendix IIIE-A-3 for the final landfill slopes stability analysis, including overliner stability analysis).

5.3 Configurations Analyzed

The excavation, interim, overliner, and final landfill configurations were modeled to represent critical slope conditions, and the analysis was performed using circular and block failure surfaces. The maximum final fill and overliner slopes will be 4 horizontal to 1 vertical (4H:1V), while interim slopes, liner slopes, and excavation slopes will be as steep as 3H:1V. The excavation, liner, and interim fill slopes were

analyzed with a slope angle of 3H:1V and a 4H:1V final side slope was used to evaluate final cover and overliner. A copy of the top of liner plan and final completion plan showing the locations of the cross sections selected for analysis are included in Appendix IIIE-A. Additionally, the configurations analyzed are graphically illustrated in Appendix IIIE-A. The interim condition was analyzed considering a 3H:1V slope with a horizontal length of approximately 575 feet. If the horizontal length of actual interim slopes longer than 575 feet is developed during site operations, an additional analysis will be completed at that time and maintained in the Site Operating Record.

5.4 Input Parameters

The cross sections for slope stability analysis were developed from the proposed excavation plan and the landfill completion plan (see Drawings A.1 and A.5 in Appendix IIIA-A – Liner, Overliner, and Final Cover System Details). The soil parameters were selected based on a review of the boring logs and laboratory test results from the subsurface investigation studies at the site and upon engineering judgment and experience with similar materials. The groundwater surface indicated in the analysis is obtained from Appendix IIIG-Geology Report (Figure IIIG-D-14) and represents the highest measured groundwater levels. Table 5-1 summarizes the unit weights and strength parameters used for the stability analyses for the evaluated landfill slopes (excavation, interim, overliner, and final cover slopes).

Table 5-1 (Continued) Summary of Material Weight and Strength Parameters Used in the Slope Stability Analysis

		Stre	ngth Parame	eters	-		Comments
			Solid Waste				See comments listed under Solid Waste above.
Material	Strength	Parameters		Interface S	Strength F	Parameters	
Cohesion (lb/ft²)		Friction Angle (degrees)	Unit Weight (lb/ft ³)	Adhesio (lb/ft²)	'n	Friction Angle (degrees)	
288		23	59	Interface stren applicable to because the int and final cover not a critical in	gth para the soli erface bet and over terface.	meters are not d waste layer ween the waste liner systems is	
			Liner System	1			The liner system includes a 2-foot-thick compacted clay (compacted clay is 3 feet thick
Material	Strength	Parameters		Interface S	Strength F	Parameters	3H:IV sideslopes), and a 2-foot-thick protective cover soil layer. This system is modeled as
Cohesion (lb/ft²)		Friction Angle (degrees)	Unit Weight (lb/ft ³)	Adhesio (lb/ft²)	n	Friction Angle (degrees)	compacted clay liner and the soil protective cover. In addition, both a translational and an infini interface strength requirements for each layer of the liner system. The minimum interface strength
Protective Cover			120	Floor Grades	0	22	For the rotational global stability analysis, the liner system is modeled as two layers: the com geosynthetic layers are not included in the global analysis because they provide a negligible strength values selected for the liner system represent strength values twoically used in the
Effective Stress	100	16					various permit applications approved by TCEQ. Duncan and Wright (2005) provides a compre- system. In Chapter 5 – Shear Strengths of Soil and Municipal Solid Waste, a significant amount of
Total Stress	1,000	0					The results indicate that the lowest cohesion value for compacted cohesive soils is 9 kPa (1 degrees. Therefore, selected values of 100 lb/ft ² for cohesion and 16 degrees of friction angle c
Liner System (Typical) Effective Stress	100	16	120	3H:1V Sideslope	100	16	in the slope stability analysis are subject to verification at the time of each liner construction. strength tests required for soil used for liner construction. Protective cover and compacted cliner system construction. The global stability analysis is included in Appendices IIIE-A-1 and II
Total Stress	1,000	0					The interface slope stability analysis, which is performed using an infinite slope stability analys
Liner System				Peak Stress			system, was developed to show that certain landfill components that are placed on top of each not experience sliding failure due to the lack of strength between these components. The
Analysis)				Floor Grades	188	11	represent the interfaces with the lowest strength at the floor and sideslopes (refer to Append
				3H:1V Sideslope	200	15	strength parameters were developed using materials from Geosynthetic Research Institute (GRI Geosynthetic and Geosynthetic-to-Soil Interfaces" by George R. Koerner, GRI, Folsom, PA, June 1 interface friction) used for the application were selected based on published data, it should be
				Residual Stress			verified at the time of each liner construction event to ensure that the as-built strength para design (refer to Appendix IIID). As noted in Appendix IIID, Table 6-1, the strength param
				Floor Grades	188	9	parameters to provide for a conservative design.
				3H:1V Sideslope	80	10	The translational slope stability analysis was performed using simplified Janbu Method using slope stability analysis discussed above. The purpose of this analysis is to test the critical interface IIIE-A-1 IIIE-A-2 and IIIE-A-3 for more information – i.e. the loading conditions reflect different different stability analysis and the stability of the stability o
				<u>Total Stress</u>			analysis. However, for the translational analysis, the liner system strength parameters are translational stability analysis uses modified liner system strength parameters to reflect the in
				Floor Grades	1000	0	parameters will also be tested and verified at the time of each liner construction event to ens
				3H:1V Sideslope	1000	0	

¹ Liners on the sideslopes and floor grades are listed separately due to different strength characteristics for clay/smooth geomembrane interfaces. The overliner was modeled with clay/textured geomembrane interface for sideslope and top deck areas.

for the Class 1 liner) layer, 60-mil geomembrane (smooth ocomposite (single-sided on floor grades and double-sided on two layers for the global stability analysis: the 3-foot-thick ite stability analysis were performed to establish the minimum ngth requirements are specified in Appendix IIID.

pacted clay liner and the soil protective cover layer. The two contribution to the forces that are resisting movement. The industry and these same strength values have been used in ehensive discussion regarding strength parameters for a liner of data are presented and evaluated for compacted clay liners. .87 lb/ft²) and the lowest reported friction angle value is 19 conservatively represent the liner system. Soil properties used Section 2.4.3 in Appendix IIID – LQCP includes the material lay liner soil unit weight values are based on experience with IE-A-3.

sis procedure by Duncan, Buchianani, and De Wet for the liner other, such as a geomembrane and compacted clay layer will interface strength values presented in this table represent clay liner interface on floor grades. These strength values dix IIIE-A-4 for the complete evaluation of interfaces that will tained from the document referenced in this paragraph). The I) publications (e.g., "Direct Shear Database of Geosynthetic-to-4, 2005). Although the strength parameters (i.e., adhesion and noted that these strength parameters will also be tested and meters meet or exceed the strength parameters used for the neters listed are for the interfaces with the lowest strength

the Rankine Blocks. This analysis is similar to the interface aces under a variety of loading conditions (refer to Appendices ferent landfill configurations). XSTABL is also used for this modified to reflect the interface strength parameters. The nterface strength parameters. As noted above, these strength sure that the as-built strength parameters meet or exceed the

Table 5-3Summary of Slope Stability Analysis forIntermediate Cover Slopes

flana Dasianatian	Minim of Method of <u>Gen</u>		m Factor afety rated ^{1, 2}	Factor of Safety Acceptable		
Slope Designation	Analysis	Peak / Effective Stress	ak / Effective Residual / Total Stress Stress		Residual /	
		1.5 1.1/1.3		Ellective	Total	
Interim Fill Slope A-1	Bishop-Circular	1.60 (effect)	1.56 (total)	YES	YES	
Interim Fill Slope A-2	Rankine-Block	1.53 (peak)	1.44 (residual)	YES	YES	
Interim Fill Slope A-2	Rankine-Block		1.30 (total)	YES	YES	

¹ Factor of Safety for temporary slopes is 1.5-

² Block analysis performed for peak and residual stresses.

Recommended Minimum Factor of Safety for stability analysis using peak stress is 1.5 and residual stress is 1.1.

Interim slope stability analyses were developed for the 2025 LSMPA to incorporate a revised maximum horizontal length of slope of 575 feet at a 3H:1V maximum outer slope.

Computer-generated slope stability analysis output is included in Appendix IIIE-A. As shown in Table 5-2, the minimum calculated factor of safety for excavation, liner, and interim slopes is 1.56, which is an acceptable factor of safety recommended for short-term slope stability. Long-term landfill slope stability has been estimated for the closed (final cover and overliner) condition. The minimum calculated factor of safety for the closed condition is 1.61, which is higher than the recommended factor of safety of 1.5 for long-term slope stability.

5.5.2 Infinite Slope Stability Analysis

Infinite slope stability analysis for the liner and final cover systems has been included in this design in addition to block method analysis (i.e., Rankine Block) discussed in the previous section. The infinite liner and overliner stability analyses address anchor trench design, stability of cover and drainage material on anchored geosynthetics, and shear forces within the liner system. The infinite final cover slope stability analysis addresses the shear forces within the final cover system. These calculations are presented in Appendix IIIE-A-4. As demonstrated in Appendix IIIE-A-4, the liner and cover systems are structurally stable using the strength parameters, which will be verified during each construction event. Prior to each construction event for liner, overliner, and final cover, the POR will perform interface strength testing using the actual material that will be used for each construction event.

Table 5-4 **Summary of Slope Stability Analysis** for the Final Landfill Configuration

	Mothod of	Minimum Fa Gene	Acceptable Factor		
Slope Designation	Analysis	Total / Effective Stress	Residual / Total Stress	Peak / Effective	Residual / Total
Final Cover Slope A-1	Bishop-Circular	2.43 (effect)	2.38 (total)	YES	YES
Final Cover Slope A-2	Rankine-Block-3	2.23 (peak)	2 . 09 (residual)	YES	YES
Final Cover Slope A-2	Rankine-Block ⁻³		2.05 (total)	YES	YES
Final Cover Slope B-1	Bishop-Circular	2.26 (effect)	2.27 (total)	YES	YES
Final Cover Slope B-2	Rankine-Block	2.67 (peak)	2.55 (residual)	YES	YES
Final Cover Slope B-2	Rankine-Block		2.81 (total)	YES	YES
Final Cover Slope C-1	Bishop-Circular	2.62 (effect)	2.69 (total)	YES	YES
Final Cover Slope C-2	Rankine-Block	4.05 (peak)	3.96 (residual)	YES	YES
Final Cover Slope C-2	Rankine-Block		3.86 (total)	YES	YES
Final Cover Slope D-1	Bishop-Circular	2.62 (effect)	2.71 (total)	YES	YES
Final Cover Slope D-2	Rankine-Block	3.1 (peak)	2.71 (residual)	YES	YES
Final Cover Slope D-2	Rankine-Block		2.79 (total)	YES	YES
Overliner Slope A-1	Bishop-Circular	2.61 (effect)	2.71 (total)	YES	YES
Overliner Slope A-2	Rankine-Block	2.17 (peak)	1.72 (residual)	YES	YES
Overliner Slope A-2	Rankine-Block		2.39 (total)	YES	YES
Overliner Slope B-1	Bishop-Circular	2.35 (effect)	2.35 (total)	YES	YES
Overliner Slope B-2	Rankine-Block	3.27 (peak)	3.06 (residual)	YES	YES
Overliner Slope B-2	Rankine-Block		3.49 (total)	YES	YES
Overliner Slope C-1	Bishop-Circular	2.55 (effect)	2.56 (total)	YES	YES
Overliner Slope C-2	Rankine-Block	2.05(residual)	1.61 (residual)	YES	YES
Overliner Slope C-2	Rankine-Block		2.26 (total)	YES	YES
Overliner Slope D-1	Rankine-Block	6.19 (residual)	4.41 (residual)	YES	YES
Overliner Slope D-1	Rankine-Block		15.5 (total)	YES	YES

¹ Recommended Minimum Factor of Safety for long term stability analysis using effective stress is 1.5 and short term stability analysis using total stress is 1-3. 2

Recommended Minimum Factor of Safety for stability analysis using peak stress is 1.5 and residual stress is 1.1.

³ Rankine Block analysis uses interface strength values where applicable.

APPENDIX IIIE-A

SLOPE STABILITY ANALYSIS

Includes page IIIE-A-1

APPENDIX IIIE-A-2

INTERIM LANDFILL CONFIGURATION STABILITY ANALYSIS

Includes pages IIIE-A-2-1 through IIIE-A-2-49

INTERIM SECTION A-2

SCALE IN FEI

IIIE-A-2-3

100

	DRAFT FOR PERMITTING PURPOSES ON ISSUED FOR CONSTRUCTION	LY	soi	UTHWES	PREPARED FOR ST LANDFILL TX, L	P MAJOR P SLOF
DATE FILE: CAD:	: 11/2017 0120-094-11 IIA-E-A-2-4 SECTIONS.dwg	DRAWN BY: JDW DESIGN BY: CCH REVIEWED BY: DEP	NO.	DATE 05/2024	REVISIONS DESCRIPTION LSMPA	
	Weaver Consult tbpe registration no	ants Group . F-3727				WWW.WCGRP.COM

<u>____</u>

	3780
	3760
	3740
	3720
	3700
	3680
	3660
	3640
	3620
	3600
ECTIVE	3580
	3560
	3540
	3520
GRADE	3500

3480

	3780
	3760
	3740
	3720
	3700
	3680
	3660
	3640
	3620
	3600
STIVE	3580
	3560
	3540
	3520
RADE	3500
	3480

MAJOR PERMIT AMENDMENT SLOPE STABILITY INTERIM COVER SECTION A-A

SOUTHWEST LANDFILL RANDALL COUNTY, TEXAS

SHEET IIIE-A-2-4

Derivation of Slope Stability Parameters:

Laboratory testing data are provided in Appendix IIIE-C. The following includes material strength properties based on the laboratory testing results from each subsurface unit.

		Moist	Saturated
Material	Unit Weight	Unit Weight	
		(pcf)	(pcf)
Stratum I (Clay)		122.5	
Stratum I (Caliche)		121.9	
Stratum II (Sand)		122.5	127.0
Stratum III (Shale)		138.4	139.0

The strength parameters for the in-situ soils were selected based on the following:

Stratum I (Clay and Caliche)

A triaxial shear tests was performed on Stratum I samples which resulted in cohesion and friction angle values listed in the table below. The values in the table will be used for both Clay and Caliche. Moist unit weight and saturated unit weight values are calculated from the dry unit weight, the moisture content, and the void ratio obtained from the triaxial shear test. These unit weight values conservatively compare to the average obtained from all laboratory testing performed on the material.

	Total	Stress	Effective Stress		
	Cohesion (lb/ft ²)	Friction Angle	Cohesion (lb/ft ²)	Friction Angle	
Triaxial Shear Test G-5	100	26.0	100	27.1	

Stratum II (Sand)

Triaxial shear tests and direct shear tests were performed on the Stratum II (sand) samples which resulted in cohesion and friction angle values listed in the table below. Stratum II is modeled using a cohesion of 1,200 psf and a friction angle of 26.7° conservatively. Moist unit weight values are calculated from each pair of moisture content and dry unit weight obtained from all laboratory testing performed on the material. These moist unit weight values were then averaged and this value is used in the slope stability analysis.

	Cohesion (lb/ft ²)	Friction Angle	Cohesion (lb/ft ²)	Friction Angle
Triaxial Shear Test G-3	1620 (total)	40.9 (total)	3020 (effective)	35.0 (effective)
Direct Shear Test WB-121	900 (residual)	26.9 (residual)	1200 (peak)	26.7 (peak)

Stratum III (Shale)

The slope stability analysis indicates no failure surface through this stratum as the top of this stratum is located a minimum of 74 feet below the elevation of the deepest excavation. The laboratory testing for shear strength is reported on page IIIE-18.

	Effectiv	e Stress	Total Stress		
Material	Cohesion (psf)	Friction Angle (degrees)	Cohesion (psf)	Friction Angle (degrees)	
Stratum I (Clay)	100	26	100	27.1	
Stratum I (Caliche)	100	26	100	27.1	
Stratum II (Sand)	1,200	26.7	1,200	26.7	
Stratum III (Shale)	500	33	5,000	0	

Slope stability strength parameters for constructed soil materials were selected as follows based on engineering judgment. Prior to construction, laboratory tests will be performed to verify the assumed strength parameter values using project-specific soil materials. If test results differ from the assumed values, this analysis will be updated for acceptable factor of safety values.

Material	Moist Unit Weight (pcf)	Cohesion (psf)	Friction Angle (degrees)
Clay Liner ⁽¹⁾	120	100	16
Protective Cover	120	100	16

1. A cohesion of 100 psf and internal friction angle of 16 degrees (effective stress) and a cohesion of 1,000 psf and internal friction angle of 0 degrees (total stress) is used for the clay liner for simplified Bishop Method of the slope stability analysis.

2. For translational (block) stability analysis, the strength parameters of the weakest interface were used to model the liner. The values used for the interim slope stability analysis are highlighted in the table below titled "Minimum Required Interface Strength Values". Note that both total and residual stress analyses were performed for the translational analyses.

Solid waste data used in this analysis are listed below.

	Moist Unit		Friction
Soil Description	Weight	Cohesion	Angle
	(pcf)	(psf)	(degrees)
Solid Waste	59	288	23

This information was derived from several references. Reference 3 provides a summary of several studies that have been completed to develop the shear strength parameters for MSW (refer to Chapter 6.7 in Ref. 3). MSW shear strength parameters reported in technical literature references vary widely, with friction angles as low as 10° and as high as 53° and cohesion values varying from 0 psf to 1,400 psf. Many of the lower values are directly contradicted by observations of actual stable landfill slopes. A summary of a few of the studies completed is listed below.

Reference	Data Type	Results
Pagotto & Rimoldi (1987)	Back-calculation from plate bearing tests	$\phi = 22,^{\circ} c = 605 \text{ psf}$ (29 kPa)
Landva & Clark (1990)	Laboratory direct shear tests on MSW	$\phi = 24,^{\circ} c = 460 \text{ psf}$ (22 kPa) to $\phi = 39,^{\circ}$ c = 400 psf (19 kPa)
Richardson & Reynolds (1991)	Large direct shear tests performed in-situ	$\phi = 18^{\circ} \text{ to } 43,^{\circ}$ c = 210 psf (10 kPa)

To provide for a conservative analysis, a cohesion of 288 psf and a friction angle of 23° were selected.

The moist unit weight is calculated at the midpoint of the average depth to represent the average unit weight of waste/cover soil within the landfill, consistent with what is used in the site life calculations in Appendix IIIM.

Factor of Safety Summary for Slope Stability

Description		Minimum Factor of Safety		December 1 d Minimum			
Slope Designation	Method of Analysis	Generated		Factor of Safety		Acceptable Factor of Safety	
		Total	Effective	Total	Effective	Total	Effective
Interim A-1	Bishop-Circular	1.56	1.60	1.5	1.3	YES	YES

Description	Minimum Factor of Safety		Recommended Minimum				
Slope Designation		Generated		Factor of Safety		Acceptable Factor of Safety	
	Method of Analysis	Peak	Residual/Total	Peak	Residual/ Total	Peak	Residual/ Total
Interm A-2	Rankine-Block	1.53	1.44 (Residual) 1.30 (Total)	1.5	1.1/1.3	YES	YES

Minimum Required Interface Strength Parameters

		Pe	eak	Residual	
Landfill Component	Interface	Adhesion (psf)	Friction Angle (degrees)	Adhesion (psf)	Friction Angle (degrees)
Liner	Protective Cover/Geocomposite	100	18	80	14
Liner (Note 1, 3)	Geonet/Smooth Geomembrane	188	11	188	9
Liner (Note 3)	Geonet/Textured Geomembrane	0	13	0	10
Liner	Geocomposite/Textured Geomembrane	100	21	80	10
Liner	Smooth Geomembrane/Clay Liner	100	13	80	8
Liner (Note 2)	Textured Geomembrane/Clay Liner	200	15	80	10
Liner	Clay Internal	100	16	100	12
Liner	Smooth Geomembrane/Geosynthetic Clay Liner	100	16	80	10
Liner	Textured Geomembrane/Geosynthetic Clay Liner	100	18	80	10
Liner	Geosynthetic Clay Liner Internal	100	24	380	11
Liner/Protective Cover (Note 4)	Clay Internal/Protective Cover (Total Stress)			1000 (Total Only)	0 (Total Only)

1. Interface parameters used for translational block analysis of cell floor.

2. Interface parameters used for translational block analysis of cell sideslope (3H:1V typical).

3. Interface parameters derived from GRI Report #30 (Ref. 5).

4. Total stress values assumed for both rotational and translational analysis of interim conditions. Effective, peak and residual stresses also analyzed.

SLOPE STABILITY XSTABL OUTPUT FILES

IIIE-A-2-8

XSTABL File: INT-A1E4 1-27-25 9:10

**	***************	**
*	XSTABL	*
*		*
*	Slope Stability Analysis	*
*	using the	*
*	Method of Slices	*
*		*
*	Copyright (C) 1992 - 2013	*
*	Interactive Software Designs, Inc.	*
*	Moscow, ID 83843, U.S.A.	*
*	,,	*
*	All Rights Reserved	*
*		*
*	Ver. 5.209 96 - 2083	*
**	******	**

Problem Description : SWLF LSMPA INTERIM A1E4 EFFECT NOD2

SEGMENT BOUNDARY COORDINATES

3 SURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	.0	3553.3	27.8	3553.1	1
2	27.8	3553.1	602.8	3745.0	2
3	602.8	3745.0	1045.6	3745.0	2

21 SUBSURFACE boundary segments

Segment	x-left	y-left	x-right	y-right	Soil Unit
No.	(ft)	(ft)	(ft)	(ft)	Below Segment
1	27.8	3553.1	30.9	3553.1	1
2	30.9	3553.1	39.7	3556.0	4
3	39.7	3556.0	45.6	3558.0	3
4	45.6	3558.0	603.0	3744.0	5
5	603.0	3744.0	1045.6	3744.0	5
6	45.6	3558.0	245.6	3554.0	3
7	245.6	3554.0	445.6	3558.0	3

IIIE-A-2-9

8	445.6	3558.0	645.6	3554.0	3
9	645.6	3554.0	845.6	3558.0	3
10	845.6	3558.0	1045.6	3554.0	3
11	39.7	3556.0	245.6	3552.0	4
12	245.6	3552.0	445.6	3556.0	4
13	445.6	3556.0	645.6	3552.0	4
14	645.6	3552.0	845.6	3556.0	4
15	845.6	3558.0	1045.6	3552.0	4
16	30.9	3553.1	245.6	3549.1	1
17	245.6	3549.1	445.6	3553.1	1
18	445.6	3553.1	645.6	3549.1	1
19	645.6	3549.1	845.6	3553.1	1
20	845.6	3553.1	1045.6	3549.1	1
21	.0	3549.0	1045.6	3549.0	2

ISOTROPIC Soil Parameters

5 Soil unit(s) specified

Soil	Unit	Weight	Cohesion	Friction	Pore Pr	essure	Water
Unit	Moist	Sat.	Intercept	Angle	Parameter	Constant	Surface
No.	(pcf)	(pcf)	(psf)	(deg)	Ru	(psf)	No.
1	122.5	127.0	1200.0	26.70	.000	.0	1
2	116.0	120.0	100.0	16.00	.000	.0	0
3	120.0	125.0	100.0	16.00	.000	.0	0
4	120.0	125.0	100.0	16.00	.000	.0	0
5	59.0	59.0	288.0	23.00	.000	.0	0

1 Water surface(s) have been specified

Unit weight of water = 62.40 (pcf)

Water Surface No. 1 specified by 2 coordinate points

***************************************	****

Point	x-water	y-water
No.	(ft)	(ft)
1	.00	3500.00
2	1045.60	3511.60

A critical failure surface searching method, using a random technique for generating CIRCULAR surfaces has been specified. 100 trial surfaces will be generated and analyzed. 10 Surfaces initiate from each of 10 points equally spaced along the ground surface between x = 20.0 ft and x = 40.0 ft Each surface terminates between x = 620.0 ft and x = 640.0 ft Unless further limitations were imposed, the minimum elevation at which a surface extends is y = .0 ft * * * * * DEFAULT SEGMENT LENGTH SELECTED BY XSTABL * * * * * 20.0 ft line segments define each trial failure surface. _____ ANGULAR RESTRICTIONS _____ The first segment of each failure surface will be inclined within the angular range defined by : Lower angular limit := -45.0 degrees Upper angular limit := -5.0 degrees Factors of safety have been calculated by the :
The most critical circular failure surface is specified by 36 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	22.22	3553.14
2	41.62	3548.28
3	61.17	3544.07
4	80.85	3540.50
5	100.64	3537.58
6	120.51	3535.32
7	140.45	3533.72
8	160.42	3532.77
9	180.42	3532.48
10	200.42	3532.86
11	220,39	3533.89
12	240.32	3535.58
13	260.18	3537.93
14	279.96	3540.93
15	299.62	3544.58
16	319.15	3548.88
17	338.53	3553.82
18	357.74	3559.40
19	376.75	3565.61
20	395.55	3572.44
21	414.11	3579.89
22	432.41	3587.94
23	450.44	3596.60
24	468.18	3605.85
25	485.60	3615.67
26	502.68	3626.07
27	519.42	3637.02
28	535.78	3648.52
29	551.76	3660.56
30	567.32	3673.11
31	582.47	3686.17
32	597.18	3699.72
33	611.43	3713.76
34	625.21	3728.25
35	638.51	3743.19
36	640.01	3745.00

**** Simplified BISHOP FOS = 1.606 ****

The following is a summary of the TEN most critical surfaces

Problem Description : SWLF LSMPA INTERIM A1E4 EFFECT NOD2

	FOS	Circle	Center	Radius	Initial	Terminal	Resisting Moment
	(BISHOP)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft-lb)
1.	1,606	179.15	4138.74	606.26	22.22	640.01	7.213E+08
2.	1.607	173.62	4120.47	587.74	20.00	625.82	6.664E+08
з.	1.607	170.34	4159.63	623.80	24.44	636.27	7.056E+08
4.	1.607	180.17	4111.68	580.44	22.22	630.02	6.797E+08
5.	1.610	158.67	4171.98	632.80	26.67	625.73	6.621E+08
6.	1.610	189.09	4124.46	589.13	35.56	639.58	6.852E+08
7.	1.610	184.55	4110.81	580.81	22.22	635.65	7.029E+08
8.	1.612	170.56	4155.96	617.70	31.11	631.76	6.730E+08
9.	1.612	187.92	4128.90	591.83	37.78	638.21	6.737E+08
10.	1.612	186.89	4110.01	581.32	20.00	639.25	7.215E+08

* * * END OF FILE * * *

XSTABL File: INT-A1T4 1-27-25 9:14

**	***********	**
*	ХЅТАВЬ	*
*		*
*	Slope Stability Analysis	*
*	using the	*
*	Method of Slices	*
*		*
*	Copyright (C) 1992 - 2013	*
*	Interactive Software Designs, Inc.	*
*	Moscow, ID 83843, U.S.A.	*
*		*
*	All Rights Reserved	*
*	C	*
*	Ver. 5.209 96 - 2083	*
**	*****	**

Problem Description : SWLF LSMPA INTERIM A1T4 TOTAL NOD2

SEGMENT BOUNDARY COORDINATES

3 SURFACE boundary segments

x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
.0	3553.3	27.8	3553.1	1
27.8	3553.1	602.8	3745.0	2
602.8	3745.0	1045.6	3745.0	2
	x-left (ft) .0 27.8 602.8	x-left y-left (ft) (ft) .0 3553.3 27.8 3553.1 602.8 3745.0	x-left y-left x-right (ft) (ft) (ft) .0 3553.3 27.8 27.8 3553.1 602.8 602.8 3745.0 1045.6	x-left y-left x-right y-right (ft) (ft) (ft) (ft) (ft) .0 3553.3 27.8 3553.1 27.8 3553.1 602.8 3745.0 602.8 3745.0 1045.6 3745.0

21 SUBSURFACE boundary segments

Segment	x-left	y-left	x-right	y-right	Soil Unit
No.	(ft)	(ft)	(ft)	(ft)	Below Segment
1	27.8	3553.1	30.9	3553.1	1
2	30.9	3553.1	39.7	3556.0	4
3	39.7	3556.0	45.6	3558.0	3
4	45.6	3558.0	603.0	3744.0	5
5	603.0	3744.0	1045.6	3744.0	5
6	45.6	3558.0	245.6	3554.0	3
7	245.6	3554.0	445.6	3558.0	3

8	445.6	3558.0	645.6	3554.0	3
9	645.6	3554.0	845.6	3558.0	3
10	845.6	3558.0	1045.6	3554.0	3
11	39.7	3556.0	245.6	3552.0	4
12	245.6	3552.0	445.6	3556.0	4
13	445.6	3556.0	645.6	3552.0	4
14	645.6	3552.0	845.6	3556.0	4
15	845.6	3558.0	1045.6	3552.0	4
16	30.9	3553.1	245.6	3549.1	1
17	245.6	3549.1	445.6	3553.1	1
18	445.6	3553.1	645.6	3549.1	1
19	645.6	3549.1	845.6	3553.1	1
20	845.6	3553.1	1045.6	3549.1	1
21	.0	3549.0	1045.6	3549.0	2

ISOTROPIC Soil Parameters

5 Soil unit(s) specified

Soil	Unit	Weight	Cohesion	Friction	Pore Pr	essure	Water
Unit	Moist	Sat.	Intercept	Angle	Parameter	Constant	Surface
No.	(pcf)	(pcf)	(psf)	(deg)	Ru	(psf)	No.
1	122.5	127.0	1200.0	26.70	.000	.0	1
2	116.0	120.0	100.0	16.00	.000	.0	0
3	120.0	125.0	100.0	16.00	.000	.0	0
4	120.0	125.0	1000.0	.00	.000	.0	0
5	59.0	59.0	288.0	23.00	.000	.0	0

1 Water surface(s) have been specified

Unit weight of water = 62.40 (pcf)

Water Surface No. 1 specified by 2 coordinate points

******	*****
PHREATIC	SURFACE,

Point	x-water	y-water
No.	(ft)	(ft)
1	.00	3500.00
2	1045.60	3511.60

A critical failure surface searching method, using a random technique for generating CIRCULAR surfaces has been specified.

100 trial surfaces will be generated and analyzed.

10 Surfaces initiate from each of 10 points equally spaced along the ground surface between x = 40.0 ft and x = 80.0 ft

Each surface terminates between x = 600.0 ft and x = 640.0 ft

Unless further limitations were imposed, the minimum elevation at which a surface extends is y = .0 ft

* * * * * DEFAULT SEGMENT LENGTH SELECTED BY XSTABL * * * * *

19.0 ft line segments define each trial failure surface.

ANGULAR RESTRICTIONS

The first segment of each failure surface will be inclined within the angular range defined by :

Lower angular limit := -45.0 degrees Upper angular limit := -5.0 degrees

Negative effective stresses were calculated at the base of a slice. This warning is usually reported for cases where slices have low self weight and a relatively high "c" shear strength parameter. In such cases, this effect can only be eliminated by reducing the "c" value. *************

USER SELECTED option to maintain strength greater than zero

Factors of safety have been calculated by the :

* * * * * SIMPLIFIED BISHOP METHOD * * * * *

The most critical circular failure surface is specified by 33 coordinate points

Point No.	x-surf (ft)	y-surf (ft)
	(/	x y
1	80.00	3570.52
2	98.29	3565.39
3	116.78	3560.98
4	135.42	3557.30
5	154.18	3554.35
6	173.06	3552.14
7	192.00	3550.66
8	210.98	3549.93
9	229.98	3549.94
10	248.97	3550.70
11	267.91	3552.20
12	286.78	3554.44
13	305.54	3557.41
14	324.18	3561.12
15	342.65	3565.55
16	360.94	3570.70
17	379.01	3576.57
18	396.84	3583.14
19	414.40	3590.40
20	431.66	3598.34
21	448.60	3606.95
22	465.18	3616.22
23	481.40	3626.12
24	497.21	3636.66
25	512.59	3647.81
26	527.53	3659.55
27	542.00	3671.86
28	555.98	3684.74
29	569.44	3698.15
30	582.36	3712.07

31	594.73	3726.49
32	606.53	3741.39
33	609.17	3745.00

**** Simplified BISHOP FOS = 1.562 ****

The following is a summary of the TEN most critical surfaces

Problem Description : SWLF LSMPA INTERIM A1T4 TOTAL NOD2

	FOS	Circle	Center	Radius	Initial	Terminal	Resisting
	(BISHOP)	x-coord	y-coord		x-coord	x-coord	Moment
		(ft)	(ft)	(ft)	(ft)	(ft)	(ft-1b)
1.	1.562	220.15	4035.20	485.35	80.00	609.17	4.326E+08
2.	1.592	215.90	4103.50	552.58	75.56	636.31	5.443E+08
з.	1.606	198.89	4089.32	552.68	44.44	631.07	6.198E+08
4.	1.609	195.19	4121.61	582.79	44.44	639.95	6.567E+08
5.	1.609	192.75	4082.62	544.55	44.44	620.02	5.800E+08
6.	1.611	200.56	4093.37	559.72	40.00	638.58	6.632E+08
7.	1.613	183.30	4085.71	547.62	40.00	611.90	5.645E+08
8.	1,616	197.00	4045.96	513.38	40.00	612.95	5.672E+08
9.	1.616	205.58	4052.51	522.28	40.00	627.68	6.217E+08
10.	1.619	187.51	4136.41	592.71	48.89	632.52	6.215E+08

* * * END OF FILE * * *

XSTABL File: INT-A2P4 1-27-25 9:12

**	******	**
*	XSTABL	*
*		*
*	Slope Stability Analysis	*
*	using the	*
*	Method of Slices	*
*		*
*	Copyright (C) 1992 - 2013	*
*	Interactive Software Designs, Inc.	*
*	Moscow, ID 83843, U.S.A.	*
*	······································	*
*	All Rights Reserved	*
*	0	*
*	Ver. 5.209 96 - 2083	*
**	*****	**

Problem Description : SWLF LSMPA INTERIM A2P4 PEAK NOD2

SEGMENT BOUNDARY COORDINATES

3 SURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	.0	3553.3	27.8	3553.1	1
2	27.8	3553.1	602.8	3745.0	2
3	602.8	3745.0	1045.6	3745.0	2

22 SUBSURFACE boundary segments

Segment	x-left	y-left	x-right	y-right	Soil Unit
No.	(ft)	(ft)	(ft)	(ft)	Below Segment
1	27.8	3553.1	30.9	3553.1	1
2	30.9	3553.1	38.5	3555.6	4
3	38.5	3555.6	39.9	3556.1	6
4	39.9	3556.1	45.6	3558.0	3
5	45.6	3558.0	603.0	3744.0	5
6	603.0	3744.0	1045.6	3744.0	5
7	45.6	3558.0	245.6	3554.0	3

8	245.6	3554.0	445.6	3558.0	3
9	445.6	3558.0	645.6	3554.0	3
10	645.6	3554.0	1045.6	3556.1	3
11	39.9	3556.1	245.6	3552.0	6
12	245.6	3552.0	445.6	3556.0	6
13	445.6	3556.0	645.6	3552.0	6
14	645.6	3552.0	1045.6	3556.0	6
15	38.5	3555.6	245.6	3551.5	4
16	245.6	3551.5	445.5	3555.5	4
17	445.5	3555.5	645.5	3551.5	4
18	645.5	3551.5	1045.6	3555.5	4
19	30.9	3553.1	245.5	3549.0	1
20	245.5	3549.0	445.4	3553.0	1
21	445.4	3553.0	645.4	3549.0	1
22	645.4	3549.0	1045.6	3553.0	1

ISOTROPIC Soil Parameters

6 Soil unit(s) specified

Soil	Unit	Weight	Cohesion	Friction	Pore Pr	essure	Water
Unit	Moist	Sat.	Intercept	Angle	Parameter	Constant	Surface
No.	(pcf)	(pcf)	(psf)	(deg)	Ru	(psf)	No.
1	122.5	127.0	1200.0	26.70	.000	.0	1
2	116.0	120.0	100.0	16.00	.000	.0	0
3	120.0	125.0	100.0	16.00	.000	.0	0
4	120.0	125.0	188.0	11.00	.000	.0	0
5	59.0	59.0	288.0	23.00	.000	.0	0
6	120.0	125.0	188.0	11.00	.000	.0	0

1 Water surface(s) have been specified

Unit weight of water = 62.40 (pcf)

Water Surface No. 1 specified by 2 coordinate points

PHREATIC SURFACE,

Point	x-water	y-water
No.	(ft)	(ft)

1.003500.0021045.603511.60

A critical failure surface searching method, using a random technique for generating sliding BLOCK surfaces, has been specified.

The active and passive portions of the sliding surfaces are generated according to the Rankine theory.

100 trial surfaces will be generated and analyzed.

2 boxes specified for generation of central block base

* * * * * DEFAULT SEGMENT LENGTH SELECTED BY XSTABL * * * * *

Length of line segments for active and passive portions of sliding block is 39.0 ft

Вох	x-left	y-left	x-right	y-right	Width
no.	(ft)	(ft)	(ft)	(ft)	(ft)
1	195.0	3552.8	215.0	3552.4	.5
2	525.0	3554.1	545.0	3553.8	.5

Factors of safety have been calculated by the :

* * * * * SIMPLIFIED JANBU METHOD * * * * *

The 10 most critical of all the failure surfaces examined are displayed below - the most critical first

Failure surface No. 1 specified by 16 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	139.33	3590.32

	2	140.29	3589.60	
	3	159.94	3576.59	
	4	192.46	3555.06	
	5	195.19	3553.00	
	6	195.67	3552.61	
	7	525.18	3553.94	
	8	525.56	3554.40	
	9	527.05	3556.37	
	10	548.57	3588.89	
	11	570.10	3621.41	
	12	591.62	3653.94	
	13	613.15	3686.46	
	14	634.67	3718.98	
	15	651.23	3744.00	
	16	651.99	3745.00	
**	Corrected	JANBU FOS ≔	1.534 **	(Fo factor = 1.084)

Failure surface No. 2 specified by 16 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	139.14	3590.26
2	140.11	3589.54
3	159.66	3576.59
4	192.18	3555.07
5	194.91	3553.01
6	195.43	3552.58
7	531.98	3554.10
8	532.12	3554.27
9	533.60	3556.24
10	555.13	3588.76
11	576.65	3621.28
12	598.18	3653.80
13	619.70	3686.33
14	641.23	3718.85
15	657.88	3744.00
16	658.63	3745.00

** Corrected JANBU FOS = 1.538 ** (Fo factor = 1.084)

Failure surface No. 3 specified by 16 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	140.94	3590.86

	2	141.90	3590.13	
	3	162.44	3576.54	
	4	194.96	3555.01	
	5	197.69	3552.96	
	6	198.15	3552.58	
	7	527.55	3554.09	
	8	527.77	3554.36	
	9	529.25	3556.33	
	10	550.78	3588.85	
	11	572.30	3621.37	
	12	593.83	3653.89	
	13	615.35	3686.41	
	14	636.88	3718.93	
	15	653.47	3744.00	
	16	654.22	3745.00	
**	Corrected	JANBU FOS ≍	1.539 **	(Fo factor = 1.084)

Failure surface No. 4 specified by 16 coordinate points

Point	x-surf	y-surf		
No.	(ft)	(ft)		
1	139.02	3590.22		
2	139.99	3589.50		
3	159.47	3576.60		
4	191.99	3555.07		
5	194.72	3553.01		
6	195.07	3552.73		
7 531.99		3553.85		
8	532.33	3554.27		
9 533.82		3556.24		
10	555.34	3588.76		
11 576.87		3621.28		
12 598.39		3653.80		
13	619.92	3686.32		
14	641.44	3718.84		
15	658.10	3744.00		
16	658.85	3745.00		

** Corrected JANBU FOS = 1.540 ** (Fo factor = 1.084)

Failure surface No. 5 specified by 16 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	141.77	3591.14

	2	142.73	3590.41	
	3	163.73	3576.51	
	4	196.25	3554.99	
	5	198.98	3552.93	
	6	199.41	3552.57	
	7	528.78	3553.98	
	8	529.07	3554.33	
	9	530.55	3556.30	
	10	552.08	3588.82	
	11	573.60	3621.34	
	1.2	595.13	3653.87	
	13	616.66	3686.39	
	14	638.18	3718.91	
	15	654.79	3744.00	
	16	655.54	3745.00	
**	Corrected	JANBU FOS =	1.541 **	(Fo factor = 1.084)

Failure surface No. 6 specified by 16 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	142.54	3591.39
2	143.50	3590.67
3	164.92	3576.49
4	197.44	3554.96
5	200.17	3552.91
6	200.72	3552.45
7	536.86	3553.77
8	537.19	3554.17
9	538.67	3556.14
10	560.20	3588.66
11	581.73	3621.18
12	603.25	3653.70
13	624.78	3686.22
14	646.30	3718.75
15	663.02	3744.00
16	663.77	3745.00

** Corrected JANBU FOS = 1.542 ** (Fo factor = 1.084)

Failure surface No. 7 specified by 16 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	143.25	3591.63

	2	144.21	3590.91	
	3	166.03	3576.47	
	4	198.55	3554.94	
	5	201.28	3552.88	
	6	201.79	3552.47	
	7	527.63	3554.30	
	8	527.68	3554.36	
	9	529.17	3556.33	
	10	550.69	3588.85	
	11	572.22	3621.37	
	12	593.74	3653.89	
	13	615.27	3686.41	
	14	636.79	3718.94	
	15	653.38	3744.00	
	16	654.14	3745.00	
**	Corrected	JANBU FOS =	1.543 **	(Fo factor = 1.084)
Fail	lure surfac	e No. 8 specif	ied by 16 coo	ordinate points
	Point	x-surf	y-surf	
	No	(++)	· (f+)	

POINT X-SUPT		y-surr	
No.	(ft)	(ft)	
1	143.42	3591.69	
2	144.38	3590.96	
3	166.28	3576.46	
4	198.81	3554.94	
5	201.54	3552.88	
6	201.98	3552.51	
7	527.94	3554.18	
8	528.08	3554.35	
9	529.56	3556.32	
10	551.09	3588.84	
11	572.62	3621.36	
12	594.14	3653.89	
13	615.67	3686.41	
14	637.19	3718.93	
15	653.79	3744.00	
16	654.54	3745.00	

** Corrected JANBU FOS = 1.543 ** (Fo factor = 1.084)

Failure surface No. 9 specified by 16 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	141.29	3590.98

	2	142.25	3590.25	
	3	162.99	3576.53	
	4	195.51	3555.00	
	5	198.24	3552.94	
	6	198.64	3552.62	
	7	533.30	3553.96	
	8	533.53	3554.24	
	9	535.01	3556.21	
	10	556.54	3588.73	
	11	578.06	3621.25	
	12	599.59	3653.78	
	13	621.11	3686.30	
	14	642.64	3718.82	
	15	659.31	3744.00	
	16	660.06	3745.00	
**	Corrected	JANBU FOS =	1.544 **	(Fo factor = 1.084)

Failure surface No.10 specified by 16 coordinate points

	Point	x-surf	y-surf				
	No.	(ft)	(ft)				
	1	142 03	3501 52				
	1 2	142.93	3500 90				
	2	145.69	3590.00				
	3	102.23	35/0.48				
	4	198.05	3554.95				
	5	200.78	3552.89				
	6	201.31	3552.46				
	7	538.75	3553.68				
	8	539.12	3554.13				
	9	540.60	3556.10				
	10	562.13	3588.62				
	11	583.66	3621.14				
	12	605.18	3653.66				
	13	626.71	3686.19				
	14	648.23	3718.71				
	15	664.97	3744.00				
	16	665.73	3745.00				
**	Corrected	JANBU FOS =	1.544 **	(Fo	factor	= 1.084)

The following is a summary of the TEN most critical surfaces Problem Description : SWLF LSMPA INTERIM A2P4 PEAK NOD2

	Modified JANBU FOS	Correction Factor	Initial x-coord (ft)	Terminal x-coord (ft)	Available Strength (lb)
1.	1.534	1.084	139.33	651.99	9.994E+05
2.	1.538	1.084	139.14	658.63	1.019E+06
з.	1.539	1.084	140.94	654.22	1.006E+06
4.	1.540	1.084	139.02	658.85	1.022E+06
5.	1.541	1.084	141.77	655.54	1.009E+06
6.	1.542	1.084	142.54	663.77	1.029E+06
7.	1.543	1.084	143.25	654.14	1.003E+06
8.	1.543	1.084	143.42	654.54	1.005E+06
9.	1.544	1.084	141.29	660.06	1.024E+06
10.	1.544	1.084	142.93	665.73	1.035E+06

* * * END OF FILE * * *

XSTABL File: INT-A2R4 1-27-25 9:15

***	******	**
*	XSTABL	*
*		*
*	Slope Stability Analysis	*
*	using the	*
*	Method of Slices	*
*		*
*	Copyright (C) 1992 - 2013	*
*	Interactive Software Designs, Inc.	*
*	Moscow, ID 83843, U.S.A.	*
*		*
*	All Rights Reserved	*
*		*
* 1	Ver. 5.209 96 - 2083	*
***	*****	**

Problem Description : SWLF LSMPA INTERIM A2T4 RESID NOD2

SEGMENT BOUNDARY COORDINATES

3 SURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	.0	3553.3	27.8	3553.1	1
2	27.8	3553.1	602.8	3745.0	2
3	602.8	3745.0	1045.6	3745.0	2

22 SUBSURFACE boundary segments

Segment	x-left	y-left	x-right	y-right	Soil Unit
No.	(ft)	(ft)	(ft)	(ft)	Below Segment
1	27.8	3553.1	30.9	3553.1	1
2	30.9	3553.1	38.5	3555.6	4
3	38.5	3555.6	39.9	3556.1	6
4	39.9	3556.1	45.6	3558.0	3
5	45.6	3558.0	603.0	3744.0	5
6	603.0	3744.0	1045.6	3744.0	5
7	45.6	3558.0	245.6	3554.0	3

8	245.6	3554.0	445.6	3558.0	3
9	445.6	3558.0	645.6	3554.0	3
10	645.6	3554.0	1045.6	3556.1	3
11	39.9	3556.1	245.6	3552.0	6
12	245.6	3552.0	445.6	3556.0	6
13	445.6	3556.0	645.6	3552.0	6
14	645.6	3552.0	1045.6	3556.0	6
15	38.5	3555.6	245.6	3551.5	4
16	245.6	3551.5	445.5	3555.5	4
17	445.5	3555.5	645.5	3551.5	4
18	645.5	3551.5	1045.6	3555.5	4
19	30.9	3553.1	245.5	3549.0	1
20	245.5	3549.0	445.4	3553.0	1
21	445.4	3553.0	645.4	3549.0	1
22	645.4	3549.0	1045.6	3553.0	1

ISOTROPIC Soil Parameters

1

6 Soil unit(s) specified

Soil	Unit	Weight	Cohesion	Friction	Pore Pr	essure	Water
Unit	Moist	Sat.	Intercept	Angle	Parameter	Constant	Surface
No.	(pcf)	(pcf)	(psf)	(deg)	Ru	(psf)	No.
1	122.5	127.0	1200.0	26.70	.000	.0	1
2	116.0	120.0	100.0	16.00	.000	.0	0
3	120.0	125.0	100.0	16.00	.000	.0	0
4	120.0	125.0	188.0	9.00	.000	.0	0
5	59.0	59.0	288.0	23.00	.000	.0	0
6	120.0	125.0	188.0	9.00	.000	.0	0

1 Water surface(s) have been specified

Unit weight of water = 62.40 (pcf)

Water Surface No. 1 specified by 2 coordinate points

***************************************	******

Point	x-water	y-water
No.	(ft)	(ft)

1	.00	3500.00
2	1045.60	3511.60

A critical failure surface searching method, using a random technique for generating sliding BLOCK surfaces, has been specified.

The active and passive portions of the sliding surfaces are generated according to the Rankine theory.

100 trial surfaces will be generated and analyzed.

2 boxes specified for generation of central block base

* * * * * DEFAULT SEGMENT LENGTH SELECTED BY XSTABL * * * * *

Length of line segments for active and passive portions of sliding block is 39.0 ft

Box no.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Width (ft)
1	195.0	3552.8	215.0	3552.4	.5
2	525.0	3554.1	545.0	3553.8	.5

Factors of safety have been calculated by the :

* * * * * SIMPLIFIED JANBU METHOD * * * * *

The 10 most critical of all the failure surfaces examined are displayed below - the most critical first

Failure surface No. 1 specified by 16 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	139.34	3590.32

	2	140.30	3589.60	
	3	159.96	3576.59	
	4	192.48	3555.06	
	5	195.21	3553.00	
	6	195.67	3552.61	
	7	525.18	3553.94	
	8	525.57	3554.40	
	9	527.06	3556.37	
	10	548.58	3588.89	
	11	570.11	3621.41	
	12	591.64	3653.94	
	13	613.16	3686.46	
	14	634.69	3718.98	
	15	651.25	3744.00	
	16	652.00	3745.00	
**	Corrected	JANBU FOS =	1.444 **	(Fo factor = 1.084)
Fail	ure surface	e No. 2 speci	fied by 16 co	ordinate points
	.			
	Ροιητ	x-surf	y-surf	
	No.	x-surf (ft)	y-surf (ft)	
	No.	x-surf (ft)	y-surf (ft)	
	Point No. 1	x-surf (ft) 142.55	y-surf (ft) 3591.40	
	Point No. 1 2	x-surf (ft) 142.55 143.51	y-surf (ft) 3591.40 3590.67	
	Point No. 1 2 3	x-surf (ft) 142.55 143.51 164.94	y-surf (ft) 3591.40 3590.67 3576.49	
	Point No. 1 2 3 4	x-surf (ft) 142.55 143.51 164.94 197.46	y-surf (ft) 3591.40 3590.67 3576.49 3554.96	
	Point No. 1 2 3 4 5	x-surf (ft) 142.55 143.51 164.94 197.46 200.19	y-surf (ft) 3591.40 3590.67 3576.49 3554.96 3552.91	
	Point No. 1 2 3 4 5 6	x-surf (ft) 142.55 143.51 164.94 197.46 200.19 200.72	y-surf (ft) 3591.40 3590.67 3576.49 3554.96 3552.91 3552.45	
	Point No. 1 2 3 4 5 6 7	x-surf (ft) 142.55 143.51 164.94 197.46 200.19 200.72 536.86	y-surf (ft) 3591.40 3590.67 3576.49 3554.96 3552.91 3552.45 3553.77	
	Point No. 1 2 3 4 5 6 7 8	x-surf (ft) 142.55 143.51 164.94 197.46 200.19 200.72 536.86 537.20	y-surf (ft) 3591.40 3590.67 3576.49 3554.96 3552.91 3552.45 3553.77 3554.17	
	Point No. 1 2 3 4 5 6 7 8 9	x-surf (ft) 142.55 143.51 164.94 197.46 200.19 200.72 536.86 537.20 538.69	y-surf (ft) 3591.40 3590.67 3576.49 3552.91 3552.45 3553.77 3554.17 3556.14	
	Point No. 1 2 3 4 5 6 7 8 9 10	x-surf (ft) 142.55 143.51 164.94 197.46 200.19 200.72 536.86 537.20 538.69 560.21	y-surf (ft) 3591.40 3590.67 3576.49 3554.96 3552.91 3552.45 3553.77 3554.17 3556.14 3588.66	
	Point No. 1 2 3 4 5 6 7 8 9 10 11	x-surf (ft) 142.55 143.51 164.94 197.46 200.19 200.72 536.86 537.20 538.69 560.21 581.74	y-surf (ft) 3591.40 3590.67 3576.49 3554.96 3552.91 3552.45 3553.77 3554.17 3556.14 3588.66 3621.18	
	Point No. 1 2 3 4 5 6 7 8 9 10 11 12	x-surf (ft) 142.55 143.51 164.94 197.46 200.19 200.72 536.86 537.20 538.69 560.21 581.74 603.26	y-surf (ft) 3591.40 3590.67 3576.49 3554.96 3552.91 3552.45 3553.77 3554.17 3556.14 3588.66 3621.18 3653.70	
	Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13	x-surf (ft) 142.55 143.51 164.94 197.46 200.19 200.72 536.86 537.20 538.69 560.21 581.74 603.26 624.79	y-surf (ft) 3591.40 3590.67 3576.49 3554.96 3552.91 3552.45 3553.77 3554.17 3556.14 3588.66 3621.18 3653.70 3686.22	
	Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	x-surf (ft) 142.55 143.51 164.94 197.46 200.19 200.72 536.86 537.20 538.69 560.21 581.74 603.26 624.79 646.31	y-surf (ft) 3591.40 3590.67 3576.49 3552.91 3552.45 3553.77 3554.17 3556.14 3588.66 3621.18 3653.70 3686.22 3718.75	
	Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	x-surf (ft) 142.55 143.51 164.94 197.46 200.19 200.72 536.86 537.20 538.69 560.21 581.74 603.26 624.79 646.31 663.03	y-surf (ft) 3591.40 3590.67 3576.49 3552.91 3552.45 3553.77 3554.17 3556.14 3588.66 3621.18 3653.70 3686.22 3718.75 3744.00	
	Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	x-surf (ft) 142.55 143.51 164.94 197.46 200.19 200.72 536.86 537.20 538.69 560.21 581.74 603.26 624.79 646.31 663.03 663.78	y-surf (ft) 3591.40 3590.67 3576.49 3552.91 3552.45 3553.77 3554.17 3556.14 3588.66 3621.18 3653.70 3686.22 3718.75 3744.00 3745.00	

** Corrected JANBU FOS = 1.445 ** (Fo factor = 1.084)

Failure surface No. 3 specified by 16 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	142.94	3591.53

	2	143.90	3590.80	
	3	165.55	3576.48	
	4	198.07	3554.95	
	5	200.80	3552.89	
	6	201.31	3552.46	
	7	538.75	3553.68	
	8	539.13	3554.13	
	9	540.62	3556.10	
	10	562.14	3588.62	
	11	583.67	3621.14	
	12	605.19	3653.66	
	13	626.72	3686.19	
	14	648.25	3718.71	
	15	664.99	3744.00	
	16	665.74	3745.00	
**	Corrected	JANBU FOS =	1.446 **	(Fo factor = 1.084)

Failure surface No. 4 specified by 16 coordinate points

Point	x-surf	y-surf	
No.	(ft)	(ft)	
1	139.16	3590.26	
2	140.12	3589.54	
3	159.68	3576.59	
4	192.20	3555.07	
5	194.93	3553.01	
6	195.43	3552.58	
7	531.98	3554.10	
8	532.12	3554.27	
9	533.61	3556.24	
10	555.13	3588.76	
11	576.66	3621.28	
12	598.18	3653.80	
13	619.71	3686.33	
14	641.24	3718.85	
15	657.88	3744.00	
16	658.64	3745.00	

** Corrected JANBU FOS = 1.446 ** (Fo factor = 1.084)

Failure surface No. 5 specified by 16 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	143.01	3591.55

	2	143.97	3590.83	
	3	165.65	3576.47	
	4	198.18	3554.95	
	5	200.91	3552.89	
	6	201.43	3552.44	
	7	540.76	3553.85	
	8	540.97	3554.09	
	9	542.45	3556.06	
	10	563.98	3588.58	
	11	585.51	3621.11	
	12	607.03	3653.63	
	13	628.56	3686.15	
	14	650.08	3718.67	
	15	666.85	3744.00	
	16	667.60	3745.00	
**	Corrected	JANBU FOS =	1.448 **	(Fo factor = 1.084)

Failure surface No. 6 specified by 16 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	140.95	3590.86
2	141.91	3590.14
3	162.45	3576.54
4	194.97	3555.01
5	197.70	3552.95
6	198.15	3552.58
7	527.55	3554.09
8	527.77	3554.36
9	529.26	3556.33
10	550.78	3588.85
11	572.31	3621.37
12	593.83	3653.89
13	615.36	3686.41
14	636.89	3718.93
15	653.48	3744.00
16	654.23	3745.00

** Corrected JANBU FOS = 1.449 ** (Fo factor = 1.084)

Failure surface No. 7 specified by 16 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	141.78	3591.14

	2	142.74	3590.41	
	3	163.74	3576.51	
	4	196.26	3554.99	
	5	198.99	3552,93	
	6	199.41	3552.57	
	7	528.78	3553.98	
	8	529.08	3554.33	
	9	530.56	3556.30	
	10	552.09	3588.82	
	11	573.62	3621.34	
	12	595.14	3653.87	
	13	616.67	3686.39	
	14	638.19	3718.91	
	15	654.80	3744.00	
	16	655.55	3745.00	
**	Corrected	JANBU FOS =	1.449 **	(Fo factor = 1.084)

Failure surface No. 8 specified by 16 coordinate points

Point	x-surf	y-surf	
No.	(ft)	(ft)	
1	141.63	3591.09	
2	142.59	3590.36	
3	163.51	3576.52	
4	196.03	3554.99	
5	198.76	3552.93	
6	199.20	3552.56	
7	540.79	3553.75	
8	541.08	3554.09	
9	542.56	3556.06	
10	564.09	3588.58	
11	585.61	3621.10	
12	607.14	3653.63	
13	628.66	3686.15	
14	650.19	3718.67	
15	666.96	3744.00	
16	667.71	3745.00	

** Corrected JANBU FOS = 1.450 ** (Fo factor = 1.084)

Failure surface No. 9 specified by 16 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	139.03	3590.22

	2	139,99	3589.50	
	3	159.48	3576.60	
	4	192.01	3555.07	
	5	194.74	3553.01	
	6	195.07	3552.73	
	7	531.99	3553.85	
	8	532.34	3554.27	
	9	533.83	3556.24	
	10	555.35	3588.76	
	11	576.88	3621.28	
	12	598.41	3653.80	
	13	619.93	3686.32	
	14	641.46	3718.84	
	15	658.11	3744.00	
	16	658.86	3745.00	
**	Corrected	JANBU FOS =	1.450 **	(Fo factor = 1.084)
Fai	lure surface	No.10 specif	ied by 16 co	ordinate points
		_	-	
	Point	x-surf	y-surf	

	POINC	x-Sul-1	y-sur	
	No.	(ft)	(ft)	
	1	130 07	3590 53	
	т С	140.07	2500.01	
	Z	140.93	2289.0T	
	3	160.94	3576.57	
	4	193.46	3555.04	
	5	196.19	3552.98	
	6	196.65	3552.59	
	7	539.65	3554.01	
	8	539.74	3554.12	
	9	541.23	3556.09	
	10	562.75	3588.61	
	11	584.28	3621.13	
	12	605.80	3653.65	
	13	627.33	3686.17	
	14	648.85	3718.69	
	15	665.60	3744.00	
	16	666.36	3745.00	
**	Corrected	JANBU FOS =	1.451 **	(Fo factor = 1.084)

The following is a summary of the TEN most critical surfaces Problem Description : SWLF LSMPA INTERIM A2T4 RESID NOD2

	Modified JANBU FOS	Correction Factor	Initial x-coord (ft)	Terminal x-coord (ft)	Available Strength (1b)
1.	1.444	1.084	139.34	652.00	9.268E+05
2.	1.445	1.084	142.55	663.78	9.492E+05
з.	1.446	1.084	142.94	665.74	9.538E+05
4.	1.446	1.084	139.16	658.64	9.442E+05
5.	1.448	1.084	143.01	667.60	9.589E+05
6.	1.449	1.084	140.95	654.23	9.329E+05
7.	1.449	1.084	141.78	655.55	9.350E+05
8.	1.450	1.084	141.63	667.71	9.632E+05
9.	1.450	1.084	139.03	658.86	9.484E+05
10.	1.451	1.084	139.97	666.36	9.630E+05

* * * END OF FILE * * *

IIIE-A-2-40

XSTABL File: INT-A2T4 1-27-25 9:11

***	***************************************	**
*	XSTABL	*
*		*
*	Slope Stability Analysis	*
*	using the	*
*	Method of Slices	*
*		*
*	Copyright (C) 1992 - 2013	*
*	Interactive Software Designs, Inc.	*
*	Moscow, ID 83843, U.S.A.	*
*		*
*	All Rights Reserved	*
*	5	*
*	Ver. 5.209 96 - 2083	*
***	******	**

Problem Description : SWLF LSMPA INTERIM A2T4 TOTAL NOD2

SEGMENT BOUNDARY COORDINATES

3 SURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	.0	3553.3	27.8	3553.1	1
2	27.8	3553.1	602.8	3745.0	2
3	602.8	3745.0	1045.6	3745.0	2

22 SUBSURFACE boundary segments

Segment	x-left	y-left	x-right	y-right	Soil Unit
No.	(ft)	(ft)	(ft)	(ft)	Below Segment
1	27.8	3553.1	30.9	3553.1	1
2	30.9	3553.1	38.5	3555.6	4
3	38.5	3555.6	39.9	3556.1	6
4	39.9	3556.1	45.6	3558.0	3
5	45.6	3558.0	603.0	3744.0	5
6	603.0	3744.0	1045.6	3744.0	5
7	45.6	3558.0	245.6	3554.0	3

8	245.6	3554.0	445.6	3558.0	3
9	445.6	3558.0	645.6	3554.0	3
10	645.6	3554.0	1045.6	3556.1	3
11	39.9	3556.1	245.6	3552.0	6
12	245.6	3552.0	445.6	3556.0	6
13	445.6	3556.0	645.6	3552.0	6
14	645.6	3552.0	1045.6	3556.0	6
15	38.5	3555.6	245.6	3551.5	4
16	245.6	3551.5	445.5	3555.5	4
17	445.5	3555.5	645.5	3551.5	4
18	645.5	3551.5	1045.6	3555.5	4
19	30.9	3553.1	245.5	3549.0	1
20	245.5	3549.0	445.4	3553.0	1
21	445.4	3553.0	645.4	3549.0	1
22	645.4	3549.0	1045.6	3553.0	1

......

ISOTROPIC Soil Parameters

6 Soil unit(s) specified

Soil	Unit	Weight	Cohesion	Friction	Pore Pr	essure	Water
Unit	Moist	Sat.	Intercept	Angle	Parameter	Constant	Surface
No.	(pcf)	(pcf)	(psf)	(deg)	Ru	(psf)	No.
1	122.5	127.0	1200.0	26.70	.000	.0	1
2	116.0	120.0	100.0	16.00	.000	.0	0
3	120.0	125.0	100.0	16.00	.000	.0	0
4	120.0	125.0	1000.0	.00	.000	.0	0
5	59.0	59.0	288.0	23.00	.000	.0	0
6	120.0	125.0	1000.0	.00	.000	.0	0

1 Water surface(s) have been specified

Unit weight of water = 62.40 (pcf)

Water Surface No. 1 specified by 2 coordinate points

Point	x-water	y-water
No.	(ft)	(ft)

1	.00	3500.00
2	1045.60	3511.60

A critical failure surface searching method, using a random technique for generating sliding BLOCK surfaces, has been specified.

The active and passive portions of the sliding surfaces are generated according to the Rankine theory.

100 trial surfaces will be generated and analyzed.

2 boxes specified for generation of central block base

* * * * * DEFAULT SEGMENT LENGTH SELECTED BY XSTABL * * * * *

Length of line segments for active and passive portions of sliding block is 39.0 ft

Вох	x-left	y-left	x-right	y-right	Width
no.	(ft)	(ft)	(ft)	(ft)	(ft)
1	195.0	3552.8	215.0	3552.4	.5
2	525.0	3554.1	545.0	3553.8	.5

Factors of safety have been calculated by the :

* * * * * SIMPLIFIED JANBU METHOD * * * * *

The 10 most critical of all the failure surfaces examined are displayed below - the most critical first

Failure surface No. 1 specified by 16 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	142.99	3591.54

	2	143.95	3590.82	
	3	165.62	3576.47	
	4	198.15	3554.95	
	5	200.88	3552.89	
	6	201.31	3552.46	
	7	538.75	3553.68	
	8	539.20	3554.13	
	9	540.68	3556.10	
	10	562.21	3588.62	
	11	583.73	3621.14	
	12	605.26	3653.66	
	13	626.78	3686.18	
	14	648.31	3718.71	
	15	665.05	3744.00	
	16	665.81	3745.00	
**	Corrected	JANBU FOS =	1.305 **	(Fo factor = 1.084)

Failure surface No. 2 specified by 16 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	142.60	3591.41
2	143.56	3590.69
3	165.02	3576.49
4	197.54	3554.96
5	200.27	3552.90
6	200.72	3552.45
7	536.86	3553.77
8	537.26	3554.17
9	538.74	3556.14
10	560.27	3588.66
11	581.79	3621.18
12	603.32	3653.70
13	624.85	3686.22
14	646.37	3718.74
15	663.09	3744.00
16	663.84	3745.00

** Corrected JANBU FOS = 1.306 ** (Fo factor = 1.084)

Failure surface No. 3 specified by 16 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	148.74	3593.46

	2	149.71	3592.74	
	3	174.55	3576.30	
	4	207.07	3554.77	
	5	209.80	3552.71	
	6	210.24	3552.27	
	7	542.57	3553.65	
	8	542.97	3554.05	
	9	544.45	3556.02	
	10	565.98	3588.54	
	11	587.50	3621.07	
	12	609.03	3653.59	
	13	630.55	3686.11	
	14	652.08	3718.63	
	15	668.87	3744.00	
	16	669.63	3745.00	
** Fail	Corrected	JANBU FOS = e No. 4 specif	1.306 ** Fied by 16 co	(Fo factor = 1.084) pordinate points
	Point	x-surf	v-surf	
	No.	(ft)	(ft)	
		()	(/	
	1	143.06	3591.57	
	2	144.02	3590.84	
	3	165.73	3576.47	
	4	198.25	3554.95	
	5	200.98	3552.89	
	6	201.43	3552.44	
	7	540.76	3553.85	
	8	541.00	3554.09	
	9	542.49	3556.06	
	10	564.02	3588.58	
	11	585.54	3621.11	

3653.63

3686.15

3718.67

3744.00

3745.00

1.307 **

(Fo factor = 1.084)

Failure surface No. 5 specified by 16 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	149.52	3593.72

607.07

628.59

650.12

666.88

667.64

12

13

14

15

16

** Corrected JANBU FOS =

	2	150.48	3593.00	
	3	175.75	3576.27	
	4	208.27	3554.75	
	5	211.00	3552.69	
	6	211.46	3552.23	
	7	542.38	3553.88	
	8	542.55	3554.06	
	9	544.04	3556.03	
	10	565.56	3588.55	
	11	587.09	3621.07	
	12	608.62	3653.60	
	13	630.14	3686.12	
	14	651.67	3718.64	
	15	668.45	3744.00	
	16	669.21	3745.00	
**	Corrected	JANBU FOS =	1.308 **	(Fo factor = 1.084)
Fail	ure surface	e No. 6 specif	ied by 16 coo	rdinate points
	Point	x-surf	y-surf	

ροιητ	x-surt	y-surt
No.	(ft)	(ft)
1	141.67	3591.10
2	142.63	3590.38
3	163.57	3576.52
4	196.09	3554.99
5	198.82	3552.93
6	199.20	3552.56
7	540.79	3553.75
8	541.13	3554.09
9	542.61	3556.06
10	564.14	3588.58
11	585.66	3621.10
12	607.19	3653.62
13	628.71	3686.15
14	650.24	3718.67
15	667.01	3744.00
16	667.76	3745.00

** Corrected JANBU FOS = 1.308 ** (Fo factor = 1.084)

Failure surface No. 7 specified by 16 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	148.58	3593.41

	2	149.54	3592.68	
	3	174.29	3576.30	
	4	206.81	3554.78	
	5	209.54	3552.72	
	6	209.97	3552.29	
	7	543.00	3553.79	
	8	543.25	3554.05	
	9	544.74	3556.02	
1	LØ	566.26	3588.54	
1	11	587.79	3621.06	
1	12	609.32	3653.58	
1	L3	630.84	3686.10	
1	L4	652,37	3718.62	
1	15	669.16	3744.00	
1	L6	669.92	3745.00	
			(
Failure s	surface No	o. 8 specif:	ied by 15 coordinate points	
Failure s Pc	surface No	<pre>>. 8 specif: x-surf</pre>	ied by 15 coordinate points v-surf	
Failure s Pc N	surface No Dint No.	<pre>>. 8 specif: x-surf (ft)</pre>	ied by 15 coordinate points y-surf (ft)	
Failure s Pc N	surface No Dint No.	<pre>x-surf (ft) </pre>	ied by 15 coordinate points y-surf (ft)	
Failure s Pc N	surface No Dint No. 1	<pre>>. 8 specif: x-surf (ft) 150.25 151.21</pre>	ied by 15 coordinate points y-surf (ft) 3593.97	
Failure s Pc N	surface No Dint No. 1 2	<pre>>. 8 specif: x-surf (ft) 150.25 151.21 176 88</pre>	ied by 15 coordinate points y-surf (ft) 3593.97 3593.24	
Failure s Pc M	Surface No Dint No. 1 2 3	<pre>>. 8 specif: x-surf (ft) 150.25 151.21 176.88 200 40</pre>	ied by 15 coordinate points y-surf (ft) 3593.97 3593.24 3576.25	
Failure s Pc N	Surface No Dint No. 1 2 3 4 5	<pre>>. 8 specif: x-surf (ft) 150.25 151.21 176.88 209.40 212 13</pre>	ied by 15 coordinate points y-surf (ft) 3593.97 3593.24 3576.25 3554.72	
Failure s Pc N	Surface No Dint No. 1 2 3 4 5 6	<pre>>. 8 specif: x-surf (ft) 150.25 151.21 176.88 209.40 212.13 212.59</pre>	<pre>ied by 15 coordinate points y-surf (ft) 3593.97 3593.24 3576.25 3554.72 3552.67 3552.67</pre>	
Failure s Pc N	Surface No Dint No. 1 2 3 4 5 6 7	<pre>>. 8 specif: x-surf (ft) 150.25 151.21 176.88 209.40 212.13 212.59 544 07</pre>	<pre>ied by 15 coordinate points y-surf (ft) 3593.97 3593.24 3576.25 3554.72 3552.67 3552.20 3554.03</pre>	
Failure s Pc N	Surface No Dint No. 1 2 3 4 5 6 7 8	<pre>>. 8 specif: x-surf (ft) 150.25 151.21 176.88 209.40 212.13 212.59 544.07 545 55</pre>	<pre>ied by 15 coordinate points y-surf (ft) 3593.97 3593.24 3576.25 3554.72 3552.67 3552.20 3554.03 3554.03 3556.00</pre>	
Failure s Pc M	Surface No Dint No. 1 2 3 4 5 6 7 8 9	<pre>b. 8 specif: x-surf (ft) 150.25 151.21 176.88 209.40 212.13 212.59 544.07 545.55 567.08</pre>	<pre>ied by 15 coordinate points y-surf (ft) 3593.97 3593.24 3576.25 3554.72 3552.67 3552.20 3554.03 3556.00 3588 52</pre>	
Failure s Pc N	Surface No Dint No. 1 2 3 4 5 6 7 8 9 0	<pre>b. 8 specif: x-surf (ft) 150.25 151.21 176.88 209.40 212.13 212.59 544.07 545.55 567.08 588.60</pre>	<pre>ied by 15 coordinate points y-surf (ft) 3593.97 3593.24 3576.25 3554.72 3552.67 3552.20 3554.03 3556.00 3588.52 3621.04</pre>	

Failure surface No. 9 specified by 16 coordinate points

3686.09

3718.61 3744.00

3745.00

1.310 **

(Fo factor = 1.084)

Point No.	x-surf (ft)	y-surf (ft)	
1	140.01	3590.55	
2	140.97	3589.83	

631.65

653.18

669.98

670.74

12

13

14

15

** Corrected JANBU FOS =
	3	161.00	3576.57	
	4	193.53	3555.04	
	5	196.26	3552.98	
	6	196.65	3552.59	
	7	539.65	3554.01	
	8	539.76	3554.12	
	9	541.24	3556.09	
	10	562.77	3588.61	
	11	584.29	3621.13	
	12	605.82	3653.65	
	13	627.34	3686.17	
	14	648.87	3718.69	
	15	665.62	3744.00	
	16	666.37	3745.00	
**	Corrected	JANBU FOS =	1.312 **	(Fo factor = 1.084)
Fail	ure surface	e No.10 specif	ied by 16 co	pordinate points
	Point	x-surf	v-surf	
	No.	(ft)	(ft)	
	1	149.60	3593.75	
	2	150.56	3593.02	
	3	175.87	3576.27	
	4	208.39	3554.74	
	5	211.12	3552.69	
	6	211.44	3552.37	
	7	542.06	3553.63	
	8	542.50	3554.06	
	9	543.98	3556.03	
	10	565.51	3588.55	
	11	587.04	3621.08	
	12	608.56	3653.60	
	13	630.09	3686.12	
	14	651.61	3718.64	
	15	668.40	3744.00	
	16	669.15	3745.00	
**	Corrected	JANBU FOS =	1.313 **	(Fo factor = 1.084)

The following is a summary of the TEN most critical surfaces Problem Description : SWLF LSMPA INTERIM A2T4 TOTAL NOD2

IIIE-A-2-48

	Modified JANBU FOS	Correction Factor	Initial x-coord (ft)	Terminal x-coord (ft)	Available Strength (lb)
1.	1.305	1.084	142.99	665.81	8.383E+05
2.	1.306	1.084	142.60	663.84	8.359E+05
з.	1.306	1.084	148.74	669.63	8.362E+05
4.	1.307	1.084	143.06	667.64	8.423E+05
5.	1.308	1.084	149.52	669.21	8.355E+05
6.	1.308	1.084	141.67	667.76	8.462E+05
7.	1.308	1.084	148.58	669.92	8.386E+05
8.	1.310	1.084	150.25	670.74	8.378E+05
9.	1.312	1.084	140.01	666.37	8.486E+05
10.	1.313	1.084	149.60	669.15	8.392E+05

* * * END OF FILE * * *

APPENDIX IIIE-A-3

OVERLINER AND FINAL LANDFILL CONFIGURATION STABILITY ANALYSIS

Includes pages IIIE-A-3-1 through IIIE-A-3-306

FINAL COVER SECTION A-1

 -3740	
3720	
-3700	
-3680	ī
 -3660	- F
 -3640	-
 -3620	CIT V
_3600	Ĺ
= -3580	
 -3560	
-3540	
-3520	
-3500	

	-3740
	3720
	-3700
	-3680
	-3660
SURFACE	-3640
	-3620
	_3600
	-3580
	-3560
	-3540
	-3520
	-3500

01/30/2025

MAJOR PERMIT AMENDMENT

FINAL COVER SECTION A-A

SLOPE STABILITY

PREPARED FOR							
IWEST		LANDFILL		ΤX,	LP		
		REVISIO	ONS				
E	DESCRIPTION						
/2025			-	LSMPA			
						,	

SOUTHWEST LANDFILL RANDALL COUNTY, TEXAS

WWW.WCGRP.COM

<u>____</u>

- TOP OF OVERLINER GRADE	-3740
	3720
	3700
	-3680
	-3660
	-3640
FILL	-3620
	3600
	-3580
	-3560
	-3540
	3520
	3500

01/30/2025

MAJOR PERMIT AMENDMENT

รอเ	JTHWES	ST LANDFILL TX, LP	
	_	REVISIONS	
N0.	DATE	DESCRIPTION	
1	01/2025	LSMPA	

PREPARED FOR

SOUTHWEST LANDFILL RANDALL COUNTY, TEXAS

SLOPE STABILITY

FINAL COVER SECTION B-B

WWW.WCGRP.COM

<u>____</u>

- 3780	
- 3760	
-	
- 3740	
- 3720	
 - 3700	
- 3680	MSL
-3660	Ē
 -3640	
 7600	IOIL
- 3020	<pre></pre>
-3600	
- 3580	
-3560	
-	
- 3540	
- 3520	
- 3500	
5500	

- 3780	
-3760	
- 3740	
- 3720	
- 3700	
7000	
- 3000	S
-3660	1
 -3640	Ť,
 3620	10IT
- 3020	1
-3600	
- 3580	
- 3560	
- 3540	
 - 3520	
-3500	

PREPARED FOR HWEST LANDFILL TX, LP		MAJOR PERMIT AMENDMENT SLOPE STABILITY	
REVISIONS	5	FINAL COVER SECTION C-C	
DATE	DESCRIPTION		
/2025 LSMPA		SOUTH RANDALL	WEST LANDFILL COUNTY, TEXAS
		WWW.WCGRP.COM	SHEET IIIE-A-3-7

FINAL COVER SECTION D-1

0:\0120\94\LSMPA_2024\PART_III\IIIE\A\CLE

<u>____</u>

3500	
3480	

 3720
 3700
 3680
 3660
 3640
 3620
 3600
 3580
 3560
3540

____ 3740

WES	ST LANDFILL T	X, LP
	REVISIONS	
TE	DESCRIPTION	
2025	LSMPA	

MAJOR PERMIT AMENDMENT SLOPE STABILITY FINAL COVER SECTION D-D

> SOUTHWEST LANDFILL RANDALL COUNTY, TEXAS

WWW.WCGRP.COM

22

تحجم ۱۲۹۹ م ۱۲۹۹ م ۱۹۹۹ م ۱۹۹۹ م	TE OF T	1222224 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 122 122 122 122 122 122 122 122 122 12
	DAVID E. P	OE
- no.	81734	
1,3	YQNAL	No.
	E	-/-
	01/30/20)25

01/30/2025

	PI	REPARED FOR		
IWES	ST	LANDFILL	τx,	LP
		REVISIONS		
ATE		DESCRIPTION		
2025		LSMPA		

MAJOR PERMIT AMENDMENT SLOPE STABILITY OVERLINER SECTIONS

> SOUTHWEST LANDFILL RANDALL COUNTY, TEXAS

WWW.WCGRP.COM

PREPARED FOR		
IWEST LANDFILL TX,	LP	
REVISIONS		
ATE DESCRIPTION		
2025 LSMPA		
	\	٧

MAJOR PERMIT AMENDMENT SLOPE STABILITY OVERLINER SECTIONS

SOUTHWEST LANDFILL RANDALL COUNTY, TEXAS

WWW.WCGRP.COM

01/30/2025

	P	REPARED FOR		
IWES	ST	LANDFILL	ΤX,	LP
		REVISIONS		
ATE		DESCRIPTION		
/2025		LSMPA		

MAJOR PERMIT AMENDMENT SLOPE STABILITY OVERLINER SECTIONS

SOUTHWEST LANDFILL RANDALL COUNTY, TEXAS

WWW.WCGRP.COM

DRAFT			PREPARED FOR			
X FOR PERMITTING PURPOSES ONLY ISSUED FOR CONSTRUCTION			JTHWES	ST LANDFILL	ΤX,	LP
DATE: 11/2017	DRAWN BY: JDW	REVISIONS				
FILE: 0120-094-11	DESIGN BY: CCH	NO.	DATE	DESCRIPTION		
CAD: IIIE-A-3-12 SECTIONS.dwg	REVIEWED BY: DEP	1	02/2025	LSMPA		
Weaver Consultants Group						
TBPE REGISTRATION NO. E-3727						
						-

?

./TO FAC		. CR R O	ITICA F SA	l fail Fety	URE = 4.	41/1	5.5
_ 37	20						
37	00						
36	80						
_ 36	60	SL					
36	40	M-T					
36	20	Ľ Ž					
36	00	'ATIO					
_ 35	80	ELEV					
_ 35	60						
_ 35	40						
35	20						
35	00						

MAJOR PERMIT AMENDMENT SLOPE STABILITY OVERLINER SECTIONS

SOUTHWEST LANDFILL RANDALL COUNTY, TEXAS

WWW.WCGRP.COM

SOUTHWEST LANDFILL 0120-094-11-107-01 APPENDIX IIIE-A-3 FINAL CONFIGURATION AND OVERLINER SLOPE STABILITY ANALYSIS

Derivation of Slope Stability Parameters:

Laboratory testing data are provided in Appendix IIIE-C. The following includes material strength properties based on the laboratory testing results from each subsurface unit.

		Moist	Saturated
Material		Unit Weight	Unit Weight
		(pcf)	(pcf)
Stratum I (Clay)		122.5	
Stratum I (Caliche)		121.9	
Stratum II (Sand)		122.5	127.0
Stratum III (Shale)		138.4	139.0

The strength parameters for the in-situ soils were selected based on the following:

Stratum I (Clay and Caliche)

A triaxial shear test was performed on Stratum I samples which resulted in cohesion and friction angle values listed in the table below. The values in the table will be used for both Clay and Caliche. Moist unit weight and saturated unit weight values are calculated from the dry unit weight, the moisture content, and the void ratio obtained from the triaxial shear test. These unit weight values conservatively compare to the average obtained from all laboratory testing performed on the material.

	Total	Total Stress		ve Stress
	Cohesion	Cohesion Friction		Friction
	(lb/ft^2)	Angle	(lb/ft^2)	Angle
Triaxial Shear Test G-5	100	26.0	100	27.1

Stratum II (Sand)

A triaxial shear tests and direct shear tests were performed on the Stratum II (sand) samples which resulted in cohesion and friction angle values listed in the table below. Stratum II is modeled using a cohesion of 1,200 psf and a friction angle of 26.7° conservatively. Moist unit weight values are calculated from each pair of moisture content and dry unit weight obtained from all laboratory testing performed on the material. These moist unit weight values were then averaged and this value is used in the slope stability analysis.

	Cohesion	Friction	Cohesion	Friction
	(lb/ft ²)	Angle	(lb/ft ²)	Angle
Triaxial Shear Test G-3	1620	40.9	3020	35.0
	(total)	(total)	(effective)	(effective)
Direct Shear Test WB-121	900 (residual)	26.9 (residual)	1200 (peak)	26.7 (peak)

Shale

The slope stability analysis indicate no failure surface through this stratum as the top of this stratum is located minimum of 74 feet below the elevation of the deepest excavation. The laboratory testing for shear strength is reported on page IIIE-18.

	Effectiv	ve Stress	Total Stress	
Material	Cohesion (psf)	Friction Angle (degrees)	Cohesion (psf)	Friction Angle (degrees)
Stratum I (Clay)	100	26	100	27.1
Stratum I (Caliche)	100	26	100	27.1
Stratum II (Sand)	1,200	26.7	1,200	26.7
Stratum III (Shale)	500	33	5,000	0

SOUTHWEST LANDFILL 0120-094-11-107-01 APPENDIX IIIE-A-3 FINAL CONFIGURATION AND OVERLINER SLOPE STABILITY ANALYSIS

Slope stability strength parameters for constructed soil materials were selected as follows based on engineering judgment. Prior to construction, laboratory tests will be performed to verify the assumed strength parameter values using project-specific soil materials. If test results differ from the assumed values, this analysis will be updated for acceptable factor of safety values.

Material	Moist Unit Weight	Cohesion	Friction Angle
	(pcf)	(psf)	(degrees)
Final Cover System	116	100	16
Clay Liner ⁽¹⁾	120	100	16
Protective Cover	120	100	16
Overliner Protective Cover ⁽²⁾	120	100	16

1. A cohesion of 100 psf and internal friction angle of 16 degrees (effective stress) and a cohesion of 1,000 psf and internal friction angle of 0 degrees (total stress) is used for the clay liner for simplified Bishop Method of the slope stability analysis.

2. For translational (block) stability analysis, the strength parameters of the weakest interface were used to model the liner. The values used for the final slope stability analysis are highlighted in the table below titled "Minimum Required Interface Strength Values". Note that both total and residual stress analyses were performed for the translational analyses.

3. A cohesion of 100 psf and internal friction angle of 16 degrees is used for the overliner for Simplified Bishop method of the slope stability analysis. For global translational stability analysis, the strength parameters of the weakest interface were used to model the overliner. For peak values, an adhesion of 100 psf and an interface friction angle of 18 degrees (textured geomembrane/GCL) is used in the Rankine Block method of the slope stability analysis to represent the weakest interface. For residual values, an adhesion of 80 psf and an interface friction angle of 8 degrees (smooth geomembrane/GCL) is used.

	Moist Unit		Friction	
Soil Description	Weight	Cohesion	Angle	
	(pcf)	(psf)	(degrees)	
Solid Waste	59	288	23	

This information was derived from several references. Reference 3 provides a summary of several studies that have been completed to develop the shear strength parameters for MSW (refer to Chapter 6.7 in Ref. 3). MSW shear strength parameters reported in technical literature references vary widely, with friction angles as low as 10° and as high as 53° and cohesion values varying from 0 psf to 1400 psf. Many of the lower values are directly contradicted by observations of actual stable landfill slopes. A summary of a few of the studies completed is listed below.

Reference	Data Type	Results
Pagotto & Rimoldi (1987)	Back-calculation from plate bearing tests	$\phi = 22,^{\circ} c = 605 \text{ psf}$ (29 kPa)
Landva & Clark (1990)	Laboratory direct shear tests on MSW	$\phi = 24,^{\circ} c = 460 \text{ psf}$ (22 kPa) to $\phi = 39,^{\circ}$ c = 400 psf (19 kPa)
Richardson & Reynolds (1991)	Large direct shear tests performed in-situ	$\phi = 18^{\circ} \text{ to } 43,^{\circ}$ c = 210 psf (10 kPa)

To provide for a conservative analysis, a cohesion of 288 psf and a friction angle of 23° were selected.

The moist unit weight is calculated at the midpoint of the average depth to represent the average unit weight of waste/cover soil within the landfill, consistent with what is used in the site life calculations in Appendix IIIM.

	Factor	of Safety Sur	nmary for L	ong-Term Si	ope Stability			
Description		Minimu	Minimum Factor		Recommended Minimum		A	
		of Safety	Generated	Factor	of Safety	Acceptable Factor of Safety		
Slope Designation	Method of Analysis	Effective	Total	Effective	Total	Effective	Total	
		Stress	Stress	Stress	Stress	Stress	Stress	
Final Cover A-1	Bishop-Circular	2.43	2.38	1.5	1.3	YES	YES	
Final Cover B-1	Bishop-Circular	2.26	2.27	1.5	1.3	YES	YES	
Final Cover C-1	Bishop-Circular	2.62	2.69	1.5	1.3	YES	YES	
Final Cover D-1	Bishop-Circular	2.62	2.71	1.5	1.3	YES	YES	
Overliner A-1	Bishop-Circular	2.61	2.71	1.5	1.3	YES	YES	
Overliner B-1	Bishop-Circular	2.35	2.35	1.5	1.3	YES	YES	
Overliner C-1	Bishop-Circular	2 55	2 56	15	1.3	YES	VES	

Factor of Safety Summary for Long-Term Slope Stabilit

Description		Minimum Factor		Recommended Minimum		Acceptable Factor of Safety	
		of Safety	Generated	Factor	of Safety	· ·	-
Slope Designation	Method of Analysis	Peak	Residual/ Total	Peak	Residual/ Total	Peak	Residual
Final Cover A-2	Rankine-Block	2.23	2.09/2.05	1.5	1.1 / 1.3	YES	YES
Final Cover B-2	Rankine-Block	2.67	2.55/2.81	1.5	1.1 / 1.3	YES	YES
Final Cover C-2	Rankine-Block	4.05	3.96/3.86	1.5	1.1 / 1.3	YES	YES
Final Cover D-3	Rankine-Block	3.10	2.71/2.79	1.5	1.1 / 1.3	YES	YES
Overliner A-2	Rankine-Block	2.17	1.72/2.39	1.5	1.1 / 1.3	YES	YES
Overliner B-2	Rankine-Block	3.27	3.06/3.49	1.5	1.1 / 1.3	YES	YES
Overliner C-2	Rankine-Block	2.05	1.61/2.26	1.5	1.1 / 1.3	YES	YES
Overliner D-1	Rankine-Block	6.19	4.41/15.5	1.5	1.1 / 1.3	YES	YES

Minimum Required Interface Strength Parameters

		Pea	ak	Resi	dual
Landfill Component Interface		Adhesion (psf)	Friction Angle (degrees)	Adhesion (psf)	Friction Angle (degrees)
Liner/Overliner/FC Systems	Protective Cover/Geocomposite	100	18	80	14
Liner/FC Systems (Notes 1, 3)	Geonet/Smooth Geomembrane	188	11	188	9
Liner/FC Systems (Note 3)	Geonet/Textured Geomembrane	0	13	0	10
Liner/Overliner/FC Systems	Geocomposite/Textured Geomembrane	100	21	80	10
Liner/FC Systems	Smooth Geomembrane/Clay Liner	100	13	80	8
Liner/FC Systems (Note 2)	Textured Geomembrane/Clay Liner	200	15	80	10
Liner/Overliner Systems	Textured Geomembrane/Geosynthetic Clay Liner	100	18	80	10
Liner/Protective Cover (Note 4)	Clay Internal/Protective Cover (Total Stress)			1000 (Total Only)	0 (Total Only)

1. Interface parameters used for translational block analysis of cell floor.

2. Interface parameters used for translational block analysis of cell sideslope (3H:1V typical).

3. Interface parameters derived from GRI Report #30 (Ref. 5).

4. Total stress values assumed for both rotational and translational anlaysis of final cover conditions. Effective, peak and residual stresses also analyzed.

ADDITIONAL TRANSITIONAL (BLOCK) STABILITY ANALYSES INCORPORATING TOTAL STRESS PARAMETERS

FCA-2T2 1-26-25 11:32

XSTABL File: FCA-2T2 1-26-25 11:32

**	******	**
*	ХЅТАВЬ	*
*		*
*	Slope Stability Analysis	*
*	using the	*
*	Method of Slices	*
*		*
*	Copyright (C) 1992 - 2013	*
*	Interactive Software Designs, Inc.	*
*	Moscow, ID 83843, U.S.A.	*
*		*
*	All Rights Reserved	*
*	č	*
*	Ver. 5.209 96 - 2083	*
**	******	**

Problem Description : SWLF LSMPA SEC A-2T2 TOTAL NOD2

SEGMENT BOUNDARY COORDINATES

11 SURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	.0	3607.6	93.9	3610.0	1
2	93.9	3610.0	114.9	3611.7	1
3	114.9	3611.7	137.6	3619.3	1
4	137.6	3619.3	152.6	3619.3	1
5	152.6	3619.3	161.6	3616.3	1
6	161.6	3616.3	164.6	3616.3	1
7	164.6	3616.3	173.6	3619.3	1
8	173.6	3619.3	173.9	3619.4	1
9	173.9	3619.4	247.6	3630.0	5
10	247.6	3630.0	535.6	3702.0	5
11	535.6	3702.0	823.4	3716.4	5

18 SUBSURFACE boundary segments

Segment	x-left	y-left	x-right	y-right	Soil Unit
No.	(ft)	(ft)	(ft)	(ft)	Below Segment

1	173.9	3619.4	183.4	3619.4	8
2	183.4	3619.4	189.7	3619.4	7
3	189.7	3619.4	198.4	3619.4	6
4	198.4	3619.4	248.3	3626.5	6
5	248.3	3626.5	536.1	3698.5	6
6	536.1	3698.5	823.4	3712.9	6
7	189.7	3619.4	298.7	3583.0	7
8	298.7	3583.0	823.3	3593.5	7
9	183.4	3619.4	298.4	3581.0	8
10	298.4	3581.0	823.4	3591.5	9
11	173.6	3619.3	204.4	3609.2	1
12	204.4	3609.2	248.4	3594.5	2
13	248.4	3594.5	298.0	3578.0	3
14	298.0	3578.0	823.4	3588.5	3
15	.0	3602.3	160.0	3606.0	2
16	160.0	3606.0	204.4	3609.2	2
17	.0	3589.3	181.6	3594.5	3
18	181.6	3594.5	248.4	3594.5	3

ISOTROPIC Soil Parameters

9 Soil unit(s) specified

Soil	Unit	Weight	Cohesion	Friction	Pore Pr	essure	Water
Unit	Moist	Sat.	Intercept	Angle	Parameter	Constant	Surface
No.	(pcf)	(pcf)	(psf)	(deg)	Ru	(psf)	No.
1	122.5	122.5	100.0	27.10	.000	.0	0
2	121.9	121.9	100.0	27.10	.000	.0	0
3	122.5	127.0	1200.0	26.70	.000	.0	1
4	122.5	127.0	1200.0	26.70	.000	.0	0
5	116.0	120.0	100.0	16.00	.000	.0	0
6	59.0	59.0	288.0	23.00	.000	.0	0
7	120.0	125.0	100.0	16.00	.000	.0	0
8	120.0	125.0	1000.0	.00	.000	.0	0
9	120.0	125.0	1000.0	.00	.000	.0	0

1 Water surface(s) have been specified

Unit weight of water = 62.40 (pcf)

Water Surface No. 1 specified by 2 coordinate points

*******	*******	******
Р	HREATIC SURFA	CE,
*******	********	*****
Point No.	x-water (ft)	y-water (ft)
1 2	.00 823.40	3518.60 3522.00

A critical failure surface searching method, using a random technique for generating sliding BLOCK surfaces, has been specified.

The active and passive portions of the sliding surfaces are generated according to the Rankine theory.

100 trial surfaces will be generated and analyzed.

2 boxes specified for generation of central block base

* * * * * DEFAULT SEGMENT LENGTH SELECTED BY XSTABL * * * * *

Length of line segments for active and passive portions of sliding block is 22.0 ft

Вох	x-left	y-left	x-right	y-right	Width
no.	(ft)	(ft)	(ft)	(+t)	(+t)
1	298.8	3580.5	318.8	3580.9	5.0
2	488.8	3584.3	508.7	3584.7	5.0

Factors of safety have been calculated by the :

* * * * * SIMPLIFIED JANBU METHOD * * * * *

The 10 most critical of all the failure surfaces examined are displayed below - the most critical first

Failure surface No. 1 specified by 19 coordinate points

	Point	x-surf	y-surf
	No.	(ft)	(ft)
	1	229.33	3627.37
	2	233.32	3624.37
	3	237.86	3621.37
	4	256.20	3609.22
	5	274.55	3597.08
	6	292.89	3584.94
	7	297.90	3581.17
	8	299.09	3579.98
	9	503.71	3583.67
	10	505.18	3585.14
	11	506.71	3587.16
	12	518.85	3605.51
	13	530.99	3623.85
	14	543.13	3642.20
	15	555.28	3660.55
	16	567.42	3678.89
	17	579.56	3697.24
	18	581.92	3700.80
	19	584.68	3704.46
**	Corrected	JANBU FOS =	2.058 **

(Fo factor = 1.085)

Failure surface No. 2 specified by 19 coordinate points

Point x-surf		y-surf
No.	(ft)	(ft)
1	229.08	3627.34
2	233.07	3624.33
3	237.24	3621.57
4	255.59	3609.43
5	273.93	3597.29
6	292.28	3585.14
7	297.28	3581.37
8	298.87	3579.78
9	495.76	3583.04
10	497.71	3584.99
11	499.23	3587.01
12	511.38	3605.36
13	523.52	3623.70
14	535.66	3642.05
15	547.81	3660.40
16	559.95	3678.74

	17	572.09	3697.09	
	18	574.29	3700.41	
	19	577.05	3704.07	
**	Corrected	JANBU FOS =	2.059 **	(Fo factor = 1.085)

Failure surface No. 3 specified by 19 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	228.81	3627.30
2	232.80	3624.29
3	236.58	3621.79
4	254.92	3609.65
5	273.27	3597.51
6	291.61	3585.37
7	296.62	3581.59
8	299.47	3578.74
9	488.98	3582.77
10	491.06	3584.85
11	492.59	3586.88
12	504.73	3605.23
13	516.88	3623.57
14	529.02	3641.92
15	541.16	3660.26
16	553.30	3678.61
17	565.45	3696.95
18	567.51	3700.07
19	570.27	3703.73

** Corrected JANBU FOS = 2.059 ** (Fo factor = 1.086)

Failure surface No. 4 specified by 19 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	232.74	3627.86
2	236.73	3624.85
3	244.89	3619.45
4	263.24	3607.31
5	281.58	3595.17
6	299.93	3583.02
7	302.50	3581.08
8	305.11	3578.48
9	502.48	3582.43
10	505.19	3585.14

	11	506.72	3587.16	
	12	518.86	3605.51	
	13	531.00	3623.85	
	14	543.15	3642.20	
	15	555.29	3660.55	
	16	567.43	3678.89	
	17	579.57	3697.24	
	18	581.93	3700.80	
	19	584.69	3704.46	
**	Corrected	JANBU FOS =	2.065 **	(Fo factor = 1.085)

Failure surface No. 5 specified by 19 coordinate points

	Point	x-surf	y-surf	
	No.	(ft)	(ft)	
	1	232.09	3627.77	
	2	236.09	3624.76	
	3	244.13	3619.44	
	4	262.48	3607.29	
	5	280.82	3595.15	
	6	299.17	3583.01	
	7	301.75	3581.07	
	8	304.52	3578.29	
	9	500.60	3583.00	
	10	502.68	3585.09	
	11	504.21	3587.11	
	12	516.35	3605.46	
	13	528.50	3623.80	
	14	540.64	3642.15	
	15	552,78	3660.50	
	16	564.92	3678.84	
	17	577.07	3697.19	
	18	579.37	3700.67	
	19	582.13	3704.33	
**	Corrected	JANBU FOS =	2.067 **	(Fo factor = 1.085)

Failure surface No. 6 specified by 19 coordinate points

Point No.	x-surf (ft)	y-surf (ft)	
1	231.44	3627.68	
2	235.43	3624.67	
3	243.03	3619.64	
4	261.37	3607.50	

	5	279.72	3595.36	
	6	298.06	3583.21	
	7	300.93	3581.05	
	8	303.00	3578.98	
	9	504.51	3583.50	
	10	506.17	3585.16	
	11	507.70	3587.18	
	12	519.84	3605.53	
	13	531.98	3623.87	
	14	544.12	3642.22	
	15	556.27	3660.56	
	16	568.41	3678.91	
	17	580.55	3697.26	
	18	582.93	3700.85	
	19	585.69	3704.51	
**	Corrected	JANBU FOS =	2.067 **	(Fo factor = 1.085)
Failu	ure surface Point	e No. 7 specid	Fied by 19 co	ordinate points
	No	(ft)	(ft)	
		()	()	
	1	230.34	3627.52	
	2	234.33	3624.51	
	3	240.32	3620.54	
	4	258.67	3608.40	
	5	277.02	3596.26	
	6	295.36	3584.11	
	7	299.47	3581.02	
	8	299.63	3580.86	
	9	501.23	3582.61	
	10	503.72	3585.11	
	11	505.25	3587.13	
	12	517.39	3605.48	
	13	529.53	3623.82	
	14	541.68	3642.17	
	15	553.82	3660.52	
	16	565.96	3678.86	
	17	578.10	3697.21	

** Corrected JANBU FOS = 2.067 ** (Fo factor = 1.085)

3700.72

3704.38

Failure surface No. 8 specified by 19 coordinate points

Point x-surf y-surf

580.43

583.19

18

19

	No.	(ft)	(ft)	
	1	222 72	2627 86	
	T	232.72	502/.00	
	2	236.71	3624.85	
	3	244.87	3619.45	
	4	263.21	3607.31	
	5	281.56	3595.17	
	6	299.90	3583.02	
	7	302.48	3581.08	
	8	305.23	3578.33	
	9	504.48	3584.46	
	10	505.16	3585.14	
	11	506.69	3587.16	
	12	518.83	3605.51	
	13	530.97	3623.85	
	14	543.12	3642.20	
	15	555.26	3660.54	
	16	567.40	3678.89	
	17	579.55	3697.24	
	18	581.90	3700.80	
	19	584.66	3704.45	
**	Corrected	JANBU FOS =	2.076 **	(Fo factor = 1.085)

.

Failure surface No. 9 specified by 19 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
		2627 00
1	232.33	3627.80
2	236.32	3624.80
3	244.40	3619.44
4	262.75	3607.30
5	281.10	3595.16
6	299.44	3583.01
7	302.02	3581.07
8	302.39	3580.70
9	501.18	3582.25
10	504.04	3585.11
11	505.57	3587.14
12	517.71	3605.49
13	529.86	3623.83
14	542,00	3642.18
15	554.14	3660.52
16	566.28	3678.87
17	578.43	3697.21
18	580.76	3700.74
19	583.52	3704.40

** Corrected JANBU FOS = 2.078 ** (Fo factor = 1.085)

Failure surface No.10 specified by 19 coordinate points

	Point	x-surf	y-surf	
	No.	(ft)	(ft)	
	1	231.40	3627.67	
	2	235.39	3624.66	
	3	242.93	3619.67	
	4	261.28	3607.53	
	5	279.62	3595.39	
	6	297.97	3583.24	
	7	300.88	3581.05	
	8	302.44	3579.49	
	9	497.06	3584.36	
	10	497.69	3584.99	
	11	499.21	3587.01	
	12	511.36	3605.36	
	13	523.50	3623.70	
	14	535.64	3642,05	
	15	547.78	3660.40	
	16	559.93	3678.74	
	17	572.07	3697.09	
	18	574.27	3700.41	
	19	577.03	3704.07	
**	Corrected	JANBU FOS =	2.086 **	(Fo factor = 1.085)

The following is a summary of the TEN most critical surfaces Problem Description : SWLF LSMPA SEC A-2T2 TOTAL NOD2

	Modified JANBU FOS	Correction Factor	Initial x-coord (ft)	Terminal x-coord (ft)	Available Strength (lb)
1.	2,058	1.085	229.33	584.68	5.002E+05
2.	2.059	1.085	229.08	577.05	4.903E+05
з.	2.059	1.086	228.81	570.27	4.814E+05
4.	2.065	1.085	232.74	584.69	5.029E+05
5.	2.067	1.085	232.09	582.13	4.998E+05
6.	2.067	1.085	231.44	585.69	5.038E+05
7.	2.067	1.085	230.34	583.19	4.993E+05
8.	2.076	1.085	232.72	584.66	5.023E+05

9.	2.078	1.085	232.33	583.52	5.009E+05
10.	2.086	1.085	231.40	577.03	4.923E+05

* * * END OF FILE * * *

XSTABL File: FCB-2T2 1-26-25 11:41

*******	**
* XSTABL	*
*	*
* Slope Stability Analysis	*
* using the	*
* Method of Slices	*
*	*
* Copyright (C) 1992 - 2013	*
* Interactive Software Designs, Inc.	*
* Moscow, ID 83843, U.S.A.	*
*	*
* All Rights Reserved	*
*	*
* Ver. 5.209 96 - 2083	*
*****	**

Problem Description : SWLF LSMPA SEC B-2T2 TOTAL NOD2

SEGMENT BOUNDARY COORDINATES

9 SURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	.0	3602.7	35.7	3603.6	1
2	35.7	3603.6	45.0	3602.4	1
3	45.0	3602.4	68.0	3602.2	1
4	68.0	3602.2	80.8	3604.4	1
5	80.8	3604.4	168.4	3604.5	1
6	168.4	3604.5	172.4	3602.6	1
7	172.4	3602.6	180.4	3604.6	1
8	180.4	3604.6	570.0	3702.0	4
9	570.0	3702.0	1026.7	3724.8	4

32 SUBSURFACE boundary segments

Segment	x-left	y-left	x-right	y-right	Soil Unit
No.	(ft)	(ft)	(ft)	(ft)	Below Segment
1	180.4	3604.6	188.4	3604.6	1

2	188.4	3604.6	194.8	3604.6	7
3	194.8	3604.6	194.9	3604.6	6
4	194.9	3604.6	570.5	3698.5	5
5	570.5	3698.5	1026.7	3721.3	5
6	194.9	3604.6	201.1	3604.6	6
7	201.1	3604.6	257.5	3585.8	6
8	257.5	3585.8	355.6	3587.2	6
9	355.6	3587.2	413.2	3606.4	6
10	413.2	3606.4	419.0	3608.3	9
11	419.0	3608.3	553.6	3642.0	9
12	553.6	3642.0	634.8	3652.0	9
13	634.8	3652.0	782.8	3689.0	9
14	782.8	3689.0	1026.7	3701.9	9
15	413.2	3606.4	419.5	3606.4	6
16	194.9	3604.6	257.2	3583.8	7
17	257.2	3583.8	356.0	3585.2	8
18	356.0	3585.2	419.5	3606.4	7
19	419.5	3606.4	553.9	3640.0	5
20	553.9	3640.0	635.1	3650.0	5
21	635.1	3650.0	783.1	3687.0	5
22	783.1	3687.0	1026.7	3699.9	5
23	419.5	3606.4	425.8	3606.4	7
24	188.4	3604.6	231.7	3590.2	1
25	231.7	3590.2	256.9	3581.8	2
26	256.9	3581.8	356.3	3583.2	2
27	356.3	3583.2	425.8	3606.4	2
28	425.8	3606.4	459.4	3595.2	2
29	459.4	3595.2	1026.7	3596.2	2
30	.0	3585.1	133.8	3588.2	2
31	133.8	3588.2	157.3	3590.2	2
32	157.3	3590.2	231.7	3590.2	2

ISOTROPIC Soil Parameters

9 Soil unit(s) specified

Soil	Unit	Weight	Cohesion	Friction	Pore Pr	essure	Water
Unit	Moist	Sat.	Intercept	Angle	Parameter	Constant	Surface
No.	(pcf)	(pcf)	(psf)	(deg)	Ru	(psf)	No.
1	121.9	121.9	100.0	26.00	.000	.0	0
2	122.5	127.0	1200.0	26.70	.000	.0	1
3	122.5	127.0	1200.0	26.70	.000	.0	0
4	116.0	120.0	100.0	16.00	.000	.0	0
5	59.0	59.0	288.0	23.00	.000	.0	0
6	120.0	125.0	100.0	16.00	.000	.0	0
7	120.0	125.0	1000.0	.00	.000	.0	0

8	120.0	125.0	1000.0	.00	.000	.0	0
9	120.0	125.0	1000.0	.00	.000	.0	0

1 Water surface(s) have been specified

Unit weight of water = 62.40 (pcf)

Water Surface No. 1 specified by 2 coordinate points

No.	(ft)	(+t)	
1	.00	3516.00	
2	1026.70	3520.00	

A critical failure surface searching method, using a random technique for generating sliding BLOCK surfaces, has been specified.

The active and passive portions of the sliding surfaces are generated according to the Rankine theory.

100 trial surfaces will be generated and analyzed.

2 boxes specified for generation of central block base

* * * * * DEFAULT SEGMENT LENGTH SELECTED BY XSTABL * * * * *

Length of line segments for active and passive portions of sliding block is 25.0 ft

Box	x-left	y-left	x-right	y-right	Width
no.	(ft)	(ft)	(ft)	(ft)	(ft)
1	257.5	3583.8	267.5	3584.0	4.0

Factors of safety have been calculated by the :

* * * * * SIMPLIFIED JANBU METHOD * * * * *

The 10 most critical of all the failure surfaces examined are displayed below - the most critical first

Failure surface No. 1 specified by 13 coordinate points

Point	x-surf	y-surf	
No.	(ft)	(ft)	
1	215.32	3613.33	
2	218.93	3610.61	
3	234.45	3600.33	
4	255.30	3586.53	
5	257.85	3584.61	
6	347.00	3584.49	
7	347.59	3585.08	
8	349.12	3587.11	
9	362.91	3607.95	
10	376.71	3628.80	
11	390.51	3649.65	
12	393.57	3654.27	
13	396.93	3658.73	

** Corrected JANBU FOS = 2.816 ** (Fo factor = 1.088)

Failure surface No. 2 specified by 14 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	214.22	3613.05
2	217.83	3610.33
3	231.40	3601.35
4	252.25	3587.55
5	257.23	3583.80
6	257.64	3583.38
7	344.99	3584.23
8	345.82	3585.06
9	347.35	3587.08
10	361.14	3607.93

.

	11	374.94	3628.78	
	12	388.74	3649.62	
	13	391.47	3653.74	
	14	394.83	3658.21	
**	Corrected	JANBU FOS =	2.818 **	(Fo factor = 1.088)

Failure surface No. 3 specified by 14 coordinate points

	Point No.	x-surf (ft)	y-surf (ft)	
	1	214.95	3613.24	
	2	218.57	3610.52	
	3	233.45	3600.67	
	4	254.29	3586.87	
	5	258.34	3583.82	
	6	259.60	3582.56	
	7	345.39	3584.10	
	8	346.36	3585.06	
	9	347.89	3587.09	
	10	361.68	3607.94	
	11	375.48	3628.78	
	12	389.28	3649.63	
	13	392.11	3653.90	
	14	395.47	3658.37	
**	Corrected	JANBU FOS =	2.819 **	(Fo factor = 1.088)

Failure surface No. 4 specified by 14 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	215.37	3613.34
2	218.98	3610.62
3	234.60	3600.28
4	255.44	3586.49
5	258.97	3583.83
6	260.65	3582.14
7	344.37	3583.22
8	346.21	3585.06
9	347.74	3587.09
10	361.54	3607.93
11	375.33	3628.78
12	389.13	3649.63
13	391.93	3653.86
14	395.30	3658.32

** Corrected JANBU FOS = 2.821 ** (Fo factor = 1.089)

Failure surface No. 5 specified by 13 coordinate points

	Point	x-surf	y-surf	
	No.	(ft)	(ft)	
	1	214.90	3613.23	
	2	218.52	3610.50	
	3	233.31	3600.71	
	4	254.15	3586.92	
	5	257.92	3584.08	
	6	343.75	3583.36	
	7	345.43	3585.05	
	8	346.96	3587.08	
	9	360.76	3607.92	
	10	374.56	3628.77	
	11	388.35	3649.62	
	12	391.01	3653.63	
	13	394.37	3658.09	
**	Corrected	JANBU FOS =	2.823 **	(1

** Corrected JANBU FOS = 2.823 ** (Fo factor = 1.089)

Failure surface No. 6 specified by 14 coordinate points

	Point	x-surf	y-surf	
	No.	(ft)	(ft)	
	1	215.08	3613.27	
	2	218.70	3610.55	
	3	233.81	3600.55	
	4	254.65	3586.75	
	5	258.54	3583.82	
	6	260.36	3582.00	
	7	343.43	3583.67	
	8	344.80	3585.04	
	9	346.33	3587.07	
	10	360.13	3607.91	
	11	373.92	3628.76	
	12	387.72	3649.61	
	13	390.26	3653.44	
	14	393.62	3657.91	
**	Corrected	JANBU FOS =	2.833 **	(Fo factor = 1.089)

Failure surface No. 7 specified by 13 coordinate points

Point No.	x-surf (ft)	y-surf (ft)	
1	217.12	3613.78	
2	220.73	3611.06	
3	238.02	3599.62	
4	258.86	3585.82	
5	260.05	3584.93	
6	346.19	3583.53	
7	347.75	3585.08	
8	349.27	3587.11	
9	363.07	3607.96	
10	376.87	3628.80	
11	390.67	3649.65	
12	393.76	3654.31	
13	397.12	3658.78	
Corrected	JANBU FOS =	2.838 **	(Fo factor = 1.089)

Failure surface No. 8 specified by 14 coordinate points

Point	x-surf (ft)	y-surf (ft)
NO.	(10)	(10)
1	215.33	3613.33
2	218.94	3610.61
3	234.49	3600.32
4	255.34	3586.52
5	258.92	3583.82
6	260.72	3582.02
7	345.38	3584.87
8	345.57	3585.05
9	347.09	3587.08
10	360.89	3607.93
11	374.69	3628.77
12	388.49	3649.62
13	391.17	3653.67
14	394.53	3658.13

**

** Corrected JANBU FOS = 2.838 ** (Fo factor = 1.088)

Failure surface No. 9 specified by 13 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	215.67	3613.42

	2	219.28	3610.70	
	3	235.44	3600.00	
	4	256.29	3586.20	
	5	259.30	3583.94	
	6	343.72	3583.07	
	7	345.70	3585.05	
	8	347.23	3587.08	
	9	361.03	3607.93	
	10	374.83	3628.77	
	11	388.63	3649.62	
	12	391.33	3653.71	
	13	394.70	3658.17	
**	Corrected	JANBU FOS =	2.841 **	(Fo factor = 1.089)

Failure surface No.10 specified by 14 coordinate points

	Point	x-surf	y-surf	
	No.	(ft)	(ft)	
		244 07	2612 02	
	1	214.07	3013.02	
	2	217.68	3610.30	
	3	231.00	3601.48	
	4	251.85	3587.68	
	5	256.84	3583.92	
	6	257.54	3583.23	
	7	341.00	3583.65	
	8	342.35	3585.01	
	9	343.88	3587.03	
	10	357.68	3607.88	
	11	371.47	3628.73	
	12	385.27	3649.57	
	13	387.35	3652.71	
	14	390.72	3657.18	
**	Corrected	JANBU FOS =	2.849 **	(Fo factor = 1.089)

The following is a summary of the TEN most critical surfaces Problem Description : SWLF LSMPA SEC B-2T2 TOTAL NOD2

Modified	Correction	Initial	Terminal	Available
JANBU FOS	Factor	x-coord	x-coord	Strength
		(ft)	(ft)	(lb)

1.	2.816	1.088	215.32	396.93	2.137E+05
2.	2,818	1.088	214.22	394.83	2.132E+05
з.	2.819	1.088	214.95	395.47	2.145E+05
4.	2.821	1.089	215.37	395.30	2.149E+05
5.	2.823	1.089	214.90	394.37	2.116E+05
6.	2.833	1.089	215.08	393.62	2.127E+05
7.	2.838	1.089	217.12	397.12	2.135E+05
8.	2,838	1.088	215.33	394.53	2.134E+05
9.	2.841	1.089	215.67	394.70	2.132E+05
10.	2.849	1.089	214.07	390.72	2.083E+05

* * * END OF FILE * * *

IIIE-A-3-244

XSTABL File: FCC-2T2 1-26-25 11:47

**	******	**
*	XSTABL	*
*		*
*	Slope Stability Analysis	*
*	using the	*
*	Method of Slices	*
*		*
*	Copyright (C) 1992 - 2013	*
*	Interactive Software Designs, Inc.	*
*	Moscow, ID 83843, U.S.A.	*
*		*
*	All Rights Reserved	*
*	.	*
*	Ver. 5.209 96 - 2083	*
**	*****	**

Problem Description : SWLF LSMPA SEC C-2T2 TOTAL NOD2

SEGMENT BOUNDARY COORDINATES

11 SURFACE boundary segments

Segment	x-left	y-left	x-right	y-right	Soil Unit
No.	(ft)	(ft)	(ft)	(ft)	Below Segment
1	.0	3622.9	73.9	3623.0	2
2	73.9	3623.0	74.8	3623.3	2
3	74.8	3623.3	88.3	3627.8	2
4	88.3	3627.8	96.8	3630.7	1
5	96.8	3630.7	105.2	3631.0	1
6	105.2	3631.0	136.0	3634.0	1
7	136.0	3634.0	166.0	3634.0	1
8	166.0	3634.0	170.0	3632.0	1
9	170.0	3632.0	178.4	3634.1	1
10	178.4	3634.1	450.0	3702.0	4
11	450.0	3702.0	1710.0	3765.0	4

16 SUBSURFACE boundary segments

Segment	x-left	y-left	x-right	y-right	Soil Unit
No.	(ft)	(ft)	(ft)	(ft)	Below Segment

1	178.3	3634.1	181.0	3634.1	1
2	181.0	3634.1	190.5	3634.1	7
3	190.5	3634.1	192.9	3634.1	6
4	192.9	3634.1	450.5	3698.5	5
5	450.5	3698.5	1710.0	3761.5	5
6	192.7	3634.1	196.9	3634.1	6
7	196.9	3634.1	382.2	3572.3	6
8	382.2	3572.3	1710.0	3545.7	6
9	190.5	3634.1	381.9	3570.3	7
10	381.9	3570.3	1710.0	3543.7	8
11	181.0	3634.1	199.8	3627.8	1
12	199.8	3627.8	253.3	3610.0	2
13	253.3	3610.0	381.4	3567.3	3
14	381.4	3567.3	1710.0	3540.7	3
15	88.3	3627.8	199.8	3627.8	2
16	.0	3610.0	253.3	3610.0	3

ISOTROPIC Soil Parameters

8 Soil unit(s) specified

Soil	Unit	Weight	Cohesion	Friction	Pore Pr	essure	Water
Unit	Moist	Sat.	Intercept	Angle	Parameter	Constant	Surface
No.	(pcf)	(pcf)	(psf)	(deg)	Ru	(psf)	No.
1	122.5	122.5	100.0	26.00	.000	.0	0
2	121.9	121.9	100.0	26.00	.000	.0	0
3	122.5	127.0	1200.0	26.70	.000	.0	1
4	116.0	120.0	100.0	16.00	.000	.0	0
5	59.0	59.0	288.0	23.00	.000	.0	0
6	120.0	125.0	100.0	16.00	.000	.0	0
7	120.0	125.0	1000.0	.00	.000	.0	0
8	120.0	125.0	1000.0	.00	.000	.0	0

.

1 Water surface(s) have been specified

Unit weight of water = 62.40 (pcf)

Water Surface No. 1 specified by 2 coordinate points

Point No.	x-water (ft)	y-water (ft)
1	.00	3514.00
2	1710.00	3506.60

A critical failure surface searching method, using a random technique for generating sliding BLOCK surfaces, has been specified.

The active and passive portions of the sliding surfaces are generated according to the Rankine theory.

100 trial surfaces will be generated and analyzed.

2 boxes specified for generation of central block base

* * * * * DEFAULT SEGMENT LENGTH SELECTED BY XSTABL * * * * *

Length of line segments for active and passive portions of sliding block is 29.0 ft

Вох	x-left	y-left	x-right	y-right	Width
no.	(ft)	(ft)	(ft)	(ft)	(ft)
1	382.2	3569.8	392.2	3569.6	5.0
2	432.2	3568.8	442.2	3568.6	5.0

** ** Factor of safety calculation for surface # 18 ** failed to converge within FIFTY iterations ** ** ** ** ** The last calculated value of the FOS was 4.1247 ** This will be ignored for final summary of results **

The trial failure surface in question is defined by the following 19 coordinate points

Point x-surf y-surf

No.	(ft)	(ft)
1	264.63	3655.66
2	268.24	3652.94
3	269.40	3652.17
4	293.58	3636.16
5	317.77	3620.16
6	341.95	3604.15
7	366.13	3588.14
8	390.31	3572.14
9	391.40	3571.32
10	432.32	3566.32
11	435.23	3569.23
12	436.72	3571.21
13	452.73	3595.39
14	468.73	3619.57
15	484.74	3643.76
16	500.74	3667.94
17	516.75	3692.12
18	523.39	3702.15
19	526.15	3705.81

**	Factor of safety calculation for surface # 23	**
**	failed to converge within FIFTY iterations	**
**	5	**
**	The last calculated value of the FOS was 4.3289	**
**	This will be ignored for final summary of results	**
*****	***************************************	****

The trial failure surface in question is defined by the following 19 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	264 31	3655 58
2	267.93	3652.86
3	268.95	3652.18
4	293.14	3636.17
5	317.32	3620.16
6	341.50	3604.16
7	365.68	3588.15
8	389.87	3572.15
9	390.22	3571.88
10	432.90	3568.29
11	433.87	3569.26
12	435.36	3571.24
13	451.36	3595.42

14	467.37	3619.60
15	483.37	3643.78
16	499.38	3667.97
17	515.39	3692.15
18	521.96	3702.07
19	524.72	3705.74

*****	***************************************	***
**	Factor of safety calculation for surface # 32	**
**	failed to converge within FIFTY iterations	**
**	5	**
**	The last calculated value of the FOS was 4.5109	**
**	This will be ignored for final summary of results	**
*****	***************************************	***

The trial failure surface in question is defined by the following 19 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	265.21	3655.80
2	268.82	3653.08
3	270.22	3652.15
4	294.41	3636.15
5	318.59	3620.14
6	342.77	3604.13
7	366.95	3588.13
8	391.14	3572.12
9	391.75	3571.66
10	435.60	3568.63
11	436.18	3569.21
12	437.67	3571.19
13	453.68	3595.37
14	469.68	3619.55
15	485.69	3643.74
16	501.70	3667.92
17	517.70	3692.10
18	524.38	3702.20
19	527.14	3705.86

*****	***************************************	****
**	Factor of safety calculation for surface # 67	**
**	failed to converge within FIFTY iterations	**
**	C C	**
**	The last calculated value of the FOS was 4.0711	**
**	This will be ignored for final summary of results	**
*****	***************************************	****

IIIE-A-3-249

The trial failure surface in question is defined by the following 19 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	265.84	3655.96
2	269.45	3653.24
3	271.12	3652.13
4	295.30	3636.13
5	319.48	3620.12
6	343.67	3604.12
7	367.85	3588.11
8	392.03	3572.10
9	392.15	3572.02
10	440.54	3568.38
11	441.26	3569.11
12	442.75	3571.09
13	458.76	3595.27
14	474.77	3619.45
15	490.77	3643.63
16	506.78	3667.82
17	522.78	3692.00
18	529.71	3702.46
19	532.47	3706.12

*****	***************************************	****
**	Factor of safety calculation for surface # 69	**
**	failed to converge within FIFTY iterations	**
**	U U	**
**	The last calculated value of the FOS was 3.8621	**
**	This will be ignored for final summary of results	**
*****	***************	****

The trial failure surface in question is defined by the following 19 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	264.50	3655.62
2	268.11	3652.90
3	269.21	3652.17
4	293.39	3636.17
5	317.58	3620.16
6	341.76	3604.15
7	365.94	3588.15
8	390.13	3572.14

9	391.64	3571.00
10	432.51	3567.65
11	434.11	3569.25
12	435.60	3571.23
13	451.61	3595.41
14	467.61	3619.60
15	483.62	3643.78
16	499.63	3667.96
17	515.63	3692.14
18	522.21	3702.09
19	524.97	3705.75

**	Factor of safety calculation for surface # 85	**
**	failed to converge within FIFTY iterations	**
**		**
**	The last calculated value of the FOS was 3.9094	**
**	This will be ignored for final summary of results	**
****	***************************************	*****

The trial failure surface in question is defined by the following 20 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	263.36	3655.34
2	266.97	3652.62
3	267.59	3652.20
4	291.78	3636.20
5	315.96	3620.19
6	340.14	3604.19
7	364.33	3588.18
8	388.51	3572.17
9	391.24	3570.11
10	391.55	3569.81
11	432.27	3567.50
12	434.03	3569.26
13	435.51	3571.23
14	451.52	3595.41
15	467.53	3619.60
16	483.53	3643.78
17	499.54	3667.96
18	515.55	3692.15
19	522.12	3702.08
20	524.88	3705.74

** ** Factor of safety calculation for surface # 86 ** ** failed to converge within FIFTY iterations ** ** The last calculated value of the FOS was ** ** 4.0808 This will be ignored for final summary of results ** **

The trial failure surface in question is defined by the following 19 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	264.71	3655.68
2	268.33	3652.96
3	269.52	3652.17
4	293.71	3636.16
5	317.89	3620.15
6	342.07	3604.15
7	366.25	3588.14
8	390.44	3572.14
9	391.94	3571.00
10	432.79	3566.53
11	435.49	3569.23
12	436.97	3571.20
13	452,98	3595.39
14	468.99	3619.57
15	484.99	3643.75
16	501.00	3667.93
17	517.01	3692.12
18	523.65	3702.16
19	526.41	3705.82

**	Factor of safety calculation for surface # 92	**
**	failed to converge within FIFTY iterations	**
**	C	**
**	The last calculated value of the FOS was 4.1527	**
**	This will be ignored for final summary of results	**
*****	***************************************	****

The trial failure surface in question is defined by the following 18 coordinate points

Point No.	x-surf (ft)	y-surf (ft)
1	265.73	3655.93
2	269.34	3653.21

3	270.96	3652.14
4	295.14	3636.13
5	319.32	3620.12
6	343.51	3604.12
7	367.69	3588.11
8	391.87	3572.11
9	391.96	3572.04
10	433.59	3569.61
11	434.82	3571.25
12	450.83	3595.43
13	466.83	3619.61
14	482.84	3643.79
15	498.85	3667.98
16	514.85	3692.16
17	521.40	3702.05
18	524.16	3705.71

Factors of safety have been calculated by the :

* * * * * SIMPLIFIED JANBU METHOD * * * * *

The 10 most critical of all the failure surfaces examined are displayed below - the most critical first

Failure surface No. 1 specified by 19 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	256.12	3653.53
2	259.73	3650.81
3	277.70	3638.91
4	301.89	3622.91
5	326.07	3606.90
6	350.25	3590.90
7	374.44	3574.89
8	379.44	3571.12
9	382.54	3568.02
10	432.29	3567.27
11	434.28	3569.25
12	435.76	3571.23
13	451.77	3595.41
14	467.78	3619.59
15	483.78	3643.77
16	499.79	3667.96
17	515.80	3692.14

	18 19	522.38 525.14	3702.10 3705.76	
**	Corrected J	ANBU FOS =	3.867 **	(Fo factor = 1.085)

Failure surface No. 2 specified by 19 coordinate points

Point	x-surf	y-surf	
No.	(ft)	(ft)	
1	256.53	3653.63	
2	260.15	3650.91	
3	278.85	3638.53	
4	303.03	3622.53	
5	327.21	3606.52	
6	351.39	3590.52	
7	375.58	3574.51	
8	380.58	3570.74	
9	382.24	3569.08	
10	435.70	3567.33	
11	437.55	3569.19	
12	439.04	3571.16	
13	455.05	3595.34	
14	471.06	3619.53	
15	487.06	3643.71	
16	503.07	3667.89	
17	519.07	3692.07	
18	525.82	3702.27	
19	528.58	3705.93	

** Corrected JANBU FOS = 3.879 ** (Fo factor = 1.086)

Failure surface No. 3 specified by 19 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	256.69	3653.67
2	260.31	3650.95
3	279.29	3638.39
4	303.47	3622.38
5	327.66	3606.37
6	351.84	3590.37
7	376.02	3574.36
8	381,02	3570.59
9	382.34	3569.27
10	439.69	3567.72
11	441.09	3569.11

	12	442.58	3571.09	
	13	458.58	3595.27	
	14	474.59	3619.46	
	15	490.60	3643.64	
	16	506.60	3667.82	
	17	522.61	3692.00	
	18	529.52	3702.45	
	19	532.28	3706.11	
**	Corrected	JANBU FOS =	3.880 **	(Fo factor = 1.086)

Failure surface No. 4 specified by 19 coordinate points

	Point	x-surf	y-surf	
	No.	(ft)	(ft)	
	1	257.17	3653.79	
	2	260.79	3651.07	
	3	280.63	3637.94	
	4	304.81	3621.93	
	5	328.99	3605.93	
	6	353.17	3589.92	
	7	377.36	3573.92	
	8	382.16	3570.29	
	9	384.30	3568.16	
	10	440.09	3567.52	
	11	441.67	3569.10	
	12	443.16	3571.08	
	13	459.17	3595.26	
	14	475.18	3619.44	
	15	491.18	3643.63	
	16	507.19	3667.81	
	17	523.19	3691.99	
	18	530.14	3702.48	
	19	532,90	3706.14	
**	Corrected	JANBU FOS =	3.899 **	(Fo factor = 1.086)

Failure surface No. 5 specified by 19 coordinate points

Point No.	x-surf (ft)	y-surf (ft)
1	257.19	3653.80
2	260.80	3651.08
3	280.67	3637.92
4	304.85	3621.92
5	329.04	3605.91

6	353.22	3589.91	
7	377.40	3573.90	
8	382.19	3570.29	
9	385.06	3567.42	
10	438.13	3567.15	
11	440.12	3569.13	
12	441.60	3571.11	
13	457.61	3595.29	
14	473.62	3619.48	
15	489.62	3643.66	
16	505.63	3667.84	
17	521.64	3692.02	
18	528.51	3702.40	
19	531.26	3706.06	
** Corrected	JANBU FOS =	3.901 **	(Fo factor = 1.086)
Failure surface	e No. 6 specit	fied by 19 co	ordinate points
Point	x-surf	v-surf	
No.	(ft)	(ft)	
		、	
1	257.49	3653.87	
2	261.10	3651.15	
3	281.49	3637.65	
4	305.67	3621.64	
5	329.86	3605.64	
6	354.04	3589.63	
7	378.22	3573.63	
8	382.66	3570.28	
9	385.35	3567.59	
10	439.07	3566.51	
11	441.66	3569.10	
12	443.15	3571.08	
13	459.16	3595.26	
14	475.16	3619.44	
15	491.17	3643.63	
16	507.18	3667.81	
17	523.18	3691.99	
18	530.13	3702.48	
19	532.89	3706.14	
** Corrected	JANBU FOS =	3.908 **	(Fo factor = 1.086)

Failure surface No. 7 specified by 19 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)

	1	257.36	3653.84	
	2	260.97	3651.12	
	3	281.15	3637.77	
	4	305.33	3621.76	
	5	329.51	3605.75	
	6	353.69	3589.75	
	7	377.88	3573.74	
	8	382.46	3570.29	
	9	382.62	3570.13	
	10	438.45	3566.74	
	11	440.83	3569.12	
	12	442.31	3571.10	
	13	458.32	3595.28	
	14	474.33	3619.46	
	15	490.33	3643.64	
	16	506.34	3667.83	
	17	522.35	3692.01	
	18	529.25	3702.44	
	19	532.01	3706.10	
**	Corrected	JANBU FOS =	3.909 **	(Fo factor = 1.086)

Failure surface No. 8 specified by 18 coordinate points

	Point	x-surf	y-surf	
	No.	(ft)	(ft)	
	1	255.90	3653.47	
	2	259.51	3650.75	
	3	277.09	3639.12	
	4	301.27	3623.11	
	5	325.45	3607.11	
	6	349.63	3591.10	
	7	373.82	3575.10	
	8	378.82	3571.33	
	9	382.41	3567.73	
	10	435.69	3569.78	
	11	436.77	3571.21	
	12	452.77	3595.39	
	13	468.78	3619.57	
	14	486.78	3643.75	
	15	500.79	3667.94	
	16	516 80	3692 12	
	17	523 43	3702 15	
	18	526 19	3705 81	
	10	520,15	J, 0J, 01	
**	Corrected	JANBU FOS =	3.910 **	(Fo factor = 1.086)

Failure surface No. 9 specified by 19 coordinate points

	Point	x-surf	y-surf	
	No.	(ft)	(ft)	
	1	256.88	3653,72	
	2	260.49	3651.00	
	3	279.80	3638.21	
	4	303.99	3622.21	
	5	328.17	3606.20	
	6	352.35	3590.20	
	7	376.54	3574.19	
	8	381.54	3570.42	
	9	383.77	3568.18	
	10	433.47	3569.07	
	11	433.67	3569.26	
	12	435.15	3571.24	
	13	451.16	3595.42	
	14	467.17	3619.60	
	15	483.17	3643.79	
	16	499.18	3667.97	
	17	515.19	3692.15	
	18	521.75	3702.06	
	19	524.51	3705.73	
**	Corrected	JANBU FOS =	3.910 **	(Fo factor = 1.086)

Failure surface No.10 specified by 19 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	257.43	3653.86
2	261.04	3651.14
3	281.33	3637.70
4	305.52	3621.70
5	329.70	3605.69
6	353.88	3589.69
7	378.06	3573.68
8	382.57	3570.29
9	385.42	3567.44
10	440.08	3568.48
11	440.72	3569.12
12	442.21	3571.10
13	458.21	3595.28
14	474.22	3619.46
15	490.23	3643.65
16	506.23	3667.83

	17	522.24	3692.01	
	18	529.14	3702.43	
	19	531.90	3706.09	
**	Corrected	JANBU FOS =	3.912 **	(Fo factor = 1.086)

The following is a summary of the TEN most critical surfaces Problem Description : SWLF LSMPA SEC C-2T2 TOTAL NOD2

	Modified JANBU FOS	Correction Factor	Initial x-coord (ft)	Terminal x-coord (ft)	Available Strength (lb)
1.	3.867	1.085	256.12	525.14	6.139E+05
2.	3.879	1.086	256.53	528.58	6.197E+05
з.	3.880	1.086	256.69	532.28	6.249E+05
4.	3.899	1.086	257.17	532.90	6.280E+05
5.	3.901	1.086	257.19	531.26	6.264E+05
6.	3.908	1.086	257.49	532.89	6.294E+05
7.	3.909	1.086	257,36	532.01	6.270E+05
8.	3.910	1.086	255.90	526.19	6.256E+05
9.	3.910	1.086	256.88	524.51	6.156E+05
10.	3.912	1.086	257.43	531.90	6.273E+05

* * * END OF FILE * * *

FCD-2T2 1-26-25 11:54

XSTABL File: FCD-2T2 1-26-25 11:54

*********	******	**
*	ХЅТАВЬ	*
*		*
* Slor	oe Stability Analysis	*
*	using the	*
*	Method of Slices	*
*		*
* Copy	/right (C) 1992 - 2013	*
* Interact	ive Software Designs, Inc.	*
* Moso	COW, ID 83843, U.S.A.	*
*	····, ··· · · · · · · · · · · · · · ·	*
* A.	ll Rights Reserved	*
*		*
* Ver. 5.209	96 - 2083	*
***********	·	**

Problem Description : SWLF LSMPA SEC D-2T2 TOTAL NOD2

SEGMENT BOUNDARY COORDINATES

8 SURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	.0	3625.9	60.2	3625.9	2
2	60.2	3625.9	60.3	3625.9	2
3	60.3	3625.9	89.9	3636.2	1
4	89.9	3636.2	119.9	3636.2	1
5	119.9	3636.2	123.9	3634.2	1
6	123.9	3634.2	132.0	3636.2	1
7	132.0	3636.2	395.2	3702.0	5
8	395.2	3702.0	770.1	3720.7	5

18 SUBSURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	131.9	3636.2	135.1	3636.2	1
2	135.1	3636.2	144.6	3636.2	8

3	144.6	3636.2	146.5	3636.2	7
4	146.5	3636.2	395.7	3698.5	6
5	395.7	3698.5	770.1	3717.2	6
6	146.3	3636.2	150.9	3636.2	7
7	150.9	3636.2	395.2	3554.7	7
8	395.2	3554.7	770.1	3558.5	7
9	144.6	3636.2	394.9	3552.7	8
10	394.9	3552.7	770.1	3556.5	9
11	135.1	3636.2	165.9	3625.9	1
12	165.9	3625.9	192.9	3616.9	2
13	192.9	3616.9	363.7	3560.1	3
14	363.7	3560.1	393.7	3550.1	4
15	393.7	3550.1	394.4	3549.7	3
16	394.4	3549.7	770.1	3556.5	3
17	60.3	3625.9	165.9	3625.9	2
18	.0	3616.9	192.9	3616.9	3

ISOTROPIC Soil Parameters

9 Soil unit(s) specified

Soil	Unit	Weight	Cohesion	Friction	Pore Pr	essure	Water
Unit	Moist	Sat.	Intercept	Angle	Parameter	Constant	Surface
No.	(pcf)	(pcf)	(psf)	(deg)	Ru	(psf)	No.
1	122.5	122.5	100.0	26.00	.000	.0	0
2	121.9	121.9	100.0	26.00	.000	.0	0
3	122.5	127.0	1200.0	26.70	.000	.0	1
4	122.5	127.0	1200.0	26.70	.000	.0	0
5	116.0	120.0	100.0	16.00	.000	.0	0
6	59.0	59.0	288.0	23.00	.000	.0	0
7	120.0	125.0	100.0	16.00	.000	.0	0
8	120.0	125.0	1000.0	.00	.000	.0	0
9	120.0	125.0	1000.0	.00	.000	.0	0

1 Water surface(s) have been specified

Unit weight of water = 62.40 (pcf)

Water Surface No. 1 specified by 2 coordinate points

Point	x-water	y-water
No.	(ft)	(ft)
1	.00	3502.00
2	770.10	3500.10

A critical failure surface searching method, using a random technique for generating sliding BLOCK surfaces, has been specified.

The active and passive portions of the sliding surfaces are generated according to the Rankine theory.

100 trial surfaces will be generated and analyzed.

2 boxes specified for generation of central block base

* * * * * DEFAULT SEGMENT LENGTH SELECTED BY XSTABL * * * * *

Length of line segments for active and passive portions of sliding block is 19.0 ft

Box no.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Width (ft)
1	180.0	3624.4	200.0	3617.7	5.0
2	320.0	3577.7	340.0	3571.0	5.0

Factors of safety have been calculated by the :

* * * * * SIMPLIFIED JANBU METHOD * * * * *

The 10 most critical of all the failure surfaces examined are displayed below - the most critical first

Failure surface No. 1 specified by 17 coordinate points

	Point	x-surf	y-surf	
	No.	(ft)	(ft)	
	1	155.35	3642.04	
	2	158.97	3639.32	
	3	160.81	3638.09	
	4	176.66	3627.61	
	5	180.83	3624.46	
	6	332.49	3571.58	
	7	333.95	3573.03	
	8	335.21	3574.71	
	9	345.70	3590.56	
	10	356.18	3606.40	
	11	366.67	3622.24	
	12	377.16	3638.09	
	13	387.64	3653.93	
	14	398.13	3669.78	
	15	408.62	3685.62	
	16	417.88	3699.61	
	17	420.64	3703.27	
**	Corrected	JANBU FOS =	2.797 **	(Fo factor = 1.088)

Failure surface No. 2 specified by 18 coordinate points

	Point	x-surf	y-surf	
	No.	(ft)	(ft)	
	1	154.58	3641.84	
	2	158.19	3639.12	
	3	158.66	3638.81	
	4	174.51	3628.32	
	5	179.51	3624,55	
	6	180.29	3623.78	
	7	334.98	3571.75	
	8	335.69	3572.45	
	9	336.95	3574.13	
	10	347.44	3589.98	
	11	357.93	3605.82	
	12	368.41	3621.66	
	13	378.90	3637.51	
	14	389.39	3653.35	
	15	399.87	3669.19	
	16	410.36	3685.04	
	17	420.08	3699.72	
	18	422.84	3703.38	
**	Corrected	JANBU FOS =	2.822 **	(Fo factor = 1.088)

Failure surface No. 3 specified by 17 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	156.16	3642.24
2	159.77	3639.52
3	163.05	3637.35
4	178.90	3626.86
5	183.59	3623.32
6	332.44	3571.23
7	334.17	3572.96
8	335.43	3574.64
9	345.92	3590.48
10	356.41	3606.33
11	366.89	3622.17
12	377.38	3638.01
13	387.87	3653.86
14	398.35	3669.70
15	408.84	3685.54
16	418.16	3699.62
17	420.92	3703.28

** Corrected JANBU FOS = 2.824 ** (Fo factor = 1.088)

Failure surface No. 4 specified by 18 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	157.75	3642.64
2	161.36	3639.91
3	167.46	3635.88
4	183.30	3625.39
5	185.09	3624.04
6	337.38	3569,99
7	338.80	3571.41
8	340.07	3573.09
9	350.56	3588.94
10	361.04	3604.78
11	371.53	3620.62
12	382.02	3636.47
13	392.50	3652.31
14	402.99	3668.15
15	413.48	3684.00
16	423.96	3699.84
17	424.01	3699.91
18	426.77	3703.57

** Corrected JANBU FOS = 2.826 ** (Fo factor = 1.088)

Failure surface No. 5 specified by 17 coordinate points

	Point	x-surf	y-surf	
	No.	(ft)	(ft)	
	1	161.43	3643.56	
	2	165.04	3640.83	
	3	177.68	3632.47	
	4	193.53	3621.98	
	5	198.52	3618.22	
	6	336.70	3572.04	
	7	336.76	3572.10	
	8	338.02	3573.78	
	9	348.51	3589.62	
	10	358.99	3605.46	
	11	369.48	3621.31	
	12	379.97	3637.15	
	13	390.45	3652.99	
	14	400.94	3668.84	
	15	411.43	3684.68	
	16	421.42	3699.78	
	17	424.18	3703.45	
**	Corrected	JANBU FOS =	2.829 **	(Fo factor = 1.088)

Failure surface No. 6 specified by 18 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	155.48	3642.07
2	159.10	3639.35
3	161.17	3637.97
4	177.02	3627.49
5	182.02	3623.72
6	183.64	3622.10
7	328.30	3574.81
8	328.38	3574.89
9	329.64	3576.57
10	340.13	3592.41
11	350.62	3608.26
12	361.10	3624.10
13	371.59	3639.94
14	382.08	3655.79
15	392.56	3671.63

	16	403.05	3687.48	
	17	410.85	3699.26	
	18	413.61	3702.92	
**	Corrected	JANBU FOS =	2.830 **	(Fo factor = 1.088)

Failure surface No. 7 specified by 18 coordinate points

Point	x-surf	y-surf	
No.	(ft)	(ft)	
1	155.83	3642.16	
2	159.44	3639.44	
3	162.14	3637.65	
4	177.98	3627.17	
5	182.98	3623.40	
6	186.43	3619.95	
7	335.76	3572.26	
8	335.89	3572.39	
9	337.15	3574.07	
10	347.64	3589.91	
11	358.13	3605.75	
12	368.61	3621.60	
13	379.10	3637.44	
14	389.59	3653.28	
15	400.07	3669.13	
16	410.56	3684.97	
17	420.33	3699.73	
18	423.09	3703.39	

** Corrected JANBU FOS = 2.831 ** (Fo factor = 1.088)

Failure surface No. 8 specified by 18 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	155.40	3642.05
2	159.02	3639.33
3	160.95	3638.05
4	176.80	3627.56
5	181.80	3623.79
6	184.20	3621.39
7	335.79	3571.29
8	336.63	3572.14
9	337.90	3573.82
10	348.39	3589.66
11	358.87	3605.50

	12	369.36	3621.35	
	13	379.85	3637.19	
	14	390.33	3653.03	
	15	400.82	3668.88	
	16	411.31	3684.72	
	17	421.27	3699.78	
	18	424.03	3703.44	
**	Corrected	JANBU FOS =	2.835 **	(Fo factor = 1.088)

Failure surface No. 9 specified by 18 coordinate points

Point	x-surf	y-surf	
No.	(ft)	(ft)	
1	157.18	3642.49	
2	160.79	3639.77	
3	165.88	3636.41	
4	181.72	3625.92	
5	186.72	3622.15	
6	187.91	3620.96	
7	333.02	3571.97	
8	334.05	3573.00	
9	335.32	3574.68	
10	345.80	3590.52	
11	356.29	3606.37	
12	366.78	3622.21	
13	377.26	3638.05	
14	387.75	3653.90	
15	398.24	3669.74	
16	408.72	3685.58	
17	418.01	3699.61	
18	420.77	3703.28	

Failure surface No.10 specified by 18 coordinate points

(Fo factor = 1.088)

Point No.	x-surf (ft)	y-surf (ft)
1	161.28	3643.52
2	164.89	3640.80
3	177.28	3632.60
4	193.12	3622.11
5	198.10	3618.36
6	338.24	3570.90
7	338.77	3571.43

** Corrected JANBU FOS = 2.837 **

	8	340.03	3573.10	
	9	350.52	3588.95	
	10	361.01	3604.79	
	11	371.49	3620.64	
	12	381.98	3636.48	
	13	392.47	3652.32	
	14	402.95	3668.17	
	15	413.44	3684.01	
	16	423.93	3699.85	
	17	423.97	3699.91	
	18	426.72	3703.57	
**	Connected	JANRII EOS -	2 940 **	(Fo factor - 1.088)
	Connecteu	JANDU FUS -	2.040	$(10 \ 1000)$

The following is a summary of the TEN most critical surfaces Problem Description : SWLF LSMPA SEC D-2T2 TOTAL NOD2

	Modified JANBU FOS	Correction Factor	Initial x-coord (ft)	Terminal x-coord (ft)	Available Strength (lb)
1.	2.797	1.088	155.35	420.64	4.044E+05
2.	2.822	1.088	154.58	422.84	4.157E+05
з.	2.824	1.088	156.16	420.92	4.087E+05
4.	2.826	1.088	157.75	426.77	4.227E+05
5.	2.829	1.088	161.43	424.18	4.141E+05
6.	2.830	1.088	155.48	413.61	3.941E+05
7.	2.831	1.088	155.83	423.09	4.156E+05
8.	2.835	1.088	155.40	424.03	4.184E+05
9.	2.837	1.088	157.18	420.77	4.101E+05
10.	2.840	1.088	161.28	426.72	4.214E+05

* * * END OF FILE * * *

XSTABL File: OL-A1T2 1-26-25 13:29

**	******	**
*	ХЅТАВЬ	*
*		*
*	Slope Stability Analysis	*
*	using the	*
*	Method of Slices	*
*		*
*	Copyright (C) 1992 - 2013	*
*	Interactive Software Designs, Inc.	*
*	Moscow, ID 83843, U.S.A.	*
*		*
*	All Rights Reserved	*
*	0	*
*	Ver. 5.209 96 - 2083	*
**	*****	**

Problem Description : SWLF LSMPA OL SEC A-A1T2 TOTAL NOD2

SEGMENT BOUNDARY COORDINATES

11 SURFACE boundary segments

Segment	x-left	y-left	x-right	y-right	Soil Unit
No.	(ft)	(ft)	(ft)	(ft)	Below Segment
1	٥	2611 A	20 1	3620 7	1
T	.0	2011.0	29.1	3020.7	1
2	29.1	3620.7	44.1	3620.7	Т
3	44.1	3620.7	53.1	3617.7	1
4	53.1	3617.7	56.1	3617.7	1
5	56.1	3617.7	59.3	3618.8	1
6	59.3	3618.8	64.1	3617.1	1.
7	64.1	3617.1	121.7	3620.6	4
8	121.7	3620.6	124.6	3620.8	8
9	124.6	3620.8	126.5	3621.3	5
10	126.5	3621.3	347.7	3676.6	4
11	347.7	3676.6	524.5	3686.5	4

42 SUBSURFACE boundary segments

Segment	x-left	y-left	x-right	y-right	Soil Unit
No.	(ft)	(ft)	(ft)	(ft)	Below Segment

IIIE-A-3-271

1	126.5	3621.3	129.7	3621.3	5
2	129.7	3621.3	130.3	3621.2	5
3	124.6	3620.8	126.4	3630.2	8
4	121.7	3630.2	124.2	3619.8	9
5	66.7	3616.3	124.2	3619.8	9
6	124.2	3619.8	124.8	3619.8	8
7	124.8	3619.8	126.4	3620.2	8
8	126.4	3620.2	130.3	3621.2	5
9	130.3	3621.2	347.9	3675.6	9
10	347.9	3675.6	524.5	3685.5	9
11	130.3	3621.2	137.7	3618.7	5
12	137.7	3618.7	151.1	3623.1	5
13	151.1	3623.1	188.2	3625.0	5
14	188.2	3625.0	322.5	3631.3	5
15	126.4	3620.2	137.7	3616.5	8
16	137.7	3616.5	151.5	3621.1	8
17	151.5	3621.1	188.3	3622.9	8
18	188.3	3622.9	322.5	3629.2	8
19	124.2	3619.8	137.7	3615.3	9
20	137.7	3615.3	151.7	3620.0	9
21	151.7	3620.0	188.3	3621.8	9
22	188.3	3621.8	322.5	3628.1	9
23	66.7	3616.3	100.8	3604.9	1
24	100.8	3604.9	137.0	3592.8	2
25	137.0	3592.8	145.5	3590.0	3
26	145.5	3590.0	223.5	3590.0	3
27	223.5	3590.0	322.5	3623.0	3
28	322.5	3623.0	334.9	3623.0	5
29	334.9	3623.0	424.8	3583.3	5
30	424.8	3583.3	454.0	3592.9	5
31	454.0	3592.9	458.6	3594.0	5
32	458.6	3594.0	524.5	3595.2	5
33	322.5	3623.0	327.0	3621.0	3
34	327.0	3621.0	334.5	3621.0	6
35	334.5	3621.0	424.7	3581.2	6
36	424.7	3581.2	458.8	3592.0	7
37	458.8	3592.0	524.5	3593.3	7
38	327.0	3621.0	424.5	3578.0	3
39	424.5	3578.0	459.2	3589.0	3
40	459.2	3589.0	524.5	3590.3	3
41	.0	3602.6	100.8	3604.9	2
42	.0	3589.6	137.0	3592.8	3

ISOTROPIC Soil Parameters

9 Soil unit(s) specified

Soil	Unit	Weight	Cohesion	Friction	Pore Pr	essure	Water
Unit	Moist	Sat.	Intercept	Angle	Parameter	Constant	Surface
No.	(pcf)	(pcf)	(psf)	(deg)	Ru	(psf)	No.
1	122.5	122.5	100.0	26.00	.000	.0	0
2	121.9	121.9	100.0	26.00	.000	.0	0
3	122.5	127.0	1200.0	26.70	.000	.0	1
4	116.0	120.0	100.0	16.00	.000	.0	0
5	120.0	125.0	100.0	16.00	.000	.0	0
6	120.0	125.0	1000.0	.00	.000	.0	0
7	120.0	125.0	1000.0	.00	.000	.0	0
8	120.0	125.0	1000.0	.00	.000	.0	0
9	59.0	59.0	288.0	23.00	.000	.0	0

1 Water surface(s) have been specified

Unit weight of water = 62.40 (pcf)

Water Surface No. 1 specified by 2 coordinate points

******	******	*****	******	*******

Point	x-water	y-water
No.	(ft)	(ft)
1	.00	3518.70
2	524.50	3520.80

A critical failure surface searching method, using a random technique for generating sliding BLOCK surfaces, has been specified.

The active and passive portions of the sliding surfaces are generated according to the Rankine theory.

100 trial surfaces will be generated and analyzed.

2 boxes specified for generation of central block base

IIIE-A-3-273

* * * * * DEFAULT SEGMENT LENGTH SELECTED BY XSTABL * * * * *

Length of line segments for active and passive portions of sliding block is 16.0 ft

Box no.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Width (ft)
1	161.6	3622.1	181.6	3623.1	3.2
2	301.4	3628.7	321.4	3629.7	3.2

USER SELECTED option for unrestricted values of strength

Factors of safety have been calculated by the :

* * * * * SIMPLIFIED JANBU METHOD * * * * *

The 10 most critical of all the failure surfaces examined are displayed below - the most critical first

Failure surface No. 1 specified by 11 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	154.33	3628.26
2	155.38	3627.47
3	161.19	3623.62
4	162.31	3622.78
5	320.40	3629.18
6	321.98	3631.28

7		330	.81		3644.63	2		
8		339	.64		3657.90	5		
9		348	.47		3671.30	3		
10	I.	351	.45		3675.80	3		
11		352	.24		3676.8	5		
		552	• - •		207010			
** Corre	cted	JANBU	FOS	=	2.399	**	(Fo factor = 1.	070)
Failure su	rface	No. 2	spe	ecifi	ied by :	11 c	coordinate points	
			•		2		·	
Poi	nt	x-s	urf		y-sur	F		
No	••	(f	t)		(ft)			
		•	•		• •			
1		156	.22		3628.7	3		
2		157	.26		3627.9	4		
-		163	.61		3623.7	4		
4	_	163	.65		3623.7	1		
5		318	.78		3630.2	1		
-		310	50		3631 1	5		
7	,	328	. 20		3644 5	a		
7	,	220	16		2657 0	1		
2	1	227	.10		2671 1	+ ^		
5		345	.99		2675 6	9 ~		
16)	348	.95		30/5.0	0		
11	•	349	.74		36/6./	T		
** Corre	cted	JANBU	FOS	=	2.409	**	(Fo factor = 1.	.070)
Failure su	Irface	e No. 3	spe	ecifi	ied by	11 c	coordinate points	
Poi	.nt	X-S	urf		y-sur	f		
No).	(f	t)		(ft)			
-		4	- F.4		2620 0	-		-
1	-	157	.51		3629.0	5		
2	<u>-</u>	158	.56		3628.2	6		
Э	5	165	.26		3623.8	3		
4	÷	167	.12		3622.4	3		
5	5	318	.21		3630.5	6		
e	5	318	.63		3631.1	2		
7	,	327	.46		3644.4	6		
8	3	336	.29		3657.8	0		
9)	345	.12		3671.1	5		
10)	348	.08		3675.6	1		
11	-	348	.87		3676.6	7		
** Corre	ected	JANBU	FOS	=	2.410	**	(Fo factor = 1	.070)

Failure surface No. 4 specified by 11 coordinate points

IIIE-A-3-275

	Point	x-surf	y-surf	
	No.	(ft)	(ft)	
	1	154.47	3628.29	
	2	155.51	3627.50	
	3	161.37	3623.63	
	4	163.45	3622.06	
	5	314.06	3630.45	
	6	314.41	3630.92	
	7	323.24	3644.26	
	8	332.07	3657.60	
	9	340.90	3670.95	
	10	343.20	3674.43	
	11	344.18	3675.72	
**	Corrected	JANBU FOS =	2.414 **	(Fo factor = 1.069)
Entl		ALC: The second of the second of the second seco	"	and described and the first of the second
Latt	ure surtace	e No. 5 specif	пеа бу тт со	ordinate points
Fatt	ure surtace	e No. 5 specif	-ied by ii co	ordinate points
Fall	Point	x-surf	y-surf	ordinate points
Latt	Point No.	x-surf (ft)	y-surf (ft)	ordinate points
Latt	Point No.	x-surf (ft)	y-surf (ft)	ordinate points
Fall	Point No. 1	x-surf (ft) 158.15	y-surf (ft) 3629.21	ordinate points
Fall	Point No. 1 2	x-surf (ft) 158.15 159.20	y-surf (ft) 3629.21 3628.42	ordinate points
Fall	Point No. 1 2 3	x-surf (ft) 158.15 159.20 166.08	y-surf (ft) 3629.21 3628.42 3623.87	ordinate points
Fall	Point No. 1 2 3 4	x-surf (ft) 158.15 159.20 166.08 167.25	y-surf (ft) 3629.21 3628.42 3623.87 3622.99	ordinate points
Latt	Point No. 1 2 3 4 5	x-surf (ft) 158.15 159.20 166.08 167.25 317.26	y-surf (ft) 3629.21 3628.42 3623.87 3622.99 3629.48	ordinate points
ra11	Point No. 1 2 3 4 5 6	x-surf (ft) 158.15 159.20 166.08 167.25 317.26 318.49	y-surf (ft) 3629.21 3628.42 3623.87 3622.99 3629.48 3631.11	ordinate points
Latt	Point No. 1 2 3 4 5 6 7	x-surf (ft) 158.15 159.20 166.08 167.25 317.26 318.49 327.33	y-surf (ft) 3629.21 3628.42 3623.87 3622.99 3629.48 3631.11 3644.45	ordinate points
Latt	Point No. 1 2 3 4 5 6 7 8	x-surf (ft) 158.15 159.20 166.08 167.25 317.26 318.49 327.33 336.16	<pre>'led by ll co y-surf (ft) 3629.21 3628.42 3623.87 3622.99 3629.48 3631.11 3644.45 3657.80</pre>	ordinate points
Latt	Point No. 1 2 3 4 5 6 7 8 9	x-surf (ft) 158.15 159.20 166.08 167.25 317.26 318.49 327.33 336.16 344.99	<pre>'led by ll co y-surf (ft) 3629.21 3628.42 3623.87 3622.99 3629.48 3631.11 3644.45 3657.80 3671.14</pre>	ordinate points
Latt	Point No. 1 2 3 4 5 6 7 8 9 10	x-surf (ft) 158.15 159.20 166.08 167.25 317.26 318.49 327.33 336.16 344.99 347.94	<pre>'led by ll co y-surf (ft) 3629.21 3628.42 3623.87 3622.99 3629.48 3631.11 3644.45 3657.80 3671.14 3675.60</pre>	ordinate points
Latt	Point No. 1 2 3 4 5 6 7 8 9 10 11	x-surf (ft) 158.15 159.20 166.08 167.25 317.26 318.49 327.33 336.16 344.99 347.94 348.74	<pre>Jea by II co y-surf (ft) 3629.21 3628.42 3623.87 3622.99 3629.48 3631.11 3644.45 3657.80 3671.14 3675.60 3676.66</pre>	ordinate points
Latt	Point No. 1 2 3 4 5 6 7 8 9 10 11	x-surf (ft) 158.15 159.20 166.08 167.25 317.26 318.49 327.33 336.16 344.99 347.94 348.74	y-surf (ft) 3629.21 3628.42 3623.87 3622.99 3629.48 3631.11 3644.45 3657.80 3671.14 3675.60 3676.66	ordinate points
**	Point No. 1 2 3 4 5 6 7 8 9 10 11 Corrected	<pre>x No. 5 specif x-surf (ft) 158.15 159.20 166.08 167.25 317.26 318.49 327.33 336.16 344.99 347.94 348.74 JANBU FOS =</pre>	<pre>Jed by II co y-surf (ft) 3629.21 3628.42 3623.87 3622.99 3629.48 3631.11 3644.45 3657.80 3671.14 3675.60 3676.66 2.426 **</pre>	(Fo factor = 1.071)

Failure surface No. 6 specified by 11 coordinate points

Point No.	x-surf (ft)	y-surf (ft)
1	155.94	3628.66
2	156.98	3627.87
3	163.25	3623.72
4	164.38	3622.87
5	312.66	3630.77
6	312.71	3630.84

	7	321,54	3644.18	
	8	330.37	3657.53	
	9	339.20	3670.87	
	10	341.23	3673.93	
	11	342.21	3675.23	
	TT	J+2.21	5075.25	
**	Corrected	JANBU FOS =	2.427 **	(Fo factor = 1.069)
Fail	ure surface	No. 7 specif	ied by 11 co	ordinate points
	Point	x-surf	v-surf	
	No.	(ft)	(ft)	
	1101	(10)	(1-2)	
	1	154.27	3628.24	
	2	155.32	3627.45	
	3	161.12	3623.61	
	4	161.82	3623.08	
	5	311.69	3629.90	
	6	312.39	3630.83	
	7	321.22	3644.17	
	8	330.05	3657.51	
	9	338.88	3670.85	
	10	340.86	3673.84	
	11	341.84	3675.13	
**	Corrected	JANBU FOS =	2.431 **	(Fo factor = 1.070)
Fail	ure surface.	No. 8 speci	Fied by 11 co	ordinate points
	Point	v-surf	v-surf	
	No	(f+)	(ft)	
	10.	(10)	(10)	
	1	157.87	3629.14	
	2	158.91	3628.35	
	3	165.72	3623.85	
	4	165.76	3623.82	
	5	315.59	3629.91	
	6	316.42	3631.01	
	7	325.25	3644.36	
	, 8	334.08	3657.70	
	9	342.91	3671.04	
	10	345.54	3675.01	
	11	346.52	3676.30	
**	Corrected	JANBU FOS =	2.432 **	(Fo factor = 1.070)

Failure surface No. 9 specified by 11 coordinate points

IIIE-A-3-277

Poi	.nt ×	(-surf	y-surf					
No		(ft)	(ft)					
1	. 1	.64.89	3630.90	I				
2	! 1	65.94	3630.11					
3	; 1	174.70	3624.31					
2	- 1	L75.50	3623.71					
5	; 3	320.59	3630.58	,				
e	5 3	321.08	3631.23					
7	' 3	329.91	3644.58					
8	3 3	338.74	3657.92	•				
9) Ξ	347.58	3671.26	•				
16) 3	350.55	3675.75					
11	1 3	351.34	3676.80)				
** Corre	ected JANE	BU FOS =	2.435	**	(Fo	factor	= 1.071)
Failure su	urface No.	.10 specif	ied by 1	.1 coor	rdina	te poir	its	
De	int ,	(cupf	V-cupf	:				
PU.		(-Sui i (£+)	y-3ui i (£+)					
INC	J.	(10)	(10)					
		161.39	3630.02	<u>,</u>				
		162.44	3629.23	}				
	3	170.23	3624.08	3				
-	1	172.25	3622.55	5				
	5	315.86	3629.47	,				
	5	317.05	3631.04	ŀ				
-	7	325.88	3644.39)				
1	2 3	334.71	3657.73	3				
	, ,	343.54	3671.07	,				
11	- 	346.27	3675.19)				
1	1	347 24	3676.49)				
д.		577.627	2070.42	•				

The following is a summary of the TEN most critical surfaces Problem Description : SWLF LSMPA OL SEC A-A1T2 TOTAL NOD2

Modified	Correction	Initial	Terminal	Available
JANBU FOS	Factor	x-coord	x-coord	Strength
		(ft)	(ft)	(lb)

1.	2.399	1.070	154.33	352.24	1.264E+05
2.	2.409	1.070	156.22	349.74	1.180E+05
з.	2.410	1.070	157.51	348.87	1.197E+05
4.	2.414	1.069	154.47	344.18	1.160E+05
5.	2.426	1.071	158.15	348.74	1.210E+05
6.	2.427	1.069	155.94	342.21	1.109E+05
7.	2.431	1.070	154.27	341.84	1.123E+05
8.	2.432	1.070	157.87	346.52	1.151E+05
9.	2.435	1.071	164.89	351.34	1.190E+05
10.	2.445	1.072	161.39	347.24	1.205E+05

* * * END OF FILE * * *

XSTABL File: OL-B1T2 1-26-25 13:33

*****	***************	**
*	XSTABL	*
*		*
*	Slope Stability Analysis	*
*	using the	*
*	Method of Slices	*
*		*
*	Copyright (C) 1992 - 2013	*
* I	nteractive Software Designs, Inc.	*
*	Moscow, ID 83843, U.S.A.	*
*		*
*	All Rights Reserved	*
*	5	*
* Ve	r. 5.209 96 - 2083	*
****	*****	**

Problem Description : SWLF LSMPA OL SEC B-B1T2 TOTAL NOD2

SEGMENT BOUNDARY COORDINATES

8 SURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	.0	3604.5	39.4	3604.5	1
2	39.4	3604.5	43.4	3602.6	1
3	43.4	3602.6	51.4	3604.6	1
4	51.4	3604.6	59.4	3604.6	1
5	59.4	3604.6	65.7	3604.6	6
6	65.7	3604.6	65.8	3604.6	5
7	65.8	3604.6	441.6	3698.5	9
8	441.6	3698.5	1138.7	3733.4	9

27 SUBSURFACE boundary segments

Segment	x-left	y-left	x-right	y-right	Soil Unit
No.	(ft)	(ft)	(ft)	(ft)	Below Segment
1	65.8	3604.6	70.0	3604.6	5
2	70.0	3604.6	441.6	3697.5	4

3	441.6	3697.5	1138.7	3732.4	4
4	70.0	3604.6	72.1	3604.6	5
5	72.1	3604.6	128.5	3585.8	5
6	128.5	3585.8	226.6	3587.2	5
7	226.6	3587.2	284.2	3606.4	5
8	284.2	3606.4	289.9	3608.3	8
9	289.9	3608.3	424.5	3642.0	8
10	424.5	3642.0	505.7	3652.0	8
11	505.7	3652.0	653.8	3689.0	8
12	653.8	3689.0	1138.6	3714.7	8
13	65.7	3604.6	128.2	3583.8	6
14	128.2	3583.8	226.9	3585.2	7
15	226.9	3585.2	290.5	3606.4	6
16	290.5	3606.4	424.9	3640.0	4
17	424.9	3640.0	506.1	3650.0	4
18	506.1	3650.0	654.1	3687.0	4
19	654.1	3687.0	1138.7	3712.7	4
20	59.4	3604.6	102.7	3590.2	1
21	102.7	3590.2	127.9	3581.8	2
22	127.9	3581.8	227.3	3583.2	2
23	227.3	3583.2	296.8	3606.4	2
24	296.8	3606.4	330.3	3595.2	2
25	330.3	3595.2	1138.7	3596.6	2
26	.0	3588.1	28.3	3590.2	2
27	28.3	3590.2	102.7	3590.2	2

ISOTROPIC Soil Parameters

9 Soil unit(s) specified

Soil	Unit	Weight	Cohesion	Friction	Pore Pr	essure	Water
Unit	Moist	Sat.	Intercept	Angle	Parameter	Constant	Surface
No.	(pcf)	(pcf)	(psf)	(deg)	Ru	(psf)	No.
1	121.9	121.9	100.0	26.00	.000	.0	0
2	122.5	127.0	1200.0	26.70	.000	.0	1
3	122.5	127.0	1200.0	26.70	.000	.0	0
4	59.0	59.0	288.0	23.00	.000	.0	0
5	120.0	125.0	100.0	16.00	.000	.0	0
6	120.0	125.0	1000.0	.00	.000	.0	0
7	120.0	125.0	1000.0	.00	.000	.0	0
8	120.0	125.0	1000.0	.00	.000	.0	0
9	116.0	120.0	100.0	16.00	.000	.0	0

1 Water surface(s) have been specified

Unit weight of water = 62.40 (pcf)

1 .00 3514.00 2 1139.10 3506.60

A critical failure surface searching method, using a random technique for generating sliding BLOCK surfaces, has been specified.

The active and passive portions of the sliding surfaces are generated according to the Rankine theory.

100 trial surfaces will be generated and analyzed.

2 boxes specified for generation of central block base

* * * * * DEFAULT SEGMENT LENGTH SELECTED BY XSTABL * * * * *

Length of line segments for active and passive portions of sliding block is 26.0 ft

Вох	x-left	y-left	x-right	y-right	Width
no.	(ft)	(ft)	(ft)	(ft)	(ft)
1	290.2	3607.3	309.6	3612.2	2.0
2	615.0	3678.3	634.4	3683.1	2.0

Factors of safety have been calculated by the :

* * * * * SIMPLIFIED JANBU METHOD * * * * *

The 10 most critical of all the failure surfaces examined are displayed below - the most critical first

Failure surface No. 1 specified by 11 coordinate points

Point No.	x-surf (ft)	y-surf (ft)
1	235.61	3647.03
2	236.63	3646.26
3	249.50	3637.74
4	271.18	3623.39
5	292.86	3609.04
6	292.95	3608.94
7	615.05	3677.57
8	617.38	3679.90
9	631.73	3701.58
10	635.45	3707.21
11	636.24	3708.24

** Corrected JANBU FOS = 3.496 ** (Fo factor = 1.048)

Failure surface No. 2 specified by 11 coordinate points

	Point	x-surf	y-surf	
	No.	(+t)	(+t)	
	1	240.62	3648.28	
	2	241.64	3647.51	
	3	254.50	3639.00	
	4	276.19	3624.64	
	5	297.87	3610.29	
	6	297.91	3610.25	
	7	615.34	3677.43	
	8	617.95	3680.04	
	9	632.31	3701.73	
	10	635.95	3707.23	
	11	636.73	3708.27	
**	Corrected	JANBU FOS =	3.526 **	(Fo factor = 1.048)

Failure surface No. 3 specified by 11 coordinate points

Point x-surf y-surf

No.	(ft)	(ft)	
1	237 05	3617 39	
2	237.05	3646 62	
2	250.07	3638,10	
4	272 62	3623 75	
5	294.30	3609.40	
6	294.50	3609.19	
7	617 04	3679.29	
, 8	617.74	3679.99	
g	632.09	3701.67	
10	635.77	3707.22	
11	636.55	3708.26	
**	050.00	2,00120	
** Corrected	JANBU FOS =	3.529 **	(Fo factor = 1.048)
-			
Failure surface	No. 4 specif	Fied by <mark>11 co</mark> o	ordinate points
Point	x-surf	y-surf	
No.	(ft)	(ft)	
1	234.83	3646.84	
2	235.86	3646.06	
3	248.72	3637.55	
4	270.40	3623.20	
5	292.09	3608.85	
6	292.19	3608.74	
7	631.86	3682.87	
8	632.72	3683.73	
9	647.07	3705.42	
10	648.70	3707.87	
11	649.48	3708.91	
** Corrected	JANBU FOS =	3.531 **	(Fo factor = 1.047)

Point No.	x-surf (ft)	y-surf (ft)
1	232.79	3646.32
2	233.81	3645.55
3	246.68	3637.04
4	268.36	3622.69
5	290.04	3608.34
6	290.42	3607.96
7	624.98	3681.20
8	625.79	3682.00

	9	640.14	3703.68	
	10	642.71	3707.57	
	11	643.49	3708.61	
**	Corrected	JANBU FOS =	3.532 **	(Fo factor = 1.047)

Failure	surface	No.	6	specified	by	11	coordinate	points
---------	---------	-----	---	-----------	----	----	------------	--------

Point No.	x-surf (ft)	y-surf (ft)	
1	236.62	3647.28	
2	237.64	3646.51	
3	250.51	3637.99	
4	272.19	3623.64	
5	293.87	3609.29	
6	294.03	3609.13	
7	621.01	3679.91	
8	622.21	3681.11	
9	636.56	3702.79	
10	639.62	3707.41	
11	640.40	3708.45	

** Corrected JANBU FOS = 3.533 ** (Fo factor = 1.048)

Failure surface No. 7 specified by 11 coordinate points

	Point No.	x-surf (ft)	y-surf (ft)	
	1	236 88	3647 35	
	1 2	230.00	2646 59	
	2	257.91	3040.36	
	3	250.77	3038.00	
	4	272.45	3623.71	
	5	294.14	3609.36	
	6	294.23	3609.26	
	7	628.76	3682.02	
	8	629.73	3682.99	
	9	644.08	3704.67	
	10	646.11	3707.74	
	11	646.90	3708.78	
**	Corrected	JANBU FOS =	3.542 **	(Fo factor = 1.047)

Failure surface No. 8 specified by 11 coordinate points

Point x-surf y-surf

	No.	(ft)	(ft)	
	1	235.11	3646.90	
	2	236.13	3646.13	
	3	249.00	3637.62	
	4	270.68	3623.27	
	5	292.36	3608.92	
	6	292.90	3608.38	
	7	625.92	3681.95	
	8	626.04	3682.06	
	9	640.39	3703.75	
	10	642.93	3707.58	
	11	643.71	3708.62	
**	Corrected	JANBU FOS ≕	3.556 **	(Fo factor = 1.048)

Failure surface No. 9 specified by 11 coordinate points

	Point	x-surf	y-surf	
	No.	(ft)	(ft)	
	1	241.37	3648,47	
	2	242.39	3647.70	
	3	255.26	3639.18	
	4	276.94	3624.83	
	5	298.62	3610.48	
	6	298.78	3610.32	
	7	623.57	3681.20	
	8	623.91	3681.53	
	9	638.26	3703.21	
	10	641.09	3707.49	
	11	641.87	3708.53	
**	Corrected	JANBU FOS =	3.561 **	(Fo factor = 1.048)

Failure surface No.10 specified by 11 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	241.46	3648.49
2	242.48	3647.72
3	255.35	3639.21
4	277.03	3624.86
5	298.71	3610.51
6	299.03	3610.18
7	616.17	3677.71
8	618.69	3680.23

	9	633.04	3701.91	
	10	636.58	3707.26	
	11	637.37	3708.30	
**	Corrected	JANBU FOS =	3.562 **	(Fo factor = 1.049)

The following is a summary of the TEN most critical surfaces Problem Description : SWLF LSMPA OL SEC B-B1T2 TOTAL NOD2

	Modified JANBU FOS	Correction Factor	Initial x-coord (ft)	Terminal x-coord (ft)	Available Strength (lb)
1.	3.496	1.048	235.61	636.24	5.416E+05
2.	3.526	1.048	240.62	636.73	5.326E+05
з.	3.529	1.048	237.05	636.55	5.381E+05
4.	3.531	1.047	234.83	649.48	5.491E+05
5.	3.532	1.047	232.79	643.49	5.556E+05
6.	3.533	1.048	236.62	640.40	5.425E+05
7.	3.542	1.047	236.88	646.90	5.442E+05
8.	3.556	1.048	235.11	643.71	5.523E+05
9.	3,561	1.048	241.37	641.87	5.309E+05
10.	3.562	1.049	241.46	637.37	5.380E+05

* * * END OF FILE * * *

0L-C1T2 1-26-25 13:35

XSTABL File: OL-C1T2 1-26-25 13:35

**	*****	**
*	ХЅТАВЬ	*
*		*
*	Slope Stability Analysis	*
*	using the	*
*	Method of Slices	*
*		*
*	Copyright (C) 1992 - 2013	*
*	Interactive Software Designs, Inc.	*
*	Moscow, ID 83843, U.S.A.	*
*		*
*	All Rights Reserved	*
*	0	*
*	Ver. 5.209 96 - 2083	*
**	*****	**

Problem Description : SWLF LSMPA OL SEC C-C1T2 TOTAL NOD2

SEGMENT BOUNDARY COORDINATES

2 SURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	.0	3560.3	458.7	3713.2	9
2	458.7	3713.2	853.9	3714.2	9

20 SUBSURFACE boundary segments

Segment	x-left	y-left	x-right	y-right	Soil Unit
No.	(ft)	(ft)	(ft)	(ft)	Below Segment
1	.0	3560.3	3.0	3560.3	5
2	3.0	3560.3	458.4	3712.1	4
3	458.4	3712.1	853.9	3713.2	4
4	3.0	3560.3	155.3	3560.0	5
5	155.3	3560.0	336.9	3620.0	8
6	336.9	3620.0	342.8	3622.4	8
7	342.8	3622.4	609.0	3689.0	8
8	609.0	3689.0	854.4	3702.0	8

9	.0	3558.3	155.7	3558.0	7
10	155.7	3558.0	343.3	3620.5	6
11	343.3	3620.5	609.3	3687.0	4
12	609.3	3687.0	853.9	3700.0	4
13	.0	3553.3	156.2	3550.0	3
14	156.2	3550.0	285.8	3598.2	3
15	285.8	3598.2	315.2	3608.0	2
16	315.2	3608.0	352.7	3620.5	1
17	352.7	3620.5	613.6	3609.6	1
18	613.6	3609.6	853.9	3605.3	2
19	315.2	3608.0	613.6	3609.6	2
20	285.8	3598.2	854.0	3596.7	3

ISOTROPIC Soil Parameters

9 Soil unit(s) specified

Soil	Unit	Weight	Cohesion	Friction	Pore Pr	essure	Water
Unit	Moist	Sat.	Intercept	Angle	Parameter	Constant	Surface
No.	(pcf)	(pcf)	(psf)	(deg)	Ru	(psf)	No.
1	122.5	122.5	100.0	26.00	.000	.0	0
2	121.9	121.9	100.0	26.00	.000	.0	0
3	122.5	127.0	1200.0	26.70	.000	.0	1
4	59.0	59.0	288.0	23.00	.000	.0	0
5	120.0	125.0	100.0	16.00	.000	.0	0
6	120.0	125.0	1000.0	.00	.000	.0	0
7	120.0	125.0	1000.0	.00	.000	.0	0
8	120.0	125.0	1000.0	.00	.000	.0	0
9	116.0	120.0	100.0	16.00	.000	.0	0
7 8 9	120.0 120.0 116.0	125.0 125.0 120.0	1000.0 1000.0 100.0	00. 00. 16.00	.000 .000 .000	.0 .0 .0	0 0 0

1 Water surface(s) have been specified

Unit weight of water = 62.40 (pcf)

Water Surface No. 1 specified by 2 coordinate points

Point	x-water	y-water
No.	(ft)	(ft)

1	.00	3515.40
2	853.90	3518.20

A critical failure surface searching method, using a random technique for generating sliding BLOCK surfaces, has been specified.

The active and passive portions of the sliding surfaces are generated according to the Rankine theory.

100 trial surfaces will be generated and analyzed.

2 boxes specified for generation of central block base

* * * * * DEFAULT SEGMENT LENGTH SELECTED BY XSTABL * * * * *

Length of line segments for active and passive portions of sliding block is 31.0 ft

Box no.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Width (ft)
1	343.0	3621.5	362.4	3626.3	2.0
2	556.4	3674.8	575.9	3679.7	2.0

Factors of safety have been calculated by the :

* * * * * SIMPLIFIED JANBU METHOD * * * * *

The 10 most critical of all the failure surfaces examined are displayed below - the most critical first

Failure surface No. 1 specified by 10 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	290.01	3656.97

	2	290.93	3656.28	
	3	316.53	3639.34	
	4	342.38	3622.23	
	5	343.65	3620.95	
	6	556.58	3674.23	
	7	558.78	3676.44	
	8	575.89	3702.29	
	9	582.62	3712.45	
	10	583.42	3713.52	
**	Corrected	JANBU FOS =	2.263 **	(Fo factor = 1.060)

Failure surface No. 2 specified by 10 coordinate points

Point No.	x-surf (ft)	y-surf (ft)	
1	289.78	3656.89	
2	290.70	3656.20	
3	316.31	3639.25	
4	342.16	3622.14	
5	343.07	3621.23	
6	563.22	3675.95	
7	565.34	3678.08	
8	582.45	3703.93	
9	588.10	3712.46	
10	588.91	3713.53	

** Corrected JANBU FOS = 2.295 ** (Fo factor = 1.059)

Failure surface No. 3 specified by 10 coordinate points

	Point No.	x-surf (ft)	y-surf (ft)	
	1	289.70	3656.87	
	2	290.62	3656.17	
	3	316.23	3639.22	
	4	342.08	3622.11	
	5	343.42	3620.78	
	6	563.20	3676.93	
	7	564.02	3677.75	
	8	581.13	3703.60	
	9	587.00	3712.46	
	10	587.80	3713.53	
**	Corrected	JANBU FOS =	2.297 **	(Fo factor = 1.059)

Failure surface No. 4 specified by 10 coordinate points

	Point No.	x-surf (ft)	y-surf (ft)	
	1	292.28	3657.73	
	2	293.20	3657.03	
	3	318.93	3640.00	
	4	344.78	3622.89	
	5	346.05	3621.62	
	6	558.88	3675.54	
	7	560.11	3676.77	
	8	577.22	3702.62	
	9	583.73	3712.45	
	10	584.53	3713.52	
**	Corrected	JANBU FOS =	2.309 **	(Fo factor = 1.060)

Failure surface No. 5 specified by 10 coordinate points

Point No.	x-surf (ft)	y-surf (ft)	
	(,	(/	
1	293.46	3658.12	
2	294.38	3657.43	
3	320.21	3640.33	
4	346.06	3623.22	
5	347.28	3622.00	
6	560.08	3675.47	
7	561.81	3677.19	
8	578.92	3703.04	
9	585.15	3712.45	
10	585.96	3713.52	

** Corrected JANBU FOS = 2.318 ** (Fo factor = 1.060)

Failure surface No. 6 specified by 10 coordinate points

Point No.	x-surf (ft)	y-surf (ft)
1	290.04	3656.98
2	290.96	3656.29
3	316.55	3639.35
4	342.40	3622.24
5	343.28	3621.36
6	571.01	3678.10

	7	572.87	3679.96	
	8	589.98	3705.81	
	9	594.40	3712.48	
	10	595.20	3713.55	
**	Corrected	JANBU FOS =	2.327 **	(Fo factor = 1.058)
Fail	ure surface	e No. 7 specif	ied by 11 co	ordinate points
	Point	x-surf	y-surf	
	No.	(ft)	(ft)	
	1	294.35	3658.42	
	2	295.27	3657.72	
	3	295.33	3657.68	
	4	321.18	3640.57	
	5	347.03	3623.46	
	6	348.55	3621.94	
	7	567.96	3677.09	
	8	570.15	3679.28	
	9	587.26	3705.13	
	10	592.12	3712.47	
	11	592.93	3713.54	

** Corrected JANBU FOS = 2.328 ** (Fo factor = 1.059)

Failure surface No. 8 specified by 10 coordinate points

	Point No.	x-surf (ft)	y-surf (ft)	
	1	290.79	3657.23	
	2	291.71	3656.54	
	3	317.30	3639.60	
	4	343.15	3622.49	
	5	343.81	3621.84	
	6	568.58	3677.09	
	7	570.98	3679.49	
	8	588.09	3705.34	
	9	592.81	3712.47	
	10	593.62	3713.54	
**	Corrected	JANBU FOS =	2.330 **	(Fo factor = 1.058)

Failure surface No. 9 specified by 10 coordinate points

Point x-surf y-surf

	No.	(ft)	(ft)	
	1	292.86	3657.92	
	2	293.78	3657.23	
	3	319.57	3640.16	
	4	345.42	3623.05	
	5	346.53	3621.94	
	6	564.49	3676.79	
	7	565.92	3678.22	
	8	583.03	3704.07	
	9	588,59	3712.46	
	10	589.39	3713.53	
**	Corrected	JANBU FOS =	2.334 **	(Fo factor = 1.059)

Failure surface No.10 specified by 10 coordinate points

	Point	x-surf	y-surf	
	No.	(ft)	(ft)	
	1	290.90	3657.27	
	2	291.82	3656.57	
	3	317.42	3639.63	
	4	343.27	3622.52	
	5	344.60	3621.18	
	6	570.68	3678.90	
	7	571.37	3679.59	
	8	588.48	3705.44	
	9	593.14	3712.47	
	10	593.94	3713.54	
**	Corrected	JANBU FOS =	2.336 **	(Fo factor = 1.058)

The following is a summary of the TEN most critical surfaces Problem Description : SWLF LSMPA OL SEC C-C1T2 TOTAL NOD2

	Modified JANBU FOŚ	Correction Factor	Initial x-coord (ft)	Terminal x-coord (ft)	Available Strength (lb)
1.	2.263	1.060	290.01	583.42	3.205E+05
2.	2.295	1.059	289.78	588.91	3.253E+05
3.	2.297	1.059	289.70	587.80	3.244E+05
4.	2.309	1.060	292.28	584.53	3.190E+05

5.	2.318	1.060	293.46	585.96	3.192E+05
6.	2.327	1.058	290.04	595.20	3.306E+05
7.	2.328	1.059	294.35	592.93	3.250E+05
8.	2.330	1.058	290.79	593.62	3.283E+05
9.	2.334	1.059	292.86	589.39	3.227E+05
10.	2.336	1.058	290.90	593.94	3.286E+05

* * * END OF FILE * * *

XSTABL File: OL-D1T2 1-26-25 13:36

*****	*
* XSTABL	*
*	*
* Slope Stability Analysis	*
* using the	*
* Method of Slices	*
*	*
* Copyright (C) 1992 - 2013	*
* Interactive Software Designs, Inc.	*
* Moscow, ID 83843, U.S.A.	*
*	*
* All Rights Reserved	*
*	*
* Ver. 5.209 96 - 2083	*
******	*

Problem Description : SWLF LSMPA OL SEC D-D1T2 TOTAL NOD2

SEGMENT BOUNDARY COORDINATES

7 SURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	.0	3604.7	71.6	3609.2	1
2	71.6	3609.2	81.9	3610.5	1
3	81.9	3610.5	97.0	3610.0	1
4	97.0	3610.0	109.3	3607.9	1
5	109.3	3607.9	111.3	3608.0	5
6	111.3	3608.0	465.3	3696.5	5
7	465.3	3696.5	757.0	3712.7	5

9 SUBSURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	109.3	3607.9	112.4	3607.2	1
2	112.4	3607.2	419.2	3683.9	3
3	419.2	3683.9	429.4	3686.5	4

4	429.4	3686.5	465.8	3695.6	3
5	465.8	3695.6	757.5	3711.7	3
6	429.4	3686.5	757.5	3702.2	4
7	419.2	3683.9	757.2	3700.2	3
8	109.3	3607.9	165.8	3592.0	1
9	165.8	3592.0	757.2	3592.0	1

ISOTROPIC Soil Parameters

5 Soil unit(s) specified

Soil	Unit	Weight	Cohesion	Friction	Pore Pr	essure	Water
Unit	Moist	Sat.	Intercept	Angle	Parameter	Constant	Surface
No.	(pcf)	(pcf)	(psf)	(deg)	Ru	(psf)	No.
1	122.5	127.0	1200.0	26.70	.000	.0	1
2	122.5	127.0	1200.0	26.70	.000	.0	0
3	59.0	59.0	288.0	23.00	.000	.0	0
4	120.0	125.0	1000.0	.00	.000	.0	0
5	116.0	120.0	100.0	16.00	.000	.0	0

1 Water surface(s) have been specified

Unit weight of water = 62.40 (pcf)

Water Surface No. 1 specified by 2 coordinate points

Point No.	x-water (ft)	y-water (ft)
1	.00	3518.60
2	757.20	3521.30

A critical failure surface searching method, using a random technique for generating sliding BLOCK surfaces, has been specified.

The active and passive portions of the sliding surfaces are generated according to the Rankine theory.

100 trial surfaces will be generated and analyzed.

2 boxes specified for generation of central block base

* * * * * DEFAULT SEGMENT LENGTH SELECTED BY XSTABL * * * * *

Length of line segments for active and passive portions of sliding block is 22.0 ft

Box	x-left	y-left	x-right	y-right	Width
no.	(ft)	(ft)	(ft)	(ft)	(ft)
1	439.5	3686.0	449.4	3686.6	2.0
2	707.2	3699.1	717.2	3699.5	2.0

**	Factor of safety calculation for surface # 1	**
**	failed to converge within FIFTY iterations	**
**		**
**	The last calculated value of the FOS was 21.8099	**
**	This will be ignored for final summary of results	**
*****	***************************************	****

The trial failure surface in question is defined by the following 8 coordinate points

Point No.	x-surf (ft)	y-surf (ft)
1	435.62	3689.08
2	436.64	3688.31
3	438.71	3686.95
4	440.32	3685.34
5	714.52	3699.90
6	714.78	3700.16
7	721.09	3709.69
8	721.89	3710.75

2	439.78	3689.10
3	442.74	3687.14
4	443.45	3686.43
5	712.61	3699.94
6	712.73	3700.06
7	719.04	3709.58
8	719.83	3710.64

** Factor of safety calculation for surface # 100 ** ** failed to converge within FIFTY iterations ** ** ** ** The last calculated value of the FOS was 24.6188 ** ** This will be ignored for final summary of results **

The trial failure surface in question is defined by the following 8 coordinate points

Point No.	x-surf (ft)	y-surf (ft)
1	442.13	3690.71
2	443.15	3689.94
3	447.07	3687.35
4	447.43	3686.99
5	714.54	3699.69
6	715.02	3700.17
7	721.33	3709.70
8	722.13	3710.76

Factors of safety have been calculated by the :

* * * * * SIMPLIFIED JANBU METHOD * * * * *

The 10 most critical of all the failure surfaces examined are displayed below - the most critical first

Failure surface No. 1 specified by 7 coordinate points

Point No.	x-surf (ft)	y-surf (ft)	
1	441.79	3690.62	
2	442.82	3689.85	

	3	446.51	3687.41	
	4	715.76	3700.20	
	5	715.77	3700.20	
	6	722.09	3709.75	
	7	722.88	3710.81	
**	Corrected	JANBU FOS =	15.557 **	(Fo factor = 1.017)
Fail	ure surface	e No. 2 speci	fied by 8 cc	oordinate points
	Point No.	x-surf (ft)	y-surf (ft)	

	1	437.33	3689.51	
	2	438.35	3688.74	
	3	440.90	3687.05	
	4	442.62	3685.33	
	5	714.07	3698.52	
	6	715.76	3700.20	
	7	722.08	3709.74	
	8	722.88	3710.80	
**	Corrected	JANBU FOS =	20.443 **	(Fo factor = 1.019)

Failure surface No. 3 specified by 8 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	437.05	3689.44
2	438.07	3688.67
3	440.54	3687.03
4	442.33	3685.24
5	713.13	3698.72
6	714.55	3700.14
7	720.86	3709.68
8	721.66	3710.74

** Corrected JANBU FOS = 20.596 ** (Fo factor = 1.019)

Failure surface No. 4 specified by 8 coordinate points

Point No.	x-surf (ft)	y-surf (ft)	
1	435.24	3688.99	
2	436.27	3688.22	

	2	120 22	2686 02
	7	430.22	2605 21
	4 5	439.03	3608 40
	5	707.25	
	7	708.00	
	2 2	714.94	5709.55 5710.41
	0	/15./4	5710.41
**	Corrected	JANBU FOS =	20.802 ** (Fo factor = 1.019)
Fail	ure surface	No. 5 spec	ified by 8 coordinate points
	Point	x-surf	v-surf
	No.	(ft)	(ft)
		(/	(
	1	440.79	3690.37
	2	441.81	3689.60
	3	445.35	3687,26
	4	447.04	3685.57
	5	715.98	3698.72
	6	717.55	3700.29
	7	723.88	3709.84
	0	724 60	
	0	/24.68	3/10.91
**	° Corrected	JANBU FOS =	3710.91 20.895 ** (Fo factor = 1.019)
** Failu	° Corrected ure surface	724.68 JANBU FOS = No. 6 speci	3710.91 20.895 ** (Fo factor = 1.019) ified by 8 coordinate points
** Failı	o Corrected ure surface Point	724.68 JANBU FOS = No. 6 spect	3710.91 20.895 ** (Fo factor = 1.019) ified by 8 coordinate points
** Failı	o Corrected ure surface Point No.	724.68 JANBU FOS = No. 6 speci x-surf (ft)	3710.91 20.895 ** (Fo factor = 1.019) ified by 8 coordinate points y-surf (ft)
** Failı	o Corrected ure surface Point No.	724.68 JANBU FOS = No. 6 spect x-surf (ft)	3710.91 20.895 ** (Fo factor = 1.019) ified by 8 coordinate points y-surf (ft)
** Failı	o Corrected ure surface Point No. 1	724.68 JANBU FOS = No. 6 spect x-surf (ft) 435.62	3710.91 20.895 ** (Fo factor = 1.019) ified by 8 coordinate points y-surf (ft) 3689.08
** Failı	o Corrected ure surface Point No. 1 2	<pre>/24.68 JANBU FOS = No. 6 speci x-surf (ft) 435.62 436.64</pre>	3710.91 20.895 ** (Fo factor = 1.019) ified by 8 coordinate points y-surf (ft) 3689.08 3688.31
** Failı	o Corrected ure surface Point No. 1 2 3	724.68 JANBU FOS = No. 6 speci x-surf (ft) 435.62 436.64 438.71	3710.91 20.895 ** (Fo factor = 1.019) ified by 8 coordinate points y-surf (ft) 3689.08 3688.31 3686.95
** Failı	o Corrected ure surface Point No. 1 2 3 4	<pre>/24.68 JANBU FOS = No. 6 speci x-surf (ft) 435.62 436.64 438.71 440.32</pre>	3710.91 20.895 ** (Fo factor = 1.019) ified by 8 coordinate points y-surf (ft) 3689.08 3688.31 3686.95 3685.34
** Failı	o Corrected ure surface Point No. 1 2 3 4 5	<pre>/24.68 JANBU FOS = No. 6 speci x-surf (ft) 435.62 436.64 438.71 440.32 714.52</pre>	3710.91 20.895 ** (Fo factor = 1.019) ified by 8 coordinate points y-surf (ft) 3689.08 3688.31 3686.95 3685.34 3699.90
** Failı	o Corrected ure surface Point No. 1 2 3 4 5 6	<pre>/24.68 JANBU FOS = No. 6 speci x-surf (ft) 435.62 436.64 438.71 440.32 714.52 714.78</pre>	3/10.91 20.895 ** (Fo factor = 1.019) ified by 8 coordinate points y-surf (ft) 3689.08 3688.31 3686.95 3685.34 3699.90 3700.16
** Failı	o Corrected ure surface Point No. 1 2 3 4 5 6 7	<pre>724.68 JANBU FOS = No. 6 speci x-surf (ft) 435.62 436.64 438.71 440.32 714.52 714.78 721.09</pre>	3/10.91 20.895 ** (Fo factor = 1.019) ified by 8 coordinate points y-surf (ft) 3689.08 3688.31 3686.95 3685.34 3699.90 3700.16 3709.69
** Failı	o Corrected ure surface Point No. 1 2 3 4 5 6 7 8	<pre>724.68 JANBU FOS = No. 6 speci x-surf (ft) 435.62 436.64 438.71 440.32 714.52 714.78 721.09 721.89</pre>	3/10.91 20.895 ** (Fo factor = 1.019) ified by 8 coordinate points y-surf (ft) 3689.08 3688.31 3686.95 3685.34 3699.90 3700.16 3709.69 3710.75
** Failu	Corrected ure surface Point No. 1 2 3 4 5 6 7 8	724.68 JANBU FOS = No. 6 spect x-surf (ft) 435.62 436.64 438.71 440.32 714.52 714.78 721.09 721.89	3/10.91 20.895 ** (Fo factor = 1.019) ified by 8 coordinate points y-surf (ft) 3689.08 3688.31 3686.95 3685.34 3699.90 3700.16 3709.69 3710.75
** Failu	Corrected ure surface Point No. 1 2 3 4 5 6 7 8 Corrected	724.68 JANBU FOS = No. 6 speci x-surf (ft) 435.62 436.64 438.71 440.32 714.52 714.78 721.09 721.89 JANBU FOS =	3/10.91 20.895 ** (Fo factor = 1.019) ified by 8 coordinate points y-surf (ft) 3689.08 3688.31 3686.95 3685.34 3699.90 3700.16 3709.69 3710.75 500.000 ** (Fo factor = 1.017)

Failure surface No. 7 specified by 8 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	443.42	3691.03

2	444.45	3690.26
3	448.73	3687.43
4	448.85	3687.31
5	716.60	3699.25
6	717.65	3700.29
7	723.97	3709.85
8	724.77	3710.91

** Corrected JANBU FOS = 500.000 ** (Fo factor = 1.019)

Failure surface No. 8 specified by 8 coordinate points

Point No.	x-surf (ft)	y-surf (ft)
1	437.68	3689.60
2	438.71	3688.83
3	441.36	3687.07
4	442.23	3686.20
5	715.60	3700.08
6	715.73	3700.20
7	722.05	3709.74
8	722.84	3710.80

** Corrected JANBU FOS = 500.000 ** (Fo factor = 1.017)

Failure surface No. 9 specified by 8 coordinate points

y-surf	x-surf	Point
(ft)	(ft)	No.
3690.60	441.72	1
3689.83	442.74	2
3687.32	446.54	3
3685.88	447.97	4
3700.12	715.98	5
3700.22	716.07	6
3709.76	722.39	7
3710.82	723.19	8

** Corrected JANBU FOS = 500.000 ** (Fo factor = 1.017)

Failure surface No.10 specified by 8 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)

1	441.45	3690 51
-		5050.54
2	442.47	3689.77
3	446.20	3687.30
4	447.37	3686.13
5	715.50	3699.52
6	716.20	3700.22
7	722.52	3709.77
8	723.32	3710.83

** Corrected JANBU FOS = 500.000 ** (Fo factor = 1.018)

The following is a summary of the TEN most critical surfaces Problem Description : SWLF LSMPA OL SEC D-D1T2 TOTAL NOD2

	Modified JANBU FOS	Correction Factor	Initial x-coord (ft)	Terminal x-coord (ft)	Available Strength (lb)
1.	15.557	1.017	441.79	722.88	1.590E+05
2.	20.443	1.019	437.33	722.88	2.831E+05
з.	20.596	1.019	437.05	721.66	2.821E+05
4.	20.802	1.019	435.24	715.74	2.782E+05
5.	20.895	1.019	440.79	724.68	2.808E+05
6.	500.000	1.017	435.62	721.89	2.835E+05
7.	500.000	1.019	443.42	724.77	2.770E+05
8.	500.000	1.017	437.68	722.84	2.817E+05
9.	500.000	1.017	441.72	723.19	2.777E+05
10.	500.000	1.018	441.45	723.32	2.782E+05

* * * END OF FILE * * *

APPENDIX IIIE-A-4

INFINITE SLOPE STABILITY ANALYSIS

Includes pages IIIE-A-4-1 through IIIE-A-4-13

SOUTHWEST LANDFILL 0120-094-11-107-11 APPENDIX IIIE-A-4 INFINITE SLOPE STABILITY ANALYSIS SUMMARY

Component/Interface	Strength ParametersCohesion/AdhesionFriction Angle(psf)(deg)		Н	γ	β	T	r _u	b	А	В	Factor of Safety Generated		Recommended Minimum Factor of Safety		Acceptable Factor of Safety			
	Peak	Residual	Peak	Residual	(ft)	(pcf)	(deg)	(ft)	u				Peak	Residual	Peak	Residual	Peak	Residual
Liner System (3H:1V Maximum Slope)														•				
Composite Liner																		
Protective Cover/Geocomposite	100	80	18	14	2	120	18.43	0	0.00	3.0	1.0	3.3	2.35	1.85	1.5	1.0	YES	YES
Geocomposite/Textured Geomembrane	100	80	21	10	2	120	18.43	0	0.00	3.0	1.0	3.3	2.53	1.63	1.5	1.0	YES	YES
Textured Geomembrane/Clay Liner	200	80	15	10	2	120	18.43	0	0.00	3.0	1.0	3.3	3.55	1.63	1.5	1.0	YES	YES
Clay Liner/Subgrade (Note 1)	200	100	18	12	2	120	18.43	0	0.00	3.0	1.0	3.3	3.72	2.01	1.5	1.0	YES	YES
Clay Liner Internal	100	-	16	-	2	120	18.43	0	0.00	3.0	1.0	3.3	2.24	-	1.5	-	YES	-
Textured Geomembrane / Geosynthetic Clay Liner	100	0	18	0	2	120	18.43	0	0.00	3.0	1.0	3.3	2.35	-	1.5	-	YES	-
Geosynthetic Clay Liner Internal	100	-	24	-	2	120	18.43	0	0.00	3.0	1.0	3.3	2.71	-	1.5	-	YES	-
Geosynthetic Clay Liner/Subgrade	100	80	25	12	2	120	18.43	0	0.00	3.0	1.0	3.3	2.77	1.74	1.5	1.0	YES	YES
Overliner System (25 Percent Maximum Slope)																		
Protective Cover/Geocomposite	100	80	18	14	2	120	11.31	0	0.00	5.0	1.0	5.3	3.83	3.01	1.5	1.0	YES	YES
Geocomposite/Textured Geomembrane	100	80	21	10	2	120	11.31	0	0.00	5.0	1.0	5.3	4.13	2.65	1.5	1.0	YES	YES
Textured Geomembrane/ Geosynthetic Clay Liner	100	80	18	10	2	120	11.31	0	0.00	5.0	1.0	5.3	3.83	2.65	1.5	1.0	YES	YES
Geosynthetic Clay Liner Internal	100	-	24	-	2	120	11.31	0	0.00	5.0	1.0	5.3	4.43	-	1.5	-	YES	-
Geosynthetic Clay Liner/Subgrade	100	100	25	12	2	120	11.31	0	0.00	5.0	1.0	5.3	4.54	3.27	1.5	1.0	YES	YES

Notes

1. Clay liner to subgrade interface assumes that clay is founded on granular or sandy soils. In the event clay liner is founded on predominantly clayey soil, the interface for infinite slope stability analysis would be represented by the "Clay Liner Internal" analysis above.