Maverick County El Indio MSW Landfill Maverick County, Texas TCEQ Permit No. MSW-2316

Permit Modification Application

Response to Notice of Technical Deficiency 2 Dated April 7, 2025

Prepared for: **Maverick County** 500 Quarry Street, Suite 3, Eagle Pass, Texas 78852 830/773-3824

Prepared by:

SCS ENGINEERS

SCS Project No. 16223092.00 | June 2025

1901 Central Drive, Suite 550 Bedford, Texas 76021 817.571.2288

Texas Commission on Environmental Quality Waste Permits Division Correspondence Cover Sheet

Date: 06/23/2025 Facility Name: Maverick County El Indio MSW Landfill Permit or Registration No.: 2316 Nature of Correspondence:

Initial/New

Response/Revision to TCEQ Tracking No.: <u>31435860</u> (from subject line of TCEQ letter regarding initial submission)

Affix this cover sheet to the front of your submission to the Waste Permits Division. Check appropriate box for type of correspondence. Contact WPD at (512) 239-2335 if you have questions regarding this form.

Applications	Reports and Notifications
New Notice of Intent	Alternative Daily Cover Report
Notice of Intent Revision	Closure Report
New Permit (including Subchapter T)	Compost Report
New Registration (including Subchapter T)	Groundwater Alternate Source Demonstration
Major Amendment	Groundwater Corrective Action
Minor Amendment	Groundwater Monitoring Report
Limited Scope Major Amendment	Groundwater Background Evaluation
Notice Modification	Landfill Gas Corrective Action
Non-Notice Modification	Landfill Gas Monitoring
Transfer/Name Change Modification	Liner Evaluation Report
Temporary Authorization	Soil Boring Plan
Voluntary Revocation	Special Waste Request
Subchapter T Disturbance Non-Enclosed Structure	Other:
Other:	

Table 1 - Municipal Solid Waste Correspondence

Table 2 - Industrial & Hazardous Waste Correspondence

Applications	Reports and Responses
New	Annual/Biennial Site Activity Report
Renewal	CPT Plan/Result
Post-Closure Order	Closure Certification/Report
Major Amendment	Construction Certification/Report
Minor Amendment	CPT Plan/Result
CCR Registration	Extension Request
CCR Registration Major Amendment	Groundwater Monitoring Report
CCR Registration Minor Amendment	Interim Status Change
Class 3 Modification	Interim Status Closure Plan
Class 2 Modification	Soil Core Monitoring Report
Class 1 ED Modification	Treatability Study
Class 1 Modification	Trial Burn Plan/Result
Endorsement	Unsaturated Zone Monitoring Report
Temporary Authorization	Waste Minimization Report
Voluntary Revocation	Other:
335.6 Notification	
Other:	

SCS ENGINEERS

June 23, 2025 SCS Project No. 16224108.00

Ms. Megan Henson MSW Permits Section Manager, Waste Permits Division Texas Commission on Environmental Quality 12100 Park 35 Circle Building F Austin, Texas 78753

Subject: Maverick County El Indio MSW Landfill - Maverick County Municipal Solid Waste - Permit No. 2316 <u>Response to Technical Notice of Deficiency – 2</u> Tracking No. 30189555 and 31435860; RN105513030 / CN603354721

Dear Ms. Henson:

On behalf of Maverick County Solid Waste Authority (Authority), SCS Engineers (SCS) is providing this response to the April 21, 2025 Technical Notice of Deficiency (NOD-2) email for the Maverick County El Indio MSW Landfill, related to the Permit Modification Application – Surface Water Drainage, Final Contours, and Geology/Geotechnical.

Attached to this response letter, we have included three (3) original copies, for use as replacement pages in the permit application. Where possible, we have identified changes in response to NOD-2 in a redline/strike-out format (i.e., marked version). Additionally, one (1) copy of this response letter has been sent to TCEQ Regional Office 16.

For ease of review, we have included your original comments from the April 21, 2025 NOD-2 email, followed by our responses and/or revisions in *bold/italics.*

 It is noted that the citizen collection center is proposed to be located within the existing buffer zone. Revise the application to comply with the rule requirements of 30 TAC §330.141(a), and ensure that no solid waste unloading, storage, disposal, or processing operations shall occur within any buffer zone. Note that a 125-foot buffer zone should be maintained for a Type I landfill as required by 30 TAC §330.543(b)(2)(A).

The proposed citizens' collection station (CCS) has been temporarily relocated to be constructed within future landfill Cell 9 until the time landfill operations require liner construction within the cell. It is anticipated that this location will provide the Authority up to 25 years of operational life as landfill disposal operations continue within Phases 1 through 8. At that time, the CCS will be relocated to another future cell to provide the City with additional operational flexibility while maintaining the 125-foot buffer requirement of 30 TAC §330.543(b)(2)(A) for solid waste unloading, storage, disposal, or processing operations. At no time will the CCS be located within 125 feet of the property boundary throughout the development of the landfill. Engineering drawings depicting location of the CCS have been updated and provided with this response letter.

 Per 30 TAC §330.23(a), provide recommendations from the TxDOT (Texas Department of Transportation) for the proposed primary entrance regarding the adequacy and design capacity of such roadways/entrances to safely accommodate the additional volumes and weights of traffic generated or expected to be generated by the facility operation. Since TCEQ defers to the TxDOT recommendations for the traffic impacts and adequacy of state-maintained roadways, include a no-objection from the TxDOT.

An approved access permit for the new driveway was received by TxDOT and is included in Exhibit 4 of this letter. Additionally, Part 1, Section B, Section 3.C has been revised to indicate that a new driveway permit was received from TxDOT and is included as Appendix I-F3.

3. Indicate the permitted and the proposed final cover grades to show the changes with redline strikeouts in the final cover profile, including for side slopes on Attachments 2A, 2B1-2B2, 2C, and 2D for Cross Sections A-A', B-B', C-C', and D-D' respectively.

Attachments 2A, 2B1, 2B2, 2C, and 2D - Cross Sections A-A', B-B', C-C', and D-D' were revised to show the changes with redline strikeouts of permitted final cover grades in the final cover profile.

Additionally, Attachment 2 has been revised to indicate that cross-section D-D' was relocated to the west of its original location to demonstrate proposed landfill final cover grading.

A revision table was also included that clarifies the revisions performed on the drawings.

4. In accordance with 30 TAC 330.63(c)(1)(C) and 330.305(a), (i) revise Section 4.0 of Attachment 6.0 to include analysis for the runoff volume, and the peak velocity in addition to peak flow at each of the discharge points under permitted and post-development conditions. See "Section 1.1 Submitting Application" in RG-417;

Attachment 6 has been revised to include an analysis of the runoff volume, per guidance from NRCS Technical Release 55 (TR-55), and an analysis of the peak velocities at the discharge points.

(ii) locate runoff discharge points at the permit boundary, and provide design calculations for stormwater runoff collection/conveyance structures (e.g., channels, ponds' inlet/outlets, etc.) for discharging stormwater into the streams, and demonstrate that the existing drainage patterns will not be adversely altered prior to discharging into the streams and after discharging into receiving streams; and

As discussed with TCEQ on May 21, 2025, the stormwater runoff discharge points are placed at locations consistent with the original permit conditions and were not revised. As such, it was not necessary to revise the discharge points to be located at the permit boundary. A summary table of the comparison of the pre-development conditions and post-development conditions is included in Attachment 6, Section 4.0, which shows that the overall postdevelopment conditions at Discharge Point I +II +III has decreased. Design calculations for the stormwater channels are included in Attachment 6D2, as provided in the original submittal. Detention Ponds A and B were unchanged from the original permit, and design calculations and details are included within Attachment 6E1 for Pond A. Additionally, Pond B is not required for stormwater detention and is only provided for additional water quality control measures, per Attachment 6E2, and as such its outlet does not include design calculations. (iii) demonstrate that the increased peak flow rate from 94.6 cfs (cubic feet/sec) during existing condition to 197.84 cfs during final condition at the discharge point #II will not adversely alter the drainage pattern. Also, provide design calculations, and cross-sectional drawings for the collection/conveyance structures for this increased flow, including inlets and outlets that are used to discharge the stormwater runoff into the stream.

A summary table of the comparison of the pre-development conditions and post-development conditions is included in Attachment 6, Section 4.0. Discharge points I, II, and III are each part of the unnamed tributary of Saus Creek. The drainage flow associated with this creek leaves the property at Discharge Point I + II + III. As shown, the discharge flow and runoff volume at final buildout conditions at this location is less than the pre-development conditions and will not adversely affect the existing drainage leaving the site. Detention Pond B is unchanged from the original permit. Additionally, Pond B is not required for stormwater detention and is only provided for additional water quality control measures, per Attachment 6E2, and as such its outlet does not include design calculations.

5. Identify each proposed change on the drawing with redline strikeouts for the leachate collection system (Attachment 15C – Leachate Collection System), as stated in the cover letter. Also, include a summary table for details of revisions, as it was indicated in the cover letter.

The requested changes to Attachment 15C – Leachate Collection System were provided in response to NOD, dated December 2, 2024. No further changes are proposed or depicted with response to NOD-2.

6. Provide redline strikeouts for Attachment 14A – Gas Monitoring Probe Placement to indicate the permitted and the proposed location of the gas probes for the relocated gas probes, GP-5 through GP-11.

Attachment 14A– Gas Monitoring Probe Placement is revised to indicate the permitted and the proposed location of the gas probes for the relocated gas probes, GP-5 through GP-11, with redline strikeouts. Also, a revision table was included to describe changes that were made to this attachment.

Additional changes were made to Attachment 14, Section 2.7 (Proposed Landfill Design) and Section 3.1.1 (Monitoring Probe Placement) to reflect number of landfill cells and gas monitoring probes that will be installed at the landfill, respectively.

 In accordance with 30 TAC §330.103(a), indicate the frequency of waste removal from citizen's collection station. Note that the containers must be emptied at least once per week. Include revisions in Section 4.2.2 of the site operating plan (Part IV) and submit the revised pages.

Part IV section 4.2.2 indicates that roll-offs containing food waste will typically be removed from the CCS by the end of each day of operation but will not be stored for longer than 48 hours. Additionally, Section 4.2.2. was revised to indicate that roll-offs with other waste will be removed weekly or sooner when containers reach capacity. Lastly, Section 4.6.2 has been revised to indicate that a minimum buffer of 125 feet from the property line will be maintained for operations at the CCS.

8. As required by 30 TAC §330.11(a), describe how waste will be received, stored, and removed from the proposed citizen's collection station. Ensure to include revisions in Part IV, Section 4.2.2 and 4.3, and submit the revised pages.

As described in Part IV Section 4.2.2 and 4.3, roll-off containers will be situated behind a retaining wall for drop-off of waste such as brush, wood waste, and yard waste, construction and demolition debris (C&D), municipal solid waste (MSW), and scrap metals. Clearly identified roll-offs containers will be provided to receive the waste or recyclables. A Waste Screener will direct citizens to appropriate locations for unloading waste and observe that the respective wastes are unloaded in the correct container. As discussed in Section 4.2, waste stored at the CCS will be disposed of at the working face and recyclables will be transported to an authorized recycling or disposal facility.

9. Per 30 TAC §330.213(a), describe the type and quantity of containers that will be available at the proposed citizen's collection station. Include revisions in Part IV, Section 4.2.2, and submit the revised page.

Part IV, Section 4.2.2 was revised to indicate that the CCS will have 4, 20 or 40 CY containers, one for each type of waste accepted at the CCS.

10. Provide responsible engineer's seal and signature in compliance with 22 TAC §137.33 (relating to Sealing Procedures). Note that a summary of design calculations must be provided with engineer's seal and signature (e.g., Pages 6D2-2 and 6D2-3, Attachment 6D2/Part III, Attachment 15F, etc.). In addition, the cover page of the attachments/ appendices, in addition to the table of contents may be provided with engineer's seal and signature with range of pages (e.g., From Page no. xx to Page no. xx).

The responsible engineer's seal and signature was provided for design calculations, including (e.g., Pages 6D2-2 and 6D2-3, Attachment 15F, etc.), the cover page of the attachments/ appendices, and table of contents.

11. Include the provided response of the first technical NODs for Comments #1, #6, #18, #19, #31, #34, #35, #38, #45, #49, etc. into the appropriate sections of the permit application in Parts I through IV, as appropriate.

Responses provided with technical NOD, dated December 2, 2024, for Comments #1, #6, #18, and #19, have been included in the appropriate sections of the permit application in Parts I through IV. Response to Comments #31, # 34, #35, and #38 were previously included in the appropriate sections of the permit application in response to December 2, 2024, NOD. Lastly, as discussed with TCEQ on May 21, 2025, Comments #45 and #49 were not incorporated within the permit application.

Ms. Megan Henson June 23, 2025 Page 5

We trust that our responses will assist you in the completion of your technical review. If you or your staff have any questions or need additional information, please do not hesitate to contact Sandeep Saraf, P.E., at 407-923-7013.

Sincerely,

Andrew Ard, P.E. Senior Project Professional SCS ENGINEERS TBPE Registration No. F-3407

Sandeep Saraf P.E. Project Director SCS ENGINEERS

Attachments: Table 1 – Summary of changes (No Change) Permit Modification Form (Revised) Exhibit 1 – Airspace Evaluation (Marked and Unmarked) (No Change) Exhibit 2 – Landowner's Map and List (No Change) Exhibit 3 – Permit Application Fees (No Change) Exhibit 4 – Copy of correspondence with TxDOT (Revised) Permit Revisions (Marked) Permit Revisions (Unmarked)

cc: Mr. Mike Castillo, Maverick County Solid Waste Authority TCEQ Region Office 16 TABLE 1 - SUMMARY OF CHANGES (NO CHANGE)

PERMIT MODIFICATION APPLICATION FORM

Texas Commission on Environmental Quality

Application Form for Municipal Solid Waste Permit or Registration Modification or Temporary Authorization

Application Tracking Information

Facility Name: Maverick County El Indio MSW Landfill
Permittee or Registrant Name: Maverick County
MSW Authorization Number: 2316
Initial Submission Date: 10/04/2024
Revision Date: 06/23/2025

Instructions for completing this form are provided in <u>form TCEQ-20650-instr</u>¹. If you have questions, contact the Municipal Solid Waste Permits Section by email to or by phone at 512-239-2335.

of by phone at 512-239-

Application Data

1. Submission Type			
Initial Submission	Notice of Deficiency (NOD) Response		
2. Authorization Type			
Permit	Registration		
3. Application Type			
Modification with Public No.	otice Diffication without Public Notice		
Temporary Authorization (TA)			
4. Application Fee			
Amount			
The application fee for a modification or temporary authorization is \$150.			
Payment Method			
Check			
Online through ePay porta	l <u>www3.tceq.texas.gov/epay/</u>		
If paid online, enter ePay Tra	ce Number: 582EA000627516		

¹ www.tceq.texas.gov/downloads/permitting/waste-permits/msw/forms/20650-instr.pdf

5. Electronic Versions of Application

For modifications that require notice, TCEQ will publish electronic versions of the application online. Applicants must provide a clean copy of the administratively complete application and technically complete application. TCEQ will also publish electronic versions of NOD responses online.

6. Party Responsible for Mailing Notice

For modifications that require notice, indicate who will be responsible for mailing notice:

Consultant

🗌 Applicant		Agent in Service	
Contact Name:	Sandeep Saraf		
Title: Project Dir	rector		_
Email Address:			

7. Confidential Documents

Does the application contain confidential documents?

Type IVAE

🗌 Yes 🔳 No

Type IAE

If "Yes", reference the confidential documents in the application, but submit the confidential documents as an attachment in a separate binder marked "CONFIDENTIAL."

8. Facility	General Info	rmation					
Facility Name:	Maverick County	El Indio MSV	V Landfill				
Contact Name:				Title:	Landfill Manager	-	
	tion Number (if	existing):	2316	_			
	ty Reference Nu						
	eet Address: 16 ²						
City: El Indio		County: N	Maverick		State: TX	Zip Code:	78860
Phone Number	(830) 757-8191					·	
Latitude (Degrees, Minutes, Seconds): 28° 32' 30"							
Longitude (Degrees, Minutes, Seconds): 100° 19' 23"							
9. Facility	Types						
Туре І	🗌 Туре IV	П Т	ype V				

Type VI

10. Description of the Revisions to the Facility

Provide a brief description of revisions to permit or registration conditions and supporting documents referred to by the permit or registration, and a reference to the specific provisions under which the modification or temporary authorization application is being made. Also, provide an explanation of why the modification or temporary authorization is needed:

This permit modification is being submitted to redesign the perimeter drainage system; to modify the permitted 4.5H:1V final grades of the existing and future landfill cells to have a final cover side slope of 3H:1V with no height or capacity increase, and with no impact to off-site drainage; to relocate primary entrance into the facility; and to construct and operate a citizens' convenience center (CCS). As a result of the revised final cover side slopes, permitted Cells 15, 16A, and 16B will no longer be developed.

11. Facility Contact Info	rmation					
Site Operator (Permittee or Name: Maverick County	Registrant)					
Customer Reference Number:	CN_600640015					
Contact Name: Ramsey English	Cantu	Title:	Judge	•		
Mailing Address: 500 Quarry Str	ee, Suite 3					
City: Eagle Pass	County: Maverick		S	tate:	ТХ	Zip Code: 78852
Phone Number: (830) 773-3824						
Email Address:						
Texas Secretary of State (SOS) Filing Number:					
Operator (if different from	Site Operator)					
Name: Maverick County Soild Wa	aste Authority					
Customer Reference Number:	CN_606226801					
Contact Name: Mike Castillo		Title:	Landf	ill Mar	nager	
Mailing Address: PO Box 10						
City: El Indio	County: Maverick		S	tate:	ТΧ	Zip Code: 78860
Phone Number: (830) 757-8191						
Email Address:						
Texas Secretary of State (SOS) Filing Number:					

Consultant (if applicable)
Firm Name: SCS Engineers
Consultant Name: SCS Engineers
Texas Board of Professional Engineers Firm Registration Number: F-3407
Contact Name: Sandeep Saraf Title: Project Director
Mailing Address:1901 Central Drive, Suite 550
Bedford County: Tarrant State: TX Zip Code: 76021
Phone Number: (407) 923-7013
Email Address:
Agent in Service (required for out-of-state applicants)
Name:
Mailing Address:
City: County: State: <u>TX</u> Zip Code:
Phone Number:
Email Address:

12. Ownership Status of the Facility

Is this a modification that changes the legal description, the property owner, or the Site Operator (Permittee or Registrant)?

Yes		No
-----	--	----

If the answer is "No", skip this section.

Does the Site Operator (Permittee or Registrant) own all the facility units and all the facility property?

Yes	🗌 No
-----	------

If "No", provide the following information for other owners.

Owner Name:	
-------------	--

Mailing Address:				
City:	County:	State: TX	Zip Code: _	

Phone Number: _____

Email Address:

Signature Page

Site Operator or Authorized Signatory

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Name:Ramsey English Cantu	Title:
Email Address:	
Signature:	Date: 1025, 2025
Operator or Principal Executive Off	icer Designation of Authorized Signatory
To be completed by the operator if the for the operator.	application is signed by an authorized representative
I hereby designate	as my representative
	ve to sign any application, submit additional
information as may be requested by the	e Commission; and/or appear for me at any hearing
or before the Texas Commission on Env	vironmental Quality in conjunction with this request
for a Texas Water Code or Texas Solid	Waste Disposal Act permit. I further understand that
	s application, for oral statements given by my
	the application, and for compliance with the terms
and conditions of any permit which mig	ht be issued based upon this application.
Operator or Principal Executive Officer I	Name:
Email Address:	
Signature:	Date:
Notary	
SUBSCRIBED AND SWORN to before me	e by the said RAMGEN ENGLISH CANTU
On this 23 day of JUNE , 2025	
on this 20 day of Joine , 200	
	a second s
	y of AUGUST , 2025 GUILLERMINA ROMER
My commission expires on the 2 da	a second s

Note: Application Must Bear Signature and Seal of Notary Public

Attachments for Permit or Registration Modification with Public Notice

Refer to instruction document **200650-instr** for professional engineer seal requirements.

Attachments Table 1. Required attachments.

Required Attachments	Attachment Number
Land Ownership Map	
Landowners List	
Marked (Redline/Strikeout) Pages	х
Unmarked Revised Pages	Х

Attachments Table 2. Additional attachments as applicable.

Additional Attachments as Applicable (select all that apply and add others as needed)	Attachment Number
TCEQ Core Data Form(s)	
Signatory Authority Delegation	
Fee Payment Receipt	
Confidential Documents	

EXHIBIT 1 – AIRSPACE EVALUATION (NO CHANGE)

EXHIBIT 2 – LANDOWNER'S MAP AND LIST (NO CHANGE)

EXHIBIT 3 – PERMIT APPLICATION FEES (NO CHANGE)

EXHIBIT 4 – COPY OF CORRESPONDENCE WITH TXDOT (REVISED)

Permit to Construct Access Driveway Facilities on Highway Right of Way

		BER: TXDOT ENTER PERMIT		61201
		GPS*		61301 IDWAY
REQUE	ESTOR	LATITUDE, LONGITUDE	HWY NAME	FM1021
		28.5416278, -100.3232694		DOT'S USE
			CONTROL	4-DIGIT
NAME	Maverick County - Municipal	Solid Waste Facility #2316	SECTION	2-DIGIT EX. 01
	16179 FM 1021, P.O. Box 10			
CITY, STATE, ZIP	El Indio, Texas 78860			
PHONE NUMBER	(830) 787-8191			
*GLOBAL POSITIONING SYSTEM (COORDINATES AT INTERSECTION	OF DRIVEWAY CENTERLINE WITH	ABUTTING ROADWAY	
hereinafter called the Permit	tee, to 🛛 construct / 🗌 ccess driveway on the highw	ed the State, hereby authorize reconstruct a <u>South Primary</u> ay right of way abutting high) USE ADDITIONAL SHEETS AS	Entrance Road way number <u>FM 1021</u>	rmit #2316) (residential, convenience in Maverick
ls this parcel in current litigat Is the Permittee or a family m		☑ YES □ NO loyee or official of the Texas D	epartment of Transportatio	n? 🗌 YES 🔀 NO
interest in Permittee? 🏼 Y	es 🛛 No	Transportation serve as an em		ee or own a controlling
		ibed on page 2 and the follow rms and conditions set forth i	-	on and maintenance of an
	ate highway right of way.			
	and the access managemen	ies, as shown in the attached s t standards set forth in the Ac		
3. Construction of the drive	way shall be in accordance w	vith the attached design sketc	h, and is subject to inspectio	on and approval by the State.
changes, maintenance or		be the responsibility of the Pe to provide protection of life o of the State.		
	harmless the State and its du iveway permitted hereunder	ly appointed agents and emp	loyees against any action fo	r personal injury or property
portion of the highway ri	ght of way. The Permittee sh	and city streets, the Permittee all ensure that any vehicle se ine to ensure that any vehicle	rvice fixtures such as fuel pu	imps, vendor stands, or tanks
		iveway permit in the event of ion or other modification of th		
3. The State may revoke this	s permit upon violation of an	y provision of this permit by t	he Permittee.	
 This permit will become r date of this permit. 	null and void if the above-ref	erenced driveway facilities are		(6) months from the issuance
10. The Permittee will contact telephone, (860) 776		Charles Fite Mainter y-four (24) hours prior to begi	nance supervisor nning the work authorized l	by this permit.
11. The requesting Permittee	e will be provided instruction	s on the appeal process if this	permit request is denied by	y the State.

Form 1058 (Rev. 09/23) Page 2 of 2

The undersigned hereby agrees to comply with the terms and conditions set forth in this permit for construction and maintenance of an access driveway on the highway right of way.

Date: 2/13/25	Signed: Mar (Property Gymer, or owner's representative)
6/16/2025 Date of Issuance	Vanessa Kosales-Herrera Distri ct 1 79g/1916649538428Jesignee Approval
Date of Issuance as per Variance to AMM	District Engineer, or designee Approval
Date of Denial	District Engineer Denial (No Delegation)

Access Driveway Policy

Title 43 Texas Administrative Code (Transportation), Chapter 11 (Design), Subchapter C (Access Connections To State Highways) and the "Access Management Manual" establish policy for the granting of access and the design, materials, and construction of driveways connecting to state highways. All driveway facilities must follow this policy. To the extent there is any conflict between this permit and the policy, the policy shall control. If a proposed driveway does not comply with the access management standards, the owner may seek a variance to a requirement contained in the access management standards by contacting the local TxDOT office.

TxDOT Driveway Permit Request Contact

For a local contact for your TxDOT Driveway Permit Request or variance request, visit: <u>http://www.txdot.gov/inside-txdot/district.html</u>. You can click on the section of the map closest to your location to find the local TxDOT office. You can also click on the drop down box below the map to find the district for your county.

Other Conditions

In addition to Items 1 thru 11 on page 1 of this permit, the facility shall also be in accordance with the attached sketch and subject to the following additional conditions stated below:

See attached "Sketch of Installation" Sheet and "Site Plan" for additional information. A summary of proposed road is as follows: 1. Proposed radii: 75',

2. Throat Width: 30',

3. Throat Length: 70',

4. Entry Width: 180', and

5.8" Reinforced concrete pavement with #4 rebar @ 9" OCEW.

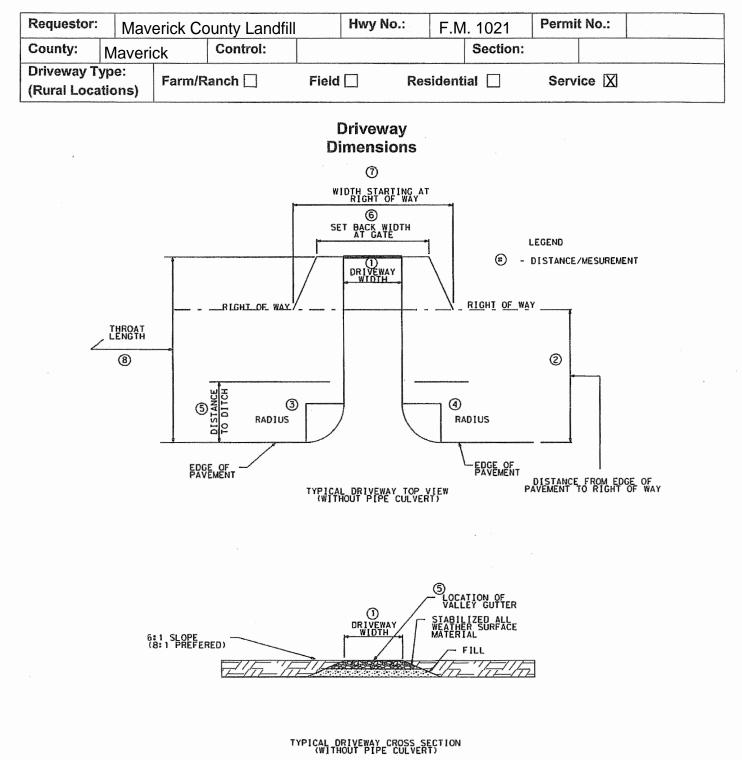
Variance Documentation Justification

For a Variance request, please indicate which of the below are applicable, as required by TAC §11.52(e):

a significant negative impact to the owner's real property or its use will likely result from the denial of its request for the variance,

 $^{\perp}$ including the loss of reasonable access to the property or undue hardship on a business located on the property.

an unusual condition affecting the property exists that was not caused by the property owner and justifies the request for the variance.


For the conditions selected above, provide written justification below. (Attach additional sheets, if needed)

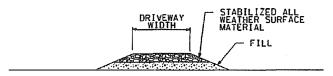
For TXDOT use below:

Sketch of Installation	
Attachments:	
likely impair the ability of the state or the department to receive funds for highway construction or maintenance from the federa government.	
- likely impair the ability of the state or the department to receive funds for highway construction or maintenance from the federa	1
adversely affect the safety, design, construction, mobility, efficient operation, or maintenance of the highway; or	
For Variance denials, please indicate which of the below conditions, as provided in TAC §11.52(e), were determined:	

All Variance Documentation

Sketch of Installation

Driveway Utilizing Valley Gutter and Gate Set Back of Right of Way Line Page 1

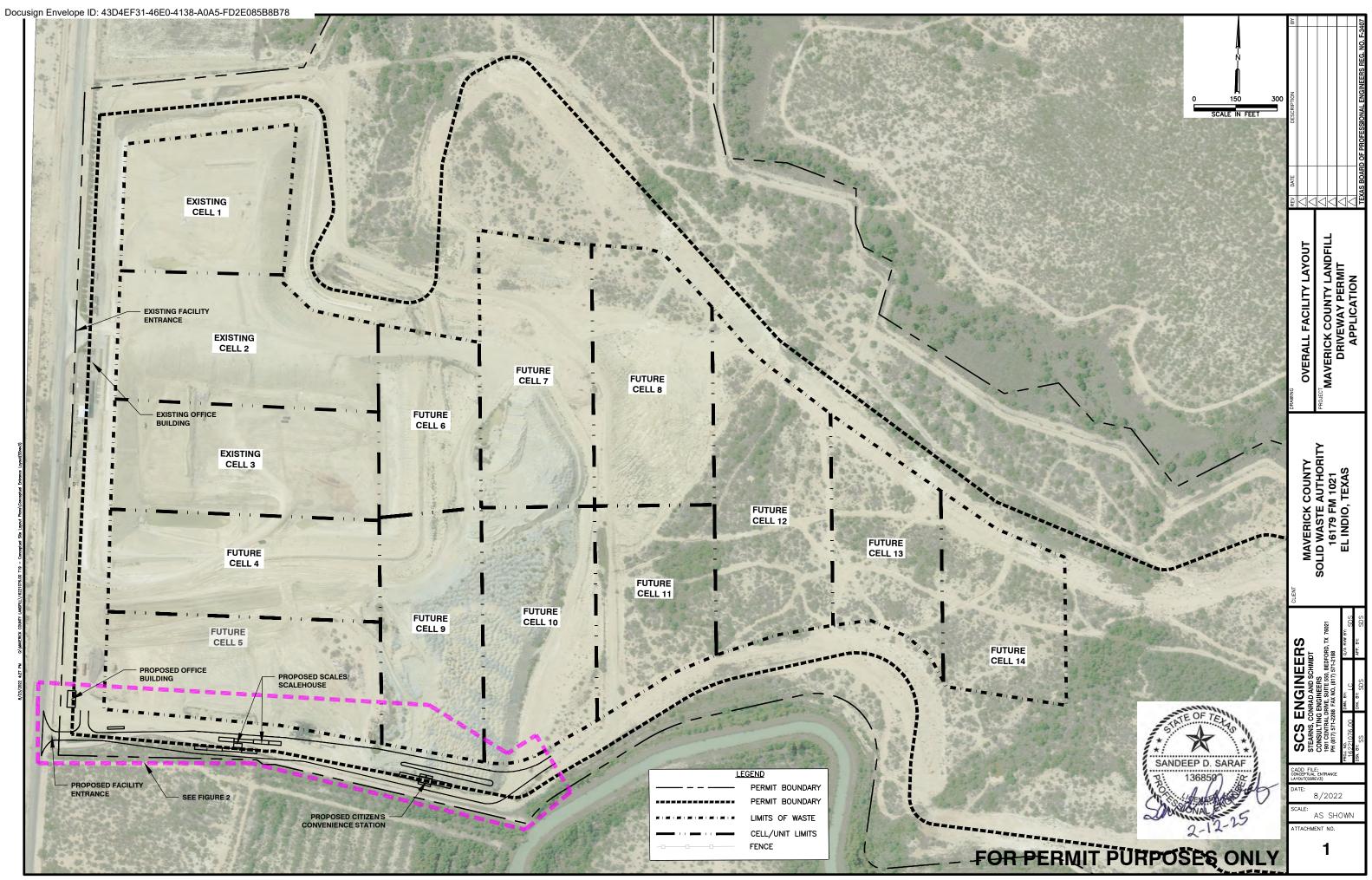

			Ske	etch	of Install	atio	n				
Requestor: Maverick County Landfill Hwy No				Hwy No.:	F.I	M. 10	21	Permi	t No.:		
County:	Maver	ick	Control:			Section:					
Driveway Type: (Rural Locations)				Re:	sidenti	ial 🗌		Servi	ice 🛛		
			C	Drivew	ay Dimensi	ons					
1. C	Driveway	Width =					30			ft.	
2. E	Distance	from edg	e of pavement	to right a	of way =		35			ft.	
3. F	Radius =		75		ft.						
4. Radius = 75			ft.								
5. Distance to Ditch =					N/A	ft.					
6. Set Back Width @ Gate=					30	ft.					
7. Width starting at right of way =						53	ft.				

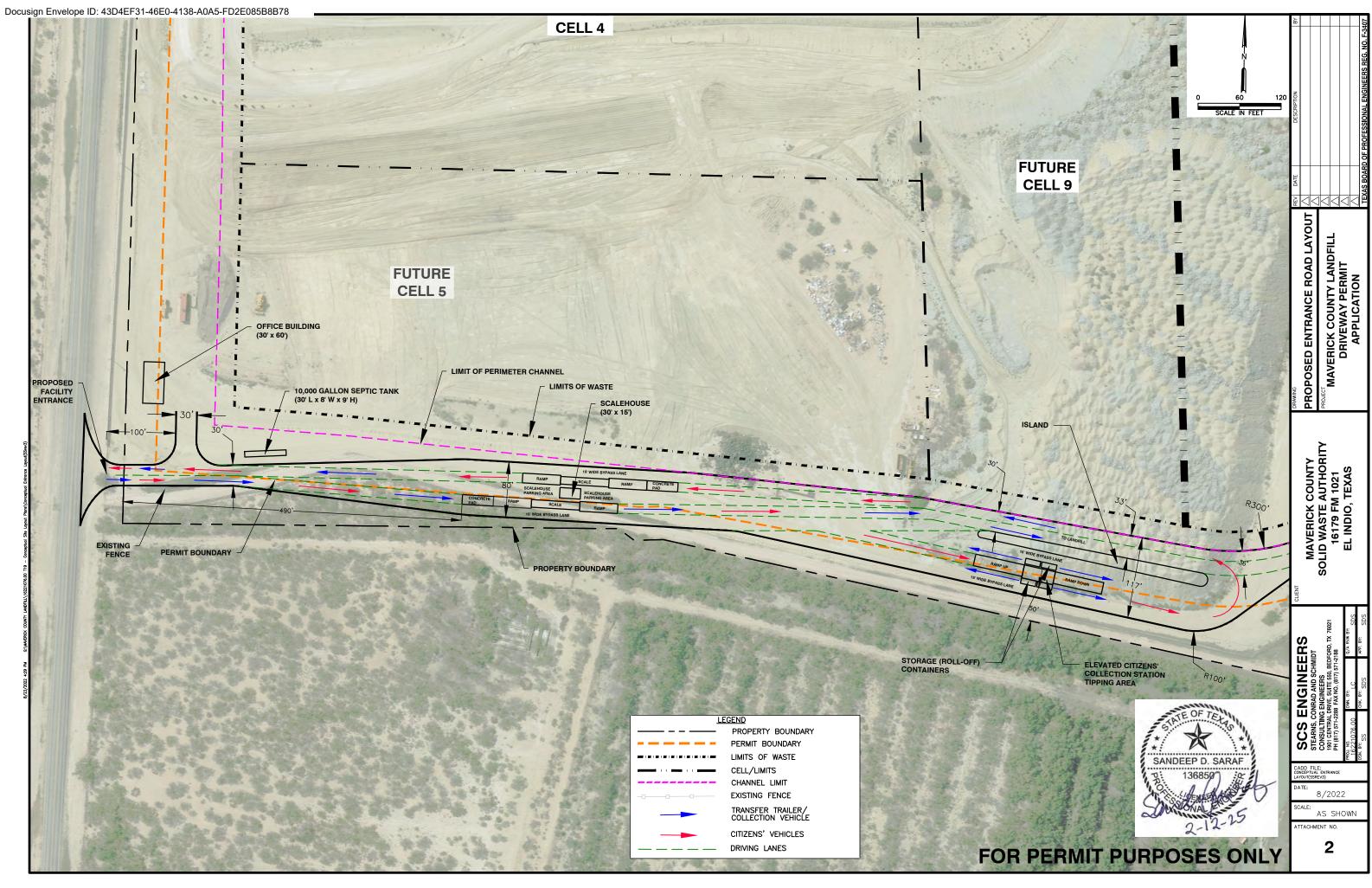
8. Throat Length =

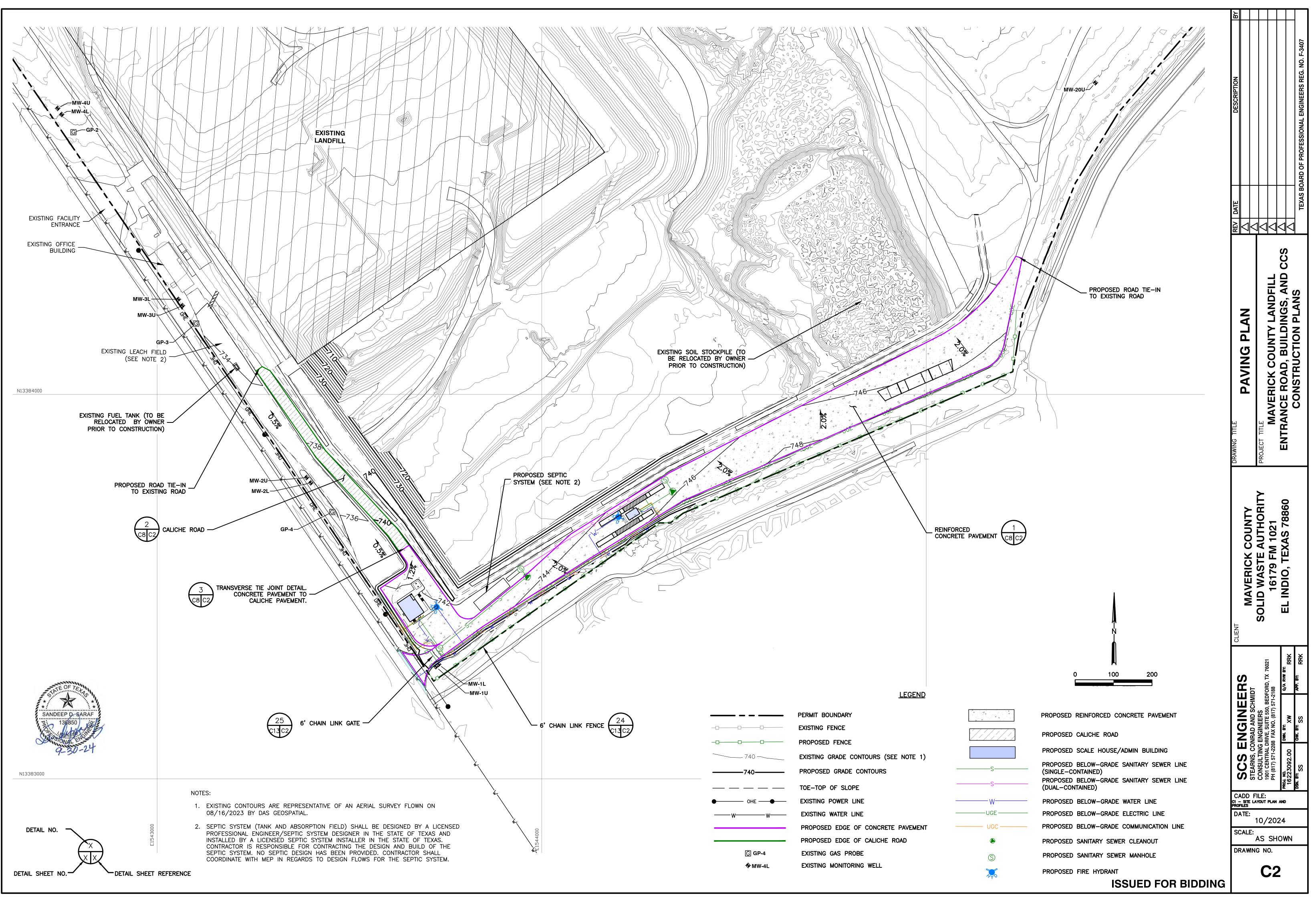
Pavement Structure

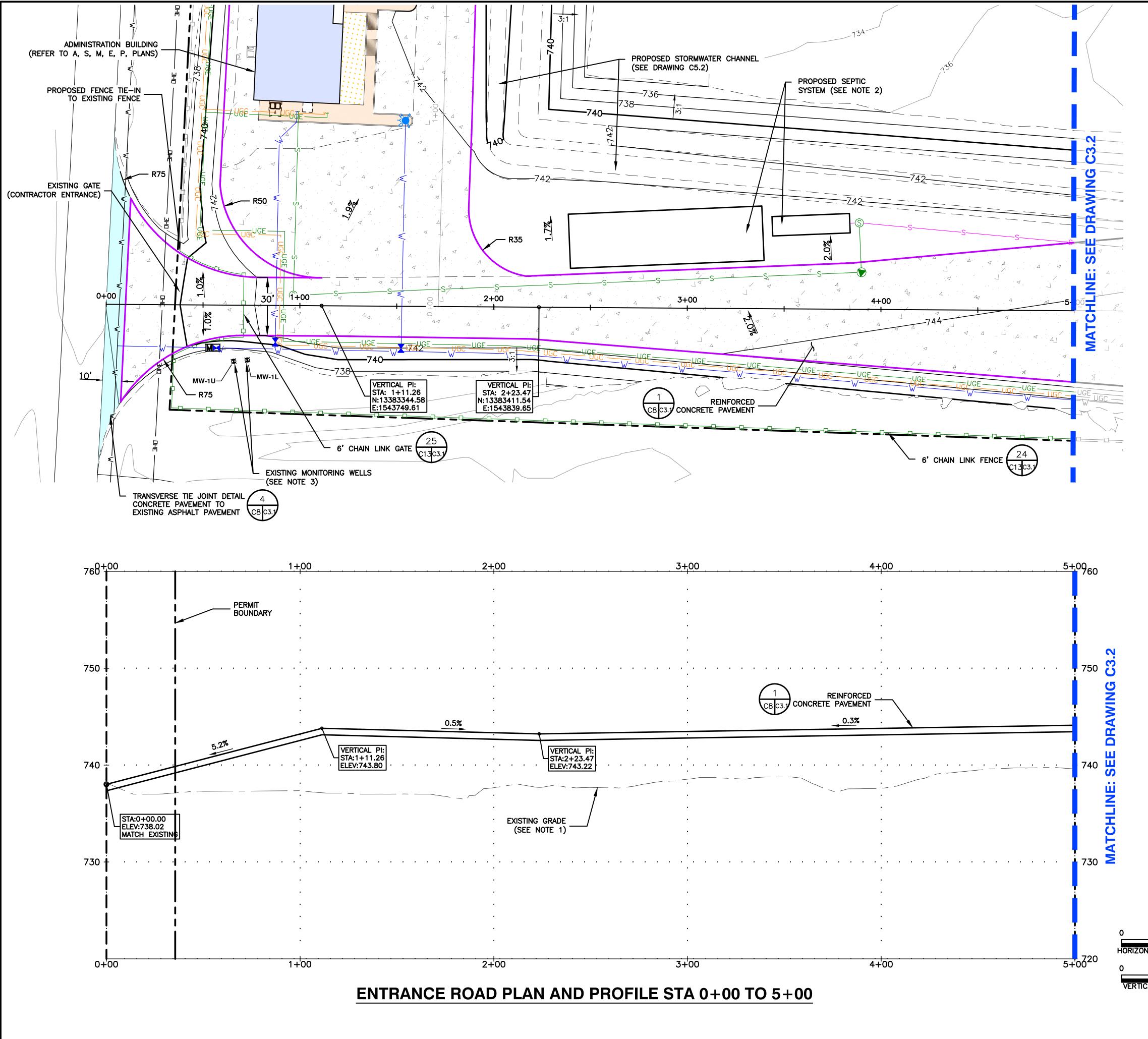
71

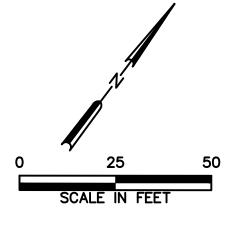
ft.

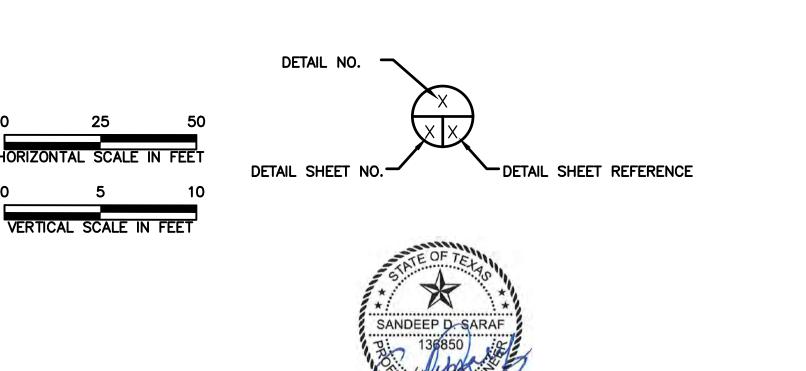

TYPICAL DRIVEWAY CROSS SECTION (WITHOUT PIPE CULVERT)

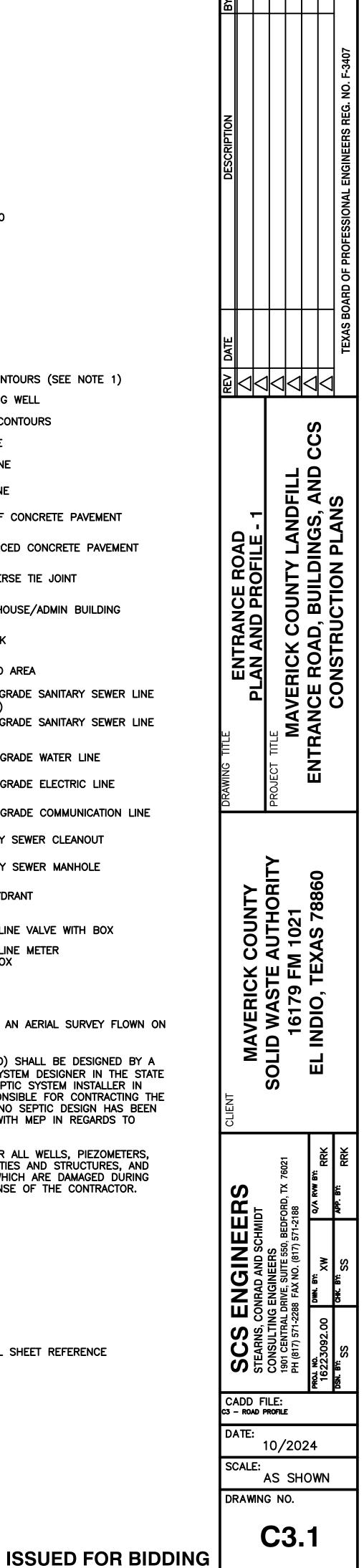

	Pavement Str	ucture				
	material selection thickness, in. comment					
concrete	Portland Cement Concrete	6" min.	:			
asphalt	N/A					
flexbase	N/A					
fill material	Sand Bedding	2" min.				


Driveway Utilizing Valley Gutter and Gate Set Back of Right of Way Line Page 2

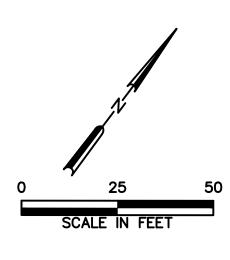

Mr. Charles Fite February 13, 2025 Page 10


SITE LAYOUT

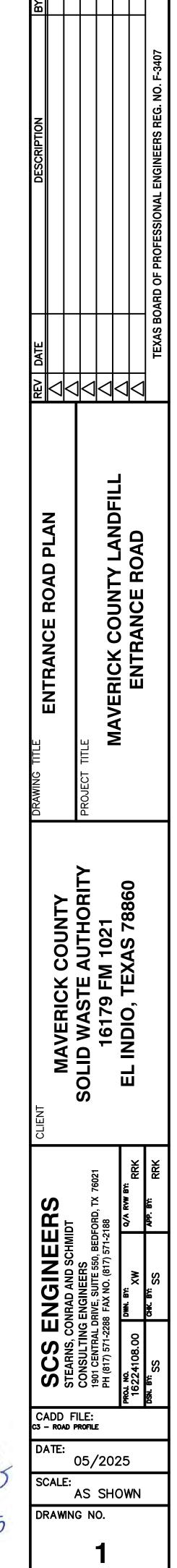



<u>LEGEND</u>

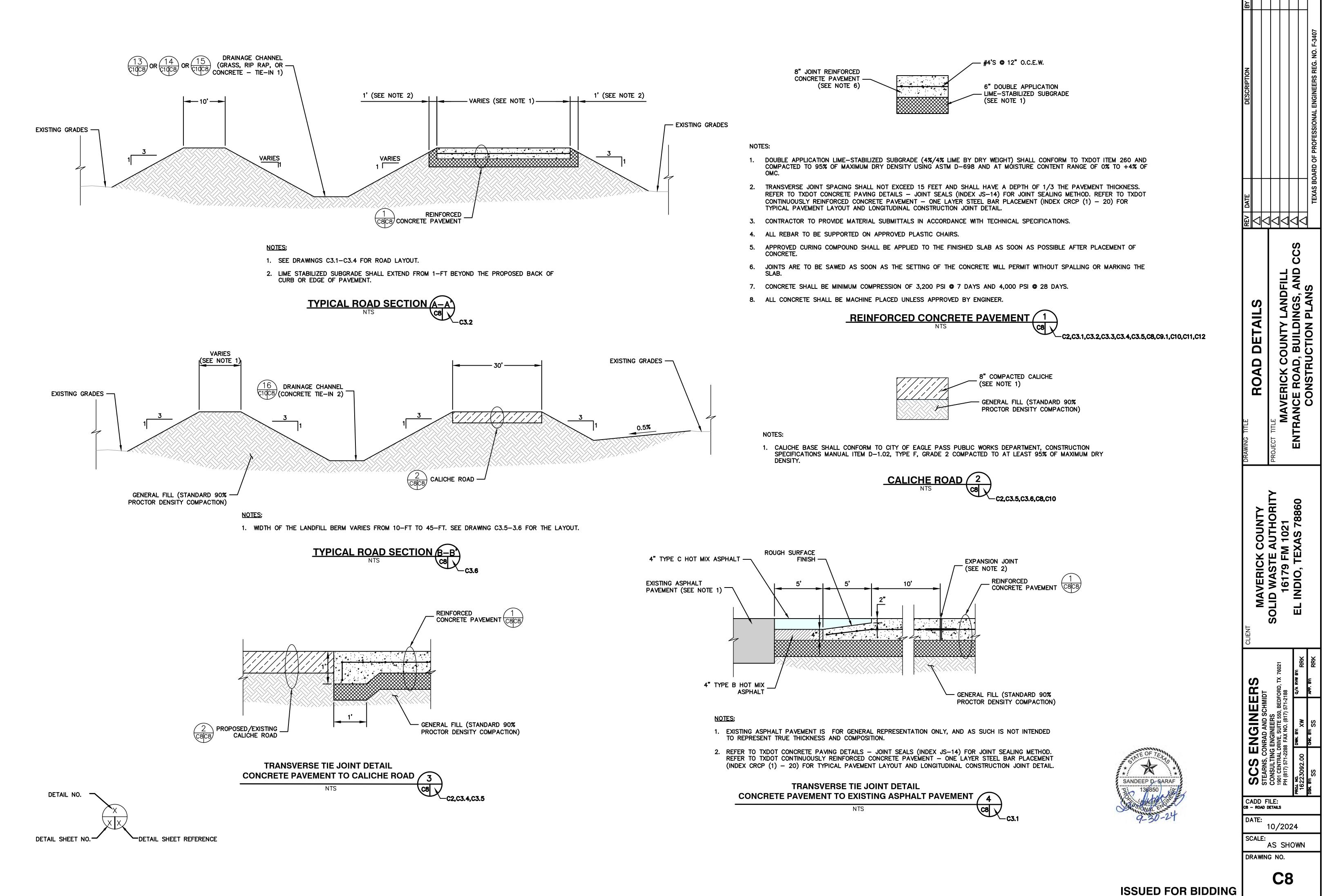
	PERMIT BOUNDARY
-00	PROPOSED FENCE
740	EXISTING GRADE CONTOURS (SEE NOTE 1)
↔ MW-4L	EXISTING MONITORING WELL
740	PROPOSED GRADE CONTOURS
	TOE-TOP OF SLOPE
• OHE	EXISTING POWER LINE
W	EXISTING WATER LINE
	PROPOSED EDGE OF CONCRETE PAVEMENT
	PROPOSED REINFORCED CONCRETE PAVEMENT
	PROPOSED TRANSVERSE TIE JOINT
	PROPOSED SCALE HOUSE/ADMIN BUILDING
	PROPOSED SIDEWALK
	PROPOSED GRASSED AREA
S	PROPOSED BELOW-GRADE SANITARY SEWER LINE (SINGLE-CONTAINED)
S	(SINGLE-CONTAINED) PROPOSED BELOW-GRADE SANITARY SEWER LINE (DUAL-CONTAINED)
W	PROPOSED BELOW-GRADE WATER LINE
UGE	PROPOSED BELOW-GRADE ELECTRIC LINE
UGC	PROPOSED BELOW-GRADE COMMUNICATION LINE
	PROPOSED SANITARY SEWER CLEANOUT
S	PROPOSED SANITARY SEWER MANHOLE
\mathbf{x}	PROPOSED FIRE HYDRANT
M	PROPOSED WATER LINE VALVE WITH BOX
	PROPOSED WATER LINE METER AND VALVE WITH BOX


NOTES:

- 1. EXISTING CONTOURS ARE REPRESENTATIVE OF AN AERIAL SURVEY FLOWN ON 08/16/2023 BY DAS GEOSPATIAL.
- 2. SEPTIC SYSTEM (TANK AND ABSORPTION FIELD) SHALL BE DESIGNED BY A LICENSED PROFESSIONAL ENGINEER/SEPTIC SYSTEM DESIGNER IN THE STATE OF TEXAS AND INSTALLED BY A LICENSED SEPTIC SYSTEM INSTALLER IN THE STATE OF TEXAS. CONTRACTOR IS RESPONSIBLE FOR CONTRACTING THE DESIGN AND BUILD OF THE SEPTIC SYSTEM. NO SEPTIC DESIGN HAS BEEN PROVIDED. CONTRACTOR SHALL COORDINATE WITH MEP IN REGARDS TO DESIGN FLOWS FOR THE SEPTIC SYSTEM.
- 3. CONTRACTOR SHALL PROVIDE PROTECTION FOR ALL WELLS, PIEZOMETERS, GAS PROBES, LEACH FIELD, AND OTHER UTILITIES AND STRUCTURES, AND SHALL REPAIR OR REPLACE ANY OF THESE WHICH ARE DAMAGED DURING THE EXECUTION OF THE WORK AT THE EXPENSE OF THE CONTRACTOR.



<u>LEGEND</u>


MAVERICK COUNTY PROPERTY BOUNDARY PROPOSED EDGE OF CONCRETE PAVEMENT TRACTOR TRAILER FRONT AXLE TRACKING TRACTOR TRAILER REAR AXLE TRACKING

FOR PERMITTING PURPOSES ONLY

PERMIT REVISIONS (MARKED)

PART I GENERAL INFORMATION

FOR

MAVERICK COUNTY EL INDIO MSW LANDFILL TCEQ PERMIT NO. MSW 2316

Prepared for:

Maverick County Solid Waste Authority 16179 FM 1021 El-Indio, Texas 78860

And

Maverick County 500 Quarry Street, Suite 3 Eagle Pass, Texas 78852 830/773-3824

PERMIT ISSUED: SEPTEMBER 11, 2007

REVISION 2 PREPARED BY:

SCS ENGINEERS Texas Board of Professional Engineers Reg. No. F-3407 1901 Central Drive, Suite 550 Bedford, Texas 76021 817/571-2288

> Revision 1 – May 2004 Revision 2 – March 2024 <u>Revision 3 – June 2025</u> SCS Project No. 16220088.00<u>& 16223092.00</u>

TABLE OF CONTENTS

SECT		PAGE TION
		OF PROPOSED FACILITY
PART 1.0		CTION A – REQUIREMENTS OF 30 TAC 305.45 E, ADDRESS, LOCATION OF FACILITY – 30 TAC 305.45(A)(1)1
2.0	OWN	ERSHIP STATUS - 30 TAC 305.45(A)(2)1
3.0	APPL	ICANT'S CONTACT INFORMATION - 30 TAC 305.45(A)(3)2
4.0	NATU	URE OF BUSINESS - 30 TAC 305.45(A)(4)2
5.0	ACTI	VITIES REQUIRING A PERMIT - 30 TAC 305.45(A)(5)2
6.0	MAPS	S - 30 TAC 305.45(A)(6)
	6(A)	MAP DEPICTING WELLS, SPRINGS, AND SURFACE WATERS
	6(B)	MAP DEPICTING CHARACTER OF AREA ADJACENT TO FACILITY3
	64(C)	LOCATATIONS OF WASTE DISPOSAL ON THE TRACT NOT INCLUDED IN THIS APPLICATION
	6(D)	OWNERSHIP MAP
	6(E)	SUCH OTHER INFORAMTION THAT REASONABLY MAY BE
	~ /	REQUESTED BY THE EXECUTIVE DIRECTOR
7.0	RELA	TED PERMITS OR CONSTRUCTION APPROVALS -
		30 TAC 305.45(A)(7)6
	7(A)	HAZARDOUS WASTE MANAGEMENT PROGRAM UNDER THE TEXAS SOLID WASTE DISPOSAL ACT
	7(B)	UNDERGROUND INJECTION CONTROL PROGRAM UNDER THE TEXAS
	/(D)	INJECTION WELL ACT
	7(C)	NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM
		PROGRAM (NPDES) UNDER THE CLEAN WATER ACT AND WASTE
		DISCHARGE PROGRAM UNDER THE TEXAS EASTER CODE, CHAPTER
		26
	7(D)	PREVENTION OF SIGNFICANT DETERIORATION (PSD) PROGRAM
		UNDER THE FCAA
	7(E)	NON-ATTAINMENT PROGRAM UNDER THE FCAA6
	7(F)	NATIONAL EMISSION STANDARDS FOR HAZARDOUS POLLUTANTS
		(NESHAPS) PRE-CONSTRUCTION APPROVAL UNDER THE FCAA
	7(G)	OCEAN DUMPING PERMITS UNDER THE MARINE PROTECTION
	7(11)	RESEARCH AND SANCTUARIES ACT
	7(H) 7(I)	DREDGE OR FILL PERMITS UNDER THE FCAA
	7(I)	LICENSES UNDER THE TRCA
	7(J) 7(J)(1)	OTHER ENVIRONMENTAL PERMITS
) TEXAS HISTORICAL COMMISION
) US FISH AND WILDLIFE SERVICES
	(J)(J)	6-15-17

ii

	7(J)(4) US AI	RMY CORPS OF ENGINEERS
8.0	SUPPLEME	NTARY TECHNICAL REPORT – 30 TAC 305.45(A)(8)9
PART	TI, SECTION	B – REQUIREMENTS OF 30 TAC 330.51
1.0	FLOODPLA	N CONSTRUCTION - 30 TAC 330.51(B)(4)1
2.0		CE WITH THE NATIONAL POLLUTION DISCHARGE ON SYSTEM (NPDES) UNDER CLEAN WATER ACT CHAPTER 402 0.51(B)(5)
3.0	3.ATEXA3.BFEDE3.CTEXA	TION WITH AGENCIES – 30 TAC 330.51(B)(6)
4.0	WETLANDS	S DETERMINATION - 30 TAC 330.51(B)(7)
5.0	ENDANGER	RED SPECIES ACT COMPLIANCE - 30 TAC 330.51(B)(8)
6.0		ETTER FROM THE TEXAS ANTIQUES COMMITTEE - 30 TAC
7.0		CE WITH REGIONAL SOLID WASTE PLAN – 51(B)(10)
PART	I, SECTION	C – REQUIREMENTS OF 30 TAC 330.52
1.0	SUPPLEME	NTARY TECHNICAL REPORT - 30 TAC 330.52(B)(3)1
2.0	MAPS - 30 T	AC 330.52(B)(4)1
		PREVAILING WIND DIRECTION (WIND ROSE)
	2.A(III)	STRUCTURES AND INHABITABLE BUILDINGS WITHIN 500' OF THE PROPOSED SITE
	2.A(IV)	SCHOOLS, LICENSED DAY CARE FACILITIES, CHURCHES, HOSPITALS, CEMETERIES, PONDS, LAKES, RESIDENTIAL, COMERCIAL AND RECREATIONAL AREAS WITHIN ONE MILE OF THE SITE
	2.A(V)	LOCATATION AND SURFACE TYPE OF ALL ROADS WITHIN ONE MILE OF THE SITE
	2.A(VI)	LATITUDES AND LONGITUDES
	2.A(VII)	AREA STREAMS
	2.A(VIII)	AIRPORTS WITHING FIVE MILES OF THE SITE
	2.A(IX)	PROPERTY BOUNDARY OF THE SITE

	$2.A(\lambda$	X) DRAINAGE, PIPELINE, AND UTILITY EASEMENTS	•
		WITHIN/ADJACENT TO THE SITE	3
	2.(XI) ARCHAEOLOGICAL SITES, HISTORICAL SITES, SITES WITH	•
		EXCEPTIONAL AESTHETIC QUALITY	3
	2.B	GENERAL LOCATION MAP (TXDOT)	3
	2.C	GENERAL TOPOGRAPHIC MAPS	3
	2.D	LAND OWNERSHIP MAP	1
3.0	LAN	DOWNERS LIST - 30 TAC 330.52(B)(5)	1
4.0	LEG	AL DESCRIPTION - 30 TAC 330.52(B)(6)	1
	4.A	LEAGAL DESCRIPTION OF THE PROPERTY (INCLUDE COUNTY, BOOK,	
		PAGE NUMBER OF CURRENT OWNERSHIP RECORD)	
	4.B	IF PLATTED, COUNTY, BOOK, PAGE NUMBER OF FINAL PLAT	
		RECORD	1
	4.C	BOUNDARY METES AND BOUNDS DESCRIPTION OF THE SITE SIGNED	
		AND SEALED BY A REGISTERED PROFESSIONAL LAND SURVERYOR.	1
	4.D	DRAWING OF THE BOUNDARY METES AND BOUNDS DESCRIPTION4	1
5.0	PRO	PERTY OWNER AFFIDAVIT - 30 TAC 330.52(B)(7)	5
	5.A	LEGAL DESCRIPTION OF THE SITE	
	5.B	ACKNOWLEDGEMENT OF OWNERS RESPONSIBILITY FOR OPERATION	1
		MAINTENANCE AND CLOSURE AND POST-CLOSURE CARE	5
	5.C	ACKNOWLEDGEMENT OF OWNERS RESPONSIBILITY TO FILE WITH	•
		COUNTY DEED RECORDS	5
	5.D	ACKNOWLEDGEMENT OF ACCESS FOR OWNER AND OPERATOR AND	
		THE STATE OF TEXAS FOR ACTIVE LIFE PLUS 30 YEARS AFTER	•
		CLOSURE	5
6.0	LEG	AL AUTHORITY - 30 TAC 330.52(B)(8)	6
7.0	EVII	DENCE OF COMPLIANCE - 30 TAC 330.52(B)(9)	5
8.0	APPO	DINTMENTS - 30 TAC 330.52(B)(10)	5
9.0	EVII	DENCE OF FINANCIAL ASSURANCE - 30 TAC 330.52(B)(11)	5

SCS Engineers TBPE Reg. # F-3407

APPENDICES TO PART I

Attachment	Figure	Description
I-A	I-A1	Warranty Deed
	I-A2	Plat
	I-A3	Boundary Metes and Bounds Description
	I-A4	Property Owners within 500' of the Site
I-B	I-B1	Wells within One Mile of the Site
	I-B2	Surface Waters (National Wetland Inventory Map)
	I-B3	Existing Land Use
	I-B4	Permit Boundary
I-C	I-C1	Correspondence with Texas Historical Commission
	I-C2	Correspondence with Texas Parks and Wildlife Department
	I-C3	Correspondence with US Fish and Wildlife Services
	I-C4	Correspondence with US Army Corps of Engineers
I-D	I-D1	Supplementary Technical Report
I-E	I-E1	Floodplain Boundary
I-F	I-F1	Correspondence with Texas Commission on Environmental
		Quality Regarding Clean Water Act Section 208
	I-F2	Correspondence with US Department of Transportation, Federal
		Aviation Administration
	I-F3	Correspondence with Texas Department of Transportation
I-G	I-G1	Correspondence with Middle Rio Grande Development Council
I-H	I-H1	Wind Rose Depicting Prevailing Wind Direction
	I-H2	Aerial Photograph
	I-H3	Schools, Daycares, Churches, Hospitals, Cemeteries, Ponds,
		Lakes, Residential, Commercial/Recreational Areas within One
		Mile of the Site
	I-H4	Roads within One Mile of the Site
	I-H5	Latitudes and Longitudes
	I-H6	Airports within Five Miles of the Site
	I-H7	Not Used
	I-H8	Archeological/Historical Sites, Sites with Exceptional Aesthetic
		Quality
	I-H9	General Location Map (TXDOT)
	I-H10	General Topographic Map (USGS)
I-I	I-I1	Landowners List
I-J	I-J1	Acknowledgement of Responsibility for Operation, Maintenance,
		and Closure and Post Closure Care
	I-J2	Acknowledgement of Responsibility to File with County Deed
		Records
	I-J3	Acknowledgement of Access for Active Life Plus 30 Years After
		Closure
I-K		Legal Authority
I-L		Evidence of Competency

Attachment	Figure	Description
I-M	I-M1	Appointments
I-N		Evidence of Financial Assurance

3.0 COORDINATION WITH AGENCIES – 30 TAC 330.51(B)(6)

Documentation of Coordination with the following agencies is required and is included in Appendix I-F.

3.A Texas Commission on Environmental Quality (TCEQ) Coordination with the TCEQ to demonstrate compliance with the Clean Act Section 208 is included as Appendix I-F1.

3.B Federal Aviation Administration (FAA)

Coordination with the United States Department of Transportation, Federal Aviation Administration to demonstrate compliance with airport location restrictions is included as Appendix I-F2. A letter from the U.S. Department of Transportation, Federal Aviation Administration stating "there are no existing or proposed public-used airports within five miles of the site, therefore we have no objection to the proposal" has been included in this appendix.

3.C Texas Department of Transportation (TXDOT)

Coordination with the Texas Department of Transportation for compliance with traffic and location restrictions is included as **Appendix I-F3**. A driveway access permit for the proposed MSW facility to access FM 1021 was submitted to TXDOT. The permit was successfully approved. A copy of the signed driveway permit is included as **Appendix I-F3**.

Subsequently, an additional driveway access permit for the new entrance to the facility, located in the southeast corner of the property, was submitted to TXDOT. This permit was successfully approved in June 2025 and a copy of this approved permit is also included as Appendix I-F3.

APPENDIX I-F3

CORRESPONDENCE WITH TEXAS DEPARTMENT OF TRANSPORTATION (TXDOT)

PART III SITE DEVELOPMENT PLAN NARRATIVE

FOR

MAVERICK COUNTY EL INDIO MSW LANDFILL TCEQ PERMIT NO. MSW 2316

Prepared for:

Maverick County Solid Waste Authority 16179 FM 1021 El-Indio, Texas 78860

And

Maverick County 500 Quarry Street, Suite 3 Eagle Pass, Texas 78852 830/773-3824

PERMIT ISSUED: SEPTEMBER 11, 2007

REVISIONS 1, 2, 3, 4, <u>5</u> & <u>5-6</u> PREPARED BY:

SCS ENGINEERS Texas Board of Professional Engineers Reg. No. F-3407 1901 Central Drive, Suite 550 Bedford, Texas 76021 817/571-2288

Revision 1 – July 2010, October 2010, January 2011 Revision 2 – July 2014 Revision 3 – January 2024 Revision 4 – October 2024; Revision 5 – February 2025<u>; Revision 6 – June 2025</u>

SCS Project Nos. 16209033.00, 16214011.00, 16220088.00 & 16223092.00

TABLE OF CONTENTS

SECTION

PAGE

1.0	SOL	ID WASTE DATA §330.61(b), §335.505, §335.506, §335.507, & §335.508	.1
2.0	DESI	IGN DATA §330.63(a)	.1
	2.1	LANDFILL METHOD §330.63(d)(4)(B)	2
	2.2	ALL-WEATHER OPERATIONS §330.63(d)(4)(a)	
	2.3	ACCESS CONTROL §330.63(b)(1)	
	2.4	SITE LIFE §330.63(d)(4)(D)	
3.0	DRIN	NKING WATER PROTECTION §330.63(a); §330.63(b)(4); §330.331	.8
010	3.1	LINER DESIGN §330.331; 330.335	
	3.2	LEACHATE COLLECTION SYSTEM §330.333	
	3.3	LINER DESIGN CONSTRAINTS \$330.337	
	3.4	FAULTS §330.555	
	3.5	SOILS AND LINER QUALITY CONTROL PLAN §330.339; §330.341	
4.0	SUR	FACE WATER PROTECTION §330.15(h); §330.305(b)-(g); §330.307	10
	4.1	DISCHARGE OF POLILITANTS \$330.15(b)	10
	4.2	HANDLING CONTAMINATED WATER \$330,305(c)	11
	4.3	NATURAL DRAINAGE PATTERNS \$330 63(c)(1)(D)(iji)	12
	4.4	SITE DRAINAGE DESIGN §330.305(a)-(c) . (e). (f).	12
	4.5	DRAINAGE IMPACT §330.63(c)(1)(C)	13
	4.6	FLOODPLAIN CONSIDERATIONS §330.63(c)(2)	13
	4.7	HANDLING CONTAMINATED WATER §330.305(c) NATURAL DRAINAGE PATTERNS §330.63(c)(1)(D)(iii) SITE DRAINAGE DESIGN §330.305(a)-(c) , (e), (f) DRAINAGE IMPACT §330.63(c)(1)(C) FLOODPLAIN CONSIDERATIONS §330.63(c)(2) SANDEEP D. SARAF FINAL COVER EROSION PROTECTION §330.305	13
5.0	PRO		14
5.0	IKO	DFILL MARKERS §330.143 SITE MARKERS §330.143(b) 6.1.1 EASEMENT AND ROW MARKERS §330.1/3(b)(4)	
6.0	LAN	DFILL MARKERS §330.143	14
	6.1	SITE MARKERS §330.143(b)	14
		6.1.1 EASEMENT AND R.O.W MARKERS§330.143(b)(4)	15
		6.1.2 SITE GRID SYSTEM MARKERS §330.143(b)(5)	15
		6.1.3 SLER OR GLER AREA MARKERS §330.143(b)(6)	15
		6.1.4 100 YEAR FLOOD LIMIT PROTECTION §330.143(b)(7)	15
		6.1.5 SITE BOUNDARY MARKERS §330.143(b)(2)	16
		6.1.6 BUFFER ZONE MARKERS §330.143(b)(3)	
		6.1.7 PERMANENT BENCHMARK §330.143(b)(8)	16

ATTACHMENTS TO PART III

Attachment Description

- 1 Site Layout Plan
- 2 Fill Cross-Sections
- 3 Existing Contour Map
- 4 Geology Report
- 5 Groundwater Characterization Report
- 6 Ground and Surface Water Protection Plan and Drainage Plan
- 7 Final Contour Map
- 8 Cost Estimate for Closure and Post-Closure
- 9 Applicant's Statement
- 10 Soil and Liner Quality Control Plan (SLQCP)
- 11 Groundwater Sampling and Analysis Plan (GWSAP)
- 12 Final Closure Plan
- 13 Post-Closure Care Plan
- 14 Landfill Gas Management Plan
- 15 Leachate and Contaminated Water Plan

2.1 LANDFILL METHOD §330.63(d)(4)(B)

The permitted waste area of the landfill is 108 acres and the final cover side slopes are 3H:1V. The basic design of the Maverick County Landfill will consist of area fill both above and below ground. The site will be continuously developed using 14 disposal cells. The below-ground waste disposal will extend approximately 45 feet below ground to a finished base grade (top of liner) elevation of approximately 691 feet m.s.l. The bottom liner system of each cell will slope to drain at a minimum 2 percent toward a perforated LCS pipe located in the center of each cell. The LCS pipe will be sloped at a minimum slope of 1% towards the leachate collection sump. The landfill base grades are designed with a 1% base liner slope.

The above-ground waste disposal generally includes a 3 horizontal to 1 vertical fill slope from the landfill perimeter to a top elevation of approximately 833 feet m.s.l. with a 5% cap slope.

An eight-foot high chain-link security fence with a locking gate at the entrance to the facility has been installed on the FM 1021 perimeter of the site.

Development of the landfill will be an ongoing process throughout the projected 73 year site life. The landfill will be developed in one phase as shown on Attachment 1 of Part III. The 14 individual cells outlined represent discrete construction limits for extending the landfill floor excavation and lining system.

Throughout the development of the site where excavation is anticipated, the general excavation sequence will be as follows.

- 1. Construct temporary erosion controls including diversion berms, ditches and filter fences.
- 2. Strip and stockpile topsoil in designated areas. Construct appropriate erosion controls to maintain natural drainage patterns to the extent possible.
- 3. Excavate to the elevations shown in Part III, and stockpile soil in designated areas to construct screening berms and push wall berms when appropriate. Maintain stockpiles in compliance with the Erosion Control Plan.
- 4. Construct a compacted clay liner in accordance with the Soil Liner Quality Control Plan (SLQCP) provided in Part III, Attachment 10. In general, the constructed lined area will not exceed that area which will be covered by one lift of waste within 6 months.

Construction Sequence for Phase 1, Cell 1

1. Construct an all-weather road along the western and southern edges of the excavation. Construct the all-weather road of a surface such as asphalt, crushed

As a routine procedure, a stockpile of cover material sufficient to cover the working face or active area will be maintained near the working area. This will provide periodic cover on a contingency basis for such conditions as inclement weather, unanticipated down-time of cover hauling equipment, and fire/hot load control at the working face.

During dry weather, the operator will perform dust control by sprinkling water on the roads and ramps, as necessary.

2.3 ACCESS CONTROL §330.63(b)(1)

Site access control consists of an 8-foot chain link fence with 2-strand barbed wire top rail, in concrete footings along the FM 1021 side of the landfill and a 5-foot 5-strand barbedwire fence on steel poles with concrete footings around the remaining perimeter of the site. A gate with control features will be located at the facility entrances, including the primary entrance (i.e., the existing main entrance) and secondary entrance/exit gates. The primary entrance to the facility is to the south to optimize the site operations. This entrance provides room for one inbound and one outbound scale, with a queuing distance of 510' between the gate and inbound scale. This will provide the ability to safely maneuver traffic through the scale house area, eliminate traffic from backing up onto FM 1021, and reduce overall disposal time for customers. Also, it provides additional room for future drainage features that are proposed at the landfill.

Site personnel will inspect regularly the fencing, report any failure, and see that any damage is quickly repaired. All security features, including the entry gates, and the locks will be kept in proper working order, maintained, and quickly replaced if inoperable and/or irreparable. Maintenance will be performed on site security mechanisms (i.e. fences, locking gates) as necessary to maintain access control, as described in Part IV – Site Operating Plan, Section 4.1. The fences, gates, and other means of access control will be maintained and operated to prevent the entry of livestock, to protect the public from exposure to potential health and safety hazards, and to discourage unauthorized entry or uncontrolled disposal of solid waste or hazardous materials.

Scale house personnel at the primary entrance will control site access whenever the entry gates are open. When the site is closed, the entry gates will be closed to prevent unauthorized and uncontrolled waste disposal and locked when no personnel are present on site. Lighting will be provided at the scale house and primary entrance gate. The perimeter fencing will prevent vehicular and pedestrian access to the site at points other than the entry gates. Under normal operations, the primary entrance constructed for the facility will be the only public entrance for the landfill. Generally, the secondary entrance will be for landfill personnel or Maverick County designated personnel. However, in the event that primary entrance is inaccessible due to weather or traffic, approved waste haulers and/or the general public may be directed to through the secondary entrance. The locations of the primary and secondary entrances are shown on Part III, Attachment 1B. The primary entrance layout is shown in Part III, Attachment 1B10.

The gate attendant will direct drivers to the proper disposal area. There, the drivers will be directed to a specific unloading area. Operations over the life of the facility may include alteration to the location and quantity of entrance and administrative facilities (i.e. building, trailers, citizen service areas, fuel tanks, scales, equipment maintenance facilities, etc.) and other facility appurtenances even though they will remain in the same general location. In all cases, any alteration in the location of these facilities will be designed to increase the level of service provided by the facility without interfering with site operations.

2.4 SITE LIFE §330.63(d)(4)(D)

The disposal rate for the Maverick County Landfill is expected to range from approximately 350 tons/day to 400 tons/day. The region currently has a collection rate of 6 lbs/person/day.

MAVERICK COUNTY – EL INDIO MSW LANDFILL MAVERICK COUNTY, TEXAS PERMIT APPLICATION SITE DEVELOPMENT PLAN PART III ATTACHMENT 1

SITE LAYOUT PLAN

Prepared for:

Maverick County Solid Waste Authority 16179 FM 1021 El-Indio, Texas 78860

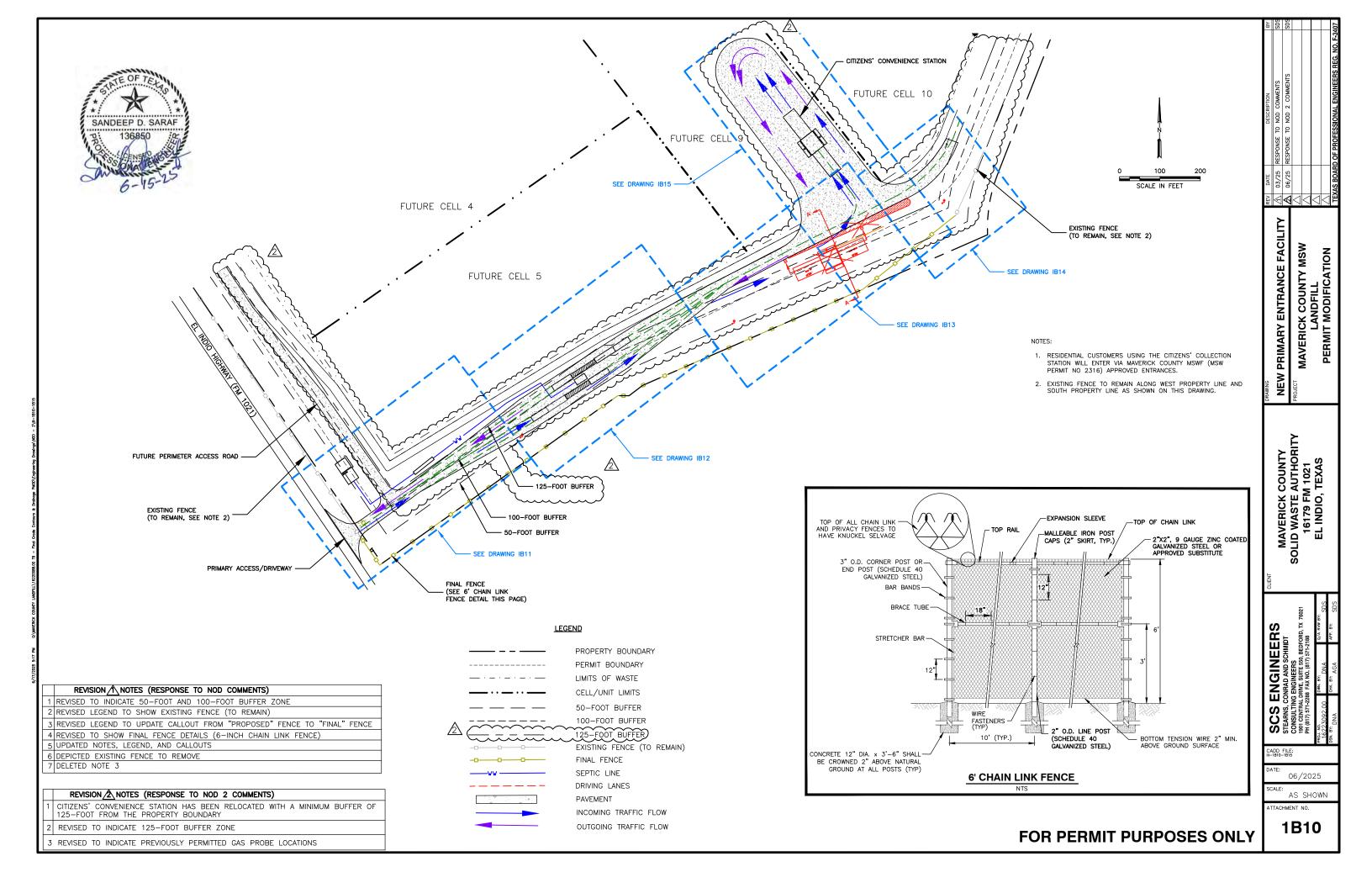
> And **Maverick County** 500 Quarry Street, Suite 3 Eagle Pass, Texas 78852 830/773-3824

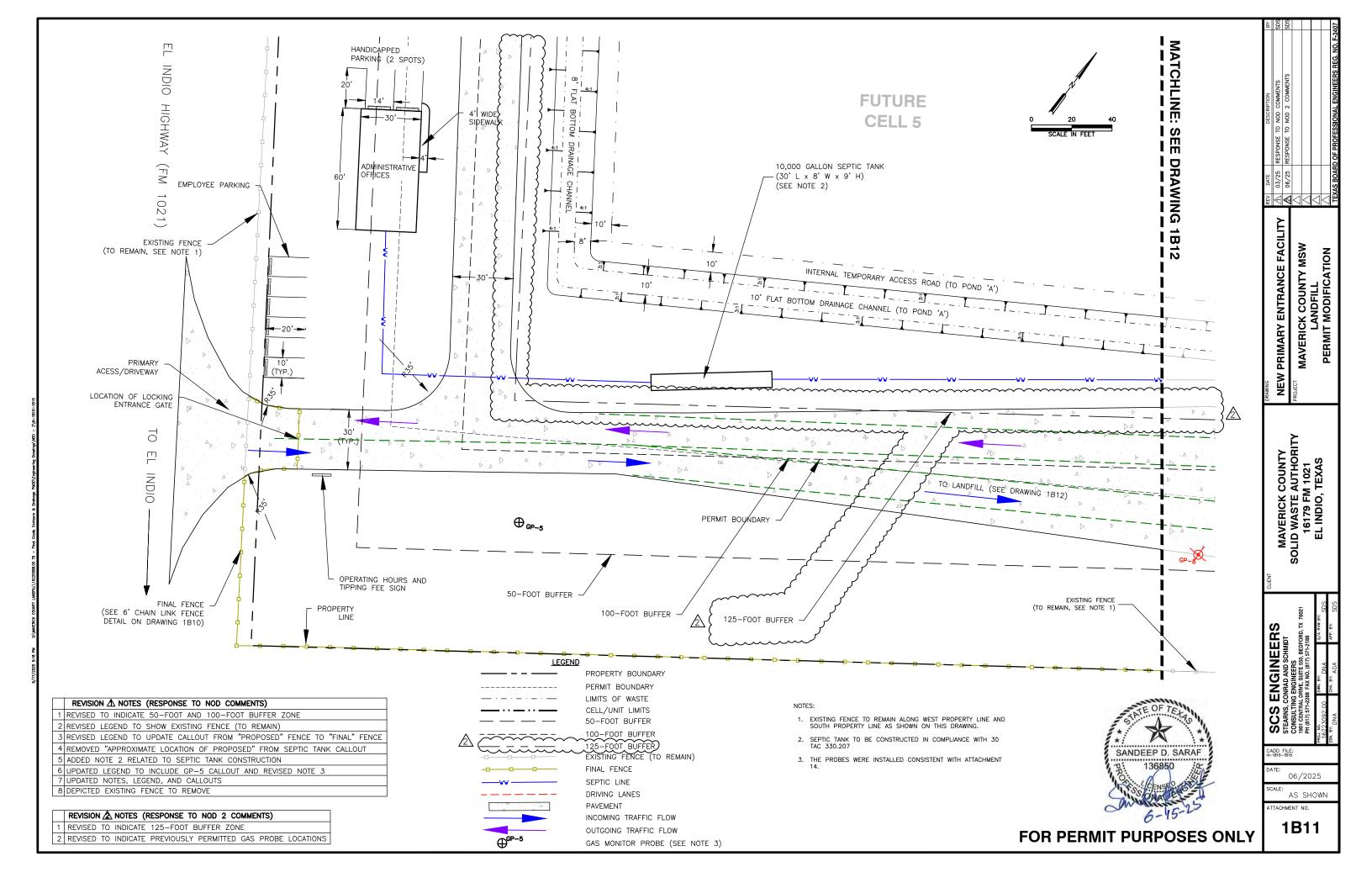
PERMIT ISSUED: SEPTEMBER 11, 2007

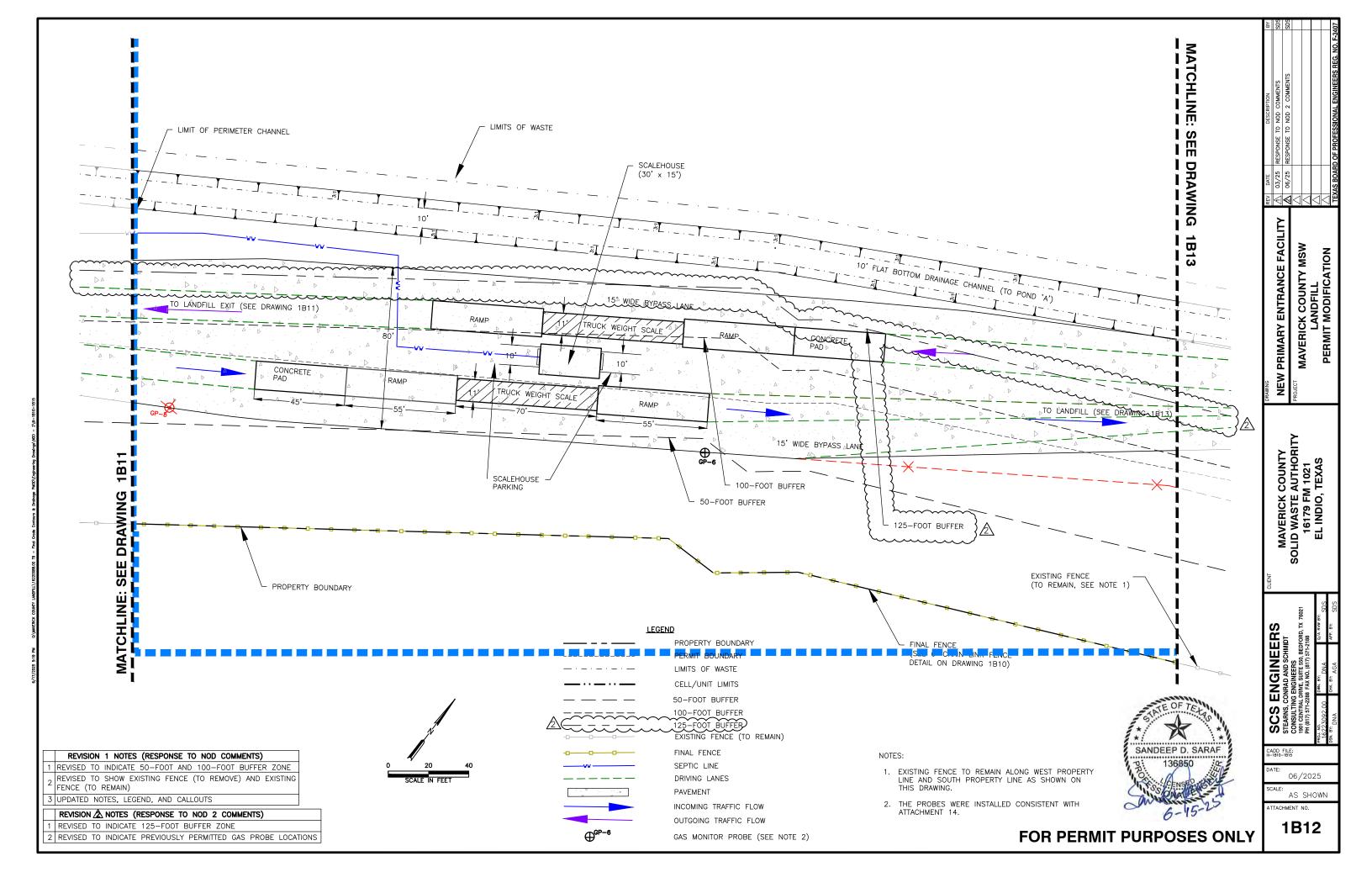
REVISIONS 2, 3, 4<u>, 5</u> and <u>56</u>, PREPARED BY:

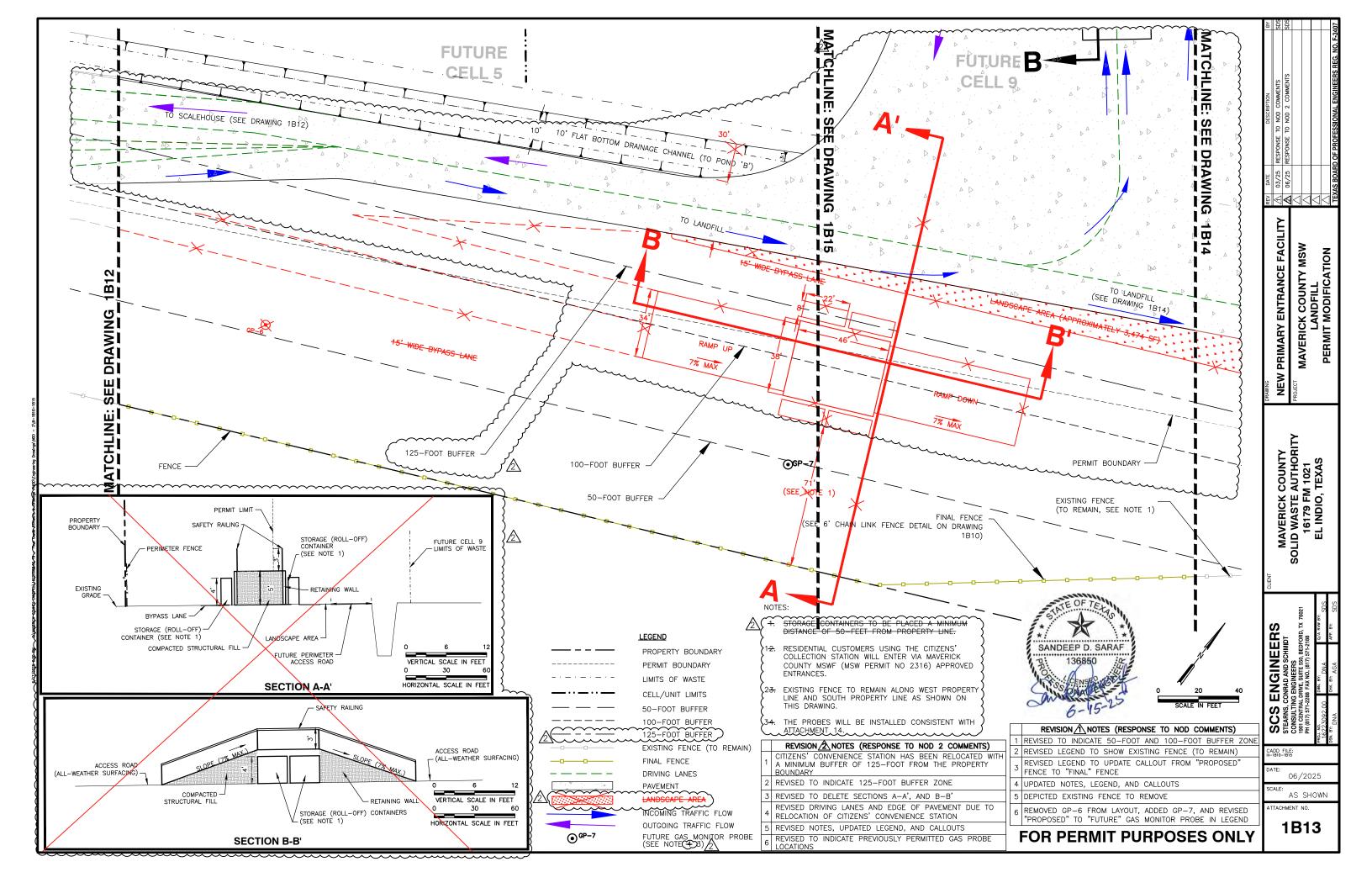
SCS ENGINEERS Texas Board of Professional Engineers Reg. No. F-3407 1901 Central Drive, Suite 550 Bedford, Texas 76021 817/571-2288

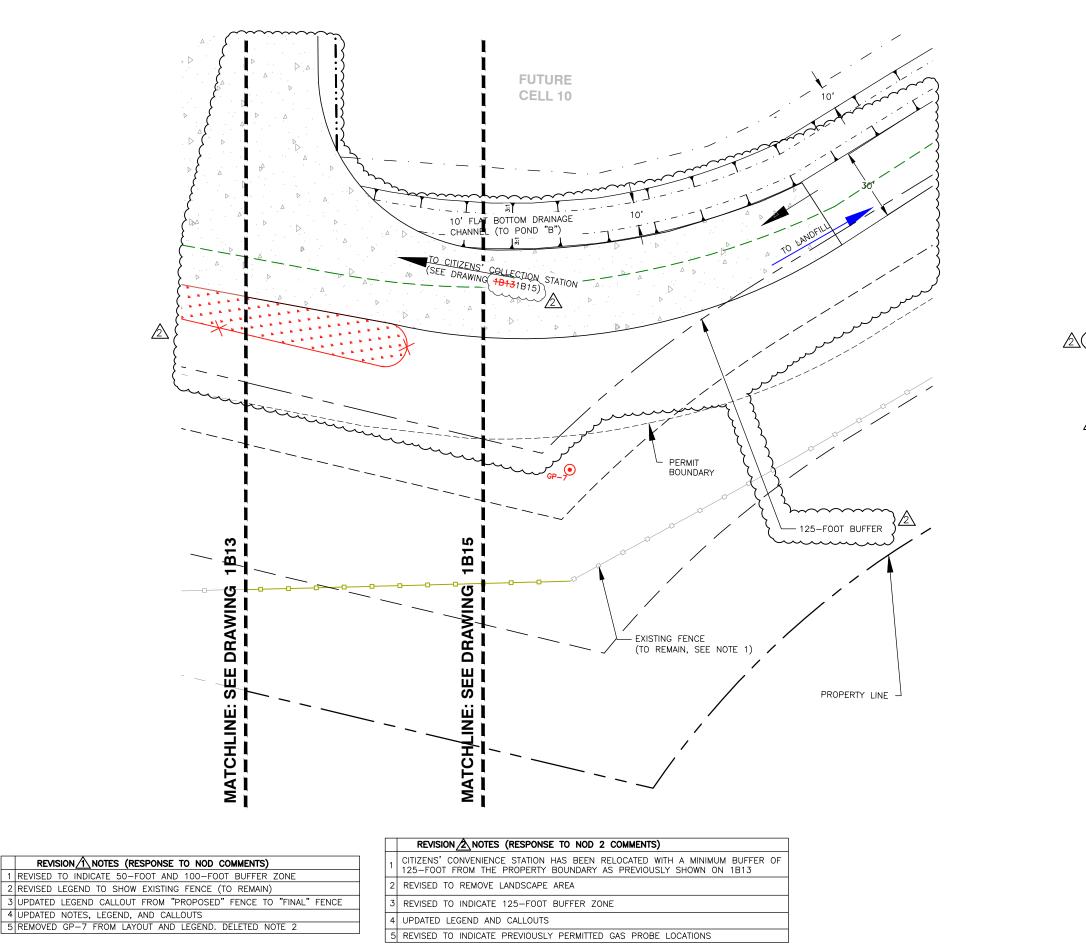
Revision 1 – January 2004, May 2004 Revision 2 – June 2009, June 2010, Revision 3 – July 2014, October 2014 Revision 4 – October 2024 Revision 5 – February 2025<u>; Revision 6 – June 2025</u> SCS Project Nos. 16208046, 16209033.00, 16223092.00

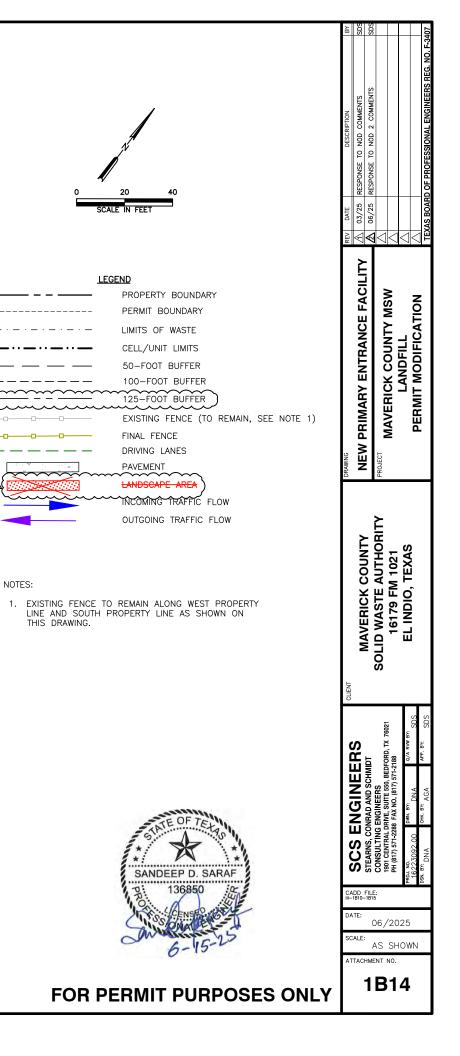

TABLE OF CONTENTS


Drawings


- 1A Site Layout
- 1B Entrance Facilities
- 1B2 Administration Building Building Layout
- 1B3 Administration Building Cabinet Layout
- 1B4 Administration Building Building Plan View
- 1B5 Administration Building Building Layout Details
- 1B6 Administration Building Truck Scale Foundation Plan
- 1B7 Administration Building Truck Scale Foundation Plan
- 1B8 Administration Building Septic Tank Details
- 1B9 Administration Building Details
- 1B10 New Primary Entrance Facility
- 1B11 New Primary Entrance Facility
- 1B12 New Primary Entrance Facility
- 1B13 New Primary Entrance Facility
- 1B14 New Primary Entrance Facility
- 1B15 New Primary Entrance Facility
- 1C Site Coordinate Grid System
- 1D Top of Liner Grades
- 1D1 Excavation Grades
- 1E Development Phasing Plan
- 1E1 Development Phasing Cells 1-3




SCS Engineers TBPE Reg. # F-3407



6/11/2020

MAVERICK COUNTY – EL INDIO MSW LANDFILL MAVERICK COUNTY, TEXAS PERMIT APPLICATION SITE DEVELOPMENT PLAN PART III ATTACHMENT 2

FILL CROSS-SECTIONS

Prepared for: Maverick County Solid Waste Authority 16179 FM 1021 El-Indio, Texas 78860

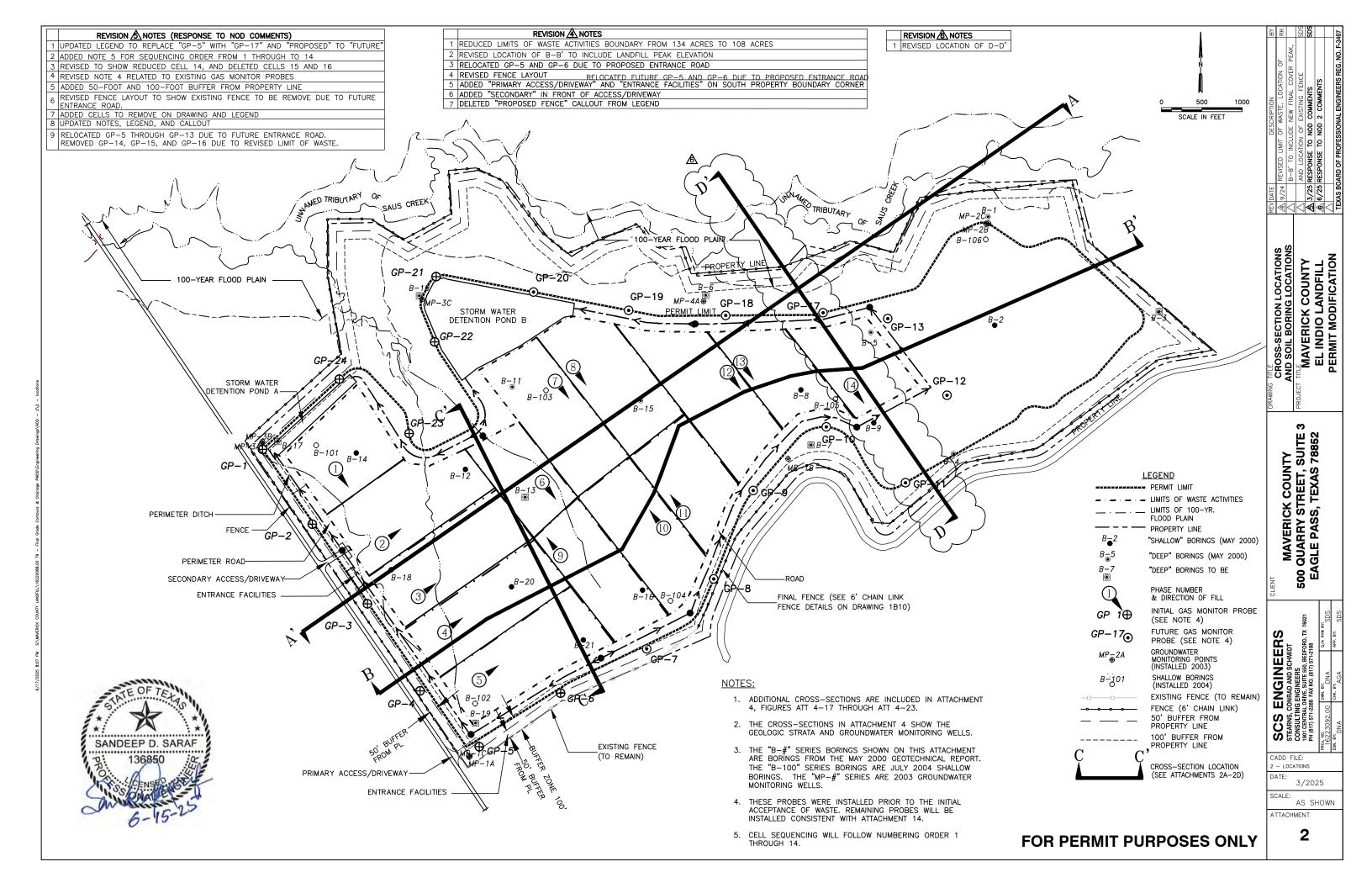
> And **Maverick County** 500 Quarry Street, Suite 3 Eagle Pass, Texas 78852 830/773-3824

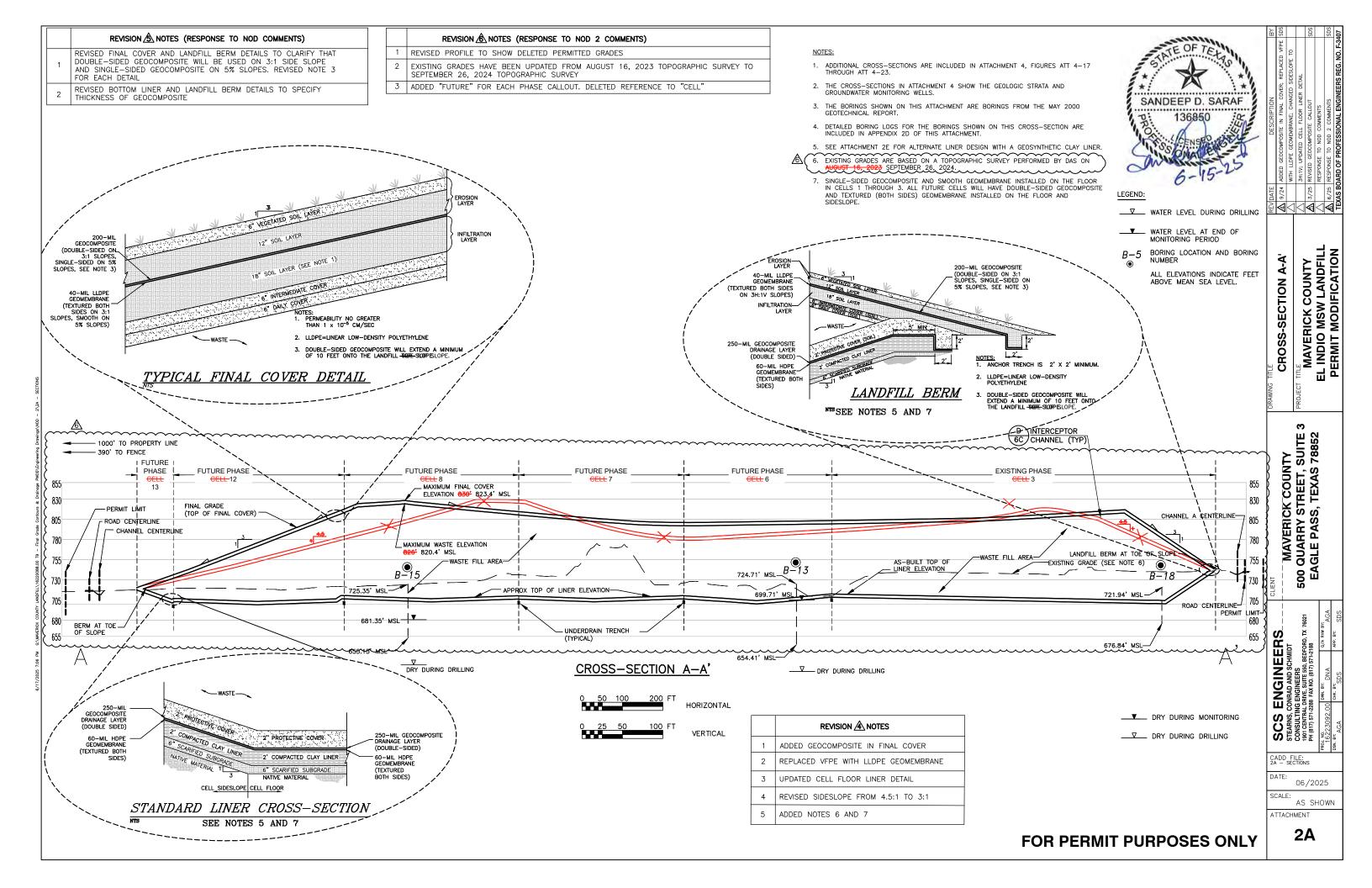
PERMIT ISSUED: SEPTEMBER 11, 2007

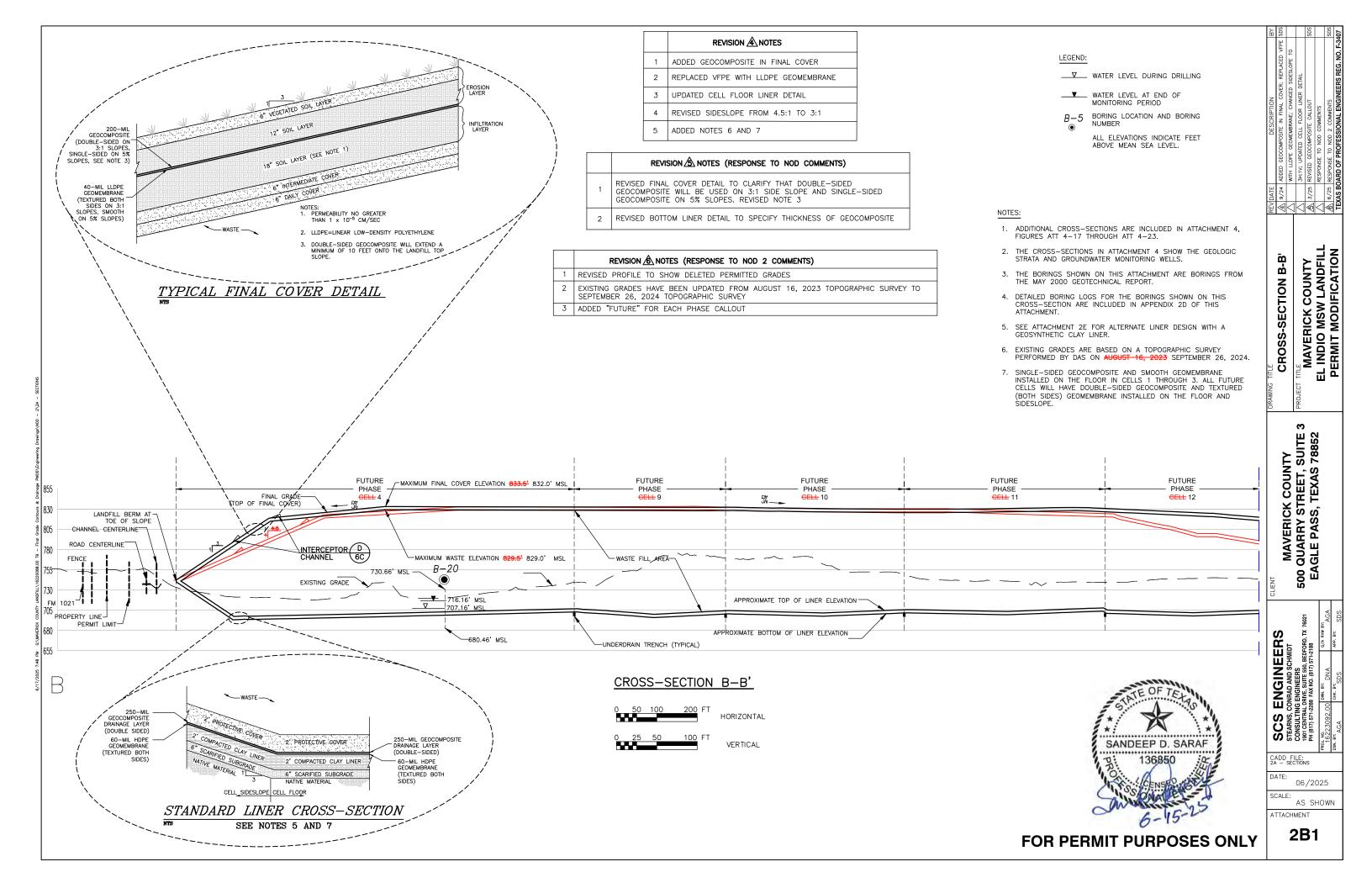
REVISIONS 2, 3, 4, <u>5, & 5-6</u> PREPARED BY:

SCS ENGINEERS Texas Board of Professional Engineers Reg. No. F-3407 1901 Central Drive, Suite 550 Bedford, Texas 76021 817/571-2288

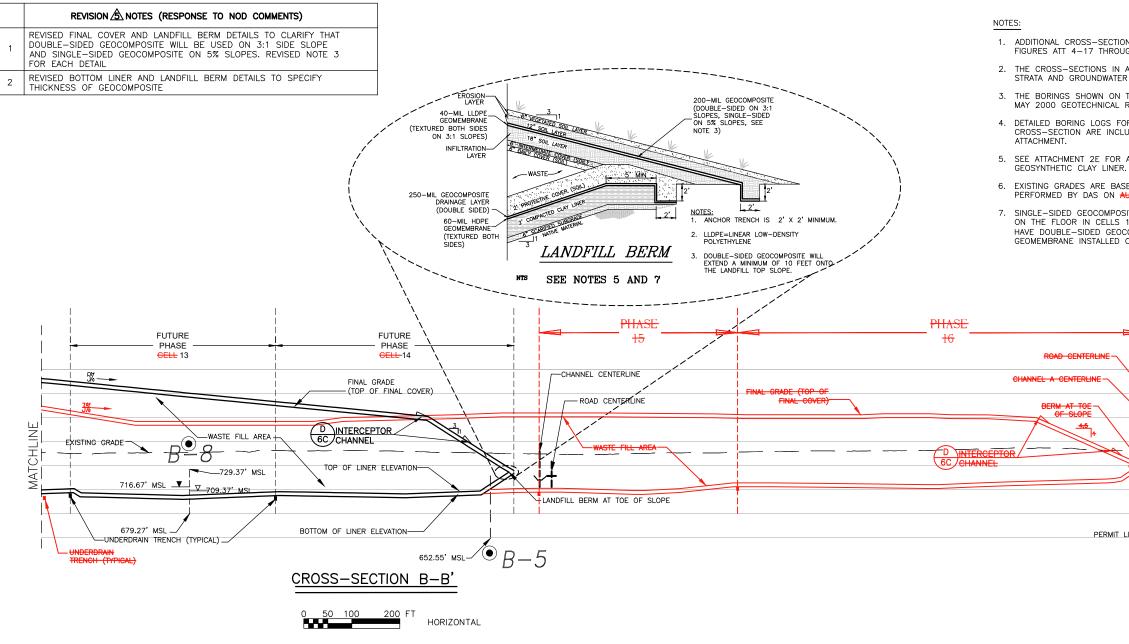
Revision 1 – January 2004, July 2004, August 2004 Revision 2 – April 2009 Revision 3 – July 2010 Revision 4 – October 2024 Revision 5 – February 2025<u>; Revision 6 – June 2025</u> SCS Project No. 16208046.00, 16223092.00


TABLE OF CONTENTS


Drawings

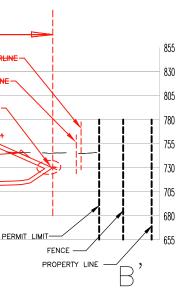

- Cross-Section Locations and Soil Boring Locations 2
- 2A Cross-Section A-A'
- Cross-Section B-B' (1 of 2) 2B1
- 2B2 Cross-Section B-B' (2 of 2)
- 2CCross-Section C-C'
- 2D Cross-Section D-D'
- 2E Alternate Liner Design

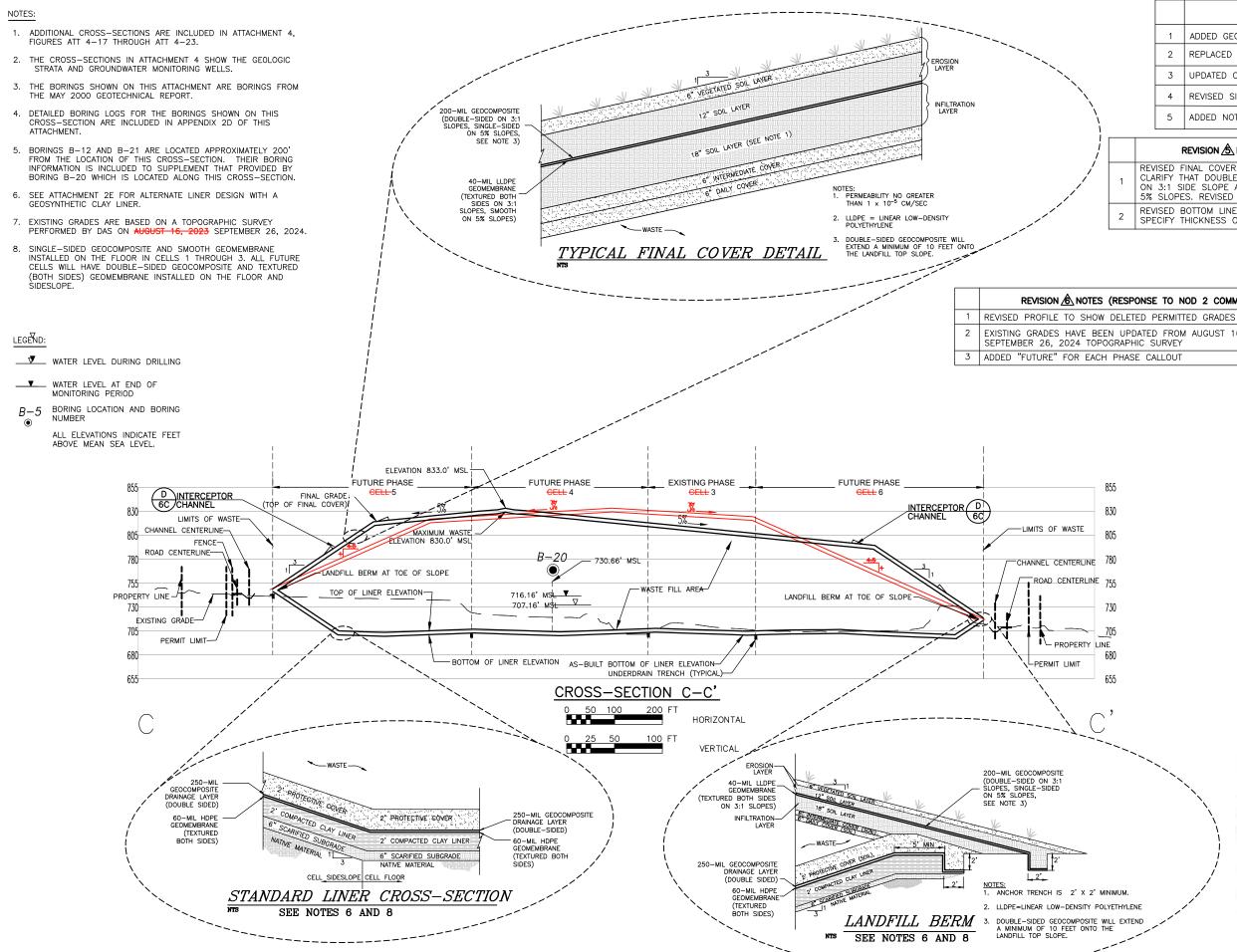
SCS Engineers TBPE Reg. # F-3407



REVISION	A NOTES
-----------------	---------

- ADDED GEOCOMPOSITE IN FINAL COVER 1
- 2 REPLACED VFPE WITH LLDPE GEOMEMBRANE
- 3 UPDATED CELL FLOOR LINER DETAIL
- 4 REVISED SIDESLOPE FROM 4.5:1 TO 3:1
- 5 ADDED NOTES 6 AND 7


REVISION A NOTES (RESPONSE TO NOD 2 COMMENTS) 1 REVISED PROFILE TO SHOW DELETED GRADES 2 EXISTING GRADES HAVE BEEN UPDATED FROM AUGUST 16, 2023 TOPOGRAPHIC SURVEY TO SEPTEMBER 26, 2024 TOPOGRAPHIC SURVEY 3 ADDED "FUTURE" FOR EACH PHASE CALLOUT


100 F VERTICAL

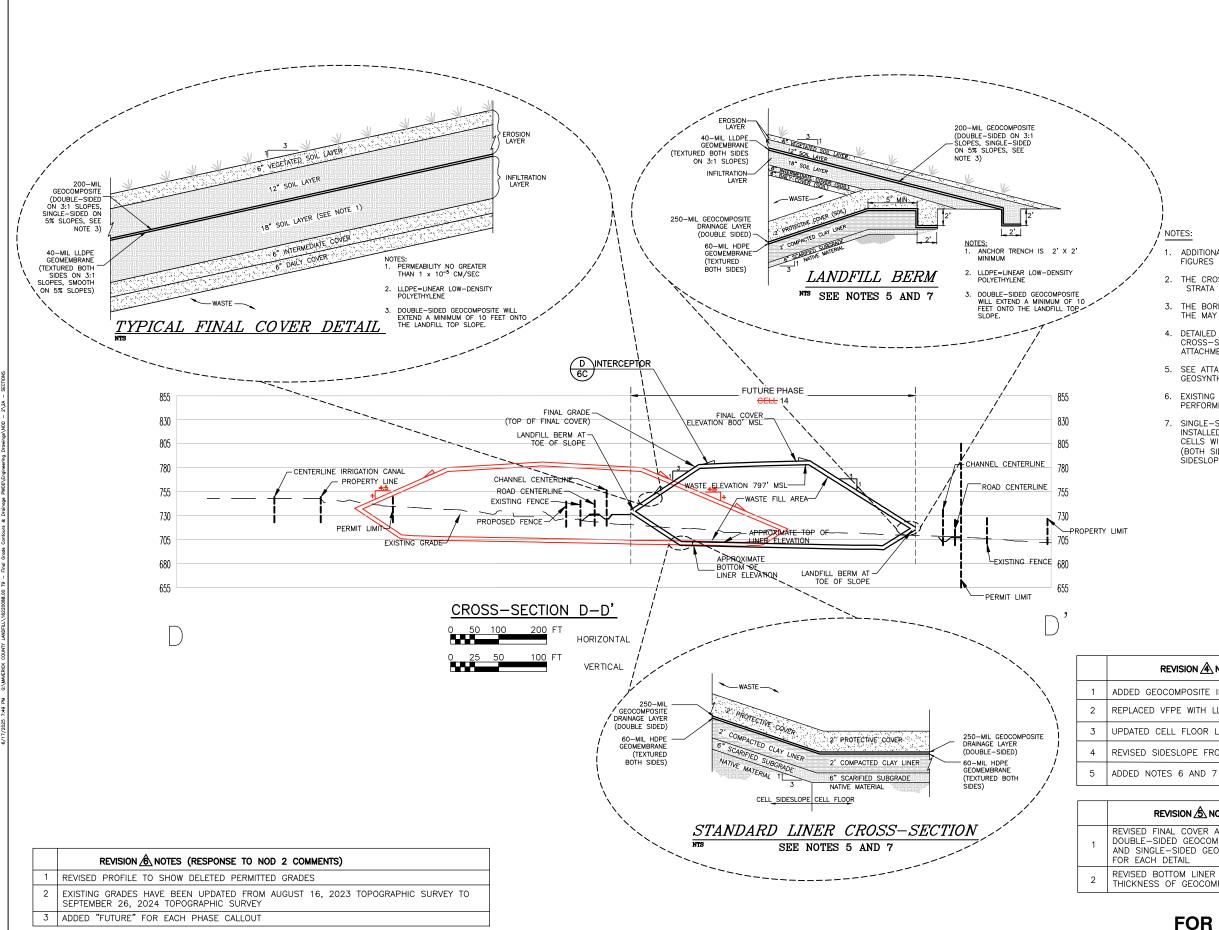
- 1. ADDITIONAL CROSS-SECTIONS ARE INCLUDED IN ATTACHMENT 4, FIGURES ATT $4\!-\!17$ THROUGH ATT $4\!-\!23.$
- 2. THE CROSS-SECTIONS IN ATTACHMENT 4 SHOW THE GEOLOGIC STRATA AND GROUNDWATER MONITORING WELLS.
- 3. THE BORINGS SHOWN ON THIS ATTACHMENT ARE BORINGS FROM THE MAY 2000 GEOTECHNICAL REPORT.
- 4. DETAILED BORING LOGS FOR THE BORINGS SHOWN ON THIS CROSS-SECTION ARE INCLUDED IN APPENDIX 2D OF THIS
- 5. SEE ATTACHMENT 2E FOR ALTERNATE LINER DESIGN WITH A
- 6. EXISTING GRADES ARE BASED ON A TOPOGRAPHIC SURVEY PERFORMED BY DAS ON AUGUST 16, 2023 SEPTEMBER 26, 2024.
- 7. SINGLE-SIDED GEOCOMPOSITE AND SMOOTH GEOMEMBRANE INSTALLED ON THE FLOOR IN CELLS 1 THROUGH 3. ALL FUTURE CELLS WILL HAVE DOUBLE-SIDED GEOCOMPOSITE AND TEXTURED (BOTH SIDES) GEOMEMBRANE INSTALLED ON THE FLOOR AND SIDESLOPE.

SANDEEP D. SARAF B 136850 SS PANALE G-15-25	REV[DATE DESCRIPTION BY A 9/24 EECOOMPOSITE IN FINL COVER. REPLACED VFFE WITH SDS SDS A 1.LDPE GEOMEMBRANE. CHANGED SIDELOFE TO 3H:1V. SDS SH:1V.	A 3/25 REVISED GEOCOMPOSITE CALLOUT SDS A RESPONSE TO NOD COMMENTS SDS A 6/25 RESPONSE TO NOD 2 COMMENTS SDS A TEXAS BOARD OF PROFESSIONAL ENGINEERS REG. NO. F-3407
S ARE INCLUDED IN ATTACHMENT 4, H ATT 4–23. TTACHMENT 4 SHOW THE GEOLOGIC MONITORING WELLS. HIS ATTACHMENT ARE BORINGS FROM THE EPORT. R THE BORINGS SHOWN ON THIS DED IN APPENDIX 2D OF THIS LITERNATE LINER DESIGN WITH A D ON A TOPOGRAPHIC SURVEY GUST 16, 2023 SEPTEMBER 26, 2024. TE AND SMOOTH GEOMEMBRANE INSTALLED THROUGH 3. ALL FUTURE CELLS WILL DMPOSITE AND TEXTURED (BOTH SIDES) N THE FLOOR AND SIDESLOPE.	DRAWING TITLE CROSS-SECTION B-B'	PROJECT TITLE MAVERICK COUNTY EL INDIO MSW LANDFILL PERMIT MODIFICATION
855 830 805 780 755 730	CLIENT MAVERICK COUNTY	500 QUARRY STREET, SUITE 3 EAGLE PASS, TEXAS 78852
TOS 680 655 PROPERTY LINE ,	SCS ENGINEERS STEARNS, CONRAD AND SCHMIDT	CONSULTING ENGINEERS Figure Scale Bring, SUITE SSG, BEFORD, TX 76021 PHOL LIPT ST128B REVNO. (817) 571-218B FROL NO. PHOL NO
FOR PERMIT PURPOSES ONLY	DATE: SCALE: ATTACH	06/2025 AS SHOWN

1	ADDED GEOCOMPOSITE IN FINAL COVER
2	REPLACED VFPE WITH LLDPE GEOMEMBRANE
3	UPDATED CELL FLOOR LINER DETAIL
4	REVISED SIDESLOPE FROM 4.5:1 TO 3:1
5	ADDED NOTES 6 AND 7

REVISION A NOTES (RESPONSE TO NOD COMMENTS) REVISED FINAL COVER AND LANDFILL BERM DETAILS TO

CLARIFY THAT DOUBLE-SIDED GEOCOMPOSITE WILL BE USED ON 3:1 SIDE SLOPE AND SINGLE-SIDED GEOCOMPOSITE ON 5% SLOPES. REVISED NOTE 3 FOR EACH DETAIL
REVISED BOTTOM LINER AND LANDFILL BERM DETAILS TO SPECIFY THICKNESS OF GEOCOMPOSITE


REVISION 6 NOTES (RESPONSE TO NOD 2 COMMENTS)

PDATED PHIC SL	AUGUST	16,	2023	TOPOGRAPHIC	SURVEY	то	

FOR PERMIT PURPOSES ONLY

NOTES:

- ADDITIONAL CROSS-SECTIONS ARE INCLUDED IN ATTACHMENT 4, FIGURES ATT 4-17 THROUGH ATT 4-23.
- 2. THE CROSS-SECTIONS IN ATTACHMENT 4 SHOW THE GEOLOGIC STRATA AND GROUNDWATER MONITORING WELLS.
- 3. THE BORINGS SHOWN ON THIS ATTACHMENT ARE BORINGS FROM THE MAY 2000 GEOTECHNICAL REPORT.
- 4. DETAILED BORING LOGS FOR THE BORINGS SHOWN ON THIS CROSS-SECTION ARE INCLUDED IN APPENDIX 2D OF THIS ATTACHMENT.
- 5. SEE ATTACHMENT 2E FOR ALTERNATE LINER DESIGN WITH A GEOSYNTHETIC CLAY LINER.
- EXISTING GRADES ARE BASED ON A TOPOGRAPHIC SURVEY PERFORMED BY DAS ON AUGUST 16, 2023 SEPTEMBER 26, 202
- SINGLE-SIDED GEOCOMPOSITE AND SMOOTH GEOMEMBRANE INSTALLED ON THE FLOOR IN CELLS 1 THROUGH 3. ALL FUTURE CELLS WILL HAVE DOUBLE-SIDED GEOCOMPOSITE AND TEXTURED (BOTH SIDES) GEOMEMBRANE INSTALLED ON THE FLOOR AND SIDESLOPE.

LEGEND:

- ₩ WATER LEVEL AT END OF MONITORING PERIOD
- B-5 BORING LOCATION AND BORING NUMBER ۲
 - ALL ELEVATIONS INDICATE FEET ABOVE MEAN SEA LEVEL.

- 1 ADDED GEOCOMPOSITE IN FINAL COVER
- 2 REPLACED VFPE WITH LLDPE GEOMEMBRANE
- 3 UPDATED CELL FLOOR LINER DETAIL
- 4 REVISED SIDESLOPE FROM 4.5:1 TO 3:1

REVISION A NOTES (RESPONSE TO NOD COMMENTS)

REVISED FINAL COVER AND LANDFILL BERM DETAILS TO CLARIFY THAT DOUBLE-SIDED GEOCOMPOSITE WILL BE USED ON 3:1 SIDE SLOPE AND SINGLE-SIDED GEOCOMPOSITE ON 5% SLOPES. REVISED NOTE 3

REVISED BOTTOM LINER AND LANDFILL BERM DETAILS TO SPECIFY THICKNESS OF GEOCOMPOSITE

FOR PERMIT PURPOSES ONLY

The second of
Television Television Television Television SCS ENGINEERS CLENT PRAMING TITLE PRAMING TITLE Streams, connad and schimidin consultinet engineers MAVERICK COUNTY PRAMING TITLE Streams, connad and schimidin consultinet engineers Soo QUARRY STREET, SUITE 3 PROJECT TITLE Soo QUARRY STREET, SUITE 3 PROJECT TITLE MAVERICK COUNTY Field 23092.00 Max FRICK COUNTY EAGLE PASS, TEXAS 78852 Field 301 Maverice ELINDIO MSW LANDFILL Field 302 Max FRICK COUNTY ELINDIO MSW LANDFILL
The second and schild the s
SCS ENGINEERS STEARNS, CONRD AND SCHIIDT STEARNS, CONRD AND SCHIIDT CONSULTING ENGINEERS 1901 CENTRAL DRIVE, SUITE SG, BEDFORD, TX 7602 1901 CENTRAL DRIVE, SUITE SG, BEDFORD, TX 7602 1901 CENTRAL DRIVE, SITTE SG, BEDFORD, TX 7602 1901 CENTRAL DRIVE, SG, DRIVE, STREET, SUITE 16223092 OI 00 WK 871 16223092 OI 00 WK 871 172300 1
SCS ENGINEERS STEARNS, CONRAD AND SCHMIDT CONSULTING ENGINEERS 1901 CENTRAL DRIVE, SUITE 550, BEDFORD, TX 76 1901 CENTRAL DRIVE, SUITE 550, BEDFORD, TX 76 1622 5002.00 DML et al. 1672 712 718 DML et al. 2002.00 DML et al. 2003 DML et al.
PROL PLO O C
DATE: 06/2025 SCALE: AS SHOWN ATTACHMENT

PART III

ATTACHMENT 6

GROUNDWATER AND SURFACE WATER PROTECTION PLAN AND DRAINAGE PLAN

FOR

MAVERICK COUNTY EL INDIO MSW LANDFILL TCEQ PERMIT NO. MSW-2316

Prepared for: Maverick County 500 Quarry Street, Suite 3 Eagle Pass, Texas 78852 830/773-3824

PERMIT ISSUED: SEPTEMBER 11, 2007

PERMIT MODIFICATION (REVISION 1, 2, 3, 4, and 5) PREPARED BY:

SCS ENGINEERS Texas Board of Professional Engineers, Reg. No. F-3407 1901 Central Drive, Suite 550

Bedford, Texas 76021 817/571-2288

Revision 1 – April 2009 Revision 2 – June 2009 Revision 3 – August 2009 Revision 4 – October 2024 Revision 5 – February 2025 Revision 6 – June 2025

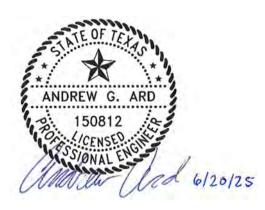
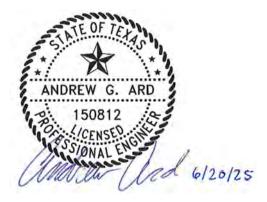

SCS Project No. 16208046.00 & 16223092.00

TABLE OF CONTENTS

SECTION

PAGE

1.0	INTI	RODUCTION1
2.0	PRE	-DEVELOPMENT CONDITIONS1
	2.1	Site Description1
	2.2	Drainage Patterns
	2.3	Drainage Area Map
	2.4	Storm Runoff Determination
	2.5	Pre-Development Storm Runoff7
3.0	DEV	ELOPED CONDITIONS
	3.1	Final Grading7
	3.2	Drainage Area Map7
	3.3	Drainage Controls
	3.4	Sequence of Development for Drainage Structures
	3.5	Maintenance of Drainage Structures
4.0	COM	IPARISON OF PRE-DEVELOPMENT AND FINAL DRAINAGE PATTERNS15
5.0	TPD	ES CERTIFICATION <u>17</u> 16
6.0	ERO	SION CONTROL PLAN



Attachments

- 6A Pre-Development Drainage Conditions
- 6A1 Calculations for Pre-Development Drainage Conditions
- 6B Final Drainage Conditions
- 6B1 Calculations for Final Drainage Conditions
- 6C Drainage Structures: Details
- 6D1 Drainage Structures: Interceptor Channel and Downchute Calculations
- 6D1A Intermediate Cover Interceptor Channel and Downchute Drainage Sub-Basins
- 6D1B Final Cover Interceptor Channel Drainage Sub-Basins
- 6D1C Final Cover Downchute Drainage Sub-Basins
- 6D2 Drainage Structures: Perimeter Channel Calculations
- 6D3 Drainage Structures: Culvert at Main Entrance Calculations
- 6E1 Detention Ponds: Detention Pond A Design
- 6E2 Detention Ponds: Detention Pond B Design
- 6F Temporary Erosion & Sedimentation Control Measures

Appendices

- 1. Reference Material: City of Austin Drainage Criteria Manual
- 2. Erosion and Sedimentation Control Plan
- 2A. Soil Loss Analysis
- 2B. Overland Flow Velocity Analysis
- 3A. Reference Material: Soil Survey Map and Description, USLE/RUSLE References
- 4. Reference Material: Hydrology and Hydraulic Calculation References, MACCAFERRI Reno Mattress Information

pre-development condition. All stormwater will continue to be directed to the existing tributary of Saus Creek.

Pursuant to the drainage calculations presented in Attachments 6A, 6A1, 6B, 6B1, and stormwater detention design information presented in Attachment 6E, the post-landfill development drainage condition (final drainage condition) will not significantly alter pre-development drainage patterns in the vicinity of the landfill. The pre-development and final drainage conditions based on the 25-year, 24-hour storm event are summarized in the following table<u>s</u> (see also Section 4.1 below). As shown below, the stormwater discharge and runoff volume leaving the property at Discharge Point I+II+III will not be greater than the pre-development conditions. While the discharge does increase at Discharge Point II, the creek is not adversely affected as the overall flow and runoff volume have not increased.

Discharge Point	Pre-	Pre-	Final Q25	Final Q100
	Development	Development		
	Q25	Q100		
Ι	212.55 cfs	333.90 cfs	<u>≤</u> 174.44cfs	<u>≤</u> 234.68cfs
II	94.60 cfs	148.69 cfs	<u>≤</u> 197.84cfs	≤268.11cfs
III	111.97 cfs	175.97 cfs	<u><</u> 73.98 cfs	<u><</u> 99.19 cfs
I+II+III	408.60 cfs	624.90 cfs	<u>≤</u> 408.40cfs	≤552.61cfs

<u> Table 4.1 – Peak Discharge</u>

Table 4.2 – Peak Velocity

Discharge Point	Pre-	Pre-	Final Q25	Final Q100
	<u>Development</u>	<u>Development</u>		
	<u>Q25</u>	<u>Q100</u>		
Ī	<u>4.71 ft/s</u>	<u>5.37 ft/s</u>	<u><4.46 ft/s</u>	<u><4.86 ft/s</u>
Ш	<u>2.58 ft/s</u>	<u>2.91 ft/s</u>	<u><3.14 ft/s</u>	<u><3.42 ft/s</u>
III	<u>2.24 ft/s</u>	<u>2.55 ft/s</u>	<u><2.00 ft/s</u>	<u><2.17 ft/s</u>
<u>I+II+III</u>	<u>3.69 ft/s</u>	<u>4.12 ft/s</u>	<u><3.68 ft/s</u>	<u><3.98 ft/s</u>

Table 4.3 – Runoff Volume					
Discharge Point	Pre-	Final Q25			
	Development				
	<u>Q25</u>				
<u>I+II+III</u>	<u>3,644,945 cf</u>	<u><3,196,279 cf</u>			

5.0 TPDES CERTIFICATION

Consistent with the Texas Pollutant Discharge Elimination System (TPDES) General Permit, TXR050000, a Notice of Intent (NOI) for stormwater discharge associated with an industrial activity will be filed with the TCEQ prior to beginning landfill operations. Additionally, in accordance with the TPDES General Permit, a stormwater pollution prevention plan (SWPPP) will be prepared and implemented at the landfill prior to submitting the NOI. The NOI and SWPPP will be maintained at the landfill in the Site Operating Record.

6.0 EROSION CONTROL PLAN

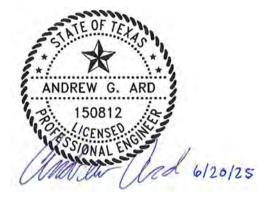
An erosion control plan is included as Appendix 2 of this Attachment. Estimates of soil loss over the development and 30 year post-closure period are also included in this appendix.

Attachment 6

Attachment 6A1

CALCULATIONS FOR PRE-DEVELOPMENT DRAINAGE CONDITIONS

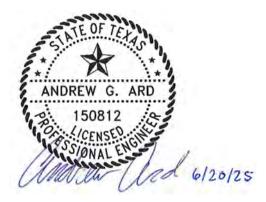
Attachment 6


Attachment 6B1

CALCULATIONS FOR

FINAL

DRAINAGE

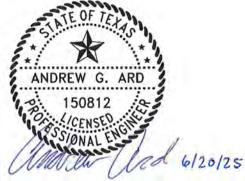

CONDITIONS

Attachment 6

Attachment 6D2

DRAINAGE STRUCTURES PERIMETER CHANNEL CALCULATIONS

Attachment 6


Appendix 4

REFERENCE MATERIAL:

HYDROLOGY AND HYDRAULIC CALCULATION REFERENCES

AND

MACCAFERRI RENO MATTRESS INFORMATION

PART III

ATTACHMENT 14

LANDFILL GAS MANAGEMENT PLAN

FOR

MAVERICK COUNTY EL INDIO MSW LANDFILL TCEQ PERMIT NO. MSW-2316

Prepared for: Maverick County 500 Quarry Street, Suite 3 Eagle Pass, Texas 78852 830/773-3824

PERMIT ISSUED: SEPTEMBER 11, 2007

PERMIT MODIFICATION (REVISIONS 1, 2, <u>3</u>, and <u>34</u>) PREPARED BY:

SCS ENGINEERS Texas Board of Professional Engineers, Reg. No. F-3407 1901 Central Drive, Suite 550 Bedford, Texas 76021 817/571-2288

Revision 1 – April 2009 Revision 2 – October 2024 Revision 3 – February 2025<u>; Revision 4 – June 2025</u> SCS Project Nos. 16208065.00 & 16223092.00

TABLE OF CONTENTS

PART III, ATTACHMENT 14 LANDFILL GAS MANAGEMENT PLAN

SECTION		PAGE
1.0	INTRODUCTION	1
2.0	GENERAL SITE INFORMATION	2
2.1	SITE LOCATION	2
2.2 2.3	SITE TOPOGRAPHY GENERAL SURROUNDING LAND USE SANDEEP D. SARAF	2 2
2.3	GEOLOGY	23
2.5	HYDROGEOLOGY	4
2.6	WASTE STREAM COMPOSITION 6-15-25	4
2.7	PROPOSED LANDFILL DESIGN SCS Engineers	4
3.0	LANDFILL GAS MONITORING PLAN TBPE Reg. # F-3407	5
3.1	PROPERTY BOUNDARY MONITORING	6
3.1.1	MONITORING PROBE PLACEMENT	6
3.1.2	MONITORING PROBE CONSTRUCTION DETAILS	7
3.1.3	MONITORING PROBE TESTING PROCEDURES	9
3.1.4	MONITORING EQUIPMENT	9
3.1.5	MONITORING PROBE INSPECTION & MAINTENANCE	10
3.2	ROUTINE BUILDING/STRUCTURE MONITORING	10
3.2.1	BUILDING/STRUCTURE MONITORING POINTS	10
3.2.2	BUILDING/STRUCTURE MONITORING EQUIPMENT	11
3.2.2.1	FIXED SYSTEMS	11
3.2.2.2	SUPPLEMENTAL SYSTEMS	11
3.2.3	BUILDING/STRUCTURE MONITORING PROCEDURES	12
3.2.3.1	FIXED SYSTEMS	12
3.2.3.2	SUPPLEMENTAL SYSTEMS	13
3.3	BARHOLE AND UTILITY TRENCH VENT MONITORING	13

TABLE OF CONTENTS (CONTINUED)

SECTION		PAGE	
3.3.1	BARHOLE SAMPLING PROCEDURES	13	
3.3.1.1	SAFETY CONSIDERATIONS	14	
3.3.2	UTILITY TRENCH VENT SAMPLING PROCEDURES	14	
4.0	RECORD KEEPING AND REPORTING	15	
4.1	GENERAL RECORD KEEPING	15	
4.2	TCEQ SUBMITTALS	17	
5.0	CONTINGENCY PLAN	17	
5.1	IMMEDIATE ACTIONS TO PROTECT HUMAN HEALTH	18	
5.2	ACTIONS WITHIN 7 DAYS TO UPDATE THE SITE	20	
	OPERATING RECORD		
5.3	ACTIONS WITHIN 60 DAYS TO IMPLEMENT A	21	
	REMEDIATION PLAN		
6.0	LANDFILL GAS CONTROL PLAN	21	
7.0	LANDFILL GAS CONTROL SYSTEM INSTALLATION AND	22	
	MONITORING		
7.1	PASSIVE GAS CONTROL SYSTEM	22	
7.1.1	MONITORING SANDEEP D. SARAF	23	
7.2	ACTIVE GAS CONTROL SYSTEM	23	
8.0	SAFETY	23	
APPENDICES TO PART III, ATTACHMENT 14 SCS Engineers			
<u>Appendix</u>		07	
III-14A	GAS MONITORING PROBE SAMPLING REPORT & SAMPLE DATA SHEETS		

ATTACHMENTS TO PART III, ATTACHMENT 14

Attachment	Title/Description
14A	GAS MONITORING PROBE PLACEMENT
14 B	TYPICAL GAS MONITORING PROBE
14C	ENTRANCE FACILITIES

2.5 HYDROGEOLOGY

Cumulative results of hydrogeologic investigations performed between 2000 and 2004 are contained within Attachment 4. Water level data is provided in Table Att4-1 within Attachment 4, and includes monitoring data from October 2003 through May 2004 for the monitoring points. See attachment 4, Section 5.3 for extensive discussion of hydrogeology at the site.

2.6 WASTE STREAM COMPOSITION

The proposed site will accept municipal solid waste as defined by 30 TAC §330.3 to include "solid waste resulting from or incidental to municipal, community, commercial, institutional, and recreational activities, including garbage, rubbish, ashes, street cleanings, dead animals, abandoned automobiles, and all other solid waste other than industrial solid waste." The facility will also accept industrial solid waste, defined as "solid waste resulting from or incidental to any process of industry or manufacturing, or mining or agricultural operation" and special wastes, as defined in 30 TAC §330.3. Class I industrial waste, hazardous wastes, and radioactive wastes will not be accepted at the site.

The principal source of waste is expected to be primarily daily residential and commercial/industrial waste collection.

2.7 PROPOSED LANDFILL DESIGN

The basic design of the proposed site consists of an aerial fill method (both above and below ground). The site consists of one continuous development with <u>16-14 proposed</u> cells. The cell designations and sequence of fill operations are shown in **Part III**, *Attachment 1E*. The proposed below-ground waste disposal will extend approximately 50 feet below natural ground to a finished base grade (top of liner) elevation ranging from 692 feet m.s.l. to 714 feet m.s.l. The liner system will consist of two (2) feet compacted clay with a 60 mil HDPE geomembrane, and a geocomposite drainage layer. The liner systems will include a leachate collection system. The system includes a sump and leachate collection trenches sloped at a minimum of 1.0%. The floor of the landfill cell will slope at 1%. The maximum excavation for the liner and sumps (leachate collection) is approximately 56 feet below existing ground, to approximately 686 feet m.s.l.

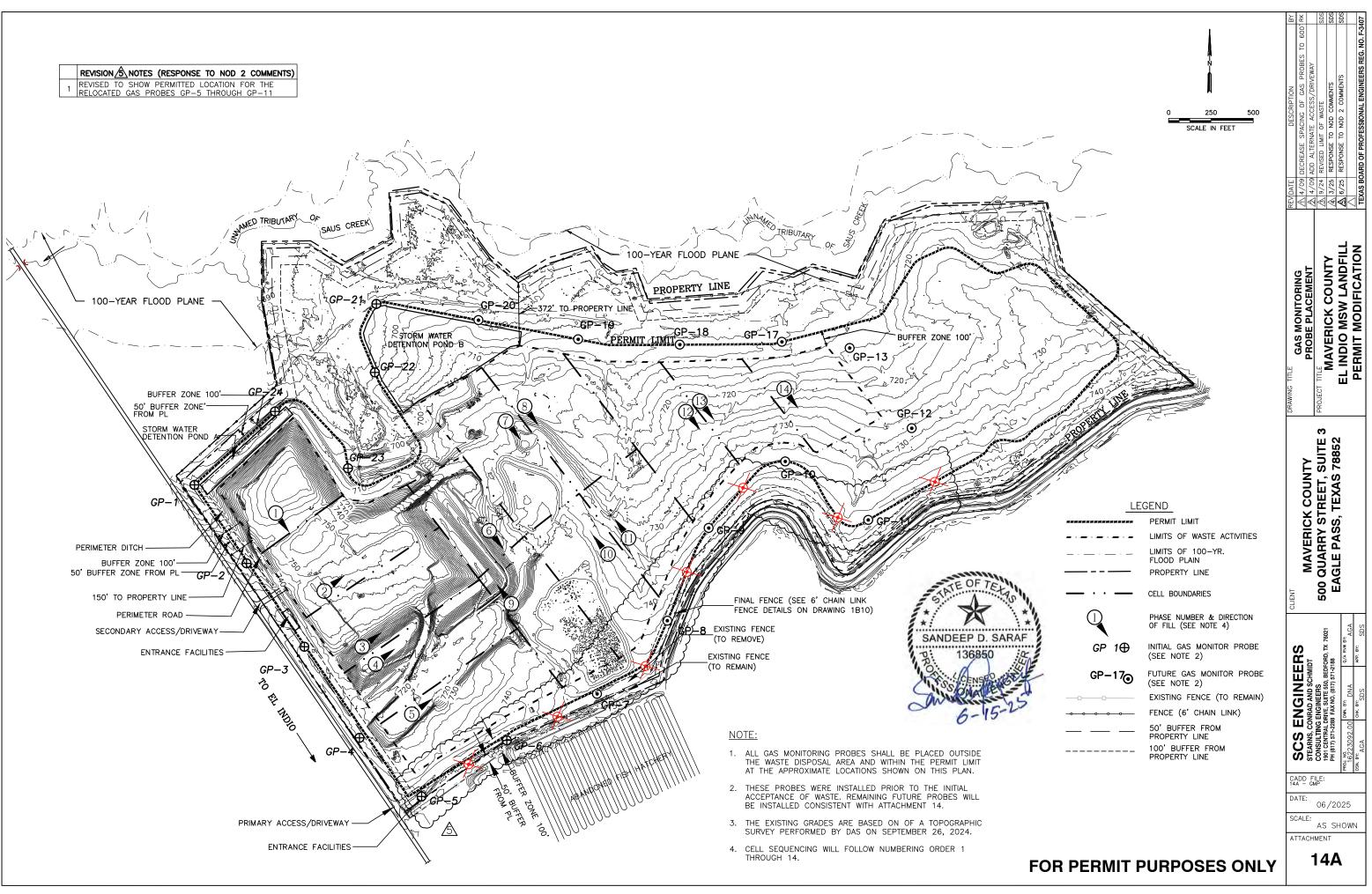
5. Monitoring probe inspection and maintenance.

3.1 PROPERTY BOUNDARY MONITORING §330.371(h)

Methane gas has the potential to migrate laterally from the facility's disposal cells. To monitor and detect gas that has migrated beyond the limits of the waste fill area, a monitoring system will be installed within the site's property boundary to provide coverage of the adjacent disposal areas. The proposed monitoring system will consist of permanent monitoring probes. The proposed monitoring probe locations were selected to provide monitoring points between the waste disposal areas and adjacent properties. The gas monitoring probe network will be installed in phases as the operation advances to provide continuous monitoring coverage between active disposal areas and the property boundary.

3.1.1 Monitoring Probe Placement

A network of permanent gas monitoring probes will be placed in key locations around the permit boundary to provide data on the presence of methane in the unsaturated subsurface zone. Probe locations and spacing are a function of site geometry. Sandy soils are more permeable to gas than clayey, fine-grained soils. Perched water leaching from the irrigation canal was detected in the area and as such was a factor in determining appropriate probe depths at this site. The depth was also a function of adjacent waste disposal depth. The maximum spacing for the probes at this landfill will be 600 feet around the perimeter of the disposal units. The locations of the probes for the proposed site are shown on *Attachment 14A*. Twenty-one probes (GP-1 through GP-24) are proposed around the fill area, with the exception of GP-14, GP-15, and GP-16. The probes will be constructed prior to placing waste in the adjacent landfill cells. Continuous monitors will be installed on any on-site facility structure prior to the initial placement of refuse or occupancy of the structure.


Permanent gas migration probes numbers GP-1 through GP-3 and GP-21 through GP-24 as shown on *Attachment 14A* will be installed prior to placement of solid waste in Cell 1. The remaining probes will be installed when construction is initiated on a new cell within 1,000 feet of the individual probe locations as shown on *Attachment 14A*. Table 2 below presents the timeline for installation of each gas probe based on construction initiation of the cells.

ATTACHMENTS TO PART III ATTACHMENT 14

<u>Attachment</u>	<u>Title/Description</u>
14A	GAS MONITORING PROBE PLACEMENT
14B	TYPICAL GAS MONITORING PROBE
14C	ENTRANCE FACILITIES

SCS Engineers TBPE Reg. # F-3407

MAVERICK COUNTY EL INDIO MSW LANDFILL TCEQ PERMIT NO. MSW-2316

PART IV SITE OPERATING PLAN

Prepared for:

Maverick County Solid Waste Authority 16179 FM 1021 El-Indio, Texas 78860

And

Maverick County 500 Quarry Street, Suite 3 Eagle Pass, Texas 78852 830/773-3824

PERMIT ISSUED: SEPTEMBER 11, 2007

PERMIT MODIFICATION (REVISION 0 - 67) PREPARED BY:

SCS ENGINEERS Texas Board of Professional Engineers Registration No. F-3407 1901 CENTRAL DR., SUITE 550 BEDFORD, TEXAS 76021 817/571-2288

Revision 0 – April 2009 Revision 1 – June 2009 Revision 2 – August 2009 Revision 3 – March 2011 Revision 4 – November 2012 Revision 5 – July 2014, October 2014, December 2014 Revision 6 – June 2025

SCS Project No. 16208046.00, 16209033.00, 16211130.00, 16214011.00, 16223092.00

TABLE OF CONTENTS

<u>SEC'</u>	<u>FION</u>		PAGE
LIST	OF AC	RONYMS	IV-iii
1	INTR	ODUCTION	IV-1-1
2	PERS	SONNEL AND TRAINING	IV-2-1
	2.1	PERSONNEL	IV-2-1
	2.2	TRAINING	IV-2-3
3	EQUI	IPMENT [§330.127(2)]	IV-3-1
4	OPEF	RATIONAL PROCEDURES	IV-4-1
	4.1	ACCESS CONTROL (§330.131)	
	4.2	UNLOADING WASTE (§330.133)	
	4.3	HOURS OF OPERATION (§330.135)	
	4.4	SITE SIGNS (§330.137)	IV-4-5
	4.5	CONTROL OF WINDBLOWN WASTES AND LITTER (§330.139)	IV-4- <mark>65</mark>
	4.6	EASEMENTS AND BUFFER ZONES (§330.141)	
	4.7	LANDFILL MARKERS AND BENCHMARK (§330.143)	
	4.8	CONTROL OF WASTE SPILLED EN ROUTE TO THE SITE (§330	
	4.9	DIPOSAL OF LARGE ITEMS (§330.147)	
	4.10	AIR QUALITY AND ODOR MANAGEMENT PLAN (§330.149)	
	4.11	DISEASE VECTOR CONTROL (§330.151)	
	4.12	MAINTENANCE OF SITE ACCESS ROADS (§330.153)	
	4.13	SALVAGING AND SCAVENGING (§330.155)	
	4.14	ENDANGERED SPECIES PROTECTION (§330.159)	IV-4-11
	4.15	LANDFILL GAS MANAGEMENT (§330.157)	
	4.16	TREATMENT OF ABANDONED OIL AND WATER	
		WELLS (§330.161)	IV-4-1211
	4.17	COMPACTION OF SOLID WASTE (§330.163)	
	4.18	SOIL MANAGEMENT, PLACEMENT, AND COMPACTION OF	
		DAILY, INTERMIDATE, AND FINAL COVER (§330.165)	IV-4-13 12
	4.19	PREVENTION OF PONDED WATER (§330.167)	
	4.20	DISPOSAL OF SPECIAL WASTES (§330.171)	
	4.21	DISPOSAL OF INDUSTRIAL WASTE (§330.173)	
	4.22	VISUAL SCREENING OF DEPOSITED WASTE (§330.175)	
	4.23	LEACHATE AND CONTAMINATED WATER MANAGEMENT	

TABLE OF CONTENTS (CONTINUED)

5 DETE		ECTION AND PREVENTION OF DISPOSAL C	F UNAUTHORIZED
	WAS	IV-5-1	
			STATION OF TANK
	5.1	GENERAL	574TE 1V-5-1
	5.2	PERSONNEL TRAINING	
	5.3	PUBLIC AWARENESS	*: IV-5-2
	5.4	GENERAL PERSONNEL TRAINING PUBLIC AWARENESS LOAD INPSECTION PROCEDURE MANAGING UNAUTHORIZED WASTE	SANDEEP D. SARAF
	5.5	MANAGING UNAUTHORIZED WASTE	D. 136850 IV-5-4
	5.6	RECORDKEEPING	
			CANS ONAL PROVIDENCE
6	FIRE	PROTECTION PLAN (§330.129)	IV-6-1
			0
	6.1	FIRE PREVENTION PROCEDURES	IV-6-1
	6.2	GENERAL RULES FOR FIRES	IV-6-2
	6.3	SPECIFIC FIRE-FIGHTING PROCEDURES .	IV-6-3
7	STOF	RMWATER SYSTEM INSPECTION AND MAI	NTENANCEIV-7-1
8	RECO	ORDKEEPING REQUIREMENTS (§330.125)	IV-8-1
	8.1	SITE OPERATING RECORD [(§330.125(B)].	IV-8-1
	8.2	ANNUAL WASTE ACCEPTANCE RATE [(§	
	8.3	SLER/GLER SUBMITTALS (§330.123)	

List of Tables

- 2.1 Minimum Number of Personnel
- 2.2 Personnel Training Requirements
- 3.1 Equipment List
- 4.1 Contaminated Soil Constituents of Concern
- 4.2 Site Inspection and Maintenance Schedule

Appendices

- IV-A Landfill Site Sign
- IV-B Erosion and Sedimentation Inspection and Maintenance Form
- IV-C Alternative Daily Cover Operating Plan

LIST OF ACRONYMS

ADC - Alternative Daily Cover ADCOP - Alternative Daily Cover Operating Plan CFR - Code of Federal Regulations CCS - Citizens' Convenience Station DOT - Department of Transportation EPA - U.S. Environmental Protection Agency FWS - U.S. Fish and Wildlife Service GLER – geomembrane liner evaluation report LCS - leachate collection system LFG - landfill gas MSW - Municipal Solid Waste MSDS - Material Safety Data Sheets msl - mean sea level NRACM - nonregulated asbestos-containing material OSHA - Occupational Health and Safety Administration PCBs - polychlorinated biphenyls RACM - regulated asbestos-containing material RCRA - Resource Conservation and Recovery Act SDP - site development plan SLER - soils and liner evaluation report SOP - site operating plan TAC - Texas Administrative Code TCEQ - Texas Commission on Environmental Quality TNRCC – Texas Natural Resource Conservation Commission (predecessor to TCEQ) **TPDES** – Texas Pollutant Discharge Elimination System TxDOT - Texas Department of Transportation

WWTP - wastewater treatment plant

SECTION 4

OPERATIONAL PROCEDURES

4.1 ACCESS CONTROL (§330.131)

Access to this site from El Indio and Eagle Pass will be via Farm to Market (F.M.) 1021, which is a two-lane asphalt roadway. The primary entrance road to the landfill will be 30 feet wide with a lockable security gate. The site has two entrances into the facility (primary and secondary), as shown on Attachments 1B and 1B1. Approved waste haulers and/or the general public will be limited to accessing the site through the primary entrance during normal operations.

The site proposes to use its previously approved secondary entrance/exit gate for ingress and egress to F.M. 1021. The primary entrance will be comprised of a driveway and lockable gate (see Section 4.1.1) that provides access to the future all-weather perimeter access road, as shown on Attachments 1B10-1415. The relocation of the primary entrance location is consistent with 30 TAC §305.70(j)(32), which allows changes to the entry gate location that do not alter access traffic patterns. Although the waste acceptance rate is anticipated to increase from 350 tons/day to up to 400 tons/day, a traffic analysis performed by Hejl, Lee & Associates, Inc. with the original permit application submitted to TCEQ in 2007, considered an increase in waste acceptance rate up to 1,500 tons/day. SCS coordinated with Texas Department of Transportation (TxDOT) for the primary entrance regarding the adequacy and design capacity of the roadways/entrances to safely accommodate the additional volumes and weights of the traffic generated or expected to be generated by the facility operations. This traffic analysis was approved by TxDOT in the correspondence provided to TCEQ with the permit application. Additionally, the current volume of citizen traffic that accesses the facility will remain the same and they will be redirected to the CCS instead of the landfill working face. Maverick County Solid Waste Authority has applied for a permit from Texas Department of Transportation (TxDOT) authorizing construction of a new driveway at the proposed primary entrance, which will be maintained in the Site Operating Record. Upon construction of the new primary entrance, Maverick County will use the currently approved primary entrance as their secondary entrance into the facility. Typically, the use of the secondary entrance gate will be limited to landfill personnel and other Maverick County designated personnel. However, when the primary entrance gate is inaccessible due to weather or traffic, the secondary entrance gate may be used by approved waste haulers and/or the general public. During these events, the secondary entrance gate will be monitored and controlled using the same normal operating procedures as the primary entrance. The gate attendant controls access and monitors all vehicles entering and exiting the site.

4.1.1 <u>Site Security</u>

Site security measures are designed to prevent unauthorized persons from entering the site, to protect the facility and its equipment from possible damage caused by trespassers, and to prevent disruption of facility operations caused by unauthorized site entry.

Unauthorized entry into the site will be prevented by controlling access to the landfill with the perimeter fence and gate at each entrance. A 6-foot chain link fence topped with three-strand barbed wire (i.e., 8-foot total fence height) will be maintained on the west side of the landfill property fronting F.M. 1021. The north, east, and south perimeter fence will be comprised of a predator-proof chain link or metal fence designed to prevent the entry of livestock, and discourage unauthorized entry to the landfill.

The perimeter fence and gates will be inspected monthly. Repairs and maintenance will be performed consistent with §330.131. If the perimeter fence or gates have been damaged (i.e., breached), the TCEQ region office and any local pollution agency with jurisdiction that has requested to be notified, will be notified within 24 hours of detection. The breach will be temporarily repaired within a 24-hour period (weather permitting), and will be permanently repaired within the timeframe approved by the TCEQ region office. Once permanent repairs have been completed, the TCEQ region office will be notified. If the breach can be permanently repaired within 8 hours of detection, then a notice to the TCEQ region office is not required. Documentation of perimeter fence and gate inspections and breaches will be maintained in the Site Operating Record. Refer to Table 4.2 of this SOP for the site inspection and maintenance schedule. "No Trespassing" signs will be posted at the property boundary.

The primary site entrance will be secured by a gate that is monitored by the gate attendant during site operating hours. Additionally, the secondary entrance will be secured by a gate that is monitored by landfill personnel (e.g. scalehouse/gate attendant or landfill manager) during site operating hours. Outside operating hours, the gates to the site will be locked. Entry to the active portion of the landfill will be restricted to designated personnel, approved waste haulers, and properly identified persons whose entry is authorized by landfill management. Visitors may be allowed on the active area only when accompanied by a site representative.

4.1.2 <u>Traffic Control</u>

Access to the landfill site will be provided via primary entrance gate located off of F.M. 1021, as described above. The primary entrance will have a gate that is attended during operating hours by the gate attendant. The gate attendant will restrict site access to authorized vehicles and direct commercial vehicles to the active working face of the landfill, and residential vehicles to the CCS or the landfill working face, as applicable, for the waste load size and type.

The landfill haul roads will be maintained in an all-weather condition and will be freely draining, and kept free of excessive ruts and potholes, as described in Section 4.12. Landfill haul roads will be passable by solid waste transportation vehicles in two directions to facilitate movement of traffic into and out of the site.

Within the site, signs will be placed along the landfill haul road and access road at a frequency adequate for direct waste haulers to appropriate waste disposal location (landfill working face or CCS). Private and commercial solid waste vehicles will not be allowed access to the CCS or any areas other than the working face of the landfill. Roads not being used for access to disposal areas will be blocked or otherwise marked for no entry. Landfill personnel will provide traffic directions, as necessary, to facilitate safe movement of vehicles.

The approach to the working face will be maintained such that two or more vehicles may safely unload side-by-side. A vehicle turn-around area large enough to enable vehicles to arrive and turn around safely will be provided adjacent to the landfill working face. The vehicles will back to a vacant area near the working face to unload. Similarly, roads to the CCS will be wide enough to enable two-way traffic and side-by-side unloading positions. Upon completion of the unloading operation, the transportation vehicles will leave the landfill working face area or CCS and depart the site. Loitering will not be permitted at the landfill working face or at the CCS.

4.2 UNLOADING WASTE (§330.133)

This landfill is authorized to receive municipal solid waste and those special solid wastes allowable under 30 TAC §330.171. The unloading of prohibited waste at the landfill working face and CCS will not be allowed. The categories of wastes that are prohibited at this site by state and federal regulations are discussed in Section 5 of this SOP. Prohibited waste are those waste prohibited from disposal at a landfill in accordance with 30 TAC §330.15(e). In addition to prohibited waste, the County has specified other waste that will not be disposed at the landfill. As such, unauthorized waste includes prohibited waste, as well as the site-specific waste not allowed at the landfill, as described in Section 5 of this SOP. Special wastes will not be handled at this landfill, except in accordance with TCEQ regulations and Section 4.20 of this SOP. Additionally, the County may establish an area on-site designated to receive brush.

The landfill will have a CCS to reduce traffic at the working face of the landfill. This CCS will be used for the acceptance and storage of waste, which will be disposed at the working face, and acceptance and storage of recyclables for transport to an authorized recycling or disposal facility. The CCS will only accept the waste streams authorized for disposal at the landfill described in Section 4.2.2. The unloading of waste in unauthorized areas are prohibited under 30 TAC §330.133(b).

As discussed in Section 2, trained personnel will monitor all incoming loads of waste. Trained personnel will be at the working face and CCS during operating hours to direct and observe each load that is brought in for disposal at each location. These personnel will be familiar with the rules and regulations governing the various types of waste that are excluded from this facility, including knowledge of 30 TAC §330.171. The personnel will also have a basic understanding of both Class 1 industrial and hazardous wastes, which are prohibited at this facility. The landfill personnel involved with unloading or inspection of waste will have authority and responsibility to (1) reject unauthorized loads, (2) have unauthorized material removed by the transporter, removed by onsite personnel, or otherwise properly managed by the facility, and (3) assess appropriate surcharges.

4.2.1 Waste Unloading at Landfill Working Face

Control will also be used to confine the working face to a minimum area consistent with the rate of incoming waste, while allowing for safe and efficient operation of the landfill. The maximum size of the working face will be 14,400 square feet (i.e., 120-ft by 120-ft). Only one working face will be active at any given time for disposal of waste in the landfill. However, as previously mentioned, a separate unloading area may be established for brush.

The unloading of waste in unauthorized areas will be prohibited. Solid waste dumping will be controlled to prevent disposal in locations other than those specified by landfill management. Any waste deposited in an unauthorized area will be removed immediately and disposed of properly.

Landfill personnel will report questionable waste materials or other issues of concern immediately to the Landfill Manager. A record of unauthorized material or waste removal will be maintained in the Site Operating Record, including the type of waste, generator/transporter, and date of receipt. Any unauthorized waste discovered at the landfill will be returned immediately to the transporter or generator of the waste or otherwise property managed by the landfill. Unauthorized waste that is not discovered by landfill employees until after it is unloaded will be returned to the vehicle that delivered the waste. (See Section 5.5 of this SOP, Managing Unauthorized Wastes, for further guidance.)

Signs with directional arrows and portable traffic barricades will restrict traffic to designated disposal locations. Waste hauling vehicles will be directed to the active disposal area. Signs will be placed along the access route to the designated disposal areas. In addition, rules for waste disposal and unauthorized waste will be prominently displayed on signs near the site's primary entrance.

4.2.2 <u>Waste Unloading at CCS</u>

The Gate Attendant will direct citizens with small or light vehicles to unload waste at the CCS into clearly identified storage containers (i.e., roll-offs). The CCS will provide 4, 20 or 40-cubic yard (CY) containers, one for each type of waste listed below. The CCS will only accept the waste streams authorized for disposal at the landfill. Roll-offs containing food waste will typically be removed from the CCS by the end of each day of operation, but will not be stored (i.e., maintained within containers) at the CCS longer than 48 hours following receipt of said waste. Roll-offs with other waste will be removed weekly or sooner when containers reach capacity. Solid waste containing food waste shall be stored in covered or containers that are leak-proof, durable, and designed for safe handling and easy cleaning.

The CCS location and layout plan are identified in Part III Attachment 1 (Site Layout Plan), Attachments 1B and 1B10-<u>1315</u>, respectively. The CCS will be comprised of an elevated deck area with an all-weather surface for two-lane traffic, with collection containers situated behind a retaining wall for drop-off of the following waste:

- Brush, Wood Waste, and Yard Waste,
- <u>Construction and Demolition Debris (C&D)</u>,
- Municipal Solid Waste (MSW), and
- <u>Scrap Metals.</u>

Each container or unloading area for waste will be clearly identified. Containers used at the CCS will be inspected and maintained in accordance with Table 4.2. A Waste Screener will direct

citizens to appropriate locations for unloading materials at the CCS and observe that the respective materials are unloaded in the correct bin or container. Waste Screeners will be trained to recognize unauthorized waste, the procedures if unauthorized waste is detected, and fire protection procedures. Fire protection procedures for the CCS are described in Section 6.

The design of the CCS will comply with the requirements of §330.303 (related to Surface Water Drainage), and the applicable requirements of §330.207 (related to Contaminated Water Management).

4.3 HOURS OF OPERATION (§330.135)

The waste acceptance hours (i.e., site operating hours), when materials will be transported on or offsite, may be any time between the hours of 7 a.m. and 7 p.m., Monday through Sunday. Operation of heavy equipment for compaction of solid waste, application of daily and intermediate cover, regrading, or construction activities may occur at the landfill any time between the hours of 5 a.m. and 9 p.m., Monday through Sunday. These additional hours for heavy equipment operation, before and after waste acceptance hours, are necessary to perform any necessary earthwork at the landfill that may otherwise interfere with waste disposal operation. Transportation of material or heavy equipment operation will not be conducted between 9 p.m. and 5 a.m.

Consistent with TCEQ rules, the County Judge may request alternate operating hours for special occasions, special purpose events, holidays or other special occurrences. The TCEQ may approve alternate operating hours up to five days in a calendar year period. Additionally, the TCEQ region office may allow additional temporary waste acceptance or operating hours to address disasters, other emergency situations, or other unforeseen circumstances that could result in the disruption of waste management services in the area. If the Landfill Manager determines the landfill needs to operate outside the approved operating hours, the Landfill Manager will seek approval from the TCEQ region office for the alternate operating hours prior to such occurrence. The Landfill Manager will record the dates and times of alternate or additional operating hours in the Site Operating Record.

The Landfill Manager, in consultation with the County Judge, may establish operating hours that are less than those noted above. These hours will be indicated on the sign at the primary entrance to the landfill.

4.4 SITE SIGNS (§330.137)

A site sign will be displayed at the primary entrance to the site. The site sign will be readable from the site entrance. This sign will measure at least 4 feet by 4 feet, and have lettering of at least 3 inches in height that state the name of the site, type of site, hours and days of operation, an emergency 24-hour contact phone number(s) that reaches an individual with the authority to obligate the facility at all times that the facility is closed, the local emergency fire department phone number, and the TCEQ permit number. Appendix IV-A includes a detail of the site sign. Also, signs prohibiting receipt of hazardous waste and other types of unauthorized waste, closed drums, and smoking will be posted at the primary entrance gate. In addition, a sign will be

displayed at the primary entrance gate stating that all loads must be properly covered or secured. A sign will also be displayed at the secondary entrance to direct any waste haulers and/or the general public to the scalehouse at the primary entrance.

Within the site, signs will be placed along the landfill haul road and access road at a frequency adequate for waste transportation vehicles to be able to understand where the current waste disposal area is located and which roads are to be used. Roads not being used for access to the disposal area will be blocked or otherwise marked for no entry.

4.5 CONTROL OF WINDBLOWN WASTES AND LITTER (§330.139)

Windblown wastes will be controlled by the following methods:

- Waste transportation vehicles using this facility will be required to use adequate covers or other means of containment. The adequacy of covers or containment of incoming wastes will be checked at both of the landfill entrances. A sign will be prominently displayed at the landfill primary entrance stating that all loads will be properly covered and that a surcharge will be placed on all vehicles without adequate cover.
- Daily cover will be applied at the end of each day of operation to assist with the control of windblown waste.
- The facility will provide litter control fences, as necessary, at appropriate locations near the working face and elsewhere. The litter control fence will be of sufficient height and will be located as close as practical to the active area to control windblown waste and litter.
- As part of the overall site maintenance program, facility personnel will collect daily the windblown waste materials that may have accumulated throughout the entire site, including but not limited to, fences and gates, landfill haul roads and drainage channels throughout the site on days when the facility is in operation.
- Facility personnel will inspect public access roads within two miles in either direction from the landfill primary and secondary entrances for waste spilled en route to the landfill on a daily basis, as described in Section 4.8 of this SOP.

All collected litter will be taken daily to the working face of the landfill for disposal.

4.6 EASEMENTS AND BUFFER ZONES (§330.141)

4.6.1 <u>Easements</u>

In accordance with 30 TAC §330.141, solid waste unloading, storage, disposal, or facility operations will not occur within any easement or right-of-way that crosses the site. There are three known easements that traverse the site. All easements are listed in Part I/II General Information, Section 3.1.5. No solid waste unloading, storage, disposal, or processing operations

shall occur within 25 feet of the center line of any utility line or pipeline easement, unless otherwise authorized by the TCEQ. All pipeline and utility easements will be clearly marked with posts that extend at least six feet above ground level, spaced at intervals no greater than 300 feet. All easement and right-of-way markers will be installed consistent with the requirements in Section 4.7 of this SOP.

4.6.2 <u>Buffer Zones</u>

The buffer zone for the landfill is located within and adjacent to the facility boundary on property that is owned or controlled by the County. No solid waste unloading, storage, disposal, or processing operations will occur within the buffer zone. However, perimeter drainage channels, detention ponds, and haul roads may be installed within the buffer zone. Buffer zones may vary around the perimeter of the landfill, but in no case are they less than $\frac{50-125}{125}$ feet in width for unloading, storage, and processing consistent with 330.543(b)(1) for such operations as the CCS and $\frac{125}{125}$ feet in width for landfill disposal operations consistent with 330.543(b)(2). Landfill haul roads will be constructed within the buffer zones to allow the safe passage of firefighting and other emergency equipment. The location and construction of the perimeter drainage channels and detention ponds will not interfere with the haul road to allow for safe passage of fire fighting and emergency vehicles. Buffer zones will be clearly marked as specified in Section 4.7 of this SOP.

4.7 LANDFILL MARKERS AND BENCHMARK (§330.143)

Landfill markers will be installed to clearly mark significant features as described in 30 TAC §330.143(b). The markers will be steel or wooden posts and will extend at least 6 feet above the ground surface. The markers will not be obscured by vegetation and will be placed in sufficient numbers to clearly show the required boundaries. The County will maintain visibility of all required landfill markers and the benchmark. Landfill markers will be inspected monthly and will be maintained and repaired as necessary. Markers will be replaced within 15 days of removal, destruction, or a determination that the markers do not meet regulatory requirements. Refer to Table 4.2 of this SOP for site inspection and maintenance schedule. Markers will be repainted as needed to retain visibility. Guidelines for type, placement, and color coding of markers are outlined below.

- Site Boundary Site boundary markers will be painted black. The markers will be placed at each corner of the site and along each boundary line at intervals no greater than 300 feet. Fencing may be placed between these markers as required. In areas where the fence is located on the permit boundary, the fence posts may be painted black and used as site boundary markers.
- Buffer Zone Buffer zone markers will be painted yellow. The markers identifying the buffer zone will be placed along each buffer zone boundary at all corners and between corners at intervals of no greater than 300 feet. Placement of the landfill grid markers may be made along a buffer zone boundary. The buffer zones will be a minimum of 125 feet wide, as described in Section 4.6.2.

- Easements and Rights-of-Way Easement and right-of-way markers will be painted green. The markers will be placed along the centerline of an easement and along the boundary of a right-of-way, at each corner within the site, and at the intersection of the permit boundary. Where it is impractical to place a marker, the marker will be offset from the easement right-of-way and the offset distance will be clearly painted on the marker.
- Landfill Grid System Grid markers will be painted white. The grid system will consist of lettered markers along two opposite sides of the site, and numbered markers along the other two sides. Markers will be spaced no greater than 100 feet apart measured along perpendicular lines. Where feasible, intermediate markers will be installed where markers cannot be seen from opposite boundaries. At a minimum, grid markers will delineate the area expected to receive waste within the next 3 years. The grid markers will be maintained during the active life of the site and throughout the post-closure period.
- SLER/GLER Area SLER/GLER markers will be painted red. The markers will be placed so that all areas for which a SLER/GLER has been submitted and approved by the TCEQ are readily determinable. Such markers are to provide site workers immediate knowledge of the extent of approved disposal areas. These markers will be located and protected so that they are not destroyed during operations until operations extend into the next SLER/GLER area. The location of these markers will be tied into the landfill grid system and will be reported on each SLER/GLER submitted. SLER/GLER markers will not be placed inside the evaluated areas.
- 100-Year Floodplain 100-Year floodplain protection markers will be painted blue. The markers will be installed for any area within the permit boundary that is within the 100-year floodplain. The area subject to flooding will be clearly marked by means of permanent post not more than 300 feet apart or closer if necessary to retain visual continuity.

The permanent benchmark is located approximately 25 feet west of a wooden post in the southwest corner of the landfill property and 25 feet north of the south fence line. The benchmark is a bronze survey marker, stamped with the elevation and survey date and set in concrete. This benchmark elevation was surveyed from a known United States Coast and Geodetic Survey benchmark or other reliable source.

4.8 CONTROL OF WASTE SPILLED EN ROUTE TO THE SITE (§330.145)

The Landfill Manager will take steps to assure that vehicles hauling waste to the site are enclosed or provided with a tarpaulin, net, or other means to properly secure the load. The steps taken by the County will include, as necessary, the posting of signs requiring the loads to be covered, refusing acceptance of uncovered loads, reporting offenders to the police, adding disposal surcharges, or other necessary means. On a daily basis when the landfill is in operation, landfill personnel will inspect F.M. 1021 for spilled waste for a distance of two miles in either direction from the landfill's primary entrance. In addition, on days when the secondary entrance is used by waste haulers, landfill personnel will inspect F.M. 1021 for spilled waste for a distance of two miles north of the primary entrance, two miles south of the secondary entrance, and the distance between both entrances. If spilled waste is found on these segments of F.M. 1021, such waste will be cleaned up by landfill personnel and delivered to the landfill, assuming such waste is suitable for disposal at the landfill. The Landfill Manager will consult with TxDOT officials and Maverick County concerning cleanup of F.M. 1021, consistent with 30 TAC §330.145. Cleanup of F.M. 1021 will include cleanup of the right-of-way as well.

4.9 DISPOSAL OF LARGE ITEMS (§330.147)

A large item/white goods storage area will be provided, as necessary, based on the quantity of these large item/white goods received for disposal. These items will be recycled as demand warrants but will not be stored in excess of 180 days. Large items that are not recycled will be disposed of at the working face. Care will be taken during disposal of large items such that: (1) large items are not placed directly on the liner protective cover, (2) large items are placed such that they do not interfere with continued waste filling, and (3) that other, smaller municipal solid waste is placed and compacted around them.

The County will maintain a program for the proper management of chlorinated fluorocarbon (CFC) refrigerant from refrigerators, freezers, air conditioning units, or other items in accordance with 40 CFR 82.156(f). CFCs will be evacuated from refrigerators, freezers, or air conditions by a third party vendor, or landfill personnel certified to perform this activity, prior to landfilling or recycling the units at an offsite facility. Items such as electrical equipment, which contains PCBs, will be excluded from waste fill. Procedures for detecting and excluding PCBs are provided in Section 5.

4.10 AIR QUALITY AND ODOR MANAGEMENT PLAN (§330.149)

4.10.1 Air Quality

Municipal solid waste landfills are subject to TCEQ regulations concerning burning and air pollution control. Measures to control air pollution may include, but are not limited to, the following items:

- Open burning of waste will not be permitted at this facility.
- The Landfill Manager will develop operations that are consistent with the State Implementation Plan (SIP) developed under the Federal Clean Air Act §110, as amended, and §330.15(d).
- Control of dust emissions (i.e. particulate matter control) from haul roads.
- Implementation of an Odor Management Plan.

• Investigate visible air emissions and implement controls as necessary.

4.10.2 Odor Management Plan

An Odor Management Plan will be implemented at the landfill and will include, but is not limited to, the following procedures:

- Incoming waste will be promptly landfilled.
- Identification of waste that require special attention and immediately cover and compact with daily cover or other waste.
- Identification of loads with significant odors by the Gate Attendant, and notification to the working face personnel.
- Freshly landfilled waste will be promptly covered with daily cover at the end of each operation day.
- Keeping the size of the working face to a minimum so waste can be covered quickly.
- Ponded water at the site will be controlled as detailed in Section 4.19 of this SOP.
- Damage or erosion of daily, intermediate, or final cover will be repaired within 5 days of detection (weather permitting) consistent with Section 4.18.5.
- Regular inspection of vapor-tight gaskets on leachate riser end caps. Damaged or deficient gaskets will be repaired following the inspection.
- Control of potential odors from leachate recirculation operations, as described in Section 4.23.
- Leachate will be disposed and handled as described in Attachment 15 Leachate and Contaminated Water Plan.
- Control of landfill gas emissions as detailed in the Landfill Gas Management Plan.
- Clean-up spills of odorous materials immediately.
- Accidental fires will be controlled as outlined in Section 6 of this SOP.

4.11 DISEASE VECTOR CONTROL (§330.151)

The need for vector control (control of rodents, flies, mosquitoes, etc.) will be minimized through proper daily site operations, which include the application of daily and intermediate cover. The extent of the working face will also be minimized, as described in Section 4.2.

Landfill personnel will make weekly checks for insects and rodents and will report problems to the Landfill Manager. If necessary, a licensed professional will apply pesticides or rodenticides to enhance vector control. Care will be taken to ensure that proper chemicals are used and that they are properly applied.

4.12 MAINTENANCE OF SITE ACCESS ROADS (§330.153)

The landfill haul roads (i.e., perimeter haul roads and other constructed interior haul roads) will be constructed of crushed stone, gravel, caliche, or asphalt paving. All-weather landfill haul roads will be maintained for access to the working face during wet-weather operation. In addition to the all-weather roads, some portions of the onsite roads will be maintained for use during dry weather only. The tracking of mud and trash onto public access roadways to the landfill will be minimized by removing mud and associated debris from the site's primary and secondary entrances at least once per day during periods of wet weather and on days when mud or debris is accumulated on the site entrances or public roadway.

Dust will be controlled on the landfill haul roads by periodic spraying from a water truck or other means during periods of significantly dry weather. Dust from on-site roads will not become a nuisance to surrounding areas. A water source and necessary equipment or other means of dust control approved by the TCEQ will be provided.

Grading equipment will be used, as necessary, to control or remove mud accumulations on landfill haul roads. All haul roads will be inspected for damage due to traffic or erosion following significant rainfall events but, in any instance, the minimum inspection frequency of the site roads will be monthly. Crushed stone, concrete rubble, masonry demolition debris, crushed glass, recycled asphalt materials, or caliche will be delivered to the site on an as-needed basis for use in maintaining passable haul roads during wet weather. All onsite haul roads will be maintained in a clean and safe condition. Site roads will be regraded on an as needed basis, as a result of monthly inspections, to minimize depressions, ruts and potholes. Refer to Table 4.2 of this SOP for the site inspection and maintenance schedule.

4.13 SALVAGING AND SCAVENGING (§330.155)

Salvaging will not be allowed to interfere with disposal of solid waste or to create public health nuisances. Salvaged materials will be considered as potential recycled materials. Salvaged items will be removed from the landfill property often enough and will not be stored in excess of 180 days to prevent the items from becoming a nuisance, to preclude the discharge of pollutants from the area, and to prevent an excessive accumulation of the material at the landfill. Special wastes received at the landfill will not be salvaged. Additionally, pesticide, fungicide, rodenticide, and herbicide containers will not be salvaged. Scavenging will be prohibited at all times.

4.14 ENDANGERED SPECIES PROTECTION (§330.157)

Landfill operations will not result in the destruction or adverse modification of the critical habitat of endangered or threatened species, or cause or contribute to the taking of any endangered or

threatened species. No endangered or threatened species are known to exist in the immediate vicinity of the landfill. Verification by the United States Department of the Interior Fish and Wildlife Service that no endangered species will be affected by landfill operations is provided in Part I/II, Appendix I-C3.

4.15 LANDFILL GAS MANAGEMENT (§330.159)

The monitoring of LFG at the landfill will be in accordance with Attachment 14 - Landfill Gas Management Plan. The reports and other submittals required by Attachment 14 will be included in the Site Operating Record, as described in Section 8.1 and submitted to the TCEQ consistent with TCEQ requirements.

4.16 TREATMENT OF ABANDONED OIL AND WATER WELLS (§330.161)

There are no known abandoned water wells or abandoned crude oil or natural gas wells on the landfill property. However, if such abandoned wells are encountered during the course of site development, the County will immediately provide written notification to the TCEQ of the location of these wells.

Within 30 days of finding any abandoned water wells, the County will provide written certification to the TCEQ that all such wells have been capped, plugged, and closed in accordance with all applicable rules and regulations of the TCEQ or other applicable state agency.

For abandoned crude oil or natural gas wells, or other wells associated with mineral recovery, within 30 days of finding any such wells, the County will provide the TCEQ with written notification of the location of such wells. Within 30 days of plugging such wells, the County will provide the TCEQ with written certification that all such wells have been properly capped, plugged, and closed in accordance with all applicable rules and regulations of the Railroad Commission of Texas.

A copy of the well-plugging report to be submitted to the appropriate state agency will also be submitted to the TCEQ within 30 days after the well has been plugged. The County will also submit a permit modification (if applicable) identifying any proposed changes to the liner installation plan as a result of any well abandonment.

4.17 COMPACTION OF SOLID WASTE (§330.163)

Compaction of incoming waste provides more efficient use of available space and reduces the amount of settling after the fill is complete. The incoming waste will be spread in layers and compacted. Compaction of the waste will be accomplished by repeated passes of the landfill compaction equipment capable of providing a minimum 1,000 lbs/cy compaction. Adequate compaction will be accomplished to minimize future consolidation and settlement and provide for the proper application of intermediate and final cover.

Waste placement in landfill phases (i.e., cells) with floor slopes greater than 2% and smooth geomembrane on the floor will be conducted by the following: (1) spreading and compacting

lifts across the entire cell floor; and (2) starting from the low end (i.e. leachate sump) and progressing to the high end.

4.18 SOIL MANAGEMENT, PLACEMENT, AND COMPACTION OF DAILY, INTERMEDIATE, AND FINAL COVER (§330.165)

4.18.1 Soil Management

Management of soil for use in and around the landfill will be an ongoing activity at the facility. In general, soil for use as daily cover, intermediate cover, final cover, and other uses will be available adjacent to the active area. The volume of the soil stockpile used for application of daily cover will depend on the size of the working face, but will be adequate to cover the working face with at least 6-inches, as described in Section 4.18.2. Soil used for fire control will be available within 1,100 feet of the working face, as described in Section 6.1. The soil stockpile(s) will consist of soil that has not previously come in contact with waste. Section 6.1 lists the minimum size of the soil stockpile that will be maintained for fire fighting purposes. This stockpile will be routinely replenished. If the volume of the soil stockpile is reduced to less than the minimum size, it will be replenished prior to the next day of waste acceptance.

4.18.2 Daily Cover

Daily cover of waste is necessary to control disease vectors, windblown waste, odors, fires, scavenging, and to promote runoff from the fill area. At the end of each working day, at least 6 inches of soil cover material that has not previously been mixed with garbage, rubbish, or other solid waste, or an approved alternative daily cover (ADC) material, will be placed over all solid waste received subsequent to the previous cover placement.

The use of ADC will be limited to a 24-hour period after which either waste or daily cover will be placed. The procedures that will be used for application of ADC are specified in the Alternative Daily Cover Operating Plan (ADCOP), as provided in Appendix IV-C. Prior to utilizing different ADCs materials other than previously authorized ADCs, the County will submit a request for temporary authorization consistent with §330.165(d)(1). Consistent with this ADCOP, a status report will be submitted on a two-month basis to the TCEQ during the temporary authorization period describing the effectiveness of the ADC.

If soil is used as daily cover, the minimum thickness will be 6 inches. To ensure that the daily cover soil will be adequate (i.e., minimize vectors, contaminated storm-water runoff, odors, etc.) the following procedures will be followed:

- The daily cover will be sloped to drain.
- The daily cover will be compacted by bulldozer to minimize infiltration of storm water, graded to drain, and will not have waste visibly protruding through it.
- The Landfill Manager will visually verify during placement that a minimum of 6 inches (compacted thickness) of daily cover soil has been placed. The Landfill Manager will

document, on a daily basis, that he has visually verified the thickness and condition in the Cover Application Log (discussed further in Section 4.18.6 of this SOP).

• After each rainfall event, the Landfill Manager will inspect all daily cover areas for erosion, exposed waste or other damage, and repair, as described in Section 4.18.5. Runoff from areas that have intact daily cover is considered to not have come in contact with the working face or leachate.

Inactive areas with 6 inches of daily cover will be inspected weekly for erosion, ponded water, seeps, protruding waste, or other detrimental conditions that may cause contaminated runoff from the daily cover. Within a period of 180 days, an additional 6 inches of earthen material not previously mixed with garbage, rubbish or other solid waste will be placed over inactive areas with daily cover for a total of not less than 12 inches of cover. This 12-inch-thick layer of cover soil will be classified as "intermediate cover" as described in Section 4.18.3 of this SOP. Once the area becomes active again, the top 6 inches may be stripped off for use as daily cover in other areas, provided it can be removed without contamination by contact with solid waste.

4.18.3 Intermediate Cover

All areas that have received waste and will be inactive for longer than 180 days will be covered with 12 inches of well-compacted intermediate cover within 180 days after placement of daily cover or becoming inactive. The top six inches of the intermediate cover will be capable of sustaining native plant growth. Vegetation will be established on intermediate cover within 180 days following application of the intermediate cover and will provide a minimum 60 percent ground coverage, as described in Attachment 6, Appendix 2, Section 5.4. The intermediate cover will be graded and maintained to prevent ponding. Vegetation growth and erosion control features will be maintained as specified in Section 7 of this SOP.

The Landfill Manager will inspect intermediate cover at the site weekly for erosion, ponded water, seeps, protruding waste, or other detrimental conditions that may cause contaminated runoff. Erosion gullies or washed-out areas will be repaired within 5 days of detection, weather permitting, as described in Section 4.18.5.

4.18.4 Final Cover

Final cover will be placed as areas of the site are filled to the design top-of-waste grades. Final cover will be placed in accordance with Attachment 12 - Final Closure Plan. Areas that receive final cover will be vegetated immediately following completion of final cover placement, and will provide at least 85 percent ground coverage, as described in Attachment 6, Appendix 2, Section 5.5. Surface water will be managed throughout the operating life of the landfill to minimize erosion of the final cover. Erosion of final cover will be repaired within 5 days of detection, weather permitting, by restoring the cover material, grading, compacting, and seeding, as necessary. Monthly inspections and restorations will be implemented during the entire operational life. Refer to Table 4.2 of this SOP for a site inspection and maintenance schedule.

The final cover system, including the erosion control structures (interceptor channels and downchutes), will be maintained during and after construction. During the active life of the site,

the Landfill Manager will inspect the final cover system monthly. Post-closure care inspection procedures are outlined in the Attachment 13 - Postclosure Care Plan. Final cover will be monitored throughout the entire closure and post-closure care period of the landfill.

4.18.5 Erosion of Cover

Intermediate and final cover will be inspected on a weekly and monthly basis, respectively, for erosion. Inactive areas with daily, intermediate, and final cover also will be inspected for erosion following significant rainfall events. A significant rainfall event is defined as precipitation greater than 0.5 inches. Erosion gullies or washed-out areas deep enough to impact the final or intermediate cover will be repaired within 5 days of detection (weather permitting) by restoring the cover material, grading, compacting, and/or seeding or sodding. An eroded area is considered to be deep enough to impact the final or intermediate cover if it exceeds four inches in depth as measured perpendicular to the slope. The TCEQ region office may approve more time for cover repairs if the extent of the damage indicates that more time will be needed or if repairs are delayed due to weather conditions.

The date of detection of erosion and date of completion of repairs, including justification of delays, will be documented in the Cover Application Log. Cover inspections will be conducted throughout the operational life of the landfill.

4.18.6 <u>Cover Application Log</u>

Throughout the landfill operation, a cover application log will be maintained and be readily available for inspection by the TCEQ and authorized agents or employees of local governments having jurisdiction. For daily and intermediate cover, the log will specify the area covered (by use of the grid system), how it was placed, and the date it was completed. For final cover, the log will specify the final cover area, the date of cover, and the thickness applied that date. Each entry will be certified by the signature of the Landfill Manager that the work was accomplished as stated in the log. Repairs will be documented in the appropriate cover log, including inspections for erosion, the findings, and the action taken.

4.19 PREVENTION OF PONDED WATER (§330.167)

The prevention of ponding water is necessary to control infiltration of water into the waste. Additionally, ponded water can be a source of odor and breeding grounds for vectors. This ponding water prevention plan to be implemented at the landfill includes, but is not limited to, the following procedures:

Preventative Actions:

• Inspections of the landfill cover will be performed consistent with Section 4.18 of this SOP for the respective cover (i.e., daily, weekly, or monthly) and following periods of wet weather to identify potential ponding locations.

• Routine site grading and maintenance to provide drainage and prevent the ponding of water over areas containing waste.

Corrective Actions:

- Should ponding occur, the water will be removed and the depressions filled within seven days of the occurrence.
- If the ponded water has come into contact with waste, leachate, or waste-contaminated soils, it will be treated as leachate and handled in accordance with the Attachment 15 Leachate and Contaminated Water Plan.

4.20 DISPOSAL OF SPECIAL WASTES (§330.171)

Acceptance of special wastes, as defined in 30 TAC §330.3(148), will be performed in accordance with 30 TAC §330.171. The special wastes that will be accepted at the landfill are discussed in the following subsections.

4.20.1 Dead Animals and Slaughterhouse Waste

Dead animals or slaughterhouse wastes will be accepted at this landfill. Dead animals and slaughterhouse wastes will be buried and covered with a minimum of 3 feet of other solid waste or a minimum of 2 feet of soil immediately upon receipt

4.20.2 <u>Non-Regulated asbestos-containing material (non-RACM)</u>

Non-regulated asbestos-containing materials (non-RACM) may be accepted for disposal at this landfill provided the wastes are placed on the active working face and immediately covered with 12 inches of earthen material or 3 feet of solid waste. Under no circumstances may any material containing non-RACM be placed on any surface or roadway that is subject to vehicular traffic or disposed of by any other means by which the material could be crumbled into a friable state.

4.20.3 <u>Empty Containers</u>

Empty containers which have been used for pesticides, herbicides, fungicides, or rodenticides will be disposed at the site in accordance with the following:

- The containers are tripled rinsed prior to receipt at the landfill.
- The containers are rendered unusable prior to or upon receipt at the landfill.
- The containers are covered by the end of the same working day they are received.

Containers for which triple-rinsing is not feasible or practical (e.g., paper bags, cardboard containers) may be disposed at the landfill, provided that the waste is disposed as a municipal

hazardous waste from conditionally exempt generators, as described in Section 4.20.4 or Class 2 industrial waste if classified as such in accordance with §335.506.

4.20.4 <u>Municipal Hazardous Waste from Conditionally Exempt Generators</u>

Municipal hazardous waste from a conditionally exempt small quantity generator (CESQG) may be accepted at the landfill without further approval from the TCEQ provided the amount of waste does not exceed 220 pounds per month per generator, and provided the landfill owner or operator authorizes acceptance of the waste.

4.20.5 <u>Sludge, Grease Trap, Grit Trap, or Municipal Liquid Waste</u>

Sludge, grease trap waste, grit trap waste, or liquid wastes from municipal sources will be accepted at a landfill for disposal only if the waste has been treated or processed and the treated/processed material has been tested, in accordance with Test Method 9095 (Paint Filter Liquids Test), as described in "Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods" (EPA Publication Number SW-846), as amended, and is certified to contain no free liquids.

4.20.6 <u>Used Oil Filters</u>

Used oil filters (to include filters that have been crushed and/or processed to remove free-flowing used oil) from **non-household generators** will not be accepted at the landfill. However, used oil filters from internal combustion engines from **household generators** will be accepted at the landfill if the filter has been:

- Crushed to less than 20% of its original volume to remove all free-flowing used oil.
- Processed by a method other than crushing to remove all free-flowing used oil. A filter is considered to have been processed if:
 - (i) the filter has been separated into component parts and the free-flowing used oil has been removed from the filter element by some means of compression in order to remove free-flowing used oil;
 - (ii) the used filter element of a filter consisting of a replaceable filtration element in a reusable or permanent housing has been removed from the housing and pressed to remove free-flowing used oil; or
 - (iii) the housing is punctured and the filter is drained for at least 24 hours.

4.20.7 <u>Medical Waste</u>

Medical waste that has been treated in accordance with the procedures specified in Subchapter Y (related to Medical Waste Management) may be accepted at the landfill.

4.20.8 <u>Waste Generated Outside the Boundaries of Texas</u>

Waste generated outside the boundaries of Texas, including waste generated at Maquiladora facilities, will be accepted at the landfill provided it is classified as MSW, one of the special wastes described in Section 4.20.1 through Section 4.20.8, or Class 2 or Class 3 industrial solid waste, as described in Section 4.21. As noted above, Class 1 industrial solid waste will not be accepted at the landfill. Waste generated outside the boundaries of Texas that has been classified as one of the above types of waste will be handle consistent with the requirements for that type of waste described in this SOP.

Prior to accepting waste generated outside the boundaries of Texas, the landfill operator will require that the generator submit a "Request for Authorization for Disposal of a Special Waste." This request will include the items listed in §330.171(b)(2), as described below in Section 4.20.10. Following receipt of the request, the County will submit said request to the TCEQ for approval. The waste generated outside the boundaries of Texas specified in the request will not be accepted until approval from the TCEQ has been obtained and will only be accepted for the time period specified in the approval.

4.20.9 Other Special Wastes

Special wastes, other than the special waste identified 30 TAC §330.171(c) & (d), requires prior written approval from the TCEQ. Approvals will be waste-specific and/or site-specific and will be granted only to appropriate facilities operating in compliance with TCEQ regulations. As specified in 30 TAC §330.171(b)(2), requests for approval to accept other special wastes will be submitted to the TCEQ and will include the following:

- 1. A complete description of the chemical and physical characteristics of each special waste and the quantity and rate at which each waste is produced and/or the expected frequency of disposal. An additional statement will be included as to whether the special waste is a Class I industrial waste or not.
- 2. An operational plan containing the procedures for handling each waste and listing required protective equipment for operating personnel and onsite emergency equipment.
- 3. A contingency plan outlining responsibility for containment and cleanup of any accidental spills occurring during the delivery and/or disposal operation.

Special waste classified as Class 1 industrial waste is prohibited from being disposed of at the landfill.

4.21 DISPOSAL OF INDUSTRIAL WASTE (§330.173)

As specified in Section 5.1, the County will not accept Class 1 industrial solid waste at the landfill. This facility will accept Class 2 and Class 3 industrial solid waste, as defined in §335.506 and §335.507, respectively, provided the acceptance of such waste does not interfere with landfill operation.

4.21.1 <u>Petroleum Contaminated Soils</u>

Soil contaminated by petroleum products, such as automotive gasoline, other fuels, used motor oil from an internal combustion engine, or crude oils (also referred to as petroleum contaminated soils), may be accepted for disposal without specific TCEQ approval. Prior to acceptance of petroleum contaminated soils, the soils must be certified as being under the limits specified in the Table 4.1.

To determine whether or not a soil meets the criteria listed in the table, one composite sample will be taken for every 50 cubic yards (CY) of contaminated soil. The composite sample should be comprised of four separate grab samples from within the 50 CY. The person taking the sample should strive to obtain the most representative sample possible. All samples must be analyzed for total petroleum hydrocarbon (TPH). If analytical data or process knowledge indicates the possible presence of other contaminants (e.g. benzene or lead), testing for additional parameters is required, as indicated in 30 TAC §335, Subchapter R and TCEQ Regulatory Guidance Document Number RG-22 and RG-29. When additional parameters are required (benzene or lead), it is only necessary to analyze the sample(s) which contain the highest level of TPH from per 200 CY. For example, if there is 400 CY of contaminated soil, there should be eight samples tested for TPH and the two samples with the highest TPH level from those samples should be analyzed for the additional parameters of concern. Laboratory detection limits must be less than or equal to the maximum contaminant levels listed in Table 4.1.

CONSTITUENTS OF	MAXIMUM
CONCERN	CONTAMINANT LEVEL
Benzene	0.5 mg/1 ¹
ТРН	1,500 mg/kg
Lead ²	1.5 mg/1 ¹

TABLE 4.1 CONTAMINATED SOIL CONSTITUENTS OF CONCERN

Notes: ¹ An analysis of total contaminant level may be used as a screening tool prior to Toxicity Characteristic Leaching Procedure (TCLP). To determine the maximum total contaminant level at which a TCLP is not necessary multiply the table limit by a factor of 20. This formula is extrapolated from a 20:1 dilution factor when preparing TCLP samples for analysis (Title 40 Code of Federal Regulations, Part 261, Appendix II). If a contaminant total level exceeds 20 times the table limit (e.g. total lead>30 mg/kg, total benzene >10 mg/kg, etc.), then TCLP must be performed.

² If it is known through process knowledge, that the automotive gasoline and fuels did not contain lead, it is not necessary to test for lead.

4.22 VISUAL SCREENING OF DEPOSITED WASTE (§330.175)

Methods for visually screening the working face and deposited waste will include, but are not limited to, the following items consistent with 30 TAC §330.175:

- Orienting the working face away from the F.M. 1021.
- Developing the aerial fill portion of the landfill from the exterior to the interior, when appropriate (i.e., by constructing landfill sideslopes prior to filling operation

• Maintaining existing trees and other vegetation near the landfill permit boundary and adjacent to F.M. 1021.

4.23 LEACHATE AND CONTAMINATED WATER MANAGEMENT

Maverick County will not discharge contaminated water without specific written authorization by the TCEQ. The management of leachate and contaminated water will be performed in accordance with Attachment 15 – Leachate and Contaminated Water Plan. Reports and other submittals required by Attachment 15 will be maintained in the Site Operating Record, as described in Section 8.1 of this SOP.

Leachate collected from the leachate collection system may be recirculated back into the landfill by spraying on the working face, or injecting the leachate back into waste. However, recirculation will only take place over composite lined cells (referred herein as Standard Liner System, see Section 3.0) in accordance with §330.331(b).

Leachate that is recirculated into the landfill will be performed using the following procedures:

- 1. Leachate will be sprayed directly onto the waste at the working face via a dedicated water truck or injected into the waste mass using a dedicated pump.
- 2. Prior to performing leachate recirculation, containment berms and diversion berms will be constructed to prevent runoff of contaminated water and run-on of uncontaminated stormwater, respectively.
- 3. Leachate recirculation performed using a spray application will be performed as follows:
 - a. The spray application will not be performed when standing water exists or during rain events.
 - b. No odors are expected to be associated with this practice. Nevertheless, to provide assurance that odors and wind transmission are minimized, the following procedures will be implemented:
 - i. The spray application of leachate will be performed at a minimum 100-foot setback from the limits-of-waste.
 - ii. The leachate will be sprayed down towards the waste, such that the water stream is not being projected up into the air.
 - iii. Spray applications will only be performed on days when the wind speed is less than or equal to 15 miles per hour.
 - c. The rate of spraying will be low enough to prevent the occurrence of ponding and allow the infiltration of leachate prior subsequent applications.
- 4. Leachate recirculation performed by injection will be performed by installing either HDPE [SDR 17 or less] or polyvinyl chloride (PVC) [Sch 80 or less] below-grade

horizontal pipes or vertical injection wells for introduction of the liquids into the landfill in areas of daily or intermediate cover only. As such, leachate recirculation will not occur in areas within in-place final cover.

- a. If below-grade horizontal pipes are installed, they will be installed in trenches at least 3 feet below the landfill surface and be comprised of solid and perforated sections of pipe. Using this technique, the perforated section will be maintained at least 50 feet from the landfill sideslope (i.e., to minimize seeps) when waste disposal in area of recirculation is above-grade.
- b. If vertical wells are installed, they will be installed with the bottom of the well at least 10 feet above the bottom liner of the landfill. The well will be comprised of perforated and solid components, with the solid piping extending from the landfill surface to at least 3 feet below grade and encased in soil backfill. The remainder of the well piping will be perforated and encased in gravel backfill.
- 5. Although, leachate recirculation is not expect to result in nuisance odors, if nuisance odors develop, the following procedures will be implemented to mitigate odors:
 - a. Leachate recirculation will temporarily suspended until the nuisance odors dissipate.
 - b. If nuisance odors are associated with spray applications, the area will be immediately covered with 6 inches of soil.
 - c. If nuisance odors are associated with injection of leachate, all connections to horizontal or vertical injection points will be inspected to make sure that each connection is vapor-tight. If damaged or deficient connections are observed, then the connections will be repaired following the inspection.
 - d. If nuisance odors are still occurring, then the procedures in Section 4.10.2, related to Odor Management Plan, should be reviewed and implemented as needed until odors are mitigated.
- 6. The Landfill Manager will maintain records of the volume of leachate recirculated into the landfill. The recirculation volume will be measured using either flow meters connected to pumps and/or water trucks, or by the volume discharged from water trucks based on the capacity of such storage units.

Leachate recirculation will be performed such that ponding and seeps will not occur. If either, ponding or seeps, are detected or if the leachate head on the liner exceeds 12 inches, the leachate recirculation in the respective cell will be discontinued until the condition is remediated. Additionally, preventative and corrective actions detailed in Section 4.19 will be followed related to cover inspections for seeps and ponding. If seeps are observed during inspections, the area will be packed with onsite soil (i.e., low permeable clay) to assist in mitigating the seep.

Leachate recirculation will be restricted to volumes less than 830,290 gallons/acre/year during below-grade waste disposal and 660,394 gallons/acre/year during above-grade waste disposal. Additionally, the maximum daily recirculation will be limited to less than or equal to 9,700 and 5,400 gallons/acre/day for below and above-grade disposal, respectively, provided total annual volumes are not exceeded and leachate recirculation at the landfill is limited to less than 100,000 gallons/day in accordance with §330.991(a)(7)(A). These allowable recirculation volumes pertain to areas draining to a common sump. The calculations and respective HELP modeling for leachate recirculation are provided in Attachment 15, Appendix 1A.

TABLE 4.2

SITE INSPECTION AND MAINTENANCE SCHEDULE

ITEM	TASK	SCHEDULE
Fence/Gate	Inspect perimeter fence and gate for damage, gaps, intrusions and the like. Make temporary repairs within 24-hours (weather permitting) and permanent repairs within the timeframe approved by the TCEQ region office.	Monthly
Windblown Waste	Police working fence area, wind fences, access roads, entrance areas (primary and secondary), and perimeter fence for loose trash. Clean up upon detection.	Daily
Waste Spilled en Route to the Site	Police entrance areas and FM-1021 at least 2 miles in either direction from the landfill entrances (primary and secondary) for loose trash. Clean up upon detection.	Daily
Landfill Markers	Inspect all landfill markers for damage, color coding, and general location. Correct or replace damaged markers within 15 days of discovery.	Monthly
Landfill Haul Road	Inspect landfill haul roads for damage from vehicle traffic, and erosion. Repair onsite roads, as needed, based on inspections.	Monthly
	Inspect landfill entrances (primary and secondary) and onsite roads for excessive mud and/or waste accumulation. Maintain as needed with crushed rock or stone.	Daily (Wet Weather) Weekly (Otherwise)
Daily Cover	Inspect for proper placement, thickness, and compaction. Remedy deficiencies as needed.	Daily (active areas) Weekly (inactive areas)
Intermediate Cover	Inspect for proper placement, thickness, erosion, vegetation, compaction and for presence of waste or other contamination. Remedy deficiencies as needed within 5 days, weather permitting.	Weekly
Final Cover	Inspect for proper placement, thickness, vegetation, compaction, slope, settlement and erosion. Maintenance will be ongoing throughout postclosure care period. Remedy deficiencies as needed within 5 days, weather permitting.	Monthly

ITEM	TASK	SCHEDULE
Erosion Control	Inspect the intermediate and final cover for signs of erosion. Damaged areas will be repaired within 5 days (weather permitting) of detection by restoring cover material, grading, compaction, and/or seeding or sodding.	Weekly (Interim), Monthly (Final), and following wet weather
Disease Vector Control	Inspect landfill facility for insects and rodent populations and report them to the Landfill Manager.	Weekly
Ponding Water	Inspect landfill cover for potential ponding water locations. Grade and compact potential areas within seven days, weather permitting.	Daily (daily cover), Weekly (Interim), Monthly (Final) and following wet weather
Leachate Storage Tanks	Inspect leachate tanks, related piping, and connections for leaks or spills.	Weekly
Depth of Leachate on Liner	Measure leachate depth within sump using electric liquid indicator (see Attachment 15, Section 4.7).	Monthly (without recirculation) Weekly (with recirculation)
Leachate Pumps	Inspect leachate pumps and maintain, as necessary (see Attachment 15, Section 4.7).	Annually
Leachate Pipe Clean-out	Perform clean-out activities of leachate collection lines (see Attachment 15, Section 4.7).	Annually
CCS Containers	Inspect the containers for spills and leaks, and repair or replace containers, if necessary, as a result of these inspections.	Daily

TABLE 4.2 (Continued)

PERMIT REVISIONS (UNMARKED)

PART I GENERAL INFORMATION

FOR

MAVERICK COUNTY EL INDIO MSW LANDFILL TCEQ PERMIT NO. MSW 2316

Prepared for:

Maverick County Solid Waste Authority 16179 FM 1021 El-Indio, Texas 78860

And

Maverick County 500 Quarry Street, Suite 3 Eagle Pass, Texas 78852 830/773-3824

PERMIT ISSUED: SEPTEMBER 11, 2007

REVISION 2 PREPARED BY:

SCS ENGINEERS Texas Board of Professional Engineers Reg. No. F-3407 1901 Central Drive, Suite 550 Bedford, Texas 76021 817/571-2288

> Revision 1 – May 2004 Revision 2 – March 2024 Revision 3 – June 2025 SCS Project No. 16220088.00 & 16223092.00

TABLE OF CONTENTS

SECT		PAGE	
		OF PROPOSED FACILITY	L
PART	I, SEC	TION A – REQUIREMENTS OF 30 TAC 305.45	
1.0	ŃAMI	E, ADDRESS, LOCATION OF FACILITY – 30 TAC 305.45(A)(1)	l
2.0	OWN	ERSHIP STATUS - 30 TAC 305.45(A)(2)	l
3.0	APPL	ICANT'S CONTACT INFORMATION - 30 TAC 305.45(A)(3)	2
4.0	NATU	JRE OF BUSINESS - 30 TAC 305.45(A)(4)	2
5.0	ACTI	VITIES REQUIRING A PERMIT - 30 TAC 305.45(A)(5)	2
6.0	MAPS	5 - 30 TAC 305.45(A)(6)	3
	6(A)	MAP DEPICTING WELLS, SPRINGS, AND SURFACE WATERS	
	6(B)	MAP DEPICTING CHARACTER OF AREA ADJACENT TO FACILITY	3
	64(C)	LOCATATIONS OF WASTE DISPOSAL ON THE TRACT NOT INCLUDED	
		IN THIS APPLICATION	1
	6(D)	OWNERSHIP MAP	1
	6(E)	SUCH OTHER INFORAMTION THAT REASONABLY MAY BE	
		REQUESTED BY THE EXECUTIVE DIRECTOR	5
7.0	RELA	TED PERMITS OR CONSTRUCTION APPROVALS -	
		30 TAC 305.45 (A)(7)	5
	7(A)	HAZARDOUS WASTE MANAGEMENT PROGRAM UNDER THE TEXAS SOLID WASTE DISPOSAL ACT	<
	7(B)	UNDERGROUND INJECTION CONTROL PROGRAM UNDER THE TEXAS	
	/(D)	INJECTION WELL ACT	
	7(C)	NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM	1
		PROGRAM (NPDES) UNDER THE CLEAN WATER ACT AND WASTE	
		DISCHARGE PROGRAM UNDER THE TEXAS EASTER CODE, CHAPTER	
		26	5
	7(D)	PREVENTION OF SIGNFICANT DETERIORATION (PSD) PROGRAM	
		UNDER THE FCAA	
	7(E)	NON-ATTAINMENT PROGRAM UNDER THE FCAA	5
	7(F)	NATIONAL EMISSION STANDARDS FOR HAZARDOUS POLLUTANTS	
		(NESHAPS) PRE-CONSTRUCTION APPROVAL UNDER THE FCAA	7
	7(G)	OCEAN DUMPING PERMITS UNDER THE MARINE PROTECTION	
	-	RESEARCH AND SANCTUARIES ACT	7
	7(H)	DREDGE OR FILL PERMITS UNDER THE FCAA	/
	7(I)	LICENSES UNDER THE TRCA	
	7(J)	OTHER ENVIRONMENTAL TERMITS	
		TEXAS HISTORICAL COMMISION	
	. , . ,	US FISH AND WILDLIFE SERVICES	
	(3)(3)	6-15-17	J

	7(J)(4) US A	RMY CORPS OF ENGINEERS
8.0	SUPPLEME	NTARY TECHNICAL REPORT – 30 TAC 305.45(A)(8)9
PART	I I, SECTION	B – REQUIREMENTS OF 30 TAC 330.51
1.0	FLOODPLA	N CONSTRUCTION - 30 TAC 330.51(B)(4)1
2.0	ELIMINATI	ICE WITH THE NATIONAL POLLUTION DISCHARGE ION SYSTEM (NPDES) UNDER CLEAN WATER ACT CHAPTER 402 0.51(B)(5)
3.0	3.ATEXA3.BFEDE	ATION WITH AGENCIES – 30 TAC 330.51(B)(6)
4.0	WETLANDS	S DETERMINATION - 30 TAC 330.51(B)(7)
5.0	ENDANGE	RED SPECIES ACT COMPLIANCE - 30 TAC 330.51(B)(8)
6.0		ETTER FROM THE TEXAS ANTIQUES COMMITTEE - 30 TAC
7.0		ICE WITH REGIONAL SOLID WASTE PLAN – 51(B)(10)
PART	T I, SECTION	C – REQUIREMENTS OF 30 TAC 330.52
1.0	SUPPLEME	NTARY TECHNICAL REPORT - 30 TAC 330.52(B)(3)1
2.0	2.A(I)	CAC 330.52(B)(4) 1 PREVAILING WIND DIRECTION (WIND ROSE) 1 ALL KNOWN WATER WELLS WITHIN 500'OF THE PROPOSED 1 PERMIT BOUNDRY 1 STRUCTURES AND INHABITABLE BUILDINGS WITHIN 500' OF 1
	2.A(IV)	THE PROPOSED SITE
	2.A(V)	LOCATATION AND SURFACE TYPE OF ALL ROADS WITHIN ONE MILE OF THE SITE
	2.A(VI) 2.A(VII)	LATITUDES AND LONGITUDES
	2.A(VIII) 2.A(IX)	AIRPORTS WITHING FIVE MILES OF THE SITE

	2.A(X	() DRAINAGE, PIPELINE, AND UTILITY EASEMENTS	
		WITHIN/ADJACENT TO THE SITE	3
	2.(XI) ARCHAEOLOGICAL SITES, HISTORICAL SITES, SITES WITH	
		EXCEPTIONAL AESTHETIC QUALITY	3
	2.B	GENERAL LOCATION MAP (TXDOT)	3
	2.C	GENERAL TOPOGRAPHIC MAPS	3
	2.D	LAND OWNERSHIP MAP	4
3.0	LAN	DOWNERS LIST - 30 TAC 330.52(B)(5)	4
4.0	LEG	AL DESCRIPTION - 30 TAC 330.52(B)(6)	4
	4.A	LEAGAL DESCRIPTION OF THE PROPERTY (INCLUDE COUNTY, BOOK	
		PAGE NUMBER OF CURRENT OWNERSHIP RECORD)	· ·
	4.B	IF PLATTED, COUNTY, BOOK, PAGE NUMBER OF FINAL PLAT	
		RECORD	4
	4.C	BOUNDARY METES AND BOUNDS DESCRIPTION OF THE SITE SIGNED)
		AND SEALED BY A REGISTERED PROFESSIONAL LAND SURVERYOR.	4
	4.D	DRAWING OF THE BOUNDARY METES AND BOUNDS DESCRIPTION	4
5.0	PRO	PERTY OWNER AFFIDAVIT - 30 TAC 330.52(B)(7)	5
	5.A	LEGAL DESCRIPTION OF THE SITE	
	5.B	ACKNOWLEDGEMENT OF OWNERS RESPONSIBILITY FOR OPERATION	V
		MAINTENANCE AND CLOSURE AND POST-CLOSURE CARE	5
	5.C	ACKNOWLEDGEMENT OF OWNERS RESPONSIBILITY TO FILE WITH	
		COUNTY DEED RECORDS	5
	5.D	ACKNOWLEDGEMENT OF ACCESS FOR OWNER AND OPERATOR AND	,
		THE STATE OF TEXAS FOR ACTIVE LIFE PLUS 30 YEARS AFTER	•••
		CLOSURE	5
6.0	LEG	AL AUTHORITY - 30 TAC 330.52(B)(8)	6
7.0	EVII	DENCE OF COMPLIANCE - 30 TAC 330.52(B)(9)	6
8.0	APPO	DINTMENTS - 30 TAC 330.52(B)(10)	6
9.0	EVII	DENCE OF FINANCIAL ASSURANCE - 30 TAC 330.52(B)(11)	6

SCS Engineers TBPE Reg. # F-3407

APPENDICES TO PART I

Attachment	Figure	Description
I-A	I-A1	Warranty Deed
	I-A2	Plat
	I-A3	Boundary Metes and Bounds Description
	I-A4	Property Owners within 500' of the Site
I-B	I-B1	Wells within One Mile of the Site
	I-B2	Surface Waters (National Wetland Inventory Map)
	I-B3	Existing Land Use
	I-B4	Permit Boundary
I-C	I-C1	Correspondence with Texas Historical Commission
	I-C2	Correspondence with Texas Parks and Wildlife Department
	I-C3	Correspondence with US Fish and Wildlife Services
	I-C4	Correspondence with US Army Corps of Engineers
I-D	I-D1	Supplementary Technical Report
I-E	I-E1	Floodplain Boundary
I-F	I-F1	Correspondence with Texas Commission on Environmental
		Quality Regarding Clean Water Act Section 208
	I-F2	Correspondence with US Department of Transportation, Federal
		Aviation Administration
	I-F3	Correspondence with Texas Department of Transportation
I-G	I-G1	Correspondence with Middle Rio Grande Development Council
I-H	I-H1	Wind Rose Depicting Prevailing Wind Direction
	I-H2	Aerial Photograph
	I-H3	Schools, Daycares, Churches, Hospitals, Cemeteries, Ponds,
		Lakes, Residential, Commercial/Recreational Areas within One
		Mile of the Site
	I-H4	Roads within One Mile of the Site
	I-H5	Latitudes and Longitudes
	I-H6	Airports within Five Miles of the Site
	I-H7	Not Used
	I-H8	Archeological/Historical Sites, Sites with Exceptional Aesthetic
		Quality
	I-H9	General Location Map (TXDOT)
	I-H10	General Topographic Map (USGS)
I-I	I-I1	Landowners List
I-J	I-J1	Acknowledgement of Responsibility for Operation, Maintenance,
		and Closure and Post Closure Care
	I-J2	Acknowledgement of Responsibility to File with County Deed
		Records
	I-J3	Acknowledgement of Access for Active Life Plus 30 Years After
		Closure
I-K		Legal Authority
I-L		Evidence of Competency

Attachment	Figure	Description
I-M	I-M1	Appointments
I-N		Evidence of Financial Assurance

3.0 COORDINATION WITH AGENCIES – 30 TAC 330.51(B)(6)

Documentation of Coordination with the following agencies is required and is included in Appendix I-F.

3.A Texas Commission on Environmental Quality (TCEQ) Coordination with the TCEQ to demonstrate compliance with the Clean Act Section 208 is included as Appendix I-F1.

3.B Federal Aviation Administration (FAA)

Coordination with the United States Department of Transportation, Federal Aviation Administration to demonstrate compliance with airport location restrictions is included as Appendix I-F2. A letter from the U.S. Department of Transportation, Federal Aviation Administration stating "there are no existing or proposed public-used airports within five miles of the site, therefore we have no objection to the proposal" has been included in this appendix.

3.C Texas Department of Transportation (TXDOT)

Coordination with the Texas Department of Transportation for compliance with traffic and location restrictions is included as **Appendix I-F3**. A driveway access permit for the proposed MSW facility to access FM 1021 was submitted to TXDOT. The permit was successfully approved. A copy of the signed driveway permit is included as **Appendix I-F3**.

Subsequently, an additional driveway access permit for the new entrance to the facility, located in the southeast corner of the property, was submitted to TXDOT. This permit was successfully approved in June 2025 and a copy of this approved permit is also included as Appendix I-F3.

APPENDIX I-F3

CORRESPONDENCE WITH TEXAS DEPARTMENT OF TRANSPORTATION (TXDOT)

Permit to Construct Access Driveway Facilities on Highway Right of Way

		BER: TXDOT ENTER PERMIT		61201
		GPS*		61301 IDWAY
REQUE	ESTOR	LATITUDE, LONGITUDE	HWY NAME	FM1021
		28.5416278, -100.3232694		DOT'S USE
			CONTROL	4-DIGIT
NAME	Maverick County - Municipal	Solid Waste Facility #2316	SECTION	2-DIGIT EX. 01
	16179 FM 1021, P.O. Box 10			
CITY, STATE, ZIP	El Indio, Texas 78860			
PHONE NUMBER	(830) 787-8191			
*GLOBAL POSITIONING SYSTEM (COORDINATES AT INTERSECTION	OF DRIVEWAY CENTERLINE WITH	ABUTTING ROADWAY	
hereinafter called the Permit	tee, to 🛛 construct / 🗌 ccess driveway on the highw	ed the State, hereby authorize reconstruct a <u>South Primary</u> ay right of way abutting high) USE ADDITIONAL SHEETS AS	Entrance Road way number <u>FM 1021</u>	rmit #2316) (residential, convenience in Maverick
ls this parcel in current litigat Is the Permittee or a family m		☑ YES □ NO loyee or official of the Texas D	epartment of Transportatio	n? 🗌 YES 🔀 NO
interest in Permittee? 🏼 Y	es 🛛 No	Transportation serve as an em		ee or own a controlling
		ibed on page 2 and the follow rms and conditions set forth i	-	on and maintenance of an
	ate highway right of way.			
	and the access managemen	ies, as shown in the attached s t standards set forth in the Ac		
3. Construction of the drive	way shall be in accordance w	vith the attached design sketc	h, and is subject to inspectio	on and approval by the State.
changes, maintenance or		be the responsibility of the Pe to provide protection of life o of the State.		
	harmless the State and its du iveway permitted hereunder	ly appointed agents and emp	loyees against any action fo	r personal injury or property
portion of the highway ri	ght of way. The Permittee sh	and city streets, the Permittee all ensure that any vehicle se ine to ensure that any vehicle	rvice fixtures such as fuel pu	imps, vendor stands, or tanks
		iveway permit in the event of ion or other modification of th		
3. The State may revoke this	s permit upon violation of an	y provision of this permit by t	he Permittee.	
 This permit will become r date of this permit. 	null and void if the above-ref	erenced driveway facilities are		(6) months from the issuance
10. The Permittee will contact telephone, (860) 776		Charles Fite Mainter y-four (24) hours prior to begi	nance supervisor nning the work authorized l	by this permit.
11. The requesting Permittee	e will be provided instruction	s on the appeal process if this	permit request is denied by	y the State.

Form 1058 (Rev. 09/23) Page 2 of 2

The undersigned hereby agrees to comply with the terms and conditions set forth in this permit for construction and maintenance of an access driveway on the highway right of way.

Date: 2/13/25	Signed: Mar (Property Gymer, or owner's representative)
6/16/2025 Date of Issuance	Vanessa Kosales-Herrera Distri ct 1 79g/1916649538428Jesignee Approval
Date of Issuance as per Variance to AMM	District Engineer, or designee Approval
Date of Denial	District Engineer Denial (No Delegation)

Access Driveway Policy

Title 43 Texas Administrative Code (Transportation), Chapter 11 (Design), Subchapter C (Access Connections To State Highways) and the "Access Management Manual" establish policy for the granting of access and the design, materials, and construction of driveways connecting to state highways. All driveway facilities must follow this policy. To the extent there is any conflict between this permit and the policy, the policy shall control. If a proposed driveway does not comply with the access management standards, the owner may seek a variance to a requirement contained in the access management standards by contacting the local TxDOT office.

TxDOT Driveway Permit Request Contact

For a local contact for your TxDOT Driveway Permit Request or variance request, visit: <u>http://www.txdot.gov/inside-txdot/district.html</u>. You can click on the section of the map closest to your location to find the local TxDOT office. You can also click on the drop down box below the map to find the district for your county.

Other Conditions

In addition to Items 1 thru 11 on page 1 of this permit, the facility shall also be in accordance with the attached sketch and subject to the following additional conditions stated below:

See attached "Sketch of Installation" Sheet and "Site Plan" for additional information. A summary of proposed road is as follows: 1. Proposed radii: 75',

2. Throat Width: 30',

3. Throat Length: 70',

4. Entry Width: 180', and

5.8" Reinforced concrete pavement with #4 rebar @ 9" OCEW.

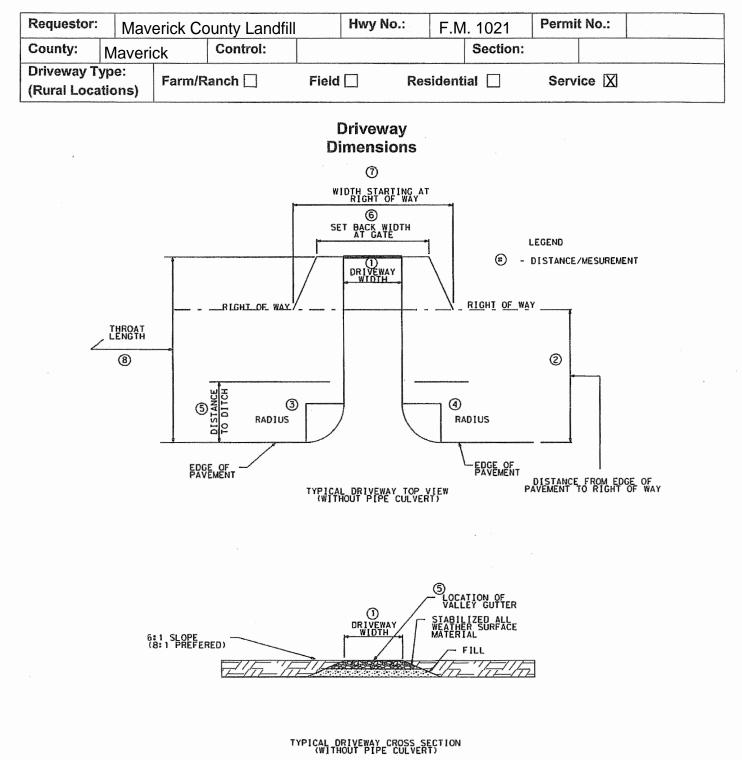
Variance Documentation Justification

For a Variance request, please indicate which of the below are applicable, as required by TAC §11.52(e):

a significant negative impact to the owner's real property or its use will likely result from the denial of its request for the variance,

 $^{\perp}$ including the loss of reasonable access to the property or undue hardship on a business located on the property.

an unusual condition affecting the property exists that was not caused by the property owner and justifies the request for the variance.


For the conditions selected above, provide written justification below. (Attach additional sheets, if needed)

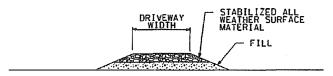
For TXDOT use below:

Sketch of Installation	
Attachments:	
likely impair the ability of the state or the department to receive funds for highway construction or maintenance from the federa government.	
- likely impair the ability of the state or the department to receive funds for highway construction or maintenance from the federa	1
adversely affect the safety, design, construction, mobility, efficient operation, or maintenance of the highway; or	
For Variance denials, please indicate which of the below conditions, as provided in TAC §11.52(e), were determined:	

All Variance Documentation

Sketch of Installation

Driveway Utilizing Valley Gutter and Gate Set Back of Right of Way Line Page 1

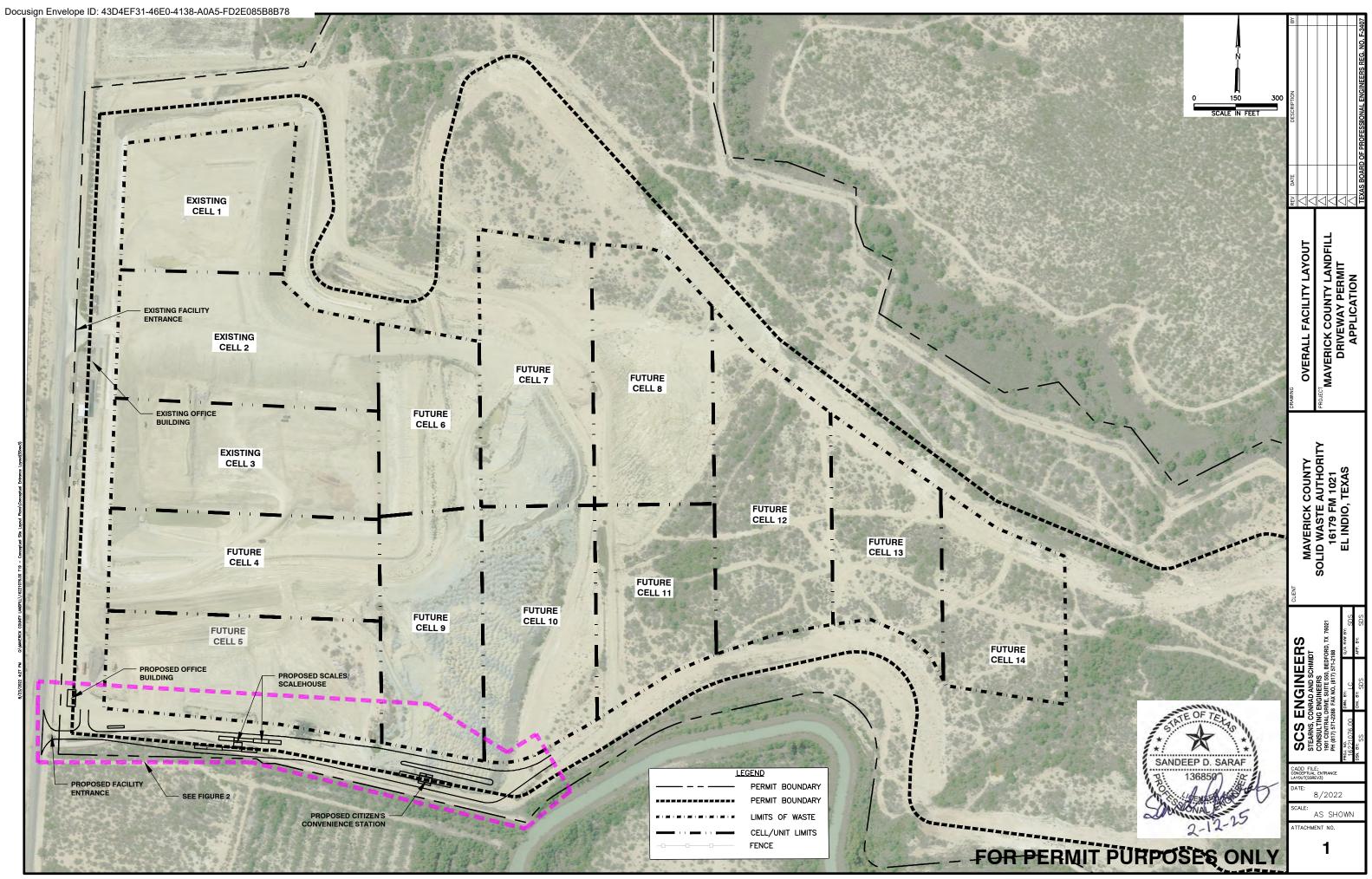

			Ske	etch	of Install	atio	n					
Requestor:	Mav	erick Co	ounty Landfill		Hwy No.:	p.: F.M. 1021 Permi			Permi	t No.:		
County:	Maver	ick	Control:			, 	Sect	ion:			t.	
Driveway Type: (Rural Locations)			Field	Re:	sidenti	ial 🗌		Servi	ice 🛛	s.		
			C	Drivew	ay Dimensi	ons						
1. C	Driveway	Width =					30			ft.		
2. E	Distance	from edg	e of pavement	to right a	of way =		35			ft.		
3. F	Radius =		75		ft.							
4. F	4. Radius = 75			ft.								
5. Distance to Ditch =					N/A	ft.						
6. Set Back Width @ Gate=					30	ft.						
7. V	Nidth sta	rting at rig	ght of way =				53	ft.				

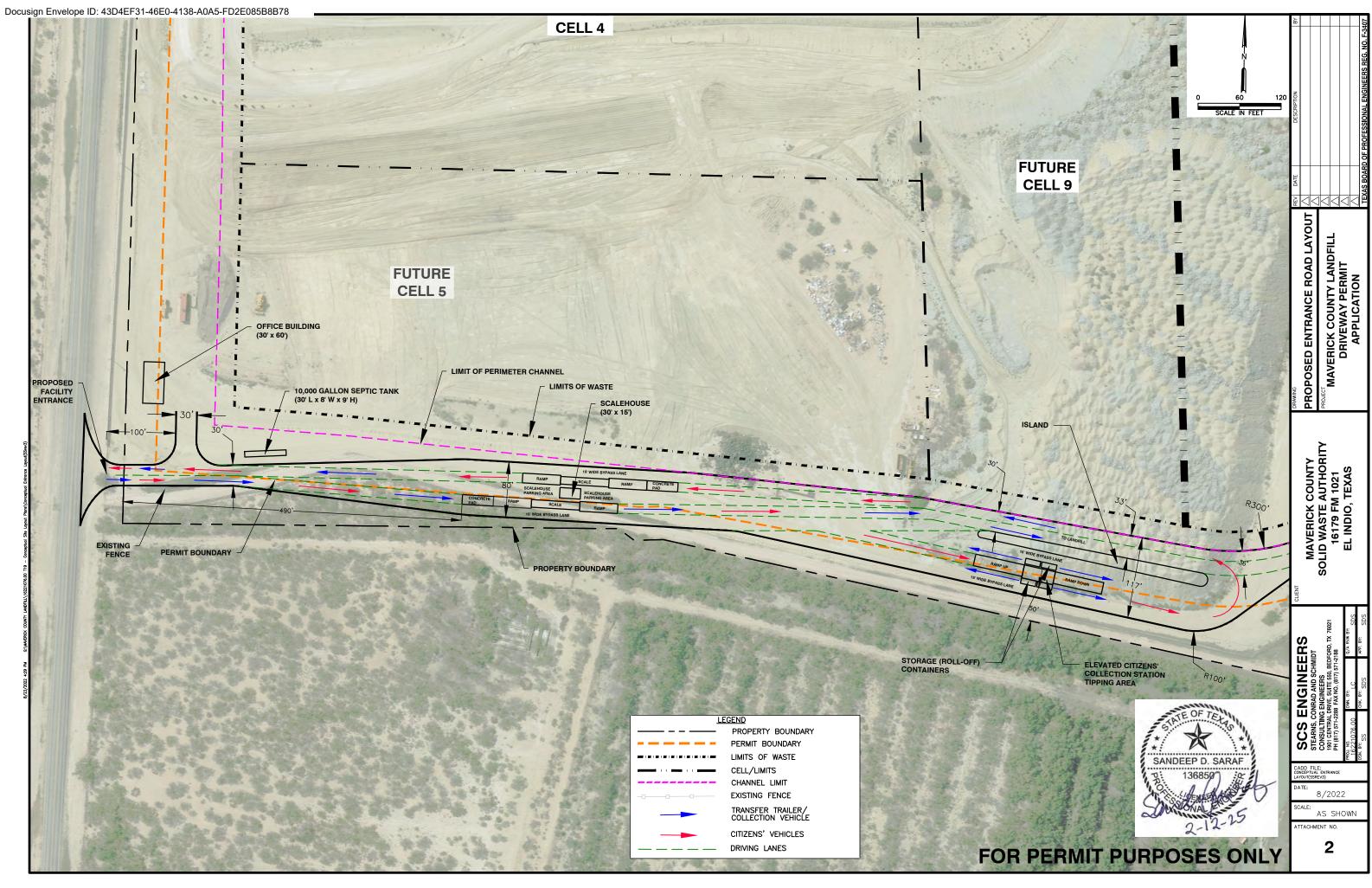
8. Throat Length =

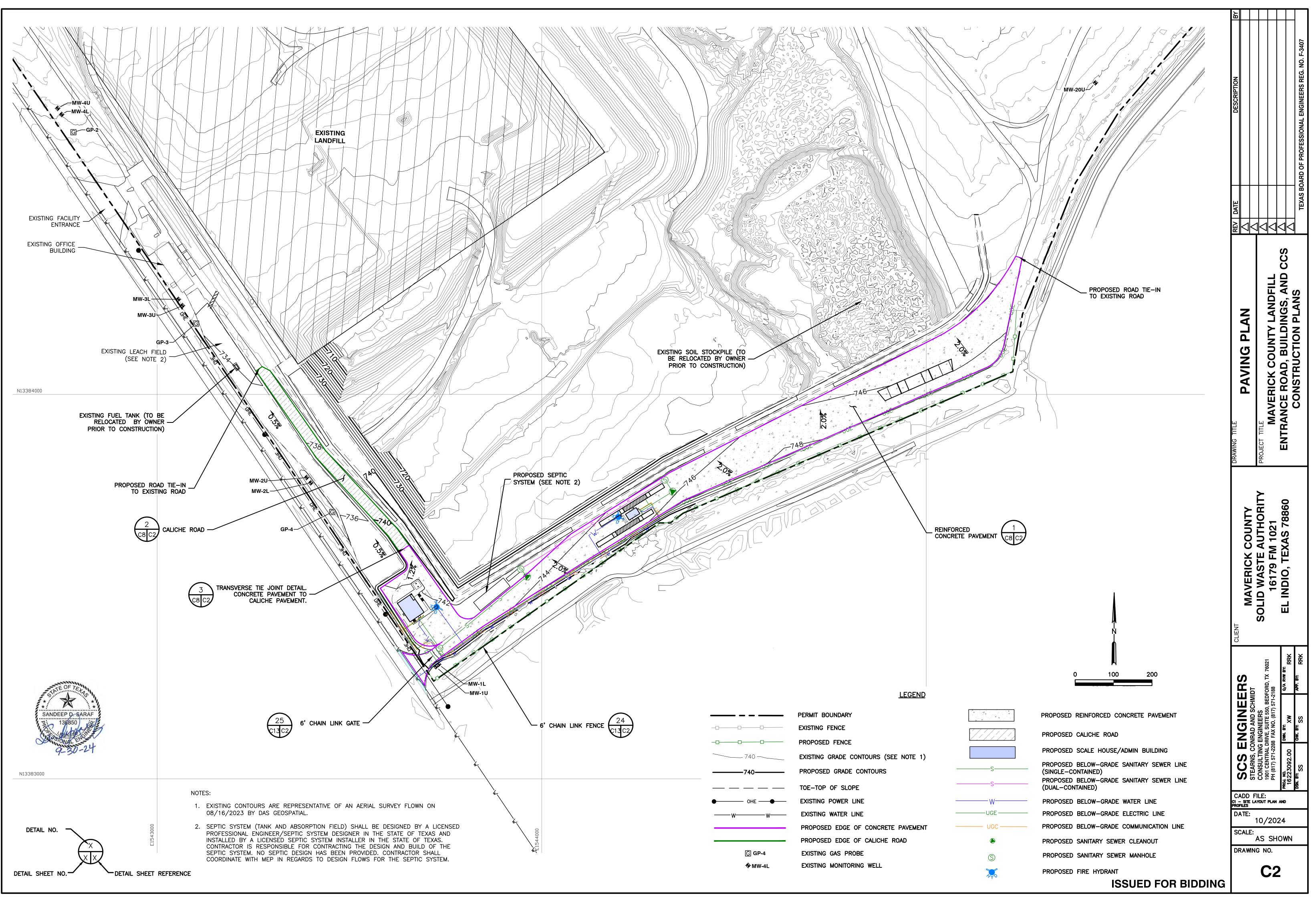
Pavement Structure

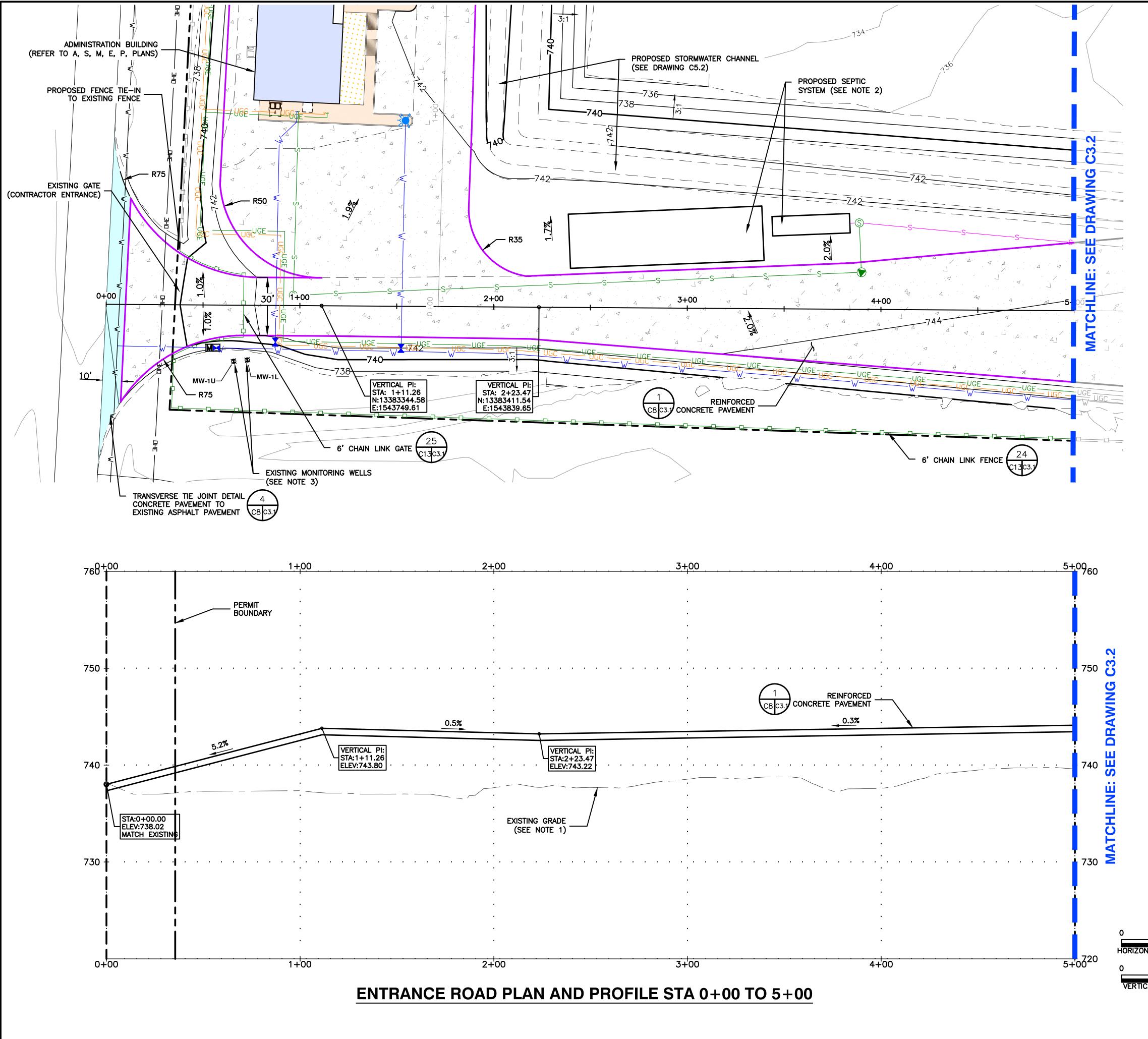
71

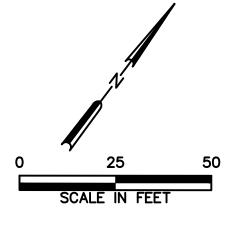
ft.

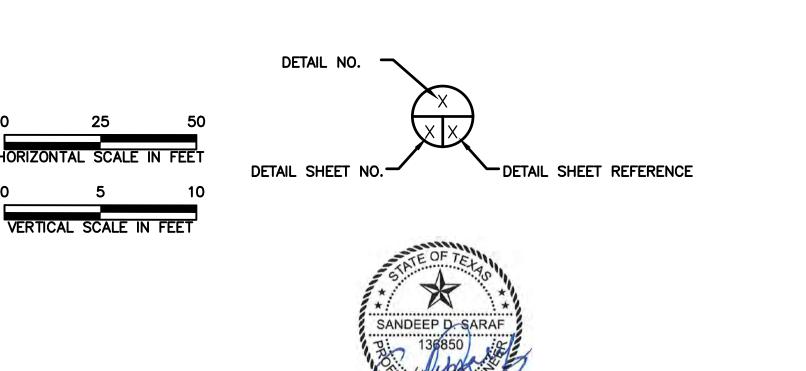

TYPICAL DRIVEWAY CROSS SECTION (WITHOUT PIPE CULVERT)

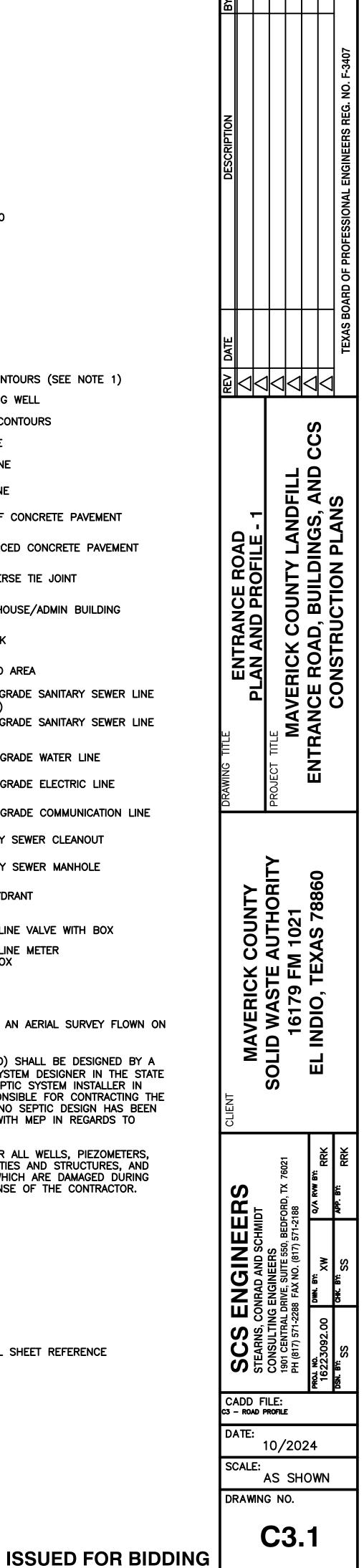

	Pavement Structure						
	material selection thickness, in. comment						
concrete	Portland Cement Concrete	6" min.	:				
asphalt	N/A						
flexbase	N/A						
fill material	Sand Bedding	2" min.					


Driveway Utilizing Valley Gutter and Gate Set Back of Right of Way Line Page 2

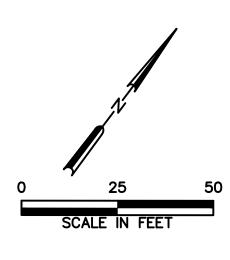

Mr. Charles Fite February 13, 2025 Page 10


SITE LAYOUT

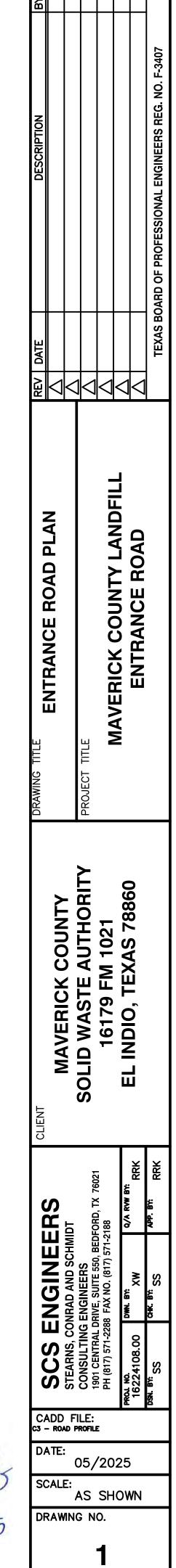



<u>LEGEND</u>

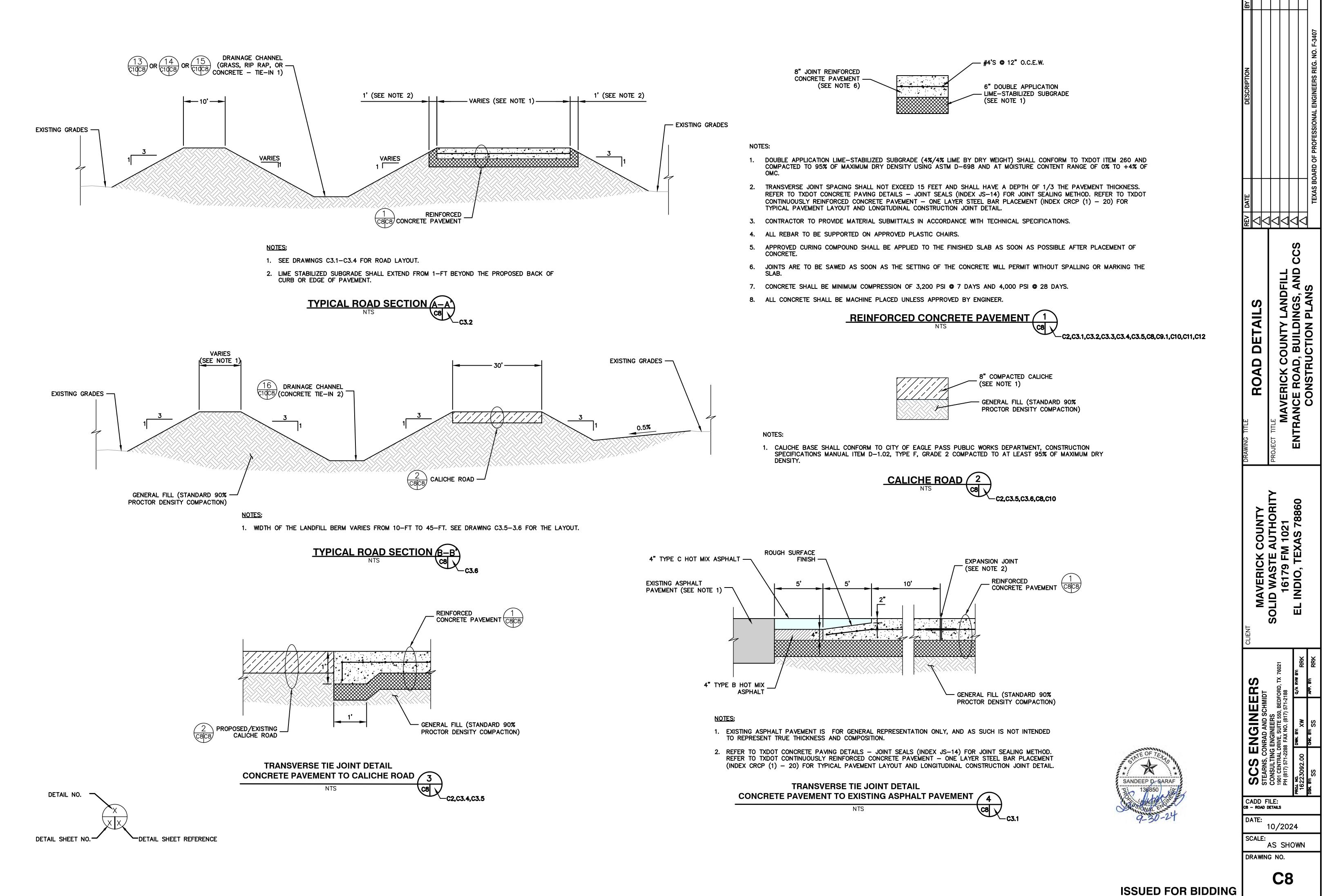
	PERMIT BOUNDARY
-00	PROPOSED FENCE
740	EXISTING GRADE CONTOURS (SEE NOTE 1)
↔ MW-4L	EXISTING MONITORING WELL
740	PROPOSED GRADE CONTOURS
	TOE-TOP OF SLOPE
• OHE	EXISTING POWER LINE
WW	EXISTING WATER LINE
	PROPOSED EDGE OF CONCRETE PAVEMENT
	PROPOSED REINFORCED CONCRETE PAVEMENT
	PROPOSED TRANSVERSE TIE JOINT
	PROPOSED SCALE HOUSE/ADMIN BUILDING
	PROPOSED SIDEWALK
	PROPOSED GRASSED AREA
S	PROPOSED BELOW-GRADE SANITARY SEWER LINE (SINGLE-CONTAINED)
S	(SINGLE-CONTAINED) PROPOSED BELOW-GRADE SANITARY SEWER LINE (DUAL-CONTAINED)
W	PROPOSED BELOW-GRADE WATER LINE
UGE	PROPOSED BELOW-GRADE ELECTRIC LINE
UGC	PROPOSED BELOW-GRADE COMMUNICATION LINE
	PROPOSED SANITARY SEWER CLEANOUT
S	PROPOSED SANITARY SEWER MANHOLE
\mathbf{x}	PROPOSED FIRE HYDRANT
M	PROPOSED WATER LINE VALVE WITH BOX
	PROPOSED WATER LINE METER AND VALVE WITH BOX


NOTES:

- 1. EXISTING CONTOURS ARE REPRESENTATIVE OF AN AERIAL SURVEY FLOWN ON 08/16/2023 BY DAS GEOSPATIAL.
- 2. SEPTIC SYSTEM (TANK AND ABSORPTION FIELD) SHALL BE DESIGNED BY A LICENSED PROFESSIONAL ENGINEER/SEPTIC SYSTEM DESIGNER IN THE STATE OF TEXAS AND INSTALLED BY A LICENSED SEPTIC SYSTEM INSTALLER IN THE STATE OF TEXAS. CONTRACTOR IS RESPONSIBLE FOR CONTRACTING THE DESIGN AND BUILD OF THE SEPTIC SYSTEM. NO SEPTIC DESIGN HAS BEEN PROVIDED. CONTRACTOR SHALL COORDINATE WITH MEP IN REGARDS TO DESIGN FLOWS FOR THE SEPTIC SYSTEM.
- 3. CONTRACTOR SHALL PROVIDE PROTECTION FOR ALL WELLS, PIEZOMETERS, GAS PROBES, LEACH FIELD, AND OTHER UTILITIES AND STRUCTURES, AND SHALL REPAIR OR REPLACE ANY OF THESE WHICH ARE DAMAGED DURING THE EXECUTION OF THE WORK AT THE EXPENSE OF THE CONTRACTOR.



<u>LEGEND</u>


MAVERICK COUNTY PROPERTY BOUNDARY PROPOSED EDGE OF CONCRETE PAVEMENT TRACTOR TRAILER FRONT AXLE TRACKING TRACTOR TRAILER REAR AXLE TRACKING

FOR PERMITTING PURPOSES ONLY

PART III SITE DEVELOPMENT PLAN NARRATIVE

FOR

MAVERICK COUNTY EL INDIO MSW LANDFILL TCEQ PERMIT NO. MSW 2316

Prepared for:

Maverick County Solid Waste Authority 16179 FM 1021 El-Indio, Texas 78860

And

Maverick County 500 Quarry Street, Suite 3 Eagle Pass, Texas 78852 830/773-3824

PERMIT ISSUED: SEPTEMBER 11, 2007

REVISIONS 1, 2, 3, 4, 5 & 6 PREPARED BY:

SCS ENGINEERS Texas Board of Professional Engineers Reg. No. F-3407 1901 Central Drive, Suite 550 Bedford, Texas 76021 817/571-2288

Revision 1 – July 2010, October 2010, January 2011 Revision 2 – July 2014 Revision 3 – January 2024 Revision 4 – October 2024; Revision 5 – February 2025; Revision 6 – June 2025 SCS Project Nos. 16209033.00, 16214011.00, 16220088.00 & 16223092.00

TABLE OF CONTENTS

SECTION

PAGE

1.0	SOL	ID WAS	STE DATA §330.61(b), §335.505, §335.506, §335.507, & §335.508	.1
2.0	DESI	IGN DA	TA §330.63(a)	.1
	2.1		DFILL METHOD §330.63(d)(4)(B)	
	2.2		WEATHER OPERATIONS §330.63(d)(4)(a)	
	2.3		ESS CONTROL §330.63(b)(1)	
	2.4		LIFE §330.63(d)(4)(D)	
3.0	DRIN	NKING	WATER PROTECTION §330.63(a); §330.63(b)(4); §330.331	8
	3.1		R DESIGN §330.331; 330.335	
	3.2		CHATE COLLECTION SYSTEM §330.333	
	3.3		R DESIGN CONSTRAINTS §330.337	
	3.4		TS §330.555	
	3.5		S AND LINER QUALITY CONTROL PLAN §330.339; §330.341	
4.0	SUR	FACE V	VATER PROTECTION §330.15(h); §330.305(b)-(g); §330.307	10
	4.1	DISCI	HARGE OF POLLUTANTS 8330 15(h)	10
	4.2	HANI	DLING CONTAMINATED WATER §330.305(c)	11
	4.3	NATU	JRAL DRAINAGE PATTERNS §330.63(c)(1)(D)(iii)	12
	4.4	SITE	DRAINAGE DESIGN §330.305(a)-(c), (e), (f)	12
	4.5	DRAI	NAGE IMPACT §330.63(c)(1)(C)	13
	4.6	FLOO	DPLAIN CONSIDERATIONS §330.63(c)(2)	13
	4.7	FINA	DLING CONTAMINATED WATER §330.305(c) JRAL DRAINAGE PATTERNS §330.63(c)(1)(D)(iii) DRAINAGE DESIGN §330.305(a)-(c), (e), (f) NAGE IMPACT §330.63(c)(1)(C) DPLAIN CONSIDERATIONS §330.63(c)(2) L COVER EROSION PROTECTION §330.305	13
5.0	PRO	TECTIO	ON OF ENDANGERED SPECIES §330.63(b)(5)	14
			MARKERS §330.143	
6.0	LAN	DFILL	MARKERS §330.143	14
	6.1	SILE	MARKERS \$550.145(0)	14
		6.1.1	EASEMENT AND R.O.W MARKERS§330.143(b)(4)	
		6.1.2	SITE GRID SYSTEM MARKERS §330.143(b)(5)	
		6.1.3	SLER OR GLER AREA MARKERS §330.143(b)(6)	
		6.1.4	100 YEAR FLOOD LIMIT PROTECTION§330.143(b)(7)	
		6.1.5	SITE BOUNDARY MARKERS §330.143(b)(2)	
		6.1.6	BUFFER ZONE MARKERS §330.143(b)(3)	
		6.1.7	PERMANENT BENCHMARK §330.143(b)(8)	16

SCS Engineers TBPE Reg. # F-3407

ATTACHMENTS TO PART III

Attachment Description

- 1 Site Layout Plan
- 2 Fill Cross-Sections
- 3 Existing Contour Map
- 4 Geology Report
- 5 Groundwater Characterization Report
- 6 Ground and Surface Water Protection Plan and Drainage Plan
- 7 Final Contour Map
- 8 Cost Estimate for Closure and Post-Closure
- 9 Applicant's Statement
- 10 Soil and Liner Quality Control Plan (SLQCP)
- 11 Groundwater Sampling and Analysis Plan (GWSAP)
- 12 Final Closure Plan
- 13 Post-Closure Care Plan
- 14 Landfill Gas Management Plan
- 15 Leachate and Contaminated Water Plan

2.1 LANDFILL METHOD §330.63(d)(4)(B)

The permitted waste area of the landfill is 108 acres and the final cover side slopes are 3H:1V. The basic design of the Maverick County Landfill will consist of area fill both above and below ground. The site will be continuously developed using 14 disposal cells. The below-ground waste disposal will extend approximately 45 feet below ground to a finished base grade (top of liner) elevation of approximately 691 feet m.s.l. The bottom liner system of each cell will slope to drain at a minimum 2 percent toward a perforated LCS pipe located in the center of each cell. The LCS pipe will be sloped at a minimum slope of 1% towards the leachate collection sump. The landfill base grades are designed with a 1% base liner slope.

The above-ground waste disposal generally includes a 3 horizontal to 1 vertical fill slope from the landfill perimeter to a top elevation of approximately 833 feet m.s.l. with a 5% cap slope.

An eight-foot high chain-link security fence with a locking gate at the entrance to the facility has been installed on the FM 1021 perimeter of the site.

Development of the landfill will be an ongoing process throughout the projected 73 year site life. The landfill will be developed in one phase as shown on Attachment 1 of Part III. The 14 individual cells outlined represent discrete construction limits for extending the landfill floor excavation and lining system.

Throughout the development of the site where excavation is anticipated, the general excavation sequence will be as follows.

- 1. Construct temporary erosion controls including diversion berms, ditches and filter fences.
- 2. Strip and stockpile topsoil in designated areas. Construct appropriate erosion controls to maintain natural drainage patterns to the extent possible.
- 3. Excavate to the elevations shown in Part III, and stockpile soil in designated areas to construct screening berms and push wall berms when appropriate. Maintain stockpiles in compliance with the Erosion Control Plan.
- 4. Construct a compacted clay liner in accordance with the Soil Liner Quality Control Plan (SLQCP) provided in Part III, Attachment 10. In general, the constructed lined area will not exceed that area which will be covered by one lift of waste within 6 months.

Construction Sequence for Phase 1, Cell 1

1. Construct an all-weather road along the western and southern edges of the excavation. Construct the all-weather road of a surface such as asphalt, crushed

As a routine procedure, a stockpile of cover material sufficient to cover the working face or active area will be maintained near the working area. This will provide periodic cover on a contingency basis for such conditions as inclement weather, unanticipated down-time of cover hauling equipment, and fire/hot load control at the working face.

During dry weather, the operator will perform dust control by sprinkling water on the roads and ramps, as necessary.

2.3 ACCESS CONTROL §330.63(b)(1)

Site access control consists of an 8-foot chain link fence with 2-strand barbed wire top rail, in concrete footings along the FM 1021 side of the landfill and a 5-foot 5-strand barbedwire fence on steel poles with concrete footings around the remaining perimeter of the site. A gate with control features will be located at the facility entrances, including the primary entrance (i.e., the existing main entrance) and secondary entrance/exit gates. The primary entrance to the facility is to the south to optimize the site operations. This entrance provides room for one inbound and one outbound scale, with a queuing distance of 510' between the gate and inbound scale. This will provide the ability to safely maneuver traffic through the scale house area, eliminate traffic from backing up onto FM 1021, and reduce overall disposal time for customers. Also, it provides additional room for future drainage features that are proposed at the landfill.

Site personnel will inspect regularly the fencing, report any failure, and see that any damage is quickly repaired. All security features, including the entry gates, and the locks will be kept in proper working order, maintained, and quickly replaced if inoperable and/or irreparable. Maintenance will be performed on site security mechanisms (i.e. fences, locking gates) as necessary to maintain access control, as described in Part IV – Site Operating Plan, Section 4.1. The fences, gates, and other means of access control will be maintained and operated to prevent the entry of livestock, to protect the public from exposure to potential health and safety hazards, and to discourage unauthorized entry or uncontrolled disposal of solid waste or hazardous materials.

Scale house personnel at the primary entrance will control site access whenever the entry gates are open. When the site is closed, the entry gates will be closed to prevent unauthorized and uncontrolled waste disposal and locked when no personnel are present on site. Lighting will be provided at the scale house and primary entrance gate. The perimeter fencing will prevent vehicular and pedestrian access to the site at points other than the entry gates. Under normal operations, the primary entrance constructed for the facility will be the only public entrance for the landfill. Generally, the secondary entrance will be for landfill personnel or Maverick County designated personnel. However, in the event that primary entrance is inaccessible due to weather or traffic, approved waste haulers and/or the general public may be directed to through the secondary entrance. The locations of the primary and secondary entrances are shown on Part III, Attachment 1B. The primary entrance layout is shown in Part III, Attachment 1B10.

The gate attendant will direct drivers to the proper disposal area. There, the drivers will be directed to a specific unloading area. Operations over the life of the facility may include alteration to the location and quantity of entrance and administrative facilities (i.e. building, trailers, citizen service areas, fuel tanks, scales, equipment maintenance facilities, etc.) and other facility appurtenances even though they will remain in the same general location. In all cases, any alteration in the location of these facilities will be designed to increase the level of service provided by the facility without interfering with site operations.

2.4 SITE LIFE §330.63(d)(4)(D)

The disposal rate for the Maverick County Landfill is expected to range from approximately 350 tons/day to 400 tons/day. The region currently has a collection rate of 6 lbs/person/day.

MAVERICK COUNTY – EL INDIO MSW LANDFILL MAVERICK COUNTY, TEXAS PERMIT APPLICATION SITE DEVELOPMENT PLAN PART III ATTACHMENT 1

SITE LAYOUT PLAN

Prepared for:

Maverick County Solid Waste Authority 16179 FM 1021 El-Indio, Texas 78860

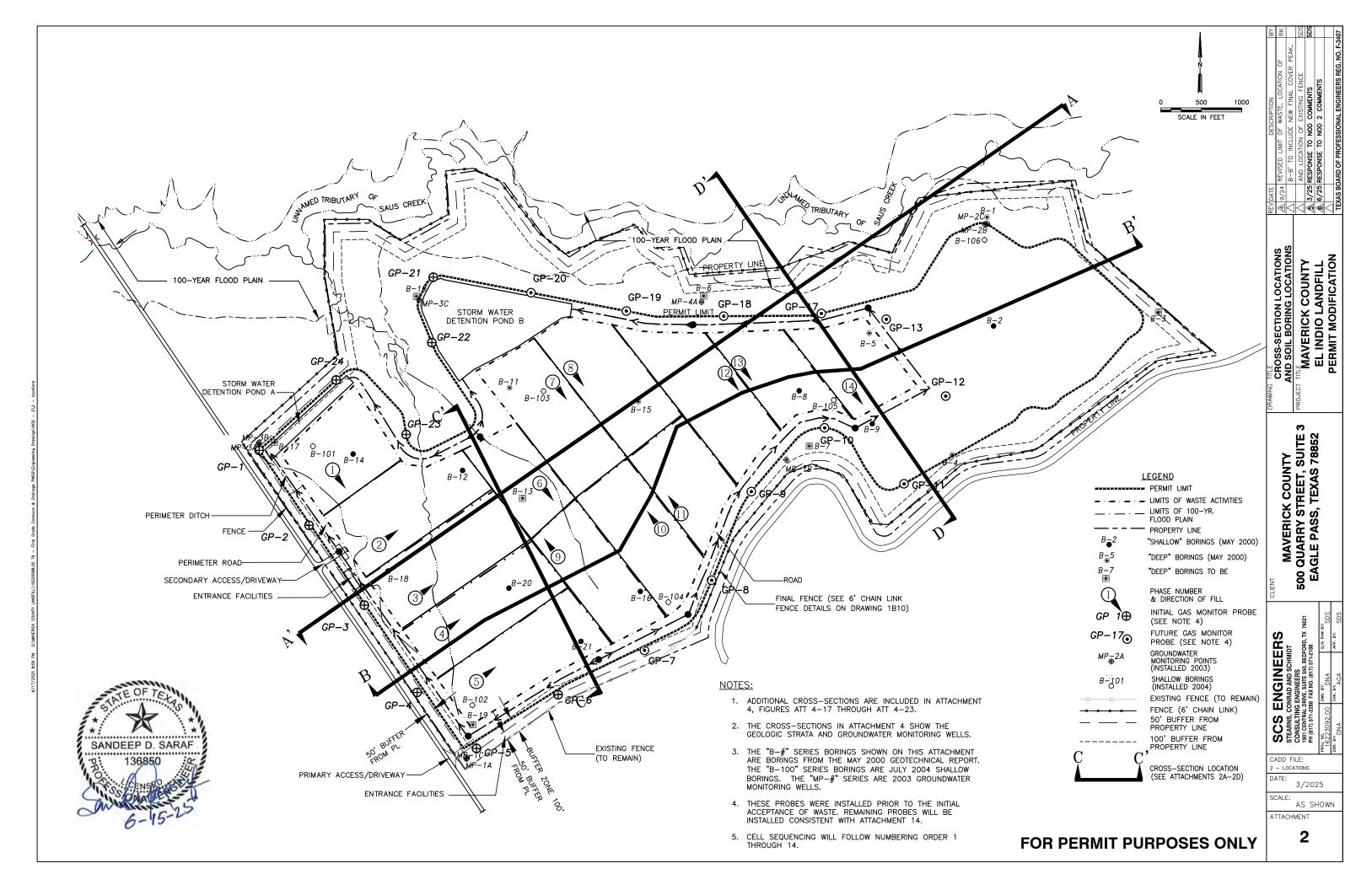
And **Maverick County** 500 Quarry Street, Suite 3 Eagle Pass, Texas 78852 830/773-3824

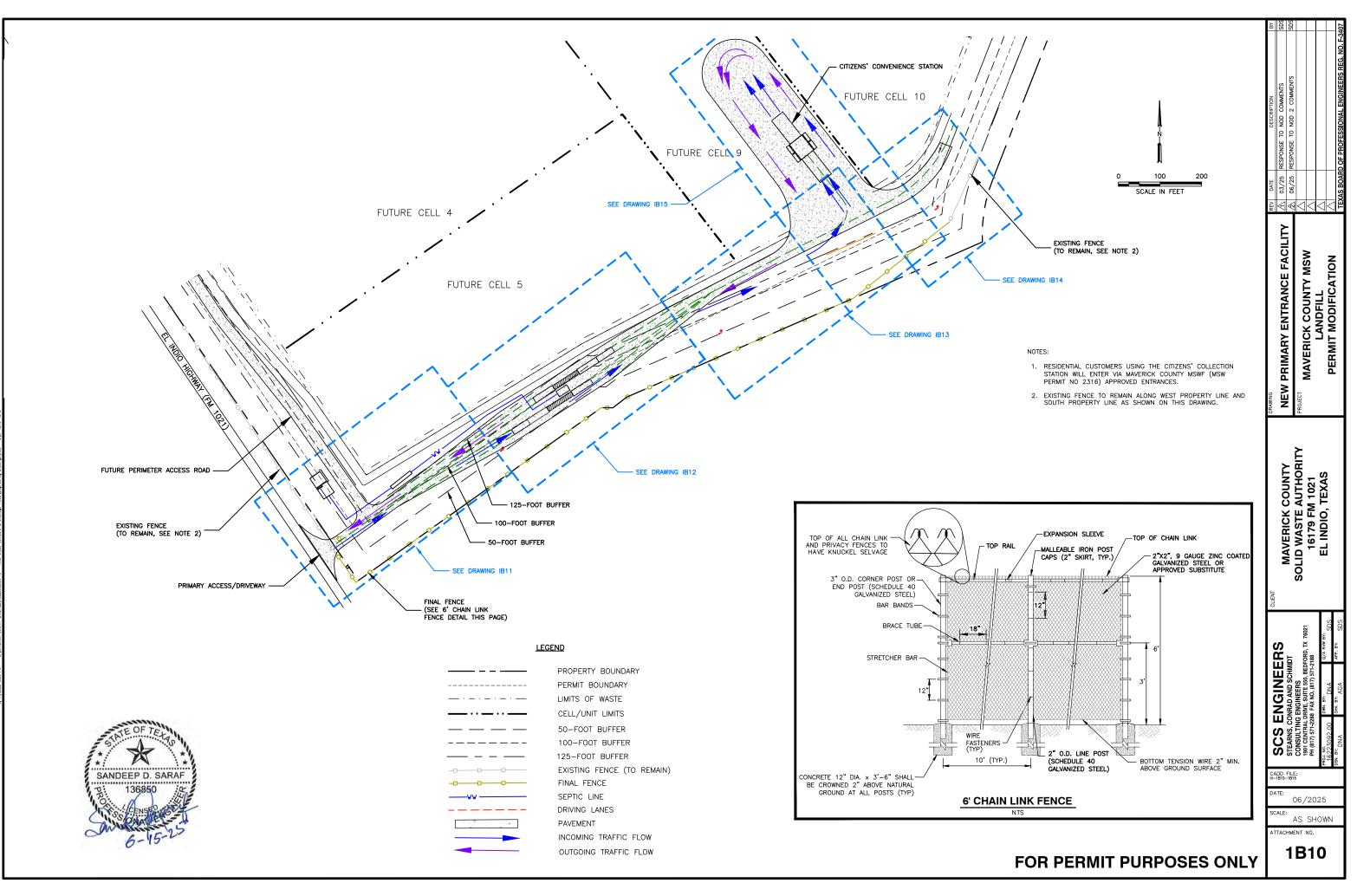
PERMIT ISSUED: SEPTEMBER 11, 2007

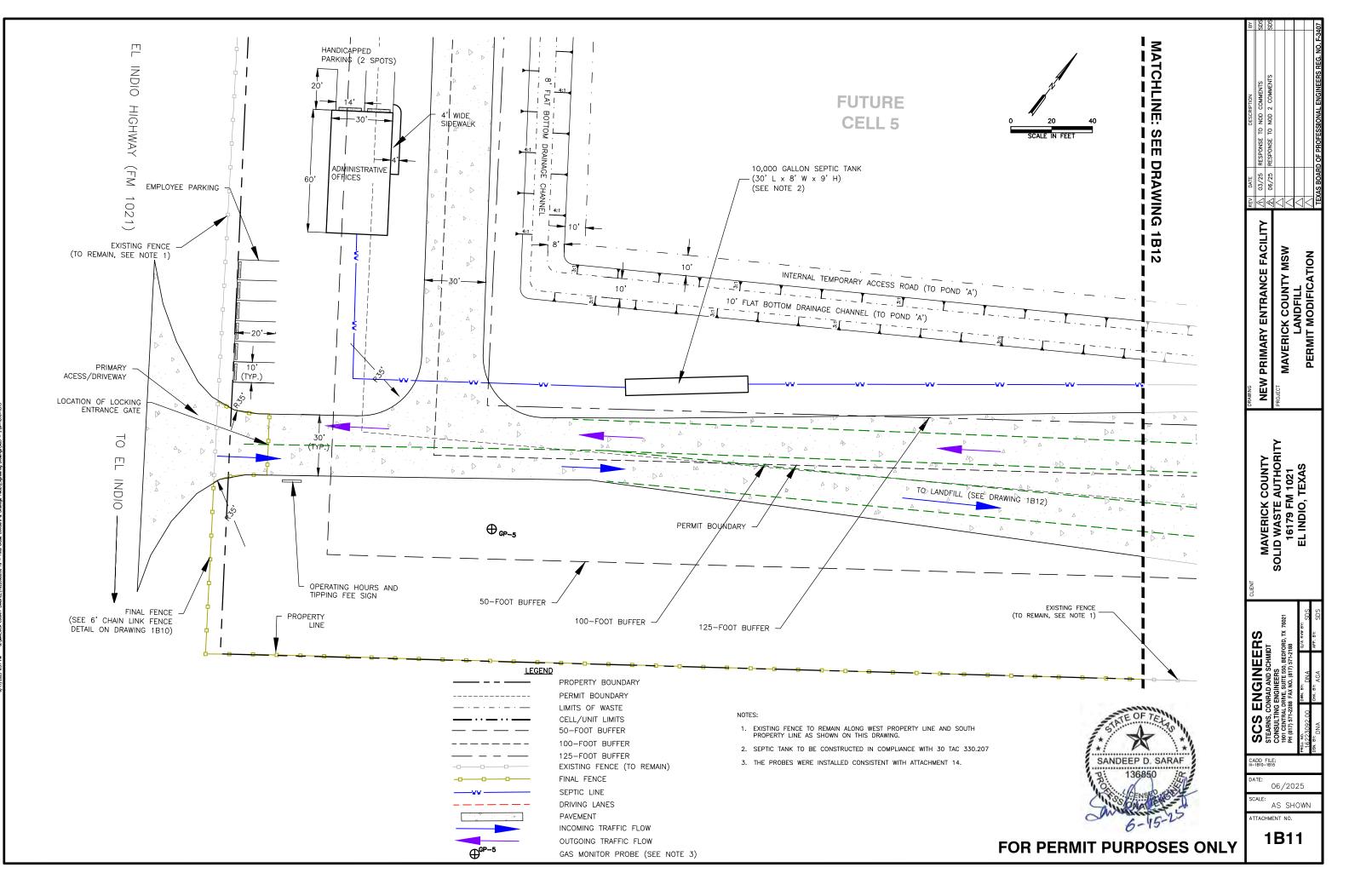
REVISIONS 2, 3, 4, 5 and 6, PREPARED BY:

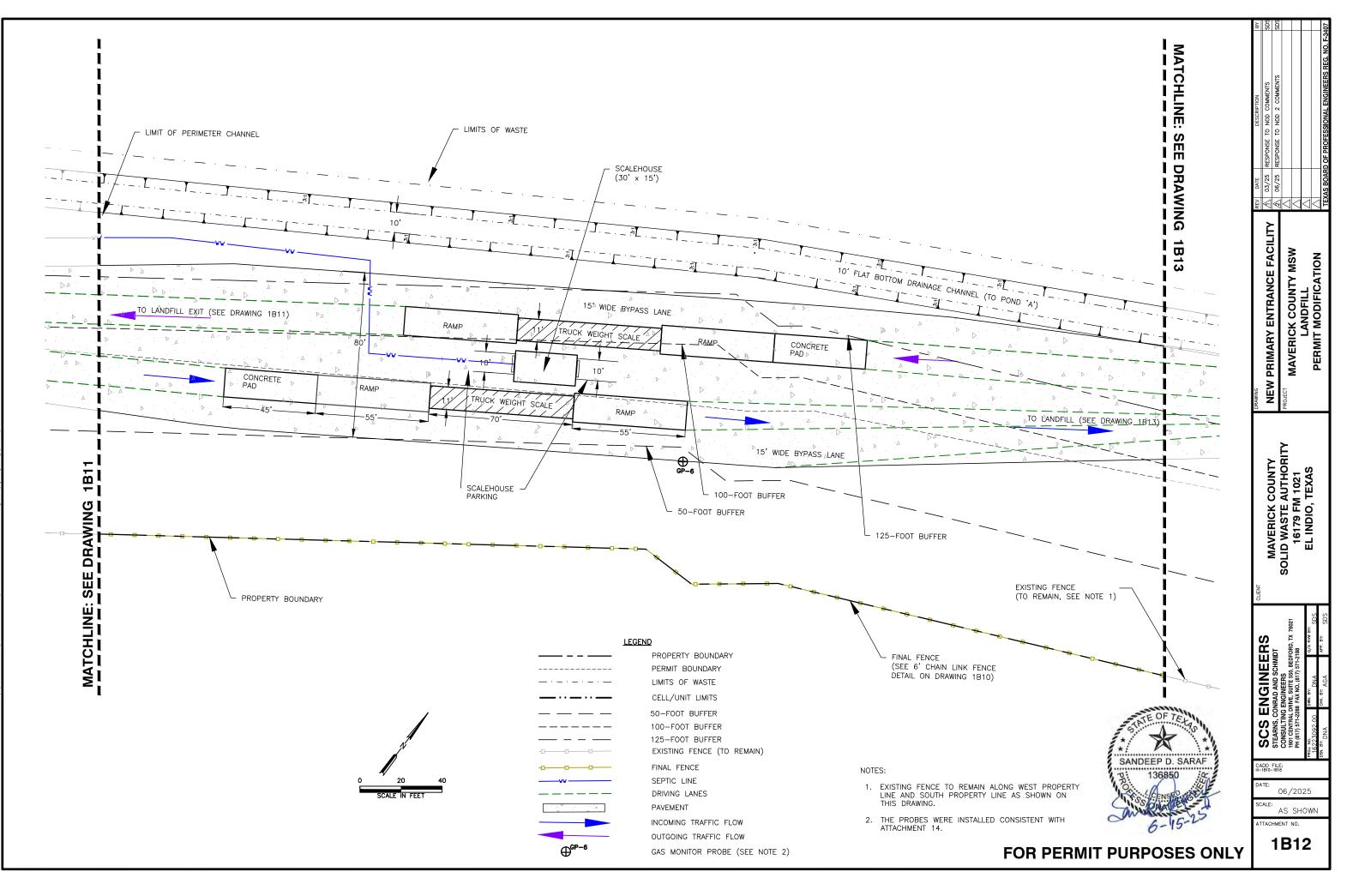
SCS ENGINEERS Texas Board of Professional Engineers Reg. No. F-3407 1901 Central Drive, Suite 550 Bedford, Texas 76021 817/571-2288

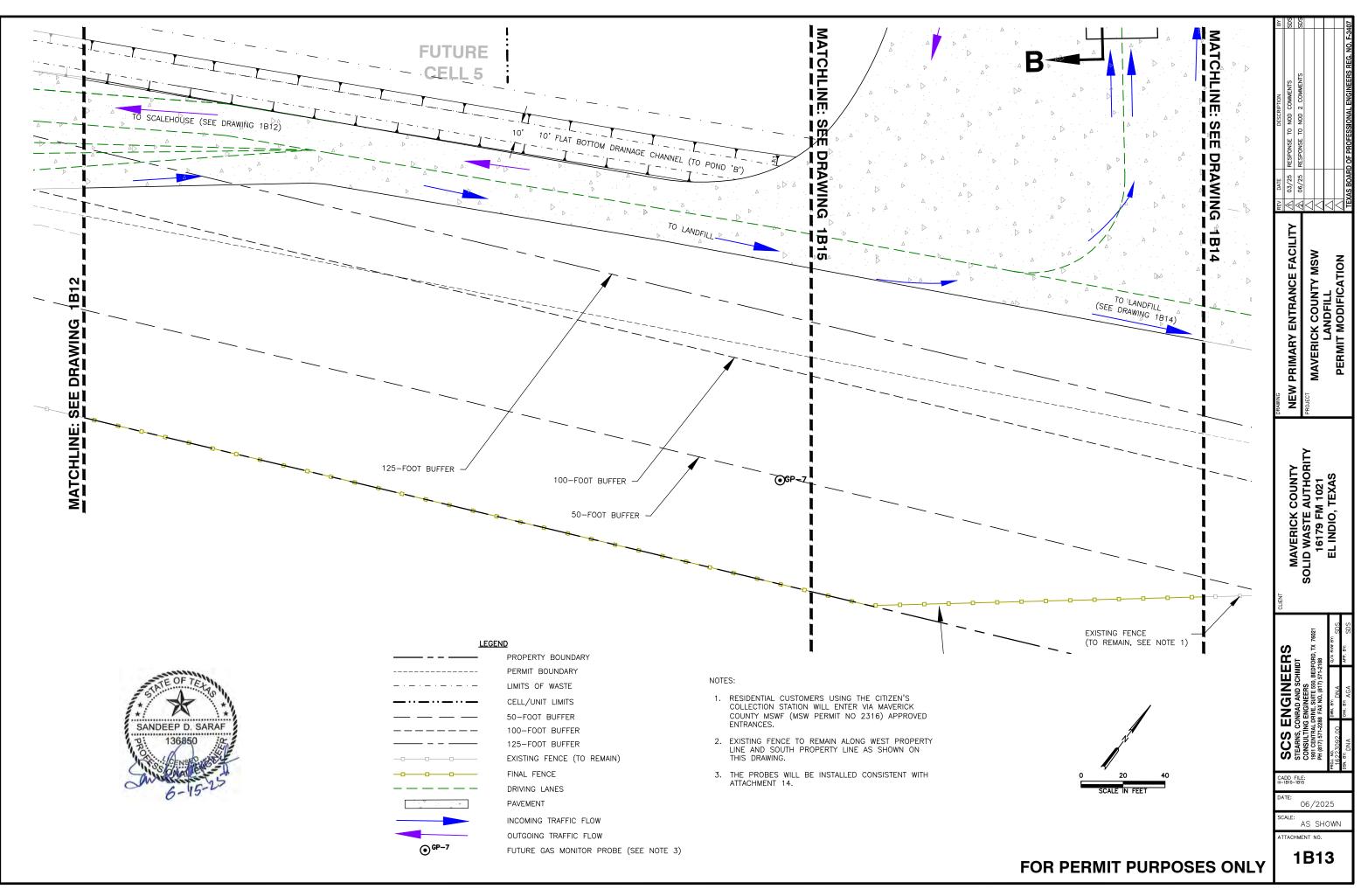
Revision 1 – January 2004, May 2004 Revision 2 – June 2009, June 2010, Revision 3 – July 2014, October 2014 Revision 4 – October 2024 Revision 5 – February 2025; Revision 6 – June 2025 SCS Project Nos. 16208046, 16209033.00, 16223092.00

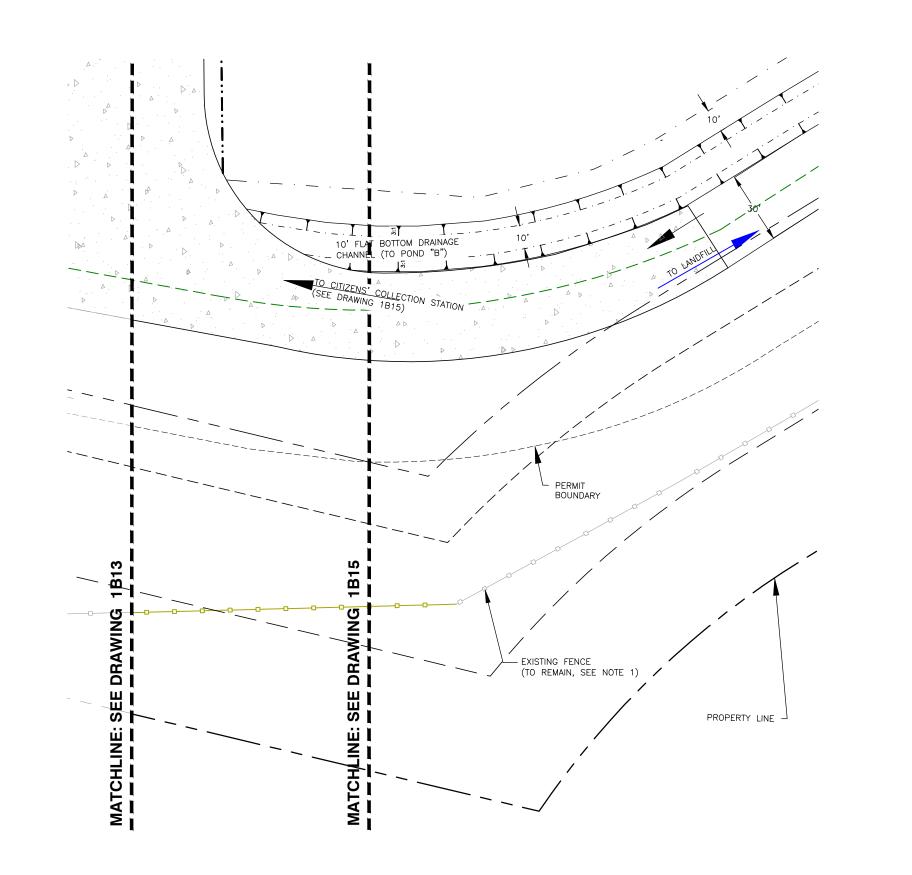

TABLE OF CONTENTS

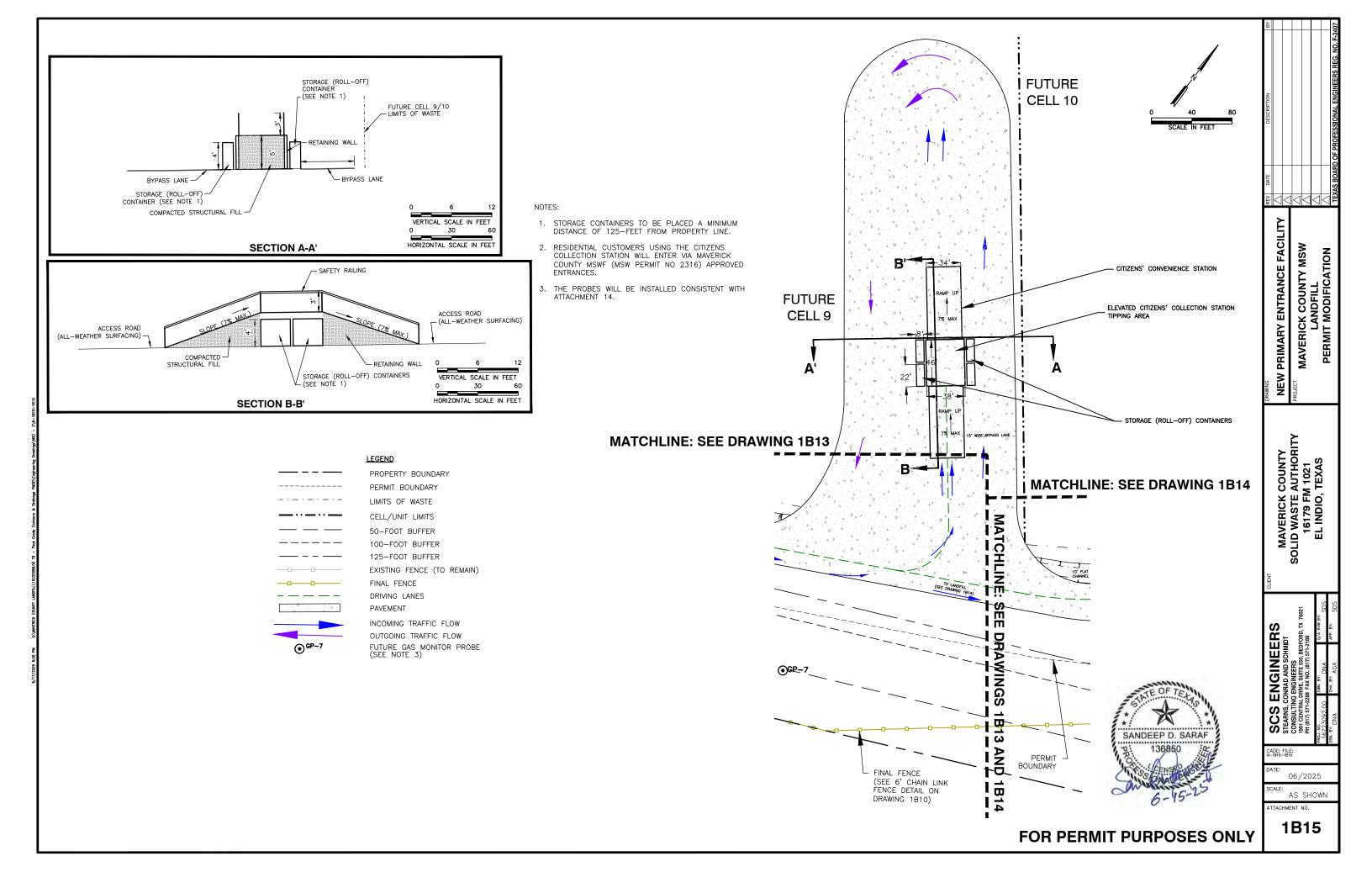

Drawings


- 1A Site Layout
- 1B Entrance Facilities
- 1B2 Administration Building Building Layout
- 1B3 Administration Building Cabinet Layout
- 1B4 Administration Building Building Plan View
- 1B5 Administration Building Building Layout Details
- 1B6 Administration Building Truck Scale Foundation Plan
- 1B7 Administration Building Truck Scale Foundation Plan
- 1B8 Administration Building Septic Tank Details
- 1B9 Administration Building Details
- 1B10 New Primary Entrance Facility
- 1B11 New Primary Entrance Facility
- 1B12 New Primary Entrance Facility
- 1B13 New Primary Entrance Facility
- 1B14 New Primary Entrance Facility
- 1B15 New Primary Entrance Facility
- 1C Site Coordinate Grid System
- 1D Top of Liner Grades
- 1D1 Excavation Grades
- 1E Development Phasing Plan
- 1E1 Development Phasing Cells 1-3




SCS Engineers TBPE Reg. # F-3407





NOTES:

MAVERICK COUNTY – EL INDIO MSW LANDFILL MAVERICK COUNTY, TEXAS PERMIT APPLICATION SITE DEVELOPMENT PLAN PART III ATTACHMENT 2

FILL CROSS-SECTIONS

Prepared for: Maverick County Solid Waste Authority 16179 FM 1021 El-Indio, Texas 78860

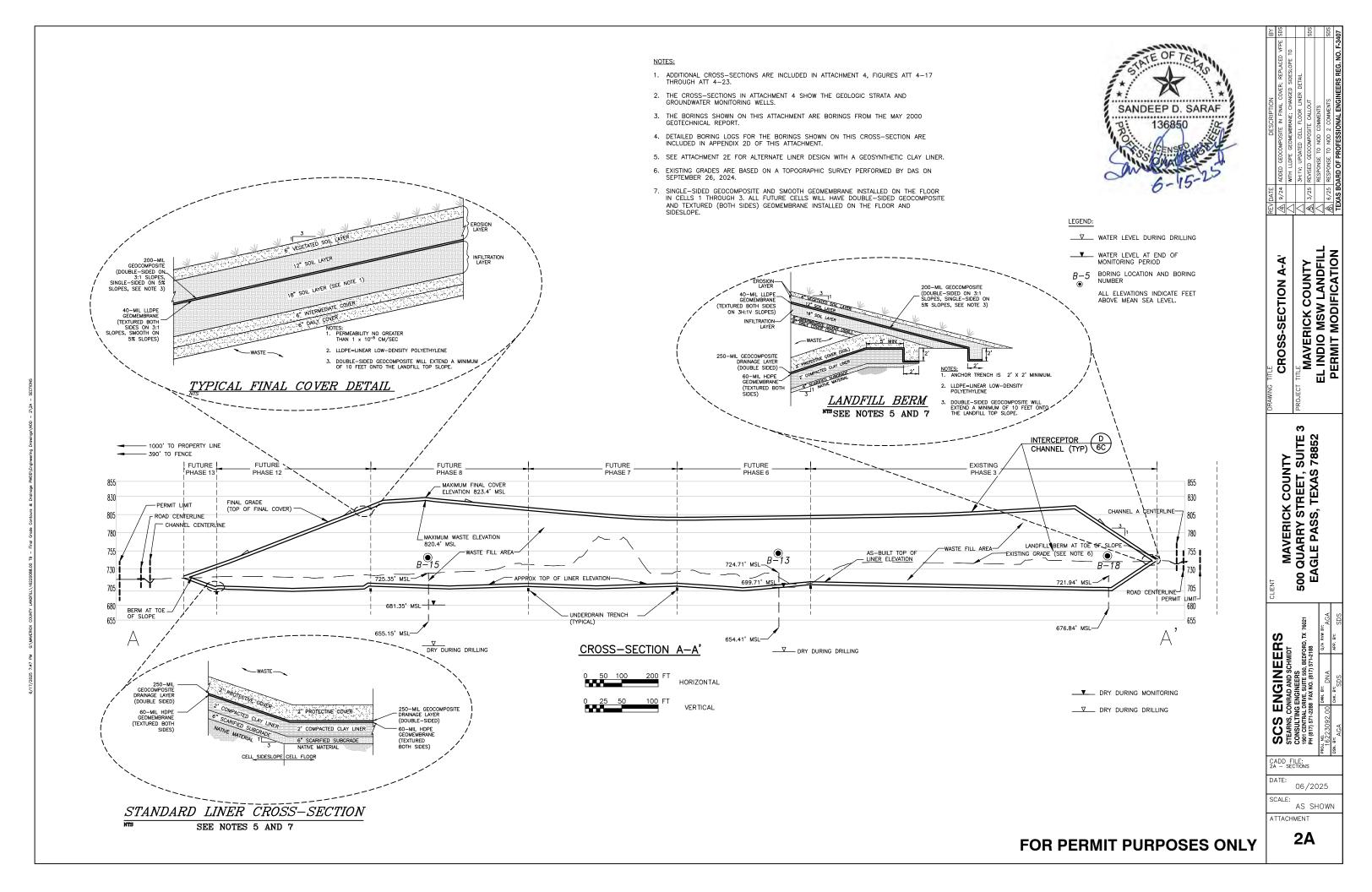
> And **Maverick County** 500 Quarry Street, Suite 3 Eagle Pass, Texas 78852 830/773-3824

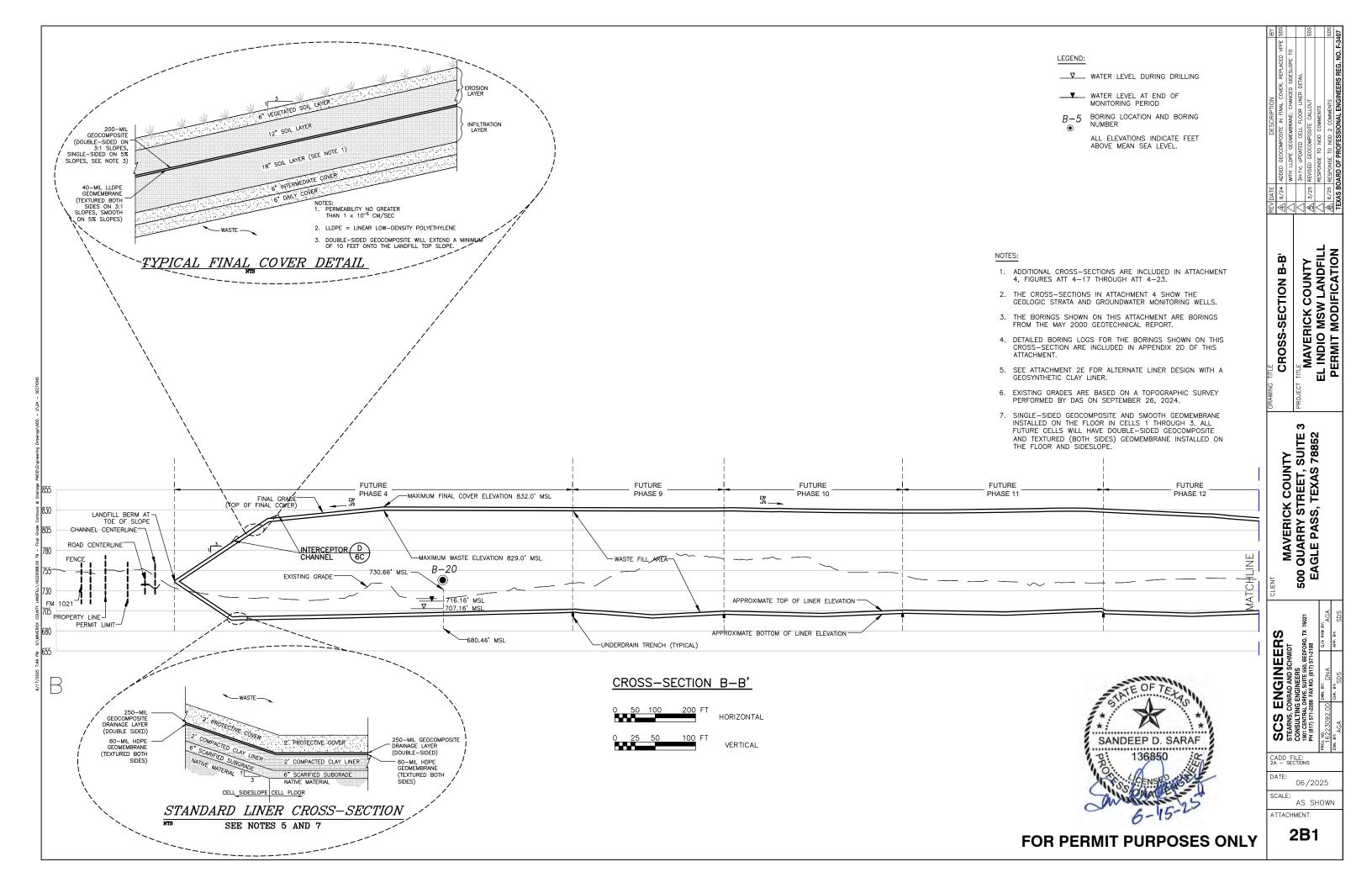
PERMIT ISSUED: SEPTEMBER 11, 2007

REVISIONS 2, 3, 4, 5, & 6 PREPARED BY:

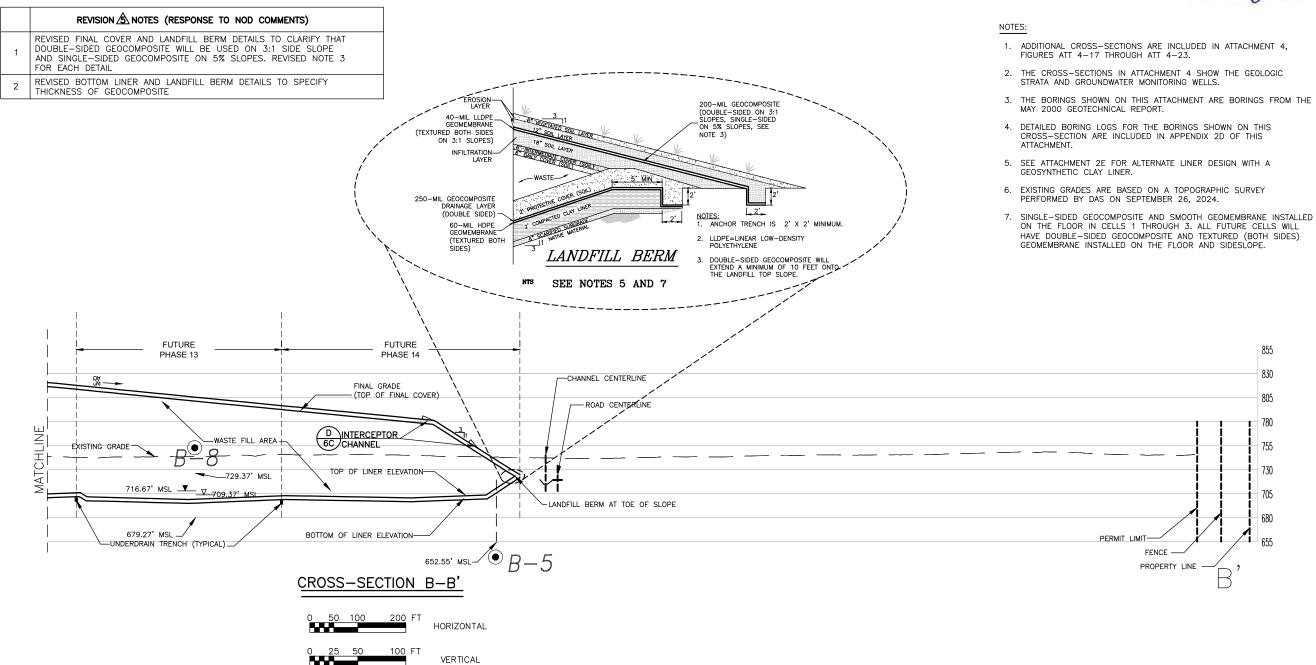
SCS ENGINEERS Texas Board of Professional Engineers Reg. No. F-3407 1901 Central Drive, Suite 550 Bedford, Texas 76021 817/571-2288

Revision 1 – January 2004, July 2004, August 2004 Revision 2 – April 2009 Revision 3 – July 2010 Revision 4 – October 2024 Revision 5 – February 2025; Revision 6 – June 2025 SCS Project No. 16208046.00, 16223092.00


TABLE OF CONTENTS


Drawings

- 2 Cross-Section Locations and Soil Boring Locations
- 2A Cross-Section A-A'
- 2B1 Cross-Section B-B' (1 of 2)
- 2B2 Cross-Section B-B' (2 of 2)
- 2C Cross-Section C-C'
- 2D Cross-Section D-D'
- 2E Alternate Liner Design



REVISION A	NOTES
------------	-------

- ADDED GEOCOMPOSITE IN FINAL COVER 1
- 2 REPLACED VFPE WITH LLDPE GEOMEMBRANE
- 3 UPDATED CELL FLOOR LINER DETAIL
- 4 REVISED SIDESLOPE FROM 4.5:1 TO 3:1
- 5 ADDED NOTES 6 AND 7

- REVISION A NOTES (RESPONSE TO NOD 2 COMMENTS) 1 REVISED PROFILE TO SHOW DELETED GRADES 2 EXISTING GRADES HAVE BEEN UPDATED FROM AUGUST 16, 2023 TOPOGRAPHIC SURVEY TO SEPTEMBER 26, 2024 TOPOGRAPHIC SURVEY
- 3 ADDED "FUTURE" FOR EACH PHASE CALLOUT

SANDEEP D. SARAF B. 136850 SS ENSE	REVIDATE DESCRIPTION BY ▲ 9/24 GEOCOMPOSITE IN FINAL COVER; REPLACED VFPE WITH SDS AD ▲ 1/24 GEOCOMPOSITE IN FINAL COVER; REPLACED VFPE WITH SDS AD	INEERS REG.
S ARE INCLUDED IN ATTACHMENT 4, H ATT 4–23. TTACHMENT 4 SHOW THE GEOLOGIC MONITORING WELLS. HIS ATTACHMENT ARE BORINGS FROM THE EPORT. R THE BORINGS SHOWN ON THIS DED IN APPENDIX 2D OF THIS LITERNATE LINER DESIGN WITH A D ON A TOPOGRAPHIC SURVEY PTEMBER 26, 2024. TE AND SMOOTH GEOMEMBRANE INSTALLED THROUGH 3. ALL FUTURE CELLS WILL DMPOSITE AND TEXTURED (BOTH SIDES) N THE FLOOR AND SIDESLOPE.	DRAWING TITLE CROSS-SECTION B-B'	PROJECT TITLE MAVERICK COUNTY EL INDIO MSW LANDFILL PERMIT MODIFICATION
855 830 805 780 755 730		500 QUARRY STREET, SUITE 3 EAGLE PASS, TEXAS 78852
FENCE	SCS ENGINEERS STEARNS, CONRAD AND SCHMIDT	PROJ
FOR PERMIT PURPOSES ONLY	DATE: SCALE: ATTACH	06/2025 AS SHOWN

NOTES:

LEGEND:

MONITORING PERIOD

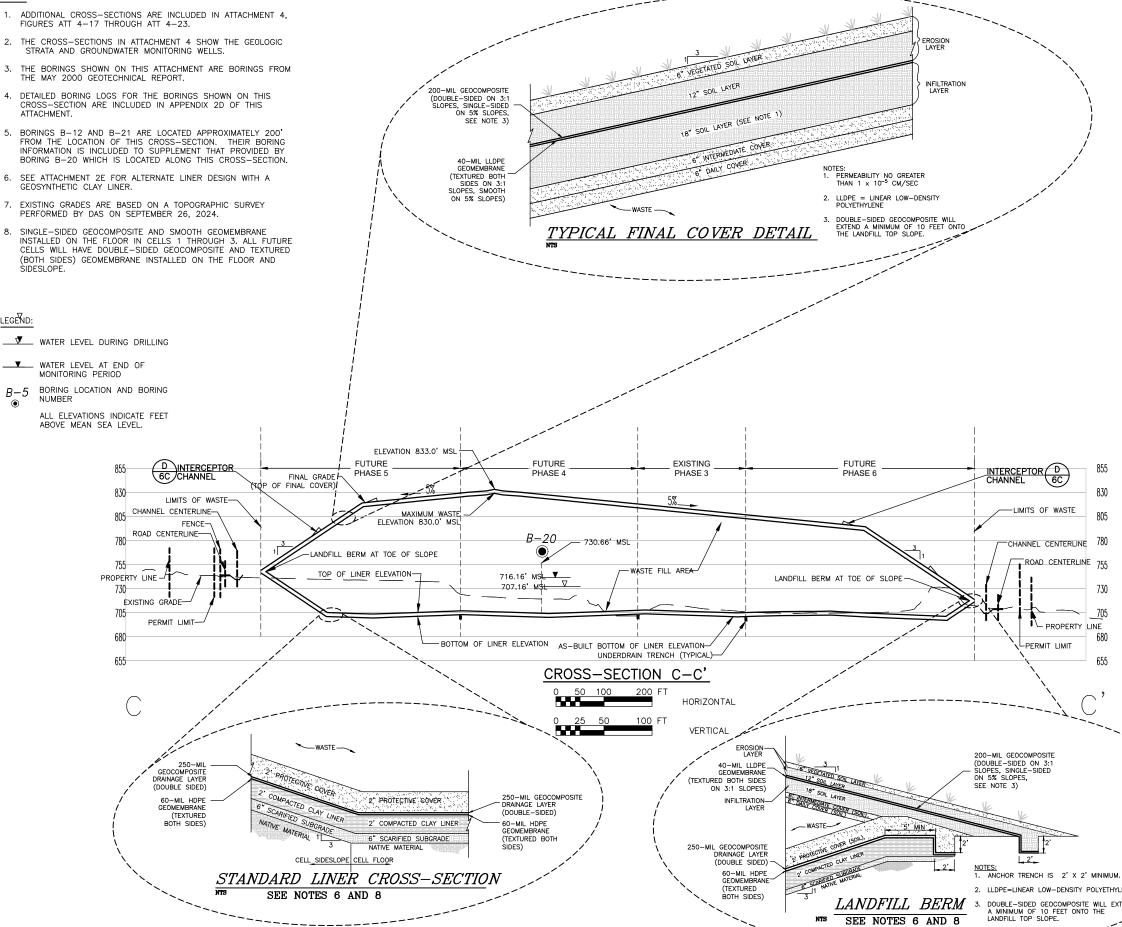
855

830-

780

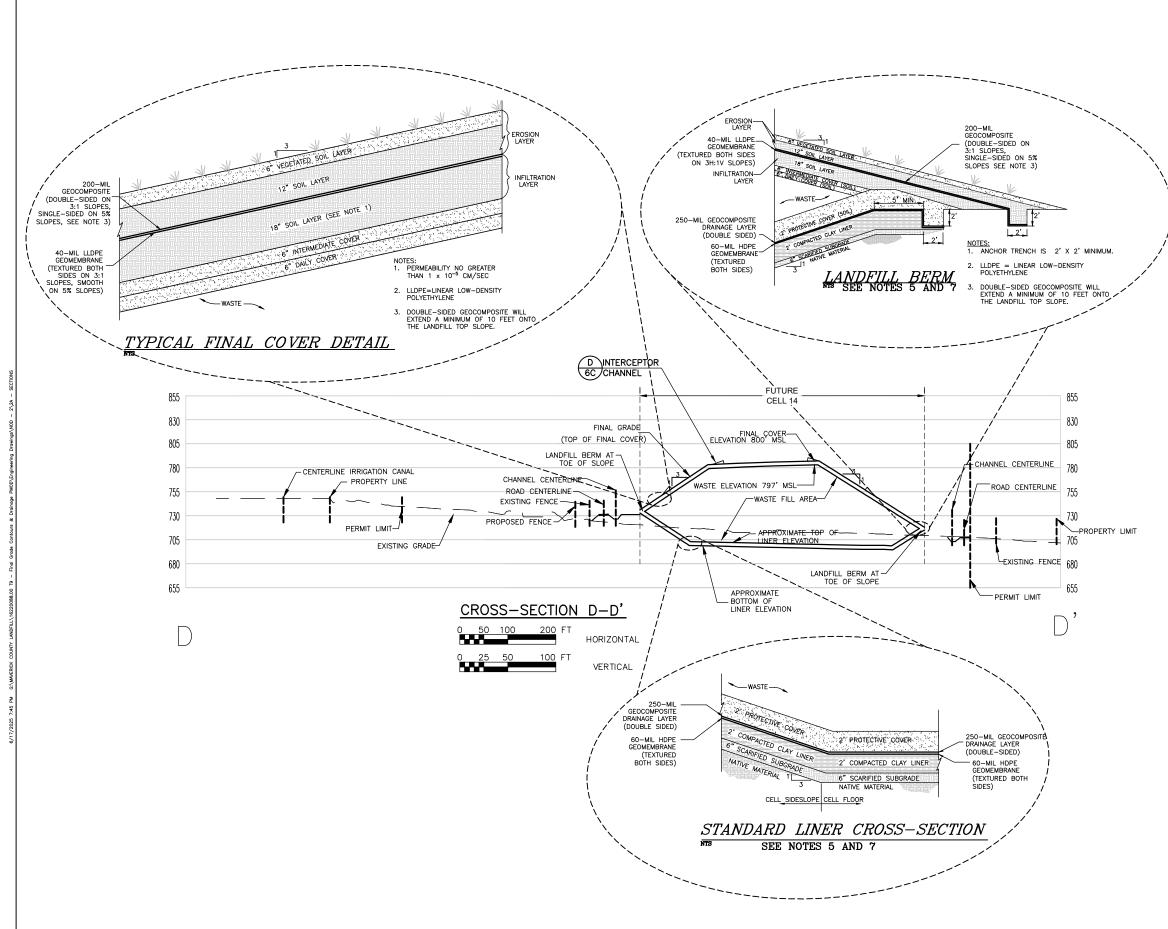
755

730-


705

680

655


NUMBER

- 1. ADDITIONAL CROSS-SECTIONS ARE INCLUDED IN ATTACHMENT 4, FIGURES ATT 4-17 THROUGH ATT 4-23.
- 2. THE CROSS-SECTIONS IN ATTACHMENT 4 SHOW THE GEOLOGIC STRATA AND GROUNDWATER MONITORING WELLS.
- 3. THE BORINGS SHOWN ON THIS ATTACHMENT ARE BORINGS FROM THE MAY 2000 GEOTECHNICAL REPORT.
- 4. DETAILED BORING LOGS FOR THE BORINGS SHOWN ON THIS CROSS-SECTION ARE INCLUDED IN APPENDIX 2D OF THIS ATTACHMENT.
- 5. BORINGS B-12 AND B-21 ARE LOCATED APPROXIMATELY 200' FROM THE LOCATION OF THIS CROSS-SECTION. THEIR BORING INFORMATION IS INCLUDED TO SUPPLEMENT THAT PROVIDED BY BORING B-20 WHICH IS LOCATED ALONG THIS CROSS-SECTION
- 6. SEE ATTACHMENT 2E FOR ALTERNATE LINER DESIGN WITH A GEOSYNTHETIC CLAY LINER.
- 7. EXISTING GRADES ARE BASED ON A TOPOGRAPHIC SURVEY PERFORMED BY DAS ON SEPTEMBER 26, 2024.
- 8. SINGLE-SIDED GEOCOMPOSITE AND SMOOTH GEOMEMBRANE INSTALLED ON THE FLOOR IN CELLS 1 THROUGH 3. ALL FUTURE CELLS WILL HAVE DOUBLE-SIDED GEOCOMPOSITE AND TEXTURED (BOTH SIDES) GEOMEMBRANE INSTALLED ON THE FLOOR AND SIDESLOPE.

	BY	/FPE SDS		SDS	SDS	F-3407
SANDEEP D. SARAF B. 136850 SS ENSPORTS	REV DATE DESCRIPTION	▲ 9/24 ADDED GEOCOMPOSITE IN FINAL COVER; REPLACED VFPE SDS ▲ with 1 INDE CENTERDANE: CUMMOEN SINCEN OF TO	→ → → → → → → → → → → → → → → → → → →	3/25 REVISED GEOCOMPOSITE CALLOUT	A RESPONSE TO NOD COMMENTS	TEXAS BOARD OF PROFESSIONAL ENGINEERS REG. NO. F-3407
	DRAWING TITLE	CROSS-SECTION C-C	PROJECT TITLE	MAVERICK COUNTY	EL INDIO MSW LANDFILL	PERMIT MODIFICATION
	CLIENT	MAVERICK COUNTY	TREET, SUITE 3	EAGLE PASS TEXAS 78852		
M. YLENE	CA 2A DA		FILE: ECTION	ıs /20	C PROJ. NO. 16223092.00 DWN. BY: DNA	DSN. BY. CHK. BY. APP. BY. SDS
FOR PERMIT PURPOSES ONLY	AT		AS HMEN 2 (Т	101	N

NOTES:

- 1. ADDITIONAL CROSS-SECTIONS ARE INCLUDED IN ATTACHMENT 4, FIGURES ATT 4–17 THROUGH ATT 4–23.
- 2. THE CROSS-SECTIONS IN ATTACHMENT 4 SHOW THE GEOLOGIC STRATA AND GROUNDWATER MONITORING WELLS.
- 3. THE BORINGS SHOWN ON THIS ATTACHMENT ARE BORINGS FROM THE MAY 2000 GEOTECHNICAL REPORT.
- 4. DETAILED BORING LOGS FOR THE BORINGS SHOWN ON THIS CROSS-SECTION ARE INCLUDED IN APPENDIX 2D OF THIS ATTACHMENT.
- 5. SEE ATTACHMENT 2E FOR ALTERNATE LINER DESIGN WITH A GEOSYNTHETIC CLAY LINER.
- 6. EXISTING GRADES ARE BASED ON A TOPOGRAPHIC SURVEY PERFORMED BY DAS ON SEPTEMBER 26, 2024.
- SINGLE-SIDED GEOCOMPOSITE AND SMOOTH GEOMEMBRANE INSTALLED ON THE FLOOR IN CELLS 1 THROUGH 3. ALL FUTURE CELLS WILL HAVE DOUBLE-SIDED GEOCOMPOSITE AND TEXTURED (BOTH SIDES) GEOMEMBRANE INSTALLED ON THE FLOOR AND SIDESLOPE.

LEGEND:

WATER LEVEL DURING DRILLING		WATER	LEVEL	DURING	DRILLING
-----------------------------	--	-------	-------	--------	----------

- → WATER LEVEL AT END OF MONITORING PERIOD
- B-5 BORING LOCATION AND BORING ● NUMBER

ALL ELEVATIONS INDICATE FEET ABOVE MEAN SEA LEVEL.

FOR PERMIT PURPOSES ONLY

PART III

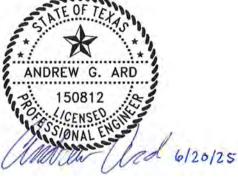
ATTACHMENT 6

GROUNDWATER AND SURFACE WATER PROTECTION PLAN AND DRAINAGE PLAN

FOR

MAVERICK COUNTY EL INDIO MSW LANDFILL TCEQ PERMIT NO. MSW-2316

Prepared for: Maverick County 500 Quarry Street, Suite 3 Eagle Pass, Texas 78852 830/773-3824


PERMIT ISSUED: SEPTEMBER 11, 2007

PERMIT MODIFICATION (REVISION 1, 2, 3, 4, and 5) PREPARED BY:

SCS ENGINEERS Texas Board of Professional Engineers, Reg. No. F-3407 1901 Central Drive, Suite 550

Bedford, Texas 76021 817/571-2288

Revision 1 – April 2009 Revision 2 – June 2009 Revision 3 – August 2009 Revision 4 – October 2024 Revision 5 – February 2025 Revision 6 – June 2025 SCS Project No. 16208046.00 & 16223092.00

TABLE OF CONTENTS

SECTION

PAGE

1.0	INTE	RODUCTION1	
2.0	PRE-	-DEVELOPMENT CONDITIONS	
	2.1	Site Description1	
	2.2	Drainage Patterns	
	2.3	Drainage Area Map	
	2.4	Storm Runoff Determination	
	2.5	Pre-Development Storm Runoff	
3.0	DEV	ELOPED CONDITIONS	
	3.1	Final Grading7	
	3.2	Drainage Area Map7	
	3.3	Drainage Controls	
	3.4	Sequence of Development for Drainage Structures	
	3.5	Maintenance of Drainage Structures	
4.0	COM	IPARISON OF PRE-DEVELOPMENT AND FINAL DRAINAGE PATTERNS1	5
5.0	TPD	ES CERTIFICATION	
6.0	ERO	SION CONTROL PLAN17	

Attachments

- 6A Pre-Development Drainage Conditions
- 6A1 Calculations for Pre-Development Drainage Conditions
- 6B Final Drainage Conditions
- 6B1 Calculations for Final Drainage Conditions
- 6C Drainage Structures: Details
- 6D1 Drainage Structures: Interceptor Channel and Downchute Calculations
- 6D1A Intermediate Cover Interceptor Channel and Downchute Drainage Sub-Basins
- 6D1B Final Cover Interceptor Channel Drainage Sub-Basins
- 6D1C Final Cover Downchute Drainage Sub-Basins
- 6D2 Drainage Structures: Perimeter Channel Calculations
- 6D3 Drainage Structures: Culvert at Main Entrance Calculations
- 6E1 Detention Ponds: Detention Pond A Design
- 6E2 Detention Ponds: Detention Pond B Design
- 6F Temporary Erosion & Sedimentation Control Measures

Appendices

- 1. Reference Material: City of Austin Drainage Criteria Manual
- 2. Erosion and Sedimentation Control Plan
- 2A. Soil Loss Analysis
- 2B. Overland Flow Velocity Analysis
- 3A. Reference Material: Soil Survey Map and Description, USLE/RUSLE References
- 4. Reference Material: Hydrology and Hydraulic Calculation References, MACCAFERRI Reno Mattress Information

pre-development condition. All stormwater will continue to be directed to the existing tributary of Saus Creek.

Pursuant to the drainage calculations presented in Attachments 6A, 6A1, 6B, 6B1, and stormwater detention design information presented in Attachment 6E, the post-landfill development drainage condition (final drainage condition) will not significantly alter pre-development drainage patterns in the vicinity of the landfill. The pre-development and final drainage conditions based on the 25-year, 24-hour storm event are summarized in the following tables. As shown below, the stormwater discharge and runoff volume leaving the property at Discharge Point I+II+III will not be greater than the pre-development conditions. While the discharge does increase at Discharge Point II, the creek is not adversely affected as the overall flow and runoff volume have not increased.

Discharge Point	Pre-	Pre-	Final Q25	Final Q100
	Development	Development		
	Q25	Q100		
Ι	212.55 cfs	333.90 cfs	<u>≤</u> 174.44cfs	<u>≤</u> 234.68cfs
II	94.60 cfs	148.69 cfs	<u>≤</u> 197.84cfs	<u><</u> 268.11cfs
III	111.97 cfs	175.97 cfs	<u><</u> 73.98 cfs	<u><</u> 99.19 cfs
I+II+III	408.60 cfs	624.90 cfs	<u><</u> 408.40cfs	<u><</u> 552.61cfs

Table 4.1 – Peak Discharge	Table	4.1	– Ľ	eak	Disc	charge
----------------------------	-------	-----	-----	-----	------	--------

Table 4.2 – Peak Velocity

Discharge Point	Pre-	Pre-	Final Q25	Final Q100
	Development	Development		
	Q25	Q100		
Ι	4.71 ft/s	5.37 ft/s	<u>≤</u> 4.46 ft/s	<u>≤</u> 4.86 ft/s
Π	2.58 ft/s	2.91 ft/s	<u>≤</u> 3.14 ft/s	<u>≤</u> 3.42 ft/s
III	2.24 ft/s	2.55 ft/s	<u>≤</u> 2.00 ft/s	<u>≤</u> 2.17 ft/s
I+II+III	3.69 ft/s	4.12 ft/s	<u>≤</u> 3.68 ft/s	<u>≤</u> 3.98 ft/s

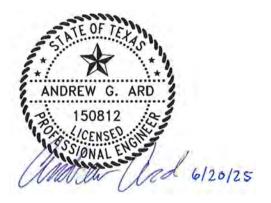
Discharge Point	Pre-	Final Q25
	Development	
	Q25	
I+II+III	3,644,945 cf	<u><3,196,279</u> cf

 Table 4.3 – Runoff Volume

5.0 TPDES CERTIFICATION

Consistent with the Texas Pollutant Discharge Elimination System (TPDES) General Permit, TXR050000, a Notice of Intent (NOI) for stormwater discharge associated with an industrial activity will be filed with the TCEQ prior to beginning landfill operations. Additionally, in accordance with the TPDES General Permit, a stormwater pollution prevention plan (SWPPP) will be prepared and implemented at the landfill prior to submitting the NOI. The NOI and SWPPP will be maintained at the landfill in the Site Operating Record.

6.0 EROSION CONTROL PLAN


An erosion control plan is included as Appendix 2 of this Attachment. Estimates of soil loss over the development and 30 year post-closure period are also included in this appendix.

Part III

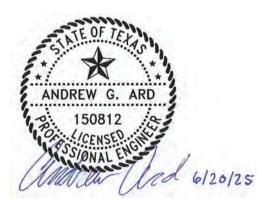
Attachment 6

Attachment 6A1

CALCULATIONS FOR PRE-DEVELOPMENT DRAINAGE CONDITIONS

Mau	renick G	unty L	F	Location EI	Endio, TK			Ву ДА		Date 6/	18/25
Check or	/	ent 🗌 De		Frequency (yr)	25-yr.			Checked		Date 6/1	8/25
Subarea name	Drainage area A _m (mi ²)	Time of concen- tration T _C (hr)	Travel time through subarea T _t (hr)	Downstream subarea names	Travel time summation to outlet ΣT _t (hr)	24-hr rain- fall P (in)	Runoff curve number CN	Runoff Q (in)	A _m Q (mi²—in)	Initial abstraction I _a (in)	I _a /F
l	0-0034	0-17	0.02	2	0.05	7.86	80	5.50	0-0187	0.5	0.1
2	0-140(0.48	0.03	1	0.03	7.86	80	5.50	6. 7722	0.5	0.1
3	0.0671	0.48	0.07	2	0.1	7.86	80	5.50	0.3691	6.5	6.1
4	6.0794	0.61	0.07	2,3	0.17	7.86	80	5.50	0.4367	6.5	0.1
5	0.0047	6.53	0	1,2	0.05	7.86	80	5.50	0.0259	0.5	0.1
		From wo	rksheet 3				From wo	orksheet 2		From table 5-1	

Worksheet 5a: Basic watershed data

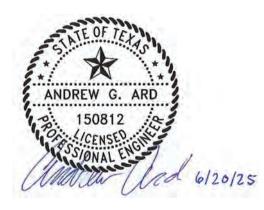

6A1-4

MAVERICK COUNTY EL INDIO LANDFILL PRE-DEVELOPMENT - RUNOFF VOLUME CALCULATIONS -

																			Hyd	rograph I	Discharge	(cfs)															
	Watersh	hed Data					Hydrograph Time (hrs)																														
Subarea Name	Subarea Tc	Tt to Outle	t IA/P	AmQ	11.0	11	1.3	11.6	11.9	12.0	12.1	12.2	12.3	12.4	12.5	12.6	12.7	12.8	13.0	13.2	13.4	13.6	13.8	14.0	14.3	14.6	15.0	15.5	16.0	16.5	17.0	17.5	18.0	19.0	20.0	22.0	26.0
1	0.17	0.05	0.1	0.0187	0.4	0.).5	0.7	1.6	3.1	6.1	11.2	13.7	10.6	6.6	4.3	3.0	2.3	1.6	1.3	1.1	1.0	0.9	0.8	0.7	0.6	0.6	0.5	0.5	0.4	0.4	0.4	0.3	0.3	0.3	0.2	0.0
2	0.48	0.03	0.1	0.7722	13.1	17	7.8	24.7	44.0	72.6	131.3	237.8	360.6	408.5	391.5	310.4	229.3	174.5	108.1	74.1	57.1	47.1	40.9	36.3	31.7	27.8	24.7	22.4	20.1	17.8	16.2	15.4	14.7	12.4	10.8	9.3	0.0
3	0.48	0.1	0.1	0.3691	5.9	8.	3.1	11.1	18.8	29.5	51.7	93.0	145.8	178.6	184.2	160.2	126.6	97.8	59.8	39.9	29.5	24.0	20.3	18.1	15.5	13.3	12.2	10.7	9.6	8.5	7.8	7.4	7.0	5.9	5.2	4.4	0.0
4	0.61	0.17	0.1	0.4367	6.1	8.	3.3	10.9	16.6	20.5	30.1	50.7	90.4	145.0	189.5	208.3	196.1	165.1	103.9	65.1	44.1	33.6	27.1	23.1	19.7	17.0	14.8	13.1	11.8	10.5	9.6	8.7	8.3	7.4	6.1	5.2	0.0
5	0.53	0.05	0.1	0.0259	0.4	0.).6	0.8	1.3	2.1	3.6	6.5	10.2	12.5	12.9	11.2	8.9	6.9	4.2	2.8	2.1	1.7	1.4	1.3	1.1	0.9	0.9	0.8	0.7	0.6	0.5	0.5	0.5	0.4	0.4	0.3	0.0
		Con	nposite I	Iydrograph	25.9	35	5.2	48.2	82.4	127.9	222.8	399.3	620.7	755.2	784.8	694.4	563.9	446.5	277.6	183.1	134.0	107.4	90.6	79.6	68.6	59.7	53.2	47.5	42.6	37.7	34.5	32.4	30.8	26.4	22.7	19.5	0.0
		Runoff Volu	me Hydi	ograph (cf	93,29	9 126	5,843 1	173,546	296,508	460,272	802,022	1,437,385	2,234,687	2,718,805	2,825,196	2,499,993	2,030,103	1,607,566	999,305	659,339	482,230	386,626	326,181	286,551	246,937	214,871	191,422	170,904	153,380	135,856	124,241	116,760	110,919	95,034	81,779	70,096	0
	F	Runoff Volum	e Interp	oloation (cf	33,02	1 45,0	,058	70,508	37,839	63,115	111,970	183,604	247,675	277,200	266,259	226,505	181,883	260,687	165,864	114,157	86,886	71,281	61,273	80,023	69,271	81,259	90,582	81,071	72,309	65,024	60,250	56,920	102,976	88,406	151,875	140,193	0
		Runo	off Volun	ne Total (cf	3,644,9	45					· · ·			•			•	•	·		•	•		•					· · · ·		•		•	•			

Note:

1.) Watershed Data from Worksheet 5A (Attachment 6A1), as referenced in NRCS TR-55. Coefficient references for Tabular Hydrograph methodology provided in Attachment 6, Appendix 4.

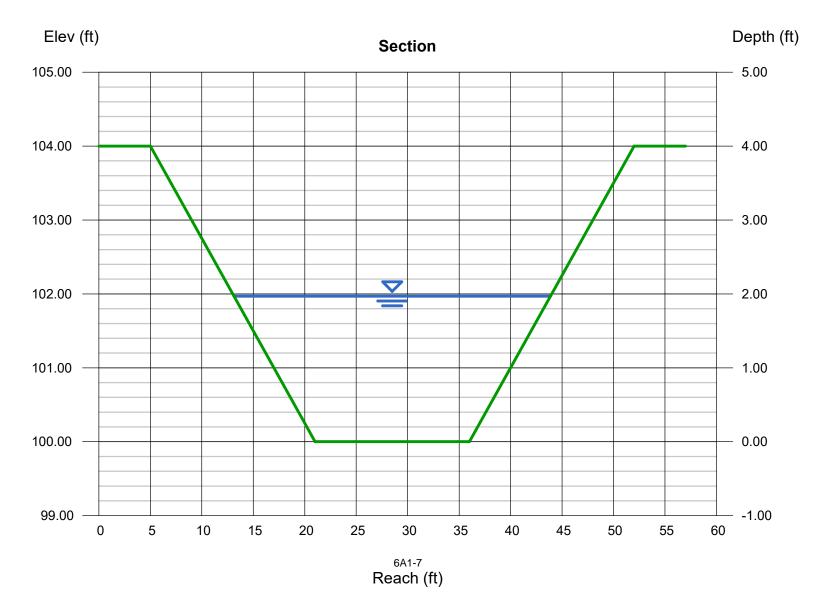

MAVERICK COUNTY EL INDIO LANDFILL - DISCHARGE POINT VELOCITY CALCULATIONS -

Discharge	Bottom	Bottom			25-yr, 24-	-hr storm ²	100-yr, 2 4	I-hr storm ²	
Point	Slope (ft/ft)	Width (ft)	Sideslope (XH:1V)	Depth (ft)	flow (cfs)	flow velocity (fps)	flow (cfs)	flow velocity (fps)	Mannings Coefficient ¹
Ι	0.0100	15	4	4	212.5	4.71	333.9	5.37	0.04
II	0.0050	15	8	4	108.5	2.58	169.8	2.91	0.04
III	0.0030	20	7	4	112.0	2.24	176.0	2.55	0.04
I+II+III	0.0050	20	9	6	408.6	3.69	624.9	4.12	0.04

Notes:

1.) Mannings coefficient is for natural, winding streams, as referenced from Table 4.1, "Design Hydrology and Sedimentology for Small Catchments", Haan et al., as described in Attachment 6, Appendix 3A.

2.) Stormwater flows were calculated using rational method and storm intensity coefficients for 25-yr, 24-hr or 100-yr, 24-hr storms, as shown in Attachment 6A1.

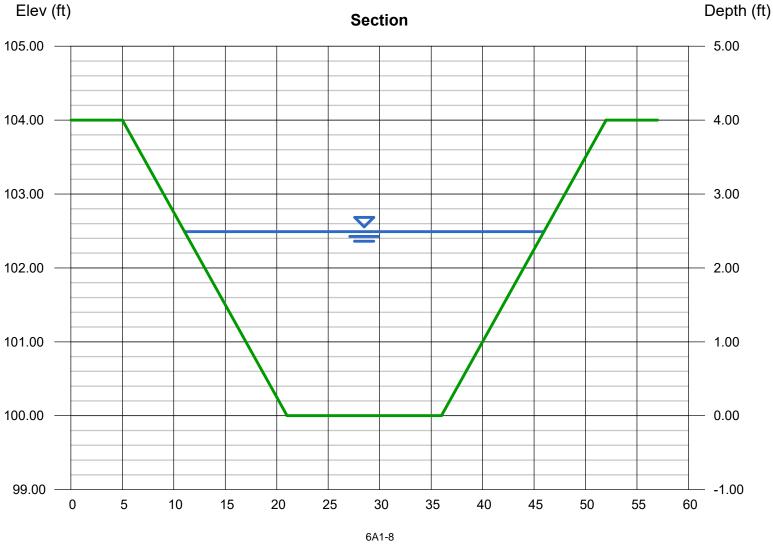


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Jun 11 2025

I

Trapezoidal		Highlighted	
Bottom Width (ft)	= 15.00	Depth (ft)	= 1.97
Side Slopes (z:1)	= 4.00, 4.00	Q (cfs)	= 212.50
Total Depth (ft)	= 4.00	Area (sqft)	= 45.07
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 4.71
Slope (%)	= 1.00	Wetted Perim (ft)	= 31.25
N-Value	= 0.040	Crit Depth, Yc (ft)	= 1.59
		Top Width (ft)	= 30.76
Calculations		EGL (ft)	= 2.32
Compute by:	Known Q		
Known Q (cfs)	= 212.50		

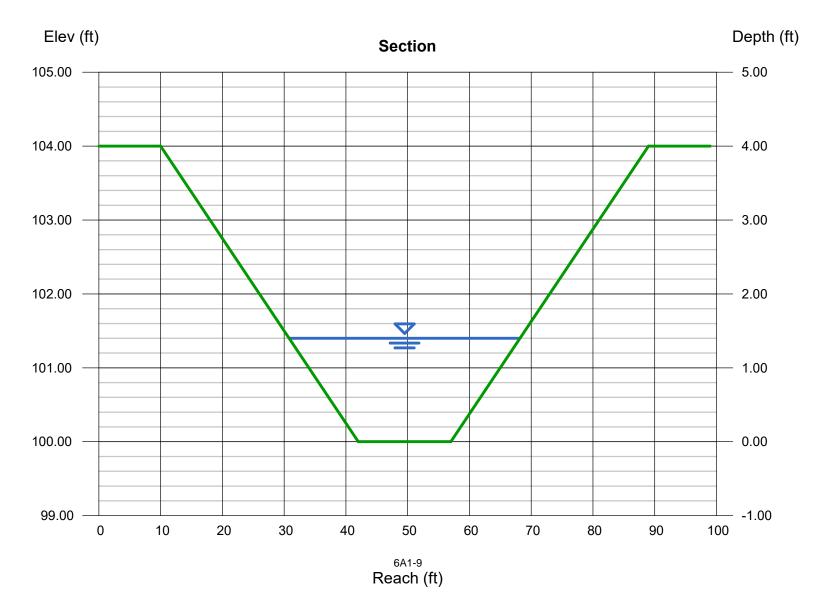


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Jun 11 2025

I - 100 yr.

Trapezoidal		Highlighted	
Bottom Width (ft)=	= 15.00	Depth (ft)	= 2.49
Side Slopes (z:1)=	= 4.00, 4.00	Q (cfs)	= 333.90
Total Depth (ft)=	= 4.00	Area (sqft)	= 62.15
Invert Elev (ft)=	= 100.00	Velocity (ft/s)	= 5.37
Slope (%)	= 1.00	Wetted Perim (ft)	= 35.53
N-Value	= 0.040	Crit Depth, Yc (ft)	= 2.06
		Top Width (ft)	= 34.92
Calculations		EGL (ft)	= 2.94
Compute by:=	Known Q		
Known Q (cfs)	= 333.90		

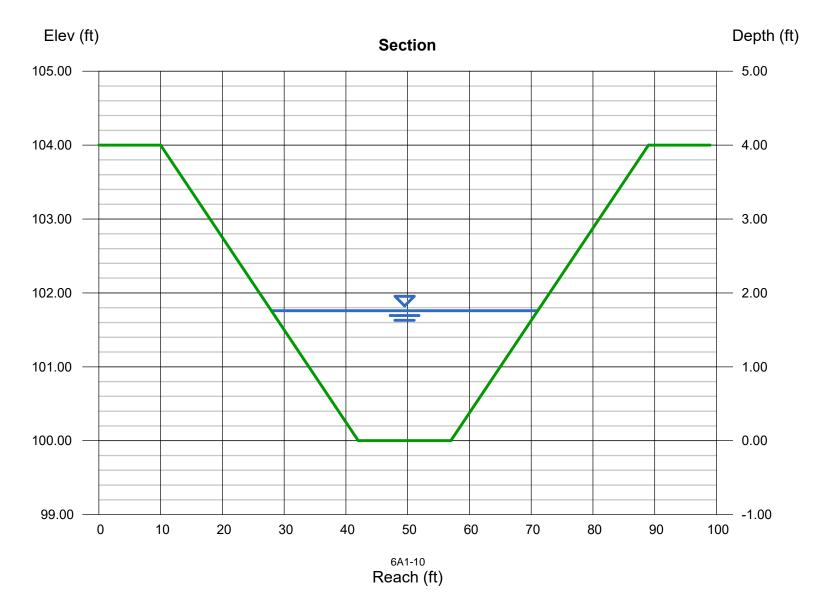


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Jun 11 2025

П

Trapezoidal		Highlighted	
Bottom Width (ft)	= 15.00	Depth (ft)	= 1.40
Side Slopes (z:1)	= 8.00, 8.00	Q (cfs)	= 94.60
Total Depth (ft)	= 4.00	Area (sqft)	= 36.68
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 2.58
Slope (%)	= 0.50	Wetted Perim (ft)	= 37.57
N-Value	= 0.040	Crit Depth, Yc (ft)	= 0.91
		Top Width (ft)	= 37.40
Calculations		EGL (ft)	= 1.50
Compute by:	Known Q		
Known Q (cfs)	= 94.60		

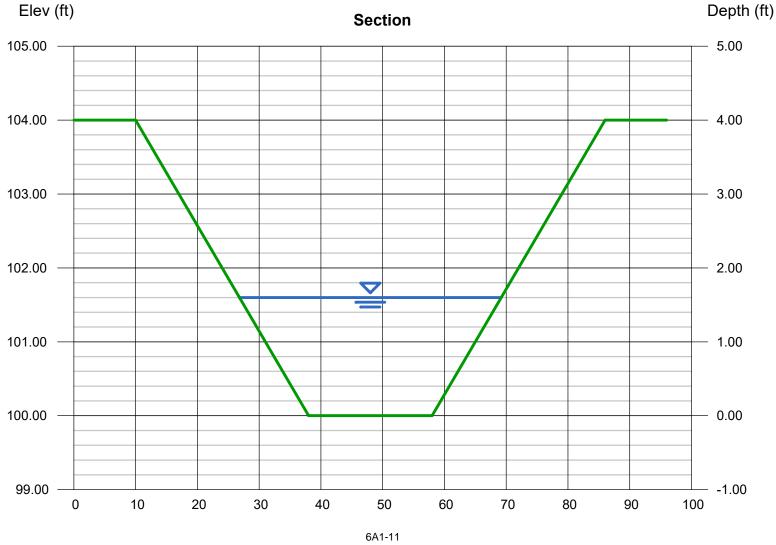


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Jun 11 2025

ll - 100 yr.

Trapezoidal		Highlighted	
Bottom Width (ft)=	= 15.00	Depth (ft)	= 1.76
Side Slopes (z:1)=	= 8.00, 8.00	Q (cfs)	= 148.70
Total Depth (ft)=	= 4.00	Area (sqft)	= 51.18
Invert Elev (ft)=	= 100.00	Velocity (ft/s)	= 2.91
Slope (%)	= 0.50	Wetted Perim (ft)	= 43.38
N-Value	= 0.040	Crit Depth, Yc (ft)	= 1.18
		Top Width (ft)	= 43.16
Calculations		EGL (ft)	= 1.89
Compute by:=	Known Q		
Known Q (cfs)	= 148.70		

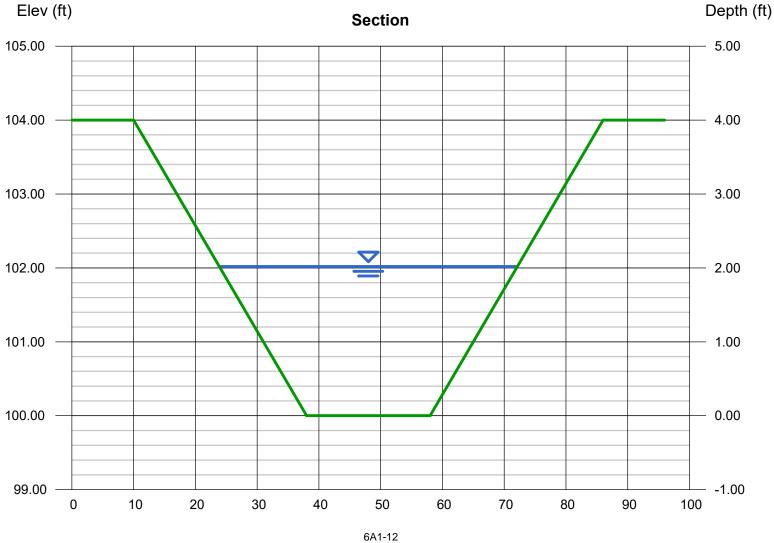


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Jun 11 2025

|||

Trapezoidal		Highlighted	
Bottom Width (ft)	= 20.00	Depth (ft)	= 1.60
Side Slopes (z:1)	= 7.00, 7.00	Q (cfs)	= 112.00
Total Depth (ft)	= 4.00	Area (sqft)	= 49.92
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 2.24
Slope (%)	= 0.30	Wetted Perim (ft)	= 42.63
N-Value	= 0.040	Crit Depth, Yc (ft)	= 0.89
		Top Width (ft)	= 42.40
Calculations		EGL (ft)	= 1.68
Compute by:	Known Q		
Known Q (cfs)	= 112.00		

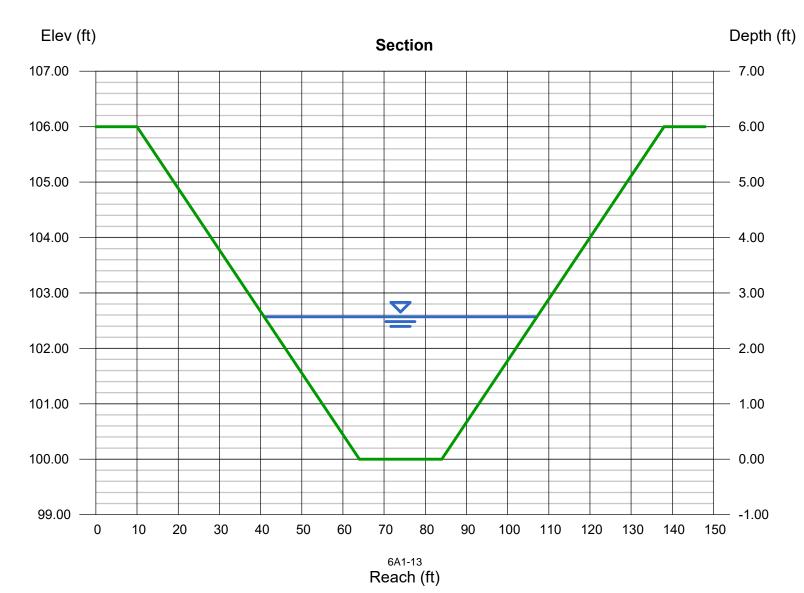


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Jun 11 2025

III - 100 yr.

Trapezoidal		Highlighted	
Bottom Width (ft)=	= 20.00	Depth (ft)	= 2.02
Side Slopes (z:1)=	= 7.00, 7.00	Q (cfs)	= 176.00
Total Depth (ft)=	= 4.00	Area (sqft)	= 68.96
Invert Elev (ft)=	= 100.00	Velocity (ft/s)	= 2.55
Slope (%)	= 0.30	Wetted Perim (ft)	= 48.57
N-Value	= 0.040	Crit Depth, Yc (ft)	= 1.17
		Top Width (ft)	= 48.28
Calculations		EGL (ft)	= 2.12
Compute by:=	Known Q		
Known Q (cfs)	= 176.00		

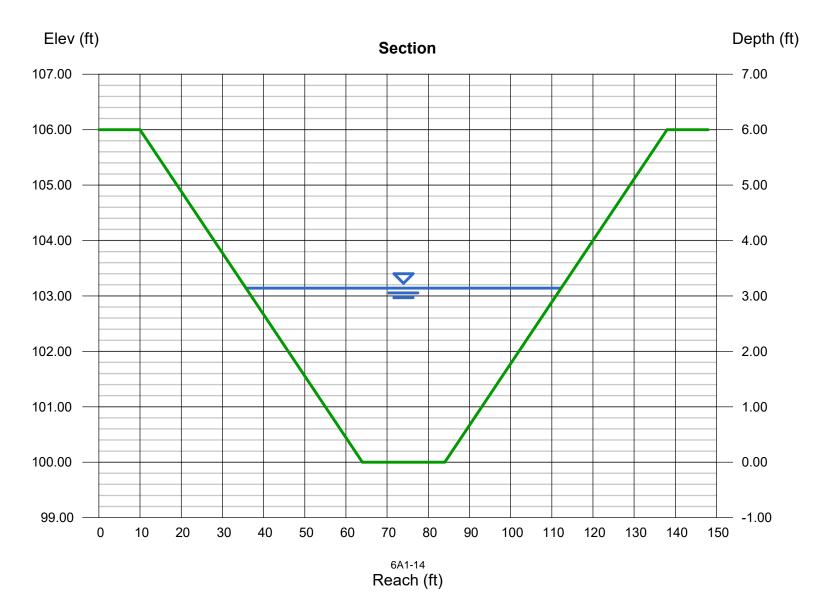


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Jun 11 2025

|+||+|||

Trapezoidal		Highlighted	
Bottom Width (ft)	= 20.00	Depth (ft)	= 2.57
Side Slopes (z:1)	= 9.00, 9.00	Q (cfs)	= 408.60
Total Depth (ft)	= 6.00	Area (sqft)	= 110.84
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 3.69
Slope (%)	= 0.50	Wetted Perim (ft)	= 66.54
N-Value	= 0.040	Crit Depth, Yc (ft)	= 1.80
		Top Width (ft)	= 66.26
Calculations		EGL (ft)	= 2.78
Compute by:	Known Q		
Known Q (cfs)	= 408.60		



Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Jun 11 2025

I+II+III - 100 yr.

Trapezoidal		Highlighted	
Bottom Width (ft)=	= 20.00	Depth (ft)	= 3.14
Side Slopes (z:1)=	= 9.00, 9.00	Q (cfs)	= 624.90
Total Depth (ft)=	= 6.00	Area (sqft)	= 151.54
Invert Elev (ft)=	= 100.00	Velocity (ft/s)	= 4.12
Slope (%)	= 0.50	Wetted Perim (ft)	= 76.87
N-Value	= 0.040	Crit Depth, Yc (ft)	= 2.25
		Top Width (ft)	= 76.52
Calculations		EGL (ft)	= 3.40
Compute by:=	Known Q		
Known Q (cfs)	= 624.90		

Part III

Attachment 6

Attachment 6B1

CALCULATIONS FOR

FINAL

DRAINAGE

CONDITIONS

Project Ma	werich (ounty L	F	Location EI F	inclio, TX	-		By AA	L	Date 6/1	\$/25
	ne: Pres	,		Frequency (yr)	25-yr			Checked		Date 6/18	
Subarea name	Drainage area	Time of concen- tration	Travel time through subarea	Downstream subarea names	Travel time summation to outlet	24-hr rain- fall P	Runoff curve number	Runoff		Initial abstraction	1.05
	A _m (mi ²)	T _C (hr)	T _t (hr)		ΣT _t (hr)	(in)	CN	Q (in)	A _m Q (mi²—in)	l _a (in)	I _a /F
E	0.0311	0.42	0	H,I,G,F	0.2	7.86	85	6.08	0.189	0.353	6.1
F	0.0433	0.57	6.05	-	0.1	7.86	85	6.08	0-263	0-353	0.1
G	6.0224	0-34	0.05	F	0.1	7.86	85	6.08	0.136	0.353	0.1
н	0.0187	0.44	0.06	I,6,F	0.2	7.86	85	6.08	6.114	0.353	0.1
I	0-0086	0.29	0.02	6,5	0.1.	7.86	85	6.08	0.052	0.353	0.1
4AR	0.0172	0.46	0	I,6,F,H	0.2	7.86	80	5.50	0.095	0.5	0-1
4BR	0-0448	0.47	D	I,G,F	0.1	7.86	80	5.50	6.246	0.5	0.1
		From wor	ksheet 3				From wo	orksheet 2		From table 5-1	

Worksheet 5a: Basic watershed data

6B1 - 4

MAVERICK COUNTY EL INDIO LANDFILL POST-DEVELOPMENT - RUNOFF VOLUME CALCULATIONS -

						Hydrograph Discharge (cfs)																													
	Watersh	ed Data				Hydrograph Time (hrs)																													
Subarea Name	Subarea Tc	Tt to Outle	et IA/P	AmQ	11.0	11.3	11.6	11.9	12.0	12.1	12.2	12.3	12.4	12.5	12.6	12.7	12.8	13.0	13.2	13.4	13.6	13.8	14.0	14.3	14.6	15.0	15.5	16.0	16.5	17.0	17.5	18.0	19.0	20.0	22.0 26.0
A,B,C,D (Pond A)	0.56	0.50	0.1	0.578	9.7	11.8	14.8	46.9	62.7	86.4	105.3	126.7	128.4	125.9	119.1	109.3	84.7	58.1	38.8	24.4	19.9	15.9	14.2	11.9	10.7	9.6	8.5	7.6	6.7	6.2	5.6	5.4	4.7	4.0	3.5 0.0
Е	0.42	0.35	0.1	0.189	2.8	3.8	5.3	0.8	11.2	18.3	33.8	59.7	85.8	98.8	92.4	75.8	58.4	33.6	21.2	15.3	12.3	10.6	9.3	7.9	7.0	6.2	5.7	4.9	4.3	4.0	3.8	3.6	3.2	2.6	2.3 0.0
F	0.57	0.05	0.1	0.263	4.2	5.8	7.9	13.4	21.0	36.8	66.3	103.9	127.3	131.2	114.1	90.2	69.7	42.6	28.4	21.0	17.1	14.5	12.9	11.0	9.5	8.7	7.6	6.8	6.0	5.5	5.3	5.0	4.2	3.7	3.2 0.0
G	0.34	0.10	0.1	0.136	2.6	3.5	5.3	13.5	25.7	49.1	77.7	87.2	70.7	49.2	34.1	24.6	18.5	12.1	9.5	8.2	7.2	6.5	5.8	5.0	4.6	4.2	3.8	3.4	3.0	2.9	2.6	2.4	2.2	1.9	1.6 0.0
Н	0.44	0.35	0.1	0.114	1.7	2.3	3.2	0.5	6.7	11.1	20.4	36.0	51.8	59.6	55.7	45.7	35.2	20.3	12.8	9.2	7.4	6.4	5.6	4.8	4.2	3.8	3.4	3.0	2.6	2.4	2.3	2.2	1.9	1.6	1.4 0.0
Ι	0.29	0.29	0.1	0.052	1.0	1.4	2.0	5.2	9.9	18.8	29.8	33.5	27.1	18.9	13.1	9.4	7.1	4.6	3.7	3.1	2.8	2.5	2.2	1.9	1.8	1.6	1.5	1.3	1.1	1.1	1.0	0.9	0.8	0.7	0.6 0.0
4AR	0.46	0.29	0.1	0.095	1.3	1.8	2.4	3.6	4.5	6.6	11.0	19.7	31.5	41.2	45.3	42.7	35.9	22.6	14.2	9.6	7.3	5.9	5.0	4.3	3.7	3.2	2.9	2.6	2.3	2.1	1.9	1.8	1.6	1.3	1.1 0.0
4BR	0.47	0.29	0.1	0.246	3.9	5.4	7.4	12.5	19.7	34.4	62.0	97.2	119.1	122.8	106.8	84.4	65.2	39.9	26.6	19.7	16.0	13.5	12.1	10.3	8.9	8.1	7.1	6.4	5.7	5.2	4.9	4.7	3.9	3.4	3.0 0.0
		Com	1posite Hy	drograph	27.3	35.8	48.3	96.3	161.3	261.5	406.3	563.8	641.7	647.7	580.7	482.1	374.7	233.9	155.0	110.6	90.0	75.8	67.1	57.2	50.3	45.5	40.5	36.0	31.8	29.3	27.3	26.0	22.6	19.3	16.6 0.0
	1	Runoff Volur	me Hydrog	graph (cf)	98,261	128,722	173,768	346,726	580,794	941,566	1,462,634	2,029,695	2,310,199	2,331,786	2,090,614	1,735,593	1,348,982	841,866	558,133	397,980	323,891	272,832	241,616	206,073	181,220	163,657	145,694	129,535	114,467	105,459	98,337	93,674	81,436	69,598	59,913 0
	Rı	noff Volume	e Interpolo	ation (cf)	34,048	45,373	78,074	46,376	76,118	120,210	174,616	216,995	232,099	221,120	191,310	154,229	219,085	140,000	95,611	72,187	59,672	51,445	67,153	58,094	68,975	77,338	68,807	61,001	54,982	50,949	48,003	87,555	75,517	129,511	119,825 0

Runoff Volume Total (cf) 3,196,279

Note:

1.) Watershed Data from Worksheet 5A (Attachment 6B1), as referenced in NRCS TR-55. Coefficient references for Tabular Hydrograph methodology provided in Attachment 6, Appendix 4.

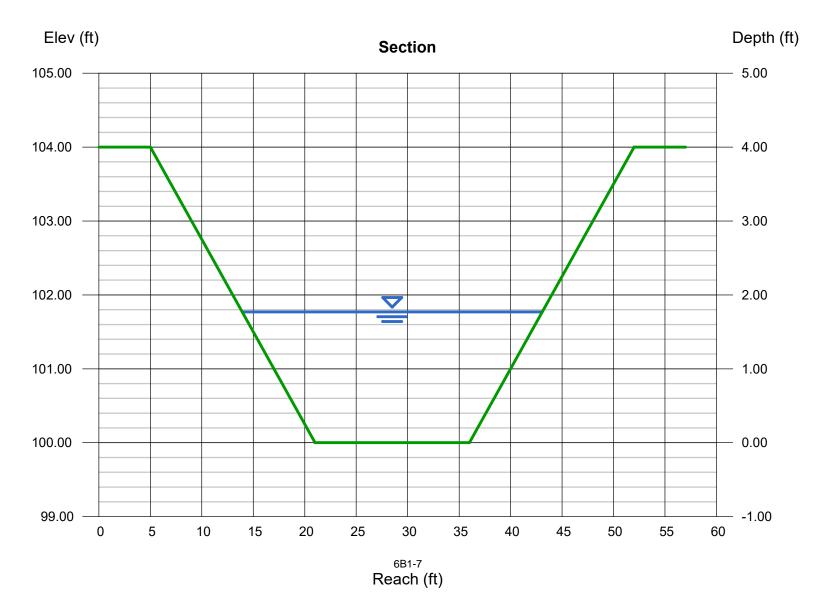


MAVERICK COUNTY EL INDIO LANDFILL - DISCHARGE POINT CALCULATIONS -

Discharge	Discharge Bottom Bott				25-yr, 24-	-hr storm ²	100-yr, 2 4	1-hr storm ²	
Point	Slope (ft/ft)	Width (ft)	Sideslope (XH:1V)	Depth (ft)	flow (cfs)	flow velocity (fps)	flow (cfs)	flow velocity (fps)	Mannings Coefficient ¹
Ι	0.0100	15	4	4	174.2	4.46	234.3	4.86	0.04
II	0.0050	15	8	4	197.8	3.14	268.1	3.42	0.04
III	0.0030	20	7	4	74.0	2.00	99.2	2.17	0.04
I+II+III	0.0050	20	9	6	408.4	3.68	552.6	3.98	0.04

Notes:

Mannings coefficient is for natural, winding streams, as referenced from Table 4.1, "Design Hydrology and Sedimentology for Small Catchments", Haan et al., as described in Attachment 6, Appendix 3A.
 Stormwater flows were calculated using rational method and storm intensity coefficients for 25-yr, 24-hr or 100-yr, 24-hr storms, as shown in Attachment 6B1.

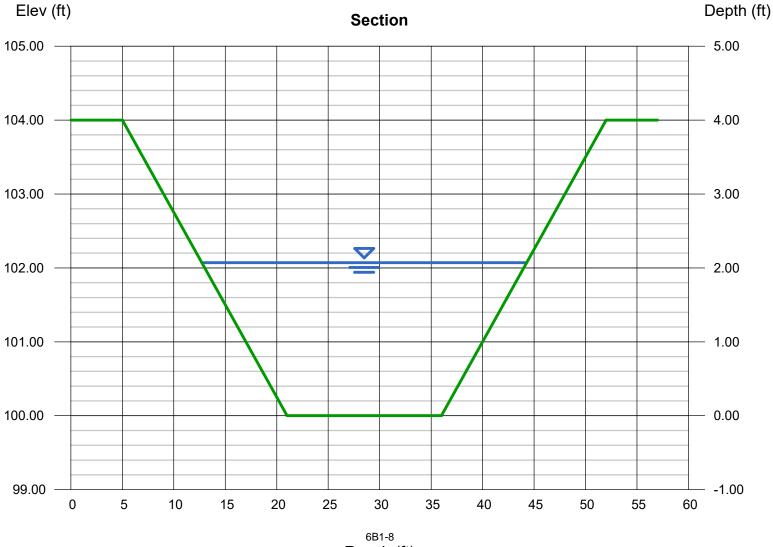


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Jun 11 2025

I

Trapezoidal		Highlighted	
Bottom Width (ft)	= 15.00	Depth (ft)	= 1.77
Side Slopes (z:1)	= 4.00, 4.00	Q (cfs)	= 174.20
Total Depth (ft)	= 4.00	Area (sqft)	= 39.08
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 4.46
Slope (%)	= 1.00	Wetted Perim (ft)	= 29.60
N-Value	= 0.040	Crit Depth, Yc (ft)	= 1.42
		Top Width (ft)	= 29.16
Calculations		EGL (ft)	= 2.08
Compute by:	Known Q		
Known Q (cfs)	= 174.20		

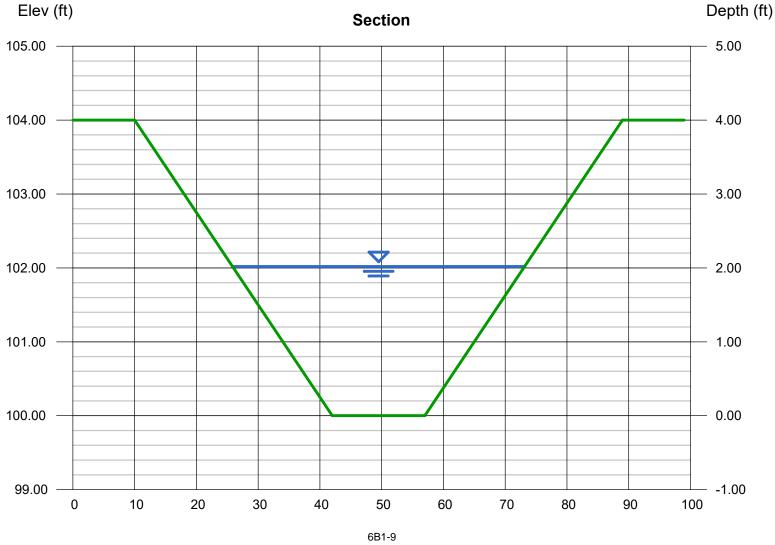


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Jun 11 2025

I - 100 yr.

Trapezoidal		Highlighted	
Bottom Width (ft)=	= 15.00	Depth (ft)	= 2.07
Side Slopes (z:1)=	= 4.00, 4.00	Q (cfs)	= 234.30
Total Depth (ft)=	= 4.00	Area (sqft)	= 48.19
Invert Elev (ft)=	= 100.00	Velocity (ft/s)	= 4.86
Slope (%)	= 1.00	Wetted Perim (ft)	= 32.07
N-Value	= 0.040	Crit Depth, Yc (ft)	= 1.68
		Top Width (ft)	= 31.56
Calculations		EGL (ft)	= 2.44
Compute by:=	Known Q		
Known Q (cfs)	= 234.30		

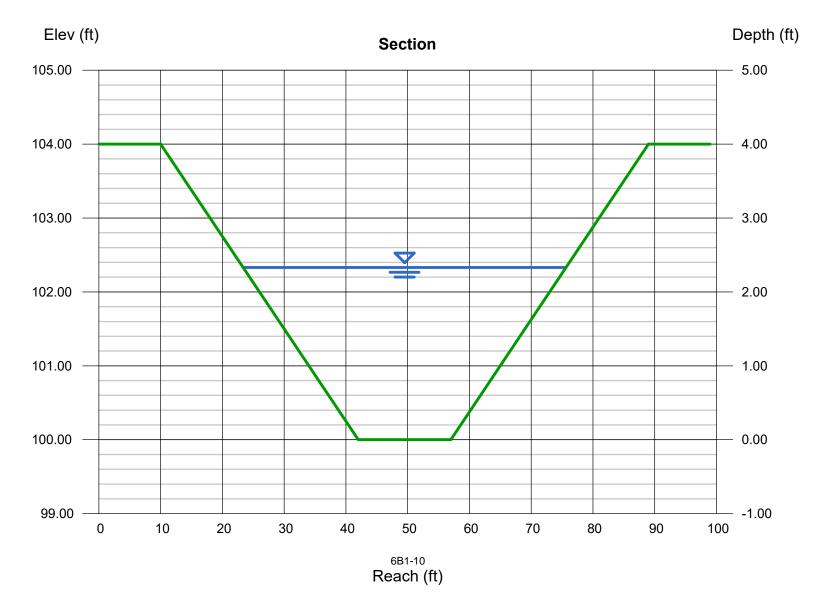


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Jun 11 2025

П

	Highlighted	
= 15.00	Depth (ft)	= 2.02
= 8.00, 8.00	Q (cfs)	= 197.80
= 4.00	Area (sqft)	= 62.94
= 100.00	Velocity (ft/s)	= 3.14
= 0.50	Wetted Perim (ft)	= 47.57
= 0.040	Crit Depth, Yc (ft)	= 1.37
	Top Width (ft)	= 47.32
	EGL (ft)	= 2.17
Known Q		
= 197.80		
	= 8.00, 8.00 = 4.00 = 100.00 = 0.50 = 0.040 Known Q	= 15.00 Depth (ft) = 8.00, 8.00 Q (cfs) = 4.00 Area (sqft) = 100.00 Velocity (ft/s) = 0.50 Wetted Perim (ft) = 0.040 Crit Depth, Yc (ft) Top Width (ft) EGL (ft) Known Q Known Q

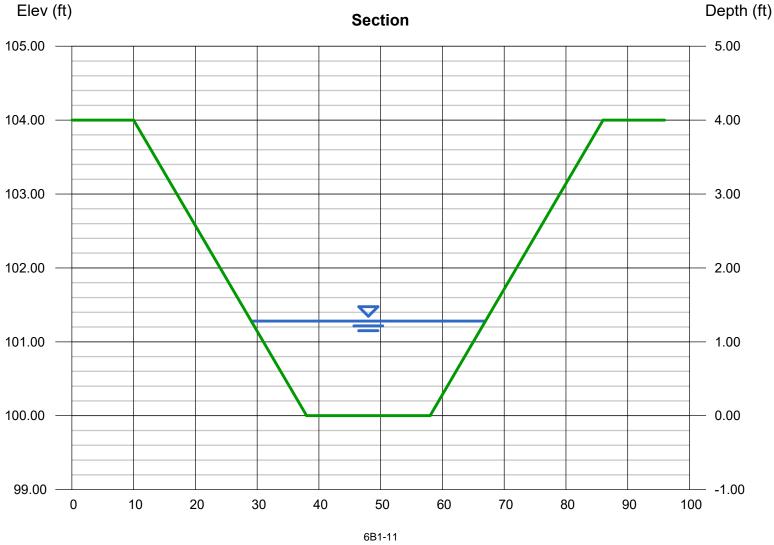


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Jun 11 2025

ll - 100 yr.

Trapezoidal		Highlighted	
Bottom Width (ft)=	= 15.00	Depth (ft)	= 2.33
Side Slopes (z:1)=	= 8.00, 8.00	Q (cfs)	= 268.10
Total Depth (ft)=	= 4.00	Area (sqft)	= 78.38
Invert Elev (ft)=	= 100.00	Velocity (ft/s)	= 3.42
Slope (%)	= 0.50	Wetted Perim (ft)	= 52.57
N-Value	= 0.040	Crit Depth, Yc (ft)	= 1.62
		Top Width (ft)	= 52.28
Calculations		EGL (ft)	= 2.51
Compute by:=	Known Q		
Known Q (cfs)	= 268.10		

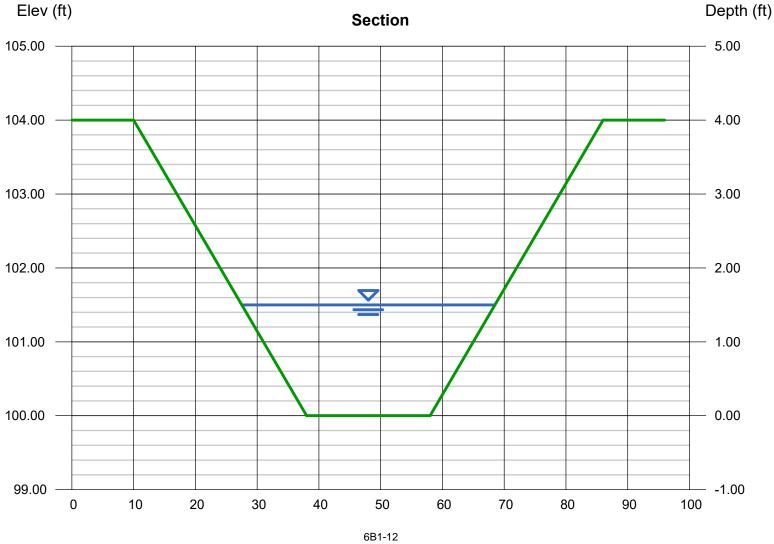


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Jun 11 2025

|||

Trapezoidal		Highlighted	
Bottom Width (ft)	= 20.00	Depth (ft)	= 1.28
Side Slopes (z:1)	= 7.00, 7.00	Q (cfs)	= 74.00
Total Depth (ft)	= 4.00	Area (sqft)	= 37.07
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 2.00
Slope (%)	= 0.30	Wetted Perim (ft)	= 38.10
N-Value	= 0.040	Crit Depth, Yc (ft)	= 0.70
		Top Width (ft)	= 37.92
Calculations		EGL (ft)	= 1.34
Compute by:	Known Q		
Known Q (cfs)	= 74.00		
Slope (%) N-Value Calculations Compute by:	= 0.30 = 0.040 Known Q	Wetted Perim (ft) Crit Depth, Yc (ft) Top Width (ft)	= 38.10 = 0.70 = 37.92

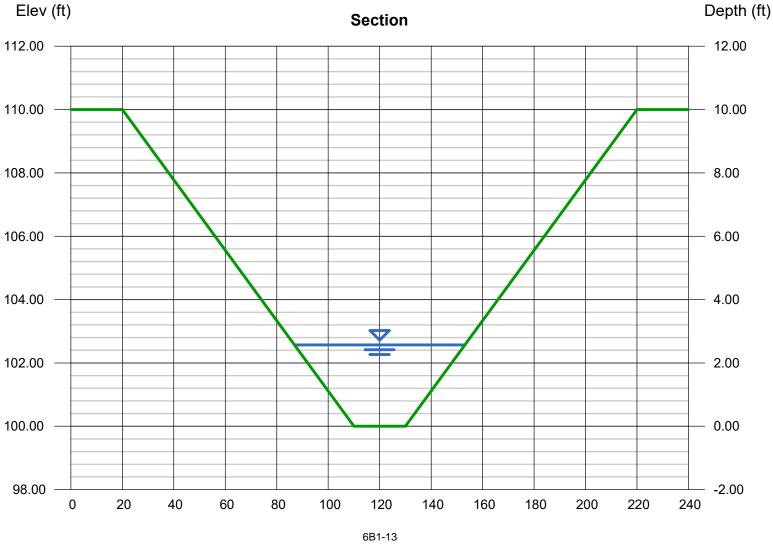


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Jun 11 2025

III - 100 yr.

Trapezoidal		Highlighted	
Bottom Width (ft)=	= 20.00	Depth (ft)	= 1.50
Side Slopes (z:1)=	= 7.00, 7.00	Q (cfs)	= 99.20
Total Depth (ft)=	= 4.00	Area (sqft)	= 45.75
Invert Elev (ft)=	= 100.00	Velocity (ft/s)	= 2.17
Slope (%)	= 0.30	Wetted Perim (ft)	= 41.21
N-Value	= 0.040	Crit Depth, Yc (ft)	= 0.83
		Top Width (ft)	= 41.00
Calculations		EGL (ft)	= 1.57
Compute by:=	Known Q		
Known Q (cfs)	= 99.20		

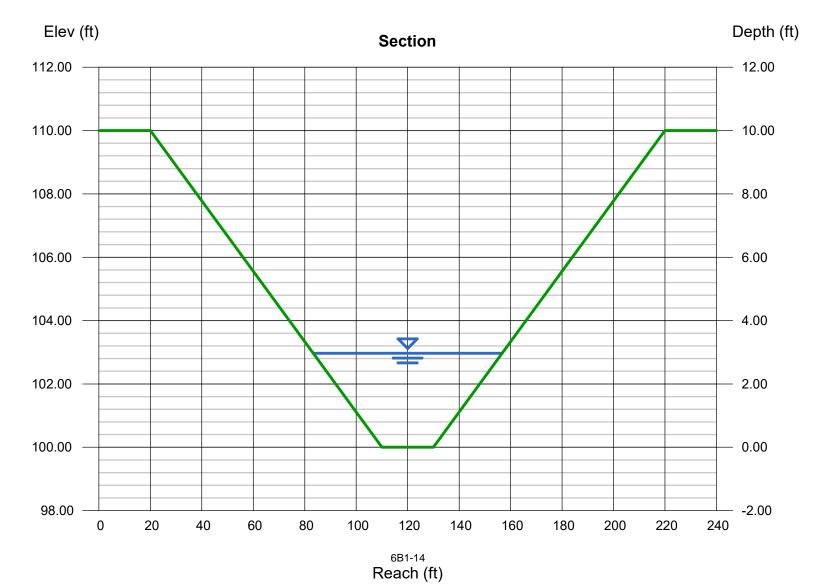


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Jun 11 2025

|+||+|||

Trapezoidal		Highlighted	
Bottom Width (ft)	= 20.00	Depth (ft)	= 2.57
Side Slopes (z:1)	= 9.00, 9.00	Q (cfs)	= 408.40
Total Depth (ft)	= 10.00	Area (sqft)	= 110.84
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 3.68
Slope (%)	= 0.50	Wetted Perim (ft)	= 66.54
N-Value	= 0.040	Crit Depth, Yc (ft)	= 1.80
		Top Width (ft)	= 66.26
Calculations		EGL (ft)	= 2.78
Compute by:	Known Q		
Known Q (cfs)	= 408.40		



Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Jun 11 2025

I+II+III - 100 yr.

Trapezoidal		Highlighted	
Bottom Width (ft)=	= 20.00	Depth (ft)	= 2.97
Side Slopes (z:1)=	= 9.00, 9.00	Q (cfs)	= 552.60
Total Depth (ft)=	= 10.00	Area (sqft)	= 138.79
Invert Elev (ft)=	= 100.00	Velocity (ft/s)	= 3.98
Slope (%)	= 0.50	Wetted Perim (ft)	= 73.79
N-Value	= 0.040	Crit Depth, Yc (ft)	= 2.11
		Top Width (ft)	= 73.46
Calculations		EGL (ft)	= 3.22
Compute by:=	Known Q		
Known Q (cfs)	= 552.60		

Part III

Attachment 6

Attachment 6D2

DRAINAGE STRUCTURES PERIMETER CHANNEL CALCULATIONS

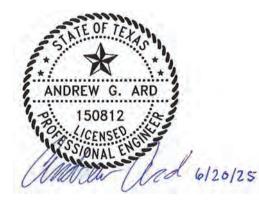
MAVERICK COUNTY EL INDIO MSW LANDFILL - CONCRETE PERIMETER CHANNEL CALCULATIONS -

Channel			Bottom	Bottom			25-yr, 24-hr storm ²			100-yr, 24-hr storm	2	Design	ian	
Name	Receiving Basin	Channel Length (ft)	Slope (ft/ft)		Sideslope (XH:1V)	flow (cfs)	flow velocity (fps)	Flow Depth (ft)	flow (cfs)	flow velocity (fps)	Flow Depth (ft)	Depth (ft)	Mannings Coefficient ¹	Lining Material
1A	POND-A	728	0.0050	8	4	62.7	6.09	0.9	84.1	6.65	1.04	2.0	0.013	Concrete
2A	POND-A	1,401	0.0050	8	4	46.8	5.58	0.8	62.5	6.07	0.89	2.0	0.013	Concrete
		0.50	0.00.50		2	0.0	2.02	0.4	16.0	1.20	0.50	1.5	0.012	
3A	POND-A	972	0.0050	6	3	9.8	3.92	0.4	16.8	4.20	0.50	1.5	0.013	Concrete
4A	POND-B	577	0.0050	6	3	9.2	3.43	0.4	11.8	3.77	0.41	1.5	0.013	Concrete
				-	-									
5A	POND-B	890	0.0050	8	3	44.7	5.51	0.7	60.0	6.01	0.87	2.0	0.013	Concrete
6A	POND-B	816	0.0050	8	3	46.8	5.58	0.8	63.1	6.13	0.89	2.0	0.013	Concrete
					-									
7A	POND-B	1,147	0.0050	8	3	87.6	6.75	1.1	118.1	7.35	1.24	2.5	0.013	Concrete
8A	POND-B	1,091	0.0050	0	2	92.0	6.83	1.1	124.4	7.44	1.27	2.5	0.013	Concrete
0A	I UND-D	1,091	0.0030	0	5	92.0	0.83	1.1	124.4	/.44	1.27	2.3	0.015	Concrete
9A	POND-B	775	0.0050	10	3	109.8	7.01	1.1	148.9	7.69	1.28	2.5	0.013	Concrete
10A	POND-B	653	0.0050	8	3	69.9	6.32	0.9	80.6	6.63	1.01	2.5	0.013	Concrete

Notes:

1.) Mannings coefficient is for concrete channels, as referenced from City of Austin's Drainage Criteria Manual, as described in Attachment 6, Appendix 1.

2.) Stormwater flows were calculated using rational method and storm intensity coefficients for 25-yr, 24-hr or 100-yr, 24-hr storms, as shown in Attachment 6B1.


6D2-2

Channel			Bottom	Bottom			25-yr, 24-hr storm ²			100-yr, 24-hr storm	2	Design		
Name	Receiving Basin	Channel Length (ft)	Slope (ft/ft)		Sideslope (XH:1V)	flow (cfs)	flow velocity (fps)	Flow Depth (ft)	flow (cfs)	flow velocity (fps)	Flow Depth (ft)	Depth (ft)	Mannings Coefficient ¹	Lining Material
1A	POND-A	728	0.0050	8	4	62.7	6.09	0.9	84.1	6.65	1.04	2.0	0.013	Concrete
2A	POND-A	1,401	0.0050	8	4	46.8	5.58	0.8	62.5	6.07	0.89	2.0	0.013	Concrete
2 A	POND-A	972	0.0050	10	2	9.8	2.02	0.4	16.8	2.42	0.59	1.5	0.027	Grass
3A	POND-A	972	0.0030	10	3	9.8	2.02	0.4	10.8	2.42	0.39	1.5	0.027	Grass
4A	POND-B	577	0.0050	10	3	9.2	1.95	0.4	11.8	2.15	0.48	1.5	0.027	Grass
5A	POND-B	890	0.0050	10	3	44.7	3.36	1.0	60.0	3.68	1.20	2.0	0.027	Grass
6A	POND-B	816	0.0050	10	3	46.8	3.39	1.1	63.1	3.75	1.23	2.0	0.027	Grass
7.4	POND-B	1,147	0.0050	10	2	87.6	4.14	1.5	118.1	4.49	1.73	2.5	0.027	Grass
7A	POND-B	1,147	0.0030	10	3	87.0	4.14	1.5	118.1	4.49	1.75	2.3	0.027	Grass
8A	POND-B	1,091	0.0050	10	3	92.0	4.19	1.5	124.4	4.56	1.78	2.5	0.027	Grass
		-,			-									
9A	POND-B	775	0.0050	10	3	109.8	4.42	1.7	148.9	4.82	1.95	2.5	0.027	Grass
10A	POND-B	653	0.0050	10	3	69.9	3.87	1.3	80.6	4.02	1.41	2.5	0.027	Grass

Notes:

1.) Mannings coefficient is for concrete or grass channels, as referenced from City of Austin's Drainage Criteria Manual, as described in Attachment 6, Appendix 1.

2.) Stormwater flows were calculated using rational method and storm intensity coefficients for 25-yr, 24-hr or 100-yr, 24-hr storms, as shown in Attachment 6B1.

6D2-3

Part III

Attachment 6


Appendix 4

REFERENCE MATERIAL:

HYDROLOGY AND HYDRAULIC CALCULATION REFERENCES

AND

MACCAFERRI RENO MATTRESS INFORMATION

United States Department of Agriculture

Natural Resources Conservation Service

Conservation Engineering Division

Technical Release 55

June 1986

Urban Hydrology for Small Watersheds

TR-55

					Runo	ff depth f	or curve n	umber of					
Rainfall	40	45	50	55	60	65	70	75	80	85	90	95	98
							-inches						
1.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.08	0.17	0.32	0.56	0.79
1.2	.00	.00	.00	.00	.00	.00	.03	.07	.15	.27	.46	.74	.99
1.4	.00	.00	.00	.00	.00	.02	.06	.13	.24	.39	.61	.92	1.18
1.6	.00	.00	.00	.00	.01	.05	.11	.20	.34	.52	.76	1.11	1.38
1.8	.00	.00	.00	.00	.03	.09	.17	.29	.44	.65	.93	1.29	1.58
2.0	.00	.00	.00	.02	.06	.14	.24	.38	.56	.80	1.09	1.48	1.77
2.5	.00	.00	.02	.08	.17	.30	.46	.65	.89	1.18	1.53	1.96	2.2'
3.0	.00	.02	.09	.19	.33	.51	.71	.96	1.25	1.59	1.98	2.45	2.7'
3.5	.02	.08	.20	.35	.53	.75	1.01	1.30	1.64	2.02	2.45	2.94	3.2'
4.0	.06	.18	.33	.53	.76	1.03	1.33	1.67	2.04	2.46	2.92	3.43	3.7'
4.5	.14	.30	.50	.74	1.02	1.33	1.67	2.05	2.46	2.91	3.40	3.92	4.20
5.0	.24	.44	.69	.98	1.30	1.65	2.04	2.45	2.89	3.37	3.88	4.42	4.76
6.0	.50	.80	1.14	1.52	1.92	2.35	2.81	3.28	3.78	4.30	4.85	5.41	5.70
7.0	.84	1.24	1.68	2.12	2.60	3.10	3.62	4.15	4.69	5.25	5.82	6.41	6.76
8.0	1.25	1.74	2.25	2.78	3.33	3.89	4.46	5.04	5.63	6.21	6.81	7.40	7.76
9.0	1.71	2.29	2.88	3.49	4.10	4.72	5.33	5.95	6.57	7.18	7.79	8.40	8.70
10.0	2.23	2.89	3.56	4.23	4.90	5.56	6.22	6.88	7.52	8.16	8.78	9.40	9.70
11.0	2.78	3.52	4.26	5.00	5.72	6.43	7.13	7.81	8.48	9.13	9.77	10.39	10.7
12.0	3.38	4.19	5.00	5.79	6.56	7.32	8.05	8.76	9.45	10.11	10.76	11.39	11.7
13.0	4.00	4.89	5.76	6.61	7.42	8.21	8.98	9.71	10.42	11.10	11.76	12.39	12.7
14.0	4.65	5.62	6.55	7.44	8.30	9.12	9.91	10.67	11.39	12.08	12.75	13.39	13.7
15.0	5.33	6.36	7.35	8.29	9.19	10.04	10.85	11.63	12.37	13.07	13.74	14.39	14.7

Table 2-1Runoff depth for selected CN's and rainfall amounts 1/

 $\underline{1}/$ Interpolate the values shown to obtain runoff depths for CN's or rainfall amounts not shown.

Technical Release 55 Urban Hydrology for Small Watersheds

Development of composite flood hydrograph

This section describes the procedure for developing the peak discharge and selected discharge values of a composite flood hydrograph.

Selecting T_c and T_t

First, use worksheet 5a to develop a summary of basic watershed data by subarea. Then use worksheet 5b to develop a tabular hydrograph discharge summary; this summary displays the effect of individual subarea hydrographs as routed to the watershed point of

Table 5-1	$\mathrm{I}_{\mathrm{a}}\mathrm{values}\mathrm{for}\mathrm{ru}$	noff curve numbe	rs
Curve	Ia	Curve	Ia
number	(in)	number	(in)
40	3.000	70	0.857
41	2.878	71	0.817
42	2.762	72	0.778
43	2.651	73	0.740
44	2.545	74	0.703
45	2.444	75	0.667
46	2.348	76	0.632
47	2.255	77	0.597
48	2.167	78	0.564
49	2.082	79	0.532
50	2.000	80	0.500
51	1.922	81	0.469
52	1.846	82	0.439
53	1.774	83	0.410
54	1.704	84	0.381
55	1.636	85	0.353
56	1.571	86	0.326
57	1.509	87	0.299
58	1.448	88	0.273
59	1.390	89	0.247
60	1.333	90	0.222
61	1.279	91	0.198
62	1.226	92	0.174
63	1.175	93	0.151
64	1.125	94	0.128
65	1.077	95	0.105
66	1.030	96	0.083
67	0.985	97	0.062
68	0.941	98	0.041
69	0.899		

interest. Use $\sum T_t$ for each subarea as the total reach travel time from that subarea through the watershed to the point of interest. Compute the hydrograph coordinates for selected $\sum T_t$'s using the appropriate sheets in exhibit 5. The flow at any time is:

$$\mathbf{q} = \mathbf{q}_{\mathrm{t}} \mathbf{A}_{\mathrm{m}} \mathbf{Q} \qquad [\mathrm{eq.}\ 5\text{-}1]$$

where:

- q = hydrograph coordinate (cfs) at hydrograph time t
- q_t = tabular hydrograph unit discharge from exhibit 5 (csm/in)
- A_m = drainage area of individual subarea (mi²) Q = runoff (in)

Since the timing of peak discharge changes with T_c and T_t , interpolation of peak discharge for T_c and T_t values for use in exhibit 5 is not recommended. Interpolation may result in an estimate of peak discharge that would be invalid because it would be lower than either of the hydrographs. Therefore, round the actual values of T_c and T_t to values presented in exhibit 5. Perform this rounding so that the sum of the selected table values is close to the sum of actual T_c and T_t . An acceptable procedure is to select the results of one of three rounding operations:

- 1. Round T_c and T_t separately to the nearest table value and sum,
- 2. Round $T_{\rm c}$ down and $T_{\rm t}$ up to nearest table value and sum,
- 3. Round $T_{\rm c}$ up and $T_{\rm t}$ down to nearest table value and sum.

From these three alternatives, choose the pair of rounded $T_{\rm c}$ and $T_{\rm t}$ values whose sum is closest to the sum of the actual $T_{\rm c}$ and $T_{\rm t}$. If two rounding methods produce sums equally close to the actual sum, use the combination in which rounded $T_{\rm c}$ is closest to actual $T_{\rm c}$. An illustration of the rounding procedure is as follows:

Exhibit 5-II: Tabular hydrograph unit discha	rges (csm/in) for type II rainfall distribution
Exhibit o II. Tubului nyulogruph unit ubenu	inges (comm) for cype if furnitum distribution

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				Ŀ	xhi	bit a	5-11	: Ta	ibul	ar f	iydi	rog	rap	h u	nit	disc	char	ges		m/1r	1) f	or t	ype	11 1	ainfa	all	distr	ıbu	lt101	n			
$ \begin{array}{c} + + + + + + + + + + + + + + + + + + +$	TIME	11.	3			12.	1 12	12	.3	12	.5		12.7	1	13.0		13.4		13.8	1	14.3		15.0	15 5	16.0	65							6.0
$\begin{array}{c} \begin{array}{c} 0 & 24 & 34 & 54 & 334 & 54 & 71 & 47 & 21 & 71 & 71 & 71 & 71 & 71 & 71 & 7$		+	+	+ -	- + -	+	+	• +	+	+	+ -	+	+	- +	+	+	+	+	+	+	+	+	+	+	- + -	- +		- + -	- + -	- + -	+		+
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		+	+	+ ·	- + -								+	- +	+	+	+	+	+									- + -	- + -	- +	+	- +	
$ \begin{array}{c} 50 14 \\ 19 26 \\ 39 47 68 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$.10 21 .20 18	1 2 3 2	9 4 5 3	31 5	34 26 61 11	57 52 .0 21	0 8 5 4	477 187	01 3 04 7	782 024	24 1 86 3	157 312	122 209	98 151	75 94	64 73	56 62	50 54	45 49	41 44	36 38	33 34	30 31	27 28	24 25	21 22	20 21	19 19	18 18	16 16	13 14	12 12 12 12	0 0 0 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.50 14 .75 12	4 1 2 1	9 2 5 2	26 21	39 4 29 3	47 6 33 3	8 1 8	172 49	20 39 73 13	92 5 26 2	31 5 24 3	553 343	482 432	380 464	209 385	121 252	84 156	67 103	57 76	51 62	43 50	38 43	33 36	30 31	27 28	23 25	21 22	20 21	19 19	17 17	14 15	12 12 12 12	0 0 0 0
$ \begin{array}{c} \text{IA}/P = 0.30 \\ \hline \text{A} + \text{A} + \text{TC} = 0.1 \text{ HR} + \text{A} + \text{A} \\ \hline \text{A} + \text$	2.0 4 2.5 3 3.0 1	4 3 1	6 4 2	7 5 3	9 6 4	9 1 7 4	0 7 5	11 8 5	12 : 8 6	13 9 6	15 10 7	16 11 7	18 12 8	20 13 8	25 16 10	37 19 12	72 25 14	150 39 17	252 75 22	336 142 31	312 262 76	216 308 169	109 229 288	58 108 236	42 58 122	34 41 64	30 34 43	27 30 35	24 27 30	20 22 24	18 19 20	13 14 16	2 8 11 11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$).30								7	* *) = 0	.1 HR	* *	*										IA/P			- +	+
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.10 (.20 ()	0 0	0 0	54 56 19 10 0 1	58 93)9 41 .3 7	6 5 5 7 7 3	242 626 26	17 1 03 3 09 6	72 1 46 2 05 4	49 30 32 2	126 176 297	107 143 217	97 119 167	96 115	76 84 94	69 74 81	63 68 73	58 62 66	53 57 60	48 50 53	46 47 48	42 44 45	38 40 41	34 35 37	31 32 33	30 30 31	28 29 29	27 27 28	24 25	21 21	19 19 19 19	0 0 0 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.50 (.75 ())	0 0	0 0	0 0	0 0	4 0	27 1 1	15 28 10 4	87 4 46 1	29 4 32 2	465 246	421 338	346 381	213 341	138 243	103 165	86 119	76 94	68 80	59 67	52 58	47 50	43 45	39 41	34 37	32 33	30 31	29 29	25 26	22 23	19 19 19 19	0 0 0 0
$ \begin{array}{c} \text{IA/P} = 0.50 \\ \begin{array}{c} & \ast \ast \ast \text{TC} = 0.1 \text{ HR} \ast \ast \ast \\ \text{O.0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$	2.0 (2.5 (3.0 ()))	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0	0 0 0	0 0 0	1 0 0	10 0 0	49 2 0	130 14 0	221 52 1	279 119 9	255 224 52	182 256 141	108 193 240	70 107 199	55 70 117	47 55 74	42 47 56	38 42 48	34 38 43	30 32 35	27 28 30		4 11 17 18
0.0 0 0 0 70 539 377 196 171 154 134 117 108 99 89 83 77 72 67 61 59 56 51 46 43 42 40 38 34 30 2 .10 0 0 0 47 375 376 256 199 169 146 126 114 102 92 85 79 73 68 62 59 56 52 47 43 42 40 38 34 30 2 .20 0 0 0 0 31 260 338 283 227 189 160 138 112 99 90 83 77 72 64 60 57 53 48 44 42 41 39 36 31 2 .40 0 0 0 0 0 0 14 125 232 266 253 223 125 145 <	4			= ().50								ر	* *	* TC	. = 0	.1 HR	* *	*										IA/P	= 0.	.50	- +	+
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.10 (.20 ())	Ō	0 0 0	0 7 0 4 0	053 737 03	9 3 5 3 1 2	77 1 76 2 60 3	96 11 56 19 38 28	71 1 99 1 83 2	54 69 27	134 146 189	117 126 160	108 114 138	99 102 112	89 92 99	83 85 90	77 79 83	72 73 77	67 68 72	61 62 64	59 59 60	56 56 57	51 52 53	46 47 48	43 43 44	42 42 42	40 40 41	38 38 39	34 34 35	30 30 30	28 28 28 28	0 0 0 0
2.0 0 0 0 0 0 0 0 0 2 15 51 103 148 168 156 127 96 76 65 58 54 49 45 41 37 2 2.5 0 0 0 0 0 0 0 0 1 9 31 69 131 159 140 101 78 66 59 54 50 43 39 3	.50 (.75 ())	0 0	0 0	0 0	0 0	0 0	9 3	86 18 31 8	83 2 87 1	39 2 47 1	248 190	231 211	205 213	154 184	122 147	104 121	93 103	85 92	79 84	71 75	64 67	59 61	55 57	51 52	46 47	43 44	41 42	40 40	36 37	32 32	28 28 28 28	0 0 0 0
	2.0 0))	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0	0 0	0 0 0	2 0 0	15 0 0	51 1 0	103 9 0	148 31 2	168 69 11	156 131 46	127 159 101	96 140 151	76 101 134	65 78 99	58 66 77	54 59 65	49 54 59	45 50 54	41 43 45	37 39 41	28 29 31 33	2 12 24 26
RAINFALL TYPE = II * * * TC = 0.1 HR * * * SHEET 1 OF 10	+	RAIN					+	• + - •	- +	+	+ -	- +								+	+	+	+	+	+-	- +	+-					- +	· - +

TDVI	Ех	chibi	t 5-	II:	Tab	oula	r hy	dro	gra	ph u	unit	dis								e II	rain	fall	dis	trik	outio	on—	-con	itin	ued	l	
TRVL TIME (hr)11	11.3	11.6	1.9	2.0	2.1	12.2	12.3	12.4	12.5	12.6	12.7	12.8	13.0		13.4	Н ТІМ 13.6	13.8		14.3	4.6	15.0	 1 5.5	.6.0	6.5	17.0	1 7.5			20.0	2	6.0
+	+ I A	+	- + 0.10	- +	+-	+	+	+	+	+	+	- + * *	+ * TC	+ = 0	+ .2 HR	+ * *	+ *	+	+	+	+	+	+ -	+ -	+	+	IA/P	= 0	.10	- +	+
0.0 23 .10 19 .20 17 .30 16	3 31 26 23		209 4 86 1 49	403 168 74	739 325 136	800 601	481 733 488	250 565 652	166 355 594	128 229 435	102 161 298 360	86 122 207	70 83 115	61 69 81 90	+ 54 59 67 71	49 53 58 60	44 47	40 43 46		+ 33 34 35 36	30 31 32 32	27 28 29 29	24			19 19	18 18 19 19	- + 16 16 16 16	13 14 14 14	- + 12 12 12 12	+ 0 0 0 0
.40 14 .50 13 .75 10 1.0 9	8 18) 13	25 24 17 14	37 35 23 19	43 40 26 21	57 52 30 24		173 142 40 30		485 410 86 44		506		269 438		87 98 240 353	68 73 151 245	58 61 101 157	53 75	44 45 57 68	38 39 47 53	33 34 39 42	30 30 33 35	27 27 29 31	24 24 26 28	21 22 23 24	20 20 21 22	19 19 20 20	17 17 18 18	14 15 15 16	12 12 12 12	0 0 0 0
1.5 6 2.0 4 2.5 3 3.0 1	5 3 4 . 2	10 7 5 3	13 8 6 4	14 9 6 4	15 10 7 4	17 10 7 5	19 11 8 5	21 12 9 6	23 14 9 6	26 15 10 7	16 11 7	12 8	9	166 31 18 11	22 13	356 114 32 16	206 58 19		324 227 59	138	57 125 246 280	248	137		27 31 35 46	24 28 31 36	22 24 27 31	19 20 22 25	17 18 19 21	13 14 15 16	3 9 11 11
+		A/P = +										* *	* TC		.2 HR	* *	*								+		IA/P	= 0	.30	- +	+
0.0 .10 .20 .30) 0) 0	0 0 0 0	39 1 2	L80	545	697 407	497 600 501	276 532 521	198	158 252 306	130 190	110 150 176	93 108 119	81 90 95 114	73 79 82 93	67 71 73 80	61 65 67 72	56 59 61	49 52 53 57	46 48 48 51	43 44 45 46	39 41 41 42	35 36 37 38	32 32 33 34	30 31 31 31	29 29 29 30	27 28 28 28	24 25 25 25	21 21 21 22	19 19 19 19	0 0 0 0
.40 0 .50 0 .75 0 1.0 0) 0) 0	0 0 0 0	0 0 0 0	1 0 0 0	9 0 0 0	47 6 2 0		120	431 258 126 6	374			271 323		98 121 167 280	83 95 121 204	74 81 96 145	72	58 62 68 82	52 55 59 68	47 48 50 56	43 44 45 48	38 40 41 43	34 35 37 39	31 32 33 35	30 30 31 32	28 29 29 30	25 26 26 27	22 22 23 24	19 19 19 19	0 0 0 0
1.5 2.0 2.5 3.0) 0) 0) 0	0	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0	3 0 0	1 0	271 80 6 0	163 28 0		262 179 30	202 242 101	76 123 207 207	227	130	44 49 57 80		35 39 43 49		29 30 32 35	26 27 29 30	20 21 22 24	5 13 17 18
+		+ $\langle P =$			+-	· +				+		* *	* TC	= 0.	.2 HR	* *	*				+				+ +	+	IA/P			- +	+
0.0 .10 .20 .30) 0	0	0 0 0 0	7 4 0 0	98 67 3 2	371 270 45	322 305 195	221 249 268	182 204 255 245	158 174 221	137	120 130 163	104 108 125	94 97 106 111	86 88 95 98	80 82 87 89	74 76 80	69 71	62	60 60 62 62	57 57 58 59	52 53 54 55	47 48 49 50	44 44 45 45	42 42 43 43	40 41 41 41	39	35 35 35 36	30 30 31 31	28 28 28 28	0 0 0 0
.40 0 .50 0 .75 0 1.0 0) 0) 0	0 0 0 0	0 0 0 0	0 0 0	1 0 0 0	21 1 0 0	101 14 5 0		225 146 71 2		211 218 162 38	213 186	175		113	91 99 112 147	84 89 98 122	82	69 73 78 89	63 66 70 78	59 60 62 68	55 56 57 60	50 52 53 56	45 47 48 51	43 43 44 46	41 42 42 43	40 40 41 42	36 36 37 38	31 32 33 34	28 28 28 28	0 0 0 0
1.5 0 2.0 0 2.5 0 3,0 0	0 0	<u> </u>	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0	0	5 0 0	129 25 1 0	65 8 0	26 2	146 60 9	157 117 40	148 90	142	67 79 101 130	60 67 79 99	55 60 66 78	51 55 59 66	46 50 54 59	43 46 50 54	40 41 43 45	36 38 39 41	28 29 31 33	4 14 24 26
+	RAINF	+ All T	- + YPE =	- + = II	+-	+	+	+	+	+				+ = 0.		+		+	+	+	+	+	+ -	+-	+	+	+- Sheet	- + 2 0	+ F 10	- +	+

трии		EXI	11D1	t 9-	11:	Lap	ula	r ny	dro	graj	pn u	init	dise	cna	rges Hydro		5m/1]	n) t	or t	уре		rain	fall	dist	trib	utio	n—	con	tinuo	ed	
TIME	-	1.3								12.5		12.7	1	3.0		13.4		13.8		14.3		15.0				17.0		.8.0	20		26.0
(hr)			L1.6												13.2 +							+				1			9.0		
	- + -	IA/	/P =		-	+	+	+	+	+	+				= 0				+	+	+	+	+	+ -	+-	+	+	, .	= 0.1	0 + -	+ +
0.0 .10 .20 .30	20 19 17	28 26 23 22	41 39 32	118 99 53	235 189 83	447 361 154 127	676 571 292	676 641 478	459 520 587	283 362 542	196 251 422		114 136 223	80 89 127	66 70 86		51 53 58 61	46 48 52	42 43 46	37 37		31 31 32 32		24 25 26 26		20 21 21 21	19 19 20		16 16		2 0 2 0 2 0 2 0 2 0
.40 .50 .75 1.0	13	19 18 14 11		35	45 42 30 21	63 56 34 24	89 42		272 95	397 160	472 250	475 339	424 417	274 398	139 163 299 396	196	70 76 128 248	62 89	52 54 69 109	54	38 39 45 54	34 34 37 43	30 30 32 35	27 27 29 31	24 24 26 28	21 22 23 24	20 21	19 19 20 20	17 17 17 18	15 1 15 1	2 0 2 0
2.0 2.5 3.0		8 5 4 2	7 5 3	13 8 6 4	9 6 4		10 7 5	5	21 12 9 6	14 9 6		16 11 7	18 12 8	23 15 9	18	57 23 13	116 33 16	205 60 20	285 113 27	317 223 61	293 138	245 275				27 31 35 46	28 31 36		19 20 22 25 25	18 1 19 1	4 9 5 11
	- + -		/P =	0.30)							-	* * :	* ТС	= 0	.3 HR	* *	*										IA/P	= 0.3	30	+ +
0.0 .10 .20 .30	- + - 0 0 0	+ - 0 0 0	+ 0 0 0 0	- + 11 0 0 0		251 45		574 411 318	454 520 452	303 476 468	221 360 396	173 268 310	140 205 240	104 133 151	+ 88 101 109 142	77 85 90	70 76 78 87	64 69 70		51 55 56		+ 44 45 46 47		36 37 38 39	32 33 33 35	31 31 31 31 32	29 30 30		24 2 25 2 25 2	22 1	9 0
.40 ,50 .75 1.0	0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0	2 0 0 0	16 2 1 0	69 11 4 0		140	258	352 219	389 290	327 335	160 223 281 320	149 205	146	89 110		66 72	54 57 62 72	48 50 52 59	43 45 46 49	39 41 42 44	35 36 38 40	32 33 34 36	31	29 29 30 31			9 0 9 0
1.5 2.0 2.5 3.0	0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 - +		0 0 0 0	0 0 0 0	0 0 0 0	0	0 0 0 0	0 0 0 0	0 0 0	0	1 0	12 0 0	3 0	121 16 0	200 51 2	257 145 19	224 239 74	77 141 223 184	224	82 146		40 44 50 63	40 44 51		29 31 33 36 36	28 2 29 2	0 5 1 14 2 17 4 18
			/P =	0.50)							-	* * :	* TC	= 0	.3 HR	* *	*										IA/P	= 0.5		
0.0 .10 .20 .30	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1 1 0 0		151	299 235 75	277 263 182	219 234 236	187 202 234	162 175 213	141 152 188	113 120 144	100 104 116 123	90 93 101	84 85 91 94	78 79 84	72 73 78 79	65 66 70	61 61 63 64	58 58 59 59	53 54 55 55	48	44 44 45 46	42 42 43 43	41 41 41		35 3 35 3 36 3	81 2 81 2 81 2	28 0 28 0 28 0 28 0
.40 .50 .75 1.0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	5 0 0 0	37 4 1 0	105 26 10 0		140 73	184 117	203 153	191 184	131 155 173 168	126 146	122	105	86 94		65 69 73 82	60 62 64 70	56 57 58 61	51 53 54 57	46 48 49 52	43 44 45 47	42 42 43 44	41		33 2 33 2	8 0 8 0 8 0 8 0
1.5 2.0 2.5 3.0	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0	0 0 0 0		0 0 0		44 2 0 0	14 0 0	144 44 4 0	87 16 1	127 42 5	153 97 27	141 138 71	84 110 145 127	139			52 56 60 68	51 55 60	55	40 42 43 46	38 3 40 3 41 3	9 6 0 17 2 25 3 27
	- + - RA	AINFA	+ LL T	- + Y P E			+	+	+	+	+				+ 0				+	+	+	+	+	+-	+-	+			3 OF		++

Exhibit 5-II: Tabular	hydrograph unit dis	charges (csm/in) for ty	pe II rainfall distribution-	-continued
	J O I		1	

		xhi	bit :	5-I]	I: Ta	abu	lar l	hydi	rogi	aph												infa	ll di	istr	ibut	ion	—co	onti	nue	d	
TRVL TIME	11.3			1	12.1		12.3		12.5		12.7	1	13.0		13.4	H TIM	13.8	1	4.3		15.0		.6.0		17.0	1	8.0	2	0.0	2	6.0
(hr)11.(+			9.0			+
+-			0.10		+ -	+	+	+	+	+						* *		+	+	+	+	+	+ -		+		IA/P	= 0, - +		- +	+
0.0 18 .10 18 .20 15 .30 15	25 24 20 20	36 34 28 27		141	271	468 385 179	592	574 557 454	431 473 523	298 357 489	216	163 196 309	104 119 178			55 57 65 69	49 51	44 46 49		34 35 37 38	31 32 33 33	28 29 30 30	25 25 26 27	22 22 23 24	21 21 21 21	20 20	18 19 19 19		14 14 14 14	12 12 12 12	0 0 0 0
.40 13 .50 12 .75 10 1.0 8	17 16 13 10	23 22 17 13	33 31 24 17	38 36 26 19	48 44 30 21		121 102 45 27	176		379		440 326		341	137	85 94 164 292	66 71 112 205	56 59 81 138	47 49 59 83	41 42 48 60	35 35 39 45	31 31 33 36	28 28 30 32	24 25 26 28	22 22 23 25	20 21 21 22	19 19 20 21	17 17 18 18	15 15 15 16	12 12 12 12	0 0 0 1
1.5 6 2.0 4 2.5 2 3.0 1	7 5 3 2	9 6 4 2	12 8 5 3	13 8 6 4	14 9 6 4	15 10 7 4	17 10 7 5	19 11 8 5	21 12 9 6	6	10 7	16 11 7	8		43 20 12	311 85 27 14	159 46 17	85 23	306 184 47	264 285 109	227	45 74 147 268	160	31 37 47 83	28 32 37 50	25 28 32 38	32	22	17 18 19 21	13 14 15 16	4 9 11 11
+ -		'P =	0.30									* *	* TC	= 0	.4 HR	* *	*										IA/P		.30	- + -	+
0.0 0 .10 0 .20 0 .30 0	+- 0 0 0 0	- + 0 0 0 0	- + 4 0 0 0		113 18 13 1	296 81	480 224 169	495 395 320	413 462 414	306 430 424	234 347 373	186 272 305	127 172 196	+ 100 121 134 181	84 96 103	74 74 82 85 99	67 73 75	61 66	54 57 59		+ 45 46 47 48	+ 41 42 43 44	+- 37 38 39 40	33 34 34 36	+ 31 31 32 32	29 30 30 30 30	28 28 29	- + 25 25 25 26	+ 21 22 22 23	19 19 19 19 19	+ 0 0 0 0
.40 0 .50 0 .75 0 1.0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0	1 0 0 0	6 0 0 0	30 4 2 0	94 21 8 0		308 158 76 4	372 258 145 15	334 219	364	270 305	141 187 241 308	133				56 60 65 79	49 51 55 62	44 46 47 51	40 41 43 45	36 37 38 41	32 33 34 37	31 31 32 33	29 30 30 31	26 26 27 28	23 23 24 25	19 19 19 19	0 0 0 1
$\begin{array}{cccc} 1.5 & 0 \\ 2.0 & 0 \\ 2.5 & 0 \\ 3.0 & 0 \\ \end{array}$	0 0 0 0	0 0 0 0 +	0 0 0 - +	0 0 0 0 - +	0 0 0 0	0 0 0 0	0 0 0 0 +	0 0 0 0	0 0 0 0 +	0 0 0 0 +	0 0 0 0	Õ	0 0 0	1 0 0	-	226 31 1 0 +	86 9 0	2	252 112 21	239 202 76	182			45 52 64 90	41 45 52 63	51	33 37 41 45	29 31 33 36 - +	26 28 29 31	20 21 23 24 - +	6 15 18 18
+-	IA/	ΎΡ =	0.50		+-	+	+	+	+	+				0	• • • • • •	* *		+	+	+	+	+	+ -	+-	+	+-	IA/P	= 0		- + -	+
0.0 0 .10 0 .20 0 .30 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	7 0 0 0		168	245 125	257 205 168	213 240	186 222 220	163 198 205	128 154 164	109 123 131	96	88 94 97	81 86 88 95	75 79 81	67 71 72 77	62	58 60 60 62	54 56 56 57	50 51 51 53	45 46 46 48	43 43 43 44	41 42 42 42		35 36 36 37	31 32 32 33	28 28 28 28	0 0 0 0
.40 0 .50 0 .75 0 1.0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	1 1 0 0	14 9 0 0	50 37 3 0	106 83 15 1	135	174 76	194 147					89 91 107 125		70 71 79 86	62 63 68 73	58 58 60 63	53 54 56 58	48 49 51 53	44 45 47 48	42 43 43 45	41 41 42 42	37 37 38 39	33 33 34 35	28 28 28 28	0 0 0 1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0	0	26 0 0 0	71 3 0 0	121 16 1 0	45 4 0	17 1	138 59 11	112 40	89 125 143 101	138		57 64 73 90	53 58 63 73	48 53 57 63	57		37 39 40 42	29 31 32 34	7 20 26 27
	AINFA					+	+	+	+	+						+		+	+	+	+	+	+-	+-	+		HEET			- + -	- +

			hibi	it 5-	II:	Tal	oula	r hy	dro	gra	ph ւ	unit					sm/i				e II	rair	ifal	l dis	trik	outio	n—	-cor	ntin	ued	l	
	1	11.3) 1										12.7	1	13.0		13.4				14.3		15.0		16.0 1		17.0			.9.0	20.0	2.0	6.0
	- + -	+ - IA/	- + 'P =	- + 0.10	- +)	+	+	+	+	+	+	+,	- + * *	+ * TC	+ = 0	+ .5 HF	+	+ *	+	+	+	+	+	+ -	+ -	+	+ -	+- IA/P	- + = 0	.10		+
0.0 .10 .20	17 16	23 22 19 18	32 30 25 24	- + 57 51 38 35	94		308 252	467 395 207	529 484 332	507 499	402 434 477	297	226 265 378	140 162 238	96 108 149	74 80	+ 61 65 77 83	53 55	47 49 53	41 42 45		+ 32 33 34 34	+ 29 29 30 31	26 26 27 27	23 23 24 24	21 21 22 22 22	20 20	19 19 19 19 19	- + 16 16 17 17	+ 14 14 14 15	- + 12 12 12 12 12	+ 0 0 0 0
	12 11 9 7	15 15 11 9	21 20 14 12	29 28 19 16	33 31 21 17	40 37 24 19	53 48 27 21		141 118 37 27	233 194 49 32	332 286 74 40	408 367 118 55	412	378 319	271 374	157 178 328 359	107 119 244 322		64 68 117 172	76	43 44 56 68	36 37 43 49	32 32 35 38	28 29 31 32	25 25 28 29	22 23 25 26	21 21 22 23		17 17 18 19	15 15 16 16	12 12 12 12	0 0 1 1
1.5 2.0 2.5 3.0	5 3 2 1	7 4 3 1	8 6 4 2	11 7 5 3	12 8 5 3	13 8 6 4	14 9 6 4	15 10 7 4	17 10 7 5	19 11 8 5	21 12 9 6	23 14 9 6	27 15 10 7		23 15 9	175 35 18 11	269 65 24 13	123 36 16	20	297 150 37		198		38 52 87 182	32 39 52 96	29 33 39 56	25 29 33 40	23 26 29 33	20 21 23 26	17 19 20 21	13 14 15 16	5 10 11 11
	- + -			0.30)							7	* *	* TC	= 0	.5 HF	(** +	*										IA/P	= 0	.30	- +	+
0.0 .10 .20 .30	0 0 0 0	0 0 0 0	0 0 0 0	1 0 0 0	9 1 1 0	53 6 4 0		314 117	433 248 194	439 372 313 151	379 416 382	299 391	237 330 349	159 218 244	118 150 167	95 113	81 92 97 117	71 79	65 70 72	56 60 62	50 53 54 58	46 47 48 50	42 43 43 45	38 39 39 41	34 35 35 36	31 32 32 33	30 30	28 29 29	25 26 26 26	22 22 22 23	19 19 19 19	0 0 0 0
.40 .50 .75 1.0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	2 0 0 0	13 1 1 0	47 9 4 0	116 34 14 0	211 89 41 2	298 170 89 7	255 152	341	303 305	172 225 268 295	127 161 207 285		83 96 118 181	87	59 64 70 88	51 54 57 67	45 47 48 53	41 42 44 46	37 38 39 42	33 34 35 38	31 31 32 34	29 30 30 31	26 27 27 28	23 24 24 25	19 19 19 19	0 0 0 2
1.5 2.0 2.5 3.0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	-	0 0	30 0 0 0	-	183 18 1 0	59 5 0	125 21 1		245 174 56	96 182 230 157	172 217			41 47 54 68	37 42 46 53	34 38 42 46	30 32 34 37	26 28 30 31	20 22 23 25	8 16 18 18
				0.50)								* *	* TC	= 0	.5 HF	(**	*								+		IA/P	= 0		- +	+
0.0 .10 .20 .30	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	2 0 0 0	26 1 1 0		170	217 135 106 34	229 190	200	179 205 203	144 170 178	119 137 145	104 115 121	93 101 105 117	85 91 94 102	78 83 85	70 74 76	64 67 68 71	59 61 61 63	55 56 57 58	51 52 52 54	46 47 48 49	43 44 44 45	41	40 40 40 41	36	32 32 32 33	28 28 28 28	0 0 0 0
.40 .50 .75 1.0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	6 4 1 0	25 18 7 0	63 48 22 1	111 90 47 3	133		169	152	122 128 144 166		94 97 108 134		73 74 79 91	64 65 68 76	58 59 61 65	54 55 56 59	50 50 51 54	45 45 47 49	43 43 44 45	41 41 42 43	37 38 38 39	33 33 34 35	28 28 28 28	0 0 0 2
1.5 2.0 2.5 3.3	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0	0	16 0 0 0		97 18 0 0	47 3 0		134 44 7	29		75 94 127 135		58 64 77 95	54 58 65 76	49 53 58 65	45 49 54 58	41 42 45 49	37 39 41 43	29 31 33 35	10 21 26 27
	- + - R/	AINFA	- + LL T	- + YPE =	- + = II	+ · [+	+	+	+	+	+					+ (* *		+	+	+	+	+	+ -	+ -	+	+ - S	+- HEET	- + 5 0	+ F 10	- +	+

труд			hibi	t 5-	II:	Tał	oula	r hy	dro	gra	ph ı												ifal	dis	strik	outio	on–	-cor	ntin	ued		
TRVL	1	11.3	1 6	1.9	2 0	2.1	1 12.2	2.3	12 /	12.5	126	12.7	1	3.0		13.4	H TIM	13.8		14.3		15.0		16.0		17.0	 1 7 5	8.0		20.0	2.0	6.0
	- + -	+- IA/	- + P =	- + 0.10	- + -	- + -	+	+	+	+	+	+	- + -	- + ТС	+ = 0.	+ 75 HF	+ { * *	+ *	+	+	+	+	+	+ -	+-	+	+	+- IA/P	- + = 0	+ .10		
0.0 .10 .20 .30	13 13 11	18 17 15 14	24 23 20 19		46 42 32 30		52	194 162 82	294 250 135	380 337 211	424 395 295		369 381 391	252 279 351	172 191 255	123 135 178	93 100 127		61 65 75	49 51 57		35 36 38 38	31 31 32 33	27 28 29 29		22 22 23 23	20 21 21 21 21	19 19 20	17 17 17	15 15 15 15	12 12 12 12 12	
.40 .50 .75 1.0	10 9 8 6	12 12 10 8	16 16 13 10	22 21 17 13	25 24 18 14	28 27 21 15	33 31 23 17	42 39 26 19	61 53 31 21		151 128 55 27	190 82	291 258 122 42	358	343 314	255 274 329 272	200 281	217	98 106 161 249	104	54 56 72 105	42 43 51 66	34 35 38 45	30 30 33 36	27 27 29 31	24 24 26 27	22 22 23 24	20 20 21 22	18 18 19 19	16 16 16 17	12 12 12 13	
1.5 2.0 2.5 3.0		6 4 2 1	7 5 3 2	9 6 4 3	10 7 4 3	10 7 5 3	11 8 5 4	12 9 6 4	14 9 6 4	15 10 7 5	16 11 7 5	18 12 8 5	8		8	28 14 10	11	89 24 14	17	245 86 30	170 64	213 260 157	219 247	205		31 35 47 70	27 30 36 46	24 27 31 36	20 22 24 27		13 14 16 17	1 1 1
	·		P =	0.30	1								* *	ТС	= 0.	75 HF	२ * *	*								+		IA/P		.30	- +	
.20		0 0 0 0	0 0 0 0	0 0 0 0	1 0 0 0	6 1 0 0			174	266 137 108	326	348 292 256	328 329 305	246 303 321	181 228 245	138 170	110 131 141	92	79 89 93	66 73 75 78	57 61 63 65	49 52 53 54	44 46 46 47	40 41 42 42	36 37 37 38	32 33 34 34	31 31 31 31 31	29 29 30 30	26 26 27 27		19 19 19 19 19	(((
.40 .50 .75 1.0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0 0	1 1 0 0	8 6 0 0	27 20 2 0	65 50 8 0	122 98 23 1	158 2 51 2	263	292 231	254 269	187 200 253 249	155 211	122 167		71 74 90 120	57 59 68 84	48 49 53 61	43 44 46 50	39 40 42 44	35 35 37 40	32 32 34 36	30 30 31 33	27 27 28 29	24 24 25 26	19 19 19 20	
1.5 2.0 2.5 3.0	0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 3 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	-	0	-	8 0 0 0	0	11 0 0	36 1 0	85 6 0	174 37 4	105 24	200 196 96		189		44 49 62 85	40 44 51 62	35 39 44 50	31 32 36 39	27 29 31 32	21 22 24 26	12 17 18 18
			P =	0.50	1		· + ·					*	* *	ТC	= 0.	75 HF	2 * *	*										IA/P		.50	- +	
0.0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	2 0 0 0	16 1 1 0	45 11 8 1		137	166 115 96	185 149 131	170 180 173	146 163 166	125 141 146	110 122	98 107 111	89 96 99	79 84 86	70 74 76 81	63 65 66 69	58 59 59 61	53 54 55 56	48 50 50 52	44 45 46 47	42 43	41 41 41 42	37 38 38 38	33 33 34 34	28 28 28 28	() () () 1
.40 .50 .75 1.0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	4 0 0 0	14 2 1 0	34 10 4 0		127 82 47 6	138	139	145 157 154 119	140 148		103 113	82 88 96 113	70 75 80 91	62 64 67 74	57 58 60 63	52 53 55 58	47 49 50 53	44 45 46 48	42 43 43 45	38 39 39 41	34 35 36 37	28 28 29 29	1 2 3 7
2.5 3.0		0 0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	-	0 0 0	1 0 0 0	0		11 1 0	30 3 0	77 19 2	12	137 111 51	132 112	128		57 63 71 86	52 57 62 71		51	39 40 42 44	30 32 34 36	18 25 27 27
		AINFA					+	+	+	+	+						+ ? * *		+	+	+	+	+	+ -	+-	+		+- Sheet	- + 6 0		- +	+

PART III

ATTACHMENT 14

LANDFILL GAS MANAGEMENT PLAN

FOR

MAVERICK COUNTY EL INDIO MSW LANDFILL TCEQ PERMIT NO. MSW-2316

Prepared for: Maverick County 500 Quarry Street, Suite 3 Eagle Pass, Texas 78852 830/773-3824

PERMIT ISSUED: SEPTEMBER 11, 2007

PERMIT MODIFICATION (REVISIONS 1, 2, 3, and 4) PREPARED BY:

SCS ENGINEERS Texas Board of Professional Engineers, Reg. No. F-3407 1901 Central Drive, Suite 550 Bedford, Texas 76021 817/571-2288

Revision 1 – April 2009 Revision 2 – October 2024 Revision 3 – February 2025; Revision 4 – June 2025 SCS Project Nos. 16208065.00 & 16223092.00

TABLE OF CONTENTS

PART III, ATTACHMENT 14 LANDFILL GAS MANAGEMENT PLAN

SECTION		PAGE
1.0	INTRODUCTION	1
2.0	GENERAL SITE INFORMATION	2
2.1	SITE LOCATION	2
2.2 2.3	SITE TOPOGRAPHY GENERAL SURROUNDING LAND USE SANDEEP D. SARAF	2 2
2.3 2.4	GEOLOGY	2 3
2.5	HYDROGEOLOGY	4
2.6	WASTE STREAM COMPOSITION 6-15-25	4
2.7	PROPOSED LANDFILL DESIGN SCS Engineers	4
3.0	LANDFILL GAS MONITORING PLAN TBPE Reg. # F-3407	5
3.1	PROPERTY BOUNDARY MONITORING	6
3.1.1	MONITORING PROBE PLACEMENT	6
3.1.2	MONITORING PROBE CONSTRUCTION DETAILS	7
3.1.3	MONITORING PROBE TESTING PROCEDURES	9
3.1.4	MONITORING EQUIPMENT	9
3.1.5	MONITORING PROBE INSPECTION & MAINTENANCE	10
3.2	ROUTINE BUILDING/STRUCTURE MONITORING	10
3.2.1	BUILDING/STRUCTURE MONITORING POINTS	10
3.2.2	BUILDING/STRUCTURE MONITORING EQUIPMENT	11
3.2.2.1	FIXED SYSTEMS	11
3.2.2.2	SUPPLEMENTAL SYSTEMS	11
3.2.3	BUILDING/STRUCTURE MONITORING PROCEDURES	12
3.2.3.1	FIXED SYSTEMS	12
3.2.3.2	SUPPLEMENTAL SYSTEMS	13
3.3	BARHOLE AND UTILITY TRENCH VENT MONITORING	13

TABLE OF CONTENTS (CONTINUED)

SECTION		PAGE
3.3.1	BARHOLE SAMPLING PROCEDURES	13
3.3.1.1	SAFETY CONSIDERATIONS	14
3.3.2	UTILITY TRENCH VENT SAMPLING PROCEDURES	14
4.0	RECORD KEEPING AND REPORTING	15
4.1	GENERAL RECORD KEEPING	15
4.2	TCEQ SUBMITTALS	17
5.0	CONTINGENCY PLAN	17
5.1	IMMEDIATE ACTIONS TO PROTECT HUMAN HEALTH	18
5.2	ACTIONS WITHIN 7 DAYS TO UPDATE THE SITE	20
	OPERATING RECORD	
5.3	ACTIONS WITHIN 60 DAYS TO IMPLEMENT A	21
	REMEDIATION PLAN	
6.0	LANDFILL GAS CONTROL PLAN	21
7.0	LANDFILL GAS CONTROL SYSTEM INSTALLATION AND	22
	MONITORING	
7.1	PASSIVE GAS CONTROL SYSTEM	22
7.1.1	MONITORING SANDEEP D. SARAF	23
7.2	ACTIVE GAS CONTROL SYSTEM	23
8.0	SAFETY	23
	6-15-2	
APPENDIC	CES TO PART III, ATTACHMENT 14 SCS Engineers	
<u>Appendix</u>	Title/Description TBPE Reg. # F-34	07

III-14AGAS MONITORING PROBE SAMPLING REPORT
& SAMPLE DATA SHEETS

ATTACHMENTS TO PART III, ATTACHMENT 14

Attachment	Title/Description
14A	GAS MONITORING PROBE PLACEMENT
14 B	TYPICAL GAS MONITORING PROBE
14C	ENTRANCE FACILITIES

2.5 HYDROGEOLOGY

Cumulative results of hydrogeologic investigations performed between 2000 and 2004 are contained within Attachment 4. Water level data is provided in Table Att4-1 within Attachment 4, and includes monitoring data from October 2003 through May 2004 for the monitoring points. See attachment 4, Section 5.3 for extensive discussion of hydrogeology at the site.

2.6 WASTE STREAM COMPOSITION

The proposed site will accept municipal solid waste as defined by 30 TAC §330.3 to include "solid waste resulting from or incidental to municipal, community, commercial, institutional, and recreational activities, including garbage, rubbish, ashes, street cleanings, dead animals, abandoned automobiles, and all other solid waste other than industrial solid waste." The facility will also accept industrial solid waste, defined as "solid waste resulting from or incidental to any process of industry or manufacturing, or mining or agricultural operation" and special wastes, as defined in 30 TAC §330.3. Class I industrial waste, hazardous wastes, and radioactive wastes will not be accepted at the site.

The principal source of waste is expected to be primarily daily residential and commercial/industrial waste collection.

2.7 PROPOSED LANDFILL DESIGN

The basic design of the proposed site consists of an aerial fill method (both above and below ground). The site consists of one continuous development with 14 cells. The cell designations and sequence of fill operations are shown in **Part III**, *Attachment 1E*. The proposed below-ground waste disposal will extend approximately 50 feet below natural ground to a finished base grade (top of liner) elevation ranging from 692 feet m.s.l. to 714 feet m.s.l. The liner system will consist of two (2) feet compacted clay with a 60 mil HDPE geomembrane, and a geocomposite drainage layer. The liner systems will include a leachate collection system. The system includes a sump and leachate collection trenches sloped at a minimum of 1.0%. The floor of the landfill cell will slope at 1%. The maximum excavation for the liner and sumps (leachate collection) is approximately 56 feet below existing ground, to approximately 686 feet m.s.l.

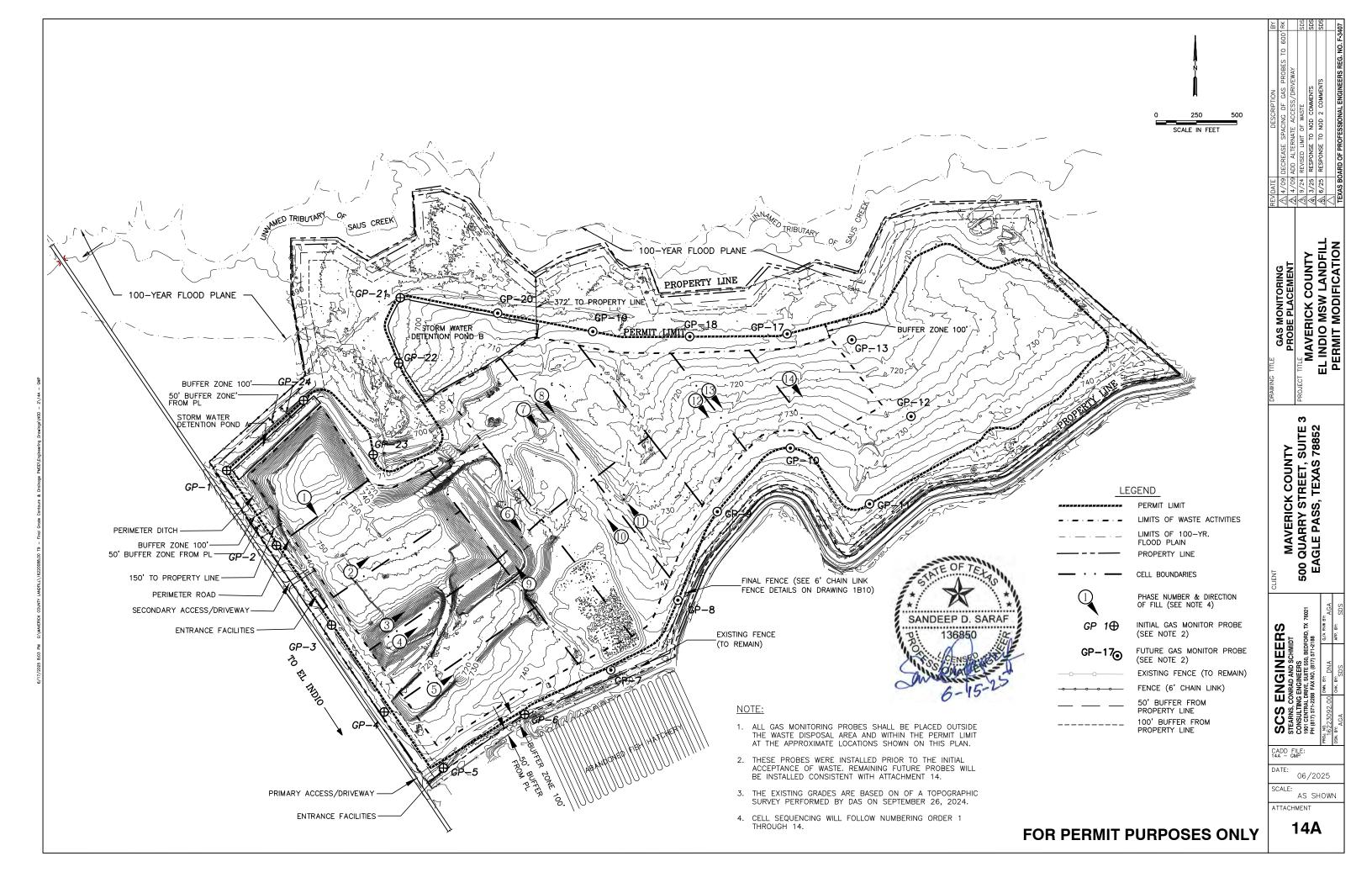
5. Monitoring probe inspection and maintenance.

3.1 PROPERTY BOUNDARY MONITORING §330.371(h)

Methane gas has the potential to migrate laterally from the facility's disposal cells. To monitor and detect gas that has migrated beyond the limits of the waste fill area, a monitoring system will be installed within the site's property boundary to provide coverage of the adjacent disposal areas. The proposed monitoring system will consist of permanent monitoring probes. The proposed monitoring probe locations were selected to provide monitoring points between the waste disposal areas and adjacent properties. The gas monitoring probe network will be installed in phases as the operation advances to provide continuous monitoring coverage between active disposal areas and the property boundary.

3.1.1 Monitoring Probe Placement

A network of permanent gas monitoring probes will be placed in key locations around the permit boundary to provide data on the presence of methane in the unsaturated subsurface zone. Probe locations and spacing are a function of site geometry. Sandy soils are more permeable to gas than clayey, fine-grained soils. Perched water leaching from the irrigation canal was detected in the area and as such was a factor in determining appropriate probe depths at this site. The depth was also a function of adjacent waste disposal depth. The maximum spacing for the probes at this landfill will be 600 feet around the perimeter of the disposal units. The locations of the probes for the proposed site are shown on *Attachment 14A*. Twenty-one probes (GP-1 through GP-24) are proposed around the fill area, with the exception of GP-14, GP-15, and GP-16. The probes will be constructed prior to placing waste in the adjacent landfill cells. Continuous monitors will be installed on any on-site facility structure prior to the initial placement of refuse or occupancy of the structure.


Permanent gas migration probes numbers GP-1 through GP-3 and GP-21 through GP-24 as shown on *Attachment 14A* will be installed prior to placement of solid waste in Cell 1. The remaining probes will be installed when construction is initiated on a new cell within 1,000 feet of the individual probe locations as shown on *Attachment 14A*. Table 2 below presents the timeline for installation of each gas probe based on construction initiation of the cells.

ATTACHMENTS TO PART III ATTACHMENT 14

<u>Attachment</u>	<u>Title/Description</u>
14A	GAS MONITORING PROBE PLACEMENT
14B	TYPICAL GAS MONITORING PROBE
14C	ENTRANCE FACILITIES

SCS Engineers TBPE Reg. # F-3407

LEACHATE AND CONTAMINATED WATER MANAGEMENT PLAN

PART III, ATTACHMENT 15

FOR

MAVERICK COUNTY EL-INDIO MSW LANDFILL TCEQ PERMIT NO. MSW 2316

Prepared for:

Maverick County Solid Waste Authority 16179 FM 1021 El-Indio, Texas 78860

And

Maverick County 500 Quarry Street, Suite 3 Eagle Pass, Texas 78852 830/773-3824

PERMIT ISSUED: SEPTEMBER 11, 2007

REVISIONS 1, 2, 3, & 4PREPARED BY:

SCS ENGINEERS Texas Board of Professional Engineers Reg. No. F-3407 1901 Central Drive, Suite 550 Bedford, Texas 76021 817/571-2288

Revision 1 – July and October 2010 Revision 2 – July 2014, October 2014, December 2014 Revision 3 – October 2024 Revision 4 – February 2025 SCS Project No. 16209033.00, 16214011.00 & 16223092.00

TABLE OF CONTENTS

SECTION

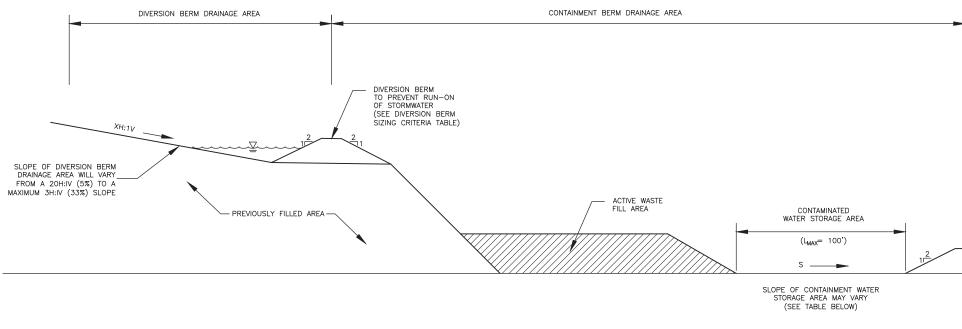
PAGE

1.0	INTF	RODUCTION
	1.1 1.2	FINAL APPLICATION
2.0	FINA	AL MSWF DESIGN
3.0	LEA	CHATE MINIMIZATION PRACTICES
4.0	LEA	CHATE MANAGEMENT SYSTEM 30 TAC §330.333
	 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8	FINAL LEACHATE COLLECTION SYSTEM5LEACHATE DRAINAGE LAYER6COLLECTION TRENCHES6LEACHATE RECOVERY SUMPS7LEACHATE PUMP AND RISER SYSTEM7RECOVERED LEACHATE HANDLING SYSTEM84.6.1Leachate Storage Facilities84.6.2Recirculation104.6.3Off-Site Disposal10LEACHATE MANAGEMENT SYSTEM MAINTENANCE & MONITORING.11RECORD KEEPING11
5.0	DES	IGN DRAWINGS AND SUPPORTING CALCULATIONS
6.0	STO	RMWATER MANAGEMENT 12

APPENDICES TO PART III, ATTACHMENT 15

Appendix	Title/Description
1	DATA FROM HELP MODEL
1A	LEACHATE GENERATION MODEL FOR LEACHATE RECIRCULATION
2	NOT USED
3	CORRESPONDENCE WITH RENFRO EQUIPMENT
4	CALCULATIONS OF PIPE STRENGTH AND SUMP CAPACITY
	PIPE STRENGTH CALCULATIONS:
4 A	6" DIAMETER PERFORATED LEACHATE COLLECTION PIPE
4B	PIPE STRENGTH CALCULATIONS: 18" DIAMETER PERFORATED LEACHATE COLLECTION PIPE
4 C	SUMP CAPACITY CALCULATIONS
4D	CALCULATIONS: 1. SUMP FULL TIME
	2. SUMP PUMP REQUIREMENTS
	3. COLLECTION PIPE CAPACITY
4E	PIPE CALCULATIONS:
	MINIMUM COVER AND TRAFFIC LOADS
5	CORRESPONDENCE WITH EAGLE PASS WATER WORKS SYSTEM
6	CONTAINMENT BERM AND DIVERSION BERM CALCULATIONS

ATTACHMENTS TO PART III, ATTACHMENT 15


Title/Description

Attachment

15A	LINER AND LEACHATE COLLECTION SYSTEM DETAILS
15-GCL	LINER AND LEACHATE COLLECTION SYSTEM DETAILS
	WITH GCL ALTERNATE
15B	LINER AND LEACHATE COLLECTION SYSTEM DETAILS
15C	LEACHATE COLLECTION SYSTEM (PLAN VIEW)
15D	TYPICAL LEACHATE COLSE GRANN SYSTEM AND SUMP PLAN
15E	TYPICAL LEACHATE COLLECTION SUMP PLAN
15F	LEACHATE AND CONTAMINATED WATER
	CONTAINMENT/DIVERSION BERM DETAIL SANDEEP D. SARAF

SCS Engineers TBPE Reg. # F-3407

DIVERSION BERM SIZING CRITERIA *						
	MINIMUM 5%			MAXIMUM 25%		
DIVERSION BERM DRAINAGE AREA (ACRES)	FLOW RATE (CFS)	FLOW DEPTH (FT)	REQUIRED MINIMUM DIVERSION BERM HEIGHT (FT)	FLOW RATE (CFS)	FLOW DEPTH (FT)	REQUIRED MINIMUM DIVERSION BERM HEIGHT (FT)
0.5	2.5	0.4	1.4	2.5	0.6	1.6
1.0	5.0	0.5	1.5	5.0	0.8	1.8
2.0	9.9	0.6	1.6	9.9	1.1	2.1
4.0	19.8	0.8	1.8	19.8	1.4	2.4
8.0	39.7	1.0	2.0	39.7	1.8	2.8

CONTAINMENT BERM DRAINAGE	: AREA				EV DATE DESCRIPTION BY
ACTIVE WASTI FILL AREA	SLOPE	CONTAMINATED WATER STORAGE AREA (L _{MAX} = 100') S C OF CONTAINMENT WATER DRAGE AREA MAY VARY (SEE TABLE BELOW)	CONTAINMENT BERM PREVENT RUNOFF OF CONTAINATED WATEI (SEE CONTAINMENT E SIZING CRITERIA TAB	. R BERM	ECHATE AND CONTAMINATED WATER
ILL AREA SECTION	CC	ONTAINMENT BERM S	SIZING CRITERIA *	A AT SPECIFIED	MAVERICK COUNTY SOLID WASTE AUTHORITY 16179 FM 1021 EL INDIO, TEXAS PEOLECT MAN
ACTIVE AREA (ft²)	ACTIVE AREA (ACRES)	STORAGE AREA (ACRES)	(FT)		CLIENT
		0.05	2%	5%	221 AGA SDS
5,000	0.11	0.25	2.4	4.0	о, ТХ 76(вт.
20,000	0.25	0.25	2.8	4.5	EDFORD 1-2188
20,000	0.46	0.50	2.5	4.2	A SCH 10 SCH 10 SCH 10 SCH (817) 57 (817) 57 (817) 57
ARE INCLUDED ON THE CONTAMINA MAXIMUM DOWN-GRADIENT LENGTH	ANT BERM SUMMARY SHEET IN AF I OF 100 FEET FOR THE STORAGE	GUIDELINE TO CONTAIN STORMWATER F PENDIX 6 (TABLES 1 AND 2). NOTE TH E AREA. YPICAL ACTIVE STORAGE AREA SLOPE C	IAT THE CRITERIA SET FORTH IN THE A		SCS ENGINEERS SCS EN
			FOR PERM	MIT PURPOSES ON	LY

* DIVERSION BERM WILL BE SIZED USING THE ABOVE TABLE AS A GUIDELINE TO PREVENT RUN-ON OF STORMWATER FROM THE 25 YEAR, 24 HOUR STORM EVENT. SUPPORTING CALCULATIONS ARE INCLUDED ON THE DIVERSION BERM SUMMARY SHEET IN APPENDIX 6 (TABLE 3).

MAVERICK COUNTY EL INDIO MSW LANDFILL TCEQ PERMIT NO. MSW-2316

PART IV SITE OPERATING PLAN

Prepared for:

Maverick County Solid Waste Authority 16179 FM 1021 El-Indio, Texas 78860

And

Maverick County 500 Quarry Street, Suite 3 Eagle Pass, Texas 78852 830/773-3824

PERMIT ISSUED: SEPTEMBER 11, 2007

PERMIT MODIFICATION (REVISION 0 - 6) PREPARED BY:

SCS ENGINEERS Texas Board of Professional Engineers Registration No. F-3407 1901 CENTRAL DR., SUITE 550 BEDFORD, TEXAS 76021 817/571-2288

Revision 0 – April 2009 Revision 1 – June 2009 Revision 2 – August 2009 Revision 3 – March 2011 Revision 4 – November 2012 Revision 5 – July 2014, October 2014, December 2014 Revision 6 – June 2025

SCS Project No. 16208046.00, 16209033.00, 16211130.00, 16214011.00, 16223092.00

TABLE OF CONTENTS

<u>SECT</u>	ION		PAGE
LIST (OF ACH	RONYMS	IV-iii
1	INTRO	ODUCTION	IV-1-1
2	PERS	ONNEL AND TRAINING	IV-2-1
	2.1	PERSONNEL	IV-2-1
	2.2	TRAINING	IV-2-3
3	EQUI		IV-3-1
4	OPER	ATIONAL PROCEDURES	IV-4-1
	4.1	ACCESS CONTROL (§330.131)	
	4.2	UNLOADING WASTE (§330.133)	IV-4-3
	4.3	HOURS OF OPERATION (§330.135)	
	4.4	SITE SIGNS (§330.137)	IV-4-5
	4.5	CONTROL OF WINDBLOWN WASTES AND LITTER (§330.139)	
	4.6	EASEMENTS AND BUFFER ZONES (§330.141)	
	4.7	LANDFILL MARKERS AND BENCHMARK (§330.143)	
	4.8	CONTROL OF WASTE SPILLED EN ROUTE TO THE SITE (§330	
	4.9	DIPOSAL OF LARGE ITEMS (§330.147)	
	4.10	AIR QUALITY AND ODOR MANAGEMENT PLAN (§330.149)	
	4.11	DISEASE VECTOR CONTROL (§330.151)	
	4.12	MAINTENANCE OF SITE ACCESS ROADS (§330.153)	
	4.13	SALVAGING AND SCAVENGING (§330.155)	
	4.14	ENDANGERED SPECIES PROTECTION (§330.159)	
	4.15	LANDFILL GAS MANAGEMENT (§330.157)	
	4.16	TREATMENT OF ABANDONED OIL AND WATER	
		WELLS (§330.161)	IV-4-12
	4.17	COMPACTION OF SOLID WASTE (§330.163)	
	4.18	SOIL MANAGEMENT, PLACEMENT, AND COMPACTION OF	
		DAILY, INTERMIDATE, AND FINAL COVER (§330.165)	IV-4-13
	4.19	PREVENTION OF PONDED WATER (§330.167)	
	4.20	DISPOSAL OF SPECIAL WASTES (§330.171)	
	4.21	DISPOSAL OF INDUSTRIAL WASTE (§330.173)	
	4.22	VISUAL SCREENING OF DEPOSITED WASTE (§330.175)	
	4.23	LEACHATE AND CONTAMINATED WATER MANAGEMENT	

TABLE OF CONTENTS (CONTINUED)

5	DETI	ECTION AND PREVENTION OF DISPOSAL O	F UNAUTHORIZED
	WAS	TE [§330.127(5)]	IV-5-1
			SECOF TOUL
	5.1	GENERAL	57ATE 1V-5-1
	5.2	GENERAL PERSONNEL TRAINING PUBLIC AWARENESS LOAD INPSECTION PROCEDURE MANAGING UNAUTHORIZED WASTE	
	5.3	PUBLIC AWARENESS	*: IV-5-2
	5.4	LOAD INPSECTION PROCEDURE	SANDEEP D. SARAF
	5.5	MANAGING UNAUTHORIZED WASTE	D. 136850 IV-5-4
	5.6	RECORDKEEPING	
			CA SONALES
6	FIRE	PROTECTION PLAN (§330.129)	IV-6-1
			0
	6.1	FIRE PREVENTION PROCEDURES	IV-6-1
	6.2	GENERAL RULES FOR FIRES	IV-6-2
	6.3	SPECIFIC FIRE-FIGHTING PROCEDURES .	IV-6-3
7	STOF	RMWATER SYSTEM INSPECTION AND MAI	NTENANCEIV-7-1
8	RECO	ORDKEEPING REQUIREMENTS (§330.125)	IV-8-1
	8.1	SITE OPERATING RECORD [(§330.125(B)].	IV-8-1
	8.2	ANNUAL WASTE ACCEPTANCE RATE [(§	
	8.3	SLER/GLER SUBMITTALS (§330.123)	

List of Tables

- 2.1 Minimum Number of Personnel
- 2.2 Personnel Training Requirements
- 3.1 Equipment List
- 4.1 Contaminated Soil Constituents of Concern
- 4.2 Site Inspection and Maintenance Schedule

Appendices

- IV-A Landfill Site Sign
- IV-B Erosion and Sedimentation Inspection and Maintenance Form
- IV-C Alternative Daily Cover Operating Plan

LIST OF ACRONYMS

ADC - Alternative Daily Cover ADCOP - Alternative Daily Cover Operating Plan CFR - Code of Federal Regulations CCS - Citizens' Convenience Station DOT - Department of Transportation EPA - U.S. Environmental Protection Agency FWS - U.S. Fish and Wildlife Service GLER – geomembrane liner evaluation report LCS - leachate collection system LFG - landfill gas MSW - Municipal Solid Waste MSDS - Material Safety Data Sheets msl - mean sea level NRACM - nonregulated asbestos-containing material OSHA - Occupational Health and Safety Administration PCBs - polychlorinated biphenyls RACM - regulated asbestos-containing material RCRA - Resource Conservation and Recovery Act SDP - site development plan SLER - soils and liner evaluation report SOP - site operating plan TAC - Texas Administrative Code TCEQ - Texas Commission on Environmental Quality TNRCC – Texas Natural Resource Conservation Commission (predecessor to TCEQ) TPDES – Texas Pollutant Discharge Elimination System TxDOT - Texas Department of Transportation

WWTP - wastewater treatment plant

SECTION 4

OPERATIONAL PROCEDURES

4.1 ACCESS CONTROL (§330.131)

Access to this site from El Indio and Eagle Pass will be via Farm to Market (F.M.) 1021, which is a two-lane asphalt roadway. The primary entrance road to the landfill will be 30 feet wide with a lockable security gate. The site has two entrances into the facility (primary and secondary), as shown on Attachments 1B and 1B1. Approved waste haulers and/or the general public will be limited to accessing the site through the primary entrance during normal operations.

The site proposes to use its previously approved secondary entrance/exit gate for ingress and egress to F.M. 1021. The primary entrance will be comprised of a driveway and lockable gate (see Section 4.1.1) that provides access to the future all-weather perimeter access road, as shown on Attachments 1B10-15. The relocation of the primary entrance location is consistent with 30 TAC §305.70(j)(32), which allows changes to the entry gate location that do not alter access traffic patterns. Although the waste acceptance rate is anticipated to increase from 350 tons/day to up to 400 tons/day, a traffic analysis performed by Hejl, Lee & Associates, Inc. with the original permit application submitted to TCEQ in 2007, considered an increase in waste acceptance rate up to 1,500 tons/day. SCS coordinated with Texas Department of Transportation (TxDOT) for the primary entrance regarding the adequacy and design capacity of the roadways/entrances to safely accommodate the additional volumes and weights of the traffic generated or expected to be generated by the facility operations. This traffic analysis was approved by TxDOT in the correspondence provided to TCEQ with the permit application. Additionally, the current volume of citizen traffic that accesses the facility will remain the same and they will be redirected to the CCS instead of the landfill working face. Maverick County Solid Waste Authority has applied for a permit from Texas Department of Transportation (TxDOT) authorizing construction of a new driveway at the proposed primary entrance, which will be maintained in the Site Operating Record. Upon construction of the new primary entrance, Maverick County will use the currently approved primary entrance as their secondary entrance into the facility. Typically, the use of the secondary entrance gate will be limited to landfill personnel and other Maverick County designated personnel. However, when the primary entrance gate is inaccessible due to weather or traffic, the secondary entrance gate may be used by approved waste haulers and/or the general public. During these events, the secondary entrance gate will be monitored and controlled using the same normal operating procedures as the primary entrance. The gate attendant controls access and monitors all vehicles entering and exiting the site.

4.1.1 <u>Site Security</u>

Site security measures are designed to prevent unauthorized persons from entering the site, to protect the facility and its equipment from possible damage caused by trespassers, and to prevent disruption of facility operations caused by unauthorized site entry.

Unauthorized entry into the site will be prevented by controlling access to the landfill with the perimeter fence and gate at each entrance. A 6-foot chain link fence topped with three-strand barbed wire (i.e., 8-foot total fence height) will be maintained on the west side of the landfill property fronting F.M. 1021. The north, east, and south perimeter fence will be comprised of a predator-proof chain link or metal fence designed to prevent the entry of livestock, and discourage unauthorized entry to the landfill.

The perimeter fence and gates will be inspected monthly. Repairs and maintenance will be performed consistent with §330.131. If the perimeter fence or gates have been damaged (i.e., breached), the TCEQ region office and any local pollution agency with jurisdiction that has requested to be notified, will be notified within 24 hours of detection. The breach will be temporarily repaired within a 24-hour period (weather permitting), and will be permanently repaired within the timeframe approved by the TCEQ region office. Once permanent repairs have been completed, the TCEQ region office will be notified. If the breach can be permanently repaired within 8 hours of detection, then a notice to the TCEQ region office is not required. Documentation of perimeter fence and gate inspections and breaches will be maintained in the Site Operating Record. Refer to Table 4.2 of this SOP for the site inspection and maintenance schedule. "No Trespassing" signs will be posted at the property boundary.

The primary site entrance will be secured by a gate that is monitored by the gate attendant during site operating hours. Additionally, the secondary entrance will be secured by a gate that is monitored by landfill personnel (e.g. scalehouse/gate attendant or landfill manager) during site operating hours. Outside operating hours, the gates to the site will be locked. Entry to the active portion of the landfill will be restricted to designated personnel, approved waste haulers, and properly identified persons whose entry is authorized by landfill management. Visitors may be allowed on the active area only when accompanied by a site representative.

4.1.2 <u>Traffic Control</u>

Access to the landfill site will be provided via primary entrance gate located off of F.M. 1021, as described above. The primary entrance will have a gate that is attended during operating hours by the gate attendant. The gate attendant will restrict site access to authorized vehicles and direct commercial vehicles to the active working face of the landfill, and residential vehicles to the CCS or the landfill working face, as applicable, for the waste load size and type.

The landfill haul roads will be maintained in an all-weather condition and will be freely draining, and kept free of excessive ruts and potholes, as described in Section 4.12. Landfill haul roads will be passable by solid waste transportation vehicles in two directions to facilitate movement of traffic into and out of the site.

Within the site, signs will be placed along the landfill haul road and access road at a frequency adequate for direct waste haulers to appropriate waste disposal location (landfill working face or CCS). Private and commercial solid waste vehicles will not be allowed access to the CCS or any areas other than the working face of the landfill. Roads not being used for access to disposal areas will be blocked or otherwise marked for no entry. Landfill personnel will provide traffic directions, as necessary, to facilitate safe movement of vehicles.

The approach to the working face will be maintained such that two or more vehicles may safely unload side-by-side. A vehicle turn-around area large enough to enable vehicles to arrive and turn around safely will be provided adjacent to the landfill working face. The vehicles will back to a vacant area near the working face to unload. Similarly, roads to the CCS will be wide enough to enable two-way traffic and side-by-side unloading positions. Upon completion of the unloading operation, the transportation vehicles will leave the landfill working face area or CCS and depart the site. Loitering will not be permitted at the landfill working face or at the CCS.

4.2 UNLOADING WASTE (§330.133)

This landfill is authorized to receive municipal solid waste and those special solid wastes allowable under 30 TAC §330.171. The unloading of prohibited waste at the landfill working face and CCS will not be allowed. The categories of wastes that are prohibited at this site by state and federal regulations are discussed in Section 5 of this SOP. Prohibited waste are those waste prohibited from disposal at a landfill in accordance with 30 TAC §330.15(e). In addition to prohibited waste, the County has specified other waste that will not be disposed at the landfill. As such, unauthorized waste includes prohibited waste, as well as the site-specific waste not allowed at the landfill, as described in Section 5 of this SOP. Special wastes will not be handled at this landfill, except in accordance with TCEQ regulations and Section 4.20 of this SOP. Additionally, the County may establish an area on-site designated to receive brush.

The landfill will have a CCS to reduce traffic at the working face of the landfill. This CCS will be used for the acceptance and storage of waste, which will be disposed at the working face, and acceptance and storage of recyclables for transport to an authorized recycling or disposal facility. The CCS will only accept the waste streams authorized for disposal at the landfill described in Section 4.2.2. The unloading of waste in unauthorized areas are prohibited under 30 TAC §330.133(b).

As discussed in Section 2, trained personnel will monitor all incoming loads of waste. Trained personnel will be at the working face and CCS during operating hours to direct and observe each load that is brought in for disposal at each location. These personnel will be familiar with the rules and regulations governing the various types of waste that are excluded from this facility, including knowledge of 30 TAC §330.171. The personnel will also have a basic understanding of both Class 1 industrial and hazardous wastes, which are prohibited at this facility. The landfill personnel involved with unloading or inspection of waste will have authority and responsibility to (1) reject unauthorized loads, (2) have unauthorized material removed by the transporter, removed by onsite personnel, or otherwise properly managed by the facility, and (3) assess appropriate surcharges.

4.2.1 Waste Unloading at Landfill Working Face

Control will also be used to confine the working face to a minimum area consistent with the rate of incoming waste, while allowing for safe and efficient operation of the landfill. The maximum size of the working face will be 14,400 square feet (i.e., 120-ft by 120-ft). Only one working face will be active at any given time for disposal of waste in the landfill. However, as previously mentioned, a separate unloading area may be established for brush.

The unloading of waste in unauthorized areas will be prohibited. Solid waste dumping will be controlled to prevent disposal in locations other than those specified by landfill management. Any waste deposited in an unauthorized area will be removed immediately and disposed of properly.

Landfill personnel will report questionable waste materials or other issues of concern immediately to the Landfill Manager. A record of unauthorized material or waste removal will be maintained in the Site Operating Record, including the type of waste, generator/transporter, and date of receipt. Any unauthorized waste discovered at the landfill will be returned immediately to the transporter or generator of the waste or otherwise property managed by the landfill. Unauthorized waste that is not discovered by landfill employees until after it is unloaded will be returned to the vehicle that delivered the waste. (See Section 5.5 of this SOP, Managing Unauthorized Wastes, for further guidance.)

Signs with directional arrows and portable traffic barricades will restrict traffic to designated disposal locations. Waste hauling vehicles will be directed to the active disposal area. Signs will be placed along the access route to the designated disposal areas. In addition, rules for waste disposal and unauthorized waste will be prominently displayed on signs near the site's primary entrance.

4.2.2 <u>Waste Unloading at CCS</u>

The Gate Attendant will direct citizens with small or light vehicles to unload waste at the CCS into clearly identified storage containers (i.e., roll-offs). The CCS will provide 4, 20 or 40-cubic yard (CY) containers, one for each type of waste listed below. The CCS will only accept the waste streams authorized for disposal at the landfill. Roll-offs containing food waste will typically be removed from the CCS by the end of each day of operation, but will not be stored (i.e., maintained within containers) at the CCS longer than 48 hours following receipt of said waste. Roll-offs with other waste will be removed weekly or sooner when containers reach capacity. Solid waste containing food waste shall be stored in covered or containers that are leak-proof, durable, and designed for safe handling and easy cleaning.

The CCS location and layout plan are identified in Part III Attachment 1 (Site Layout Plan), Attachments 1B and 1B10-15, respectively. The CCS will be comprised of an elevated deck area with an all-weather surface for two-lane traffic, with collection containers situated behind a retaining wall for drop-off of the following waste:

- Brush, Wood Waste, and Yard Waste,
- <u>Construction and Demolition Debris (C&D)</u>,
- Municipal Solid Waste (MSW), and
- <u>Scrap Metals.</u>

Each container or unloading area for waste will be clearly identified. Containers used at the CCS will be inspected and maintained in accordance with Table 4.2. A Waste Screener will direct

citizens to appropriate locations for unloading materials at the CCS and observe that the respective materials are unloaded in the correct bin or container. Waste Screeners will be trained to recognize unauthorized waste, the procedures if unauthorized waste is detected, and fire protection procedures. Fire protection procedures for the CCS are described in Section 6.

The design of the CCS will comply with the requirements of §330.303 (related to Surface Water Drainage), and the applicable requirements of §330.207 (related to Contaminated Water Management).

4.3 HOURS OF OPERATION (§330.135)

The waste acceptance hours (i.e., site operating hours), when materials will be transported on or offsite, may be any time between the hours of 7 a.m. and 7 p.m., Monday through Sunday. Operation of heavy equipment for compaction of solid waste, application of daily and intermediate cover, regrading, or construction activities may occur at the landfill any time between the hours of 5 a.m. and 9 p.m., Monday through Sunday. These additional hours for heavy equipment operation, before and after waste acceptance hours, are necessary to perform any necessary earthwork at the landfill that may otherwise interfere with waste disposal operation. Transportation of material or heavy equipment operation will not be conducted between 9 p.m. and 5 a.m.

Consistent with TCEQ rules, the County Judge may request alternate operating hours for special occasions, special purpose events, holidays or other special occurrences. The TCEQ may approve alternate operating hours up to five days in a calendar year period. Additionally, the TCEQ region office may allow additional temporary waste acceptance or operating hours to address disasters, other emergency situations, or other unforeseen circumstances that could result in the disruption of waste management services in the area. If the Landfill Manager determines the landfill needs to operate outside the approved operating hours, the Landfill Manager will seek approval from the TCEQ region office for the alternate operating hours prior to such occurrence. The Landfill Manager will record the dates and times of alternate or additional operating hours in the Site Operating Record.

The Landfill Manager, in consultation with the County Judge, may establish operating hours that are less than those noted above. These hours will be indicated on the sign at the primary entrance to the landfill.

4.4 SITE SIGNS (§330.137)

A site sign will be displayed at the primary entrance to the site. The site sign will be readable from the site entrance. This sign will measure at least 4 feet by 4 feet, and have lettering of at least 3 inches in height that state the name of the site, type of site, hours and days of operation, an emergency 24-hour contact phone number(s) that reaches an individual with the authority to obligate the facility at all times that the facility is closed, the local emergency fire department phone number, and the TCEQ permit number. Appendix IV-A includes a detail of the site sign. Also, signs prohibiting receipt of hazardous waste and other types of unauthorized waste, closed drums, and smoking will be posted at the primary entrance gate. In addition, a sign will be

displayed at the primary entrance gate stating that all loads must be properly covered or secured. A sign will also be displayed at the secondary entrance to direct any waste haulers and/or the general public to the scalehouse at the primary entrance.

Within the site, signs will be placed along the landfill haul road and access road at a frequency adequate for waste transportation vehicles to be able to understand where the current waste disposal area is located and which roads are to be used. Roads not being used for access to the disposal area will be blocked or otherwise marked for no entry.

4.5 CONTROL OF WINDBLOWN WASTES AND LITTER (§330.139)

Windblown wastes will be controlled by the following methods:

- Waste transportation vehicles using this facility will be required to use adequate covers or other means of containment. The adequacy of covers or containment of incoming wastes will be checked at both of the landfill entrances. A sign will be prominently displayed at the landfill primary entrance stating that all loads will be properly covered and that a surcharge will be placed on all vehicles without adequate cover.
- Daily cover will be applied at the end of each day of operation to assist with the control of windblown waste.
- The facility will provide litter control fences, as necessary, at appropriate locations near the working face and elsewhere. The litter control fence will be of sufficient height and will be located as close as practical to the active area to control windblown waste and litter.
- As part of the overall site maintenance program, facility personnel will collect daily the windblown waste materials that may have accumulated throughout the entire site, including but not limited to, fences and gates, landfill haul roads and drainage channels throughout the site on days when the facility is in operation.
- Facility personnel will inspect public access roads within two miles in either direction from the landfill primary and secondary entrances for waste spilled en route to the landfill on a daily basis, as described in Section 4.8 of this SOP.

All collected litter will be taken daily to the working face of the landfill for disposal.

4.6 EASEMENTS AND BUFFER ZONES (§330.141)

4.6.1 Easements

In accordance with 30 TAC §330.141, solid waste unloading, storage, disposal, or facility operations will not occur within any easement or right-of-way that crosses the site. There are three known easements that traverse the site. All easements are listed in Part I/II General Information, Section 3.1.5. No solid waste unloading, storage, disposal, or processing operations

shall occur within 25 feet of the center line of any utility line or pipeline easement, unless otherwise authorized by the TCEQ. All pipeline and utility easements will be clearly marked with posts that extend at least six feet above ground level, spaced at intervals no greater than 300 feet. All easement and right-of-way markers will be installed consistent with the requirements in Section 4.7 of this SOP.

4.6.2 <u>Buffer Zones</u>

The buffer zone for the landfill is located within and adjacent to the facility boundary on property that is owned or controlled by the County. No solid waste unloading, storage, disposal, or processing operations will occur within the buffer zone. However, perimeter drainage channels, detention ponds, and haul roads may be installed within the buffer zone. Buffer zones may vary around the perimeter of the landfill, but in no case are they less than 125 feet in width for unloading, storage, and processing consistent with §330.543(b)(1) for such operations as the CCS and for landfill disposal operations consistent with §330.543(b)(2). Landfill haul roads will be constructed within the buffer zones to allow the safe passage of fire-fighting and other emergency equipment. The location and construction of the perimeter drainage channels and detention ponds will not interfere with the haul road to allow for safe passage of fire fighting and emergency vehicles. Buffer zones will be clearly marked as specified in Section 4.7 of this SOP.

4.7 LANDFILL MARKERS AND BENCHMARK (§330.143)

Landfill markers will be installed to clearly mark significant features as described in 30 TAC §330.143(b). The markers will be steel or wooden posts and will extend at least 6 feet above the ground surface. The markers will not be obscured by vegetation and will be placed in sufficient numbers to clearly show the required boundaries. The County will maintain visibility of all required landfill markers and the benchmark. Landfill markers will be inspected monthly and will be maintained and repaired as necessary. Markers will be replaced within 15 days of removal, destruction, or a determination that the markers do not meet regulatory requirements. Refer to Table 4.2 of this SOP for site inspection and maintenance schedule. Markers will be repainted as needed to retain visibility. Guidelines for type, placement, and color coding of markers are outlined below.

- Site Boundary Site boundary markers will be painted black. The markers will be placed at each corner of the site and along each boundary line at intervals no greater than 300 feet. Fencing may be placed between these markers as required. In areas where the fence is located on the permit boundary, the fence posts may be painted black and used as site boundary markers.
- Buffer Zone Buffer zone markers will be painted yellow. The markers identifying the buffer zone will be placed along each buffer zone boundary at all corners and between corners at intervals of no greater than 300 feet. Placement of the landfill grid markers may be made along a buffer zone boundary. The buffer zones will be a minimum of 125 feet wide, as described in Section 4.6.2.

- Easements and Rights-of-Way Easement and right-of-way markers will be painted green. The markers will be placed along the centerline of an easement and along the boundary of a right-of-way, at each corner within the site, and at the intersection of the permit boundary. Where it is impractical to place a marker, the marker will be offset from the easement right-of-way and the offset distance will be clearly painted on the marker.
- Landfill Grid System Grid markers will be painted white. The grid system will consist of lettered markers along two opposite sides of the site, and numbered markers along the other two sides. Markers will be spaced no greater than 100 feet apart measured along perpendicular lines. Where feasible, intermediate markers will be installed where markers cannot be seen from opposite boundaries. At a minimum, grid markers will delineate the area expected to receive waste within the next 3 years. The grid markers will be maintained during the active life of the site and throughout the post-closure period.
- SLER/GLER Area SLER/GLER markers will be painted red. The markers will be placed so that all areas for which a SLER/GLER has been submitted and approved by the TCEQ are readily determinable. Such markers are to provide site workers immediate knowledge of the extent of approved disposal areas. These markers will be located and protected so that they are not destroyed during operations until operations extend into the next SLER/GLER area. The location of these markers will be tied into the landfill grid system and will be reported on each SLER/GLER submitted. SLER/GLER markers will not be placed inside the evaluated areas.
- 100-Year Floodplain 100-Year floodplain protection markers will be painted blue. The markers will be installed for any area within the permit boundary that is within the 100-year floodplain. The area subject to flooding will be clearly marked by means of permanent post not more than 300 feet apart or closer if necessary to retain visual continuity.

The permanent benchmark is located approximately 25 feet west of a wooden post in the southwest corner of the landfill property and 25 feet north of the south fence line. The benchmark is a bronze survey marker, stamped with the elevation and survey date and set in concrete. This benchmark elevation was surveyed from a known United States Coast and Geodetic Survey benchmark or other reliable source.

4.8 CONTROL OF WASTE SPILLED EN ROUTE TO THE SITE (§330.145)

The Landfill Manager will take steps to assure that vehicles hauling waste to the site are enclosed or provided with a tarpaulin, net, or other means to properly secure the load. The steps taken by the County will include, as necessary, the posting of signs requiring the loads to be covered, refusing acceptance of uncovered loads, reporting offenders to the police, adding disposal surcharges, or other necessary means. On a daily basis when the landfill is in operation, landfill personnel will inspect F.M. 1021 for spilled waste for a distance of two miles in either direction from the landfill's primary entrance. In addition, on days when the secondary entrance is used by waste haulers, landfill personnel will inspect F.M. 1021 for spilled waste for a distance of two miles north of the primary entrance, two miles south of the secondary entrance, and the distance between both entrances. If spilled waste is found on these segments of F.M. 1021, such waste will be cleaned up by landfill personnel and delivered to the landfill, assuming such waste is suitable for disposal at the landfill. The Landfill Manager will consult with TxDOT officials and Maverick County concerning cleanup of F.M. 1021, consistent with 30 TAC §330.145. Cleanup of F.M. 1021 will include cleanup of the right-of-way as well.

4.9 DISPOSAL OF LARGE ITEMS (§330.147)

A large item/white goods storage area will be provided, as necessary, based on the quantity of these large item/white goods received for disposal. These items will be recycled as demand warrants but will not be stored in excess of 180 days. Large items that are not recycled will be disposed of at the working face. Care will be taken during disposal of large items such that: (1) large items are not placed directly on the liner protective cover, (2) large items are placed such that they do not interfere with continued waste filling, and (3) that other, smaller municipal solid waste is placed and compacted around them.

The County will maintain a program for the proper management of chlorinated fluorocarbon (CFC) refrigerant from refrigerators, freezers, air conditioning units, or other items in accordance with 40 CFR 82.156(f). CFCs will be evacuated from refrigerators, freezers, or air conditions by a third party vendor, or landfill personnel certified to perform this activity, prior to landfilling or recycling the units at an offsite facility. Items such as electrical equipment, which contains PCBs, will be excluded from waste fill. Procedures for detecting and excluding PCBs are provided in Section 5.

4.10 AIR QUALITY AND ODOR MANAGEMENT PLAN (§330.149)

4.10.1 Air Quality

Municipal solid waste landfills are subject to TCEQ regulations concerning burning and air pollution control. Measures to control air pollution may include, but are not limited to, the following items:

- Open burning of waste will not be permitted at this facility.
- The Landfill Manager will develop operations that are consistent with the State Implementation Plan (SIP) developed under the Federal Clean Air Act §110, as amended, and §330.15(d).
- Control of dust emissions (i.e. particulate matter control) from haul roads.
- Implementation of an Odor Management Plan.

• Investigate visible air emissions and implement controls as necessary.

4.10.2 Odor Management Plan

An Odor Management Plan will be implemented at the landfill and will include, but is not limited to, the following procedures:

- Incoming waste will be promptly landfilled.
- Identification of waste that require special attention and immediately cover and compact with daily cover or other waste.
- Identification of loads with significant odors by the Gate Attendant, and notification to the working face personnel.
- Freshly landfilled waste will be promptly covered with daily cover at the end of each operation day.
- Keeping the size of the working face to a minimum so waste can be covered quickly.
- Ponded water at the site will be controlled as detailed in Section 4.19 of this SOP.
- Damage or erosion of daily, intermediate, or final cover will be repaired within 5 days of detection (weather permitting) consistent with Section 4.18.5.
- Regular inspection of vapor-tight gaskets on leachate riser end caps. Damaged or deficient gaskets will be repaired following the inspection.
- Control of potential odors from leachate recirculation operations, as described in Section 4.23.
- Leachate will be disposed and handled as described in Attachment 15 Leachate and Contaminated Water Plan.
- Control of landfill gas emissions as detailed in the Landfill Gas Management Plan.
- Clean-up spills of odorous materials immediately.
- Accidental fires will be controlled as outlined in Section 6 of this SOP.

4.11 DISEASE VECTOR CONTROL (§330.151)

The need for vector control (control of rodents, flies, mosquitoes, etc.) will be minimized through proper daily site operations, which include the application of daily and intermediate cover. The extent of the working face will also be minimized, as described in Section 4.2.

Landfill personnel will make weekly checks for insects and rodents and will report problems to the Landfill Manager. If necessary, a licensed professional will apply pesticides or rodenticides to enhance vector control. Care will be taken to ensure that proper chemicals are used and that they are properly applied.

4.12 MAINTENANCE OF SITE ACCESS ROADS (§330.153)

The landfill haul roads (i.e., perimeter haul roads and other constructed interior haul roads) will be constructed of crushed stone, gravel, caliche, or asphalt paving. All-weather landfill haul roads will be maintained for access to the working face during wet-weather operation. In addition to the all-weather roads, some portions of the onsite roads will be maintained for use during dry weather only. The tracking of mud and trash onto public access roadways to the landfill will be minimized by removing mud and associated debris from the site's primary and secondary entrances at least once per day during periods of wet weather and on days when mud or debris is accumulated on the site entrances or public roadway.

Dust will be controlled on the landfill haul roads by periodic spraying from a water truck or other means during periods of significantly dry weather. Dust from on-site roads will not become a nuisance to surrounding areas. A water source and necessary equipment or other means of dust control approved by the TCEQ will be provided.

Grading equipment will be used, as necessary, to control or remove mud accumulations on landfill haul roads. All haul roads will be inspected for damage due to traffic or erosion following significant rainfall events but, in any instance, the minimum inspection frequency of the site roads will be monthly. Crushed stone, concrete rubble, masonry demolition debris, crushed glass, recycled asphalt materials, or caliche will be delivered to the site on an as-needed basis for use in maintaining passable haul roads during wet weather. All onsite haul roads will be maintained in a clean and safe condition. Site roads will be regraded on an as needed basis, as a result of monthly inspections, to minimize depressions, ruts and potholes. Refer to Table 4.2 of this SOP for the site inspection and maintenance schedule.

4.13 SALVAGING AND SCAVENGING (§330.155)

Salvaging will not be allowed to interfere with disposal of solid waste or to create public health nuisances. Salvaged materials will be considered as potential recycled materials. Salvaged items will be removed from the landfill property often enough and will not be stored in excess of 180 days to prevent the items from becoming a nuisance, to preclude the discharge of pollutants from the area, and to prevent an excessive accumulation of the material at the landfill. Special wastes received at the landfill will not be salvaged. Additionally, pesticide, fungicide, rodenticide, and herbicide containers will not be salvaged. Scavenging will be prohibited at all times.

4.14 ENDANGERED SPECIES PROTECTION (§330.157)

Landfill operations will not result in the destruction or adverse modification of the critical habitat of endangered or threatened species, or cause or contribute to the taking of any endangered or

threatened species. No endangered or threatened species are known to exist in the immediate vicinity of the landfill. Verification by the United States Department of the Interior Fish and Wildlife Service that no endangered species will be affected by landfill operations is provided in Part I/II, Appendix I-C3.

4.15 LANDFILL GAS MANAGEMENT (§330.159)

The monitoring of LFG at the landfill will be in accordance with Attachment 14 - Landfill Gas Management Plan. The reports and other submittals required by Attachment 14 will be included in the Site Operating Record, as described in Section 8.1 and submitted to the TCEQ consistent with TCEQ requirements.

4.16 TREATMENT OF ABANDONED OIL AND WATER WELLS (§330.161)

There are no known abandoned water wells or abandoned crude oil or natural gas wells on the landfill property. However, if such abandoned wells are encountered during the course of site development, the County will immediately provide written notification to the TCEQ of the location of these wells.

Within 30 days of finding any abandoned water wells, the County will provide written certification to the TCEQ that all such wells have been capped, plugged, and closed in accordance with all applicable rules and regulations of the TCEQ or other applicable state agency.

For abandoned crude oil or natural gas wells, or other wells associated with mineral recovery, within 30 days of finding any such wells, the County will provide the TCEQ with written notification of the location of such wells. Within 30 days of plugging such wells, the County will provide the TCEQ with written certification that all such wells have been properly capped, plugged, and closed in accordance with all applicable rules and regulations of the Railroad Commission of Texas.

A copy of the well-plugging report to be submitted to the appropriate state agency will also be submitted to the TCEQ within 30 days after the well has been plugged. The County will also submit a permit modification (if applicable) identifying any proposed changes to the liner installation plan as a result of any well abandonment.

4.17 COMPACTION OF SOLID WASTE (§330.163)

Compaction of incoming waste provides more efficient use of available space and reduces the amount of settling after the fill is complete. The incoming waste will be spread in layers and compacted. Compaction of the waste will be accomplished by repeated passes of the landfill compaction equipment capable of providing a minimum 1,000 lbs/cy compaction. Adequate compaction will be accomplished to minimize future consolidation and settlement and provide for the proper application of intermediate and final cover.

Waste placement in landfill phases (i.e., cells) with floor slopes greater than 2% and smooth geomembrane on the floor will be conducted by the following: (1) spreading and compacting

lifts across the entire cell floor; and (2) starting from the low end (i.e. leachate sump) and progressing to the high end.

4.18 SOIL MANAGEMENT, PLACEMENT, AND COMPACTION OF DAILY, INTERMEDIATE, AND FINAL COVER (§330.165)

4.18.1 Soil Management

Management of soil for use in and around the landfill will be an ongoing activity at the facility. In general, soil for use as daily cover, intermediate cover, final cover, and other uses will be available adjacent to the active area. The volume of the soil stockpile used for application of daily cover will depend on the size of the working face, but will be adequate to cover the working face with at least 6-inches, as described in Section 4.18.2. Soil used for fire control will be available within 1,100 feet of the working face, as described in Section 6.1. The soil stockpile(s) will consist of soil that has not previously come in contact with waste. Section 6.1 lists the minimum size of the soil stockpile that will be maintained for fire fighting purposes. This stockpile will be routinely replenished. If the volume of the soil stockpile is reduced to less than the minimum size, it will be replenished prior to the next day of waste acceptance.

4.18.2 Daily Cover

Daily cover of waste is necessary to control disease vectors, windblown waste, odors, fires, scavenging, and to promote runoff from the fill area. At the end of each working day, at least 6 inches of soil cover material that has not previously been mixed with garbage, rubbish, or other solid waste, or an approved alternative daily cover (ADC) material, will be placed over all solid waste received subsequent to the previous cover placement.

The use of ADC will be limited to a 24-hour period after which either waste or daily cover will be placed. The procedures that will be used for application of ADC are specified in the Alternative Daily Cover Operating Plan (ADCOP), as provided in Appendix IV-C. Prior to utilizing different ADCs materials other than previously authorized ADCs, the County will submit a request for temporary authorization consistent with §330.165(d)(1). Consistent with this ADCOP, a status report will be submitted on a two-month basis to the TCEQ during the temporary authorization period describing the effectiveness of the ADC.

If soil is used as daily cover, the minimum thickness will be 6 inches. To ensure that the daily cover soil will be adequate (i.e., minimize vectors, contaminated storm-water runoff, odors, etc.) the following procedures will be followed:

- The daily cover will be sloped to drain.
- The daily cover will be compacted by bulldozer to minimize infiltration of storm water, graded to drain, and will not have waste visibly protruding through it.
- The Landfill Manager will visually verify during placement that a minimum of 6 inches (compacted thickness) of daily cover soil has been placed. The Landfill Manager will

document, on a daily basis, that he has visually verified the thickness and condition in the Cover Application Log (discussed further in Section 4.18.6 of this SOP).

• After each rainfall event, the Landfill Manager will inspect all daily cover areas for erosion, exposed waste or other damage, and repair, as described in Section 4.18.5. Runoff from areas that have intact daily cover is considered to not have come in contact with the working face or leachate.

Inactive areas with 6 inches of daily cover will be inspected weekly for erosion, ponded water, seeps, protruding waste, or other detrimental conditions that may cause contaminated runoff from the daily cover. Within a period of 180 days, an additional 6 inches of earthen material not previously mixed with garbage, rubbish or other solid waste will be placed over inactive areas with daily cover for a total of not less than 12 inches of cover. This 12-inch-thick layer of cover soil will be classified as "intermediate cover" as described in Section 4.18.3 of this SOP. Once the area becomes active again, the top 6 inches may be stripped off for use as daily cover in other areas, provided it can be removed without contamination by contact with solid waste.

4.18.3 Intermediate Cover

All areas that have received waste and will be inactive for longer than 180 days will be covered with 12 inches of well-compacted intermediate cover within 180 days after placement of daily cover or becoming inactive. The top six inches of the intermediate cover will be capable of sustaining native plant growth. Vegetation will be established on intermediate cover within 180 days following application of the intermediate cover and will provide a minimum 60 percent ground coverage, as described in Attachment 6, Appendix 2, Section 5.4. The intermediate cover will be graded and maintained to prevent ponding. Vegetation growth and erosion control features will be maintained as specified in Section 7 of this SOP.

The Landfill Manager will inspect intermediate cover at the site weekly for erosion, ponded water, seeps, protruding waste, or other detrimental conditions that may cause contaminated runoff. Erosion gullies or washed-out areas will be repaired within 5 days of detection, weather permitting, as described in Section 4.18.5.

4.18.4 Final Cover

Final cover will be placed as areas of the site are filled to the design top-of-waste grades. Final cover will be placed in accordance with Attachment 12 - Final Closure Plan. Areas that receive final cover will be vegetated immediately following completion of final cover placement, and will provide at least 85 percent ground coverage, as described in Attachment 6, Appendix 2, Section 5.5. Surface water will be managed throughout the operating life of the landfill to minimize erosion of the final cover. Erosion of final cover will be repaired within 5 days of detection, weather permitting, by restoring the cover material, grading, compacting, and seeding, as necessary. Monthly inspections and restorations will be implemented during the entire operational life. Refer to Table 4.2 of this SOP for a site inspection and maintenance schedule.

The final cover system, including the erosion control structures (interceptor channels and downchutes), will be maintained during and after construction. During the active life of the site,

the Landfill Manager will inspect the final cover system monthly. Post-closure care inspection procedures are outlined in the Attachment 13 - Postclosure Care Plan. Final cover will be monitored throughout the entire closure and post-closure care period of the landfill.

4.18.5 Erosion of Cover

Intermediate and final cover will be inspected on a weekly and monthly basis, respectively, for erosion. Inactive areas with daily, intermediate, and final cover also will be inspected for erosion following significant rainfall events. A significant rainfall event is defined as precipitation greater than 0.5 inches. Erosion gullies or washed-out areas deep enough to impact the final or intermediate cover will be repaired within 5 days of detection (weather permitting) by restoring the cover material, grading, compacting, and/or seeding or sodding. An eroded area is considered to be deep enough to impact the final or intermediate cover if it exceeds four inches in depth as measured perpendicular to the slope. The TCEQ region office may approve more time for cover repairs if the extent of the damage indicates that more time will be needed or if repairs are delayed due to weather conditions.

The date of detection of erosion and date of completion of repairs, including justification of delays, will be documented in the Cover Application Log. Cover inspections will be conducted throughout the operational life of the landfill.

4.18.6 <u>Cover Application Log</u>

Throughout the landfill operation, a cover application log will be maintained and be readily available for inspection by the TCEQ and authorized agents or employees of local governments having jurisdiction. For daily and intermediate cover, the log will specify the area covered (by use of the grid system), how it was placed, and the date it was completed. For final cover, the log will specify the final cover area, the date of cover, and the thickness applied that date. Each entry will be certified by the signature of the Landfill Manager that the work was accomplished as stated in the log. Repairs will be documented in the appropriate cover log, including inspections for erosion, the findings, and the action taken.

4.19 PREVENTION OF PONDED WATER (§330.167)

The prevention of ponding water is necessary to control infiltration of water into the waste. Additionally, ponded water can be a source of odor and breeding grounds for vectors. This ponding water prevention plan to be implemented at the landfill includes, but is not limited to, the following procedures:

Preventative Actions:

• Inspections of the landfill cover will be performed consistent with Section 4.18 of this SOP for the respective cover (i.e., daily, weekly, or monthly) and following periods of wet weather to identify potential ponding locations.

• Routine site grading and maintenance to provide drainage and prevent the ponding of water over areas containing waste.

Corrective Actions:

- Should ponding occur, the water will be removed and the depressions filled within seven days of the occurrence.
- If the ponded water has come into contact with waste, leachate, or waste-contaminated soils, it will be treated as leachate and handled in accordance with the Attachment 15 Leachate and Contaminated Water Plan.

4.20 DISPOSAL OF SPECIAL WASTES (§330.171)

Acceptance of special wastes, as defined in 30 TAC §330.3(148), will be performed in accordance with 30 TAC §330.171. The special wastes that will be accepted at the landfill are discussed in the following subsections.

4.20.1 Dead Animals and Slaughterhouse Waste

Dead animals or slaughterhouse wastes will be accepted at this landfill. Dead animals and slaughterhouse wastes will be buried and covered with a minimum of 3 feet of other solid waste or a minimum of 2 feet of soil immediately upon receipt

4.20.2 <u>Non-Regulated asbestos-containing material (non-RACM)</u>

Non-regulated asbestos-containing materials (non-RACM) may be accepted for disposal at this landfill provided the wastes are placed on the active working face and immediately covered with 12 inches of earthen material or 3 feet of solid waste. Under no circumstances may any material containing non-RACM be placed on any surface or roadway that is subject to vehicular traffic or disposed of by any other means by which the material could be crumbled into a friable state.

4.20.3 <u>Empty Containers</u>

Empty containers which have been used for pesticides, herbicides, fungicides, or rodenticides will be disposed at the site in accordance with the following:

- The containers are tripled rinsed prior to receipt at the landfill.
- The containers are rendered unusable prior to or upon receipt at the landfill.
- The containers are covered by the end of the same working day they are received.

Containers for which triple-rinsing is not feasible or practical (e.g., paper bags, cardboard containers) may be disposed at the landfill, provided that the waste is disposed as a municipal

hazardous waste from conditionally exempt generators, as described in Section 4.20.4 or Class 2 industrial waste if classified as such in accordance with \$335.506.

4.20.4 <u>Municipal Hazardous Waste from Conditionally Exempt Generators</u>

Municipal hazardous waste from a conditionally exempt small quantity generator (CESQG) may be accepted at the landfill without further approval from the TCEQ provided the amount of waste does not exceed 220 pounds per month per generator, and provided the landfill owner or operator authorizes acceptance of the waste.

4.20.5 <u>Sludge, Grease Trap, Grit Trap, or Municipal Liquid Waste</u>

Sludge, grease trap waste, grit trap waste, or liquid wastes from municipal sources will be accepted at a landfill for disposal only if the waste has been treated or processed and the treated/processed material has been tested, in accordance with Test Method 9095 (Paint Filter Liquids Test), as described in "Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods" (EPA Publication Number SW-846), as amended, and is certified to contain no free liquids.

4.20.6 <u>Used Oil Filters</u>

Used oil filters (to include filters that have been crushed and/or processed to remove free-flowing used oil) from **non-household generators** will not be accepted at the landfill. However, used oil filters from internal combustion engines from **household generators** will be accepted at the landfill if the filter has been:

- Crushed to less than 20% of its original volume to remove all free-flowing used oil.
- Processed by a method other than crushing to remove all free-flowing used oil. A filter is considered to have been processed if:
 - (i) the filter has been separated into component parts and the free-flowing used oil has been removed from the filter element by some means of compression in order to remove free-flowing used oil;
 - (ii) the used filter element of a filter consisting of a replaceable filtration element in a reusable or permanent housing has been removed from the housing and pressed to remove free-flowing used oil; or
 - (iii) the housing is punctured and the filter is drained for at least 24 hours.

4.20.7 <u>Medical Waste</u>

Medical waste that has been treated in accordance with the procedures specified in Subchapter Y (related to Medical Waste Management) may be accepted at the landfill.

4.20.8 <u>Waste Generated Outside the Boundaries of Texas</u>

Waste generated outside the boundaries of Texas, including waste generated at Maquiladora facilities, will be accepted at the landfill provided it is classified as MSW, one of the special wastes described in Section 4.20.1 through Section 4.20.8, or Class 2 or Class 3 industrial solid waste, as described in Section 4.21. As noted above, Class 1 industrial solid waste will not be accepted at the landfill. Waste generated outside the boundaries of Texas that has been classified as one of the above types of waste will be handle consistent with the requirements for that type of waste described in this SOP.

Prior to accepting waste generated outside the boundaries of Texas, the landfill operator will require that the generator submit a "Request for Authorization for Disposal of a Special Waste." This request will include the items listed in §330.171(b)(2), as described below in Section 4.20.10. Following receipt of the request, the County will submit said request to the TCEQ for approval. The waste generated outside the boundaries of Texas specified in the request will not be accepted until approval from the TCEQ has been obtained and will only be accepted for the time period specified in the approval.

4.20.9 Other Special Wastes

Special wastes, other than the special waste identified 30 TAC §330.171(c) & (d), requires prior written approval from the TCEQ. Approvals will be waste-specific and/or site-specific and will be granted only to appropriate facilities operating in compliance with TCEQ regulations. As specified in 30 TAC §330.171(b)(2), requests for approval to accept other special wastes will be submitted to the TCEQ and will include the following:

- 1. A complete description of the chemical and physical characteristics of each special waste and the quantity and rate at which each waste is produced and/or the expected frequency of disposal. An additional statement will be included as to whether the special waste is a Class I industrial waste or not.
- 2. An operational plan containing the procedures for handling each waste and listing required protective equipment for operating personnel and onsite emergency equipment.
- 3. A contingency plan outlining responsibility for containment and cleanup of any accidental spills occurring during the delivery and/or disposal operation.

Special waste classified as Class 1 industrial waste is prohibited from being disposed of at the landfill.

4.21 DISPOSAL OF INDUSTRIAL WASTE (§330.173)

As specified in Section 5.1, the County will not accept Class 1 industrial solid waste at the landfill. This facility will accept Class 2 and Class 3 industrial solid waste, as defined in §335.506 and §335.507, respectively, provided the acceptance of such waste does not interfere with landfill operation.

4.21.1 <u>Petroleum Contaminated Soils</u>

Soil contaminated by petroleum products, such as automotive gasoline, other fuels, used motor oil from an internal combustion engine, or crude oils (also referred to as petroleum contaminated soils), may be accepted for disposal without specific TCEQ approval. Prior to acceptance of petroleum contaminated soils, the soils must be certified as being under the limits specified in the Table 4.1.

To determine whether or not a soil meets the criteria listed in the table, one composite sample will be taken for every 50 cubic yards (CY) of contaminated soil. The composite sample should be comprised of four separate grab samples from within the 50 CY. The person taking the sample should strive to obtain the most representative sample possible. All samples must be analyzed for total petroleum hydrocarbon (TPH). If analytical data or process knowledge indicates the possible presence of other contaminants (e.g. benzene or lead), testing for additional parameters is required, as indicated in 30 TAC §335, Subchapter R and TCEQ Regulatory Guidance Document Number RG-22 and RG-29. When additional parameters are required (benzene or lead), it is only necessary to analyze the sample(s) which contain the highest level of TPH from per 200 CY. For example, if there is 400 CY of contaminated soil, there should be eight samples tested for TPH and the two samples with the highest TPH level from those samples should be analyzed for the additional parameters of concern. Laboratory detection limits must be less than or equal to the maximum contaminant levels listed in Table 4.1.

CONSTITUENTS OF	MAXIMUM
CONCERN	CONTAMINANT LEVEL
Benzene	0.5 mg/1 ¹
TPH	1,500 mg/kg
Lead ²	1.5 mg/1 ¹

TABLE 4.1 CONTAMINATED SOIL CONSTITUENTS OF CONCERN

Notes: ¹ An analysis of total contaminant level may be used as a screening tool prior to Toxicity Characteristic Leaching Procedure (TCLP). To determine the maximum total contaminant level at which a TCLP is not necessary multiply the table limit by a factor of 20. This formula is extrapolated from a 20:1 dilution factor when preparing TCLP samples for analysis (Title 40 Code of Federal Regulations, Part 261, Appendix II). If a contaminant total level exceeds 20 times the table limit (e.g. total lead>30 mg/kg, total benzene >10 mg/kg, etc.), then TCLP must be performed.

² If it is known through process knowledge, that the automotive gasoline and fuels did not contain lead, it is not necessary to test for lead.

4.22 VISUAL SCREENING OF DEPOSITED WASTE (§330.175)

Methods for visually screening the working face and deposited waste will include, but are not limited to, the following items consistent with 30 TAC §330.175:

- Orienting the working face away from the F.M. 1021.
- Developing the aerial fill portion of the landfill from the exterior to the interior, when appropriate (i.e., by constructing landfill sideslopes prior to filling operation

• Maintaining existing trees and other vegetation near the landfill permit boundary and adjacent to F.M. 1021.

4.23 LEACHATE AND CONTAMINATED WATER MANAGEMENT

Maverick County will not discharge contaminated water without specific written authorization by the TCEQ. The management of leachate and contaminated water will be performed in accordance with Attachment 15 – Leachate and Contaminated Water Plan. Reports and other submittals required by Attachment 15 will be maintained in the Site Operating Record, as described in Section 8.1 of this SOP.

Leachate collected from the leachate collection system may be recirculated back into the landfill by spraying on the working face, or injecting the leachate back into waste. However, recirculation will only take place over composite lined cells (referred herein as Standard Liner System, see Section 3.0) in accordance with §330.331(b).

Leachate that is recirculated into the landfill will be performed using the following procedures:

- 1. Leachate will be sprayed directly onto the waste at the working face via a dedicated water truck or injected into the waste mass using a dedicated pump.
- 2. Prior to performing leachate recirculation, containment berms and diversion berms will be constructed to prevent runoff of contaminated water and run-on of uncontaminated stormwater, respectively.
- 3. Leachate recirculation performed using a spray application will be performed as follows:
 - a. The spray application will not be performed when standing water exists or during rain events.
 - b. No odors are expected to be associated with this practice. Nevertheless, to provide assurance that odors and wind transmission are minimized, the following procedures will be implemented:
 - i. The spray application of leachate will be performed at a minimum 100foot setback from the limits-of-waste.
 - ii. The leachate will be sprayed down towards the waste, such that the water stream is not being projected up into the air.
 - iii. Spray applications will only be performed on days when the wind speed is less than or equal to 15 miles per hour.
 - c. The rate of spraying will be low enough to prevent the occurrence of ponding and allow the infiltration of leachate prior subsequent applications.
- 4. Leachate recirculation performed by injection will be performed by installing either HDPE [SDR 17 or less] or polyvinyl chloride (PVC) [Sch 80 or less] below-grade

horizontal pipes or vertical injection wells for introduction of the liquids into the landfill in areas of daily or intermediate cover only. As such, leachate recirculation will not occur in areas within in-place final cover.

- a. If below-grade horizontal pipes are installed, they will be installed in trenches at least 3 feet below the landfill surface and be comprised of solid and perforated sections of pipe. Using this technique, the perforated section will be maintained at least 50 feet from the landfill sideslope (i.e., to minimize seeps) when waste disposal in area of recirculation is above-grade.
- b. If vertical wells are installed, they will be installed with the bottom of the well at least 10 feet above the bottom liner of the landfill. The well will be comprised of perforated and solid components, with the solid piping extending from the landfill surface to at least 3 feet below grade and encased in soil backfill. The remainder of the well piping will be perforated and encased in gravel backfill.
- 5. Although, leachate recirculation is not expect to result in nuisance odors, if nuisance odors develop, the following procedures will be implemented to mitigate odors:
 - a. Leachate recirculation will temporarily suspended until the nuisance odors dissipate.
 - b. If nuisance odors are associated with spray applications, the area will be immediately covered with 6 inches of soil.
 - c. If nuisance odors are associated with injection of leachate, all connections to horizontal or vertical injection points will be inspected to make sure that each connection is vapor-tight. If damaged or deficient connections are observed, then the connections will be repaired following the inspection.
 - d. If nuisance odors are still occurring, then the procedures in Section 4.10.2, related to Odor Management Plan, should be reviewed and implemented as needed until odors are mitigated.
- 6. The Landfill Manager will maintain records of the volume of leachate recirculated into the landfill. The recirculation volume will be measured using either flow meters connected to pumps and/or water trucks, or by the volume discharged from water trucks based on the capacity of such storage units.

Leachate recirculation will be performed such that ponding and seeps will not occur. If either, ponding or seeps, are detected or if the leachate head on the liner exceeds 12 inches, the leachate recirculation in the respective cell will be discontinued until the condition is remediated. Additionally, preventative and corrective actions detailed in Section 4.19 will be followed related to cover inspections for seeps and ponding. If seeps are observed during inspections, the area will be packed with onsite soil (i.e., low permeable clay) to assist in mitigating the seep.

Leachate recirculation will be restricted to volumes less than 830,290 gallons/acre/year during below-grade waste disposal and 660,394 gallons/acre/year during above-grade waste disposal. Additionally, the maximum daily recirculation will be limited to less than or equal to 9,700 and 5,400 gallons/acre/day for below and above-grade disposal, respectively, provided total annual volumes are not exceeded and leachate recirculation at the landfill is limited to less than 100,000 gallons/day in accordance with §330.991(a)(7)(A). These allowable recirculation volumes pertain to areas draining to a common sump. The calculations and respective HELP modeling for leachate recirculation are provided in Attachment 15, Appendix 1A.