

Texas Commission on Environmental Quality Waste Permits Division Correspondence Cover Sheet

Date: 10/28/2025 Facility Name: New Boston Landfill Permit or Registration No.: 576C Affix this cover sheet to the front of your submission to	····
for type of correspondence. Contact WPD at (512) 239-	, , , , , , , , , , , , , , , , , , , ,
Table 1 - Municipal Solid	-
Applications	Reports and Notifications
New Notice of Intent	Alternative Daily Cover Report
Notice of Intent Revision	Closure Report
New Permit (including Subchapter T)	Compost Report
New Registration (including Subchapter T)	Groundwater Alternate Source Demonstration
Major Amendment	Groundwater Corrective Action
Minor Amendment	Groundwater Monitoring Report
Limited Scope Major Amendment	Groundwater Background Evaluation
Notice Modification	Landfill Gas Corrective Action
Non-Notice Modification	Landfill Gas Monitoring
☐ Transfer/Name Change Modification	Liner Evaluation Report
☐ Temporary Authorization	Soil Boring Plan
☐ Voluntary Revocation	Special Waste Request
Subchapter T Disturbance Non-Enclosed Structure	Other:
Other:	
Table 2 - Industrial & Hazardo	ous Waste Correspondence
Applications	Reports and Responses
☐ New	☐ Annual/Biennial Site Activity Report
Renewal	☐ CPT Plan/Result
☐ Post-Closure Order	☐ Closure Certification/Report
☐ Major Amendment	☐ Construction Certification/Report
☐ Minor Amendment	☐ CPT Plan/Result
☐ CCR Registration	☐ Extension Request
CCR Registration Major Amendment	☐ Groundwater Monitoring Report
☐ CCR Registration Minor Amendment	☐ Interim Status Change
☐ Class 3 Modification	☐ Interim Status Closure Plan
☐ Class 2 Modification	☐ Soil Core Monitoring Report
☐ Class 1 ED Modification	☐ Treatability Study
☐ Class 1 Modification	☐ Trial Burn Plan/Result
☐ Endorsement	☐ Unsaturated Zone Monitoring Report
☐ Temporary Authorization	☐ Waste Minimization Report
☐ Voluntary Revocation	Other:
335.6 Notification	
Other:	

BIGGS & MATHEWS ENVIRONMENTAL, INC TBPE No. F-256 TBPG No. 50222

October 28, 2025

Megan Henson Manager, Municipal Solid Waste Section MC-124 Texas Commission on Environmental Quality 12100 Park 35 Circle, Bldg F Austin, Texas 78753

Re: New Boston Landfill

Bowie County, Texas

TCEQ Permit No. MSW 576C

Permit Modification - Alternate Final Cover Design Demonstration

RN102594892; CN600127856

Ms. Henson:

On behalf of Waste Management of Texas, Inc., enclosed is a permit modification for the New Boston Landfill. This permit modification has been prepared consistent with Title 30 of the Texas Administrative Code (TAC) §305.70(k)(10) for a notice permit modification to include an alternative final cover system design. Please call or e-mail me if you have any questions at 817-563-1144 or chollingshead@biggsandmathews.com.

Sincerely,

BIGGS & MATHEWS ENVIRONMENTAL

TBPE No. F-256 • TBPG No. 50222

Caleb R. Hollingshead, P.E. Senior Project Engineer

Attachments: Permit Modification (original and two copies)

cc: Guy R. Campbell, Waste Management of Texas, Inc.

Leroy Biggers, TCEQ Region 5

NEW BOSTON LANDFILL BOWIE COUNTY, TEXAS TCEQ PERMIT NO. MSW 576C

PART III – FACILITY INVESTIGATION AND DESIGN ALTERNATE FINAL COVER DESIGN PERMIT MODIFICATION

Prepared for

WASTE MANAGEMENT OF TEXAS, INC.

October 2025

Prepared by

BIGGS & MATHEWS ENVIRONMENTAL

1700 Robert Road, Suite 100 • Mansfield, Texas 76063 • 817-563-1144

NEW BOSTON LANDFILL BOWIE COUNTY, TEXAS TCEQ PERMIT NO. MSW 576C

PART III - FACILITY INVESTIGATION AND DESIGN

ALTERNATE FINAL COVER DESIGN

PERMIT MODIFICATION

CONTENTS

PERMIT MODIFICATION APPLICATION FORM

PERMIT MODIFICATION NARRATIVE

ATTACHMENT 1 - LAND OWNERSHIP INFORMATION

ATTACHMENT 2 - MARKED (REDLINE/STRIKEOUT) PAGES

ATTACHMENT 3 – UNMARKED REVISED PAGES

Texas Commission on Environmental Quality

Application Form for Municipal Solid Waste Permit or Registration Modification or Temporary Authorization

Application Tracking Information

Facility Name: New Boston Landfill		
Permittee or Registrant Name: Waste Management of Texas, Inc.		
MSW Authorization Number: 576C		
Initial Submission Date: 10/28/2025		
Revision Date:		
Instructions for completing this form are provided in <u>form TCEQ-20650-instr</u> ¹ . If you have		
questions, contact the Municipal Solid Waste Permits Section by email to mswper@tceq.texas.gov , or by phone at 512-239-2335.		
Application Data		
1. Submission Type		
■ Initial Submission		
2. Authorization Type		
■ Permit		
3. Application Type		
■ Modification with Public Notice		
☐ Temporary Authorization (TA) ☐ Modification for Name Change or Transfer		
4. Application Fee		
Amount		
The application fee for a modification or temporary authorization is \$150.		
Payment Method		
☐ Check		
■ Online through ePay portal <u>www3.tceq.texas.gov/epay/</u>		
If paid online, enter ePay Trace Number:		

 $^{^1\} www.tceq.texas.gov/downloads/permitting/waste-permits/msw/forms/20650-instr.pdf$

5. I	Electronic	Versions	of A	pplication
------	------------	-----------------	------	------------

For modifications that require public notice, TCEQ will publish electronic versions of the applications online. Applicants must provide complete electronic copies of their initial applications, responses to notices of deficiencies, and the final technically complete versions. (Refer to instructions for this form for how to submit electronically.)

6. Party Responsible for Mailing Notice
For modifications that require notice, indicate who will be responsible for mailing notice:
Applicant Agent in Service Consultant
Contact Name: Caleb R. Hollingshead, P.E.
Title: Senior Engineer
Email Address:
7. Confidential Documents
Does the application contain confidential documents?
Yes ■ No
If "Yes", reference the confidential documents in the application, but submit the confidential documents as an attachment in a separate binder marked "CONFIDENTIAL."
8. Facility General Information
Facility Name: New Boston Landfill
Contact Name: Guy R. Campbell Title: Engineering Manager
MSW Authorization Number (if existing): 576C
Regulated Entity Reference Number: RN 102594892
Physical or Street Address: 1030 W U.S. Highway 82
City: New Boston County: Bowie State: TX Zip Code: 75570
Phone Number: (903) 628-6595
Latitude (Decimal Degrees): 33° 28' 17.5"
Longitude (Decimal Degrees): 94° 26' 45"
9. Facility Types
■ Type I ☐ Type IV ☐ Type V
☐ Type IAE ☐ Type IVAE ☐ Type VI

10. Description of the Revisions to the Facility

Provide a brief description of revisions to permit or registration conditions and supporting documents referred to by the permit or registration, and a reference to the specific provisions under which the modification or temporary authorization application is being made. Also, provide an explanation of why the modification or temporary authorization is needed:

Permit modification prepared consistent with 30 TAC 305.70(k)(10) for changes to include an alternative final cover design.

11. Facility Contact Info	rmation			
Site Operator (Permittee or	Registrant)			
Name: Waste Management of Te	xas, Inc.			
Customer Reference Number:	CN 600127856			
Contact Name: Guy R. Campbe	I	Title: E	ngineering Mana	ger
Mailing Address: 5012 MLK Free				
City: Fort Worth				Zip Code: <u>76119</u>
Phone Number: (405) 417-8124				
Email Address:			_	
Texas Secretary of State (SOS) Filing Number: 22	2300000		
Operator (if different from	Site Operator)			
Name: N/A				
Customer Reference Number:				
Contact Name:		Title:		
Mailing Address:				
City:	County:		State:	Zip Code:
Phone Number:				
Email Address:				
Texas Secretary of State (SOS) Filing Number:				

Consultant (if applicable)				
Firm Name: Biggs and Mathews Environmental, Inc.				
Consultant Name: Caleb R. Hollingshead, P.E.				
Texas Board of Professional Engineers Firm Registration Number: F-256				
Contact Name: Caleb R. Hollingshead, P.E. Title: Senior Engineer				
Mailing Address: 1700 Robert Road, Suite 100				
City: Mansfield County: Tarrant State: TX Zip Code: 76063				
Phone Number: (817) 563-1144				
Email Address:				
Agent in Service (required for out-of-state applicants)				
Name: N/A				
Mailing Address:				
City: County: State: <u>TX</u> Zip Code:				
Phone Number:				
Email Address:				
12. Ownership Status of the Facility				
Is this a modification that changes the legal description, the property owner, or the Site Operator (Permittee or Registrant)?				
☐ Yes ■ No				
If the answer is "No", skip the next question and proceed to signature page.				
Does the Site Operator (Permittee or Registrant) own all the facility units and all the facility property?				
☐ Yes ☐ No				
If "No", provide the following information for other owners.				
Owner Name:				
Mailing Address:				
City: State: <u>TX</u> Zip Code:				
Phone Number:				
Email Address:				

Signature Page

Site Operator or Authorized Signatory

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Name: Guy R. Campbell Title	Engineering Manager
Email Address:	
Signature:	Date:
Operator or Principal Executive Officer Designation	
To be completed by the operator if the application is si for the operator.	gned by an authorized representative
I hereby designate	and/or appear for me at any hearing ality in conjunction with this request Act permit. I further understand that or oral statements given by my , and for compliance with the terms
Operator or Principal Executive Officer Name:	
Email Address:	
Signature:	Date:
Notary SUBSCRIBED AND SWORN to before me by the said	Gw R Campbell
On this 28th day of October, 2025	
My commission expires on the 6th day of June Notary Public in and for Tarrant County, Texas	JANNA LYNN HENRY Notary Public, State of Texas Comm. Expires 06-08-2026 Notary ID 129844221

Note: Application Must Bear Signature and Seal of Notary Public

Attachments for Permit or Registration Modification with Public Notice

Refer to instruction document **200650-instr** for professional engineer seal requirements.

Attachments Table 1. Required attachments.

Required Attachments	Attachment Number
Land Ownership Map	1
Landowners List	1
Marked (Redline/Strikeout) Pages	2
Unmarked Revised Pages	3

Attachments Table 2. Additional attachments as applicable.

Additional Attachments as Applicable (select all that apply and add others as needed)	Attachment Number
☐ TCEQ Core Data Form(s)	
☐ Signatory Authority Delegation	
☐ Fee Payment Receipt	
☐ Confidential Documents	

PERMIT MODIFICATION NARRATIVE

This permit modification provides changes to the Site Development Plan to include alternate final cover designs in accordance with 30 TAC §305.70(k)(10). The New Boston Landfill has an approved final cover design consisting of a clay infiltration layer, a low-density polyethylene membrane, a geocomposite/geotextile drainage layer, and an erosion layer. This permit modification maintains the approved final cover design and provides additional alternate final cover design for the top deck and for the side slope.

The optional top deck alternate final cover design consists of a 12-inch-thick compacted clay infiltration layer, a 40-mil linear low-density polyethylene membrane, a double sided geocomposite, and a 24-inch-thick erosion layer. The optional side slope alternate final cover design consists of a 12-inch-thick compacted clay infiltration layer, a double sided geocomposite, and a 36-inch-thick erosion layer.

The purpose of this modification is to provide flexibility in final cover construction based on the availability of materials at the time of construction while providing equivalent reduction in infiltration and protection from erosion as the final cover system specified in 30 TAC §330.457. This permit modification includes revisions to Part III Attachment B (General Facility Design), Attachment D (Waste Management Unit Design), and Attachment H (Closure Plan).

ATTACHMENT 1 ADJACENT LAND OWNERSHIP INFORMATION

NEW BOSTON LANDFILL ADJACENT PROPERTY OWNERS

(From Bowie County Records, October 23, 2025)

1	DORIS BURNS 1715 COUNTY ROAD 3004 NEW BOSTON, TX 75570	16	NATHAN & JACKLYN WHITTINGTON 140 COUNTY ROAD 3003 NEW BOSTON, TX 75570
2	GARY CADDENHEAD 909 SW FRON ST NEW BOSTON. TX 75570	17	VICKI WIGGINS LIVING TRUST 158 COUNTY ROAD 3005 NEW BOSTON, TX 75570
3	ALLEN SMITH 460 COUNTY ROAD 4001 NEW BOSTON, TX 75570	18	PROSPERITY CHURCH PO BOX 477 NEW BOSTON, TX 75570
4	MASON CROSBY 1165 FM 3378 NEW BOSTON, TX 75570	19	JAMES & JACQUELINE BARBER PO BOX 833 NEW BOSTON, TX 75570
5	LOUIS LEWIS 213 COUNTY ROAD 4005 NEW BOSTON. TX 75570	20	RONALD & TERRY HUMPHREY 136 MYRTLE DR NEW BOSTON, TX 75570
6	CARA LEWIS 1443 COUNTY ROAD 3004 NEW BOSTON, TX 75570	21	NEW COVENANT LIFE FELLOWSHIP 136 MYRTLE DR NEW BOSTON, TX 75570
7	BUFORD RANEY PO BOX 622 NEW BOSTON. TX 77570	22	FREDRICK & YVETTE CRAWFORD 112 S MAPLE ST NEW BOSTON, TX 75570
8	CONNIE BARON 1546 COUNTY ROAD 3004 NEW BOSTON, TX 77570	23	LANDMARK PENTECOSTAL CHURCH 1601 MALL DR TEXARKANA, TX 75503
9	MATHEW McGREGOR 1490 COUNTY ROAD 3004 NEW BOSTON, TX 77570	24	DRT VENTURES LLC 4 WOODMONT CROSSING ST TEXARKANA, TX 75503
10	BOBBY WALKER 160 COUNTY ROAD 3005 NEW BOSTON. TX 77570	25	ROGER LYNCH 33 FM 2149 NEW BOSTON, TX 75570
11	JAMES SHIRLEY 60 COUNTY ROAD 3005 NEW BOSTON. TX 77570	26	REGINA CARSON PO BOX 431 NEW BOSTON, TX 75570-0431
12	MICHAEL & KYNZI LONG 201 COUNTY ROAD 4257 NEW BOSTON. TX 77570	27	ARTHUR LEE & SANDRA NERO PO BOX 413 NEW BOSTON, TX 75570-0413
13	CHARLES WILLIAMS 684 COUNTY ROAD 3004 NEW BOSTON. TX 77570	28	VIRGINIA PAIGE BROCK 392 COUNTY ROAD 3012 NEW BOSTON, TX 75570-5920
14	LARRY & CHARLEAN CARROLL 131 COUNTY ROAD 3003 NEW BOSTON, TX 77570	29	JOHN PERRY PO BOX 15 MART, TX 76664
15	JOHNNY HOOKS 613 N CENTER ST	30	BRIGETTE CALVERT

719 TEXAS LANE

NEW BOSTON, TX 75570

613 N CENTER ST

NEW BOSTON, TX 77570

NEW BOSTON LANDFILL ADJACENT PROPERTY OWNERS

(From Bowie County Records, October 23, 2025)

	,		, ,
31	GRETCHON F & JOYCE POWELL 127 PEARLY ST NEW BOSTON, TX 75570-0042	45	V HAYWOOD 705 N BOWIE ST NEW BOSTON, TX 75570-9631
32	124 PEARLIE SERIES-A SERIES OF MEDANKA LLC 4506 ALDRIDGE DR SACHSE, TX 75048	46	JD & VIRGIE HOOKS 613 N CENTER ST NEW BOSTON, TX 75570
33	ALVIN & DEBORAH FIELDS PO BOX 193 NEW BOSTON, TX 75570-0193	47	BOOKER T & VERA HOOKS 518 N BOWIE ST NEW BOSTON, TX 76670
34	LDJC PROPERTIES, LLC 6023 CALHOON TRAIL TEXARKANA, AR 71854	48	REGINALD AUSTIN 705 N BOWIE ST NEW BOSTON, TX 75570
35	ODIE B FIELDS, JR 110 PEARLEY ST NEW BOSTON, TX 75570-1801	49	FRANK COX 1801 LAKE SHORE CIR COLLEGE STATION, TX 77845
36	BILLIE N BARBER PO BOX 654 NEW BOSTON, TX 75570	50	LAFAY CROWELL 351 COUNTY ROAD 3001 NEW BOSTON, TX 75570
37	JEWEL & KISHINA SHAW 50 WOODLAND WAY NEW BOSTON, TX 75570	51	BILLIE WALKER 721 TEXAS LN NEW BOSTON, TX 75570
38	LINDA FAY HAWTHRON & ERIC J THOMAS 2421 N AKIN AVE TEXARKANA, TX 75501	52	RODNEY & DENA ANN TALBERT 719 TEXAS LN NEW BOSTON, TX 75570
39	AUSTIN MARVEL PO BOX 654 NEW BOSTON, TX 75570	53	JULIE DEE MAY 185 COUNTY ROAD 3001 NEW BOSTON, TX 75570
40	TROY PRICE 117 PEARLY ST NEW BOSTON, TX 75570-1802	54	RICHARD R THOMPSON 700 HWY 82 W NEW BOSTON, TX 75570
41	JUNE JENNINGS 141 PEARLY ST NEW BOSTON, TX 75570-1602	55	NEW BOSTON HOUSING AUTHORITY PO BOX 806 NEW BOSTON, TX 75570
42	ARDIS COTTON JR & KAY COTTON 764 TEXAS LN NEW BOSTON, TX 75570	56	DWAYNE & DWIGHT JONES 106 PEGGY ST NEW BOSTON, TX 75570
43	BRIGETTE ELAINE TALBERT 719 TEXAS LN NEW BOSTON, TX 75570	57	MAURICE & ALICE HURD 102 PEGGY DR NEW BOSTON, TX 75570
44	DEAR FAMILY LIMITED PARTNERSHIP 207 S PARK DR NEW BOSTON, TX 75570	58	BOYCE & JANA K RANEY 570 TEXAS LN NEW BOSTON, TX 75570

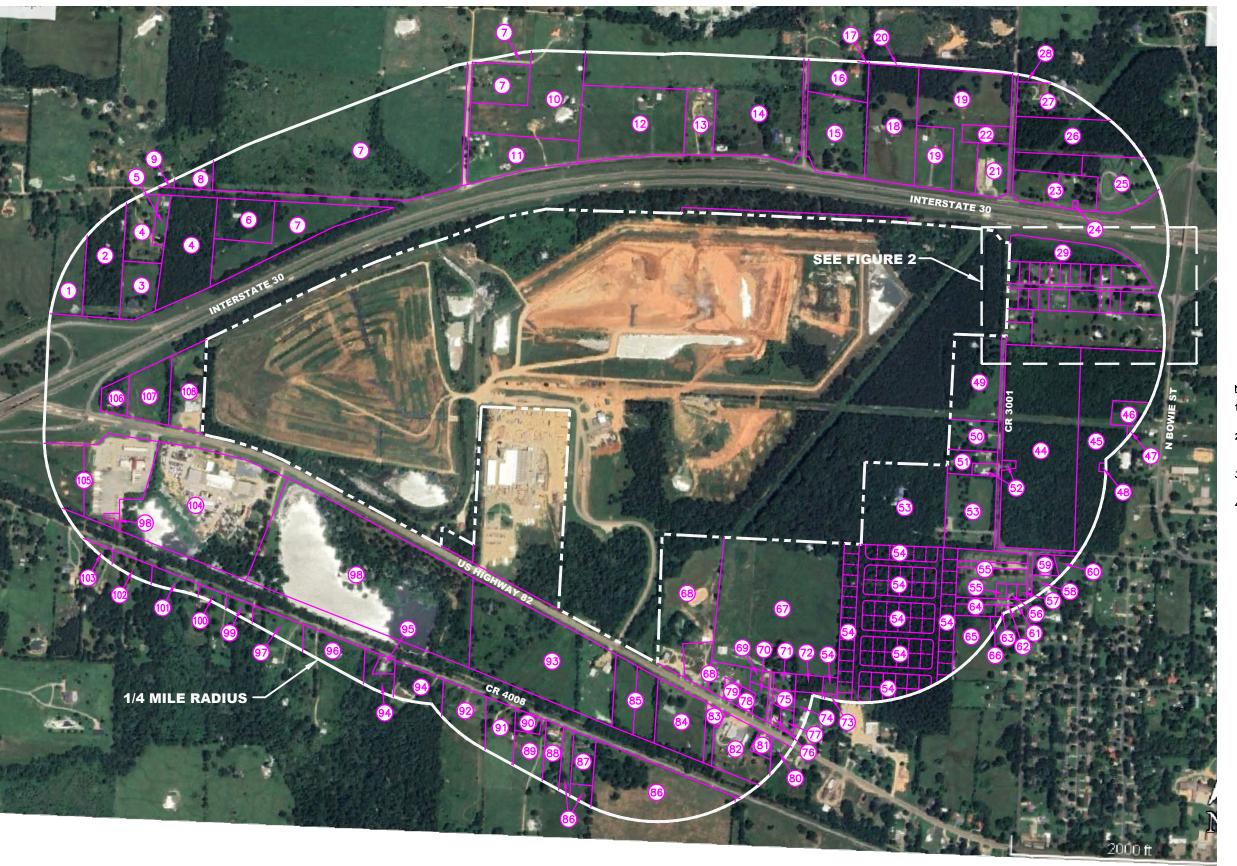
NEW BOSTON LANDFILL ADJACENT PROPERTY OWNERS

(From Bowie County Records, October 23, 2025)

	(1.10m 20m0 00mm) 1.000140, 0010501 20, 2020)					
59	MICHAEL S McDONALD 620 TEXAS LN NEW BOSTON, TX 75570	73	JASON W PIRKEY 913 FM 911 N AVERY, TX 75554			
60	RICKY OLSON 205 OAK LN NEW BOSTON, TX 75570	74	WESTSIDE MISSIONARY BAPTIST CHURCH PO BOX 21 NEW BOSTON, TX 75570			
61	DEBRA ROBINSON PO BOX 84 DE KALB, TX 75559	75	AMERICAN HERITAGE APARTMENTS INC 1430 COLLEGE DR TEXARKANA, TX 75503			
62	RICHARD ELLIS 201 CECIL NEW BOSTON, TX 75570	76	LAURA D ROBBINS 808 HWY 82 W NEW BOSTON, TX 75570			
63	NEW BOSTON WEST LLC 2525 N CANYON RD PROVO, UT 84604	77	JENNY LOU SPURLOCK 806 HWY 82 W NEW BOSTON, TX 75570			
64	JOY N WILLIAMS 10708 BRISTOL TERR KANSAS CITY, MO 64134	78	JERRY O & CHARLENE YATES 908 HWY 82 W NEW BOSTON, TX 75570			
65	TERRENCE D ELLIS 123 TEXAS LN NEW BOSTON, TX 75570	79	NETEX RENTALS LLC SERIES N2 413 E FRONT ST DE KALB, TX 75559			
66	WILLIAM L BROWN JR 555 TEXAS LN NEW BOSTON, TX 75570	80	316 LANDSCAPING SOLUTIONS 3796 HWY 82 W NEW BOSTON, TX 75570			
67	ZACHARY & KRISTEN RIOS 401 HOLLY ST NEW BOSTON, TX 75570	81	BOWIE COUNTY SOIL & WATER COMPANY 905 HWY 82 W NEW BOSTON, TX 75570			
68	DAMON SHANE & STACIE JOHNSON 912 HWY 82 W NEW BOSTON, TX 75570	82	EARNEST SHELTON SR%DAN & EARNEST (JR) SHELTON 909 HWY 82 W NEW BOSTON, TX 75570			
69	PAMELA BELL 303 HOLLY ST NEW BOSTON, TX 75570	83	BOWIE COUNTY FARM BUREAU PO BOX 757 NEW BOSTON, TX 75570			
70	CARMEN WHALEN 906 HWY 82 W NEW BOSTON, TX 75570	84	ENON PRIMITIVE BAPTIST CHURCH 206 E WALTERS BLVD NEW BOSTON, TX 75570-3807			
71	SAMANTHA M MILLS 302 HOLLY ST NEW BOSTON, TX 75570	85	SOUTHWESTERN ELECTRIC POWER COMPANY PO BOX 16428 COLUMBUS, OH 43216			
72	TITUS GROUP INVESTMENTS LLC PO BOX 271004 DALLAS, TX 75227	86	STEVEN K WICKER 5080 COUNTY ROAD 309 DE KALB, TX 75559			

NEW BOSTON LANDFILL ADJACENT PROPERTY OWNERS

(From Bowie County Records, October 23, 2025)


87	ROY SPRADLIN
	743 COUNTY ROAD 4008
	NEW BOSTON, TX 75570

- 88 MATHEW JOHNSON PO BOX 922 NEW BOSTON, TX 75570-0922
- 89 ANGELA LEWIS **827 COUNTY ROAD 4008 NEW BOSTON, TX 75570**
- 90 JESSE JOHN DUSON **831 COUNTY ROAD 4008** NEW BOSTON, TX 75570
- 91 JENNIFER S DANIEL **883 COUNTY ROAD 4008 NEW BOSTON, TX 75570**
- LLOYD FDWARDS 92 **949 COUNTY ROAD 4008 NEW BOSTON, TX 75570**
- 93 **EDWARD & SHEILA HIGGINS PO BOX 725** NEW BOSTON, TX 75570-0725
- 94 TANGATA LAPUAHO & JANIS KASITATI PO BOX 1164 **NEW BOSTON, TX 75570**
- 95 **G & W PINEY WOODS PROPERTIES LLC** 723 MAIN ST TEXARKANA, TX 75501
- 96 WILLIAM N REED **243 COUNTY ROAD 3107** NEW BOSTON, TX 75570-6353
- 97 STEPHEN F & ANITA MAYES **1237 COUNTY ROAD 4008** NEW BOSTON, TX 75570-9803
- 98 CITY OF NEW BOSTON PO BOX 5 NEW BOSTON, TX 75570-0005
- 99 **ROBIN LYNN HALL 313 COUNTY ROAD 4008** NEW BOSTON, TX 75570-5047

Biggs & Mathews Environmental

100 LINDSEY LIVING TRUST ANNAMARY LINDSEY TRUSTEE 1365 COUNTY ROAD 4008 **NEW BOSTON, TX 75570**

- 101 CALVIN N & DIANE THOMPSON 1411 COUNTY ROAD 4008 **NEW BOSTON, TX 75570**
- 102 JAMES EDWARD ROBERTS 2571 COUNTY ROAD 3204 DE KALB, TX 75559
- 103 MARK & JENNIFER HELMICK 1549 COUNTY ROAD 4008 **NEW BOSTON, TX 75570**
- 104 PARADIGM INVESTMENTS LLC **PO BOX 957** MAYFIELD, KY 42066
- 105 VICTRON STORES LP 791 N HWY 77 ST 501C #181 WAXAHACHIE, TX 75165
- 106 BARBARA S TUCKER 2086 HWY 82 W **NEW BOSTON, TX 75570**
- 107 TRAVELERS PLAZA 10609 GREENBRIAR LN ROCKWALL, TX 75089
- 108 AMERICAN LEGION POST #488 % DOYLE WILLIAMS PO BOX 66 **NEW BOSTON, TX 75570**

LEGEND

PERMIT BOUNDARY

LAND OWNERSHIP IDENTIFICATION

NOTES:

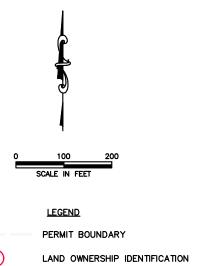
- REFER TO LAND OWNERS LIST FOR ADJACENT LAND OWNER NAMES.
- ADJACENT LAND OWNERS BASED ON BOWE COUNTY APPRAISAL DISTRICT RECORDS DOWNLOADED ON OCTOBER 23, 2025.
- 3. LAND OWNERS HAVE BEEN IDENTIFIED ADJACENT TO AND WITHIN 1/4 MILE OF THE PERMIT BOUNDARY.
- . IMAGERY TAKEN FROM GOOGLE EARTH ON OCTOBER 23, 2025, IMAGERY DATE JUNE 20, 2023.

LAND OWNERSHIP MAP

WASTE MANAGEMENT OF TEXAS, INC. NEW BOSTON LANDFILL

BIGGS & MATHEWS ENVIRONMENTAL

1700 ROBERT ROAD, STE. 100 MANSFIELD, TEXAS 76063 817-563-1144


TBPG FIRM NO. 50222

FIGURE

TBPE FIRM NO. F-256

DESCRIPTION

LAND OWNERSHIP MAP

WASTE MANAGEMENT OF TEXAS, INC. NEW BOSTON LANDFILL

BIGGS & MATHEWS ENVIRONMENTAL 1700 ROBERT ROAD, STE. 100 MANSFIELD, TEXAS 76063 817-563-1144

TBPE FIRM NO. F-256 TBPG FIRM NO. 50222

DESCRIPTION

FIGURE 2

ATTACHMENT 2 MARKED (REDLINE/STRIKEOUT) PAGES

NEW BOSTON LANDFILL BOWIE COUNTY, TEXAS TCEQ PERMIT NO. MSW 576C

PART III – FACILITY INVESTIGATION AND DESIGN ATTACHMENT B GENERAL FACILITY DESIGN

Prepared for

Waste Management of Texas, Inc.

Technically Complete September 12, 2014
Permit Issued November 12, 2015
Revised April 2018

Revised October 2025

Prepared by

BIGGS & MATHEWS ENVIRONMENTAL

1700 Robert Road, Suite 100 • Mansfield, Texas 76063 • 817-563-1144

TEXAS BOARD OF PROFESSIONAL ENGINEERS AND LAND SURVEYORS FIRM REGISTRATION NO. F-256 AND NO. 10194895 TEXAS BOARD OF PROFESSIONAL GEOSCIENTISTS FIRM REGISTRATION NO. 50222

CONTENTS

1	FACILITY ACCESS	B-1
2	WASTE MOVEMENT	B-2
3	SANITATION	B-7
4	WATER POLLUTION CONTROL	B-8
5	ENDANGERED SPECIES PROTECTION	B-9
APPE	NDIX B1 – DRAWINGS	
B.1 B.2 B.3 B.4	Waste Movement Flow Diagram Waste Disposal, Processing, and/or Storage Schematic Plan Waste Processing and/or Storage Facilities Schematic Plan Waste Processing and/or Storage Facilities Schematic Plan Citizen's Convenience Area Facilities Schematic Plan	

Table B-2 New Boston Landfill Components of the Final Cover Systems

Cover System Component	Description	Minimum Thickness	
West and North Disposal Areas Final Cover			
TOPSLOPE			
Erosion Layer	Soil that is capable of sustaining native plant growth	24 inches	
Cushion Layer	Geotextile	8 oz	
Flexible Membrane Cover	Smooth LLDPE geomembrane	40 mil nominal	
Infiltration Layer	Compacted soil with a coefficient of permeability ≤ 1 x 10 ⁻⁵ cm/sec	18 inches	
TOPSLOPE - ALTERNATE			
Erosion Layer	Soil that is capable of sustaining native plant growth	24 inches	
<u>Drainage Layer</u>	Double-sided geocomposite	0.25 inches nominal	
Flexible Membrane Cover	Smooth or Textured LLDPE geomembrane	40 mil nominal	
Infiltration Layer	Compacted soil with a coefficient of permeability ≤ 1 x 10 ⁻⁷ cm/sec	12 inches	
SIDESLOPE OPTION A			
Erosion Layer	Soil that is capable of sustaining native plant growth	24 inches	
Drainage Layer	Double-sided geocomposite	0.2 inches nominal	
Flexible Membrane Cover	Textured LLDPE geomembrane	40 mil nominal	
Infiltration Layer	Compacted soil with a coefficient of permeability ≤ 1 x 10 ⁻⁵ cm/sec	18 inches	
SIDESLOPE OPTION B			
Erosion Layer	Soil that is capable of sustaining native plant growth	24 inches	
Drainage Layer	Geotextile over studded geomembrane	8 oz	
Flexible Membrane Cover	Textured LLDPE geomembrane with studs on top	40 mil nominal	
Infiltration Layer	Compacted soil with a coefficient of permeability ≤ 1 x 10 ⁻⁵ cm/sec	18 inches	
SIDESLOPE - ALTERNATE			
Erosion Layer	Soil that is capable of sustaining native plant growth	36 inches	
Drainage Layer	Double-sided geocomposite	0.25 inches nominal	
Infiltration Layer	Compacted soil with a coefficient of permeability ≤ 1 x 10 ⁻⁷ cm/sec	12 inches	
South Disposal Area Final Cover System			
Erosion Layer	Soil that is capable of sustaining native plant growth	24 inches	
Infiltration Layer	Compacted soil with a coefficient of permeability ≤ 1 x 10 ⁻⁷ cm/sec	18 inches	

Final cover placement will generally follow the sequence of development as shown in Part II, Appendix IIA, Drawings IIA.16 through IIA.24, and will be ongoing as the site is developed. Sectors will be closed according to the closure plan provided in Attachment H – Closure Plan.

RACM

Regulated asbestos-containing material (RACM) may be accepted at the New Boston Landfill as defined in 40 Code of Federal Regulations Part 61 in accordance with 30 TAC §330.171(c)(3). The existing landfill has previously notified TCEQ of its intent to accept RACM. The New Boston Landfill, by inclusion of the requirements of §330.171(c)(3) in the Site Operating Plan, is providing written notification to the executive director of the

NEW BOSTON LANDFILL BOWIE COUNTY, TEXAS TCEQ PERMIT NO. MSW 576C

PART III – FACILITY INVESTIGATION AND DESIGN ATTACHMENT D WASTE MANAGEMENT UNIT DESIGN

Prepared for

Waste Management of Texas, Inc.

Technically Complete September 12, 2014 Permit Issued November 12, 2015 Revised April 2018

Revised October 2025

Prepared by

BIGGS & MATHEWS ENVIRONMENTAL

1700 Robert Road, Suite 100 • Mansfield, Texas 76063 • 817-563-1144

TEXAS BOARD OF PROFESSIONAL ENGINEERS FIRM REGISTRATION NO. F-256 AND NO. 10194895

TEXAS BOARD OF PROFESSIONAL GEOSCIENTISTS FIRM REGISTRATION NO. 50222

CONTENTS

30 TAC §330.63(d)

1	WAS	STE MANAGEMENT UNIT DESIGN	D-1
2	PRO	OCESSING AND/OR STORAGE UNITS	D-2
-	2.1	Large Item Storage Area	
	2.2	Recyclable Materials Staging Area	
	2.3	Citizen's Convenience Area	
	2.4	Leachate Storage Facility	D-3
	2.5	Truck Wheel Wash	
3	LAN	IDFILL UNITS	D-4
	3.1	All Weather Operation	D-4
	3.2	Landfilling Methods	D-5
	3.3	Landfill Design Parameters	D-5
	3.4	Site Life Projection	
	3.5	Landfill Cross Sections	
	3.6	Liner Quality Control Plan	
	3.7	Final Cover Quality Control Plan	D-7
Atta	chment [D1 – Site Layout Plans	
Atta	chment I	D2 – Cross Sections	
Atta	chment [D3 – Construction Design Details	
Atta	chment [D4 – Site Life	
Atta	chment I	D5 – Geotechnical Design	
Atta	chment [D6 – Leachate and Contaminated Water Management Plan	
Atta	chment [D7 – Liner Quality Control Plans	
Atta	chment [D7A – North Disposal Area Liner Quality Control Plan	
Atta	chment [D7B – South Disposal Area Liner Quality Control Plan	
Atta	chment [D8 – Final Cover Quality Control Plans	
Atta	chment I Plan	D8A – West and North Disposal Areas Final Cover Quality Control	

Attachment D9 – Alternate Final Cover Design Demonstration

Table D-4 New Boston Landfill

Components of the Final Cover Systems

Cover System Component	Description	Minimum Thickness
TOPSLOPE		
Erosion Layer	Soil that is capable of sustaining native plant growth	24 inches
Cushion Layer	Geotextile	8 oz
Flexible Membrane Cover	Smooth LLDPE geomembrane	40 mil nominal
Infiltration Layer	Compacted soil with a coefficient of permeability less than or equal to 1 x 10 ⁻⁵ cm/sec	18 inches
TOPSLOPE - ALTERNATE		
Erosion Layer	Soil that is capable of sustaining native plant growth	24 inches
<u>Drainage Layer</u>	Double-sided geocomposite	0.25 inches nominal
Flexible Membrane Cover	Smooth or Textured LLDPE geomembrane	40 mil nominal
Infiltration Layer	Compacted soil with a coefficient of permeability less than or equal to 1 x 10 ⁻⁷ cm/sec	12 inches
SIDESLOPE OPTION A		
Erosion Layer	Soil that is capable of sustaining native plant growth	24 inches
Drainage Layer	Double-sided geocomposite	0.2 inches nominal
Flexible Membrane Cover	Textured LLDPE geomembrane	40 mil nominal
Infiltration Layer	Compacted soil with a coefficient of permeability less than or equal to 1 x 10 ⁻⁵ cm/sec	18 inches
SIDESLOPE OPTION B		
Erosion Layer	Soil that is capable of sustaining native plant growth	24 inches
Drainage Layer	Geotextile over studded geomembrane	8 oz
Flexible Membrane Cover	Textured LLDPE geomembrane with studs on top	40 mil nominal
Infiltration Layer	Compacted soil with a coefficient of permeability less than or equal to 1 x 10 ⁻⁵ cm/sec	18 inches
SIDESLOPE - ALTERNATE		
Erosion Layer	Soil that is capable of sustaining native plant growth	36 inches
<u>Drainage Layer</u>	Double-sided geocomposite	0.25 inches nominal
Infiltration Layer	Compacted soil with a coefficient of permeability less than or equal to 1 x 10 ⁻⁷ cm/sec	12 inches
South Disposal Area Final Cover		
Erosion Layer	Soil that is capable of sustaining native plant growth	24 inches
Infiltration Layer	Compacted soil with a coefficient of permeability less than or equal to 1 x 10 ⁻⁷ cm/sec	18 inches

NEW BOSTON LANDFILL BOWIE COUNTY, TEXAS TCEQ PERMIT NO. MSW 576C

PART III – FACILITY INVESTIGATION AND DESIGN ATTACHMENT D3 CONSTRUCTION DESIGN DETAILS

Prepared for

Waste Management of Texas, Inc.

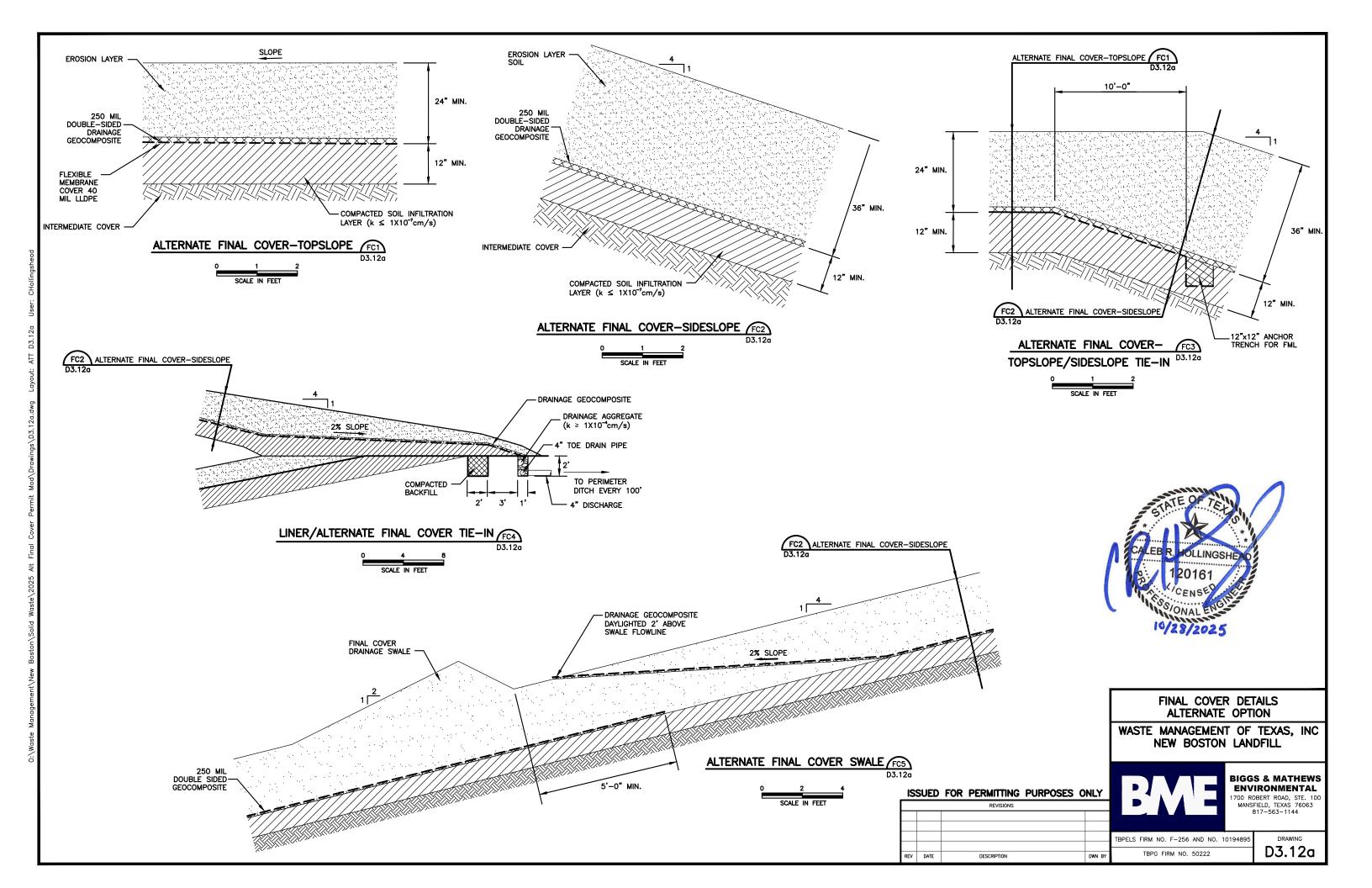
Technically Complete September 12, 2014
Permit Issued November 12, 2015
Revised April 2018

Revised October 2025

Prepared by

BIGGS & MATHEWS ENVIRONMENTAL

1700 Robert Road, Suite 100 • Mansfield, Texas 76063 • 817-563-1144


TEXAS BOARD OF PROFESSIONAL ENGINEERS FIRM REGISTRATION NO. F-256 AND NO. 10194895 TEXAS BOARD OF PROFESSIONAL GEOSCIENTISTS FIRM REGISTRATION NO. 50222

CONTENTS

30 TAC §330.63(d)(4)(F)

- D3.1 Liner Plan
- D3.2 Liner Details
- D3.3 Leachate Collection System Plan
- D3.4 Leachate Collection System Details
- D3.5 Leachate Collection System Details
- D3.6 Underdrain Plan North Disposal Area
- D3.7 Underdrain Plan South Disposal Area
- D3.8 Underdrain Details
- D3.9 Final Cover Plan West Disposal Area
- D3.10 Final Cover Plan North Disposal Area
- D3.11 Final Cover Plan South Disposal Area
- D3.12 Final Cover Details
- <u>D3.12a Final Cover Details Alternate Option</u>
- D3.13 Final Cover Details

NEW BOSTON LANDFILL BOWIE COUNTY, TEXAS TCEQ PERMIT NO. MSW 576C

PART III – FACILITY INVESTIGATION AND DESIGN ATTACHMENT D5 GEOTECHNICAL DESIGN.

Prepared for

Waste Management of Texas, Inc.

Technically Complete September 12, 2014

Revised October 2025

Prepared by

BIGGS & MATHEWS ENVIRONMENTAL

1700 Robert Road, Suite 100 • Mansfield, Texas 76063 • 817-563-1144

TEXAS BOARD OF PROFESSIONAL ENGINEERS FIRM REGISTRATION NO. F-256 AND NO. 10194895

TEXAS BOARD OF PROFESSIONAL GEOSCIENTISTS FIRM REGISTRATION NO. 50222

CONTENTS

1	GEO	TECHNICAL TESTING	D5-1
2	SUB	SURFACE MATERIALS	D5-2
	2.1	Material Properties	D5-2
	2.2	Material Requirements	D5-2
3	EAR	THWORK	D5-5
	3.1	Excavation	D5-5
	3.2	Earthfill	D5-5
4	CON	STRUCTION BELOW THE GROUNDWATER TABLE	D5-6
	4.1	Groundwater Elevations	D5-6
	4.2	Temporary Dewatering System	D5-6
	4.3	Hydrostatic Uplift	
5	SET	TLEMENT AND HEAVE ANALYSIS	D5-8
	5.1	Subgrade Heave	D5-8
	5.2	Subgrade Settlement	D5-8
	5.3	Solid Waste Settlement	D5-8
6	SLO	PE STABILITY ANALYSES	D5-9
7	LINE	R CONSTRUCTION	D5-13
	7.1	Subgrade Preparation	D5-13
	7.2	Compacted Soil Liner	
	7.3	Protective Cover	
	7.4	Liner Testing and Documentation	
8	COV	ER CONSTRUCTION	D5-15
	8.1	Daily, Weekly, and Intermediate Cover	D5-15
	8.2	Final Cover	
	8.3	Final Cover Testing and Documentation	D5-15

30 TAC §§330.165, 330.457

8.1 Daily, Weekly, and Intermediate Cover

The daily, weekly, and intermediate cover should be constructed of soils that are free of waste and debris. Suitable cover materials should be available from the proposed excavations or on-site borrow sources. Requirements for the placement of daily, weekly, and intermediate cover are provided in Part IV – Site Operating Plan.

8.2 Final Cover

Final cover construction has been completed over <u>18.1the entire 52.5</u> acres of the West Disposal Area and details of the cover is documented in the Final Cover Evaluation Reports (FCERs). FCER approval dates are shown on Attachment <u>D1J</u>, Drawing <u>D1.3J.1</u>.

The final cover system in the remainder of the West Disposal Area and the North Disposal Area will consist of an 18-inch-thick compacted soil infiltration layer overlain by a geomembrane, a drainage/cushion layer, and a 24-inch-thick erosion layer. There are two final cover system designs proposed for the West and North Disposal Areas as shown on Table D-4 in Attachment D. The final cover system in the South Disposal Area will consist of an 18-inch-thick compacted soil infiltration layer overlain by an erosion layer. The final cover system requirements are provided in Attachment D8 and the final cover system details are provided in Attachment D3.

The infiltration layer material must consist of relatively homogeneous cohesive materials that are free of debris, rocks greater than one inch in diameter, plant materials, frozen materials, foreign objects, and organic material. The infiltration layer should be constructed directly over the intermediate cover once the waste has reached final grades. The infiltration layer construction procedure should be the same as those outlined in Section 7 for liner construction.

The erosion layer should consist of: (1) topsoil stockpiled during the excavation process, (2) on-site soils which has been modified to be capable of sustaining vegetation, or (3) an imported material suitable to sustain vegetation growth. This layer may be spread and placed in one lift over the drainage layer. After spreading, the layer should be rolled lightly to reduce future erosion, although not to the extent that compaction would inhibit plant growth.

8.3 Final Cover Testing and Documentation

CQA testing of the final cover system must be performed during construction. Final cover system requirements are outlined in Attachment D8.

NEW BOSTON LANDFILL BOWIE COUNTY, TEXAS TCEQ PERMIT APPLICATION NO. MSW 576C

PERMIT AMENDMENT APPLICATION

PART III – FACILITY INVESTIGATION AND DESIGN ATTACHMENT D8A WEST AND NORTH DISPOSAL AREAS FINAL COVER QUALITY CONTROL PLAN

Prepared for

Waste Management of Texas, Inc.

Technically Complete September 12, 2014

Revised October 2025

Prepared by

BIGGS & MATHEWS ENVIRONMENTAL

1700 Robert Road, Suite 100 + Mansfield, Texas 76063 + 817-563-1144

TEXAS BOARD OF PROFESSIONAL ENGINEERS FIRM REGISTRATION NO. F-256 AND NO. 10194895 TEXAS BOARD OF PROFESSIONAL GEOSCIENTISTS FIRM REGISTRATION NO. 50222

CONTENTS

			30 TAC §330.457
1	INTR	ODUCTION	D8A-1
	1.1	Purpose	D8A-1
	1.2		D8A-1
2	FINA	L COVER SYSTEM	D8A-3
	2.1	Final Cover System	D8A-3
3	INTE	RMEDIATE COVER AND GRADIN	GD8A-6
	3.1	General	D8A-6
	3.2	Materials	D8A-6
	3.3	Slopes	D8A-6
	3.4	Testing and Verification	D8A-6
4	INFIL	TRATION LAYER	D8A-7
	4.1	General	D8A-7
	4.2	Materials	D8A-7
	4.3	Subgrade Preparation	D8A-7
	4.4	Placement and Processing	D8A-8
	4.5	Compaction	D8A-8
	4.6		D8A-9
	4.7	<u> </u>	D8A-9
	4.8		D8A-9
			D8A-9
			D8A-9
		4.8.3 Thickness Verification	D8A-10
5	FLE	IBLE MEMBRANE COVER	D8A-11
	5.1	General	D8A-11
	5.2	Materials	D8A-11
			D8A-11
			D8A-11
	5.3	•	D8A-12
	5.4		D8A-12
			ntD8A-12
			D8A-13
			D8A-14
		•	D8A-14
	5.5	Testing and Verification	D8A-15

CONTENTS (CONTINUED)

			30 TAC §330.457
		5.5.1 Manufacturer's Quality Control Testing	D8A-15 D8A-16
6	DRA	INAGE LAYER	D8A-19
	6.1 6.2 6.3 6.4 6.5	General Materials 6.2.1 Geocomposite 6.2.2 Geotextile / Studded Geomembrane 6.2.3 Delivery and Storage Preparation Installation Testing and Verification	D8A-19 D8A-20 D8A-20 D8A-20 D8A-20 D8A-20 D8A-20
7	ERO	SION LAYER	D8A-22
	7.1 7.2 7.3 7.4 7.5	General Materials Preparation Placement Testing and Verification	D8A-22 D8A-22 D8A-22
2	DOC	TIMENTATION	D8A-24

APPENDIX D8A-A

GRI GM17

APPENDIX D8A-B

Geocomposite Transmissivity Calculation

30 TAC §330.457

2.1 Final Cover System

The final cover system in the West and North Disposal Areas will be a composite cover system consisting of an intermediate cover layer, an infiltration layer, a flexible membrane cover, a drainage layer, and an erosion layer. Final cover has been constructed over 18.1 acres of the West Disposal Area and details of the cover are documented in the Final Cover Evaluation Reports (FCERs). Approval dates are shown on Attachment D1 – Site Layout Plans, Drawing D1.3.

The final cover plans are included in Attachment D3 – Construction Design Details, Drawings D3.9 and D3.10. Details of the final cover system are provided in Drawings D3.12, D3.12a, and D3.13. The components of the final cover system are listed from top to bottom in Table D8A-1.

Table D8A-1 New Boston Landfill

Components of the Final Cover System

Cover System Component	Description	Minimum Thickness
West and North Disposal Areas Final Cover		
TOPSLOPE		
Erosion Layer	Soil that is capable of sustaining native plant growth	24 inches
Cushion Layer	Geotextile	8 oz
Flexible Membrane Cover	Smooth LLDPE geomembrane	40 mil nominal
Infiltration Layer	Compacted soil with a coefficient of permeability ≤ 1 x 10 ⁻⁵ cm/sec	18 inches
TOPSLOPE - ALTERNATE		
Erosion Layer	Soil that is capable of sustaining native plant growth	24 inches
<u>Drainage Layer</u>	Double-sided geocomposite	0.25 inches nominal
Flexible Membrane Cover	Smooth or Textured LLDPE geomembrane	40 mil nominal
Infiltration Layer	Compacted soil with a coefficient of permeability ≤ 1 x 10 ⁻⁷ cm/sec	12 inches
SIDESLOPE OPTION A		
Erosion Layer	Soil that is capable of sustaining native plant growth	24 inches
Drainage Layer	Double-sided geocomposite	0.2 inches nominal
Flexible Membrane Cover	Textured LLDPE geomembrane	40 mil nominal
Infiltration Layer	Compacted soil with a coefficient of permeability ≤ 1 x 10 ⁻⁵ cm/sec	18 inches
SIDESLOPE OPTION B		
Erosion Layer	Soil that is capable of sustaining native plant growth	24 inches
Drainage Layer	Geotextile over studded geomembrane	8 oz
Flexible Membrane Cover	Textured LLDPE geomembrane with studs on top	40 mil nominal
Infiltration Layer	Compacted soil with a coefficient of permeability ≤ 1 x 10 ⁻⁵ cm/sec	18 inches
SIDESLOPE - ALTERNATE		
Erosion Layer	Soil that is capable of sustaining native plant growth	36 inches
<u>Drainage Layer</u>	Double-sided geocomposite	0.25 inches nominal
Infiltration Layer	Compacted soil with a coefficient of permeability ≤ 1 x 10 ⁻⁷ cm/sec	12 inches

Construction Monitoring

Continuous on-site monitoring is necessary to assure that the components of the final cover system are constructed in accordance with this FCQCP. The CQA monitor shall provide continuous on-site observation during the following construction activities:

- Infiltration layer placement, processing, compaction, and testing
- Flexible membrane cover deployment, trial welds, seaming, testing, and repairing
- Drainage layer deployment and seaming
- Erosion layer placement
- Any work that could damage the installed components of the final cover system

4.1 General

The infiltration layer consists of an 18-inch-thick layer of compacted, relatively homogeneous, cohesive material. The CQA monitor shall provide continuous on-site observation during infiltration layer placement, processing, compaction, and testing. The GP shall make sufficient site visits during infiltration layer construction to document the construction activities, testing, and thickness verification in the Final Cover System Report, in accordance with Section 8.

4.2 Materials

Infiltration layer material shall consist of soil that is free from debris, rubbish, frozen materials, foreign objects, and organic material. The required infiltration layer material properties are summarized in Table D8A-2.

Table D8A-2 New Boston Landfill Infiltration Material Properties

Test	Standard	Required Property		
Plasticity Index	ASTM D 4318	15 or greater		
Liquid Limit	ASTM D 4318	30 or greater		
Percent Passing No. 200 Mesh Sieve	ASTM D 1140	30 or greater		
Percent Passing 1-inch Sieve	ASTM D 422	100		
Coefficient of Permeability	ASTM D 5084 or COE EM 1110-2-1906 Appendix VII	less than or equal to 1 x 10 ⁻⁵ cm/sec		

Preconstruction testing procedures and frequencies for infiltration layer materials are listed in Section 4.8.1.

4.3 Subgrade Preparation

Prior to placing infiltration layer material, the subgrade should be proof rolled with heavy, rubber-tired construction equipment to detect soft areas. The GP or CQA monitor must observe the proof-rolling operation. Soft areas should be compacted and then be proof rolled again.

30 TAC §330.457

5.1 General

The flexible membrane cover (FMC) component of the final cover system consists of:

TOPSLOPE

• Smooth 40-mil thick linear low-density polyethylene (LLDPE) geomembrane

TOPSLOPE - ALTERNATE

Smooth or textured 40-mil thick linear low-density polyethylene (LLDPE) geomembrane

SIDESLOPE - OPTION A

• Textured 40-mil thick LLDPE geomembrane

SIDESLOPE - OPTION B

• Textured 40-mil thick or greater LLDPE geomembrane with studs on top

The CQA monitor shall provide continuous on-site observation of during FMC deployment, trial welds, seaming, testing, and repairing. The GP shall make sufficient site visits during the FMC installation to document the installation and testing in the Final Cover Evaluation Report, in accordance with Section 8.

5.2 Materials

5.2.1 Properties

FMC shall consist of smooth, textured, and studded LLDPE geomembrane produced from virgin raw materials. Recycled materials are not acceptable. The FMC shall not be manufactured from resin from differing suppliers. The FMC shall meet the requirements in the most current revisions of Geosynthetics Research Institute (GRI) Standard GM17 (LLDPE). Copies of GRI GM17 are included in Appendix D8A-A. Refer to Section 6.2.2 for required drainage properties of the studded geomembrane.

Manufacturer quality control testing procedures and frequencies for FMC are listed in Section 5.5.1. Third party conformance testing procedures and frequencies for FMC are listed in Section 5.5.2.

5.2.2 Delivery and Storage

FMC shall be shipped in rolls labeled with the manufacturer's name, roll number, and lot or batch number. The CQA monitor shall inspect the rolls for shipping damage and complete a geosynthetics receipt log for all materials delivered to the site. Damaged rolls shall be rejected.

The FMC shall be unloaded and handled with equipment that does not damage the rolls. Rolls should not be pushed, slid, or dragged to the storage location. The FMC must not

30 TAC §330.457

6.1 General

The drainage layer consists of a geocomposite over textured geomembrane or a geotextile over studded geomembrane on the sideslopes. A geotextile will be installed as a cushion fabric on topslopes. The CQA monitor shall provide on-site observation during geocomposite and geotextile installation. The GP shall make sufficient site visits during the geocomposite drainage layer and geotextile installation to document the installation in the Final Cover Evaluation Report.

6.2 Materials

6.2.1 Geocomposite

Double-sided geocomposite (nonwoven geotextile bonded to the top and bottom of HDPE drainage net) will—may be installed on the sideslopes over textured membrane or compacted clay infiltration layer. The geocomposite shall have the minimum properties listed in Table D8A-7.

Table D8A-7
New Boston Landfill
Geocomposite Properties

Geocomposite i roperties						
Material	Test	Standard	Required Property			
Geotextile	Material		Nonwoven polypropylene or polyester			
	Apparent Opening Size	ASTM D 4751	70 sieve			
	Unit Weight	ASTM D 5261	6 oz/yd ²			
	Grab Strength	ASTM D 4632	150 lb			
	Puncture Strength	ASTM D 6241	300 lb			
	Trapezoidal Tear Strength	ASTM D 4533	65 lb			
	Permittivity	ASTM D 4491	0.1 sec ⁻¹			
	Deterioration	ASTM D 4355	70%/500 hrs			
HDPE Drainage Net	Density	ASTM D 1505	0.93 g/cm ³			
	Thickness	ASTM D 5199	0.2 inch			
	Carbon Black	ASTM D 4218	Minimum 2%, maximum 3%			
	Resin Melt Flow Index	ASTM D 1238	1 g/10 min			
	Tensile Strength	ASTM D 5035 or 7179	40 lb/in			
Geocomposite	Transmissivity	ASTM D 4716	5 x 10 ⁻⁴ m ² / sec			
	Ply Adhesion	ASTM D 7005	0.5 lb/in			

Manufacturer quality control testing procedures for geocomposite are listed in Section 6.5.

6.2.2 Geotextile / Studded Geomembrane

Nonwoven geotextile will-may be installed on the topslopes and on sideslopes over the studded geomembrane. The geotextile shall have the minimum properties listed in The geotextile over studded geomembrane shall provide a minimum transmissivity of 5 x 10⁻⁴ m²/sec when tested in accordance with ASTM D 4716.

Table D8A-8 **New Boston Landfill Geotextile Properties**

Test	Standard	Required Property
Material Unit Weight	ASTM D 5261	Nonwoven polypropylene or polyester 8 oz/yd ²

Manufacturer quality control testing procedures for geotextile are listed in Section 6.5.

6.2.3 Delivery and Storage

Geocomposite and geotextile shall be shipped in rolls with opaque wrappers labeled with the manufacturer's name, roll number, and lot or batch number. The CQA monitor shall inspect the rolls for shipping damage and complete a geosynthetics receipt log for all materials delivered to the site. Damaged rolls shall be rejected.

The geocomposite and geotextile shall be unloaded and handled with equipment that does not cause damage. Rolls should not be pushed, slid, or dragged to the storage location. The geocomposite and geotextile must not be stored on wet, soft, or rocky subgrade, but must be stored on a stable subgrade. Geocomposite and geotextile must not be stacked more than five rolls high to avoid crushing the roll cores. The stored geocomposite and geotextile must be protected from puncture, grease, dirt, excessive heat, or other damage.

6.3 Preparation

Prior to installation of the drainage layer, the FMC shall be tested and verified in accordance with Section 5.5. The CQA monitor shall observe that the surface to receive the geocomposite or geotextile is free of debris, stones, and dirt and verify that the conformance documentation has been submitted and approved.

6.4 Installation

Geocomposite and geotextile shall be deployed by equipment that will not damage, crimp, or stretch it nor damage the underlying FMC. All panels must be anchored with adequate ballast to prevent uplift from wind. Smoking and damaging shoes shall not be permitted on the geocomposite or geotextile and only low-ground pressure supporting equipment shall be allowed on the FMC. Adjacent rolls of geocomposite shall be securely tied through the drainage net with plastic fasteners every five feet along the

7.1 General

The erosion layer consists of an 24-inch-thick layer of soil with the top six inches capable of sustaining native plant growth. The CQA monitor shall provide continuous on-site observation during erosion layer placement to assure that erosion layer placement does not damage underlying geosynthetics. The GP shall make sufficient site visits during erosion layer placement to document the construction activities and thickness verification in the Final Cover Evaluation Report.

7.2 Materials

Erosion layer material shall consist of soil that is free from debris, rubbish, frozen materials, foreign objects, and organic material, or any material that could damage the underlying geosynthetics.

7.3 Preparation

Prior to placing the erosion layer material, the top of infiltration layer elevations shall be verified in accordance with the requirements of Section 4.8.3 and all testing on the underlying geosynthetics shall be completed.

7.4 Placement

The erosion layer shall be placed in a manner that minimizes the potential to damage the underlying geosynthetics. Hauling equipment shall be restricted to haul roads of sufficient thickness to protect the underlying geosynthetics. The erosion layer shall be dumped from the haul road and spread by low ground pressure equipment in a manner that minimizes wrinkles and stress in the geosynthetics. On sideslopes, erosion layer shall be placed from the bottom to the top, not across or down. Erosion layer shall not be placed over geosynthetics that are stretched across the toes of slopes. The minimum separation distance between construction equipment and the geosynthetics are listed in Table D8A-10.

The erosion layer will be seeded or sodded immediately following the application of final cover in order to minimize erosion.

NEW BOSTON LANDFILL BOWIE COUNTY, TEXAS TCEQ PERMIT NO. MSW-576C

PART III – FACILITY INVESTIGATION AND DESIGN ATTACHMENT D9 ALTERNATE FINAL COVER DESIGN DEMONSTRATION

Prepared for

Waste Management of Texas, Inc.

October 2025

Prepared by

BIGGS & MATHEWS ENVIRONMENTAL

1700 Robert Road, Suite 100 • Mansfield, Texas 76063 • 817-563-1144

TEXAS BOARD OF PROFESSIONAL ENGINEERS AND LAND SURVEYORS FIRM REGISTRATION NO. F-256 AND NO. 10194895 TEXAS BOARD OF PROFESSIONAL GEOSCIENTISTS FIRM REGISTRATION NO. 50222

CONTENTS

1	ALTERNATE FINAL COVER	1
2	PERFORMANCE EVALUATION	2
3	RESULTS	3

APPENDIX D9.A

Help Model Results

1 ALTERNATE FINAL COVER

In accordance with 30 TAC §330.457(d), the proposed alternate final covers achieve an equivalent reduction in infiltration and provide equivalent erosion protection as the prescribed system. The prescribed final cover system for MSW landfill units with a synthetic bottom liner, as described in 30 TAC §330.457(a)(1,3), consists of the following components from top to bottom:

- A minimum erosion layer consisting of 6-inches of earthen material capable of sustaining native plant growth;
- A clay-rich soil cover layer consisting of a minimum of 18-inches of earthen material with a minimum coefficient of permeability of 1x10⁻⁵ cm/sec, and:
- A synthetic membrane.

The following additional alternate final cover system is proposed for the New Boston Landfill, listed from top to bottom:

Top Deck – Alternate Final Cover:

- 24-inch soil erosion layer;
- 250-mil double-sided geocomposite;
- 40-mil LLDPE geomembrane cover, and;
- 12-inch infiltration layer consisting of compacted soils ($k \le 1x10^{-7}$ cm/s).

Side Slope – Alternate Final Cover:

- 36-inch erosion layer;
- 250-mil double-sided geocomposite, and;
- 12-inch infiltration layer consisting of compacted soils ($k \le 1x10^{-7}$ cm/s).

Perforated HDPE pipe will be installed at the toe of the slope and the geocomposite drainage layer will daylight at intervals approximately 100 feet on the side slopes to collect drainage from the geocomposite drainage layer. The perforated piping will collect the drainage and direct the flow into the perimeter drainage system. The daylighted drainage geocomposite will collect drainage and direct the flow into the invert of the final cover swales and into the final cover letdown structures. Details of the geocomposite alternate final cover system are shown on Drawing D3.12a in Attachment D3.

2 PERFORMANCE EVALUATION

The performances of the top deck and sideslope composite alternate final cover designs were evaluated using the HELP computer modelling program (HELP Model Version 4.0.1). The HELP model simulates hydrologic processes for a landfill by performing daily, sequential water budget analyses using a quasi-two-dimensional deterministic approach. The model accepts weather, soil, and design data and uses solution techniques to account for key factors affecting water movement within the landfill. The model accounts for both surface and sub-surface processes including transpiration, surface runoff, evaporation, vertical percolation, saturated lateral drainage, and geosynthetics leakage to estimate the various movements of water within the selected profile.

The performance evaluations were performed for a unit area of landfill final cover modeled for thirty years. Each model assumed near steady-state values for the simulation period. The model requires input design data including daily and general climatological records, site-specific soil parameters, material properties, and landfill design data. Models for the prescriptive and alternate final cover systems are provided in Appendix D9.A.

3 RESULTS

Four HELP model simulations were conducted to estimate the percolation through the cover systems. Two HELP model simulations were conducted for final cover systems (top deck and sideslope) prescribed by current regulations and two HELP model simulations were conducted for alternate final cover systems (top deck and sideslope). Results from the models are summarized below.

HELP Model Results – Estimated Percolation

Final Cover System	Description	Avg. Annual Total Summary
Configuration		(in.)
Prescriptive	Top Deck	0.5804
	Side Slope	0.5719
Alternate	Top Deck	0.0000
	Side Slope	0.0248

Final Cover System	Daganintian	Peak Values Summary
Configuration	Description	(in.)
Prescriptive	Top Deck	0.0032
	Side Slope	0.0032
Alternate	Top Deck	0.0000
	Side Slope	0.0025

The simulations demonstrate that the proposed alternate final cover systems will provide a greater reduction in infiltration than the prescribed cover system. The erosion layer evaluation, provided in the final cover drainage structure design included in Appendix C1-E, demonstrates the thickness of the alternate final cover erosion layer is greater than the anticipated losses due to erosion.

APPENDIX D9.A HELP MODEL RESULTS

HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE HELP MODEL VERSION 4.0 BETA (2018)

DEVELOPED BY USEPA NATIONAL RISK MANAGEMENT RESEARCH LABORATORY

Title: NB FC: Prescribed (TS) Simulated On: 10/17/2025 12:38

Layer 1

Type 1 - Vertical Percolation Layer (Cover Soil)

SCL - Sandy Clay Loam

Material Texture Number 10

Thickness	=	6 inches
Porosity	=	0.398 vol/vol
Field Capacity	=	0.244 vol/vol
Wilting Point	=	0.136 vol/vol
Initial Soil Water Content	=	0.409 vol/vol
Effective Sat. Hvd. Conductivity	=	1.20F-04 cm/sec

Layer 2

Type 1 - Vertical Percolation Layer

SC/CL New Boston Clays (Uncompacted)

Material Texture Number 43

Thickness	=	18 inches
Porosity	=	0.464 vol/vol
Field Capacity	=	0.31 vol/vol
Wilting Point	=	0.187 vol/vol
Initial Soil Water Content	=	0.4603 vol/vol
Effective Sat. Hyd. Conductivity	=	1.00E-05 cm/sec

Layer 3

Type 4 - Flexible Membrane Liner

LDPE Membrane

Material Texture Number 36

Thickness	=	0.04 inches
Effective Sat. Hyd. Conductivity	=	4.00E-13 cm/sec
FML Pinhole Density	=	3 Holes/Acre
FML Installation Defects	=	4 Holes/Acre
FML Placement Quality	=	3 Good

Note: Initial moisture content of the layers and snow water were

computed as nearly steady-state values by HELP.

General Design and Evaporative Zone Data

SCS Runoff Curve Number	=	86.2
Fraction of Area Allowing Runoff	=	100 %
Area projected on a horizontal plane	=	1 acres
Evaporative Zone Depth	=	24 inches
Initial Water in Evaporative Zone	=	10.74 inches
Upper Limit of Evaporative Storage	=	10.74 inches
Lower Limit of Evaporative Storage	=	4.182 inches
Initial Snow Water	=	0 inches
Initial Water in Layer Materials	=	10.74 inches
Total Initial Water	=	10.74 inches
Total Subsurface Inflow	=	0 inches/year

Note: SCS Runoff Curve Number was calculated by HELP.

Evapotranspiration and Weather Data

Station Latitude	=	33.47 Degrees
Maximum Leaf Area Index	=	5
Start of Growing Season (Julian Date)	=	91 days
End of Growing Season (Julian Date)	=	304 days
Average Wind Speed	=	1.885 mph
Average 1st Quarter Relative Humidity	=	83 %
Average 2nd Quarter Relative Humidity	=	78 %
Average 3rd Quarter Relative Humidity	=	65 %
Average 4th Quarter Relative Humidity	=	77 %

Note: Evapotranspiration data was obtained for New Boston, Texas

Normal Mean Monthly Precipitation (inches)

<u>Jan/Jul</u>	Feb/Aug	Mar/Sep	Apr/Oct	May/Nov	Jun/Dec
3.877037	4.325889	5.150083	3.745899	5.13176	4.523972
3.4829	2.643919	3.968276	5.007685	4.584613	5.01805

Note: Precipitation was simulated based on HELP V4 weather simulation for:

Lat/Long: 33.47/-94.45

Normal Mean Monthly Temperature (Degrees Fahrenheit)

<u>Jan/Jul</u>	Feb/Aug	Mar/Sep	Apr/Oct	May/Nov	Jun/Dec
54.9	53	59.8	70.1	78.2	89
92.1	89.8	80.7	69.9	61.3	53.9

Note: Temperature was simulated based on HELP V4 weather simulation for:

Lat/Long: 33.47/-94.45

Solar radiation was simulated based on HELP V4 weather simulation for:

Lat/Long: 33.47/-94.45

Average Annual Totals Summary

Title: NB FC: Prescribed (TS)
Simulated on: 10/17/2025 12:39

	Ave	Average Annual Totals for Years 1 - 30*				
	(inches)	[std dev]	(cubic feet)	(percent)		
Precipitation	51.46	[8.49]	186,800.1	100.00		
Runoff	15.267	[6.018]	55,418.1	29.67		
Evapotranspiration	35.590	[3.56]	129,189.9	69.16		
Subprofile1						
Percolation/leakage through Layer 3	0.580392	[0.09213]	2,106.8	1.13		
Average Head on Top of Layer 3	11.6263	[1.8587]				
Water storage						
Change in water storage	0.0235	[1.5438]	85.2	0.05		

^{*} Note: Average inches are converted to volume based on the user-specified area.

Peak Values Summary

Title: NB FC: Prescribed (TS)
Simulated on: 10/17/2025 12:39

	Peak Values for '	Years 1 - 30*
	(inches)	(cubic feet)
Precipitation	5.10	18,522.5
Runoff	4.420	16,043.7
Subprofile1	-	
Percolation/leakage through Layer 3	0.003240	11.8
Average head on Layer 3	24.0000	
Other Parameters	-	
Snow water	6.7883	24,641.3
Maximum vegetation soil water	0.4475 (vol.	/vol)
Minimum vegetation soil water	0.1743 (vol.	/vol)

Final Water Storage in Landfill Profile at End of Simulation Period

Title: NB FC: Prescribed (TS)
Simulated on: 10/17/2025 12:40

Simulation period: 30 years

	Final Water Storage			
Layer	(inches)	(vol/vol)		
1	2.4460	0.4077		
2	8.2860	0.4603		
3	0.0000	0.0000		
Snow water	0.7125			

HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE HELP MODEL VERSION 4.0 BETA (2018)

DEVELOPED BY USEPA NATIONAL RISK MANAGEMENT RESEARCH LABORATORY

Title: NB FC: Prescribed (SS) Simulated On: 10/17/2025 12:21

Layer 1

Type 1 - Vertical Percolation Layer (Cover Soil) SCL - Sandy Clay Loam

Material Texture Number 10

Thickness	=	6 inches
Porosity	=	0.398 vol/vol
Field Capacity	=	0.244 vol/vol
Wilting Point	=	0.136 vol/vol
Initial Soil Water Content	=	0.409 vol/vol
Effective Sat. Hvd. Conductivity	=	1.20E-04 cm/sec

Layer 2

Type 1 - Vertical Percolation Layer SC/CL New Boston Clays (Uncompacted)

Material Texture Number 43

Thickness	=	18 inches
Porosity	=	0.464 vol/vol
Field Capacity	=	0.31 vol/vol
Wilting Point	=	0.187 vol/vol
Initial Soil Water Content	=	0.4603 vol/vol
Effective Sat. Hyd. Conductivity	=	1.00E-05 cm/sec

Layer 3

Type 4 - Flexible Membrane Liner LDPE Membrane

Material Texture Number 36

Thickness	=	0.04 inches
Effective Sat. Hyd. Conductivity	=	4.00E-13 cm/sec
FML Pinhole Density	=	3 Holes/Acre
FML Installation Defects	=	4 Holes/Acre
FML Placement Quality	=	3 Good

Note: Initial moisture content of the layers and snow water were

computed as nearly steady-state values by HELP.

General Design and Evaporative Zone Data

SCS Runoff Curve Number	=	87.3
Fraction of Area Allowing Runoff	=	100 %
Area projected on a horizontal plane	=	1 acres
Evaporative Zone Depth	=	24 inches
Initial Water in Evaporative Zone	=	10.74 inches
Upper Limit of Evaporative Storage	=	10.74 inches
Lower Limit of Evaporative Storage	=	4.182 inches
Initial Snow Water	=	0 inches
Initial Water in Layer Materials	=	10.74 inches
Total Initial Water	=	10.74 inches
Total Subsurface Inflow	=	0 inches/year

Note: SCS Runoff Curve Number was calculated by HELP.

Evapotranspiration and Weather Data

Station Latitude	=	33.47 Degrees
Maximum Leaf Area Index	=	5
Start of Growing Season (Julian Date)	=	91 days
End of Growing Season (Julian Date)	=	304 days
Average Wind Speed	=	1.885 mph
Average 1st Quarter Relative Humidity	=	83 %
Average 2nd Quarter Relative Humidity	=	78 %
Average 3rd Quarter Relative Humidity	=	65 %
Average 4th Quarter Relative Humidity	=	77 %

Note: Evapotranspiration data was obtained for New Boston, Texas

Normal Mean Monthly Precipitation (inches)

<u>Jan/Jul</u>	Feb/Aug	Mar/Sep	Apr/Oct	May/Nov	Jun/Dec
3.877037	4.325889	5.150083	3.745899	5.13176	4.523972
3.4829	2.643919	3.968276	5.007685	4.584613	5.01805

Note: Precipitation was simulated based on HELP V4 weather simulation for:

Lat/Long: 33.471528/-94.445833

Normal Mean Monthly Temperature (Degrees Fahrenheit)

<u>Jan/Jul</u>	Feb/Aug	Mar/Sep	Apr/Oct	May/Nov	Jun/Dec
54.9	53	59.8	70.1	78.2	89
92.1	89.8	80.7	69.9	61.3	53.9

Note: Temperature was simulated based on HELP V4 weather simulation for:

Lat/Long: 33.471528/-94.445833

Solar radiation was simulated based on HELP V4 weather simulation for:

Lat/Long: 33.471528/-94.445833

Average Annual Totals Summary

Title: NB FC: Prescribed (SS)
Simulated on: 10/17/2025 12:25

	Avera	Average Annual Totals for Years 1 - 30*				
	(inches)	[std dev]	(cubic feet)	(percent)		
Precipitation	51.46	[8.49]	186,800.1	100.00		
Runoff	15.453	[5.988]	56,094.4	30.03		
Evapotranspiration	35.412	[3.534]	128,544.3	68.81		
Subprofile1	-					
Percolation/leakage through Layer 3	0.571949	[0.09251]	2,076.2	1.11		
Average Head on Top of Layer 3	11.4489	[1.867]				
Water storage						
Change in water storage	0.0235	[1.6002]	85.2	0.05		

^{*} Note: Average inches are converted to volume based on the user-specified area.

Peak Values Summary

 Title:
 NB FC: Prescribed (SS)

 Simulated on:
 10/17/2025 12:25

	Peak Values for Years 1 - 30*		
	(inches)	(cubic feet)	
Precipitation	5.10	18,522.5	
Runoff	4.420	16,042.8	
Subprofile1	•		
Percolation/leakage through Layer 3	0.003240	11.8	
Average head on Layer 3	24.0000		
Other Parameters			
Snow water	6.7883	24,641.4	
Maximum vegetation soil water	0.4475 (vo	l/vol)	
Minimum vegetation soil water	0.1743 (vol/vol)		

Final Water Storage in Landfill Profile at End of Simulation Period

Title: NB FC: Prescribed (SS)
Simulated on: 10/17/2025 12:25

Simulation period: 30 years

	Final Water Storage		
Layer	(inches)	(vol/vol)	
1	2.4460	0.4077	
2	8.2860	0.4603	
3	0.0000	0.0000	
Snow water	0.7125		

HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE HELP MODEL VERSION 4.0 BETA (2018)

DEVELOPED BY USEPA NATIONAL RISK MANAGEMENT RESEARCH LABORATORY

Title: NB FC: Alternate (TS) Simulated On: 10/17/2025 13:05

Layer 1

Type 1 - Vertical Percolation Layer (Cover Soil) SC/CL New Boston Clays (Uncompacted)

Material Texture Number 43

Thickness	=	24 inches
Porosity	=	0.464 vol/vol
Field Capacity	=	0.31 vol/vol
Wilting Point	=	0.187 vol/vol
Initial Soil Water Content	=	0.3944 vol/vol
Effective Sat. Hyd. Conductivity	=	1.00E-05 cm/sec

Layer 2

Type 2 - Lateral Drainage Layer 250-mil DS 6oz Composite Material Texture Number 123

Thickness	=	0.25 inches
Porosity	=	0.85 vol/vol
Field Capacity	=	0.01 vol/vol
Wilting Point	=	0.005 vol/vol
Initial Soil Water Content	=	0.01 vol/vol
Effective Sat. Hyd. Conductivity	=	5.00E+01 cm/sec
Slope	=	25 %
Drainage Length	=	100 ft

Layer 3

Type 4 - Flexible Membrane Liner LDPE Membrane

Material Texture Number 36

Thickness	=	0.04 inches
Effective Sat. Hyd. Conductivity	=	4.00E-13 cm/sec
FML Pinhole Density	=	2 Holes/Acre
FML Installation Defects	=	3 Holes/Acre
FML Placement Quality	=	3 Good

Layer 4

Type 3 - Barrier Soil Liner Liner Soil (High)

Material Texture Number 16

Thickness	=	12 inches
Porosity	=	0.427 vol/vol
Field Capacity	=	0.418 vol/vol
Wilting Point	=	0.367 vol/vol
Initial Soil Water Content	=	0.427 vol/vol
Effective Sat. Hyd. Conductivity	=	1.00E-07 cm/sec

Note: Initial moisture content of the layers and snow water were

computed as nearly steady-state values by HELP.

General Design and Evaporative Zone Data

SCS Runoff Curve Number	=	90.5
Fraction of Area Allowing Runoff	=	100 %
Area projected on a horizontal plane	=	1 acres
Evaporative Zone Depth	=	24 inches
Initial Water in Evaporative Zone	=	9.466 inches
Upper Limit of Evaporative Storage	=	11.136 inches
Lower Limit of Evaporative Storage	=	4.488 inches
Initial Snow Water	=	0 inches
Initial Water in Layer Materials	=	14.592 inches
Total Initial Water	=	14.592 inches
Total Subsurface Inflow	=	0 inches/year

Note: SCS Runoff Curve Number was calculated by HELP.

Evapotranspiration and Weather Data

Station Latitude	=	33.47 Degrees
Maximum Leaf Area Index	=	5
Start of Growing Season (Julian Date)	=	91 days
End of Growing Season (Julian Date)	=	304 days
Average Wind Speed	=	1.885 mph
Average 1st Quarter Relative Humidity	=	83 %
Average 2nd Quarter Relative Humidity	=	78 %
Average 3rd Quarter Relative Humidity	=	65 %
Average 4th Quarter Relative Humidity	=	77 %

Page 2 of 426

Note: Evapotranspiration data was obtained for New Boston, Texas

Normal Mean Monthly Precipitation (inches)

<u>Jan/Jul</u>	Feb/Aug	Mar/Sep	Apr/Oct	May/Nov	Jun/Dec
3.877037	4.325889	5.150083	3.745899	5.13176	4.523972
3.4829	2.643919	3.968276	5.007685	4.584613	5.01805

Note: Precipitation was simulated based on HELP V4 weather simulation for:

Lat/Long: 33.47/-94.45

Normal Mean Monthly Temperature (Degrees Fahrenheit)

<u>Jan/Jul</u>	Feb/Aug	Mar/Sep	Apr/Oct	May/Nov	Jun/Dec
54.9	53	59.8	70.1	78.2	89
92.1	89.8	80.7	69.9	61.3	53.9

Note: Temperature was simulated based on HELP V4 weather simulation for:

Lat/Long: 33.47/-94.45

Solar radiation was simulated based on HELP V4 weather simulation for:

Lat/Long: 33.47/-94.45

Average Annual Totals Summary

Title: NB FC: Alternate (TS)
Simulated on: 10/17/2025 13:06

	Avera	Average Annual Totals for Years 1 - 30*			
	(inches)	[std dev]	(cubic feet)	(percent)	
Precipitation	51.46	[8.49]	186,800.1	100.00	
Runoff	22.529	[5.439]	81,780.4	43.78	
Evapotranspiration	26.695	[3.049]	96,901.7	51.87	
Subprofile1					
Lateral drainage collected from Layer 2	2.2088	[1.2613]	8,018.1	4.29	
Percolation/leakage through Layer 4	0.000000	[0]	0.0006	0.00	
Average Head on Top of Layer 3	0.0005	[0.0003]			
Water storage					
Change in water storage	0.0275	[1.8316]	99.9	0.05	

^{*} Note: Average inches are converted to volume based on the user-specified area.

Peak Values Summary

Title: NB FC: Alternate (TS)
Simulated on: 10/17/2025 13:07

	Peak Values f	or Years 1 - 30*
	(inches)	(cubic feet)
Precipitation	5.10	18,522.5
Runoff	4.237	15,381.2
Subprofile1		
Drainage collected from Layer 2	0.1881	682.7
Percolation/leakage through Layer 4	0.000000	0.0000
Average head on Layer 3	0.0143	
Maximum head on Layer 3	0.0006	
Location of maximum head in Layer 2	0.00 (f	eet from drain)
Other Parameters		
Snow water	6.7883	24,641.3
Maximum vegetation soil water	0.4380 (v	/ol/vol)
Minimum vegetation soil water	0.1870 (v	/ol/vol)

Final Water Storage in Landfill Profile at End of Simulation Period

Title: NB FC: Alternate (TS)
Simulated on: 10/17/2025 13:07

Simulation period: 30 years

	Final Water Storage		
Layer	(inches)	(vol/vol)	
1	9.5783	0.3991	
2	0.0025	0.0100	
3	0.0000	0.0000	
4	5.1240	0.4270	
Snow water	0.7125		

HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE HELP MODEL VERSION 4.0 BETA (2018)

DEVELOPED BY USEPA NATIONAL RISK MANAGEMENT RESEARCH LABORATORY

Title: NB FC: Alternate (SS) Simulated On: 10/17/2025 12:54

Layer 1

Type 1 - Vertical Percolation Layer (Cover Soil) SC/CL New Boston Clays (Uncompacted)

Material Texture Number 43

Thickness	=	36 inches
Porosity	=	0.464 vol/vol
Field Capacity	=	0.31 vol/vol
Wilting Point	=	0.187 vol/vol
Initial Soil Water Content	=	0.336 vol/vol
Effective Sat. Hvd. Conductivity	=	1.00E-05 cm/sec

Layer 2

Type 2 - Lateral Drainage Layer 250-mil DS 6oz Composite Material Texture Number 123

Thickness	=	0.25 inches
Porosity	=	0.85 vol/vol
Field Capacity	=	0.01 vol/vol
Wilting Point	=	0.005 vol/vol
Initial Soil Water Content	=	0.01 vol/vol
Effective Sat. Hyd. Conductivity	=	5.00E+01 cm/sec
Slope	=	25 %
Drainage Length	=	100 ft

Layer 3

Type 3 - Barrier Soil Liner Liner Soil (High)

Material Texture Number 16

Thickness	=	12 inches
Porosity	=	0.427 vol/vol
Field Capacity	=	0.418 vol/vol
Wilting Point	=	0.367 vol/vol
Initial Soil Water Content	=	0.427 vol/vol
Effective Sat. Hyd. Conductivity	=	1.00E-07 cm/sec

Note:

Initial moisture content of the layers and snow water were computed as nearly steady-state values by HELP.

General Design and Evaporative Zone Data

SCS Runoff Curve Number	=	91.2
Fraction of Area Allowing Runoff	=	100 %
Area projected on a horizontal plane	=	1 acres
Evaporative Zone Depth	=	36 inches
Initial Water in Evaporative Zone	=	12.094 inches
Upper Limit of Evaporative Storage	=	16.704 inches
Lower Limit of Evaporative Storage	=	6.732 inches
Initial Snow Water	=	0 inches
Initial Water in Layer Materials	=	17.221 inches
Total Initial Water	=	17.221 inches
Total Subsurface Inflow	=	0 inches/year

Note: SCS Runoff Curve Number was calculated by HELP.

Evapotranspiration and Weather Data

Station Latitude	=	33.47 Degrees
Maximum Leaf Area Index	=	5
Start of Growing Season (Julian Date)	=	91 days
End of Growing Season (Julian Date)	=	304 days
Average Wind Speed	=	1.885 mph
Average 1st Quarter Relative Humidity	=	83 %
Average 2nd Quarter Relative Humidity	=	78 %
Average 3rd Quarter Relative Humidity	=	65 %
Average 4th Quarter Relative Humidity	=	77 %

Note: Evapotranspiration data was obtained for New Boston, Texas

Normal Mean Monthly Precipitation (inches)

<u>Jan/Jul</u>	Feb/Aug	Mar/Sep	Apr/Oct	May/Nov	Jun/Dec
3.877037	4.325889	5.150083	3.745899	5.13176	4.523972
3.4829	2.643919	3.968276	5.007685	4.584613	5.01805

Note: Precipitation was simulated based on HELP V4 weather simulation for:

Lat/Long: 33.47/-94.45

Normal Mean Monthly Temperature (Degrees Fahrenheit)

<u>Jan/Jul</u>	Feb/Aug	Mar/Sep	Apr/Oct	May/Nov	Jun/Dec
54.9	53	59.8	70.1	78.2	89
92.1	89.8	80.7	69.9	61.3	53.9

Note: Temperature was simulated based on HELP V4 weather simulation for:

Lat/Long: 33.47/-94.45

Solar radiation was simulated based on HELP V4 weather simulation for:

Lat/Long: 33.47/-94.45

Average Annual Totals Summary

Title: NB FC: Alternate (SS)
Simulated on: 10/17/2025 12:56

	Aver	Average Annual Totals for Years 1 - 30*		
	(inches)	[std dev]	(cubic feet)	(percent)
Precipitation	51.46	[8.49]	186,800.1	100.00
Runoff	22.275	[5.477]	80,858.3	43.29
Evapotranspiration	27.827	[3.13]	101,011.7	54.07
Subprofile1	•			
Lateral drainage collected from Layer 2	1.2494	[1.1293]	4,535.2	2.43
Percolation/leakage through Layer 3	0.024783	[0.019879]	90.0	0.05
Average Head on Top of Layer 3	0.0003	[0.0002]		
Water storage	-			
Change in water storage	0.0840	[2.3257]	305.0	0.16

^{*} Note: Average inches are converted to volume based on the user-specified area.

Peak Values Summary

Title: NB FC: Alternate (SS)
Simulated on: 10/17/2025 12:56

	Peak Values for	Peak Values for Years 1 - 30*		
	(inches)	(cubic feet)		
Precipitation	5.10	18,522.5		
Runoff	4.210	15,283.1		
Subprofile1				
Drainage collected from Layer 2	0.1451	526.9		
Percolation/leakage through Layer 3	0.001888	6.8550		
Average head on Layer 3	0.0109			
Maximum head on Layer 3	0.0004			
Location of maximum head in Layer 2	0.00 (fee	et from drain)		
Other Parameters				
Snow water	6.7883	24,641.3		
Maximum vegetation soil water	0.4320 (vo	l/vol)		
Minimum vegetation soil water	0.1870 (vo	l/vol)		

Final Water Storage in Landfill Profile at End of Simulation Period

Title: NB FC: Alternate (SS)
Simulated on: 10/17/2025 12:56

Simulation period: 30 years

	Final Water Storage		
Layer	(inches)	(vol/vol)	
1	13.9021	0.3862	
2	0.0025	0.0100	
3	5.1240	0.4270	
Snow water	0.7125		

NEW BOSTON LANDFILL BOWIE COUNTY, TEXAS TCEQ PERMIT NO. MSW 576C

PART III – FACILITY INVESTIGATION AND DESIGN ATTACHMENT H CLOSURE PLAN

Prepared for

Waste Management of Texas, Inc.

Technically Complete September 12, 2014 Permit Issued November 12, 2015 Revised February 2018

Revised October 2025

Prepared by

BIGGS & MATHEWS ENVIRONMENTAL

1700 Robert Road, Suite 100 • Mansfield, Texas 76063 • 817-563-1144

TEXAS BOARD OF PROFESSIONAL ENGINEERS
FIRM REGISTRATION NO. F-256 AND NO. 10194895

TEXAS BOARD OF PROFESSIONAL GEOSCIENTISTS FIRM REGISTRATION NO. 50222

1	INTRODUCTION		
2	FINAL COVER SYSTEM	H-2	
	2.1 Final Cover System Design		
	2.1.1 West and North Disposal Areas		
	2.1.2 South Disposal Area		
	2.2 Installation Methods and Procedures		
3	CLOSURE PROCEDURES	H-5	
	3.1 Closure Sequence		
	3.2 Closure During Active Life		
	3.2.1 Estimate of Largest Area Requiring Final Cover		
	3.2.2 Estimate of Maximum Inventory of Waste On Site		
4	CLOSURE SCHEDULE	H-7	
	4.1 Final Cover Construction		
	4.2 Implementation of the Closure Plan	H-7	
	4.3 Certification of Final Facility Closure		
	4.4 Provisions for Extending Closure Period		
5	CLOSURE COST ESTIMATE	H-10	

APPENDIX H1 – FIGURES

Figure H1 Affidavit to the Public

APPENDIX H2 - FINAL COVER SYSTEM PLANS AND DETAILS

APPENDIX H3 - MAXIMUM INVENTORY OF WASTE ONSITE

30 TAC §330.457

2.1 Final Cover System Design

2.1.1 West and North Disposal Areas

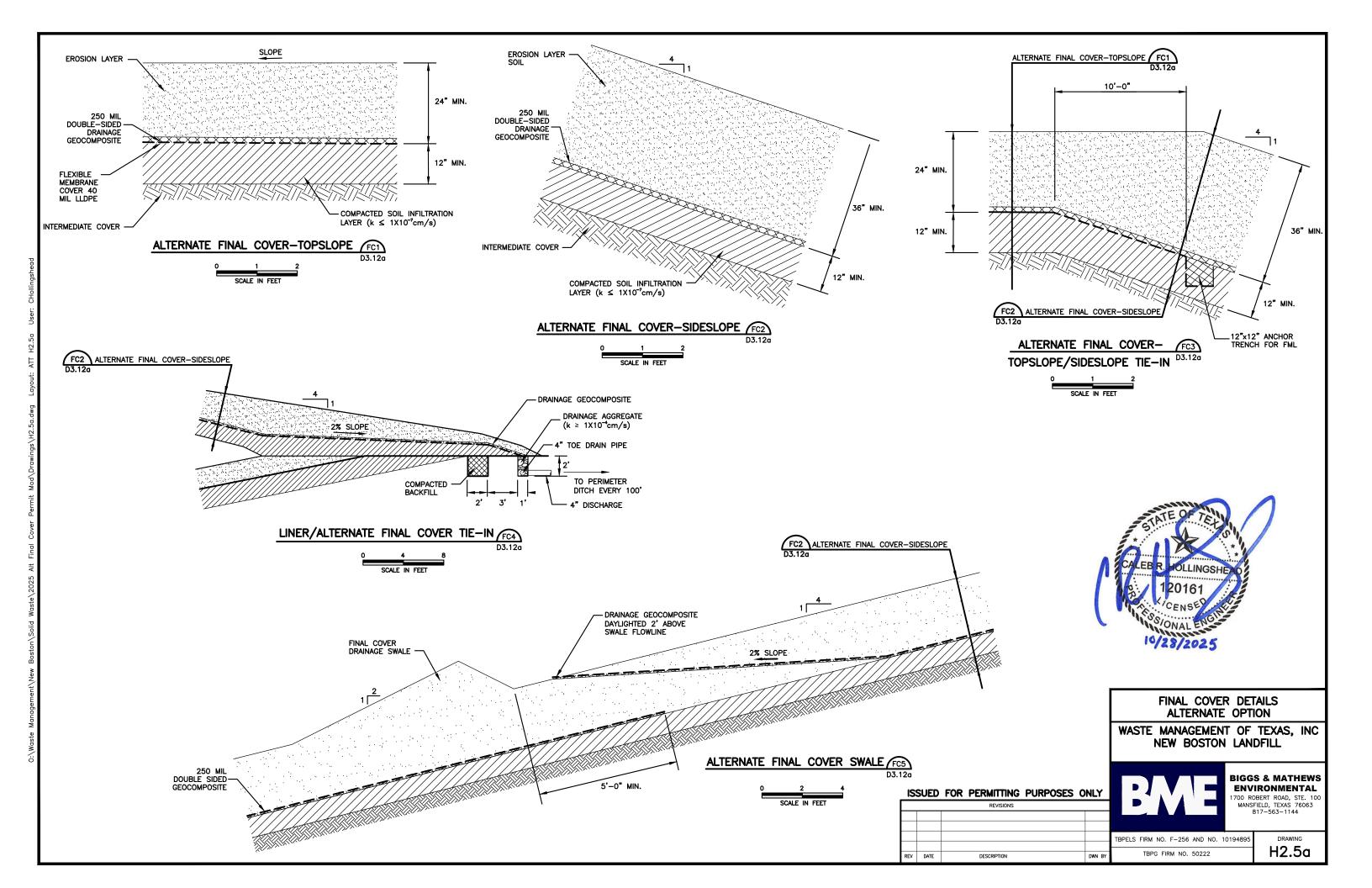
The final cover system in the West and North Disposal Areas will be a composite cover system consisting of an intermediate cover layer, an infiltration layer, a flexible membrane cover, a drainage layer, and an erosion layer. There are two final cover system designs for the West and North Disposal Areas at the New Boston Landfill, the components of which are listed on Table H-1 of this section. Final cover has been constructed over 18.1 the entire 52.5 acres of the West Disposal Area and details of the cover are documented in the Final Cover Evaluation Reports (FCERs). Approval dates are shown on Appendix H2J, Drawing H2.2J.1.

The final cover plans are included in Appendix H2, Drawings H2.2 and H2.3 and the final cover details are provided in Drawings H2.5, H2.5a, and H2.6. The components of the final cover system are listed from top to bottom in Table H-1.

The final cover will be seeded or sodded immediately following the application of the final cover in order to minimize erosion. The vegetation will be native and introduced grasses. Temporary cold weather vegetation will be established if required. Irrigation will be employed as needed until vegetation is established. Erosion control measures such as silt fences and straw bales will be used to minimize erosion until the vegetation is established. Areas that experience erosion or do not readily vegetate will be repaired, reseeded or sodded until vegetation is established, or the soil will be replaced with soil that will support the grasses.

Table H-1 New Boston Landfill Components of the West and North Disposal Areas Final Cover System

Cover System Component	Description	Minimum Thickness		
West and North Disposal Areas Final Cover				
TOPSLOPE				
Erosion Layer	Soil that is capable of sustaining native plant growth	24 inches		
Cushion Layer	Geotextile	8 oz		
Flexible Membrane Cover	Smooth LLDPE geomembrane	40 mil nominal		
Infiltration Layer	Compacted soil with a coefficient of permeability ≤ 1 x 10 ⁻⁵ cm/sec	18 inches		
TOPSLOPE - ALTERNATE				
Erosion Layer	Soil that is capable of sustaining native plant growth	24 inches		
Drainage Layer	Double-sided geocomposite	0.25 inches nominal		
Flexible Membrane Cover	Smooth or Textured LLDPE geomembrane	40 mil nominal		
Infiltration Layer	Compacted soil with a coefficient of permeability ≤ 1 x 10 ⁻⁷ cm/sec	12 inches		
SIDESLOPE OPTION A				
Erosion Layer	Soil that is capable of sustaining native plant growth	24 inches		
Drainage Layer	Double-sided geocomposite	0.2 inches nominal		
Flexible Membrane Cover	Textured LLDPE geomembrane	40 mil nominal		
Infiltration Layer	Compacted soil with a coefficient of permeability ≤ 1 x 10 ⁻⁵ cm/sec	18 inches		
SIDESLOPE OPTION B				
Erosion Layer	Soil that is capable of sustaining native plant growth	24 inches		
Drainage Layer	Geotextile over studded geomembrane	8 oz		
Flexible Membrane Cover	Textured LLDPE geomembrane with studs on top	40 mil nominal		
Infiltration Layer	Compacted soil with a coefficient of permeability ≤ 1 x 10 ⁻⁵ cm/sec	18 inches		
SIDESLOPE - ALTERNATE				
Erosion Layer	Soil that is capable of sustaining native plant growth	36 inches		
<u>Drainage Layer</u>	Double-sided geocomposite	0.25 inches nominal		
Infiltration Layer	Compacted soil with a coefficient of permeability ≤ 1 x 10 ⁻⁷ cm/sec	12 inches		


2.1.2 South Disposal Area

The final cover system in the South Disposal Area will consist of an infiltration layer and an erosion control layer. The final cover plan is included in Appendix H2, Drawing H2.3 and the final cover details are provided in Drawing H2.6. The components of the final cover system are listed from top to bottom in Table H-2.

The final cover will be seeded or sodded immediately following the application of the final cover in order to minimize erosion. The vegetation will be native and introduced grasses. Temporary cold weather vegetation will be established if required. Irrigation will be employed as needed until vegetation is established. Erosion control measures such as silt fences and straw bales will be used to minimize erosion until the vegetation is established. Areas that experience erosion or do not readily vegetate will be repaired, reseeded or sodded until vegetation is established, or the soil will be replaced with soil that will support the grasses.

NEW BOSTON LANDFILL

APPENDIX H2 FINAL COVER SYSTEM PLANS AND DETAILS

ATTACHMENT 3 UNMARKED REVISED PAGES

NEW BOSTON LANDFILL BOWIE COUNTY, TEXAS TCEQ PERMIT NO. MSW 576C

PART III – FACILITY INVESTIGATION AND DESIGN ATTACHMENT B GENERAL FACILITY DESIGN

Prepared for

Waste Management of Texas, Inc.

Technically Complete September 12, 2014
Permit Issued November 12, 2015
Revised April 2018

Revised October 2025

Prepared by

BIGGS & MATHEWS ENVIRONMENTAL

1700 Robert Road, Suite 100 ◆ Mansfield, Texas 76063 ◆ 817-563-1144

1	FACILITY ACCESS	. B-1
2	WASTE MOVEMENT	. B-2
3	SANITATION	. B-7
4	WATER POLLUTION CONTROL	. B-8
5	ENDANGERED SPECIES PROTECTION	. B-9
APPE	NDIX B1 – DRAWINGS	
B.1 B.2 B.3 B.4 B.5	Waste Movement Flow Diagram Waste Disposal, Processing, and/or Storage Schematic Plan Waste Processing and/or Storage Facilities Schematic Plan Waste Processing and/or Storage Facilities Schematic Plan Citizen's Convenience Area Facilities Schematic Plan	

Table B-2 New Boston Landfill Components of the Final Cover Systems

Cover System Component	Description	Minimum Thickness		
West and North Disposal Areas Final Cover				
TOPSLOPE				
Erosion Layer	Soil that is capable of sustaining native plant growth	24 inches		
Cushion Layer	Geotextile	8 oz		
Flexible Membrane Cover	Smooth LLDPE geomembrane	40 mil nominal		
Infiltration Layer	Compacted soil with a coefficient of permeability ≤ 1 x 10 ⁻⁵ cm/sec	18 inches		
TOPSLOPE - ALTERNATE				
Erosion Layer	Soil that is capable of sustaining native plant growth	24 inches		
Drainage Layer	Double-sided geocomposite	0.25 inches nominal		
Flexible Membrane Cover	Smooth or Textured LLDPE geomembrane	40 mil nominal		
Infiltration Layer	Compacted soil with a coefficient of permeability ≤ 1 x 10 ⁻⁷ cm/sec	12 inches		
SIDESLOPE OPTION A				
Erosion Layer	Soil that is capable of sustaining native plant growth	24 inches		
Drainage Layer	Double-sided geocomposite	0.2 inches nominal		
Flexible Membrane Cover	Textured LLDPE geomembrane	40 mil nominal		
Infiltration Layer	Compacted soil with a coefficient of permeability ≤ 1 x 10 ⁻⁵ cm/sec	18 inches		
SIDESLOPE OPTION B				
Erosion Layer	Soil that is capable of sustaining native plant growth	24 inches		
Drainage Layer	Geotextile over studded geomembrane	8 oz		
Flexible Membrane Cover	Textured LLDPE geomembrane with studs on top	40 mil nominal		
Infiltration Layer	Compacted soil with a coefficient of permeability ≤ 1 x 10 ⁻⁵ cm/sec	18 inches		
SIDESLOPE - ALTERNATE				
Erosion Layer	Soil that is capable of sustaining native plant growth	36 inches		
Drainage Layer	Double-sided geocomposite	0.25 inches nominal		
Infiltration Layer	Compacted soil with a coefficient of permeability ≤ 1 x 10 ⁻⁷ cm/sec	12 inches		
	South Disposal Area Final Cover System	•		
Erosion Layer	Soil that is capable of sustaining native plant growth	24 inches		
Infiltration Layer	Compacted soil with a coefficient of permeability ≤ 1 x 10 ⁻⁷ cm/sec	18 inches		
mmaddon Edyor	Compacted con With a coomolonic of pormousinty = 1 x 10 onlysec	10 11101100		

Final cover placement will generally follow the sequence of development as shown in Part II, Appendix IIA, Drawings IIA.16 through IIA.24, and will be ongoing as the site is developed. Sectors will be closed according to the closure plan provided in Attachment H – Closure Plan.

RACM

Regulated asbestos-containing material (RACM) may be accepted at the New Boston Landfill as defined in 40 Code of Federal Regulations Part 61 in accordance with 30 TAC §330.171(c)(3). The existing landfill has previously notified TCEQ of its intent to accept RACM. The New Boston Landfill, by inclusion of the requirements of §330.171(c)(3) in the Site Operating Plan, is providing written notification to the executive director of the

NEW BOSTON LANDFILL BOWIE COUNTY, TEXAS TCEQ PERMIT NO. MSW 576C

PART III – FACILITY INVESTIGATION AND DESIGN ATTACHMENT D WASTE MANAGEMENT UNIT DESIGN

Prepared for

Waste Management of Texas, Inc.

Technically Complete September 12, 2014 Permit Issued November 12, 2015 Revised April 2018

Revised October 2025

Prepared by

BIGGS & MATHEWS ENVIRONMENTAL

1700 Robert Road, Suite 100 • Mansfield, Texas 76063 • 817-563-1144

TEXAS BOARD OF PROFESSIONAL ENGINEERS FIRM REGISTRATION NO. F-256 AND NO. 10194895

TEXAS BOARD OF PROFESSIONAL GEOSCIENTISTS FIRM REGISTRATION NO. 50222

30 TAC §330.63(d)

1	WAS	STE MANAGEMENT UNIT DESIGN	D-1
2	PRO	CESSING AND/OR STORAGE UNITS	D-2
	2.1	Large Item Storage Area	
	2.2	Recyclable Materials Staging Area	
	2.3	Citizen's Convenience Area	
	2.4	Leachate Storage Facility	D-3
	2.5	Truck Wheel Wash	D-3
3	LAN	DFILL UNITS	D-4
	3.1	All Weather Operation	D-4
	3.2	Landfilling Methods	D-5
	3.3	Landfill Design Parameters	D-5
	3.4	Site Life Projection	D-6
	3.5	Landfill Cross Sections	D-6
	3.6	Liner Quality Control Plan	
	3.7	Final Cover Quality Control Plan	D-7
Atta	chment I	D1 – Site Layout Plans	
Atta	chment I	D2 – Cross Sections	
Atta	chment I	D3 – Construction Design Details	
Atta	chment l	D4 – Site Life	
Atta	chment l	D5 – Geotechnical Design	
Atta	chment I	D6 – Leachate and Contaminated Water Management Plan	
Atta	chment l	D7 – Liner Quality Control Plans	
Atta	chment l	D7A – North Disposal Area Liner Quality Control Plan	
Atta	chment l	D7B – South Disposal Area Liner Quality Control Plan	
Atta	chment I	D8 – Final Cover Quality Control Plans	
Atta	chment I Plan	D8A – West and North Disposal Areas Final Cover Quality Contro	I

Attachment D8B - South Disposal Area Final Cover Quality Control Plan

Attachment D9 - Alternate Final Cover Design Demonstration

Table D-4 New Boston Landfill

Components of the Final Cover Systems

Cover System Component	Description	Minimum Thickness
	West and North Disposal Areas Final Cover	
TOPSLOPE		
Erosion Layer	Soil that is capable of sustaining native plant growth	24 inches
Cushion Layer	Geotextile	8 oz
Flexible Membrane Cover	Smooth LLDPE geomembrane	40 mil nominal
Infiltration Layer	Compacted soil with a coefficient of permeability less than or equal to 1 x 10 ⁻⁵ cm/sec	18 inches
TOPSLOPE - ALTERNATE		
Erosion Layer	Soil that is capable of sustaining native plant growth	24 inches
Drainage Layer	Double-sided geocomposite	0.25 inches nominal
Flexible Membrane Cover	Smooth or Textured LLDPE geomembrane	40 mil nominal
Infiltration Layer	Compacted soil with a coefficient of permeability less than or equal to 1 x 10 ⁻⁷ cm/sec	12 inches
SIDESLOPE OPTION A		
Erosion Layer	Soil that is capable of sustaining native plant growth	24 inches
Drainage Layer	Double-sided geocomposite	0.2 inches nominal
Flexible Membrane Cover	Textured LLDPE geomembrane	40 mil nominal
Infiltration Layer	Compacted soil with a coefficient of permeability less than or equal to 1 x 10 ⁻⁵ cm/sec	18 inches
SIDESLOPE OPTION B		
Erosion Layer	Soil that is capable of sustaining native plant growth	24 inches
Drainage Layer	Geotextile over studded geomembrane	8 oz
Flexible Membrane Cover	Textured LLDPE geomembrane with studs on top	40 mil nominal
Infiltration Layer	Compacted soil with a coefficient of permeability less than or equal to 1 x 10 ⁻⁵ cm/sec	18 inches
SIDESLOPE - ALTERNATE		
Erosion Layer	Soil that is capable of sustaining native plant growth	36 inches
Drainage Layer	Double-sided geocomposite	0.25 inches nominal
Infiltration Layer	Compacted soil with a coefficient of permeability less than or equal to 1 x 10 ⁻⁷ cm/sec	12 inches
	South Disposal Area Final Cover	
Erosion Layer	Soil that is capable of sustaining native plant growth	24 inches
Infiltration Layer	Compacted soil with a coefficient of permeability less than or equal to 1 x 10 ⁻⁷ cm/sec	18 inches

NEW BOSTON LANDFILL BOWIE COUNTY, TEXAS TCEQ PERMIT NO. MSW 576C

PART III – FACILITY INVESTIGATION AND DESIGN ATTACHMENT D3 CONSTRUCTION DESIGN DETAILS

Prepared for

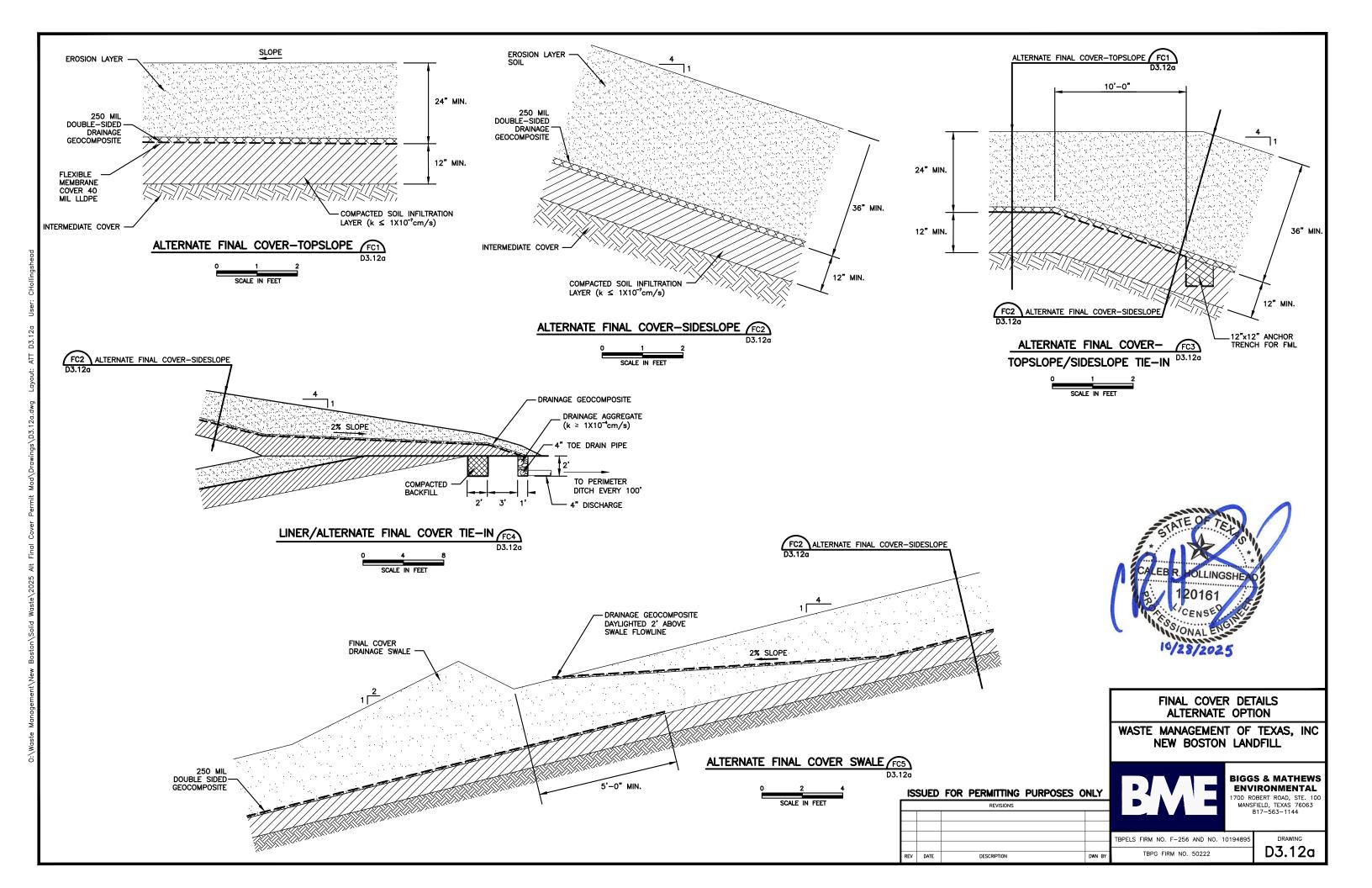
Waste Management of Texas, Inc.

Technically Complete September 12, 2014 Permit Issued November 12, 2015 Revised April 2018

Revised October 2025

Prepared by

BIGGS & MATHEWS ENVIRONMENTAL


1700 Robert Road, Suite 100 • Mansfield, Texas 76063 • 817-563-1144

TEXAS BOARD OF PROFESSIONAL ENGINEERS FIRM REGISTRATION NO. F-256 AND NO. 10194895 TEXAS BOARD OF PROFESSIONAL GEOSCIENTISTS FIRM REGISTRATION NO. 50222

30 TAC §330.63(d)(4)(F)

- D3.1 Liner Plan
- D3.2 Liner Details
- D3.3 Leachate Collection System Plan
- D3.4 Leachate Collection System Details
- D3.5 Leachate Collection System Details
- D3.6 Underdrain Plan North Disposal Area
- D3.7 Underdrain Plan South Disposal Area
- D3.8 Underdrain Details
- D3.9 Final Cover Plan West Disposal Area
- D3.10 Final Cover Plan North Disposal Area
- D3.11 Final Cover Plan South Disposal Area
- D3.12 Final Cover Details
- D3.12a Final Cover Details Alternate Option
- D3.13 Final Cover Details

NEW BOSTON LANDFILL BOWIE COUNTY, TEXAS TCEQ PERMIT NO. MSW 576C

PART III – FACILITY INVESTIGATION AND DESIGN ATTACHMENT D5 GEOTECHNICAL DESIGN.

Prepared for

Waste Management of Texas, Inc.

Technically Complete September 12, 2014

Revised October 2025

Prepared by

BIGGS & MATHEWS ENVIRONMENTAL

1700 Robert Road, Suite 100 • Mansfield, Texas 76063 • 817-563-1144

TEXAS BOARD OF PROFESSIONAL ENGINEERS FIRM REGISTRATION NO. F-256 AND NO. 10194895

TEXAS BOARD OF PROFESSIONAL GEOSCIENTISTS FIRM REGISTRATION NO. 50222

1	GEO	TECHNICAL TESTING	D5-1
2	SUB	SURFACE MATERIALS	D5-2
	2.1	Material Properties	D5-2
	2.2	Material Requirements	
3	EAR	THWORK	D5-5
	3.1	Excavation	D5-5
	3.2	Earthfill	D5-5
4	CON	STRUCTION BELOW THE GROUNDWATER TABLE	D5-6
	4.1	Groundwater Elevations	D5-6
	4.2	Temporary Dewatering System	D5-6
	4.3	Hydrostatic Uplift	
5	SET	TLEMENT AND HEAVE ANALYSIS	D5-8
	5.1	Subgrade Heave	D5-8
	5.2	Subgrade Settlement	
	5.3	Solid Waste Settlement	
6	SLO	PE STABILITY ANALYSES	D5-9
7	LINE	R CONSTRUCTION	D5-13
	7.1	Subgrade Preparation	D5-13
	7.2	Compacted Soil Liner	D5-13
	7.3	Protective Cover	D5-14
	7.4	Liner Testing and Documentation	
8	cov	ER CONSTRUCTION	D5-15
	8.1	Daily, Weekly, and Intermediate Cover	D5-15
	8.2	Final Cover	
	8.3	Final Cover Testing and Documentation	D5-15

30 TAC §§330.165, 330.457

8.1 Daily, Weekly, and Intermediate Cover

The daily, weekly, and intermediate cover should be constructed of soils that are free of waste and debris. Suitable cover materials should be available from the proposed excavations or on-site borrow sources. Requirements for the placement of daily, weekly, and intermediate cover are provided in Part IV – Site Operating Plan.

8.2 Final Cover

Final cover construction has been completed over the entire 52.5 acres of the West Disposal Area and details of the cover is documented in the Final Cover Evaluation Reports (FCERs). FCER approval dates are shown on Attachment J, Drawing J.1.

There are two final cover system designs proposed for the West and North Disposal Areas as shown on Table D-4 in Attachment D. The final cover system in the South Disposal Area will consist of an 18-inch-thick compacted soil infiltration layer overlain by an erosion layer. The final cover system requirements are provided in Attachment D8 and the final cover system details are provided in Attachment D3.

The infiltration layer material must consist of relatively homogeneous cohesive materials that are free of debris, rocks greater than one inch in diameter, plant materials, frozen materials, foreign objects, and organic material. The infiltration layer should be constructed directly over the intermediate cover once the waste has reached final grades. The infiltration layer construction procedure should be the same as those outlined in Section 7 for liner construction.

The erosion layer should consist of: (1) topsoil stockpiled during the excavation process, (2) on-site soils which has been modified to be capable of sustaining vegetation, or (3) an imported material suitable to sustain vegetation growth. This layer may be spread and placed in one lift over the drainage layer. After spreading, the layer should be rolled lightly to reduce future erosion, although not to the extent that compaction would inhibit plant growth.

8.3 Final Cover Testing and Documentation

CQA testing of the final cover system must be performed during construction. Final cover system requirements are outlined in Attachment D8.

NEW BOSTON LANDFILL BOWIE COUNTY, TEXAS TCEQ PERMIT APPLICATION NO. MSW 576C

PERMIT AMENDMENT APPLICATION

PART III – FACILITY INVESTIGATION AND DESIGN ATTACHMENT D8A WEST AND NORTH DISPOSAL AREAS FINAL COVER QUALITY CONTROL PLAN

Prepared for

Waste Management of Texas, Inc.

Technically Complete September 12, 2014

Revised October 2025

Prepared by

BIGGS & MATHEWS ENVIRONMENTAL

1700 Robert Road, Suite 100 • Mansfield, Texas 76063 • 817-563-1144

TEXAS BOARD OF PROFESSIONAL ENGINEERS FIRM REGISTRATION NO. F-256 AND NO. 10194895 TEXAS BOARD OF PROFESSIONAL GEOSCIENTISTS FIRM REGISTRATION NO. 50222

30 TAC §330.457 1 INTRODUCTION......D8A-1 1.1 1.2 2 FINAL COVER SYSTEMD8A-3 2.1 INTERMEDIATE COVER AND GRADING......D8A-6 3 General D8A-6 3.1 3.2 3.3 3.4 INFILTRATION LAYERD8A-7 4 1 General D8A-7 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.8.2 4.8.3 5 FLEXIBLE MEMBRANE COVER......D8A-11 5.1 5.2 5.2.1 5.2.2 5.3 5.4 5.4.1 5.4.2 5.4.3 Anchor TrenchesD8A-14 5.5

CONTENTS (CONTINUED)

30 TAC §330.457 5.5.1 5.5.2 Trial Welds......D8A-16 5.5.3 5.5.4 6 DRAINAGE LAYERD8A-19 6.1 6.2 Geocomposite......D8A-19 6.2.1 6.2.2 6.3 6.4 6.5 7 EROSION LAYER......D8A-22 7.1 General D8A-22 7.2 7.3 7.4 Placement......D8A-22 7.5 8 DOCUMENTATIOND8A-24

APPENDIX D8A-A

GRI GM17

APPENDIX D8A-B

Geocomposite Transmissivity Calculation

30 TAC §330.457

2.1 Final Cover System

The final cover system in the West and North Disposal Areas will be a composite cover system consisting of an intermediate cover layer, an infiltration layer, a flexible membrane cover, a drainage layer, and an erosion layer. Final cover has been constructed over 18.1 acres of the West Disposal Area and details of the cover are documented in the Final Cover Evaluation Reports (FCERs). Approval dates are shown on Attachment D1 – Site Layout Plans, Drawing D1.3.

The final cover plans are included in Attachment D3 – Construction Design Details, Drawings D3.9 and D3.10. Details of the final cover system are provided in Drawings D3.12, D3.12a, and D3.13. The components of the final cover system are listed from top to bottom in Table D8A-1.

Table D8A-1 New Boston Landfill Components of the Final Cover System

Cover System Component	Description	Minimum Thickness		
West and North Disposal Areas Final Cover				
TOPSLOPE				
Erosion Layer	Soil that is capable of sustaining native plant growth	24 inches		
Cushion Layer	Geotextile	8 oz		
Flexible Membrane Cover	Smooth LLDPE geomembrane	40 mil nominal		
Infiltration Layer	Compacted soil with a coefficient of permeability ≤ 1 x 10 ⁻⁵ cm/sec	18 inches		
TOPSLOPE - ALTERNATE				
Erosion Layer	Soil that is capable of sustaining native plant growth	24 inches		
Drainage Layer	Double-sided geocomposite	0.25 inches nominal		
Flexible Membrane Cover	Smooth or Textured LLDPE geomembrane	40 mil nominal		
Infiltration Layer	Compacted soil with a coefficient of permeability ≤ 1 x 10 ⁻⁷ cm/sec	12 inches		
SIDESLOPE OPTION A				
Erosion Layer	Soil that is capable of sustaining native plant growth	24 inches		
Drainage Layer	Double-sided geocomposite	0.2 inches nominal		
Flexible Membrane Cover	Textured LLDPE geomembrane	40 mil nominal		
Infiltration Layer	Compacted soil with a coefficient of permeability ≤ 1 x 10 ⁻⁵ cm/sec	18 inches		
SIDESLOPE OPTION B				
Erosion Layer	Soil that is capable of sustaining native plant growth	24 inches		
Drainage Layer	Geotextile over studded geomembrane	8 oz		
Flexible Membrane Cover	Textured LLDPE geomembrane with studs on top	40 mil nominal		
Infiltration Layer	Compacted soil with a coefficient of permeability ≤ 1 x 10 ⁻⁵ cm/sec	18 inches		
SIDESLOPE - ALTERNATE				
Erosion Layer	Soil that is capable of sustaining native plant growth	36 inches		
Drainage Layer	Double-sided geocomposite	0.25 inches nominal		
Infiltration Layer	Compacted soil with a coefficient of permeability ≤ 1 x 10 ⁻⁷ cm/sec	12 inches		

Construction Monitoring

Continuous on-site monitoring is necessary to assure that the components of the final cover system are constructed in accordance with this FCQCP. The CQA monitor shall provide continuous on-site observation during the following construction activities:

- Infiltration layer placement, processing, compaction, and testing
- Flexible membrane cover deployment, trial welds, seaming, testing, and repairing
- Drainage layer deployment and seaming
- Erosion layer placement
- Any work that could damage the installed components of the final cover system

4.1 General

The infiltration layer consists of compacted, relatively homogeneous, cohesive material. The CQA monitor shall provide continuous on-site observation during infiltration layer placement, processing, compaction, and testing. The GP shall make sufficient site visits during infiltration layer construction to document the construction activities, testing, and thickness verification in the Final Cover System Report, in accordance with Section 8.

4.2 Materials

Infiltration layer material shall consist of soil that is free from debris, rubbish, frozen materials, foreign objects, and organic material. The required infiltration layer material properties are summarized in Table D8A-2.

Table D8A-2 New Boston Landfill Infiltration Material Properties

Test	Standard	Required Property	
Plasticity Index	ASTM D 4318	15 or greater	
Liquid Limit	ASTM D 4318	30 or greater	
Percent Passing No. 200 Mesh Sieve	ASTM D 1140	30 or greater	
Percent Passing 1-inch Sieve	ASTM D 422	100	
Coefficient of Permeability	ASTM D 5084 or COE EM 1110-2-1906 Appendix VII	less than or equal to 1 x 10 ⁻⁵ cm/sec	

Preconstruction testing procedures and frequencies for infiltration layer materials are listed in Section 4.8.1.

4.3 Subgrade Preparation

Prior to placing infiltration layer material, the subgrade should be proof rolled with heavy, rubber-tired construction equipment to detect soft areas. The GP or CQA monitor must observe the proof-rolling operation. Soft areas should be compacted and then be proof rolled again.

The subgrade elevations shall be verified in accordance with the requirements of Section 4.8.3 prior to the placement of infiltration layer.

30 TAC §330.457

5.1 General

The flexible membrane cover (FMC) component of the final cover system consists of:

TOPSLOPE

• Smooth 40-mil thick linear low-density polyethylene (LLDPE) geomembrane

TOPSLOPE - ALTERNATE

Smooth or textured 40-mil thick linear low-density polyethylene (LLDPE) geomembrane

SIDESLOPE - OPTION A

Textured 40-mil thick LLDPE geomembrane

SIDESLOPE - OPTION B

Textured 40-mil thick or greater LLDPE geomembrane with studs on top

The CQA monitor shall provide continuous on-site observation of during FMC deployment, trial welds, seaming, testing, and repairing. The GP shall make sufficient site visits during the FMC installation to document the installation and testing in the Final Cover Evaluation Report, in accordance with Section 8.

5.2 Materials

5.2.1 Properties

FMC shall consist of smooth, textured, and studded LLDPE geomembrane produced from virgin raw materials. Recycled materials are not acceptable. The FMC shall not be manufactured from resin from differing suppliers. The FMC shall meet the requirements in the most current revisions of Geosynthetics Research Institute (GRI) Standard GM17 (LLDPE). Copies of GRI GM17 are included in Appendix D8A-A. Refer to Section 6.2.2 for required drainage properties of the studded geomembrane.

Manufacturer quality control testing procedures and frequencies for FMC are listed in Section 5.5.1. Third party conformance testing procedures and frequencies for FMC are listed in Section 5.5.2.

5.2.2 Delivery and Storage

FMC shall be shipped in rolls labeled with the manufacturer's name, roll number, and lot or batch number. The CQA monitor shall inspect the rolls for shipping damage and complete a geosynthetics receipt log for all materials delivered to the site. Damaged rolls shall be rejected.

The FMC shall be unloaded and handled with equipment that does not damage the rolls. Rolls should not be pushed, slid, or dragged to the storage location. The FMC must not

30 TAC §330.457

6.1 General

The drainage layer consists of a geocomposite over textured geomembrane or a geotextile over studded geomembrane on the sideslopes. A geotextile will be installed as a cushion fabric on topslopes. The CQA monitor shall provide on-site observation during geocomposite and geotextile installation. The GP shall make sufficient site visits during the geocomposite drainage layer and geotextile installation to document the installation in the Final Cover Evaluation Report.

6.2 Materials

6.2.1 Geocomposite

Double-sided geocomposite (nonwoven geotextile bonded to the top and bottom of HDPE drainage net) may be installed on the sideslopes over textured membrane or compacted clay infiltration layer. The geocomposite shall have the minimum properties listed in Table D8A-7.

Table D8A-7
New Boston Landfill
Geocomposite Properties

Material	Test	Standard	Required Property
Geotextile	Material		Nonwoven polypropylene or polyester
	Apparent Opening Size	ASTM D 4751	70 sieve
	Unit Weight	ASTM D 5261	6 oz/yd²
	Grab Strength	ASTM D 4632	150 lb
	Puncture Strength	ASTM D 6241	300 lb
	Trapezoidal Tear Strength	ASTM D 4533	65 lb
	Permittivity	ASTM D 4491	0.1 sec ⁻¹
	Deterioration	ASTM D 4355	70%/500 hrs
HDPE Drainage Net	Density	ASTM D 1505	0.93 g/cm ³
	Thickness	ASTM D 5199	0.2 inch
	Carbon Black	ASTM D 4218	Minimum 2%, maximum 3%
	Resin Melt Flow Index	ASTM D 1238	1 g/10 min
	Tensile Strength	ASTM D 5035 or 7179	40 lb/in
Geocomposite	Transmissivity	ASTM D 4716	5 x 10 ⁻⁴ m ² / sec
	Ply Adhesion	ASTM D 7005	0.5 lb/in

Manufacturer quality control testing procedures for geocomposite are listed in Section 6.5.

6.2.2 Geotextile / Studded Geomembrane

Nonwoven geotextile may be installed on the topslopes and on sideslopes over the studded geomembrane. The geotextile shall have the minimum properties listed in Table D8A-8. The geotextile over studded geomembrane shall provide a minimum transmissivity of 5 x 10⁻⁴ m²/sec when tested in accordance with ASTM D 4716.

Table D8A-8 **New Boston Landfill Geotextile Properties**

Test	Standard	Required Property
Material Unit Weight	ASTM D 5261	Nonwoven polypropylene or polyester 8 oz/yd ²

Manufacturer quality control testing procedures for geotextile are listed in Section 6.5.

6.2.3 Delivery and Storage

Geocomposite and geotextile shall be shipped in rolls with opaque wrappers labeled with the manufacturer's name. roll number. and lot or batch number. The CQA monitor shall inspect the rolls for shipping damage and complete a geosynthetics receipt log for all materials delivered to the site. Damaged rolls shall be rejected.

The geocomposite and geotextile shall be unloaded and handled with equipment that does not cause damage. Rolls should not be pushed, slid, or dragged to the storage location. The geocomposite and geotextile must not be stored on wet, soft, or rocky subgrade, but must be stored on a stable subgrade. Geocomposite and geotextile must not be stacked more than five rolls high to avoid crushing the roll cores. The stored geocomposite and geotextile must be protected from puncture, grease, dirt, excessive heat, or other damage.

6.3 Preparation

Prior to installation of the drainage layer, the FMC shall be tested and verified in accordance with Section 5.5. The CQA monitor shall observe that the surface to receive the geocomposite or geotextile is free of debris, stones, and dirt and verify that the conformance documentation has been submitted and approved.

6.4 Installation

Geocomposite and geotextile shall be deployed by equipment that will not damage, crimp, or stretch it nor damage the underlying FMC. All panels must be anchored with adequate ballast to prevent uplift from wind. Smoking and damaging shoes shall not be permitted on the geocomposite or geotextile and only low-ground pressure supporting equipment shall be allowed on the FMC. Adjacent rolls of geocomposite shall be securely tied through the drainage net with plastic fasteners every five feet along the

7.1 General

The erosion layer consists of a layer of soil with the top six inches capable of sustaining native plant growth. The CQA monitor shall provide continuous on-site observation during erosion layer placement to assure that erosion layer placement does not damage underlying geosynthetics. The GP shall make sufficient site visits during erosion layer placement to document the construction activities and thickness verification in the Final Cover Evaluation Report.

7.2 Materials

Erosion layer material shall consist of soil that is free from debris, rubbish, frozen materials, foreign objects, and organic material, or any material that could damage the underlying geosynthetics.

7.3 Preparation

Prior to placing the erosion layer material, the top of infiltration layer elevations shall be verified in accordance with the requirements of Section 4.8.3 and all testing on the underlying geosynthetics shall be completed.

7.4 Placement

The erosion layer shall be placed in a manner that minimizes the potential to damage the underlying geosynthetics. Hauling equipment shall be restricted to haul roads of sufficient thickness to protect the underlying geosynthetics. The erosion layer shall be dumped from the haul road and spread by low ground pressure equipment in a manner that minimizes wrinkles and stress in the geosynthetics. On sideslopes, erosion layer shall be placed from the bottom to the top, not across or down. Erosion layer shall not be placed over geosynthetics that are stretched across the toes of slopes. The minimum separation distance between construction equipment and the geosynthetics are listed in Table D8A-10.

The erosion layer will be seeded or sodded immediately following the application of final cover in order to minimize erosion.

NEW BOSTON LANDFILL BOWIE COUNTY, TEXAS TCEQ PERMIT NO. MSW-576C

PART III – FACILITY INVESTIGATION AND DESIGN ATTACHMENT D9 ALTERNATE FINAL COVER DESIGN DEMONSTRATION

Prepared for

Waste Management of Texas, Inc.

October 2025

Prepared by

BIGGS & MATHEWS ENVIRONMENTAL

1700 Robert Road, Suite 100 • Mansfield, Texas 76063 • 817-563-1144

TEXAS BOARD OF PROFESSIONAL ENGINEERS AND LAND SURVEYORS FIRM REGISTRATION NO. F-256 AND NO. 10194895 TEXAS BOARD OF PROFESSIONAL GEOSCIENTISTS FIRM REGISTRATION NO. 50222

1	ALTERNATE FINAL COVER	1
2	PERFORMANCE EVALUATION	2
3	RESULTS	3

APPENDIX D9.A

Help Model Results

1 ALTERNATE FINAL COVER

In accordance with 30 TAC §330.457(d), the proposed alternate final covers achieve an equivalent reduction in infiltration and provide equivalent erosion protection as the prescribed system. The prescribed final cover system for MSW landfill units with a synthetic bottom liner, as described in 30 TAC §330.457(a)(1,3), consists of the following components from top to bottom:

- A minimum erosion layer consisting of 6-inches of earthen material capable of sustaining native plant growth;
- A clay-rich soil cover layer consisting of a minimum of 18-inches of earthen material with a minimum coefficient of permeability of 1x10⁻⁵ cm/sec, and:
- A synthetic membrane.

The following additional alternate final cover system is proposed for the New Boston Landfill, listed from top to bottom:

Top Deck – Alternate Final Cover:

- 24-inch soil erosion layer;
- 250-mil double-sided geocomposite;
- 40-mil LLDPE geomembrane cover, and;
- 12-inch infiltration layer consisting of compacted soils ($k \le 1x10^{-7}$ cm/s).

Side Slope – Alternate Final Cover:

- 36-inch erosion layer;
- 250-mil double-sided geocomposite, and;
- 12-inch infiltration layer consisting of compacted soils ($k \le 1x10^{-7}$ cm/s).

Perforated HDPE pipe will be installed at the toe of the slope and the geocomposite drainage layer will daylight at intervals approximately 100 feet on the side slopes to collect drainage from the geocomposite drainage layer. The perforated piping will collect the drainage and direct the flow into the perimeter drainage system. The daylighted drainage geocomposite will collect drainage and direct the flow into the invert of the final cover swales and into the final cover letdown structures. Details of the geocomposite alternate final cover system are shown on Drawing D3.12a in Attachment D3.

2 PERFORMANCE EVALUATION

The performances of the top deck and sideslope composite alternate final cover designs were evaluated using the HELP computer modelling program (HELP Model Version 4.0.1). The HELP model simulates hydrologic processes for a landfill by performing daily, sequential water budget analyses using a quasi-two-dimensional deterministic approach. The model accepts weather, soil, and design data and uses solution techniques to account for key factors affecting water movement within the landfill. The model accounts for both surface and sub-surface processes including transpiration, surface runoff, evaporation, vertical percolation, saturated lateral drainage, and geosynthetics leakage to estimate the various movements of water within the selected profile.

The performance evaluations were performed for a unit area of landfill final cover modeled for thirty years. Each model assumed near steady-state values for the simulation period. The model requires input design data including daily and general climatological records, site-specific soil parameters, material properties, and landfill design data. Models for the prescriptive and alternate final cover systems are provided in Appendix D9.A.

3 RESULTS

Four HELP model simulations were conducted to estimate the percolation through the cover systems. Two HELP model simulations were conducted for final cover systems (top deck and sideslope) prescribed by current regulations and two HELP model simulations were conducted for alternate final cover systems (top deck and sideslope). Results from the models are summarized below.

HELP Model Results – Estimated Percolation

Final Cover System Configuration	Description	Avg. Annual Total Summary		
Configuration		(in.)		
Dragorintivo	Top Deck	0.5804		
Prescriptive	Side Slope	0.5719		
A 14 a wa a 4 a	Top Deck	0.0000		
Alternate	Side Slope	0.0248		

Final Cover System	Daganintian	Peak Values Summary		
Configuration	Description	(in.)		
Prescriptive	Top Deck	0.0032		
	Side Slope	0.0032		
A 14 a ma a 4 a	Top Deck	0.0000		
Alternate	Side Slope	0.0025		

The simulations demonstrate that the proposed alternate final cover systems will provide a greater reduction in infiltration than the prescribed cover system. The erosion layer evaluation, provided in the final cover drainage structure design included in Appendix C1-E, demonstrates the thickness of the alternate final cover erosion layer is greater than the anticipated losses due to erosion.

APPENDIX D9.A HELP MODEL RESULTS

.....

HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE HELP MODEL VERSION 4.0 BETA (2018)

DEVELOPED BY USEPA NATIONAL RISK MANAGEMENT RESEARCH LABORATORY

Title: NB FC: Prescribed (TS) Simulated On: 10/17/2025 12:38

Layer 1

Type 1 - Vertical Percolation Layer (Cover Soil)

SCL - Sandy Clay Loam

Material Texture Number 10

Thickness	=	6 inches
Porosity	=	0.398 vol/vol
Field Capacity	=	0.244 vol/vol
Wilting Point	=	0.136 vol/vol
Initial Soil Water Content	=	0.409 vol/vol
Effective Sat. Hvd. Conductivity	=	1.20E-04 cm/sec

Layer 2

Type 1 - Vertical Percolation Layer

SC/CL New Boston Clays (Uncompacted)

Material Texture Number 43

Thickness	=	18 inches
Porosity	=	0.464 vol/vol
Field Capacity	=	0.31 vol/vol
Wilting Point	=	0.187 vol/vol
Initial Soil Water Content	=	0.4603 vol/vol
Effective Sat. Hyd. Conductivity	=	1.00E-05 cm/sec

Layer 3

Type 4 - Flexible Membrane Liner

LDPE Membrane

Material Texture Number 36

Thickness	=	0.04 inches
Effective Sat. Hyd. Conductivity	=	4.00E-13 cm/sec
FML Pinhole Density	=	3 Holes/Acre
FML Installation Defects	=	4 Holes/Acre
FML Placement Quality	=	3 Good

Note: Initial moisture content of the layers and snow water were

computed as nearly steady-state values by HELP.

General Design and Evaporative Zone Data

SCS Runoff Curve Number	=	86.2
Fraction of Area Allowing Runoff	=	100 %
Area projected on a horizontal plane	=	1 acres
Evaporative Zone Depth	=	24 inches
Initial Water in Evaporative Zone	=	10.74 inches
Upper Limit of Evaporative Storage	=	10.74 inches
Lower Limit of Evaporative Storage	=	4.182 inches
Initial Snow Water	=	0 inches
Initial Water in Layer Materials	=	10.74 inches
Total Initial Water	=	10.74 inches
Total Subsurface Inflow	=	0 inches/year

Note: SCS Runoff Curve Number was calculated by HELP.

Evapotranspiration and Weather Data

Station Latitude	=	33.47 Degrees
Maximum Leaf Area Index	=	5
Start of Growing Season (Julian Date)	=	91 days
End of Growing Season (Julian Date)	=	304 days
Average Wind Speed	=	1.885 mph
Average 1st Quarter Relative Humidity	=	83 %
Average 2nd Quarter Relative Humidity	=	78 %
Average 3rd Quarter Relative Humidity	=	65 %
Average 4th Quarter Relative Humidity	=	77 %

Note: Evapotranspiration data was obtained for New Boston, Texas

Normal Mean Monthly Precipitation (inches)

<u>Jan/Jul</u>	Feb/Aug	Mar/Sep	Apr/Oct	May/Nov	Jun/Dec
3.877037	4.325889	5.150083	3.745899	5.13176	4.523972
3.4829	2.643919	3.968276	5.007685	4.584613	5.01805

Note: Precipitation was simulated based on HELP V4 weather simulation for:

Lat/Long: 33.47/-94.45

Normal Mean Monthly Temperature (Degrees Fahrenheit)

<u>Jan/Jul</u>	Feb/Aug	Mar/Sep	Apr/Oct	May/Nov	Jun/Dec
54.9	53	59.8	70.1	78.2	89
92.1	89.8	80.7	69.9	61.3	53.9

Note: Temperature was simulated based on HELP V4 weather simulation for:

Lat/Long: 33.47/-94.45

Solar radiation was simulated based on HELP V4 weather simulation for:

Lat/Long: 33.47/-94.45

Average Annual Totals Summary

Title: NB FC: Prescribed (TS)
Simulated on: 10/17/2025 12:39

	Ave	Average Annual Totals for Years 1 - 30*				
	(inches)	[std dev]	(cubic feet)	(percent)		
Precipitation	51.46	[8.49]	186,800.1	100.00		
Runoff	15.267	[6.018]	55,418.1	29.67		
Evapotranspiration	35.590	[3.56]	129,189.9	69.16		
Subprofile1						
Percolation/leakage through Layer 3	0.580392	[0.09213]	2,106.8	1.13		
Average Head on Top of Layer 3	11.6263	[1.8587]				
Water storage						
Change in water storage	0.0235	[1.5438]	85.2	0.05		

^{*} Note: Average inches are converted to volume based on the user-specified area.

Peak Values Summary

Title: NB FC: Prescribed (TS)
Simulated on: 10/17/2025 12:39

	Peak Values for	Years 1 - 30*	
	(inches)	(cubic feet)	
Precipitation	5.10	18,522.5	
Runoff	4.420	16,043.7	
Subprofile1			
Percolation/leakage through Layer 3	0.003240	11.8	
Average head on Layer 3	24.0000		
Other Parameters			
Snow water	6.7883	24,641.3	
Maximum vegetation soil water	0.4475 (vol	/vol)	
Minimum vegetation soil water	0.1743 (vol/vol)		

Final Water Storage in Landfill Profile at End of Simulation Period

Title: NB FC: Prescribed (TS)
Simulated on: 10/17/2025 12:40

Simulation period: 30 years

	Final Water Storage			
Layer	(inches)	(vol/vol)		
1	2.4460	0.4077		
2	8.2860	0.4603		
3	0.0000	0.0000		
Snow water	0.7125			

HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE HELP MODEL VERSION 4.0 BETA (2018)

DEVELOPED BY USEPA NATIONAL RISK MANAGEMENT RESEARCH LABORATORY

Title: NB FC: Prescribed (SS) Simulated On: 10/17/2025 12:21

Layer 1

Type 1 - Vertical Percolation Layer (Cover Soil) SCL - Sandy Clay Loam

Material Texture Number 10

Thickness	=	6 inches
Porosity	=	0.398 vol/vol
Field Capacity	=	0.244 vol/vol
Wilting Point	=	0.136 vol/vol
Initial Soil Water Content	=	0.409 vol/vol
Effective Sat. Hyd. Conductivity	=	1.20E-04 cm/sec

Layer 2

Type 1 - Vertical Percolation Layer SC/CL New Boston Clays (Uncompacted)

Material Texture Number 43

Thickness	=	18 inches
Porosity	=	0.464 vol/vol
Field Capacity	=	0.31 vol/vol
Wilting Point	=	0.187 vol/vol
Initial Soil Water Content	=	0.4603 vol/vol
Effective Sat. Hyd. Conductivity	=	1.00E-05 cm/sec

Layer 3

Type 4 - Flexible Membrane Liner LDPE Membrane

Material Texture Number 36

Thickness	=	0.04 inches
Effective Sat. Hyd. Conductivity	=	4.00E-13 cm/sec
FML Pinhole Density	=	3 Holes/Acre
FML Installation Defects	=	4 Holes/Acre
FML Placement Quality	=	3 Good

Note: Initial moisture content of the layers and snow water were

computed as nearly steady-state values by HELP.

General Design and Evaporative Zone Data

SCS Runoff Curve Number	=	87.3
Fraction of Area Allowing Runoff	=	100 %
Area projected on a horizontal plane	=	1 acres
Evaporative Zone Depth	=	24 inches
Initial Water in Evaporative Zone	=	10.74 inches
Upper Limit of Evaporative Storage	=	10.74 inches
Lower Limit of Evaporative Storage	=	4.182 inches
Initial Snow Water	=	0 inches
Initial Water in Layer Materials	=	10.74 inches
Total Initial Water	=	10.74 inches
Total Subsurface Inflow	=	0 inches/year

Note: SCS Runoff Curve Number was calculated by HELP.

Evapotranspiration and Weather Data

=	33.47 Degrees
=	5
=	91 days
=	304 days
=	1.885 mph
=	83 %
=	78 %
=	65 %
=	77 %
	= =

Note: Evapotranspiration data was obtained for New Boston, Texas

Normal Mean Monthly Precipitation (inches)

<u>Jan/Jul</u>	Feb/Aug	Mar/Sep	Apr/Oct	May/Nov	Jun/Dec
3.877037	4.325889	5.150083	3.745899	5.13176	4.523972
3.4829	2.643919	3.968276	5.007685	4.584613	5.01805

Note: Precipitation was simulated based on HELP V4 weather simulation for:

Lat/Long: 33.471528/-94.445833

Normal Mean Monthly Temperature (Degrees Fahrenheit)

<u>Jan/Jul</u>	Feb/Aug	Mar/Sep	Apr/Oct	May/Nov	Jun/Dec
54.9	53	59.8	70.1	78.2	89
92.1	89.8	80.7	69.9	61.3	53.9

Note: Temperature was simulated based on HELP V4 weather simulation for:

Lat/Long: 33.471528/-94.445833

Solar radiation was simulated based on HELP V4 weather simulation for:

Lat/Long: 33.471528/-94.445833

Average Annual Totals Summary

Title: NB FC: Prescribed (SS)
Simulated on: 10/17/2025 12:25

	Avera	Average Annual Totals for Years 1 - 30*				
	(inches)	[std dev]	(cubic feet)	(percent)		
Precipitation	51.46	[8.49]	186,800.1	100.00		
Runoff	15.453	[5.988]	56,094.4	30.03		
Evapotranspiration	35.412	[3.534]	128,544.3	68.81		
Subprofile1	-					
Percolation/leakage through Layer 3	0.571949	[0.09251]	2,076.2	1.11		
Average Head on Top of Layer 3	11.4489	[1.867]				
Water storage						
Change in water storage	0.0235	[1.6002]	85.2	0.05		

^{*} Note: Average inches are converted to volume based on the user-specified area.

Peak Values Summary

 Title:
 NB FC: Prescribed (SS)

 Simulated on:
 10/17/2025 12:25

	Peak Values for `	Years 1 - 30*
	(inches)	(cubic feet)
Precipitation	5.10	18,522.5
Runoff	4.420	16,042.8
Subprofile1		
Percolation/leakage through Layer 3	0.003240	11.8
Average head on Layer 3	24.0000	
Other Parameters		
Snow water	6.7883	24,641.4
Maximum vegetation soil water	0.4475 (vol.	vol)
Minimum vegetation soil water	0.1743 (vol	vol)

Final Water Storage in Landfill Profile at End of Simulation Period

Title: NB FC: Prescribed (SS)
Simulated on: 10/17/2025 12:25

Simulation period: 30 years

	Final Water Storage		
Layer	(inches)	(vol/vol)	
1	2.4460	0.4077	
2	8.2860	0.4603	
3	0.0000	0.0000	
Snow water	0.7125		

HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE HELP MODEL VERSION 4.0 BETA (2018) DEVELOPED BY USEPA NATIONAL RISK MANAGEMENT RESEARCH LABORATORY

Title: NB FC: Alternate (TS) Simulated On: 10/17/2025 13:05

Layer 1

Type 1 - Vertical Percolation Layer (Cover Soil) SC/CL New Boston Clays (Uncompacted)

Material Texture Number 43

Thickness	=	24 inches
Porosity	=	0.464 vol/vol
Field Capacity	=	0.31 vol/vol
Wilting Point	=	0.187 vol/vol
Initial Soil Water Content	=	0.3944 vol/vol
Effective Sat. Hyd. Conductivity	=	1.00E-05 cm/sec

Layer 2

Type 2 - Lateral Drainage Layer 250-mil DS 6oz Composite Material Texture Number 123

Thickness	=	0.25 inches
Porosity	=	0.85 vol/vol
Field Capacity	=	0.01 vol/vol
Wilting Point	=	0.005 vol/vol
Initial Soil Water Content	=	0.01 vol/vol
Effective Sat. Hyd. Conductivity	=	5.00E+01 cm/sec
Slope	=	25 %
Drainage Length	=	100 ft

Layer 3

Type 4 - Flexible Membrane Liner LDPE Membrane

Material Texture Number 36

Thickness	=	0.04 inches
Effective Sat. Hyd. Conductivity	=	4.00E-13 cm/sec
FML Pinhole Density	=	2 Holes/Acre
FML Installation Defects	=	3 Holes/Acre
FML Placement Quality	=	3 Good

Layer 4

Type 3 - Barrier Soil Liner Liner Soil (High)

Material Texture Number 16

Thickness	=	12 inches
Porosity	=	0.427 vol/vol
Field Capacity	=	0.418 vol/vol
Wilting Point	=	0.367 vol/vol
Initial Soil Water Content	=	0.427 vol/vol
Effective Sat. Hyd. Conductivity	=	1.00E-07 cm/sec

Note: Initial moisture content of the layers and snow water were

computed as nearly steady-state values by HELP.

General Design and Evaporative Zone Data

SCS Runoff Curve Number	= 90.5	
Fraction of Area Allowing Runoff	= 100 9	%
Area projected on a horizontal plane	= 1 8	acres
Evaporative Zone Depth	= 24 i	inches
Initial Water in Evaporative Zone	= 9.466 i	inches
Upper Limit of Evaporative Storage	= 11.136 i	inches
Lower Limit of Evaporative Storage	= 4.488 i	inches
Initial Snow Water	= 0 i	inches
Initial Water in Layer Materials	= 14.592 i	inches
Total Initial Water	= 14.592 i	inches
Total Subsurface Inflow	= 0 i	inches/year

Note: SCS Runoff Curve Number was calculated by HELP.

Evapotranspiration and Weather Data

Station Latitude	=	33.47 Degrees
Maximum Leaf Area Index	=	5
Start of Growing Season (Julian Date)	=	91 days
End of Growing Season (Julian Date)	=	304 days
Average Wind Speed	=	1.885 mph
Average 1st Quarter Relative Humidity	=	83 %
Average 2nd Quarter Relative Humidity	=	78 %
Average 3rd Quarter Relative Humidity	=	65 %
Average 4th Quarter Relative Humidity	=	77 %

Note: Evapotranspiration data was obtained for New Boston, Texas

Normal Mean Monthly Precipitation (inches)

<u>Jan/Jul</u>	Feb/Aug	Mar/Sep	Apr/Oct	May/Nov	Jun/Dec
3.877037	4.325889	5.150083	3.745899	5.13176	4.523972
3.4829	2.643919	3.968276	5.007685	4.584613	5.01805

Note: Precipitation was simulated based on HELP V4 weather simulation for:

Lat/Long: 33.47/-94.45

Normal Mean Monthly Temperature (Degrees Fahrenheit)

<u>Jan/Jul</u>	Feb/Aug	Mar/Sep	Apr/Oct	May/Nov	Jun/Dec
54.9	53	59.8	70.1	78.2	89
92.1	89.8	80.7	69.9	61.3	53.9

Note: Temperature was simulated based on HELP V4 weather simulation for:

Lat/Long: 33.47/-94.45

Solar radiation was simulated based on HELP V4 weather simulation for:

Lat/Long: 33.47/-94.45

Average Annual Totals Summary

Title: NB FC: Alternate (TS)
Simulated on: 10/17/2025 13:06

	Average Annual Totals for Years 1 - 30*			r	
	(inches)	[std dev]	(cubic feet)	(percent)	
Precipitation	51.46	[8.49]	186,800.1	100.00	
Runoff	22.529	[5.439]	81,780.4	43.78	
Evapotranspiration	26.695	[3.049]	96,901.7	51.87	
Subprofile1	profile1				
Lateral drainage collected from Layer 2	2.2088	[1.2613]	8,018.1	4.29	
Percolation/leakage through Layer 4	0.000000	[0]	0.0006	0.00	
Average Head on Top of Layer 3	0.0005	[0.0003]			
Water storage					
Change in water storage	0.0275	[1.8316]	99.9	0.05	

^{*} Note: Average inches are converted to volume based on the user-specified area.

Peak Values Summary

Title: NB FC: Alternate (TS)
Simulated on: 10/17/2025 13:07

	Peak Values for Years 1 - 30*		
	(inches)	(cubic feet)	
Precipitation	5.10	18,522.5	
Runoff	4.237	15,381.2	
Subprofile1			
Drainage collected from Layer 2	0.1881	682.7	
Percolation/leakage through Layer 4	0.000000	0.0000	
Average head on Layer 3	0.0143		
Maximum head on Layer 3	0.0006		
Location of maximum head in Layer 2	0.00 (fe	et from drain)	
Other Parameters			
Snow water	6.7883	24,641.3	
Maximum vegetation soil water	0.4380 (ve	ol/vol)	
Minimum vegetation soil water	0.1870 (vo	ol/vol)	

Final Water Storage in Landfill Profile at End of Simulation Period

Title: NB FC: Alternate (TS)
Simulated on: 10/17/2025 13:07

Simulation period: 30 years

	Final Water Storage		
Layer	(inches)	(vol/vol)	
1	9.5783	0.3991	
2	0.0025	0.0100	
3	0.0000	0.0000	
4	5.1240	0.4270	
Snow water	0.7125		

HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE HELP MODEL VERSION 4.0 BETA (2018)

DEVELOPED BY USEPA NATIONAL RISK MANAGEMENT RESEARCH LABORATORY

Title: NB FC: Alternate (SS) Simulated On: 10/17/2025 12:54

Layer 1

Type 1 - Vertical Percolation Layer (Cover Soil) SC/CL New Boston Clays (Uncompacted)

Material Texture Number 43

Thickness	=	36 inches
Porosity	=	0.464 vol/vol
Field Capacity	=	0.31 vol/vol
Wilting Point	=	0.187 vol/vol
Initial Soil Water Content	=	0.336 vol/vol
Effective Sat. Hyd. Conductivity	=	1.00E-05 cm/sec

Layer 2

Type 2 - Lateral Drainage Layer 250-mil DS 6oz Composite Material Texture Number 123

Thickness	=	0.25 inches
Porosity	=	0.85 vol/vol
Field Capacity	=	0.01 vol/vol
Wilting Point	=	0.005 vol/vol
Initial Soil Water Content	=	0.01 vol/vol
Effective Sat. Hyd. Conductivity	=	5.00E+01 cm/sec
Slope	=	25 %
Drainage Length	=	100 ft

Layer 3

Type 3 - Barrier Soil Liner Liner Soil (High)

Material Texture Number 16

Thickness	=	12 inches
Porosity	=	0.427 vol/vol
Field Capacity	=	0.418 vol/vol
Wilting Point	=	0.367 vol/vol
Initial Soil Water Content	=	0.427 vol/vol
Effective Sat. Hyd. Conductivity	=	1.00E-07 cm/sec

Note:

Initial moisture content of the layers and snow water were computed as nearly steady-state values by HELP.

General Design and Evaporative Zone Data

SCS Runoff Curve Number	=	91.2
Fraction of Area Allowing Runoff	=	100 %
Area projected on a horizontal plane	=	1 acres
Evaporative Zone Depth	=	36 inches
Initial Water in Evaporative Zone	=	12.094 inches
Upper Limit of Evaporative Storage	=	16.704 inches
Lower Limit of Evaporative Storage	=	6.732 inches
Initial Snow Water	=	0 inches
Initial Water in Layer Materials	=	17.221 inches
Total Initial Water	=	17.221 inches
Total Subsurface Inflow	=	0 inches/year

Note: SCS Runoff Curve Number was calculated by HELP.

Evapotranspiration and Weather Data

Station Latitude	=	33.47 Degrees
Maximum Leaf Area Index	=	5
Start of Growing Season (Julian Date)	=	91 days
End of Growing Season (Julian Date)	=	304 days
Average Wind Speed	=	1.885 mph
Average 1st Quarter Relative Humidity	=	83 %
Average 2nd Quarter Relative Humidity	=	78 %
Average 3rd Quarter Relative Humidity	=	65 %
Average 4th Quarter Relative Humidity	=	77 %

Note: Evapotranspiration data was obtained for New Boston, Texas

Normal Mean Monthly Precipitation (inches)

Jan/Jul	Feb/Aug	Mar/Sep	Apr/Oct	May/Nov	Jun/Dec
3.877037	4.325889	5.150083	3.745899	5.13176	4.523972
3.4829	2.643919	3.968276	5.007685	4.584613	5.01805

Note: Precipitation was simulated based on HELP V4 weather simulation for:

Lat/Long: 33.47/-94.45

Normal Mean Monthly Temperature (Degrees Fahrenheit)

<u>Jan/Jul</u>	Feb/Aug	Mar/Sep	Apr/Oct	May/Nov	Jun/Dec
54.9	53	59.8	70.1	78.2	89
92.1	89.8	80.7	69.9	61.3	53.9

Note: Temperature was simulated based on HELP V4 weather simulation for:

Lat/Long: 33.47/-94.45

Solar radiation was simulated based on HELP V4 weather simulation for:

Lat/Long: 33.47/-94.45

Average Annual Totals Summary

Title: NB FC: Alternate (SS)
Simulated on: 10/17/2025 12:56

	Ave	Average Annual Totals for Years 1 - 30*		
	(inches)	[std dev]	(cubic feet)	(percent)
Precipitation	51.46	[8.49]	186,800.1	100.00
Runoff	22.275	[5.477]	80,858.3	43.29
Evapotranspiration	27.827	[3.13]	101,011.7	54.07
Subprofile1				
Lateral drainage collected from Layer 2	1.2494	[1.1293]	4,535.2	2.43
Percolation/leakage through Layer 3	0.024783	[0.019879]	90.0	0.05
Average Head on Top of Layer 3	0.0003	[0.0002]		
Water storage				
Change in water storage	0.0840	[2.3257]	305.0	0.16

^{*} Note: Average inches are converted to volume based on the user-specified area.

Peak Values Summary

Title: NB FC: Alternate (SS)
Simulated on: 10/17/2025 12:56

	Peak Values for Y	Years 1 - 30*
	(inches)	(cubic feet)
Precipitation	5.10	18,522.5
Runoff	4.210	15,283.1
Subprofile1		
Drainage collected from Layer 2	0.1451	526.9
Percolation/leakage through Layer 3	0.001888	6.8550
Average head on Layer 3	0.0109	
Maximum head on Layer 3	0.0004	
Location of maximum head in Layer 2	0.00 (fee	t from drain)
Other Parameters		
Snow water	6.7883	24,641.3
Maximum vegetation soil water	0.4320 (vol	vol)
Minimum vegetation soil water	0.1870 (vol.	vol)

Final Water Storage in Landfill Profile at End of Simulation Period

Title: NB FC: Alternate (SS)
Simulated on: 10/17/2025 12:56

Simulation period: 30 years

	Final Water Storage		
Layer	(inches)	(vol/vol)	
1	13.9021	0.3862	
2	0.0025	0.0100	
3	5.1240	0.4270	
Snow water	0.7125		

NEW BOSTON LANDFILL BOWIE COUNTY, TEXAS TCEQ PERMIT NO. MSW 576C

PART III – FACILITY INVESTIGATION AND DESIGN ATTACHMENT H CLOSURE PLAN

Prepared for

Waste Management of Texas, Inc.

Technically Complete September 12, 2014 Permit Issued November 12, 2015 Revised February 2018

Revised October 2025

Prepared by

BIGGS & MATHEWS ENVIRONMENTAL

1700 Robert Road, Suite 100 • Mansfield, Texas 76063 • 817-563-1144

TEXAS BOARD OF PROFESSIONAL ENGINEERS
FIRM REGISTRATION NO. F-256 AND NO. 10194895

TEXAS BOARD OF PROFESSIONAL GEOSCIENTISTS FIRM REGISTRATION NO. 50222

CONTENTS

1	INTRO	ODUCTION	H-1
2	FINAI	COVER SYSTEM	H-2
	2.1	Final Cover System Design	H-2
		2.1.1 West and North Disposal Areas	H-2
		2.1.2 South Disposal Area	H-3
	2.2	Installation Methods and Procedures	
3	CLOS	SURE PROCEDURES	H-5
	3.1	Closure Sequence	
	3.2		
		3.2.1 Estimate of Largest Area Requiring Final Cover	
		3.2.2 Estimate of Maximum Inventory of Waste On Site	
4	CLOS	SURE SCHEDULE	H-7
	4.1	Final Cover Construction	
	4.2	Implementation of the Closure Plan	H-7
	4.3	Certification of Final Facility Closure	H-8
	4.4	Provisions for Extending Closure Period	
5	CLOS	SURE COST ESTIMATE	H-10

APPENDIX H1 – FIGURES

Figure H1 Affidavit to the Public

APPENDIX H2 - FINAL COVER SYSTEM PLANS AND DETAILS

APPENDIX H3 – MAXIMUM INVENTORY OF WASTE ONSITE

30 TAC §330.457

2.1 Final Cover System Design

2.1.1 West and North Disposal Areas

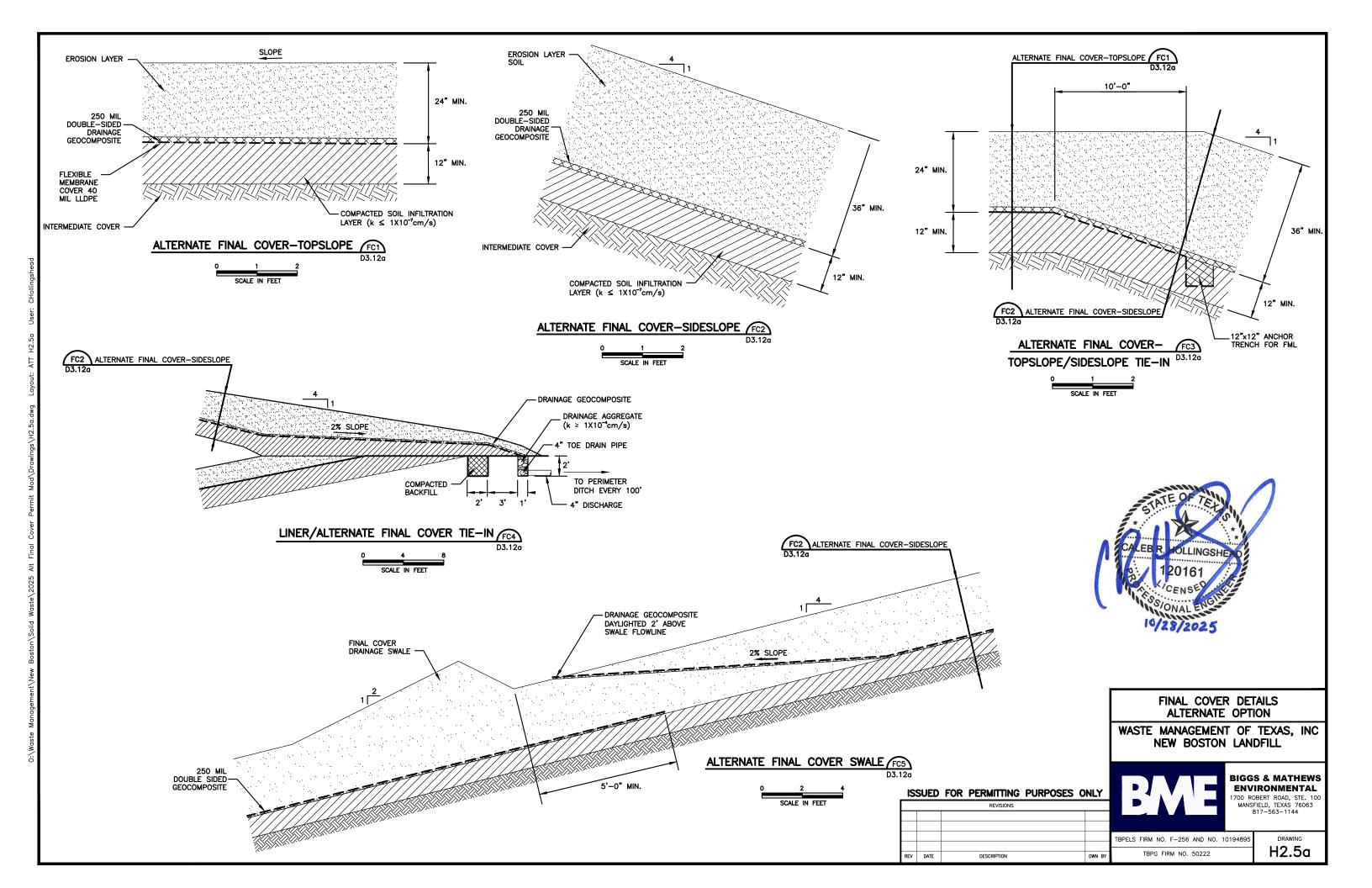
There are two final cover system designs for the West and North Disposal Areas at the New Boston Landfill, the components of which are listed on Table H-1 of this section. Final cover has been constructed over the entire 52.5 acres of the West Disposal Area and details of the cover are documented in the Final Cover Evaluation Reports (FCERs). Approval dates are shown on Appendix J, Drawing J.1.

The final cover plans are included in Appendix H2, Drawings H2.2 and H2.3 and the final cover details are provided in Drawings H2.5, H2.5a, and H2.6. The components of the final cover system are listed from top to bottom in Table H-1.

The final cover will be seeded or sodded immediately following the application of the final cover in order to minimize erosion. The vegetation will be native and introduced grasses. Temporary cold weather vegetation will be established if required. Irrigation will be employed as needed until vegetation is established. Erosion control measures such as silt fences and straw bales will be used to minimize erosion until the vegetation is established. Areas that experience erosion or do not readily vegetate will be repaired, reseeded or sodded until vegetation is established, or the soil will be replaced with soil that will support the grasses.

Table H-1 New Boston Landfill Components of the West and North Disposal Areas Final Cover System

Cover System Component	Description	Minimum Thickness
West and North Disposal Areas Final Cover		
TOPSLOPE		
Erosion Layer	Soil that is capable of sustaining native plant growth	24 inches
Cushion Layer	Geotextile	8 oz
Flexible Membrane Cover	Smooth LLDPE geomembrane	40 mil nominal
Infiltration Layer	Compacted soil with a coefficient of permeability ≤ 1 x 10 ⁻⁵ cm/sec	18 inches
TOPSLOPE - ALTERNATE		
Erosion Layer	Soil that is capable of sustaining native plant growth	24 inches
Drainage Layer	Double-sided geocomposite	0.25 inches nominal
Flexible Membrane Cover	Smooth or Textured LLDPE geomembrane	40 mil nominal
Infiltration Layer	Compacted soil with a coefficient of permeability ≤ 1 x 10 ⁻⁷ cm/sec	12 inches
SIDESLOPE OPTION A		
Erosion Layer	Soil that is capable of sustaining native plant growth	24 inches
Drainage Layer	Double-sided geocomposite	0.2 inches nominal
Flexible Membrane Cover	Textured LLDPE geomembrane	40 mil nominal
Infiltration Layer	Compacted soil with a coefficient of permeability ≤ 1 x 10 ⁻⁵ cm/sec	18 inches
SIDESLOPE OPTION B		
Erosion Layer	Soil that is capable of sustaining native plant growth	24 inches
Drainage Layer	Geotextile over studded geomembrane	8 oz
Flexible Membrane Cover	Textured LLDPE geomembrane with studs on top	40 mil nominal
Infiltration Layer	Compacted soil with a coefficient of permeability ≤ 1 x 10 ⁻⁵ cm/sec	18 inches
SIDESLOPE - ALTERNATE		
Erosion Layer	Soil that is capable of sustaining native plant growth	36 inches
Drainage Layer	Double-sided geocomposite	0.25 inches nominal
Infiltration Layer	Compacted soil with a coefficient of permeability ≤ 1 x 10 ⁻⁷ cm/sec	12 inches


2.1.2 South Disposal Area

The final cover system in the South Disposal Area will consist of an infiltration layer and an erosion control layer. The final cover plan is included in Appendix H2, Drawing H2.3 and the final cover details are provided in Drawing H2.6. The components of the final cover system are listed from top to bottom in Table H-2.

The final cover will be seeded or sodded immediately following the application of the final cover in order to minimize erosion. The vegetation will be native and introduced grasses. Temporary cold weather vegetation will be established if required. Irrigation will be employed as needed until vegetation is established. Erosion control measures such as silt fences and straw bales will be used to minimize erosion until the vegetation is established. Areas that experience erosion or do not readily vegetate will be repaired, reseeded or sodded until vegetation is established, or the soil will be replaced with soil that will support the grasses.

NEW BOSTON LANDFILL

APPENDIX H2 FINAL COVER SYSTEM PLANS AND DETAILS

