

Texas Commission on Environmental Quality Waste Permits Division Correspondence Cover Sheet

Date: <u>17 September 2024</u> Facility Name: <u>Texas Star Property West</u> Permit or Registration No.: <u>62054</u> Nature of Correspondence:

- Initial/New
- ☑ Response/Revision to TCEQ Tracking No.: 29838265 (from subject line of TCEQ letter regarding initial submission)

Affix this cover sheet to the front of your submission to the Waste Permits Division. Check appropriate box for type of correspondence. Contact WPD at (512) 239-2335 if you have questions regarding this form.

Applications	Reports and Notifications
New Notice of Intent	Alternative Daily Cover Report
Notice of Intent Revision	Closure Report
\square New Permit (including Subchapter T)	Compost Report
New Registration (including Subchapter T)	Groundwater Alternate Source Demonstration
🗌 Major Amendment	Groundwater Corrective Action
Minor Amendment	Groundwater Monitoring Report
Limited Scope Major Amendment	Groundwater Background Evaluation
Notice Modification	Landfill Gas Corrective Action
Non-Notice Modification	Landfill Gas Monitoring
Transfer/Name Change Modification	Liner Evaluation Report
Temporary Authorization	Soil Boring Plan
Uvoluntary Revocation	Special Waste Request
Subchapter T Disturbance Non-Enclosed Structure	Other:
Other:	

Table 1 - Municipal Solid Waste Correspondence

Table 2 - Industrial & Hazardous Waste Correspondence

Applications	Reports and Responses
□ New	Annual/Biennial Site Activity Report
Renewal	CPT Plan/Result
Post-Closure Order	Closure Certification/Report
🗌 Major Amendment	Construction Certification/Report
Minor Amendment	CPT Plan/Result
CCR Registration	Extension Request
CCR Registration Major Amendment	Groundwater Monitoring Report
CCR Registration Minor Amendment	Interim Status Change
Class 3 Modification	Interim Status Closure Plan
Class 2 Modification	Soil Core Monitoring Report
Class 1 ED Modification	Treatability Study
Class 1 Modification	Trial Burn Plan/Result
Endorsement	Unsaturated Zone Monitoring Report
Temporary Authorization	Waste Minimization Report
Voluntary Revocation	Other:
335.6 Notification	
Other:	

REVISION 4 -

APPLICATION FOR DEVELOPMENT PERMIT FOR PROPOSED ENCLOSED STRUCTURE

TEXAS STAR PROPERTY WEST 11450 TRINITY BOULEVARD EULESS, TARRANT COUNTY, TEXAS 76040

Prepared for:

Texas Commission on Environmental Quality MSW Authorization No. 62054; Tracking No. 29838265 Voluntary Cleanup Program No. 3237 RN100729763 | CN604539007

Prepared on behalf of the Applicant:

Stonehawk Capital Partners, LLC

4550 Travis Street, Suite 565 Dallas, Texas 75205

Property Owner:

HMH Family Partnership LP 1104 Dayton Drive Lantana, Texas 76226

Initial Submission: 28 February 2024 Revision 4 Submission: 17 September 2024

Susan T. Litherland, P.E. Principal Texas P.E. No. 57428, F-15202 Signed electronically on 9/17//2024

Sam Enis, P.G. Principal Project Manager

PN: 1098.015.003

SQ Environmental, LLC PO Box 1991 Austin, Texas 78767-1991 (512) 900-7731 www.SQEnv.com

TABLE OF CONTENTS

Section	
APPLI	CATION FOR DEVELOPMENT PERMIT FOR PROPOSED ENCLOSED STRUCTUREI
1	PROPOSED PROJECT DESCRIPTION1-1
2	EXISTING CONDITIONS SUMMARY2-1
3	LEGAL AUTHORITY
4	EVIDENCE OF COMPETENCY4-1
5	NOTICE OF ENGINEER APPOINTMENT5-1
6	NOTICE OF COORDINATION6-1
7	GENERAL GEOLOGY STATEMENT7-1
8	GROUNDWATER & SURFACE WATER STATEMENT8-1
9	FOUNDATION PLANS
10	SOIL TESTS10-1
11	CLOSURE PLAN11-1
12	STRUCTURES GAS MONITORING, SITE OPERATING, SAFETY & EVACUATION PLAN12-1
13	ADJACENT LANDOWNER MAP & LANDOWNER LIST13-1
14	SITE LAYOUT PLAN14-1
15	PROPERTY LEGAL DESCRIPTION15-1
16	NOTICE OF LANDFILL DETERMINATION & TO REAL PROPERTY RECORDS16-1
17	NOTICE TO LESSEES & OCCUPANTS OF THE STRUCTURE17-1
18	TCEQ CORE DATA FORMS18-1
19	FEE PAYMENT RECEIPT19-1
20	OTHER PLANS

MM

Susan T. Litherland, P.E. Principal Texas P.E. No. 57428, F-15202 Signed electronically on 9/17/2024

APPLICATION FOR DEVELOPMENT PERMIT FOR PROPOSED ENCLOSED STRUCTURE

SQ Environmental, LLC (SQE) prepared this Texas Commission on Environmental Quality (TCEQ) Application for Development Permit for Proposed Enclosed Structure on behalf of Stonehawk Capital Partners, LLC (Applicant) for a portion of the Texas Star Property located at 11450 Trinity Boulevard (Blvd) in Euless, Tarrant County, Texas. The general location of the subject property is shown on **Figure 1** in **Attachment 2**. A more detailed map is provided on **Figure 2** in **Attachment 2**. Tarrant Appraisal District (TAD) parcel No. 03924394 is 12.153 acres (area outlined in orange), and this Application concerns the approximately 7.30-acre western portion of the parcel (area outlined in pink) which is considered the subject property for the purpose of this application. The planned future use of the subject property is for a multifamily residential development.

The entire Texas Star Property (which is the area outlined in orange on **Figure 2** in **Attachment 2** and includes the subject property for this application) is currently enrolled in the TCEQ Voluntary Cleanup Program (VCP). Site Plans presenting the planned residential development layout are included in **Attachment 14**. As shown, residential structures are planned for the subject property, and the small 1.987-acre parcel located adjacent south of the subject property. While this small southern parcel is included in the Site Plan, based on historical aerials and soil borings, no gravel pit digging operations or filling occurred on this southern parcel; therefore, it is not included in this Application (but it is in VCP No. 3237). Additional details are provided in **Section 10**.

A Request for Authorization to Disturb Final Cover Over Closed Municipal Solid Waste (MSW) Landfill for Non-Enclosed Structure (Request) dated 20 December 2023 was submitted separately for the approximately 4.85-acre east-adjacent property (the eastern portion [Texas Star Property – East] of the 12.153-acre tract), where a parking lot and green space associated with the subject property are planned. This is the area outlined in blue on **Figure 2** in **Attachment 2**. This area, identified as "Texas Star Property – East," was assigned MSW Permit No. 67123. A Request for Authorization to Disturb Final Cover for Non-Enclosed Structure was submitted for the subject property on 8 May 2024 to allow for upcoming construction activities in the event that this Development Permit has not yet been issued when work is set to begin. As discussed in this Application, a Vapor Mitigation System (VMS) is planned for the subject property. A summary of the three properties that comprise the larger Texas Star Property is provided below, and the boundaries are shown on **Figure 2** in **Attachment 2**.

Property Designation in this Permit Application	Portion of the larger 12.153-acre tract	Planned Use	MSW Application Form
"Subject Property"	Western portion, approx. 7.30 acres (pink boundary on Figure 2)	Multi-family residential with structures	This Development Permit for Proposed Enclosed Structure, to address subsurface methane from offsite source
"East-Adjacent Property"	Eastern portion, approx. 4.85 acres (blue boundary on Figure 2)	Parking lot & green space associated with the subject property	Previously submitted Request for Authorization to Disturb Final Cover Over Closed MSW Landfill dated 12/20/23
Southern Property	Southern parcel, approx. 1.987 acres	Multi-family residential with structures.	Not applicable; no MSW present. No evidence of historical gravel pits in this area.

SQ ENVIRONMENTAL, LLC APPLICATION FOR DEVELOPMENT PERMIT | TX STAR PROPERTY WEST

REV4 20240917

FOR PROPOSED ENCLOSED STRUCTURE

The entire Texas Star Property is currently enrolled in the VCP. Soil and groundwater assessment activities were completed at the property under the VCP, and no impacts to soil or groundwater were identified on the subject property above TCEQ Protective Concentration Levels (PCLs), with the exception of benzene in one isolated groundwater sample, discussed below. Methane is present beneath the subject property, confined at depths of approximately 12 feet (ft) below ground surface (bgs).

BACKGROUND

Based on available information, the subject property appeared to be used for agricultural purposes from approximately 1942 to 1950. By the late 1960s, the eastern portion of the subject property was used as a gravel pit, in addition to the surrounding properties. Gravel pit operations appear to have ceased around the mid-1980s and the pits were backfilled. Hancock Contracting, an earth-moving or construction company, appears to have operated on the subject property from at least 1988 to the late 2000s.

The area of the subject property is located in the Quaternary Fluviatile Terrace Deposits (Qt), which are comprised of gravel and sand. It was common for these deposits to be mined for gravel, and numerous gravel pits were identified in the area of the subject property on the historical topographic maps from the 1960s to the 1980s and are visible in aerial photographs. Minor amounts of incidental debris (glass, bricks, concrete, rebar, and asphalt) were observed in shallow soil borings and test pits completed on the subject property at depths between approximately 5 ft and 20 ft bgs. Based on the soil boring observations and site history, it does not appear that the subject property was ever operated as a "landfill" (e.g., did not purposefully accept refuse and trash for landfilling), but rather these incidental materials were brought in with soil that was being used to backfill the property after the gravel pit operations ceased.

The area surrounding the subject property is currently a mix of residential and commercial/industrial properties. Earth Haulers, an excavation / material distribution company, is located adjacent south of the subject property. Based on historical aerial photographs, the area of the onsite gravel pit operations and subsequent backfilling extends beyond the subject property, particularly to the southeast, where Earth Haulers has operated since at least 1992, and portions of the eastern parcel. During a routine investigation in January 2007, a TCEQ Regional Investigator determined that Earth Haulers failed to prevent the unauthorized disposal of MSW on the property, specifically 40,217 cubic yards (yd³) of mulch, debris, and cut wooden logs, in addition to approximately thirty 55-gallon drums of unknown liquid. In December 2009, an Agreed Order (No. 2007-0471-MSW-E) was issued between Earth Haulers and TCEQ that stated Earth Haulers would cease accepting additional waste, remove all accumulated materials from the property, and submit a Notice of Intent (NOI) to operate a recycling facility to the MSW Permits Section. Earth Haulers currently operates under MSW Non-Permitted ID No. 100117. Based on the available information, it appears that this property is the source of the majority of the subsurface methane that has been identified on the Texas Star Property. Based on the types of debris observed (glass, bricks, concrete, rebar, and asphalt), the low percentage of debris relative to the fill dirt, and the lack of vegetation or wood, it is highly unlikely that the debris present is generating significant amounts of methane and could the debris that has been observed on the subject property could not be responsible for generating the methane observed deeper than 10 ft bgs within portions of the subject property.

SQE completed a Phase I Environmental Site Assessment (ESA) for the Texas Star Property (subject property and east-adjacent property) dated 4 February 2022, and a Limited Phase II ESA dated 13 July 2022. As discussed above, the Texas Star Property was enrolled (as one tract which also includes the 1.987-acre southwest-adjacent parcel) into the VCP in August 2022 and assigned VCP No. 3237.

SUBJECT PROPERTY ASSESSMENT ACTIVITIES AND RESULTS

Following enrollment into the VCP, additional assessment activities were conducted, and an Affected Property Assessment Report (APAR) was submitted to TCEQ on 31 August 2023. The assessment activities summarized below were conducted on the subject property (northwestern portion of the Texas Star Property) to investigate potential sources on the subject property and on adjacent properties. The sample locations are shown on **Figure 3** in **Attachment 2**.

- Thirty soil borings were completed to depths of up to 35 ft bgs on the subject property. Twenty soil samples were collected and submitted to the laboratory for analysis of total petroleum hydrocarbons (TPH), Resource Conservation and Recovery Act (RCRA) 8 metals, and/or volatile organic compounds (VOCs).
- Three permanent groundwater monitoring wells (MW-1, MW-4, and MW-6) were installed on the subject property to total depths ranging from 30 to 35 ft bgs. Wells MW-1 and MW-6 were installed in general upgradient locations on the property and MW-4 in a general downgradient location. Two monitoring wells (MW-3 and MW-5) were installed on the east-adjacent property in downgradient locations, and well MW-2 was installed on the southwest-adjacent property in a cross-gradient location. Four groundwater monitoring/sampling events were conducted, and groundwater samples were analyzed for TPH, RCRA 8 metals, and/or VOCs.
- Sixteen soil vapor sample points were completed on the subject property to depths ranging from 5 to 12 ft bgs, and 16 soil vapor samples were collected for analysis of VOCs and/or methane.
- Six geotechnical soil borings (B-01, B-02, PB-02 through PB-05) and four soil test pits (TP-01 through TP-03 and TP-09) were completed on the subject property as part of geotechnical activities.

The analytical results of the samples were compared to the TCEQ Texas Risk Reduction Program (TRRP) PCLs for residential property use and the Texas-Specific Background Concentrations, published in the TRRP Rules (30 TAC §350). The reported soil vapor concentrations were evaluated using "Comparison Values" based on the Environmental Protection Agency (EPA) Office of Solid Waste and Emergency Response (OSWER) guidance document.

A summary of the subject property sample results is provided below. Additional details are provided in **Section 10**, including data summary tables and figures from the APAR. It should be noted that some of the samples on the maps and tables were collected from the eastern portion of the Texas Star Property and are not applicable to this Application. As discussed above, a separate Request dated 20 December 2023 was submitted for the east-adjacent property (eastern portion of the Texas Star Property).

- <u>Soil Samples</u> No concentrations of TPH, metals, or VOC constituents were reported above applicable residential PCLs in soil samples collected from the subject property. A data summary table of soil sample analytical results is provided in **Attachment 10C**.
- Groundwater Samples No concentrations of TPH, metals, or VOC constituents were reported above applicable residential PCLs in groundwater samples collected from the subject property, with the exception of benzene in one sample collected from well MW-1 in June 2022. The benzene concentration of 0.0945 milligrams per liter (mg/L) in well MW-1 during the June 2022 sampling event was reported above the residential PCL of 0.005 mg/L. Benzene was not detected above the laboratory sample detection limit (SDL) in the groundwater samples collected from well MW-1 during the previous two sampling events in February and March 2022 or the following sampling event in December 2023. Additionally, benzene was not detected above the SDL in any other

FOR PROPOSED ENCLOSED STRUCTURE

groundwater samples collected from any wells during any other sampling event at the subject property and east-adjacent property. Based on this data, the detection of benzene in one isolated sample does not appear to be indicative of impacts to shallow groundwater on the subject property with this compound. A data summary table of groundwater sample analytical results is provided in **Attachment 10C**.

- Lithology Based on boring logs completed on the subject property, shallow lithology is comprised of silty clays, sands, and gravels (i.e., alluvium) encountered from the ground surface to the maximum total depth (35 ft bgs). The upper 10 ft of soil at the subject property is comprised primarily of sandy clay and clayey sand, and contains a higher clay content than the soil beneath 10 ft. A clay confining unit was observed at 34 ft bgs on the eastern portion of the Texas Star Property. Incidental debris within the soil borings was typically encountered between 5 and 20 ft bgs on the subject property. A cross-section is provided as Figure 5 in Attachment 7. Boring logs are included in Attachment 10C.
- <u>NAPL</u> No light or dense non-aqueous phase liquid (NAPL) was observed in any of the monitoring wells during the four groundwater monitoring events.
- <u>Groundwater Gradient</u> The shallow groundwater flow direction is to the east-southeast, and the gradient is very flat, as shown on the potentiometric surface maps included as Figures 6 and 7 in Attachment 7. Groundwater level measurements are provided in a data summary table in Attachment 10C.
- <u>GWBU</u> The uppermost groundwater bearing unit (GWBU) on the subject property was encountered at a depth of approximately 24 to 30 ft bgs. A topographic map is provided as Figure 4 in Attachment 2.
- <u>Soil Vapor and Methane Samples</u> There were no VOC concentration exceedances of the "Comparison Values" in the soil vapor samples collected on the subject property, with the exception of chlorobenzene in one sample (SV-1 collected at 12 ft bgs) at a concentration of 2.0 milligrams per cubic meter (mg/m³). The Comparison Value for chlorobenzene is 1.7 mg/m³. As discussed in this Application, a VMS is planned beneath all enclosed structures on the subject property.

A total of 16 soil vapor samples have been collected from the subject property; four of the samples were collected from a depth of 5 ft bgs and 12 were collected from a depth of 12 ft bgs. These samples were analyzed for VOCs and methane. The methane concentrations in the four 5 ft samples ranged from 0.00042% (SV-A-S) to 0.0091% (SV-1-S). Soil vapor samples collected from seven of the 12 locations at 12 ft bgs also did not contain methane concentrations above 1%. Methane was reported at a concentration above 1% in five of the 12-ft deep soil vapor samples collected from the subject property (SV-1, SV-6, SV-10, SV-11, and SV-B-D). The methane concentrations for these 12-ft samples were between 2.5% and 12%. The elevated methane concentrations appear to be confined to the deeper zone below 10 ft, and do not appear to be migrating vertically to shallow soils or the surface at concentrations above 0.009%. The upper 10 ft of soil at the subject property is comprised primarily of sandy clay and clayey sand, and contains a higher clay content than the soil beneath 10 ft. Methane concentrations are delineated to the north, south, east, and west, with the exception of the southeast corner of the subject property. The elevated methane concentrations extend onto the east-adjacent property (eastern portion of Texas Star Property) and onto the property adjacent south, which is the Earth Haulers property. As discussed above, the Earth Haulers property entered into an Agreed Order with TCEQ regarding the unauthorized disposal of approximately 40,000 yd³ of mulch, debris, and cut wooden logs. The Earth Haulers property is thought to be the source of methane on the subject property. Additional

SQ ENVIRONMENTAL, LLC APPLICATION FOR DEVELOPMENT PERMIT | TX STAR PROPERTY WEST

REV4 20240917

FOR PROPOSED ENCLOSED STRUCTURE

details are provided in **Section 10**. Methane concentration data is shown on **Figure 8** in **Attachment 7**. A data summary table of soil vapor sample analytical results is provided in **Attachment 10C**.

Geotechnical – Six geotechnical soil borings (B-01, B-02, PB-02 through PB-05) and four soil test pits (TP-01 through TP-03 and TP-09) were completed on the subject property. Natural, undisturbed soils were encountered from ground surface to total depth (25 ft bgs) in borings PB-04 and PB-05. Natural soils consist predominantly of lean clay and clayey sand with sand seams and intermittent gravel. Boring PB-03 encountered existing fill material to a total depth of 15 ft bgs. The fill material observed in boring PB-03 was mostly clay with the exception of some concrete and asphalt pieces. Refusal was encountered at 2 ft bgs in boring PB-02. Test pits TP-01 through TP-03 and TP-09 encountered existing fill material to a depth of 20 ft bgs. In general, all of the observed incidental debris is deeper than 5 ft bgs. Natural soils were encountered below the fill. The existing fill materials generally consisted of mostly soil but minor but varying amounts of concrete, asphalt, metal, pipes, brick, and cables. As shown in the test pit photographs in Attachment 10A, no plastic bags, plastic sheets, vegetation and/or other similar waste materials appear to be present in the subsurface of the subject property. There may have been one piece of wood observed in one of the test pits. Geotechnical logs are provided in Attachments 10A and 10B.

SITE PLAN

Based on discussions with the MSW Permits Section, TCEQ MSW is taking the position that the incidental debris found on the subject property meets the definition of a Dumping Area or Closed MSW Landfill, as defined by 30 TAC §330. However, the type of debris (glass, bricks, concrete, and asphalt) and the quantity observed in the subsurface of the subject property would not generate the elevated concentrations of methane reported for some of the deep soil vapor samples collected beneath the subject property. Regardless, we are working through the MSW application process to allow issuance of the VCP Certificate of Completion and residential redevelopment of the property. As has been discussed, a VMS will be installed beneath all enclosed structures on the property to prevent any buildup of methane or other VOCs. A deed notice concerning the presence of the debris on the subject property has been filed in the County records.

A Request for Authorization to Disturb Final Cover for Non-Enclosed Structure was submitted for the subject property on 8 May 2024 to allow for the upcoming site preparation activities.

The planned future use of the subject property is multi-family residential development. Site Plans are included in **Attachment 14**. A VMS will be designed and installed during construction of structures on the subject property. The VMS design plan is provided in **Attachment 9B**. This system will direct any vapors (methane or other) out from beneath the buildings, and the vapors monitored to verify that there is no vapor accumulation beneath the buildings and that the concentrations of the vented methane are well below the lower explosive limit (LEL). The VMS will consist of a 2- to 4-inch granular layer which will act as bedding for a series of slotted vent pipes. The vent pipes will be extended through any internal beams to the outside of the structure. The granular layer and vent pipe system will be covered with a plastic layer, which will be sealed at overlaps, and all penetrations. As part of the installation oversight, smoke tests will be performed on the system to verify that it is property sealed, prior to pouring of the concrete foundations. Some or all of the vent pipes will be fitted with fans so that active venting can be performed if passive venting is not sufficient to prevent the buildup of vapors under the building. In addition to monitoring selected vent pipes, monitoring points within the building will be included in the VMS so that interior locations can be sampled, as needed. Additional details on the VMS are provided in **Sections 9** and **12**.

FOR PROPOSED ENCLOSED STRUCTURE

The planned buildings on the subject property will have at or near grade foundations. No subsurface parking or other subsurface structures are planned. The only excavations that will be performed are for utilities (which will likely be limited to the upper 3 to 4 ft), an elevator pit (which will likely extend no more than about 6 to 8 ft bgs), and a swimming pool. The swimming pool will be located in the courtyard of Building 1. The maximum disturbance depth at the subject property will be no deeper than 10 ft, and likely no deeper than 7 ft. As described, based on the planned construction, the only area where incidental debris might be encountered is in the vicinity of the swimming pool, and possibly the elevator pit. In no case will the excavations exceed to the depths of the elevated methane concentrations (deeper than 10 ft bgs) or the saturated zone (24 to 30 ft bgs). The planned concrete building slab foundations with an underlying VMS, along with the asphalt roadways and parking areas will result in a similar or better impervious "cap" over portions of the subject property where incidental debris is present in the subsurface.

As discussed above, groundwater on the subject property has been sampled during four events from the three onsite monitoring wells (and three monitoring wells on other areas of the Texas Star property), and no impacts have been identified. Twenty soil samples have been collected from the subject property at depths ranging between 0.5 and 15 ft bgs and no impacts identified. Based on the sampling that has been performed, the incidental debris that has been found in the soil fill at depths of approximately 5 to 20 ft bgs is not a source of contamination. Methane concentrations above 1% have been demonstrated to be confined to a depth below 10 ft. Based on this information, no environmental impacts due to the planned development of the subject property during or after construction would be anticipated.

REV4 20240917

ATTACHMENT I

TCEQ FORM-20785 & FORM-20960

Texas Commission on Environmental Quality Application for Development Permit for Proposed Enclosed Structure Over Closed Municipal Solid Waste Landfill

Application Tracking Information

 Applicant Name:
 Stonehawk Capital Partners, LLC

 Facility Name:
 Texas Star Property West

 Development Permit Number:
 62054

 Initial Submission Date:
 28 February 2024

 Revision Date:
 17 September 2024

Use this form to apply for a development permit for proposed enclosed structure over a closed municipal solid waste (MSW) landfill. Rules about use of land over a closed MSW landfill are in <u>Title 30</u>, <u>Texas Administrative Code</u>¹, Chapter 330, Subchapter T. Instructions for completing this form are provided in form <u>TCEQ 20785-instr</u>². Include a Core Data Form, available at <u>www.tceq.texas.gov/goto/coredata</u> with the application. If you have questions, contact the Municipal Solid Waste Permits Section by email to **Development** or by phone at 512-239-2335.

If you have an existing enclosed structure, use form <u>TCEQ-20786</u>³, Registration for Existing Enclosed Structure Over Closed Municipal Solid Waste Landfill. If you are proposing a non-enclosed structure, use form <u>TCEQ-20787</u>⁴, Authorization to Disturb Final Cover Over Closed Municipal Solid Waste Landfill for Non-Enclosed Structure.

Application Data

1. Application Type

- New Development Permit 🗌 Revisions of Existing Permit
- □ Transfer of an Existing Permit

If existing Permit, indicate the Permit Number: ____

2. Submission Type

Initial Submission

Notice of Deficiency (NOD) Response

¹ www.tceq.texas.gov/goto/view-30tac

² www.tceq.texas.gov/downloads/permitting/waste-permits/msw/forms/20785-instr.pdf

³ www.tceq.texas.gov/downloads/permitting/waste-permits/msw/forms/20786.pdf

⁴ www.tceq.texas.gov/downloads/permitting/waste-permits/msw/forms/20787.pdf

3. Application Fee

The application fee for a development permit is \$2,500.

Paid by Check

Paid Online

If paid online, ePay Confirmation Number:

4. Enrollment in Other TCEQ Programs

Indicate if the site is enrolled in the Voluntary Cleanup Program or other Remediation Program.

🔳 Yes 🗌 No

If Yes, indicate the program: VCP No. 3237; PST No. 67148; MSW Permit No. 67123 (Pending for East Side)

5. Development Type

Is the development a single-family or double-family home that is not part of a housing subdivision?

🗌 Yes 🛛 🔳 No

If "Yes", the construction is exempt from the development permit requirement.

6. Enclosed Structure Description

Provide a brief description of the proposed enclosed structure for which the development permit is requested.

The planned future use of the subject property is a multi-family residential development that includes four buildings, which are planned to have at or near grade foundations. The total square footage of buildings is 203,526 sqft and the total square footage for pavement is 216,640 sqft. No subsurface parking or other subsurface structures are planned. The only excavations that will be performed are for utilities (which will likely be limited to the upper 3 to 4 ft), an elevator pit (which will likely extend no more than about 6 to 8 ft bgs), and a swimming pool (no deeper than 10 ft bgs). A VMS with methane monitors will be installed for the four buildings to address the elevated methane concentrations in the subsurface, which are confined to 10 ft bgs. Groundwater in the saturated zone (24 to 30 ft bgs) is not impacted.

7. Soil Tests

Size of the property	(acres):	Approx 7.30
Size of the property	(acres):	Approx 7.30

Was the existence of the landfill determined through:

🗌 Test I

🗌 Test II

Test III

Other. Please describe: _____

If soil tests were performed prior to development in accordance with 30 TAC §330.953, the test results shall be included in this application.

8. Notification of MSW Landfill Determination

If soil tests were used to determine the presence of a closed MSW landfill, provide evidence that the engineer who performed the soil tests has notified the following persons of that determination in accordance with 30 TAC §330.953(d).

Each owner and lessee

Executive Director

Local Government Officials

Regional Council of Governments

9. Landfill Permit Status

What is the permit status of the landfill?

□ Active MSW Permit □ Landfill in Post-Closure Care

Revoked MSW Permit Non-Permitted Landfill

If the landfill is still in the post-closure care period subject to an active MSW Permit, this development permit application for proposed enclosed structures shall be accompanied by a Permit Modification application prepared in accordance with 30 TAC §305.70, and by a certification signed by an independent engineer in accordance with 30 TAC §330.957(b)(2).

If the landfill has completed the post-closure care period, but the MSW permit has not been revoked (site affected by an active MSW Permit), a Voluntary Revocation request of the MSW Permit shall be submitted in accordance with 30 TAC §330.465 prior to the submittal of this development permit application for proposed enclosed structures over a closed MSW landfill.

10. Application URL

Enter the URL address of a publicly accessible internet web site where the application and all revisions to that application will be posted in the box below:

www.tceq.texas.gov/goto/wasteapps

11. Public Place	e for Copy of Application	
Name of the Public Place: Euless Public Library		
Physical Address: 201 N Ector Dr		
City: Euless	County: <u></u>	State: <u>TX</u> Zip Code: 76039
Phone Number: 81	7-685-1480	
Normal Operating H	ours: 9am to 5pm or 6pm or 8pm	

12. Party Responsible for Publishing Notice

Indicate who will be responsible for publishing notice:

Applicant

Consultant

Contact Name: Sam Enis

Title: Principal Project Manager

Email Address: <u>s.enis@sqen</u>v.com

13. Alternative Language Notice

Use the Alternative Language Checklist on Public Notice Verification Form TCEQ-20244-Waste-NAORPM available at

<u>www.tceq.texas.gov/permitting/waste_permits/msw_permits/msw_notice.html</u> to determine if an alternative language notice is required.

Is an alternative language notice required for this application?

🔳 Yes 🗌 No

Indicate the alternative language: Spanish

14. Confidential Documents

Does the application contain confidential documents?

🗌 Yes 🔳 No

If "Yes", cross-reference the confidential documents throughout the application and submit as a separate attachment in a binder clearly marked "CONFIDENTIAL."

15. Permits and Construction Approvals

Mark the following tables to indicate status of other permits or approvals.

Permits and Construction Approvals

Permit or Approval	Received	Pending	Not Applicable
Zoning Approval	X		
Preliminary Subdivision Plan		X	
Final Plat		Х	
Fire Inspector's Approval		Х	
Building Inspector's Approval on Plans		Х	
Water Service Tap		Х	
Wastewater Service Tap		Х	
On-site Wastewater Disposal System Approval			Х

Other Environmental Permits

Other Environmental Permits (list)	Received	Pending

16. General Project In	formation		
Facility Name: Texas Star F	Property West		
SubT Development Permit Number (if available): 62054			
Regulated Entity Reference	Number (if issued): RN <u>10072</u>	9763	
Street or Physical Address:			
City: Euless	_{County:} <u>Tarrant</u>	State: <u>TX</u> Zip Code:	
Phone Number: Vacant/Undeveloped			
<i>If Regulated Entity Reference Number has not been issued for the facility, complete a Core Data Form (TCEQ-10400) and submit it with this application.</i>			

17 Contact Information

17. Contact Information
Applicant (Lessee/Project Owner)
Name: Stonehawk Capital Partners, LLC
Customer Reference Number (if issued): CN 604539007
Mailing Address: 4550 Travis St, Suite 565
City: Dallas County: Dallas State: TX Zip Code: 75205
Phone Number: 714-679-2919
Email Address: bhopkins@stonehawkcapital.com
<i>If Customer Reference Number has not been issued, complete a Core Data Form (TCEQ- 10400) and submit it with this application. List the Applicant as the Customer.</i>
Property Owner
Name: HMH Family Partnership LP
Mailing Address: 1104 Dayton Dr
City: Lantana County: Denton State: TX Zip Code: 76226
Phone Number: 972-672-2053
Email Address:
If the Property Owner is the same as Applicant, indicate "Same as "Applicant".
Consultant (if applicable)
Firm Name: SQ Environmental, LLC
Texas Board of Professional Engineers and Land Surveyors Firm Number: F-15202
Mailing Address: PO Box 1991
City: <u>Austin</u> County: <u>Travis</u> State: <u>TX</u> Zip Code: <u>78767</u>
Consultant Name: Susan T. Litherland, P.E.
Phone Number: <u>512-656-9445</u>
Email Address: s.litherland@sqenv.com
Engineer Who Performed Soil Tests
Firm Name: ECS Southwest, LLP
Texas Board of Professional Engineers and Land Surveyors Firm Number: $\underline{F-8461}$
Mailing Address: 2621 White Settlement Rd
City: Fort Worth County: Tarrant State: TX Zip Code: 76107
Engineer Name: Mark Zortman, P.E. (TX No. 99872)
Phone Number: <u>682-350-2250</u>
Email Address: mzortman@ecslimited.com

18. Other Governmental Entities Information:		
Fire Chief, Fire Marshal or Fire Inspector Information		
Fire Department Name: Bureau of Fire Prevention		
Person's Name: James Davis		
Mailing Address: 200 Texas St, Lower Level		
City: Fort Worth County: Tarrant	State: TX	Zip Code: 76102
Phone Number: 817-392-6840		
Email Address: <u>Jim.Davis@fortworthtexas.gov</u>		
Local Floodplain Authority (if applicable)		
Authority Name: City of Fort Worth, Floodplain Management & F	Regulations	
Contact Person's Name: Lauren Prieur		
Street or P.O. Box: 200 Texas St, 2nd Floor		
City: Fort Worth County: Tarrant	State: TX	Zip Code: 76102
Phone Number: 817-392-1234		
Email Address: lauren.prieur@fortworthtexas.gov		
City Mayor Information		
City Mayor's Name: Mattie Parker		_
Office Address: 200 Texas St		
City: Fort Worth County: Tarrant	State: TX	Zip Code: 76102
Phone Number: 817-392-6118		
Email Address:mattie.parker@fortworthtexas.gov		
City Health Authority Information		
Contact Person's Name: Cody Whittenburg		
Office Address: 818 Missouri Ave		
City: Fort Worth County: Tarrant	State: TX	Zip Code:
Phone Number: <u>817-392-5455</u>		
Email Address: cody.whittenburg@fortworthtexas.gov		

Director of Public Works

Department Name: City of Fort Worth, Transportation & Public Works	
Contact Person's Name: Lauren Prieur	
Office Address: 200 Texas St, 2nd Floor	
City: Fort Worth County: Tarrant State: TX Zip Code: 76102	_
Phone Number: 817-392-1234	
Email Address: lauren.prieur@fortworthtexas.gov	
Director of Utilities	
Utility Name: City of Fort Worth, Water Department	
Contact Person's Name: Christopher Harder	
Office Address: 908 Monroe St	
City: Fort Worth County: Tarrant State: TX Zip Code: 76102	
Phone Number: 817-392-4477	
Email Address: christopher.harder@fortworthtexas.gov	
Director of Planning	
Agency Name: City of Fort Worth, Planning Division	
Contact Person's Name: Eric Fladager	
Office Address: 200 Texas St, 3rd Floor	
City: Fort Worth County: Tarrant State: TX Zip Code: 76102	
Phone Number: <u>817-392-8011</u>	
Email Address: eric.fladager@fortworthtexas.gov	
Building Inspector	
Agency Name: City of Fort Worth, Development Services, Inspections	
Contact Person's Name: D.J. Harrell	
Office Address: 200 Texas St, Lower Level	
City: Fort Worth County: Tarrant State: TX Zip Code: 76102	
Phone Number: 817-392-2222	-
Email Address: d.j.harrell@fortworthtexas.gov	
County Judge Information	
County Judge's Name: Judge Tim O'Hare	
Office Address: 100 E Weatherford St, Ste 501	
City: Fort Worth County: Tarrant State: TX Zip Code: 76196	_
Phone Number: 817-884-1441	
Email Address: countyjudge@tarrantcountytx.gov	~
Page 8 of 1	6

TCEQ-20785 (Rev. 10-06-22) Application for Development Permit for Proposed Enclosed Structure Over Closed Municipal Solid Waste Landfill

County Engineer's Name: Joseph Jackson	
County Engineer's P.E. Registration No.: <u>TX No. 129546</u>	
Office Address: 100 E Weatherford St, Ste 401	
City: Fort Worth County: Tarrant	_ State: <u>TX</u> Zip Code: <u>76196</u>
Phone Number: <u>817-884-1153</u>	
Email Address: jjjackson@tarrantcountytx.gov	
County Health Authority	
Agency Name: Tarrant County Public Health	
Contact Person's Name: Dr. Brian Byrd	
Office Address: 1101 S Main St, Ste 2300	
City: Fort Worth County: Tarrant	_ State: <u>TX</u> Zip Code: <u>76104</u>
Phone Number: <u>817-248-6299</u>	
Email Address: bbyrd@tarrantcountytx.gov	
State Representative Information	
State Representative Information District Number: <u>94</u>	
District Number: <u>94</u>	
District Number: <u>94</u> State Representative's Name: <u>Rep. Tony Tinderholt</u>	State: <u></u> Zip Code: <u></u>
District Number: <u>94</u> State Representative's Name: <u>Rep. Tony Tinderholt</u> District Office Address: <u>1000 Ballpark Way, Ste 310</u> City: <u>Arlington</u> <u>County: Tarrant</u>	State: <u></u> Zip Code:
District Number: <u>94</u> State Representative's Name: <u>Rep. Tony Tinderholt</u> District Office Address: <u>1000 Ballpark Way, Ste 310</u>	State: <u>TX</u> Zip Code: <u>⁷⁶⁰¹¹</u>
District Number: <u>94</u> State Representative's Name: <u>Rep. Tony Tinderholt</u> District Office Address: <u>1000 Ballpark Way, Ste 310</u> City: <u>Arlington</u> <u>County: Tarrant</u> Phone Number: <u>817-476-2660</u>	State: <u>TX</u> Zip Code: <u>⁷⁶⁰¹¹</u>
District Number: <u>94</u> State Representative's Name: <u>Rep. Tony Tinderholt</u> District Office Address: <u>1000 Ballpark Way, Ste 310</u> City: <u>Arlington</u> <u>County: Tarrant</u> Phone Number: <u>817-476-2660</u> Email Address: <u>tony.tinderholt@house.texas.gov</u>	State: <u>TX</u> Zip Code: <u>⁷⁶⁰¹¹</u>
District Number: <u>94</u> State Representative's Name: <u>Rep. Tony Tinderholt</u> District Office Address: <u>1000 Ballpark Way, Ste 310</u> City: <u>Arlington</u> <u>County: Tarrant</u> Phone Number: <u>817-476-2660</u> Email Address: <u>tony.tinderholt@house.texas.gov</u> State Senator Information	State: <u>TX</u> Zip Code: ⁷⁶⁰¹¹
District Number: <u>94</u> State Representative's Name: <u>Rep. Tony Tinderholt</u> District Office Address: <u>1000 Ballpark Way, Ste 310</u> City: <u>Arlington</u> <u>County: Tarrant</u> Phone Number: <u>817-476-2660</u> Email Address: <u>tony.tinderholt@house.texas.gov</u> State Senator Information District Number: <u>9</u> State Senator's Name: <u>Sen. Kelly Hancock</u> District Office Address: <u>306 W Seventh Street, Ste 508</u>	State: <u>TX</u> Zip Code: ⁷⁶⁰¹¹
District Number: <u>94</u> State Representative's Name: <u>Rep. Tony Tinderholt</u> District Office Address: <u>1000 Ballpark Way, Ste 310</u> City: <u>Arlington</u> <u>County: Tarrant</u> Phone Number: <u>817-476-2660</u> Email Address: <u>tony.tinderholt@house.texas.gov</u> State Senator Information District Number: <u>9</u> State Senator's Name: <u>Sen. Kelly Hancock</u> District Office Address: <u>306 W Seventh Street, Ste 508</u> City: <u>Fort Worth</u> <u>County: Tarrant</u>	State: <u>TX</u> Zip Code: <u>⁷⁶⁰¹¹</u>
District Number: <u>94</u> State Representative's Name: <u>Rep. Tony Tinderholt</u> District Office Address: <u>1000 Ballpark Way, Ste 310</u> City: <u>Arlington</u> <u>County: Tarrant</u> Phone Number: <u>817-476-2660</u> Email Address: <u>tony.tinderholt@house.texas.gov</u> State Senator Information District Number: <u>9</u> State Senator's Name: <u>Sen. Kelly Hancock</u> District Office Address: <u>306 W Seventh Street, Ste 508</u>	

Council of Governme	nt (COG)
COG Name: North Ce	ntral Texas Council of Governments
COG Representative's	Name: Susan Alvarez
COG Representative's	Title: Director, Environment & Development
Street Address or P.O.	Box: Centerpoint II, 616 Six Flags Dr
City: Arlington	County: Tarrant State: TX Zip Code: 76011
Phone Number: 817-6	
Email Address: salvare	ez@nctcog.org
Local Government Ju	irisdiction
Is the property located	within the limits or in the ETJ of any City?
🔳 Yes 🗌 No	
	s may apply. Issuance of Development Permit for an Enclosed mpt the applicant from complying with city codes and zoning. Fort Worth
	Jurisdiction of City of:

19. Deed Recordation

■ Verify that the property owner filed a written notice for record in the real property records in the county where the land is located in accordance with 30 TAC §330.962 stating: (a) the former use of the land; (b) the legal description of the tract of land that contains the closed MSW landfill; (c) notice that restrictions on the development or lease of the land exist in the Texas Health and Safety Code and in MSW rules; and (d) the name of the owner.

A certified copy of the Notice to Real Property Records is included in this application in accordance with 30 TAC §330.957(p).

20. Notice to Buyers, Lessees, and Occupants of the Structure

Did the property owner give written notice to all prospective buyers, lessees and/or occupants of the structure in accordance with 30 TAC §330.963 stating the land's former use as a landfill, and the structural controls in place to minimize potential future danger posed by the closed MSW landfill?

Yes New Structure Not Yet Constructed

If "Yes" certified copies of the notices shall be submitted to TCEQ in accordance with 30 TAC §330.957(p).

If "New Structure Not Yet Constructed" a draft notice to all prospective buyers, lessees and/or occupants of the proposed structure, and procedures for its implementation upon structure's construction shall be included in this application.

21. Notice of Lease Restrictions on the Property

Is the property leased?

🗌 Yes 🔳 No

If "Yes", verify that the property owner provided written notice to all prospective lessees of the property in accordance with 30 TAC §330.964 concerning:

 $\hfill \hfill \hfill$

(b) the prohibitions or requirements for future disturbance of the final cover?

 \Box A certified copy of the notice is included in the application in accordance with 30 TAC §330.957(p).

Professional Engineer's Certification of No Potential Threat to Public Health or the Environment

The applicant's engineer for this project shall complete one of the following certifications:

"I, ______, Texas PE Number _____, certify that the proposed development is necessary to reduce a potential threat to public health or the environment. Further, I certify that the proposed development will not damage the integrity or function of any component of the Closed Municipal Solid Waste Landfill Unit, including, but not limited to, the final cover, containment systems, monitoring system, or liners. This certification includes all documentation of all studies and data on which I relied in making these determinations."

Engineer's seal, with signature and date:

Engineering Firm Name: _____

Texas Board of Professional Engineers and Land Surveyors Firm Number:

Or:

" I, Susan T. Litherland, P.E. , Texas PE Number 57428 , certify that

the proposed development will not increase or create a potential threat to public health or the environment. Further, I certify that the proposed development will not damage the integrity or function of any component of the Closed Municipal Solid Waste Landfill Unit, including, but not limited to, the final cover, containment systems, monitoring system, or liners. This certification includes all documentation of all studies and data on which I relied in making these determinations."

Engineer's seal, with signature and date:

Engineering Firm Name: SQ Environmental, LLC

Texas Board of Professional Engineers and Land Surveyors Firm Number: F-15202

Signature Page

Applicant Certification

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Name: Brandon Hopkins	Title: Director of Construction, Stonehawk
Signature: Charles	Date: 9-16-24
Email Address: _bhopkins@stonehawkcapital.com	
SUBSCRIBED AND SWORN to before me by the sa	id Brandon Hopkins
On this 16th day of September, 2024	
My commission expires on the 3d day of Februa	ary, 2026
Notary's Name: William Hunter Sanders	
Notary Public in and for Dollas County, Texas	WILLIAM HUNTER SANDERS Notary Public, State of Texas Comm. Expires 02-03-2026 Notary ID 133569645

Property Owner Authorization

To be completed by the property owner if the property owner is not the applicant.

Ι	, the owner of the property identified by
the address	,hereby authorize the
applicant to proceed with the project described in the necessary authorizations in order to conduct this pro- owner, I am responsible for maintaining the integrit landfill.	oject. I understand that, as property
Property Owner Name:	
Signature:	Date:
Email Address:	
SUBSCRIBED AND SWORN to before me by the said	
On this day of,	
My commission expires on the day of	/
Notary's Name:	
Notary Public in and for	
County, Texas	

Signature Page

Applicant Certification

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Name:	Title:	
Signature:	Date:	
Email Address:		
SUBSCRIBED AND SWORN to before me by the	said	
On this day of,		
My commission expires on the day of	/	
Notary's Name:	-	
Notary Public in and for		
County, Texas		

Property Owner Authorization

To be completed by the property owner if the property owner is not the applicant.

I HMH Family Partnership LP / Julie Moore	, the owner of the property identified by
the address 11450 Trinity Boulevard, Euless, TX 76040	,hereby authorize the
applicant to proceed with the project described in th necessary authorizations in order to conduct this pro owner, I am responsible for maintaining the integrity landfill.	oject. I understand that, as property y of the final cover over the closed MSW
Property Owner Name: HMH Family Partnership LP	
Signature:	Date: 1116 24
Email Address: juliemoore03@verizon.net	
SUBSCRIBED AND SWORN to before me by the said	Julie Moore
On this left day of September, 2024	
My commission expires on the 1940 day of March	<u>1, 2028</u>
Notary's Name: COMVYA ROSeuau	
Notary Public in and for	CAMRYN ROSENAU Notary Public, State of Texas
Denten County, Texas	Comm. Expires 03-14-2028 Notary ID 134807235

Attachments for New Development Permit

Required Attachments

A. Narrative

Attachment	Attachment Number
Proposed Project Description	1
Existing Conditions Summary	2
Legal Authority	3
Evidence of Competency	4
Notice of Engineer Appointment	5
Notices of Coordination with Governmental Agencies and Officials	6
Geology and Soil Statement	7
Groundwater and Surface Water Statement	8
Foundation Plans	9
Soil Tests	10
Closure Plan	11
Structures Gas Monitoring Plan	12
Site Operating Plan	12
Safety and Evacuation Plan	12

B. Maps and Plans

Attachment	Attachment Number
Adjacent Landowners Map	13
Adjacent Landowners List	13
Electronic List or Mailing Labels	13
General Location Map	2
General Topographic Map	2
Site Layout Plan with Limits of Waste Disposal Area	14
Foundation Plans	9
Structure Layout Plan	9
Methane Monitoring Equipment Location Plans	9
Construction Details and Engineering Drawings	9

C. Copies of Legal Documents

Attachment	Attachment Number
Property Legal Description	15
Notice of Landfill Determination	16
Notice to Real Property Records	16
Notices to Buyers, Lessees, and Occupants	17
Notices of Lease Restrictions (if applies)	Not applicable

Additional Attachments as Applicable

Attachment	Attachment Number
TCEQ Core Data Form(s)	18
Confidential Documents	
Soil Tests Boring Logs	10
Other maps, plans and engineering drawings	20
Methane Monitoring Equipment Specifications	
Methane Monitoring Report	
🗌 Waste Disposal Manifests	
Fee Payment Receipt	19
Final Plat Record of Property	

Attachments for Revisions to Existing Development Permit

Required Attachments

A. Revised Pages

Attachment	Attachment Number
Marked (Redline/Strikeout) Pages	А
Unmarked Revised Pages	В

B. Narrative

Attachment	Attachment Number
Description of Proposed Revisions	Cover Letter
Foundation Plans (if revised)	9
Closure Plan (if revised)	11
Site Operating Plan (if revised)	12
Structures Gas Monitoring Plan (if revised)	12
Safety and Evacuation Plan (if revised)	

C. Maps and Plans

Attachment	Attachment Number
General Location Map	
Site Layout Plan	14
Structure Layout Plan	
Methane Monitoring Equipment Location Plans	

Additional Attachments as Applicable

Attachment	Attachment Number

Texas Commission on Environmental Quality

Public Involvement Plan Form for Permit and Registration Applications

The Public Involvement Plan is intended to provide applicants and the agency with information about how public outreach will be accomplished for certain types of applications in certain geographical areas of the state. It is intended to apply to new activities; major changes at existing plants, facilities, and processes; and to activities which are likely to have significant interest from the public. This preliminary screening is designed to identify applications that will benefit from an initial assessment of the need for enhanced public outreach.

All applicable sections of this form should be completed and submitted with the permit or registration application. For instructions on how to complete this form, see TCEQ-20960-inst.

Section 1. Preliminary Screening

New Permit or Registration Application

New Activity – modification, registration, amendment, facility, etc. (see instructions)

If neither of the above boxes are checked, completion of the form is not required and does not need to be submitted.

Section 2. Secondary Screening

Requires public notice,

Considered to have significant public interest, and

 \times Located within any of the following geographical locations:

- Austin
- Dallas
- Fort Worth
- Houston
- San Antonio
- West Texas
- Texas Panhandle
- Along the Texas/Mexico Border
- Other geographical locations should be decided on a case-by-case basis

If all the above boxes are not checked, a Public Involvement Plan is not necessary. Stop after Section 2 and submit the form.

Public Involvement Plan not applicable to this application. Provide **brief** explanation.

It does not appear that the subject property was ever operated as a "landfill" (e.g., did not purposefully accept refuse and trash for landfilling), but rather incidental materials (bricks, concrete, rebar, and asphalt) were brought in with soil that was being used to backfill the property after gravel pit operations ceased. As planned, it is unlikely the debris will be disturbed during development. No soil or groundwater impacts have been identified. Subsurface methane concentrations are confined to a depth below 10 feet. A Vapor Mitigation System (VMS) is planned for all enclosed structures. The subject property is vacant land and located in an area of commercial and industrial use. The planned development, with the addition of concrete and asphalt cover and VMS, will improve site conditions of the subject property and add value to the surrounding area.

Section 3. Application Information
Type of Application (check all that apply):
Air Initial Federal Amendment Standard Permit Title V
WasteMunicipal Solid WasteIndustrial and Hazardous WasteScrap TireRadioactive Material LicensingUnderground Injection Control
Water Quality
Texas Pollutant Discharge Elimination System (TPDES)
Texas Land Application Permit (TLAP)
State Only Concentrated Animal Feeding Operation (CAFO)
Water Treatment Plant Residuals Disposal Permit
Class B Biosolids Land Application Permit
Domestic Septage Land Application Registration
Water Rights New Permit
New Appropriation of Water
New or existing reservoir
Amendment to an Existing Water Right
Add a New Appropriation of Water
Add a New or Existing Reservoir
Major Amendment that could affect other water rights or the environment
Section 4. Plain Language Summary
Provide a brief description of planned activities.

Section 5. Community and Demographic Information
Community information can be found using EPA's EJ Screen, U.S. Census Bureau information, or generally available demographic tools.
Information gathered in this section can assist with the determination of whether alternative language notice is necessary. Please provide the following information.
(City)
(County)
(Census Tract) Please indicate which of these three is the level used for gathering the following information.
City County Census Tract
(a) Percent of people over 25 years of age who at least graduated from high school
(b) Per capita income for population near the specified location
(b) Let capita income for population near the specified location
(c) Percent of minority population and percent of population by race within the specified location
(d) Percent of Linguistically Isolated Households by language within the specified location
(e) Languages commonly spoken in area by percentage
(f) Community and/or Stakeholder Groups
(g) Historic public interest or involvement

Section 6. Planned Public Outreach Activities
(a) Is this application subject to the public participation requirements of Title 30 Texas Administrative Code (30 TAC) Chapter 39?
Yes No
(b) If yes, do you intend at this time to provide public outreach other than what is required by rule?
Yes No
If Yes, please describe.
If you answered "yes" that this application is subject to 30 TAC Chapter 39, answering the remaining questions in Section 6 is not required.
(c) Will you provide notice of this application in alternative languages?
Yes No
Please refer to Section 5. If more than 5% of the population potentially affected by your application is Limited English Proficient, then you are required to provide notice in the alternative language.
If yes, how will you provide notice in alternative languages?
Publish in alternative language newspaper
Posted on Commissioner's Integrated Database Website
Mailed by TCEQ's Office of the Chief Clerk
Other (specify)
(d) Is there an opportunity for some type of public meeting, including after notice?
Yes No
(e) If a public meeting is held, will a translator be provided if requested?
Yes No
(f) Hard copies of the application will be available at the following (check all that apply):
TCEQ Regional Office TCEQ Central Office
Public Place (specify)
Section 7. Voluntary Submittal
For applicants voluntarily providing this Public Involvement Plan, who are not subject to formal public participation requirements.
Will you provide notice of this application, including notice in alternative languages?
What types of notice will be provided?
Publish in alternative language newspaper
Posted on Commissioner's Integrated Database Website
Mailed by TCEQ's Office of the Chief Clerk
Other (specify)

1 PROPOSED PROJECT DESCRIPTION

The subject property is currently undeveloped, and the planned future use is for a multi-family residential development. The proposed development extends to a south-adjacent TAD parcel, and the east-adjacent property will support the development as a parking lot and green space. As planned, the development on the subject property is comprised of four multi-family apartment buildings (Buildings 1 through 4) with concrete slab-on-grade foundations. Building 1 will be a four-story apartment structure with a footprint that measures approximately 300 ft by 400 ft including an interior, open-air courtyard that measures approximately 150 ft by 275 ft; Building 2 will be a three-story apartment structure with a footprint that measures approximately 150 ft by 75 ft; and Buildings 3 and 4 will be two-story apartments structures with footprints that measure approximately 150 ft by 75 ft. The total square footage of the buildings is 203,526 square feet (ft²). Asphalt-covered parking lots and landscaped areas will surround the four buildings and cover the majority of the remaining surface area of the subject property. The total square footage for pavement is 216,640 ft². Site Plans are included in **Attachment 14**.

The majority of the incidental debris identified in the subsurface of the subject property is located near the center and the east-central portions of the property. In general, all of the incidental debris is deeper than 5 ft bgs. There is no true "cap" at the surface on the property, although the upper 5 to 10 ft of soil generally does not contain debris and has a higher percentage of clay than the underlying materials.

The planned buildings on the subject property will have at or near grade foundations. No subsurface parking or other subsurface structures are planned. The only excavations that will be performed are for utilities (which will likely be limited to the upper 3 to 4 ft), an elevator pit (which will likely extend no more than about 6 to 8 ft bgs), and a swimming pool. The swimming pool will be located in the courtyard of Building 1. The maximum disturbance depth at the subject property will be no deeper than 10 ft, and likely no deeper than 7 ft. As described, based on the planned construction, the only area where incidental debris might be encountered is in the vicinity of the swimming pool, and possibly the elevator pit. In no case will the excavations exceed to the depths of the elevated methane concentrations (deeper than 10 ft bgs) or the saturated zone (24 to 30 ft bgs).

A VMS will be designed and installed beneath first-floor residential areas. The VMS will direct any vapors (methane or other) out from beneath the buildings, and the vapors monitored to verify that there is no vapor accumulation beneath the buildings. As discussed above, the planned concrete building slab foundations with an underlying VMS, along with the asphalt roadways and parking areas will result in a similar or better impervious "cap" over portions of the subject property where incidental debris is present in the subsurface.

No enclosed areas below ground surface to be occupied by people will be constructed on the subject property. It is not anticipated that waste will be encountered during construction. However, minor amounts of incidental debris may be uncovered during construction activities at the subject property. The debris and surrounding soil will be stockpiled on plastic sheeting or loaded directly into 55-gallon drums, trucks, trailers, or containers, and removed from the site for disposal at an appropriate, permitted MSW landfill. Locations where incidental debris is removed will be backfilled with 2-ft of clean, low-plasticity, compacted clay and graded with the surrounding onsite soil to be slightly higher than the existing grade and provide positive drainage. No pilings, borings, or penetrations are planned during development of the subject property. The majority of the subject property will be covered with buildings and asphalt and designed so that surface water quickly exits the property.

It is not anticipated that any stormwater will come into contact with incidental debris on the subject property during construction. However, groundwater on the subject property has been sampled during four events, and no impacts have been identified. There is no indication that groundwater beneath the subject property

is impacted by the debris located above the saturated zone. The debris and groundwater beneath the subject property are not a source of contamination. None of the incidental debris is located at the ground surface, and precautions will be implemented during development of the subject property to prevent excavated material, if any, from coming into contact with stormwater. Any surface water that does come into contact with waste materials will be properly contained, characterized, and disposed of.

If excavation activities result in exposed waste, the exposed waste area will be temporarily covered with clean soil or other materials as soon as practical, but no later than the end of the day. The contractor will provide adequate temporary cover consisting of a minimum of 6 inches of soil or an impermeable membrane material to prevent rainfall from contacting the waste. Temporary diversion berms will be installed around the exposed waste area to prevent stormwater from contacting the waste and will be used upslope of all excavations where waste will be exposed to minimize the amount of surface water coming into contact with waste materials. In addition, temporary containment berms will be constructed around areas of exposed waste to collect surface waters. At no time will water that comes into contact with waste materials be allowed to discharge to surface waters. Regarding the management procedures described above, especially the covering of waste and precautions implemented in advance of inclement weather, the generation of water that has made contact with waste materials is expected to be minimal. However, if generated, the water will be collected and disposed of in accordance with standards set forth herein and in accordance with City and State requirements for disposal of such water. Any water generated during construction will be stored onsite, then transported via vacuum truck to an approved wastewater treatment or disposal facility permitted to accept the wastewater.

The stormwater management will include measures to control sediment discharge during construction including, but not be limited to, the use of earthen berms, hay bales, and silt fencing downgradient of slopes which may experience erosion (including material stockpiles). Erosion damage from rainfall events will be repaired by the contractor after such events. All erosion control measures will also be inspected and maintained throughout the redevelopment process. Berms, when used for control of potentially impacted water, will also be maintained as necessary to control erosion. The contractor will pay special attention to erosion on any soil cover over waste materials. Any cover damage to the existing landfill, or in areas where cover must be maintained over solid waste materials that are part of construction, will be repaired immediately and steps taken to prevent a recurrence of that type of damage.

The requirements of §330.453(a), concerning the final cover system, will be implemented for the four elevator pits that are located in Building A. The elevator pits will be over-excavated on all sides on a 4:1 slope. A 2 ft layer of clayey soil with a permeability not greater than 1x10E-7 cm/sec, compacted in layers no more than 6 inches in thickness, will be placed in the bottom and sides of the elevator pit excavation. The elevator pit will then be covered by the VMS in accordance with §330.957(m). Due to over-excavation. clean fill will be added between the VMS and the concrete slab foundation, where needed. This is shown in Figure 3 in Attachment 9. If the elevator pit does not fit in-between the network of slotted vent pipes for the VMS, then the vent pipes will extend down the sides and bottom of the elevator pit. Methane sensors within the aggregate layer will be placed in or near the elevator pits, in accordance with \$330.961(b)(1)D). The requirements of \$330.961(g), concerning the double-containment of subgrade conduits intended for the transport or carrying of fluids over or within the subject property, and §330.331(b), regarding liner criteria for leachate for the swimming pool, will be implemented. Subgrade utility conduits will be installed with double-containment, which will be provided by the single wall utility, that is within a lined trench. On excavation, 2 ft of compacted, clay-rich soil with a permeability not greater than 1x10E-7 cm/sec will be placed in the base of the trench and a high-density polyethylene (HDPE) 30-mil sealed liner will be installed along the bottom and sides of the trench and sealed. Based on discussions with the project construction contractors, it is not feasible to install 2 ft of compacted clay on the sides of the trenches, as there is no

PROPOSED PROJECT DESCRIPTION

way to compact the clay horizontally. The conduit for carrying fluids will then be placed above the HDPE liner and clean fill added to the sides. This is shown in Figure 2 in Attachment 9. The HDPE liner will extend approximately 1 ft on top of the trench, be overlapped, and sealed. In accordance with §330.453(a) and (b), 18 inches of compacted clayey soil that is free of waste and 6 inches of topsoil that can support native vegetation will be in place for utility trenches in areas that are not covered by buildings, asphalt, or pavement. The swimming pool excavation will be lined with a HDPE 60-mil sealed geomembrane liner over at least 2 ft of compacted, clay-rich soil with a permeability not greater than 1x10E-7 cm/sec, followed by clean fill. The area for the pool will be over-excavated on all sides so that the added clay may be compacted on a 4:1 slope. The HDPE liner will be placed over the clay, followed by clean fill that will protect the liner and support the pool shell. The compacted clay and HDPE liner will be installed on a slope up to the base of the pool deck. This is shown in Figure 1 in Attachment 9. The pool location is restricted to the courtyard of Building 1 and will not be placed elsewhere. A guality control plan will be prepared detailing the design, materials, and procedures for construction and testing to meet liner system specifications based on Regulatory Guidance for Liner Construction and Testing for a Municipal Solid Waste Landfill (RG-534, September 2017). Construction details, plans, materials to be used, and cross-sections of the elevator pit, utility trench, pool, and the underlying waste down to native soil are provided in Attachment 9.

2 EXISTING CONDITIONS SUMMARY

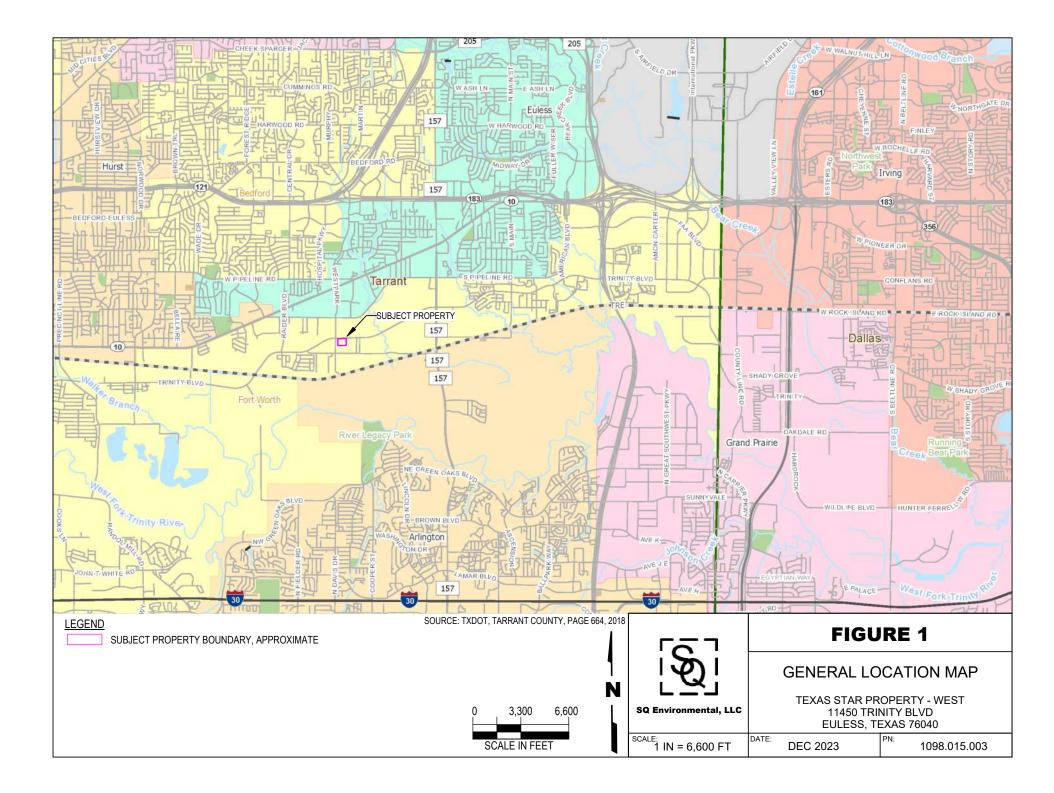
The subject property is the approximately 7.30-acre western portion of a 12.153-acre TAD parcel (Account No. 03924394). Although the subject property is addressed in Euless, Texas, it is located within the Fort Worth City Limits and is governed by the City of Fort Worth. The location of the subject property relative to the City Limits is presented on **Figure 1** in **Attachment 2**, and the TAD parcel boundaries are provided on **Figure 2**. The subject property is currently vacant and undeveloped, as shown on **Figure 3** in **Attachment 2**. The elevation on the property is approximately 550 ft above mean sea level (MSL), based on the United States Geological Survey (USGS) 2022 Quadrangle, Euless, Texas Sheet. No surface water features were identified on the subject property. The topography is relatively flat and gently slopes to the east across the subject property, as shown on **Figure 4** in **Attachment 2**. Stormwater on the subject property generally travels via sheet flow to the east/northeast towards a topographically low area on the east-adjacent property. The subject property was identified within Zone X by the Federal Emergency Management Agency (FEMA), which indicates an area of minimal flood hazard. The West Fork Trinity River is located approximately 1 mile south of the subject property.

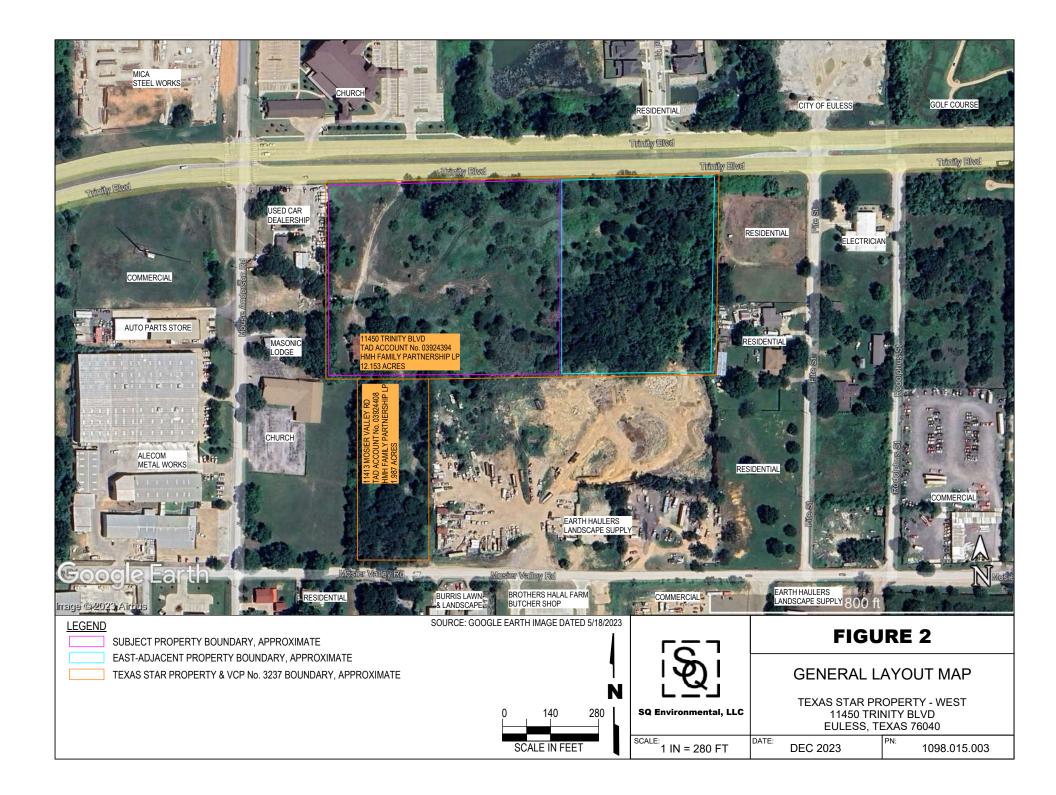
Based on boring logs completed on the subject property, the shallow lithology is comprised of silty clays, sands, and gravels (i.e., alluvium) encountered from the ground surface to the maximum total depth (35 ft bgs). The upper 10 ft of soil at the subject property is comprised primarily of sandy clay and clayey sand, and contains a higher clay content than the soil beneath 10 ft. A clay confining unit appears to be present below the uppermost GWBU at a depth of approximately 50 ft bgs on the subject property.

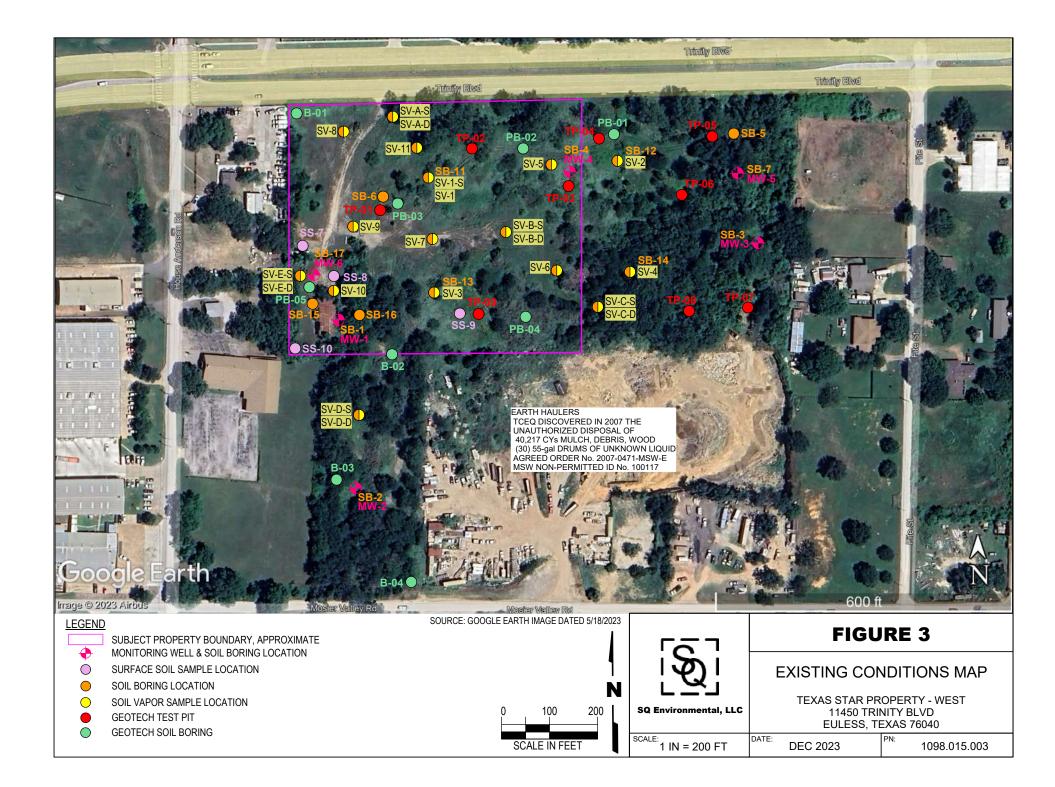
Small amounts of incidental debris (glass, bricks, concrete, and asphalt) were observed in the fill soil at depths between approximately 5 and 20 ft bgs. In general, all of the debris is deeper than 5 ft bgs and typically does not extend into the underlying gravel formation. No MSW Permits or other regulatory program identifications have been associated with the subject property. Based on the soil boring observations and site history, it does not appear that the property was ever operated as "landfill" (e.g., did not purposefully accept refuse and trash for landfilling), but rather these incidental materials were brought in with soil that was being used to backfill the property after the gravel pit operations ceased. Hancock Contracting, an earth-moving or construction company, appears to have operated on the subject property from at least 1988 to the late 2000s; this is likely the time period that the backfilling with soil (some of which contained incidental debris) occurred There is no true "cap" on the property, although the upper 5 to 10 ft of soil generally does not contain debris and has a higher percentage of clay than the underlying materials.

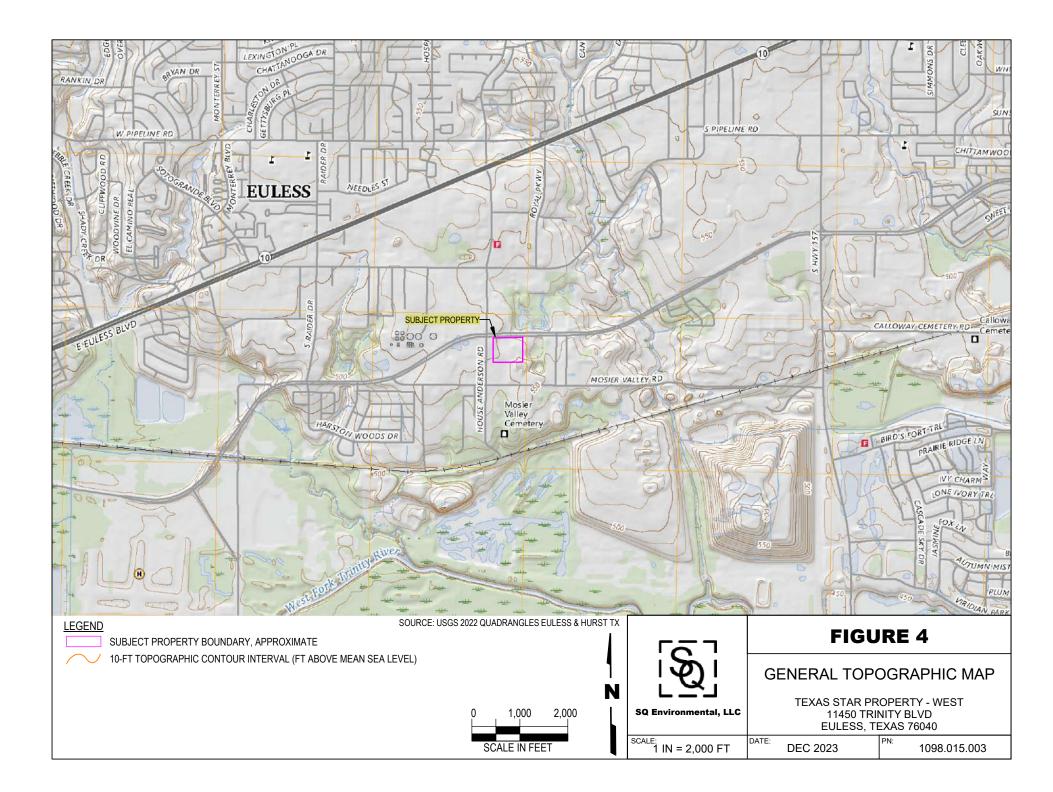
The saturated zone was encountered at a depth of approximately 24 to 30 ft bgs on the subject property. The results of groundwater elevation surveys indicated that the groundwater gradient beneath the subject property is very flat, and to the southeast/east. Based on groundwater samples collected from three onsite monitoring wells during four sampling events, groundwater beneath the subject property is not impacted by the incidental Based on the planned development, the saturated zone will not be encountered during construction of the residential structures.

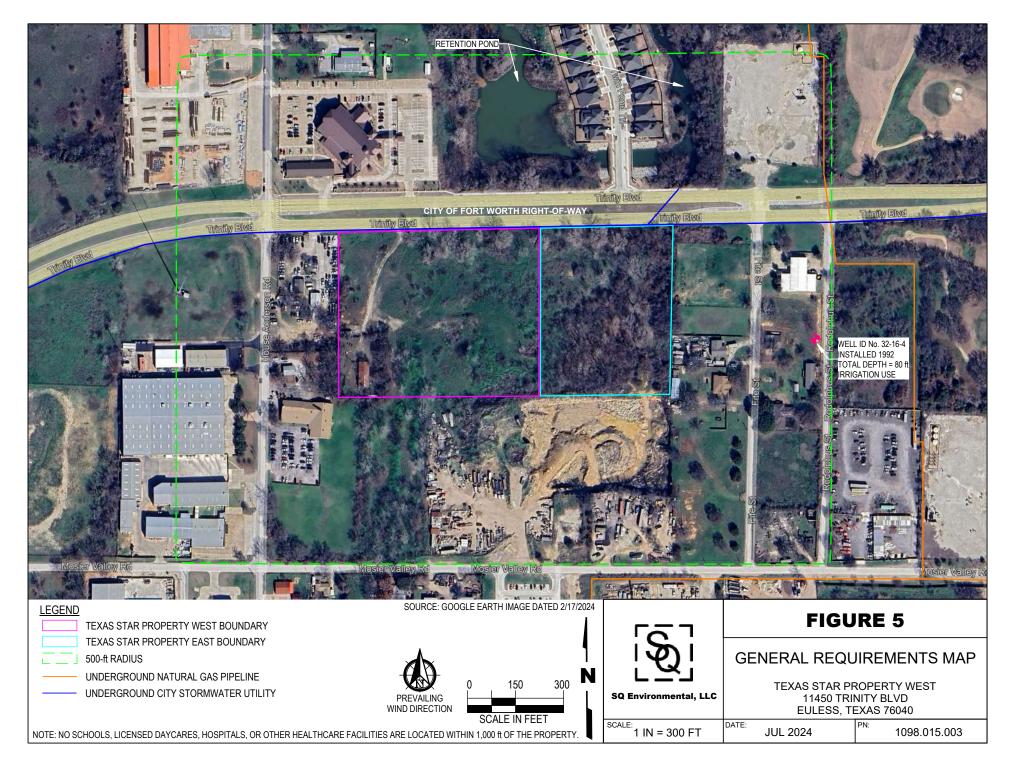
Methane concentrations in soil vapor samples collected from four locations across the subject property at a depth of 5 ft bgs, and from five locations at 12 ft bgs, were reported well below 1%. Methane was reported at a concentration above 1% in five soil vapor samples from the subject property at a depth of 12 ft bgs. Only the deeper 12 ft bgs soil vapor samples contained methane concentrations above 1%. These elevated methane concentrations appear to be confined to a zone below 10 ft, and methane does not appear to be migrating vertically to the surface due to the higher clay content in the upper 10 ft. Very little surface soil will be disturbed during future construction, and it is unlikely the deeper zone with methane concentrations above 1% will be encountered. Methane concentrations are delineated to the north, south, east, and west, with the exception of the southeast corner of the subject property, which extends to the east-adjacent


property, where a parking lot associated with the subject property is planned. Based on the available information, it appears that a significant amount (if not all) of the methane present beneath the subject property originated from the significant volume of yard wastes and mulch deposited on the Earth Haulers property adjacent southeast of the subject property. The Earth Haulers property was also used for gravel pit mining during the same time period as the subject property and entered into an Agreed Order with TCEQ due to unauthorized disposal of MSW.


As discussed above, groundwater on the subject property has been sampled during four events and no TPH, metals, or VOC constituent concentrations have been reported above residential PCLs, with the exception of benzene in one (MW-1) of the monitoring wells in one out of four sampling events. The detection of benzene in one isolated sample does not appear to be indicative of impacts to shallow groundwater on the subject property with this compound. Based on this information, the incidental debris that is present above the saturated zone has not resulted in impacts to groundwater. No environmental impacts associated with debris materials or groundwater would be anticipated during or after construction.


The type of debris (glass, bricks, concrete, and asphalt) and the quantity observed in the subsurface of the subject property would not generate the elevated concentrations of methane detected in the zone deeper than 10 ft beneath the surface of the subject property. This Application addresses (at the request of the VCP) the elevated concentrations of methane in the subsurface, which appears to have originated from the offsite Earth Haulers property located adjacent south where the unauthorized disposal of approximately 40,000 yd³ of mulch, debris, and cut wooden logs occurred.


REV4 20240917


ATTACHMENT 2 FIGURES

3 LEGAL AUTHORITY

The filing Certificate of Formation for Stonehawk Capital Partners, LLC, issued by the Texas Secretary of State, is provided as **Attachment 3**.

ATTACHMENT 3

CERTIFICATE OF FILING ISSUED BY THE TEXAS SECRETARY OF STATE

Corporations Section P.O.Box 13697 Austin, Texas 78711-3697

Office of the Secretary of State

CERTIFICATE OF FILING OF

StoneHawk Capital Partners LLC File Number: 801757516

The undersigned, as Secretary of State of Texas, hereby certifies that a Certificate of Formation for the above named Domestic Limited Liability Company (LLC) has been received in this office and has been found to conform to the applicable provisions of law.

ACCORDINGLY, the undersigned, as Secretary of State, and by virtue of the authority vested in the secretary by law, hereby issues this certificate evidencing filing effective on the date shown below.

The issuance of this certificate does not authorize the use of a name in this state in violation of the rights of another under the federal Trademark Act of 1946, the Texas trademark law, the Assumed Business or Professional Name Act, or the common law.

Dated: 03/27/2013

Effective: 03/27/2013

John Steen Secretary of State

4 EVIDENCE OF COMPETENCY

The names of the project principals and supervisors of the Applicant's organization for the Texas Star Property development are provided below.

- Brian Woidneck, Principal, Stonehawk Capital Partners, LLC.
- Brandon Hopkins, Director of Construction, Stonehawk Capital Partners, LLC.

5 NOTICE OF ENGINEER APPOINTMENT

The Notice of Appointment Letter identifying the Applicant's engineer is provided as Attachment 5.

ATTACHMENT 5

NOTICE OF ENGINEER APPOINTMENT

21 February 2024

Municipal Solid Waste Permits - MC 124 Texas Commission on Environmental Quality P.O. Box 13087 Austin, Texas 78711-3087

RE: Notice of Engineer Appointment **Texas Star Property – West** 11450 Trinity Boulevard, Euless, Tarrant County, Texas VCP No.: 3237; RN100729763 | CN604914119

Dear Sir/Madame:

This is to advise the TCEQ that Stonehawk Capital Partners LLC (Stonehawk) has duly appointed SQ Environmental LLC (SQE) as consulting engineers for the purpose of submitting design and planning material for a Subchapter T Development Permit Application for the western portion of the Texas Star Property located at 11450 Trinity Boulevard (Blvd) in Euless, Tarrant County, Texas. SQE is an engineering firm employing professional engineers in good standing in accordance with State statutes, and the firm has experience in the design and construction of Vapor Mitigation Systems and monitoring. Ms. Susan T. Litherland, P.E. of SQE is the engineer of record for this application.

Stonehawk hereby authorizes TCEQ to review and comment on such reports, planning material, and data on this project as SQE may submit to you.

By: Brian Woidneck, Principal Stonehawk Capital Partners LLC

Signature 2/2u/2h

6 NOTICE OF COORDINATION

Coordination with the applicable local, state, and federal government officials and agencies is currently being conducted in preparation for site development. Documentation of the Notice of Coordination letters sent to the Governmental Entities listed in Item 18 of Form TCEQ-20785 is provided in **Attachment 6**. A notification regarding the landfill status of the property has been provided to the City of Fort Worth, Development Services among others. Copies of the Notices of Landfill Determination and delivery receipts are provided in **Section 16**.

ATTACHMENT 6 NOTICES OF COORDINATION

19 July 2024

Attn: James Davis Bureau of Fire Prevention City Hall, Lower Level 200 Texas St Fort Worth, Texas 76102

Via E-Mail:

RE: Notification of Coordination Texas Star Property West, 11450 Trinity Boulevard, Euless, Tarrant County, Texas 76040 MSW Authorization No. 62054; VCP No. 3237; RN100729763; CN604539007 SQE PN: 1098.015.003

Dear Mr. Davis:

SQ Environmental, LLC (SQE) prepared this letter on behalf of Stonehawk Capital Partners LLC (Stonehawk) and in accordance with Texas Commission on Environmental Quality (TCEQ) requirements as outlined in Title 30 of the Texas Administrative Code (TAC) Chapter 330 Rule 330.957(g).

A former Dumping Area, as the term is defined in the Rule, located at 11450 Trinity Boulevard in Euless, Texas, has been confirmed by soil borings and test pits conducted as part of real estate due diligence activities. The site is currently undergoing application and authorization under §330.960 Subchapter T (Use of Land Over Closed Municipal Solid Waste Landfills) for a proposed development that includes four residential buildings.

This letter serves as notification to you that project development will be coordinated through your agency or organization, if required. Please let me know if you have any questions or comments regarding this application or need any additional information. I may be reached at 512-574-1199 or

Sincerely, SQ Environmental, LLC

Sam Enis, P.G. Principal Project Manager

From:	Clint Weaver
Sent:	Friday, July 19, 2024 12:47 PM
То:	
Cc:	
Subject:	Notice of Coordination for Development Permit for Proposed Enclosed Structure Over
	Closed Municipal Solid Waste Landfill
Attachments:	Notice of Coordination TX Star West Bureau of Fire Prevention 20240719.pdf

Mr. Davis,

In accordance with Texas Commission on Environmental Quality (TCEQ) and Texas Administrative Code (TAC) §330.957(g), and on behalf of Stonehawk Capital Partners LLC, SQ Environmental LLC has prepared the attached letter for Notice of Coordination with all local, state, and federal government officials and agencies on the use of land over a closed municipal solid waste landfill. If you have any questions, please do not hesitate to contact me.

Thank you,

Clint Weaver, P.G. SQ Environmental, LLC

19 July 2024

Attn: Lauren Prieur Floodplain Management & Regulations, Transportation & Public Works City Hall, 2nd Floor 200 Texas St Fort Worth, Texas 76102

Via E-Mail:

RE: Notification of Coordination Texas Star Property West, 11450 Trinity Boulevard, Euless, Tarrant County, Texas 76040 MSW Authorization No. 62054; VCP No. 3237; RN100729763; CN604539007 SQE PN: 1098.015.003

Dear Ms. Prieur:

SQ Environmental, LLC (SQE) prepared this letter on behalf of Stonehawk Capital Partners LLC (Stonehawk) and in accordance with Texas Commission on Environmental Quality (TCEQ) requirements as outlined in Title 30 of the Texas Administrative Code (TAC) Chapter 330 Rule 330.957(g).

A former Dumping Area, as the term is defined in the Rule, located at 11450 Trinity Boulevard in Euless, Texas, has been confirmed by soil borings and test pits conducted as part of real estate due diligence activities. The site is currently undergoing application and authorization under §330.960 Subchapter T (Use of Land Over Closed Municipal Solid Waste Landfills) for a proposed development that includes four residential buildings.

This letter serves as notification to you that project development will be coordinated through your agency or organization, if required. Please let me know if you have any questions or comments regarding this application or need any additional information. I may be reached at 512-574-1199 or

Sincerely, SQ Environmental, LLC

Sam Enis, P.G. Principal Project Manager

From:	Clint Weaver
Sent:	Friday, July 19, 2024 12:49 PM
То:	
Cc:	
Subject:	Notice of Coordination for Development Permit for Proposed Enclosed Structure Over
	Closed Municipal Solid Waste Landfill
Attachments:	Notice of Coordination TX Star West Floodplain & Public Works 20240719.pdf

Ms. Prieur,

In accordance with Texas Commission on Environmental Quality (TCEQ) and Texas Administrative Code (TAC) §330.957(g), and on behalf of Stonehawk Capital Partners LLC, SQ Environmental LLC has prepared the attached letter for Notice of Coordination with all local, state, and federal government officials and agencies on the use of land over a closed municipal solid waste landfill. If you have any questions, please do not hesitate to contact me.

Thank you,

Clint Weaver, P.G. SQ Environmental, LLC

19 July 2024

Attn: Mattie Parker Mayor's Office City Hall 200 Texas St Fort Worth, Texas 76102

Via E-Mail:

RE: Notification of Coordination Texas Star Property West, 11450 Trinity Boulevard, Euless, Tarrant County, Texas 76040 MSW Authorization No. 62054; VCP No. 3237; RN100729763; CN604539007 SQE PN: 1098.015.003

Dear Ms. Parker:

SQ Environmental, LLC (SQE) prepared this letter on behalf of Stonehawk Capital Partners LLC (Stonehawk) and in accordance with Texas Commission on Environmental Quality (TCEQ) requirements as outlined in Title 30 of the Texas Administrative Code (TAC) Chapter 330 Rule 330.957(g).

A former Dumping Area, as the term is defined in the Rule, located at 11450 Trinity Boulevard in Euless, Texas, has been confirmed by soil borings and test pits conducted as part of real estate due diligence activities. The site is currently undergoing application and authorization under §330.960 Subchapter T (Use of Land Over Closed Municipal Solid Waste Landfills) for a proposed development that includes four residential buildings.

This letter serves as notification to you that project development will be coordinated through your agency or organization, if required. Please let me know if you have any questions or comments regarding this application or need any additional information. I may be reached at 512-574-1199 or

Sincerely, SQ Environmental, LLC

Sam Enis, P.G. Principal Project Manager

From:	Clint Weaver
Sent:	Friday, July 19, 2024 12:50 PM
То:	
Cc:	
Subject:	Notice of Coordination for Development Permit for Proposed Enclosed Structure Over Closed Municipal Solid Waste Landfill
Attachments:	Notice of Coordination TX Star West Mayor's Office 20240719.pdf

Ms. Parker,

In accordance with Texas Commission on Environmental Quality (TCEQ) and Texas Administrative Code (TAC) §330.957(g), and on behalf of Stonehawk Capital Partners LLC, SQ Environmental LLC has prepared the attached letter for Notice of Coordination with all local, state, and federal government officials and agencies on the use of land over a closed municipal solid waste landfill. If you have any questions, please do not hesitate to contact me.

Thank you,

Clint Weaver, P.G. SQ Environmental, LLC

19 July 2024

Attn: Cody Whittenburg Environmental Services Department 818 Missouri Ave Fort Worth, Texas 76104

Via E-Mail:

RE: Notification of Coordination Texas Star Property West, 11450 Trinity Boulevard, Euless, Tarrant County, Texas 76040 MSW Authorization No. 62054; VCP No. 3237; RN100729763; CN604539007 SQE PN: 1098.015.003

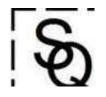
Dear Mr. Whittenburg:

SQ Environmental, LLC (SQE) prepared this letter on behalf of Stonehawk Capital Partners LLC (Stonehawk) and in accordance with Texas Commission on Environmental Quality (TCEQ) requirements as outlined in Title 30 of the Texas Administrative Code (TAC) Chapter 330 Rule 330.957(g).

A former Dumping Area, as the term is defined in the Rule, located at 11450 Trinity Boulevard in Euless, Texas, has been confirmed by soil borings and test pits conducted as part of real estate due diligence activities. The site is currently undergoing application and authorization under §330.960 Subchapter T (Use of Land Over Closed Municipal Solid Waste Landfills) for a proposed development that includes four residential buildings.

This letter serves as notification to you that project development will be coordinated through your agency or organization, if required. Please let me know if you have any questions or comments regarding this application or need any additional information. I may be reached at 512-574-1199 or

Sincerely, SQ Environmental, LLC


Sam Enis, P.G. Principal Project Manager

From:	Clint Weaver
Sent:	Friday, July 19, 2024 12:51 PM
То:	
Cc:	
Subject:	Notice of Coordination for Development Permit for Proposed Enclosed Structure Over
	Closed Municipal Solid Waste Landfill
Attachments:	Notice of Coordination TX Star West City Health 20240719.pdf

Mr. Whittenburg,

In accordance with Texas Commission on Environmental Quality (TCEQ) and Texas Administrative Code (TAC) §330.957(g), and on behalf of Stonehawk Capital Partners LLC, SQ Environmental LLC has prepared the attached letter for Notice of Coordination with all local, state, and federal government officials and agencies on the use of land over a closed municipal solid waste landfill. If you have any questions, please do not hesitate to contact me.

Thank you,

Clint Weaver, P.G. SQ Environmental, LLC

19 July 2024

Attn: Christopher Harder Water Department 908 Monroe St Fort Worth, Texas 76102

Via E-Mail:

RE: Notification of Coordination Texas Star Property West, 11450 Trinity Boulevard, Euless, Tarrant County, Texas 76040 MSW Authorization No. 62054; VCP No. 3237; RN100729763; CN604539007 SQE PN: 1098.015.003

Dear Mr. Harder:

SQ Environmental, LLC (SQE) prepared this letter on behalf of Stonehawk Capital Partners LLC (Stonehawk) and in accordance with Texas Commission on Environmental Quality (TCEQ) requirements as outlined in Title 30 of the Texas Administrative Code (TAC) Chapter 330 Rule 330.957(g).

A former Dumping Area, as the term is defined in the Rule, located at 11450 Trinity Boulevard in Euless, Texas, has been confirmed by soil borings and test pits conducted as part of real estate due diligence activities. The site is currently undergoing application and authorization under §330.960 Subchapter T (Use of Land Over Closed Municipal Solid Waste Landfills) for a proposed development that includes four residential buildings.

This letter serves as notification to you that project development will be coordinated through your agency or organization, if required. Please let me know if you have any questions or comments regarding this application or need any additional information. I may be reached at 512-574-1199 or

Sincerely, SQ Environmental, LLC

Sam Enis, P.G. Principal Project Manager

From:	Clint Weaver
Sent:	Friday, July 19, 2024 12:53 PM
То:	
Cc:	
Subject:	Notice of Coordination for Development Permit for Proposed Enclosed Structure Over Closed Municipal Solid Waste Landfill
Attachments:	Notice of Coordination TX Star West Utilities 20240719.pdf

Mr. Harder,

In accordance with Texas Commission on Environmental Quality (TCEQ) and Texas Administrative Code (TAC) §330.957(g), and on behalf of Stonehawk Capital Partners LLC, SQ Environmental LLC has prepared the attached letter for Notice of Coordination with all local, state, and federal government officials and agencies on the use of land over a closed municipal solid waste landfill. If you have any questions, please do not hesitate to contact me.

Thank you,

Clint Weaver, P.G. SQ Environmental, LLC

19 July 2024

Attn: Eric Fladager Planning Division City Hall, 3rd Floor 200 Texas St Fort Worth, Texas 76102

Via E-Mail:

RE: Notification of Coordination Texas Star Property West, 11450 Trinity Boulevard, Euless, Tarrant County, Texas 76040 MSW Authorization No. 62054; VCP No. 3237; RN100729763; CN604539007 SQE PN: 1098.015.003

Dear Mr. Fladager:

SQ Environmental, LLC (SQE) prepared this letter on behalf of Stonehawk Capital Partners LLC (Stonehawk) and in accordance with Texas Commission on Environmental Quality (TCEQ) requirements as outlined in Title 30 of the Texas Administrative Code (TAC) Chapter 330 Rule 330.957(g).

A former Dumping Area, as the term is defined in the Rule, located at 11450 Trinity Boulevard in Euless, Texas, has been confirmed by soil borings and test pits conducted as part of real estate due diligence activities. The site is currently undergoing application and authorization under §330.960 Subchapter T (Use of Land Over Closed Municipal Solid Waste Landfills) for a proposed development that includes four residential buildings.

This letter serves as notification to you that project development will be coordinated through your agency or organization, if required. Please let me know if you have any questions or comments regarding this application or need any additional information. I may be reached at 512-574-1199 or

Sincerely, SQ Environmental, LLC

Sam Enis, P.G. Principal Project Manager

From:	Clint Weaver
Sent:	Friday, July 19, 2024 12:54 PM
То:	
Cc:	
Subject:	Notice of Coordination for Development Permit for Proposed Enclosed Structure Over Closed Municipal Solid Waste Landfill
Attachments:	Notice of Coordination TX Star West Planning 20240719.pdf

Mr. Fladager,

In accordance with Texas Commission on Environmental Quality (TCEQ) and Texas Administrative Code (TAC) §330.957(g), and on behalf of Stonehawk Capital Partners LLC, SQ Environmental LLC has prepared the attached letter for Notice of Coordination with all local, state, and federal government officials and agencies on the use of land over a closed municipal solid waste landfill. If you have any questions, please do not hesitate to contact me.

Thank you,

Clint Weaver, P.G. SQ Environmental, LLC

19 July 2024

Attn: D.J. Harrell Development Services, Inspections City Hall, Lower Level 200 Texas St Fort Worth, Texas 76102

Via E-Mail:

RE: Notification of Coordination Texas Star Property West, 11450 Trinity Boulevard, Euless, Tarrant County, Texas 76040 MSW Authorization No. 62054; VCP No. 3237; RN100729763; CN604539007 SQE PN: 1098.015.003

Dear Mr. Harrell:

SQ Environmental, LLC (SQE) prepared this letter on behalf of Stonehawk Capital Partners LLC (Stonehawk) and in accordance with Texas Commission on Environmental Quality (TCEQ) requirements as outlined in Title 30 of the Texas Administrative Code (TAC) Chapter 330 Rule 330.957(g).

A former Dumping Area, as the term is defined in the Rule, located at 11450 Trinity Boulevard in Euless, Texas, has been confirmed by soil borings and test pits conducted as part of real estate due diligence activities. The site is currently undergoing application and authorization under §330.960 Subchapter T (Use of Land Over Closed Municipal Solid Waste Landfills) for a proposed development that includes four residential buildings.

This letter serves as notification to you that project development will be coordinated through your agency or organization, if required. Please let me know if you have any questions or comments regarding this application or need any additional information. I may be reached at 512-574-1199 or

Sincerely, SQ Environmental, LLC

Sam Enis, P.G. Principal Project Manager

From:	Clint Weaver
Sent:	Friday, July 19, 2024 12:55 PM
To:	
Subject:	Notice of Coordination for Development Permit for Proposed Enclosed Structure Over Closed Municipal Solid Waste Landfill
Attachments:	Notice of Coordination TX Star West Bldg Inspector 20240719.pdf

Mr. Harrell,

In accordance with Texas Commission on Environmental Quality (TCEQ) and Texas Administrative Code (TAC) §330.957(g), and on behalf of Stonehawk Capital Partners LLC, SQ Environmental LLC has prepared the attached letter for Notice of Coordination with all local, state, and federal government officials and agencies on the use of land over a closed municipal solid waste landfill. If you have any questions, please do not hesitate to contact me.

Thank you,

Clint Weaver, P.G. SQ Environmental, LLC

19 July 2024

Attn: Judge Tim O'Hare Tarrant County Court 100 E Weatherford St, Ste 501 Fort Worth, Texas 76196

Via E-Mail:

RE: Notification of Coordination Texas Star Property West, 11450 Trinity Boulevard, Euless, Tarrant County, Texas 76040 MSW Authorization No. 62054; VCP No. 3237; RN100729763; CN604539007 SQE PN: 1098.015.003

Dear Judge O'Hare:

SQ Environmental, LLC (SQE) prepared this letter on behalf of Stonehawk Capital Partners LLC (Stonehawk) and in accordance with Texas Commission on Environmental Quality (TCEQ) requirements as outlined in Title 30 of the Texas Administrative Code (TAC) Chapter 330 Rule 330.957(g).

A former Dumping Area, as the term is defined in the Rule, located at 11450 Trinity Boulevard in Euless, Texas, has been confirmed by soil borings and test pits conducted as part of real estate due diligence activities. The site is currently undergoing application and authorization under §330.960 Subchapter T (Use of Land Over Closed Municipal Solid Waste Landfills) for a proposed development that includes four residential buildings.

This letter serves as notification to you that project development will be coordinated through your agency or organization, if required. Please let me know if you have any questions or comments regarding this application or need any additional information. I may be reached at 512-574-1199 or

Sincerely, SQ Environmental, LLC

Sam Enis, P.G. Principal Project Manager

From:	Clint Weaver
Sent:	Friday, July 19, 2024 12:56 PM
To:	
Subject:	Notice of Coordination for Development Permit for Proposed Enclosed Structure Over Closed Municipal Solid Waste Landfill
Attachments:	Notice of Coordination TX Star West County Judge 20240719.pdf

Judge O'Hare,

In accordance with Texas Commission on Environmental Quality (TCEQ) and Texas Administrative Code (TAC) §330.957(g), and on behalf of Stonehawk Capital Partners LLC, SQ Environmental LLC has prepared the attached letter for Notice of Coordination with all local, state, and federal government officials and agencies on the use of land over a closed municipal solid waste landfill. If you have any questions, please do not hesitate to contact me.

Thank you,

Clint Weaver, P.G. SQ Environmental, LLC

19 July 2024

Attn: Joseph Jackson, P.E. Tarrant County Engineering Division 100 E Weatherford St, Ste 401 Fort Worth, Texas 76196

Via E-Mail:

RE: Notification of Coordination Texas Star Property West, 11450 Trinity Boulevard, Euless, Tarrant County, Texas 76040 MSW Authorization No. 62054; VCP No. 3237; RN100729763; CN604539007 SQE PN: 1098.015.003

Dear Mr. Jackson:

SQ Environmental, LLC (SQE) prepared this letter on behalf of Stonehawk Capital Partners LLC (Stonehawk) and in accordance with Texas Commission on Environmental Quality (TCEQ) requirements as outlined in Title 30 of the Texas Administrative Code (TAC) Chapter 330 Rule 330.957(g).

A former Dumping Area, as the term is defined in the Rule, located at 11450 Trinity Boulevard in Euless, Texas, has been confirmed by soil borings and test pits conducted as part of real estate due diligence activities. The site is currently undergoing application and authorization under §330.960 Subchapter T (Use of Land Over Closed Municipal Solid Waste Landfills) for a proposed development that includes four residential buildings.

This letter serves as notification to you that project development will be coordinated through your agency or organization, if required. Please let me know if you have any questions or comments regarding this application or need any additional information. I may be reached at 512-574-1199 or

Sincerely, SQ Environmental, LLC

Sam Enis, P.G. Principal Project Manager

From:	Clint Weaver
Sent:	Friday, July 19, 2024 12:57 PM
То:	
Cc:	
Subject:	Notice of Coordination for Development Permit for Proposed Enclosed Structure Over Closed Municipal Solid Waste Landfill
Attachments:	Notice of Coordination TX Star West County Engineering 20240719.pdf

Mr. Jackson,

In accordance with Texas Commission on Environmental Quality (TCEQ) and Texas Administrative Code (TAC) §330.957(g), and on behalf of Stonehawk Capital Partners LLC, SQ Environmental LLC has prepared the attached letter for Notice of Coordination with all local, state, and federal government officials and agencies on the use of land over a closed municipal solid waste landfill. If you have any questions, please do not hesitate to contact me.

Thank you,

Clint Weaver, P.G. SQ Environmental, LLC

19 July 2024

Attn: Dr. Brian Byrd Tarrant County Public Health 1101 S Main St, Ste 2300 Fort Worth, Texas 76104

Via E-Mail:

RE: Notification of Coordination Texas Star Property West, 11450 Trinity Boulevard, Euless, Tarrant County, Texas 76040 MSW Authorization No. 62054; VCP No. 3237; RN100729763; CN604539007 SQE PN: 1098.015.003

Dear Dr. Byrd:

SQ Environmental, LLC (SQE) prepared this letter on behalf of Stonehawk Capital Partners LLC (Stonehawk) and in accordance with Texas Commission on Environmental Quality (TCEQ) requirements as outlined in Title 30 of the Texas Administrative Code (TAC) Chapter 330 Rule 330.957(g).

A former Dumping Area, as the term is defined in the Rule, located at 11450 Trinity Boulevard in Euless, Texas, has been confirmed by soil borings and test pits conducted as part of real estate due diligence activities. The site is currently undergoing application and authorization under §330.960 Subchapter T (Use of Land Over Closed Municipal Solid Waste Landfills) for a proposed development that includes four residential buildings.

This letter serves as notification to you that project development will be coordinated through your agency or organization, if required. Please let me know if you have any questions or comments regarding this application or need any additional information. I may be reached at 512-574-1199 or

Sincerely, SQ Environmental, LLC

Sam Enis, P.G. Principal Project Manager

From:	Clint Weaver
Sent:	Friday, July 19, 2024 12:58 PM
То:	
Cc:	
Subject:	Notice of Coordination for Development Permit for Proposed Enclosed Structure Over Closed Municipal Solid Waste Landfill
Attachments:	Notice of Coordination TX Star West County Health 20240719.pdf

Dr. Boyd,

In accordance with Texas Commission on Environmental Quality (TCEQ) and Texas Administrative Code (TAC) §330.957(g), and on behalf of Stonehawk Capital Partners LLC, SQ Environmental LLC has prepared the attached letter for Notice of Coordination with all local, state, and federal government officials and agencies on the use of land over a closed municipal solid waste landfill. If you have any questions, please do not hesitate to contact me.

Thank you,

Clint Weaver, P.G. SQ Environmental, LLC

19 July 2024

Attn: Rep. Tony Tinderholt State Representative, District 94 1000 Ballpark Way, Ste 310 Arlington, Texas 76011

Via E-Mail:

RE: Notification of Coordination Texas Star Property West, 11450 Trinity Boulevard, Euless, Tarrant County, Texas 76040 MSW Authorization No. 62054; VCP No. 3237; RN100729763; CN604539007 SQE PN: 1098.015.003

Dear Rep. Tinderholt:

SQ Environmental, LLC (SQE) prepared this letter on behalf of Stonehawk Capital Partners LLC (Stonehawk) and in accordance with Texas Commission on Environmental Quality (TCEQ) requirements as outlined in Title 30 of the Texas Administrative Code (TAC) Chapter 330 Rule 330.957(g).

A former Dumping Area, as the term is defined in the Rule, located at 11450 Trinity Boulevard in Euless, Texas, has been confirmed by soil borings and test pits conducted as part of real estate due diligence activities. The site is currently undergoing application and authorization under §330.960 Subchapter T (Use of Land Over Closed Municipal Solid Waste Landfills) for a proposed development that includes four residential buildings.

This letter serves as notification to you that project development will be coordinated through your agency or organization, if required. Please let me know if you have any questions or comments regarding this application or need any additional information. I may be reached at 512-574-1199 or

Sincerely, SQ Environmental, LLC

Sam Enis, P.G. Principal Project Manager

Clint Weaver

From:	Clint Weaver
Sent:	Friday, July 19, 2024 12:59 PM
То:	
Cc:	
	for Development Permit for Proposed Enclosed Structure Over
	Closed Municipal Solid Waste Landfill
Attachments:	Notice of Coordination TX Star West State Representative 20240719.pdf

Rep. Tinderholt,

In accordance with Texas Commission on Environmental Quality (TCEQ) and Texas Administrative Code (TAC) §330.957(g), and on behalf of Stonehawk Capital Partners LLC, SQ Environmental LLC has prepared the attached letter for Notice of Coordination with all local, state, and federal government officials and agencies on the use of land over a closed municipal solid waste landfill. If you have any questions, please do not hesitate to contact me.

Thank you,

Clint Weaver, P.G. SQ Environmental, LLQ

(806) 773-9326

SQ Environmental, LLC P.O. Box 1991 Austin, TX 78767-1991 (512) 900-7731 www.SQEnv.com

19 July 2024

Attn: Sen. Kelly Hancock State Senator, District 9 306 W Seventh Street, Ste 508 Fort Worth, Texas 76102

Via E-Mail:

RE: Notification of Coordination Texas Star Property West, 11450 Trinity Boulevard, Euless, Tarrant County, Texas 76040 MSW Authorization No. 62054; VCP No. 3237; RN100729763; CN604539007 SQE PN: 1098.015.003

Dear Sen. Hancock:

SQ Environmental, LLC (SQE) prepared this letter on behalf of Stonehawk Capital Partners LLC (Stonehawk) and in accordance with Texas Commission on Environmental Quality (TCEQ) requirements as outlined in Title 30 of the Texas Administrative Code (TAC) Chapter 330 Rule 330.957(g).

A former Dumping Area, as the term is defined in the Rule, located at 11450 Trinity Boulevard in Euless, Texas, has been confirmed by soil borings and test pits conducted as part of real estate due diligence activities. The site is currently undergoing application and authorization under §330.960 Subchapter T (Use of Land Over Closed Municipal Solid Waste Landfills) for a proposed development that includes four residential buildings.

This letter serves as notification to you that project development will be coordinated through your agency or organization, if required. Please let me know if you have any questions or comments regarding this application or need any additional information. I may be reached at 512-574-1199 or

Sincerely, SQ Environmental, LLC

Sam Enis, P.G. Principal Project Manager

cc: Brandon Hopkins, Stonehawk Capital Partners LLC Susan T. Litherland, P.E., SQ Environmental LLC

Clint Weaver

From:	Clint Weaver
Sent:	Friday, July 19, 2024 1:00 PM
То:	
Cc:	for Development Permit for Proposed Enclosed Structure Over
	Closed Municipal Solid Waste Landfill
Attachments:	Notice of Coordination TX Star West State Senator 20240719.pdf

Sen. Hancock,

In accordance with Texas Commission on Environmental Quality (TCEQ) and Texas Administrative Code (TAC) §330.957(g), and on behalf of Stonehawk Capital Partners LLC, SQ Environmental LLC has prepared the attached letter for Notice of Coordination with all local, state, and federal government officials and agencies on the use of land over a closed municipal solid waste landfill. If you have any questions, please do not hesitate to contact me.

Thank you,

Clint Weaver, P.G. SQ Environmental, LLC

(806) 773-9326

SQ Environmental, LLC P.O. Box 1991 Austin, TX 78767-1991 (512) 900-7731 www.SQEnv.com

19 July 2024

Attn: Susan Alvarez North Central Texas Council of Governments Centerpoint II, 616 Six Flags Dr Arlington, Texas 76011

Via E-Mail:

RE: Notification of Coordination Texas Star Property West, 11450 Trinity Boulevard, Euless, Tarrant County, Texas 76040 MSW Authorization No. 62054; VCP No. 3237; RN100729763; CN604539007 SQE PN: 1098.015.003

Dear Ms. Alvarez:

SQ Environmental, LLC (SQE) prepared this letter on behalf of Stonehawk Capital Partners LLC (Stonehawk) and in accordance with Texas Commission on Environmental Quality (TCEQ) requirements as outlined in Title 30 of the Texas Administrative Code (TAC) Chapter 330 Rule 330.957(g).

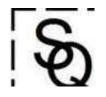
A former Dumping Area, as the term is defined in the Rule, located at 11450 Trinity Boulevard in Euless, Texas, has been confirmed by soil borings and test pits conducted as part of real estate due diligence activities. The site is currently undergoing application and authorization under §330.960 Subchapter T (Use of Land Over Closed Municipal Solid Waste Landfills) for a proposed development that includes four residential buildings.

This letter serves as notification to you that project development will be coordinated through your agency or organization, if required. Please let me know if you have any questions or comments regarding this application or need any additional information. I may be reached at 512-574-1199 or

Sincerely, SQ Environmental, LLC

Sam Enis, P.G. Principal Project Manager

cc: Brandon Hopkins, Stonehawk Capital Partners LLC Susan T. Litherland, P.E., SQ Environmental LLC


Clint Weaver

From: Sent:	Clint Weaver Friday, July 19, 2024 1:01 PM
To:	
	for Development Permit for Proposed Enclosed Structure Over Closed Municipal Solid Waste Landfill
Attachments:	Notice of Coordination TX Star West NCTCG 20240719.pdf

Ms. Alvarez,

In accordance with Texas Commission on Environmental Quality (TCEQ) and Texas Administrative Code (TAC) §330.957(g), and on behalf of Stonehawk Capital Partners LLC, SQ Environmental LLC has prepared the attached letter for Notice of Coordination with all local, state, and federal government officials and agencies on the use of land over a closed municipal solid waste landfill. If you have any questions, please do not hesitate to contact me.

Thank you,

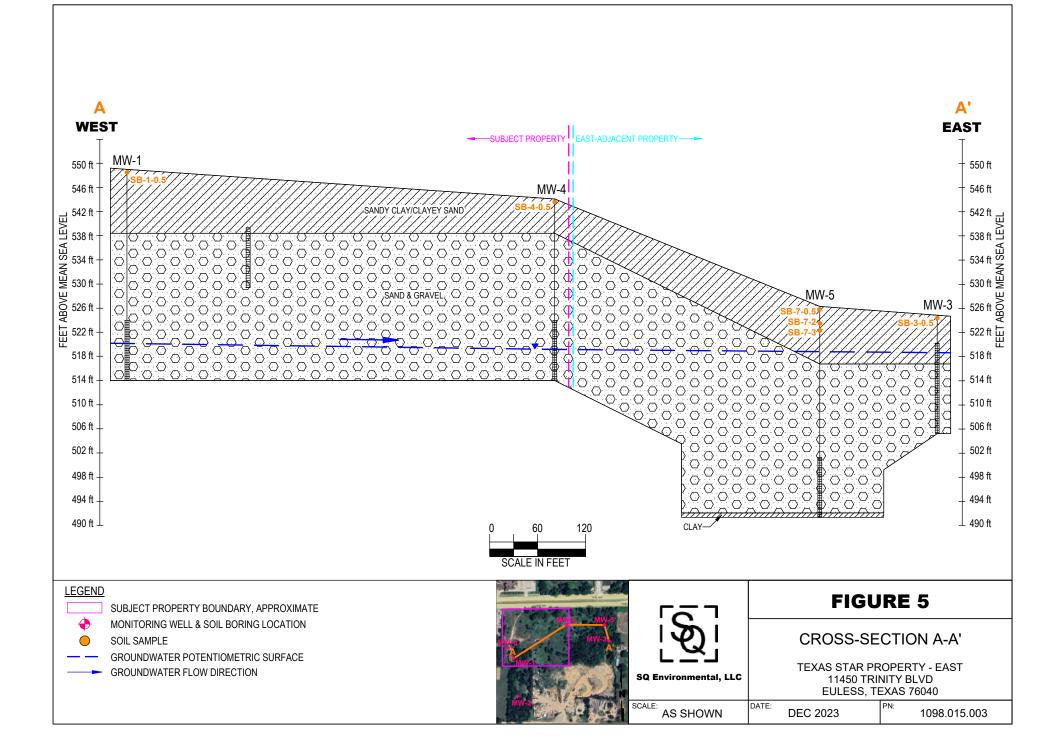
Clint Weaver, P.G. SQ Environmental, LLC

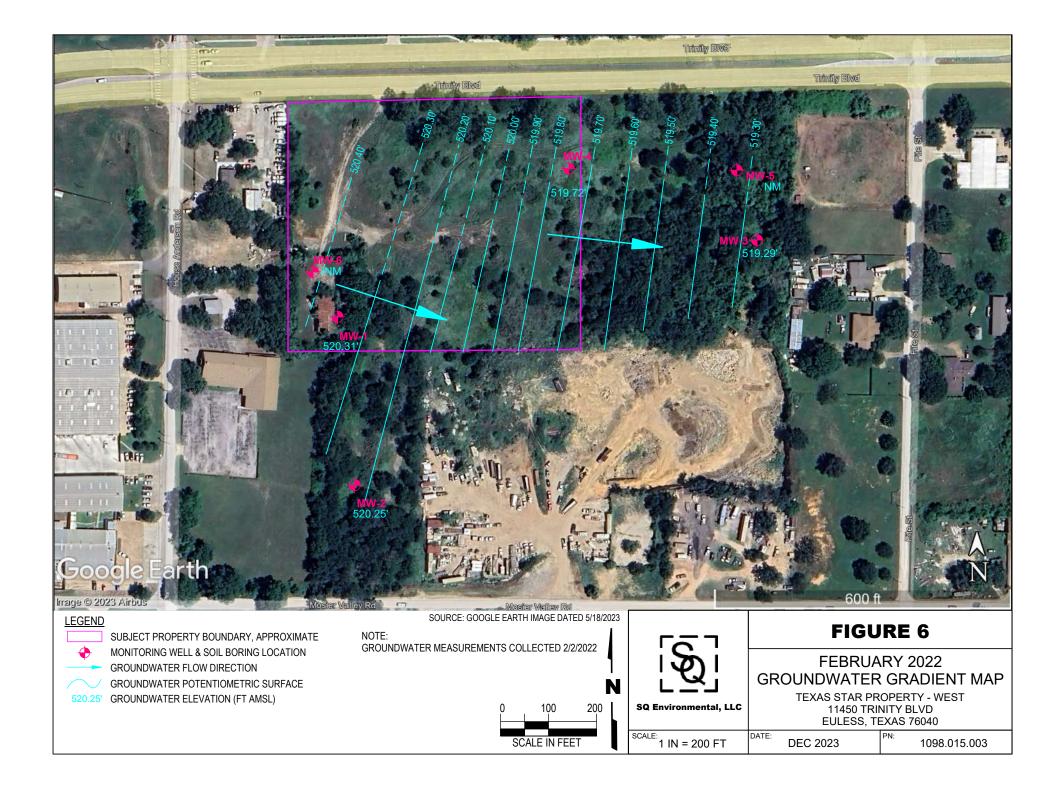
(806) 773-9326

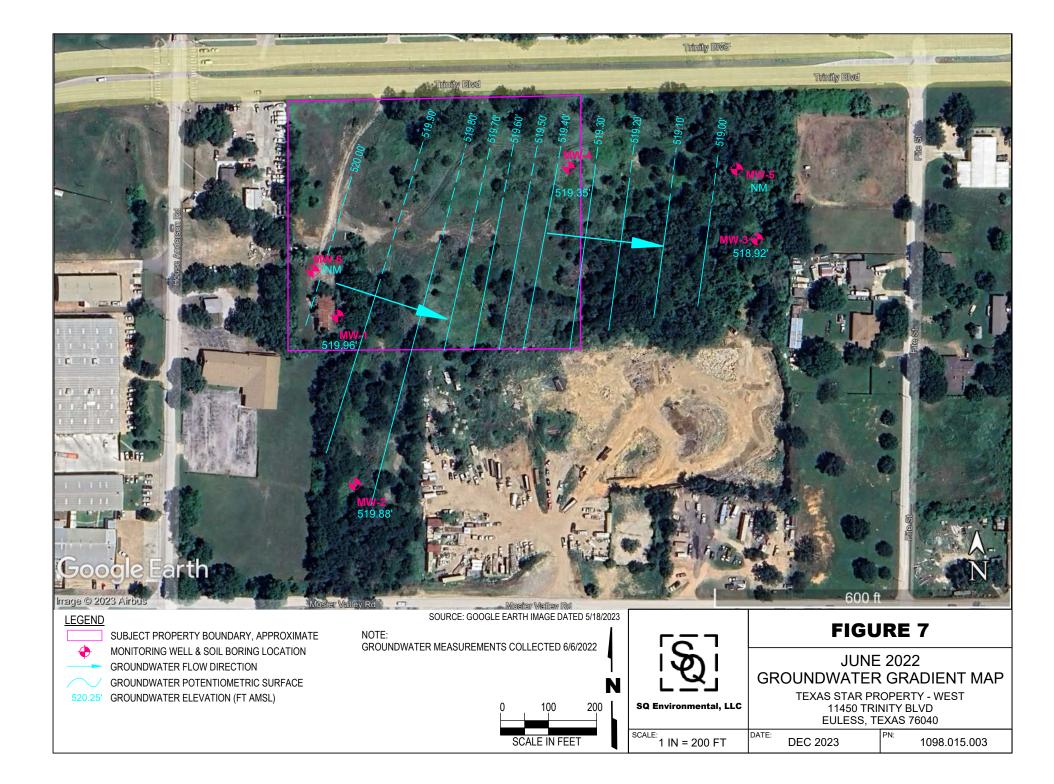
7 GENERAL GEOLOGY STATEMENT

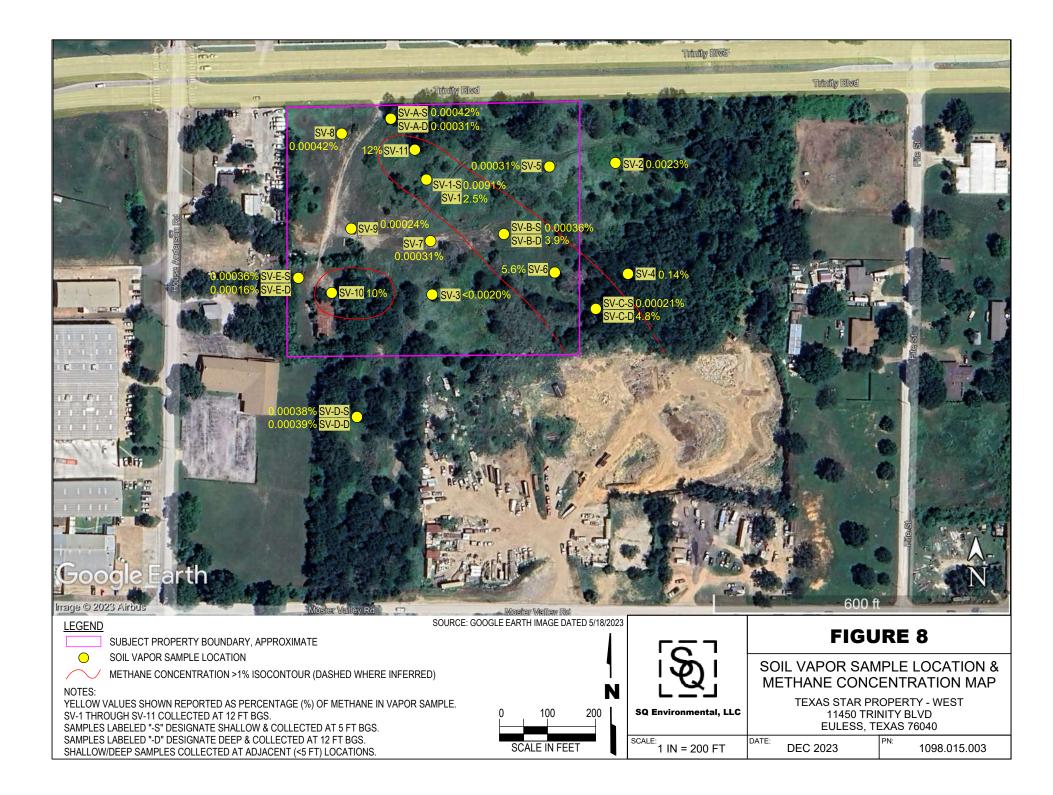
According to the USGS Geologic Atlas of Tarrant County, the shallow lithology in the area of the subject property consists of Quaternary alluvial deposits (Qt), underlain by the Woodbine Formation (Kwb), which consists of fine-grained sandstone interbedded with clay and shale with thicknesses ranging between 175 to 250 ft. The alluvial deposits range in thickness from 10 to 100 ft and consist of clay and sand layers with zones of increased silt and gravel. Groundwater from the alluvial deposits does not appear to be considered a source of usable water in the area.

The United States Department of Agriculture (USDA) Soil Conservation Service classifies the dominant soil component on the subject property as Arents, loamy (ArA), a sandy clay loam up to 60 inches in depth with a moderate infiltration rate. The southwestern portion of the subject property is characterized by Bastsil fine sandy loam (BfB) which is comprised of fine sandy loam 15 inches in depth, followed by sandy clay loam up to 80 inches deep.


Based on boring logs completed on the subject property, the shallow lithology is comprised of silty clays, sands, and gravels (i.e., alluvium) encountered from the ground surface to the maximum total depth (35 ft bgs). The upper 10 ft of soil at the subject property is comprised primarily of sandy clay and clayey sand, and contains a higher clay content than the soil beneath 10 ft. This layer appears to act as a confining layer for the underlying methane. A cross-section is provided as **Figure 5** in **Attachment 7**. A lower clay confining unit was observed at a depth of approximately 34 ft bgs in monitoring well borings on the east-adjacent property and is thought to extend beneath the subject property.


The saturated zone was encountered at a depth of approximately 24 to 30 ft bgs on the subject property. The results of groundwater elevation surveys indicated that the groundwater gradient beneath the subject property is very flat, and to the southeast/east, as shown on the potentiometric surface maps included as **Figures 6** and **7** in **Attachment 7**. Based on groundwater samples collected from three onsite monitoring wells during four sampling events, groundwater beneath the subject property is not impacted by the debris located above the saturated zone. As discussed in **Section 2**, the debris that is present above the saturated zone has not resulted in impacts to groundwater. No environmental impacts associated with debris materials or groundwater would be anticipated during or after construction. It is unlikely that the saturated zone will be encountered during future construction.


As discussed in **Section 2**, the methane concentrations above 1% appear to be confined to the zone deeper than 10 ft, and do not appear to be currently migrating vertically to the surface due to the higher clay content in the upper 10 ft. Methane concentration data is shown on **Figure 8** in **Attachment 7**. Very little surface soil will be disturbed during future construction, and it is unlikely the deeper zone with methane concentrations above 1% will be encountered. Methane concentrations are delineated to the north, south, east, and west, with the exception of the southeast corner of the subject property, which extends to the east-adjacent property, where a parking lot associated with the subject property is planned.


As demonstrated by multiple property assessments discussed in this Application, there are no known pathways for leachate and landfill gas migration. Regardless, a VMS will be designed and installed during construction of structures on the subject property, which will direct any vapors (methane or other) out from beneath the buildings, and the vapors monitored to verify that there is no vapor accumulation beneath the buildings.

ATTACHMENT 7 FIGURES

8 GROUNDWATER & SURFACE WATER STATEMENT

No surface water features were identified on the subject property. The topography is relatively flat and gently slopes to the east across the subject property, as shown on **Figure 4** in **Attachment 2**. Stormwater on the subject property generally travels via sheet flow to the east/northeast towards a topographically low area on the east-adjacent property. The subject property was identified within Zone X by FEMA, which indicates an area of minimal flood hazard. The West Fork Trinity River is located approximately 1 mile south of the subject property.

The deepest soil disturbance will occur at the locations of the planned elevator pits and swimming pool. The swimming pool will be located in the courtyard of Building 1, and the maximum disturbance depth will be no deeper than 10 ft, and likely no deeper than 7 ft in this area. Installation of the swimming pool will not extend to depths of the saturated zone (24 to 30 ft bgs). The disturbance depth for the elevator pits will likely extend no more than about 6 to 8 ft bgs. Similarly, subgrade utility lines will not extend to depths of incidental debris (5 ft bgs), elevated methane concentrations (deeper than 10 ft bgs), or the saturated zone (24 to 30 ft bgs).

It is not anticipated that any stormwater will come into contact with incidental debris on the subject property during construction. There is no indication that groundwater beneath the subject property is impacted by the debris located above the saturated zone. None of the incidental debris is located at the ground surface, and precautions will be implemented during development of the subject property to prevent excavated material, if any, from coming into contact with stormwater.

9 FOUNDATION PLANS

A VMS designed in accordance with 30 TAC 330.957(m) will be installed during development and construction of the four buildings on the subject property. The VMS includes an impermeable barrier installed below the concrete slab of the structures, followed by a 12-inch-thick permeable aggregate bed and a geotextile filter fabric, with vent risers located adjacent to the buildings. This system will allow any vapors (methane or other) that migrate though the soil to the area beneath the structures to be vented outside of the structure. The second component is a monitoring system within the VMS piping network beneath the buildings and within the buildings that will include controller units and remote sensors that can detect methane and other explosive gases. This system will have audible and visual alarms. Sample ports for field monitoring will be installed for the aggregate layer. The foundation plan and VMS design plan are included as **Attachment 9**. Geotechnical soil investigation reports are provided as **Attachments 10A** and **10B**. The Methane Monitoring Plan is discussed in **Section 12**. A Liner Quality Control Plan for the pool is provided below.

LINER QUALITY CONTROL PLAN

This Liner Quality Control Plan (LQCP) was developed for the Texas Star Property to describe the inspection and construction control and testing requirements in support of the application. This Plan was prepared in general accordance with *Guidance for Liner Construction and Testing for a Municipal Solid Waste Landfill*, TCEQ Regulatory Guidance RG-534 dated September 2017 and is intended to fulfil requirements of 30 Texas Administrative Code 330.

A General Requirements

This LQCP provides the basis for the type and rate of quality control performance testing. A copy will be maintained on site during construction or available for electronic download in the event an inspection is performed. For ease in this document preparation, any components that are not specifically addressed in this document will default to the requirements of *Guidance for Liner Construction and Testing for a Municipal Solid Waste Landfill*, TCEQ Regulatory Guidance RG-534.

B Overview of Project

As discussed in this Application, the swimming pool will be located in the courtyard of Building 1. The maximum disturbance depth at the subject property will be no deeper than 10 ft, and likely no deeper than 7 ft. The area of the pool will be over-excavated and sides sloped to allow placement of 2 ft of compacted, clay-rich soil with a permeability not greater than 1×10^{-7} cm/s, with a 60-mill sealed liner. A protective cover of clean fill will overlay the liner. A cross-section of the liner is provided on the figure included as **Attachment 9 Figure 1**.

C Soil Material Requirements

C.1 Protective Topsoil Requirements

Protective cover is required to be placed above the liner system as shown on the cross sections. Topsoil will be free of deleterious materials and not previously mixed with any onsite soils that were previously mixed with garbage, rubbish, or other solid waste materials. Permeability must be greater than 1 x 10^{-4} cm/s. The thickness must be greater than or equal to 12 inches. Compaction is not necessary for installation and density

SQ ENVIRONMENTAL, LLC APPLICATION FOR DEVELOPMENT PERMIT | TX STAR PROPERTY WEST

REV4 20240917

controls are not needed; however, the contractor should place the protective topsoil as soon as possible after installation of the liner and compacted clay-rich soil.

Protective topsoil shall be placed over the HPDE liner during the coolest part of the 8-hour workday. Soil shall be deployed along the surface of the liner to control the amount of slack and minimize any damage to the liner. The liner shall be continuously monitored during installation and any damage to the liner immediately repaired. Only light equipment will be used during construction and a minimum of 12 inches of protective material must be placed on top of the liner before light construction equipment can access the area.

Protective topsoil will not have any rocks greater than 0.375 inches in diameter. The Contractor will keep the protective topsoil layer wet during dry periods to prevent cracking.

C.2 Clay-Rich Soil Requirements

Clay-rich soil will meet the following requirements. One sample from each source must be collected before any material is brought onsite. Test methods will generally follow Standard ASTM Test Methods as outlined in Table B-1 of RG-534 and will include field density, gradation analysis, Atterberg limits, and permeability.

Soil Property	Value
Plasticity Index (PI)	≥ 15
Liquid Limit (LL)	≥ <mark>3</mark> 0
Percent Passing No. 200 Mesh Sieve	≥ <mark>3</mark> 0%
Percent Passing One-Inch Sieve	= 100%
Permeability	≤ 1 x 10 ⁻⁷ cm/sec

In-situ soils will not be used for clay-rich soil. The clay-rich soil will be sampled every 1,000 cubic yards for total petroleum hydrocarbons (TPH) by Texas Method 1005 and metals SW-846 Methods to ensure the materials are suitable for use.

Clay-rich soils will be placed in three 8-inch lifts (a total of 3 lifts). Compaction testing will be performed at a frequency of every 1 acre and one per lift (minimum of three locations). The clay-rich soil will be compacted to at least 95% of standard proctor.

C.3 HDPE Liner Requirements

The HDPE Liner must have a minimum of 60 mil thickness. Recycled or reclaimed HDPE materials are not acceptable. HDPE material and required welding rods shall contain between 2 and 3% carbon black and may contain no more than 1% additives.

The liner will be inspected upon delivery for any damage and defects. The liner must be free from any pinholes, surface blemishes, scratches, or other defects that could affect the integrity of the liner. The liner will be stored at a clean and dry location onsite and protected from any objects that could damage the liner.

All manufacturer's recommendations for the installation of the liner will be followed. In addition, general installation requirements outlined in Table 3-1 of RG-534 must be followed.

 The liner will be placed above the compacted clay-rich soil that will be free of stones and rocks and other debris greater than 3/8-inch. The compacted clay-rich soil will be finished by rolling with flat wheel roller until smooth uniform surface is achieved. The subgrade areas will be inspected for any

desiccation, cracks, erosion, or ponding prior to installation and repaired before liner is placed. If necessary, regular watering and proof rolling will be performed.

- Prohibit construction equipment from traveling directly on the liner.
- Do not place during inclement weather.
- Limit vehicular traffic on the liner to low-ground pressure supporting equipment only. Any damaged areas must be repaired and inspected.
- Only unroll liner sheets that are to be placed and seamed in the same day. Position liner with overlap
 recommended by manufacturer but not less than 3 inches. Typical overlaps are 3 to 6 inches. There
 should be no loose flap on the top side of the liner. Overlap distance must be sufficient so that all
 seam tests can be performed as described below.
- Folds, wrinkles, and fish mouths are not acceptable. Cut, overlap, and weld the material where wrinkles or folds occur. A fish mouth is defined as an area in the seam where one liner panel is first folded over on itself, and a second liner panel is placed and welded over this fold. Where fish mouths occur, the liner must be cut, overlapped, and covered with a patch.
- Use only heat-only tack welds, when necessary. No double-sided tape or glue may be used.
- Fusion or extrusion welding may be used for field seaming and repairs.
- Seaming is permitted only when ambient air conditions are below 104°F.
- At the end of each workday, all unseamed edges will be anchored with sandbags or other approved devices. No penetrating anchors are accepted (stables, U-rods).

C.4 HDPE Liner Testing Requirements

Verification of HDPE Liner Testing Requirements

Manufacturer information will be reviewed to ensure that QA/QC testing, conformance testing, and seam testing requirements of Table 3-2 of RF-534 are met.

Welds, Repair Welds, and Patches

Shear Strength – the seam, when stressed perpendicular to the direction of the weld should not under any condition fail before stretching and breaking of the liner panel adjacent to the weld. The numerical value of the shear strength of any sample should not be less than 90% of the sheet tensile strength according to manufacturer-provided information.

Trial Seam Testing

Each day, prior to commencing field seaming, each individual employee performing seaming will conduct a trial seam. Each trial seam will be 3 ft long by 1 ft wide. Trial seam criteria is outlined in Table 3-3 of RG 534.

Destructive Testing

Destructive test samples of field seams will be performed at a minimum of one stratified location for every 500 linear feet or major fraction thereof or at the direction of the Engineer. Destructive test requirements will conform with Table 3-4 of RG-534.

Non-Destructive Testing

Non-destructive tests should be performed by the Contractor or engineer on all field seams, patches, and repair welds. Accepted non-destructive test methods include vacuum box testing for extrusion welds and air-pressure testing for dual-tract fusion welds. Specific procedures for these tests is included on Table 3-5 of RG-534.

D Documentation

SQ ENVIRONMENTAL, LLC APPLICATION FOR DEVELOPMENT PERMIT | TX STAR PROPERTY WEST

REV4 20240917

Following installation, the following documentation will be compiled and kept onsite in the facility records. This will include the following elements:

- All field and laboratory test documentation.
- All test documentation.
- Liner certification information and results of manufacturer independent testing.
- Field documentation of field testing, repairs, etc.
- Photographs and field notes.
- A survey of the final liner area.

ATTACHMENT 9

FOUNDATION PLAN & VMS DESIGN PLAN

MEMORANDUM

To:Stonehawk Capital Partners, LLCFrom:Susan Litherland, P.E., Sam Enis, P.G., and Adam Harper, P.G.Date:6 August 2024 – Revision 1Subject:Texas Star Property West – Vapor Mitigation System Design Basis

This memo provides the design basis for the Vapor Mitigation System (VMS) for the Texas Star Property West on Trinity Boulevard in Euless, Texas. This document is part of the design package and this entire package should be provided to the General Contractor and appropriate subcontractors (including specialty VMS, structural, electrical, and plumbing). The package includes:

- Design Basis Memorandum
- VMS Design Notes
- VMS Details
- Sheet VA1.0: Overall VMS Layout Plan
- Sheet VS3.0: Overall Building A Layout
- Sheet VS3.0a, VS3.0b, VS3.0c, & VS3.0d: VMS Layout Beneath Building A
- Sheet VS4.0: VMS Layout Beneath Building B
- Sheet VS6.0: VMS Layout Beneath Building D
- Sheet VA4.5, VA4,6, & VA4.7: Vent Locations on Building A Exterior Elevations
- Sheet VA5.3: Vent Locations on Building B Exterior Elevations
- Sheet VA7.4: Vent Locations on Building D Exterior Elevations
- FanTech Spec Sheet for Vent Fans, if needed

BACKGROUND

Based on available information, the subject property appeared to be used for agricultural purposes from approximately 1942 to 1950. Gravel pit operations appear to have ceased around the mid-1980s. Hancock Contracting, an earth-moving or construction company, appears to have operated on the subject property from at least 1988 to the late 2000s. By the late 2000s, the subject property appeared to be primarily vacant. Debris (glass, plastic, bricks, concrete, and wood) were observed in shallow soil borings completed on the property at depths up to approximately 12 feet (ft) below ground surface (bgs). Based on the soil boring observations and site history, it does not appear that the property was ever operated as "landfill" (e.g., did not purposefully accept refuse and trash for landfilling), but rather these incidental materials were brought in with soil that was being used to fill the property.

Elevated methane levels have been found in a layer which is present at least 10 ft from the surface. There is a clay layer between the methane and the surface, which isolates the methane from the surface. Methane has not been found at significant concentrations in the surface clay layer based on testing at a depth of 5 ft. This layer is approximately 10 ft thick. As part of the property development, no penetrations through the

MEMORANDUM

Texas Star Property West VMS Design Basis Page 2

clay layer are planned. The source of the methane present below 10 ft appears to be a property off-site to the south of the subject property.

As a precautionary measure, a vapor mitigation system is being installed beneath the ground floor residential areas of the apartment complex to minimize the potential for any intrusion of residual vapors from the historical property usage, and or methane.

DESIGN APPROACH

The proposed design approach includes the installation of a passive VMS consisting of a vent layer (12inch-thick coarse aggregate bedding material, slotted vent pipes, geotextile filter fabric, and vapor-tight membrane) below the foundation of first-floor, residential living portions of the buildings. As planned, the system will have 17 passive vents in Building A, 4 passive vents in Building B, and 4 passive vents in Building D. Vents exiting on an exterior wall will be run through the wall, to an elevation of approximately 2 feet from the final grade. As planned, the VMS that has been designed is a passive system, with provisions for the addition of electric fans to three vents in Building A (V-1, V-7, and/or V-15), two vents in Building B (V-1 and/or V-4), and two vents in Building D (V-1 and/or V-4). The decision regarding whether to install the fans will be made based on testing following the installation. Based on the available information, it is anticipated that passive venting is all that will be needed to prevent accumulation of volatile organic compounds (VOCs) beneath the occupied portions of the building. As part of the design, electrical connections should be included in the vicinity of V-1, V-7, and/or V-15 in Building A, and V-1 and/or V-4 in Buildings B and D so that fans can be installed, if needed. The vents where an electrical connection will be needed are noted on sheets VS3.0a, VS3.0d, VS4.0, and VS6.0 with an "e". The vent pipes will be fitted with a 1/4" mesh screen and covered in a manner that will allow venting of any vapors but prevent entry animals and rainwater. It is recommended that testing be performed approximately six months after the installation to evaluate whether the fans are needed, and then annually for two additional years to verify that the system is performing as designed.

Methane sensors will also be installed within the buildings, and sample ports for field monitoring will be installed within the aggregate layer.

For any questions or clarifications regarding the VMS design, please contact us. Susan Litherland may be reached by phone at 512-656-9445 or e-mail at a subscript Sam Enis may be reached by phone at 512-574-1199 or e-mail at a subscript Sam Harper may be reached by phone at 512-426-9449 or e-mail at a subscript Sam Harper may be reached by phone at 512-426-9449 or e-mail at subscript Sam Harper may be reached by phone at 512-426-9449 or e-mail at subscript Sam Harper may be reached by phone at 512-426-9449 or e-mail at subscript Sam Harper may be reached by phone at 512-426-9449 or e-mail at subscript Sam Harper may be reached by phone at 512-426-9449 or e-mail at subscript Sam Harper may be reached by phone at 512-426-9449 or e-mail at subscript Sam Harper May be reached by phone at 512-426-9449 or e-mail at subscript Sam Harper May be reached by phone at 512-426-9449 or e-mail at subscript Sam Harper May be reached by phone at 512-426-9449 or e-mail at subscript Sam Harper May be reached by phone at 512-426-9449 or e-mail at subscript Sam Harper May be reached by phone At 512-426-9449 or e-mail at subscript Sam Harper May be reached by phone At 512-426-9449 or e-mail at subscript Sam Harper May be reached by phone At 512-426-9449 or e-mail at subscript Sam Harper May be reached by phone At 512-426-9449 or e-mail At 512-4

Texas Star Property West Euless, Texas VMS Design Notes – 6 August 2024 – Revision 1

General

- A passive Vapor Mitigation System (VMS) is to be installed under portions of the building where residences will live. The location of the areas where the VMS is to be installed is shown on Sheet VA1.0. The VMS layouts are illustrated on Sheets VS3.0a, VS3.0b, VS3.0c, VS3.0d, VS4.0, and VS6.0. The VMS will allow venting of soil vapors from beneath the building. Vent locations are shown on Sheets VS3.0a, VS3.0d, VS4.0 and VS6.0.
- 2. Alternative systems are acceptable with engineer's review and approval.
- 3. For areas underlain with the VMS, this system will also serve as the moisture barrier.
- 4. The VMS Contractor will be responsible for placing piping through exterior beams at each of the vent locations. These vent pipes will run up through the exterior wall, to a height of approximately two feet above the top of the slab. The exterior ends of these pipes should be covered in a manner that will prevent concrete from entering the pipes when the exterior beams are poured, and/or debris during construction activities. The concrete contractor will be responsible for protecting these vent pipes and ensuring that the exterior ends are open following completion of the construction of the exterior beams. This pipes must also remain open during the placement of any exterior surfaces, such as bricks.
- 5. The VMS is described below. See layout and detail sheets for additional information.
 - A geotextile filter fabric will be placed on top of the structural fill. An aggregate venting layer, 12 inches thick, will be placed on top of the geotextile filter fabric. The permeable aggregate bed will be comprised of graded No. 57 stone with no more than 5 wt % fines.
 - b. Slotted PVC vent pipes (1.5" dia min 3" max, 0.020" slots), will be bedded in the aggregate layer by the VMS contractor. These pipes are shown as dashed and bolded lines on the VMS layout drawings. With prior engineer approval, piping with larger slots can be used with appropriate filter sock with Maximum Apparent Opening Size of no greater than 0.6 millimeters. Solid piping will be placed across interior and exterior beams in a manner that will prevent concrete from entering and/or plugging the vent pipes. Other permeable piping system with openings that will not allow the aggregate to pass are acceptable with engineer's approval. Where slotted pipes meet or cross, typical connectors should be used. Solid piping should be used for connections outside of the membrane (e.g. through the interior and exterior beams, and under any areas (such as hallways and stairways) where the VMS is not planned, but piping is needed to reach the vent locations).
 - c. Solid piping through interior and exterior beams should be installed perpendicular to beams.
 - d. The vent pipes will be run through the exterior walls, so at each vent location a "90°" will be used. The VMS contractor will be responsible for providing a 24" sub up for each of the vents, and these stub-ups should be clearly labeled as sub-slab vents, using a sticker such as the one below or other similar permanent marking.

e. A membrane liner on top of aggregate/piping, a minimum of 30 mil thick, with 6" sealed overlaps will be installed by the VMS contractor. This can be a single sheet of plastic, two sheets of plastic, or one sheet of plastic with a spray-on coating. All edges and penetrations are to be taped and/or sealed with mastic. Materials for taping and sealing must be compatible with the sub-slab environment. If the exterior beams are installed prior to the installation of the VMS, the

Texas Star Property West Euless, Texas VMS Design Notes – 6 August 2024 – Revision 1

membrane should be sealed to the concrete with a mastic or other material that is appropriate for this use. This will require a minimum overlap of 4". This is not needed if the membrane extends beneath the exterior beams.

- f. Smoke testing of the system must be performed by the VMS Contractor following installation and sealing of the membrane, and prior to the installation of the rebar and/or post-tension cables. The smoke test should be observed by the engineer. Any leaks must be repaired prior to the engineer's approval of the membrane installation. An additional inspection is required following the installation of the rebar and/or post-tension cables, and any holes or tears repaired prior to pouring of the concrete.
- g. The vent pipes should be fitted with a ¼" mesh cover to keep out animals, and vent covers to prevent rainwater from entering the system. Alternate approaches are allowed, with prior engineer approval.
- h. Fans may need to be installed at vents V-1, V-7, and/or V-15 in Building A, and vents V-1 and/or V-4 in Buildings B and D. This decision will be made following installation and testing of the system. This will require the appropriate electrical connections be installed at these locations by the electrical contractor in order to accommodate a fan (FanTech HP 190 or equivalent) if fans are needed.
- i. All materials used in the VMS construction must be compatible with chlorinated solvents, petroleum hydrocarbon, methane and vapors containing chlorinated solvents, petroleum hydrocarbons and methane.
- j. Sample ports for field monitoring of the aggregate layer will be installed using Schedule 40 2inch PVC casing and screen. These ports will be flush mount with the finished floor.
- 6. It is assumed that the 12-inch aggregate layer can be considered part of the select fill beneath the foundation, but the geotechnical and/or structural engineer should be consulted to confirm that this is the case.
- 7. VMS Construction Quality Control:
 - a. Spec sheets for <u>all</u> materials to be used must be provided to the engineer for approval prior to delivery to the job site.
 - b. Particle size distribution must be provided for engineer approval, for every 250 CY of aggregate, prior to aggregate delivery to job site. Particle size distribution documentation should be provided for any alternate/additional sources of aggregate.
 - c. Smoke testing of the liner must be performed for every "pour." These tests are to be performed by the VMS contractor following installation and sealing of the membrane, and prior to installation of the rebar and/or post-tension cables. The smoke test should be scheduled with the engineer so that the test may be observed and documented.
 - d. Care must be taken during the placement of rebar to minimize the potential for damage or puncture of the liner. This should include the use of rebar supports that do not have sharp ends or edges. A final inspection must be made by the engineer following rebar placement and prior to pouring of the foundations to verify that there are no tears or holes. Any such tears or holes will be repaired and the repairs documented.
- 8. Others (concrete, plumbing and/or electrical contractors) will be responsible for:
 - a. Placing a 12-inch aggregate layer to allow bedding of the VMS piping. The thickness of the aggregate layer will be dependent on the diameter of the vent pipes being installed.
 - b. All vent pipes should be extended through the exterior wall to a height of approximately 24" above the top of slab, and then turned to penetrate the exterior wall.
 - c. Vent pipes will need to be protected during construction to prevent damage, filling with debris, entry of rain, and or covering during construction activities. This should be accomplished by covering the opening of the vents with plastic, securely taping the plastic to the pipe, and clearly marking the vent pipes.

Texas Star Property West Euless, Texas VMS Design Notes – 6 August 2024 – Revision 1

- d. On completion, the vents should be fitted with a ¼" mesh to prevent entry by small animals, and fitted with a cover to allow free movement of air, but prevent rainwater from entering the VMS.
- e. Electrical connections should be installed at vent locations V-1, V-7, and/or V-15 in Building A, and vents V-1 and/or V-4 in Buildings B and D to accommodate a fan (FanTech HP 190 or equivalent), in the event that fans are added in the future.

CONTRACTOR NOTES:

Concrete/Foundation

- The VMS Contractor will install solid pipes through the exterior beams at the locations shown on Sheets VS3.0a, VS3.0b, VS3.0c, VS3.0d, VS4.0, and VS6.0. These pipes will allow the connection between the VMS beneath the building to the exterior vents. These must be protected during pouring of the exterior beams. The concrete contractor will be responsible for making sure that these pipes are open following installation of the exterior beams.
- 2. It is assumed that the 12 inches of aggregate on the foundation area will replace an equal thickness of select fill, but this must be verified by the geotechnical and/or structural engineer.
- **3.** A grain-size distribution report should be provided for the planned aggregate source for engineer approval <u>prior</u> to the purchase and delivery.
- **4.** Care should be taken when placing the rebar to minimize the potential for holes or tears to the VMS liner. Rebar supports should <u>not</u> have sharp edges.

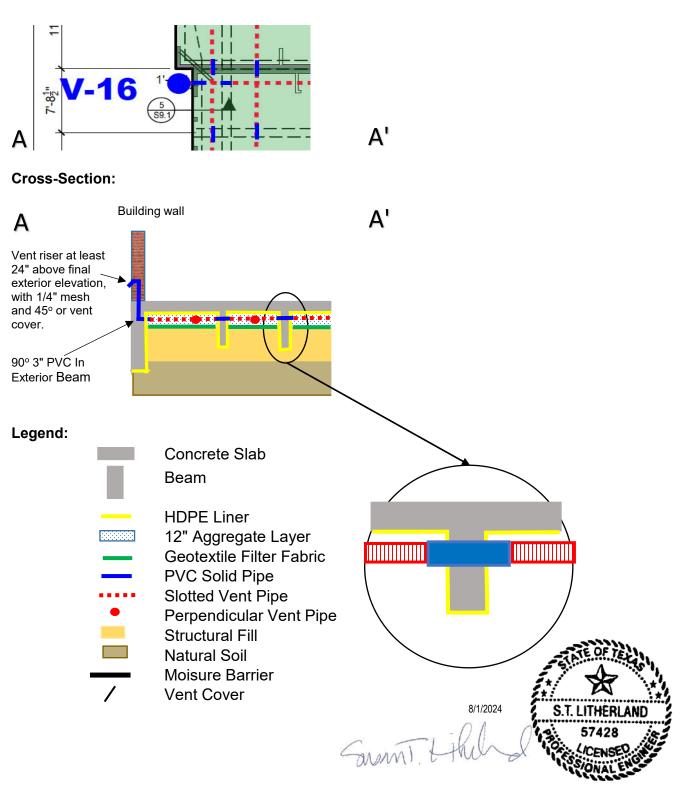
Plumbing or GC

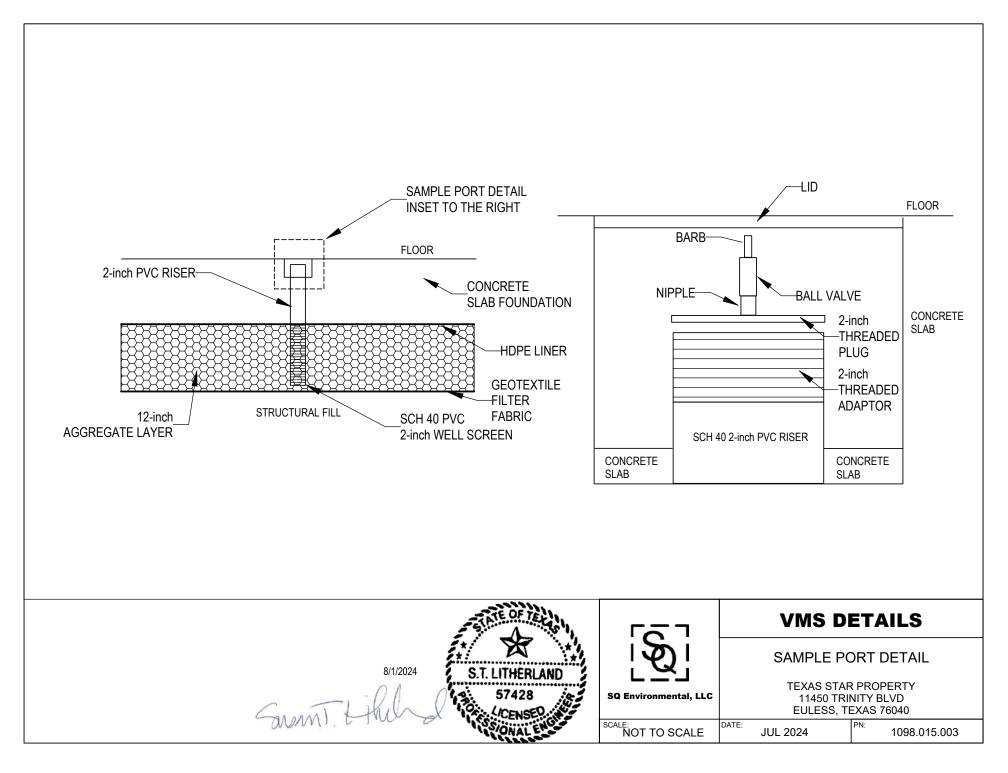
- Vents will extend vertically through the exterior walls to a height of approximately 24" above the final exterior grade. The vents will exit the exterior wall horizontally. The vent openings should be fitted with ¼" mesh to prevent entry of animals, and fitted with a cover (such as a dryer vent cover) which will allow free flow of vapors, but prevent rainfall from entering the pipe.
- 2. For vents existing into the garage, the vent pipes can exit through the exterior building beam and through the wall of the garage. These vent pipes should also be fitted with 1/4" mesh and protected from rainfall.

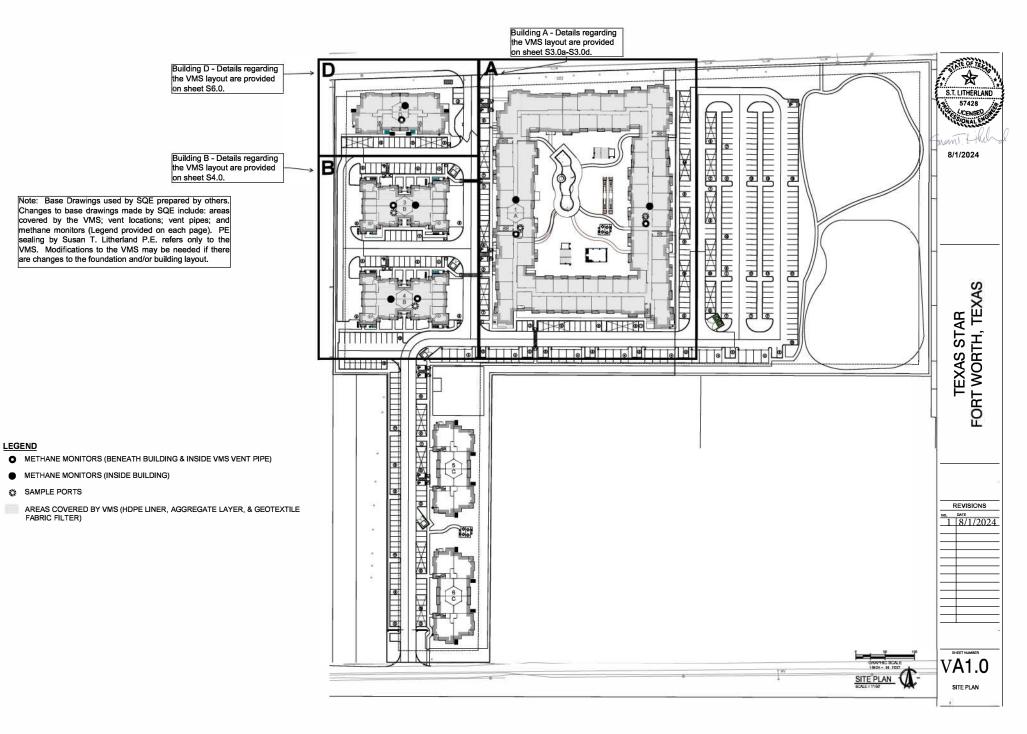
Electrical

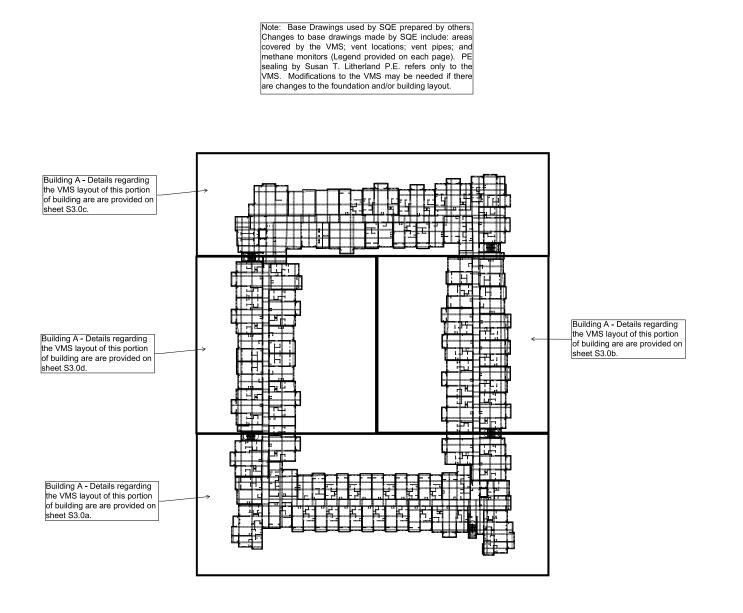
 Electrical connections should be installed by the electrical contractor at vent locations V-1, V-7, and/or V-15 in Building A, and vents V-1 and/or V-4 in Buildings B and D to accommodate fans (FanTech HP 190 or equivalent) at each of these vent locations, in the event that these are needed in the future.

Susan T. Litherland, P.E.


Texas P.E. No. 57428, F-15202 Signed electronically on 8/1/2024




Texas Star Property West VMS Details Revision 1 - 8/6/2024 (not to scale)


Detail 1: VMS Layout for Vents

Plan View (See VS3.0a, VS3.0b, VS3.0c, VS3.0d, VS4.0, and VS6.0.):

01 BUILDING TYPE 'A' - OVERALL FOUNDATION PLAN

TEXAS STAR FORT WORTH, TX

REVISIONS

1 8/1/2024

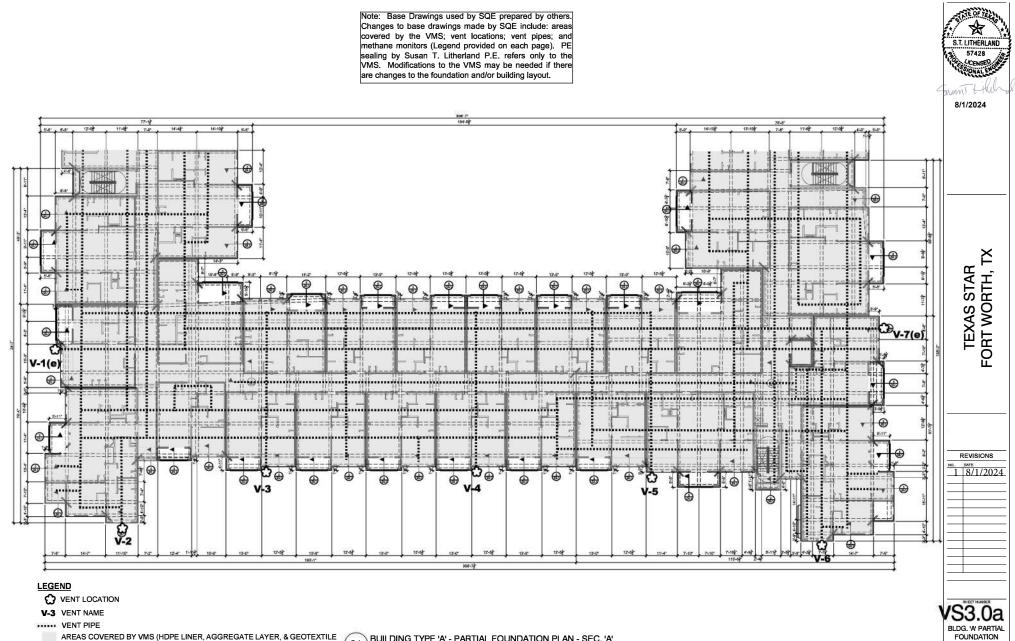
VS3.0 BLDG. 'A' OVERALL

FOUNDATION

PLAN

COPYRIGHT © 2022

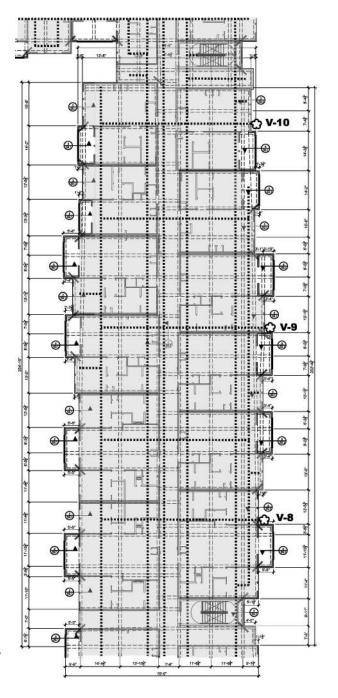
TE

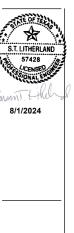

*

S.T. LITHERLAND 57428

LICENSED

8/1/2024


PLAN



AREAS COVERED BY VMS (HDPE LINER, AGGREGATE LAYER, & GEOTEXTILE FABRIC FILTER)

01 BUILDING TYPE 'A' - PARTIAL FOUNDATION PLAN - SEC. 'A'

Note: Base Drawings used by SQE prepared by others. Changes to base drawings made by SQE include: areas covered by the VMS; vent locations; vent pipes; and methane monitors (Legend provided on each page). PE sealing by Susan T. Litherland P.E. refers only to the VMS. Modifications to the VMS may be needed if there are changes to the foundation and/or building layout.

TEXAS STAR FORT WORTH, TX

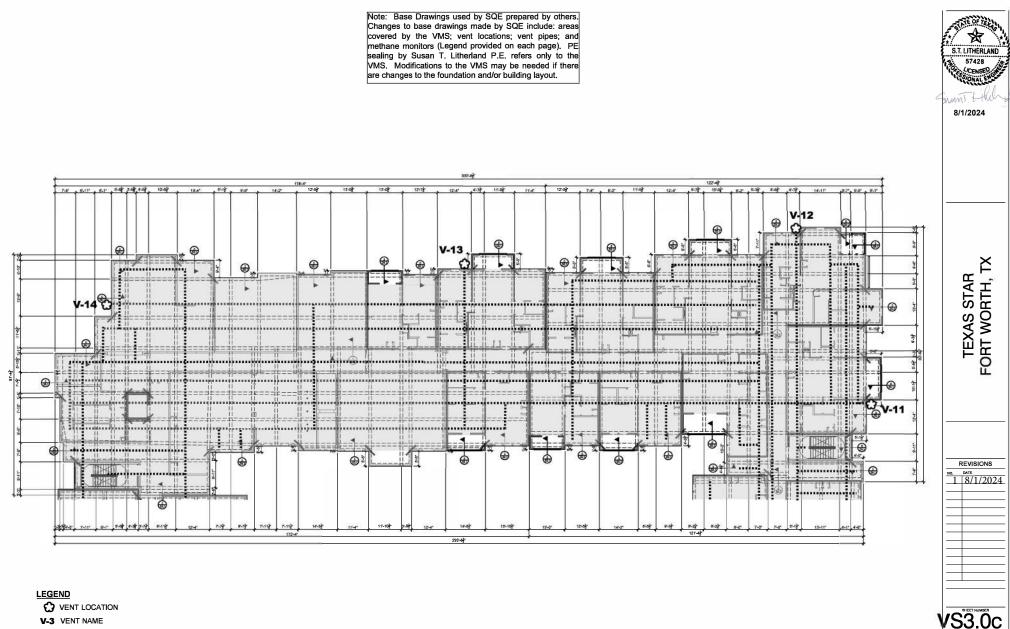
PLAN

LEGEND

O VENT LOCATION

V-3 VENT NAME

····· VENT PIPE

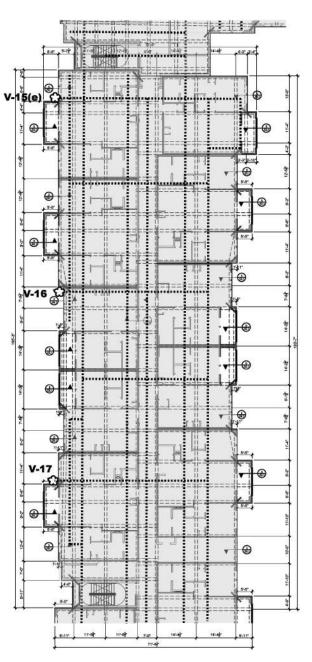

AREAS COVERED BY VMS (HDPE LINER, AGGREGATE LAYER, & GEOTEXTILE FABRIC FILTER)

01 BUILDING TYPE 'A' - PARTIAL FOUNDATION PLAN - SEC. 'B'

BLDG. 'A' PARTIAL

FOUNDATION

PLAN



····· VENT PIPE

AREAS COVERED BY VMS (HDPE LINER, AGGREGATE LAYER, & GEOTEXTILE FABRIC FILTER)

01 BUILDING TYPE 'A' - PARTIAL FOUNDATION PLAN - SEC. 'C'

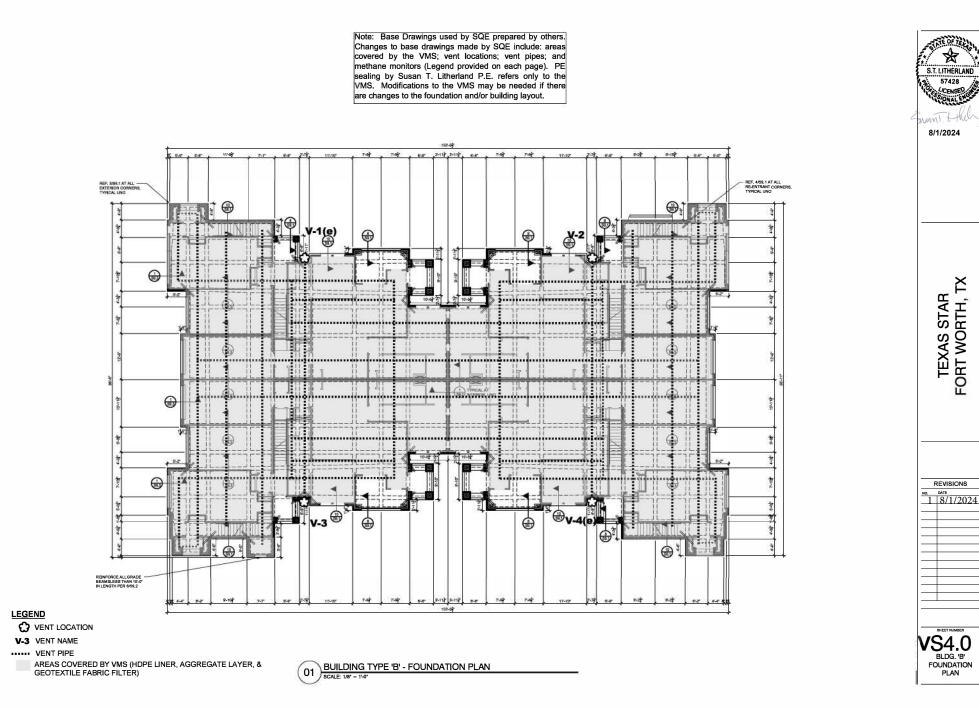
Note: Base Drawings used by SQE prepared by others. Changes to base drawings made by SQE include: areas covered by the VMS; vent locations; vent pipes; and methane monitors (Legend provided on each page). PE sealing by Susan T. Litherland P.E. refers only to the VMS. Modifications to the VMS may be needed if there are changes to the foundation and/or building layout.

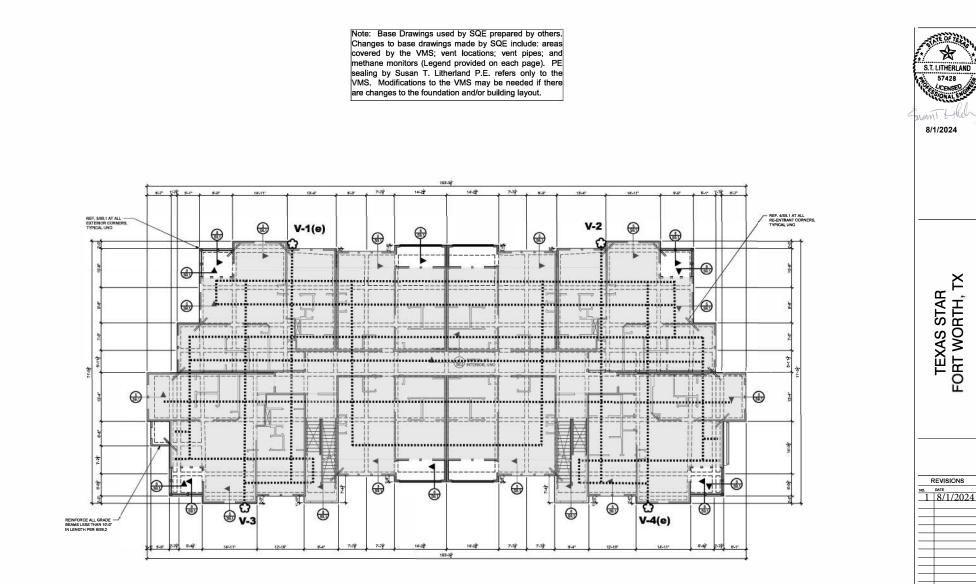
S.T. LITHERLAND

TEXAS STAR FORT WORTH, TX

REVISIONS

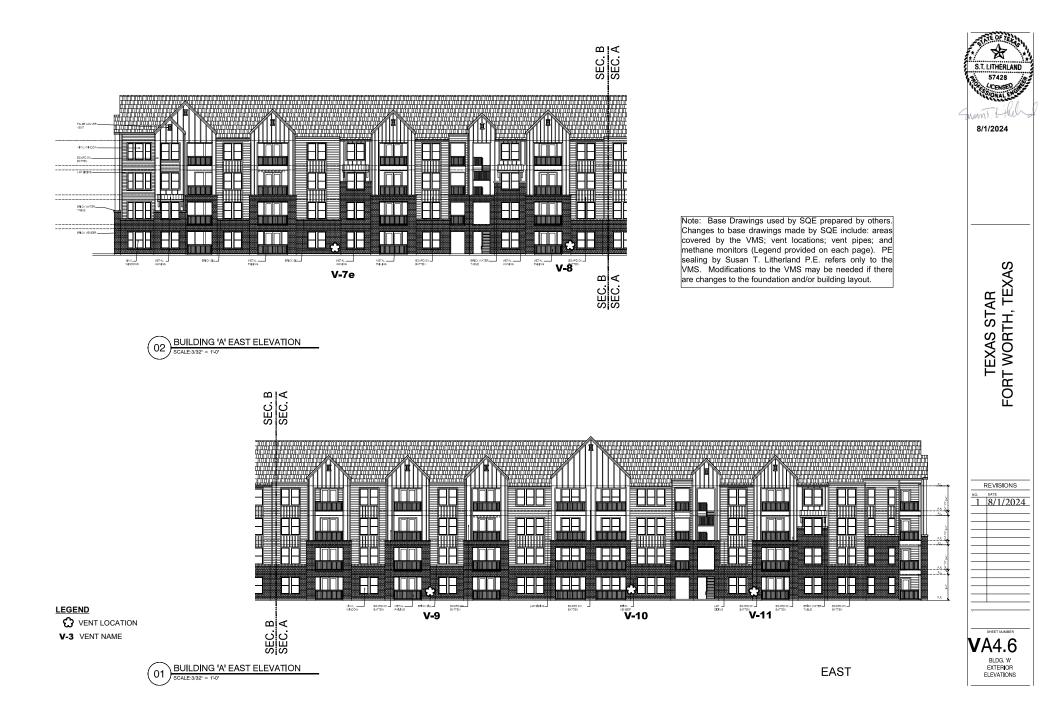
V-3 VENT NAME

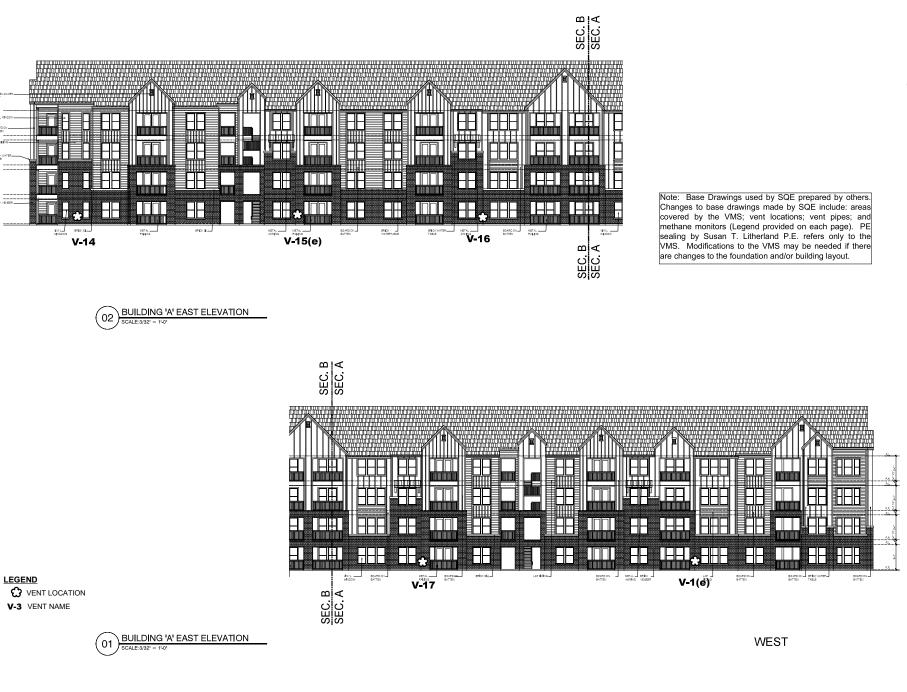

VENT PIPE


AREAS COVERED BY VMS(HDPE LINER, AGGREGATE LAYER, & GEOTEXTILE FABRIC FILTER)

(01) BUILDING TYPE 'A' - PARTIAL FOUNDATION PLAN - SEC. 'D' SCALE: 3/32' - 1'-0'

PLAN




- LEGEND
- VENT LOCATION
- V-3 VENT NAME
- ····· VENT PIPE

AREAS COVERED BY VMS (HDPE LINER, AGGREGATE LAYER, & GEOTEXTILE FABRIC FILTER)

01 BUILDING TYPE 'D' - FOUNDATION PLAN SCALE: 1/8' - 1'-0' SHEET NAMBER VS6.0 BLDG. 'D' FOUNDATION PLAN

ST. LITHERLAND 57428 CENS

8/1/2024

FORT WORTH, TEXAS

REVISIONS

NO. DATE

SHEET NUMBER

EXTERIOR ELEVATIONS

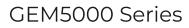
VA4.7

TEXAS STAR

em).

About Us 🗸

Products


Resources ~

Request an RA 🗸

The Next Generation of GEM[™] Instrument

The GEM™5000 is designed specifically for use on landfills to monitor Landfill Gas (LFG) Collection & Control Systems. The GEM™5000 samples and analyzes the methane, carbon dioxide and oxygen content of landfill gas with options for additional analysis.

GEM5000 Complete Package Includes:

Instrument, hoses, heavy duty water trap filter, soft case, A.C. battery charger, electronic manual accompanies software, LANDTEC System Gas Analyzer Manager (LSGAM) software, USB download cable and hard-case. Reads: Methane, Carbon Dioxide, Oxygen, temperature (when used with optional probe), atmospheric pressure, Check also:

GF5.8 External Battery GEM5000 External Battery

Services ~

SEM5000 Portable Methane Detector

GA5000 Portable LFG Analyzer

GEM5000 Series Portable LFG Analyzer

BIOGAS 5000 Portable Biogas Analyzer

differential pressure and calculates gas flow.

NAV and Plus model packages also include more features such as GPS and additional gas measurements

GEM5000 Accessories & Spare Parts

Description

Technical Specification

Description

The GEM[™]5000 is the next generation in the GEM[™] Series of LANDTEC instruments for accurate measurement and monitoring on landfills

Now Available. Please call our sales team to request further information or to place your order.

FEATURES

Measures % CH4, CO2 and O2 Volume, static pressure and

differential pressure

• Calculates balance gas, flow (SCFM) and calorific value (KW or BTU)>

- High Accuracy and Fast Response Time
- Lighter and More Compact
- Annual recommended factory service
- Certified intrinsically safe for landfill use
- Calibrated to ISO/IEC 17025
- 3 year warranty

BENEFITS

Designed specifically for use on landfills to monitor landfill

gas (LFG) extraction systems, flares, and migration control systems.

• No need to take more than one instrument to site

• Can be used for monitoring subsurface migration probes and for measuring gas composition, pressure and flow in gas extraction systems

• The user is able to set up comments and questions to record information at site and at each sample point

- Ensures consistent collection of data for better analysis
- Streamlined user experience reduces operational times

DOWNLOADS

Manual – LSGAM Software – Brochure – Easy Steps – Discharge Battery Pack – Easy Steps, Gas Check – Easy Steps, Workflow

Related Products

© Copyright 2020 LANDTEC NORTH AMERICA

A QED Company

1-800-LANDTEC

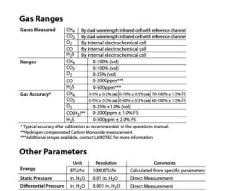
differential pressure and calculates gas flow.

NAV and Plus model

packages also include more

features such as GPS and

additional gas measurements


**GEM5000 Accessories &

Spare Parts**

Description

Technical Specification

Technical Specification

Important Note: The information in this document is correct at the time of generation. We do, how reserve the right to change the specification without prior notice as a result of continuing develop

Pump	
Flow	Typically 550cc/min
Flow with 80 in. H2O vacuum	Approximately 80cc/min

FFF

Environmenta	al Conditions
Operating Temperature Range	14°F - 122°F (-10°C to +50°C)
Operating Pressure	-100 in. H ₂ O, +100 in. H ₂ O (-250mbar, +250mbar)
Relative Humidity	0-95% non condensing
Barometric Pressure	± 14.7 in Hg (±500mbar) from calibration pressure
Barometric Pressure Accuracy	± 1% typically

Power Supply

Battery Life Typical use 8 hours from fully charged Charge Time Approximately 3 hours from complete discharge

Certification Rating

 ATEX
 II 2G Ex ib IIA T1 Gb (Ta=-10°C to +50°C)

 IS017025
 ISC/IEC17025:2005 Accreditation #66916

 CSA
 Ex ib IIA T1 (Ta=-10°C to +50°C) (Canada), AEx ib IIA T1 (Ta=-10°C to +50°C) USA

Related Products

FOUR CHANNEL WALL MOUNT CONTROLLER

Gas Detection For Life

Beacon[™] 410A Model

Features

- Simultaneously control up to 4 gas monitoring channels
- · OLED display of all 4 channels
- LEL / O2 / CO2 / toxic direct connect sensors
- · Accepts any 4-20 mA transmitter, 2 or 3 wire
- · Up to 3 programmable alarm levels per channel
- · Up to 3 configurable alarm relays per channel
- · 4-20 mA analog & Modbus digital output standard
- · 115 / 220 VAC or 24 VDC operation
- · Audible alarm with silence feature
- RFI / EMI Resistant
- · Alarm reset switch
- · Built in trouble alarm with relay
- · Weather and corrosion resistant NEMA 4X enclosure

Applications

- · Petrochemical plants
- Refineries
- · Water & wastewater treatment plants
- · Pulp & paper mills
- · Gas, telephone, & electric utilities
- Parking garages
- · Manufacturing facilities
- Steel

The Beacon 410A is a highly configurable, microprocessor-based, flexible and easy to use 4 channel gas monitoring controller. It simultaneously displays the gas type, readings, and status for four channels of gas detection. It can monitor any combination of direct connect sensors (LEL, O2, CO2, and toxic gas sensors), as well as any 4-20mA transmitter.

Each channel has up to three fully configurable alarm points. A built-in silenceable audible alarm alerts you to alarm conditions. Each channel also has two dedicated fully configurable relays and there is a bank of common relays as well. The common relays can optionally be configured as additional relays allowing up to 3 alarm relays per channel. Each channel provides a 4-20mA output signal. A digital Modbus interface for remote logging of data via a Modbus network is standard. A Min-Max feature retains high & low peak readings for review at any time.

A fully configurable, high visibility strobe is available as an option. The unit can be powered from 115/220 VAC, or an external 24 VDC source. A trickle charging battery backup feature with battery assembly is also available as an option.

All features and functions of the Beacon 410A are controlled by easy to use menus on the OLED display. All features including form-C relay contacts of the Beacon 410A are built into the unit so you never need to purchase or maintain any "add-on" cards or components.

RKI Instruments, Inc. • 33248 Central Ave. Union City, CA 94587 • Phone (510) 441-5656 • (800) 754-5165 • Fax (510) 441-5650

World Leader In Gas Detection & Sensor Technology www.rkiinstruments.com

Physical					
Dimensions	Height: 12.5" (31.8 cm) x Width: 11" (27.9 cm) x Depth: 6.4" (13.6 cm)				
Enclosure	NEMA 4X Fiberglass / polyester with lexan window for indoor and outdoor locations				
Conduit Connection	3/4" NPT conduit hubs, 4 provided, for sensor, power, & relay wiring				
Wiring Termination	Screw Type terminal block, 14 gauge max				
Power	115 VAC, 220 VAC, or 24 VDC nominal. Battery backup option available				
Optional Accessories	Strobe light, and Battery Backup Assembly				
Controls	Display PCB Control Switches:• UP/YES push button switch• ESCAPE push button switch• External reset switch• External reset switch				

Environmental	
Operating Temperature	-4°F to 122°F (-20°C to 50°C)
Storage Temperature	-40°F to 158°F (-40°C to 70°C)
Enclosure Rating	NEMA-4X enclosure, chemical and weather resistant. Suitable for indoor and outdoor installations

Inputs	
Direct Wired Sensors	LEL, Oxygen, Carbon Dioxide, and toxic gas sensors. Remote amp not required for less than 500 feet
4-20 mA	Accepts any 4-20 mA transmitter (24 VDC, 2 or 3 wire). A wide variety of RKI/Riken sensors are available with 4-20 mA signals. Wiring distances up to 8,000 feet
Sampling Methods	Diffusion and sample draw heads available

Outputs	
Relays	Two flexible, programmable Form-C (C, NO, NC) relays per channel, plus five common relays (Fail, Alarm-1, Alarm-2, Alarm-3, Alarm-Any). Common relays may optionally be assigned to function as additional channel alarm relays, providing for up to three alarm relays per channel. 10A contact rating, 250V.
4-20 mA	Signal output, 4-20 mA (maximum load impedance 500 ohms), per channel
RS-485	Modbus format RS-485 serial output of all channel data, including gas reading and alarm status.
Display	Four line OLED display
Audible	Built-in audible alarm, 94 dB, mounted on enclosure Coded output: pulsing = gas alarm, steady = fail
Visual	 Alarm LED's (on Display PCB) Alarm 1 = yellow Alarm 2 = orange Alarm 3 = red Fail = yellow Green Pilot LED to indicate AC power connected (on Display PCB) An optional 24 VDC NEMA 4X strobe mounted to top of case.

Approvals	CSA Certified to CSA C22.2 No. 61010-1-12 and UL61010-1
Warranty	One year materials and workmanship

Authorized Distributor:

- Toll Free: (800) 754-5165 Phone: (510) 441-5656
- Fax: (510) 441-5650 www.rkiinstruments.com

M2A STAND ALONE TRANSMITTER

The RKI M2A[™] is a state-of-the-art transmitter that can operate as an independent, stand-alone monitor or as part of an integrated system. The M2A connects with an analog or digital signal to virtually any controller, PLC, or DCS. Setup procedures are simplified with user friendly push buttons and OLED menus. It utilizes a magnetic wand technique for performing non-intrusive calibration. The M2A provides an automatic zero drift correction feature, which results in more stable readings and reduces the need for adjustments due to sensor aging.

The housing of the M2A does not need to be opened for zeroing or calibration, making it unnecessary to declassify the area for routine maintenance. It is designed so that a complete field calibration can be performed by one person. Sensor construction is rated Class I, Div. 1 Groups B, C, D for flammables, CO, H2S, O2, and CO2, and Class I, Div. 2 for all other toxics.

The transmitter provides a 4-20 mA output in addition to a Modbus digital output. It also has two levels of alarms with relays, plus a fail alarm with relay. A digital display of the gas concentration, as well as alarm and status lights, can be viewed through the front window.

The toxic sensors are electrochemical type plug-in sensors, which provide high specificity, fast response, and long life. The plug-in design allows quick replacement in the field with no tools required. Toxic sensors are designed for use in Class I, Div. 2 hazardous locations. Sensors available for NH3, AsH3, Cl2, ClO2, HCN, PH3, and SO2

The M2A represents the latest leading edge technology in sensor / transmitters today.

World Leader In Gas Detection & Sensor Technology

RKI Instruments, Inc. | 33248 Central Ave. Union City, CA 94587 | Phone (800) 754-5165 | (510) 441-5656 | Fax (510) 441-5650

www.rkiinstruments.com

Explosion Proof

Class I, Div. 1, Groups B, C, D

	Combi	ustibles	LEL	02	H2S	СО	CH4	HC	CO2
	LEL	PPM	H2 Specific	Oz Oxygen	Hydrogen Sulfide	Carbon Monoxide	Methane	Hydrocarbons	CO2 Carbon Dioxide
#	65-2640RK	65-2647RK	65-2641RK	65-2643RK-05	65-2645RK-05	65-2646RK-05	65-2649RK-CH4 65-2658RK-CH4	65-2649RK-HC	65-2660RK-02 65-2660RK-03 65-2660RK-05
CSA	65-2640RK-05	65-2647RK-05	65-2641RK-05						65-2660RK-10
Sensors		Catalytic		Galvanic cell	Electro	chemical		Infrared	
Measuring Ranges	0 - 100% LEL	0 - 9000 ppm CH4	0 - 100% LEL	0 - 25.0% Vol.	0 - 100 ppm	0 - 300 ppm	0 - 100% LEL 0 - 100% Vol.	0 - 100% LEL	-02 0 - 5000 ppm -03 0 - 5% Vol. -05 0 - 50% Vol. -10 0 - 100% Vol.
Resolution	1% LEL	20 ppm	1% LEL	0.1% Vol.	11	ppm	1% LEL /	1% Vol.	20 ppm / 0.01% Vol / 0.1% Vol. / 1% Vol.
Lower Detectable Limit (LDL)		2% of full sca	ale	0.1% Vol.			2% of full scale		
Max Current Draw (24VDC)		h alarm 1 and I all relays ene	alarm 2 active ergized		nA with alarm 1 and ve and all relays en			A with alarm 1 an e and all relays er	
Response Time (T-90)		5 Seconds or	less	90 Seconds or less	60 Seconds or less	90 Seconds or less		30 Seconds or le	SS
Life Expectancy	-	with normal vice	3 to 5 years with normal service	2 to	3 years with norma	l service	5 yea	rs plus with norma	Il service
Accuracy (which ever is greater)	± 5% of re	eading or ± 2%	% of full scale	± 0.5% Vol. O2	± 5% of reading or ± 2 ppm H2S	± 5% of reading or ± 5 ppm CO	± 5% of	reading or ± 2 %	of full scale
Weather Resistant	:			F	Patented water repe	ellent sensor coating			
Alarms									
Alarm Settings	;	Two fully programmable alarm set points, increasing / decreasing, latching / self-resetting, on delays, off delays, normally energized or de-energized							
Alarm Indication	1	Visual LEDs. Alarm 1, Amber; Alarm 2, Red; Fail, Red							
Relays	;			5 amp	form 'C' contacts for	r alarm 1, alarm 2, a	nd fail		
Physical									
Dimensions		Height: 8.5" (215 mm), Width: 5.2" (132 mm), Depth: 4.5" (114 mm)							
Display	,	Alphanumeric OLED display. 8 characters per line; 2 lines for gas concentration readout, plus user-friendly calibration and setup							
Enclosure		Explosion proof for Class I, Div 1, Groups B, C, D.							
Enclosure Rating			NEMA 4X, e	explosion proof, w	atertight, cast alum	inum with o-ring sea	l and epoxy powde	r coating	
Controls			Ma			Calibrates without op available for calibrati			
Operating En	vironmer	nt							
Operating Temperature		-40°F to 167 -40°C to 75°	-	-4°F to 113°F -20°C to 45°C	-40°F to 104°F -40°C to 40°C	23°F to 104°F -5°C to 40°C		-40°F to 122°F -40°C to 50°C	
Relative Humidity	,	5 - 95% RH non-condensing							
Location		Indoor or outdoor. Explosion proof for Class I, Div. 1, Groups B, C, D.							
Operating Voltage	10 VDC - 30 VDC								
Outputs									
Analog		Linear 4-20 mA signal, into 1000 ohms impedance max (24DC), 0 - 500 ohms max (12VDC) corresponding to 0 - full scale							
Digita			Modb	us RTU output sta	andard, fully configu	urable, 2-wire RS-48	5, 1200 to 19.2k ba	ud	
Approvals	65-264	640RK JL 0RK-05 SA US	65-2641RK UL 65-2641RK-05 C CSA US		C CSA US			C UL US	
Controllers				110, Beacon 200.	Beacon 410A. Bea	con 800 as well as n	l nost DCS / PLC svs	stems	
Warranty			200001	-, _ 200011 200,	One year material				
wairanty					Une year material				

Toxic Gas Transmitters

Class I, Div. 2

	O2 Oxygen	H2S Hydrogen Sulfide	CO Carbon Monoxide	Toxics See Chart Below		CO2 Carbon Dioxide	
Part#	65-2666RK *65-2644RK	65-2662RK	65-2663RK	See Chart Below		65-2661RK-02 65-2661RK-03 65-2661RK-05 65-2661RK-10	
Sensors	Galvanic cell		Electrochemical		Infrared		
Measuring Ranges	0-25% Vol.	0-100 ppm	0-300 ppm	See Chart Below	-02 -03 -05 -10	0 - 5000 ppm 0 - 5% Vol. 0 - 50% Vol. 0 - 100% Vol.	
Resolution	0.1% Vol.	1 p	opm	See Chart Below	20 ppr	n / 0.01% Vol. / 0.1% Vol. / 1%Vol.	
Lower Detectable Limit (LDL)	0.1% Vol.			2% of full scale			
Response Time (T-90)		35 Seconds or less		60 Seconds or less		30 Seconds or less	
Max Current Draw (24VDC)	125 m/	A with alarm 1 and alarm	2 active and all relays en	ergized	160 m/	A with alarm 1 and alarm 2 active and all relays energized	
Life Expectancy		2 to 3 years with	h normal service	1		5 years plus	
Accuracy (which ever is greater)	± 0.5% Vol. O2	± 5% of reading or ± 2 ppm H2S	± 5% of reading or ± 5 ppm CO	± 10% of reading or ± 5% of full scale	\pm 5% of reading or \pm 2% of full scale		
Alarms							
Alarm Settings	Two fully programmable alarm set points, increasing / decreasing, latching / self-resetting, on delays, off delays, normally energized or de-energized,						
Alarm Indication	Visual LEDs. Alarm 1=Amber; Alarm 2=Red; Fail=Red						
Relays	5 Amp form 'C' contacts for alarm 1, alarm 2, and fail						
Physical							
Dimensions		Height: 8.5" (215 mm), Width: 5.2" (132 mm), Depth: 4.5" (114 mm)					
Display		Alphanumeric OLED display. 8 characters per line; 2 lines for gas concentration readout, plus user-friendly calibration and setup					
Sensor Rating		Non explosion proof cons	struction, designed for Cla	iss I, Div. 2, Groups B, C,	D (no ce	rtification)	
Housing J-Box	٦	NEMA 4X, explosion proo	f, watertight, cast aluminu	m with o-ring seal and epo	oxy powc	ler coating	
Controls		•		brates without opening the ailable for calibration and s		J.	
Sensor			Aluminum / Plastic (nor	n explosion proof)			
Operating Environme	nt						
Operating Temperature	-4°F to 113°F -20°C to 45°C	-40°F to 104°F -40°C to 40°C	23°F to 104°F -5°C to 40°C	14°F to 104°F -10°C to 40°C		-40°F to 122°F -40°C to 50°C	
Relative Humidity		5 - 95% RH non-condensing					
Location	Indoor or outdoor						
Operating Voltage	10 VDC - 30 VDC						
Outputs							
Analog	Linear 4-20 m	A signal, into 1000 ohms	impedance max (24DC),	0 - 500 ohms max (12VD0	C) corres	ponding to 0 - full scale	
Digital		Modbus RTU output standard, fully configurable, 2-wire RS-485, 1200 to 19.2k baud					
Controllers		Beacon 110, Beacon 200, Beacon 410A, Beacon 800 as well as most DCS / PLC systems					
Warranty			One year materials ar	nd workmanship			
*Partial pressure sensor for helium	(Ho) applications Consul	t factory for dotaile					

*Partial pressure sensor for helium (He) applications. Consult factory for details.

senter		-	M2A Toxic Transmitter Ser	nsor Ordering Informat	ion	
		Part Number With J-Box	Gas	Range	Resolution	Sensor Type
		65-2670RK-NH3-75	Ammonia (NH3)	0 - 75.0 ppm	0.1 ppm	CT-7
		65-2670-NH3-1	Ammonia (NH3)	0 - 100 ppm	1 ppm	CT-7
- In	- I I I I I	65-2670-NH3-2	Ammonia (NH3)	0 - 200 ppm	1 ppm	CT-7
	a the second	65-2670-NH3-5	Ammonia (NH3)	0 - 500 ppm	1 ppm	CT-7
		65-2648RK-AsH3	Arsine (AsH3)	0 - 1.50 ppm	0.1 ppm	ESM -01
		65-2670RK-CL2-3	Chlorine (Cl2)	0 - 3.00 ppm	0.01 ppm	CT-7
		65-2670RK-CL2-10	Chlorine (Cl2)	0 - 10.0 ppm	0.1 ppm	CT-7
ESM-01	CT-7	65-2670RK-CLO2	Chlorine Dioxide (ClO2)	0 - 1.00 ppm	0.01 ppm	CT-7
		65-2648RK-HCN	Hydrogen Cyanide (HCN)	0 - 15.0 ppm	0.1 ppm	ESM -01
 * Sensor being phased out, use CT-7 type 		65-2648RK-PH3	Phosphine (PH3)	0 - 1.00 ppm	0.01 ppm	ESM -01
when possible.		65-2648RK-SO2	Sulfur Dioxide (SO2)	0 - 6.00 ppm	0.01 ppm	ESM -01

(800) 754-5165

M2A Stand Alone Transmitter

AVAILABLE ACCESSORIES

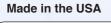
Remote Mount Calibration Adaptor

Flow through adaptors

Air aspirator adaptors / panels

Calibration kits

Remote horns & lights



Calibration adaptors

Direct Interface with Beacon 110 / 200 / 410A / 800 Controllers

M2A Wiring Matrix					
	Number	Maximum Distance to Controller			
	of Wires to Controller	18 AWG wire	16 AWG wire	14 AWG wire	
M2A Transmitter	3	2500 ft.	5,000 ft.	8,000 ft.	

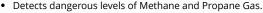
Authorized Distributor:

Att 9 Page 31, Rev3 8/6/24

Carbon Monoxide, Propane and Methane Gas Detector

Model No. HS80504

- 3-in-1 detector.
- Senses dangerous levels of Carbon Monoxide, Propane and Methane Gas.
- Two independent 85dB alarm sounds, one for CO, the other for methane/liquid propane.
- Every detector has computerized calibration to help eliminate false alarms.
- Built-in self-dagnostics assures the unit is operating properly.
 Easily plugs into any standard 110-120v AC electrical outlet and
- samples the air every 2 1/2 minutes.
- Lock tab feature makes the detector tampor proof.
- 5 year warranty.


Combustible Gas Detector

Model No. HS80501

USD \$57.95

]

Add to Cart

- Computerized calibration helps eliminate false alarms.
- Built-in self-diagnotics asures the unit is operating properly.
 Eassily plugs into any standard 110-120v AC electrical outlet and samples the air every 2 1/2 minutes.
- Lock tab feature makes the detector tamper proof.
- Advanced surface mount circuitry.
- Powerful 85dB Alarm.
- 5 year warranty.

of CO Poisoning

0% editable and say whatever you ebsite visitors. All fully editable so d your own to e each page.

mptoms are related to carbon monoxide poisoning iscussed with all members of the household:

nausea, vomiting, fatigue (often described as "flu-

<u>re</u> g headache, drowsiness, confusion, rapid heart rate.

<u>re</u> s, convulsions, cardiopulmonary failure, death.

Facts and Concerns about Carbon Monoxide (CO)

Carbon Monoxide (CO) is a colorless, odorless, tasteless gas, which is very toxic and nearly impossible to detect without the use of sensing equipment. Carbon Monoxide can be absorbed into the body's bloodstream nearly 10 times faster than pure oxygen. Thus it can limit the body's ability to absorb oxygen whenever carbon monoxide is present, even in small amounts. This reduced ability of the body to absorb oxygen is known as chemical asphyxiation and it can result in death whenever carbon monoxide is present in small quantities over a period of time.

Sources of CO Gas

Carbon monoxide results from of carbon-based fuels such as r wood, coal, heating oil, kerosen propane. Many of these fules of the home, for example in kitche water heaters, fireplaces, porta grills and automobiles. If incon occurs in any of these devices a vented to the outside, the dang exists.

DISASTROUS EXPLOSIONS CAN OCCUR FROM LEAKS OF COMBUSTIBLE GASES

Such as natural gas (methane) and LPG gas (propane).

These types of gases are used to fuel a variety of common appliances found in the home. Cooking stoves/ovens, hot-water heaters, clothes dryers, space heaters, fireplace starters and heating furnaces are the most common gas-fuel burning appliances. Natural gas and propane can cause devasting explosions from even the smallest leaks from any of these appliances.

ess: Remico Street SW dville, MI. 49418

516-530-6540

Att 9 Page 34, Rev3 8/6/24 Safety Siren[™] Carbon Monoxide, Propane & Methane DETECTOR

Owner's Manual

Model Number HS80004 HS80104 HS80204 HS80504

©Copyright, 1996 All Rights Reserved

Family Safety Products, Inc. 2879 Remico SW Grandville, MI 49418 (616) 530-6540 www.fspi-radon.com Made in USA

Family Safety Products Inc.

Table of Contents

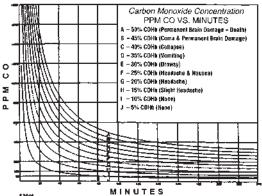
Facts and Concerns about C	arbon Monoxide
----------------------------	----------------

and Combustible Gas	ł
Sources of Carbon Monoxide	;
Sources of Combustible Gas	i.
Symptoms of Carbon Monoxide Poisoning	ļ
Operating Instructions	3
Installation	\$
Location of the Detector)
Testing Safety Siren ¹³⁴ for Carbon Monoxide	
and Combustible Gas)
What to Do When the Alarm Sounds	
For Carbon Monoxide)
For Combustible Gas If)
SafetySiren ^{by} for Carbon Monoxide and Combustible Gas	
Sensor Specifications II	

Warranty	
----------	--

FACTS AND CONCERNS ABOUT CARBON MONOXIDE:

Carbon Monovide (CO) is a colorloss, odorless, tasteless gas, which is w y toxic and nearly impossible to detect without the use of sensing equipment. Carbon monoxide can be absorbed into the body's bloodstream nearly 10 times faster than pure oxygen. Thus it can limit the body's ability to absorb oxygen whenever carbon monoxide is present, even in small amounts. This reduced ability of the body to absorb oxygen is known as chemical asphysiation and it can result in death whenever carbon monoxide is present in small quantilies over a period of time.


As the level of carbon monoxide rises in a closed environment, the toxic effects require less and less time to occur. This relationship can be seen in Figure 1. While it takes over three hours for an atmosphere with 0.01% CO to produce a headache, it takes only one hour for 0.02% CO to produce the same effects. At 0.04% CO the time required to produce the same effects. At 0.04% CO the time required to produce the same the source to the S0004 SafetySitenTM unit is designed to generate an ularm at the following exposure levels as defined by Underwriters Laboratories:

in less than 90 minutes at 0.01% CO (100ppm CO) in less than 35 minutes at 0.02% CO (200ppm CO) in less than 15 minutes at 0.04% CO (400ppm CO)

Warning:

This device may not alarm at low carbon monoxide levels. The federal Occupational Safety and Health Administration (OSHA) has established that continuous exposure to CO levels of 50 ppm should not be exceeded in an eight hour period. This detector has not been investigated for carbon monoxide detection below 100 ppm. Individuals with a medical condition may consider using a more sensitive device.

Figure 1 - Carbon Monoxide Concentration versus Time and % COHh

\$3508

Sources of Catton Plage 36, Rev3 8/6/24

Carbon monoxide results from incomplete combustion of earbonbased fuels such as natural gas, charcoal, wood, coal, heating oil, kerosene, gasoline and propane. Many of these fuels can be found throughout the home, for example in kitchen appliances, furnaces, water heaters, fireplaces, portable heaters, barbeeue grills, and automobiles. If incomplete combustion occurs in any of the of the devices shown below and they are improperly vented to the outside, the danger of CO poisoning exists.

Figure 2. Sources of carbon monoxide

Water Heater

Automobile

Source Heater

Fireplace

Charcoal Grill

Sources of Combustible Gas.

Disastrous explosions can occur from leaks of combustible gases, such as natural gas (methane) and LPG gas (propane). These gases are used to fuel a variety of common appliances found in the home. Cooking, stoves/ovens, hot-water heaters, clothes dryers, space heaters, fireplace starters, and heating furnaces are the most common gas-fuel burning appliances. Natural gas and propane can cause devastating explosions from even the smallest leaks from any of these appliances.

Sources of Combustible Gases

Furnace

Fireplace

Space Heater

Store

Att 9 Page 37, Rev3 8/6/24 Symptoms of Carbon Monoxide Poisoning

The following symptoms are related to carbon monoxide poisoning and should be discussed with all members of the household:

Mild Exposure:

Slight headache, nausea, vomiting, fatigue (often described as "flu-like" symptoms).

Medium Exposure:

Severe throbbing headache, drowsiness, confusion, rapid heart rate.

Extreme Exposure:

Unconsciousness, convulsions, cardiopulmonary failure, death,

Many cases of reported carbon monoxide poisoning have indicated that although victims were aware they were not well, they became disoriented to the point they were unable to save themselves by either exiting the building or calling for assistance. Young children and household pets may be the first affected by CO poisoning.

OPERATING INSTRUCTIONS

Installation

This HS 80004 SafetySirenTM Carbon Monoxide and Combustible Gus Sensor plugs directly into a standard 110-volt AC household outlet. The unit should be oriented vertically so that all of the script on the face of the unit appears in the upright position. The ventilation slots must not be blocked and the unit must be kept dust free. A proper airflow must be maintained through the unit to obtain an air sampling representative of the local environment. The only maintenance the unit requires is a thorough vacuuming once every six months.

WARNING: There are no user serviceable parts inside the unit. Do not remove the back cover. Removal of the back cover will void the warranty.

CAUTION: When the unit has been stored unplugged for several weeks, its sensitivity to combustible gases will decline. To restore the unit to normal sensitivity, allow a 24-hour warmup period.

Once the unit is plugged into the wall outlet, the green power indicator should light up. The red indicator will flash approximately once every three seconds to indicate the unit is operating properly. It should be noted that the sounding of the alarm will indicate whether the sensor has detected unsale levels of CO or combustible gas. Continuous appearance of the red indicator and the continuous sounding of the audible buzzer indicates a presence of potentially dangerous levels of CO. Continuous appearance of the red indicator and the intermittent sounding of the audible alarm indicates the presence of potentially dangerous levels of constrained by the sense of the red indicator and the intermittent sounding of the audible alarm indicates the presence of potentially dangerous levels of combustible gases. If the unit begins beeping once every 5 seconds or the red LED light is not flashing once very 3 seconds. then a fault has

occurred in Attan Page 78no And Asis 6424 need the unit from the AC power immediately and call Panily Safety Products at 616-530-6540.

WARNING: Make sure that the unit is not plugged into a wall outlet controlled by a light switch.

CAUTION: This carbon monoxide and combustible gas detector is designed to detect carbon monoxide gas and ANY source of combustion or the combustible gases of methane and propane. It is NOT designed to detect smoke, fire, or other gases.

Location of the Detector

The Consumer Product Safety Commission recommends that each household have at least one Carbon Monoxide detector placed in the steeping areas of the home. A second detector located near appliances or equipment using combustible fuel adds an extra measure of safety. Figure 3 shows suggested locations in the home. Make sure that airflow through the unit's ventilation slots is not inhibited by curluins, furniture or other items. The audible alarms should be able to be heard from all sleeping areas in the home. Units must not be placed within five feet of open flame cooking appliances. Also, avoid placing units near paint thinner furnes or in areas where the temperature varies outside the range of 40.0°F (4.4°C) to 100°F (7.8°C).

CAUTION: This detector will only indicate the presence of carbon monoxide and combustible gas at the sensor. Carbon monoxide and combustible gas may be present in other areas.

Att 9. Page 39, Rev3 8/6/24 Testing the SafetySiren²⁴ for Carbon Monoxide and Combustible Gas Sensor

To verify the circuitry is operating properly, use the Test/Reset button built into the unit. Simply press down on the button during normal operation and note the red indicator. The red indicator will light continuously and the audible alarm will sound as long as the button is held down. Once you release the Test/Reset, the red indicator will return to blinking at a three-second rate and the audible alarm will cease, indicating the unit has returned to a normal operating mode. Test the unit monthly. If the unit begins beeping once every 5 seconds or the red LED light is not flashing once every 3 seconds, then a fault has occurred in the unit. Disconnect the unit from the AC power immediately and call Family Safety Products at 616-530-6540.

Resetting the Alarm

The Test / Reset button may also be used to reset the audible alarm during the alarm mode. Once the alarm is activated by detection of high CO or combinistible gas levels, simply press the Test/Reset button to disable the audible alarm. If the high CO level or combustible gas level continues, the audible alarm will again sound within a 2.5 minute period. The red indicator will remain ht during the time the audible alarm is disabled, indicating that the alarm condition still exists.

WHAT TO DO WHEN THE ALARM SOUNDS

WARNING If a continuous alarm sounds for Carbon Monoxide

Activation of this device indicates the presence of carbon monoxide which can be FATAL.

1) If anyone has a headache or an upset stomach, call the Fire Department and move to a location which has fresh air. DO A HEAD COUNT TO CHECK THAT ALL PERSONS ARE ACCOUNTED FOR. DO NOT RE-ENTER THE PREMISES UNTIL THAS BEEN AIRED OUT AND THE PROBLEM CORRECTED!

If no one exhibits symptoms of discomfort associated with carbon monoxide poisoning, simply:

2) Operate the reset button.

- Turn off appliances, vehicle, or other sources of combustion at once (furnace, water heater, wood burning stove, RV, automobile, or the like).
- 4) Get fresh air into premises or vehicle.
- Call a qualified technician and have the problem fixed before restarting appliances or vehicle.

If the intermitten Bang sounds BEV 3.86/5/24 Gas

An intermittent audible alarm from this device indicates the presence of combustible gases, the source of which may be an appliance such as a furnace, water heater, oveu/stove, or dryer.

- Do not operate any electrical devices such as light switches or telephones.
- Do not plug or unplug any electrical devices because they may cause a spark.
- Immediately extinguish any flames or pilot lights.
- · Ventilate the area by opening doors and windows.
- Determine the source of the gas. Seek a qualified technicion or call your local gas company.
- Turn off the gas supply.

SafetySiren™ for Carbon Monoxide and Combustible Gas Sensor Model HS 80004 Specifications

Power Source
CO Sensor CO Sensor calibrated at 200 ppm CO specific to avoid false alarms.
CG Sensor
Temperature
CO Audible Alarm Continuous 85dB alarm at 10 ft. for CO
CG Audible Alarm Intermittent alarm for Combustible Gas
Visual Alarm
Green LED Operation Continuous Operation When Power On
Detection frequency Air sampled every 2.5 minutes for CO. Air sampled continuously for Combustible Gas after an initial warm-up of 2.5 minutes
Test
Dimensions
Weight

Att 9 Page 41. Rev3 8/6/24

Your Safety Siren[™] for Carbon Monoxide and Combustible Gas has a free-year warranty from date of purchase against defects in material and workmanship. Units returned to the manufacturer during this period because of such defects will be repaired or replaced free of charge. For repairs within the warranty period or receipt of a faulty unit, call Family Safety Products at 616-530-6540 to receive a Return Authorization Number (RAN). Include a written description of the problem. You may then ship the unit to the address listed below along with the RAN, and proof of purchase.

The warranty covers only defects in material or workmanship in normal use and not damage from negligent handling, misuse, or lack of proper care. Important: Do not remove the back cover. Such removal will void the warranty. This warranty stands in place of any other warranty either expressed or implied.

Family Safety Products, Inc. is not liable for any personal injury, property damage or any incidental or consequential damage resulting from gas leakage, fire, or explosion. The sole remedy for breach of this limited warranty does not, in any instance, exceed the purchase price. Your SafetySirenTM for Carbon Monoxide and Combustible Gas sensor does not constitute property, disability, life or any other type of insurance.

This warranty gives you specific legal rights. You may also have other rights which vary from state to state.

Family Safety Products. Inc. 2879 Remico SW Grandville, MI 49418 USA

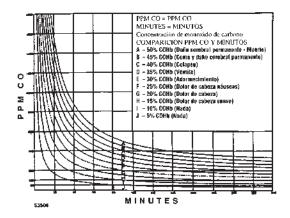
Indice

Datos y preocupaciones relacionados con el monóxido de
carbono el gas combustible 17
Fuentes de monóxido de carbono 19
Fuentes de gas combustible
Sintomas de la intoxicación por monóxido de carbono
Instrucciones para el funcionamiento Instalación
Ubicación del detector
Comprobación del funcionamiento sel SafetySiren™ para
monóxido de carbono y gas combustible
Qué hacer cuando suena la alarma
Al detectar monóxido de carbo
Al detectar gas combustible
Datos sespecíficos relacionados con el sensor del SafetySiren TM para
monóxido de carbono y gas combustible
Garantía

DATOS AFREGOUPACIONES AELACIONADOS CON EL MONOXIDO DE CARBONO

El monóxido de carbono (CO) es un gas incoloro, inodoro e insaboro que es muy tóxico y casi imposible de detectar, si no se utiliza un equipo sensor. El monóxido de carbono puede ser absorbido por la circulación de la sangre del cuerpo con una rapidez casi dicz veces mayor a la del oxígeno puro. En consecuencia, puede limitar la capacidad que tiene el cuerpo de absorber oxígeno cuando existe una presencia de monóxido de curbono, incluso cuando se en pequeñes cantidades. Esta capacidad reducida del cuerpo para absorber oxígeno se conoce con el nombre de asifixia químea y puede cuasar la muerte cuando existe una presencia de pequeñas cantidades de monóxido de carbono durante un periodo determinado de fiempo.

A medida que sube el nivel de monóxido de carbono en un ambiente cerrado, los efectos tóxicos tardan cada vez menos en presentarse. Si bien es cierto que son necesarias más de tres horas para que una atmósfera con un 0.01% de CO ocasione dolores de cabeza, cuando asta contidad sube hasta el 0.02% solo es necesaria una hora para que se produzean los mismos efectos. Si el porcentaje sube hasta el 0.04% de CO, el tiempo necesario para que se ocasionen dolores de cabeza es solo de 25 minutos. La unidad SafetySiren™ HS 80004 ha sido diseñada para activar la alarma cuando se alcanzan los tiempos de exposición que se indican a contina, tal y como los define la entidad Underwriters Laboratories:


en menos de 90 minutos con un 0.01% (100 ppm CO) en menos de 35 minutos con un 0.02% (200 ppm CO) en menos de 15 minutos con un 0.04% (400 ppm CO)

Advertencia:

Es posible que no se active la alarma de este dispositivo cuando los niveles de monóxido de carbono son bajos. La citidad del gobierno federal, denominada Administración para la Seguridad y la Salud Ocupacional (OSHA) ha determinado que la exposición continuada a niveles de CO de 35 ppm no debe prolongarse por un período superior a las ocho horas. No se ha estudiado la capacidad de este detector para responder a niveles de monóxido de carbono inferiores a los 100 ppm. Es posible que a las personas con problemas de salud les convenga utilizar un dispositivo de detección de mayor sensibilidad.

Att 9 Page 43, Rev3 8/6/24

Figura 1 – Concentración de monóxido de carliono comparada en función del tiempo y del % de COHb.

Enentes de monóvido de carbono

El monóxido de carbono proviene de la combustión incompleta de los combustibles derivados del carbono como, por ejemplo, gas, carbón de quemar, madera, carbón, combustibles para sistemas de calefacción, gasolina y propano. Muchos - estos combustibles se pueden encontrar en las casas; por ejemplo, en los aparatos de cocina, sistemas de calefacción, calentadores de agua, chimeneas, calentadores portátiles, barbacoas con parrillas y vehículos. Cuando se produce una combustión incompleta en cualquiera de los artículos indicados anteriormente, sin que exista una ventilación adecuada al exterior, se presenta el peligro de intexicación por CO.

Figura 2 - Fuentes de monóxido de carbono

Calentador de agua

Vehiculo

Calentador portátil

Sistema de calefacción

Barbacoa de carbán

Pueden occumir explosiones desastrosas como resultado de fugas de gases combustibles tales como el gas natural (metano) y los gases LPG (butano y propano). Estos tipos de gas se utilizan para prender una variedad de equipos de uso doméstico. Entre los más comunes se encuentran las homillas y los homos para cocinar, los calentadores de agua caliente, las secadoras de ropa, los calefactores portátiles, los dispositivos para prender chimencas y los hornos para calefacción. El gas natural, el butano y el propano pueden causar explosiones devastadoras, aun cuando la fuga emitida por tales equipos es mínima.

Fuentes de gas combustible

Chimenen

Sistemu de calefacción

Secudora de rapa

Calentador de neua

Hornilla

20

Síntomas de la intoxicación por monóxiño de carbono

Los síntomas que se indican a continuación se encuentran relacionados con la intoxicación por monóxido de carbono y todas las personas que habitan en la casa deberían ser conscientes de los mismos:

Exposición de grado menor:

Dolor de cabeza suave, náuseas, vómitos, fatiga (los sintomas se describen frecuentemente como si fueran similares a los provocados por la gripe).

Exposición de grado medio:

Dolor de cabeza con palpitaciones, adormecimiento, confusión, ritmo cardiaco rápido.

Esposición de grado extremo:

Pérdida de conciencia, convulsiones, problemas cardiopulmonares, muerte.

Muchos de los casos de intoxicación por monóxido de carbono que se han dado a conocer han indicado que, si bien las víctimas eran conscientes de que no se sentian bien, se desorientaron hasta el punto de ser incapaces de prevenir las consecuencias saliendo del edifício o pidiendo ayuda. Sas hijos y sus animales domésticos pueden ser los primeros en sufrir los efectos de una intoxicación por CO.

INSTRUCCIONES FARAEL FUNCIONAMIENTO

Instalación

ELHS 800044 SafetySiren™ para Sensor de Monóxido de Carbono y de Gas Combustible se enchufa directamente en un tomacorientes residencial común de 110 vollios CA. La unidad debe quedar verticalmente orientada de manera que toda la inscripción situada en la cara de la misma aparezea en tal posición. Las aberturas de ventilación no deberán estar bloqueadas y la unidad deberá estar siempre desempolvada. Se debe mantener la circulación de aire adecuada a través de la unidad con el fin de obtener una muestra de aire que sea representativa de la atmósfera local. El único tipo de servicio de mantenimiento que la unidad requiere consiste en limpiarla completamente con una aspiradora cada esis meses.

ADVERTENCIA: En el interior de la unidad no existen componentes de interés para el usario. No retire la cubierta trasera. Si se retira la cubierta trasera, la garantía será anulada.

PRECAUCION: Si no se utiliza la unidad durante varias semanas estando desenchufada de la electricidad, alsminulrá su capacidad de detección. La unidad requerirá un poriodo de recelentamiento de 24 horas para volver a funcionar con su capacidad de detección normal.

Una vez que la unidad esté conectada al tomacorrientes de la pared, se encenderá el indicador de luz verde. El indicador de luz roja se iluminará intermitentemente cada tres segundos para indicar que la unidad está funcionando correctamente. Si el indicador de luz roja se ilumina continuamente y se escucha un zumbido, esto quiere decir que la atmósfera contiere un nivel de CO que puede ser peligroso. Si se detecta un alto nivel de gas combustible, la operación continua del indicador con luz roja y y el sonido internitente de la atarna de zumbido indicarán la posibilidad de que exista una condición peligrosa. Si la unidad comienza a sonar cada 5 segundos, o si el indicador de luz roja no se encience cada tres segundos, esto indica que existe un fallo en el sistema. Si cualquiera de estas dos condiciones persiste, desconecte inmediatemente la unidad y llame a Family Safety Products marcando el 616-530-6540.

ADVERTENCIA: Asegúrese de que la unidad no esté conectada a un tomacorrientes contralado por un interruptor de luz.

PRECAUCION: Este detector de monóxido de carbono ha sido diseñado para detectar gas de monóxido de carbono proveniente de CUALQUIER fuente de combustión. No ha sido diseñado para detectar humo, fuego u otro tipo de gases.

Ubicación natione de Rev3 8/6/24

El Consumer Product Safety Commission (Cornisión para la Seguridad de los Productos) recomienda que cada hogar tenga al menos un detector colocado en el área que se utiliza para dormir. Otro detector situado cerca de electrodomésticos o de equipo que consuma gas combustible constituye una medida de seguridad adicional. En la Figura 3 se sugieren ubreaciones dentro de una casa. Asegúrese de que la circulación de aire a través de las aberturas de venificación de la unidad no se encuentre obstaculizada por cortinas, muebles u otros objetos. Se debarán instalar las alarmas de forma que se puedan escuchar en todas las áreas del hogar utilizadas para dormir. Se deberá montener una distancia mínima de cinco pies entre las unidades y cualquier equipo de cocina que funcione con llamas abiertas. Además, evite colocar las unidades cerca de los vapores emitidos por un diluyente de pintura o en áreas cuya temperatura sea inferior a los 40.0/P (4.4°C) o superior a los 100 F 473.78°C).

Precaucion: Este detector sólo indica la presencia en el sensor de gas de monóxido de carbono o de gas combustible. Es posible que en otras áreas también exista monóxido de carbono y gas combustible.

Figura 3. Sugerencias de ubicaciones para los sensores de SafetySiceuTM para Monóxido de Carbono y de Gas Combustible

Comprobación del funcionamiento de SafetySiren™ para Sensor de Monóxido de Carbono y de Gas Combustible

Para comprobar que el conjunto de circuítos esté funcionando correctamente, utilice el botón "Test/Reset" (Comprobación/Reactivación) incorporado a la unidad. Sólo tiene que oprimir el botón durante el funcionamiento normal y observar el indicador de luz roja. El indicador de luz roja permanecerá intrninado y la alarma sonará mientras el botón se manlenga oprimido. Una vez que suelte el botón "Test/Reset", el indicador de luz roja volverá a iluminarse de forma internitente a intervalos de tres segundos y la alarma dejará de sonar, lo cual indica que la unidad ha vuelto a su funcionamiento normal. Compruebe mensualmente el funcionamiento de la unidad. Si la unidad no funciona de la manera indicada anteriormente. desconéctela inmediatamente del suministro de electricidad de CA y llame a Fanijly Safety Products marcando al 616-530-6540.

Reactivación del dispositivo de alarma

También se puede utilizar el botón "Test/Reset" para reactivar el dispositivo de alarma sonora mientras la unidad se encuentra en el modo de alarma. Si se activa la alarma debido a la detección de altos niveles de CO o de gas combustible, simplemente oprima el botón "Test/Reset" para desactivar la alarma sonora. Si continúa existiendo un alto nivel de CO o gas combustible, la alarma volverá a sonora al cabo de 2.5 segundos. El indicador de luz roja permanecerá iluminado mientras la alarma sonora se encuentre desactivada, para indicar que persisten las condiciones de alarma.

QUE HACTER COSENSO SUENALA ALARMA

ADVERTENCIA

Si la alarma suena continuamente debido a la detección de Monóxido de Carbono

La activación de este dispositivo indica la presencia de monóxido de carbono, lo cual puede tener consecuencias FATALES.

1) Si alguien tiene dolor de cabeza o mal de estómago, llame a los Bomberos y trasládese a un área donde circule aire fresco. CUENTE LAS PERSONAS QUE SE ENCUENTRAN PRESENTES PARA ASEGURARSE DE QUE NO FALTE NADIE, ;NO VUELVA A ENTRAR A LA CASA O AL LOCAL HASTA QUE SE HAYA EVACUADO EL AIRE CONTAMINADO Y SE HAYA CORREGIDO EL PROBLEMA!

Se nadie tiene síntomas de malestar relacionados con la intoxicación por monóxido de carbono, simplemente:

2) Oprima nuevamente el botón de reactivación.

3) Apague de inmediato todo electrodoméstico, vehículo u otra fuente de combustión (hormo, calentador de agua, hornilla de carbón de madera, vehículo recreativo, automóvil, o cualquier equipo de casta indole).

4) Haga que el aire fresco circule por el interior de la caso, del local o del vehículo.

5) Llame a un técnico competente para que corrija el problema antes de volver a encender los electrodomésticos o vehículos.

Si suena la alarma intermitente debido a la detección de Gas Combustible

La alarma de este dispositivo suena intermitente para indicar la presencia de gases combustibles, cuya fuente puede ser un horno de recalentar, un calentador de agua, un horno u hornilla para cocinar o una secadora de ropa.

- No active o utilice ningún equipo eléctrico; por ejemplo, interruptores de luz o teléfonos.
- No enchufe o desenchufe πìngún dispositivo eléctrico, puesto que se pueden producir chispas.
- Extínga inmediatemente cualquier llama abierta o llama de piloto.
- · Abra puertas y ventanas para ventilar el área.
- Determine la fuente de la emisión de gas. Solicite el servicio de un técnico competente o llame a la compañía de suministro de gas correspondiente a su área.
- · Apague o cierre el suministro de gas.

Datos específicos relationados com el Sarer Shientas para Sensor de Monázido de Carbono y de Gas Condustible

Suministro eléctrico 110 voltios (CA/60Hz a 10 Vatios
Sensor de CO El Sensor ha	i sido regulado para detectar
específicam	ente CO a 200 ppm, lo cual
permite evit	ar falsas al ar mas
Sensor de GC La alarma se	activa duando el sensor
detecta que existe menos de un 25% del lím	ite inferior de nivel le gas
explosivo; 3.8% por voltanen de gas natural	(merano) en el ambiente;
2.1% por volumen de gas LP (propano) en e	l ambiente
Temperatura	a 37.8°C (100%F)
Alarma sonora	IB continuos a 10 pies
Para gas con	ibustible, alarma intermitente
Alarma visible	de 3 segundos durante
funcionamiento normal); el indicador de luz	ROJA permanece encenido
cuando existe una condición de alarma.	
Funcionamiento del	
indicador con luz verde Iluminación	continua cuando la unidad se
encuentra fu	ncionando bajo condiciones
de pelígro.	
Frecuencia de detección Para CO, To	ma de muestra de aire cada 2.3
Para Gas Combustible, toma de muestra de a	aire continua, espués de
calentamiento inicial de 2.5 minutos	
Prucba El botón "Te	est" permite comprobar que le
unidad esté funcionando correctamente. Al j	ponetio nuevamente en cl
modo de alarma, el botón "Test" volverá a a	ctivar la alarma sonora basta-
que se efectue una nueva toma de aire	
Dimensiones 4.7 pulgadas	s x 3.1 pulgadas x 2.1 pulgada
Peso 12 onzas	

Garantía Limitada

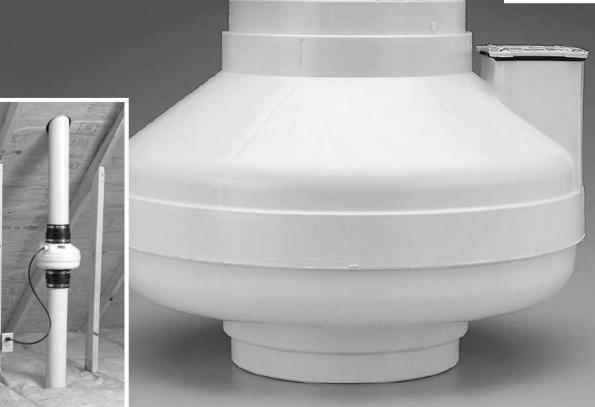
Su SafetySiren^{D4} para Monóxido de Carbono y Gas Corobustible tiene una garantía de cinco años contra defectos de los materiales o de la mano de obra. Esta garantía comienza a partir de la fecha de adquisición, Las unidades que scan devueltas al fabricante durante este período por motivo de tales defectos, serán reparadas o reemplazadas sin cargo alguno. Para solicitar reparaciones dentro del período cubierto por la garantía, o después de después de haber recibido una unidad defectuosa, llarte a Family Safety Products al 616-530-6540 y se la dará un Return Authorization Number (RAN - Número de Aprobación de Devoluciones). Escriba una nota describiendo el problema. Dirija el envíe de la unidad a la dirección que figira más sobajo e incluya cl RAN.

La garantía cubre únicumente los defectos de material o de mano de obra en unidades sometidas a uso normal, pero no cubre daños por manejo negligente, uso indebido o cuidado inapropiado. Importante: no retire la cubierta trasera. El becho de retirar la cubierta trasera tendrá como resultado la anulación de la garantía. Esta garantía prevalece sobre cualquier otra garantía, bien sea ésta explícita o implícita.

Fanily Safety Products, Inc., no asume la responsabilidad de ningún lesión que pueda sufrir una persona, de ningún daño a la propiedad o de ningún daño accidental o emergente que pueda tener origen en una fuga de gas, incendio o explosión. El único recurso derivado del incumplimiento de esta garantia limitada no sobrepasará, bajo ninguna circumstancia, el precio de adquisición del producto. Su SafetySiren™ para Monóxido de Carbono y Gas Combustible no constituye un seguro de la propiedad, un seguro contra daños y perjuicios, un seguro de vida o de cualquier otro tipo.

Esta garantia le otorga serechos legales específicos. Puede que usted

goce de otros derechos que pueden variar de un estado a otro.


Family Safety Products, Inc. 2879 Remico SW Grandville, MJ 49418 USA

HP SERIES

FANS FOR RADON APPLICATIONS WITH IMPROVED UV RESISTANCE!

TRUST THE INDUSTRY STANDARD. Here's Why:

Don't put your reputation at stake by installing a fan you know won't perform like a Fantech! For nearly twenty years, Fantech has manufactured quality ventilation equipment for Radon applications. Fantech is the fan

Radon contractors have turned to in over 1,000,000 successful Radon installations worldwide.

Fantech external rotor motor

FANTECH HP SERIES FANS MEET THE CHALLENGES OF RADON APPLICATIONS:

HOUSING

- UV resistant, UL Listed durable plastic
- UL Listed for use in commercial applications
- Factory sealed to prevent leakage
- Watertight electrical terminal box
- Approved for mounting in wet locations i.e. Outdoors MOTOR
- Totally enclosed for protection
- High efficiency EBM motorized impeller
- Automatic reset thermal overload protection
- Average life expectancy of 7-10 years under continuous load conditions

RELIABILITY

- Five Year Full Factory Warranty
- Over 1,000,000 successful radon installations worldwide

HP Series Fans are Specially Designed with Higher Pressure Capabilities for Radon Mitigation Applications

MOST RADON MITIGATORS WHO PREVIOUSLY USED THE FANTECH FR SERIES FANS HAVE SWITCHED TO THE NEW HP SERIES.

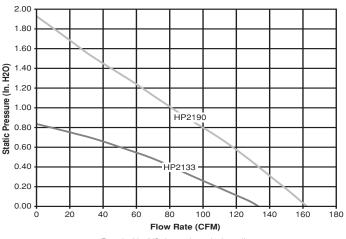
PERFORMANCE DATA

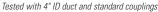
Fan	Volts	Wattage	Max.		CFM vs. Static Pressure in Inches W.G.							
Model	VOILS	Range	Amps	0"	0.5"	0.75"	1.0"	1.25"	1.5"	1.75"	2.0"	Ps
HP2133	115	14 - 20	0.17	134	68	19	-	-	-	-	-	0.84
HP2190	115	60 - 85	0.78	163	126	104	81	58	35	15	-	1.93
HP175	115	44 - 65	0.57	151	112	91	70	40	12	-	-	1.66
HP190	115	60 - 85	0.78	157	123	106	89	67	45	18	1	2.01
HP220	115	85 - 152	1.30	344	260	226	193	166	137	102	58	2.46

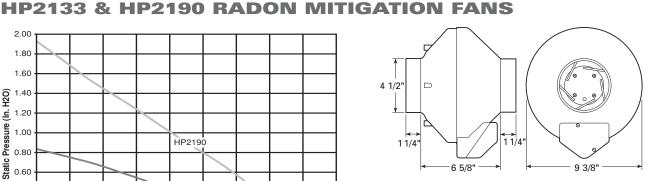
PERFORMANCE CURVES

Fantech provides you with independently tested performance specifications.

The performance curves shown in this brochure are representative of the actual test results recorded at Texas Engineering Experiment Station/Energy Systems Lab, a recognized testing authority for HVI. Testing was done in accordance with AMCA Standard 210-85 and HVI 916 Test Procedures. Performance graphs show air flow vs. static pressure.

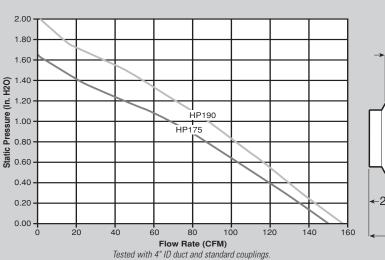

Use of HP Series fans in low resistance applications such as bathroom venting will result in elevated sound levels. We suggest FR Series or other Fantech fans for such applications.


HP FEATURES INCLUDE

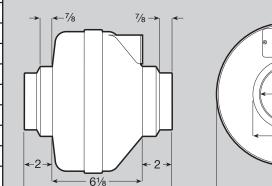

- Improved UV resistant housings approved for commercial applications.
- UL Approved for Wet Locations (Outdoors)
- Sealed housings and wiring boxes to prevent Radon leakage or water penetration
- Energy efficient permanent split capacitor motors
- External wiring box
- Full Five Year Factory Warranty

NOTE:

Installations that will result in condensate forming in the outlet ducting should have a condensate bypass installed to route the condensate outside of the fan housing. Conditions that are likely to produce condensate include but are not limited to: outdoor installations in cold climates, long lengths of outlet ducting, high moisture content in soil and thin wall or aluminum outlet ducting. Failure to install a proper condensate bypass may void any warranty claims.


HP2133 - For applications where lower pressure and flow are needed. Record low power consumption of 14-20 watts! Often used where there is good sub slab communication and lower Radon levels.

HP2190 - Performance like the HP190 but in a smaller housing. Performance suitable for the majority of installations.

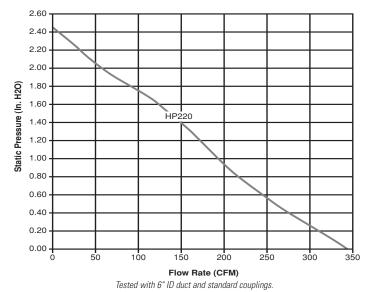

Fans are attached to PVC pipe using flexible couplings.

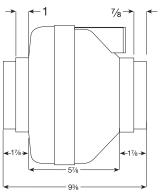
For 4" PVC pipe use Indiana Seals #156-44, Pipeconx PCX 56-44 or equivalent. For 3" PVC pipe use Indiana Seals #156-43, Pipeconx PCX 56-43 or equivalent.

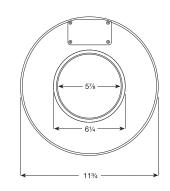
HP175 & HP190 RADON MITIGATION FANS

101/8

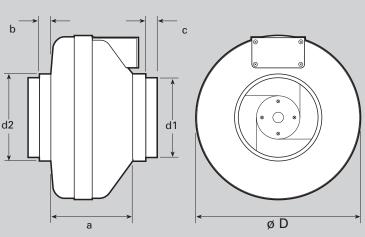
HP175 – The economical choice where slightly less air flow is needed. Often used where there is good sub slab communication and lower Radon levels.


HP190 – The standard for Radon Mitigation. Ideally tailored performance curve for a vast majority of your mitigations.


Fans are attached to PVC pipe using flexible couplings. For 4" PVC pipe use Indiana Seals #151-44, Pipeconx PCX 51-44 or equivalent.


For 3" PVC pipe use Indiana Seals #156-43, Pipeconx PCX 56-43 or equivalent.

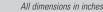
HP220 RADON MITIGATION FAN


HP 220 – Excellent choice for systems with elevated radon levels, poor communication, multiple suction points and large subslab footprint. Replaces FR 175.

Fans are attached to PVC pipe using flexible couplings.

For 4" PVC pipe use Indiana Seals #156-64, Pipeconx PCX 56-64 or equivalent. For 3" PVC pipe use Indiana Seals #156-63, Pipeconx PCX 56-63 or equivalent.

FR SERIES THE ORIGINAL MITIGATOR



DIMENSIONAL DATA										
model	øD	d1	d2	а	b	С				
FR100	9 1/2	3 7/8	4 7/8	6 1/8	7/8	7/8				
FR110	9 1/2	3 7/8	4 7/8	6 1/8	7/8	7/8				
FR125	9 1/2	-	4 7/8	6 1/8	7/8	-				
FR140	11 3/4	5 7/8	6 1/4	5 7/8	1	7/8				
FR150	11 3/4	5 7/8	6 1/4	5 7/8	1	7/8				
FR160	11 3/4	5 7/8	6 1/4	6 3/8	1	7/8				
FR200	13 1/4	7 7/8	9 7/8	6 1/4	1 1/2	1 1/2				
FR225	13 1/4	7 7/8	9 7/8	6 1/4	1 1/2	1 1/2				
FR250	13 1/4	-	9 7/8	6 1/4	-	1 1/2				

Att 9 Page 53, Rev3 8/6/24

PERFORMANCE DATA

Fan	Energy	DDM	Valta	Rated	Wattage	Max.		CFM vs	. Static	Pressure	e in Inch	es W.G.		Max.	Duct
Model	Star	RPM	Volts	Watts	Range	Amps	0"	.2"	.4"	.6"	.8"	1.0"	1.5"	Ps	Dia.
FR100	\checkmark	2950	120	21.2	13 - 22	0.18	137	110	83	60	21	-	-	0.90"	4"
FR125	\checkmark	2950	115	18	15 - 18	0.18	148	120	88	47	-	-	-	0.79"	5"
FR150	\checkmark	2750	120	71	54 - 72	0.67	263	230	198	167	136	106	17	1.58"	6"
FR160	-	2750	115	129	103 - 130	1.14	289	260	233	206	179	154	89	2.32"	6"
FR200	\checkmark	2750	115	122	106 - 128	1.11	408	360	308	259	213	173	72	2.14"	8"
FR225	\checkmark	3100	115	137	111 - 152	1.35	429	400	366	332	297	260	168	2.48"	8"
FR250*	-	2850	115	241	146 - 248	2.40	649	600	553	506	454	403	294	2.58"	10"

FR Series performance is shown with ducted outlet. Per HV/s Certified Ratings Program, charted air flow performance has been derated by a factor based on actual test results and the certified rate at .2 inches WG. * Also available with 8" duct connection. Model FR 250-8. Special Order.

NOTE

Installations that will result in condensate forming in the outlet ducting should have a condensate bypass installed to route the condensate outside of the fan housing. Conditions that are likely to produce condensate include but are not limited to: outdoor installations in cold climates, long lengths of outlet ducting, high moisture content in soil and thin wall or aluminum outlet ducting. Failure to install a proper condensate bypass may void any warranty claims.

EVE DURING ENTIRE WARRANTY PERIOD:

FANTECH will replace any fan which has a factory defect in workmanship or material. Product may need to be returned to the Fantech factory, together with a

WARRANTY copy of the bill of sale and identified with RMA number.

FOR FACTORY RETURN YOU MUST:

- Have a Return Materials Authorization (RMA) number. This may be obtained by calling FANTECH
- either in the USA at 1.800.747.1762 or in CANADA at 1.800.565.3548. Please have bill of sale available.
- The RMA number must be clearly written on the outside of the carton, or the carton will be refused. • All parts and/or product will be repaired/replaced and shipped back to buyer; no credit will be issued.

0R

The Distributor may place an order for the warranty fan and is invoiced.

The Distributor will receive a credit equal to the invoice only after product is returned prepaid and verified to be defective.

FANTECH WARRANTY TERMS DO NOT PROVIDE FOR REPLACEMENT WITHOUT CHARGE PRIOR TO INSPECTION FOR A DEFECT. REPLACEMENTS ISSUED IN ADVANCE OF DEFECT INSPECTION ARE INVOICED, AND CREDIT IS PENDING INSPECTION OF RETURNED MATERIAL. DEFECTIVE MATERIAL RETURNED BY END USERS SHOULD NOT BE REPLACED BY THE DISTRIBUTOR WITHOUT CHARGE TO THE END USER, AS CREDIT TO DISTRIBUTOR'S ACCOUNT WILL BE PENDING INSPECTION AND VERIFI-CATION OF ACTUAL DEFECT BY FANTECH.

THE FOLLOWING WARRANTIES DO NOT APPLY:

• Damages from shipping, either concealed or visible. Claim must be filed with freight company.

2. Misuse, abuse, abnormal use, or accident, and 3. Incorrect electrical voltage or current.

· Damages resulting from improper wiring or installation.

• Removal or any alteration made on the FANTECH label control number or date of manufacture.

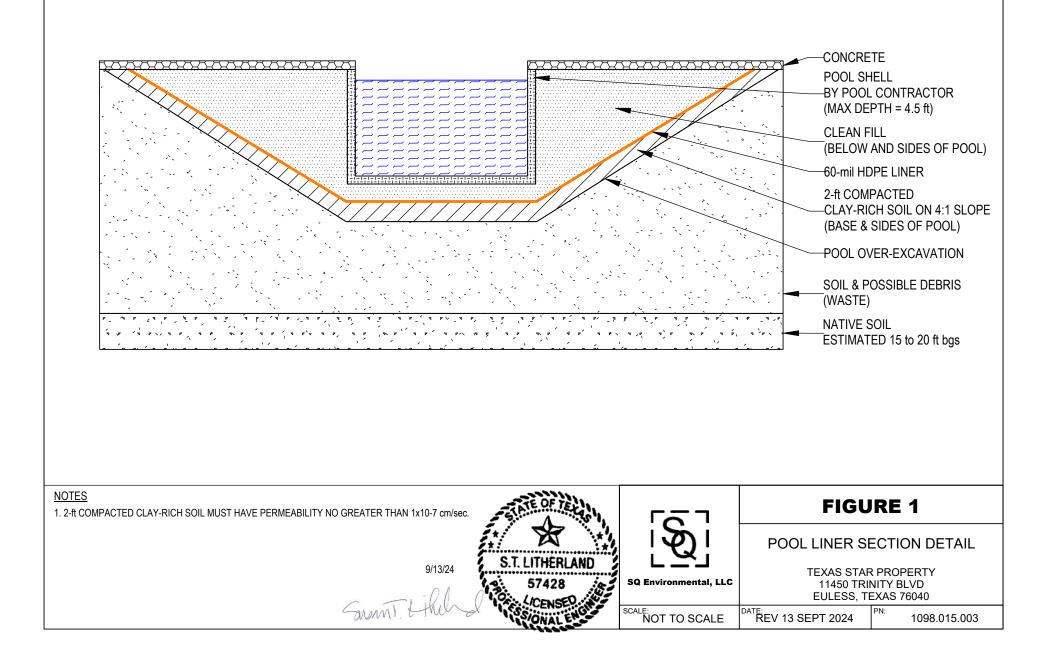
Damages or failure caused by acts of God, or resulting from improper consumer procedures, such as:

 Any other warranty, expressed, implied or written, and to any consequential or incidental damages, loss or property, revenues, or profit, or costs of removal, installation or reinstallation, for any breach of warranty.

WARRANTY VALIDATION

1. Improper maintenance

- The user must keep a copy of the bill of sale to verify purchase date.
- These warranties give you specific legal rights, and are subject to an applicable consumer protection legislation. You may have additional rights which vary from state to state.


DISTRIBUTED BY:

United States 10048 Industrial Blvd. • Lenexa, KS 66215 • 1.800.747.1762 • www.fantech.net Canada 50 Kanalflakt Way • Bouctouche, NB E4S 3M5 • 1.800.565.3548 • www.fantech.net

Item #: 411741 Rev Date: 021010

Fantech, reserves the right to modify, at any time and without notice, any or all of its products' features, designs, components and specifications to maintain their technological leadership position.

Landprint.

7822 Mason Dells Drive Dallas, Texas 75230 469,967.3100 www.landprint.la

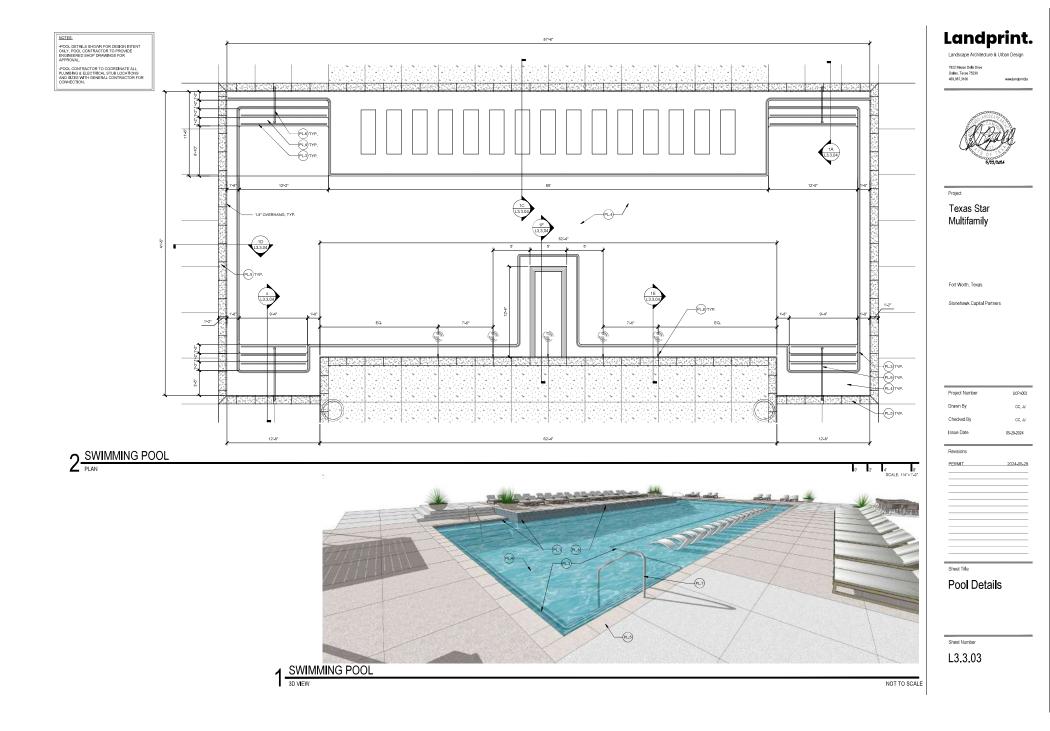
Texas Star Multifamily

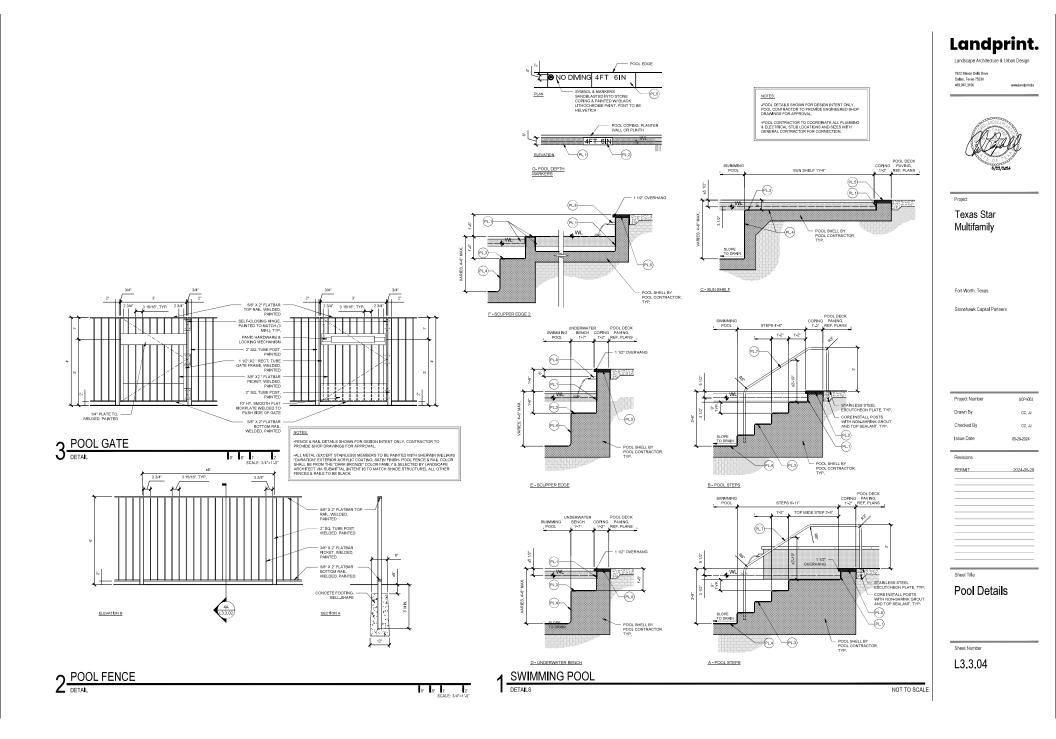
Project

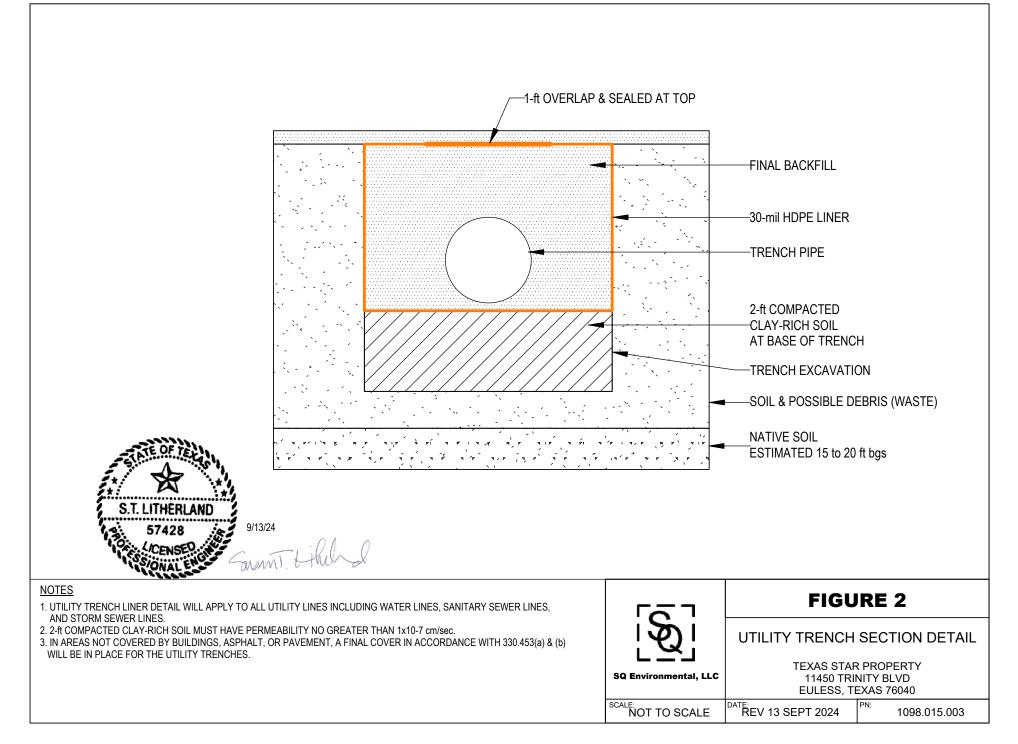
Fort Worth, Texas

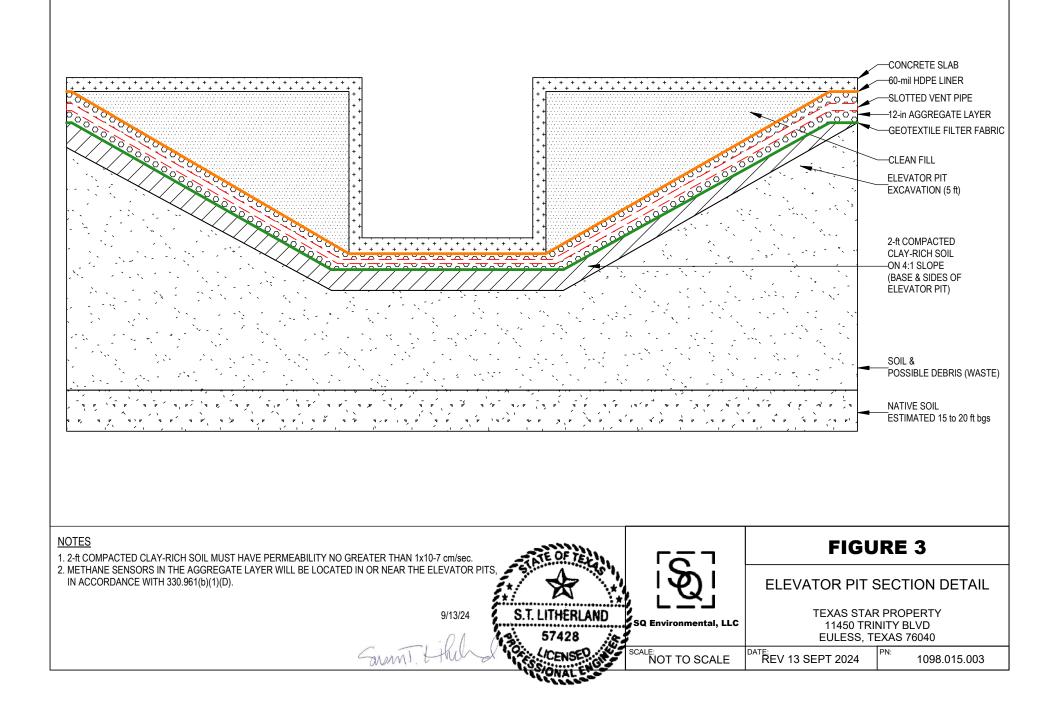
Stonehawk Capital Partners

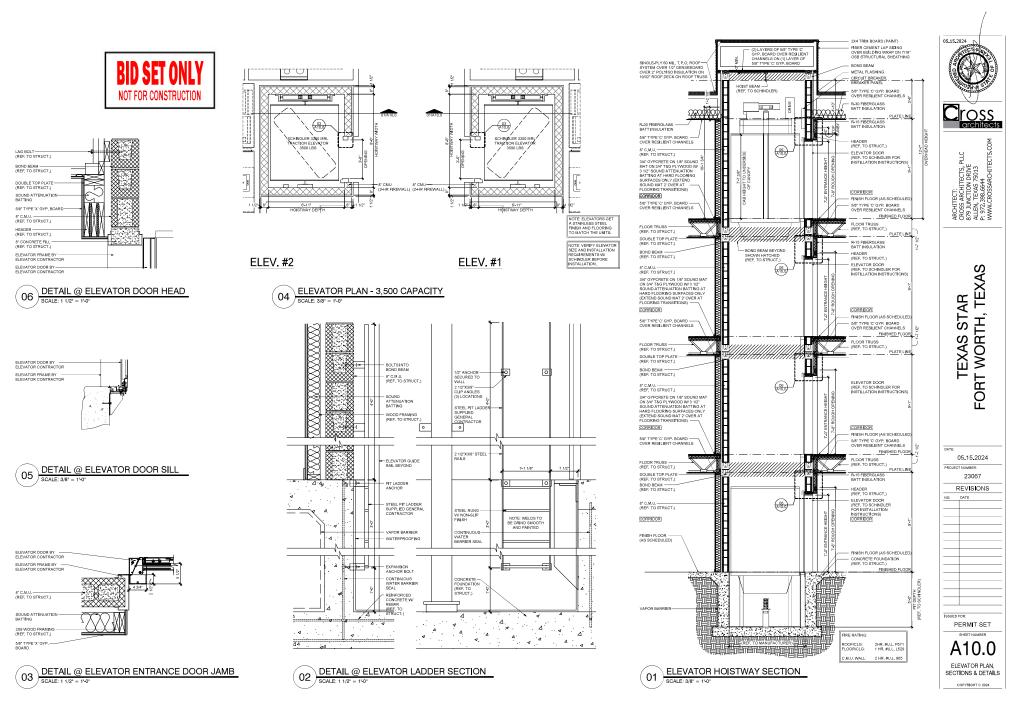
Project Number	SCPn003
Drawn By	CC, JJ
Checked By	CC, JJ
ssue Date	05-29-2024
Revisions	
PERMIT	2024-05-29
Sheet Title	
Sitework	
Materials	
Schedule	


Sheet Number L3.0.01


			rdscape Material Sch							
			DECRIPTION/MODEL # CRETE	COLOR	FINISH	CONTACT	REMARK			
			STANDARD GREY CONCRETE 1	GREY	LIGHT BROOM	CONTRACTOR'S CHOICE	CONTRACTOR TO PROVIDE EXE MOCK-UP FOR LANDSCAFE ARCHITECT APPROVAL PRIOR TO CONSTRUCTION. SAW CUT JOINTS ONLY REF. PLANEFOR LAYOUT, REF. DETALS SHEET L13.01			
		C.2	STANDARD GREY CONCRETE 2	GREY	MEDIUM SANDBLAST	CONTRACTOR'S CHOICE	CONTRACTOR TO PROVIDE 3X3 WOCK-UP FOR LANDSCAPE ARCHITECT APPROVAL PRIOR TO CONSTRUCTION, SAW CUT JOINTS ONLY REF, PLANS FOR LAYOUT, REF, DETAILS SHEET L3.01			
		C.3	CAST-IN-PLACE CONCRETE WALL	GREY	RUBBED CONCRETE	CONTRACTOR'S CHOICE	SHOWN FOR DESIGN INTENT ONLY, MATERIALS AND DETAILS OF ALL RETAINING/PLANTER WALLS TO BE VERIFIED BY OWNER AND STRUCTURAL ENGINEER			
		C.4	BURNISHED BLOCK WALL, WRIDUS SIZES AND SHAPES, STACKED BOND PATTERN	COMAL	BTANDARD	TEXASBULDINGPRODUCTS.C	CONTRACTOR TO PROVIDE SUBMITTAL LANDSCAPE ARCHITECT APPROVAL PROR TO CONSTRUCTION, REF DETAILS SHEET L3 3 07 & L3 3 09			
		EDG								
			3/16" X 4" STEEL EDGING	BLACK	POWERCOATED	JD RUSSELL CO 800,888.6672	LOCATED PER PLAN, TYPICALLY AT ALL AREAS SEPERATING SCO FROM PLANTING BEDS AND GRAVEL BEDS			
	CONTRACTOR TO PROVIDE QUANTITY TO INSURE FUEL	FFAM	CE & GATE				JEEDO			
1	COVERAGE AS SHOWN ON PLANS, CONTRACTOR TO SUBMIT SAMPLE TO LA, FOR APPROVAL	FENR	POOL FENCE	BRONZE OR BLACK (TO	PAINTED	CONTRACTOR'S CHOICE	REF. PLANS FOR LAYOUT, REF. DETAILS ON SHEET			
2	CONTRACTOR TO PROVIDE QUANTITIY TO INSURE FULL	F.2	48" HEICHT	MATCH ARCHITECTURE)			13.3.04			
(COVERAGE AS SHOWN ON PLANS. CONTRACTOR TO SUBWIT BAMPLE TO LA. FOR APPROVAL		PRIVATE YARD FENCE, BEER GARDEN FENCE, DOG PARK FENCE & GUARDRAIL 42' HEIGHT	BRONZE OR BLACK (TO MATCH ARCHITECTURE)		CONTRACTOR'S CHOICE	REF, PLANS FOR LAYOUT, REF, DETAILS ON SHEET L3.3.08			
	CONTRACTOR TO PROVIDE QUANTITIY TO INSURE FULL COVERAGE AS SHOWN ON PLANS, CONTRACTOR TO		PERIMETER FENCE 72" HEIGHT	ERONZE OR BLACK (TO MATCH ARCHITECTURE)		CONTRACTOR'S CHOICE	REF. PLANS FOR LAYOUT, REF. DETAILS ON SHEET L3.3.08			
	SUBMIT SAMPLE TO LA FOR APPROVAL EXPOSED ACCREGATE POOL FINISH	F.4	WOOD FENCE AT SOUTHERN PROPOERTY LINE - 72° HEIGHT, HORIZONTAL BOARD-ON-BOARD, STAINED CEDAR	BENJAWIN MOORE CORDOVAN BROWN	PAINTED	CONTRACTOR'S CHOICE	REF. PLANS FOR LAYOUT, REF. DETAILS ON SHEET L3.3.08			
DICE	CONTRACTOR TO PROVIDE SAMPLES OF COLOR TO	STARED LEURE								
	LANDSCAPE ARCHITEC FOR APPROVAL PRIOR TO			· · · · · · · · · · · · · · · · · · ·						
IOICE	PURCHASING CONTRACTOR TO PROVIDE QUANTITIM TO INSURE FULL COVERAGE AS SHOWN ON PLANS. CONTRACTOR TO SUBMIT SAMPLE TO L.A. FOR APPROVAL	G.1	DECOMPOSED GRANITE	NATURAL	NATURAL	CONTRACTOR'S CHOICE	COMPACTED AND WATERED IN, 4" DEPT MINIMUM CONTRACTOR TO SUBMIT SAMPLES FOR APPROVAL BY LANDSCAPE ARCHITECT			
E RE.CDM	OR APPRIVED EQUAL, INSTALL PER MANUFACTUER'S SPECIFICATIONS, CONTRACTOR TO PROVIDE SUBMITTAL FOR APPROVAL BY OWNER AND LANDSCAPE ARCHITECT	G.2	#57 STONE, 1 34" AGGREGATE WASHED, GENERAL DRIANGE GRAVEL	NATURAL	NATURAL	CONTRACTOR'S CHOICE	FOR GENERAL DRAINAGE AND COMPACTED FILL			
223		G.3	MEDIUM LAVA ROCK FIRE PIT ROCK	STANDARD	NATURAL	WOODLAND DIRECT 844.279.0343	CONTRACTOR TO SUBMIT SAMPLES TO LANDSCAPE ARCHITECT FOR APPROVAL PRIOR TO INSTALLATION			
HOICE	REF. PLANS FOR LAYOUT, REF. DETAILS ON SHEET									
	13 3 02	G.4	TEXAS BLACK STAR, 2" TO 3" DWM.	NATURAL	NATURAL	OUTDOOR WAREHOUSE 972.423.4001	OR APPRIVED EQUAL, CONTRACTOR TO SUBMIT SAMPLES TO LANDSCAPE ARCHITECT FOR APPROVAL PRIOR TO INSTALLATION			
	LOCATE PER PLAN. INSTALL PER MANUFACTUER'S	MISC	ELLANEOUS							
	SPECIFICATIONS SURFACED MOUNTED, LOCATE PER PLAN, INSTALL PER		OUTDODR GRILL	STAINLESS STEEL	STANLESS STEEL	AELCORPORTION	INSTALL PER MANUFACTUER'S SPECIFICATIONS, REF.			
TS	MANUFACTUER'S SPECIFICATIONS LOCATE PER PLAN. INSTALL PER MANUFACTUER'S SPECIFICATIONS		AEI CORPORATION PGS T SERIES MODEL # 527TLP WITH EMERGENCY STOP	Charles of the	STATE STATE	LORI HEM GHAUS 949.474.3070	DETAILS ON SHEET L3.3.09			
	LOCATE PER PLAN, INSTALL PER MANUFACTURE'S SPECIFICATIONS	10.25	OUTDOOR GRILL AELCORPORATION DOUBLE DOOR CABINET	STAINLESS STEEL		AEI CORPORTION LORI HEMIGHAUS 949 474 3071	INSTALL PER MANUFACTUER'S SPECIFICATIONS, REF. DETAILS ON SHEET L3 3.00			
ете	LOCATE PER PLAN, INSTALL PER MANUFACTUER'S SPECIFICATIONS	M.3	FREPLACE BURNER, 55" CROSSFIRE H SYSTEM BY WARMING TRENDS, (1) PER FIRE PIT	STANDARD	STANDARD	WOODLAND DIRECT 844 279.0343	INSTALL PER MANUFACTUER'S SPECIFICATIONS, REF. DETAILS ON SHEET L3 3.07			
COM	OR APPROVED EQUAL, LOCATE PER PLAN, INSTALL PER MANUFACTUER'S SPECIFICATIONS OR APPROVED EQUAL, LOCATE PER PLAN	M.5	BIG ASS FAN 16 BLACK 60° DIN	BLACK	POWERCOATED	BI3 ASS FANS 877 244 3267	INSTALL PER MANUFACTUER'S SPECIFICATIONS, REF. DETAILS ON SHEET L3.3.06			
M	OR APPROVED EQUAL, LOCATE PER PLAN. REF. TO DETAIL ON SHEET L3.3.01	M.6	ARTIFICIAL TURF - NATIVE GRASS	STANDARD	STANDARD	SYNTHETIC GRASS PROS MARCO GORTANA 214.577.30804	INSTALL PER MANUFACTUER'S SPECIFICATIONS, REF. DETAILS ON SHEET L3.3.01			
HOICE		M.7	PUTTING GREEN TURF - SHORT GAME ELITE	STANDARD	STANDARD	SYNTHETIC GRASS PROS MARCO GORTANA	INSTALL PER MANUFACTUER'S SPECIFICATIONS, REF. DETAILS ON SHEET L3 3.0"			
HOICE	LIMESTONE BLOCK, LOCATE PER PLAN. PROVIDE	M.8	STEEL PIREPLACE BASE BOX	BRONZE OR BLACK (TO MATCH	PAINTED	214 577 30804 CONTRACTOR'S CHOICE	INSTALL PER MANUFACTOER'S SPECIFICATIONS, REF. DETAILS ON SHEET L3.3.07			
	PHOTOS OF ACTUAL SLABS FOR APPROVAL PRIOR TO PURCHASING, EXPOSED WEDGE HOLES ON PERIMETER EDGES.	M.9	WOOF FIBER ENGINEERED WOOD FIBER MULCH	ARCHITECTURE) NATURAL	NATURAL	DOG-ON-IT-PARKS.COM	OR APPRIVED EQUAL, INSTALL PER MANUFACTUER'S SPECIFICATIONS			


	1990 (1990) A A K-1902 (1990)				
PL.1	WATERLINE TILE WOGA 2042YZV PORCELAIN SIZE: 2X24	MID WARM GREY	STANDARD	KNOX TILE DONNA MOLENDON 214.761.5659	CONTRACTOR TO PROVIDE QUANTITY TO INSURE FUL COVERAGE AS SHOWN ON PLANS, CONTRACTOR TO SUBMIT SAMPLE TO L.A. FOR APPROVAL
PL.2	WATERLINE DEPTH MARKERS CUSTOM MOGAIC 1X1 SERIES: FRESH	FIELD COLOR: WHITE GLOSSY 1X1 SCRIPT COLOR: BLACK GLOSSY	STANDARD	KNOX TILE DONNA MCLENDON 214.761.5670	CONTRACTOR TO PROVIDE QUANTITY TO INSURE FUL COVERAGE AS SHOWN ON PLANS. CONTRACTOR TO SUBWIT BAMPLE TO L.A. FOR APPROVAL
PL3	SELINEARTOR/ BENCH LINE RESH BLACK SIZE: 1X1	BLACK	ANTI-SLIP	KNOX TILE DONNA MOLENDON 214.761.5671	CONTRACTOR TO PROVIDE QUANTITIE TO INSURE FUL COVERAGE AS SHOWN ON PLANS, CONTRACTOR TO SUBMIT SAMPLE TO L.A. FOR APPROVAL
PL.4	MAMOND BRITE EXPOSED AGGREGATE POOL FINISH	FRENCH GREAY	STANDARD	SGM 809.641.0247	EXPOSED AGGREGATE POOL FINISH
PL.5	JUEDERS UMESTONE POOL COPING, 2"THICK	CHARCOAL	SAWN TOP & BCTTON & 4 SIDES	CONTRACORS CHOICE	CONTRACTOR TO PROVIDE SAMPLES OF COLOR TO LANDSCAPE ARCHITEC FOR APPROVAL PRIOR TO PURCHASING
PL.6	POOL HANDRAIL, 1 1/2" DIA.	STAINLESS STEEL	BRUSHED #4	CONTRACTOR'S CHOICE	CONTRACTOR TO PROVIDE QUANTITY TO INSURE FUL COVERAGE AS SHOWN ON PLANS: CONTRACTOR TO SUBMIT SAMPLE TO LA FOR APPROVAL
PL.8	2' DIAMETER CANNON SCUPPER, ROUND ES2UTCHEON PLATE	STAINLESS STEEL	POUSHED	BCBE WATER & FIRE FEATURE, BCBEWATERANDFIRE.CDM	OR APPRIVED EQUAL, INSTALL PER MANUFACTUER'S SPECIFICATIONS, CONTRACTOR TO PROVIDE SUBMITT FOR APPROVAL BY OWNER AND LANDSCAPE ARCHITE
RAIL	ING				
R.1	STEPS HANDRAIL 1 1/2" DIA	TO MATCH ARCHITECTURAL RAILING	PAINTED	CONTRACTOR'S CHOICE	REF. PLANS FOR LAYOUT, REF. DETAILS ON SHEET L3 3 02
SITE	FURNITURE	post and			
	TRASH RECEPTACLE, DUMOR WODEL# 272-32-80	TEXTURED CHARCOAL		DLMOR 800.558.4018	LOCATE PER PLAN. INSTALL PER MANUFACTUER'S SPECIFICATIONS
	SKE RACK DUMOR MODEL # 290-00/S-1	TEXTURED CHARCOAL		DLMOR 800.598.4019	SURFACED MOUNTED. LOCATE PER PLAN. INSTALL PE MANUFACTUER'S SPECIFICATIONS
SF.3	PET STATION MODEL# 1003-L	GREEN	POWERCOATED	DOGIPOT PRODCUTS 80(354.7851	LOCATE PER PLAN. INSTALL PER MANUFACTUER'S SPECIFICATIONS
SF.4	TABLE 299-60H\$ FREESTANDING 2 NENCHES	TEXTURED CHARCOAL	POWERCOATED	DLMOR 800.598.4019	LOCATE PER PLAN. INSTALL PER MANUFACTUR'S SPECIFICATIONS
SF.5	CONCRETE CORN HOLE BOARDS	GREY	SMOOTH	STONE AGE CONCRETE TABLE TENNIS 541.671.6318	LOCATE PER PLAN: INSTALL PER MANUFACTUER'S SPECIFICATIONS
SF.6	20G WATERING STATION	SATIN FINISH	STAINLESS STEEL	DOG-ON-IT-PARKS.COM	OR APPROVED EQUAL, LÓCATE PER PLAN, INSTALL PE MANUFACTUER'S SPECIFICATIONS
SF.7	WOOD ARC HAMMOCK STAND - SREEDAN LARCH	WOOD	STANDARD	CARIBBEANHAMMOCKS.COM	
SF.8	12"L X 18 W X 24"H METAL BOX PLANTER: 85 \$721824	F&F DARK BRONZE MATTE	POWDERCOATED	FORMAND FIBER.COM	OR APPROVED EQUAL, LOCATE PER PLAN, REF. TO DETAIL ON SHEET L3.3.01
STOP					
5.1	LEUDER LINESTONE COUNTER TOP 114" MIN, THICKNESS	CHARCOAL	SAWN WITH EASED EDGES ON ALL SIDES	CONTRACTOR'S CHOICE	
5.2	EUDER LINESTONE BLOCK 90° X 18° X 14°	CHARCOAL	REF. DETAIL ON SHEET L3.3.01	CONTRACTOR'S CHOICE	LIMESTONE BLOCK, LOCATE PER PLAN, PROVIDE PHOTOS OF ACTUAL SLABS FOR APPROVAL PRIOR TO PURCHASING, EXPOSED WEDGE HOLES ON PERMETE EDGES.


POOL


Landscape Architecture & Urban Design

10 SOIL TESTS

This Section provides the results of soil tests and site assessments completed at the subject property. Multiple subsurface investigations conducted at the development site for geotechnical or environmental purposes (Soil Test III) were completed in 2022 and 2023, complying with §330.953(c)(3). Below are the attachments included in this Section.

- Attachment 10A: *Geotechnical Engineering Report*, Residential Development at Trinity Boulevard, 11450 Trinity Boulevard, Euless, Texas 76040, prepared by ECS Southwest LLP, prepared for Stonehawk Capital Partners LLC, dated 19 April 2022.
- Attachment 10B: Geotechnical Letter Report on Test-Pits, Residential Development at Trinity Boulevard, 11450 Trinity Boulevard, Euless, Texas 76040, prepared by ECS Southwest LLP, prepared for Stonehawk Capital Partners LLC, dated 20 May 2022.
- Attachment 10C: Tables and boring logs from the APAR.

VCP ASSESSMENT ACTIVITIES

SQE completed a Phase I ESA for the subject property and east-adjacent property dated 4 February 2022, and a Limited Phase II ESA dated 13 July 2022. The subject property and east-adjacent property were enrolled (as one tract which also includes the 1.987-acre southwest-adjacent parcel) into the TCEQ VCP in August 2022 and assigned VCP No. 3237.

Following enrollment into the VCP, additional assessment activities were conducted. An APAR was submitted to TCEQ on 31 August 2023. The assessment activities were conducted to investigate potential sources on the subject property and on adjacent properties. A summary of the sampling activities is provided below.

- Thirty-nine soil borings were completed to depths up to 35 ft bgs on the VCP No. 3237 property (30 located on the subject property). Twenty-six soil samples were collected (20 samples from the subject property) and submitted to the laboratory for analysis of TPH, RCRA 8 metals, and/or VOCs.
- Six permanent groundwater monitoring wells were installed on the on the VCP No. 3237 property (three wells located on the subject property, two wells on the east-adjacent property, and one well on the south-adjacent property), to total depths ranging from 20 and 35 ft bgs. Four groundwater monitoring/sampling events were conducted, and groundwater samples were analyzed for TPH, RCRA 8 metals, and/or VOCs.
- Twenty-two soil vapor sample points were installed on the VCP No. 3237 property (16 located on the subject property) to depths ranging from 5 to 12 ft bgs, and 22 soil vapor samples were collected (16 from the subject property) for analysis of VOCs and/or methane.
- Nine soil borings and nine soil test pits were completed on the VCP No. 3237 property (10 located on the subject property) as part of geotechnical activities.

As documented in the APAR, all identified sources have been fully investigated.

SUBJECT PROPERTY ASSESSMENT RESULTS

As discussed above, soil, groundwater, and soil vapor samples have been collected from the subject property. The analytical results of the samples collected at the subject property were compared to the TCEQ TRRP PCLs for residential property use, site-specific Tier 2 PCLs, and the Texas-Specific Background Concentrations, published in the TRRP Rules (30 TAC §350). The TRRP exposure pathways considered in the assessment included the soil-to-groundwater (^{GW}Soil_{Ing}), soil direct-contact (^{Tot}Soil_{Comb}), and soil-to-air inhalation (^{Air}Soil_{Inh-V}) for soil, and the groundwater ingestion (^{GW}GW_{Ing}) and groundwater-to-air inhalation (^{Air}GW_{Inh-V}) pathways for groundwater. A summary of the sample results is provided below. Data summary tables and figures are provided in **Attachment 10C**.

Soil and Groundwater Sampling

- <u>Soil Samples</u> No concentrations of TPH, metals, or VOC constituents were reported above applicable residential PCLs in soil samples collected from the subject property. A data summary table of soil sample analytical results is provided in **Attachment 10C**.
- Groundwater Samples No concentrations of TPH or metals constituents were reported above applicable residential PCLs in groundwater samples collected from the subject property. No concentrations of VOC constituents were reported above applicable residential PCLs in groundwater samples collected from the subject property, with the exception of benzene in one sample collected from well MW-1 in June 2022. The benzene concentration of 0.0945 mg/L in well MW-1 during the June 2022 sampling event was reported above the Tier 1 residential ^{GW}GW_{Ing} PCL of 0.005 mg/L. Benzene was not detected above the laboratory sample detection limit (SDL) in the groundwater samples collected from well MW-1 during the previous two sampling events or the following sampling event, and was not detected above the SDL in any other groundwater samples collected from any wells during any other sampling event at the subject property and east-adjacent property. Based on this data, the detection of benzene in one isolated sample does not appear to be indicative of impacts to shallow groundwater on the subject property with this compound. A data summary table of groundwater sample analytical results is provided in **Attachment 10C**.
- <u>Lithology</u> Based on boring logs completed on the subject property, shallow lithology is comprised of silty clays, sands, and gravels (i.e., alluvium) encountered from the ground surface to the maximum total depth (35 ft bgs). The upper 10 ft of soil at the subject property is comprised primarily of sandy clay and clayey sand, and contains a higher clay content than the soil beneath 10 ft. A clay confining unit was observed at 34 ft bgs on the east-adjacent property. Incidental debris within the soil fill was typically encountered between 5 and 20 ft bgs on the subject property. A cross-section is provided as Figure 4 in Attachment 5. Boring logs are provided in Attachment 10C.
- <u>NAPL</u> No light or dense non-aqueous phase liquid (NAPL) was observed in any of the monitoring wells during the three groundwater monitoring events.
- <u>Groundwater Gradient</u> The shallow groundwater flow direction is to the east-southeast, and the gradient is very flat, as shown on the potentiometric surface maps included as Figures 5 and 6 in Attachment 10C. Groundwater level measurements are provided in a data summary table in Attachment 10C.
- <u>GWBU</u> The uppermost GWBU on the subject property was encountered at a depth of approximately 24 to 30 ft bgs. A topographic map is provided as **Figure 4** in **Attachment 2**.

Soil Vapor and Methane Sampling

A total of 16 soil vapor samples were collected from the subject property, four soil vapor samples were collected from the east-adjacent property, and two soil vapor samples from the southwest-adjacent parcel. The sample points were installed to depths of 5 ft bgs or 12 ft bgs using direct-push drilling methods. Samples were analyzed for VOCs by method TO-15 and/or methane by method TO-3. The reported soil vapor concentrations were screened using the residential risk-based exposure limit (RBEL) for air-inhalation (^{Air}RBEL_{Inh}) values. RBEL values were developed by TCEQ under the TRRP Rules for breathing air and not for soil vapor. The soil vapor to human inhalation pathway is not complete. Therefore, for any constituent exceeding a ^{Air}RBEL_{Inh} value, the soil vapor concentration was evaluated using a "Comparison Value." The "Comparison Values" are based on the EPA OSWER guidance document. An exceedance of a "Comparison Value" would suggest that additional evaluation was needed regarding soil vapors and the potential for vapor intrusion. As discussed below, there were no exceedances of the "Comparison Values", in the soil vapor samples collected on the subject with the exception of chlorobenzene in one sample (SV-1 collected at 12 ft bgs) at a concentration of 2.0 mg/m³. The Comparison Value for chlorobenzene is 1.7 mg/m³. As discussed in this Application, a VMS is planned for the subject property. A data summary table of soil vapor sample analytical results is provided in **Attachment 10C**.

Soil vapor samples were collected from a depth of approximately 5 ft bgs at four locations across the subject property and analyzed for methane. The methane concentrations in the 5 ft samples ranged from 0.00042% (SV-A-S) to 0.0091% (SV-1-S). Soil vapor samples collected from seven locations at 12 ft bgs also did not contain methane concentrations above 1%. Methane was reported at a concentration above 1% in five deep soil vapor samples collected from the subject property (SV-1, SV-6, SV-10, SV-11, and SV-B-D) at a depth of 12 ft bgs. The methane concentrations were between 2.5% and 12%. The elevated methane concentrations appear to be confined to the deeper zone beneath 10 ft, and do not appear to be migrating vertically to shallow soils or the surface at concentrations above 0.009%. Methane concentration data is shown on **Figure 8** in **Attachment 7**.

As shown on the boring logs in Attachment 10C, the upper 10 ft of soil at the subject property is made up of primarily sandy clay and clayey sand, and contains a higher clay content than the soil beneath 10 ft. Methane concentrations are delineated to the north, south, east, and west, with the exception of the southeast corner of the subject property. The elevated methane concentrations extend onto the eastadjacent property (eastern portion of Texas Star Property) and onto the Earth Haulers property adjacent south. The gravel pit mining operations that involved the subject property also extended north and south onto what is now the Earth Haulers property. The Earth Haulers Property was entered into an Agreed Order with TCEQ due to unauthorized disposal of MSW. During a routine investigation in January 2007, a TCEQ Regional Investigator determined that Earth Haulers failed to prevent the unauthorized disposal of MSW on the property, specifically 40,217 yd³ of mulch, debris, and cut wooden logs, in addition to approximately thirty 55-gallon drums of unknown liquid. In December 2009, an Agreed Order (No. 2007-0471-MSW-E) was issued between Earth Haulers and TCEQ that stated Earth Haulers would cease accepting additional waste, remove all accumulated materials from the property, and submit an NOI to operate a recycling facility to the TCEQ MSW Permits Section. Earth Haulers currently operates under MSW Non-Permitted ID No. 100117. Based on the available information, it appears that the Earth Haulers property is the source of the majority of the methane that has been identified on the Texas Star Property.

The methane concentrations above 1% appear to be confined to the zone deeper than 10 ft, and methane does not appear to be currently migrating vertically to the surface due to the higher clay content in the upper 10 ft. There are no plans to disturb soil deeper than 10 ft, and likely no deeper than 7 ft during construction, and it is unlikely the deeper zone with methane concentrations above 1% will be encountered.

Geotechnical Assessment Activities

Geotechnical activities were conducted at the subject property in March, April, and May 2022 by ECS Southwest, LLP (ECS) and are documented in two reports provided as **Attachments 10A** and **10B**. Five soil borings (PB-01 through PB-05) were completed in March 2022; four soil borings (B-06 through B-09) were completed in April 2022; and nine test pits (TP-01 through TP-09) were completed in April 2022. Six geotechnical soil borings (B-01, B-02, PB-02 through PB-05) and four soil test pits (TP-01 through TP-03 and TP-09) were completed on the subject property. According to the reports, natural soils were encountered from ground surface to total depth (25 ft bgs) in borings PB-04 and PB-05. Natural soils consist predominantly of lean clay and clayey sand with sand seams and intermittent gravel. Boring PB-03 was mostly clay with the exception of some concrete and asphalt pieces. Refusal was encountered at 2 ft bgs in boring PB-02. Test pits TP-01 through TP-03 and TP-09 encountered existing fill material to a depth of 20 ft bgs. In general, all of the incidental debris is deeper than 5 ft bgs. Natural soils were encountered below the fill. The existing fill materials generally consisted of mostly soil but varying amounts of concrete, asphalt, metal, pipes, brick, and cables. Geotechnical logs are provided in **Attachments 10A** and **10B**.

SITE PLAN

The planned future use of the subject property is a multi-family residential development. A VMS will be installed during development and construction of structures on the subject property, which will direct any vapors (methane or other) out from beneath the buildings, and the vapors monitored to verify that there is no vapor accumulation beneath the buildings. The subject property will be almost entirely covered with the buildings, asphalt roadways and parking, and landscaped areas.

REV4 20240917

ATTACHMENT 10A

GEOTECHNICAL LETTER REPORT ON TEST-PITS

"Setting the Standard for Service"

Geotechnical • Construction Materials • Environmental • Facilities

TX Registered Engineering Firm F-8461

April 19, 2022

Mr. Matt Swedenburg **Development Associate** Stone Hawk Capital Partners 2722 Routh Street Dallas, Texas 75201

ECS Project No. 63: 1625-A

Reference: Geotechnical Letter Report on Test-Pits **Residential Development at Trinity Boulevard** 11450 Trinity Boulevard Euless, Texas 76040

Dear Mr. Swedenburg:

In accordance with our Proposal No. ECS Proposal 63:2184-GP (Rev.1) dated on March 17, 2022, and executed on March 23, 2022, which includes consulting agreement between ECS Southwest, LLP and Stone Hawk Capital Partners. ECS is providing the following discussion on the subsurface materials observed on-site during test pit excavation to identify the extent of fill soils.

Subsurface exploration was conducted by performing nine (9) test pits on the at the approximate locations shown attached with this letter. The test pits encountered fill soils with Clay and Sand to the depths of about 12 to 20.5 feet with varying amounts of concrete, asphalt, plastic bags, plastic sheets, wood, metal, pipes, steel drum, brick and cables. Natural soils were encountered below the existing ground surface in test pit TP-7 and below the existing fill in test pits TP-1, TP-2, TP-4, TP-5 and TP-8.

We did not encounter native soils in TP-3, TP-6 and TP-9 after excavating about 18.5 to 20.5 feet below existing site grades. Our excavator could only go to a maximum depth of about 20.5 feet.

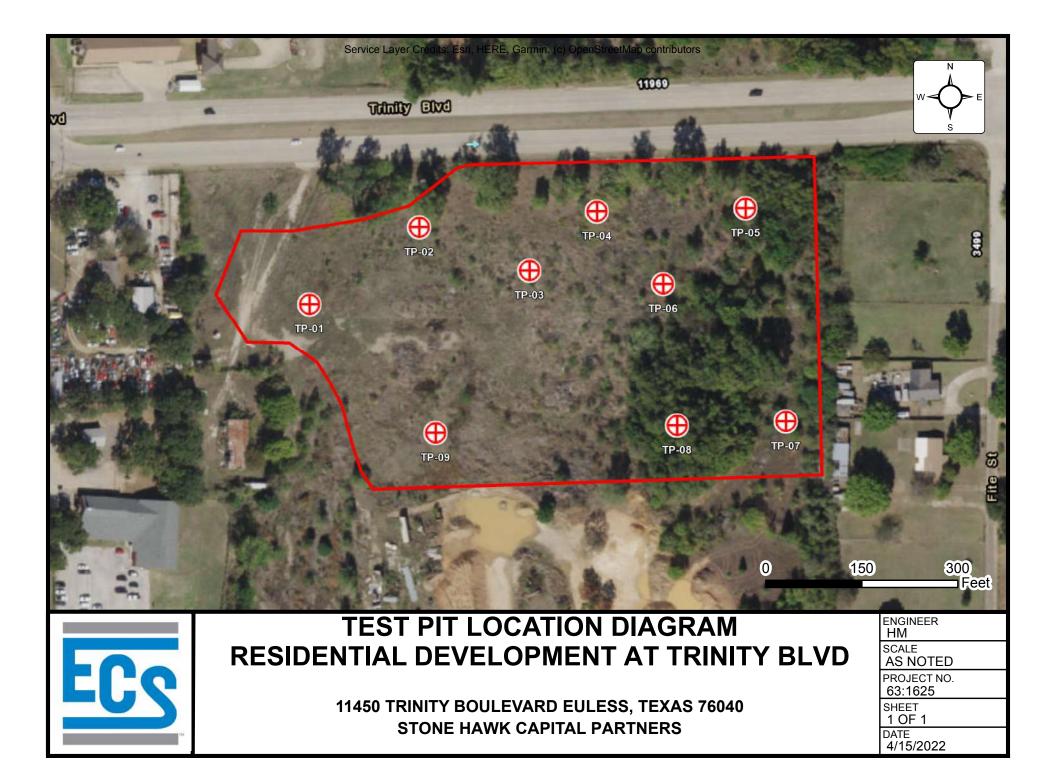
ECS will continue to provide information as our field work is completed. Based on the test pit observations, the preliminary recommendations in our previous report (ECS Project No. 63:1625, dated March 9, 2022) remain applicable to the project.

ECS Project No. 63:1625-A Residential Development at Trinity Boulevard Page 2

If we can be of further assistance to you, please contact us at (682) 350-2250.

Respectfully submitted,

ECS Southwest, LLP


Ishtiaque Hossain, PhD, P.E. Geotechnical Department Manager

Mark R. Zortman, P.E Principal Engineer

Taricheng blue

Aaron (Haicheng) Mao, MCE, P.E. Geotechnical Project Manager

Appendices: Test Pit Location Diagram Test Pit Logs TP-1 to TP-9 Log Profiles with Site Pictures

CLIEN Stone PROJE	Hawl	IAME:				PROJECT NO.: 63:1625-A TEST PIT NO.:		SHEET 1 of 1 SURFA	T: CE ELEVATION:		F	
SITE L	OCA	TION:	opment at Trini			TP-1 (B-09)		STATIO	N:			S
11450 NORT			, Euless, Texas 7	'6040 14938614.0		EASTING:		254663	37.4			NT N
DEPTH (FT)	WATER LEVELS	ELEVATION (FT)		DESC	RIPTION OF MATERIA	NL		EXCAVATION EFFORT	DCP	QP (TSF)	SAMPLE NUMBER	MOISTURE CONTENT (%)
	RKS:	539	brown, wii asphalt (uj size), brick	th some roo o to 12" in s is, 4" PVC pi DIL, CLAYEY S th less grave	5 brown, orange ts, concrete (up ize), rebar (No. 3 pe and wood	to 48" in size), a or No. 4 in m, reddish ilty layer at						
Tł	HE S	TRATIF	ICATION LINES			E BOUNDRY LINES E ASY M - MEDIUM E				ISITION M	AY BE GRA	DUAL
	WL	(First E	ncountered)	Dry	WL (Season		CONTRACTO		OPERATOR:	M	AKE/MODE	L:
⊻	WL	(Comp	letion)	Dry			1		Gary			
ECS RI	EP.:	-		DATE COMP	LETED:		UNITS:	(CAVE-IN-DEPTH	1:		
HM6				Apr 07 2022			English					
						TEST PIT LO	J G					

	Hawl ECT N	IAME:				PROJECT NO.: 63:1625-A TEST PIT NO.:		SHEET 1 of 1 SURFAG	T: CE ELEVATION:			
Reside			opment at Trini	ty Blvd		TP-2 (B-07)		STATIO	N:		LU	2
11450 NORT			, Euless, Texas 7	76040 14938735.6		EASTING:		254680	9.4			TN
DEPTH (FT)	WATER LEVELS	ELEVATION (FT)		DESC	RIPTION OF MATERIA	sL.		EXCAVATION EFFORT	DCP	QP (TSF)	SAMPLE NUMBER	MOISTURE CONTENT (%)
	RKS:	538 - - - - - - - - - - - - - - - - - - -	brown, lig 48" in size plastic bag pipe	ht brown, w), rebar (No gs and sheet DIL, CLAYEY S		undant, up to e), asphalt, tire, " in size), 4" PVC d reddish brown						
TI	HE S	TRATIF	ICATION LINES			E BOUNDRY LINES BE				ISITION N	1AY BE GRA	DUAL
	WL	(First F	ncountered)	Dry	WL (Season:		CONTRACTO		OPERATOR:	м	AKE/MODE	L:
		-	letion)	Dry		·····,			Gary		,ODL	
ECS R			,	DATE COMP	LETED:	l	JNITS:		CAVE-IN-DEPTH			
нм6				Apr 07 2022			English					
				1		TEST PIT LO	G					

CLIENT: PROJECT NO.: SHEET: StoneHawk 63:1625-A 1 of 1 PROJECT NAME: TEST PIT NO.: SURFACE ELEVATION:												
			opment at Trini	ty Blvd		TP-3 (B-06)		SURFAU	LE ELEVATION:			
SITE L			Euless, Texas 7	16040				STATIO	N:			
NORT				14938665.3		EASTING:	1	254697	3.7	1		VT
DEPTH (FT)	WATER LEVELS	ELEVATION (FT)		DESC	RIPTION OF MATERIA	AL.		EXCAVATION EFFORT	DCP	QP (TSF)	SAMPLE NUMBER	MOISTURE CONTENT (%)
		542 - - - - - - - - - - - - - - - - - - -	reddish br plastic bag	own with co s, brick, wo), brown, dark br oncrete (up to 28 od, asphalt (abu wire and rebar (3″ size), ndant, up to						
		527		END O	F TEST PIT AT 20.	5 FT						
REMA			ICATION LINES			E BOUNDRY LINES BE ASY M - MEDIUM D -				SITION N	лау be gra	DUAL
∇	WL	(First E	ncountered)	Dry	V WL (Season	al High)	ONTRACTOR	: c	OPERATOR:	N	IAKE/MODE	L:
T	WL	(Comp	letion)	Dry					Gary			
ECS R	EP.:			DATE COMP	LETED:	l	JNITS:	C	AVE-IN-DEPTH	1:		
HM6				Apr 07 2022			English					
				1		TEST PIT LO	G					

	Hawl CT N	IAME:				PROJECT NO.: 63:1625-A TEST PIT NO.:		SHEET 1 of 1 SURFA	T: CE ELEVATION:	Fr		
SITE L	CA	TION:	opment at Trini			TP-4 (B-04)		STATIO	N:			
11450 NORT			, Euless, Texas 7	76040 14938754.5		EASTING:		254708	80.0			WT
DEPTH (FT)	WATER LEVELS	ELEVATION (FT)		DESC	RIPTION OF MATERIA	ΛL		EXCAVATION EFFORT	DCP	QP (TSF)	SAMPLE NUMBER	MOISTURE CONTENT (%)
		531 - - - - - - - - - - - - - - - - - - -	brown, wi to 36″ in s	th concrete ize), rebar (I tic bags and), orange, reddisł (up to 60" in size No. 3 or No. 4 in I sheets, brick (up	e), asphalt (up size), metal						
			NATIVE SC cobbles		range brown, wit F TEST PIT AT 17.	-						
20 		516										
REMA TI			I			E BOUNDRY LINES BI ASY M - MEDIUM D				I ISITION N	1AY BE GRA	DUAL
\square	WL	(First E	ncountered)	Dry	🗴 WL (Seasona	al High)	CONTRACTO	R: 0	OPERATOR:	M	AKE/MODE	L:
⊻	WL	(Comp	letion)	Dry					Gary			
ECS RI HM6	EP.:			DATE COMP	LETED:		UNITS:		CAVE-IN-DEPTH	4:		
				Apr 07 2022		TEST PIT LO	English G					

CLIEN Stone		k			PROJEC 63:1625			HEET: of 1			
		IAME:			TEST PI			IRFACE ELEV	ATION:		
			opment at Trini	ity Blvd	ТР-5 (В-	01)					
SITE L			, Euless, Texas 🕻	76040			ST	ATION:			
NORT				14938766.0	EASTIN	G:	25	47338.4			TN
DEPTH (FT)	WATER LEVELS	ELEVATION (FT)		DESC	RIPTION OF MATERIAL		EXCAVATION EFFORT	Ę		SAMPLE NUMBER	MOISTURE CONTENT (%)
5-		521	with grave size), conc size), asph	el (up to 12" crete (up to nalt (12" in s	ange, reddish, grayish b in size), boulder (up to 3 30″ in size), brick (up to ize), wood, rebar (No.3 o nd plastic bags	32" in 12" in					
10 - 		516	NATIVE SC		GRADED GRAVEL, brown F TEST PIT AT 16.5 FT	n, gray	201 C01 C01 C0 C01 C01 C01 C01 C01 C01 C01 C01 C01 C01				
		506									
REMA			ICATION LINE		THE APPROXIMATE BOUND TION EFFORT: E - EASY M -					N MAY BE G	RADUAL
\Box	WL	(First E	incountered)	5.50	𝕊 WL (Seasonal High)	CONTRA	CTOR:	OPERAT	DR:	MAKE/MO	DEL:
▼	WL	(Comp	letion)	6.00	1			Gary			
ECS R				DATE COMP	LETED:	UNITS:		CAVE-IN	-DEPTH:	1	
HM6				Apr 07 2022		English					
11110				Api 07 2022	TFC						
L					163						

CLIEN Stone		k				PROJECT NO.: 63:1625-A		SHEET 1 of 1	Г:			
PROJE	CT N	IAME:				TEST PIT NO.:			CE ELEVATION:			
Reside			opment at Trini	ty Blvd		TP-6 (B-02)		STATIO	N·			7
11450	Trini	ty Blvd,	Euless, Texas 7			1						
NORT	HIN	G: T		14938646.9		EASTING:		254718	36.4			I. I
DEPTH (FT)	WATER LEVELS	ELEVATION (FT)		DESC	RIPTION OF MATERI	AL		EXCAVATION EFFORT	DCP	QP (TSF)	SAMPLE NUMBER	MOISTURE CONTENT (%)
			(up to 8	4" in size), asphalt (up	wn, with concret to 14" in size tic bags, steel pip)					
20		512-		END O	F TEST PIT AT 20.	0 FT						
-25		-										
REMA	RKS:	:										
	15.00	TD 47									441/ 85 85 1	
	HE S	ikafif	ICATION LINES			E BOUNDRY LINES B EASY M - MEDIUM D				12111ON N	/IAY BE GRA	DUAL
	\\\/!	/Eirct F	ncountered)		WL (Season		CONTRACTOR:		OPERATOR:		AKE/MODE	1.
						ıaı ⊓ıgıı)	CONTRACTOR:				IANE/IVIUDE	L.
		(Comp	letion)	11.50					Gary			
ECS RI	Ε Υ .:			DATE COMP			UNITS:	0	CAVE-IN-DEPTH	1:		
HM6				Apr 07 2022			English					
						TEST PIT LC	U					

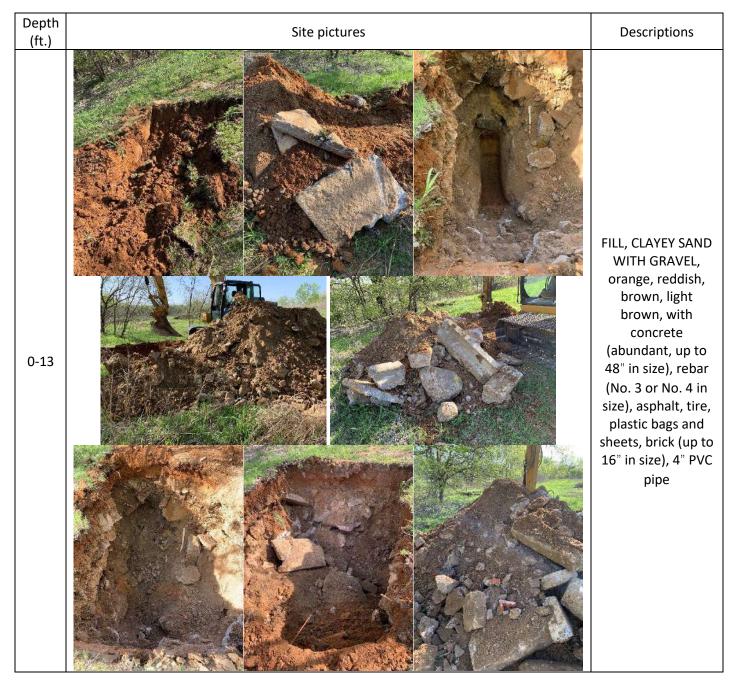
CLIEN Stone		k				PROJECT NO.: 63:1625-A		SHEE 1 of 1	T:			
PROJE	CT N	IAME:				TEST PIT NO.:			CE ELEVATION:			
Reside			opment at Trini	ty Blvd		TP-7 (B-03)		CTATIC	<u></u>			2
			Euless, Texas 7	6040				STATIC	JN:			
NORT	HIN	G:		14938420.4		EASTING:		25473	84.0			11/
DEPTH (FT)	WATER LEVELS	ELEVATION (FT)		DESC	RIPTION OF MATERIA	AL		EXCAVATION EFFORT	DCP	QP (TSF)	SAMPLE NUMBER	MOISTURE CONTENT (%)
	RKS:		NATIVE SC		SAND, reddish br	o FT						
Т	HE S	TRATIF	ICATION LINES			E BOUNDRY LINES BE				ISITION	MAY BE GRA	DUAL
	W/I	(First F	ncountered)	EXCAVA Dry	TION EFFORT: E - E	ASY M - MEDIUM D -			OIFFICULT	N	/ake/mode	
		(Comp		Dry		<u></u>			Gary			
ECS R		·b	,	DATE COMP	LETED:		JNITS:		CAVE-IN-DEPTH			
HM6				Apr 07 2022	. == .		English		00111			
				API 07 2022		TEST PIT LO						
ι							.					

CLIEN Stone	Hawł	K IAME:				PROJECT NO.: 63:1625-A TEST PIT NO.:		SHEET 1 of 1 SURFAG	: CE ELEVATION:			
Resid	ential	Devel	opment at Trini	ty Blvd		TP-8 (B-05)						.
SITE L 11450			, Euless, Texas 7	6040				STATIO	N:			
NORT	HIN	G:	:	14938428.7		EASTING:		254722	.0.7			TH
DEPTH (FT)	WATER LEVELS	ELEVATION (FT)		DESC	RIPTION OF MATERIA	AL.		EXCAVATION EFFORT	DCP	QP (TSF)	SAMPLE NUMBER	MOISTURE CONTENT (%)
5-	•	518	with concr round, cor in size) tire	ete, plastic locrete (up to and shoes	GRADED GRAVE	, wood and bar (No. 3 or No. 4	<u> </u>					
15- 		508			TEST PIT AT 13.	5 FT						
Т	HE ST	ΓRATIF		EXCAVA	TION EFFORT: E - E	E BOUNDRY LINES BE ASY M - MEDIUM D	- DIFFICULT \	VD - VERY D	IFFICULT			
			ncountered) letion)	3.00	V WL (Season)	ai High)	CONTRACTO		OPERATOR: Gary	M	ake/Mode	L:
ECS R		Comp		DATE COMP	ETED:		UNITS:		CAVE-IN-DEPTH	4:		
HM6				Apr 07 2022			English					
						TEST PIT LO						

CLIEN Stone PROJE	Hawl					PROJECT NO.: 63:1625-A TEST PIT NO.:		SHEET 1 of 1 SURFAC	: Ce elevation:			
Reside			opment at Trini	ty Blvd		TP-9 (B-08)		STATIO	N:		EL	27
	Trinit	ty Blvd,	Euless, Texas 7	/6040 14938404.3		FASTING		254683				
NUKI	HIN	J:		14938404.3		EASTING:			5.2			
DEPTH (FT)	WATER LEVELS	ELEVATION (FT)		DESC	RIPTION OF MATERIA	٨L		EXCAVATION EFFORT	DCP	QP (TSF)	SAMPLE NUMBER	MOISTURE CONTENT (%)
		542	brown, wit to 12" in s	th concrete	nge brown, dark (up to 60" in size bags, brick, 4" P\ , steel pipe	e), asphalt (up						
20	RKS:			END OF	TEST PIT AT 18.	5 FT						
			CATION LINES			E BOUNDRY LINES BE ASY M - MEDIUM D - al High)		'D - VERY D			AY BE GRA	
T	WL (Comp	letion)	Dry	1				Gary			
ECS R	EP.:			DATE COMP	LETED:	l	JNITS:	0	CAVE-IN-DEPTH	1:		
нм6				Apr 07 2022		1	English					
				•		TEST PIT LO	G					

Project: 1625-A-Residential Development at Trinity Boulevard

Project Address: 11450 Trinity Boulevard, Euless, Texas

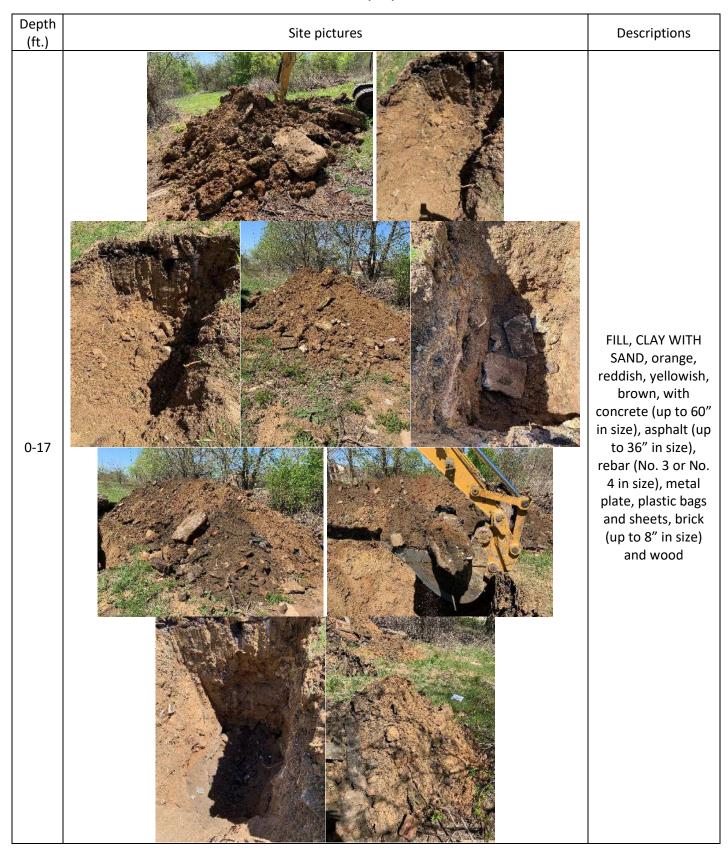

Field work: Test pits

Date: 04/07/2022

Depth (ft.)	Site pictures	Descriptions
0-12	<image/>	FILL, CLAY WITH SAND, brown, orange and grayish brown, with some roots, concrete (up to 48" in size), asphalt (up to 12" in size), rebar (No. 3 or No. 4 in size), bricks, 4" PVC pipe and wood
12-15		NATIVE SOIL, CLAYEY SAND, light brown, reddish brown, with less gravel at 13.5', with silty layer at 14.5'

TP-1 (B-9)

TP-2 (B-7)



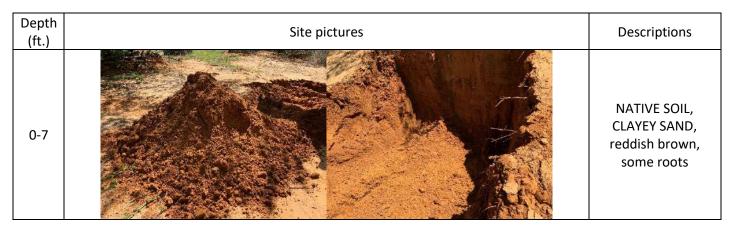
TP-3 (B-6)

Depth (ft.)	Site pictures	Descriptions
0- 20.5		FILL, CLAY WITH SAND, brown, dark brown, orange, reddish brown with concrete (up to 28" size), plastic bags, brick, wood, asphalt (abundant, up to 12" in size) and metal wire and rebar (No. 3 and 4 in size)

TP-4 (B-4)

17- 17.5		NATIVE SOIL, SAND, orange brown, with gravels and cobbles
-------------	--	--

TP-5 (B-1)


Depth (ft.)	Site pictures	Descriptions
0-13		FILL, CLAYEY SAND, orange, reddish, grayish brown, with gravel (up to 12" in size), boulder (up to 32" in size), concrete (up to 30" in size), brick (up to 12" in size), asphalt (12" in size), wood, rebar (No.3 or No. 4 in size) steel drum and plastic bags

TP-6 (B-2)

Depth (ft.)	Site pictures	Descriptions
0-20		FILL, CLAY, orange brown, dark brown, with concrete (up to 84" in size), asphalt (up to 14" in size) and rebar (No. 3 or No. 4 in size), plastic bags, steel pipe and brick

TP-7 (B-3)

TP-8 (B-5)

Depth (ft.)	Site pictures	Descriptions
0-13		FILL, CLAYEY SAND, orange, grayish brown, dark gray, with concrete, plastic bags and sheets, wood and round, concrete (up to 72" in size), rebar (No. 3 or No. 4 in size) tire and shoes

13- 13.5		NATIVE SOIL, POORLY GRADED GRAVEL, light orange and yellowish brown
-------------	--	---

TP-9 (B-8)

Depth		
(ft.)	Site pictures	Descriptions
0- 18.5	<image/>	FILL, SANDY CLAY, orange brown, dark brown, grayish brown, with concrete (up to 60" in size), asphalt (up to 12" in size), plastic bags, brick, 4" PVC pipe, rebar (No. 3 or No. 4 in size), steel pipe

ATTACHMENT 10B

GEOTECHNICAL ENGINEERING REPORT

ECS Southwest, LLP

Geotechnical Engineering Report Residential Development at Trinity Boulevard

11450 Trinity Boulevard Euless, Texas 76040

ECS Project Number 63:1625-A

May 20, 2022

"Setting the Standard for Service"

Geotechnical • Construction Materials • Environmental • Facilities

TX Registered Engineering Firm F-8461

May 20, 2022

Mr. Matt Swedenburg **Development Associate Stone Hawk Capital Partners** 2772 Routh Street Dallas, Texas 75201

ECS Project No. 63:1625-A

Reference: Geotechnical Engineering Report **Residential Development at Trinity Boulevard** 11450 Trinity Boulevard Euless, Texas 76040

Dear Mr. Swedenburg:

ECS Southwest, LLP (ECS) has completed the subsurface exploration, laboratory testing, and geotechnical engineering analyses for the above-referenced project. Our services were performed in general accordance with our agreed to scope of work. This report presents our understanding of the geotechnical aspects of the project along with the results of the field exploration and laboratory testing conducted, and our design and construction recommendations.

It has been our pleasure to be of service to Stone Hawk Capital Partners during the design phase of this project. We would appreciate the opportunity to remain involved during the continuation of the design phase, and we would like to provide our services during construction phase operations as well to verify subsurface conditions assumed for this report. Should you have any questions concerning the information contained in this report, or if we can be of further assistance to you, please contact us.

Respectfully submitted,

ECS Southwest, LLP

Ishtiaque Hossain, PhD, P.E. **Geotechnical Department Manager**

tricking I law

Aaron (Haicheng) Mao, MCE, P.E. Geotechnical Project Manager

Mark R. Zortman, P.E. **Principal Engineer** MARK R

TABLE OF CONTENTS

EXECUTIVE SUMMARY1
1.0 INTRODUCTION
2.0 PROJECT INFORMATION
2.1 Project Location/Current Site Use3
2.2 Proposed Construction
3.0 FIELD EXPLORATION
3.1 Subsurface Characterization4
3.2 Groundwater Observations5
3.3 Laboratory Testing6
4.0 DESIGN RECOMMENDATIONS
4.1 Existing Fill Materials7
4.2 Ground Improvements7
4.2.1 Full Excavation7
4.2.2 Partial Excavation8
4.2.3 Aggregate Geopiers™8
4.3 Potential Vertical Movement and Subgrade Improvement8
4.4 Foundations-Monolithic Slab-on-Grade9
4.4 Building Perimeter Conditions11
4.5 Site Retaining Walls11
4.6 Seismic Design Considerations12
4.7 Pavement Sections – Exterior parking and travel13
4.8 Detention Pond15
5.0 SITE CONSTRUCTION RECOMMENDATIONS
5.1 Subgrade Preparation17
5.1.1 Stripping and Grubbing17
5.1.2 Proofrolling (Soil Subgrades)17
5.1.3 Site Temporary Dewatering17
5.2 Earthwork Operations18
5.3 Material Specifications19
5.3.1 Moisture Conditioning Clay Fill19
5.4 Foundation and Slab Observations19
5.5 Utility Installations19
6.0 CLOSING

APPENDICES

Appendix A – Figures

- Site Location Map
- Boring Location Diagram
- Test Pit Location Diagram
- Regional Geology

Appendix B – Field Operations

- Reference Notes for Boring and Test Pit Logs
- Boring Logs PB-1 to PB-5, and B-01 to B-04
- Test Pit Logs TP-1 to TP-9

Appendix C – Laboratory Testing

• Laboratory Testing Summary

Appendix D – Supplemental Report Documents

- Clay Plug at Utility Trench
- French Drain Installation Procedure

EXECUTIVE SUMMARY

The following summarizes the main findings of the exploration, particularly those that may have a cost impact on the planned development. Further, our principal foundation recommendations are summarized. This Executive Summary is intended as a very brief overview of the primary geotechnical conditions that are expected to affect design and construction. Information gleaned from the executive summary should not be utilized in lieu of reading the entire geotechnical report.

- Based on the information supplied by the Stone Hawk Capital Partners, the project consists of multi-family community development. Associated surface parking and driveways are also included in the project.
- Borings PB-1 to PB-3 encountered existing fill to depths up to 15 feet below the existing site grades. Test pits TP-1 to TP-6, TP-8 and TP-9 encountered existing fill to the depths up to 20.5 feet below the existing site grades. The existing fill materials generally consisted of mostly soil but varying and distinct amounts of concrete, asphalt, plastic bags, plastic sheets, wood, metal, pipes, steel drum, brick and cables. Remaining borings encountered natural soils which consist predominantly of lean clay and clayey sand with sand seams and intermittent gravel to the maximum boring termination depth of about 25 feet.
- Groundwater was not observed in any borings during or upon the completion of drilling operations. However, groundwater was observed in test pits TP-5, TP-6 and TP-8 at depths of about 3 feet to 11 feet below the existing site grades during the excavation operations and observed in these test pits at depths of 3 feet to 11.5 feet below the existing site grades. Groundwater was not observed in remaining test pits during or upon the completion of excavation operations.
- Subgrade improvements will be required to address both expansive natural soils as well as existing undocumented fill.
- Subsequent to the recommended subgrade improvements, the planned residential buildings can be supported on a monolithic slab on grade foundation system.
- It is recommended that ECS conduct a geotechnical review of the project plans (prior to issuance for construction) to check to see that ECS' geotechnical recommendations have been properly interpreted and implemented.
- To prevent misinterpretation of ECS recommendations, ECS should be retained to perform quality control testing and documentation during construction of the earthwork and foundations for the project.

1.0 INTRODUCTION

The purpose of this study was to provide geotechnical information for the design and construction of new multifamily residential buildings on an approximate 14-acre parcel. Associated utility improvement, and surface parking and driveways are also included in this project. The recommendations developed for this report are based on project information supplied by client.

Our services were provided in accordance with our Proposal No. 63:2184-GP (Rev.1), dated on March 17, 2022, and executed on March 23, 2022, which includes our standard Terms and Conditions.

This report contains the procedures and results of our subsurface exploration and laboratory testing programs, review of existing site conditions, engineering analyses, and recommendations for the design and construction of the project.

The report includes the following items.

- A brief review and description of our field and laboratory test procedures and the results of testing conducted.
- A review of surface topographical features and site conditions.
- A review of area and site geologic conditions.
- A review of subsurface soil stratigraphy with pertinent available physical properties.
- A final copy of our soil test borings and test pits.
- Recommendations for foundation.
- Recommendations for site retaining walls.
- Recommendations for pavements.
- Recommendations for detention pond.
- Recommendations for site preparation and construction of compacted fills, including an evaluation of on-site soils for use as compacted fills.

2.0 PROJECT INFORMATION

2.1 PROJECT LOCATION/CURRENT SITE USE

The project site is located at 11450 Trinity Boulevard in Euless, Texas (GPS: 32.8099 N, 97.1204 W). The site is currently undeveloped with some vegetation and trees. The location is depicted in Figure 2.1.1 as shown below.

Figure 2.1.1 Site Location

2.2 PROPOSED CONSTRUCTION

Based on the contour map obtained from NCTCOG (www.dfwmaps.com) the overall property slopes down from west to east with maximum and minimum elevations of about 550 and 530 ft. The following information explains our understanding of the planned development including the proposed buildings:

SUBJECT	DESIGN INFORMATION / ASSUMPTIONS
Site Area	14 acres
Usage	Residential
Framing (assumed)	Wooden Structure
Finish Floor Elevation	No site plan available

3.0 FIELD EXPLORATION

The field exploration was planned with the objective of characterizing the project site in general geotechnical and geological terms and to evaluate subsequent field and laboratory data to assist in the determination of geotechnical recommendations.

The subsurface conditions were explored by four (4) borings drilled to a maximum depth of about 25 feet below the existing site grades. A truck-mounted drill rig with continuous flight augers was utilized to drill the borings. Previously, 5 borings and 9 test pits were performed on the subject site. The previous boring and test pit logs are included with this report.

The boring and test pit locations were determined by and identified in the field by ECS personnel using the supplied diagram. The approximate as-drilled boring and as-excavated test pit locations are shown on the Boring and Test Pit Location Diagram in Appendix A. The ground surface elevations noted in this report were obtained from NCTCOG (www.dfwmaps.com), which provided elevation contours in 2-foot intervals.

Representative soil samples were obtained by means of the split-barrel and Shelby tube sampling procedures in accordance with ASTM Specifications D-1586 and D-1587, respectively. In the split-barrel sampling procedure, a 2-inch O.D., and split-barrel sampler is driven into the soil a distance of 18 inches by means of a 140-pound hammer falling 30 inches. The number of blows required to drive the sampler through a 12-inch interval is termed the Standard Penetration Test (SPT) value and is indicated for each sample on the boring logs. In the Shelby tube sampling procedure, a thin walled, steel seamless tube with sharp cutting edges is pushed hydraulically into the soil, and a relatively undisturbed sample is obtained.

Field logs of the soils encountered in the borings were maintained by the drill crew and in test pits by ECS personnel. After recovery, each geotechnical soil sample was removed from the sampler and visually classified. Representative portions of each soil sample were then wrapped in plastic and transported to our laboratory for further visual examination and laboratory testing. After completion of the drilling operations, the boreholes were backfilled with auger cuttings to the existing ground surface.

3.1 SUBSURFACE CHARACTERIZATION

The regional parent geologic mapping indicates that the site is underlain by the Fluviatile Terrace Deposits (Qt). In the Fluviatile Terrace soil deposits have been transported to the areas where they lay by water instead of having been weathered from their original rock. They are often "flood plane" deposits at some of the lowest elevations in the region. Typically, water that deposits these soils first erodes portions of their original formation(s), then transports and leaves behind these types of deposits. Please refer to the regional geology in Appendix A.

With the exception of the undocumented fill, the subsurface conditions encountered were generally consistent with published geological mapping. The following sections provide generalized characterizations of the soil and rock strata from the soil borings. Please refer to the boring logs in Appendix B.

Subsurface Stratigraphy						
Approximate Depth to Bottom of Strata (ft)	Elevation of Bottom of Strata ⁽¹⁾ (ft)	Stratum	Description	Consistency		
0 to 15 ²	EL. + 524.0 to 540.0	II	FILL, LEAN CLAY, brown, light brown, with sand seams, asphalt, concrete, plastic bags	Very Stiff to Hard		
4 to 23 ³	EL. + 521.0 to 542.0	II	(CL) LEAN CLAY, dark brown, brown, light brown, with sand seams, gravel	Very Stiff to Hard		
11 to 254	EL. + 521.0 to 535.0	111	(SC) CLAYEY SAND, brown, light brown, reddish brown, olive brown, light grayish and yellowish brown, yellowish brown	Very loose to Very Dense		
255	EL. + 519.0 to 521.0	V	CEMENTED SAND, reddish brown, yellowish brown, brown, with clay seams	-		

Subsurface Stratigraphy

Notes:

(1) Please note that the ground surface elevations were not surveyed by a licensed surveyor; these elevations are approximate based on dfwmaps.com. Elevation ranges are approximate +/- several feet.

(2) Encountered in boring PB-01 and PB-04.

(3) Encountered in borings B-01 to B-04.

(4) Encountered in borings B-01 to B-04. B-03 was terminated in this stratum at a depth of 25 feet.

(5) Encountered in borings B-01 and B-04. These borings were terminated in this stratum at a depth of 25 feet.

The test pits encountered fill soils with Clay and Sand to the depths of about 12 to 20.5 feet with varying amounts of concrete, asphalt, plastic bags, plastic sheets, wood, metal, pipes, steel drum, brick and cables. Natural soils were encountered below the existing ground surface in test pit TP-7 and below the existing fill in test pits TP-1, TP-2, TP-4, TP-5 and TP-8. We did not encounter native soils in TP-3, TP-6 and TP-9 after excavating about 18.5 to 20.5 feet below existing site grades. Our excavator could only go to a maximum depth of about 20.5 feet. Please refer to the test pits logs in Appendix B.

3.2 GROUNDWATER OBSERVATIONS

Groundwater level observations were made in the borings during drilling operations and in test pits during excavation operations. In auger drilling operations, water is not introduced into the borehole and the groundwater position can often be determined by observing water flowing into the excavation. Furthermore, visual observation of soil samples retrieved can often be used in evaluating the groundwater conditions. Groundwater seepage was not encountered in any borings during drilling or upon the completion of drilling operations. However, groundwater was observed in test pits TP-5, TP-6 and TP-8 at depths of about 3 feet to 11 feet below the existing site grades during the excavation operations and observed in these test pits at depths of 3 feet to 11.5 feet below the existing site grades. Groundwater was not observed in remaining test pits during or upon the completions.

Variations in groundwater levels can occur as a result of changes in precipitation, evaporation, surface water runoff, construction activities, and other factors not immediately apparent at the time of this exploration. The highest groundwater observations are normally observed in the late

winter and early spring. Therefore, the groundwater conditions at this site could be different at the time of construction. The possibility of groundwater level fluctuation should be considered when developing the design and construction plans for the project.

3.3 LABORATORY TESTING

The laboratory testing consisted of selected tests performed on samples obtained during our field exploration operations. Classification and index property tests were performed on representative soil samples. The tests included moisture content, Atterberg limits and gradation tests (percent passing No. 200 sieve).

Soil samples were visually classified on the basis of texture and plasticity in accordance with ASTM D2488 Standard Practice for Description and Identification of Soils (Visual-Manual Procedures) and including USCS classification symbols, and ASTM D2487 Standard Practice for Classification for Engineering Purposes (Unified Soil Classification System (USCS). After classification, the samples were grouped in the major zones noted on the boring logs in Appendix B. The group symbols for each soil type are indicated in parentheses along with the soil descriptions. The stratification lines between strata on the logs are approximate; in situ, the transitions may be gradual.

4.0 DESIGN RECOMMENDATIONS

The following recommendations have been developed on the basis of previously described project characteristics and subsurface conditions. If there are any changes to the project characteristics or if different subsurface conditions are encountered during construction, ECS should be consulted so that the recommendations of this report can be reviewed. Grading plan or site plan was not available during the preparation of this report. When a site plan or finished floor elevations are available the recommendations provided below should be evaluated by our office.

4.1 EXISTING FILL MATERIALS

For our Preliminary Report of Subsurface Exploration & Geotechnical Analysis report dated March 9, 2022, five borings were drilled on the site. Clay fill materials were encountered in three (3) of these borings to the auger-refusal depths of 2 feet to 15 feet below the existing site grades. Auger refusal materials are indicators of very hard or very dense zones unable to be advanced by the drilling equipment due to fill obstructions (concrete, rebar, other). In generally, the surficial several feet of surficial soil cover predominately consisted of soil type material with variable but distinct amounts of asphalt, concrete and reinforcing debris. In order to delineate the fill soils, we proposed to perform test pits across the fill area.

Based on our Geotechnical Letter Report on Test-Pits dated April 19, 2022, test pits encountered fill soils with Clay and Sand to the depths of about 12 to 20.5 feet with varying amounts of concrete, asphalt, plastic bags, plastic sheets, wood, metal, pipes, steel drum, brick and cables. Natural soils were encountered below the existing ground surface in one test pit and below the existing fill in four test pits. We did not encounter native soils in three test pits after excavating about 18.5 to 20.5 feet below existing site grades.

Given these observations and the lack of documentation that would substantiate that the existing fill materials were placed in a controlled manner, we do not recommend supporting the foundations and slabs directly on the existing fill soils since undesirable differential settlements may occur.

4.2 GROUND IMPROVEMENTS

Buildings and pavements within the areas of undocumented fill will be required ground improvement in order to reduce the long-term movements to more tolerable levels. These options are summarized below.

4.2.1 Full Excavation

The first option is to remove the existing fill materials in their entirety from the limits of the proposed building pads (including a 10 foot off-set on all sides of the building) and establish the proposed grades with suitable material. The engineered fill material may be generated from onsite excavations, which has been adequately sieved and/or crushed to meet the requirements of this report or imported as defined previously. The proposed foundations and or slabs then be supported on the new fill material. A significant portion of the existing fill contains varying amounts and sizes of trashes and unsuitable materials. Any trashes and unsuitable materials including cobble, boulder, plastic trash, wood and metal plates, round wood, steel pipe, PVC pipe, clay pipe, steel drum, brick, trash, rebar and cable and any other particles including concrete and asphalt with a diameter greater than four (4) inches encountered in existing fill should be remove from the site. Accordingly, most of the existing fill would need to be replaced with imported fills. We anticipate that with an aggressive sieving and processing operation potentially 20% to 30% of the existing materials will be suitable for re-use.

Under this option, the fills would be completely removed and replaced, minimizing the potential for excessive movements related to the existing fills. Long term movements will be on the order of 1 inch or less with differential movements of 3/4".

4.2.2 Partial Excavation

The second alternative will be to excavate the existing fills, where encountered, to about half the full depth of existing fill below the finished floor subgrade elevation and replace those soils with engineered fills, plus a 10-foot building offset. With this option, the movements related to the existing fills is reduced, but not eliminated.

The partial undercut method would likely be less expensive than the full undercut option and reduce the risk associated with doing nothing. However, the existing fill left below the engineered fill does create some risk of future settlement. Long term movements will be on the order of 2 inches with differential movements of about 1 inch.

4.2.3 Aggregate Geopiers[™]

A third ground improvement technique is the use of short drilled aggregate piers. The piers are typically extended to depths of 12 to 15 feet below the existing ground surface (through the fill and into the natural soils) and consist of 30-inch diameter drilled excavations, which are backfilled in 1-foot lifts utilizing compactive effort and granular aggregate. The Geopiers[™] are compacted utilizing a flat plate on the end of a backhoe mounted hoe ram. The soil reinforcement occurs as a result of the excavation of the existing soils and replacement by dense granular aggregate. In addition, some limited densification of the surrounding soils is reported to occur. The engineering characteristics of the reinforced soil are significantly improved to allow the placement of spread footing foundations PTI slabs.

Geopiers[™] are normally designed by a design build contractor and the proposed soil improvement plan is reviewed by the Geotechnical Engineer of Record.

4.3 POTENTIAL VERTICAL MOVEMENT AND SUBGRADE IMPROVEMENT

Outside of the areas where existing undocumented fill was encountered, the natural soils have low to moderate expansion potential.

The natural clay soils encountered at this site are highly expansive. These soils are susceptible to shrink swell tendencies, occurring seasonally, throughout the life of the building with the changes in moisture content. Based on test method TEX-124-E in the Texas Department of Transportation (TxDOT) Manual of Testing Procedures, overburden swell tests and our experience with similar soils, we estimate potential vertical soil movements (PVM) are on the order of about 3.0 inches,

based on dry conditions. The actual movements could be greater if poor drainage, ponded water, and/or other unusual sources of moisture are allowed to saturate the soils beneath the structure after construction.

In order to reduce the risk associated with future movements, we recommend the following subgrade improvements to achieve a uniform PVM across the subgrade. Please note, these recommendations are the minimum requirements to reduce potential movements below the floor slab due to expansion potential. Other recommendations presented in this report regarding foundation support should also be followed. The depth of subgrade modification should be selected based on the allowable post-construction movement of the floor slabs.

Options	Depth of Moisture Conditioning (feet) ¹	Total Depth of Improved Zone (feet) ^{1, 2}	Anticipated PVM (inch)
Option I	6	6	1
Option II	4	4	1.5
Option III	2	2	2

Recommended Subgrade Improvements (Natural Soil Areas)

¹ - All Fill Above Existing Grades Should Be Moisture Conditioned

² - If the moisture of the pads is maintained throughout construction, no cap is required. Otherwise, the pads should be covered with a 12-inches granular cap, 8-inches of lime stabilized clay, or covered with poly.

The subgrade improvements should extend at least 5 feet beyond the edge of the building pad and include any flatwork sensitive to movements such as sidewalks or pavements. Exterior grade beam backfill should consist of onsite moisture conditioned clay.

These design parameters assume that positive drainage will be provided away from the structures and with moderate irrigation of surrounding lawn and planter areas with no excessive wetting or drying of soils adjacent to the foundations. Greater potential movements could occur with extreme wetting or drying of the soils due to ponding of water, plumbing leaks or lack of irrigation. Recommendations for earthwork operations are found in the "Site Construction Recommendations" portion of this report.

4.4 FOUNDATIONS-MONOLITHIC SLAB-ON-GRADE

The planned multi-family structures may be supported by a monolithic slab-on-grade/grade beam structural foundation system. This system may be designed with conventional reinforcing or by post-tensioning. The slab should be designed in accordance with WRI/CRSI "Design Slab-On-Ground Foundations" or PTI "Design and Construction of Post-Tensioned Slabs-On-Ground". The following design parameters are recommended for the Post-Tensioning Institute's slab-on-grade design method (3rd Edition):

Multi-Family PTI Parameters (PVM 2 Inches or Less)							
Perimeter	Cente	er Lift	Edge Lift				
Beam Depth Below Finished Exterior Grade	Em (feet)	Ym (inches)	Em (feet)	Ym (inches)			
12 inches	9.0	1.0	5.1	1.4			
24 inches	9.0	0.8	5.1	1.0			
30 inches	9.0	0.6	5.1	0.8			

Slab Parameters

BRAB/WRI Slab Parameters				
Design Parameter	Design Values			
Allowable Bearing Capacity	3,000 psf			
Design Pl	26			
Climatic Rating (Cw)	20			
Unconfined Compressive Strength (tsf)	1.25			
Soil-Climate Support Index (1-C)	0.11			

A net allowable soil bearing pressure of 3,000 psf can be used to design grade beams founded on the reworked existing soils or compacted non-expansive fill, as described in the section titled "Earthwork Operations". Grade beams should have a minimum width of 12 inches to reduce the possibility of foundation bearing failure and excessive settlement due to local shear or "punching" failures. Additionally, the grade beams should extend at least 12 inches below final adjacent grade to utilize this bearing pressure. Fills should be sloped to drain surface water away from the structure. A soil modulus of subgrade reaction (ks) of 125 pci may be used in the design of the slab.

These design parameters assume that positive drainage will be provided away from the structures and with moderate irrigation of surrounding lawn and planter areas with no excessive wetting or drying of soils adjacent to the foundations. Greater potential movements could occur with extreme wetting/drying of the soils due to ponding of water, plumbing leaks or lack of irrigation.

If floor treatments that are sensitive to moisture will be used, a 10-mil vapor barrier of polyethylene sheeting or similar material should be placed beneath the slab to minimize moisture migration through the slab. If a vapor barrier is considered to provide moisture protection, special attention should be given to the surface curing of the slabs to minimize uneven drying of the slabs and associated cracking and/or slab curling. The use of a blotter or cushion layer above the vapor barrier can also be considered for project specific reasons. Please refer to ACI 302.1R96 Guide for Concrete Floor and Slab Construction and ASTM E 1643 Standard Practice for Installation of Water Vapor Retarders Used in Contact with Earth or Granular Fill under Concrete Slabs for additional guidance on this issue.

4.4 BUILDING PERIMETER CONDITIONS

Soils placed along the exterior of each building should be on-site clay soils placed and compacted in accordance with this report. The purpose of this clay backfill is to reduce the opportunity for surface or subsurface water infiltration beneath the structure. Additionally, where penetrations into the structure occur, a clay plug (or suitable synthetic alternative) should be placed at the building line to reduce the opportunity for infiltrating water, regardless of the backfill material. A typical clay plug at utility trench detail is provided in Appendix D of the report.

Positive drainage away from the structures should also be provided. Additionally, Irrigation of lawn and landscaped areas should be moderate, with no excessive wetting or drying of soils around the perimeter of the structures allowed. Trees and bushes/shrubs planted near the perimeter of the structures can withdraw large amounts of water from the soils and should be planted at least their anticipated mature height away from the buildings.

Where flatwork is placed against or near the structure, a positive seal must be installed and adequately maintained to reduce water intrusion. Down spouts and gutters should be used to collect and distribute water away from the structure.

Routine maintenance is required to ensure that the recommendations contained in this report are followed and maintained. Greater potential movements could occur with extreme wetting or drying of the soils due to poor drainage, ponding of water, plumbing leaks, lack of irrigation, and/or lack of routine maintenance, etc.

4.5 SITE RETAINING WALLS

Retaining walls should not be supported by the existing fills and should be supported by the ground improvements noted previously. Additionally, where any fill is within the zone of influence of the retaining walls, this may create global instabilities. Therefore, ECS should be consulted during the design of any retaining walls.

Unlike below grade walls, site retaining walls are free to rotate at the top (not restrained). For these walls the "Active" (k_a) soil condition should be used along with a triangular distribution of earth pressures. In addition, site retaining walls should be designed to withstand lateral earth pressures exerted by the backfill and any surcharge loads within the "Critical Soil Zone". The Critical Zone is defined as the area between the back of the retaining wall footing and an imaginary line projected upward and rearward at a 45-degree angle (see figure below).

The lateral earth pressures developed behind site retaining walls are a function of the backfill soil type, backfill slope angle, and any surcharge loads. For the design of site retaining walls, we recommend the soil parameters provided below.

Soil ParameterConstructionPI 20 or lessOn-site soilsSoil ClassificationSoil Clas		RETAINING WALL BACKFILL IN THE CRITICAL SOIL ZONE					
Coefficient of Active Earth Pressure (Ka)0.290.49Retained Soil Moist Unit Weight (γ)125 pcf120 pcf	Critic	ed Value	Estimate	Soil Parameter			
Retained Soil Moist Unit Weight (γ) 125 pcf 120 pcf	Soil Z	On-site soils	PI 20 or less	Soil Classification			
		0.49	0.29	Coefficient of Active Earth Pressure (Ka)			
		120 pcf	125 pcf	Retained Soil Moist Unit Weight (γ)			
Conesion (C) - 100 pst	/	100 psf	-	Cohesion (C)			

RETAINING WALL BACKFILL IN THE CRITICAL SOIL ZONE					
Soil Parameter Estimated Value					
Angle of Internal Friction (φ)	32°	18°			
Active Equivalent Fluid Pressure	40H (psf)	60H (psf)			

FOUNDATION SOILS					
Soil Parameter	Estimated value				
Allowable Soil Bearing Pressure	3,000				
Minimum Wall Embedment Below Grade	24 inches				
Coefficient of Passive Earth Pressure (K _p)	2.04				
Soil Moist Unit Weight (γ)	120 pcf				
Cohesion (C)	100 psf				
Interface Friction Angle [Concrete on Soil] (φ_f)	18°				
Sliding Friction Coefficient [Concrete on Soil] (µ)	0.3				
Passive Equivalent Fluid Pressure	245H (psf)				

It is critical that the soils used for backfilling of the retaining walls meet the soil parameters recommended above. If the soils available do not meet those parameters, then ECS should be contacted to provide revised values, and to confirm that only suitable soils will be used for wall backfill.

Care should be used to avoid the operation of heavy equipment to compact the wall backfill since it may overload and damage the wall. In addition, such loads are not typically considered in the design of site retaining walls and are not provided for in our recommendations.

Wall Drainage: Retaining walls should be provided with a wall and foundation drainage system to relieve hydrostatic pressures which may develop behind the walls. This system should consist of weepholes through the wall and/or a 4-inch perforated, closed joint drain line located along the backside of the walls above the top of the footing. The drain line should be surrounded by a minimum of 6 inches of AASHTO #57 Stone wrapped with an approved non-woven geotextile, such as Mirafi 140-N or equivalent. Wall drains can consist of a 12-inch-wide zone of free draining gravel, such as AASHTO #57 Stone, employed directly behind the wall and separated from the soils beyond with a non-woven geotextile. Alternatively, the wall drain can consist of a suitable geocomposite drainage board material. The wall drain should be hydraulically connected to the foundation drain.

4.6 SEISMIC DESIGN CONSIDERATIONS

Seismic Site Classification: The International Building Code (IBC) requires site classification for seismic design based on the upper 100 feet of a soil profile. The methods are utilized in classifying sites, namely the shear wave velocity (v_s) method; the undrained shear strength (s_u) method; and the Standard Penetration Resistance (N-value) method. The undrained shear strength (s_u) method was used in classifying this site.

	Seismic Site Classification								
	SEISMIC SITE CLASSIFICATION								
Site Class	Soil Profile Name								
А	Hard Rock	Vs > 5,000 fps	N/A	N/A					
В	Rock	2,500 < Vs ≤ 5,000 fps	N/A	N/A					
С	Very dense soil and soft rock	1,200 < Vs ≤ 2,500 fps	>50	s _{u≥} 2,000					
D	Stiff Soil Profile	600 ≤ Vs ≤ 1,200 fps	15 to 60	$1,000 \le s_u \le 2000$					
E	Soft Soil Profile	Vs < 600 fps	<15	s _u < 1000					

Based upon our interpretation of the subsurface conditions, we recommend a Seismic Site Classification of "C" for foundation placed on improved subgrades and "E" where any existing fill materials remain in place.

Ground Motion Parameters: In addition to the seismic site classification, ECS has determined the design spectral response acceleration parameters following the IBC methodology. The Mapped Reponses were estimated from the USGS website <u>https://earthquake.usgs.gov/ws/designmaps/</u>. The design responses for the short (0.2 sec, S_{DS}) and 1-second period (S_{D1}) are noted in bold at the far right end of the following table.

	GROUND MOTION PARAMETERS [IBC Method]									
Period (sec)	Res Accel	Accelerations (g) Coefficient For Site Class Adjusted for		Coefficient Response Accelera for Site Class Adjusted for Site Class		celeration	Res Accel	Spectral ponse eration (g)		
Reference	0	1613.3.1 & (2)	Tables 1613.3.3 (1) & (2)				Eqs. 16- 16-3		-	16-39 & 5-40
0.2	Ss	0.092	Fa	1.2	S _{MS} =F _a S _s	0.110	S _{DS} =2/3 S _{MS}	0.074		
1.0	S_1	0.050	F_{ν}	1.7	S _{M1} =F _v S ₁	0.085	S _{D1} =2/3 S _{M1}	0.057		

Ground Motion Parameters

The Site Class definition should not be confused with the Seismic Design Category designation which the Structural Engineer typically assesses. If a higher site classification is beneficial to the project, we can provide additional testing methods that may yield more favorable results.

4.7 PAVEMENT SECTIONS – EXTERIOR PARKING AND TRAVEL

As previously noted, both PVR and existing fill materials can create long term differential movements on this site, and this include the impact to pavements. Should these movements be unacceptable for the pavements, the recommendations included in this report to achieve more desirable future movements, should be followed.

All proposed paved areas should be proof rolled with heavy compaction equipment to attempt to locate any soft or undesirable soils so they can be removed and replaced with properly placed and compacted soils. Any new fill may consist of on-site soils or similar. These materials should be compacted to at least 95% of the Maximum Dry Density at or above optimum as obtained using the

Standard Proctor Method (ASTM D-698). Care should be taken to verify and preserve the specified moisture levels in the reworked clays prior to placement of the pavements.

Both asphalt pavement and Portland cement concrete pavement can be considered for this site. Lime stabilization is recommended beneath asphaltic concrete pavements. Portland cement concrete pavement may be placed on lime stabilized subgrade or compacted subgrade without lime stabilization. If lime stabilization is considered, we recommend testing the soils for soluble sulfate during construction. We should be contacted to evaluate the feasibility of lime stabilization.

For lime stabilization, a preliminary application rate of 7% lime by dry weight of clay can be used. The actual amount of lime required should be confirmed by additional laboratory tests (lime series) during the construction phase. The lime stabilization should conform TxDOT Item 260. The stabilized soil should be compacted to at least 95% of the Maximum Dry Density at workable moisture contents of about 3 percentage points above the optimum moisture content as obtained using the Standard Proctor Method (ASTM D-698). Stabilization should extend at least 1 foot beyond the pavement edges.

Typical pavement sections are provided below. The Standard Duty and Medium Duty asphalt pavements with lime stabilization are adequate for design life of 50,000 and 100,000 ESAL, respectively. The Standard Duty and Medium Duty concrete pavements without lime stabilization are adequate for design life of 50,000 and 125,000 ESAL, respectively. If lime stabilization is performed beneath concrete pavements, the Standard Duty and Medium Duty concrete pavements are adequate for design life of 80,000 and 200,000 ESAL, respectively.

In some cases, jurisdictional standards for pavement section construction may exceed those provided below. In that case, the pavement sections should follow the jurisdictional standards.

Favement Sections – Filvate Drives and Farking						
Material	Asphaltic Conc	rete Pavement	Portland Cem	ent Concrete (PC	C) Pavement	
Description	Standard Duty (Parking)	Medium Duty (Firelane)	Standard Duty (Parking)	Medium Duty (Firelane)	Dumpster Area	
Asphalt Surface Course	2 inches	2 inches				
Asphalt Binder Course ¹	3 inches	4 inches				
Portland Cement Concrete			5 inches	6 inches	7 inches	
Subgrade ²	6 inches Reworked Subgrade	6 inches Lime Stabilized	6 inches Reworked Subgrade	6 inches Lime Stabilized	6 inches Lime Stabilized	
Notes: 1. Flexible base material may be substituted for the asphalt binder using a substitute ratio of three inches of flexible base for each inch of asphalt binder.						

Pavement Sections – Private Drives and Parking

substitute ratio of three inches of flexible base for each inch of asphalt binder.Flexible base materials may be substituted with the lime stabilization at an

equivalent thickness substitution.In lieu of lime stabilized subgrades, the concrete can be increased by one (1) inch.

An important consideration with the design and construction of pavements is surface and subsurface drainage. Where standing water develops, either on the pavement surface or within the

base course layer, softening of the subgrade and other problems related to the deterioration of the pavement can be expected. Furthermore, good drainage should reduce the possibility of the subgrade materials becoming saturated during the normal service period of the pavement.

Pavement should be specified, constructed and tested to meet the following requirements:

- 1. Reinforcing steel may consist of #3 reinforcing steel bars placed at 18 inches on center each way. The reinforcing steel should be placed at mid-point of the pavement section.
- 2. Hot Mix Asphaltic Concrete: Item 340 of the TxDOT Standard Specifications, Type A or B Base Course (binder), Type D Surface Course. The coarse aggregate in the surface course should be crushed limestone rather than gravel.
- 3. Portland Cement Concrete: Minimum compressive strength of 3,600 lbs per sq inch at 28 days. Concrete should be designed with 3 to 6 percent entrained air.
- 4. Flexible Base Material: Item 247 of the TxDOT Standard Specifications, Type D, Grade 1 or 2. The material should be compacted to a minimum 95 percent of standard Proctor maximum dry density (ASTM D 698) and within three percentage points of the material's optimum moisture content.

4.8 DETENTION POND

For any underground detention facility, at minimum, a non-woven geotextile should be placed as a "separation" layer between any soil and granular drainage material. This will likely include placement over the subgrade soils, excavation sidewalls and any fill material above the facility. The geotextile selected should meet the requirements of AASHTO M288 Class 2 for a separation fabric or as recommended by the designer. The contractor should provide ECS the anticipated separation geotextile for review and approval.

For open detention features, we recommend that the side slopes be no steeper than 4H:1V. The embankment section, including the backfill of the conduits through the natural soils, should be constructed as a homogenous section. Circular discharge conduits from the pond should be underlain by a concrete cradle on the upstream 1/3 and a drainage blanket installed on the downstream 2/3 of the embankment. Both features extending up to the spring line of the pipe. For box structures, the concrete cradle is not required, but drainage should be considered.

All fills placed within the pond limits should be placed in lifts not exceeding 8 inches in loose thickness, moisture conditioned on the wet side of the optimum moisture content (+2% or higher) and compacted to at least 95% of the Maximum Dry Density obtained in accordance with ASTM Specification D-698, Standard Proctor Method. Any fills placed within the embankment sections should be benched into natural soils in order to reduce weak planes and seepage zones between the new fill and natural soils. All subgrade soils (walkways, fill subgrades, etc.) should be scarified, re-worked, moisture conditioned and compacted to these requirements as well.

In order to facilitate the establishment of grass on the embankment side slopes, it is considered acceptable to place up to a 12-inch-thick layer of topsoil on the faces of the embankment slopes. The topsoil material should be placed in maximum 6-inch loose lifts and should be compacted or tracked in with at least four passes of a tracked dozer.

The final slope configuration of the embankments should be constructed at gradients of 4H:1V, or flatter to provide adequate factors of safety with respect to stability. The suggested maximum slopes are based on past experience with similar pond slopes and embankment construction within similar geologic settings.

5.0 SITE CONSTRUCTION RECOMMENDATIONS

5.1 SUBGRADE PREPARATION

In a dry and undisturbed state, the soil at the site will provide good subgrade support for fill placement and construction operations. However, the soils at the site contain fines which are considered moderately erodible, moisture and disturbance sensitive when wet and degrade quickly with disturbance from contractor operations. Therefore, good site drainage should be maintained during earthwork operations in order to keep the surface water away from the project area during the construction phase. We recommend that an attempt be made to enhance the natural drainage without interrupting its pattern. The erosion and sedimentation shall be controlled in accordance with sound engineering practice and current jurisdictional requirements.

5.1.1 Stripping and Grubbing

The subgrade preparation should consist of stripping vegetation, rootmat, topsoil, existing pavements, and soft or yielding materials from the 5-foot expanded pavement limits. In grassy areas of the site may have about 6 inches of topsoil. Deeper topsoil or organic laden soils may be present in other landscaping areas. The root balls in large trees may extend deep and will require additional localized stripping depth to completely remove the organics.

ECS should be retained to verify that topsoil and yielding surficial materials have been removed prior to the placement of new fill or construction of pavements.

5.1.2 Proofrolling (Soil Subgrades)

Prior to fill placement or other construction on subgrades, the subgrades should be evaluated by an ECS field technician. The exposed subgrade should be proofrolled with construction equipment having a minimum axle load of 10 tons [e.g. fully loaded tandem-axle dump truck]. Proofrolling should be traversed in two perpendicular directions with overlapping passes of the vehicle under the observation of an ECS technician. This procedure is intended to assist in identifying any localized yielding materials.

Where proofrolling identifies areas that are yielding or "pumping" subgrade those areas should be repaired prior to the placement of subsequent fill or other construction materials. Methods of stabilization include undercutting, moisture conditioning, or chemical stabilization. The situation should be discussed with ECS to determine the appropriate procedure. Test pits may be excavated to explore the shallow subsurface materials to help in identifying the cause of the observed unstable materials, and to assist in the evaluation of appropriate actions to prepare the subgrade.

5.1.3 Site Temporary Dewatering

Perched Groundwater: Groundwater on this site can be characterized as being broadly perched above less permeable materials. The depth at which perched water is present on the site varies with surface elevation. In higher areas and on ridge lines, perched water may be present, including above design cut elevations, but is less concentrated. Soils at contact with perched water levels were very moist to wet. In most cases, moisture then decreased with depth.

Limited Excavation Dewatering: Based upon our subsurface exploration at this site, we believe construction dewatering at this site will be mainly limited to removing accumulated rainwater from low lying areas and some minor seepage from the support of excavation (SOE).

Deep wells should not be required for the temporary dewatering system. However, the dewatering operations can be handled by the use of conventional submersible pumps directly in the excavation, temporary trenches, and/or French drains.

If temporary sump pits are used, we recommend they be established at an elevation approximately 4 feet below the bottom of the excavation subgrade or bottom of footing. A perforated 55-gallon drum or other temporary structure could be used to house the pump. If dewatering cannot be accomplished by other means, we recommend continuous dewatering of the excavations using electric pumps or manned gasoline pumps be used during construction.

Details of a typical French drainage installation are included in Appendix D. A typical French drain consists of an 18 to 24-inch wide by 18- to 24-inch-deep bed of AASHTO #57 stone wrapped in a medium duty, non-woven geotextile. Actual dimensions should be as determined necessary during construction. After the installation has been completed, the geotextile should be wrapped over the top of the gravel followed by placement of backfill.

5.2 EARTHWORK OPERATIONS

Prior to placement of any new general fill, subgrades should be scarified to a depth of 6 inches, compacted to at least 95% of Maximum Dry Density as obtained by the Standard Proctor Method (ASTM D-698) and moisture conditioned above the optimum value. Fills should be benched into the existing soils.

Onsite soils can be used as fill materials. Imported soil used for general fill should not have a Plasticity Index (PI) of greater than the material encountered onsite. General fill material, outside of the building subgrade improvements, should be placed at or above optimum moisture content and compacted to at least 95% of the Maximum Dry Density as obtained by the Standard Proctor Method (ASTM D-698). Fill soils should be placed in 8-inch loose lifts for mass grading operations and 4-inch lifts for trench type excavations where walk behind or "jumping jack" compaction equipment is used.

Upon completion of the filling operations, care should be taken to maintain the soil moisture content prior to construction of floor slabs and pavements. Soil moisture levels can be preserved by various methods that can include covering with plastic, watering, etc. If the soil becomes desiccated, the affected material should be removed and replaced, or these materials should be scarified, moisture conditioned and recompacted.

Utility cuts should not be left open for extended periods of time and should be properly backfilled. Backfilling should be accomplished with properly compacted on-site soils, rather than granular materials. The clay plugs at utility trench detail provided in Appendix D is an acceptable method for the utility trench cut-off.

Field density and moisture tests should be performed on each lift as necessary to verify that adequate compaction is achieved. As a guide, one test per 2,500 square feet per lift is recommended in the building and paving areas (two tests minimum per lift). Utility trench backfill

should be tested at a rate of one test per lift per each 150 linear feet of trench (two tests minimum per lift). Certain jurisdictional requirements may require testing in addition to that noted previously. Therefore, these specifications should be reviewed and the more stringent specifications should be followed.

5.3 MATERIAL SPECIFICATIONS

5.3.1 Moisture Conditioning Clay Fill

Moisture conditioning may be performed within the building and flatwork areas sensitive to movements. Moisture conditioning of the existing clays, and all new clayey fill is performed to increase the moisture of the clays to a level that reduces their ability to absorb additional water that could result in post-construction heave in these soils.

The moisture conditioning should consist of undercutting the existing soils to the depths recommended in *Section 4.4 Foundations - Monolithic Slab-on-Grade*, scarifying the exposed subgrade, and reworking of excavated soils, as required to achieve the required subgrade improvement. During this process, the clay should receive adequate amounts of water to ensure uniform moisture content of at least 3 percentages or higher above the optimum moisture content. During the addition of water, the soils should be adequately mixed, and re-mixed, to ensure a uniform distribution of the moisture throughout the soil mass. Once appropriately mixed, the material should be compacted to at least 93% of the Maximum Dry Density as obtained using the Standard Proctor Method (ASTM D-698).

Outside of the moisture conditioned zone and where clay is used to establish site grades, we recommend that the clay material be placed and compacted to at least 95% of the Maximum Dry Density at or above the optimum moisture content as obtained using the Standard Proctor Method (ASTM D-698). These soils should be free of deleterious materials and be reworked to ensure a uniform distribution of water in order to achieve a uniform moisture content above the optimum moisture content.

Care should be taken to verify and preserve the specified moisture levels in the reworked clays prior to placement of floor slabs and pavements.

5.4 FOUNDATION AND SLAB OBSERVATIONS

Protection of Foundation Excavations: Exposure to the environment may weaken the soils in foundations if the foundation excavations remain open for too long a time. Therefore, foundation concrete should be placed immediately after the excavation has been completed, cleaned, and observed. If the bearing soils are softened by surface water intrusion or exposure, the softened soils must be removed from the foundation excavation immediately prior to placement of concrete.

5.5 UTILITY INSTALLATIONS

Utility Subgrades: The soils encountered in our exploration are expected to be generally acceptable for support of utility pipes. The pipe subgrades should be observed and probed for stability by ECS. Any loose or yielding materials encountered should be removed and replaced with acceptable material.

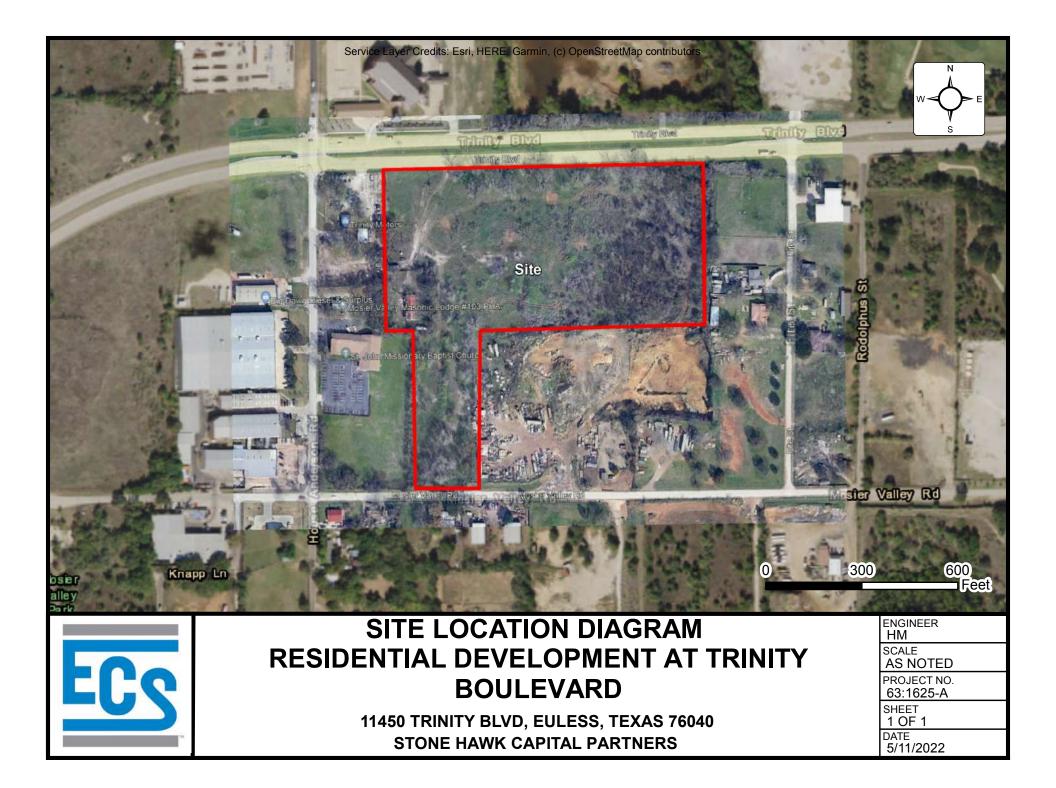
Utility Backfilling: The granular bedding material (often AASHTO #57 stone) should be at least 4 inches thick, but not less than that specified by the civil engineer's project drawings and specifications. We recommend that the bedding materials be placed up to the springline of the pipe. Fill placed for support of the utilities, as well as backfill over the utilities, should satisfy the project requirements.

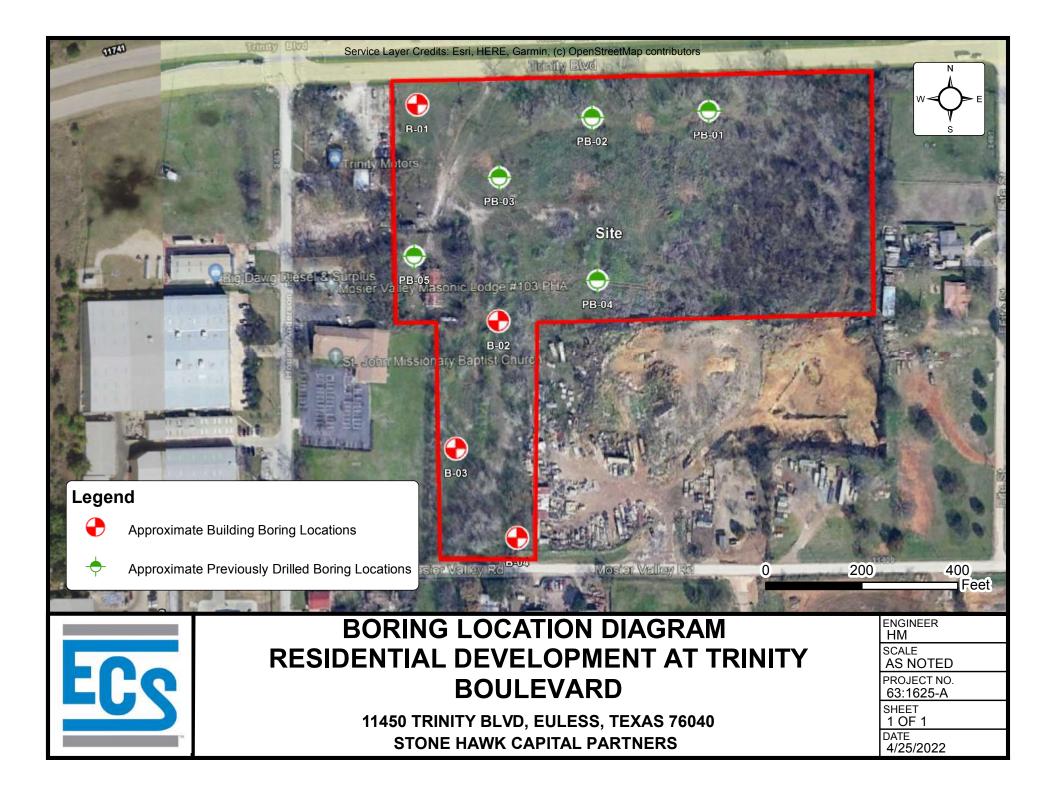
Excavation Safety: All excavations and slopes should be constructed and maintained in accordance with OSHA excavation safety standards. The contractor is solely responsible for designing, constructing, and maintaining stable temporary excavations and slopes. The contractor's responsible person, as defined in 29 CFR Part 1926, should evaluate the soil exposed in the excavations as part of the contractor's safety procedures. In no case should slope height, slope inclination, or excavation depth, including utility trench excavation depth, exceed those specified in local, state, and federal safety regulations. ECS is providing this information solely as a service to our client. ECS is not assuming responsibility for construction site safety or the contractor's activities; such responsibility is not being implied and should not be inferred.

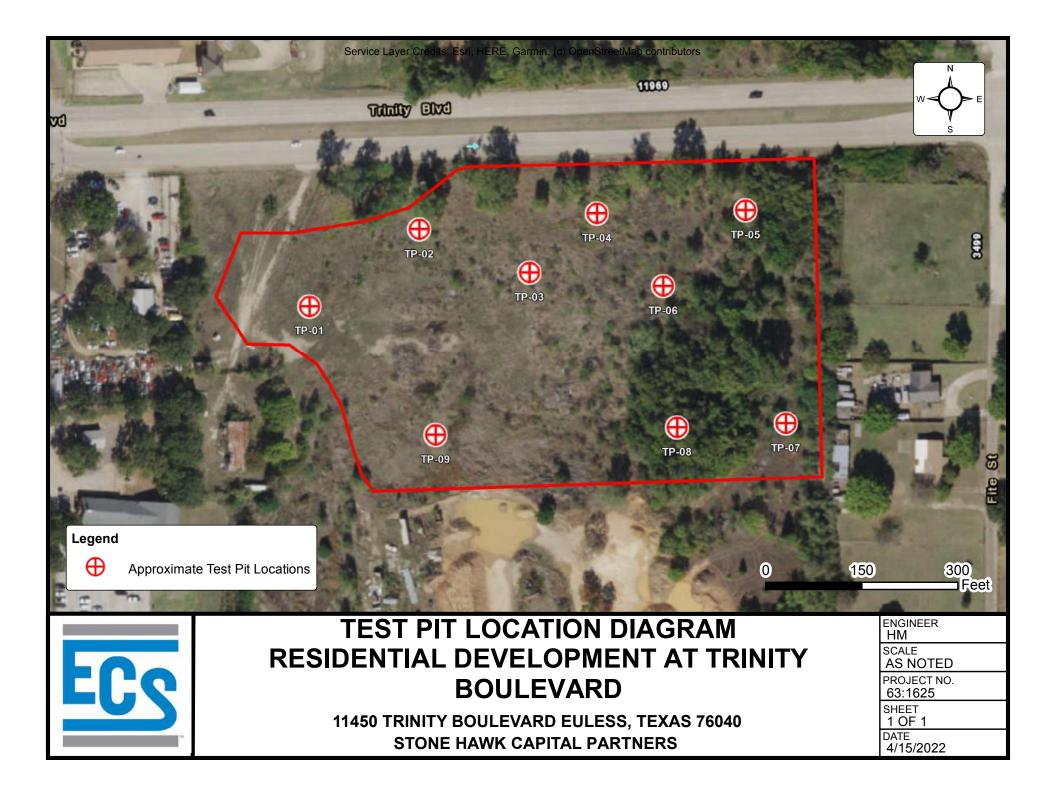
6.0 CLOSING

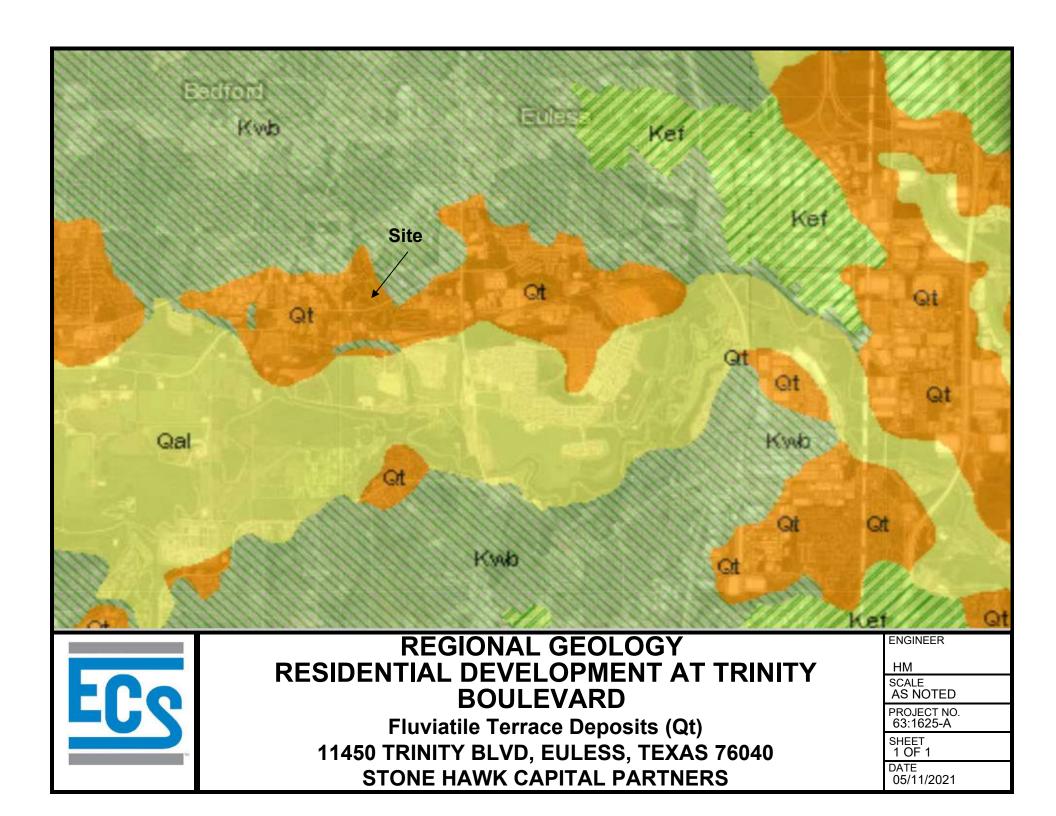
ECS has prepared this report of findings, evaluations, and recommendations to guide geotechnicalrelated design and construction aspects of the project.

The description of the proposed project is based on information provided to ECS by the client. If any of this information is inaccurate, either due to our interpretation of the documents provided or site or design changes that may occur later, ECS should be contacted immediately in order that we can review the report in light of the changes and provide additional or alternate recommendations as may be required to reflect the proposed construction.


We recommend that ECS be allowed to review the project's plans and specifications pertaining to our work so that we may ascertain consistency of those plans/specifications with the intent of the geotechnical report.


Field observations, monitoring, and quality assurance testing during earthwork and foundation installation are an extension of and integral to the geotechnical design recommendation. We recommend that the owner retain these quality assurance services and that ECS be allowed to continue our involvement throughout these critical phases of construction to provide general consultation as issues arise. ECS is not responsible for the conclusions, opinions, or recommendations of others based on the data in this report.


The analysis and recommendations submitted in this report are based upon the data obtained from the soil borings, test pits and tests performed at the locations as indicated on the Boring Location Diagram and other information referenced in this report. This report does not reflect any variations, which may occur between the borings and between the test pits. In the performance of the subsurface exploration, specific information is obtained at specific locations at specific times. However, it is a well-known fact that variations in subsurface conditions exist on most sites between boring locations and also such situations as groundwater levels vary from time to time. The nature and extent of variations may not become evident until the course of construction. If variations then appear evident, after performing on-site observations during the construction period and noting characteristics and variations, a reevaluation of the recommendations for this report will be necessary.


APPENDIX A – Figures

Site Location Map Boring Location Diagram Test Pit Location Diagram Regional Geology

APPENDIX B – Field Operations

Reference Notes for Boring Logs Boring Logs PB-1 to PB-5, and B-01 to B-04 Test Pit Logs TP-1 to TP-9

REFERENCE NOTES FOR BORING AND TEST PIT LOGS

	,2		ſ		DRILL	ING	SAN
		HALT		SS Split S	Spoon San	npler	
	ASE				y Tube Sa	Imple	r
	CON	CRETE			Sample	.	
					Sample of		0
×	GRA	VEL			r Auger (n		iple)
				HSA Hollov	v Stem Au	lger	
	TOP	SOIL	ſ			F	PAR
	VOID		ſ	DESIGNATION	F	PARTIC	CLE S
	V OIL			Boulders		12 i	nche
	BRIC	ĸ		Cobbles		3 in	ches
				Gravel: Coa	irse	³⁄₄ ir	nch t
	AGG	REGATE BASE COURSE		Fine	;	4.75	5 mm
	GW	WELL-GRADED GRAVEL		Sand: Coa	rse	2.00) mm
	911	gravel-sand mixtures, little or no fines			dium	0.42	25 m
2°°2	GP	POORLY-GRADED GRAVEL		Fine		0.07	74 m
300		gravel-sand mixtures, little or no fines		Silt & Clay ("Fi	nes")	<0.0)74 r
ka S	GM	SILTY GRAVEL	î.				
শৃপা		gravel-sand-silt mixtures		COHE	SIVE SIL	TS &	CLA
3° R	GC	CLAYEY GRAVEL		UNCONFINED			
579 Z		gravel-sand-clay mixtures		COMPRESSIVE	. 17	PT⁵	co
	SW	WELL-GRADED SAND	ł	STRENGTH, QP		PF)	(
		gravelly sand, little or no fines		<0.25	-		
	SP	POORLY-GRADED SAND gravelly sand, little or no fines		0.25 - <0.50	_		
	SM	SILTY SAND		0.50 - <1.00			
	0.11	sand-silt mixtures		1.00 - <2.00 2.00 - <4.00			,
//	SC	CLAYEY SAND		4.00 - \$.00			
:/://		sand-clay mixtures		>8.00	>5		\
	ML	SILT					
		non-plastic to medium plasticity		GRAVELS, SA		ON-C	OHE
	мн	ELASTIC SILT		SPT ⁵	neo a n		
	~						DEN
	CL	LEAN CLAY low to medium plasticity		<5 5 - 10			Very
	СН	FAT CLAY		5 - 10 11 - 30		N.4.	Lc ediur
	011	high plasticity		31 - 50		IVI	De De
555	OL	ORGANIC SILT or CLAY		>50		,	Verv
1 1 1		non-plastic to low plasticity		- 00			
<u> </u>		ORGANIC SILT or CLAY	П				
	ОН	ONGAMO OIL! OF OLAT					
	ОН	high plasticity	ł		1		
<u>26 26</u> 26 26	ОН РТ		t				

MPLING SYMBOLS & ABBREVIATIONS

	PM	Pressuremeter Test
	RD	Rock Bit Drilling
	RC	Rock Core, NX, BX, AX
gs	REC	Rock Sample Recovery %
ole)	RQD	Rock Quality Designation %

		PARTICLE SIZE IDENTIFICATION
DESIGNATI	ON	PARTICLE SIZES
Boulders		12 inches (300 mm) or larger
Cobbles		3 inches to 12 inches (75 mm to 300 mm)
Gravel:	Coarse	¾ inch to 3 inches (19 mm to 75 mm)
	Fine	4.75 mm to 19 mm (No. 4 sieve to ¾ inch)
Sand:	Coarse	2.00 mm to 4.75 mm (No. 10 to No. 4 sieve)
	Medium	0.425 mm to 2.00 mm (No. 40 to No. 10 sieve)
	Fine	0.074 mm to 0.425 mm (No. 200 to No. 40 sieve)
Silt & Cla	y ("Fines")	<0.074 mm (smaller than a No. 200 sieve)

COHESIVE	E SILTS &	CLAYS
UNCONFINED COMPRESSIVE STRENGTH, QP ⁴	SPT ⁵ (BPF)	CONSISTENCY ⁷ (COHESIVE)
<0.25 0.25 - <0.50	<2 2 - 4	Very Soft Soft
0.50 - <1.00	5 - 8 9 - 15	Firm Stiff
1.00 - <2.00 2.00 - <4.00	16 - 30	Very Stiff
4.00 - 8.00 >8.00	31 - 50 >50	Hard Very Hard

RELATIVE AMOUNT ⁷	COARSE GRAINED (%) ⁸	FINE GRAINED (%) ⁸
Trace	<5	<5
With	10 - 20	10 - 25
Adjective (ex: "Silty")	25 - 45	30 - 45

GRAVELS, SANDS &	NON-COHESIVE SILTS
SPT⁵	DENSITY
<5	Very Loose
5 - 10	Loose
11 - 30	Medium Dense
31 - 50	Dense
>50	Very Dense

WATER LEVELS ⁶

Ā	WL (First Encountered)	

- WL (Completion)
- V WL (Seasonal High Water)
- ⊻ WL (Stabilized)

	FILL AN	D ROCK	
FILL	POSSIBLE FILL	PROBABLE FILL	ROCK

¹Classifications and symbols per ASTM D 2488-17 (Visual-Manual Procedure) unless noted otherwise.

²To be consistent with general practice, "POORLY GRADED" has been removed from GP, GP-GM, GP-GC, SP, SP-SM, SP-SC soil types on the boring logs.

³Non-ASTM designations are included in soil descriptions and symbols along with ASTM symbol [Ex: (SM-FILL)].

⁴Typically estimated via pocket penetrometer or Torvane shear test and expressed in tons per square foot (tsf).

⁵Standard Penetration Test (SPT) refers to the number of hammer blows (blow count) of a 140 lb. hammer falling 30 inches on a 2 inch OD split spoon sampler

required to drive the sampler 12 inches (ASTM D 1586). "N-value" is another term for "blow count" and is expressed in blows per foot (bpf). SPT correlations per 7.4.2 Method B and need to be corrected if using an auto hammer.

⁶The water levels are those levels actually measured in the borehole at the times indicated by the symbol. The measurements are relatively reliable when augering, without adding fluids, in granular soils. In clay and cohesive silts, the determination of water levels may require several days for the water level to stabilize. In such cases, additional methods of measurement are generally employed.

⁷Minor deviation from ASTM D 2488-17 Note 14.

⁸Percentages are estimated to the nearest 5% per ASTM D 2488-17.

CLIENT							PROJECT NO		BORING N	10.:	SHEET:	
toneHa			artners				63:1625		PB-01		1 of 1	_tCo
ROJEC							DRILLER/CC	NTRACTO	DR:			
			ient at	Trinity	Boulevard		Total Depth					
ITE LO											LOSS OF CIRCULA	
. 1450 T North		siva, El	liess, I					c		LEVATION:		
493876					47093.4	STATION:				LEVATION:	BOTTOM OF CA	SING
493870	62.0			25	47093.4				536.0			
_	SAMPLE NUMBER	щ	SAMPLE DIST. (IN)	ź				S	Ê	_	Plastic Limit Water C X	ontent Liquid Limit I∆
(FT	Δn	Ϊ	IST.) ン				EVE	z	<u>9/9</u>	STANDARD PENE	TRATION BLOWS/FT
DЕРТН (FT)	Z IJ	PLE	ЕD	VEF	DESCRIPTION OF	MATERIAL		R L	ATIO	BLOWS/6"	ROCK QUALITY DESIG	NATION & RECOVERY
DEI	MPI	SAMPLE TYPE	MPI	RECOVERY (IN)				WATER LEVELS	elevation (FT)	BL(RQD — REC	
	SA	0,	SA	~				>				ETROMETER TON/SF
											[FINES CONTENT] %	
-	S-1	ST	24	24	FILL, LEAN CLAY, brown				-			0
-	3-1	51	24	24	brown, hard, with sand							⊖ _{4.50}
-					trashes, asphalt, bricks	, plastics,			-			
_	S-2	ST	24	24	and rebars							O _{4.00}
-												- 4.00
-												
5-	S-3	ST	24	24					531 –			⊖ _{4.50}
1									4 -			
-					Auger Only - No Samp	ling			-			
_												
-									-			
_												
10									526 –			
10-									520 -			
_												
_												
-					Refusal encountered a		//					
_					END OF DRILLIN	IG AT 12.0	FT					
-									-			
15-									521			
-									-			
_												
-									-			
_												
-									-			
_												
20-									516 –			
_												
-									-			
-												
									-			
_]			
25									511 -			
25-												
-									-			
_]			
-									-			
-												
-									-			
-30 -									+ 1			
-												
<u>ک</u> ۱۸	TI VL (Firs				NES REPRESENT THE APPROXIM							ADUAL
	-			cuj			NG STARTED:	Mar 0	3 2022	CAVE IN	DEPTH:	
		-	-	Nator)	DRY	BORI COM	NG PLETED:	Mar 0	3 2022	HAMME	R TYPE: Auto	
	-		-	Vater)			PMENT:	LOGO	GED BY:			
V 🛛	VL (Sta	bilizec)			Truck		TL2			g method: CFA	
_		-			GEO	TECHNIC	CAL BORE		ÔG			

CLIENT StoneHa	awk Ca		irtners				PROJECT NO 63:1625		Р	BORING N 1 B-02	10.:	SHEET: 1 of 1		ECo
PROJEC Residen			ent at	Trinity	Boulevard		DRILLER/CO		CTOF	R:				
SITE LC 11450 T	CATIO	N:										LC	DSS OF CIRCULATION	<u>אר אר א</u>
NORTH 149387	ING:	,		EA	ASTING: 46833.8	STATION:				RFACE EI 2.00	EVATION:	E	BOTTOM OF CASING	
DEPTH (FT)		SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION O				WATER LEVELS	ELEVATION (FT)	BLOWS/6"	NOC	Limit Water Conten STANDARD PENETRATIC K QUALITY DESIGNATION RQD REC CAUBRATED PENETROM ES CONTENT] %	N BLOWS/FT N & RECOVERY
-	S-1	ST	24	24	FILL, LEAN CLAY, brown sand seams, asphalt, co					-			O _{3.00}	
					Refusal encountered		//			537				
20 - - - - - - - - - - - - - - - - - - -										522				
- 30-													: : 	: :
					NES REPRESENT THE APPROXI	MATE BOUND	ARY LINES BET	WEEN S	OIL	TYPES. IN	-SITU THE TR	ANSITION I	MAY BE GRADU	AL
			ountere	ed)	DRY		NG STARTED	: Ma	nr 03	2022	CAVE IN	DEPTH:		
		mpleti		(at a s)	DRY	BORI COM	NG PLETED:	Ma	ır 03	3 2022	HAMME	R TYPE:	Auto	
			High V	vater)		EQUI	PMENT:			ED BY:		METHOD). CFA	
<u>×</u>	vi (Sta	bilized)		GFC	Truck	CAL BORE	TL2		DG				

LIENT							PROJECT NO		BORING	NO.:	SHEET:		
			artners				63:1625		PB-03		1 of 1		L LC
							DRILLER/CO	NIRACIO	DR:				
	DCATIC		nent at	Irinity	Boulevard		Total Depth						
				ovos 70	040						LOSS C	F CIRCULATION	<u>>100</u>
	Trinity I HING:	σινά, ει	liess, i		ASTING:	STATION:		c		LEVATION:			
19384					46865.5	STATION.			46.00	LLVATION.	BOTT	OM OF CASING	
+5564	00.0			23	40803.3				+0.00				
	ER		î	_				S			Plastic Limi X	t Water Content	Liquid Limit ───△
FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)				WATER LEVELS	elevation (FT)	.9,		DARD PENETRATION	
DЕРТН (FT)	Z Z	ц Ц	DIG	/ER	DESCRIPTION C	DF MATERIA	L	LE L	0 1 0	BLOWS/6"		ALITY DESIGNATION &	
JEP.	4PLE	AMP	1PLE	l Ó				ATE	E M	BLO)	
_	SAN	S.	SAN	R				≥	E			; RATED PENETROMET	
											[FINES CO		ER TUN/SF
-	-				FILL, LEAN CLAY, brow	n, light			-				
_	S-1	ST	24	24	brown, hard, with san	d seams	and						O _{4.50}
-					asphalt pieces				-				
_	S-2	ST	24	24									⊖ _{4.50}
-									-				4.50
-	-												
5-	S-3	ST	24	24					541-				O _{4.50}
-	- S-4	ST	24	24	FILL, LEAN CLAY, brow								⊖ _{4.50}
-			24	24	brown, very stiff, with	i sand sea	ims		-				4.50
-					and concrete								
-	S-5	ST	24	24					-			03.00	
10-									536				
-	-								-				
_	1												
-	-								-				
_													
-	S-6	ST	24	24					-				
_	0-5	51	24	24								O _{3.00}	
15-					Refusal encountered	at 15.0 fe	et.		531-				
-	-				END OF DRILLI				_				
_	1												
-	-								-				
_	1												
-	-								-				
20-	-								526				
-									-				
-	-								-				
	1								-				
_	-								-				
_	1												
~- ⁻	-												
25-	1								521-				
	1								-				
_	1												
-	1								-				
-]												
-	-								-				
-30]								1				
	_			 			DADV:::::::::::::::::::::::::::::::::::			ort			
					NES REPRESENT THE APPROXI	MATE BOUN	IDARY LINES BET	NEEN SOI	L TYPES. IN	-SITU THE TE	ANSITION MA	' BE GRADUAI	_
Z V	NL (Fir	st Enco	ounter	ed)	DRY	BOI	RING STARTED:	Feb 2	1 2022	CAVE IN	DEPTH:		
V	NL (Co	mpleti	on)		DRY	ROI	RING						
				N/atar)			MPLETED:	Feb 2	8 2022	HAMME	R TYPE: A	uto	
	NL (Sea		-	water)			JIPMENT:	LOGO	GED BY:				
₹ V	NL (Sta	bilized	4)			True		TL2		DRILLING	G METHOD: C	FA	
					GEC		ICAL BORE		06				

		nital Dr	artners				PROJE0 63:162	CT NO.:		BORING I P B-04	10.:	SHEET: 1 of 1		
	T NAN	-	artners					» R/CONTR.				1011		EC
			ient at	Trinity	Boulevard		Total D		ACIO					
	CATIO							•				1055.0	OF CIRCULATION	Σιο
450 T	rinity E	Blvd, Eu	less, T	exas 76	6040							1033 0	OF CIRCULATION	
ORTH					STING:	STAT	ION:				LEVATION:	BOTT	OM OF CASING	
93862	24.8			25	46652.4				54	4.00				
<u>_</u>	SAMPLE NUMBER	PE	SAMPLE DIST. (IN)	(IN)						(FT)	Ŧ	Plastic Limit Water Content Liquid Limit X		
DEPTH (FT)	NUN	SAMPLE TYPE	DIST	RECOVERY (IN)	DESCRIPTION		EDIAL		WATER LEVELS	elevation (FT)	BLOWS/6"		DARD PENETRATION E	
- -	PLE	MPI	PLE	No.	DESCRIPTION				TER	VAT	SLOV	RQI		
	SAM	SA	SAM	RE					Ň	ELE	ш			
												[FINES CO	RATED PENETROMETE	R TON/SF
-	C 1	ст	24	24	(CL) LEAN CLAY, darl			у ///		-				
-	S-1	ST	24	24	stiff to hard, with sa	ind sear	ms, gravel	///					C	0 _{4.00}
-								///						
-	S-2	ST	24	24						-				O _{4.50}
_										-				
5-	S-3	ST	24	24						539-				\circ
Ŭ -	55	5.	27	27										O _{4.50}
-									ĺ.	-				
-	S-4	ST	24	24					ĺ.				O _{3.00}	
-									1	-				
_	S-5	ST	24	24									C	
0									1	534 -				0 _{4.00}
Ŭ -									1					
-									1					
-									1					
-					(SC) CLAYEY SAND, b	arown	light brown		<u>-</u>	-				
-	S-7	SS	18	18	loose to medium de			///			4-5-5	⊗ ₁₀		
15	57	55	10	10			an Braver	///		529-	(10)	010		
-								///	? :	-				
-								///	:	-				
-								///	2	-				
-								///	/	-				
-	S-8	SS	18	18				///	2	_	4-6-6	⊗ ₁₂		
20	5.0	55	10	10				///	2	524	(12)	¥12		
-										-				
-								///						
-								///						
_								///		-				
-	S-9	SS	18	18				///		-	13-11-10	⊗21		
25				<u> </u>	END OF BOP		7 25 0 FT	///		519-	(21)	- 21		
_							23.0 F I							
-														
-														
-														
										-				
30										1				
	тı										כודו ו דנור די			
7 14					NES REPRESENT THE APPRC								I DE GRADUAL	
	-		ountere	ea)	DRY	ſ	BORING STAF	RTED:	Mar 03	3 2022	CAVE IN	DEPTH:		
W	/L (Coi	mpleti	on)		DRY	(BORING		Mar O'	2 2022	ЦАКЛАЛ	R TVDE.	uto	
W	/L (Sea	asonal	High V	Vater)			COMPLETED:			3 2022	HAMME	NITPE: A		
				,			EQUIPMENT:			ED BY:	DRILLING	6 METHOD: C	FA	
. V\	rr (วเล	bilized	1				Truck	1	L2					

IENT:		nital P	rtrees				PROJECT	NO.:		BORING	NO.:	SHEET:			
	wk Ca T NAN	pital Pa //F:	irtners				63:1625	CONTRA		PB-05		1 of 1		— C(C
			ient at	Trinity	Boulevard		Total Dep		1010						
	CATIC											10	DSS OF CIRCU) IOC
		Blvd, Eu	less, T	exas 76											
DRTH					STING:	STATION				JRFACE E 5 0.00	LEVATION:	E	BOTTOM OF C	CASING	
938459.1 2546480.5								33							
	BER	Ц	(IN)	ź					S	Ê	_		x	Content Liquid I	imit
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN) DESCLIDEN OL WATERIAL BLOWS/6"				NETRATION BLOWS/							
	LE P	MPLI	D II	OVE	DESCRIPTION	OF MATERIA	AL.		TER	ATIC	ΓΟΛ		RQD	IGNATION & RECOV	ERY
ב	AMI	SAI	AMI	REC					MA	ELE	Ê		REC		
	0,		0,										CALIBRATED PE ES CONTENT] %	NETROMETER TON	SF
-	C 1	ст	24	24	(CL) LEAN CLAY, brov		rown, very			-					
-	S-1	ST	24	24	stiff to hard, with gr	avel								O _{4.00}	1
+															
-	S-2	ST	24	24										⊖ _{3.50}	
+															
5-	S-3	ST	24	24						545-				O _{4.00}	,
-														4.00	
_	S-4	ST	24	24										0	
-										-				Ŭ	4.50
-	S-5	ST	24	24					1	-					
	3-3	51	24	24					1	F 40				O _{4.00})
0+									1	540-					
-									1						
									1						
-					(SC) CLAYEY SAND, b	rown red	dish		1						
-	S-6	SS	18	18	brown, loose to very			///			1-2-5 (7)	$\otimes_{\mathbf{z}}$			
15-		gravel				///		535-	5-						
_								///							
_								///;		-					
_								///,							
_	6.7		10	10				///,			6-22-50/4"				\searrow
20 -	S-7	SS	16	16				///,		530-	(72/10")				872
-								///,		330					
-								[//]							
-								////							
-	S-8	~~~	3	3				///			50/3"				
-	<u> </u>							///	1		(50/3")				Ø ₅₀
25					END OF BOR	ING AT 25	.0 FT	/:/:/:;	1	525					
-										-					
-										-					
4															
_															
30 -										-					
						//									
7					NES REPRESENT THE APPRO				I SOIL	TYPES. IN			MAY BE G	KADUAL	
	-	st Enco		ed)	DRY	ВО	RING STARTE	ED: N	/lar 03	3 2022	CAVE IN	DEPTH:			
W	/L (Co	mpleti	on)		DRY	BU	RING	N	/ar 0:	3 2022	HAMME	R TYPE: Auto			
r w	/L (Sea	asonal	High V	Vater)			MPLETED:								
z w	/L (Sta	bilized)			EQ Tru	UIPMENT:		.0GG `l2	ED BY:	DRILLING	6 METHOD	D: CFA		
	•						IICAL BOF								

IENT:		nital P				PROJEC			BORING I	NO.:	SHEET:		
	iwk Ca T NAN	pital Pa ⊿⊑•	irtners			63:162	5-a R/CONTRA		B-06		1 of 1		
			ent at	Trinity	Boulevard	Total D		ICTO	Γ.				
	CATIC			miney	Boulevard	Iotar D	eptii						
			less, T	exas 76	040						LOSS OF CIRCULATION		
ORTH					STING: STATION			SL	JRFACE E	LEVATION:			
93876	58.8			25	46491.8			54	4.0		BOTTOM OF CASING		
	£		_								Plastic Limit Water Content Liquid Limit		
F	ЛВЕ	SAMPLE NUMBER SAMPLE TYPE RECOVERY (IN) RECOVERY (IN)						ELS	(FT)	Ŧ	Δ		
DEPTH (FT)	NUN	SAMPLE TYPE	DIST	RECOVERY (IN)	DESCRIPTION OF MATERIA	ı		WATER LEVELS	elevation (FT)	BLOWS/6"	STANDARD PENETRATION BLOWS/FT ROCK QUALITY DESIGNATION & RECOVERY		
EPI	PLE	MPL	PLE		DESCRIPTION OF MATERIA	L		TER	VATI	LOV	RQD		
	AM	SA	MM	REC				Ň	ELE	ш	REC		
	01		0,								CALIBRATED PENETROMETER TON/SF [FINES CONTENT] %		
-					(CL) LEAN CLAY, dark brown, re	ddish			_				
_	S-1	ST	24	24	brown, very stiff to hard, with	sand			-		O _{4.50}		
+					seams								
	S-2	ST	24	24							O _{2.50}		
-	52	51	24	24					-		2.50		
-					(SC) CLAYEY SAND, reddish bro	wn, very	///						
5-	S-3	ST	24	24	loose to medium dense	, - ,	[]]]		539-		O _{2.00}		
1							////		_				
-	c /	ст	24	24			///		-				
	S-4	ST	24	24			///,				O _{0.50}		
-							///		-				
_	S-5	ST	24	24			///		-		O _{1.50}		
10							///		534 -				
-							///						
							///						
-							///		-				
_					/								
					(CL) LEAN CLAY, reddish brown	, very stiff	t, ////		_	7-14-15			
	S-6	SS	18	18	with sand seams					(29)	[⊗] 29		
15									529-				
-									-				
_									_				
-									-				
-		-							-				
-	S-7	ST	24	24									
20+									524 -				
_													
-									-				
-							- {///						
-	<u> </u>			3	CEMENTED SAND, reddish brow	vn, with				50/3"			
-†	_S-8_	SS	3	_ <u>_</u>	clay seams	,			-	(50/3")	850		
25 -					-	-T			519-				
-					END OF BORING AT 25	-1							
-													
1									_]				
_									-				
_													
20 -													
30													
					NES REPRESENT THE APPROXIMATE BOUI	NDARY LINE	S BETWEEN	SOIL	TYPES. IN	-SITU THE TR	ANSITION MAY BE GRADUAL		
ZW	/L (Firs	st Enco	ounter	ed)	Dry BO	RING STAR	TED: A	pr 15	2022	CAVE IN I	DEPTH:		
W	/L (Co	mpleti	on)			RING	Δ	pr 15	2022	HAMMER	ER TYPE: Auto		
<u> </u>	/L (Sea	asonal	High V	Vater)		MPLETED:		-	ED BY:		:		
ZW	/L (Sta	bilized)		N/A Tru	UIPMENT: ck		0GG M6	ln di:	DRILLING	6 METHOD: CFA		
					GEOTECHN								

		nital P	rtress				PROJEC			BORING	NO.:	SHEET:		
	T NAN		artners				63:1625	-a /contra		3-07		1 of 1		;{
			ent at	Trinity	Boulevard		Total De			Π.				
	CATIC		ient at		boulevalu		lotal De							
			less, T	exas 76	5040							LOSS OF CI	RCULATION	<u>) IOC</u>
ORTH					ASTING:	STATION			SL	JRFACE E	ELEVATION:			
93832	22.0			25	46657.8				54	8.0		BOTTOM	OF CASING	
)	SAMPLE NUMBER	ЪЕ	SAMPLE DIST. (IN)	N)					ELS	FT)		Plastic Limit Wa	eter Content Liquid Limit	it
DЕРТН (FT)	NUN	SAMPLE TYPE	IST.	RECOVERY (IN)					WATER LEVELS	ELEVATION (FT)	BLOWS/6"	-	PENETRATION BLOWS/FT	
PTH	LE	1PLE	П	DVE	DESCRIPTION	OF MATERIA	L		ER I	ATIC	NO		DESIGNATION & RECOVERY	1
B	ΜP	SAN	MP	REC					WAT	CLE V	BL	RQD REC		
	S/		S/						-				D PENETROMETER TON/SF	
					(CL) LEAN CLAY, dark	hrown re	ddish	1777				[FINES CONTEN	T] %	
	S-1	ST	24	24	brown, very stiff to ha					-			0 _{4.5}	50
-					seams									
_	S-2	ST	24	24									O _{3.00}	
-					-									
5-	S-3	ST	24	24						543-			O _{4.00}	
- -		5.	<u> </u>	T									·─ 4.00	
-					(SC) CLAYEY SAND, re	ddish bro	wn,	////						
-	S-4	ST	24	24	medium dense			///		-			O _{4.5}	50
_								///		_				
-	с г	ст	24	24				///		-			0	
_	S-5	ST	24	24			//						O _{4.00}	
10-					-			////		538-				
_								////						
-								///		-				
								///		_				
_								///		-				
-	S-6	ST	24	24				///					O _{4.5}	50
15					-			///		533-				
-								///		-				
_								///		_				
_								///		_				
-						ما ما : مام ام سم								
_				10	(SC) CLAYEY SAND, re			////		-	7-12-12 (24)	0		
	S-7	SS	18	18	yellowish brown, med cemented sand seam		se, with	////		500		∞24		
20						5		////		528-				
-								///						
_								///		_				
								///						
-								///			10 14 15			
_	S-8	SS	18	18				///			10-14-15 (29)	⊗ ₂₉		
25 -					END OF BORI	NG AT 25	FT	1:/:/:/		523-				
_							•							
-										-				
-										-				
_														
-										-				
30														
	TI	HE STR	ATIFICA	TION LI	NES REPRESENT THE APPROX	IMATE BOUI	NDARY LINES	BETWEEN	SOIL	TYPES. IN	I-SITU THE TR	ANSITION MAY BE	GRADUAL	_
ZW	/L (Firs	st Enco	ounter	ed)	Dry	ВО	RING STAR	TED: A	pr 15	2022	CAVE IN	DEPTH:		
Z V	/L (Co	mpleti	on)		Dry	во	RING	-		2022				
Z W	/L (Sea	asonal	High V	Vater)	N/A	со	MPLETED:	A	pr 15	2022		R TYPE: Auto		
						EQ	JIPMENT:		COG	ED BY:	METHOD: CFA		_	
	11 10.	bilized	1		N/A	1)R \//-			

LIENT							PROJECT N	10.:		BORING I	NO.:	SHEET:		
		pital Pa	artners				63:1625-A			3-08		1 of 1		ECc
					De la col		DRILLER/C		CIO	R:				
	CATIC		ient at	Irinity	Boulevard		Total Dept	n						
			Jose T	ovoc 76	040							LOSS (OF CIRCULATION	<u> >100</u>
		οινα, ει	ness, i	exas 76	ASTING:	STATIONI			CI		LEVATION:			
ORTH 19380 !						STATION:				6.0	LEVATION:	BOTT	OM OF CASING	
+9380:	54.5			25	46560.5				54	0.0				
	24		î							_			it Water Conten	
(L	MBI	SAMPLE TYPE	 ⊢	RECOVERY (IN)					WATER LEVELS	elevation (FT)	-0	X		Δ
DЕРТН (FT)	NN	ЕТ	DIS	ERY	DESCRIPTION C	<u>ΣΕ ΜΑΤΕΒΙΑΙ</u>			LE	NO	BLOWS/6"		DARD PENETRATIO	
EPT	PLE	MPI	PLE	l õ	DESCRIPTION C				TER	VAT		RQ		
	SAMPLE NUMBER	SA	SAMPLE DIST. (IN)	REC					M	ELE	ш	RE0		
	S												RATED PENETROM	ETER TON/SF
					(CL) LEAN CLAY, dark b	orown. redd	lish	1777				[FINES CC		
-	S-1	ST	24	24	brown, hard, with sar					-				⊖ _{4.50}
_						-		Y///		_				
-		CT		~				Y///		-				\sim
_	S-2	ST	24	24				V / / /						⊖ _{4.50}
_								V//		-				
5-	S-3	ST	24	24				V//		541-				O _{4.00}
-								///						4.00
_					(SC) CLAYEY SAND, ree	ddish browr	n, light	///						
_	S-4	ST	24	24	grayish and yellowish			////		-				O _{4.50}
_					brown, medium dens			///						
-	S-5	ST	24	24				[///		-				\circ
-	3-5	51	24	24				[]]]		_				⊖ _{4.50}
10-								[]]]		536-				
								////						
_								////		-				
_										-				
								///		-				
_	S-6	ST	24	24				///		-			⊖ _{2.50}	
15-								///		531-				
								///						
_								[]//						
_								[]]]		-				
-								////						
_					-			///		-	11-13-10			
	S-7	SS	18	18				///			(23)	⊗ ₂₃		
20-								///		526-				
-								///		-				
-								[]]]		-				
-								[]]]						
								[///		-				
1								///			9-12-11			
~- ⁻	S-8	SS	18	18				///			(23)	Ø ₂₃		
25-					END OF BORI	NG AT 25 FT				521-				
										-				
-														
-										-				
-										-				
30 -										- 1				
	TI	HE STRA	ATIFICA	TION LI	NES REPRESENT THE APPROXI	IMATE BOUNDA	ARY LINES BE	TWEEN	SOIL	TYPES. IN	I-SITU THE TR	ANSITION MA	Y BE GRADU	4L
ΖV	VL (Firs	st Enco	ounter	ed)	Dry	BORIN	NG STARTE	D: A	pr 15	2022	CAVE IN I	DEPTH:		
۱۸		mpleti	on)		Dry							ULI III.		
		-				BORIN		А	pr 15	2022	HAMMER	R TYPE: A	uto	
V V	VL (Sea	asonal	High \	Vater)	N/A		PLETED:		-					
• W	/L (Sta	bilized)		N/A		PMENT:			ED BY:	DRILLING	METHOD: C	FA	
	_ ,u		1			Truck		H	M6		1			

CLIENT		- 14 - 1 -					ECT NO.:		BORING I	NO.:	SHEET:	
ROJEC		-	irtners			63:16	25-A ER/CONTRA		B-09		1 of 1	— L [.q
			ont at	Trinita	Boulevard		ER/CONTRA Depth	4010	IK:			
ITE LO			ient at	minty	Boulevalu	Iotai	Deptii					
1450 T			loss T	ovac 76	5040						LOSS OF CIRCU	
NORTH		SIVU, EL	iless, i			ION:		CI		LEVATION:		
493787					46695.2	ION.			6.0	LLVATION.	BOTTOM OF C	ASING
49378/	5.7			25	40093.2			34	0.0			
Ê	SAMPLE NUMBER	/PE	SAMPLE DIST. (IN)	RECOVERY (IN)				WATER LEVELS	elevation (FT)	-	Х	Content Liquid Limit
DЕРТН (FT)	NUN	SAMPLE TYPE	DIST	ĒRΥ				E	NO	BLOWS/6"	-	IETRATION BLOWS/FT
EPTI	LE	MPL	LE	INO	DESCRIPTION OF MAT	IENIAL		TER	ATI	ΓΟΛ	RQD	IGNATION & RECOVERT
	MA	SAI	₩	REC				MA	ELE	B	REC	
	S		Ś									NETROMETER TON/SF
					(CL) LEAN CLAY, dark browr	n raddish					[FINES CONTENT] %	
_	S-1	ST	24	24	brown, very stiff to hard, w			1			O _{2.00}	
-					-	and sand		1	-		2.00	
_					seams			ł				
-	S-2	ST	24	24			///		-			O _{4.50}
	c a	CT	24	24	(SC) CLAYEY SAND, reddish	brown, oliv	e [////		E 4 4			~
5-	S-3	ST	24	24	brown, medium dense		///	1	541-			O _{4.50}
-							///	1	-			
_	S-4	ST	24	24			///	1				⊖ _{4.50}
-	51		24	27			////	ł	-			⁻ 4.50
_							////					
_	S-5	ST	24	24			///		-			O _{4.50}
10							///		536-			4.00
							///	1	550			
_					CEMENTED SAND, brown,	vellowish			-			
_					brown	ychowish			_			
-					STOWIT							
	S-6	SS	4	4						50/4"		\otimes
-			4	4					-	(50/4")		⊗ _{50/4}
15-									531-			
-												
_												
-									-			
_												
-	S-7	SS	11	11					-	37-50/5"		
_	5-7	55	11	11					-	(50/5")		⊗ _{50/5}
20-									526-			
-									-			
_												
									-			
-	S-8	SS	9	9						21-50/3"		Ø _{50/3}
25									501 -	(50/3")		
25-					END OF BORING AT	25 FT			521-			
-									-			
_												
-									-			
_												
									-			
-												
30		1										
- <u>-</u>					NES REPRESENT THE APPROXIMATE	BOUNDARY LIN	ES BETWEEN	I SOIL	TYPES. IN	-SITU THE TR	ANSITION MAY BE GR	RADUAL
	TI	HE STR	ATIFICA			1					DEDTU	
			ounter		Dry	BORING STA	RTED: A	pr 15	5 2022	CAVE IN	DEPTH:	
∑ W	/L (Firs		ounter		Dry	BORING STA						
☑ W ▼ W	/L (Firs /L (Co	st Enco mpleti	ountere on)	ed)	Dry		Δ		5 2022 5 2022	HAMME		
✓ W ▼ W ▼ W	/L (Firs /L (Cor /L (Sea	st Enco mpleti	ountere on) High V	ed)		BORING): A	pr 15		HAMME		

CLIEN Stone PROJE	Hawl					PROJECT NO.: 63:1625-A TEST PIT NO.:		SHEET 1 of 1 SURFA	T: CE ELEVATION:				
Reside			opment at Trini	ty Blvd		TP-1		STATIO	N:		EL	27	
	Trinit	ty Blvd,	Euless, Texas 7	6040 14938614.0		EASTING:		254663					
NUKI	HING	J:	· · · ·	14938014.0		EASTING:			57.4				
DEPTH (FT)	WATER LEVELS	ELEVATION (FT)		DESC	RIPTION OF MATERIA	AL.		EXCAVATION EFFORT	DCP	QP (TSF)	SAMPLE NUMBER	MOISTURE CONTENT (%)	
			sand seam size), asph 4 in size), t	s, some roo alt (up to 12 oricks, 4" PV	nge and grayish ts, concrete (up 2" in size), rebar "C pipe and wood "C pipe and wood	to 48" in (No. 3 or No. d							
- - - - 15-		- - - 529		th less grave	el at 13.5', with si	ilty layer at							
				END OF	TEST PIT AT 15.0	V F I							
20		524 											
REMA	ARKS: HE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDRY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL EXCAVATION EFFORT: E - EASY M - MEDIUM D - DIFFICULT VD - VERY DIFFICULT												
	WI	(First F	ncountered)	Dry	WL (Season:				OPERATOR:	M	ake/mode	L:	
		(Comp		Dry	- WE (SC43016	антиби/ 			Gary		INC/ WODE	L.	
ECS RI		(2011P		DATE COMP	LETED:		UNITS:		CAVE-IN-DEPTH	<u> </u> 			
HM6				Apr 07 2022			English	ľ					
						TEST PIT L							

CLIEN Stone		k				PROJECT NO.: 63:1625-A		SHEE 1 of 1				
		IAME:	opment at Trini	ty Phys		TEST PIT NO.: TP-2		SURFA	CE ELEVATION:			
SITE L			opinient at mini	LY BIVU		17-2		STATIC	DN:			
			, Euless, Texas 7			FACTING.		25469	00.4		_	NT N
NORT	HIN			14938735.6		EASTING:		25468	09.4			
DEPTH (FT)	WATER LEVELS	ELEVATION (FT)		DESC	RIPTION OF MATERIA	AL		EXCAVATION EFFORT	DCP	QP (TSF)	SAMPLE NUMBER	MOISTURE CONTENT (%)
5		538	brown, wi 48" in size plastic bag PVC pipe	th some gra), rebar (No gs and sheet DIL, CLAYEY S	ange, reddish, b vels, concrete (a . 3 or No. 4 in siz s, brick (up to 16 SAND, orange an	bundant, up to re), asphalt, tire, 5" in size), 4" nd reddish brown						
15- -		528			- 1231 PIT AT 14.							
REMA			ICATION LINES			E BOUNDRY LINES BI				ISITION N	MAY BE GRA	DUAL
						ASY M - MEDIUM D						
			ncountered)	Dry	🗴 WL (Season	al High)	CONTRACTOR	R:	OPERATOR:	N	1AKE/MODE	L:
	WL	(Comp	letion)	Dry					Gary			
ECS R	EP.:			DATE COMP	LETED:		UNITS:		CAVE-IN-DEPTH	4:		
HM6				Apr 07 2022			English					
						TEST PIT LO	G					

CLIEN Stone		k				PROJECT NO.: 63:1625-A		SHEET 1 of 1	:			
		IAME:				TEST PIT NO.:		SURFA	CE ELEVATION:			
SITE L			opment at Trini	ty Blvd		TP-3		STATIO	N:		┤┗━し	
			, Euless, Texas 7			1						
NORT	HIN	G:		14938665.3		EASTING:		254697	3.7			
DEPTH (FT)	WATER LEVELS	ELEVATION (FT)		DESC	RIPTION OF MATERI	AL		EXCAVATION EFFORT	DCP	QP (TSF)	SAMPLE NUMBER	MOISTURE CONTENT (%)
		542	brown wit plastic bag	h sand sean s, brick, wo	k brown, orange ns, concrete (up od, asphalt (abu wire and rebar (to 28" size), Indant, up to						
20				END O	F TEST PIT AT 20.	5 FT						
-25-												$\left - \right $
REMA			I			E BOUNDRY LINES BI ASY M - MEDIUM D				ISITION	MAY BE GRA	DUAL
\square	WL	(First E	ncountered)	Dry	🗴 WL (Season	al High)	CONTRACTOR:	(OPERATOR:	Ν	1AKE/MODE	iL:
		(Comp		Dry	1				Gary			
ECS R				DATE COMP	LETED:		UNITS:		AVE-IN-DEPTH			
HM6	·			Apr 07 2022			English					
11110				- TPI 07 2022		TEST PIT LO						
L							J					

CLIEN Stone		k				PROJECT NO.: 63:1625-A		SHEE 1 of 1	Γ:			
		IAME:				TEST PIT NO.:			CE ELEVATION:			
Reside			opment at Trini	ity Blvd		TP-4		STATIO	N.			97
			, Euless, Texas 7	76040				SIANO	· · · · ·			
NORT	HIN	G:		14938754.5		EASTING:		254708	30.0			1
DEPTH (FT)	WATER LEVELS	ELEVATION (FT)		DESC	CRIPTION OF MATERIA	AL		EXCAVATION EFFORT	DCP	QP (TSF)	SAMPLE NUMBER	MOISTURE CONTENT (%)
		531	sand seam (up to 36"	ns, concrete in size), ret e, plastic ba	ddish, yellowish, (up to 60" in size par (No. 3 or No. ags and sheets, b	e), asphalt 4 in size),						
15		521	NATIVE SC		orange brown, wi F TEST PIT AT 17.							
20 		516										
	HE S	TRATIF	ICATION LINES			E BOUNDRY LINES E ASY M - MEDIUM E al High)		/D - VERY D			1AY BE GRA AKE/MODE	
			, letion)	Dry		- /	1		Gary			
ECS RI		, - s p		DATE COMF	PLETED:		UNITS:		CAVE-IN-DEPTH			
HM6								ľ				
IIVI6				Apr 07 2022		TEST PIT LO	English					
ι												

	Hawl	IAME:				PROJECT NO.: 63:1625-A TEST PIT NO.:		SHEET 1 of 1 SURFA	T: CE ELEVATION:					
Reside			opment at Trini	ty Blvd		TP-5		STATIO	N:		E	26		
11450 NORT			, Euless, Texas 7	6040 14938766.0		EASTING:		254733	38.4			TH I		
						2.10111101					ec.	L		
DEPTH (FT)	WATER LEVELS	ELEVATION (FT)		DESC	RIPTION OF MATERIA	٨L		EXCAVATION EFFORT	DCP	QP (TSF)	SAMPLE NUMBER	MOISTURE CONTENT (%)		
5-	∇	521	with grave size), conc size), asph 4 in size) s	l (up to 12" rete (up to 3 alt (12" in s teel drum a	ange, reddish, gr in size), boulder 30″ in size), brick ize), wood, rebar nd plastic bags	(up to 32" in (up to 12" in r (No.3 or No.								
		- - - 511 - -	NATIVE SC	NL, POORLY	GRADED GRAVE	L, brown, gray	2 8 2 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2							
15 511 - - -														
20 506 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7														
		- -												
				EXCAVA	TION EFFORT: E - E	ASY M - MEDIUM D	- DIFFICULT	VD - VERY D	IFFICULT					
\square	WL	(First E	ncountered)	5.50	𝖳 WL (Season	al High)	CONTRACTO	R:	OPERATOR:	MA	ake/Mode	L:		
▼	WL	(Comp	letion)	6.00					Gary					
ECS R	EP.:			DATE COMP	LETED:		UNITS:	C	CAVE-IN-DEPTH	4:				
HM6				Apr 07 2022			English							
						TEST PIT LC)G							

CLIEN Stone		r				PROJECT NO.: 63:1625-A		SHEE1 1 of 1	Г:			
		iame:				TEST PIT NO.:			CE ELEVATION:			
			opment at Trini	ty Blvd		TP-6						9
SITE L 11450			, Euless, Texas 7	76040				STATIO	N:			
NORT				14938646.9		EASTING:		254718	36.4	1		TN
DEPTH (FT)	WATER LEVELS	ELEVATION (FT)		DESC	RIPTION OF MATERIA	AL		EXCAVATION EFFORT	DCP	QP (TSF)	SAMPLE NUMBER	MOISTURE CONTENT (%)
	Σ		(up to 8	4" in size), asphalt (up	wn, with concret to 14" in size tic bags, steel pip	e)					
				END O	F TEST PIT AT 20.	0 FT						
	RKS:											
\square	WL	(First E	ncountered)	EXCAVA		E BOUNDRY LINES B ASY M - MEDIUM D ral High)		′D - VERY D			IAY BE GRA AKE/MODE	
⊻	WL	(Comp	letion)	11.50					Gary			
ECS R	EP.:			DATE COMP	LETED:		UNITS:	(CAVE-IN-DEPTH	4:		
HM6				Apr 07 2022			English					
						TEST PIT LO	G					

CLIEN Stone		k				PROJECT NO.: 63:1625-A		SHEE 1 of 1	T:			
PROJE	CT N	IAME:				TEST PIT NO.:			CE ELEVATION:			
Reside			opment at Trini	ty Blvd		TP-7		STATIC			┥┗╸し	20
11450	Trini	ty Blvd,	Euless, Texas 7	76040								
NORT	HIN	G:		14938420.4		EASTING:		25473	84.0			
DEPTH (FT)	WATER LEVELS	ELEVATION (FT)		DESC	RIPTION OF MATERIA	AL		EXCAVATION EFFORT	DCP	QP (TSF)	SAMPLE NUMBER	MOISTURE CONTENT (%)
	RKS:		NATIVE SC		SAND, reddish br	o FT						
	HE ST	TRATIF	ICATION LINES			E BOUNDRY LINES BE				ISITION	MAY BE GRA	ADUAL
	WL	(First E	ncountered)	Dry	WL (Season		CONTRACTOR		OPERATOR:	N	MAKE/MODI	EL:
		(Comp		Dry					Gary	ľ	,	
ECS R				DATE COMP	LETED:	l	JNITS:		CAVE-IN-DEPTH			
HM6				Apr 07 2022			English					
				1		TEST PIT LO						
L							-					

CLIEN Stone	Hawł					PROJECT NO.: 63:1625-A TEST PIT NO.:		SHEET 1 of 1 SURFA	T: CE ELEVATION:			
	ential	Devel	opment at Trini	ty Blvd		TP-8		STATIO			E	9
11450	Trinit	ty Blvd	, Euless, Texas 7			1						
NORT	HING	G:	:	14938428.7		EASTING:		254722	20.7			
DEPTH (FT)	WATER LEVELS	ELEVATION (FT)		DESC	RIPTION OF MATERIA	۸L		EXCAVATION EFFORT	DCP	QP (TSF)	SAMPLE NUMBER	MOISTURE CONTENT (%)
	¥	518 - - - - - - - - - - - - - - - - - - -	with concr round, cor in size) tire	ete, plastic locrete (up to and shoes		, wood and bar (No. 3 or No. 4						
15 508 20 503												
	RKS:											
				EXCAVA	TION EFFORT: E - E	E BOUNDRY LINES BI ASY M - MEDIUM D	- DIFFICULT \	VD - VERY D	IFFICULT			
			,	3.00	V WL (Season)	al High)	CONTRACTO		OPERATOR:	M	ake/Mode	L:
ECS R		Comp	letion)	3.00 DATE COMP	I FTFD.		UNITS:		Gary CAVE-IN-DEPTH			
HM6	LI			Apr 07 2022			English					
						TEST PIT LO						

CLIEN Stone PROJE	Hawl	k IAME:				PROJECT NO.: 63:1625-A TEST PIT NO.:		SHEET 1 of 1 SURFAG	: CE ELEVATION:			
Reside			opment at Trini	ty Blvd		TP-9		STATIO	N			2
11450	Trinit	ty Blvd,	Euless, Texas 7									
NORT	HING	G:		14938404.3		EASTING:		254683	3.2			
DEPTH (FT)	WATER LEVELS	ELEVATION (FT)		DESC	RIPTION OF MATERIA	AL		EXCAVATION EFFORT	DCP	QP (TSF)	SAMPLE NUMBER	MOISTURE CONTENT (%)
		542	brown, wit size), asph	th sand sear alt (up to 12	wn, dark brown, ns, concrete (up 2″ in size), plastic 5. 3 or No. 4 in si:	to 60" in c bags, brick,						
15 532 15 532 20 527 527 527 20 527 21 527 22 1 23 1 REMARKS: 1 THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDRY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY E												DUAL
	\\\/	(Eirct F	ncountered)		TION EFFORT: E - E	ASY M - MEDIUM D	- DIFFICULT V		DPERATOR:		AKE/MODE	
		(First E		Dry Dry		ai i iigii)			Gary		NICH IVIOUE	L.
ECS R		Comp		DATE COMP	LETED:		UNITS:		CAVE-IN-DEPTH			
HM6				Apr 07 2022			English					
						TEST PIT LO						

APPENDIX C – Laboratory Testing

Laboratory Testing Summary

ECS Southwest, LLP Fort Worth, Texas Labortory Testing Summary

Project Number: 63:1625-A

Project Name: Residential Development at Trinity Boulevard

Date: 05/11/2022

Project Engineer: HM

Principal Engineer: MRZ

				Call	Atte	erberg Lim	its ³	Percent	Dry Unit	One-	Dimensional S	Swell ⁶	Unconfined	
Boring Number	Sample Number	Depth (feet)	MC ¹ (%)	Soil Type ²	LL	PL	PI	Passing No. 200 Sieve ⁴	Weight ⁵ (pcf)	Final Moisture (%)	Surcharge (psf)	Swell (%)	Compressive Strength ⁷ (tsf)	рН
	S-1	0 - 2	3.0											
PB-1	S-2	2 - 4	19.2											
	S-3	4 - 6	11.5	SC	46	20	26	46.7						
PB-2	S-1	0 - 2	10.5											
PB-3	S-2	2 - 4	14.7											
1 2 0	S-5	8 - 10	11.2	SC	27	15	12	24.1						
	S-1	0 - 2	9.5											
PB-4	S-3	4 - 6	12.1	SC	34	16	18	36.1						
	S-5	8 - 10	10.0											
PB-5	S-1	0 - 2	7.1											
	S-3	4 - 6	5.0	SC	19	13	6	28.7						
	.		4.5											
5.04	S-1	0 - 2	4.5			10	4.0							
B-01	S-3	4 - 6	8.7	SC	22	12	10	34.9						
	S-5	8 - 10	8.3	SC	23	14	9	26.3						
	0.0	0.4	40.0											
B-02	S-2	2 - 4	16.8	<u> </u>	25	45	20	24.4						
	S-4	6 - 8	10.6	SC	35	15	20	24.1						
ļ														

Notes: Definitions: 1. ASTM D 2216, 2. ASTM D 2487, 3. ASTM D 4318, 4. ASTM D 7260, 5. ASTM D 1140, 6. ASTM D 4546

MC: Moisture Content, Soil Type: USCS (Unified Soil Classification System), LL: Liquid Limit, PL: Plastic Limit, PI: Plasticity Index, NP: Non Plastic

ECS Southwest, LLP Fort Worth, Texas Labortory Testing Summary

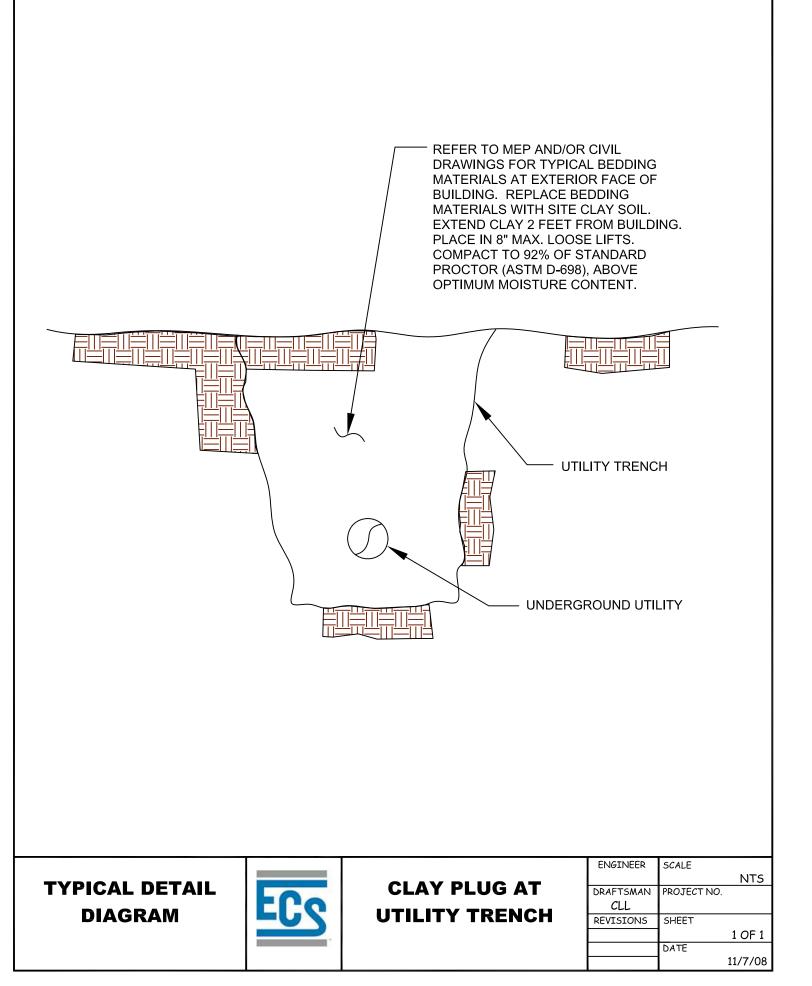
Project Number: 63:1625-A

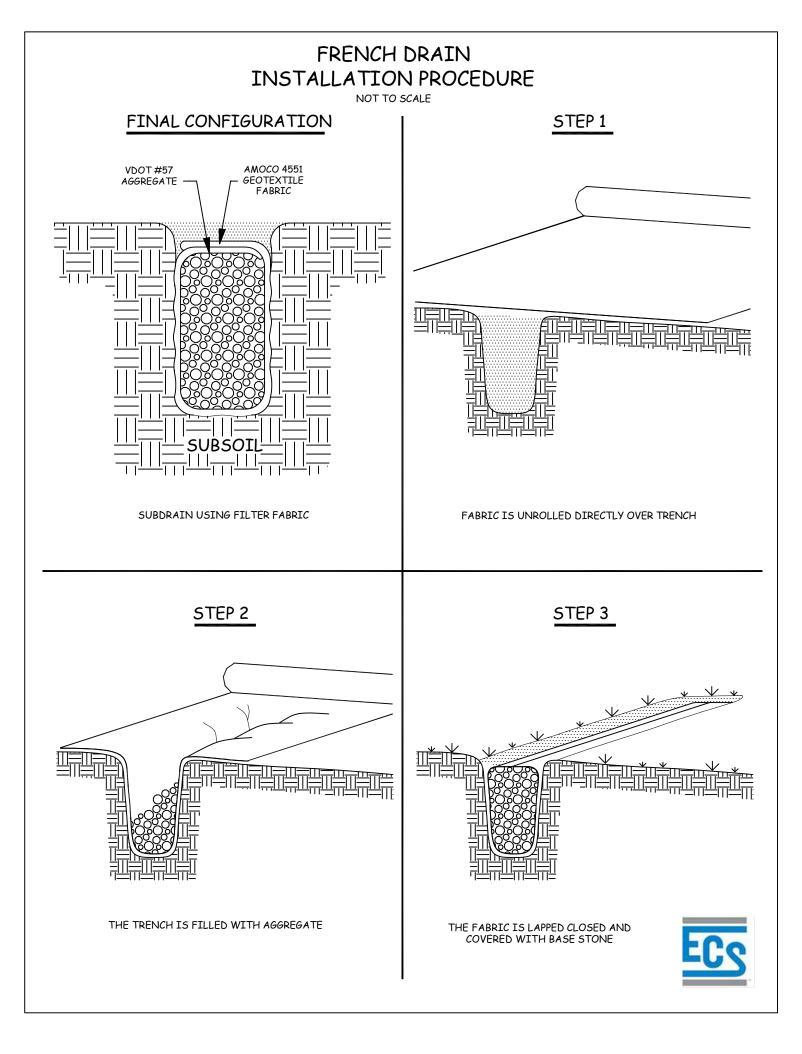
Project Name: Residential Development at Trinity Boulevard

Date: 05/11/2022

Project Engineer: HM

Principal Engineer: MRZ


			- 1	0-1	Atte	erberg Lim	iits ³	Percent	Dry Unit	One-	Dimensional S	Swell ⁶	Unconfined	
Number Num	Sample Number	Depth (feet)	MC ¹ (%)	Soil Type ²	LL	PL	PI	Passing No. 200 Sieve ⁴	Weight ⁵ (pcf)	Final Moisture (%)	Surcharge (psf)	Swell (%)	Compressive Strength ⁷ (tsf)	рН
B 02	S-2	2 - 4	8.6											
D-03	S-4	6 - 8	7.5	SC	36	16	20	22.8						
												-		
	S-1	0 - 2	9.4											
B-04	S-3	4 - 6	12.0	SC	28	16	12	36.9						
	S-5	8 - 10	6.8											


Notes: Definitions: 1. ASTM D 2216, 2. ASTM D 2487, 3. ASTM D 4318, 4. ASTM D 7260, 5. ASTM D 1140, 6. ASTM D 4546

MC: Moisture Content, Soil Type: USCS (Unified Soil Classification System), LL: Liquid Limit, PL: Plastic Limit, PI: Plasticity Index, NP: Non Plastic

APPENDIX D – Supplemental Report Documents

Clay Plug at Utility Trench French Drain Installation Procedure

REV4 20240917

ATTACHMENT 10C

TABLES AND BORING LOGS FROM APAR

	TRRP Residenti 0.5-a	al PCLs ¹ acre	Texas-Specific Background Concentration	Sample ID Lab ID Date	SB-1-0.5 870-5980-2 2/21/2022		SB-2-0.5 870-5980-5 2/21/2022		SB-3-0.5 870-5980-8 2/22/2022		SB-4-0.5 870-5980-1 2/21/2022	1	SB-5-0.5 870-5980-1 2/22/2022	5	SB-6-0.5 870-5980-18 2/22/2022	3
	Tot Soil Comb	^{GW} Soil _{Ing}	Concentration	Depth	0.5 FT BGS		0.5 FT BGS	;	0.5 FT BGS	;	0.5 FT BGS	5	0.5 FT BGS	5	0.5 FT BGS	
Analyte	mg/kg	mg/kg	mg/kg	Units	mg/kg		mg/kg									
TPH (TX1005)																
C6-C12					<19.9	U	<117	U	<27.1	U	<22.9	U	<23.3	U	<41.6	U
C12-C28					<19.9	U	145	J	28.8	J	26.7	J	24.7	J	52.8	J
C28-C35					<19.9	U	373		67.8		59.3		65.3		119	
Total C6-C35	7,250 ^A	880 ^A			<19.9	U	518		96.6		86.0		90.0		172	
Metals (RCRA 8)																
Arsenic	24	16 ^B	5.9		2.18	J	4.43		7.00		6.66		5.21		4.31	
Barium	8,100	440	300		36.8		39.7		95.2		68.5		36.2		67.7	
Cadmium	52	1.5			<0.104	U	0.148	J	0.307	J	0.131	J	0.135	J	0.239	J
Chromium	33,000	2,400	30		11.1		10.5		16.2		18.7		9.46		11.0	
Lead	500	307 ^B	15		6.11		11.7		14.6		12.1		10.4		8.83	
Selenium	310	2.3	0.30		<0.446	U	0.496	J	<0.654	U	0.629	J	<0.568	U	<0.518	U
Silver	97	0.48			<0.143	U	<0.144	U	<0.209	U	<0.165	U	<0.182	U	<0.166	U
Mercury	8.3	2.1	0.04		0.0104	J	0.0109	J	0.0267		0.0191	J	0.0406		0.0280	
VOCs (SW8260B) ²																
n-Butylbenzene	3,300	150			==		==		==		==		==		==	
sec-Butylbenzene	3,300	85			==		==		==		==		==		==	
Ethylbenzene	6,400	7.6			==		==		==		==		==		==	
Isopropylbenzene	4,300	350			==		==		==		==		==		==	
Naphthalene	220	31			==		==		==		==		==		==	
n-Propylbenzene	2,200	45			==		==		==		=		==		==	

NOTES:

¹ Based on TRRP Tables dated 10 May 2023.

² Only detected analytes summarized. For the full list, see the laboratory reports.

^A Tier 1 site-specific PCL with TRRP Calculator (v 3.0 - 02/2020). See Appendix 9.

^B Tier 2 site-specific PCL with Soil Attenuation Modeling. See Appendix 9.

^c Location re-sampled on 6/20/2023 and elevated concentration not confirmed.

-- No value.

== Constituent was not analyzed.

< and U - Analyte not detected above Sample Detection Limit (SDL).

J - Analyte was identified above the SDL and below the Method Quantitation Limit (MQL).

mg/kg - milligram per kilogram

TPH - Total Petroleum Hydrocarbons

VOCs - Volatile Organic Compounds

	TRRP Residenti 0.5-a	ial PCLs ¹ acre	Texas-Specific Background Concentration	Sample ID Lab ID Date	870-5980-19 2/22/2022)	SB-6-6 870-5980-20 2/22/2022)	SB-6R-7 HS23041620-01 4/25/2023	SB-6R-8 HS23041620-02 4/25/2023	SB-6R-8 (RESAMPLE) HS23061389-01 6/20/2023	HS23041620-03 4/25/2023
	Tot Soil Comb			Depth	3 FT BGS		6 FT BGS		7 FT BGS	8 FT BGS	8 FT BGS	9 FT BGS
Analyte	mg/kg	mg/kg	mg/kg	Units	mg/kg	_	mg/kg		mg/kg	mg/kg	mg/kg	mg/kg
ТРН (ТХ1005)												
C6-C12					<109	U	<21.2	U	==	==	==	==
C12-C28					127	J	57.5		==	==	==	==
C28-C35					340		<21.2	U	==	==	==	==
Total C6-C35	7,250 ^A	880 ^A			467		57.5		==	==	==	==
Metals (RCRA 8)												
Arsenic	24	16 ⁸	5.9		4.00	J	6.97		==	==	==	==
Barium	8,100	440	300		20.7		42.9		==	==	==	==
Cadmium	52	1.5			<0.117	U	0.253	J	==	==	==	==
Chromium	33,000	2,400	30		23.4		16.3		==	==	==	==
Lead	500	307 ^B	15		17.2		45.9		44.4	932 ^C	5.51	188
Selenium	310	2.3	0.30		<0.499	U	0.605	J	==	==	==	==
Silver	97	0.48			<0.160	U	<0.174	U	==	==	==	==
Mercury	8.3	2.1	0.04		0.00940	J	0.0321		==	==	==	==
VOCs (SW8260B) ²												
n-Butylbenzene	3,300	150			0.0126		< 0.000230	U	==	==	==	==
sec-Butylbenzene	3,300	85			0.00803		<0.000219	U	==	==	==	==
Ethylbenzene	6,400	7.6			0.00425		<0.000282	U	==	==	==	==
Isopropylbenzene	4,300	350			0.00314	J	<0.000146	U	==	==	==	==
Naphthalene	220	31			0.0746		<0.00168	U	==	==	==	==
n-Propylbenzene	2,200	45			0.00645		<0.000240	U	==	==	==	==

NOTES:

¹ Based on TRRP Tables dated 10 May 2023.

 2 Only detected analytes summarized. For the full list, see the laboratory reports.

^A Tier 1 site-specific PCL with TRRP Calculator (v 3.0 - 02/2020). See Appendix 9.

^B Tier 2 site-specific PCL with Soil Attenuation Modeling. See Appendix 9.

^c Location re-sampled on 6/20/2023 and elevated concentration not confirmed.

-- No value.

== Constituent was not analyzed.

< and U - Analyte not detected above Sample Detection Limit (SDL).

J - Analyte was identified above the SDL and below the Method Quantitation Limit (MQL).

mg/kg - milligram per kilogram

TPH - Total Petroleum Hydrocarbons

VOCs - Volatile Organic Compounds

	TRRP Residenti 0.5-a	ial PCLs ¹ acre	Texas-Specific Background Concentration	Sample ID Lab ID Date	SB-6R-10 HS23041620-04 4/25/2023	SB-6R-11 HS23060505-05 4/25/2023	SB-6R-13 HS23060505-06 4/25/2023	SB-6R-15 HS23060505-07 4/25/2023	SB-70.5 HS22030367-01 3/7/2022	SB-7R-2 HS23041620-08 4/25/2023
	Tot Soil _{Comb}	^{GW} Soil _{Ing}	ooncentration	Depth	10 FT BGS	11 FT BGS	13 FT BGS	15 FT BGS	0.5 FT BGS	2 FT BGS
Analyte	mg/kg	mg/kg	mg/kg	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
TPH (TX1005)										
C6-C12					==	==	==	==	<7.8	J ==
C12-C28					==	==	==	==	<10	J ==
C28-C35					==	==	==	==	<10	J ==
Total C6-C35	7,250 ^A	880 ^A			==	==	==	==	<7.8	J ==
Metals (RCRA 8)										
Arsenic	24	16 ^B	5.9		==	==	==	==	15.1	11.1
Barium	8,100	440	300		==	==	==	==	141	==
Cadmium	52	1.5			==	==	==	==	0.938	==
Chromium	33,000	2,400	30		==	==	==	==	27.9	==
Lead	500	307 ^B	15		55.7	197	20.7	3.69	16.6	==
Selenium	310	2.3	0.30		==	==	==	==	1.04	==
Silver	97	0.48			==	==	==	==	0.00179	J ==
Mercury	8.3	2.1	0.04		==	==	==	==	0.0136	==
VOCs (SW8260B) ²										
n-Butylbenzene	3,300	150			==	==	==	==	< 0.000230	J ==
sec-Butylbenzene	3,300	85			==	==	==	==	< 0.000219	J ==
Ethylbenzene	6,400	7.6			==	==	==	==	<0.000282	J ==
Isopropylbenzene	4,300	350			==	==	==	==	< 0.000146	J ==
Naphthalene	220	31			==	==	==	==	< 0.00168	J ==
n-Propylbenzene	2,200	45			==	==	==	==	<0.000240	J ==

NOTES:

¹ Based on TRRP Tables dated 10 May 2023.

² Only detected analytes summarized. For the full list, see the laboratory reports.

^A Tier 1 site-specific PCL with TRRP Calculator (v 3.0 - 02/2020). See Appendix 9.

^B Tier 2 site-specific PCL with Soil Attenuation Modeling. See Appendix 9.

^c Location re-sampled on 6/20/2023 and elevated concentration not confirmed.

-- No value.

== Constituent was not analyzed.

< and U - Analyte not detected above Sample Detection Limit (SDL).

J - Analyte was identified above the SDL and below the Method Quantitation Limit (MQL).

mg/kg - milligram per kilogram

TPH - Total Petroleum Hydrocarbons

VOCs - Volatile Organic Compounds

	TRRP Residenti 0.5-a	ial PCLs ¹ acre	Texas-Specific Background Concentration	Sample ID Lab ID Date	SB-7R-3 HS23041620-09 4/25/2023	SB-15-5 HS23041620 4/25/2023	-17	SB-16-5 HS23041620 4/25/2023		SS-7 870-5980-2 2/22/2022	1	SS-8 870-5980-2 2/22/2022	2	SS-9 870-5980-23 2/22/2022	3	SS-10 870-5980-24 2/22/2022	
	Tot Soil Comb	^{GW} Soil _{Ing}		Depth	3 FT BGS	5 FT BGS		5 FT BGS		0.5 FT BGS	;	0.5 FT BGS	3	0.5 FT BGS		0.5 FT BGS	;
Analyte	mg/kg	mg/kg	mg/kg	Units	mg/kg	mg/kg	-	mg/kg		mg/kg-dry	_	mg/kg		mg/kg		mg/kg	
TPH (TX1005)																	
C6-C12					==	<6.7	U	<6.3	U	<23.2	U	<38.9	U	<26.4	U	<22.6	U
C12-C28					==	<8.9	U		U	33.4	J	<38.9	U	33.4	J	<22.6	U
C28-C35					==	<8.9	U	<8.3	U	<23.2	U	<38.9	U	82.6		<22.6	U U U U
Total C6-C35	7,250 ^A	880 ^A			==	<6.7	U	<6.3	U	33.4	J	<38.9	U	116		<22.6	U
Metals (RCRA 8)																	
Arsenic	24	16 ^B	5.9		4.15	==		==		1.93	J	6.61		6.13		3.17	J
Barium	8,100	440	300		==	==		==		27.7		249		46.0		69.0	
Cadmium	52	1.5			==	==		==		<0.119	U	0.282	J	<0.126	U	<0.120	U
Chromium	33,000	2,400	30		==	==		==		7.80		18.5		16.7		6.83	
Lead	500	307 ^B	15		==	==		==		5.20		44.0		10.2		11.1	
Selenium	310	2.3	0.30		==	==		==		<0.510	U	0.565	J	0.640	J	<0.515	U
Silver	97	0.48			==	==		==		<0.163	U	<0.152	U	<0.173	U	<0.165	U U
Mercury	8.3	2.1	0.04		==	==		==		0.0107	J	0.0108	J	0.0324		0.0118	J
•																	
VOCs (SW8260B) ²	-								_								
n-Butylbenzene	3,300	150			==	==		==		==		==		==		==	
sec-Butylbenzene	3,300	85			==	==		==		==		==		==		==	
Ethylbenzene	6,400	7.6			==	==		==		==		==		==		==	
lsopropylbenzene	4,300	350			==	==		==		==		==		==		==	
Naphthalene	220	31			==	==		==		==		==		==		==	
n-Propylbenzene	2,200	45			==	==		==		==		==		==		==	

NOTES:

¹ Based on TRRP Tables dated 10 May 2023.

 2 Only detected analytes summarized. For the full list, see the laboratory reports.

^A Tier 1 site-specific PCL with TRRP Calculator (v 3.0 - 02/2020). See Appendix 9.

^B Tier 2 site-specific PCL with Soil Attenuation Modeling. See Appendix 9.

^c Location re-sampled on 6/20/2023 and elevated concentration not confirmed.

-- No value.

== Constituent was not analyzed.

< and U - Analyte not detected above Sample Detection Limit (SDL).

J - Analyte was identified above the SDL and below the Method Quantitation Limit (MQL).

mg/kg - milligram per kilogram

TPH - Total Petroleum Hydrocarbons

VOCs - Volatile Organic Compounds

	TRRP Resident 0.5-a ^{Tot} Soil _{Comb}	ial PCLs ¹	Sample ID Lab ID Date Depth	870-5980-5 2/21/2022	
Analyte	mg/kg	mg/kg	Units		,
TPH (TX1006) ²					
6 C aliphatics (TPH) (>53% n-hexane content)	3,300	170		<23.4	U
>6-8 C aliphatics (TPH) (>53% n-hexane content)	3,300	420		66.6	
>8-10 C aliphatics (TPH)	4,000	3,600		<23.4	U
>10-12 C aliphatics (TPH)	3,600	25,000		<23.4	U
>12-16 C aliphatics (TPH)	4,300	490,000		<23.4	U
>16-21 C aliphatics (TPH)	130,000	1,000,000		33.2	J
>21-35 C aliphatics (TPH)	130,000	1,000,000		435	
>7-8 C aromatics (TPH)	6,400	20		<23.4	U
>8-10 C aromatics (TPH)	1,600	65		<23.4	U
>10-12 C aromatics (TPH)	1,900	100		<23.4	U
>12-16 C aromatics (TPH)	2,300	200		<23.4	U
>16-21 C aromatics (TPH)	2,000	470		<23.4	U
>21-35 C aromatics (TPH)	2,000	3,700		284	

NOTES:

Based on TRRP Tables dated 10 May 2023.

² Only detected analytes summarized. For the full list, see the laboratory reports.

< and U - Analyte not detected above Sample Detection Limit (SDL).

J - Analyte was identified above the SDL and below the Method Quantitation Limit (MQL).

mg/kg - milligram per kilogram

TPH - Total Petroleum Hydrocarbons

	TRRP Tier 1	Well ID		MV	W-1			MW-2			MW-3			MW-4		M	W-5	MW-6
	Residential	Sample ID	MW-1	MW-1	MW-1	MW-1	MW-2	MW-2	MW-2	MW-3	MW-3	MW-3	MW-4	MW-4	MW-4	MW-5	MW-5	MW-6
	PCLs ¹	Lab ID	870-5981-1	HS22030367-6	870-8640-1	HS23120306-01	870-5981-2	HS22030367	7 870-8640-2	870-5981-3	HS22030367-8	870-8640-3	870-5981-4	HS22030367-9	9 870-8640-4	HS22030367-10	870-8640-5	HS23120304-01
	^{GW} GW _{Ing}	Date	02/22/2022	03/07/2022	06/06/2022	12/05/2023	02/22/2022	03/07/2022	06/06/2022	02/22/2022	03/07/2022	06/06/2022	02/22/2022	03/07/2022	06/06/2022	03/07/2022	06/06/2022	12/05/2023
Analyte	mg/L	Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
TPH (TX1005)																		
C6-C12	0.98		<0.690 U	<0.20 U	<0.745 U	J <0.19 U	<0.690 L	J <0.20	U <0.740 U	√ <0.694 U	<0.20 U	<0.733 U	<0.692 U	<0.20 l	J <0.735 L	V <0.19 U	<0.735 U	<0.18 U
C12-C28	0.98		<0.690 U	<0.20 U	<0.745 U	J <0.19 U	<0.690 L	J <0.20	U <0.740 U	V <0.694 U	<0.20 U	<0.733 U	<0.692 U	<0.20 l	J <0.735 L	V <0.19 U	<0.735 U	<0.18 U
C28-C35	0.98		<0.690 U	<0.20 U	<0.745 U	J <0.19 U	<0.690 L	J <0.20	U <0.740 U	<0.694 U	<0.20 U	<0.733 U	<0.692 U	<0.20 l	J <0.735 L	V <0.19 U	<0.735 U	<0.18 U
total C6-C35			<0.690 U	<0.20 U	<0.745 U	J <0.19 U	<0.690 L	J <0.20	U <0.740 U	V <0.694 U	<0.20 U	<0.733 U	<0.692 U	<0.20 l	J <0.735 L	V <0.19 U	<0.735 U	<0.18 U
Dissolved Metals (RCRA 8)																		
Arsenic	0.01		==	==	<0.000860 U	J ==	==	==	<0.000860 U	==	==	<0.000860 U	==	==	0.00284 J	==	0.00359	==
Barium	2		=	==	0.106	==	==	==	0.0807	==	==	0.0883	==	==	0.132	==	0.134	==
Cadmium	0.005		==	==	<0.0000780 U	J ==	==	==	<0.0000780 U	==	==	<0.000780 U	==	==	<0.0000780 L	==	<0.0000780 U	==
Chromium	0.1		==	==	0.00817	==	==	==	<0.00260 U	==	==	<0.00260 U	==	==	0.00521	==	0.00547	==
Lead	0.015		==	==	<0.000340 U	J ==	==	==	<0.000340 U	==	==	<0.000340 U	==	==	0.00109 J	==	0.00123 J	==
Selenium	0.05		==	==	<0.00120 U	J ==	==	==	<0.00120 U	==	==	<0.00120 U	==	==	<0.00120 L	==	<0.00120 U	==
Silver	0.12		==	==	<0.000390 U	J ==	==	==	<0.000390 U	==	==	<0.000390 U	==	==	<0.000390 L	==	<0.000390 U	==
Mercury	0.002		==	==	<0.0000800 U	J ==	==	==	<0.0000800 U	==	==	<0.0000800 U	==	==	<0.0000800 L	==	<0.0000800 U	==
VOCs (SW8260B) ²																		
Acetone	22		==	<0.0020 U	<0.0213 U	J <0.0014 U	==	<0.0020	U <0.0213 U	==	<0.0020 U	<0.0213 U	==	<0.0020 l	J <0.0213 L	0.029	<0.0213 U	<0.0014 U
Benzene	0.005		<0.000214 U	<0.00020 U	0.0945	<0.00020 U	<0.000214 U	J <0.00020	U 0.000540 J	<0.000214 U	<0.00020 U	<0.000496 U	<0.000214 U	<0.00020 l	J <0.000496 L	<0.00020 U	<0.000496 U	<0.00020 U
n-Butylbenzene	1.2		<0.000286 U	==	0.00146 J	==	<0.000286 U	J ==	<0.000845 U	<0.000286 U	==	<0.000845 U	<0.000286 U	==	<0.000845 L	==	<0.000845 U	==
sec-Butylbenzene	0.98		<0.000199 U	==	0.00737	==	<0.000199 L	J ==	<0.000773 U	<pre>0.000199 U</pre>	==	<0.000773 U	<0.000199 U	==	<0.000773 L	==	<0.000773 U	==
tert-Butylbenzene	0.98		<0.000195 U	==	0.00378 J	==	<0.000195 U	J ==	<0.000808 U	<0.000195 U	==	<0.000808 U	<0.000195 U	==	<0.000808 L	==	<0.000808 U	==
2-Chlorotoluene	0.49		==	==	0.00151 J	==	==	==	<0.000447 U	==	==	<0.000447 U	==	==	<0.000447 L	==	<0.000447 U	==
Dichloroethane, 1,2-	0.005		<0.000285 U	<0.00020 U	0.00284 J	<0.00020 U	<0.000285 U	J <0.00020	U <0.00153 U	<0.000285 U	<0.00020 U	<0.00153 U	<0.000285 U	<0.00020 l	J <0.00153 L	<0.00020 U	<0.00153 U	<0.00020 U
Dichloroethene, cis-1,2-	0.07		<0.000174 U	<0.00020 U	<0.000796 U	J <0.00020 U	0.000328	l <0.00020	U <0.000796 U	0.00427	0.0039	<0.000796 U	0.000437 J	0.00049	J 0.00366 J	0.0020	<0.000796 U	<0.00020 U
Ethylbenzene	0.7		<0.000515 U	<0.00030 U	0.0270	<0.00030 U	<0.000515 U	J <0.00030	U <0.000878 U	<0.000515 U	<0.00030 U	<0.000878 U	<0.000515 U	<0.00030 l	J <0.000878 L	0.00036 J	<0.000878 U	<0.00030 U
Isopropylbenzene	2.4		<0.000161 U	<0.00030 U	0.00433 J	<0.00030 U	<0.000161 L	J <0.00030	U <0.00118 U	<0.000161 U	<0.00030 U	<0.00118 U	<0.000161 U	<0.00030 l	J <0.00118 L	V <0.00030 U	<0.00118 U	<0.00030 U
Methylene Chloride	0.005		<0.00191 U	<0.0010 U	<0.000829 U	J <0.0010 U	<0.00191 L	J <0.0010	U <0.000829 U	<0.00191 U	<0.0010 U	0.00560	<0.00191 U	<0.0010 l	J <0.000829 L	V <0.0010 U	<0.000829 U	<0.0010 U
MTBE	0.24		<0.000571 U	<0.00020 U	0.00869 J	<0.00020 U	<0.000571 L	J <0.00020	U <0.00268 U	<0.000571 U	<0.00020 U	<0.00268 U	<0.000571 U	<0.00020 l	J <0.00268 L	V <0.00020 U	<0.00268 U	<0.00020 U
N-Propylbenzene	0.98		<0.000179 U	==	0.00387 J	==	<0.000179 L	J ==	<0.00165 U	<0.000179 U	==	<0.00165 U	<0.000179 U	==	<0.00165 L	==	<0.00165 U	== U
Styrene	0.1		<0.000623 U	<0.00030 U	<0.00127 U	J <0.00030 U	<0.000623 L	J <0.00030	U <0.00127 U	<0.000623 U	<0.00030 U	<0.00127 U	<0.000623 U	<0.00030 l	J <0.00127 L	0.0027	<0.00127 U	<0.00030 U
Trimethylbenzene, 1,3,5-	0.83		<0.000279 U	==	0.00517	==	<0.000279 L	J ==	<0.000703 U	<0.000279 U	==	<0.000703 U	<0.000279 U	==	<0.000703 L	==	<0.000703 U	== U
Vinyl acetate	24		==	==	<0.00100 U	J ==	==	==	<0.00100 U	==	==	<0.00100 U	==	==	0.00105 J	==	<0.00100 U	== U
Vinyl chloride	0.002		<0.000234 U	<0.00020 U	<0.000592 U	J <0.00020 U	<0.000234 l	J <0.00020	U <0.000592 U	<0.000234 U	<0.00020 U	<0.000592 U	<0.000234 U	0.00043	J <0.000592 L	0.00064 J	<0.000592 U	<0.00020 U
Xylene, m,p-	10		<0.000330 U	<0.00050 U	0.0321	<0.00050 U	<0.000330 L	J <0.00050	U <0.00113 U	<0.000330 U	<0.00050 U	<0.00113 U	<0.000330 U	0.00093	J <0.00113 L	V <0.00050 U	<0.00113 U	<0.00050 U
Xylene, o-	10		<0.000192 U	<0.00030 U	0.00130 J	<0.00030 U	<0.000192 U	J <0.00030	U <0.000488 U	<0.000192 U	<0.00030 U	<0.000488 U	<0.000192 U	0.00061	J <0.000488 L	<0.00030 U	<0.000488 U	<0.00030 U
Xylenes, Total	10		<0.000330 U	<0.00030 U	0.0334	<0.00030 U	<0.000330 U	J <0.00030	U <0.00113 U	<0.000330 U	<0.00030 U	<0.00113 U	<0.000330 U	0.0015	<0.00113 L	<0.00030 U	<0.00113 U	<0.00030 U
NOTES:																		

NOTES:

¹ Based on TRRP Tables dated 6 January 2021.

² Only detected VOCs summarized. For the full VOC list, see the laboratory reports.

-- No value.

== Constituent was not analyzed.

< and U - Analyte not detected above Sample Detection Limit (SDL).

J - Analyte was identified above the SDL and below the Reporting Limit (RL).

mg/L - milligram per liter

TPH - Total Petroleum Hydrocarbons

VOCs - Volatile Organic Compounds

Bold values indicate concentration reported above the RL.

Green shaded value indicates sample result exceeds Tier 1 ^{GW}GW_{Ing} PCL.

TABLE 5D GROUNDWATER ELEVATION SUMMARY TEXAS STAR; VCP No. 3237 11450 TRINITY BLVD EULESS, TEXAS 76040

	Well	Carroon	Doring		Top of		02/22/2022			06/06/2022			12/05/2023	
Well ID	Installation Date	Screen Interval (ft bgs)	Boring Depth (ft bgs)	Survey Date	Casing (ft AMSL) ¹	Measured TD (ft btoc)	Depth to Water (ft btoc)	Groundwater Elevation (ft AMSL)	Measured TD (ft btoc)	Depth to Water (ft btoc)	Groundwater Elevation (ft AMSL)	Measured TD (ft btoc)	Depth to Water (ft btoc)	Groundwater Elevation (ft AMSL)
MW-1	02/21/2022	25-35	35.0	02/22/2022	548.88	35.10	28.57	520.31	35.05	28.92	519.96	35.10	29.21	519.67
MW-2	02/21/2022	25-35	35.0	02/22/2022	543.87	35.23	23.62	520.25	34.99	23.99	519.88	1	-	
MW-3	02/22/2022	5-20	20.0	02/22/2022	524.89	20.08	5.60	519.29	20.08	5.97	518.92			
MW-4	02/21/2022	20-30	30.0	02/22/2022	544.14	30.28	24.42	519.72	30.28	24.79	519.35			
MW-5	03/07/2022	25-35	35.0	NS	NS				34.67	7.31	NS			
MW-6	12/01/2023	25-35	35.0	NS	NS							35.00	30.85	NS

NOTES:

¹ Top of Casing elevations were unofficially surveyed by Dunaway Surveyors.

Depth to Water measurements collected by SQE on date specified

NS - No survey data obtained

AMSL - Above Mean Sea Level

bgs - below the ground surface

btoc - below top of casing

ft - feet

TD - total depth

TABLE 11A SUMMARY OF SOIL VAPOR SAMPLE RESULTS TEXAS STAR; VCP No. 3237 11450 TRINITY BLVD EULESS, TEXAS 76040

	TR	RP	Sample ID	SV-1		SV-2		SV-3		SV-4	
	Resid	ential	Lab ID	2215854001		2215854002		2215854003		2215854004	Ļ.
	Airpper 1	Comparison	Date	6/6/2022		6/6/2022		6/6/2022		6/6/2022	
	AirRBEL 1	Value ²	Туре	200 mL/min		200 mL/min		200 mL/min		200 mL/min	
Analyte ³	mg/m ³	mg/m ³	Units	mg/m ³		mg/m ³		mg/m ³		mg/m ³	
Petroleum Constituents											Π
Benzene	0.011	0.37		0.370		0.0094		0.014		0.100	
Ethyl benzene	2.0	67		<0.043	U	0.0070		0.0037		<0.043	U
Hexane	0.70	23		0.140		0.0088		0.014		0.350	
Toluene	4.3	143		0.042		0.018		0.015		0.083	
Trimethylbenzene, 1,2,4-	0.19	6.3		<0.098	U	<0.0049	U	<0.0049	U	0.120	
Xylene, m,p-	0.64	21		<0.087	U	0.0053		<0.0043	U	<0.087	U
Xylene, o-	0.64	21		<0.043	U	0.0023		<0.0022	U	<0.043	U
Chlorinated Solvent Constituents											
Vinyl Chloride	0.0029	0.097		<0.026	U	<0.0013	U	0.0013		<0.026	U
Other Constituents											
Acetone	32	1,067		0.780		0.140	Е	0.087	Е	0.460	
Butadiene, 1,3-	0.034	1.1		<0.022	U	0.003		0.0083		0.060	
Carbon disulfide	0.73	24		4.3	Е	0.010		0.0038		0.110	
Chlorobenzene	0.052	1.7		2.0	Е	<0.0023	U	<0.0023	U	<0.046	U
Chloromethane (Methyl chloride)	0.014	0.47		<0.021	U	0.0035		0.0021		<0.021	U
Cyclohexane	6.3	210		0.210		<0.0017	U	<0.0017	U	<0.034	U
Dichlorobenzene, 1,2-	0.031	1.0		0.200		<0.006	U	<0.006	U	<0.12	U
Dichlorodifluoromethane	0.1	3.3		<0.049	U	<0.0025	U	0.051		<0.049	U
Freon 114				0.080		<0.0035	U	<0.0035	U	<0.07	U
Heptane	9.4	313		0.089		0.0082		0.0098		0.260	
Methyl ethyl ketone (2-Butanone)	9.2	307		0.160		0.021		0.016		0.110	
Methyl isobutyl ketone (4-Methyl-2-	3.1	103		<0.041		0.0023		<0.002		<0.041	
pentanone)	3.1	105		NU.04 I	U	0.0025		NU.UUZ	U	NU.04 I	U
Trichlorofluoromethane (Freon 11)				<0.056	U	<0.0028	U	0.0039		<0.056	U

NOTES:

¹ Values from Texas Risk Reduction Program (TRRP) Individual RBELs - Residential (Table 9), dated 6 March 2023.

² Comparison value based on 0.03 attenuation factor for soil vapor to indoor air (EPA 4-11-13 DRAFT, "OSWER Final Guidance for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Sources to Indoor Air," Table 6-1).

³ Only those VOCs of particular interest included in table. For full list of VOCs, see lab report.

-- No Standard.

< and U - analyte was not detected above the method detection limit (MDL)

E - analyte result exceeds the calibration range

mg/m³ - milligrams per cubic meter

Bold values indicate concentration reported above the MQL.

Green shaded value indicates sample result exceeds Tier 1 RBEL and below "Comparison Value".

Yellow shaded value indicates sample result exceeds "Comparison Value".

TABLE 11BSUMMARY OF SOIL VAPOR METHANE RESULTSTEXAS STAR: VCP No. 323711450 TRINITY BLVDEULESS, TEXAS 76040

	Sample ID	SV-1	SV-1S	SV-2	SV-3	SV-4	SV-5	SV-6	SV-7	SV-8	SV-9	SV-10
	Lab ID	2215854001	P2301886-004	2215854002	2215854003	2215854004	P2301886-006	P2301886-005	P2301886-003	P2301886-001	P2301886-002	P2301886-007
	Date	6/6/2022	4/26/2023	6/6/2022	6/6/2022	6/6/2022	4/26/2023	4/26/2023	4/26/2023	4/26/2023	4/26/2023	4/26/2023
	Туре	200 mL/min	200 mL/min	200 mL/min	200 mL/min	200 mL/min	200 mL/min	200 mL/min	200 mL/min	200 mL/min	200 mL/min	200 mL/min
Analyte	Depth	11-12 ft	4-5 ft	11-12 ft	11-12 ft	11-12 ft	11-12 ft	11-12 ft	11-12 ft	11-12 ft	11-12 ft	11-12 ft
Methane		2.5%	0.091%	0.0023%	<0.0020% U	0.14%	0.00031%	5.6%	0.00043%	0.00023%	0.00024%	11%

NOTES:

< and U - analyte not detected above Reporting Limit (RL).

Bold values indicate concentration reported above RL.

Green shaded values indicate sample result exceeds 1%.

TABLE 11B SUMMARY OF SOIL VAPOR METHANE RESULTS TEXAS STAR: VCP No. 3237 11450 TRINITY BLVD EULESS, TEXAS 76040

	Sample ID	SV-11	SV-A-S	SV-A-D	SV-B-S	SV-B-D	SV-C-S	SV-C-D	SV-D-S	SV-D-D	SV-E-S	SV-E-D
	Lab ID	P2301886-008	P2302847-001	P2302847-002	P2302847-003	P2302847-004	P2302847-005	P2302847-006	P2302847-007	P2302847-008	P2302847-009	P2302847-010
	Date	4/26/2023	6/21/2023	6/21/2023	6/21/2023	6/21/2023	6/21/2023	6/21/2023	6/21/2023	6/21/2023	6/21/2023	6/21/2023
	Туре	200 mL/min										
Analyte	Depth	11-12 ft	4-5 ft	11-12 ft								
Methane		12%	0.00042%	0.00031%	0.00036%	3.9%	0.00021%	4.8%	0.00038%	0.00039%	0.00036%	0.00016%

NOTES:

< and U - analyte not detected above Reporting Limit (RL).

Bold values indicate concentration reported above RL.

Green shaded values indicate sample result exceeds 1%.

		Q ENVIRONMENTAL, L	LC	во	RIN	G/V	VELL LOG	PAGE 1 OF 1
$ \mathcal{T}$) BOX 1991 JSTIN, TX 78767-1991		BORIN	IG ID:		SB-1	
	(5	12) 900-7731		WE	LL ID:		MW-1	
	PRC	JECT INFORMATION		PF	ROJE	СТІ	NFORMATION	
SITE LOCA PROJECT LOGGED B	ATION: 1145 MANAGER:	098.015.002 50 Trinity Blvd, Euless, Texas 76040 Sam Enis, P.G. Sullivan, G.I.T.	DRILLIN TOTAL	IG METHOD: DEPTH: 35.10	Hollo feet	w Ste (ft) be	emediation and De em Auger elow ground surfa WELL DIAME	ce (bgs)
	LLLD. 02/21	12022	TOP OF CASIN GROUND ELE	NG ELEV: 548.8 V [.] N/A	8 ft		N. LATITUDE: 32.809401°	W. LONGITUDE: -97.121845°
REMARKS:	Installed near	the western boundary of the subject property. MW			EL IN	WELL	: 28.57ft. below top-0	
		Developed well using a submersible pump for 40-m		PRODUCT L				-
		2 DESCRIPTION		SAMPLE ID	RECON		WELL COMPLETION	INSTALLATION NOTES
0	S	M 0-2.5': SILTY SAND, tan to brown, very fine to pebble to gravel inclusions.	-	SB-1-0.5		0.0		Concrete (2'x2' Flush Mount): 0 ft 2 ft.
5		inclusions. C 5'-10': CLAYEY SAND, red, very fine to fine gr gravel inclusions. P 10'-14': GRAVELLY SAND, red, very fine to fir			30	0.0		Bentonite Chips (3/8-in): 2 ft - 23 ft
15—	S	 P 14'-16': SAND, orange to red, very fine to fine indurate. P 16'-17': SANDSTONE, light tan to white, very fine to white	grained, moderately		50	0.0		
20-		angular cuttings. 17'-18': SAND, black, very fine to fine grained, 18'-21': SAND, orange and black, very fine to f moisture.			100	0.0		PVC Riser Casing (2-in blank): 0 ft - 25 ft
25 —		21'-24': CLAY, white to tan, high plasticity, well P 24'-25': SAND, white, very fine to fine grained,			30	0.0		Sand (40/20): 23 ft - 35 ft
	s	P 25'-27.5': SAND, white, very fine to fine graine	d, saturated.		10	0.0		
30 —	G	P 27.5'-35': GRAVELLY SAND, brown to tan, ve saturated.	ry fine to coarse grained,		10	0.0		Screen (0.01"): 25 ft - 35 ft Bottom of Well:
35 — 40 — 45 —		Samue Samue Geol 108	L I					35 ft bgs

			ENVIRONMENTAL, LLC			BOI	RIN	G/W	ELL LO	G	PAGE 1 OF 1
			BOX 1991 STIN, TX 78767-1991			BORIN	G ID		SB-2		
			2) 900-7731			WEL	LID	:	MW-2		
	PF	ROJ	ECT INFORMATION			PR	OJE	CT INI	FORMATIC	ON	
SITE I PROJ LOGG	ECT NUMBER: _OCATION: 11 ECT MANAGEF ED BY: Jacob DRILLED: 02/2	450 R: S C. Si	Trinity Blvd, Euless, Texas 76040 am Enis, P.G. ullivan, G.I.T.	DRILLIN	G ME DEPT	THOD: H: 35 fee	Hollo et (ft)	w Sten below	ground surf	ace (t	
				TOP OF CASIN		EV: 543.87	' ft		N. LATITU 32.808567°	DE:	W. LONGITUDE: -97.121782°
REMA			puthernmost portion of the subject property. MW-2 was su reloped well using a submersible pump for 40-minutes pro	urveyed on		TER LEVI	EL IN		23.62ft. below	v top-of	
	15-gallons.				PR	ODUCT LI		IN WELI			1
DEPTH	LITHOLOGY	nscs	DESCRIPTION		SA	MPLE ID	RECOlo	PID	WELL COMPLETI	ON	INSTALLATION NOTES
0 —			0-2.5': SILTY SAND, black, organic rich top soil. 2.5-5': SAND, orange, very fine to fine grained, mild clay	v content.	SB-2-	-0.5	70	<u>0-5</u> 0.0			Concrete (2'x2' Flush Mount): 0 ft - 2 ft
5 —			5'-7.5': SANDY GRAVEL, orange/black, very fine to peb				90	<u>5-10</u> 0.2			Bentonite:
10		SP	7.5-15': SANDY, orange, very fine to fine grained.				90	<u>10-15</u> 0.0			0 ft - 23 ft
15— 20—			 15'-16': SAND, black/brown, very fine to fine grained wit inclusions. 16'-19': SAND, white/tan, very fine to fine grained. 19'-20': SAND, black/brown, very fine to fine grained, white/tan way fine to fine grained. 				60	<u>15-20</u> 0.0			PVC Riser Casing (2-in blank): 0 ft - 25 ft
25 —		GW	20'-25': SANDY GRAVEL, white/tan, very fine to coarse pebble & gravel (~2-3"), beach sand with large g				55	20-25 0.0	×		Sand (40/20):
							10	25-30 0.0			23 ft - 35 ft
30 —		GW	25'-35': NO RECOVERY (DESCRIPTION FROM CUTTI SANDY GRAVEL, white/tan, very fine to coarse pebble & gravel (~2-3"), beach sand with large g	grained with			0	20-35 NO REC			Screen (0.01"): 25 ft - 35 ft
35 —			SINE OF TEXAS					· · · · · · · · · · · · · · · · · · ·			Bottom of Well: 35 ft bgs
40			Samuel Enis Beology 10843 CENSE COMIL & GEOSC	0							
50			0 6 April 2022								

		SQ	ENVIRONMENTAL, LLC			BOR	INC	G/WI	ELL LOG	PAGE 1 OF 1
			3OX 1991 TIN, TX 78767-1991			BORING	BID:	5	SB-3	
) 900-7731			WELL	. ID:	ľ	MW-3	
	PF	ROJE	ECT INFORMATION	1		PRC	JEC	T INF	ORMATION	
SITE I PROJ LOGO	ECT NUMBER: LOCATION: 11 ECT MANAGEF ED BY: Jacob DRILLED: 02/2	450 R: Sa C. Su	Trinity Blvd, Euless, Texas 76040 am Enis, P.G. Jllivan, G.I.T.	DRILLIN TOTAL D	g me Dept	THOD: H	ollow (ft) b	v Stem elow g	ground surface	
				TOP OF CASIN		EV: 524.89 f	t		N. LATITUDE:	W. LONGITUDE:
DEMA	DKC: Installed alc	na di	rt road running near eastern boundary of the subject prop			ATER I EVEI	IN W		2.809755° 5.20 ft. below top-	-97.119074°
REIMA		ed on	02/22/2022. Developed well using a submersible pump			ODUCT LE	/EL IN			
DEPTH	LITHOLOGY	uscs	DESCRIPTION		SA	MPLE ID	EColo	PID	WELL COMPLETION	INSTALLATION NOTES
0		SM	0'-1': SILTY SAND, black, very fine to fine grained.		SB-3	-0.5		0.5		Concrete
5 —			1'-4': SANDY GRAVEL, red, very fine to coarse grained 4'-8': SANDY CLAY, red and tan mix, small gravel inclu				100 (5	0-5 0.0 5-10 0.0		(2'x2' Flush Mount): 0 ft - 2 ft Bentonite Chips (3/8-in): 2 ft - 3 ft PVC Riser Casing (2-in blank):
10			8'-16': SAND, light tan, fine to coarse grained, saturated	l.			60 (<u>0-15</u> 0.0 5-20		0 ft - 5 ft Sand(40/20): 3 ft - 20 ft Screen (0.01"): 5 ft - 20 ft
20—			16'-17: SANDY CLAY, very plastic, saturated. 17'-20': GRAVELY SAND, light tan, saturated.					0.0		Bottom of Well: 20 ft bgs
25 —										
30 —										
35 —			A SULL OF TEXAS	A						
40 — 45 — 50 _			Geology 10843 6 April 2022							

SQ ENVIRONMENTAL, LLC							RIN	PAGE 1 OF 1					
			BOX 1991 BTIN, TX 78767-1991			BORIN	G ID	:	SB-4				
(512) 900-7731							_L ID	:	MW-4				
PROJECT INFORMATION							PROJECT INFORMATION						
SITE L PROJI LOGG	ECT NUMBER: OCATION: 11 ECT MANAGEF ED BY: Jacob DRILLED: 02/	Trinity Blvd, Euless, Texas 76040 am Enis, P.G. ullivan, G.I.T.	DRILLING	G ME Dept	ETHOD: TH: 30 fee	Hollo et (ft)	w Ste belov	v ground surface (bgs)				
				TOP OF CASIN			l ft		N. LATITUDE:	W. LONGITUDE:			
		the ce	entral location of the subject property, as close to the exca	GROUND ELEV			FI IN	WELL	32.810211° 24.42ft below top-ot	-97.120274°			
	as the rig ca	an gei	t to. MW-4 was surveyed on 02/22/2022. Developed well p for 40-minutes producing 15-gallons.			RODUCT L				odonig			
DEPTH	LITHOLOGY		DESCRIPTION				RECON		WELL COMPLETION	INSTALLATION NOTES			
0 —		SM SM CL	 0-2.5': SILTY SAND, black, very fine to fine grained, org 2.5-3': SILTY SAND, orange, very fine to fine grained. 3'-4': SILTY CLAY, gray, no plasticity, very packed. 4'-5': SANDY GRAVEL, light brown/tan, very fine to coa sands with pebble and small gravel. 		SB-4		100	<u>0-5</u>		Concrete (2'x2' Flush Mount): 0 ft 2 ft.			
5 —		SP	5'-15': NO RECOVERY (DESCRIPTION FROM CUTTI Bottom section showed red sandstone along with				0	<u>5-10</u> NO REC 10-15		Bentonite Chips (3/8-in): 2 ft - 18 ft PVC Riser Casing (2-in blank):			
15—			15'-20': NO RECOVERY (DESCRIPTION FROM CUTT Bottom section showed silty sand, dark black, de				0	15-20 NO NO NO REC		0 ft - 20 ft Sand (40/20): 18 ft - 30 ft			
25 —		SP	20'-28': NO RECOVERY (DESCRIPTION FROM CUTTI Cuttings showed sand, black, saturated.	INGS)			0	<u>20-28</u> NO REC		Screen (0.01"): 20 ft - 30 ft			
30 —		SM	28'-30': SILTY SAND, black to brown, very fine to fine g odor, saturated.	rained,			5	<u>28-30</u> 1.2		Bottom of Well: 30 ft bgs			
35 —			SINE OF TEXAS	*									
40 — 45 —			Samuel Enis Geology 10843 10843 6 April 2022	0									
50			0 April 2022										

Γ	SQ ENVIRONMENTAL, LLC					BOF	PAGE 1 OF 1					
			BOX 1991 STIN, TX 78767-1991		-	BORIN	g id		SB-5			
(512) 900-7731							WELL ID: N/A					
	ROJI	ECT INFORMATION		PR	OJE	СТІ	NFORMATION					
SITE I PROJ LOGO	ECT NUMBER _OCATION: 1 [/] ECT MANAGE ¡ED BY: Jacob DRILLED: 02/	Trinity Blvd, Euless, Texas 76040 am Enis, P.G. Jllivan, G.I.T.	DRILLIN	G ME DEPT	THOD: I H: 10 fee	Hollo t (ft)	w Ste belo	emediation and De em Auger w ground surface (I WELL DIAME	ogs)			
				TOP OF CASIN GROUND ELEV		EV: N/A			N. LATITUDE: 32.810341°	W. LONGITUDE: -97.119262°		
REMA	RKS: Located ne	ar the	northeast corner of the subject property.			ATER LEVE	EL IN	WELL		01.110202		
					PR	ODUCT LE	VEL	IN WE	ELL: N/A			
DEPTH	LITHOLOGY	uscs	DESCRIPTION		SA	MPLE ID	REC010	PID	WELL COMPLETION	INSTALLATION NOTES		
0 — 5 — 10— 15— 20— 25 —		SM SM	 0-1': SILTY SAND, black, very fine to fine grained. 1'-5': SILTY SAND, orange, very fine to fine grained, mi gravel inclusions, various debris including glass, and fabric. 5'-10': SANDY CLAY, black, various debris including glass, carpet, and fabric. 		SB-5		80	0.0				
30 —												
35 — 40 — 45 —			Samuel Enis Banuel Enis Geology 10843 10843									
43 — 50 <u>—</u>			6 April 2022	\mathcal{O}								

Γ	SQ ENVIRONMENTAL, LLC					BOF	RIN	PAGE 1 OF 1					
			BOX 1991 STIN, TX 78767-1991		L	BORIN	g id	:	SB-6				
L			900-7731			WELL ID: N/A							
PROJECT INFORMATION							PROJECT INFORMATION						
SITE PRO. LOG	JECT NUMBER LOCATION: 1 ⁻ JECT MANAGE GED BY: Jacob E DRILLED: 02/	DRILLIN TOTAL D	G ME DEPT	THOD: I	Hollo t (ft)	w Ste belov	emediation and De em Auger w ground surface (t WELL DIAME ⁻	ogs)					
				TOP OF CASIN GROUND ELE		ev: N/A			N. LATITUDE: 32.810234°	W. LONGITUDE: -97.121583°			
REMA	RKS: Located ne	ar nor	thwest corner of subject property.			ATER LEVE	EL IN	WELL		-57.121505			
					PR	ODUCT LE	EVEL	IN WE	ELL: N/A				
DEPTH	LITHOLOGY	uscs	DESCRIPTION				REColo		WELL COMPLETION	INSTALLATION NOTES			
0 — 5 —		SM SW CL	0-1': SILTY SAND, black, very fine to fine grained, orga 1'-2': GRAVELLY SAND, very fine to fine grained, 2-4 c 2'-3': CLAY, tan to brown, moderate plasticity, poorly pa 3'-5': SAND, tan, very fine to fine grained.	m gravel.	SB-6		100	0-5					
10		SM	5'-10': SILTY SAND, tan to black, very fine to fine graine inclusions.	d with pebble			80	<u>5-10</u> 0.0					
15— 20—													
25 —													
30 —													
35 —			A SINE OF TELAS	A									
40 — 45 — 50 —			Samuel Enis Geology 10843 CENSE Geology 10843 CENSE Geology 10843 CENSE Geology 10843 CENSE Geology 10843 CENSE Geology 10843 CENSE Geology 10843 CENSE Geology 10843 CENSE Geology 10843 CENSE Geology 10843 CENSE Geology 10843 CENSE CE	0									

SQ ENVIRONMENTAL, LLC						BORIN	PAGE 1 OF 1				
			BOX 1991 STIN, TX 78767-1991		В	ORING ID	:	SB-6R2			
			2) 900-7731			WELL ID: N/A					
	PF	roj	ECT INFORMATION		PROJECT INFORMATION						
SITE PROJ LOGO	JECT NUMBER LOCATION: 11 JECT MANAGEI GED BY: Jacob E DRILLED: 06/	1450 R: S C. S	Trinity Blvd, Euless, Texas 76040 am Enis, P.G. ullivan, G.I.T.	DRILLING COMPANY: West Drilling DRILLING METHOD: Direct-Push Technology TOTAL DEPTH: 20 feet (ft) below ground surface (bgs) BORING DIAMETER: 3-inch WELL DIAMETER: N/A							
				TOP OF CASING GROUND ELEV		N/A		32.810108°	-97.121567°		
REMA	ARKS: Located nea	ar the	entrance of the subject property near former SB-6 location	on.		R LEVEL IN					
DEPTH	LITHOLOGY	nscs	DESCRIPTION		PRODU SAMPL	ICT LEVEL		WELL	INSTALLATION		
			0-2': GRAVELLY SILT, gray		SAMPL		PID	COMPLETION	NOTES		
5 —			2-5': CLAYEY SAND, orange/black, very fine to fine gra	ined		100	0.0				
10		SC	5-10': CLAYEY SAND, orange/black, very fine to fine gr lens at ~6 ft bgs	ains, gravel		100	0.0				
15—			10-14': SAND, red/brown, very fine to fine grained 14-15': CLAY, red/brown, moderate to high plasticity, we	ell packed		100	N/A				
20—		SC	15-20': CLAYEY SAND, red, very fine to fine grained wind plasticity, saturation at ~20 ft bgs	th some		100	N/A				
25 —											
30 —			STE OF TEXAS								
35 —			TIMCTIVY C WEAVER	,							
40 —			11761 11761 11761 8/15/2023	hum							
45 —											
50 🔟											

		SQ	ENVIRONMENTAL, LLC			BOF	RIN	G/V	VELL LOG	PAGE 1 OF 1				
		-	BOX 1991 STIN, TX 78767-1991			BORIN	G ID	:	SB-7					
(512) 900-7731								WELL ID: MW-5						
	PI	ROJ	ECT INFORMATION		PROJECT INFORMATION									
SITE PROJ LOGO	ECT NUMBER: LOCATION: 11 ECT MANAGEI GED BY: Jacob DRILLED: 03/	450 R: S C. S	Trinity Blvd, Euless, Texas 76040 am Enis, P.G. ullivan, G.I.T.	DRILLIN	v ground surface ((bgs)								
				TOP OF CASIN					N. LATITUDE: 32.809990°	W. LONGITUDE: -97.119249°				
REMA	between SE	3-5 ar	e northeast corner of the subject property along the road r nd SB-3. The well was pumped using a submersible pum llons. Periodic pumping was a result of low recharge rate	roughly midway p for 40 minutes	W				: 33.45 ft below top-o	of-casing (See Remarks				
DEPTH	LITHOLOGY	NSCS 6	DESCRIPTION				RECON		WELL COMPLETION	INSTALLATION NOTES				
0 _			0-1': SILTY SAND, black, very fine to fine grained.		SB-7	7-0.5		0-5		Concrete (2'x2' Flush Mount):				
		SP	1-5': SAND, orange, very fine to fine grained.				80	$\frac{0-5}{0.0}$		0 ft 2 ft.				
5 — 10— 15—		FILL	5-15': NO RECOVERY (DESCRIPTION FROM CUTTIN Fill material with debris, saturated at ~5-6 ft bgs	NGS)			0	<u>5-15</u> NO REC		Bentonite Chips (3/8-in): 2 ft - 23 ft				
20—		SP/ FILL	15-20': SAND, tan, very fine to fine grained, mixed with and debris (consistent with the 5-15' interval), sa				10	<u>15-20</u> 0.0		PVC Riser Casing (2-in blank): 0 ft - 25 ft				
25 —		SW	20-25': GRAVELLY SILTY SAND, tan to orange, very fi grained, saturated.	ine to coarse				20-25 0.0		Sand (40/20): 23 ft - 35 ft				
30 —		GW	25-34': GRAVELLY SAND, tan, very fine to coarse grai	ned, saturated.			10	0.0		Screen (0.01"): 25 ft - 35 ft				
35 —		CL	34-35': CLAY, gray, moderate plasticity, moderately page	cked.			10	30-35 0.0		Bottom of Well: 35 ft bgs				
40			Samuel Enis Geology 10843 CENSER 6 April 2022											
50														

SQ ENVIRONMENTAL, LLC							BORING/WELL LOG					
			3OX 1991 STIN, TX 78767-1991		_	BORIN	G ID:		SS-7			
) 900-7731			WEL	L ID:		N/A			
	ROJI	ECT INFORMATION	PROJECT INFORMATION									
SITE L PROJE LOGG		1450 R: Sa C. Su	Trinity Blvd, Euless, Texas 76040 am Enis, P.G. Jllivan, G.I.T.	DRILLIN DRILLIN TOTAL D BORING	G ME DEPTI	THOD: I H: 0.5 fee	Hand et (ft)	Augo belo	w ground surface (WELL DIAME	TER: N/A		
				TOP OF CASIN GROUND ELEV		ev: N/A			N. LATITUDE: 32.809761°	W. LONGITUDE: -97.122145°		
REMAR	KS: Located ne	ear the	northeast corner of the subject property near the observe			TER LEVE	EL IN V	WELL		-57.122145		
			estern boundary.		PR	ODUCT LE	EVEL	IN WE	ELL: N/A			
DEPTH	LITHOLOGY	uscs	DESCRIPTION				REC010		WELL COMPLETION	INSTALLATION NOTES		
0 _			0-0.5': SILTY SAND, black, very fine to fine grained.		SS-7			0.0	COMPLETION	NOTES		
5 - 10 - 15 - 15 - 20 - 25 - 30 - 35 - 40 - 40 - 15 - 10 - 15 - 10 - 10 - 10 - 10 - 1			Samuel Enis Geology 10843									
45 —			6 April 2022	\mathcal{O}								
50 🔟												

SQ ENVIRONMENTAL, LLC						BOI	PAGE 1 OF 1							
			BOX 1991 STIN, TX 78767-1991		-	BORIN	G ID		SS-8	L				
(512) 900-7731								WELL ID: N/A						
	Р	ROJI	ECT INFORMATION		PROJECT INFORMATION									
SITE L PROJE	98.015.002 Trinity Blvd, Euless, Texas 76040 am Enis, P.G. ullivan, G.I.T. 022	DRILLING TOTAL D	DRILLING COMPANY: N/A DRILLING METHOD: Hand Auger TOTAL DEPTH: 0.5 feet (ft) below ground surface (bgs) BORING DIAMETER: 3-inch WELL DIAMETER: N/A											
				TOP OF CASIN GROUND ELEV		ev: N/A			N. LATITUDE: 32.809642°	W. LONGITUDE: -97.121864°				
REMAR	KS: Installed ne	ear the	northeast corner of the fenced in house area.	1		ATER LEV	EL IN	WELL		01.121001				
					PR	ODUCT LI			ill: N/A					
DEPTH	LITHOLOGY	nscs	DESCRIPTION		SA	MPLE ID	RECOlo	PID	WELL COMPLETION	INSTALLATION NOTES				
0 — 5 — 10—		SC	0-0.5': SILTY SANDY CLAY, black, mild plasticity, mod	erately packed.	SS-8		100	0.0						
15—														
25 — 30 —														
35 — 40 — 45 —			Samuel Enis Geology 10843 CENSED 6 April 2022											
50														

	SQ ENVIRONMENTAL, LLC		BORIN	G/WELL LOG	PAGE 1 OF 1
	PO BOX 1991 AUSTIN, TX 78767-1991		BORING ID:	SS-9	
	(512) 900-7731		WELL ID:	N/A	
	PROJECT INFORMATION	1	PROJEC	CT INFORMATION	
PROJECT MANAG	11450 Trinity Blvd, Euless, Texas 76040 ER: Sam Enis, P.G. b C. Sullivan, G.I.T.	DRILLING TOTAL DE	COMPANY: N/A METHOD: Hand PTH: 0.5 feet (ft) DIAMETER: 3-inch	below ground surface (
		ELEV: N/A	N. LATITUDE: 32.809324°	W. LONGITUDE: -97.120952°	
REMARKS: Installed	near the southern boundary of the subject property west of SB-1	GROUND ELEV:	WATER LEVEL IN V		-97.120952
	stockpile mounding.		PRODUCT LEVEL I	N WELL: N/A	
DEPTH LITHOLOGY	DESCRIPTION		-1-	PID WELL COMPLETION	INSTALLATION NOTES
0 _		ned. S		0.0	
5 — 10— 15— 20— 25 —					
30— 35— 40— 45—	Samuel Enis Geology 10843 CENSED Geology				

Boring ID: Well ID:	SS-10	
WELL ID:		
	N/A	
PROJECT IN	FORMATION	
EV: N/A	N. LATITUDE:	W. LONGITUDE: -97.122105°
		-97.122105
RODUCT LEVEL IN WE	LL: N/A	
AMPLE ID	WELL COMPLETION	INSTALLATION NOTES
10 100 0.0		
	PROJECT IN MPANY: N/A THOD: Hand Auge H: 0.5 feet (ft) below METER: 3-inch EV: N/A ATER LEVEL IN WELL: ODUCT LEVEL IN WE	PROJECT INFORMATION MPANY: N/A THOD: Hand Auger H: 0.5 feet (ft) below ground surface (I METER: 3-inch WELL DIAMET EV: N/A N. LATITUDE: 32.809230° ATER LEVEL IN WELL: N/A ODUCT LEVEL IN WELL: N/A MPLE ID

	ENVIRONMENTAL, LLC		BORI	NG/	WELL LOG	PAGE 1 OF 1	
	3OX 1991 STIN, TX 78767-1991		BORING I	D:	SB-11		
	900-7731		WELL ID: SV-1				
PROJE	ECT INFORMATION	I	PROJ	ECT I	NFORMATION		
PROJECT NUMBER: 109 SITE LOCATION: 11450 PROJECT MANAGER: Si LOGGED BY: Jacob C. Su DATE DRILLED: 06/06/20	Trinity Blvd, Euless, Texas 76040 am Enis, P.G. Jllivan, G.I.T.	DRILLING TOTAL DE	COMPANY: El METHOD: Dire PTH: 12 feet (ft IAMETER: 3-IN	ct-Pu belo	sh Technology w ground surface (I WELL DIAME	• /	
		TOP OF CASING			N. LATITUDE:	W. LONGITUDE:	
REMARKS: Installed near the	northeast corner of the subject property.	GROUND ELEV: N	WATER LEVEL IN	WELL	32.810183°	-97.121278°	
			PRODUCT LEVE				
DEPTH LITHOLOGY	DESCRIPTION		SAMPLE ID		WELL COMPLETION	INSTALLATION NOTES	
0 SC CL GM S- SC CL CL CL CL CL CL CL CL	0-1': CLAYEY SAND, tan/gray, mild plasticity, poor pack 1-3': SANDY CLAY, black, moderate plasticity, moderate 3-5': GRAVELLY SILT, chert nodules, black 5-6': CLAYEY SAND, brown/tan, mild plasticity, mild packed 6-10': CLAY, black, moderate plasticity, well packed 10-15': SANDY CLAY, black/brown, possible staining	e packing	10	0.0		Concrete 0 ft - 7 ft PVC Riser Casing (1-in blank): 0 ft - 11 ft Granular Bentonite: 7 ft - 10 ft Sand (40/20): 10 ft - 12 ft Bottom of Well: 12 ft bgs Annular Space and Casing Space filled with sand, bentonite, and concrete	

	SQ ENVIRONMENTAL, LLC		BORING	WELL LOG	PAGE 1 OF 1
	PO BOX 1991 AUSTIN, TX 78767-1991		BORING ID:	SB-12	1
	512) 900-7731		WELL ID:	SV-2	
PI	ROJECT INFORMATION		PROJECT	INFORMATION	
PROJECT NUMBER SITE LOCATION: 11 PROJECT MANAGE LOGGED BY: Jacob DATE DRILLED: 06/	450 Trinity Blvd, Euless, Texas 76040 R: Sam Enis, P.G. C. Sullivan, G.I.T.	DRILLING M TOTAL DEP		-PUSH TECHNOLO ow ground surface (b WELL DIAME	ogs)
		TOP OF CASING EI GROUND ELEV: N/		N. LATITUDE: 32.810203°	W. LONGITUDE:
REMARKS: Installed ne	ar MW-4 installation location in the northeast corner of the subj		A VATER LEVEL IN WE		-97.119792°
	· · · · · · · · · · · · · · · · · · ·		RODUCT LEVEL IN V	VELL: N/A	
DEPTH LITHOLOGY	S DESCRIPTION		SAMPLE ID	14/5/1	INSTALLATION NOTES
0 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	SC 0-2.5': CLAYEY SAND, brown and red, low plasticity, we vell packed SP 5-6': SAND tan, very fine to fine grained CL 6-11': CLAY, brown, high plasticity, well packed GP 11-12': GRAVEL, white CONSTRUCTION OF THE SAND SAND SAND SAND SAND SAND SAND SAND		90 4. 90 2. 20 1. 1	9	Concrete 0 ft - 7 ft PVC Riser Casing (1-in blank): 0 ft - 11 ft Granular Bentonite: 7 ft - 10 ft Sand (40/20): 10 ft - 12 ft Screen (0.01"): 11 ft - 12 ft Bottom of Well: 12 ft bgs Annular Space and Casing Space filled with sand, bentonite, and concrete

		SQ	ENVIRONMENTAL, LLC			BOR	RIN	G/V	WELL LOG	PAGE 1 OF 1
			BOX 1991 STIN, TX 78767-1991		I	BORING	G ID:	1	SB-13	
			2) 900-7731			WEL	L ID:		SV-3	
	P	ROJ	ECT INFORMATION			PRO	OJE	СТІ	NFORMATION	
SITE L PROJI LOGG	ECT NUMBER LOCATION: 1 ⁷ ECT MANAGE ED BY: Jacob DRILLED: 06/		G METH)EPTH:	HOD: D 12 feet	DIRE : (ft)	CT-F belov	PUSH TECHNOLO w ground surface (WELL DIAME	bgs)		
				TOP OF CASING		N/A			N. LATITUDE: 32.809540°	W. LONGITUDE: -97.121180°
REMA	RKS: Installed ea	ist-no	rtheast of MW-1 near the southwest corner of the former t			ER LEVE	LIN	WELL		-07.121100
					PROE	OUCT LE			ELL: N/A	
DEPTH	LITHOLOGY	nscs	DESCRIPTION		SAMF	PLEID	RECOlo	PID	WELL COMPLETION	INSTALLATION NOTES
0		SC	0-5': CLAYEY SAND, brown, small white gravel inclusio	ns			80	0.8		Concrete 0 ft - 7 ft PVC Riser Casing (1-in blank): 0 ft - 11 ft
10		GP	5-10': CLAYEY GRAVELLY SAND, brown/white, very fi	ne, pebble gravel			90 100	0.5		Granular Bentonite: 7 ft - 10 ft Sand (40/20): 10 ft - 12 ft
		SP	10-12': SAND, red/brown, very fine to fine grained				100	1.5		Screen (0.01"): 11 ft - 12 ft
15—										Bottom of Well: 12 ft bgs
20—										Annular Space and Casing Space filled with sand, bentonite, and concrete
25 —										
30 —			THE OF TERMS							
35 —			TIMCTINY C WEAVER	/						
40			11761 11761 11761 8/15/2023	um						
45 — 50 —										

	sq	ENVIRONMENTAL, LLC		во	RIN	G/V	VELL LOG	PAGE 1 OF 1
		3OX 1991 STIN, TX 78767-1991		BORI	NG ID	:	SB-14	
) 900-7731		WE	ell ID	:	SV-4	
	PROJ	ECT INFORMATION	1	P	ROJE		NFORMATION	
PROJECT NUME SITE LOCATION PROJECT MANA LOGGED BY: Ja DATE DRILLED:	l: 11450 ⁻ AGER: Sa cob C. Su	DRILLING TOTAL D		DIRE et (ft)	CT-F belov	PUSH TECHNOLC v ground surface (WELL DIAME	bgs) TER: 1-inch	
	TOP OF CASING ELEV: N/A GROUND ELEV: N/A						N. LATITUDE: 32.809579°	W. LONGITUDE: -97.119993°
REMARKS: Installe	ed near the	southeastern portion of the subject property near debris		WATER LE	/EL IN	WELL		
				PRODUCT			ELL: N/A	
DEPTH LITHOLOG	NSCS YS	DESCRIPTION		SAMPLE ID	RECOlo	PID	WELL COMPLETION	INSTALLATION NOTES
0 — 5 —	SP	 0-1': GRAVELLY CLAY, brown/gray, moderate plasticity packed, 2-6 cm gravel 1-6': SAND, tan, very fine to fine grained 	/, moderately		50	0.0		Concrete 0 ft - 7 ft PVC Riser Casing (1-in blank): 0 ft - 11 ft Granular Bentonite:
		6-8': MICACEOUS SILT, black, very fine grained			75	1.4		7 ft - 10 ft
10-		8-10': CLAY, black, high plasticity, well packed 10-12': CLAY, black/green, high plasticity, moderately p			100	1.4		Sand (40/20): 10 ft - 12 ft
15— 20— 25—								Screen (0.01"): 11 ft - 12 ft Bottom of Well: 12 ft bgs Annular Space and Casing Space filled with sand, bentonite, and concrete
30 — 35 — 40 — 45 —		GEOLOGY 11761 BILLESING 11761 BILLESING BILLESIN BILLESIN BILLESING BILLESING BILLESIN	hum					

		SQ	ENVIRONMENTAL, LLC			BO	RIN	G/V	VELL LOG	PAGE 1 OF 1		
			BOX 1991 STIN, TX 78767-1991			BORIN	IG ID:		SB-15			
	(512) 900-7731							WELL ID: N/A				
	P	ROJ	ECT INFORMATION			PF	OJE		FORMATION			
SITE L PROJE LOGGI	ECT NUMBER OCATION: 1 ECT MANAGE ED BY: Jacob DRILLED: 04,		G MET EPTH	HOD: : 5 feet	DIRE (ft) b	CT-P elow	RILLING PUSH TECHNOLC ground surface (b WELL DIAME N. LATITUDE:	gs) TER: N/A				
				TOP OF CASING ELEV: N/A GROUND ELEV: N/A						W. LONGITUDE: -97.122828°		
REMAR	KS: Completed	belov	v Diesel AST west of the orange roof house.		WAT	ER LEV	EL IN	WELL	32.809462° : N/A			
	PRODUCT LEV											
DEPTH	LITHOLOGY	NSCS	DESCRIPTION		SAM	PLE ID	RECOlo	PID	WELL COMPLETION	INSTALLATION NOTES		
0 — 5 — 10—			0-1': SILTY SAND, red, very fine to fine grained, gravel 1-5': CLAY, red, moderate plasticity, moderate packing	inclusions	15 SB-	-15-4 5:40 -15-5 5:45	100	0.0 0.4 0.3 0.9 0.5		Bentonite 0 ft - 5 ft		
15— 20—												
25 —												
30 —			THE OF TEXTS									
35 —			GEOLOGY TIMCTHY'C WEAVER THE GEOLOGY TITOT	/								
40 — 45 —			B/15/2023	Um								
50												

		5Q	ENVIRONMENTAL, LLC		во	RIN	G/V	VELL LOG	PAGE 1 OF 1
			3OX 1991 STIN, TX 78767-1991		BORI	NG ID	:	SB-16	
			900-7731		WE	ill ID	:	N/A	
	PROJECT INFORMATION PROJECT INFORMATION								
SITE LOCATION: 11450 Trinity Blvd, Euless, Texas 76040DRILLIPROJECT MANAGER: Sam Enis, P.G.TOTALLOGGED BY: Jacob C. Sullivan, G.I.T.BORINDATE DRILLED: 04/25/202304/25/2023						DIRE t (ft) b	CT-F elow	RILLING PUSH TECHNOLC ground surface (b WELL DIAME N. LATITUDE:	gs)
				TOP OF CASING GROUND ELEV:				32.809427°	-97.121721°
REMAR	KS: Completed	east o	of the orange roof house near 5-gallon buckets.		WATER LEV				
DEPTH	LITHOLOGY	uscs	DESCRIPTION		PRODUCT L	EVEL		WELL	INSTALLATION
			0-1': SAND, red, very fine to fine grained			19 ²	0.0	COMPLETION	NOTES
5 —			1-5': CLAY, red, low plasticity, well packed		SB-16-4 15:25 SB-16-5 15:30	100	0.9 0.4 1.7 0.5		Bentonite 0 ft - 5 ft
10									
15— 20—									
25 —									
30 —			of TELL						
35 —			GEOLOGY						
40 —			ALT GEOLOGIA WHAT W	hum					
45 — 50 —									

5		SQ	ENVIRONMENTAL, LLC		BO	RIN	G/V	WELL LOG	PAGE 1 OF 1
			BOX 1991 STIN, TX 78767-1991		BORIN	ig id		SB-17	
			2) 900-7731		WE	ll ID	:	MW-6	
	PF	SOJ	ECT INFORMATION		PF	ROJE	СТІ	NFORMATION	
SITE PROJ LOGO	IECT NUMBER: LOCATION: 11 IECT MANAGEI GED BY: Jacob DRILLED: 12/	450 R: S C. S	Trinity Blvd, Euless, Texas 76040 Sam Enis, P.G. ullivan, G.I.T.	DRILLING TOTAL D	G METHOD:	Hollo feet	w Ste (ft) be	elow ground surfac	e (bgs)
				TOP OF CASING				N. LATITUDE: 32.809560°	W. LONGITUDE: -97.122120°
REMA	area. Appro	oxima	e western boundary of the subject property within the fence ately 48-gallons were purged during initial well developmer	ed housing	WATER LEV			: 30.80 ft. below top-c	
050711	12/01/2023		25000175011		PRODUCT L	1		ELL: N/A WELL	INSTALLATION
DEPTH	LITHOLOGY	nscs	DESCRIPTION		SAMPLE ID	REColo	PID	COMPLETION	NOTES
5 —			 0-2': GRAVELLY SAND, brown, very fine to fine grained inclusions up to ~2cm 2-5': CLAY, red, low to moderate plasticity, well packed 	, gravel		100	0.0 0.0		Concrete (2'x2' Flush Mount): 0 ft 2 ft.
10-		CL	5-10': GRAVELLY SANDY CLAY, red, moderate to high poor packing (90% of split spoon fell out, observe			10	0.0		Bentonite Chips (3/8-in):
15—		N/A	10-15': NO RECOVERY, soil cuttings show SAND, light to fine grained, dry	tan, very fine		0	N/A		2 ft - 23 ft
		SP SP	15-19': SAND, light tan, very fine grained, dry 19-20': SAND, light tan/ white, fine grained, indurated, w	ell packed		50	0.0		PVC Riser Casing (2-in blank):
20—			20-25': SANDY CLAY (moderate sand content), light tan plasticity, well packed			60	0.0		0 ft - 25 ft
25 —						30	0.0		Sand (40/20): 23 ft - 35 ft
30 —		SP	, , , , , , , , , , , , , , , , , , , ,	one at end		30	0.0 0.0		Screen (0.01"): 25 ft - 35 ft
35 —			of split spoon. [Saturation @~27.5 feet below ground surface]			50	0.0		Bottom of Well: 35 ft bgs
			TF TEXA						
0 — 5 —			GEOLOGY 11761 WCENSED	hum					
.0 _			/12/2/2023						

	ENVIRONMENTAL, LLC		BOR	ING/	WELL LOG	PAGE 1 OF 1
	BOX 1991 STIN, TX 78767-1991		BORING		N/A	
	2) 900-7731		WELL	. ID:	SV-5	
PROJ	ECT INFORMATION	1	PRO	JECT	INFORMATION	
PROJECT NUMBER: 10 SITE LOCATION: 11450 PROJECT MANAGER: S LOGGED BY: Jacob C. S DATE DRILLED: 04/25/2	DRILLING TOTAL DE		IRECT- (ft) belo	PUSH TECHNOLO	ogs)	
		TOP OF CASING GROUND ELEV: 1			N. LATITUDE: 32.810212°	W. LONGITUDE:
REMARKS: Installed near M	W-4 installation location.	GROUND ELEV. I	WATER LEVEL	IN WEL		-97.120530°
			PRODUCT LEV			
DEPTH LITHOLOGY S	DESCRIPTION			EC ⁰ PID	14/5/ /	INSTALLATION NOTES
5 - CL 5 - CL CL CL SP CL 10-	0-2.5': CLAY, brown, low plasticity, well packed 2.5-5': CLAY, gray/brown, moderate plasticity, moderate 5-6': GRAVEL, black, moderate plasticity, moderate packin 7-8': SAND, tan, very fine to fine grained 8-10': CLAY, black, moderate plasticity, moderate packin 10-12': CLAY, gray, sand lenses, moderate plasticity, m	ig, moist		100 0.7 100 0.6 1.4 0.9 100 0.4		Concrete 0 ft - 7 ft PVC Riser Casing (1-in blank): 0 ft - 11 ft Granular Bentonite: 7 ft - 10 ft Sand (40/20): 10 ft - 12 ft Screen (0.01"): 11 ft - 12 ft Bottom of Well: 12 ft bgs Annular Space and Casing Space filled with sand, bentonite, and concrete

		SQ	ENVIRONMENTAL, LLC			BOF	RIN	G/V	VELL LOG	PAGE 1 OF 1
			BOX 1991 STIN, TX 78767-1991			BORIN	G ID:		N/A	
			2) 900-7731			WEL	L ID:		SV-6	
	PF	roj	ECT INFORMATION	1		PR	OJE		NFORMATION	
SITE LOCATION: 11450 Trinity Blvd, Euless, Texas 76040DRILPROJECT MANAGER: Sam Enis, P.G.TOT.					g met Depth: Diame	HOD: [12 fee ETER:	DIRE t (ft)	CT-P below	RILLING USH TECHNOLC ground surface (WELL DIAME N. LATITUDE:	bgs)
				GROUND ELEV		. N/A			32.809582°	-97.120385°
REMAR	KS: Installed in t	the so	outhwestern central portion of the 1973 & 1979 gravel pit	extent.		ER LEVE DUCT LE	EVEL I	N WE		
DEPTH	LITHOLOGY	nscs	DESCRIPTION		SAM	PLE ID	RECelo	PID	WELL COMPLETION	INSTALLATION NOTES
0 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -		GP CL SP GP GC	0-2': GRAVEL, chert with sand, tan/gray 2-4': CLAY, tan, moderate plasticity, moderate packing 4-6': SAND, tan, very fine to fine grained 6-7': GRAVEL CALICHE, white with black base (~1"), s 7-11': GRAVELLY CLAY, gray, moderate plasticity, mor moist 11-12': GRAVEL, black, odor	derate packing	04/2	/-6 26/23 :10	100 70 100	0.1 0.2 1.8 0.7		Concrete 0 ft - 7 ft PVC Riser Casing (1-in blank): 0 ft - 11 ft Granular Bentonite: 7 ft - 10 ft Sand (40/20): 10 ft - 12 ft Screen (0.01"): 11 ft - 12 ft Bottom of Well: 12 ft bgs Annular Space and Casing Space filled with sand, bentonite, and concrete
50										

	SQ ENVIRONMENTAL, LLC		BORING/W	VELL LOG	PAGE 1 OF 1
	PO BOX 1991 AUSTIN, TX 78767-1991		BORING ID:	N/A	
	512) 900-7731		WELL ID:	SV-7	
PF			PROJECT IN	FORMATION	
PROJECT NUMBER: SITE LOCATION: 11 PROJECT MANAGEI LOGGED BY: Jacob DATE DRILLED: 04/	450 Trinity Blvd, Euless, Texas 76040 R: Sam Enis, P.G. C. Sullivan, G.I.T.	DRILLING ME TOTAL DEPT	DMPANY: WEST DI ETHOD: DIRECT-P 'H: 12 feet (ft) below METER: 3-inch	USH TECHNOLOG	gs)
		TOP OF CASING ELE GROUND ELEV: N/A		N. LATITUDE: 32.809806°	W. LONGITUDE: -97.121122°
REMARKS: Installed no	rtheast of the orange roof house.		ATER LEVEL IN WELL:		-97.121122*
			RODUCT LEVEL IN WEI		
DEPTH LITHOLOGY	S DESCRIPTION		AMPLE ID	WELL COMPLETION	INSTALLATION NOTES
$ \begin{array}{c} 0 \\ 5 \\ - \\ 10 \\ 10 \\ 20 \\ 25 \\ 30 \\ 35 \\ 40 \\ 45 \\ 50 \\ \end{array} $	 SC 0-5': SANDY CLAY, tan/brown, moderate plasticity, well chert and gravel inclusions GP 5-6': GRAVEL, black/white, slight odor GL 6-8': CLAY, gray, moderate plasticity, moderate packing, inclusions GP 8-9': GRAVEL, black/white, slight odor SC 9-10': SANDY CLAY, black/white, slight odor GP 10-11': GRAVEL, black/white, slight odor GP 10-11': GRAVEL, black/white, slight odor SC 11-12': CLAYEY SAND, gray/brown, very fine to fine grap plasticity, moist 	, gravel y, moderate ained, moderate 0.	SV-7 4/26/23 11:00 0.7		Concrete 0 ft - 7 ft PVC Riser Casing (1-in blank): 0 ft - 11 ft Granular Bentonite: 7 ft - 10 ft Sand (40/20): 10 ft - 12 ft Screen (0.01"): 11 ft - 12 ft Bottom of Well: 12 ft bgs Annular Space and Casing Space filled with sand, bentonite, and concrete

	SQ ENVIRONMENTAL, LLC		BORING	WELL LOG	PAGE 1 OF 1
	PO BOX 1991 AUSTIN, TX 78767-1991		BORING ID:	N/A	
(512) 900-7731				SV-8	
Pf	ROJECT INFORMATION	_	PROJEC	T INFORMATION	
PROJECT NUMBER SITE LOCATION: 11 PROJECT MANAGEI LOGGED BY: Jacob DATE DRILLED: 04/	450 Trinity Blvd, Euless, Texas 76040 R: Sam Enis, P.G. C. Sullivan, G.I.T.		T-PUSH TECHNOLO	ogs)	
		GROUND ELEV: N	N/A	32.810347°	-97.121785°
REMARKS: Installed ne	ar the northwest corner of the subject property.		WATER LEVEL IN WI	WELL: N/A	
DEPTH LITHOLOGY	DESCRIPTION		SAMPLE ID	PID WELL COMPLETION	INSTALLATION NOTES
0 — 5 — 10 — 15 — 20 — 25 —	 CL 0-3': SILTY CLAY, dark brown, low plasticity, poor pact SP 3-7.5': SAND, orange, very fine to fine grained, gravel SC 7.5-12': SANDY CLAY, orange, very fine to fine grained poor packing 	inclusions	100 100 0		Concrete 0 ft - 7 ft PVC Riser Casing (1-in blank): 0 ft - 11 ft Granular Bentonite: 7 ft - 10 ft Sand (40/20): 10 ft - 12 ft Screen (0.01"): 11 ft - 12 ft Bottom of Well: 12 ft bgs Annular Space and Casing Space filled with sand, bentonite, and concrete
30 — 35 — 40 — 45 —	GEOLOGY 11761 CCENSER 11761 1761 1761 1761 1761 1761 1761 17	Jum			

	Q ENVIRONMENTAL, LLC		BORIN	G/WELL LOG	PAGE 1 OF 1
	O BOX 1991 NUSTIN, TX 78767-1991		BORING ID:	N/A	
	512) 900-7731		WELL ID:	SV-9	
PR	OJECT INFORMATION		PROJEC	T INFORMATION	
PROJECT NUMBER: SITE LOCATION: 11 PROJECT MANAGEF LOGGED BY: Jacob (DATE DRILLED: 04/2	450 Trinity Blvd, Euless, Texas 76040 8: Sam Enis, P.G. C. Sullivan, G.I.T.	DRILLING M TOTAL DEP		CT-PUSH TECHNOLO	ogs)
		TOP OF CASING E		N. LATITUDE: 32.809919°	W. LONGITUDE: -97.121819°
REMARKS: Installed not	theast of the orange roof house, outside the fence, near the di		VATER LEVEL IN V		-57.121015
intersection.		P	RODUCT LEVEL IN	N WELL: N/A	
DEPTH LITHOLOGY	DESCRIPTION		SAMPLE ID	PID WELL COMPLETION	INSTALLATION NOTES
0	SP 0-5": SAND, orange, very fine to fine grained SC 5-6": SANDY CLAY, orange, low plasticity, poor packing inclusions SC 6-10": SANDY CLAY, orange, gravel inclusions, saturate SC 10-12": SANDY CLAY, orange, gravel inclusions, less sa Visit of the second seco	aturated	100 90		Concrete 0 ft - 7 ft PVC Riser Casing (1-in blank): 0 ft - 11 ft Granular Bentonite: 7 ft - 10 ft Sand (40/20): 10 ft - 12 ft Screen (0.01"): 11 ft - 12 ft Bottom of Well: 12 ft bgs Annular Space and Casing Space filled with sand, bentonite, and concrete

		SQ	ENVIRONMENTAL, LLC		E	ORIN	IG/\	WELL LOG	PAGE 1 OF 1
		-	BOX 1991 STIN, TX 78767-1991		BC	RING ID	:	N/A	
(512) 900-7731					WELL ID):	SV-10		
	PF	ROJ	ECT INFORMATION		I	PROJE	СТІ	NFORMATION	
SITE LOCATION: 11450 Trinity Blvd, Euless, Texas 76040DRILLING MPROJECT MANAGER: Sam Enis, P.G.TOTAL DEP				G COMPANY: WEST DRILLING G METHOD: DIRECT-PUSH TECHNOLOGY DEPTH: 12 feet (ft) below ground surface (bgs) 5 DIAMETER: 3-inch WELL DIAMETER: 1-in				ogs) TER: 1-inch	
				TOP OF CASIN GROUND ELEV		/A		N. LATITUDE: 32.809506°	W. LONGITUDE: -97.121867°
REMA	ARKS: Installed no	rthea	st of the orange roof house, inside the fence.		1	LEVEL IN	WELL		01.12.1001
					PRODU	T LEVEL	IN WE	ELL: N/A	
DEPTH	LITHOLOGY	nscs	DESCRIPTION		SAMPLE	ID REC ^{olo}	PID	WELL COMPLETION	INSTALLATION NOTES
$ \begin{array}{c} 0 \\ 5 \\ 5 \\ 10 \\ 15 \\ 20 \\ 25 \\ 30 \\ 35 \\ 40 \\ 45 \\ 45 \\ - \end{array} $		SP CL SC	0-2': SAND, orange, very fine to fine grained 2-5': SANDY CLAY, orange, moderate plasticity, moder 5-10': CLAYEY SAND, orange, very fine to fine grained plasticity, moist 10-12': SAND, orange, very fine to fine grained		SV-10 04/26/2 12:30	100 100 100	0.0 0.0 0.0 0.0 0.0		NOTES Concrete 0 ft - 7 ft PVC Riser Casing (1-in blank): 0 ft - 11 ft Granular Bentonite: 7 ft - 10 ft Sand (40/20): 10 ft - 12 ft Screen (0.01"): 11 ft - 12 ft Bottom of Well: 12 ft bgs Annular Space and Casing Space filled with sand, bentonite, and concrete
50									

SQ ENVIRONMENTAL, LLC	BORING/WELL LOG PAGE 1 OF 1
PO BOX 1991 AUSTIN, TX 78767-1991	BORING ID: N/A
(512) 900-7731	WELL ID: SV-11
PROJECT INFORMATION	PROJECT INFORMATION
SITE LOCATION: 11450 Trinity Blvd, Euless, Texas 76040 PROJECT MANAGER: Sam Enis, P.G.	DRILLING COMPANY: WEST DRILLING DRILLING METHOD: DIRECT-PUSH TECHNOLOGY TOTAL DEPTH: 12 feet (ft) below ground surface (bgs) BORING DIAMETER: 3-inch WELL DIAMETER: 1-inch
	P OF CASING ELEV: N/A N. LATITUDE: W. LONGITUDE: OUND ELEV: N/A 32.810372° -97.121421°
REMARKS: Installed near the northeast entrance of the subject property, east of the main en	
	PRODUCT LEVEL IN WELL: N/A
DEPTH LITHOLOGY S DESCRIPTION	SAMPLE ID
0 Image: Second Sec	d Concrete 0.7 100 0.7 0.6 1.4 70 SV-11 100 0.7 0.6 1.4 0.9 0.7 0.6 1.4 0.9 0.7 0.6 1.4 0.7 0.6 0.7 0.6 0.7 0.6 0.7 VC Riser Casing (1-in blank): 0 ft - 7 ft PVC Riser Casing (1-in blank): 0 ft - 11 ft Granular Bentonite: 7 ft - 10 ft Sand (40/20): 10 ft - 12 ft
50 —	

	SQ ENVIRONMENTAL, LLC		BORING/W	WELL LOG	PAGE 1 OF 1
	PO BOX 1991 AUSTIN, TX 78767-1991		BORING ID:	N/A	
	WELL ID:	SV-A-S/D			
PI	ROJECT INFORMATION		PROJECT I	NFORMATION	
PROJECT NUMBER SITE LOCATION: 1' PROJECT MANAGE LOGGED BY: Jacob DATE DRILLED: 06/	1450 Trinity Blvd, Euless, Texas 76040 R: Sam Enis, P.G. C. Sullivan, G.I.T.	DRILLING I TOTAL DEI	COMPANY: WEST D METHOD: DIRECT-F PTH: 5 and 12 feet (ft IAMETER: 3-inch	PUSH TECHNOLO	face (bgs)
		TOP OF CASING I GROUND ELEV: N		N. LATITUDE: 32.810432°	W. LONGITUDE: -97.121469°
	ear the north entrance of the subject property. Shallow (5 ft bgs ngs were completed approximately 2 feet apart and showed the	and deep (12 s same lithology.	WATER LEVEL IN WELL PRODUCT LEVEL IN WE	: N/A	51.121405
DEPTH LITHOLOGY	S DESCRIPTION		SAMPLE ID	WELL COMPLETION	INSTALLATION NOTES
0	GW 0-2: SILTY GRAVEL, gray/brown SC 2-5: CLAYEY SAND, tan/orange/black SC 5-12: CLAY AND SAND, orange, very fine with modera well packed, black/orange clay Weil packed, black/orange clay Image: Second	Ite plasticity,			Concrete 0 ft - 7 ft PVC Riser Casing (1-in blank): 0 ft - 11 ft Granular Bentonite: 7 ft - 10 ft Sand (40/20): 10 ft - 12 ft Screen (0.01"): 11 ft - 12 ft Bottom of Well: 12 ft bgs Annular Space and Casing Space filled with sand, bentonite, and concrete

		SQ	ENVIRONMENTAL, LLC		BO	RIN	G/V	VELL LOG	PAGE 1 OF 1
			BOX 1991 STIN, TX 78767-1991		BORIN	IG ID	:	N/A	
			2) 900-7731		WE	ll ID	:	SV-B-S/D	
PROJECT INFORMATION						ROJE	СТІ	NFORMATION	
SITE L PROJI LOGG	ECT NUMBER .OCATION: 1' ECT MANAGE ED BY: Jacob DRILLED: 06/		METHOD: PTH: 5 and	DIRE 12 fe	CT-F eet (ft	PRILLING PUSH TECHNOLO) below ground sur WELL DIAME	face (bgs)		
				TOP OF CASING GROUND ELEV: 1				N. LATITUDE: 32.809873°	W. LONGITUDE: -97.120913°
REMA		re cor	e center of the subject property. Shallow (5 ft bgs) and de npleted approximately 2 feet apart and showed the same	lithology.	WATER LEV PRODUCT L	EVEL	IN WE	: N/A	
DEPTH	LITHOLOGY	nscs	DESCRIPTION		SAMPLE ID	RECOlo	PID	WELL COMPLETION	INSTALLATION NOTES
0 — 5 —		CL GM	0-1': SILT WITH CLAY, gray, mild plasticity, poor packir 1-2': GRAVELLY CLAY, gray, angular gravel ~1cm 2-3': GRAVELLY SAND, black/light tan, angular gravel 5 3-5': CLAY, tan, high plasticity, well packed	-		100			Concrete 0 ft - 7 ft PVC Riser Casing (1-in blank): 0 ft - 11 ft
		CL	5-10': CLAY, gray/black/tan, possible staining			100	0.4		Granular Bentonite: 7 ft - 10 ft Sand (40/20):
10—		CL	10-12': CLAY, gray, moderate plasticity, well packed			100	0.1		10 ft - 12 ft Screen (0.01"): 11 ft - 12 ft Bottom of Well:
15— 20—									12 ft bgs Annular Space and Casing Space filled with sand, bentonite, and concrete
25 —									
30 —			THE OF TEXAS						
35 —			SILL AND	,					
40 —			HI761 HICENEROSA MA WA	um					
45 —									
50 上	L	1	1			1	1		1

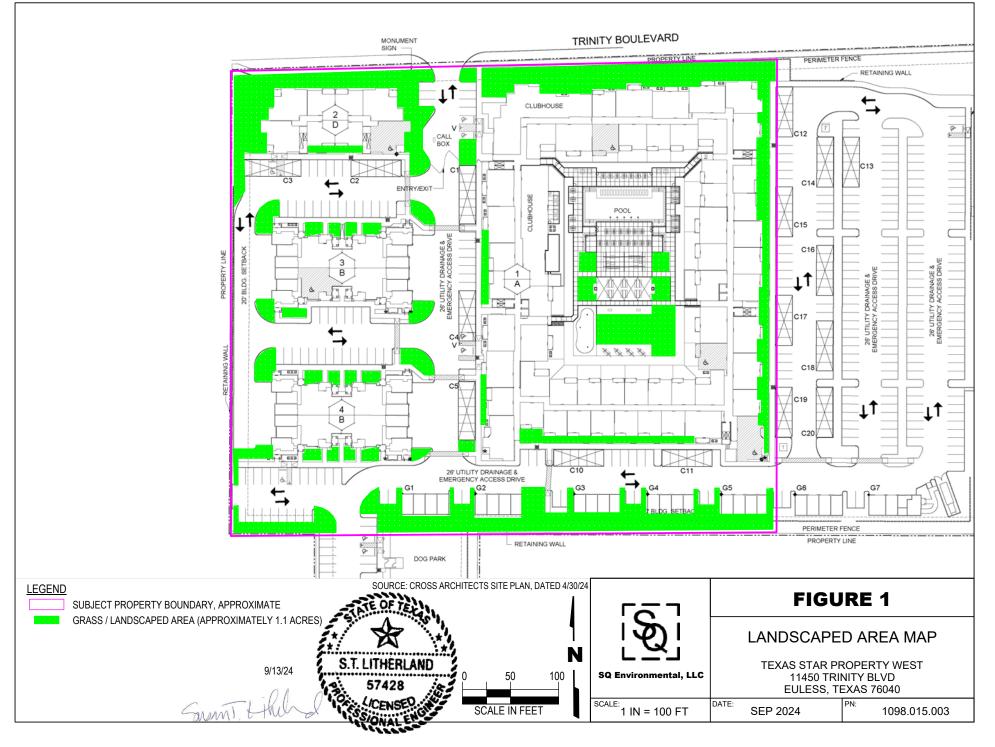
		SQ	ENVIRONMENTAL, LLC		B	ORIN	G/\	WELL LOG	PAGE 1 OF 1
			3OX 1991 STIN, TX 78767-1991		BO	RING ID		N/A	
(512) 900-7731				,	WELL ID	:	SV-C-S/D		
	PI	ROJ	ECT INFORMATION			PROJE	СТІ	NFORMATION	
PROJECT NUMBER: 1098.015.003 SITE LOCATION: 11450 Trinity Blvd, Euless, Texas 76040 PROJECT MANAGER: Sam Enis, P.G. LOGGED BY: Jacob C. Sullivan, G.I.T. DATE DRILLED: 06/20/2023					G METHO EPTH: 5	D: DIRE and 12 fe	CT-F et (ft	PRILLING PUSH TECHNOLC) below ground sur WELL DIAME	face (bgs)
				TOP OF CASING		/A		N. LATITUDE: 32.809289°	W. LONGITUDE: -97.120313°
REMA	RKS: Installed ne	ar so	uthern boundary of the subject property. Shallow (5 ft bgs			LEVEL IN	WELL		-97.120313
			ere completed approximately 2 feet apart and showed the		PRODUC	T LEVEL	IN WE	ELL: N/A	
DEPTH	LITHOLOGY	uscs	DESCRIPTION		SAMPLE	ala	PID	WELL COMPLETION	INSTALLATION NOTES
0 — 5 — 10—		CL GW CL SC	 0-1': CLAY, tan, very low plasticity, well packed, dry 1-2': GRAVEL, caliche, gray/black 2-5': CLAY, gray, low plasticity, very well packed 5-7': SANDY CLAY, tan, very fine to fine grained, moder well packed 7-9': GRAVEL, caliche, white 	ate plasticity,		100	0.5		Concrete 0 ft - 7 ft PVC Riser Casing (1-in blank): 0 ft - 11 ft Granular Bentonite: 7 ft - 10 ft Sand (40/20): 10 ft - 12 ft
15— 20— 25—		CL	9-12': CLAY, black, moderate plasticity, well packed						Screen (0.01"): 11 ft - 12 ft Bottom of Well: 12 ft bgs Annular Space and Casing Space filled with sand, bentonite, and concrete
30 — 35 — 40 —			TIMOTINY C WEAVER GEOLOGY 11761 CENTRE CON WAY W	hum					
45 —			8/15/2023						

SQ ENVIRONMENTAL, LLC		BORING	G/WELL LOG	PAGE 1 OF 1		
PO BOX 1991 AUSTIN, TX 78767-1991		BORING ID:	N/A			
(512) 900-7731	WELL ID:	SV-D-S/D				
PROJECT INFORMATION	T	PROJEC	T INFORMATION			
PROJECT NUMBER: 1098.015.003 SITE LOCATION: 11450 Trinity Blvd, Euless, Texas 76040 PROJECT MANAGER: Sam Enis, P.G. LOGGED BY: Jacob C. Sullivan, G.I.T. DATE DRILLED: 06/20/2023	DRILLING ME TOTAL DEPT BORING DIAI	ING COMPANY: WEST DRILLING ING METHOD: DIRECT-PUSH TECHNOLOGY - DEPTH: 5 and 12 feet (ft) below ground surface (bgs) IG DIAMETER: 3-inch WELL DIAMETER: 1-inch				
	TOP OF CASING EL GROUND ELEV: N/A		N. LATITUDE: 32.809095°	W. LONGITUDE: -97.121746°		
REMARKS: Installed in the southern most area of the subject property along the west Shallow (5 ft bgs) and deep (12 ft bgs) borings were completed approxima and showed the same lithology.	ately 2 feet apart	ATER LEVEL IN W	NWELL: N/A			
	S	AMPLE ID	PID WELL COMPLETION	INSTALLATION NOTES		
0	ked	100	0.6 0.4 0.1	Concrete 0 ft - 7 ft PVC Riser Casing (1-in blank): 0 ft - 11 ft Granular Bentonite: 7 ft - 10 ft Sand (40/20): 10 ft - 12 ft		
				Screen (0.01"): 11 ft - 12 ft Bottom of Well: 12 ft bgs Annular Space and Casing Space filled with sand, bentonite, and concrete		
25 —						
30-						
35-	/					
40 - 11761 000 000 000 000 000 000 000 000 000 0	hum					

SQ ENVIRONMENTAL, LLC		BOR	ING/\	WELL LOG	PAGE 1 OF 1
PO BOX 1991 AUSTIN, TX 78767-1991		BORING	ID:	N/A	
(512) 900-7731	WELL	ID:	SV-E-S/D		
PROJECT INFORMATION		PRO	JECT I	NFORMATION	
PROJECT NUMBER: 1098.015.003 SITE LOCATION: 11450 Trinity Blvd, Euless, Texas 76040 PROJECT MANAGER: Sam Enis, P.G. LOGGED BY: Jacob C. Sullivan, G.I.T. DATE DRILLED: 06/20/2023	DRILLING TOTAL DE		RECT-F 2 feet (fl	ORILLING PUSH TECHNOLC) below ground su WELL DIAME	face (bgs)
	TOP OF CASING GROUND ELEV:			N. LATITUDE: 32.809657°	W. LONGITUDE: -97.122145°
REMARKS: Installed near the northwest corner of the fenced area along the wester subject property. Shallow (5 ft bgs) and deep (12 ft bgs) borings were	n boundary of the	WATER LEVEL		.: N/A	-57.122 145
approximately 2 feet apart and showed the same lithology. DEPTH LITHOLOGY S DESCRIPTION		PRODUCT LEV	EL IN WE	WELL	INSTALLATION
⁰ ⊤ 222222223 GM [0-1': SILTY GRAVEL, gray			¢ riu	COMPLETION	NOTES Concrete
CL 1-5': CLAY, red, low plasticity, well packed		1	00 0.3		0 ft - 7 ft PVC Riser Casing (1-in blank): 0 ft - 11 ft
SW 5-8': GRAVELLY SAND, orange, pebble inclusions			00 0.5		Granular Bentonite: 7 ft - 10 ft Sand (40/20):
10 SP 8-12': SAND, light tan/orange, very fine to fine graine 15 Image: SP 8-12': SAND, light tan/orange, very fine to fine graine	ed	1	00 0.4		10 ft - 12 ft Screen (0.01"): 11 ft - 12 ft Bottom of Well: 12 ft bgs Annular Space and Casing Space filled
20					with sand, bentonite, and concrete
30 -					
35-					
40 - 41761 WH 8/15/2023	Vrum				
45 —					
50					

11 CLOSURE PLAN

The future development on the subject property is comprised of four multi-family apartment buildings with concrete slab-on-grade foundations. A VMS will be designed and installed beneath residential ground floor areas. The VMS will direct any vapors (methane or other) out from beneath the buildings, and the vapors monitored to verify that there is no vapor accumulation beneath the buildings. Asphalt-covered parking lots will surround the four buildings and cover other areas of the subject property.


There is no true "cap" on the property, although the upper 5 to 10 ft of soil generally does not contain debris and has a higher percentage of clay than the underlying materials. The proposed construction associated with this development permit application is not expected to result in significant removal of existing soil and is not expected to disturb soil deeper than 10 ft, and likely no deeper than 7 ft. The planned concrete slab foundations with a VMS and the asphalt cover (parking lot) will result in a similar or better impervious "cap" over portions of the subject property where incidental debris is present in the subsurface.

The remaining area that will not be covered, i.e., the interior open-air courtyard of Building 1 and green space between buildings, will conform to §330.957(q). In accordance with §330.453(a) and (b), 18 inches of compacted clayey soil that is free of waste and 6 inches of topsoil that can support native vegetation will be present in areas of soil disturbance that are not covered by buildings, asphalt, or pavement. The grass/landscaped areas are on shown on **Figure 1** of **Attachment 11**.

ATTACHMENT 11

GRASS/LANDSCAPED AREA MAP

Att 11 Fig 1, Rev4 9/17/24

12 STRUCTURES GAS MONITORING, SITE OPERATING, SAFETY & EVACUATION PLAN

A VMS (provided in **Attachment 9**) designed in accordance with 30 TAC 330.957(m) will be installed during development and construction of the four buildings on the subject property, which will direct any vapors (methane or other) out from beneath the buildings, and the vapors monitored to verify that there is no vapor accumulation beneath the buildings. Methane sensors will also be located within the buildings. The Methane Monitoring Plan provided in **Attachment 12** includes the requirements of a Structures Gas Monitoring Plan (SGMP), Site Operating Plan, and Safety and Evacuation Plan related to the VMS and subject property.

ATTACHMENT 12 METHANE MONITORING PLAN

STRUCTURES GAS MONITORING PLAN

This SGMP fulfills the requirements of 30 TAC §330.957(t). It will be part of the operating record for the development permit. A copy of this information will be maintained onsite throughout the life of the facility. The SGMP includes a VMS with an impermeable barrier installed below the structures with vent risers located adjacent to the buildings. This system will allow any vapors (methane or other) that migrate though the soil to the area beneath the structures to be vented outside of the structure, as shown in **Section 9**. A monitoring system will be installed within the VMS piping network beneath the buildings that will include controller units and remote sensors that can detect methane and other explosive gases at concentrations below 1% by volume (BV) or 20% of the Lower Explosive Limit (LEL). This system will have audible and visual alarms that will trigger if methane concentrations exceed 1% beneath a building. The monitoring system is intended to confirm that the concentration of vapor (methane or other) beneath the facility structures does not exceed 20% of the LEL. Methane sensors will also be installed within the buildings, and sample ports for field monitoring will be installed for the aggregate layer.

Facility Characteristics and Potential Migration Pathways (§330.957(t)(2)(A))

The nature and age of the incidental debris that has been found in the area of the planned structures is discussed in detail in **Section 2**. Based on soil vapor sample results described in **Section 10**, elevated methane concentrations appear to be confined to the deeper gravel zone below 10 ft from the surface, and methane does not appear to be migrating vertically to shallow soils or the surface due to the higher clay content in the upper 10 ft of soil across the property. Although there is no true "cap" on the property, the upper 10 ft of clayey soil appears to minimize the vertical migration of methane gas. As part of the property development, any excavations will not exceed a depth of 10 ft bgs (and likely no deeper than 7 ft bgs), leaving at least 2 ft of the overlying clayey soil at the subject property undisturbed.

The planned multi-family residential development will consist of a four-story building, a three-story building, and two two-story buildings. The planned facility layout is included in **Section 14**. The buildings will be constructed on a reinforced concrete slab foundation. The VMS, which will consist of a geotextile filter fabric, a 12-inch-thick permeable layer of aggregate with a network of vent pipes, and covered with a sealed HDPE geomembrane liner, will be installed beneath each of the buildings and beneath any areas with an ignition source. The planned residential units will be leased and occupied by residents and the duration of occupation could be up to 24 hours. The foundation design and VMS will minimize the potential for any vapors in the underlaying soil to enter the buildings. Potential ignition sources include water heaters, heating, ventilation, and air conditioning (HVAC) units, and static or sparking associated with equipment. As has been discussed, monitoring of the vapors within the VMS piping network will be performed so that vapors beneath the buildings will be maintained at 20% or less of the LEL, to eliminate the potential for explosive conditions within or near the building. Methane sensors will also be installed within the buildings.

Building Design Characteristics Related to Gas Accumulation Prevention (§330.957(t)(2)(B))

As described in **Section 9**, the design of the residential structures includes several features that will minimize the potential for the accumulation of methane gas within the building. The addition of an engineered fill layer above the soil will provide additional separation and protection from potential methane gas migration. The vapor barrier and ventilation system design will be installed beneath the foundation of the ground floor residential areas and any areas where there could be an ignition source. The system will consist of a granular layer up to 12-inches in thickness, which will act as bedding for a network of slotted vent pipes. The vent pipes will be extended through any internal beams to allow venting of the area where vapors could accumulate. The pipes will be extended outside of the structure to allow venting. The granular layer and vent pipe system will be covered with a plastic layer, which will be sealed at overlaps, and all penetrations. A geotextile filter fabric will be installed beneath the granular layer and above the structural

fill. As part of the installation oversight, smoke tests will be performed on the system to verify that it is property sealed, prior to pouring of the concrete foundations. Some or all of the vent pipes will be fitted with fans so that active venting can be performed if passive venting is not sufficient to prevent the buildup of vapors under the building. The additional engineered fill, vapor barrier, and ventilation system provide the primary systems to prevent vapor migration into the structure and minimize the potential for methane gas accumulation beneath the buildings. The sub-slab gas collection system will be under negative pressure from an electric exhaust fan if and when needed. Methane is lighter than air and will dissipate upward and away from vents on each building.

The vapor monitoring system within the VMS piping network will provide continuous monitoring for methane to provide early detection and warning in the event of methane gas accumulation beneath the buildings. In addition to the monitoring equipment in the VMS piping, methane monitoring will be conducted continuously using methane sensors within the buildings to verify that methane is not entering the buildings in concentrations above residential risk-based levels. In addition, the landfill gas collection system will have ports for sampling the aggregate layer beneath the slab. Proposed locations of the methane gas sensors are provided in the VMS design plan included in **Section 9**.

Gas Collection and Ventilation System Description (§330.957(t)(2)(C))

The VMS will consist of an impermeable methane barrier layer, aggregate layer, and geotextile filter fabric, as described in **Section 9**. The barrier and ventilation layer will be installed beneath the slabs of the ground floor of the residential areas and portions of the buildings where there could potentially be a source of ignition.

Gas Monitoring Equipment (§330.957(t)(2)(D))

The vapor monitoring system will include a total of five controllers and five sensors (a controller and sensor for each building with two in Building A) in the VMS piping system. Landfill gas will be monitored by three different sensors. Within the occupied spaces, a permanently mounted Family Safety Products, Inc. Safety Siren Pro Series methane detector (Model No. HS80504), or similar, will be used. On the sub-slab landfill gas collection system, a permanently mounted RKI Instruments M2A gas sensor, or similar, will monitor the exhaust gas stream. The exhaust fan will be a FanTech HP 190 or similar. Locations of sensors are provided in **Attachment 9**. For port landfill gas measurements, a Landtec GEM 5000 portable landfill gas detector, or similar, will be used. The VMS design plan included in **Section 9** provides a plan for the location of the vapor monitoring equipment. Specification sheets for the monitoring equipment will be provided following finalization of the VMS design. Calibration will be performed at least twice annually or every six months.

Implementation Schedule for Monitoring Equipment (§330.957(t)(2)(E))

Monitoring equipment will be installed and tested prior to completion of construction of the proposed residential structures. The monitoring equipment will be in continuous operation at least one week prior to buildings being occupied.

Sampling and Analysis Plan (§330.957(t)(2)(F))

Indoor air samples will be initially collected prior to residential occupancy. This will be a one-time sampling event to characterize the indoor air. Five samples will be collected, one from each building with two from Building A. These samples will be collected using evacuated "Summa" canisters fitted with regulators that will collect the sample over a 24-hour period. The selected analytical laboratory will provide canisters and chain of custody forms for the sampling activities.

The sampling method to collect the indoor air samples includes using an evacuated 1.4-liter Summa canister equipped with a flow controller calibrated to draw in 1.4-liters of ambient indoor air over an

SQ ENVIRONMENTAL, LLC APPLICATION FOR DEVELOPMENT PERMIT | TX STAR PROPERTY WEST

REV4 20240917

approximate 24-hour time period. The main valve on the Summa canister will be opened to initiate the sampling and then closed after approximately 24 hours has elapsed, while observing the gauge on the flow controller to ensure the Summa canister does not equilibrate to ambient conditions.

The ambient indoor air samples collected from the residential buildings will be analyzed for methane by EPA method TO-3. The samples will be shipped to an accredited laboratory offsite that will perform the approved testing.

Laboratory QA/QC procedures will be provided by the laboratory chosen to perform the analysis and will be included with the test results.

Analysis Of Landfill Gas Samples (§330.957(t)(2)(G))

Two landfill gas samples (SV-10R and SV-11R) were collected at 12 ft bgs from previous vapor sample locations SV-10 and SV-11 on 12 July 2024. The samples were analyzed for methane, carbon monoxide, hydrogen sulfide, mercaptans, and ammonia by ALS Environmental in Simi Valley, California. Volatile organic compounds (VOCs) were analyzed during previous sampling events. Water vapor was measured in the field. Laboratory results are provided at the end of this attachment. The analytical results of constituents reported above the laboratory method detection limit (MDL) are summarized below.

Analyte	SV-10R	SV-11R	Air RBEL / VISL (Res)
Hydrogen sulfide	0.0088 mg/m ³	ND (<0.0036 mg/m ³)	0.0695 mg/m ³
Carbonyl sulfide	0.011 mg/m ³	0.011 mg/m ³	3.48 mg/m ³
Carbon disulfide	0.0062 mg/m ³	0.010 mg/m ³	0.73 mg/m ³
Ammonia	0.22 mg/m ³	0.11 mg/m ³	0.33 mg/m ³
Water vapor	21 ppm	21 ppm	
Carbon dioxide	7.65%	0.796%	
Oxygen	15.2%	21.5%	
Nitrogen	77.1%	77.7%	
Methane (4/26/2023)	11%	12%	10%
VOCs	ND	ND	

Based on these landfill gas samples, the landfill gases do not contain significant concentrations of mercaptans, hydrogen sulfide, carbon monoxide, ammonia, or VOCs. Carbon dioxide was detected in the landfill gas sample from SV-10R, and methane has been detected in other gas monitoring probes in the past. Carbon dioxide and methane will be monitored guarterly from the sample ports.

Sampling Plan and Procedures

During each landfill gas monitoring event, the integrity of each monitoring port or probe will be inspected and recorded on the Landfill Gas Monitoring System Data Sheets included in this attachment. If any

SQ ENVIRONMENTAL, LLC APPLICATION FOR DEVELOPMENT PERMIT | TX STAR PROPERTY WEST

REV4 20240917

monitoring port or probe is observed to be damaged, the port or probe will be repaired. If irreparable, the damaged port or probe will be decommissioned and replaced with a new monitoring port or probe.

The landfill gas collection system under each building will be continuously monitored for methane concentration by permanently installed sensors. In addition, field monitoring will be periodically performed for the ports on the landfill gas collection system under each building. This period field monitoring will include measurements of for methane, carbon dioxide, and oxygen as a check on the permanently installed sensors. The frequency of the field monitoring of the ports beneath the buildings will occur quarterly for the first year, and then annually for the following three years.

For the field monitoring, a CES-Landtec GEM 5000 Landfill Gas Monitor (GEM 5000), or similar, will be used to measure the methane and carbon dioxide concentrations at each port. This meter provides the readings of methane and carbon dioxide (and oxygen) as a percentage by volume in air.

The field monitoring of the landfill gas collection system will be conducted on a quarterly basis for the first year and then annually for the following three years. The field monitoring events will be conducted in accordance with the following procedure:

- 1. Perform equipment checks and calibration tests.
- 2. Inspect the sampling location. The inspection is to include the following:
 - a. Verify that the location is accessible as necessary for monitoring.
 - b. Verify that any surface protective devices are in place and are in good condition, and
 - c. Verify that the label is in place and clearly readable.
- 3. Open any protective cover.
- 4. Turn on the CES-Landtec GEM 5000, or similar, meter and allow for the meter to adjust to the ambient air.
- 5. Connect the GEM 5000, or similar, meter to the quick-connector or port.
- 6. Open the valve on the port.
- 7. Turn on the GEM 5000 pump, or similar, and allow for the meter to purge the port.
- 8. Allow the meter to purge the trapped air for at least 30 seconds to get an accurate reading.
- 9. Record the observed methane, carbon dioxide, and oxygen readings.
- 10. Record the ambient barometric pressure from the GEM 5000, or similar, meter.
- 11. Disconnect the GEM 5000, or similar, methane meter from the quick-connector or port.
- 12. Close the port and reinstall any protective cover.

The above procedure will be repeated to obtain readings at each port location. All readings and inspection results will be recorded on the Landfill Gas Monitoring System Data Sheets with any needed maintenance and/or repairs noted. All results will be placed in the operating record of the facility.

SITE OPERATING PLAN

The proposed residential structures will consist of a four-story building, a three-story building, and two twostory buildings. The buildings will be a wood or metal framed structure and be constructed over reinforced concrete structural slabs. The VMS beneath each building will be equipped with methane sensors that will produce both an audible and visual alarm if concentrations of methane exceed 1% BV or 20% of the LEL. Methane sensors will also be installed within the buildings. Other than residential units, other spaces in the four buildings include offices, storage closets, maintenance rooms, and equipment rooms.

In accordance with §330.958, construction plans and specifications of the proposed residential structures will be prepared and maintained onsite during construction. After completion of construction, one set of asbuilt construction plans and specifications will be maintained at the permitted development. Plans maintained at the development be made available for inspection by executive director representatives.

This SGMP, Site Operating Plan, and Safety and Evacuation Plan will be implemented and maintained in accordance with the requirements of §330.961(a) through (h) by an environmental professional or person(s) trained by an environmental professional. These documents will be considered a part of the operating record of the development and a copy will be maintained onsite in an office at the development for the life of the structure to aid in the implementation and maintenance of the SGMP, Site Operating Plan, and Safety and Evacuation Plan. Additionally, the remaining documents listed in §330.961(a)(1) will be considered part of the operating record and maintained onsite, including but not limited to the Development Permit and Closure Plan. Any deviation from the development permit and incorporated plans or other related documents associated with the development permit will seek approval of the executive director. The development permit holder will notify the executive director, and any local pollution agency with jurisdiction that has requested to be notified, of any incident involving the facility relative to the development permit and provisions for the remediation of the incident.

The owner or lessee of the development will provide equipment for monitoring on-site structures. Monitoring of onsite structures will include permanently installed monitoring probes and continuous monitoring systems. Structures located on top of the waste area shall be monitored on a continuous basis, and monitoring equipment shall be designed to trigger an audible alarm if the volumetric concentration of methane in the sampled air is greater than 1% within the venting pipe or permeable layer, and/or inside the structure. Areas of the structure where gas may accumulate will be monitored. Gas monitoring and control systems will be modified as needed to reflect modifications to the structure.

All sampling results will be placed in the operating record of the facility and be made available for inspection by the executive director, and any local pollution agency with jurisdiction that has requested to be notified. If methane gas levels exceeding the limits are detected, the owner, operator, or lessee shall notify the executive director and take action.

The ponding of water over waste in the closed MSW landfill will be prevented. Ponded water that occurs on a closed MSW landfill unit will be eliminated as quickly as possible.

Surface drainage in and around the structure will be controlled to minimize surface water running onto, into, and off the closed MSW landfill.

All conduits intended for the transport or carrying of fluids over or within the closed MSW landfill will be double-containment. Or, 2 ft of compacted, clay-rich soil with a permeability not greater than 1x10E-7 cm/sec will be placed in the base of the trench and a HDPE 30-mil sealed liner will be installed on the bottom and sides of the trench. The conduit for carrying fluids will then be placed above the HDPE liner in the trench and clean backfill added to the sides. The HDPE liner will extend approximately 1 ft on top of the trench, be overlapped, and sealed. In accordance with §330.453(a) and (b), 18 inches of compacted clayey soil that is free of waste and 6 inches of topsoil that can support native vegetation will be in place for utility trenches in areas that are not covered by buildings, asphalt, or pavement.

The owner or lessee shall promptly record and retain in the operating record the following information:

- all results from gas monitoring and any remediation plans pertaining to explosive and other gases;
- all unit design documentation for the placement of gas monitoring systems and leachate or gas condensate removal or disposal related to the closed MSW landfill unit;
- copies of all correspondence and responses relating to the development permit;
- all documents relating to the operation and maintenance of the building, facility, or monitoring systems as they relate to the development permit; and
- any other document(s) as specified by the approved development permit or by the executive director.

SQ ENVIRONMENTAL, LLC APPLICATION FOR DEVELOPMENT PERMIT | TX STAR PROPERTY WEST

REV4 20240917

The owner, operator, or lessee shall provide written notification to the executive director, and any local pollution agency with jurisdiction that has requested to be notified, for each occurrence that documents listed in subsection (h) of this section are placed into or added to the operating record. All information contained in the operating record shall be furnished upon request to the executive director and shall be made available at all reasonable times for inspection by the executive director or his representative.

The following equipment is expected to be used at the structures and a maintenance schedule for this equipment is provided below.

Description	Procedures and Function	Maintenance Schedule
Offices	Daily office use	As-needed office updates
Cleaning/maintenance	General	As-needed
equipment	housekeeping/maintenance	maintenance/cleaning
HVAC	Interior climate control	Semi-annually
Electric water heaters	Hot water control	Annually
Lighting	Interior lighting control	As-needed replacement
IT/Network equipment	Telephone, internet, cameras, etc.	As-needed repair/replacement

The equipment list will be reviewed and updated as needed. In addition, two of the structures will have enclosed garages for vehicles.

SAFETY AND EVACUATION PLAN

The residential structures will consist of two to four story buildings with offices, residential spaces, community spaces, restrooms, and garages on two of the buildings. As previously discussed, the VMS beneath each building will be equipped with methane sensors that will produce both an audible and visual alarm if concentrations of methane beneath the building exceeds 1% BV or 20% of the LEL.

By maintaining the potential concentration of methane beneath the building at 1% or 20% of the LEL, methane cannot accumulate to these levels in the building. Typically, "attenuation" levels through a building slab are 0.03 meaning that even as a worst case, the methane concentrations in the building cannot exceed 33% of 20% of the LEL since the "trigger" will be the methane concentration beneath the building, and not in the building. Methane will also be installed within the buildings and will be equipped with methane monitors with audible alarms. In the event that the methane monitors within the VMS detect elevated levels of methane, the VMS vent fans will immediately be turned on (if they were not already running) and monitoring at the sample ports will be performed to verify that the concentrations within the buildings are below the threshold levels.

Building occupants will be notified that the building is located over methane gas, and that controls are in place to minimize the potential danger posed by the methane gas. In the event that the methane monitors inside the building detect elevated levels of methane, alarms will be triggered, and residents will evacuate the building and only re-enter when conditions are safe. Each living space will be equipped with a graphic evacuation plan map directing occupants where to go in the event of an alarm including a rally point and contact phone numbers.

LANDFILL GAS SAMPLE PORT MONITORING DATA SHEET

SAMPLE PORT LOCATION ID	SAMPLER NAME	DATE	TIME	METHANE (%)	CARBON DIOXIDE (%)	OXYGEN (%)	OTHER		
NOTES (CO	NDITION/DAM	AGE):							
NOTES (CO	NDITION/DAM	AGE):							
NOTES (CO	NOTES (CONDITION/DAMAGE):								
NOTES (CO	NOTES (CONDITION/DAMAGE):								

LABORATORY REPORT

July 22, 2024

Sam Enis SQ Environmental, LLC PO Box 1991 Austin, TX 78767

RE: TX Star, Euless / 1098.015.003

Dear Sam:

Enclosed are the results of the samples submitted to our laboratory on July 15, 2024. For your reference, these analyses have been assigned our service request number P2402855.

All analyses were performed according to our laboratory's NELAP and DoD-ELAP-approved quality assurance program. The test results meet requirements of the current NELAP and DoD-ELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP and DoD-ELAP-accredited analytes, refer to the certifications section at <u>www.alsglobal.com</u>. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein.

If you have any questions, please call me at (805) 526-7161.

ALS | Environmental

Sue Anderson Project Manager

Client: SQ Environmental, LLC Project: TX Star, Euless / 1098.015.003 Service Request No: P2402855

CASE NARRATIVE

The samples were received intact under chain of custody on July 15, 2024 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

Fixed Gases Analysis

The samples were analyzed for fixed gases (hydrogen, oxygen, nitrogen, carbon monoxide, methane and carbon dioxide) according to modified EPA Method 3C (single injection) using a gas chromatograph equipped with a thermal conductivity detector (TCD). This procedure is described in laboratory SOP VOA-EPA3C. This method is included on the laboratory's DoD-ELAP scope of accreditation, however it is not included in the NELAP accreditation.

Sulfur Analysis

The samples were also analyzed for twenty sulfur compounds per ASTM D 5504-20 using a gas chromatograph equipped with a sulfur chemiluminescence detector (SCD). All compounds with the exception of hydrogen sulfide and carbonyl sulfide are quantitated against the initial calibration curve for methyl mercaptan. This method is included on the laboratory's NELAP scope of accreditation, however it is not part of the DoD-ELAP accreditation.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and ALS Environmental (ALS) is not responsible for utilization of less than the complete report.

Use of ALS Environmental (ALS)'s Name. Client shall not use ALS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not attribute to ALS any test result, tolerance or specification derived from ALS's data ("Attribution") without ALS's prior written consent, which may be withheld by ALS for any reason in its sole discretion. To request ALS's consent, Client shall provide copies of the proposed Materials or Attribution and describe in writing Client's proposed use of such Materials or Attribution. If ALS has not provided written approval of the Materials or Attribution within ten (10) days of receipt from Client, Client's request to use ALS's name or trademark in any Materials or Attribution shall be deemed denied. ALS may, in its discretion, reasonably charge Client for its time in reviewing Materials or Attribution requests. Client acknowledges and agrees that the unauthorized use of ALS's name or trademark may cause ALS to incur irreparable harm for which the recovery of money damages will be inadequate. Accordingly, Client acknowledges and agrees that a violation shall justify preliminary injunctive relief. For questions contact the laboratory.

CERTIFICATIONS, ACCREDITATIONS, AND REGISTRATIONS

Agency	Web Site	Number
Alaska DEC	https://dec.alaska.gov/spar/csp/lab-approval/list-of-approved-labs	17-019
Arizona DHS	http://www.azdhs.gov/preparedness/state-laboratory/lab-licensure- certification/index.php#laboratory-licensure-home	AZ0694
Florida DOH (NELAP)	http://www.floridahealth.gov/licensing-and-regulation/environmental- laboratories/index.html	E871020
Louisiana DEQ (NELAP)	https://internet.deq.louisiana.gov/portal/divisions/lelap/accredited- laboratories	05071
Maine DHHS	http://www.maine.gov/dhhs/mecdc/environmental- health/dwp/professionals/labCert.shtm	2022028
Minnesota DOH (NELAP)	http://www.health.state.mn.us/accreditation	006-999-456
New Jersey DEP (NELAP)	https://dep.nj.gov/dsr/oqa/certified-laboratories/	CA009
New York DOH (NELAP)	http://www.wadsworth.org/labcert/elap/elap.html	11221
Oklahoma DEQ (NELAP)	labaccreditation.deq.ok.gov/labaccreditation/	2207
Oregon PHD (NELAP)	http://www.oregon.gov/oha/ph/LaboratoryServices/EnvironmentalLaboratoryA ccreditation/Pages/index.aspx	4068-012
Pennsylvania DEP	hhttp://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory- Accreditation-Program.aspx	68-03307 (Registration)
PJLA (DoD ELAP)	http://www.pjlabs.com/search-accredited-labs	65818 (Testing)
Texas CEQ (NELAP)	http://www.tceq.texas.gov/agency/qa/env_lab_accreditation.html	T104704413- 23-14
Utah DOH (NELAP)	https://uphl.utah.gov/certifications/environmental-laboratory-certification/	CA016272023 -15
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C946

Analyses were performed according to our laboratory's NELAP and DoD-ELAP approved quality assurance program. A complete listing of specific NELAP and DoD-ELAP certified analytes can be found in the certifications section at <u>www.alsglobal.com</u>, or at the accreditation body's website.

Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact the laboratory for information corresponding to a particular certification.

Laboratory Data Package Cover Page - Page 1 of 4

This data package is for Job No. <u>P402855</u> and laboratory batch no(s). <u>GC38071724 & GC13071624</u> consists of:

- "This signature page, the laboratory review checklist, and the following reportable data:
- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a. Items consistent with NELAC Chapter 5,
 - b. dilution factors,
 - c. preparation methods,
 - d. cleanup methods, and
 - e. if required for the project, tentatively identified compounds (TICs).
- **R4** Surrogate recovery data including:
 - a. Calculated recovery (%R), and
 - b. The laboratory's surrogate QC limits.

R5 - Test reports/summary forms for blank samples;

R6 - Test reports/summary forms for laboratory control samples (LCSs) including:

- a. LCS spiking amounts,
- b. Calculated %R for each analyte, and
- c. The laboratory's LCS QC limits.

R7 - Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

- a. Samples associated with the MS/MSD clearly identified,
- b. MS/MSD spiking amounts,
- c. Concentration of each MS/MSD analyte measured in the parent and spiked samples,
- d. Calculated %Rs and relative percent differences (RPDs), and
- e. The laboratory's MS/MSD QC limits
- **R8** Laboratory analytical duplicate (if applicable) recovery and precision:
 - a. The amount of analyte measured in the duplicate,
 - b. The calculated RPD, and
 - c. The laboratory's QC limits for analytical duplicates.

 \boxtimes R9 - List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix.

R10 - Other problems or anomalies.

The Exception Report for each "No" or "Not Reviewed (NR)" item in Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge all

problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

Check, if applicable: [] This laboratory meets an exception under 30 TAC §25.6 and was last inspection by [] TCEQ or [] ______ on (enter date of last inspection). Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Name (Printed)	Signature	Official Title (printed)	<u>Date</u>
Sue Anderson	Jul Under	Project Manager	07/22/2024

Laboratory Review Checklist: Reportable Data - Page 2 of 4

			ate: 07/22/2024						
•			Laboratory Job Number: P2402855						
Review	er Name:	Sue Anderson Prep B	atch Number(s): GC380717:	24 & GO	C13071	624			
# ¹	A ²	Description		Yes	No	NA ³	NR⁴	ER#	
R1	0	Chain-of-custody (C-O-C)							
	I	Did samples meet the laboratory's standa	ard conditions of sample	~		-			
		acceptability upon receipt?		V					
		Were all departures from standard condit	ions described in an			~			
D 2		exception report?							
R2	0	Sample and quality control (QC) identi				ļ		_	
		Are all field sample ID numbers cross-ref	erenced to the laboratory	/					
		ID numbers?		~					
		Are all laboratory ID numbers cross-refer QC data?	encea to the corresponding	~					
R3	01	Test reports						** * *** **	
		Were all samples prepared and analyzed	within holding times?	~		†			
		Other than those results < MQL, were all	other raw values	/		**····	<u> </u>	1	
		bracketed by calibration standards?		~					
		Were calculations checked by a peer or s	supervisor?	\checkmark					
		Were all analyte identifications checked t	by a peer or supervisor?	>					
		Were sample detection limits reported for	rall analytes not detected?	<					
		Were all results for soil and sediment san weight basis?			~				
		Were % moisture (or solids) reported for a samples?			\checkmark				
		Were bulk soils/solids samples for volatile methanol per SW846 Method 5035?	e analysis extracted with			\checkmark		:	
		If required for the project, are TICs report	ed?			<			
R4	0	Surrogate recovery data				1			
		Were surrogates added prior to extraction	?						
		Were surrogate percent recoveries in all a laboratory QC limits?	samples within the						
R5	01	Test reports/summary forms for blank	samples						
		Were appropriate type(s) of blanks analyz	zed?						
		Were blanks analyzed at the appropriate	frequency?	\checkmark					
		Were method blanks taken through the en	ntire analytical process,	/					
		including preparation and, if applicable, c Were blank concentrations < MQL?	leanup procedures?	\checkmark					
R6	OI	Laboratory control samples (LCS):						1	
	d	Were all COCs included in the LCS?	Sty 122		V				
		Was each LCS taken through the entire a including prep and cleanup steps?		\checkmark	Ŧ				
		Were LCSs analyzed at the required freq	uency?					1	
		Were LCS (and LCSD, if applicable) %Rs limits?	within the laboratory QC	~					

	-		LRC Date: 07/22/2024							
Project N	lame: TX	Star,Euless L	Laboratory Job Number: P2402855							
Reviewe	r Name:	Sue Anderson P	rep Batch Number(s): GC380717	624						
# ¹	A ²	Description	Yes	No	NA ³	NR⁴	ER#			
	F	Does the detectability check sample capability to detect the COCs at the SDLs?	MDL used to calculate the	1						
		Was the LCSD RPD within QC limit	s?							
R7	01	Matrix spike (MS) and matrix spik								
		Were the project/method specified a MSD?	analytes included in the MS and							
		Were MS/MSD analyzed at the app	ropriate frequency?	<u> </u>						
		Were MS (and MSD, if applicable) % limits?								
		Were MS/MSD RPDs within laborat	ory QC limits?				· . • . •			
R8 OI		Analytical duplicate data						•		
	•	Were appropriate analytical duplicat	tes analyzed for each matrix?	~		-				
		Were analytical duplicates analyzed	at the appropriate frequency?	~						
		Were RPDs or relative standard dev limits?	~							
R9	0	Method quantitation limits (MQLs):					-		
		Are the MQLs for each method anal data package?	yte included in the laboratory	~						
		Do the MQLs correspond to the con zero calibration standard?		\checkmark						
		Are unadjusted MQLs and DCSs inc package?	cluded in the laboratory data	/						
R10	OI	Other problems/anomalies								
		Are all known problems/anomalies/s LRC and ER?	special conditions noted in this	\checkmark						
		Was applicable and available technological minimize the matrix interference effe		\checkmark						
		Is the laboratory NELAC-accredited Accreditation Program for the analytic associated with this laboratory data	es, matrices and methods	/						
ltems id 2. O = org	dentified	by the letter "R" must be included in the by the letter "S" should be retained an alyses; I = inorganic analyses (and gen	e laboratory data package submit d made available upon request for	the app			-	• •		

4. NR = Not reviewed;

5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Review checklist: Supporting Data - Page 3 of 4

Labor	atory Na	me: ALS Environmental	LRC Date: 07/22/2024	-				
-			Laboratory Job Number: P2402855					
Revie	wer Nan	e: Sue Anderson	Prep Batch Number(s): GC38071724 & GC130	71624				
# ¹	A ²	Description		Yes	No	NA ³	NR ⁴	ER# ⁵
S1	01	Initial calibration (ICAL)			Ī			
		limits?	e response factors for each analyte within QC	~				
		Were percent RSDs or correlation co	efficient criteria met?	1	[.			
		Was the number of standards recom	mended in the method used for all analytes?					
		calculate the curve?	ne lowest and highest standard used to					
		Are ICAL data available for all instrum	nents used?	1				
		standard?	verified using an appropriate second source	~				
S2	01	calibration blank (CCB):	erification (ICCV and CCV) and continuing					
		Was the CCV analyzed at the method						
			alyte within the method-required QC limits?					
		Was the ICAL curve verified for each	-					
		Was the absolute value of the analyte	e concentration in the inorganic CCB < MDL?		•			
S 3	0	Mass spectral tuning						
		Was the appropriate compound for th						
		Were ion abundance data within the	method-required QC limits?					
S4	0	Internal standards (IS)						
		Were IS area counts and retention tin	nes within the method-required QC limits?	1				
S5	0	Raw data (NELAC Section 5.5.10)				-		-
		Were the raw data (for example, chro analyst?	matograms, spectral data) reviewed by an	\checkmark				
		Were data associated with manual in	tegrations flagged on the raw data?	/				
S 6	0	Dual column confirmation				\checkmark	-	
···· · · · · · ·		Did dual column confirmation results	meet the method-required QC?					
S 7	0	Tentatively identified compounds ((TICs)					
<u></u>	, 1	If TICs were requested, were the mas checks?	ss spectra and TIC data subject to appropriate					
S 8	1	Interference Check Sample (ICS) re	esults			\checkmark		
		Were percent recoveries within method	od QC limits?				-	
S 9	1	Serial dilutions, post digestion spi	kes, and method of standard additions			V		
		Were percent differences, recoveries in the method?	, and the linearity within the QC limits specified					
S10	01	Method detection limit (MDL) studi	es					
	•	Was a MDL study performed for each	n reported analyte?		\checkmark			
		Is the MDL either adjusted or support	ted by the analysis of DCSs?					
S11	01	Proficiency test reports						1
	<u> </u>	Was the laboratory's performance active evaluation studies?	ceptable on the applicable proficiency tests or	\checkmark				

Laborato	ory Na	ame: ALS Environmental LRC	C Date: 07/22/2024								
Project N	Name:	: TX Star, Euless Lab	oratory Job Number: P2402855								
Reviewe	er Nam	ne: Sue Anderson Pre	Prep Batch Number(s): GC38071724 & GC13071624								
# ¹	A ²	Description		Yes	No	NA ³	NR ⁴	ER# ⁵			
S12	01	Standards documentation	a					-			
	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?										
S13	01	Compound/analyte identification proc	edures								
I		Are the procedures for compound/analyt	\checkmark								
S14	01	Demonstration of analyst competency	Demonstration of analyst competency (DOC)								
		Was DOC conducted consistent with NE	LAC Chapter 5?								
		Is documentation of the analyst's compe	tency up-to-date and on file?	$\overline{\mathbf{V}}$							
S15	0l	Verification/validation documentation	for methods (NELAC Chapter 5)	1							
		Are all the methods used to generate the where applicable?	data documented, verified, and validated,	V							
S16	01	Laboratory standard operating procee	lures (SOPs)		/						
		Are laboratory SOPs current and on file t	or each method performed	V							

2. O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);

3. NA = Not applicable;

4. NR = Not reviewed;

5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Review Checklist: Exception Reports - Page 4 of 4

Laborat	tory Name: ALS Environmental	LRC Date: 07/22/2024				
Project	Name: TX Star, Euless	Laboratory Job Number: P2402855				
Review	er Name: Sue Anderson	Prep Batch Number(s): <u>GC38071724 & GC13071624</u>				
ER # ¹	DESCRIPTION					
R6	The LCS/DLCS for the sulfur analysis include compounds with the exception of hydrogen s curve for methyl mercaptan.	es Hydrogen Sulfide, Carbonyl Sulfide and Methyl Mercaptan. All ulfide and carbonyl sulfide are quantitated against the initial calibration				
1.		e included in the laboratory data package submitted in the TRRP- ne letter "S" should be retained and made available upon request				
2.	O = organic analyses; I = inorganic ana	lyses (and general chemistry, when applicable);				
3.	NA = Not applicable;					
4.	NR = Not reviewed;					
5.	ER# = Exception Report identification no "NR" or "No" is checked).	umber (an Exception Report should be completed for an item if				

.

DETAIL SUMMARY REPORT

Client:	SQ Environmen	tal, LLC						Service Request: P2402855
Project ID:	TX Star, Euless	/ 1098.01	5.003					
Date Received: Time Received:	7/15/2024 09:18		_	_				Modified - Fxd Gases Can IM D 5504-20 - Sulfur Can
			Date	Time	Container	Pi1	Pf1	
Client Sample ID	Lab Code	Matrix	Collected	Collected	ID	(psig)	(psig)	AS AS
SV-10R	P2402855-001	Air	7/12/2024	10:15	1SS01668	-2.27	7.70	X X
SV-11R	P2402855-002	Air	7/12/2024	11:20	1SS01512	-1.47	7.83	X X

_

Air - Chain of Custody Record & Analytical Service Request

2655 Park Center Drive, Suite A Simi Valley, California 93065

	Phone (805)	526-7161		Requested Turnard	ound Time in Busia	ness Days (Suro	harges) please	circte		ALS Project	402855
				1 Day (100%) 2 Day	y (75%) 3 Day (50%	%) 4 Day (35%)	5 Day (25%) 10	Day-Stan			40.2855
				<u> </u>					ALS Contact		
Company Name & Address (Reporting I	nformation)			Project Name							
SQ Environmental				TX 540 Project Number	ar, Eules	5			Analysis	Method	
PO BOX 1991				Project Number	10 11						
Austin TX 18767 Project Manager				/	098.015.0	003					
Project Manager				P.O. # / Billing Inform	nation						
Project Manager <i>Sam</i> Enis Phone	Fax								Methane,		Comments e.g. Actual
									co,		Preservative or
512 - 574-1199 Email Address for Result Reporting				Sampler (Print & Sign)					· ·		specific instructions
						5 4 4	Mile		Hybrogen		
s. enise squenv. com, c	·weave	V & saren	0.0001	Canister ID	A) (HHA				subicle,		
Client Sample ID	Laboratory	Date	Time	(Bar code # -	Flow Controller ID (Bar code # -	Canister Start Pressure	Canister End Pressure	Sample	Mercaptan		
	ID Number	Collected	Collected	AC, SC, etc.)	FC #)	"Hg	"Hg/psig	Volume			
SU-10R	1	7/12/24	10:15	15501668	56500110	-27	- Z		V		
SV-11R	2	7/12/24			56500120		-2		V		
20 111-		1116107	11.00	122-1512	20200120						
					· · · · · · · · · · · · · · · · · · ·						
~								ļ			
							1				
Repor	t Tier Levels	- please sele	et					I		ļ	Project Requirements
Tier I - Results (Default if not specified)	Tier III	(Results + QC &	& Calibration Si	ummaries)	EDD required Ye				Custody Seal:		(MRLs, QAPP)
Tier II (Results + QC Summaries)	Tier IV (D	ata Validation F	ackage) 10%	Surcharge 📈	Туре:	Units:_		INTACT	BROKEN	ABSENT	
Relinquished by: (Signature)			Date; 07/12/24	Time:	Received by: (Signa	ture)	22		Date:	Tlme:	
Relinguished by: (Signature)	オーセンオ		Date:	Time:	Received by: (Signa	ture)	/	1-7-	Date:	Time:	Cooler / Blank Temperature°C

ALS Environmental Sample Acceptance Check Form

Client	: SQ Environme	ental, LLC	•	•		Work order:	P2402855			
Project	: TX Star, Eules	s / 1098.015.003								
Sample	e(s) received on:	7/15/24		Ι	Date opened:	7/15/24	by:	ADAV	ĨD	
Note: This	form is used for all	samples received by ALS.	The use of this fo	orm for custody se	le is strictly me	ent to indicate pres	sance/absence and n	ot as an ir	dication	of
		Thermal preservation and		-	-	-			ulcation	01
compitation	e of noncomorninty.	Thermal preservation and	pri will only be ev	valuated either at th	le request or the	chefit and/or as re	quired by the method	Yes	<u>No</u>	N/A
1	Were sample	containers properly m	narked with cli	ent sample ID?				X		
2	Did sample co	ntainers arrive in goo	od condition?					X		
3	Were chain-of	-custody papers used	and filled out	?				X		
4	Did sample co	ntainer labels and/or	tags agree wit	th custody pape	ers?			X		
5	Was sample v	olume received adequ	ate for analysi	is?				X		
6	Are samples w	ithin specified holding	g times?					X		
7	Was proper te	mperature (thermal p	reservation) of	f cooler at rece	ipt adhered to	o?				X
8	Were custody	seals on outside of co	oler/Box/Cont	tainer?					X	
		Location of seal(s)?					Sealing Lid?			X
	Were signature	e and date included?								\mathbf{X}
	Were seals inta	act?								X
9	Do container	rs have appropriate pr	reservation , ac	ccording to met	hod/SOP or (Client specified	d information?			X
	Is there a clier	nt indication that the s	ubmitted samp	oles are pH pre	served?					X
	Were <u>VOA vi</u>	als checked for present	nce/absence of	f air bubbles?						X
	Does the client	/method/SOP require	that the analys	st check the sar	nple pH and i	f necessary alt	er it?			X
10	Tubes:	Are the tubes capp	ed and intact?	,						X
11	Badges:	Are the badges pr	operly capped	and intact?						X
		Are dual bed badg	ges separated a	nd individually	capped and	intact?				\mathbf{X}
12	Lab Notification	-	-	•						X
13	Client Notifica	tion: Client has been no	otified regarding	g HT exceedance	s and/or other	CoC discrepanci	ies?			X
		G ()	D	D				() D		

Lab Sample ID	Container	Required	Received	Adjusted	VOA Headspace	-
	Description	pH *	pH	pH	(Presence/Absence)	Comments
P2402855-001.01	1.0 L Source Silonite Canister					
P2402855-002.01	1.0 L Source Silonite Canister					
P2402855-003.01	1.0 L Source Silonite Canister					Return Unused

Explain any discrepancies: (include lab sample ID numbers):

RESULTS OF ANALYSIS

Page 1 of 1

Client: Client Sample ID: Client Project ID:	SQ Environmental, LLC SV-10R TX Star, Euless / 1098.015.003			Project ID: P2 Sample ID: P2	
Test Code:	EPA Method 3C Modified		Date	Collected: 7/	12/24
Instrument ID:	Agilent 8890/GC38/TCD		Date	Received: 7/	15/24
Analyst:	Stephanie Reynoso		Date	Analyzed: 7/	17/24
Sample Type: Test Notes:	1.0 L Silonite Summa Canister		Volume(s)	Analyzed:	0.10 ml(s)
Container ID:	1SS01668				
	Initial Pressure (psig): -2.27	Final Pressure (psig):	7.70		
			Cont	ainer Dilution	Factor: 1.80
CAS #	Compound		Result	MRL	Data
			%, v/v	%, v/v	Qualifier
1333-74-0	Hydrogen		ND	0.18	
7782-44-7	Oxygen*		15.2	0.18	
7727-37-9	Nitrogen		77.1	0.18	
630-08-0	Carbon Monoxide		ND	0.18	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

ND

7.65

0.18

0.18

* = The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

74-82-8

124-38-9

Methane

Carbon Dioxide

RESULTS OF ANALYSIS

Page 1 of 1

Client: Client Sample ID: Client Project ID:	SQ Environmental, LLC SV-11R TX Star, Euless / 1098.015.003		ALS Project ID: P2402855 ALS Sample ID: P2402855-002					
Test Code: Instrument ID:	EPA Method 3C Modified Agilent 8890/GC38/TCD		Dat	e Collected: 7/ e Received: 7/	15/24			
Analyst:	Stephanie Reynoso		Date	e Analyzed: 7/	17/24			
Sample Type: Test Notes:	1.0 L Silonite Summa Canister		Volume(s) Analyzed:	0.10 ml(s)			
Container ID:	1SS01512							
	Initial Pressure (psig): -1.47	Final Pressure (psig):	7.83					
			Con	tainer Dilution	Factor: 1.70			
CAS #	Compound		Result	MRL	Data			
			%, v/v	%, v/v	Qualifier			
1333-74-0	Hydrogen		ND	0.17				
7782-44-7	Oxygen*		21.5	0.17				
7727-37-9	Nitrogen		77.7	0.17				
630-08-0	Carbon Monoxide		ND	0.17				
74-82-8	Methane		ND	0.17				

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Carbon Dioxide

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. * = The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

0.796

0.17

124-38-9

RESULTS OF ANALYSIS

Page 1 of 1

Client:	SQ Environmental, LLC	
Client Sample ID:	Method Blank	ALS Project ID: P2402855
Client Project ID:	TX Star, Euless / 1098.015.003	ALS Sample ID: P240717-MB
Test Code:	EPA Method 3C Modified	Date Collected: NA
Instrument ID:	Agilent 8890/GC38/TCD	Date Received: NA
Analyst:	Stephanie Reynoso	Date Analyzed: 7/17/24
Sample Type:	1.0 L Silonite Summa Canister	Volume(s) Analyzed: 0.10 ml(s)
Test Notes:		

CAS #	Compound	Result %, v/v	MRL %, v/v	Data Qualifier
1333-74-0	Hydrogen	ND	0.10	
7782-44-7	Oxygen*	ND	0.10	
7727-37-9	Nitrogen	ND	0.10	
630-08-0	Carbon Monoxide	ND	0.10	
74-82-8	Methane	ND	0.10	
124-38-9	Carbon Dioxide	ND	0.10	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

* = The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

LABORATORY CONTROL SAMPLE / DUPLICATE LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1

Date Analyzed: 7/17/24

NA ml(s)

Volume(s) Analyzed:

Client:	SQ Environmental, LLC	
Client Sample ID:	Duplicate Lab Control Sample	ALS Project ID: P2402855
Client Project ID:	TX Star, Euless / 1098.015.003	ALS Sample ID: P240717-DLCS
Test Code:	EPA Method 3C Modified	Date Collected: NA
Instrument ID:	Agilent 8890/GC38/TCD	Date Received: NA

		Spike Amount	Re	sult			ALS			
CAS #	Compound	LCS / DLCS	LCS	DLCS	% Re	covery	Acceptance	RPD	RPD	Data
		ppmV	ppmV	ppmV	LCS	DLCS	Limits		Limit	Qualifier
1333-74-0	Hydrogen	39,700	42,900	43,600	108	110	96-117	2	5	
7782-44-7	Oxygen*	25,100	23,800	24,000	95	96	92-112	1	7	
7727-37-9	Nitrogen	49,800	47,000	47,500	94	95	89-113	1	7	
630-08-0	Carbon Monoxide	49,600	49,600	50,300	100	101	96-113	1.0	5	
74-82-8	Methane	40,000	39,100	39,700	98	99	95-111	1	5	
124-38-9	Carbon Dioxide	49,600	53,200	54,200	107	109	93-112	2	6	

* = The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

Analyst:

Sample Type:

Test Notes:

Stephanie Reynoso

1.0 L Silonite Summa Canister

LABORATORY DUPLICATE SUMMARY RESULTS

Page 1 of 1

Client: Client Sample ID: Client Project ID:	SQ Environmental, LLC SV-11R TX Star, Euless / 1098.015			ALS Project ID ALS Sample ID		002DUP	
Test Code:	EPA Method 3C Modified			Date Collected	l: 7/12/24		
Instrument ID:	Agilent 8890/GC38/TCD			Date Received	l: 7/15/24		
Analyst:	Stephanie Reynoso			Date Analyzed	l: 7/17/24		
Sample Type:	1.0 L Silonite Summa Canis	ter	Volu	ume(s) Analyzed	l: 0.10	ml(s)	
Test Notes:							
Container ID:	1SS01512						
	Initial Pressure (psig):	-1.47	Final Pressure (psig):	7.83			
				Cor	ntainer Diluti	on Factor:	1.70
			Duplicate	0.01			. •
CAS #	Compound	Sample Result	-	Average	% RPD	RPD	Data
	1	%, v/v	%, v/v	8		Limit	Qualifier
1333-74-0	Hydrogen	ND	ND	-	-	5	
7782-44-7	Oxygen*	21.5	21.4	21.45	0.5	7	

77.8

0.778

ND

ND

77.75

-

_

0.787

ND = Compound was analyzed for, but not detected.

Nitrogen

Methane

Carbon Monoxide

Carbon Dioxide

7727-37-9

630-08-0

74-82-8

124-38-9

* = The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

77.7

0.796

ND

ND

7

5

5

6

0.1

-

-

2

RESULTS OF ANALYSIS

Page 1 of 1

Client:	SQ Environmental, LLC		
Client Sample ID:	SV-10R		ALS Project ID: P2402855
Client Project ID:	TX Star, Euless / 1098.015.003		ALS Sample ID: P2402855-001
Test Code:	ASTM D 5504-20		Date Collected: 7/12/24
Instrument ID:	Agilent 6890A/GC13/SCD		Time Collected: 10:15
Analyst:	Gilbert Gutierrez		Date Received: 7/15/24
Sample Type:	1.0 L Silonite Summa Canister		Date Analyzed: 7/16/24
Test Notes:			Time Analyzed: 09:42
Container ID:	1SS01668		Volume(s) Analyzed: 1.0 ml(s)
	Initial Pressure (psig): -2.27	Final Pressure (psig):	7.70

Container Dilution Factor: 1.80

CAS #	Compound	Result μg/m³	MRL µg/m³	MDL μg/m³	Result ppbV	MRL ppbV	MDL ppbV	Data Qualifier
7783-06-4	Hydrogen Sulfide	8.8	13	3.8	6.3	9.0	2.7	J
463-58-1	Carbonyl Sulfide	11	22	8.4	4.6	9.0	3.4	J
74-93-1	Methyl Mercaptan	ND	18	7.1	ND	9.0	3.6	
75-08-1	Ethyl Mercaptan	ND	23	9.1	ND	9.0	3.6	
75-18-3	Dimethyl Sulfide	ND	23	9.1	ND	9.0	3.6	
75-15-0	Carbon Disulfide	6.2	14	5.6	2.0	4.5	1.8	J
75-33-2	Isopropyl Mercaptan	ND	28	11	ND	9.0	3.6	
75-66-1	tert-Butyl Mercaptan	ND	33	13	ND	9.0	3.6	
107-03-9	n-Propyl Mercaptan	ND	28	11	ND	9.0	3.6	
624-89-5	Ethyl Methyl Sulfide	ND	28	11	ND	9.0	3.6	
110-02-1	Thiophene	ND	31	12	ND	9.0	3.6	
513-44-0	Isobutyl Mercaptan	ND	33	13	ND	9.0	3.6	
352-93-2	Diethyl Sulfide	ND	33	13	ND	9.0	3.6	
109-79-5	n-Butyl Mercaptan	ND	33	13	ND	9.0	3.6	
624-92-0	Dimethyl Disulfide	ND	17	6.9	ND	4.5	1.8	
616-44-4	3-Methylthiophene	ND	36	14	ND	9.0	3.6	
110-01-0	Tetrahydrothiophene	ND	32	13	ND	9.0	3.6	
638-02-8	2,5-Dimethylthiophene	ND	41	17	ND	9.0	3.6	
872-55-9	2-Ethylthiophene	ND	41	17	ND	9.0	3.6	
110-81-6	Diethyl Disulfide	ND	22	18	ND	4.5	3.6	

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

RESULTS OF ANALYSIS

Page 1 of 1

Client:	SQ Environmental, LLC		
Client Sample ID:	SV-11R		ALS Project ID: P2402855
Client Project ID:	TX Star, Euless / 1098.015.003		ALS Sample ID: P2402855-002
Test Code:	ASTM D 5504-20		Date Collected: 7/12/24
Instrument ID:	Agilent 6890A/GC13/SCD		Time Collected: 11:20
Analyst:	Gilbert Gutierrez		Date Received: 7/15/24
Sample Type:	1.0 L Silonite Summa Canister		Date Analyzed: 7/16/24
Test Notes:			Time Analyzed: 10:01
Container ID:	18801512		Volume(s) Analyzed: 1.0 ml(s)
	Initial Pressure (psig): -1.47	Final Pressure (psig):	7.83

Container Dilution Factor: 1.70

CAS #	Compound	Result µg/m³	MRL µg/m³	MDL µg/m³	Result ppbV	MRL ppbV	MDL ppbV	Data Qualifier
7783-06-4	Hydrogen Sulfide	ND	12	3.6	ND	8.5	2.6	
463-58-1	Carbonyl Sulfide	11	21	7.9	4.4	8.5	3.2	J
74-93-1	Methyl Mercaptan	ND	17	6.7	ND	8.5	3.4	
75-08-1	Ethyl Mercaptan	ND	22	8.6	ND	8.5	3.4	
75-18-3	Dimethyl Sulfide	ND	22	8.6	ND	8.5	3.4	
75-15-0	Carbon Disulfide	10	13	5.3	3.2	4.3	1.7	J
75-33-2	Isopropyl Mercaptan	ND	26	11	ND	8.5	3.4	
75-66-1	tert-Butyl Mercaptan	ND	31	13	ND	8.5	3.4	
107-03-9	n-Propyl Mercaptan	ND	26	11	ND	8.5	3.4	
624-89-5	Ethyl Methyl Sulfide	ND	26	11	ND	8.5	3.4	
110-02-1	Thiophene	ND	29	12	ND	8.5	3.4	
513-44-0	Isobutyl Mercaptan	ND	31	13	ND	8.5	3.4	
352-93-2	Diethyl Sulfide	ND	31	13	ND	8.5	3.4	
109-79-5	n-Butyl Mercaptan	ND	31	13	ND	8.5	3.4	
624-92-0	Dimethyl Disulfide	ND	16	6.5	ND	4.3	1.7	
616-44-4	3-Methylthiophene	ND	34	14	ND	8.5	3.4	
110-01-0	Tetrahydrothiophene	ND	31	12	ND	8.5	3.4	
638-02-8	2,5-Dimethylthiophene	ND	39	16	ND	8.5	3.4	
872-55-9	2-Ethylthiophene	ND	39	16	ND	8.5	3.4	
110-81-6	Diethyl Disulfide	ND	21	17	ND	4.3	3.4	

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

RESULTS OF ANALYSIS

Page 1 of 1

Client:SQ Environmental, LLCClient Sample ID:Method BlankClient Project ID:TX Star, Euless / 1098.015.003

Test Code:	ASTM D 5504-20
Instrument ID:	Agilent 6890A/GC13/SCD
Analyst:	Gilbert Gutierrez
Sample Type:	1.0 L Silonite Summa Canister
Test Notes:	

ALS Project ID: P2402855 ALS Sample ID: P240716-MB

Date Collected: NA Time Collected: NA Date Received: NA Date Analyzed: 7/16/24 Time Analyzed: 09:14 Volume(s) Analyzed: 1.0 ml(s)

CAS #	Compound	Result	MRL	MDL	Result	MRL	MDL	Data
		μg/m³	μg/m³	μg/m³	ppbV	ppbV	ppbV	Qualifier
7783-06-4	Hydrogen Sulfide	ND	7.0	2.1	ND	5.0	1.5	
463-58-1	Carbonyl Sulfide	ND	12	4.7	ND	5.0	1.9	
74-93-1	Methyl Mercaptan	ND	9.8	3.9	ND	5.0	2.0	
75-08-1	Ethyl Mercaptan	ND	13	5.1	ND	5.0	2.0	
75-18-3	Dimethyl Sulfide	ND	13	5.1	ND	5.0	2.0	
75-15-0	Carbon Disulfide	ND	7.8	3.1	ND	2.5	1.0	
75-33-2	Isopropyl Mercaptan	ND	16	6.2	ND	5.0	2.0	
75-66-1	tert-Butyl Mercaptan	ND	18	7.4	ND	5.0	2.0	
107-03-9	n-Propyl Mercaptan	ND	16	6.2	ND	5.0	2.0	
624-89-5	Ethyl Methyl Sulfide	ND	16	6.2	ND	5.0	2.0	
110-02-1	Thiophene	ND	17	6.9	ND	5.0	2.0	
513-44-0	Isobutyl Mercaptan	ND	18	7.4	ND	5.0	2.0	
352-93-2	Diethyl Sulfide	ND	18	7.4	ND	5.0	2.0	
109-79-5	n-Butyl Mercaptan	ND	18	7.4	ND	5.0	2.0	
624-92-0	Dimethyl Disulfide	ND	9.6	3.9	ND	2.5	1.0	
616-44-4	3-Methylthiophene	ND	20	8.0	ND	5.0	2.0	
110-01-0	Tetrahydrothiophene	ND	18	7.2	ND	5.0	2.0	
638-02-8	2,5-Dimethylthiophene	ND	23	9.2	ND	5.0	2.0	
872-55-9	2-Ethylthiophene	ND	23	9.2	ND	5.0	2.0	
110-81-6	Diethyl Disulfide	ND	12	10	ND	2.5	2.0	

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

LABORATORY CONTROL SAMPLE / DUPLICATE LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1

Client: SQ E	nvironmental, LLC	
Client Sample ID: Dupli	cate Lab Control Sample	ALS Project ID: P2402855
Client Project ID: TX S	tar, Euless / 1098.015.003	ALS Sample ID: P240716-DLCS

Test Code:	ASTM D 5504-20	Date Collected: NA
Instrument ID:	Agilent 6890A/GC13/SCD	Date Received: NA
Analyst:	Gilbert Gutierrez	Date Analyzed: 7/16/24
Sample Type:	1.0 L Silonite Summa Canister	Volume(s) Analyzed: NA ml(s)
Test Notes:		

		Spike Amount	Re	sult			ALS			
CAS #	Compound	LCS / DLCS	LCS	DLCS	% Re	covery	Acceptance	RPD	RPD	Data
		ppbV	ppbV	ppbV	LCS	DLCS	Limits		Limit	Qualifier
7783-06-4	Hydrogen Sulfide	1,000	771	856	77	86	72-122	11	18	
463-58-1	Carbonyl Sulfide	1,000	820	837	82	84	72-121	2	17	
74-93-1	Methyl Mercaptan	1,000	1,050	1,120	105	112	74-127	6	18	

LABORATORY DUPLICATE SUMMARY RESULTS

Page 1 of 1

Client: Client Sample ID: Client Project ID:	SQ Environmental, LL SV-11R TX Star, Euless / 1098.01						Project ID: Sample ID:		
Test Code:	ASTM D 5504-20					Date	e Collected:	7/12/24	
Instrument ID:	Agilent 6890A/GC13/SCD					Time	e Collected:	11:20	
Analyst:	Gilbert Gutierrez					Dat	e Received:	7/15/24	
Sample Type:	1.0 L Silonite Summa Cani	ster				Dat	e Analyzed:	7/16/24	
Test Notes:						Tim	e Analyzed:	10:21	
Container ID:	1SS01512					Volume(s) Analyzed:	1.0	ml(s)
	Initial Pressure (psig):	-1.47		Final Press	ure (psig):	7.83			
					•	Con	ntainer Diluti	on Factor:	1.70
		C 1		Dupl					
CAS #	Compound	Sample		Sample		Average	% RPD	RPD	Data
		µg/m³	ppbV	μg/m³	ppbV	ppbV		Limit	Qualifier
7783-06-4	Hydrogen Sulfide	ND	ND		ND	-	-	18	
463-58-1	Carbonyl Sulfide	10.9	4.44	9.48	3.86	4.15	14	17	J

ND

ND

ND

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

Methyl Mercaptan

J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

ND

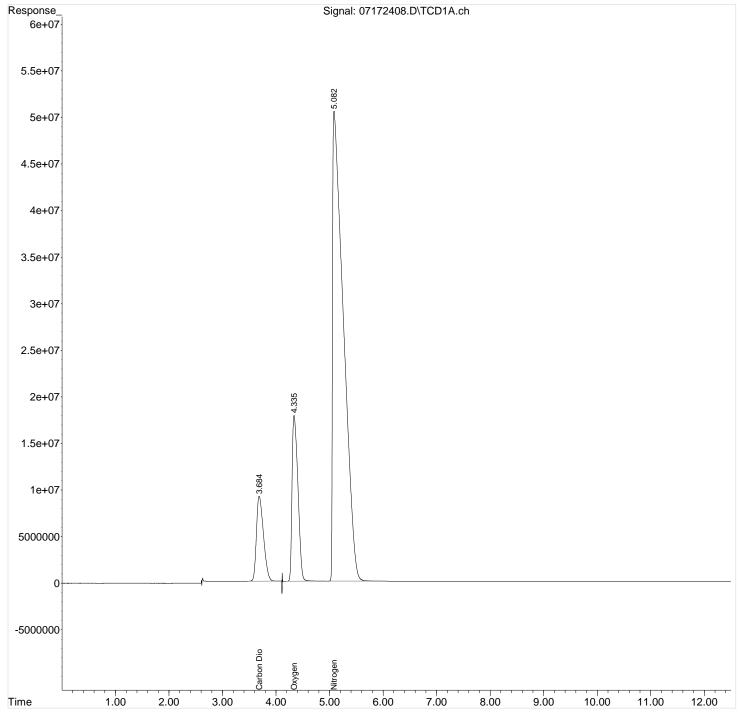
74-93-1

18

-

1st	BK	07/17/24
2nd	Ċ	07/17/24

Data File : 07172408.D Signal(s) : TCD1A.ch Acq On : 17-Jul-2024, 09:22:44 Operator : SR/BK Sample : P2402855-001 Misc :	ignal(s) : TCD1A.ch SR 07/17/24 cq On : 17-Jul-2024, 09:22:44 SR 07/17/24 perator : SR/BK ample : P2402855-001				
<pre>Integration File: epa3c.e Quant Time: Jul 17 09:42:35 2024 Quant Method : I:\GC38\METHODS\C38021122.M Quant Title : EPA 3C, ASTM D 1946-90, VOA-EPA3C QLast Update : Tue Mar 08 12:45:41 2022 Response via : Initial Calibration Integrator: ChemStation</pre>					
Volume Inj. : 100ul Signal Phase : CarboSieve Packed C Signal Info :	olumn				
Compound	R.T.	Response	Conc Units		
2) Oxygen 3) Nitrogen	4.337 5.084f 0.000 0.000	1354433776 1 7076803054 9 0 0	N.D. ppm 102077.559 ppm 516315.193 ppm N.D. ppm N.D. ppm 51220.644 ppm		


(f)=RT Delta > 1/2 Window

(m)=manual int.

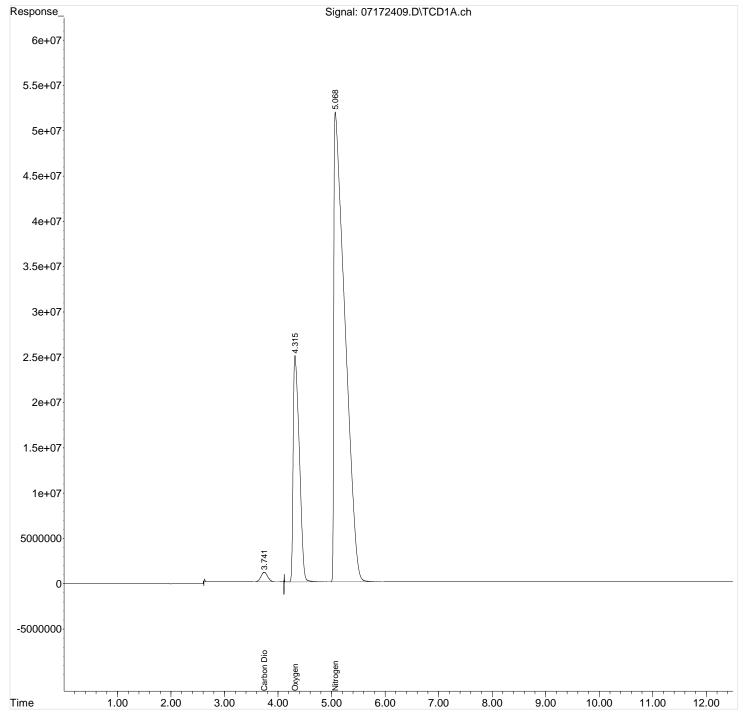
Data File : 07172408.D Signal(s) : TCD1A.ch : 17-Jul-2024, 09:22:44 Acq On : SR/BK Operator : P2402855-001 Sample Misc : Sample Multiplier: 10000 ALS Vial : 1 Integration File: epa3c.e Quant Time: Jul 17 09:42:35 2024 Quant Method : I:\GC38\METHODS\C38021122.M Quant Title : EPA 3C, ASTM D 1946-90, VOA-EPA3C QLast Update : Tue Mar 08 12:45:41 2022 Response via : Initial Calibration Integrator: ChemStation

Volume Inj. : 100ul Signal Phase : CarboSieve Packed Column Signal Info :

Data Path : I:\GC38\DATA\2024_07\17\

1st	BK	07/17/24
2nd	Ø	07/17/24

Data Path : I:\GC38\DATA\2024_07\17\ Data File : 07172409.D Signal(s) : TCD1A.ch SR 07/17/24 Acq On : 17-Jul-2024, 09:36:53 Operator : SR/BK Sample : P2402855-002 Misc : ALS Vial : 1 Sample Multiplier: 10000					
Integration File: epa3c.e Quant Time: Jul 17 10:00:00 2024 Quant Method : I:\GC38\METHODS\C38021122.M Quant Title : EPA 3C, ASTM D 1946-90, VOA-EPA3C QLast Update : Tue Mar 08 12:45:41 2022 Response via : Initial Calibration Integrator: ChemStation					
Volume Inj. : 100ul Signal Phase : CarboSieve Packed Signal Info :	Column				
Compound	R.T.	Response	Conc Units		
 3) Nitrogen 4) Carbon Monoxide 	5.071f 0.000 0.000	7468352825 5 0 0	N.D. ppm 150940.321 ppm 546562.446 ppm N.D. ppm N.D. ppm 5597.810 ppm		


(f)=RT Delta > 1/2 Window

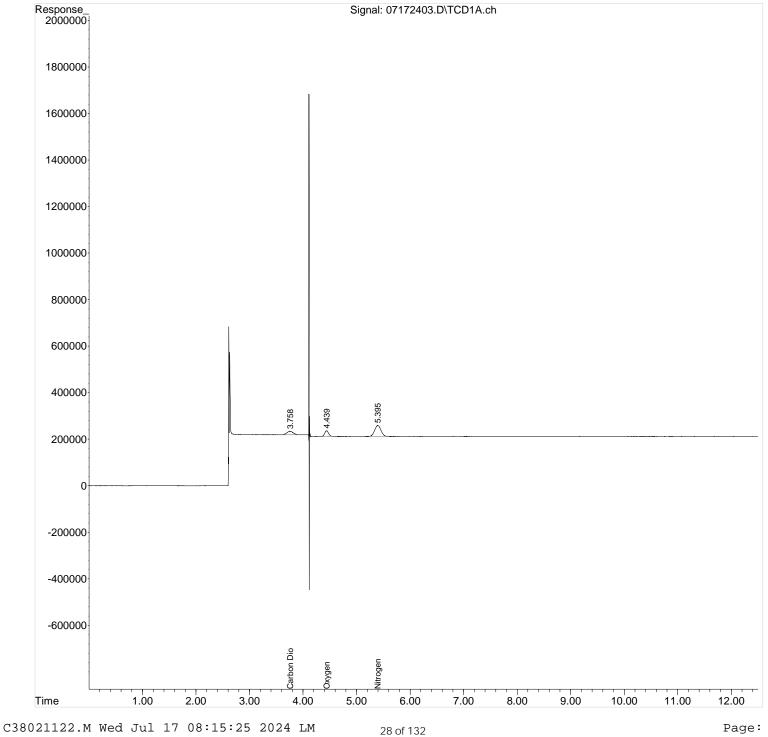
(m)=manual int.

Data File : 07172409.D Signal(s) : TCD1A.ch : 17-Jul-2024, 09:36:53 Acq On : SR/BK Operator : P2402855-002 Sample Misc : Sample Multiplier: 10000 ALS Vial : 1 Integration File: epa3c.e Quant Time: Jul 17 10:00:00 2024 Quant Method : I:\GC38\METHODS\C38021122.M Quant Title : EPA 3C, ASTM D 1946-90, VOA-EPA3C QLast Update : Tue Mar 08 12:45:41 2022 Response via : Initial Calibration Integrator: ChemStation

Volume Inj. : 100ul Signal Phase : CarboSieve Packed Column Signal Info :

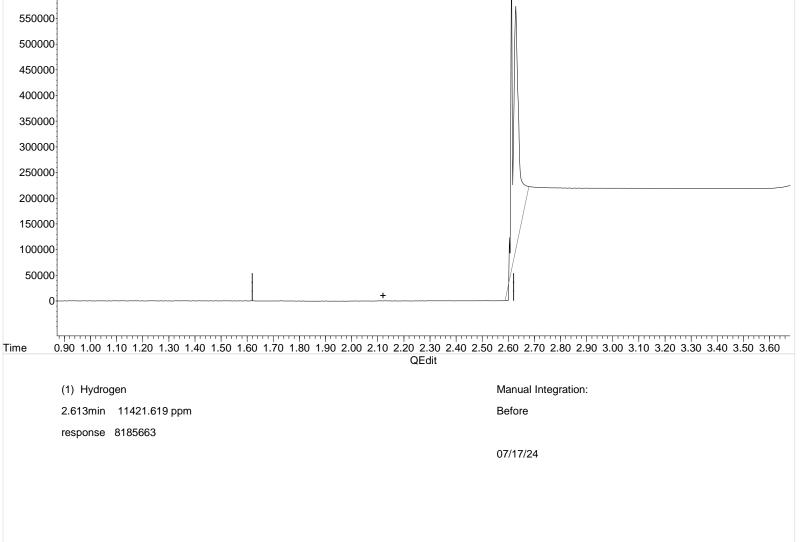
Data Path : I:\GC38\DATA\2024_07\17\

Data File : 07172403.D Signal(s) : TCD1A.ch Acq On : 17-Jul-2024, 08:00 Operator : SR/BK Sample : MB STD00251 Misc :	ignal(s) : TCD1A.ch SR 07/17/24 cq On : 17-Jul-2024, 08:00:43 perator : SR/BK ample : MB STD00251				
<pre>Integration File: epa3c.e Quant Time: Jul 17 08:15:09 2024 Quant Method : I:\GC38\METHODS\C38021122.M Quant Title : EPA 3C, ASTM D 1946-90, VOA-EPA3C QLast Update : Tue Mar 08 12:45:41 2022 Response via : Initial Calibration Integrator: ChemStation</pre>					
Volume Inj. : 100ul Signal Phase : CarboSieve Pack Signal Info :	ked Column				
Compound	R.T.	Response	Conc Units		
Target Compounds 1) Hydrogen 2) Oxygen 3) Nitrogen 4) Carbon Monoxide 5) Methane 6) Carbon Dioxide	$\begin{array}{c} 0.000 \\ 4.439 \\ 5.395 \\ 0.000 \\ 0.000 \\ 3.758 \end{array}$	3883102 0 0	N.D. ppm d 92.038 ppm m 269.188 ppm m N.D. ppm N.D. ppm 76.874 ppm m		


(f)=RT Delta > 1/2 Window

(m)=manual int.

Data File : 07172403.D Signal(s) : TCD1A.ch : 17-Jul-2024, 08:00:43 Acq On : SR/BK Operator Sample : MB STD00251 Misc : Sample Multiplier: 10000 ALS Vial : 1 Integration File: epa3c.e Quant Time: Jul 17 08:15:09 2024 Quant Method : I:\GC38\METHODS\C38021122.M Quant Title : EPA 3C, ASTM D 1946-90, VOA-EPA3C QLast Update : Tue Mar 08 12:45:41 2022 Response via : Initial Calibration Integrator: ChemStation

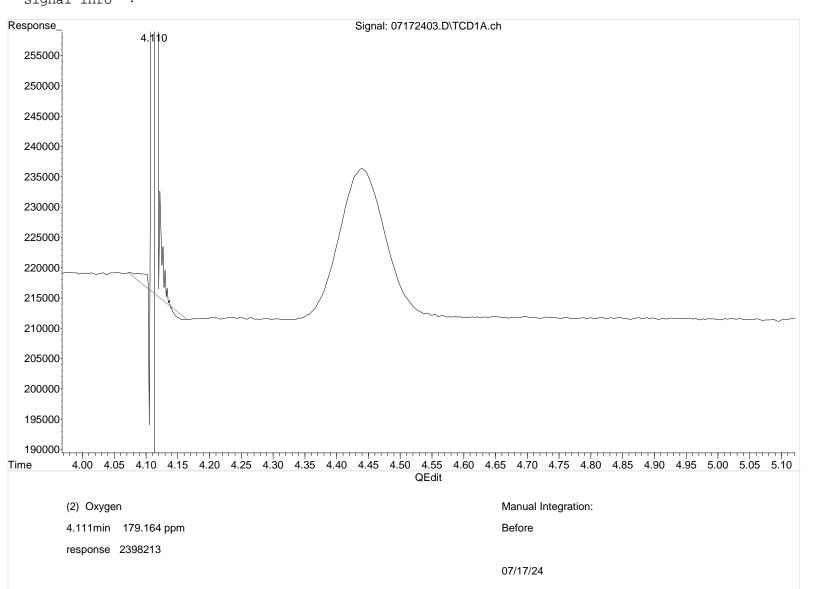

Volume Inj. : 100ul Signal Phase : CarboSieve Packed Column Signal Info :

Data Path : I:\GC38\DATA\2024_07\17\

Data Path : I:\GC38\DATA\2024_07\17\ Data File : 07172403.D Signal(s) : TCD1A.ch SR 07/17/24 : 17-Jul-2024, 08:00:43 Acq On Operator : SR/BK Sample : MB STD00251 Misc : ALS Vial : 1 Sample Multiplier: 10000 Integration File: epa3c.e Quant Time: Jul 17 08:14:04 2024 Quant Method : I:\GC38\METHODS\C38021122.M Quant Title : EPA 3C, ASTM D 1946-90, VOA-EPA3C QLast Update : Tue Mar 08 12:45:41 2022 Response via : Initial Calibration Integrator: ChemStation Volume Inj. : 100ul Signal Phase : CarboSieve Packed Column Signal Info : Response 7500001 Signal: 07172403.D\TCD1A.ch 700000 2.612 650000 600000 550000

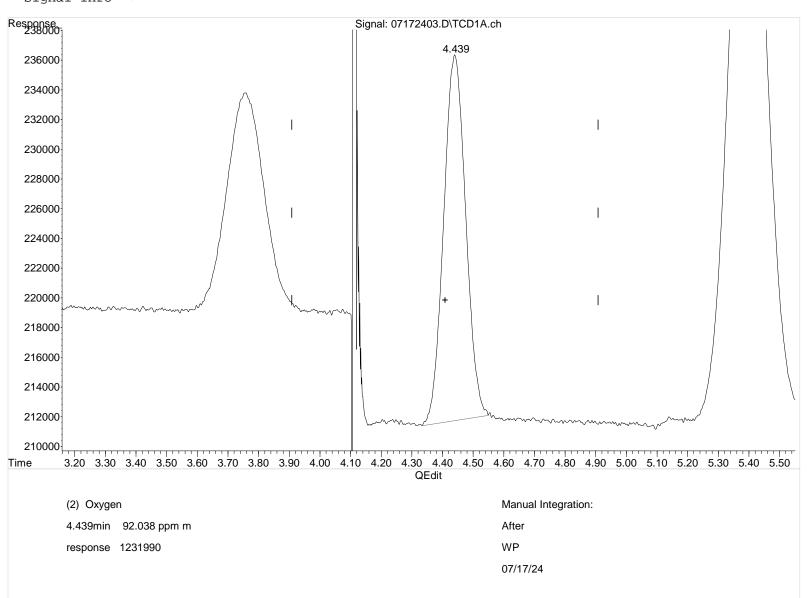
1st	BK	07/17/24
2nd	Ċ	07/17/24

Data Path : I:\GC38\DATA\2024_07\17\ Data File : 07172403.D Signal(s) : TCD1A.ch SR 07/17/24 : 17-Jul-2024, 08:00:43 Acq On Operator : SR/BK : MB STD00251 Sample Misc : ALS Vial : 1 Sample Multiplier: 10000 Integration File: epa3c.e Quant Time: Jul 17 08:14:04 2024 Quant Method : I:\GC38\METHODS\C38021122.M Quant Title : EPA 3C, ASTM D 1946-90, VOA-EPA3C QLast Update : Tue Mar 08 12:45:41 2022 Response via : Initial Calibration Integrator: ChemStation Volume Inj. : 100ul Signal Phase : CarboSieve Packed Column Signal Info : Signal: 07172403.D\TCD1A.ch Response_ 650000 600000 550000 500000 450000 400000 350000 300000 250000 200000 150000 100000 50000 01 ******************* ******* 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 Time QEdit (1) Hydrogen Manual Integration: 0.000min 0.000 ppm d After response 0 FP 07/17/24

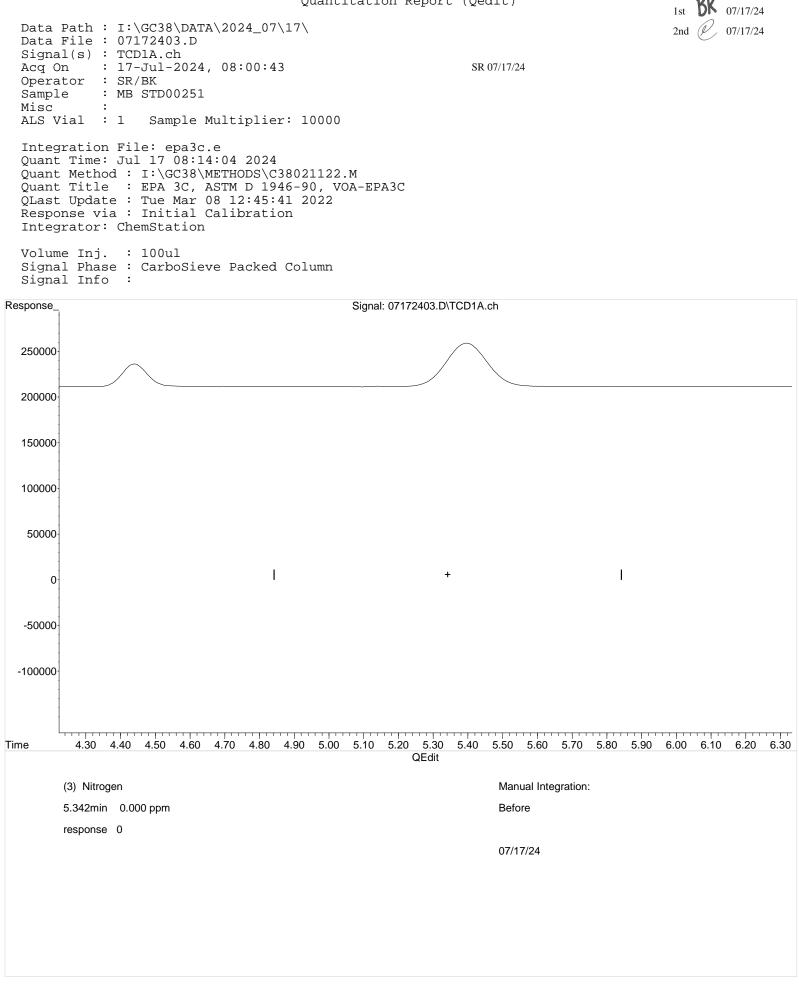

 1st
 BK
 07/17/24

 2nd

 07/17/24

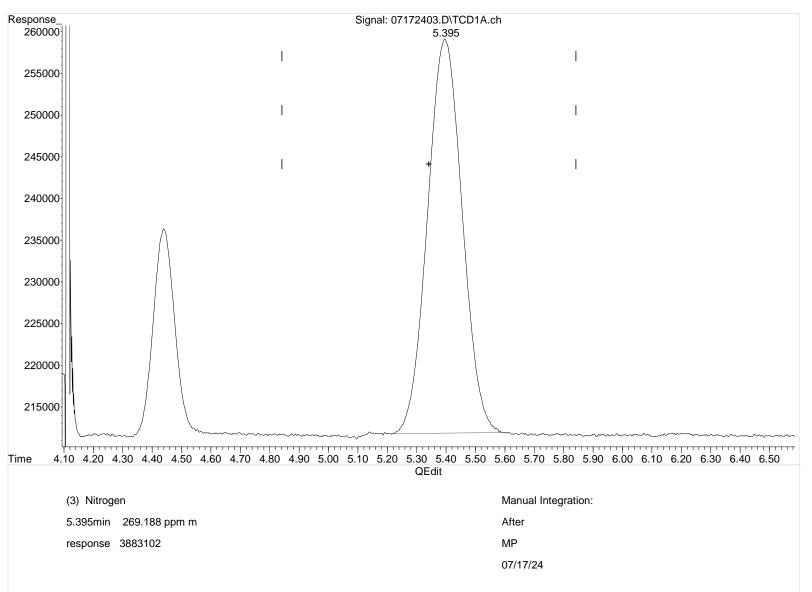

Data Path : I:\GC38\DATA\2024_07\17\ Data File : 07172403.D Signal(s) : TCD1A.ch : 17-Jul-2024, 08:00:43 Acq On SR 07/17/24 Operator : SR/BK Sample : MB STD00251 Misc : ALS Vial : 1 Sample Multiplier: 10000 Integration File: epa3c.e Quant Time: Jul 17 08:14:04 2024 Quant Method : I:\GC38\METHODS\C38021122.M Quant Title : EPA 3C, ASTM D 1946-90, VOA-EPA3C QLast Update : Tue Mar 08 12:45:41 2022 Response via : Initial Calibration Integrator: ChemStation Volume Inj. : 100ul

Signal Phase : CarboSieve Packed Column Signal Info :



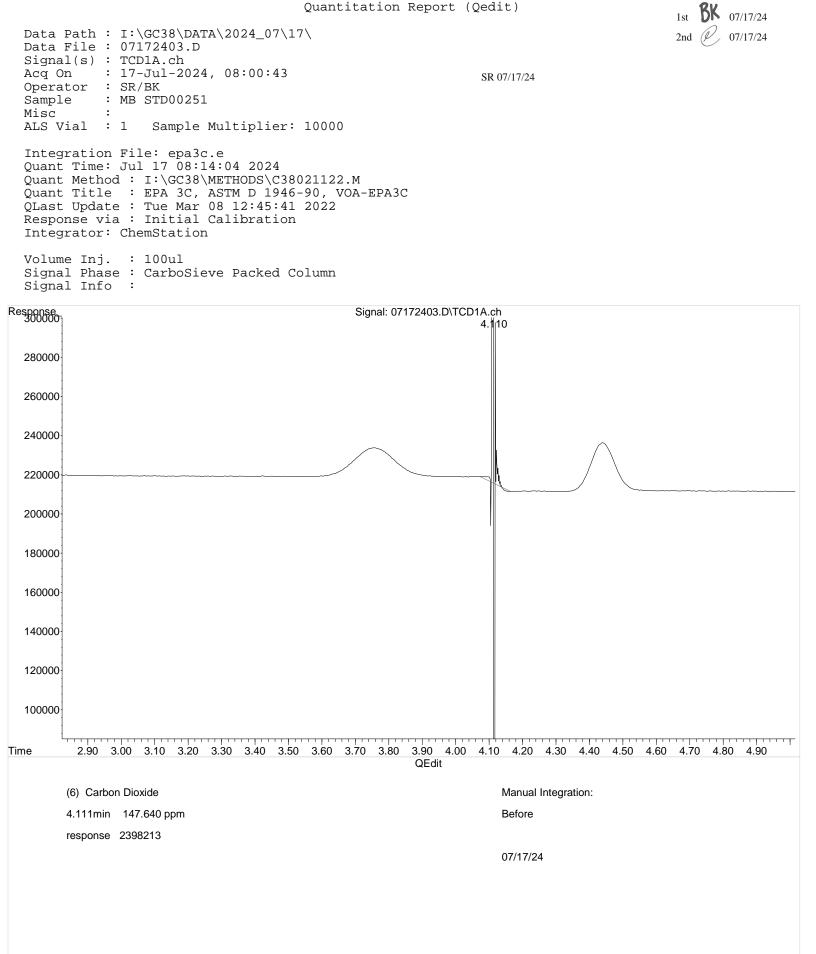
1st **BK** 07/17/24 2nd *O* 07/17/24

Data Path : I:\GC38\DATA\2024_07\17\ Data File : 07172403.D Signal(s) : TCD1A.ch SR 07/17/24 : 17-Jul-2024, 08:00:43 Acq On Operator : SR/BK Sample : MB STD00251 Misc : ALS Vial : 1 Sample Multiplier: 10000 Integration File: epa3c.e Quant Time: Jul 17 08:14:04 2024 Quant Method : I:\GC38\METHODS\C38021122.M Quant Title : EPA 3C, ASTM D 1946-90, VOA-EPA3C QLast Update : Tue Mar 08 12:45:41 2022 Response via : Initial Calibration Integrator: ChemStation Volume Inj. : 100ul Signal Phase : CarboSieve Packed Column Signal Info :



Quantitation Report (Qedit)

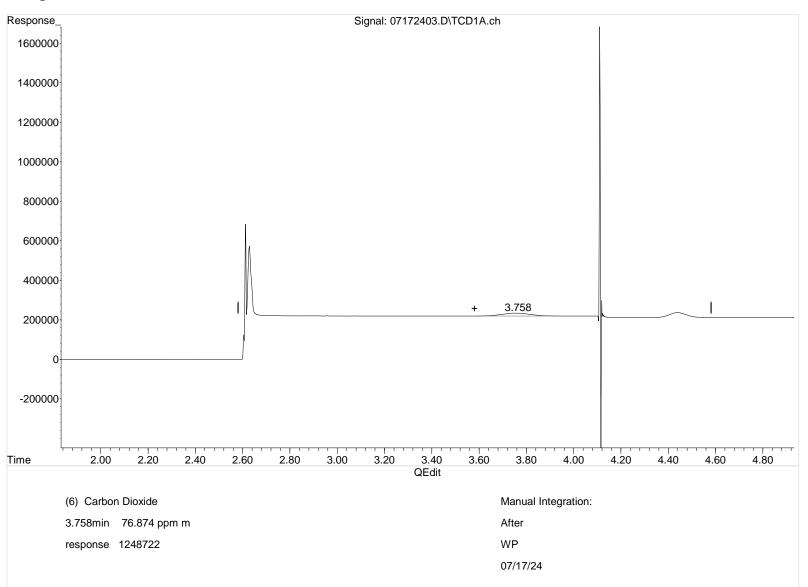
Data Path : I:\GC38\DATA\2024_07\17\ Data File : 07172403.D Signal(s) : TCD1A.ch : 17-Jul-2024, 08:00:43 Acq On SR 07/17/24 Operator : SR/BK Sample : MB STD00251 Misc : ALS Vial : 1 Sample Multiplier: 10000 Integration File: epa3c.e Quant Time: Jul 17 08:14:04 2024 Quant Method : I:\GC38\METHODS\C38021122.M Quant Title : EPA 3C, ASTM D 1946-90, VOA-EPA3C QLast Update : Tue Mar 08 12:45:41 2022 Response via : Initial Calibration Integrator: ChemStation Volume Inj. : 100ul


Signal Phase : CarboSieve Packed Column Signal Info :

BK 07/17/24

2nd (V) 07/17/24

1st



1st **BK** 07/17/24 2nd **P** 07/17/24

Data File : 07172403.D SR 07/17/24 Signal(s) : TCD1A.ch : 17-Jul-2024, 08:00 Acq On Operator : SR/BK Sample : MB STD00251 Misc : ALS Vial : 1 Sample Multiplier: 10000 Integration File: epa3c.e Quant Time: Jul 17 08:15:09 2024 Quant Method : I:\GC38\METHODS\C38021122.M Quant Title : EPA 3C, ASTM D 1946-90, VOA-EPA3C QLast Update : Tue Mar 08 12:45:41 2022 Response via : Initial Calibration Integrator: ChemStation Volume Inj. : 100ul

Signal Phase : CarboSieve Packed Column Signal Info :

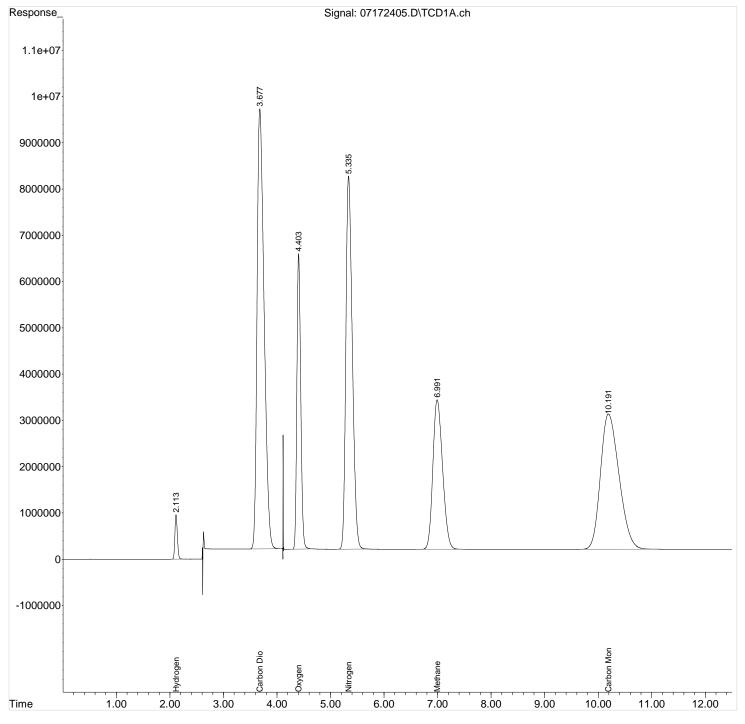
Data Path : I:\GC38\DATA\2024_07\17\

1st	BK	07/17/24
2nd	Ċ	07/17/24

Data Path : I:\GC38\DATA\2024_07\17\ Data File : 07172405.D Signal(s) : TCD1A.ch Acq On : 17-Jul-2024, 08:34:39 Operator : SR/BK Sample : LCS S33-07272202 Misc : ALS Vial : 1 Sample Multiplier: 10000					
Integration File: epa3c.e Quant Time: Jul 17 08:50:28 2024 Quant Method : I:\GC38\METHODS\C38021122.M Quant Title : EPA 3C, ASTM D 1946-90, VOA-EPA3C QLast Update : Tue Mar 08 12:45:41 2022 Response via : Initial Calibration Integrator: ChemStation					
Volume Inj. : 100ul Signal Phase : CarboSieve Packed Signal Info :	Column				
Compound	R.T.	Response	Conc Units		
 3) Nitrogen 4) Carbon Monoxide 	5.336 10.192	674364859 703650236	42863.966 ppm 23757.237 ppm 46960.687 ppm 49630.834 ppm 39104.026 ppm 53182.556 ppm		

(f)=RT Delta > 1/2 Window

(m)=manual int.


1st **BK** 07/17/24 2nd P 07/17/24

Signal(s) : TCD1A.ch : 17-Jul-2024, 08:34:39 Acq On Operator : SR/BK : LCS S33-07272202 Sample Misc : ALS Vial : 1 Sample Multiplier: 10000 Integration File: epa3c.e Quant Time: Jul 17 08:50:28 2024 Quant Method : I:\GC38\METHODS\C38021122.M Quant Title : EPA 3C, ASTM D 1946-90, VOA-EPA3C QLast Update : Tue Mar 08 12:45:41 2022 Response via : Initial Calibration Integrator: ChemStation

Volume Inj. : 100ul Signal Phase : CarboSieve Packed Column Signal Info :

Data Path : I:\GC38\DATA\2024_07\17\

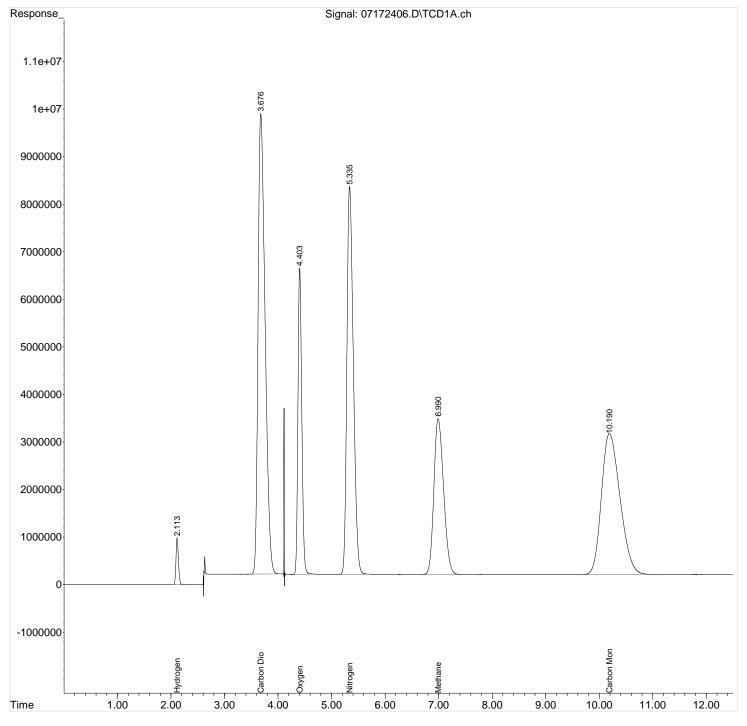
Data File : 07172405.D

1st	BK	07/17/24
2nd	Ċ	07/17/24

Data Path : I:\GC38\DATA\2024_07 Data File : 07172406.D Signal(s) : TCD1A.ch Acq On : 17-Ju1-2024, 08:52:28 Operator : SR/BK Sample : LCSD S33-07272202 Misc : ALS Vial : 1 Sample Multiplier	3	SI	R 07/17/24	
Integration File: epa3c.e Quant Time: Jul 17 09:05:45 2024 Quant Method : I:\GC38\METHODS\C Quant Title : EPA 3C, ASTM D 194 QLast Update : Tue Mar 08 12:45:4 Response via : Initial Calibratic Integrator: ChemStation	46-90, VOA-E 41 2022	PA3C		
Volume Inj. : 100ul Signal Phase : CarboSieve Packed Signal Info :	Column			
Compound	R.T.	Response	Conc Units	
 Oxygen Nitrogen Carbon Monoxide 	4.403 5.336 10.190 6.991	320779002 681902709 713545679 412363947	39670.695 ppm	

(f)=RT Delta > 1/2 Window

(m)=manual int.

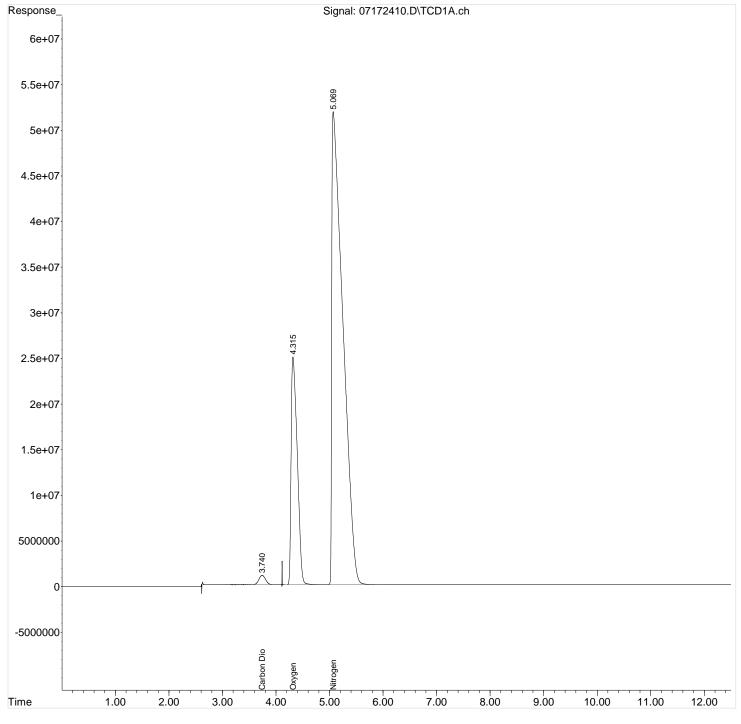

1st **BK** 07/17/24 2nd P 07/17/24

Signal(s) : TCD1A.ch : 17-Jul-2024, 08:52:28 Acq On Operator : SR/BK : LCSD S33-07272202 Sample Misc : ALS Vial : 1 Sample Multiplier: 10000 Integration File: epa3c.e Quant Time: Jul 17 09:05:45 2024 Quant Method : I:\GC38\METHODS\C38021122.M Quant Title : EPA 3C, ASTM D 1946-90, VOA-EPA3C QLast Update : Tue Mar 08 12:45:41 2022 Response via : Initial Calibration Integrator: ChemStation

Volume Inj. : 100ul Signal Phase : CarboSieve Packed Column Signal Info :

Data Path : I:\GC38\DATA\2024_07\17\

Data File : 07172406.D


1st	BK	07/17/24
2nd	Ċ	07/17/24

Data Path : I:\GC38\DATA\2024_07\17\ Data File : 07172410.D Signal(s) : TCD1A.ch Acq On : 17-Ju1-2024, 09:49:54 Operator : SR/BK Sample : P2402855-002dup Misc : ALS Vial : 1 Sample Multiplier: 10000					
Integration File: epa3c.e Quant Time: Jul 17 10:03:00 2024 Quant Method : I:\GC38\METHODS\C Quant Title : EPA 3C, ASTM D 19 QLast Update : Tue Mar 08 12:45: Response via : Initial Calibrati Integrator: ChemStation	38021122.M 46-90, VOA-E 41 2022	SPA3C			
Volume Inj. : 100ul Signal Phase : CarboSieve Packed Signal Info :	Column				
Signal Phase : CarboSieve Packed		Response	Conc Units		

Data File : 07172410.D Signal(s) : TCD1A.ch : 17-Jul-2024, 09:49:54 Acq On : SR/BK Operator : P2402855-002dup Sample Misc : Sample Multiplier: 10000 ALS Vial : 1 Integration File: epa3c.e Quant Time: Jul 17 10:03:00 2024 Quant Method : I:\GC38\METHODS\C38021122.M Quant Title : EPA 3C, ASTM D 1946-90, VOA-EPA3C QLast Update : Tue Mar 08 12:45:41 2022 Response via : Initial Calibration Integrator: ChemStation

Volume Inj. : 100ul Signal Phase : CarboSieve Packed Column Signal Info :

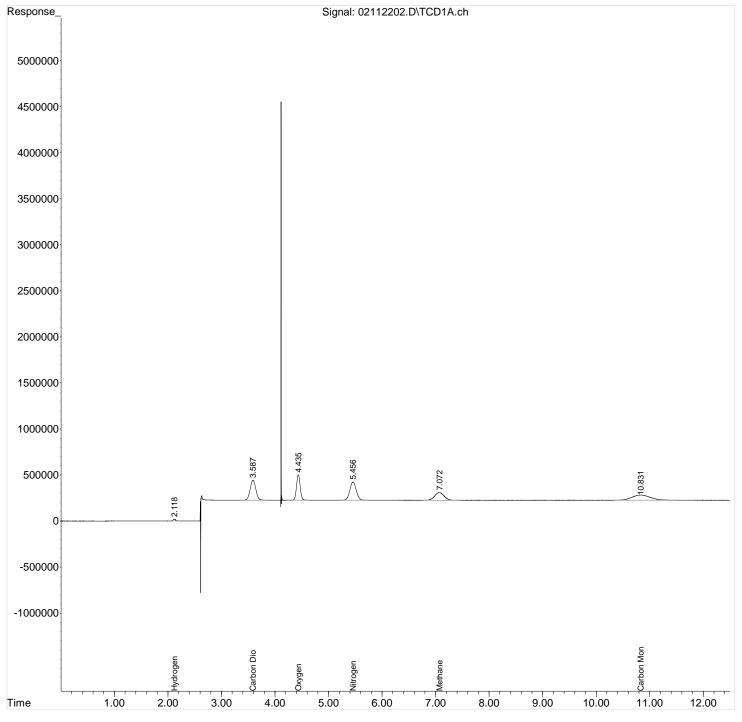
Data Path : I:\GC38\DATA\2024_07\17\

Method Path : I:\GC38\M Method File : C38021122 Title : EPA 3C, AST Last Update : Tue Mar Response Via : Initial	2.M M D 1946-90, 08 12:45:41 2		.3C			
Calibration Files						
1 =02112202.D 2	=0211220	3.D 3	= 0	2112204.1)	
4 =02112205.D 5	=0211220	6.D 6	= 0	2112207.1)	
Compound	1 2	3 4	- 5	б	Avg	%RSD
1) Hydrogen	6.496 6.910	6.686 7		92	 7.167 Еб	11.05
2) Oxygen						
3) Nitrogen						
4) Carbon Monoxide						
-,				-	1.039 E8	
6) Carbon Dioxide	1.551 1.643	⊥.644 ⊥	./36 1.6	51	1.624 E8	4.49
(#) = Out of Range ###	Number of ca	librati	on level	s exceede	ed format	###

C38021122.M Thu Jun 29 11:12:23 2023

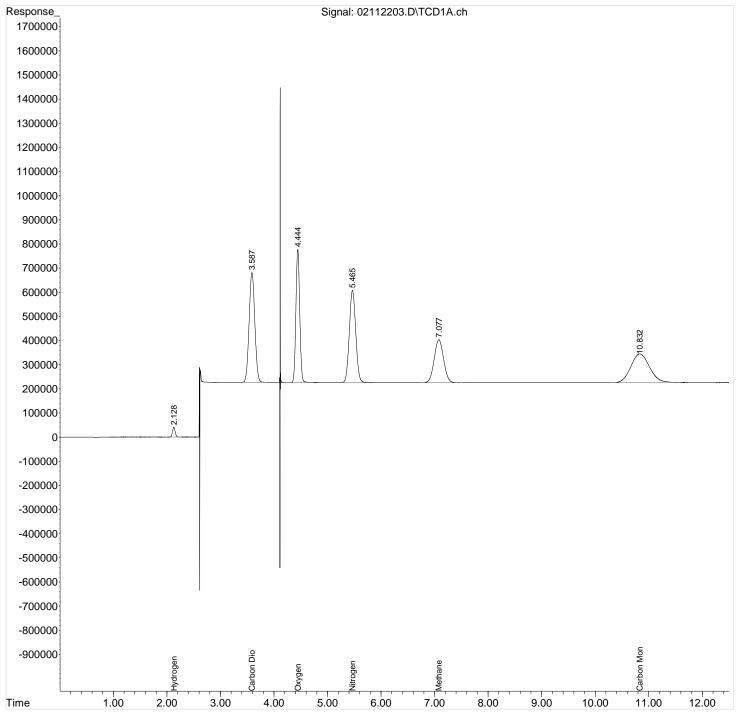
Method Path : I:\GC38\METHODS\
Method File : C38021122.M
Title : EPA 3C, ASTM D 1946-90, VOA-EPA3C
Last Update : Tue Mar 08 12:45:41 2022
Response Via : Initial Calibration

#	ID	Conc	ISTD Conc	Path\File
1	1	0	0	I:\GC38\DATA\2022_02\11\02112202.D
2	2	0	0	I:\GC38\DATA\2022_02\11\02112203.D
3	3	2	0	I:\GC38\DATA\2022_02\11\02112204.D
4	4	5	0	I:\GC38\DATA\2022_02\11\02112205.D
5	5	19	0	I:\GC38\DATA\2022_02\11\02112206.D
6	6	20	0	I:\GC38\DATA\2022_02\11\02112207.D
7	7	100	0	I:\GC38\DATA\2022_02\11\02112208.D
8	8	98	0	I:\GC38\DATA\2022_02\11\02112209.D
9	9	100	0	I:\GC38\DATA\2022_02\11\02112210.D
10	10	100	0	I:\GC38\DATA\2022_02\11\02112211.D
11	11	-1	0	I:\GC38\DATA\2022_02\11\02112214.D


#	ID	Update Time	Quant Time	Acquisition Time
1	1	Feb 11 13:30 2022	Feb 11 13:21 2022	11-Feb-2022, 08:51
2	2	Feb 11 13:30 2022	Feb 11 13:21 2022	11-Feb-2022, 09:11
3	3	Feb 11 13:30 2022	Feb 11 13:21 2022	11-Feb-2022, 09:28
4	4	Feb 11 13:30 2022	Feb 11 13:21 2022	11-Feb-2022, 09:45
5	5	Feb 11 13:30 2022	Feb 11 13:27 2022	11-Feb-2022, 11:22
6	б	Feb 11 13:31 2022	Feb 11 13:28 2022	11-Feb-2022, 11:56
7	7	Feb 11 13:31 2022	Feb 11 13:28 2022	11-Feb-2022, 12:11
8	8	Feb 11 13:31 2022	Feb 11 13:29 2022	11-Feb-2022, 12:32
9	9	Feb 11 13:31 2022	Feb 11 13:29 2022	11-Feb-2022, 12:46
10	10	Feb 11 13:55 2022	Feb 11 13:54 2022	11-Feb-2022, 13:37
11	11	Feb 21 10:59 2022	Feb 11 15:40 2022	11-Feb-2022, 15:01

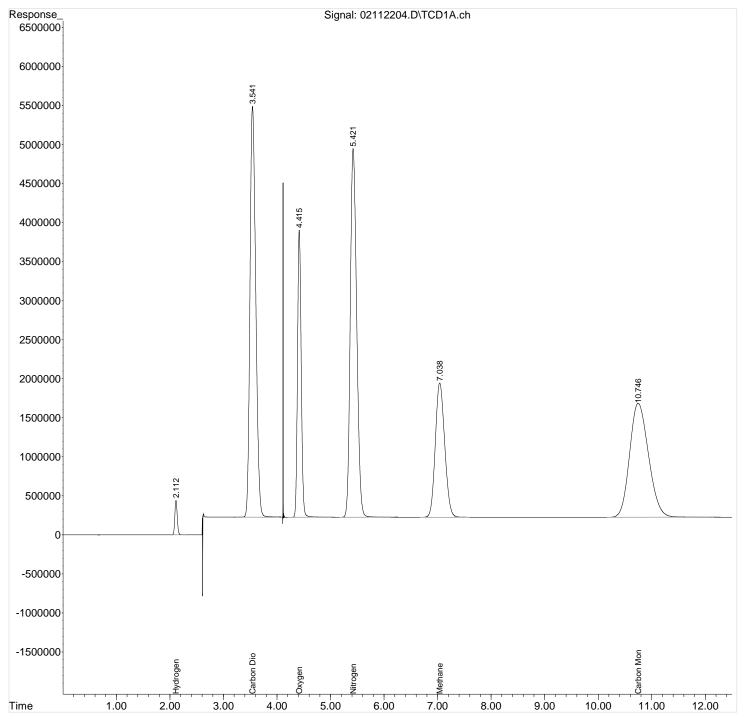
C38021122.M Thu Jun 29 11:10:52 2023

Data Path : I:\GC38\DATA\2022_02\11\ Data File : 02112202.D Signal(s) : TCD1A.ch Acq On : 11-Feb-2022, 08:51 Operator : Chris Parnell Sample : ICAL C38021122 Level 1 S32-01312201 Misc : 0.5 injection w/.5 loop ALS Vial : 1 Sample Multiplier: 10000						
<pre>Integration File: epa3c.e Quant Time: Feb 11 14:21:49 2022 Quant Method : I:\GC38\METHODS\C38021122.M Quant Title : EPA 3C, ASTM D 1946-90, VOA-EPA3C QLast Update : Thu Feb 10 15:39:25 2022 Response via : Initial Calibration Integrator: ChemStation</pre>						
Volume Inj. : 100ul Signal Phase : CarboSieve Packeo Signal Info :	d Column					
Compound	R.T.	Response	Conc Units			
 Oxygen Nitrogen Carbon Monoxide Methane 	4.436 5.457 10.832 7.071	13134707 16324323 13425735 10279096	902.774 ppm 1079.513 ppm 1238.227 ppm 934.901 ppm 984.329 ppm 968.282 ppm			


	I:\GC38\DATA\2022_02\11\ 02112202.D
:	TCD1A.ch
	11-Feb-2022, 08:51
:	Chris Parnell
:	ICAL C38021122 Level 1 S32-01312201
:	0.5 injection w/.5 loop
:	1 Sample Multiplier: 10000
	::

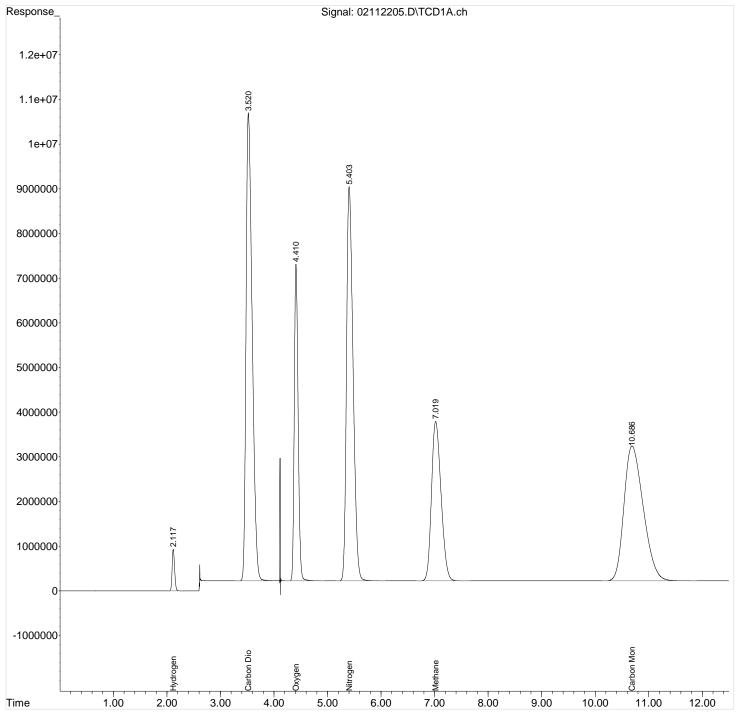
Integration File: epa3c.e
Quant Time: Feb 11 14:21:49 2022
Quant Method : I:\GC38\METHODS\C38021122.M
Quant Title : EPA 3C, ASTM D 1946-90, VOA-EPA3C
QLast Update : Thu Feb 10 15:39:25 2022
Response via : Initial Calibration
Integrator: ChemStation

Data Path : I:\GC38\DATA\2022_02\11\ Data File : 02112203.D Signal(s) : TCD1A.ch Acq On : 11-Feb-2022, 09:11 Operator : Chris Parnell Sample : ICAL C38021122 Level 2 S32-01312201 Misc : 1.0 injection w/1 loop ALS Vial : 1 Sample Multiplier: 10000						
Integration File: epa3c.e Quant Time: Feb 11 14:21:52 2022 Quant Method : I:\GC38\METHODS\C38021122.M Quant Title : EPA 3C, ASTM D 1946-90, VOA-EPA3C QLast Update : Thu Feb 10 15:39:25 2022 Response via : Initial Calibration Integrator: ChemStation						
Volume Inj. : 100ul Signal Phase : CarboSieve Packe Signal Info :	d Column					
Compound	R.T.	Response	Conc Units			
2) Oxygen	4.444 5.466 10.833	27175857 31745981 28678422	1920.467 ppm 2233.524 ppm 2407.985 ppm 1997.022 ppm 2077.214 ppm 2050.685 ppm			


Integration File: epa3c.e Quant Time: Feb 11 14:21:52 2022 Quant Method : I:\GC38\METHODS\C38021122.M Quant Title : EPA 3C, ASTM D 1946-90, VOA-EPA3C QLast Update : Thu Feb 10 15:39:25 2022 Response via : Initial Calibration Integrator: ChemStation

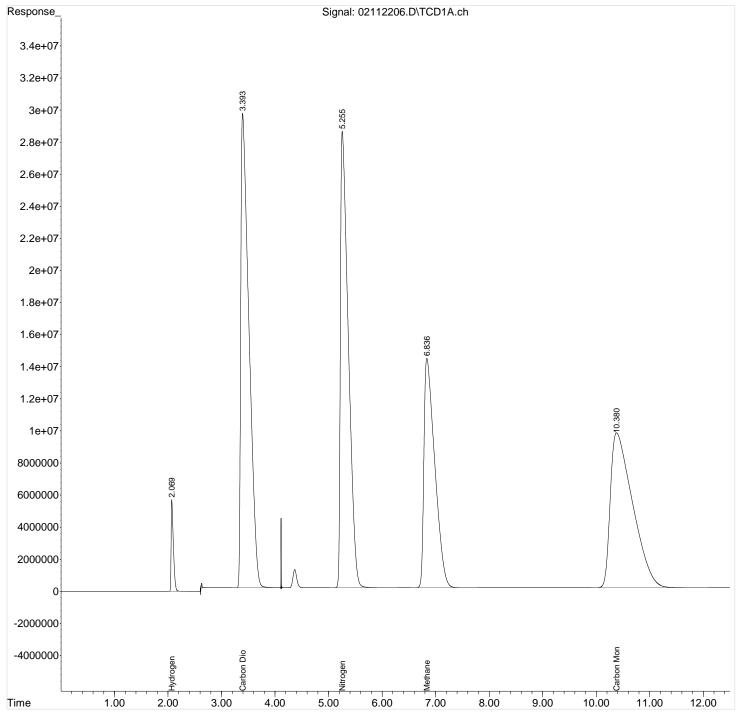
Data Path : I:\GC38\DATA\2022_02\11\ Data File : 02112204.D Signal(s) : TCD1A.ch Acq On : 11-Feb-2022, 09:28 Operator : Chris Parnell Sample : ICAL C38021122 Level 3 S32-01312205 Misc : 0.5 injection w/.5 loop ALS Vial : 1 Sample Multiplier: 10000							
<pre>Integration File: epa3c.e Quant Time: Feb 11 14:21:55 2022 Quant Method : I:\GC38\METHODS\C38021122.M Quant Title : EPA 3C, ASTM D 1946-90, VOA-EPA3C QLast Update : Thu Feb 10 15:39:25 2022 Response via : Initial Calibration Integrator: ChemStation</pre>							
Volume Inj. : 100ul Signal Phase : CarboSieve Packed Signal Info :	Column						
Compound	R.T.	Response	Conc Units				
3) Nitrogen 4) Carbon Monoxide	5.422 10.747	391291236 356694512	19138.780 ppm 14371.269 ppm 29680.083 ppm 24838.427 ppm 20029.272 ppm 24027.684 ppm				

		I:\GC38\DATA\2022_02\11\
Data File	•	02112204.D
Signal(s)	:	TCD1A.ch
Acq On		11-Feb-2022, 09:28
Operator	:	Chris Parnell
Sample	:	ICAL C38021122 Level 3 S32-01312205
Misc		0.5 injection w/.5 loop
ALS Vial	:	1 Sample Multiplier: 10000


Integration File: epa3c.e
Quant Time: Feb 11 14:21:55 2022
Quant Method : I:\GC38\METHODS\C38021122.M
Quant Title : EPA 3C, ASTM D 1946-90, VOA-EPA3C
QLast Update : Thu Feb 10 15:39:25 2022
Response via : Initial Calibration
Integrator: ChemStation

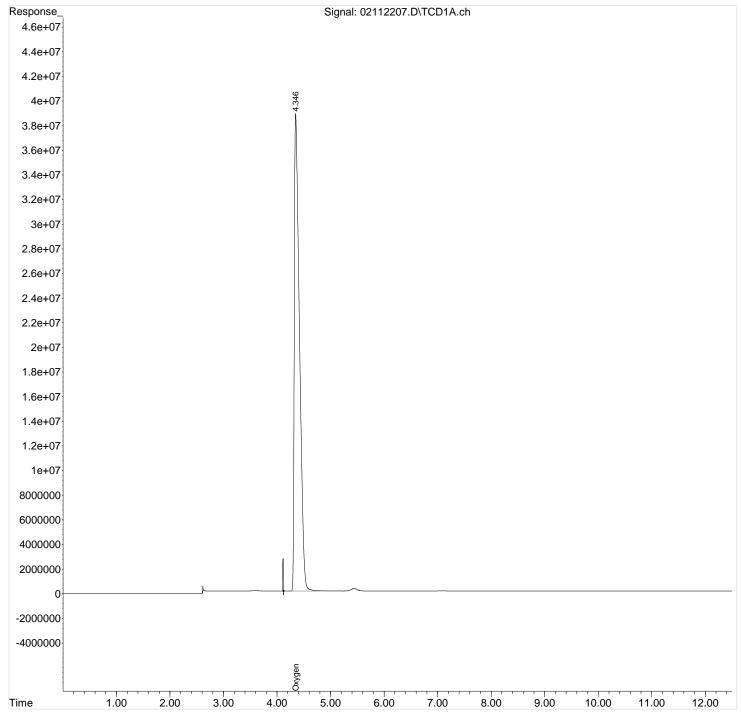
Data Path : I:\GC38\DATA\2022_02\11\ Data File : 02112205.D Signal(s) : TCD1A.ch Acq On : 11-Feb-2022, 09:45 Operator : Chris Parnell Sample : ICAL C38021122 Level 4 S32-01312205 Misc : 1.0 injection w/1 loop ALS Vial : 1 Sample Multiplier: 10000						
<pre>Integration File: epa3c.e Quant Time: Feb 11 14:21:58 2022 Quant Method : I:\GC38\METHODS\C38021122.M Quant Title : EPA 3C, ASTM D 1946-90, VOA-EPA3C QLast Update : Thu Feb 10 15:39:25 2022 Response via : Initial Calibration Integrator: ChemStation</pre>						
Volume Inj. : 100ul Signal Phase : CarboSieve Packe Signal Info :	d Column					
Compound	R.T.	Response	Conc Units			
 Oxygen Nitrogen Carbon Monoxide Methane 	4.411 5.404 10.688 7.019	350553853 748173325 753331824 440673278	42198.986 ppm			
6) Carbon Dioxide	3.522	033023183	50729.694 ppm			

		I:\GC38\DATA\2022_02\11\ 02112205.D
Signal(s)		
		11-Feb-2022, 09:45
Operator	:	Chris Parnell
Sample	:	ICAL C38021122 Level 4 S32-01312205
Misc	:	1.0 injection w/1 loop
ALS Vial	:	1 Sample Multiplier: 10000


Integration File: epa3c.e
Quant Time: Feb 11 14:21:58 2022
Quant Method : I:\GC38\METHODS\C38021122.M
Quant Title : EPA 3C, ASTM D 1946-90, VOA-EPA3C
QLast Update : Thu Feb 10 15:39:25 2022
Response via : Initial Calibration
Integrator: ChemStation

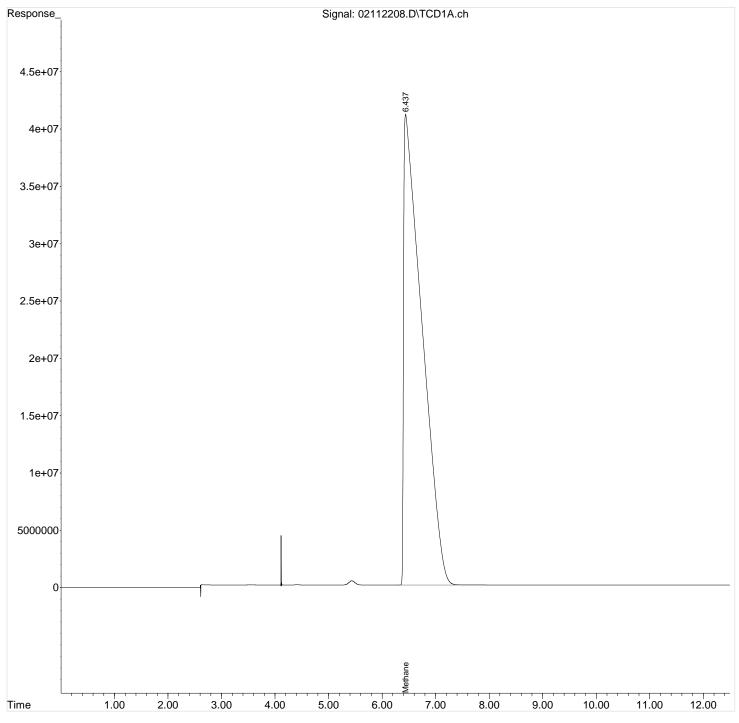
Data File : 02112206.D Signal(s) : TCD1A.ch Acq On : 11-Feb-2022, 11 Operator : Chris Parnell Sample : ICAL C38021122 I Misc : 1.0 injection w						
Integration File: epa3c.e Quant Time: Feb 11 14:27:57 Quant Method : I:\GC38\METHO Quant Title : EPA 3C, ASTM QLast Update : Thu Feb 10 1 Response via : Initial Calil Integrator: ChemStation	DDS\C38021122.M D 1946-90, VOA-EP 5:39:25 2022	A3C				
Volume Inj. : 100ul Signal Phase : CarboSieve Pa Signal Info :	acked Column					
Compound	R.T.	Response	Conc Units			
Target Compounds1)Hydrogen2.071167552525232839.234 ppm2)Oxygen0.0000N.D. ppm d3)Nitrogen5.2562926946484222013.701 ppm4)Carbon Monoxide10.3822790323132194304.184 ppm5)Methane6.8372008199827192305.730 ppm6)Carbon Dioxide3.3943146306050191604.685 ppm		N.D. ppm d 222013.701 ppm 194304.184 ppm 192305.730 ppm				

		I:\GC38\DATA\2022_02\11\ 02112206.D
Signal(s)	:	TCD1A.ch
		11-Feb-2022, 11:22
	:	Chris Parnell
Sample	:	ICAL C38021122 Level 5 S32-10262101
Misc		1.0 injection w/1 loop
ALS Vial	:	1 Sample Multiplier: 10000


Integration File: epa3c.e Quant Time: Feb 11 14:27:57 2022 Quant Method : I:\GC38\METHODS\C38021122.M Quant Title : EPA 3C, ASTM D 1946-90, VOA-EPA3C QLast Update : Thu Feb 10 15:39:25 2022 Response via : Initial Calibration Integrator: ChemStation

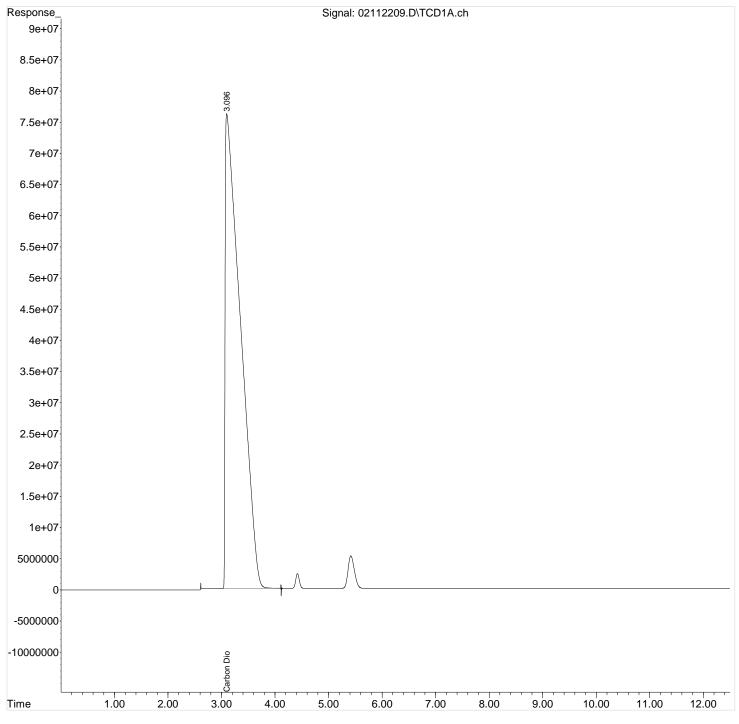
Data Path : I:\GC38\DATA\2022_02\11\ Data File : 02112207.D Signal(s) : TCD1A.ch Acq On : 11-Feb-2022, 11:56 Dperator : Chris Parnell Sample : ICAL C38021122 Level 6 S32-10192105 Misc : 1.0 injection w/1 loop ALS Vial : 1 Sample Multiplier: 10000					
Integration File: epa3c.e Quant Time: Feb 11 14:28:27 20 Quant Method : I:\GC38\METHODS Quant Title : EPA 3C, ASTM D QLast Update : Thu Feb 10 15:3 Response via : Initial Calibra Integrator: ChemStation	C38021122.M 1946-90, VOA-E 9:25 2022	EPA3C			
Volume Inj. : 100ul Signal Phase : CarboSieve Pack Signal Info :	ed Column				
Compound	R.T.	Response	Conc Units		
Target Compounds 1) Hydrogen 2) Oxygen 3) Nitrogen 4) Carbon Monoxide 5) Methane 6) Carbon Dioxide	$\begin{array}{c} 0.000 \\ 4.348 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \end{array}$	0 0 0	N.D. ppm 212293.104 ppm N.D. ppm d N.D. ppm N.D. ppm N.D. ppm d		

	:	I:\GC38\DATA\2022_02\11\ 02112207.D TCD1A_ch
5		
Acq On	:	11-Feb-2022, 11:56
Operator	:	Chris Parnell
Sample	:	ICAL C38021122 Level 6 S32-10192105
Misc		1.0 injection w/1 loop
ALS Vial	:	1 Sample Multiplier: 10000


Integration File: epa3c.e Quant Time: Feb 11 14:28:27 2022 Quant Method : I:\GC38\METHODS\C38021122.M Quant Title : EPA 3C, ASTM D 1946-90, VOA-EPA3C QLast Update : Thu Feb 10 15:39:25 2022 Response via : Initial Calibration Integrator: ChemStation

Data Path : I:\GC38\DATA\2022_02\11\ Data File : 02112208.D Signal(s) : TCD1A.ch Acq On : 11-Feb-2022, 12:11 Dperator : Chris Parnell Sample : ICAL C38021122 Level 7 S32-10202101 Misc : 1.0 injection w/1 loop ALS Vial : 1 Sample Multiplier: 10000						
Integration File: epa3c.e Quant Time: Feb 11 14:28:48 20 Quant Method : I:\GC38\METHODS Quant Title : EPA 3C, ASTM D QLast Update : Thu Feb 10 15:3 Response via : Initial Calibra Integrator: ChemStation	S\C38021122.M 1946-90, VOA-EP. 39:25 2022	A3C				
Volume Inj. : 100ul Signal Phase : CarboSieve Pack Signal Info :	ked Column					
Compound	R.T.	Response	Conc Units			
Target Compounds 1) Hydrogen 2) Oxygen 3) Nitrogen 4) Carbon Monoxide 5) Methane 6) Carbon Dioxide	0.000 0.000 0.000 0.000 6.439f 0.000	0 0 0	N.D. ppm N.D. ppm d N.D. ppm d N.D. ppm 933658.430 ppm N.D. ppm			

Data File : Signal(s) : Acq On : Operator : Sample : Misc :	
Integration	File: epa3c.e


Quant Time: Feb 11 14:28:48 2022 Quant Method : I:\GC38\METHODS\C38021122.M Quant Title : EPA 3C, ASTM D 1946-90, VOA-EPA3C QLast Update : Thu Feb 10 15:39:25 2022 Response via : Initial Calibration Integrator: ChemStation

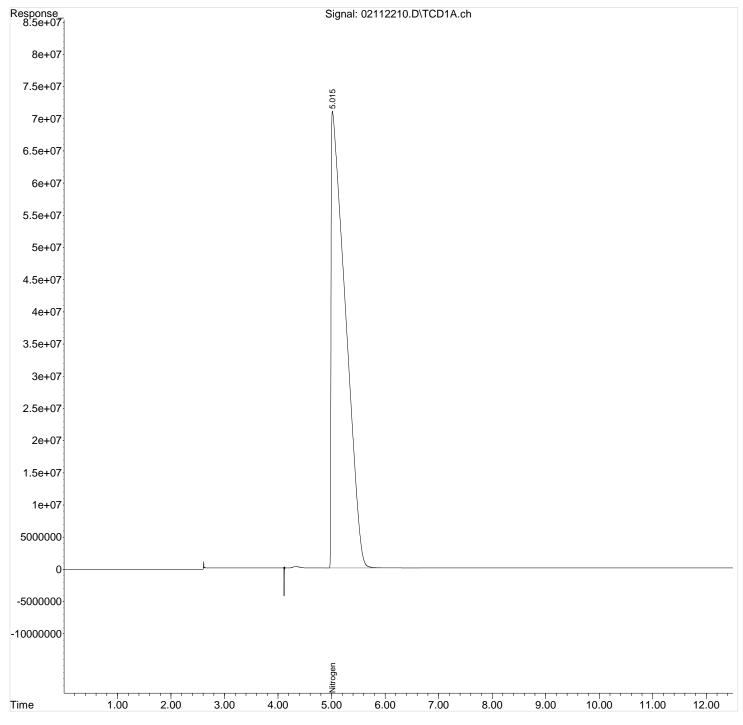
Data Path : I:\GC38\DATA\2022_02\11\ Data File : 02112209.D Signal(s) : TCD1A.ch Acq On : 11-Feb-2022, 12:32 Dperator : Chris Parnell Sample : ICAL C38021122 Level 8 S32-09292102 Misc : 1.0 injection w/1 loop ALS Vial : 1 Sample Multiplier: 10000					
Integration File: epa3c.e Quant Time: Feb 11 14:29:06 2022 Quant Method : I:\GC38\METHODS\C3 Quant Title : EPA 3C, ASTM D 194 QLast Update : Thu Feb 10 15:39:2 Response via : Initial Calibratio Integrator: ChemStation	6-90, VOA-E 5 2022	EPA3C			
Volume Inj. : 100ul Signal Phase : CarboSieve Packed Signal Info :	Column				
Compound	R.T.	Response	Conc Units		
 Oxygen Nitrogen Carbon Monoxide Methane 	0.000 0.000 0.000 0.000 0.000 3.098	0 0 0	N.D. ppm (N.D. ppm (N.D. ppm N.D. ppm	d	

		I:\GC38\DATA\2022_02\11\ 02112209.d
Signal(s)	:	TCD1A.ch
		11-Feb-2022, 12:32
Operator	:	Chris Parnell
Sample	:	ICAL C38021122 Level 8 S32-09292102
Misc	:	1.0 injection w/1 loop
ALS Vial	:	1 Sample Multiplier: 10000

Integration File: epa3c.e
Quant Time: Feb 11 14:29:06 2022
Quant Method : I:\GC38\METHODS\C38021122.M
Quant Title : EPA 3C, ASTM D 1946-90, VOA-EPA3C
QLast Update : Thu Feb 10 15:39:25 2022
Response via : Initial Calibration
Integrator: ChemStation

Data Path : I:\GC38\DATA\2022_02\11\ Data File : 02112210.D Signal(s) : TCD1A.ch Acq On : 11-Feb-2022, 12:46 Operator : Chris Parnell Sample: ICAL C38021122 Level 9 N2Misc: 1.0 injection w/1 loopALS Vial: 1 Sample Multiplier: 10000 Integration File: epa3c.e Quant Time: Feb 11 14:29:29 2022 Quant Method : I:\GC38\METHODS\C38021122.M Quant Title : EPA 3C, ASTM D 1946-90, VOA-EPA3C QLast Update : Thu Feb 10 15:39:25 2022 Response via : Initial Calibration Integrator: ChemStation Volume Inj. : 100ul Signal Phase : CarboSieve Packed Column Signal Info : R.T. Response Conc Units Compound Target Compounds Hydrogen 0.000 0 N.D. ppm 0.000 0 N.D. ppm d 1) 2) Oxygen Nitrogen 5.022f 13129497105 995893.931 ppm 3)
 0.000
 0
 N.D.
 ppm

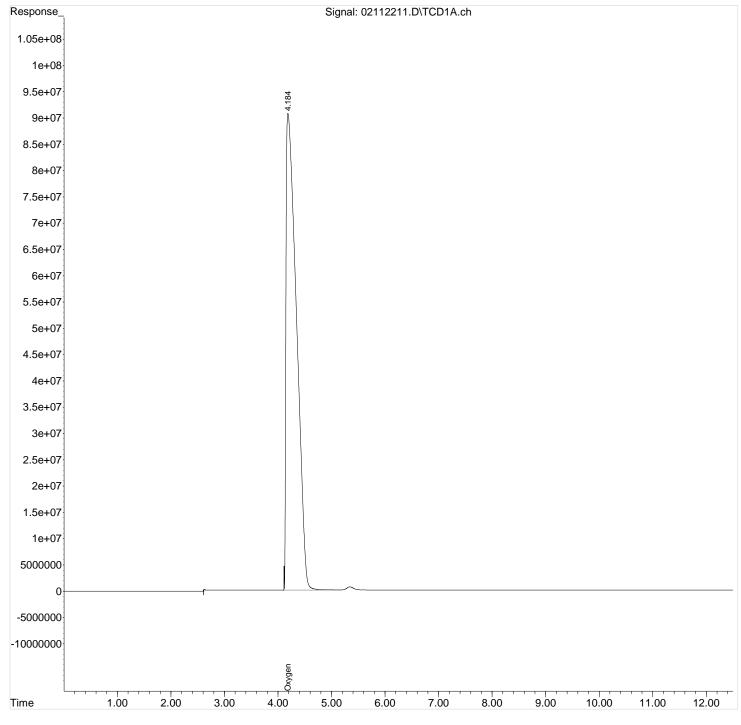
 0.000
 0
 N.D.
 ppm


 0.000
 0
 N.D.
 ppm

 0.000
 0
 N.D.
 ppm
 Carbon Monoxide 4) 5) Methane6) Carbon Dioxide N.D. ppm _____

(f)=RT Delta > 1/2 Window

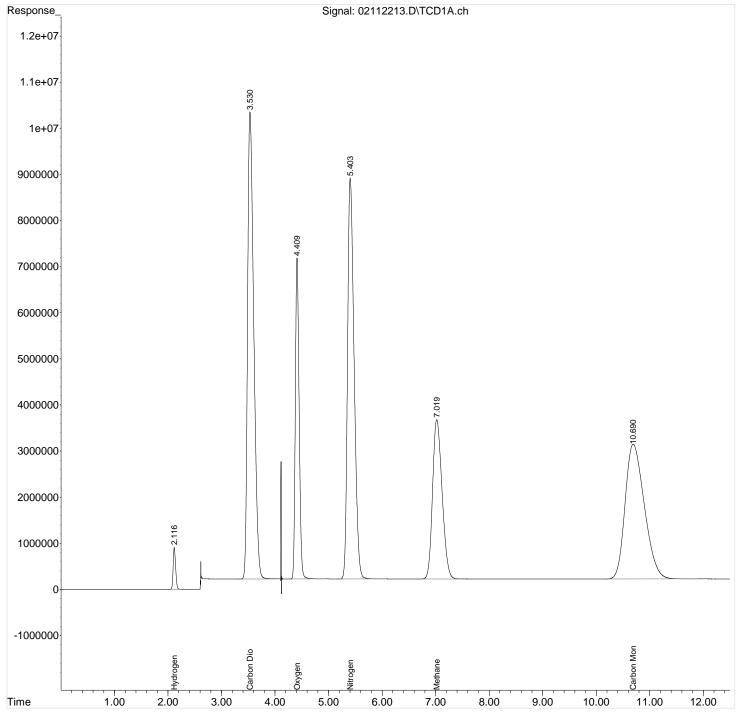
Data File Signal(s) Acq On Operator Sample Misc	<pre>: I:\GC38\DATA\2022_02\11\ : 02112210.D : TCD1A.ch : 11-Feb-2022, 12:46 : Chris Parnell : ICAL C38021122 Level 9 N2 : 1.0 injection w/1 loop : 1 Sample Multiplier: 10000</pre>
Quant Time Quant Meth Quant Tit	on File: epa3c.e e: Feb 11 14:29:29 2022 nod : I:\GC38\METHODS\C38021122.M le : EPA 3C, ASTM D 1946-90, VOA-EPA3C ate : Thu Feb 10 15:39:25 2022


Response via : Initial Calibration Integrator: ChemStation

Data File : 02112211.D Signal(s) : TCD1A.ch Acq On : 11-Feb-2022, 13:37 Operator : Chris Parnell Sample : ICAL C38021122 Level 10 Misc : 1.0 injection w/1 loop	ignal(s) : TCD1A.ch cq On : 11-Feb-2022, 13:37 perator : Chris Parnell ample : ICAL C38021122 Level 10 02						
Integration File: epa3c.e Quant Time: Feb 11 14:54:39 2022 Quant Method : I:\GC38\METHODS\C380 Quant Title : EPA 3C, ASTM D 1946- QLast Update : Fri Feb 11 13:31:58 Response via : Initial Calibration Integrator: ChemStation	-90, VOA-E	EPA3C					
Volume Inj. : 100ul Signal Phase : CarboSieve Packed Co Signal Info :	olumn						
Compound	R.T.	Response	Conc Units				
2) Oxygen 3) Nitrogen 4) Carbon Monoxide	4.186f	12244414434 0 0	N.D. ppm 1007844.084 ppm N.D. ppm d N.D. ppm N.D. ppm N.D. ppm d				

Data Path	: I:\GC38\DATA\2022_02\11\
Data File	: 02112211.D
Signal(s)	: TCD1A.ch
Acq On	: 11-Feb-2022, 13:37
Operator	: Chris Parnell
Sample	: ICAL C38021122 Level 10 02
Misc	: 1.0 injection w/1 loop
ALS Vial	: 1 Sample Multiplier: 10000
Integratio	on File: epa3c.e
Quant Time	e: Feb 11 14:54:39 2022
Quant Meth	nod : I:\GC38\METHODS\C38021122.M
Quant Titl	Le : EPA 3C, ASTM D 1946-90, VOA-EPA3C
QLast Upda	ate : Fri Feb 11 13:31:58 2022
Response v	via : Initial Calibration
Integrator	: ChemStation
Volume In	j. : 100ul

Signal	Phase	:	CarboSieve	Packed	Column
Signal	Info	:			


Data Path : I:\GC38\DATA\2022_02\11\ Data File : 02112213.D Signal(s) : TCD1A.ch Acq On : 11-Feb-2022, 14:19 Operator : Chris Parnell Sample : ICAL C38021122 ICV S32-01312206 Misc : 1.0 injection w/1 loop ALS Vial : 1 Sample Multiplier: 10000 Integration File: epa3c.e Quant Time: Mar 08 13:39:40 2022 Ouant Method : I:\GC38\METHODS\C38021122.M Quant Title : EPA 3C, ASTM D 1946-90, VOA-EPA3C QLast Update : Wed Mar 02 15:08:17 2022 Response via : Initial Calibration Integrator: ChemStation Volume Inj. : 100ul Signal Phase : CarboSieve Packed Column Signal Info : Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 15% Max. Rel. Area : 150% Compound Amount Calc. %Dev Area% Dev(Min) _____ 4.1244.0491.8970.022.4902.574-3.4980.074.8405.131-6.0980.44#5.1515.1380.3972.56#3.9704.101-3.3970.284.7994.982-3.897-0.04 Hydrogen 1 2 Oxygen Nitrogen 3 4 Carbon Monoxide
5 Methane
6 Carbon Dioxide Evaluate Continuing Calibration Report - Not Founds _____ (#) = Out of Range SPCC's out = 0 CCC's out = 0

C38021122.M Thu Jun 29 11:21:47 2023

Data File : 02112213.D Signal(s) : TCD1A.ch Acq On : 11-Feb-2022, 1 Operator : Chris Parnell Sample : ICAL C38021122 Misc : 1.0 injection	ignal(s) : TCD1A.ch cg On : 11-Feb-2022, 14:19							
Integration File: epa3c.e Quant Time: Mar 08 13:39:40 2022 Quant Method : I:\GC38\METHODS\C38021122.M Quant Title : EPA 3C, ASTM D 1946-90, VOA-EPA3C QLast Update : Wed Mar 02 15:08:17 2022 Response via : Initial Calibration Integrator: ChemStation								
Volume Inj. : 100ul Signal Phase : CarboSieve Signal Info :	Packed Column							
Compound	R.T.	Response	Conc Units					
Target Compounds1)Hydrogen2)Oxygen3)Nitrogen5.4047364638854)Carbon Monoxide10.691728496749513051306.703 ppm								
5) Methane 6) Carbon Dioxide	7.020 3.531	426325304	41013.821 ppm					

		I:\GC38\DATA\2022_02\11\ 02112213.D
Signal(s)	:	TCD1A.ch
Acq On	:	11-Feb-2022, 14:19
Operator	:	Chris Parnell
Sample		ICAL C38021122 ICV S32-01312206
		1.0 injection w/l loop
ALS Vial	:	1 Sample Multiplier: 10000

Integration File: epa3c.e
Quant Time: Mar 08 13:39:40 2022
Quant Method : I:\GC38\METHODS\C38021122.M
Quant Title : EPA 3C, ASTM D 1946-90, VOA-EPA3C
QLast Update : Wed Mar 02 15:08:17 2022
Response via : Initial Calibration
Integrator: ChemStation

1st **BK** 07/17/24 2nd *P* 07/17/24

Modified EPA Method 3C Daily QC Summary

Client : SQ Environmental, LLC Analyst : SR/BK Method Name : EPA 3C, ASTM D 1946-90, VOA-EPA3C Instrument : GC38 Date Analyzed : 7/17/2024

RT Summaries and QC Check (minutes)

Sample ID	Hydrogen	Oxygen	Nitrogen	Carbon Monoxide	Methane	Carbon Dioxide	File ID	Time
ICAL Mean RT	2.121	4.409	5.343	10.218	6.996	3.582		
RT Windows (+/- min)	0.330	0.330	0.330	0.330	0.330	0.330		
STD S33-05222401	2.114	4.403	5.334	10.190	6.993	3.688	07172402.D	07:45
+/- 0.33min of ICAL Mean RT	Pass	Pass	Pass	Pass	Pass	Pass		
MB STD00251		4.439 Pass	5.395 Pass			3.758 Pass	07172403.D	08:00
Lab Air		4.269 Pass	4.991 Fail			3.743 Pass	07172404.D	08:16
LCS S33-07272202	2.113 Pass	4.404 Pass	5.336 Pass	10.192 Pass	6.992 Pass	3.678 Pass	07172405.D	08:34
LCSD S33-07272202	2.113 Pass	4.403 Pass	5.336 Pass	10.190 Pass	6.991 Pass	3.677 Pass	07172406.D	08:52
P2402855-001		4.337 Pass	5.084 Pass			3.685 Pass	07172408.D	09:22
P2402855-002		4.317 Pass	5.071 Pass			3.741 Pass	07172409.D	09:36
P2402855-002dup		4.317 Pass	5.071 Pass			3.741 Pass	07172410.D	09:49
STD S33-05222401	2.113 Pass	4.402 Pass	5.332 Pass	10.186 Pass	6.989 Pass	3.675 Pass	07172417.D	12:16

Continuing Calibration Standards Summary (ppm)

Sample ID	Hydrogen	Oxygen	Nitrogen	Carbon Monoxide	Methane	Carbon Dioxide	File ID	Time
ACTUAL	40300.0	24900.0	49700.0	50400.0	40300.0	50400.0		
CCV Criteria (+/- %D)	15.0%	10.0%	10.0%	10.0%	10.0%	10.0%		
STD S33-05222401	43005.3 ^{6.7%}	25166.4 ^{1.1%}	49848.7 ^{0.3%}	50496.8 0.2%	39334.1 ^{2.4%}	51186.8 ^{1.6%}	07172402.D	07:45
STD S33-05222401	44601.7 ^{10.7%}	25591.2 ^{2.8%}	50673.6 ^{2.0%}	52052.1 ^{3.3%}	40754.2 ^{1.1%}	53845.6 ^{6.8%}	07172417.D	12:16

Lab Dup Summary (ppm, without DF correction and nomalization)

Sample ID	Hydrogen	Oxygen	Nitrogen	Carbon Monoxide	Methane	Carbon Dioxide	File ID	Time
Duplicate Criteria % RPD	5%	5%	5%	5%	5%	5%		
P2402855-002		150940.3	546562.4			5597.8	07172409.D	09:36
P2402855-002dup		150426.5	545914.0			5463.0	07172410.D	09:49
Duplicate % RPD		0.3% Pass	0.1% Pass			2.4% Pass		

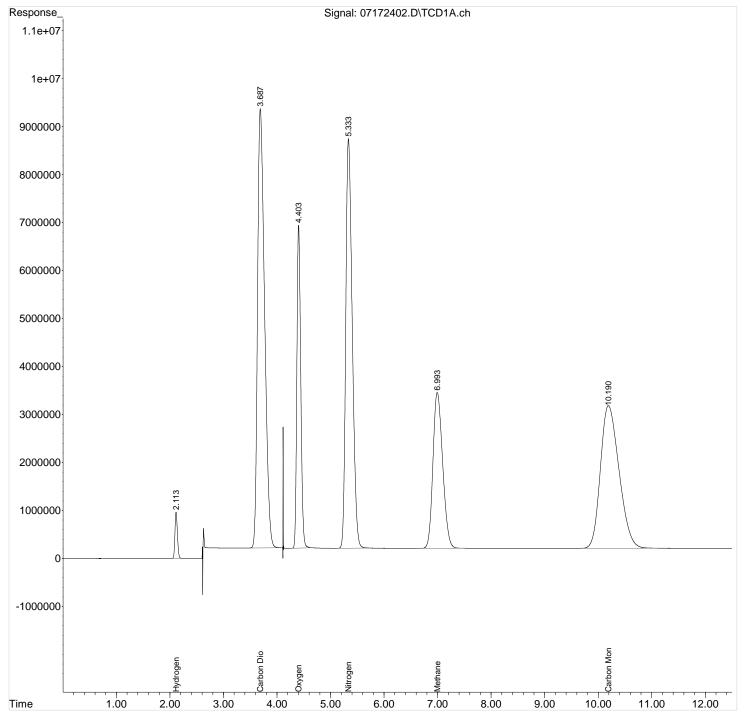
LCS / LCS Dup Summary (ppm, without DF correction)

Sample ID	Hydroge	n	Oxygen	Nitrogen	Carbon Monoxide	Methane	Carbon Dioxide	File ID	Time
LCS Actual Conc. (ppm)	39700.0		25100.0	49800.0	49600.0	40000.0	49600.0		
LCS Criteria (% Range)	96%-117%	6	92%-112%	89%-113%	96%-113%	95%-111%	93%-112%		
LCS S33-07272202	42864.0		23757.2	46960.7	49630.8	39104.0	53182.6	07172405.D	08:34
LCS % Recovery	108%	Pass	95% Pass	94% Pass	100% Pass	98% Pass	107% Pass		
LCSD S33-07272202	43558.0		24013.6	47488.0	50328.8	39670.7	54201.8	07172406.D	08:52
LCS % Recovery	110%	Pass	96% Pass	95% Pass	101% Pass	99% Pass	109% Pass		
Duplicate % RPD	1.6%		1.1%	1.1%	1.4%	1.4%	1.9%		
Duplicate Criteria % RPD	5%	Pass	7% Pass	7% Pass	5% Pass	5% Pass	6% Pass		

Lab Air QC Summary

Sample ID	Hydrogen	Oxygen	Nitrogen	Carbon Monoxide	Methane	Carbon Dioxide	Lab Air Criteria Total (90%-110%)
Lab Air		220869.6	779031.5			556.6	100.0% Pass
Lab Air Normalized (%)		22.07%	77.86%			0.06%	100.0%

1st	BK	07/17/24
2nd	Ċ	07/17/24


Data Path : I:\GC38\DATA\2024_07\17\ Data File : 07172402.D SR 07/17/24 Signal(s) : TCD1A.ch Acq On : 17-Jul-2024, 07:45:17 Operator : SR/BK Sample : STD S33-05222401 Misc : ALS Vial : 1 Sample Multiplier: 10000							
Integration File: epa3c.e Quant Time: Jul 17 07:59:07 2024 Quant Method : I:\GC38\METHODS\C3 Quant Title : EPA 3C, ASTM D 194 QLast Update : Tue Mar 08 12:45:4 Response via : Initial Calibratio Integrator: ChemStation	6-90, VOA-E 1 2022	EPA3C					
Volume Inj. : 100ul Signal Phase : CarboSieve Packed Signal Info :	Column						
Compound	R.T.	Response	Conc Units				
3) Nitrogen 4) Carbon Monoxide	5.334 10.190	715636629 715928249	43005.309 ppm 25166.402 ppm 49848.692 ppm 50496.844 ppm 39334.117 ppm 51186.795 ppm				

Signal(s) : TCD1A.ch : 17-Jul-2024, 07:45:17 Acq On Operator : SR/BK : STD S33-05222401 Sample Misc : ALS Vial : 1 Sample Multiplier: 10000 Integration File: epa3c.e Quant Time: Jul 17 07:59:07 2024 Quant Method : I:\GC38\METHODS\C38021122.M Quant Title : EPA 3C, ASTM D 1946-90, VOA-EPA3C QLast Update : Tue Mar 08 12:45:41 2022 Response via : Initial Calibration Integrator: ChemStation

Volume Inj. : 100ul Signal Phase : CarboSieve Packed Column Signal Info :

Data Path : I:\GC38\DATA\2024_07\17\

Data File : 07172402.D

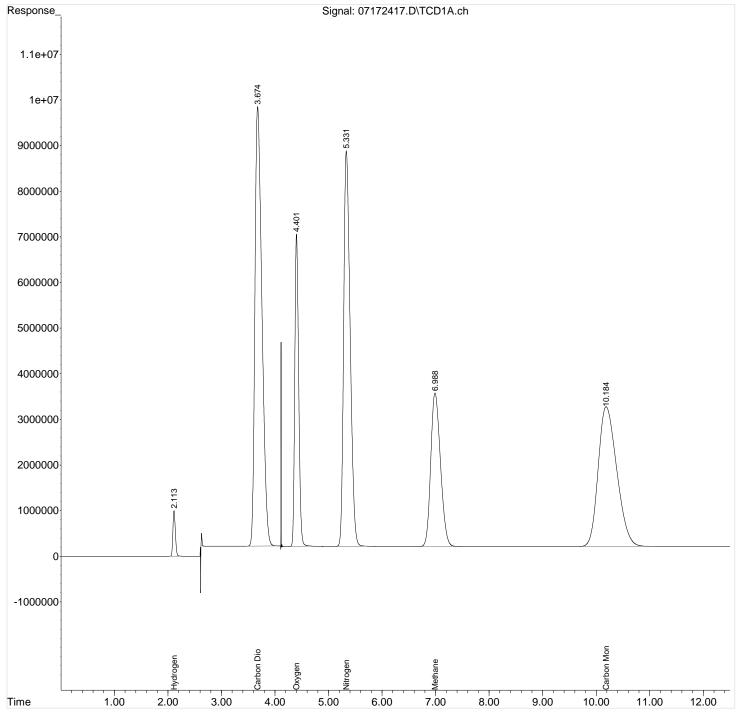
 1st
 BK 07/17/24

 2nd

 07/17/24

Data Path : I:\GC38\DATA\2024_07\17\ Data File : 07172417.D SR 07/17/24 Dignal(s) : TCD1A.ch SR 07/17/24 Deperator : 17-Jul-2024, 12:16:17 Deperator : SR/BK Deperator : STD S33-05222401 STD S33-05222401 Misc : Sample : 1 Sample : 1 Sample Multiplier: 10000							
Integration File: epa3c.e Quant Time: Jul 17 12:49:52 2024 Quant Method : I:\GC38\METHODS\C38021122.M Quant Title : EPA 3C, ASTM D 1946-90, VOA-EPA3C QLast Update : Tue Mar 08 12:45:41 2022 Response via : Initial Calibration Integrator: ChemStation							
Volume Inj. : 100ul Signal Phase : CarboSieve B Signal Info :	Packed Column						
Compound	R.T.	Response	Conc Units				
Target Compounds 1) Hydrogen 2) Oxygen 3) Nitrogen 4) Carbon Monoxide 5) Methane 6) Carbon Dioxide	4.402 5.332 10.186 6.989	341806905 727420804 737977569 423626826	50673.591 ppm 52052.057 ppm				

(f)=RT Delta > 1/2 Window


1st **BK** 07/17/24 2nd P 07/17/24

Signal(s) : TCD1A.ch : 17-Jul-2024, 12:16:17 Acq On Operator : SR/BK : STD S33-05222401 Sample Misc : ALS Vial : 1 Sample Multiplier: 10000 Integration File: epa3c.e Quant Time: Jul 17 12:49:52 2024 Quant Method : I:\GC38\METHODS\C38021122.M Quant Title : EPA 3C, ASTM D 1946-90, VOA-EPA3C QLast Update : Tue Mar 08 12:45:41 2022 Response via : Initial Calibration Integrator: ChemStation

Volume Inj. : 100ul Signal Phase : CarboSieve Packed Column Signal Info :

Data Path : I:\GC38\DATA\2024_07\17\

Data File : 07172417.D

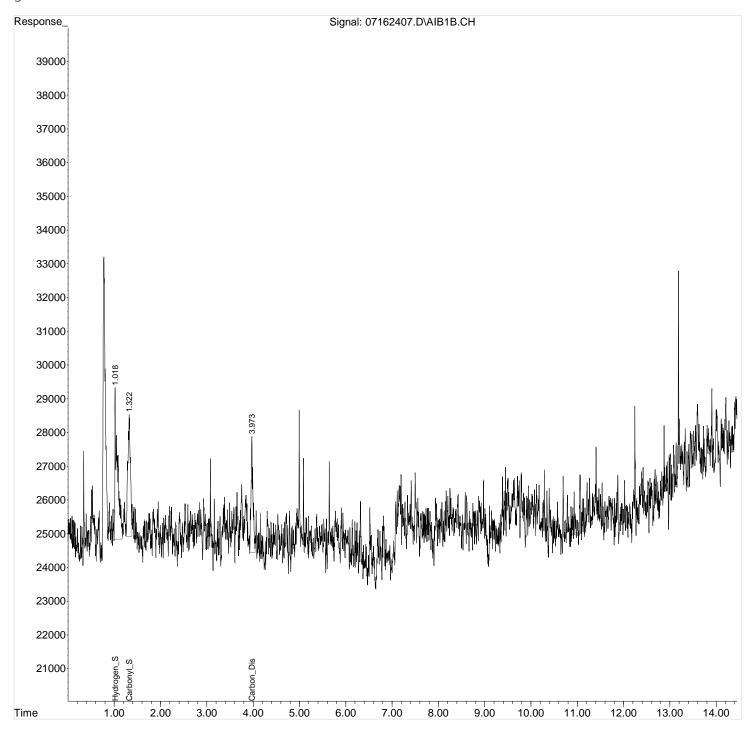
Injection Log

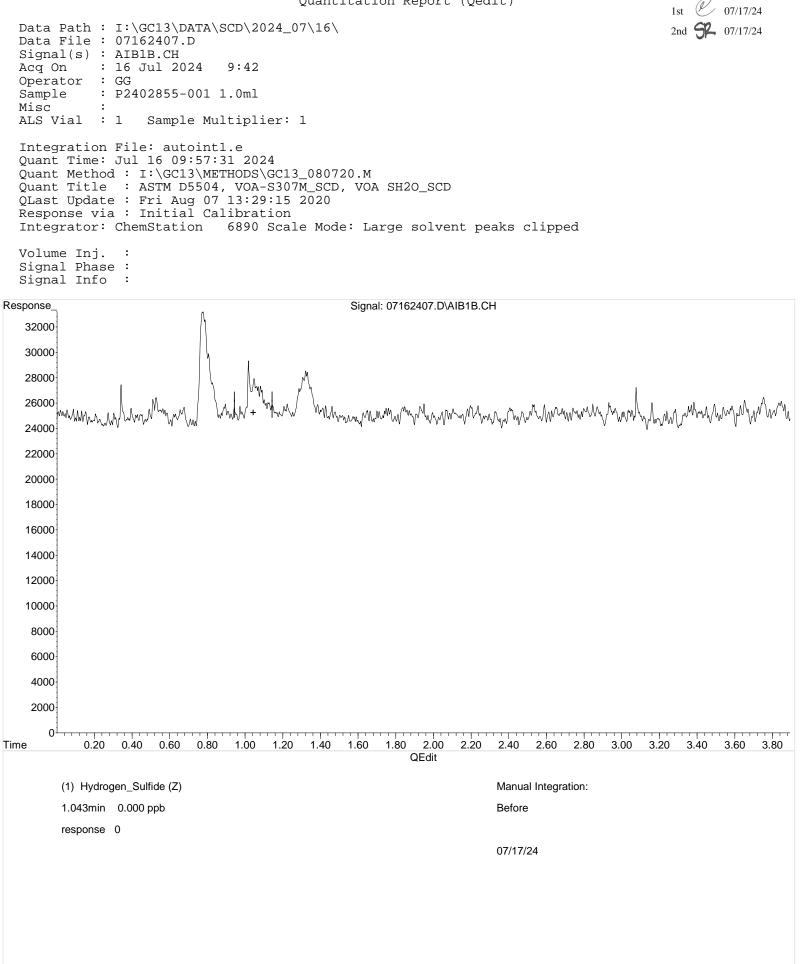
Directory: I:\GC38\DATA\2022_02\11\

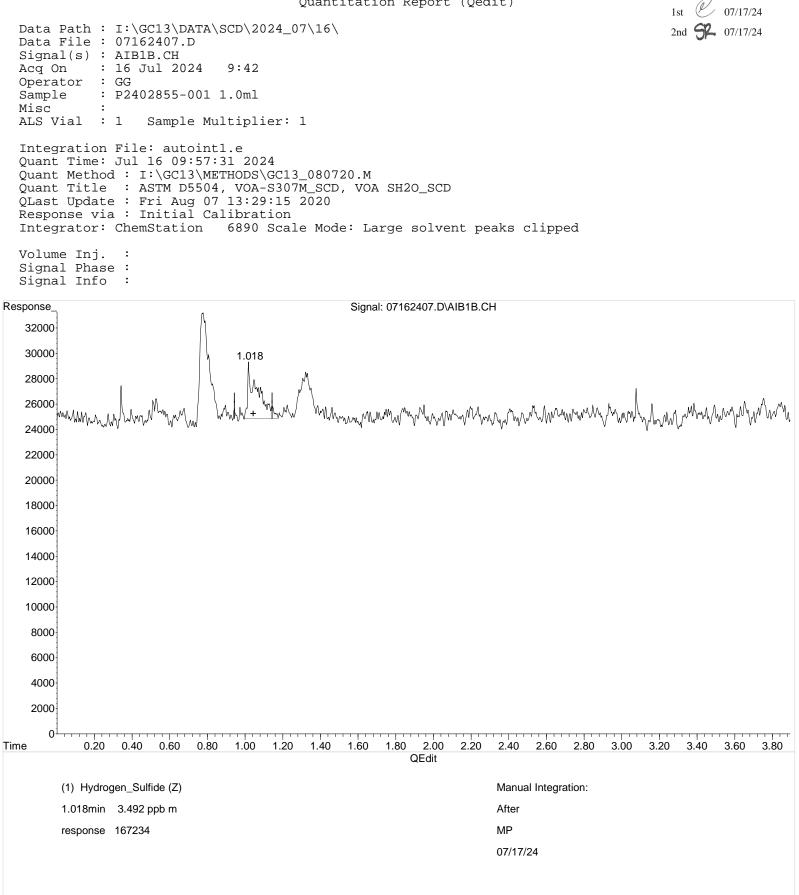
	Directory: 1:\G	File Name	Sample ID	Misc Info	Operator	Acquisition Mothod	Comments
1	11-Feb-2022, 08:34	02112201.D	He Blank		Chris Parnell	Method EPA Method 3C.M	
2	11-Feb-2022, 08:51	02112202.D	ICAL C38021022 Level 1 S32-01312201		Chris Parnell	EPA Method 3C.M	Pass
3	11-Feb-2022, 09:11	02112203.D	ICAL C38021022 Level 2 S32-01312201		Chris Parnell	EPA Method 3C.M	Pass
4	11-Feb-2022, 09:28	02112204.D	ICAL C38021122 Level 3 S32-01312205		Chris Parnell	EPA Method 3C.M	Pass
5	11-Feb-2022, 09:45	02112205.D	ICAL C38021122 Level 4 S32-01312205		Chris Parnell	EPA Method 3C.M	Pass
6	11-Feb-2022, 11:22	02112206.D	ICAL C38021122 Level 5 S32-10262101		Chris Parnell	EPA Method 3C.M	Pass
7	11-Feb-2022, 11:56	02112207.D	ICAL C38021122 Level 6 S32-10192105		Chris Parnell	EPA Method 3C.M	Pass
8	11-Feb-2022, 12:11	02112208.D	ICAL C38021122 Level 7 S32-10202101		Chris Parnell	EPA Method 3C.M	Pass
9	11-Feb-2022, 12:32	02112209.D	ICAL C38021122 Level 8 S32-09292102		Chris Parnell	EPA Method 3C.M	Pass
10	11-Feb-2022, 12:46	02112210.D	ICAL C38021122 Level 9 N2		Chris Parnell	EPA Method 3C.M	Pass
11	11-Feb-2022, 13:37	02112211.D	ICAL C38021122 Level 10 O2		Chris Parnell	EPA Method 3C.M	Pass
12	11-Feb-2022, 14:00	02112212.D	xICAL C38021122 ICV S32-01312206		Chris Parnell	EPA Method 3C.M	Not Used
13	11-Feb-2022, 14:19	02112213.D	ICAL C38021122 ICV S32-01312206		Chris Parnell	EPA Method 3C.M	Pass
14	11-Feb-2022, 15:01	02112214.D	Lab Air		Chris Parnell	EPA Method 3C.M	

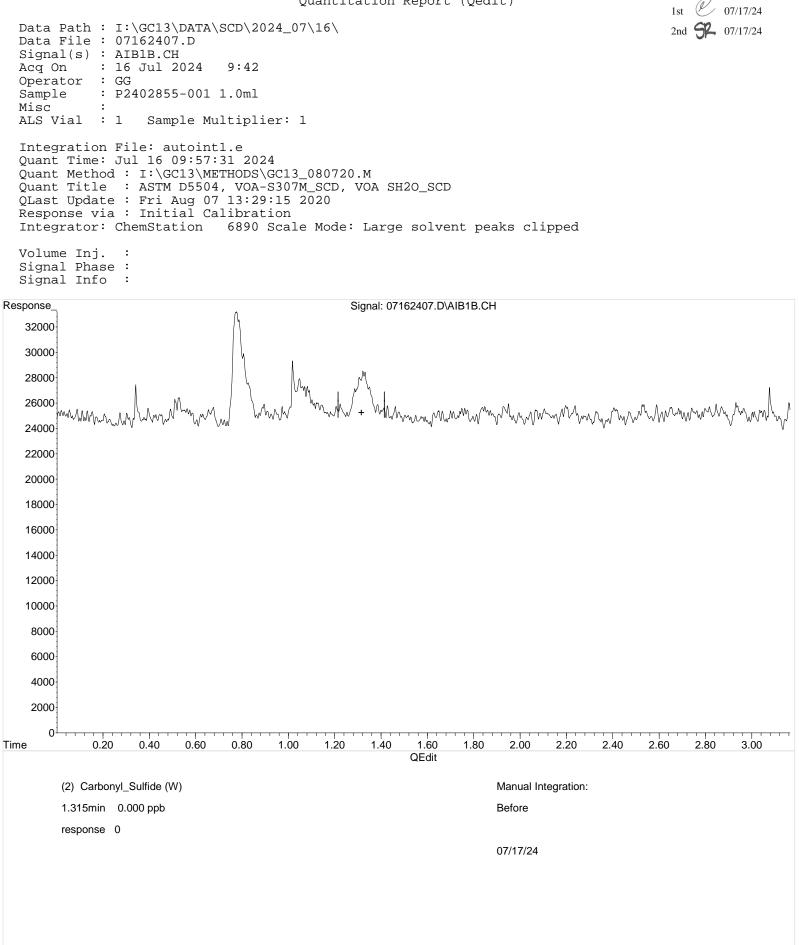
Injection Log

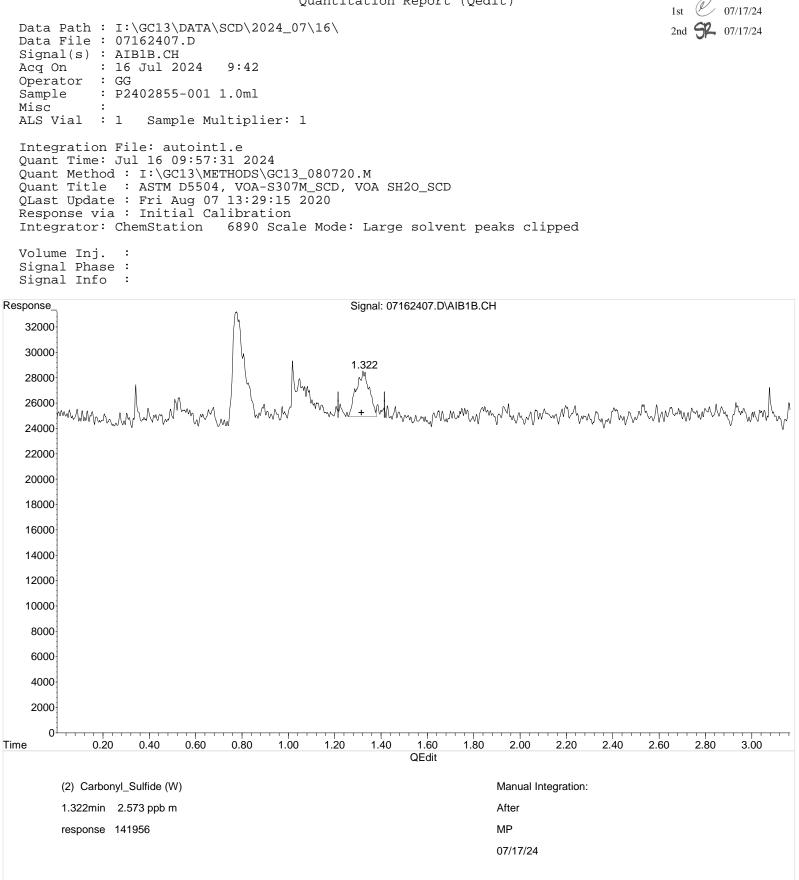
Directory: I:\GC38\DATA\2024_07\17\

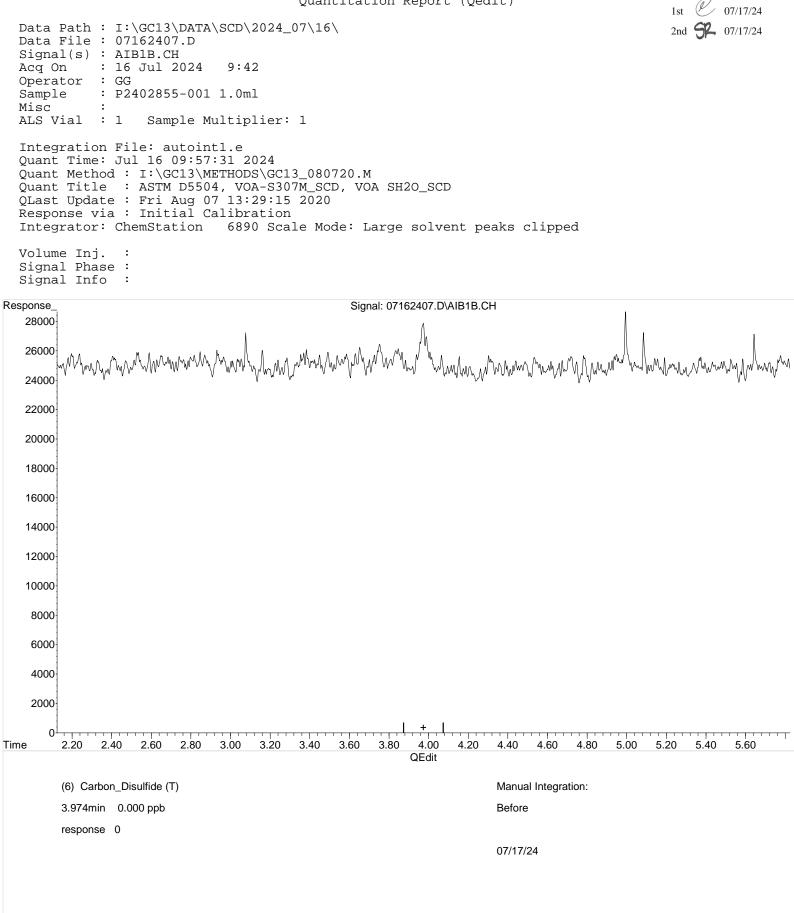

	Date/Time	File Name	Sample ID	Misc Info	Operator	Acquisition Method	Comments
1	17-Jul-2024, 07:45:17	07172402.D	STD S33-05222401		SR/BK	EPA Method 3C.M	Pass
2	17-Jul-2024, 08:00:43	07172403.D	MB STD00251		SR/BK	EPA Method 3C.M	Pass
3	17-Jul-2024, 08:16:50	07172404.D	Lab Air		SR/BK	EPA Method 3C.M	Pass
4	17-Jul-2024, 08:34:39	07172405.D	LCS S33-07272202		SR/BK	EPA Method 3C.M	Pass
5	17-Jul-2024, 08:52:28	07172406.D	LCSD \$33-07272202		SR/BK	EPA Method 3C.M	Pass
6	17-Jul-2024, 09:08:47	07172407.D	P2402888-001		SR/BK	EPA Method 3C.M	
7	17-Jul-2024, 09:22:44	07172408.D	P2402855-001		SR/BK	EPA Method 3C.M	
8	17-Jul-2024, 09:36:53	07172409.D	P2402855-002		SR/BK	EPA Method 3C.M	
9	17-Jul-2024, 09:49:54	07172410.D	P2402855-002dup		SR/BK	EPA Method 3C.M	
10	17-Jul-2024, 10:05:07	07172411.D	P2402891-001		SR/BK	EPA Method 3C.M	
11	17-Jul-2024, 10:19:10	07172412.D	P2402857-001		SR/BK	EPA Method 3C.M	
12	17-Jul-2024, 11:04:44	07172413.D	P2402871-001		SR/BK	EPA Method 3C.M	
13	17-Jul-2024, 11:29:16	07172414.D	P2402871-002		SR/BK	EPA Method 3C.M	
14	17-Jul-2024, 11:44:54	07172415.D	P2402871-003		SR/BK	EPA Method 3C.M	
15	17-Jul-2024, 12:02:06	07172416.D	P2402878-001		SR/BK	EPA Method 3C.M	
16	17-Jul-2024, 12:16:17	07172417.D	STD S33-05222401		SR/BK	EPA Method 3C.M	Pass
17	17-Jul-2024, 12:55:20	07172418.D	P2402883-001		SR/BK	EPA Method 3C.M	
18	17-Jul-2024, 13:09:01	07172419.D	P2402883-002		SR/BK	EPA Method 3C.M	
19	17-Jul-2024, 13:21:51	07172420.D	P2402883-003		SR/BK	EPA Method 3C.M	
20	17-Jul-2024, 13:36:03	07172421.D	P2402883-004		SR/BK	EPA Method 3C.M	
21	17-Jul-2024, 13:49:34	07172422.D	P2402883-005		SR/BK	EPA Method 3C.M	
22	17-Jul-2024, 14:04:48	07172423.D	P2402883-006		SR/BK	EPA Method 3C.M	
23	17-Jul-2024, 14:18:15	07172424.D	P2402883-007		SR/BK	EPA Method 3C.M	
24	17-Jul-2024, 14:31:54	07172425.D	STD S33-05222401		SR/BK	EPA Method 3C.M	Pass

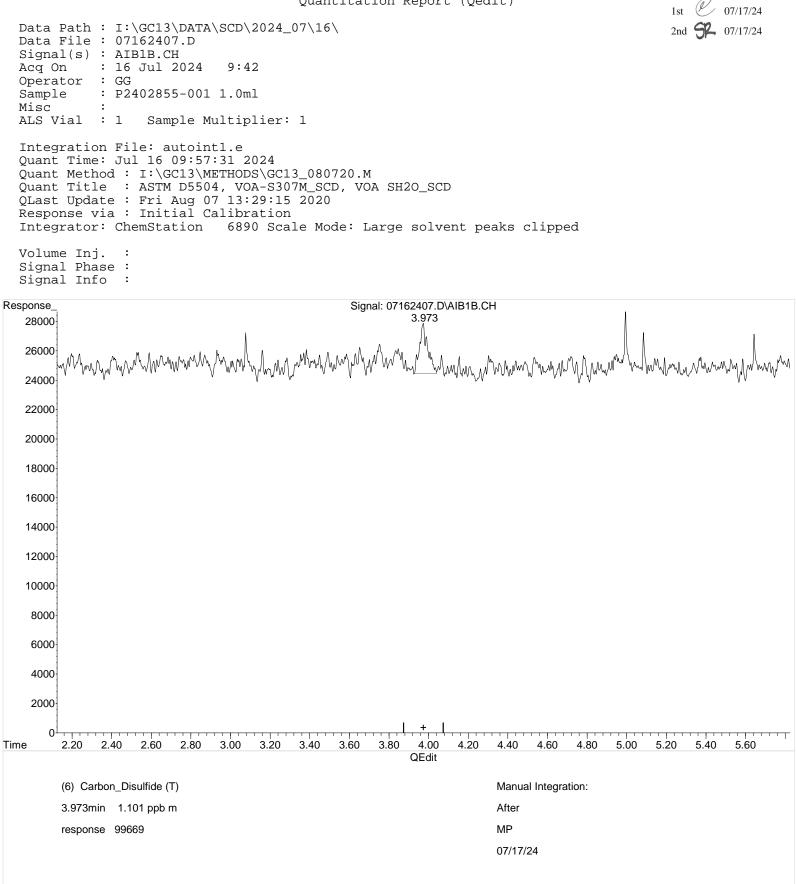

1st	Ø	07/17/24
2nd	SP.	07/17/24

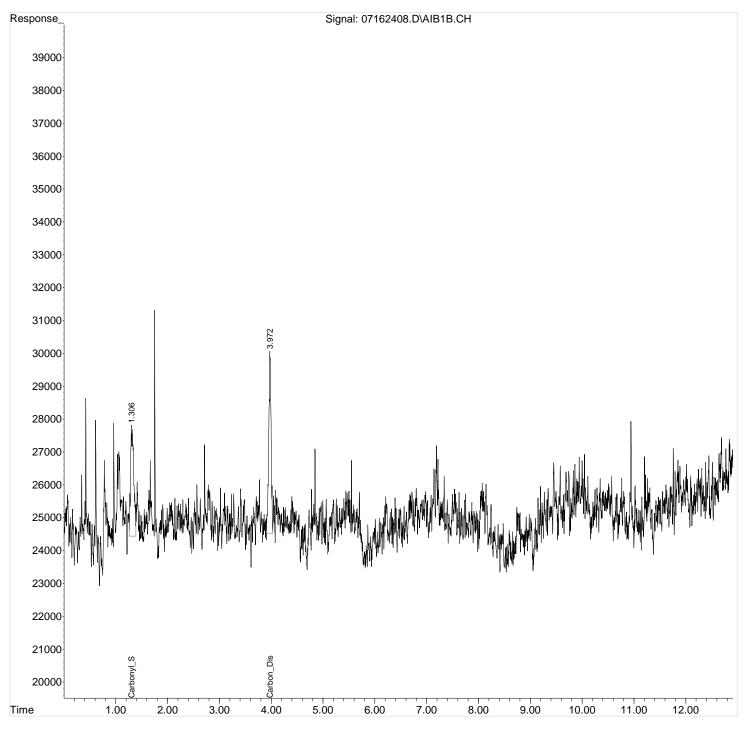

Data Path : I:\GC13\DATA\SCD\2024_07\16\ Data File : 07162407.D Signal(s) : AIB1B.CH Acq On : 16 Jul 2024 9:42 Operator : GG Sample : P2402855-001 1.0ml Misc : ALS Vial : 1 Sample Multiplier: 1												
Integration File: autoint1.e Quant Time: Jul 17 08:42:57 2024 Quant Method : I:\GC13\METHODS\GC13_080720.M Quant Title : ASTM D5504, VOA-S307M_SCD, VOA SH20_SCD QLast Update : Fri Aug 07 13:29:15 2020 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped												
Volume Inj. : Signal Phase : Signal Info :												
Compound	R.T.	Response	Conc Units									
3) T Methyl_Mercaptan	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	$ \begin{array}{c} 167234\\ 141956\\ 0\\ 0\\ 99669\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	daa .U.N									

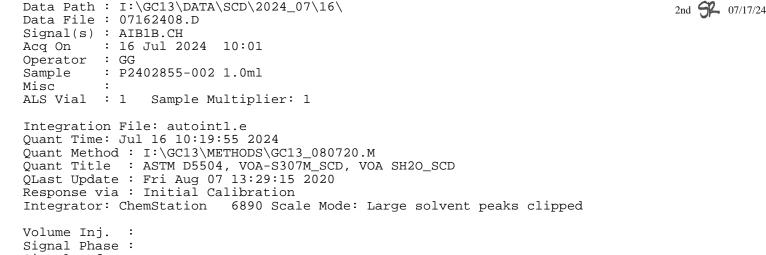

Data File : 07162407.D Signal(s) : AIB1B.CH Acq On : 16 Jul 2024 9:42 : GG Operator Sample : P2402855-001 1.0ml Misc : ALS Vial : 1 Sample Multiplier: 1 Integration File: autoint1.e Quant Time: Jul 17 08:42:57 2024 Quant Method : I:\GC13\METHODS\GC13_080720.M Quant Title : ASTM D5504, VOA-S307M_SCD, VOA SH20_SCD QLast Update : Fri Aug 07 13:29:15 2020 Response via : Initial Calibration 6890 Scale Mode: Large solvent peaks clipped Integrator: ChemStation

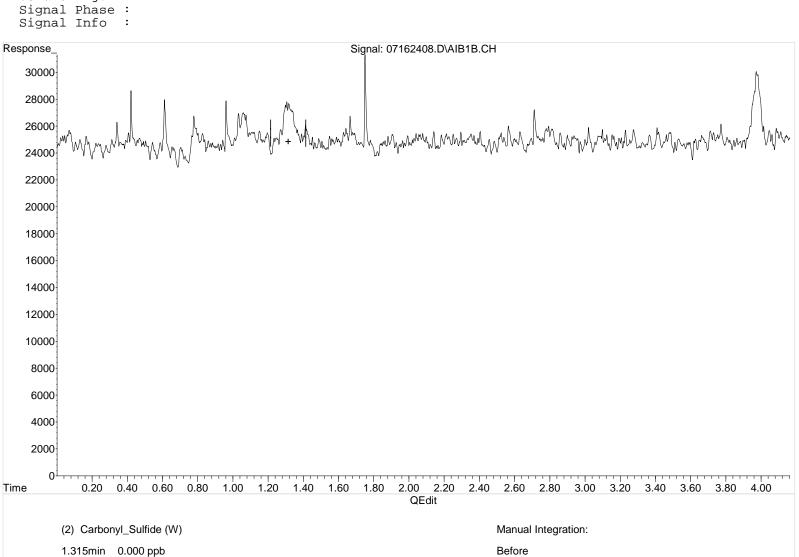

Data Path : I:\GC13\DATA\SCD\2024_07\16\





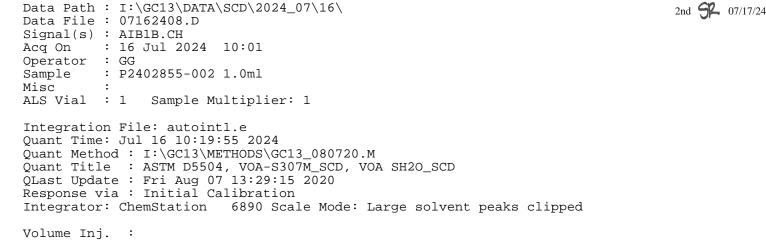


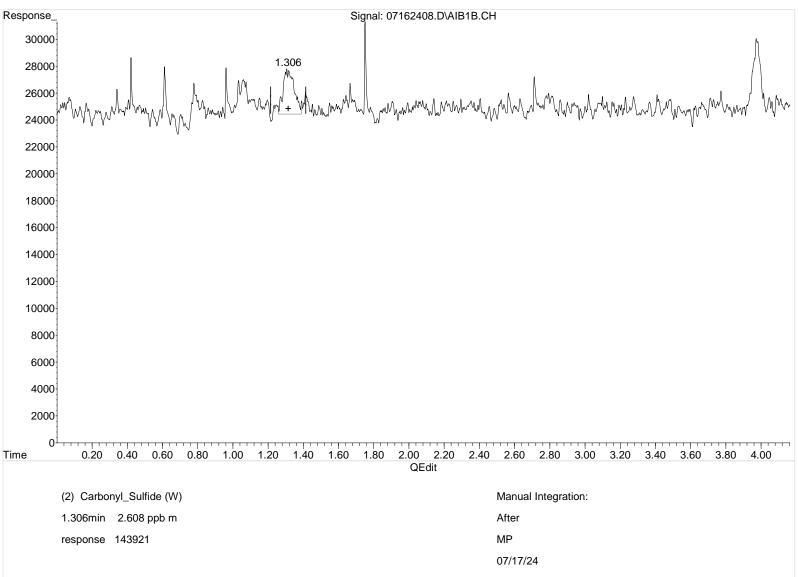

1st	Ø	07/17/24
2nd	SP.	07/17/24


Data Path : I:\GC13\DATA\SCD\2024_07\16\ Data File : 07162408.D Signal(s) : AIB1B.CH Acq On : 16 Jul 2024 10:01 Operator : GG Sample : P2402855-002 1.0ml Misc : ALS Vial : 1 Sample Multiplier: 1							
Integration File: autoint1.e Quant Time: Jul 17 09:11:38 2024 Quant Method : I:\GC13\METHODS\GC13_080720.M Quant Title : ASTM D5504, VOA-S307M_SCD, VOA SH20_SCD QLast Update : Fri Aug 07 13:29:15 2020 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped							
Volume Inj. : Signal Phase : Signal Info :							
Compound	R.T.	Response	Conc Units				
<pre>3) T Methyl_Mercaptan 4) T Ethyl_Mercaptan 5) T Dimethyl_Sulfide 6) T Carbon_Disulfide 7) T 2-Propyl_Mercaptan 8) T t-Butyl_Mercaptan 9) T Propyl_Mercaptan 10) T Ethyl Methyl_Sulfide</pre>	$\begin{array}{c} 0.000\\ 0.$	$ \begin{array}{c} 0\\ 143921\\0\\0\\0\\172683\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0$	N.D. ppb 2.608 ppb m N.D. ppb N.D. ppb N.D. ppb 1.907 ppb m N.D. ppb N.D. ppb				

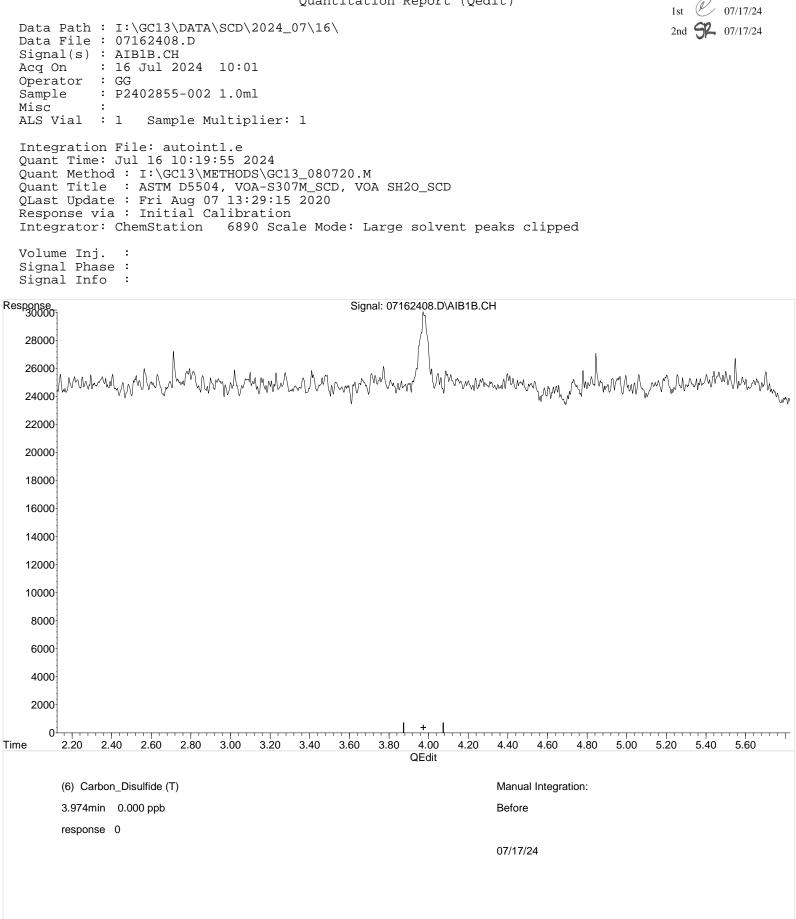
Data File : 07162408.D Signal(s) : AIB1B.CH 10:01 Acq On : 16 Jul 2024 : GG Operator Sample : P2402855-002 1.0ml Misc : ALS Vial : 1 Sample Multiplier: 1 Integration File: autoint1.e Quant Time: Jul 17 09:11:38 2024 Quant Method : I:\GC13\METHODS\GC13_080720.M Quant Title : ASTM D5504, VOA-S307M_SCD, VOA SH20_SCD QLast Update : Fri Aug 07 13:29:15 2020 Response via : Initial Calibration 6890 Scale Mode: Large solvent peaks clipped Integrator: ChemStation

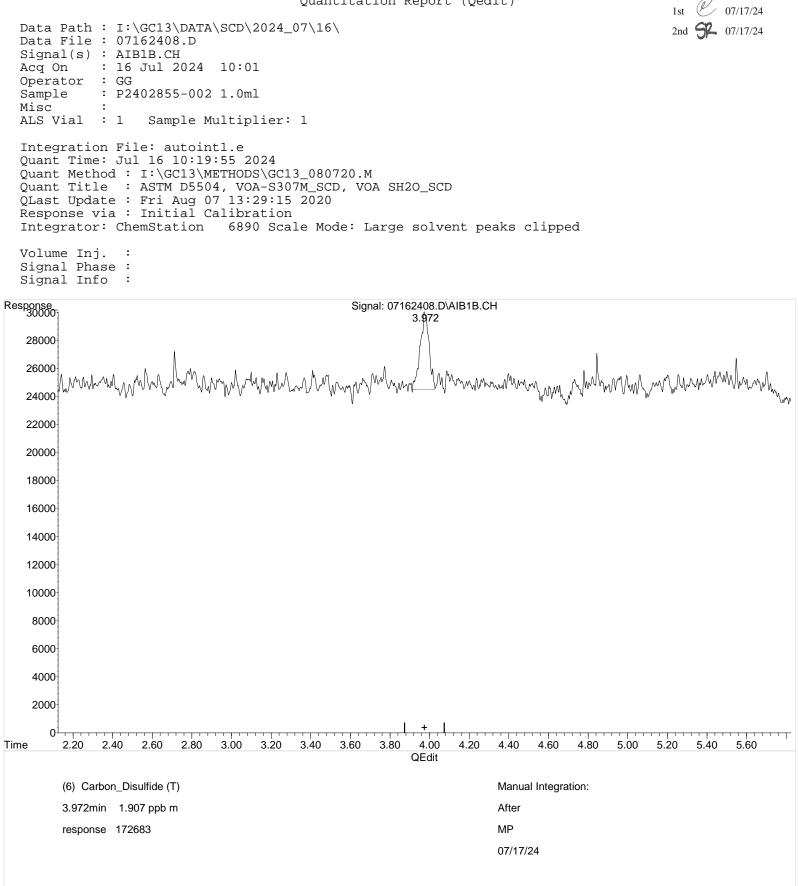
Data Path : I:\GC13\DATA\SCD\2024_07\16\





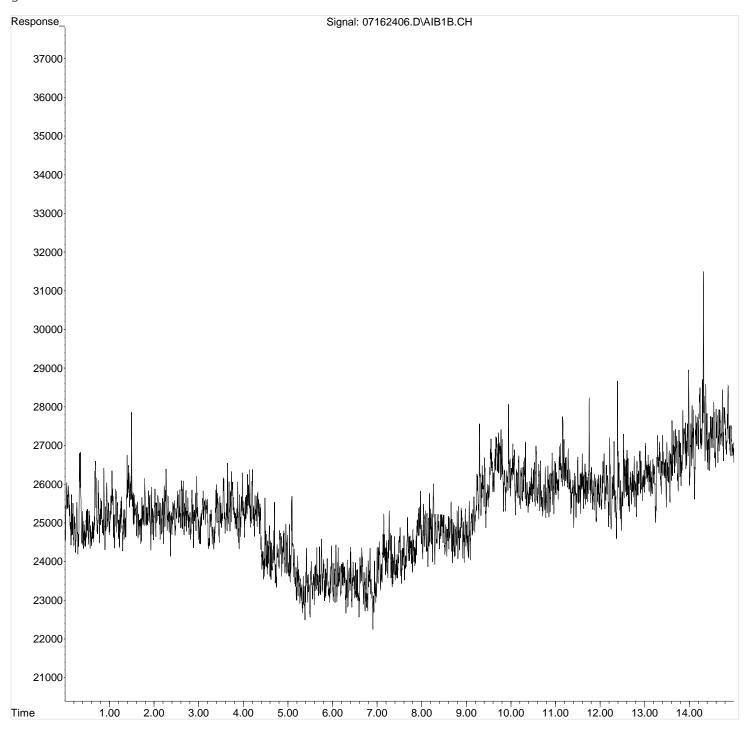
07/17/24


07/17/24



Signal Phase : Signal Info :

07/17/24

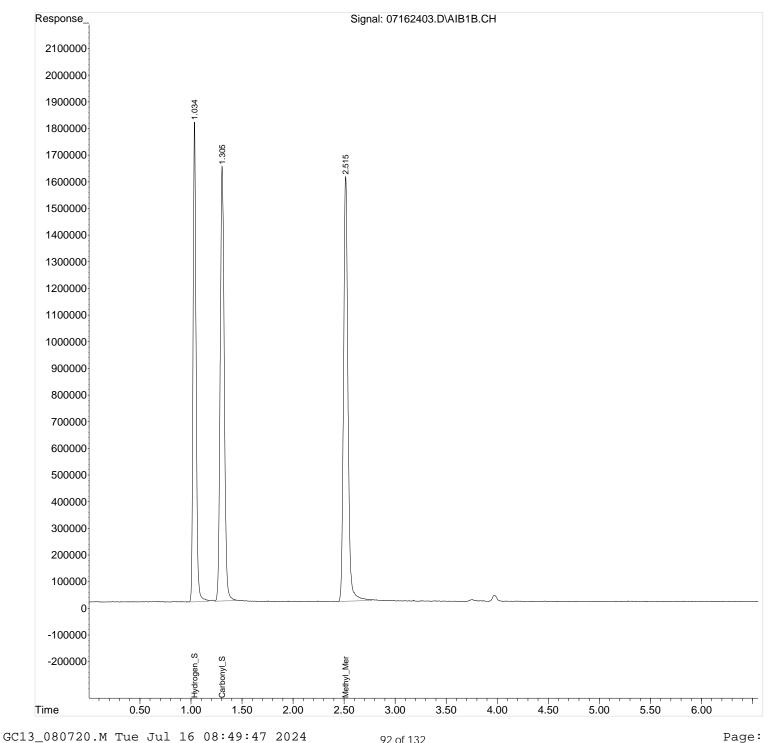


1st	Ø	07/17/24
2nd	SP.	07/17/24

Data Path : I:\GC13\DATA\SCD\2024_07\16\ Data File : 07162406.D Signal(s) : AIB1B.CH Acq On : 16 Jul 2024 9:14 Operator : GG Sample : MB 1.0ml Misc : ALS Vial : 1 Sample Multiplier: 1							
Integration File: autoint1.e Quant Time: Jul 16 09:38:38 2024 Quant Method : I:\GC13\METHODS\GC13_080720.M Quant Title : ASTM D5504, VOA-S307M_SCD, VOA SH20_SCD QLast Update : Fri Aug 07 13:29:15 2020 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped Volume Inj. :							
Signal Phase : Signal Info :		_					
Compound	R.T.	Response	Conc Units				
<pre>Target Compounds 1) Z Hydrogen_Sulfide 2) W Carbonyl_Sulfide 3) T Methyl_Mercaptan 4) T Ethyl_Mercaptan 5) T Dimethyl_Sulfide 6) T Carbon_Disulfide 7) T 2-Propyl_Mercaptan 8) T t-Butyl_Mercaptan 9) T Propyl_Mercaptan 10) T Ethyl_Methyl_Sulfide 11) T Thiophene 12) T i-Butyl_Mercaptan 13) T Diethyl_Sulfide 14) t n-Butyl_Mercaptan 15) t Dimethyl_Disulfide 16) T 2-Methyl_Thiophene 17) t 3-Methyl_Thiophene 19) t 2,5-Dimethyl_Thiophene 20) T 2-Ethyl_Thiophene 21) T Diethyl_Disulfide</pre>	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		N.D. ppb N.D. ppb				

Data File : 07162406.D Signal(s) : AIB1B.CH 9:14 Acq On : 16 Jul 2024 : GG Operator Sample : MB 1.0ml Misc : ALS Vial : 1 Sample Multiplier: 1 Integration File: autoint1.e Quant Time: Jul 16 09:38:38 2024 Quant Method : I:\GC13\METHODS\GC13_080720.M Quant Title : ASTM D5504, VOA-S307M_SCD, VOA SH20_SCD QLast Update : Fri Aug 07 13:29:15 2020 Response via : Initial Calibration 6890 Scale Mode: Large solvent peaks clipped Integrator: ChemStation

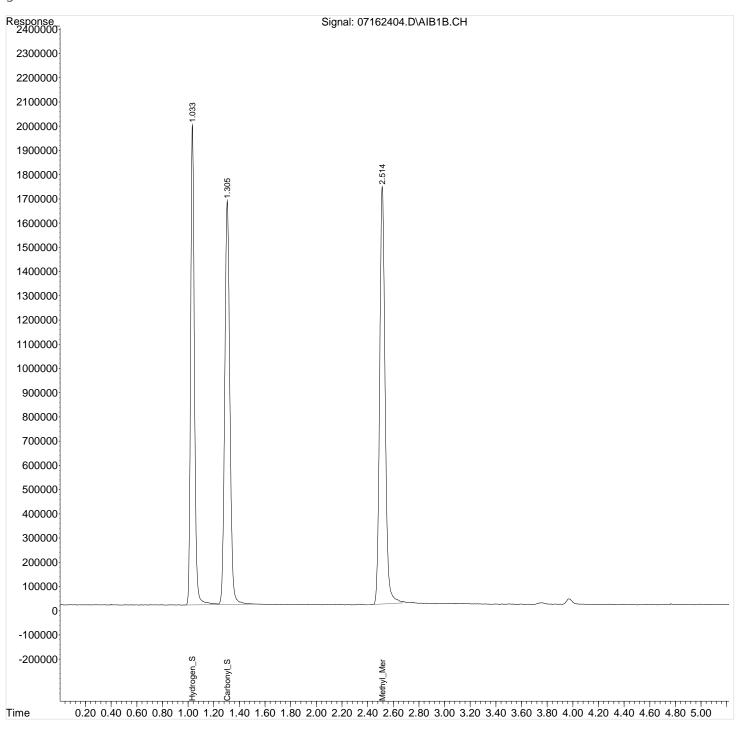
Data Path : I:\GC13\DATA\SCD\2024_07\16\


1st	Ċ	07/17/24
2nd	SP.	07/17/24

Data Path : I:\GC13\DATA\SCD\2024_07\16\ Data File : 07162403.D Signal(s) : AIB1B.CH Acq On : 16 Jul 2024 8:30 Operator : GG Sample : LCS S33-06212402 Misc : ALS Vial : 1 Sample Multiplier: 1							
Integration File: autointl.e Quant Time: Jul 16 08:38:54 2024 Quant Method : I:\GC13\METHODS\GC13_080720.M Quant Title : ASTM D5504, VOA-S307M_SCD, VOA SH20_SCD QLast Update : Fri Aug 07 13:29:15 2020 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped							
Volume Inj. : Signal Phase : Signal Info :							
Compound	R.T.	Response	Conc Units				
<pre>Target Compounds 1) Z Hydrogen_Sulfide 2) W Carbonyl_Sulfide 3) T Methyl_Mercaptan 4) T Ethyl_Mercaptan 5) T Dimethyl_Sulfide 6) T Carbon_Disulfide 7) T 2-Propyl_Mercaptan 8) T t-Butyl_Mercaptan 9) T Propyl_Mercaptan 10) T Ethyl_Methyl_Sulfide 11) T Thiophene 12) T i-Butyl_Mercaptan 13) T Diethyl_Sulfide 14) t n-Butyl_Mercaptan 15) t Dimethyl_Disulfide 16) T 2-Methyl_Thiophene 17) t 3-Methyl_Thiophene 19) t 2,5-Dimethyl_Thiophene 21) T Diethyl_Disulfide 22) T MethylTisulfide</pre>	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	36919151 45252655 47754232 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	770.993 ppb 820.175 ppb 1054.805 ppb N.D. ppb				

07/17/24 1st 2nd **SP** 07/17/24

Data File : 07162403.D Signal(s) : AIB1B.CH Acq On : 16 Jul 2024 8:30 Operator : GG : LCS S33-06212402 Sample Misc : ALS Vial : 1 Sample Multiplier: 1 Integration File: autoint1.e Quant Time: Jul 16 08:38:54 2024 Quant Method : I:\GC13\METHODS\GC13_080720.M Quant Title : ASTM D5504, VOA-S307M_SCD, VOA SH20_SCD QLast Update : Fri Aug 07 13:29:15 2020 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped

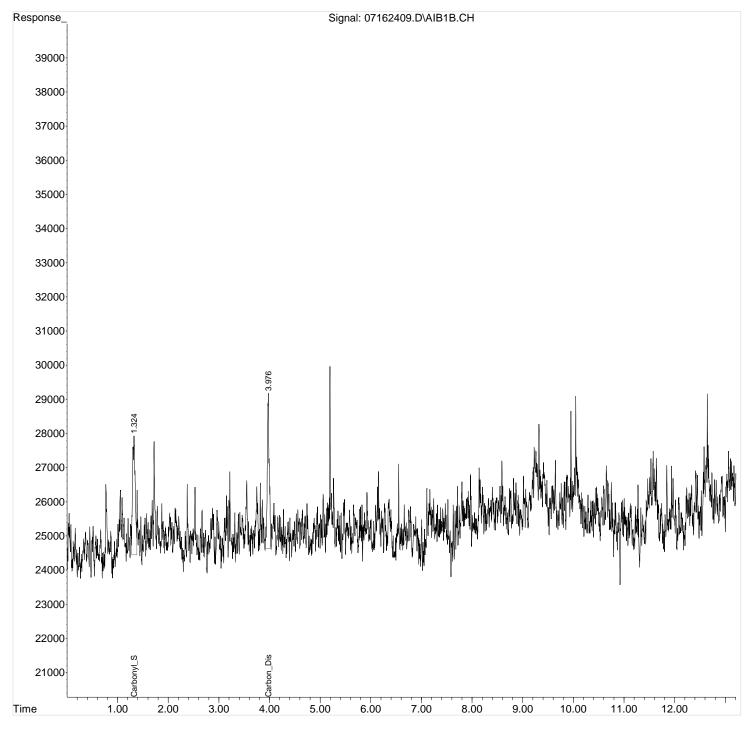

Data Path : I:\GC13\DATA\SCD\2024_07\16\

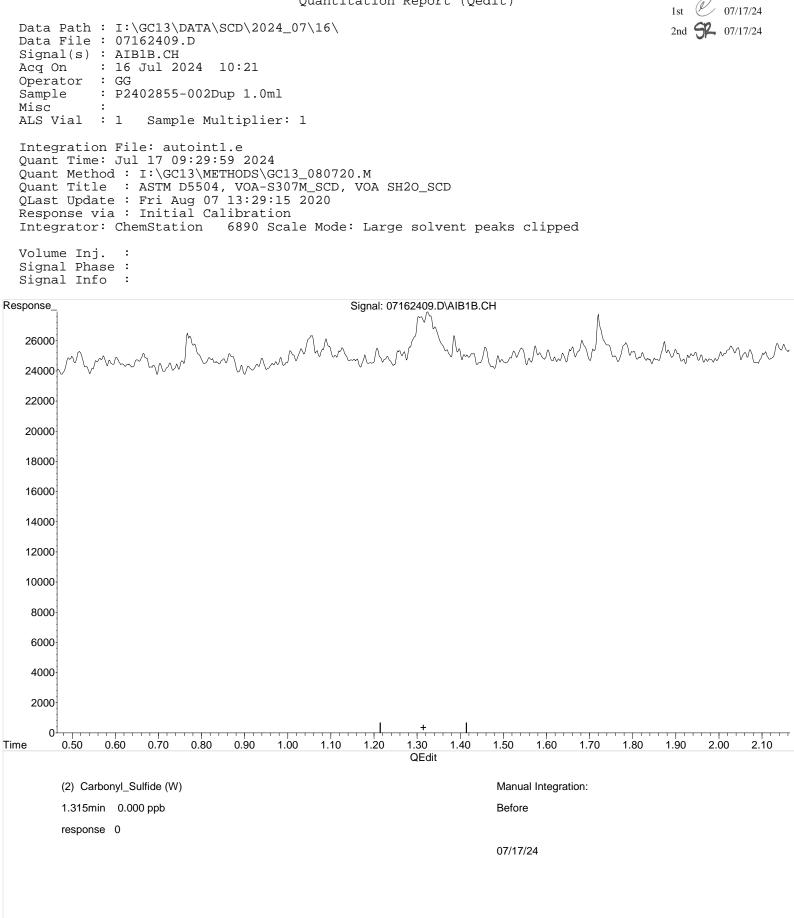
1st	Ċ	07/17/24
2nd	SP.	07/17/24

Data Path : I:\GC13\DATA\SCD\2024_07\16\ Data File : 07162404.D Signal(s) : AIB1B.CH Acq On : 16 Jul 2024 8:41 Operator : GG Sample : LCSD S33-06212402 Misc : ALS Vial : 1 Sample Multiplier: 1							
Integration File: autoint1.e Quant Time: Jul 16 08:49:38 2024 Quant Method : I:\GC13\METHODS\GC13_080720.M Quant Title : ASTM D5504, VOA-S307M_SCD, VOA SH20_SCD QLast Update : Fri Aug 07 13:29:15 2020 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped							
Volume Inj. : Signal Phase : Signal Info :							
Compound	R.T.	Response	Conc Units				
<pre>Target Compounds 1) Z Hydrogen_Sulfide 2) W Carbonyl_Sulfide 3) T Methyl_Mercaptan 4) T Ethyl_Mercaptan 5) T Dimethyl_Sulfide 6) T Carbon_Disulfide 7) T 2-Propyl_Mercaptan 8) T t-Butyl_Mercaptan 9) T Propyl_Mercaptan 10) T Ethyl_Methyl_Sulfide 11) T Thiophene 12) T i-Butyl_Mercaptan 13) T Diethyl_Sulfide 14) t n-Butyl_Mercaptan 15) t Dimethyl_Disulfide 16) T 2-Methyl_Thiophene 17) t 3-Methyl_Thiophene 19) t 2,5-Dimethyl_Thiophene 20) T 2-Ethyl_Thiophene 21) T Diethyl_Disulfide 22) T Methyltrisulfide</pre>	0.000 0.000	$ \begin{array}{c} 41003178\\ 46193730\\ 50848332\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	856.281 ppb 837.231 ppb 1123.148 ppb N.D. ppb N.D. ppb d N.D. ppb d N.D. ppb N.D. ppb				

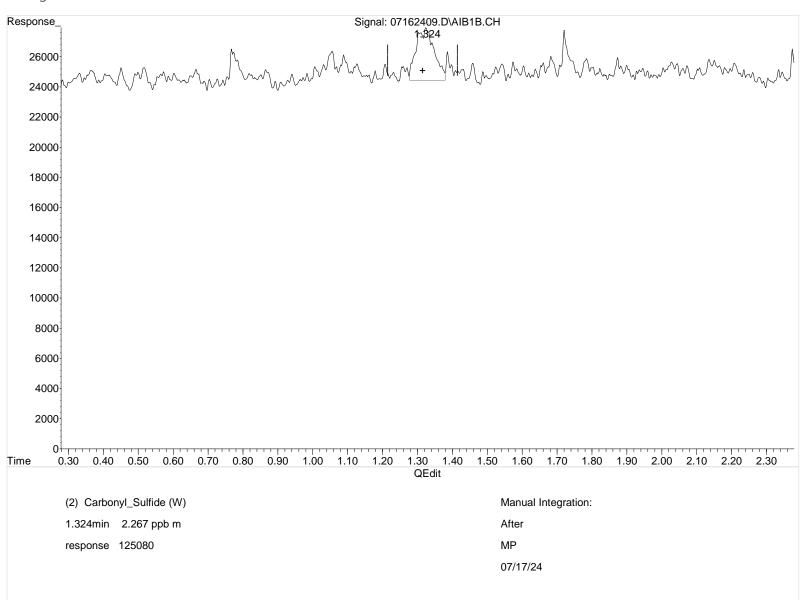
Data Path : I:\GC13\DATA\SCD\2024_07\16\ Data File : 07162404.D Signal(s) : AIB1B.CH Acq On : 16 Jul 2024 8:41 Operator : GG Sample : LCSD S33-06212402 Misc : ALS Vial : 1 Sample Multiplier: 1 Integration File: autoint1.e Quant Time: Jul 16 08:49:38 2024 Quant Method : I:\GC13\METHODS\GC13_080720.M Quant Title : ASTM D5504, VOA-S307M_SCD, VOA SH20_SCD QLast Update : Fri Aug 07 13:29:15 2020 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped

 1st
 @
 07/17/24

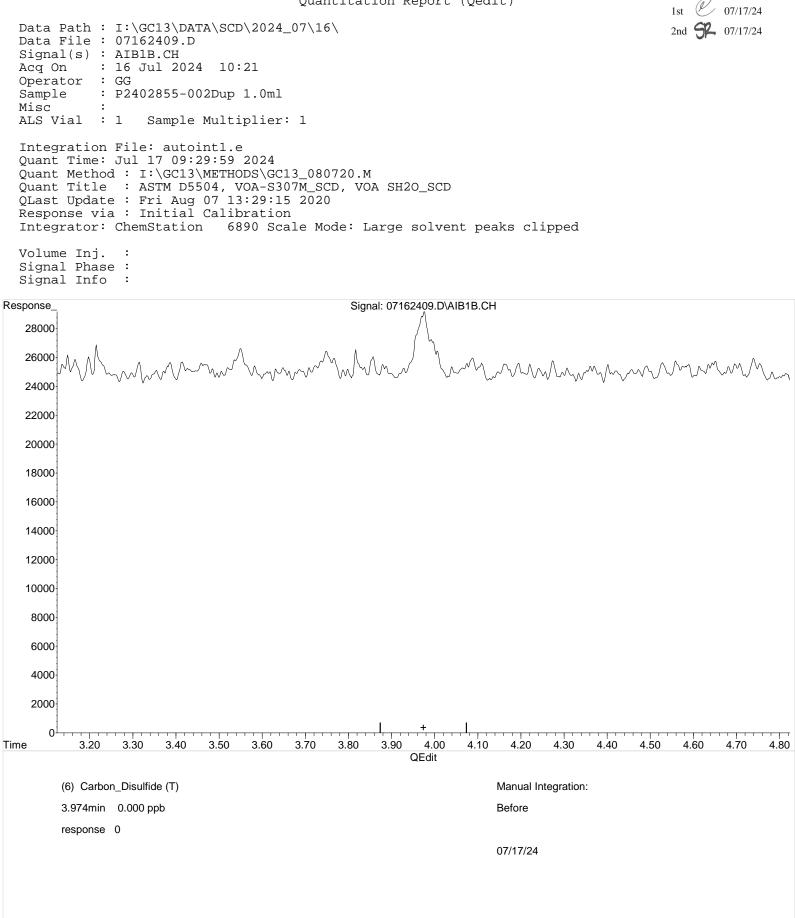

 2nd
 5% 07/17/24

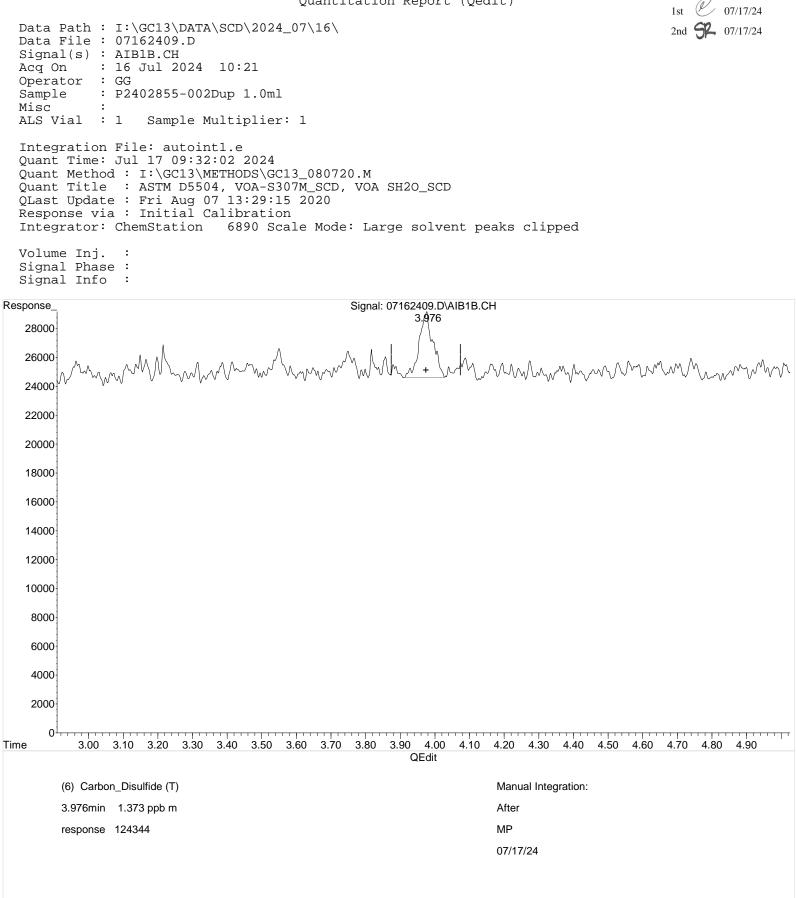

Data Path : I:\GC13\DATA\SCD\2024_07\16\ Data File : 07162409.D Signal(s) : AIB1B.CH Acq On : 16 Jul 2024 10:21 Operator : GG Sample : P2402855-002Dup 1.0ml Misc : ALS Vial : 1 Sample Multiplier: 1							
Integration File: autoint1.e Quant Time: Jul 17 09:32:02 2024 Quant Method : I:\GC13\METHODS\GC13_080720.M Quant Title : ASTM D5504, VOA-S307M_SCD, VOA SH20_SCD QLast Update : Fri Aug 07 13:29:15 2020 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped							
Volume Inj. : Signal Phase : Signal Info :							
Compound	R.T.	Response	Conc Units				
<pre>Target Compounds 1) Z Hydrogen_Sulfide 2) W Carbonyl_Sulfide 3) T Methyl_Mercaptan 4) T Ethyl_Mercaptan 5) T Dimethyl_Sulfide 6) T Carbon_Disulfide 7) T 2-Propyl_Mercaptan 8) T t-Butyl_Mercaptan 9) T Propyl_Mercaptan 10) T Ethyl_Methyl_Sulfide 11) T Thiophene 12) T i-Butyl_Mercaptan 13) T Diethyl_Sulfide 14) t n-Butyl_Mercaptan 15) t Dimethyl_Disulfide 16) T 2-Methyl_Thiophene 17) t 3-Methyl_Thiophene 19) t 2,5-Dimethyl_Thiophene 20) T 2-Ethyl_Thiophene 21) T Diethyl_Disulfide 22) T MethylTisulfide</pre>							

(f)=RT Delta > 1/2 Window


Data File : 07162409.D Signal(s) : AIB1B.CH 10:21 Acq On : 16 Jul 2024 : GG Operator Sample : P2402855-002Dup 1.0ml Misc : ALS Vial : 1 Sample Multiplier: 1 Integration File: autoint1.e Quant Time: Jul 17 09:32:02 2024 Quant Method : I:\GC13\METHODS\GC13_080720.M Quant Title : ASTM D5504, VOA-S307M_SCD, VOA SH20_SCD QLast Update : Fri Aug 07 13:29:15 2020 Response via : Initial Calibration 6890 Scale Mode: Large solvent peaks clipped Integrator: ChemStation

Data Path : I:\GC13\DATA\SCD\2024_07\16\





Data Path : I:\GC13\DATA\SCD\2024_07\16\ 2nd **SP** 07/17/24 Data File : 07162409.D Signal(s) : AIB1B.CH Acq On : 16 Jul 2024 10:21 : GG Operator : P2402855-002Dup 1.0ml Sample Misc : ALS Vial : 1 Sample Multiplier: 1 Integration File: autoint1.e Quant Time: Jul 17 09:32:02 2024 Quant Method : I:\GC13\METHODS\GC13_080720.M Quant Title : ASTM D5504, VOA-S307M_SCD, VOA SH20_SCD QLast Update : Fri Aug 07 13:29:15 2020 Response via : Initial Calibration 6890 Scale Mode: Large solvent peaks clipped Integrator: ChemStation Volume Inj. : Signal Phase : Signal Info :

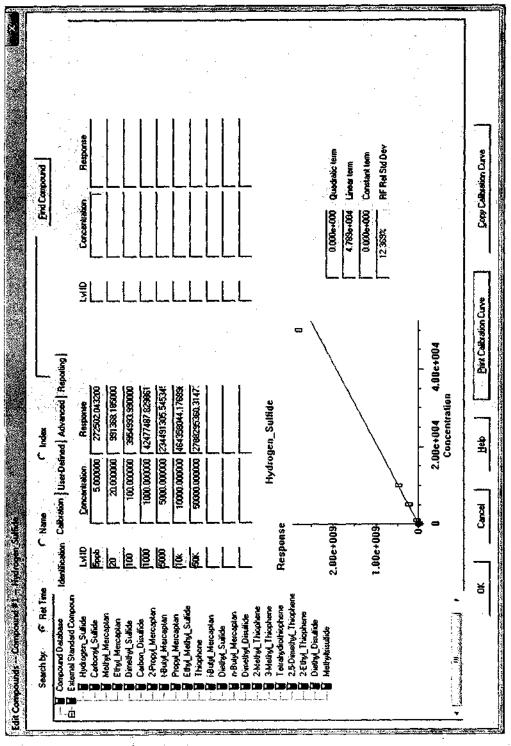
07/17/24

.

.

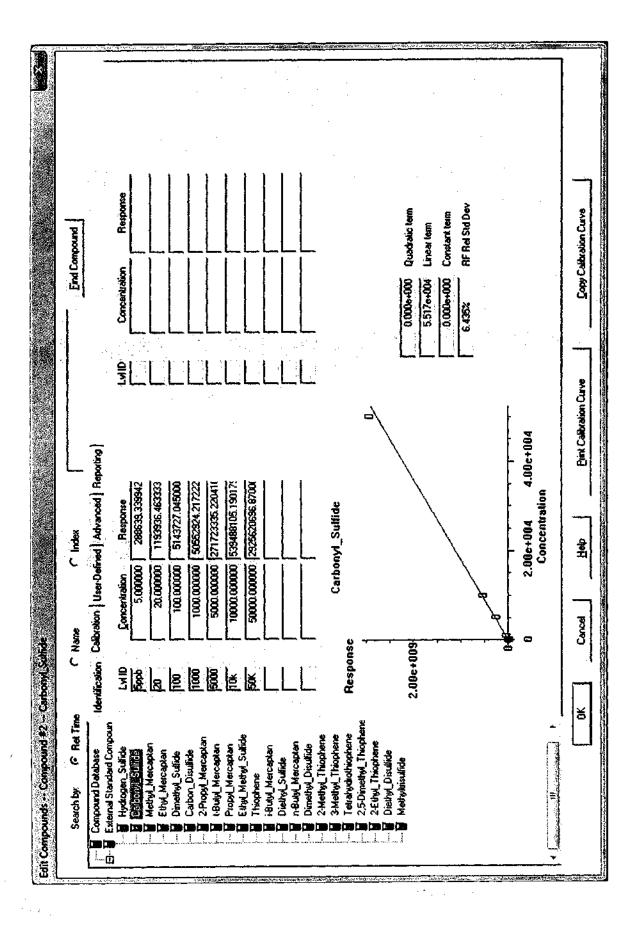
Method Path : J:\GC13\METHODS\ Method File : GC13_080720.M Title : ASTM D5504, VOA-S307M_SCD, VOA SH20_SCD Last Update : Fri Aug 07 13:29:15 2020 Response Via : Initial Calibration

Calibr. 5ppb 1000	ation Files =08072014.D 20 =08072017.D 500		080720: 080720:		100 10k		72016.1 72019.1	_		
	Compound	5ppb	20	100	1000	5000	10k	Avg		%RSD
1) Z 2) W 3) T 5) T 7) T 7) T 9) T 10) T 12) T 13) T 14) T 15) T 15) T 15) T 15) T 17) T 18) T 20) T 22) T	Hydrogen_Sulfide Carbonyl_Sulfide Methyl_Mercaptan Ethyl_Mercaptan Dimethyl_Sulfide Carbon_Disulfide 2-Propyl_Merca Propyl_Mercaptan Ethyl_Mercaptan Ethyl_Merca Diethyl_Merca Diethyl_Sulfide n-Butyl_Merca Dimethyl_Disu 2-Methyl_Thio 3-Methyl_Thio 2-Ethyl_Thiop Diethyl_Disul Methyl_Disul	5.773 4.196 4	5.970 3.965 3	5.144 3.729 3	5.055 4.447 4.47 4.47 4.47 4.47 4.47 4.47 4.47 4.47 4.47 4	5.434 4.900 5.80	5.395 4.920 4	5.517 4.527 4.527 4.527 4.527 4.527 4.527 4.527 4.527 4.527 4.527 4.527 4.527 4.527	E44 E44 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E54 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55 E55E55	6.43 13.90 13.90 13.90 13.90 13.90 13.90 13.90 13.90 13.90 13.90 13.90 13.90 13.90 13.90 13.90 13.90 13.90 13.90 13.90
(#) = Oi	ut of Range ###	Number	c of ca	librat	ion le	evels e	exceede	ed form	nat	###

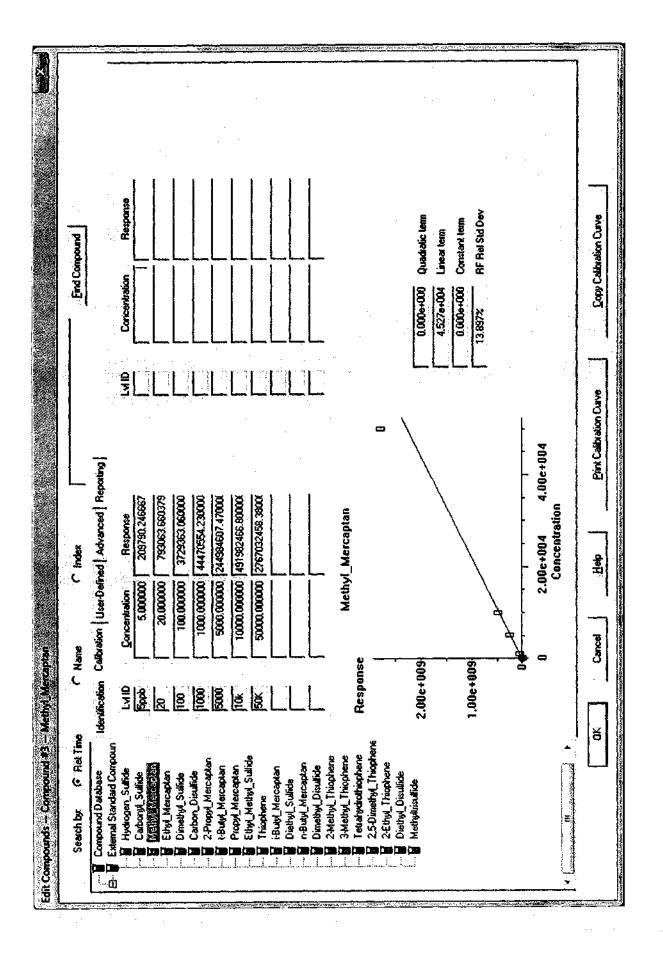

Method Path : J:\GC13\METHODS\ Method File : GC13_080720.M Title : ASTM D5504, VOA~S307M_SCD, VOA SH20_SCD Last Update : Fri Aug 07 13:29:15 2020 Response Via : Initial Calibration

#	ID	Conc	ISTD Conc	Path\File
1	5ppb	2	0	I:\GC13\DATA\SCD\2020_08\07\08072014.D
2	20	7	0	I:\GC13\DATA\SCD\2020_08\07\08072015.D
3	100	33	0	I:\GC13\DATA\SCD\2020_08\07\08072016.D
4	1000	333	0	I:\GC13\DATA\SCD\2020_08\07\08072017.D
5	5000	1667	0	I:\GC13\DATA\SCD\2020_08\07\08072018.D
6	10k	3333	0	I:\GC13\DATA\SCD\2020_08\07\08072019.D
7	50K	16667	0	I:\GC13\DATA\SCD\2020_08\07\08072020.D

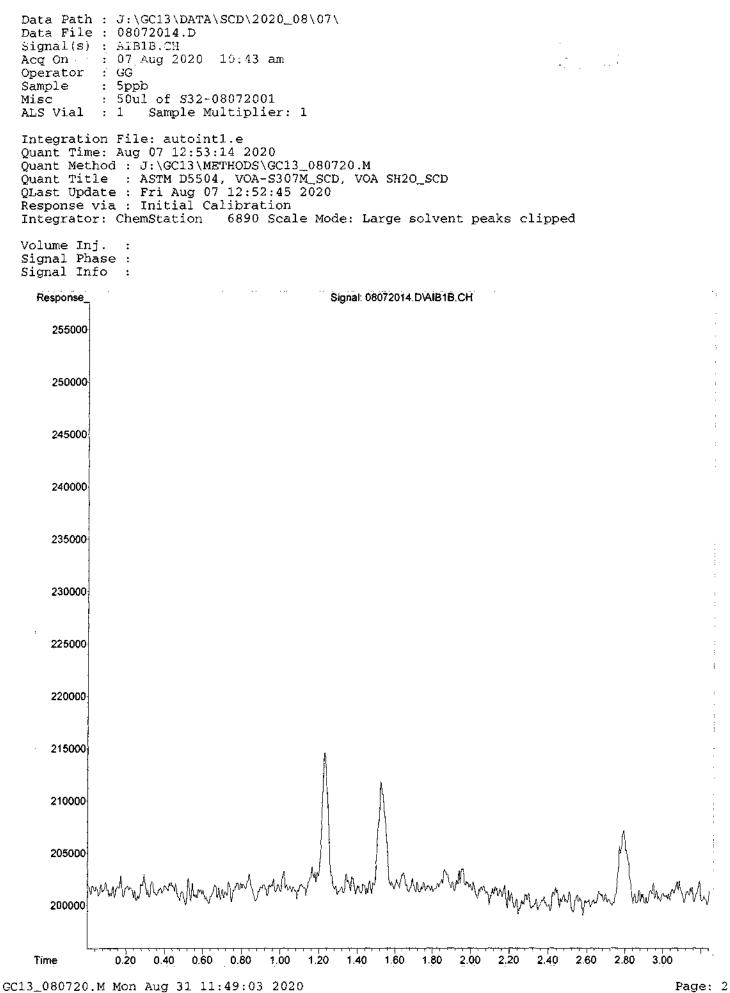
#	ID	Update Time	Quant Time	Acquisition Time
1	5ppb	Aug 07 12:54 2020	Aug 07 12:53 2020	07 Aug 2020 10:43 am
2	20	Aug 07 12:55 2020	Aug 07 12:54 2020	07 Aug 2020 11:09 am
3	100	Aug 07 12:55 2020	Aug 07 12:55 2020	07 Aug 2020 11:34 am
4	1000	Aug 07 12:56 2020	Aug 07 12:56 2020	07 Aug 2020 11:50 am
5	5000	Aug 07 12:56 2020	Aug 07 12:56 2020	07 Aug 2020 12:12 pm
6	10k	Aug 07 12:57 2020	Aug 07 12:57 2020	07 Aug 2020 12:22 pm
7	50K	Aug 07 12:59 2020	Aug 07 12:59 2020	07 Aug 2020 12:38 pm

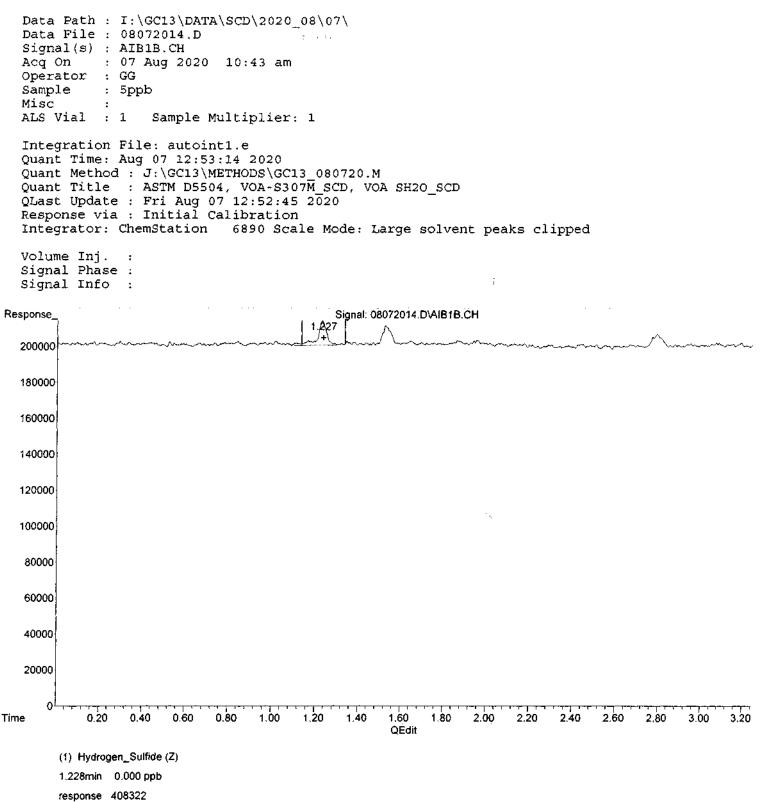

GC13_080720.M Mon Aug 31 10:57:20 2020

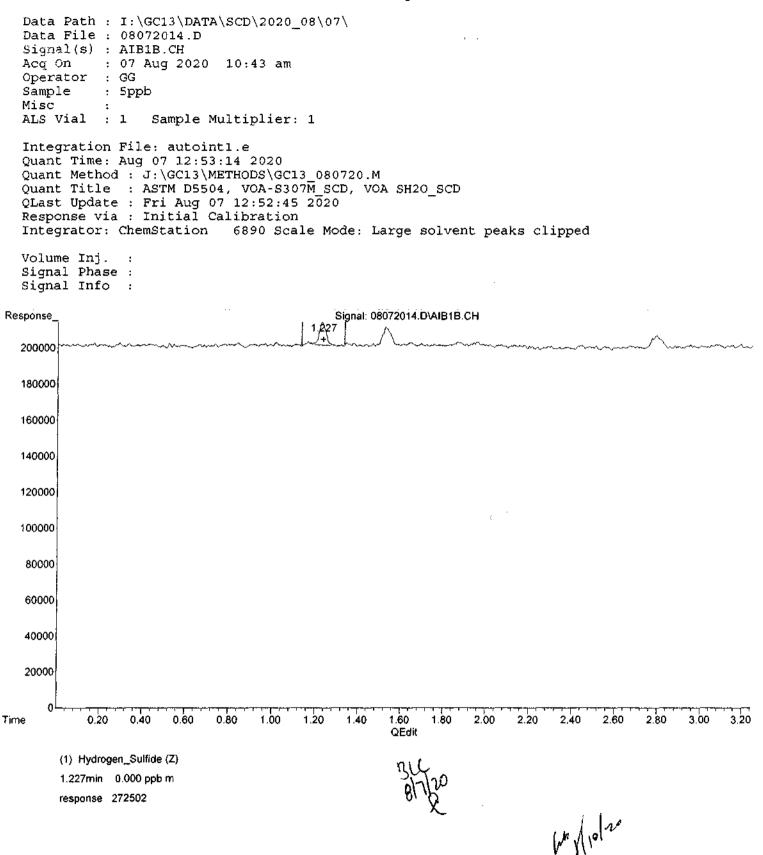
-



.


• ;


104 of 132


Data Path : J:\GC13\DATA\SCD\20 Data File : 08072014.D Signal(s) : AIB1B.CH Acq On : 07 Aug 2020 10:43 Operator : GG Sample : 5ppb Misc : 50ul of S32-0807200 ALS Vial : 1 Sample Multipli	am)1	• • •	•				
Integration File: autoint1.e Quant Time: Aug 07 12:53:14 2020 Quant Method : J:\GC13\METHODS\GC13_080720.M Quant Title : ASTM D5504, VOA-S307M_SCD, VOA SH20_SCD QLast Update : Fri Aug 07 12:52:45 2020 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped							
Volume Inj. : Signal Phase : Signal Info :							
Compound	R.T.	Response	Conc Unit	5			
<pre>Target Compounds 1) Z Hydrogen_Sulfide 2) W Carbonyl_Sulfide 3) T Methyl_Mercaptan 4) T Ethyl_Mercaptan 5) T Dimethyl_Sulfide 6) T Carbon_Disulfide 7) T 2-Propyl_Mercaptan 8) T t-Butyl_Mercaptan 9) T Propyl_Mercaptan 10) T Ethyl_Methyl_Sulfide 11) T Thiophene 12) T i-Butyl_Mercaptan 13) T Diethyl_Sulfide 14) t n-Butyl_Mercaptan 15) t Dimethyl_Disulfide 16) T 2-Methyl_Thiophene 17) t 3-Methyl_Thiophene 19) t 2,5-Dimethyl_Disulfide 20) T 2-Ethyl_Thiophene 21) T Diethyl_Disulfide 21) T Diethyl_Disulfide</pre>	0.000 0.000 0.000	0000	N.D. ppb N.D. ppb N.D. ppb N.D. ppb N.D. ppb N.D. ppb N.D. ppb	m			

٠

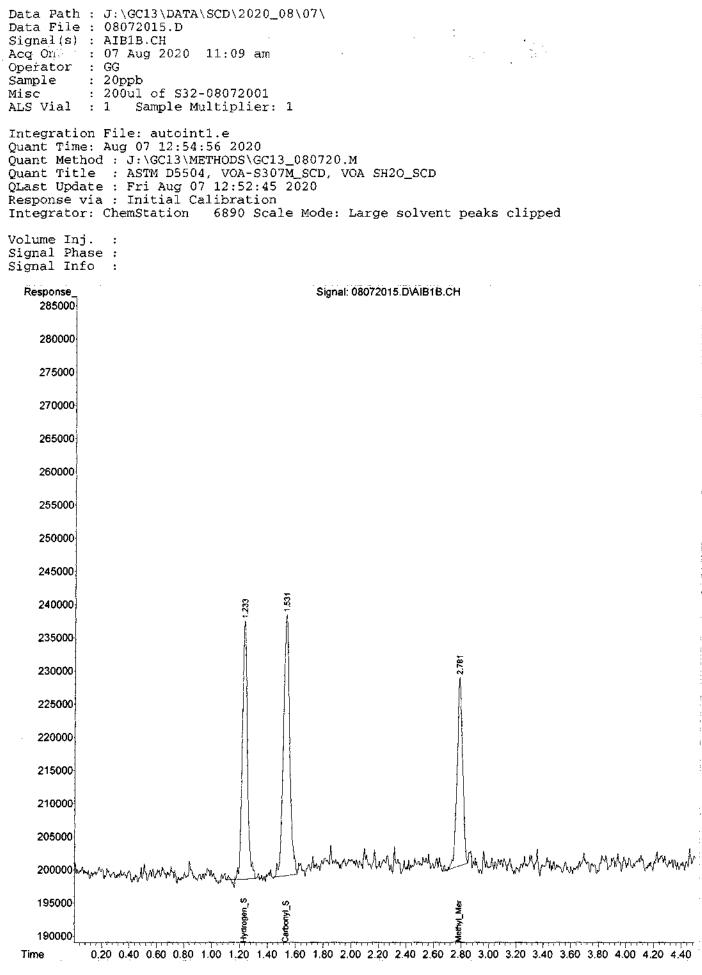
(+) = Expected Retention Time GC13_080720.M Fri Aug 07 12:53:34 2020

Data Path : J:\GC13\DATA\SCD\2020 Data File : 08072015.D Signal(s) : AIB1B.CH Acq On : 07 Aug 2020 11:09 am Operator : GG Sample : 20ppb Misc : 200ul of S32-08072001 ALS Vial : 1 Sample Multiplier		t de la constant de l				
Integration File: autointl.e Quant Time: Aug 07 12:54:56 2020 Quant Method : J:\GC13\METHODS\GC13_080720.M Quant Title : ASTM D5504, VOA-S307M_SCD, VOA SH20_SCD QLast Update : Fri Aug 07 12:52:45 2020 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped						
Volume Inj. : Signal Phase : Signal Info :						
Compound	R.T.	Response	Conc Units			
<pre>Target Compounds 1) Z Hydrogen_Sulfide 2) W Carbonyl_Sulfide 3) T Methyl_Mercaptan 4) T Ethyl_Mercaptan 5) T Dimethyl_Sulfide 6) T Carbon_Disulfide 7) T 2-Propyl_Mercaptan 8) T t-Butyl_Mercaptan 9) T Propyl_Mercaptan 10) T Ethyl_Mercaptan 10) T Ethyl_Mercaptan 10) T Diethyl_Sulfide 11) T Thiophene 12) T i-Butyl_Mercaptan 13) T Diethyl_Sulfide 14) t n-Butyl_Mercaptan 15) t Dimethyl_Disulfide 16) T 2-Methyl_Thiophene 17) t 3-Methyl_Thiophene 19) t 2,5-Dimethyl_Thiophene 20) T 2-Ethyl_Thiophene 21) T Diethyl_Disulfide 20) T 2-Ethyl_Disulfide 20) T 2-Ethyl_Thiophene 21) T Diethyl_Disulfide 20) T 2-Ethyl_Thiophene 21) T Diethyl_Disulfide 21) T Di</pre>	$1.234 \\ 1.531 \\ 2.782 \\ 0.000 \\ 0.00$					

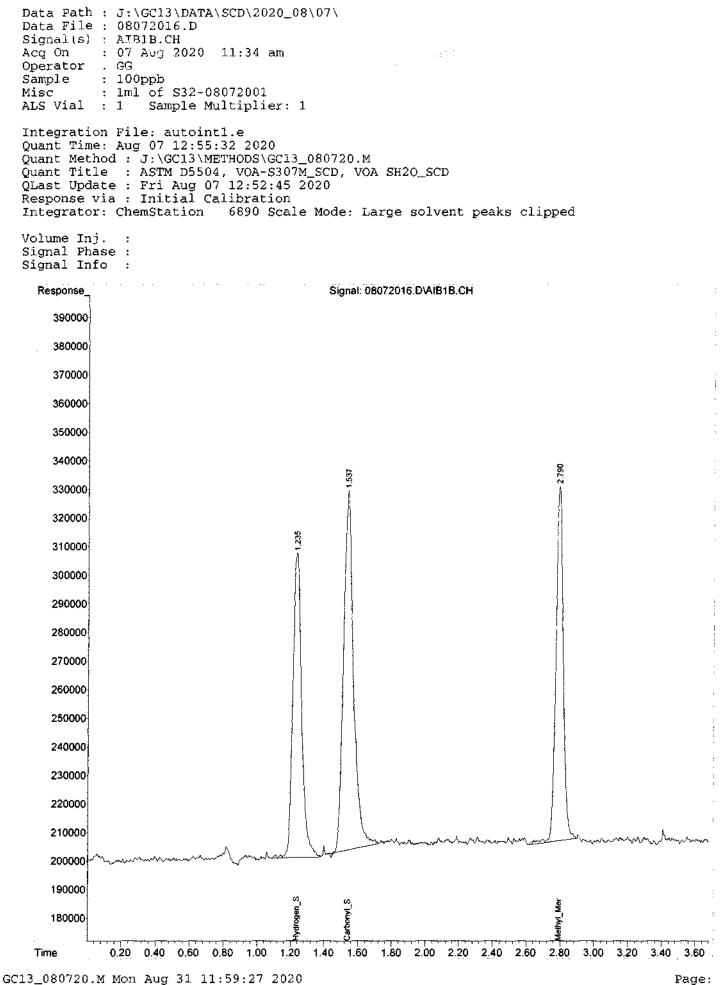
0.000

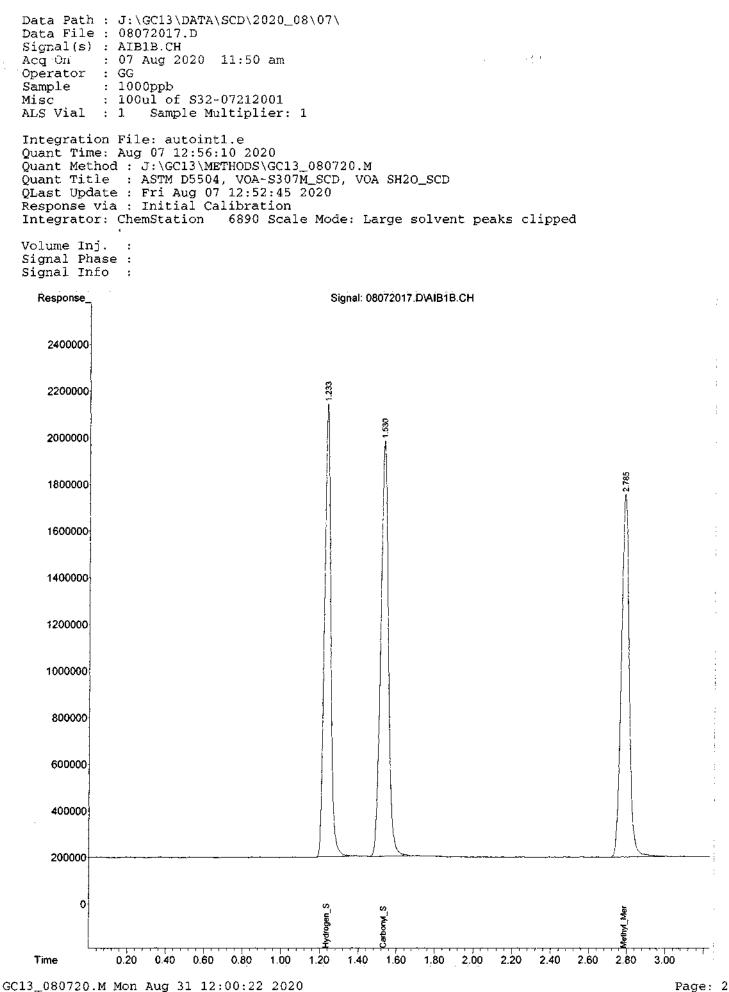
(f)=RT Delta > 1/2 Window

Methyltrisulfide

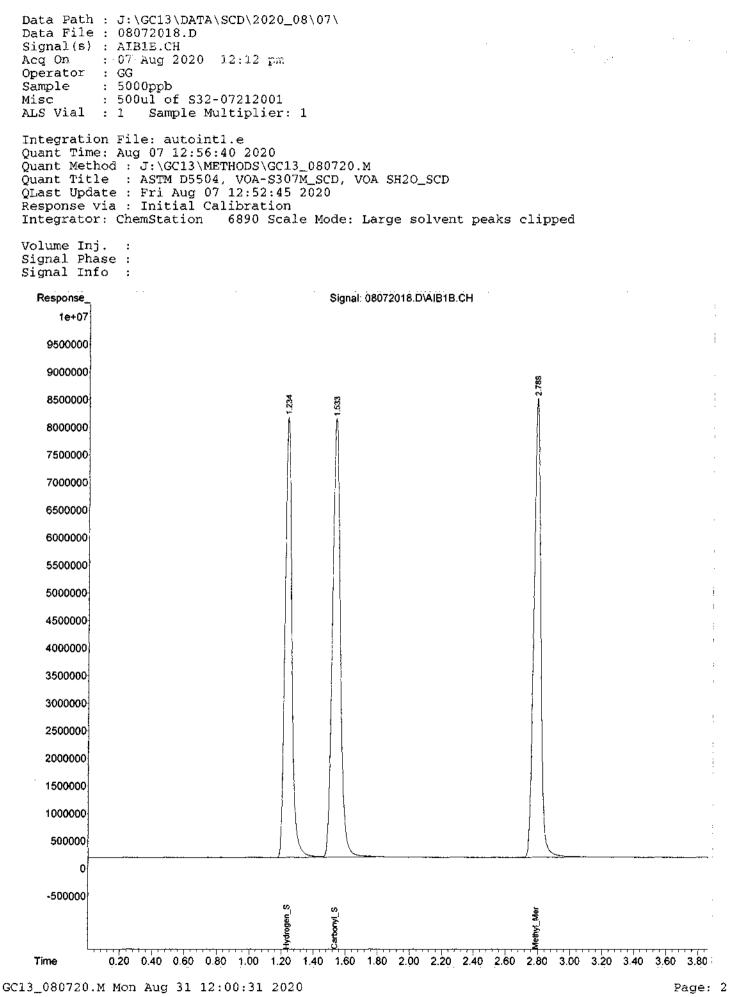

22) T

(m)=manual int.


N.D. ppb


0

Data Path : J:\GC13\DATA\SCD\2020_08\07\ Data File : 08072016.D Signal(s) : AIB1B.CH Acq On : 07 Aug 2020 11:34 am Operator : GG Sample : 100ppb Misc : 1ml of S32-08072001 ALS Vial : 1 Sample Multiplier: 1										
Integration File: autoint1.e Quant Time: Aug 07 12:55:32 2020 Quant Method : J:\GC13\METHODS\GC13_080720.M Quant Title : ASTM D5504, VOA-S307M_SCD, VOA SH20_SCD QLast Update : Fri Aug 07 12:52:45 2020 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped										
Volume Inj. : Signal Phase : Signal Info :		1								
Compound	R.T.	Response	Conc Units							
<pre>Target Compounds 1) Z Hydrogen_Sulfide 2) W Carbonyl_Sulfide 3) T Methyl_Mercaptan 4) T Ethyl_Mercaptan 5) T Dimethyl_Sulfide 6) T Carbon_Disulfide 7) T 2-Propyl_Mercaptan 8) T t-Butyl_Mercaptan 9) T Propyl_Mercaptan 10) T Ethyl_Methyl_Sulfide 11) T Thiophene 12) T i-Butyl_Mercaptan 13) T Diethyl_Sulfide 14) t n-Butyl_Mercaptan 15) t Dimethyl_Disulfide 16) T 2-Methyl_Thiophene 17) t 3-Methyl_Thiophene 19) t 2.5-Dimethyl_Thiophene 20) T 2-Ethyl_Thiophene 21) T Diethyl_Disulfide 22) T Methylrisulfide</pre>	$1.236\\1.538\\2.790\\0.00$	$3954994 \\ 5143727 \\ 3729363 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	76.007 ppb 87.609 ppb 91.393 ppb N.D. ppb							



ort (QT Reviewed)

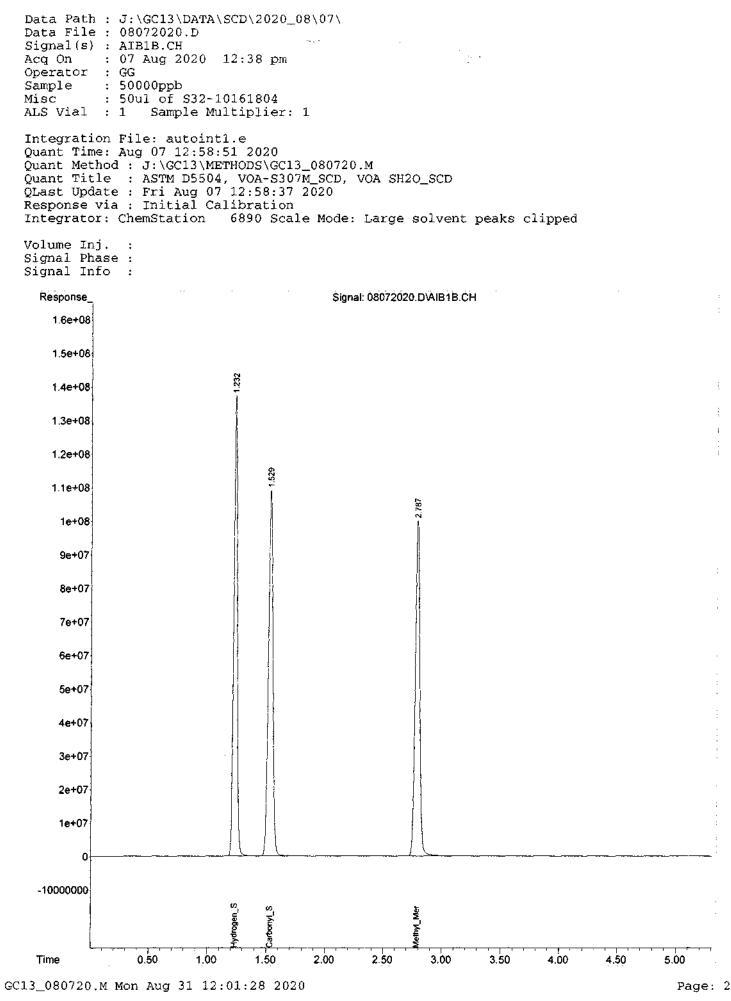
Data Path : J:\GC13\DATA\SCD\2020_08\07\ Data File : 08072018.D Signal(s) : AIB1B.CH Acq On : 07 Aug 2020 12:12 pm Operator : GG Sample : 5000ppb Misc : 500ul of S32-07212001 ALS Vial : 1 Sample Multiplier: 1										
Integration File: autoint1.e Quant Time: Aug 07 12:56:40 2020 Quant Method : J:\GC13\METHODS\GC13_080720.M Quant Title : ASTM D5504, VOA-S307M_SCD, VOA SH20_SCD QLast Update : Fri Aug 07 12:52:45 2020 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped										
Volume Inj. : Signal Phase : Signal Info :										
Compound		R.T.	Response	Conc I	Units					
Target Compounds 1) Z Hydrogen_ 2) W Carbonyl_ 3) T Methyl_Mer 4) T Ethyl_Mer 5) T Dimethyl_ 6) T Carbon_Di 7) T 2-Propyl_ 8) T t-Butyl_Mer 10) T Ethyl_Mer 10) T Ethyl_Mer 11) T Thiophene 12) T i-Butyl_Mer 13) T Diethyl_S 14) t n-Butyl_M 15) t Dimethyl_ 16) T 2-Methyl_ 17) t 3-Methyl_ 18) T Tetrahydr 19) t 2,5-Dimet 20) T 2-Ethyl_T 21) T Diethyl_D 22) T Methyltri	Thiophene Thiophene othiophene hyl_Thiophene hiophene isulfide	0.000	234491306 271723335 244984607 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N.D. N.D. N.D. N.D. N.D. N.D.	ppb ppb ppb ppb					

(f)=RT Delta > 1/2 Window

(m) =manual int.

.

Haran Rasa


(QT Reviewed)

Data Path : J:\GC13\DATA\SCD\2020_08\07\ Data File : 08072019.D Signal(s) : AIB1B.CH : 07 Aug 2020 12:22 pm Acq On Operator : GG Sample : 10000ppb Misc : 1ml of S32-07212001 ALS Vial : 1 Sample Multiplier: 1 Integration File: autoint1.e Quant Time: Aug 07 12:57:10 2020 Quant Method : J:\GC13\METHODS\GC13_080720.M Quant Title : ASTM D5504, VOA-S307M_SCD, VOA SH20_SCD QLast Update : Fri Aug 07 12:52:45 2020 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped Volume Inj. : Signal Phase : Signal Info : Response Signal: 08072019.DVAIB1B.CH 1.9e+07 1.8e+07 1.7e+07 6 1.6e+07 1.5e+07 1.4e+07 3 1.3e+07 233 1.2e+07 1.1e+07 1e+07 9000000 8000000 7000000 6000000 5000000 4000000 3000000 2000000 1000000 0 -1000000 0.50 1.00 2.00 2.50 3.50 4.00 5.00 6.00 Time 1.50 3.00 4.50 5.50 GC13_080720.M Mon Aug 31 12:00:50 2020 Page: 2

Data Path : J:\GC13\DATA\SCD\2020_08\07\ Data File : 08072020.D Signal(s) : AIB1B.CH Acq On : 07 Aug 2020 12:38 pm Operator : GG Sample : 50000ppb Misc : 50ul of S32+10161804 ALS Vial : 1 Sample Multiplier: 1										
Integration File: autoint1.e Quant Time: Aug 07 12:58:51 2020 Quant Method : J:\GC13\METHODS\GC13_080720.M Quant Title : ASTM D5504, VOA-S307M_SCD, VOA SH20_SCD QLast Update : Fri Aug 07 12:58:37 2020 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped										
Volume Inj. : Signal Phase : Signal Info :										
Compound	R.T.	Response	Conc Unit	.s						
<pre>2) W Carbonyl_Sulfide 3) T Methyl_Mercaptan 4) T Ethyl_Mercaptan 5) T Dimethyl_Sulfide 6) T Carbon_Disulfide 7) T 2-Propyl_Mercaptan 8) T t-Butyl_Mercaptan 9) T Propyl_Mercaptan 10) T Ethyl_Mercaptan 10) T Ethyl_Mercaptan 11) T Thiophene 12) T i-Butyl_Mercaptan 13) T Diethyl_Sulfide 14) t n-Butyl_Mercaptan 15) t Dimethyl_Disulfide 16) T 2-Methyl_Thiophene 17) t 3-Methyl_Thiophene 19) t 2,5-Dimethyl_Thiophene 20) T 2-Ethyl_Thiophene</pre>	0.000 0.000 5.087f 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	2925620697 2767032458 0	N.D. ppr N.D. ppr N.D. ppr NoCal ppr							


(m)=manual int.

: -

Data Path : J:\GC13\DATA\SCD\2020_08\07\ Data File : 08072022.D Signal(s) : AIB1B.CH Acq On : 07 Aug 2020 1:48 pm Operator : GG Sample : ICV Misc : 100ul of S32-07212002 ALS Vial : 1 Sample Multiplier: 1										
Integration File: autoint1.e Quant Time: Aug 07 13:51:55 2020 Quant Method : J:\GC13\METHODS\GC13_080720.M Quant Title : ASTM D5504, VOA-S307M_SCD, VOA SH20_SCD QLast Update : Fri Aug 07 13:29:15 2020 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped										
Signal	Inj. : Phase : Info :				л. i	9 0 I				
	Compound	R.T.	Response	Conc Units	Actual	6 (E 20V				
Target 1) Z 2) W 3) T 4) T 5) T 6) T 7) T 8) T 10) T 11) T 12) T 13) t 14) t 15) t 16) T 17) t 18) T 19) t 20) T 21) T 22) T	Compounds Hydrogen_Sulfide Carbonyl_Sulfide Methyl_Mercaptan Ethyl_Mercaptan Dimethyl_Sulfide Carbon_Disulfide 2~Propyl_Mercaptan t-Butyl_Mercaptan Propyl_Mercaptan Ethyl_Methyl_Sulfide Thiophene i-Butyl_Mercaptan Diethyl_Sulfide n~Butyl_Mercaptan Dimethyl_Disulfide 2-Methyl_Thiophene 3-Methyl_Thiophene 2,5-Dimethyl_Thiophene					88.07 97. 81.75 02 86,59 92				

W*Shilz

Data Path : I:\GC13\DATA\SCD\2020 08\07\ Data File : 08072023.D Signal(s) : AIB1B.CH Acq On : 07 Aug 2020 2:06 pm Operator : GG Sample : MB 1.0ml Misc : ALS Vial : 1 Sample Multiplier: 1 Integration File: autoint1.e Quant Time: Aug 07 17:36:39 2020 Quant Method : J:\GC13\METHODS\GC13_080720.M Quant Title : ASTM D5504, VOA-S307M_SCD, VOA SH20_SCD QLast Update : Fri Aug 07 13:29:15 2020 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped Volume Inj. Signal Phase : Signal Info : R.T. Response Conc Units Compound ------1) ZHydrogen_Sulfide0.0002) WCarbonyl_Sulfide0.0003) TMethyl_Mercaptan0.0004) TEthyl_Mercaptan0.0005) TDimethyl_Sulfide0.0006) TCarbon_Disulfide0.0007) T2-Propyl_Mercaptan0.0008) Tt-Butyl_Mercaptan0.0009) TPropyl_Mercaptan0.00010) TEthyl_Methyl_Sulfide0.00011) TThiophene0.00012) Ti-Butyl_Mercaptan0.000 Target Compounds 0 N.D. ppb 7) T2-Propyl Mercaptan0.0000N.D.ppb8) Tt-Butyl Mercaptan0.0000N.D.ppb9) TPropyl Mercaptan0.0000N.D.ppb10) TEthyl Methyl Sulfide0.0000N.D.ppb11) TThiophene0.0000N.D.ppb12) Ti-Butyl Mercaptan0.0000N.D.ppb13) TDiethyl Sulfide0.0000N.D.ppb14) tn-Butyl Mercaptan0.0000N.D.ppb15) tDimethyl Disulfide0.0000N.D.ppb16) T2-Methyl Thiophene0.0000N.D.ppb17) t3-Methyl Thiophene0.0000N.D.ppb19) t2,5-Dimethyl Thiophene0.0000N.D.ppb20) T2-Ethyl Thiophene0.0000N.D.ppb21) TDiethyl Disulfide0.0000N.D.ppb22) TMethyl Thiophene0.0000N.D.ppb22) TMethyl Trisulfide0.0000N.D.ppb

(f) = RT Delta > 1/2 Window

Data Path : I:\GC13\DATA\SCD\2020_08\07\ Data File : 08072023.D Signal(s) : AIB1B.CH Acq On : 07 Aug 2020 2:06 pm Operator : GG : MB 1.0ml Sample Misc : ALS Vial : 1 Sample Multiplier: 1 Integration File: autointl.e Quant Time: Aug 07 17:36:39 2020 Quant Method : J:\GC13\METHODS\GC13 080720.M Quant Title : ASTM D5504, VOA-S307M SCD, VOA SH20_SCD QLast Update : Fri Aug 07 13:29:15 2020 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped Volume Inj. Signal Phase : Signal Info ; Response Signal: 08072023.D\AIB1B.CH 255000 250000 245000 240000 235000 230000 225000 220000 215000 Kunal when with a state of the second for the first the second of the se 210000 205000 200000 195000 7.00 1.00 2.00 3.00 4.00 5.00 6.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 Time Page: 2 GC13_080720.M Mon Aug 10 07:12:01 2020

ALS Environmental

REPORT SUMMARY

Method : GC13SCD2.M Client : SQ Environmental, LLC Analyst : GG

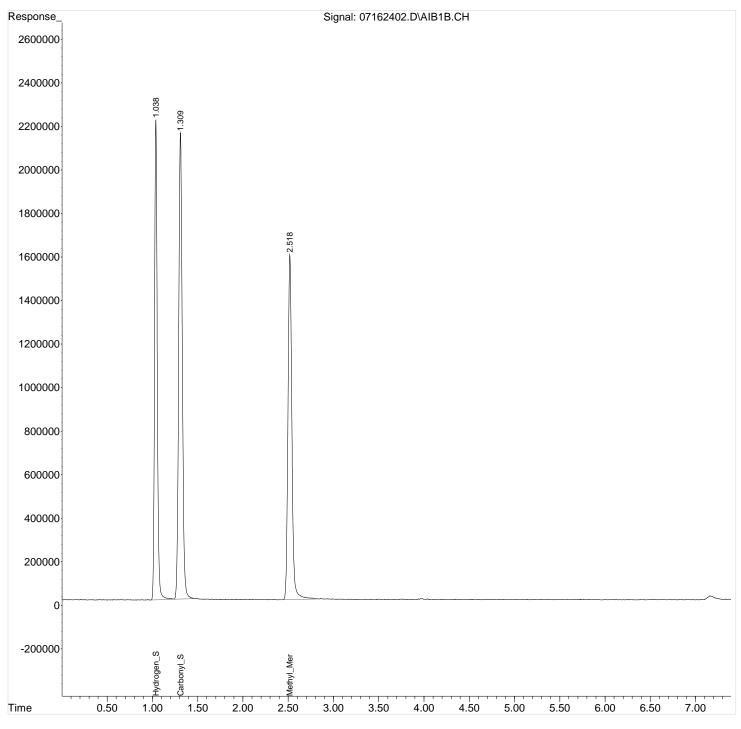
<u>Compounds</u>	MDL	RL	MB Q	C	Dry \	Wall QC	Lab Dup	Continuing Calibration Standards Summary (ppbv)														
compounds			MB				dup	<u>%RSD</u>	ppbv	<u>% Diff</u>	ppbv	<u>% Diff</u>	ppbv	<u>% Diff</u>	ppbv	<u>% Diff</u>	ppbv	<u>% Diff</u>	ppbv	<u>% Diff</u>	<u>ppbv</u>	<u>% Diff</u>
Sample Information :	ppb	ppb	MB 1.0ml						STD S33- 06212401		STD S33- 06212401											
Inj. Vol. (ml)	1.0	1.0	1.00		1.0	1.0			0.10		0.10		0.10		0.10		0.10		0.10		0.10	
Dilution	1.0	1.0	1.00		1.0	1.0																
Pi:	1.0	1.0	1.0		1.0	1.0																
Pi:	1.0	1.0	1.0		1.0	1.0																
PiPf DF:	1.0	1.0	1.0		1.0	1.0																
Hydrogen_Sulfide	1.900	5.000	ND	Р					949.80	5.1%	996.622	0.4%										
Carbonyl_Sulfide	1.700	5.000	ND	Р					1074.83	5.1%	1119.052	9.4%										
Methyl_Mercaptan	1.200	5.000	ND	Р					1051.57	4.0%	1075.403	6.4%										
Ethyl_Mercaptan	1.200	5.000	ND	Р																		
Dimethyl_Sulfide	1.200	5.000	ND	Р					8:17	AM	1:42	PM										
Carbon_Disulfide	0.600	2.500	ND	Р					071624	402.D	071624	17.D										
2-Propyl_Mercaptan	1.200	5.000	ND	Р																		
t-Butyl_Mercaptan	1.200	5.000	ND	Р										LCS/LC	S Dup S	Summary	v (ppbv)					
Propyl_Mercaptan	1.200	5.000	ND	Р																		
Ethyl_Methyl_Sulfide	1.200	5.000	ND	Р									ppbv	<u>%R</u>			ppbv	<u>% R</u>	%RPD		Actual	
Thiophene	1.200	5.000	ND	Р					Hydrogen_	Sulfide			770.99	77.1%			856.28	85.6%	10.48%		1000.00	
i-Butyl_Mercaptan	1.200	5.000	ND	Р					Carbonyl_				820.18	82.0%			837.23	83.7%	2.06%		1000.00	
Diethyl_Sulfide	1.200	5.000	ND	Р					Methyl_Me				1054.81					112.3%	6.28%		1000.00	
n-Butyl_Mercaptan	1.200	5.000	ND	Р					Acqisitio				8:30	AM			8:41					
Dimethyl_Disulfide	0.600	2.500	ND	Р					Data	File			071624	403.D			07162	404.D				
2-Methylthiophene	1.200	5.000	ND	Р																		
3-Methylthiophene	1.200	5.000	ND	Р																		
Tetrahydrothiophene	1.200	5.000	ND	Р																		
2,5-Dimethylthiophene	1.200	5.000	ND	Р																		
2-Ethylthiophene	1.200	5.000	ND	Р																		
Diethyl_Disulfide	0.600	2.500	ND	Р																		
Methyltrisulfide	0.600		ND	P																		
Acqisition Time			9:14 AM				<u> </u>						<u>41</u>	I								
DataFile			07162406.D																			

EnviroQuan

I:\Excel\Report\SCD\2024\P2402855_SQ Environmental, LLC_TX Star, Euless _ 1098.015.003_ASTM5504_2407170936_GG

Service Request : P2402855 GC13 Instrument : Date Acquired : 7/16/24

1st	Ø	07/17/24
2nd	SP.	07/17/24

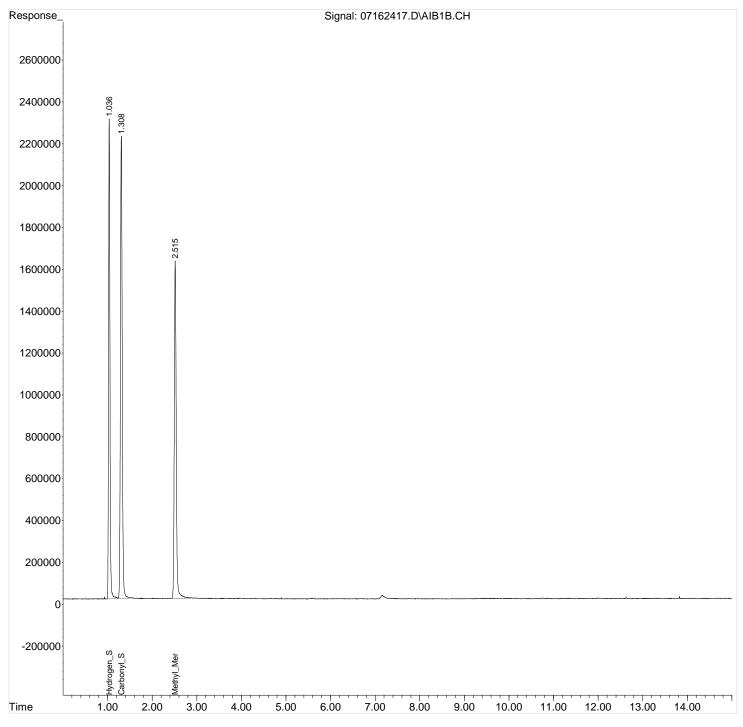

Data Path : I:\GC13\DATA\SCD\2024_07\16\ Data File : 07162402.D Signal(s) : AIB1B.CH Acq On : 16 Jul 2024 8:17 Operator : GG Sample : STD S33-06212401 Misc : ALS Vial : 1 Sample Multiplier: 1										
Integration File: autoint1.e Quant Time: Jul 16 08:27:11 2024 Quant Method : I:\GC13\METHODS\GC13_080720.M Quant Title : ASTM D5504, VOA-S307M_SCD, VOA SH20_SCD QLast Update : Fri Aug 07 13:29:15 2020 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped										
Volume Inj. : Signal Phase : Signal Info :										
Compound	R.T.	Response	Conc Units							
<pre>3) T Methyl_Mercaptan 4) T Ethyl_Mercaptan 5) T Dimethyl_Sulfide 6) T Carbon_Disulfide 7) T 2-Propyl_Mercaptan 8) T t-Butyl_Mercaptan 9) T Propyl_Mercaptan 10) T Ethyl_Methyl_Sulfide 11) T Thiophene 12) T i-Butyl_Mercaptan 13) T Diethyl_Sulfide 14) t n-Butyl_Mercaptan 15) t Dimethyl_Disulfide 16) T 2-Methyl_Thiophene 17) t 3-Methyl_Thiophene 19) t 2,5-Dimethyl_Thiophene</pre>	$\begin{array}{c} 0.000\\ 0.$	45481366 59303073 47607714 0 0 0 0 0 0 0 0 0 0 0 0 0	949.801 ppb 1074.830 ppb 1051.569 ppb N.D. ppb							

1st 07/17/24 2nd **5%** 07/17/24

Data File : 07162402.D Signal(s) : AIB1B.CH Acq On : 16 Jul 2024 8:17 Operator : GG : STD S33-06212401 Sample Misc : ALS Vial : 1 Sample Multiplier: 1 Integration File: autoint1.e Quant Time: Jul 16 08:27:11 2024 Quant Method : I:\GC13\METHODS\GC13_080720.M Quant Title : ASTM D5504, VOA-S307M_SCD, VOA SH20_SCD QLast Update : Fri Aug 07 13:29:15 2020 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped

Data Path : I:\GC13\DATA\SCD\2024_07\16\

Volume Inj. : Signal Phase : Signal Info :


1st	Ø	07/17/24
2nd	SP.	07/17/24

Data Path : I:\GC13\DATA\SCD\2024_07\16\ Data File : 07162417.D Signal(s) : AIB1B.CH Acq On : 16 Jul 2024 13:42 Operator : GG Sample : STD S33-06212401 Misc : ALS Vial : 1 Sample Multiplier: 1										
Integration File: autointl.e Quant Time: Jul 16 14:01:48 2024 Quant Method : I:\GC13\METHODS\GC13_080720.M Quant Title : ASTM D5504, VOA-S307M_SCD, VOA SH20_SCD QLast Update : Fri Aug 07 13:29:15 2020 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped										
Volume Inj. : Signal Phase : Signal Info :										
Compound	R.T.	Response	Conc Units							
<pre>3) T Methyl_Mercaptan 4) T Ethyl_Mercaptan 5) T Dimethyl_Sulfide 6) T Carbon_Disulfide 7) T 2-Propyl_Mercaptan 8) T t-Butyl_Mercaptan 9) T Propyl_Mercaptan 10) T Ethyl_Methyl_Sulfide 11) T Thiophene 12) T i-Butyl_Mercaptan 13) T Diethyl_Sulfide 14) t n-Butyl_Mercaptan 15) t Dimethyl_Disulfide 16) T 2-Methyl_Thiophene 17) t 3-Methyl_Thiophene 19) t 2,5-Dimethyl_Thiophene</pre>	0.000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	$\begin{array}{c} 47723406\\ 61743042\\ 48686743\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$								

Data File : 07162417.D Signal(s) : AIB1B.CH Acq On : 16 Jul 2024 13:42 Operator : GG : STD S33-06212401 Sample Misc : ALS Vial : 1 Sample Multiplier: 1 Integration File: autoint1.e Quant Time: Jul 16 14:01:48 2024 Quant Method : I:\GC13\METHODS\GC13_080720.M Quant Title : ASTM D5504, VOA-S307M_SCD, VOA SH20_SCD QLast Update : Fri Aug 07 13:29:15 2020 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped

Data Path : I:\GC13\DATA\SCD\2024_07\16\

Volume Inj. : Signal Phase : Signal Info :

Injection Log

Directory: J:\GC13\DATA\SCD\2020_08\07

Line	Vial	FileName	Multiplier	SampleName	Misc info	Injected
1	1	08072001.d	1.	IB		07 Aug 2020 05:52
2	1	08072002.d	1.	MB		07 Aug 2020 06:12
2 3	1	08072003.d	1.	100000ppb		07 Aug 2020 06:36
4	1	08072004.d	1.	50000ppb		07 Aug 2020 07:00
5	1	08072005.d	1.	RTHL		07 Aug 2020 07:25
6 7	1	08072006.d	1.	RT ML		07 Aug 2020 07:44
7	1	08072007.d	1.	RT		07 Aug 2020 08:03
8	1	08072008.d	1.	1B		07 Aug 2020 08:29
9	1	08072009.d	1.	MB		07 Aug 2020 08:49
10	1	08072010.d	1.	IB		07 Aug 2020 09:42
11	1	08072011.d	1.	1000ppb		07 Aug 2020 10:12
12	1	08072012.d	1.	5ppb		07 Aug 2020 10:25
13	1	08072013.d	1.	5ppb		07 Aug 2020 10:30
14	1	08072014.d	1.	5ppb	50ul of S32-08072001	07 Aug 2020 10:43
15	1	08072015.d	1.	20ppb	200ul of S32-0807	07 Aug 2020 11:09
16	1	08072016.d	1.	100ppb	1ml of S32-08072001	07 Aug 2020 11:34
17	1	08072017.d	1.	1000ppb	100ul of S32-0721	07 Aug 2020 11:50
18	1	08072018.d	1.	5000ppb	500ul of \$32-0721	07 Aug 2020 12:12
19	1	08072019.d	1.	10000ppb	1ml of \$32-07212001	07 Aug 2020 12:22
20	1	08072020.d	1.	50000ppb	50ul of S32-10161804	07 Aug 2020 12:38
21	1	08072021.d	1.	ICV		07 Aug 2020 13:41
22	1	08072022.d	1.	ICV	100ul of \$32-0721	07 Aug 2020 13:48
23	1	08072023.d	1.	MB 1.0ml		07 Aug 2020 14:06

4

131 of 132

Injection Log

Directory: I:\GC13\DATA\SCD\2024_07\16\

	Date/Time	File Name	Sample ID	Misc Info	Operator	Acquisition Method	Comments
1	7/16/24 7:57	07162401.D	IB		GG	GC13SCD2.M	
2	7/16/24 8:17	07162402.D	STD S33-06212401		GG	GC13SCD2.M	Pass
3	7/16/24 8:30	07162403.D	LCS S33-06212402		GG	GC13SCD2.M	Pass
4	7/16/24 8:41	07162404.D	LCSD \$33-06212402		GG	GC13SCD2.M	Pass
5	7/16/24 8:51	07162405.D	RT		GG	GC13SCD2.M	Pass
6	7/16/24 9:14	07162406.D	MB 1.0ml		GG	GC13SCD2.M	Pass
7	7/16/24 9:42	07162407.D	P2402855-001 1.0ml		GG	GC13SCD2.M	
8	7/16/24 10:01	07162408.D	P2402855-002 1.0ml		GG	GC13SCD2.M	
9	7/16/24 10:21	07162409.D	P2402855-003 1.0ml		GG	GC13SCD2.M	
10	7/16/24 10:39	07162410.D	P2402857-001 1.0ml		GG	GC13SCD2.M	
11	7/16/24 11:00	07162411.D	P2402859-001 1.0ml		GG	GC13SCD2.M	
12	7/16/24 11:18	07162412.D	P2402877-001 1.0ml		GG	GC13SCD2.M	
13	7/16/24 11:36	07162413.D	P2402877-002 1.0ml		GG	GC13SCD2.M	
14	7/16/24 12:40	07162414.D	P2402859-002 1.0ml		GG	GC13SCD2.M	
15	7/16/24 13:01	07162415.D	P2402859-003 1.0ml		GG	GC13SCD2.M	
16	7/16/24 13:21	07162416.D	P2402859-004 1.0ml		GG	GC13SCD2.M	
17	7/16/24 13:42	07162417.D	STD S33-06212401		GG	GC13SCD2.M	Pass

ANALYTICAL REPORT

Report Date: July 16, 2024

Phone: (512) 656-9445

E-mail:

Workorder: 34-2419717

Client Project ID: TX Star, Enless Purchase Order: NA Project Manager: Lisa Reid

Analytical Results

Sam Enis

P.O. Box 1991

Austin, TX 78767

SQ Environmental, LLC

Sample ID: SV-10R (1756703 Lab ID: 2419717001	Collected: 07/12/2024 Received: 07/15/2024					
Method: NIOSH 6015 Mod. Media: SKC 226-10-06, Silica gel tube (Sulfuric acid) (100/200mg)				Instrument: WET01		
Dilution: 1	Sampling Parameter: Air Volume 12 L			Analyzed: 07/15/2024 (319186)		
Analyte	Result (ug/sample)	Result (mg/m³)	Result (ppm)	RL (ug/sample)		
Ammonia	2.6	0.22	0.31	1.2		

Sample ID: SV-11R (1756703 Lab ID: 2419717002	Collected: 07/12/2024 Received: 07/15/2024					
Method: NIOSH 6015 Mod. Media: SKC 226-10-06, Silica gel tube (Sulfuric acid) (100/200mg)				Instrument: WET01		
Dilution: 1	Sampling Parameter: Air Volume 12 L			Analyzed: 07/15/2024 (319186)		
Analyte	Result (ug/sample)	Result (mg/m³)	Result (ppm)	RL (ug/sample)		
Ammonia	1.4	0.11	0.16	1.2		

Sample ID: 2364200117 Lab ID: 2419717003	Sampling Location: TX Star, Enless			Collected: 07/12/2024 Received: 07/15/2024		
Method: NIOSH 6015 Mod.	Мес	dia: SKC 226-10-06, Sil (Sulfuric acid) (100/	Instrument: WET01			
Dilution: 1	Sampling Parameter: Air Volume Not Provided			Analyzed: 07/15/20	24 (319186)	
Analyte	Result (ug/sample)	Result (mg/m³)	Result (ppm)	RL (ug/sample)		
Ammonia	1.2	NA	NA	1.2		

Report Authorization (/S/ is an electronic signature that complies with 21 CFR Part 11)

Method (Analysis Batch)	Analyst	Peer Review
NUOCU COLE Mod. (240486)	/S/ Brian S. Stites	/S/ Kristie F. Bitner
NIOSH 6015 Mod. (319186)	07/15/2024 22:11	07/16/2024 08:51

ADDRESS 960 West LeVoy Drive, Salt Lake City, Utah, 84123 USA | PHONE +1 801 266 7700 | FAX +1 801 268 9992 | WEB http://www.alsglobal.com/slt ALS GROUP USA, CORP. An ALS Limited Company

Environmental 🐊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Tue, 07/16/24 8:55 AM

ANALYTICAL REPORT

Workorder: 34-2419717

Client Project ID: TX Star, Enless Purchase Order: NA Project Manager: Lisa Reid

Laboratory Contact Information

ALS Environmental 960 W Levoy Drive Salt Lake City, Utah 84123 Phone: (801) 266-7700 Email: Web: www.alsglobal.com/slt

General Lab Comments

The results provided in this report relate only to the items tested. Samples were received in acceptable condition unless otherwise noted. The following was provided by the client: Sample ID, Collection Date, Sampling Location, Media Type, Sampling Parameter. Collection Date, Media Type, and Sampling Parameter can potentially affect the validity of the results. Samples have not been blank corrected unless otherwise noted. This test report shall not be reproduced, except in full, without written approval of ALS.

ALS provides professional analytical services for all samples submitted. ALS is not in a position to interpret the data and assumes no responsibility for the quality of the samples submitted.

All quality control samples processed with the samples in this report yielded acceptable results unless otherwise noted.

ALS is accredited for specific fields of testing (scopes) in the following testing sectors. The quality system implemented at ALS conforms to accreditation requirements and is applied to all analytical testing performed by ALS. The following table lists testing sector, accreditation body, accreditation number and website. Please contact these accrediting bodies or your ALS project manager for the current scope of accreditation that applies to your analytical testing.

Testing Sector	Accreditation Body (Standard)	Certificate Number	Website
Industrial Hygiene	AIHA (ISO 17025 & AIHA IHLAP)	101574	http://www.aihaaccreditedlabs.org
	DOECAP-AP	L24-29	http://www.pjlabs.com
	Washington	C596	https://ecology.wa.gov/Regulations-Permits/Permits-certifications/Lab oratory-Accreditation

Definitions

LOD = Limit of Detection = MDL = Method Detection Limit, A statistical estimate of method/media/instrument sensitivity.

LOQ = Limit of Quantitation = RL = Reporting Limit, A verified value of method/media/instrument sensitivity.

ND = Not Detected, Testing result not detected above the LOD or LOQ.

NA = Not Applicable.

** No result could be reported, see sample comments for details.

< Means this testing result is less than the numerical value.

() This testing result is between the LOD and LOQ and has higher analytical uncertainty than values at or above the LOQ.

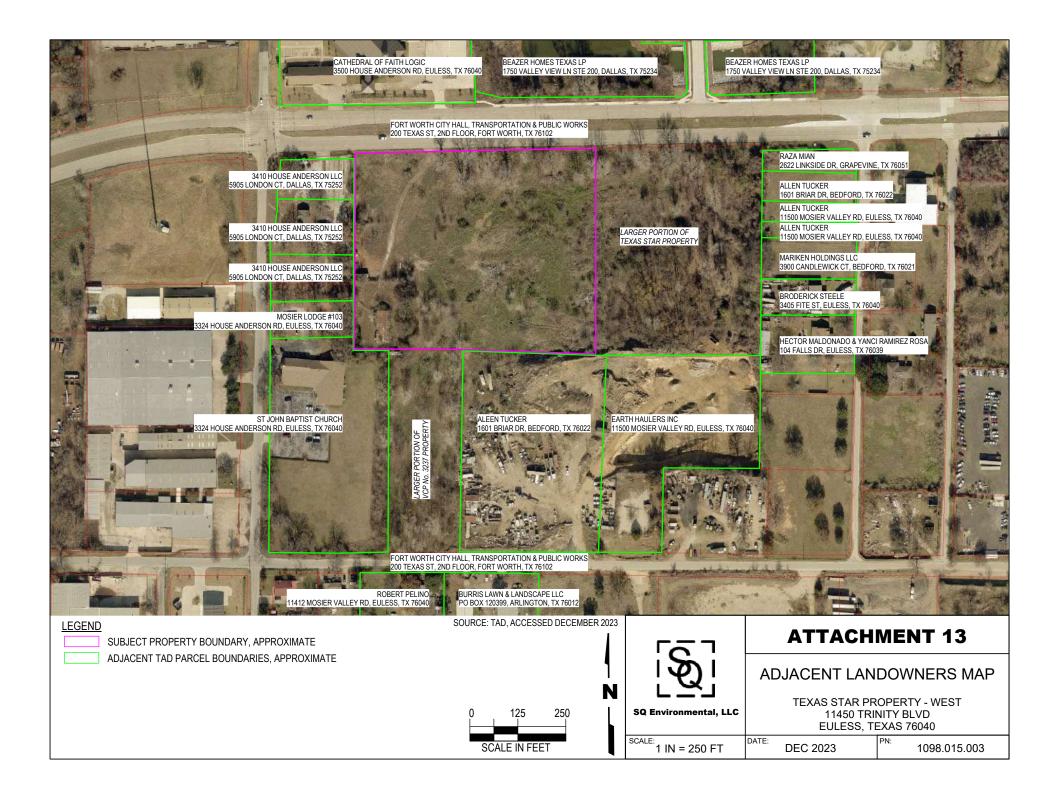
REV4 20240917

13 ADJACENT LANDOWNER MAP & LANDOWNER LIST

A map that identifies the properties owned by adjacent landowners that share a property line with the subject property, as well as those properties across a public right-of-way, is provided in **Attachment 13**.

Also in **Attachment 13** is an electronic mailing list for the adjacent landowners map that contains each property owner's name, mailing address, city, state, and zip code.

REV4 20240917

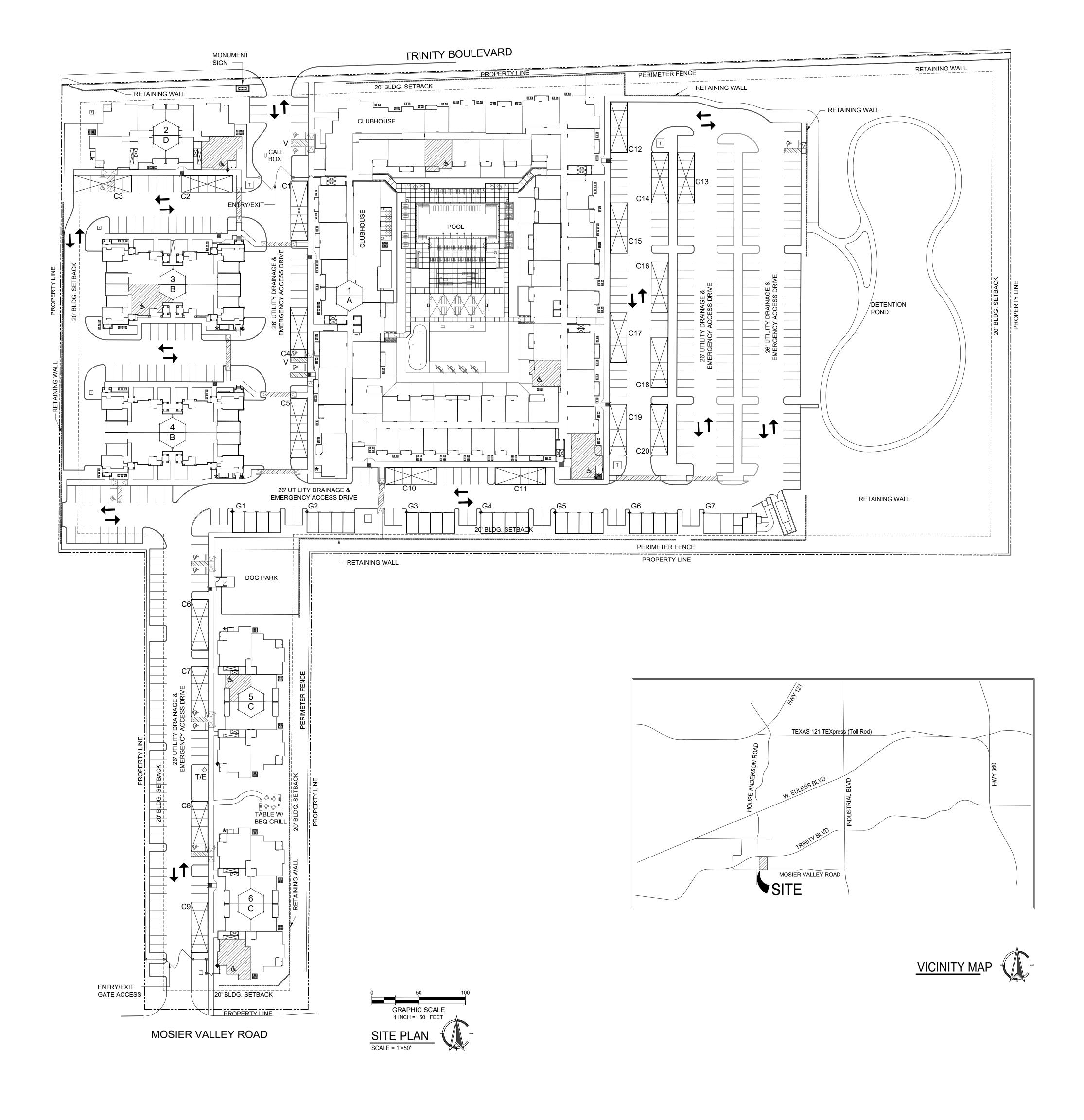

ATTACHMENT 13

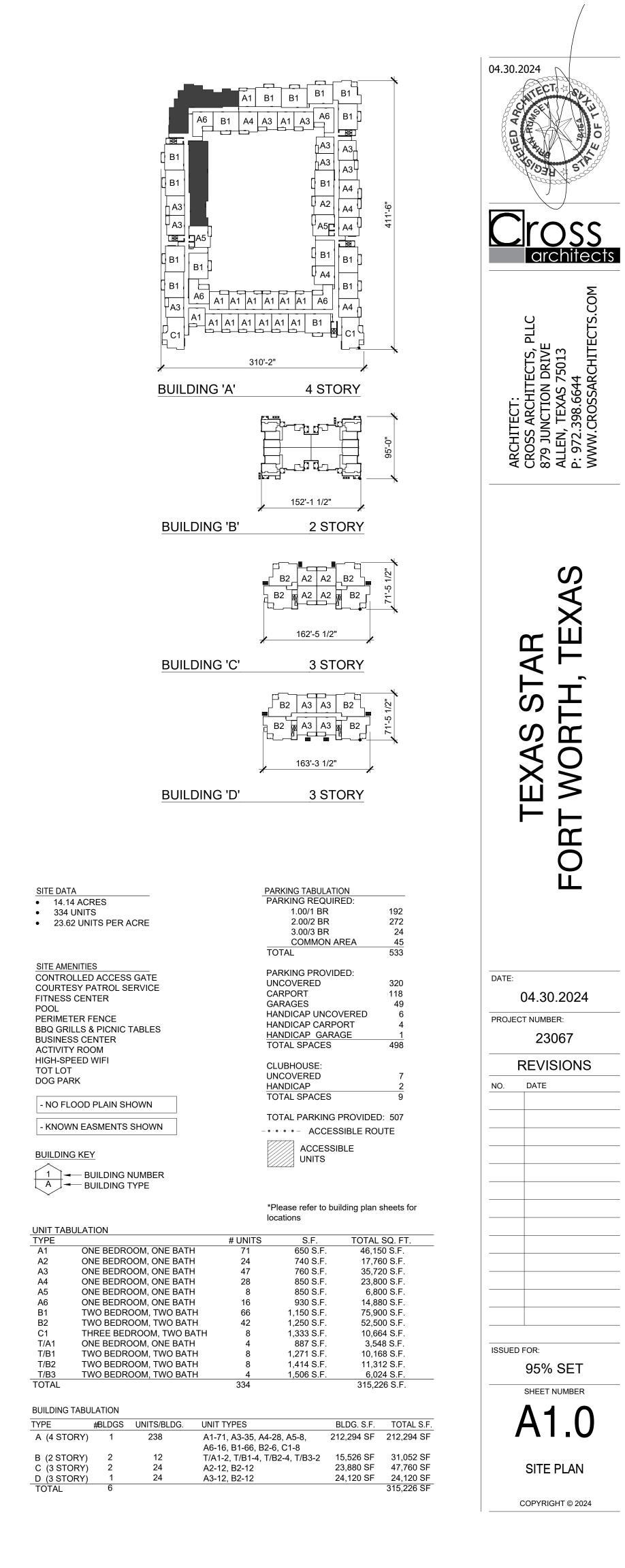
ADJACENT LANDOWNER MAP & LIST

ATTACHMENT 13 ADJACENT LANDOWNERS MAILING ADDRESS LIST TEXAS STAR PROPERTY - WEST

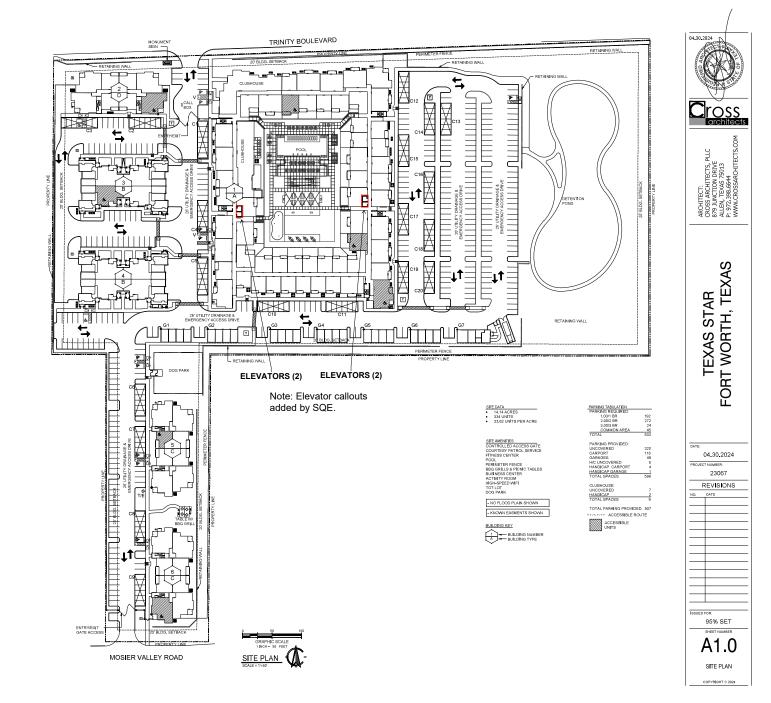
11450 TRINITY BLVD, EULESS, TEXAS

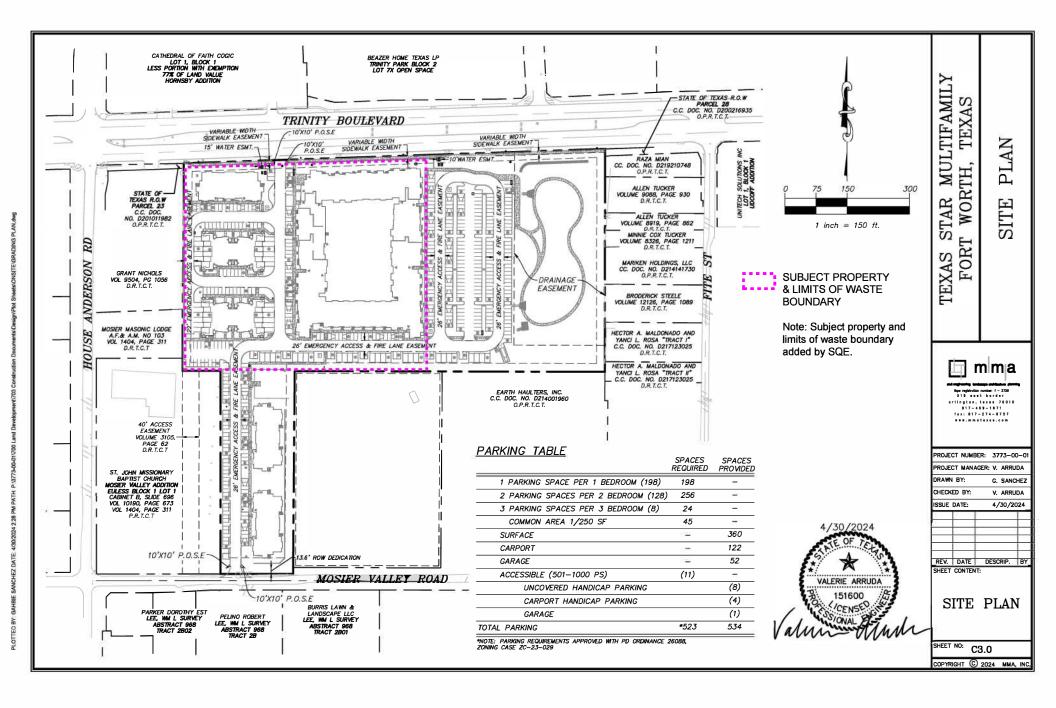
OWNER NAME	MAILING ADDRESS	CITY	STATE	ZIP
CATHEDRAL OF FAITH COGIC	3500 HOUSE ANDERSON RD	EULESS	ТΧ	76040
BEAZER HOMES TEXAS LP	1750 VALLEY VIEW LN STE 200	DALLAS	ТΧ	75234
RAZA MIAN	2622 LINKSIDE DR	GRAPEVINE	ТΧ	76051
ALLEN TUCKER	1601 BRIAR DR	BEDFORD	ТΧ	76022
ALLEN TUCKER	11500 MOSIER VALLEY RD	EULESS	ТΧ	76040
MARIKEN HOLDINGS LLC	3900 CANDLEWICK CT	BEDFORD	ТΧ	76021
BRODERICK STEELE	3405 FITE ST	EULESS	ТΧ	76040
HECTOR MALDONADO & YANCI RAMIREZ ROSA	104 FALLS DR	EULESS	ТΧ	76039
EARTH HAULERS INC	11500 MOSIER VALLEY RD	EULESS	ТΧ	76040
BURRIS LAWN & LANDSCAPE LLC	PO BOX 120399	ARLINGTON	ТΧ	76012
ROBERT PELINO	11412 MOSIER VALLEY RD	EULESS	ТΧ	76040
ST JOHN BAPTIST CHURCH	3324 HOUSE ANDERSON RD	EULESS	ТΧ	76040
MOSIER LODGE #103	3324 HOUSE ANDERSON RD	EULESS	ТΧ	76040
3410 HOUSE ANDERSON LLC	5905 LONDON CT	DALLAS	ТΧ	75252
FORT WORTH CITY HALL, TRANSPORTATION & PUBLIC WORKS	200 TEXAS ST, 2ND FLOOR	FORT WORTH	TΧ	76102


REV4 20240917


14 SITE LAYOUT PLAN

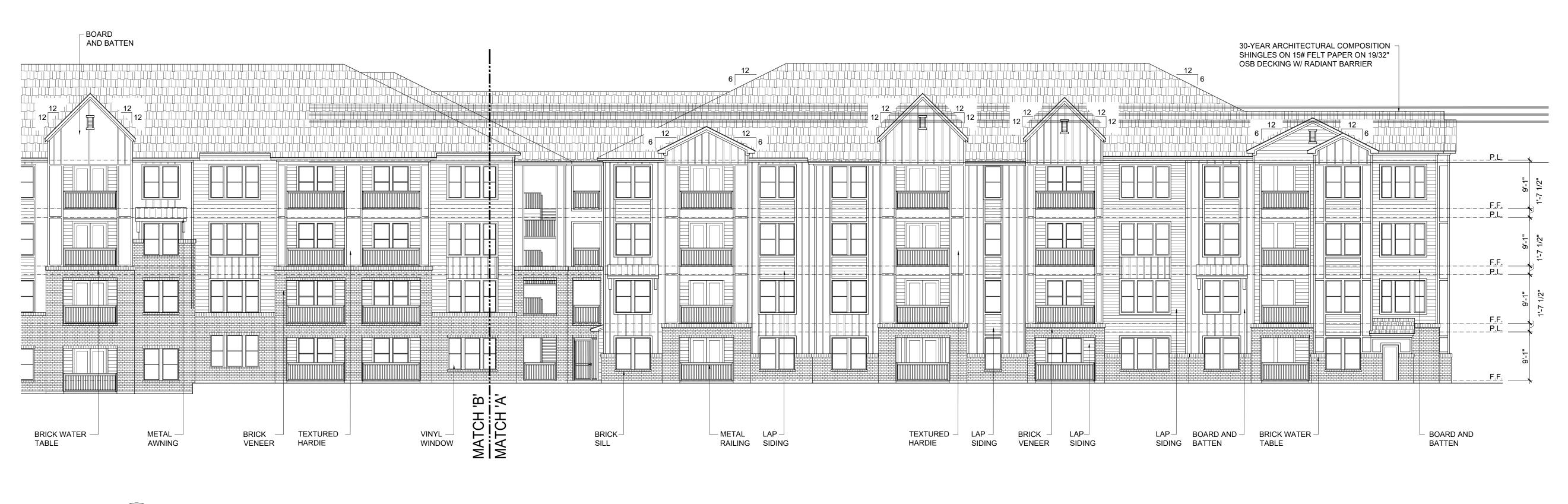
Site Plans that present the subject property boundaries, proposed enclosed and non-enclosed structures, and drainage easement on the east-adjacent property are provided as **Attachment 14**.

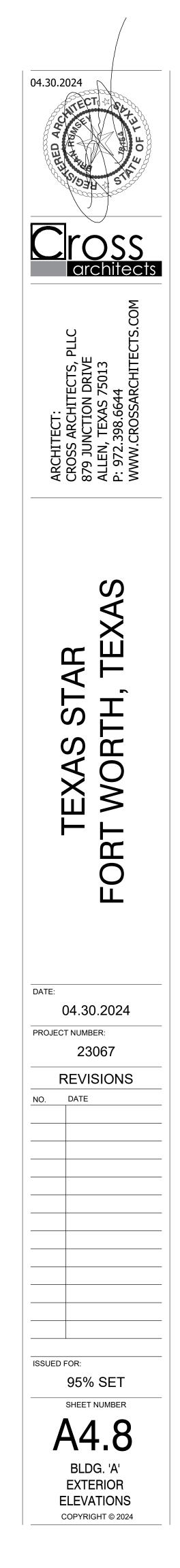

REV4 20240917


ATTACHMENT 14 SITE PLANS


Att 14 Site Plan, Rev4 9/17/24

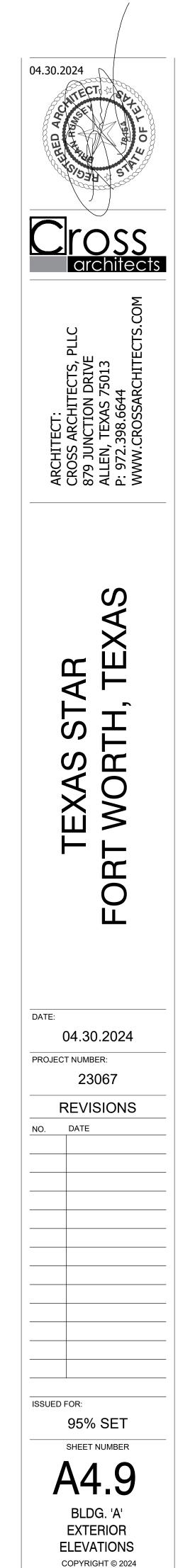
02 BUILDING 'A' SOUTH ELEVATION SCALE:3/32" = 1'-0"



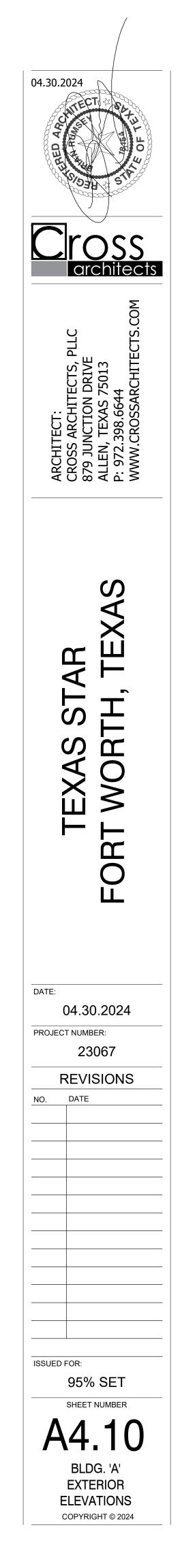

30-YEAR ARCHITECTURAL COMPOSITION SHINGLES ON 15# FELT PAPER ON 19/32"

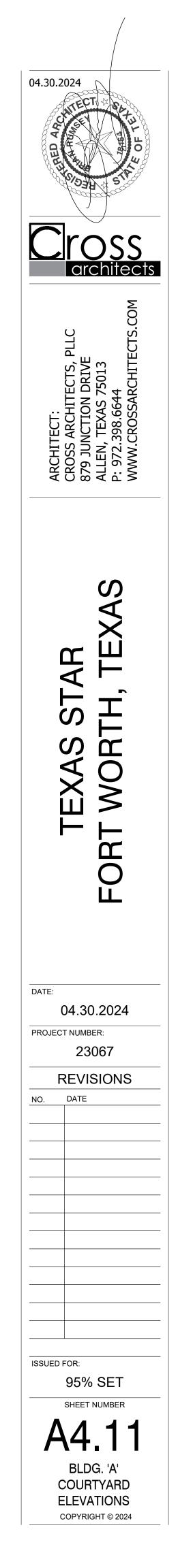
02 BUILDING 'A' WEST ELEVATION - MATCH "B" SCALE:3/32" = 1'-0"

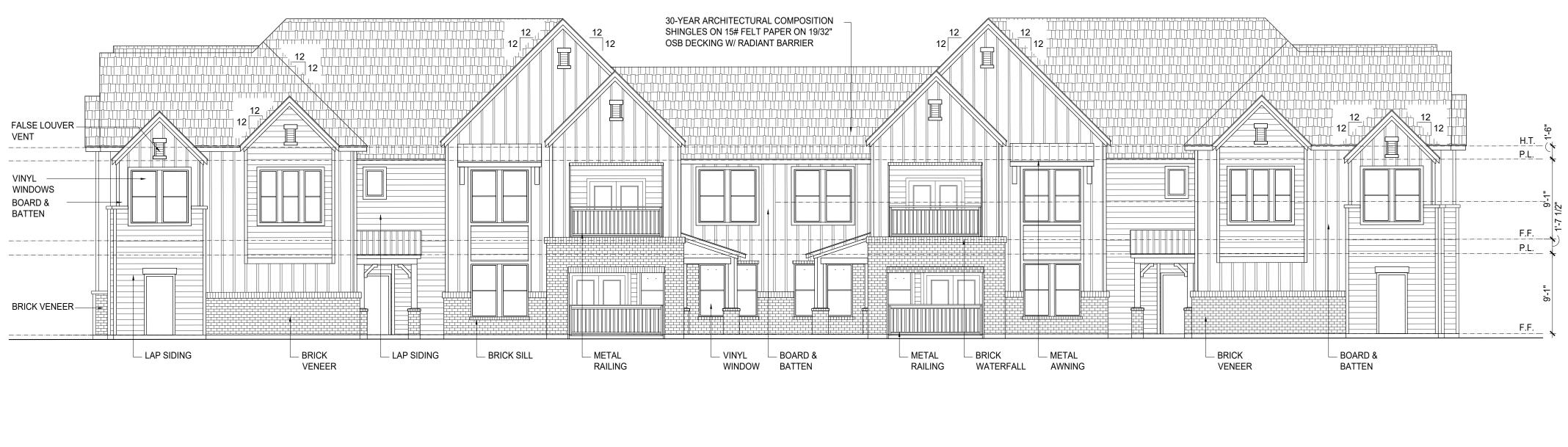
BUILDING 'A' WEST ELEVATION - MATCH "A" SCALE:3/32" = 1'-0" 01

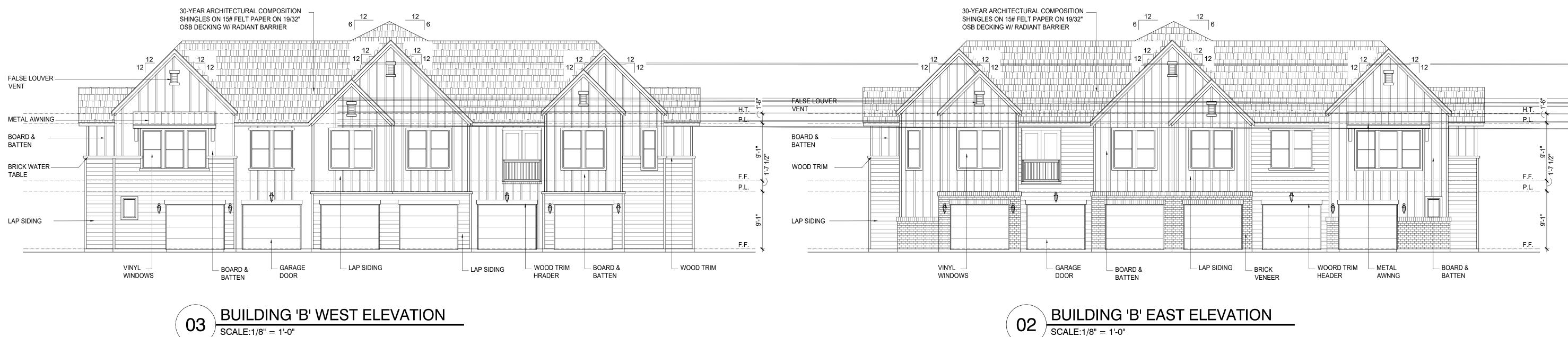


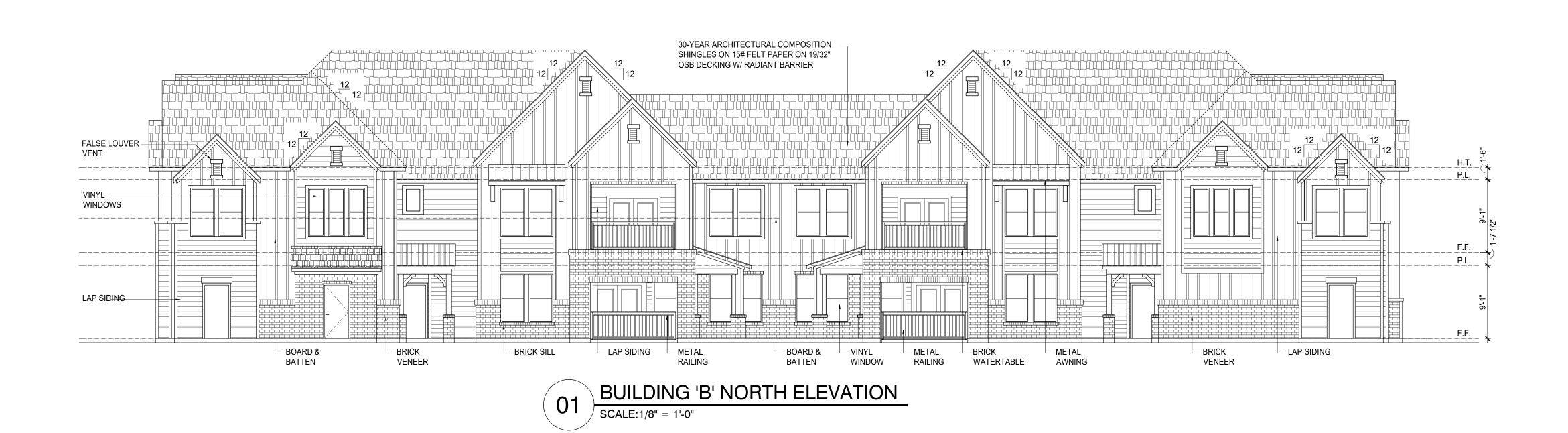
01 BUILDING 'A' EAST ELEVATION - MATCH "A" SCALE:3/32" = 1'-0"











BUILDING 'A' NORTH COURTYARD ELEVATION SCALE:3/32" = 1'-0" 01

04 BUILDING 'B' SOUTH ELEVATION SCALE: 1/8" = 1'-0"

04.30.2024 architects PLLC Ś 5 TS, S A A S Ĩ S EXA С \geq ____ FOR⁻ DATE: 04.30.2024 PROJECT NUMBER: 23067 REVISIONS NO. DATE ISSUED FOR: 95% SET SHEET NUMBER A5.4 BLDG. 'B' BUILDING ELEVATIONS COPYRIGHT © 2024

15 PROPERTY LEGAL DESCRIPTION

A legal description of the Texas Star Property, which includes the subject property, is provided as **Attachment 15**.

ATTACHMENT 15 PROPERTY LEGAL DESCRIPTION

PROPERTY DESCRIPTION

TRACT I

BEING a tract of land situated in the Kitty House Survey, Abstract No. 678, Tarrant County, Texas, and being all of that certain tract of land described by deed to HMH Family Partnership, LP, as recorded in County Clerk's Document Number D205366054, Official Public Records of Tarrant County, Texas (O.P.R.T.C.T.), said tract of land being more particularly described by metes and bounds as follows:

R

SON

HOUSE

BEGINNING at a found 1/2-inch iron rod with cap stamped "PRISM SURVEYING" for corner in the southerly right-of-way line of Trinity Boulevard (variable width right-of-way) as recorded in Deed to the City of Fort Worth, as recorded in Volume 4170, Page 676, Deed Records of Tarrant County, Texas (D.R.T.C.T.), being the northeast corner of a right-of-way acquisition described as "Parcel 23" in Deed to the State of Texas as recorded in County Clerk's Document Number D201011982, O.P.R.T.C.T.;

THENCE North 88°03'47" East, with the southerly right-of-way line of said Trinity Boulevard, a distance of 1,017.03 feet to a set 5/8-inch iron rod with cap stamped "DUNAWAY ASSOC." (herein referred to as "with cap") for the northwest corner of a right-of-way acquisition described as "Parcel 28" in Deed to the State of Texas as recorded in County Clerk's Document Number D200216935, O.P.R.T.C.T.;

THENCE South 00°00'36" East, departing the southerly right-of-way line of said Trinity Boulevard with the east line of said HMH Family Partnership tract, a distance of 538.61 feet to a set 5/8-inch iron rod with cap for the southeast corner of said HMH Family Partnership tract, being the northeast corner of a tract of land described in Warranty Deed with Vendor's Lien to Earth Haulers, Inc., as recorded in County Clerk's Document Number D214001960, O.P.R.T.C.T., and being on the west line of a tract of land described as "Tract II" in Warranty Deed with Vendor's Lien to Hector A. Maldonado and Yanci L. Rosa, as recorded in County Clerk's Document Number D217123025, O.P.R.T.C.T.;

THENCE North 89°50'40" West, with the south line of said HMH Family Partnership tract, a distance of 1,019.73 feet to a found 5/8-inch iron rod for the southwest corner of said HMH Family Partnership tract, being a corner in the north line of Lot 1, Block 1, Mosier Valley Addition, an addition to the City of Fort Worth, as recorded in Cabinet B, Slide 692, Plat Records of Tarrant County, Texas (P.R.T.C.T.);

THENCE North 00°21'49" East, with the west line of said HMH Family Partnership tract, a distance of 501.48 feet to the POINT OF BEGINNING and containing 529,421 square feet or 12.153 acres of land.

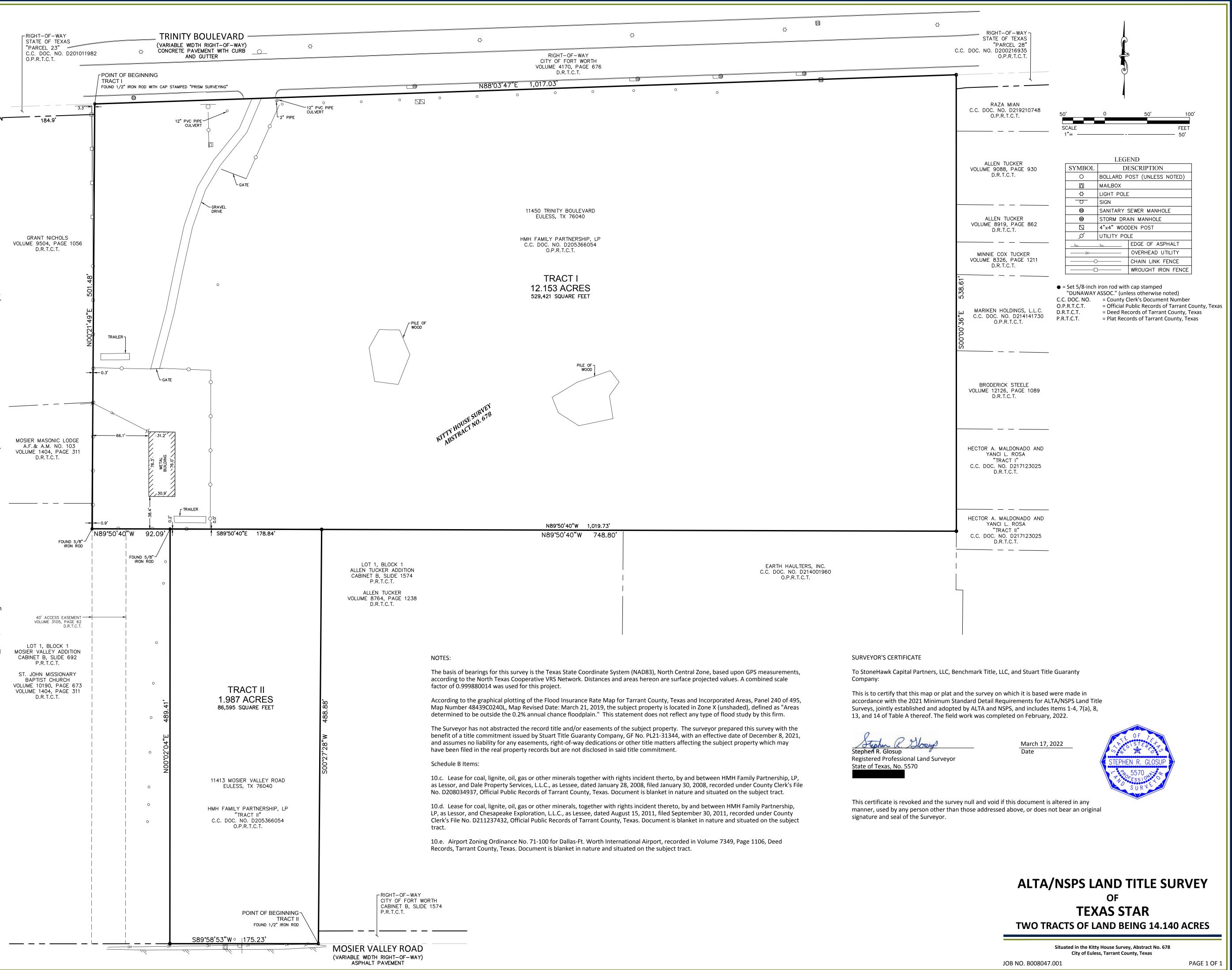
PROPERTY DESCRIPTION

TRACT II

BEING a tract of land situated in the Kitty House Survey, Abstract No. 678, Tarrant County, Texas, and being all of that certain tract of land described as "Tract II" by deed to HMH Family Partnership, LP, as recorded in County Clerk's Document Number D205366054, Official Public Records of Tarrant County, Texas (O.P.R.T.C.T.), said tract of land being more particularly described by metes and bounds as follows:

BEGINNING at a found 1/2-inch iron rod in the northerly right-of-way line of Mosier Valley Road (variable width), being the southeast corner of said "Tract II" and the southwest corner of a right-of-way dedication by Lot 1, Block 1, Allen Tucker Addition, an addition to the City of Fort Worth, as recorded in Cabinet B, Slide 1574, Plat Records of Tarrant County, Texas (P.R.T.C.T.);

THENCE South 89°58'53" West, with the northerly right-of-way line of said Mosier Valley Road, a distance of 175.23 feet to a set 5/8-inch iron rod with cap stamped "DUNAWAY ASSOC." (herein referred to as "with cap") for the southwest corner of said "Tract II" and the southeast corner of Lot 1, Block 1, Mosier Valley Addition, an addition to the City of Fort Worth, as recorded in Cabinet B, Slide 692, P.R.T.C.T.;


THENCE North 00°02'04" East, departing the northerly right-of-way line of said Mosier Valley Road with the west line of said "Tract II", a distance of 489.41 feet to a found 5/8-inch iron rod for the northwest corner of said "Tract II", the northeast corner of said Lot 1, Block 1, Mosier Valley Addition, and being in the south line of a tract of land described in said Special Warranty Deed to HMH Family Partnership, and from which a found 5/8-inch iron rod for the southwest corner of said HMH Family Partnership tract and a corner on the north line of said Lot 1, Block 1, Mosier Valley Addition, bears North 89°50'40" West, a distance of 92.09 feet;

THENCE South 89°50'40" East, with the common north line of said "Tract II" and the south line of said HMH Family Partnership tract, a distance of 178.84 feet to a set 5/8-inch iron rod with cap for the northeast corner of said "Tract II" and the northwest corner of said Lot 1, Block 1, Allen Tucker Addition;

THENCE South 00°27'28" West, with the east line of said "Tract II", a distance of 488.88 feet to the POINT OF BEGINNING and containing 86,595 square feet or 1.987 acres of land.

Tel: 817.335.1121 TEXAS REGISTERED SURVEYING FIRM NO. 10098100

	-		N89°50'40"W 1,019.73'
78.84'	I		N89°50'40"W 748.80'
		LOT 1, BLOCK 1 ALLEN TUCKER ADDITION CABINET B, SLIDE 1574 P.R.T.C.T. ALLEN TUCKER VOLUME 8764, PAGE 1238 D.R.T.C.T.	EARTH C.C. DOC. O
II RES FEET	488.88'		NOTES: The basis of bearings for this survey is the Texas State Coordinate System (NAD83), North Central Zone, based upon GPS measurem according to the North Texas Cooperative VRS Network. Distances and areas hereon are surface projected values. A combined scale factor of 0.999880014 was used for this project. According to the graphical plotting of the Flood Insurance Rate Map for Tarrant County, Texas and Incorporated Areas, Panel 240 of Map Number 48439C0240L, Map Revised Date: March 21, 2019, the subject property is located in Zone X (unshaded), defined as "A determined to be outside the 0.2% annual chance floodplain." This statement does not reflect any type of flood study by this firm.
	S00*27'28"W		The Surveyor has not abstracted the record title and/or easements of the subject property. The surveyor prepared this survey with benefit of a title commitment issued by Stuart Title Guaranty Company, GF No. PL21-31344, with an effective date of December 8, and assumes no liability for any easements, right-of-way dedications or other title matters affecting the subject property which ma have been filed in the real property records but are not disclosed in said title commitment. Schedule B Items: 10.c. Lease for coal, lignite, oil, gas or other minerals together with rights incident therto, by and between HMH Family Partnershi
LEY ROAD 76040			as Lessor, and Dale Property Services, L.L.C., as Lessee, dated January 28, 2008, filed January 30, 2008, recorded under County Cler No. D208034937, Official Public Records of Tarrant County, Texas. Document is blanket in nature and situated on the subject tract.
IERSHIP, LP " 05366054 T.			10.d. Lease for coal, lignite, oil, gas or other minerals, together with rights incident thereto, by and between HMH Family Partnersl LP, as Lessor, and Chesapeake Exploration, L.L.C., as Lessee, dated August 15, 2011, filed September 30, 2011, recorded under Cour Clerk's File No. D211237432, Official Public Records of Tarrant County, Texas. Document is blanket in nature and situated on the su tract.
			10.e. Airport Zoning Ordinance No. 71-100 for Dallas-Ft. Worth International Airport, recorded in Volume 7349, Page 1106, Deed Records, Tarrant County, Texas. Document is blanket in nature and situated on the subject tract.
OF BEGINNING TRACT II UND 1/2" IRON ROD 23'		RIGHT-OF-WAY CITY OF FORT W CABINET B, SLID P.R.T.C.T.	
		AND A CONTRACT AND A CONTRACT AND A CONTRACT AND A CONTRACT A CONTRACTACT A CONTRACTACT A CONTRACTACT A CONTRACTACTACTACTACTACTACTACTACTACTACTACTACTA	

16 NOTICE OF LANDFILL DETERMINATION & TO REAL PROPERTY RECORDS

Notices of Landfill Determination for the area where incidental debris has been observed on the subject property have been sent by Certified Mail[®] by the United States Postal Service (USPS) to:

- The current owner of the subject property, HMH Family Partnership LP.
- The TCEQ Executive Director.
- The City of Fort Worth Development Services.
- The North Central Texas Council of Governments.

Documentation of the notices is provided in Attachment 16A.

Attachment 16B is the Deed Notice filed in the real estate records of the County Clerk in the Tarrant County Records Filing Office (and proof of filing) for the subject property (western portion of TAD Account No. 03924394), where the "landfill" area is located.

ATTACHMENT 16A

NOTICES OF LANDFILL DETERMINATION

SQ Environmental, LLC P.O. Box 1991 Austin, TX 78767-1991 (512) 900-7731 www.SQEnv.com

18 April 2024

CERTIFIED LETTER RETURN RECEIPT REQUESTED 92148901324734002010295534

Attn: Development Services The City of Fort Worth City Hall, Lower Level 200 Texas St Fort Worth, Texas 76102

RE: Notification Regarding Confirmation of Landfill, Texas Star Property – West 11450 Trinity Boulevard Euless, Tarrant County, Texas 76040 VCP No. 3237 | CN604539007 | RN100729763 SQE PN: 1098.015.003

Dear Sir/Madame:

SQ Environmental, LLC (SQE) prepared this letter on behalf of Stonehawk Capital Partners LLC (Stonehawk) and in accordance with Texas Commission on Environmental Quality (TCEQ) requirements as outlined in Title 30 of the Texas Administrative Code (TAC) Chapter 330 Rule 330.953(d)(1)-(4).

A former Dumping Area, as the term is defined in the Rule, located at 11450 Trinity Boulevard in Euless, Texas, has been confirmed by soil borings and test pits conducted as part of real estate due diligence activities. The site is currently undergoing application and authorization under §330.960, Contents of Authorization Request to Disturb Final Cover Over a Closed Municipal Solid Waste Landfill for Non-enclosed Structures, of Subchapter T (Use of Land Over Closed Municipal Solid Waste Landfills).

You are not required to respond to this letter; however, if you have any questions regarding this notice, please contact the TCEQ Municipal Solid Waste (MSW) Permits Section at 512-239-2335. Any requests for information may be sent to the above TCEQ MSW Permits Section by regular mail to the TCEQ, MC 124, P.O. Box 13087, Austin, Texas 78711-3087 or by express mail at 12100 Park 35 Circle, Building D, Austin, Texas 78753. Please reference RN102493806 in any correspondence or when contacting TCEQ.

Please let me know if you have any questions or comments regarding this application or need any additional information. I may be reached at 512-574-1199 or

Sincerely, SQ Environmental, LLC

Sam Enis, P.G. Principal Project Manager

cc: Brandon Hopkins, Stonehawk Capital Partners LLC Susan T. Litherland, SQ Environmental LLC

USPS Tracking[®]

Remove X

Tracking Number:

92148901324734002010295534

Сору

Add to Informed Delivery (https://informeddelivery.usps.com/)

Latest Update

Your package will arrive later than expected, but is still on its way. It is currently in transit to the next facility.

Get More Out of USPS Tracking:

USPS Tracking Plus[®]

Delivered

Out for Delivery

Preparing for Delivery

Moving Through Network In Transit to Next Facility, Arriving Late April 26, 2024

Departed USPS Regional Facility FORT WORTH TX DISTRIBUTION CENTER April 22, 2024, 10:10 pm

Arrived at USPS Regional Destination Facility FORT WORTH TX DISTRIBUTION CENTER April 20, 2024, 6:22 pm

Arrived at USPS Regional Origin Facility PONTIAC MI DISTRIBUTION CENTER April 18, 2024, 11:25 pm

Accepted at USPS Origin Facility

FLINT, MI 48502 April 18, 2024, 10:10 pm

Shipment Received, Package Acceptance Pending

FLINT, MI 48502 April 18, 2024, 5:43 pm

Pre-Shipment, USPS Awaiting Item April 18, 2024

Hide Tracking History

SQ Environmental, LLC P.O. Box 1991 Austin, TX 78767-1991 (512) 900-7731 www.SQEnv.com

18 April 2024

CERTIFIED LETTER RETURN RECEIPT REQUESTED 92148901324734002010295541

Attn: Executive Director Texas Commission on Environmental Quality P.O. Box 13087 Austin, Texas 78711-3087

RE: Notification Regarding Confirmation of Landfill, Texas Star Property – West 11450 Trinity Boulevard Euless, Tarrant County, Texas 76040 VCP No. 3237 | CN604539007 | RN100729763 SQE PN: 1098.015.003

Executive Director:

SQ Environmental, LLC (SQE) prepared this letter on behalf of Stonehawk Capital Partners LLC (Stonehawk) and in accordance with Texas Commission on Environmental Quality (TCEQ) requirements as outlined in Title 30 of the Texas Administrative Code (TAC) Chapter 330 Rule 330.953(d)(1)-(4).

A former Dumping Area, as the term is defined in the Rule, located at 11450 Trinity Boulevard in Euless, Texas, has been confirmed by soil borings and test pits conducted as part of real estate due diligence activities. The site is currently undergoing application and authorization under §330.960, Contents of Authorization Request to Disturb Final Cover Over a Closed Municipal Solid Waste Landfill for Non-enclosed Structures, of Subchapter T (Use of Land Over Closed Municipal Solid Waste Landfills).

You are not required to respond to this letter; however, if you have any questions regarding this notice, please contact the TCEQ Municipal Solid Waste (MSW) Permits Section at 512-239-2335. Any requests for information may be sent to the above TCEQ MSW Permits Section by regular mail to the TCEQ, MC 124, P.O. Box 13087, Austin, Texas 78711-3087 or by express mail at 12100 Park 35 Circle, Building D, Austin, Texas 78753. Please reference RN102493806 in any correspondence or when contacting TCEQ.

Please let me know if you have any questions or comments regarding this application or need any additional information. I may be reached at 512-574-1199 or

Sincerely, SQ Environmental, LLC

Sam Enis, P.G. Principal Project Manager

cc: Brandon Hopkins, Stonehawk Capital Partners LLC Susan T. Litherland, SQ Environmental LLC

April 26, 2024

Dear Clint Weaver:

The following is in response to your request for proof of delivery on your item with the tracking number: **9214 8901 3247 3400 2010 2955 41**.

Item Details	
Status:	Delivered, PO Box
Status Date / Time:	April 23, 2024, 6:01 am
Location:	AUSTIN, TX 78711
Postal Product:	First-Class Mail [®]
Extra Services:	Certified Mail™
	Return Receipt Electronic
Recipient Name:	Executive Director TCEQ
Destination Delivery Address	
Street Address:	PO BOX 13087
City, State ZIP Code:	AUSTIN, TX 78711-3087
Recipient Signature	
Signature of Recipient:	A Discontinue of the
Address of Recipient:	T-PAUS-SPD

Note: Scanned image may reflect a different destination address due to Intended Recipient's delivery instructions on file.

Thank you for selecting the United States Postal Service[®] for your mailing needs. If you require additional assistance, please contact your local Post Office[™] or a Postal representative at 1-800-222-1811.

Sincerely, United States Postal Service[®] 475 L'Enfant Plaza SW Washington, D.C. 20260-0004

SQ Environmental, LLC P.O. Box 1991 Austin, TX 78767-1991 (512) 900-7731 www.SQEnv.com

18 April 2024

CERTIFIED LETTER RETURN RECEIPT REQUESTED 92148901324734002010295558

HMH Family Partnership LP 1104 Dayton Dr Lantana, Texas 76226

RE: Notification Regarding Confirmation of Landfill, Texas Star Property – West 11450 Trinity Boulevard Euless, Tarrant County, Texas 76040 VCP No. 3237 | CN604539007 | RN100729763 SQE PN: 1098.015.003

Dear Sir/Madame:

SQ Environmental, LLC (SQE) prepared this letter on behalf of Stonehawk Capital Partners LLC (Stonehawk) and in accordance with Texas Commission on Environmental Quality (TCEQ) requirements as outlined in Title 30 of the Texas Administrative Code (TAC) Chapter 330 Rule 330.953(d)(1)-(4).

A former Dumping Area, as the term is defined in the Rule, located at 11450 Trinity Boulevard in Euless, Texas, has been confirmed by soil borings and test pits conducted as part of real estate due diligence activities. The site is currently undergoing application and authorization under §330.960, Contents of Authorization Request to Disturb Final Cover Over a Closed Municipal Solid Waste Landfill for Non-enclosed Structures, of Subchapter T (Use of Land Over Closed Municipal Solid Waste Landfills).

You are not required to respond to this letter; however, if you have any questions regarding this notice, please contact the TCEQ Municipal Solid Waste (MSW) Permits Section at 512-239-2335. Any requests for information may be sent to the above TCEQ MSW Permits Section by regular mail to the TCEQ, MC 124, P.O. Box 13087, Austin, Texas 78711-3087 or by express mail at 12100 Park 35 Circle, Building D, Austin, Texas 78753. Please reference RN102493806 in any correspondence or when contacting TCEQ.

Please let me know if you have any questions or comments regarding this application or need any additional information. I may be reached at 512-574-1199 or

Sincerely, SQ Environmental, LLC

Sam Enis, P.G. Principal Project Manager

cc: Brandon Hopkins, Stonehawk Capital Partners LLC Susan T. Litherland, SQ Environmental LLC

April 26, 2024

Dear Clint Weaver:

The following is in response to your request for proof of delivery on your item with the tracking number: **9214 8901 3247 3400 2010 2955 58**.

Item Details	
Status:	Delivered, Left with Individual
Status Date / Time:	April 22, 2024, 1:15 pm
Location:	ARGYLE, TX 76226
Postal Product:	First-Class Mail [®]
Extra Services:	Certified Mail™
	Return Receipt Electronic
Recipient Name:	HMH Family Partnership LP
Destination Delivery Address	
Street Address:	1104 DAYTON DR
City, State ZIP Code:	LANTANA, TX 76226-6561
Recipient Signature	
Signature of Recipient:	A
Address of Recipient:	1104 DAYTON DR, LANTANA, TX 76226

Note: Scanned image may reflect a different destination address due to Intended Recipient's delivery instructions on file.

Thank you for selecting the United States Postal Service[®] for your mailing needs. If you require additional assistance, please contact your local Post Office[™] or a Postal representative at 1-800-222-1811.

Sincerely, United States Postal Service[®] 475 L'Enfant Plaza SW Washington, D.C. 20260-0004

SQ Environmental, LLC P.O. Box 1991 Austin, TX 78767-1991 (512) 900-7731 www.SQEnv.com

18 April 2024

CERTIFIED LETTER RETURN RECEIPT REQUESTED 92148901324734002010295565

North Central Texas Council of Governments Centerpoint II 616 Six Flags Dr Arlington, Texas 76011

RE: Notification Regarding Confirmation of Landfill, Texas Star Property – West 11450 Trinity Boulevard Euless, Tarrant County, Texas 76040 VCP No. 3237 | CN604539007 | RN100729763 SQE PN: 1098.015.003

Dear Sir/Madame:

SQ Environmental, LLC (SQE) prepared this letter on behalf of Stonehawk Capital Partners LLC (Stonehawk) and in accordance with Texas Commission on Environmental Quality (TCEQ) requirements as outlined in Title 30 of the Texas Administrative Code (TAC) Chapter 330 Rule 330.953(d)(1)-(4).

A former Dumping Area, as the term is defined in the Rule, located at 11450 Trinity Boulevard in Euless, Texas, has been confirmed by soil borings and test pits conducted as part of real estate due diligence activities. The site is currently undergoing application and authorization under §330.960, Contents of Authorization Request to Disturb Final Cover Over a Closed Municipal Solid Waste Landfill for Non-enclosed Structures, of Subchapter T (Use of Land Over Closed Municipal Solid Waste Landfills).

You are not required to respond to this letter; however, if you have any questions regarding this notice, please contact the TCEQ Municipal Solid Waste (MSW) Permits Section at 512-239-2335. Any requests for information may be sent to the above TCEQ MSW Permits Section by regular mail to the TCEQ, MC 124, P.O. Box 13087, Austin, Texas 78711-3087 or by express mail at 12100 Park 35 Circle, Building D, Austin, Texas 78753. Please reference RN102493806 in any correspondence or when contacting TCEQ.

Please let me know if you have any questions or comments regarding this application or need any additional information. I may be reached at 512-574-1199 or

Sincerely, SQ Environmental, LLC

Sam Enis, P.G. Principal Project Manager

cc: Brandon Hopkins, Stonehawk Capital Partners LLC Susan T. Litherland, SQ Environmental LLC

April 26, 2024

Dear Clint Weaver:

The following is in response to your request for proof of delivery on your item with the tracking number: **9214 8901 3247 3400 2010 2955 65**.

Item Details	
Status:	Delivered, Individual Picked Up at Postal Facility
Status Date / Time:	April 23, 2024, 10:22 am
Location:	ARLINGTON, TX 76006
Postal Product:	First-Class Mail [®]
Extra Services:	Certified Mail™
	Return Receipt Electronic
Recipient Name:	North Central Texas Council of Governmen
Recipient Signature	
Signature of Recipient:	X X Kan GP Gill
Address of Recipient:	10 Jox 5 994

Note: Scanned image may reflect a different destination address due to Intended Recipient's delivery instructions on file.

Thank you for selecting the United States Postal Service[®] for your mailing needs. If you require additional assistance, please contact your local Post Office[™] or a Postal representative at 1-800-222-1811.

Sincerely, United States Postal Service[®] 475 L'Enfant Plaza SW Washington, D.C. 20260-0004

ATTACHMENT 16B DEED NOTICE & PROOF OF FILING

Deed Notice

14.14 Acres: HMH Family Partnership LP

11413 Mosier Valley Road, Euless, Tarrant County, Texas; 1.987 Acres: HOUSE, KITTY SURVEY Abstract 678 Tract 4P; and 11450 Trinity Boulevard, Euless, Tarrant County, Texas; 12.153 Acres: HOUSE, KITTY SURVEY Abstract 678 Tract 4N

500

5

STATE OF TEXAS

COUNTY OF TARRANT

This Notice is filed to provide information concerning certain environmental conditions and/or use limitations pursuant to the Texas Commission on Environmental Quality (TCEQ) Municipal Solid Waste (MSW) Rule found at 30 Texas Administrative Code (TAC) Chapter 330 Subchapter T, and Texas Health and Safety Code (THSC) Chapter 361 Subchapter R, and affects the real property (Property) described as follows:

A legal description for the Property is provided as Exhibit A, which is attached hereto and incorporated herein by reference.

Historical documentation and site assessment results indicate that between the late 1960s and mid-1980s, the Property was used for gravel pit operations. Following cessation of the gravel pit operations and between the late 1980s and late 2000s, soil containing incidental waste materials was brought to the Property. Portions of the Property overlay the waste materials causing those portions of the Property to be considered a Dumping Area as the term is defined in the Rule. The portion of the Property which is the Dumping Area is described as follows:

A legal description for the Dumping Area is provided as Exhibit B, which is attached hereto and incorporated herein by reference.

Notice is hereby provided to any future owner or user of the Property that restrictions on the development or lease of the land exist in 30 TAC Chapter 330 Subchapter T and THSC Chapter 361 Subchapter R. Further, prior to the planning or initiating any activity involving the disturbance of the Dumping Area, the future owner or user of the site shall consult with TCEQ.

As of the date of this Notice, the Record Owner of fee title of the Property is HMH Family Partnership LP with an address of 1104 Dayton Dr, Lantana, Denton County, Texas 76226.

For additional information, contact:

TCEQ MSW Permits Section Building D 12100 Park 35 Circle Austin, Texas 78753

TCEQ Identifier No.: RN100729763

Mail: MSW Permits Section, MC 124 TCEQ PO Box 13087 Austin, Texas 78711-3087

D224075321 05/01/2024 01:22 PM Page: 1 of 8 NOTICE SUBMITTER: JACOB SULLIVAN

Fees: \$44.00

MARY LOUISE NICHOLSON

EXECUTED on the dates set forth in the acknowledgments below, to be effective as of the date of the last such signature below.

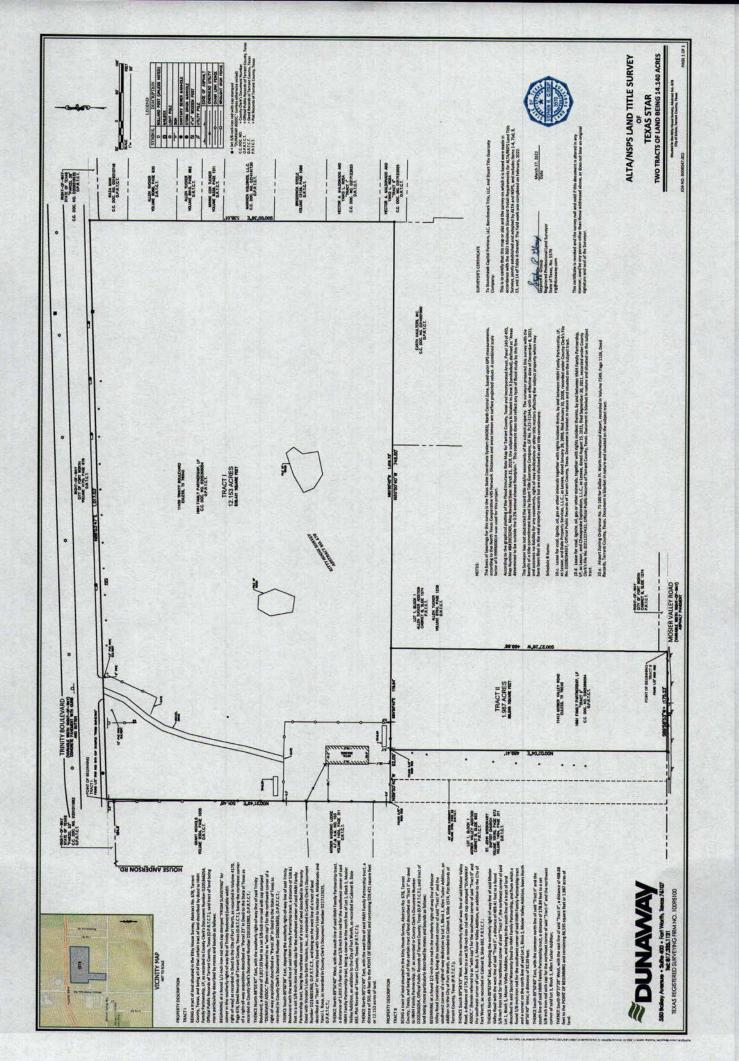
acting as a representative of HMH Family Partnership LP

Signature Printed Nan Title

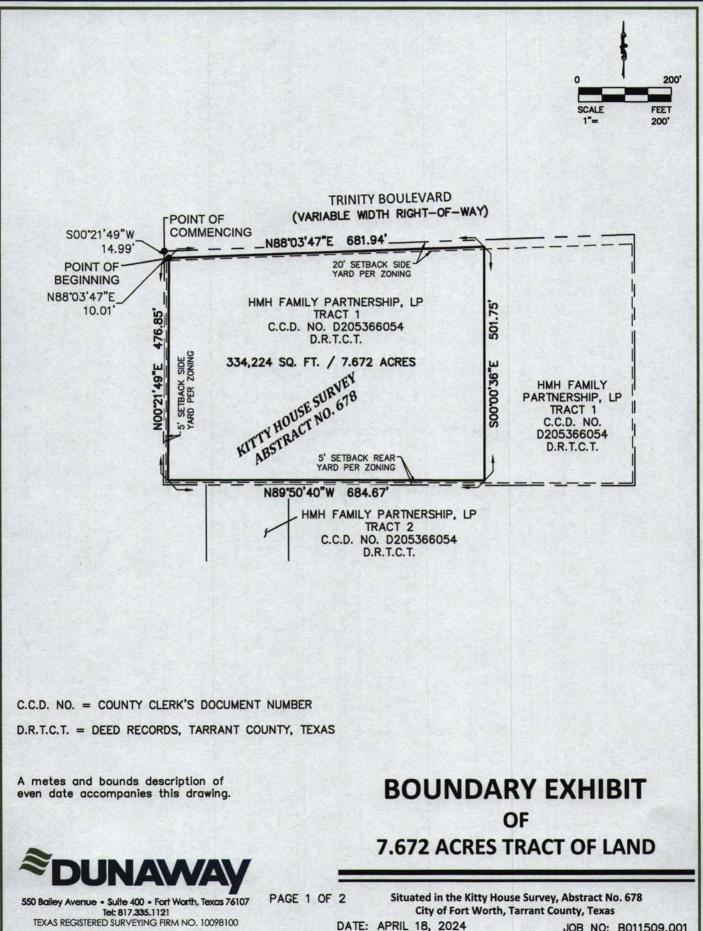
THE STATE OF TEXAS con con con **COUNTY OF TARRANT**

RILEY CARROLL Notary Public, State of Texas Comm. Expires 02-26-2028

Notary ID 134780450


This instrument was acknowledged before me on this the 254 day of Arr.1, 2024, personally appeared 341 more 300, on behalf of the COMPANY, known to me to be the person whose name is subscribed to the foregoing instrument, and they acknowledged to me that they executed the same for the purposes and in the capacity herein expressed .

Notary Public in and for the State of Texas


Riley Carron Printed Name of Notary Public

My Commission Expires: 2-26-28

EXHIBIT A

EXHIBIT B

JOB NO: B011509.001

PROPERTY DESCRIPTION

BEING a tract of land situated in the Kitty House Survey, Abstract No. 678, City of Fort Worth, Tarrant County, Texas and being a part of that certain tract of land described as Tract 1 by deed to HMH Family Partnership, LP, recorded in County Clerk's Document Number D205366054, Deed Records, Tarrant County, Texas, said tract of land being more particularly described by metes and bounds as follows:

COMMENCING at a point in the south right-of-way line of Trinity Boulevard (a variable width right-of-way), the northwest corner of said Tract 1, said HMH Family Partnership, LP tract;

South 00'21'49" West, with the west line of said Tract 1, said HMH Family Partnership, LP tract, a distance of 14.99 feet to a point;

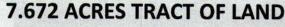
North 88°03'47" East, departing the west line of said Tract 1, said HMH Family Partnership, LP tract, crossing into said Tract 1, said HMH Family Partnership, LP tract, a distance of 10.01 feet to the POINT OF BEGINNING of herein described tract of land;

THENCE continuing across said Tract 1, said HMH Family Partnership, LP tract, the following courses and distances:

North 88'03'47" East, a distance of 681.94 feet to a point;

South 00°00'36" East, a distance of 501.75 feet to a point;

North 89'50'40" West, a distance of 684.67 feet to a point;


North 00°21'49" East, a distance of 476.85 feet to the POINT OF BEGINNING and containing a calculated area of 334,224 square feet or 7.672 acres of land.

NOTES: The basis of bearings for this Exhibit is the Texas Coordinate System of 1983, North Central Zone, 4202, based upon GPS measurements, according to the GPS Reference Network.

A drawing of even date accompanies this metes and bounds description.

The metes and bounds description contained herein was compiled from information contained in recorded documents and does not reflect the results of an on the ground survey.

BOUNDARY EXHIBIT

550 Bailey Avenue • Suite 400 • Fort Worth, Texas 76107 Tel: 817.335.1121 TEXAS REGISTERED SURVEYING FIRM NO. 10098100 PAGE 2 OF 2

2 Situated in the Kitty House Survey, Abstract No. 678 City of Fort Worth, Tarrant County, Texas DATE: APRIL 18, 2024 JOB NO: B011509.001

1-OTTED BY: Steve Glosup ON: Thursdoy, April 18, 2024 AF: 4:02 PM FILEPATH: G:\Production8000\011509\0011509\001\Survey\Drawings\B011509.001 -WEST BOUNDARY.dwg

FILED AND RECORDED OFFICIAL PUBLIC RECORDS OF TARRANT COUNTY, TEXAS 05/01/2024 01:22 PM

uie Nicholood MARY LOUISE NICHOLSON COUNTY CLERK

D224075321 NOTICE Pages: 8 Fees: \$44.00

Mary Louise Nicholson Tarrant County Clerk

100 W. Weatherford Fort Worth, TX 76196 (817) 884 - 1195 wm-countyclerk@tarrantcounty.com

OFFICIAL RECEIPT

REC	EIPT NUMBE	R		DATE]
	6237444		<mark>05/01/20</mark>	24 01:22:13 PM	
Issued to:	3201	DB SULLIVAN 26TH STREET 30CK, TX 79410			
For Payment	of:				
Туре			Pages	Reference #	Fees
1 NOTICE			7	D224075321	\$44.00
				Total:	\$44.00
Method of P	ayment: Re	eference Numbe	er:		Amount:
Credit Card	213	12			\$44.00
		Mary Lou	NK YOU iise Nichols nty Clerk <i>'s events sin</i>		
rk: Veronica G		Scan the QR	Your feed	back is important to us	5

17 NOTICE TO LESSEES & OCCUPANTS OF THE STRUCTURE

A draft notice that will be given to all prospective lessees and occupants of the proposed structures upon the structures' completion is provided as **Attachment 17**. The notice informs future residents of the presence of debris, subsurface methane, and VMS. This notice will be provided to lessees and occupants upon signing a lease agreement on the subject property.

ATTACHMENT 17 DRAFT NOTICE TO LESSEES & OCCUPANTS OF THE STRUCTURE

DRAFT

Date

Future Lessee and/or Occupant Name Address City, State Zip

RE: Notice to Potential Lessee and/or Occupant Texas Star Property – West 11450 Trinity Boulevard, Euless, Tarrant County, Texas 76040 HOUSE, KITTY SURVEY Abstract 678 Tract 4N

Dear Lessee and/or Occupant:

This letter is intended to inform you that the property you are considering leasing or occupying, located at 11450 Trinity Boulevard in Euless, Texas, was historically operated as a gravel mine. The mined areas were backfilled with soil containing some incidental debris (glass, bricks, concrete, rebar, and asphalt). TCEQ has determined that this is considered a former Dumping Area as the term is defined in 30 Texas Administrative Code (TAC) Chapter 330. Prior to any development taking place, the necessary permits were acquired through TCEQ and others for all current development. Necessary precautions were taken when designing and constructing the buildings to minimize safety hazards. A vapor mitigation system has been designed, installed, and operated and monitored to minimize the potential for methane or any other soil vapors from entering the buildings. The vapor mitigation system was designed by an engineering firm licensed in the State of Texas, in good standing in accordance with State statutes, and with experience in the design and construction of vapor mitigation systems and monitoring. Additional information regarding the vapor mitigation system and/or the monitoring results are available on request.

Sincerely,

Property Owner

18 TCEQ CORE DATA FORMS

Attachment 18 includes the Core Data Forms for the property owner and MSW applicant.

ATTACHMENT 18 CORE DATA FORMS

TCEQ Core Data Form

For detailed instructions on completing this form, please read the Core Data Form Instructions or call 512-239-5175.

SECTION I: General Information

1. Reason for Submission (If other is checked please desc	cribe in space provided.)	
	· · · · · · · · · · · · · · · · · · ·	
New Permit. Registration or Authorization (Core Data I		the eventure production (
New Permit, Registration or Authorization (Core Data I	Form should be submitted with	ine program application.)
Renewal (Core Data Form should be submitted with the	e renewal form)	Other
2. Customer Reference Number (if issued)		3. Regulated Entity Reference Number (if issued)
	Follow this link to search	or negatated Entry helerence Humber (1) issued)
	for CN or RN numbers in	
	Central Registry**	DN 400700760
CN 606223402	central negistry	RN 100729763

SECTION II: Customer Information

4. General Cu	istomer l	nformati	ion	5. Effective D	ate for Cu	ustome	r Inf	ormation	Updates (mm/dd,	/yyyy)		2/28/2024
New Custor	ner		🛛 U	pdate to Custom	er Informa	tion		Char	nge in Regulated En	tity Own	ership	
Change in Le	egal Name	(Verifiabl	e with the Tex	as Secretary of S	State or Tex	as Comp	otroll	er of Public	: Accounts)			
			-	-	tomatical	ly base	d on	what is c	urrent and active	e with th	he Texas Secr	etary of State
(SOS) or Texa	s Comptr	oller of I	Public Accou	nts (CPA).								
6. Customer	Legal Nar	ne (If an i	individual, prii	nt last name first	: eg: Doe, J	lohn)			<u>If new Customer,</u>	enter pro	evious Custome	er below:
HMH Family Pa	rtnership	LP										
7. TX SOS/CP	A Filing N	lumber		8. TX State Ta	ax ID (11 d	igits)			9. Federal Tax	D	10. DUNS N	Number (if
0800501503				32035391856					(9 digits)		applicable)	
									260601680			
11. Type of C	ustomer:		Corporat	ion				🗌 Individ	lual	Partne	ership: 🗌 Gen	eral 🔀 Limited
			Federal	Local 🗌 State [Other			Sole P	roprietorship	🗌 Ot	her:	
12. Number o	of Employ	/ees							13. Independe	ntly Ow	ned and Ope	erated?
⊠ 0-20 □ 2	21-100	101-2	50 🗌 251-	500 🗌 501 ar	nd higher				🛛 Yes	🗌 No		
14. Customer	r Role (Pro	oposed or	Actual) – <i>as it</i>	t relates to the Re	egulated Ei	ntity liste	ed on	this form.	Please check one o	f the follo	owing	
Owner	al Licensee		erator esponsible Par		er & Opera CP/BSA App				🔀 Other:	Propert	ty Owner	
15. Mailing	1104 Da	yton Drive	e									
Address:	City	Lantan	าล		State	ΤХ		ZIP	76226		ZIP + 4	
16. Country N	Vailing In	formatio	on (if outside	USA)			17.	E-Mail Ad	ddress (if applicab	le)		
											(if applicable)	

(

SECTION III: Regulated Entity Information

21. General Regulated Er	ntity Informa	tion (If 'New Regulate	ed Entity" is selec	ted, a new pe	ermit applic	ation is also required.)	
New Regulated Entity	Update to	Regulated Entity Nam	e 🛛 Update t	o Regulated	Entity Infor	mation		
The Regulated Entity Na as Inc, LP, or LLC).	me submitted	l may be updated,	in order to mee	et TCEQ Cor	e Data Sto	andards (removal o	f organizatio	nal endings such
22. Regulated Entity Nan	ne (Enter name	e of the site where the	regulated action	is taking pla	ce.)			
Texas Star Property West								
23. Street Address of the Regulated Entity:	11450 Trinity Boulevard							
(No PO Boxes)		1						1
<u></u>	City	Euless	State	ТХ	ZIP	76040	ZIP + 4	6926
24. County	Tarrant							
		If no Street Ac	dress is provid	ed, fields 2	5-28 are r	equired.		
25. Description to Physical Location:	The subject	property is comprised	of two Tarrant A	opraisal Distr	ict (TAD) pa	rcels including parcel	Nos. 03924394	and 03924408
<u>}</u>	1					-		

26. Nearest City						State		Nea	rest ZIP Code
Fort Worth						ТХ		7604	0
Latitude/Longitude are re	•				ata Standa	rds. (Geoco	oding of the	e Physical .	Address may be
used to supply coordinate	es where no	one have been prov	vided or to gain	accuracy).					
27. Latitude (N) In Decima	al:	32.809790		28. Lo	ongitude (W	/) In Decim	al:	-97.12048	60
Degrees	Minutes	Se	conds	Degree	es	Mir	nutes		Seconds
32		48	35.244		-97		07		13.728
29. Primary SIC Code	30.	Secondary SIC Co	de	31. Primar	y NAICS Co	de	32. Secor	dary NAIC	S Code
(4 digits)	(4 c	ligits)		(5 or 6 digit	s)		(5 or 6 digi	ts)	
1522	651	13		236116			531110		
33. What is the Primary E	Business of	this entity? (Do no	ot repeat the SIC o	r NAICS descri	ption.)				
Property Redevelopment									
	4550 Trav	is Street							
34. Mailing	Suite 565								
Address:		-							
	City	Dallas	State	тх	ZIP	75205		ZIP + 4	
35. E-Mail Address:									
36. Telephone Number		3	37. Extension or	Code	38. Fa	ax Number	(if applicabl	le)	
(714) 679-2919					() -			

39. TCEQ Programs and ID Numbers Check all Programs and write in the permits/registration numbers that will be affected by the updates submitted on this form. See the Core Data Form instructions for additional guidance.

Dam Safety	Districts	Edwards Aquifer	Emissions Inventory Air	Industrial Hazardous Waste
Municipal Solid Waste	New Source Review Air		Petroleum Storage Tank	D PWS
Pending			67148	
Sludge	Storm Water	Title V Air	Tires	Used Oil
Voluntary Cleanup	Wastewater	Wastewater Agriculture	Water Rights	Other:
3237				

SECTION IV: Preparer Information

40. Name:	Sam Enis			41. Title:	Principal Project Manager	
42. Telephon	e Number	43. Ext./Code	44. Fax Number	45. E-Mail	Address	
(512)574-119	99		() -	s.enis@sqe	nv.com	

SECTION V: Authorized Signature

46. By my signature below, I certify, to the best of my knowledge, that the information provided in this form is true and complete, and that I have signature authority to submit this form on behalf of the entity specified in Section II, Field 6 and/or as required for the updates to the ID numbers identified in field 39.

Name (In Print): Julie Moore Phone:	(972) 672- 2053
Signature: Date:	03024

TCEQ Core Data Form

For detailed instructions on completing this form, please read the Core Data Form Instructions or call 512-239-5175.

SECTION I: General Information

1. Reason for Submission (If other is checked please describe in space provided.)									
New Permit, Registration or Authorization (Core Data)	New Device Designed to a Authorization (Care Date Form should be submitted with the supreme providention)								
New Permit, Registration or Authorization (<i>Core Data Form should be submitted with the program application.</i>)									
Renewal (Core Data Form should be submitted with the	Other								
2. Customer Reference Number (if issued)	Talla - Hala Kala a sa sak	3. Regulated Entity Reference Number (if issued)							
	Follow this link to search								
	for CN or RN numbers in								
CN 604539007 Central Registry** RN 100729763									
		KN 100/29/05							

SECTION II: Customer Information

4. General Cu	Customer Information 5. Effective Date for Customer Information Updates (mm/dd/yyyy) 2/28/2024							2/28/2024					
New Customer Update to Customer Information Change in Regulated Entity Ownership Change in Legal Name (Verifiable with the Texas Secretary of State or Texas Comptroller of Public Accounts)													
			-	•	automatical	ly base	ed on	what is c	urrent	and active	with th	ne Texas Secr	etary of State
(SOS) or Texa	s Comptrol	ller of F	Public Accou	nts (CPA).									
6. Customer Legal Name (If an individual, print last name first: eg: Doe, John) <u>If new Customer, enter previous Customer below:</u>							er below:						
StoneHawk Cap	pital Partners	s LLC											
7. TX SOS/CP	A Filing Nu	mber		8. TX State	te Tax ID (11 digits)					deral Tax I	D	10. DUNS Number (if	
801757516 3205057			320505735	73594				(9 digits)		applicable)			
										464272973			
11. Type of C	11. Type of Customer:						🗌 Individ] Individual Partn			ership: 🗌 General 🔀 Limited		
Government: City County Federal Local State Other Other:													
12. Number of Employees 13. Independently Owned and Operate							erated?						
☑ 0-20						🛛 Yes 🗌 No							
14. Customer	r Role (Prop	osed or	Actual) – <i>as i</i> i	t relates to th	e Regulated Ei	ntity list	ed or	n this form.	Please c	check one of	the follo	owing	
Owner Operator Owner & Operator Occupational Licensee Responsible Party VCP/BSA Applicant													
15. Mailing	4550 Travi	s Street											
Suite 565													
Address:	City Dallas				State TX			ZIP	75205			ZIP + 4	
16. Country N	16. Country Mailing Information (if outside USA)				•	17. E-Mail Address (if applicable)							
18. Telephone Number				19. Extension or Code				20. Fax Number (if applicable)					

Fort Worth

(

ΤХ

76040

SECTION III: Regulated Entity Information

21. General Regulated E	ntity Informa	tion (If 'New Regulate	ed Entity" is selec	ted, a new p	ermit applic	ation is also required.)			
21. General Regulated Entity Information (If 'New Regulated Entity" is selected, a new permit application is also required.)									
New Regulated Entity 🔲 Update to Regulated Entity Name 🛛 Update to Regulated Entity Information									
The Regulated Entity Name submitted may be updated, in order to meet TCEQ Core Data Standards (removal of organizational endings such as Inc, LP, or LLC).									
22. Regulated Entity Name (Enter name of the site where the regulated action is taking place.)									
Texas Star Property West									
23. Street Address of the Regulated Entity:	11450 Trinity Boulevard								
(No PO Boxes)									
(NO PO BOXES)	City	Euelss	State	ТХ	ZIP	76040	ZIP + 4	6926	
24. County	Tarrant								
If no Street Address is provided, fields 25-28 are required.									
25. Description to									
Physical Location:	The subject	property is comprised	of two Tarrant A	ppraisal Dist	rict (TAD) pa	rcels including parcel I	los. 03924394	and 03924408.	
26. Nearest City						State	Nea	arest ZIP Code	

Latitude/Longitude are required and may be added/updated to meet TCEQ Core Data Standards. (Geocoding of the Physical Address may be used to supply coordinates where none have been provided or to gain accuracy).

27. Latitude (N) In Decima	32.809790	32.809790			28. Longitude (W) In Decimal:			-97.120480		
Degrees	Minutes	S	econds	Degre	es	Minutes		1	Seconds	
32		48	35.244		-97		07		13.728	
29. Primary SIC Code	30.	Secondary SIC Co	ode	31. Primary NAICS Code 32. Secondary NAICS Code					S Code	
(4 digits)	(4 d	ligits)	(5 or 6 digits) (5 or 6 digits)							
1522	651	3		236116 53111			531110)		
33. What is the Primary B	usiness of t	this entity? (Do r	not repeat the SIC of	r NAICS desci	ription.)					
Property Redevelopment										
	4550 Travis Street									
34. Mailing Address:	Suite 565									
Address.	City	/ Dallas State		тх	ZIP 75205		ZIP + 4			
35. E-Mail Address:					1					
36. Telephone Number			37. Extension or	Code	38. Fa	ax Number	(if applicab	le)		
(714) 679-2919	() -									

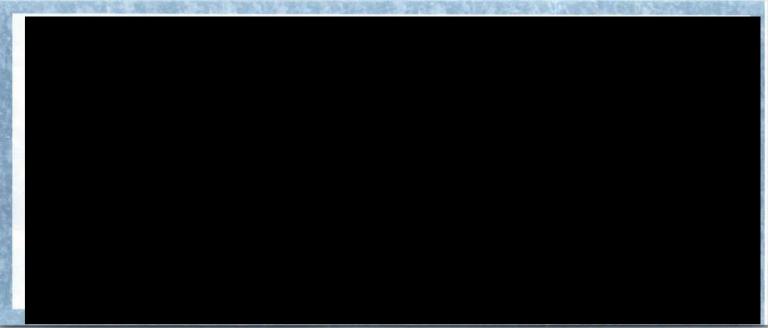
39. TCEQ Programs and ID Numbers Check all Programs and write in the permits/registration numbers that will be affected by the updates submitted on this form. See the Core Data Form instructions for additional guidance.

			Ap	p Pg 253 of 256, 6/3/24 Rev2
Dam Safety	Districts	Edwards Aquifer	Emissions Inventory Air	Industrial Hazardous Waste
🛛 Municipal Solid Waste	New Source Review Air		Petroleum Storage Tank	D PWS
Pending			67148	
Sludge	Storm Water	Title V Air		Used Oil
Voluntary Cleanup	Wastewater	Wastewater Agriculture	Water Rights	Other:
3237	7)			

SECTION IV: Preparer Information

40. Name:	Sam Enis			41. Title:	Principal Project Manager
42. Telephon	e Number	43. Ext./Code	44. Fax Number	45. E-Mail	Address
(512) 574-1199			() -	s.enis@sqe	nv.com

SECTION V: Authorized Signature


46. By my signature below, I certify, to the best of my knowledge, that the information provided in this form is true and complete, and that I have signature authority to submit this form on behalf of the entity specified in Section II, Field 6 and/or as required for the updates to the ID numbers identified in field 39.

Company:	Stonehawk Capital Partners LLC Job Title: Princ		Principal	rincipal		
Name (In Print):	Brian Woidneck		Phone:	(714) 686- 7242		
Signature:	Bhr		Date:	4/3/24		

19 FEE PAYMENT RECEIPT

The application fee for a development permit of \$2,500 has been paid by check and a photocopy is provided as **Attachment 19**.

ATTACHMENT 19 FEE PAYMENT

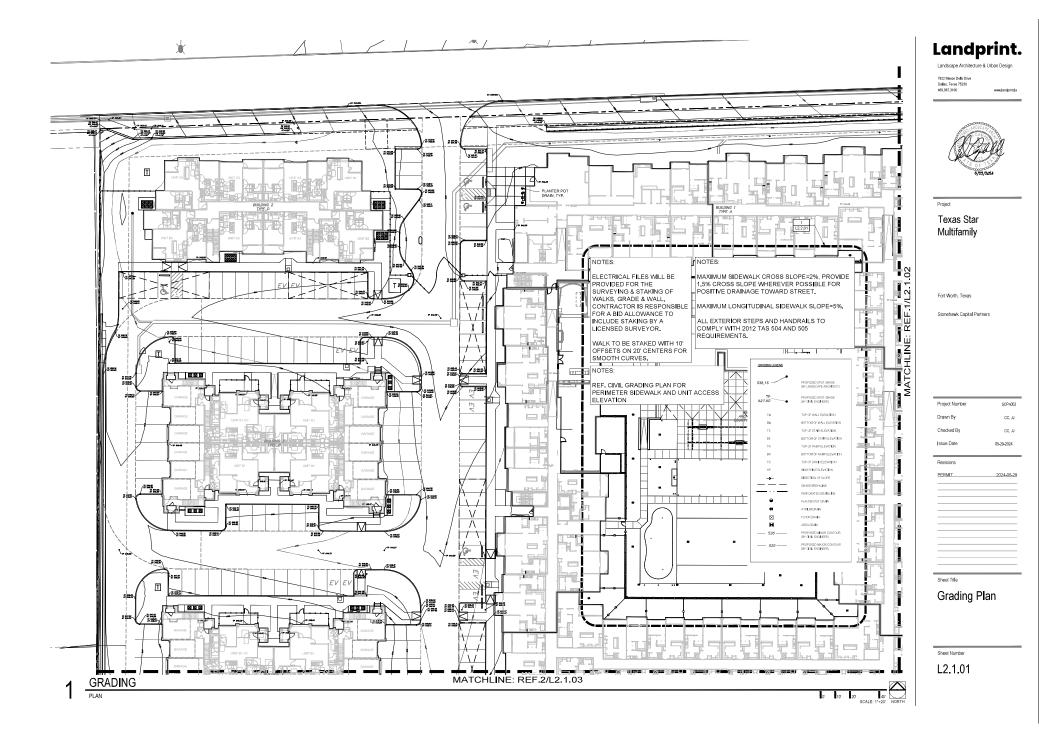
20 OTHER PLANS

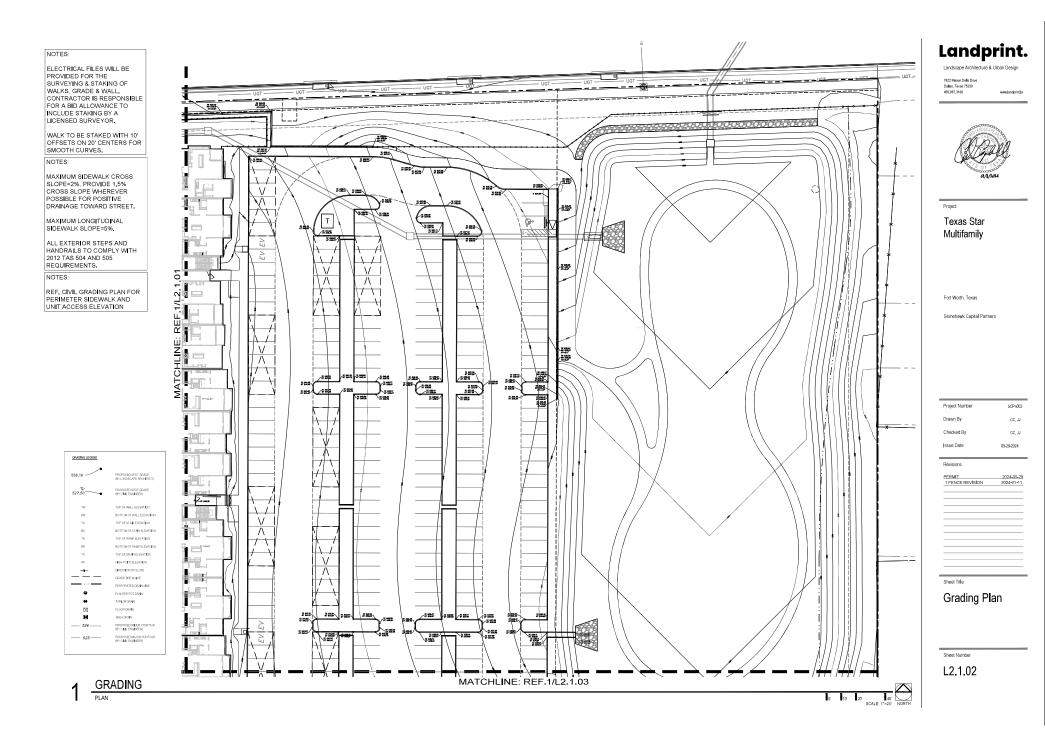
Grading and drainage plans are provided as **Attachment 20**. There are no irrigation plans for the property.

ATTACHMENT 20 OTHER PLANS

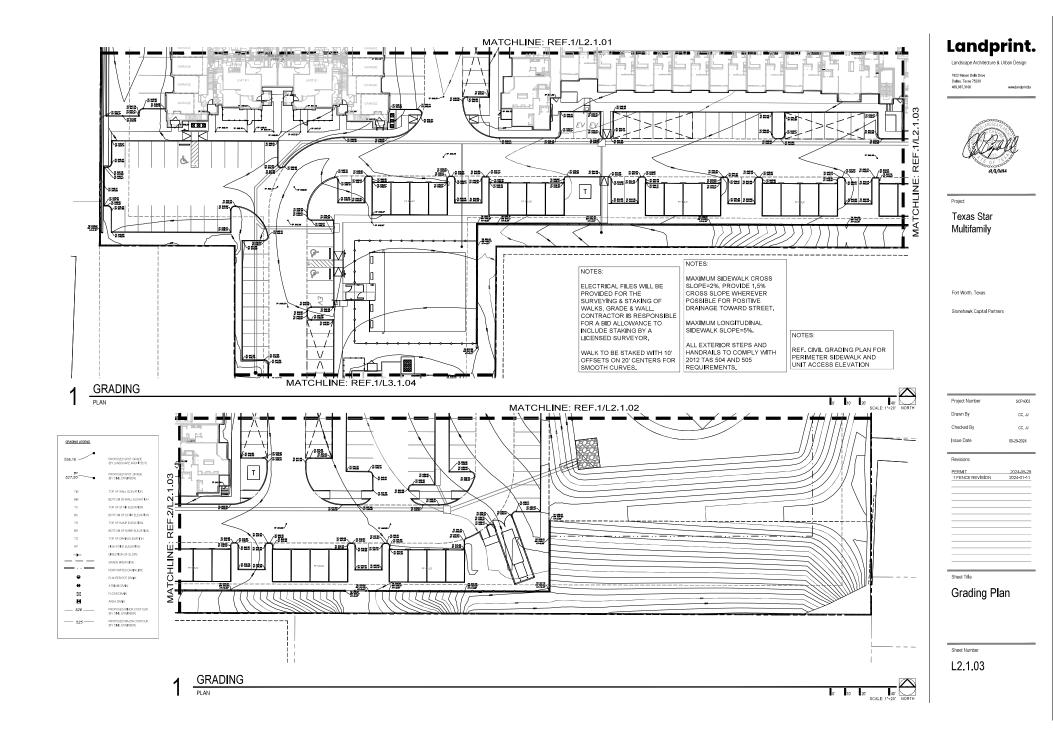
Project Texas Star Multifamily Fort Worth, Texas Stonehawk Capital Partners Project Number SCPn003 Drawn By CC, JJ Checked By CC, JJ ssue Date 05-29-2024 Revisions PERMIT 2024-05-29 Sheet Title

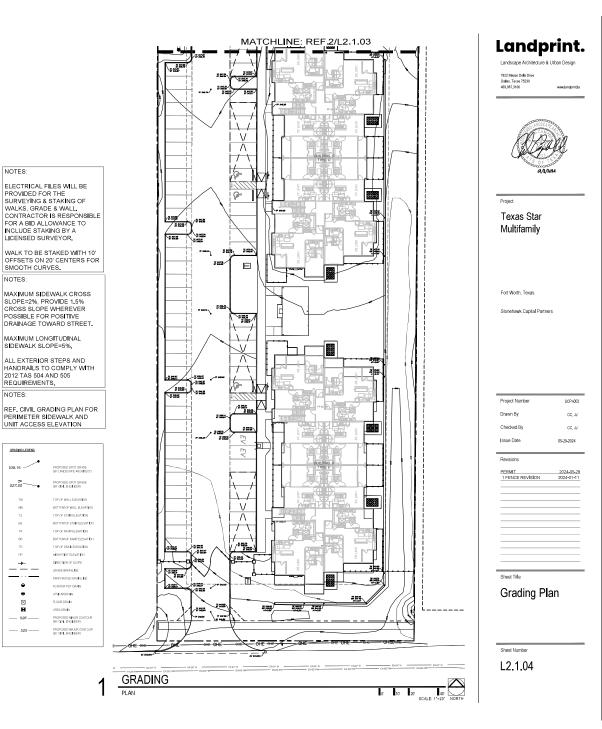
Landprint.

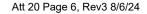

www.dandprint.la

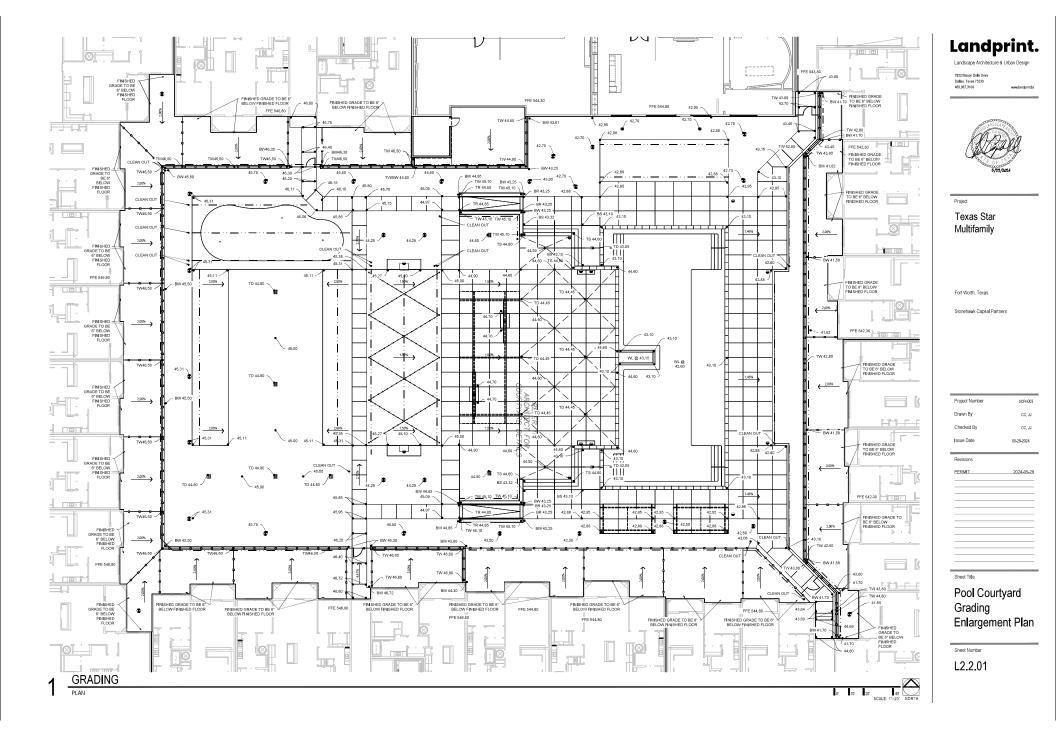

7822 Mason Dells Drive Dallas, Texas 75230 469,967.3100

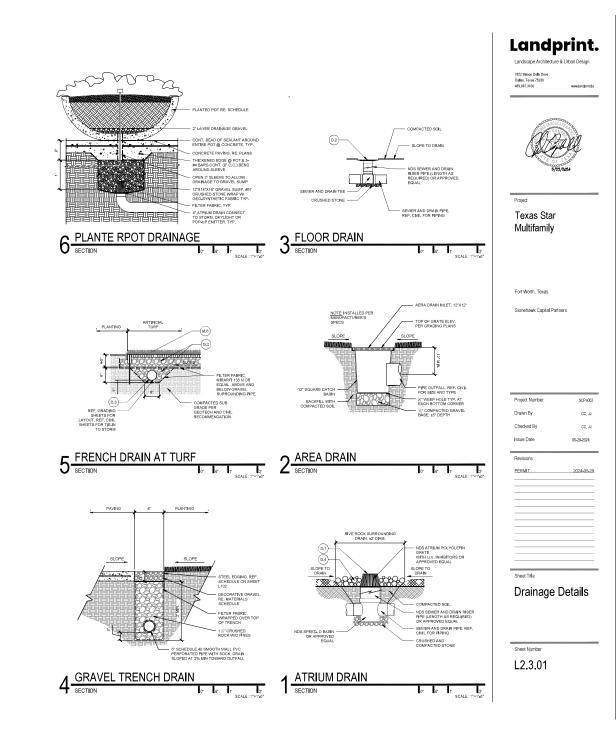
KEY	DECRIPTION/MODEL#	COLOR	FINISH	CONTACT	REMARK
DRA	iN	1.00114.01	NULL CONTRACTOR		
D.1	4" ATRIUM DRAIN GRATE MODEL #78	BLACK	STANDARD	NDS 800.726.1964	REF. LANDSCAPE GRADING PLANS. REF. CIVIL PLANS FOR PIPE LAYOUT AND SIZING TO STORM
D.2	5" AREA DRAIN W/BRASS GRATE NDS #918B WITH SPEEDY BASIN	BRASS	SATIN	NDS 800,726,1995	LOCATE PER PLAN, GRATES TO BE CENTERED ON SCORE JOINTS WHERE APPLICABLE AND CAST IN CONCRETE COLLAR
D.3	4" NDS EZ FLOW	BLACK	STANDARD	NDS 800.726.1995	LOCATE PER PLAN, GRATES TO BE CENTERED ON SCORE JOINTS WHERE APPLICABLE AND CAST IN CONCRETE COLLAR
D.4	12" NDS CATCH BASIN AREA DRAIN WITH GREEN GRATE	GREEN	STANDARD	NDS 800.726.1996	LOCATE PER PLAN, GRATES TO BE CENTERED ON SCORE JOINTS WHERE APPLICABLE AND CAST IN CONCRETE COLLAR


Drainage Schedule


Sheet Number






3

Landprint.

Landscape Architecture & Urban Design 7822 Meson Dells Dive Dellas, Teras 75230 468,987,3100 www.dendprintLa

Project Texas Star Multifamily

Fort Worth, Texas

Stonehawk Capital Partners

Project Number	SCPn003
Drawn By	CC, JJ
Checked By	CC, JJ
ssue Date	05-29-2024
Revisions	
PERMIT	2024-05-29
Sheet Title	
Sitework	
Materials	
Schedule	

Sheet Number

		Ha	rdscape Material Sch	edule				
		KEY	DECRIPTION/MODEL #	COLOR	FINISH	CONTACT	REMARK	
			STANDARD GREY CONCRETE 1	GREY	LIGHT BROOM	CONTRACTOR'S CHOICE	CONTRACTOR TO PROVIDE EXE MOCK-UP FOR LANDSCAFE ARCHITECT APPROVAL PRIOR TO CONSTRUCTION, SAW CUT JOINTS ONLY	
		C.2	STANDARD GREY CONCRETE 2	GREY	MEDIUM SANDBLAST	CONTRACTOR'S CHOICE	REF. PLANS FOR LAYOUT, REF. DETAILS SHEET L3.3.01 CONTRACTOR TO PROVIDE \$X5 MOCK-UP FOR LANDSCAPE ARCHTECT APPROVAL PRIOR TO CONSTRUCTION, SAW CUT JOINTS ONLY	
		C.3	CAST-IN-PLACE CONCRETE WALL	GREY	RUBBED CONCRETE	CONTRACTOR'S CHOICE	REF. PLANS FOR LAYOUT, REF. DETAILS SHEET L2.3.01 SHOWN FOR DESIGN INTENT ONLY, MATERIALS AND DETAILS OF ALL RETAINING/PLANTER WALLS TO BE VERIFIED BY OWNER AND STRUCTURAL ENGINEER	
		-	BURNISHED BLOCK WALL, WARIOUS SIZES AND SHAPES, STACKED BOND PATTERN	COMAL	STANDARD	TEXASBULDINGPRODUCTS.C	CONTRACTOR TO PROVIDE SUBMITTAL LANDSCAPE ARCHITECT APPROVAL PROR TO CONSTRUCTION, RE DETAILS SHEET L3 3.07 & L3 3.09	
		EDG	NG					
-		E1	3/16" X 4" STEEL EDGING	BLACK	POWERCOATED	JD RUSSELL CO 800.888.6672	LOCATED PER PLAN, TYPICALLY AT ALL AREAS SEPERATING SCID FROM PLANTING BEDS AND GRAVEL BEDS	
	CONTRACTOR TO PROVIDE QUANTITY TO INSURE FULL	FEN	E & GATE				Service -	
	COVERAGE AS SHOWN ON PLANS, CONTRACTOR TO SUBWIT SAMPLE TO L.A. FOR APPROVAL CONTRACTOR TO PROVIDE QUANTITY TO INSURE FULL	F.1	POOL FENCE 48" HEIGHT	BRONZE OR BLACK (TO MATCH ARCHITECTURE)	PAINTED	CONTRACTOR'S CHOICE	REF. PLANS FOR LAYOUT, REF. DETAILS ON SHEET L3.3.04	
	COVERAGE AS SHOWN ON PLANS. CONTRACTOR TO SUBWIT SAMPLE TO L.A. FOR APPROVAL	F.2		ERONZE OR BLACK (TO MATCH ARCHITECTURE)	PAINTED	CONTRACTOR'S CHOICE	REF. PLANS FOR LAYOUT, REF. DETAILS ON SHEET L3.3.08	
	CONTRACTOR TO PROVIDE QUANTITIN TO INSURE FULL COVERAGE AS SHOWN ON PLANS, CONTRACTOR TO	F.3	PERIMETER FEXCE 72" HEIGHT	ERONZE OR BLACK (TO MATCH ARCH(TECTURE)	PAINTED	CONTRACTOR'S CHOICE	REF. PLANS FOR LAYOUT, REF. DETAILS ON SHEET 13.3.08	
	SUBMIT SAMPLE TO LA FOR APPROVAL EXPOSED ACOREGATE POOL FINISH	F.4	PROPOERTY LINE - 72" HEIGHT, HORIZONTAL BOARD-CN-BOARD,	BENJAMIN MOORE CORDOVAN BROWN	PAINTED	CONTRACTOR'S CHOICE	REF. PLANS FOR LAYOUT, REF. DETAILS ON SHEET L3.3.08	
	CONTRACTOR TO PROVIDE SAMPLES OF COLOR TO	STANED CEDAR						
	LANDSCAPE ARCHITEC FOR APPROVAL PRIOR TO	GRA						
	PURCHASING CONTRACTOR TO PROVIDE QUANTITIY TO INSURE FULL COVERAGE AS SHOWN ON PLANS. CONTRACTOR TO SUBMIT SAMPLE TO LA FOR APPROVAL	G.1	DECOMPOSED GRANITE	NATURAL	NATURAL	CONTRACTOR'S CHOICE	COMPACTED AND WATERED IN, 4" DEPT MINIMUM CONTRACTOR TO SUBMITSAMPLES FOR APPROVAL B LANDSCAFE ARCHITECT	
	OR APPRIVED EQUAL, INSTALL PER MANUFACTUER'S SPECIFICATIONS, CONTRACTOR TO PROVIDE SUBMITTAL FOR APPROVAL BY OWNER AND LANDSCAPE ARCHITECT	G.2	#57 STONE, 1 34" AGGREGATE WASHED, GENERAL DRIANGE GRAVEL	NATURAL	NATURAL	CONTRACTOR'S CHOICE	FOR GENERAL DRAINAGE AND COMPACTED FILL	
	REF. PLANS FOR LAYOUT REF. DETAILS ON SHEET	G.3	MEDIUM LAVA ROCK FIRE PIT ROCK	STANDARD	NATURAL	WOODLAND DIRECT 844.278.0343	CONTRACTOR TO SUBMIT SAMPLES TO LANDSCAPE ARCHITECT FOR APPROVAL PRIOR TO INSTALLATION	
_	13.302	G.4	TEXAS BLACK STAR, 2" TO 3" DAM.	NATURAL	NATURAL	OUTDOOR WAREHOUSE 972,423,4001	OR APPRIVED EQUAL, CONTRACTOR TO SUBMIT SAMPLES TO LANDSCAPE ARCHITECT FOR APPROVAL PROR TO INSTALLATION	
	LOCATE PER PLAN. INSTALL PER MANUFACTUER'S	MIR	ELLANEOUS					
	SPECIFICATIONS SURFACE DOUNTED LOCATE PER PLAN, INSTALL PER MANUFACTUER'S SPECIFICATIONS LOCATE PER PLAN, INSTALL PER MANUFACTUER'S SPECIFICATIONS			STAINLESS STEEL	STAINLESS STEEL	AEI CORPORTION LORI HEMIGHAUS 949:474-3070	INSTALL PER MANUFACTUER'S SPECIFICATIONS, REF. DETAILS ON SHEET L3.3.00	
	LOCATE PER PLAN. INSTALL PER MANUFACTUER'S SPECIFICATIONS	M2	OUTDOOR GRILL AELCORPORATION DOUBLE DOOR CABINET	STAINLESS STEEL	STAINLESS STEEL	AELCORPORTION LORI HEM GHAUS 949 474 3071	INSTALL PER MANUFACTUER'S SPECIFICATIONS, REF. DETAILS ON SHEET L3 3.69	
	LOCATE PER PLAN. INSTALL PER MANUFACTURE'S SPECIFICATIONS	M.3		STANDARD	STANDARD	WOOBLAND DIRECT 844.279.0343	INSTALL PER MANUFACTUER'S SPECIFICATIONS, REF. DETAILS ON SHEET L3:3.07	
6	OR APPROVED EQUAL, LOCATE PER PLAN, INSTALL PER MANUFACTUER'S SPECIFICATIONS OR APPROVED EQUAL, LOCATE PER PLAN	M.5	BIG ASS FAN IS BLACK 60° DIN	ELACK	POWERCOATED	BIG ASS FANS 877.244.3267	INSTALL PER MANUFACTUER'S SPECIFICATIONS, REF. DETAILS ON SHEET L3 3.06	
	OR APPROVED EQUAL, LOCATE PER PLAN. REF. TO DETAIL ON SHEET L3.3.01	M.6		STANDARD	STANDARD	SYNTHETIC GRASS PROS MARCO GORTANA 214.577.3080	INSTALL PER MANUFACTUER'S SPECIFICATIONS, REF. DETAILS ON SHEET L3:3.0*	
		M.7	GAME ELITE	STANDARD	STANDARD	SYNTHETIC GRASS PROS MARCO GORTANA 214 577 30804	INSTALL PER MANUFACTUER'S SPECIFICATIONS, REF. DETAILS ON SHEET L3:3.0	
	LIMESTONE BLOCK, LOCATE PER PLAN. PROVIDE PHOTOS OF ACTUAL SLABS FOR APPROVAL PRIOR TO	M.8		BRONZE OR BLACK (TO MATCH ARCHITECTURE)		CONTRACTOR'S CHOICE	INSTALL PER MANUFACTUER'S SPECFICATIONS, REF. DETAILS ON SHEET L3:3.07	
	PURCHASING, EXPOSED WEDGE HOLES ON PERIMETER EDGES	M.9	WOOF FIBER ENGINEERED WOOD FIBER MULCH	NATURAL	NATURAL	DOG-ON-IT-PARKS.COM	OR APPRIVED EQUAL, INSTALL PER MANUFACTUER'S SPECIFICATIONS	

PL.1	WOSA 2042YZV PORCELAIN SIZE: 2X24	MID WARM GRET	STANDARD	DONNA MOLENDON 214,761,5659	COVERACION TO PROVIDE GUAN THE TO NSCHE FUL COVERAGE AS SHOWN ON PLANS, CONTRACTOR TO SUBMIT SAMPLE TO LA, FOR APPROVAL
PL.2	WATERLINE DEPTH MARKERS CUSTOM MOGAIC 1X1 BERIEB: FRESH	FIELD COLOR: WHITE GLOSSY 1X1 SCRIPT COLOR: BLACK GLOSSY	STANDARD	KNOX TILE DONNA MCLENDON 214 761 5670	CONTRACTOR TO PROVIDE QUANTITY TO INSURE FUL COVERAGE AS SHOWN ON PLANS. CONTRACTOR TO SUBWIT SAMPLE TO L.A. FOR APPROVAL
PL3	SELINEARTOR/ BENCH LINE RESH BLACK SIZE: 1X1	BLACK	ANTI-SLIP	KNOX TILE DONNA MCLENDON 214.761.5671	CONTRACTOR TO PROVIDE QUANTITIN TO INSURE FULL COVERAGE AS SHOWN ON PLANS, CONTRACTOR TO SUBMIT SAMPLE TO LIA FOR APPROVAL
PL4	SWWOND BRITE EXPOSED AGGREGATE POOL FINISH	FRENCH GREAY	STANDARD	SGM 809.641.9247	EXPOSED AGGREGATE POOL FINISH
PL.5	JUEDERS UMESTONE POOL COPING, 2"THICK	CHARCOAL	SAINN TOP & BCTTON & 4 SIDES	CONTRACORS CHOICE	CONTRACTOR TO PROVIDE SAMPLES OF COLOR TO LANDSCAPE ARCHITEC FOR APPROVAL PRIOR TO PURCHASING
PL.6	POOL HANDRAIL, 1 1/2" DIA.	STAINLESS STEEL	BRUSHED #4	CONTRACTOR'S CHOICE	CONTRACTOR TO PROVIDE QUANTITIY TO INSURE FULL COVERAGE AS SHOWN ON PLANS. CONTRACTOR TO SUBMIT SAMPLE TO LA. FOR APPROVAL.
PL.8	2 DIAMETER CANNON SCUPPER, ROUND ESCUTCHEON PLATE	STAINLESS STEEL	POLISHED	BCBE WATER & FIRE FEATURE, BCBEWATER NDFIRE CDM	OR APPRIVED EQUAL INSTALL PER MANUFACTUR'S SPECIFICATIONS, CONTRACTOR TO PROVIDE SUBMITT FOR APPROVAL BY OWNER AND LANDSCAPE ARCHITEC
RAIL	ING		100 No. 10	and the second second second	
R.1	STEPS HANDRAIL 11/2" DIA	TO MATCH ARCHITECTURAL RAILING	PAINTED	CONTRACTOR'S CHOICE	REF. PLANS FOR LAYOUT, REF. DETAILS ON SHEET 13302
SITE	FURNITURE				
	TRASH RECEPTACLE, DUMOR WODEL# 272-32-SO	TEXTURED CHARCOAL		DLMOR 800.558.4018	LOCATE PER PLAN, INSTALL PER MANUFACTUER'S SPECIFICATIONS
SF.2	SKE RACK DUMOR MODEL # 290-00/S-1	TEXTURED CHARCOAL	POWERCOATED	DLMOR 80(598.4019	SURFACED MOUNTED LOCATE PER PLAN, INSTALL PE MANUFACTUER'S SPECIFICATIONS
SF.3	PET STATION MODEL# 1003-L	GREEN	POWERCOATED	DCGIPOT PRODCUTS 80/364/7861	LOCATE PER PLAN. INSTALL PER MANUFACTUER'S SPECIFICATIONS
SF.4	TABLE 299-60H\$ FREESTANDING 2 NENCHES	TEXTURED CHARCOAL	POWERCOATED	DLMOR 801.598.4019	LOCATE PER PLAN. INSTALL PER MANUFACTUR'S SPECIFICATIONS
SF.6	CONCRETE CORN HOLE BOARDS	GREY	SMOOTH	STONE AGE CONCRETE TABLE TENNIS 541.671.6318	LOCATE PER PLAN. INSTALL PER MANUFACTUER'S SPECIFICATIONS
SF.6	DOG WATERING STATION	SATIN FINISH	STAINLESS STEEL	DOG-ON-IT-PARKS.COM	OR APPROVED EQUAL LOCATE PER PLAN. INSTALL PE MANUFACTUER'S SPECIFICATIONS
SF.7	WOOD ARC HAMMOCK STAND - SIBERIAN LARCH	WOOD	STANDARD	CARIBBEANHAMMOCKS.COM	OR APPROVED EQUAL, LOCATE PER PLAN
SF.8	12"L X 18"W X 24"H METAL BOX PLANTER: 85_5721824	F&F DARK BRONZE MATTE	POWDERCOATED	FORMAND FIBER COM	OR APPROVED EQUAL, LOCATE PER PLAN, REF. TO DETAIL ON SHEET L3.3.01
STOP	VE				
S.1	LEUDER LINESTONE COUNTER TOP 114" MIN, THICKNESS	CHARCOAL	SAMN WITH EASED EDGES ON ALL SIDES	CONTRACTOR'S CHOICE	
5.2	EUDER LINESTONE BLOCK 90° X 18° X 14°	CHARCOAL	REF. DETAIL ON SHEET 13.3.01	CONTRACTOR'S CHOICE	LIMESTONE BLOCK, LOCATE PER PLAN, PROVIDE PHOTOS OF ACTUAL SLABS FOR APPROVAL PRIOR TO PURCHASING, EXPOSED WEDGE HOLES ON PERIMETE EDGES

KNOK TILE

MID WARM GREY STANDARD

POOL PL.1 WATERLINE TILE