REGIONAL SOLID WASTE MANAGEMENT PLAN

ARK-TEX COUNCIL OF GOVERNMENTS

Volume I
Volume II
Attachments Volume II
This report was prepared by
Texas State Institute for Government Innovation

About the Institute
The Institute for Government Innovation is a unique consultancy leveraging university resources to solve our clients’ problems and help students successfully transition to careers. We combine student enthusiasm and faculty expertise to develop innovative solutions to real-world challenges. Our mission is to improve today’s decisions and tomorrow’s decision makers. For more information, please visit http://igi.txstate.edu/.

Authors
Dr. Rebecca Davio
Matthew Pantuso
Molly Allred
Eric Alper
Haley Johnson
Haley Tacker

Special thanks to the Ark-Tex Council of Governments (ATCOG) for the opportunity to work on this project. We would specifically like to thank Paul Prange with ATCOG and the members of the Solid Waste Advisory Committee for their guidance and feedback in the development of this Plan.

Delivered on
November 1, 2021
To support reducing waste, we have produced this document to be best viewed electronically. We have also included links to print critical parts of the plan.

PLEASE NOTE PRINTING FEATURES ONLY WORK IN ADOBE ACROBAT, NOT IN WEB BROWSERS

Volume I

The approved summary of the 2022 – 2042 Regional Solid Waste Management Plan

GO TO VOLUME I PRINT VOLUME I

Volume II

The approved plan details of the 2022 – 2042 Regional Solid Waste Management Plan

GO TO VOLUME II PRINT VOLUME II

Plan-at-a-Glance

The 2022 – 2042 Regional Solid Waste Management Plan-at-a-Glance for quick reference

GO TO PLAN-AT-A-GLANCE PRINT PLAN-AT-A-GLANCE

Plan Conformance Review

The Plan Conformance Review to help evaluate proposed municipal solid waste facility applications

GO TO CONFORMANCE REVIEW PRINT CONFORMANCE REVIEW
Contents

Contents... i
Regional Solid Waste Management Plan Volume I .. 1
 Regional Organization Information .. 1
 Section I. Geographic Scope .. 1
 Section II. Plan Content ... 1
 Section III. Required Approvals ... 6
Regional Solid Waste Management Implementation Plan Volume II .. 1
 Regional Organization Information .. 1
 Section I. Geographic Scope .. 1
 Section II. Planning Periods .. 2
 Section III. Plan Content .. 3
 Section IV. Required Approvals ... 30
Attachments Volume II ... 1
 Table of Figures .. 1
 Table of Tables ... 3
 Table of Equations ... 5
 Attachment I. Geographic Scope .. 6
 Attachment II.A. Planning Periods .. 9
 Attachment III.A. Demographic Information .. 12
 Attachment III.B. Estimates of Current and Future Solid Waste Amounts by Type 33
 Attachment III.C. Solid Waste Management Activities .. 41
 Attachment III.D. Description and Assessment of the Adequacy of Existing Solid Waste
 Management Facilities & Practices, and Household Hazardous Waste Programs 125
 Attachment III.E. Assessment of Current Source Reduction and Waste Minimization Efforts,
 Including Sludge, and Efforts to Reuse or Recycle Waste .. 126
 Attachment III.F. Identification of Additional Opportunities for Source Reduction and Waste
 Minimization, and Reuse or Recycling of Waste ... 132
 Attachment III.G. Recommendations for Encouraging and Achieving a Greater Degree of
 Source Reduction and Waste Minimization, and Reuse or Recycling of Waste 136
 Attachment III.H. Identification of Public and Private Management Agencies and
 Responsibilities .. 141
Attachment III.I. Identification of Solid Waste Management Concerns and Establishment of Priorities for Addressing Those Concerns ... 151
Attachment III.L. Regional Goals and Objectives, Including Waste Reduction Goals 162
Introduction .. 162
Attachment III.N. Recommended Plan of Action and Associated Timetable for Achieving Specific Goals and Objectives .. 168
Attachment III.O. Identification of the Process that Will be Used to Evaluate Whether a Proposed Municipal Solid Waste Facility Application Will be in Conformance with the Regional Plan .. 188
Attachment IV.B. Required Approvals | Public Meeting ... 200
Regional Solid Waste Management Plan
Volume I

Regional Organization Information

<table>
<thead>
<tr>
<th>Name of Council of Government</th>
<th>Ark-Tex Council of Governments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mailing Address</td>
<td>4808 Elizabeth Street,</td>
</tr>
<tr>
<td></td>
<td>Texarkana, TX 75503</td>
</tr>
<tr>
<td>Website</td>
<td>https://atcog.org/</td>
</tr>
<tr>
<td>Phone Number</td>
<td>903-832-8636</td>
</tr>
<tr>
<td>Email Address</td>
<td>admin@atcog.org</td>
</tr>
</tbody>
</table>

Section I. Geographic Scope

Note: For more information, see Volume II, Section I. Geographic Scope.

<table>
<thead>
<tr>
<th>Names of Member Counties in the Entire Planning Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bowie, Cass, Delta, Franklin, Hopkins, Lamar, Morris, Red River, Titus</td>
</tr>
</tbody>
</table>

Section II. Plan Content

II.A. Regional Goals and Objectives

<table>
<thead>
<tr>
<th>Goal #1</th>
<th>Maximize Beneficial Resource Use</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Objective 1.A. Improve access to diversion opportunities</td>
</tr>
<tr>
<td></td>
<td>Objective 1.B. Improve community participation</td>
</tr>
<tr>
<td></td>
<td>Objective 1.C. Provide education</td>
</tr>
</tbody>
</table>
| **Goal #2** | **Responsibly Manage Problematic Waste** | **Objective 2.A.** Improve access to problematic waste collection
Objective 2.B. Provide education
Objective 2.C. Collect data |
|-------------|--|---|
| **Goal #3** | **Maximize Proper Disposal** | **Objective 3.A.** Improve access to solid waste drop-off opportunities
Objective 3.B. Improve community participation
Objective 3.C. Provide education
Objective 3.D. Collect data
Objective 3.E. Increase illegal dumping prevention efforts
Objective 3.F. Increase illegal dumping enforcement |
| **Goal #4** | **Lead Regional Planning** | **Objective 4.A.** Collaborate
Objective 4.B. Optimize funding decisions
Objective 4.C. Oversee facility planning
Objective 4.D. Review and update solid waste management plans
Objective 4.E. Make continuous improvements
Objective 4.F. Collect data
Objective 4.G. Plan for disaster waste |
II.B. Efforts to Minimize, Reuse, and Recycle Waste

Table II.B. Waste Minimization, Reuse, and Recycling

<table>
<thead>
<tr>
<th>Subject</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Efforts to Minimize Municipal Solid Waste and to Reuse or Recycle Waste</td>
<td>There are few recycling efforts and opportunities in the region, leaving room for improvement. Reuse opportunities exist in the region but are not typically handled by cities and counties. These opportunities, such as Goodwill, Salvation Army, and online social networks are also typically not communicated on city and county websites in the region. General source reduction and waste minimization efforts are much less common throughout the region. For more information, see Volume II, Attachment III.E. Assessment of Current Source Reduction and Waste Minimization Efforts, Including Sludge, and Efforts to Reuse or Recycle Waste.</td>
</tr>
<tr>
<td>Recycling Rate Goal for the Region</td>
<td>Because no established regional recycling rate exists, we estimated one based on the statewide recycling rate. Having adjusted the statewide rate to the region, we found the current ATCOG recycling rate to be 17.5%. Based on this current rate, the recycling rate goal is set for a regional average of 40% by 2042—the end of this plan. Achieving a 40% recycling rate over the course of this 20-year plan amounts to an average increase of about 1% each year. It is based on other waste management plans in Texas. The City of San Antonio plan is to increase recycling 4% every year to reach their goal of 60% by the end of 2025. The City of New Braunfels plan is to increase their annual recycling rate by 1.6% to reach their goal of 38% by 2030. Because the regional recycling rate goal is the average rate for the region, the 1% yearly growth rate accounts for both city and rural areas, and their varied capabilities. Cities and rural communities are not expected to reach the same recycling level, but together they should strive to average 40% by 2042. To make measuring and reaching the recycling rate goal attainable, for the purposes of this plan, any material diverted from the landfill may be included in the recycling rate.</td>
</tr>
</tbody>
</table>
The region will need to be able to measure their recycling rate in order to assess their progress towards reaching the regional goal. Developing a process to measure the region’s diversion activities will be critical to the success of this goal. Collecting data on waste diversion helps improve diversion efforts. Data driven decision making is crucial to achieving not just the recycling goal, but to improve outcomes for many of the goals listed in this plan.

For more information about the region’s recycling rate, see Residential Waste Generation in Volume II, Attachment III.A. Demographic Information on page A14.

These recommendations are about improving leadership and project implementation and are broad management best practices rather than specific ideas.

The recommendations are collaboration, communication, education, information tracking, and leadership.

For more information about these recommendations, see Volume II, Attachment III.G. Recommendations for Encouraging and Achieving a Greater Degree of Source Reduction and Waste Minimization, and Reuse or Recycling of Waste.

There are also more specific ideas in Volume II, Section III.F. Identification of Additional Opportunities for Source Reduction and Waste Minimization, and Reuse or Recycling of Waste.

There are no permanent household hazardous waste drop-off facilities in the region, and according to committee members there are not typically collection events.

This plan includes a goal to Responsibly Manage Problematic Wastes, which is closely related to household hazardous waste collection.
<table>
<thead>
<tr>
<th>Subject</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composting Programs for Yard Waste</td>
<td>The recommended composting programs for yard waste and related organic wastes may include:</td>
</tr>
<tr>
<td></td>
<td>☒ (I) creation and use of community composting centers;</td>
</tr>
<tr>
<td></td>
<td>☒ (II) adoption of the "Don't Bag It" program for lawn clippings developed by the Texas Agricultural Extension Service; and</td>
</tr>
<tr>
<td></td>
<td>☒ (III) development and promotion of education programs on home composting, community composting, and the separation of yard waste for use as mulch.</td>
</tr>
<tr>
<td>Public Education/Outreach</td>
<td>This plan includes a goal to Maximize Beneficial Resource Use, which includes a “Provide education” objective. This objective contains two action steps, one to increase broad public awareness, and the second to educate targeted audiences.</td>
</tr>
</tbody>
</table>

II.C. Commitment Regarding the Management of MSW Facilities

By checking the boxes below, the Council of Government makes a commitment to the following, regarding the management of MSW facilities:

☒ (i) encouraging cooperative efforts between local governments in the siting of landfills for the disposal of solid waste;

☒ (ii) assessing the need for new waste disposal capacity;

☒ (iii) considering the need to transport waste between municipalities, from a municipality to an area in the jurisdiction of a county, or between counties, particularly if a technically suitable site for a landfill does not exist in a particular area;

☒ (iv) allowing a local government to justify the need for a landfill in its jurisdiction to dispose of the solid waste generated in the jurisdiction of another local government that does not have a technically suitable site for a landfill in its jurisdiction;

☒ (v) completing and maintaining an inventory of MSW landfill units in accordance with Texas Health and Safety Code, §363.0635. One copy of the inventory shall be provided to the commission and to the chief planning official of each municipality and county in which a unit is located; and
(vi) developing a guidance document to review MSW registration and permit applications to determine conformance with the goals and objectives outlined in Volume II: Regional Solid Waste Management Plan Implementation Guidelines as referenced in 30 TAC §330.643.

Section III. Required Approvals

Table III.I. Required Approvals

<table>
<thead>
<tr>
<th>Solid Waste Advisory Committee</th>
<th>October 14, 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Meeting Dates</td>
<td>July 13, 2021</td>
</tr>
<tr>
<td>Executive Committee</td>
<td>October 28, 2021</td>
</tr>
</tbody>
</table>
Regional Solid Waste Management Implementation Plan Volume II

Regional Organization Information

Table 1. Organization Information

<table>
<thead>
<tr>
<th>Name of Council of Government</th>
<th>Ark-Tex Council of Governments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mailing Address</td>
<td>4808 Elizabeth Street,</td>
</tr>
<tr>
<td></td>
<td>Texarkana, TX 75503</td>
</tr>
<tr>
<td>Website</td>
<td>https://atcog.org/</td>
</tr>
<tr>
<td>Phone Number</td>
<td>903-832-8636</td>
</tr>
<tr>
<td>Email Address</td>
<td>admin@atcog.org</td>
</tr>
</tbody>
</table>

Section I. Geographic Scope

Note: Attachment I. Geographic Scope is not called for in the original Volume II form but is nonetheless included. It is similarly noted at the beginning of the relevant section of the attachments that this information is included.

Table I.I. Geographic Scope

<table>
<thead>
<tr>
<th>I.A. Names of Member Counties in the Entire Planning Region</th>
<th>Bowie, Cass, Delta, Franklin, Hopkins, Lamar, Morris, Red River, Titus</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.B. Geographic Planning Units Used in the Regional Implementation Plan</td>
<td></td>
</tr>
<tr>
<td>☑ Small geographic areas such as census tracts or city boundaries for the most detailed data collection and manipulation;</td>
<td></td>
</tr>
<tr>
<td>☑ Planning areas to be used for the assessment of concerns and the evaluation of alternatives. These planning areas shall be aggregations of small geographic areas;</td>
<td></td>
</tr>
<tr>
<td>☑ County boundaries for the summarization and presentation of key information; or</td>
<td></td>
</tr>
<tr>
<td>☑ The entire planning region</td>
<td></td>
</tr>
</tbody>
</table>
Section II. Planning Periods

Table II.I. Planning Periods

<table>
<thead>
<tr>
<th>II.A.1. Current and Historical Information</th>
<th>2018 – 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>All data source years are clearly marked when used throughout this plan. The most recent year was preferred except when comparative analysis required using similar years.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>II.A.2. Short-range Planning Period</th>
<th>2022 – 2027</th>
</tr>
</thead>
<tbody>
<tr>
<td>There are 11 action steps in the short-range planning period that cover 7 objectives and span all four goals, including maximizing beneficial resource use, responsibly managing problematic wastes, maximizing proper disposal, and leading regional planning.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>II.A.3. Intermediate Planning Period</th>
<th>2028 – 2032</th>
</tr>
</thead>
<tbody>
<tr>
<td>There are 11 action steps in the intermediate planning period that cover 9 objectives and span all four goals.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>II.A.4. Long-range Planning Period</th>
<th>2033 – 2042</th>
</tr>
</thead>
<tbody>
<tr>
<td>There is 1 action step in the long-range planning period that covers 1 objective and 1 goal (maximizing proper disposal). This was done purposefully to acknowledge the long-range planning period is subject to significant change and must have flexibility. Still, there are also 20 action steps, covering 13 objectives, that occur in all planning periods: short-range, intermediate, and long-range.</td>
<td></td>
</tr>
</tbody>
</table>

☑ Check box if additional details provided in Attachment II.A.
Section III. Plan Content

III.A. Demographic Information

Note: Attachment III. Demographic Information is not called for in the original Volume II form but is nonetheless included. It is similarly noted at the beginning of the relevant section of the attachments that this information is included.

Table III.A.I. Residential Waste Generation

<table>
<thead>
<tr>
<th>Year</th>
<th>Growth Rate per Year</th>
<th>Current Population / Population Projection</th>
<th>Landfill Disposal (Tons)</th>
<th>Disposal Rate (lbs./Person/Day)</th>
<th>Recycling (Tons)</th>
<th>Recycling Rate (lbs./Person/Day)</th>
<th>Residential Waste Generation (Tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current (2019)</td>
<td>N/A</td>
<td>288,436</td>
<td>456,123</td>
<td>8.67</td>
<td>96,753</td>
<td>1.84</td>
<td>552,876</td>
</tr>
<tr>
<td>2022</td>
<td>-1.5%</td>
<td>284,135</td>
<td>449,322</td>
<td>8.67</td>
<td>95,311</td>
<td>1.84</td>
<td>544,632</td>
</tr>
<tr>
<td>2027</td>
<td>-0.5%</td>
<td>282,682</td>
<td>447,024</td>
<td>8.67</td>
<td>94,823</td>
<td>1.84</td>
<td>541,847</td>
</tr>
<tr>
<td>2032</td>
<td>-1.2%</td>
<td>279,355</td>
<td>441,763</td>
<td>8.67</td>
<td>93,707</td>
<td>1.84</td>
<td>535,470</td>
</tr>
<tr>
<td>2037</td>
<td>-1.8%</td>
<td>274,224</td>
<td>433,649</td>
<td>8.67</td>
<td>91,986</td>
<td>1.84</td>
<td>525,635</td>
</tr>
<tr>
<td>2042</td>
<td>-2.2%</td>
<td>268,238</td>
<td>424,183</td>
<td>8.67</td>
<td>89,978</td>
<td>1.84</td>
<td>514,161</td>
</tr>
</tbody>
</table>
Table III.A.II. Commercial Waste Generation

Note: While residential population is projected to decrease commercial employment is projected to grow. For more information about this disparity, see Volume II, Attachment III.C. Description of Current and Planned Solid Waste Management Activities.

<table>
<thead>
<tr>
<th>Year</th>
<th>Description of significant commercial activities affecting waste generation and disposal in the area.</th>
<th>Expected increase or decrease to Commercial Waste Generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2022</td>
<td>Top 10 Commercial Employment Sectors represent more than 80% of the commercial workforce.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Growth Rate per Year</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Current Population</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100,535</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Landfill Disposal (Tons)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>468,663</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disposal Rate (lbs./Person/Day)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recycling (Tons)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>104,504</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recycling Rate (lbs./Person/Day)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Commercial Waste Generation (Tons)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>573,167</td>
</tr>
</tbody>
</table>

Rank | Sector | Percent of Workforce |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Health Care and Social Assistance</td>
<td>13%</td>
</tr>
<tr>
<td>2</td>
<td>Educational Services</td>
<td>12%</td>
</tr>
<tr>
<td>3</td>
<td>Accommodation and Food Services</td>
<td>11%</td>
</tr>
<tr>
<td>4</td>
<td>Public Administration</td>
<td>10%</td>
</tr>
<tr>
<td>5</td>
<td>Management of Companies and Enterprises</td>
<td>9%</td>
</tr>
<tr>
<td>6</td>
<td>Retail Trade (store)</td>
<td>9%</td>
</tr>
<tr>
<td>7</td>
<td>Finance and Insurance</td>
<td>5%</td>
</tr>
<tr>
<td>8</td>
<td>Retail Trade (nonstore)</td>
<td>5%</td>
</tr>
<tr>
<td>9</td>
<td>Wholesale Trade</td>
<td>4%</td>
</tr>
<tr>
<td>10</td>
<td>Other Services</td>
<td>4%</td>
</tr>
<tr>
<td>Year</td>
<td>Description of significant commercial activities affecting waste generation and disposal in the area.</td>
<td>Expected increase or decrease to Commercial Waste Generation</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2027</td>
<td>The number of people employed in commercial activities is projected to grow by 5%.
The Healthcare and Social Services sector will remain the most employed sector, with approximately 15,300 employees, an increase of 17% from 2022.
The Educational Services sector will remain the second most employed sector, with approximately 12,300 employees, an increase of 5% from 2022.
The Accommodation and Food Services sector will remain the third most employed sector, with approximately 12,200 employees, an increase of 17% from 2022.</td>
<td>Growth Rate per Year
Growth Rate per Year 5.4%
Prediction Population Projection
Prediction Population Projection 105,915
Prediction Landfill Disposal (Tons)
Prediction Landfill Disposal (Tons) 493,743
Prediction Disposal Rate (lbs./Person/Day)
Prediction Disposal Rate (lbs./Person/Day) 25.54
Prediction Recycling (Tons)
Prediction Recycling (Tons) 110,096
Prediction Recycling Rate (lbs./Person/Day)
Prediction Recycling Rate (lbs./Person/Day) 5.70
Prediction Commercial Waste Generation (Tons)
Prediction Commercial Waste Generation (Tons) 603,839</td>
</tr>
<tr>
<td>2032</td>
<td>The region’s economy is expected to advance by 2032. Expansion across many industries will result in an increase to total commercial employment.
The largest increase in commercial growth during this planning period occurs in the Services industries. This sector includes companies providing services to individuals, businesses, or government entities. Examples of commercial activities in this sector include medical services, business services (excluding finance, insurance, and real estate), hotels, and amusements.</td>
<td>Growth Rate per Year
Growth Rate per Year 6.4%
Prediction Population Projection
Prediction Population Projection 112,675
Prediction Landfill Disposal (Tons)
Prediction Landfill Disposal (Tons) 525,257
Prediction Disposal Rate (lbs./Person/Day)
Prediction Disposal Rate (lbs./Person/Day) 25.54
Prediction Recycling (Tons)
Prediction Recycling (Tons) 117,123
Prediction Recycling Rate (lbs./Person/Day)
Prediction Recycling Rate (lbs./Person/Day) 5.70
Prediction Commercial Waste Generation (Tons)
Prediction Commercial Waste Generation (Tons) 642,380</td>
</tr>
</tbody>
</table>
Description of significant commercial activities affecting waste generation and disposal in the area.

<table>
<thead>
<tr>
<th>Year</th>
<th>Description</th>
<th>Expected increase or decrease to Commercial Waste Generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2037</td>
<td>It is estimated that the rate of highest growth will occur in the Services and Health Care sectors. Examples of commercial activities in this sector include medical services, business services (excluding finance, insurance, and real estate), hotels, and amusements. The Transportation, Warehousing, and Utilities industries are projected to grow around 6% from 2032 to 2037. Construction is expected to grow at a lesser pace than in the previous planning period at around 3.6% from 2032 to 2037.</td>
<td></td>
</tr>
<tr>
<td>2042</td>
<td>The full population in the region is expected to continue to decrease, an indicator of economic contraction. Job gains through this planning period will be concentrated in the Services industries. Construction, finance, insurance, real estate, and trade sectors are expected to grow at a lesser pace than other commercial activities.</td>
<td></td>
</tr>
</tbody>
</table>

Expected increase or decrease to Commercial Waste Generation

<table>
<thead>
<tr>
<th></th>
<th>Growth Rate per Year</th>
<th>Population Projection</th>
<th>Landfill Disposal (Tons)</th>
<th>Disposal Rate (lbs./Person/Day)</th>
<th>Recycling (Tons)</th>
<th>Recycling Rate (lbs./Person/Day)</th>
<th>Commercial Waste Generation (Tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.0%</td>
<td>120,519</td>
<td>561,824</td>
<td>25.54</td>
<td>125,277</td>
<td>5.70</td>
<td>687,100</td>
</tr>
<tr>
<td></td>
<td>3.6%</td>
<td>124,800</td>
<td>581,777</td>
<td>25.54</td>
<td>129,726</td>
<td>5.70</td>
<td>711,503</td>
</tr>
</tbody>
</table>
Table III.A.III. Industrial Waste Generation

Note: While residential population is projected to decrease industrial employment is projected to grow. For more information about this disparity, see Volume II, Attachment III.C. Description of Current and Planned Solid Waste Management Activities.

<table>
<thead>
<tr>
<th>Year</th>
<th>Description of significant industrial waste activities affecting waste generation and disposal in the area.</th>
<th>Expected increase or decrease to Industrial Waste Generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2022</td>
<td>The top 5 Industrial Employment Sectors represent 100% of the industrial workforce.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rank</td>
<td>Sector</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Manufacturing (metal, machinery, computer, electrical, transportation, misc.)</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Mining, Quarrying, and Oil and Gas Extraction</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Agriculture, Forestry, Fishing and Hunting</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Manufacturing (food, beverage, tobacco, leather, apparel, textile)</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Manufacturing (wood, paper, printing, plastic, chemical, nonmetallic, petroleum, coal)</td>
</tr>
</tbody>
</table>

Growth Rate per Year
- N/A

Population Projection
- 17,955

Landfill Disposal (Tons)
- 465,367

Disposal Rate (lbs./Person/Day)
- 142.02

Recycling (Tons)
- 103,769

Recycling Rate (lbs./Person/Day)
- 31.67

Industrial Waste Generation (Tons)
- 569,136
<table>
<thead>
<tr>
<th>Year</th>
<th>Description of significant industrial waste activities affecting waste generation and disposal in the area.</th>
<th>Expected increase or decrease to Industrial Waste Generation</th>
</tr>
</thead>
</table>
| 2027 | The number of people employed in industrial activities is projected to grow by 4%.
The Manufacturing of metals, machinery, and other durable goods will remain the most employed sector, with approximately 36,000 employees, an increase of 25% from 2022.
The Mining, Quarrying, and Oil and Gas Extraction sector will remain the second most employed sector, with approximately 18,000 employees, an increase of 41% from 2022.
The Manufacturing of food, beverages, and other non-durable goods will become the third most employed sector, with approximately 13,000 employees, an increase of 15% from 2022. | |
| | | Growth Rate per Year | 4.0% |
| | | Population Projection | 18,668 |
| | | Landfill Disposal (Tons) | 483,856 |
| | | Disposal Rate (lbs./Person/Day) | 142.02 |
| | | Recycling (Tons) | 107,892 |
| | | Recycling Rate (lbs./Person/Day) | 31.67 |
| | | Industrial Waste Generation (Tons) | 591,748 |
| 2032 | The region's economy is expected to advance by 2032. Expansion across many industries will result in an increase to total industrial employment.
The largest increase in industrial growth during this planning period occurs in the Mining, Quarrying, and Oil and Gas Extraction industry. Specifically, employment in this industry is projected to grow by about 5% bringing the number of employed to 19,000 people.
Employment in the Agriculture, Forestry, Fishing and Hunting industry is expected to shrink. | |
<p>| | | Growth Rate per Year | 1.5% |
| | | Population Projection | 18,947 |
| | | Landfill Disposal (Tons) | 491,076 |
| | | Disposal Rate (lbs./Person/Day) | 142.02 |
| | | Recycling (Tons) | 109,501 |
| | | Recycling Rate (lbs./Person/Day) | 31.67 |
| | | Industrial Waste Generation (Tons) | 600,577 |</p>
<table>
<thead>
<tr>
<th>Year</th>
<th>Description of significant industrial waste activities affecting waste generation and disposal in the area.</th>
<th>Expected increase or decrease to Industrial Waste Generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2037</td>
<td>The highest estimated growth in this time period is in the Mining and Manufacturing industries. Examples of industrial activities in these sectors quarrying, oil and gas extractions, and the manufacturing of durable and nondurable goods. Employment in the Agriculture, Forestry, Fishing and Hunting industry is expected to shrink.</td>
<td>Growth Rate per Year</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Population Projection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Landfill Disposal (Tons)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disposal Rate (lbs./Person/Day)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recycling (Tons)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recycling Rate (lbs./Person/Day)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Industrial Waste Generation (Tons)</td>
</tr>
<tr>
<td>2042</td>
<td>The full population in the region is expected to continue to decrease, an indicator of economic contraction. Job gains through this planning period will be concentrated in the Mining and Manufacturing industries. Agriculture is expected to grow at a lesser pace than in the other industrial activities.</td>
<td>Growth Rate per Year</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Population Projection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Landfill Disposal (Tons)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disposal Rate (lbs./Person/Day)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recycling (Tons)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recycling Rate (lbs./Person/Day)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Industrial Waste Generation (Tons)</td>
</tr>
</tbody>
</table>
III.B. Estimates of Current and Future Solid Waste Amounts by Type

Table III.B.1. Current and Future Solid Waste Amounts by Type

<table>
<thead>
<tr>
<th>Waste Type</th>
<th>Number of Landfills Accepting Waste Type</th>
<th>Percent of Total Tons Disposed</th>
<th>Current Year (tons) (2019)</th>
<th>5-year Projection (tons) (2027)</th>
<th>10-year Projection (tons) (2032)</th>
<th>15-year Projection (tons) (2037)</th>
<th>20-year Projection (tons) (2042)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Municipal</td>
<td>3</td>
<td>70%</td>
<td>321,383</td>
<td>314,979</td>
<td>311,200</td>
<td>305,598</td>
<td>298,875</td>
</tr>
<tr>
<td>Brush</td>
<td>-0-</td>
<td>-0-</td>
<td>-0-</td>
<td>-0-</td>
<td>-0-</td>
<td>-0-</td>
<td>-0-</td>
</tr>
<tr>
<td>Construction or Demolition</td>
<td>2</td>
<td>4%</td>
<td>17,853</td>
<td>17,497</td>
<td>17,287</td>
<td>16,976</td>
<td>16,603</td>
</tr>
<tr>
<td>Litter</td>
<td>-0-</td>
<td>-0-</td>
<td>-0-</td>
<td>-0-</td>
<td>-0-</td>
<td>-0-</td>
<td>-0-</td>
</tr>
<tr>
<td>Class 1 Non-hazardous</td>
<td>2</td>
<td>1%</td>
<td>4,904</td>
<td>4,807</td>
<td>4,749</td>
<td>4,663</td>
<td>4,561</td>
</tr>
<tr>
<td>Classes 2 and 3 Non-hazardous</td>
<td>1</td>
<td>7%</td>
<td>32,424</td>
<td>31,778</td>
<td>31,397</td>
<td>30,831</td>
<td>30,153</td>
</tr>
<tr>
<td>Incinerator Ash</td>
<td>-0-</td>
<td>-0-</td>
<td>-0-</td>
<td>-0-</td>
<td>-0-</td>
<td>-0-</td>
<td>-0-</td>
</tr>
<tr>
<td>Treated Medical Waste</td>
<td>-0-</td>
<td>-0-</td>
<td>-0-</td>
<td>-0-</td>
<td>-0-</td>
<td>-0-</td>
<td>-0-</td>
</tr>
<tr>
<td>Municipal Hazardous Waste from CESQGs</td>
<td>-0-</td>
<td>-0-</td>
<td>-0-</td>
<td>-0-</td>
<td>-0-</td>
<td>-0-</td>
<td>-0-</td>
</tr>
<tr>
<td>Waste Type</td>
<td>Number of Landfills Accepting Waste Type</td>
<td>Percent of Total Tons Disposed</td>
<td>Current Year (tons) (2019)</td>
<td>5-year Projection (tons) (2027)</td>
<td>10-year Projection (tons) (2032)</td>
<td>15-year Projection (tons) (2037)</td>
<td>20-year Projection (tons) (2042)</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>------------------------------</td>
<td>----------------------------</td>
<td>---------------------------------</td>
<td>----------------------------------</td>
<td>----------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Regulated Asbestos-containing Material (RACM)</td>
<td>2</td>
<td>0%</td>
<td>112</td>
<td>110</td>
<td>108</td>
<td>107</td>
<td>104</td>
</tr>
<tr>
<td>Non-RACM</td>
<td>1</td>
<td>0%</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Dead Animals</td>
<td>1</td>
<td>0%</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Sludge</td>
<td>2</td>
<td>1%</td>
<td>6,816</td>
<td>6,680</td>
<td>6,600</td>
<td>6,481</td>
<td>6,339</td>
</tr>
<tr>
<td>Grease Trap Waste</td>
<td>-0%</td>
<td>-0%</td>
<td>-0%</td>
<td>-0%</td>
<td>-0%</td>
<td>-0%</td>
<td>-0%</td>
</tr>
<tr>
<td>Septage</td>
<td>-0%</td>
<td>-0%</td>
<td>-0%</td>
<td>-0%</td>
<td>-0%</td>
<td>-0%</td>
<td>-0%</td>
</tr>
<tr>
<td>Contaminated soil</td>
<td>1</td>
<td>7%</td>
<td>31,257</td>
<td>30,634</td>
<td>30,267</td>
<td>29,722</td>
<td>29,068</td>
</tr>
<tr>
<td>Tires (split, quartered, shredded)</td>
<td>1</td>
<td>0%</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Pesticides</td>
<td>-0%</td>
<td>-0%</td>
<td>-0%</td>
<td>-0%</td>
<td>-0%</td>
<td>-0%</td>
<td>-0%</td>
</tr>
<tr>
<td>Used Oil Filter</td>
<td>-0%</td>
<td>-0%</td>
<td>-0%</td>
<td>-0%</td>
<td>-0%</td>
<td>-0%</td>
<td>-0%</td>
</tr>
<tr>
<td>Other (identify other types reported as Attachment III.B.)</td>
<td>9%</td>
<td>-0%</td>
<td>41,348</td>
<td>40,524</td>
<td>40,038</td>
<td>39,317</td>
<td>38,452</td>
</tr>
</tbody>
</table>
III.C. Description of Current and Planned Solid Waste Management Activities

Table III.C.I. Current Solid Waste Management Activities in the Region

<table>
<thead>
<tr>
<th>Activity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generation</td>
<td>Provided here are summary statistics of the waste generation occurring at residential, commercial, and industrial locations in the region. Please see Volume II, Attachment III.C for a comprehensive description of the generation activities in the region.</td>
</tr>
<tr>
<td></td>
<td>The solid waste generation rates for the region:</td>
</tr>
<tr>
<td></td>
<td>Residential: 12.23 lbs./household/day</td>
</tr>
<tr>
<td></td>
<td>Commercial: 31.91 lbs./employee/day</td>
</tr>
<tr>
<td></td>
<td>Industrial: 8.93 lbs./employee/day</td>
</tr>
<tr>
<td></td>
<td>The percentage each category comprised of total waste generated in the region:</td>
</tr>
<tr>
<td></td>
<td>66% by commercial enterprises, 31% by residences, and 3% by industrial enterprises.</td>
</tr>
<tr>
<td></td>
<td>Waste generated in single-family homes:</td>
</tr>
<tr>
<td></td>
<td>21% Food, 18% Paper (composite paper, cardboard, newspaper, etc.), 13% Other Organic (manures, textiles, carpet, composite organics), 12% Inerts and Other (wood waste, rock, soil, fines, etc.), 10% Plastics, 7% Brush (branches, stumps, prunings, trimmings), 5% Mixed Residue (kitty litter, cosmetics, etc.), 5% Yard Waste (leaves, grass), 3% Special Waste (bulky items, medical waste, ash, etc.).</td>
</tr>
</tbody>
</table>
Activity

<table>
<thead>
<tr>
<th>Activity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>remaining 5% is comprised of Metals, Glass, Electronics, and Household Hazardous Waste (paint, batteries, etc.).</td>
</tr>
<tr>
<td></td>
<td>Waste generated in multi-family homes:</td>
</tr>
<tr>
<td></td>
<td>25% Food, 24% Paper, 16% Other, 11% Plastics, 6% Inerts and Other, 4% Special Waste, 4% Metals. The remaining 12% is comprised of Mixed Residue (3%), Glass (3%), Yard Waste (3%), Electronics (2%), and Household Hazardous Waste (<1%).</td>
</tr>
<tr>
<td></td>
<td>The waste products generated by commercial entities in the region as a percentage of total weight in 2018:</td>
</tr>
<tr>
<td></td>
<td>67% Construction and Demolition waste, 13% Paper, 11% Organics (food, leaves, grass, etc.), 3% Plastics, 3% Metals, and the remaining 3% is comprised of Brush, Glass, Hazardous, Textiles, Electronics, Bulk, Household Hazardous Waste and Other.</td>
</tr>
<tr>
<td></td>
<td>The waste products generated by commercial entities in the region as a percentage of total volume in 2018:</td>
</tr>
<tr>
<td></td>
<td>35% Construction & Demolition waste, 35% Paper, 11% Plastics, 10% Organics, 4% Metals, 2% Brush, and the remaining 3% is comprised of Textiles, Bulk, Electronics, Glass, Household Hazardous Waste, and Other.</td>
</tr>
<tr>
<td></td>
<td>The waste products generated by industrial entities in the region as a percentage of total weight in 2018:</td>
</tr>
<tr>
<td></td>
<td>30% Organics, 18% Paper, 14% Hazardous (leachate, aqueous waste, benzene, etc.), 12% Brush, 9% Metals, 8% Construction & Demolition waste, 5% Plastics, and the remaining 4% is comprised of Textiles, Bulk, Electronics, Glass, Household Hazardous Waste, and Other.</td>
</tr>
<tr>
<td></td>
<td>We cannot display a breakdown of industrial waste by volume as we did for commercial waste because much of the Hazardous waste is liquid, and the conversions were not available.</td>
</tr>
<tr>
<td>Source Separation</td>
<td>Residents in the most populous city in the region (Texarkana) are expected to separate their waste into at least 7 waste streams. Further from Texarkana, there are expected to be fewer and less convenient recycling opportunities. As this happens, it is likely more items that could have been diverted from the landfill will end up in the trash.</td>
</tr>
</tbody>
</table>
Collection within the COG consisted of both curbside and drop-off facilities.

More than 50% of residents have city-provided access to curbside collection for trash. The remaining percent do not necessarily lack access but likely live outside a municipality and may have to coordinate service privately or could have no access at all.

<table>
<thead>
<tr>
<th>Waste type</th>
<th>Percent of residents with city-provided access to curbside collection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trash</td>
<td>55%</td>
</tr>
<tr>
<td>Brush</td>
<td>23%</td>
</tr>
<tr>
<td>Bulk</td>
<td>21%</td>
</tr>
<tr>
<td>Recycling</td>
<td>15%</td>
</tr>
<tr>
<td>Yard Waste</td>
<td>15%</td>
</tr>
<tr>
<td>Organics</td>
<td>0%</td>
</tr>
</tbody>
</table>

There were 6 active permitted facilities that accepted a variety of waste types via drop-off. An additional 21 active permitted facilities did not publicly indicate if they accepted materials via drop-off.

Handling

All haulers that collected waste and all facilities that accepted drop-off materials, transferred waste, processed waste (including resource recovery), or disposed of waste performed waste handling. Data are not available to characterize the total amounts of waste that were handled or the actual capacity of waste handling for those facilities or haulers.

In 2021, there were 27 active permits for solid waste facilities and 19 haulers expected to handle waste in the region.
<table>
<thead>
<tr>
<th>Activity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage</td>
<td>All facilities that accepted drop-off materials, transferred waste, processed waste (including resource recovery), or disposed of waste are considered storage facilities. Data are not available to characterize the total amounts of waste that were stored, the length of storage, or total storage capacity for those facilities. In 2021, there were 27 facilities expected to store waste in the region.</td>
</tr>
<tr>
<td>Transportation</td>
<td>There were 19 haulers in the region, 1 low volume transfer station, 1 citizen collection station, and 14 tire transporters. Additionally, the EPA estimates residents should be no more than 34 miles round-trip from a disposal facility. Otherwise, an intermediate facility should be available. Therefore, we evaluated the distance between where waste is generated and where it is disposed. About 45% of the region's population is within 17 miles of a landfill. More than 50% of residents are not within 17 miles of a transfer station or other drop-off location.</td>
</tr>
<tr>
<td>Processing</td>
<td>Processing includes Transportation, Treatment, and Resource Recovery. In total, 24 facilities were engaged in one or more facets of waste processing.</td>
</tr>
<tr>
<td>Treatment</td>
<td>The region had 2 tire processors and 3 compost facilities. 13,530 tons of solid waste were treated, and 0 tons of liquid waste were treated. Data related to the number of tires these processors treated was unavailable.</td>
</tr>
<tr>
<td>Resource Recovery</td>
<td>There were 6 known facilities that recovered resources in the region. They include 3 compost facilities, 2 recycling facilities, and 1 tire recycler, though only the 1 compost facility was required to be permitted. Other facilities may have participated in resource recovery but the data relating to individual facilities and tonnages were incomplete and thus not included here. Examples of the facilities that were not included but that may have engaged in resource recovery were citizens collection stations, landfills, and tire processors</td>
</tr>
</tbody>
</table>
Disposal of Solid Waste

There were 3 landfills in the region. A total of 456,118 tons were disposed of in the region in 2019. This does not include waste exported out of the region nor waste imported into the region. Tonnage data related to imports and exports were not available.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disposal of Solid Waste</td>
<td>There were 3 landfills in the region. A total of 456,118 tons were disposed</td>
</tr>
<tr>
<td></td>
<td>of in the region in 2019. This does not include waste exported out of the</td>
</tr>
<tr>
<td></td>
<td>region nor waste imported into the region. Tonnage data related to imports</td>
</tr>
<tr>
<td></td>
<td>and exports were not available.</td>
</tr>
</tbody>
</table>

Table III.C.II. Planned Solid Waste Management Activities in the Region

<table>
<thead>
<tr>
<th>Activity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generation</td>
<td>The percent of total waste by each group (residential, commercial, industrial) is not expected to change significantly,</td>
</tr>
<tr>
<td></td>
<td>but the amount of total waste generated is expected to increase despite a decrease in total population.</td>
</tr>
<tr>
<td>Source Separation</td>
<td>There are no known planned changes at this time.</td>
</tr>
<tr>
<td>Collection</td>
<td>There are no known planned changes to curbside collection at this time. There is one planned change to drop-off</td>
</tr>
<tr>
<td></td>
<td>collection. One citizens collection station is permitted but not yet constructed.</td>
</tr>
<tr>
<td>Handling</td>
<td>There are no known planned changes at this time.</td>
</tr>
<tr>
<td>Storage</td>
<td>There are no known planned changes at this time.</td>
</tr>
<tr>
<td>Transportation</td>
<td>There are no known planned changes at this time.</td>
</tr>
<tr>
<td>Processing</td>
<td>There are no known planned changes at this time.</td>
</tr>
<tr>
<td>Treatment</td>
<td>There are no known planned changes at this time.</td>
</tr>
<tr>
<td>Resource Recovery</td>
<td>There are no known planned changes at this time.</td>
</tr>
</tbody>
</table>
Activity | Description
---|---
Disposal of Solid Waste | There was one authorized but not constructed landfill in the region: the Bowie Cass Refuse Landfill. Though, it is likely the landfill will remain unconstructed. According to 2019 TCEQ facility data, its legal status was *Issued*, but according to the 2021 Texas Secretary of State Business Registration, its filing status was *Forfeited Existence*. The landfill’s legal status date in the TCEQ data is 1986.

☑ Check box if additional information of solid waste management activities is provided as *Attachment III.C.*

III.D. Description and Assessment of the Adequacy of Existing Solid Waste Management Facilities & Practices, and Household Hazardous Waste Programs

Note: Attachment III.D. Description and Assessment of the Adequacy of Existing Solid Waste Management Facilities & Practices, and Household Hazardous Waste Programs is not called for in the original Volume II form but is nonetheless included. It is similarly noted at the beginning of the relevant section of the attachments that this information is included.

Table III.D.I. Adequacy of Existing Facilities and Practices

<table>
<thead>
<tr>
<th>Program</th>
<th>Facility Adequacy</th>
<th>Practices Adequacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource Recovery</td>
<td>☑ Yes</td>
<td>☑ Yes</td>
</tr>
<tr>
<td></td>
<td>☐ No, description of facility inadequacy provided in Attachment III. D.</td>
<td>☐ No, description of practice inadequacy provided in Attachment III. D.</td>
</tr>
<tr>
<td>Storage</td>
<td>☑ Yes</td>
<td>☑ Yes</td>
</tr>
<tr>
<td></td>
<td>☐ No, description of facility inadequacy provided in Attachment III. D.</td>
<td>☐ No, description of practice inadequacy provided in Attachment III. D.</td>
</tr>
<tr>
<td>Transportation</td>
<td>☑ Yes</td>
<td>☑ Yes</td>
</tr>
<tr>
<td></td>
<td>☐ No, description of facility inadequacy provided in Attachment III. D.</td>
<td>☐ No, description of practice inadequacy provided in Attachment III. D.</td>
</tr>
<tr>
<td>Program</td>
<td>Facility Adequacy</td>
<td>Practices Adequacy</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Treatment</td>
<td>☒ Yes</td>
<td>☒ Yes</td>
</tr>
<tr>
<td></td>
<td>□ No, description of facility inadequacy provided in Attachment III. D.</td>
<td>□ No, description of practice inadequacy provided in Attachment III. D.</td>
</tr>
<tr>
<td>Disposal</td>
<td>☒ Yes</td>
<td>☒ Yes</td>
</tr>
<tr>
<td></td>
<td>□ No, description of facility inadequacy provided in Attachment III. D.</td>
<td>□ No, description of practice inadequacy provided in Attachment III. D.</td>
</tr>
<tr>
<td>Household Hazardous Waste</td>
<td>☒ Yes</td>
<td>☒ Yes</td>
</tr>
<tr>
<td>Collection</td>
<td>□ No, description of facility inadequacy provided in Attachment III. D.</td>
<td>□ No, description of practice inadequacy provided in Attachment III. D.</td>
</tr>
<tr>
<td>Household Hazardous Waste</td>
<td>☒ Yes</td>
<td>☒ Yes</td>
</tr>
<tr>
<td>Disposal</td>
<td>□ No, description of facility inadequacy provided in Attachment III. D.</td>
<td>□ No, description of practice inadequacy provided in Attachment III. D.</td>
</tr>
</tbody>
</table>

III.E. Assessment of Current Source Reduction and Waste Minimization Efforts, Including Sludge, and Efforts to Reuse or Recycle Waste

☒ Assessment of current source reduction and minimization efforts, including activities to reduce sludge, and efforts to reuse or recycle waste is provided as *Attachment III.E.*
III.F. Identification of Additional Opportunities for Source Reduction and Waste Minimization, and Reuse or Recycling of Waste

Table III.F.I Additional Opportunities for Source Reduction and Waste Minimization, Reuse and Recycling of Waste

<table>
<thead>
<tr>
<th>Category of Activity (Source Reduction and Waste Minimization, Reuse or Recycling of Waste)</th>
<th>Opportunity Name</th>
<th>Brief Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recycle</td>
<td>Cardboard Recycling</td>
<td>Encourage cities and counties to offer free cardboard recycling at workplaces (McAllen Public Works)</td>
</tr>
<tr>
<td>Recycle</td>
<td>Clothing/textiles recycling</td>
<td>Educate residents about where to take their textiles to be recycled or consider creating recycling opportunities for textiles (Science Direct, Recycling in Textiles)</td>
</tr>
<tr>
<td>Recycle</td>
<td>Electronics Challenge</td>
<td>Encourage businesses to join the Environment Protection Agency (EPA) Sustainable Materials Management (SMM) Electronics Challenge to increase accountability and increase electronics recycled (EPA Electronics Challenge)</td>
</tr>
<tr>
<td>Recycle</td>
<td>Glass recycling</td>
<td>Consider implementing dumpsters specifically for glass recycling to cut down on contamination in curbside glass collection and to allow communities without glass collection to recycle (Fairfax County, Virginia)</td>
</tr>
<tr>
<td>Reuse</td>
<td>Donate materials</td>
<td>Encourage businesses and offices to donate products or usable materials to local charities or non-profits (EPA Best Practices)</td>
</tr>
<tr>
<td>Reuse</td>
<td>Landfill reuse centers</td>
<td>Establish centers for drop-off and check-out of hazardous materials (San Marcos HHW)</td>
</tr>
<tr>
<td>Category of Activity (Source Reduction and Waste Minimization, Reuse or Recycling of Waste)</td>
<td>Opportunity Name</td>
<td>Brief Description</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Reuse</td>
<td>Paint reuse</td>
<td>Start a paint reuse program (Guidance Manual for Paint Reuse Programs)</td>
</tr>
<tr>
<td>Reuse</td>
<td>Reuse in hospitals</td>
<td>Encourage hospitals to replace disposable items with reusable items where possible, such as waterproof mattresses, cloth diapers, or reusable containers for sharps (WasteCare Corporation)</td>
</tr>
<tr>
<td>Reuse</td>
<td>Reuse office materials</td>
<td>Encourage businesses and offices to reuse materials such as boxes, shipment packaging, office furniture (EPA Best Practices)</td>
</tr>
<tr>
<td>Reuse</td>
<td>Shingles in pavement</td>
<td>Consider using recycled shingles in pavement (Roofs to Roads)</td>
</tr>
<tr>
<td>Reuse/Recycle</td>
<td>Construction & Demolition (C&D) recycling</td>
<td>Update policy to incentivize recycling of C&D materials and on-site reuse/recycling (EPA Best Practices)</td>
</tr>
<tr>
<td>Reuse/Recycle</td>
<td>Encourage C&D recycling through refundable deposits</td>
<td>Consider charging a deposit on permitted C&D projects, it will be refunded if the permittee demonstrates a preset level of materials were recovered (EPA Best Practices)</td>
</tr>
<tr>
<td>Source Reduction and Waste Minimization</td>
<td>Black soldier flies</td>
<td>Promote cultivation of black soldier fly larvae to upcycle food waste (Texas A&M AgriLife Research)</td>
</tr>
<tr>
<td>Category of Activity (Source Reduction and Waste Minimization, Reuse or Recycling of Waste)</td>
<td>Opportunity Name</td>
<td>Brief Description</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Source Reduction and Waste Minimization</td>
<td>Business, government, school paper reduction</td>
<td>Encourage businesses, governments, and schools to adopt paper-reduction policies, such as printing double-sided and printing only when absolutely necessary (CalRecycle Waste Reduction)</td>
</tr>
<tr>
<td>Source Reduction and Waste Minimization</td>
<td>City wide recycling ordinance</td>
<td>Create a city-wide recycling ordinance for businesses and multifamily to offer recycling (EPA Best Practices)</td>
</tr>
<tr>
<td>Source Reduction and Waste Minimization</td>
<td>Community composting</td>
<td>Encourage establishment or expansion of community compost centers (Institute for Local Self-Reliance)</td>
</tr>
<tr>
<td>Source Reduction and Waste Minimization</td>
<td>Compost agricultural waste</td>
<td>Encourage agricultural waste generators to compost, which could reduce the demand for chemical fertilizers (Western Packaging Agricultural Waste)</td>
</tr>
<tr>
<td>Source Reduction and Waste Minimization</td>
<td>Compost education</td>
<td>Develop programs or promote existing programs that educate residents and businesses about composting (EPA Composting at Home)</td>
</tr>
<tr>
<td>Source Reduction and Waste Minimization</td>
<td>Don’t Bag It</td>
<td>Promote the Don't Bag It program in order to reduce the amount of yard waste being landfilled (Aggie Horticulture)</td>
</tr>
<tr>
<td>Source Reduction and Waste Minimization</td>
<td>Food Recovery Challenge</td>
<td>Encourage the restaurant industry and other interested organizations to join the EPA Food Recovery Challenge (EPA Food Recovery Challenge)</td>
</tr>
<tr>
<td>Category of Activity (Source Reduction and Waste Minimization, Reuse or Recycling of Waste)</td>
<td>Opportunity Name</td>
<td>Brief Description</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Source Reduction and Waste Minimization</td>
<td>Food waste in hospitals</td>
<td>Encourage hospitals to reduce their food waste by donating unused food, composting, or reevaluating their services and menus so that less food is uneaten (Healthcare Financial Management Association)</td>
</tr>
<tr>
<td>Source Reduction and Waste Minimization</td>
<td>Food waste in prison system</td>
<td>Encourage prison systems and other correctional facilities to compost their food waste with in-vessel systems (Green Mountain Technologies)</td>
</tr>
<tr>
<td>Source Reduction and Waste Minimization</td>
<td>Give food waste to farmers</td>
<td>Encourage partnerships between food generating business and industry and the agricultural industry so that food scraps can feed livestock. This reduces waste disposal costs for the business and reduces animal feed costs for the farmer (Leftovers for Livestock)</td>
</tr>
<tr>
<td>Source Reduction and Waste Minimization</td>
<td>Reduce food waste in schools</td>
<td>Encourage schools to create share tables during lunch times so that unopened/untouched foods can be donated or provide an extra serving to other students (USDA Share Tables)</td>
</tr>
<tr>
<td>Source Reduction and Waste Minimization</td>
<td>Reduce toxicity</td>
<td>Encourage business and industry to reduce the amount and toxicity of their waste by joining the EPA’s Toxic Release Inventory Program (EPA Pollution Prevention)</td>
</tr>
<tr>
<td>Source Reduction and Waste Minimization</td>
<td>Restaurant waste minimization</td>
<td>Encourage restaurants to adopt waste minimization polices, such as only provide condiments and plasticware when requested (EPA Best Practices)</td>
</tr>
<tr>
<td>Category of Activity (Source Reduction and Waste Minimization, Reuse or Recycling of Waste)</td>
<td>Opportunity Name</td>
<td>Brief Description</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Source Reduction and Waste Minimization</td>
<td>Sludge composting</td>
<td>Encourage WWTPs to compost sludge instead of sending it to the landfill (EPA Best Practices)</td>
</tr>
<tr>
<td>Source Reduction and Waste Minimization</td>
<td>Styrofoam densification</td>
<td>Promote use of Styrofoam densifiers to reduce the volume of discarded Styrofoam (WasteCare Corporation)</td>
</tr>
<tr>
<td>Source Reduction and Waste Minimization</td>
<td>Vermicomposting food scraps</td>
<td>Promote vermicomposting, specifically in multifamily complexes (EPA Composting)</td>
</tr>
<tr>
<td>Source Reduction and Waste Minimization</td>
<td>Waste tracking</td>
<td>Encourage businesses to track their waste generation for easier management (EPA Managing and Reducing Wastes)</td>
</tr>
<tr>
<td>Source Reduction and Waste Minimization</td>
<td>WasteWise</td>
<td>Encourage businesses, governments, and nonprofits to join EPA’s WasteWise for the opportunity to receive recognition for achievements in good waste practices, free educational materials, and more (EPA WasteWise)</td>
</tr>
</tbody>
</table>

☒ Check box if additional information of opportunities and source reduction and waste minimization, reuse and recycling of waste is provided in Attachment III F.
III.G. Recommendations for Encouraging and Achieving a Greater Degree of Source Reduction and Waste Minimization, and Reuse or Recycling of Waste

Table III.G.I. Recommendations for Greater Source Reduction and Waste Minimization, and Reuse or Recycling of Waste

<table>
<thead>
<tr>
<th>#1</th>
<th>Collaboration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Collaborating between jurisdictions, private entities, and other regional institutions such as schools will foster a better sense of community and encourage broad participation while also reducing the need for one entity to do everything by themselves. For example, collaboration can mean partnering with entities with common interests to share costs. This is a way to stretch limited funding and expand community buy-in.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#2</th>
<th>Communication</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Communication goes together with many of these recommendations but is worth recommending separately. Communication must be exceptional between groups and within groups. For example, local managers should have excellent communication with other local managers as well as the with the local residents and businesses. This communication needs to be consistent and at the appropriate level of detail for the intended audience. Without communication, the other recommendations will be harder to achieve. In some cases, to facilitate communication, this may require setting up new lines of communication between and within groups.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#3</th>
<th>Education</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Naturally, educating residents and businesses is critical to successful solid waste management. In addition, continuing education of solid waste managers in the region is critical to ensure that public education is effective as solid waste management best practices change and are refined. This education should be extended to include decision-makers in the region as well to ensure a well-educated array of policy makers, policy implementers, and public participants.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#4</th>
<th>Information tracking</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Throughout the development of this plan, many data gaps prevented more narrow, focused assessments of solid waste management aspects. Leveraging existing data and identifying new data collection opportunities are critical to understanding how policy impacts implementation, and where new initiatives should be focused to maximize source reduction and waste minimization. Without tracking mechanisms, it is very difficult to understand how effective management in the region is.</td>
</tr>
</tbody>
</table>
#5 Leadership

Without leadership, many of the other recommendations in this section will not be successful. Similarly, without the other four recommendations in this section, leadership will be challenging. It is recommended the region take an active leadership role in managing solid waste at the regional level. Most solid waste management is currently done at the local level—as it needs to be. Still, there is significant opportunity to regionalize understanding of solid waste capabilities and understanding the relationship with other regions’ solid waste management planning. Leading collaboration, communication, education, and information tracking makes sense at the regional level and will lead to success at the local level.

☒ Check box if additional details are provided in Attachment III.G.

III.H. Identification of Public and Private Management Agencies and Responsibilities

☒ A list of public and private solid waste management agencies and their responsibilities that affect and impact solid waste management in the planning region is provided as Attachment III.H.

III.I. Identification of Solid Waste Management Concerns and Establishment of Priorities for Addressing Those Concerns

Table III.I Solid Waste Management Concerns and Priorities

<table>
<thead>
<tr>
<th>Solid Waste Management Concern</th>
<th>Priorities to Address the Concern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid waste literacy</td>
<td>Improve community participation, provide education</td>
</tr>
<tr>
<td>Illegal dumping</td>
<td>Collect data, improve access, improve community participation, increase illegal dumping enforcement, increase illegal dumping prevention, provide education</td>
</tr>
<tr>
<td>Problematic wastes (including HHW)</td>
<td>Collect data, improve access, provide education</td>
</tr>
<tr>
<td>Funding</td>
<td>Collaborate, improve access, improve community participation, and optimize funding decisions</td>
</tr>
</tbody>
</table>

☒ Check box if additional details are provided in Attachment III.I
III.J. Planning Areas and Agencies with Common Solid Waste Management Concerns that Could be Addressed Through Joint Action

Table III.J.I Planning Areas and Agencies with Common Solid Waste Management Concerns

<table>
<thead>
<tr>
<th>Solid Waste Management Concern</th>
<th>Names of Planning Areas and Agencies that Could Address the Concern via Joint Action(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid waste literacy</td>
<td>EPA, TCEQ, Keep Texas Beautiful</td>
</tr>
<tr>
<td>Illegal dumping</td>
<td>Keep Texas Beautiful</td>
</tr>
<tr>
<td>Problematic wastes (including HHW)</td>
<td>Waste Management (At Your Door)</td>
</tr>
<tr>
<td>Funding</td>
<td>Local Cities, Counties</td>
</tr>
</tbody>
</table>

Note: This list does not represent an exhaustive list of potential partners, but rather identifies some likely partners. For a more complete list of possible partners, see Volume II, Attachment III.H. Identification or Public and Private Management Agencies and Responsibilities.

Table III.K.I Incentives and Barriers for Source Reduction and Waste Minimization, and Resource Recovery

<table>
<thead>
<tr>
<th>Source Reduction and Waste Minimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incentive: Reduced costs</td>
</tr>
<tr>
<td>Incentive: Recognition</td>
</tr>
<tr>
<td>Barrier: Difficult to change behavior</td>
</tr>
</tbody>
</table>
Resource Recovery

Incentive: Reduce effects of climate change
Recycling and reuse lessen effects of climate change because new materials are not used, according to the EPA.

Incentive: Save money
Buying used products and materials can save money.

Barrier: Cost
The cost to construct and procure recycling infrastructure is significant.

Barrier: Contamination/lack of education
Recycling contamination can significantly impact the processes at a recycling facility, reducing resource recovery, and the value of recycling commodities. Contamination can also have significant financial implications for cities collecting the recyclable materials that may impact decisions to offer such services.

Potential Markets

<table>
<thead>
<tr>
<th>Resource</th>
<th>Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardboard</td>
<td>There is consistent demand for cardboard.</td>
</tr>
<tr>
<td>Scrap metal</td>
<td>There is consistent high value for scrap metal.</td>
</tr>
</tbody>
</table>

Note: Market evaluation is extremely important. Due to the fluctuations of materials markets, an ongoing analysis of potential markets for recycled materials is recommended.

III.L. Regional Goals and Objectives, Including Waste Reduction Goals

Note: Attachment III.L. Regional Goals and Objectives, Including Waste Reduction Goals related to Regional Goals and Objectives is not called for in the original Volume II form but is nonetheless included. It is also noted at the beginning of the relevant section of the attachments that this information is included.
Table III.I Regional Goals and Objectives

| Goal #1 Maximize Beneficial Resource Use | Objective 1.A. Improve access to diversion opportunities
| | Objective 1.B. Improve community participation
| | Objective 1.C. Provide education
| Goal #2 Responsibly Manage Problematic Waste | Objective 2.A. Improve access to problematic waste collection
| | Objective 2.B. Provide education
| | Objective 2.C. Collect data
| Goal #3 Maximize Proper Disposal | Objective 3.A. Improve access to solid waste drop-off opportunities
| | Objective 3.B. Improve community participation
| | Objective 3.C. Provide education
| | Objective 3.D. Collect data
| | Objective 3.E. Increase illegal dumping prevention efforts
| | Objective 3.F. Increase illegal dumping enforcement
| Goal #4 Lead Regional Planning | Objective 4.A. Collaborate
| | Objective 4.B. Optimize funding decisions
| | Objective 4.C. Oversee facility planning
| | Objective 4.D. Review and update solid waste management plans
| | Objective 4.E. Make continuous improvements
| | Objective 4.F. Collect data
| | Objective 4.G. Plan for disaster waste

III.M. Advantages and Disadvantages of Alternative Actions

| Are alternative actions being considered in this plan for the regional area? | □ Yes. Provide details in Attachment III.M.
| ☒ No. No further action required.

Ark-Tex Council of Governments
2022 – 2042
III.N. Recommended Plan of Action and Associated Timetable for Achieving Specific Goals and Objectives

Table III.N.I Plan of Action and Timetable for Achieving Specific Goals and Objectives

<table>
<thead>
<tr>
<th>Goal/Objective</th>
<th>Plan of Action</th>
<th>Milestone Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waste Reduction</td>
<td>A series of actions have been developed that will increase access to waste reduction opportunities, improve the community's use of those opportunities, and educate the public about the importance of waste reduction.</td>
<td>Short-range, intermediate, and long-range</td>
</tr>
<tr>
<td>Composting Programs for Yard Wastes and Related Organic Wastes</td>
<td>Our plan includes exploration of innovative ways to compost food wastes and expand the composting of biosolids.</td>
<td>Short-range and intermediate</td>
</tr>
<tr>
<td>Household Hazardous Waste Collection and Disposal Programs</td>
<td>A series of actions have been developed that will increase access to Household Hazardous Waste (HHW) collection and disposal, educate participants and the community about the importance of responsible HHW management, and collect data to continually improve collection and programs.</td>
<td>Short-range, intermediate, and long-range</td>
</tr>
<tr>
<td>Public Education Programs</td>
<td>Our plan is to ensure broad public awareness of all solid waste management related best practices using cost-effective communication tools. Additionally, we will educate and engage targeted members of the community who are responsible for specific aspects of solid waste management. Finally, we will acknowledge cities, counties, businesses, and individuals within the region who show exceptional commitment to proper solid waste management.</td>
<td>Short-range, intermediate, and long-range</td>
</tr>
</tbody>
</table>
Goal/Objective

<table>
<thead>
<tr>
<th>Plan of Action</th>
<th>Milestone Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Need for New or Expanded Facilities and Practices</td>
<td>Short-range, intermediate, and long-range</td>
</tr>
<tr>
<td>More than 20 of this plan’s 43 action steps relate to the need for new or</td>
<td></td>
</tr>
<tr>
<td>expanded practices in the region. In addition, where access can be</td>
<td></td>
</tr>
<tr>
<td>improved or landfill life is an issue, new facilities may be required in</td>
<td></td>
</tr>
<tr>
<td>the planning period.</td>
<td></td>
</tr>
</tbody>
</table>

☒ Check box if additional details are provided in *Attachment III.N.*

III.O. Identification of the Process that Will be Used to Evaluate Whether a Proposed Municipal Solid Waste Facility Application Will be in Conformance with the Regional Plan

☒ The process that will be used to evaluate whether a proposed municipal solid waste facility application will be in conformance with the regional plan is identified in *Attachment III.O.*

Section IV. Required Approvals

Table IV.I Required Approvals

<table>
<thead>
<tr>
<th>Solid Waste Advisory Committee</th>
<th>October 14, 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Meeting Dates</td>
<td>July 13, 2021</td>
</tr>
<tr>
<td>Executive Committee</td>
<td>October 28, 2021</td>
</tr>
</tbody>
</table>

☐ Check box if local government and jurisdiction resolutions, and letters of support are included in *Attachment IV.A.*

☒ Public notice, agenda, public comments, and the transcript of the required public meeting are included as *Attachment IV.B.*
Attachments Volume II

Table of Figures

Figure 1. Ark-Tex Council of Governments Planning Region and Counties ..7

Figure 2. Estimated Current and Future Waste Generation (Landfill Disposal and Recycling) and Population ... 24

Figure 3. Top Ten Current and Estimated Future Solid Waste Amounts by Type.......................... 39

Figure 4. Solid Waste Activities Flowchart ... 42

Figure 5. Comparison of Estimated Residential, Commercial, and Industrial Waste Generation 62

Figure 6. California Department of Resources Recycling and Recovery (CalRecycle) Estimated Single-family Residential Waste Generation by Percent of Waste Type................................. 64

Figure 7. California Department of Resources Recycling and Recovery (CalRecycle) Estimated Single-family Residential Waste Generation by Percent of Waste Type................................. 65

Figure 8. Estimated Commercial Waste Generation by Percent of Waste Type (tons)................. 66

Figure 9. Estimated Commercial Waste Generation by Percent of Waste Type (volume) 67

Figure 10. Estimated Industrial Waste Generation by Percent of Waste Type (tons)................. 68

Figure 11. Projected Percent of Waste Generated by Commercial, Residential, and Industrial in 2027 .. 70

Figure 12. Estimated Percent of Population with Access to City-Provided Curbside Trash, Brush, Bulk, Recycling, Yard Waste, and Organics Collection ... 77

Figure 13. Materials Disposed in Regional Landfills by Percent Tons of Type 85

Figure 14. Survey Responses of Regional Priorities ..153

Figure 15. Survey Responses to Question: Would you like to offer more HHW collection events? .. 154

Figure 16. Survey Responses to Question: Would you like to expand waste diversion opportunities for these specific items? ... 154

Figure 17. Survey Responses to Question: Do you feel illegal dumping crimes are adequately prosecuted in your area? ... 155
Figure 18. Survey Responses to Question: Would you like to expand illegal dumping coordination within your entity? .. 155

Figure 19. Survey Responses to Question: Would you like to explore other actions to address illegal dumping in the area? .. 156

Figure 20. Diagram of Regional Solid Waste Management Plan Goals .. 163
Table of Tables

Table 1. Data Sources for Residential Waste Generation Analysis .. 10

Table 2. Perryman Group Employment Category Assignments ... 31

Table 3. Current and 2022 Solid Waste Amounts by Type .. 36

Table 4: Comparison of Residential, Commercial, and Industrial Waste Generation in Thousand Tons and Percent .. 69

Table 5. Source Separation Example for the City of Texarkana, TX ... 75

Table 6. Comparison of Source Separated Waste Amounts as a Percent and Curbside Availability for Single Family Homes (Example based on City of Texarkana, TX) ... 77

Table 7. Population Proximity to Waste Disposal Transportation Network ... 81

Table 8. Active Waste Treatment Facilities in 2021 .. 81

Table 9. Active Scrap Tire Processor Facilities in 2021 .. 82

Table 10. Solid Waste Treatment Types by Amount (tons) .. 82

Table 11. Landfills and Remaining Capacity (2019) .. 85

Table 13. Perryman Group Employment Categories Reclassification .. 107

Table 14. Residential Generation Material Type Reclassification ... 109

Table 15. Recoded Waste Types and Volume Conversions .. 113

Table 16. Complete Curbside Collection Service Availability Internet Survey Results 119

Table 17. Current Handling, Storage, Transportation, and Resource Recovery Permits, Registrations, Notices of Intent, and Other Identified Facilities .. 122

Table 18. Planned Handling, Storage, Transportation, Treatment, and Resource Recovery Permits, Registrations, Notices of Intent, and Other Identified Facilities (as of 6/23/21) 124

Table 19. Recycling or Reuse Efforts by County Seat .. 129

Table 20. Number of Opportunities for Source Reduction and Waste Minimization, and Reuse or Recycling of Waste Identified for Each Activity Type .. 134

Table 21. Previous Regional Solid Waste Management Goals and Corresponding Grade based on Survey Results ... 137
Table 22. Previous Regional Solid Waste Management Objectives Tied for the Highest Grade based on Survey Results

Table 23. Previous Regional Solid Waste Management Objectives Tied for the Lowest Grade based on Survey Results

Table 24. Total Number of Solid Waste Management Entities by Type

Table 25. Solid Waste Management Entities with Three or More Responsibilities

Table 26. Number of Select Large-Volume Institutions in the Region

Table 27. Concerns and Priorities to Address Concerns
Table of Equations

<table>
<thead>
<tr>
<th>Equation</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equation 1</td>
<td>Growth Rate Calculation</td>
<td>15</td>
</tr>
<tr>
<td>Equation 2</td>
<td>Disposal Rate Calculation (Step 1)</td>
<td>16</td>
</tr>
<tr>
<td>Equation 3</td>
<td>Disposal Rate Calculation (Step 2)</td>
<td>16</td>
</tr>
<tr>
<td>Equation 4</td>
<td>Disposal Rate Calculation (Step 3)</td>
<td>16</td>
</tr>
<tr>
<td>Equation 5</td>
<td>Recycling (Tons) Calculation (Step 1)</td>
<td>17</td>
</tr>
<tr>
<td>Equation 6</td>
<td>Recycling (Tons) Calculation (Step 2)</td>
<td>17</td>
</tr>
<tr>
<td>Equation 7</td>
<td>Recycling Rate Calculation (Step 1)</td>
<td>18</td>
</tr>
<tr>
<td>Equation 8</td>
<td>Recycling Rate Calculation (Step 2)</td>
<td>18</td>
</tr>
<tr>
<td>Equation 9</td>
<td>Recycling Rate Calculation (Step 3)</td>
<td>18</td>
</tr>
<tr>
<td>Equation 10</td>
<td>Residential Waste Generation Calculation</td>
<td>18</td>
</tr>
<tr>
<td>Equation 11</td>
<td>Significant Commercial Activities Calculation (Step 4)</td>
<td>21</td>
</tr>
<tr>
<td>Equation 12</td>
<td>Percent of Total Tons Disposed Calculation</td>
<td>35</td>
</tr>
<tr>
<td>Equation 13</td>
<td>Disposal Projection Calculation</td>
<td>36</td>
</tr>
<tr>
<td>Equation 14</td>
<td>Significant Commercial Activities Calculation (Step 1)</td>
<td>49</td>
</tr>
<tr>
<td>Equation 15</td>
<td>Significant Commercial Activities Calculation</td>
<td>50</td>
</tr>
</tbody>
</table>
Attachment I. Geographic Scope

Note: This attachment is not called for in the original Volume II form but is nonetheless included. It is similarly noted at the beginning of the relevant section of Volume II that this attachment has been included.

Introduction

To properly contextualize this solid waste management plan, TCEQ requires the identification of the geographic scope of the plan and the different geographic planning units used within the plan.

It is critical to establish a geographic scope to understand the unique solid waste issues faced by the region and the approach to addressing those issues.

At times in this plan, different geographic units are used to analyze different aspects of solid waste management in the region based on the available data and the scope of the issue being examined. The Ark-Tex Council of Governments’ region extends into another county in the State of Arkansas. Only those counties within the State of Texas are within the scope of this plan.

The purpose of this attachment is to provide additional context and detail to the decisions made around the geographic planning units used in the plan.

Ultimately, this plan is for the entire planning region. However, to develop this plan, it was common to review county, city, and census tract data. These instances will be clarified in the attachments of the appropriate sections.

The remainder of this attachment will present our methods for determining the use of different geographic data, the most used geographic units, and a discussion of the implications of these decisions.

Methods

Because the plan is region-wide, the preferred geographic units for analysis were the entire region. When data were not available at the regional level, county data were preferred. Additionally, because of the critical role cities play in solid waste management, municipal data were often evaluated. Finally, to understand population at the finest level of detail, census tracts were used occasionally.
At times, city boundaries may extend outside of the region or cities primarily situated in other regions may extend into the region. To associate specific cities with the region, the center of each city was found. Those cities with a geometric center within the region were considered part of the region.

Results

The primary results of our geographic scoping decisions are presented in Volume II, Table I.I. Geographic Scope.

The most useful representation of the geographic scope is an understanding of where the region is within Texas. Miller County, Arkansas was outside the scope of this plan.

![Figure 1. Ark-Tex Council of Governments Planning Region and Counties](image)

Also, critically important are the cities within the region.

<table>
<thead>
<tr>
<th>Annona</th>
<th>Atlanta</th>
<th>Avery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avinger</td>
<td>Bloomberg</td>
<td>Blossom</td>
</tr>
</tbody>
</table>
Discussion

Ideally the data informing this regional plan could be aggregated from the smaller geographic units within the region. When data could be summarized in this way, we made our best effort to do so. Coordinating sub-regional geographies and centralizing data collection in a way that supports future regional planning efforts would support sub-regional planning. There is extreme variance in population across the cities within the region, so sub-regional planning informed by regional planning and vice versa would likely lead to the best regional solid waste management.

Conclusion

Ultimately, this plan is for the entire planning region, and it is the most important geographic unit used in the plan, though other smaller geographic units were required to make generalized statements about the region.

Understanding the geographic scope is critical to understanding the unique issues faced by the region and the approach to addressing those issues.

In the future, standardized data collection by sub-regional areas in the region could facilitate more effective regional planning and sub-regional planning.
Attachment II.A. Planning Periods

Introduction

As part of the 20-year planning process, TCEQ requires the establishment of short, intermediate, and long-range planning periods.

The planning periods are defined by Texas Administrative Code. The short-range planning period is one to five years, with specific information, the intermediate planning period is six to ten years, with information in less detail, and the long-range planning period is 11 to 20 years or longer, with information in the least detail.

The planning periods are an important piece of this plan. Ultimately, these create the foundation for setting milestone dates for goals, objectives, and actions.

The purpose of this attachment is to add detail and context to Volume II, Table II.I. Planning Periods. Specifically, we will explain instances where we used current data that was not from 2021.

Although Table II.I. Planning Periods indicates historical information is from the year 2021, it is important to note that data were often not available for 2021 so we used the most recent data available. These instances are clearly noted within this document and are not expected to significantly impact the plan.

The remainder of this attachment will present our methods for determining the use of current data from years other than 2021, a list of those instances, and a discussion of the implications of these decisions.

Methods

To facilitate the preparation of this plan, TCEQ provided landfill and processing facility data. These data are reported annually by solid waste-related facility operators. For this plan, the data available from TCEQ at the outset of the planning process were from 2019. This fact influenced the decisions related to all other data sourcing decisions.

When data were available from multiple years, 2019 was the preferred. When data was not available from 2019, the most recent year of data was selected.
Results

The planning periods are defined in Volume II, Table II.I.

The results of our data-sourcing decisions related to data available for specific time periods will be presented alphabetically to ease identification of relevant sources.

Table 1. Data Sources for Residential Waste Generation Analysis

<table>
<thead>
<tr>
<th>Data Source</th>
<th>Data Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Census Population Data</td>
<td>2019</td>
</tr>
<tr>
<td>TCEQ Landfill Data</td>
<td>2019</td>
</tr>
<tr>
<td>TCEQ Waste Processor Data</td>
<td>2019</td>
</tr>
<tr>
<td>TCEQ Municipal Solid Waste Facilities (NOIs)</td>
<td>2021</td>
</tr>
<tr>
<td>TCEQ HHW Contacts</td>
<td>2021</td>
</tr>
<tr>
<td>Texas Workforce Commission Employment Data</td>
<td>2018</td>
</tr>
</tbody>
</table>

Discussion

The most important consistency was making sure population data was from the same year as disposal data because of its implications related to Volume II, Section III.A, Table III.A.I. Residential Waste Generation. Similarly important was the relationship between employment data and disposal data, which was not available for 2019 as it relates to Volume II, Section III.A, Tables III.A.II. Commercial Waste Generation and III.A.III Industrial Waste Generation. This limitation will be discussed further in Volume II, Attachment III.A. Demographic Information.

Another consideration in the interpretation of these data is related to the COVID-19 pandemic throughout most of 2020 and ongoing through the development of this plan. Solid waste management was significantly affected by the disruptions of the pandemic. Although the implications of these effects will not be well represented in this plan, it will be critical to watch trends in the short-range planning range to ensure landfills are not significantly impacted by the boom in home renovation projects, year-long spring cleaning, and increased usage of
single-use packaging that likely took place. Moreover, the shift away from brick-and-mortar retail towards delivery-based retail will offer many lessons to be learned. Understanding these changes, as they are likely to continue beyond the pandemic, will ensure solid waste management is meeting the waste where it is generated as best as possible.

Conclusion

Although Volume II, Table II.I. Planning Periods indicates historical information is from the year 2021, it is important to note that data were often not available for 2021. All instances where data is from something other than 2021 are clearly noted within this document.

The planning periods are an important piece of this plan. Ultimately, these create the foundation for setting milestone dates for goals, objectives, and actions.

To mitigate the gaps in available data, regular analyses and updates to projections throughout the entire plan period will help familiarize solid waste managers with the relevant data and could improve the data that is collected to make sure it is relevant to the decisions being made.
Attachment III.A. Demographic Information

Note: This attachment is not called for in the original Volume II form but is nonetheless included. It is similarly noted at the beginning of the relevant section of Volume II that this attachment has been included.

Introduction

As part of the 20-year planning process, TCEQ requires an evaluation of population projections and significant commercial and industrial economic activity.

Understanding expected population growth is critical for solid waste management planning. Furthermore, understanding the rate of growth can provide insight into the rate at which solutions to solid waste management issues must be developed. According to the Environmental Protection Agency (EPA), “Waste generation increases with population expansion and economic development.”

The purpose of this attachment is to provide additional details and commentary related to residential, commercial, and industrial demographics required in Volume II, Section III.A, Table III.A.I. Residential Waste Generation.

This attachment will evaluate the expected impact of residential, commercial, and industrial demographics on waste generation over the 20-year planning period in 5-year increments for the region.

Residential waste, as the name implies, is the waste related to households. The residential section of this attachment will evaluate population projections and their expected impact on waste generation.

Commercial waste is the waste related to commercial activities like trade and business. The commercial section of this attachment will evaluate commercial employment projections and their expected impact on waste generation.

Industrial waste is the waste that results from operations of industry: manufacturing, mining, or agriculture. The industrial section of the attachment will evaluate industrial employment projections and their expected impact on waste generation.

This attachment will not consider commercial or industrial waste by sector or waste type, nor the magnitude of each categories' contribution to the region’s waste stream. More information about waste generation, including the magnitude of each categories’ contribution is available in Volume II, Attachment III.C. Solid Waste Management Activities.

While the subject of this attachment is “waste generation,” it is important to recognize this term may not be entirely appropriate. Ultimately, the figures being calculated as waste generation represent something akin to the resources that remain after the consumption of those materials that were originally needed. Notably, the materials that remain beyond those that were needed are not waste until they are wasted. Many possibilities exist that can avoid turning these materials into waste, most notably reuse. With that said, this attachment and subsequent attachments, for consistency’s sake, will continue to refer to these calculations as waste generation.

Although there are significant limitations to the calculated waste generation figures across all three critical categories (residential, commercial, and industrial), total waste generation in the region is expected to decrease based on projected decreases to total population.

The rest of this attachment will outline the methods we used to make these calculations, present the results of those calculations, provide a discussion of key points, and offer a conclusion. For ease of reading, each section in this attachment will include subheadings that announce whether the information pertains to residential, commercial, or industrial activities.

The Demographic Information portion of the Volume II, Section III.A form includes three tables of information:

- Table III.A.I. Residential Waste Generation,
- Table III.A.II. Commercial Waste Generation, and
- Table III.A.III. Industrial Waste Generation

Each table will be addressed in separate sub-sections of this attachment (methods, results, discussion).

Methods

While similar, each critical group’s (residential, commercial, and industrial) methods will be detailed in a separate section of the methods to clarify any differences.

RESIDENTIAL WASTE GENERATION

Volume II, Section III.A, Table III.A.I. Residential Waste Generation of Volume II has eight columns. To facilitate understanding, each column will be explained in detail. At the highest level, waste generation equals disposal plus diversion. Disposal data was supplied by TCEQ in the form of landfill disposal by tons. Diversion data was not available. To approximate the amount of waste diversion, we estimated the region’s residential recycling rate as detailed in the Recycling Rate section below. We are defining the recycling rate the same way that Burns & McDonnell did in their statewide recycling report for the Texas Commission on Environmental Quality (TCEQ).\(^4\) The recycling rate is essentially the rate of materials diverted from the landfill per person per day, excluding source reduction activities, refurbishment or reuse, energy conversion, land reclamation, or on-site use of material at the landfill. Using Recycling as a percent of the waste generated and the tonnage of waste sent to the landfill allowed us to calculate the total residential waste generation.

https://www.tceq.texas.gov/assets/public/assistance/P2Recycle/study/TheStudyontheEconomicImpactsofRecycling.pdf
The remainder of this section is laid out to correspond with Volume II, Section III.A, Table III.A.I. Residential Waste Generation.

1. **Year**
The first row of the year column begins with the *Current Year*. In this case, the current year was based on TCEQ-provided landfill disposal for 2019.\(^5\) To ensure a relevant comparison, population data from the Texas Demographic Center\(^6\) from 2019 was used for the current year. Therefore, for the purposes of this table, the current year was 2019.

The remaining rows are for projections of future disposal in five-year increments from the plan start year of 2022, i.e., 2022, 2027, 2032, 2037, and 2042.

2. **Growth rate**
The growth rate for the Current Year was written as N/A. All other growth rates were calculated using the Texas Demographic Center's population projections for a given year and the previous year to find the percent change.

 Equation 1. Growth Rate Calculation

 \[
 \frac{Projection\ Year\ Population - Previous\ Year\ Population}{Previous\ Year\ Population} = Growth\ Rate
 \]

3. **Current Population/Population Projection**
Current population and population projections were acquired from the Texas Demographic Center.

4. **Landfill Disposal (Tons)**
For the current year, landfill disposal data was supplied by TCEQ from 2019. Landfill Disposal (tons) represents the sum of all reported waste disposed in landfills within the region. Any disposal of waste that was generated *inside* the region but was disposed in a landfill *outside* the region is not included in this

calculation. Conversely, any disposal of waste that was generated outside the region but was disposed of inside the region is included in this calculation due to the nature of the data provided.

For projections, landfill disposal was calculated by applying the calculated growth rate to the landfill disposal from the previous year.

5. **Disposal Rate (pounds per person per day)**
 Disposal rate was calculated by using the three-step, TCEQ-provided formula.

 Equation 2. Disposal Rate Calculation (Step 1)
 \[
 \text{Landfill Disposal (Tons)} \times 2,000 \, (\text{Pounds}) = \text{Landfill Disposal (Pounds)}
 \]

 Equation 3. Disposal Rate Calculation (Step 2)
 \[
 \frac{\text{Landfill Disposal (Pounds)}}{\text{Population}} = \text{Annual Pounds per Person}
 \]

 Equation 4. Disposal Rate Calculation (Step 3)
 \[
 \frac{\text{Annual Pounds per Person}}{365 \, (\text{Days})} = \text{Pounds per Person per Day}
 \]

6. **Recycling (Tons)**
 We estimated the recycling tonnage because there were no available data reporting the amount of material recycled in the region. As a result, this explanation will include reference to upcoming columns in the table that were required to estimate Recycling (Tons). In short, we began with the waste disposed tonnage, calculated a recycling rate, then estimated a recycling tonnage, which was then added to the waste tonnage to represent total waste disposed. Details regarding these calculations follow.

 First, we estimated recycling as a percent of the waste generated. Recycling as a percent of the waste generated is similar to Recycling Rate, but, for the purposes of this plan, was only an intermediate variable to estimate recycling tonnage and does not represent recycling rate. We started with the Recycling Rate published in TCEQ's Study on the Economic Impacts of Recycling.
prepared by Burns & McDonnell\(^7\) as a baseline for the percent of generated waste that is recycled. Because that percentage represents the statewide average, we customized it for the region by applying a weight based on Esri recycling survey data known as their Market Potential Index (MPI).\(^8\) The MPI encodes the market potential for recycling based on a count of adults expected to have recycled products in the last 12 months. This allowed us to adjust the statewide average with the indexed potential of recycling in the region. Using this adjusted percentage based on the TCEQ statewide average gives us an approximation for recycling tonnage in the region. However, it is only an approximation.

We then used that percentage with landfill tonnage to estimate total residential waste generated. Finally, we subtracted the landfill tonnage from the residential waste generation to obtain the recycling tonnage.

\textbf{Equation 5. Recycling (Tons) Calculation (Step 1)}

\[
\frac{\text{Landfill Disposal (Tons)}}{100\% - \text{Recycling Rate} \,(\%)} = \text{Residential Waste Generation (Tons)}
\]

\textbf{Equation 6. Recycling (Tons) Calculation (Step 2)}

\[
\text{Residential Waste Generation (Tons)} - \text{Landfill Disposal (Tons)} = \text{Recycling (Tons)}
\]

\textbf{7. Recycling Rate (pounds per person per day)}

We estimated the recycling rate of the region because there is not one available.

To calculate Recycling Rate, we performed the same three steps as we did to calculate Disposal Rate (pounds per person per day) but substituted Recycling (Tons) for Landfill Disposal.

Equation 7. Recycling Rate Calculation (Step 1)

\[\text{Recycling (Tons)} \times 2,000 \ (\text{Pounds}) = \text{Recycling (Pounds)} \]

Equation 8. Recycling Rate Calculation (Step 2)

\[\frac{\text{Recycling (Pounds)}}{\text{Population}} = \text{Annual Pounds per Person} \]

Equation 9. Recycling Rate Calculation (Step 3)

\[\frac{\text{Annual Pounds per Person}}{365 \ (\text{Days})} = \text{Pounds per Person per Day} \]

8. **Residential Waste Generation (Tons)**

Residential waste generation was calculated by adding Landfill Disposal and Recycling.

Equation 10. Residential Waste Generation Calculation

\[\text{Landfill Disposal (Tons)} + \text{Recycling (Tons)} = \text{Residential Waste Generation (Tons)} \]

COMMERCIAL WASTE GENERATION

Section III.A, Table III.A.II. Commercial Waste Generation of Volume II has two columns:

- Descriptions of significant commercial activities affecting waste generation and disposal in the area (*Descriptions*) and
- Expected Increase or decrease to Commercial Waste Generation (*Expectations*).

The methods used for each column were different. To facilitate understanding, each column will be explained in detail.

The *Descriptions* column asks for a description of commercial activities affecting waste generation and disposal in the area. Here, the methods section outlines how
we obtained employment data for the commercial sector. This was done for each five-year increment as requested in Volume II.

The *Expectations* column asks for the expected increase or decrease to commercial waste generation. Here, we replicated the table that TCEQ created for the Residential Waste Generation section in Volume II, Section III.A, Table III.A.I. Residential Waste Generation but substituted number of employees in commercial sectors for population data.

Descriptions of significant commercial activities affecting waste generation and disposal in the area

We employed the methodology outlined in this section to provide summaries of projected significant commercial and industrial economic changes in the area from the base year to the end of the long-range planning period in 5-year increments, as per the TCEQ instructions for this section. Our method was divided into three steps.

Step 1. The first part of our process was to obtain commercial activity data in the region for the first two planning periods: 2022 and 2027. For years 2022 and 2027, we used Texas Workforce Commission (TWC) employment projections. The TWC dataset provided us the number of people employed in each sector coded by North American Industry Classification System (NAICS) code. NAICS codes classify economic activity into categories. We obtained data from TWC that was in the form of 2-digit NAICS codes. The 2-digit codes are referred to as sectors and represent the highest level of NAICS organization and consequently are the broadest.

The TWC organizes geographic areas by Workforce Development Area (WDA). The North East WDA perfectly aligns with ATCOG. It should be noted that the most recent employment data published by TWC is for 2018 and is projected to 2028. Thus, we used 2018 employment for the year 2022 and 2028 employment data for 2027.

Step 2. Next, we collected employment data for the years 2032, 2037, and 2042. TWC had not yet projected employment beyond 2028. So, we turned to The Perryman Group’s long-term economic forecasts. The Perryman Group is an economic research firm based in Texas that specializes in long-term economic forecasts. The Perryman Group uses a proprietary forecasting system known as their Texas Econometric Model. According to The Perryman Group, their model is “The result of more than three decades of continuing research in econometrics, economic theory, statistical methods, and key policy issues and behavioral patterns, as well as intensive, ongoing study of all aspects of the global, US, and Texas economies. It is extensively used by scores of federal and State governmental entities on an ongoing basis, as well as hundreds of major corporations.”

The Perryman Group model does not classify employment by NAICS code, but instead groups economic sectors into broader categories. Because these broader categories are different than the NAICS codes it prevented cross-comparison to the TWC model. To allow for comparison between the two models, we reclassified the 24 NAICS codes into the 11 economic divisions used by the Perryman Group. This was done in the manner shown in Table 2. Moreover, the Perryman Group does not use WDAs but instead wider geographic areas. For ATCOG, we used the Perryman Group region known as the Upper East Region. ATCOG sits entirely within the Upper East Region but also included in the Perryman Group Upper East Region are all the counties within the East Texas Council of Governments (Rains County, Wood County, Camp County, Upshur County, Marion County, Van Zandt County, Smith County, Gregg County, Harrison County, Henderson County, Rusk County, Panola County, Anderson County, and Cherokee County).

Step 3. In the third and final step, we sorted each economic sector by number of people employed, from highest to lowest. This list became the top commercial sectors for 2022 as shown on the corresponding Volume II table. For the years after 2022, we found the percent change between the current year (e.g., 2032) and the previous year (e.g., 2027). This formed the basis for our remarks on how the sectors changed over time.

Expected Increase or Decrease to Commercial Waste Generation

In the instructions for Volume II for this section, TCEQ instructed us to repeat the steps taken in the residential section of this attachment. We therefore recreated Volume II, Section III.A, Table III.A.I. Residential Waste Generation and inserted it into the second column of this section, Table III.A.II. Commercial Waste Generation. We then populated the table with commercial data to match the table to this section. To incorporate the table in the Volume II format, the table was transposed to have a vertical orientation.

Commercial waste generation was treated in the exact same way as residential waste generation with 3 exceptions:

- **Year**
 Unlike the Residential table which begins with the Current year, the first row of the year column begins with 2022.

- **Current Population**
 To make this section specific to commercial waste, the number of employees engaged in commercial activities was substituted for the population of the region. In other words, the population here includes only people employed in commercial enterprises. For years 2022 and 2027, Texas Workforce Commission (TWC) employment numbers were used. TWC only gives employment data for the years 2018 and 2028. We calculated the employment data for 2022 by finding the interpolated value between 2018 and 2028. To do so, we plugged the years and employment numbers for 2018 and 2028 into the formula for linear interpolation.

 Equation 11. Significant Commercial Activities Calculation (Step 4)

 \[
 \]

We used 2028 TWC employment data for the year 2027. Because TWC only projected employment to 2028, for years 2032, 2037, and 2042, Perryman Group employment projections were used.\(^\text{13}\)

- **Recycling Rate (pounds per person per day)**
 We estimated the commercial recycling rate of the region because there is not one available. First, we used the 23.6% rate from North Central Texas Council of Government’s recycling rate published in their Regional Recycling Rate Update from August 2011.\(^\text{14}\) The recycling rate refers to Industrial, Commercial, and Institutional sources (ICI). Because that rate represents NCTCOG’s local recycling rate, we then customized that rate for the region by applying a weight based on Esri recycling survey data known as their Market Potential Index (MPI). The MPI encodes the market potential based on a count of adults expected to have recycled products in the last 12 months.

INDUSTRIAL WASTE GENERATION

In the instructions for Volume II for this section, TCEQ instructed us to repeat the steps taken in the residential section of this attachment. We therefore recreated Volume II, Section III.A, Table III.A.I. Residential Waste Generation and inserted it into the second column of this section, Table III.A.II. Industrial Waste Generation. We then populated the table with industrial data to match the table to this section. To incorporate the table in the Volume II format, the table was transposed to have a vertical orientation.

Industrial waste generation was treated in the exact same way as commercial waste generation with one exception. This applies to both the Descriptions and Expectations sections.

- **Current Population**
 To make this section specific to industrial waste, the number of employees engaged in industrial activities was substituted for the population of the

region. See Table 2 in the Addendum to this Attachment for the list of TWC sectors that we categorized as Industrial.

Results
The purpose of this Results section is to provide space for additional information that adds relevant details and context to the summary we provided in Volume II.

This section is divided into three subsections, one for each critical group. In each section (residential, commercial, industrial), we present two results not shown in Volume II. First, the adjusted recycling rate as percentage. Second, a graph we made that serves as a visual summary of the information provided in Volume II, Attachment III.A. Demographic Information, Volume II, Section III.A, Tables III.A.I. Residential Waste Generation, III.A.II. Commercial Waste Generation, and III.A.III. Industrial Waste Generation. The graphs display the relationship among population, recycling, and landfill disposal. For a more complete picture of waste generation in the area, please refer to the Generation sections of Volume II, Attachment III.C. Solid Waste Management Activities.

Residential Waste Generation
The primary results of the residential waste generation analysis are presented in Volume II, Section III.A, Table III.A.I. Residential Waste Generation.

The statewide percentage of waste generated that is recycled is 22.7\%. After adjusting the statewide rate for the ATCOG region, recycling as a percent of waste generated is 17.5\%.

Adjusted residential recycling as a percent of waste generated

17.5\%

To facilitate a quick understanding of the relationship between waste generation and disposal, Figure 2 is included. Assuming a perfectly linear relationship between population and waste generation shows that annual waste generation between 2022 and 2042 is expected to decrease by about 30 thousand tons.

15 Study on the Economic Impacts of Recycling - Texas Commission on Environmental Quality - www.tceq.texas.gov
Figure 2. Estimated Current and Future Waste Generation (Landfill Disposal and Recycling) and Population

Recycling Rate Goal

We could not set a recycling rate goal without first understanding the current recycling rate. Because no established regional recycling rate exists, we estimated one based on the statewide recycling rate.

The recycling rate goal is really a measure of the region’s success diverting material from the landfill. The established recycling rate for Texas prepared by Burns & McDonnell for the Texas Commission on Environmental Quality (TCEQ) defined the recycling rate as essentially any material that was discarded but not sent to the landfill. It excluded source reduction activities, refurbishment or reuse, energy conversion, land reclamation, or on-site use of material at the landfill. To make measuring and reaching the recycling rate goal attainable, for the purposes of this plan any material diverted from the landfill may be included in the recycling rate.
The most recent analysis of the statewide recycling rate was conducted by Burns & McDonnell in 2015 and was found to be 22.7%. After adjusting the statewide rate to the region, we found the regional recycling rate to be 17.5%. For our complete methods refer to Residential Waste Generation, page A14. Based on this current rate, the recycling rate goal for the region is to achieve a regional average of 40% by 2042—the end of this plan.

Achieving a 40% recycling rate over the course of this 20-year plan amounts to an average increase of about 1% each year. In other words, were the region to increase recycling by 1% each year, they will have reached the goal by the end of the plan. The recycling rate goal is ambitious and achievable. It is based on other waste management plans in Texas. The City of San Antonio plan is to increase recycling 4% every year to reach their goal of 60% by the end of 2025. The City of New Braunfels plan is to increase their annual recycling rate by 1.6% to reach their goal of 38% by 2030.

Because the regional recycling rate goal is the average rate for the region, the 1% yearly growth rate accounts for both city and rural areas, and their varied capabilities. Cities and rural communities are not expected to reach the same recycling level, but together they should strive to average 40% by 2042.

This brings us to the reality that the region will need to be able to measure their recycling rate in order to assess their progress reaching the regional goal. Developing a process to measure the region’s diversion activities is critical to the success of this goal. Collecting data on waste diversion helps improve those diversion efforts. Waste audit data like that collected and analyzed by San

Antonio in their Recycling and Resource Recovery Plan19 helped them boost recycling efforts. Data driven decision making is crucial to achieving not just the recycling goal but to improve outcomes for many of the goals listed in this plan.

COMMERCIAL WASTE GENERATION

The primary results of the commercial waste generation analysis are presented in Volume II, Section III.A, Table A.III.II. Commercial Waste Generation.

The statewide percentage of Industrial, Commercial & Institutional (ICI) waste generated that is recycled is 23.6\%.20 After adjusting the statewide rate, the adjusted recycling as a percent of waste generated is 18.2\%.

| Adjusted commercial recycling as a percent of waste generated | 18.2\% |

Assuming a perfectly linear relationship between employment and waste generation shows that annual waste generation between 2022 and 2042 is expected to increase by about 138 thousand tons.

For more information about waste generation related to industrial activities, see the generation sections of Volume II, Attachment III.C. Solid Waste Management Activities.

INDUSTRIAL WASTE GENERATION

The primary results of the commercial waste generation analysis are presented in Section III.A, Table III.A.III. Industrial Waste Generation of the Demographic Information of Volume II.

The statewide percentage of Industrial, Commercial & Institutional (ICI) waste generated that is recycled is 23.6\%. After adjusting the statewide rate, the adjusted

recycling as a percent of waste generated is 18.2%. The industrial recycling rate is the same as the commercial recycling rate because using an ICI rate was the best data available.

| Adjusted industrial recycling as a percent of waste generated | 18.2% |

Assuming a perfectly linear relationship between employment and waste generation shows that annual waste generation between 2022 and 2042 is expected to increase by about 45 thousand tons.

For more information about waste generation related to industrial activities, see the generation sections of Volume II, Attachment III.C. Solid Waste Management Activities.

Discussion

The key question TCEQ sought to answer in this section was how the region’s waste generation will change due to population growth and economic development. The answer is that total waste generation is expected to decrease over the 20-year period because of a decrease to the region’s population, which will be discussed more fully in this section. Though, when analyzed by critical group, residential waste is forecasted to decrease while commercial and industrial wastes are forecasted to increase. This is because residential waste tracks with the expected decrease to the region’s population. Growth to commercial and industrial waste is the result of the expected increase in employment.

It is important to note these projections assume surrounding populations, in areas outside the region, follow similar growth patterns. This is because some of the waste being disposed of in regional landfills is imported from those outside regions. Similarly, some of the region’s waste is exported to other regions and these projections assume those landfills will continue to accept increasing amounts of waste.

For each critical group (residential, commercial, and industrial) we used a similar approach to estimate waste generation changes between 2022 and 2042. The variation came from using different sources for recycling rate customized for each group. The method was straightforward and based on TCEQ instructions. We calculated residential waste generation based on population, landfill tonnage, and
recycling tonnage. For commercial and industrial, we used employment estimates instead of population estimates. The constraints of this approach are outlined in the next section, along with key takeaway points.

RESIDENTIAL WASTE GENERATION

Residential waste generation will decrease over the 20-year period because of a decrease to the region's population. The population is projected to decrease 6.0% from 2022 to 2042. The amount of waste generated is thus projected to decrease by the same amount. Although the recycling rate is similarly held constant, efforts to reduce and divert additional waste from the landfill could, and hopefully will, increase this percentage over time. The decline in population, and the expected decrease in the amount of material landfilled and recycled, is a key feature of the region's waste ecosystem.

Of the three approaches (residential, commercial, and industrial), we believe that the Residential waste data is the most reliable. Although there are several drawbacks to the formulation of the Residential numbers—which will be discussed fully in the next section—it best represents the big picture of the region. We believe this is the case because it is the sole table that uses the full population of the region in its calculations. By using the entire population, along with the entire amount of waste disposed in the region's landfills, the waste numbers are most consistent. To be clear, the Residential model's best use is in gauging the total waste generation of the region because it uses total population and the landfill waste from all three critical groups.

For this reason, the graph we developed (Figure 2) for the Residential section is most useful. As shown there, waste generation and disposal decrease linearly with population. In effect, the steeper the population decline the lower the amount of generation and disposal. The graphic also shows a near uniform rate of decline through time. That is, population and residential waste are projected to shrink steadily during the 20-year period.

There is, however, reason for caution when interpreting the results of the Residential section. The main constraint projecting current and future residential waste generation, and thus completing Volume II, Section III.A, Table III.A.I. Residential Waste Generation, was limited amount of available data. As a result, there are several reasons for uncertainty as it relates to the numbers presented in the Table.
First, the data suggests 30 thousand tons less waste will be produced in 2042 than in 2022. That amount is significantly lower than the change in landfill disposal tonnage for commercial (+138 thousand tons) or industrial (+45 thousand tons) related waste. But the table does not solely consider residential waste. By using the total tonnage that went to the landfill, this table includes non-residential sources of waste such as commercial and some industrial generation. In fact, each critical groups’ calculations represent total regional waste generation rather than the generation attributable to one of the groups. This flaw is the reason for our recommendation that the Residential data is the most credible model and ought to be the critical group consulted in waste management planning. Again, the Residential model ought to be interpreted as the total waste generation of the region.

Second, there is margin for error in the recycling rate because it was deduced from a calculation rather than taken from a local waste study. It was a best guess of the regional recycling rate, but it was based off a study from a different region and scaled by a marketing coefficient retrofitted for our purpose. Furthermore, we kept the Recycling Rate constant throughout the 20-year period, though in reality the Recycling Rate will not be constant. In fact, the success of efforts to improve the diversion rate could have a significant impact on total disposal.

Third, the landfill tonnage represents only the amount of solid waste disposed of inside the region. Such a number does not consider the material that has been imported from other COGs, states, or Mexico, or exported to other COGs or states (which is not required to be reported).

Fourth, the future Landfill (Tons) and Recycling (Tons) were calculated by using growth rate of the population. By using this approach, the columns are calculated in a way that assumes there is a linear relationship between population growth and waste disposal. This is a prudent assumption but may not necessarily be accurate.

Fifth, the Table as TCEQ has it set up calculates generation as the sum of the waste disposed and recycled. This formulation excludes waste that was generated but disposed of by means other than at the landfill or through recycling. Waste that was otherwise diverted by being reused, buried, burned, or illegally dumped is not included as waste that had been generated. As a result, the Landfill Disposal (Tons) may not capture the true amount of waste generated in the region.

There is no such thing as perfect data, but the calculations provided here represent reasonable estimates for planning purposes.
COMMERCIAL WASTE GENERATION

Commercial waste generation will markedly increase over the 20-year period as a result of substantial increase to the region’s commercially employed population. Commercial employment is projected to increase 24% from 2022 to 2042. The amount of waste generated is thus projected to increase by the same.

We used the Texas Workforce Commission (TWC) projections for the first five-year planning period and then Perryman Group projections for the remaining planning periods because TWC employment projections stopped at 2028. We chose to use TWC instead of Perryman Group projections for the first planning period because they came from state agency projections using Bureau of Labor Statistics data.

It is our assessment that the commercial waste table is not as reliable a gauge of waste generation than the residential waste table. Still, we believe waste generation as a result of commercial activities in the region will increase. The Commercial table suffers from the same lack of data issues discussed in the Residential waste Discussion section, but with one more drawback. The Commercial table used in its calculations the full amount of tonnage disposed in the landfill, yet only looks at a portion of the population – the commercial population. Basically, we compared apples to oranges. As a result, the disposal rate and recycling rate are inflated relative to what we would expect. In order to make an apples-to-apples comparison, the tons of waste disposed of at the landfill for only commercial activities is needed. Or more simply, the necessary data could come from the audit of a sample of the commercial waste stream. The best way to more accurately gauge both the commercial waste generation and recycling rate would be through a targeted study, which can be costly.

INDUSTRIAL WASTE GENERATION

Industrial waste generation will increase over the 20-year period as a result of an increase to the region’s industrially employed population. Industrial employment is projected to increase 8.0% from 2022 to 2042. The amount of waste generated is thus projected to increase by the same amount.

All other relevant discussion can be found in the Commercial section of this Discussion as it applies to industrial waste generation as well.
Conclusion

Population in the region is expected to decrease and result in lower quantities of waste. Residential waste generation is projected to decrease throughout the 20-year period. In the context of this Attachment, we believe the Residential findings give the best picture of overall waste generation in the region.

The region’s recycling rate is below average for the State of Texas. Understanding the region’s recycling rate helps create targets for future improvement.

Waste generation and waste disposal are the beginning and end of the waste management lifecycle. Analysis of the amount of waste generated and disposed of is critical for assessing waste management solutions.

Addendum | Attachment III.A. Demographic Information

Table 2. Perryman Group Employment Category Assignments

<table>
<thead>
<tr>
<th>NAICS</th>
<th>Type</th>
<th>Texas Workforce Commission Industry</th>
<th>Perryman Group Industry</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Industrial</td>
<td>Agriculture, Forestry, Fishing and Hunting</td>
<td>Agriculture</td>
</tr>
<tr>
<td>21</td>
<td>Industrial</td>
<td>Mining, Quarrying, and Oil and Gas Extraction</td>
<td>Mining</td>
</tr>
<tr>
<td>22</td>
<td>Commercial</td>
<td>Utilities</td>
<td>Transportation, Warehousing, Utilities</td>
</tr>
<tr>
<td>23</td>
<td>Commercial</td>
<td>Construction</td>
<td>Construction</td>
</tr>
<tr>
<td>31</td>
<td>Industrial</td>
<td>Manufacturing (food, beverage, tobacco, leather, apparel, textile)</td>
<td>Non-Durable MFG</td>
</tr>
<tr>
<td>32</td>
<td>Industrial</td>
<td>Manufacturing (wood, paper, printing, plastic, chemical, nonmetallic, petroleum, coal)</td>
<td>Durable MFG</td>
</tr>
<tr>
<td>33</td>
<td>Industrial</td>
<td>Manufacturing (metal, machinery, computer, electrical, transportation, misc.)</td>
<td>Durable MFG</td>
</tr>
<tr>
<td>42</td>
<td>Commercial</td>
<td>Wholesale Trade</td>
<td>Trade</td>
</tr>
<tr>
<td>NAICS</td>
<td>Type</td>
<td>Texas Workforce Commission Industry</td>
<td>Perryman Group Industry</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------</td>
<td>-------------------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>44</td>
<td>Commercial</td>
<td>Retail Trade (store)</td>
<td>Trade</td>
</tr>
<tr>
<td>45</td>
<td>Commercial</td>
<td>Retail Trade (non-store)</td>
<td>Trade</td>
</tr>
<tr>
<td>48</td>
<td>Commercial</td>
<td>Transportation</td>
<td>Transportation, Warehousing, Utilities</td>
</tr>
<tr>
<td>49</td>
<td>Commercial</td>
<td>Warehousing</td>
<td>Transportation, Warehousing, Utilities</td>
</tr>
<tr>
<td>51</td>
<td>Commercial</td>
<td>Information</td>
<td>Information</td>
</tr>
<tr>
<td>52</td>
<td>Commercial</td>
<td>Finance and Insurance</td>
<td>Finance, Insurance, & Real Estate</td>
</tr>
<tr>
<td>53</td>
<td>Commercial</td>
<td>Real Estate and Rental and Leasing</td>
<td>Finance, Insurance, & Real Estate</td>
</tr>
<tr>
<td>54</td>
<td>Commercial</td>
<td>Professional, Scientific, and Technical Services</td>
<td>Services</td>
</tr>
<tr>
<td>55</td>
<td>Commercial</td>
<td>Management of Companies and Enterprises</td>
<td>Services</td>
</tr>
<tr>
<td>56</td>
<td>Commercial</td>
<td>Administrative and Support and Waste Management and Remediation Services</td>
<td>Government</td>
</tr>
<tr>
<td>61</td>
<td>Commercial</td>
<td>Educational Services</td>
<td>Services</td>
</tr>
<tr>
<td>62</td>
<td>Commercial</td>
<td>Health Care and Social Assistance</td>
<td>Services</td>
</tr>
<tr>
<td>71</td>
<td>Commercial</td>
<td>Arts, Entertainment, and Recreation</td>
<td>Services</td>
</tr>
<tr>
<td>72</td>
<td>Commercial</td>
<td>Accommodation and Food Services</td>
<td>Services</td>
</tr>
<tr>
<td>81</td>
<td>Commercial</td>
<td>Other Services</td>
<td>Services</td>
</tr>
<tr>
<td>92</td>
<td>Commercial</td>
<td>Public Administration</td>
<td>Government</td>
</tr>
</tbody>
</table>
Attachment III.B. Estimates of Current and Future Solid Waste Amounts by Type

Introduction

As part of the 20-year planning process, TCEQ requires reporting of current waste and projections of future waste amounts in five-year increments by type.

Understanding expected amounts of waste by type is important for future landfill and waste processing plans, and understanding where to focus source reduction, reuse, and recycling efforts.

This attachment is related to waste disposal in the region. Waste disposal includes the materials that are landfilled and not otherwise diverted through reuse or recycling. This attachment is not related to waste generation.

Waste categorization is done by landfill operators based on statewide requirements,21 which include 20 different waste types. Landfill operators provide their data to TCEQ on an annual basis.

The purpose of this attachment is to provide additional details and commentary on Volume II, Section III.B, Table III.B.1. Current and Future Solid Waste Amounts by Type.

Because there is a projected population decrease in the region, there is also a projected decrease in the amounts of each waste type. Evaluating the amounts of waste by type is made difficult by the categories. Most of the waste is categorized as Municipal Solid Waste and likely includes many types of waste that could be diverted from the landfill. Still, planning for this projected increase in waste is important to maintain landfill capacity.

The rest of this attachment will describe the methods IGI used in Table III.B.1. Current and Future Solid Waste Amounts by Type, show the results of the findings, offer a discussion of those results, and provide a conclusion.

Methods

The process for calculating waste projections was provided by the TCEQ. Table III.B.1. Current and Future Solid Waste Amounts by Type includes 20 different waste types and requires the number of landfills accepting each type, the percent of total tons disposed for each type, the tons disposed in the current year, and projections for the next 5-, 10-, 15-, and 20-years. The columns in Table III.B.1. Current and Future Solid Waste Amounts by Type will be explained here in greater detail.

1. Waste type

TCEQ listed 20 types of waste (presented in alphabetical order):

- Brush
- Class 1 Non-hazardous
- Classes 2 and 3 Non-hazardous
- Construction or Demolition
- Contaminated soil
- Dead Animals
- Grease Trap Waste
- Incinerator Ash
- Litter
- Municipal
- Municipal Hazardous Waste from CESQGs
- Non-RACM
- Pesticides
- Regulated Asbestos-containing Material (RACM)
- Septage
- Sludge
- Tires (split, quartered, shredded)
- Treated Medical Waste
- Used Oil Filter
- Other

In the TCEQ-provided data, Other is a specific category reported by landfills and is explained by note in the data. To ensure comparability between the waste disposal totals in Volume II, Attachment III.A. Demographic Information and the TCEQ Municipal Solid Waste in Texas: A Year in Review report from 2019, Grit Trap Waste was also included in this category and will be noted in the results.
2. Number of landfills accepting waste type
IGI used 2019 TCEQ-provided landfill disposal data to count the number of landfills that accepted each type of waste. For example, out of three landfills in the region, two provided record of accepting brush, so for the number of landfills accepting brush we answered “two.” For types of waste that did not have any records of disposal, we marked the number of accepting type as “zero.” These zeroes do not necessarily mean that landfills in the region are not allowed to accept these certain types of waste, only that none reported it in 2019. Additionally, numbers other than zero do not reflect the number of landfills that are technically allowed to accept each waste type; they only reflect the number of landfills that recorded accepting each type.

3. Percent of total tons disposed
IGI used 2019 TCEQ landfill data as the “Current Year” disposal weight. To find the Current Year disposal, we first found the sum of each waste type disposed in all of the region’s landfills. Next, we summed all 20 waste types to find the total tons disposed of in the region (Current Year). We then divided each waste type by the Current Year total and multiplied by 100 to find the percentage for each type. In the tables, percentages are rounded to the nearest whole number.

Equation 12. Percent of Total Tons Disposed Calculation

\[
\text{Waste type (tons)} \div \text{Current Year (total tons disposed)} \times 100 = \text{Percent of total tons disposed}
\]

4. Current year
The Current Year column contains the sum of recorded disposal for each waste type in all of the region’s landfills. IGI used TCEQ-provided data on landfill disposal for this, and because 2019 is the most recent data available, 2019 is used as the current year. This data is limited because landfills in the region may have accepted waste from counties outside of the region’s boundaries. It is not possible to identify how many tons came from outside the region. Similarly, waste generated in the region may have been disposed of in a landfill outside of the region with similar limitations on data specificity.
5. **Disposal projections**

The estimated population growth rates per year in Volume II, Section III.A, Table III.A. Demographic Information were used to calculate the projected increase or decrease of waste amounts by multiplying the current year waste amounts by the growth factor. In the tables, tons are rounded to the nearest whole number.

Equation 13. Disposal Projection Calculation

\[
(Landfill \ disposal \ [tons] \times \ Growth \ rate) + Landfill \ disposal \ [tons] = Disposal \ projection
\]

Results

The primary results of the estimates of current and future solid waste amounts by type are presented in Volume II, Section III.B, Table III.B.1. Current and Future Solid Waste Amounts by Type.

Table III.B.1. Current and Future Solid Waste Amounts by Type did not include a column to project the current 2019 data forward to 2022 before completing the 5-, 10-, 15-, and 20-year projections. As a result, the 2022 disposal projections are shown here instead of in the Volume II table to avoid altering the original TCEQ table. For context, Current Year (2019) data was recreated alongside the projection to 2022 in Table 3.

Table 3. Current and 2022 Solid Waste Amounts by Type

Note: Tons disposed are rounded to the nearest whole number.

<table>
<thead>
<tr>
<th>Waste Type</th>
<th>Number of Landfills Accepting Waste Type</th>
<th>Percent of Total Tons Disposed</th>
<th>Current Year (2019)</th>
<th>2022 Projection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Municipal</td>
<td>3</td>
<td>70%</td>
<td>321,383</td>
<td>316,562</td>
</tr>
<tr>
<td>Brush</td>
<td>-0-</td>
<td>-0-</td>
<td>-0-</td>
<td>-0-</td>
</tr>
<tr>
<td>Construction or Demolition</td>
<td>2</td>
<td>4%</td>
<td>17,853</td>
<td>17,585</td>
</tr>
<tr>
<td>Litter</td>
<td>-0-</td>
<td>-0-</td>
<td>-0-</td>
<td>-0-</td>
</tr>
<tr>
<td>Waste Type</td>
<td>Number of Landfills Accepting Waste Type</td>
<td>Percent of Total Tons Disposed</td>
<td>Current Year (2019)</td>
<td>2022 Projection</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>-------------------------------</td>
<td>---------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Class 1 Non-hazardous</td>
<td>2</td>
<td>1%</td>
<td>4,904</td>
<td>4,831</td>
</tr>
<tr>
<td>Classes 2 and 3 Non-hazardous</td>
<td>1</td>
<td>7%</td>
<td>32,424</td>
<td>31,938</td>
</tr>
<tr>
<td>Incinerator Ash</td>
<td>-0-</td>
<td>-0-</td>
<td>-0-</td>
<td>-0-</td>
</tr>
<tr>
<td>Treated Medical Waste</td>
<td>-0-</td>
<td>-0-</td>
<td>-0-</td>
<td>-0-</td>
</tr>
<tr>
<td>Municipal Hazardous Waste from CESQGs</td>
<td>0</td>
<td>0%</td>
<td>-0-</td>
<td>-0-</td>
</tr>
<tr>
<td>Regulated Asbestos-containing Material (RACM)</td>
<td>2</td>
<td>0%</td>
<td>112</td>
<td>110</td>
</tr>
<tr>
<td>Non-RACM</td>
<td>1</td>
<td>0%</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Dead Animals</td>
<td>1</td>
<td>0%</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Sludge</td>
<td>2</td>
<td>1%</td>
<td>6,816</td>
<td>6,714</td>
</tr>
<tr>
<td>Grease Trap Waste</td>
<td>-0-</td>
<td>-0-</td>
<td>-0-</td>
<td>-0-</td>
</tr>
<tr>
<td>Septage</td>
<td>-0-</td>
<td>-0-</td>
<td>-0-</td>
<td>-0-</td>
</tr>
<tr>
<td>Contaminated soil</td>
<td>1</td>
<td>7%</td>
<td>31,257</td>
<td>30,788</td>
</tr>
<tr>
<td>Tires (split, quartered, shredded)</td>
<td>1</td>
<td>0%</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Pesticides</td>
<td>-0-</td>
<td>-0-</td>
<td>-0-</td>
<td>-0-</td>
</tr>
<tr>
<td>Used Oil Filter</td>
<td>-0-</td>
<td>-0-</td>
<td>-0-</td>
<td>-0-</td>
</tr>
<tr>
<td>Waste Type</td>
<td>Number of Landfills Accepting Waste Type</td>
<td>Percent of Total Tons Disposed</td>
<td>Current Year (2019)</td>
<td>2022 Projection</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>------------------------------</td>
<td>---------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Other(^{22})</td>
<td>1</td>
<td>9%</td>
<td>41,348</td>
<td>40,728</td>
</tr>
</tbody>
</table>

Total 100% 456,123 449,282

Additionally, to visualize the results presented in Volume II, Section III.B, Table III.B.I. Current and Future Solid Waste Amounts by Type, we developed a graph to quickly see growth in expected wastes by type for the top 10 most reported wastes in the region. These top ten wastes represent more than 99% of the waste reported in the current year.

\(^{22}\) The Pleasant Oaks Landfill recorded disposal in the ‘other’ category, which was reported as “off spec material, outdated material, food waste, plastic, sand.” The Pleasant Oaks Landfill recorded tonnage for Grit Trap waste. We included this in the ‘other’ category. Grit Trap waste makes up less than 1% of the ‘other’ category.
Discussion

In general, projected waste is expected to decrease. Notably, these figures assume no changes to practices that could divert waste from landfills. Operating under this assumption can help for planning to maintain adequate landfill disposal capacity in the region long-term. In other words, future disposal capacity should consider these projections. For more information about disposal, including disposal capacity, see the Disposal sections of Volume II, Attachment III.C. Solid Waste Management Activities.

It is important to recognize the nature of landfill tonnage reports may impact the results of this analysis. If pesticides, for example, were placed in a curbside receptacle in bagged trash and disposed of at a landfill, it very likely would be recorded as Municipal rather than Pesticides.
Still, one of the most useful features of Volume II, Section III.B, Table III.B.1. Current and Future Solid Waste Amounts by Type is the Percent of Total Tons Disposed. Municipal waste is projected to be the largest waste type in the region, representing about 70% of total disposal. This Municipal waste type is a likely candidate for intervention and diversion efforts to extend the lives of landfills in the region, though it should be noted that Municipal is not a homogenous waste stream and likely represents many different wastes.

Unfortunately, the data are not available to further categorize the Municipal waste stream. This is likely because it would be prohibitively expensive to consistently audit the largest part of the waste stream that is often bagged trash. However, periodic audits may help better understand this significant part of the waste stream.

Furthermore, because waste may have been exported from the region and imported to the region, these projections assume there will be no changes to the rate of those imports and exports. However, if a landfill in another region is close to the end of its life, it may significantly impact where waste is disposed in the future.

Conclusion

Population is decreasing in the region, so disposal of each waste type is also projected to decrease. These projections are only estimations though, so the region should still carefully analyze its landfill capacity and diversion rates to be prepared for any changes in disposal.

Understanding how much of each waste type is expected in the region can help decide where to focus diversion efforts and inform planning for adequate disposal capacity. The region should explore every opportunity to reduce its disposal, especially in its largest streams.

In order to better understand its disposal and how to reduce it, the region should consider periodically collecting and reviewing more specific disposal data to inform planning and decisions.
Attachment III.C. Solid Waste Management Activities

Introduction
As part of the 20-year planning process, TCEQ requires a description of current and planned solid waste management activities in the region.

Understanding these current and already planned activities are critical to setting a foundation for the region’s plan and developing a plan that considers what is already happening in the region and builds on these existing resources.

The purpose of this attachment is to provide additional details and commentary on Volume II, Section III.C, Tables III.C.I. Current Solid Waste Management Activities in the Region and III.C.II. Planned Solid Waste Management Activities in the Region.

The accounts of each activity in the waste lifecycle help support prioritization of waste management policies. The approach taken here leverages available data, spatial analysis, and data visualization to map the current activities into a cohesive view of the region’s waste management systems. By linking activities from waste generation to disposal, this section provides a better understanding from beginning to end, helping to identify opportunities for material reduction or recovery. However, data limitations significantly impact the analysis and will make it difficult to create specific goals and objectives, such as reducing a specific waste type by a specific amount over the next 20 years. The most useful plan will be considerate of the data limitations and will therefore need to be broader and more general, rather than narrow and specific.

This attachment includes additional information related to Table III.C.I. Current Solid Waste Management Activities in the Region and III.C.II. Planned Solid Waste Management Activities in the Region and has been similarly organized.

The nature of collecting and managing trash and recyclables is complex and often unseen. Per TCEQ Volume II, there are 10 key waste management activities. To facilitate understanding of how each fit into the waste management lifecycle, a brief description of each will be provided.

Solid waste management activities have been organized into 10 distinct actions. To put these activities into a larger context, we developed a diagram (Figure 4).
The term 'Logistics' was added to group related activities but was not an official activity. Similarly, 'Processing' was an official activity that we used to group all processing related activities.

![Solid Waste Activities Flowchart](image)

Figure 4. Solid Waste Activities Flowchart

In the *Solid Waste Activities Flowchart*, Generation is the beginning and disposal is the end. The goal is to dispose of less material than is generated and to implement source reduction activities to reduce the amount of material generated.

Generation happens at residences and businesses. So does *source separation*, for example separating trash and recycling. We have grouped the next three activities under the heading logistics, and these are all about getting the waste away from those residences and businesses. Logistics includes curbside *collection; handling* (such as drop-off centers or collection events) when curbside collection is not available; and *storage* at those drop-off centers or transfer stations before processing. Processing includes *transportation*, typically via a transfer station; *treatment*, for example reducing hazards associated with medical waste; and *resource recovery*, for example, composting. All that remains is then *disposed* of in landfills. Although these activities appear as separate and discrete tasks, we will show that there are some entities which perform multiple functions.

Each activity will be further described in the following sections.

GENERATION

Solid waste generation is the creation of waste by human activity. It is the beginning of the waste lifecycle. The waste that is generated needs to be managed. Knowledge of a region’s solid waste generation is important in the planning and operation of a successful solid waste management system. Waste generation
occurs predominantly at residences and businesses. To get a comprehensive picture of waste generation in the region, this section endeavors to describe waste generated by residences, commercial enterprises, and industrial enterprises. Together they make up what we refer to as the three critical waste generators.

Residential waste, as the name implies, is the waste related to households. The residential section of this attachment will describe the types and amounts of waste generated by households.

Commercial waste, as the name implies, is the waste related to commercial activities like trade and business. The commercial section of this attachment will describe the types and amounts of waste generated by businesses.

Industrial waste, as the name implies, is the waste that results from operations of industry: manufacturing, mining, or agriculture. The industrial section of the attachment will describe the types and amounts of waste generated by industry.

Unlike Volume II, Attachment III.A. Demographic Information, this Attachment will consider commercial and industrial waste by sector and waste type, along with the magnitude of each categories’ contribution to the region’s waste stream. The idea for this section is to add depth to the landfill disposal data discussed in Volume II, Attachments III.A. Demographic Information and III.B. Estimates of Current and Future Solid Waste Amounts by Type that will allow for greater understanding of the region’s waste generation.

SOURCE SEPARATION

Source separation is the act of separating materials at the point of generation in preparation for moving the waste away from the home or business where it was generated. Because of the wide variety in source separation activities at commercial and industrial generators and the lack of relevant data, we will focus on source separation for residential waste.

LOGISTICS

Logistics is a category of activities which includes Collection, Handling, and Storage. This category is not part of the original form but has been included to group similar activities and simplify the solid waste management process at a high level.

Collection is the process by which residents’ and businesses’ source separated materials are collected either curbside or by drop-off so that the waste can be
processed and, if necessary, disposed. For residential customers, this is commonly referred to as curbside collection. Curbside collection is the easiest and most convenient way for residents to dispose of their solid waste. As a result, this section focuses on residential curbside collection. Like the consideration of variance and lack of data related to commercial and industrial entities’ source separation, an analysis of collection management for these generators is not included. Additionally, collection can occur at facilities where drop-offs are accepted.

Handling is performed by all haulers that collected waste and all facilities that accepted drop-off materials, transferred waste, processed waste (including resource recovery), or disposed of waste.

Storage facilities include all locations that accepted drop-off materials, transferred waste, processed waste (including resource recovery), or disposed of waste.

PROCESSING

Processing is a category of activities which includes *Transportation, Treatment,* and *Resource Recovery.*

Transportation is the large-scale movement of collected, handled, and stored waste to the material’s next location in the management process.

Treatment can include reducing the hazards associated with a specific type of waste.

Resource Recovery includes processing that results in a waste material being diverted from disposal in a landfill, such as recycling or composting.

DISPOSAL OF SOLID WASTE

After solid waste is collected, transported, and treated, it must be disposed of in a landfill if no other option is available. Disposal at landfills is the last step in the region’s waste management process. In this section we will present information on the number of landfills in the region, detail the estimated capacity remaining in those landfills, and show the likely composition of the disposed waste in the region.

The remainder of this attachment will describe the methods we used to describe each activity, the results of those methods, and then discuss those results before
concluding. Each section (methods, results, etc.) will have a specific subsection related to each solid waste management activity.

Methods
A variety of methods were used to better understand the various current and planned solid waste management activities depending on the availability of data.

GENERATION
Two related but distinct methods were used to evaluate current waste generation and planned waste generation.

Current
While waste *disposal* data is provided by TCEQ, there is no singular source of data for *generation* in Texas. As a result, we used three secondary data sources to analyze waste generation.

- California’s Department of Resources Recycling and Recovery (CalRecycle) Estimated Solid Waste Generation Rates
- CalRecycle Residential Disposal Compositions for California Regions
- Environmental Protection Agency (EPA) Commercial Waste National Totals by NAICS and US Satellite Tables for USEEIO

CalRecycle’s Estimated Solid Waste Generation Rates were used to compare the amount of waste generation by residential, commercial, and industrial sources. CalRecycle’s Residential Disposal Compositions for California Regions were used to identify the types and amounts of waste generated by *residential* sources. The

EPA’s Commercial Waste National Totals by NAICS and US Satellite Tables for USEEIO (US Environmentally Extended Input Output) were similarly used to identify the types and amounts of waste generated by commercial and industrial sources. In other words, we looked at each groups’ contribution to total generation in the region, then we looked at the waste that makes up each groups’ generation.

In the following sections we will explain the reason we used each approach and provide a stepwise walkthrough of each procedure.

COMPARISON OF RESIDENTIAL, COMMERCIAL, AND INDUSTRIAL WASTE GENERATION

The first approach was used for all three critical generators (residential, commercial, industrial). This method was used to estimate the amount of waste each group is expected to generate. We used CalRecycle generation rates as the data source.

In the following paragraphs we will describe why the generation rates we focus on are categorized into residential, commercial, and industrial categories. Next, we will explain the generation rate of each category (residential, commercial, and industrial). Finally, we will show how much each category contributes to the overall waste that is generated before examining each category individually.

For the purposes of this section and consistency with other portions of this regional plan, we divided waste generation into three categories: residential, commercial, and industrial. Each has a different rate of generation and together these categories make up most, if not all of the waste generated in the region. Commercial and industrial sectors are separated into different categories because this form divides business activity this way, and so the same will be done here for consistency. TCEQ defines industrial waste as waste that results from operations of industry: manufacturing, mining, or agriculture. Unlike industrial waste, commercial waste derives from trade and business. Residential waste is the waste created within households. In the Residential section, we will explore the differences in waste between single-family homes and multi-family homes. Single-family homes have one housing unit and multi-family homes have two or more housing units.

The estimated generation rates we used are based on a 2006 waste audit study provided by California’s Department of Resources Recycling and Recovery.
We chose to use the CalRecycle generation rates instead of the Residential Rate Generation that was calculated in Volume II, Section III.A, Table III.A.I. Residential Waste Generation. The CalRecycle generation rates were established from a reputable source directly inspecting household waste, whereas the Residential Rate from Table III.A.I. Residential Waste Generation was a calculation we made based on municipal landfill and recycling data that combines commercial, industrial, and residential wastes. The CalRecycle generation rates for each category were as follows: residential (12.23 lbs./household/day), commercial (10.53 lbs./employee/day), and industrial (8.93 lbs./employee/day). Also, note that the commercial rate as listed by CalRecycle is 10.53 but excludes construction and demolition (C&D) waste. To get a rate which includes C&D waste, we calculated the percent of C&D in the commercial waste stream based on an EPA table of commercially produced waste and added it into the CalRecycle rate to get 31.91 lbs./employee/day. The last step we took to make the numbers easier to understand was to convert waste rates to total waste. To this effect, the residential waste rate was converted to total residential waste using the number of households in the region based on U.S. Census data. The commercial and industrial waste rates were converted to total wastes using the number of people employed in each sector based on Texas Workforce Commission data.

Converting generation rates to total waste enables us to compare how much each category contributes to the overall waste stream.

RESIDENTIAL WASTE GENERATION

The approach taken here was used to understand the composition of residential waste. We used CalRecycle’s Residential Disposal Compositions to get the amount of each waste type found in the residential waste stream. Although just an

estimate, this breakdown was very similar to what we would expect to find in this region.

Specifically, we exported the waste characterization breakdown from CalRecycle’s webpage (Residential Disposal Compositions for California Regions). This gave us the percent of each material type found in the average single-family home (Table 14). We then recoded the material types into broader categories so they would be in a format suitable for a pie chart. The only changes to their categorization were in the Other Organics category because of the potential to identify specific types of organic waste that could be potentially composted in the region. This was done in the manner shown in the Addendum to this attachment.

COMMERCIAL AND INDUSTRIAL WASTE GENERATION

We used EPA’s USEEIO waste model as the data source combined with employment data to estimate the contribution made by each commercial and industrial sector to the waste stream. This methodology gave us detailed estimates into the amount and type of waste generated by each commercial sector in the region.

We used a three-step process to understand the impact of economic activity on waste generation in the region. We used this process because there is no existing data on the waste generated by the local economy. As a substitute, we developed a system that estimates the waste generated from each economic sector based on the number of employees in that sector. The next few sections will outline how we collected employment data by sector, collected waste generation data by sector, and finally, calculated the types and amount of waste generated by each economic sector.

Step 1. The first part of our process was to obtain solid waste generation data from the EPA. We downloaded the EPA’s Commercial Waste National Totals by NAICS and US Satellite Tables for USEEIO. This dataset contained the national average of waste generated by each economic sector. It enumerated the amount and type of waste generated by each North American Industry Classification System (NAICS) code. NAICS codes classify economic activity into categories. Next, we converted the NAICS codes listed on the EPA waste table from six digits to two digits. This was done to broaden the economic categories—we used 24 categories, matching the 2-digit NAICS codes structure used in the Texas Workforce Commission (TWC) dataset. Next, we recategorized the waste types into broader categories that align with the way in which we present waste types in this document. This process can be seen in the Addendum of this Attachment (Table
We recoded the wastes from the “CHW_National_Totals_by_NAICS” tab of the USEEIO spreadsheet as Hazardous. CHW is defined as commercial hazardous waste. In other words, the USEEIO model already classified these waste types as hazardous; we took the next step to recode them Hazardous. The model lists the wastes by weight.

In addition to calculating waste generation by weight, we identified conversion factors\(^29\) that allowed us to convert the waste to volume. Understanding volumes is important because landfills fill up by volume, not by weight. Weight can also have an impact on the cost to transport materials and is often how disposal costs are calculated.

The recoded waste types and volume conversions are found in Table 15. We did not convert liquids to volumes because conversion factors were unavailable. We also noted which wastes the model considered hazardous and which were non-hazardous. Next, we categorized each NAICS code by whether it was a commercial or industrial enterprise according to the Texas Health and Safety Code definition, also used by TCEQ, as shown in Table 13. With the prepared data, we divided the total waste generated nationally from each sector by the number of national employees in that sector. This resulted in the national average of waste produced by each employee in each sector. This figure became the multiplier we used to go from the waste generated nationally to the waste generated by the COG.

In summary, we organized the data so they were easier to work with, and then performed the following calculation for each economic sector (i.e., each 2-digit NAICS code) and each waste type (e.g., food, aluminum cans).

\[\text{National Average of Waste Generated Per Year (Tons)} \]
\[\text{National Number of Employees} \]
\[= \text{Annual Waste Generated per Employee (Tons per Employee per Year)} \]

\[\text{Equation 14. Significant Commercial Activities Calculation (Step 1)} \]

\[\text{Step 2. The second part of our process was to project commercial activity in the region for each five-year period beginning in 2022 and ending in 2042. We did this} \]

by using employment projections grouped by economic sector. For years 2022 and 2027, we used Texas Workforce Commission (TWC) employment projections. The TWC dataset provided us the number of people employed in each sector coded by NAICS code.

The TWC organizes geographic areas by Workforce Development Area (WDA). The North East WDA perfectly aligns with ATCOG.\(^\text{30}\) It should be noted that the most recent employment data published by TWC is for 2018 and it is projected to 2028.

In summary, in the second step of the four-part process we collected TWC data on the number of employees for each NAICS sector for 2022 and 2027.

Step 3. The third and final step was to find the total amount and type of waste generated by each economic sector in the COG. To this end, we multiplied two numbers we derived in the previous sections: the amount of waste generated per employee in each sector (Step 1) and the number of people in the COG employed in that sector (Step 2).

This gave us the relationship between commercial and industrial activity in the region and the types and amount of waste generated by those activities. Formally speaking, we performed the following equation for each economic sector (i.e., each NAICS code) and each waste type (e.g., food, aluminum cans).

Equation 15. Significant Commercial Activities Calculation

\[
\text{Annual Waste Generated per Employee} \times \text{Employees in COG} = \text{Waste Generated by COG}
\]

Planned

Separate methods were similarly used for planned generation for each of the current methods:

- Comparison of residential, commercial, and industrial waste generation,
- Residential waste generation, and
- Commercial and industrial waste generation.

COMPARISON OF RESIDENTIAL, COMMERCIAL, AND INDUSTRIAL WASTE GENERATION

The method used to create the comparison among residential, commercial, and industrial waste streams was identical to the method used to make the current comparison, except we used projected populations. We used the same generation rates for each critical group, but used 2027 population for short-range projections, 2032 population for intermediate range projections, and 2042 for long-range projections. Multiplying the generation rates by the relevant population segment gave us the total projected waste generation.

We used the population given by the Texas Demographic Center for the projected residential population. We used Texas Workforce Commission (TWC) and Perryman Group employment projections for the commercial and industrial populations. As a reminder, the generation rate for these critical groups is per employee. These were the best available data sources.

RESIDENTIAL WASTE GENERATION

The same method that was used to estimate current residential waste generation was used to project future residential waste generation. We used the same residential generation rate and multiplied it by the projected population in 2027, 2032, and 2042, using the 2018 U.S. Census projections. Because the waste generation rate is based on number of households, we divided the 2027 projected population by the average household size in 2018.

COMMERCIAL AND INDUSTRIAL WASTE GENERATION

Due to the difficulty in ascertaining planned waste generation, we extrapolated waste generation based on population growth and forecasted economic activity. Put simply, we analyzed changes in generation for each waste type. For this section, we converted the current waste being generated to the expected waste generated in the mid- and long-range. To do so, we applied the same methodology as we did for the previous section of this attachment: the Generation section of the Current Solid Waste Management. Please refer to that section for more insight into our methodology.

In this section, we changed the source for employment projections. Because TWC only forecasts employment out to 2028, for this section, we used employment projections from the Perryman Group. This became Step 3 in our methodology. To summarize, we used the same methodology as we did in the Current Generation...
section but inserted a third step which incorporated economic projections out to 2040.

Step 1. Same as Current Generation

Step 2. Same as Current Generation

Step 3. In the third step we collected employment data for the years 2032, 2037, and 2042. TWC does not project employment beyond 2027, so we turned to The Perryman Group’s long-term economic forecasts. The Perryman Group is an economic research firm based in Texas that specializes in long-term economic forecasts. The Perryman Group uses a proprietary forecasting system known as their Texas Econometric Model. According to The Perryman Group, their model is “The result of more than three decades of continuing research in econometrics, economic theory, statistical methods, and key policy issues and behavioral patterns, as well as intensive, ongoing study of all aspects of the global, US, and Texas economies. It is extensively used by scores of federal and State governmental entities on an ongoing basis, as well as hundreds of major corporations.”

The Perryman Group model does not classify employment by NAICS code, but instead groups economic sectors into broader categories. Because these broader categories are different than the NAICS codes, it prevented cross-comparison to the USEEIO model. To allow for comparison between the two models, we reclassified the 24 NAICS codes into the 11 economic divisions used by the Perryman Group. This was done in the manner shown in the Addendum to this Attachment, Table 13. Moreover, the Perryman Group does not use Workforce Development Areas but instead uses wider geographic areas. For ATCOG, we used the Perryman Group region known as the Upper East Region. ATCOG sits entirely within the Upper East Region but also included in the Perryman Group Upper East Region are all the counties within the East Texas Council of Governments (Rains County, Wood County, Camp County, Upshur County, Marion County, Van Zandt County, Smith County, Gregg County, Harrison County, Henderson County, Rusk County, Panola County, Anderson County, and Cherokee County).

In these sections we also cite population projections to get a sense of future waste generation. These projections come from the Texas Demographic Center. In summary, in the second step of the four-part process we collected Perryman Group data on the number of people employed by each economic sector for 2032, 2037, and 2042.

Step 4. Same as Step 3 in Current Generation.

SOURCE SEPARATION

Two separate methods were used to understand current and planned source separation activities which will be explained in the following sections.

Current

Residential Source Separation. To understand residential source separation in the region, we did an internet survey of the City of Texarkana’s website to learn about its services. For source separation, we only looked at services offered in Texarkana because they have the largest population in the region, so their services affect the largest amount of people, and the services likely represent the benchmark to which other cities might aspire.

To get an idea of how common residential waste types are separated in Texarkana, we used the same material types from the CalRecycle study described in the generation section of this attachment:

- Food,
- Paper,
- Other Organic,
- Plastics,
- Inerts and Other,
- Special Waste,
- Metals,
- Mixed Residue,
- Glass,
- Yard Waste,
- Electronics, and
- Household Hazardous Waste.

For each material type, we determined the most preferred management method available to the resident and assigned the waste type to a source separation category. For example, because curbside yard waste pickup is available to
residents of Texarkana, yard waste was assigned to the Yard Waste category. This was done for each waste type. For waste types that represented categories made up of multiple types of waste, we used the individual waste type that represented the greatest amount of the group as the waste to be separated. For example, special waste included ash (0.1%), treated medical waste (0.7%), bulky items (2.8%), tires (0.0%), and remainder/composite waste (0.0%). In this case, special waste was considered bulky waste.

To describe source separation, we counted the number of necessary streams based on the handling method for a typical household to participate in waste management most effectively. Additionally, for each of the separation groups, we summed the percent of the waste stream represented by all of the included material types to understand the practical effects of source separation as it relates to diversion—the ultimate goal of successful solid waste management.

The results of these methods are limited by their specificity. More specific waste types could require additional separation. However, to avoid a false sense of accuracy, these methods were used to give a summary understanding of the best-case scenario in the region.

Commercial and Industrial Source Separation. For residential wastes, there are more regulations and requirements regarding collection services, and many of the services are operated publicly. For commercial and industrial wastes, the majority of the services are privately operated, so source separation details are mostly unknown, though it is assumed there is some level of source separation occurring. As a result, a useful description of commercial and industrial source separation is not included.

Planned

To understand planned changes to source separation, feedback from the Solid Waste Advisory Committee members via regular meetings and a survey were used.

LOGISTICS

Logistics is a category of activities which includes Collection, Handling, and Storage. This category is not part of the original form but has been included to group similar activities and simplify the solid waste management process at a high level.
Two separate methods were used to understand current and planned collection activities, which will be explained in the following sections. Additionally, two different types of collection were evaluated: curbside and drop-off.

CURRENT

Separate methods were used to understand current curbside collection and drop-off collection.

Curbside Collection

First, to understand where curbside collection services were offered, we did an internet survey of municipal websites and available online ordinances for each city in the region. For each city, we recorded the availability of curbside collection. This was done for multiple waste streams:

- Bulk,
- Brush,
- Organics,
- Recycling,
- Trash, and
- Yard Waste.

For reference, *Bulk* items are large, hard to handle items such as furniture or appliances, *Brush* is large yard waste like branches and stumps, *Organics* are food scraps and food-soiled paper, *Recycling* is for items in the region that are accepted as recyclable, *Trash* includes any material that is not otherwise diverted from the landfill, and *Yard Waste* are leaves, grass, prunings, and trimmings.

We researched 46 cities in the region based on the cities included in the dataset of Texas Cities from the Texas Department of Transportation (TxDOT). The center of each city boundary was found, and the city was assigned to the COG if its center was within the regional boundary.

Using what was publicly available online, we identified the cities that provided curbside collection service.

For each city, if a curbside service was provided, we added the total population of that city to our estimate. Based on the results of the survey, we were able to estimate the number of people in the region that have access to municipally provided (either through City staff or municipal coordination with private haulers) curbside collection. We took that number of people and divided it by the total population of the region. This gave us the percent of people that live in cities with city-provided curbside collection. *City-provided collection service* includes services provided by either city employees or private firms contracted by the city to perform collection services. For trash collection, because it is mandated by the state that municipalities provide curbside trash collection, it was assumed all municipalities provided service.

The scope of our data collection is limited to cities and towns in the region. This was done because, with few exceptions, collection services are under the charge of cities and towns. Counties or COGs, as administrative units, do not have jurisdiction over collection services. Counties, in limited circumstances, may have some jurisdiction over collection services.

Our internet survey only included residential collection services. Our survey did not include collection at commercial or industrial entities because these services are handled through private contracts.

Most ordinances and websites in our survey did not distinguish between single-family and multi-family homes. Therefore, the numbers we present in the Results section likely overestimate access to curbside collection services as multi-family homes are expected to have fewer curbside services.

Drop-off Collection

To describe current drop-off collection activities, we summed the number of facilities involved in waste handling activities. We used TCEQ-provided waste data and validated this data with Solid Waste Advisory Committee members. This data was from 2021. We also performed an internet survey to find additional drop-off centers. We counted each permit as its own facility.

PLANNED

Curbside Collection

To understand planned changes to curbside collection, feedback from Solid Waste Advisory Committee members via regular status meetings and a survey were used.
TCEQ Notice of Intent (NOI) reports were also used to add any planned handling, storage, transportation, treatment, recovery, or landfill facilities.

Drop-off Collection

To understand planned drop-off collection activities, the publicly available TCEQ MSW Solid Waste Facilities data from 2021 were used to identify any facilities that were permitted but not yet constructed, as well as any pending permits. We counted each permit as its own facility.

Handling

Two separate methods were used to understand current and planned handling activities which are explained in the following sections.

CURRENT

To describe current handling activities, we summed the number of facilities involved in handling. We used TCEQ-provided waste data and validated this data with Solid Waste Advisory Committee members. This data was from 2021. We counted each permit as its own facility.

PLANNED

To understand planned handling activities, the publicly available TCEQ MSW Solid Waste Facilities data from 2021 were used to identify any facilities that were permitted but not yet constructed and any pending permits. We counted each permit as its own facility.

Storage

Two separate methods were used to understand current and planned storage activities which will be explained in the following sections.

CURRENT

To describe current storage activities, we summed the number of facilities involved in waste storage activities. We used TCEQ-provided waste data and validated this data with Solid Waste Advisory Committee members. This data was from 2021. We counted each permit as its own facility.

PLANNED

To understand planned storage activities, the publicly available TCEQ MSW Solid Waste Facilities data from 2021 were used to identify any facilities that were
permitted but not yet constructed, as well as any pending permits. We counted each permit as its own facility.

PROCESSING

Transportation

Two separate methods were used to understand current and planned transportation activities which will be explained in the following sections.

CURRENT

To describe current transportation activities, we summed the number of facilities involved in waste transportation activities. We used TCEQ-provided waste data and validated this data with Solid Waste Advisory Committee members. This data was from 2021. We counted each permit as its own facility.

Additionally, we evaluated the distance between where waste is generated and where it is disposed. According to the EPA, if a landfill is more than 34 miles away round trip, it makes economic sense to add a transfer station to aid in waste transportation. So, to evaluate transportation distance, 17-mile rings around each landfill were created and the 2019 Census Population within those rings was summed. The population within 17 miles of a landfill was calculated as a percent of total population in the region. Next, the same process was done for transfer stations. Finally, based on our independent research, any collection center that was identified where trash was known to be accepted as a drop-off material had the same process applied. For both transfer stations and other collection centers, the overlap with a previous ring was removed to avoid double-counting block groups.

PLANNED

To understand planned transportation activities, the publicly available TCEQ MSW Solid Waste Facilities data from 2021 were used to identify any facilities that were permitted but not yet constructed, as well as any pending permits. We counted each permit as its own facility.

Treatment

Two separate methods were used to understand current and planned processing and treatment activities which will be explained in the following sections.
CURRENT
To understand current processing and treatment activities, we focused on three key factors:

- Where waste processing/treatment occurs,
- What processing/treatment methods are used, and
- The amount of waste processed/treated.

To understand all of these features of waste treatment in the region, we used TCEQ-provided landfill and facility data and validated this data with Solid Waste Advisory Committee members. The treatment amounts were from 2019 and the number of facilities were as of 2021. We counted each permit as its own facility.

PLANNED
To understand planned changes to processing and treatment, feedback from Solid Waste Advisory Committee members via regular meetings and a survey were used. In addition, the publicly available TCEQ MSW Solid Waste Facilities data from 2021 were used to identify any facilities that were permitted but not yet constructed, as well as any pending permits. We counted each permit as its own facility.

Resource Recovery
Two separate methods were used to understand current and planned resource recovery activities which will be explained in the following sections.

CURRENT
To describe current resource recovery activities, we summed the number of facilities involved in resource recovery activities. We used TCEQ-provided landfill data and validated this data with Solid Waste Advisory Committee members. This data was from 2019. We counted each permit as its own facility.

PLANNED
The publicly available TCEQ MSW Solid Waste Facilities data from 2021 were used to identify any facilities that were permitted but not yet constructed and any pending permits. We counted each permit as its own facility.

DISPOSAL OF SOLID WASTE
Two separate methods were used to understand current and planned disposal activities, which will be explained in the following sections.
Current
To understand current disposal activities, we focused on three key factors:

- Where waste disposal occurs,
- What waste types are disposed, and
- The expected remaining capacity of those disposal locations in years.

To understand where waste disposal occurs, we used TCEQ-provided landfill data and validated this data with Solid Waste Advisory Committee members. This data was from 2019.

To understand what waste types are disposed, we similarly referred to TCEQ-provided landfill data and summarized individual landfill reports for the region.

Finally, to understand the expected remaining capacity of the landfills, we reviewed the 2019 Municipal Solid Waste in Texas: A Year in Review33 where remaining years are reported. We also compared these reported remaining years to the reported remaining years in the 2015 Municipal Solid Waste in Texas: A Year in Review.34

Planned
To understand planned changes to disposal, feedback from Solid Waste Advisory Committee members via regular meetings and a survey were used.

Results
The results of our analysis from each solid waste activity will be presented in the following sections.

GENERATION
The results of our efforts to understand current and planned generation are presented here separately.

Current
A summary of the results of our generation analysis are found in Volume II, Section III.C, Table III.C.I. Current Solid Waste Management Activities in the Region. This section is dedicated to enhancing the understanding of generation in the region and provides insight and analysis not found in Volume II.

Before detailing the results of our analysis, we will lay out a structure for this section of the Attachment. We will begin with a region-wide look at generation totals and the contribution made by each critical group. Next, we will zoom in to each critical group in order to understand how they individually generate waste. We begin with the Residential group. Then, we delve into the Commercial group, followed by the Industrial group. In those sections, we show generation by the whole economy before we zoom in again to explore the waste generated by each sector of the economy. This discussion of generation will be confined to the present day. For information regarding future generation, please see the Generation section of Table III.C.II. Planned Solid Waste Management Activities in the Region regarding planned solid waste management activities.

COMPARISON OF RESIDENTIAL, COMMERCIAL, AND INDUSTRIAL WASTE GENERATION
In the aggregate, according to our methods, the region generated 760 thousand tons of waste in 2018. That is the total combined waste from all three categories—residents, commerce, and industry. Individually, commercial enterprises generated 498 thousand tons, residents generated 234 thousand tons, and industrial enterprises generated 26 thousand tons of solid waste. To be clear, these raw numbers are estimates only. It is also important to note, these numbers are significantly lower than that reported in Volume II, Attachment III.A. Demographic Information. These numbers are provided to offer a sense of the scale of the waste in the region, help compare waste across categories, and give insight into where better reporting data is needed.
With that in mind and having found the total waste produced by each category, we can see in Figure 5 what percentage each category comprises of the total waste generated in the region: 66% by commercial enterprises, 31% by residences, and 1% by industrial enterprises. In other words, 66% of all waste generated in the region in one year is generated by commercial activities, 31% by households, and 3% by industrial activity.

Figure 5. Comparison of Estimated Residential, Commercial, and Industrial Waste Generation

We researched other local solid waste reports to validate our results and to see if they were in line with other cities. Our comparison of waste generation of each critical group aligns with what was reported in Houston in 2019, where 67% of waste disposed was commercial waste and 33% was residential. Although Houston reported disposal numbers, waste generation and disposal do not match exactly because of diversion efforts. Still, it was reassuring to see this similarity. What's more, we calculated the generation makeup using an alternative method—

Making use of CalRecycle’s generation rates—and found the results using that data source to be nearly identical to our process.

Residential Generation

According to the 2018 U.S. Census,\(^\text{36}\) in the Ark-Tex region 87% of homes were single-family and 13% were multi-family homes.

In the 2014 California study, the breakdown of the residential waste stream for single-family homes was as follows: 21% Food, 18% Paper (composite paper, cardboard, newspaper, etc.), 13% Other Organic (manures, textiles, carpet, composite organics), 12% Inerts and Other (wood waste, rock, soil, fines, etc.), 10% Plastics, 7% Brush (branches, stumps, prunings, trimmings), 5% Mixed Residue (kitty litter, cosmetics, etc.), 5% Yard Waste (leaves, grass), 3% Special Waste (bulky items, medical waste, ash, etc.). The remaining 5% is comprised of Metals (3%), Glass (2%), Electronics (1%), and Household Hazardous Waste (1%) (paint, batteries, etc.) (Figure 6).

In the same study, multi-family homes had a somewhat different waste stream: 25% Food, 24% Paper, 16% Other Organic, 11% Plastics, 6% Inerts and Other, 4% Special Waste, 4% Metals. The remaining 12% is comprised of Mixed Residue (3%), Glass (3%), Yard Waste (3%), Electronics (2%), and Household Hazardous Waste (<1%) (Figure 7).
Figure 7. California Department of Resources Recycling and Recovery (CalRecycle) Estimated Single-family Residential Waste Generation by Percent of Waste Type

Commercial Generation

Turning our attention to businesses, to get a sense of employment in the region, we reviewed the top five commercial sectors in the region by employment, according to the latest employment numbers from the Texas Workforce Commission (TWC) in 2018:

1) Health Care and Social Assistance,
2) Educational Services,
3) Accommodation and Food Services,
4) Management of Companies and Enterprises, and
5) Retail Trade (store).

To understand how businesses generate waste, we looked at the waste produced by all commercial sectors, not just the top five. We were able to roughly approximate the types of waste generated by these commercial enterprises to not only understand who is generating waste, but what types of waste they are generating. We calculated this using an EPA table of commercially produced waste. This is the same method we used for Volume II, Section III.A, Tables III.A.II. Commercial Waste Generation and III.A.III. Industrial Waste Generation. The waste
products generated by commercial entities in the region as a percentage of total weight in 2018 are as follows: 67% Construction and Demolition waste, 13% Paper, 11% Organics (food, leaves, grass, etc.), 3% Plastics, 3% Metals, and the remaining 3% is comprised of Brush, Glass, Hazardous, Textiles, Electronics, Bulk, Household Hazardous Waste and Other (Figure 8).

![Figure 8. Estimated Commercial Waste Generation by Percent of Waste Type (tons)](image)

Solid waste management typically deals with tonnages (which can affect transport and pricing), but it is also important to understand volume because it affects landfill capacity. We have provided the same breakdown of commercially generated waste products by volume: 35% Construction & Demolition waste, 35% Paper, 11% Plastics, 10% Organics, 4% Metals, 2% Brush, and the remaining 3% is comprised of Textiles, Bulk, Electronics, Glass, Household Hazardous Waste, and Other (Figure 9).
INDUSTRIAL GENERATION

To get a sense of the industrial sector—the third and final category—below are the top industrial sectors in the region by employment, according to the TWC:

1) Manufacturing (food, beverage, tobacco, leather, apparel, textile),
2) Agriculture, Forestry, Fishing and Hunting,
3) Manufacturing (metal, machinery, computer, electrical, transportation, misc.), and
4) Manufacturing (wood, paper, printing, plastic, chemical, nonmetallic, petroleum, coal).

We used the same type of waste conversion that was performed for the commercial sector in order to determine the largest waste products generated by the industrial sector. By weight they are as follows: 30% Organics, 18% Paper, 14% Hazardous (leachate, aqueous waste, benzene, etc.), 12% Brush, 9% Metals, 8% Construction & Demolition waste, 5% Plastics, and the remaining 4% is comprised of Textiles, Bulk, Electronics, Glass, Household Hazardous Waste, and Other (Figure 10).
Figure 10. Estimated Industrial Waste Generation by Percent of Waste Type (tons)

We cannot display a breakdown of industrial waste by volume as we did for commercial waste because much of the Hazardous waste is liquid, and the conversions were not available.

Planned

To describe “planned” or expected generation in the region, we forecasted the types and amounts of material likely to be generated from the residential waste stream as well as from each sector of the commercial and industrial economy in the region. Throughout this section of the Attachment, we will substitute planned for words like future or projected.

The results were developed using the second approach detailed in the Methods section of this Attachment. The process for forecasting commercial and industrial waste was the same process we used in the Current section, only extrapolated into the future using employment projections. We offer the results of our analysis next, first on residential waste, then commercial waste, and last industrial waste generation.
COMPARISON OF RESIDENTIAL, COMMERCIAL, AND INDUSTRIAL WASTE GENERATION

A projected waste generation comparison was done for the short-range, intermediate range and long-range planning periods.

Table 4 lists the projected amount of waste generated (in tons) for the last year of each planning period.

As is shown in the table, the percent of total waste by each group changes very little throughout the entire plan period.

Table 4: Comparison of Residential, Commercial, and Industrial Waste Generation in Thousand Tons and Percent

<table>
<thead>
<tr>
<th></th>
<th>2027</th>
<th>2032</th>
<th>2042</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thousand tons</td>
<td>240</td>
<td>237</td>
<td>227</td>
</tr>
<tr>
<td>Percent</td>
<td>30%</td>
<td>28%</td>
<td>25%</td>
</tr>
<tr>
<td>Commercial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thousand tons</td>
<td>545</td>
<td>578</td>
<td>635</td>
</tr>
<tr>
<td>Percent</td>
<td>67%</td>
<td>68%</td>
<td>71%</td>
</tr>
<tr>
<td>Industrial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thousand tons</td>
<td>27</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>Percent</td>
<td>3%</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>Total (Thousand tons)</td>
<td>814</td>
<td>844</td>
<td>892</td>
</tr>
</tbody>
</table>

This table means that the region is projected to generate 814 thousand tons of waste in the short-range (2027). That is the total combined waste from all three categories—residents, commerce, and industry. Individually, residents are forecast to generate 240 thousand tons, commercial enterprises 545 thousand tons, and industrial enterprises 27 thousand tons of solid waste. To be clear, these raw numbers are estimates only. They are to give a sense of the scale of the waste in the region, help compare waste across categories, and give insight into where better reporting data is needed.
The percent contribution of each group is shown in Figure 11. This is the 2027 projection. It is clear to see 67% of projected waste will be commercial, 30% residential, and 3% industrial.

![Figure 11. Projected Percent of Waste Generated by Commercial, Residential, and Industrial in 2027](image)

RESIDENTIAL GENERATION

Due to limited residential waste generation projections, we were unable to describe any changes to the *makeup* of residential waste in the future. As a result, the assumption to be made is that the composition of future residential waste will not differ from its current composition. For more information, see Volume II, Section III.C, Table III.C.I. Current Solid Waste Management Activities in the Region.

Projected residential waste generation *amounts* were done for the short-range, intermediate range and long-range planning periods.

Short-Range. In the short-range, we estimated that annual residential waste generation between 2018 and 2027 will increase by 2.4%. 240 thousand tons of residential waste were forecasted to be generated. This is different from the amount calculated in Volume II, Section III.A, Table III.A.I. Residential Waste Generation, where 283 thousand tons were forecasted and a 2% decrease during this time frame. This was a result of using different methods to calculate waste generation. This will apply to every waste generation number we present in this
section. We believe the generation numbers given here are more reliable than those given in Attachment A. Demographic Information, the reasons for which will be explained in the Discussion section.

Intermediate Range. We estimated that annual residential waste generation between 2027 and 2032 will decrease by 1.2%. In 2032, 237 thousand tons of residential waste were forecasted to be generated.

Long-Range. We estimated that annual residential waste generation between 2032 and 2042 will decrease by 4%. In 2042, 227 thousand tons of residential waste were forecasted to be generated.

COMMERCIAL WASTE GENERATION

Projected commercial waste generation was done for the short-range, intermediate range and long-range planning periods.

Short-Range. Although Health Care and Social Assistance will be the largest employer, it will not be the largest waste producer. In fact, Construction will be the largest waste producer and ninth largest employment sector.

The Construction industry will account for nearly 68% of waste when calculated by weight. The primary waste product of the construction industry in this region is construction and demolition waste (C&D). The C&D waste in this region is composed of concrete (63%), asphalt (15%), and wood (7%).

The next largest commercial generator of waste will be Retail (store) accounting for approximately 10% of the region’s waste. Although the sixth most employed sector, Retail Stores will produce an outsized amount of waste. Waste discarded by the retail sector is mostly composed of paper (46%), organics (39%), and plastics (8%).

The third largest producer of waste will be the Accommodation and Food Services sector, accounting for nearly 5% of the region’s commercial waste. The types of waste disposed by this business activity is organics, mostly food (45%), followed by paper (28%), and plastics (11%).

Including all commercial enterprises in the region, the largest waste types by weight are projected to be:

1. C&D (67%)
2. Paper (13%)
3. Organics (11%)
4. Plastics (3%)
5. Metals (3%)
6. Brush (1%)
7. Glass (1%)
8. Other (1%)
9. Textiles (<1%)
10. Hazardous (<1%)

Intermediate Range. Waste across all commercial activity is projected to grow by 10% by 2027. The key takeaway is that while most types of waste are projected to grow, the rates of recyclable and compostable waste (plastics, paper, organics) will grow faster than the rates of material disposed at the landfill (C&D, metals).

Construction and demolition waste is projected to remain the largest waste product, both by weight and volume. Employment in the construction industry - the largest generator of C&D waste - is projected to increase by about 11%. As a result, disposal of concrete, asphalt, wood, and other products of the construction industry are projected to grow.

Retail store waste is projected to remain the second largest source of waste. Employment in the industry is expected to grow by 1%. As a result, the largest components of waste from this industry - paper, organics, plastic - are expected to grow slightly. The increase in compostable material is a trend across all industry in this region.

The third largest source of waste will be the Accommodation and Food Services sector at an increase of approximately 17%. As a result, the disposal of organics will increase. These organics, including food, cardboard, and leaves and grass, constitutes nearly 50% of the waste stream. Paper and plastics combine to make up 39%. Glass comprises 6% of the sector’s waste stream.

Long-Range. The population of this region is projected to shrink at a rate of 2.2%, an indicator of decreased waste generation.

The Services industries are slated to grow more rapidly than any other sector. The waste streams from those enterprises are principally compostable and recyclable material (paper, organics, plastics). Therefore, generation of compostable and recyclable materials will increase most rapidly during this planning period.

INDUSTRIAL GENERATION

Projected industrial waste generation was done for the short-range, intermediate range and long-range planning periods.
Short-Range. The Agriculture, Forestry, Fishing, and Hunting industry will be the largest employer and the largest producer of waste, both by weight and by volume. It will account for nearly 66% of waste by weight, and 74% by volume. The primary waste product of the Agriculture, Forestry, Fishing, and Hunting industry in this region is mostly organics (food, leaves, grass), paper (cardboard), brush (pruning and trimmings), and construction and demolition waste (wood, pallets, crates, rock, soil, fines).

The next largest industrial generator of waste will be Manufacturing, accounting for approximately 34% of the region’s waste, by weight. Waste disposed of by the manufacturing process is varied. The largest amount of waste, by weight, is categorized as hazardous. The next largest waste stream is metals, followed by paper.

The third largest producer of industrial waste will be Mining, Quarrying, and Oil and Gas Extraction, accounting for less than 1% of the region’s industrial waste. The types of waste disposed by this industrial activity are organics, paper products, brush, and construction and demolition waste.

Including all commercial enterprises in the region, the largest waste types by weight are projected to be:

1. Organics (30%)
2. Paper (18%)
3. Hazardous (14%)
4. Brush (12%)
5. Metals (9%)
6. C&D (8%)
7. Plastics (5%)
8. Glass (1%)
9. Other (<1%)
10. Bulk (<1%)

Intermediate Range. The agricultural industry is projected to remain the largest industrial producer of waste, by weight. Due to the projected increase in this industry, waste products such food, leaves, grass, paper (cardboard), brush (pruning and trimmings), and construction and demolition waste (wood, pallets, crates, rock, soil, fines) will increase.

Manufacturing waste is projected to remain the second largest source of waste. As a result, the largest components of waste from this industry – paper, organics,
plastic – are expected to grow. The increase in compostable material is a trend across all industry in this region.

Long-Range. The population of this region is projected to continue to shrink at a rate of 2.2%, an indicator of decreased waste generation.

The Manufacturing and Mining industries are slated to grow more rapidly than any other sector. The waste streams from those enterprises are principally hazardous materials, metals, and recyclable material (paper, organics, plastics).

Agriculture is expected to grow at a lesser pace than in the other industrial activities.

SOURCE SEPARATION

The results of our efforts to understand current and planned source separation activities are presented in this section separately.

Current

The 13 waste type categories identified by CalRecycle, based on the services offered to residents of the City of Texarkana, can be separated into 7 different streams: Recycling, Trash, Brush, Yard Waste, Bulky, Electronics, and Problematic (Table 5). For each of these streams, we found the total percentage of each category.
Table 5. Source Separation Example for the City of Texarkana, TX

<table>
<thead>
<tr>
<th>Waste Type</th>
<th>Waste Type Percent of Generation</th>
<th>Separation Category</th>
<th>Separation Category Percent of Generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper</td>
<td>18%</td>
<td>Recycling</td>
<td>31%</td>
</tr>
<tr>
<td>Plastic</td>
<td>10%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metal</td>
<td>3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food</td>
<td>21%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Organic</td>
<td>13%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixed Residue</td>
<td>5%</td>
<td>Trash</td>
<td>53%</td>
</tr>
<tr>
<td>Glass</td>
<td>2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inerts and Other (primarily C&D)</td>
<td>12%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brush</td>
<td>7%</td>
<td>Brush</td>
<td>7%</td>
</tr>
<tr>
<td>Yard Waste</td>
<td>5%</td>
<td>Yard Waste</td>
<td>5%</td>
</tr>
<tr>
<td>Special Waste (primarily bulky waste)</td>
<td>3%</td>
<td>Bulky</td>
<td>3%</td>
</tr>
<tr>
<td>Electronics</td>
<td><1%</td>
<td>Electronics</td>
<td><1%</td>
</tr>
<tr>
<td>Household Hazardous Waste</td>
<td><1%</td>
<td>Problematic</td>
<td><1%</td>
</tr>
</tbody>
</table>

Note: Due to rounding, percentages will not add up to exactly 100%

Without considering source reduction or reuse, members of a typical household in Texarkana could, conservatively, divert more than 40% of the waste they generate by properly separating their recyclables, brush, and yard waste.
Planned
There are no known planned changes to source separation at this time.

LOGISTICS
Logistics is a category of activities which includes Collection, Handling, and Storage. This category is not part of the original form but has been included to group similar activities and simplify the solid waste management process at a high level.

Collection
It is important to understand, before presenting our findings, exactly what the numbers we have presented represent. When we give a percentage that reads, for example, 55% of people in the region have access to city provided curbside Trash collection, that is the percent of the total population of residents that live in a municipality that has municipal access to curbside collection. In other words, 55% of people live in a location in which there is an ordinance or other public information indicating availability of service. This figure does not represent whether these residents may opt-in to a given service or if it is compulsory.

This then leaves open the question of what the remaining 45% figure represents. It would not be true to say 45% of the population does not have curbside trash collection. Rather, 45% of people in the region live in an area of the COG where they are personally responsible for managing their solid waste and, depending on their location, may choose to contract with a private hauler, burn or bury their waste.

In summary, the results we provide in this section represent the percent of people for whom their city or town provides for and communicates about access to curbside collection services.

CURRENT
The results of our analyses are organized by curbside collection and drop-off collection.

Curbside Collection
We developed a chart to summarize the data gathered from our internet survey of city-provided solid waste collection services (Figure 12. Estimated Percent of Population with Access to City-Provided Curbside Trash, Brush, Bulk, Recycling, Yard Waste, and Organics Collection). This chart shows the
percent of people in the region who have access to city-provided curbside collection for six types of waste including trash, brush, bulky waste, recycling, yard waste, and organics.

As a reminder, it is not known whether the remaining percentage of residents (shown in yellow in the chart) have access to curbside collection services.

![Figure 12. Estimated Percent of Population with Access to City-Provided Curbside Trash, Brush, Bulk, Recycling, Yard Waste, and Organics Collection](image)

To further contextualize the results of our internet survey, we have also combined the results with the results of our source separation analysis to compare the significance of a given waste stream with the relative availability of communicated curbside access. Notably, organics represents the second largest expected waste in residential waste and is also expected to have the least access to curbside collection.

Table 6. Comparison of Source Separated Waste Amounts as a Percent and Curbside Availability for Single Family Homes (Example based on City of Texarkana, TX)

<table>
<thead>
<tr>
<th>Separation Category</th>
<th>Separation Category Percent of Generation</th>
<th>Curbside Availability Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trash</td>
<td>53%</td>
<td>55%</td>
</tr>
<tr>
<td>Brush</td>
<td>7%</td>
<td>23%</td>
</tr>
<tr>
<td>Bulky</td>
<td>3%</td>
<td>21%</td>
</tr>
<tr>
<td>Separation Category</td>
<td>Separation Category</td>
<td>Curbside Availability</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td></td>
<td>Percent of Generation</td>
<td>Percentage</td>
</tr>
<tr>
<td>Recycling</td>
<td>31%</td>
<td>15%</td>
</tr>
<tr>
<td>Yard waste</td>
<td>5%</td>
<td>15%</td>
</tr>
<tr>
<td>Problematic</td>
<td>1%</td>
<td>Unknown</td>
</tr>
<tr>
<td>Electronics</td>
<td>1%</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

Drop-off Collection

We developed an extensive database of all the existing waste-related facilities in the region. This was done to provide insight into the extensive network of facilities involved in the solid waste pipeline. The entire list is presented in the addendum to this attachment (Table 17). We considered any facility that accepts solid waste drop-offs to participate in Drop-off collection.

Drop-off collection in the region occurred at landfills, transfer stations, citizens collection stations, and resource recovery centers.

There were 6 facilities in 2021 that accepted drop-offs, and another 21 facilities that did not publicly list whether they accept drop-offs.

PLANNED

Curbside Collection

Many collection services are privately run and so details about their collection services and planning are limited. There are no known planned changes at this time.

Drop-off Collection

The database of planned waste facilities in the region is presented in addendum to this attachment (Table 18).

There is one planned change to drop-off collection. One citizens collection station is permitted but not yet constructed.

Handling

The results of our efforts to understand current and planned handling activities are presented here separately.
CURRENT

We developed an extensive database of all the waste facilities in the region to try to validate the aspects of waste handling in the region. This was done to provide insight into the extensive network of facilities involved in the solid waste pipeline. The entire list is presented in the third addendum in.

In addition to the list of facilities, we developed a list of all haulers expected to handle waste in the region.

We considered all haulers that collected waste and all facilities that accepted drop-off materials, transferred waste, processed waste (including resource recovery), or disposed of waste to perform handling.

Handling was done at 27 facilities and by 19 haulers in the region in 2021.

Critically, data are not available to characterize the total amounts of waste that were handled or the capacity of these facilities or haulers.

PLANNED

The database of planned waste facilities in the region is presented in the addendum of this attachment (Table 18).

There are no known planned changes at this time.

Storage

The results of our efforts to understand current and planned storage activities are presented here separately.

CURRENT

We developed an extensive database of all the waste facilities in the region to try to validate the aspects of waste storage in the region. This was done to provide insight into the extensive network of facilities involved in the solid waste pipeline. The entire list is presented in the third addendum in Table 17. We considered any facility that stores waste before its final disposition, whether that be disposal or recovery.

All facilities that accepted drop-off materials, transferred waste, processed waste (including resource recovery), or disposed of waste are considered storage facilities.

There were 27 facilities that stored waste in 2021.
Critically, data are not available to characterize the total amounts of waste that were stored, the length of storage, or total storage capacity for the facilities.

PLANNED

The database of planned waste facilities in the region is presented in the addendum of this attachment (Table 18).

There are no known planned changes at this time.

PROCESSING

Transportation

The results of our efforts to understand current and planned transportation activities are presented here separately.

CURRENT

We developed an extensive database of all the waste facilities in the region to try to validate the aspects of waste transportation in the region. This was done to provide insight into the extensive network of facilities involved in the solid waste pipeline. The entire list is presented in the addendum of this attachment (Table 17). We considered any facility that transports waste before its next stage as transportation.

Transportation in the region was done by haulers and occurred at transfer stations, citizens collection stations, and tire transporters.

There were 35 entities that transported waste in 2021. In the region there were 19 haulers, 1 low volume transfer station, 1 citizens collection station, and 14 tire transporters in the region.

The EPA estimates residents should be no more than 34 miles round-trip from a disposal facility. Otherwise, an intermediate facility should be available. Therefore, we evaluated the distance between where waste is generated and where it is disposed. About 45% of the region's population is within 17 miles one-way of a landfill. More than 50% of residents are not within 17 miles one-way of a transfer station or other drop-off location (Table 7).
Table 7. Population Proximity to Waste Disposal Transportation Network

<table>
<thead>
<tr>
<th>Location Type</th>
<th>Population within 17 Miles (count)</th>
<th>Population within 17 Miles (percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landfills</td>
<td>126,753</td>
<td>44.8%</td>
</tr>
<tr>
<td>Transfer Stations</td>
<td>10,380</td>
<td>3.7%</td>
</tr>
<tr>
<td>Other</td>
<td>1,509</td>
<td>0.5%</td>
</tr>
<tr>
<td>No Location</td>
<td>144,036</td>
<td>51.0%</td>
</tr>
<tr>
<td>Total</td>
<td>282,678</td>
<td>100%</td>
</tr>
</tbody>
</table>

PLANNED

The database of planned waste facilities in the region is presented in the fourth addendum in Table 18.

There are no known planned changes at this time.

Treatment

The results of our efforts to understand current and planned treatment activities are presented here separately. There are several different types of processors that perform treatment, including those who process liquid waste, scrap tires, compost, and medical waste.

CURRENT

There were 5 facilities that processed or treated solid waste in the region in 2021 according to TCEQ-provided processor/treatment data. The region had 3 compost facilities and no liquid waste treatment facilities.

Table 8. Active Waste Treatment Facilities in 2021

<table>
<thead>
<tr>
<th>Permit</th>
<th>Facility Name</th>
<th>Facility Type</th>
<th>Waste Type</th>
<th>County</th>
</tr>
</thead>
<tbody>
<tr>
<td>47018</td>
<td>HENK POST FARM</td>
<td>5RC – Composting Facility</td>
<td>Solid</td>
<td>Franklin</td>
</tr>
</tbody>
</table>

--
Additionally, some scrap tire storage facilities are processing facilities based on their registration data. There were 2 scrap tire processors in the region. Data related to the number of tires these processors treated was unavailable.

Table 9. Active Scrap Tire Processor Facilities in 2021

<table>
<thead>
<tr>
<th>Registration</th>
<th>Facility Type</th>
<th>Facility Name</th>
<th>County</th>
</tr>
</thead>
<tbody>
<tr>
<td>170019</td>
<td>Processor; Recycler</td>
<td>BAR RECYCLING ENTERPRISES</td>
<td>Bowie</td>
</tr>
<tr>
<td>6200746</td>
<td>Generator; Processor</td>
<td>BENTON RAINAY TIRE & RECOVERY</td>
<td>Lamar</td>
</tr>
</tbody>
</table>

Processing facilities reported using one method to treat different waste streams. While other treatments may have been used, there were no available data to describe them.

In the facilities that treated solid waste, composting was the only treatment method used (Table 10). Tire treatment volumes were not available.

Table 10. Solid Waste Treatment Types by Amount (tons)

<table>
<thead>
<tr>
<th>Treatment Type</th>
<th>Amount (tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composting</td>
<td>13,530</td>
</tr>
<tr>
<td>Autoclave</td>
<td>0</td>
</tr>
<tr>
<td>Chipping/Grinding</td>
<td>0</td>
</tr>
<tr>
<td>Treatment Type</td>
<td>Amount (tons)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Incineration</td>
<td>0</td>
</tr>
<tr>
<td>Digestion</td>
<td>0</td>
</tr>
<tr>
<td>Chemical Disinfection</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>28,688</td>
</tr>
</tbody>
</table>

PLANNED

The database of planned waste facilities in the region is presented in addendum to this attachment in Table 18.

There are no known planned changes to treatment at this time.

Resource Recovery

The results of our efforts to understand current and planned resource recovery activities are presented here separately.

CURRENT

We developed an extensive database of all the waste facilities in the region to try to validate all the aspects of resource recovery in the region. This was done to provide insight into the extensive network of facilities involved in the solid waste pipeline. The entire list is presented in the addendum of this attachment, in Table 17. We considered any facility that diverts waste from the landfill as a resource recovery facility, including some tire handlers and material recovery centers. We also included landfill gas recovery sites, though they do not actually divert materials.

There were 6 facilities that engaged in resource recovery as of 2021. They include 3 compost facilities, 2 recycling facilities, and 1 tire recycler, though only 1 of the compost facilities was required to be permitted. There may be other facilities that also participate in resource recovery but data in this area was unreliable. An example of this may be a citizens collection station that accepts source separated material or a landfill that diverts certain waste types. But, as we mentioned previously, data about recycling tonnage is not available for the vast majority of facilities.
PLANNED

The database of planned waste facilities in the region is presented in the addendum of this attachment in Table 18.

There are no known planned changes to resource recovery at this time.

DISPOSAL OF SOLID WASTE

The results of our efforts to understand current and planned disposal activities are presented here separately.

Current

In this section, we will present where waste is disposed in the region, the waste that was disposed in the landfills, and detail the capacity remaining in those landfills.

In 2019, disposal occurred at 3 landfills in the region (Figure 13). Those 3 landfills were all of one type:

- **Type I landfills**

 There are three (3) Type I landfills which may accept all types of municipal solid waste and some nonhazardous industrial waste.

In addition to these landfills within the region, 2 landfills outside the region are permitted to accept waste from within the region. Similarly, all 3 regional landfills are permitted to accept waste generated from outside the region. The volume of waste deposited in a landfill from other regions is unknown.

In 2019, a total of 456 thousand tons of different waste types were disposed in the region’s landfills (Figure 13). It is important to note here that the amount of material disposed represents actual waste disposed and may differ significantly from the estimated volume of waste generated because of different sources and calculation methods.
Most of the waste disposed of in the landfills was classified as Municipal Solid Waste (70%), followed by Other (9%) and Non-hazardous industrial waste (7%). These three categories represent about 85% of all disposed waste.

TCEQ reported that as of 2019 there were 204 combined years remaining in the region’s landfills. The Blossom Prairie Landfill, which has 218 years remaining capacity, took in 45% of all the region's waste and holds 71% of the region's remaining capacity.

Table 11. Landfills and Remaining Capacity (2019)

<table>
<thead>
<tr>
<th>Permit</th>
<th>Landfill Name</th>
<th>Landfill Type</th>
<th>County</th>
<th>Remaining Tons</th>
<th>Remaining Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>2358</td>
<td>Blossom Prairie Landfill</td>
<td>I</td>
<td>Lamar</td>
<td>65,746,344</td>
<td>218</td>
</tr>
<tr>
<td>797B</td>
<td>Pleasant Oaks Landfill</td>
<td>I</td>
<td>Titus</td>
<td>21,386,302</td>
<td>196</td>
</tr>
</tbody>
</table>
It is worth considering how the region’s landfill capacity estimates change over time because unexpected changes or disaster events can dramatically affect the expected life of a landfill. Each landfill operator creates their own estimate, and the procedures for these estimates may result in variance between methods.

To get a sense of these effects, we compared the remaining years reported for landfills in 2019 and 2015 (Table 12). We would expect the Remaining Years to decrease by approximately four years since that is the amount of time elapsed between the data points. However, the Pleasant Oaks Landfill had 196 remaining years in 2019 and 249 remaining years in 2015. The landfill reported a decrease of 53 years in a span of 4 years. If that pattern holds—meaning the landfill capacity decreases at a rate more than 13 times faster than the landfill had been reporting—then it will be depleted in about 15 years, not 196. On average, over the course of 4 years, the landfills in the region gained 10 years of remaining capacity. This was likely the result of efforts to expand capacity at the New Boston and Blossom Prairie landfills.

Table 12. Comparison of 2015 and 2019 Landfills Remaining Capacity (2015)

<table>
<thead>
<tr>
<th>Permit</th>
<th>Landfill Name</th>
<th>Remaining Years (2015)</th>
<th>Remaining Years (2019)</th>
<th>Change in Remaining Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>2358</td>
<td>Blossom Prairie Landfill</td>
<td>171</td>
<td>218</td>
<td>+47</td>
</tr>
<tr>
<td>797B</td>
<td>Pleasant Oaks Landfill</td>
<td>249</td>
<td>196</td>
<td>-53</td>
</tr>
<tr>
<td>576C</td>
<td>New Boston Landfill</td>
<td>4</td>
<td>40</td>
<td>+36</td>
</tr>
</tbody>
</table>

Average Number of Years Changed after Four Years

+10
Planned
There was one authorized but not constructed landfill in the region: the Bowie Cass Refuse Landfill. Though, it is likely the landfill will remain unconstructed. According to 2019 TCEQ facility data, its legal status was Issued, but according to the 2021 Texas Secretary of State Business Registration, its filing status was Forfeited Existence. The landfill’s legal status date in the TCEQ data is 1986.

Discussion
A discussion of the results of each solid waste activity analysis will be presented in the following sections.

GENERATION
There is no simple way to describe the waste that is generated in the region. Waste is varied and comes in many types and amounts. What we do know is that commercial waste is the largest source of waste in the region, accounting for nearly 66% of all waste generation. Residential waste makes up 31%, and industrial waste contributes very little but tends to be hazardous.

Each critical group—residential, commercial, and industrial—generates different types of waste. Residential waste is mostly food, paper, and other organics. In effect, the waste generated by households is the type of waste that is mostly recyclable or compostable. On the other hand, commercial and industrial waste is primarily created by the Construction and Retail industries, of which the main waste product is classified as Construction and Demolition waste, followed by Paper, and Organics.

Current
Our analysis provided detail into the types of materials that are generated by commercial and industrial activities. This type of accounting can aid policymakers in prioritizing the types, amount, and sources of waste that are suitable for waste reduction, reuse, or diversion. By having an analysis of both solid waste generation rates and composition, decision makers have the first step in linking waste generation with waste diversion (recycling, composting, etc.).

Waste is generated from many sources and at different rates. The waste itself is heterogenous. Our description of waste generation made sense of this complexity by organizing waste generation in the region into levels (region, critical group). We will mimic that organization in this section. Specifically, we will share key
takeaways for each level we examined. By the end of the section, the full picture of generation in the region will have emerged.

We began at the highest level which is region-wide generation. This gave us an account of the total amount of waste generated in the region. The result of our analysis was that about 760 thousand tons of waste were generated in 2018. The main takeaway was that waste generation was much greater than waste disposal. Typically, waste generation includes all the materials that were discarded, whether they were recycled, composted, or disposed of in a landfill. The gap between the amount of waste generated compared to what was discarded is complicated. It has to do with many factors, including the methodology we used to arrive at the generation number. We detail this disparity within the larger context of our methodology in a subsequent section called Limitations of our Approach.

We then stepped one level down and asked what made up that immense amount of tonnage being generated. To answer we went back to our three critical groups: residential, commercial, and industrial. We learned that waste generation in the region was mostly generated by commercial activities. In fact, about two-thirds of the waste generated came from commerce and about one-third came from residences. Industrial waste generation in the region was relatively negligible. A key takeaway is that although these numbers are estimates, they give a sense of the scale of the waste in the region, help compare waste across categories, and give insight into where better reporting data is needed. To that end, we will next compare waste across the categories, or critical groups. The need for better reporting data will be discussed in the next section on Limitations of our Approach.

RESIDENTIAL WASTE GENERATION

The composition of waste generated by residential households is integral for understanding a region's waste profile. This process of waste characterization helps in planning how to reduce waste, set up recycling programs, and conserve money and resources. So too is the amount of waste generated important for understanding the residential group’s impact on the overall waste stream.

Three types of wastes make up the majority of the waste produced at residential households. They are Food, Paper, and Other Organic (see definitions of waste types in the Results section). Any waste management program with sights on maximizing waste diversion or minimization ought to account for the outsized effect of these waste types on the residential waste stream. Moreover, the makeup
of the Residential waste stream is important when considering waste diversion and reuse programs. After all, most of the waste produced by residents can be recycled or composted.

As it relates to single-family and multi-family homes, we can draw three key takeaways from the data:

1. It is evident from comparing the breakdown in waste products from single- and multi-family homes that there are differences in the types and amounts of solid waste produced by each;
2. Single-family homes have a higher rate of generation than multi-family homes (9.8 vs. 5.31 lbs./dwelling unit/day); and
3. Most of the residential waste generation in the region is produced by single-family homes (87% of residential waste in the region comes from single-family homes). These takeaways are important because they help inform where efforts and resources should be applied in service to the region’s goals.

COMMERCIAL WASTE GENERATION

Similarly important to understanding the waste profile of the region is the makeup of commercially generated waste. The largest waste products of the commercial group were, by weight, Construction and Demolition waste (C&D), Paper, and Organics. By volume, the top three are Paper, Brush, and Plastics. The makeup of the Commercial waste stream is important for waste management decision making, especially when considering business programs that target recycling and composting. It is also important for the systems and processes that collect, transport, process, and dispose of that waste to account for the composition of the waste.

For further insight, we divided the commercial economy into 19 sectors and analyzed the waste amounts and types produced by each. A takeaway was that the largest sectors of the commercial economy are not the largest generators of waste. As was stated in the Results section, Health Care and Social Assistance was the largest employer but fifth largest waste producer. Construction was the largest waste generator, but ninth largest employer. Such analysis allows solution makers to focus their attention on the sectors contributing most to the waste stream.

The makeup of the current commercial waste stream is also important because it allows for strategic and targeted action upon different types of wastes. By looking at waste generation through this lens, intervention on the entire waste stream of a sector may be considered. Or intervention can be taken on common waste
products across multiple sectors. For example, construction site waste includes plastics. Plastic materials generated at construction sites are no different than plastic materials (of the same polymer) that can be found in other municipal solid waste. Precisely because they are the same, the recommendations for how to sustainably manage these materials can be consistent.

INDUSTRIAL WASTE GENERATION

The benefits and takeaways of the analysis we performed for the industrial sector were similar to commercial waste generation. A difference is that the industrial group makes up little of the overall waste stream.

LIMITATIONS OF OUR APPROACH

We used two different approaches to answer questions about generation in the region and complete the generation section of the required table. The constraints of both approaches are detailed in the following sections.

One approach was for residential waste and the other was for commercial and industrial waste. Our first approach, used for residential waste, was straightforward and based on the residential rate of generation. We called it the Generation Rates Methodology. Our second approach, used for commercial and industrial waste, was more sophisticated. We chose it because it gave us detailed information regarding employment within each economic sector and the amounts and types of waste they produce. In the aggregate, it gives us details about where the generation is happening and what changes we can expect in the future. This level of detail is useful for planning. We called this approach the Commercial & Industrial Tables Methodology.

Generation Rates Methodology

Because local generation rates were not available, the waste generated by ATCOG households was assumed to be similar to the waste generated in the landmark waste characterization study from California in 2014. Though it is expected that the waste between California homes and ATCOG homes is similar, there are likely differences that could be better understood by more local waste generation studies.

We will take a moment here to further explain the uncertainty in our waste generation totals and expound on the need for better reporting data. By generation totals, we are referring to the overview pie chart (Figure 11) made up of the generation totals of each critical group. As a reminder, these generation totals
are estimates we calculated based on an EPA list of waste generation rates by the commercial and industrial groups. To determine residential waste, we used residential rates taken from a waste characterization study undertaken in California. We then totaled the residential, commercial, and industrial groups to get one number representing total waste generation in the region.

The result is that the total tons of waste generated in the region is much greater than the total tons of waste disposed of at landfills. During 2018, 456 thousand tons of waste was disposed of at landfills, according to annual landfill reporting data kept by TCEQ. The gap between the estimated waste generated in the region (760 thousand) compared to the waste disposed of at landfills (456 thousand) can be explained by many factors. These factors include, but are not limited to, the tonnage of waste diverted away from the landfill predominantly by recycling and composting, waste that was burned or buried, and inconsistent or missing data. Some examples of inconsistent or missing data are the lack of information regarding the amount of waste disposed of landfills outside of the COG, no record of the amount of waste recycled, no rates of generation local to the region, and unreliable data coming from landfills.

It is not clear how much of the difference between waste generated and waste disposed of is explained by some or all these issues. Therefore, we have not focused on the raw totals and have only included them to elucidate data quality issues that might affect regional planning. However, in our estimation, the calculations we performed are still beneficial. We are confident that the ratio of waste generation between categories is useful and should be considered when developing waste management solutions in the region.

Commercial & Industrial Tables Methodology

We used a methodology that allowed us to discover the commercial and industrial waste generated by each sector. This gave us a good idea of the types of waste being produced in the commercial economy and which sectors were producing them. The other methods we considered to complete this section did not give us that type of specificity. However, there are some assumptions built into this way of modeling commercial waste generation. It is important to understand the assumptions and uncertainty inherent in the data that belie the certainty with which we have conveyed the employment and generation numbers. In effect, the commercial waste figures ought to be understood as estimates used to communicate comparisons among the waste types and producers in the region.
Our first assumption was using for this region a nationally averaged waste generation total from the EPA waste table. We do believe, however, there is little downside to this assumption because the underlying data was taken from a waste characterization study from California in 2014. Analysis of the California study confirmed that there is little difference between the waste generated there and other cities and states around the country. Therefore, this is a safe assumption to make.

Secondly, for the purposes of this Attachment, we assumed the waste generated from each profession correlates with its number of employees. The USEEIO model itself makes a similar assumption.

Our third assumption was that waste generation per employee does not change over time. Unfortunately, due to a lack of data, both historical and forward looking, the most prudent methodological approach was to not change the generation per employee rate as we marched forward in time.

Moreover, our calculated totals, to some degree, suffer from a lack of internal consistency that arises out of our methodology which integrates data from multiple sources (EPA, CalRecycle) at multiple levels of geography (national, state).

We verified that the numbers we presented using this method were rooted in reality, and thus useful for the region to know. We did this by first summing the commercial waste generated by each sector. This gave us the total commercial waste generated in the region over one year. We then compared that total to the same total derived from the Generation Rates Methodology approach. The commercial totals, calculated differently, led to nearly the same result, diverging by only 11%. Such close results from two methods, one using state-wide generation rates (CalRecycle) and the other using national generation rates by employee (USEEIO), buoys confidence in what has been presented in this attachment.

Planned

Our analysis compared the amounts of waste generated by residential, commercial, and industrial groups. We provided detail into the future types of material that are projected to be generated by commercial and industrial activities. This type of accounting can aid policy makers in prioritizing the types, amounts, and sources of waste that are suitable for waste reduction, reuse, or diversion. By having an analysis of both solid waste generation rates and composition, decision makers have the first step in linking waste generation with waste diversion (recycling, composting, etc.).

Future waste, analogous to current waste, will be generated from many sources and at different rates. The waste itself will be heterogenous. The types of waste will be similar to how they are constituted now, there will just be more of it. Most of the waste that is generated from households will remain waste that can be recycled or composted.

The largest source of waste in the region will still be from commercial activities. Because commercial waste is projected to increase and will be the largest source of waste generation in the region, total waste generation will increase. This result may seem inconsistent with the ideas presented in Volume II, Section III.A and III.B, Tables III.A and III.B that annual waste generation directly correlates with the change in population. We do not think it is inconsistent. As commercial activities are the largest source of waste generation, the projected increase in commercial employment will outweigh the projected decrease in total population. Any small increase to employment has a large effect on waste generation because commercial employees generate around three times more waste than a typical resident.

The amounts of waste projected to be generated were different than in Volume II, Attachment III.A. In Attachment III.A, we were limited by the structure of the tables. There, we concluded that the residential waste generation was really total waste generation, and that the commercial and industrial waste generation figures were imprecise, mostly because it was based on imprecise disposal data. Therefore, we set out to develop better generation estimates in this Attachment using a different formulation and sourced from different datasets. For this reason, the generation figures we present deviate from the prior generation results given in Attachment A. This applies to all three critical groups. We believe these to be a more accurate representation of generation in the area. In other words, in this attachment, we have incorporated residential, commercial, and industrial...
populations for a complete view of waste generation and that is why there is a projected increase in total waste generation.

Residential Waste Generation

The types of residential waste in 2027 are projected to be similar to 2018. We expect there to be slightly smaller proportion of residential waste and slightly greater proportion of commercial waste. This is due to a greater projected rise in the workforce than in total population. Furthermore, in the future, waste coming from households will mostly be recyclable and compostable.

As for the amount of waste, we project 2% growth in residential waste generation between 2018 and 2027. Our analysis shows that only in the short range will residential waste generation increase. It is not easy to answer the question of why in the short range waste is expected to increase, even as total population is expected to fall. This is reversed in the intermediate and long range when the total waste is projected to fall, along with the population. In the short range it may be that even as the total population decreases the number of households in the region increases.

Commercial Waste Generation

Commercial waste is projected to increase throughout the 20-year plan. Though the types of waste will be similar to what is being generated currently, the amount of waste will go up. Because job growth is centered primarily in the Services sectors, waste generated by those sectors is forecasted to increase the most. As a result, the rates of recyclable and compostable waste (plastics, paper, organics) will grow faster than the rates of material typically discarded at the landfill.

The makeup of the future commercial waste stream is important because it allows for strategic and targeted action upon different types of wastes. By looking at waste generation through this lens, intervention on the entire waste stream of a sector may be considered. Or intervention on common waste products across multiple sectors. For example, construction site waste includes plastics. Plastic materials generated at construction sites are no different than plastic materials (of the same polymer) that can be found in other municipal solid waste. Precisely because they are the same, the recommendations for how to sustainably manage these materials can be consistent.

Industrial Waste Generation
Industrial waste is projected to increase throughout the 20-year plan. Though the types of waste will be similar to what is being generated currently, the amount of waste will go up. Because job growth is centered primarily in the Mining and Manufacturing sectors, waste generated by those sectors is forecasted to increase the most. As a result, the rates of Hazardous materials, Metals, and Paper are forecast to grow the fastest.

Other than having different waste products, the same takeaways apply to Industrial waste generation as was written for Commercial waste generation.

LIMITATIONS OF OUR APPROACH

Each of our methods had limitations that are important to contextualizing any conclusions that might be drawn from the results.

Generation Rates Methodology

As was the case in the Current Generation section, because local generation rates were not available, the predicted waste generated by ATCOG households in 2028 was again assumed to be similar to the waste generated in the waste characterization study from California in 2014. In terms of the geographic difference, it is expected the waste between California homes and ATCOG homes is similar. In terms of the time difference, it is assumed residential waste generation is similar between 2014 and 2028. Such is the case for two reasons. First, municipal waste generation per capita has changed very little since 2000. This historical record gives confidence that this rate is not liable to change substantially. Second, in reviewing other cities’ waste management plans, it is common to project residential waste generation by keeping the current generation rate fixed and scaling the total waste generated by the region’s population change. This the same method we used. It should be noted, however, that there is inherent uncertainty in forecasting waste generation, and given these geographic and time-bound constraints, it is appropriate to view these projections as estimates only, subject to shifts in technology. A current and local waste study should be performed for a more accurate assessment of future generation activities.

Commercial & Industrial Tables Methodology

The same limitations that were discussed in the corresponding section of Current Generation apply here.

Though, we ought to say one final point that concerns the uncertainty of long-term projections. Forecasts that stretch beyond five years have a substantial
degree of unreliability due to the unpredictability of markets and technology. This is especially the case for our forecasts which tie economic projections to future waste generation. Hence, the data we provide are strictly estimates only. We are confident in our descriptions for base year 2022; but confidence in the predictions for future planning period significantly decreases over time.

Understanding the types and amounts of waste in the region can provide a better understanding of the resources in the region and to identify opportunities for material reduction or recovery. The region should explore every opportunity to reduce and divert its generated materials, especially in its largest streams.

In order to better understand its generation and how to divert and reduce it, the region should consider collecting and reviewing its own data to inform decisions.

SOURCE SEPARATION

We looked at source separation in Texarkana, TX because they have the highest population in the region, but we also assume they have the highest level of service available compared to other cities in the region. Because we expect the other cities to offer fewer services, we also expect that they require a higher amount of source separation into different streams. As the level of separation required increases, we assume it is less likely for residents to participate, so more materials will be disposed of in landfills rather than will be diverted.

Our results offer a broad estimation of the different categories residential wastes must be separated into. However, there are some other common residential items that do not necessarily fit into those categories. These include materials such as:

- Medical waste, which for residents includes things like unused prescriptions,
- Plastic bags,
- Organic items like manures, and
- Tires.

Ideally these waste types would also be separated into unique streams. For example, unused prescriptions could be taken to some drug stores and plastic bags could be taken to some grocery stores. However, it is unlikely that this high level of separation often occurs, especially in cities outside of Texarkana that may not have the same options available. This likely results in these materials ending up in the trash or otherwise improperly disposed of.
We also did not take into account any reuse activities that could be occurring, and according to the EPA hierarchy, reuse is preferred above recycling. Textiles, which fall into the “other organics” waste type, can be taken to reuse shops or donated instead of thrown away. This would further divert materials from landfills.

Although residents of the City of Texarkana have access to a high level of service—meaning most of their household waste is collected curbside—that requires a high level of separation, it is unknown how much separation actually occurs.

While it is entirely possible that residents of Texarkana could divert 30% of the waste they generate by properly source separating, if brush and yard waste are composted and beneficially reused, residents could divert more than 40% of the waste they generate. Notably, food waste makes up a large percentage of the waste stream that is currently going to landfills in the region. If diversion opportunities for food waste are made available, residents could divert over 60% of the waste they generate. Including reuse opportunities, this figure could increase more.

LOGISTICS

Logistics is a category of activities which includes Collection, Handling, and Storage. This category is not part of the original form but has been included to group similar activities and simplify the solid waste management process at a high level.

Collection

This section has been separated by the two types of collection: curbside and drop-off.

CURBSIDE COLLECTION

Residents of the region have varying access to curbside collection services depending on the area in which they live. We know that residents of cities have greater access to curbside services than residents living in rural areas. Because

data relating to curbside collection was hard to come by for these rural regions, we do not know whether up to almost half of the population has access to curbside trash pickup and whether 75% – 85% have access to other curbside collection services or not. To bridge the gap of missing data, the COG may encourage cities and counties to provide local collection data, and store that information on a regional data sharing platform. Centralizing the curbside collection data into one regional database allows regional leaders to make informed decisions and minimizes gaps in data in local and regional reports.

The first key takeaway relates to the fact that our results don’t distinguish between curbside collection for multi-family housing or single-family housing. Multi-family homes typically experience lower levels of access to recycling services than residents of single-family homes because multifamily properties are commonly treated as commercial businesses, which are often ineligible to receive public recycling services. This means that multi-family homes likely have less curbside collection for Brush, Bulk, Recycling, and Yard Waste. As a result, a limitation that arises in our results is that they overrepresent the actual percentage of people that have their non-trash waste collected curbside. To put it in another way, our statistics likely inflate the number of people with access to curbside collection because of those living in multi-family units.

With that said, using Texarkana, TX as an example, in theory, 99% of residential waste for residents in single family homes in the city could be picked up curbside because the city offers collection for Trash, Recycling, Brush, Yard waste, and Bulk. Electronics and Problematic wastes make up the remaining 2% of waste that a resident would have to dispose of. We also include Inerts and Other (primarily C&D) (12%) in the Trash total, but it should be noted that C&D likely requires additional arrangements to dispose of and is not picked up curbside. Still, without C&D, around 88% of household waste could be collected curbside.

It is expected that the greater the access to curbside services, because of their convenience, the more likely residents are to participate in responsible waste management. However, contamination of waste streams is a serious concern that

——

can quickly derail curbside collection programs because of cost to mitigate contamination.

The most likely expansion of municipally provided curbside services is for the collection of recycling. Recyclables represent the second-largest portion of the residential stream and only 15% of residents have known access to curbside recycling. Looking at successful models in the region and state could help municipalities offer this service which could improve diversion in the region significantly.

Finally, Texas Administrative Code requires municipalities to provide curbside collection of trash at least weekly. Our results reflect this reality. Outside of city limits though, access is not required. There are known examples in Texas of expansion of this requirement into the Extraterritorial Jurisdiction (ETJ) of municipalities. This expansion could be a positive step that could reduce improper waste management and serve as a model for future expansion of services both regionally and statewide. Though, this requires legislative change.

DROP-OFF COLLECTION

We created a master list of waste facilities in the region in order to get a comprehensive view of waste capabilities in the region. We believe that not only is this the best way using the available data to describe each waste activity in the region, but it may serve as the backbone of any region-wide facility database.

We found that the TCEQ-provided municipal solid waste (MSW) facility data was incomplete for the region. We supplemented that list of facilities by adding in TCEQ NOI facilities and those we found through our internet survey. In this way, we believe the master list presented in the Addendum is a thorough accounting of waste facilities in the region in 2021.

Handling

We created a master list of waste facilities in the region in order to get a comprehensive view of waste handling capabilities in the region. We believe that not only is this the best way using the available data to describe each waste activity in the region but may serve as the backbone of any region-wide facility database.

We found that the TCEQ-provided municipal solid waste (MSW) facility data was incomplete for the region. We supplemented that list of facilities by adding in TCEQ publicly maintained municipal solid waste facilities data and those we found
through our internet survey. In this way, we believe the master list presented in the Addendum is a thorough accounting of waste facilities in the region in 2021.

We did not provide the type of sophisticated analysis for waste handling that we did for generation or disposal. We believe such analysis of waste handling would be unjustified. Moreover, TCEQ does not include any data about handling in their data. For this section on handling, we presented only the name and type of each facility, its location, and whether it accept drop-offs. For drop-offs, we noted which facilities definitively accepted drop-offs and for which facilities that was unknown.

TCEQ does not designate which facilities engage in the activity they call handling. All haulers that collected waste and all facilities that accepted drop-off materials, transferred waste, processed waste (including resource recovery), or disposed of waste were considered handlers. Given these considerations we believe we have presented the best available description of waste handling in the region.

Storage
We created a master list of waste facilities in the region in order to get a comprehensive view of waste capabilities in the region. We believe that not only is this the best way using the available data to describe each waste activity in the region but may serve as the backbone of any region-wide facility database.

We found that the TCEQ-provided municipal solid waste (MSW) facility data was incomplete for the region. We supplemented that list of facilities by adding in TCEQ publicly maintained municipal solid waste facilities data and those we found through our internet survey. In this way, we believe the master list presented in the Addendum is a thorough accounting of waste facilities in the region in 2021.

We did not provide the type of sophisticated analysis for waste storage that we did for generation or disposal. We believe such analysis of waste storage would be unjustified. Moreover, TCEQ does not include any data about storage in their data. Therefore, we did not provide the type of detailed analysis that we do in the upcoming treatment section. For this section on storage, we presented only the name and type of each facility, its location, and whether it accept drop-offs.

TCEQ does not designate which facilities engage in the activity they call storage. All facilities that accepted drop-off materials, transferred waste, processed waste (including resource recovery), or disposed of waste were considered storage
facilities. Given these considerations, we believe we have presented the best available description of waste storage in the region.

PROCESSING

Processing is a category of activities which includes *Transportation, Treatment,* and *Resource Recovery.* This category is part of the original form, but also used to group similar activities and simplify the solid waste management process at a high level.

Transportation

We created a master list of waste facilities in the region in order to get a comprehensive view of waste capabilities in the region. We believe that not only is this the best way using the available data to describe each waste activity in the region but may serve as the backbone of any region-wide facility database.

We found that the TCEQ-provided municipal solid waste (MSW) facility data was incomplete for the region. We supplemented that list of facilities by adding in TCEQ NOI facilities and those we found through our internet survey. In this way, we believe the master list presented in the Addendum is a thorough accounting of waste facilities in the region in 2021.

We did not provide the type of sophisticated analysis for waste transportation that we did for generation or disposal. We believe such analysis of waste transportation would be unjustified. Moreover, TCEQ does not include in their data any tonnages related to the transportation of waste by each facility or the region as a whole. Therefore, we did not provide the type of detailed analysis that we do in the upcoming treatment section. For this section on transportation, we presented only the name and type of each facility, its location, and whether it accept drop-offs.

TCEQ does not designate which facilities engage in the activity they call transportation. We considered transfer stations, citizens collection stations, and tire transporters to be transportation facilities. Given these considerations we believe we have presented the best available description of waste transportation in the region.
Proximity to disposal facility network. The EPA\(^{40}\) estimates residents should be no more than 34 miles round-trip from a disposal facility. Otherwise, an intermediate facility should be available. This would not only help residents who need access to drop-off locations, but it would also make large-scale disposal more affordable because of the consolidation of curbside collection efforts to a network of integrated facilities. At present, the region’s facilities are not well-situated for these purposes according to the EPA standard. Most importantly, this analysis did not consider any drop-off locations outside the State or in other COGs. If drop-offs are nearby in other states or COGs, access could be significantly improved. Additionally, this analysis did not consider capacity of facilities. Moreover, as population grows, it will be important to watch where the growth occurs to ensure capacity of facilities or the potential for new intervening facilities. This analysis also assumes waste is taken to the nearest location by straight line distance. Incorporating the road network’s impact on this analysis would likely reduce the total population within 17 miles of a location based on drive distance rather than straight line distance. Haulers in the region may also own landfills within the region or nearby outside the region. In some cases, it may be economically beneficial to those businesses to drive further distances to dispose of waste they have collected rather than drop it at a competitor’s landfill, for example. Finally, with more data about other drop-off facilities and their capacities, similar analyses should be executed to understand the convenience of non-disposal options to encourage more diversion and ensure the infrastructure supports diversion.

Treatment

We created a master list of waste facilities in the region in order to get a comprehensive view of waste capabilities in the region. This list included treatment facilities. This catalog may serve as the backbone of any region-wide facility database.

We documented the amount of waste treated by each method. This was done for solid waste. There was no liquid waste treated in the region. We also totaled the

amount of waste treated in the region. Given the limited data available, we believed this was the best way to describe waste treatment in the region.

Resource Recovery

We created a master list of waste facilities in the region in order to get a comprehensive view of waste capabilities in the region. Given the lack of available data, we believed this was the best way to describe resource recovery activities in the region. This catalog may serve as the backbone of any region-wide facility database.

We found that the TCEQ-provided municipal solid waste (MSW) facility data was incomplete for the region. We supplemented that list of facilities by adding in TCEQ-maintained public list of municipal solid waste facilities, including those not required to be permitted but that must submit a Notice of Intent (NOI) and those we found through our internet survey. In this way, we believe the master list presented in the Addendum is a thorough accounting of waste facilities in the region in 2021.

We did not provide the type of sophisticated analysis for resource recovery that we did for generation or disposal. We believe such analysis of resource recovery is not possible at this time because of a lack of data. Moreover, TCEQ does not include in their data any tonnages or rates related to recycling. For this section on resource recovery, we presented only the name and type of each facility, its location, and whether it accept drop-offs. TCEQ does not designate which facilities engage in the activity they call resource recovery, so we considered any facility that recycles, composts, recovers energy or gas, or otherwise diverts material from the landfill to be resource recovery. Given these limitations across multiple data sources, we believe we have presented the best available description of where resource recovery occurs in the region. However, we do not present the tonnages for recovery, or diversion, because that data is not available. With better data on diversion, the region would know their diversion rate and then would be able to set more specific diversion goals and have a better understanding of the amount of resources they are throwing away.

DISPOSAL OF SOLID WASTE

Our discussion of solid waste disposal is organized by two major topics: landfill capacity and the types of waste disposed.
Landfill Capacity

All waste that is generated and not beneficially reused or recycled, or improperly disposed of, ends up disposed of in landfills. Based on our generation estimate, nearly 760 thousand tons of waste would have been generated in the region in 2019 and roughly 456 thousand tons were disposed in the region’s landfills. This gap cannot be easily explained, but there are many possibilities that could help explain some of the difference.

Of those 760 thousand tons, we have assumed nearly 133 thousand tons were recycled based on the estimated recycling rate of 17.5% and we have a record of 456 thousand tons being disposed. This leaves a gap of around 171 thousand tons. Plausible explanations for some of that waste is that it was reused, composted, illegally dumped, burned, or buried. Moreover, it is possible the recycling rate is actually higher, but data are not available to evaluate that.

Because of the lack of data around importing and exporting of waste in the region, it is possible that the region exported more waste than it imported. 2 landfills outside of the region took in ATCOG waste, and all 3 landfills inside the region took in waste generated from outside the region, but we have no idea the proportion of waste these transfers represent. Not knowing how much waste flows into or out of the region is a concern because it skews the comparison between the amount of waste disposed versus amount of waste generated inside the region. If more waste is exported than imported, it may explain why our calculated total generation is higher than the total disposed. A more important consequence of not understanding waste import and export is that changes outside of the region may impact landfill capacity inside the region. If an outside landfill that currently takes in ATCOG waste stops accepting that waste, maybe because of their own capacity concerns, then that waste may have to be redirected to one of ATCOG’s landfills. This of course will impact ATCOG’s capacity to dispose of its own waste. The result of any disruption to the import or export of regional waste cannot be assessed.

It is also possible that varying practices at landfills can lead to inconsistent data reporting. However, with all of those considerations, the most important conclusion to draw is that the data to adequately assess disposal activities is not available. This is important because setting specific reuse and recycling goals to reduce disposal is difficult without adequate data. Moreover, it may appear efforts to reduce disposal as much as possible are an overwhelming success because 60% of generated waste is making its way to regional landfills, though it would not be
responsible without additional data to jump to that conclusion. That is because, for example, if significant waste is being illegally dumped and future efforts reduce that behavior and more waste makes it to the landfill, it could significantly impact landfill life projections.

Ultimately, the biggest question when it comes to disposal is whether the region has sufficient capacity in its landfills. According to the region-wide estimate of remaining landfill life, the region has sufficient landfill capacity through the entire planning period. However, a regional measure of capacity has limitations.

Considerations for using the Remaining Years (reserve capacity) of the region:

- TCEQ Estimated Total Remaining Landfill Years gives unequal view of capacity
- Issues with landfill-reported data
- Inconsistent year-to-year changes in reported Remaining Years

TCEQ Estimated Total Remaining Landfill Years is a poor measure of landfill life because residents do not have access to *all* landfills. The landfill life of a resident’s closest landfill or transfer station is most important. This idea mirrors the analysis we presented in the Transportation section. In effect, when TCEQ estimates that the 3 landfills in the region have a combined 204 years of remaining capacity, it must be understood as a summary figure. When analyzing the region’s landfill capacity, the landfill life estimation ought to consider the landfill’s proximity to each city and transfer station. This will allow decision makers to ensure every resident has access to a landfill with sufficient capacity.

Landfill reported data. The landfills themselves report the reserve capacity of the landfill. According to TCEQ, it is based on the permitted volume for waste capacity and facility operations. However, this means the combined Remaining Years figure is based on inconsistent reporting data, and thus embedded with uncertainty. For one, each landfill calculates their Remaining Years differently. Because of the lack of visibility into the landfills’ reporting process, we cannot know whether their figure accounts for population growth, changes to the amount of waste imported or exported, changes to the compaction rate, and so forth.

Inconsistent Year-to-Year Capacity Estimates. There is a similar blind spot that results from comparing the Remaining Years as it was reported in 2015 compared to 2019. This is evidenced by the fact that the Pleasant Oaks Landfill reported a decrease of 53 Remaining Years over a 4-year time period, as detailed in the Results section. The landfill has been depleted 13 times faster than expected,
indicating there was some change in either capacity or disposal during that time frame. This implies that moving forward, the Remaining Years for that landfill may be shorter than what is being reported. It is imperative that the region closely monitor that landfill’s capacity in particular, but also evaluate year-over-year estimates to provide context to annual reports.

Types of Waste Disposed

Municipal Solid Waste (MSW) represents the greatest proportion of waste disposed, but unfortunately, we do not know exactly what comprises it. The Texas Administrative Code defines MSW very broadly. It says MSW is “Solid waste resulting from or incidental to municipal, community, commercial, institutional, and recreational activities, including garbage, rubbish, ashes, street cleanings, dead animals, abandoned automobiles, and all other solid waste other than industrial solid waste.” An audit of each landfill is needed to tell us what the region’s MSW is comprised of.

The major consequence to landfills labelling most waste as MSW is that it becomes difficult to give a comprehensive conclusion about disposed material in the region.

The final section of this Discussion will focus on resolving gaps in the region’s disposal data. As was the case with many core waste management activities, comprehensive disposal data is not available. Detailed disposal data helps make detailed assessments that could, in turn, be useful for making specific recommendations in the regional action plan. Such data improves the development of future strategic plans and supports sustainability efforts.

An example of this type of effort is from the waste characterization study undertaken by San Antonio in 2019. Region-wide data like that collected by San Antonio would help the ATCOG region set targets and prioritize waste streams for diversion. After all, San Antonio’s report “indicated approximately 33 percent of the material placed in the brown carts was actual garbage material and not accepted in the City’s blue recycling cart or green organics cart programs. The remaining 67 percent were materials that could theoretically have been recycled

(21.2 percent), composted (45.1 percent), or recovered from household hazardous waste (0.8 percent)."

In summary, disposal capacity is adequate for the region but should be monitored closely. It is recommended that when planning for future landfills, decision makers not rely solely on the combined landfill capacity but consider travel distances to landfills or transfer stations. Furthermore, it is recommended that the region collect detailed disposal data, including origin and destination data. By doing so, the COG can support local governments in disposing of materials in a responsible manner.

Conclusion

Outlining current and future facilities and activities in the region helps visualize the waste stream from start to finish and also allows for identifying gaps in the process. Data limitations exist, making it difficult to analyze the full spectrum of operations and create specific goals and objectives.

The compiled data shows gaps, strengths, and weaknesses within the COG. Solid waste management activities in the region are typically focused around the high-population areas of the region with fewer resources in the more rural areas.

Ultimately, the specificity, or lack of specificity, of the data will influence the specificity of the goals, objectives, and action steps.

Addendum | Attachment III.C. Solid Waste Management Activities

Table 13. Perryman Group Employment Categories Reclassification

<table>
<thead>
<tr>
<th>NAICS</th>
<th>Type</th>
<th>Texas Workforce Commission Industry</th>
<th>Perryman Group Industry</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Industrial</td>
<td>Agriculture, Forestry, Fishing and Hunting</td>
<td>Agriculture</td>
</tr>
<tr>
<td>21</td>
<td>Industrial</td>
<td>Mining, Quarrying, and Oil and Gas Extraction</td>
<td>Mining</td>
</tr>
<tr>
<td>22</td>
<td>Commercial</td>
<td>Utilities</td>
<td>Transportation, Warehousing, Utilities</td>
</tr>
<tr>
<td>NAICS</td>
<td>Type</td>
<td>Texas Workforce Commission Industry</td>
<td>Perryman Group Industry</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>--------------------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>23</td>
<td>Commercial</td>
<td>Construction</td>
<td>Construction</td>
</tr>
<tr>
<td>31</td>
<td>Industrial</td>
<td>Manufacturing (food, beverage, tobacco, leather, apparel, textile)</td>
<td>Non-Durable MFG</td>
</tr>
<tr>
<td>32</td>
<td>Industrial</td>
<td>Manufacturing (wood, paper, printing, plastic, chemical, nonmetallic, petroleum, coal)</td>
<td>Durable MFG</td>
</tr>
<tr>
<td>33</td>
<td>Industrial</td>
<td>Manufacturing (metal, machinery, computer, electrical, transportation, misc.)</td>
<td>Durable MFG</td>
</tr>
<tr>
<td>42</td>
<td>Commercial</td>
<td>Wholesale Trade</td>
<td>Trade</td>
</tr>
<tr>
<td>44</td>
<td>Commercial</td>
<td>Retail Trade (store)</td>
<td>Trade</td>
</tr>
<tr>
<td>45</td>
<td>Commercial</td>
<td>Retail Trade (non-store)</td>
<td>Trade</td>
</tr>
<tr>
<td>48</td>
<td>Commercial</td>
<td>Transportation</td>
<td>Transportation, Warehousing, Utilities</td>
</tr>
<tr>
<td>49</td>
<td>Commercial</td>
<td>Warehousing</td>
<td>Transportation, Warehousing, Utilities</td>
</tr>
<tr>
<td>51</td>
<td>Commercial</td>
<td>Information</td>
<td>Information</td>
</tr>
<tr>
<td>52</td>
<td>Commercial</td>
<td>Finance and Insurance</td>
<td>Finance, Insurance, & Real Estate</td>
</tr>
<tr>
<td>53</td>
<td>Commercial</td>
<td>Real Estate and Rental and Leasing</td>
<td>Finance, Insurance, & Real Estate</td>
</tr>
<tr>
<td>54</td>
<td>Commercial</td>
<td>Professional, Scientific, and Technical Services</td>
<td>Services</td>
</tr>
<tr>
<td>55</td>
<td>Commercial</td>
<td>Management of Companies and Enterprises</td>
<td>Services</td>
</tr>
<tr>
<td>56</td>
<td>Commercial</td>
<td>Administrative and Support and Waste Management and Remediation Services</td>
<td>Government</td>
</tr>
</tbody>
</table>
Table 14. Residential Generation Material Type Reclassification

<table>
<thead>
<tr>
<th>Material Type</th>
<th>Material Type Category</th>
<th>Recategorized</th>
<th>Single Family: Statewide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulky Items</td>
<td>Special Waste</td>
<td>Special Waste</td>
<td>2.70%</td>
</tr>
<tr>
<td>Tires</td>
<td>Special Waste</td>
<td>Special Waste</td>
<td>0.10%</td>
</tr>
<tr>
<td>Remainder / Composite Special Waste</td>
<td>Special Waste</td>
<td>Special Waste</td>
<td>0.10%</td>
</tr>
<tr>
<td>Ash</td>
<td>Special Waste</td>
<td>Special Waste</td>
<td>0.00%</td>
</tr>
<tr>
<td>Treated Medical Waste</td>
<td>Special Waste</td>
<td>Special Waste</td>
<td>0.00%</td>
</tr>
<tr>
<td>Remainder / Composite Plastic</td>
<td>Plastic</td>
<td>Plastic</td>
<td>2.20%</td>
</tr>
<tr>
<td>Other Film - Other</td>
<td>Plastic</td>
<td>Plastic</td>
<td>1.90%</td>
</tr>
<tr>
<td>Durable Plastic Items - Other</td>
<td>Plastic</td>
<td>Plastic</td>
<td>1.40%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material Type</th>
<th>Material Type Category</th>
<th>Recategorized</th>
<th>Single Family: Statewide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastic Trash Bags</td>
<td>Plastic</td>
<td>Plastic</td>
<td>1.20%</td>
</tr>
<tr>
<td>Plastic Grocery and Other Merchandise Bags</td>
<td>Plastic</td>
<td>Plastic</td>
<td>0.80%</td>
</tr>
<tr>
<td>PETE Plastic Containers</td>
<td>Plastic</td>
<td>Plastic</td>
<td>0.70%</td>
</tr>
<tr>
<td>Miscellaneous Plastic Containers</td>
<td>Plastic</td>
<td>Plastic</td>
<td>0.60%</td>
</tr>
<tr>
<td>Durable Plastic Items - #2 and #5 Bulky Rigid</td>
<td>Plastic</td>
<td>Plastic</td>
<td>0.60%</td>
</tr>
<tr>
<td>HDPE Plastic Containers</td>
<td>Plastic</td>
<td>Plastic</td>
<td>0.50%</td>
</tr>
<tr>
<td>Non-Bag Commercial and Industrial Packaging Film</td>
<td>Plastic</td>
<td>Plastic</td>
<td>0.10%</td>
</tr>
<tr>
<td>Film Products</td>
<td>Plastic</td>
<td>Plastic</td>
<td>0.00%</td>
</tr>
<tr>
<td>Remainder / Composite Paper - Compostable</td>
<td>Paper</td>
<td>Paper</td>
<td>8.40%</td>
</tr>
<tr>
<td>Other Miscellaneous Paper - Other</td>
<td>Paper</td>
<td>Paper</td>
<td>4.10%</td>
</tr>
<tr>
<td>Uncoated Corrugated Cardboard</td>
<td>Paper</td>
<td>Paper</td>
<td>1.40%</td>
</tr>
<tr>
<td>Newspaper</td>
<td>Paper</td>
<td>Paper</td>
<td>1.20%</td>
</tr>
<tr>
<td>Remainder / Composite Paper - Other</td>
<td>Paper</td>
<td>Paper</td>
<td>0.80%</td>
</tr>
<tr>
<td>Magazines and Catalogs</td>
<td>Paper</td>
<td>Paper</td>
<td>0.70%</td>
</tr>
<tr>
<td>Other Office Paper</td>
<td>Paper</td>
<td>Paper</td>
<td>0.40%</td>
</tr>
<tr>
<td>Paper Bags</td>
<td>Paper</td>
<td>Paper</td>
<td>0.20%</td>
</tr>
<tr>
<td>White Ledger Paper</td>
<td>Paper</td>
<td>Paper</td>
<td>0.20%</td>
</tr>
<tr>
<td>Other Miscellaneous Paper - Compostable</td>
<td>Paper</td>
<td>Paper</td>
<td>0.20%</td>
</tr>
<tr>
<td>Phone Books and Directories</td>
<td>Paper</td>
<td>Paper</td>
<td>0.10%</td>
</tr>
<tr>
<td>Food</td>
<td>Other Organic</td>
<td>Food</td>
<td>21.00%</td>
</tr>
<tr>
<td>Material Type</td>
<td>Material Type Category</td>
<td>Recategorized</td>
<td>Single Family: Statewide</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------------------</td>
<td>------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Remainder / Composite Organic</td>
<td>Other Organic</td>
<td>Other Organic</td>
<td>6.30%</td>
</tr>
<tr>
<td>Leaves and Grass</td>
<td>Other Organic</td>
<td>Yard Waste</td>
<td>5.10%</td>
</tr>
<tr>
<td>Prunings and Trimmings</td>
<td>Other Organic</td>
<td>Brush</td>
<td>4.80%</td>
</tr>
<tr>
<td>Textiles</td>
<td>Other Organic</td>
<td>Other Organic</td>
<td>4.80%</td>
</tr>
<tr>
<td>Branches and Stumps</td>
<td>Other Organic</td>
<td>Brush</td>
<td>1.90%</td>
</tr>
<tr>
<td>Carpet</td>
<td>Other Organic</td>
<td>Other Organic</td>
<td>1.80%</td>
</tr>
<tr>
<td>Manures</td>
<td>Other Organic</td>
<td>Other Organic</td>
<td>0.00%</td>
</tr>
<tr>
<td>Mixed Residue</td>
<td>Mixed Residue</td>
<td>Mixed Residue</td>
<td>5.10%</td>
</tr>
<tr>
<td>Tin/Steel Cans</td>
<td>Metal</td>
<td>Metal</td>
<td>0.80%</td>
</tr>
<tr>
<td>Other Ferrous</td>
<td>Metal</td>
<td>Metal</td>
<td>0.60%</td>
</tr>
<tr>
<td>Remainder / Composite Metal</td>
<td>Metal</td>
<td>Metal</td>
<td>0.50%</td>
</tr>
<tr>
<td>Other Non-Ferrous</td>
<td>Metal</td>
<td>Metal</td>
<td>0.40%</td>
</tr>
<tr>
<td>Major Appliances</td>
<td>Metal</td>
<td>Metal</td>
<td>0.30%</td>
</tr>
<tr>
<td>Aluminum Cans</td>
<td>Metal</td>
<td>Metal</td>
<td>0.20%</td>
</tr>
<tr>
<td>Used Oil Filters</td>
<td>Metal</td>
<td>Metal</td>
<td>0.00%</td>
</tr>
<tr>
<td>Other Wood Waste</td>
<td>Inerts and Other</td>
<td>Inerts and Other</td>
<td>4.00%</td>
</tr>
<tr>
<td>Rock, Soil and Fines</td>
<td>Inerts and Other</td>
<td>Inerts and Other</td>
<td>2.30%</td>
</tr>
<tr>
<td>Clean Dimensional Lumber</td>
<td>Inerts and Other</td>
<td>Inerts and Other</td>
<td>1.90%</td>
</tr>
<tr>
<td>Clean Engineered Wood</td>
<td>Inerts and Other</td>
<td>Inerts and Other</td>
<td>1.10%</td>
</tr>
<tr>
<td>Remainder / Composite Inerts</td>
<td>Inerts and Other</td>
<td>Inerts and Other</td>
<td>0.90%</td>
</tr>
<tr>
<td>Material Type</td>
<td>Material Type Category</td>
<td>Recategorized</td>
<td>Single Family: Statewide</td>
</tr>
<tr>
<td>---</td>
<td>------------------------</td>
<td>---------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Concrete</td>
<td>Inerts and Other</td>
<td>Inerts and Other</td>
<td>0.90%</td>
</tr>
<tr>
<td>Asphalt Roofing</td>
<td>Inerts and Other</td>
<td>Inerts and Other</td>
<td>0.60%</td>
</tr>
<tr>
<td>Clean Pallets & Crates</td>
<td>Inerts and Other</td>
<td>Inerts and Other</td>
<td>0.30%</td>
</tr>
<tr>
<td>Gypsum Board</td>
<td>Inerts and Other</td>
<td>Inerts and Other</td>
<td>0.20%</td>
</tr>
<tr>
<td>Asphalt Paving</td>
<td>Inerts and Other</td>
<td>Inerts and Other</td>
<td>0.00%</td>
</tr>
<tr>
<td>Remainder / Composite Household Hazardous</td>
<td>Household Hazardous Waste (HHW)</td>
<td>Household Hazardous Waste (HHW)</td>
<td>0.30%</td>
</tr>
<tr>
<td>Paint</td>
<td>Household Hazardous Waste (HHW)</td>
<td>Household Hazardous Waste (HHW)</td>
<td>0.20%</td>
</tr>
<tr>
<td>Batteries</td>
<td>Household Hazardous Waste (HHW)</td>
<td>Household Hazardous Waste (HHW)</td>
<td>0.10%</td>
</tr>
<tr>
<td>Used Oil</td>
<td>Household Hazardous Waste (HHW)</td>
<td>Household Hazardous Waste (HHW)</td>
<td>0.00%</td>
</tr>
<tr>
<td>Vehicle and Equipment Fluids</td>
<td>Household Hazardous Waste (HHW)</td>
<td>Household Hazardous Waste (HHW)</td>
<td>0.00%</td>
</tr>
<tr>
<td>Clear Glass Bottles and Containers</td>
<td>Glass</td>
<td>Glass</td>
<td>1.00%</td>
</tr>
<tr>
<td>Brown Glass Bottles and Containers</td>
<td>Glass</td>
<td>Glass</td>
<td>0.40%</td>
</tr>
<tr>
<td>Green Glass Bottles and Containers</td>
<td>Glass</td>
<td>Glass</td>
<td>0.40%</td>
</tr>
<tr>
<td>Remainder / Composite Glass</td>
<td>Glass</td>
<td>Glass</td>
<td>0.10%</td>
</tr>
<tr>
<td>Other Glass Colored Bottles and Containers</td>
<td>Glass</td>
<td>Glass</td>
<td>0.00%</td>
</tr>
<tr>
<td>Material Type</td>
<td>Material Type Category</td>
<td>Recategorized</td>
<td>Single Family: Statewide</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>------------------------</td>
<td>---------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Flat Glass</td>
<td>Glass</td>
<td>Glass</td>
<td>0.00%</td>
</tr>
<tr>
<td>Other Small Consumer Electronics</td>
<td>Electronics</td>
<td>Electronics</td>
<td>0.40%</td>
</tr>
<tr>
<td>Brown Goods</td>
<td>Electronics</td>
<td>Electronics</td>
<td>0.20%</td>
</tr>
<tr>
<td>Video Display Devices</td>
<td>Electronics</td>
<td>Electronics</td>
<td>0.20%</td>
</tr>
<tr>
<td>Computer-related Electronics</td>
<td>Electronics</td>
<td>Electronics</td>
<td>0.20%</td>
</tr>
</tbody>
</table>

Table 15. Recoded Waste Types and Volume Conversions

<table>
<thead>
<tr>
<th>Waste Type</th>
<th>Recoded Waste Type</th>
<th>Volume</th>
<th>Cubic Yards</th>
<th>Weight</th>
<th>Weight Conversion to Convert kg to yd³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prunings and Trimmings</td>
<td>Brush</td>
<td>Cubic yard</td>
<td>1</td>
<td>127</td>
<td>127</td>
</tr>
<tr>
<td>Branches and Stumps</td>
<td>Brush</td>
<td>Cubic yard</td>
<td>1</td>
<td>127</td>
<td>127</td>
</tr>
<tr>
<td>Bulky Items</td>
<td>Bulk</td>
<td>Cubic yard</td>
<td>1</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Major Appliances</td>
<td>Bulk</td>
<td>Cubic yard</td>
<td>1</td>
<td>145</td>
<td>145</td>
</tr>
<tr>
<td>Tires</td>
<td>Bulk</td>
<td>One</td>
<td>0.12</td>
<td>22.5</td>
<td>182.3</td>
</tr>
<tr>
<td>Concrete</td>
<td>C&D</td>
<td>Cubic yard</td>
<td>1</td>
<td>860</td>
<td>860</td>
</tr>
<tr>
<td>Clean Pallets & Crates</td>
<td>C&D</td>
<td>Cubic yard</td>
<td>1</td>
<td>169</td>
<td>169</td>
</tr>
<tr>
<td>Reclaimed Asphalt Pavement</td>
<td>C&D</td>
<td>Cubic yard</td>
<td>1</td>
<td>773</td>
<td>773</td>
</tr>
<tr>
<td>Other Wood Waste</td>
<td>C&D</td>
<td>Cubic yard</td>
<td>1</td>
<td>329.5</td>
<td>329.5</td>
</tr>
<tr>
<td>Waste Type</td>
<td>Recoded Waste Type</td>
<td>Volume</td>
<td>Cubic Yards</td>
<td>Weight</td>
<td>Weight Conversion to Convert kg to yd3</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------------------</td>
<td>--------</td>
<td>-------------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>Wood</td>
<td>C&D</td>
<td>Cubic yard</td>
<td>1</td>
<td>169</td>
<td>169</td>
</tr>
<tr>
<td>Rock, Soil, and Fines</td>
<td>C&D</td>
<td>Cubic yard</td>
<td>1</td>
<td>999</td>
<td>999</td>
</tr>
<tr>
<td>Carpet</td>
<td>C&D</td>
<td>Cubic yard</td>
<td>1</td>
<td>147</td>
<td>147</td>
</tr>
<tr>
<td>Fines</td>
<td>C&D</td>
<td>Cubic yard</td>
<td>1</td>
<td>2700</td>
<td>2700</td>
</tr>
<tr>
<td>Clean Dimensional Lumber</td>
<td>C&D</td>
<td>Cubic yard</td>
<td>1</td>
<td>169</td>
<td>169</td>
</tr>
<tr>
<td>Clean Engineered Wood</td>
<td>C&D</td>
<td>Cubic yard</td>
<td>1</td>
<td>268</td>
<td>268</td>
</tr>
<tr>
<td>Gypsum Board</td>
<td>C&D</td>
<td>Cubic yard</td>
<td>1</td>
<td>467</td>
<td>467</td>
</tr>
<tr>
<td>Gypsum Drywall</td>
<td>C&D</td>
<td>Cubic yard</td>
<td>1</td>
<td>467</td>
<td>467</td>
</tr>
<tr>
<td>Asphalt Shingles</td>
<td>C&D</td>
<td>Cubic yard</td>
<td>1</td>
<td>418.5</td>
<td>418.5</td>
</tr>
<tr>
<td>Bricks</td>
<td>C&D</td>
<td>Cubic yard</td>
<td>1</td>
<td>3024</td>
<td>3024</td>
</tr>
<tr>
<td>Asphalt Roofing</td>
<td>C&D</td>
<td>Cubic yard</td>
<td>1</td>
<td>731</td>
<td>731</td>
</tr>
<tr>
<td>Asphalt Paving</td>
<td>C&D</td>
<td>Cubic yard</td>
<td>1</td>
<td>773</td>
<td>773</td>
</tr>
<tr>
<td>Flat Glass</td>
<td>C&D</td>
<td>Cubic yard</td>
<td>1</td>
<td>1400</td>
<td>1400</td>
</tr>
<tr>
<td>Video Display Devices</td>
<td>Electronics</td>
<td>Cubic yard</td>
<td>1</td>
<td>67</td>
<td>67</td>
</tr>
<tr>
<td>Computer-related Electronics</td>
<td>Electronics</td>
<td>Cubic yard</td>
<td>1</td>
<td>354</td>
<td>354</td>
</tr>
<tr>
<td>Brown Goods</td>
<td>Electronics</td>
<td>Cubic yard</td>
<td>1</td>
<td>343</td>
<td>343</td>
</tr>
<tr>
<td>Waste Type</td>
<td>Recoded Waste Type</td>
<td>Volume</td>
<td>Cubic Yards</td>
<td>Weight</td>
<td>Weight Conversion to Convert kg to yd³</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------------------</td>
<td>--------</td>
<td>-------------</td>
<td>--------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>Other Small Consumer Electronics</td>
<td>Electronics</td>
<td>Cubic yard</td>
<td>1</td>
<td>438</td>
<td>438</td>
</tr>
<tr>
<td>Other Ferrous</td>
<td>Metals</td>
<td>Cubic yard</td>
<td>1</td>
<td>225</td>
<td>225</td>
</tr>
<tr>
<td>Food</td>
<td>Organics</td>
<td>Cubic yard</td>
<td>1</td>
<td>463</td>
<td>463</td>
</tr>
<tr>
<td>Clear Glass Bottles and Containers</td>
<td>Glass</td>
<td>Cubic yard</td>
<td>1</td>
<td>380</td>
<td>380</td>
</tr>
<tr>
<td>Green Glass Bottles and Containers</td>
<td>Glass</td>
<td>Cubic yard</td>
<td>1</td>
<td>380</td>
<td>380</td>
</tr>
<tr>
<td>Brown Glass Bottles and Containers</td>
<td>Glass</td>
<td>Cubic yard</td>
<td>1</td>
<td>380</td>
<td>380</td>
</tr>
<tr>
<td>Remainder/Composite Glass</td>
<td>Glass</td>
<td>Cubic yard</td>
<td>1</td>
<td>1400</td>
<td>1400</td>
</tr>
<tr>
<td>Glass</td>
<td>Glass</td>
<td>Cubic yard</td>
<td>1</td>
<td>380</td>
<td>380</td>
</tr>
<tr>
<td>Other Glass Colored Bottles and Containers</td>
<td>Glass</td>
<td>Cubic yard</td>
<td>1</td>
<td>380</td>
<td>380</td>
</tr>
<tr>
<td>Remainder/Composite Household Hazardous</td>
<td>HHW</td>
<td>Cubic yard</td>
<td>1</td>
<td>1671</td>
<td>1671</td>
</tr>
<tr>
<td>Vehicle and Equipment Fluids</td>
<td>HHW</td>
<td>Cubic yard</td>
<td>1</td>
<td>1671</td>
<td>1671</td>
</tr>
<tr>
<td>Paint</td>
<td>HHW</td>
<td>1 gal</td>
<td>0.005</td>
<td>10.9</td>
<td>2201.5</td>
</tr>
<tr>
<td>Treated Medical Waste</td>
<td>HHW</td>
<td>Cubic yard</td>
<td>1</td>
<td>140</td>
<td>140</td>
</tr>
<tr>
<td>Waste Type</td>
<td>Recoded Waste Type</td>
<td>Volume</td>
<td>Cubic Yards</td>
<td>Weight</td>
<td>Weight Conversion to Convert kg to yd³</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------------------</td>
<td>----------</td>
<td>-------------</td>
<td>--------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>Batteries</td>
<td>HHW</td>
<td>55 gal drum</td>
<td>0.27</td>
<td>600</td>
<td>2203.45</td>
</tr>
<tr>
<td>Used Oil Filters</td>
<td>HHW</td>
<td>Drum</td>
<td>0.27</td>
<td>437.5</td>
<td>1606.68</td>
</tr>
<tr>
<td>Used Oil</td>
<td>HHW</td>
<td>Gallon</td>
<td>0.005</td>
<td>7.4</td>
<td>1494.61</td>
</tr>
<tr>
<td>Remainder/Composite Metal</td>
<td>Metals</td>
<td>Cubic yard</td>
<td>1</td>
<td>143</td>
<td>143</td>
</tr>
<tr>
<td>Metal</td>
<td>Metals</td>
<td>55 gal</td>
<td>0.27</td>
<td>226.5</td>
<td>831.80</td>
</tr>
<tr>
<td>Tin/Steel Cans</td>
<td>Metals</td>
<td>Cubic yard</td>
<td>1</td>
<td>850</td>
<td>850</td>
</tr>
<tr>
<td>Aluminum Cans</td>
<td>Metals</td>
<td>Cubic yard</td>
<td>1</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>Remainder/Composite Plastics</td>
<td>Plastics</td>
<td>Cubic yard</td>
<td>1</td>
<td>364</td>
<td>364</td>
</tr>
<tr>
<td>Durable Plastic Items - Other</td>
<td>Plastics</td>
<td>Cubic yard</td>
<td>1</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>PETE Plastic Containers</td>
<td>Plastics</td>
<td>30"x42"x48"</td>
<td>1.30</td>
<td>577.5</td>
<td>445.50</td>
</tr>
<tr>
<td>HDPE Plastic Containers</td>
<td>Plastics</td>
<td>30"x42"x48"</td>
<td>1.30</td>
<td>612.5</td>
<td>472.50</td>
</tr>
<tr>
<td>Miscellaneous Plastic Containers</td>
<td>Plastics</td>
<td>Cubic yard</td>
<td>1</td>
<td>40.4</td>
<td>40.4</td>
</tr>
<tr>
<td>Durable Plastic Items - Number 2 and 5 Bulky Rigid</td>
<td>Plastics</td>
<td>Cubic yard</td>
<td>1</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Plastic</td>
<td>Plastics</td>
<td>30"x42"x48"</td>
<td>1.30</td>
<td>577.5</td>
<td>445.50</td>
</tr>
<tr>
<td>Remainder/Composite Paper - Compostable</td>
<td>Paper</td>
<td>Cubic yard</td>
<td>1</td>
<td>138</td>
<td>138</td>
</tr>
<tr>
<td>Waste Type</td>
<td>Recoded Waste Type</td>
<td>Volume</td>
<td>Cubic Yards</td>
<td>Weight</td>
<td>Weight Conversion to Convert kg to yd³</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>--------------------</td>
<td>--------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Other Miscellaneous Paper - Other</td>
<td>Paper</td>
<td>Cubic yard</td>
<td>1</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Remainder/Composite Paper - Other</td>
<td>Paper</td>
<td>Cubic yard</td>
<td>1</td>
<td>682.5</td>
<td>682.5</td>
</tr>
<tr>
<td>White Ledger Paper</td>
<td>Paper</td>
<td>Cubic yard</td>
<td>1</td>
<td>682.5</td>
<td>682.5</td>
</tr>
<tr>
<td>Other Office Paper</td>
<td>Paper</td>
<td>Cubic yard</td>
<td>1</td>
<td>682.5</td>
<td>682.5</td>
</tr>
<tr>
<td>Newspaper</td>
<td>Paper</td>
<td>Cubic yard</td>
<td>1</td>
<td>925</td>
<td>925</td>
</tr>
<tr>
<td>Magazines and Catalogs</td>
<td>Paper</td>
<td>Cubic yard</td>
<td>1</td>
<td>428</td>
<td>428</td>
</tr>
<tr>
<td>Other Miscellaneous Paper - Compostable</td>
<td>Paper</td>
<td>Cubic yard</td>
<td>1</td>
<td>138</td>
<td>138</td>
</tr>
<tr>
<td>Paper Bags</td>
<td>Paper</td>
<td>50 # dry goods</td>
<td>1</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Phone Books and Directories</td>
<td>Paper</td>
<td>Cubic yard</td>
<td>1</td>
<td>428</td>
<td>428</td>
</tr>
<tr>
<td>Other Non-Ferrous</td>
<td>Metals</td>
<td>Cubic yard</td>
<td>1</td>
<td>225</td>
<td>225</td>
</tr>
<tr>
<td>Leaves and Grass</td>
<td>Organics</td>
<td>Cubic yard</td>
<td>1</td>
<td>375</td>
<td>375</td>
</tr>
<tr>
<td>Remainder/Composite Organics</td>
<td>Organics</td>
<td>Cubic yard</td>
<td>1</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>Organics (e.g., Land Clearing Debris)</td>
<td>Organics</td>
<td>Cubic yard</td>
<td>1</td>
<td>135</td>
<td>135</td>
</tr>
<tr>
<td>Waste Type</td>
<td>Recoded Waste Type</td>
<td>Volume</td>
<td>Cubic Yards</td>
<td>Weight</td>
<td>Weight Conversion to Convert kg to yd³</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>--------------------</td>
<td>--------</td>
<td>-------------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>Manures</td>
<td>Organics</td>
<td>Cubic yard</td>
<td>1</td>
<td>675</td>
<td>675</td>
</tr>
<tr>
<td>Remainder/Composite Inerts and Others</td>
<td>Other</td>
<td>Cubic yard</td>
<td>1</td>
<td>860</td>
<td>860</td>
</tr>
<tr>
<td>Mixed Residue</td>
<td>Other</td>
<td>Cubic yard</td>
<td>1</td>
<td>999</td>
<td>999</td>
</tr>
<tr>
<td>Ash</td>
<td>Other</td>
<td>Cubic foot</td>
<td>0.04</td>
<td>42.5</td>
<td>1147.50</td>
</tr>
<tr>
<td>Remainder/Composite Special Waste</td>
<td>Other</td>
<td>Cubic yard</td>
<td>1</td>
<td>140</td>
<td>140</td>
</tr>
<tr>
<td>Uncoated Corrugated Cardboard</td>
<td>Paper</td>
<td>Cubic yard</td>
<td>1</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Cardboard</td>
<td>Paper</td>
<td>Cubic yard</td>
<td>1</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Other Film - Other</td>
<td>Plastics</td>
<td>Cubic yard</td>
<td>1</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Plastic Trash Bags</td>
<td>Plastics</td>
<td>Cubic yard</td>
<td>1</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>Non-Bag Commercial and Industrial Packaging Film</td>
<td>Plastics</td>
<td>Cubic yard</td>
<td>1</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Plastic Grocery and Other Merchandise Bags</td>
<td>Plastics</td>
<td>Cubic yard</td>
<td>1</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>Film Products</td>
<td>Plastics</td>
<td>Cubic yard</td>
<td>1</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Textiles</td>
<td>Textiles</td>
<td>Cubic yard</td>
<td>1</td>
<td>150</td>
<td>150</td>
</tr>
</tbody>
</table>
Table 16. Complete Curbside Collection Service Availability Internet Survey Results

<table>
<thead>
<tr>
<th>City</th>
<th>Brush</th>
<th>Bulk</th>
<th>Organcis</th>
<th>Recycling</th>
<th>Trash</th>
<th>Yard Waste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annona</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
</tr>
<tr>
<td>Atlanta</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Yes</td>
<td>Not Found</td>
</tr>
<tr>
<td>Avery</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Yes</td>
<td>Not Found</td>
</tr>
<tr>
<td>Avinger</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Yes</td>
<td>Not Found</td>
</tr>
<tr>
<td>Bloomberg</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
</tr>
<tr>
<td>Blossom</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Yes</td>
<td>Not Found</td>
</tr>
<tr>
<td>Bogata</td>
<td>Yes</td>
<td>Yes</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Yes</td>
<td>Not Found</td>
</tr>
<tr>
<td>Clarksville</td>
<td>Yes</td>
<td>Yes</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Yes</td>
<td>Not Found</td>
</tr>
<tr>
<td>Como</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Yes</td>
<td>Not Found</td>
</tr>
<tr>
<td>Cooper</td>
<td>Yes</td>
<td>Yes</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Yes</td>
<td>Not Found</td>
</tr>
<tr>
<td>Cumby</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Daingerfield</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Yes</td>
<td>Not Found</td>
</tr>
<tr>
<td>DeKalb</td>
<td>Yes</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Deport</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Yes</td>
<td>Not Found</td>
</tr>
<tr>
<td>Detroit</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Yes</td>
<td>Not Found</td>
</tr>
<tr>
<td>City</td>
<td>Brush</td>
<td>Bulk</td>
<td>Organics</td>
<td>Recycling</td>
<td>Trash</td>
<td>Yard Waste</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>------</td>
<td>----------</td>
<td>-----------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>Domino</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Yes</td>
<td>Not Found</td>
</tr>
<tr>
<td>Douglassville</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Yes</td>
<td>Not Found</td>
</tr>
<tr>
<td>Hooks</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Yes</td>
<td>Yes</td>
<td>Not Found</td>
</tr>
<tr>
<td>Hughes Springs</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Yes</td>
<td>Not Found</td>
</tr>
<tr>
<td>Leary</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Yes</td>
<td>Not Found</td>
</tr>
<tr>
<td>Linden</td>
<td>Yes</td>
<td>Yes</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Yes</td>
<td>Not Found</td>
</tr>
<tr>
<td>Lone Star</td>
<td>Yes</td>
<td>Yes</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Yes</td>
<td>Not Found</td>
</tr>
<tr>
<td>Marietta</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Yes</td>
<td>Not Found</td>
</tr>
<tr>
<td>Maud</td>
<td>Yes</td>
<td>Yes</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Yes</td>
<td>Not Found</td>
</tr>
<tr>
<td>Miller's Cove</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Yes</td>
<td>Not Found</td>
</tr>
<tr>
<td>Mount Pleasant</td>
<td>Yes</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Yes</td>
<td>Not Found</td>
</tr>
<tr>
<td>Mount Vernon</td>
<td>Yes</td>
<td>Yes</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Yes</td>
<td>Not Found</td>
</tr>
<tr>
<td>Naples</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Yes</td>
<td>Not Found</td>
</tr>
<tr>
<td>Nash</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Yes</td>
<td>Not Found</td>
</tr>
<tr>
<td>New Boston</td>
<td>Yes</td>
<td>Yes</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Yes</td>
<td>Not Found</td>
</tr>
<tr>
<td>Omaha</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Yes</td>
<td>Not Found</td>
</tr>
<tr>
<td>City</td>
<td>Brush</td>
<td>Bulk</td>
<td>Organics</td>
<td>Recycling</td>
<td>Trash</td>
<td>Yard Waste</td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
<td>--------------</td>
<td>----------</td>
<td>-----------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>Paris</td>
<td>Yes</td>
<td>Not Found</td>
<td>Not Found</td>
<td>None</td>
<td>Yes</td>
<td>Not Found</td>
</tr>
<tr>
<td>Pecan Gap</td>
<td>Yes</td>
<td>Yes</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Yes</td>
<td>Not Found</td>
</tr>
<tr>
<td>Queen City</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Yes</td>
<td>Not Found</td>
</tr>
<tr>
<td>Red Lick</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Yes</td>
<td>Not Found</td>
</tr>
<tr>
<td>Redwater</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Yes</td>
<td>Not Found</td>
</tr>
<tr>
<td>Reno (Lamar)</td>
<td>Yes</td>
<td>Yes</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Yes</td>
<td>Not Found</td>
</tr>
<tr>
<td>Roxton</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Yes</td>
<td>Not Found</td>
</tr>
<tr>
<td>Sulphur Springs</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Yes</td>
<td>Not Found</td>
</tr>
<tr>
<td>Sun Valley</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Yes</td>
<td>Not Found</td>
</tr>
<tr>
<td>Talco</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Yes</td>
<td>Not Found</td>
</tr>
<tr>
<td>Texarkana</td>
<td>Not Found</td>
<td>Yes</td>
<td>Not Found</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Tira</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Yes</td>
<td>Not Found</td>
</tr>
<tr>
<td>Toco</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Yes</td>
<td>Not Found</td>
</tr>
<tr>
<td>Wake Village</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Yes</td>
<td>Not Found</td>
</tr>
<tr>
<td>Winfield</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Not Found</td>
<td>Yes</td>
<td>Not Found</td>
</tr>
</tbody>
</table>
Table 17. Current Handling, Storage, Transportation, and Resource Recovery Permits, Registrations, Notices of Intent, and Other Identified Facilities

Note: Facilities marked with an asterisk (*) have multiple locations and/or multiple registration numbers.

<table>
<thead>
<tr>
<th>Source</th>
<th>Site Name</th>
<th>Facility Type</th>
<th>County</th>
<th>Drop-off</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCEQ-NOI</td>
<td>CITY OF DEKALB CITIZENS COLLECTION STATION</td>
<td>Citizens Collection Station</td>
<td>BOWIE</td>
<td>Unknown</td>
</tr>
<tr>
<td>TCEQ-NOI</td>
<td>HENK POST FARM</td>
<td>Compost</td>
<td>FRANKLIN</td>
<td>Unknown</td>
</tr>
<tr>
<td>TCEQ-NOI</td>
<td>NEW SOUTH REGIONAL PLANT</td>
<td>Compost</td>
<td>BOWIE</td>
<td>Yes</td>
</tr>
<tr>
<td>TCEQ-MSW</td>
<td>STOUTS CREEK COMPOST</td>
<td>Compost</td>
<td>HOPKINS</td>
<td>Unknown</td>
</tr>
<tr>
<td>TCEQ-MSW</td>
<td>BLOSSOM PRAIRIE LANDFILL</td>
<td>Landfill (Type 1)</td>
<td>LAMAR</td>
<td>Yes</td>
</tr>
<tr>
<td>TCEQ-MSW</td>
<td>NEW BOSTON LANDFILL</td>
<td>Landfill (Type 1)</td>
<td>BOWIE</td>
<td>Yes</td>
</tr>
<tr>
<td>TCEQ-MSW</td>
<td>PLEASANT OAKS LANDFILL</td>
<td>Landfill (Type 1)</td>
<td>TITUS</td>
<td>Yes</td>
</tr>
<tr>
<td>TCEQ-NOI</td>
<td>DUNCANS</td>
<td>Low Volume Transfer Station</td>
<td>CASS</td>
<td>Unknown</td>
</tr>
<tr>
<td>TCEQ-NOI</td>
<td>EAST TEXAS RECYCLING</td>
<td>Recycling & Material Recovery</td>
<td>TITUS</td>
<td>Yes</td>
</tr>
<tr>
<td>TCEQ-NOI</td>
<td>UNICOR FEDERAL PRISON INDUSTRIES TEXARKANA</td>
<td>Recycling & Material Recovery</td>
<td>BOWIE</td>
<td>Yes</td>
</tr>
<tr>
<td>TCEQ-Tires</td>
<td>BAR RECYCLING ENTERPRISES*</td>
<td>Tire Processor</td>
<td>BOWIE</td>
<td>Unknown</td>
</tr>
<tr>
<td>TCEQ-Tires</td>
<td>BENTON RAINLEY TIRE & RECOVERY</td>
<td>Tire Processor</td>
<td>LAMAR</td>
<td>Unknown</td>
</tr>
<tr>
<td>TCEQ-Tires</td>
<td>BRASWELL</td>
<td>Tire Recycler</td>
<td>BOWIE</td>
<td>Unknown</td>
</tr>
<tr>
<td>Source</td>
<td>Site Name</td>
<td>Facility Type</td>
<td>County</td>
<td>Drop-off</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------------------</td>
<td>-------------------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>TCEQ-Tires</td>
<td>ARTHUR HILL JR</td>
<td>Tire Transporter</td>
<td>BOWIE</td>
<td>Unknown</td>
</tr>
<tr>
<td>TCEQ-Tires</td>
<td>ATTAWAY TIRE TRANSPORTING</td>
<td>Tire Transporter</td>
<td>BOWIE</td>
<td>Unknown</td>
</tr>
<tr>
<td>TCEQ-Tires</td>
<td>BAR RECYCLING ENTERPRISES*</td>
<td>Tire Transporter</td>
<td>BOWIE</td>
<td>Unknown</td>
</tr>
<tr>
<td>TCEQ-Tires</td>
<td>BRASWELL SERVICES</td>
<td>Tire Transporter</td>
<td>BOWIE</td>
<td>Unknown</td>
</tr>
<tr>
<td>TCEQ-Tires</td>
<td>EAST TEXAS TIRE & BRAKE</td>
<td>Tire Transporter</td>
<td>BOWIE</td>
<td>Unknown</td>
</tr>
<tr>
<td>TCEQ-Tires</td>
<td>FOUR STATES LOGISTICS</td>
<td>Tire Transporter</td>
<td>BOWIE</td>
<td>Unknown</td>
</tr>
<tr>
<td>TCEQ-Tires</td>
<td>JEFFY PITCOCK</td>
<td>Tire Transporter</td>
<td>LAMAR</td>
<td>Unknown</td>
</tr>
<tr>
<td>TCEQ-Tires</td>
<td>JOHNNY SMITH & SON</td>
<td>Tire Transporter</td>
<td>LAMAR</td>
<td>Unknown</td>
</tr>
<tr>
<td>TCEQ-Tires</td>
<td>JR & CR</td>
<td>Tire Transporter</td>
<td>LAMAR</td>
<td>Unknown</td>
</tr>
<tr>
<td>TCEQ-Tires</td>
<td>M JR TIRE SHOP</td>
<td>Tire Transporter</td>
<td>HOPKINS</td>
<td>Unknown</td>
</tr>
<tr>
<td>TCEQ-Tires</td>
<td>NICHOLAS SHIRLEY</td>
<td>Tire Transporter</td>
<td>BOWIE</td>
<td>Unknown</td>
</tr>
<tr>
<td>TCEQ-Tires</td>
<td>ROACH TIRE</td>
<td>Tire Transporter</td>
<td>LAMAR</td>
<td>Unknown</td>
</tr>
<tr>
<td>TCEQ-Tires</td>
<td>SANDY DAVIS</td>
<td>Tire Transporter</td>
<td>BOWIE</td>
<td>Unknown</td>
</tr>
<tr>
<td>TCEQ-Tires</td>
<td>TITAN TRANSPORTATION</td>
<td>Tire Transporter</td>
<td>LAMAR</td>
<td>Unknown</td>
</tr>
</tbody>
</table>
Table 18. Planned Handling, Storage, Transportation, Treatment, and Resource Recovery Permits, Registrations, Notices of Intent, and Other Identified Facilities (as of 6/23/21)

<table>
<thead>
<tr>
<th>Source</th>
<th>Site Name</th>
<th>Type</th>
<th>County</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCEQ-MSW</td>
<td>BOWIE CASS REFUSE LANDFILL</td>
<td>Landfill (Type 1)</td>
<td>CASS</td>
</tr>
<tr>
<td>TCEQ-NOI</td>
<td>SANITATION SOLUTIONS COLLECTION STATION</td>
<td>Citizens Collection Station</td>
<td>LAMAR</td>
</tr>
</tbody>
</table>
Attachment III.D. Description and Assessment of the Adequacy of Existing Solid Waste Management Facilities & Practices, and Household Hazardous Waste Programs

Note: This attachment is not called for in the original Volume II form but is nonetheless included. It is similarly noted at the beginning of the relevant section of Volume II that this attachment has been included.

Introduction
As part of the 20-year planning process, TCEQ requires an assessment of the adequacy of existing facilities and practices.

Both facility and practices adequacy are important to ensure the region’s facilities are able to properly manage solid waste.

The purpose of this section is to explain how we assessed the region’s facility and practices adequacy.

Out of all facilities and practices in the region, none were deemed inadequate due to violations and TCEQ investigations in 2019.

This attachment will detail how we determined adequacy.

Methods
IGI used TCEQ landfill and processor data which was then analyzed according to their rating calculated by the agency. IGI searched the TCEQ Municipal Solid Waste Disposal page and analyzed the table with facility offenses under Effective Enforcement Orders. The formal criteria TCEQ has developed were used to determine if any facilities were inadequate. Citizen complaints were not used in this analysis because formal investigations would be necessary to validate or invalidate those complaints.

Surveys and regular meetings were also used to elicit feedback related to all aspects of solid waste management in the region, including facilities and practices.
Attachment III.E. Assessment of Current Source Reduction and Waste Minimization Efforts, Including Sludge, and Efforts to Reuse or Recycle Waste

Introduction
As part of the 20-year planning process, TCEQ requires an assessment of current efforts related to source reduction and waste minimization, including efforts to reduce sludge, and efforts to reuse and recycle.

The EPA defines source reduction as

“Reducing waste at the source, and is the most environmentally preferred strategy. It can take many forms, including reusing or donating items, buying in bulk, reducing packaging, redesigning products, and reducing toxicity.”

Waste minimization is defined as “the use of source reduction and/or environmentally sound recycling methods prior to energy recovery, treatment, or disposal of wastes.” TCEQ defines sludge as “semi-solid residues from industrial or water treatment processes.”

EPA defines recycling as “the process of collecting and processing materials that would otherwise be thrown away as trash and turning them into new products.”

This attachment will assess the availability of source reduction, waste minimization, reuse, recycling, and sludge reduction efforts based on the existence of programs or mention of activities on municipal websites. Assessing the effectiveness of those programs or activities, however, is beyond the scope of this report.

Understanding current efforts and their potential impacts is critical to making decisions about where to focus future efforts. All the current activities have the potential to extend the life of the region’s landfills, as well as reduce the effects of climate change. Further, sludge recycling can present numerous agricultural benefits.

The purpose of this section is to assess the region’s efforts related to source reduction and waste minimization and recycling or reuse.

Current reuse and recycling efforts are lacking, though there is room for improvement. Source reduction and waste minimization efforts are uncommon throughout the region, but sludge composting is occurring.

The rest of this attachment will outline the methods we used to make these assessments, show the results of our data collection (including a table showing efforts by county), provide a discussion of those results, and offer a conclusion.

Methods

We used internet research, and in some cases followed up via telephone, to gather information regarding the availability of programs to minimize the materials going to the landfill. We conducted this research for the county seats in each county in the region as an indicator of the availability of efforts within each county.

SOURCE REDUCTION, WASTE MINIMIZATION, RECYCLING, AND REUSE

To assess current source reduction and waste minimization efforts, and efforts to reuse or recycle waste in the region, we performed a search of city websites for each county seat of the region’s nine counties. Searches were not exhaustive and included only programs and activities listed on city websites. If the city’s website did not mention any programs or activities, we assumed there were none. Because there could be efforts occurring that were not on websites, this assessment likely underrepresents the actual efforts. Many county seat websites do not have information about solid waste activities, so we also looked at TCEQ- and COG-provided facility data to find facilities that participate in recycling or reuse in the county seats.

SLUDGE

Regional efforts to reduce and reuse sludge were evaluated using a variety of methods. We identified composting entities that were listed within TCEQ-maintained publicly available Municipal Solid Waste Facilities data and performed internet research to find information on entity websites regarding the usage of sludge in their composting process. We also made calls to composting facilities.

Results

Based on the distinct methods for these assessments, the results for source reduction, waste minimization, recycling and reuse are presented separately from sludge.

SOURCE REDUCTION, WASTE MINIMIZATION, RECYCLING, AND REUSE

Source reduction and waste minimization. We were unable to find source reduction and waste minimization programs for any of the county seats.

Recycling and reuse. We were able to find programs for 2 of the 9 county seats. Those two counties represent about 30% of the region’s 2019 population, though again, looking at programs listed on the county seat’s website may underrepresent...
activities occurring in the entire county. This also overestimates the number of people affected by these services because we took the entire county’s population, not only the county seat. Although we grouped recycling and reuse efforts together, we primarily found efforts related to only recycling. This could be because most reuse opportunities are not typically handled by cities or counties and are done through entities such as Goodwill or Salvation Army.

Table 19. Recycling or Reuse Efforts by County Seat

<table>
<thead>
<tr>
<th>County</th>
<th>County seat</th>
<th>Recycling or Reuse Efforts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bowie</td>
<td>New Boston</td>
<td>No programs found</td>
</tr>
<tr>
<td>Cass</td>
<td>Linden</td>
<td>No programs found</td>
</tr>
<tr>
<td>Delta</td>
<td>Cooper</td>
<td>No programs found</td>
</tr>
<tr>
<td>Franklin</td>
<td>Mount Vernon</td>
<td>No programs found</td>
</tr>
<tr>
<td>Hopkins</td>
<td>Sulphur Springs</td>
<td>No programs found</td>
</tr>
<tr>
<td>Lamar</td>
<td>Paris</td>
<td>• Collects brush for compost</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Offers recycling drop off site</td>
</tr>
<tr>
<td>Morris</td>
<td>Daingerfield</td>
<td>No programs found</td>
</tr>
<tr>
<td>Red River</td>
<td>Clarksville</td>
<td>No programs found</td>
</tr>
<tr>
<td>Titus</td>
<td>Mount Pleasant</td>
<td>Offers recycling drop off site</td>
</tr>
</tbody>
</table>

SLUDGE

Internet research led to phone calls with employees of composting entities, including the Stouts Creek Compost Co. and the Texarkana Water Utility Composting Division. The Stouts Creek Compost Co. accepts sludge biosolids from both private and municipal generators. According to the Texarkana Water Utility Composting Division, they compost less than half of overall municipal wastewater inventory.

Based on discussions with employees of composting entities in the State, many bureaucratic and financial challenges present themselves upon establishing a composting operation, which is likely why reuse of biosolids is often concentrated in urban areas. Compost sites are highly capital-intensive to start up and require...
ironclad stormwater plans alongside extensive permits to accept and treat sludge. Further, there are societal constraints around this process due to concerns amongst members of the public related to the safety of biosolid compost.

Discussion

This section of the attachment provides an analysis of the results organized by source reduction and waste minimization, recycling and reuse efforts, and sludge reduction efforts.

SOURCE REDUCTION, WASTE MINIMIZATION, RECYCLING, AND REUSE

Source reduction and waste minimization efforts are not occurring. However, because we recorded programs and activities found only on city websites, some efforts towards source reduction and waste minimization were likely not noted. Compiling consistent data across the region could create a more accurate assessment of these efforts because it would not rely solely on city websites to convey the information. Ensuring that all available waste diversion activities are publicized broadly and consistently is essential to increase participation and the diversion rate.

Current reuse and recycling efforts are slightly more common, though the majority of county seats did not have any programs. Again, this characterization is based on the presence or the number of programs and activities occurring, not the actual effectiveness or results of them.

SLUDGE

We identified two entities that compost biosolids in the region, though it is unclear how much is being composted.

Conclusion

In the region, there are few reuse and recycling opportunities available to residents, and there are no opportunities indicated for source reduction and waste minimization. Sludge composting is available to some residents in the region.

Recycling and reuse efforts in the region are currently lacking, but that leaves many opportunities for improvement. Counties that have fewer or no programs and activities can look to the counties that participate in more efforts as an
example. Using these models in the region could help counties implement or expand their own programs and activities. Even though residential population is projected to decline, reuse and recycling efforts should continue and expand where needed so that less waste is landfilled. Additionally, source reduction and waste minimization efforts need to increase so that less trash is generated. The existing composting facilities should continue to expand their sludge composting programs.

In the future, creation of a regional data sharing platform would benefit the region. This platform could provide a place for different jurisdictions to share ideas and best practices they have learned. Also, a regional platform including all active programs and activities would make an assessment such as this one easier in the future.
Attachment III.F. Identification of Additional Opportunities for Source Reduction and Waste Minimization, and Reuse or Recycling of Waste

Introduction
In addition to the requirement to assess current source reduction and waste minimization efforts in Volume II, Section III.E. Assessment of Current Source Reduction and Waste Minimization Efforts, Including Sludge, and Efforts to Reuse or Recycle Waste, as part of the 20-year planning process, TCEQ requires the identification of new opportunities for source reduction and waste minimization, and for reuse and recycling.

As opposed to the current efforts in the region, this attachment will address source reduction and waste minimization and reuse or recycling opportunities that could potentially improve current efforts.

All the opportunities identified have the potential to extend the life of the region’s landfills by reducing waste generated and landfilled. The broad categories also fit into the EPA’s Waste Management Hierarchy, with Source Reduction and Reuse being the most preferred management methods, followed by Recycling/Composting. According to the EPA, “Source reduction can reduce the generation of methane”\(^{48}\) and can “save natural resources, conserve energy, [...] and save money for consumers and businesses,” and recycling can contribute to “supplying valuable raw materials to industry, creating jobs, stimulating the development of greener technologies, [...] and reducing the need for new landfills and combustors.”\(^{49}\)

The purpose of this attachment is to provide additional details and commentary related to the identification of additional opportunities required in Volume II, Section III.F.I Additional Opportunities for Source Reduction and Waste Minimization, Reuse and Recycling of Waste.

As shown in Volume II, Attachment III.E. Assessment of Current Source Reduction and Waste Minimization Efforts, Including Sludge, and Efforts to Reuse or Recycle Waste, there is room for improvement in the region regarding its efforts in both source reduction and waste minimization, and reuse and recycling. However, we primarily identified additional opportunities for source reduction and waste minimization because of the limited efforts in those areas.

In the rest of this attachment, we will cover the methods we used to identify additional opportunities, the results of what we found, and provide a brief discussion of what the results mean.

Methods
To identify additional opportunities for source reduction and waste minimization, and reuse or recycling, IGI talked to subject matter experts and conducted internet research. The majority of opportunities we identified are related to source reduction and waste minimization because we also considered the limited opportunities identified in Volume II, Attachment III.E. Assessment of Current Source Reduction and Waste Minimization Efforts, Including Sludge, and Efforts to Reuse or Recycle Waste.

Results
The primary results of the research are presented in Volume II, Section III.F.I. Additional Opportunities for Source Reduction and Waste Minimization, Reuse and Recycling of Waste.

As a summary, opportunities were identified for three categories with a focus on source reduction and waste minimization. In some instances, the opportunities were relevant to both reuse and recycling.
Table 20. Number of Opportunities for Source Reduction and Waste Minimization, and Reuse or Recycling of Waste Identified for Each Activity Type

<table>
<thead>
<tr>
<th>Category of Activity</th>
<th>Number of Opportunities Identified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Reduction and Waste Minimization</td>
<td>16</td>
</tr>
<tr>
<td>Reuse</td>
<td>6</td>
</tr>
<tr>
<td>Recycle</td>
<td>4</td>
</tr>
<tr>
<td>Reuse/Recycle</td>
<td>2</td>
</tr>
<tr>
<td>Total Opportunities</td>
<td>28</td>
</tr>
</tbody>
</table>

Discussion

The opportunities for each category of activity typically relate to specific types of materials that could be diverted or specific institutions and industries that may generate large amounts of waste that could be diverted.

Source reduction and waste minimization. The source reduction and waste minimization opportunities are wide-ranging. Some opportunities focus on specific waste types and others focus on specific institutions and industries. The institutions and industries that are identified are hospitals, prisons, restaurants, businesses, government, and schools. In general, most of the opportunities are related to food waste, which based on the CalRecycle research cited in the Generation section of Volume II, Attachment III.C. Solid Waste Management Activities,\(^{50}\) represents a large proportion of the Municipal solid waste. Additionally, city-wide recycling ordinances have been identified as an opportunity.

Reuse. The reuse opportunities are about specific waste types, but also specific industries. The materials are paint, shingles, and construction and demolition

debris. The industries that could engage in more reuse are construction, hospitals, and general offices.

Refrigeration. The recycling opportunities are similarly about specific materials: clothing/textiles, electronics, glass, and construction and demolition debris.

Conclusion

With room for improvement in source reduction and waste minimization, reuse, and recycling, the opportunities that have been identified provide multiple approaches from focusing on specific materials, like construction and demolition waste, or specific industries, like the restaurant industry.

As source reduction and reuse are the most preferred methods in the solid waste management hierarchy, these opportunities represent some of the best ways to manage waste in the region.

As specific waste types are reduced or significant reuse opportunities develop, the opportunities for source reduction will become more and more focused. Focusing on the most frequently generated and disposed of wastes first would be aided by more accurate disposal data.
Attachment III.G. Recommendations for Encouraging and Achieving a Greater Degree of Source Reduction and Waste Minimization, and Reuse or Recycling of Waste

Introduction
As part of the 20-year planning process, TCEQ requires recommendations that would achieve a greater degree of source reduction and waste minimization, and reuse or recycling.

These recommendations are about improving leadership and project implementation. They differ from the recommendations in Volume II, Section III.F.I. Additional Opportunities for Source Reduction and Waste Minimization, Reuse and Recycling of Waste because they are broad management best practices rather than specific ideas.

In this section we have identified recommendations that could improve all areas of the region's solid waste project management.

The purpose of this attachment is to provide additional commentary and details about the recommendations to achieve a greater degree of source reduction and waste minimization.

The solid waste field is very interconnected, so our recommendations promote broad practices that can be utilized to achieve better results in all areas of solid waste management.

In the rest of this attachment, we will describe the methods we used to come up with the recommendations, show the results of those methods, and discuss key points.
Methods

We used two methods to come up with recommendations, both of which will be described separately.

Previous goals survey. We created a simple survey that presented each objective of the previous Regional Solid Waste Management Plan and sent it to the members of the Solid Waste Advisory Committee (SWAC). They were asked to give themselves a letter grade (A, B, C, D, or F) on each objective and were provided a place to give additional feedback.

Best practices research. We were principally involved in the development of eight RSWMPs for 2022 – 2042, including the ATCOG. We used our access to multiple planning committees to identify best practices for implementing a region-wide solid waste management plan.

Results

The primary results are shown in Volume II, Section III.G, Table III.G. Recommendations for Encouraging and Achieving a Greater Degree of Source Reduction and Waste Minimization, and Reuse or Recycling of Waste.

We will not show the overall grade that each individual objective received. Instead, we will only show the grade that each goal received, based on its objectives’ grades. Additionally, we will also show the objectives that received the best and worst grade to better understand problems the region may have run into during the previous 20 years. It is important to note that 2 out of 11 members of the SWAC responded to this survey, so it does not fully represent the entire committee, but instead gives a general idea of the region’s accomplishments during the previous planning period.

Table 21. Previous Regional Solid Waste Management Goals and Corresponding Grade based on Survey Results

<table>
<thead>
<tr>
<th>Goal</th>
<th>Goal Description</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal 1</td>
<td>Encourage and promote funding availability for regional, sub regional, and local implementation of this plan</td>
<td>B</td>
</tr>
<tr>
<td>Goal</td>
<td>Goal Description</td>
<td>Grade</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>Goal 2</td>
<td>Promote source reduction efforts to decrease the amount of solid waste generated</td>
<td>B</td>
</tr>
<tr>
<td>Goal 3</td>
<td>Promote the maximum development of regional as well as local, integrated, convenient, collection systems</td>
<td>C+</td>
</tr>
<tr>
<td>Goal 4</td>
<td>Promote recycling efforts to decrease the amount of solid waste entering the waste stream</td>
<td>C-</td>
</tr>
<tr>
<td>Goal 5</td>
<td>Promote public education on integrated solid waste management</td>
<td>C+</td>
</tr>
<tr>
<td>Goal 6</td>
<td>Promote enforcement efforts to decrease illegal dumping</td>
<td>C+</td>
</tr>
<tr>
<td>Goal 7</td>
<td>Promote composting of yard waste and sludge within the region</td>
<td>C+</td>
</tr>
<tr>
<td>Goal 8</td>
<td>Utilize existing facilities to the extent environmentally and economically feasible</td>
<td>C+</td>
</tr>
<tr>
<td>Goal 9</td>
<td>Promote development of integrated solid waste management systems</td>
<td>C+</td>
</tr>
<tr>
<td>Goal 10</td>
<td>Encourage sub-regions to allow for more cost-effective local plans and regionalization of facilities</td>
<td>C+</td>
</tr>
<tr>
<td>Goal 11</td>
<td>Utilize the MSW permit application process to determine conformance with the regional plan, mindful of environmental and other constraints that impact the siting of future solid waste facilities</td>
<td>C+</td>
</tr>
</tbody>
</table>

Cumulative Grade: C+
Table 22. Previous Regional Solid Waste Management Objectives Tied for the Highest Grade based on Survey Results

<table>
<thead>
<tr>
<th>Objective</th>
<th>Objective Description</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal 1, Objective 1</td>
<td>Pursue continued funding through available sources</td>
<td>B</td>
</tr>
<tr>
<td>Goal 2, Objective 1</td>
<td>Reduce amount of materials entering the waste stream</td>
<td>B</td>
</tr>
</tbody>
</table>

Table 23. Previous Regional Solid Waste Management Objectives Tied for the Lowest Grade based on Survey Results

<table>
<thead>
<tr>
<th>Objective</th>
<th>Objective Description</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal 4, Objective 2</td>
<td>Increase recycling centers throughout the region</td>
<td>D+</td>
</tr>
<tr>
<td>Goal 4, Objective 3</td>
<td>Coordinate recycling markets throughout the region</td>
<td>D+</td>
</tr>
</tbody>
</table>

Discussion

Based on the cumulative grade of a C+ shown in Table 21, the SWAC achieved their goals with about an average grade but did not excel at them. However, we again want to stress that the two respondents do not represent the entire committee.

The highest graded goals were Goals 1 and 2, and the two highest graded objectives were in those goals. Those goals were related to seeking funding and increasing source reduction. In the regional plan, we offer steps related to continue addressing those issues.

The lowest graded goal involved promoting recycling efforts, and both lowest graded objectives were about recycling. We offered steps with new ideas to increase recycling.

Finally, the survey of committee members did illuminate some of the committee’s strengths and weaknesses, but we were not able to identify all of them based on their previous successes. This was due, in part, to the fact that many committee members were not a part of the development of the previous plan and were not necessarily there throughout the entire planning period. As a result, we developed
our recommendations based on our experiences and conversations with the ATCOG Solid Waste Advisory Committee and the committees of seven additional COGs. Through this access to multiple planning committees, we identified five best practices for implementing a region-wide solid waste management plan. These principles are not related to only source reduction and waste minimization and recycling or reuse, but instead are key to successful solid waste management.

These recommendations also influenced the priorities to address concerns in Volume II, Section III.I, Table III.I. Solid Waste Management Concerns and Priorities and the goals, objectives, and action steps in Volume II, Sections III.L and III.N, Tables III.L. Regional Goals and Objectives and III.N. Plan of Action and Timetable for Achieving Specific Goals and Objectives.

Conclusion

Separate aspects of solid waste management are connected, with some entities that perform more than one function or have more than one role. Because of that connectedness, broad recommendations or practices are effective in improving overall waste management, as well as individual aspects of management.

These recommendations influenced the regional action plan, particularly the objectives and action steps.

In the future, the COG should continue to apply these recommendations and practices to its solid waste management. They should also remain open to accepting and trying new practices as technology progresses and new opportunities become available.
Attachment III.H. Identification of Public and Private Management Agencies and Responsibilities

Introduction
As part of the 20-year planning process, TCEQ requires identification of public and private entities involved in solid waste management. The culmination of these activities represents the larger picture of solid waste management in the region.

TCEQ does not provide specific parameters or guidelines for the entities, so we identified entities with a wide range of responsibilities.

We categorized entities into several different groups and considered the role each could play. Examples of such roles could be partners to the COG, educators to residents or businesses, or solid waste facility operators.

The purpose of this attachment is to provide lists of public and private entities involved in waste management, as well as a broad categorization of the type of responsibility each has. It will also provide additional details and commentary related to the identification of public and private entities.

Entities such as the ones we have identified will play a critical role in the region’s waste management in the next 20 years. These entities could be an active part of partnerships, educational programs, and efforts to reduce waste in the region.

In the rest of this attachment, we will explain the methods we used to identify the entities, provide comprehensive lists of each entity type in the results, and provide a discussion of those results.

Methods
IGI gathered information about the entities involved in waste management within the COG region using a variety of methods, including use of multiple TCEQ data sources and online searches for additional relevant groups. We grouped the entities and facilities we identified into 9 broad categories, which are listed alphabetically. We will briefly describe the reason we chose the categories we did and explain how we found the agencies within them. We also used data we
collected about the region to provide summary numbers of how many large volume commercial generators there are.

Citizens Collection Stations. We included citizens collection stations because of their role in solid waste management providing collection options for local residents.

IGI used TCEQ provided data on citizen collection stations that have submitted a Notice of Intent to Operate (NOI).

Composting Facilities. We included composting facilities because of their role in transforming organic waste into a beneficial material.

IGI used TCEQ provided data on composting facilities that have submitted an NOI, as well as TCEQ provided processor data.

Environmental Stakeholders. In this group, we included agencies that may be involved with goals and projects that relate closely to solid waste management, making them potential partners in clean up events or educational campaigns.

IGI used a list of Keep Texas Beautiful affiliates to find members in the region. We also did internet searches to find environmental non-profits within the region.

Haulers. We included agencies involved with waste hauling because they could have a direct impact on their customers through cart tagging or waste audits. They also have a large role in the transport of waste.

IGI performed extensive internet searches to find private haulers and municipally operated public services. We included both small and large-scale private operators.

Landfills. Agencies operating landfills in the region were included because of their significant role in solid waste management.

IGI used TCEQ landfill data from 2019. We included the agencies owning each landfill, not the facility name.

https://ktb.org/images/programs/affiliatenetwork/Affiliate_list_WEB.pdf
Municipal Utility Districts (MUDs). We included MUDs in the region because of their potential to administer some utility services and provide some environmentally related services.

IGI used a map52 created by the TCEQ to find MUDs in the region.

Processors. Processors were included because of the large roles they play in waste diversion and waste treatment, as well as an educational role they could play, such as offering tours of their facilities to aid public understanding.

IGI used TCEQ processor data from 2019, including tire processors. We also performed supplemental internet searches.

Recyclers. Recyclers were included because of the large roles they play in waste diversion, as well as an educational role they could play, such as offering tours of their facilities to aid public understanding.

TCEQ does not provide much data on recycling, so the majority of these were found from internet searches. We included a wide range of agencies that perform recycling services. These are mostly private entities and vary greatly in size.

Recycling Facilities. We included recycling facilities because of their role in solid waste management through maximizing resource use.

IGI used TCEQ-provided data on recycling facilities that have submitted an NOI.

Tire Handlers. We included registered scrap tire handlers because of the problems associated with tire disposal. These handlers could play a role in tire reduction efforts or efforts to beneficially reuse tires.

We used TCEQ active scrap tire registration data from 2019 to find tire handlers.

Results
We have included the total number of entities we identified for each type in Table 24. The rest of this section will list each entity, as well as provide a short description of each type. Because some entities perform more than one function,

some of them will show up in more than one category. These entities will be marked by asterisks if they appear more than once. The number of asterisks indicates the number of times an entity appears across all lists. Table 25 shows the entities that appear three or more times to give an idea of the larger entities in the region.

Table 24. Total Number of Solid Waste Management Entities by Type

<table>
<thead>
<tr>
<th>Entities</th>
<th>Number Identified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citizens Collection Stations</td>
<td>1</td>
</tr>
<tr>
<td>Composting Facilities</td>
<td>1</td>
</tr>
<tr>
<td>Environmental Stakeholders</td>
<td>10</td>
</tr>
<tr>
<td>Haulers</td>
<td>19</td>
</tr>
<tr>
<td>Landfills</td>
<td>3</td>
</tr>
<tr>
<td>Municipal Utility Districts</td>
<td>3</td>
</tr>
<tr>
<td>Processors</td>
<td>11</td>
</tr>
<tr>
<td>Recyclers</td>
<td>6</td>
</tr>
<tr>
<td>Tire Handlers</td>
<td>17</td>
</tr>
</tbody>
</table>

Table 25. Solid Waste Management Entities with Three or More Responsibilities

<table>
<thead>
<tr>
<th>Entity</th>
<th>Category Type</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bar Recycling Enterprises</td>
<td>Processors, recyclers, tire handlers: processing, recycling</td>
<td>4</td>
</tr>
<tr>
<td>Waste Management</td>
<td>Haulers, landfills, processors, recyclers</td>
<td>4</td>
</tr>
</tbody>
</table>

CITIZENS COLLECTION STATIONS

This facility has submitted a Notice of Intent (NOI) to operate a Citizens Collection Station to TCEQ. Citizens Collection Stations are drop-off sites, typically in rural areas, where waste is brought before being transported to a facility. This station is
not permitted or registered, so there is very little information about it other than the fact that it has submitted an NOI.

- City of Dekalb Citizens Collection Station

COMPOSTING FACILITIES

These facilities have submitted a Notice of Intent (NOI) to operate a composting facility to TCEQ. These facilities are not permitted or registered, so there is very little information about them other than the fact that they have submitted an NOI. Compost facilities use organic materials to create soil amendments, fertilizers, or similar products.

- Henk Post Farm
- New South Regional Plant
- Stouts Creek Compost

ENVIRONMENTAL STAKEHOLDERS

Environmental stakeholders include entities that may have solid waste related interests, making them potential partners. All cities in the region are considered environmental stakeholders, but we do not include them in this list. See Attachment I. Geographic Scope for the full list of cities.

- Environmental Protection Agency (EPA)
- Franklin County (Water District)
- Natural Resource Conservation Service- USDA
- Northeast Texas Municipal Water District
- Red River Authority of Texas
- Red River County
- Southwest Arkansas Planning and Development District
- Sulphur River Basin Authority
- Texas Commission on Environmental Quality (TCEQ)
- Titus County

HAULERS

Haulers includes trash and junk transporters that operate in the region.

- ASAP Site Services
- Countryside Disposal LLC
• DA-BEST Sanitation
• Dra’s Junk Hauling
• Edmonson Trash Service
• RBT Disposal
• Red Line Dumpster Rental
• Republic Services
• Richardson Waste Inc
• Rural Sanitation
• Sanitation Solutions
• Tabor Sanitation Services
• The Texan Dumpster
• Titan Transportation
• Trashy Waste-County Waste Collections LLC
• Triple T Dumpster Rental & Junk Removal
• Waste Management ****
• We Clean Out
• Zters

LANDFILLS
Landfills includes the operators of TCEQ permitted landfills. It does not include the name of each landfill, only the owner/operator.

• Blossom Prairie Landfill
• Pleasant Oaks Landfill
• Waste Management ****

MUNICIPAL UTILITY DISTRICTS (MUD)
Municipal Utility Districts are political subdivisions that can provide utility related services.

• Macedonia-Eylau MUD 1
• Delta County MUD
• Lamar County Water Supply District
PROCESSORS
Processors includes entities or facilities involved in processes that transport materials, reduce hazards associated with certain materials, or are involved with resource recovery. In some cases, it may be the name of a facility, but in most cases it is the name of the company.

• AAA recycling **
• Bar Recycling Enterprises ****
• City of Paris Compost
• City of Texarkana **
• East Texas Recycling **
• Mount Pleasant Recycling and Scrap **
• Reed’s Tire Recovery and Recycling **
• South Side Scrap **
• Stouts Creek Compost **
• Tri-state Iron and Metal Company **
• Waste Management ****

RECYCLERS
Recyclers includes entities involved in reuse or recycling of materials. Again, this could include the name of facilities, but mostly is the company or owner.

• AAA recycling **
• Bar Recycling Enterprises ****
• City of Paris
• City of Paris Compost **
• East Texas Recycling **
• Waste Management ****

TIRE HANDLERS: PROCESSING, RECYCLING
This company is listed as a tire handler involved with processing and recycling, classified by TCEQ.

• Bar Recycling Enterprises ****
• Benton Rainey Tire & Recovery
• Braswell
TIRE HANDLERS: TRANSPORT

These companies are listed as tire handlers involved with transportation, classified by TCEQ.

- Arthur Hill Jr
- Attaway Tire Transporting
- Bar Recycling Enterprises ****
- Braswell Services
- East Texas Tire & Brake
- Four States Logistics
- Jeffy Pitcock
- Johnny Smith & Son
- JR & CR
- M JR Tire Shop
- Nicholas Shirley
- Roach Tire
- Sandy Davis
- Titan Transportation

We have included the number of four large volume generators to give a general idea of potential areas for partnerships. For example, outreach about source reduction in schools could have a large impact and reach a large amount of people. While there are certainly other large volume generators in the region, these may represent potential partners for waste reduction and communication initiatives.

Table 26. Number of Select Large-Volume Institutions in the Region

<table>
<thead>
<tr>
<th>Institution</th>
<th>Number in Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colleges53</td>
<td>5</td>
</tr>
</tbody>
</table>

Discussion

There are many entities in the region with solid waste related responsibilities. Some entities perform multiple functions, for example processors. The list we provide is likely not exhaustive because we included entities that we found in TCEQ data or through internet searches. If an entity did not put any of its information online, we did not include it. Our list shows a large number of entities that the COG could approach for specific projects. For example, if the region is addressing tire waste, they have a starting list of tire handlers to work with.

Although we note that we included entities of varied size, we give no indication of which ones are small or large scale. We also give no indication of the scope of responsibilities each entity is involved in. However, we did note entities that play a role in more than one category of waste activities, marked by asterisks in the Results. These asterisks give an idea of the larger stakeholders in the region. Of these entities, two of them are involved in three or more different categories, shown in Table 25. Both of these are private entities, one of which is prominent companies not only in the region, but also across the entire state (Waste Management).

Building relationships and increasing collaboration with these entities will help the region better understand its regional solid waste activities, as well as help achieve action plan goals.

Conclusion

We have identified many entities that perform a variety of solid waste related tasks. These entities could play a large role in helping the region meet its plan goals and find solutions for its solid waste related problems.

The wide range of entities chosen reinforces the idea that the solid waste field is large and interconnected, making it important to consider the unique roles of all players.

In the future, the region should maintain and update this list of entities, along with trying to develop contacts within these entities. Continually collaborating with a wide range of people involved in solid waste management will allow the region to be able to better tackle its issues.
Attachment III.I. Identification of Solid Waste Management Concerns and Establishment of Priorities for Addressing Those Concerns

Introduction

As part of the 20-year plan update, TCEQ requires identification of concerns related to solid waste management, as well as priorities or actions to address those concerns.

Identification of these concerns and priorities were critical to developing the goals, objectives, and action steps for the region.

Concerns in the region are related to broad solid waste related topics. The priorities to address those concerns are general actions that the region can take to help with management of its concerns.

The purpose of this attachment is to provide additional details and commentary about the reasoning behind the concerns and priorities identified in Volume II, Section III.I, Table III.I.I. Solid Waste Management Concerns and Priorities.

Because the concerns and priorities heavily influenced the region’s solid waste management plan, it is important that the COG understand the context and reasoning behind them.

The rest of this attachment will describe the methods we used to identify concerns and priorities, show the results of the methods used, provide a discussion, and give a conclusion.

Methods

We identified regional concerns using a variety of techniques, each of which will be further explained.

SURVEY

At the beginning of this project, we created and distributed a survey to the region’s Solid Waste Advisory Committee (SWAC) members to understand their current solid waste activities and priorities. This Solid Waste Current Activities
and Priorities Survey played a large role in determining concerns and how we prioritized them. In this survey, we divided the content into six sections that were influenced by TCEQ grant categories. The sections were

- Recycling and Waste Reduction,
- Illegal Dumping,
- Solid Waste Plans,
- Household Hazardous Waste Management,
- Technical Studies, and
- Education and Training.

In each section we asked questions about current activities in the region, as well as future activities members would be interested in. At the end of the survey, we asked respondents to rank all six of the sections in order of importance. The results of the combined ratings of all respondents played a role in the order of what we referred to as Areas of Concern which were key to developing the 2022 – 2042 Regional Solid Waste Management Plan. Responses to individual survey questions also influenced the concerns. It is important to note that 5 of 11 SWAC members responded to the survey, so not all members are represented in our results.

INTERVIEWS

We conducted subject matter expert interviews to better understand common concerns across the solid waste field. We also facilitated multiple discussions during SWAC meetings to understand issues specifically related to the region.

DATA ANALYSIS

We considered all of the data we collected as part of the creation of this plan and used relevant parts of that data to inform these concerns. We analyzed several relevant data sources, including TCEQ provided landfill, facility, and funding data, municipal ordinances, and the Census.

Results

We present the final results of each method (e.g., survey, interview) separately. First, we will show relevant survey results. Next, we will describe key takeaways from our interviews and SWAC meetings. Then, we will touch on relevant aspects of the data collected during other parts of this plan, and finally we will show a table with all the concerns and priorities.
SURVEY

The survey we developed was customized for every respondent who received it to eliminate irrelevant questions and make the best use of respondents’ time. One example of how the survey was customized was based on what entity the respondent represented. For example, on questions that ask about “your entity,” such as in Figure 18, respondents would not have seen “your entity.” Instead, they would have seen the name of the city, county, or organization they represent.

We will not show all of the results of the survey but will only show results that were the most relevant to the development of the concerns. These results also show some questions where a high number of respondents chose the same answer, such as in Figure 15 where 5 out of 5 chose the same answer. Agreement among the respondents helps reveal what issues are the most important in the region.

Figure 14 shows Education and Training as the most agreed upon priority.

Figure 14. Survey Responses of Regional Priorities
Figure 15 shows that all respondents were interested in holding more HHW collection events.

Figure 15. Survey Responses to Question: Would you like to offer more HHW collection events?

Figure 16 shows specific items that respondents were interested in increasing diversion opportunities for, all of which are considered household hazardous wastes or what we consider problematic wastes.

Figure 16. Survey Responses to Question: Would you like to expand waste diversion opportunities for these specific items?
Figure 17 shows no respondents felt like illegal dumping crimes receive adequate prosecution.

![Figure 17](image)

Figure 17. Survey Responses to Question: Do you feel illegal dumping crimes are adequately prosecuted in your area?

Figure 18 shows that all respondents would like to expand illegal dumping coordination.

![Figure 18](image)

Figure 18. Survey Responses to Question: Would you like to expand illegal dumping coordination within your entity?
5 respondents answered that they would like to explore other options to address illegal dumping. Figure 19 shows these other options, including prevention and enforcement measures. Cameras, education, and an illegal dumping reporting app were the top three choices.

![Figure 19. Survey Responses to Question: Would you like to explore other actions to address illegal dumping in the area?](image)

INTERVIEWS

IGI conducted several interviews with industry experts. In one of these interviews, we learned from a landfill engineer that a 35–50-mile roundtrip is the maximum economical distance garbage trucks can drive to drop off their wastes at either a landfill or transfer station.

During regular SWAC meetings, IGI gave presentations regarding the plan update and used the meetings as a place to facilitate discussion. In these meetings we learned of specific problems, such as difficulties with holding HHW events and with illegal dumping enforcement, in part due to funding.

DATA ANALYSIS

We have noted several things we came across during our research and data collection that directly influenced the Areas of Concern. Each of these specific points are described below.
During our research, we frequently visited city and county websites of members of the region. Through this, we concluded that many of these government websites do not have adequate information about solid waste related activities, such as where to dispose of certain materials within the region. We believe that these websites should have accurate and timely solid waste related information readily available to residents.

Based on the drop-off facilities we identified as part of Volume II, Attachment III.C. Solid Waste Management Activities, we performed specific geographic analysis for the region to determine residents’ proximity to landfills, transfer stations, or other drop-off locations to dispose of their wastes.

There are no permanent household hazardous waste drop-off centers, and respondents indicated that there are not typically collection events. Although HHW makes up a small percentage of the waste stream, those materials could have a harmful impact, increasing the importance of providing safe ways to dispose of them.

As mentioned in several other Attachments, a regional data sharing platform would help the region with future data collection activities, as well as keep track of their current data and facilities.

CONCERNS AND PRIORITIES

From all of our analyses we identified four primary concerns. Table 27 shows the concerns and priority methods to address the concerns. Both the concerns and priorities will be explained in detail in the Discussion.

Table 27. Concerns and Priorities to Address Concerns

<table>
<thead>
<tr>
<th>Concerns</th>
<th>Priorities to Address Concerns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid waste literacy</td>
<td>Improve community participation, provide education</td>
</tr>
<tr>
<td>Illegal dumping</td>
<td>Collect data, increase illegal dumping enforcement, increase illegal dumping prevention, improve access, improve community participation, provide education</td>
</tr>
<tr>
<td>Problematic wastes (including HHW)</td>
<td>Collect data, improve access, provide education</td>
</tr>
</tbody>
</table>
Concerns | Priorities to Address Concerns
---|---
Funding | Collaborate, improve access, optimize funding decisions

Discussion

This section will be separated by concerns and priorities. We will provide context and details about both.

CONCERNS

Based on the data described in Results, we have identified four regional concerns which are described below in more detail. Refer to Table 27 to see all concerns with their corresponding priorities.

Solid waste literacy. The Education and Training topic was ranked the highest in the survey, showing its importance to the SWAC. We also noted the overall lack of timely, useful information on municipal websites. Solid waste literacy is unique because it also influences the rest of the concerns, which were addressed in the new objectives and action steps.

Illegal dumping. This section was ranked the second highest in the survey. Figure 17 shows that no respondents felt illegal dumping crimes were adequately prosecuted, and Figure 18 show that all respondents would like to expand illegal dumping coordination within their city/county/CUG. Figure 19 shows committee interest in expanding illegal dumping prevention and enforcement through a variety of methods.

Problematic wastes (including HHW). The Household Hazardous Waste Management topic was ranked third in the survey. Figure 15 shows that respondents were interested in expansion of HHW collection activities. In Figure 16 respondents chose items they would like to expand diversion for. Most chose batteries, motor oil, and paints, which are household hazardous wastes, showing the need for increased diversion opportunities for HHW. Along with choosing other forms of HHW, respondents also chose electronic waste and scrap tires, items that pose unique disposal issues, which is why we broadened this concern to Problematic Wastes. We also considered the overall shortage of known drop-off centers and collection events for these wastes in the region and the extra environmental problems resulting from improper handling of problematic wastes.
Funding. During SWAC meetings, members shared that their region often faces difficulties in holding events or clean ups partly due to available funding.

PRIORITIES

For each of the concerns identified, we developed nine broad priorities. This was not necessarily a linear process—we often synthesized the information from multiple sections of the Volume II form, related attachments, other sources, and discussions which helped to see what the region ought to prioritize to address their concerns. The priorities are very similar to the objectives for the same reason. We listed the priorities alphabetically. In some cases, these priorities are repeated across multiple concerns. Refer to Table 27 to see all concerns with their corresponding priorities.

Collaborate. COG-wide collaboration and communication are important to ensure that all members of the region are working towards the same solid waste goals, which addresses all concerns. Collaboration could also help stretch available funding.

Collect data. Data collection is a priority to address Illegal Dumping and Problematic Wastes concerns. Continually collecting and updating data allows for informed decision making. Examples of where to focus data collection are included in Volume II, Attachment III.N. Recommended Plan of Action and Associated Timetable for Achieving Specific Goals and Objectives.

Increase illegal dumping enforcement. This priority is only for the Illegal Dumping concern. It involves communication between members of the solid waste field and law enforcement officers so that illegal dumping crimes receive adequate attention. More details are in Volume II, Attachment III.N. Recommended Plan of Action and Associated Timetable for Achieving Specific Goals and Objectives.

Increase illegal dumping prevention. This priority is only for the Illegal Dumping concern and includes implementation of common illegal dumping deterrents based on data collection as a related priority.

Improve access. This priority shows up in three of the concerns, with customization for each. In the Illegal Dumping concern, it is to improve access to solid waste drop-off opportunities, and for Problematic Wastes, the specific objective is to improve access to responsible disposal options. For the Funding concern, improved access could reduce the amount of illegal dumping, which would save money as less clean ups are needed. Improving access is essential...
because education about good solid waste practices is less useful if residents have no opportunity to participate in them. Details about where to focus efforts to improve access are in Volume II, Attachment III.N. Recommended Plan of Action and Associated Timetable for Achieving Specific Goals and Objectives.

Improve community participation. To address the Solid Waste Literacy and Illegal Dumping concerns, we recommend improving community participation by expanding the number and diversity of people and groups involved. To address Funding, improved communication could gather volunteers to help at events or facilities. More specific ideas about how to improve community participation are in Volume II, Attachment III.N. Recommended Plan of Action and Associated Timetable for Achieving Specific Goals and Objectives.

Lead. Strong leadership at the COG level could encourage cities and counties to take steps that would address all of the concerns.

Optimize funding decisions. Making optimal funding decisions addresses the Funding concern, as well as all other concerns because the region will be able to accomplish more if it stretches funding.

Provide education. Providing education addresses all of the concerns except for Funding. In some instances, the education should be broad, and in others it should target a specific audience. Consistent messaging about the specific concerns in solid waste management is necessary to keep residents informed about their opportunities and best practices. Details about providing education are in Volume II, Attachment III.N. Recommended Plan of Action and Associated Timetable for Achieving Specific Goals and Objectives.

Conclusion

A lot of different research components influenced the identification of concerns and priorities to address the concerns.

These concerns and priorities heavily influenced the action plan for the region, making them an important starting point to fully understand the action plan.

In the future, the region should closely monitor its committee member feedback, solid waste data, and success of the scheduled activities to determine if the concerns identified here require changes. As certain parts of this plan are implemented, we expect that the region’s specific concerns will change accordingly. Also, as mentioned in previous attachments, a regional platform
including all active programs, activities, and solid waste data would allow for the region to make data driven decisions about its concerns and priorities.
Attachment III.L. Regional Goals and Objectives, Including Waste Reduction Goals

Note: This attachment is not called for in the original Volume II form but is nonetheless included. It is similarly noted at the beginning of the relevant section of Volume II that this attachment has been included.

Introduction

As part of the 20-year planning process, TCEQ requires COGs to establish regional goals and objectives meant to be accomplished during the 20-year planning period.

The goals and objectives are a large part of the regional action plan, which is an important tool for the COG to use as it navigates the next 20 years. The action plan provides a roadmap for the region to follow and to gauge its accomplishments. Understanding the goals and objectives and the reasoning behind them will make it easier for the region to fully implement them.

The purpose of this attachment is to provide the additional details, background, and rationale that informed the creation of the goals and objectives.

The goals and objectives are an important tool for the COG, so it is equally important to understand the data and reasoning behind them.

The rest of this document will describe the methods we used to create the goals and objectives, touch on the results, and provide a discussion of key points.

Methods

All of the data collection and research that went into the creation of this plan influenced the goals and objectives.

An initial draft of the goals, objectives, and action steps were shared with the Solid Waste Advisory Committee in order to gain feedback on the regional action plan. Any comments and feedback were integrated into the action plan to ensure the best possible plan.

Additionally, a draft of the goals, objectives, and action steps were shared with the public to further elicit feedback.
Results

The primary results are in Volume II, Section III.I, Table III.I. Regional Goals and Objectives. This section will contain a summary of those results.

A total of four goals and 19 objectives were developed with an average of about five objectives per goal. All four goals are intended to occur throughout the entire planning period. More specific timetables will be associated with action steps in Volume II, Attachment III.N. Plan of Action and Timetable for Achieving Specific Goals and Objectives.

Three of the four goals center on integrated solid waste management with the fourth goal highlighting the importance of leadership and collaboration to ensure plan success.

Figure 20. Diagram of Regional Solid Waste Management Plan Goals

There are some objectives that are repeated in multiple goals. This was done purposefully—to make them easier to remember, as well as hopefully easier to accomplish—because of their synergy. Once the region makes progress towards a particular objective the first time, it will be easier to successfully implement that same objective in other goals.
Goal 1: Maximize Beneficial Resource Use

This goal includes ideas like recycling, composting, reusing, and waste reduction. For this goal, there are three objectives.

<table>
<thead>
<tr>
<th>OBJECTIVES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.A. Improve access to diversion opportunities</td>
</tr>
<tr>
<td>1.B. Improve community participation</td>
</tr>
<tr>
<td>1.C. Provide education</td>
</tr>
</tbody>
</table>

Goal 2: Responsibly Manage Problematic Wastes

There are three objectives for this goal.

<table>
<thead>
<tr>
<th>OBJECTIVES</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.A. Improve access to problematic waste collection (includes HHW, tires, electronics)</td>
</tr>
<tr>
<td>2.B. Provide Education</td>
</tr>
<tr>
<td>2.C. Collect data</td>
</tr>
</tbody>
</table>

Goal 3: Maximize Proper Disposal

Goal 4: Lead Regional Planning

Goal 3. Maximize Proper Disposal. It is primarily related to illegal dumping and has six objectives.

<table>
<thead>
<tr>
<th>OBJECTIVES</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.A. Improve access to solid waste drop-off opportunities</td>
</tr>
<tr>
<td>3.B. Improve community participation</td>
</tr>
<tr>
<td>3.C. Provide education</td>
</tr>
<tr>
<td>3.D. Collect data</td>
</tr>
<tr>
<td>3.E. Increase illegal dumping prevention efforts, and</td>
</tr>
<tr>
<td>3.F. Increase illegal dumping enforcement</td>
</tr>
</tbody>
</table>

Goal 4. Lead Regional Planning. There are seven objectives.

<table>
<thead>
<tr>
<th>OBJECTIVES</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.A. Collaborate</td>
</tr>
<tr>
<td>4.B. Optimize funding decisions</td>
</tr>
<tr>
<td>4.C. Oversee facility planning</td>
</tr>
<tr>
<td>4.D. Review and update solid waste management plans</td>
</tr>
<tr>
<td>4.E. Make continuous improvements</td>
</tr>
<tr>
<td>4.F. Collect data</td>
</tr>
<tr>
<td>4.G. Plan for disaster waste</td>
</tr>
</tbody>
</table>

Discussion

The goals and objectives are intentionally short, broad, and easy to read and understand. They are short so that they are easier to remember, and they are broad so the region will be able to adapt the goals and objectives to fit changes that may come in the future or to tailor to specific problems.
GOAL 1
The Goal 1 objectives fit together and build on each other. 1.A. is about improving access to diversion opportunities, making it easier for residents and businesses to participate. 1.B. is about improving that community participation and getting more people involved, and 1.C. is about providing education to ensure people understand how and why they should participate in diversion activities. It is crucial that these objectives build on and reinforce each other to fully accomplish the goal. For example, educating people on the correct way to recycle is not useful if there are minimal opportunities available for recycling.

GOAL 2
There are some consistencies between the objectives in these goals, for example, 1.A. is similar to 2.A., and 1.C. to 2.B. This consistency shows that improving access and education are core activities that need to occur consistently, and the repetition encourages holistic thinking. Increased collection events or drop-offs would improve access, as well as offer a place for education. Educational information should be offered to event participants or drop-off visitors, as well as published on municipal and COG websites. Frequent data collection at events or drop-off centers would allow the region to make informed decisions about problematic waste management. See Volume II, Attachment III.N. Recommended Plan of Action and Associated Timetable for Achieving Specific Goals and Objectives for more details.

GOAL 3
Again, there is repetition between the first four objectives and objectives in previous goals. That repetition not only makes it easier to remember the objectives, but also creates synergy between the different goals.
These objectives follow a logical progression and build on each other. Illegal dumping is often caused because of limited access to a proper disposal option. 3.A. aims to reduce dumping by giving more people convenient and affordable access to proper disposal. Next, 3.B. and 3.C. are about getting the community involved and educated through clean-up events or other avenues. 3.D. involves data collection about common dumping points, what kinds of materials are dumped, among others. Once the region has adequate data, they can identify regional dumping trends and then establish targeted prevention efforts as part of 3.E. Finally, 3.F. is meant to come as a last resort. Preventing illegal dumping is more desirable than cleaning up dumping that has already occurred or punishing
people or businesses that have dumped. This approach promotes proactive action rather than reactive.

GOAL 4

This goal includes objectives related to strong leadership and project management. Goal 4 is meant to maximize the impact of the rest of the plan. For the most part, Goals 1 - 3 are actions that need to be taken, and Goal 4 emphasizes collaboration between multiple entities in the region in order to successfully and more easily complete those actions. This goal also contains other solid waste related tasks the COG has to do as part of TCEQ requirements.

Objective 4.A. encourages the COG to collaborate between cities, counties, and other COGs. 4.B. suggests the COG optimize their budget in order to make well informed financial decisions according to the events and activities that fit into their 20-year plan. 4.C. incorporates facility planning that the COG is required to do according to TCEQ regulations. 4.D. suggests the COG update their solid waste management plans regularly and record successes and goal progress. 4.E. allows for the COG to evolve throughout the 20-year period and advance their practices and technologies. 4.F. encourages the COG to gather data to help plan and improve for the future. Lastly, 4.G. allows for the COG to plan for disaster waste in case of a flood, hurricane, or other natural or man-made disaster. This waste can heavily impact landfill life, so it is important for the region to have plans in place that detail how to handle the wastes.

Conclusion

The goals and objectives described here are the backbone of the regional action plan. This action plan, informed by all of the data IGI collected for the region, will play a crucial role in future solid waste related decisions the COG makes.

In the future, the region should ensure that the action plan is updated as needed and that they collect and share data about their accomplishments and challenges related to plan implementation.
Attachment III.N. Recommended Plan of Action and Associated Timetable for Achieving Specific Goals and Objectives

Introduction

As part of the 20-year planning process, TCEQ requires a plan of action for goals and objectives, along with milestone dates for each.

This Recommended Plan of Action is shown in the Volume II Form. It includes the goals and objectives identified in Volume II, Section III.L, Table III.L Regional Goals and Objectives. It also provides more detail about each objective through the action steps. Each action step has a corresponding milestone date, which is either short-range (1 – 5 years), intermediate (6 – 10 years), or long-range (11 – 20 years or more). Some action steps occur in all three planning periods: short-range, intermediate, and long-range.

The Recommended Plan of Action is influenced by the data presented in every previous section in the Volume II form. Understanding the processes and data that led to the creation of this Plan of Action will ensure that members of the region are working in the same direction towards the same goals.

The purpose of this attachment is to offer additional details and commentary about the rationale that influenced the plan of action.

This attachment will briefly describe each goal and the objectives and action steps within each goal. It will also provide additional detail about specific steps the region might take to accomplish each action step.

The rest of this document will describe the rationale IGI used to form the action plan and provide a discussion.

Methods

The action steps were influenced by the areas of concern IGI identified in the region. These concerns are explained in detail in Volume II, Attachment III.I. Solid Waste Management Concerns and Priorities. All of the data collection and analysis that were in the other parts of this plan influenced the concerns, and therefore largely influenced each action step.
Results

There are four goals for the region, and within these goals there are 19 total objectives, some of which are repeated across multiple goals. There are 43 total action steps, with an average of about 11 steps in each goal. 11 steps are short-range, 11 are intermediate term, 1 is long-range, and 20 are across the entire planning period. In this section we will show the entire action plan.

A summary of the results of this analysis are presented in Vol. II, Section III.N, Table III.N.I Plan of Action and Timetable for Achieving Specific Goals and Objectives. The action steps have been published here alongside the goals and objectives to create an at-a-glance, go-to version of the plan.
Goal 1: Maximize beneficial resource use

<table>
<thead>
<tr>
<th>Objective</th>
<th>Action step</th>
<th>Milestones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.A. Improve access to diversion opportunities</td>
<td>1.A.1. Identify and share comprehensive list of locations to divert materials from the landfill (e.g., recycling, reuse, and composting drop-off locations, schools, private businesses)</td>
<td>Short-range</td>
</tr>
<tr>
<td></td>
<td>1.A.2. Encourage government agencies to lead by example in waste diversion and environmentally friendly procurement practices (e.g., establish recycling programs and buy recycled products, per TAC Chapter 328, Subchapter K, Rule 328.202)</td>
<td>Short-range, intermediate, and long-range</td>
</tr>
<tr>
<td></td>
<td>1.A.3. Explore innovative waste collection and processing methods (e.g., Recyclops collection services, and black soldier fly larvae for food waste)</td>
<td>Short-range, intermediate, and long-range</td>
</tr>
<tr>
<td></td>
<td>1.A.4. Continue and expand the composting of biosolids and agricultural wastes, following local successful models (e.g., Manure composting, Stouts Creek Composting, Texarkana South Regional WWTP Composting Center)</td>
<td>Short-range, intermediate, and long-range</td>
</tr>
<tr>
<td></td>
<td>1.A.5. Encourage cities and counties to offer free cardboard recycling to businesses and explore free recycling for additional high-value commodities at other large-volume generators (e.g., City of McAllen free workplace recycling program)</td>
<td>Short-range, intermediate, and long-range</td>
</tr>
<tr>
<td>1.B. Improve community participation</td>
<td>1.B.1. Outreach to large-volume generators with existing programs to consider accepting community-generated materials</td>
<td>Intermediate</td>
</tr>
<tr>
<td></td>
<td>1.B.2. Outreach to community, civic, and school/university groups to provide volunteers for collection event activities</td>
<td>Short-range, intermediate, and long-range</td>
</tr>
<tr>
<td>1.C. Provide education</td>
<td>1.C.1. Ensure broad public awareness using cost-effective communication tools including social media; COG, city, and county websites; and print materials, where appropriate, to provide consistent, reliable communication (e.g., where to take common reusable materials and recyclable materials)</td>
<td>Short-range, intermediate, and long-range</td>
</tr>
<tr>
<td></td>
<td>1.C.2 Support sharing audience-specific information to educate target audiences on source reduction, recycling, reuse, or composting opportunities (e.g., Golden Crescent COG school outreach)</td>
<td>Short-range, intermediate, and long-range</td>
</tr>
</tbody>
</table>
Goal 2: Responsibly manage problematic waste

<table>
<thead>
<tr>
<th>Objective</th>
<th>Action step</th>
<th>Milestones</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.A.</td>
<td>Improve access to problematic waste collection</td>
<td>2.A.1. Encourage cities and counties to request information about on-demand curbside special waste collection (e.g., Waste Management At Your Door)</td>
</tr>
<tr>
<td></td>
<td>2.A.2. Explore creating reuse opportunities (e.g., paint reuse program)</td>
<td></td>
</tr>
<tr>
<td>2.A.</td>
<td>Support local problematic waste collections events and explore developing region-wide collection events (e.g., one centralized rotating event, individual community events held on the same day)</td>
<td>Short-range, intermediate, and long-range</td>
</tr>
<tr>
<td>2.B.</td>
<td>Provide education</td>
<td></td>
</tr>
<tr>
<td>2.B.1.</td>
<td>Identify businesses where problematic wastes can be dropped off throughout the region (e.g., Walgreens, Best Buy, Automotive Shops) and post online on all websites</td>
<td>Short-range</td>
</tr>
<tr>
<td>2.B.2.</td>
<td>Ensure broad public awareness using cost-effective communication tools including social media; COG, city, and county websites; and print materials, where appropriate, to provide consistent, reliable communication</td>
<td>Short-range, intermediate, and long-range</td>
</tr>
<tr>
<td>2.B.3.</td>
<td>Leverage collection events to increase understanding of problematic waste by providing information to the media and local champions, and providing information to event participants—including print materials where appropriate (e.g., household hazardous waste source reduction, collection events, environmental impacts, and where to take problematic materials)</td>
<td></td>
</tr>
<tr>
<td>2.C.</td>
<td>Collect data</td>
<td></td>
</tr>
<tr>
<td>2.C.1.</td>
<td>Collect, analyze, and share data to improve future events (e.g., participant ZIP Code, materials collected, and cost to dispose of materials)</td>
<td>Intermediate</td>
</tr>
</tbody>
</table>
Goal 3: Maximize proper disposal

<table>
<thead>
<tr>
<th>Objective</th>
<th>Action step</th>
<th>Milestones</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.A. Improve access to solid waste drop-off opportunities</td>
<td>3.A.1. Support reduced-cost options for waste disposal (e.g., free drop-off days, income-based vouchers, and pay-per-bag programs at collection centers and/or landfills)</td>
<td>Short-range</td>
</tr>
<tr>
<td></td>
<td>3.A.2. Share best practices for and promote the establishment of additional municipal and county collection centers (e.g., DeKalb)</td>
<td>Intermediate</td>
</tr>
<tr>
<td>3.B. Improve community participation</td>
<td>3.B.1. Support programs that encourage and enable community reporting (e.g., illegal dumping reporting app, phone line)</td>
<td>Short-range</td>
</tr>
<tr>
<td></td>
<td>3.B.2. Support local community clean up events and encourage organizers to seek funding from business and civic partners, share best practices with other local organizers and recruit volunteers from schools and other community organizations</td>
<td>Short-range, intermediate, and long-range</td>
</tr>
<tr>
<td>3.C. Provide education</td>
<td>3.C.1. Ensure broad public awareness using cost-effective communication tools including social media and the websites of each relevant city and county to provide consistent, reliable communication</td>
<td>Short-range, intermediate, and long-range</td>
</tr>
<tr>
<td></td>
<td>3.C.2. Leverage cleanup events to increase understanding of illegal dumping by providing information to the media and local champions, and providing information to cleanup participants—including print materials where appropriate (e.g., event dates, penalties and impact, and where to take commonly dumped materials)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.C.3. Educate and engage targeted segments of the community (e.g., students, residents, construction companies, property owners, and businesses) on proper disposal methods and the impact of illegal dumping</td>
<td></td>
</tr>
<tr>
<td>3.D. Collect data</td>
<td>3.D.1. Encourage collection and analysis of illegal dumping data (e.g., illegal dumping—dumping locations, cost to clean up and enforce laws, and enforcement outcomes; reduced-cost disposal options—participation, volume, and ZIP Code)</td>
<td>Intermediate</td>
</tr>
<tr>
<td>3.E. Increase illegal dumping prevention efforts</td>
<td>3.E.1. Support deterrents such as surveillance cameras, simple signage, beautification, and fencing in high-incident areas as part of a comprehensive illegal dumping strategy, which includes prevention, abatement, education, and enforcement</td>
<td>Long-range</td>
</tr>
<tr>
<td>3.F. Improve illegal dumping enforcement</td>
<td>3.F.1. Outreach to prosecutors and judges to increase their support of illegal dumping enforcement</td>
<td>Short-range</td>
</tr>
<tr>
<td></td>
<td>3.F.2. Explore establishment of a Regional Environmental Task Force to share emerging illegal dumping issues, lessons learned, and best practices (e.g., CAPCOG model)</td>
<td>Intermediate</td>
</tr>
<tr>
<td></td>
<td>3.F.3. Continue to support training for enforcement officers and judges</td>
<td>Short-range, intermediate, and long-range</td>
</tr>
</tbody>
</table>
Goal 4: Lead regional planning

<table>
<thead>
<tr>
<th>Objective</th>
<th>Action step</th>
<th>Milestone</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.A. Collaborate</td>
<td>4.A.1. Initiate annual Solid Waste Management Award program for cities, counties, businesses, and individuals within the region (e.g., BVCOG)</td>
<td>Short-range</td>
</tr>
<tr>
<td>4.A.2. Share the Regional Solid Waste Management Plan with relevant local decision makers to increase awareness, encourage participation, and maximize benefits (e.g., cities, counties, school districts, and other civic leaders)</td>
<td>Intermediate</td>
<td></td>
</tr>
<tr>
<td>4.A.3. Compile a master list of all materials collected for recycling, composting, or reuse by cities and counties within the region and look for opportunities to harmonize collections to minimize confusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.A.4. Encourage the development of local solid waste management plans for cities and counties to implement the relevant goals 1-3 in this plan for their communities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.A.5. Utilize and customize existing resources and tools where possible to create consistency and save time and money (e.g., TCEQ- and other COG-developed educational materials)</td>
<td>Short-range, intermediate, and long-range</td>
<td></td>
</tr>
<tr>
<td>4.B. Optimize funding decisions</td>
<td>4.B.1. Establish COG pass-through grant funding criteria that encourages participation in committee activities and ensures alignment with regional waste management priorities (e.g., Lower Rio Grande Valley Development Council criteria)</td>
<td>Short-range, intermediate, and long-range</td>
</tr>
<tr>
<td>4.C. Oversee facility planning</td>
<td>4.C.1. Evaluate Municipal Solid Waste facility permit applications</td>
<td>Short-range, intermediate, and long-range</td>
</tr>
<tr>
<td>4.C.2. Ensure adequate regional waste disposal capacity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.C.3. Maintain closed landfill inventory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.D. Review and update solid waste management plans</td>
<td>4.D.1. Update Regional Solid Waste Management Plan as necessary</td>
<td>Short-range, intermediate, and long-range</td>
</tr>
<tr>
<td>4.D.2. Publish biennial status reports of regional solid waste management plan goal progress and accomplishments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.E. Make continuous improvements</td>
<td>4.E.1. Stay informed about changing solid waste management best practices and technologies</td>
<td>Short-range, intermediate, and long-range</td>
</tr>
<tr>
<td>4.F. Collect data</td>
<td>4.F.1. Explore developing a regional data sharing platform which could be used by cities and counties within the COG to help with solid waste planning</td>
<td>Intermediate</td>
</tr>
<tr>
<td>4.G.2. Create peer exchange opportunities to share best practices and existing resources for local disaster debris managements plans</td>
<td>Entire period</td>
<td></td>
</tr>
</tbody>
</table>
Discussion

In this discussion, we will review the purpose of the goals and objectives at a high level (for more information see Volume II, Attachment III.L Regional Goals and Objectives, Including Waste Reduction Goals). Then we will provide additional information related to action steps.

The action steps are purposefully general to be meaningful for a 20-year plan and allow for customization and changes as conditions evolve. Additionally, the data available did not allow for creating overly specific actions such as increasing the number of diverted materials by a specific percent or amount.

Another benefit of broadly applicable action steps is to allow individual cities or counties to identify which steps directly apply to their situations and tailor their own local plans accordingly to fit the needs of their community.

GOAL 1: MAXIMIZE BENEFICIAL RESOURCE USE

This goal addresses source reduction, recycling, and composting, as well as community involvement and educational outreach components. We created this goal based on concerns related to source reduction and recycling, as well as the statewide interest in increasing source reduction and waste minimization.

OBJECTIVE 1.A. IMPROVE ACCESS TO DIVERSION OPPORTUNITIES

Increasing access is the first objective in Goal 1 because we recognize that the region cannot divert materials from the landfill if there are no opportunities to do so. There are six action steps for this objective.

1.A.1. Identify and share comprehensive list of locations to divert materials from the landfill (e.g., recycling, reuse, and composting drop-off locations, schools, private businesses)

There are already options for waste diversion in the region, but there is not adequate information available for all of them. Having a comprehensive, region-wide list detailing the existing options for diversion and ensuring that the list is posted on the COG website as well as on every city and county website will inform residents about their diversion opportunities. This step should be completed in the short-range, with updates to the list occurring as needed.
1.A.2. Encourage government agencies to lead by example in waste diversion and environmentally friendly procurement practices (e.g., establish recycling programs and buy recycled products, per TAC Chapter 328, Subchapter K, Rule 328.202)

We encourage the leadership of governmental agencies, following the Texas Administrative Code's recommendations for government offices, to have recycling programs and to buy recycled products.\(^57\) This encouragement should happen in the short-range.

1.A.3. Explore innovative waste collection and processing methods (e.g., Recyclops collection services, and black soldier fly larvae for food waste)

To keep up with changing technologies, we advise the region to explore innovative waste collection or processing methods. We offer two examples, but the region is encouraged to explore any options that would allow them to achieve higher levels of diversion. The region should explore measures in the short-range.

1.A.4. Continue and expand the composting of biosolids and agricultural wastes, following local successful models (e.g., Manure composting, Stouts Creek Composting, Texarkana South Regional WWTP Composting Center)

There is already some composting of biosolids and other organic wastes in the region, so these efforts should continue and expand where possible. The plans for new facilities or expansion plans of existing ones should be completed in the intermediate period.

1.A.5. Encourage cities and counties to offer free cardboard recycling to businesses and explore free recycling for additional high-value commodities at other large-volume generators (e.g., City of McAllen free workplace recycling program)

Cardboard consistently has high market value, so we encourage the region to explore offering free cardboard recycling at its businesses and other large generators. Free recycling will incentivize employees to do so, as well as generate revenue from cardboard sales. Once cardboard recycling is established, the region

is encouraged to further expand its efforts to include other high value recyclables. We offer the City of McAllen’s free workplace cardboard recycling program as a model because it is an example we have found in our research. The region should explore this program and the creation of their own in the intermediate period.

OBJECTIVE 1.B: IMPROVE COMMUNITY PARTICIPATION

Active community participation is necessary to achieve the goals in this plan. The steps within this objective aim to bring together all members and sectors of the region to work towards maximizing beneficial use. Solid waste related issues do not only affect the entities that directly deal with them. They affect the entire region, requiring participation from everyone.

1.B.1. Outreach to large-volume generators with existing programs to consider accepting community-generated materials

Within large generators in the region, there is likely already some recycling occurring. We recommend that the region outreach to these generators to see if they will consider accepting materials generated within the community. Partnering within the community could be beneficial for all the players involved. The large volume generators could create community good will for their business, and other eager recyclers could have a convenient place to take their materials within the community. The region should address this effort in the intermediate period.

1.B.2. Outreach to community, civic, and school/university groups to provide volunteers for collection event activities

There are already collection events taking place in the region for varied items. The region should outreach to interested groups in the community to recruit volunteers for these events. This maximizes funding resources in the region because volunteers provide free staff. Ideas for potential partners can be found in Volume II, Attachment III.H. Identification of Public and Private Management Agencies and Responsibilities. This outreach should take place across the entire planning period anytime there is an event.

OBJECTIVE 1.C: PROVIDE EDUCATION

Education is an important part of achieving these goals. Members of the region cannot maximize their resource use and achieve more waste reduction if they are not educated on how to do so. We also created this objective in response to Advisory Committee members prioritization of education as their highest need.
1.C.1. Ensure broad public awareness using cost-effective communication tools including social media; COG, city, and county websites; and print materials, where appropriate, to provide consistent, reliable communication (e.g., where to take common reusable materials and recyclable materials)

There are disjointed efforts towards educating members of the region occurring throughout the region. These efforts should not be forgotten, but the COG should ensure that everyone in the region has access to consistent, accurate information about disposal or recycling efforts, and more. We specifically recommend utilization of social media, COG and municipal websites, and print materials where appropriate, such as at a collection event. This information needs to be updated and maintained throughout the entire planning period.

1.C.2. Support sharing audience-specific information to educate target audiences on source reduction, recycling, reuse, or composting opportunities (e.g., Golden Crescent COG school outreach)

The region should share information about source reduction, recycling, reuse, and composting opportunities that are customized to the specific target audience. For example, government offices should not receive the same information that elementary school children do. Some schools in the Golden Crescent region participate in a national competition related to recycling, and it has resulted in them winning prizes. Again, this educational information needs to be maintained throughout the planning period.

GOAL 2: RESPONSIBLY MANAGE PROBLEMATIC WASTE

This goal addresses household hazardous waste (HHW) and other wastes that are problematic to collect or dispose of, such as tires and electronic waste. We created this goal based on committee member concerns related to the difficulty of handling these wastes.

OBJECTIVE 2.A: IMPROVE ACCESS TO PROBLEMATIC WASTE COLLECTION

This objective is similar to the first objective of the previous goal. Improving access is an important first step to managing wastes. Problematic wastes are potentially harmful to people and to the environment if they are thrown away, so it is important that there is widespread access to proper collection opportunities.
2.A.1. Encourage cities and counties to request information about on-demand curbside special waste collection (e.g., Waste Management At Your Door)

Cities and counties are encouraged to request information on At Your Door, an on-demand curbside collection of HHW, offered by Waste Management. Curbside collection is the most convenient way for residents to handle the disposal of their HHW and electronics. Cities and counties should consider At Your Door in the short-range.

2.A.2. Explore creating reuse opportunities (e.g., paint reuse program)

The region should explore creating reuse opportunities for common household hazardous wastes. We specifically mention a paint reuse program because it is the most common item collected at HHW events. Also, paint collection and re-blending can be done by volunteers without specialized training. Exploration and possible implementation of these should be done in the short-range.

2.A.3. Support local problematic waste collections events and explore developing region-wide collection events (e.g., one centralized rotating event, individual community events held on the same day)

We recommend that the COG supports cities and counties if they hold their own problematic waste collection events. This support could take the form of financial aid, or just sharing best practices. We also recommend region wide collection events, such as through multiple cities holding an event on the same day, or a COG event that rotates through the region. Events should take place throughout the entire planning period.

OBJECTIVE 2.B: PROVIDE EDUCATION

Education is an important aspect of proper disposal for problematic wastes. Residents of the COG need to not only understand that these wastes cannot be thrown away with regular trash, but also understand what to do with them.

2.B.1. Identify businesses where problematic wastes can be dropped off throughout the region (e.g., Walgreens, Best Buy, Automotive Shops) and post online on all websites

The COG, cities, and counties should identify businesses in the region that accept problematic wastes, such as Best Buy, Walgreens, Home Depot, etc., and list them on all municipal and COG websites. Consistent information across the region will help ensure that all residents know where to take some of their wastes.
Identification and listing of these businesses should be completed in the short-range.

2.B.2. Ensure broad public awareness using cost-effective communication tools including social media; COG, city, and county websites; and print materials, where appropriate, to provide consistent, reliable communication.

Similar to step 1.C.1. in the previous goal, we recommend that the COG ensure access to consistent, accurate information related to problematic waste for everyone in the region. Again, we specifically recommend social media, COG and municipal websites, and print materials at collection events. Information should be updated throughout the entire planning period.

2.B.3. Leverage collection events to increase understanding of problematic waste by providing information to the media and local champions, and providing information to event participants—including print materials where appropriate (e.g., household hazardous waste source reduction, collection events, environmental impacts, and where to take problematic materials).

The region should use its collection events as an opportunity to educate participants, as well as use various forms of media to advertise the events. This should be done throughout the entire planning period any time there is an event.

OBJECTIVE 2.C: COLLECT DATA

Data collection is crucial to better understand the materials and participants at collection events and to better plan for the future.

2.C.1. Collect, analyze, and share data to improve future events (e.g., participant ZIP Code, materials collected, and cost to dispose of materials).

At every collection event, organizers should collect data points such as participant zip code, the materials collected, and cost of disposal. This data should be shared with others in the COG so that future events can be improved. The region should complete an initial data collection in the intermediate period.

GOAL 3: MAXIMIZE PROPER DISPOSAL.

This goal addresses illegal dumping and the problems associated with it. We created this goal in response to committee member concerns and because of statewide issues related to dumping.
OBJECTIVE 3.A: IMPROVE ACCESS TO SOLID WASTE DROP-OFF OPPORTUNITIES

Illegal dumping often occurs because access to proper disposal is not affordable or convenient. Improving that access could reduce the amount of dumping.

3.A.1. Support reduced-cost options for waste disposal (e.g., free drop-off days, income-based vouchers, and pay-per-bag programs at collection centers and/or landfills)

The region should support reduced cost options for disposal, such as free landfill days or landfill vouchers based on income. Having more options for proper disposal will lessen the need to illegally dump. The region should explore these reduced cost options in the short-range.

3.A.2. Share best practices for and promote the establishment of additional municipal and county collection centers (e.g., DeKalb)

There are already some municipal and county collection centers in the region. These should expand where possible, and the region should work towards establishing more centers so that residents in rural areas have a convenient option for disposal. Establishment of new centers should be done in the intermediate period.

OBJECTIVE 3.B: IMPROVE COMMUNITY PARTICIPATION

Community involvement can help reduce dumping incidents. For example, if someone volunteers at an illegal dumping clean up event, they are less likely to ever dump because they understand the work that goes into cleaning it up. Also, these volunteers gain a better understanding of illegal dumping and are more likely to report it if they see it happening.

3.B.1. Support programs that encourage and enable community reporting (e.g., illegal dumping reporting app, phone line)

The region should support programs that enable community reporting of illegal dumping, such as a phone line or reporting app. There is already some use of a reporting mechanism on the COG website, so this could be supported and expanded. Having a consistent method for community members to report dumping allows for a better chance of finding the perpetrator. Community reporting methods should be explored in the short-range.
3.B.2. Support local community clean up events and encourage organizers to seek funding from business and civic partners, share best practices with other local organizers and recruit volunteers from schools and other community organizations.

There are some clean up events in the region. These event organizers should share best practices and funding tips throughout the region. All future events should recruit volunteers from schools and other community groups to reduce costs. These practices should occur throughout the planning period for all events.

OBJECTIVE 3.C: PROVIDE EDUCATION

Education is crucial so that members of the region understand why they should not dump and understand where to properly dispose of their materials.

3.C.1. Ensure broad public awareness using cost-effective communication tools including social media and the websites of each relevant city and county to provide consistent, reliable communication.

As in the previous two goals, broad public awareness ensures that everyone in the region has access to consistent and accurate information related to illegal dumping. This information should be maintained throughout the planning period.

3.C.2. Leverage cleanup events to increase understanding of illegal dumping by providing information to the media and local champions, and providing information to cleanup participants—including print materials where appropriate (e.g., event dates, penalties and impact, and where to take commonly dumped materials).

During clean up events, organizers should provide educational information to participants, including information such as where to take commonly dumped materials and the penalties of dumping. Event organizers should also use media to advertise the events. These should be done anytime there is an event.

3.C.3. Educate and engage targeted segments of the community (e.g., students, residents, construction companies, property owners, and businesses) on proper disposal methods and the impact of illegal dumping.

The region should provide targeted information to groups such as businesses, residents, and construction companies so that common generators of waste understand illegal dumping related issues. Information should be provided throughout the planning period.
OBJECTIVE 3.D: COLLECT DATA

Data collection is an important step in understanding unique activities in the region and for planning for the future.

3.D.1. Encourage collection and analysis of illegal dumping data (e.g., illegal dumping—dumping locations, cost to clean up and enforce laws, and enforcement outcomes; reduced-cost disposal options—participation, volume, and ZIP Code)

The region should collect and analyze its own illegal dumping data, such as dumping locations, costs of clean up by government employees and for volunteer events, and effectiveness of reduced cost options. Data collection should be done in the intermediate period.

OBJECTIVE 3.E: INCREASE ILLEGAL DUMPING PREVENTION EFFORTS

Preventing illegal dumping is easier and more cost-effective than cleaning up areas where dumping has already occurred. It is also a part of a comprehensive illegal dumping strategy that includes prevention, abatement, education, and enforcement.

3.E.1. Support deterrents such as surveillance cameras, simple signage, beautification, and fencing in high-incident areas as part of a comprehensive illegal dumping strategy, which includes prevention, abatement, education, and enforcement

The region should use the data collected in 3.D.1. to determine where it should focus prevention efforts. Common prevention efforts include signage, fencing, cameras, and beautification. Data should be analyzed, and prevention efforts implemented in the long-range.

OBJECTIVE 3.F: IMPROVE ILLEGAL DUMPING ENFORCEMENT

Consistent enforcement of illegal dumping laws sends the message that future dumping will not be tolerated. Proper enforcement requires participation and support from a diverse array of stakeholders.

3.F.1. Outreach to prosecutors and judges to increase their support of illegal dumping enforcement

The region should outreach to its prosecutors and judges to gain their support in prosecuting illegal dumping crimes. The region should conduct this outreach in the short-range.
3.F.2. Explore establishment of a Regional Environmental Task Force to share emerging illegal dumping issues, lessons learned, and best practices (e.g., CAPCOG model)

The region should explore a Regional Environmental Task Force so that best practices and illegal dumping information can be shared throughout the region. Exploration should be completed in the intermediate period.

3.F.3. Continue to support training for enforcement officers and judges

The region should continue to support specialized training for its law enforcement officers and judges so that they understand illegal dumping crimes and penalties. Proper enforcement can only happen after enforcers have been educated. Training should occur throughout the entire planning period.

GOAL 4: LEAD REGIONAL PLANNING

We created this goal to acknowledge the important leadership role members of the COG’s Solid Waste Advisory Committee play in the successful implementation of this plan. To have a single source of solid waste management related actions for the COG, other periodic tasks required by TCEQ are included.

OBJECTIVE 4.A: COLLABORATE

Collaboration between all sectors in the region is necessary to implement this plan and to ensure that all members of the region, not just solid waste related industries, are moving in the same direction.

4.A.1. Initiate annual Solid Waste Management Award program for cities, counties, businesses, and individuals within the region (e.g., BVCOG)

The region should explore implementation of a solid waste award program to acknowledge good existing efforts, which is something the Brazos Valley COG has done. This also brings more community awareness to solid waste related activities. This program should be explored in the short-range.

4.A.2. Share the Regional Solid Waste Management Plan with relevant local decision makers to increase awareness, encourage participation, and maximize benefits (e.g., cities, counties, school districts, and other civic leaders)

The COG should share the Regional Solid Waste Management Plan with other relevant entities in the region, such as cities, counties, and school districts.
Sharing the plan helps maximize benefits and increases community involvement. The plan should be shared in the short-range.

4.A.3. Compile a master list of all materials collected for recycling, composting, or reuse by cities and counties within the region and look for opportunities to harmonize collections to minimize confusion

The region should compile one master list with all materials collected for recycling or composting in each city in the region. Using this list, the region should look for opportunities to harmonize collection where possible to minimize confusion and contamination. This list should be completed in the short-range.

4.A.4. Encourage the development of local solid waste management plans for cities and counties to implement the relevant goals 1-3 in this plan for their communities

The COG should encourage cities and counties to create their own solid waste management plans that implement the relevant parts of the Regional Solid Waste Management Plan. Localized plans allow for more specific data and specialized efforts. Encouragement of local plans should happen in the short-range.

4.A.5. Utilize and customize existing resources and tools where possible to create consistency and save time and money (e.g., TCEQ- and other COG-developed educational materials)

Where possible, the COG should utilize existing communication resources instead of creating new materials from scratch. Many TCEQ and other COG developed materials can be applied to this region, so using these materials saves money. The region should look for these resources to use throughout the planning period.

OBJECTIVE 4.B: OPTIMIZE FUNDING DECISIONS

Most of the steps in this plan’s goals require some level of funding to complete. It is important that the COG make decisions that efficiently use available funding, and that they ensure projects align with regional goals.

4.B.1. Establish COG pass-through grant funding criteria that encourages participation in committee activities and ensures alignment with regional waste management priorities (e.g., Lower Rio Grande Valley Development Council funding criteria)

The Advisory Committee should establish COG pass-through grant criteria so that each funding request can be evaluated on its alignment with regional goals. These
criteria also encourage committee participation. We offer an example of Criteria from the LRGVDC. Criteria use should continue throughout the entire planning period.

OBJECTIVE 4.C: OVERSEE FACILITY PLANNING

Overseeing facility planning includes TCEQ required steps.

4.C.1. Evaluate Municipal Solid Waste facility permit applications

Throughout the planning period, as needed, the region should evaluate its Municipal Solid Waste facility permit applications.

4.C.2. Ensure adequate regional waste disposal capacity

Throughout the planning period, the region should ensure adequate disposal capacity.

4.C.3. Maintain closed landfill inventory

Throughout the planning period, as needed, the region should maintain the Closed Landfill Inventory.

OBJECTIVE 4.D: REVIEW AND UPDATE SOLID WASTE MANAGEMENT PLANS

Reviewing and updating the Regional Solid Waste Management Plan, as well as any existing local plans, will help keep plans up to date and relevant.

4.D.1. Update Regional Solid Waste Management Plan as necessary

The COG should update the regional plan more often than every 20 years so that information is as useful as possible. Also, frequent updates will make the next 20-year plan easier to complete. Members of the region with local plans should update their plans as needed. Updates to both should occur throughout the planning period.

4.D.2. Publish biennial status reports of regional solid waste management plan goal progress and accomplishments

The COG should publish biennial progress reports to share accomplishments and progress on achieving goals. These reports are required by TARC and TCEQ, but they could also help keep members of the region up to date. Biennial reports should continue throughout the planning period.
OBJECTIVE 4.E: MAKE CONTINUOUS IMPROVEMENTS

In order to keep the recommendations and plans within the Regional Solid Waste Management Plan relevant, there needs to be continuous improvement that matches new and changing technologies.

4.E.1. Stay informed about changing solid waste management best practices and technologies

Throughout the planning period, the region should take steps to ensure it is continually informed about solid waste management practices, such as by attending conferences or performing technical studies.

OBJECTIVE 4.F: COLLECT DATA

As mentioned in previous goals, data collection is an important aspect of planning for the future.

4.F.1. Explore developing a regional data sharing platform which could be used by cities and counties within the COG to help with solid waste planning

The region should create a region wide data sharing platform that cities, counties, and others could add to and learn from. Having a centralized location for data allows for consistent, better-informed decision making. This platform should be created in the intermediate period.

OBJECTIVE 4.G: PLAN FOR DISASTER WASTE

Although disaster waste is typically associated with hurricanes, natural disasters such as floods or violent storms affect all regions. Planning for this waste in advance will help the region the next time it is faced with a disaster.

4.G.1. Encourage development of local disaster debris management plans

All cities and counties within the region are encouraged to create their own disaster debris management plans so that they have a place to share localized, specific knowledge related to disaster waste. Plans should be made in the intermediate period.

4.G.2. Create peer exchange opportunities to share best practices and existing resources for local disaster debris managements plans

The region should share best practices and resources related to disaster debris planning. This collaboration could improve existing plans and help cities or counties create their own, and it should be done throughout the planning period.
Conclusion

The regional action plan described here is the culmination of the data collection that was a part of creating the other sections of this plan. Understanding the background and rationale behind the action plan is important to ensure full implementation.

In the future, the COG should maintain data on how much of the action plan they have accomplished so that they can update when necessary. They should also make note of beneficial partners they may have found, as well as note which steps they accomplished easily or struggled with. Keeping this sort of data will help improve future action steps the COG may develop, as well as future Regional Solid Waste Management Plans.
Attachment III.O. Identification of the Process that Will be Used to Evaluate Whether a Proposed Municipal Solid Waste Facility Application Will be in Conformance with the Regional Plan

Introduction

The Texas Commission on Environmental Quality (TCEQ) reviews applications for municipal solid waste facility permits and registrations, considering numerous aspects of the applicant’s capabilities and planned operations. Much of this permit review process is conducted by TCEQ staff. In support of this effort, COGs determine if a proposed facility will conform with their regional plan.

TCEQ requires an explanation of the process and criteria the COG will use to evaluate whether a proposed municipal solid waste facility will be in conformance with the regional solid waste management goals and objectives.

This COG conformance review process only addresses conformance with their Regional Solid Waste Management Plan’s goals and objectives.

A clear and efficient review process is important for making consistent, well-reasoned decisions that ensure new waste facilities align with the goals and objectives of the region.

The purpose of this attachment is to identify and explain the process and mechanism that the COG will use to evaluate whether a proposed municipal solid waste facility will be in conformance with the 2022 – 2042 Regional Solid Waste Management Plan (RSWMP).

As a part of this plan, we developed a conformance review process to include the 2022 – 2042 RSWMP goals and objectives. This conformance review process provides all the applicable information that is used to assess the conformance of a permit or registration application including the plan conformance process overview, plan conformance selection criteria, RSWMP plan conformance form instructions, and the RSWMP conformance checklist and questionnaire.
The remainder of this attachment will outline the methods we used to identify and update the region’s conformance review process, present the results of those findings, provide a discussion of key points, and offer a conclusion.

Methods

We reviewed relevant Texas Administrative Code (TAC) and consulted experts to create the process the region will use for this plan. We also used design best practices to enhance usability and accessibility of the plan conformance checklist and questionnaire. Special consideration was given to the study of COG facility review applications commissioned by the North Central Texas Council of Governments (NCTCOG) and authored by R.W. Beck.\(^\text{58}\)

Results

The plan conformance review process and all applicable information are presented in the addendum to this attachment to facilitate access to the form for printing, when necessary. The addendum includes:

- RSWMP Conformance Process Overview (including selection criteria),
- RSWMP Conformance Checklist and Questionnaire Instructions, and
- RSWMP Conformance Checklist and Questionnaire.

Discussion

The conformance process is important for aligning new facilities to the priorities of collaboration, communication, education, information tracking, and leadership, detailed in Volume II, Attachment III.I. Identification of Solid Waste Management Concerns and Establishment of Priorities for Addressing Those Concerns. Therefore, it was important that the conformance review process included all the 2022 – 2042 goals and objectives. This was a best practice to ensure the plan is shared widely. Sharing the plan with facilities and waste management leaders

helps to get important players in the region onto the same page and aligned to the same vision.

Additionally, by asking for descriptions about the role facilities will play, the applicant is required to think through what their facility might do to support meeting regional objectives. For example, an applicant’s recycling facility may most obviously comply with Goal 1. Maximize Beneficial Resource Use, but their facility and influence could help address parts of Goals 2. Responsibly Manage Problematic Waste and Goal 3. Maximize Proper Disposal.

Finally, encouraging stakeholders and committee members to work together through this process will help maximize results. Individual facilities alone cannot achieve these regional goals, but they are an important component of the integrated solid waste management system in the region.

It is important to note that the review process is not a regulatory technical review of the application, and that the region does not approve or deny permit applications. Approval of municipal solid waste management permit applications are the responsibility of TCEQ. 59

Conclusion

TCEQ requires an explanation of the process and criteria the COG will use to assess all waste facility permit or registration applications for conformance to their Regional Solid Waste Management Plan.

The process included in this plan will help ensure that new facilities are aware of and aligned to the region’s goals and objectives.

Addendum | Attachment III.O. Identification of the Process that Will be Used to Evaluate Whether a Proposed Municipal Solid Waste Facility Application Will be in Conformance with the Regional Plan

This addendum includes a printable form that can be used in the conformance review process.

<<Remainder of this page intentionally left blank>>
REGIONAL SOLID WASTE MANAGEMENT PLAN CONFORMANCE PROCESS OVERVIEW

Context

The plan conformance review process is not a regulatory technical review of the facility application, and the COG does not approve or deny permit applications. Approval of municipal solid waste management permit applications are the responsibility of the Texas Commission on Environmental Quality (TCEQ).

As part of the municipal solid waste management facility permit application process, the TCEQ has directed the COG to evaluate whether a proposed municipal solid waste facility application is in conformance with the COG’s 2022 – 2042 Regional Solid Waste Management Plan (RSWMP). This plan includes the region’s solid waste goals, objectives, and action steps during the 20-year period. The regional plan encourages collaboration, communication, education, information tracking, and leadership by all parties involved in solid waste management within the region.

The purpose of the Regional Solid Waste Management Plan Conformance Checklist and Questionnaire is to provide information for consideration by the COG’s Regional Solid Waste Advisory Committee regarding how a proposed facility will help achieve the goals and objectives of the 2022-2042 Plan.

TCEQ reviews applications for municipal solid waste facility authorizations, considering numerous aspects of the applicant’s capabilities and planned operations. The TCEQ looks to other agencies for expertise in specific matters, such as wetlands or traffic. In support of this effort, COGs determine if a proposed facility will conform with their regional plan.

Conformance Review Process Steps

The conformance review process may take up to 100 days.

1. **Complete Parts I and II of TCEQ registration or permit application.**
 Applicants may only request a conformance review of their registration or permit application after Part 1 and Part 2 of the filing forms have been fully completed. These documents must be submitted to the ATCOG as part of this review process.

2. **Complete the Regional Solid Waste Management Plan Conformance Checklist and Questionnaire**

 Regional Solid Waste Management Plan Conformance Selection Criteria

 Applicants must indicate how their facility will be consistent with the goals and objectives of the RSWMP. Applicants are encouraged to support as many objectives as possible and commit to being a good partner. Strong explanations include specific examples of what your facility will do to help achieve the objective.
3. Submit registration or permit application parts I and II and the Regional Solid Waste Management Plan Conformance Checklist and Questionnaire to the COG.

4. **SWAC and Board perform conformance review**
 The entire SWAC or a subcommittee will be designated to thoroughly review and ask questions related to facility conformance based on the submitted conformance checklist and questionnaire. Recommendations will then be submitted to the ATCOG Board for final approval.

5. **COG submits conformance findings to TCEQ**
The ATCOG will submit a letter of conformance or non-conformance with the Regional Solid Waste Management Plan to the TCEQ. Any determination of non-conformance will include an explanation of how the application fails to conform with the RSWMP. The TCEQ will consider the SWAC’s comments or recommendations when it decides whether to grant the permit or registration request.
REGIONAL SOLID WASTE MANAGEMENT PLAN CONFORMANCE CHECKLIST AND QUESTIONNAIRE INSTRUCTIONS

For use by solid waste facility applicants

Before completing the form
Read the Regional Solid Waste Management Plan Conformance Process Overview.

Context
Regional Solid Waste Management Plan conformance is determined by the COG. The Regional Solid Waste Management Plan Conformance Checklist and Questionnaire is required as part of the RSWMP Plan Conformance Process.

Steps

• Read the Regional Solid Waste Management Plan (RSWMP) Summary included with these instructions.

• On the Conformance Checklist and Questionnaire indicate the goal that best aligns with your facility.
Using the goal and objective descriptions in the RSWMP Overview section, determine which goal best aligns with the purpose of your facility and check the box in the goal table that asks, “Is this your primary goal?”

• Indicate which objectives your facility will support.
For Goals 1 – 3, next to each objective check the box if the proposed facility will help address it. You are encouraged to indicate your support for as many objectives as possible, including objectives outside your primary goal. For example, a glass recycling facility might check the box in the education objective in Goal 2 by sharing events on their social media or volunteering at events, even though addressing problematic waste is not their primary purpose.

• Explain how the proposed facility will support each objective you selected.
In the space below each goal table, for each objective where the box was checked, provide a description of how the proposed facility will contribute to that objective, keeping in mind the region’s encouragement of collaboration, communication, education, information tracking, and leadership. Strong explanations include specific examples of what your facility will do to help achieve the objective.
Regional Solid Waste Management Plan Summary
Applicants should read each goal description to get familiar with the region’s plan and to determine which goal out of Goals 1 – 3 most aligns with your proposed facility. You will need this background knowledge of the plan to show your conformance with the plan in the next section.

Please keep in mind Goal 4 primarily consists of activities only the COG will complete, so you will not check conformance to Goal 4. It is for informational use only.

Goal 1: Maximize Beneficial Resource Use

The regional goal for Maximize Beneficial Resource Use includes ideas like recycling, composting, and reusing. For this goal, there are three objectives:

1.A. **Improve access to diversion opportunities** is about improving access to opportunities to divert waste, such as through recycling, composting, or reuse centers.

1.B. **Improve community participation** tries to get more people involved in good solid waste practices or community events.

1.C. **Provide education** is about providing education to ensure people understand how and why they should participate in solid waste events or practices.

These objectives build on and reinforce each other. For example, there is not much use to educating people on how to recycle if there are minimal opportunities to recycle.

Goal 2: Responsibly Manage Problematic Wastes

The regional goal for Responsibly Manage Problematic Wastes involves collection events, education, and data related to problematic wastes, which include HHW, tires, and electronics. For this goal, there are three objectives:

2.A. **Improve access to problematic waste collection** is about improving access to opportunities to dispose of problematic wastes, such as through drop off centers or collection events.

2.B. **Provide education** is about educating the community about problematic wastes and how to properly dispose of them.

2.C. **Collect data** is about frequent data collection at events or drop-off centers to allow the region to make informed decisions about problematic waste management.

Goal 3: Maximize Proper Disposal

The regional goal for Maximize Proper Disposal is mainly related to illegal dumping and includes ideas about reducing illegal dumping through improved access and about prevention and enforcement efforts. For this goal, there are six objectives:
3.A. **Improve access to solid waste drop-off opportunities** aims to reduce dumping by giving more people convenient and affordable access to proper disposal.

3.B. **Improve community participation** is about getting the community involved through activities such as clean-up events or other avenues.

3.C. **Provide education** is about getting the community educated about aspects of solid waste management through avenues such as websites, social media, printed items, etc.

3.D. **Collect data** involves data collection about topics such as common dumping points, what kinds of materials are dumped, or cost of clean ups.

3.E. **Increase illegal dumping prevention efforts** establishes or continues efforts to prevent illegal dumping, such as signage or beautification projects.

3.F. **Increase illegal dumping enforcement** involves actions such as increased training for law enforcement officers or outreach to prosecutors and judges.

Goal 4: Lead Regional Planning

The regional goal for Lead Regional Planning includes objectives related to strong leadership and project management. Goal 4 is meant to maximize the impact of the rest of the plan. For the most part, Goals 1 – 3 are actions that need to be taken, and Goal 4 emphasizes collaboration between multiple entities in the region to complete those actions successfully and more easily. For this goal, there are seven objectives:

4.A. **Collaborate** encourages the COG to collaborate between cities, counties, and other COGs.

4.B. **Optimize funding decision** suggests the COG optimize their budget in order to make well informed financial decisions according to the events and activities that fit into their 20-year plan.

4.C. **Oversee facility planning** incorporates facility planning that the COG is required to do according to TCEQ regulations.

4.D. **Review and update solid waste management plans** suggests the COG update their solid waste management plans regularly and record successes and goal progress.

4.E. **Make continuous improvements** allows for the COG to evolve throughout the 20-year period and advance their practices and technologies.

4.F. **Collect data** encourages the COG to gather data to help plan and improve for the future.

4.G. **Plan for disaster waste** allows for the COG to plan for disaster waste in case of a flood, hurricane, or other natural or man-made disaster. This waste can heavily impact landfill life, so it is important for the region to have plans in place that detail how to handle the wastes.
Regional Solid Waste Management Plan Conformance Checklist and Questionnaire

To be completed by solid waste facility applicants

Facility and contact information

<table>
<thead>
<tr>
<th>Facility name</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact name</td>
<td></td>
</tr>
<tr>
<td>Phone number</td>
<td></td>
</tr>
<tr>
<td>Mailing address</td>
<td></td>
</tr>
<tr>
<td>Email address</td>
<td></td>
</tr>
</tbody>
</table>

Plan conformance activities

<table>
<thead>
<tr>
<th>Objective</th>
<th>Please indicate which Objective(s) your facility will support.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.A. Improve access to diversion opportunities</td>
<td>☐</td>
</tr>
<tr>
<td>1.B. Improve community participation</td>
<td>☐</td>
</tr>
<tr>
<td>1.C. Provide education</td>
<td>☐</td>
</tr>
</tbody>
</table>

For each Objective you checked, describe your planned activities:

__
__
__
__
__

Goal 1: Maximize beneficial resource use

Is this your primary goal? (Y/N) ☐
Goal 2. Responsibly manage problematic waste

<table>
<thead>
<tr>
<th>Objective</th>
<th>Please indicate which Objective(s) your facility will support.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.A. Improve access to problematic waste collection</td>
<td>☐</td>
</tr>
<tr>
<td>2.B. Provide education</td>
<td>☐</td>
</tr>
<tr>
<td>3.C. Collect data</td>
<td>☐</td>
</tr>
</tbody>
</table>

For each Objective you checked, describe your planned activities:

<table>
<thead>
<tr>
<th>Objective</th>
<th>Please indicate which Objective(s) your facility will support.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.A. Improve access to solid waste drop-off opportunities</td>
<td>☐</td>
</tr>
<tr>
<td>3.B. Improve community participation</td>
<td>☐</td>
</tr>
<tr>
<td>3.C. Provide education</td>
<td>☐</td>
</tr>
<tr>
<td>3.D. Collect data</td>
<td>☐</td>
</tr>
<tr>
<td>3.E. Increase illegal dumping prevention efforts</td>
<td>☐</td>
</tr>
<tr>
<td>3.F. Increase illegal dumping enforcement</td>
<td>☐</td>
</tr>
</tbody>
</table>

For each Objective you checked, describe your planned activities:

__
__
__
__
__
__

☐ I have reviewed the 2022 – 2042 Regional Solid Waste Management Plan goals and objectives and pledge to be a good partner in helping achieve them.

_________________________ __________________________
Signature Date
Attachment IV.B. Required Approvals | Public Meeting

This attachment includes the public notice, agenda, and the transcript of the required public meeting. No public comments were received related to the plan.
Public Notice and Agenda

Public Notice

Draft 2022-2042 Regional Solid Waste Management Plan Public Meeting

Date: July 13, 2021, 10:00am

Contact: Paul Prange
Environmental Resources Coordinator
Ark-Tex Council of Governments
(903) 832-8956
ppringle@atcog.org
www.atcog.org

Join Zoom Meeting

https://texstate.zoom.us/j/55546111787?pwd=czotGhiVFEDYWRVd0XcGTZZeUZ67z09
+12462482784, 95646111787#
+16509000633, 95646111787#
95646111787@zoom.us

The Ark-Tex Council of Governments’ Solid Waste Advisory Committee will hold a meeting on Tuesday, July 13, 2021 at 10:00am. The meeting will be held via webinar and at the Ark-Tex Council of Governments office located at 4308 Elizabeth Street, Texarkana, Texas, 75503. The public is invited to attend.

Agenda Items:
1. Call to order.
2. Presentation of the draft 2022-2042 Regional Solid Waste Management Plan by Texas State University.
3. Discuss updates to plan. Public Comment Period (limit 5 minutes per person).
4. Adjourn.
Transcript

WEBVTT

1
00:00:00.000 --> 00:00:00.599
idea.

2
00:00:02.909 --> 00:00:05.580
pprange: I believe we have all of our attendees here that I.

3
00:00:06.600 --> 00:00:17.609
pprange: Absolutely hate confirmation, though, so at this point, I would just like to introduce Rebecca baguio and her team from Texas State University, who the artist.

4
00:00:18.720 --> 00:00:29.940
pprange: Is contracting with we've updated our 20 year regional thought waste management plan and this point i'd like to turn it over to Rebecca and her team and.

5
00:00:31.710 --> 00:00:45.270
pprange: If there are any public attending this meeting via webinar after we go through the slides we will ask for public comment Rebecca.

6
00:00:46.260 --> 00:01:02.940
Rebecca Davio: Great Thank you so much, Paul and i'm going to ask matt to start sharing his screen as Paul said, we are here today to provide you an opportunity to comment on your original solid waste management plan draft for.

7
00:01:06.840 --> 00:01:24.360
Rebecca Davio: And so we want to start out by giving you just a little bit of context as Paul said every 20 years the TC Q, the Texas Commission on environmental quality requires cogs to develop regional solid waste management plans.

8
00:01:25.770 --> 00:01:33.450
Rebecca Davio: At cog did hire the Institute for government innovation at Texas State University tell you a little bit more about us in just a minute.
Rebecca Davio: But just remind you this plan is being developed for 2022 to 2042 that's the 20 year period that we're looking at here, and this is a public meeting during this meeting, we will present your draft plan that we've developed and solicit your comments.

Rebecca Davio: So this is Paul's contact information, you can get comments to him via email, I believe that you can also reach out to him by phone so feel free he needs to be the official recipient of your comments, if you do have any.

Rebecca Davio: So we are the Texas state Institute for government innovation, we are unique on campus consultancy that leverages the talent and resources of the university to help our clients solve real world problems.

Rebecca Davio: We do this by leveraging student energy and talent and we like to think of our mission as improving today's decisions and tomorrow's decision makers.

Rebecca Davio: So just specifically to let you know, everybody that you'll see here on the call today, my name is Dr Rebecca de Vo I am the director of the Institute for government innovation.

Rebecca Davio: I have lots of experience in state government and am very happy to be working with you on this this project.

Rebecca Davio: you'll hear shortly from Matt Pan to so he's our senior grant coordinator and the project manager on this you'll also get to hear from Molly I'll read she is a senior in environmental studies here.

Rebecca Davio: Eric out per you will also hear from and he is getting his master's in public administration.
Rebecca Davio: Haley Johnson is on the call today, but she will not get to hear from her, she is a master student in geography.

Rebecca Davio: And Haley Tanker, you will hear from today, she is very excited to be graduating in August, but she is turning right back around and working beginning her master's in sustainability in the fall.

Rebecca Davio: So just to give you a little bit more context of the kinds of information that we're going to be covering.

Rebecca Davio: We'll start with some background information about the TC Q forms will look at the demographics population.

Rebecca Davio: Commercial, industrial information that's going to help us get a perspective on the volumes of voice that are generated within your region.

Rebecca Davio: Then next we'll look at the solid waste management capabilities within your region landfill processing centers that kind of thing.

Rebecca Davio: Then, what we have down is we listed as an area of concern we look to think of it really as an area of opportunity that these are some areas that you can build on and improve and grow and be able to divert more material from the landfill.

Rebecca Davio: Then we get to really that's all to provide context and really the heart of what we'll be presenting today is the draft of your regional.
Rebecca Davio: solid waste management plan so what the recommended goals objectives and action steps are and then finally.

26
00:05:04.020 --> 00:05:20.010
Rebecca Davio: Before we get to your opportunity to comment will give you a little bit of information about what comes next before this plan is finalized so with that information i'm going to turn it over to matt and let him continue.

27
00:05:21.840 --> 00:05:23.130
Matt Pantuso: Thank you very much, thanks Dave you.

28
00:05:24.900 --> 00:05:32.850
Matt Pantuso: began by providing you some of that background information into the TC Q format that's required and then i'll tell you a little bit about our approach.

29
00:05:33.600 --> 00:05:39.960
Matt Pantuso: So the tck requires two forms as part of the regional solid waste management plan, the first is the volume one form.

30
00:05:40.380 --> 00:05:46.260
Matt Pantuso: As forms about five or it is five pages long, when not filled out and acts as an executive summary of the plan.

31
00:05:46.860 --> 00:05:56.460
Matt Pantuso: The volume to form is significantly longer when not completed it's 18 pages long, in addition to the information in the volume one form, it also includes.

32
00:05:56.850 --> 00:06:05.880
Matt Pantuso: Waste projections data about current unplanned activities waste disposal facilities and the goals objectives and action plan.

33
00:06:06.600 --> 00:06:14.130
Matt Pantuso: And of course it has the required approvals, because this form is somewhat restrictive, there will also be a series of attachments that explain the methods.

34
00:06:14.550 --> 00:06:20.250
Matt Pantuso: provides additional context and graphics were appropriate to help fully understand the data that informs the goals.

35
00:06:21.090 --> 00:06:28.680
Matt Pantuso: And so, while Volume one has the goals and objectives volume two has also has the action steps in it, separate from the goals and objectives.

36
00:06:29.550 --> 00:06:34.140
Matt Pantuso: And having these pieces of information sort of spread out in different places felt difficult for us so.

37
00:06:34.770 --> 00:06:48.330
Matt Pantuso: To address this we’re also going to provide a more user friendly version of the action plan that combines the goals objectives and action steps into a single quick reference go to document, it will be somewhat similar to what you see towards the end of the presentation today.

38
00:06:49.350 --> 00:07:02.040
Matt Pantuso: When we get to the goals before all that, I would like to share a little bit of our approach to these plans we use surveys to ask committee members about their priorities approaches and past successes.

39
00:07:03.450 --> 00:07:09.870
Matt Pantuso: We also talk did some subject matter expert interviews we had regular engagement with the solid waste advisory committee.

40
00:07:10.320 --> 00:07:20.070
Matt Pantuso: Use geospatial and statistical analysis and best practices research to inform the final plan so we started with demographics.

41
00:07:20.640 --> 00:07:32.310
Matt Pantuso: And, in case you aren’t familiar the arctic’s Council of governments is made up of nine counties and a total population nine counties in Texas, that a total population of 288,000 in 2019 reasoning.

42
00:07:33.030 --> 00:07:40.230
Matt Pantuso: Here, because that is also the year we have waste disposal data for and that allowed us to estimate waste generation.
Matt Pantuso: However, the data does not consider waste that is imported into the region or export it out of the region.

Matt Pantuso: The population in the region is expected to decrease over the planning period from 288,000 to about 268,000 people, as you can see in the orange line in this bar chart and therefore waist generation is also expected to decrease.

Matt Pantuso: As you can see in this enhanced version of the previous slide we’re showing the breakdown of the calculations, we did to estimate that volume of the waste that’s going to the landfill shirt and blue.

Matt Pantuso: And how much is being diverted through recycling shown in green.

Matt Pantuso: There is no official recycling rate available for the entire region, so we used a published statewide average recycling rate and customized it for the AT cog region to assume the amount of waste that is diverted from the region’s landfills.

Matt Pantuso: With the context that waste generation is expected to decrease we’ll take a look at solid waste management and a little more detail.

Matt Pantuso: for managing solid waste the Environmental Protection Agency has produced a waste management hierarchy from the top of this inverted pyramid you can see that source production, reuse, recycling and composting are the most desirable management options with disposal being the least desirable.

Matt Pantuso: Next we provide a diagram we develop that puts the major activities TC Q is interested in for the original solid waste management plan into a larger context.
Matt Pantuso: it’s clear to see generations, the beginning and disposals the end generation happens at residences and businesses so to source separation.

Matt Pantuso: And, for example, that’s separating trash and recycling we’ve grouped the next three activities under the heading logistics, these are all about getting the waste away from those residences and businesses to where it needs to go.

Matt Pantuso: You can include curbside collection handling such as drop off centers or collection events and storage at those drop off centers or transfer stations before processing.

Matt Pantuso: Processing includes transport typically buy and transfer station treatment, for example, reducing hazards associated with medical waste or recovery, for example, composting all that remains is then disposed of in landfills, be aware of these.

Matt Pantuso: Activities appear as separate industry tasks.

Matt Pantuso: But we will see that there are some entities that perform multiple functions and with that context, I will now pass it on to Eric to provide a little more detail about each of these activities, beginning with generation.

Eric Alper: How about, it is important to note that, when we discuss generation here we’re focused on the end users of materials, including places like residences schools and businesses and so forth.

Eric Alper: It does not include the actual manufacturing processes that frequently dictate the types of materials households are left with is waste.
Eric Alper: These manufacturing processes profoundly impact generation, but they are outside the scope of this plant.

Eric Alper: In this section will show you employment factors affecting lead generation for both commercial and industrial sectors.

Eric Alper: First, to get a sense of where generation is likely occurring, we could look at residential each generation.

Eric Alper: By doing so we better understand the types and amounts of waste disposed of in an average household the best data on this topic is from a landmark study undertaken in California, in 2014 although just an estimate this breakdown is very similar to what you’d expect to find in your region.

Eric Alper: So waste characterization means finding out how much paper last food waste and so on is discarded and original the pie chart here shows that food paper and other organics like textiles are the top three waste products jostled.

Eric Alper: The characterization of residential waste is an important tool, because it helps in planning how to reduce waste set up recycling programs and conserve money and resources.

Eric Alper: We turn now from residences to businesses that generate waste, here we show to pie charts which depict our estimates of the composition and weight of commercial and industrial waste generation in the year 2018 we did projections out to.

Eric Alper: they’re not shown here, but the composition of the waist stays the same.
Eric Alper: However, though TC Q collects data by weight, it is important to consider the difference between weight and volume, because our landfills fill out by volume and not by weight.

Eric Alper: It is helpful to recognize that construction demolition debris is obviously heavy but by volume paper contributed significantly more than it does by weight and therefore it takes up a bigger piece of the pie, additionally, you can see plastics, maybe like they take up a lot of space.

Eric Alper: We move next to source separation again this is how the way streams are separated at the point of generation, for example, think of a household separating it stretch from its recycling.

Eric Alper: On the next slide here, we presented example of source separation using texarkana as an example, you can see that three different way streams are collected curbside.

Eric Alper: and additional 10 can be dropped off at collection centers but, as you move away from texarkana you likely see fewer and less convenient opportunities as this happens, we expect more items may have been that may have been diverted from the landfill will end up going to trash.

Eric Alper: After source operation comes logistics logistics includes collection, for example, curbside trash collection handling like drop off locations and events and storage.

Eric Alper: Look at collection first to really understand where these collections services were offered we did what we call an Internet survey of websites and ordinances for the cities in your region.

Eric Alper: For each city, if a curbside service was provided we added
the total population of that city to our estimate, based on the results of the survey. We estimate that.

75
00:13:31.770 --> 00:13:45.770
Eric Alper: Around 55% of people in the region have access to curbside to city provided curbside trash collection, we do not know whether the remaining percentage of people have access to curbside collection that that is just not available.

76
00:13:46.770 --> 00:13:51.840
Eric Alper: For waste that is not collected curbside there, of course, drop off locations where it can be handled.

77
00:13:52.830 --> 00:14:03.900
Eric Alper: There were three landfills and the region where residents could drop off their waste landfills will show up again in the disposal step but they're included here because they may do some waste handling, in addition to their disposal.

78
00:14:05.490 --> 00:14:23.070
Eric Alper: It is important to note that, as a result of State law many recycling centers are not required to get permits. Q only provides data about the recycling recycling facilities that they write it as a result, data about recycling punish is really just not available.

79
00:14:24.120 --> 00:14:33.240
Eric Alper: But keep in mind other locations where residents can drop off their recyclables include places like goodwill or home depot best buy clothes and so forth.

80
00:14:34.140 --> 00:14:44.820
Eric Alper: they're not included on this graphic and so after waste is collected handled and stored, it needs to be processed processing includes transport treatment and resource recovery.

81
00:14:45.930 --> 00:14:58.170
Eric Alper: here's what we know there are no transfer stations for transport there's one recycling facility for resource recovery and the salisbury compost facility treated 13,530 tons of material.

82
00:14:59.250 --> 00:15:02.310
Eric Alper: The remaining materials in the region or disposed of in landfills.

83
00:15:03.630 --> 00:15:15.270
Eric Alper: In the region there were three landfills and 2019, all of which were Type one or Type one landfill makes up all types of municipal solid waste and some non hazardous industrialist.

84
00:15:16.350 --> 00:15:21.840
Eric Alper: These locations are where all the waste that was not otherwise diverted outside of the region was the suppose those.

85
00:15:23.100 --> 00:15:30.150
Eric Alper: So we can zoom in a little and say some more details, by looking at a table of your regions three landfills and.

86
00:15:32.010 --> 00:15:37.290
Eric Alper: estimated that these landfills and the region would have a combined 204 years of remaining capacity.

87
00:15:39.300 --> 00:15:45.780
Eric Alper: Turning bounds of what was the supposed to have these landfills, we see there was a total of 456,000 tons of material.

88
00:15:46.230 --> 00:15:50.820
Eric Alper: You can see in this pie chart here municipal solid waste represents the greatest the portion of waste.

89
00:15:51.690 --> 00:16:01.170
Eric Alper: But the data provided really like specificity, that we need to make informed decisions about potential waste diversion opportunities okay.

90
00:16:01.890 --> 00:16:10.920
Eric Alper: So we’ve covered lots of background information to give you some perspective on solid waste i’m now going to turn it over to haley to cover the areas of concerns that we have identified.

91
00:16:12.780 --> 00:16:13.590
Haley Tacker: Thank you Eric.
Haley Tacker: So the four primary concerns were identified for this region are solid waste literacy illegal dumping problematic waste, which includes household hazardous waste and funding.

Haley Tacker: So we identify these areas of concern, using a variety of methods, including reviewing committee Member survey responses analyzing TC Q provided landfill facility and funding data.

Haley Tacker: For performing specific geographical analysis for your region conducting subject matter expert interviews and collecting other relevant data sources like municipal ordinances the senses and others.

Haley Tacker: are so now that you've seen your areas of concern i'm going to explain what led to each one so begin with solid waste literacy.

Haley Tacker: So the members of the solid waste advisory committee ranked education as a top priority in their survey responses.

Haley Tacker: So for illegal dumping survey responses indicated it as the second highest priority.

Haley Tacker: And the other contributing factors to this being an area of concern include long travel distances to waste off applications will curbside collection availability and also the respondents indicated a need for more enforcement coordination and education to better combat illegal dumping.

Haley Tacker: For problematic wastes survey responses indicated haskell hazardous waste as third highest priority.
Haley Tacker: And we also identified a lack of drop off locations for hw tires and E waste and that’s why we brought in this concern to be overall problematic ways.

Haley Tacker: And so, for all these types of ways, we were unable to identify any recent collection events in the region, plus we consider the potential harmful environmental impact of these materials to be important as well.

Haley Tacker: Funding is an area of concern, because of discussions with the committee and our review of past tck grant funding data.

Haley Tacker: So, based on these areas of concern we’ve drafted the our texts regional solid waste management plan for 2022 through 2042.

Haley Tacker: This plan includes four goals that focus on integrated salt solid waste management, excuse me, these calls have a combined 19 objectives and 43 action steps which very well seem like a lot but they’re spread throughout the year action plan.

Haley Tacker: And so began with a quick overview of all four goals and so go on, is to maximize beneficial resource use goals, who is to responsibly manage problematic waste all three is to maximize proper disposal.

Haley Tacker: And goal number one we want to make sure as much material as economically feasible is diverted from the landfill by source reduction recycling composting etc.
Haley Tacker: Well, number two deals with problematic waste like household hazardous waste and tires.

Haley Tacker: Whole number three strives to ensure all the remaining ways to send to the safest disposal location of sanitary landfill, instead of being dumped really ugly or otherwise and properly disposed.

Haley Tacker: Before fall acknowledges the critical role, all of you play and making those three things happen region wide.

Haley Tacker: And other note in this presentation we say you and your periodically because have you’re at this meeting, and you care about waste management.

Haley Tacker: And even though the committee members will be leading the implementation of this plan, they really can’t do it without help from people like you.

Haley Tacker: So now, you see this diagram as its intended to also show how the first three goals are built on the foundation of cogs solid waste advisory committee leadership.

Haley Tacker: And you may notice that the first three goals represent integrated solid waste management and you probably also notice how short and simple these goals are.

Haley Tacker: Both of those things were done on purpose on the fact that these goals fit together cohesively and are expressed and short phrases helps you helps the goals to be memorable because, after all, if you can’t remember the goal it’s going to be pretty hard to achieve them.
Haley Tacker: So, now that you’ve seen your goals, we also want to make sure you understand the relationship between the areas of concern and these goals.

118
00:20:10.350 --> 00:20:21.030
Haley Tacker: So this table provides a roadmap for those connections, for example, you may have noticed that there’s not a goal but education, even though it’s always literacy was your top area of concern.

119
00:20:21.690 --> 00:20:28.020
Haley Tacker: So instead we integrated education into every goal which you’ll see when we review the goals, a little more detail later on.

120
00:20:28.830 --> 00:20:33.750
Haley Tacker: So illegal dumping is included in gold three problematic waste is addressed in goal to.

121
00:20:34.740 --> 00:20:47.550
Haley Tacker: include an alternative funding strategies and every goal, and we also included leader regional planning under every every under every area of concern, excuse me, because significant improvements and waste management, take leadership.

122
00:20:48.930 --> 00:20:52.110
Haley Tacker: And there’s a couple final notes, I want to point out about this plan.

123
00:20:52.680 --> 00:21:04.770
Haley Tacker: So notice that the goals objectives and action steps are all relatively generic and this was done on purpose, so that the plan can evolve over the 20 year period and service, the basis for developing mobile plans.

124
00:21:05.670 --> 00:21:14.700
Haley Tacker: And so, with that context the first goal is to maximize beneficial resource use this goal includes ideas like recycling composting and just be using.

125
00:21:15.300 --> 00:21:24.900
Haley Tacker: So for this goal, there are three objectives they are to improve access to diversion opportunities improve Community participation
and provide education.

126
00:21:26.160 --> 00:21:32.700
Haley Tacker: To help you understand these objectives, a little better, one is about improving access and making it easier to participate.

127
00:21:33.150 --> 00:21:43.260
Haley Tacker: When B is about improving Community participation and getting more people involved and, once these really about providing education to ensure people understand how and why they should participate.

128
00:21:44.130 --> 00:22:00.120
Haley Tacker: and, hopefully, you can see how these objectives, build on and reinforce each other so, for example, there’s really not much used to educate people on how to recycle if there are minimal opportunities to do so, and again we really try to keep these objectives short and easy to remember.

129
00:22:01.320 --> 00:22:09.090
Haley Tacker: So Objective one, a improve access to diversion opportunities as five action steps with three in the short term and two in the mentor.

130
00:22:10.020 --> 00:22:22.200
Haley Tacker: To help you understand the timeframes for the action periods, q is defined the first five years of your plan is short term years five through 10 as midterm and with the last 10 years being long term.

131
00:22:23.520 --> 00:22:30.180
Haley Tacker: So the short term action steps for this objective include one identifying and sharing existing locations to drop off materials.

132
00:22:30.810 --> 00:22:38.430
Haley Tacker: To encourage and government agencies to lead by example and three exploring innovative waste collection and processing methods.

133
00:22:39.390 --> 00:22:44.460
Haley Tacker: And you’ll notice a lot of the action steps are followed by a set of parentheses containing additional details.
Haley Tacker: And then, a couple of pieces these additional details do include the name of a private company like action step one a three where we're cyclops as mentioned.

Haley Tacker: And we're just asking to not interpret these as endorsements necessarily but really just an attempt to share specific ideas that we came across during our research.

Haley Tacker: So in to improve access to diverse opportunities in the midterm and what a, for we recommended you explore ways to duplicate the success of local facilities such as the texarkana water utilities composting Center.

Haley Tacker: and learning from others within the region allows for overall faster progress.

Haley Tacker: And then in step one a five you suggested, encouraging cities and counties to offer free recycling of cardboard and other high value commodities at large volume generators, and this is actually something that the city of mcallen and the lower Rio Grande valley Caucus done pretty successfully.

Haley Tacker: Objective one be improving Community participation has two steps with one the midterm and one spanning the entire planning period.

Haley Tacker: The mission of action step one V one is approaching large volume generators with existing recycling programs and really asking them to consider accepting Community generated materials.

Haley Tacker: Miss action step diverts more materials from the landfill and saves money because no new facilities to be set up.
Haley Tacker: Actually step one be to which fans the entire 20 year period is about leveraging Community civic school and university volunteer groups to provide volunteers for collection events, and this is an example of way to stretch limited funding.

Haley Tacker: So Objective one see which is related to education has to action steps that both span the entire planning period.

Haley Tacker: So the first action step is ensuring that information about beneficial resources be made easily and regularly available to Community members via the websites of all cities and counties within the cog.

Haley Tacker: And through social media and this comes up virtually no cost to the cog in a separate action step is providing relevant information.

Haley Tacker: To specific target audiences so, for example, the golden crescent cogs did outreach to school children throughout the region, and one of the schools actually 150 thousand dollars in prizes in international competition.

Haley Tacker: So, we feel that these steps are good communication strategies and you’ll see them repeated and the next people’s.

Haley Tacker: I will now turn over to molly to cover the next three goals.

Haley Tacker: Thank you haley.

Molly Allred: So go to is responsible to manage.
Molly Allred: problematic waste, there are three objectives for this goal do to improve access to problematic least collection provide education and collect data.

Molly Allred: you'll notice some consistency in these objectives, compared to the last goal improve access and provide education are, in fact, included on all three goals really do solid waste management.

Molly Allred: And that's done on purpose or play it makes sense that these are core activities that need to occur for all of the goals.

Molly Allred: So now we'll look at the action steps for today.

Molly Allred: Which is improving access to problematic waste production.

Molly Allred: There are two action steps in the short term in one that spans the entire period.

Molly Allred: objective to a encouraging on demand curbside specialist collection is really just doing a little investigation to see if services like at your door, which provides on demand home collection of household hazardous waste waste are available within the region.

Molly Allred: In the short term, we also suggest extra step to a to export reuse opportunities for paint and paint as specified here because it's the most common form of household hazardous waste collected at collection events and drop off of its.

Molly Allred: objective to a three encourages the call to provide support to communities, they would like to hold their own collection events for problematic ways.
Molly Allred: To support could take the form of financial contribution sharing best practices or developing a standardized contract specification, which could be used by any interest in city or county.

Molly Allred: So we'll move on to objective to be to provide education, which has one actually step in the short term and to the span the entire period.

Molly Allred: Action step to be one is to develop a list of existing businesses were problematic ways can be dropped off and posting it on the website, as well as as well as the websites of all cities and counties in the region.

Molly Allred: This could be very helpful because a lot of people, for example, are unaware that unused prescriptions can be taken a mini walgreens for proper disposal at no cost.

Molly Allred: Action step two meter into the three are similar to education action steps and go one and will also show up and go through.

Molly Allred: projected to see collecting data has one midterm step, which is to collect analyze and share data about all problematic waste disposal events held in the region.

Molly Allred: Understanding things like what zip codes participants live in what types of materials they drop off and the event cause can help to improve future minutes.

Molly Allred: All right, those are all the objectives and action steps for responsible management and problematic ways.
Molly Allred: Next is going to be to maximize Popper disposal.

Molly Allred: This goal is primarily related to illegal dumping and has six objectives are to improve access to solve which drop off opportunities increased Community participation provide education collect data increase illegal dumping prevention efforts and increase illegal dumping enforcement.

Molly Allred: notice that the language of the first four objectives matches previous goals that repetition not only makes it easier to remember the objectives but also create synergy between the different goals.

Molly Allred: In addition, these familiar objectives go three has two unique objectives which are we will be prevention and enforcement.

Molly Allred: We hope you also notice that these objectives follow a logical progression, starting by giving people access to the right thing, getting the Community involved and educated with clean up events identify trends and then using prevention and enforcement as necessary.

Molly Allred: This approach, promotes proactive action rather than reactive.

Molly Allred: So legal dump things often cause because access to proper disposal auction is not affordable or not convenient, so this go aims to start tackling that this go could also help help reduce burning and Barry and will not illegal those are still undesirable disposed.

Molly Allred: Beginning with three A, improving access to solve we stop off opportunities there are to action steps one in the short term and another in the midterm.
Molly Allred: Action step three one recommend support for reduced cost options for waste disposal targeted at low income households.

Molly Allred: Such as organizing a freelancer day providing doctors to residents who might not be able to afford tipping fees for coordinating with them for operators to offer a buyback program rather than a payback cubic yard.

Molly Allred: midterm access step three is crafted to make proper waste disposal more convenient and recommends the establishment of additional municipal or county collection centers using local centers such as a call Center as a model.

Molly Allred: For our second objective increase in Community participation, we suggest one action step in the short term and want to carry throughout the planning period.

Molly Allred: Action step to be one is designed to encourage and enable Community illegal dumping reporting, such as by using illegal dumping reporting APP or a designated phone line.

Molly Allred: To help further participation, this could be just as simple as raising visibility and awareness of the cogs is existing reporting to.

Molly Allred: Action step three is about expanding Community cleanup events by leveraging existing events and sharing best practices.

Molly Allred: Moving on to Objective three see provide education, there are three action steps spanning the entire planning period, all of which we’ve seen in previous goals that here they’re tailored to this goal.

Molly Allred: And our last three objectives really relate to moving
toward enforcement after giving people in businesses as many opportunities as possible to do the right thing.

185
00:30:45.300 --> 00:30:54.420
Molly Allred: 3D one encourages data collection about illegal dumping, such as incident points expenditures by cities and counties for cleanup and enforcement and enforcement outcomes.

186
00:30:55.680 --> 00:31:04.260
Molly Allred: This action step is in the mid term and will be made possible, in part, by completing objective 3D one increase Community participation in a we were dumping reporting.

187
00:31:05.670 --> 00:31:16.380
Molly Allred: Then, in the long term action step through each one we recommend using this data to help identify good places for prevention efforts with the terms such as cameras signage pontification and fencing.

188
00:31:18.210 --> 00:31:32.400
Molly Allred: they're addicted to the F increase illegal dumping enforcement, there are three action steps for the shirt for the short term, until we have one was specifically recommend outreach to prosecutors and judges to increase their understanding and support of illegal dumping enforcement.

189
00:31:33.840 --> 00:31:43.620
Molly Allred: In the mid term three of to recommends you explore developing regional environmental Task Force for law enforcement officers and others involved with illegal dumping to share best practices.

190
00:31:45.090 --> 00:31:54.090
Molly Allred: and three of three we recommend you continue to pay for illegal dumping training for officers and judges in fact we consider this a best practice worthy of sharing with other COPs.

191
00:31:55.380 --> 00:32:03.480
Molly Allred: And those are all the objectives and action steps for maximizing proper disposal so now we'll go on to the fourth and final goal, which is to lead regional planning.

192
00:32:04.770 --> 00:32:18.330
Molly Allred: This goes a little bit different than the others the several the action steps or test called casting anyway, as part of tcp requirements, but we wanted to include them as part of the plan to ensure a single, consolidated document for solid waste related activities.

00:32:19.770 --> 00:32:29.820
Molly Allred: So go for was developed to maximize the impact of the rest of the plan goes 123 of the actions that need to be taken in this go emphasizes working together to achieve those goals.

00:32:30.900 --> 00:32:37.860
Molly Allred: Working together includes the committee members and other stakeholders, like you, everyone here is crucial to the success of this 20 year plan.

00:32:39.540 --> 00:33:03.610
Molly Allred: This, though we have seven objectives collaborate optimize funding decisions oversee facility planning review and update solid waste management plans make continuous improvements collect data and plan for disaster waste.

00:33:02.430 --> 00:33:10.500
Molly Allred: And you'll see as we go through the action steps with their connections between some of the things in this goal in and the previous goals.

00:33:02.430 --> 00:33:09.330
Molly Allred: and objectives for a collaborate, there are two steps in the short term to in the mid term and one in the entire period.

00:33:10.500 --> 00:33:20.580
Molly Allred: The first action step for one is to look into initiating a solid waste award program to acknowledge efforts in the region, this is something that brazos valley contest accessory.

00:33:22.290 --> 00:33:37.770
Molly Allred: Next, in for a to the idea is to share this called plant outside of the official Committee, both with relevant departments in cities and counties and also with other entities not represented on the committee, this will amplify the result and ensure everyone is moving in the same direction.
Molly Allred: In the mid term for three is to compile a list of materials collective at each city and county in the call.

Molly Allred: If, for example, you know that every city, except one click steel cans and that city may decide to add steel cans to the list consistent recycling supervised education increases participation and reduces contamination.

Molly Allred: For a for encourages cities and counties to develop their own plans incorporating the relevant parts of this regional plan.

Molly Allred: And 45 which spans the entire period, we recommend using existing resources and tools developed by other cause invite TC to to save time and money.

Molly Allred: Next, for being is to optimize funding decisions.

Molly Allred: In the mid term for be one encourages establishment of grant funding criteria to ensure active Community participation and to ensure that all funded activities aligned with plan priorities, and we can provide an example of this criteria from the lower Rio Grande valley club.

Molly Allred: Next, all of action tips and foresee evaluate facility permit applications plan for regional waste disposal capacity and maintain the closing of inventory are required by tct and will occur only as needed throughout the planet period.

Molly Allred: Action steps in objective for D will also occur throughout the period.
Molly Allred: or D one reviewing and updating the plan is needed will help make it a more useful document and then biannual progress reports is not only required by tart and by gc to the provides an opportunity to share options, more broadly, with confidence.

209
00:35:16.290 --> 00:35:22.530
Molly Allred: Next it's good to stay informed so, for he provides place to do things like technical studies or attend conferences.

210
00:35:23.730 --> 00:35:33.060
Molly Allred: And action step for F1 we recommend exploring the development of the regional data sharing platform to simplify all of the data collection activities that were part of the other goals.

211
00:35:34.320 --> 00:35:47.310
Molly Allred: And finally, for objective for G plan for disaster waste in the mid term we encourage the development of disaster debris management plans, because it’s important to have some idea of what to do with your waist after disasters that just flooding or strong storms.

212
00:35:48.420 --> 00:35:58.260
Molly Allred: And throughout the planning period in 4G to recommend sharing resources and best practices within the region is good, not only will find existing plans could help cities, create their own plans.

213
00:35:59.910 --> 00:36:05.910
Molly Allred: hey Those are all the goal for objectives, so now that you've seen the plan i’ll pass it back to matt to give you look at what’s ahead.

214
00:36:07.920 --> 00:36:08.790
Matt Pantuso: Thank you very much molly.

215
00:36:10.860 --> 00:36:16.830
Matt Pantuso: We take a look ahead, here we just want to help you understand the remaining steps before this plan receives final approval.

216
00:36:17.400 --> 00:36:24.240
Matt Pantuso: First, will incorporate all the public comments, we will then provide the updated plan to the solid waste advisory committee for their approval.
Matt Pantuso: Once they approve it, it will be sent to the Cork board for review and approval, finally, it will be sent to the Texas Commission on environment, quality for their approval.

Matt Pantuso: This concludes our presentation on the arctic’s Council of governments, regional solid waste management plan for 2022 to 2042 we would very much like to thank everyone for their interest today and we will now turn it back to Mr Paul praying to open the public comment period.

pprange: Thank you, man, I appreciate that wonderful presentation that’s usual.

pprange: I noticed, we have another.

pprange: slack member that got on right before we got started I didn’t recognize that he was there gene Kanan with Republic services.

pprange: He is he is a in attendance among us, and I see a name is Karen Lewis.

pprange: Is that a member of the public who would like who providing the public comment.

Kara Lewis: I this is careless I was invited by amy Jones Johnson.

Kara Lewis: Because I live in.
pprange: OK.

227
00:37:37.530 --> 00:37:43.770
Kara Lewis: OK and i’m a friend of hers and I was just calling in to
learn, no, thank you.

228
00:37:44.400 --> 00:37:46.680
pprange: whoa Thank you so much, I appreciate it.

229
00:37:51.060 --> 00:38:00.840
pprange: Well, anyone on the committee, want to weigh in on the the
slide presentation and any comment or question.

230
00:38:03.900 --> 00:38:15.510
Mario Villarino: All I would just like to congratulate the team I think
they cooperate very well those comments that we need, on the first round
i’m glad to see that has been on there so very pleased with upon.

231
00:38:16.680 --> 00:38:17.640
Rebecca Davio: Thank you very much.

232
00:38:18.570 --> 00:38:19.470
Robert Murray: I believe it was an excellent presentation very
informative and I think we’re right on point.

233
00:38:24.810 --> 00:38:29.970
Jon Dalzell: Very good presentation, I think it had a lot of useful
information and.

234
00:38:34.860 --> 00:38:38.490
Jon Dalzell: look forward to being able to use it in the future.

236
00:38:50.910 --> 00:38:54.570
pprange: Jane do you have any any comment from your perspective.

237
pprange: and lifestyle management.

Yes.

GKeenon: hey well, I think.

GKeenon: it's pretty obvious we're working in a rural area it's a little more it's a little difficult.

GKeenon: You know landfills are spaced out recycle centers are just about nine it's just you see kind of what i've been fighting for 25 years.

GKeenon: On trying to.

GKeenon: Try to recycle it's difficult so difficult and then one would come they wouldn't last long and they leave, and you know, and then it just it's just real real challenging for us in our in this area so i'm glad that we.

GKeenon: Just now, we have proof that that sort of is what that you know from experts that that some of the things that i've been saying isn't just mean saying it's.

GKeenon: it's it's real it's it's our it's our reality, but you know we don't give up, we keep we keep doing our best to keep trying to recycle you know, I was glad that wins borough actually started.

GKeenon: Recycling problem is just trying to get the majority of the people to do it in this is is another side of it, the education of it is difficult.
GKeenon: One thing that they may not known, but in the old days I used to be able to go to the schools and talk do recycle programs.

GKeenon: But ever since they started all those testing the Star and all those tests, you can order to get in the school to do extra classes on things because they're studying to take the test they don't have a lot of outside people coming in anymore like they used to so that's all I had.

pprange: Thank you Jane.

pprange: Three what else have any other questions or comment for Rebecca and her team.

pprange: Hearing none, I will turn this back over to you Rebecca then, if you have any final final statements or comments you'd like.

Rebecca Davio: Well, I would just like to reiterate that thanks that met said, we are very, very excited and honored to be working with you on to develop your project.

Rebecca Davio: We appreciate the opportunity and the good comments and.

Rebecca Davio: feedback that you've given us and we're going to keep working The next thing that you will see, we did provide to Paul the sort of easier version of your plan so that you could look at if you have any additional comments we welcome those.

Rebecca Davio: The next step is we're working on those formal TC eq documents and.
Rebecca Davio: I will warn you, TC Q made them easier, so that there’s tables and you can go and just look at the data we felt like that was a little challenging to just.

Rebecca Davio: You know if y’all didn’t participate in gathering the data and doing the research that just those tables would be like okay not.

Rebecca Davio: Maybe not as helpful as we wanted, so we have attack included a lot of attachments which they allowed for in their.

Rebecca Davio: Their documents, their reports, and so there, you will be able to see a lot of the information that we’ve included in presentations and some additional details about.

Rebecca Davio: How we did the calculations, where we got the data, what the sources more of that kind of thing, so that’s there as a reference tool for you, it is quite lengthy.

Rebecca Davio: But what we’ve done, we’ve worked very hard to make that as easy as possible to use if you want to refer to it in the future that kind of thing.

Rebecca Davio: So there's clickable links, if you want this information you don't have to scroll through along document, you just click there and go, so we are working to make the information as usable as possible.

Rebecca Davio: You know, we told you that we kept the goals and objectives short that kind of things that they could be memorable and we’re trying to make these documents useful for you so that you can spend your time implementing them not trying to navigate around them to remember.
pprange: All right, appreciate that Rebecca that that's a good thing.

Rebecca Davio: Thank you so much we appreciate the opportunity.

pprange: As well do my I would just like to remind the committee members that this session has been recorded and.

pprange: I will be forwarding a recording a link to the recording out to all the committee members, so that if you'd like to go back over look more closely, some of these slides feel free to do so, and also for those that were unable to attend today on this webinar.

pprange: And with that, I believe, Mario you don't have anything else to add or.

Mario Villarino: just want to thank you, everybody, for the work, and this is something.

Mario Villarino: Innovative and maybe challenging for someone it is to ask to you know we've been in the county for a decade already and dealing with some of these issues i'm glad to see it in black and white, just like in said and.

Mario Villarino: And it reflects a lot of our struggles and looking forward to the challenge for the next 20 or so years to come.

pprange: Wonderful wonderful well, thank you Rebecca I think that's a pretty much wraps it up on on Aryan from the company's perspective.

Mario Villarino: We don't have any.
Rebecca Davio: thing more to say i’m sorry.

Mario Villarino: I guess the next step is to leave it open for Paul to get any comments or on this period and then just take it from there.

pprange: Yes, and I don’t think anyone is on this call i’ve been looking at the attendees and I do believe that that Karen who was who was haley’s brand That was the only one that was an unrecognizable or unfamiliar name to me, so I thought perhaps that was someone that was.

pprange: was here that wanted to provide input, but I’m glad she lives in the region and now she knows a little bit more about what we’re planning and what the challenges that we face so with that, actually, I believe we can we can conclude the the entire meeting, if there is no public.

Rebecca Davio: I will stop recording them.