This file contains the following documents: - 1. Summary of application (in plain language) - English - Alternative Language (Spanish) - 2. First notice (NORI-Notice of Receipt of Application and Intent to Obtain a Permit) - English - Alternative Language (Spanish) - 3. Second notice (NAPD-Notice of Preliminary Decision) - English - Alternative Language (Spanish) - 4. Application materials - 5. Draft permit - 6. Technical summary or fact sheet # Este archivo contiene los siguientes documentos: - 1. Resumen de la solicitud (en lenguaje sencillo) - Inglés - Idioma alternativo (español) - 2. Primer aviso (NORI, Aviso de Recepción de Solicitud e Intención de Obtener un Permiso) - Inglés - Idioma alternativo (español) - 3. Segundo aviso (NAPD, Aviso de Decisión Preliminar) - Inglés - Idioma alternativo (español) - 4. Materiales de la solicitud - 5. Proyecto de permiso - 6. Resumen técnico u hoja de datos #### ENGLISH LANGUAGE TEMPLATE FOR CAFO PERMIT APPLICATIONS The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by the TCEQ Public Participation Plan and Language Access Plan. The information provided in this summary may change during the technical review of the application and is not a federal enforceable representation of the permit application. - 1) Applicant's Name: Circle 7 Dairy, LLC and Grand Canyon Dairy, LLC - 2) Enter Customer Number: CN604036954; CN603973462 - 3) Name of facility: Grand Canyon Dairy - 4) Enter Regulated Entity Number: RN100794155 - 5) Provide your permit Number: WQ0002950000 - 6) Facility Business: The facility confines 4,000 head of cattle in which 4,000 are milking. The facility has fourteen (14) land management units (LMUs) with the following acreages: LMU #1 103, LMU #2 83, LMU#3 78, LMU #4 60, LMU #5 210, LMU #6 65, LMU #7 30, LMU #8 87, LMU #9 20, LMU #10 50, LMU #11 56, LMU #12 91, LMU #13 53 and LMU #14 52 acres. Three (3) retention control structures (RCSs) and three earthen settling basins. The required capacities are: RCS #1 0.00 ac-ft, RCS #2 58.81(digester) & 54.96 (bypass) ac-ft and RCS #3 22.79 ac-ft. There are twenty (20) onsite wells of which three are plugged. The facility is located in the North Bosque River in Segment No. 1226 of the Brazos River Basin. - 7) Facility Location: The facility is located on the East side of FM 219 approximately 5 miles south of the intersection of FM 219 and Highway 1702, approximately 7 miles southwest of Dublin in Erath County, Texas. - 8) Application Type: Individual Permit Major Amendment - 9) Description of your request: Submitting a major amendment application in two phases in order to maintain compliance throughout the transition. Phase 1 will include the following changes: decrease the headcount to 2,500 total and 2,500 milking, update the runoff control map, site map and recharge feature map to the current conditions (remove digester and proposed freestall barns), reconfigure the following LMUs: LMU #1A (41 ac) is new and is a portion of LMU #1 (current 103ac; proposed 62ac), LMU #2A (21 ac) is new and is in a portion of LMU #2 (current 83ac; proposed 21ac), LMU #3A (21 ac) is new and is in a portion of LMU #3 (current 78ac; proposed 56ac), LMU #6 (current 65ac; proposed 62ac), LMU #12A (30 ac) is new and is in a portion of LMU #12 (current 91ac; proposed 66ac) and LMU #14 (current 52ac; proposed 47ac). Phase 2 will include the increase of headcount to 4,000 total and 4,000 milking, the addition of an anerobic digester and associated equipment and the addition of freestall barns. - 10)Potential pollutant sources at the facility include (list the pollutant sources): Manure, manure stockpiles, wastewater, sludge, slurry, compost, feed & bedding, silage stockpiles, dead animals, dust, lubricants, parlor chemicals, pesticides and fuel storage tanks. - 11)The following best management practices will be implemented at the site to manage pollutants from the listed pollutant sources (describe the best management practices that are used): stormwater is stored in the lagoon (RCS) until land applied through irrigation and manure and sludge are stockpiled in the drainage area of the RCS until land applied or hauled offsite for beneficial use. Manure and sludge generated by the CAFO will be retained and used in an appropriate and beneficial manner in accordance with a certified site-specific nutrient management plan. Wastewater will be contained in the RCS properly designed ((25-year frequency 10-day duration (25 year/10 day), constructed, operated and maintained according to the provision of the permit. Maintain 100-foot buffer for all irrigation wells or 150-foot for all supply wells. Dust control speed and regular pen maintenance. Fertilizers store under roof and handle according to specified label directions. Fuel Tanks provide secondary containment and prevent overfills/spills. Dead animals dispose by a third-party rendering service, buried on-site or compost on-site. Collected within 24 hours of death and disposed within three days. - 12) Unless otherwise limited, manure, sludge, or wastewater will not be discharged from a land management unit (LMU) or a retention control structure (RCS) into or adjacent to water in the state from a CAFO except resulting from any of the following conditions: - 1) a discharge of manure, sludge, or wastewater that the permittee cannot reasonably prevent or control resulting from a catastrophic condition other than a rainfall event; - 2) overflow of manure, sludge, or wastewater from a RCS resulting from a chronic/catastrophic rainfall event; or - 3) a chronic/catastrophic rainfall discharge from a LMU that occurs because the permittee takes measures to de-water the RCS if the RCS is in danger of imminent overflow. #### **SPANISH** El siguiente resumen se proporciona para esta solicitud pendiente de permiso de calidad del agua que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo exige el Plan de Participación Pública y el Plan de Acceso Lingüístico de la TCEQ. La información provista en este resumen puede cambiar durante la revisión técnica de la solicitud y no es una representación federal exigible de la solicitud del permiso. - 1) Nombre del solicitante: Circle 7 Dairy, LLC y Grand Canyon Dairy, LLC - 2) Ingrese el número de cliente: CN604036954; CN603973462 - 3) Nombre de la instalación: Grand Canyon Dairy - 4) Ingresar Número de Entidad Regulada: RN100794155 - 5) Proporcione su número de permiso: WQ0002950000 - 6) Instalación Comercial: La instalación encierra 4,000 cabezas de ganado, de las cuales 4,000 se encuentran en ordeño. La instalación cuenta con catorce (14) unidades de administración de tierras (LMU) con las siguientes superficies: LMU #1 103, LMU #2 83, LMU#3 78, LMU #4 60, LMU #5 210, LMU #6 65, LMU #7 30, LMU #8 87, LMU #9 20, LMU #10 50, LMU #11 56, LMU #12 91, LMU #13 53 y LMU #14 52 acres. Cuenta con tres (3) estructuras de control de retención (RCS) y tres cuencas de sedimentación de tierra. Las capacidades requeridas son: RCS #1 0.00 ac-pie, RCS #2 58.81 (digestor) y 54.96 acres-pie (derivación), y RCS #3 22.79 ac-pie. Hay veinte (20) pozos en el sitio, de los cuales tres están taponados. La instalación está ubicada en el Río North Bosque, en el Segmento No. 1226 de la Cuenca del Río Brazos. - 7) Ubicación de la instalación: La instalación está ubicada en el lado este de FM 219 aproximadamente a 5 millas al sur de la intersección de FM 219 y Highway 1702, aproximadamente a 7 millas al suroeste de Dublin en el Condado de Erath, Texas. - 8) Tipo de Solicitud: Enmienda Importante al Permiso Individual - 9) Descripción de su solicitud: Presentar una solicitud de modificación importante en dos fases para mantener el cumplimiento durante la transición. La fase 1 incluirá los siguientes cambios: reducir el número de cabezas a 2,500 en total y 2,500 en ordeño, actualizar el mapa de control de escorrentía, el mapa del sitio y el mapa de características de recarga a las condiciones actuales (eliminar el digestor y los establos de estabulación libre propuestos), y reconfigurar las siguientes LMUs: LMU #1A (41 ac) es nueva y es una parte de LMU #1 (actual 103 ac; propuesta 62 ac), LMU #2A (21 ac) es nueva y está en una parte de LMU #2 (actual 83 ac; propuesta 21 ac), LMU #3A (21 ac) es nueva y está en una parte de LMU #3 (actual 78 ac; propuesta 56 ac), LMU #6 (actual 65 ac; propuesta 62 ac), LMU #12A (30 ac) es nueva y está en una parte de LMU #12 (actual 91 ac; propuesta 66 ac) y LMU #14 (actual 52 ac; propuesta 47 ac). La Fase 2 incluirá el aumento de cabezas a 4.000 en total y 4.000 en ordeño. la adición de un digestor anaeróbico y equipo asociado y la adición de establos con estabulación libre. - 10) Las posibles fuentes de contaminantes en la instalación incluyen (enumere las fuentes de contaminantes): Estiércol, reservas de estiércol, aguas residuales, lodos, purines, compost, piensos y camas, reservas de ensilaje, animales muertos, polvo, lubricantes, químicos de salón, pesticidas y tanques de almacenamiento de combustible. - 11) Las siguientes mejores prácticas de manejo se implementarán en el sitio para manejar los contaminantes de las fuentes de contaminantes enumeradas (describa las mejores prácticas de manejo que se utilizan): las aguas pluviales se almacenan en la laguna (RCS) hasta que se aplican a la tierra mediante riego y estiércol y lodo se almacenan en el área de drenaje del RCS hasta que se aplican a la tierra o se transportan fuera del sitio para un uso beneficioso. El estiércol y los lodos generados por CAFO se conservarán y utilizarán de manera apropiada y beneficiosa de acuerdo con un plan certificado de manejo de nutrientes específico del sitio. Las aguas residuales estarán contenidas en el RCS adecuadamente diseñado ((frecuencia de 25 años y duración de 10 días (25 años/10 días), construido, operado y mantenido de acuerdo con lo
dispuesto en el permiso. Mantener una zona de amortiguamiento de 100 pies para todos los pozos de riego o 150 pies para todos los pozos de suministro. Polvo - velocidad de control y mantenimiento regular del corral. Fertilizantes almacénelos bajo techo y manipúlelos de acuerdo con las instrucciones especificadas en la etiqueta. Tanques de combustible - proporcionan contención secundaria y evitan sobrellenados/derrames. Animales muertos - elimínelos a través de un servicio de procesamiento de terceros o entierre en el sitio. Recolectado dentro de las 24 horas posteriores a la muerte y eliminado dentro de los tres días. - 12) A menos que se limite de otro modo, el estiércol, los lodos o las aguas residuales no se descargarán desde una unidad de administración de tierra (LMU) o una estructura de control de retención (RCS) hacia el agua en el estado o junto a ella desde una CAFO, excepto que resulte de cualquiera de las siguientes condiciones: - 1) una descarga de estiércol, lodo o aguas residuales que el tenedor del permiso no puede prevenir o controlar razonablemente como resultado de una condición catastrófica que no sea un evento de lluvia; - 2) desbordamiento de estiércol, lodo o aguas residuales de un RCS como resultado de un evento de lluvia crónica/catastrófica; o - 3) una descarga de lluvia crónica/catastrófica de una LMU que ocurre porque el tenedor del permiso toma medidas para vaciar el RCS si el RCS está en peligro de desbordamiento inminente. # TEXAS COMMISSION ON ENVIRONMENTAL QUALITY # NOTICE OF RECEIPT OF APPLICATION AND INTENT TO OBTAIN WATER QUALITY PERMIT AMENDMENT #### PERMIT NO. WQ0002950000 **APPLICATION.** Circle 7 Dairy LLC and Grand Canyon Dairy LLC, 2179 County Road 308, Dublin, Texas 76446, have applied to the Texas Commission on Environmental Quality (TCEQ) to amend Wastewater Permit No. WO0002950000 (EPA I.D. No. TX0130923) for a Concentrated Animal Feeding Operation (CAFO) to authorize the following changes in two phases. Phase 1 will authorize: to decrease the headcount to 2,500 total dairy cattle and 2,500 milking; update the runoff control map, site map, and recharge feature map to the current conditions (remove digester and proposed - free stall barns); reconfigure the following LMUs: LMU #1A (41 acres) is new and is a portion of LMU #1 (current - 103 acres/ proposed - 62 acres), LMU #2A (21 acres) is new and is a portion of LMU #2 (current - 83 acres/ proposed -21 acres), LMU #3A (21 acres) is new and is in a portion of LMU #3 (current - 78 acres/ proposed - 56 acres), LMU #6 (current - 65 acres/ proposed - 62 acres), LMU #12A (30 acres) is new and is in a portion of LMU #12 (current - 91 acres/proposed - 66 acres) and LMU #14 (current - 52 acres/proposed - 47 acres). Phase 2 will authorize: to increase the headcount to 4,000 total dairy cattle and 4,000 milking; the addition of an anerobic digester and associated equipment; and the addition of free stall barns. The facility is located at 2179 County Road 308, near the city of Dublin, in Erath County, Texas 76446. TCEQ received this application on May 12, 2025. The permit application will be available for viewing and copying at Erath County Extension Office - Erath County Courthouse, Room 206, 100 West Washington Street, Stephenville, in Erath County, Texas prior to the date this notice is published in the newspaper. The application, including any updates, and associated notices are available electronically at the following webpage: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/cafo-applications. This link to an electronic map of the site or facility's general location is provided as a public courtesy and not part of the application or notice. For the exact location, refer to the application. https://gisweb.tceq.texas.gov/LocationMapper/?marker=-98.270833,32.023055&level=18 ALTERNATIVE LANGUAGE NOTICE. Alternative language notice in Spanish is available at: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/cafo-applications. El aviso de idioma alternativo en español está disponible en https://www.tceq.texas.gov/permitting/wastewater/pending-permits/cafo-applications. **ADDITIONAL NOTICE.** TCEQ's Executive Director has determined the application is administratively complete and will conduct a technical review of the application. After technical review of the application is complete, the Executive Director may prepare a draft permit and will issue a preliminary decision on the application. Notice of the Application and Preliminary Decision will be published and mailed to those who are on the countywide mailing list and to those who are on the mailing list for this application. That notice will contain the deadline for submitting public comments. **PUBLIC COMMENT / PUBLIC MEETING. You may submit public comments or request a public meeting on this application.** The purpose of a public meeting is to provide the opportunity to submit comments or to ask questions about the application. TCEQ will hold a public meeting if the Executive Director determines that there is a significant degree of public interest in the application or if requested by a local legislator. A public meeting is not a contested case hearing. OPPORTUNITY FOR A CONTESTED CASE HEARING. After the deadline for submitting public comments, the Executive Director will consider all timely comments and prepare a response to all relevant and material, or significant public comments. Unless the application is directly referred for a contested case hearing, the response to comments, and the Executive Director's decision on the application, will be mailed to everyone who submitted public comments and to those persons who are on the mailing list for this application. If comments are received, the mailing will also provide instructions for requesting reconsideration of the Executive Director's decision and for requesting a contested case hearing. A contested case hearing is a legal proceeding similar to a civil trial in state district court. TO REQUEST A CONTESTED CASE HEARING, YOU MUST INCLUDE THE FOLLOWING ITEMS IN YOUR REQUEST: your name, address, phone number; applicant's name and proposed permit number; the location and distance of your property/activities relative to the proposed facility; a specific description of how you would be adversely affected by the facility in a way not common to the general public; a list of all disputed issues of fact that you submit during the comment period and, the statement "[I/we] request a contested case hearing." If the request for contested case hearing is filed on behalf of a group or association, the request must designate the group's representative for receiving future correspondence; identify by name and physical address an individual member of the group who would be adversely affected by the proposed facility or activity; provide the information discussed above regarding the affected member's location and distance from the facility or activity; explain how and why the member would be affected; and explain how the interests the group seeks to protect are relevant to the group's purpose. Following the close of all applicable comment and request periods, the Executive Director will forward the application and any requests for reconsideration or for a contested case hearing to the TCEQ Commissioners for their consideration at a scheduled Commission meeting. The Commission may only grant a request for a contested case hearing on issues the requestor submitted in their timely comments that were not subsequently withdrawn. If a hearing is granted, the subject of a hearing will be limited to disputed issues of fact or mixed questions of fact and law relating to relevant and material water quality concerns submitted during the comment period. **MAILING LIST.** If you submit public comments, a request for a contested case hearing or a reconsideration of the Executive Director's decision, you will be added to the mailing list for this specific application to receive future public notices mailed by the Office of the Chief Clerk. In addition, you may request to be placed on: (1) the permanent mailing list for a specific applicant name and permit number; and/or (2) the mailing list for a specific county. If you wish to be placed on the permanent and/or the county mailing list, clearly specify which list(s) and send your request to TCEQ Office of the Chief Clerk at the address below. **INFORMATION AVAILABLE ONLINE.** For details about the status of the application, visit the Commissioners' Integrated Database at www.tceq.texas.gov/goto/cid. Search the database using the permit number for this application, which is provided at the top of this notice. **AGENCY CONTACTS AND INFORMATION.** All public comments and requests must be submitted either electronically at https://www14.tceq.texas.gov/epic/eComment/, or in writing to the Texas Commission on Environmental Quality, Office of the Chief Clerk, MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Please be aware that any contact information you provide, including your name, phone number, email address and physical address will become part of the agency's public record. For more information about this permit application or the permitting process, please call the TCEQ Public Education Program, Toll Free, at 1-800-687-4040 or visit their website at www.tceq.texas.gov/goto/pep. Si desea información en Español, puede llamar al 1-800-687-4040. Further information may also be obtained from Circle 7 Dairy LLC and Grand Canyon Dairy LLC at the address stated above or by calling Mr. Tim Miranda, Member, Circle 7 Dairy LLC, at
254-445-0404. Issuance Date: June 2, 2025 ## Comisión de Calidad Ambiental del Estado de Texas #### AVISO DE RECEPCIÓN DE LA SOLICITUD Y LA INTENCIÓN DE OBTENER CALIDAD DEL AGUA PERMISO MODIFICACION #### PERMISO NO. WQ0002950000 **SOLICITUD.** Circle 7 Dairy LLC y Grand Canyon Dairy LLC, 2179 County Road 308, Dublin, Texas 76446, han solicitado a la Comisión de Calidad Ambiental de Texas (TCEQ) la modificación del Permiso de Aguas Residuales n.º WQ0002950000 (N.º de identificación de la EPA: TX0130923) para una Operación Concentrada de Alimentación Animal (CAFO) y la autorización de los siguientes cambios en dos fases. La fase 1 autorizará: la reducción de la población a 2500 cabezas de ganado lechero y 2500 vacas en ordeño; la actualización del mapa de control de escorrentía, el mapa del sitio y el mapa de características de recarga a las condiciones actuales (eliminación del digestor y la propuesta de establos con establos libres); reconfigurar las siguientes LMU: LMU #1A (41 acres) es nueva y es una parte de LMU #1 (actual - 103 acres / propuesto - 62 acres), LMU #2A (21 acres) es nueva y es una parte de LMU #2 (actual - 83 acres / propuesto - 21 acres), LMU #3A (21 acres) es nueva y está en una parte de LMU #3 (actual - 78 acres / propuesto - 56 acres), LMU #6 (actual - 65 acres / propuesto -62 acres). LMU #12A (30 acres) es nueva y está en una parte de LMU #12 (actual - 91 acres / propuesto - 66 acres) y LMU #14 (actual - 52 acres / propuesto - 47 acres). La Fase 2 autorizará: aumentar el recuento de cabezas a 4,000 cabezas de ganado lechero en total y 4,000 en ordeño; la adición de un digestor anaeróbico y equipo asociado; y la adición de establos con establos libres. La instalación está ubicada en 2179 County Road 308, cerca de la ciudad de Dublin, en el condado de Erath, Texas 76446. La TCEQ recibió esta solicitud el 12 de mayo de 2025. La solicitud de permiso estará disponible para su consulta y copia en la Oficina de Extensión del Condado de Erath - Tribunal del Condado de Erath, Sala 206, 100 West Washington Street, Stephenville, en el condado de Erath, Texas, antes de la fecha de publicación de este aviso en el periódico. La solicitud, incluyendo cualquier actualización, y los avisos asociados están disponibles electrónicamente en la siguiente página web: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/cafo-applications. Este enlace a un mapa electrónico de la ubicación general del sitio o instalación se proporciona como cortesía pública y no forma parte de la solicitud ni del aviso. Para conocer la ubicación exacta, consulte la solicitud. **AVISO DE IDIOMA ALTERNATIVO.** El aviso de idioma alternativo en español está disponible en https://www.tceq.texas.gov/permitting/wastewater/pending-permits/cafo-applications. **AVISO ADICIONAL.** El Director Ejecutivo de la TCEQ ha determinado que la solicitud es administrativamente completa y conducirá una revisión técnica de la solicitud. Después de completar la revisión técnica, el Director Ejecutivo puede preparar un borrador del permiso y emitirá una Decisión Preliminar sobre la solicitud. El aviso de la solicitud y la decisión preliminar serán publicados y enviado a los que están en la lista de correo de las personas a lo largo del condado que desean recibir los avisos y los que están en la lista de correo que desean recibir avisos de esta solicitud. El aviso dará la fecha límite para someter comentarios públicos. **COMENTARIO PUBLICO / REUNION PUBLICA. Usted puede presentar comentarios públicos o pedir una reunión pública sobre esta solicitud.** El propósito de una reunión pública es dar la oportunidad de presentar comentarios o hacer preguntas acerca de la solicitud. La TCEQ realiza una reunión pública si el Director Ejecutivo determina que hay un grado de interés público suficiente en la solicitud o si un legislador local lo pide. Una reunión pública no es una audiencia administrativa de lo contencioso. OPORTUNIDAD DE UNA AUDIENCIA ADMINISTRATIVA DE LO CONTENCIOSO. Después del plazo para presentar comentarios públicos, el Director Ejecutivo considerará todos los comentarios apropiados y preparará una respuesta a todo los comentarios públicos esenciales, pertinentes, o significativos. A menos que la solicitud haya sido referida directamente a una audiencia administrativa de lo contencioso, la respuesta a los comentarios y la decisión del Director Ejecutivo sobre la solicitud serán enviados por correo a todos los que presentaron un comentario público y a las personas que están en la lista para recibir avisos sobre esta solicitud. Si se reciben comentarios, el aviso también proveerá instrucciones para pedir una reconsideración de la decisión del Director Ejecutivo y para pedir una audiencia administrativa de lo contencioso. Una audiencia administrativa de lo contencioso es un procedimiento legal similar a un procedimiento legal civil en un tribunal de distrito del estado. PARA SOLICITAR UNA AUDIENCIA DE CASO IMPUGNADO, USTED DEBE INCLUIR EN SU SOLICITUD LOS SIGUIENTES DATOS: su nombre, dirección, y número de teléfono; el nombre del solicitante y número del permiso; la ubicación y distancia de su propiedad/actividad con respecto a la instalación; una descripción específica de la forma cómo usted sería afectado adversamente por el sitio de una manera no común al público en general; una lista de todas las cuestiones de hecho en disputa que usted presente durante el período de comentarios; y la declaración "[Yo/nosotros] solicito/solicitamos una audiencia de caso impugnado". Si presenta la petición para una audiencia de caso impugnado de parte de un grupo o asociación, debe identificar una persona que representa al grupo para recibir correspondencia en el futuro; identificar el nombre y la dirección de un miembro del grupo que sería afectado adversamente por la planta o la actividad propuesta; proveer la información indicada anteriormente con respecto a la ubicación del miembro afectado y su distancia de la planta o actividad propuesta; explicar cómo y porqué el miembro sería afectado; y explicar cómo los intereses que el grupo desea proteger son pertinentes al propósito del grupo. Después del cierre de todos los períodos de comentarios y de petición que aplican, el Director Ejecutivo enviará la solicitud y cualquier petición para reconsideración o para una audiencia de caso impugnado a los Comisionados de la TCEQ para su consideración durante una reunión programada de la Comisión. La Comisión sólo puede conceder una solicitud de una audiencia de caso impugnado sobre los temas que el solicitante haya presentado en sus comentarios oportunos que no fueron retirados posteriormente. Si se concede una audiencia, el tema de la audiencia estará limitado a cuestiones de hecho en disputa o cuestiones mixtas de hecho y de derecho relacionadas a intereses pertinentes y materiales de calidad del agua que se hayan presentado durante el período de comentarios. **LISTA DE CORREO.** Si somete comentarios públicos, un pedido para una audiencia administrativa de lo contencioso o una reconsideración de la decisión del Director Ejecutivo, la Oficina del Secretario Principal enviará por correo los avisos públicos en relación con la solicitud. Además, puede pedir que la TCEQ ponga su nombre en una o más de las listas correos siguientes (1) la lista de correo permanente para recibir los avisos del solicitante indicado por nombre y número del permiso específico y/o (2) la lista de correo de todas las solicitudes en un condado específico. Si desea que se agrega su nombre en una de las listas designe cual lista(s) y envía por correo su pedido a la Oficina del Secretario Principal de la TCEQ. CONTACTOS E INFORMACIÓN A LA AGENCIA. Todos los comentarios públicos y solicitudes deben ser presentadas electrónicamente vía http://www14.tceq.texas.gov/epic/eComment/ o por escrito dirigidos a la Comisión de Texas de Calidad Ambiental, Oficial de la Secretaría (Office of Chief Clerk), MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Tenga en cuenta que cualquier información personal que usted proporcione, incluyendo su nombre, número de teléfono, dirección de correo electrónico y dirección física pasarán a formar parte del registro público de la Agencia. Para obtener más información acerca de esta solicitud de permiso o el proceso de permisos, llame al programa de educación pública de la TCEQ, gratis, al 1-800-687-4040. Si desea información en Español, puede llamar al 1-800-687-4040. También se puede obtener información adicional del Circle 7 Dairy LLC y Grand Canyon Dairy LLC a la dirección indicada arriba o llamando a Sr. Tim Miranda, miembro de Circle 7 Dairy LLC, al 254-445-0404. Fecha de emisión el 2 de junio de 2025 #### TEXAS COMMISSION ON ENVIRONMENTAL QUALITY # NOTICE OF APPLICATION AND PRELIMINARY DECISION FOR CAFO WATER QUALITY PERMIT MAJOR AMENDMENT #### **PERMIT NO. WQ0002950000** APPLICATION AND PRELIMINARY DECISION. Circle 7 Dairy, LLC and Grand Canyon Dairy, LLC, 2179 County Road 308, Dublin, Texas 76446 have applied to the Texas Commission on Environmental Quality (TCEQ) for a major amendment of Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0002950000, for a Concentrated Animal Feeding Operation (CAFO) to authorize the applicant to construct the proposed changes to the site that were approved in the permit that was issued on August 17, 2023 in two phases: Phase 1- confine a total of 2,500 head, all of which will be milking cows, reconfigure existing land management units, which will decrease the total land application area from 1,038 to 1,034 acres, and update the facility maps to reflect current conditions; and Phase 2: increase the maximum capacity to the currently authorized 4,000 head, all of which are milking cows, and add the authorized digester and associated equipment and the freestall barns. TCEQ received this application on May 12,
2025. The facility is located at 2179 County Road 308, Dublin in Erath County, Texas 76446. The facility is located in the drainage area of the North Bosque River in Segment No. 1226 of the Brazos River Basin. This link to an electronic map of the site or facility's general location is provided as a public courtesy and is not part of the application or notice. https://gisweb.tceq.texas.gov/LocationMapper/?marker=-98.270833,32.023055&level=18. For the exact location, refer to the application. The TCEQ Executive Director has completed the technical review of the application and prepared a draft permit. The draft permit, if approved, would establish the conditions under which the facility must operate. This permit is consistent with the requirements of the antidegradation implementation procedures in 30 Texas Administrative Code §307.5 (c)(2)(G) of the Texas Surface Water Quality Standards and no lowering of water quality is anticipated. The TCEQ Executive Director has made a preliminary decision that this permit, if issued, meets all statutory and regulatory requirements. The permit application, Executive Director's Preliminary Decision, and draft permit are available for viewing and copying at the Erath County Extension Office-Erath County Courthouse, 100 Washington St., Room 206, Stephenville, Texas 76401. The application, including any updates, and associated notices are available electronically at the following webpage: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/cafo-applications. ALTERNATIVE LANGUAGE NOTICE. Alternative language notice in Spanish is available at https://www.tceq.texas.gov/permitting/wastewater/pending-permits/cafo-applications. CHANGE IN LAW. The Texas Legislature enacted Senate Bill 709, effective September 1, 2015, amending the requirements for comments and contested case hearings. This application is subject to those changes in law. **PUBLIC COMMENT / PUBLIC MEETING.** You may submit public comments or request a public meeting about this application. The purpose of a public meeting is to provide the opportunity to submit comments or to ask questions about the application. TCEQ holds a public meeting if the Executive Director determines that there is a significant degree of public interest in the application or if requested by a local legislator. A public meeting is not a contested case hearing. OPPORTUNITY FOR A CONTESTED CASE HEARING. After the deadline for submitting public comments, the Executive Director will consider all timely comments and prepare a response to all relevant and material, or significant public comments. Unless the application is directly referred for a contested case hearing, the response to comments will be mailed to everyone who submitted public comments and to those persons who are on the mailing list for this application. If comments are received, the mailing will also provide instructions for requesting a contested case hearing or reconsideration of the Executive Director's decision. A contested case hearing is a legal proceeding similar to a civil trial in a state district court. TO REQUEST A CONTESTED CASE HEARING, YOU MUST INCLUDE THE FOLLOWING ITEMS IN YOUR REQUEST: your name, address, phone number, applicant's name and permit number, the location and distance of your property/activities relative to the facility, a specific description of how you would be adversely affected by the facility in a way not common to the general public, a list of all disputed issues of fact that you submit during the comment period and the statement "[I/we] request a contested case hearing." If the request for contested case hearing is filed on behalf of a group or association, the request must designate the group's representative for receiving future correspondence, identify by name and physical address an individual member of the group who would be adversely affected by the proposed facility or activity, provide the information discussed above regarding the affected member's location and distance from the facility or activity, explain how and why the member would be affected, and explain how the interests the group seeks to protect are germane to the group's purpose. Following the close of all applicable comment and request periods, the Executive Director will forward the application and any requests for reconsideration or for a contested case hearing to the TCEQ Commissioners for their consideration at a scheduled Commission meeting. The Commission will only grant a contested case hearing on disputed issues of fact that are relevant and material to the Commission's decision on the application. Further, the Commission will only grant a hearing on issues that were raised in timely filed comments that were not subsequently withdrawn. If a hearing is granted, the subject of a hearing will be limited to disputed issues of fact or mixed questions of fact and law relating to relevant and material water quality concerns submitted during the comment period. **EXECUTIVE DIRECTOR ACTION**. The Executive Director may issue final approval of the application unless a timely contested case hearing request or request for reconsideration is filed. If a timely hearing request or request for reconsideration is filed, the Executive Director will not issue final approval of the permit and will forward the application and request to the TCEQ Commissioners for their consideration at a scheduled Commission meeting. **MAILING LIST**. If you submit public comments, a request for a contested case hearing or a reconsideration of the Executive Director's decision, you will be added to the mailing list for this specific application to receive future public notices mailed by the Office of the Chief Clerk. In addition, you may request to be placed on: (1) the permanent mailing list for a specific applicant name and permit number; and/or (2) the mailing list for a specific county. If you wish to be placed on the permanent and/or the county mailing list, clearly specify which list(s) and send your request to TCEQ Office of the Chief Clerk at the address below. All written public comments and public meeting requests must be submitted to the Office of the Chief Clerk, MC 105, TCEQ, P.O. Box 13087, Austin, TX 78711-3087 or electronically at https://www14.tceq.texas.gov/epic/eComment/ within 30 days from the date of newspaper publication of this notice. **INFORMATION AVAILABLE ONLINE**. For details about the status of the application, visit the Commissioners' Integrated Database at www.tceq.texas.gov/goto/cid. Search the database using the permit number for this application, which is provided at the top of this notice. **AGENCY CONTACTS AND INFORMATION.** Public comments and requests must be submitted either electronically at https://www14.tceq.texas.gov/epic/eComment/, or in writing to the Texas Commission on Environmental Quality, Office of the Chief Clerk, MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Any personal information you submit to the TCEQ will become part of the agency's record; this includes email addresses. For more information about this permit application or the permitting process, please call the TCEQ Public Education Program, Toll Free, at 1-800-687-4040 or visit their website at www.tceq.texas.gov/goto/pep. Si desea información en Español, puede llamar al 1-800-687-4040. Further information may also be obtained from Mr. Tim Miranda at the address stated above or by calling Mr. Corey Mullin, Enviro-Ag Engineering, Inc. at (254) 965-3500. Issuance Date: September 11, 2025 # COMISIÓN DE CALIDAD AMBIENTAL DE TEXAS #### ANUNCIO DE SOLICITUD Y DECISIÓN PRELIMINAR PARA CAFO PERMISO DE CALIDAD DEL AGUA ENMIENDA IMPORTANTE #### PERMISO Nº WQ0002950000 **SOLICITUD Y DECISIÓN PRELIMINAR.** Circle 7 Dairy, LLC y Grand Canyon Dairy, LLC, 2179 County Road 308, Dublin, Texas 76446 han solicitado a la Comisión de Calidad Ambiental de Texas (TCEQ) una enmienda importante del Permiso No. WQ0002950000, para que una Operación Concentrada de Alimentación Animal (CAFO) autorice al solicitante a construir los cambios propuestos al sitio que fueron aprobados en el permiso que se emitió el 17 de agosto de 2023 en dos fases: Fase 1- confinar un total de 2,500 cabezas, todas las cuales serán vacas en ordeño, reconfigurar las unidades de manejo de tierras existentes, lo que disminuirá el área total de aplicación de tierra de 1,038 a 1,034 acres, y actualizará los mapas de las instalaciones para reflejar las condiciones actuales; y Fase 2: aumentar la capacidad máxima a las 4.000 cabezas actualmente autorizadas, todas ellas de vacas en ordeño, y añadir el digestor autorizado y el equipo asociado y los establos de estabulación libre. TCEQ recibió esta solicitud el 12 de mayo de 2025. La instalación está ubicada en 2179 County Road 308, Dublin en el condado de Erath, Tejas 76446. La instalación está ubicada en el área de drenaje del río North Bosque en el segmento n.º 1226 de la cuenca del río Brazos. Este enlace a un mapa electrónico de la ubicación general del sitio o instalación se proporciona como cortesía pública y no es parte de la solicitud o aviso. https://gisweb.tceq.texas.gov/LocationMapper/?marker=-98.270833,32.023055&level=18. Para conocer la ubicación exacta, consulte la solicitud. El Director Ejecutivo de la TCEQ ha concluido el examen técnico de la solicitud y ha preparado un bosquejo de permiso. El
bosquejo de permiso, de ser aprobado, establecería las condiciones bajo las cuales la instalación debe operar. Este permiso es consistente con los requisitos de los procedimientos de implementación antidegradación en 30 Código Administrativo de Texas §307.5 (c) (2) (G) de los Estándares de Calidad de Aguas Superficiales de Texas y no se anticipa una disminución de la calidad del agua. El Director Ejecutivo de la TCEQ ha tomado una decisión preliminar de que este permiso, si se emite, cumple con todos los requisitos legales y reglamentarios. La solicitud de permiso, la Decisión Preliminar del Director Ejecutivo y el bosquejo del permiso están disponibles para su visualización y copia en la **Oficina de Extensión del Condado de Erath - Palacio de Justicia del Condado de Erath, 100 Washington St., Sala 206, Stephenville, Texas 76401.** La solicitud, incluidas las actualizaciones, y los avisos asociados están disponibles electrónicamente en la siguiente página web: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/cafo-applications. CAMBIO EN LA LEY. La Legislatura de Texas promulgó el Proyecto de Ley del Senado 709, efectivo el 1 de septiembre de 2015, que modifica los requisitos para comentarios y audiencias de casos impugnados. Esta solicitud está sujeta a esos cambios en la ley. **AVISO DE IDIOMA ALTERNATIVO.** El aviso de idioma alternativo en español está disponible en https://www.tceq.texas.gov/permitting/wastewater/pending-permits/cafo-applications. **COMENTARIO PÚBLICO / REUNIÓN PÚBLICA**. Puede enviar comentarios públicos o solicitar una reunión pública sobre esta solicitud. El propósito de una reunión pública es para brindar la oportunidad de enviar comentarios o hacer preguntas sobre la solicitud. La TCEQ celebra una reunión pública si el Director Ejecutivo determina que existe un grado significativo de interés público en la solicitud o si lo solicita un legislador local. Una reunión pública no es una audiencia de caso impugnado. OPORTUNIDAD PARA UNA AUDIENCIA DE CASO IMPUGNADO. Después de la fecha límite para presentar comentarios públicos, el Director Ejecutivo considerará todos los comentarios oportunos y preparará una respuesta a todos los comentarios públicos relevantes y materiales o significativos. A menos que la solicitud sea remitida directamente para una audiencia de caso impugnado, la respuesta a los comentarios se enviará por correo a todos los que enviaron comentarios públicos y a aquellas personas que estén en la lista de correo para esta solicitud. Si se reciben comentarios, el correo también proporcionará instrucciones para solicitar una audiencia de caso impugnado o reconsiderar la decisión del Director Ejecutivo. Una audiencia de caso impugnado es un procedimiento legal similar a un juicio civil en un tribunal de distrito estatal. PARA SOLICITAR UNA AUDIENCIA DE CASO IMPUGNADO, DEBE INCLUIR LOS SIGUIENTES ELEMENTOS EN SU SOLICITUD: su nombre: dirección, teléfono; nombre y número de permiso del solicitante; la ubicación y distancia de su propiedad / actividades en relación con la instalación; una descripción específica de cómo se vería afectado negativamente por la instalación de una manera que no es común para el público en general; una lista de todas las cuestiones de hecho controvertidas que usted planteó durante el periodo de comentarios y la declaración "[Yo/nosotros] solicito/amos una audiencia de caso impugnado". Si la solicitud de audiencia de caso impugnado se presenta en nombre de un grupo o asociación, la solicitud debe designar al representante del grupo para recibir correspondencia futura; identificar por nombre y dirección física a un miembro individual del grupo que se vería afectado negativamente por la instalación o actividad; proporcionar la información discutida anteriormente con respecto a la ubicación y distancia del miembro afectado de la instalación o actividad; explicar cómo y por qué se vería afectado el miembro; y explicar cómo los intereses que el grupo busca proteger son relevantes para el propósito del grupo. Tras el cierre de todos los periodos de comentarios y solicitudes aplicables, el Director Ejecutivo remitirá la solicitud y cualquier solicitud de reconsideración o de una audiencia de caso impugnado a los Comisionados de la TCEQ para su consideración en una reunión programada de la Comisión. La Comisión sólo concederá una audiencia de caso impugando sobre cuestiones de hecho controvertidas que sean relevantes y materiales para la decisión de la Comisión sobre la solicitud. Además, la Comisión sólo concederá una audiencia sobre cuestiones que se plantearon en comentarios presentados oportunamente que no fueron retirados posteriormente. Si se concede una audiencia, el tema de una audiencia se limitará a cuestiones de hecho en disputa o cuestiones mixtas de hecho y de derecho relacionadas con preocupaciones relevantes y materiales sobre la calidad del agua presentadas durante el periodo de comentarios. **ACCIÓN DEL DIRECTOR EJECUTIVO**. El Director Ejecutivo puede emitir la aprobación final de la solicitud a menos que se presente una solicitud de audiencia de caso impugnado oportunamente o una solicitud de reconsideración. Si se presenta una solicitud de audiencia oportuna o una solicitud de reconsideración, el Director Ejecutivo no emitirá la aprobación final del permiso y enviará la solicitud y la petición a los Comisionados de la TCEQ para su consideración en una reunión programada de la Comisión. **LISTA DE CORREO.** Si envía comentarios públicos, una solicitud de una audiencia de caso impugnado o una reconsideración de la decisión del Director Ejecutivo, se le agregará a la lista de correo para que esta solicitud reciba avisos públicos futuros enviadas por correo por la Oficina del Secretario Oficial. Además, puede solicitar ser colocado en: (1) la lista de correo permanente para un nombre de solicitante específico y número de permiso; y/o (2) la lista de correo para un condado específico. Para ser colocado en la lista de correo permanente y / o del condado, especifique claramente qué lista(s) y envíe su solicitud a la Oficina del Secretario Oficial de la TCEQ a la dirección a continuación. Todos los comentarios públicos escritos y las solicitudes de reunión pública deben enviarse a la Office of the Chief Clerk, MC 105, TCEQ, P.O. Box 13087, Austin, TX 787113087 -o electrónicamente a https://www14.tceq.texas.gov/epic/eComment/ dentro de los 30 días a partir de la fecha de publicación de este aviso en el periódico. INFORMACIÓN DISPONIBLE EN LÍNEA. Para obtener detalles sobre el estado de la solicitud, visite la Base de Datos Integrada de los Comisionados en www.tceq.texas.gov/goto/cid. Busque en la base de datos utilizando el número de permiso para esta solicitud, que se proporciona en la parte superior de este aviso. **CONTACTOS E INFORMACIÓN DE LA AGENCIA.** Los comentarios y solicitudes públicas deben enviarse electrónicamente a https://www14.tceq.texas.gov/epic/eComment/, o por escrito a Texas Commission on Environmental Quality, Office of the Chief Clerk, MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Cualquier información personal que envíe a al TCEQ pasará a formar parte del registro de la agencia; esto incluye las direcciones de correo electrónico. Para obtener más información sobre esta solicitud de permiso o el proceso de permisos, llame al Programa de Educación Pública de la TCEQ, sin cargo, al 1-800-687-4040 o visite su sitio web en www.tceq.texas.gov/goto/pep. Si desea información en español, puede llamar al 1-800-687-4040. También se puede obtener más información de Sr. Tim Miranda en la dirección indicada anteriormente o llamando a Sr. Corey Mullin, Enviro-Ag Engineering, Inc. a (254) 965-3500. Fecha de Emisión: el 11 de septiembre de 2025 Corporate Office; 3404 Airway Blvd. Amarillo TX 79118 Central Texas: 9855 FM 847 Dublin TX 76446 New Mexico: 203 East Main Street Artesia NM 88210 May 1, 2025 **TCEQ** Registration, Review and Reporting Division Permits Administration Review Section Water Quality Applications Team, MC-148 12100 Park 35 Circle Austin, TX 78753 Re: Grand Canyon Dairy - Permit No. WQ0002950000 Erath County, Texas. Dear Administrative Review Section, Enclosed please find the Major Amendment application for the above referenced facility. The \$350 application fee was paid electronically and the voucher is attached. Should you have any questions please do not hesitate to contact me. Respectfully Submitted, Jourdan Mullin Enviro-Ag Engineering, Inc. Cc: TCEQ Region 4, Stephenville Grand Canyon Dairy EAE file # 30 TAC 321, SUBCHAPTER B APPLICATION, POLLUTION PREVENTION PLAN & CNMP Grand Canyon Dairy Major Amendment Prepared For: Circle 7 Dairy, LLC and Grand Canyon Dairy, LLC 2179 County Road 308 Dublin, TX 76446 April 10, 2025 Prepared By: # TEXAS COMMISSION ON ENVIRONMENTAL QUALITY # ELECTRONIC WAIVER REQUEST FOR A CONCENTRATED ANIMAL FEEDING OPERATION (CAFO) A Large CAFO, as defined in the CAFO rules at 30 TAC 321.32(14)(A), must request a waiver from e-reporting requirements codified in 40 Code of Federal Regulations §127.15 OR be required to submit CAFO annual reports electronically. required to submit CAFO annual reports electronically. Are you requesting a waiver from e-reporting requirements? | | ⊠ Temporary Waiver | |--------------------------|--| | | \Box Permanent Waiver (available to facilities and entities owned or operated by members of religious communities that choose not to use certain
modern technologies (e.g., computers, electricity)) | | □ No,
at <u>htt</u> j | you must submit your application electronically through TCEQ ePermits system (STEERS) ps://www3.tceq.texas.gov/steers/index.cfm. Check How to Apply through STEERS. | If an electronic waiver request is granted, the Applicant(s) seeking authorization, or an authorized permittee(s) may continue to submit CAFO annual reports to TCEQ in a paper format. #### Note: An approved waiver is not transferrable. \boxtimes Yes, Indicate the type of waiver below. - Each Owner or Operator must request his own waiver. - Temporary waiver will not extend beyond five years. However, permittees may re-apply for a new temporary waiver, if needed. State Only CAFOs are exempt from this requirement. #### TEXAS COMMISSION ON ENVIRONMENTAL OUALITY # INDIVIDUAL PERMIT APPLICATION FOR A CONCENTRATED ANIMAL FEEDING OPERATION (CAFO) If you have questions about completing this form, please contact the Applications Review and Processing Team at 512-239-4671. #### **SECTION 1. APPLICATION FEE** Minor Amendment - \$150.00 Renewal - \$315.00 New or Major Amendment - \$350.00 | Mailed | Check/Money | Order Number: | |--------|-------------|---------------| | Maneu | CHECK/Money | Oruel Number. | Check/Money Order Amount: Name Printed on Check: EPAY Voucher Number: 765911 & 765912 Copy of Payment Voucher enclosed? Yes \square #### **SECTION 2. TYPE OF APPLICATION** | A. | Coverage: | State Only □ | TPDES 🗵 | |----|---------------|-----------------|-------------------------| | В. | Media Type: | Water Quality □ | Air and Water Quality 🛛 | | C. | Application 7 | l'ype: New □ | Major Amendment ⊠ | | | | Renewal □ | Minor Amendment □ | D. For amendments, describe the proposed changes: Circle 7 Dairy LLC & Grand Canyon Dairy, LLC is submitting a major amendment application in two phases in order to maintain compliance throughout the transition. Phase 1 will include the following changes: decrease the headcount to 2,500 total and 2,500 milking, update the runoff control map, site map and recharge feature map to the current conditions (remove digester and proposed freestall barns), reconfigure the following LMUs: LMU #1A (41 ac) is new and is a portion of LMU #1 (current 103ac; proposed 62ac), LMU #2A (21 ac) is new and is a portion of LMU #2 (current 83ac; proposed 21ac), LMU #3A (21 ac) is new and is in a portion of LMU #3 (current - 78ac; proposed - 56ac), LMU #6 (current - 65ac; proposed - 62 ac), LMU #12A (30 ac) is new and is in a portion of LMU #12 (current - 91ac; proposed - 66ac) and LMU #14 (current - 52ac; proposed - 47ac). Phase 2 will include the increase of headcount to 4,000 total and 4,000 Questions or Comments >> Sheeping Cart Select Fee Search Transactions Sign Out Print this voucher for your records. If you are sending the TCEQ hardcopy documents related to this payment, include a copy of this voucher. #### Transaction Information Voucher Number: 765911 Trace Number: 582EA000667344 Date: 05/08/2025 02:39 PM Payment Method: CC - Authorization 000007583G Voucher Amount: \$300.00 Fee Type: CAFO PERMIT - NEW OR MAJOR AMENDMENT ePay Actor: JOURDAN MULLIN Actor Email: jmullin@enviroag.com IP: 156.146.244.233 #### **Payment Contact Information** Name: JOURDAN MULLIN Company: ENVIRO-AG ENGINEERING INC Address: 3404 AIRWAY BLVD, AMARILLO, TX 79118 Phone: 806-679-5570 #### Site Information Site Name: GRAND CANYON DAIRY Site Location: 2179 CR 308 DUBLIN TX 76446 #### Customer Information Customer Name: CIRCLE 7 DAIRY LLC Customer Address: 2179 CR 308, DUBLIN, TX 76446 Close Site Help | Disclaimer | Web Policies | Accessibility | Our Compact with Texans | TCEQ Homeland Security | Contact Us Statewide Links: Texas.gov | Texas Homeland Security | TRAIL Statewide Archive | Texas Veterans Portal © 2002-2025 Texas Commission on Environmental Quality Questions or Comments >> Shopping Cart Sulect Fee Search Transactions Sign Out Print this voucher for your records. If you are sending the TCEQ hardcopy documents related to this payment, include a copy of this voucher. #### Transaction Information Voucher Number: 765912 Trace Number: 582EA000667344 Date: 05/08/2025 02:39 PM Payment Method: CC - Authorization 000007583G Voucher Amount: \$50.00 Fee Type: 30 TAC 305.53B WQ NOTIFICATION FEE ePay Actor: JOURDAN MULLIN Actor Email: jmullin@enviroag.com IP: 156.146.244.233 #### Payment Contact Information - Name: JOURDAN MULLIN Company: ENVIRO-AG ENGINEERING INC Address: 3404 AIRWAY BLVD, AMARILLO, TX 79118 Phone: 806-679-5570 Close Site Help | Disclaimer | Web Policies | Accessibility | Our Compact with Texans | TCEQ Homeland Security | Contact Us Statewilde Links: Texas.gov | Texas Homeland Security | TRAIL Statewilde Archive | Texas Veterans Portal © 2002-2025 Texas Commission on Environmental Quality milking, the addition of an anerobic digester and associated equipment and the addition of freestall barns. **E.** For existing permits: What is the permit number? WO0002950000 What is the EPA I.D. Number? TX 0130923 SECTION 3. FACILITY OWNER (APPLICANT) INFORMATION A. What is the legal name of the facility owner? Circle 7 Dairy, LLC B. If the applicant is an existing TCEQ customer, provide the Customer Number (CN) issued to this entity? CN 604036954 C. What is the contact information for the owner? Mailing Address: 2179 CR 308 City, State and Zip Code: Dublin, TX 76446 Phone Number: <u>254/445-0404</u> Fax Number: n/a E-mail Address: grandcanyondairy@gmail.com **D.** Indicate the type of customer: Individual Federal Government Limited Partnership County Government General Partnership State Government Trust City Government Sole Proprietorship (D.B.A.) Other Government Corporation Other, specify: Click here to enior text. Estate E. If the customer type is individual, complete Attachment 1. F. Is this customer an independent entity? ☐ No government, subsidiary, or part of a larger corporation **G.** Number of employees: X 0-20 □ 21-100 □ 101-250 □ 251-500 □ 501 or higher H. For Corporations and Limited Partnerships: What is the Tax Identification Number issued by the State Comptroller: 32045368498 What is the Charter Filing Number issued by the Texas Secretary of State: 0801495972 #### SECTION 4. CO-APPLICANT INFORMATION | Complete this section only if another person or entit | ty is required to apply as a co-permittee. | |---|--| |---|--| **A.** What is the legal name of the co-applicant? Grand Canyon Dairy, LLC - **B.** If the applicant is an existing TCEQ customer, provide the Customer Number (CN) issued to this entity? $CN = \frac{603973462}{603973462}$ - **C.** What is the contact information for the co-applicant? Mailing Address: 2179 CR 308 City, State and Zip Code: <u>Dublin, TX 76446</u> Phone Number: Fax Number: <u>254/445-0404</u> E-mail Address: <u>grandcanyondairy@gmail.com</u> **D.** Indicate the type of customer: | | Individual | <u></u> | Fodowal Corrownsort | |-------------|------------------------------|---------|--| | ш | muividuai | | Federal Government | | | Limited Partnership | | County Government | | | General Partnership | | State Government | | | Trust | | City Government | | | Sole Proprietorship (D.B.A.) | | Other Government | | \boxtimes | Corporation | | Other, specify: Click here to enter text | | | Estate | | | - E. If the customer type is individual, complete Attachment 1. - F. Is this customer an independent entity? oxdot Yes oxdot No government, subsidiary, or part of a larger corporation G. Number of employees: ⊠ 0-20 □ 21-100 □ 101-250 □ 251-500 □ 501 or higher H. For Corporations and Limited Partnerships: What is the Tax Identification Number issued by the State Comptroller: <u>12733069541</u> What is the Charter Filing Number issued by the Texas Secretary of State: <u>0801312718</u> #### SECTION 5. APPLICATION CONTACT INFORMATION This is the person TCEQ will contact if additional information is needed about this application. Prefix (Mr., Ms., Miss): Mr. Application Contact First and Last Name: Corey Mullin Title: Consultant Credentials: Click here to opter text Company Name: Enviro-Ag Engineering, Inc. Mailing Address: 9855 FM 847 City, State and Zip Code: Dublin, TX 76446 Phone Number: <u>254/965-3500</u> Fax Number: <u>254/965-8000</u> E-mail Address: cmullin@enviroag.com #### SECTION 6. PERMIT CONTACT INFORMATION Provide two names of individuals that TCEQ can contact during the term of the permit. A. Prefix (Mr., Ms., Miss): Mr. Permit Contact First and Last Name: Corey Mullin Title: Consultant Credentials: They have to enter sext Company Name: Enviro-Ag Engineering, Inc. Mailing Address: 9855 FM 847 City, State and Zip Code: <u>Dublin, TX 76446</u> Phone Number: <u>254/965-3500</u> Fax Number: <u>254/965-8000</u> E-mail Address: cmullin@enviroag.com B. Prefix (Mr., Ms., Miss): Mr. Permit Contact First and Last Name: Tim Miranda Title: Member Credentials: Clack here to enter text Company Name: Circle 7 Dairy, LLC Mailing Address: 2179 CR 308 City, State and Zip Code: Dublin, TX 76446 Phone Number: 254/445-0404 Fax Number: n/a E-mail Address: grandcanyondairy@gmail.com #### SECTION 7. ANNUAL BILLING CONTACT INFORMATION Please identify the individual for receiving the annual fee invoices. Is the billing contact and contact information the same as the Owner or the Co-Applicant identified in Section 3) or Section 4) above? ∀es, specify which applicant on the line below and go to Section 8) Owner, Circle 7 Dairy, LLC \square No, complete this section Prefix (Mr., Ms., Miss): Child have to enter text First and Last Name: Click became enter text Title: Click here to enter text. Credentials: Click here to enter text. Company Name: Click here to enter text. Mailing Address: Click here to enter text. City, State and Zip
Code: Click here to enter texts Phone Number: Clack here to enter text. Fax Number: Clack here to enser text. E-mail Address: Under here to enter text #### **SECTION 8. LANDOWNER INFORMATION** #### A. Landowner where the production area is or will be located Landowner Name: Circle 7 Dairy, LLC #### B. Landowner of the land management units (LMUs) Landowner Name: Circle 7 Dairy, LLC #### SECTION 9. PUBLIC NOTICE INFORMATION ## A. Individual responsible for publishing the notices in the newspaper Prefix (Mr., Ms., Miss): Mrs. First and Last Name: Jourdan Mullin Title: Consultant Credentials: Chek frem to only text. Company Name: Enviro-Ag Engineering, Inc. Mailing Address: 9855 FM 847 City, State and Zip Code: Dublin, TX 76446 Phone Number: <u>254/965-3500</u> Fax Number: <u>254/965-8000</u> E-mail Address: jmullin@enviroag.com # B. Method for receiving the notice package for the Notice of Receipt and Intent ☐ Fax Number: Click hote to enter text. ⊠ Regular Mail: Mailing Address: 9855 FM 847 City, State and Zip Code: <u>Dublin, TX 76446</u> # C. Contact person to be listed in the notice Prefix (Mr., Ms., Miss): Mr. First and Last Name: Tim Miranda Title: Member Credentials: Click here to enter text. Company Name: Circle 7 Dairy, LLC Phone Number: <u>254/445-0404</u> #### D. Public viewing location If the facility is located in more than one county, a public viewing location for each county must be provided. Public Building Name: Erath County Extension Office-Erath County Courthouse Physical Address of Building: 100 Washington St. Room 206 City: <u>Stephenville</u> County: <u>Erath</u> Phone Number: <u>254/965-1460</u> #### E. Bilingual Notice Requirement For new, major amendment, and renewal applications. This information can be obtained by contacting the bilingual/ESL coordinator at the nearest elementary or middle school. 1. Is a bilingual education program required by the Texas Education Code at the nearest elementary or middle school to the facility or proposed facility? Yes ⊠ No □ (**If No**, alternative language notice publication is not required; skip to Section 10. Regulated Entity (Site) Information.) **2.** Are the students who attend either the elementary school or the middle school enrolled in a bilingual education program at that school? Yes ⊠ No □ **3.** Do the students at these schools attend a bilingual education program at another location? Yes ⊠ No □ **4.** Would the school be required to provide a bilingual education program but the school has waived out of this requirement under 19 TAC §89.1205(g)? Yes ⊠ No □ - 5. If the answer is yes to 1, 2, 3, or 4, public notice in an alternative language is required. Which language is required by the bilingual program? Spanish - 6. Complete the <u>CAFO Plain Language Summary Template</u> (English) for CAFO Permit Applications for a new, renewal, major or minor amendment and submit with this application. If a bilingual education program is required by the Texas Education Code at the nearest elementary or middle school to the facility or proposed facility, also complete the <u>CAFO Plain Language Summary Template</u> (Spanish) or provide a translated copy of the completed English plain language summary in the appropriate alternative language if different from Spanish. #### F. Public Involvement Plan Form Complete and attach one Public Involvement Plan (PIP) Form (TCEQ Form 20960) for each application for a new permit or major amendment to a permit. #### SECTION 10. REGULATED ENTITY (SITE) INFORMATION A. Site Name as known by the local community: Grand Canyon Dairy #### ENGLISH LANGUAGE TEMPLATE FOR CAFO PERMIT APPLICATIONS The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by the TCEQ Public Participation Plan and Language Access Plan. The information provided in this summary may change during the technical review of the application and is not a federal enforceable representation of the permit application. - 1) Applicant's Name: Circle 7 Dairy, LLC and Grand Canyon Dairy, LLC - 2) Enter Customer Number: CN604036954; CN603973462 - 3) Name of facility: Grand Canyon Dairy - 4) Enter Regulated Entity Number: RN100794155 - 5) Provide your permit Number: WQ0002950000 - 6) Facility Business: The facility confines 4,000 head of cattle in which 4,000 are milking. The facility has fourteen (14) land management units (LMUs) with the following acreages: LMU #1 103, LMU #2 83, LMU#3 78, LMU #4 60, LMU #5 210, LMU #6 65, LMU #7 30, LMU #8 87, LMU #9 20, LMU #10 50, LMU #11 56, LMU #12 91, LMU #13 53 and LMU #14 52 acres. Three (3) retention control structures (RCSs) and three earthen settling basins. The required capacities are: RCS #1 0.00 ac-ft, RCS #2 58.81(digester) & 54.96 (bypass) ac-ft and RCS #3 22.79 ac-ft. There are twenty (20) onsite wells of which three are plugged. The facility is located in the North Bosque River in Segment No. 1226 of the Brazos River Basin. - 7) Facility Location: The facility is located on the East side of FM 219 approximately 5 miles south of the intersection of FM 219 and Highway 1702, approximately 7 miles southwest of Dublin in Erath County, Texas. - 8) Application Type: Individual Permit Major Amendment - 9) Description of your request: Submitting a major amendment application in two phases in order to maintain compliance throughout the transition. Phase 1 will include the following changes: decrease the headcount to 2,500 total and 2,500 milking, update the runoff control map, site map and recharge feature map to the current conditions (remove digester and proposed freestall barns), reconfigure the following LMUs: LMU #1A (41 ac) is new and is a portion of LMU #1 (current 103ac; proposed 62ac), LMU #2A (21 ac) is new and is in a portion of LMU #2 (current 83ac; proposed 21ac), LMU #3A (21 ac) is new and is in a portion of LMU #3 (current 78ac; proposed 56ac), LMU #6 (current 65ac; proposed 62ac), LMU #12A (30 ac) is new and is in a portion of LMU #12 (current 91ac; proposed 66ac) and LMU #14 (current 52ac; proposed 47ac). Phase 2 will include the increase of headcount to 4,000 total and 4,000 milking, the addition of an anerobic digester and associated equipment and the addition of freestall barns. - 10)Potential pollutant sources at the facility include (list the pollutant sources): Manure, manure stockpiles, wastewater, sludge, slurry, compost, feed & bedding, silage stockpiles, dead animals, dust, lubricants, parlor chemicals, pesticides and fuel storage tanks. - 11)The following best management practices will be implemented at the site to manage pollutants from the listed pollutant sources (describe the best management practices that are used): stormwater is stored in the lagoon (RCS) until land applied through irrigation and manure and sludge are stockpiled in the drainage area of the RCS until land applied or hauled offsite for beneficial use. Manure and sludge generated by the CAFO will be retained and used in an appropriate and beneficial manner in accordance with a certified site-specific nutrient management plan. Wastewater will be contained in the RCS properly designed ((25-year frequency 10-day duration (25 year/10 day), constructed, operated and maintained according to the provision of the permit. Maintain 100-foot buffer for all irrigation wells or 150-foot for all supply wells. Dust control speed and regular pen maintenance. Fertilizers store under roof and handle according to specified label directions. Fuel Tanks provide secondary containment and prevent overfills/spills. Dead animals dispose by a third-party rendering service, buried on-site or compost on-site. Collected within 24 hours of death and disposed within three days. - 12) Unless otherwise limited, manure, sludge, or wastewater will not be discharged from a land management unit (LMU) or a retention control structure (RCS) into or adjacent to water in the state from a CAFO except resulting from any of the following conditions: - 1) a discharge of manure, sludge, or wastewater that the permittee cannot reasonably prevent or control resulting from a catastrophic condition other than a rainfall event; - 2) overflow of manure, sludge, or wastewater from a RCS resulting from a chronic/catastrophic rainfall event; or - 3) a chronic/catastrophic rainfall discharge from a LMU that occurs because the permittee takes measures to de-water the RCS if the RCS is in danger of imminent overflow. # Public Involvement Plan Form for Permit and Registration Applications The Public Involvement Plan is intended to provide applicants and the agency with information about how public outreach will be accomplished for certain types of applications in certain geographical areas of the state. It is intended to apply to new activities; major changes at existing plants, facilities, and processes; and to activities which are likely to have significant interest from the public. This preliminary screening is designed to identify applications that will benefit from an initial assessment of the need for enhanced public outreach. All applicable sections of this form should be completed and submitted with the permit or registration application. For instructions on how to complete this form, see TCEQ-20960-inst. | Section 1. Preliminary Screening | | | |--|--|--| | New Permit or Registration Application | | | | X New Activity - modification, registration, amendment, facility, etc. (see instructions) | | | | If neither of the above boxes are checked, completion of the form is not required and does not need to be submitted. | | | | | | | | Section 2. Secondary Screening | | | | X Requires public notice, | | | | Considered to
have significant public interest, <u>and</u> | | | | Located within any of the following geographical locations: | | | | Austin Dallas Fort Worth Houston San Antonio West Texas Texas Panhandle Along the Texas/Mexico Border Other geographical locations should be decided on a case-by-case basis | | | | If all the above boxes are not checked, a Public Involvement Plan is not necessary. Stop after Section 2 and submit the form. | | | | Public Involvement Plan not applicable to this application. Provide brief explanation. | | | | | | | TCEQ-20960 (02-09-2023) | Type of Application (check all that apply): Air | |--| | Waste | | Radioactive Material Licensing Underground Injection Control Water Quality X Texas Pollutant Discharge Elimination System (TPDES) Texas Land Application Permit (TLAP) X State Only Concentrated Animal Feeding Operation (CAFO) Water Treatment Plant Residuals Disposal Permit Class B Biosolids Land Application Permit Domestic Septage Land Application Registration Water Rights New Permit New Appropriation of Water New or existing reservoir Amendment to an Existing Water Right Add a New Appropriation of Water | | X Texas Pollutant Discharge Elimination System (TPDES) Texas Land Application Permit (TLAP) X State Only Concentrated Animal Feeding Operation (CAFO) Water Treatment Plant Residuals Disposal Permit Class B Biosolids Land Application Permit Domestic Septage Land Application Registration Water Rights New Permit New Appropriation of Water New or existing reservoir Amendment to an Existing Water Right Add a New Appropriation of Water | | Texas Land Application Permit (TLAP) XState Only Concentrated Animal Feeding Operation (CAFO) Water Treatment Plant Residuals Disposal Permit Class B Biosolids Land Application Permit Domestic Septage Land Application Registration Water Rights New Permit New Appropriation of Water New or existing reservoir Amendment to an Existing Water Right Add a New Appropriation of Water | | X State Only Concentrated Animal Feeding Operation (CAFO) Water Treatment Plant Residuals Disposal Permit Class B Biosolids Land Application Permit Domestic Septage Land Application Registration Water Rights New Permit New Appropriation of Water New or existing reservoir Amendment to an Existing Water Right Add a New Appropriation of Water | | □Water Treatment Plant Residuals Disposal Permit □ Class B Biosolids Land Application Permit □ Domestic Septage Land Application Registration Water Rights New Permit □ New Appropriation of Water □ New or existing reservoir Amendment to an Existing Water Right □ Add a New Appropriation of Water | | Class B Biosolids Land Application Permit Domestic Septage Land Application Registration Water Rights New Permit New Appropriation of Water New or existing reservoir Amendment to an Existing Water Right Add a New Appropriation of Water | | Domestic Septage Land Application Registration Water Rights New Permit New Appropriation of Water New or existing reservoir Amendment to an Existing Water Right Add a New Appropriation of Water | | Water Rights New Permit New Appropriation of Water New or existing reservoir Amendment to an Existing Water Right Add a New Appropriation of Water | | New Appropriation of Water New or existing reservoir Amendment to an Existing Water Right Add a New Appropriation of Water | | New Appropriation of Water New or existing reservoir Amendment to an Existing Water Right Add a New Appropriation of Water | | New or existing reservoir Amendment to an Existing Water Right Add a New Appropriation of Water | | Amendment to an Existing Water Right Add a New Appropriation of Water | | Add a New Appropriation of Water | | Add a New Appropriation of Water | | | | Add a New or Existing Reservoir | | | | Major Amendment that could affect other water rights or the environment | | Section 4. Plain Language Summary | | Grand Canyon Dairy is a dairy milking facility. | | and the state of t | Section 5. Community and Demographic Information | |---| | Community information can be found using EPA's EJ Screen, U.S. Census Bureau information, or generally available demographic tools. | | Information gathered in this section can assist with the determination of whether alternative language notice is necessary. Please provide the following information. | | Stephenville
(City) | | Erath | | (County) | | | | (Census Tract) Please indicate which of these three is the level used for gathering the following information. | | | | | | (a) Percent of people over 25 years of age who at least graduated from high school | | 88.9% | | (b) Per capita income for population near the specified location | | \$24,810 | | (c) Percent of minority population and percent of population by race within the specified location | | White - 75.6%. Black or African American - 3.29%. Hispanic - 12.7%. Two or More Races - 2.11% Other - 2.68%. Asian - 1.3%. Indian - 1.6%. Multiracial - 0.72% | | (d) Percent of Linguistically Isolated Households by language within the specified location 0% | | (e) Languages commonly spoken in area by percentage | | English - 89.4%
Spanish - | | 10.6%
(f) Community and/or Stakeholder Groups | | N/A | | (g) Historic public interest or involvement | | N/A | | | | Section 6. Planned Public Outreach Activities | |---| | (a) Is this application subject to the public participation requirements of Title 30 Texas Administrative Code (30 TAC) Chapter 39? | | | | (b) If yes, do you intend at this time to provide public outreach other than what is required by rule? | | Yes No | | If Yes, please describe. | | | | If you answered "yes" that this application is subject to 30 TAC Chapter 39, answering the remaining questions in Section 6 is not required. (c) Will you provide notice of this application in alternative languages? | | Yes No | | Please refer to Section 5. If more than 5% of the population potentially affected by your application is Limited English Proficient, then you are required to provide notice in the alternative language. | | If yes, how will you provide notice in alternative languages? | | Publish in alternative language newspaper | | Posted on Commissioner's Integrated Database Website | | Mailed by TCEQ's Office of the Chief Clerk | | Other (specify) | | (d) Is there an opportunity for some type of public meeting, including after notice? | | Yes No | | (e) If a public meeting is held, will a translator be provided if requested? | | Yes No | | (f) Hard copies of the application will be available at the following (check all that apply): | | TCEQ Regional Office TCEQ Central Office | | Public Place (specify) | | | | Section 7. Voluntary Submittal | | For applicants voluntarily providing this Public Involvement Plan, who are not subject to formal public participation requirements. | | Will you provide notice of this application, including notice in alternative languages? Yes No What types of notice will be provided? | | | | X Publish in alternative language newspaper | | Posted on Commissioner's Integrated Database Website | | Mailed by TCEQ's Office of the Chief Clerk | | Other (specify) | | | | | | | If this is an existing permitted site, provide the Regulated Entity Number (RN) issued to this site? RN $\underline{100794155}$ Site Address/Location: | |----
---| | | If the site has a physical address such as 12100 Park 35 Circle, Austin, TX 78753, complete Item 1. | | | If the site does not have a physical address, provide a location description in Item 2. Example: located on the north side of FM 123, 2 miles west of the intersection of FM 123 and Highway 1. | | | Item 1: Physical Address of Project or Site: | | | Street Number and Name: <u>2179 CR 308</u> | | | City, State and Zip Code: <u>Dublin, TX 76446</u> | | | Item 2: Site Location Description: | | | Location description: Click here to enter text. | | | City where the site is located or, if not in a city, what is the nearest city: Click here to | | | enter tea | | | Zip Code where the site is located: Click here to enter text. | | D. | County or counties if more than 1: Erath | | | Latitude: <u>32 01' 23.6"N</u> Longitude: <u>98 16' 15.5"W</u> | | | Animal Type: | | | □ Dairy-0241 □ Beef Cattle- 0211 □ Swine-0213 □ Broiler-0251 □ Laying Hens-0252 □ Sheep/Goats-0214 □ Auction-5154 □ Other, specify: Click here to entertext. | | G. | Existing Maximum Number of Animals: 4,000 (Total) 4,000 (Milking) | | | Proposed Maximum Number of Animals: Phase 1 - 2,500 (Total) 2,500 (Milking). Phase 2 - | | | 4,000 (Milking) 4,000 (Total) | | H. | What is the total LMU acreage? <u>1,034</u> | | SE | CTION 11. MISCELLANEOUS INFORMATION | | Α. | Did any person who was formerly employed by the TCEQ represent your company and get paid for service regarding this application? Yes □ No ⊠ If yes, provide the name(s) of the former TCEQ employee(s): □lick here to enter text. | TCEQ -00728 Individual Permit Application for a Concentrated Animal Feeding Operation (10/24/2022) Page 8 C. Is the production area located within the protection zone of a sole source drinking water If yes, do not submit this application. You must obtain authorization through EPA Region 6. Yes □ No 🖾 **B.** Is the facility located on Indian Country Lands? | | supply? | Yes □ | No ⊠ | | | | | |----|--|-------------------|----------------------------------|--------------|------------|--------------|-----------------| | D. | Is any perman | ent school fund | l land affected b | y this appl | ication? | Yes □ | No ⊠ | | | If yes, provide land(s). | the location ar | nd foreseeable in | ipacts and | effects tl | his applicat | ion has on the | | E. | Delinquent Fee | es and Penaltie | 3: | | | | | | | Do you owe fe | es to the TCEQ | ? | Yes □ | No ⊠ | | | | | Do you owe ar | ny penalties to t | the TCEQ? | Yes □ | No ⊠ | | | | | If you answere
fee or penalty,
Click here to | , and an identif | of the above que
ying number. | estions, pro | ovide the | amount ow | ed, the type of | | | | | | | | | | ### SECTION 12. AFFECTED LANDOWNER INFORMATION This section must be completed if the application type is new or major amendment. If the application type is renewal or minor amendment, skip to Section 13. - **A.** Landowner map. Attach a landowner map or drawing, with scale, that includes the following. Each landowner should be designated by a letter or number on both the list and the map. - The applicant's property boundaries, including onsite and offsite LMUs; and - The property boundaries of all landowners within 500 feet of the applicant's property. - **B.** Landowner list. Attach a separate list of the landowners' names and mailing addresses. The list must be cross-referenced to the landowners map. - **C.** Landowner list media. Indicate the format of the landowners list. - □ Read/Writeable CD - \square 4 scts of mailing labels - **D.** Landowner data source. Provide the source of the landowners' names and mailing addresses. <u>Erath County Appraisal District - April 2025</u> ## **SECTION 13. ATTACHMENTS** #### A. All applications - Supplemental Permit Information Form, if required by instructions on that form - Current copy of tax records or deed showing ownership of the land - Lease agreement, if LMUs are not owned by the applicant or co-applicant - B. New, Major amendment, or Renewal - Current vicinity map, site map, runoff control map, and LMU map - RCS design calculations - Nutrient Management Plan or Land application rate calculations - Other technical documents affected by the proposed amendment ### SIGNATURE PAGE If co-applicants are required, each co-applicant must submit an original, separate signature page. Permit Number: <u>WQ0002950000</u> Applicant: <u>Circle 7 Dairy, LLC</u> I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. I further certify that I am authorized under 30 Texas Administrative Code §305.44 to sign and submit this document, and can provide documentation in proof of such authorization upon request. Signatory Name: Tim Miranda Title: Member Signature: Date: 4-23-25 SUBSCRIBED AND SWORN to before me by the said Tim Mirando on this 23 day of April 2025 My commission expires on the 21st day of Other MULIN 10 #120000888 Notary Public County, Texas - Current vicinity map, site map, runoff control map, and LMU map - RCS design calculations - Nutrient Management Plan or Land application rate calculations - Other technical documents affected by the proposed amendment ### SIGNATURE PAGE If co-applicants are required, each co-applicant must submit an original, separate signature page. Permit Number: <u>WQ0002950000</u> Applicant: Grand Canyon Dairy, LLC I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. I further certify that I am authorized under 30 Texas Administrative Code §305.44 to sign and submit this document, and can provide documentation in proof of such authorization upon request. Signatory Name: Tim Miranda Title: Member Signature: Date: 4-23-25 SUBSCRIBED AND SWORN to before me by the said fin Mrando on this Z3 day of April , 20 Z5 My commission expires on the Z15t day of October 1, 20 Z5 Notary Public Notary Public County, Texas ## **Franchise Tax Account Status** As of: 06/26/2018 10:47:24 ## This Page is Not Sufficient for Filings with the Secretary of State ### **CIRCLE 7 DAIRY LLC** Texas Taxpayer Number 32045368498 Mailing Address 1743 COUNTY ROAD 308 DUBLIN, TX 76446-6855 **@** Right to Transact Business in ACTIVE Texas State of Formation TX Effective SOS Registration Date 10/19/2011 Texas SOS File Number 0801495972 Registered Agent Name DORICE M MIRANDA Registered Office Street Address 2179 CR 308 DUBLIN, TX 76446 # **Public Information Report** ## Public Information Report CIRCLE 7 DAIRY LLC Report Year :2017 Information on this site is obtained from the most recent Public Information Report (PIR) processed by the Secretary of State (SOS). PIRs filed with annual franchise tax reports are forwarded to the SOS. After processing, the SOS sends the Comptroller an electronic copy of the information, which is displayed on this web site. The information will be updated as changes are received from the SOS. You may order a copy of a Public Information Report from <u>open.records@cpa.texas.gov</u> or Comptroller of Public Accounts, Open Records Section, PO Box 13528, Austin, Texas 78711. Title Name and Address MEMBER DORICE MIRANDA 1743 CR 308 DUBLIN, TX 76446 1743 CK 300 DOBEIN, 1X 70440 MEMBER 4740 OR 200 D 1743 CR 308 DUBLIN, TX 76446 ## **Franchise Tax Account Status** As of: 06/26/2018 10:48:35 ## This Page is Not Sufficient for Filings with the Secretary of State ## **GRAND CANYON DAIRY LLC** Texas Taxpayer Number 12733069541 Mailing Address 965 WADDINGTON RD FERNDALE, CA 95536-9724 **@** Right to Transact Business in ACTIVE State of Formation CA Effective SOS Registration Date 08/31/2010 Texas SOS File Number 0801312718 Registered Agent Name DORICE MIRANDA Registered Office Street Address 2179 COUNTY ROAD 308 DUBLIN, TX 76446 # **Public Information Report** ## Public Information Report GRAND CANYON DAIRY LLC Report Year: 2017 Information on this site is obtained from the most recent Public Information Report (PIR) processed by the Secretary of State (SOS). PIRs filed with annual franchise tax reports are forwarded to the SOS. After processing, the SOS sends the Comptroller an electronic copy of the information, which is displayed on this web site. The information will be updated as changes are received from the SOS. You may order a copy of a Public Information Report from <u>open.records@cpa.texas.gov</u> or Comptroller of Public Accounts, Open Records Section, PO Box 13528, Austin, Texas 78711. Title Name and Address MEMBER 1740 CD 200 PURIL 1743 CR 308 DUBLIN, TX 76446 MEMBER ROBERT MIRANDA 1808
CENTERVILLE RD FERNDALE, CA 95536 MEMBER TIM MIRANDA 1743 CR 308 DUBLIN, TX 76446 ## ADJACENT LANDOWNERS LIST | Name: Blue Sky Farms, LLC. | Name: Johnny Feagan | |---|---| | Number on Map: 1 | Number: on Map 2 | | Address: 4611 S FM 219 | Address: <u>2775 CR 307</u> | | Address: Dublin, TX 76446 | Address: Dublin, TX 76446 | | Name: Gustavo Frias | Name: Salavador & Leondies Solano | | Number: on Map 3 | Number on Map 4 | | Address: 3626 CR 307 | Address: 4042 CR 307 | | Address: Dublin, TX 76446 | Address: Dublin, TX 76446 | | Name: Gabriel E Dagley | Name: Michael Brent & Lisa Dianne Chambers | | Number on Map: 5 | Number on Map: 6 | | Address: <u>3313 CR 132</u> | Address: 4600 CR 307 | | Address: Stephenville, TX 76401 | Address: Dublin, TX 76446 | | Name: Tony & Sally Gray | Name: James & Tracy Holleman | | Number on Map: 7 | Number on Map: 8 | | Address: <u>5170 CR 307</u> | Address: 3048 CR 308 | | Address: <u>Dublin, TX 76446</u> | Address: Dublin, TX 76446 | | Name: Wallace Family Trust | Name: Haros Ranch LLC. | | Number on Map: 9 | Number on Map: 10 | | Address: 4879 CR 307 | Address: 830 Kingston Dr | | Address: <u>Dublin, TX 76446</u> | Address: Mansfield, TX 76063 | | Name: <u>Luciano Haros</u> | Name: Rygh & Lyn Fullagar | | Number on Map: <u>11</u> | Number on Map: 12 | | Address: 830 Kingston Dr | Address: 6291 CR 307 | | Address: Mansfield, TX 76063 | Address: <u>Dublin, TX 76446</u> | | Name: <u>Dickie D & Nancy R Palmore</u> | Name: Frederick Wayne & Gregory Alan Gibson | | Number on Map: <u>13</u> | Number on Map: 14 | | Address: <u>927 Preston Lane</u> | Address: 2801 FM 1496 | | Address: <u>Dublin, TX 76446</u> | Address: <u>Dublin, TX 76446</u> | | Name: Paulo A & Cathy S Valle | Name: Seven R Corporation | | Number on Map: <u>15</u> | Number on Map: 16 | | Address: PO Box 207 | Address: PO Box 83701 | | Address: <u>Dublin, TX 76446</u> | Address: Baton Rouge, LA 70884 | | Name: <u>Jesse Lee Tackett Credit Shelter Trust</u> | Name: Deboer Reo, LLC | | Number on Map: <u>17</u> | Number on Map: <u>18</u> | | Address: <u>1256 CR 308</u> | Address: 451 Eagle Station Lane | | Address: Dublin, TX 76446 | Address: Carson City, NV 89701 | Please identify where you obtained the landowner information. Erath County Appraisal District; April 2025 Facility Name: Grand Canyon Dairy ## ADJACENT LANDOWNERS LIST | Name: <u>Ventura & Rafaela Botello</u> | Name: <u>Sonrisa Land & Cattle Co Inc</u> | |--|--| | Number on Map: <u>19</u> | Number: on Map <u>20</u> | | Address: <u>260 CR 317</u> | Address: <u>PO Box 250</u> | | Address: <u>Dublin, TX 76446</u> | Address: <u>Dublin</u> , TX 76446 | | Name: Eddie & Effie Leatherwood | Name: <u>La Perla Land & Livestock, LLC</u> | | Number: on Map 21 | Number on Map <u>22</u> | | Address: 414 CR 336 | Address: <u>PO Box 367</u> | | Address: Dublin, TX 76446 | Address: <u>Dublin, TX 76446</u> | | Name: <u>Joseph Hines</u>
Number: on Map <u>23</u>
Address: <u>1418 W Torrey St.</u>
Address: <u>Granbury, TX 76048</u> | Name: <u>Janice Hess</u> Number: on Map <u>24</u> Address: <u>570 Alexander Rd.</u> Address: <u>Stephenville, TX 76401</u> | Please identify where you obtained the landowner information. Erath County Appraisal District; April 2025 Facility Name: Grand Canyon Dairy ### TCEQ USE ONLY | Application type: | ⊔ Renewal | ⊔ Major Amendment | □ Minor Amendment | □ New | |-------------------|---------------|------------------------|---------------------|----------| | County: | | Admin Complete Date: | | | | Agency Receiving | SPIF: □ Texas | Historical Commission | □ U.S. Fish and Wil | dlife | | | ⊓ Tex | kas Parks and Wildlife | ☐ Army Corps of E | ngineers | ### SUPPLEMENTAL PERMIT INFORMATION FORM (SPIF) ## This form is required for all TPDES applications - 1. Applicant: Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC - 2. Permit Number: WQ0002950000 EPA ID Number: TX0130923 - 3. Address of the project (location description that includes street/highway, city/vicinity, and county). The facility is located on the East side of FM 219, approximately 5 miles South of the intersection of FM 219 and Highway 1702, approximately 7 miles Southwest of Dublin in Erath County, Texas - 4. Provide the name, address, telephone and fax number of an individual that can be contacted to answer specific questions about the property. First and Last Name: Corey Mullin Company Name: Enviro-Ag Engineering, Inc. Mailing Address: 9355 FM 847 City, State, and Zip Code: Dublin, TX 76446 Phone Number: 254/965-3500 Fax Number: 254/965-8000 - 5. County where the facility is located: Erath - 6. If the property is publicly owned and the owner is different than the permittee/applicant, please identify the owner. n/a - 7. Identify the name of the water body (receiving waters) and TCEQ segment number that will receive the discharge. North Bosque River in Segment No. 1226 of the Brazos River Basin - 8. Provide a 7.5-minute USGS quadrangle map with the project boundaries plotted and a general location map showing the project area. (This map is required in addition to the map in the administrative report.) - 9. Provide photographs of any structures 50 years or older on the property. - 10. Does your project involve any of the following? Select all that apply. □ Proposed access roads, utility lines, and construction easements - □ Visual effects that could damage or detract from a historic property's integrity - ☑ Vibration effects during construction or as a result of project design - Additional phases of development that are planned for the future - ☐ Sealing of caves, fractures, sinkholes, or other karst features - ☐ Disturbance of vegetation or wetlands - 11. List proposed construction impact (surface acres to be impacted, depth of excavation, sealing of caves or other karst features): <u>Construction of anerobic digester and freestall</u> - barns. Approximately 1 surface acre and 20 feet deep. - 12. Describe existing disturbances, vegetation & land use (plowing, other ground disturbances): The LMUs at the facility are planted in coastal grass and crops and normal expected farming practices to maintain these crops will be utilized. ## The following applies to New TPDES and Major Amendment to TPDES Permits: - 13.List construction dates of any buildings or structures on the property: <u>The dairy parlor and</u> commodity barn were built in 1986. - 14. Provide a brief history of the property, and name of the architect/builder, if known: n/a ## The following applies to New, Amended and Renewal TPDES applications: - 15. List each Retention Control Structure and its required capacity (Acre Feet). Phase 1 RCS #1 0.00, RCS #2 51.84 & RCS #3 16.74. Phase 2 RCS #1 0.00, RCS #2 58.81 & RCS #3 22.73. Phase 2 Digester Bypass RCS #1 0.00, RCS #2 54.96 & RCS #3 18.10. - 16. Provide the location and number of acres where wastewater and manure are land applied: The facility has 1,034 acres of Land Management Units (LMUs) available for waste and wastewater application. See attached Figures 1.3A-B. - 17. List the maximum number of head to be permitted. <u>Phase 1 2,500 (Total) 2,500 (Milking).</u> Phase 2 4,000 (Total) 4,000 (Milking) 4/9/25, 10:53 AM Atrest Nonk RProperty Details Account Property ID: R000017177 Geographic ID: R.0159,00081,00.0 Type: Real Zoning: Cando: Property Use: Location Situs Address: S FM219 (OFF) Map ID: 17-14-4 Mapsco: Legal Description: Acres 468,660, A0159 CARRIGAN A L; Abstract/Subdivision: Owner Name; CIRCLE 7 DAIRY LLC Agent: Mailing Address: 1743 CR308 **DUBLIN, TX 76446** % Ownership: 100_00% Exemptions: For privacy reasons not all exemptions are shown online, #### ■ Property Values | Improvement Homesite Value: | N/A (+) | |---------------------------------|---------| | Improvement Non-Homesite Value; | N/A (+) | | Land Homesite Value: | N/A (+) | | Land Non-Homesite Value: | N/A (+) | | Agricultural Market Valuation: | N/A (+) | | Market Value: | N/A (=) | | Agricultural Value Loss:@ | N/A (-) | | | | about stank ■ Property Land | Туре | Description | Acreage | Sqft | Eff Frant | Eff Depth | Market Value | Prod. Value | |------|-------------|---------|---------------|-----------|-----------|--------------|-------------| | SAW | | 468,66 | 20.414,830.00 | 0.00 | 0,00 | N/A | N/A | | 09:25, 10:53 AAI | arout Mant | | |---------------------------|------------|---------| | Appraised Value; © | | N/A (=) | | HS Cap Loss: 0 | | N/A (-) | | CB Cap Loss: 🛭 | | N/A (-) | | Assessed Value; | | N/A | | Ag Use Value; | | N/A | | | | | Information provided for research purposes only. Legal descriptions and acreage amounts are for Appraisal District use only and should be verified prior to using full legal purpose and or documents. Please contact the Appraisal District to verify all information for accuracy. ### ■ Property Taxing Jurisdiction Owner: CIRCLE 7 DAIRY LLC %Ownership: 100.00% | Entity | Description | Market Value | Taxable Value | |--------|----------------------|--------------|---------------| | 072 | ERATH COUNTY | N/A | N/A | | 902 | DUBLIN ISO | N/A | N/A | | MTD | MIDDLE TRINITY WATER | N/A | N/A | | RER | ERATH ROAD & BRIDGE | N/A | N/A | auont blank 4/8/25_10 53 AM about blank | Pro | operty Roll Value | History | | | | | |------|-------------------|-------------|--------------|-------------|-------------|-----------| | Year | Improvements | Land Market | Ag Valuation | Appraised | HS Cap Loss | Assesses | | 2025 | N/A | N/A | N/A | N/A | N/A | N/A | | 2024 | 20 | \$1,640,310 | \$90,310 | \$1,640,310 | \$0 | \$90,310 | | 2023 | \$0 | \$1,640,310 | \$64,510 | \$1,640,310 | \$0 | \$84,510 | | 2022 | 50 |
\$1,640,310 | \$112,620 | \$1,640,310 | \$0 | \$112,620 | | 2021 | \$0 | \$1,265,380 | \$119,700 | \$1,265,380 | \$0 | \$119,700 | | 202D | \$0 | \$1,265,380 | \$113,300 | \$1,265,380 | \$0 | \$113,300 | | 2019 | 50 | \$1,265,380 | \$115,770 | \$1,265,380 | \$0 | \$115,770 | | 2018 | 3 0 | \$1,640,310 | \$113,730 | \$1,640,310 | \$0 | \$113,730 | | 2017 | 50 | \$1,312,250 | \$112,630 | \$1,312,250 | \$0 | \$112,630 | | 2016 | \$0 | \$1,124,780 | \$107.130 | \$1,124,780 | \$0 | \$107,130 | | 2015 | \$0 | \$1,124,780 | \$107,130 | \$1,124,780 | \$0 | \$107,13 | | 2014 | SD | \$1.031,050 | \$99.530 | \$1,031,050 | 5D | \$99,53 | | Proper | ty Dee | d History | | | | | | |------------|--------|-------------|-----------------------------|--------------------------------|--------|------|----------------| | Deed Date | Туре | Description | Grantor | Grantee | Volume | Page | Number | | 1/4/2012 | | | JB GRAND
CANYON DAIRY LP | CIRCLE 7 DAIRY
LLC | | | 2012-
00202 | | 12/21/2006 | | | GRAND CANYON
DAIRY | JB GRAND
CANYON DAIRY
LP | 1314 | 451 | | | 9/10/1992 | MULTI | | HENDERSON T G | GRAND
CANYON DAIRY | 830 | 802 | | | 3/31/1998 | | | GRAND CANYON
DAIRY | GRAND
CANYON DAIRY | 954 | 528 | | 4/6/25. TD 53 AM ■ Property Details Account Property ID: R000026213 Geographic ID: R.0779.00020.00.0 Type: Property Use: Zoning: Real Condo: Location Situs Address: S FM219 Map ID: 17-14-4 Mansco: Acres 290,660, A0779 TOBY THOMAS;, HOUSE & BARNS Legal Description: Abstract/Subdivision: Name; CIRCLE 7 DAIRY LLC Agent: nhoot blank Mailing Address: 1743 CR308 DUBI.IN, TX 76446 % Ownership: 100.00% Exemptions: For privacy reasons not all exemptions are shown online. ■ Property Values Improvement Homesite Value: N/A (+) Improvement Non-Homesite Value: N/A (+) Land Homesite Value: N/A (+) Land Non-Homesite Value: N/A (+) Agricultural Market Valuation: N/A (+) Market Value: N/A (=) Agricultural Value Loss:@ N/A (-) 4/8/25, 10.53 AM Property Improvement - Building Type: STG State Code: E Value: N/A Туре Description Year Built SQFT STG STRG BUILDING 48.0D ANIMALSHADE AS 1997 960.00 Type: MA State Code: E Value: N/A Description Year Built SQFT Турс MA. MAIN AREA 1937 1,465.00 Р COVERPORCH 1937 112.00 OΡ OPEN PATIO 1937 243,00 DCPP DTCARPORT+ 1937 600.00 DG1F 1 CAR FRAME GARAGE DET 1937 403,00 STRG BUILDING STG 1937 264,00 UTILITIES 1 UTIL1 2023 1.00 | ■ Property Land | | | | | | | | |-----------------|------------------|---------------|-----------|-----------|--------------|-------------|--| | Type Des | cription Acreage | Sqft | Eff Front | Eff Depth | Market Value | Prod. Value | | | SAW | 289,66 | 12,617,590,00 | 0,00 | 0,00 | N/A | N/A | | | SAW | 1.00 | 43,560,00 | 0.00 | 0,00 | N/A | N/A | | about blank Appraised Value: 0 N/A (=) H8 Cap Loss: 0 N/A (-) CB Cap Loss: @ N/A (-) Assessed Value: N/Α Ag Use Value: N/A Information provided for research purposes only, Legal descriptions and acreage amounts are for Appraisal District monitarion provision on research purposes only. Legal descriptions and advesse amounts are for Appraisal Distuse only and should be verified prior to using for legal purpose and or ductiments. Planse contact the Appraisal District to verify all information for accuracy. ### ■ Property Taxing Jurisdiction Owner: CIRCLE 7 DAIRY LLC %Ownership: 100,00% | Entity | Description | Market Value | Taxable Value | |--------|----------------------|--------------|---------------| | 072 | ERATH COUNTY | N/A | N∤A | | 902 | DUBLIN ISD | N/A | N/A | | MTD | MIDDLE TRINITY WATER | N/A | N/A | | RER | ERATH ROAD & BRIDGE | N/A | N/A | Anald Breds | బ్, 10 S3 A | UM. | Atheut Starre | | | | | | | | |-------------------------------|--------------|---------------|--------------|-------------|-------------|----------|--|--|--| | ■ Property Roll Value History | | | | | | | | | | | Year | Improvements | Land Market | Ag Valuation | Appraised | HS Cap Loss | Assessed | | | | | 2025 | N/A | N/A | N/A | N/A | N/A | N/A | | | | | 2024 | \$112,820 | \$1,017,310 | \$35,340 | \$1,130,130 | \$0 | \$151,66 | | | | | 2023 | \$79,340 | \$1,053,810 | 327,520 | \$1,133,150 | \$0 | \$146,86 | | | | | 2022 | \$67,840 | \$1,038,810 | \$31,860 | \$1,106,650 | \$0 | \$124,7D | | | | | 2021 | \$52,410 | \$798,080 | \$36,500 | \$850,490 | \$0 | \$104,91 | | | | | 2020 | \$52,410 | \$798,080 | \$36,810 | \$850,490 | \$0 | \$107,22 | | | | | 2019 | \$45,640 | \$798,080 | \$38,530 | \$843,720 | \$0 | \$100,17 | | | | | 2018 | \$45,000 | \$1,064,810 | \$38.530 | \$1,109,810 | \$0 | \$99,53 | | | | | 2017 | \$44,11D | \$851,550 | 843,450 | \$895,660 | \$0 | \$103,56 | | | | | 2016 | \$44,110 | \$731,180 | \$45,190 | \$775,290 | 5 D | \$104,30 | | | | | 2015 | \$44,110 | \$731,180 | \$50,110 | \$775,290 | \$0 | \$109,22 | | | | | 2014 | \$44,110 | \$580,250 | \$50,110 | \$724,360 | \$ D | \$109,22 | | | | | Dood Date | Type | Description | Grantor | Grantee | Valume | Page | Number | |---------------------|--------|-------------|--------------------------------|--------------------------------|--------|------|--------| | 1/4/2012 | .,,,,, | | JB GRAND
CANYON DAIRY
LP | CIRCLE 7 DAIRY
LLG | | | 2012 | | 12/21 /20 06 | | | GRAND GANYON
DAIRY | JE GRAND
CANYON DAIRY
LP | 1314 | 451 | | | 3/31/1998 | | | GRAND CANYON
DAIRY | GRAND CANYON
DAIRY | 954 | 528 | | 4975 10 34 AM about blank Property Details Account Property ID: R000028154 Geographic ID: R 1223 00010 00 0 Type: Property Use: Real Zoning: Condo: Location Situs Address: S FM219 (OFF) Map ID: 17-14-4 Legal Description: Mapsoo; Acres 18,230 A1223 PERCIFUL T W; Abstract/Subdivision: Owner Name: CIRCLE 7 DAIRY LLC Mailing Address: Agent: 1743 CR308 **DUBLIN, TX 76446** 100.00% % Ownership: Exemptions: For privacy reasons not all exemptions are shown online. Property Values Agricultural Value Loss;@ Improvement Homesite Value: N/A (+) Improvement Non-Homesite Value: N/A (+) Land Homesite Value: N/A (+) Land Non-Homesite Value; N/A (+) Agricultural Market Valuation: N/A (+) N/A (=) about Mark 4/3/25, 10 54 AM | Prope | erty Land | | | | | | | |---------|-----------|---------|------------|-----------|-----------|--------------|-------------| | Type De | scription | Acresge | Sqft | Eff Front | Eff Depth | Market Value | Prod. Value | | SAW | | 18,23 | 794,099.00 | 0.00 | 0.00 | N/A | N/A | | P25, 10 54 AM | alsout-blank | | |-----------------------|--------------|---------| | Apprelsed Value:€ | | N/A (=) | | H8 Cap Loss: ⊘ | | N/A (-) | | CB Cap Loss: • | | N/A (-) | | Assessed Value: | | N/A | | Ag Use Value: | | N/A | ■ Property Taxing Jurisdiction Owner: CIRCLE 7 DAIRY LLC %Ownership: 100,00% | Entity | Description | Market Value | Taxable Value | |--------|----------------------|--------------|---------------| | 072 | ERATH COUNTY | N/A | N/A | | 902 | DUBLIN ISO | N/A | N/A | | MTD | MIDDLE TRINITY WATER | N/A | N/A | | RER | ERATH ROAD & BRIDGE | N/A | N/A | about:blank | 9/25 10 54 AM | | | | | | | |---------------|--|---|--
---|---|---| | 翼 Pro | operty Roll Value | History | | | | | | Yевг | Improvements | Land Market | Ag Valuation | Appraised | HS Cap Loss | Assessed | | 2025 | N/A | N/A | N/A | N/A | N/A | N/A | | 2024 | \$0 | \$63,810 | \$4,610 | \$63,810 | -50 | \$4,610 | | 2023 | \$0 | \$63,810 | \$3,760 | \$63,810 | \$0 | \$3,760 | | 2022 | \$0 | \$63,810 | \$5,870 | 563,810 | \$0 | \$5,870 | | 2021 | 50 | \$49,220 | \$6,140 | \$49,220 | \$0 | \$6,140 | | 2020 | \$0 | \$49,220 | \$6,110 | \$49,220 | \$0 | \$6,110 | | 2019 | \$0 | \$49,220 | \$6,220 | \$49,220 | -\$0 | \$6,220 | | 2018 | \$0 | \$63,810 | \$6,050 | \$63,810 | \$0 | \$6,050 | | 2017 | \$0 | \$51,040 | \$6,380 | \$51,040 | \$0 | \$6,380 | | 2016 | \$0 | \$43,750 | \$6,310 | \$43,750 | \$0 | \$6,310 | | 2015 | \$0 | \$43,750 | \$6,600 | \$43,750 | \$0 | \$6,600 | | 2014 | \$0 | \$40,110 | \$6,620 | \$40,110 | \$0 | \$6,620 | | | Year 2025 2024 2023 2022 2021 2020 2019 2016 2017 2016 | Property Roll Value Year Improvements 2025 N/A 2024 S0 2022 S0 2021 S0 2020 S0 2019 S0 2016 S0 2016 S0 2016 S0 2015 | Property Roll Value History Year Improvements Land Market 2025 N/A N/A 2024 \$0 \$63,810 2023 \$0 \$63,810 2022 \$0 \$63,810 2021 \$0 \$49,220 2020 \$0 \$49,220 2019 \$0 \$63,810 2019 \$0 \$63,810 2017 \$0 \$63,810 2017 \$0 \$51,040 2016 \$0 \$43,750 2015 \$0 \$43,750 | Property Roll Value History Year Improvements Land Market Ag Valuation 2025 N/A N/A N/A 2024 \$0 \$63.810 \$4,610 2023 \$0 \$63.810 \$5,760 2022 \$0 \$63,810 \$5,870 2021 \$0 \$49,220 \$6,140 2020 \$0 \$49,220 \$6,110 2019 \$0 \$49,220 \$6,220 2019 \$0 \$63,810 \$6,050 2017 \$0 \$51,040 \$6,380 2016 \$0 \$43,760 \$6,310 2015 \$0 \$43,760 \$6,300 | Property Roll Value History Year Improvements Land Market Ag Valuation Appraised 2025 N/A N/A N/A N/A 2024 \$0 \$63,810 \$4,610 \$63,810 2022 \$0 \$63,810 \$5,870 \$63,810 2021 \$0 \$63,810 \$5,870 \$63,810 2021 \$0 \$49,220 \$6,140 \$49,220 2020 \$0 \$49,220 \$6,140 \$49,220 2019 \$0 \$49,220 \$6,220 \$49,220 2019 \$0 \$63,810 \$6,050 \$63,810 2017 \$0 \$51,040 \$6,360 \$51,040 2016 \$0 \$43,750 \$6,310 \$43,750 2015 \$0 \$43,750 \$6,800 \$43,750 | ■Property Roll Value History Year Improvements Land Market Ag Valuation Appraised HS Cap Loss 2025 N/A N/A N/A N/A N/A N/A 2024 \$0 \$63,810 \$63,810 \$63,810 \$0 2022 \$0 \$63,810 \$63,810 \$6 2021 \$0 \$63,810 \$6 \$6 2021 \$0 \$49,220 \$6,140 \$49,220 \$0 2020 \$0 \$49,220 \$6,220 \$49,220 \$0 2019 \$0 \$49,220 \$6,220 \$49,220 \$0 2019 \$0 \$63,810 \$6,800 \$0 \$0 2019 \$0 \$63,810 \$6,800 \$6 \$0 \$0 2017 \$0 \$63,810 \$6,800 \$51,040 \$0 \$0 2016 \$0 \$43,760 \$6,360 \$51,040 \$0 \$0 2016 \$0 \$4 | | Proper | ty De | ed History | | | | | | |------------|-------|-------------|--------------------------------|--------------------------------|--------|------|----------------| | Doed Date | Тура | Description | Grantor | Grantee | Volume | Page | Number | | 1/4/2012 | | | JB GRAND
CANYON DAIRY
LP | CIRCLE 7 DAIRY
LLC | | | 2012-
00202 | | 12/21/2006 | | | GRAND CANYON
DAIRY | JB GRAND
CANYON DAIRY
LP | 1314 | 451 | | | 1/1/1900 | | | VISSINEIL &
GERTRUDE | GRAND CANYON
DAIRY | 929 | 1022 | | | 1/1/1966 | WD | | TACKETT
WYNDEL | VISS NEIL &
GERTRUDE | 687 | 436 | | | 3/31/1998 | | | GRAND CANYON
DAIRY | GRAND CANYON
DAIRY | 954 | 528 | | about Marks about blank N/A (-) 4/9/25, 10:54.AM Property Details Account Property ID: R000018998 Geographic ID: R.0296.00100.00.0 N/A (-) Type: Zening: Condo: Property Use: Location S FM219 Situs Address: Map ID: 17-14-4 Legal Description: Acres 40.580, A0296 GAMBLE GEORGE W; Abstract/Subdivision: Owner Name: CIRCLE 7 DAIRY LLC Agent: Mailing Address: 1743 CR308 DUBLIN, TX 76446 100,00% % Ownership: Exemptions: For privacy reasons not all exemptions are shown online. ■ Property Values Improvement Homesite Value: N/A (+) Improvement Non-Homesite Value: N/A (+) Land Homesite Value: N/A (+) Land Non-Homesite Value: N/A (+) Agricultural Market Valuation: N/A (+) Market Value: N/A (=) Agricultural Value Loss:® 4/9:25, 10:54 AM | Property Land | | | | | | | |------------------|---------|--------------|-----------|-----------|--------------|-------------| | Type Description | Acreage | Sqft | Eff Front | Eff Depth | Market Value | Prod. Value | | saw | 40,58 | 1,767,685.00 | 0.00 | 0.00 | N/A | N/A | | 46V25, 10;54 AM | nbout blank | | |--------------------|-------------|---------| | Appraised Value: • | | N/A (=) | | HS Cap Loss: 0 | | N/A (-) | | CB Cap Loss: 🚱 | | N/A (-: | | Assessed Value: | | N/A | | Ag Use Value: | | N/A | | | | | Information provided for research purposes only. Legal descriptions and acreage amounts are for Appraisal District Use unity and should be verified prior to using for legal purpose and or documents. Please contact the Appraisal District to verify all information for accuracy. #### ■ Property Taxing Jurisdiction Owner: GIRCLE 7 DAIRY LLC %Ownership: 100,00% | Entity | Description | Market Value | Taxable Value | |--------|----------------------|--------------|---------------| | 072 | ERATH COUNTY | N/A | N/A | | 902 | DUBLINISD | N/A | N/A | | MTD | MIDDLE TRINITY WATER | N/A | N/A | | RER | ERATH ROAD & BRIDGE | AMA | N/A | about Manie | about hiav | |------------| | | | ■ Property Roll Value History | | | | | | | | | |-------------------------------|--------------|-------------|--------------|-----------|-------------|----------|--|--| | Year | Improvements | Land Market | Ag Valuation | Appraised | HS Cap Loss | Assessed | | | | 2025 | N/A | N/A | N/A | N/A | N/A | N/A | | | | 2024 | \$0 | 5142,030 | 510,270 | \$142,030 | 80 | \$10,270 | | | | 2023 | \$0 | \$142,030 | \$8,360 | \$142,030 | SD | \$8,360 | | | | 2022 | \$0 | 5142,030 | \$13,070 | \$142,030 | 80 | \$13,07 | | | | 2021 | \$0 | \$109,570 | \$13,680 | \$109,570 | \$0 | \$13,68 | | | | 2020 | \$0 | 5109,570 | \$13,590 | \$109,570 | 50 | \$13,59 | | | | 2019 | \$D | \$109,570 | \$13,840 | \$109,570 | so | \$13,84 | | | | 2018 | \$0 | \$160,030 | \$13,470 | \$150,030 | \$0 | \$13,47 | | | | 2017 | \$0 | \$126,220 | \$14,200 | \$126,220 | \$0 | \$14,20 | | | | 2016 | \$0 | \$108,190 | \$14,040 | \$108,190 | \$0 | \$14,04 | | | | 2015 | 5 D | \$108,190 | \$14,690 | \$108,190 | SD | \$14,69 | | | | 2014 | \$0 | \$103,680 | \$14,73D | \$103,680 | \$D | \$14,730 | | | | ■ Proper | ty De | ed History | | | | | | |------------|-------|-------------|--------------------------------|--------------------------------|--------|-----------------|----------------| | Deed Date | Туре | Description | Grantor | Grantee | Volume | Page | Number | | 1/4/2012 | | | JB GRAND
CANYON DAIRY
LP | CIRCLE 7 DAIRY
LLC | | | 2012-
00202 | | 12/21/2006 | | | GRAND CANYON
DAIRY | JB GRAND
CANYON DAIRY
LP | 1314 | 4 51 | | | 1/1/1900 | | | VISS NEIL &
GERTRUDE | GRAND CANYON
DAIRY | 929 | 1022 | | | 1/1/1968 | WD | | TACKETT
WYNDEL | VISS NEIL &
GERTRUDE | 687 | 436 | | | 3/31/1998 | | | GRAND CANYON DAIRY | GRAND CANYON
DAIRY | 954 | 528 | | 4/9/25, 10 55 AM airesa blank Property Details Account Property ID:
R000018984 Geographic ID: R,0296,00030,00.0 Type; Real Zoning: Property Use: Condo: Location Situs Address: 715 PR1384 OFF S FM219 Map JD; 17-14-4 Mapseo: Legal Description: Acres 20.100, A0296 GAMBLE GEORGE W; A-FRAME HOUSE, MH, WH & MH SITES (CIRCLE 7 DAIRY)(RANDY VISS), LABEL TEX0040157, MAKE TITAN HOMES, SERIAL 1380662065, MODEL TITAN, MODEL 14X52, YR 1978 Abstract/Subdivision: Owner Name: CIRCLE 7 DAIRY LLC Agent: 4/9/25, 10:55 AM Mailing Address: 1743 CR308 DUBLIN, TX 76446 % Ownership: 100,00% Exemptions: For privacy reasons not all exemptions are shown online, Property Values Improvement Homesite Value: N/A (+) Improvement Non-Homesite Value: N/A (+) Land Homesite Value: N/A (+) Land Non-Homesite Value: N/A (+) Agricultural Market Valuation: N/A (+) Market Value: N/A (=) Warket value: N/A (=) Property Improvement - Building Type; MA State Code; E Value: N/A Year Built Description SOFT Туре MAIN AREA MA 2004 800.00 MA2 MAIN AREA2 STORY 2004 480,00 WH WELLHOUSE 2004 144.00 MAIN AREA MA 1978 728.00 SHED SHED 2021 165.00 UT1L1 UTILITIES 1 2023 1.00 Type: MHC Value: N/A | Description | Year Huilt | SQFI | |-------------|------------|---------------| | MH COVER | 1994 | 1,600.00 | | MH COVER | 1996 | 1,600,00 | | | MH COVER | MH COVER 1994 | Property Land | Туре | Description | Acreage | Sqft | Eff Front | Eff Depth | Market Value | Prod, Value | |------|-------------|---------|------------|-----------|-----------|--------------|-------------| | SAW | | 19.10 | 831,996,00 | 0.00 | 0.00 | N/A | N/A | | SAW | | 1.00 | 43,560.00 | 0.00 | 0.00 | N/A | N/A | Am 25 10 55 AM about high Agricultural Value Loss: Appraised Value: HS Cap Loss: N/A (-) CB Cap Loss: N/A (-) Assessed Value: N/A Ag Use Value: N/A Information provided for research purposes only. Logal descriptions and acreage amounts are fin Appraisal District use only and should be verified prior to using for legal purpose and or documents. Please contact the Appraisal District to verify all information for accuracy. #### ■ Property Taxing Jurisdiction Owner: CIRCLE 7 DAIRY LLC %Ownership: 100,00% | Entity | Description | Market Value | Taxable Value | |--------|----------------------|--------------|---------------| | 072 | ERATH COUNTY | N/A | N/A | | 902 | DUBLIN ISD | NYA | N/A | | MTD | MIDDLE TRINITY WATER | N/A | N/A | | RER | ERATH ROAD & BRIDGE | N/A | N/A | about blank 24 | 4(B/20), 10:30 AM | about blank | |-----------------------------|-------------| | Property Roll Value History | | | 2110 | pcity Roll value | o i iliacor y | | | | | | |------|------------------|---------------|--------------|-----------|-------------|-----------|--| | Year | Improvements | Land Market | Ag Valuation | Appraised | HS Cap Loss | Assessed | | | 2025 | N/A | N/A | N/A | N/A | N/A | N/A | | | 2024 | \$97,730 | \$211,050 | \$2,980 | \$308,780 | \$0 | \$111,210 | | | 2023 | \$61,260 | \$231,000 | \$2,980 | \$292,260 | \$0 | \$104.240 | | | 2022 | \$35,250 | \$177,800 | \$3,250 | \$213,050 | \$0 | \$63,500 | | | 2021 | \$9,770 | \$117,230 | \$3,550 | \$127,000 | \$0 | \$29,320 | | | 2020 | \$9,770 | \$113,410 | \$3,360 | \$123,180 | \$0 | \$29 130 | | | 2019 | \$7,030 | \$111,500 | \$3,340 | \$118,530 | \$0 | 826,370 | | | 2018 | \$7,030 | \$111,500 | \$3.340 | \$118,530 | \$0 | \$26,370 | | | 2017 | \$6,040 | \$111.500 | \$3,340 | \$117,540 | 50 | \$25,380 | | | 2016 | \$8,460 | \$81,850 | \$3,150 | \$90,310 | \$0 | \$26,510 | | | 2015 | \$6,040 | \$81,850 | \$3.150 | \$87,890 | \$0 | \$24,190 | | | 2014 | \$6,040 | 381,850 | \$2,830 | \$87,890 | \$0 | \$23,870 | | | | | | | | | | | | Property | Deed | History | |----------|------|---------| |----------|------|---------| | Deed Date | Туре | Description | Grantor | Granlee | Volume | Page | Number | |------------|------|-------------|--------------------------------|--------------------------------|--------|------|----------------| | 1/4/2012 | | | JB GRAND
CANYON DAIRY
LP | CIRCLE 7 DAIRY
LLC | | | 2012-
00202 | | 12/21/2006 | | | GRAND CANYON
DAIRY | JB GRAND
CANYON DAIRY
LP | 1314 | 451 | | | 1/1/1958 | | | GARRETT E W SR | HANSEN
NORMAN D | 638 | 289 | | | 3/31/1998 | | | GRAND CANYON
DAIRY | GRAND CANYON
DAIRY | 954 | 524 | | 4/9/25, 10 55 AM Ag Use Value: about blook N/A #### RProperty Details Account Property ID: R000D18980 Geographic ID: R 0296,00015,00,0 Type: Real Zoning: Property Use: Condo: Location Situs Address: 8958 S FM219 Map ID: 17-14-4 Mapsoo; Legal Description: Acres 25,890, A0296 GAMBLE GEORGE W., SHED & MH SITE, (RANDY VISS) Abstract/Subdivision; Owner Name: CJRCLE 7 DAIRY LLG Agent: Mailing Address: 1743 CR308 DUBLIN, TX 76446 % Ownership: 100,00% Exemptions: For privacy reasons not all exemptions are shown online ### ■ Property Values | Improvement Homesite Value: | N/A (+) | |---------------------------------|---------| | Improvement Non-Homesite Value: | N/A (+) | | Land Homesite Value: | N/A (+) | | Land Non-Homesite Value: | N/A (+) | | Agricultural Market Valuation: | N/A (+) | | | | | Market V≖lue: | N/A (=) | | Agricultural Value Loss:@ | N/A (-) | nheat Marin 4'6'25, 10 55 AM about blank ■ Property Improvement - Building Type: SHED State Code: D2 Value: N/A Description Туре Year Built SQFT SHED SHED 2000 480.00 UTILI UTILITIES 1 2023 1,00 | P | operty cand | | | | | | | |------|-------------|---------|--------------|-----------|-----------|--------------|-------------| | Type | Description | Acreage | Sqft | Eff Frant | Eff Depth | Market Value | Prod. Value | | SAW | | 24,89 | 1,084.208.00 | 0.00 | 0.00 | N/A | N/A | | SAM | | 1.00 | 43.560.00 | 0.00 | 0.00 | N/A | N/A | Appraised Value: N/A (=) HS Cap Loss: 0 CB Cap Loss: 0 Assessed Value: N/A Information provided for research purposes only. Legal descriptions and Acreage amounts are for Appraisal District use only and should be verified prior to using for Ingal purpose and or documents. Please contact the Appraisal District to verify all information for accuracy. #### ■ Property Taxing Jurisdiction Owner: CIRCLE 7 DAIRY LLC %Ownership: 100.00% | Entity | Description | Market Value | Taxable Value | |--------|----------------------|--------------|---------------| | 072 | ERATH COUNTY | N/A | N/A | | 902 | DUBLIN ISD | N/A | N/A | | MTD | MIDDLE TRINITY WATER | N/A | N/A | | RER | ERATH ROAD & BRIDGE | N/A | A\/A | shoul blank 2/4 | 25, 10,557 | AM | | | | | | | | | |-------------------------------|--------------|-------------|--------------|-----------|-------------|---------|--|--|--| | ■ Property Roll Value History | | | | | | | | | | | Year | Improvements | Land Market | Ag Valuation | Appraised | HS Cap Loss | Assesse | | | | | 2025 | N/A | N/A | N/A | N/A | NIA | N/ | | | | | 2024 | \$37,200 | \$271,850 | \$3,880 | \$309,050 | \$0 | \$51,58 | | | | | 2023 | \$4,800 | \$288,900 | \$3,880 | \$293,700 | 50 | \$49,68 | | | | | 2022 | \$4,800 | \$224,120 | \$4,230 | \$228,920 | \$D | \$34,03 | | | | | 2021 | \$3,840 | \$147,920 | \$4,630 | \$151,760 | \$0 | \$24,47 | | | | | 2020 | \$3,840 | \$142,940 | \$4,380 | 5146,780 | \$0 | \$24,22 | | | | | 2019 | \$2,560 | \$140,450 | \$4,360 | \$143,010 | \$0 | \$22,92 | | | | | 2018 | \$2,560 | \$140,450 | \$4,360 | \$143,010 | SD | \$22,92 | | | | | 2017 | \$2,080 | \$140,450 | \$4,360 | \$142,530 | SO | \$22,44 | | | | | 2016 | \$2,080 | \$102,120 | \$4,110 | \$104,200 | \$0 | \$21,19 | | | | | 2015 | \$2,080 | \$102,120 | \$4,110 | \$104,200 | \$0 | \$21,19 | | | | | 2014 | \$2,080 | \$102,120 | \$3,680 | \$104,200 | 50 | \$20,76 | | | | | R Proper | ty De | ed History | | | | | | |------------|-------|-------------|--------------------------------|--------------------------------|--------|------|--------------| | Deed Date | Туре | Description | Grantor | Grantee | Volume | Page | Numbe | | 1/4/2012 | | | JB GRAND
CANYON DAIRY
LP | CIRCLE 7 DAIRY
LLC | | | 2012
0020 | | 12/21/2006 | | | GRAND CANYON
DAIRY | JB GRAND
CANYON DAJRY
LP | 1314 | 451 | | | 1/1/1968 | | | HANSEN NORMAN
D | GRAND CANYON
DAIRY | 821 | 856 | | | 3/31/1998 | | | GRAND CANYON
DAIRY | GRAND CANYON DAIRY | 954 | 524 | | 4992S 10 55 AM about plans Property Details Account Property ID: R000015074 Geographic ID: R.0036,00020.00,0 Type: Real Zoning: Property Use: Condo: Location Situs Address: CR308 Map ID: 17-14-4 Mapsco; Legal Description: Acres 114,450, A0036 BRADLEY ELIZABETH: & SHED Abstract/Subdivision: Owner CIRCLE 7 DAIRY LLC Name: Agent: Mailing Address: 1743 CR308 DUBLIN, TX 76446 % Ownership: 100,00% Exemptions: For privacy reasons not all exemptions are shown online, Property Values Improvement Homesite Value: N/A (+) Improvement Non-Homesite Value: N/A (+) Land Homesite Value: N/A (+) Agricultural Market Valuation: N/A (+) Market Value: N/A (-) Agricultural Value Loss: N/A (-) Arabl Needs | (9/25, 10 55 AM | | altout blank | | |-----------------|-----------------------------|--------------|--------| | Prop | erty Improvement - Building | | | | Type: AS | State Code: D2 Value: N/A | | | | Туре | Description | Year Bullt | SQFT | | As | ANIMALSHADE | 2004 | 800.00 | | | | | | | ■ Pr | roperty Land | | | | | | | |-------------|--------------|---------|--------------|-----------|-----------|--------------|-------------| | Type | Description | Acreage | Sqft | Eff Front | Eff Depth | Market Value | Prod. Value | | SAW | | 114.45 | 4.985,442.00 | 0,00 | 0.00 | N/A | N/A | 4/9/25, 10:55 AM about blank Appraised Value: **0** N/A (=) HS Cap Loss: **0** N/A (-) CB Cap Loss: **0** N/A (-) Assessed Value: N/A Ag Use Value: N/A Information provided for roscarch purposes only, Legal descriptions and acreage amounts are for Appraisal District use only and should be vention from the using for legal purpose and or documents, Please contact the Appraisal District to verify all information for accuracy. #### ■ Property Taxing Jurisdiction Owner: CIRCLE 7 DAIRY LLC %Ownership: 100.00% | Entity | Description | Market Value | Taxable Value | |--------
----------------------|--------------|---------------| | 072 | ERATH COUNTY | N/A | N/A | | 902 | DUBLIN ISD | N/A | N/A | | MTD | MIDDLE TRINITY WATER | N/A | N/A | | RER | ERATH ROAD & BRIDGE | N/A | N/A | about blank 2/4 | 4/8/25, 10:55 AM | about blank | |------------------|----------------| | | All the second | | ■ Pro | perty Roll Value | History | | | | | |-------|------------------|-------------|--------------|-----------|-------------|----------| | Year | Improvements | Land Market | Ag Valuation | Appraised | HS Cap Loss | Assessed | | 2025 | N/A | N/A | N/A | N/A | NA | N/A | | 2024 | \$1,120 | \$400,580 | \$28,960 | \$401,700 | \$0 | \$30,080 | | 2023 | \$1,120 | \$400,580 | \$23,580 | \$401,700 | \$0 | \$24,700 | | 2022 | \$1,120 | \$400,580 | \$36,850 | \$401,700 | \$0 | \$37,970 | | 2021 | \$1,120 | \$309,020 | \$38,570 | \$310,140 | \$0 | 539,690 | | 2020 | \$1,120 | \$309,020 | \$38,340 | \$310,140 | \$0 | \$39,460 | | 2019 | \$1,120 | \$309,020 | \$39,030 | \$310,140 | \$0 | \$40,150 | | 2018 | \$1,120 | \$407,080 | \$38,000 | \$408,200 | \$0 | \$39,120 | | 2017 | \$1,120 | \$329,560 | \$40,060 | \$330,680 | \$0 | 541,180 | | 2016 | \$1,120 | \$282,480 | \$39,600 | \$283,600 | \$0 | \$40,720 | | 2015 | \$1,120 | \$282,480 | \$41,430 | \$283,600 | \$0 | \$42,550 | | 2014 | \$1,120 | \$262,190 | \$41,550 | \$263,310 | \$0 | \$42,670 | | ■ Proper | ty De | ed History | | | | | | |-----------------|-------|-------------|----------------------------------|--------------------------------|--------|------|----------------| | Deed Date | Туре | Description | Grantor | Grantee | Volume | Page | Number | | 1/4/2012 | | | JB GRAND
CANYON DAIRY LP | CIRCLE 7 DAIRY
LLC | | | 2012-
00202 | | 12/21/2DD6 | | | GRAND CANYON
DAIRY | JB GRAND
CANYON DAIRY
LP | 1314 | 451 | | | 4/30/1986 | WD | | TACKETT WYNDEL
J & WILLETTA G | VISS NEIL &
GERTRUDE | 687 | 436 | | | 1/1/1900 | | | VISS NEIL &
GERTRUDE | GRAND CANYON
DAIRY | 929 | 1022 | | | 3/31/1998 | | | GRAND CANYON
DAIRY | GRAND CANYON
DAIRY | 954 | 528 | | 4/9/25, 10:96 AM Property Details Account Property ID: R000026128 Geographic ID: R.0768.00050.00.0 Real Type: Condo: Property Use: Location Situs Address; 2179 CR308 Map ID: Mapsco: Acres 249,510, A0/68 THOMAS C W; DAIRY, LABEL TEX0405371/2, MAKE Legal Description: OAK CREEK, SERIAL OC04871151A/B, MODEL 28X42, YR 1986, OWNER AS OF 1987 NEIL & GERTRUDE VISS Abstract/Subdivision: Owner CIRCLE 7 DAIRY LLC Name: Agent: Mailing Address: 1743 CR308 **DUBLIN, TX 75446** % Ownership: 100 00% For privacy reasons not all exemptions are shown online, Exemptions: ■ Property Values Improvement Homesite Value: N/A (+) Improvement Non-Homesite Value: N/A (+) Land Homesite Value: N/A (+) N/A (+) Land Non-Homesite Value: Agricultural Market Valuation: N/A (+) Market Value: N/A (=) Agricultural Value Loss: @ N/A (-) o'aout Elank 4/9/25, 10 SE AM N/A (=) Appraised Value:@ HS Cap Loss: 🚱 N/A (-) CB Cap Loss: @ N/A (-) Assessed Value: N/A Ag Use Value: N/A Information provided for research purposes only. Logal descriptions and acreage amounts are for Appraisal District use only and should be verified one to using for legal purpose and of doctments. Please contact the Appraisal Object to verify all information for accuracy. ■ Property Taxing Jurisdiction Owner: CIRCLE 7 DAIRY LLC %Ownership: 100,00% | Entity | Description | Market Value | Taxable Value | |--------|----------------------|--------------|---------------| | 072 | ERATH COUNTY | N/A | N/A | | 902 | DUBLIN ISD | N/A | N/A | | MTD | MIDDLE TRINITY WATER | N/A | N/A | | RER | FRATH ROAD & BRIDGE | N/A | N/A | about 6bm/r 2:5 | ₹ Pro | perty Improvement - Building | | | |---------|------------------------------|------------|-----------| | | B Stato Code: E Value: N/A | | | | Туре | Description | Year Built | SQFT | | DB | DAIRY BARN | 1986 | 8,296.00 | | SL | SLAB | 1986 | 14,442.00 | | CHP | HOLD PEN COVERED | 1986 | 5,760,00 | | MA | MAIN AREA | 1996 | 400.00 | | FSL | LOCKED FEED STANCHION | 2015 | 86,00 | | Type: A | S State Code: E Value: N/A | | | | Type | Description | Year Built | SQFT | | AS | ANIMALSHADE | 1997 | 8,200,00 | | MT | MILK TANK | 1987 | 1,00 | | sc | SCALES | 1987 | 1.00 | | AS | ANIMALSHADE | 2009 | 8,400.00 | | Туре: С | B State Code: E Value: N/A | | | | Туре | Description | Year Built | SQFT | | СВ | COMMODITY BARN | 1986 | 6,840.00 | | sL | SLAB | 1986 | 7,560,00 | | WH | WELLHOUSE | 1992 | 180.00 | | STG | STRG BUILDING | 2004 | 144.00 | | Type: B | ARN State Code; E Value: N/A | | | | Туре | Description | Year Built | SQFT | | BARN | BARN | 1986 | 800.00 | | BARN | BARN | 1994 | 2,400.00 | | BARN | BARN | 2004 | 1,600.00 | | Туре: М | T State Code: E Value: N/A | | | | Туре | Description | Year Built | SQFT | | MT | MILK TANK | 1992 | 1.00 | | MT | MILK TANK | 1992 | 1.00 | | 19725, 10 S6 AM | | absorbbre | | |-----------------|------------------------------|------------|----------| | WTN | WATRTANKNO | 1992 | 402.00 | | WTN | WATRTANKNO | 1992 | 226.00 | | WTN | WATRTANKNO | 1992 | 352,00 | | HAY | HAYBARN | 1987 | 5,000.00 | | As | ANIMALSHADE | 1987 | 3,200.00 | | As | ANIMALSHADE | 1988 | 3,200.00 | | AS | ANIMALSHADE | 1994 | 3,200,00 | | Type: SH | IED State Code: E Value: N/A | | | | Туре | Description | Year Built | SQFT | | SHED | SHED | 1988 | 364,00 | | SHED | SHED | 1988 | 6,836.00 | | Type: MA | State Code: E Value: N/A | | | | Туре | Description | Year Built | SQFT | | MA | MAIN AREA | 1987 | 1,176,00 | | P | COVERPORCH | 1990 | 128,00 | | P | COVERPORCH | 1987 | 224,00 | | ACP | CAR PORT ATTACHED | 1990 | 56D.DO | | OP | OPEN PATIO | 1987 | 55.00 | | OP | OPEN PATIO | 1987 | 75.00 | | ASTG | STORAGE ATTACHED | 1987 | 112,00 | | STG | STRG BUILDING | 2004 | 120.00 | | UTIL1 | UTILITIES 1 | 2023 | 1.00 | | Type: MA | State Code: E Value: N/A | | | | Туре | Description | Year Built | SOFT | | MA. | MAIN AREA | 199D | 2,881,00 | | Р | COVERPORCH | 1990 | 45.00 | | P | COVERPORCH | 1990 | 566.00 | | AG | GARAGE ATTACHED | 1990 | 667.00 | | ASTG | STORAGE ATTACHED | 1990 | 55.00 | | bout:blank | | | 418 | | | | | | | 4/9/25, 10:56 AM | | ahujut talama | | 49/25 TO 50 AM | M | nhout Marie | | |------------------|--------------------------|---------------|----------|----------------|------------------------------|-------------|-----------| | SWP | SWM POOL | 1994 | 1.00 | AS | ANIMALSHADE | 1988 | 2,000.00 | | WP | WHIRLPOOL | 2004 | 1,00 | AS | ANIMALSHADE | 1988 | 2,000.00 | | UTIL2 | UTILITIES 2 | 2023 | 1,00 | AS | ANIMALSHADE | 1988 | 2,000.00 | | Type: MA S | State Code: E Value: N/A | | | AS | ANIMALSHADE | 1988 | 2,000,00 | | Туре | Description | Year Built | SQFT | Type: A | S State Code: E Value: N/A | | | | MA | MAIN AREA | 1948 | 832,00 | Туре | Description | Year Built | SQFT | | P | COVERPORCH | 1948 | 72.00 | AS | ANIMALSHADE | 2009 | 6,300.00 | | GP | GLASSPORCH | 1948 | 208.00 | AS | ANIMALSHADE | 2009 | 00.000,6 | | DG2F | 2CAR FRAME GARAGE DET | 1948 | 500,00 | As | ANIMALSHADE | 2009 | 10,800.00 | | SL | SLAB | 1987 | 300.00 | AS | ANIMALSHADE | 2009 | 6,300.00 | | WH | WELLHOUSE | 1948 | 64,00 | As | ANIMALSHADE | 2009 | 8,000.00 | | UTIL2 | UTILITIES 2 | 2023 | 1.00 | AS | ANIMALSHADE | 2009 | 10,800.00 | | Type: AS S | itate Code: E Value: N/A | | | GBN | GRAINBN NO | 1988 | 1,207.00 | | Туре | Description | Year Built | SQFT | FSL | LOCKED FEED STANCHION | 1994 | 1,930.00 | | As | ANIMALSHADE | 1994 | 3,200,00 | Type: S | HED State Code: E Value: N/A | | | | AS | ANIMALSHADE | 1994 | 3,200,00 | Туре | Description | Year Built | SQFT | | AS | ANIMALSHADE | 1994 | 3,200,00 | SHED | SHED | 2015 | 12,040,00 | | AS | ANIMALSHADE | 1994 | 3,200,00 | Type: Si | HED Value: N/A | | | | AS | ANIMALSHADE | 1994 | 3.200.00 | Type | Description | Year Built | SQFT | | AS | ANIMALSHADE | 1994 | 3.200.00 | SHED | SHED | 2018 | 240,00 | | AS | ANIMALSHADE | 1994 | 3.200,00 | SHED | SHED | 2018 | 240,00 | | AS | ANIMALSHADE | 1994 | 3.200.00 | SHED | SHED | 2018 | 240.00 | | AS | ANIMALSHADE | 1994 | 3.200.00 | SHED | SHED | 2018 | 240.00 | | Type: AS S | State Code: E Value: N/A | | | SHED | SHED | 2018 | 240.00 | | Type | Description | Year Bullt | SQFT | SHED | SHED | 2018 | 240.00 | | AS | ANIMALSHADE | 1988 | 2,000,00 | SHED | SHED | 201B | 240,00 | | AS | ANIMALSHADE | 1988 | 2,000,00 | SHED | SHED | 2018 | 240,00 | | AS | ANIMALSHADE | 1988 | 2,000,00 | SHED | SHED | 2018 | 240,00 | | AS | ANIMALSHADE | 1988 | 2,000,00 | SHED | SHED | 201B | 240,00 | | - about blank | | | 5/8 | ahout bierie | | | 8/8 | | SHED | s | HED | | | | 2018 | 240.00 | |------|-------------|---------|---------------|-----------|-----------|--------------|-------------| | ■Pr | operty Land | | | | | | | | Туре | Description | Acreage | Sqft | Eff Front | Eff Oepth | Market Value | Prod, Value | | SAW | | 246.51 | 10,737,976.00 | 0.00 | D.00 | N/A | N/A | | SAW | | 1.00 | 43,560.00 | 0.00 | 0,00 | N/A | N/A | | SAW | | 1.00 | 43,560 00 | 0.00 | D,00 | N/A | N/A | | SAW | | 1.00 | 43,560,00 | 0.00 | 0.00 | N/A | N/A | nhout hlank | erty Roll Value | History | | | | | |-----------------|--|---
--|--|---| | Improvements | Land Market | Ag Valuation | Appraised | HS Cap Loss | Assesse | | N/A | N/A | N/A | N/A | N/A | N/a | | \$1,066,340 | \$873,290 | \$63,170 | \$1,939,630 | SD | \$1,140,01 | | \$890,220 | \$972,790 | \$52,420 | \$1,863,010 | SD | \$1,052,54 | | \$794,37D | \$927,790 | \$78,320 | \$1,722,160 | SO | 5937,69 | | \$674,65D | \$706,58D | \$81,900 | \$1,381,230 | \$0 | \$797,55 | | \$640,160 | \$706,580 | \$81,780 | 51,346,740 | \$0 | 5762,94 | | \$602,470 | \$706,580 | \$83,040 | \$1,309 050 | \$0 | \$726,51 | | \$577,190 | \$915,290 | \$81,070 | \$1,492,480 | SD | \$699,26 | | \$566,470 | \$747,330 | \$85,260 | \$1,313,600 | \$0 | \$692,73 | | \$563,920 | \$635,420 | \$84,270 | \$1,199.340 | \$0 | \$678,19 | | \$537,720 | \$635,420 | \$87,720 | \$1,173.140 | \$0 | \$655,44 | | \$537,720 | \$590,720 | \$87,930 | \$1,128,440 | \$0 | \$655,65 | | | \$1,066,340
\$890,220
\$794,370
\$674,650
\$640,160
\$602,470
\$577,190
\$566,470
\$563,920
\$537,720 | N/A N/A N/A \$1,066,340 \$873,290 \$890,220 \$972,790 \$794,370 \$227,790 \$674,650 \$706,580 \$602,470 \$706,580 \$577,190 \$815,290 \$666,470 \$747,330 \$563,920 \$635,420 \$635,420 | mprovements Land Market Ag Valuation N/A N/A N/A \$1,066,340 \$873,290 \$63,170 \$890,220 \$972,790 \$52,420 \$764,370 \$927,790 \$78,320 \$674,650 \$706,580 \$81,900 \$602,470 \$706,580 \$83,040 \$577,190 \$915,290 \$81,070 \$666,470 \$747,330 \$85,260 \$533,420 \$84,270 \$537,720 \$83,420 \$87,720 | mprovements Land Market Ag Valuation Appraised N/A N/A N/A N/A \$1,066,340 \$873,290 \$63,170 \$1,939,630 \$890,220 \$972,790 \$52,420 \$1,663,010 \$674,370 \$927,790 \$78,320 \$1,722,160 \$674,650 \$706,580 \$81,900 \$1,381,230 \$602,470 \$706,580 \$81,760 \$1,346,740 \$602,470 \$706,580 \$83,040 \$1,309,050 \$577,190 \$915,290 \$81,070 \$1,492,480 \$566,470 \$747,330 \$85,280 \$1,313,600 \$563,920 \$635,420 \$84,270 \$1,199,340 \$537,720 \$863,420 \$87,720 \$1,173,140 | mprovements Land Market Ag Valuation Appraised HS Cap Loss N/A N/A N/A N/A N/A \$1,066,340 \$873,290 \$63,170 \$1,939,630 \$0 \$890,220 \$972,790 \$52,420 \$1,663,010 \$0 \$794,370 \$927,790 \$78,320 \$1,722,160 \$0 \$674,650 \$706,580 \$81,900 \$1,381,230 \$0 \$602,470 \$706,580 \$81,780 \$1,399,050 \$0 \$577,190 \$915,290 \$81,070 \$1,492,480 \$0 \$666,470 \$747,330 \$85,260 \$1,313,800 \$0 \$553,920 \$635,420 \$84,270 \$1,199,340 \$0 \$537,720 \$635,420 \$87,720 \$1,173,140 \$0 | | Deed Date | Type | Description | Grantor | Grantee | Volume | Page | Number | |------------|------|-------------|--------------------------------|--------------------------------|--------|------|----------------| | 1/4/2012 | | | JB GRAND
CANYON DAIRY
LP | CIRCLE 7 DAIRY | | | 2012-
00202 | | 12/21/2006 | | | GRAND CANYON
DAIRY | JB GRAND
CANYON DAIRY
LP | 1314 | 451 | | | 1/1/1900 | | | VISS NEIL &
GERTRUDE | GRAND CANYON
DAIRY | 929 | 1022 | | | 1/1/1968 | WD | | TACKETT
WYNDEL | VISS NEIL &
GERTRUDE | 687 | 436 | | | 3/31/1998 | | | GRAND CANYON
DAIRY | GRAND CANYON
DAIRY | 954 | 52B | | 4/9/25 TO 56 AM 415/25, 10 56 AAI about bla Property Details Account Property ID: R000026131 Geographic ID: R,0768.00060.00,0 Type: Real Zoning: Property Use: Condo: Location Situs Address: 3227 CR308 Map ID: 17-14-4 Mapsco: Legal Description: Acres 134.780, A0768 THOMAS C W. 2 HOUSES, BARN & SHED Abstract/Subdivision; Owner Name: CIRCLE 7 DAIRY LLC Agent: Mailing Address: 1743 CR308 **DUBLIN, TX 76446** % Ownership: 100.00% Exemptions: For privacy reasons not all exemptions are shown online. ■ Property Values Improvement Homosite Value: Improvement Non-Homesite Value: Land Homesite Value: N/A (+) Land Non-Homesite Value: Agricultural Market Valuation: N/A (+) Market Value: N/A (-) Agricultural Value Loss: N/A (-) albank Idank ABSZL 1056/M about hlank ■ Property Improvement - Building Type: MA State Code: E Value: N/A | Туре | Description | Year Built | SQFT | |-------------|------------------|------------|----------| | MA | MAINAREA | 1940 | 648.00 | | P | COVERPORCH | 1940 | 72,00 | | BARN | BARN | 1940 | 1,435.00 | | Type: MA Va | Jue: N/A | | | | Туре | Description | Year Built | SQFT | | MA | MAIN AREA | 1880 | 1,135,00 | | P | COVERPORCH | 1880 | 280.00 | | ASTG | STORAGE ATTACHED | 1880 | 24.00 | | WH | WELLHOUSE | 2004 | 36.00 | | SHED | SHED | 2012 | 360.00 | | UTIL1 | UTILITIES 1 | 2023 | 1,00 | | Pi | ■ Property Land | | | | | | | | | | |------|-----------------|---------|--------------|-----------|-----------|--------------|-------------|--|--|--| | Type | Description | Acreage | \$qft | Eff Front | Eff Depth | Market Value | Prod. Value | | | | | SAW | | 133,7B | 5 827,457 00 | 0.00 | 0.00 | N/A | N/A | | | | | SAW | | 1.00 | 43.560.00 | 0.00 | 0.00 | N/A | N/A | | | | 4/SV25_1D:56 AM about blank Appraised Value:0 N/A (=) HS Cap Loss: 0 N/A (-) CB Cap Loss: 0 N/A (-) Assessed Value: N/A Ag Use Value: N/A Information provided for research purposes only, Legal descriptions and acreage amounts are for Appraisal District use only and should be verified prior to using for legal purpose and or documents. Please contact the Appraisal District to verify all information for accuracy. #### ■ Property Taxing Jurisdiction Owner: CIRCLE 7 DAIRY LLC %Ownership: 100,00% | Entity | Description | Market Value | Taxable Value | |--------|----------------------|--------------|---------------| | 072 | ERATH COUNTY | N/A | N/A | | 902 | DUBLIN ISO | N/A | N/A | | MTD | MIDDLE TRINITY WATER | N/A | N/A | | RER | ERATH ROAD & BRIDGE | N/A | N/A | ations eliginary 49:25 10.56 AM about blank | ■ Pro | perty Roll Value | History | | | | | |-------|------------------|-------------|--------------|-----------|-------------|-----------| | Year | Improvements | Land Market | Ag Valuation | Appraised | HS Cap Loss | Assessed | | 2025 | N/A | N/A | N/A | N/A | N/A | N/A | | 2024 | \$109,790 | \$471,730 | \$16,320 | \$581,520 | \$0 | \$129,610 | | 2023 | \$74.190 | \$508,230 | \$12,710 | \$582,420 | \$0 | \$126,900 | | 2022 | \$59,920 | 5493,230 | \$14,720 | \$553,150 | 3D | \$99,64D | | 2021 | \$46,330 | \$377,210 | \$16,860 | \$423,540 | \$0 | \$79,190 | | 2020 | \$46,330 | 5377,210 | \$17,930 | \$423,540 | \$0 | \$80,260 | | 2019 | \$43,100 | \$377,210 | \$17,790 | \$420,310 | \$0 | \$76,890 | | 2018 | \$42,340 | \$502,230 | \$17,790 | \$544,570 | 80 | \$76,130 | | 2017 | \$41,880 | \$415,7BD | \$0 | \$457,660 | 80 | \$457,660 | | 2016 | \$43,740 | \$357,670 | \$19,490 | \$401,410 | 50 | \$78,230 | | 2015 | \$43,740 | \$357,670 | \$20,450 | \$401,410 | 50 | \$79,190 | | 2014 | \$43,740 | \$338,120 | \$19,16D | \$381,860 | 50 | \$77,900 | | Prope | rty D | eed History | | | | | | |--------------|-------|-------------|--|--|--------|------|---------------------| | Deed
Date | Туре | Description | Grantor | Grantee | Volume | Page | Number | | 2/1/2016 | LI | | CLARK JEFFERY | CIRCLE 7 DAIRY
LLC | | | 2016-00611 | | 2/9/2012 | Li | | WEST MARVIN
DALE & DIANE
COOPER &
CAROLYN
TAYLOR | CLARK JEFFERY | | | 2012-00814 | | 6/20/2007 | | | WEST MARY
ROSS | WEST MARVIN
DALE & DIANE
COOPER &
CAROLYN
TAYLOR | 189 | 362 | PROBATE
P08401 | | 1/11/2007 | | | WESTHR | WEST MARY | 0 | 0 | P#08345 | ROS5 ESTATE 4/9/25, 10:56 AM admut böyrik Property Details Account Property ID: R000021397 Geographic ID: R.0459,00020,00.0 Type: Property Use: Real Zoning: Condo: Location CR308 Situs Address: Map ID: 17-14-4 Mapsco:
Legal Description: Acres 67,930, AD459 KILLOUGH SAM B Abstract/Subdivision: / Owner CIRCLE 7 DAIRY LLC Name: Agent: Mailing Address: 1743 CR308 DUBLIN, TX 76446 100,00% % Ownership: Exemptions: For privacy reasons not all exemptions are shown online, ■ Property Values Agricultural Value Loss: @ Improvement Homesite Value: N/A (+) Improvement Non-Homesite Value: N/A (+) Land Homesite Value: N/A (+) Land Non-Homesite Value: N/A (+) Agricultural Market Valuation: N/A (+) N/A (=) about blank 4/9/25 10:56 AM about blank RProperty Land Type Description Acreage Sqft Eff Front Eff Depth Market Value Prod. Value SAW 87,93 3,830,231,00 O.DD 0.00 N/A N/A 40925, 10 Se AM Appraised Value; @ N/A (=) N/A (-) HS Cap Loss: 0 GB Cap Loss: **⊘** N/A (-) Assessed Value: N/A Ag Use Value: N/A Information provided for research purposes only. Legal descriptions and acreago amounts are for Appraisal District use only and should be worlfed prior to using for legal purpose and or documents. Please contact the Appraisal District to verify all information for accuracy ■ Property Taxing Jurisdiction Owner: CIRCLE 7 DAIRY LLC %Ownership: 100,00% | Entity | Description | Market Value | Taxable Value | |--------|----------------------|--------------|---------------| | 072 | ERATH COUNTY | N/A | N/A | | 902 | DUBLINISD | N/A | N/A | | MTD | MIDDLE TRINITY WATER | N/A | N/A | | RER | ERATH ROAD & BRIDGE | N/A | N/A | about.blank 4/6/25 10:56 AM about blank | Pro | perty Roll Value | History | | | | | |------|------------------|-------------|--------------|-----------|-------------|----------| | Year | Improvements | Land Market | Ag Valuation | Appraised | HB Cap Loss | Assossed | | 2025 | N/A | N/A | N/A | N/A | N/A | N/A | | 2024 | \$0 | \$307,760 | \$9,48D | \$307,760 | 50 | \$9,48 | | 2023 | \$0 | \$307,760 | \$7,920 | \$307,760 | 80 | \$7,92 | | 2022 | \$0 | \$307,760 | \$9,290 | \$307,760 | \$0 | \$9,29 | | 2021 | \$0 | \$237,410 | \$10,700 | \$237,410 | 80 | \$10,70 | | 2020 | \$0 | \$237,410 | \$10,580 | \$237,410 | 80 | \$10,58 | | 2019 | \$ D | \$237,410 | \$10,930 | \$237,410 | \$0 | \$10,93 | | 2018 | \$0 | \$281,380 | \$10,880 | \$281,380 | \$0 | \$10,88 | | 2017 | \$0 | \$281,380 | \$11,180 | \$281 380 | \$0 | \$11,18 | | 2016 | 3 D | \$272,580 | \$11,370 | \$272,580 | \$0 | \$11,37 | | 2015 | 30 | \$272,580 | \$12,050 | \$272,580 | 80 | \$12,05 | | 2014 | \$0 | \$272,580 | \$11,280 | \$272,580 | \$0 | \$11,28 | | ■ Proper | ty De | ed History | | | | | | |------------|-------|-------------|---|-----------------------------------|--------|------|----------------| | Deed Date | Туре | Description | Grantor | Grantee | Volume | Page | Number | | 2/1/2016 | | | MIRANDA TIM 8
DORICE | CIRGLE 7 DAIRY
LLC | | | 2016-
00614 | | 7/25/2013 | L | | STEWART MACK | MIRANDATIM & DORIGE | | | 2013-
04749 | | 1/30/20DE | L | | BAYS SHALER &
TREVA | STEWART MACK | 1264 | 304 | | | 9/8/2004 | L | | COOK DALE EST
& CLEO ELLENA
TSTMRY TRST | BAYS SHALER &
TREVA | 1189 | 421 | | | 11/1/1998 | | | COOK DALE | COOK
TESTAMENTARY
TRUST | 977 | 1033 | | | 12/21/1999 | | | COOK DALE &
CLEO ELLENA
TESTAM | COOK DALE EST &
CLEO ELLENA TS | 33 | 159 | | 415 N/A (-) 4/9/25, 10 SEAM about blank about blank 85 4/9/25 (to 57 AM Property Details Account Property ID: R000026116 Geographic ID: R 0768 00010 00.0 about blank Type: Real Zoning: Property Use: Condo: Location Situs Address: 5564 CR307 Map 10: 17-14-4 Mapsco: Legal Description: Acres 84,364, A0768 THOMAS C W. HOUSE & SHOP Abstract/Subdivision: Owner CIRCLE 7 DAIRY LLC Name: Agent: Mailing Address: 1743 CR308 **DUBLIN. TX 76446** % Ownership: 100,00% Exemptions: For privacy reasons not all exemptions are shown online ■ Property Values Property Land Improvement Homesite Value: Improvement Non-Homesite Value: Ind Homesite Value: Ind Non-Homesite Non-Homes albout Maria | 1975, 1057 AM | | altout tilank | | |---------------|----------------------------|---------------|----------| | Prope | rty Improvement - Building | | | | Type: MA | Value: N/A | | | | Туре | Description | Year Built | SQFT | | MA | MAIN AREA | | 900,000 | | P | COVERPORCH | | 60,00 | | P | COVERPORCH | | 36.00 | | STG | STRG BUILDING | | 49,00 | | SHED | SHED | | 480.00 | | SHOP | SHOP | 2007 | 2,400,00 | | SHED | SHED | 2018 | 1,200.00 | | UTIL1 | UTILITIES 1 | 2023 | 1,00 | | | | | | | AT Toperty Land | | | | | | | | | |-----------------|------|-------------|---------|--------------|-----------|-----------|--------------|-------------| | | Туре | Description | Acreage | Sqft | Eff Frant | Eff Depth | Market Value | Prod. Value | | | SAW | | 93.36 | 3,631,335,00 | 0.00 | 0.00 | N/A | N/A | | | SAW | | 1.00 | 43,560.00 | O,DD | 0.00 | N/A | N/A | 4/6/25. IU 57 AM nhout short Assessed Value: N/A Ag Usa Value: N/A Information provided for research purposes only. Legal descriptions and acreage amounts are for Appraisal District use only and should be verified prior to using for legal purpose and or documents. Please contact the Appraisal District to verify all information for accuracy. #### ■ Property Taxing Jurisdiction 4/9/25, 10:57 AM 2014 \$21,470 \$258,430 Owner: CIRCLE 7 DAIRY LLC %Ownership: 100,00% | Entity | Description | Market Value | Taxable Value | |--------|----------------------|--------------|---------------| | 072 | ERATH COUNTY | N/A | N/A | | 902 | DUBLINISD | N/A | N/A | | MTD | MIDDLE TRINITY WATER | N/A | N/A | | RER | ERATH ROAD & BRIDGE | N/A | N/A | The state of s shoul blank | Pro | perty Roll Value | History | | | | | | |------|------------------|-------------|--------------|-----------|-------------|-----------|--| | Year | Improvements | Land Merket | Ag Valuation | Appraised | HS Cap Loss | Assessed | | | 2025 | N/A | N/A | N/A | N/A | N/A | N/A | | | 2024 | \$208,610 | \$295,270 | \$9,320 | \$503,880 | \$0 | \$221,430 | | | 2023 | \$158,210 | \$331,770 | \$8,710 | \$489,980 | 50 | \$206,920 | | | 2022 | \$136,670 | \$316,770 | \$10,000 | \$453,440 | \$0 | \$171,670 | | | 2021 | \$103,390 | \$241,080 | \$11,330 | \$344,470 | \$0 | \$130,720 | | | 2020 | \$103,390 | \$241,080 | \$10,560 | \$344,470 | 20 | \$129,950 | | | 2019 | \$77,780 | \$241,080 | \$11,030 | \$318,860 | 90 | \$104,810 | | | 2018 | \$48,820 | \$282,770 | \$10,970 | \$331,590 | \$D | \$75,790 | | | 2017 | \$21,470 | \$266,77D | \$10,480 | \$288,240 | \$0 | \$31,950 | | | 2016 | \$21.470 | 5258,430 | \$10,200 | \$279,900 | 50 | \$31,670 | | | 2015 | \$21,470 | \$258,430 | \$10,200 | \$279,900 | 80 | \$31,670 | | | | | | | | | | | | Prope | rty D | eed History | | | | | | |--------------|-------|-------------|------------------------------------|---------------------------------|--------|------|----------------| | Deed
Date | Туре | Description | Grantor | Grantee | Volume | Page | Number | | 5/1/2018 | LI | | COLEMAN JOSH D
& CHRISTINA M | CIRCLE 7 DAIRY
LLC | | | 2018-
02216 | | 0/1/2004 | | | FELL DAVID
CLAUDE & ALANNA
R | COLEMAN JOSH D
& CHRISTINA M | 1192 | 530 | | | 1/1/1900 | | | VLB%COZART
OTHO C | COZART OTHO C | 913 | 162 | | | 1/1/1900 | | | VLB | VLB%COZART
OTHO C | 370 | 274 | | | 1/1/1900 | | | UNKNOWN | VLB | 370 | 273 | | | 7/10/1998 | | | COZART OTHO C | BILLS ELTON & | 959 | 189 | | NATELL \$8,840 \$279,900 \$30,310 49725, 10 57 AM 7/30/1999 about klosk BILLS ELION & NATELI FELL DAVID CLAUDE & ALANNA 986 413 5:5 abnut Elera Submit this Form with your Individual Permit Application (TCEQ - 000728) Name of Site: Grand Canyon Dairy TCEQ Permit Number, if assigned: WQ000 $\underline{2950000}$ Date Prepared: April 2025 ### SECTION 1. POLLUTANT SOURCES MANAGEMENT For each potential pollutant source listed in the table below, provide the management practices utilized or enter "Not Applicable". Management practices should address the collection, storage and final disposition of each potential pollutant source. You may attach your list. **Table 1: Potential Pollutant Sources and Best Management Practices** | Potential Pollutant Source | Best Management Practices | |--|---------------------------| | Manure and Manure Stockpiles | See Attached BMPs | | Wastewater | See Attached BMPs | | Sludge | See Attached BMPs | | Compost | See Attached BMPs | | Feed and Bedding | See Attached BMPs | | Silage stockpiles | See Attached BMPs | | Dead animals | See Attached BMPs | | Dust | See Attached BMPs | | Lubricants | See Attached BMPs | | Pesticides | See Attached BMPs | | Bulk cleaning chemicals | N/A | | Inorganic fertilizers | N/A | | Fuel storage tanks | See Attached BMPs | | Other, specify:
<u>Parlor chemicals</u> | See Attached BMPs | ### SECTION 2. RETENTION CONTROL STRUCTURE DESIGN ## A. Design Summary | L) | Des | sign Standards, Characteristic, and Values Sources Used | |----|-------------|---| | | | Natural Resource Conservation Service | | | \boxtimes | American Society of Agricultural and Biological Engineers | ☑ Other; specify: <u>Midwest Plan Services</u> #### I. POLLUTANT SOURCES AND MANAGEMENT B. For each potential pollutant source, provide the management practices utilized. Note: A Best Management Practice, as defined in 30 TAC §321.32(7), is the schedule of activities, prohibitions of practices, maintenance procedures, and other management and conservation practices to prevent or reduce the pollution of water in the state. BMPs also include treatment requirements, operating procedures, and practices to control site runoff, spillage or leaks, sludge, land application, or drainage from raw material storage. The following practices should be updated in the on-site PPP as changes to facility operating procedures occur. Employee training should be provided upon development & implementation of any BMP. #### Potential Pollutant Sources: ### Potential Best Management Practices (BMPs) | Manure, Sludge, Stockpiles,
Slurry, | Temporary (< 30 days) & Permanent Storage (>30 days) | |---|--| | Bedding, Feed Waste & Compost | Store in drainage area of the RCS - OR - | | | If not located within drainage area, berm area to contain runoff. | | | Annually sample manure/manure stockpiles/compost/slurry for nutrient | | | concentrations. | | | Manure, Sludge, Slurry and/or Compost -Land application on-site or to third- | | | party fields. | | | Regular pen maintenance (scraping & drainage) | | Dust - Vehicle Traffic | Control speeds around the facility. | | | Reduce travel on unpaved facility roads, or manage dust by sprinkling road | | | with water and/or a suppressant on an as needed basis. | | | Utilize paving products and/or gravel to manage dust on facility roads. | | | Utilize dust abatement measures for feed handling equipment, Utilize choke | | | feeding when handling feed ingredients & Utilize feed ingredients, such as | | Dust - Feed Handling/Processing | moisture or other additives, to manage dust. | | Feedstuff/Silage Stockpiles | Contain leachate in an earthen berm or in the RCS | | | Minimize feed spoilage & utilize plastic covers or roofed areas for storage | | | when applicable. | | Lubricants/Pesticides/Herbicides/Parlor Chemicals | Store under roof | | | Handle and dispose according to label directions | | Fuel Tanks | Provide secondary containment | | | Prevent overfills/spills | | Wastewater | Store in RCS | | | Land application according to NUP/NMP | | | Land application will not occur during periods of saturation or frozen | | | conditions (except in the event of imminent overflow) | | | Annually sample for nutrient concentrations | | | Maintain liner and capacity certifications | | | Maintain adequate capacity as determined by the pond marker schematic | | | Disposed by a third-party rendering service, composted on-site or buried in | | Dead Animals | burial pit | | | Collected within 24 hours of death and disposed within three days of death | | | | 2) Total Number of Animals: In Open Lots: <u>0</u> In Buildings: <u>2,500</u> 3) Animal Housing Location, hours/day: Open Lots: 21 Buildings: 3 - 4) Average Liveweight, pounds per head: 1,400 lbs - 5) Volatile Solids Removed by Separator System: 50% - 6) Volatile Solids Loading Rate, lbs/day/1000 ft³: 5.30 7) Spilled Drinking Water, gallons/day: Included in cleanup Water for Cleanup, gallons/day: 8) 37,500 gal/day 9) Water for Manure Removal, gallons/day: Included in cleanup 10) Recycled Wastewater, gallons/day: n/a #### В. Wastewater Runoff - 1) Design Rainfall Amount, inches: 12 - 2) Design Rainfall Event: - 25-year, 24 hour - Soil Plant Air and Water (SPAW) Field and Pond Hydrology Model - \boxtimes 25-year, 10 day - Other; specify: Click here to enter text. #### C. Retention Control Structure(s) (RCS) Volume Allocations Table 2. RCS Volume Allocations (Acre-Feet) | RCS
Name | Design Rainfall Event Runoff | Process
Generated
Wastewater | Minimum
Treatment
Volume | Sludge
Accumulation | Water
Balance | Required
Capacity | Actual
Capacity | |-------------|------------------------------|------------------------------------|--------------------------------|------------------------|------------------|--------------------------------|--------------------| | 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00^ | 4.04 | | 2 | 34.59 | 3.45 | 11.51 | 2.30 | 0.00 | 51.84*^ | 64.87 | | 3 | 5.89 | 0.00 | 0.00 | 0.02 | 10.84 | 16.74*^ | 25.95 | | | | | | | | *Rounded
Figure
^Phase 1 | | Indicate which RCSs are in-series: RCS #1 & RCS #2 2) Total Number of Animals: In Open Lots: 0 In Buildings: 4,000 3) Animal Housing Location, hours/day: Open Lots: 21 Buildings: 3 - 4) Average Liveweight, pounds per head: 1,400 lbs - 5) Volatile Solids Removed by Separator System: 95% - 6) Volatile Solids Loading Rate, lbs/day/1000 ft³: <u>5.30</u> 7) Spilled Drinking Water, gallons/day: <u>Included in cleanup</u> 8) Water for Cleanup, gallons/day: 60,000 gal/day 9) Water for Manure Removal, gallons/day: <u>Included in cleanup</u> 10) Recycled Wastewater, gallons/day: <u>n/a</u> ### B. Wastewater Runoff - 1) Design Rainfall Amount, inches: 12 - 2) Design Rainfall Event: - □ 25-year, 24 hour - □ Soil Plant Air and Water (SPAW) Field and Pond Hydrology Model - □ Other; specify: Click here to enter text. # C. Retention Control Structure(s) (RCS) Volume Allocations Table 2. RCS Volume Allocations (Acre-Feet) | RCS | Design | Process | Minimum | Sludge | Water | Required | Actual | |------|----------|------------|-----------|--------------|---------|----------|----------| | Name | Rainfall | Generated | Treatment | Accumulation | Balance | Capacity | Capacity | | | Event | Wastewater | Volume | | | | | | | Runoff | | | | | | | | 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00^ | 4.04 | | 2 | 27.80 | 10.00 | 15.28 | 5.72 | 0.00 | 58.81*~ | 64.87 | | 3 | 5.89 | 0.00 | 0.00 | 0.02 | 16.83 | 22.73*~ | 25.95 | | | | | | | | *Rounded | | | | | | | | | Figure | | | | | | | | | ~Phase 2 | | Indicate which RCSs are in-series: RCS #1 & RCS #2 2) Total Number of Animals: In Open Lots: <u>0</u> In Buildings: <u>4,000</u> 3) Animal Housing Location, hours/day: Open Lots: 21 Buildings: 3 - 4) Average Liveweight, pounds per head: 1,400 lbs - 5) Volatile Solids Removed by Separator System: <u>50%</u> - 6) Volatile Solids Loading Rate, lbs/day/1000 ft³: <u>5.30</u> 7) Spilled Drinking Water, gallons/day: <u>Included in cleanup</u> 8) Water for Cleanup, gallons/day: 60,000 gal/day 9) Water for Manure Removal, gallons/day: <u>Included in cleanup</u> 10) Recycled Wastewater, gallons/day: n/a ### B. Wastewater Runoff - 1) Design Rainfall Amount, inches: 12 - 2) Design Rainfall Event: - □ 25-year, 24 hour - □ Soil Plant Air and Water (SPAW) Field and Pond Hydrology Model - □ Other; specify: Click here to enter text. # C. Retention Control Structure(s) (RCS) Volume Allocations **Table 2. RCS Volume Allocations (Acre-Feet)** | RCS | Design | Process | Minimum | Sludge | Water | Required | Actual | |------|----------|------------|-----------|--------------|---------|----------|----------| | Name | Rainfall | Generated | Treatment | Accumulation | Balance | Capacity | Capacity | | | Event | Wastewater | Volume | | | | | | | Runoff | | | | | | | | 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00^ | 4.04 | | 2 | 27.80 | 5.52 | 18.41 | 3.22 | 0.00 | 54.96*^ | 64.87 | | 3 | 5.89 | 0.00 | 0.00 | 0.02 | 12.20 | 18.10*^ | 25.95 | | | | | | | | *Rounded | | | | | | | | | Figure | | | | | | | | | ^Bypass | | Indicate which RCSs are in-series: RCS #1 & RCS #2 ## D. RCS Liner or Lack of Hydrologic Connection Certification **Table 3: RCS Hydrologic Connection** | RCS Name | Construction Date | Type of Hydrologic Connection Certification | |------------------|-------------------|--| | 1 | 1989 | Liner Cert, Kemp Akeman, P.E. 1989 | | 2 | 2010 | Liner Cert, Norman Mullin, P.E., 2010 | | 3 | 1990 | Liner Cert, Kemp Akeman, P.E. 1989 | | Settling Basin 1 | N/A | Liner Cert, Kemp Akeman, P.E. 1989 | | Settling Basin 2 | N/A | Liner Cert, Kemp Akeman, P.E. 1989 | | Settling Basin 3 | N/A | Liner Cert, Kemp Akeman, P.E. 1989 | ## E. Playa Lakes | Are any playa lakes used for RCSs? | Yes ⊠ | No 🗆 | |------------------------------------|-------|------| ## SECTION 3. MANURE, SLUDGE, AND WASTEWATER HANDLING ## A. Manure: В. \boxtimes \boxtimes | 1) | Use | e or Disposal Method: | |------|-------------|---| | | \boxtimes | Land Application to LMUs | | | \boxtimes | Transfer to other persons | | | \boxtimes | Third Party Fields | | | | Other; specify: Click here to enter text. | | 2) | Lan | d Application Location: | | | \boxtimes | Onsite $oxtimes$ Offsite $oxtimes$ Not Applicable | | 3) | Cor | nposting Location: | | | \boxtimes | Onsite \square Offsite \square Not Applicable | | Sluc | dge: | | | 1) | Us€ | or Disposal Method: | | | \boxtimes | Land Application to LMUs | Other; specify: Click here to enter text. Transfer to other persons Third Party Fields | 2) | Lar | nd Applicati | ion Location | | |----|-------------|--------------|--------------|----------------| | | \boxtimes | Onsite 🗵 | Offsite 🗆 | Not Applicable | ### C. Wastewater: - 1) Use or Disposal Method: - □ Land Application to LMUs - ☐ Total Evaporation - □ Third Party Fields - ☐ Other; specify: Click here to enter text. - 2) Land Application Location: - oximes Onsite oximes Offsite oximes Not Applicable ## D. Land Application Summary from the Nutrient Management Plan For each Land Management Unit (LMU), provide the name, acre, crops/yield goals and application rates on Table 4 below. Add rows if needed or attach additional pages. Table 4: Land Management Unit Summary from the Current NMP | | | | Application Rate (Ac- | |----------|------|-----------------------------------|-----------------------| | LMU Name | Acre | Crop(s) and Yield Goal(s) | ft/Ac/Year OR | | | | | Tons/Ac/Year) | | 1 | 62 | Silage-Corn 21-25T; SG Green Chop | 0.267 ac-ft/ac/yr | | | | 6-7T H | | | 1A | 41 | Coastal SG 9-11T; SG GC 6-7T | 20.4 tons/ac/yr | | 2 | 62 | Coastal GC 9-11T; SG GC 6-7T M | 0.391 ac-ft/ac/yr | | 2A | 21 | Coastal SG 9-11T; SG GC 6-7T | 20.4 tons/ac/yr | | 3 | 56 | Silage-Corn 16-20T; SG Green Chop | 0.125 ac-ft/ac/yr | | | | 6-7T M | | | 3A | 21 | Coastal GC 9-11T; SG GC 6-7T M | 0.1 ac-ft/ac/yr | | 4 | 60 | Coastal GC 9-11T; SG GC 6-7T H | 20.4 tons/ac/yr | | 5 | 210 | Coastal GC 9-11T; SG GC 6-7T H | 0.367 ac-ft/ac/yr | | 6 | 62 | Silage-Corn 16-20T; SG Green Chop | 17.9 tons/ac/yr | | | | 6-7T H | | | 7 | 30 | Silage-Corn 16-20T; SG Green Chop | 17.9 tons/ac/yr | | | | 6-7T M | | | 8 | 87 | Coastal GC 9-11T; SG GC 6-7T M | 21.1 tons/ac/yr | | 9 | 20 | Coastal GC 9-11T; SG GC 6-7T M | 21.1 tons/ac/yr | | 10 | 50 | Silage-Corn
16-20T; SG Green Chop | 17.9 tons/ac/yr | | | | 6-7T H | | #### C. Wastewater: - 1) Use or Disposal Method: - □ Land Application to LMUs - □ Total Evaporation - □ Third Party Fields - ☐ Other; specify: Click here to enter text. - 2) Land Application Location: - ☑ Onsite ☑ Offsite □ Not Applicable ## D. Land Application Summary from the Nutrient Management Plan For each Land Management Unit (LMU), provide the name, acre, crops/yield goals and application rates on Table 4 below. Add rows if needed or attach additional pages. Table 4: Land Management Unit Summary from the Current NMP | LMU Name | Acre | Crop(s) and Yield Goal(s) | Application Rate (Ac-
ft/Ac/Year OR
Tons/Ac/Year) | |----------|------|---|---| | 1 | 62 | Silage-Corn 21-25T; SG Green Chop
6-7T H | 0.667 ac-ft/ac/yr | | 1A | 41 | Coastal GC 9-11T; SG GC 6-7T | 20.4 tons/ac/yr | | 2 | 62 | Coastal GC 9-11T; SG GC 6-7T M | 0.992 ac-ft/ac/yr | | 2A | 21 | Coastal GC 9-11T; SG GC 6-7T | 20.4 tons/ac/yr | | 3 | 56 | Silage-Corn 16-20T; SG Green Chop
6-7T M | 0.317 ac-ft/ac/yr | | 3A | 21 | Coastal GC 9-11T; SG GC 6-7T M | 0.25 ac-ft/ac/yr | | 4 | 60 | Coastal GC 9-11T; SG GC 6-7T H | 20.4 tons/ac/yr | | 5 | 210 | Coastal GC 9-11T; SG GC 6-7T H | 0.742 tons/ac/yr | | 6 | 62 | Silage-Corn 16-20T; SG Green Chop
6-7T H | 17.9 tons/ac/yr | | 7 | 30 | Silage-Corn 16-20T; SG Green Chop
6-7T M | 17.9 tons/ac/yr | | 8 | 87 | Coastal GC 9-11T; SG GC 6-7T M | 21.1 tons/ac/yr | | 9 | 20 | Coastal GC 9-11T; SG GC 6-7T M | 21.1 tons/ac/yr | | 10 | 50 | Silage-Corn 16-20T; SG Green Chop
6-7T H | 17.9 tons/ac/yr | | LMU Name | Acre | Crop(s) and Yield Goal(s) | Application Rate (Ac-
ft/Ac/Year OR
Tons/Ac/Year) | |----------|------|---|---| | 11 | 56 | Silage-Corn 16-20T; SG Green Chop
6-7T H | 17.9 tons/ac/yr | | 12 | 66 | Coastal GC 9-11T; SG GC 6-7T M | 6.9 tons/ac/yr | | 12A | 30 | Coastal SG 9-11T; SG GC 6-7T | 10.3 tons/ac/yr | | 13 | 53 | Silage-Corn 16-20T; SG Green Chop
6-7T H | 17.9 tons/ac/yr | | 14 | 47 | Silage-Corn 16-20T; SG Green Chop
6-7T H | 17.9 tons/ac/yr | - 1) Wastewater production, ac-in/year: 2,169.24 ac-in/yr (Tables 2.3A-B, Col. 4) - 2) Estimated Wastewater application, ac-in/year: 1,692.72 ac-in/yr (Tables 2.3A-B, Col. 10) - 3) Manure production, tons/year: 9,125 tons/yr (Table 2.1A) - 4) Estimated manure application, tons/year: 5,408.83 tons/yr (NMP I) - 5) Estimated manure transferred to other persons, tons/year: 3,716.08 tons/yr (NMP I) # E. Floodplain Information - 1) Is any part of the production area within a 100-year floodplain? Yes ⊠ No □ If YES, describe management practices to protect the sites. RCS embankments within 100-year floodplain areas are built above the 100-year floodplain elevation to protect the RCSs from inundation. - 2) Is land application or temporary storage of manure in a 100-year floodplain or near a water course? Yes ⊠ No □ If YES, describe management practices. <u>Vegetative buffers shall be maintained between</u> <u>all waters of the state and any waste/wastewater application.</u> #### F. Soil Limitations Table 5: Soil Limiting Characteristics and Best Management Practices | Soil Types | Limiting Characteristics | Best Management Practices | | |------------|--------------------------|---|--| | BdC | Depth to Hard Bedrock | - Land Application not to exceed agronomic | | | | Slow Water Movement | rates for nutrients and soil hydraulic rates (refer to NMP) | | | LMU Name | Acre | Crop(s) and Yield Goal(s) | Application Rate (Ac-
ft/Ac/Year OR
Tons/Ac/Year) | | |----------|------|---|---|--| | II | 56 | Silage-Corn 16-20T; SG Green Chop
6-7T H | 17.9 tons/ac/yr | | | 12 | 66 | Coastal GC 9-11T; SG GC 6-7T M | 6.9 tons/ac/yr | | | 12A | 30 | Coastal GC 9-11T; SG GC 6-7T | 10.3 tons/ac/yr | | | 13 | 53 | Silage-Corn 16-20T; SG Green Chop
6-7T H | 17.9 tons/ac/yr | | | 14 | 47 | Silage-Corn 16-20T; SG Green Chop
6-7T H | 17.9 tons/ac/yr | | - 1) Wastewater production, ac-in/year: 4,066.92 ac-in/yr (Tables 2.3C-D, Col. 4) - 2) Estimated Wastewater application, ac-in/year: <u>3.590.40 ac-in/yr (Tables 2.3C-D, Col. 10)</u> - 3) Manure production, tons/year: 14,600 tons/yr (Table 2.1B) - 4) Estimated manure application, tons/year: 5,408.83 tons/yr (NMP II) - 5) Estimated manure transferred to other persons, tons/year: 9,191.09 tons/yr (NMP II) ## E. Floodplain Information - 2) Is land application or temporary storage of manure in a 100-year floodplain or near a water course? Yes ⊠ No □ If YES, describe management practices. <u>Vegetative buffers shall be maintained between</u> all waters of the state and any waste/wastewater application. #### F. Soil Limitations **Table 5: Soil Limiting Characteristics and Best Management Practices** | Soil Types | Limiting Characteristics | Best Management Practices | | |------------|--------------------------|---|--| | BdC | Depth to Hard Bedrock | - Land Application not to exceed agronomic | | | | Slow Water Movement | rates for nutrients and soil hydraulic rates (refer to NMP) | | | Soil Types | Limiting Characteristics | Best Management Practices | |-----------------------------|--|---| | | | -Land Application not to exceed agronomic rates for nutrients and soil hydraulic rates (refer to NMP) -Maintain Clay Liners in RCS. | | DeB, Hob, FhC2 | Slow Water Movement | - Land Application not to exceed agronomic rates for nutrients and soil hydraulic rates (refer to NMP) -No land application to inundated soils | | CtB | Slow Water Movement Depth to Saturated Zone | - Land Application not to exceed agronomic rates for nutrients and soil hydraulic rates (refer to NMP) -No land application to inundated soils | | LaB, HwD3 | Depth to Soft Bedrock | Land Application will be based upon the
AWC (refer to NMP) of the soil and will not
exceed agronomic rates for nutrients. No land application to inundated soils | | Ма | Depth to Bedrock Droughty | - Land Application will be based upon the AWC (refer to NMP) of the soil and will not exceed agronomic rates for nutrientsNo land application to inundated soils | | BsB, BsC, BtB, MfB,
FhC2 | Seepage | -No land application to inundated soils -Land Application not to exceed agronomic rates for nutrients and soil hydraulic rates (refer to NMP) -Maintain Clay Liners in RCS. | | WnC | Filtering Capacity | -No land application to inundated soils -Land Application not to exceed agronomic rates for nutrients and soil hydraulic rates (refer to NMP) | | PcB, PcC | Droughty Depth to Bedrock Slow Water Movement | Land Application will be based upon the AWC (refer to NMP) of the soil and will not exceed agronomic rates for nutrients. Irrigation events will be managed to assist in maintaining soil moisture levels within the range of the available water holding capacity of that Land Management Unit. No land application to inundated soils | | Pd | Droughty Depth to Bedrock Slow Water Movement Large Stone on the Surface | - Land Application will be based upon the AWC (refer to NMP) of the soil and will not exceed agronomic rates for nutrients Irrigation events will be managed to assist in maintaining soil moisture levels within the range of the available water holding capacity of that Land Management UnitNo land application to inundated soils | # G. Well Protection **Table 6: Water Well Status and Protective Measures** | Well ID | MAZ-II TO- | Producing or Non- | Open, Cased, | Protective | |---------|------------|-------------------|--------------|---------------------| | Number | Well Type | Producing | or Capped | Measures | | 1 | Domestic | Producing | Cased | Maintain 150-ft | | | | | | Buffer | | 2 | Domestic | Producing | Cased | Maintain 150-ft | | | | | | Buffer | | 3 | Domestic | Producing | Cased | See Approved Well | | | | | | Buffer Exception | | 4 | Domestic | Producing | Cased | See Approved Well | | | | | | Buffer Exception | | 5 | Domestic | Producing | Cased | See Approved Well | | | | | | Buffer Exception | | 6 | Domestic | Non-Producing | Cased | See Approved Well | | | | | | Buffer Exception | | 7 | Domestic | Producing | Cased | See Approved Well | | | | | | Buffer Exception | | 8 | Domestic | Non-Producing | Cased | See Approved Well | | | | | | Buffer Exception | | 9 | Irrigation | Producing | Cased | See Approved Well | | | | | | Buffer Exception | | 10 | Domestic | Producing | Cased | Maintain 150-ft | | | | | | Buffer | | 11 | Domestic | Producing | Cased | Maintain 150-ft | | | | | | Buffer | | 12 | Irrigation | Producing | Cased | Maintain 100-ft | | | | | | Buffer | | 13 | Irrigation | Producing | Cased | Maintain 100-ft | | | | | | Buffer | | 14 | Irrigation | Producing | Cased | Maintain 100-ft | | | | | | Buffer | | 15 | Domestic | Non-Producing | Cased | No Evidence of Well | | 16 | Irrigation | Producing | Cased | Maintain 100-ft | | | | | | Buffer | | Well ID
Number | Well Type | Producing or Non-
Producing | Open, Cased,
or Capped | Protective
Measures | |-------------------|------------|--------------------------------|---------------------------
---------------------------| | 17 | lrrigation | Producing | Cased | Maintain 100-ft
Buffer | | 18 | Irrigation | Producing | Cased | Maintain 100-ft
Buffer | | 19 | Irrigation | Producing | Cased | Maintain 100-ft
Buffer | | 20 | Irrigation | Producing | Cased | Maintain 100-ft
Buffer | ### **SECTION 4. AIR AUTHORIZATION SUMMARY** # A. Type of Air Authorization - ☑ Air Standard Permit in 30 TAC § 321.43 - ☐ Permit By Rule in 30 TAC Chapter 106 Subchapter F - ☐ Individual Air Quality Permit If Air Standard Permit is selected, then complete Sections B and C below. # B. Indicate the AFO Status and Buffer Option. | | Operation started after August 19, 1998: | |-------------|---| | | □ ½ mìle buffer* | | | \square ¼ mile buffer* and an odor control plan | | \boxtimes | Operation started on or before August 19, 1998: | | | □ ¼ mile buffer* | | | ⊠ odor control plan | *A written letter of consent from an affected landowner may be used in lieu of meeting the buffer distances specified. ### C. Odor Receptors Identify the number of occupied residences or business structures, schools (including associated recreational areas), places of worship, or public parks located within the following distances from permanent odor sources as defined in 30 TAC §321.32(43): 0 - ¼ mile: 5 (2 applicant owned) 1/4 - 1/2 mile: 1 ½ - 1 mile: 29 (8 applicant owned) #### **SECTION 5. ATTACHMENTS** # A. Maps - 1) Site Map - 2) Land Management Unit Map - 3) Vicinity Map - 4) Original United States Geological Survey 7.5 Minute Quadrangle Map - 5) 100 Year Floodplain Map (if applicable) - 6) Runoff Control Map - 7) Natural Resource Conservation Service (NRCS) Soil Survey Map ### **B.** Professional Certifications - 1) Recharge Feature Certification Statement and Supporting Documents - 2) RCS Design Calculations (Water Nutr, Animal Waste Management (AWM), or equivalent) - 3) RCS As-Built Capacity Certifications (if constructed) - 4) RCS Hydrologic Connection Certifications (if constructed) # C. Land Application - 1) Nutrient Management Plan - 2) Nutrient Utilization Plan. If the NUP is already approved, include the approval letter. - 3) Copy of Annual Soil Sampling Analyses (used for the NMP that was submitted with the application) Copy of Annual Manure and Wastewater Analyses (used for the NMP that was 4) submitted with the application #### D. Air Standard Permit Documentation (if required) - 1) Area Land Use Map, - 2) - Odor Control Plan, if applicable Written Consent Letters, if applicable 3) #### **Groundwater Monitoring (if required)** E. - 1) Groundwater Monitoring Plan - Groundwater Monitoring Analyses 2) # TABLE OF CONTENTS | TABLE | E OF CONTENTS | | |--------|--|----| | LIST C | OF FIGURES | i | | LIST C | DF TABLES | i | | 1.0 | FACILITY MAPS | | | 2.0 | CALCULATIONS & SPECIFICATIONS | 8 | | 3.0 | FACILITY INFORMATION | 27 | | 4.0 | WASTE UTILIZATION & NUTRIENT MANAGEMENT PLAN | 29 | | 5.0 | RECHARGE FEATURE CERTIFICATION | 31 | | 6.0 | SURFACE WATER & TMDL ASSESSMENT | 50 | | 7.0 | AIR STANDARD PERMIT REQUIREMENTS | 54 | # LIST OF FIGURES | Figure 1.1: Vicinity Map | 2 | |---|----------| | Figure 1.2: USGS Quadrangle Map | | | Figure 1.3A: Site Map | | | Figure 1.3B: Site Map | | | Figure 1.4A: Runoff Control Map | 6 | | Figure 1.4B: Runoff Control Map | 7 | | Figure 2.1A: Manure & Wastewater Flow Chart | 9 | | Figure 2.1B: Manure & Wastewater Flow Chart | | | Figure 3.1: FEMA Map | | | Figure 5.1: Geologic Atlas Map | 35 | | Figure 5.2: NRCS Soils Map | | | Figure 5.3A: Recharge Feature Map | | | Figure 5.3B: Recharge Feature Map | | | Figure 6.1A: Aerial Photograph | | | Figure 6.1B: Aerial Photograph | | | Figure 7.1: Area Land Use Map | | | | | | LICT OF TABLES | | | LIST OF TABLES | | | | | | Table 2.1A: As-Excreted Manure Characteristics Phase 1 | 11 | | Table 2.18: As-Excreted Manure Characteristics Phase 2 | | | Table 2.2A: Required Storage Volumes Phase 1 – DA #1 | | | Table 2.2B: Required Storage Volumes Phase 1 – DA #7 | | | Table 2.2C: Required Storage Volumes Anerobic Digester Phase 2 – DA #1 | | | Table 2.2D: Required Storage Volumes Anerobic Digester Phase 2 – DA #7 | | | Table 2.2E: Required Storage Volumes Bypass Phase 2 – DA #1 | | | Table 2.2F: Required Storage Volumes Bypass Phase 2 – DA #1 | | | Table 2.3A: Water Balance Model Phase 1 – DA #1 | | | | | | Table 2.3B: Water Balance Model Phase 1 – DA #2 Table 2.3C: Water Balance Model Anerobic Digester Phase 2 – DA #1 | | | _ | | | Table 2.3D: Water Balance Model Anerobic Digester Phase 2 – DA #2 | | | Table 2.3E: Water Balance Model Bypass Phase 2 – DA #1 | | | Table 2.3F: Water Balance Model Bypass Phase 2 – DA #2 | | | Table 5.1: Estimated Soil Properties | - ≺≻ | | Table 5.2: Major Soil Types | | | Totale 5.2: Detential Call Limitations for Large 1. A college | 39 | | Table 5.3: Potential Soil Limitations for Land Application | 39
40 | # 1.0 FACILITY MAPS ### 1.1 Vicinity Map Figure 1.1, Vicinity Map, is a general highway map generated in AutoCAD using Tiger Primary and Secondary roads data from geospatial Data Gateway at http://datagateway.nrcs.usda.gov/ (retrieved May 2022). The location of the facility is depicted on the map. # 1.2 USGS Quadrangle Map Figure 1.2, entitled 7.5-Minute USGS Map is a seamless, high-quality copy of the 7.5-minute USGS quadrangle map (Dublin, TX, quadrangle) that shows the boundaries of land owned, operated, or controlled by Grand Canyon Dairy, LLC and used as part of the concentrated animal feeding operation; and all springs, lakes, or ponds located on-site and within 1 mile of the property boundary. # 1.3 Site Map Figures 1.3A-B, Site Map, is a scaled drawing of the entire property to be permitted showing the locations of the following information: - Pens/Open Lots - Barns - Retention Control Structures - Land Management Units - Buffer zones - Wells - Freshwater Ponds - Burial Site - Caliche Pits - Milking Parlor - Manure/Compost Storage Areas - Anerobic Digester # 1.4 Runoff Control Map Figures 1.4A-B is a scaled drawing of the production area showing the pens, barns, wells, RCSs, permanent manure storage and compost areas, anerobic digester, drainage area boundaries, and flow directions. Figure 1.2 Page 3 Erath County 3404 Airway Boulevard AMARILLO, TEXAS 79118 TEL (806) 353-6123 FAX (806) 353-4132 # 2.0 CALCULATIONS & SPECIFICATIONS # 2.1 Facility Overview The existing facility consists of open lots, barns, a milking parlor, three earthen settling basins, and three retention control structures to confine 4,000 head, of which 4,000 head are milking. Circle 7 Dairy, LLC and Grand Canyon Dairy, LLC is submitting a major amendment application in two phases in order to maintain compliance throughout the transition. Phase 1 will include the following changes: decrease the headcount to 2,500 total and 2,500 milking, update the runoff control, site map and recharge feature map to the current conditions (remove digester and proposed freestall barns), reconfigure the following LMUs: LMU #1A (41 ac) is new and is in a portion of LMU #1 (current – 103ac; proposed – 62ac), LMU #2A (21 ac) is new and is in a portion of LMU #2 (current 83ac; proposed – 56ac), LMU #3A (21ac) is new and is in portion of LMU #3 (current – 91ac; proposed – 96ac), LMU #6 (current – 65ac; proposed – 62ac), LMU #12A (30 ac) is new and is in a portion of LMU#12 (current – 91ac; proposed – 66ac) and LMU #14 (current – 52ac; proposed – 47ac). Phase 2 will include the increase of headcount to 4,000 total and 4,000 milking, the addition of an anerobic digester and associated equipment and the addition of freestall barns. This strategic phasing ensures that the dairy operates within regulatory standards while scaling up operations. The proposed changes reflect Grand Canyon Dairy's commitment to growth and efficiency, while also adhering to environmental regulations. The expansion will allow for increased milk production and the ability to manage additional waste effectively through enhanced treatment facilities. The phased approach demonstrates careful consideration of operational compliance, ensuring that the dairy's expansion does not compromise its environmental responsibilities. ## 2.2 Manure Production Table 2.1, As-Excreted Manure Characteristics Existing Dairy Facility, is included as a summary of the annual manure and nutrient production for the facility. The totals in Table 2.1 represent as-excreted manure and nutrient values for the maximum head count shown in the application. Note: This data is intended for planning and design purposes and is not to be used for whole-farm nutrient mass balance calculations. # ESTIMATED MANURE PRODUCTION for a DAIRY FACILITY PHASE 1 # Table 2.1A ENVIRO-AG ENGINEERING, INC. NAME OF CAFO: Grand Canyon Dairy LOCATION: Erath County DATE: February-25 | MANURE PRODUCTION CRITERIA (a) | | | | | |--|----------------------|--------------------|------------------------|---------| | FACILITY TOTAL | Milkers
in Parlor | Milkers in
Pens | Milkers in
Pastures | Total | | Maximum Number of Animals Confined (head): | 2,500 | 2,500 | 2,500 | 2,500 | | 2. Confinement period, hrs/hd/day | 3.0 | 15.0 | 6.0 | 24 | | 3. Percent of time in Confinement | 13% | 63% | 25% | 100% | | 4. Total Manure Production, lbs/day | 46,875 | 234,375 | 93,750 | 375,000 | | 5. Total Solids Production, lbs/day | 6,250 | 31,250 | 12,500 | 50,000 | | 6. Manure Production, tons/year | 1,141 | 5,703 | 2,281 | 9,125 | | 7. Volatile Solids Production, lbs/day | 5,313 | 26,563 | n/a | 31,875 | | 8. Total Nitrogen Production, lbs/day | 309 | 1,547 | 619 | 2,475 | | 9. Total Phosphorus, P2O5 lbs/day (b) | 122 | 608 | 243 | 973 | | 10. Total Potassium, K2O lbs/day (b) | 86 | 431 | 173 | 690 | #### NOTES: -
(a) Manure and nutrient production values are taken from American Society of Agricultural and Biological Engineers Data: (ASABE D384.2 MAR05_R2010) Manure Production and Characteristics, Table 1.b Section 3. Production values given in terms of lb/day-animal (wet-basis). - (b) The ASAE Manure Production and Characteristics Tables give P and K in the elemental forms. Convert to P2O5 by multiplying by 2.29 and to K2O by multiplying by 1.2. # ESTIMATED MANURE PRODUCTION for a DAIRY FACILITY PHASE 2 # Table 2.1B ENVIRO-AG ENGINEERING, INC. NAME OF CAFO: Grand Canyon Dairy LOCATION: Erath County DATE: February-25 | MANURE PRODUCTION CRITERIA (a) | | | | | | |---|----------------------|----------------------------|---------------------|---------|--| | FACILITY TOTAL | Milkers
in Parlor | Milkers in Freestalls/Pens | Milkers in Pastures | Total | | | 1. Maximum Number of Animals Confined (head): | 4,000 | 4,000 | 4,000 | 4,000 | | | 2. Confinement period, hrs/hd/day | 3.0 | 15.0 | 6.0 | 24 | | | 3. Percent of time in Confinement | 13% | 63% | 25% | 100% | | | 4. Total Manure Production, lbs/day | 75,000 | 375,000 | 150,000 | 600,000 | | | 5. Total Solids Production, lbs/day | 10,000 | 50,000 | 20,000 | 80,000 | | | 6. Manure Production, tons/year | 1,825 | 9,125 | 3,650 | 14,600 | | | 7. Volatile Solids Production, lbs/day | 8,500 | 42,500 | n/a | 51,000 | | | 8. Total Nitrogen Production, lbs/day | 495 | 2,475 | 990 | 3,960 | | | 9. Total Phosphorus, P2O5 lbs/day (b) | 195 | 973 | 389 | 1,557 | | | 10. Total Potassium, K2O lbs/day (b) | 138 | 690 | 276 | 1,104 | | #### NOTES: - (a) Manure and nutrient production values are taken from American Society of Agricultural and Biological Engineers Data: (ASABE D384.2 MAR05_R2010) Manure Production and Characteristics, Table 1.b Section 3. Production values given in terms of lb/day-animal (wet-basis). - (b) The ASAE Manure Production and Characteristics Tables give P and K in the elemental forms. Convert to P2O5 by multiplying by 2.29 and to K2O by multiplying by 1.2. ## 2.3 Process-Generated Wastewater Volume The primary source of process-generated wastewater is wash water from the milking parlor operations (15 gal/head/day) and the water generated from the production of biogas (500 gal/day). The flow of the process-generated wastewater can be found on Figures 2.1A-B. The freestall barns are vacuumed for manure removal. All open lot pens are dry scraped for manure removal. The design storage volume in RCS #2 and RCS #3 for process-generated wastewater is 30 days and is calculated in Tables 2.2A-D. # 2.4 25-Year, 10-Day Rainfall Storage Volume In accordance with 30 TAC §321.42(c)(1), RCS #2 and RCS #3 are designed to maintain a margin of safety to contain the runoff and direct precipitation from the 25-year, 10-day storm event for this location, which is 12.0 inches of rainfall. Drainage area runoff volumes are calculated using the SCS method with curve numbers (CN) selected based on soil type and land use. The pen area runoff was calculated using a CN of 90, the pond area was calculated using a CN of 100, and the adjacent areas were calculated a CN of 85. Roofed/concrete areas were calculated using a CN of 100. Run-on from areas outside the control facility is directed away from the RCSs. Tables 2.2A-D shows the calculated storage volume required for the rainfall runoff from a 25-year, 10-day storm. # 2.5 Sludge Accumulation Volume Sludge accumulation was calculated using a rate of 0.0729 cubic feet of sludge per pound total solids (from Table 1 of the ASABE Standards, ASABE EP403.4 FEB 2011) and a sludge storage period of 1 year. The required sludge accumulation volume calculations are shown in Tables 2.2A-D. #### 2.6 Water Balance Model Tables 2.3A-D, Water Balance Model, estimates the inflows and withdrawals from RCS #2 and RCS #3 including runoff, direct rainfall, process-generated wastewater, evaporation, and irrigation withdrawal based on crop demand in accordance with 30 TAC §321.38(e)(7)(C). Actual pond withdrawal amounts will vary with changing weather conditions. An additional volume is included in the RCS to provide flexibility in managing RCS levels. # 2.7 RCS Management Plan A RCS Management Plan will be developed by a licensed Texas professional engineer and has been implemented to incorporate the margin of safety, as specified in 30 TAC §321.42(g). The plan includes the elements specified in §321.42(g)(1)-(6), and a copy will be maintained in the onsite PPP. # 2.8 Minimum Treatment Volume Requirement A minimum treatment volume for odor control is required to obtain air standard authorization from the TCEQ. The minimum treatment volume is determined by estimating the volatile solids production rate less the removal efficiency of the settling basins and screen separator and using a loading rate specified by ASABE Standards (ASABE EP 403.4 FEB2011) of 5.30 lbs of volatile solids per 1,000 cubic feet of storage. Tables 2.2A &C shows the minimum treatment volume calculation. # 2.10 Digester Discussion Wastewater from the milking parlor is directed to the anerobic digester system. The manure from the barns is vacuumed and delivered to the mixing pit to adjust the total solids content required by the digester. The data supporting the calculations used in the volatile solids/total solids reduction in the digester, screw press, and dissolved air flotation systems are from actual sample results from testing by DVO (the digester/equipment company) and are attached. #### PHASE 1 DA #1 #### REQUIRED STORAGE VOLUMES FOR TREATMENT/ RUNOFF RETENTION CONTROL STRUCTURES #### Table 2.2A #### ENVIRO-AG ENGINEERING, INC. NAME OF CAFO: LOCATION: DATE: Grand Canyon Dairy Erath County February-25 February | C. | | | | |-----|----------|------------|------| | | | 2. | * | | | 76:3 | may 2 1/2 | don | | | 1 | 4/18 | 25 | | - R | UNOFF PC | ND REQUIRE | MENT | NORMAN H. MULLI 66107 CENSEO | DA #1 TREATMENT REQUIREMENT | | _ | |--|------------|--------| | TREATMENT VOLUME | | | | Volatile Solids Produced: | (lb/day) | 5,313 | | Settling Basin Efficiency (%) (a): | 3, | 50% | | Adjusted Volatile Solids Production: | (lb /day) | 2,656 | | Design Loading Rate (lbVS/1000cuft-day) (b): | | 530 | | Treatment Volume: | (ac-ft) | 11 51 | | SLUDGE VOLUME | | | | Dry Manure Produced: | (lb/day) | 6,250 | | Settling Basin Efficiency (%) (a): | (,1 | 50% | | Adjusted Dry Manure Production; | (lb/day) | 3,125 | | Sludge Accumulation Rate (c): | (cuft/lb) | 0.0729 | | Sludge Accumulation Period: | (years) | 1 | | Studge Volume: | (ac-ft) | 1.91 | | NOTES: | | | #### NOTES: - (a) Midwest Plan Service, 1983, Revised 1987 (Waste Management, pg. 702-11) - (b) Loading Rate taken from Figure 2, ASABE Standards (ASABE EP403.4 FEB2011) - (e) Sludge Accumulation Rate taken from Table 1, ASABE Standards (ASABE EP403 4 FEB 2011). - (d) Site Specific Data - (e) Using SCS method: Where: S = (1000/CN) - 10 $Q = ((1 - 0.2S)^2)/(1 + 0.8S)$ S = Potential maximum retention after runoff begins in) Q = Runoff (in) I = 25-year, 10-Day rainfall (in) CN = Curve Number from SCS 210-VI-TR-55, 2nd Edition, June 1986 - (f) USDA Agricultural Field Waste Handbook, Kansas, Part 651 1082, Suggested procedures for sediment volume estimation (Inputs-pen/adj contribution, 1.5% solids and 1 year). - (g) The additional volume requirement for DA #1 will be included in the required volume for DA #2 Table 2.2B. | (gal/head/day) | 15 | |----------------|--| | | 2,500 | | (gal/day) | 37,500 | | (days) | 30 | | (ac-ft) | 3 45 | | | | | (acres) | CN | | 18 82 | 90 | | 2.37 | 8.5 | | 4.21 | 100 | | 4 25 | 100 | | 1.40 | 100 | | 5 85 | 100 | | 36 90 | , | | (inches) | 12 | | (inches) | (ac-ft) | | 10 8 | 16 88 | | 10 1 | 2 00 | | 12 0 | 4.21 | | 12 0 | 4 2 5 | | 12.0 | 1.40 | | 120 | 5 85 | | (ac-ft) | 34.59 | | | | | (ac-ft) | 0.39 | | (ac-ft) | 3 45 | | (ac-ft) | 34 59 | | (ac-ft) | 11.51 | | (ac-ft) | 191 | | • | | | | | | | (days) (ac-ft) (acres) 18 82 2.37 4.21 4.25 1.40 5 85 36 90 (inches) (inches) 10 8 10 1 12 0 12 0 12 0 12 0 (ac-ft) (ac-ft) (ac-ft) (ac-ft) (ac-ft) | #### PHASE I DA #2 #### REQUIRED STORAGE VOLUMES for RETENTION CONTROL STRUCTURES #### Table 2.2B ### ENVIRO-AG ENGINEERING, INC. NAME OF CAFO: Grand Canyon Dairy LOCATION: Erath County DATE: February-25 | DA #2 - RUNOFF POND REQUIREMENT | | | |--|----------|----------| | RAINFALL VOLUME | | | | Drainage Area Characteristics: | CN | Arca (ac | | Pen Areas: | 90 | 0.00 | | Adjacent Areas: | 85 | 2.50 | | Paved/Roof Areas; | 100 | 0.18 | | RCS #3 Surface Area; | 100 | 3.60 | | Total Drainage Area (acres): | | 6.28 | | 25-year, 10-Day rainfall: | (inches) | 12 | | Runoff Volume Determination (a): | (inches) | (ac-ft) | | Pen Area; | 10.76 | 0.00 | | Adjacent Areas: | 10.11 | 2.11 | | Paved/Roof Areas: | 12.00 | 0.18 | | RCS #3 Surface Area: | 12.00 | 3.60 | | Total Runoff (ac-ft): | | 5.89 | | TOTAL RCS VOLUME REQUIRED | | | | Rainfall Volume: | (ac-ft) | 5.89 | | Runoff Sludge Volume (b): | (ac-ft) | 0.02 | | Additional Volume (c): | (ac-ft) | 10.84 | | Total Required DA #2 Volume Requirement: | (ac-ft) | 16.74 | #### NOTES: (a) Using SCS method: Where: S = (1000/CN) - 10 $Q = ((P - 0.2S)^2)/(P + 0.8S)$ S = Potential maximum retention after runoff begins in) Q = Runoff (in) P = 25-year, 10-Day rainfall (in) CN = Curve Number from SCS 210-V1-TR-55, 2nd Edition, June 1986 - (b) USDA Agricultural Field Waste Handbook, Kansas, Part 651,1082, Suggested procedures for sediment volume estimation (Inputs-pen/adj contribution, 1.5% solids and 1 year). - (c) The additional volume requirement includes the additional volume from DA #1 Table 2.2A. NOTE: Calculations were performed in Microsoft Excel using
floating point arithmetic in order to maintain the accuracy of the data. Any inconsistencies in rounding of the displayed values are not to be construed as errors in the calculation. For more information, please refer to http://support.microsoft.com/kb/42980 #### PHASE 2 DA #1 DIGESTER #### REQUIRED STORAGE VOLUMES FOR TREATMENT/ RUNOFF RETENTION CONTROL STRUCTURES #### Table 2.2C ENVIRO-AG ENGINEERING, INC. El Tito-Ad Eligit NAME OF CAFO: LOCATION: DATE: Grand Canyon Dairy Erath County Sebruary-25 Thomathille | DA #1 TREATMENT REQ | ONKEWENT | | |-------------------------------|--|------------------| | TREATMENT VOLUME | | | | Valatile Solids Produced: | (lb /da ₃ | v) 51,000 | | Anaerobic Digester Efficienc | ry (%) (a): | 42% | | Screw Press Efficiency (%) (| (lb /day | r) 29,580
29% | | Dissolved Air Plotation Effic | igency (%) (a): | 76% | | | (Jb/da) | | | Settling Pond Efficiency (%) | | 30% | | Adjusted Volatile Solids Pro- | duction: (Jb /da) | 7) 3.528 | | Design Loading Rate (lbV\$/ | 1000cuft-day] (c): | 530 | | Treatment Volume | (ac-fi | t) 1528 | | SLUDGE VOLUME | | | | Dry Manura Produced: | (llb /day | 60,000 | | Anaerobic Digester Efficient | ry (%) (2): | 34% | | | (lb/day | | | Screw Press Efficiency (%) (| | 22% | | mi | (Ib/day | | | Dissolved Air Flotation Effic | | 53% | | Settling Pond Efficiency (%) | (lb/day | | | Adjusted Dry Manure Produc | | 30%
g.081 | | Augusted Dry Manue Frodu | ction: (lb/day | 1 4,041 | | Sludge Accumulation Rate (d | i): (cull/lb |) 0 0729 | | Sludge Accumulation Period | | - | | | | , | | Sludge Volume: | (ac-fi | 5 5 5 | | NOTES: | | | | (a) Based on data provided b | by DVO | | | (b) Midwest Plan Service, 19 | 983, Revised 1987 (Waste Management, pg. 702 11) | | | | Figure 2, ASABE Standards (ASABE EP403 4 FEB2011) | | | | ne taken from Table 1, ASABÉ Standards (ASABE EP403 4 FEB 2011) | | | e) Sitte Specific Deta | | | | | y Candor Midstream Solutions, LLC | | | g) Using SCS method: | n - unanum n - ka | | | Where: | S = (1000/CN) - (0 | | | | $Q = ((1 - 0.28)^2 2)/(1 + 0.88)$ $S = Potential maximum retention after prooff begins in the second state of stat$ | | | | | | | шс | lor Midstream Solutions, LLC | |----|--| | | | | | $\dot{S} = (1000 \text{YCN}) - 10$ | | | $Q = ((1 - 0.2S)^2 2)/(1 + 0.8S)$ | | | S = Potential maximum retention after runoff begins in) | | | Q = Runoff (in) | | | [= 25-year, 10-Day minfall (in) | | | CN = Curve Number from SCS 2:0-VI-TR-55, | | | 2nd Edition, June 1986 | | | Mandhault Vanna Don 681 1062 Communitaria de la companya del companya de la companya de la companya del companya de la company | (h) USDA Agricultural Field Waste Handbook, Kansas, Part 651-1082, Suggested procedures for sediment volume estimation (Inputs-pen/adj contribution, 1.5% solids and 1 year) (i) The additional volume requirement for DA \$1 will be included in the required volume for DA #2 Table 2 2D | DA BI - RUNOFF POND REQUIREMENT PROCESS GENERATED WASTEMPASTEMPATER Parlor Wash Water (e): No of Head in Parlor; Volume of Process Water: Biogas Production Generated Water (f): Wet Manure Production: | (gal/head/day)
(gal/day)
(gal/day) | 15
4,000
60,000 | |---|--|-----------------------| | Parlor Wash Water (c): No of Head in Parlor; Volume of Process Water: Biogas Production Generated Water (f): | (gal/day) | 4,000 | | No of Head in Parlor: Volume of Process Water: Biogas Production Generated Water (f): | (gal/day) | 4,000 | | Volume of Process Water: Biogas Production Generated Water (f): | | | | Biogas Production Generated Water (f): | | 60,000 | | | (gal/day) | | | Wet Manure Production: | | 500 | | | (lb/day) | 450,000 | | Total Solids Produced: | (lb /day) | 60,000 | | Total Solids Removed by Separation System | (lb /day) | 50,919 | | Wet Manure Production Less Separated Solids: | (16 /day) | 399,081 | | • | (gal/day) | 48,147 | | Design Storage Period: | (days) | 30 | | Process Water Volume: | (ac-ft) | 10.00 | | RAINFALL VOLUME | | | | Drainage Area Characteristics: | (acres) | CN | | Pen Areas: | 5,12 | 90 | | Adjacent Areas; | 4.46 | 85 | | Paved/Roof Areas: | 7.95 | 100 | | Settling Basins Surface Areas: | 4.25 | 100 | | RCS #1 Surface Area: | 1.40 | 100 | | RCS #2 Surface Area: | 5,85 | 190 | | Total Drainage Area | 29,03 | | | 25-year, 10-Day tainซื้อปี: | (inches) | 12 | | Runoff Volume Determination (n): | (inches) | (ac-ft) | | Pen Area: | 10.8 | 4.59 | | Adjacent Areas: | 101 | 3 76 | | Paved/Roof Areas; | 120 | 7 95 | | Sattling Basins Surface Areas: | 120 | 425 | | RCS #1 Surface Area | 120 | 140 | | RCS #2 Surface Area: | 12 0 | 5 85 | | Rainfall Volume: | (ac-fi) | 27 80 | | TOTAL RCS VOLUME REQUIRED | | | | Runoff Sludge Volume (h): | (ac-ft) | 0 17 | | Process Water Volume: | (ac-ft) | 10.00 | | Rainfall Volume | (ac-ft) | 27 80 | | Treatment Volume: | (ac-ft) | 15 28 | | Sludge Volume: | (ac-ft) | 5.55 | | Additional Volume (1): | (±0-11] | ,,, | | Total Required DA #1 Volume Requirement: | (ac-ft) | 58.81 | #### PHASE 2 DA #2 DIGESTER REQUIRED STORAGE VOLUMES for RETENTION CONTROL STRUCTURES Table 2.2D ### ENVIRO-AG ENGINEERING, INC. NAME OF CAFO: Grand Canyon Dairy LOCATION: Erath County DATE: February-25 | RAINFALL VOLUME | | | |--|----------|----------| | Drainage Area Characteristics: | CN | Area (ac | | Pen Areas: | 90 | 0.00 | | Adjacent Areas: | 85 | 2.50 | | Paved/Roof Areas: | 100 | 0.18 | | RCS #3 Surface Area: | 100 | 3.60 | | Total Drainage Area (acres): | | 6.28 | | 25-year, 10-Day rainfall: | (inches) | 12 | | Runoff Volume Determination (a): | (inches) | (ac-ft) | | Pen Area: | 10.76 | 0.00 | | Adjacent
Areas: | 10.11 | 2.11 | | Paved/Roof Areas: | 12.00 | 0.18 | | RCS #3 Surface Area: | 12.00 | 3,60 | | Total Runoff (ac-ft): | | 5.89 | | TOTAL RCS VOLUME REQUIRED | | | | Rainfall Volume: | (ac-ft) | 5.89 | | Runoff Sludge Volume (b); | (ac-ft) | 0.02 | | Additional Volume (c): | (ac-ft) | 16.83 | | Total Required DA #2 Volume Requirement: | (ac-ft) | 22.73 | #### NOTES: (a) Using SCS method: Where: S = (1000/CN) - 10 $Q = ((P - 0.2S)^2)/(P + 0.8S)$ S = Potential maximum retention after runoff begins in) Q = Runoff(in) P = 25-year, 10-Day rainfall (in) CN = Curve Number from SCS 210-V1-TR-55, 2nd Edition, June 1986 (b) USDA Agricultural Field Waste Handbook, Kansas, Part 651.1082, Suggested procedures for sediment volume estimation (Inputs-pen/adj contribution, 1.5% solids and 1 year). (c) The additional volume requirement includes the additional volume from DA #1 Table 2.2C. NOTE: Calculations were performed in Microsoft Excel using floating point arithmetic in order to maintain the accuracy of the data. Any inconsistencies in rounding of the displayed values are not to be construed as errors in the calculation. For more information, please refer to http://support.microsoft.com/kb/42980 # PHASE 2 DA #1 DIGESTER BYPASS REQUIRED STORAGE VOLUMES FOR TREATMENT/ RUNOFF RETENTION CONTROL STRUCTURES Table 2.2E ENVIRO-AG ENGINEERING, INC. NAME OF CAFO: Grand Canyon Dairy LOCATION; Erath County DATE: February-25 | DA#I TREATMENT REQU | IREMENT | | |----------------------------------|---|----------| | TREATMENT VOLUME | | | | Volatile Solids Produced: | (lb/day) | 8,500 | | Settling Basin Efficiency (%) (a | a); | 50% | | Adjusted Volatile Solids Produc | ction: (lb/day) | 4,250 | | Design Loading Rate (IbVS/100 | 00cuft-day) (b): | 5 30 | | Treatment Volume: | (ac-ft) | 1841 | | SLUDGE VOLUME | | | | Dry Manure Produced: | (lb/day) | 10,000 | | Settling Basin Efficiency (%) (a | | 50% | | Adjusted Dry Manure Production | on: (lb/day) | 5,000 | | Sludge Accumulation Rate (c): | (cuft/lb) | 0 0729 | | Sludge Accumulation Period: | (years) | ì | | Sludge Voiume; | (ac-ft) | 3.05 | | NOTES: | | | | | 3, Revised 1987 (Waste Management, pg. 702-11) | | | | igure 2, ASABE Standards (ASABE EP403 4 FEB2011) | | | | taken from Table 1, ASABE Standards (ASABE EP403 4 FEB 2011). | | | (d) Site Specific Data, | | | | (e) Using SCS method;
Where: | S = (1000/CN) - 10 | | | Wille, | $Q = ((I - 0.2S)^2)/(1 + 0.8S)$ | | | | S = Potential maximum retention after runoff begins in) | | | | Q = Runoff (in) | | | | I = 25-year, 10-Day rainfall (in) | | | | CN = Curve Number from SCS 210-VI-TR-55, | | | | 2nd Edition, June 1986 | | | | faste Handbook, Kansas, Part 651-1082, Suggested procedures for sedimen
ribution, 1-5% solids and 1-year). | t volume | | (g) The additional volume requ | irement for DA #1 will be included in the required volume for DA #2 Table | c 2.2F | | | | | | NOTE: Calculations were perfo | rmed in Microsoft Excel using floating point arithmetic in order to maintal
sistencies in rounding of the displayed values are not to be construed as en | n the | calculation. For more information, please refer to http://support.microsoft.com/kb/42980 | DA #1 - RUNOFF POND REQUIREMENT | | | |---|----------------|---------| | PROCESS GENERATED WASTE/WASTEWATER | | | | Parlor Wash Water (d): | (gal/head/day) | 15 | | No of Head in Parlor; | (8) | 4,000 | | Volume of Process Water. | (gal/day) | 60,000 | | Design Storage Period: | (days) | 30 | | Process Water Volume: | (ac-ft) | 5 52 | | RAINFALL VOLUME | | | | Drainage Area Characteristics: | (acres) | CN | | Pen Areas: | 5 12 | 90 | | Adjacent Areas: | 4 46 | 85 | | Paved/Roof Areas: | 7 95 | 100 | | Settling Basins Surface Areas: | 4 25 | 100 | | RCS #1 Surface Area; | 1 40 | 100 | | RCS #2 Surface Area: | 5 85 | 100 | | Total Drainage Area | 29 03 | | | 25-year, 10-Day rainfall: | (inches) | 12 | | Runoff Volume Determination (e): | (inches) | (ac-ft) | | Pen Area: | 8 01 | 4 59 | | Adjacent Areas: | 10 1 | 3 76 | | Paved/Roof Areas: | 120 | 7 95 | | Settling Basins Surface Areas: | 12.0 | 4 25 | | RCS #1 Surface Area: | 12.0 | 1 40 | | RCS #2 Surface Area: | 12,0 | 5 85 | | Rainfall Volume: | (ac-ft) | 27.80 | | TOTAL RCS VOLUME REQUIRED | | | | Runoff Sludge Volume (f): | (ac-ft) | 0.17 | | Process Water Volume: | (ac-ft) | 5 52 | | Rainfall Volume: | (ac-ft) | 27 80 | | Treatment Volume; | (ac-π̂) | 18,41 | | Sludge Volume: | (ac-ft) | 3,05 | | Additional Volume (g): | | | | Total Required DA#1 Volume Requirement: | (ac-ft) | 54.96 | # PHASE 2 DA #2 DIGESTER BYPASS REQUIRED STORAGE VOLUMES for RETENTION CONTROL STRUCTURES Table 2.2F #### ENVIRO-AG ENGINEERING, INC. NAME O NAME OF CAFO; LOCATIC LOCATION: DATE: DATE: | DA #2 - RUNOFF POND REQUIREMENT | | | |--|----------|-----------| | RAINFALL VOLUME | | | | Drainage Area Characteristics: | CN | Area (ac) | | Pen Areas: | 90 | 0.00 | | Adjacent Areas: | 85 | 2.50 | | Paved/Roof Areas: | 100 | 0.18 | | RCS #3 Surface Area: | 100 | 3.60 | | Total Drainage Area (acres): | | 6.28 | | 25-year, 10-Day rainfall: | (inches) | 12 | | Runoff Volume Determination (a): | (inches) | (ac-ft) | | Pen Area: | 10.76 | 0.00 | | Adjacent Areas: | 10.11 | 2,11 | | Paved/Roof Areas: | 12.00 | 0.18 | | RCS #3 Surface Area: | 12.00 | 3.60 | | Total Runoff (ac-ft): | | 5.89 | | TOTAL RCS VOLUME REQUIRED | | | | Rainfall Volume: | (ac-ft) | 5.89 | | Runoff Sludge Volume (b): | (ac-ft) | 0.02 | | Additional Volume (c): | (ac-ft) | 12.20 | | Fotal Required DA #2 Volume Requirement: | (ac-ft) | 18.10 | #### NOTES: (a) Using SCS method: Where: S = (1000/CN) - 10 $Q = ((P - 0.2S)^2)/(P + 0.8S)$ S = Potential maximum retention after runoff begins in) Q = Runoff(in) P = 25-year, 10-Day rainfall (in) CN = Curve Number from SCS 210-VI-TR-55, 2nd Edition, June 1986 (b) USDA Agricultural Field Waste Handbook, Kansas, Part 651.1082, Suggested (c) The additional volume requirement includes the additional volume from DA #1 Table 2.2E. # PHASE I DA #I WATER BALANCE MODEL IRRIGATION AND EVAPORATION Table 2.3A ENVIRO-AG ENGINEERING, INC. | NAME:
LOCATION:
DATE: | Grand Canyon Di
Erath County
February-25 | Erath County
February-25 | | | CHARACTERIST cres); (acres); (facres); rface Area (acres) fea (acres)(12); :: :: ::: ::: ::: ::: ::: ::: ::: ::: |); | 18,82
2.37
4.21
11,50
210
Coastal
4.97 | 210
Winter Wheat | | 25-Year, 10-Day
Process Generate
Studge Accumul: | ELL VOLUME SI
Rainfall Volume (
ed Wastewater Vol
grion Volume (ac-li
nent Volume (ac-li
'apacity (ac-li): | (30-ft);
lume (30-ft);
ft); | 'A | 34.59
3,45
2,29
11.51 | |-----------------------------|--|-----------------------------|---------------------|----------------|---|-----------------|--|---------------------|----------------|--|---|-----------------------------------|-----------------|--------------------------------| | | | | INFLOW CALCULATIONS | | | | HYDRAULIC (| CROP DEMAND CA | ALCULATION | is . | | RCS STOR | AGESUMMARY | | | MONTH | (i)
(inches) | (2)
(inches) | (2)
(inches) | (3)
(ac-ft) | (4)
(ac-lt) | (5)
(inches) | (6)
(inches) | (6)
(inches) | (7)
(ac-ft) | (7)
(ac-ft) | (8)
(inches) | (9)
(ac-fi) | (10)
(ac-ft) | (11)
(ac-ft) | | JAN | 1.55 | 2.44 | | | | 1 | | | | | | | start value> | 13 80 | | FE3 | 189 | 0 23 | 0.06 | 3,57 | 5.97 | 1,55 | 2 10 | 2.74 | 9.65 | 20 85 | 2.37 | 0.98 | 4.99 | 13 80 | | | 3.50 | 0.39 | 0 (4 | 3.22 | 6 34 | 1 86 | 2 46 | 3,11 | 10 43 | 21,80 | 2.70 | 1.12 | 5,22 | 13 80 | | MAR | 2.16 | 0.54 | 0 23 | 3 57 | 7 29 | 2,10 | 4 D6 | 4 97 | 34 38 | 50,30 | 4 27 | 1 77 | 5 52 | 13 80 | | APR | 2 88 | 0 99 | 0.53 | 3.45 | 8 \$9 | 2,64 | 4 98 | 5,74 | 40.91 | 54 21 | 5 20 | 215 | 6 73 | 13 80 | | MAY | 431 | 2 06 | 1 35 | 3 \$7 | 12.71 | 3,50 | 5 73 | 5 33 | 39 09 | 32,09 | 5 25 | 2.18 | 10.54 | 13 80 | | JUN | 3 24 | I 25 | 0.71 | 3,45 | 9 79 | 2,88 | 6 82 | 3 22 | 68.90 | 5.90 | 7.01 | 2 90 | 6.88 | 13_80 | | JUL | 2,11 | 0.51 | 0.21 | 3 57 | 7 17 | 2,05 | 7.66 | 0.00 | 98 11 | 0.00 | 8 23 | 3.41 | 3 76 | 13 80 | | AUG | 2 25 | 0.59 | 0.26 | 3.57 | 7 49 | 2.17 | 7 56 | 0.00 | 94 34 | 0.00 | 7.71 | 3 19 | 4.30 | 13 80 | | SEP | 301 | 1.03 | 0.59 | 3 45 | 9.21 | 2.73 | 5 78 | 0.00 | 53 35 | 0.00 | 5.91 | 2 45 | 6 76 | 13 80 | | OCT | 3 23 | 1 24 | 071 | 3.57 | 9 83 | 2.88 | 4 29 | 2,15 | 24 74 | 0 00 | 4.89 | 2 03 | 7 85 | 13.80 | | NOV | 1 88 | 0.39 | 0 14 | 3.45 | 6 55 | 1.86 | 2.81 | I 70 | 16.71 | 0.00 | 3 33 | 1 38 | 5.17 | 13.80 | | DEC | 1.62 | 0.26 | 0 07 | 3 57 | 6 12 | 1,62 | 2.24 | 2.33 | 10 92 | 12.50 | 2 45 | 1 02 | 5 10 | 13 80 | | TOTALS | 30.13 | 9 54 | 5 00 | 42.01 | 97 41 | 27.83 | 56 49 | 31 29 | 501 53 | 197.66 | 59 32 | 24 58 | 72 83 | | #### NOTES: - (1) AVERAGE PRECIPITATION Average precipitation taken from the Texas Water Development Board, Erath County, Quad #509, Retrieved December 4, 2024 - (2) RUNOFF PENS AND ADJACENT AREA Runoff from pens, adjacent areas calculated using SCS Curve Number Method adjusted from 1 to 30-day Curve Number (Pen CN-77, Adj CN-67) (Ref. NRCS Animal Waste Management Software Help File-Program Documentation for Runoff) - (3) INFLOW Inflow is calculated from process generated wastewater, Table 2.2A. - (4) TOTAL INFLOW Total Inflow is calculated as that volume of rainfall that falls on
the RCS and process water that enters the RCS - (5) RAINFALL ON IRRIGATED AREA Effective monthly rainfall on the irrigated area calculated using SCS Curve Number Method adjusted from 1 to 30-day Curve Number (lit CN-58) (Ref. NRCS Animal Waste Management Software Help File-Program Documentation for Rumoff) - (6) CONSUMPTIVE USE values from Bortelli, et al., 1998 Mean Crop Consumprive Use and Free-Water Evaporation for Texas, Dept. of Civil Engineering, Texas Tech University, Lubbock, Texas. Stephenville Station (Tables 16 & 25). - (7) NET CROP DEMAND Not Crop Demand = {(Consumptive Use(6) Effective Rainfall(5))/12} x irrigated Area - (8) MONTHLY LAKE SURFACE EVAPORATION Average monthly lake surface evaporation taken from the Texas Water Development Board, Erath County, Quad #509, Retrieved December 4, 2024 - (9) NET POND EVAPORATION Not Evaporation from the water surface is taken as (Monthly Lake Surface Evap/12) x (RCS Surface Area) - (10) ACTUAL WITHDRAWAL Actual Withdrawal from the irrigation cell not to exceed Net Crop Demand. (No consideration given for nutrient demand of crop) - (11) STORAGE AT END OF MONTH Storage volume in the irrigation cell at the end of the month. The storage calculated in this column should not encroach in the volume reserved for the 25-year, 10-day rainfall events. - (12) Irrigated acres include LMU #5. NOTE: Calculations were performed in Microsoft Excel using floating point arithmetic in order to maintain the accuracy of the data. Any inconsistencies in rounding of the displayed values are not to be construed as errors in the calculation. For more information, please refer to http://support.unicrosoft.com/kb/42980 NORMAN H. MULLI Page 21 # PHASE 1 DA #2 WATER BALANCE MODEL IRRIGATION AND EVAPORATION Table 2.3B ENVIRO-AG ENGINEERING, INC. | 200.00 | 5 12 D | | | | | | |-----------|--------------------|---|---------|--------------|--|-------| | NAME: | Grand Canyon Dairy | HYDROLOGIC CHARACTERISTICS | | | IRRIGATION CELL VOLUME SUMMARY DATA | | | LOCATION: | Erath County | Pen Area (acres): | 0.00 | | 25-Year, 10-Day Rainfall Volume (ac-ft): | 5.89 | | DATE: | February-25 | Adjacent Area (acres): | 2.50 | | Process Generated Wastewater Volume (ac-ft): | 0.00 | | | | Paved/Roof Area (acres): | 0.18 | | Studge Accumulation Volume (ac-ft): | 0.02 | | | | RCS Surface Area (acres): | 2.60 | | Minimum Treatment Volume (ac-ft): | 0.00 | | | | Total Inigated Area (acres)(12): | 210 | 210 | Additional Volume (ac-ft): | 10.84 | | | | Cropping scheme: | Coastal | Winter Wheat | Total Required Capacity (ac-ft): | 16 74 | | | | Effective Evanoration Surface Area (acros): | 2.06 | | | | | | | RCS IN | FLOW CALCULA | TIONS | | | HYDRAULIC C | ROP DEMAND C | ALCULATIONS | | | RCS STORA | GE SUMMARY | | |--------|-----------------|-----------------|-----------------|----------------|----------------|-----------------|-----------------|-----------------|----------------|----------------|-----------------|----------------|-----------------|-----------------| | МОИТН | (1)
(inches) | (2)
(inches) | (2)
(inches) | (3)
(ac-fr) | (4)
(ac-ft) | (5)
(inches) | (6)
(inches) | (6)
(inches) | (7)
(ac-ft) | (7)
(ac-ft) | (2)
(inches) | (9)
(ac-ft) | (10)
(ac-ft) | (11)
(ac-ft) | | LANI | 1.55 | 4.00 | | | | | | | | | | | start value> | 0,02 | | JAN | I 55 | 0 0 0 | 0.06 | 4 99 | 5 49 | 1.55 | 2 10 | 2 74 | 9.65 | 20 85 | 2 37 | 0.60 | 4 89 | 0.02 | | FEB | l 89 | 0 00 | 0.14 | 5.22 | 5.85 | 1 86 | 2,46 | 3.11 | 10,43 | 21,20 | 2.70 | 0.69 | 5,16 | 0.02 | | M.AR | 2 16 | 0 00 | 0.23 | 5 52 | 6 25 | 2 10 | 4 06 | 4 97 | 34 38 | 50.30 | 4.27 | 1 09 | 5.16 | 0.02 | | APR | 2,83 | 0.00 | 0.53 | 6 73 | 775 | 2,64 | 4 98 | 5 74 | 40.91 | 54 21 | 5,20 | 1.33 | 6 42 | 0.02 | | MAY | 4 31 | 0.00 | 1 35 | 10 54 | 12,18 | 3 50 | 5 73 | 5.33 | 39 09 | 32.09 | 5,25 | 134 | 10 84 | 0.02 | | NUL | 3 24 | 0.00 | 0.71 | 6 28 | 8 05 | 2 88 | 6.82 | 3.22 | 68 90 | 5,90 | 7,01 | 1.79 | 6.27 | 0.02 | | TUL . | 2.11 | 0.00 | 12.0 | 3,76 | 4 47 | 2,05 | 766 | 0.00 | 98 11 | 0.00 | 8.23 | 2.10 | 2 37 | 0.02 | | AUG | 2 25 | 0.00 | 0.26 | 4 30 | 5 06 | 2.17 | 7.56 | 0.00 | 94 34 | 0.00 | 7.71 | 1 97 | 3 10 | 0.02 | | SEP | 3 01 | 0.00 | 0.59 | 6 76 | 7 83 | 2.73 | 5 78 | 0.60 | 53.35 | 0.00 | 5.91 | 1.51 | 6.32 | 0.02 | | OCT | 3 23 | 0.00 | 0.71 | 7 85 | 9.02 | 2.88 | 4 29 | 2 15 | 24 74 | 0.00 | 4.89 | 1 25 | 7.77 | 0.02 | | NOV | 28 1 | 0.00 | 0 14 | 5 17 | 5 79 | 1,86 | 2,81 | 1.70 | 16.71 | 0.00 | 3.33 | 0.85 | 4.94 | 0.02 | | DEC | 1.62 | 0.00 | 0 07 | 5.10 | 5 63 | 1,62 | 2,24 | 2 33 | 10 92 | 12,50 | 2,45 | 0,62 | 5.00 | 0.02 | | TOTALS | 30 13 | 0 00 | 5 00 | 72 83 | 83 36 | 27 83 | 56 49 | 31.29 | 501 53 | 197 66 | 59 32 | 15.13 | 68.23 | | #### NOTES: - (1) AVERAGE PRECIPITATION Average precipitation taken from the Texas Water Development Board, Erath County, Quad #509, Retrieved December 4, 2024 - (2) RUNOFF PENS AND ADJACENT AREA Runoff from pens, adjacent areas calculated using SCS Curve Number Method adjusted from 1 to 30-day Curve Number (Pen CN-77, Adj CN-67), (Ref. NRCS Animal Waste Management Software Help File-Program Documentation for Runoff) - (3) INFLOW RCS #3 receives inflows (actual withdrawal) from RCS #2 found in Table 2.3A column 10. - (4) TOTAL INFLOW Total Inflow is calculated as that volume of rainfall that falls on the RCS and process warer that enters the RCS - (5) RAINFALL ON IRRIGATED AREA Effective monthly rainfall on the irrigated area calculated using SCS Curve Number Method adjusted from 1 to 30-day Curve Number (Irr. CN-58) (Ref. NRCS Animal Waste Management Software Help File-Program Documentation for Runoff) - (6) CONSUMPTIVE USE values from Bornotti et al. 1998 Mean Crop Consumptive Use and Free-Water Evaporation for Texas, Dept. of Civil Engineering, Texas Tech University, Lubbook, Texas Stephenville Station (Tables 16 & 25) - (7) NET CROP DEMAND Not Crop Domand = ((Consumptive Use(6) Effective Rainfall(5))/12) x Irrigated Area. - (8) MONTHLY LAKE SURFACE EVAPORATION Average monthly lake surface evaporation taken from the Texas Water Development Board, Erath County, Quad #509, Retrieved Decamber 4, 2024 - (9) NET POND EVAPORATION Net Evaporation from the water surface is taken as (Monthly Lake Surface Evap/12) x (RCS Surface Area). - (10) ACTUAL WITHDRAWAL Actual Withdrawal from the irrigation cell not to exceed Not Crop Demand. (No consideration given for nutrient demand of crop) - (11) STORAGE AT END OF MONTH Storage volume in the irrigation cell at the end of the month. The storage calculated in this column should not encroach in the volume reserved for the 25-year, 10-day rainfall event (12) Irrigated agrees include LMU#5 # PHASE 2 DA #1 DIGESTER WATER BALANCE MODEL IRRIGATION AND EVAPORATION Table 2,3C ENVIRO-AG ENGINEERING, INC. | NAME:
LOCATION:
DATE: | Grand Canyon Di
Brath County
February-25 | airy | | Pen Area (acres):
Adjacent Area (a
Paved:Roof Area
Total RCS/SB So
Total Irrigated At
Cropping scheme | eres):
(acres):
irfade Ares (acres
rea (acres)(12): | 25-Year, 10-Day Rainfall Volume (ac-fi 446 Process Generated Wastewater Volume (ac-fi): 446 Process Generated Wastewater Volume (ac-fi): 50 Sludge Accumulation Volume (ac-fi): 450 Mini.num Treatment Volume (ac-fi): 12): 210 210 Cosstal Winter Wheat Total Required Capacity (ac-fi): 2497 Cosstal 497 Cosstal | | | | | | ac-ft):
ume (ac-ft):
t): | A | 27 80
10 00
5 72
15 28
58 81 | |-----------------------------|--|---------|-----------------|--|--|--|-----------------|-----------------|----------------|----------------
-----------------|--------------------------------|-----------------|--| | | | RC\$ IN | IFLOW CALCUL | ATIONS | | HYDRAULIC CROP DEMAND CALCULATIONS RCS STORAG | | | | | | GE SUMMARY | | | | MONTH | (1) (2) | | (2)
(inches) | (3)
(ac-ft) | (4)
(ac-ft) | (5)
(inches) | (6)
(inches) | (6)
(inches) | (7)
(ac-ft) | (7)
(ac-ft) | (8)
(inches) | (9)
(ac-ft) | (10)
(ac-ft) | (11)
(ac-ft) | | | | | | | | | | | | | | | start value> | 21 00 | | JAN | 1 55 | 0 23 | 0.06 | 10 34 | 12.97 | 1.55 | 2.10 | 2 74 | 9,65 | 20.85 | 2 3 7 | 0.98 | 11.99 | 21.00 | | FEB | 1,89 | 0.39 | 0.14 | 9 34 | 12 62 | l 86 | 2 46 | 3 I t | 10.43 | 21,80 | 2.70 | 1 12 | 11 50 | 21 00 | | MAR | 2 16 | 0.54 | 0.23 | 10.34 | 14 15 | 2 10 | 4 06 | 4 97 | 34 38 | 50 30 | 4 27 | 1.77 | 12.38 | 21.00 | | APR. | 2 88 | 0 99 | 0.53 | 10 00 | 15 29 | 2 64 | 4 98 | 5 74 | 40 91 | 54 21 | 5.20 | 2 15 | 13 14 | 21 00 | | MAY | 4.31 | 2.06 | 1 35 | 10 34 | 18 70 | 3,50 | 5 73 | 3 33 | 39 09 | 32,09 | 5 25 | 2 18 | 16 53 | 21 00 | | JUN | 3.24 | 1.25 | 0.71 | 10 00 | 16 05 | 2 88 | 6 82 | 3 22 | 63.90 | 5,90 | 7.01 | 2,90 | 13.15 | 21.00 | | JUL | 2 11 | 0,51 | 0 21 | 10.34 | 14 05 | 2,05 | 7 66 | 0,00 | 98 11 | 0.00 | 8 23 | 3 41 | 10 64 | 21 00 | | AUG | 2,25 | 0.59 | 0.26 | 10 34 | 14 33 | 2.17 | 7 56 | 0.00 | 94 34 | 0.00 | 7.71 | 3,19 | 11 14 | 21 00 | | SEP | 3.01 | 80,1 | 0.59 | 10 00 | 15 56 | 2 73 | 5 78 | 0.00 | 53.35 | 0.00 | 5.91 | 2 45 | 13 12 | 21 00 | | OCT | 3 23 | 1,24 | 0.71 | 10 34 | 1636 | 2.88 | 4.29 | 2,15 | 24 74 | 0.00 | 4 89 | 2 03 | 14 34 | 21.00 | | NOV | 1 \$8 | 0 39 | 0 14 | 10 00 | 13 27 | 1,86 | 2.81 | 1.70 | 16,71 | 0.00 | 3,33 | 1,38 | 11 89 | 21 00 | | DEC | 1.62 | 0.26 | O D7 | 10 34 | 13 10 | 1 62 | 2 24 | 2 33 | 10 92 | [2 50 | 2.45 | 1 02 | 12 09 | 21 00 | | TOTALS | 30 13 | 9 54 | 5.00 | 121 71 | 176 48 | 27 83 | 56 49 | 31 29 | 501 53 | 197 66 | 59 32 | 24 58 | 151 90 | | #### NOTES: - (1) AVERAGE PRECIPITATION Average precipitation taken from the Texas Water Development Board, Erath County, Quad #509, Retrieved December 4, 2024 - (2) RUNOFF PENS AND ADJACENT AREA Runoff from pans, adjacent areas calculated using SCS Curve Number Method adjusted from 1 to 30-day Curve Number (Pen CN-77, Adj CN-67) (Ref. NRCS Animal Waste Management Software Help File-Program Documentation for Runoff) - (3) INFLOW Inflow is calculated from process generated wastewater, Table 2.2C. - (4) TOTAL INFLOW Total Inflow is calculated as that volume of rainfall that falls on the RCS and process water that enters the RCS - (5) RAINFALL ON IRRIGATED AREA Effective monthly rainfall on the irrigated area calculated using SCS Curve Number Method adjusted from 1 to 30-day Curve Number (Irr CN-58) (Ref. NRCS Animal Waste Management Software Help File-Program Documentation for Runoff) - (6) CONSUMPTIVE USE values from Borrelli, et al., 1998. Mean Crop Consumptive Use and Free-Water Evaporation for Texas. Dept. of Civil Engineering. Texas Tech University, Lubbock, Texas. Stephenville Station (Tables 16 & 25) - (7) NET CROP DEMAND Net Crop Demand = ((Consumptive Use(6) Effective Rainfall(5))/12) x Irrigated Area - (8) MONTHLY LAKE SURFACE EVAPORATION Average monthly lake surface evaporation taken from the Texas Water Development Board, Erath County, Quad #509, Retrieved December 4, 2024 - (9) NET POND EVAPORATION Net Evaporation from the water surface is taken as (Monthly Lake Surface Evap/12) x (RCS Surface Area). - (10) ACTUAL WITHDRAWAL Actual Withdrawal from the irrigation cell not to exceed Net Crop Demand. (No consideration given for nutrient demand of crop) - (11) STORAGE AT END OF MONTH Storage volume in the irrigation cell at the end of the month. The storage calculated in this column should not excrosed in the volume reserved for the 25-year, 10-day ratiofall event - (12) Irrigated acres include LMU#5 # PHASE 2 DA #2 DIGESTER WATER BALANCE MODEL IRRIGATION AND EVAPORATION Table 2.3D ENVIRO-AG ENGINEERING, INC. | NAME: | Grand Canyon Dairy | HYDROLOGIC CHARACTERISTICS | | | IRRIGATION CELL VOLUME SUMMARY DATA | | |----------|--------------------|--|---------|--------------|--|-------| | LOCATION | Erath County | Pen Area (acres): | 0 00 | | 25-Year, 10-Day Rainfall Volume (ac-ft): | 5 89 | | DATE: | February-25 | Adjacent Area (acros): | 2.50 | | Process Generated Wastewater Volume (ac-ft): | 0.00 | | | | Paved'Ronf Area (agres). | 0.18 | | Sludge Accumulation Volume (as-ft): | 0.03 | | | | RCS Surface Area (acres): | 3 60 | | Minimum Treatment Volume (ac-ft): | 0.00 | | | | Total brigated Area (acres)(12): | 210 | 210 | Additional Volume (ac-fr): | 16.83 | | | | Cropping scheme: | Coastal | Winter Wheat | Total Required Capacity (ac-fi); | 22.73 | | | | Effective Evaporation Surface Area (acres) | 3.06 | | | | | | | RCS IN | FLOW CALCULA | ATIONS | | - | HYDRAULIC C | ROP DEMAND (| CALCULATIONS | | | RCS STOR | GE SUMMARY | | |--------|-----------------|-----------------|-----------------|----------------|----------------|-----------------|-----------------|-----------------|----------------|----------------|-----------------|----------------|-----------------|-----------------| | монтн | (I)
(inches) | (2)
(inches) | (2)
(inch#s) | (3)
(ac-ft) | (4)
(ac-ft) | (5)
(inches) | (6)
(inches) | (b)
(inches) | (7)
(8c-ਜੈ) | (7)
(ac-ft) | (8)
(inches) | (9)
(ac-fr) | (10)
(ac-fi) | (11)
(ac-ft) | | | | | | | | | | | | | | | start value> | 0.02 | | IAN | I 55 | 0.00 | 0.06 | 11 99 | 12,49 | 1 55 | 2.10 | 2.74 | 9.65 | 20,85 | 2.37 | 0.60 | 11.88 | 0.02 | | FEB | 1 89 | 0.00 | 0 14 | 1] 50 | 12 13 | 1 86 | 2 46 | 3 11 | 10 43 | 21 80 | 2 70 | 0.69 | 11 44 | 0.02 | | MAR. | 2 16 | 0.00 | 0.23 | 12 38 | 13.11 | 2 10 | 4 06 | 4 97 | 34.38 | 50.30 | 4 27 | 1 09 | 12 03 | 0.02 | | APR | 2 88 | 0.00 | 0.53 | 13 14 | 14 16 | 2 64 | 4 98 | 5 74 | 40.91 | 54 21 | 5 20 | 1.33 | 12 83 | 0.02 | | MAY | 4 31 | 0.00 | 1.35 | 16 53 | 18.17 | 3 50 | 5 73 | 5 33 | 39 09 | 32.09 | 5.25 | 1.34 | 16 83 | 0.02 | | JUN | 3 24 | 0.00 | 0.71 | 13 15 | 14 32 | 2 88 | 6.82 | 3.22 | 68.90 | 5.90 | 7.01 | 1.79 | 12.53 | 0.02 | | JUL | 2.11 | 0.00 | 0.21 | 10 64 | 11 35 | 2 05 | 7 66 | 0.00 | 98 11 | 0.00 | 8 23 | 2 10 | 9.25 | 0.02 | | AUG | 2 25 | 0.00 | 0.26 | 11 14 | 11.90 | 2 17 | 7 56 | 0.00 | 94 34 | 0.00 | 7.71 | 1 97 | 9 94 | 0.02 | | SEP | 3 01 | 0.00 | 0.59 | I3 12 | [4 19 | 2 73 | 5 78 | 0.00 | 53 35 | 0.00 | 5 91 | 1.51 | 12 68 | 0.02 | | OCT: | 3 23 | 0.00 | 0.71 | 14 34 | 15 50 | 2 88 | 4 29 | 2.15 | 24 74 | 0,00 | 4,89 | 1.25 | 14 25 | 0.02 | | NOV | L 88 | 0.00 | 0 14 | 11 39 | 12,51 | 1.86 | 2,81 | 1.70 | 16 71 | 0.00 | 3 33 | 0.85 | 11,66 | 0.02 | | DEC | 1 62 | 0.00 | 0.07 | 12 09 | 12 61 | 1 62 | 2.24 | 2 33 | 10 92 | 12,50 | 2 45 | 0 62 | LI 99 | 0.02 | | TOTALS | 30 13 | 0.00 | 5 00 | 151 90 | 162 43 | 27 83 | 56.49 | 31 29 | 501 53 | 197 66 | 59 32 | 15 13 | 147.30 | | #### NOTES: - (1) AVERAGE PRECIPITATION Average precipitation taken from the Texas Water Development Board, Erath County, Quad #509, Retrieved December 4, 2024 - (2) RUNOFF PENS AND ADJACENT AREA Runoff from pens, adjacent areas calculated using SCS Curve Number Method adjusted from 1 to 30-day Curve Number (Pen CN-77, Adj CN-67). (Ref. NRCS Animal Waste Management Software Help File-Program Documentation for Runoff) - (3) INFLOW RCS #3 receives inflows (actual withdrawal) from RCS #2 found in Table 2.3C column 10 - (4) TOTAL INFLOW Total Inflow is calculated as that volume of rainfall that falls on the RCS and process water that enters the RCS - (5) RAINFALL ON (RRIGATED AREA Effective monthly rainfall on the irrigated area calculated using SCS Curve Number Method adjusted from 1 to 30-day Curve Number (for CN-58) (Ref. NRCS Animal Waste Management Software Help File-Program Documentation for Runoff) - (6) CONSUMPTIVE USE values from Borrelli, et al. 1998 Mean Crop Consumptive Use and Free-Water Evaporation for Texas, Dept of Civil Engineering, Texas Tech University, Lubbock, Texas Stephenville Station (Tables 16 & 25) - (7) NET CROP DEMAND Net Crop Demand ((Consumptive Use(6) Effective Rainfall(5))/12) x Irrigated Area - (8) MONTHLY LAKE SURFACE EVAPORATION Average monthly lake surface evaporation taken from the Texas Water Development Board, Erath County, Quad #509, Retrieved December 4, 2024 - (9) NET POND EVAPORATION Net Evaporation from the water surface is taken as (Monthly Lake Surface Evap/12) x (RCS Surface Area) - (10) ACTUAL WITHDRAWAL Actual Withdrawal from the irrigation cell not to exceed Net Crop Demand (No consideration given for nutrient demand of crop) - (11) STORAGE AT END OF MONTH Storage volume in the irrigation cell at the end of the month. The storage calculated in this column should not encrosed in the volume reserved for the 25-year, 10-day rainfall event. - (12) Irrigated acres include LMU #5 # PHASE 2 DA #1 DIGESTER BYPASS WATER BALANCE MODEL IRRIGATION AND EVAPORATION Table 2.3E ENVIRO-AG ENGINEERING, INC. | NAME: | Grand Canyon Dairy | HYDROLOGIC CHARACTERISTICS | | | IRRIGATION CELL VOLUME SUMMARY DATA | | |-----------|--------------------|---|---------|--------------|--|-------| | LOCATION: | Erath County | Pen Area (acres): | 5.12 | | 25-Year, 10-Day Rainfall Volume (ac-fi): | 27 80 | | D.ATE | February-25 | Adjacent Area (acres): | 4 46 | | Process Generated Wastewater Volume (ac-ft): | 5.52 | | | | Paved/Roof Area (acres): | 7 95 | | Studge Accumulation Volume (2c-ft): | 3 23 | | | | Total RCS/SB Surface Area (acres). | 11.50 | | Minimum Treatment Volume (ac-fi). | (8 41 | | | | Total (migated Area (acres)(12): | 210 | 210 | | | | | | Cropping schame: | Coastal | Winter Wheat | Total Required Capacity (2c-ft); | 54 96 | | | | Effective for anything Surface Area to read |
4 97 | | | | | | - | RCS IN | IFLOW CALCULA | ATIONS | | | HYDRAULIC C | ROP DEMAND C | ALCULATIONS | | | RCS STOR | AGE SUMMARY | | |--------|-----------------|-----------------|-----------------|----------------|----------------|-----------------|-----------------|-----------------|---------------|----------------|-----------------|----------------|-----------------|-----------------| | MONTH | (1)
(inches) | (2)
(inches) | (2)
(inches) | (3)
(ac-(t) | (4)
(ac-ft) | (5)
(inches) | (6)
(inches) | (6)
(inches) | (7)
(zc-R) | (7)
(as-ft) | (S)
(inches) | (9)
(ac-ft) | (10)
(ac-ft) | (11)
(ac-fr) | | | | | | | | | | | | | | | start value> | 21 64 | | JAN | 1.55 | 0.23 | 0.05 | 5 7 1 | 8 34 | 1 55 | 2,10 | 2 74 | 9 65 | 20 85 | 2.37 | 0.98 | 7 36 | 21.64 | | FEB | 1,89 | 0.39 | 0 [4 | 5 16 | 8 44 | l 86 | 2,46 | 3 [] | 10.43 | 21.80 | 2 76 | 1 12 | 7 3 2 | 21 64 | | MAR | 2.16 | 0.54 | 0.23 | 5.71 | 9.52 | 2,10 | 4.06 | 4 97 | 34.38 | 50 30 | 4.27 | 1.77 | 7 76 | 21 64 | | APR | 2.88 | 0 9 9 | 0.53 | 5,52 | 10.81 | 2 64 | 4 98 | 5 74 | 40.91 | 54.21 | 5.20 | 2 15 | 8 66 | 21 64 | | MAY | 431 | 2.06 | 1 35 | 5 71 | 14 03 | 3 50 | 5 73 | 5 33 | 39 09 | 32 09 | 5 25 | 2.15 | 1:90 | 21.64 | | UN | 3 24 | 1 25 | 0.71 | 5.52 | 11.57 | 2 88 | 6 82 | 3 22 | 68.90 | 5.90 | 7 D I | 2.90 | 3.67 | 21.64 | | TUL | 2 11 | 0.51 | 0.21 | 5 71 | 9.43 | 2.05 | 7.66 | 0.00 | 98 11 | 0.00 | 3_23 | 3.41 | 6.01 | 21.64 | | AUG | 2 25 | 0.59 | 0,26 | 5,71 | 9 70 | 2 17 | 7 56 | 0.00 | 94 34 | 0.00 | 7.71 | 3 19 | 651 | 21 64 | | SEP | 3 01 | 1.08 | 0.59 | 5 52 | 11.09 | 2,73 | 5 78 | 0.00 | 53 35 | 0 0 D | 5.91 | 2.45 | 8 64 | 21 64 | | OCT . | 3 23 | 1 24 | 0.71 | 5 71 | 11.73 | 2.88 | 4.29 | 2.15 | 24 74 | 0.00 | 4 89 | 2 03 | 9.71 | 21 64 | | VOV | 1.88 | 0.39 | 0 14 | 5 52 | 8 79 | L 36 | 2.81 | 1 70 | 16 71 | 0.00 | 3 33 | 1.38 | 7.41 | 21 64 | | DEC | 1 62 | 0 26 | 0 07 | 5,71 | 8,47 | 1.62 | 2.24 | 2.33 | 10 92 | 12,50 | 2 45 | 1 02 | 7 46 | 21 64 | | TOTALS | 30.13 | 9 54 | 5.00 | 67.21 | 121 98 | 27 83 | 56.49 | 31.29 | 501.53 | 197,66 | 59 32 | 24 58 | 9740 | | #### NOTES: - (1) AVERAGE PRECIPITATION Average precipitation taken from the Texas Water Development Board, Erath County, Quad #509, Retrieved December 4, 2024 - (2) RUNOFF PENS AND ADJACENT AREA Runoff from pens, adjacent areas calculated using SCS Curve Number Method adjusted from 1 to 30-day Curve Number (Pen CN-77, Adj CN-67) (Ref. NRCS Animal Waste Management Software Help File-Program Documentation for Runoff) - (3) INFLOW Inflow is calculated from process generated wastewater, Table 2.2E. - (4) TOTAL INFLOW Total Inflow is calculated as that volume of rainfall that falls on the RCS and process water that enters the RCS - (5) RAINFALL ON IRRIGATED AREA Effective monthly rainfall on the irrigated area calculated using SCS Curve Number Method adjusted from 1 to 39-day Curve Number (Irr. CN-58) (Ref. NRCS Animal Waste Management Software Help File-Program Documentation for Runoff) - (6) CONSUMPTIVE USE values from Borrolli, et al., 1998. Mean Crop Curisumptive Use and Free-Water Evaporation for Texas. Dept of Civil Engineering, Texas Tech University, Lubbock, Texas. Stephenville Station (Tables 16 & 25) - (7) NET CROP DEMAND Net Crop Demand = ((Consumptive Use(6) Effective Rainfell(5))/12) x Irrigated Area - (8) MONTHLY LAKE SURFACE EVAPORATION Average monthly lake surface evaporation taken from the Texas Water Development Board. Erath County, Quad #509, Retrieved December 4, 2024 - (9) NET POND EVAPORATION Nel Evaporation from the water surface is taken as (Monthly Lake Surface Evap/12) x (RCS Surface Area). - (10) ACTUAL WITHDRAWAL Actual Withdrawal from the irrigation cell not to exceed Net Crop Demand. (No consideration given for nutrient demand of crop) - (11) STORAGE AT END OF MONTH Storage volume in the imigation cell at the end of the month. The storage calculated in this column should not encroach in the volume reserved for the 25-year, 10-day rainfall event - (12) Irrigated acres melude LMU #5 # PHASE 2 DA #2 DIGESTER BYPASS WATER BALANCE MODEL IRRIGATION AND EVAPORATION Table 2.3F ENVIRO-AG ENGINEERING, INC. | NAME: | Grand Carryon Dairy | HYDROLOGIC CHARACTERISTI | ics | | IRRIGATION CI | ELL VOLUME SUMMARY DA | TA | | |----------|---------------------|------------------------------------|--------------|----------------------|------------------|------------------------------|-------------|-------| | LOCATION | Erath County | Pen Area (acres): | D GQ | | 25-Year, 10-Day | Rainfall Volume (pc-fr): | | 5 89 | | DATE: | February-25 | Adjacent Area (acras): | 2.50 | | Process Generate | d Wastewater Volume (ac-ft): | | 0.00 | | | | Paved/Roof Area (acros): | 21.0 | | Sludge Accumula | ition Volume (sc-ft): | | 0.02 | | | | RCS Surface Area (acres): | 3 66 | | Minimum Treatm | nent Volume (ac-ft): | | 0.00 | | | | Total Imigated Area (acres)(12): | 310 | 210 | Additional Volun | ne (ac-ff): | | 12.20 | | | | Cropping scheme: | Coast | l Winter Wheat | Total Required C | apacity (ac-ft): | | 18 10 | | r . | | Effective Evaporation Surface Area | (ncres) 3.06 | | | | | | | | RCSINE | LOW CALCULATIONS | HYDRAU | LIC CROP DEMAND CALC | ULATIONS | RCS STOR | AGE SUMMARY | | | | (11) | (3) | 165 115 | 4/1 | 7963 | 40) 404 | (10) | | | | 4 | RCS IN | FLOW CALCULA | ATTONS | | 7 | HYDRAULIC C | ROP DEMAND C | ALCULATIONS | | | RCS STORA | GE SUMMARY | | |--------|-----------------|-----------------|-----------------|----------------|----------------|-----------------|-----------------|-----------------|----------------|----------------|-----------------|----------------|-----------------|-----------------| | MONTH | (1)
(inches) | (2)
(inches) | (2)
(inches) | (3)
(ac-ft) | (4)
(ac-ft) | (5)
(inches) | (6)
(inches) | (6)
(inches) | (7)
(ac-ft) | (7)
(ac-fi) | (8)
(inches) | (9)
(ac-ff) | (10)
(ac-fi) | (11)
(ac-ft) | | | | | | | | | | | | | | | start value> | 0.02 | | JAN | 1 55 | 0.00 | 0.06 | 7 36 | 7,86 | 1.55 | 2.10 | 2.74 | 9,65 | 20,85 | 2.37 | 0.60 | 726 | 0.02 | | FEB | 1.89 | 0.00 | 0.14 | 7.32 | 7 9 5 | 1.86 | 2 46 | 3.11 | 10.43 | 21.80 | 2 70 | 0 69 | 7.26 | 0.02 | | MAR | 2 16 | D 00 | G 23 | 7 76 | 8 48 | 2.10 | 4 06 | 4 97 | 34,38 | 50.30 | 4 27 | 1 09 | 739 | 0.02 | | APR | 2 88 | 0 00 | 0.53 | 8 66 | 9 68 | 2 64 | 4.98 | 5.74 | 40 91 | 54 21 | 5 20 | 1.33 | 8.35 | 0.02 | | MAY | 4 31 | 0.00 | 1 35 | 11 90 | 13 54 | 3 50 | 5 73 | 5.33 | 39,09 | 32 09 | 5.25 | 1.34 | 12 20 | 0.02 | | JUN | 3.24 | 0 00 | 0.71 | 8 67 | 9.84 | 2,88 | 6,82 | 3.22 | 68 90 | 5 90 | 7.01 | L.79 | 8 0 5 | 0.02 | | JUL | 2 11 | 0.00 | 0.21 | ó Q L | 6,72 | 2.05 | 7 66 | 0.00 | 98 11 | 0.00 | 8.23 | 2 10 | 4 62 | 0.02 | | AUG | 2 25 | 0.00 | 0.26 | 651 | 7 27 | 2 17 | 7 56 | 0.00 | 94 34 | 0 00 | 771 | 1 97 | 531 | 0.02 | | SEP | 3,01 | 0,00 | 0 59 | 3 54 | 971 | 2 73 | 5.78 | 0.00 | 53 35 | 0.00 | 591 | 151 | 8 20 | 0.02 | | е¢т | 3 23 | 0.00 | 0.71 | 971 | 10.87 | 2.88 | 4 29 | 2,15 | 24.74 | 0.00 | 4 39 | 1.35 | 9 63 | 0.02 | | NOV | 1.88 | 0.00 | 0.14 | 7.41 | 8.03 | 1,86 | 2,81 | 1.70 | 16 71 | 0.00 | 3.33 | 0.85 | 7 18 | 0.02 | | DEC | 1.62 | 0.00 | 0 07 | 7 46 | 7 98 | 1 62 | 2.24 | 2 33 | 10 92 | 12 50 | 2 45 | 0.62 | 7 36 | 0 02 | | TOTALS | 30 13 | 0.00 | 5.00 | 97 40 | 107 93 | 27 83 | 56.49 | 31 29 | 501 53 | 197 66 | 59 32 | 15 13 | 92 \$1 | | #### NOTES - (1) AVERAGE PRECIPITATION Average precipitation taken from the Texas Water Development Board, Erath County, Quad #509, Retrieved December 4, 2024 - (2) RUNOFF PENS AND ADJACENT AREA Runoff from pens, adjacent areas calculated using SCS Curve Number Method adjusted from 1 to 30-day Curve Number (Pen CN-77, Adj CN-67) (Ref. NRCS Adimal Waste Management Software Help File-Program Documentation for Runoff) - (3) INFLOW RCS #3 receives inflows (actual withdrawal) from RCS #2 found in Table 2 3E column 10 - (4) TOTAL INFLOW Total Inflow is calculated as that volume of rainfall that falls on the RCS and process water that enters the RCS - (5) RAINFALL ON IRRIGATED AREA Effective monthly rainfall on the irrigated area calculated using SCS Curve Number Method adjusted from 1 to 30-day Curve Number (Irr. CN-58) (Ref. NRCS Animal Waste Management Software Help File-Program Documentation for Rumoff) - (6) CONSUMPTIVE USE values from Borrelli, et al., 1998. Mean Crop Consumptive Use and Free-Water Evaporation for Texas, Dept of Civil Engineering, Texas Tech University, Lubbook, Texas, Stephenville Station (Tables 16 & 25) - (7) NET CROP DEMAND Not Crop Demand = I(Consumptive Use(6) Effective Rainfall(5))/12) x Irrigated Area - (8) MONTHLY LAKE SURFACE EVAPORATION Average monthly lake surface evaporation taken from the Texas Water Development Board, Erath County, Quad #509, Retrieved December 4, 2024 - (9) NET POND EVAPORATION Net Evaporation from the water surface is taken as (Monthly Lake Surface Evap/12) x (RCS Surface Area) - (10) ACTUAL WITHDRAWAL Actual Withdrawal from the irrigation cell not to exceed Net Crop Demand (No consideration given for autrient demand of crop) - (11) STORAGE AT END OF MONTH Storage volume in the irrigation cell at the end of the month. The storage calculated in this column should not encroped in the volume reserved for the 25-year, 10-day rainfull event - (12) Irrigated acres include LMU #5 May 31, 2022 To whom it may concern: The DVO anaerobic digester (AD) with the addition of a mechanical solids separator and a DVO dissolved air flotation system, designed for operation at the Grand Canyon Dairy, will achieve a total solids (TS) reduction of 78% and a volatile solids (VS) reduction of 90%. Listed below is a breakdown of the separation systems and associated TS and VS reductions: AD: TS reduction of 34% VS reduction of 42% Screw Press: TS reduction of 22% VS reduction of 29% Dissolved Air Flotation: TS reduction of 58% VS reduction of 76% The information above is based on Grand Canyon Dairy using
fiber solids as bedding and results from a compilation of sampling data from a similar system in operation for the past eight years in Indiana (see attached). Steve Dvorak, P.E. President # 3.0 FACILITY INFORMATION # 3.1 Required Certifications RCSs #1, #2, #3 and settling basins #1, #2 and #3 have been certified by a licensed Texas professional engineer as meeting the liner requirements of the TCEQ. Existing liner and capacity certifications for RCSs #1, #2 and #3 are attached. # 3.2 100-Year Flood Plain Evaluation Based on the location of this facility and Figure 1.3, the production area and land application area are located within a 100-year flood plain. RCS embankments within 100-year floodplain areas are built above the 100-year flood plain elevation to protect the RCS from inundation. #### Grand Canyon Dairy Erath County, Texas RCS #1 Capacity Certification The survey capacity performed on March 4, 2010 by Enviro-Ag Engineering, Inc. for retention control structure (RCS) #1 at the cross-over pipe is calculated as: RCS #1 Capacity: 4.04 ac-ft RCS #1 Surface Area: 0.91 surface acres @ Cross-over pipe to RCS #2 Prepared by: NORMAN H, MULLIN 66107 Norman Mullin, P.E. # 66107 Enviro-Ag Engineering, Inc. Firm # F-2507 (Supporting Documentation Attached) ## J.B. Grand Canyon Dairy, L.P. RCS 7 - Capacity Certification Erath County An as-built capacity survey was performed in November 2006 on the RCSs at J.B. Grand Canyon Dairy, L.P. The resulting available capacity of RCS 7 is <u>25.95 acre-feet</u>. Sludge volume was negligible at the time of the survey. Respectfully Submitted, Anissa Purswell, P.E. Enviro-Ag Engineering, Inc. Attachments: RCS Capacity Survey and Cross-Section Stage-storage Curve #### Grand Canyon Dairy Erath County, Texas RCS #2 Capacity Certification The survey capacity performed on March 4, 2010 by Enviro-Ag Engineering, Inc. for retention control structure (RCS) #2 at the spillway is calculated as: RCS #2 Capacity: 64.87 ac-ft RCS #2 Surface Area: 9.85 surface acres @ Spillway Prepared by: Norman Mullin, P.E. # 66107 Enviro-Ag Engineering, Inc. Firm # F-2507 #### Grand Canyon Dairy Erath County, Texas RCS #2 Liner Certification Seven 3-inch Shelby tube core samples were collected from the disturbed areas of RCS #2 to document that the liner meets the requirements of the TCEQ for soil liner. The liner thickness was documented to be at least 18 inches. The hydraulic conductivity of the clay liner is documented as follows: | • | RCS #2 East Bottom (Lab #1560) | 3.2 x 10 ⁻⁸ cm/sec | |---|--------------------------------|-------------------------------------| | • | RCS #2 West Bottom (Lab #1561) | 1.2 x 10 ⁻⁸ cm/sec | | • | RCS #2 (#1) (Lab #1581) | $3.8 \times 10^{-9} \text{ cm/sec}$ | | • | RCS #2 (#2) (Lab #1582) | 3.5 x 10 ⁻⁹ cm/sec | | • | RCS #2 (#3) (Lab #1583) | 2.7×10^{-8} cm/sec | | • | RCS #2 (#4) (Lah #1584) | 1.1 x 10 ⁻⁸ cm/sec | | • | RCS #2 (#5) (Lab #1585) | 1.9 x 10 ⁻⁸ cm/sec | | | | | Supporting moisture and density laboratory results indicate the embankment and liners were installed at 95% maximum dry density and within the moisture range of minus 1% to plus 3% of optimum moisture content (see attached moisture/density test results). The liner present in RCS #2 is determined to be constructed in accordance with TCEQ requirements for soil liners I certify that RCS #2 at Grand Canyon Dairy meets the construction requirements of NRCS Practice Codes 313 (Waste Storage Ponds), 378 (Pond Embankment) and 521D (Pond Sealing or Lining, Compacted Clay Treatment). Erosion protection and emergency spillway are in place and the staff gauge is installed and calibrated Prepared by: Norman Mullin, P.E. # 66107 Enviro-Ag Engineering, Inc. Firm # F-2507 (Supporting Documentation Attached) #### CALCULATION OF SPECIFIC DISCHARGE SITE: Grand Canyon Dairy LOCATION: Erath County, TX DATE: Mar 2010 STRUCTURE: RCS #2 This worksheet calculates the specific discharge through a soil liner based on the measured thickness of the installed clay liner and the results of the permeability testing. The maximum allowable specific discharge of the installed liner is $1.1 \times E$ -06 cm/sec or 0.0374 in/day. | | | | | Hydraulic Cor | nductivity Res | ults of Core S | amples | | |-------------------------------------|----------|----------|----------|---------------|----------------|----------------|----------|--| | Laboratory Sample I.D. | 1560 | 1561 | 1581 | 1582 | 1583 | 1584 | 1585 | | | . Water Depth, feet | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | | . Liner Thickness, inches | 18.0 | 18.0 | 18.0 | 18.0 | 18.0 | 18.0 | 18.0 | | | . Hydraulic Conductivity, cm/sec | 3.20E-08 | 1.20E-08 | 3.80E-09 | 3.50E-09 | 2.70E-08 | 1.10E-08 | 1.90E-08 | | | . Calculated specific discharge, v' | | | | | | | | | | Seepage Rate, inches/day | 0.0098 | 0.0037 | 0.0012 | 0.0011 | 0.0083 | 0.0034 | 0.0058 | | | Maximum Seepage Rate, inches/day | 0.0374 | 0.0374 | 0.0374 | 0.0374 | 0.0374 | 0.0374 | 0.0374 | | #### NOTES: - (1) Water depth of the pond in feet. - (2) Soil liner thickness in inches. - (3) Hydaulic conductivity of the core sample(s) as determined by flexible wall permeameter in cm/sec (Ref: ASTM D 5084). The following equation is used: $$v' = k (H - d) / d$$ where: v' =Specific Discharge of area representative of core sample, inches/day d = Measure Liner Thickness at core sample location, feet k = Hydaulic Conductivity of liner based on core sample testing, inches/day H = Maximum Water Depth, feet (4) Maximum Allowable Scepage Rate of 1.1 E-06 cm/sec (0.0374 in/day). AN AL MULLINI ENGINEER: NHM Norman Mullin, P.E. # 66107 Enviro-Ag Engineering, Inc. TBPE Firm # 2507 | TRIAXIAL PERMEABILITY CHAIN of CUSTODY | STRUCTURE | PERM
REPORT
I.D. | LOG | |---|------------------------|--|------| | | 12054 3
12054 3 | EHST WITHOUT LUEST BOTTOM | 1560 | | N Sent | | | | | | | | | | originate to Lah: 1/29/10 Received: 724/10 Received: 724/10 Received: 724/10 | 302 M
Stephe
(25 | organ Mill Road
Bldg C
nville, TX 76401
(4) 965-3500
254) 965-8000 | | . HYDRAULIC CONDUCTIVITY 3404 Airway Blvd., Amarillo, TX 79118 (806) 353-6123 LABORATORY SERVICES REPORT #### SPECIMEN DATA | SAMPLE ID: | 1 | | |---------------------------------|------------------|--------------| | DESCRIPTION: | RCS #3 - East Be | ottom | | | INITIAL | <u>FINAL</u> | | HEIGHT, in. | 3.6 | 3.6 | | DIAMETER, In. | 2.8 | 2.8 | | WATER CONTENT, % | 15.8 | 22.5 | | DRY DENSITY, pcf | 106 | 104 | | SATURATION, % | 73 | 98 | | (Specific Gravity assumed as 2. | 7) | | | SAMPLE COLOR | Brown | | | SAMPLE CONSISTENCY | Clay | | | | | | COMMENTS: Tap water used as permeant. #### TEST DATA | | <u>ASTM D-5084,</u> | INCUIOG O | | |-------------|---------------------|--------------|--| | EFFEC1 | IVE STRESS: | 5 psi | | | GRADIE | NT RANGE: | 3 - 3 | | | IN / OU1 | RATIO: | 1.00 | | | | | | | | | | HYDRAULIC | | | TRIAL | TIME | CONDUCTIVITY | | | <u>nos.</u> | hrs. | cm / sec | | | 1 | 24.1 | 3.1E-08 | | | 2 | 48.0 | 3.2E-08 | | | 3 | 72.2 | 3.3E-08 | | | 4 | 96.1 | 3.4E-08 | | | | | | | | | | 3.2F-08 | | AVERAGE LAST 4: Those results apply only to the above listed samples. The data and information are proprietary and can not be released without authorization of Enviro-Ag Engineering Inc. By excepting the data and results represented on this page, client agrees to limit the liability of Enviro-Ag Engineering, Inc. from Client and all other perhies dafms arising out of the use of this data to the cost for the respective test(s) represented here, and Cilent agrees to indemnify and hold harmless Enviro-Ag from and against all liability in excess of the aforementioned limit. Z : Soils Lab\Perms \1910 \ 10-01-22 \ 1560 Print Date: 02/19/10 1560 DCN: EAE-QC-GRAPH (rev. 11/10/04) Micah Mullin 3404 Airway Blvd., Amarillo, TX 79118 (806) 353-6123 LABORATORY SERVICES # HYDRAULIC CONDUCTIVITY REPORT ASTM D-5084, Method C Client/Project Name: Grand Canyon Dairy 10-01-22 1561 Sample ID: 2 RCS #3 - West Bottom Leb Sample Number: Report Date: February 19, 2010 #### SPECIMEN DATA | SAMPLE ID; | 2 | | |---------------------------------|-----------------|--------| | DESCRIPTION: | RCS #3 - West B | Bottom | | | <u>INITIAL</u> | EINAL | | HEIGHT, in. | 4.0 | 4.1 | | DIAMETER, in. | 2.8 | 2.8 | | WATER CONTENT, % | 18.1 | 24.2 | | DRY DENSITY, pcf | 104 | 101 | | SATURATION, % | 80 | 97 | | (Specific Gravity assumed as 2. | 7) | | | SAMPLE COLOR | Dark Brown | ŧ | | SAMPLE CONSISTENCY | Clay | | | | | | #### COMMENTS: Tap water used as permeant, #### TEST DATA | | | AIA | |-----------------|--------------|-----------------| | | ASTM D-5084, | Method C | | EFFEC | TIVE STRESS: | 5 psi | | GRADIE | NT RANGE: | 3 - 3 | | IN / OUT RATIO: | | 1.00 | | niideedien | -II. 1 | HYDRAULIC | | TRIAL | TIME | CONDUCTIVITY | | nos. | hrs. | <u>cm / sec</u> | | 1 | 24.1 | 1,1E-08 | | 2 | 48.0 | 1.2E-08 | | 3 | 72.2 | 1.2E-08 | | ა | | 1.2E-08 | AVERAGE LAST 4: 1.2E-08 These results apply only to the above listed samples. The date and information are proprietary and can not be released without authorization of Enviro-Ag Engineering Inc. By accepting the date and results represented on this page, client agrees to limit the liability of Enviro-Ag Engineering, Inc. from Client and all other parties claims arising out of the use of this date to the cost for the respective test(s) represented here, and Client agrees to indemnify and hold harmless Enviro-Ag from and against all liability in excess of the aforementioned limit. Z : Soils Lab/Perms \1910 \ 10-01-22 \ 1561 Print Date: 02/19/10 Micah Mullin tull | TRIAXIAL PERMEABILITY CHAIN of CUSTODY | STRUCTURE | PERM
REPORT
I.D. | LAB | |---
--|---|--| | 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 | 105 = 3 - 2
105 = 3 - 2
105 = 3 - 3
105 = 3 - 5
105 = 3 - 5
105 = 2
105 = 2
105 = 2 | | 1581
1583
1583
1584
1585
1586
1587 | | Project Engineer: Work Sampled by: Was 1 Date Sampled: Z/19/10 Received: McBdu | 302 M
E
Stephe
(25 | organ Mill Road
Bldg C
nville, TX 76401
4) 965-3500
254) 965-8000 | | p. HYDRAULIC CONDUCTIVITY 3404 Airway Bivd., Amarillo, TX 79118 (806) 353-6123 LABORATORY SERVICES REPORT ASTM D-5084, Method C #### SPECIMEN DATA | SAMPLE | D: | 1 | | | |-----------------|--------------------|----------------|-------|--| | DESCRIPTIO | N: | RCS #3 - | 1 | | | | | <u>INITIAL</u> | FINAL | | | HEIGHT, In. | | 3.8 | 3.8 | | | DIAMETER, | in. | 2.8 | 2.8 | | | WATER COI | VTENT, % | 14.8 | 18.7 | | | DRY DENSI: | ΓY, pcf | 112 | 111 | | | SATURATIO | N, % | 80 | 97 | | | (Specific Gravi | ity assumed as 2.7 |) | | | | SAMPLE CO | LOR | Brown | | | | SAMPLE CO | NSISTENCY | Clay | | | | | | | | | #### COMMENTS: Tap water used as permeant. #### TEST DATA | IEST DATA | | | | |-----------------------|---|--------------|--| | ASTM D-5084, Method C | | | | | EFFECTIVE STRESS: | | 5 psi | | | GRADIE | NT RANGE: | 3 - 3 | | | IN / OUT RATIO: | | 1.00 | | | | ilia de la companya | HYDRAULIG | | | TRIAL | TIME | CONDUCTIVITY | | | nos. | <u>hrs.</u> | cm/sec | | | 1 | 24.1 | 3.7E-09 | | | 2 | 48.3 | 3.7E-09 | | | 3 | 72.0 | 3.8E-09 | | | | 96.1 | 3.8E-09 | | AVERAGE LAST 4: 3. 3.8E-09 Those results apply only to the above listed samptes. The data and information are proprietary and can not be refeased without outhorization of Enviro-Ap Engineering Inc. By accepting the data and results represented on this page, client agrees to limit the liability of Enviro-Ap Engineering, Inc. from Client and all other parties claims arising out of the use of this data to the cost for the respective test(s) represented here, and Client agrees to indemnify and hold harmless Enviro-Ap from and against all liability in excess of the aforementioned limit. Z : Soils Lab/Perms \1910 \ 10-02-19 \ 1581 Print Date: 03/19/10 Reviewed By: Miceh Mullin HYDRAULIC CONDUCTIVITY 3404 Alrwey Blvd., Amarillo, TX 79118 (806) 353-6123 LABORATORY SERVICES REPORT ASTM D-5084, Method C ## SPECIMEN DATA | SAMPLE ID: | 2 | | |----------------------------------|----------------|--------------| | DESCRIPTION; | RCS #3 - 2 | | | | <u>INITIAL</u> | <u>FINAL</u> | | HEIGHT, in. | 3.2 | 3.3 | | DIAMETER, in. | 2.8 | 2.8 | | WATER CONTENT, % | 14.5 | 18.7 | | DRY DENSITY, pcf | 113 | 111 | | SATURATION, % | 79 | 97 | | (Specific Gravity assumed as 2.7 |) | | | SAMPLE COLOR | Dark Brown | | | SAMPLE CONSISTENCY | Clay | | | | | | #### COMMENTS: Tap water used as permeant. #### **TEST DATA** | | ASTM D-5084, | Method C | |-----------------|--------------|--------------| | EFFEC | TIVE STRESS: | 5 psi | | GRADIE | NT RANGE: | 3 - 3 | | IN / OUT RATIO: | | 1.00 | | | | | | | | HYDRAULIC | | TRIAL | TIME | CONDUCTIVITY | | <u>nos.</u> | <u>hrs.</u> | cm/sec | | 1 | 24.1 | 3.5E-09 | | 2 | 48,3 | 3.5E-09 | | 3 | 72.0 | 3.6E-09 | | | 96.1 | 3.6F-09 | AVERAGE LAST 4: 3.5E-09 These results apply only to the above listed samples. The data and information are proprietary and can not be released without authorization of Enviro-Ag Engineering Inc. By accepting the data and results represented on this page, client agrees to limit the liability of Enviro-Ag Engineering, Inc. from Client and all other parties claims arising out of the use of this data to the cost for the respective test(s) represented here, and Client egrees to indemnify and hold harmless Enviro-Ag from and against all liability in excess of the aforementioned limit abbrevials 1990 \ 10-02-19 \ 1582 \ Print Date: Reviewed By: LSN: Z : Solls LabV2erms \1910 \ 10-02-19 \ 1582 03/19/10 Micah Mullin HYDRAULIC CONDUCTIVITY 3404 Aliway Blvd., Amerilio, TX 79118 (806) 353-6123 LABORATORY SERVICES EAE REPORT #### SPECIMEN DATA | | SAMPLE ID: | 3 | | |---|-----------------------------------|-------------|-------| | | DESCRIPTION: | RCS #3 - 3 | | | | | INITIAL | FINAL | | | HEIGHT, in. | 4.8 | 4.B | | | DIAMETER, in. | 2.8 | 2.9 | | | WATER CONTENT, % | 12.8 | 17.5 | | | DRY DENSITY, pcf | 115 | 113 | | | SATURATION, % | 73 | 97 | | | (Specific Gravity assumed as 2.7) | | | | | SAMPLE COLOR | Light Brown | | | | SAMPLE CONSISTENCY | Clay | | | Ì | 1 . 1 | | | #### COMMENTS: Tap water used as permeant. #### TEST DATA | | ASTM D-5084. | Method C | | | |--------|--------------|----------------|--|--| | EFFECT | TIVE STRESS: | 5 psi
2 - 2 | | | | GRADIE | NT RANGE: | | | | | IN/OUT | FRATIO: | 1.00 | | | | | | HYDRAULIC | | | | TRIAL | TIME | CONDUCTIVITY | | | | nos. | brs. | cm/sec | | | | 1 | 24.1 | 2.6E-08 | | | | | 48.3 | 2.6E-08 | | | | 2 | 40,3 | 2,0□ 00 | | | | 2
3 | 72.0 | 2.7E-08 | | | These results apply only to the above listed samples. The data and information are proprietory and can not be released without authorization of Enviro-Ag Engineering Inc. By accepting the date and results represented on this page, client agrees to limit the liability of Enviro-Ag Engineering, Inc. from Client and all other parties claims arising out of the use of this date to the cost for the respective test(s) represented here, and Client agrees to indemnify and hold harmless Enviro-Ag from and against all liability in excess of the aforementioned limit Z : Soils Lab/Perms \1910 \ 10-02-19 \ 1583 Print Date: 03/19/10 Micah Mullin AVERAGE LAST 4: Reviewed By: LSN fullin 2.7E-08 HYDRAULIC CONDUCTIVITY 3404 Airway Blvd., Amarillo, TX 79118 (806) 353-6123 LABORATORY SERVICES EAE REPORT #### SPECIMEN DATA | SAMPLE ID: | 4 | | |----------------------------------|------------|--------------| | DESCRIPTION: | RCS #3 - 4 | | | | INITIAL | <u>FINAL</u> | | HEIGHT, in. | 4.0 | 4.0 | | DIAMETER, in. | 2.8 | 2.9° | | WATER CONTENT, % | 15.1 | 20.6 | | DRY DENSITY, pcf | 109 | 108 | | SATURATION, % | 75 | 100 | | (Specific Gravity assumed as 2.7 |) | | | SAMPLE COLOR | Brown | | | SAMPLE CONSISTENCY | Clay | | | | | | #### COMMENTS: Tap water used as permeant. #### TEST DATA | | ASTM D-5084, | Method C | | |--------|--------------|---------------|--| | EFFEC? | TIVE STRESS: | 5 psi | | | GRADIE | ENT RANGE: | 3 - 3 | | | IN/OU | TRATIO: | 1.00 | | | | | | | | | | HYDRAULIC | | | TRIAL | TIME | CONDUCTIVITY | | | rios. | <u>hrs.</u> | <u>cm/sec</u> | | | 1 | 24.1 | 1.1E-08 | | | 2 | 48,3 | 1.1E-08 | | | 3 | 72.0 | 1.1E-08 | | | | 96.1 | 1.1E-08 | | AVERAGE LAST 4: 1.1E-08 These results apply only to the above listed samples. The data and information are proprietery and can not be released without sufficient at Enviro-Ag Engineering Inc. By accepting the date and results represented on this page, client agrees to limit the liability of Enviro-Ag Engineering, fno from Client and all other parties claims straing out of the use of this date to the cost for the respective test(s) represented here, and Client agrees to Indonvity and hold harmless Enviro-Ag from and against all liability in excess of the aforementioned limit Z : Soils LabVerms \1910 \ 10-02-19 \ 1584 03/19/10 Print Date: Micah Mullin 3404 Alrway Blvd., Amarillo, TX 79118 (806) 353-6123 Sample ID: HYDRAULIC CONDUCTIVITY REPORT LABORATORY SERVICES Chent / Project Name: Grand Canyon Dalry 10-02-19 ASTM D-5084, Method C Lah Sample Number. RCS #3 - 5 Report Date: March 19, 2010 1585 | SP | E | 100 | T A Z | D 4 | TA | |----|------|---------|-------|-----|----| | 35 | C (. | . I fVi | re iv | IIA | 14 | | SAMPLE ID: | 1 | | |----------------------------------|----------------|--------------| | DESCRIPTION: | RCS #3 - 5 | | | | <u>INITIAL</u> | <u>FINAL</u> | | HEIGHT, in. | 3.3 | 3.4 | | DIAMETER, in. | 2.8 | 2.8 | | WATER CONTENT, % | 13.5 | 21.4 | | DRY DENSITY, pcf | 107 | 105 | | SATURATION, % | 64 | 95 | | (Specific Gravity assumed as 2.7 |) | | | SAMPLE COLOR | Brown | | | SAMPLE CONSISTENCY | Clay | | | | | | Tap water used as permeant. ## **TEST DATA** ASTM D-5084, Method C | GRADIE | TIVE STRESS:
ENT RANGE:
TRATIO: | 5 psł
3 - 3
1.00 | |-------------|---------------------------------------|------------------------| | | | HYDRAULIC | | TRIAL | TIME | CONDUCTIVITY | | <u>nos.</u> | <u>brs.</u> | <u>cm / sec</u> | | 1 | 24.4 | 1.9E-08 | | 2 | 48.3 | 1.95-08 | | 3 | 72.1 | 2.0E-08 | | 4 | 96.2 | 2.0E-08 | AVERAGE LAST 4: 1.9E-08 These results apply only to the above listed samples. The date and information are proprietary and can not be released without authorization of Enviro-Ag Engineering Inc. By accepting the data and results represented on this page, offent agrees to limit the liability of Enviro-Ag Engineering, Inc. from Client and all other parties claims arising out of the use of this date to the cost for the respective (est(s) represented here, and Client agrees to indemnify and hold harmless Enviro Ag from and against all liability in excess of the aforementioned limit Z : Solls Lab\Perms \1910 \ 10-02-19 \ 1585 Print Date: 03/19/10 Reviewed By: DCN: EAE-QC-GRAPH (rev. 11/10/04) Micah Mullin As per the minor amendment the following table shows the new designations for the RCS's. | Old RCS | New
RCS | |---------|-------------| | RCS#1 | SB#1 | | RCS#2 | RCS#1 | | RCS#3 | RCS#2 | | RCS#4 | NC3#Z | | RCS#5 | SB#2 | | RCS#6 | SB#3 | | RCS#7 | RCS#3 | **Grand Canyon Dairy** July 3, 1989 Texas Water Commission P.O. Box 13087 Capitol Station Austin, Texas 78711-3087 Attn: Tom Haberle Water Quality Division Re: Grand Canyon Dairy Farm Dublin, Texas Gentlemen: Southwestern Laboratories has completed
sampling and testing of the soils in the wastewater retention ponds No. 1 through 5 at the Grand Canyon Dairy Farm in Dublin, Texas. The test results including sample thickness, Atterberg limits, and percent passing the number 200 sieve are tabulated on the attached report. Our findings indicate the soils meet the criteria established by the Texas Water Commission. Very truly yours, SOUTHWESTERN LABORATORIES Kemp B. Akeman, P.E. Materials Engineer Roland S. Jary P.F. ns | Submitted by: | Grand Canyon Dairy Farm | |---------------|-------------------------| | Signed by: | | | Date: | | HOUSTON * DALLAS * AUSTIN * BEAUMONT * CONROE * GALVESTON COUNTY * FIO GRANDE VALLEY * ALEXANDÁIA SAN ANTONIO * FORT WORTH * LEESVILLE * MIDLAND * MONROE * SHREVEPORT * TEXARKANA * SHERMAN Attachment C.4.a RAND CANYON DAIRY ROS HYDROLOGIC CONNECTION | Grand Canyon Dairy, June 14, 198 | 39 | | | | | |--------------------------------------|------------|-------------------|-------------------|---------------------|---------| | 024/14 041/9/1 04122// 0410 2// | Pond #1 | Pond #1 | Pond #2 | Pond #2 | Minimu | | Test Location | No. 1 | No. 2 | No. 1 | No. 2 | Requir | | Soil Description | | | | | | | Color | Dk. Red | Dk. Red
w/Blue | Yellow &
Brown | Yellow,
Blue & E | 3 T T . | | Texture
Unified Classification | Clay
CL | CT
CJah | Clay
CL | Clay | | | Sample Depth, Inches | 12+ | 12+ | 12+ | 12+ | 12 | | Atterberg Limits | | | | | | | Liquid Limit, (%) Plastic Limit, (%) | 46.
17 | 37
13 | 38
14 | 38
14 | 30 | | Plasticity Index | 29 | 24 | 24 | 24 | 15 | | Passing No. 200 Sieve, (%) | 55.7 | 71.7 | 59.8 | 55.2 | 30 | OUTHWESTERN LABORA | - 10 | | | | | | |--|-------------------|----------------------|----------|-----------------|------------------| | Grand Canyon Dairy, June 14, 1989 | Pond #3 | Pond #3 | Pond #4 | Pond #4 | | | Test Location | No. 1 | No. 2 | No. 1 | No. 2 | Minimu
Requir | | Soil Description | | | | | | | Color | Dk.& Lt.
Brown | Dk. Brn.
& Yellow | Brown | Red &
Yellow | | | Texture
Unified Classification | Clay
SC | Clay
CL | Clay | Clay
CL | | | Sample Depth, Inches | 12+ | 12+ | 12+ | 12+ | 12 | | Atterberg Limits | | | | 3 | | | Liquid Limit, (%) | 43 | 44 | 42 | 39 | 30 | | Plastic Limit, (%)
Plasticity Index | 15
28 | 16
28 | 15
27 | 13
26 | 15 | | Passing No. 200 Sieve, (%) | 47.9 | 57.3 | 59.0 | 62.7 | 30 | SOUTHWASTERN LABORATORIES | Grand Canyon Dairy, June 14, 1985 | 9 | | | | |-----------------------------------|------------------|-----------------|--|--------| | | Pond #5 | Pond #5 | | Minimu | | Pest Location | No. 1 | No. 2 | | Requir | | Soil Description | | | | | | Color | Yellow
& Gray | Red &
Yellow | | | | Texture | Clay | Clay | | | | Unified Classification | Ch | CD | | | | Sample Depth, Inches | 12÷ | 12+ | | 12 | | Atterberg Limits | | | | | | Liquid Limit, (%) | 38 | 39 | | 30 | | Plastic Limit, (%) | 13
25 | 14
25 | | 15 | | Plasticity Index | 2.0 | 23. | | ~~ | | Passing No. 200 Sieve, (%) | 55.8 | 57.3 | | 30 | OVTHAKESTE As per the minor amendment the following table shows the new designations for the RCS's. | Old RCS | New
RCS | |---------|------------| | RCS#1 | SB#1 | | RCS#2 | RCS#1 | | RCS#3 | RCS#2 | | RCS#4 | KU3#2 | | RCS#5 | SB#2 | | RCS#6 | SB#3 | | RCS#7 | RCS#3 | **Grand Canyon Dairy** July 3, 1989 Texas Water Commission P.O. Box 13087 Capitol Station Austin, Texas 78711-3087 Attn: Tom Haberle Water Quality Division Re: Grand Canyon Dairy Farm Dublin, Texas #### Gentlemen: Southwestern Laboratories has completed sampling and testing of the soils in the wastewater retention ponds No. 1 through 5 at the Grand Canyon Dairy Farm in Dublin, Texas. The test results including sample thickness, Atterberg limits, and percent passing the number 200 sieve are tabulated on the attached report. Our findings indicate the soils meet the criteria established by the Texas Water Commission. Very truly yours, SOUTHWESTERN LABORATORIES Kemp E. Akeman, P.E. Materials Engineer Roland S. Jary P. F. Vice President ns | Submitted by: | Grand Canyon Dairy Farm | |---------------|-------------------------| | Signed by: | | | Date: | | HOUSTON 4 DALLAS 4 AUSTIN 4 DEALMONT 4 CONROE 4 GALVESTON COUNTY 4 TIO GRANDE VALLEY 4 ALEXANDÁIA SAN ANTONIO 4 FORT WORTH 4 LEESVILLE 4 MIDLAND 4 MONROE 4 SHREVEPORT 4 TEXARKANA 4 SHERIMAN | | Grand Canyon Dairy, June 14, 1989 | | | | | | |---|--------------------------------------|-------------------|----------------------|------------|-----------------|--------| | | | Pond #3 | Pond #3 | Pond #4 | Pond #4 | Minimu | | | Test Location | No. 1 | No. 2 | No. 1 | No. 2 | Requir | | | Soil Description | | | | | | | | Color | Dk.& Lt.
Brown | Dk. Brn.
& Yellow | Brown | Red &
Yellow | | | | Texture
Unified Classification | Clay
SC | Clay
CL | Clay
CL | Clay | | | | Sample Depth, Inches | 12+ | 12+ | 12+ | 12+ | 12 | | | Atterberg Limits | | | | | | | , | Liquid Limit, (%) Plastic Limit, (%) | 43
15 | 44
16 | 42
15 | 39
23 | 30 | | | Plasticity Index | 28 | 28 | 27 | 26 | 15 | | | Passing No. 200 Sieve, (%) | 47.9 | 57.3 | 59.0 | 62.7 | 30 | SOUTHWESTERN LABORAT As per the minor amendment the following table shows the new designations for the RCS's. | Old RCS | New
RCS | |---------|------------| | RCS#1 | SB#1 | | RCS#2 | RCS#1 | | RCS#3 | RCS#2 | | RCS#4 | KCS#Z | | RCS#5 | SB#2 | | RCS#6 | SB#3 | | RCS#7 | RCS#3 | February 8, 1989 Texas Water Commission P.O. Box 13087 Capitol Station Austin, Texas 78711-3087 Attn: Tom Haberle Water Quality Division Re: Grand Canyon Dairy Farm Dublin, Texas #### Gentlemen: Southwestern Laboratories has completed sampling and testing of the soils exposed in wastewater retention pond No. 6 at the Grand Canyon Dairy Farm in Dublin, Texas. The test results including sample thickness, Atterberg limits, and percent passing the number 200 sieve are tabulated on the attached report. Our findings indicate the soils meet the criteria established by the Texas Water Commission. Very truly yours, SOUTHWESTERN LABORATORIES David R. Friels, P.E. Senior Materials Enginee Roland S. Jary, P.E. Vice President tj Submitted by: Grand Capyon Dairy Farm Signed by: Date: HOUSTON • DALLAS • AUSTIN • BEAUMONT • CONROC • GALVESTON COUNTY • PIO GRANDE VALLEY • ALEXANDRIA SAN ANTONIO • FORT WORTH • LEESVILLE • MIQLAND • MONROE • SHREVEPORT • TEXARKANA • SHREMAN Attachment C.4.e GRAND CANYON DAIRY RCS HYDROLOGIC CONNECTION | Grand Canvon Dairy, Pond No. 6 | | | 4 | | | |---|------------------|------------------|------------------|------------------|--------------------| | Test Location | No. 1 | No. 2 | No. 3 | , | iinimus
Require | | Soil Description | | | | | | | Color | Lt. Brn. | Brown | Tan/Lt.
Brown | Brown | | | Texture
Unified Classification | Sandy Clay
CL | Sandy Clay
CL | Sandy Clay | Sandy Clay
CL | | | Sample Depth, Inches | 12+ | 12+ | 12+ | 12+ | 12 | | Atterberg Limits | | | | | | | Liquid Limit, (%) Plastic Limit, (%) Plasticity Index | 44
15
29 | 40
14
26 | 41
14
27 | 38
14
24 | · 30 | | Passing No. 200 Sieve, (%) | 50.0 | 54.8 | 52.9 | 54 - 2 | 30 | SOUTHWESTEIN LABORATO July 3, 1989 Texas Water Commission P.O. Box 13087 Capitol Station Austin, Texas 78711-3087 Attn: Tom Haberle Water Quality Division Re: Grand Canyon Dairy Farm Dublin, Texas Gentlemen: Southwestern Laboratories has completed sampling and testing of the soils in the wastewater retention ponds No. 1 through 5 at the Grand Canyon Dairy Farm in Dublin, Texas. The test results including sample thickness, Atterberg limits, and percent passing the number 200 sieve are tabulated on the attached report. Our findings indicate the soils meet the criteria established by the Texas Water Commission. Very truly yours, SOUTHWESTERN LABORATORIES Kemp E. Akeman, P.E. Materials Engineer Roland S. Jary P.F. Vice President ns | Submitted by: | Grand Canyon Dairy Farm | |---------------|-------------------------| | Signed by: | | | Date: | | HOUSTON * DALLAS * AUSTIN * BEAUMONT * CONROE * GALVESTON COUNTY * RIO GRANDE VALLEY * ALEXANDÁIA SAN ANTONIO * FORT WORTH * LEESVILLE * MIDLAND * MONROE * SHREVEPORT * TEXARKANA * SHERMAN | Grand Canyon Dairy, June 14, 1989 | | | • | | | |--|-------------------|----------------------|------------|-----------------|--------| | | Pond #3 | Pond #3 | Pond #4 | Pond #4 | Minimu | | Test Location | No. 1 | No. 2 | No. 1 | Ио. 2 | Requir | | Soil Description | | | | | | | Color | Dk.& Lt.
Brown | Dk. Brn.
& Yellow | Brown | Red &
Yellow | | | Texture
Unified Classification | Clay
sc | Clay | Clay
CL | Clay
CL | | | Sample Depth, Inches | 12+ | 12+ | 12+ | 12+ | 12 | | Atterberg Limits | | | | | | | Liquid Limit, (%) | 43
15 | 44
16 | 42
15 | 39
13 | 30 | | Plastic Limit, (%)
Plasticity Index | 28 | 28 | 27 | 26 | 15 | | Passing No. 200 Sieve, (%) | 47.9 | 57.3 | 59.0 | 62.7 | 30 | SOUTHWESTERN LABORATORNES # 4.0 WASTE UTILIZATION & NUTRIENT MANAGEMENT PLAN #### 4.1 Nutrient Utilization Agronomic application of dairy wastewater enhances soil productivity and provides the crop and forage growth with needed nutrients for optimum growth and vigor. Land application of wastewater will take place according to a Nutrient Utilization/Nutrient Management Plan (NUP/NMP) in accordance with NRCS Codes 590 and 633. Attached are two NUP/NMP for crop year 2025, one for Phase 1 and one for Phase 2. Per 30 TAC §321.42(j), existing dairy facilities located in a major sole-source impairment zone may request the TCEQ to allow the operator to provide manure, litter and wastewater to owners of third-party fields (areas not owned, operated, controlled, rented, or leased by the permittee) that have been identified in the PPP. Circle 7 Dairy, LLC & Grand Canyon Dairy,
LLC requests access to third-party fields to be operated in accordance with 30 TAC §321.42(j)(1)-(4). Third-party written contracts between the permittee and the third-party recipient will be maintained in the PPP. These contracts will confirm that the third party will allow manure, wastewater and slurry from the facility to be beneficially applied at agronomic rates based on the soil test phosphorus in accordance with applicable requirements of 30 TAC §321.36 and §321.40. A Texas State Soil and Water Conservation Board (TSSWCB) certified Comprehensive Nutrient Management Plan (CNMP) has been developed. # 4.2 Waste Handling Procedures The dairy shall operate under the provisions of 30 TAC §321.42, which describes certain waste management and disposal requirements for individual water quality permits for dairy concentrated animal feeding operations (CAFOs) when an operation is located in a major sole-source impairment zone. Waste disposal options include: - Beneficial use outside the watershed - Disposed in permitted landfills outside the watershed - Delivered to a composting facility approved by the Executive Director - Other beneficial use approved by the Executive Director - Applied on-site in accordance with a certified NRCS Code 590/633 NMP or NUP, as dictated by annual soil test results - Provided to third parties as discussed above in Section 4.1 ## Executive Summary Grand Canyon Dairy Phase I WQ0002950000 ## LMU Summary: LMUs 1, 3, 6, 7, 10, 11, 13, and 14 are cropped in Corn and Wheat. LMU's 1A, 2, 2A, 3A, 4, 5, 8, 9, 12 and 12A are established in coastal Bermudagrass and Winter Wheat. # Nutrient Summary: | LMU# | Max N | Max P205 | Planned N | Planned P | |------|-------------|-------------|-------------|-------------| | | Lb/ac | Lb/ac | Lb/ac | Lb/ac | | | Application | Application | Application | Application | | | Rates | Rates | Rates | Rates | | 1 | 223 | 277 | 33 | 42 | | 1A | 387 | 308 | 387 | 308 | | 2 | 329 | 410 | 49 | 61 | | 2A | 387 | 308 | 387 | 308 | | 3 | 106 | 132 | 16 | 20 | | 3A | 83 | 104 | 13 | 16 | | 4 | 387 | 308 | 387 | 308 | | 5 | 247 | 307 | 40 | 49 | | 6 | 340 | 270 | 340 | 270 | | 7 | 340 | 270 | 340 | 270 | | 8 | 400 | 318 | 400 | 318 | | 9 | 400 | 318 | 400 | 318 | | 10 | 340 | 270 | 340 | 270 | | 11 | 340 | 270 | 340 | 270 | | 12 | 131 | 104 | 131 | 104 | | 12A | 196 | 156 | 196 | 156 | | 13 | 340 | 270 | 340 | 270 | | 14 | 340 | 270 | 340 | 270 | Supplemental nutrients will be necessary to achieve the desired yields. Commercial fertilizer applications should be split such that individual application events do not exceed 100 lb/Ac. All remaining manure is to be hauled off by a contract hauler for beneficial use. Offsite manure transfer activities will be in accordance with NRCS and TCEQ requirements for sampling, recordkeeping, and land application. **Grand Canyon Dairy**Phase I ### **TCEQ Permit Number:** WQ0002950000 #### Owner Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC 965 Waddington Road Ferndale, CA 95536 707-725-5005 ## Type of Organic Nutrient Management Plan: Other AFO-CAFO Waste Plan located in Erath County Prepared By: (Signature) Stephen Colby Certified Nutrient Management Specialist Certificate Number = TX2025004 Expiration Date = December 31, 2025 Enviro-Ag Engineering 9855 FM 847 Dublin, TX 76446 (254) 233-9948 This plan is based on: 590 Organic Nutrient Management Plan V 5.0 5/8/25 9:04 AM **EXECUTIVE SUMMARY:** Permit #: WQ0002950000 This Nutrient Management Plan has fields that meet NMP and/or NUP requirements. See Attached Executive Summary #### LOCATION AND PURPOSE OF THE PLAN This animal operation is located in **Erath** County (see attached topo map and plan map for location.) The purpose of this plan is to outline the details of the land application of the effluent and solids produced by this operation. When the plan is fully implemented, it should minimize the effects of the land application of animal wastes on the soil, water, air, plant, and animal resources in and around the application area. This plan, when applied, will meet the requirements of the Natural Resources Conservation Service Waste Utilization Standard and Nutrient Management Standard. The plan is for the year of 2025 and will remain in effect until revision based on new soil or manure analysis or crop change (yield or crop) result in a new P-Index rating or plan classification (NMP-NUP). The waste has been stored in a Dairy Lagoon . Approximately 2500 head will be confined with the average weight of 1400 pounds. The animals will be confined hours per day for 365 days per year. Page 1 - Printed on: 5/8/25 9:04 AM Plan is based on: 590 Organic Nutrient Manageme TABLES 1, 2 and 2a Permit #: WQ0002950000 Values in Table 1 may be based on actual analysis or "book" values during the initial planning to determine land application rates for the initial plan. When "book" values are used, they will be from NRCS, Texas Cooperative Extension or averages from other TX testing lab sources. Site specific data will be used as soon as feasible after production begins. Manure and/or effluent will be tested at least annually or in the year of application if it is stored for more than one year. If the actual values are more than 10% higher or lower than the estimated values, this plan will need to be revised accordingly. Application of waste products may be made up to the Maximum Rate given in Table 2 or 2a as applicable. Table 2 applies to those that are subject to Nutrient Management Plan (NMP) requirements while Table 2a applies when subject to Nutrient Utilization Plan (NUP) requirements. Current requirements for both the NMP and NUP are given in the headers of the tables. Table 2a has a criteria involving the distance to a named stream when the Soil Test P Level is above 200 ppm in arid areas as well as special requirements when the site is in a TMDL watershed designated by TCEQ. For various P Index Ratings, the maximum rates in Table 2 are based on crop requirements, whereas the maximum rates in Table 2a are based on crop removal rates. County avg. rainfall information can be found in the TX Agronomy Technical Note 15, Phosphorus Assessment Tool for Texas, located in the eFOTG at the address given in the section entitled "Collecting Soil Samples for Analyses". #### **CROP REMOVAL RATES:** Crop Removal Rates of nitrogen (N), phosphorus (P), and potassium (K) in pounds per acre are given in Table 3 for the crop and yield planned for each field. This Table is included for information only, and should be used during the planning process to compare planned or maximum application rates to crop removal. Crop removal rates may be based on actual analysis of harvested material or default values in the database. P build-up will occur at higher rates when crop removal rates are exceeded.. #### SOLIDS APPLICATION: The maximum solids application rates are given in Table 4 along with the current soil test P level, maximum P_2O_5 application rate, maximum tons per acre of solids and the total tons of solids per field that can be applied to each field. The maximum tons of solids that can be utilized on the fields planned is indicated in the box near the lower left corner of Table 4. When the total application acres of the fields are adequate to allow all of the solids to be applied, "Adequate" will be indicated below the tonnage in this box. If "Not Adequate" is indicated, then the lower box will indicate the tons of solids that must be utilized off-site unless more fields/acres are added. This plan is valid only if the application of waste to the crops listed does not exceed the per acre rates by more than 10%. If the yield of a crop does not meet the expected goal, the application rate should be adjusted the following year. The estimated amounts of N, P_2O_5 , and K_2O contained in the solids are provided in Table 5 for the maximum application rate. Supplemental N and K_2O will be applied to achieve the yield goals in Table 4 when recommended by the soil test and the maximum rate of the solids does not meet the crop needs. When the maximum application rate is applied and Table 5 indicates additional commercial nutrients, they <u>must</u> be applied to fields as indicated. **NOTE:** If additional nitrogen is recommended, the producer should consider collecting soil samples from the 6 - 36 inch layer to see if there is any additional deep nitrogen available. Additional deep nitrogen within the root zone of the crop can be substituted for supplemental commercial nitrogen, and should be included in the soil test N ppm entry. Page 2 - Printed on: 5/8/25 9:04 AM Plan is based on: 590 Organic Nutrient Manageme SOLIDS APPLICATION: (cont) Permit #: WQ0002950000 In situations where more land is available than is needed to utilize the maximum application rate on each field, the application rates in Table 6 have been reduced to the level that does not exceed the amount of solids produced. Table 7 indicates the amount of nutrients provided and, if needed, the supplemental nutrients which **must** be applied when the application is based on these rates. The amounts of supplemental nutrients in Table 7 are based on the actual amount of waste available rather than the **maximum** rate that "**could**" be applied. The second line from the bottom of Table 6 on the right has a box that will be "YES" or "NO". When the reduced rates use all solids to be produced in a year, this box will be "Yes". If the percentages are too low, it will be "No". If "No", either more acreage is needed on which to apply the solids or the solids will need to be transported off-site. The amount is located on the bottom line on the extreme right of the page. Actual application will be based on the quantities produced, as well as, current manure analyses. Application at the MAXIMUM rates shown in Table 4 will result in a more rapid build-up of phosphorus than if applied at lower rates. A different percentage may be used as long as the rate
does not exceed the maximum shown in Table 4 for the field and the proper amount of supplemental nutrients are applied. Applying a lower rate to the fields with higher soil test P levels will slow down the P buildup and extend their land application life. Phosphorus will also build up more rapidly on pastureland than on hayland or cropland, since very few nutrients are actually removed by grazing animals. The solids may be applied to the same acreage every year according to Table 2 or 2a. The annual rates in both Table 4 and 6 may be doubled not to exceed the 2X the annual nitrogen requirement or nitrogen removal rate, as applicable. When the full biennial rate has been used, no additional phosphorus fertilizer or animal wastes may be applied in the alternate year. A column in both tables indicates whether the rates given are Annual Rates (A) or Biennial Rates (B). Rates given are based on Table 2 or 2a as applicable. Annual application rate for fields in a TMDL area with a Soil Test P level equal to or greater than 500 ppm or any field in a TMDL area with P Index Rating of Very High is 0.5 annual crop removal rate. #### EFFLUENT APPLICATION: The maximum effluent application rates are given in Table 8 for each field. This table provides the current soil test P level, maximum P_2O_5 application rate, effluent either in gallons per acre or acre inches per acre and the amount of effluent that can be applied per field. The maximum amount of effluent that can be utilized on the fields planned is indicated in a box near the lower left corner of Table 8. When the total application acres are adequate to allow all of the effluent to be applied, "Adequate" will be indicated below this box. If "Not Adequate" is indicated, then the lower box will indicate the amount of effluent that must be utilized off-site unless more field acres are added. The estimated amounts of N, P, and K contained in the effluent are provided in Table 9 for the maximum application rate indicated in Table 8. Supplemental N and K₂O will be applied to achieve the yield goals when recommended by the soil test and the maximum rates of the effluent do not meet the crop requirements. **NOTE:** If additional nitrogen is recommended, the producer should consider collecting soil samples from the 6 - 36 inch layer to see if there is any additional deep nitrogen available. Additional deep nitrogen within the root zone of the crop can be substituted for supplemental commercial nitrogen. Page 3 - Printed on: 5/8/25 9:04 AM Plan is based on: 590 Organic Nutrient Management P EFFLUENT APPLICATION: (cont) Permit #: WQ0002950000 In situations where more land is available than is needed to utilize the maximum application rate on each field, the application rates in Table 10 have been reduced to the level that does not exceed the amount of effluent produced. Table 11 indicates the amount of nutrients provided and, if needed, the supplemental nutrients which must be applied when application is made based on the rates in Table 10. These amounts of supplemental nutrients in Table 11 are based on the planned amount of effluent available rather than the maximum rate that "could" be applied. The bottom line on the right of Table 10 has a box that will be "YES" or "NO". When the reduced rates uses all effluent to be produced in a year, this box will be "Yes". If the percentages are too low, it will be "No". If "No" is indicated, either more acreage is needed on which to apply the effluent or the effluent will need to be transported offsite. Actual application will be based on the quantities produced, as well as, current manure analyses. Application at the MAXIMUM rates shown in Table 8 will result in a more rapid build-up of phosphorus than if applied at lower rates. A different percentage may be used as long as the rate does not exceed the maximum shown in Table 8 for the field and the proper amount of supplemental nutrients are applied. Applying a lower rate to fields with higher soil test P levels will slow down the P buildup and extend their land application life. Phosphorus will also build up more rapidly on pastureland than on hayland or cropland, since very few nutrients are actually removed by grazing animals. The effluent may be applied to the same acreage every year according to Table 2 or 2a. The annual rates in both Table 8 and 10 may be doubled not to exceed the 2X the annual nitrogen requirement or nitrogen removal rate, as applicable, when the full biennial rate has been used, no additional phosphorus fertilizer or animal wastes may be applied in the alternate year. A column in both tables indicates whether the rates given are Annual Rates (A) or Biennial Rates (B). Rates given are based on Table 2 or 2a as applicable. Annual application rate for fields in a TMDL area with a Soil Test P level equal to or greater than 500 ppm or any field in a TMDL area with P Index Rating of Very High is 0.5 annual crop removal rate. Maximum Hourly Application Rate - The maximum hourly application rate is determined by the texture of the soil layer with the lowest permeability within the upper 24 inches of the of the predominant soil in each field. The hourly application rate must be low enough to avoid runoff and/or ponding. For effluent with 0.5% solids or less, **DO NOT** exceed the rates shown in Table 1 of the attached Job Sheet titled, "Waste Utilization, Determining Effluent Application Rates". If the effluent contains more than 0.5% solids, those values must be reduced by the appropriate amount shown in Table 2 of the attached "Waste Utilization, Determining Effluent Application Rates" Job Sheet. Maximum One-Time Application Rate - The maximum amount of effluent that can be applied to a given field at any one-time is the amount that will bring the top 24 inches of the soil to 100% field capacity. This amount is determined by subtracting the amount of water stored in the soil (estimated by feel and appearance method) from the available water holding capacity (AWC) of the soil. The available water holding capacity of the top 24 inches of the predominant soil of each field receiving effluent and the texture of the most restrictive layer in the upper 24 inches are given in Table 12. Page 4 - Printed on: 5/8/25 9:04 AM Plan is based on: 590 Organic Nutrient Management P EFFLUENT APPLICATION: (cont) Permit #: WQ0002950000 To determine any one-time application amount, the current percent of field capacity (FC) of the upper 24 inches of the predominant soil in the field should be estimated using the guidance in Table 3 of the attached Job Sheet, "Waste Utilization, Determining Effluent Application Rates, rev 4/06". Additional information on estimating soil moisture can be found in the NRCS Program Aid 1619, "Estimating Soil Moisture by Feel and Appearance", or from the University of Nebraska Extension publication No. G84-690-A by the same name. Both of these publications have pictures of various soils at different percentages of field capacity to be used as a guide to estimating soil moisture. Once the current percent of FC is estimated, it is subtracted from the AWC amount in Table 12 for the given field and the difference is the maximum application for those soil conditions on that day. Remember, the maximum hourly application and the maximum one time application rates are only estimates to be used as a guide. Solids/Effluent Land Application: - Land application of solids and/or effluent should be made at appropriate times to meet crop needs, but can be made at any time as long as the total annual (or biennial) rate, maximum hourly rate, and the maximum one time application rates are not exceeded. Effluent should be surface applied uniformly. No runoff or ponding should occur during application thus frequent observations should be made. Neither effluent or solids will be applied to slopes >8% with a runoff curve >80, or steeper than 16% slope with a runoff curve of 70 or greater, unless the application is part of an erosion control plan. Waste will not be spread at night, during rainfall events, or on frozen or saturated soils if a potential risk for runoff exists. Waste will not be applied to frequently flooded soils during months when the soils typically flood. If frequently flooded soil occur on any potential application field see attached, "Water Features Table", for months when flooding is expected. Solids should be applied with a manure spreader as uniformly as feasible. Surface applications with trucks should only be made when soil conditions are favorable in order to minimize soil compaction. #### Managing Runoff - A minimum 100 ft. setback or vegetated buffer (Filter Strip, Field Border, Riparian Forested Buffer, etc.) will be established and maintained between the application area and all surface water bodies, sink holes, and watercourses as designated on Soil Survey sheets or USGS topographic maps. A minimum application distance from private and public will be 150 ft. and 500 ft. respectively. A minimum application distance from water wells used exclusively for agricultural irrigation will be 100 ft. Table 9 provides a summary of the setbacks and out areas of each field. #### Managing Leaching - When soils with sandy, loamy sand, or gravelly surface textures have a Nitrogen Leaching Index score of >2 appropriate measures will be used to minimize the potential of leaching. These measures will include, split applications of waste, and may include double cropping, or cover crops, and irrigation water management (on fields that receive supplemental or full irrigation). #### MORTALITY MANAGEMENT: All mortality will be disposed of properly within 3 days according to the Texas Commission on Environmental Quality (TCEQ) rules. The preferred method for disposal of routine mortality is by a rendering plant. Before planning this method, contact the facility or its representative to be informed of special handling procedures, equipment needs, scheduling requirements,
etc. Maintain a list of contact phone numbers so information will be readily available following a catastrophic die-off. Verify that local companies which have previously picked up and/or rendered dead animals are still doing so. A number of rendering companies across the state have stopped dead animal pick up service, and others have raised their fees significantly. Periodically review the availability and cost of rendering so that the plan can be modified if necessary. This can be an excellent option if mortality can be loaded and transported while still fresh or the mortality can be refrigerated until loaded and transported. Page 5 - Printed on: 5/8/25 9:04 AM Plan is based on: 590 Organic Nutrient Management Pl MORTALITY MANAGEMENT: (cont) Permit #: WQ0002950000 Disposal in a landfill may be an option in some locations. Before planning this option, the closest commercial, regional, county, or municipal landfill should be contacted to determine if the landfill has a permit which would allow acceptance of dead animals (swine, sheep, cattle, etc.). Also ask if there are any restrictions on type and volume of animal mortality that will be accepted at the facility. Landfill fees and transport, offloading, and handling procedures should be discussed with landfill managers and documented for reference when needed. The landfill is not a viable option if the producer does not own or have access to a vehicle capable of transporting mortality quickly in an emergency situation. After a catastrophic die-off is not a good time to find out that a driver and truck to transport mortality will not be available for several weeks (MAKE ARRANGEMENTS NOW, NOT AFTER THE ANIMALS ARE DEAD). On-farm disposal of catastrophic mortality may be considered if site conditions permit. On-farm methods include burial, composting, and incineration. Incinerators and composters are excellent options for routine mortality but usually do not have the capacity to handle mortality volumes associated with catastrophic events. Composting and incineration should not be relied on for catastrophic mortality handling without a documented evaluation of worst anticipated mortality condition (number, type, and weight of animals), and the anticipated capacity of the system (i.e., lb./hr. incineration rate, hrs/day of operation). NRCS Mortality Facility Standard 316 will be used for all mortality management. See the attached soil interpretation, ENG - Animal Mortality Disposal (Catastrophic) Trench, to make a preliminary assessment of the limitations of the soils on this farm for burial of catastrophic mortality. The attached TX NRCS Technical Guidance, Catastrophic Animal Mortality Management (Burial Method) should be used as a guide to overcome minor limitations and as design criteria for the construction of burial pits for catastrophic mortality. Mortality burial sites shall be located outside the 100 -year floodplain. Mortality burial will not be less than 200 feet from a well, spring, or water course. A FIELD INVESTIGATION BY A QUALIFIED PROFESSIONAL SHOULD BE MADE BEFORE AN AREA IS USED FOR A BURIAL SITE FOR CATASTROPHIC MORTALITY EVENTS. The TCEQ Industrial and Hazardous Waste Permits Section, MC-130, must be contacted before burial of catastrophic mortality. TCEQ Industrial and Hazardous Waste Permits Section, MC-130 PO Box 13087 Austin, TX 78711-3087 Phone: 512-239-2334 Fax: 512-239-6383 #### Air Quality: The following steps should be taken when spreading effluent or solids to reduce problems associated with odor. - I. Avoid spreading effluent or solids when wind will blow odors toward populated areas. - 2. Avoid spreading effluent or solids immediately before weekends or holidays, if people are likely to be engaged in nearby outdoor activities. - 3. Avoid spreading effluent or solids near heavily traveled highways. - 4. Make applications in the morning when the air is warming, rather than in the late afternoon. - 5. All materials will be handled in a manner to minimize the generation of particulate matter, odors, and greenhouse gas emissions. Page 6 - Printed on: 5/8/25 9:04 AM Plan is based on: 590 Organic Nutrient Management Pl #### EFFLUENT AND SOLIDS STORAGE & TESTING: Permit #: WQ0002950000 Effluent and solids will be stored in facilities designed, constructed, and maintained according to USDA NRCS Standards and specifications. Effluent and solids sampling is needed to get a better idea of the nutrients actually being applied. Effluent and/or solids samples will be collected at least annually, or in the year of its use if waste is typically stored for more than 1 year. The samples will be submitted immediately to a lab for testing. If sent to Texas A&M soil lab or SFASU Soil Testing Lab for analysis, use the "plant and forage analysis" form and note the type of operation. Request that the manure be analyzed for percent dry matter, solids, total nitrogen, total phosphorus, and total potassium. Further information on collecting effluent and manure samples for analysis can be found in the TCE publication No. L-5175, "Managing Crop Nutrients Through Soil, Manure and Effluent Testing". TCEQ sampling rules and testing requirements will be followed on permitted sites. #### COLLECTING SOIL SAMPLES FOR ANALYSIS: Collect a composite sample for each field (or area of similar soils and management not more than 40 acres in size) comprised of 10 - 15 randomly selected cores. Each core should represent 0 - 6 inches below the surface except for when injection has been done over 6" in depth, then the core should represent the 3-9" layer. Thoroughly mix each set of core samples, and select about a pint of the mixture as the sample for analysis. Label each sample for the field that it represents. Request that the samples be analyzed for nitrate nitrogen, plant-available phosphorus, potassium, sodium, magnesium, calcium, sulfur, boron, conductivity; and pH. Also note on the samples that they are from an effluent or solids application area. TCEQ sampling rules and testing requirements will be followed on permitted sites. A weighted average of 0-2 and 2-6 inch layers will be used for calculations on permitted sites. Further information on collecting soil samples can be found on the TCE Form D-494, p 2, TCE Publication No. L-1793, and TCEQ RG-408. Additional NRCS guidance and requirements can be found in the Nutrient Management (590) standard located in the Texas electronic Field Office Technical Guide (eFOTG) at: http://efotg.nrcs.usda.gov/efotg_locator.aspx?map=TX Click the county desired. Click Section IV in the left column under cFOTG Type: 590 in the Search Menu above eFOTG and click: GO Click on the desired item under Nutrient Management in the left column #### SOIL ANALYSIS: A soil analysis will be completed for all areas to be used for all effluent or solids application areas. The soil test analysis method will be **Mchlich III with inductively coupled plasma (ICP)**. The area will be tested and analyzed at least annually to monitor P build up. Page 7 - Printed on: 5/8/25 9:04 AM Plan is based on: 590 Organic Nutrient Management ! RECORD KEEPING: Permit #: WQ0002950000 Detailed records should be maintained by the producer for all application of animal waste to land owned and operated by the producer. Records should include date, time, location, amount of application, weather conditions, estimated wind speed and direction, etc. A rain gauge should be in place at the application site and accurate records of rainfall should be maintained at the site. All records must be kept for at least 5 years. TCEQ requirements will be followed on permitted sites. Records should also be kept showing amounts of litter given or sold to others. A copy of the effluent analysis and/or solids analysis and a Waste Utilization Guidelines Sheet should be given to anyone who will use either the effluent or solids off-site. If they routinely use animal wastes for fertilizer, they should be directed to the local Soil and Water Conservation District or NRCS office to develop a Waste Utilization and Nutrient Management Plan for their land. This portion may be completed by producer, if desired or recorded elsewhere. | Date / | Amount | Hauler or Recipient | |--------|--------|---------------------| | | | | | | | | | | | | | | | | | - | Page 8 - Printed on: 5/8/25 9:04 AM Plan is based on: 590 Organic Nutrient Management I #### OPERATION AND MAINTENANCE: Permit #: WQ0002950000 Application equipment should be maintained in good working order and it should be calibrated annually so that the desired rate and amount of effluent and solids will be applied. Information on calibrating manure spreaders can be found in the TCE publication No. L-5175, "Managing Crop Nutrients Through Soil, Manure and Effluent Testing". Information on calibrating big gen sprinklers can be found in the Arkansas Extension publication, "Calibrating Stationary Big Gun Sprinklers for Manure Application". For information on calibrating tank spreaders, traveling guns, and additional information on other manure spreading equipment, see Nebraska Extension publication No. G95-1267-A, "Manure Applicator Calibration". Observe and follow manufacturer's recommended maintenance schedules for all equipment and facilities involved in the waste management system. For information on lagoon functions, refer to TCE publication E9, "Proper Lagoon Management". Any changes in this system should be discussed with the local Soil and Water Conservation District, USDA Natural Resources Conservation Service, or other qualified professional prior to their implementation. | Plan Prepared by: | Stephen Colby | Date; | 5/8/2025 | | |---------------------|-------------------------|-------|----------|--| | Plan Approved by: | Jalley | Date: | 5/8/25
 | | Producer Signature: | Discussed with Producer | Date: | 18/25 | | The producer's signature indicates that this plan has been discussed with him/her. If this plan is not signed by the producer, indicate how the plan was provided to the producer. Page 9 - Printed on: 5/8/25 9:04 AM Plan is based on: 590 Organic Nutrient Management Pl Table 1 - Estimated Effluent and Solids Quantities Produced Permit #: WQ0002950000 Avg. Number of Animals 2,500 Type of Waste Dairy Lagoon Dairy Solids Contact the local Soil and Water Conservation District or USDA Natural Resources Conservation Service office if the total number of animals change by more than 10% so your plan can be revised. Estimated Acre Inches of Effluent to be Available Annually* 1,693 Estimated Tons Solids to be Land Applied Annually (on or off site)* 18,323.3 *From engineering design. | Nutrient Availab | oilty | | | | Nutrient Ava | ailabilty | | |---------------------|---|--|---|---|--|--|--| | pounds/yr
14,118 | Pounds /
1000 gal
0.31 | Pounds / Acre Inch 8.3 | ** | N | pounds /
yr
347,188 | pounds /
ton
18.9 | * * | | 17,570 | 0.38 | 10.4 | | P2O5 | 275,831 | 15.1 | | | 161,124 | 3.51 | 95.2 | | K2O | 519,030 | 28.3 | | | | | • | | | | · | \$ | | | pounds/yr
14,118
17,570
161,124
Effluent Values | pounds/yr 1000 gal 14,118 0.31 17,570 0.38 161,124 3.51 Effluent Values Based on An | Pounds / Pounds / Pounds / 1000 gal Acre Inch 14,118 0.31 8.3 17,570 0.38 10.4 161,124 3,51 95.2 Effluent Values Based on Analysis | Pounds / Pounds / pounds/yr 1000 gal Acre Inch 14,118 0.31 8.3 ** 17,570 0.38 10.4 161,124 3.51 95.2 Effluent Values Based on Analysis | Solids Pounds / Pounds / Pounds/yr 1000 gal Acre Inch 14,118 0.31 8.3 ** N | Solids Pounds / P | Solids Pounds / pounds / pounds / 1000 gal Pounds / Acre Inch 14,118 Pounds / Pounds / Pounds / Acre Inch 20,31 Pounds / Po | Default values were used on all fields for plant removal of nutrients and yield levels. TABLE 2. A Nutrient Management Plan (NMP) is required where Soil Test P Level 1/2 is: - · less than 200 ppm statewide or - or < 350 ppm in arid areas 2/ with a named stream > one mile. | P – Index Rating | Maximum TMDL Annual P Application Rate 5/ | Maximum
Annual P
Application | Maximum Biennial Application
Rate | |-------------------|--|---|--| | Very Low, Low | Annual Nitrogen (N)
Requirement | Annual Nitrogen (N) Requirement | 2.0 Times Annual N Requirement | | Medium | 2.0 Times Annual Crop P
Requirement ^{3/} | 2.0 Times
Annual Crop P
Requirement 31 | 2.0 Times Annual N Requirement | | High ⁵ | 1.5 Times Annual Crop P
Requirement 31 | 1.5 Times
Annual Crop P
Requirement ^{3/} | Double the Maximum Annual P
Application Not to Exceed 2 times the
Annual N Requirement | | Very High ⁵ | 1.0 Times Annual Crop P
Requirement 3/ | 1.0 Times
Annual Crop P
Requirement ^{3/} | Double the Maximum Annual P Application Not to Exceed 2 times the Annual N Requirement | ### TABLE 2a. A Nutrient Utilization Plan (NUP) is required by TCEQ where Soil Test P Level 1/2 is: - equal to or greater than 200 ppm in non-arid areas ^{2/} or - equal to or greater than 350 ppm in arid areas 21 with a named stream greater than one mile or - equal to or greater than 200 ppm in arid areas ^{2l} with a named stream less than one mile. | P – Index Rating | Maximum TMDL Annual P Application Rate 5/ | Maximum
Annual P
Application | Maximum Biennial Application
Rate | |-------------------|--|---|---| | Very Low, Low | 1.0 Times Annual Crop P
Removal ^{4/} | Annual N Crop
Removal | 2.0 Times Annual N Removal | | Medium | 1.0 Times Annual Crop P
Removal ^{4/} | 1.5 Times
Annual Crop P
Removal ^{4/} | Double the Maximum Annual P
Application Not to Exceed 2 times the
Annual N Crop Removal | | High ⁵ | 1.0 Times Annual Crop P
Removal ^{4/} | 1.0 Times
Annual Crop P
Removal ^{4/} | Double the Maximum Annual P
Application Not to Exceed 2 times the
Annual N Crop Removal | | Very High ⁵ | 0.5 Times Annual Crop P
Removal ^{4/} | 0.5 Times
Annual Crop P
Removal ^{4/} | Double the Maximum Annual P
Application Not to Exceed 2 times the
Annual N Crop Removal | #### Footnotes Applicable to both Tables - 1/ Soil test P will be Mehlich III by inductively coupled plasma (ICP). - 2/ Non-arid areas, counties receiving => 25 inches annual rainfall, will use the 200 ppm P level while arid areas, counties receiving < 25 inches of annual rainfall, will use the 350 ppm P level. See map in TX Agronomy Technical Note 15, Phosphorus Assessment Tool for Texas, for county designations.</p> - 3/ Not to exceed the annual nitrogen requirement rate. - 4/ Not to exceed the annual nitrogen removal rate. - 5/ When soil test phosphorus levels are ≥ 500 ppm, with a P-Index rating of "High" or "Very High", there will be no additional application of phosphorus to a CMU or field. Page 11 Printed on: 5/8/25 9:04 AM Plan is based on: 590 Organic Nutrient Management Plan V 5.0 ## PI Index by Field | Printed on:
Client Name:
Planner:
| | | | | | | | | Permit #:
Date:
Location:
Rainfall: | WQ0002950
5/8/2025
Erath
>25.0 inches |)00
-
- | | | | |---|---------------------------------------|-------|--------------|-------------------|--|---|------------------------------|----------------------------|--|--|---------------|--------------------|--------------------|--------------------| | LMU or Fields | Сгор | Slope | Runoff Curve | Soil Test P Level | Inorganic P ₂ O ₅ Appl
Rate | Organic P ₂ O ₅ Appl Rate | Inorganic Method &
Timing | Organic Method &
Timing | Proximity of Appl to
Named Stream | Runoff Class | Soil Erosion | Total Index Points | P Runoff Potential | Soil Test
Date: | | 1 | Silage - Corn21-25T;SG GreenChop-6-7T | 4.0% | 85 | 8 | 0 | 6 | 0 | 0.5 | 5 | 4 | 1.5 | 25 | High | 10/24/24 | | 1A | Coastal GC (30%DM) 9-11T; SG GC 6-7T | 4.0% | 85 | 8 | 0 | 6 | 0 | 4 | 5 | 4 | 1.5 | 28.5 | High | 10/24/24 | | 2 | Coastal GC (30%DM) 9-11T; SG GC 6-7T | 3.7% | 85 | 8 | 0 | 6 | 0 | 0.5 | 1.25 | 4 | 0 | 19.75 | Medium | 10/24/24 | | 2A | Coastal GC (30%DM) 9-11T; SG GC 6-7T | 3.7% | 85 | 8 | 0 | 6 | 0 | 4 | 1.25 | 4 | 0 | 23.25 | High | 10/24/24 | | 3 | Silage - Corn16-20T;SG GreenChop-6-7T | 3.7% | 89 | 8 | 0 | 6 | 0 | 0.5 | 1.25 | 4 | 1.5 | 21.25 | Medium | 10/24/24 | | 3A | Coastal GC (30%DM) 9-11T; SG GC 6-7T | 3.7% | 89 | 8 | 0 | 6 | 0 | 0.5 | 0 | 4 | 0 | 18.5 | Medium | 10/24/24 | | 4 | Coastal GC (30%DM) 9-11T; SG GC 6-7T | 3.3% | 89 | 8 | 0 | 6 | 0 | 4 | 5 | 4 | 0 | 27 | High | 10/24/24 | | 5 | Coastal GC (30%DM) 9-11T; SG GC 6-7T | 3.1% | 89 | 8 | 0 | 6 | 0 | 0.5 | 5 | 4 | 0 | 23.5 | High | 10/24/24 | | 6 | Silage - Corn16-20T;SG GreenChop-6-7T | 4.1% | 89 | 8 | 0 | 6 | 0 | 4 | 0 | 4 | 1.5 | 23.5 | High | 10/24/24 | | 7 | Silage - Corn16-20T;SG GreenChop-6-7T | 3.3% | 89 | 8 | 0 | 6 | 0 | 4 | 1.25 | 4 | 1.5 | 24.75 | High | 10/24/24 | | 8 | Coastal GC (30%DM) 9-11T; SG GC 6-7T | 3.5% | 89 | 8 | 0 | 6 | 0 | 4 | 0 | 4 | 0 | 22 | Medium | 10/24/24 | | 9 | Coastal GC (30%DM) 9-11T; SG GC 6-7T | 4.0% | 89 | 8 | 0 | 6 | 0 | 4 | 0 | 4 | 0 | 22 | Medium | 10/24/24 | | 10 | Silage - Corn16-20T;SG GreenChop-6-7T | 4.0% | 89 | 8 | 0 | 6 | 0 | 4 | 0 | 4 | 1.5 | 23.5 | Hìgh | 10/24/24 | | 11 | Silage - Corn16-20T;SG GreenChop-6-7T | 2.9% | 89 | 8 | 0 | 6 | 0 | 4 | 0 | 4 | 1.5 | 23.5 | High | 10/28/24 | | 12 | Coastal GC (30%DM) 9-11T; SG GC 6-7T | 2.9% | 85 | 8 | 0 | 6 | 0 | 4 | 0 | 4 | 0 | 22 | Medium | 10/28/24 | | 12A | Coastal GC (30%DM) 9-11T; SG GC 6-7T | 2.9% | 85 | 8 | 0 | 6 | 0 | 4 | 0 | 4 | 0 | 22 | Medium | 10/28/24 | | 13 | Silage - Corn16-20T;SG GreenChop-6-7T | 2.5% | 85 | 8 | 0 | 6 | 0 | 4 | 0 | 4 | 1.5 | 23.5 | High | 10/28/24 | | 14 | Silage - Corn16-20T;SG GreenChop-6-7T | 3.1% | 85 | 8 | 0 | 6 | 0 | 4 | 0 | 4 | 1.5 | 23.5 | High | 10/28/24 | Table 3 - Crop Removal Rates (For Information Only) WQ0002950000 | 1 able 3 - | Crop F | Removal Rates (For Information Only) | | | | Permit #: | WQ | |---------------------|--------|--|--------------|---------------------------------------|----------------------------|--|---| | LMU or
Field No. | Acros | Crop and P Index Level | TCEQ
Plan | Actual Crop
Analysis or
Default | Total Est,
N
Removal | Total Est. P ₂ O ₅ Removal | Total Est,
K ₂ O
Removal | | 1 | 62.0 | | Type | | lbs/Ac/Yr | lbs/Ac/Yr | lbs/Ac/Yr | | 1A | 41.0 | Silage - Corn21-25T;SG GreenChop-6-7T H | NMP | Default | 420 | 154 | 257 | | 2 | 62.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T H | NMP | Default | 330 | 104 | 190 | | 2A | 21.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T M | NMP | Default | 330 | 104 | 190 | | 3 | 56.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T H | NMP | Default | 330 | 104 | 190 | | 3A | 21.0 | Silage - Corn16-20T;SG GreenChop-6-7T M | NUP | Default | 341 | 132 | 214 | | 4 | 60.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T M | NUP | Default | 330 | 104 | 190 | | 5 | 210.0 | Coastal GC (30% DM) 9-11T; SG GC 6-7T H | NMP | Default | 330 | 104 | 190 | | 6 | 62.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T H | NMP | Default | 330 | 104 | 190 | | 7 | 30.0 | Silage - Corn16-20T;SG GreenChop-6-7T H | NMP | Default | 341 | 132 | 214 | | 8 | 87.0 | Silage - Corn16-20T;SG GreenChop-6-7T H | NMP | Default | 341 | 132 | 214 | | 9 | 20.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T M | NMP | Default | 330 | 104 | 190 | | 10 | 50.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T M | NMP | Default | 330 | 104 | 190 | | 11 | 56.0 | Silage - Corn16-20T;SG GreenChop-6-7T H | NMP | Default | 341 | 132 | 214 | | 12 | 66.0 | Silage - Corn16-20T;SG GreenChop-6-7T H | NMP | Default | 341 | 132 | 214 | | 12A | 30.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T M
Coastal GC (30%DM) 9-11T; SG GC 6-7T M | NUP | Default | 330 | 104 | 190 | | 13 | 53.0 | Silage - Corn16-20T;SG GreenChop-6-7T H | NUP
NMP | Default | 330 | 104 | 190 | | 14 | 47.0 | Silage - Corn16-20T;SG GreenChop-6-7T H | NMP | Default
Default | 341
341 | 132
132 | 214
214 | | | | | | | | | | NOTE: When crops are used for grazing, only a portion of the nutrients used by the crop are removed from the field in the live weight gain of the livestock, the remainder is returned to the land in manure and urine. The book "Southern Forages" estimates the N, P, & K removed in 100 pounds live weight gain as follows: 2.5 lbs N, 0.68 lbs P, 0.15 lbs K Page 12 Printed: 5/8/25 9:04 AM Plan is based on: 590 Organic Nutrient Management Plan Table 4 - Maximum Solids Application per Field Permit #: | 18,323 1 41.0 Coastal GC (30%DM) 9-11T; SG GC 6-7T H 194 308 A 20.4 8 2A 21.0 Coastal GC (30%DM) 9-11T; SG GC 6-7T H 140 308 A 20.4 4 3 3A 4 60.0 Coastal GC (30%DM) 9-11T; SG GC 6-7T H 57 308 A 20.4 12 5 6 62.0 Silage - Corn16-20T; SG GreenChop-6-7T H 146 270 A 17.9 17 7 30.0 Silage - Corn16-20T; SG GreenChop-6-7T H 88 270 A 17.9 5 8 87.0 Coastal GC (30%DM) 9-11T; SG GC 6-7T M 93 318 A 21.1 18 9 20.0 Coastal GC (30%DM) 9-11T; SG GC 6-7T M 95 318 A 21.1 4 10 50.0 Silage - Corn16-20T; SG GreenChop-6-7T H 121 270 A 17.9 8 11 56.0 Silage - Corn16-20T; SG GreenChop-6-7T H 27 270 A 17.9 10 12A 30.0 Coastal GC (30%DM) 9-11T; SG GC 6-7T M 207 1 | Est. Solids
Produced
Annually | LMU or
Field | | | Current
Soil Test
P Level | Max
Annual
P2O5 | Annual/Biennial | Maximum
Solids
Allowable | Maximum
Allowable
Application
Per field | |---|-------------------------------------|-----------------|-------|---|---------------------------------|-----------------------|-----------------|--------------------------------|--| | 1A | | | Acres | Crop Management and PI runoff potential | (ppm) | lbs/acre | Ann | Tons/Acre | (Tons) | | 2 2A 21.0 Coastal GC (30%DM) 9-11T; SG GC 6-7T H 140 308 A 20.4 4 3 3 3A 4 60.0 Coastal GC (30%DM) 9-11T; SG GC 6-7T H 57 308 A 20.4 17 5 6 6 62.0 Silage - Corn16-20T; SG GreenChop-6-7T H 146 270 A 17.9 17 7 30.0 Silage - Corn16-20T; SG GreenChop-6-7T H 88 270 A 17.9 17 9 20.0 Coastal GC (30%DM) 9-11T; SG GC 6-7T M 93 318 A 21.1 18 9 20.0 Coastal GC (30%DM) 9-11T; SG GC 6-7T M 95 318 A 21.1 14 10 50.0 Silage - Corn16-20T; SG GreenChop-6-7T H 121 270 A 17.9 8 Silage - Corn16-20T; SG GreenChop-6-7T H 121 270 A 17.9 18 Silage - Corn16-20T; SG GreenChop-6-7T H 27 270 A 17.9 16 12 66.0 Coastal GC (30%DM) 9-11T; SG GC 6-7T M 207 104 A 6.9 4 12A 30.0 Coastal GC (30%DM) 9-11T; SG GC 6-7T M 207 104 A 6.9 4 13 53.0 Silage - Corn16-20T; SG GreenChop-6-7T H 27 270 A 17.9 9 14 47.0 Silage - Corn16-20T; SG GreenChop-6-7T H 26 270 A 17.9 9 Total
Solids Application Acres 623 Application Allowable on-site (tons) 10861.1 Not | 18,323 | | | | | | | | | | 2A 31.0 Coastal GC (30%DM) 9-11T; SG GC 6-7T H 140 308 A 20.4 4 4 60.0 Coastal GC (30%DM) 9-11T; SG GC 6-7T H 57 308 A 20.4 17 5 6 62.0 Silage - Corn16-20T; SG GreenChop-6-7T H 146 270 A 17.9 5 5 6 62.0 Coastal GC (30%DM) 9-11T; SG GC 6-7T M 93 318 A 21.1 18 9 20.0 Coastal GC (30%DM) 9-11T; SG GC 6-7T M 95 318 A 21.1 18 9 20.0 Coastal GC (30%DM) 9-11T; SG GC 6-7T M 95 318 A 21.1 18 10 50.0 Silage - Corn16-20T; SG GreenChop-6-7T H 121 270 A 17.9 17 12 66.0 Coastal GC (30%DM) 9-11T; SG GC 6-7T M 207 104 A 6.9 4 4 4 4 4 4 4 4 4 | | , J | 41.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T H | 194 | 308 | Α | 20.4 | 838 | | 3 3A 4 60.0 Coastal GC (30%DM) 9-11T; SG GC 6-7T H 57 308 A 20.4 12 5 6 6 62.0 Silage - Corn16-20T;SG GreenChop-6-7T H 146 270 A 17.9 17 7 30.0 Silage - Corn16-20T;SG GreenChop-6-7T H 88 270 A 17.9 17 8 87.0 Coastal GC (30%DM) 9-11T; SG GC 6-7T M 93 318 A 21.1 18 9 20.0 Coastal GC (30%DM) 9-11T; SG GC 6-7T M 95 318 A 21.1 14 10 50.0 Silage - Corn16-20T;SG GreenChop-6-7T H 121 270 A 17.9 8 111 56.0 Silage - Corn16-20T;SG GreenChop-6-7T H 122 66.0 Coastal GC (30%DM) 9-11T; SG GC 6-7T M 207 104 A 6.9 4 12A 30.0 Coastal GC (30%DM) 9-11T; SG GC 6-7T M 207 104 A 6.9 4 12A 30.0 Coastal GC (30%DM) 9-11T; SG GC 6-7T M 207 104 A 6.9 4 12A 30.0 Silage - Corn16-20T;SG GreenChop-6-7T H 207 104 A 6.9 4 12A 30.0 Silage - Corn16-20T;SG GreenChop-6-7T H 207 104 A 6.9 4 12A 30.0 Silage - Corn16-20T;SG GreenChop-6-7T H 207 104 A 6.9 4 12A 30.0 Silage - Corn16-20T;SG GreenChop-6-7T H 207 104 A 6.9 4 12A 30.0 Silage - Corn16-20T;SG GreenChop-6-7T H 207 104 A 6.9 4 12A 30.0 Silage - Corn16-20T;SG GreenChop-6-7T H 207 104 A 6.9 4 17.9 8 Total Solids Application Acres 623 Application Allowable on-site (tons) 10861.1 Not | | | | | | | | | | | 3A 4 60.0 Coastal GC (30%DM) 9-11T; SG GC 6-7T H 57 308 A 20.4 17.5 | | | 21.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T H | 140 | 308 | A | 20.4 | 429 | | 4 | | | | | | | | | | | S | | | 60.0 | | | | | | A | | 6 | | 1 1 | 60.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T H | 57 | 308 | A | 20.4 | 1226 | | 7 30.0 Silage - Corn16-20T;SG GreenChop-6-7T H 88 270 A 17.9 5 8 87.0 Coastal GC (30%DM) 9-11T; SG GC 6-7T M 93 318 A 21.1 18 9 20.0 Coastal GC (30%DM) 9-11T; SG GC 6-7T M 95 318 A 21.1 4 4 10 50.0 Silage - Corn16-20T;SG GreenChop-6-7T H 121 270 A 17.9 8 11 56.0 Silage - Corn16-20T;SG GreenChop-6-7T H 27 270 A 17.9 10 12 66.0 Coastal GC (30%DM) 9-11T; SG GC 6-7T M 207 104 A 6.9 4 12A 30.0 Coastal GC (30%DM) 9-11T; SG GC 6-7T M 207 156 A 10.3 3 3 3 3 3 3 3 3 3 | | | (2.0 | G!! | | | | | | | 8 | ļ. | | | | | | | | 1112 | | 9 20.0 Coastal GC (30%DM) 9-11T; SG GC 6-7T M 95 318 A 21.1 4 10 50.0 Silage - Corm16-20T; SG GreenChop-6-7T H 121 270 A 17.9 8 11 56.0 Silage - Corm16-20T; SG GreenChop-6-7T H 27 270 A 17.9 10 12 66.0 Coastal GC (30%DM) 9-11T; SG GC 6-7T M 207 104 A 6.9 4 12A 30.0 Coastal GC (30%DM) 9-11T; SG GC 6-7T M 207 156 A 10.3 3 13 53.0 Silage - Corm16-20T; SG GreenChop-6-7T H 79 270 A 17.9 9 14 47.0 Silage - Corm16-20T; SG GreenChop-6-7T H 26 270 A 17.9 8 Total Solids Application Acres 623 Application Allowable on-site (tons) 10861.1 Not | | | | No. | | | | | 538 | | 10 | | | | | | | | | 1837 | | 11 56.0 Silage - Corn16-20T;SG GreenChop-6-7T H 27 270 A 17.9 10 10 12 66.0 Coastal GC (30%DM) 9-11T; SG GC 6-7T M 207 104 A 6.9 4 4 4 4 30.0 Coastal GC (30%DM) 9-11T; SG GC 6-7T M 207 156 A 10.3 3 3 3 53.0 Silage - Corn16-20T;SG GreenChop-6-7T H 79 270 A 17.9 9 9 4 4 4 4 4 | | | | | | | | | 422 | | 12 | | | | | 1 1 | | | | 897 | | Total Solids Application Allowable on-site (tons) 10861.1 Not | | | | | 1 | | | | 1004 | | 13 53.0 Silage - Corn16-20T;SG GreenChop-6-7T H 79 270 A 17.9 9 9 17.9 14 47.0 Silage - Corn16-20T;SG GreenChop-6-7T H 26 270 A 17.9 8 17.9 8 17.9 | | | | | | | | | 455 | | Total Solids Application Allowable on-site (tons) 10861.1 Not | | | | | 1 1 | | | | 310 | | Total Solids Application Acres 623 Application Allowable on-site (tons) 10861.1 Not | | | | | 1 | | | | 951 | | Application Acres 623 Application Allowable on-site (tons) 10861.1 Not | | 14 | 47.0 | Shage - Corn16-201;8G GreenChop-6-7T H | 26 | 270 | Α | 17.9 | 843 | | Application Acres 623 Application Allowable on-site (tons) 10861,1 Not | | | | | | | | | | | Application Acres 623 Application Allowable on-site (tons) 10861,1 Not | | | | | | | | | | | Application Acres 623 Application Allowable on-site (tons) 10861,1 Not | | | | | | | | | | | Application Acres 623 Application Allowable on-site (tons) 10861,1 Not | T-4-1 0-114- | | | | | | | | | | Application Allowable on-site (tons) 10861.1 Not | | | | | | | | - 1 | | | Application Allowable on-site (tons) 10861,1 Not | | | | | | | | | | | Application Allowable on-site (tons) 10861.1 Not | | | | | | | | | | | Allowable on-site (tons) 10861.1 Not | 025 | | | | | | | | | | Allowable on-site (tons) 10861.1 Not | | | | | | | | | | | Allowable on-site (tons) 10861.1 Not | A | | | | | | | | | | on-site (tons) 10861,1 Not | 1 | | | | | | | | | | (tons) 10861.1 Not | | | | | | | | | | | 10861,1
Not | | | | | | | | | | | Not | | | 4 | resequate | | | | | | | | | | Solids to be | Salida ta ha | | | | | | | | | | used off- | | | | | | | | | | | site (tons) | | | * 1 | | | | | | | | 7,462.2 | | | | | | | | | | Table 5 - Nutrients Applied/Needs at Maximum Solids Rates Nutrients Applied When Application is at Supple Permit #: | | | oplied When Ap
Maximum Rate | s | Supplemental Nutrients Needed When Application is at Maximum Rates | | | | | | | | |---------------|---------|-------------------------------------|------------------------|--|-------------------------------------|------------------------|-----------|--|--|--|--| | LMU / Field # | N Lb/ac | P ₂ O ₅ Lb/ac | K ₂ O Lb/ac | N Lb/ac | P ₂ O ₅ Lb/ac | K ₂ O Lb/ac | Lime T/Ae | | | | | | 1 | 207 | 222 | | | | | | | | | | | 1A | 387 | 308 | 579 | 0 | 0 | 0 | 0 | | | | | | 2 | 207 | 200 | | | | | | | | | | | 2A
3 | 387 | 308 | 579 | 0 | 0 | 0 | 0 | | | | | | 3
3A | | | | | | | ĺ | | | | | | 4 | 387 | 308 | 570 | | | _ | | | | | | | 5 | 367 | 306 | 579 | 0 | 0 | 0 | 0 | | | | | | 6 | 340 | 270 | 508 | 135 | 0 | | | | | | | | 7 | 340 | 270 | 508 | 135 | 0 | 0 | 0 | | | | | | 8 | 400 | 318 | 598 | 0 | 0 | 0 | 0 | | | | | | 9 | 400 | 318 | 598 | 0 | 0 | 0 | 0 | | | | | | 10 | 340 | 270 | 508 | 145 | 0 | 0 | 0 | | | | | | 11 | 340 | 270 | 508 | 130 | 0 | 0 | 0 | | | | | | 12 | 131 | 104 | 195 | 220 | 0 | ő | ő | | | | | | 12A | 196 | 156 | 293 | 155 | 0 | 0 | 0 | | | | | | 13 | 340 | 270 | 508 | 150 | 0 | 0 | 0 | | | | | | 14 | 340 | 270 | 508 | 150 | 0 | 0 | 0 | Table 6 - Planned Solids Application Rates | | Т | | | | T - | | T CITITE IT. | 11 2000. | 2750000 | |--------------|--------|-------|--|-------------------------------|------------|-----------|---|-------------|-----------------------| | | е стор | Acres | | Current
Soil Test
P ppm | al/
ial | Max | % of | Planned | Planned
Solids per | | LMU or Field | FIG. | 1. | C. M | Soil Test | Cun III | Rate | Maximum | Solids | field | | No. | 10 | Acres | Crop Management and PI runoff potential | P ppm | A.
Bi | tons/ac | to apply | tons/ac | (tons) | | 1 | | | | | | | | | | | 1 A | | 41.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T H | 194 | Λ | 20.4 | 100 | 20.4 | 837.5 | | 2 | | | | | | | | a 6 | | | 2A | ľ | 21.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T H | 140 | ٨ | 20,4 | 100 | 20.4 | 429.0 | | 3 | | | | | | | | | | | 3A | | | | | | | | | | | 4 | | 60.0 | Coastal GC (30%DM) 9-11T; SG GC 6-77 H | 57 | Α | 20.4 | 100 | 20.4 | 1225.6 | | 5 | | | | | 1. | 20 | | 20.1 | 1223.0 | | 6 | | 62.0 | Silage - Corn16-201';SG GreenChop-6-7T H | 146 | A | 17.9 | 100 | 17.9 | 1112.0 | | 7 | | | Silage - Corn16-20T;SG GreenChop-6-7T H | 88 | A | 17.9 | 100 | 17.9 | | | 8 | | | Coastal GC (30%DM) 9-11T; SG GC 6-7T M | 93 | | 21,1 | | | 538.1 | | 9 | | | Coastal GC (30%DM) 9-11T; SG GC 6-7T M | | A | | 100 | 21,1 | 1836.6 | | 1 | | | | 95 | A | 21.1 | 100 | 21.1 | 422.2 | | 10 | | | Silage - Corn16-20T;SG GreenChop-6-7T H | 121 | Λ | 17.9 | 100 | 17.9 | 896.8 | | 11 | | | Silage - Corn16-20T;SG GreenChop-6-7T H | 27 | Λ | 17.9 | 100 | 17.9 | 1004,4 | | 12 | | 66,0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T M | 207 | A | 6.9 | 100 | 6.9 | 455.0 | | 12A | | 1 | Coastal GC (30%DM)
9-11T; SG GC 6-7T M | 207 | A | 10.3 | 100 | 10.3 | 310.2 | | 13 | | | Silage - Corn16-20T;SG GreenChop-6-7T H | 79 | Λ | 17.9 | 100 | 17.9 | 950.6 | | 14 | | 47.0 | Silage - Corn16-20T;SG GreenChop-6-7T H | 26 | Α | 17.9 | 100 | 17.9 | 843.0 | | | | | | | | | | | | | Acres 1832 | 3 | 623.0 | Tons of wet solids produced Annually Tons to be used off-site at Max. rates | | use | all of th | cre applica
e Solids?
ite at plan | ation rates | 10861.1
NO
7462 | | | | | | | | | | | | page 15 Printed: 5/8/25 9:04 AM Plan is based on: 590 Organic Nutrient Management Pla Permit #: Table 7 - Nutrients Applied/Needed at Planned Solids Rates Permit #: WQ0002950000 Red cells? Proceed to adjustment page and fix. | Τ | | Applied at Plan | | Supplemen | ntal Nutrients Ne | eded at Planne | d Rates | |---------------|---------|-------------------------------------|------------------------|-----------|-------------------------------------|------------------------|-----------| | LMU / Field # | N Lb/ac | P ₂ O ₅ Lb/ac | K ₂ O Lb/ac | N Lb/ac | P ₂ O ₅ Lb/ac | K ₂ O Lb/ac | Lime T/Ac | | 1 | | | | | | | | | 1A | 387 | 308 | 579 | 0 | 0 | 0 | 0 | | 2 | | | | | | | | | 2A | 387 | 308 | 579 | 0 | 0 | 0 | 0 | | 3 | | | | | - | | | | 3A | | | | | | | | | 4 | 387 | 308 | 579 | 0 | 0 | 0 | 0 | | 5 | | | | - | , | | | | 6 | 340 | 270 | 508 | 135 | 0 | 0 | 0 | | 7 | 340 | 270 | 508 | 135 | 0 | 0 | 0 | | 8 | 400 | 318 | 598 | 0 | 0 | 0 | 0 | | 9 | 400 | 318 | 598 | 0 | 0 | 0 | 0 | | 10 | 340 | 270 | 508 | 145 | 0 | 0 | 0 | | 11 | 340 | 270 | 508 | 130 | 0 | 0 | 0 | | 12 | 131 | 104 | 195 | 220 | 0 | 0 | 0 | | 12A | 196 | 156 | 293 | 155 | 0 | 0 | 0 | | 13 | 340 | 270 | 508 | 150 | 0 | 0 | 0 | | 14 | 340 | 270 | 508 | 150 | 0 | 0 | 0 | | | | | | | | | | | 1 | | | | j. | 1 | Ì | | | | | | | | | | | | | | | | | ľ | Printed on: 5/8/25 9:04 AM Table 8 - Maximum Effluent Application Per Field Permit #: | | | | | | 1 | | 1_1 | - | N.4 | |--------------------|-----------|-------|----------|---|-----------|----------|-----------------|------------|---------------------| | | | | <u>_</u> | | Current | Max | Annual/Biennial | Maximum | Maximum
Effluent | | Est. Available | | Acres | cro | | Soil Test | Annual | /Bie | Effluent | Allowable | | Effluent | LMU or | | g | | P Lovel | P_2O_5 | lua[| Allowable | / Field | | (ac inches) | Field No. | | å | Crop Management and PI runoff potential | (ppm) | | | (ac in/ac) | (ac in) | | 1693 | 1 | 62.0 | | Silage - Corn21-25T;SG GreenChop-6-7T H | 194 | 278 | A | 26.7 | 1658 | | Source: | 1A | | | | | | П | | | | | 2 | 62.0 | | Coastal GC (30%DM) 9-11T; SG GC 6-7T M | 140 | 410 | A | 39.5 | 2449 | | | 2A | ŀ | | | | | | | | | Dairy Lagoon | 3 | 56.0 | | Silage - Corn16-20T;SG GreenChop-6-7T M | 224 | 132 | Λ | 12.7 | 711 | | | 3A | 21.0 | 130 | Coastal GC (30%DM) 9-11T; SG GC 6-7T M | 224 | 104 | A | 10.0 | 210 | | | 4 | | | | | | | 10.0 | 210 | | | 5 | 210.0 | | Coastal GC (30%DM) 9-1 IT; SG GC 6-7T H | 141 | 308 | $ _{A} $ | 29.6 | 6216 | | | 6 | | | | | 200 | ^` | 27.0 | 0210 | | | 7 | | | | | | | | | | | 8 | | | | | | | | | | | 9 | | | | | | | | | | | 10 | | | | | | Н | | | | | | 100 | | | | | Н | | | | | 11 | | | | | | Н | | | | | 12 | | П | | | | Н | | | | | 12Λ | | | | | | П | | | | | 13 | l l | | | | | Н | | | | | [4 | | | | | | П | | | | | | | | | | | П | П | | | | Total | | | | | | | П | | | | Effluent | | | | | | | | - + | | | Application | | | | | | | | | | | Acres | | | П | | | | | | | | 411 | | | П | | | | П | | | | | | | | | | | | | | | Maximum | | | П | | | | Н | | | | Effluent | | | Ш | | | | Н | | | | Application | | | П | | | | Н | 1 | | | Allowable | | | | | | | | | | | On-Site | | | | | | | | | | | (ac in) | | | | | | 1 | | | | | 11244 | | | | | | | | | | | Adequate | | | | | | | | | | | Life(In and the fi | | | | | | | | | | | Effluent to be | | | | | | | | | | | used Off-Site | | | | | | | | Ì | | | (ac in) | | | | | | | | | | | 0 | | | \Box | | | | \perp | | | Table 9 - Nutrients Applied/Needed at Maximum Effluent Rates Permit #: | | | pplied When Ap
Maximum Rate | plication is at | Supplement | al Nutrients Ned
Maximu | eded When Ap
m Rates | plication is at | |---------------|---------|-------------------------------------|-----------------|------------|-------------------------------------|-------------------------|-----------------| | LMU / Field # | N Lb/ac | P _z O ₅ Lb/ac | K₂O Lb/ac | N Lb/ac | P ₂ O ₅ Lb/ac | K ₂ O Lb/ac | Lime T/Ac | | 1 | 223 | 277 | 2545 | 300 | 0 | 0 | 0 | | 1A | | | | | | | | | 2 | 329 | 410 | 3760 | 40 | 0 | 0 | 0 | | 2A | | | | | | | | | 3 | 106 | 132 | 1209 | 360 | 0 | 0 | 0 | | 3A | 83 | 104 | 952 | 285 | 0 | 0 | 0 | | 4 | | | | 1 | | | | | 5 | 247 | 307 | 2818 | 125 | 0 | 0 | 0 | | 6 | | | | | | ı | | | 7 | | | | | | | | | 8 | | | - 1 | | | | | | 9 | | | | | | | | | 10
11 | | 1 | | | | 1 | | | 12 | | | | | | | | | 12A | | | | | | | | | 13 | | | | | | | | | 14 | 0.0 | 4 | | | | | | | | | 1 | - | | | | 1 | 1 | | L. | | | | | | | Waste Utilization and Nutri | ent Ma | nag | ement | Plan | | | |----------------------|---------|-------------|---|-------------------------------|----------------------|-----------------------------------|-----------------------------|-----------------------------------|-----------------------------------| | Table | 10 - PI | an | ned Effluent Application Rates | | | Permit #; | | WQ00029 | 50000 | | I.MU or
Field No. | Acres | Double crop | Crop Management and PI runoff potential | Current
Soil Test
P ppm | Annual /
Biennial | Maximum
Effluent
(ac in/ac) | % of
Maximum
to apply | Planned
Effluent
(ac in/ac) | Planned Effluent / field (Ac. In) | | 1 | 62.0 | | Sifage - Corn21-25T;SG GreenChop-6-7T H | 194 | Λ | 26.7 | 15.0 | 4.0 | 249 | | IA | | | | | 1. | 20.1 | 10.0 | 4.0 | 247 | | 2
2A | 62.0 | | Coastal GC (30%DM) 9-11T; SG GC 6-7T M | 140 | A | 39.5 | 15.0 | 5.9 | 368 | | 3 | 56.0 | | Silage - Corn16-20T;SG GreenChop-6-7T M | 224 | A | 12.7 | 15.0 | 1.9 | 107 | | 3Λ | 21.0 | | Coastal GC (30%DM) 9-11T; SG GC 6-7T M | 224 | A | 10 | 15.0 | 1.5 | 32 | | 4 | | | | 227 | , · · | 10 | 15.0 | ۱.٦ | 32 | | 5 | 210.0 | | Coastal GC (30%DM) 9-11T; SG GC 6-7T H | 141 | Α | 29.6 | 16.0 | 4.7 | 995 | | 6 | | | , | | | 27.0 | 10.0 | 4.7 | 793 | | 7 | | | | | | | | | | | 8 | | | | | | | | | | | 9 | | | | | | | | | | | 10 | | | | | | | | | | | 11 | | | | | | | | | | | 12 | | | | | | | | | | | 12A | | | | | | | | | | | 13 | | | | | | | | | | | 14 | 1 | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | | 0 1 | 1 | | | | | | | 14 | 6 | 1 | | | | | i | 411.0 Acres 1750 YES Will the planned application rates use all of the Effluent? Table 11 - Nutrients Applied/Needed at the Planned Effluent Rates Permit #: WQ0002950000 Red cells? Proceed to adjustment page and fix. | | Nutrients | Applied at Plan | | Supplemen | eeded at Plani | ded at Planned Rates | | | | | |---------------|-----------|-------------------------------------|------------------------|-----------|-------------------------------------|------------------------|-----------|--|--|--| | LMU / Field # | N Lb/ac | P ₂ O ₅ Lb/ac | K ₂ O Lb/ac | N Lh/ac | P ₂ O ₅ Lb/ac | K ₂ O Lb/ac | Lime T/Ac | | | | | 1 | 33 | 42 | 382 | 490 | 0 | 0 | 0 | | | | | 1A | | | | | | | | | | | | 2 | 49 | 61 | 564 | 320 | 0 | 0 | 0 | | | | | 2A | | | | | | | | | | | | 3 | 16 | 20 | 182 | 450 | 0 | 0 | 0 | | | | | 3A | 13 | 16 | 143 | 355 | 0 | 0 | 0 | | | | | 4 | | | | | | ľ | | | | | | 5 | 40 | 49 | 451 | 330 | 0 | 0 | 0 | | | | | 6 | | 1 | | 330 | | l o | | | | | | 7 | | | | | | | | | | | | 8 | | | | | 1 | | 4 | | | | | 9 | | | | | | | | | | | | 10 | | | | | | 1 | | | | | | 11 | | | | h., | | | | | | | | 12 | | | | | | | 1.0 | | | | | 12A | | | | | | | 1 | | | | | 13 | | | | | | | | | | | | 14 | | 7 | l. | | | | I | | | | | 14 | 1 | 1 | | | 1 | 1 1 | 1 | Jan / | | | | | | | Printed on: 5/8/25 9:04 AM Plan is based on: 590 Organic Nutrient Management Plan V 5.0 Table 12 - Available Water Capacity to 24 inches(or less) of predominant Permit #: soil in fields receiving effluent and Texture of the most restrictive soil layer in the upper 24 inches | LMU / Field # | AWC (inches) | Restrictive Texture | LMU /
Field # | AWC (inches) | Restrictive Texture | |---------------|--------------|---------------------|---------------|--------------|---------------------| | l | 3.455 | Sandy Clay | | | | | 1A | | | | (/ L | | | 2 | 3.455 | Sandy Clay | | | 219 | | 2A | | | | | | | 3 | 3.52 | Clairette Hasse | | | | | 3A | 3.52 | Clairette Hasse | | | | | 4 | | | 1 | ľ | | | 5 | 1.87 | Purves Dugout | | | | | 6 7 | | | 1 | | | | 8 | | | 1 | | | | 9 | | | 1 | | | | 10 | | | | | | | t1 | | 1 | | | | | 12 | | | | | 0.1 | | 12A | | | | | | | 13 | | | | | | | 14 | 1 | 1 | | | | | | | | | | | | | | | | | Table 13 - Non Application Areas by Field Permit #: WQ0002950000 FS = 393-Filter Strip; FB = 386-Field Border, RFB = 391-Riparian Forest Buffer; OLEA = Other Land Excluded Ar | | | | | | order, tet B | | | Same, 0 | LL. C | 174714 | Excided A | |---------|------------|-----------|------------|---------|--------------|---------|-------|---------|-------|--------|-----------| | LMU/ | FS | FB | RFB | OLEA | | LMU / | FS | FB | RFB | OLEA | Total | | Field# | Acres | Acres | Acres | Acres | Excluded | Field # | Acres | Acres | Acres | Acres | Excluded | | 1 | 0.0 | 0.0 | | | | | | | | | 1,1 | | 1A | 0.0 | 0.0 | | | | | | | | | | | 2 | 0.0 | 0.0 | | | | | | | | | | | 2A | 0.0 | 0.0 | | | | | | | | | | | 3 | 0.0 | 0.0 | | | | | | | | | | | 3A | 0.0 | 0.0 | | | | | | | | | | | 4 | 0.0 | 0.0 | | | | | | | | | | | 5 | 0.0 | 0.0 | | | | | | | | | | | 6 | 0.0 | 0.0 | | | | | | | | | | | 7 | 0.0 | 0.0 | | | / / | | | | | | | | 8 | 0.0 | 0.0 | | | | | | | | | | | 9 | 0.0 | 0.0 | | | | | | | | | | | 10 | 0.0 | 0.0 | | | | | | | | | | | U | 0.0 | 0.0 | | | | | | | | | | | 12 | 0.0 | 0.0 | | | | | | | | | | | 12A | 0.0 | 0.0 | | | | | | | | | | | 13 | 0.0 | 0.0 | | | | | | | | | | | 14 | 0.0 | 0.0 | 9 | ly. | See Ann | lication ! | Man for ! | ocation of | huffore | | Totals | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | ion oares | | | Totals | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | See Application Map for location of buffers Total 590-633 application acres: 1034.0 Total 590-633 Field Acres: 1034.0 ### Waste Utilization and Nutrient Management Data Entries #### General Data Date: 5/8/2025 Farmer Name: Grand Canyon Dairy County in which the Land is located: Erath Type of Waste Plan: Other AFO-CAFO Waste Plan Is this plan in a TMDL watershed for nutrients? Yes or No: Yes Is any field PERMITTED by TCEQ? Yes or No: Yes Permit #: WQ0002950000 #### All other entries on General Page appear on the Cover Page #### **Animal Information** Plan Year: 2025 Are you receiving waste from another producer? No Number of animals: 2500 Approximate Weight: 1400 Days per year in confinement: 365 Hours per day confined: 24 ACRE FEET of effluent to be irrigated*: 141.06 Estimated annual gallons of effluent to be irrigated/applied annually: 45964118.88 For effluent, do you want application rates shown in gallons or acre inches?: acre inches Estimated Tons Solids to be Land Applied Annually (on or off site)*: 9125 Is this the first Year of the AFO-CAFO Operation? No #### **Analysis Information** #### **Effluent Information** Date of Analysis: 6/14/2024 Manure Source: Dairy Lagoon Nitrogen % From Analysis: 0.002 Phosphorus % From Analysis: 0.035 Moisture % From Analysis: 99.8 #### Manure / Solids Information Date of Analysis: 6/14/2024 Manure Source: Dairy Solids Nitrogen % From Analysis: 2.378 Phosphorus % From Analysis: 0.66 Potassium % From Analysis: 2.37 Moisture % From Analysis: 50.2 What will be Applied to Fields on this Farm? Both Effluent and Solids Is this Farm part of an AFO-CAFO? No This plan is based on; rganic Nutrient Management Plan Printed on: 5/8/25 9:04 AM #### Field and Buffer Entries Permit #: WQ0002950000 Printed on: 5/8/25 9:04 AM Plan is based on: 590 Organic Nutrient Management Plan FS = 393-Filter Strip, FB = 386-Field Border, RFB = 391-Riparian Forest Buffer, OLEA = Other Land Exclusion Areas or non-application areas (i.e. headquarters, freq. flooded areas, wooded areas, water bodies, etc) NOTE: Field Border (FB) is expressed in ACRES on this spreadsheet, but as LINEAR FEET on the CPO. Total Total Actual Field LMU or Field Buffer Application No. Acres FSЕB RFB **OLEA** Acres Acres This Column Intentionally Left Blank I 62 0.0 62.0 1A 41 41.0 0.02 62 0.062.0 2A 21 21,0 0.03 56 0.056.0 31 21 0.0 21.0 4 60 0.0 60.0 5 210 0.0 210.0 62 6 0.0 62.0 7 30 0.0 30.0 8 87 0.087.0 9 20 0.020.0 10 50 0.050.0 11 56 0.056.0 12 66 0.066.0 12A 30 0.030.0 13 53 0.0 53.0 14 47 0.047.0 ## Soil Test, Crop Information and Plant Analysis Data Entries | | Soil Test | Analysis | | Tive | | | | | <u>s</u> | | | | tional) Use
is Required | |------------|------------|------------|--|--|-------------------|------------------------|--|----------------------------|---------------------------|-----|-----|-----|---| | N
(ppm) | P
(ppm) | K
(ppm) | Lime
(enter amt
or leave
blank) | This
column
only for
Dry
Poultry | LMU or
Field # | Appl.
Area
Acres | Crop/Land-Use and
P Index Runoff Potential
VL - L; M; H; or VH | E = Effluent
S = Solids | Plant Analysis
(Y / N) | % N | % P | % K | Yield
Air Dry
Production
(lbs/ac/yr) | | 12.765 | 194 | 568 | | | 1 | 62.0 | Silage - Com21-25T;SG GreenChop-6-7T H | E | N | | | | | | 12.765 | 194 | 568 | | | 1A | 41.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T H | S | N | | | | | | 14.084 | 140 | 523 | | | 2 | 62.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T M | E | N | | | | | | 14.084 | 140 | 523 | | | 2A | 21.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T H | S | N | | | | | | 16.962 | 224 | 458 | | | 3 | 56.0 | Silage - Corn16-20T;SG GreenChop-6-7T M | Е | N | | | | | | 16.962 | 224 | 458 | | | 3A | 21.0 | Coastal GC (30%DM) 9-IIT; SG GC 6-7T M | E | N | | | | | | 12.765 | 57.2 | 607 | | | 4 | 60.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T H | S | N | | | | | | 14.244 | 141 | 808 | | | 5 | 210.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T H | E | N | | | | | | 13.206 | 146 | 450 | | | 6 | 62.0 | Silage - Com16-20T;SG GreenChop-6-7T H | S | N | | | | | | 12.479 | 88.1 | 358 | | | 7 | 30.0 | Silage - Com16-20T;SG GreenChop-6-7T H | S | N | | | | | | 10.588 | 93.2 | 404 | | | 8 | 87.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T M | 8 | N | | | | | | 20.101 | 94.5 | 369 | | | 9 | 20.0 | Coastal GC (30%DM) 9-11T: SG GC 6-7T M | S | N | | | | | | 8.556 | 121 | 309 | | | 10 | 50.0 | Silage - Corn16-20T;SG GreenChop-6-7T H | S | N | | | | | | 14.139 | 27.1 | 189 | | | 11 | 56.0 | Silage - Corn16-20T;SG GreenChop-6-7T H | S | N | | | | | | 24.344 | 207 | 432 | | | 12 | 66.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T M | S | N | | | | | | 24.344 | 207 | 432 | | 1 | 12A | 30.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T M | S | N | | | | | | 5.278 | 78.5 | 242 | | | 13 | 53.0 | Silage - Com16-20T;SG GreenChop-6-7T H | S | N | | | | | | 4.676 | 25.9 | 251 | | | 14 | 47.0 | Silage - Com16-20T;SG GreenChop-6-7T H | S | N | _ | 1 | - | | | ## **Solids Application Rate Entries** | 1832 | | Set the Planned Application Rates "Wet tons" of solids produced Annually | | 1.0 | en de ales | Permit #: | W | |--------------------|-------|--|----------------------|---------------------------------------|--------------------------------|--------------------------------|--------------------| | 1002 | | vectoris di solida produced Antidally | | V | fill the plans | | | | LMU
or
Field | | | Current
Soil Test | Crop
P ₂ O ₅ | Annual or Biennial Application | Maximum
Solids
Allowable | Enter % of Maximum | | | Acres | Crop Management and PI runoff potential | P ppm | Req. | Cycle | Tons/Ac | Apply | | 1
1A
2 | 41.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T H | 194 | 205 | Annual | 20.4 | 100.0 | | | 21.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T H | 140 | 205 | Annual | 20.4 | 100.0 | | | 60.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T H | 57 | 205 | Annual | 20.4 | 100.0 | | 5 | 62.0 | Silage - Corn16-20T;SG GreenChop-6-7T II | 146 | 180 | Annual | 17.9 | 100.0 | | | | Silage - Corn16-20T;SG GreenChop-6-7T H | 88 | 180 | Annual | 17.9 | 100.0 | | | - 1 | Coastal GC (30%DM) 9-11T; SG GC 6-7T M | 93 | 205 | Annual | 21.1 | 100.0 | | 9 | | Coastal GC (30%DM) 9-11T; SG GC 6-7T M | 95 | 205 | Annual | 21.1 | 100.0 | | 10 | 50.0 | Silage - Corn16-20T;SG GreenChop-6-7T II | 121 | 180 | Annual | 17.9 | 100.0 | | 11 | 56.0 | Silage - Corn16-20T;SG GreenChop-6-7T H | 27 | 180 | Annual | 17.9 | 100.0 | | 12 | 66.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T M | 207 | 205 | Annual | 6.9 | 100.0 | | 2A | 30.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T M | 207 | 205 | Annual | 10.3 | 100.0 | | 13 | 53.0 | Silage - Corn16-20T;SG GreenChop-6-7T II | 79 | 180 | Annual |
17.9 | 100.0 | | 14 | 47.0 | Stlage - Corn16-20T;SG GreenChop-6-7T H | 26 | 180 | Annual | 17.9 | 100.0 | | | | | | | | | | Printed on: 5/8/25 9:04 AM Plan is based on: 590 Organi ### **Effluent Application Rate Entries** **Effluent - Set the Planned Application Rates** | Peri | 9911 | - 66 - | |------|------|--------| | | | | WQ0002950000 | 45 | 964119 | | | | Will the p | lanned rate | es use all of | the effluent? | Yes | |--------------------|--------|---|---------------------------------|----------------------|---|--|--|-----------------------------------|--| | LMU | 1693 | Acre inches of Effluent to be used annually | | | | P. Jack | | | Planed | | or
Field
No. | Acres | Crop Management and PI runoff potential | Current
Soil Test
P (ppm) | Crop
P2O5
Req. | Annual or
Biennial
Application
Cycle | Max
Effluent
Allowable
(ac in/ac) | Enter % of
Maximum
Planned to
Apply | Planned
Effluent
(ac in/ac) | Planned
Effluent
per field
(acre inches | | 1 | 62.0 | Silage - Corn21-25T;SG GreenChop-6-7T H | 194 | 185 | Annual | 26.7 | 15.0 | 4.01 | 249 | | 1A | | Met. Court | | | | | | | | | 2 | 62.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T M | 140 | 205 | Annual | 39.5 | 15.0 | 5.93 | 368 | | 2A
3 | 56.0 | Eller Count (10Th 00 c) | 224 | 100 | _ | | | | | | 3A | | Silage - Corn16-20T;SG GreenChop-6-7T M
Coastal GC (30%DM) 9-11T; SG GC 6-7T M | 224
224 | 180
205 | Annual | 12.7 | 15.0 | 1.91 | 107 | | 4 | 21.0 | Consult OC (30 7/1)/(1) 5-111; Set GC 0-71 M | 224 | 205 | Annual | 10.0 | 15.0 | 1.5 | 32 | | 5 | 210.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T H | 141 | 205 | Annual | 29.6 | 16.0 | 4,74 | 995 | | 6 | | | | | | | | | ,,,,, | | 7 | | | | | | | | | | | 8 | | | | | | | | | | | 9 | | | | | | | | | | | 10
11 | | | | | | | | | | | 12 | | | | | | | | | | | 12A | | | | | | | | | | | 13 | | | | | | | | | | | 14 | - | 1 | | | | | | | | | | 0.3 | | | | | | | | | | | *** | | | | | | | | | | . 4 | [| Ja | Printed on: 5/8/25 9:04 AM Plan is based on: 590 Organic Nutrient Management Plan **Available Water Capacity Entries** | | Printed on: | 5/8/2 | 5 9:04 | AM | | | | ed on: | _ | | | | ment Pla | Pe | ermit#: | V | /Q000 | 2950000 | |---|--|------------------|-----------------------------|-----------------|----------------------------|-------------------|-----------------------------|------------------------|----------------------------|-------------------------|-----------------------------|----------------|-----------------------------|-------------------|------------------------------|-----------|-----------------------------|---| | | | | | | | | | | AMPLE | | | | | | | | | 1 | | | Texture of the soil layer within the upper 24 | 0 | 3 | 0.12 | 0.2 | 3 | 14
En | 0.16
ter Da | 0.21 | 14 | 18
24" (| | 0,12 | 18 | 24 | 0 | 0 | Available Water Holding Capacity (AWC) o | | LMU or
Fields
receiving
Effluent | inches of the
soil profile that
has the lowest
permeability
(Don't Abbreviate) | Fi
La
(inc | th of
rst
yer
hes) | Fi
La
(in | C of
rst
yer
/in) | Sec
La
(inc | th of
ond
yer
hes) | AW
Sec
La
(in | C of
ond
yer
/in) | Dep
Th
La
(inc | th of
ird
yer
hes) | AW
Th
La | C of
iird
yer
/in) | For
La
(inc | th of
urth
yer
hes) | For
La | C of
urth
yer
/in) | the uppe
24 inches
of the so
profile
(Inches) | | 1 | Sandy Clay | 0 | 5 | 0.12 | 0.16 | 5 | 40 | 0.12 | 0.17 | 40 | | | | 0 | | | | 3.46 | | 2 | Sandy Clay | 0 | 5 | 0.12 | 0.16 | 5 | 40 | 0.12 | 0.17 | 40 | | | | 0 | | | | 3.46 | | 3 | Clairette Hasse | 0 | 4 | 0.1 | 0.17 | 4 | 10 | 0.15 | 0.19 | 10 | 26 | 0.1 | 0.18 | 26 | | | | 3.52 | | 3A | Clairette Hasse | 0 | 4 | 0.1 | 0.17 | 4 | 10 | 0.15 | 0.19 | 10 | 26 | 0.1 | 0.18 | 26 | | | | 3.52 | | 5 | Purves Dugout | 0 | 8 | 0.11 | 0.2 | 8 | 12 | 0.08 | 0.18 | 12 | 14 | 0.04 | 0.07 | 14 | 24 | 0 | 0 | 1.87 | - | y. | | | | # SOIL MONITORING REPORT FOR CAFO INDIVIDUAL PERMITS IN THE SOLE SOURCE IMPAIRMENT ZONES #### A. Sample collection | analyses | |----------| | | | | | | #### **B.** Facility Information - 1) Permit Number: WQ0002950000 - 2) Site Name: Grand Canyon Dairy - 3) Name of LMU (LMU Name should correspond to field designation located on the Map included in the PPP): \uparrow - 4) Name of Owner/Operator: Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC - 5) Mailing Address for Owner/Operator: 2179 County Road 308, Dublin, TX 76446 Table 1. Soil Analysis Report Where Manure, Sludge and Wastewater are not Incorporated | Soil Sample Parameter | 0-2 inches soil depth | 2-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|-----------------------|--| | Nitrate-Nitrogen (NO ₃ -N), ppm | | | v -4 mondo con depin | | Phosphorus (extractable), ppm | | | | | Potassium (extractable), ppm | | | | | Sodium (extractable), ppm | | | | | Magnesium (extractable), ppm | | | 1000 | | Calcium (extractable), ppm | | | | | Electrical Conductivity/Soluble
Salts, dS/m | | | , and the second | | pH, SU | | | | Table 2. Soil Analysis Report Where Manure, Sludge and Wastewater are Incorporated | Soil Sample Parameter | o-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | 12.765 | 3.188 | | Phosphorus (extractable), ppm | 194 | 30.0 | | Potassium (extractable), ppm | 568 | 373 | | Sodium (extractable), ppm | 31.8 | 116 | | Magnesium (extractable), ppm | 363 | 412 | | Calcium (extractable), ppm | 5318 | 6240 | | Electrical Conductivity/Soluble
Salts, dS/m | 0.239 | 0.294 | | pH, SU | 7.61 | 7.83 | Note: ppm = parts per million, considered to be equivalent to milligrams per liter (mg/l); dS/m = decisiomins per meter, equivalent to millimhols per centimeter (mmhols/cm); SU = standard units. #### C. Certification I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. Print Name and Title of Responsible Official or Authorized Agent: Tim Miranda, Member
Signature Al Malla fr- Date: 2/4/25 Telephone Number: 254/445-0404 #### D. How to Submit The soil monitoring report with attached soil analyses should be included in the Annual Report that is required to be submitted by March 31 of each year. For State Only CAFOs, submit this soil monitoring report form to the TCEQ, Enforcement Division (MC-224), P.O. Box 13087, Austin, Texas 78711-3087 and provide a copy to the TCEQ Regional Office. If you have any additional questions about this form or soil sample collection and soil analyses requirements, contact: By e-mail: CAFO@tceq.texas.gov or call (512) -239-4671 ## SOIL MONITORING REPORT FOR CAFO INDIVIDUAL PERMITS IN THE SOLE SOURCE IMPAIRMENT ZONES #### A. Sample collection - Samples were collected for the land management unit (LMU) identified below. Yes, complete this form and Tables 1 and 2 below. Attach a copy of the laboratory analyses to this soil monitoring report form. - No, provide the facility information for the LMU below with the exception of the tables. - 2) Reporting Year: 2024 Sample Collection Date: 10/24/2024 #### **B.** Facility Information - 1) Permit Number: WQ0002950000 - 2) Site Name: Grand Canyon Dairy - 3) Name of LMU (LMU Name should correspond to field designation located on the Map included in the PPP); 2 - 4) Name of Owner/Operator: Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC - 5) Mailing Address for Owner/Operator: 2179 County Road 308, Dublin, TX 76446 Table 1. Soil Analysis Report Where Manure, Sludge and Wastewater are not Incorporated | Soil Sample Parameter | 0-2 inches soil depth | 2-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | | | | | Phosphorus (extractable), ppm | | | | | Potassium (extractable), ppm | | | | | Sodium (extractable), ppm | | | | | Magnesium (extractable), ppm | | | | | Calcium (extractable), ppm | | | | | Electrical Conductivity/Soluble
Salts, dS/m | | | | | pH, SU | | | | Table 2. Soil Analysis Report Where Manure, Sludge and Wastewater are Incorporated | Soil Sample Parameter | o-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | 14.084 | 3.026 | | Phosphorus (extractable), ppm | 140 | 7.94 | | Potassium (extractable), ppm | 523 | 310 | | Sodium (extractable), ppm | 31.4 | 228 | | Magnesium (extractable), ppm | 404 | 545 | | Calcium (extractable), ppm | 6775 | 11729 | | Electrical Conductivity/Soluble
Salts, dS/m | 0.147 | 0.125 | | pH, SU | 7.76 | 7.84 | Note: ppm = parts per million, considered to be equivalent to milligrams per liter (mg/l); dS/m = decisiemins per meter, equivalent to millimhols per centimeter (mmhols/cm); SU = standard units. #### C. Certification I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. Print Name and Title of Responsible Official or Authorized Agent: Tim Miranda, Member Signature: Golo Mulli fr- Date: 2/4/25 Telephone Number: 254/445-0404 #### D. How to Submit The soil monitoring report with attached soil analyses should be included in the Annual Report that is required to be submitted by March 31 of each year. For State Only CAFOs, submit this soil monitoring report form to the TCEQ, Enforcement Division (MC-224), P.O. Box 13087, Austin, Texas 78711-3087 and provide a copy to the TCEQ Regional Office. If you have any additional questions about this form or soil sample collection and soil analyses requirements, contact: By e-mail: CAFO@tceq.texas.gov or call (512) -239-4671 ## SOIL MONITORING REPORT FOR CAFO INDIVIDUAL PERMITS IN THE SOLE SOURCE IMPAIRMENT ZONES #### A. Sample collection - Samples were collected for the land management unit (LMU) identified below. - Yes, complete this form and Tables 1 and 2 below. Attach a copy of the laboratory analyses to this soil monitoring report form. - No, provide the facility information for the LMU below with the exception of the tables. - 2) Reporting Year: 2024 Sample Collection Date: 10/24/2024 #### **B.** Facility Information - 1) Permit Number: WQ0002950000 - 2) Site Name: Grand Canyon Dairy - 3) Name of LMU (LMU Name should correspond to field designation located on the Map included in the PPP): 3 - 4) Name of Owner/Operator: Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC - 5) Mailing Address for Owner/Operator: 2179 County Road 308, Dublin, TX 76446 Table 1. Soil Analysis Report Where Manure, Sludge and Wastewater are not Incorporated | Soil Sample Parameter | 0-2 inches soil depth | 2-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | | | | | Phosphorus (extractable), ppm | | | | | Potassium (extractable), ppm | 100 | | | | Sodium (extractable), ppm | | | | | Magnesium (extractable), ppm | | | | | Calcium (extractable), ppm | | | | | Electrical Conductivity/Soluble
Salts, dS/m | | | | | pH, SU | | | | Table 2. Soil Analysis Report Where Manure, Sludge and Wastewater are Incorporated | Soil Sample Parameter | o-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | 16.962 | 4.039 | | Phosphorus (extractable), ppm | 224 | 17.5 | | Potassium (extractable), ppm | 458 | 158 | | Sodium (extractable), ppm | 24.5 | 83.2 | | Magnesium (extractable), ppm | 417 | 294 | | Calcium (extractable), ppm | 10104 | 11573 | | Electrical Conductivity/Soluble
Salts, dS/m | 0.174 | 0.183 | | pH, SU | 7.56 | 7.71 | | | | | Note: ppm = parts per million, considered to be equivalent to milligrams per liter (mg/l); dS/m = decisiemins per meter, equivalent to millimhols per centimeter (mmhols/cm); SU = standard units. #### C. Certification I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. Print Name and Title of Responsible Official or Authorized Agent: Tim Miranda, Member Signature: Joh Mulli Pr- Date: 2/4/23 Telephone Number: 254/445-0404 #### D. How to Submit The soil monitoring report with attached soil analyses should be included in the Annual Report that is required to be submitted by March 31 of each year. For State Only CAFOs, submit this soil monitoring report form to the TCEQ, Enforcement Division (MC-224), P.O. Box 13087, Austin, Texas 78711-3087 and provide a copy to the TCEQ Regional Office. If you have any additional questions about this form or soil sample collection and soil analyses requirements, contact: By e-mail: CAFO@tceq.texas.gov or call (512) -239-4671 ## SOIL MONITORING REPORT FOR CAFO INDIVIDUAL PERMITS IN THE SOLE SOURCE IMPAIRMENT ZONES #### A. Sample collection | 1) Samples were collected for the lan | d management unit (LMU) identified below. | |---|--| | Yes, complete this form and Table to this soil monitoring rep | s 1 and 2 below. Attach a copy of the laboratory analyses
ort form. | | No, provide the facility information | n for the LMU below with the exception of the tables. | | 2) Reporting Year: 2024 | Sample Collection Date: 10/24/2024 | #### **B.** Facility Information 1) Permit Number: WQ0002950000 2) Site Name: Grand Canyon Dairy 3) Name of LMU (LMU Name should correspond to field designation located on the Map included in the PPP): 4 4) Name of Owner/Operator: Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC 5) Mailing Address for Owner/Operator: 2179 County Road 308, Dublin, TX 76446 Table 1. Soil Analysis Report Where Manure, Sludge and Wastewater are not Incorporated | Soil Sample Parameter | 0-2 inches soil depth | 2-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | • | • | | | Phosphorus (extractable), ppm | | | | | Potassium (extractable), ppm | | | | | Sodium (extractable), ppm | | | | | Magnesium (extractable), ppm | | | | | Calcium (extractable), ppm | | | | | Electrical Conductivity/Soluble
Salts, dS/m | | | | | pH, SU | | | | Table 2. Soil Analysis Report Where Manure, Sludge and Wastewater are Incorporated | Soil Sample Parameter | o-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | 12.765 | 6.869 | | Phosphorus (extractable), ppm | 57.2 | 12.0 | | Potassium (extractable), ppm | 607 | 266 | | Sodium (extractable), ppm | 31.9 | 132 | | Magnesium (extractable),
ppm | 462 | 337 | | Calcium (extractable), ppm | 11037 | 14070 | | Electrical Conductivity/Soluble
Salts, dS/m | 0.239 | 0.46 | | pH, SU | 7.61 | 7.85 | Note: ppm = parts per million, considered to be equivalent to milligrams per liter (mg/l); dS/m = decisiemins per meter, equivalent to millimhols per centimeter (mmhols/cm); SU = standard units. #### C. Certification I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. Print Name and Title of Responsible Official or Authorized Agent: Tim Miranda, Member Signature: John Mulli from Date: 2/4/25 Telephone Number: 254/445-0404 #### D. How to Submit The soil monitoring report with attached soil analyses should be included in the Annual Report that is required to be submitted by March 31 of each year. For State Only CAFOs, submit this soil monitoring report form to the TCEQ, Enforcement Division (MC-224), P.O. Box 13087, Austin, Texas 78711-3087 and provide a copy to the TCEQ Regional Office. If you have any additional questions about this form or soil sample collection and soil analyses requirements, contact: By e-mail: CAFO@tceq.texas.gov or call (512) -239-4671 ## SOIL MONITORING REPORT FOR CAFO INDIVIDUAL PERMITS IN THE SOLE SOURCE IMPAIRMENT ZONES #### A. Sample collection | 1) | Samples were collected for the land managem | ent unit (LMU) identified below. | |----|--|---| | ✓ | Yes, complete this form and Tables 1 and 2 be to this soil monitoring report form. | low. Attach a copy of the laboratory analyses | | | No, provide the facility information for the LN | MU below with the exception of the tables. | | | Reporting Year: 2024 | Sample Collection Date: 10/24/2024 | #### **B.** Facility Information - 1) Permit Number: WQ0002950000 - 2) Site Name: Grand Canyon Dairy - 3) Name of LMU (LMU Name should correspond to field designation located on the Map included in the PPP): 5 - 4) Name of Owner/Operator: Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC - 5) Mailing Address for Owner/Operator: 2179 County Road 308, Dublin, TX 76446 Table 1. Soil Analysis Report Where Manure, Sludge and Wastewater are not Incorporated | Soil Sample Parameter | 0-2 inches soil depth | 2-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|-----------------------|------------------------| | Nitrate-Nitrogen (NO3-N), ppm | | • | | | Phosphorus (extractable), ppm | | | | | Potassium (extractable), ppm | | | | | Sodium (extractable), ppm | | | | | Magnesium (extractable), ppm | | | | | Calcium (extractable), ppm | | | | | Electrical Conductivity/Soluble
Salts, dS/m | | | | | pH, SU | | | | Table 2. Soil Analysis Report Where Manure, Sludge and Wastewater are Incorporated | Soil Sample Parameter | o-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | 14.244 | 6.215 | | Phosphorus (extractable), ppm | 141 | 16.0 | | Potassium (extractable), ppm | 808 | 334 | | Sodium (extractable), ppm | 24.1 | 107 | | Magnesium (extractable), ppm | 543 | 380 | | Calcium (extractable), ppm | 12799 | 12949 | | Electrical Conductivity/Soluble
Salts, dS/m | 0.23 | 0.158 | | pH, SU | 7.78 | 7.89 | Note: ppm = parts per million, considered to be equivalent to milligrams per liter (mg/l); dS/m = decisiemins per meter, equivalent to millimhols per centimeter (mmhols/cm); SU = standard units. #### C. Certification I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. Print Name and Title of Responsible Official or Authorized Agent: Tim Miranda, Member Telephone Number: 254/445-0404 #### D. How to Submit The soil monitoring report with attached soil analyses should be included in the Annual Report that is required to be submitted by March 31 of each year. For State Only CAFOs, submit this soil monitoring report form to the TCEQ, Enforcement Division (MC-224), P.O. Box 13087, Austin, Texas 78711-3087 and provide a copy to the TCEQ Regional Office. If you have any additional questions about this form or soil sample collection and soil analyses requirements, contact: By e-mail; CAFO@tceq.texas.gov or call (512) -239-4671 ## A. Sample collection | 1) Samples were | collected for the land manageme | ent unit (LMU) identified below. | |---------------------------|--|--| | Yes, complete to this soi | his form and Tables 1 and 2 bel
I monitoring report form. | ow. Attach a copy of the laboratory analyses | | No, provide the | facility information for the LM | IU below with the exception of the tables. | | 2) Reporting Year | | Sample Collection Date: 10/24/2024 | ### **B.** Facility Information - 1) Permit Number: WQ0002950000 - 2) Site Name: Grand Canyon Dairy - 3) Name of LMU (LMU Name should correspond to field designation located on the Map included in the PPP): 6 - 4) Name of Owner/Operator: Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC - 5) Mailing Address for Owner/Operator: 2179 County Road 308, Dublin, TX 76446 Table 1. Soil Analysis Report Where Manure, Sludge and Wastewater are not Incorporated | Soil Sample Parameter | 0-2 inches soil depth | 2-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|-----------------------|------------------------| | Nitratc-Nitrogen (NO ₃ -N), ppm | | | | | Phosphorus (extractable), ppm | | | | | Potassium (extractable), ppm | | | | | Sodium (extractable), ppm | | | | | Magnesium (extractable), ppm | | | | | Calcium (extractable), ppm | | | | | Electrical Conductivity/Soluble
Salts, dS/m | | | | | pH, SU | | | | Table 2. Soil Analysis Report Where Manure, Sludge and Wastewater are Incorporated | Soil Sample Parameter | o-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | 13.206 | 8.293 | | Phosphorus (extractable), ppm | 146 | 10.8 | | Potassium (extractable), ppm | 450 | 180 | | Sodium (extractable), ppm | 31.3 | 97.1 | | Magnesium (extractable), ppm | 432 | 263 | | Calcium (extractable), ppm | 11873 | 17447 | | Electrical Conductivity/Soluble
Salts, dS/m | 0.08 | 0.109 | | pH, SU | 7.64 | 7.77 | I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. Print Name and Title of Responsible Official or Authorized Agent: Tim Miranda, Member Signature: July Mulhi for Date: 2/4/25 Telephone Number: 254/445-0404 #### D. How to Submit The soil monitoring report with attached soil analyses should be included in the Annual Report that is required to be submitted by March 31 of each year. For State Only CAFOs, submit this soil monitoring report form to the TCEQ, Enforcement Division (MC-224), P.O. Box 13087, Austin, Texas 78711-3087 and provide a copy to the TCEQ Regional Office. If you have any additional questions about this form or soil sample collection and soil analyses requirements, contact: By e-mail: CAFO@tceq.texas.gov or call (512) -239-4671 ## A. Sample collection | 1) Samples were collected for the lar | nd management unit (LMU) identified below. | |--|--| | ✓ Yes, complete this form and Table
to this soil monitoring rej | es 1 and 2 below. Attach a copy of the laboratory analyses
port form. | | No, provide the facility information | on for the LMU below with the exception of the tables. | | 2) Reporting Year: 2024 | Sample Collection Date: 10/24/2024 | ### **B.** Facility Information - t) Permit Number: WQ0002950000 - 2) Site Name: Grand Canyon Dairy - 3) Name of LMU (LMU Name should correspond to field designation located on the Map included in the PPP): 7 - 4) Name of Owner/Operator: Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC - 5) Mailing Address for Owner/Operator: 2179 County Road 308, Dublin, TX 76446 Table 1. Soil Analysis Report Where Manure, Sludge and Wastewater are not
Incorporated | Soil Sample Parameter | 0-2 inches soil depth | 2-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | | • | | | Phosphorus (extractable), ppm | | | | | Potassium (extractable), ppm | | | | | Sodium (extractable), ppm | | | | | Magnesium (extractable), ppm | | | | | Calcium (extractable), ppm | | | | | Electrical Conductivity/Soluble
Salts, dS/m | | | | | pH, SU | | | | Table 2. Soil Analysis Report Where Manure, Sludge and Wastewater are Incorporated | Soil Sample Parameter | o-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | 12.479 | 5.106 | | Phosphorus (extractable), ppm | 88.1 | 15.0 | | Potassium (extractable), ppm | . 53 58 | 212 | | Sodium (extractable), ppm | 14.1 | 13.5 | | Magnesium (extractable), ppm | 288 | 249 | | Calcium (extractable), ppm | 14241 | 14561 | | Electrical Conductivity/Soluble
Salts, dS/m | 0.084 | 0.104 | | pH, SU | 7.49 | 7.64 | I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. Print Name and Title of Responsible Official or Authorized Agent: Tim Miranda, Member Signature: John Mulh from Date: 2/4/25 Telephone Number: 254/445-0404 ### D. How to Submit The soil monitoring report with attached soil analyses should be included in the Annual Report that is required to be submitted by March 31 of each year. For State Only CAFOs, submit this soil monitoring report form to the TCEQ, Enforcement Division (MC-224), P.O. Box 13087, Austin, Texas 78711-3087 and provide a copy to the TCEQ Regional Office. If you have any additional questions about this form or soil sample collection and soil analyses requirements, contact: By e-mail: CAFO@teeq.texas.gov or call (512) -239-4671 ## A. Sample collection | 1) Samples were collected for the land m | anagement unit (LMU) identified below. | |--|---| | Yes, complete this form and Tables 1 a
to this soil monitoring report | and 2 below. Attach a copy of the laboratory analyses form. | | No, provide the facility information for | or the LMU below with the exception of the tables. | | 2) Reporting Year: 2024 | Sample Collection Date: 10/24/2024 | ## **B.** Facility Information - 1) Permit Number: WQ0002950000 - 2) Site Name: Grand Canyon Dairy - 3) Name of LMU (LMU Name should correspond to field designation located on the Map included in the PPP): 8 - 4) Name of Owner/Operator: Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC - 5) Mailing Address for Owner/Operator: 2179 County Road 308, Dublin, TX 76446 Table 1. Soil Analysis Report Where Manure, Sludge and Wastewater are not Incorporated | Soil Sample Parameter | 0-2 inches soil depth | 2-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | | | | | Phosphorus (extractable), ppm | | | | | Potassium (extractable), ppm | | | | | Sodium (extractable), ppm | | | | | Magnesium (extractable), ppm | | | | | Calcium (extractable), ppm | | | | | Electrical Conductivity/Soluble
Salts, dS/m | | | | | pH, SU | | | | Table 2. Soil Analysis Report Where Manure, Sludge and Wastewater are Incorporated | Soil Sample Parameter | o-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | 10.588 | 10.636 | | Phosphorus (extractable), ppm | 93.2 | 95.5 | | Potassium (extractable), ppm | 404 | 425 | | Sodium (extractable), ppm | 13.2 | 12.2 | | Magnesium (extractable), ppm | 239 | 224 | | Calcium (extractable), ppm | 14697 | 11357 | | Electrical Conductivity/Soluble
Salts, dS/m | 0.122 | 0.09 | | pH, \$U | 7.53 | 7.54 | I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. Print Name and Title of Responsible Official or Authorized Agent: Tim Miranda, Member Signature: John Malle to Date: 2/4/25 Telephone Number: 254/445-0404 ### D. How to Submit The soil monitoring report with attached soil analyses should be included in the Annual Report that is required to be submitted by March 31 of each year. For State Only CAFOs, submit this soil monitoring report form to the TCEQ, Enforcement Division (MC-224), P.O. Box 13087, Austin, Texas 78711-3087 and provide a copy to the TCEQ Regional Office. If you have any additional questions about this form or soil sample collection and soil analyses requirements, contact: By e-mail: CAFO@tccq.texas.gov or call (512) -239-4671 ## A. Sample collection | 1) | Samples were collected for the land | management unit (LMU) identified below. | |----------|--|---| | V | Yes, complete this form and Tables
to this soil monitoring repo | t and 2 below. Attach a copy of the laboratory analyse:
rt form. | | | No, provide the facility information | for the LMU below with the exception of the tables. | | | Reporting Year: 2024 | Sample Collection Date: 10/24/2024 | ## **B. Facility Information** - Permit Number: WQ0002950000 Site Name: Grand Canyon Dairy - 3) Name of LMU (LMU Name should correspond to field designation located on the Map included in the PPP): 9 - 4) Name of Owner/Operator: Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC - 5) Mailing Address for Owner/Operator: 2179 County Road 308, Dublin, TX 76446 Table 1. Soil Analysis Report Where Manure, Sludge and Wastewater are not Incorporated | Soil Sample Parameter | 0-2 inches soil depth | 2-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|-----------------------|---------------------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | | • | | | Phosphorus (extractable), ppm | | | | | Potassium (extractable), ppm | | | | | Sodium (extractable), ppm | | | | | Magnesium (extractable), ppm | | | · · · · · · · · · · · · · · · · · · · | | Calcium (extractable), ppm | | | | | Electrical Conductivity/Soluble
Salts, dS/m | | | | | pH, SU | | | | Table 2. Soil Analysis Report Where Manure, Sludge and Wastewater are Incorporated | Soil Sample Parameter | o-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | 20.101 | 13.247 | | Phosphorus (extractable), ppm | 94.5 | 5.69 | | Potassium (extractable), ppm | 369 | 135 | | Sodium (extractable), ppm | 14.4 | 20.2 | | Magnesium (extractable), ppm | 254 | 171 | | Calcium (extractable), ppm | 11662 | 22301 | | Electrical Conductivity/Soluble
Salts, dS/m | 0.137 | 0.277 | | pH, SU | 7.44 | 7.75 | I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. Print Name and Title of Responsible Official or Authorized Agent: Tim Miranda, Member Signature: John Mulli fr- Date: 2/4/25 Telephone Number: 254/445-0404 #### D. How to Submit The soil monitoring report with attached soil analyses should be included in the Annual Report that is required to be submitted by March 31 of each year. For State Only CAFOs, submit this soil monitoring report form to the TCEQ, Enforcement Division (MC-224), P.O. Box 13087, Austin, Texas 78711-3087 and provide a copy to the TCEQ Regional Office. If you have any additional questions about this form or soil sample collection and soil analyses requirements, contact: By e-mail CAFO@tceq.texas.gov or call (512) -239-4671 ## A. Sample collection | 1) | Samples were collected for the land manage | gement unit (LMU) identified below. | |----------|--|---| | √ | | 2 below. Attach a copy of the laboratory analyses | | | to this soil monitoring report for | m, | | | No, provide the facility information for the | e LMU below
with the exception of the tables. | | 2) | Reporting Year: 2024 | Sample Collection Date: 10/24/2024 | | | | | ## **B.** Facility Information - 1) Permit Number: WQ0002950000 - 2) Site Name: Grand Canyon Dairy - 3) Name of LMU (LMU Name should correspond to field designation located on the Map included in the PPP): 10 - 4) Name of Owner/Operator: Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC - 5) Mailing Address for Owner/Operator: 2179 County Road 308, Dublin, TX 76446 Table 1. Soil Analysis Report Where Manure, Sludge and Wastewater are not Incorporated | Soil Sample Parameter | 0-2 inches soil depth | 2-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | | | | | Phosphorus (extractable), ppm | | 11 | | | Potassium (extractable), ppm | | | | | Sodium (extractable), ppm | | | | | Magnesium (cxtractable), ppm | | | | | Calcium (extractable), ppm | | | | | Electrical Conductivity/Soluble
Salts, dS/m | | | | | pH, SU | | | | Table 2. Soil Analysis Report Where Manure, Sludge and Wastewater are Incorporated | Soil Sample Parameter | o-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | 8.556 | 2.45 | | Phosphorus (extractable), ppm | 121 | 12.2 | | Potassium (extractable), ppm | 309 | 166 | | Sodium (extractable), ppm | 18.4 | 40.6 | | Magnesium (extractable), ppm | 369 | 266 | | Calcium (extractable), ppm | 11767 | 14769 | | Electrical Conductivity/Soluble
Salts, dS/m | 0.296 | 0.328 | | pH, SU | 7.56 | 7.66 | I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. Print Name and Title of Responsible Official or Authorized Agent: Tim Miranda, Member Signature: Joh Mulli fr-s Date: 2/4/25 Telephone Number: 254/445-0404 ### D. How to Submit The soil monitoring report with attached soil analyses should be included in the Annual Report that is required to be submitted by March 31 of each year. For State Only CAFOs, submit this soil monitoring report form to the TCEQ, Enforcement Division (MC-224), P.O. Box 13087, Austin, Texas 78711-3087 and provide a copy to the TCEQ Regional Office. If you have any additional questions about this form or soil sample collection and soil analyses requirements, contact: By e-mail: CAFO@tceq.texas.gov or call (512) -239-4671 ### A. Sample collection | 1) | Samples were collected for the land management | ent unit (LMU) identified below. | |----------|--|--| | V | Yes, complete this form and Tables 1 and 2 bel
to this soil monitoring report form. | ow. Attach a copy of the laboratory analyses | | | No, provide the facility information for the LM | IU below with the exception of the tables. | | 2) | Reporting Year: 2024 | Sample Collection Date: 10/28/2024 | ## **B.** Facility Information - 1) Permit Number: WQ0002950000 - 2) Site Name: Grand Canyon Dairy - 3) Name of LMU (LMU Name should correspond to field designation located on the Map included in the PPP): 11 - 4) Name of Owner/Operator: Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC - 5) Mailing Address for Owner/Operator: 2179 County Road 308, Dublin, TX 76446 Table 1. Soil Analysis Report Where Manure, Sludge and Wastewater are not Incorporated | Soil Sample Parameter | 0-2 inches soil depth | 2-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|-----------------------|--------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | | • | | | Phosphorus (extractable), ppm | | | | | Potassium (extractable), ppm | | | | | Sodium (extractable), ppm | | | | | Magnesium (extractable), ppm | | | Althorate and the second | | Calcium (extractable), ppm | | | | | Electrical Conductivity/Soluble
Salts, dS/m | | | | | pH, SU | | | | Table 2. Soil Analysis Report Where Manure, Sludge and Wastewater are Incorporated | Soil Sample Parameter | o-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | 14.139 | 7.847 | | Phosphorus (extractable), ppm | 27.1 | 5.40 | | Potassium (extractable), ppm | 189 | 183 | | Sodium (extractable), ppm | 14.8 | 24.5 | | Magnesium (extractable), ppm | 224 | 164 | | Calcium (extractable), ppm | 12042 | 19363 | | Electrical Conductivity/Soluble
Salts, dS/m | 0.314 | 0.287 | | pH, SU | 7.58 | 7.68 | I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penaltics for submitting false information, including the possibility of fine and imprisonment for knowing violations. Print Name and Title of Responsible Official or Authorized Agent: Tim Miranda, Member Signature: John Mulli from Date: 2/4/25 Telephone Number: 254/445-0404 ### D. How to Submit The soil monitoring report with attached soil analyses should be included in the Annual Report that is required to be submitted by March 31 of each year. For State Only CAFOs, submit this soil monitoring report form to the TCEQ, Enforcement Division (MC-224), P.O. Box 13087, Austin, Texas 78711-3087 and provide a copy to the TCEQ Regional Office. If you have any additional questions about this form or soil sample collection and soil analyses requirements, contact: By e-mail: CAFO@tceq.texas.gov or call (512) -239-4671 ### A. Sample collection Samples were collected for the land management unit (LMU) identified below. Yes, complete this form and Tables 1 and 2 below. Attach a copy of the laboratory analyses to this soil monitoring report form. No, provide the facility information for the LMU below with the exception of the tables. Reporting Year: 2024 Sample Collection Date: 10/28/2024 ## **B.** Facility Information - 1) Permit Number: WQ0002950000 - 2) Site Name: Grand Canyon Dairy - 3) Name of LMU (LMU Name should correspond to field designation located on the Map included in the PPP): 12 - 4) Name of Owner/Operator: Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC - 5) Mailing Address for Owner/Operator: 2179 County Road 308, Dublin, TX 76446 Table 1. Soil Analysis Report Where Manure, Sludge and Wastewater are not Incorporated | Soil Sample Parameter | 0-2 inches soil depth | 2-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|-----------------------|------------------------| | Nitratc-Nitrogen (NO ₃ -N), ppm | • | 1 | | | Phosphorus (extractable), ppm | | | | | Potassium (extractable), ppm | | | | | Sodium (extractable), ppm | | - | | | Magnesium (extractable), ppm | | | | | Calcium (extractable), ppm | | | | | Electrical Conductivity/Soluble
Salts, dS/m | | | | | pH, SU | | | | Table 2. Soil Analysis Report Where Manure, Sludge and Wastewater are Incorporated | Soil Sample Parameter | o-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | 24.344 | 14.792 | | Phosphorus (extractable), ppm | 207 | 2.4 | | Potassium (extractable), ppm | 432 | 365 | | Sodium (extractable), ppm | 16.5 | 104 | | Magnesium (extractable), ppm | 362 | 411 | | Calcium (extractable), ppm | 4950 | 7102 | | Electrical Conductivity/Soluble
Salts, dS/m | 0.227 | 0.304 | | pH, SU | 7.39 | 7.6 | I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. Print Name and Title of Responsible Official or Authorized Agent: Tim Miranda, Member Telephone Number: 254/445-0404 ### D. How to Submit The soil monitoring report with attached soil analyses should be included in the Annual Report that is required to be submitted by March 31 of each year. For State Only CAFOs, submit this soil monitoring report form to the TCEQ, Enforcement Division (MC-224), P.O. Box 13087, Austin, Texas 78711-3087 and provide a copy to the TCEQ Regional Office. If you have any additional questions about this form or soil sample collection and soil analyses requirements, contact: By e-mail: CAFO@tceq.texas.gov or call (512) -239-4671 ### A. Sample collection | 1) | Samples were collected for the land managem | ent unit (LMU)
identified below. | |----------|--|---| | √ | Yes, complete this form and Tables 1 and 2 be to this soil monitoring report form. | low. Attach a copy of the laboratory analyses | | | No, provide the facility information for the LN | IU below with the exception of the tables. | | 2) | Reporting Year: 2024 | Sample Collection Date: 10/28/2024 | ## **B.** Facility Information - 1) Permit Number: WQ0002950000 - 2) Site Name: Grand Canyon Dairy - 3) Name of LMU (LMU Name should correspond to field designation located on the Map included in the PPP): 13 - 4) Name of Owner/Operator: Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC - 5) Mailing Address for Owner/Operator: 2179 County Road 308, Dublin, TX 76446 Table 1. Soil Analysis Report Where Manure, Sludge and Wastewater are not Incorporated | Soil Sample Parameter | 0-2 inches soil depth | 2-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | | • | • | | Phosphorus (extractable), ppm | | | | | Potassium (extractable), ppm | | | | | Sodium (extractable), ppm | | | | | Magnesium (extractable), ppm | | | | | Calcium (extractable), ppm | | | | | Electrical Conductivity/Soluble
Salts, dS/m | | | | | pH, SU | | | | Table 2. Soil Analysis Report Where Manure, Sludge and Wastewater are Incorporated | Soil Sample Parameter | o-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | 5.278 | 4.692 | | Phosphorus (extractable), ppm | 78.5 | 10.7 | | Potassium (extractable), ppm | 242 | 172 | | Sodium (extractable), ppm | 12.6 | 141 | | Magnesium (extractable), ppm | 204 | 411 | | Calcium (extractable), ppm | 3127 | 7137 | | Electrical Conductivity/Soluble
Salts, dS/m | 0.086 | 0.229 | | pH, SU | 7.35 | 7.48 | I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. Print Name and Title of Responsible Official or Authorized Agent: Tim Miranda, Member Signature: Jh Mulhi h- Telephone Number: 254/445-0404 #### D. How to Submit The soil monitoring report with attached soil analyses should be included in the Annual Report that is required to be submitted by March 31 of each year. For State Only CAFOs, submit this soil monitoring report form to the TCEQ, Enforcement Division (MC-224), P.O. Box 13087, Austin, Texas 78711-3087 and provide a copy to the TCEQ Regional Office. If you have any additional questions about this form or soil sample collection and soil analyses requirements, contact: By e-mail: CAFO@tceq.texas.gov or call (512) -239-4671 ## A. Sample collection - 1) Samples were collected for the land management unit (LMU) identified below. - Yes, complete this form and Tables 1 and 2 below. Attach a copy of the laboratory analyses to this soil monitoring report form. - No, provide the facility information for the LMU below with the exception of the tables. - 2) Reporting Year: 2024 Sample Collection Date: 10/28/2024 ### **B.** Facility Information - 1) Permit Number: WQ0002950000 - 2) Site Name: Grand Canyon Dairy - 3) Name of LMU (LMU Name should correspond to field designation located on the Map included in the PPP): 14 - 4) Name of Owner/Operator: Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC - 5) Mailing Address for Owner/Operator: 2179 County Road 308, Dublin, TX 76446 Table 1. Soil Analysis Report Where Manure, Sludge and Wastewater are not Incorporated | Soil Sample Parameter | 0-2 inches soil depth | 2-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | • | • | | | Phosphorus (extractable), ppm | | | | | Potassium (extractable), ppm | | | | | Sodium (extractable), ppm | | | | | Magnesium (extractable), ppm | | | | | Calcium (extractable), ppm | | | | | Electrical Conductivity/Soluble
Salts, dS/m | | | | | pH, SU | | | | Table 2. Soil Analysis Report Where Manure, Sludge and Wastewater are Incorporated | Soil Sample Parameter | o-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | 4.676 | 3.463 | | Phosphorus (extractable), ppm | 25.9 | 3.10 | | Potassium (extractable), ppm | 251 | 218 | | Sodium (extractable), ppm | 21.2 | 177 | | Magnesium (extractable), ppm | 199 | 418 | | Calcium (extractable), ppm | 3090 | 7690 | | Electrical Conductivity/Soluble
Salts, dS/m | 0.083 | 0.266 | | pH, SU | 7.42 | 7.58 | I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. Print Name and Title of Responsible Official or Authorized Agent: Tim Miranda, Member Signature: Joh Mulli for Date: 2/4/25 Telephone Number: 254/445-0404 ## D. How to Submit The soil monitoring report with attached soil analyses should be included in the Annual Report that is required to be submitted by March 31 of each year. For State Only CAFOs, submit this soil monitoring report form to the TCEQ, Enforcement Division (MC-224), P.O. Box 13087, Austin, Texas 78711-3087 and provide a copy to the TCEQ Regional Office. If you have any additional questions about this form or soil sample collection and soil analyses requirements, contact: By e-mail: CAFO@tceq.texas.gov or call (512) -239-4671 Brooke T. Paup, Chairwoman Bobby Janecka, Commissioner Catarina R. Gonzales, Commissioner Kelly Keel, Executive Director ## TEXAS COMMISSION ON ENVIRONMENTAL QUALITY Protecting Texas by Reducing and Preventing Pollution January 23, 2025 ## CERTIFIED MAIL 7022 2410 0000 5131 8251 RETURN RECEIPT REQUESTED Ms. Dorice Miranda Circle 7 Dairy, I.I.C and Grand Canyon Dairy, LLC Grand Canyon Dairy 2179 County Road 308 Dublin, TX 76446 Re: Annual Soil Sample Analysis Results at Grand Canyon Dairy CAFO Permit No.: WQ0002950000 Dear Ms. Miranda: Attached are the analytical results for the soil samples that were collected at your facility on October 24 and 28, 2024. A copy of the sampling map is attached. Please utilize these results to update your nutrient management plan. In addition, if any of the results are greater than 200 parts per million for phosphorus, please develop a new nutrient utilization plan (NUP) or revise your existing NUP, in accordance with your permit. All new or revised NUPs that are required to be submitted for TCEQ review and approval shall be mailed to the following address: Water Quality Assessment Section Manager Water Quality Division, MC 150 Texas Commission on Environmental Quality P.O. Box 13087 Austin, Texas 78711-3087 If you collected a duplicate sample following RG-408 protocol during the TCEQ sampling event that indicates a significant difference in the TCEQ analysis results (greater than 20% difference), you may choose to dispute the TCEQ sample results within 20 calendar days from the date of this letter. You must provide copies of all supporting documentation, including but not limited to your sample results, chain of custody documentation and laboratory quality assurance documentation. Please submit this information in writing to the TCEQ at the following address: ATTN: Annual CAFO Soil Sample Analysis Disputes Water Section Manager Dallas/Fort Worth Regional Office Texas Commission on Environmental Quality 2309 Gravel Drive Fort Worth, TX 76118-6951 An analysis dispute received after the time allocated above will not be eligible for re-analysis. If you have any questions, please feel free to contact Mr. Michael Martin in the Stephenville Office at 254-552.1900. Sincerely, Michael Martin, Team Leader, Water Section DFW Region Office Texas Commission on Environmental Quality MM/dm **Enclosures: Laboratory Analysis Reports** | TEXAS
COMMIS
ENVIRO
QUALITY | SSION ON
NMENTAL
Y | | Ch | ain | of | Cust | :od | y F | Rec | ord | | | 5 5 8 | 10 7 | |--------------------------------------|--------------------------|----------|-------------|-----------------|----------------|---------------------|-------|----------|-----------|------------------|-----------|-------------|--------------|--------| | Location: | Grand | CORY | Q M shade | ed area i | if the fac | cility inform | ation | must t | oe confic | lential) | | Permi | 2 950 |) | | Region: | Organizatio | | PCA Code | | | Progran | n r | Q | | Sampler telephor | 552- 19 | OD | | | | E-Mail ID: | | | (signature) | | an) | 2~ | | | | Sampler: (please | Gardn | 26 | | | | Lab ID
Number | Sample
ID | Date | Time | # of
Bottles | Grab/
Comp. | Matrix
L,S,M,O,1 | CL2 | рН | Cond |
Analyses | Requested | | REMAR | KS | | M272 | -01 | 10 24-24 | 00:51 | | | | | | | 5PP 1 | RFA | Ln | 141 | 06 | | 14273 | -02 | | 12:00 | | | | | | | | | LA | 141 | 6-24 | | 14274 | -03 | | 12:35 | | | | | | | | | LO | nu 2 | 0-6 | | 14275 | -04 | | 12.35 | | | | | | | | | LA | 142 | 6-24 | | 14276 | -05 | | 13:15 | | | | | | | | | L | n43 | 0-6 | | 14277 | -06 | | 13:15 | | | | | | | | | LI | MU3 | 6-24 | | 14278 | | | 10:40 | | | | | | | | | Ln | 144 | 0-6 | | 14281 | -08 | | 10 40 | | | | | | | | | LI | nu4 | 6-24 | | 14282 | -09 | | 11:00 | | | | | | | | | Lr | nu5 | 0-6 | | 14283 | -10 | | 11:00 | | | V | | | | | | L | nu5 | 6-24 | | Relinquished | by: | Oate | Time | Recei | ved by: | h | 11-1 | <u> </u> | 4 | For Laboratory (| Jse: | <i>ي</i> *\ | | | | Relinquished | by: | Date | Time | Recei | 19 6Y | Ĺ | | | | Received on ice | : Y | N | | deg. C | | Relinquished | by: | Date | Time | Recei | ved by: | | | | | Preservatives: | Υ | N | | | | Relinquished | by: | Date | Time | Recei | ved by: | | | | | COC Seal: | Y | N | | | 1375 Υ Report for Samples analyzed Under Contract Number: 582-10-99518 Report ID: 055810a-45667 Print Date: 10-Jan-25 Texas A&M AgriLife Extension Service Soil, Water and Forage Testing Laboratory 108 Soil Testing Laboratory, 2478 TAMU College Station, TX 77843-2478 979-862-4955 Client Name: Grand Canyon Client address: not provided Standard Sample Report TCEQ COC# 055810 | Laboratory ID: | TCEQ/client
Sample ID; | Sample
Depth (inches) | Sample Coll.
Date: | Collector
Name: | TCEQ
Region # | Date
Received | Sample
Type: | Sample opened
Date | Sample Ground
Date | Process
Tech. | |----------------|---------------------------|--------------------------|-----------------------|--------------------|------------------|------------------|-----------------|-----------------------|-----------------------|------------------| | 14272 | 55810-01 | 0-6 | 10/24/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TLP | | 14273 | 55810-02 | 6-24 | 10/24/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TLP | | 14274 | 55810-03 | 0-6 | 10/24/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TLP | | 14275 | 55810-04 | 6-24 | 10/24/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TLP | | 14276 | 55810-05 | 0-6 | 10/24/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TLP | | 14277 | 55810-06 | 6-24 | 10/24/2024 | Vanessa Gardner | 4 | 11/19/2024 | soīl | 11/25/2024 | 12/4/2024 | πP | | 14278 | 55810-07 | 0-6 | 10/24/2024 | Vanessa Gardner | 4 | 11/19/2024 | sõil | 11/25/2024 | 12/4/2024 | TLP | #### Methods and Sample Preparation: Receiving of samples Processing - SWFTL0097R0.SOP Upon opening of sample chests, all samples are identified and organized as listed on COC to insure completeness and condition of shipment. Individually each sample is spread across a non-reactive tray where foreign materials is physically removed and discarded. The sample(s) are then placed inside a 65C drying oven and allow to remain until dry. Individual samples were then removed from drying oven and pulverized with an Agvise soil pulzerized fitted with a shaking 2mm screen. Every attempt was again made to remove any remaining plant tissue in the pulverized sample(s). Soil was then transferred to the laboratory sample cups and while additional sample was stored. #### Analytical Methods: Soil oH 2:1 Dl water:soil SOIL pH AND CONDUCTIVITY - SWFTL0015R1SOP Schofield, R.K. and A.W. Taylor. 1955. The measurement of soil pH. Soil Sci. Soc. Am. Proc. 19:164-167. Soil Conductivity 2:1 DI Water:Soil SOIL DH AND CONDUCTIVITY - SWFTL0015R1.SOP Rhoades, J.D. 1982. Soluble salts. p. 167-178. In: A.L. Page, et al. (ed.). Methods of Soil Analysis: Part 2. Agronomy Monogr. 9. 2nd ed. ASA and SSSA, Madison, Wl. Soil Nitrate-N KCI Extractable with Cd-Reduction Analyses NO3-N EXTRACTION - SWFTL0014R5 SOP/NO3-N ANALYSIS - SWFTL0089R1.SOP Keeney, D.R. and D.W. Nelson. 1982. Nitrogen - inorganic forms. p. 643-687. In: A.L. Page, et al. (ed.). Methods of Soil Analysis: Part 2. Agronomy Monogr. 9. 2nd ed. ASA and SSSA, Madison, WI. Soil P. K. Ca. Mg. S and Na -- Mehlich III by ICP M3 EXTRACTION - SWFTL0079R1.SOP/M3 ANALYSIS - SWFTL0081R2.SOP Mehlich-3 soil test extractant: a modification of Mehlich-2 extractant. Commun. Soil Sci. Plant Anal. 15(12):1409-1416 Print Date: 10-Jan-25 Standard Sample Report | ordinadia odin | ipic i topoit | • | | | | | | | | | | | | |----------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | Laboratory ID: | TCEQ/dient | Mehlich III | Mehlich III | Mehlich III | Mehlich III | Mehlich I(I | Mehlich III | Mehlich Ift | Mehlich III | | | Sample ID: | P conc. | P units | K conc. | K units | Ca conc. | Ca units | Mg conc. | Mg units | Siconc, | S units | Na conc. | Na units | | 14272 | 55810-01 | 194 | ppm | 568 | ppm | 5318 | ppm | 363 | ppm | 56.7 | ppm | 31.8 | ppm | | 14273 | 55810-02 | 30.0 | ppm | 373 | ppm | 6240 | ppm | 412 | ppm | 68.8 | ppm | 116 | ppm | | 14274 | 55810-03 | 140 | ppm | 523 | ppm | 6775 | ppm | 404 | ppm | 65.8 | ppm | 31.4 | ppm | | 14275 | 55810-04 | 7.94 | ppm | 310 | ppm | 11729 | ppm | 545 | ppm | 115 | ppm | 228 | p pm | | 14276 | 55810-05 | 224 | ppm | 458 | ppm | 10104 | ppm | 417 | ppm | 94.0 | ppm | 24.5 | ppm | | 14277 | 55810-06 | 17.5 | ppm | 158 | ppm | 11573 | ppm | 294 | ppm | 97.7 | ppm | 83.2 | ppm | | 14278 | 55810-07 | 57.2 | ppm | 607 | ppm | 11037 | ppm | 462 | ppm | 96.5 | ppm | 31.9 | ppm | | | | | | | | | | | | | | | | | Laboratory ID: | Mehlich III |-----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | | P conc. | P units | К солс. | K units | Ca conc. | Ca units | Mg conc. | Mg conc. | S conc. | S units | Na conc. | Na units | | Detection Limit | 0.2367 | ppm | 0.1308 | ppm | 0.0436 | ppm | 0.0250 | ppm | 0.0010 | ppm | 0.0269 | ppm | | Reporting Limit | 1 | ppm | | Laboratory ID: | TCEQ/client | Mehlich III | Mehlich fill | Mehlich III | Mehlich III | |----------------|-------------|--------------|--------------|-------------|-------------| | | Sample ID: | Extract Date | Extract Tech | Anal.Date | Anal, Tech | | 14272 | 55810-01 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14273 | 55810-02 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14274 | 55810-03 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14275 | 55810-04 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14276 | 55810-05 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14277 | 55810-06 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14278 | 55810-07 | 1/8/2025 | FMR | 1/9/2025 | JLP | Print Date: 10-Jan-25 Standard Sample Report | | | | 1 | | | | | |----------------|-------------|------|-------|--------------|--------------|-----------|-----------| | Laboratory ID; | TCEQ/client | pН | рН | Conductivity | Conductivity | Nitrate-N | Nitrate N | | | Sample ID: | | units | | units | | units | | 14272 | 55810-01 | 7.61 | NA | 0.239 | dS/M | 12.765 | ppm | | 14273 | 55810-02 | 7.83 | NA | 0.294 | dS/M | 3.188 | ppm | | 14274 | 55810-03 | 7.76 | NA | 0.147 | dS/M | 14.084 | ppm | | 14275 | 55810-04 | 7.84 | NA | 0.125 | dS/M | 3.026 | ррт | | 14276 | 55810-05 | 7.56 | NA | 0.174 | dS/M | 16.962 | ppm | | 14277 | 55810-06 | 7.71 | NA | 0.183 | dS/M | 4.039 | ppm | | 14278 | 55810-07 | 7.78 | NA | 0,138 | dS/M | 14.191 | ppm | | | | | | | | | | | Laboratory ID: | ρH | pH
units | Conductivity | Conductivity units | Nitrate-N | Nitrate-N
units | |-----------------|------|-------------|--------------|--------------------|-----------|--------------------| | Detection Limit | 0.01 | па | 0.001 | dS/M | 0.01 | ppm | | Reporting Limit | 0.1 | na | 0.001 | dS/M | 1 | ppm | | Laboratory ID: | TCEQ/client | pH/Conduct | ivity prep | pH Ana | ysis | Conduc | tivity | Nitate-N I | extract | Nitrate-N Analysis | | |----------------|-------------|------------|------------|------------|------|------------|--------|------------|---------|--------------------|------| | | Sample ID: | Date | Tech | | 14272 | 55810-01 | 12/18/2024 | DEC | 12/18/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | 14273 | 55810-02 | 12/18/2024 | DEC | 12/18/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | 14274 | 55810-03 | 12/18/2024 | DEC | 12/18/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | 14275 | 55810-04 | 12/18/2024 | OEC | 12/18/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | 14276 | 55810-05 | 12/18/2024 | DEC | 12/18/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | 14277 | 55810-06 | 12/18/2024 | DEC | 12/18/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | 14278 | 55810-07 | 12/18/2024 | DEC | 12/18/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | Print Date: 10-Jan-25 Quality Control Report | Laboratory ID: | | Mehlich III ill | Mehlich III | Mehlich III | Mehlich III | Mehlich III | |----------------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | | | Р сопс. | P units | K conc. | K units | Calcono. | Ca units | Mg conc. | Mg conc. | S conc. | S units | Na conc. | Na units | | 14279 | IC1025 | 48.2 | ppm | 323 | ppm | 2503 | ppm | 360 | ppm | 40.8 | ppm | 48.7 | ppm | | 14280 | IC1026 | 46.5 | ppm | 309 | ppm | 2328 | ppm | 345 | ppm | 39.1 | ppm | 47.9 | ppm | | | Mean IC | 0 | ppm | 0 | ppm | 0 | ppm | 0 | ррт | 0 | ppm | 0 | ppm | | | IC Lower | 45.9 | ppm | 305.0 | ppm | 2320.0 | ppm | 335.0 | ppm | 27.0 | ppm | 30.0 | ppm | | | IC Upper | 53.4 | ppm | 365.0 | ppm
| 2645.0 | ppm | 409.0 | ppm | 49.0 | ppm | 55.0 | ppm | | | blk221_ | < 0.237 | opm | < 0.131 | ppm | < 0.0436 | ррт | < 0.0250 | ppm | <0.0100 | ppm | < 0.513 | ppm | | Laboratory ID: | Mehlich III |-----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | 5 | P conc. | P units | К сопс. | K units | Ca conc. | Ca units | Mg conc. | Mg conc. | Sicond. | S units | Na conc. | Na units | | Detection Limit | 0.2367 | ррт | 0.1308 | ppm | 0.0436 | ppm | 0.0250 | ppm | 0.0010 | ppm | 0.0269 | ppm | | Reporting Limit | 1 | ppm | | Laboratory ID: | Mehlich III | Mehlich III | Mehlich III | Mehlich (1) | |----------------|--------------|--------------|-------------|-------------| | | Extract Date | Extract Tech | Anal.Date | Anal Tech | | IC1025 | 1/8/2025 | FMR | 1/9/2025 | JLP | | IC1026 | 1/8/2025 | FMR | 1/9/2025 | JLP | | blk221 | 1/8/2025 | FMR | 1/9/2025 | JLP | Print Date: 10-Jan-25 Quality Control Report | Laboratory ID: | | pН | РH | Conductity | Conducitity | Nitrate-N | Nitrate-N | Nitrate-N | |----------------|---------------|-------|-------|------------|-------------|-----------|-----------|------------| | | | | units | conc. | units | conc. | units | % recovery | | 14279 | IC1025 | 5.9 | па | 0.254 | dS/M | 4.34 | ppm | | | 14280 | IC1026 | 5.9 | na | 0.255 | dS/M | 4.446 | ppm | | | | Mean IC | 5,855 | กล | 0.2545 | dS/M | 4.393 | ppm | | | 14280spike | Spiked sample | | | - | • | 3.9 | ppm | 88.1 | | | IC lower | 5.760 | na | 0.241 | dS/M | 3.5 | ppm | | | | fC Upper | 5.990 | na | 0.299 | dS/M | 5.5 | ppm | | | | blk221 | - | na | 0 | dS/M | 0.614 | ppm | | | Laboratory ID: | рН | pН | Conducitity | Conducitity | Nîtrate-N | Nitrate-N | |-----------------|------|-------|-------------|-------------|-----------|-----------| | | | units | conc. | units | сопс. | units | | Detection Limit | 0.01 | na | 0.001 | dS/M | 0.01 | ppm | | Reporting Limit | 0.1 | na | 0.001 | dS/M | 1 | ppm | | Laboratory ID: | pH/Conductivity prep | | pH Analysis | | Conduc | tivity | Nitate-N | Extract | Nitrate-N Analysis | | |----------------|----------------------|------|-------------|------|------------|--------|------------|---------|--------------------|------| | | Date | Tech | | IC1025 | 12/18/2024 | DEC | 12/18/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | IC1026 | 12/18/2024 | DEC | 12/18/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | blk221 | 12/18/2024 | DEC | 12/18/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | Report for Samples analyzed Under Contract Number. 582-10-99518 Report ID: 055810b-45667 Print Date: 10-Jan-25 Texas A&M AgriLife Extension Service Soii, Water and Forage Testing Laboratory 108 Soil Testing Laboratory, 2478 TAMU College Station, TX 77843-2478 979-862-4955 Client Name: Grand Canyon Client address: not provided Standard Sample Report TCEQ COC# 055810 | Laboratory ID; | TCEQ/client
Sample ID: | Sample
Depth (inches) | Sample Colt.
Date: | Collector
Name: | TCEQ
Region # | Date
Received | Sample | Sample opened
Date | Sample Ground
Date | Process
Tech. | |----------------|---------------------------|--------------------------|-----------------------|--------------------|------------------|------------------|---------------|-----------------------|-----------------------|------------------| | 14281 | 55810-08 | 6-24 | 10/24/2024 | Vanessa Gardner | Region # | 11/19/2024 | Type:
soil | 11/25/2024 | 12/4/2024 | TLP | | 14282 | 55810-09 | 0-6 | 10/24/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TLP | | 14283 | 55810-10 | 6-24 | 10/24/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TLP | #### Methods and Sample Preparation: Receiving of samples Processing - SWFTL0097R0.SOP Upon opening of sample chests, all samples are identified and organized as listed on COC to insure completeness and condition of shipment. Individually each sample is spread across a non-reactive tray where foreign materials is physically removed and discarded. The sample(s) are then placed inside a 65C drying oven and allow to remain until dry. Individual samples were then removed from drying oven and pulverized with an Agvise soil pulzerized fitted with a shaking 2mm screen. Every attempt was again made to remove any remaining plant tissue in the pulverized sample(s). Soil was then transferred to the laboratory sample cups and while additional sample was stored. #### Analytical Methods: Soil pH 2:1 DI water:soil SOIL pH AND CONDUCTIVITY - SWFTL0015R1.SOP Schofield, R.K. and A.W. Taylor. 1955. The measurement of soil pH. Soil Sci. Soc. Am. Proc. 19:164-167. Soil Conductivity 2:1 DI Water:Soil SOIL pH AND CONDUCTIVITY - SWFTL0015R1-SOP Rhoades, J.D. 1982. Soluble salts. p. 167-178. In: A.L. Page, et al. (ed.). Methods of Soil Analysis: Part Z. Agronomy Monogr. 9. 2nd ed. ASA and SSSA, Madison, Wi. Soil Nitrate-N. KCl Extractable with Cd-Reduction Analyses NO3-N EXTRACTION - SWFTL0014R5.SOP/NO3-N ANALYSIS - SWFTL0089R1.SOP Keeney, D.R. and D.W. Nelson. 1982. Nitrogen - inorganic forms. p. 643-687. In: A.L. Page, et al. (ed.). Methods of Soil Analysis: Part 2. Agronomy Monogr. 9. 2nd ed. ASA and SSSA, Madison, WI. Soil P. K. Ca. Mg. S and Na -- Mehlich III by ICP M3 EXTRACTION - SWFTL0079R1.SOP/M3 ANALYSIS - SWFTL0081R2.SOP Mehlich-3 soil test extractant: a modification of Mehlich-2 extractant. Commun. Soil Sci. Plant Anal. 15(12):1409-1416 Print Date: 10-Jan-25 Standard Sample Report | | P.O. I. CODOIC | | | | | | | | | | | | | |----------------|----------------|-------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | Laboratory ID: | TCEQ/client | Mehlich III | Mehüch III | Mehlich | | Sample ID: | Picono. | P units | K conc. | K units | Са сопс. | Ca units | Mg conc. | Mg units | S conc. | S units_ | Na conc. | Na units | | 14281 | 55810-08 | 12.0 | ppm | 266 | ррт | 14070 | ppm | 337 | ppm | 120 | ppm | 132 | ppm | | 14282 | 55810-09 | 141 | ppm | 808 | ppm | 12799 | ppm | 543 | ppm | 115 | ppm | 24.1 | ppm | | 14283 | 55810-10 | 16.0 | ррп | 334 | ppm | 12949 | ppm | 380 | ppm | 111 | ppm | 107 | ppm | | Laboratory ID: | Mehlich III
P conc. | Mehlich III
P units | Mehlich III
K conc. | Mehlich III
K units | Mehlich III
Ca conc. | Mehlich III
Ca units | Mehlich III
Mg conc. | Mehlich III
Mg conc. | Mehlich III
S conc. | Mehlich III
S units | Mehlich III
Na conc. | Mehlich III
Na units | |-----------------|------------------------|------------------------|------------------------|------------------------|-------------------------|-------------------------|-------------------------|-------------------------|------------------------|------------------------|-------------------------|-------------------------| | Detection Limit | 0.2367 | ppm | 0.1308 | ppm | 0.0436 | ррт | 0.0250 | ppm | 0.0010 | ppm | 0.0269 | ppm | | Reporting Limit | 1 | ppm | 1 | ррm | | Laboratory ID: | TCEQ/client | Mehlich III | Mehlich III | Mehlich III | Mehlich III | |----------------|-------------|--------------|--------------|-------------|-------------| | | Sample ID: | Extract Date | Extract Tech | Anal.Date | Anal. Tech | | 14281 | 55810-08 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14282 | 55810-09 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14283 | 55810-10 | 1/8/2025 | FMR | 1/9/2025 | JLP | Print Date: 10-Jan-25 Standard Sample Report | 0101100110 00 | | | | | | | | |----------------|-------------|------|-------|--------------|--------------|-----------|-----------| | Laboratory ID: | TCEQ/client | рН | pН | Conductivity | Conductivity | Nitrate-N | Nitrate-N | | | Sample ID: | | units | | units | | units | | 14281 | 55810-08 | 7.85 | NA | 0.46 | dS/M | 6.869 | ppm | | 14282 | 55810-09 | 7.78 | NA | 0.23 | dS/M | 14.244 | ppm | | 14283 | 55810-10 | 7.89 | NA | 0.158 | dS/M | 6,215 | ppm | | Laboratory ID: | рН | pH
units | Conductivity | Conductivity units | Nitrate-N | Nitrate-N
units | |-----------------|------|-------------|--------------|--------------------|-----------|--------------------| | Detection Limit | 0.01 | na | 0.001 | dS/M | 0.01 | ppm | | Reporting Limit | 0.1 | па | 0.001 | dS/M | 1 | ppm | | Laboratory iD: | TCEQ/client | pH/Conducti | ivity prep | pH Ana | lysis | Conduc | tivity | Nitate-N 6 | Extract | Nitrate-N A | nalysis | |----------------|-------------|-------------|------------|------------|-------|------------|--------|------------|---------|-------------|---------| | | Sample ID: | Date | Tech | | 14281 | 55810-08 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | WL | | 14282 | 55810-09 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | 14283 | 55810-10 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | Report ID: 055810b-45667 Quality Control Report Print Date: 10-Jan-25 | Laboratory ID: | | Mehlich III Mehüch III | Mehlich III | Mehlich III | |----------------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------------|-------------|-------------| | | | P conc. | P units | K conc. | K units | Ca conc. | Ca units | Mg conc | Mg conc. | S conc. | S units | Na солс. | Na units | | 14299 | IC1027 | 47.5 | ppm | 328 | ppm | 2459 | ррт | 360 | ppm | 40.5 | ppm | 107 | ppm | | 14300 | JC1028 | 46.5 | ppm | 318 | ppm | 2386 | ppm | 348 | ppm | 40.0 | ppm | 105 | ppm | | | Mean IC | 0 | ppm | | | IC Lower | 45.9 | ppm | 305.0 | ppm | 2320.0 | ppm | 335.0 | ppm | 27.0 | ppm | 30.0 | рргп | | | IC Upper | 53.4 | ppm | 365.0 | ppm | 2645.0 | ppm | 409.0 | ррm | 49.0 | ррп | 55.0 |
ppm | | | blk221 | < 0.237 | ppm | < 0.131 | ppm | < 0.0436 | ppm | < 0.0250 | ppm | < 0.0100 | ppm | <0.513 | ppm | | Laboratory ID: | Mehlich III | Mehlich III | Meblich III | Mehlich lit | |-----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | | P conc. | P units | K conc. | K units | Ca conc. | Ca units | Mg conc. | Mg conc. | S сопс. | S units | Na conc. | Na units | | Detection Limit | 0.2367 | ppm | 0.1308 | ppm | 0.0436 | ppm | 0.0250 | ррт | 0.0010 | ppm | 0.0269 | ppm | | Reporting Limit | 1 | ppm | 1 | ppm | 1 | ppm | t | ppm | 1 | ppm | 1 | ppm | | Laboratory ID: | Mehlich III | Mehlich III | Mehlich III | Mehlich III | |----------------|--------------|--------------|-------------|-------------| | | Extract Date | Extract Tech | Anal.Date | Anal, Tech | | IC1027 | 1/8/2025 | FMR | 1/9/2025 | JLP | | IC1028 | 1/8/2025 | FMR | 1/9/2025 | JLP | | blk221 | 1/8/2025 | FMR | 1/9/2025 | JLP | Print Date: 10-Jan-25 Quality Control Report | Laboratory ID: | | pН | ρH | Conducitity | Conducitity | Nitrate-N | Nitrate-N | Nitrate-N | |----------------|---------------|-------|-------|-------------|-------------|-----------|-----------|------------| | | | | units | солс. | units | conc. | units | % recovery | | 14299 | IC1027 | 5.9 | па | 0.257 | dS/M | 4.446 | ppm | | | 14300 | IC1028 | 5.9 | กล | 0.256 | dS/M | 4.468 | ppm | | | | Mean IC | 5.87 | na | 0.2565 | dS/M | 4.457 | ppm | | | 14300spike | Spiked sample | - | - | | 9 | 3.9 | ppm | 88.1 | | | IC lower | 5.760 | na | 0.241 | dS/M | 3.5 | ppm | | | | ≀C Upper | 5.990 | па | 0.299 | dS/M | 5.5 | ppm | | | | blk221 | - | na | 0 | dS/M | 0.614 | ρpm | | | Laboratory ID: | ρН | pН | Conducitity | Conducitity | Nitrate-N | Nitrate-N | |-----------------|------|-------|-------------|-------------|-----------|-----------| | | | units | conc. | units | conc. | units | | Detection Limit | 0.01 | па | 0.001 | dS/M | 0.01 | ppm | | Reporting Limit | 0.1 | па | 0.001 | dS/M | 1 | ррm | | Laboratory ID: | pH/Conductivity prep | | pH Ana | lysis | Conduc | Conductivity | | Nitate-N Extract | | Nitrate-N Analysis | | |----------------|----------------------|------|------------|-------|------------|--------------|------------|------------------|------------|--------------------|--| | | Date | Tech | | | IC1027 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | | IC1028 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | | blk221 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | | 74 | TEXAS | |----|---------------| | | COMMISSION ON | | | ENVIRONMENTAL | | | QUALITY | ## Chain of Custody Record 55811 ³ | Location: (- | frand | Cany | (DIA) shade | ed area i | f the fac | ility inform | nation | must t | oe confic | dential) | | Permit #: 2 95 | iv | |---|--------------|----------------------|---------------------------------|-----------------|-----------|---------------------|--------|--------|-----------|------------------|------------------|------------------------|--------| | Region: | Organizatio | on #: | PCA Code | e: | | Progran | " | JG | | Sampler release | 552-19 | OD | | | E-Mail ID: | -11 | Sampler | (signature | - Ho | nd | ~ | _ | | | Sampler: (please | e print clearly) | ner | | | Lab ID
Number | Sample
ID | Date | Time | # of
Bottles | Grab/ | Matrix
L.S.M.O.1 | CL2 | ρН | Cond | Analyses | Requested | REMAR | iks . | | 14284 | -01 | 10 24-24 | 131.55 | | | | | | | 588 | RFA | Lmub | 0-6 | | 14285 | -02 | 10-24-24 | 13:55 | | | | | | | | | Lmub | 6-24 | | 1428L | -03 | N 28/2 | 9 E & 1 14 | | | | | | | | | LMU7 | 0-6 | | 14287 | -04 | 10/28/24 | 1330 | | | | | | | | | LM47 | 6-24 | | 14288 | - 05 | 10 74 (2
10 74 (2 | | | | | | | | | | Lmu8 | 0-6 | | 14289 | -06 | 10/24/24 | 1199 | | | | | | | | | LM48 | 6-24 | | 14290 | -07 | 10-24-24 | 14:25 | | | | | | | | | Lm49 | 0-6 | | 14291 | -08 | 10 24-24 | 14:25 | | | | | | | | | LM49 | 6-24 | | 14292 | -09 | 10-197 | 1410 | | | | | | | | | Lmulo | 0-6 | | 14293 | -10 | 1928/24 | 1410 | | ^ | 1 | | | | _ | | LMUID | 6-24 | | Relinquished b | | Date | Time | Receiv | 111 | h | 11-1 | 9. 2 | 4 | For Laboratory | Use: | | | | Relinquished b | oy; | Date | Time | Receive | ed by: | | | | | Received on ice | e: Y | Ŋ | deg. C | | Relinquished t | y: | Date | Time | Receive | ed by: | | | | | Preservatives: | Υ | N | | | Relinquished t | y: | Date | Time | Receive | ed by: | | | | | COC Seal: | Υ | N | | | Shipper name:
Fld
CEC-10065 (11/0 | Ex | Shipper N | Number:
9 44
iginal) -Lab | 68 | 13 | 375 | | | | Seals Intact: | Y | Goldenrod-Collector Co | | Report for Samples analyzed Under Contract Number: 582-10-99518 Report ID: 055811a-45667 Print Date: 10-Jan-25 Texas A&M AgriLife Extension Service Soil, Water and Forage Testing Laboratory 108 Soil Testing Laboratory, 2478 TAMU College Station, TX 77843-2478 979-862-4955 Client Name: Grand Canyon Client address: not provided Standard Sample Report TCEQ COC# 055811 | Laboratory 1D: | TCEQ/client
Sample ID: | Sample
Depth (inches) | Sample Coli.
Date: | Collector
Name: | TCEQ
Region # | Date
Received | Sample
Type: | Sample opened
Date | Sample Ground
Date | Process
Tech. | |----------------|---------------------------|--------------------------|-----------------------|--------------------|------------------|------------------|-----------------|-----------------------|-----------------------|------------------| | 14284 | 55811-01 | 0-6 | 10/24/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TLP | | 14285 | 55811-02 | 6-24 | 10/24/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TLP | | 14286 | 55811-03 | 0-6 | 12/28/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TLP | | 14287 | 55811-04 | 6-24 | 10/28/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TLP | | 14288 | 55811-05 | 0-6 | 10/24/2024 | Vanessa Gardner | 4 | 11/19/2024 | şoil | 11/25/2024 | 12/4/2024 | TLP | | 14289 | 55811-06 | 6-24 | 10/24/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TLP | | 14290 | 55811-07 | 0-6 | 10/24/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TLP | | 14291 | 55811-08 | 6-24 | 10/24/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TLP | | 14292 | 55811-09 | 0-6 | 10/28/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TLP | | 14293 | 55811-10 | 6-24 | 10/28/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TLP | Methods and Sample Preparation: Receiving of samples Processing - SWFTL0097R0.SOP Upon opening of sample chests, all samples are identified and organized as listed on COC to insure completeness and condition of shipment. Individually each sample is spread across a non-reactive tray where foreign materials is physically removed and discarded. The sample(s) are then placed inside a 6SC drying oven and allow to remain until dry. Individual samples were then removed from drying oven and pulverized with an Agvise soil pulzerized fitted with a shaking 2mm screen. Every attempt was again made to remove any remaining plant tissue in the pulverized sample(s). Soil was then transferred to the laboratory sample cups and while additional sample was stored. #### Analytical Methods: Soil pH 2:1 DI water:soil SOIL oH AND CONDUCTIVITY - SWFTL0015R1.SOP Schofield, R.K. and A.W. Taylor. 1955. The measurement of soil pH. Soil Sci. Soc. Am. Proc. 19:164-167. Soil Conductivity 2:1 DI Water:Soil SOIL pH AND CONDUCTIVITY - SWFTL0015R1.SOP Rhoades, J.D. 1982. Soluble salts. p. 167-178. In: A.L. Page, et al. (ed.). Methods of Soil Analysis: Part 2, Agronomy Monogr. 9. 2nd ed. ASA and SSSA, Madison, WI. Soil Nitrate-N KCl Extractable with Cd-Reduction Analyses NO3-N EXTRACTION - SWFTL0014R5.SOP/NO3-N ANALYSIS - SWFTL0089R1.SOP Keeney, D.R. and D.W. Nelson. 1982. Nitrogen - inorganic forms. p. 643-687. In: A.L. Page, et al. (ed.). Methods of Soil Analysis: Part 2. Agronomy Monogr. 9. 2nd ed. ASA and SSSA, Madison, WI. Soil P. K. Ca. Mg. S and Na - Mehlich III by ICP M3 EXTRACTION - SWFTL0079R1.SOP/M3 ANALYSIS - SWFTL0081R2.SOP Mehlich-3 soil test extractant: a modification of Mehlich-2 extractant. Commun. Soil Sci. Plant Anal. 15(12):1409-1416 Print Date: 10-Jan-25 Standard Sample Report | Laboratory ID: | TCEQ/dient | Mehlich III | Mehlich III | Mehiich III | Mehlich |----------------|------------|-------------|-------------|-------------|-------------|--------------------|-------------|-------------|-------------|-------------|-------------|---------------|-------------| | | Sample ID: | P conc. | P units | K conc. | Kunits | Ca conc. | Ca units | Mg conc. | Mg units | \$ солс. | S units | Na conc. | Na units | | 14284 | 55811-01 | 146 | ppm | 450 | ppm | 11873 | ppm | 432 | ppm | 116 | ppm | 31.3 | ppm | | 14285 | 55811-02 | 10.8 | ppm | 180 | ppm | 17 44 7 | ррт | 263 | ppm | 164 | ppm | 97.1 | ppm | | 14286 | 55811-03 | 88.1 | ppm | 358 | ppm | 14241 | рра | 288 | ppm | 122 | ppm | 14.1 | ppm | | 14287 | 55811-04 | 15.0 | ppm | 212 | ppm | 14561 | ppm | 249 | рргп | 118 | ppm | 13.5 | opm | | 14288 | 55811-05 | 93.2 | ppm | 404 | ppm | 14697 | ppm | 239 | ppm | 125 | ppm | 13.2 | ppm | | 14289 | 55811-06 | 95.5 | ppm | 425 | ppm | 11357 | ppm | 224 | ppm | 98.0 | ppm | 1 2 .2 | ppm | | 14290 | 55811-07 | 94.5 | ppm | 369 | ppm | 11662 | ppm | 254 | ppm | 105 | ppm | 14.4 | ppm | | 14291 | 55811-08 | 5.69 | ppm | 135 | ppm | 22301 | ppm | 171 | mqq | 181 | ppm | 20.2 | ppm | | 14292 | 55811-09 | 121 | ррт | 309 | ppm | 11767 | ppm | 369 | ppm | 103 | ppm | 18.4 | ppm | | 14293 |
55811-10 | 12.2 | ppm | 166 | ppm | 14769 | ppm | 266 | ppm | 140 | ppm | 40.6 | ppm | | Laboratory ID: | Mehlich III |-----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | 2,000,010,101 | P conc. | P units | К сопс. | Kunits | Ca conc. | Ca units | Мд сопс. | Mg conc. | S conc. | S units | Na conc. | Na units | | Detection Limit | 0.2367 | ppm | 0.1308 | ppm | 0.0436 | ppm | 0.0250 | ppm | 0.0010 | ppm | 0.0269 | ppm | | Reporting Limit | 1 | ppm | 1 | tudd t | 1 | ppm | 1 | ppm | 1 | ppm | 1 | ррп | | Laboratory ID: | TCEQ/client | Mehlich III | Mehlich III | Mehlich III | Mehlich III | |----------------|-------------|--------------|--------------|-------------|-------------| | | Sample ID: | Extract Date | Extract Tech | Anal.Date | Anal. Tech | | 14284 | 55811-01 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14285 | 55811-02 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14286 | 55811-03 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14287 | 55811-04 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14288 | 55811-05 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14289 | 55811-06 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14290 | 55811-07 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14291 | 55811-08 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14292 | 55811-09 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14293 | 55811-10 | 1/8/2025 | FMR | 1/9/2025 | JLP | Print Date: 10-Jan-25 | Laboratory ID: | TCEQ/client | ρH | Hα | Conductivity | Conductivity | Nitrate-N | Nitrate-N | |----------------|-------------|------|-------|--------------|--------------|-----------|-----------| | economy is. | Sample ID: | F | units | _ | units | | units | | 14284 | 55811-01 | 7.64 | NA | 0.08 | dS/M | 13.206 | ppm | | 14285 | 55811-02 | 7.77 | NA | 0.109 | dS/M | 8.293 | ppm | | 14286 | 55811-03 | 7.49 | NA | 0.084 | dS/M | 12.479 | ppm | | 14287 | 55811-04 | 7.64 | NA | 0.104 | dS/M | 5.106 | ppm | | 14288 | 55811-05 | 7.53 | NA | 0.122 | dS/M | 10.588 | ppm | | 14289 | 55811-06 | 7.54 | NA | 0.09 | dS/M | 10.636 | ppm | | 14290 | 55811-07 | 7,44 | NA | 0.137 | dS/M | 20.101 | ppm | | 14291 | 55811-08 | 7.75 | NA | 0.277 | dS/M | 13.247 | ppm | | 14292 | 55811-09 | 7.56 | NA | 0.296 | dS/M | 8.556 | ρpm | | 14293 | 55811-10 | 7.66 | NA | 0.328 | dS/M | 2.45 | ppm | | Laboratory ID: | рΗ | рН | Conductivity | Conductivity | Nitrate-N | Nitrate-N | |-----------------|-------------|-------|--------------|--------------|-----------|-----------| | | P 7. | units | | units | | units | | Detection Limit | 0,01 | na | 0.001 | dS/M | 0.01 | ppm | | Reporting Limit | 0.1 | กล | 0.001 | dS/M | 1 | ρpm | | Laboratory ID: | TCEQ/client | pH/Conductivity prep | | pH Analysis | | Conductivity | | Nitate-N Extract | | Nitrate-N Analysis | | |----------------|-------------|----------------------|------|-------------|------|--------------|------|------------------|------|--------------------|------| | | Sample ID: | Date | Tech | | 14284 | 55811-01 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | 14285 | 55811-02 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | WL | | 14286 | 55811-03 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/15/2024 | FMR | 12/17/2024 | JW | | 14287 | 55811-04 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | 14288 | 55811-05 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | 14289 | 55811-06 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | 14290 | 55811-07 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | 14291 | 55811-08 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | 14292 | 55811-09 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | 14293 | 55811-10 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | WL | Report ID: 055811a-45667 Quality Control Report Print Date: 10-Jan-25 | Laboratory ID: | | Mehlich III |----------------|----------|-------------|-------------|-------------|-------------|-------------|-------------|---------------|-------------|-------------|-------------|-------------|-------------| | | | P conc. | P units | K conc. | K units | Ca conc. | Ca units | Mg conc. | Mg conc. | S conc. | S units | Na conc. | Na units | | 14299 | IC1027 | 47.5 | ppm | 328 | ppm | 2459 | ppm | 360 | ppm | 40.5 | ppm | 107 | ppm | | 14300 | IC1028 | 46.5 | ppm | 318 | ppm | 2386 | ppm | 348 | ppm | 40.0 | ppm | 105 | ppm | | | Mean IC | 0 | ppm | D | ppm | 0 | ppm | 0 | ppm | D | ppm | 0 | ppm | | | IC Lower | 45.9 | ppm | 305.0 | mag | 2320.0 | ppm | 335. 0 | ppm | 27.0 | ppm | 30.0 | ppm | | | IC Upper | 53.4 | ppm | 365.0 | ppm | 2645.0 | ppm | 409.0 | ppm | 49.0 | ppm | 55.0 | ppm | | | blk221 | <0.237 | mag | <0.131 | ppm | < 0.0436 | mgg | < 0.0250 | ppm | <0.0100 | ppm | <0.513 | ppm | | Laboratory ID: | Mehlich III | Mehlich III | Mehlich III | Mehlich III
K units | Mehlich III
Ca conc. | Mehlich III
Ca units | Mehlich III
Mg conc. | Mehlich I(I
Ma conc. | Mehlich III
S conc. | Mehlich III
S units | Mehlich III
Na conc. | Mehlich III
Na units | |-----------------|-------------------|----------------|-------------|------------------------|-------------------------|-------------------------|-------------------------|-------------------------|------------------------|------------------------|-------------------------|-------------------------| | Detection Limit | P conc.
0.2367 | P units
ppm | 0.1308 | ppm | 0.0436 | ррп | 0.0250 | ppm | 0.0010 | ppm | 0.0269 | ррт | | Reporting Limit | 1 | ррт | 1 | ppm | 1 | ppm | 1 | pom | 1 | ppm | 11 | ppm | | Laboratory ID: | Mehlich III | Mehlich III | Mehlich III | Mehlich III | | |----------------|--------------|--------------|-------------|-------------|--| | | Extract Date | Extract Tech | Anal.Date | Anal, Tech | | | IC1027 | 1/8/2025 | FMR | 1/9/2025 | JLP | | | IC1028 | 1/8/2025 | FMR | 1/9/2025 | JLP | | | blk221 | 1/8/2025 | FMR | 1/9/2025 | JLP | | Report ID: 055811a-45667 Print Date: 10-Jan-25 Quality Control Report | Laboratory ID: | | рH | рН | Conducitity | Conducitity | Nitrate-N | Nitrate-N | Nitrate-N | |----------------|---------------|-------|-------|-------------|-------------|-----------|-----------|------------| | | | | units | conc. | units | conc. | units | % recovery | | 14299 | IC1027 | 5.9 | ла | 0.257 | dS/M | 4.446 | ppm | | | 14300 | IC1028 | 5.9 | па | 0.256 | dS/M | 4.468 | ppm | | | | Меал IC | 5.87 | na | 0.2565 | dS/M | 4.457 | ppm | | | 14300spike | Spiked sample | 14 | - | Set). | A | 3.9 | ppm | 88.1 | | | IC lower | 5.760 | na | 0.241 | dS/M | 3.5 | ppm | | | | IC Upper | 5,990 | na | 0.299 | dS/M | 5.5 | ppm | | | | blk221 | | па | 0 | dS/M | 0.614 | ppm | | | Laboratory ID: | рH | pН | Conducitity | Conducitity | Nitrate-N | Nitrate-N | |-----------------|------|-------|-------------|-------------|-----------|-----------| | | | units | conc. | units | conc | units | | Detection Limit | 0.01 | па | 0.001 | dS/M | 0.01 | ppm | | Reporting Limit | 0.1 | па | 0.001 | dS/M | 1 | ppm | | Laboratory ID: | pH/Conductivity prep | | pH Analysis | | Conductivity | | Nitate-N | Extract | Nitrate-N Analysis | | |----------------|----------------------|------|-------------|------|--------------|------|------------|---------|--------------------|------| | | Date | Tech | | IC1027 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | IC1028 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | WL | | blk221 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | TEXAS | |----------------------| | ■ COMMISSION ON | | ENVIRONMENTAL | | QUALITY | | Location: | | C 60 | lino | | | | - | | | | | Permit #: | 295 | · | |------------------|--------------|----------------------|----------------------|----------|----------------|---------------------|------|--------|----------|----------------|--------------------|-----------|--------|----------| | Region: | Organizatio | (De not fill
n #: | PCA Code | | he fac | Program | | nust b | e confid | Sampler teleph | | dieta i | u ro | <i>v</i> | | E-Mail ID: | 1 | | (signature) | | 2 | ne | | | 1 | | se print clearly), | ner | | | | Lab ID
Number | Sample
ID | Date | Time | | irab/
iomp. | Matrix
L,S,M.O,T | CL2 | рН | Cond | Analyses | s Requested | F | REMARK | S | | M294 | -01 | 128 | 品語 | | | | | | | 50E | RFA | LMU | 11 | 0-0 | | 14295 | -02 | 10-78-7 | 1145° | | | | | | | | | LMU | 11 | 6-0 | | 14296 | -03 | 10/20/14 | 1110 | | | | | | | | | Lmu | 12 | 0-1 | | 14299 | 7-04 | 192424 | 1110 | | | | | | | | | Lmu | 112 | 67 | | 14298 | -05 | 1926/2 | 1230 | | | | | | | | | Lmi | 1 13 | 0- | | 14301 | -06 | 19/28/24 | 1230 | | | | | | | | | LML | (13 | 6-3 | | 14302 | -07 | 1 2 2 2 | 1040 | | | | | | | | | LMI | 114 | _ D- | | 14303 | -08 | 1/28/24 | 1040 | | | | | | | | | LMU | 14 | 6.3 | | | -09 | | | | | | | | | | | | >>< | \leq | | | -10 | - | | | 1 | 1 | | | | | | | >< | | | Relinquished t | | Date | Time | Received | 1 | Ma | 11-1 | 9 | 24 | For Laboratory | Use: | | | | | Relinquished b | | Date | Time | Received | 1 | , (| | | | Received on id | ce: Y | (n) | | deg. C | | Relinguished b | | Date | Time | Received | i by: | | | | | Preservatives: | Υ | N | | | | Relinquished t | | Date | Time | Received | by: | | | | | COC Seal: | Υ | N | | | | Shipper name: | Ex | Shipper N | ^{umber} 446 | B 13 | 75 | | | | | Seals Intact: | Υ | N | | | Report for Samples analyzed Under Contract Number: 582-10-99518 Report ID: 055812a-45667
Print Date: 10-Jan-25 Texas A&M AgriLife Extension Service Soil, Water and Forage Testing Laboratory 108 Soil Testing Laboratory, 2478 TAMU College Station, TX 77843-2478 979-862-4955 Grand Canyon Client Name: Client address: not provided Standard Sample Report TCEQ COC# 055812 | Laboratory ID: | TCEQ/client
Sample ID: | Sample
Depth (inches) | Sample Coll.
Date: | Collector
Name: | TCEQ
Region # | Date
Received | Sample
Type: | Sample opened
Date | Sample Ground
Date | Process
Tech. | |----------------|---------------------------|--------------------------|-----------------------|--------------------|------------------|------------------|-----------------|-----------------------|-----------------------|------------------| | 14294 | 55812-01 | 0-6 | 10/28/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TLP | | 14295 | 55812-02 | 6-24 | 10/28/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TLP | | 14296 | 55812-03 | 0-6 | 10/28/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TLP | | 14297 | 55812-04 | 6-24 | 10/28/2024 | Vanessa Gardner | 4 | 11/19/2024 | sail | 11/25/2024 | 12/4/2024 | TLP | | 14298 | 55812-05 | 0-6 | 10/28/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TLP | #### Methods and Sample Preparation: Receiving of samples Processing - SWFTL0097R0.SOP Upon opening of sample chests, all samples are identified and organized as listed on COC to insure completeness and condition of shipment. Individually each sample is spread across a non-reactive tray where foreign materials is physically removed and discarded. The sample(s) are then placed inside a 65C drying oven and allow to remain until dry. Individual samples were then removed from drying oven and pulverized with an Agvise soil pulzerized fitted with a shaking 2mm screen. Every attempt was again made to remove any remaining plant tissue in the pulverized sample(s). Soil was then transferred to the laboratory sample cups and while additional sample was stored. #### Analytical Methods: Soil pH 2:1 DI water:soil SOIL pH AND CONDUCTIVITY - SWFTL0015R1.SOP Schofield, R.K. and A.W. Taylor. 1955. The measurement of soil pH. Soil Sci. Soc. Am. Proc. 19:164-167. Soil Conductivity 2:1 DI Water:Soil SOIL pH AND CONDUCTIVITY - SWFTL0015R1.SOP Rhoades, J.D. 1982. Soluble salts. p. 167-178. (n: A.L. Page, et al. (ed.). Methods of Soil Analysis: Part 2. Agronomy Monogr. 9. 2nd ed. ASA and SSSA, Madison, WI. Soil Nitrate-N KCl Extractable with Cd-Reduction Analyses NO3-N EXTRACTION - SWFTL0014R5.SOP/NO3-N ANALYSIS - SWFTL0089R1.SOP Keeney, D.R. and D.W. Nelson, 1982, Nitrogen - inorganic forms, p. 643-687. In: A.L. Page, et al. (ed.), Methods of Soil Analysis: Part 2, Agronomy Monogr. 9, 2nd ed. ASA and SSSA, Madison, WI. Soil P. K. Ca. Mg. S and Na -- Mehlich HI by ICP M3 EXTRACTION - SWFTL0079R1.SOP/M3 ANALYSIS - SWFTL0081R2.SOP Mehlich-3 soil test extractant: a modification of Mehlich-2 extractant. Commun. Soil Sci. Plant Anal, 15[12]:1409-1416 Report ID: 055812a-45667 Print Date: 10-Jan-25 Standard Sample Report | TCEQ/client | Mehlich III |-------------|--|---|---|---|---|--|---|--|---|---|---|---| | Sample ID: | P conc. | P units | К сопс. | K units | Ca conc. | Ca units | Mg conc. | Mg units | S conc. | S units | Na conc. | Na units | | 55812-01 | 27.1 | ppm | 189 | ppm | 12042 | ppm | 224 | ppm | 100 | тад | 14.8 | ppm | | 55812-02 | 5.40 | ppm | 183 | ppm | 19363 | ppm | 164 | ppm | 153 | ppm | 24.5 | ppm | | 55812-03 | 207 | ppm | 432 | ppm | 4950 | ppm | 362 | ppm | 53.3 | ppm | 16.5 | ppm | | 55812-04 | 25.4 | ppm | 365 | ppm | 7102 | ppm | 411 | pam | 72.2 | ppm | 104 | ppm | | 55812-05 | 78.5 | ppm | 242 | ppm | 3127 | ppm | 204 | ppm | 34.0 | ppm | 12.6 | ppm | | | Sample ID:
55812-01
55812-02
55812-03
55812-04 | Sample ID: P conc. 55812-01 27.1 55812-02 5.40 55812-03 207 55812-04 25.4 | Sample ID: P conc. P units 55812-01 27.1 ppm 55812-02 5.40 ppm 55812-03 207 ppm 55812-04 25.4 ppm | Sample ID: P conc. P units K conc. 55812-01 27.1 ppm 189 55812-02 5.40 ppm 183 55812-03 207 ppm 432 55812-04 25.4 ppm 365 | Sample ID: P conc. P units K conc. K units 55812-01 27.1 ppm 189 ppm 55812-02 5.40 ppm 183 ppm 55812-03 207 ppm 432 ppm 55812-04 25.4 ppm 365 ppm | Sample ID: P conc. P units K conc. K units Ca conc. 55812-01 27.1 ppm 189 ppm 12042 55812-02 5.40 ppm 183 ppm 19363 55812-03 207 ppm 432 ppm 4950 55812-04 25.4 ppm 365 ppm 7102 | Sample ID: P conc. P units K conc. K units Ca conc. Ca units 55812-01 27.1 ppm 189 ppm 12042 ppm 55812-02 5.40 ppm 183 ppm 19363 ppm 55812-03 207 ppm 432
ppm 4950 ppm 55812-04 25.4 ppm 365 ppm 7102 ppm | Sample ID: P conc. P units K conc. K units Ca conc. Ca units Mg conc. 55812-01 27.1 ppm 189 ppm 12042 ppm 224 55812-02 5.40 ppm 183 ppm 19363 ppm 164 55812-03 207 ppm 432 ppm 4950 ppm 362 55812-04 25.4 ppm 365 ppm 7102 ppm 411 | Sample ID: P conc. P units K conc. K units Ca conc. Ca units Mg conc. Mg units 55812-01 27.1 ppm 189 ppm 12042 ppm 224 ppm 55812-02 5.40 ppm 183 ppm 19363 ppm 164 ppm 55812-03 207 ppm 432 ppm 4950 ppm 362 ppm 55812-04 25.4 ppm 365 ppm 7102 ppm 411 ppm | Sample ID: P conc. P units K conc. K units Ca conc. Ca units Mg conc. Mg units S conc. 55812-01 27.1 ppm 189 ppm 12042 ppm 224 ppm 100 55812-02 5.40 ppm 183 ppm 19363 ppm 164 ppm 153 55812-03 207 ppm 432 ppm 4950 ppm 362 ppm 53.3 55812-04 25.4 ppm 365 ppm 7102 ppm 411 ppm 72.2 | Sample ID: P conc. P units K conc. K units Ca conc. Ca units Mg conc. Mg units S conc. S units 55812-01 27.1 ppm 189 ppm 12042 ppm 224 ppm 100 ppm 55812-02 5.40 ppm 183 ppm 19363 ppm 164 ppm 153 ppm 55812-03 207 ppm 432 ppm 4950 ppm 362 ppm 53.3 ppm 55812-04 25.4 ppm 365 ppm 7102 ppm 411 ppm 72.2 ppm | Sample ID: P conc. P units K conc. K units Ca conc. Ca units Mg conc. Mg units S conc. S units Na conc. 55812-01 27.1 ppm 189 ppm 12042 ppm 224 ppm 100 ppm 14.8 55812-02 5.40 ppm 183 ppm 19363 ppm 164 ppm 153 ppm 24.5 55812-03 207 ppm 432 ppm 4950 ppm 362 ppm 53.3 ppm 16.5 55812-04 25.4 ppm 365 ppm 7102 ppm 411 ppm 72.2 ppm 104 | | Laboratory ID: | Mehlich III
Picono. | Mehlich III
P units | Mehlich III
K conc. | Mehlich III
K units | Mehlich III
Ca conc. | Mehlich III
Ca units | Mehlich III
Mg conc. | Mehlich III
Mg conc. | Mehlich III
S conc. | Mehlich III
S units | Mehlich III
Na conc. | Mehlich III
Na units | |-----------------|------------------------|------------------------|------------------------|------------------------|-------------------------|-------------------------|-------------------------|-------------------------|------------------------|------------------------|-------------------------|-------------------------| | Detection Limit | 0.2367 | ppm | 0.1308 | ppm | 0.0436 | ppm | 0.0250 | ppm | 0.0010 | ррт | 0.0269 | ppm | | Reporting Limit | 1 | ppm | | Laboratory ID: | TCEQ/client | Mehlich III | Mehlich III | Mehlich III | Mehlich III | |----------------|-------------|--------------|--------------|-------------|-------------| | | Sample ID: | Extract Date | Extract Tech | Anal.Date | Anal. Tech | | 14294 | 55812-01 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14295 | 55812-02 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14296 | 55812-03 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14297 | 55812-04 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14298 | 55812-05 | 1/8/2025 | FMR | 1/9/2025 | JLP | | | | | | | | Report ID: 055812a-45667 Print Date: 10-Jan-25 Standard Sample Report | Laboratory ID: | TCEQ/client | рН | Hq | Conductivity | Conductivity | Nitrate-N | Nitrate-N | |----------------|-------------|------|-------|--------------|--------------|-----------|-----------| | | Sample ID: | | units | | units | | units | | 14294 | 55812-01 | 7.58 | NA | 0.314 | dS/M | 14,139 | ррт | | 14295 | 55812-02 | 7.68 | NA | 0.287 | dS/M | 7.847 | ppm | | 14296 | 55812-03 | 7.38 | NA | 0.227 | dS/M | 24.344 | ррт | | 14297 | 55812-04 | 7.6 | NA | 0,304 | dS/M | 14.792 | ppm | | 14298 | 55812-05 | 7.35 | NA | 0.086 | dS/M | 5.278 | ppm | | Laboratory ID: | ρH | pН | Conductivity | Conductivity | Nitrate-N | Nitrate-N | |-----------------|------|-------|--------------|--------------|-----------|-----------| | | | units | | units | | units | | Detection Limit | 0.01 | na | 0.001 | dS/M | 0.01 | ppm | | Reporting Limit | 0.1 | na | 0.001 | dS/M | 1 | ppm | | Laboratory ID: | TCEQ/client | pH/Conductivity prep | | pH Analysis | | Conductivity | | Nitate-N Extract | | Nitrate-N Analysis | | |----------------|-------------|----------------------|------|-------------|------|--------------|------|------------------|------------|--------------------|------| | | Sample ID: | Date | Tech | | 14294 | 55812-01 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | 14295 | 55812-02 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | EMR | 12/17/2024 | JW | | 14296 | 55812-03 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | 14297 | 55812-04 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | 14298 | 55812-05 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | Report ID: 055812a-45667 Quality Control Report Print Date: 10-Jan-25 | Laboratory ID: | _ | Mehlich III | Mehlich Itt | Mehlich III |-----------------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | Caparation, 12. | | P conc. | P units | K conc. | K units | Са сопс. | Ca units | Mg conc. | Мд солс. | S conc. | S units | Na conc. | Na units | | 14299 | IC1027 | 47.5 | ppm | 328 | ppm | 2459 | ppm | 360 | ppm | 40.5 | ppm | 107 | ppm | | 14300 | IC1028 | 46.5 | ppm | 318 | ppm | 2386 | ppm | 348 | ppm | 40.0 | ppm | 105 | ppm | | | Mean IC | 0 | ppm | 0 | ppm | ٥ | ppm | 0 | ppm | O | ppm | 0 | ppm | | | IC Lower | 45.9 | ppm | 305.0 | ppm | 2320.0 | ppm | 335.0 | ppm | 27.0 | ppm | 30.0 | ppm | | | IC Upper | 53.4 | ррт | 365.0 | ppm | 2645.0 | ppm | 409.0 | ppm | 49.0 | ppm | 55.0 | ppm | | | blk221 | <0.237 | ppm | <0.131 | mag | < 0.0436 | ppm | < 0.0250 | ppm | < 0.0100 | ppm | < 0.513 | ppm | | Laboratory ID: | Mehlich III | Mehlich III | Mehlich () | Mehlich III |-----------------|-------------|-------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | | P conc. | P units | K conc. | K units | Ca conc. | Ca units | Mg conc. | Mg conc. | S conc. | S units | Na conc. | Na units | | Detection Limit | 0.2367 | ppm | 0.1308 | ррт | 0.0436 | ppm | 0.0250 | ppm | 0.0010 | ррт | 0.0269 | ppm | | Reporting Limit | 1 | ppm | | Laboratory ID: | Mehlich III | Mehlich III | Mehlich III | Mehlich III | |----------------|--------------|--------------|-------------|-------------| | | Extract Date | Extract Tech | Anal.Date | Anal, Tech | | IC1027 | 1/8/2025 | FMR | 1/9/2025 | JLP | | IC1028 | 1/8/2025 | FMR | 1/9/2025 | JLP | | blk221 | 1/8/2025 | FMR | 1/9/2025 | JLP | Report ID: 055812a-45667 Print Date: 10-Jan-25 Quality Control Report | Laboratory ID: | | ρH | ρН | Conducitity | Conducitity | Nitrate-N | Nitrate N | Nitrate-N | |----------------|---------------|-------|-------|-------------|-------------|-----------|-----------|------------| | | | | units | conc. | units | conc. | units | % recovery | | 14299 | IC1027 | 5.9 | na | 0.257 | dS/M | 4.446 | ppm | | | 14300 | IC1028 | 5.9 | па | 0.256 | dS/M | 4.468 | ppm | | | | Mean IC | 5.87 | па | D.2565 | dS/M | 4.457 | ppm | | | 14300spike | Spiked sample | - | - | (*) | * | 3.9 | ppm | 88.1 | | | tC lower | 5.760 | па | 0.241 | dS/M | 3.5 | ppm | | | | IC Upper | 5.990 | па | 0.299 | dS/M | 5.5 | ppm | | | | blk221 | | па | 0 | dS/M | 0.614 | ppm | | | Laboratory ID: | ρН | ρН | Conducitity | Conducitity | Nitrate-N | Nitrate-N | |-----------------|------|-------|-------------|-------------|-----------|-----------| | | | units | conc. | units | conc. | units | | Detection Limit | 0.01 | na | 0.001 | dS/M | 0.01 | ppm | | Reporting Limit | 0.1 | na | 0.001 | dS/M | 1 | ppm | | Laboratory ID: | atory ID: pH/Conductivity prep | | pH Ana | ılysis | Conduc | tīvīty | Nitate-N I | Extract | Nitrate-N Analysis | | |----------------|--------------------------------|------|------------|--------|------------|--------|------------|---------|--------------------|------| | | Date | Tech | | IC1027 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | IC1028 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | blk221 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | Report for Samples analyzed Under Contract Number: 582-10-99518 Report ID: 055812b-45667 Print Date: 10-Jan-25 Texas A&M AgriLife Extension Service Soil, Water and Forage Testing Laboratory 108 Soil Testing Laboratory, 2478 TAMU College Station, TX 77843-2478 979-862-4955 Client Name: Client address: Grand Canyon not provided Standard Sample Report TCEQ COC# 055812 | Laboratory ID: | TCEQ/client
Sample ID: | Sample
Depth (inches) | Sample Coll. Date: | Collector
Name: | TCEQ
Region # | Date
Received | Sample
Type: | Sample opened
Date | Sample Ground
Date | Process
Tech. | |----------------|---------------------------|--------------------------|--------------------|--------------------|------------------|------------------|-----------------|-----------------------|-----------------------|------------------| | 14301 | 55812-06 | 6-24 | 10/28/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TLP | | 14302 | 55812-07 | 0-6 | 10/28/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | T∟P | | 14303 | 55812-08 | 6-24 | 10/28/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TLP | #### Methods and Sample Preparation: Receiving of samples Processing - SWFTL0097R0.SOP Upon opening of sample chests, all samples are identified and organized as listed on COC to insure completeness and condition of shipment. Individually each sample is spread across a non-reactive tray where foreign materials is physically removed and discarded. The sample(s) are then placed inside a 65C drying oven and allow to remain until dry. Individual samples were then removed from drying oven and pulverized with an Agvise soil pulzerized fitted
with a shaking 2mm screen. Every attempt was again made to remove any remaining plant tissue in the pulverized sample(s). Soil was then transferred to the laboratory sample cups and while additional sample was stored. #### Analytical Methods: Soil pH 2:1 DI water:soil SOIL pH AND CONDUCTIVITY - SWFTL0015R1.SOP Schofield, R.K. and A.W. Taylor. 1955. The measurement of soil pH. Soil Sci. Soc. Am. Proc. 19:164-167. Soil Conductivity 2:1 DI Water:Soil SOIL pH AND CONDUCTIVITY - SWFTL0015R1.SOP Rhoades, J.D. 1982. Soluble salts. p. 167-178. In: A.L. Page, et al. (ed.), Methods of Soil Analysis: Part 2. Agronomy Monogr. 9. 2nd ed. ASA and SSSA, Madison, WI. Soil Nitrate-N KCl Extractable with Cd-Reduction Analyses NO3-N EXTRACTION - SWFTL0014R5.SOP/NO3-N ANALYSIS - SWFTL0089R1.SOP Keeney, D.R. and D.W. Nelson. 1982. Nitrogen - inorganic forms. p. 643-687. In: A.L. Page, et al. (ed.). Methods of Soil Analysis: Part 2. Agronomy Monogr. 9. 2nd ed. ASA and SSSA, Madison, WI. Soil P. K. Ca. Mg. S and Na - Mehlich III by ICP M3 EXTRACTION - SWFTL0079R1.SOP/M3 ANALYSIS - SWFTL0081R2.SOP Mehlich-3 soil test extractant: a modification of Mehlich-2 extractant. Commun. Soil Sci. Plant Anal. 15(12):1409-1416 Report ID: 055812b-45667 Standard Sample Report Print Date: 10-Jan-25 Sample Report TCEQ COC# 055812 | Standard Sam | ple Report | 11 | しじひ しひしゃ | F U000 IZ | | | | | | | | | | |----------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | Laboratory ID: | TCEQ/dient | Mehlich III | Mehlich III | Mehlich (II | Mehlich III | - | Sample ID: | P conc. | P units | K conc. | K units | Ca conc. | Ca units | Mg conc. | Mg units | S conc. | S units | Na conc. | Na units | | 14301 | 55812-06 | 10.7 | ppm | 172 | ppm | 7137 | ppm | 411 | ppm | 76.1 | ppm | 141 | ppm | | 14302 | 55812-07 | 25.9 | ppm | 251 | ppm | 3090 | ppm | 199 | ppm | 30.9 | ppm | 21.2 | ppm | | 14303 | 55812-08 | 3.10 | ppm | 218 | ppm | 7690 | ppm | 418 | ppm | 78.6 | ppm | 177 | ppm | | Laboratory ID: | Mehlich III I(I | Mehlich III | Mehlich III | Mehlich III | |-----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | | P conc. | P units | К солс, | K units | Ca conc. | Ca units | Mg conc. | Mg conc. | S conc. | S units | Na conc. | Na units | | Detection Limit | 0.2367 | ррпі | 0.1308 | ррпі | 0.0436 | ppm | 0.0250 | ppm | 0.0010 | ppm | 0.0269 | ppm | | Reporting Limit | 1 | ppm | | Laboratory ID: | TCEQ/client | Mehlich III | Mehlich III | Mehlich III | Mehlich III | |----------------|-------------|--------------|--------------|-------------|-------------| | | Sample ID: | Extract Date | Extract Tech | Anal.Date | Anal. Tech | | 14301 | 55812-06 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14302 | 55812-07 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14303 | 55812-08 | 1/8/2025 | FMR | 1/9/2025 | JLP | | | | | | | | Report ID: 055812b-45667 Print Date: 10-Jan-25 Standard Sample Report | Ordinadia Or | inpic report | | 1000 | | | | | |----------------|--------------|------|-------|--------------|--------------|-----------|-----------| | Laboratory ID: | TCEQ/client | pH | ρН | Conductivity | Conductivity | Nitrate-N | Nitrate-N | | | Sample ID: | | units | | นก์โร | | units | | 14301 | 55812-06 | 7.48 | NA | 0.229 | dS/M | 4.692 | ppm | | 14302 | 55812-07 | 7.42 | NA. | 0.083 | d\$/M | 4.676 | ppm | | 14303 | 55812-08 | 7.58 | NA | 0.266 | dS/M | 3.463 | ppm | | Laboratory ID: | pН | рΗ | Conductivity | Conductivity | Nitrate-N | Nitrate-N | |-----------------|------|-------|--------------|--------------|-----------|-----------| | | | units | | units | | units | | Detection Limit | 0.01 | па | 0.001 | dS/M | 0.01 | ppm | | Reporting Limit | 0.1 | па | 0.001 | dS/M | 1 | ppm | | Laboratory iD: | TCEQ/client | pH/Conducti | ivity prep | pH Anal | vsis | Conduc | Conductivity | | Nitate-N Extract | | Nitrate-N Analysis | | |----------------|-------------|-------------|------------|------------|------|------------|--------------|------------|------------------|------------|--------------------|--| | | Sample ID: | Date | Tech | | | 14301 | 55812-06 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | | 14302 | 55812-07 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | | 14303 | 55812-08 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | Report ID: 055812b-45667 Quality Control Report Print Date: 10-Jan-25 | Laboratory ID: | | Mehlich III |----------------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | | | P conc. | P units | K conc. | K units | Ca conc. | Ca units | Ма сопс. | Mg conc. | S conc. | S units | Na conc. | Na units | | 14319 | IC1029 | 46.8 | ррт | 316 | ppm | 2552 | ppm | 353 | ppm | 39.7 | ppm | 47.9 | ppm | | 14320 | IC1030 | 46,2 | ppm | 308 | ppm | 2351 | ppm | 345 | ppm | 39.1 | ppm | 46.8 | ppm | | | Mean IC | 0 | ppm | 0 | ppm | 0 | ррт | 0 | ppm | 0 | ppm | 0 | ppm | | | IC Lower | 45.9 | ppm | 305.0 | ppm | 2320.0 | ρpm | 335.0 | ррm | 27.0 | ppm | 30.0 | ppm | | | IC Upper | 53.4 | ppm | 365.0 | ppm | 2645.0 | ppm | 409.0 | ppm | 49.0 | ppm | 55.0 | ppm | | | blk222 | < 0.237 | opm | 0.142 | ppm | < 0.0436 | ppm | < 0.0250 | ppm | <0.0100 | majq | 0.493 | ppm | | Laboratory (D: | Mehlich III
P conc. | Mehlich III | Mehlich III
K conc. | Mehlich III
K units | Mehlich III
Ca conc. | Mehlich III
Ca units | Mehlich III
Mg conc. | Mehlich (II
Ma conc. | Mehlich III
S conc. | Mehlich III
S units | Mehlich III
Na conc. | Mehlich III
Na units | |-----------------|------------------------|-------------|------------------------|------------------------|-------------------------|-------------------------|-------------------------|-------------------------|------------------------|------------------------|-------------------------|-------------------------| | Detection Limit | 0.2367 | ppm | 0.1308 | ррт | 0.0436 | ррш | 0.0250 | ppm | 0.0010 | ppm | 0.0269 | ppm | | Reporting Limit | 1 | ppm | | Mehlich III | Mehfich III | Mehlich III | Mehlich III | |--------------|--------------------------------------|--------------|---| | Extract Date | Extract Tech | Anal.Date | Anal. Tech | | 1/8/2025 | FMR | 1/9/2025 | JLP | | 1/8/2025 | FMR | 1/9/2025 | JLP | | 1/8/2025 | FMR | 1/9/2025 | JLP | | | Extract Date
1/8/2025
1/8/2025 | Extract Date | Extract Date Extract Tech Anal.Date 1/8/2025 FMR 1/9/2025 1/8/2025 FMR 1/9/2025 | Report ID: 055812b-45667 Print Date: 10-Jan-25 Quality Control Report | Laboratory ID; | | рН | pH
units | Conducitity conc. | Conducitity units | Nitrate-N
conc. | Nitrate-N
units | Nitrate-N
% recovery | |----------------|---------------|-------|-------------|-------------------|-------------------|--------------------|--------------------|-------------------------| | 14319 | IC1029 | 5.9 | na | 0.256 | dS/M | 4.759 | ppm | | | 14320 | IC1030 | 5.9 | na | 0.254 | dS/M | 4.704 | ppm | | | | Mean (C | 5.875 | ла | 0.255 | dS/M | 4.7315 | ppm | | | 14320spike | Spiked sample | - | - | € | | 3.9 | ppm | 88.6 | | | IC lower | 5,760 | па | 0.241 | dS/M | 3.5 | ppm | | | | IC Upper | 5,990 | na | 0.299 | dS/M | 5.5 | ppm | | | | blk222 | | na | 0 | dS/M | 0.694 | ppm | | | Laboratory ID: | рН | ρH | Conducitity | Conducitity | Nitrate-N | Nitrate-N | |-----------------|------|-------|-------------|-------------|-----------|-----------| | | | units | conc. | units | conc. | units | | Detection Limit | 0.01 | ьэ | 0.001 | dS/M | 0.01 | ppm | | Reporting Limit | 0.1 | па | 0.001 | dS/M | 1 | ppm | | Laboratory ID: | pH/Conduct | vity prep | pH Ana | lysis | Conduc | tivity | Nitate-N Extract | | Nitrate-N Analysis | | |----------------|------------|-----------|------------|-------|------------|--------|------------------|------|--------------------|------| | | Date | Tech | | IC1029 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | WL | | IC1030 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | blk222 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | #### Grand Canyon Dairy**2179 CR 308 Dublin, TX 76446**Aug. 17, 2023 This map was generated by the Region 4 Stephenville Office of the Texas Commission on Environmental Quality. This product is for informational purposes and may not have been prepared for or be suitable for legal, engineering, or surveying purposes. It does not represent an on-the-ground survey and represents only the approximate relative location of property boundaries. For more information concerning this map, contact the TCEQ Region 4 Stephenville Office at 254-552-1900. **Phone:** 806,677,0093 800,557,7509 Fax: 806.677.0329 | ab No.: 3753 | LABO | RATORY A | NALYSIS | REPORT | Report Date: 0 | 7/01/2024 02:10 pm | |--|---|----------|-------------------------|---|---------------------------|--| | Send To: 6224 | ENVIRO-AG
3404 AIRWA
AMARILLO, ⁻ | | INC | | Am | Meier | | | | | | | | ny Meier
ew Coordinator | | Results For:
Sample ID:
Location | GRAND CAN
MANURE
ERATH COU | | | Received:
Sampled:
Invoice No:
P.O. #: | 425820 | ı | | | | | 200 | | Total content |
Estimated available | | | | | Analysis
(dry basis) | Analysis
(as rec'd) | lbs per ton
(as rec'd) | first year*
Ibs per ton
(as rec'd) | | NUTRIENTS | | | | | | | | Nitrogen | | 24 | 0.070 | 1.101 | - 20 - | | | Total Nitro | | % | 2.378 | 1.184 | 23.7 | 12.3 | | Organic Ni
Ammoniun | | %
% | 1.940
0.438 | 0.966
0.218 | 19.3 | 7.9
4.4 | | | rite Nitrogen | % | 0.438 | 0.216 | 4.4
<0.1 | 4.4
<0.1 | | | condary Nutrient | ,- | | 5.5515 | | 30.7 | | Phosphoru | | % | 0.660 | 0.267 | | | | | s as P2O5 | % | 1.51 | 0,611 | 12.2 | 11.0 | | Potassium | | % | 2.37 | 0.958 | | | | Potassium | as K2O | % | 2.84 | 1.148 | 23.0 | 23.0 | | OTHER PROPERT | TIES | | | | | | | Moisture | | % | | 50.2 | | | | Total Solid | s | % | | 49.8 | 996 | | | Orga | nic Matter | % | 52.2 | 26.0 | 520 | | | Ash | | % | | 23.8 | 476 | | | | | ratio | | 12.7 | | | ^{*} Assumes 41% of organic nitrogen available during first crop year after application. Assumes 100% of ammonium and nitrate nitrogen available, but should be adjusted for potential field losses at application site. ## ENVIRO-AG ENGINEERING, INC. Enviro-Ag Engineering, Inc. 3404 Airway Blvd, Amarillo, TX 79118 Tel. 806-353-6123 Fax 806-353-4132 ## MANURE CHAIN OF CUSTODY RECORD Producer/Facility: **Grand Canyon Dairy** County: Erath Date Sampled: 6/14/2024 Date Shipped: 6/17/2024 Project Manager: Corey Mullin | Sample Type | Sample ID | Number of
Containers | Test Package | Proper
Preservation | Matrix | |-------------|-----------|-------------------------|--------------|------------------------|--------| | Manure | Manure | ¹ 3753 | | Y | ОТ | 100 | | | | | | | | | 1 | | | Relinquished By: Ref. Internal COC | Relinquished By: Lis | a Postmus | Relinquished By: | | |------------------------------------|----------------------|-----------|------------------|---------------| | Company: EAE | Company: EA | ιE | Company: | ServiTech Lab | | | Date/Time: | 0/8/24 | 1040 | | | | Received By: 📗 | AMMU | | | servitech 6921 S. Bell • Amarillo, TX 79109 www.servitech.com Phone: 806.677.0093 800.557.7509 Fax: 806.677.0329 | ab No: 3696 | LABOR | ATORY | ANALYSIS | REPORT | Report Date: 06/3 | 30/2024 08:17 pm | |--|--|----------|------------|---|------------------------------------|----------------------| | Send To: 6224 | ENVIRO-AG ENG
3404 AIRWAY BL
AMARILLO, TX 79 | √D | INC | | | Meier
Coordinator | | Client Name:
Sample ID;
Location | GRAND CANYON
RCS #3
ERATH COUNTY | DAIRY | | Received:
Sampled:
Invoice No:
P.O. #: | 06/18/2024
06/14/2024
425818 | | | NUTRIENTO | | Analysi | is results | lbs/ac | re-in | meq/L | | NUTRIENTS | | | | | | | | Nitrogen | | 40 | | | 46 | | | Total Niti
Organic | | 46
26 | ppm | | 10 | 3.3
1.9 | | | um Nitrogen | 20.3 | ppm
mag | | 5 | 1.5 | | | Nitrite Nitrogen | 0.37 | ppm | | 0 | <0.1 | | Major and Se | econdary Nutrients | | | | - | -9 | | Phospho | | 20 | ppm | | | - | | | rus as P2Q5 | 50 | ppm | | 11 | | | Potassiu | | 350 | ppm | | | 9.0 | | Potassiu | m as K2O | 420 | ppm | | 95 | | | OTHER PROPER | RTIES | | | | | | | Moisture | | 99.8 | % | | | | | Total Sol | ids | 0.2 | % | 2 | 153 | | | | anic Matter | <0.10 | % | | 0 | | | Asĥ | | <0.10 | % | | | | | C:N Ratio | 0 | 12.5 | ratio | | | | # ENVIRO-AG ENGINEERING, INC. Enviro-Ag Engineering, Inc. 3404 Airway Blvd,. Amarillo, TX 79118 Tel. 806-353-6123 Fax 806-353-4132 ## WASTEWATER CHAIN OF CUSTODY RECORD Producer/Facility: **Grand Canyon Dalry** County: Erath Date Sampled: 6/14/2024 Date Shipped: 6/17/2024 Project Manager: Corey Mullin | Sample Type | Sample ID | Number of
Containers | Test Package | Proper
Preservation | Matrix | |--------------------------|------------------|--|--|------------------------|----------| | Wastewater
Wastewater | RCS #2
RCS #3 | ² 3695
² 3696 | EAE TX CO KS LAGOON
EAE TX CO KS LAGOON | Y | OT
OT | | | | ţ | | | | | | | | | | - | | | | | | | - 201 | Relinquished By: Ref. Internal COC | Relinquished By: Lisa Postmus | Relinquished By: | | |------------------------------------|-------------------------------|------------------|---------------| | Company: EAE | Company: EAE | Company: | ServiTech Lab | Date/Time: Received By: 1/4-1 13,1 13.1 #### Executive Summary Grand Canyon Dairy Phase II WQ0002950000 #### LMU Summary: LMUs 1, 3, 6, 7, 10, 11, 13 and 14 are cropped in Corn and Wheat. LMU's 1A, 2, 2A, 3A, 4, 5, 8, 9, 12 and 12A are established in coastal Bermudagrass and Winter Wheat. ### **Nutrient Summary:** | LMU# | Man NI | M D205 | Di 1 N | DI 1 D | |-------|-------------|-------------|-------------|-------------| | LIMU# | Max N | Max P205 | Planned N | Planned P | | | Lb/ac | Lb/ac | Lb/ac | Lb/ac | | | Application | Application | Application | Application | | | Rates | Rates | Rates | Rates | | 11 | 217 | 270 | 65 | 81 | | 1 A | 387 | 308 | 387 | 308 | | 2 | 329 | 410 | 99 | 123 | | 2A | 387 | 308 | 387 | 308 | | 3 | 106 | 132 | 32 | 40 | | 3A | 83 | 104 | 25 | 31 | | 4 | 387 | 308 | 387 | 308 | | 5 | 247 | 307 | 84 | 105 | | 6 | 340 | 270 | 340 | 270 | | 7 | 340 | 270 | 340 | 270 | | 8 | 400 | 318 | 400 | 318 | | 9 | 400 | 318 | 400 | 318 | | 10 | 340 | 270 | 340 | 270 | | 11 | 340 | 270 | 340 | 270 | | 12 | 131 | 104 | 131 | 104 | | 12A | 196 | 156 | 196 | 156 | | 13 | 340 | 270 | 340 | 270 | | 14 | 340 | 270 | 340 | 270 | Supplemental nutrients will be necessary to achieve the desired yields. Commercial fertilizer applications should be split such that individual application events do not exceed 100 Jb/Ac. All remaining manure is to be hauled off by a contract hauler for beneficial use. Offsite manure transfer activities will be in accordance with NRCS and TCEQ requirements for sampling, recordkeeping, and land application. Grand Canyon Dairy Phase II #### TCEQ Permit Number: WQ0002950000 #### Owner Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC 965 Waddington Road Ferndale, CA 95536 707-725-5005 #### Type of Organic Nutrient Management Plan: Other AFO-CAFO Waste Plan located in Erath County Prepared By: (Signature) Stephen Colby Certified Nutrient Management Specialist Certificate Number = TX2025004 Expiration Date = December 31, 2025 Enviro-Ag Engineering 9855 FM 847 Dublin, TX 76446 (254) 233-9948 This plan is based on: 590 Organic Nutrient Management Plan V 5.0 5/8/25 9:26 AM **EXECUTIVE SUMMARY:** Permit #: WQ0002950000 This Nutrient Management Plan has fields that meet NMP and/or NUP requirements. See Attached Executive Summary #### LOCATION AND PURPOSE OF THE PLAN This animal operation is located in **Erath** County (see attached topo map and plan map for location.) The purpose of this plan is to outline the details of the land application of the effluent and solids produced by this operation. When the plan is fully implemented, it should minimize the effects of the land application of animal wastes on the soil, water, air, plant, and animal resources in and around the application area. This plan, when applied, will meet the requirements of the Natural Resources Conservation Service Waste Utilization Standard and Nutrient Management Standard. The plan is for the year of 2025 and will remain in effect until revision based on new soil or manure analysis or crop change (yield or crop) result in a new P-Index rating or plan classification (NMP-NUP). The waste has been stored in a Dairy Lagoon . Approximately 4000 head will be confined with the average weight of 1400 pounds. The animals will be confined 24 hours per day for 365 days per year. Page 1 - Printed on: 5/8/25 9:26 AM Plan is based on: 590 Organic Nutrient Manageme TABLES 1, 2 and 2a Permit #: WQ0002950000 Values in Table 1 may be based on actual analysis or "book" values during the initial planning to determine land application rates for the initial plan. When "book" values are used, they will be from NRCS, Texas Cooperative Extension or averages from other TX testing lab sources. Site specific data will be used as soon as feasible after production begins. Manure and/or effluent will be tested at least annually or in the year of application if it is stored for more than one year. If the actual values are more than 10% higher or lower than the estimated values, this plan will need to be revised accordingly. Application of waste products may be made up to the Maximum Rate given in Table 2 or 2a as applicable. Table 2 applies to those that are subject to Nutrient Management Plan (NMP) requirements while Table 2a applies when subject to Nutrient Utilization Plan (NUP) requirements. Current requirements for both the NMP and NUP are given in the headers of the tables. Table 2a has a criteria involving the distance to a named stream when the Soil Test P Level is above 200 ppm in arid areas as well as special requirements when the site is in a TMDL watershed designated by TCEQ. For various P Index Ratings, the maximum rates in Table 2 are based on crop requirements, whereas the maximum rates in Table 2a are based on crop removal rates. County avg. rainfall information can be found in the TX Agronomy Technical Note 15, Phosphorus Assessment Tool for Texas, located in the eFOTG at the address given in the section entitled "Collecting Soil Samples for Analyses". #### **CROP REMOVAL RATES:** Crop Removal Rates of nitrogen (N), phosphorus (P), and potassium (K) in pounds per acre are given in Table 3 for the crop and yield planned for each field. This Table is included for information only, and should be used during the planning process to compare planned or maximum application rates to crop removal. Crop removal rates may
be based on actual analysis of harvested material or default values in the database. P build-up will occur at higher rates when crop removal rates are exceeded.. #### SOLIDS APPLICATION: The maximum solids application rates are given in Table 4 along with the current soil test P level, maximum P_2O_5 application rate, maximum tons per acre of solids and the total tons of solids per field that can be applied to each field. The maximum tons of solids that can be utilized on the fields planned is indicated in the box near the lower left corner of Table 4. When the total application acres of the fields are adequate to allow all of the solids to be applied, "Adequate" will be indicated below the tonnage in this box. If "Not Adequate" is indicated, then the lower box will indicate the tons of solids that must be utilized off-site unless more fields/acres are added. This plan is valid only if the application of waste to the crops listed does not exceed the per acre rates by more than 10%. If the yield of a crop does not meet the expected goal, the application rate should be adjusted the following year. The estimated amounts of N, P_2O_5 , and K_2O contained in the solids are provided in Table 5 for the maximum application rate. Supplemental N and K_2O will be applied to achieve the yield goals in Table 4 when recommended by the soil test and the maximum rate of the solids does not meet the crop needs. When the maximum application rate is applied and Table 5 indicates additional commercial nutrients, they <u>must</u> be applied to fields as indicated. **NOTE:** If additional nitrogen is recommended, the producer should consider collecting soil samples from the 6 - 36 inch layer to see if there is any additional deep nitrogen available. Additional deep nitrogen within the root zone of the crop can be substituted for supplemental commercial nitrogen, and should be included in the soil test N ppm entry. Page 2 - Printed on: 5/8/25 9:26 AM Plan is based on: 590 Organic Nutrient Manageme SOLIDS APPLICATION: (cont) Permit #: WQ0002950000 In situations where more land is available than is needed to utilize the maximum application rate on each field, the application rates in Table 6 have been reduced to the level that does not exceed the amount of solids produced. Table 7 indicates the amount of nutrients provided and, if needed, the supplemental nutrients which **must** be applied when the application is based on these rates. The amounts of supplemental nutrients in Table 7 are based on the actual amount of waste available rather than the **maximum** rate that "**could**" be applied. The second line from the bottom of Table 6 on the right has a box that will be "YES" or "NO". When the reduced rates use all solids to be produced in a year, this box will be "Yes". If the percentages are too low, it will be "No". If "No", either more acreage is needed on which to apply the solids or the solids will need to be transported off-site. The amount is located on the bottom line on the extreme right of the page. Actual application will be based on the quantities produced, as well as, current manure analyses. Application at the MAXIMUM rates shown in Table 4 will result in a more rapid build-up of phosphorus than if applied at lower rates. A different percentage may be used as long as the rate does not exceed the maximum shown in Table 4 for the field and the <u>proper amount of supplemental nutrients are applied</u>. Applying a lower rate to the fields with higher soil test P levels will slow down the P buildup and extend their land application life. Phosphorus will also build up more rapidly on pastureland than on hayland or cropland, since very few nutrients are actually removed by grazing animals. The solids may be applied to the same acreage every year according to Table 2 or 2a. The annual rates in both Table 4 and 6 may be doubled not to exceed the 2X the annual nitrogen requirement or nitrogen removal rate, as applicable. When the full biennial rate has been used, no additional phosphorus fertilizer or animal wastes may be applied in the alternate year. A column in both tables indicates whether the rates given are Annual Rates (A) or Biennial Rates (B). Rates given are based on Table 2 or 2a as applicable. Annual application rate for fields in a TMDL area with a Soil Test P level equal to or greater than 500 ppm or any field in a TMDL area with P Index Rating of Very High is 0.5 annual crop removal rate. #### EFFLUENT APPLICATION: The maximum effluent application rates are given in Table 8 for each field. This table provides the current soil test P level, maximum P_2O_5 application rate, effluent either in gallons per acre or acre inches per acre and the amount of effluent that can be applied per field. The maximum amount of effluent that can be utilized on the fields planned is indicated in a box near the lower left corner of Table 8. When the total application acres are adequate to allow all of the effluent to be applied, "Adequate" will be indicated below this box. If "Not Adequate" is indicated, then the lower box will indicate the amount of effluent that must be utilized off-site unless more field acres are added. The estimated amounts of N, P, and K contained in the effluent are provided in Table 9 for the maximum application rate indicated in Table 8. Supplemental N and K₂O will be applied to achieve the yield goals when recommended by the soil test and the maximum rates of the effluent do not meet the crop requirements. **NOTE:** If additional nitrogen is recommended, the producer should consider collecting soil samples from the 6 - 36 inch layer to see if there is any additional deep nitrogen available. Additional deep nitrogen within the root zone of the crop can be substituted for supplemental commercial nitrogen. Page 3 - Printed on: 5/8/25 9:26 AM Plan is based on: 590 Organic Nutrient Management P EFFLUENT APPLICATION: (cont) Permit #: WQ0002950000 In situations where more land is available than is needed to utilize the maximum application rate on each field, the application rates in Table 10 have been reduced to the level that does not exceed the amount of effluent produced. Table 11 indicates the amount of nutrients provided and, if needed, the supplemental nutrients which **must** be applied when application is made based on the rates in Table 10. These amounts of supplemental nutrients in Table 11 are based on the planned amount of effluent available rather than the **maximum** rate that "**could**" be applied. The bottom line on the right of Table 10 has a box that will be "YES" or "NO". When the reduced rates uses all effluent to be produced in a year, this box will be "Yes". If the percentages are too low, it will be "No". If "No" is indicated, either more acreage is needed on which to apply the effluent or the effluent will need to be transported offsite. Actual application will be based on the quantities produced, as well as, current manure analyses. Application at the MAXIMUM rates shown in Table 8 will result in a more rapid build-up of phosphorus than if applied at lower rates. A different percentage may be used as long as the rate does not exceed the maximum shown in Table 8 for the field and the proper amount of supplemental nutrients are applied. Applying a lower rate to fields with higher soil test P levels will slow down the P buildup and extend their land application life. Phosphorus will also build up more rapidly on pastureland than on hayland or cropland, since very few nutrients are actually removed by grazing animals. The effluent may be applied to the same acreage every year according to Table 2 or 2a. The annual rates in both Table 8 and 10 may be doubled not to exceed the 2X the annual nitrogen requirement or nitrogen removal rate, as applicable, when the full biennial rate has been used, no additional phosphorus fertilizer or animal wastes may be applied in the alternate year. A column in both tables indicates whether the rates given are Annual Rates (A) or Biennial Rates (B). Rates given are based on Table 2 or 2a as applicable. Annual application rate for fields in a TMDL area with a Soil Test P level equal to or greater than 500 ppm or any field in a TMDL area with P Index Rating of Very High is 0.5 annual crop removal rate. Maximum Hourly Application Rate - The maximum hourly application rate is determined by the texture of the soil layer with the lowest permeability within the upper 24 inches of the of the predominant soil in each field. The hourly application rate must be low enough to avoid runoff and/or ponding. For effluent with 0.5% solids or less, **DO NOT** exceed the rates shown in Table 1 of the attached Job Sheet titled, "Waste Utilization, Determining Effluent Application Rates". If the effluent contains more than 0.5% solids, those values must be reduced by the appropriate amount shown in Table 2 of the attached "Waste Utilization, Determining Effluent Application Rates" Job Sheet. Maximum One-Time Application Rate - The maximum amount of effluent that can be applied to a given field at any one-time is the amount that will bring the top 24 inches of the soil to 100% field capacity. This amount is determined by subtracting the amount of water stored in the soil (estimated by feel and appearance method) from the available water holding capacity (AWC) of the soil. The available water holding capacity of the top 24 inches of the predominant soil of each field receiving effluent and the texture of the most restrictive layer in the upper 24 inches are given in Table 12. Page 4 - Printed on: 5/8/25 9:26 AM Plan is based on: 590 Organic Nutrient Management P EFFLUENT APPLICATION: (cont) Permit #: WQ0002950000 To determine any one-time application amount, the current percent of field capacity (FC) of the upper 24 inches of the predominant soil in the field should be estimated using the guidance in Table 3 of the attached Job Sheet, "Waste Utilization, Determining
Effluent Application Rates, rev 4/06". Additional information on estimating soil moisture can be found in the NRCS Program Aid 1619, "Estimating Soil Moisture by Feel and Appearance", or from the University of Nebraska Extension publication No. G84-690-A by the same name. Both of these publications have pictures of various soils at different percentages of field capacity to be used as a guide to estimating soil moisture. Once the current percent of FC is estimated, it is subtracted from the AWC amount in Table 12 for the given field and the difference is the maximum application for those soil conditions on that day. Remember, the maximum hourly application and the maximum one time application rates are only estimates to be used as a guide. Solids/Effluent Land Application: - Land application of solids and/or effluent should be made at appropriate times to meet crop needs, but can be made at any time as long as the total annual (or biennial) rate, maximum hourly rate, and the maximum one time application rates are not exceeded. Effluent should be surface applied uniformly. No runoff or ponding should occur during application thus frequent observations should be made. Neither effluent or solids—will be applied to slopes >8% with a runoff curve >80, or steeper than 16% slope with a runoff curve of 70 or greater, unless the application is part of an erosion control plan. Waste will not be spread at night, during rainfall events, or on frozen or saturated soils if a potential risk for runoff exists. Waste will not be applied to frequently flooded soils during months when the soils typically flood. If frequently flooded soil occur on any potential application field see attached, "Water Features Table", for months when flooding is expected. Solids should be applied with a manure spreader as uniformly as feasible. Surface applications with trucks should only be made when soil conditions are favorable in order to minimize soil compaction. #### Managing Runoff - A minimum 100 ft. sctback or vegetated buffer (Filter Strip, Field Border, Riparian Forested Buffer, etc.) will be established and maintained between the application area and all surface water bodies, sink holes, and watercourses as designated on Soil Survey sheets or USGS topographic maps. A minimum application distance from private and public will be 150 ft. and 500 ft. respectively. A minimum application distance from water wells used exclusively for agricultural irrigation will be 100 ft. Table 9 provides a summary of the setbacks and out areas of each field. #### Managing Leaching - When soils with sandy, loamy sand, or gravelly surface textures have a Nitrogen Leaching Index score of >2 appropriate measures will be used to minimize the potential of leaching. These measures will include, split applications of waste, and may include double cropping, or cover crops, and irrigation water management (on fields that receive supplemental or full irrigation). #### MORTALITY MANAGEMENT: All mortality will be disposed of properly within 3 days according to the Texas Commission on Environmental Quality (TCEQ) rules. The preferred method for disposal of routine mortality is by a rendering plant. Before planning this method, contact the facility or its representative to be informed of special handling procedures, equipment needs, scheduling requirements, etc. Maintain a list of contact phone numbers so information will be readily available following a catastrophic dic-off. Verify that local companies which have previously picked up and/or rendered dead animals are still doing so. A number of rendering companies across the state have stopped dead animal pick up service, and others have raised their fees significantly. Periodically review the availability and cost of rendering so that the plan can be modified if necessary. This can be an excellent option if mortality can be loaded and transported while still fresh or the mortality can be refrigerated until loaded and transported. Page 5 - Printed on: 5/8/25 9:26 AM Plan is based on: 590 Organic Nutrient Management Pl MORTALITY MANAGEMENT: (cont) Permit #: WQ0002950000 Disposal in a landfill may be an option in some locations. Before planning this option, the closest commercial, regional, county, or municipal landfill should be contacted to determine if the landfill has a permit which would allow acceptance of dead animals (swine, sheep, cattle, etc.). Also ask if there are any restrictions on type and volume of animal mortality that will be accepted at the facility. Landfill fees and transport, offloading, and handling procedures should be discussed with landfill managers and documented for reference when needed. The landfill is not a viable option if the producer does not own or have access to a vehicle capable of transporting mortality quickly in an emergency situation. After a catastrophic die-off is not a good time to find out that a driver and truck to transport mortality will not be available for several weeks (MAKE ARRANGEMENTS NOW, NOT AFTER THE ANIMALS ARE DEAD). On-farm disposal of catastrophic mortality may be considered if site conditions permit. On-farm methods include burial, composting, and incineration. Incinerators and composters are excellent options for routine mortality but usually do not have the capacity to handle mortality volumes associated with catastrophic events. Composting and incineration should not be relied on for catastrophic mortality handling without a documented evaluation of worst anticipated mortality condition (number, type, and weight of animals), and the anticipated capacity of the system (i.e., lb./hr. incineration rate, hrs/day of operation). NRCS Mortality Facility Standard 316 will be used for all mortality management. See the attached soil interpretation, ENG - Animal Mortality Disposal (Catastrophic) Trench, to make a preliminary assessment of the limitations of the soils on this farm for burial of catastrophic mortality. The attached TX NRCS Technical Guidance, Catastrophic Animal Mortality Management (Burial Method) should be used as a guide to overcome minor limitations and as design criteria for the construction of burial pits for catastrophic mortality. Mortality burial sites shall be located outside the 100 -year floodplain. Mortality burial will not be less than 200 feet from a well, spring, or water course. A FIELD INVESTIGATION BY A QUALIFIED PROFESSIONAL SHOULD BE MADE BEFORE AN AREA IS USED FOR A BURIAL SITE FOR CATASTROPHIC MORTALITY EVENTS. The TCEQ Industrial and Hazardous Waste Permits Section, MC-130, must be contacted before burial of catastrophic mortality. TCEQ Industrial and Hazardous Waste Permits Section, MC-130 PO Box 13087 Austin, TX 78711-3087 Phone: 512-239-2334 Fax: 512-239-6383 #### Air Quality: The following steps should be taken when spreading effluent or solids to reduce problems associated with odor. - 1. Avoid spreading effluent or solids when wind will blow odors toward populated areas. - 2. Avoid spreading effluent or solids immediately before weekends or holidays, if people are likely to be engaged in nearby outdoor activities. - 3. Avoid spreading effluent or solids near heavily traveled highways. - 4. Make applications in the morning when the air is warming, rather than in the late afternoon. - 5. All materials will be handled in a manner to minimize the generation of particulate matter, odors, and greenhouse gas emissions. Page 6 - Printed on: 5/8/25 9:26 AM Plan is based on: 590 Organic Nutrient Management Pl #### EFFLUENT AND SOLIDS STORAGE & TESTING: Permit #: WO0002950000 Effluent and solids will be stored in facilities designed, constructed, and maintained according to USDA NRCS Standards and specifications. Effluent and solids sampling is needed to get a better idea of the nutrients actually being applied. Effluent and/or solids samples will be collected at least annually, or in the year of its use if waste is typically stored for more than 1 year. The samples will be submitted immediately to a lab for testing. If sent to Texas A&M soil lab or SFASU Soil Testing Lab for analysis, use the "plant and forage analysis" form and note the type of operation. Request that the manure be analyzed for percent dry matter, solids, total nitrogen, total phosphorus, and total potassium. Further information on collecting effluent and manure samples for analysis can be found in the TCE publication No. L-5175, "Managing Crop Nutrients Through Soil, Manure and Effluent Testing". TCEQ sampling rules and testing requirements will be followed on permitted sites. #### **COLLECTING SOIL SAMPLES FOR ANALYSIS:** Collect a composite sample for each field (or area of similar soils and management not more than 40 acres in size) comprised of 10 - 15 randomly selected cores. Each core should represent 0 - 6 inches below the surface except for when injection has been done over 6" in depth, then the core should represent the 3-9" layer. Thoroughly mix each set of core samples, and select about a pint of the mixture as the sample for analysis. Label each sample for the field that it represents. Request that the samples be analyzed for nitrate nitrogen, plant-available phosphorus, potassium, sodium, magnesium, calcium, sulfur, boron, conductivity; and pH. Also note on the samples that they are from an effluent or solids application area. TCEQ sampling rules and testing requirements will be followed on permitted sites. A weighted average of 0-2 and 2-6 inch layers will be used for calculations on permitted sites. Further information on collecting soil samples can be found on the TCE Form D-494, p 2, TCE Publication No. L-1793, and TCEQ RG-408. Additional NRCS guidance and requirements can be found in the Nutrient Management (590) standard located in the Texas electronic Field Office Technical Guide (eFOTG) at: http://efotg.nrcs.usda.gov/efotg_locator.aspx?map=TX Click the county desired. Click Section IV in the left column under eFOTG Type: 590 in the Search Menu
above eFOTG and click: GO Click on the desired item under Nutrient Management in the left column #### **SOIL ANALYSIS:** A soil analysis will be completed for all areas to be used for all effluent or solids application areas. The soil test analysis method will be **Mehlich III with inductively coupled plasma (ICP)**. The area will be tested and analyzed at least annually to monitor P build up. Page 7 - Printed on: 5/8/25 9:26 AM Plan is based on: 590 Organic Nutrient Management I RECORD KEEPING: Permit #: WQ0002950000 Detailed records should be maintained by the producer for all application of animal waste to land owned and operated by the producer. Records should include date, time, location, amount of application, weather conditions, estimated wind speed and direction, etc. A rain gauge should be in place at the application site and accurate records of rainfall should be maintained at the site. All records must be kept for at least 5 years. **TCEQ requirements will be followed on permitted sites.** Records should also be kept showing amounts of litter given or sold to others. A copy of the effluent analysis and/or solids analysis and a Waste Utilization Guidelines Sheet should be given to anyone who will use either the effluent or solids off-site. If they routinely use animal wastes for fertilizer, they should be directed to the local Soil and Water Conservation District or NRCS office to develop a Waste Utilization and Nutrient Management Plan for their land. This portion may be completed by producer, if desired or recorded elsewhere. | Record of waste leaving the farm or used as feed. | Estimated Annual Excess | | |---|-------------------------|--| | Date | Amount | Hauler or Recipient | |---------|--------|--------------------------------------| | | | | | | | | | | _ | naining | | May be continued on additional sheet | Page 8 - Printed on: 5/8/25 9:26 AM Plan is based on: 590 Organic Nutrient Management F #### OPERATION AND MAINTENANCE: Permit #: WQ0002950000 Application equipment should be maintained in good working order and it should be calibrated annually so that the desired rate and amount of effluent and solids will be applied. Information on calibrating manure spreaders can be found in the TCE publication No. L-5175, "Managing Crop Nutrients Through Soil, Manure and Effluent Testing". Information on calibrating big gun sprinklers can be found in the Arkansas Extension publication, "Calibrating Stationary Big Gun Sprinklers for Manure Application". For information on calibrating tank spreaders, traveling guns, and additional information on other manure spreading equipment, see Nebraska Extension publication No. G95-1267-A, "Manure Applicator Calibration". Observe and follow manufacturer's recommended maintenance schedules for all equipment and facilities involved in the waste management system. For information on lagoon functions, refer to TCE publication E9, "Proper Lagoon Management". Any changes in this system should be discussed with the local Soil and Water Conservation District, USDA Natural Resources Conservation Service, or other qualified professional prior to their implementation. Plan Prepared by: Stephen Colby Date: 5/8/2025 Plan Approved by: Date: 5/8/25 Producer Signature: Discussal with Howev Date: 5/8/25 The producer's signature indicates that this plan has been discussed with him/her. If this plan is not signed by the producer, indicate how the plan was provided to the producer. Page 9 - Printed on: 5/8/25 9:26 AM Plan is based on: 590 Organic Nutrient Management Pl Table 1 - Estimated Effluent and Solids Quantities Produced Permit #: WQ0002950000 Avg. Number of Animals 4,000 | Type of Waste | | |---------------|--| | Dairy Lagoon | | | Dairy Solids | | Contact the local Soil and Water Conservation District or USDA Natural Resources Conservation Service office if the total number of animals change by more than 10% so your plan can be revised. Estimated Acre Inches of Effluent to be Available Annually* 3,590 Estimated Tons Solids to be Land Applied Annually (on or off site)* 29,317.3 *From engineering design, | Estimate | d Nutrient Availab | oilty | | | Estimated I | Nutrient Ava | ailabilty | | |----------|--------------------|----------------------|-----------------------|----|-------------|----------------|-----------------|----| | Effluent | | | | | Solids | | | | | | pounds/yr | Pounds /
1000 gal | Pounds /
Acre Inch | | | pounds /
yr | pounds /
ton | | | N | 29,944 | 0.31 | 8.3 | ** | N | 555,501 | 18.9 | ** | | P2O5 | 37,268 | 0.38 | 10.4 | | P2O5 | 441,329 | 15.1 | | | K2O | 341,757 | 3.51 | 95.2 | | K2O | 830,448 | 28.3 | | | | ** Effluent Values | Based on An | alysis | | ** Solids V | alues Based | on Analysis | S | | da | ted: | June 14, 2024 | ŀ | | dated: | June 1 | 4, 2024 | | Default values were used on all fields for plant removal of nutrients and yield levels. TABLE 2. A Nutrient Management Plan (NMP) is required where Soil Test P Level 1/2 is: - · less than 200 ppm statewide or - or < 350 ppm in arid areas 2/ with a named stream > one mile. | P – Index Rating | Maximum TMDL Annual P Application Rate ^{5/} | Maximum
Annual P
Application | Maximum Biennial Application
Rate | |-------------------|--|---|--| | Very Low, Low | Annual Nitrogen (N)
Requirement | Annual Nitrogen (N) Requirement | 2.0 Times Annual N Requirement | | Medium | 2.0 Times Annual Crop P
Requirement ^{3/} | 2.0 Times
Annual Crop P
Requirement 3/ | 2.0 Times Annual N Requirement | | High ⁵ | 1.5 Times Annual Crop P
Requirement ^{3/} | 1.5 Times
Annual Crop P
Requirement ^{3/} | Double the Maximum Annual P
Application Not to Exceed 2 times the
Annual N Requirement | | Very High ⁵ | 1.0 Times Annual Crop P
Requirement 3/ | 1.0 Times
Annual Crop P
Requirement 3/ | Double the Maximum Annual P
Application Not to Exceed 2 times the
Annual N Requirement | #### TABLE 2a. A Nutrient Utilization Plan (NUP) is required by TCEQ where Soil Test P Level 1/1 is: - equal to or greater than 200 ppm in non-arid areas ^{2/} or - equal to or greater than 350 ppm in arid areas ² with a named stream greater than one mile or - equal to or greater than 200 ppm in arid areas 21 with a named stream less than one mile. | P – Index Rating | Maximum TMDL Annual P Application Rate 5/ | Maximum
Annual P
Application | Maximum Biennial Application
Rate | |------------------------|--|---|---| | Very Low, Low | 1.0 Times Annual Crop P
Removal ^{4/} | Annual N Crop
Removal | 2.0 Times Annual N Removal | | Medium | 1.0 Times Annual Crop P
Removal ^{4/} | 1.5 Times
Annual Crop P
Removal ^{4/} | Double the Maximum Annual P
Application Not to Exceed 2 times the
Annual N Crop Removal | | High ⁵ | 1.0 Times Annual Crop P
Removal ^{4/} | 1.0 Times
Annual Crop P
Removal ^{4/} | Double the Maximum Annual P
Application Not to Exceed 2 times the
Annual N Crop Removal | | Very High ⁵ | 0.5 Times Annual Crop P
Removal ^{4/} | 0.5 Times
Annual Crop P
Removal ^{4/} | Double the Maximum Annual P
Application Not to Exceed 2 times the
Annual N Crop Removal | #### Footnotes Applicable to both Tables - 1/ Soil test P will be Mehlich III by inductively coupled plasma (ICP). - 2/ Non-arid areas, counties receiving => 25 inches annual rainfall, will use the 200 ppm P level while arid areas, counties receiving < 25 inches of annual rainfall, will use the 350 ppm P level. See map in TX Agronomy Technical Note 15, Phosphorus Assessment Tool for Texas, for county designations.</p> - 3/ Not to exceed the annual nitrogen requirement rate. - 4/ Not to exceed the annual nitrogen removal rate. - 5/ When soil test phosphorus levels are ≥ 500 ppm, with a P-Index rating of "High" or "Very High", there will be no additional application of phosphorus to a CMU or field. Page 11 Printed on: 5/8/25 9:26 AM Plan is based on: 590 Organic Nutrient Management Plan V 5.0 ### PI Index by Field | Client Name: | 5/6/25 9:01 AM : Grand Canyon Dairy : Stephen Colby | This pl | Loc | | | | | | | Permit #:
Date:
Location:
Rainfall: | Date: 5/8/2025
Location: Erath | | | | |---------------|---|---------|--------------|-------------------|---|---|------------------------------|----------------------------|--------------------------------------|--|-----------------------------------|--------------------|--------------------|--------------------| | LMU or Fields | Grop . | Slope | Runoff Curve | Soll Test P Level | Inorganic P ₂ O _{\$} Appl | Organic P ₂ O ₅ Appl Rate | Inorganic Method &
Timing | Organic Method &
Timing | Proximity of Appl to
Named Stream | Runoff Class | Soil Erosion | Total Index Points | P Runoff Potential | Soll Test
Date: | | 1 | Silage - Corn16-20T;SG GreenChop-6-7T | 4.0% | 85 | 8 | 0 | 6 | 0 | 0.5 | 5 | 4 | 1.5 | 25 | High | 10/24/24 | | 1A | Coastal GC (30%DM) 9-11T; SG GC 6-7T | 4.0% | 85 | 8 | 0 | 6 | 0 | 4 | 5 | 4 | 0 | 27 | High | 10/24/24 | | 2 | Coastal GC (30%DM) 9-11T; SG GC 6-7T | 3.7% | 85 | 8 | 0 | 6 | 0 | 0.5 | 1.25 | 4 | 0 | 19,75 |
Medium | 10/24/24 | | 2 A | Coastal GC (30%DM) 9-11T; SG GC 6-7T | 3.7% | 85 | 8 | 0 | 6 | 0 | 4 | 1,25 | 4 | 0 | 23,25 | High | 10/24/24 | | 3 | Silage - Corn16-20T;SG GreenChop-6-7T | 3.7% | 89 | 8 | 0 | 6 | 0 | 0.5 | 1.25 | 4 | 1.5 | 21,25 | Medium | 10/24/24 | | 3 A | Coastal GC (30%DM) 9-11T; SG GC 6-7T | 3.7% | 89 | 8 | 0 | 6 | 0 | 0.5 | 0 | 4 | 0 | 18.5 | Medium | 10/24/24 | | 4 | Coastal GC (30%DM) 9-11T; SG GC 6-7T | 3.3% | 89 | 8 | 0 | 6 | 0 | 4 | 5 | 4 | 0 | 27 | High | 10/24/24 | | 5 | Coastal GC (30%DM) 9-11T; SG GC 6-7T | 3,1% | 89 | 8 | 0 | 6 | O | 0.5 | 5 | 4 | 0 | 23.5 | High | 10/24/24 | | 6 | Silage - Corn16-20T;SG GreenChop-6-7T | 4,1% | 89 | 8 | 0 | 6 | 0 | 4 | 0 | 4 | 1.5 | 23.5 | High | 10/24/24 | | 7 | Silage - Corn16-20T;SG GreenChop-6-7T | 3.3% | 89 | 8 | 0 | 6 | 0 | 4 | 1.25 | 4 | 1.5 | 24.75 | High | 10/24/24 | | 8 | Coastal GC (30%DM) 9-11T; SG GC 6-7T | 3.5% | 89 | 8 | 0 | 6 | 0 | 4 | 0 | 4 | 0 | 22 | Medium | 10/24/24 | | 9 | Coastal GC (30%DM) 9-11T; \$G GC 6-7T | 4.0% | 89 | 8 | 0 | 6 | 0 | 4 | 0 | 4 | 0 | 22 | Medium | 10/24/24 | | 10 | Silage - Com16-20T;SG GreenChop-6-7T | 4.0% | 89 | 8 | 0 | 6 | 0 | 4 | 0 | 4 | 1.5 | 23.5 | High | 10/24/24 | | 11 | Silage - Corn16-20T;SG GreenChop-6-7T | 2.9% | 89 | 8 | 0 | 6 | 0 | 4 | 0 | 4 | 1.5 | 23.5 | High | 10/28/24 | | 12 | Coastal GC (30%DM) 9-11T; SG GC 6-7T | 2.9% | 85 | 8 | 0 | 6 | 0 | 4 | 0 | 4 | 0 | 22 | Medium | 10/28/24 | | 12A | Coastal GC (30%DM) 9-11T; SG GC 6-7T | 2.9% | 85 | 8 | 0 | 6 | 0 | 4 | 0 | 4 | 0 | 22 | Medium | 10/28/24 | | 13 | Silage - Corn16-20T;SG GreenChop-6-7T | 2.5% | 85 | 8 | 0 | 6 | 0 | 4 | 0 | 4 | 1.5 | 23.5 | High | 10/28/24 | | 14 | Silage - Com16-20T;SG GreenChop-6-7T | 3.1% | 65 | 8 | 0 | 6 | 0 | 4 | 0 | 4 | 1.5 | 23.5 | High | 10/28/24 | | Table 3 - | Crop R | temoval Rates (For Information Only) | | 3 | | Permit #: | WQ | 0002950000 | |-----------|--------|---|--------------|---------------------------------------|----------------------|-------------------------------|----------------------|------------| | | | | | do. | Total Est. | Total Est. | Total Est. | | | LMU or | | | TCEQ
Plan | al Cr
ysis
ult | N | P ₂ O ₅ | K ₂ O | | | Field No. | Acres | Crop and P Index Level | Туре | Actual Crop
Analysis or
Default | Removal
lbs/Ac/Yr | Removal
lbs/Ac/Yr | Removal
lbs/Ac/Yr | | | 1 | 62.0 | Silage - Corn16-20T;SG GreenChop-6-7T H | NMP | Default | 341 | 132 | 214 | | | 1A | 41.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T H | NMP | Default | 330 | 104 | 190 | | | 2 | 62.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T M | NMP | Default | 330 | 104 | 190 | | | 2A | 21.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T H | NMP | Default | 330 | 104 | 190 | | | 3 | 56.0 | Silage - Corn16-20T;SG GreenChop-6-7T M | NUP | Default | 341 | 132 | 214 | | | 3A | 21.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T M | NUP | Default | 330 | 104 | 190 | | | 4 | 60.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T H | NMP | Default | 330 | 104 | 190 | | | 5 | 210.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T H | NMP | Default | 330 | 104 | 190 | | | 6 | 62.0 | Silage - Corn16-20T;SG GreenChop-6-7T H | NMP | Default | 341 | 132 | 214 | | | 7 | 30.0 | Silage - Corn16-20T;SG GreenChop-6-7T H | NMP | Default | 341 | 132 | 214 | | | 8 | 87.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T M | NMP | Default | 330 | 104 | 190 | | | 9 | 20.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T M | NMP | Default | 330 | 104 | 190 | | | 10 | 50.0 | Silage - Corn16-20T;SG GreenChop-6-7T H | NMP | Default | 341 | 132 | 214 | | | 11 | 56.0 | Silage - Corn16-20T;SG GreenChop-6-7T H | NMP | Default | 341 | 132 | 214 | | | 12 | 66.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T M | NUP | Default | 330 | 104 | 190 | | | 12A | 30.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T M | NUP | Default | 330 | 104 | 190 | | | 13 | 53.0 | Silage - Corn16-20T;SG GreenChop-6-7T H | NMP | Default | 341 | 132 | 214 | | | 14 | 47.0 | Silage - Corn16-20T;SG GreenChop-6-7T H | NMP | Default | 341 | 132 | 214 | 1 | 1 | 0 1 | | | / | | | | | | | | | | | | | NOTE: When crops are used for grazing, only a portion of the nutrients used by the crop are removed from the field in the live weight gain of the livestock, the remainder is returned to the land in manure and urine. The book "Southern Forages" estimates the N, P, & K removed in 100 pounds live weight gain as follows: 2.5 lbs N, 0.68 lbs P, 0.15 lbs K Printed: 5/8/25 9:26 AM Plan is based on: 590 Organic Nutrient Management Plan Table 4 - Maximum Solids Application per Field Permit #: WQ0002950000 | | | | | , | | | | Auto- | |--------------|--------|-------------|--|-----------|----------|-----------------|---------------------|--------------------------| | Est. Solids | | | | Current | Max | ia] | | Maximum | | Produced | LMU or | | | Soil Test | | ië. | Maximum | Allowable | | Annually | Field | | | P Level | P2O5 | lal/B | Solids
Allowable | Application
Per field | | (wet tons) | No. | Acres | Crop Management and PI runoff potential | (ppm) | lbs/acre | Annual/Biennial | Tons/Acre | (Tons) | | 29,317 | ī | | | (FF) | 100,0010 | <u> </u> | TOTALTECT | (TOID) | | | IA | 41.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T H | 194 | 308 | Α | 20.4 | 838 | | 1 | 2 | | | '/' | 200 | | 20.7 | 0.50 | | | 2A | 21.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T H | 140 | 308 | | 20.4 | 420 | | | 3 | 21.0 | Coastat GC (30%DM) 9-111; SG GC 6-71 H | 140 | 308 | A | 20.4 | 429 | | | 3A | | | | | | | | | | | (0.0 | G I GO (200/P) 0 0 14T . 00 7T | | | | | | | | 4 | 60.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T H | 57 | 308 | A | 20.4 | 1226 | | | 5 | 60.0 | | | | | | | | 1 1 | 6 | 62.0 | Silage - Corn16-20T;SG GreenChop-6-7T H | 146 | 270 | ٨ | 17.9 | 1112 | | | 7 | 30.0 | Silage - Corn16-20T;SG GreenChop-6-7T H | 88 | 270 | A | 17.9 | 538 | | | 8 | 87.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T M | 93 | 318 | A | 21.1 | 1837 | | | 9 | 20.0 | Coastal GC (30%DM) 9-111; SG GC 6-7T M | 95 | 318 | A | 21.1 | 422 | | | 10 | 50.0 | Silage - Corn16-20T;SG GreenChop-6-7T H | 121 | 270 | A | 17.9 | 897 | | | 11 | 56.0 | Silage - Corn 16-20T;SG GreenChop-6-7T H | 27 | 270 | Α | 17.9 | 1004 | | | 12 | 66.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T M | 207 | 104 | Α | 6.9 | 455 | | | 12A | 30.0 | Coastal GC (30%DM) 9-11T; SG GC 6-71 M | 207 | 156 | Α | 10.3 | 310 | | | 13 | 53.0 | Silage - Com16-20T;SG GreenChop-6-7T H | 79 | 270 | Α | 17.9 | 951 | | | 14 | 47.0 | Silage - Com16-20T;SG GreenChop-6-7T H | 26 | 270 | Α | 17.9 | 843 | | | | | | | | Ш | Total Solids | | | | | | | | | | Application | | | | | | | | | | Acres | | | | | | | | | | 623 | | | | | | | | | | 025 | | | | | | | | | | | | | N N | | h Ad | | | | | | (| | | | | | | | | Application | | | | | | | | | | Allowable | | | | | | | | | | on-site | | | | | | | | | | (tons) | | | | | |) (| | | | 10861.1 | | | | | | | | | | Not | | | Page | | | | | | | Adequate | | | 7 | | | | | | | | | | | | | | 0 = | | | Solids to be | | | 1 | | | | | | | used off | | | | | | | | | | site (tons) | | | | | | | | | | 18,456.2 | | | | 1 | | | | | | | | | | | | | | | Printed: 5/8/25 9:26 AM Table 5 - Nutrients Applied/Needs at Maximum Solids Rates Permit #: WQ0002950000 | | | plied When Ap
Maximum Rate | plication is at
s | Supplement | eded When Application is at m Rates | | | | |---------------|------------|-------------------------------------|------------------------|------------|-------------------------------------|------------------------|-----------|--| | LMU / Field # | N Lb/ac | P ₂ O ₅ Lb/ac | K ₂ O Lb/ac | N Lb/ac | P ₂ O ₅ Lb/ac | K ₂ O Lb/ac | Lime T/Ac | | | 1 | | | | | | | | | | IA | 387 | 308 | 579 | 0 | 0 | 0 | 0 | | | 2 | | | | | | | | | | 2A | 387 | 308 | 579 | 0 | 0 | 0 | 0 | | | 3 | | | | | | | | | | 3A | 207 | 300 | 500 | | | | | | | 4 | 387 | 308 | 579 | 0 | 0 | 0 | 0 | | | 5 | 240 | 270 | 500 | | | | | | | 6
7 | 340
340 | 270 | 508 | 135 | 0 | 0 | 0 | | | 8 | 400 | 270
318 | 508 | 135 | 0 | 0 | 0 | | | 9 | 400 | 318 | 598
598 | 0 | 0 | 0 | 0 | | | 10 | 340 | 270 | 508 | 0 | 0 | 0 | 0 | | | 11 | 340 | 270 | 508 | 145 | 0 0 | 0 | 0 | | | 12 | 131 | 104 | 195 | 130
220 | | 0 | 0 | | | 12A | 196 | 156 | 293 | 155 | 0 | 0 | 0 | | | 13 | 340 | 270 | 508 | 150 | 0 | 0 | 0 | | | 14 | 340 | 270 | 508 | 150 | | 0 | 0
0 | | | | | | | | | | | | **Table 6 - Planned Solids Application Rates** | | - | | Solids Application Nates | | _ | | remm #. | W Q000. | 2930000 | |--------------|---|-------|--|--|----------------------|---------|----------|---------------|------------| | | B | Acres | | | | | | | Planned | | | 5 | | | Current | Annual /
Biennial | Max | % of | Planned | Solids per | | LMU or Field | ā | | | Soil Test | in un | Rate | Maximum | Solids | field | | No. | ă | Acres | Crop Management and PI runoff potential | P ppm | A.
Bi | tons/ac | to apply | tons/ac | (tons) | | l | | | | | | | | | | | 1A | | 41.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T H | 194 | Α | 20.4 | 100 | 20.4 | 837.5 | | 2 | | | | | | | 71.00 | | | | | | 210 | Coastal GC (30%DM) 9-11T; SG GC 6-7T II | 140 | | 20.4 | 100 | 20.4 | 1000 | | 2Λ | | 21.0 | Coastal GC (3070DNI) 9-11 [, 30 GC 0-7] [[| 140 | Λ | 20.4 | 100 | 20.4 | 429.0 | | 3 | | | | | | | | | | | 3A | | | | | 1 1 | | | | | | 4 | | 60.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T H | 57 | Α | 20.4 | 100 | 20.4 | 1225.6 | | 5 | | | | |
| | | | | | 6 | | 62.0 | Silage - Corn16-20T;SG GreenChop-6-7T H | 146 | Α | 17.9 | 100 | 17.9 | 1112.0 | | 7 | | | Silage - Corn16-20T;SG GreenChop-6-7T H | 88 | A | 17.9 | 100 | | | | | | | | | | | | 17.9 | 538.1 | | 8 | | 87.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T M | 93 | A | 21.1 | 100 | 21.1 | 1836.6 | | 9 | | 20.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T M | 95 | A | 21.1 | 100 | 21.1 | 422.2 | | 10 | | 50.0 | Silage - Corn16-20T;SG GreenChop-6-7T H | 121 | Α | 17.9 | 100 | 17.9 | 896.8 | | 11 | | 56.0 | Silage - Corn16-20T;SG GreenChop-6-7T H | 27 | Α | 17.9 | 100 | 17.9 | 1004.4 | | 12 | | 66.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T M | 207 | A | 6.9 | 100 | 6.9 | 455.0 | | 12A | | 30.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T M | 207 | A | 10,3 | 100 | 10.3 | 310.2 | | 13 | | 53.0 | Silage - Corn16-20T;SG GreenChop-6-7T II | 79 | A | 17.9 | 100 | 17.9 | | | | | 1000 | | | | | | | 950.6 | | 14 | | 47.0 | Silage - Corn16-20T;SG GreenChop-6-7T II | 26 | Λ | 17.9 | 100 | 17.9 | 843.0 | | | | | | | | | | | | | Acres 623.0 | | | Tons of wet solids produced Annually | Will the planned per acre application rates use all of the Solids? | | | | 10861,1
NO | | | | | | | | | | | | | | 0 | | | Tons to be used off-site at Max. rates | Tons to be used off-site at planned rates | | | | | 18456 | page 15 Printed: 5/8/25 9:26 AM Plan is based on: 590 Organic Nutrient Management Plan Permit #: WQ0002950000 Table 7 - Nutrients Applied/Needed at Planned Solids Rates Permit #: WQ0002950000 Red cells? Proceed to adjustment page and fix. | | | Applied at Plani | | Supplemental Nutrients Needed at Planned Rates | | | | | | |---------------|---------|-------------------------------------|------------------------|--|-------------------------------------|-----------|-----------|--|--| | LMU / Field # | N Lb/ac | P ₂ O ₅ Lb/ac | K ₂ O Lb/ac | N Lb/ac | P ₂ O ₅ Lb/ac | K₂O Lb/ac | Lime T/Ac | | | | 1 | | | | | | | | | | | 1A | 387 | 308 | 579 | 0 | 0 | 0 | 0 | | | | 2 | | | | | | | | | | | 2A | 387 | 308 | 579 | 0 | 0 | 0 | 0 | | | | 3 | | | | | | | | | | | 3A | | | | | | | | | | | 4 | 387 | 308 | 579 | 0 | 0 | 0 | 0 | | | | 5 | | | | | | | | | | | 6 | 340 | 270 | 508 | 135 | 0 | 0 | 0 | | | | 7 | 340 | 270 | 508 | 135 | 0 | 0 | 0 | | | | 8 | 400 | 318 | 598 | 0 | 0 | 0 | 0 | | | | 9 | 400 | 318 | 598 | 0 | 0 | 0 | 0 | | | | 10 | 340 | 270 | 508 | 145 | 0 | 0 | 0 | | | | 11 | 340 | 270 | 508 | 130 | 0 | 0 | 0 | | | | 12 | 131 | 104 | 195 | 220 | 0 | 0 | 0 | | | | 12A | 196 | 156 | 293 | 155 | 0 | 0 | 0 | | | | 13 | 340 | 270 | 508 | 150 | 0 | 0 | 0 | | | | 14 | 340 | 270 | 508 | 150 | 0 | 0 | 0 | 0 | | | | Printed on: 5/8/25 9:26 AM Plan is based on: 590 Organic Nutrient Management Plan V 5.0 Table 8 - Maximum Effluent Application Per Field Permit #: WQ0002950000 | | | | | | Current | Max
Annual
P ₂ O ₅
(lbs/acre) | nial | Maximum | Maximum
Effluent | |----------------------|------------|-------|------|---|-----------|--|-------|------------|---------------------| | Est. Available | | Acres | crof | | Soil Test | Max
Annual | Bier | Effluent | Allowable | | Effluent | LMU or | | uble | | P Level | P ₂ O ₅ | lua]/ | Allowable | / Field | | | Field No. | Acres | Ĝ | Crop Management and PI runoff potential | (ppm) | (lbs/acre) | Anr | (ac in/ac) | (ac in) | | 3590 | 1 | 62.0 | | Silage - Com16-20T;SG GreenChop-6-7T II | 194 | 270 | A | 26.0 | 1613 | | Source: | lΛ | | | | | | | | | | | 2 | 62.0 | | Coastal GC (30%DM) 9-111; SG GC 6-7T M | 140 | 410 | Α | 39.5 | 2449 | | | 2Λ | | N | | | | | | | | Dairy Lagoon | 3 | 56.0 | | Silage - Corn16-20T;SG GreenChop-6-7T M | 224 | 132 | A | 12.7 | 711 | | | 3Л | 21.0 | | Coastal GC (30%DM) 9-11T: SG GC 6-7T M | 224 | 104 | A | 10.0 | 210 | | 1 | 4 | | | | | | | | | | | 5 | 210.0 | | Coastal GC (30%DM) 9-11T; SG GC 6-7T H | 141 | 308 | A | 29.6 | 6216 | | | 6 | | | | | 300 | • | 27.0 | 0210 | | | 7 | | М | | | | П | | | | | 8 | | Н | | | | Н | | | | | 9 | | П | | | | Ш | | | | | 10 | | | | | | Н | | | | | 11 | | П | | | | Ш | | | |) | 12 | | П | | | | Н | | | | | A. Carrier | | П | | | | Ш | | | | | 12A | | П | | | | П | | | | | 13 | | П | | | | П | | | | | 14 | | П | | | | П | | | | | | | П | | | | Ш | | | | 1 | | | | | | | П | | | | 1 | | | | | | | | | | | Total | | | П | | | | Ш | | | | Effluent | | | | | | | | | | | Application | | | | | | | Ш | | | | Acres | | | | | | | | | | | 411 | Maximum | | | | | | | П | 1 | | | Effluent | | | | | | | Ш | | | | Application | | | | | | | | | | | Allowable
On-Site | | | | | | | | | | | (ac in) | | | | | | | | | | | 11199 | | | | | | | | | | | | | C | | | | | | | | | Adequate | | | | | | | | | | | Effluent to be | | | | | | | | | | | used Off-Site | | | | | | | | | | | (ac in) | | | | | | | | | | | 0 | | | Ш | | 1 1 | | | | | Table 9 - Nutrients Applied/Needed at Maximum Effluent Rates Permit #: WQ0002950000 | Nutrients Ap | pplied When Ap
Maximum Rate | plication is at | Supplement | al Nutrients Nee
Maximu | eded When Ap
m Rates | plication is at | |--------------|-------------------------------------|---|---|---|--|---| | N Lh/ac | P ₂ O ₅ Lb/ac | K ₂ O Lb/ac | N Lb/ac | P ₂ O ₅ Lb/ac | K ₂ O Lb/ac | Lime T/Ae | | 217 | 270 | 2476 | 260 | 0 | 0 | 0 | | | | | | | | | | 329 | 410 | 3760 | 40 | 0 | 0 | 0 | | | | | | | | | | | | | | 0 | 0 | 0 | | 83 | 104 | 952 | 285 | 0 | 0 | 0 | | | | | | | | | | 247 | 307 | 2818 | 125 | 0 | 0 | 0 | | | | | | | | | | | | | | | | 2 | 1 | | | | | | | | 1 | | | 1.3 | | | | | | | | | | | | | 1 | | | 1 1 | l. | | | | | | | | | | | | | 1 | 1 | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | l) | | | | | | | | | | | | | | | 1 | N Lh/ac | Maximum Rate: N Lb/ac P2Os Lb/ac 217 270 329 410 106 132 83 104 | 217 270 2476 329 410 3760 106 132 1209 83 104 952 | Maximum Rates N Lb/ac P2O5 Lb/ac K2O Lb/ac N Lb/ac 217 270 2476 260 329 410 3760 40 106 132 1209 360 83 104 952 285 | Maximum Rates Maximum Rates Maximum N Lb/ac P ₂ O ₅ Lb/ac Maximum N Lb/ac P ₂ O ₅ Lb/ac 217 270 2476 260 0 329 410 3760 40 0 106 132 1209 360 0 83 104 952 285 0 | Maximum Rates N Lb/ac P ₂ O ₅ Lb/ac K ₂ O Lb/ac 217 270 2476 260 0 0 329 410 3760 40 0 0 106 132 1209 360 0 0 83 104 952 285 0 0 | | | | | Waste Utilization and Nutri | ent Ma | ınag | ement | Plan | | | |----------------------|---------|-------------|---|-------------------------------|----------------------|-----------------------------------|-----------------------------|-----------------------------------|--| | Fable | 10 - PI | _ | ned Effluent Application Rates | | | Permit #: | | WQ000295 | | | I.MU or
field No. | Acres | Double crop | Crop Management and PI runoff potential | Current
Soil Test
P ppm | Annual /
Biennial | Maximum
Effluent
(ac in/ac) | % of
Maximum
to apply | Planned
Effluent
(ac in/ac) | Planned
Effluent
/ field
(Ac. In) | | 1 | 62.0 | | Silage - Corn16-20T:SG GreenChop-6-7T H | 194 | A | 26 | 30.0 | 7.8 | 484 | | 1A
2
2A | 62.0 | | Coastal GC (30%DM) 9-11T; SG GC 6-7T M | 140 | Λ | 39.5 | 30,0 | 11,9 | 735 | | 3 | 56.0 | | Silage - Corn16-20T;SG GreenChop-6-7T M | 224 | Α | 12,7 | 30.0 | 3.8 | 213 | | 3A
4 | 21.0 | | Coastal GC (30%DM) 9-1 FT; SG GC 6-71 M | 224 | А | 10 | 30.0 | 3.0 | 63 | | 5
6
7 | 210.0 | | Coastal GC (30%DM) 9-11T; SG GC 6-7T H | 141 | A | 29.6 | 34.0 | 10.1 | 2113 | | 8 | | | | | | | | | | | 10
11 | | | | | | | | 1 | | | 12
12A | | | | | | | | | | | 13
14 | 1 | 411.0 Acres 3607 YES Will the planned application rates use all of the Effluent? Table 11 - Nutrients Applied/Needed at the Planned Effluent Rates Permit #: WQ0002950000 Red cells? Proceed to adjustment page
and fix. | | Nutrients | Applied at Plai | nned Rates | Supplemen | ntal Nutrients N | eeded at Plani | ned Rates | |---------------|----------------|-------------------------------------|------------------------|-----------|-------------------------------------|------------------------|-----------| | LMU / Field # | N Lh/ac | P ₂ O ₅ Lb/ae | K ₂ O Lb/ac | N Lb/ac | P ₂ O ₅ Lb/ac | K ₂ O Lb/ac | Lime T/Ac | | 1 | 65 | 81 | 743 | 410 | 0 | 0 | 0 | | 1A | | | | | | | | | 2 | 99 | 123 | 1128 | 275 | 0 | 0 | 0 | | 2A | | | | 1 | | | | | 3 | 32 | 40 | 364 | 435 | 0 | 0 | 0 | | 3A | 25 | 31 | 286 | 340 | 0 | 0 | 0 | | 4 | | | | | ľ | ľ | 0 | | 5 | 84 | 105 | 959 | 290 | 0 | 0 | 0 | | 6 | | | 107 | 2,0 | | ľ | | | 7 | | | | | | | | | 8 | | | | | | | | | 9 | | | | | | | | | 10 | | | 1 | | | | | | 11 | | | | | | | | | 12 | | | 1 | | | | | | 12A | | | | | | | | | 13 | | | | | | | | | 14 | | | | | | | | | 1,7 | 1 | | | | | | | 1 | | | | | | | | | | | | S ₄ | - | 1 | | | | 1 | | | | | | | | | | | | | | | | | | 1 | | | | | | | | | 1 | | | | | | | | | | | | | | | | | | 1 | Printed on: 5/8/25 9:26 AM Plan is based on: 590 Organic Nutrient Management Plan V 5.0 Table 12 - Available Water Capacity to 24 inches(or less) of predominant Permit #: soil in fields receiving effluent and Texture of the most restrictive soil layer in the upper 24 inches WQ0002950000 | LMU / Field # | AWC (inches) | Restrictive Texture | LMU / Field # | AWC (inches) | Restrictive Texture | |---------------|--------------|---------------------|---------------|--------------|---------------------| | 1 | 3.455 | Sandy Clay | , | | | | 1A | | | | | | | 2 | 3.455 | Sandy Clay | | | | | 2A | | | | | | | 3 | 3.52 | Clairette Hasse | | | | | 3A | 3.52 | Clairette Hasse | | | | | 4 | | | | | | | 5 | 1.87 | Purves Dugout | | | | | 6 | | | | | | | 7 | | | | | | | 8 9 | | | | | | | 10 | | | | | | | 11 | | | | | | | 12 | | | | | | | 12A | | | | | | | 13 | | | | | - | | 14 | 6.3 | Table 13 - Non Application Areas by Field Permit #: WQ0002950000 FS = 393-Filter Strip; FB = 386-Field Border, RFB – 391-Riparian Forest Buffer; OLEA = Other Land Excluded Ar | L B AT C / | FS | FB | RFB | OLEA | Total | | FS | FB | RFB | OLEA | Total | |------------------|------------|-----------|------------|---------|----------|------------------|----------|--------|---------|--------|-----------| | LMU /
Field # | Acres | Acres | Acres | Acres | Excluded | LMU /
Field # | Acres | Acres | Acres | Acres | Excluded | | 1 | 0.0 | 0.0 | | | | Tioler | | 110100 | , roles | 110103 | Isacidada | | 1 A | 0.0 | 0.0 | | | | | | | | | | | 2 | 0.0 | 0.0 | | | | | | | | | | | 2A | 0.0 | 0.0 | | | | | | | | | | | 3 | 0.0 | 0.0 | | | | | | | | | | | 3A | 0.0 | 0.0 | | | | | | | | | | | 4 | 0.0 | 0.0 | | | | | | | | | | | 5 | 0.0 | 0.0 | | | | | | | | | | | 6 | 0.0 | 0.0 | | | | | | | | | | | 7 | 0.0 | 0.0 | | | | | | | | | | | 8 | 0.0 | 0.0 | | | | | | | | | | | 9 | 0.0 | 0.0 | | | | | | | | | | | 10 | 0.0 | 0.0 | | | | | | | | | | | 11 | 0.0 | 0.0 | | | 0.0 | | | | | | | | 12 | 0.0 | 0.0 | | | | | | | | | | | 12A | 0.0 | 0.0 | | | l l | | | | | | | | 13 | 0.0 | 0.0 | | | | 10 | | | | | | | 14 | 0.0 | 0.0 | 19 | | | | | | | | 1 | | | | | | | | | | | | 71 | | | | | | | | | | | | | 7, | 1 | See Ann | lication P | Map for I | ocation of | buffers | | Totals | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | al 500 623 | | | 10240 | | | T-4-1-60 | | 0.0 | 10110 | $v_i v$ | See Application Map for location of buffers Total 590-633 application acres: 1034.0 Total 590-633 Field Acres: 0.01034.0 ### Waste Utilization and Nutrient Management Data Entries #### **General Data** Date: 5/8/2025 Farmer Name : Grand Canyon Dairy County in which the Land is located : Erath Type of Waste Plan: Other AFO-CAFO Waste Plan Is this plan in a TMDL watershed for nutrients? Yes or No: Yes Is any field PERMITTED by TCEQ? Yes or No: Yes Permit #: WQ0002950000 ### All other entries on General Page appear on the Cover Page ### **Animal Information** Plan Year: 2025 Are you receiving waste from another producer? No Number of animals : 4000 Approximate Weight: 1400 Days per year in confinement: 365 Hours per day confined: 24 ACRE FEET of effluent to be irrigated*: 299.2 Estimated annual gallons of effluent to be irrigated/applied annually: 97493721.6 For effluent, do you want application rates shown in gallons or acre inches?: acre inches Estimated Tons Solids to be Land Applied Annually (on or off site)*: 14600 Is this the first Year of the AFO-CAFO Operation? No ### **Analysis Information** ### **Effluent Information** Date of Analysis: 6/14/2024 Manure Source: Dairy Lagoon Nitrogen % From Analysis: 0.0046 Phosphorus % From Analysis: 0.002 Potassium % From Analysis: 0.035 Moisture % From Analysis: 99.8 ### Manure / Solids Information Date of Analysis: 6/14/2024 Manure Source: Dairy Solids Nitrogen % From Analysis: 2.378 Phosphorus % From Analysis: 0.66 Potassium % From Analysis: 2.37 Moisture % From Analysis: 50.2 What will be Applied to Fields on this Farm? Both Effluent and Solids Is this Farm part of an AFO-CAFO? No. This plan is based on; rganic Nutrient Management Plan Printed on: 5/8/25 9:26 AM ### Field and Buffer Entries Permit #: WQ0002950000 Printed on: 5/8/25 9:26 AM Plan is based on: 590 Organic Nutrient Management Plan FS = 393-Filter Strip, FB = 386-Field Border, RFB = 391-Riparian Forest Buffer, OLEA = Other Land Exclusion Areas or non-application areas (i.e. headquarters, freq. flooded areas, wooded areas, water bodies, etc) NOTE: Field Border (FB) is expressed in ACRES on this spreadsheet, but as LINEAR FEET on the CPO. | | 1 | | - | | | | | ERRIEL OIL CITO. | |---------|--------------|----|----|-----|------|--------|-------------|--------------------------------------| | | | | | | | m | | | | Field | Total | | | | | Total | Actual | | | | LMU or Field | FS | FB | OVD | OLEA | Buffer | Application | | | No | Acres 62 | 19 | rD | RFB | OLEA | Acres | | This Column Intentionally Left Blank | | | 41 | | * | | | 0.0 | 62.0 | | | 1A
2 | | | | | | 0.0 | 41.0 | | | | 62 | | | | | 0.0 | 62.0 | | | 2A | 21 | | | | | 0.0 | 21.0 | | | 3 | 56 | | | | | 0.0 | 56.0 | | | 3/ | 21 | | | | | 0.0 | 21.0 | | | 4 | 60 | | | | | 0.0 | 60.0 | | | 5 | 210 | | | | | 0.0 | 210.0 | | | 6 | 62 | | | | | 0.0 | 62.0 | | | 7 | 30 | | | | | 0.0 | 30.0 | | | 8 | 87 | | | | | 0.0 | 87.0 | | | 9 | 20 | | | | | 0.0 | 20.0 | | | 10 | 50 | | | | | 0.0 | 50.0 | | | -11 | 56 | | | | | 0.0 | 56.0 | | | 12 | 66 | | | | | 0.0 | 66.0 | | | 12A | 30 | | | | | 0.0 | 30.0 | | | 13 | 53 | | | | | 0.0 | 53.0 | | | 14 | 47 | | | | | 0.0 | 47.0 | Î | - | 1 | | | | | | | | | _ | | | - | ### Soil Test, Crop Information and Plant Analysis Data Entries | | Soil Test | Analysis | | -1.7 | | | | E = Effluent
S = Solids | <u>:</u> | Plant Analysis & Yield (optional) Use
Only When Crop Removal is Required | | | | | |------------|------------|------------|--|--|------------------|------------------------|--|----------------------------|-------------------------|---|-----|-----|---|--| | N
(ppm) | P
(ppm) | K
(ppm) | Lime
(enter amt
or leave
blank) | This
column
only for
Dry
Poultry | LMU or
Field# | Appl.
Area
Acres | Crop/Land-Use and
P Index Runoff Potential
VL - L; M; H; or VH | | Plant Analys
(Y / N) | % N | % P | % K | Yield
Air Dry
Production
(Ibs/ac/yr) | | | 12.765 | 194 | 568 | | | 1 | 62.0 | Silage - Com16-20T;SG GreenChop-6-7T H | E | N | | | | | | | 12.765 | 194 | 568 | | | 1A | 41.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T H | S | N | | | | | | | 14.084 | 140 | 523 | | | 2 | 62.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T M | E | N | | | | | | | 14.084 | 140 | 523 | | | 2A | 21.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T H | S | N | | | | | | | 16.962 | 224 | 458 | | | 3 | 56.0 | Silage - Corn16-20T;SG GreenChop-6-7T M | E | N | | | | | | | 16.962 | 224 | 458 | | | 3A | 21.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T M | E | N | | | | | | | 12.765 | 57.2 | 607 | | | 4 | 60.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T H | S | N | | | | | | | 14.244 | 141 | 808 | | | 5 | 210.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T H | E | N | | | | | | | 13.206 | 146 | 450 | | | 6 | 62.0 | Silage - Com16-20T;SG
GreenChop-6-7T H | S | N | | | | | | | 12.479 | 88.1 | 358 | | | 7 | 30.0 | Silage - Com16-20T;SG GreenChop-6-7T H | S | N | | | | | | | 10.588 | 93.2 | 404 | | | 8 | 87.0 | Coastal GC (30%DM) 9-11T: SG GC 6-7T M | S | N | | | | | | | 20.101 | 94.5 | 369 | | | 9 | 20.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T M | S | N | | | | | | | 8.556 | 121 | 309 | | | 10 | 50.0 | Silage - Com16-20T;SG GreenChop-6-7T H | S | N | | | | | | | 14.139 | 27.1 | 189 | | | 11 | 56.0 | Silage - Com16-20T;SG GreenChop-6-7T H | S | N | | | | | | | 24.344 | 207 | 432 | | | 12 | 66.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T M | S | N | | | | | | | 24.344 | 207 | 432 | | | 12A | 30.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T M | S | N | | | | | | | 5.278 | 78.5 | 242 | | | 13 | 53.0 | Silage - Com16-20T;SG GreenChop-6-7T H | S | N | | | | | | | 4.676 | 25.9 | 251 | | | 14 | 47.0 | Silage - Com16-20T;SG GreenChop-6-7T H | S | N | 10 | | | | | | | | | | | | | | | | | | ### **Solids Application Rate Entries** | | | Set the Planned Application Rates | | | | Permit #; | W | | | | |--------------------------|-------|--|----------------------|---------------------------------------|--------------------------------------|--------------------------------|------------------------------------|--|--|--| | 293 | 517 | "Wet tons" of solids produced Annually | | V | fill the plant | planned rates use all of the | | | | | | | | | | | Tons to be | used off-s | ite at plan | | | | | MU
or
(ield
No. | Acres | Crop Management and P1 runoff potential | Current
Soil Test | Crop
P ₂ O ₅ | Annual or
Biennial
Application | Maximum
Solids
Allowable | Enter % o
Maximum
Planned to | | | | | | Acres | Crop Annagement and F1 Tunini potential | Р ррт | Req. | Cycle | Tons/Ac | Apply | | | | | 1
1A
2 | 41.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T H | 194 | 205 | Annual | 20.4 | 100.0 | | | | | 2A
3 | 21.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T H | 140 | 205 | Annual | 20,4 | 100.0 | | | | | 3A
4
5 | 60.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T H | 57 | 205 | Annual | 20.4 | 100.0 | | | | | 6 | 62.0 | Silage - Corn 16-20T;SG GreenChop-6-7T H | 146 | 180 | Annual | 17,9 | 100.0 | | | | | 7 | | Silage - Corn16-20T;SG GreenChop-6-7T H | 88 | 180 | Annual | 17.9 | 100.0 | | | | | 8 | | Coastal GC (30%DM) 9-11T; SG GC 6-7'F M | 93 | 205 | Annual | 21.1 | 100.0 | | | | | 9 | 20.0 | Coastal GC (30%DM) 9-11T; SG GC 6-71 M | 95 | 205 | Annual | 21.1 | 100.0 | | | | | 10 | 50.0 | Silage - Corn16-20T;SG GreenChop-6-7T H | 121 | 180 | Annual | 17.9 | 100.0 | | | | | 11 | 56,0 | Silage - Corn16-20T;SG GreenChop-6-7T II | 27 | 180 | Annual | 17.9 | 100.0 | | | | | 2 | 66.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T M | 207 | 205 | Annual | 6.9 | 100.0 | | | | | 2A | | Coastal GC (30%DM) 9-11T; SG GC 6-7T M | 207 | 205 | Annual | 10.3 | 100.0 | | | | | 3 | | Silage - Cornt6-20T;SG GreenChop-6-7T H | 79 | 180 | Annual | 17.9 | 100.0 | | | | | 14 | 47.0 | Silage - Corn16-20T;SG GreenChop-6-7T H | 26 | 180 | Annual | 17.9 | 100.0 | Printed on: 5/8/25 9:26 AM Plan is based on: 590 Organi ### **Effluent Application Rate Entries** | Acres 62.0 62.0 56.0 21.0 | Acre inches of Effluent to be used annually Crop Management and PI runoff potential Silage - Corn [6-20T; SG Green Chop-6-7T II Coastal GC (30% DM) 9-11T; SG GC 6-7T M | Current
Soil Test
P (ppm)
194 | Crop
P2O5
Req. | Annual or
Biennial
Application
Cycle | Max
Effluent
Allowable
(ac in/ac) | Enter % of
Maximum
Planned to | the effluent? Planned Effluent | Yes Planned Effluent per field | |------------------------------|--|--|----------------------|---|--|-------------------------------------|----------------------------------|--------------------------------| | 62.0
62.0
56.0
21.0 | Silage - Corn [6-20T;SG GreenChop-6-7T II | Soil Test
P (ppm)
194 | P2O5
Req. | Biennial
Application | Effluent
Allowable | Maximum
Planned to | Effluent | Effluent | | 62.0
56.0
21.0 | | | 180 | | The state of s | Apply | (ac in/ac) | (acre inches | | 56.0
21.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T M | 140 | | Annual | 26.0 | 30.0 | 7.8 | 484 | | 21.0 | Control Control | | 205 | Annual | 39.5 | 30.0 | 11.85 | 735 | | | Silage - Corn16-20T;SG GreenChop-6-7T M | 224 | 180 | Annual | 12.7 | 30.0 | 3,81 | 213 | | | Coastal GC (30%DM) 9-11T; SG GC 6-7T M | 224 | 205 | Annual | 10.0 | 30.0 | 3 | 63 | | 210.0 | Coastal GC (30%DM) 9-11T; SG GC 6-7T H | 141 | 205 | Annual | 29.6 | 34.0 | 10.06 | 2113 | | | | | | | | | | | | la na at | 2.4 | P 14 | 1 | | | | 1 | Annual 29.6 34.0 10.06 | Printed on: 5/8/25 9:26 AM Total Effluent This Page 3607 **Available Water Capacity Entries** | | Printed on: | 5/8/2 | 5 9:26 | AM | | Plan | is bas | | | | | Manage | ment Pla | Pe | rmit #: | V | VQ000 | 2950000 | |---|--|----------------------------|--------|-------------------------------------|------|-------------------|---|-----------------------|----------------------------|--|-------------|-------------------------------------|----------|---|---------|--------------------------------------|-------|--| | | | | T | | | | | EX | AMPLE | ENTF | RIES | | | | r | | | Availab | | | Texture of the soil layer within the upper 24 | 0 | 3 | 0.12 | 0.2 | 3 | 14
En | 0.16
ter Da | | 14 | 18
24" (| 0.08 | 0.12 | 18 | 24 | 0 | 0_ | Water
Holding
Capacit | | LMU or
Fields
receiving
Effluent | inches of the
soil profile that
has the lowest
permeability
(Don't Abbreviate) | First
Layer
(inches) | | AWC of
First
Layer
(in/in) | | Sec
La
(inc | Depth of
Second
Layer
(inches) | | C of
ond
yer
/in) | Depth of
Third
Layer
(inches) | | AWC of
Third
Layer
(in/in) | | f Depth of
Fourth
Layer
(inches) | | AWC of
Fourth
Layer
(in/in) | | the upp
24 inche
of the so
profile
(Inches | | 1 | Sandy Clay | 0 | 5 | 0.12 | 0.16 | 5 | 40 | 0.12 | 0.17 | 40 | | | | 0 | | | | 3.46 | | 2 | Sandy Clay | 0 | 5 | 0.12 | 0.16 | 5 | 40 | 0.12 | 0.17 | 40 | | | | 0 | | | | 3.46 | | 3 | Clairette Hasse | 0 | 4 | 0.1 | 0.17 | 4 | 10 | 0.15 | 0.19 | 10 | 26 | 0.1 | 0.18 | 26 | | | | 3.52 | | 3A | Clairette Hasse | 0 | 4 | 0.1 | 0.17 | 4 | 10 | 0.15 | 0.19 | 10 | 26 | 0.1 | 0.18 | 26 | | | | 3.52 | | 5 | Purves Dugout | 0 | 8 | 0.11 | 0.2 | 8 | 12 | 0.08 | 0.18 | 12 | 14 | 0.04 | 0.07 | 14 | 24 | 0 | 0 | 1.87 |
 | ### A. Sample collection | 1) | Samples were collected for the land managen | nent unit (LMU) identified below. | |----|---|--| | ✓ | Yes, complete this form and Tables 1 and 2 bo
to this soil monitoring report form. | elow. Attach a copy of the laboratory analyses | | | No, provide the facility information for the L | MU below with the exception of the tables. | | | Reporting Year: 2024 | Sample Collection Date: 10/24/2024 | ### **B.** Facility Information - 1) Permit Number: WQ0002950000 - 2) Site Name: Grand Canyon Dairy - 3) Name of LMU (LMU Name should correspond to field designation located on the Map included in the PPP); \uparrow - 4) Name of Owner/Operator: Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC - 5) Mailing Address for Owner/Operator: 2179 County Road 308, Dublin, TX 76446 Table 1. Soil Analysis Report Where Manure, Sludge and Wastewater are not Incorporated | Soil Sample Parameter | 0-2 inches soil depth | 2-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | | 1 | | | Phosphorus (extractable), ppm | | | | | Potassium (extractable), ppm | | | | | Sodium (extractable), ppm | | | | | Magnesium (extractable), ppm | | V 4-6 | | | Calcium (extractable), ppm | | | | | Electrical Conductivity/Soluble
Salts, dS/m | | | | | pH, SU | | | | Table 2. Soil Analysis Report Where Manure, Sludge and Wastewater are Incorporated | Soil Sample Parameter | o-6 inches soil depth | 6-24 inches soil depth | |---|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | 12.765 | 3,188 | | Phosphorus (extractable), ppm | 194 | 30.0 | | Potassium (extractable), ppm | 568 | 373 | | Sodium (extractable), ppm | 31.8 | 116 | | Magnesium (extractable), ppm | 363 | 412 | | Calcium (extractable), ppm | 5318 | 6240 | | Electrical Conductivity/Soluble Salts, dS/m | 0.239 | 0.294 | | pH, SU | 7.61 | 7.83 | I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. Print Name and Title of Responsible Official or Authorized Agent: Tim Miranda, Member Signature of In Malli from Date: 2/4/25 Telephone Number: 254/445-0404 ### D. How to Submit The soil monitoring report with attached soil analyses should be included in the Annual Report that is required to be submitted by March 31 of each year. For State Only CAFOs, submit this soil monitoring report form to the TCEQ, Enforcement Division (MC-224), P.O. Box 13087, Austin, Texas 78711-3087 and provide a copy to the TCEQ Regional Office. If you have any additional questions about this form or soil sample collection and soil analyses requirements, contact: ### A. Sample collection | 1) Samples | were collected for the land managem | ent unit (LMU) identified below. | |-------------|--|--| | Yes, com | plete this form and Tables 1 and 2 be
is soil monitoring report form. | elow. Attach a copy of the laboratory analyses | | □No, prov | ide the facility information for the LI | MU below with the exception of the tables. | | 2) Reportin | g Year: 2024 | Sample Collection Date: 10/24/2024 | | | | | ### **B.** Facility Information - 1) Permit Number: WQ0002950000 - 2) Site Name: Grand Canyon Dairy 3) Name of LMU (LMU Name should correspond to field designation located on the Map - included in the PPP): 2 - 4) Name of Owner/Operator: Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC - 5) Mailing Address for Owner/Operator: 2179 County Road 308, Dublin, TX 76446 Table 1. Soil Analysis Report Where Manure, Sludge and Wastewater are not Incorporated | Soil Sample Parameter | 0-2 inches soil depth | 2-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | • | | | | Phosphorus (extractable), ppm | | | | | Potassium (extractable), ppm | | | | | Sodium (extractable), ppm | | | | | Magnesium (extractable), ppm | | | | | Calcium (extractable), ppm | | | | | Electrical Conductivity/Soluble
Salts, dS/m | | | | | pH, SU | | | | Table 2. Soil Analysis Report Where Manure, Sludge and Wastewater are Incorporated | Soil Sample Parameter | o-6 inches soil depth | 6-24 inches soil depth | |---|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | 14.084 | 3.026 | | Phosphorus (extractable), ppm | 140 | 7.94 | | Potassium (extractable), ppm | 523 | 310 | | Sodium (extractable), ppm | 31.4 | 228 | | Magnesium (extractable), ppm | 404 | 545 | | Calcium (extractable), ppm | 6775 | 11729 | | Electrical Conductivity/Soluble Salts, dS/m | 0.147 | 0.125 | | pH, SU | 7.76 | 7.84 | I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. Print Name and Title of Responsible Official or Authorized Agent: Tim Miranda, Member Signature: Gol Mulli fr- Date: 2/4/25 Telephone Number: 254/445-0404 #### D. How to Submit The soil monitoring report with attached soil analyses should be included in the Annual Report that is required to be submitted by March 31 of each year. For State Only CAFOs, submit this soil monitoring report form to the TCEQ, Enforcement Division (MC-224), P.O. Box 13087, Austin, Texas 78711-3087 and provide a copy to the TCEQ Regional Office. If you have any additional questions about this form or soil sample collection and soil analyses requirements, contact: ### A. Sample collection | 1) | Samples were collected for the land manage | gement unit (LMU) identified below. | |----|--|---| | ✓ | Yes, complete this form and Tables 1 and 2
to this soil monitoring report for | below. Attach a copy of the laboratory analyses
m. | | | No, provide the facility information for the | LMU below with the exception of the tables. | | | Reporting Year: 2024 | Sample Collection Date: 10/24/2024 | ### **B.** Facility Information - 1) Permit Number: WQ0002950000 - 2) Site Name: Grand Canyon Dairy - 3) Name of LMU (LMU Name should correspond to field designation located on the Map included in the PPP): 3 - 4) Name of Owner/Operator: Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC - 5) Mailing Address for Owner/Operator: 2179 County Road 308, Dublin, TX 76446 Table 1. Soil Analysis Report Where Manure, Sludge and Wastewater are not Incorporated | Soil Sample Parameter | 0-2 inches soil depth | 2-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | | | | | Phosphorus (extractable), ppm | | | | | Potassium (extractable), ppm | | | | | Sodium (extractable), ppm | | | | | Magnesium (extractable), ppm | | | | | Calcium (extractable), ppm | | | | | Electrical Conductivity/Soluble
Salts, dS/m | | | | | pH, SU | | | | Table 2. Soil Analysis Report Where Manure, Sludge and Wastewater are Incorporated | Soil Sample Parameter | o-6 inches soil depth | 6-24 inches soil depth | |---|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | 16.962 | 4.039 | | Phosphorus (extractable), ppm | 224 | 17.5 | | Potassium (extractable), ppm | 458 | 158 | | Sodium (extractable), ppm | 24.5 | 83,2 | | Magnesium (extractable), ppm | 417 | 294 | | Calcium (extractable), ppm | 10104 | 11573 | | Electrical Conductivity/Soluble Salts, dS/m | 0.174 | 0.183 | | pH, SU | 7.56 | 7.71 | I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. Print Name and Title of Responsible Official or Authorized Agent: Tim Miranda,
Member Telephone Number: 254/445-0404 ### D. How to Submit The soil monitoring report with attached soil analyses should be included in the Annual Report that is required to be submitted by March 31 of each year. For State Only CAFOs, submit this soil monitoring report form to the TCEQ, Enforcement Division (MC-224), P.O. Box 13087, Austin, Texas 78711-3087 and provide a copy to the TCEQ Regional Office. If you have any additional questions about this form or soil sample collection and soil analyses requirements, contact: ### A. Sample collection | Samples were collected for the land management unit (LMU) identified below. | | |--|---------| | Yes, complete this form and Tables 1 and 2 below. Attach a copy of the laboratory a to this soil monitoring report form. | nalyses | | No, provide the facility information for the LMU below with the exception of the tables. | | | 2) Reporting Year: 2024 Sample Collection Date: 10/24/2024 | | ### **B.** Facility Information - 1) Permit Number: WQ0002950000 - 2) Site Name: Grand Canyon Dairy - 3) Name of LMU (LMU Name should correspond to field designation located on the Map included in the PPP): 4 - 4) Name of Owner/Operator: Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC - 5) Mailing Address for Owner/Operator: 2179 County Road 308, Dublin, TX 76446 Table 1. Soil Analysis Report Where Manure, Sludge and Wastewater are not Incorporated | Soil Sample Parameter | 0-2 inches soil depth | 2-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|-----------------------|------------------------| | Nitratc-Nitrogen (NO ₃ -N), ppm | | 100 | | | Phosphorus (extractable), ppm | | | | | Potassium (extractable), ppm | | | | | Sodium (extractable), ppm | | | | | Magnesium (extractable), ppm | | | | | Calcium (extractable), ppm | | | | | Electrical Conductivity/Soluble
Salts, dS/m | | | | | pH, SU | | | | Table 2. Soil Analysis Report Where Manure, Sludge and Wastewater are Incorporated | Soil Sample Parameter | o-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | 12.765 | 6.869 | | Phosphorus (extractable), ppm | 57.2 | 12.0 | | Potassium (extractable), ppm | 607 | 266 | | Sodium (extractable), ppm | 31.9 | 132 | | Magnesium (extractable), ppm | 462 | 337 | | Calcium (extractable), ppm | 11037 | 14070 | | Electrical Conductivity/Soluble
Salts, dS/m | 0.239 | 0.46 | | pH, SU | 7.61 | 7.85 | I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. Print Name and Title of Responsible Official or Authorized Agent: Tim Miranda, Member Signature: John Mulli from Date: 2/4/25 Telephone Number: 254/445-0404 ### D. How to Submit The soil monitoring report with attached soil analyses should be included in the Annual Report that is required to be submitted by March 31 of each year. For State Only CAFOs, submit this soil monitoring report form to the TCEQ, Enforcement Division (MC-224), P.O. Box 13087, Austin, Texas 78711-3087 and provide a copy to the TCEQ Regional Office. If you have any additional questions about this form or soil sample collection and soil analyses requirements, contact: ### A. Sample collection | 1) | Samples were collected for the land managem | ent unit (LMU) identified below. | | | | |--------------|--|--|--|--|--| | \checkmark | ✓ Yes, complete this form and Tables 1 and 2 below. Attach a copy of the laboratory analyses | | | | | | | to this soil monitoring report form. | | | | | | | No, provide the facility information for the LN | MU below with the exception of the tables. | | | | | 2) | Reporting Year: 2024 | Sample Collection Date: 10/24/2024 | | | | | | | | | | | ### B. Facility Information Permit Number: WQ0002950000 Site Name: Grand Canyon Dairy - 3) Name of LMU (LMU Name should correspond to field designation located on the Map included in the PPP): 5 - 4) Name of Owner/Operator: Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC - 5) Mailing Address for Owner/Operator: 2179 County Road 308, Dublin, TX 76446 Table 1. Soil Analysis Report Where Manure, Sludge and Wastewater are not Incorporated | Soil Sample Parameter | 0-2 inches soil depth | 2-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | | • | • | | Phosphorus (extractable), ppm | | | | | Potassium (extractable), ppm | | | | | Sodium (extractable), ppm | | | | | Magnesium (extractable), ppm | | | | | Calcium (extractable), ppm | | | | | Electrical Conductivity/Soluble
Salts, dS/m | | | | | pH, SU | | | | Table 2. Soil Analysis Report Where Manure, Sludge and Wastewater are Incorporated | Soil Sample Parameter | o-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | 14.244 | 6,215 | | Phosphorus (extractable), ppm | 141 | 16.0 | | Potassium (extractable), ppm | 808 | 334 | | Sodium (extractable), ppm | 24.1 | 107 | | Magnesium (extractable), ppm | 543 | 380 | | Calcium (extractable), ppm | 12799 | 12949 | | Electrical Conductivity/Soluble
Salts, dS/m | 0.23 | 0.158 | | pH, SU | 7.78 | 7.89 | I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. Print Name and Title of Responsible Official or Authorized Agent: Tim Miranda, Member Telephone Number: 254/445-0404 ### D. How to Submit The soil monitoring report with attached soil analyses should be included in the Annual Report that is required to be submitted by March 31 of each year. For State Only CAFOs, submit this soil monitoring report form to the TCEQ, Enforcement Division (MC-224), P.O. Box 13087, Austin, Texas 78711-3087 and provide a copy to the TCEQ Regional Office. If you have any additional questions about this form or soil sample collection and soil analyses requirements, contact: ### A. Sample collection | 1) | Samples were collected for the la | nd management unit (LMU) identified below. | |----|---|--| | V | Yes, complete this form and Table
to this soil monitoring re | es 1 and 2 below. Attach a copy of the laboratory analyses port form. | | | No, provide the facility informat | on for the LMU below with the exception of the tables. | | | Reporting Year: 2024 | Sample Collection Date: 10/24/2024 | ### **B.** Facility Information - 1) Permit Number: WQ0002950000 - 2) Site Name: Grand Canyon Dairy - 3) Name of LMU (LMU Name should correspond to field designation located on the Map included in the PPP): 6 - 4) Name of Owner/Operator: Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC - 5) Mailing Address for Owner/Operator: 2179 County Road 308, Dublin, TX 76446 Table 1. Soil Analysis Report Where Manure, Sludge and Wastewater are not Incorporated | Soil Sample Parameter | 0-2 inches soil depth | 2-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | | | | | Phosphorus (extractable), ppm | | | | | Potassium (extractable), ppm | | | | | Sodium (extractable), ppm | | | | | Magnesium (extractable), ppm | | | | | Calcium (extractable), ppm | | | | | Electrical Conductivity/Soluble
Salts, dS/m | | | | | pH, SU | | | | | | | | | Table 2. Soil Analysis Report Where Manure, Sludge and Wastewater are Incorporated | Soil Sample Parameter | 0-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | 13.206 | 8.293 | | Phosphorus (extractable), ppm | 146 | 10.8 | | Potassium (extractable), ppm | 450 | 180 | | Sodium (extractable), ppm | 31.3 | 97.1 | | Magnesium (extractable), ppm | 432 | 263 | | Calcium (extractable), ppm | 11873 | 17447 | | Electrical Conductivity/Soluble
Salts, dS/m | 0.08 | 0.109 | | pH, SU | 7.64 | 7.77 | | pr1, 50 | 7.64 | 7.77 | I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage
the system, or those persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penaltics for submitting false information, including the possibility of fine and imprisonment for knowing violations. Print Name and Title of Responsible Official or Authorized Agent: Tim Miranda, Member Signature: Date: 2/4/25 Telephone Number: 254/445-0404 #### D. How to Submit The soil monitoring report with attached soil analyses should be included in the Annual Report that is required to be submitted by March 31 of each year. For State Only CAFOs, submit this soil monitoring report form to the TCEQ, Enforcement Division (MC-224), P.O. Box 13087, Austin, Texas 78711-3087 and provide a copy to the TCEQ Regional Office. If you have any additional questions about this form or soil sample collection and soil analyses requirements, contact: ### A. Sample collection | 1) | Samples were collected for the land managem | ent unit (LMU) identified below. | | | |----|--|---|--|--| | ✓ | Yes, complete this form and Tables 1 and 2 be to this soil monitoring report form. | low. Attach a copy of the laboratory analyses | | | | | No, provide the facility information for the LMU below with the exception of the tables. | | | | | 2) | Reporting Year: 2024 | Sample Collection Date: 10/24/2024 | | | ### **B.** Facility Information - 1) Permit Number: WQ0002950000 - 2) Site Name: Grand Canyon Dairy - 3) Name of LMU (LMU Name should correspond to field designation located on the Map included in the PPP): 7 - 4) Name of Owner/Operator: Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC - 5) Mailing Address for Owner/Operator: 2179 County Road 308, Dublin, TX 76446 Table 1. Soil Analysis Report Where Manure, Sludge and Wastewater are not Incorporated | Soil Sample Parameter | 0-2 inches soil depth | 2-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | • | • | *** | | Phosphorus (extractable), ppm | | | | | Potassium (extractable), ppm | | | | | Sodium (extractable), ppm | | | | | Magnesium (extractable), ppm | | | | | Calcium (extractable), ppm | | | | | Electrical Conductivity/Soluble
Salts, dS/m | | | | | pH, SU | | | | Table 2. Soil Analysis Report Where Manure, Sludge and Wastewater are Incorporated | Soil Sample Parameter | 0-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | 12.479 | 5.106 | | Phosphorus (extractable), ppm | 88.1 | 15.0 | | Potassium (extractable), ppm | .58 | 212 | | Sodium (extractable), ppm | 14.1 | 13.5 | | Magnesium (extractable), ppm | 288 | 249 | | Calcium (extractable), ppm | 14241 | 14561 | | Electrical Conductivity/Soluble
Salts, dS/m | 0.084 | 0.104 | | pH, SU | 7.49 | 7.64 | I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. Print Name and Title of Responsible Official or Authorized Agent: Tim Miranda, Member Signature: John Mulhi from Date: 2/4/25 Telephone Number: 254/445-0404 ### D. How to Submit The soil monitoring report with attached soil analyses should be included in the Annual Report that is required to be submitted by March 31 of each year. For State Only CAFOs, submit this soil monitoring report form to the TCEQ, Enforcement Division (MC-224), P.O. Box 13087, Austin, Texas 78711-3087 and provide a copy to the TCEQ Regional Office. If you have any additional questions about this form or soil sample collection and soil analyses requirements, contact; ### A. Sample collection - 1) Samples were collected for the land management unit (LMU) identified below. Ves. complete this form and Tables 1 and 2 below. Attach a copy of the laboratory analyses - Yes, complete this form and Tables 1 and 2 below. Attach a copy of the laboratory analyses to this soil monitoring report form. - No, provide the facility information for the LMU below with the exception of the tables. - 2) Reporting Year: 2024 Sample Collection Date: 10/24/2024 ### **B.** Facility Information - 1) Permit Number: WQ0002950000 - 2) Site Name: Grand Canyon Dairy - 3) Name of LMU (LMU Name should correspond to field designation located on the Map included in the PPP): 8 - 4) Name of Owner/Operator: Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC - 5) Mailing Address for Owner/Operator: 2179 County Road 308, Dublin, TX 76446 Table 1. Soil Analysis Report Where Manure, Sludge and Wastewater are not Incorporated | Soil Sample Parameter | 0-2 inches soil depth | 2-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | | • | | | Phosphorus (extractable), ppm | | | | | Potassium (extractable), ppm | | | | | Sodium (extractable), ppm | | | | | Magnesium (extractable), ppm | | | | | Calcium (extractable), ppm | | | | | Electrical Conductivity/Soluble
Salts, dS/m | | | | | pH, SU | | | | Table 2. Soil Analysis Report Where Manure, Sludge and Wastewater are Incorporated | Soil Sample Parameter | o-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | 10.588 | 10.636 | | Phosphorus (extractable), ppm | 93.2 | 95.5 | | Potassium (extractable), ppm | 404 | 425 | | Sodium (extractable), ppm | 13.2 | 12.2 | | Magnesium (extractable), ppm | 239 | 224 | | Calcium (extractable), ppm | 14697 | 11357 | | Electrical Conductivity/Soluble
Salts, dS/m | 0.122 | 0.09 | | pH, SU | 7.53 | 7.54 | I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. Print Name and Title of Responsible Official or Authorized Agent: Tim Miranda, Member Signature: John Mulh for Date: 2/4/25 Telephone Number: 254/445-0404 ### D. How to Submit The soil monitoring report with attached soil analyses should be included in the Annual Report that is required to be submitted by March 31 of each year. For State Only CAFOs, submit this soil monitoring report form to the TCEQ, Enforcement Division (MC-224), P.O. Box 13087, Austin, Texas 78711-3087 and provide a copy to the TCEQ Regional Office. If you have any additional questions about this form or soil sample collection and soil analyses requirements, contact: ### A. Sample collection | 1) | Samples were collected for the land managem | ent unit (LMU) identified below. | |----|--|---| | ✓ | Yes, complete this form and Tables 1 and 2 be to this soil monitoring report form. | low. Attach a copy of the laboratory analyses | | | No, provide the facility information for the LN | IU below with the exception of the tables. | | 2) | Reporting Year: 2024 | Sample Collection Date: 10/24/2024 | ### **B.** Facility Information Permit Number: WQ0002950000 Site Name: Grand Canyon Dairy 3) Name of LMU (LMU Name should correspond to field designation located on the Map included in the PPP): 9 4) Name of Owner/Operator: Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC 5) Mailing Address for Owner/Operator: 2179 County Road 308, Dublin, TX 76446 Table 1. Soil Analysis Report Where Manure, Sludge and Wastewater are not Incorporated | Soil Sample Parameter | o-2 inches soil depth | 2-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | | | | | Phosphorus (extractable), ppm | | | | | Potassium (extractable), ppm | | | | | Sodium (extractable), ppm | | | | | Magnesium (extractable), ppm | | | | | Calcium (extractable), ppm | | | | | Electrical Conductivity/Soluble
Salts, dS/m | | | | | pH, SU | | | | Table 2. Soil Analysis Report Where Manure, Sludge and Wastewater are Incorporated | Soil Sample Parameter | o-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | 20.101 | 13,247 | | Phosphorus (extractable), ppm | 94.5 | 5.69 | | Potassium (extractable), ppm | 369 | 135 | | Sodium (extractable), ppm | 14.4 | 20,2 | | Magnesium (extractable), ppm | 254 | 171 | | Calcium (extractable), ppm | 11662 | 22301 | | Electrical Conductivity/Soluble
Salts, dS/m | 0.137 | 0.277 | | pH, SU | 7.44 | 7.75 | I certify
under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penaltics for submitting false information, including the possibility of fine and imprisonment for knowing violations. Print Name and Title of Responsible Official or Authorized Agent: Tim Miranda, Member Signature: John Mulli fr Date: 2/4/25 Telephone Number: 254/445-0404 ### D. How to Submit The soil monitoring report with attached soil analyses should be included in the Annual Report that is required to be submitted by March 31 of each year. For State Only CAFOs, submit this soil monitoring report form to the TCEQ, Enforcement Division (MC-224), P.O. Box 13087, Austin, Texas 78711-3087 and provide a copy to the TCEQ Regional Office. If you have any additional questions about this form or soil sample collection and soil analyses requirements, contact: ### A. Sample collection | 1) | Samples were collected for the land managem | ent unit (LMU) identified below. | |----|---|--| | ✓ | Yes, complete this form and Tables 1 and 2 be
to this soil monitoring report form. | ow. Attach a copy of the laboratory analyses | | | No, provide the facility information for the LM | IU below with the exception of the tables. | | 2) | Reporting Year: 2024 | Sample Collection Date: 10/24/2024 | ### **B.** Facility Information - 1) Permit Number: WQ0002950000 - 2) Site Name: Grand Canyon Dairy - 3) Name of LMU (LMU Name should correspond to field designation located on the Map included in the PPP): 10 - 4) Name of Owner/Operator: Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC - 5) Mailing Address for Owner/Operator: 2179 County Road 308, Dublin, TX 76446 Table 1. Soil Analysis Report Where Manure, Sludge and Wastewater are not Incorporated | Soil Sample Parameter | 0-2 inches soil depth | 2-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | | | | | Phosphorus (extractable), ppm | | | | | Potassium (extractable), ppm | | | | | Sodium (extractable), ppm | | | | | Magnesium (extractable), ppm | | | | | Calcium (extractable), ppm | | | | | Electrical Conductivity/Soluble
Salts, dS/m | | | | | pH, SU | | | | Table 2. Soil Analysis Report Where Manure, Sludge and Wastewater are Incorporated | Soil Sample Parameter | o-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | 8,556 | 2.45 | | Phosphorus (extractable), ppm | 121 | 12.2 | | Potassium (extractable), ppm | 309 | 166 | | Sodium (extractable), ppm | 18.4 | 40.6 | | Magnesium (extractable), ppm | 369 | 266 | | Calcium (extractable), ppm | 11767 | 14769 | | Electrical Conductivity/Soluble
Salts, dS/m | 0.296 | 0.328 | | pH, SU | 7.56 | 7.66 | I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penaltics for submitting false information, including the possibility of fine and imprisonment for knowing violations. Print Name and Title of Responsible Official or Authorized Agent: Tim Miranda, Member Telephone Number: 254/445-0404 #### D. How to Submit The soil monitoring report with attached soil analyses should be included in the Annual Report that is required to be submitted by March 31 of each year. For State Only CAFOs, submit this soil monitoring report form to the TCEQ, Enforcement Division (MC-224), P.O. Box 13087, Austin, Texas 78711-3087 and provide a copy to the TCEQ Regional Office. If you have any additional questions about this form or soil sample collection and soil analyses requirements, contact: ### A. Sample collection | 1) | Samples were collected for the land manage | ment unit (LMU) identified below. | |----------|---|--| | √ | Yes, complete this form and Tables 1 and 2 b
to this soil monitoring report form | elow. Attach a copy of the laboratory analyses | | | No, provide the facility information for the I | MU below with the exception of the tables. | | 2) | Reporting Year: 2024 | Sample Collection Date: 10/28/2024 | ### B. Facility Information - 1) Permit Number: WQ0002950000 - 2) Site Name: Grand Canyon Dairy - 3) Name of LMU (LMU Name should correspond to field designation located on the Map included in the PPP): 11 - 4) Name of Owner/Operator: Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC - 5) Mailing Address for Owner/Operator: 2179 County Road 308, Dublin, TX 76446 Table 1. Soil Analysis Report Where Manure, Sludge and Wastewater are not Incorporated | Soil Sample Parameter | 0-2 inches soil depth | 2-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | | | | | Phosphorus (extractable), ppm | | | | | Potassium (extractable), ppm | | | | | Sodium (extractable), ppm | | | | | Magnesium (extractable), ppm | | | | | Calcium (extractable), ppm | | | | | Electrical Conductivity/Soluble
Salts, dS/m | | | | | pH, SU | | | | Table 2. Soil Analysis Report Where Manure, Sludge and Wastewater are Incorporated | Soil Sample Parameter | o-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | 14.139 | 7.847 | | Phosphorus (extractable), ppm | 27.1 | 5.40 | | Potassium (extractable), ppm | 189 | 183 | | Sodium (extractable), ppm | 14.8 | 24.5 | | Magnesium (extractable), ppm | 224 | 164 | | Calcium (extractable), ppm | 12042 | 19363 | | Electrical Conductivity/Soluble
Salts, dS/m | 0.314 | 0.287 | | pH, SU | 7.58 | 7.68 | I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penaltics for submitting false information, including the possibility of fine and imprisonment for knowing violations. Print Name and Title of Responsible Official or Authorized Agent: Tim Miranda, Member Signature: John Mulli from Date: 2/4/25 Telephone Number: 254/445-0404 ### D. How to Submit The soil monitoring report with attached soil analyses should be included in the Annual Report that is required to be submitted by March 31 of each year. For State Only CAFOs, submit this soil monitoring report form to the TCEQ, Enforcement Division (MC-224), P.O. Box 13087, Austin, Texas 78711-3087 and provide a copy to the TCEQ Regional Office. If you have any additional questions about this form or soil sample collection and soil analyses requirements, contact: ### A. Sample collection | 1) | Samples were collected for the land | management unit (LMU) identified below. | |----------|--------------------------------------|---| | √ | Yes, complete this form and Tables | 1 and 2 below. Attach a copy of the laboratory analyses | | | to this soil monitoring repo | ort form. | | | No, provide the facility information | for the LMU below with the exception of the tables. | | | Reporting Year: 2024 | Sample Collection Date: 10/28/2024 | ### **B.** Facility Information Permit Number: WQ0002950000 Site Name: Grand Canyon Dairy 3) Name of LMU (LMU Name should correspond to field designation located on the Map included in the PPP): 12 4) Name of Owner/Operator: Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC 5) Mailing Address for Owner/Operator: 2179 County Road 308, Dublin, TX 76446 Table 1. Soil Analysis Report Where Manure, Sludge and Wastewater are not Incorporated | Soil Sample Parameter | 0-2 inches soil depth | 2-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | | | | | Phosphorus (extractable), ppm | | | | | Potassium (extractable), ppm | | | | | Sodium (extractable), ppm | | | | | Magnesium (extractable), ppm | | | | | Calcium (extractable), ppm | | | | | Electrical Conductivity/Soluble
Salts, dS/m | | | | | pH, SU | | | | Table 2. Soil Analysis Report Where Manure, Sludge and Wastewater are Incorporated | Soil Sample Parameter | o-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | 24.344 | 14.792 | | Phosphorus (extractable),
ppm | 207 | 2.4 | | Potassium (extractable), ppm | 432 | 365 | | Sodium (extractable), ppm | 16.5 | 104 | | Magnesium (extractable), ppm | 362 | 411 | | Calcium (extractable), ppm | 4950 | 7102 | | Electrical Conductivity/Soluble
Salts, dS/m | 0.227 | 0.304 | | pH, SU | 7.39 | 7.6 | I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. Print Name and Title of Responsible Official or Authorized Agent: Tim Miranda, Member Signature: Jah Malli fr-3 Date. 2/9/2 Telephone Number: 254/445-0404 #### D. How to Submit The soil monitoring report with attached soil analyses should be included in the Annual Report that is required to be submitted by March 31 of each year. For State Only CAFOs, submit this soil monitoring report form to the TCEQ, Enforcement Division (MC-224), P.O. Box 13087, Austin, Texas 78711-3087 and provide a copy to the TCEQ Regional Office. If you have any additional questions about this form or soil sample collection and soil analyses requirements, contact: # SOIL MONITORING REPORT FOR CAFO INDIVIDUAL PERMITS IN THE SOLE SOURCE IMPAIRMENT ZONES ## A. Sample collection Samples were collected for the land management unit (LMU) identified below. Yes, complete this form and Tables 1 and 2 below. Attach a copy of the laboratory analyses to this soil monitoring report form. No, provide the facility information for the LMU below with the exception of the tables. Reporting Year: 2024 Sample Collection Date: 10/28/2024 ## **B.** Facility Information - 1) Permit Number: WQ0002950000 - 2) Site Name: Grand Canyon Dairy - 3) Name of LMU (LMU Name should correspond to field designation located on the Map included in the PPP): 13 - 4) Name of Owner/Operator: Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC - 5) Mailing Address for Owner/Operator: 2179 County Road 308, Dublin, TX 76446 Table 1. Soil Analysis Report Where Manure, Sludge and Wastewater are not Incorporated | Soil Sample Parameter | 0-2 inches soil depth | 2-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | | • | | | Phosphorus (extractable), ppm | | | | | Potassium (extractable), ppm | | | | | Sodium (extractable), ppm | | | | | Magnesium (extractable), ppm | | | | | Calcium (extractable), ppm | | | | | Electrical Conductivity/Soluble
Salts, dS/m | | | | | pH, SU | | - | | | | | | | Table 2. Soil Analysis Report Where Manure, Sludge and Wastewater are Incorporated | Soil Sample Parameter | 0-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | 5.278 | 4.692 | | Phosphorus (extractable), ppm | 78,5 | 10.7 | | Potassium (extractable), ppm | 242 | 172 | | Sodium (extractable), ppm | 12.6 | 141 | | Magnesium (extractable), ppm | 204 | 411 | | Calcium (extractable), ppm | 3127 | 7137 | | Electrical Conductivity/Soluble
Salts, dS/m | 0.086 | 0.229 | | pH, SU | 7.35 | 7.48 | Note: ppm = parts per million, considered to be equivalent to milligrams per liter (mg/l); dS/m = decisiemins per meter, equivalent to millimhols per centimeter (mmhols/cm); SU = standard units. #### C. Certification I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. Print Name and Title of Responsible Official or Authorized Agent: Tim Miranda, Member Telephone Number: 254/445-0404 ### D. How to Submit The soil monitoring report with attached soil analyses should be included in the Annual Report that is required to be submitted by March 31 of each year. For State Only CAFOs, submit this soil monitoring report form to the TCEQ, Enforcement Division (MC-224), P.O. Box 13087, Austin, Texas 78711-3087 and provide a copy to the TCEQ Regional Office. If you have any additional questions about this form or soil sample collection and soil analyses requirements, contact: By e-mail: CAFO@tceq.texas.gov or call (512) -239-4671 # SOIL MONITORING REPORT FOR CAFO INDIVIDUAL PERMITS IN THE SOLE SOURCE IMPAIRMENT ZONES ### A. Sample collection | 1) | Samples were collected for the land mana | egement unit (LMU) identified below. | |----|--|---| | ✓ | Yes, complete this form and Tables 1 and
to this soil monitoring report for | 2 below. Attach a copy of the laboratory analyses | | | No, provide the facility information for th | e LMU below with the exception of the tables. | | 2) | Reporting Year: 2024 | Sample Collection Date: 10/28/2024 | ### **B.** Facility Information - 1) Permit Number: WQ0002950000 - 2) Site Name: Grand Canyon Dairy - 3) Name of LMU (LMU Name should correspond to field designation located on the Map included in the PPP): 14 - 4) Name of Owner/Operator: Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC - 5) Mailing Address for Owner/Operator: 2179 County Road 308, Dublin, TX 76446 Table 1. Soil Analysis Report Where Manure, Sludge and Wastewater are not Incorporated | Soil Sample Parameter | 0-2 inches soil depth | 2-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|---------------------------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | | · · · · · · · · · · · · · · · · · · · | | | Phosphorus (extractable), ppm | | | | | Potassium (extractable), ppm | | | | | Sodium (extractable), ppm | | | | | Magnesium (extractable), ppm | | | | | Calcium (extractable), ppm | | | | | Electrical Conductivity/Soluble
Salts, dS/m | | | | | pH, SU | | | | Table 2. Soil Analysis Report Where Manure, Sludge and Wastewater are Incorporated | Soil Sample Parameter | o-6 inches soil depth | 6-24 inches soil depth | |--|-----------------------|------------------------| | Nitrate-Nitrogen (NO ₃ -N), ppm | 4,676 | 3.463 | | Phosphorus (extractable), ppm | 25.9 | 3.10 | | Potassium (extractable), ppm | 251 | 218 | | Sodium (extractable), ppm | 21,2 | 177 | | Magnesium (extractable), ppm | 199 | 418 | | Calcium (extractable), ppm | 3090 | 7690 | | Electrical Conductivity/Soluble
Salts, dS/m | 0.083 | 0.266 | | pH, SU | 7.42 | 7.58 | Note: ppm = parts per million, considered to be equivalent to milligrams per liter (mg/l); dS/m = decisiemins per meter, equivalent to millimhols per centimeter (mmhols/cm); SU = standard units. #### C. Certification I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. Print Name and Title of Responsible Official or Authorized Agent: Tim Miranda, Member Signature: Joh Mulli for Date: 2/4/25 Telephone Number: 254/445-0404 #### D. How to Submit The soil monitoring report with attached soil analyses should be included in the Annual Report that is required to be submitted by March 31 of each year. For State Only CAFOs, submit this soil monitoring report form to the TCEQ, Enforcement Division (MC-224), P.O. Box 13087, Austin, Texas 78711-3087 and provide a copy to the TCEQ Regional Office. If you have any additional questions about this form or soil sample collection and soil analyses requirements, contact: By e-mail: CAFO@tceq.texas.gov or call (512) -239-4671 Brooke T. Paup, Chairwoman Bobby Janecka, Commissioner Catarina R. Gonzales, Commissioner Kelly Keel, Executive Director # TEXAS COMMISSION ON ENVIRONMENTAL QUALITY Protecting Texas by Reducing and Preventing Pollution January 23, 2025 # CERTIFIED MAIL 7022 2410 0000 5131 8251 RETURN RECEIPT REQUESTED Ms. Dorice Miranda Circle 7 Dairy, LLC and Grand Canyon Dairy, LLC Grand Canyon Dairy 2179 County Road 308 Dublin, TX 76446 Re: Annual Soil Sample Analysis Results at Grand Canyon Dairy CAFO Permit No.: WQ0002950000 Dear Ms. Miranda: Attached are the analytical results for the soil samples that were collected at your facility on October 24 and 28, 2024. A copy of the sampling map is attached. Please utilize these results to update your nutrient management plan. In addition, if any of the results are greater than 200 parts per million for phosphorus, please develop a new nutrient utilization plan (NUP) or revise your existing NUP, in accordance with your
permit. All new or revised NUPs that are required to be submitted for TCEQ review and approval shall be mailed to the following address: Water Quality Assessment Section Manager Water Quality Division, MC 150 Texas Commission on Environmental Quality P.O. Box 13087 Austin, Texas 78711-3087 If you collected a duplicate sample following RG-408 protocol during the TCEQ sampling event that indicates a significant difference in the TCEQ analysis results (greater than 20% difference), you may choose to dispute the TCEQ sample results within 20 calendar days from the date of this letter. You must provide copies of all supporting documentation, including but not limited to your sample results, chain of custody documentation and laboratory quality assurance documentation. Please submit this information in writing to the TCEQ at the following address: ATTN: Annual CAFO Soil Sample Analysis Disputes Water Section Manager Dallas/Fort Worth Regional Office Texas Commission on Environmental Quality 2309 Gravel Drive Fort Worth, TX 76118-6951 An analysis dispute received after the time allocated above will not be eligible for re-analysis. If you have any questions, please feel free to contact Mr. Michael Martin in the Stephenville Office at 254-552.1900. Sincerely, Michael Martin, Team Leader, Water Section DFW Region Office Texas Commission on Environmental Quality MM/dm **Enclosures: Laboratory Analysis Reports** | TEXAS
COMMISS
ENVIRON
QUALITY | IMENTAL | | Ch | ain | of | Cust | od | y F | Rec | ord | | 558 | 10 7 | |--|--------------|----------|-------------|-----------------|----------------|---------------------|---------|--------|----------|----------------------------|-------|--------|--------| | Location: | Frand | COLLY | QA shade | d area if | f the fac | ality inform | ation r | must b | e confid | ential) | | 2 950 | | | Region: | Organizatio | in #: | PCA Code | ¥. | 1,1193 | Program | | Q | | (a54) 552 | - 191 | | | | E-Mail ID: | | | (signature) | • | هر (| 2 | | | | Sampter: (please print cle | cran | L. | | | Lab ID
Number | Sample
ID | Date | Time | # of
Bottles | Grab/
Comp. | Matrix
L,S,M,O.T | CL2 | рН | Cond | Analyses Reques | ited | REMARI | KS
 | | 14272 | -01 | 10 24-24 | 12:00 | | | | | | | SER RFA | | LMUI | 06 | | 14273 | -02 | | 12:00 | | | | | | | | | LMU 1 | 6-2 | | 14274 | -03 | | 12:35 | | | | | | | | | Lmu 2 | 0-6 | | 14275 | | | 12.35 | | | | | | | | | LMUZ | 6-2 | | 14276 | -05 | | 13:15 | | | | | | | | | Lm43 | 0-6 | | 14277 | | | 13:15 | | | | | | | | | Lmu3 | 6-2 | | 14278 | -07 | | 10:40 | | | | | | | | | LM44 | 0-6 | | 14281 | -08 | | 10.40 | | | | | | | | | LMUY | 6-2 | | 14282 | -09 | | 11:00 | | | | | | | | | Lmus | 0-6 | | 14283 | | | 11:00 | | | 1 | | | | | | Lmus | 6-20 | 14283 -10 6-24 Received by Date Time Relinquished by: 11-19.24 For Laboratory Use: Relinquished by: Received by Date Time N deg. C Received on ice: Υ Received by: Relinquished by: Date Time Υ Preservatives: Ν Received by: Relinquished by: Time Oate COC Seal: Υ N Shipper Number: 79 16 4468 1375 Υ Seals Intact: Goldenrod-Collector Copy Pink-Contract Lab Manager Yellow-Lab Report for Samples analyzed Under Contract Number: 582-10-99518 Report ID: 055810a-45667 Print Date: 10-Jan-25 Texas A&M AgriLife Extension Service Soil, Water and Forage Testing Laboratory 108 Soil Testing Laboratory, 2478 TAMU College Station, TX 77843-2478 979-862-4955 Client Name: Grand Canyon Client address: not provided Standard Sample Report TCEQ COC# 055810 | Laboratory ID: | TCEQ/client
Sample ID: | Sample
Depth (inches) | Sample Coll.
Date: | Collector
Name: | TCEQ
Region # | Date
Received | Sample
Type: | Sample opened
Date | Sample Ground
Date | Process
Tech. | |----------------|---------------------------|--------------------------|-----------------------|--------------------|------------------|------------------|-----------------|-----------------------|-----------------------|------------------| | 14272 | 55810-01 | 0-6 | 10/24/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TLP | | 14273 | 55810-02 | 6-24 | 10/24/2024 | Vanesşa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TLP | | 14274 | 55810-03 | 0-6 | 10/24/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TLP | | 14275 | 55810-04 | 6-24 | 10/24/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TLP | | 14276 | 55810-05 | 0-6 | 10/24/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TLP | | 14277 | 55810-06 | 5-24 | 10/24/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TLP | | 14278 | 55810-07 | 0-6 | 10/24/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TLP | #### Methods and Sample Preparation: Receiving of samples Processing - SWFTL0097R0.SOP Upon opening of sample chests, all samples are identified and organized as listed on COC to insure completeness and condition of shipment. Individually each sample is spread across a non-reactive tray where foreign materials is physically removed and discarded. The sample(s) are then placed inside a 65C drying oven and allow to remain until dry. Individual samples were then removed from drying oven and pulverized with an Agvise soil pulzerized fitted with a shaking 2mm screen. Every attempt was again made to remove any remaining plant tissue in the pulverized sample(s). Soil was then transferred to the laboratory sample cups and while additional sample was stored. #### Analytical Methods: Soil pH 2:1 DI water:soil SOIL pH AND CONDUCTIVITY - SWFTL0015R1.SOP Schofield, R.K. and A.W. Taylor. 1955. The measurement of soil pH. Soil Sci. Soc. Am. Proc. 19:164-167. Soil Conductivity 2:1 DI Water:Soil SOIL pH AND CONDUCTIVITY - SWFTL0015R1.SOP Rhoades, J.D. 1982. Soluble salts. p. 167-178. In: A.L. Page, et al. (ed.). Methods of Soil Analysis: Part 2. Agronomy Monogr. 9. 2nd ed. ASA and SSSA, Madison, Wl. Soil Nitrate-N KCl Extractable with Cd-Reduction Analyses NO3-N EXTRACTION - SWFTL0014R5-SOP/NO3-N ANALYSIS - SWFTL0089R1.SOP Keeney, D.R. and D.W. Nelson. 1982. Nitrogen - inorganic forms. p. 643-687. in: A.L. Page, et al. (ed.). Methods of Soil Analysis: Part 2. Agronomy Monogr. 9. 2nd ed. ASA and SSSA, Madison, WI. Soil P. K. Ca. Mg. S and Na -- Mehlich III by ICP M3 EXTRACTION - SWFTL0079R1.SOP/M3 ANALYSIS - SWFTL0081R2.SOP Mehlich-3 soil test extractant: a modification of Mehlich-2 extractant. Commun. Soil Sci. Plant Anal. 15(12):1409-1416 Print Date: 10-Jan-25 Standard Sample Report | Jestidoro Corri | pic i toport | | OE & OOO! | 0000.0 | | | | | | | | | | |-----------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | Laboratory (D: | TCEQ/client | Mehlich III | Mehtich III | Mehlich | | Sample ID: | Picone, | P units | К солс. | K units | Ca conc. | Ca units | Mg conc. | Mg units | S conc. | S units | Na conc. | Na units | | 14272 | 55810-01 | 194 | ppm | 568 | ppm | 5318 | ppm | 363 | ppm | 56.7 | ppm | 31.8 | ppm | | 14273 | 55810-02 | 30.0 | ррт | 373 | ppm | 6240 | ppm | 412 | ppm | 8.86 | рртп | 116 | ppm | | 14274 | 55810-03 | 140 | ppm | 523 | ppm | 6775 | ppm | 404 | ppm | 65.8 | ppm | 31.4 | ppm | | 14275 | 55810-04 | 7.94 | ppm | 310 | ppm | 11729 | ppm | 545 | ppm | 115 | ppm | 228 | ppm | | 14276 | 55810-05 | 224 | ppm | 458 | ppm | 10104 | ppm | 417 | ppm | 94.0 | ppm | 24.5 | ppm | | 14277 | 55810-06 | 17.5 | ppm | 158 | ррт | 11573 | ppm | 294 | ppm | 97.7 | ppm | 83.2 | ppm | | 14278 | 55810-07 | 57.2 | ppm | 607 | ppm | 11037 | ррт | 462 | ppm | 96.5 | ppm | 31.9 | ррт | | Laboratory ID: | Mehlich III | Mehfich III | Mehlich III | |-----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | | P conc. | P units | K conc. | Klunits | Са сопс. | Ca units | Mg conc. | Mg conc. | S conc. | S units | Na conc. | Na units | | Detection Limit | 0.2367 | ррт | 0.1308 | ррт | 0.0436 | ppm | 0.0250 | ppm | 0.0010 | ppm | 0.0269 | ppm | | Reporting Limit | 1 | ppm | | Laboratory ID: | TCEQ/client | Mehlich III | Mehlich (II) | Mehlich III | Mehlich Itl | |----------------|-------------|--------------|--------------|-------------|-------------| | | Sample ID: | Extract Date | Extract Tech | Anal_Date | Anal. Tech | | 14272 | 55810-01 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14273 | 55810-02 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14274 | 55810-03 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14275 | 55810-04 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14276 | 55810-05 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14277 | 55810-06 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14278 | 55810-07 | 1/8/2025 | FMR | 1/9/2025 | JLP | Print Date: 10-Jan-25 Standard Sample Report | Laboratory ID: | TCEQ/client | pН | pН | Conductivity | Conductivity | Nitrate-N | Nitrate-N | |----------------|----------------------|------|-------|--------------|--------------|-----------|-----------| | | Sample ID: | | units | | units | | units | | 14272 | 55810-01 | 7,61 | NA | 0.239 | dS/M | 12.765 | ppm | | 14273 | 55810-02 | 7.83 | NA | 0.294 | dS/M | 3.188 | ppm | | 14274 | 55810-03 | 7.76 | NA | 0.147 | d\$/M | 14.084 | ppm | | 14275 | 5 5810-04 | 7.84 | NA | 0.125 | dS/M | 3.026 | ppm | | 14276 | 55810-05 | 7.56 | NA. | 0.174 | dS/M | 16.962 | ppm | | 14277 | 55810-06 | 7.71 | NA. | 0.183 | dS/M | 4.039 | ppm | | 14278 | 55810-07 | 7.78 | NA | 0,138 | dS/M | 14.191 | ppm | | | | | | | | | | | Laboratory ID: | ρΗ | pH
units | Conductivity | Conductivity units | Nitrate-N | Nitrate-N
units | |-----------------|------|-------------|--------------|--------------------|-----------|--------------------| | Detection Limit | 0.01 | us | 0.001 | dS/M |
0.01 | ppm | | Reporting Limit | 0.1 | па | 0.001 | dS/M | 1 | ppm | | Laboratory ID: | TCEQ/client | pH/Conduct | vity prep | pH Ana | pH Analysis | | tivity | Nitate-N Extract | | Nitrate-N Analysis | | |----------------|-------------|------------|-----------|------------|-------------|------------|--------|------------------|------|--------------------|------| | | Sample ID: | Date | Tech | | 14272 | 55810-01 | 12/18/2024 | DEC | 12/18/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | 14273 | 55810-02 | 12/18/2024 | DEC | 12/18/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | 14274 | 55810-03 | 12/18/2024 | DEC | 12/18/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | 14275 | 55810-04 | 12/18/2024 | DEC | 12/18/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | w | | 14276 | 55810-05 | 12/18/2024 | DEC | 12/18/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | 14277 | 55810-06 | 12/18/2024 | DEC | 12/18/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | 14278 | 55810-07 | 12/18/2024 | DEC | 12/18/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | Print Date: 10-Jan-25 Quality Control Report | Laboratory ID: | | Mehlich III |----------------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | | | P conc. | P units | К сопс. | K onits | Ca conc. | Ca units | Mg conc. | Mg conc. | S conc. | S units | Na conc. | Na units | | 14279 | lC1025 | 48.2 | ppm | 323 | ppm | 2503 | ppm | 360 | ppm | 40.8 | ppm | 48.7 | ppm | | 14280 | (C1026 | 46.5 | ppm | 309 | ppm | 2328 | ppm | 345 | ppm | 39.1 | ppm | 47.9 | ppm | | | Mean IC | 0 | ppm | 0 | ppm | 0 | ppm | 0 | ppm | ם | ppm | 0 | ppm | | | IC Lower | 45.9 | ppm | 305.0 | ppm | 2320.0 | ppm | 335.0 | ppm | 27.0 | ppm | 30.0 | ppm | | | IC Upper | 53.4 | ppm | 365.0 | ppm | 2645.0 | ppm | 409.0 | ppm | 49.0 | ppm | 55.0 | ppm | | | blk221 | < 0.237 | ppm | < 0.131 | ppm | < 0.0436 | ppm | < 0.0250 | ppm | <0.0100 | ppm | < 0.513 | ppm | | Laboratory ID: | Mehlich III |-----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | | Picone. | P units | К солс. | K units | Са сопс. | Ca units | Mg conc. | Mg conc. | S conc. | S units | Na сопс. | Na units | | Detection Limit | 0.2367 | ppm | 0.1308 | ppm | 0.0436 | ppm | 0.0250 | ppm | 0.0010 | ppm | 0.0269 | ppm | | Reporting Limit | _1 | ppm | 1 | ppm | | Laboratory ID: | Mehlich III | Mehlich III | Mehlich III | Mehlich III | |----------------|--------------|--------------|-------------|-------------| | | Extract Date | Extract Tech | Anal.Date | Anal. Tech | | IC1025 | 1/8/2025 | FMR | 1/9/2025 | JLP | | IC1026 | 1/8/2025 | FMR | 1/9/2025 | JLP | | blk221 | 1/8/2025 | FMR | 1/9/2025 | JLP | Print Date: 10-Jan-25 Quality Control Report | Laboratory ID: | | ρH | ρH | Conductitity | Conducitity | Nitrate-N | Nitrate-N | Nitrate-N | |----------------|---------------|-------|-------|--------------|-------------|-----------|-------------|------------| | | | | units | conc. | units | сопс. | units | % recovery | | 14279 | IÇ1025 | 5.9 | na | 0.254 | dS/M | 4.34 | ppm | | | 14280 | IC1026 | 5.9 | na | 0.255 | dS/M | 4.446 | ppm | | | | Mean IC | 5,855 | па | 0.2545 | dS/M | 4.393 | ppm | | | 14280spike | Spiked sample | ÷ | - | - | | 3.9 | ppm | 88.1 | | | IC lower | 5.760 | na | 0.241 | dS/M | 3.5 | p pm | | | | IC Upper | 5.990 | па | 0.299 | dS/M | 5.5 | ppm | | | | blk221 | 2 | na | 0 | dS/M | 0.614 | ppm | | | Laboratory ID: | pН | ρH | Conducitity | Conducitity | Nitrate-N | Nitrate-N | |-----------------|------|-------|-------------|-------------|-----------|-----------| | | | units | conc. | units | conc. | units | | Detection Limit | 0.01 | па | 0.001 | dS/M | 0.01 | ppm | | Reporting Limit | 0.1 | na | 0.001 | dS/M | 1 | ppm | | Laboratory ID: | aboratory ID: pH/Conductivity prep | | pH Analysis | | Conductivity | | Nitate-N | Extract | Nitrate-N Analysis | | |----------------|------------------------------------|------|-------------|------|--------------|------|------------|---------|--------------------|------| | | Date | Tech | | IC1025 | 12/18/2024 | DEC | 12/18/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | WL | | IC1026 | 12/18/2024 | DEC | 12/18/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | blk221 | 12/18/2024 | DE¢ | 12/18/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | WL | Report for Samples analyzed Under Contract Number. 582-10-99518 Report ID: 055810b-45667 Print Date: 10-Jan-25 Texas A&M AgriLife Extension Service Soil, Water and Forage Testing Laboratory 108 Soil Testing Laboratory, 2478 TAMU College Station, TX 77843-2478 979-862-4955 Client Name: Client address: Grand Canyon not provided Standard Sample Report TCEQ COC# 055810 | Laboratory ID; | TCEQ/client
Sample ID: | Sample
Depth (inches) | Sample Coll.
Date: | Collector
Name: | TCEQ
Region # | Date
Received | Sample
Type: | Sample opened
Date | Sample Ground
Date | Process
Tech. | |----------------|---------------------------|--------------------------|-----------------------|--------------------|------------------|------------------|-----------------|-----------------------|-----------------------|------------------| | 14281 | 55810-08 | 6-24 | 10/24/2024 | Vanessa Gardner | 4 | 11/19/2024 | sail | 11/25/2024 | 12/4/2024 | TLP | | 14282 | 55810-09 | 0-6 | 10/24/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TLP | | 14283 | 55810-10 | 6-24 | 10/24/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TLP | #### Methods and Sample Preparation: Receiving of samples Processing - SWFTL0097R0_SOP Upon opening of sample chests, all samples are identified and organized as listed on COC to insure completeness and condition of shipment. Individually each sample is spread across a non-reactive tray where foreign materials is physically removed and discarded. The sample(s) are then placed inside a 65C drying oven and allow to remain until dry. Individual samples were then removed from drying oven and pulverized with an Agvise soil pulzerized fitted with a shaking 2mm screen. Every attempt was again made to remove any remaining plant tissue in the pulverized sample(s). Soil was then transferred to the laboratory sample cups and while additional sample was stored. #### Analytical Methods: Soil pH 2:1 Dl water:soil SOIL PH AND CONDUCTIVITY - SWFTL0015R1.SOP Schofield, R.K. and A.W. Taylor. 1955. The measurement of soil p.H. Soil Sci. Soc. Am. Proc. 19:164–167. Soil Conductivity 2:1 DI Water:Soil SOIL DH AND CONDUCTIVITY - SWFTL0015R1.SOP Rhoades, J.D. 1982. Soluble salts. p. 167-178. In: A.L. Page, et al. (ed.). Methods of Soil Analysis: Part 2. Agronomy Monogr. 9. 2nd ed. ASA and SSSA, Madison, Wl. Soil Nitrate-N KCl Extractable with Cd-Reduction Analyses NO3-N EXTRACTION - SWFTL0014R5.SOP/NO3-N ANALYSIS - SWFTL0089R1.SOP Keeney, D.R. and D.W. Nelson. 1982. Nitrogen - inorganic forms, p. 643-687. [n: A.L. Page, et al. (ed.). Methods of Soil Analysis: Part 2. Agronomy Monogr. 9. 2nd ed. ASA and SSSA, Madison, WI. Soil P. K. Ca. Mg. S and Na -- Mehlich III by ICP M3 EXTRACTION - SWFTL0079R1.SOP/M3 ANALYSIS - SWFTL0081R2.SOP Mehlich-3 soil test extractant: a modification of Mehlich-2 extractant. Commun. Soil Sci. Plant Anal. 15(12):1409-1416 Print Date: 10-Jan-25 Standard Sample Report | Laboratory ID: | TCEQ/client | Mehlich III |----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | | Sample ID: | P conc. | P units | K conc. | K units | Ca conc. | Ca units | Мд сопс. | Mg units | S conc. | S units | Na conc. | Na units | | 14281 | 55810-08 | 12.0 | ppm | 266 | ppm | 14070 | ppm | 337 | ppm | 120 | ppm | 132 | ppm | | 14282 | 55810-09 | 141 | ppm | 808 | ppm | 12799 | ppm | 543 | ppm | 115 | ppm | 24.1 | ppm | | 14283 | 55810-10 | 16.0 | ppm | 334 | ppm | 12949 | ppm | 380 | ppm | 111 | ppm | 107 | ppm | | Laboratory ID: | Mehlich III
Piconci | Mehlich III
P units | Mehlich III
K cong, | Mehlich III
K units | Mehlich III
Ca conc. | Mehlich III
Ca units | Mehlich III
Mg conc. | Mehlich III | Mehlich III
S conc. | Mehlich III
S units | Mehlich III
Na conc. | Mehiich III
Na units | |-----------------|------------------------|------------------------|------------------------|------------------------|-------------------------|-------------------------|-------------------------|-------------|------------------------|------------------------|-------------------------|-------------------------| | Detection Limit | 0.2367 | ppm | 0.1308 | ppm | 0.0436 | ppm | 0.0250 | ppm | 0.0010 | ppm | 0.0269 | ppm | | Reporting Limit | 1 | ррт | 1 | ppm | 1 | ррт | 1 | ppm | 1 | ppm | 1 | ppm | | Laboratory ID: | TCEQ/client | Mehlich Ift | Mehlich III | Mehlich III | Mehlich III | |----------------|-------------|--------------|--------------|-------------|-------------| | | Sample ID: | Extract Date | Extract Tech | Anal.Date | Anal. Tech | | 14281 | 55810-08 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14282 | 55810-09 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14283 | 55810-10 | 1/8/2025 | FMR | 1/9/2025 | JLP | Print Date: 10-Jan-25 Standard Sample Report | | Titpic . topore | | 102400 | 000010 | | | | |----------------|-----------------|------|--------|--------------|--------------|-----------|-----------| | Laboratory (D: | TCEQ/client | рН | ρH | Conductivity | Conductivity | Nitrate-N | Nitrate-N | | | Sample ID: | | units | | units | | units | | 14281 | 55810-08 | 7.85 | NA | 0.46
| dS/M | 6.869 | ppm | | 14282 | 55810-09 | 7.78 | NA | 0.23 | dS/M | 14.244 | ppm | | 14283 | 55810-10 | 7.89 | NA | 0.158 | dS/M | 6.215 | ppm | | Laboratory ID: | pН | рH | Conductivity | Conductivity | Nitrate-N | Nitrate-N | |-----------------|------|-------|--------------|--------------|-----------|-----------| | | | units | | units | | units | | Detection Limit | 0.01 | па | 0.001 | dS/M | 0.01 | ppm | | Reporting Limit | 0.1 | na | 0.001 | dS/M | 1 | ppm | | Laboratory ID: | TCEQ/client | pH/Conducti | vity prep | pH Ana | lysis | Conduc | tivity | Nitate-N i | Extract | Nitrate-N Analysis | | |----------------|-------------|-------------|-----------|------------|-------|------------|--------|------------|---------|--------------------|------| | | Sample ID: | Date | Tech | | 14281 | 55810-08 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | WL | | 14282 | 55810-09 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | 14283 | 55810-10 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | Report ID: 055810b-45667 Quality Control Report Print Date: 10-Jan-25 | Laboratory ID: | | Mehlich III I/I | Mehlich III | |----------------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | | | P conc. | P units_ | K conc. | K units | Ca conc. | Ca units | Mg conc | Mg conc. | S conc. | S units | Na conc. | Na units | | 14299 | IC1027 | 47.5 | ppm | 328 | ppm | 2459 | ppm | 360 | ppm | 40.5 | ppm | 107 | ρpm | | 14300 | IC1028 | 46.5 | ppm | 318 | ppm | 2386 | ppm | 348 | ppm | 40.0 | ppm | 105 | ppm | | | Меал (С | 0 | ppm | 0 | ppm | Ð | ppm | 0 | ppm | 0 | ppm | 0 | ppm | | | IC Lower | 45.9 | ₽pm | 305.0 | ppm | 2320.0 | ppm | 335.0 | ppm | 27.0 | ppm | 30.0 | ppm | | | IC Upper | 53.4 | ppm | 365.0 | ppm | 2645.0 | ppm | 409.0 | ppm | 49.0 | рpm | 55.0 | ppm | | | blk221 | <0.237 | ppm | < 0.131 | ppm | < 0.0436 | ppm | < 0.0250 | ppm | <0.0100 | ppm | < 0.513 | ppm | | Laboratory ID: | Mehlich III |-----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | | P conc. | P units | K conc. | K units | Ca conc. | Ca units | Mg conc. | Mg conc. | S conc. | S units | Na conc. | Na units | | Detection Limit | 0.2367 | ppm | 0.1308 | ppm | 0.0436 | ppm | 0.0250 | ppm | 0.0010 | ppm | 0.0269 | ppm | | Reporting Limit | 1 | ppm | 11 | ppm | 1 | ppm | 1 | ppm | 1 | ppm | 1 | ppm | | Laboratory ID: | Mehlich III | Mehlich III | Mehlich III | Mehlich III | |----------------|--------------|--------------|-------------|-------------| | | Extract Date | Extract Tech | Anal.Date | Anal, Tech | | IC1027 | 1/8/2025 | FMR | 1/9/2025 | JLP | | IC1028 | 1/8/2025 | FMR | 1/9/2025 | JLP | | blk221 | 1/8/2025 | FMR | 1/9/2025 | JLP | Print Date: 10-Jan-25 Quality Control Report | Laboratory ID: | | pН | ρН | Conducitity | Conducitity | Nitrate-N | Nitrate-N | Nitrate-N | |----------------|---------------|-------|-------|-------------|-------------|-------------|-----------|-----------| | | | | units | солс. | units | conc. | units | % recover | | 14299 | IC1027 | 5.9 | ла | 0.257 | dS/M | 4.446 | ррm | | | 14300 | IC1028 | 5.9 | па | 0.256 | dS/M | 4.468 | ppm | | | | Mean IC | 5.87 | па | 0.2565 | dS/M | 4,457 | ppm | | | 14300spike | Spiked sample | - | • | | - | 3.9 | ppm | 88.1 | | | IC lower | 5.760 | na | 0.241 | dS/M | 3.5 | ppm | | | | IC Upper | 5.990 | na | 0.299 | dS/M | 5 .5 | ppm | | | | blk221 | - | na | 0 | dS/M | 0.614 | ppm | | | Laboratory ID: | pН | pН | Conducitity | Conducitity | Nitrate-N | Nitrate-N | |-----------------|------|-------|-------------|-------------|-----------|-----------| | | | units | сопс. | units | conc. | units | | Detection Limit | 0.01 | na | 0.001 | dS/M | 0.01 | ppm | | Reporting Limit | 0,1 | na | 0.001 | dS/M | 1 | фрm | | Laboratory ID: | pH/Conduct | ivity prep | pH Ana | llysis | Conduc | tivity | Nitate-N | Extract | Nitrate-N Analysis | | |----------------|------------|------------|------------|--------|------------|--------|------------|---------|--------------------|------| | | Date | Tech | | IC1027 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | W | | IC1028 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | W | | blk221 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | TEXAS | |---------------| | COMMISSION ON | | ENVIRONMENTAL | | QUALITY | # Chain of Custody Record 55811 ³⁷ | ENVIRO
QUALIT | NMENTAL
Y | | Ci | ıaııı | Oi | Cus | iou | уі | 160 | oru | | 1 000 |) T T | |------------------|--------------|-----------|--------------|---------|----------------|--------------------|--------|--------|-----------|---------------------|-----------------------|------------------------|-------| | Location: | frand | Cany | Shade | ed area | if the fac | cility inforn | nation | must t | oe confic | dential) | | Permit #: 2 95 | 50 | | Region: | Organizatio | on #: | PCA Code | e: | | Prograr | п. | JG | | Sampler telepho | ne number:
652- 19 | 00 | | | E-Mail ID: | | Sampler | (signature | | and | ~ | ~ | | | Sampler: (please | | ner | | | Lab ID
Number | Sample
ID | Date | Time | # of | Grab/
Comp. | Matrix
L,S,M,O, | CL2 | рН | Cond | | Requested | REMAR | :KS | | 14284 | -01 | 10 24-24 | 13:55 | | | | | | | 588 | RFA | Lmub | 0-6 | | 14285 | -02 | 10-24-24 | 13:55 | | | | | | | | | Lmub | 6-24 | | 14281 | -03 | N20/2 | । ३३० | | | | | | | | | LMU7 | 06 | | 14287 | -04 | 10/28/24 | 17 | | | | | | | | | LM47 | 6-24 | | 14288 | -05 | 10 24 2 | | | | | | | | | | LMU8 | 0-6 | | 14289 | -06 | 10/24/24 | 1990 | | | | | | | | | LM48 | 6-24 | | 14290 | -07 | 10-24-24 | 14:25 | | | | | | | | | Lm49 | 0-6 | | 14291 | -08 | 10 24-24 | 14:25 | | | | | | | | | LM49 | 6-24 | | 14292 | -09 | 10-184 | 1410 | | | | | | | | | Lmulo | 0-6 | | 14293 | -10 | 724/24 | 1410 | | | 1 | | | | _ | | LMUID | 6-24 | | Relinquished | by: | Date | Time | | reduby | the | 11-6 | 9-2 | 4 | For Laboratory | Use: | | | | Relinquished | by: | Date | Time | Receive | ed by: | | | | | Received on ice | e. Y | M | deg C | | Relinquished | by: | Date | Time | Receiv | ed by: | | | | | Preservatives: | Y | N | | | Relinquished | by: | Date | Time | Receiv | ed by: | | | | | COC Seal: | Y | N | | | Shipper name | EX_ | Shipper N | 944 | 68 | | 375 | | | | Seals Intact: | Y | | | | CEQ-10065 (11/0 | 02) | White (Or | iginal) -Láb | | 1 | Yellow-Lab | | | Pin | k-Contract Lab Mana | ger | Goldenrod-Collector Co | 3₽¥ | Report for Samples analyzed Under Contract Number. 582-10-99518 Report ID: 055811a-45667 Print Date: 10-Jan-25 Texas A&M AgriLife Extension Service Soil, Water and Forage Testing Laboratory 108 Soil Testing Laboratory, 2478 TAMU College Station, TX 77843-2478 979-862-4955 Client Name: Grand Canyon Client address: not provided Standard Sample Report TCEQ COC# 055811 | Laboratory ID: | TCEQ/client
Sample ID: | Sample
Depth (inches) | Sample Coll.
Date: | Collector
Name: | TCEQ
Region # | Date
Received | Sample
Type: | Sample opened
Date | Sample Ground
Date | Process
Tech. | |----------------|---------------------------|--------------------------|-----------------------|--------------------|------------------|------------------|-----------------|-----------------------|-----------------------|------------------| | 14284 | 55811-01 | 0-6 | 10/24/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TLP | | 14285 | 55811-02 | 6-24 | 10/24/2024 | Vanessa Gardner | 4 | 11/19/2024 | şoil | 11/25/2024 | 12/4/2024 | TLP | | 14285 | 55811-03 | 0-6 | 12/28/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TLP | | 14287 | 55811-04 | 6-24 | 10/28/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TLP | | 14288 | 55811-05 | 0-6 | 10/24/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TLP | | 14289 | 55811-06 | 6-24 | 10/24/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TLP | | 14290 | 55811-07 | 0-6 | 10/24/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TLP | | 14291 | 55811-08 | 6-24 | 10/24/2024 | Vanessa Gardner | 4 | 11/19/2024 | líos | 11/25/2024 | 12/4/2024 | TLP | | 14292 | 55811-09 | 0-6 | 10/28/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TLP | | 14293 | 55811-10 | 6-24 | 10/28/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TLP | Methods and Sample Preparation: Receiving of samples Processing - SWFTL0097R0.SOP Upon opening of sample chests, all samples are identified and organized as listed on COC to insure completeness and condition of shipment. Individually each sample is spread across a non-reactive tray where foreign materials is physically removed and discarded. The sample(s) are then placed inside a 65C drying oven and allow to remain until dry. Individual samples were then removed from drying oven and pulverized with an Agvise soil pulzerized fitted with a shaking 2mm screen. Every attempt was again made to remove any remaining plant tissue in the pulverized sample(s). Soil was then transferred to the laboratory sample cups and while additional sample was stored. #### Analytical Methods: Soil pH 2:1 DI water:soil SOIL pH AND CONDUCTIVITY - SWFTL0015R1.SOP Schofield, R.K. and A.W. Taylor. 1955. The measurement of soil p.H. Soil Sci. Soc. Am. Proc. 19:164-167. Soil Conductivity 2:1 DI Water:Soil SOIL pH AND CONDUCTIVITY - SWFTL0015R1.SOP Rhoades, J.D. 1982. Soluble salts. p. 167-178. In: A.L. Page, et al. (ed.). Methods of Soil Analysis: Part 2.
Agronomy Monogr. 9. 2nd ed. ASA and SSSA, Madison, WI. Soil Nitrate-N. KCl Extractable with Cd-Reduction Analyses NO3-N EXTRACTION - SWFTL0014R5.SOP/NO3-N ANALYSIS - SWFTL0089R1.SOP Keeney, D.R. and D.W. Nelson. 1982. Nitrogen - inorganic forms. p. 643-687. In: A.L. Page, et al. (ed.), Methods of Soil Analysis: Part 2. Agronomy Monogr. 9. 2nd ed. ASA and SSSA, Madison, WI. Soil P. K. Ca. Mg. S and Na - Mehlich III by ICP M3 EXTRACTION - SWFTL0079R1.SOP/M3 ANALYSIS - SWFTL0081R2.SOP Mehlich-3 soil test extractant; a modification of Mehlich-2 extractant. Commun. Soil Sci. Plant Anal. 15(12):1409-1416 Print Date: 10-Jan-25 Standard Sample Report TCEQ COC# 055811 | After a mout a mount | | | | | | | | | | | | | | |----------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | Laboratory ID: | TCEQ/client | Mehlich III | | Sample ID: | P conc. | P units | K conc. | K units | Ca conc. | Ca units | Mg conc. | Mg units | S conc. | S units | Na conc. | Na units | | 14284 | 55811-01 | 146 | ppm | 450 | ppm | 11873 | ppm | 432 | ppm | 116 | ppm | 31,3 | ppm | | 14285 | 55811-02 | 10.8 | ppm | 180 | ppm | 17447 | ppm | 263 | ppm | 164 | ppm | 97.1 | ppm | | 14286 | 55811-03 | 88.1 | ppm | 358 | ppm | 14241 | ppm | 288 | ppm | 122 | ppm | 14.1 | ppm | | 14287 | 55811-04 | 15.0 | ppm | 212 | ppm | 14561 | ppm | 249 | ppm | 118 | ppm | 13.5 | ppm | | 14288 | 55811-05 | 93.2 | ррт | 404 | ppm | 14697 | ppm | 239 | ppm | 125 | ppm | 13.2 | ррт | | 14289 | 55811-06 | 95.5 | ppm | 42 5 | ppm | 11357 | ppm | 224 | ppm | 98.0 | ppm | 12.2 | ppm | | 14290 | 55811-07 | 94.5 | ppm | 369 | ppm | 11662 | ppm | 254 | pøm | 105 | ppm | 14.4 | ppm | | 14291 | 55811-08 | 5.69 | ppm | 135 | ppm | 22301 | ppm | 171 | mqq | 181 | ppm | 20.2 | ppm | | 14292 | 55811-09 | 121 | рот | 309 | ppm | 11767 | ppm | 369 | ppm | 103 | ppm | 18.4 | ppm | | 14293 | 55811-10 | 12.2 | ppm | 166 | ppm | 14769 | ррп | 266 | ppm | 140 | ppm | 40.6 | ppm | | Laboratory ID: | Mehlich (II | Mehlich III II! | Mehlich III | Mehlich III | Mehlich III | |-----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | | Р сопс. | P units | K conc. | Kunits | Са сопс. | Ca units | Mg cond. | Mg conc. | S conc. | S units | Na conc. | Na units | | Detection Limit | 0.2367 | ррт | 0.1308 | ppm | 0.0436 | ррсп | 0.0250 | ppm | 0.0010 | ppm | 0.0269 | ppm | | Reporting Limit | 1 | ppm | 1 | ppm | 1 | ppm | 1 | рргп | 11 | ppm | 1 | ppm | | Laboratory ID: | TCEQ/client | Mehlich III | Mehlich III | Mehlich III | Mehlich III | |----------------|-------------|--------------|--------------|-------------|-------------| | | Sample ID: | Extract Date | Extract Tech | Anal, Date | Anal. Tech | | 14284 | 55811-01 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14285 | 55811-02 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14286 | 55811-03 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14287 | 55811-04 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14288 | 55811-05 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14289 | 55811-06 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14290 | 55811-07 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14291 | 55811-08 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14292 | 55811-09 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14293 | 55811-10 | 1/8/2025 | FMR | 1/9/2025 | JLP | Print Date: 10-Jan-25 | Standard Sa | imple Report | | TCEQ COC | # 055811 | | | | |----------------|---------------------------|------|-------------|--------------|-----------------------|-----------|--------------------| | Laboratory ID: | TCEQ/client
Sample ID: | рН | pH
units | Conductivity | Conductivity
units | Nitrate-N | Nitrate-N
units | | 14284 | 55811-01 | 7.64 | NA | 0.08 | dS/M | 13.206 | ppm | | 14285 | 55811-02 | 7.77 | NA | 0.109 | dS/M | 8.293 | ppm | | 14286 | 55811-03 | 7.49 | NA | 0.084 | dS/M | 12,479 | ppm | | 14287 | 55811-04 | 7.64 | NA | 0.104 | dS/M | 5.106 | ppm | | 14288 | 55811-05 | 7.53 | NA | 0.122 | dS/M | 10.588 | ppm | | 14289 | 55811-06 | 7.54 | NA | 0.09 | dS/M | 10.636 | ppm | | 14290 | 55811-07 | 7.44 | NA | 0.137 | dS/M | 20.101 | ppm | | 14291 | 55811-08 | 7,75 | NA | 0.277 | dS/M | 13.247 | ppm | | 14292 | 55811-09 | 7.56 | NA | 0.296 | dS/M | 8.556 | ppm | | 14293 | 55811-10 | 7.66 | NA | 0.328 | dS/M | 2.45 | ppm | | Laboratory ID: | pH | pН | Conductivity | Conductivity | Nitrate-N | Nitrate-N | |-----------------|------|-------------|--------------|---------------|-----------|--------------| | Detection Limit | 0.01 | units
กล | 0.001 | units
dS/M | 0.01 | units
ppm | | Reporting Limit | 0.1 | na | 0.001 | dS/M | 1 | ppm | | Laboratory (D: | TCEQ/client | pH/Conducti | vity prep | pH Ana | lysis | Conduc | tivity | Nitate-N B | xtract | Nitrate-N A | nalysis | |----------------|-------------|-------------|-----------|------------|-------|------------|--------|------------|--------|-------------|---------| | • | Sample ID: | Date | Tech | | 14284 | 55811-01 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | WL | | 14285 | 55811-02 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | 14286 | 55811-03 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | 14287 | 55811-04 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | 14288 | 55811-05 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | 14289 | 55811-06 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | 14290 | 55811-07 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | 14291 | 55811-08 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | 14292 | 55811-09 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | 14293 | 55811-10 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | Print Date: 10-Jan-25 Quality Control Report | Laboratory ID: | | Mehlich III | Mehlich III | Mehlich (I) | Mehlich III |----------------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | Euboratory 10. | | P conc. | P units | K conc. | K units | Ca conc. | Ca units | Mg conc. | Mg conc. | S conc. | S units | Na conc. | Na units | | 14299 | IC1027 | 47.5 | ppm | 328 | ppm | 2459 | ppm | 360 | ppm | 40.5 | ppm | 107 | ppm | | 14300 | IC1028 | 46.5 | ppm | 318 | ppm | 2386 | ppm | 348 | ppm | 40.0 | ppm | 105 | ppm | | | Mean IC | 0 | ppm | 0 | ρpm | 0 | ppm | 0 | ppm | 0 | ppm | 0 | ppm | | | IC Lower | 45.9 | ppm | 305.0 | ppm | 2320.0 | ppm | 335.0 | ppm | 27.0 | ppm | 30.0 | ppm | | | IC Upper | 53.4 | ρрт | 365.0 | ρpm | 2645.0 | ppm | 409.0 | ppm | 49.0 | ppm | 55.0 | ppm | | | blk221 | < 0.237 | ppm | <0.131 | ppm | < 0.0436 | ppm | <0.0250 | ppm | <0.0100 | ppm | <0.513 | ppm | | Laboratory ID: | Mehlich III |-----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | • | P conc. | P units | K conc. | K units | Ca conc. | Ca units | Mg conc. | Mg conc. | S conc. | S units | Na conc. | Na units | | Detection Limit | 0.2367 | ppm | 0.1308 | ppm | 0.0436 | ppm | 0.0250 | ppm | 0.0010 | ppm | 0.0269 | ppm | | Reporting Limit | 1 | mag | 1 | ppm | | Laboratory ID: | Mehlich III | Mehlich III | Mehlich III | Mehlich III | |----------------|--------------|--------------|-------------|-------------| | | Extract Date | Extract Tech | Anal.Date | Anal, Tech | | IC1027 | 1/8/2025 | FMR | 1/9/2025 | JLP | | IC1028 | 1/8/2025 | FMR | 1/9/2025 | JŁP | | blk221 | 1/8/2025 | FMR | 1/9/2025 | JLP | Print Date: 10-Jan-25 Quality Control Report | Laboratory ID: | | pН | рН | Conducitity | Conducitity | Nitrate-N | Nitrate-N | Nitrate-N | |----------------|---------------|-------|-------|-------------|-------------|-----------|-----------|-----------| | | | | units | conc. | units | сопс. | units | % recover | | 14299 | IC1027 | 5.9 | ла | 0.257 | dS/M | 4.446 | ppm | | | 14300 | IC1028 | 5.9 | na | 0.256 | dS/M | 4.468 | ppm | | | | Mean IC | 5.87 | na | 0.2565 | dS/M | 4.457 | ppm | | | 14300spike | Spiked sample | * | - | - | 150 | 3.9 | ppm | 88.1 | | - | IC lower | 5.760 | па | 0.241 | dS/M | 3.5 | ppm | | | | IC Upper | 5.990 | па | 0.299 | dS/M | 5.5 | ppm | | | | b/k221 | | na | 0 | dS/M | 0.614 | ppm | | | Laboratory ID: | ρН | pН | Conducitity | Conducitity | Nitrate-N | Nitrate-N | |-----------------|------|-------|-------------|-------------|-----------|-----------| | | | units | conc. | units | conc. | units | | Detection Limit | 0.01 | na | 0.001 | dS/M | 0.01 | ppm | | Reporting Limit | 0.1 | na | 0.001 | dS/M | 1 | ppm | | Laboratory ID: | pH/Conduct | ivity prep | pH Ana | lysis | Conduc | tivity | Nitate-N | Extract | Nitrate-N Analysis | | |----------------|------------|------------|------------|-------|------------|--------|------------|---------|--------------------|------| | _ | Date | Tech | | IC1027 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DÉC | 12/16/2024 | FMR | 12/17/2024 | JW | | IC1028 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | WL | | blk221 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | TEXAS COMMISENVIRON QUALITY | SION ON
JMENTAL | | Ch | nain | of | Cust | tod | y F | Rec | ord | | 558: | 12 | |-----------------------------|------------------------------------
--------------|----------------|---------|----------------|---------------------|--------|-----------------------|----------|--------------|---------|---------------|------| | Location: | Grand | (Do not fill | HUN shade | ed area | if the fac | cility inform | tation | must b | e confid | ential) | | Permit #: 295 | 0 | | Region: | | | | | | | | | 552 / | 900 | | | | | E-Mail ID: | Sampler: (signature) Vanesa Hardre | | | | | | | Sampler: (please prin | | | | | | | Lab ID
Number | Sample
ID | Date | Time | # of | Grab/
Comp. | Matrix
L,S,M.O,T | CL2 | рН | Cond | Analyses Red | quested | REMARK | S | | M294 | -01 | PAR. | は説 | | | | | | | SEE RI | =A | LMU 1I | 06 | | 14295 | -02 | 10-18-1 | 17750
17750 | | | | | | | | | LMU11 | 6-29 | | 14296 | -03 | 19/24/24 | 1110 | | | | | | | | | Lmu 12 | 0-6 | | 14297 | -04 | 1924/24 | 1110 | | | | | | | | | LMU12 | 6-29 | | 14298 | | 1928/2 | 1230 | | | | | | | | | LM4 13 | 0.6 | | 14301 | -06 | 19/28/24 | 1230 | | | | | | | | | LMU/3 | 6-24 | | 14302 | -07 | 17282 | 11040 | | | | | | | | | LM4 14 | D-E | | 14303 | -08 | 128/24 | 1040 | | | | | | | | | LMU 14 | 6.34 | -10 Relinquished by: Received by Date Time For Laboratory Use: Relinquished by: Received by Date Time deg. C Received on ice: Υ N Relinquished by: Received by: Date Time Preservatives: Υ Ν Relinquished by: Received by: Date Time COC Seal: Υ Ν Shipper name: Shipper Number: 4468 TCEQ-10065 (11/02) -09 Seals Intact: Pink-Contract Lab Manager Goldenrad-Collector Copy N Υ Report for Samples analyzed Under Contract Number: 582-10-99518 Report ID: 055812a-45667 Print Date: 10-Jan-25 Texas A&M AgriLife Extension Service Soil, Water and Forage Testing Laboratory 108 Soil Testing Laboratory, 2478 TAMU College Station, TX 77843-2478 979-862-4955 Client Name: Grand Canyon Client address: not provided Standard Sample Report TCEQ COC# 055812 | Laboratory ID: | TCEQ/client
Sample ID: | Sample
Depth (inches) | Sample Coll.
Date: | Collector
Name; | TCEQ
Region# | Date
Received | Sample
Type: | Sample opened
Date | Sample Ground
Date | Process
Tech. | |----------------|---------------------------|--------------------------|-----------------------|--------------------|-----------------|------------------|-----------------|-----------------------|-----------------------|------------------| | 14294 | 55812-01 | 0–6 | 10/28/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TLP | | 14295 | 55812-02 | 6-24 | 10/28/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TLP | | 14296 | 55812-03 | 0–6 | 10/28/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TLP | | 14297 | 55812-04 | 6-24 | 10/28/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | πp | | 14298 | 55812-05 | 0-6 | 10/28/2024 | Vanessa Gardner | 4 | 11/19/2024 | soîl | 11/25/2024 | 12/4/2024 | TLP | #### Methods and Sample Preparation: Receiving of samples Processing - SWFTL0097R0.SOP Upon opening of sample chests, all samples are identified and organized as listed on COC to insure completeness and condition of shipment. Individually each sample is spread across a non-reactive tray where foreign materials is physically removed and discarded. The sample(s) are then placed inside a 65C drying oven and allow to remain until dry. Individual samples were then removed from drying oven and pulverized with an Agvise soil pulzerized fitted with a shaking 2mm screen. Every attempt was again made to remove any remaining plant tissue in the pulverized sample(s). Soil was then transferred to the laboratory sample cups and while additional sample was stored. #### Analytical Methods: SoilpH 2:1 DI water:soil SOIL pH AND CONDUCTIVITY - SWFTL0015R1.SOP Schofield, R.K. and A.W. Taylor. 1955. The measurement of soil pH. Soil Sci. Soc. Am. Proc. 19:164-167. Soil Conductivity 2:1 DI Water:Soil SOIL pH AND CONDUCTIVITY - SWFTL0015R1_SOP Rhoades, J.D. 1982. Soluble salts. p. 167-178. In: A.L. Page, et al. (ed.). Methods of Soil Analysis: Part 2. Agronomy Monogr. 9. 2nd ed. ASA and SSSA, Madison, WI. Soil Nitrate-N KCl Extractable with Cd-Reduction Analyses NO3-N EXTRACTION - SWFTL0014R5.SOP/NO3-N ANALYSIS - SWFTL0089R1.SOP Keeney, D.R. and D.W. Nelson, 1982. Nitrogen - inorganic forms, p. 643-687. In: A.L. Page, et al. (ed.). Methods of Soil Analysis: Part 2. Agronomy Monogr. 9. 2nd ed. ASA and SSSA, Madison, WI. Soil P. K. Ca. Mg. S and Na - Mehlich III by ICP M3 EXTRACTION - SWFTL0079R1.SOP/M3 ANALYSIS - SWFTL0081R2.SOP Mehlich-3 soil test extractant: a modification of Mehlich-2 extractant. Commun. Soil Sci. Plant Anal. 15(12):1409-1416 Print Date: 10-Jan-25 Standard Sample Report | TCEQ/client | Mehlich III |-------------|--|---|---|---|---|--|---|--|---|---|---
---| | Sample ID: | Picono. | P units | К сопс. | K units | Ca conc. | Ca units | Mg conc. | Mg units | S canc. | S units | Na conc. | Na units | | 55812-01 | 27.1 | ppm | 189 | ppm | 12042 | ppm | 224 | ppm | 100 | ppm | 14.8 | ppm | | 55812-02 | 5.40 | ppm | 183 | ррт | 19363 | ppm | 164 | ppm | 153 | ppm | 24.5 | ppm | | 55812-03 | 207 | ppm | 432 | ppm | 4950 | ppm | 362 | ppm | 53.3 | ppm | 16.5 | ppm | | 55812-04 | 25.4 | ppm | 365 | ppm | 7102 | ppm | 411 | ppm | 72.2 | ppm | 104 | ρρm | | 55812-05 | 78.5 | ppm | 242 | ppm | 3127 | ppm | 204 | ppm | 34.0 | ppm | 12.6 | ppm | | | Sample ID:
55812-01
55812-02
55812-03
55812-04 | Sample ID: P conc. 55812-01 27.1 55812-02 5.40 55812-03 207 55812-04 25.4 | Sample ID: P conc. P units 55812-01 27.1 ppm 55812-02 5.40 ppm 55812-03 207 ppm 55812-04 25.4 ppm | Sample ID: P conc. P units K conc. 55812-01 27.1 ppm 189 55812-02 5.40 ppm 183 55812-03 207 ppm 432 55812-04 25.4 ppm 365 | Sample ID: P conc. P units K conc. K units 55812-01 27.1 ppm 189 ppm 55812-02 5.40 ppm 183 ppm 55812-03 207 ppm 432 ppm 55812-04 25.4 ppm 365 ppm | Sample ID: P conc. P units K conc. K units Ca conc. 55812-01 27.1 ppm 189 ppm 12042 55812-02 5.40 ppm 183 ppm 19363 55812-03 207 ppm 432 ppm 4950 55812-04 25.4 ppm 365 ppm 7102 | Sample ID: P conc. P units K conc. K units Ca conc. Ca units 55812-01 27.1 ppm 189 ppm 12042 ppm 55812-02 5.40 ppm 183 ppm 19363 ppm 55812-03 207 ppm 432 ppm 4950 ppm 55812-04 25.4 ppm 365 ppm 7102 ppm | Sample ID: P conc. P units K conc. K units Ca conc. Ca units Mg conc. 55812-01 27.1 ppm 189 ppm 12042 ppm 224 55812-02 5.40 ppm 183 ppm 19363 ppm 164 55812-03 207 ppm 432 ppm 4950 ppm 362 55812-04 25.4 ppm 365 ppm 7102 ppm 411 | Sample ID: P conc. P units K conc. K units Ca conc. Ca units Mg conc. Mg units 55812-01 27.1 ppm 189 ppm 12042 ppm 224 ppm 55812-02 5.40 ppm 183 ppm 19363 ppm 164 ppm 55812-03 207 ppm 432 ppm 4950 ppm 362 ppm 55812-04 25.4 ppm 365 ppm 7102 ppm 411 ppm | Sample ID: P conc. P units K conc. K units Ca conc. Ca units Mg conc. Mg units S conc. 55812-01 27.1 ppm 189 ppm 12042 ppm 224 ppm 100 55812-02 5.40 ppm 183 ppm 19363 ppm 164 ppm 153 55812-03 207 ppm 432 ppm 4950 ppm 362 ppm 53.3 55812-04 25.4 ppm 365 ppm 7102 ppm 411 ppm 72.2 | Sample ID: P conc. P units K conc. K units Ca conc. Ca units Mg conc. Mg units S conc. S units 55812-01 27.1 ppm 189 ppm 12042 ppm 224 ppm 100 ppm 55812-02 5.40 ppm 183 ppm 19363 ppm 164 ppm 153 ppm 55812-03 207 ppm 432 ppm 4950 ppm 362 ppm 53.3 ppm 55812-04 25.4 ppm 365 ppm 7102 ppm 411 ppm 72.2 ppm | Sample ID: P conc. P units K conc. K units Ca conc. Ca units Mg conc. Mg units S conc. S units Na conc. 55812-01 27.1 ppm 189 ppm 12042 ppm 224 ppm 190 ppm 14.8 55812-02 5.40 ppm 183 ppm 19363 ppm 164 ppm 153 ppm 24.5 55812-03 207 ppm 432 ppm 4950 ppm 362 ppm 53.3 ppm 16.5 55812-04 25.4 ppm 365 ppm 7102 ppm 411 ppm 72.2 ppm 104 | | Laboratory ID: | Mehlich III | Mehitch III | Mehlich III | |-----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | | Picone. | P units | K conc. | K units | Ca conc. | Ca units | Mg conc. | Mg conc. | S conc. | S units | Na conc. | Na units | | Detection Limit | 0.2367 | ppm | 0.1308 | ppm | 0.0436 | ppm | 0.0250 | ppm | 0.0010 | ррт | 0.0269 | ppm | | Reporting Limit | 1 | ppm | 1 | ppm | 1 | ppm | 1 | ppm | 1 | ррт | 1 | ppm | | Laboratory ID: | TCEQ/client | Mehlich III | Mehlich III | Meh(ich III | Mehlich III | |----------------|-------------|--------------|--------------|-------------|-------------| | | Sample ID: | Extract Date | Extract Tech | Anal.Date | Anal, Tech | | 14294 | 55812-01 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14295 | 55812-02 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14296 | 55812-03 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14297 | 55812-04 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14298 | 55812-05 | 1/8/2025 | FMR | 1/9/2025 | JLP | | | | | | | | Print Date: 10-Jan-25 Standard Sample Report | Laboratory ID: | TCEQ/client | Нq | pH | Conductivity | Conductivity | Nitrate-N | Nitrate-N | |----------------|-------------|------|-------|--------------|--------------|-----------|-------------| | | Sample ID: | | units | | units | | units | | 14294 | 55812-01 | 7.58 | NA | 0.314 | dS/M | 14.139 | ppm | | 14295 | 55812-02 | 7.68 | NA | 0.287 | dS/M | 7.847 | ρρ m | | 14296 | 55812-03 | 7.38 | NA | 0.227 | dS/M | 24.344 | ρριπ | | 14297 | 55812-04 | 7.6 | NA | 0.304 | dS/M | 14.792 | ppm | | 14298 | 55812-05 | 7.35 | NA | 0.086 | dS/M | 5.278 | ppm | | Laboratory ID: | рН | pH
units | Conductivity | Conductivity units | Nitrate-N | Nitrate-N
units | |-----------------|------|-------------|--------------|--------------------|-----------|--------------------| | Detection Limit | 0.01 | na | 0.001 | dS/M | 0.01 | ppm | | Reporting Limit | 0.1 | na | 0.001 | dS/M | 1 | ррт | | Laboratory ID: | TCEQ/client | pH/Conduct | ivity prep | рН Апа | lysis | Conduc | tivity | Nitate-N E | Extract | Nitrate-N A | malysis | |----------------|-------------|------------|------------|------------|-------|------------|--------|------------|---------|-------------|---------| | | Sample ID: | Date | Tech | | 14294 | 55812-01 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | 14295 | 55812-02 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | 14296 | 55812-03 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | 14297 | 55812-04 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | 14298 | 55812-05 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | Report ID: 055812a-45667 Quality Control Report Print Date: 10-Jan-25 | Laboratory ID: | | Mehlich III |----------------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|-------------|-------------| | | | Р сопс. | P units | K conc. | K units | Ca conc. | Ca units | Mg conc. | Mg conc. | S conc. | S units | Na conc. | Na units | | 14299 | IC1027 | 47.5 | ppm | 328 | ррm | 2459 | ppm | 360 | ppm | 40.5 | ррт | 107 | ppm | | 14300 | IC1028 | 46.5 | ppm | 318 | ppm | 2386 | ррт | 348 | ppm | 40.0 | ppm | 105 | ppm | | | Mean IC | 0 | ppm | 0 | ppm | 0 | ppm | 0 | ppm | O | ppm | 0 | ppm | | | IC Lower | 45.9 | ppm | 305.0 | ppm | 2320.0 | ppm | 335.0 | ppm | 27.0 | ppm | 30.0 | ppm | | | IC Upper | 53.4 | ppm | 365.0 | ppm | 2645.0 | ppm | 409.0 | ppm | 49.0 | р р т | 55.0 | ppm | | | b/k221 | < 0.237 | ppm | <0.131 | ppm | < 0.0436 | ppm | < 0.0250 | ppm | < 0.0100 | ррт | < 0.513 | ppm | | Laboratory ID: | Mehlich III | Mehlich III | Mehlich (() | Mehlich III |-----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | | P conc. | P units | K conc. | Kunits | Ca conc. | Ca units | Мд сопс. | Mg conc. | S conc. | S units | Na conc. | Na units | | Detection Limit | 0.2367 | ppm | 0.1308 | ppm | 0.0436 | ppm | 0.0250 | ppm | 0.0010 | ppm | 0.0269 | ppm | | Reporting Limit | 1 | ррт | 1 | ppm | 1 | ppm | 1 | ppm | 1 | фрm | 1 | ppm | | Laboratory ID: | Mehlich III | Mehlich III | Mehlich III | Mehlich III | |----------------|--------------|--------------|-------------|-------------| | | Extract Date | Extract Tech | Anal.Date | Anal, Tech | | lC1027 | 1/8/2025 | FMR | 1/9/2025 | JLP | | IC1028 | 1/8/2025 | FMR | 1/9/2025 | JLP | | blk221 | 1/8/2025 | FMR | 1/9/2025 | JLP | Print Date: 10-Jan-25 # Quality Control Report | Laboratory ID: | | pH | ρН | Conducitity | Conducitity | Nitrate-N | Nitrate-N | Nitrate-N | |----------------|---------------|-------|-------|-------------|------------------|-----------|-----------|------------| | | | | units | conc. | units | conc. | units | % recovery | | 14299 | IC1027 | 5.9 | па | 0.257 | dS/M | 4.446 | ppm | | | 14300 | (C1028 | 5.9 | па | 0.256 | dS/M | 4,468 | ppm | | | | Mean IC | 5.87 | បទ | 0.2565 | dS/M | 4.457 | ₽pm | | | 14300spike | Spiked sample | | - | | , - , | 3.9 | ppn1 | 88.1 | | | IC lower | 5.760 | na | 0.241 | dS/M | 3.5 | ppm | | | | IC Upper | 5.990 | па | 0.299 | dS/M | 5.5 | ppm | | | | blk221 | £ | ла | 0 | dS/M | 0.614 | орта | | | Laboratory ID: | pН | pН | Conducitity | Conductity | Nitrate-N | Nitrate-N | |-----------------|------|-------|-------------|------------|-----------|-----------| | | | units | conc. | units | сопс. | units | | Detection Limit | 0.01 | ua | 0.001 | dS/M | 0.01 | ppm | | Reporting Limit | 0.1 | na | 0.001 | d\$/M | 1 | ppm | | Laboratory ID: | pH/Conduct | ivity prep | pH Analysis | | Conduc | tivity | Nitate-N | Extract | Nitrate-N Analysis | | |----------------|------------|------------|-------------|------|------------|--------|------------|---------|--------------------|------| | | Date | Tech | | IC1027 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 |
DEC | 12/16/2024 | FMR | 12/17/2024 | W | | IC1028 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | blk221 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | Report for Samples analyzed Under Contract Number: 582-10-99518 Report ID: 055812b-45667 Print Date: 10-Jan-25 Texas A&M AgriLife Extension Service Soil, Water and Forage Testing Laboratory 108 Soil Testing Laboratory, 2478 TAMU College Station, TX 77843-2478 979-862-4955 Client Name: Grand Canyon Client address: not provided Standard Sample Report TCEQ COC# 055812 | Laboratory ID: | TCEQ/client | Sample | Sample Coll. | Callector | TCEQ | Date | Sample | Sample opened | Sample Ground | Process | |----------------|-------------|----------------|--------------|-----------------|----------|------------|--------|---------------|---------------|---------| | | Sample ID: | Depth (inches) | Date: | Name: | Region # | Received | Type: | Date | Date | Tech. | | 14301 | 55812-06 | 6-24 | 10/28/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TLP | | 14302 | 55812-07 | 0-6 | 10/28/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TUP | | 14303 | 55812-08 | 6-24 | 10/28/2024 | Vanessa Gardner | 4 | 11/19/2024 | soil | 11/25/2024 | 12/4/2024 | TLP | #### Methods and Sample Preparation: Receiving of samples Processing - SWFTL0097R0.SOP Upon opening of sample chests, all samples are identified and organized as listed on COC to insure completeness and condition of shipment. Individually each sample is spread across a non-reactive tray where foreign materials is physically removed and discarded. The sample(s) are then placed inside a 65C drying oven and allow to remain until dry. Individual samples were then removed from drying oven and pulverized with an Agvise soil pulzerized fitted with a shaking 2mm screen. Every attempt was again made to remove any remaining plant tissue in the pulverized sample(s). Soil was then transferred to the laboratory sample cups and while additional sample was stored. #### Analytical Methods: Soil pH 2:1 DI water:soil SOIL pH AND CONDUCTIVITY - SWFTL0015R1.SOP Schofield, R.K. and A.W. Taylor. 1955. The measurement of soil pH. Soil Sci. Soc. Am. Proc. 19:164-167. Soil Conductivity 2:1 DI Water:Soil SOIL pH AND CONDUCTIVITY - SWFTL001SR1.SOP Rhoades, J.D. 1982. Soluble salts. p. 167-178. In: A.L. Page, et al. (ed.). Methods of Soil Analysis: Part 2. Agronomy Monogr. 9. 2nd ed. ASA and SSSA, Madison, WI. Soil Nitrate-N KCl Extractable with Cd-Reduction Analyses NO3-N EXTRACTION - SWFTL0014R5.SOP/NO3-N ANALYSIS - SWFTL0089R1.SOP Keeney, D.R. and D.W. Nelson. 1982. Nitrogen - inorganic forms. p. 643-687. In: A.L. Page, et al. (ed.). Methods of Soil Analysis: Part 2. Agronomy Monogr. 9. 2nd ed. ASA and SSSA, Madison, WI, Soil P. K. Ca. Mg. S and Na - Mehlich III by ICP M3 EXTRACTION - SWFTL0079R1.SOP/M3 ANALYSIS - SWFTL0081R2.SOP Mehlich-3 soil test extractant: a modification of Mehlich-2 extractant. Commun. Soil Sci. Plant Anal. 15(12):1409-1416 Print Date: 10-Jan-25 Standard Sample Report | | pio i topoit | | | | | | | | | | | | | |----------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|-------------|-------------|-------------|-------------| | Laboratory ID: | TCEQ/dient | Mehlich III | Mehfich III | Mehlich (III | Mehlich III | Mehtich III | Mehtich III | Mehlich III | | | Sample ID: | P conc. | P units | К сопс. | K units | Ca conc. | Ca units | Mg conc. | Mg units | \$ conc. | S units | Na conc. | Na units | | 14301 | 55812-06 | 10.7 | ppm | 172 | ppm | 7137 | ррт | 411 | ppm | 76.1 | ppm | 141 | ppm | | 14302 | 55812-07 | 25.9 | ppm | 251 | ppm | 3090 | ppm | 199 | ppm | 30.9 | ppm | 21.2 | ppm | | 14303 | 55812-08 | 3.10 | ppm | 218 | ppm | 7690 | ppm | 418 | ppm | 78.6 | ppm | 177 | ррт | | Laboratory ID: | Mehlich III UI | Mehlich III | |-----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------------|-------------| | | Р солс. | P units | K conc. | K units | Ca conc. | Ca units | Му сопс. | Mg conc. | S conc. | S units | Na conc. | Na units | | Detection Limit | 0.2367 | ppm | 0.1308 | ррпі | 0.0436 | ppm | 0.0250 | ppm | 0.0010 | ppm | 0.0269 | ppm | | Reporting Limit | 1 | ppm | 1 | ppm | 1 | ppm | 1 | ppm | 11 | ppm | 1 | ppm | | Laboratory ID: | TCEQ/client | Mehlich (II) | Mehlich III | Mehlich III | Mehlich III | |----------------|-------------|--------------|--------------|-------------|-------------| | | Sample ID: | Extract Date | Extract Tech | Anal.Date | Anal. Tech | | 14301 | 55812-06 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14302 | 55812-07 | 1/8/2025 | FMR | 1/9/2025 | JLP | | 14303 | 55812-08 | 1/8/2025 | FMR | 1/9/2025 | JLP | Print Date: 10-Jan-25 Standard Sample Report | Laboratory ID: | TCEQ/client
Sample ID: | pН | pH
units | Conductivity | Conductivity
units | Nitrate-N | Nitrate-N
units | |----------------|---------------------------|------|-------------|--------------|-----------------------|-----------|--------------------| | 14301 | 55812-06 | 7.48 | NA | 0.229 | dS/M | 4.692 | ppm | | 14302 | 55812-07 | 7.42 | NA | 0.083 | dS/M | 4.676 | ppm | | 14303 | 55812-08 | 7.58 | N.A. | 0.266 | dS/M | 3.463 | ppm | | Laboratory ID: | pН | рН | Conductivity | Conductivity | Nitrate-N | Nitrate-N | |-----------------|------|-------|--------------|--------------|-----------|-----------| | | | units | | units | | units | | Detection Limit | 0.01 | па | 0.001 | dS/M | 0.01 | ppm | | Reporting Limit | 0.1 | กอ | 0.001 | dS/M | 1 | ppm | | Laboratory ID: | TCEQ/client | pH/Conduct | pH/Conductivity prep | | pH Analysis | | Conductivity | | Nitate-N Extract | | Nitrate-N Analysis | | |----------------|-------------|------------|----------------------|------------|-------------|------------|--------------|------------|------------------|------------|--------------------|--| | Sample ID | Sample ID: | Date | Tech | | | 14301 | 55812-06 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | | 14302 | 55812-07 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | WL | | | 14303 | 55812-08 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | Print Date: 10-Jan-25 Quality Control Report | Laboratory ID: | | Mehlich III I | |----------------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-----------| | | | P conc. | P units | K conc. | Kunits | Ca conc. | Ca units | Mg conc. | Mg conc. | Sicond. | S units | Na conc. | Na units | | 14319 | IC1029 | 46.8 | ppm | 316 | ppm | 2552 | ppm | 353 | ppm | 39.7 | ppm | 47.9 | ppm | | 14320 | IC1030 | 46.2 | ppm | 308 | ppm | 2351 | ppm | 345 | ppm | 39.1 | ppm | 46.8 | ppm | | | Mean IC | o | pom | 0 | ppm | 0 | ppm | O | ppm | 0 | ppm | O | ppm | | | IC Lower | 45.9 | ppm | 305.0 | ppm | 2320.0 | ppm | 335.0 | ppm | 27.0 | ppm | 30.0 | ррті | | | IC Upper | 53.4 | ppm | 365.0 | ppm | 2645.0 | ppm | 409.0 | ppm | 49.0 | ppm | 55.0 | ppm | | | blk222 | < 0.237 | mag | 0.142 | ppm | < 0.0436 | ppm | <0.0250 | ppm | <0.0100 | ppm | 0.493 | ppm | | Laboratory ID: | Mehlich III | Mehlich III | Mehlich III | Mehlich Itt | Mehlich III | Mehlich ill | Mehlich III | Mehfich III | |-----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | | P conc. | P units | К сопс. | K units | Ca conc. | Ca units | Mg conc. | Mg conc. | S conc. | S units | Na conc. | Na units | | Detection Limit | 0.2367 | рргп | 0.1308 | ppm | 0.0436 | ррт | 0.0250 | ppm | 0.0010 | ppm | 0.0269 | ppm | | Reporting Limit | 1 | ppm | 1 | ppm | 11 | ppm | 1 | ppm | 1 | ppm | 1 | þþm | | Laboratory ID: | Mehlich III | Mehlich III | Mehlich III | Mehlich III | |----------------|--------------|--------------|-------------|-------------| | | Extract Date | Extract Tech | Anal.Date | Anal, Tech | | IC1029 | 1/8/2025 | FMR | 1/9/2025 | JLP | | IC1030 | 1/8/2025 | FMR | 1/9/2025 | JLP | | b k222 | 1/8/2025 | FMR | 1/9/2025 | JLP | Print Date: 10-Jan-25 # Quality Control Report | Laboratory ID: | | рН | рH | Conducitity | Conducitity | Nitrate-N | Nitrate-N | Nitrate-N | |----------------|---------------|-------|-------|-------------|-------------|-----------|-----------|------------| | | | | บกตัร | солс. | units | conc. | units | % recovery | | 14319 | IC1029 | 5.9 | na | 0.256 | dS/M | 4.759 | ppm | | | 14320 | IC1030 | 5.9 | па | 0.254 | dS/M | 4.704 | ppm | | | | Mean IC | 5.875 | na | 0.255 | dS/M | 4.7315 | ppm | | | 14320spike | Spiked sample | 2 | - | · · | -0 | 3.9 | ppm | 88.6 | | | IC lower | 5,760 | па | 0.241 | dS/M | 3.5 | ppm | | | | IC Upper | 5.990 | na | 0.299 | dS/M | 5.5 | ppm | | | | blk222 | - | na | 0 | dS/M | 0.694 | ppm | | | Laboratory ID: | pН | ρH | Conducitity | Conductitity | Nitrate-N | Nitrate-N | | |----------------------|----|----------|-------------|--------------|-----------|-----------|--| | | | units | conc. | units | conc. | units | | | Detection Limit 0.01 | | па | 0.001 | dS/M | dS/M 0.01 | | | | Reporting Limit 0.1 | | na 0.001 | | dS/M | 1 | ppm | | | Laboratory ID: | pH/Conductivity prep | | pH Analysis | | Conductivity | | Nitate-N Extract | | Nitrate-N Analysis | | |----------------|----------------------|------|-------------|------|--------------|------|------------------|------|--------------------|------| | | Date | Tech | | IC1029 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | iC1030 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024
| DEC | 12/16/2024 | FMR | 12/17/2024 | JW | | blk222 | 12/13/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | DEC | 12/16/2024 | FMR | 12/17/2024 | WL | # Grand Canyon Dairy**2179 CR 308 Dublin, TX 76446**Aug. 17, 2023 This map was generated by the Region 4 Stephenville Office of the Texas Commission on Environmental Quality. This product is for informational purposes and may not have been prepared for or be suitable for legal, engineering, or surveying purposes. It does not represent an on-the-ground survey and represents only the approximate relative location of property boundaries. For more information concerning this map, contact the TCEQ Region 4 Stephenville Office at 254-552-1900. **Phone:** 806.677.0093 800.557.7509 Fax: 806.677,0329 | ab No.: 3753 | LABO | RATORY A | NALYSIS | REPORT | Report Date: 07 | 7/01/2024 02:10 pm | | |--|---|----------|-------------------------|---|-----------------------------------|---------------------------------|--| | Send To:
6224 | ENVIRO-AG
3404 AIRWA'
AMARILŁO, T | | | | Amy Meier Data Review Coordinator | | | | Results For:
Sample ID:
Location | GRAND CAN
MANURE
ERATH COU | | | Received:
Sampled:
Invoice No:
P.O. #: | 425820 | ı | | | | | | | | Total content | Estimated available first year* | | | | | | Analysis
(dry basis) | Analysis
) (as rec'd) | lbs per ton
(as rec'd) | lbs per ton
(as rec'd) | | | NUTRIENTS | | | | | | | | | Nitrogen | | | | | | | | | Total Nitroge | | % | 2.378 | 1.184 | 23.7 | 12.3 | | | Organic Nitrogen | | % | 1.940 | 0.966 | 19.3 | 7.9 | | | Ammonium N | | % | 0.438 | 0.218 | 4.4 | 4.4 | | | Nitrate+Nitrite Nitrogen | | % | 0.004 | 0.0016 | <0.1 | <0.1 | | | Major and Secor | ndary Nutrients | | | | | | | | Phosphorus | | % | 0.660 | 0.267 | | | | | Phosphorus : | as P2O5 | % | 1.51 | 0.611 | 12.2 | 11.0 | | | Potassium | | % | 2.37 | 0.958 | | | | | Potassium as | s K2O | % | 2.84 | 1.148 | 23.0 | 23.0 | | | OTHER PROPERTIE | S | | | | | | | | Moisture % | | % | | 50.2 | | | | | | | % | | 49.8 | 996 | | | | | | % | 52.2 | 26.0 | 520 | | | | Ash | | % | | 23.8 | 476 | | | | C:N Ratio | | ratio | | 12.7 | | | | ^{*} Assumes 41% of organic nitrogen available during first crop year after application. Assumes 100% of ammonium and nitrate nitrogen available, but should be adjusted for potential field losses at application site. # ENVIRO-AG ENGINEERING, INC. Enviro-Ag Engineering, Inc. 3404 Airway Blvd, Amarillo, TX 79118 Tel. 806-353-6123 Fax 806-353-4132 # MANURE CHAIN OF CUSTODY RECORD Producer/Facility: Grand Ca Grand Canyon Dairy County: Erath Date Sampled: 6/14/2024 Date Shipped: 6/17/2024 Project Manager: Corey Mullin | Sample Type | Sample ID | Number of
Containers | Test Package | Proper
Preservation | Matrix | |-------------|-----------|-------------------------|--------------|------------------------|--------| | Manure | Manure | 1 3753 | | Y | OT | 200 | | | | 0.00 | | | | | | | | | | | | | | | | | Jone 1 | | | | - 60 | | | - 14 | | | | | | - | | | Relinquished By: Re | ef. Internal COC | Relinquished By: | Lisa Postm | Relinquished By: | | |---------------------|------------------|------------------|------------|------------------|---------------| | Company: | EAE | Company: | EAE | Company: | ServiTech Lab | | | | Date/Time: | 19/8/2 | 41040 | | | | | Received By: | MATAMM | U DOWN LOW | | servitech 6921 S. Bell • Amarillo, TX 79109 www.servitech.com Phone: 806.677.0093 800.557.7509 Fax: 806.677.0329 | b No: 3696 | LABOR | RATORY | ANALYS | IS REPORT | Report Date: 06/3 | 0/2024 08:17 pn | |--|---|--------------|------------|---|-------------------|-----------------| | Send To:
6224 | ENVIRO-AG ENC
3404 AIRWAY BI
AMARILLO, TX | _VD | NC | | Amy N | <i>d</i> leier | | Client Name:
Sample ID:
Location | GRAND CANYOR
RCS #3
ERATH COUNTY | | | Received:
Sampled:
Invoice No:
P.O. #: | | | | | | Analysis | results | lbs/ac | re-in | meq/L | | NUTRIENTS | | | | | | | | Nitrogen | | 46 | | | | | | | Total Nitrogen
Organic Nitrogen | | ppm | | 10 | 3.3 | | | | 26 | ppm | 6 | | 1.9 | | | um Nitrogen
Nitrite Nitrogen | 20.3
0.37 | ppm | 5
0 | | 1.5
<0.1 | | | • | 0.57 | ppm | | U | ₹0.1 | | | econdary Nutrients | - 20 | | | | | | Phospho | orus
orus as P2O5 | 20
50 | ppm | | 11 | | | Potassiu | | 350 | ppm
ppm | | 11 | 9.0 | | | m as K2O | 420 | ppm | | 95 | 5.0 | | OTHER PROPER | RTIES | | | | | | | Moisture | | 99.8 | % | | | | | | Total Solids | | % | , | 453 | | | | anic Matter | 0.2
<0.10 | % | | 0 | | | Ash | | <0.10 | % | | ū | | | C:N Rati | _ | 12.5 | ratio | | | | # ENVIRO-AG ENGINEERING, INC. Enviro-Ag Engineering, Inc. 3404 Airway Blvd,. Amarillo, TX 79118 Tel. 806-353-6123 Fax 806-353-4132 # WASTEWATER CHAIN OF CUSTODY RECORD Producer/Facility: **Grand Canyon Dairy** County: Erath Date Sampled: 6/14/2024 Date Shipped: 6/17/2024 Project Manager: Corey Mullin | Sample Type | Sample ID | Number of Containers Test Package | Proper
Preservation | Matrix | |-------------------------------------|---|-----------------------------------|------------------------|--------| | Wastewater RCS #2 Wastewater RCS #3 | 2 3695 EAE TX CO KS LAGOON 2 3696 EAE TX CO KS LAGOON | Y | OT
OT | | | | | E- | | | | | | | | 7 | | | | | | | | | | | 1 | | | | | | | | | | | | | -F | | Relinquished By: Ref. Internal COC | Relinquished By: Lisa Postmu | usRelinquished By: | | |------------------------------------|------------------------------|--------------------|---------------| | Company: EAE | Company: EAE | Company: | ServiTech Lab | | | Date/Time: (d)5/74 | 1 1040 | | Received By: 📝 13.1 13.1 # 5.0 RECHARGE FEATURE CERTIFICATION #### CERTIFICATION t certify that potential Recharge Features in the form of artificial penetrations and natural features exist on property utilized under this application as defined in 30 TAC §321.32(50). The protective measures in the form of best management practices identified in this report, when implemented, are designed to avoid adverse impacts to these features and associated groundwater formations. All information presented on this page and in the following supporting documents is true and accurate to the best of my knowledge. Norman Mullin, P.E. Enviro-Ag Engineering, Inc. Firm #F-2507 #### 5.1 General This recharge feature certification report was authorized by Mr. Tim Miranda representing Circle 7 Dairy, LLC and Grand Canyon Dairy, LLC. The findings and recommendations contained herein were compiled by Ms. Jourdan Mullin and Mr. Norman Mullin, P.E., of Enviro-Ag Engineering, Inc., Amarillo, Texas. # 5.2 Purpose of Report Circle 7 Dairy, LLC and Grand Canyon Dairy, LLC is applying for a major amendment of current TPDES #2950 under 30 TAC, Chapter 321, Subchapter B, Concentrated Animal Feeding Operations. The purpose of this report is to determine if the subject property has any natural or artificial features, either on or beneath the ground surface, which would provide a significant pathway for effluent or solids from the facility into the underlying aquifer. At a minimum, the records and/or maps of the following entities/agencies were reviewed to locate any artificial recharge features: A) Texas Railroad Commission, B) local water district, C) Texas Water Development Board, D) TCEQ, E) Natural Resource Conservation Service (NRCS), F) current landowners and G) onsite inspection. The TCEQ Regulatory Guidance RG-433 was followed to identify recharge features and recommend best management practices. # 5.3 Property Under Evaluation The property under evaluation consists of approximately 1,541 acres in Erath County, Texas. The area is within the jurisdiction of Middle Trinity Ground Water Conservation District. #### 5.4 Definition of Waste Production The sources of process-generated wastewater is wash water from the milking parlor operations and the water generated from the production of biogas. The flow of the process-generated wastewater can be found on Figures 2.1A-B. The second process of wastewater production involves the accumulation of manure solids in the open confinement lots. Rain falling on the open lots comes into contact with the manure layer and absorbs some of the excreted nutrients present in manure. The nutrient enriched runoff is considered wastewater, which flows by designed slopes from the open lots toward the settling basins and into the RCSs. Manure solids accumulated in the open confinement lots are collected at least annually and hauled off-site to farmland by a waste transporter. While in the open lots, manure becomes compacted and slowly permeable due to hoof action by the cattle. This compacted manure layer results in an increase of the overall runoff volume during rainfall events. Infiltration of nutrients downward through the manure layer into the underlying soils is considered minimal as a result of pen surface compaction (Sweeten, 1990). # 5.5 Definition of Recharge Feature TCEQ rules define a "Recharge Feature" as: "Those natural or artificial features either on or beneath the ground surface at the site under evaluation that provide or create a significant hydrologic connection between the ground surface and the underlying groundwater within an aquifer. Significant artificial features include, but are not limited to, wells and excavation or material pits. Significant natural hydrologic connections include, but are not limited to: faults, fractures, sinkholes or other macro pores that allow direct surface infiltration; a permeable or shallow soil material that overlies and aquifer; exposed geologic formations that are identified as an
aquifer; or a water course bisecting an aquifer." (30 TAC §321.32(50)) The TCEQ Regulatory Guidance RG-433 further defines a "recharge feature" as: "A natural or artificial feature either on or beneath the ground surface that provides or creates a <u>significant</u> hydrologic connection (or pathway) between the ground surface and the underlying groundwater within an aquifer." The guidance document also defines a "significant pathway" as: "A significant pathway between the land surface and the subsurface has the ability to transmit waste, wastewater, or precipitation mixed with waste to groundwater. The wastewater may impact the groundwater quality within an aquifer or migrate laterally to discharge as seeps that may impact surface water quality. Recharge features with significant pathways include geomorphologic, geologic, soil, and artificial features. Agricultural practices may also enhance existing recharge features." #### **EVALUATION OF NATURAL FEATURES** #### 5.6 Geomorphologic/Geologic Features The Maloterre-Purves-Dugout and Windthorst-Duffau soil associations in this area of Erath County are immediately underlain by Quaternary alluvium, the Cretaceous Walnut Formation, Glen Rose Formation and the Cretaceous Paluxy Formation, as shown in Figure 5.1, Geologic Atlas. Bedrock from Glen Rose Formation outcrops east and west of the site. Quaternary alluvium consists of floodplain deposits and locally includes low terrace deposits near flood-plain level and bedrock in streams channels, with thicknesses of up to 25 feet. The Walnut Formation comprises the beds of clay and nonchalky limestones at the base of the Fredericksburg division. They consist of alternations of calcareous laminated clays, weathering yellow on oxidation, semicrystalline limestone flags, and shell agglomerate, all of which grade upward without break into the more chalky beds of the Edwards limestones. In places they weather into rich black soils and make extensive agricultural belts (Hill, 1901). Forming the upper unit of the Trinity Group, the Paluxy Formation consists of up to 400 feet of predominantly fine to coarse-grained sand interbedded with clay and shale. Underlying the Paluxy, the Glen Rose Formation forms a gulfward-thickening wedge of marine carbonates consisting primarily of limestone. Paluxy bedrock outcrops along the northeast portion of this site. Limiting application rates of wastewater and manure will protect this feature form adverse impacts. The basal unit of the Trinity Group consists of the Twin Mountains and Travis Peak formations, which are laterally separated by a facies change. To the north, the Twin Mountains Formation consists mainly of medium-to coarse-grained sands, silty clays, and conglomerates (Ashworth, 1995). Legend: Denotes Facility Kpa - Cretaceous Paluxy Formation Kwa - Cretaceous Walnut Formation Kgr - Cretaceous Glen Rose Formation Map Generated 2/13/2025 No Scale Sources: Geologic Atlas of Texas, Abilene Sheet, 1972. Grand Canyon Dairy Dublin, TX Erath County Geologic Atlas of Texas Figure 5.1 Page 35 Enviro-Ag Engineering, Inc. ENGINEERING CONSULTANTS 3404 Airway Roulevard AMARILLO, TEXAS 79118 TEL (806) 353-6123 FAX (806) 353-4132 #### 5.6.1 Outcrops/Stream Interception An inspection of the CAFO property and review of the USGS topographic map of the area shows the South Fork Little Green Creek and tributaries located in LMUs #1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13 and 14 are protected with buffers from land application. The numerous freshwater ponds located on the subject property are protected from land application with the appropriated buffers. The water feature located in LMU #5 has been backfilled in with dirt and is no longer present. #### 5.6.2 Excessive Slopes No slopes of greater than 8 percent are present on the property. #### 5.6.3 Other Large-Scale Conduits No faults, fractured sediments, caves, sinkholes, solution cavities, vugs or concentrated or extensive animal burrowing was observed during an on-site visit, nor is identified on the geologic atlas, soil surveys or USGS maps. #### 5.6.4 Surface Water The "water in the state" designation is based on Enviro-Ag Engineering, Inc., site inspections, the permittee's knowledge of the property and the USDA-FSA aerial photograph (2017). The buffer zones and LMU boundaries in Figures 6.1A-B (Refer to Section 6) are submitted with this application for TCEQ approval. #### 5.6.5 Aquifer The Trinity aquifer consist of early Cretaceous age formations of the Trinity Group where they occur in a band extending through the central part of the state in all or parts of 55 counties, from the Red River in North Texas to the Hill Country of South-Central Texas. Formations comprising the Trinity Group are (from youngest to oldest) the Paluxy, Glen Rose, and Twin Mountains-Travis peak. Updip, where the Glen Rose thins or is missing, the Paluxy and Twin Mountains coalesce to form the Antlers Formation. The Antlers consists of up to 900 feet of sand and gravel, with clay beds in the middle section. Water from the Antlers is mainly used for irrigation in the outcrop area of North and Central Texas (Ashworth and Hopkins, 1995). The aquifer is underlain and confined by low-permeability rocks that range in age from Precambrian to Jurassic. Where the aquifer does not crop out, it is confined above by the Walnut Formation in most of the area. Recharge to the Trinity aquifer is generally as precipitation that falls on aquifer outcrop areas and as seepage from streams and ponds where the head gradient is downward. In the Hill Country, water might flow laterally into the Trinity aquifer form the adjacent Edwards-Trinity aquifer. The aquifer discharges by evapotranspiration, spring discharges, diffuse lateral or upward leakage into shallower aquifers, and withdrawals from wells (USGS, 2003). Land application at agronomic rates and maintain permanent cover crops will protect the feature from adverse impacts associated with this operation. #### 5.7 Soil Features Soil mapping units included in this section for the production area and land application areas were taken from the electronic NRCS Soil Survey for Erath County. Soils descriptions are included in the supporting documentation and were obtained from the most current version of the NRCS electronic soil information database for Erath County available on the NRCS Web Soil Survey. #### 5.7.1 Production Area Soils underlying the pen and pond areas are predominately of the Bunyan (Bu), Clairette (CtC), Purves-Dugout-Maloterre (Pd), Fairy-Hico (FhC2) and Windthorst (WoB) series. The RCSs and settling basins have been certified as meeting TCEQ guidelines for soil liner (30 TAC §321.38(g). Best management practices pertaining to surface drainage, surface compaction and manure management within the open lot confinement area will be followed. Steve Evans, Ph.D., soil physicist with the USDA Agricultural Research Service in Bushland, Texas, stated that his work with lysimeters and potential evapotranspiration indicated limited infiltration and even less deep percolation will occur on areas with sloped surfaces (1996). Work performed by the NRCS calculated the feedlot surface curve number (potential for runoff) as 90 on a scale of 100. #### 5.7.2 Land Application Areas Soils underlying the land application areas are primarily of the Blanket (BaB), Bolar-Denton (BdC), Bastsil (BsB), Bunyan (Bu), Clairette-Hassee (CtB), Denton (DeB), Slidell (HoB), Frio (FriA), Hico-Windthorst (HwD3), Maloterre (Ma), Purves (PcC and PcB), Purves-Dugout-Maloterre (Pd) and Windthorst (WoB, WoB2 and WnC) series. The application of wastewater and/or manure will be performed at agronomic rates according to an approved NUP/NMP. No pooling or ponding is anticipated due to application through sprinklers. Figure 5.2 shows the soils underlying the property as delineated from the electronic NRCS Soil Survey map for Erath County. The electronic version of the soil survey is considered the most current soils information available. Table 5.1 is a summary of the estimated physical properties of the soils in the subject area, obtained from the NRCS Web Soil Survey. Table 5.1: Estimated Soil Properties | Soil Series
(Map ID) | | | Depth
(in) | USDA Soil
Texture | Permeability /
Infiltration Rate
(in/hr) | Available Water
Capacity (in/in
of soil) | | |-------------------------|-----|---|---------------|----------------------|--|--|--| | Blanket (BaB) | 1-3 | С | 0-14 | Clay Loam | 0.6-2.0 | 0.15-0.20 | | | . , | | | 14-40 | , | 0.06-0.6 | 0.12-0.20 | | | Bolar- (BdC) | 3-5 | С | 0-16 | Clay Loam | 0.6-2.0 | 0.17-0.21 | | | ,, | | | 16-32 | , | 0.6-2.0 | 0.16-0.20 | | | Denton | 3-5 | D | 0-10 | Silty Clay Loam | 0.06-0.20 | 0.11-0.15 | | | | | | 10-28 | ,, | 0.06-0.20 | 0.09-0.14 | | | Bastsil (BsB) | 1-3 | В | 0-8 | Find Sandy | 2.0-6.0 | 0.12-0.16 | | | | | | 8-15 | Loam | 2.0-6.0 | 0.12-0.16 | | | | | | 15-34 | | 0.6-2.0 | 0.12-0.16 | | | Bastsil (BsC) | 3-5 | В | 0-9 | Fine Sandy | 2.0-6.0 | 0.12-0.16 | | | | | | 9-15 | Loam | 2.0-6.0 | 0.12-0.16 | | | | | | 15-38 | | 0.6-2.0 | 0.12-0.16 | | | Bastsil (BtB) | 1-3 | В | 0-6 | Loamy Fine | 2.0-20 | 0.07-0.11 | | | , , | | | 6-17 | Sand | 2.0-2.0 | 0.07-0.11 | | | | | | 17-27 | | 0.6-2.0 | 0.12-0.16 | | | Bunyan (Bu) | | В | 0-10 | Fine Sandy | 2.0-6.0 | 0.11-0.15 | | | | | | 10-46 | Loam | 0.6-2.0 | 0.15-0.19 | | | Clairette (CtB) | 1-3 | С | 0-4 | Very Fine Sandy | 2.0-6.0 | 0.10-0.17 | | | • | | | 4-10 | Loam | 0.6-2.0 | 0.15-0.19 | | | | | | 10-26 | | 0.20-0.6 | 0.10-0.18 | | | Hassee | 1-3 | D | 0-5 | Very Fine Sandy | 0.6-2.0 | 0.10-0.14 | | | | 10 | | 5-14 | Loam | 0.6-2.0 | 0.07-0.12 | | | | | | 14-35 | | .001-0.06 | 0.06-0.10 | | | Clairette (CtC) | 3-5 | С | 0-4 | Loam | 0.6-2.0 | 0.15-0.19 | | | . , | | | 4-10 | | 0.6-2.0 | 0,15-0,19 | | | | | | 10-26 | | 0.20-0.6 | 0.10-0.18 | | | Denton (DeB)
| 1-3 | С | 0-13 | Silty Clay | 0.06-0.20 | 0.10-0.18 | | | , , | | | 13-19 | , | 0.06-0.6 | 0.10-0.18 | | | | | | 19-36 | | 0.20-2.0 | 0.10-0.14 | | | Fairy – FhC2 | 1-5 | В | 0-13 | Very Fine Sandy | 2.0-6.0 | 0.10-0.17 | | | · | | | 13-45 | Loam | 0.6-2.0 | 0.05-0.17 | | | Hico | | В | 0-12 | Fine Sandy | 2.0-6.0 | 0.10-0.15 | | | | | | 12-51 | Loam | 0.6-2.0 | 0.05-0.17 | | | Frio (FriA) | 0-1 | С | 0-22 | Silty Clay | 0.20-0.6 | 0.12-0.20 | | | , , | | | 22-40 | | 0.20-0.6 | 0.08-0.16 | | | Slidell (HoB) | 1-3 | D | 0-19 | Clay | .001-0.06 | 0.10-0.18 | | | | | | 19-32 | , | .001-0.06 | 0.10-0.18 | | | Hico (HwD3) | 1-8 | В | 0-7 | Sandy Clay | 2.0-6.0 | 0.11-0.13 | | | ,, | | | 7-44 | Loam | 0,06-2,0 | 0.11-0.13 | | | Windthorst | | С | 0-6 | Sandy Clay | 0.20-2.0 | 0.11-0.14 | | | | | | 6-16 | Loam | 0.20-0.6 | 0.15-0.19 | | | | | | 16-25 | | 0.20-0.6 | 0.16-0.20 | | | Topsey (LaB) | 1-3 | С | 0-7
7-27 | Loam | 0.6-2.0 | 0.12-0.17 | |----------------------|-----|---|-------------------------------|-----------------------|---|-------------------------------------| | | | | 7-2,7 | | 0,6-2,0 | 0.12-0.17 | | Maloterre (Ma) | 1-8 | D | 0-5
5-20 | Gravelly Clay
Loam | 0.6-2.0
0.06-2.0 | 0.14-0.16 | | May (MfB) | 1-3 | В | 0-16
16-42 | Fine Sandy
Loam | 2.0-6.0
0.6-2.0 | 0.11-0.15
0.12-0.20 | | Purves (PcB) | 1-3 | D | 0-8
8-12
12-14
14-40 | Clay | 0.06-0.20
0.06-0.6
0.06-0.6
0.06-2.0 | 0.12-0.20
0.08-0.18
0.04-0.07 | | Purves (PcC) | 3-5 | D | 0-7
7-12
12-17
17-40 | Clay | 0.06-0.20
0.06-0.6
0.06-0.6
0.06-2.0 | 0.12-0.20
0.08-0.18
0.04-0.07 | | Purves- (Pd) | | D | 0-8
8-12
12-24
14-24 | Stoney Clay | 0.06-0.20
0.06-0.6
0.06-0.6
0.06-0.6 | 0.11-0.20
0.08-0.18
0.04-0.07 | | Dugout | | D | 0-8
8-18
18-28 | Gravelly Clay
Loam | 0.20-0,6
0.20-0.6
0.06-2,0 | 0.06-0.15
0.07-0.16 | | Maloterre | | D | 0-8
8-18 | Gravelly Clay
Loam | 0.6-2.0
.001-0.06 | 0.06-0.11 | | Windthorst
(Wnc) | 1-5 | С | 0-10
10-38 | Loamy Fine
Sand | 6.0-2.0
0.20-0.6 | 0.06-0.13
0.10-0.20 | | Windthorst
(WoB) | 1-5 | С | 0-8
8-33 | Fine Sandy
Loam | 2.0-6.0
0.20-0.6 | 0.10-0.17
0.10-0.20 | | Windthorst
(WoB2) | 1-5 | С | 0-4
4-33 | Fine Sandy
Loam | 2.0-6.0
0.20-0.6 | 0.10-0.17
0.10-0.20 | The major soil series within each LMU are identified in Table 5.2. All soils at the site that have been identified by NRCS as being at high risk for various limitations are presented in Table 5.3. Associated best management practices will be implemented, as appropriate, based on physical and economic conditions. Table 5.2: Major Soil Types | LMU ID | | Major Soil Type | |-----------------|------------------------------|-----------------| | 1, 14 | Windthorst (WoB2) | | | 3 | Slidell (HoB) | | | 3A, 7, 9, 10 | Maloferre (Ma) | | | 1A, 2A, 5, 6, 8 | Purves-Dugout-Maloterre (Pd) | | | 4, 11 | Denton (DeB) | | | 12, 12A, 13 | Windthorst (WnC) | | | 2 | Clairette-Hassee (CtB) | | Table 5.3: Potential Soil Limitations for Land Application | Soil Series | Potential Soil Limitations | Best Management Practices | |--------------------------------|---|---| | BdC | Depth to Hard Bedrock
Slow Water Movement | Land Application not to exceed agronomic rates for nutrients and soil hydraulic rates (refer to NMP) Land Application will be based upon the AWC (refer to NMP) of the soil and will not exceed agronomic rates for nutrients. No land application to inundated soils | | Bu, FriA | Flooding | -No land application to inundated soils -Land Application not to exceed agronomic rates for nutrients and soil hydraulic rates (refer to NMP) -Maintain Clay Liners in RCS. | | DeB, HoB,
FhC2 | Slow Water Movement | Land Application not to exceed agronomic rates for
nutrients and soil hydraulic rates (refer to NMP) No land application to inundated soils | | CtB | Slow Water Movement
Depth to Saturated
Zone | Land Application not to exceed agronomic rates for
nutrients and soil hydraulic rates (refer to NMP) No land application to inundated soils | | LaB,
HwD3 | Depth to Soft Bedrock | Land Application will be based upon the AWC (refer to NMP) of the soil and will not exceed agronomic rates for nutrients. No land application to inundated soils | | Ма | Depth to Bedrock
Droughty | Land Application will be based upon the AWC (refer to NMP) of the soil and will not exceed agronomic rates for nutrients. No land application to inundated soils | | BsB, BsC,
BtB, MfB,
FhC2 | Seepage | -No land application to inundated soils -Land Application not to exceed agronomic rates for nutrients and soil hydraulic rates (refer to NMP) -Maintain Clay Liners in RCS. | | WnC | Filtering Capacity | -No land application to inundated soils -Land Application not to exceed agronomic rates for nutrients and soil hydraulic rates (refer to NMP) | | PcB, PcC | Droughty
Depth to Bedrock
Slow Water Movement | Land Application will be based upon the AWC (refer to NMP) of the soil and will not exceed agronomic rates for nutrients. Irrigation events will be managed to assist in maintaining soil moisture levels within the range of the available water holding capacity of that Land Management Unit. No land application to inundated soils | | Pd | Droughty
Depth to Bedrock
Slow Water Movement | Land Application will be based upon the AWC (refer to
NMP) of the soil and will not exceed agronomic rates for
nutrients. | | Soil Series | Potential Soil Limitations | Best Management Practices | | | | | | | |-------------|----------------------------|--|--|--|--|--|--|--| | | Large Stones on the | - Irrigation events will be managed to assist in | | | | | | | | | Surface | maintaining soil moisture levels within the range of the available water holding capacity of that Land | | | | | | | | | | Management UnitNo land application to inundated soils | | | | | | | #### 5.7.3 Erosion Figure 5.2 shows the onsite soils classified by NRCS as Highly Erodible Land (HEL), including Purves soils (PcB and PcC). LMUs will be protected with typical conservation farming practices within the standards of the NRCS. The following methods will be used to control/prevent erosion of exposed soils in the production area: - Seeding/sprigging exposed areas with forage or cover crops, - Constructing terraces or berms (shortening the length and steepness of slopes), - · Covering erosive areas with road surfacing materials, - Implementing reduced tillage practices, - Maintaining a cover of plants or crop residue. Map Generated 2/13/2025 LEGEND: Denotes Production Areas For specifies on soils, refer to Table 5.1 <u>Source</u>: USDA-NRCS. Soil Survey, Soil Survey Geographic Database for Erath County, Texas. Available at: http://soildatamart.nrcs.usda.gov. Accessed December 2017. Refer to Figures 1.3A-B & 1.4A-B for overall facility map. Grand Canyon Dairy Dublin, TX Erath County NRCS Soils Map Figure 5.2 Page 42 Enviro-Ag Engineering, Inc. ENGINEERING CONSULTANTS 3404 Airway Buillevard AMARILLO, TEXAS 70118 TEL (806) 353-6123 FAX (806) 353-4132 #### ARTIFICIAL FEATURES #### 5.8 Railroad Commission Records A search of the RRC database files was performed, and a search of the online RRC map viewer was conducted. No proposed locations or existing penetrations for oil and gas were identified on the subject property. Railroad Commission database information is included as an attachment to this document. #### 5.9 Ground Water Conservation District Records The Middle Trinity Groundwater Conservation District (GCD) was verbally contacted. Should an abandoned penetration be encountered anywhere on the subject property at any time, the penetration will be marked, inspected and properly sealed to prevent a potential impact to the underlying aquifer. Appropriate well plugging reports shall be submitted as required to the Texas Department of Licensing and Regulation (TDLR) and will be maintained in the onsite PPP. #### 5.10 GeoSearch GeoSearch was not utilized in this report. # 5.11 Texas Water Development Board Water Data Interactive (WDI) The TWDB WDI online database was reviewed for artificial penetrations. The database revealed water wells registered with the TWDB as being located on the subject property. The wells that could be correlated with onsite wells are shown on Table 5.4. #### 5.12 Natural Resource Conservation Service The historical NRCS Soil Survey of Erath County (1973) was reviewed for locations of potential recharge features. No potential recharge features were identified. #### 5.13 Other Artificial Features Numerous features, such as irrigation tail water pits and stock ponds, exist on the subject property and are shown to be buffered on Figures 5.3A-B. These areas shall be buffered during land application events or backfilled prior to the first land application event. The caliche pits located in LMUs #3A, #5, #6, #8 and #11 are protected with buffers from land application. # 5.14 Previous/Current Landowner Mr. Tim Miranda was contacted regarding then presence of any potential recharge features on the property. Mr. Miranda is considered the most knowledgeable about the
property. The previous landowner could not be located. Mr. Miranda confirmed the locations of all active water wells. # 5.15 Onsite Inspection The property has been inspected both on the ground and by historical mapping. All active water wells were documented on the property during the onsite inspection and are shown on Figures 5.3A-B. The BMPs for all wells are listed in Table 5.4. Should any open well or test hole be encountered, it will be marked, reported to the Engineer, included on Figure 5.3 and properly plugged (30 TAC §321.34(f)(3)(B)). Well plugging reports shall be submitted as required to the Texas Department of Licensing and Registration (Well Drillers Board) and will be maintained in the onsite PPP. All well data listed in Table 5.4 is based on information received from the water district, TCEQ and TWDB files, onsite inspection, and interviews of persons knowledgeable of the property. The map number corresponds to the location shown in Figures 5.3A-B. The well identification number corresponds to the database number or drilling report number used by the water district, TCEQ or TWDB Commission. Table 5.4: Well Information | Map No. | Well ID | Best Management Practices | |---------|---------|------------------------------------| | 1 | n/a | Maintain 150-ft buffer | | 2 | n/a | Maintain 150-ft buffer | | 3 | n/a | See Approved Well Buffer Exception | | 4 | n/a | See Approved Well Buffer Exception | | 5 | n/a | See Approved Well Buffer Exception | | 6 | 4221 | See Attached Plugging Report | | 7 | n/a | See Approved Well Buffer Exception | | 8 | 59975 | See Attached Plugging Report | | 9 | n/a | See Approved Well Buffer Exception | | 10 | n/a | Maintain 150-ft buffer | | 11 | n/a | Maintain 150-ft buffer | | 12 | 388094 | Maintain 100-ft buffer | | 13 | 28295 | Maintain 100-ft buffer | | 14 | 459112 | Maintain 100-ft buffer | | 15 | n/a | No evidence of well | | 16 | n/a | Maintain 100-ft buffer | | 17 | n/a | Maintain 100-ft buffer | | 18 | n/a | Maintain 100-ft buffer | | 19 | 3162901 | Maintain 100-ft buffe | | 20 | n/a | Maintain 100-ft buffer. | Note: A copy of the well logs for onsite wells are attached. No public water supply wells are located within 500 feet of the property boundary. All offsite wells within the required buffer distances required by this authorization are shown (on the Site Map) with their appropriate buffers. Wells outside the required buffer distances are shown for reference only. All irrigation systems or water distribution systems into which any type of chemical or foreign substance, such as wastewater, is distributed into the water pumped from the well are required by 16 TAC §76 to install an in-line, automatic quick-closing check valve capable of preventing pollution of groundwater. #### REFERENCES Ashworth and Hopkins, November 1995. Aquifers of Texas. Report 345, Texas Water Development Board. Bureau of Economic Geology, The University of Texas at Austin, Geologic Atlas of Texas - Abilene Sheet, 1972. Evans, Steve. USDA-ARS Bushland, Texas - Telephone Interview, 1996. Miranda, Tim Current Landowner Interview, April 2025. Sweeten, J.M. 1990. Cattle Feedlot Waste Management Practices for Water and Air Pollution Control. B-1671, Texas Agricultural Extension Service, Texas A&M University System, 24 pp. Texas Railroad Commission Files Search, April 2025. Texas Railroad Commission, GIS Data Viewer, Accessed April 2025. TCEQ and Texas Water Development Board, Files Search, April 2025. Texas Water Development Board. Water Information Integration & Dissemination. Retrieved April 2025, from http://wiiddev.twdb.state.tx.us/ USDA NRCS, Soil Survey of Erath County, Texas, 1973. USDA NRCS, National Soil Database, SSURGO digital soil data for Erath County, Texas, Retrieved April 2025. http://www.ftw.nrcs.usda.gov/ssur_data.html USDA-NRCS Electronic Field Office Technical Guide, Soil Information Database – Erath County, Texas, Retrieved April 2025. http://www.nrcs.usda.gov/technical/efotg. USGS. Groundwater Atlas of the United States. Oklahoma and Texas. HA_730E. http://capp.water.usgs.gov/gwa/ch_e/E_text8.html, March 2003. # **Supporting Documentation** USDA Soil Descriptions & Limitations Texas Railroad Commission Map Water District Well Location Map (if available) Onsite Well Logs (if available) # **Selected Soil Interpretations** This report allows the customer to produce a report showing the results of the soil interpretation(s) of his or her choice. It is useful when a standard report that displays the results of the selected interpretation(s) is not available. When customers select this report, they are presented with a list of interpretations with results for the selected map units. The customer may select up to three interpretations to be presented in table format. For a description of the particular interpretations and their criteria, use the "Selected Survey Area Interpretation Descriptions" report. # Report—Selected Soil Interpretations | Map symbol and soil
name | Pct.
of | AWM - Irrigation Disp
Wastewater | osal of | AWM - Land Application of
Municipal Sewage Sludge | | ENG - Sewage Lagoons | | |--|-------------|---------------------------------------|---------|--|-------|---------------------------------------|-------| | | map
unit | Rating class and
Ilmiting features | Value | Rating class and
limiting features | Value | Rating class and
limiting features | Value | | BaB—Blanket clay
foam, 1 to 3 percent
slopes | | | | | | | | | Blanket | 90 | Somewhat limited | | Somewhat limited | | Somewhat limited | | | | | Slow water movement | 0.37 | Slow water movement | 0.37 | Seepage | 0.50 | | BdC—Bolar-Denton
complex 3 to 5
percent slopes | | | | | | | | | Bolar | 55 | Somewhat limited | | Somewhat limited | | Very limited | | | | | Seepage, porous bedrock | 0.50 | Slow water movement | 0.37 | Depth to hard bedrock | 1.00 | | | | Slow water movement | 0.37 | Depth to bedrock | 0.07 | Seepage | 0.50 | | | | Too steep for surface application | 0.08 | | | Slope | 0.32 | | | | Depth to bedrock | 0.07 | | | | | | Denton | 35 | Very limited | | Very limited | | Very limited | | | | | Slow water movement | 1.00 | Slow water movement | 1.00 | Depth to hard bedrock | 1.00 | | | | Droughty | 0.44 | Droughty | 0.44 | Seepage | 0.50 | | | | Depth to bedrock | 0.01 | Depth to bedrock | 0.01 | Slope | 0.08 | | BsB—Bastsil fine
sandy loam, 1 to 3
percent slopes | | | | | | | | | Bastsil, fine sandy loam | 90 | Somewhat limited | | Somewhat limited | | Very limited | | | | | Too acid | 0.01 | Too acid | 0.01 | Seepage | 1.00 | | | | i e | | ons-Erath County, Tex | - | | | |--|-------------|---------------------------------------|---------|---|-------|---------------------------------------|-------| | Map symbol and soil
name | Pct.
of | AWM - Irrigation Disp
Wastewater | osal of | AWM - Land Applicat
Municipal Sewage S | | ENG - Sewage Lag | joons | | | map
unit | Rating class and
limiting features | Value | Rating class and
limiting features | Value | Rating class and
limiting features | Value | | BsC—Bastsil fine
sandy loam, 3 to 5
percent slopes | | | | | | | | | Bastsil, fine sandy
loam | 85 | Somewhat limited | | Somewhat limited | | Very limited | | | | | Too steep for surface application | 0.08 | Too acid | 0.01 | Seepage | 1.00 | | | | Too acid | 0.01 | | | Slope | 0.3 | | BtB—Bastsil loamy
fine sand, 1 to 3
percent slopes | | | | | | | | | Bastsil, loamy fine sand | 85 | Somewhat limited | | Somewhat limited | | Very limited | | | | | Too acid | 0.03 | Too acid | 0.03 | Seepage | 1.00 | | Bu—Bunyan fine
sandy loam,
occasionally flooded | | | | | | | | | Bunyan | 80 | Somewhat limited | | Very limited | | Very limited | | | | | Flooding | 0.60 | Flooding | 1.00 | Flooding | 1.00 | | | | | | | | Seepage | 0.50 | | CtB—Clairette-Hassee
very fine sandy
loams, 1 to 3
percent slopes | | | | | | | | | Clairette, very fine sandy loam | 50 | Somewhat limited | | Somewhat limited | | Somewhat limited | | | | | Slow water movement | 0.37 | Slow water movement | 0.37 | Seepage | 0.50 | | | | Too acid | 0.08 | Too acid | 0.08 | | | | Hassee, very fine
sandy loam | 40 | Very limited | | Very limited | | Very limited | | | | | Slow water movement | 1.00 | Slow water movement | 1.00 | Depth to saturated zone | 1.00 | | | | Depth to saturated zone | 1.00 | Depth to saturated zone | 1.00 | Seepage | 0.50 | | | | Droughty | 0.01 | Droughty | 0.01 | | | | CtC—Clairette loam, 3
to 5 percent slopes | | | | | | | | | Clairette, Ioam | 90 | Somewhat limited | | Somewhat limited | | Somewhat limited | | | | | Slow water movement | 0.37 | Slow water movement | 0.37 | Seepage | 0.50 | | | | Too steep for surface application | 0.08 | | | Slope | 0.32 | | | | Selected Soil Inti | erpretati | ons-Erath County, Tex | as | | | | |--|-------------|---------------------------------------|-----------|---|-------|------------------------------------|-------|--| | Map symbol and soil
name | Pct.
of | AWM - Irrigation Disp
Wastewater | osal of | AWM - Land Applicat
Municipal Sewage S | | ENG - Sewage Lagoons | | | | | map
unit | Rating class and
limiting features | Value | Rating class and
limiting features | Value | Rating class and limiting features | Value | | | DeB—Denton silty
clay, 1 to 3 percent
slopes | | | | | | | | | | Denton | 85 | Very limited | | Very limited | | Somewhat limited | | | | | | Slow water movement | 1.00 | Slow water movement | 1.00 | Seepage | 0.50 | | | | | Seepage, porous bedrock | 0.50 | | | Depth to hard bedrock | 0.26 | | |
FhC2—Fairy-Hico
complex, 1 to 5
percent slopes,
moderately eroded | | | | | | | | | | Fairy, moderately eroded | 4 5 | Very limited | | Very limited | | Very limited | | | | | | Slow water movement | 1.00 | Slow water movement | 1.00 | Seepage | 1.00 | | | | | Seepage, porous bedrock | 0.50 | | | Slope | 0.32 | | | | | Too steep for surface application | 0.08 | | | | | | | Hico, moderately
eroded | 35 | Not limited | | Not limited | | Very limited | | | | | | | | | | Seepage | 1.00 | | | | | | | | | Slope | 0.08 | | | FriA—Frio silty clay, 0
to 1 percent slopes,
occasionally flooded | | | | | | | | | | Frio, occasionally flooded | 85 | Somewhat limited | | Very limited | | Very limited | | | | | | Flooding | 0.60 | Flooding | 1.00 | Flooding | 1.00 | | | | | Slow water movement | 0.37 | Slow water movement | 0,37 | | | | | | | Seepage, porous bedrock | 0.30 | | | | | | | HoB—Slidell clay, 1 to
3 percent slopes | | | | | | | | | | Stidell | 85 | Very limited | | Very limited | | Not limited | | | | | | Slow water movement | 1.00 | Slow water movement | 1.00 | | | | | | | Selected Soil Inte | erpretat | lons–Erath County, Tex | as | | | |---|-------------|---------------------------------------|----------|---|-------|---------------------------------------|-------| | Map symbol and soil
name | Pct.
of | AWM - Irrigation Disp
Wastewater | osal of | AWM - Land Applicat
Municipal Sewage S | | ENG - Sewage Lag | oons | | | map
unit | Rating class and
limiting features | Value | Rating class and
ilmiting features | Value | Rating class and
limiting features | Value | | HwD3—Hico and Windthorst sandy clay loams, 1 to 8 percent slopes, severely eroded | | | | | | | | | Hico, severely eroded | 50 | Somewhat limited | | Somewhat limited | | Somewhat limited | | | | | Slow water movement | 0.96 | Slow water movement | 0.96 | Seepage | 0.50 | | | | Too steep for surface application | 0.08 | | | Slope | 0.32 | | Windthorst, severely eroded | 40 | Somewhat limited | | Somewhat limited | | Very limited | | | | | Slow water movement | 0.96 | Slow water movement | 0.96 | Depth to soft bedrock | 1.00 | | | | Depth to bedrock | 0.18 | Depth to bedrock | 0.18 | Slope | 0.08 | | | | Too acid | 0.08 | Shallow to densic materials | 0.18 | | | | | | Droughty | 0.03 | Too acid | 0.08 | | | | | | | | Droughty | 0.03 | | | | LaB—Topsey loam, 1
to 3 percent slopes | | | | | | | | | Topsey | 90 | Somewhat limited | | Somewhat limited | | Very limited | | | | | Droughty | 0.74 | Droughty | 0.74 | Depth to soft bedrock | 1.00 | | | | Depth to bedrock | 0.74 | Depth to bedrock | 0.74 | Seepage | 0.50 | | | | Slow water movement | 0.37 | Shallow to densic materials | 0.74 | | | | | | | | Slow water movement | 0.37 | | | | Ma—Maloterre
gravelly clay loam, 1
to 8 percent slopes | | | | | | | | | Maloterre | 80 | Very limited | | Very limited | | Very limited | | | | | Depth to bedrock | 1.00 | Depth to bedrock | 1.00 | Depth to hard bedrock | 1.00 | | | | Droughty | 1.00 | Droughty | 1.00 | Slope | 0.68 | | | | Seepage, porous bedrock | 0.50 | | | Seepage | 0.21 | | | | Too steep for surface application | 0,32 | | | | | | MfB—May fine sandy
loam, 1 to 3 percent
slopes | | | | | | | | | May, fine sandy loam | 90 | Not limited | | Not limited | | Very limited | | | | 10.14 | | | | | Seepage | 1.00 | | | | Selected Soil Inte | erpretati | ions–Erath County, Tex | as | | | | |---|-------------|---------------------------------------|-----------|---|-------|---------------------------------------|-------|--| | Map symbol and soil name | Pct. | AWM - Irrigation Disp
Wastewater | osal of | AWM - Land Applicat
Municipal Sewage S | | ENG - Sewage Lagoons | | | | | map
unit | Rating class and
limiting features | Value | Rating class and
limiting features | Value | Rating class and
Ilmiting features | Value | | | PcB—Purves clay, 1 to
3 percent slopes | | | | | | | | | | Purves | 89 | Very limited | | Very limited | | Very limited | | | | | | Droughty | 1.00 | Droughty | 1.00 | Depth to hard bedrock | 1.00 | | | | | Depth to bedrock | 1.00 | Depth to bedrock | 1.00 | | | | | | | Slow water movement | 1.00 | Slow water movement | 1.00 | | | | | | | Seepage, porous
bedrock | 0.50 | | | | | | | PcC—Purves clay, 3 to 5 percent slopes | | | | | | | | | | Purves | 89 | Very limited | | Very limited | | Very limited | | | | | | Droughty | 1.00 | Droughty | 1.00 | Depth to hard bedrock | 1.00 | | | | | Depth to bedrock | 1.00 | Depth to bedrock | 1.00 | Slope | 0.32 | | | | | Slow water movement | 1.00 | Slow water movement | 1.00 | | | | | | | Seepage, porous
bedrock | 0.50 | | | | | | | | | Too steep for surface application | 0.08 | | | | | | | Map symbol and soil name | Pct.
of | AWM - Irrigation Disp
Wastewater | osal of | AWM - Land Applica
Municipal Sewage S | | ENG - Sewage Lago | oons | |--|-------------|---------------------------------------|---------|--|-------|---------------------------------------|-------| | | map
unit | Rating class and
limiting features | Value | Rating class and
limiting features | Value | Rating class and
limiting features | Value | | Od—Purves-Dugout-
Maloterre complex,
1 to 20 percent
slopes | | | | | | | | | Purves, stony clay | 37 | Very limited | | Very limited | | Very limited | | | | | Droughty | 1.00 | Droughty | 1.00 | Depth to hard bedrock | 1.00 | | | | Depth to bedrock | 1.00 | Depth to bedrock | 1.00 | Slope | 0.08 | | | | Slow water movement | 1.00 | Slow water movement | 1,00 | | | | | | Large stones on the surface | 1.00 | Large stones on the surface | 1.00 | | | | | | Seepage, porous bedrock | 0.50 | | | | | | Dugout, gravelly clay
loam | 25 | Very limited | | Very limited | | Very limited | | | | | Depth to bedrock | 1.00 | Depth to bedrock | 1.00 | Depth to hard bedrock | 1.00 | | | | Droughty | 1.00 | Droughty | 1.00 | Slope | 0.68 | | | | Seepage, porous
bedrock | 0.50 | Slow water movement | 0.37 | Seepage | 0.21 | | | | Slow water movement | 0.37 | | | | | | | | Too steep for surface application | 0.32 | | | | | | Maloterre, gravelly
clay loam | 22 | Very limited | | Very limited | | Very limited | | | | | Slow water movement | 1.00 | Slow water movement | 1.00 | Depth to hard bedrock | 1.00 | | | | Depth to bedrock | 1.00 | Depth to bedrock | 1.00 | Slope | 0.32 | | | | Droughty | 1.00 | Droughty | 1.00 | | | | | | Seepage, porous
bedrock | 0,50 | | | | | | | | Too steep for surface application | 0.08 | | | | | | NnC—Windthorst
loamy fine sand, 1 to
5 percent slopes | | | | | | | | | Windthorst | 90 | Very limited | | Very limited | | Somewhat limited | | | | | Filtering capacity | 1.00 | Filtering capacity | 1.00 | Seepage | 0.50 | | | | Slow water movement | 0.37 | Slow water movement | 0.37 | Slope | 0.08 | | | | Too acid | 0.08 | Too acid | 0.08 | | | | v.Vi | | Selected Soil Into | erpretat | ons-Erath County, Tex | as | | | |--|-------------|---------------------------------------|----------|---|-------|---------------------------------------|-------| | Map symbol and soil
name | Pct.
of | AWM - Irrigation Disp
Wastewater | osal of | AWM - Land Applicat
Municipal Sewage S | | ENG - Sewage Lag | oons | | | map
unit | Rating class and
limiting features | Value | Rating class and
limiting features | Value | Rating class and
limiting features | Value | | WoB—Windthorst very
fine sandy loam, 1 to
5 percent slopes | | | | | | | | | Windthorst, very fine sandy loam | 85 | Somewhat limited | | Somewhat limited | | Somewhat limited | | | | | Slow water movement | 0.37 | Slow water movement | 0.37 | Depth to soft bedrock | 0.7 | | | | Too acid | 0.08 | Too acid | 0.08 | Seepage | 0.50 | | WoB2—Windthorst
fine sandy loam, 1 to
5 percent slopes,
moderately eroded | | | | | | | | | Windthorst,
moderately eroded | 85 | Somewhat limited | | Somewhat limited | | Somewhat limited | | | | | Slow water movement | 0.37 | Slow water movement | 0.37 | Depth to soft bedrock | 0.7 | | | | Too acid | 0.08 | Too acid | 0.08 | Seepage | 0.50 | ## **Data Source Information** Soil Survey Area: Erath County, Texas Survey Area Data: Version 21, Aug 30, 2024 #### **RUSLE2 Related Attributes** This report summarizes those soil attributes used by the Revised Universal Soil Loss Equation Version 2 (RUSLE2) for the map units in the selected area. The report includes the map unit symbol, the component name, and the percent of the component in the map unit. Soil property data for each map unit component include the hydrologic soil group, erosion factor Kf for the surface horizon, erosion factor T, and the representative percentage of sand, silt, and clay in the mineral surface horizon. Missing surface data may indicate the presence of an organic layer. ### Report—RUSLE2 Related Attributes Soil properties and interpretations for erosion runoff calculations. The surface mineral horizon properties are displayed or the first mineral horizon below an organic surface horizon. Organic horizons are not displayed. | | RUS | LE2 Rela | ted Attributes-Erath | County, | Texas | | | | |---|----------|----------------|----------------------|---------|----------|--------|-----------|--------| | Map symbol and soil name | Pct. of | Slope | Hydrologic group | Kf | T factor | Repre | sentative | value | | | map unit | length
(ft) | | | | % Sand | % Silt | % Clay | | BaB—Blanket
clay loam, 1 to 3 percent slopes | | | | | | | | | | Blanket | 90 | 298 | С | .32 | 5 | 25.0 | 44.0 | 31.0 | | BdC—Bolar-Denton complex 3 to 5 percent slopes | | | | | | | | | | Bolar | 55 | 180 | С | .20 | 2 | 34,0 | 36,0 | 30.0 | | Denton | 35 | 200 | D | .17 | 2 | 6.0 | 48.0 | 46.0 | | BsB—Bastsil fine sandy loam,
1 to 3 percent slopes | | | | | | | | | | Bastsil, fine sandy loam | 90 | 200 | В | .28 | 5 | 73.0 | 19.0 | 8.0 | | BsC—Bastsil fine sandy loam,
3 to 5 percent slopes | | | | | | | | | | Bastsil, fine sandy loam | 85 | 180 | В | .28 | 5 | 73.0 | 19.0 | 8.0 | | BtB—Bastsil loamy fine sand,
1 to 3 percent slopes | | | | | | | | | | Bastsil, loamy fine sand | 85 | 200 | В | .24 | 5 | 80.0 | 12.0 | 8.0 | | Bu—Bunyan fine sandy loam, occasionally flooded | | | | | | | | | | Bunyan | 80 | 98 | В | ,28 | 5 | 69.6 | 16.4 | 14.0 | | CtB—Clairette-Hassee very
fine sandy loams, 1 to 3
percent slopes | | | | | | | | | | Clairette, very fine sandy loam | 50 | 200 | С | .49 | 5 | 68.0 | 21.0 | 11.0 | | Hassee, very fine sandy loam | 40 | 200 | D | .55 | 5 | 68.0 | 19.0 | 13.0 | | | RUS | LEZ KOIZ | ted Attributes–Erath | County, | iexas | | | | |--|---------------------|-----------------|----------------------|---------|----------|--------|-----------|--------| | Map symbol and soil name | Pct. of
map unit | Slope
length | Hydrologic group | Kf | T factor | Repre | sentative | value | | | map um | (ft) | | | | % Sand | % Silt | % Clay | | CtC—Clairette loam, 3 to 5 percent slopes | | | | | | | | | | Clairette, Ioam | 90 | 180 | С | .37 | 5 | 44.0 | 36.0 | 20.0 | | DeB—Denton silty clay, 1 to 3 percent slopes | | | | | | | | | | Denton | 85 | 298 | С | .20 | 3 | 6.0 | 44.0 | 50.0 | | FhC2—Fairy-Hico complex, 1
to 5 percent slopes,
moderately eroded | | | | | | | | | | Fairy, moderately eroded | 45 | 180 | В | .55 | 5 | 68.0 | 26.0 | 6.0 | | Hico, moderately eroded | 35 | 200 | В | .28 | 5 | 65.0 | 24.0 | 11.0 | | FriA—Frio silty clay, 0 to 1
percent slopes, occasionally
flooded | | | | | | | | | | Frio, occasionally flooded | 85 | 98 | С | .20 | 5 | 10.0 | 46.0 | 44.0 | | HoB—Sildell clay, 1 to 3 percent slopes | | | | | | | | | | Slidell | 85 | 298 | D | .17 | 5 | 22,0 | 28.0 | 50.0 | | HwD3—Hico and Windthorst
sandy clay loams, 1 to 8
percent slopes, severely
eroded | | | | | | | | | | Hico, severely eroded | 50 | 180 | В | .24 | 4 | 64.0 | 11.0 | 25,0 | | Windthorst, severely eroded | 40 | 200 | С | .43 | 4 | 62.0 | 15,0 | 23.0 | | LaB—Topsey loam, 1 to 3
percent slopes | | | | | | | | | | Topsey | 90 | 200 | С | .17 | 3 | 37.0 | 37.0 | 26.0 | | Ma—Maloterre gravelly clay
loam, 1 to 8 percent slopes | | | | | | | | | | Maloterre | 80 | 161 | D | .28 | 1 | 31.0 | 35.0 | 34.0 | | MfB—May fine sandy loam, 1
to 3 percent slopes | | | | | | | | | | May, fine sandy loam | 90 | 200 | В | .17 | 5 | 70.0 | 17.0 | 13.0 | | PcB—Purves clay, 1 to 3 percent slopes | | | | | | | | | | Purves | 89 | 298 | D | .10 | 1 | 25.0 | 27.5 | 47.5 | | PcC—Purves clay, 3 to 5 percent slopes | | | | | | | | | | Purves | 89 | 180 | D | .15 | 1 | 25.0 | 27.5 | 47.5 | | | 1 | | | | 1 | | | | | |---|------------------|-------------------------|------------------|-----|----------|----------------------|--------|--------|--| | Map symbol and soil name | Pct. of map unit | Slope
length
(ft) | Hydrologic group | Kf | T factor | Representative value | | | | | | map unit | | | | | % Sand | % Silt | % Clay | | | Pd—Purves-Dugout-Maloterre
complex, 1 to 20 percent
slopes | | | | | | | | | | | Purves, stony clay | 37 | 200 | D | .10 | 1 | 25.0 | 27.5 | 47.5 | | | Dugout, gravelly clay loam | 25 | 161 | D | .28 | 1 | 30.0 | 42.0 | 28.0 | | | Maloterre, gravelly clay loam | 22 | 180 | D | .24 | 1 | 35.0 | 36.0 | 29.0 | | | WnC—Windthorst loamy fine sand, 1 to 5 percent slopes | | | | | | | | | | | Windthorst | 90 | 200 | С | .28 | 5 | 82.0 | 12.0 | 6.0 | | | WoB—Windthorst very fine sandy loam, 1 to 5 percent slopes | | | | | | | | | | | Windthorst, very fine sandy loam | 85 | 298 | C | .43 | 5 | 68.0 | 21.0 | 11.0 | | | WoB2—Windthorst fine sandy
loam, 1 to 5 percent slopes,
moderately eroded | | | | | | | | | | | Windthorst, moderately eroded | 85 | 298 | С | .28 | 5 | 67.0 | 21.0 | 12,0 | | ## **Data Source Information** Soil Survey Area: Erath County, Texas Survey Area Data: Version 21, Aug 30, 2024 # Physical Soil Properties This table shows estimates of some physical characteristics and features that affect soil behavior. These estimates are given for the layers of each soil in the survey area. The estimates are based on field observations and on test data for these and similar soils. Depth to the upper and lower boundaries of each layer is indicated. Particle size is the effective diameter of a soil particle as measured by sedimentation, sieving, or micrometric methods. Particle sizes are expressed as classes with specific effective diameter class (imits. The broad classes are sand, silt, and clay, ranging from the larger to the smaller. Sand as a soil separate consists of mineral soil particles that are 0.05 millimeter to 2 millimeters in diameter. In this table, the estimated sand content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter. Silt as a soil separate consists of mineral soil particles that are 0.002 to 0.05 millimeter in diameter. In this table, the estimated silt content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter. Clay as a soil separate consists of mineral soil particles that are less than 0.002 millimeter in diameter. In this table, the estimated clay content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter. The content of sand, silt, and clay affects the physical behavior of a soil. Particle size is important for engineering and agronomic interpretations, for determination of soil hydrologic qualities, and for soil classification. The amount and kind of clay affect the fertility and physical condition of the soil and the ability of the soil to adsorb cations and to retain moisture. They influence shrink-swell potential, saturated hydraulic conductivity (Ksat), plasticity, the ease of soil dispersion, and other soil properties. The amount and kind of clay in a soil also affect tillage and earthmoving operations. Moist bulk density is the weight of soil (ovendry) per unit volume. Volume is measured when the soil is at field moisture capacity, that is, the moisture content at 1/3- or 1/10-bar (33kPa or 10kPa) moisture tension. Weight is determined after the soil is dried at 105 degrees C. In the table, the estimated moist bulk density of each soil horizon is expressed in grams per cubic centimeter of soil material that is less than 2 millimeters in diameter. Bulk density data are used to compute linear extensibility, shrink-swell potential, available water capacity, total pore space, and other soil properties. The moist bulk density of a soil indicates the pore space available for water and roots. Depending on soil texture, a bulk density of more than 1.4 can restrict water storage and root penetration. Moist bulk density is influenced by texture, kind of clay, content of organic matter, and soil structure. Saturated hydraulic conductivity (Ksat) refers to the ease with which pores in a saturated soil transmit water. The estimates in the table are expressed in terms of micrometers per second. They are based on soil characteristics observed in the field, particularly structure, porosity, and texture. Saturated hydraulic conductivity (Ksat) is considered in the design of soil drainage systems and septic tank absorption fields. Available water capacity refers to the quantity of water that the soil is capable of storing for use by plants. The capacity for water storage is given in inches of water per inch of soil for each soil layer. The capacity varies, depending on soil properties that affect retention of water. The most important properties are the content of organic matter, soil texture, bulk density, and soil structure. Available water capacity is an important factor in the choice of plants or crops to be grown and in the design and management of irrigation systems. Available water capacity is not an estimate of the quantity of water actually available to plants at any given time. Linear extensibility refers to the change in length of an unconfined clod as moisture content is decreased from a moist to a dry state. It is an expression of the volume change between the water content of the clod at 1/3- or 1/10-bar tension (33kPa or 10kPa tension) and oven dryness. The volume change is reported in the table as percent change for the whole soil. The amount and type of clay minerals in the soil influence volume change. Linear extensibility is used to determine the shrink-swell potential of soils. The shrink-swell potential is low if the soil has a linear extensibility of less than 3 percent; moderate if 3 to 6 percent; high if 6 to 9 percent; and very high if more than 9 percent. If the linear extensibility is more than 3, shrinking and swelling can cause damage to buildings, roads, and other structures and to plant roots. Special design commonly is needed. Organic matter is the plant and animal residue in the soil at various stages of decomposition. In this table, the estimated content of organic matter is expressed as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter. The content of organic matter in a soil can be maintained by returning crop residue to the soil. Organic matter has a positive effect on available water capacity, water
infiltration, soil organism activity, and tilth. It is a source of nitrogen and other nutrients for crops and soil organisms. Erosion factors are shown in the table as the K factor (Kw and Kf) and the T factor. Erosion factor K indicates the susceptibility of a soil to sheet and rill erosion by water. Factor K is one of six factors used in the Universal Soil Loss Equation (USLE) and the Revised Universal Soil Loss Equation (RUSLE) to predict the average annual rate of soil loss by sheet and rill erosion in tons per acre per year. The estimates are based primarily on percentage of silt, sand, and organic matter and on soil structure and Ksat. Values of K range from 0.02 to 0.69. Other factors being equal, the higher the value, the more susceptible the soil is to sheet and rill erosion by water. *Erosion factor Kw* indicates the erodibility of the whole soil. The estimates are modified by the presence of rock fragments. Erosion factor Kf indicates the erodibility of the fine-earth fraction, or the material less than 2 millimeters in size. *Erosion factor T* is an estimate of the maximum average annual rate of soil erosion by wind and/or water that can occur without affecting crop productivity over a sustained period. The rate is in tons per acre per year. Wind erodibility groups are made up of soils that have similar properties affecting their susceptibility to wind erosion in cultivated areas. The soils assigned to group 1 are the most susceptible to wind erosion, and those assigned to group 8 are the least susceptible. The groups are described in the "National Soil Survey Handbook." Wind erodibility index is a numerical value indicating the susceptibility of soil to wind erosion, or the tons per acre per year that can be expected to be lost to wind erosion. There is a close correlation between wind erosion and the texture of the surface layer, the size and durability of surface clods, rock fragments, organic matter, and a calcareous reaction. Soil moisture and frozen soil layers also influence wind erosion. #### Reference: United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. (http://soils.usda.gov) # Report—Physical Soil Properties | | | | | | Phys | ical Soil Propert | es-Erath Cou | nty, Texas | | | | | | | |---|-------|-----------|-----------|-----------|---------------|------------------------|--------------------|---------------|-------------------|-----------------|-----|-----|---------------------|---------------------| | Map symbol and soil name | Depth | Sand | Silt | Clay | Moist
bulk | Saturated
hydraulic | Available
water | extensibility | Organic
matter | Erosion factors | | | Wind
erodibility | Wind
erodibility | | | | | | | density | conductivity | capacity | | | Kw | Kf | т | group | index | | | In | Pct | Pct | Pct | g/cc | micro m/sec | In/In | Pat | Pct | | | 100 | | | | BaB—Blanket
clay loam, 1
to 3 percent
slopes | | | | | | | | | - | | | | | | | Blanket | 0-14 | 20-25- 45 | 28-44- 53 | 27-31- 35 | 1.30-1.50 | 4.00-14.00 | 0.15-0.20 | 3.4-5.3 | 1.0-3.0 | .32 | .32 | 5 | 6 | 48 | | | 14-40 | 5-24-40 | 13-38- 60 | 35-38- 50 | 1.35-1.55 | 0.42-4.00 | 0.12-0.20 | 4.8-8.6 | 0.5-2.0 | .32 | .32 | | | | | | 40-56 | 5-28- 40 | 10-39- 68 | 27-33- 50 | 1.35-1,55 | 1.40-14.00 | 0.12-0.20 | 2.6-7.9 | 0.3-1.0 | .37 | .37 | | | | | | 56-80 | 5-35-40 | 10-37- 66 | 27-28- 50 | 1.35-1.55 | 1.40-14.00 | 0.12-0.20 | 2.6-7.9 | 0.1-0.8 | .43 | .43 | | | | | BdC—Bolar-
Denton
complex 3 to
5 percent
slopes | | | | | | | | | | | | | | | | Bolar | 0-16 | 20-34- 45 | 17-36- 53 | 27-30- 40 | 1.21-1.38 | 4,00-14.00 | 0.17-0.21 | 2.4-6.8 | 1.0-4.0 | .20 | .20 | 2 | 4L | 86 | | | 16-32 | 15-34- 45 | 15-36- 50 | 20-30-40 | 1.34-1.46 | 4.00-14.00 | 0.16-0.20 | 0.4-5.9 | 0.5-2.0 | .28 | .28 | | | | | | 32-36 | 15-34- 45 | 15-36- 50 | 20-30-40 | 1.38-1.56 | 4.00-14.00 | 0.12-0.16 | 0.3-5.5 | 0.3-1.0 | .17 | .32 | | | | | | 36-80 | - | - | - | - | 0.42-14.00 | · - | _ | - | | | | | | | Denton | 0-10 | 3- 6- 15 | 40-48- 57 | 40-46- 57 | 1.16-1.34 | 0.42-1.40 | 0.11-0.15 | 5.0-11.1 | 1.0-4.0 | .17 | .17 | 2 | 4 | 86 | | | 10-28 | 5-7-25 | 28-48- 60 | 35-45- 55 | 1.28-1.41 | 0.42-1.40 | 0.09-0.14 | 3.7-10.3 | 1.0-4.0 | .20 | .20 | | | | | | 28-32 | 5- 7- 25 | 28-48- 60 | 35-45- 55 | 1.31-1.41 | 0.42-1.40 | 0.09-0.13 | 2.7-9.4 | 0.5-2.0 | .32 | .32 | | | | | | 32-38 | 5- 7- 30 | 40-63-83 | 12-30- 40 | 1.36-1.45 | 4.00-14.00 | 0,08-0,12 | 0.0-5.2 | 0.1-1.0 | .43 | .43 | | | | | | 38-80 | - | - | - | - | 0.42-14.00 | _ | _ | _ | | | | | | | | | | | | Phys | ical Soil Properti | ies-Erath Cou | nty, Texas | | | | | | | |--|-------|-----------|-----------|-----------|---------------|------------------------|-----------------|-------------------------|-------------------|-----|-----------------|---|---------------------|---------------------| | Map symbol and soil name | Depth | Sand | Silt | Clay | Moist
bulk | Saturated
hydraulic | Available water | Linear
extensibility | Organic
matter | 1 - | Erosio
facto | | Wind
erodibility | Wind
erodibility | | | | | | | density | conductivity | capacity | | | Kw | Kf | Т | group | index | | | In | Pct | Pct | Pct | g/cc | micro m/sec | In/In | Pct | Pct | | | | | | | BsB—Bastsil
fine sandy
loam, 1 to 3
percent
slopes | | | | | | | | | | | | | | | | Bastsil, fine sandy loam | 8-0 | 55-73- 80 | 5-19- 39 | 5- 8- 20 | 1.49-1.54 | 14.00-42.00 | 0.12-0.16 | 0.5-2.9 | 0.5-1.5 | .28 | .28 | 5 | 3 | 86 | | | 8-15 | 55-73- 80 | 5-19-39 | 5-8-20 | 1.55-1.71 | 14.00-42.00 | 0.12-0.16 | 0.4-2.4 | 0.4-1.3 | .28 | .28 | | | | | | 15-34 | 40-50- 55 | 10-22-37 | 20-28- 35 | 1.48-1.58 | 4.00-14.00 | 0.12-0.16 | 2.1-4.6 | 0.3-0.8 | .28 | .28 | | | | | | 34-50 | 40-51- 55 | 10-24- 39 | 20-25- 35 | 1.51-1.68 | 4.00-14.00 | 0.12-0.16 | 2.3-4.5 | 0.1-0.3 | .28 | .28 | 1 | | | | | 50-80 | 40-55- 65 | 5-23-43 | 15-22- 30 | 1.60-1.66 | 4.00-42.00 | 0.11-0.16 | 1.6-3.8 | 0.0-0.3 | .28 | .28 | | | | | BsC—Bastsil
fine sandy
loam, 3 to 5
percent
slopes | İ | | | | | | | | | | | | | | | Bastsil, fine
sandy loam | 0-9 | 55-73- 80 | 5-19-39 | 5- 8- 20 | 1.49-1.54 | 14.00-42.00 | 0.12-0.16 | 0.5-2.9 | 0.5-1.5 | .28 | .28 | 5 | 3 | 86 | | | 9-15 | 55-73- 80 | 5-19-39 | 5- 8- 20 | 1.55-1.71 | 14.00-42.00 | 0.12-0.16 | 0.4-2.4 | 0.4-1.3 | .28 | .28 | ı | | | | | 15-38 | 40-50- 55 | 10-22- 37 | 20-28- 35 | 1.48-1.58 | 4.00-14.00 | 0.12-0.16 | 2.1-4.6 | 0.3-0.8 | .28 | .28 | | | | | | 38-69 | 40-51- 55 | 10-24- 39 | 20-25- 35 | 1.51-1.68 | 4.00-14.00 | 0.12-0.16 | 2.3-4.5 | 0.1-0.3 | .28 | .28 | | | | | | 69-80 | 40-55- 65 | 5-23-43 | 15-22-30 | 1.60-1.66 | 4.00-42.00 | 0.11-0.16 | 1.6-3.8 | 0.0-0.3 | .28 | .28 | | | | | | | | | | Phys | ical Soil Properti | ies–Erath Cou | nty, Texas | | | | | | | |--|-------|-----------|-----------|-----------|--------------------------|------------------------|-----------------|----------------------|-------------------|-----|-----------------|---|---------------------|---------------------| | Map symbol
and soil name | Depth | Sand | Silt | Clay | Moist
bulk
density | Saturated
hydraulic | Available water | Linear extensibility | Organic
matter | _ | Erosio
facto | | Wind
erodibility | Wind
erodibility | | | | | | | density | conductivity | capacity | | | Kw | Kf | Ţ | group | index | | | in | Pct | Pct | Pct | g/cc | micro m/sec | In/In | Pct | Pct | | | | | | | BtB—Bastsil
loamy fine
sand, 1 to 3
percent
slopes | | | | | | | | | | | | | | | | Bastsil, loamy fine sand | 0-6 | 70-80- 90 | 0-12- 20 | 3- 8- 12 | 1.54-1.63 | 14.00-141.00 | 0.07-0.11 | 0.1-1.3 | 0.3-1.0 | .24 | .24 | 5 | 2 | 134 | | | 6-17 | 70-80- 90 | 0-12-20 | 3- 8- 12 | 1.57-1.67 | 14.00-141.00 | 0.07-0.11 | 0.1-1.3 | 0.1-1.0 | .24 | .24 | | | | | | 17-27 | 40-50- 55 | 10-22-37 | 20-28-35 | 1.48-1.58 | 4.00-14.00 | 0.12-0.16 | 2.1-4.6 | 0.3-0.8 | .28 | .28 | | | | | | 27-60 | 40-51- 55 | 10-24- 39 | 20-25- 35 | 1.51-1.68 | 4.00-14.00 | 0.12-0.16 | 2.3-4.5 | 0.1-0.3 | .28 | .28 | | | | | | 08-09 | 40-55- 65 | 5-23-43 | 15-22- 30 | 1.60-1.66 | 4.00-42.00 | 0.11-0.16 | 1.6-3.8 | 0.0-0.3 | .28 | .28 | | | | | Bu—Bunyan
fine sandy
loam,
occasionally
flooded | | | | | | | | | | | | | | | | Bunyan | 0-10 | -70- | -16- | 8-14- 20 | 1.40-1.60 | 14.00-42.00 | 0.11-0.15 | 0.0-2.9 | 0.5-1.0 | .28 | .28 | 5 | 3 | 86 | | | 10-46 | -56- | -18- | 18-27- 35 | 1.30-1.50 | 4.00-14.00 | 0.15-0.19 | 0.0-2.9 | 0.1-1.0 | .20 | .20 | | | | | | 46-62 | -35- | -38- | 18-27- 35 | 1.40-1.60 | 4,00-14,00 | 0.18-0.22 | 0.0-2.9 | 0.1-1.0 | .32 | .32 | | | | | | | | | | Phys | ical Soil Propert | ies-Erath Cou | nty, Texas | | | | | | | |---|-------|-----------|----------|-----------|---------------|------------------------|--------------------|-------------------------|-------------------|-----|---------------|---|---------------------|---------------------| | Map symbol
and soil name | Depth | Sand | Silt | Clay | Moist
bulk | Saturated
hydraulic | Available
water | Linear
extensibility | Organic
matter | | rosi
facto | | Wind
erodibility | Wind
erodibility | | | | | | | density | conductivity | capacity | | | Kw | Kf | Т | group | index | | | in | Pct | Pct | Pct | g/cc | micro m/sec | In/In | Pct | Pct | | | | | | | CtB—Clairette-
Hassee very
fine sandy
loams, 1 to 3
percent
slopes | | | | | | | | | | | | | | | | Clairette, very
fine sandy
loam | 0-4 | 52-68- 80 | 2-21- 42 | 5-11- 18 | 1.42-1.60 | 14.00-42.00 | 0.10-0.17 | 0.2-1.5 | 0.5-2.0 | .49 | .49 | 5 | 3 | 86 | | | 4-10 | 35-49- 75 | 5-32- 50 | 10-19- 24 | 1,44-1.57 |
4.00-14.00 | 0.15-0.19 | 0.7-2.3 | 0.5-1.5 | .37 | .37 | | | | | | 10-26 | 20-31- 60 | 0-31- 48 | 32-38- 55 | 1.42-1.66 | 1.40-4.00 | 0.10-0.18 | 3.7-8.7 | 0.3-1.0 | .28 | .28 | i | | | | | 26-56 | 25-40- 60 | 0-27-53 | 18-33- 45 | 1.46-1.54 | 4.00-14.00 | 0.16-0.20 | 1.1-6.3 | 0.1-0.8 | .24 | .24 | | | | | | 56-74 | 25-47- 70 | 0-27-53 | 15-26- 45 | 1.54-1.64 | 4.00-14.00 | 0.12-0.13 | 0.8-6.2 | 0.1-0.6 | .28 | .28 | | | | | | 74-80 | 10-56- 75 | 0-27-73 | 10-17- 45 | 1.50-1.70 | 14.00-42.00 | 0.12-0.17 | 0.4-6.3 | 0.1-0.5 | .32 | .32 | | | | | Hassee, very
fine sandy
loam | 0-5 | 52-68- 80 | 0-19- 38 | 10-13- 20 | 1.54-1.58 | 4.00-14.00 | 0.10-0.14 | 0.4-2.4 | 0,5-1,5 | .55 | .55 | 5 | 3 | 86 | | | 5-14 | 35-68-75 | 5-17-45 | 10-15- 20 | 1.41-1,52 | 4.00-14.00 | 0.07-0,12 | 0.4-2.4 | 0.2-1.2 | .55 | ,55 | | | | | | 14-35 | 25-30- 50 | 7-27- 40 | 35-43- 50 | 1.40-1.53 | 0.01-0.42 | 0.06-0,10 | 5.8-10.4 | 0.5-1.2 | .32 | .32 | | | | | | 35-45 | 25-32- 55 | 0-24-45 | 30-44- 50 | 1,45-1,52 | 0.01-0.42 | 0,06-0,10 | 3.8-10.2 | 0.2-1.0 | .28 | ,28 | | | | | | 45-79 | 25-35- 55 | 4-26-45 | 30-39- 45 | 1,40-1,53 | 0.01-0.42 | 0.05-0,10 | 3.7-8.5 | 0.1-0.5 | .32 | ,32 | | | | | | | | | | Phys | ical Soil Propert | ies–Erath Cou | nty, Texas | | | | | | | |---|-------|-----------|----------|-----------|--------------------------|--|--------------------|-------------------------|-------------------|-----|----------------|---|---------------------|-------| | Map symbol
and soil name | Depth | Sand | Silt | Clay | Moist
bulk
density | Saturated
hydraulic
conductivity | Available
water | Linear
extensibility | Organic
matter | | Frosi
facto | | Wind
erodibility | Wind | | | | | | | delisity | Conductivity | capacity | | | Kw | Kf | Т | group | index | | | ln | Pct | Pct | Pct | g/cc | micro m/sec | in/In | Pct | Pct | | | - | | | | CtC—Clairette
loam, 3 to 5
percent
slopes | | | | | | | | | | | | | | | | Clairette, Ioam | 0-4 | 35-44- 75 | 9-36- 50 | 10-20- 24 | 1.47-1.62 | 4.00-14.00 | 0.15-0.19 | 0.7-2.3 | 0.5-1.5 | .37 | .37 | 5 | 6 | 48 | | | 4-10 | 35-49- 75 | 5-32- 50 | 10-19- 24 | 1.44-1.57 | 4.00-14.00 | 0.15-0.19 | 0.7-2.3 | 0.5-1.5 | .37 | .37 | | | | | | 10-26 | 20-31-60 | 0-31-48 | 32-38- 55 | 1.42-1.66 | 1.40-4.00 | 0.10-0.18 | 3.7-8.7 | 0.3-1.0 | .28 | .28 | | | | | | 26-56 | 25-40-60 | 0-27- 53 | 18-33-45 | 1.46-1.54 | 4.00-14.00 | 0.16-0.20 | 1.1-6.3 | 0.1-0.8 | .24 | .24 | | | | | | 56-74 | 25-47- 70 | 0-27- 53 | 15-26- 45 | 1.54-1.64 | 4.00-14.00 | 0.12-0.13 | . 0.8-6.2 | 0.1-0.6 | .28 | .28 | | | | | | 74-80 | 10-56- 75 | 0-27-73 | 10-17- 45 | 1.50-1.70 | 14.00-42.00 | 0.12-0.17 | 0.4-6,3 | 0.1-0.5 | .32 | .32 | 1 | | | | DeB—Denton
silty clay, 1 to
3 percent
slopes | | | | | | | | | | | | | | | | Denton | 0-13 | 0- 6- 20 | 40-44-60 | 40-50- 57 | 1.18-1.32 | 0.42-1.40 | 0.10-0.18 | 6.0-15.0 | 1.0-4.0 | ,20 | .20 | 3 | 4 | 86 | | | 13-19 | 0- 7- 20 | 40-43-63 | 35-50- 55 | 1.28-1.50 | 0.42-4.00 | 0.10-0.18 | 6.0-12.0 | 1.0-3.0 | .24 | .24 | | | | | | 19-36 | 5-15-30 | 40-60-75 | 20-25-40 | 1.40-1.65 | 1.40-14.00 | 0.10-0.14 | 0.8-5.4 | 0.1-1.5 | .43 | .43 | | | | | | 36-52 | 5-15-30 | 40-60-83 | 12-25- 40 | 1.40-1.65 | 1.40-14.00 | 0.08-0.12 | 0.1-5.1 | 0.1-1.0 | .49 | .49 | | | | | | 52-80 | .— | | _ | - | 0.42-14.00 | - | _ | _ | | | | | | | | | | | | Phys | ical Soil Properti | es-Erath Cou | nty, Texas | | | | | | | |--|-------|-----------|-----------|-----------|--------------------------|------------------------|--------------------|----------------------|-------------------|-----|------------------|---|---------------------|---------------------| | Map symbol
and soil name | Depth | Sand | Silt | Clay | Moist
bulk
density | Saturated
hydraulic | Available
water | Linear extensibility | Organic
matter | | irosio
iactor | | Wind
erodibility | Wind
erodibility | | | | | | | density | conductivity | capacity | | | Kw | Kf | Т | group | index | | | In | Pct | Pct | Pct | g/cc | micro m/sec | In/In | Pct | Pct | | | | | | | FhC2—Fairy-
Hico
complex, 1 to
5 percent
slopes,
moderately
eroded | | | | | | | | | | | | | | | | Fairy,
moderately
eroded | 0-13 | 52-68-80 | 6-26- 43 | 5- 6- 18 | 1.47-1.51 | 14.00-42.00 | 0.10-0.17 | 0.3-1.8 | 0.5-2.0 | .55 | .55 | 5 | 3 | 86 | | | 13-45 | 30-55- 75 | 0-21- 52 | 17-24- 34 | 1.40-1.60 | 4.00-14.00 | 0.05-0.17 | 1.3-4.6 | 0.3-1.3 | .24 | .24 | | | | | | 45-68 | 40-45- 90 | 0-33- 56 | 4-22- 31 | 1.50-1.66 | 4.00-42.00 | 0.05-0.17 | 0.0-2.8 | 0.1-0.5 | .32 | .32 | | | | | | 68-80 | 5-15- 75 | 0-43-53 | 5-42- 45 | 1.60-1.76 | 0.42-42.00 | 0.12-0.18 | 0.0-6.1 | 0.0-0.5 | .32 | .32 | | | | | Hico,
moderately
eroded | 0-12 | 55-65- 80 | 6-24- 39 | 6-11- 18 | 1.46-1.51 | 14.00-42.00 | 0.10-0.15 | 0.4-2.0 | 0.5-2.0 | .28 | .28 | 5 | 3 | 86 | | | 12-51 | 30-55-75 | 0-17-48 | 17-28- 34 | 1,44-1.64 | 4.00-14.00 | 0.05-0.17 | 1.7-4.4 | 0.3-1.3 | .20 | .20 | | | | | | 51-80 | 40-60-90 | 0-24- 50 | 4-16- 31 | 1.53-1.64 | 4.00-42.00 | 0.05-0.17 | 0.1-3.5 | 0.1-0.5 | .28 | .28 | | | | | riA—Frio silty
clay, 0 to 1
percent
slopes,
occasionally
flooded | | | | | | | | | | | | | | | | Frio,
occasionally
flooded | 0-22 | 2-10- 20 | 40-46- 58 | 40-44- 50 | 1,15-1,35 | 1.40-4.00 | 0.12-0.20 | 6.8-10.2 | 1.0-4.0 | .20 | .20 | 5 | 4 | 86 | | | 22-40 | 2-15-40 | 18-47-68 | 30-38- 50 | 1.30-1.55 | 1.40-4.00 | 0.08-0.16 | 3.6-10.0 | 1.0-2.0 | .32 | .32 | | | | | | 40-80 | 2- 9- 40 | 18-47- 68 | 30-44- 50 | 1.30-1.55 | 1,40-4.00 | 0.08-0.16 | 3.2-9.7 | 0.1-1,0 | .32 | .32 | | | | | | | W. | | | Phys | ical Soil Propert | ies-Erath Cou | nty, Texas | | | | | | | |---|-------|-----------|-----------|-----------|---------------|------------------------|--------------------|-------------------------|-------------------|-----|----------------|---|---------------------|---------------------| | Map symbol
and soil name | Depth | Sand | Silt | Clay | Moist
bulk | Saturated
hydraulic | Available
water | Linear
extensibility | Organic
matter | 1 | Erosi
facto | | Wind
erodibility | Wind
erodibility | | | | | | | density | conductivity | capacity | | | Kw | Kf | 7 | group | index | | | In | Pct | Pct | Pct | g/cc | micro m/sec | In/In | Pct | Pct | | | | | | | HoB—Slidell
clay, 1 to 3
percent
slopes | | | | | | | | | | | | | | | | Slidell | 0-19 | 0-22-35 | 20-28- 40 | 40-50-60 | 1.10-1.45 | 0.01-0.42 | 0.10-0.18 | 7.0-16.0 | 1.0-4.0 | .17 | .17 | 5 | 4 | 86 | | | 19-32 | 0-22-35 | 20-28-60 | 40-50-60 | 1.10-1.45 | 0.01-0.42 | 0.10-0.18 | 6.6-17.0 | 1.0-3.0 | .24 | .24 | | | | | | 32-49 | 0-22-35 | 20-28- 60 | 40-50-60 | 1.20-1.55 | 0.01-0.42 | 0.10-0.18 | 4.9-13.0 | 0.1-1.0 | .24 | .24 | | | | | | 49-80 | 0-22-35 | 20-28- 60 | 40-50-60 | 1.20-1.55 | 0.01-0.42 | 0.10-0.18 | 4.9-10.8 | 0.1-1.0 | .24 | .24 | | | | | Windthorst
sandy clay
loams, 1 to 8
percent
slopes,
severely
eroded | | | | | | | | | | | | | | | | Hico, severely
eroded | 0-7 | 59-64- 70 | 10-11- 18 | 20-25- 30 | 1.46-1.60 | 4.00-42.00 | 0.11-0.13 | 2.1-3.8 | 0.4-2.0 | .24 | .24 | 4 | 5 | 56 | | | 7-44 | 43-57-61 | 11-18- 23 | 18-25- 39 | 1.48-1.60 | 4.00-14.00 | 0.11-0.13 | 1.9-5.1 | 0.2-0.6 | .32 | .32 | | | | | | 44-60 | 33-66- 81 | 12-15- 42 | 4-19- 32 | 1.55-1.61 | 4.00-42.00 | 0.13-0.15 | 0.1-3.7 | 0.1-0.3 | .37 | .37 | | | | | | 60-79 | 26-61-85 | 8-27- 57 | 7-12- 25 | 1.76-1.88 | 0.42-4.00 | 0.01-0.03 | 0.5-2.7 | 0.0-0.2 | .64 | .64 | | | | | Windthorst,
severely
eroded | 0-6 | 46-62- 66 | 14-15- 27 | 20-23- 34 | 1.47-1.56 | 1.40-14.00 | 0.11-0.14 | 0.7-5.3 | 0.5-1.0 | .43 | .43 | 4 | 5 | 56 | | | 6-16 | 32-40- 43 | 16-24- 33 | 26-36- 43 | 1,35-1.51 | 1.40-4.00 | 0.15-0.19 | 3.8-5.6 | 0.5-1,0 | .37 | .37 | | | | | | 16-25 | 31-41- 52 | 16-26- 39 | 27-33- 38 | 1.39-1,55 | 1.40-4.00 | 0.16-0.20 | 3.2-5.6 | 0.3-0.8 | .37 | .37 | | | | | | 25-33 | 36-46- 59 | 19-32- 41 | 14-22- 30 | 1.35-1.60 | 1.40-4.00 | 0.15-0.19 | 2.0-5.0 | 0.1-0.4 | .55 | .55 | | | | | | 33-79 | 26-61- 85 | 8-27-57 | 7-12- 25 | 1.76-1.88 | 0.42-4.00 | 0.01-0.03 | 0.5-2.6 | 0.0-0,2 | .64 | .64 | 1 | | | | | | | | | Phys | ical Soil Propert | ies–Erath Cou | nty, Texas | | | | | | | |---|-------|-----------|-----------|-----------|--------------------------|------------------------|--------------------|-------------------------|-------------------|-----|----------------|---|------------------|---------------------| | Map symbol and soil name | Depth | Sand | Silt | Clay | Moist
bulk
density | Saturated
hydraulic | Available
water | Linear
extensibility | Organic
matter | 1 | Erosi
facto | | Wind erodibility | Wind
erodibility | | | 1, | | | | density | conductivity | capacity | | | Kw | Kf | Т | дгопр | index | | | In | Pct | Pct | Pct | g/cc | micro m/sec | In/In | Pct | Pct | | | | | | | LaB—Topsey
loam, 1 to 3
percent
slopes | | | | | | | | | | | | | | | | Topsey | 0-7 | 26-37- 44 | 29-37- 50 | 20-26- 27 | 1.07-1.40 | 4.00-14.00 | 0.12-0.17 | 1.3-4.0 | 2.0-8.0 | .17 | .17 | 3 | 4L | 86 | | | 7-27 | 15-34- 44 | 21-37- 59 | 20-29- 35 | 1.26-1.48 | 4.00-14.00 | 0.12-0.17 | 0.0-4.8 | 1.0-2.0 | .28 | .28 | | | | | | 27-80 | 15-17- 44 | 26-51- 55 | 30-32- 50 | 1.68-1,71 | 1.40-4.00 | 0.08-0.10 | 0.1-6.4 | 0.5-1.0 | .37 | .37 | | | | | Via—Maloterre
gravelly clay
loam, 1 to 8
percent
slopes | | | | | | | | | | | | | | | | Maloterre | 0-5 | 20-31- 45 | 20-35- 45 | 30-34- 40 | 1.37-1.39 | 4.00-14.00 | 0.14-0.16 | 2.6-5.6 | 0.5-1.0 | .15 | .28 | 1 | 5 | 56 | | | 5-20 | | - | - | - | 0.42-14.00 | _ | _ | | | | | | | |
MfB—May fine
sandy loam,
1 to 3 percent
slopes | | | | | | | | | | | | | | | | May, fine
sandy loam | 0-16 | 55-70- 80 | 2-17- 34 | 8-13- 18 | 1.35-1,60 | 14.00-42.00 | 0.11-0.15 | 0.7-2.2 | 0.5-2.0 | .17 | .17 | 5 | 3 | 86 | | | 16-42 | 35-57-70 | 5-18-35 | 18-25- 33 | 1.40-1.65 | 4.00-14.00 | 0.12-0.20 | 1.7-3.8 | 0.1-0.5 | .24 | .24 | | | | | | 42-50 | 35-57- 70 | 5-21-40 | 15-22- 33 | 1.45-1.70 | 4.00-14.00 | 0.11-0.20 | 1.3-3.7 | 0.1-0.5 | .28 | .28 | | | | | | 50-80 | 40-61-70 | 2-19-40 | 10-20- 30 | 1.45-1.70 | 4.00-42.00 | 0,10-0,18 | 0.8-3.0 | 0.1-0.3 | .28 | .28 | | | | | | | | | | Physi | ical Soil Properti | ies-Erath Cou | nty, Texas | | | | | | | |---|-------|---------|-----------|-----------|--------------------------|--|--------------------|-------------------------|-------------------|-----|-----------------|---|---------------------|---------------------| | Map symbol and soil name | Depth | Sand | Silt | Clay | Moist
bulk
density | Saturated
hydraulic
conductivity | Available
water | Linear
extensibility | Organic
matter | 1 | Erosio
facto | | Wind
erodibility | Wind
erodibility | | | | | | | uensity | conductivity | capacity | | | Kw | Kf | Т | group | index | | | In | Pct | Pct | Pct | g/cc | micro m/sec | ln/in | Pct | Pct | | | | | | | PcB—Purves
clay, 1 to 3
percent
slopes | | | | | | | | | | | | | | | | Purves | 8-0 | 8-25-40 | 7-28- 40 | 40-48-55 | 1.15-1.45 | 0.42-1.40 | 0.12-0.20 | 5.4-10.9 | 1.0-5.0 | .10 | .10 | 1 | 4 | 86 | | | 8-12 | 8-26-40 | 20-29- 54 | 35-45- 55 | 1.20-1.45 | 0.42-4.00 | 0.08-0.18 | 5.0-10.3 | 1.0-4.0 | .15 | .15 | | | | | | 12-14 | 8-26-40 | 20-29- 54 | 35-45- 55 | 1.20-1.45 | 0.42-4.00 | 0.04-0.07 | 1.0-6.9 | 1.0-3.0 | .05 | .17 | | | | | | 14-40 | _ | | - | | 0.42-14.00 | _ | _ | L - | | | | | | | PcC—Purves
clay, 3 to 5
percent
slopes | | | | | | | | | | | | | | | | Purves | 0-7 | 8-25-40 | 7-28- 40 | 40-48- 55 | 1.15-1.45 | 0.42-1.40 | 0.12-0.20 | 5.4-10.9 | 1.0-5.0 | .15 | .15 | 1 | 4 | 86 | | | 7-12 | 8-26-40 | 20-29- 54 | 35-45- 55 | 1.20-1.45 | 0.42-4.00 | 0.08-0.18 | 5.0-10.3 | 1.0-4.0 | .17 | .17 | i | | | | | 12-17 | 8-26-40 | 20-29- 54 | 35-45- 55 | 1.20-1.45 | 0.42-4,00 | 0.04-0.07 | 1.0-6.9 | 1.0-3.0 | .05 | .17 | | | | | | 17-40 | _ | · | 3-2 | | 0,42-14.00 | _ | = | | | | | | | | | | | | | Physi | cal Soil Properti | es-Erath Cou | nty, lexas | | | | | | | |--|-------|-----------|-----------|-----------|---------------|------------------------|--------------------|-------------------------|-------------------|-----|------------------|---|---------------------|------------------------------| | Map symbol
and soil name | Depth | Sand | Silt | Clay | Moist
bulk | Saturated
hydraulic | Available
water | Linear
extensibility | Organic
matter | | Erosio
factor | | Wind
erodibility | Wind
erodibility
index | | | | | | | density | conductivity | capacity | | | Kw | Kf | Т | group | muex | | | In | Pct | Pct | Pct | g/cc | micro m/sec | In/In | Pct | Pct | | | | | | | Dugout-
Dugout-
Maloterre
complex, 1 to
20 percent
slopes | | | | | | | | | | | | | | | | Purves, stony
clay | 8-0 | 8-25- 40 | 7-28- 40 | 40-48- 55 | 1.16-1.35 | 0.42-1.40 | 0.11-0.20 | 4.1-9.3 | 1.0-5.0 | .05 | .10 | 1 | 5 | 56 | | | 8-12 | 8-26-40 | 20-29- 54 | 35-45- 55 | 1.17-1.47 | 0.42-4.00 | 0.08-0.18 | 2.9-10.8 | 1.0-4.0 | .15 | .15 | | | | | | 12-14 | 8-26-40 | 20-29- 54 | 35-45- 55 | 1.21-1.47 | 0.42-4.00 | 0.04-0.07 | 1.0-7.3 | 1.0-3.0 | .05 | .17 | | | | | | 14-24 | - | - | - | - | 0.42-14.00 | _ | - | - | - | | | | | | Dugout,
gravelly clay
loam | 0-8 | 22-30- 42 | 28-42- 51 | 27-28- 35 | 1.31-1.47 | 1.40-4.00 | 0.06-0.15 | 1.9-5,4 | 1.0-2.0 | .15 | .28 | 1 | 5 | 56 | | | 8-18 | 20-23- 40 | 28-48- 60 | 15-29- 35 | 1.40-1.53 | 1.40-4.00 | 0.07-0.16 | 0.0-4.9 | 0.1-1.2 | .28 | .28 | | | | | | 18-28 | - | - | - | - | 0.42-14.00 | - | | - | | | | | | | Maioterre,
gravelly clay
loam | 0-8 | 30-35- 45 | 24-36- 43 | 27-29- 35 | 1.18-1.40 | 4.00-14.00 | 0.06-0.11 | 1.8-6.0 | 1.0-7.0 | .15 | .24 | 1 | 5 | 56 | | | 8-18 | _ | · | ш | | 0.01-0.42 | (| - | - | | | | | | | WnC—
Windthorst
loamy fine
sand, 1 to 5
percent
slopes | | | | | | | | | | | | | | | | Windthorst | 0-10 | 73-82- 90 | 0-12-24 | 3- 6- 15 | 1.40-1.65 | 42.00-141.00 | 0.06-0.13 | 0.2-1.2 | 0.5-2.0 | .28 | .28 | 5 | 2 | 134 | | | 10-38 | 30-46- 60 | 5-16- 35 | 35-38- 50 | 1.43-1.60 | 1.40-4.00 | 0.10-0.20 | 3.7-6.5 | 0.2-1.0 | .32 | .32 | | | | | | 38-50 | 30-46- 70 | 5-18-35 | 25-36- 50 | 1:38-1.60 | 1.40-14.00 | 0.10-0.20 | 2.3-6.5 | 0.2-1.0 | .37 | .37 | | | | | | 50-80 | 30-50- 75 | 5-25-40 | 15-25- 45 | 1.43-1.70 | 1.40-42.00 | 0.11-0.18 | 1.0-5.5 | 0.0-0.5 | .49 | .49 | | | | | | | | | | Physi | cal Soil Properti | es-Erath Cou | nty, Texas | | | | | | | |--|-------|-----------|------------------|-----------|---------------|------------------------|--------------------|-------------------------|-------------------|-----|-----------------|---|------------------|---------------------| | Map symbol and soil name | Depth | Sand | Silt | Clay | Moist
bulk | Saturated
hydraulic | Available
water | Linear
extensibility | Organic
matter | 1 - | rosio
facto: | | Wind erodibility | Wind
erodibility | | | | | | | density | conductivity | capacity | | | Kw | Kf | Т | group | index | | | in | Pct | Pct | Pct | g/cc | micro m/sec | In/In | Pct | Pct | | | | | | | NoB— Windthorst very fine sandy loarn, 1 to 5 percent slopes | | | | | | | | | | | | | | | | Windthorst,
very fine
sandy loam | 0-8 | 52-68- 80 | 5-21-40 | 5-11- 18 | 1,42-1.60 | 14.00-42.00 | 0.10-0.17 | 0.2-1.5 | 0.5-2.0 | .43 | .43 | 5 | 3 | 86 | | | 8-33 | 30-46-60 | 5-16-35 | 35-38- 50 | 1.43-1.60 | 1.40-4.00 | 0.10-0.20 | 4.4-7.6 | 0.2-1.0 | .28 | .28 | | | | | | 33-46 | 30-46-70 | 5 -18- 35 | 25-36- 50 | 1.38-1.60 | 1.40-14.00 | 0.10-0.20 | 2.4-7.6 | 0.2-1.0 | .32 | .32 | | | | | | 46-80 | 30-65- 75 | 0-25-53 | 5-10-45 | 1.45-1.70 | 1.40-42.00 | 0.11-0.18 | 0.1-6.5 | 0.0-0.5 | .55 | .55 | i | | | | WoB2— Windthorst fine sandy loam, 1 to 5 percent slopes, moderately eroded | | | | | | | | | | | | | | | | Windthorst,
moderately
eroded | 0-4 | 52-67- 80 | 5-21- 40 | 5-12- 18 | 1.42-1.60 | 14.00-42.00 | 0.10-0.17 | 0.3-1.5 | 0.5-2.0 | .28 | .28 | 5 | 3 | 86 | | | 4-33 | 30-46- 60 | 5-16- 35 | 35-38- 50 | 1.43-1.60 | 1.40-4.00 | 0.10-0.20 | 4.4-7.6 | 0.2-1.0 | .28 | .28 | I | | | | | 33-46 | 30-46-70 | 5-18-35 | 25-36- 50 | 1.38-1.60 | 1.40-14.00 | 0.10-0.20 | 2.4-7.6 | 0.2-1.0 | .32 | .32 | | | | | | 46-80 | 30-65-75 | 0-25-53 | 5-10-45 | 1.45-1.70 | 1.40-42.00 | 0.11-0.18 | 0.1-6.5 | 0.0-0.5 | .55 | .55 | | | | # **Data Source Information** Soil Survey Area: Erath County, Texas Survey Area Data: Version 21, Aug 30, 2024 Kathleen Harlineb White, Chairman Larry R. Soward, Commissioner H. S. Buddy Garcia, Commissioner Glenn Shankle, Executive Director ### TEXAS COMMISSION ON ENVIRONMENTAL QUALITY Protecting Texas by Reducing and Preventing Pollution October 1, 2007 #### CERTIFIED MAIL Mr. James Byer JB Grand Canyon Dairy, LP 8892 South U.S. Highway 397 Dublin, Texas 76446 Re: Well Buffer Exception Request, JB Grand Canyon Dairy Permit Number WQ0000295000 (CN 600479836) Dear Mr. Byer: The Water Quality Assessment (WQA) Team has reviewed the well buffer exception request for wells identified as Well #3. Well#4, Well #5, Well #6, and Well #7 in a letter dated September 25, 2007. The letter was signed and certified by Mr. Norman Mullin, P.E., and requested an exception to the buffer requirements for these existing facility wells. Additional protective measures for the wells identified by Mr. Mullin include: a concrete surface slab on all wells and gradients sloping away from the wells. Mr. Mullin also indicates that all wells are located topographically upgradient from the confinement pens and retention control structures (RCS). Well #3 is identified as being located south and upgradient of RCS #6, and within a building. Well #4 is a windmill described as located south and upgradient of the confinement pens. Well #5 is identified as located south and upgradient of the confinement pens, and within a building. Well #6 is located adjacent to the parlor, and will be plugged. Well #7 is located upgradient of the pens and has a concrete surface slab. The WQA Team approves the well buffer exception request for wells Well #3, Well #4, Well #5, Well #6, and Well #7 provided all additional protective measures listed above are maintained. Well #6 shall be properly plugged within 30 days of permit issuance per 16 TAC §76.1004. A copy of the well plugging report shall be maintained in the facility files, and submitted to the Land Application Team (MC-148), Water Quality Assessment Team (MC-150), and Region 4 Office (R-4). Additionally, regular inspections around the wells shall be made in order to ensure that no runoff or wastes are encreaching upon the well head. Mr. James Byer Page 2 October 1, 2007 This approval letter and all supporting documentation must be kept on-site and made available to Texas Commission on Environmental Quality (TCEQ) personnel upon request. If you have any questions, please contact me by phone at (512) 239-3555. Sincerely, Stephanie Saldaña, P.G. Water Quality Assessment Team Water Quality Division Texas Commission on Environmental Quality SS/jp cc: Mr. Norman Mullin, Enviro-Ag Engineering, 3404 Airway Blvd., Amarillo, Texas 79118 Bryan W. Shaw, Ph.D., P.E., Chairman Toby Baker, Commissioner Zak Covar, Commissioner Richard A. Hyde, P.E., Executive Director # TEXAS COMMISSION ON ENVIRONMENTAL QUALITY Protecting
Texas by Reducing and Preventing Pollution 91 7108 2133 3935 1987 S515 February 11, 2014 #### CERTIFIED MAIL Circle 7 Dairy LLC JB Grand Canyon Dairy 2179 County Road 308 Dublin, Texas 76446 Re: Well Buffer Exception Request, Permit No. WQ0002950000, Circle 7 Dairy LLC/ Grand Canyon Dairy, Erath County (CN 604036954; RN 100794155) Dear Sir or Madam: The Water Quality Assessment (WQA) Team of the Texas Commission on Environmental Quality (TCEQ) has reviewed a well buffer exception request submitted on your behalf by Enviro-Ag Engineering, Inc. for one onsite water well identified as Well #9. The buffer exception request was signed and sealed by Mr. Norman Mullin, P.E. The buffer exception request indicates that the well does not meet the specified well buffer distance from the facility open lots. Protective measures for the wells identified by Mr. Mullin include a concrete surface slab. The TCEQ approves the well buffer exception for Well #9 provided it is protected in accordance with the recharge feature evaluation and certification required by 30 Texas Administrative Code (TAC), Chapter 321.34(f)(3). If you choose not to maintain the protective measures, the required buffer distances, in accordance with 30 TAC 321.38(b), for the wells must be implemented. Annual inspections around the well shall be made in order to ensure no runoff or wastes encroach upon the well. This approval letter and all supporting documentation must be kept on-site and made available to TCEQ personnel upon request. If you have any questions, please contact me by phone at (512) 239-4591 or by e-mail at Lynda.Clayton@tceq.texas.gov. Sincerely, Lynda Clayton, Team Leader Water Quality Assessment Team (MC-150) Water Quality Division mulle cc: Mr. Norman Mullin, P.E. Enviro-Ag Engineering, Inc., 3404 Airway Boulevard, Amarillo, Texas 79118 ## STATE OF TEXAS PLUGGING REPORT for Tracking #59975 Owner: **Grand Canyon Dairy** 8 Owner Well #: Address: 8892 S US 377 Dublin, TX 76446 31-62-9 Well Location: 2179 CR 308 Latitude: Grid #: 32° 01' 15" N Dublin, TX 76446 Longitude: 098° 17' 03" W Well County: **Erath** Elevation: No Data Well Type: Withdrawal of Water Drilling Information Company: No Data Date Drilled: No Data Driller: Unknown License Number: No Data Borehole: Diameter (in.) 4 Top Depth (ft.) Bottom Depth (ft.) 67 Plugging Information Date Plugged: 5/13/2009 Plugger: Jim Beyer/Landowner Plug Method: Tremmie pipe bentonite from bottom to 2 feet from surface, cement top 2 feet Casing Left in Well: Plug(s) Placed in Well: | Dla (in.) | Top (ft.) | Bottom (ft.) | |-----------|-----------|--------------| | 4 | 6 | 67 | | Top (ft.) | Bottom (ft.) | Description (number of sacks & material) | |-----------|--------------|--| | 0 | 6 | 3 Cement | | 6 | 67 | 7 Bentonite Chips | Certification Data: The driller certified that the driller plugged this well (or the well was plugged under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the reports(s) being returned for completion and resubmittal. Company Information: Landowner Plugged 8892 S US 377 Dublin, TX 76446 Driller Name: Jim Beyer License Number: N/A Comments: **^EO** #### **Public GIS Viewer Legend** | Well | Number | 1970 | Water Supply from Oil / Gas | |-----------------|-------------------------------------|-----------------------|--| | | . 1. 1. | e-0 | Observation | | Well | Locations Permitted Location | | Observation from Oil | | ò | Dry Hole | 10.0 | Observation from Gas | | | Dil | *6. | Observation from Oil / Gas | | | | 0 | Storage | | XX. | Gas | No | Service | | | Oil / Gās | | Service from Oil | | • | Plugged Oil | Ď | Service from Gas | | D. | Plugged Gas | | Service from Oil / Gas | | Ø. | Canceled / Abandoned Location | (4) | Storage from OII / Gas | | * | Plugged Oil / Gas | 8 | Injection / Disposal from Storage | | d | Injection / Disposal | - | Injection / Disposal from Storage | | ø | Core Test | (4) | Oil | | ø | Sulfur Test | · · | Injection / Disposal from Storage Gas | | () | Storage from Oil | | | | Φ | Storage from Gas | • | Injection / Disposal from Storage
Oll / Gas | | • | Shut-In Oil | 300 | Observation from Storage | | Ų. | Shut-In Gas | 16 | Observation from Storage / Oll | | ¥. | Injection / Disposal from Oil | 160 | Observation from Storage / Gas | | N. | Injection / Disposal from Gas | 1983 | Observation from Storage / Oil / | | * | Injection / Disposal from Oil / Gas | | Gas | | ٥ | Geothermal | **@ | Service from Storage | | МО | Brine Mining | | Service from Storage / Oll | | v _{ci} | Water Supply | () | Service from Storage / Gas | | | Water Supply from Oil | ' (() | Service from Storage / Oll / Gas | | Óφ | Water Supply from Gas | (4) | Plugged Storage | | | | | Plugged Storage / Oil | | | | | Page 1 | | | | | | #### **Public GIS Viewer Legend** ¹ <a>⊕ Storage / Brine Mining / Oil Plungerl Storage / Gas 🦐 Storage / Brine Mining / Gas (10) Plugged Storage Oil / Gas ြာ Brine Mining ** Storage / Brine Mining / Oil / Gas Injection / Disposal from Storage / Brine Mining Brine Mining / Oil ®♥ Brine Mining / Gas Injection / Disposal from Storage / Brine Mining / Oil ** Brine Mining / Oil / Gas Injection / Disposal from Storage / Brine Mining / Gas Injection / Disposal from Brine Mining Injection / Disposal from Brine Mining / Oil Injection / Disposal from Storage / Brine Mining / Oil / Gas Observation from Storage / Brine Mining Injection / Disposal from Brine Mining / Gas Injection / Disposal from Brine Mining / Oil / Gas Observation from Storage / Brine Mining / Oil Observation from Storage / Brine Mining / Gas NO Observation from Brine Mining Observation from Brine Mining / Observation from Storage / Brine Mining / Oil / Gas Observation from Brine Mining / Gas ¹⁹⊚ Plugged Storage / Brine Mining Plugged Storage / Brine Mining / Observation from Brine Mining / Oil / Gas Plugged Storage / Brine Mining / Gas No Service from Brine Mining .. Service from Brine Mining / Oil Plugged Storage / Brine Mining / Oll / Gas #¢ Service from Brine Mining / Gas Service from Brine Mining / Oil / Gas Orphan Wells ā 🛊 Plugged Brine Mining Commercial Disposul Plugged Brine Mining / Oil Injection/Disposal 10 Plugged Brine Mining / Gas Plugged Brine Mining / Oll / Gas ** Storage / Brine Mining of 3 Page 2 of 3 HCTS Deeper than 15,000 ft. 2 #### **Public GIS Viewer Legend** High Cost Tight Sands | High Cost Tight Sands | | |------------------------------|---| | | Alert Areas | | EOR H13 Oil Wells | | | | Water | | Well Logs | (3) | | | City Limits | | Horiz/Dir Surface Locations | П | | (*) Horizontal Well | Counties | | Directional Well | | | Horizontal/Directional Lines | Operator Cleanup Program Sites | | = | • Active | | LPGAS Sites | △ Closed | | @ | Voluntary Cleanup Program Sites | | QPipalines | VCP, Accepted | | | VCP, Closed | | Pipelines | Brownfield Response Program Sites | | | | | Bay Tracts | Brownfield, Accepted | | | 37 Brownfield, Closed | | Offshore Areas | Commercial Waste Disposal Sites & | | | Discharge Permits | | Offshore Tracts | Commercial Waste Disposal | | | Discharge Permits | | Water Lines | Oil and Gas Districts | | - | | | Subdivisions | AED Districts | | | | | Rallroads | Pipeline Safety Regions | | + | Figure Select Regions | | Surveys | | | | | | Quada | | | | | Page 3 of 3 April 9, 2025 Source: Esri, Maxar Earthstar Geographics, and the GIS User Community Grand Canyon Dairy 2025 April 9, 2025 Source: Esri, Maxar, Earthstar Geographics, and the GIS User Community # STATE OF TEXAS PLUGGING REPORT for Tracking #44221 Owner: JW Grand Canyon Dairy Owner Well #: No Data Address: 2179 CR 308 Grid #: 31-62-9 Well Location: Dublin, TX 76446 Latitude: 32° 01' 31" N 2179 CR 308 (next to back) Dublin, TX 76446 Longitude: 098° 16' 05" W Well County: Erath Elevation; No Data Well Type: Withdrawal of Water Drilling Information Company: No Data Date Drilled: No Data Driller: No Data License Number: No Data Borehole: No Data Plugging Information Date Plugged: 11/8/2007 Plugger: Colton Aardal Plug Method: Tremmie pipe bentonite from bottom to 2 feet from surface, cement top 2 feet Casing Left in Well: | Dla (in.) | Top (ft.) | Bottom (ft.) | |-----------|-----------|--------------| | 8.625 | 0 | 380 | Plug(s) Placed in Well: | Top (ft.) | Bottom (ft.) | Description (number of sacks & material) | |-----------|--------------|--| | 1 | 10 | 4 Portland | | 10 | 330 | 33 Bentonite Grout | | 330 | 380 | 10 Portland | Certification Data: The driller certified that the driller plugged this well (or the well was plugged under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the reports(s) being returned for completion and resubmittal. Company Information: **Associated Services** PO Box 16 Stephenville, TX 76401 Driller Name: Colton a\Aardal License Number: 55034 Comments: Pumped 10 sacks of cement into perforations and filled up to 10' below surface w/ez seal. Cut casing off even concrete ally way. **^EO** | STATE OF TEXAS WELL REPORT for Tracking #388094 | | | | | | | | |---|---------------------------------|---------------|------------------------|--|--|--|--| | Owner: | Tim Miranda | Owner Well #: | No Dala | | | | | | Address; | 2179 CR 308
Dublin, TX 76446 | Grid #: | 31-62-9 | | | | | | Welf Location: | 2179 CR 306 | Latitude, | 32° D1° 10" N | | | | | | Prem GCA.041011. | Dublin, TX 76446 | Langilude: | 098" 16' 5 9" W | | | | | | Well County: | Erath | Elevation: | No Date | | | | | | Type of Work: | New Well |
Proposed Use: | irrigution | | | | | Drilling Start Date: 12/24/2014 Drilling End Date: 1/30/2015 Submersible Jelled Packers: Type of Pump: Plug Information: 4/W2095 9:47:27 PM | | Charrener | Ski J | ן דון ו/יקטס מעו | Ballom Dapih (it | 9 | | |------------------------|---------------------|------------------|---------------------------------------|---|------------|--| | Borahole: | 12.25 | | 5 503 | | - 1 | | | Orilling Method: | Mud (Hydrauli | c) Rolary | | | | | | Borchole Completion: | Filter Packed | | | | | | | | Top Dopin (/i.) | Botton Depth (0) | Father 6 | Anterial | Star | | | Filter Pack Intervals: | 200 | 503 | Gravel | | 25" | | | | fora Diagnill (ff) | Hylians Depth (| n) in | mission (mandar of each) | A manerol) | | | Annular Seel Data: | 0 | - 5 | 2 Com | | ine | | | | 5 | 300 | | 28 Benionite | | | | Scal Method: E: | xterior Posttive | | Distance to Pr | operty Line (ft.): 55 | | | | Scaled By: De | owell | | Distance to Septi
concentrated con | ic Field or other
niemination (fl.): 200 | + | | | | | | Distance to : | Soplic Tank (N.): No | Data | | | | | | Melho | d of Verification; Ow | 114F | | | Surface Comptellon: | Unknown | | | | | | Pump Depth (ft.): 462 Fair Mopili (R.) Belfom Dopin (h.) Page Fof 3 Yield: 220 GPM with 150 ft. drawdown after 3 hours IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY TEX. DCC: CODE Title-12, Chapter 1901-251, authorizes the owner (owner or the person for whom the well was disjoint to keep information in Well Reports confidential. The Department shall hall the containts of the well op Well Report Tracking Number 388094 Submitted on: 2/13/2015 Official M (number of sacks & material) N/A Please include the reports Tracking Number on your written request. Texes Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 334-5546 Skrata Emperi itt J Weler Type Water Quality: 345 Fresh Chemical Analysis Made: No Did the driller knowingly penetrate any strata which contained injurious constituents?: No The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are two and correct. The driller inderstood that failure is complete the required items will result in the report(s) being returned for completion and required items will result in Certification Data: Company Information: Dowell Well Service P.O. Box 492 Stephenville, TX 76401 License Number: 1891 Oriller Name: Mark Dowell No Date Comments: | atrip | IIDIY & COL | OR OF FORMATION MATERIAL | BLANK PIPE & WELL SCREEN DATA | |-----------|--------------|---|---| | 0,0 (fl.) | Bolfom (ff.) | Description | (IIII. firs.) However Types Setting From To (II.) | | Ď | 2 | Brown Clay | 8 5/8 N Steel Blank 482-503 .188" Wall | | 2 | 48 | Cafiche | 8 5/8 N SS Screen 449-482 , 188" Wall | | 46 | 247 | Shale/Lknustone | 8 5/8 N Steel Blank 419-440 .188" Wall | | 247 | 325 | Black Shale | 8 5/8 N SS Screen 398-419 .186" Wall | | 325 | 345 | Blue Clay | 8 5/8 N Steel Blank 0-396 -186" Wall | | 345 | 406 | Send and Gravel | | | 405 | 411 | Clay | | | 411 | 415 | Sand | | | 415 | 417 | Clay | | | 417 | 420 | Sand | | | 420 | 410 | Clay | | | 430 | 442 | Red and Blue Clay | | | 442 | 447 | Sand with Sandstone streaks | | | 447 | 454 | Blue Ciny | | | 454 | 460 | Sand | | | 450 | 482 | Sand and Gravel with
Sandstone Streaks | | | 452 | 503 | Tan Clay | | 4/8/2026 2:47:27 PM Well Report Tracking Number 368094 Submitted on: 2/13/2016 Page Z of 3 4/w/2005 2:47:27 PM Wall Report Tracking Number 388094 Submitted on: 2132019 Page 3 of 3 | Owner: | Tim Miranda | Owner We #; | No Data | |--|--|---------------|------------------| | Address; | 2179 County Road 308
Dublin, TX 75446 | Grld #: | 31-62-9 | | Vell Location: County Road 308
Dublin, TX 78445 | , | Latitude: | 32° 01' 45.8" N | | | | Longitude; | 098* 16' 15,6" W | | Ne∎ County: | Eralh | Elevation: | No Dale | | vipe of Work; | Naw Well | Proposed Use: | Irrigation | Orllling Start Date: 4/28/2017 Orlling End Date: 6/10/2017 | | Diameter | (n) | Τορ Διερέα (ή') | Boltom Depth (ff.) | | | | |-----------------------|----------------|--------------------|------------------|--------------------|------|--|--| | Gorshole: | 12.25 0 404 | | | | | | | | Orlifing Method: | Mud (Hydraul | lc) Rotary | | | | | | | Borchole Completion: | Filler Packed | | | | | | | | | Top DapNi (V.) | Holling Depth of a | Filter Minter | | Sign | | | | Filler Pack Intervals | Hab | 1467 | | | 4.00 | | | | | LUNG EMILIAN III.3 | triumpe bedim on a | Cinii assilisi | 10000 | |------------------------|--------------------|-----------------------|------------------------|--------------------| | Filler Pock Intervals: | 200 | 404 | Gravel | ,25" | | | Top Depth (0.) | Analysis (Selver Nr.) | Description intender o | Sarka & majerjerji | | Annular Seel Deta: | .0 | 3 | Coment 2 Ba | ga/Sacks | | | 3 | 200 | 200 Bentonite 22 | | Distance to Property Line (ft.): 110+ Seal Method: Tremle Distance to Seplic Field or other concentrated contamination (ft.); 110+ Sasied By: Driller Distance to Septic Tank ((L): 110+ Surface Completion: Steel Cased Surface Completion by Driller Method of Verification: sight Water Lovel: 250 ft, below land surface, and 9 GPM artesian flow on 2017-08-16 Measurement Method: Air Line Packers: No Data Type of Pump: Submaralbia Well Tests: Yield: 90 GPM with 140 ft. drawdown after 1 hours Pump 4/9/2025 FO:40:17 AM Well Report Tracking Number 459112 Submitted on: 9/1/9917 Phys 1 of 2 IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY TEX. OCC. CODE Tille 12, Chapter 1901 251, authorizes the owner (cwincr or the person for whom the well was difficilled to keep Information in Well Requiris confidential. The Department shall hold the contents of the well tog confidential and not a matter of public record if it vectories to certified mell, a wetton requires to do on tron the owner. Please include the report's Tracking Number on your written request. Taxes Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 334-5540 Strate Clepth (#.) Water Type Water Quality: 200 - 390 Trinity Chemical Analysis Made: No Did the driller knowingly ponetrale any strata which contained injurious constituents?; No The driller certified that the driller drilled this woll (or the well was drilled under the driller's direct supervision) and that such and all of the statements harein are true and correct. The driller understood that failure to complete the required items will result in the report(a) being returned (or completion and resubmittal. Company Information: Dowell Well Service PO Box 492 Slephenville, TX Justin Dowali License Number: 56055 Comments: No Dela | ESCRIP | TON & COL | Liihology:
OR OF FORMATION MATERIAL | | BLANK | Cesin
PIPE & WELI | | DATA | | |---------|----------------|---|-------------|--------|----------------------|------------------|-----------|-----------------| | Tup (1) | Elaiforn (ft.) | Description | CNs
On.1 | Турэ | Majorini | Sch/Gagn | Top (ff.) | Bolforr
(A.) | | 0 | 1 | Topsoti | 8.63 | Blank | New Steel | 188wall
0.030 | D | 284 | | 1 | 4 | Ten Sandy Clay | | | New | 0,030 | - | | | 4 | 40 | Blue sandy clay with sand streaks | 8.63 | Бстифп | Stafolana
Stepi | 155wall
0.030 | 284 | 304 | | 40 | 164 | Grey shale/ Limestone | 1.61 | Blank | New Steel | 188wall | 304 | 344 | | 154 | 170 | blue sendy cley | 0.00 | SIGHT. | 11111111111 | 0.030 | 304 | 344 | | 170 | 199 | Sand | 4.63 | Sgreen | Naw
Stainless | 188wali
0.030 | 344 | 404 | | 188 | 207 | blus sandy clay | | | Sleet | | | | | 207 | 260 | blue sandy clay with sand
streaks | | | | | | | | 250 | 318 | sand and gravel | | | | | | | | 318 | 345 | blue and red clay | | | | | | | | 345 | 358 | sand/ send streaks with clay
streaks | | | | | | | | 358 | 370 | red stay | | | | | | | | 370 | 390 | Sund atons | | | | | | | | 390 | 404 | ten clay | | | | | | | 4/R/2025 10:40:17 AM Well Report Tracking Number 459112 Submilled on: 9/4/2017 Page 2 of 3 # 6.0 SURFACE WATER & TMDL ASSESSMENT ### 6.1 Surface Water Assessment Figures 6.] A-B, Aerial Photograph, shows the existing land features, production area, Land Management Unit boundaries, and areas designated as "water in the state," as defined by 30 TAC §321.32(63). Buffer zones between waters in the state and LMUs will be maintained as required in 30 TAC §321.40(h) plus additional filter strips specified by NRCS Code 393, as required in 30 TAC §321.42(w)(2). Based on NRCS Code 393, Appendix 3, Table 1, and LMU slope and soil types, the buffer zones shown in the attached map will be maintained. According to NRCS, Codes 601 (applied to severely eroded areas) and 332 (applied to cropland) are not currently applicable to the LMUs at this facility. Should field conditions or cropping systems change, Codes 601 and 332 will be implemented as necessary. The "water in the state" designation is based on Enviro-Ag Engineering, Inc., site inspections, the permittee's knowledge of the property and the USDA-FSA aerial photograph (December 2017). The buffer zones and LMU boundaries in Figures 6.1A-B are submitted with this application for TCEQ approval. ### 6.2 TMDL Assessment Grand Canyon Dairy is located in Segment 1226, Upper North Bosque River, Brazos River Basin, which is a 303(d)-listed watershed. To demonstrate that Grand Canyon Dairy is designed and will be constructed and operated in a manner that is consistent with the Phosphorus Total Maximum Daily Load (TMDL) and Implementation Plan approved in 2001 and to address the other listed impairments for this segment, the following
practices have been or will be implemented: - 1. Implement a Nutrient Utilization Plan that limits P application to crop requirement and incorporates a P reduction component on fields over 200 ppm P. - 2. Limit maximum P level in soils to 200 ppm. - 3. Perform annual soil sampling in accordance with the provisions of 30 TAC §321.36 (f)(2) and if needed with 30 TAC §321.42(k)-(m) and with Texas Cooperative Extension guidelines for composite sampling. - 4. Implement a certified Comprehensive Nutrient Management Plan that meets the NRCS requirements for a whole-farm Resource Management System. - Maintain contracts with owners of third party fields in accordance with 30 TAC §321.42(j)(1)-(4) and with applicable requirements of 30 TAC §321.36 and §321.40. - 6. Operate the facility in accordance with 30 TAC §321.42 with additional Best Management Practices as follows: - a. Scrape freestalls and cattle lanes to reduce or eliminate the need for flushing - b. Excluding extraneous drainage areas from the RCSs (roof areas, etc.) | C. | Reduce
deposition
adjacen | n by | maintai | ining p | ermo | inent po | stures | downgro
and add
ove in Sec | itional fil | ediment
ter strips | |----|---------------------------------|------|---------|---------|------|----------|--------|----------------------------------|-------------|-----------------------| Map Generated 2/13/2025 #### LEGEND: Denotes Plugged/No Evidence Well Denotes Water Well (Denotes Water Well with 100' or 150' Buffer Denotes Caliche Pit Denotes Surface Water Denotes Burial Site Denotes 136' Buffer Zone Source: USDA-NRCS. Geospatial Data Gateway. Available at: http://datagateway.nrcs.usda.gov/. Digital Raster Graphic County Mosaic by NRCS - Accessed December 2017. Refer to Figures 1.4A-B for a detailed production area map. Grand Canyon Dairy Dublin, TX Erath County Aerial Photograph Figure 6.1A Page 52 Enviro-Ag Engineering, Inc. ENGINEERING CONSULTANTS 3404 Altway Boulevard AMARILLO, TEXAS 79118 ILL (806) 353-6123 FAX (806) 353-4132 Map Generated 2/13/2025 #### LEGEND: Denotes Plugged/No Evidence Well Denotes Water Well Denotes Water Well with 100' or 150' Buffer Denotes Caliche Pit EEE Denotes Surface Water Denotes Burial Site Denotes 136' Buffer Zone Source: USDA-NRCS. Geospatial Data Gateway. Available at: http://datagateway.nrcs.usda.gov/. Digital Raster Graphic County Mosaic by NRCS - Accessed December 2017. Refer to Figures 1.4A-B for a detailed production area map. Grand Canyon Dairy Dublin, TX Erath County Aerial Photograph Figure 6.1B Page 53 Enviro-Ag Engineering, Inc. ENGINEERING CONSULTANTS 3404 African Boulevard AMARIU O. TEXAS 79118 TEL (806) 353-6123 FAX (806) 353-4132 # 7.0 AIR STANDARD PERMIT REQUIREMENTS ### 7.1 Permit Requirements This facility was constructed prior to August 19, 1998. The facility meets the ¼-mile buffer option required in 30 TAC §321.43(j)(2) for facility expansion. The facility is designed, and will be operated, in accordance with the provisions and emissions limitations of the air standard permit in 30 TAC §321.43(j) regarding abatement of nuisance conditions, wastewater treatment, dust control and maintenance and housekeeping procedures. The facility uses an anaerobic treatment pond to minimize odors from process generated wastewater in accordance with §321.43(j)(3). An Area Land Use Map (Figure 7.1) is attached depicting the locations of all occupied residences or business structures, schools (including associated recreational areas), churches, or public parks within 1 mile of the permanent odor sources of the facility. The map includes a north arrow, direction of prevailing wind, and scale. For the purposes of this application, the measurement of buffer distances is from the nearest edge of the permanent odor source to the occupied structure or designated recreational area identified on the Area Land Use Map (30 TAC §321.32(43)). #### 7.2 Odor control Plan Per 30 TAC §321.43(j)(2)(F), the following Best Management Practices have been or will be implemented to control and reduce odors, dust and other air contaminants at Grand Canyon Dairy. - Pen surfaces will be maintained to reduce ponding. - The manure in the confinement pens will be removed on a regular basis (at least once annually) to prevent the manure from building up in the pens. - Removal of manure and pond solids will be done in favorable wind conditions carrying odors away from nearby receptors. The TCEQ must be notified prior to RCS cleanout. - Land application shall only occur from one hour after sunrise until one hour before sunset, unless written consent is obtained from current occupants of all residences within ¼-mile of the LMU boundary that receives waste or wastewater. - Dust will be controlled on facility roads with the use of a portable water truck on an as-needed basis to minimize fugitive dust emissions. - Dead animals will be collected within 24-hours and composted on-site or disposed by on-site burial within 3 days. - Maintain treatment volume. - Manure storage store in drainage of RCS or if not located in drainage area, berm area to contain runoff. Wastewater storage – in RCS. | • | Manure, slurry, sludge and fields. | compost – lanc | d application on-sit | e or to third party | |---|------------------------------------|----------------|----------------------|---------------------| ,, | 55 | | Major Amendmen | Legend; Denotes Occupied Structure Denotes Applicant Owned Structure Site Visit -2/4/2025Map Generated -2/13/2025 Source: USDS-NRCS. Geospatial Data Gateway. Available at: http://datagateway.nrcs.usda.gov/. Digital Raster Graphic County Mosaic by NRCS — Accessed December 2017. **Grand Canyon Dairy** Dublin, TX **Erath County** Area Land Use Map Figure 7.1 Page 56 SCALED AS SHOWN Hatched area represents permanent odor sources. These include, but are not limited to, pens, confinement buildings, lagoons, RCSs, manure stockpile areas, separators. Permanent odor sources do not include any feed handling facilities, land application equipment or fields. > AG Enviro-Ag Engineering, Inc. ENGINEERING CONSULTANTS 3404 Airway Boulevard AMARILLO, TEXAS 79118 ENGINEERING, INC. TEL (806) 353-6123 FAX (806) 353-4132 #### **Leah Whallon** From: Jourdan Mullin <jmullin@enviroag.com> Sent: Wednesday, May 21, 2025 10:01 AM To: Leah Whallon Cc: Corey Mullin Subject: RE: Application to Amend Permit No. WQ0002950000; Circle 7 Dairy LLC and Grand Canyon Dairy LLC **Attachments:** Grand Canyon Dairy PLF ENGLISH SPANISH.docx; NORI - Grand Canyon Dairy.docx; ADJACENT LANDOWNER LABELS.docx; Grand Canyon Dairy ALO Map.pdf; Grand Canyon Dairy ALO List.pdf Follow Up Flag: Follow up Flag Status: Flagged Good Morning Leah, Attached is the Spanish word doc of the Plain Language Summary and NORI. Also attached is the revised ALO map, ALO list and ALO mailing labels. Please let me know if you have any questions or require any additional information. ### Respectfully, # Jourdan Mullin Enviro-Ag Engineering, Inc. 9855 FM 847 Dublin, TX 76446 254/965-3500 – Work 806/679-5570 - Mobile From: Corey Mullin <cmullin@enviroag.com> Sent: Monday, May 19, 2025 5:11 PM To: Jourdan Mullin <jmullin@enviroag.com> Subject: Fwd: Application to Amend Permit No. WQ0002950000; Circle 7 Dairy LLC and Grand Canyon Dairy LLC ----- Forwarded message ----- From: Leah Whallon < Leah. Whallon @Tceq. Texas. Gov > Date: May 19, 2025 4:18 PM Subject: Application to Amend Permit No. WQ0002950000; Circle 7 Dairy LLC and Grand Canyon Dairy LLC To: Corey Mullin <cmullin@enviroag.com> Cc: CAUTION: This email originated from outside of Enviro-Ag Engineering. Do not click links or open attachments unless you have verified the sender and know the content is safe. #### Good Afternoon, Please see the attached Notice of Deficiency letter dated May 19, 2025 requesting additional information needed to declare the application administratively complete. Please send the complete response by June 2, 2025. Please let me know if you have any questions. Thank you, #### Leah Whallon Texas Commission on Environmental Quality Water Quality Division 512-239-0084 leah.whallon@tceq.texas.gov How is our customer service? Fill out our online customer satisfaction survey at www.tceq.texas.gov/customersurvey #### **Disclaimer** The information contained in this communication from the sender is confidential. It is intended solely for use by the recipient and others authorized to receive it. If you are not the recipient, you are hereby notified that any disclosure, copying, distribution or taking action in relation of the contents of this information is strictly prohibited and may be unlawful. This email has been scanned for viruses and malware, and may have been automatically archived by **Mimecast Ltd**, an innovator in Software as a Service (SaaS) for business. Providing a **safer** and **more useful** place for your human generated data. Specializing in; Security, archiving and compliance. To find out more <u>Click Here</u>. # ADJACENT LANDOWNERS LIST | Name: Blue Sky Farms, LLC.
Number on Map: 1
Address: 4611 S FM 219
Address: Dublin, TX 76446 | Name: <u>Johnny Feagan</u> Number: on Map <u>2</u> Address: <u>2775 CR 307</u> Address: <u>Dublin</u> , TX 76446 | |---
---| | Name: Gustavo Frias Number: on Map 3 Address: 3626 CR 307 Address: Dublin, TX 76446 | Name: Salavador & <u>Leondies Solano</u>
Number on Map 4
Address: 4042 CR 307 | | Name: Gabriel E Dagley
Number on Map: 5
Address: 3313 CR 132 | Address: <u>Dublin, TX 76446</u> Name: <u>Michael Brent & Lisa Dianne Chambers</u> Number on Map: <u>6</u> Address: <u>4600 CR 307</u> | | Address: Stephenville, TX 76401 Name: Tony & Sally Gray Number on Map: Z | Address: <u>Dublin, TX 76446</u> Name: <u>James & Tracy Holleman</u> Number on Map: <u>8</u> | | Address: 5170 CR 307 Address: Dublin, TX 76446 Name: Wallace Family Trust Number on Map: 9 | Address: 3048 CR 308 Address: Dublin, TX 76446 Name: Haros Ranch LLC. Number on Map: 10 | | Address: 4879 CR 307 Address: Dublin, TX 76446 Name: Luciano Haros | Address: 830 Kingston Dr Address: Mansfield, TX 76063 Name: Rygh & Lyn Fullagar | | Number on Map: 11 Address: 830 Kingston Dr Address: Mansfield, TX 76063 | Number on Map: 12 Address: 6291 CR 307 Address: Dublin, TX 76446 | | Name: <u>Dickie D & Nancy R Palmore</u>
Number on Map: <u>13</u>
Address: <u>927 Preston Lane</u>
Address: <u>Dublin, TX 76446</u> | Name: Frederick Wayne & Gregory Alan Gibson
Number on Map: 14
Address: 2801 FM 1496
Address: Dublin, TX 76446 | | Name: Paulo A & Cathy S Valle Number on Map: 15 Address: PO Box 207 Address: Dublin, TX 76446 | Name: <u>Seven R Corporation</u> Number on Map: <u>16</u> Address: <u>PO Box 83701</u> Address: <u>Baton Rouge</u> , <u>LA 70884</u> | | Name: Jesse Lee Tackett Credit Shelter Trust
Number on Map: <u>17</u>
Address: <u>1256 CR 308</u>
Address: <u>Dublin, TX 76446</u> | Name: <u>Deboer Reo, LLC</u>
Number on Map: <u>18</u>
Address: <u>451 Eagle Station Lane</u>
Address: <u>Carson City, NV 89701</u> | Please identify where you obtained the landowner information. Erath County Appraisal District; April 2025 Facility Name: Grand Canyon Dairy ### ADJACENT LANDOWNERS LIST | Name: <u>Ventura & Rafaela Botello</u> | Name: Sonrisa Land & Cattle Co Inc | |---|---| | Number on Map: <u>19</u> | Number: on Map <u>20</u> | | Address: 260 CR 317 | Address: PO Box 250 | | Address: <u>Dublin, TX 76446</u> | Address: <u>Dublin, TX 76446</u> | | | | | Name: Eddie & Effie Leatherwood | Name: La Perla Land & Livestock, LLC | | Number: on Map <u>21</u> | Number on Map <u>22</u> | | Address: <u>414 CR 336</u> | Address: PO Box 367 | | Address: <u>Dublin, TX 76446</u> | Address: <u>Dublin, TX 76446</u> | | | A 100 M | | Name: Joseph Hines | Name: Janice Hess | | Number: on Map <u>23</u> | Number: on Map <u>24</u> | | Address: 1418 W Torrey St. | Address: 570 Alexander Rd. | | Address: Granbury, TX 76048 | Address: Stephenville, TX 76401 | | | | | Name: Christopher Proscelle & Danielle Pros | Name: Ross & Tammy Carpenter | | Number: on Map_25 | Number: on Map 26 | | Address: 3532 Seagate Way Unit 110 | Address: HC 12 BOC 1209 | | Address: Oceanside, CA 92056 | Address: Roswell, NM 88201 | Please identify where you obtained the landowner information. Erath County Appraisal District; April 2025 Facility Name: Grand Canyon Dairy **BLUE SKY FARMS LLC** 4611 S FM 219 **DUBLIN TX 76446** **GUSTAVO FRIAS** 3626 CR 307 **DUBLIN TX 76446** JOHNNY FEAGAN 2775 CR 307 **DUBLIN TX 76446** **JOSEPH HINES** 1418 W TORREY ST **GRANBURY TX 76048** WALLACE FAMILY TRUST 4879 CR 307 **DUBLIN TX 76446** **LUCIANO HAROS** 830 KINGSTON DR MANSFIELD TX 76063 **DICKIE D & NANCY R PALMORE** 927 PRESTON LANE **DUBLIN TX 76446** PAULO A & CATHY S VALLE 925 S MAIN ST. #3105 **GRAPEVINE TX 76051** JESSE LEE TACKETT CREDIT SHELTER **TRUST** 1256 CR 308 **GABRIEL E DAGLEY** 3313 CR 132 STEPHENVILLE TX 76401 SALAVADOR & LEONDIES SOLANO 4042 CR 307 MICHAEL BRENT & LISA DIANNE CHAMBERS **DUBLIN TX 76446** 4600 CR 307 **DUBLIN TX 76446** **DUBLIN TX 76446** **DUBLIN TX 76446** **TONY & SALLY GRAY** 5170 CR 307 **DUBLIN TX 76446** HAROS RANCH LLC 830 KINGSTON DR MANSFIELD TX 76063 **JAMES & TRACY HOLLEMAN** 3048 CR 308 FREDERICK WAYNE & GREGORY ALAN **GIBSON** 2801 FM 1496 **DUBLIN TX 76446** SEVEN R CORPORATION PO BOX 83701 **BATON ROUGE LA 70884** DEBOER REO LLC **451 EAGEL STATION LANE** CARSON CITY NV 89701 **LUCIANO HAROS** 830 KINGSTON DR MANSFIELD TX 76063 RYGH & LYN FULLAGER 6291 CR 307 **DUBLIN TX 76446** FREDERICK WAYNE & GRGORY ALAN **GIBSON** 2801 FM 1496 **DUBLIN TX 76446** PAULO A & CATHY S VALLE **PO BOX 207 DUBLIN TX 76446** **VENTURA & RAFEALA BOTELLO** 260 CR 317 **DUBLIN TX 76446** SONRISA LAND & CATTLE CO INC **PO BOX 250 DUBLIN TX 76446** **EDDIE & EFFIE LEATHERWORD** 414 CR 336 **DUBLIN TX 76446** LA PERLA LAND & LIVESTOCK, LLC **PO BOX 367 DUBLIN TX 76446** JANICE HESS **570 ALEXANDER RD** STEPHENVILLE TX 76401 CHRISTOPHER PROSCELLE & DANIELLE **PROS** 3532 SEAGATE WAY UNIT 110 **OCEANSIDE CA 92056** **ROSS & TAMMY CARPENTER** HC 12 BOC 1209 **ROSWELL NM 88201** #### **SPANISH** El siguiente resumen se proporciona para esta solicitud pendiente de permiso de calidad del agua que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo exige el Plan de Participación Pública y el Plan de Acceso Lingüístico de la TCEQ. La información provista en este resumen puede cambiar durante la revisión técnica de la solicitud y no es una representación federal exigible de la solicitud del permiso. - 1) Nombre del solicitante: Circle 7 Dairy, LLC y Grand Canyon Dairy, LLC - 2) Ingrese el número de cliente: CN604036954; CN603973462 - 3) Nombre de la instalación: Grand Canyon Dairy - 4) Ingresar Número de Entidad Regulada: RN100794155 - 5) Proporcione su número de permiso: WQ0002950000 - 6) Instalación Comercial: La instalación encierra 4,000 cabezas de ganado, de las cuales 4,000 se encuentran en ordeño. La instalación cuenta con catorce (14) unidades de administración de tierras (LMU) con las siguientes superficies: LMU #1 103, LMU #2 83, LMU#3 78, LMU #4 60, LMU #5 210, LMU #6 65, LMU #7 30, LMU #8 87, LMU #9 20, LMU #10 50, LMU #11 56, LMU #12 91, LMU #13 53 y LMU #14 52 acres. Cuenta con tres (3) estructuras de control de retención (RCS) y tres cuencas de sedimentación de tierra. Las capacidades requeridas son: RCS #1 0.00 ac-pie, RCS #2 58.81 (digestor) y 54.96 acres-pie (derivación), y RCS #3 22.79 ac-pie. Hay veinte (20) pozos en el sitio, de los cuales tres están taponados. La instalación está ubicada en el Río North Bosque, en el Segmento No. 1226 de la Cuenca del Río Brazos. - 7) Ubicación de la instalación: La instalación está ubicada en el lado este de FM 219 aproximadamente a 5 millas al sur de la intersección de FM 219 y Highway 1702, aproximadamente a 7 millas al suroeste de Dublin en el Condado de Erath, Texas. - 8) Tipo de Solicitud: Enmienda Importante al Permiso Individual - 9) Descripción de su solicitud: Presentar una solicitud de modificación importante en dos fases para mantener el cumplimiento durante la transición. La fase 1 incluirá los siguientes cambios: reducir el número de cabezas a 2,500 en total y 2,500 en ordeño, actualizar el mapa de control de escorrentía, el mapa del sitio y el mapa de características de recarga a las condiciones actuales (eliminar el digestor y los establos de estabulación libre propuestos), y reconfigurar las siguientes LMUs: LMU #1A (41 ac) es nueva y es una parte de LMU #1 (actual 103 ac; propuesta 62 ac), LMU #2A (21 ac) es nueva y está en una parte de LMU #2 (actual 83 ac; propuesta 21 ac), LMU #3A (21 ac) es nueva y está en una parte de LMU #3 (actual 78 ac; propuesta 56 ac), LMU #6 (actual 65 ac; propuesta 62 ac), LMU #12A (30 ac) es nueva y está en una parte de LMU #12 (actual 91 ac; propuesta 66 ac) y LMU #14 (actual 52 ac; propuesta 47 ac). La Fase 2 incluirá el aumento de cabezas a 4.000 en
total y 4.000 en ordeño. la adición de un digestor anaeróbico y equipo asociado y la adición de establos con estabulación libre. - 10) Las posibles fuentes de contaminantes en la instalación incluyen (enumere las fuentes de contaminantes): Estiércol, reservas de estiércol, aguas residuales, lodos, purines, compost, piensos y camas, reservas de ensilaje, animales muertos, polvo, lubricantes, químicos de salón, pesticidas y tanques de almacenamiento de combustible. - 11) Las siguientes mejores prácticas de manejo se implementarán en el sitio para manejar los contaminantes de las fuentes de contaminantes enumeradas (describa las mejores prácticas de manejo que se utilizan): las aguas pluviales se almacenan en la laguna (RCS) hasta que se aplican a la tierra mediante riego y estiércol y lodo se almacenan en el área de drenaje del RCS hasta que se aplican a la tierra o se transportan fuera del sitio para un uso beneficioso. El estiércol y los lodos generados por CAFO se conservarán y utilizarán de manera apropiada y beneficiosa de acuerdo con un plan certificado de manejo de nutrientes específico del sitio. Las aguas residuales estarán contenidas en el RCS adecuadamente diseñado ((frecuencia de 25 años y duración de 10 días (25 años/10 días), construido, operado y mantenido de acuerdo con lo dispuesto en el permiso. Mantener una zona de amortiguamiento de 100 pies para todos los pozos de riego o 150 pies para todos los pozos de suministro. Polvo - velocidad de control y mantenimiento regular del corral. Fertilizantes almacénelos bajo techo y manipúlelos de acuerdo con las instrucciones especificadas en la etiqueta. Tanques de combustible - proporcionan contención secundaria y evitan sobrellenados/derrames. Animales muertos - elimínelos a través de un servicio de procesamiento de terceros o entierre en el sitio. Recolectado dentro de las 24 horas posteriores a la muerte y eliminado dentro de los tres días. - 12) A menos que se limite de otro modo, el estiércol, los lodos o las aguas residuales no se descargarán desde una unidad de administración de tierra (LMU) o una estructura de control de retención (RCS) hacia el agua en el estado o junto a ella desde una CAFO, excepto que resulte de cualquiera de las siguientes condiciones: - 1) una descarga de estiércol, lodo o aguas residuales que el tenedor del permiso no puede prevenir o controlar razonablemente como resultado de una condición catastrófica que no sea un evento de lluvia; - 2) desbordamiento de estiércol, lodo o aguas residuales de un RCS como resultado de un evento de lluvia crónica/catastrófica; o - 3) una descarga de lluvia crónica/catastrófica de una LMU que ocurre porque el tenedor del permiso toma medidas para vaciar el RCS si el RCS está en peligro de desbordamiento inminente. APPLICATION. Circle 7 Dairy LLC and Grand Canyon Dairy LLC, 2179 County Road 308, Dublin, Texas 76446, have applied to the Texas Commission on Environmental Quality (TCEQ) to amend Wastewater Permit No. WQ0002950000 (EPA I.D. No. TX0130923) for a Concentrated Animal Feeding Operation (CAFO) to authorize the following changes in two phases. Phase 1 will authorize: to decrease the headcount to 2,500 total dairy cattle and 2,500 milking; update the runoff control map, site map, and recharge feature map to the current - conditions (remove digester and proposed - free stall barns); reconfigure the following LMUs: LMU #1A (41 acres) is new and is a portion of LMU #1 (current - 103 acres/ proposed - 62 acres), LMU #2A (21 acres) is new and is a portion of LMU #2 (current - 83 acres/ proposed - 21 acres), LMU #3A (21 acres) is new and is in a portion of LMU #3 (current - 78 acres/ proposed - 56 acres), LMU #6 (current -65 acres/proposed - 62 acres), LMU #12A (30 acres) is new and is in a portion of LMU #12 (current - 91 acres/proposed - 66 acres) and LMU #14 (current - 52 acres/proposed - 47 acres). Phase 2 will authorize: to increase the headcount to 4,000 total dairy cattle and 4,000 milking; the addition of an anerobic digester and associated equipment; and the addition of free stall barns. The facility is located at 2179 County Road 308, near the city of Dublin, in Erath County, Texas 76446. TCEQ received this application on May 12, 2025. The permit application will be available for viewing and copying at Erath County Extension Office - Erath County Courthouse. Room 206, 100 West Washington Street, Stephenville, in Erath County, Texas prior to the date this notice is published in the newspaper. The application, including any updates, and associated notices are available electronically at the following webpage: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/cafo-applications. This link to an electronic map of the site or facility's general location is provided as a public https://www.tceq.texas.gov/permitting/wastewater/pending-permits/cafo-applications. This link to an electronic map of the site or facility's general location is provided as a public courtesy and not part of the application or notice. For the exact location, refer to the application. https://gisweb.tceq.texas.gov/LocationMapper/?marker=-98.270833,32.023055&level=18 Further information may also be obtained from Circle 7 Dairy LLC and Grand Canyon Dairy LLC at the address stated above or by calling Mr. Tim Miranda, Member, Circle 7 Dairy LLC, at 254-445-0404. Corporate Office: 3404 Airway Blvd. Amarillo TX 79118 Central Texas: 9855 FM 847 Dublin TX 76446 New Mexico: 203 East Main Street Artesia NM 88210 June 11, 2025 **TCEQ** Land Applications Team, Water Quality Division, MC-150 Attn: Joy Alabi P.O. Box 13087 Austin, TX 78711-3087 RECEIVED JUNE 11 2025 **CAFO PERMITS TEAM** **TCEQ** Re: Requested Information – CAFO Individual Permit Major Application WQ#2950 – Grand Canyon Dairy, Erath County, Texas. Dear Ms. Alabi, This letter is in response to your June 10, 2025, email regarding the above-referenced facility. From your email specifically: - 1. Attached is revised Section 2.D of the Application, Item #6 of the PLS and Section 2.1 of the Calculations and Specifications. - 2. Attached is revised Section 2.1 of the Calculations and Specifications. - 3. Attached is revised Section 2.A.2 of the TIP for Phases 1 & 2. - 4. Attached is revised Table 6 of the TIP. - 5. Attached is Figure 1.3A with the 136-ft Buffer shown. - 6. Attached is revised Section 2.A.1 of the TIP for Phases 1 & 2. - 7. Attached is revised Table 4 of the TIP for Phase 1. - 8. Attached is revised Table 4 of the TIP for Phase 2. - 9. Yes, the redesign for the RCSs is still applicable to this major amendment application. - 10. Attached are the labeled Liner Certification for RCSs #1 & #3. - 11. Attached are the approved Alternative Crops for this site. - 12. Yes, that is correct, RCSs #2 & #3 have had a sludge cleanout per Section X.A.1 and 4. - 13. The "current conditions" referred to the maps. This major amendment is for Phase 1 to reduce the headcount to 2,150 in total of which all are milking. - 14. Attached are Figures 1.3A-B with Phase 1 & Phase 2 labeled. - 15. Attached are Figures 1.4A-B with Phase 1 & Phase 2 labeled. - 16. Attached is Figure 1.4A with the flow arrows shown. - 17. Attached are Figure 1.4A-B with the "feedlane" font size enlarged. - 18. Attached is Figure 1.4B with the "composting/manure storage area" font sized enlarged. PHONE: 800-753-6525 www.enviroag.com - 19. Attached are Figures 2.1A-B with the runoff label font sized enlarged. - 20. The settling pond efficiency has been verified and is correct at 30%. - 21. The settling efficiency is different in Phase 1 and Phase 2 because Phase 2 includes the addition of a digester and associated equipment. - 22. That is incorrect, Table 2.3C does have double cropping of coastal and winter wheat. Please let me know if you have any questions. RECEIVED JUNE 11 2025 CAFO PERMITS TEAM TCEQ Respectfully Submitted, Jourdan Mullin Enviro-Ag Engineering, Inc. Cc: TCEQ Region 4, Stephenville Grand Canyon Dairy EAE file ### TEXAS COMMISSION ON ENVIRONMENTAL QUALITY ## INDIVIDUAL PERMIT APPLICATION FOR A CONCENTRATED ANIMAL FEEDING OPERATION (CAFO) If you have questions about completing this form, please contact the Applications Review and Processing Team at 512-239-4671. #### SECTION 1. APPLICATION FEF | 02011011 1.11 | | | |----------------------------------|--|--------------------------| | Minor Amendm
Renewal - \$315. | 00 | | | New or Major A | mendment - \$350.00 | RECEIVED
JUNE 11 2025 | | Mailed | Check/Money Order Number: | CAFO PERMITS TEAM | | | Check/Money Order Amount: | TCEQ | | | Name Printed on Check: | | | EPAY | Voucher Number: <u>765911 & 765912</u> | | | | Copy of Payment Voucher enclosed? | Yes □ | | SECTION 2. T | YPE OF APPLICATION | | | A Corrornago | State Only TDDEC | | | Α. | Coverage: | State Only \square | TPDES ⊠ | |----|---------------|----------------------|-------------------------| | B. | Media Type: | Water Quality □ | Air and Water Quality ⊠ | | C. | Application T | ype: New □ | Major Amendment ⊠ | | | | Renewal □ | Minor Amendment □ | | | | | | D. For amendments, describe the proposed changes: Circle 7 Dairy LLC & Grand Canyon Dairy, LLC is submitting a major amendment application in two phases in order to maintain compliance throughout the transition. Phase 1 will include the following changes: decrease the headcount to 2,500 total and 2,500 milking, update the runoff control map, site map and recharge feature map to the current conditions (remove digester and proposed freestall barns), reconfigure the following LMUs: LMU #1A (41 ac) is new and is a portion of LMU #1 (current 103ac; proposed 62ac), LMU #2A (21 ac) is new and is a portion of LMU #2 (current 83ac; proposed 62ac), LMU #3A (21 ac) is new and is in a portion of LMU #3 (current - 78ac; proposed - 56ac), LMU #6 (current - 65ac; proposed - 62 ac), LMU #12A (30 ac) is new and is in a portion of LMU #1 (current - 91ac; proposed -
66ac) and LMU #14 (current - 52ac; proposed - 47ac). Phase 2 will include the increase of headcount to 4,000 total and 4,000 #### ENGLISH LANGUAGE TEMPLATE FOR CAFO PERMIT APPLICATIONS The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by the TCEQ Public Participation Plan and Language Access Plan. The information provided in this summary may change during the technical review of the application and is not a federal enforceable representation of the permit application. 1) Applicant's Name: Circle 7 Dairy, LLC and Grand Canyon Dairy, LLC 2) Enter <u>Customer Number</u>: CN604036954; CN603973462 RECEIVED JUNE 11 2025 3) Name of facility: Grand Canyon Dairy **CAFO PERMITS TEAM** 4) Enter Regulated Entity Number: RN100794155 **TCEQ** - 5) Provide your permit Number: WQ0002950000 - 6) Facility Business: The facility confines 4,000 head of cattle in which 4,000 are milking. The facility has fourteen (14) land management units (LMUs) with the following acreages: LMU #1 103, LMU #2 83, LMU#3 78, LMU #4 60, LMU #5 210, LMU #6 65, LMU #7 30, LMU #8 87, LMU #9 20, LMU #10 50, LMU #11 56, LMU #12 91, LMU #13 53 and LMU #14 52 acres. Three (3) retention control structures (RCSs) and three earthen settling basins. The required capacities are: RCS #1 0.00 ac-ft, RCS #2 58.81(digester) & 54.96 (bypass) ac-ft and RCS #3 22.79 ac-ft. There are twenty (20) onsite wells of which three are plugged. The facility is located in the North Bosque River in Segment No. 1226 of the Brazos River Basin. - 7) Facility Location: The facility is located on the East side of FM 219 approximately 5 miles south of the intersection of FM 219 and Highway 1702, approximately 7 miles southwest of Dublin in Erath County, Texas. - 8) Application Type: Individual Permit Major Amendment - 9) Description of your request: Submitting a major amendment application in two phases in order to maintain compliance throughout the transition. Phase 1 will include the following changes: decrease the headcount to 2,500 total and 2,500 milking, update the runoff control map, site map and recharge feature map to the current conditions (remove digester and proposed freestall barns), reconfigure the following LMUs: LMU #1A (41 ac) is new and is a portion of LMU #1 (current 103ac; proposed 62ac), LMU #2A (21 ac) is new and is in a portion of LMU #2 (current 83ac; proposed 62ac), LMU #3A (21 ac) is new and is in a portion of LMU #3 (current 78ac; proposed 56ac), LMU #6 (current 65ac; proposed 62ac), LMU #12A (30 ac) is new and is in a portion of LMU #12 (current 91ac; proposed 66ac) and LMU #14 (current 52ac; proposed 47ac). Phase 2 will include the increase of headcount to 4,000 total and 4,000 milking, the addition of an anerobic digester and associated equipment and the addition of freestall barns. Revised 6/10/25 - 10)Potential pollutant sources at the facility include (list the pollutant sources): Manure, manure stockpiles, wastewater, sludge, slurry, compost, feed & bedding, silage stockpiles, dead animals, dust, lubricants, parlor chemicals, pesticides and fuel storage tanks. #### **SPANISH** El siguiente resumen se proporciona para esta solicitud pendiente de permiso de calidad del agua que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo exige el Plan de Participación Pública y el Plan de Acceso Lingüístico de la TCEQ. La información provista en este resumen puede cambiar durante la revisión técnica de la solicitud y no es una representación federal exigible de la solicitud del permiso. 1) Nombre del solicitante: Circle 7 Dairy, LLC y Grand Canyon Dairy, LLC 2) Ingrese el número de cliente: CN604036954; CN603973462 RECEIVED JUNE 11 2025 3) Nombre de la instalación: Grand Canyon Dairy **CAFO PERMITS TEAM** 4) Ingresar Número de Entidad Regulada: RN100794155 **TCEQ** - 5) Proporcione su número de permiso: WQ0002950000 - 6) Instalación Comercial: La instalación encierra 4,000 cabezas de ganado, de las cuales 4,000 se encuentran en ordeño. La instalación cuenta con catorce (14) unidades de administración de tierras (LMU) con las siguientes superficies: LMU #1 103, LMU #2 83, LMU#3 78, LMU #4 60, LMU #5 210, LMU #6 65, LMU #7 30, LMU #8 87, LMU #9 20, LMU #10 50, LMU #11 56, LMU #12 91, LMU #13 53 y LMU #14 52 acres. Cuenta con tres (3) estructuras de control de retención (RCS) y tres cuencas de sedimentación de tierra. Las capacidades requeridas son: RCS #1 0.00 ac-pie, RCS #2 58.81 (digestor) y 54.96 acres-pie (derivación), y RCS #3 22.79 ac-pie. Hay veinte (20) pozos en el sitio, de los cuales tres están taponados. La instalación está ubicada en el Río North Bosque, en el Segmento No. 1226 de la Cuenca del Río Brazos. - 7) Ubicación de la instalación: La instalación está ubicada en el lado este de FM 219 aproximadamente a 5 millas al sur de la intersección de FM 219 y Highway 1702, aproximadamente a 7 millas al suroeste de Dublin en el Condado de Erath, Texas. - 8) Tipo de Solicitud: Enmienda Importante al Permiso Individual - 9) Descripción de su solicitud: Presentar una solicitud de modificación importante en dos fases para mantener el cumplimiento durante la transición. La fase 1 incluirá los siguientes cambios: reducir el número de cabezas a 2,500 en total y 2,500 en ordeño, actualizar el mapa de control de escorrentía, el mapa del sitio y el mapa de características de recarga a las condiciones actuales (eliminar el digestor y los establos de estabulación libre propuestos), y reconfigurar las siguientes LMUs: LMU #1A (41 ac) es nueva y es una parte de LMU #1 (actual 103 ac; propuesta 62 ac), LMU #2A (21 ac) es nueva y está en una parte de LMU #2 (actual 83 ac; propuesta 62 ac), LMU #3A (21 ac) es nueva y está en una parte de LMU #3 (actual 78 ac; propuesta 56 ac), LMU #6 (actual 65 ac; propuesta 62 ac), LMU #12A (30 ac) es nueva y está en una parte de LMU #12 (actual 91 ac; propuesta 66 ac) y LMU #14 (actual 52 ac; propuesta 47 ac). La Fase 2 incluirá el aumento de cabezas a 4,000 en total y 4,000 en ordeño, la adición de ### 2.0 CALCULATIONS & SPECIFICATIONS ### 2.1 Facility Overview The existing facility consists of open lots, barns, a milking parlor, three earthen settling basins, and three retention control structures to confine 4,000 head, of which 4,000 head are milking. Circle 7 Dairy, LLC and Grand Canyon Dairy, LLC is submitting a major amendment application in two phases in order to maintain compliance throughout the transition. Phase 1 will include the following changes: decrease the headcount to 2,500 total and 2,500 milking, update the runoff control, site map and recharge feature map to the current conditions (remove digester and proposed freestall barns), reconfigure the following LMUs: LMU #1A (41 ac) is new and is in a portion of LMU #1 (current – 103ac; proposed – 62ac), LMU #2A (21 ac) is new and is in a portion of LMU #2 (current 83ac; proposed – 62ac), LMU #3A (21ac) is new and is in portion of LMU #3 (current – 91ac; proposed – 56ac), LMU #6 (current – 91ac; proposed – 66ac) and LMU #14 (current – 52ac; proposed – 47ac). Phase 2 will include the increase of headcount to 4,000 total and 4,000 milking, the addition of an anerobic digester and associated equipment and the addition of freestall barns. This strategic phasing ensures that the dairy operates within regulatory standards while scaling up operations. Revised 6/10/2025 The proposed changes reflect Grand Canyon Dairy's commitment to growth and efficiency, while also adhering to environmental regulations. The expansion will allow for increased milk production and the ability to manage additional waste effectively through enhanced treatment facilities. The phased approach demonstrates careful consideration of operational compliance, ensuring that the dairy's expansion does not compromise its environmental responsibilities. #### 2.2 Manure Production Table 2.1, As-Excreted Manure Characteristics Existing Dairy Facility, is included as a summary of the annual manure and nutrient production for the facility. The totals in Table 2.1 represent as-excreted manure and nutrient values for the maximum head count shown in the application. Note: This data is intended for planning and design purposes and is not to be used for whole-farm nutrient mass balance calculations. RECEIVED JUNE 11 2025 CAFO PERMITS TEAM **TCEQ** Major Amendment Grand Canyon Dairy 2) Total Number of Animals: In Open Lots: 2,500 In Buildings: 2,500 3) Animal Housing Location, hours/day: Open Lots: 21 Buildings: 3 - 4) Average Liveweight, pounds per head: 1,400 lbs - 5) Volatile Solids Removed by Separator System: 50% - 6) Volatile Solids Loading Rate, lbs/day/1000 ft³: <u>5.30</u> 7) Spilled Drinking Water, gallons/day: Included in cleanup 8) Water for Cleanup, gallons/day: 37,500 gal/day 9) Water for Manure Removal, gallons/day: Included in cleanup 10) Recycled Wastewater, gallons/day: <u>n/a</u> ### B. Wastewater Runoff RECEIVED JUNE 11 2025 1) Design Rainfall Amount, inches: <u>12</u> **CAFO PERMITS TEAM** 2) Design Rainfall Event: **TCEQ** - □ 25-year, 24 hour - ☐ Soil Plant Air and Water (SPAW) Field and Pond Hydrology Model - □ Other; specify: Click here to enter text. ### C. Retention Control Structure(s) (RCS) Volume Allocations Table 2. RCS Volume Allocations (Acre-Feet) | RCS | Design | Process | Minimum | Sludge | Water | Required | Actual | |------|----------|------------|-----------|--------------|---------|----------|----------| | Name | Rainfall | Generated | Treatment | Accumulation | Balance | Capacity | Capacity | | | Event | Wastewater | Volume | | | | | | | Runoff | | | | | | | | 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00^ | 4.04 | | 2 | 34.59 | 3.45 | 11.51 | 2.30 | 0.00 | 51.84*^ | 64.87 | | 3 | 5.89 | 0.00 | 0.00 | 0.02 | 10.84 | 16.74*^ | 25.95 | | | | | | | | *Rounded | | | | | | | | | Figure | | | | | | | | | ^Phase 1 | | Indicate which RCSs are in-series: RCS #1 &
RCS #2 2) Total Number of Animals: In Open Lots: <u>4,000</u> In Buildings: <u>4,000</u> 3) Animal Housing Location, hours/day: Open Lots: 21 Buildings: 3 - 4) Average Liveweight, pounds per head: <u>1,400 lbs</u> - 5) Volatile Solids Removed by Separator System: 95% - 6) Volatile Solids Loading Rate, lbs/day/1000 ft³: <u>5.30</u> 7) Spilled Drinking Water, gallons/day: <u>Included in cleanup</u> 8) Water for Cleanup, gallons/day: 60,000 gal/day 9) Water for Manure Removal, gallons/day: <u>Included in cleanup</u> 10) Recycled Wastewater, gallons/day: <u>n/a</u> #### B. Wastewater Runoff 1) Design Rainfall Amount, inches: 12 RECEIVED JUNE 11 2025 2) Design Rainfall Event: □ 25-year, 24 hour TCEQ □ Soil Plant Air and Water (SPAW) Field and Pond Hydrology Model \square Other; specify: Click here to enter text. ### C. Retention Control Structure(s) (RCS) Volume Allocations Table 2. RCS Volume Allocations (Acre-Feet) | RCS | Design | Process | Minimum | Sludge | Water | Required | Actual | |------|----------|------------|-----------|--------------|---------|----------|----------| | Name | Rainfall | Generated | Treatment | Accumulation | Balance | Capacity | Capacity | | | Event | Wastewater | Volume | | | | | | | Runoff | | | | | | | | 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00^ | 4.04 | | 2 | 27.80 | 10.00 | 15.28 | 5.72 | 0.00 | 58.81*~ | 64.87 | | 3 | 5.89 | 0.00 | 0.00 | 0.02 | 16.83 | 22.73*~ | 25.95 | | | | | | | | *Rounded | | | | | | | | | Figure | | | | | | | | | ~Phase 2 | | Indicate which RCSs are in-series: RCS #1 & RCS #2 **CAFO PERMITS TEAM** **Table 6: Water Well Status and Protective Measures** | Well ID | Well Type | Producing or Non- | Open, Cased, | Protective | |-----------------|------------|--------------------------|--------------|---------------------| | Number | wen Type | Producing | or Capped | Measures | | 1 | Domestic | Producing | Cased | Maintain 150-ft | | | 1 | | | Buffer | | 2 | Domestic | Producing | Cased | Maintain 150-ft | | | | | | Buffer | | 3 RECEIVIUNE 11 | Demestic | Producing | Cased | See Approved Well | | CAFO PERM | | | | Buffer Exception | | 4 TCE | D | Producing | Cased | See Approved Well | | | | | | Buffer Exception | | 5 | Domestic | Producing | Cased | See Approved Well | | | | | | Buffer Exception | | 6 | Domestic | Non-Producing | Cased | See Attached | | | | | | Plugging Report | | 7 | Domestic | Producing | Cased | See Approved Well | | | | | | Buffer Exception | | 8 | Domestic | Non-Producing | Cased | See Attached | | | | | | Plugging Report | | 9 | Irrigation | Producing | Cased | See Approved Well | | | | | | Buffer Exception | | 10 | Domestic | Producing | Cased | Maintain 150-ft | | | | II | | Buffer | | 11 | Domestic | Producing | Cased | Maintain 150-ft | | | | | | Buffer | | 12 | Irrigation | Producing | Cased | Maintain 100-ft | | | | | | Buffer | | 13 | Irrigation | Producing | Cased | Maintain 100-ft | | | | | | Buffer | | 14 | Irrigation | Producing | Cased | Maintain 100-ft | | | | | | Buffer | | 15 | Domestic | Non-Producing | Cased | No Evidence of Well | | 16 | Irrigation | Producing | Cased | Maintain 100-ft | | | | | | Buffer | #### C. Wastewater: | 1 |) 119 | se or | Dis | posal | Met | hod. | |---|-------|-------|-----|-------|-----|------| | Т |) 0 | oc or | D19 | hosar | MEG | uvu. | □ Land Application to LMUs ☐ Total Evaporation ☐ Other; specify: Click here to enter text. TCEQ 2) Land Application Location: ☑ Onsite ☑ Offsite □ Not Applicable ### D. Land Application Summary from the Nutrient Management Plan For each Land Management Unit (LMU), provide the name, acre, crops/yield goals and application rates on Table 4 below. Add rows if needed or attach additional pages. RECEIVED JUNE 11 2025 Table 4: Land Management Unit Summary from the Current NMP | | | | Application Rate (Ac- | |----------|------|-----------------------------------|-----------------------| | LMU Name | Acre | Crop(s) and Yield Goal(s) | ft/Ac/Year OR | | | | | Tons/Ac/Year) | | 1 | 62 | Silage-Corn 21-25T; SG Green Chop | 0.333 ac-ft/ac/yr | | | | 6-7T H | | | 1A | 41 | Coastal SG 9-11T; SG GC 6-7T | 20.4 tons/ac/yr | | 2 | 62 | Coastal GC 9-11T; SG GC 6-7T M | 0.492 ac-ft/ac/yr | | 2A | 21 | Coastal SG 9-11T; SG GC 6-7T | 20.4 tons/ac/yr | | 3 | 56 | Silage-Corn 16-20T; SG Green Chop | 0.158 ac-ft/ac/yr | | | | 6-7T M | | | 3A | 21 | Coastal GC 9-11T; SG GC 6-7T M | 0.392 ac-ft/ac/yr | | 4 | 60 | Coastal GC 9-11T; SG GC 6-7T H | 20.4 tons/ac/yr | | 5 | 210 | Coastal GC 9-11T; SG GC 6-7T H | 0.367 ac-ft/ac/yr | | 6 | 62 | Silage-Corn 16-20T; SG Green Chop | 17.9 tons/ac/yr | | | | 6-7T H | | | 7 | 30 | Silage-Corn 16-20T; SG Green Chop | 17.9 tons/ac/yr | | | | 6-7T M | | | 8 | 87 | Coastal GC 9-11T; SG GC 6-7T M | 21.1 tons/ac/yr | | 9 | 20 | Coastal GC 9-11T; SG GC 6-7T M | 21.1 tons/ac/yr | | 10 | 50 | Silage-Corn 16-20T; SG Green Chop | 17.9 tons/ac/yr | | | | 6-7T H | | #### C. Wastewater: | 1) | Use | or | Disposal | Method: | |----|-----|-----|----------|------------| | -, | 000 | 0.1 | DIOPODUI | 1.ICCIIO C | □ Land Application to LMUs □ Total Evaporation RECEIVED JUNE 11 2025 □ Other; specify: Click here to enter text. **CAFO PERMITS TEAM** **TCEQ** 2) Land Application Location: oximes Onsite oximes Offsite oximes Not Applicable ### D. Land Application Summary from the Nutrient Management Plan For each Land Management Unit (LMU), provide the name, acre, crops/yield goals and application rates on Table 4 below. Add rows if needed or attach additional pages. Table 4: Land Management Unit Summary from the Current NMP | | | | Application Rate (Ac- | |----------|------|-----------------------------------|-----------------------| | LMU Name | Acre | Crop(s) and Yield Goal(s) | ft/Ac/Year OR | | | | | Tons/Ac/Year) | | 1 | 62 | Silage-Corn 21-25T; SG Green Chop | 0.65 ac-ft/ac/yr | | | | 6-7T H | | | 1A | 41 | Coastal GC 9-11T; SG GC 6-7T | 20.4 tons/ac/yr | | 2 | 62 | Coastal GC 9-11T; SG GC 6-7T M | 0.992 ac-ft/ac/yr | | 2A | 21 | Coastal GC 9-11T; SG GC 6-7T | 20.4 tons/ac/yr | | 3 | 56 | Silage-Corn 16-20T; SG Green Chop | 0.317 ac-ft/ac/yr | | | | 6-7T M | | | 3A | 21 | Coastal GC 9-11T; SG GC 6-7T M | 0.25 ac-ft/ac/yr | | 4 | 60 | Coastal GC 9-11T; SG GC 6-7T H | 20.4 tons/ac/yr | | 5 | 210 | Coastal GC 9-11T; SG GC 6-7T H | 0.842 ac-ft/ac/yr | | 6 | 62 | Silage-Corn 16-20T; SG Green Chop | 17.9 tons/ac/yr | | | | 6-7T H | | | 7 | 30 | Silage-Corn 16-20T; SG Green Chop | 17.9 tons/ac/yr | | | | 6-7T M | | | 8 | 87 | Coastal GC 9-11T; SG GC 6-7T M | 21.1 tons/ac/yr | | 9 | 20 | Coastal GC 9-11T; SG GC 6-7T M | 21.1 tons/ac/yr | | 10 | 50 | Silage-Corn 16-20T; SG Green Chop | 17.9 tons/ac/yr | | | | 6-7T H | | Materials, environmental and geotechnical engineering, nondestructive, metallurgical and analytical services 2200 Gravel Dr. • P.O. Box 1379 • Fort Worth, Texas 76101-1379 • 817/284-7755 July 3, 1989 RCS #1 - Liner Cert. Texas Water Commission P.O. Box 13087 Capitol Station Austin, Texas 78711-3087 Attn: Tom Haberle Water Quality Division RECEIVED JUNE 11 2025 **CAFO PERMITS TEAM** **TCEQ** Re: Grand Canyon Dairy Farm Dublin, Texas Gentlemen: Southwestern Laboratories has completed sampling and testing of the soils in the wastewater retention ponds No. 1 through 5 at the Grand Canyon Dairy Farm in Dublin, Texas. The test results including sample thickness, Atterberg limits, and percent passing the number 200 sieve are tabulated on the attached report. Our findings indicate the soils meet the criteria established by the Texas Water Commission. Very truly yours, SOUTHWESTERN LABORATORIES Kemp E. Akeman, P.E. Materials Engineer Roland S. Jary P.E. Vice President ns | Submitted by: | Grand Canyon Dairy Farm | |---------------|-------------------------| | Signed by: | | | Date: | | HOUSTON • DALLAS • AUSTIN • BEAUMONT • CONROE • GALVESTON COUNTY • RIO GRANDE VALLEY • ALEXANDÁIA SAN ANTONIO • FORT WORTH • LEESVILLE • MIDLAND • MONROE • SHREVEPDRT • TEXARKANA • SHERMAN `ttachment C.4.a RAND CANYON DAIRY ROS HYDROLOGIC CONNECTION | _ | | | | | | | |-------------------|---|---------------------|---------------------------------------|---|-------------------------|--------| | _ | | | | | | | | | Grand Canyon Dairy, June 14, 1989 | | | | | | | | | Pond #3 | Pond #3 | γ
τ
τ
τ | 4 4 6 | | | | Test Location | No. | | #
 -
 | Fond #4 | Minima | | | Soil Description | | 7 | | No. 2 | Requir | | | Color | Dk. & Lt. | Dk. Brn | ,
,
, | , | | | | Texture
Unified Classification | Brown
Clay
SC | & Yellow
Clay
CL | Clay
CI. | Ked &
Yellow
Clay | | | | Sample Depth, Inches | 12+ | 12+ | 12+ | 3 6 | • | | | Atterberg Limits | | | | + 7 7 | 12 | | e regime dif | Liquid Limit, (%) Plastic Limit, (%) Plasticity Index | 43
15
28 | 44
28
88 | 4 4 2 7 2 7 2 4 4 4 4 4 4 4 4 4 4 4 4 4 | e
8 E V
8 C C | 0 0 | | | Passing No. 200 Sieve, (%) | 47.9 | 57.3 | 59.0 | 62.7 | 30 | | southwes | | | J | | | | | YERN LABORATORIES | | TCEQ . | RECEIVEI
IUNE 11 202:
O PERMITS | | | | | | | 14 | | ±1 | | * | Attachment C.4.c GRAND CANYON DAIRY RCS HYDROLOGIC CONNECTION リンノし Materials, environmental and geotechnical engineering, nondestructive, metallurgical and analytical services 2200 Gravel Dr. • P.O. Box 1379 • Fort Worth, Texas 76101-1379 • 817/284-7756 RCS #3 - Liner Cert. March 16, 1990 Texas Water Commission P.O. Box 13087 Capitol Station Austin, Texas 78711-3087 Attn: Tom Haberle Water Quality Division ke: Grand Canyon Dairy Erath County, Texas #### Gentlemen: Southwestern Laboratories has completed sampling and testing of the soils exposed in a wastewater retention pond at the Grand Canyon Dairy Farm in Erath County. The test results including sample thickness, Atterberg limits, percent passing the number 200 sieve, permeability, and in-place density tests are tabulated on the attached report. Our findings
indicate the soils meet the criteria established by the Texas Water Commission. Very truly yours, SOUTHWESTERN LABORATORIES Kemp E. Akeman, P.E. Materials Engineer Roland S. Jany, P.F. Vice President Keinp E Aksman. 64975 RECEIVED JUNE.11 2025 CAFO PERMITS TEAM TCEQ tj | Submitted by: | Grand Canyon Dairy | | |---------------|--------------------|--| | Signed by: | | | | Dates | | | EICHAMR IA 6 VELLAV BOARRD DIR 6 YTMUUD MOYBRYJAD 6. BORMOD 6. TMONULABD 6. MITBUA 6. BAJJAO 6. MOTEUOH \ttachment C.4.g GRAND CANYON DAIRY RCS HYDROLOGIC CONNECTION | | | | | | | Ē | |--|---|----------------|--|----------------|----|------------------------| | | Grand Canyon Dairy - August 13, 1990 | ପ୍ଥ | a | 1 % | | | | | | Pond Number | 7 | ;s# | | | | | Test Location | No. 1 | | | • | | | | Soil Description | | ro. 2 | No. 3 | 32 | Requireme | | | Color | ે દ ્ય | | | | | | ······································ | Texture | Gray | Gray | Dark
Gray | ¥Ĩ | | | r | Unified Classification | 7 5 | L. L | Clay | | 75 | | ж; , | Sample Depth, Inches | 1244 | | H
H | | | | | Atterberg Limits | }
_∞ | †ZT | 12"+ | | 12 | | K: | Liquid Limit, (%) Plastic Limit, (%) Plasticity Index | 61
19 | . 88 . | 66
19 | | 36 | | | Passing Mo. 200 Sieve, (%) | 0 88
0 88 E | 14 6 | 47 | 8 | 15 | | : 60utu | Permeability - 2.0 \times 10 ⁻⁸ cm/sec. | · . | 0 | ლ
თ | | 90 . | | WESTERNL | | ř. | , | | | 1.0 × 10 ⁻⁷ | | 480fatori | Swi Report No. 004704 | 5i
Si | TC | RECE
JUNE 1 | | | | fs <u> </u> | ii a | 15. | EQ | | | | | IJ | | | | - 42 | | | Attachment C.4.h GRAND CANYON DAIRY RCS HYDROLOGIC CONNECTION ### ATTACHMENT F ## SITE SPECIFIC INFORMATION FOR LAND MANAGEMENT UNITS FROM NUTRIENT MANAGEMENT PLAN # Table 1: Alternative Crops and Yield Goals Applicable to ALL Land Management Units: - 1,034 Acres | Crop and Yield Goal | Nitro | gen | P2O5 | | | |------------------------------|-------------|---------|-------------|--------|--| | Crop and Tiem Goal | Requirement | Removat | Requirement | Remova | | | Alfalta Hay 10 Tons | 530 | 532 | 180 | 101 | | | Alfalfa Hay 12 Tons | 640 | 638 | 180 | 121 | | | Alfalfa Hay 2 Tons | 120 | 106 | 35 | 20 | | | Alfalfa Hay 4 Tons | 210 | 213 | 80 | 40 | | | Alfalfa Hay 6 Tons | 300 | 319 | 130 | 60 | | | Alfalfa Hay 8 Tons | 420 | 426 | 180 | 81 | | | Bahia 2 Cut Hay 7000 # | 140 | 89 | 70 | 21 | | | Bahia 3 Cut Hay 8000 # | 210 | 102 | 80 | 24 | | | Bahia 4 Cut Hay 9000 # | 280 | 114 | 115 | 27 | | | Bahie Grazing - 1 Hay | 110 | 83 | 70 | 19 | | | Bahia Grazing ! AU/1 ac | 260 | 114 | 70 | 27 | | | Bahia Grazing 1 AU/2 ac | 220 | 108 | 45 | 25 | | | Bahia Grazing 1 AU/3 ac | 180 | 102 | 45 | 24 | | | Bahia Grazing 1 AU/4 ac | 140 | 95 | 45 | 22 | | | Bahia Grazing LAU/5 ac | 100 | 79 | 45 | 18 | | | Bahia Grazing 1 AU/6 ac | 60 | 65 | 45 | 15 | | | Cantaloupes 15-20 tons | 120 | 88 | 105 | 82 | | | Coastal 2 Cut + Graze | 260 | 198 | 125 | 62 | | | Coastal 2 Cut Hay | 200 | 169 | 125 | 39 | | | Coastal 3 Cut + Graze | 360 | 257 | 125 | 80 | | | Coastal 3 Cut Hay | 300 | 238 | 125 | 74 | | | Coastal 4 Cut Hay | 400 | 257 | 170 | 80 | | | Coastal 5-6 Cut Hay | 500 | 297 | 170 | 93 | | | Coastal Grazing + 1 Hay | 160 | 145 | 70 | 34 | | | Coastal Grazing 1 AU/0.5 ac | 300 | 218 | 70 | 68 | | | Coastal Grazing AU/1 ac | 240 | 198 | 70 | 62 | | | Coastal Grazing 1 AU/2 ac | 200 | 169 | 70 | 39 | | | Coastal Grazing 1 AU/3 ac | 160 | 145 | 70 | 34 | | | Coastal Grazing AU/4 ac | 120 | 120 | 70 | 28 | | | Coastal Grazing 1 AU/5 ac | 90 | 103 | 70 | 24 | | | Coastal Grazing AU/6 ac | 60 | 86 | 70 | 20 | | | Coastal GC (30%DM) 21-23 Ton | 400 | 345 | 170 | 95 | | | Coastal GC (30%DM) 18-20 Ton | 350 | 300 | 170 | 82 | | | Coastal GC (30%DM) 15-17 Ton | 300 | 255 | 125 | 70 | | | Coastal GC (30%DM) 9-11 Ton | 200 | 170 | 125 | 47 | | | Common 2 Cut Hay 6000 # | 140 | 113 | 80 | 26 | | | Common 3 Cut Hay 7400 # | 210 | 141 | 80 | 46 | | | Common 4 Cut Hay 8000 # | 280 | 152 | 80 | 49 | | | Common 5-6 Cut Hay 9000 # | 350 | 171 | 80 | 56 | | | Common Grazing + 1 Hay | 110 | 100 | 70 | 23 | | | Common Grazing + 2 Hay | 180 | 132 | 80 | 30 | | | Common Grazing + 3 Hay | 250 | 148 | 80 | 48 | | | Common Grazing 1 AU/1ac | 260 | 152 | 70 | 49 | | | Common Grazing AU/2 ac | 220 | 145 | 45 | 46 | | | Common Grazing 1 AU/3 ac | 180 | 132 | 45 | 30 | | | Common Grazing 1 AU/4 ac | 140 | 113 | 45 | 26 | | | Common Grazing 1 AU/5 ac | 100 | 94 | 45 | 22 | | | Common Grazing 1 AU/6 ac | 60 | 79 | 45 | 18 | | RECEIVED JUNE 11 2025 CAFO PERMITS TEAM TCEQ ### SITE SPECIFIC INFORMATION FOR LAND MANAGEMENT UNITS FROM NUTRIENT MANAGEMENT PLAN ### Table 1: Alternative Crops and Yield Goals Applicable to ALL Land Management Units: - 1,034 Acres | Connand Visid Cont | Nitrogen | | P2O5 | | J | |---|----------|---------|-------------|---------|-------------------| | Crop and Yield Goal Requirement | | Removal | Requirement | Removal | | | Com 111 - 130 bu | 144 | 117 | 105 | 47 | 1 | | Corn 131 - 150 bu | 164 | 135 | 105 | 54 | 1 | | Com 151 - 179 bu | 180 | 153 | 130 | 61 | 1 | | Com 171 - 190 bu | 210 | 171 | 130 | 68 | RECEIVED | | Com 191 - 210 bu | 250 | 189 | 130 | 75 | JUNE 11 2025 | | Com 211 - 230 bu | 280 | 207 | 130 | 83 | JUNE 11 2025 | | Com 231 - 250 bu | 300 | 225 | 130 | 90 C | FO PERMITS T | | Com 250 - 275 bu | 325 | 243 | 130 | 97 | NI O FEINIMI 3 II | | Com 276 - 300 bu | 350 | 261 | 130 | 104 | TCEQ | | Com 301 - 350 bu | 375 | 279 | 130 | 111 | 1 ICLQ | | Com 50 - 70 bu | 70 | 63 | 80 | 25 | 1 | | Com 71 - 90 bu | 90 | 81 | 80 | 32 | 1 | | Corn 91 - 110 bu | 120 | 99 | 105 | 39 | 1 | | Cotton 0 5 Bale | 25 | 18 | 30 | 9 | 1 | | Cotton I (1 Bale | 50 | 36 | 55 | 18 | 1 | | Cotton 2.0 Bale | 100 | 71 | 105 | 35 | 1 | | Cotton 3.0 Bale | 150 | 107 | 105 | 53 | 1 | | Cotton 3.5 Bale | 175 | 125 | 105 | 62 | 1 | | Cotton 4.0 Bale | 200 | 142 | 105 | 71 | i | | Cotton 4.5 Bale | 225 | 160 | 105 | 80 | | | Cotton 5.0 Bale | 250 | 178 | 105 | 89 | | | Eastern gamagrass- 3000 # | 80 | 57 | 40 | 21 | • | | Eastern gamagrass- 6000 # | 120 | 114 | 60 | 41 | 1 | | Fescue, Tall Hay/Graze 7000# | 150 | 140 | 80 | 42 | 1 | | Grain Sorg. 1000 # | 20 | 17 | 30 | 8 | 1 | | Grain Sorg. 10000 # | 200 | 167 | 130 | 82 | 1 | | Grain Sorg, 1500 # | 30 | 25 | 30 | 12 | | | Grain Sorg. 2000 # | 40 | 33 | 30 | 16 | 1 | | Grain Sore, 3000 # | 60 | 50 | 55 | 25 | 1 | | Grain Sorg. 4000 # | 80 | 67 | 55 | 33 | 1 | | Grain Sorg. 5000 # | 100 | 84 | 80 | 41 | - | | Grain Sorg. 6000 # | 120 | 100 | 80 | 49 | 1 | | Grain Sorg 7000 # | 140 | 117 | 130 | 58 | 1 | | Grain Sorg 8000 # | 160 | 134 | 130 | 66 | 1 | | Grain Sorg 9000 # | 180 | 150 | 130 | 74 | | | Guar 3500 lbs | 25 | 22 | 80 | 76 | 1 | | Johnsongrass Hay 6000 # | 140 | 101 | 80 | 32 | 1 | | Klein 3 Cut Hay 7200 # | 150 | 83 | 55 | 16 | 1 | | Klein 4 Cut I lay 7800 # | 150 | 90 | 55 | 18 | - | | Klein Grazing + 1 Hav | 80 | 69 | 53 | 14 | 1 | | Klein Grazing 1 AU/1.5 ac | 150 | 90 | 80 | 18 | + | | Klein Grazing 1 AU/2.5 ac | 80 | 69 | 55 | 14 | 1 | | Klein Grazing 1 AU/2.3 ac | 40 | 58 | 55 | 11 | 1 | | | 80 | 60 | 105 | 15 | 1 | | Legume Overseeded | 160 | 94 | 160 | 38 | ₹ | | Legume w/ryegrass | 120 | 75 | 80 | 17 | - | | Midland Bermuda 4000 # Midland Bermuda 6000 # | 150 | 113 | 105 | 26 | - | | Midland Bermuda 8000 # | 200 | 150 | 105 | 35 | | ### ATTACHMENT F ## SITE SPECIFIC INFORMATION FOR LAND MANAGEMENT UNITS FROM NUTRIENT MANAGEMENT PLAN # Table 1: Alternative Crops and Yield Goals Applicable to ALL Land Management Units: - 1,034 Acres | 0 | Nitro | gen | P2O5 | | | |-----------------------------------|-------------|---------|-------------|---------|--| | Crop and Yield Goal | Requirement | Removal | Requirement | Removal | | | Native Grazing or Hay 4000# | 80 | 44 | 70 | 34 | | | Native Grazing or Hay 3000# | 40 | 33 | 55 | 25 | | | Native Grazing o: Hay 1500# | 20 | 17 | 27 | 13 | | | Native Grazing or Hay 750# | 10 | 8 | 13 | 6 | | | Oat Light Grazing | 120 | 107 | 55 | 40 | | | Oat Moderate Grazing | 160 | 110 | 80 | 41 | | | Oats Hay 2-3 tons | 120 | 100 | 35 | 37 | | | Oats Heavy Grazing plus Hay | 200 | 117 | 80 | 43 | | | Old World Bluestern- 3000 # | 40 | 33 | 55 | 25 | | | Old World Bluestem- 6000 # | 80 | 66 | 55 | 51 | | | Peanut Hay Dryland 1 Ton | 50 | 47 | 70 | 11 | | | Peanut Hay Dryland 2 Tons | 100 | 93 | 70 | 22 | | | Peanut Hay Imgated 3 Tons | 150 | (40) | 95 | 33 | | | Peanuts Irrigated 4500 # | 180 | 162 | 93 | 18 | | | Rice Early 7500 # | 195 | 104 | 45 | 41 | | | Rice Late 7500# | 180 | 104 | 45 | 41 | | | Rice plus Ratoon Early 10000 # | 295 | 139 | 60 | 55 | | | Rice plus Ratoon Late 10000 # | 280 | 139 | 60 | 55 | | | Rye Forage 5000 # | 140 | 84 | 55 | 31 | | | Rye Forage 7000 # | 240 | 117 | 8D | 43 | | | Ryegrass Hay 6000 | 140 | 100 | 55 | 37 | | | Ryegrass Heavy Grazing | 200 | 117 | 80 | 43 | | | Ryegrass Moderate Grazing | 140 | 84 | 55 | 31 | | | SG Green Chop(25% DM) 8 to 9 tons | 260 | 203 | 90 | 73 | | | SG Green Chop(25% DM) 6 to 7 tons | 200 | 158 | 80 | 57 | | | SG Green Chop(25% DM) 4 to 5 tons | 135 | 113 | 60 | 41 | | | SG Green Chop(25% DM) 2 to 3 tons | 75 | 68 | 40 | 24 | | | SG Silage(35% DM) 12 to 14 tons | 160 | 128 | 90 | 67 | | | SG Silage(35% DM) 10 to 11 tons | 120 | 101 | 70 | 53 | | | SG Silage(35% DM) 8 to 9 tons | 95 | 83 | 40 | 43 | | | SG Silage(35% DM) 5 to 7 tons | 70 | 64 | 30 | 34 | | | Silage - Com(35% DM) 11 - 15 Ton | 140 | 119 | 80 | 58 | | | Silage - Corn(35% DM) 16 - 20 Ton | 240 | 183 | 100 | 77 | | | Silage - Corn(35% DM) 21 - 25 Ton | 350 | 263 | 105 | 96 | | | Silage - Corn(35% DM) 26 - 30 Ton | 420 | 315 | 135 | 115 | | | Silage - Com(35% DM) 7 - 10 Ton | 85 | 79 | 60 | 38 | | | Silage - Sorg(35% DM) 11 - 15 Ton | 200 | 179 | 75 | 55 | | | Silage - Sorg(35% DM) 16 - 20 Ton | 280 |
238 | 95 | 74 | | | Silage - Sorg(35% DM) 21 - 25 Ton | 360 | 298 | 115 | 92 | | | Silage - Sorg(35% DM) 26 - 30 Ton | 380 | 315 | 130 | 111 | | | Silage - Sorg(35% DM) 31 - 40 Ton | 450 | 364 | 155 | 135 | | | Silage - Sorg(35% DM) 41 - 50 Ton | 580 | 455 | 190 | 168 | | | Silage - Sorg(35% DM) 51 - 60 Ton | 700 | 550 | 220 | 202 | | | Silage - Sorg(35% DM) 7 - 10 Ton | 125 | 119 | 60 | 37 | | | Small Grain Heavy Grazing | 240 | 112 | 105 | 41 | | | Small Grain Light Grazing | 60 | 75 | 80 | 28 | | | Small Grain Moderate Grazing | 160 | 97 | 105 | 36 | | | Sorg Sudan Hay/Graze 11000 # | 240 | 219 | 105 | 83 | | RECEIVED JUNE 11 2025 AFO PERMITS TEAM TCEQ #### ATTACHMENT F ### SITE SPECIFIC INFORMATION FOR LAND MANAGEMENT UNITS FROM **NUTRIENT MANAGEMENT PLAN** ### Table 1: Alternative Crops and Yield Goals Applicable to ALL Land Management Units: - 1,034 Acres | emoval
149
219
151
119
180
71
107
117
150
53
39
33
67 | 80 56 65 105 105 55 55 80 | 83 57 24 40 30 45 43 56 49 30 | | |--|---|--|---| | 219
151
119
180
71
107
117
150
53
39
33
67 | 105
55
60
80
56
65
105
105
55
55 | 83
57
24
40
30
45
43
56
49
30 | | | 151
119
180
71
107
117
150
53
39
33
67 | 105
55
60
80
56
65
105
105
55
55 | 57
24
40
30
45
43
56
49
30 | | | 119
180
71
107
117
150
53
39
33
67 | 60
80
56
65
105
105
55
55
80 | 24
40
30
45
43
56
49
30 | | | 180
71
107
117
150
53
39
33
67 | 80
56
65
105
105
55
55
80 | 40
30
45
43
56
49
30 | | | 71
107
117
150
53
39
33
67 | 56
65
105
105
55
55
80 | 30
45
43
56
49
30 | | | 107
117
150
53
39
33
67 | 65
105
105
55
55
55 | 45
43
56
49
30 | | | 117
150
53
39
33
67 | 105
105
55
55
80 | 43
56
49
30 | | | 150
53
39
33
67 | 105
55
55
80 | 56
49
30 | - | | 53
39
33
67 | 55
55
80 | 49
30 | | | 39
33
67 | 55
80 | 30 | _ | | 33
67 | 80 | | | | 67 | | | | | | | 12 | | | 100 | 105 | 25 | | | 100 | 105 | 37 | RECEIVED | | 58 | 35 | 40 | | | 37 | 55 | 26 | JUNE 11 2025 | | 71 | 75 | 48 | CAFO PERMITS TEAM | | 50 | 75 | 34 | ALO PENMITS TEAM | | 83 | 75 | 57 | TCEQ | | 62 | 75 | 43 | 1 1010 | | 96 | 90 | 65 | 3 | | 75 | 90 | 51 | 1 | | 108 | 90 | 74 | 1 | | 87 | 90 | 60 | 1 | | 121 | 95 | 82 | 1 | | 100 | 95 | 68 | 7 | | 133 | 95 | 91 | 寸 ニュー・コー・コー・コー・コー・コー・コー・コー・コー・コー・コー・コー・コー・コー | | 112 | 95 | 77 | 7 | | 146 | 95 | 99 | 1 | | 125 | 93 | 85 | 7 | | 114 | 105 | 42 | | | 75 | 80 | 28 | 7 | | 97 | 105 | 36 | i | | 140 | 60 | 46 | 7 | | 95 | 45 | 40 | 7 | | 139 | 60 | 46 | | | 74 | 80 | 27 | 1 | | 92 | 80 | 33 | 7 | | 110 | 80 | 40 | 1 | | 60 | 105 | 14 | 7 | | 120 | 105 | 28 | 7 | | | 105 | 7 | | | 112 | 105 | 14 | 7 | | | | | | | 123 | 105 | | 7 | | | | | 5 1 | | | | 26 | 7 | |) | 120
56
112
137
123
120 | 0 120 105 56 105 0 112 105 1 137 105 0 123 105 0 120 105 | 0 120 105 28 56 105 7 0 112 105 14 0 137 105 35 0 123 105 32 0 120 105 26 | Grand Canyon Dairy Dublin, TX Erath County Site Map-Phase 2 Figure 1.3B Page 5 Enviro-Ag Engineering, Inc. ENGINEERING CONSULTANTS 3404 Airway Boulevard AMARILLO, TEXAS 79118 TEL (806) 353-6123 FAX (806) 353-4132 Grand Canyon Dairy Dublin, TX **Erath County** Runoff Control Map-Phase 2 Figure 1.4B Page 5 ENVIRO-46 Enviro-Ag Engineering, Inc. **ENGINEERING CONSULTANTS** 3404 Airway Boulevard AMARILLO, TEXAS 79118 TEL (806) 353-6123 FAX (806) 353-4132 Corporate Office: 3404 Airway Blvd. Amarillo TX 79118 Central Texas: 9855 FM 847 Dublin TX 76446 New Mexico: 203 East Main Street Artesia NM 88210 June 16, 2025 **TCEQ** Land Applications Team, Water Quality Division, MC-150 Attn: Joy Alabi P.O. Box 13087 Austin, TX 78711-3087 Re: Requested Information – CAFO Individual Permit Major Application WQ#2950 - Grand Canyon Dairy, Erath County, Texas. Dear Ms. Alabi, This letter is in response to your June 16, 2025, email regarding the above-referenced facility. From your email specifically: - 1. Attached is revised Section 2.1 of the Calculations and Specifications. - 2. The "current conditions" referred to the maps. This major amendment is for Phase 1 to reduce the headcount to 2,500 in total of which all are milking. - 3. Attached are Enforcement Closure Letters for Case No. 62488 for the sludge cleanouts of RCSs #2 and #3. Please let me know if you have any questions. Respectfully Submitted, Jourdan Mullin Enviro-Ag Engineering, Inc. Cc: TCEQ Region 4, Stephenville Grand Canyon Dairy EAE file PHONE: 800-753-6525 www.enviroag.com ### 2.0 CALCULATIONS & SPECIFICATIONS ### 2.1 Facility Overview The existing facility consists of open lots, barns, a milking parlor, three earthen settling basins, and three retention control structures to confine 4,000 head, of which 4,000 head are milking. Circle 7 Dairy, LLC and Grand Canyon Dairy, LLC is submitting a major amendment application in two phases in order to maintain compliance throughout the transition. Phase I will include the following changes: decrease the headcount to 2,500 total and 2,500 milking, update the runoff control, site map and recharge feature map to the current conditions (remove digester and proposed freestall barns), reconfigure the following LMUs: LMU #1A (41 ac) is new and is in a portion of LMU #1 (current – 103ac; proposed – 62ac), LMU #2A (21 ac) is new and is in a portion of LMU #2 (current 83ac; proposed – 62ac), LMU #3A (21ac) is new and is in portion of LMU #3 (current – 78ac; proposed – 56ac), LMU #6 (current – 65ac; proposed – 62ac), LMU #12A (30 ac) is new and is in a portion of LMU#12 (current – 91ac; proposed – 66ac) and LMU #14 (current – 52ac; proposed – 47ac). Phase 2 will include the increase of headcount to 4,000 total and 4,000 milking, the addition of an anerobic digester and associated equipment and the addition of freestall barns. This strategic phasing ensures that the dairy operates within regulatory standards while scaling up operations. Revised 6/16/2025 The proposed changes reflect Grand Canyon Dairy's commitment to growth and efficiency, while also adhering to environmental regulations. The expansion will allow for increased milk production and the ability to manage additional waste effectively through enhanced treatment facilities. The phased approach demonstrates careful consideration of operational compliance, ensuring that the dairy's expansion does not compromise its environmental responsibilities. ### 2.2 Manure Production Table 2.1, As-Excreted Manure Characteristics Existing Dairy Facility, is included as a summary of the annual manure and nutrient production for the facility. The totals in Table 2.1 represent as-excreted manure and nutrient values for the maximum head count shown in the application. Note: This data is intended for planning and design purposes and is not to be used for whole-farm nutrient mass balance calculations. Brooke T. Paup, *Chairwoman*Bobby Janecka, *Commissioner*Catarina R. Gonzales, *Commissioner*Kelly Keel, *Executive Director* ### TEXAS COMMISSION ON ENVIRONMENTAL QUALITY Protecting Texas by Reducing and Preventing Pollution May 16, 2025 Dorice Miranda, Member Circle 7 Dairy LLC and GRAND CANYON DAIRY LLC 2179 County Road 308 Dublin, Texas 76446 Via email Re: No Notice of Closure Circle 7 Dairy LLC and GRAND CANYON DAIRY LLC; RN100794155 Docket No. 2022-0651-AGR-E; Enforcement Case No. 62418 Dear Dorice Miranda: This letter is to inform you that the Enforcement Division has conducted a review of Texas Commission on Environmental Quality ("TCEQ") records on the above-referenced enforcement action. Our records indicate that while the enforcement case file can be closed, payment of all or a portion of the penalty remains outstanding. The matter has been referred to the Financial Administration Division, who will monitor collection of the remaining penalties. You may contact them at AcctRec@tceq.texas.gov or 512-239-0300 with questions related to payments. Although the enforcement case file has been closed, the terms and conditions of the associated administrative order ("Order") remain in effect. The Order will remain on the regulated entity's compliance history for five years from the effective date of the Order. If we can be of further assistance, please contact Ms. Mistie Gonzales of my staff at (254) 761-3056-8753 or at mistie.gonzales@tceq.texas.gov. Sincerely, Laura Draper, Team Leader Enforcement Division LD/mg cc: Via email, Corey Mullin, Consultant, Enviro-Ag Engineering Brooke T. Paup, *Chairwoman*Bobby Janecka, *Commissioner*Catarina R. Gonzales, *Commissioner*Kelly Keel, *Executive Director* ### TEXAS COMMISSION ON ENVIRONMENTAL QUALITY Protecting Texas by Reducing and Preventing Pollution May 13, 2025 Dorice Miranda, Member Circle 7 Dairy LLC and GRAND CANYON DAIRY LLC 2179 County Road 308 Dublin, Texas 76446 Via email Re: Notice of Closure Circle 7 Dairy LLC and GRAND CANYON DAIRY LLC; RN100794155 Docket No. 2022-0651-AGR-E; Enforcement Case No. 62418 Dear Dorice Miranda: This letter is to inform you that the Enforcement Division has conducted a
review of Texas Commission on Environmental Quality ("TCEQ") records on the above-referenced enforcement action. Our records indicate that while the enforcement case file can be closed, payment of all or a portion of the penalty remains outstanding. The matter has been referred to the Financial Administration Division, who will monitor collection of the remaining penalties. You may contact them at ActRec@tceq.texas.gov or 512-239-0300 with questions related to payments. Although the enforcement case file has been closed, the terms and conditions of the associated administrative order ("Order") remain in effect. The Order will remain on the regulated entity's compliance history for five years from the effective date of the Order. If we can be of further assistance, please contact Ms. Mistie Gonzales of my staff at (254) 761-3056 or at mistie.gonzales@tceq.texas.gov. Sincerely, Laura Draper, Team Leader Enforcement Division Laura Draper LD/mg cc: Via email, Corey Mullin, Consultant, Enviro-Ag Engineering #### Joy Alabi From: Jourdan Mullin <jmullin@enviroag.com> **Sent:** Monday, June 16, 2025 1:58 PM To: Joy Alabi Subject: RE: Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC, WQ0002950000 - Major Amendment Ok, understood. Please leave that provision in the permit and we will provide new liner and capacity certification. Thank you, Jourdan ----Original Message----- From: Joy Alabi <Joy.Alabi@tceq.texas.gov> Sent: Monday, June 16, 2025 1:52 PM To: Jourdan Mullin < jmullin@enviroag.com> Subject: Re: Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC, WQ0002950000 - Major Amendment Jourdan, Yes, you are correct that the cleanout had to happen before the headcount increase. However, the requirement for the new liner and capacity certification is also applicable to the RCSs that have been cleaned out. Thank you, Joy From: Jourdan Mullin < jmullin@enviroag.com> Sent: Monday, June 16, 2025 1:25 PM To: Joy Alabi Subject: RE: Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC, WQ0002950000 - Major Amendment Joy, There is no proposed construction to the RCSs with either the currently authorized permit or the major amendment application submitted. The Cleanout had to happen before the headcount increase. Please see Special Provision X.A.1. Please let me know if you have any questions. Thank you, Jourdan Mullin From: Joy Alabi <Joy.Alabi@tceq.texas.gov> Sent: Monday, June 16, 2025 11:36 AM To: Jourdan Mullin <jmullin@enviroag.com> Subject: RE: Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC, WQ0002950000 - Major Amendment Jourdan, The document (Enforcement Closure Letters for Case No.62488) that you submitted in response to comment #3 of the cleanup items is not sufficient. The permit requirement is that "Once construction is complete, and the sludge cleanout in RCSs #2 and #3, new capacity and liner certifications for the RCSs will be provided." Please submit the new capacity and liner certifications to comply with the permit requirement. Thank you, Joy From: Jourdan Mullin < jmullin@enviroag.com < mailto:jmullin@enviroag.com >> Sent: Monday, June 16, 2025 11:25 AM To: Joy Alabi < Joy. Alabi@tceq.texas.gov < mailto: Joy. Alabi@tceq.texas.gov >> Subject: RE: Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC, WQ0002950000 - Major Amendment [cid:image001.gif@01DBDEC2.143DFCB0] Good Monday Morning Joy, Attached is the information you requested for Grand Canyon Dairy, WQ0002950000. Please let me know if have any questions. Thank you, Jourdan Mullin From: Joy Alabi < Joy. Alabi@tceq.texas.gov < mailto: Joy. Alabi@tceq.texas.gov >> Sent: Monday, June 16, 2025 9:31 AM To: Jourdan Mullin < jmullin@enviroag.com < mailto: jmullin@enviroag.com >> Cc: Richard George < rgeorge@enviroag.com < mailto: rgeorge@enviroag.com >> Subject: RE: Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC, WQ0002950000 - Major Amendment Good morning Jourdan & Richard. We have reviewed the responses to the comments. Please find below a few cleanup items. - 1. This is from the original comment that was not addressed. Please correct the current acreage of LMU #3 in Section 2.1 (2nd paragraph) of the Calculations and Specifications. - 2. The response to Comment #13 said to reduce the headcount to 2,150 in total of which all are milking. In the original application it is decrease to 2,500 head, all of which are milking. Please clarify. - 3. It is indicated in your response to Comment #12 of my original comment, that the sludge in RCS #2 and #3 were cleaned out. Section VII.A.3(2) of the permit states: "Once construction is complete, and the sludge cleanout in RCSs #2 and #3, new capacity and liner certifications for the RCSs will be provided." Please submit the documents so that the Special Provision in Sections X.A.1 and 4 can be amended. Please let me know if you need additional time. Thank you, Joy From: Jourdan Mullin < jmullin@enviroag.com < mailto: jmullin@enviroag.com >> Sent: Wednesday, June 11, 2025 2:42 PM To: Joy Alabi < Joy. Alabi@tceq.texas.gov < mailto: Joy. Alabi@tceq.texas.gov >> Cc: Robert Chavez < Robert. Chavez@tceq.texas.gov < mailto: Robert. Chavez@tceq.texas.gov >>; Corey Mullin <cmullin@enviroag.com<mailto:cmullin@enviroag.com>> Subject: RE: Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC, WQ0002950000 - Major Amendment [cid:image001.gif@01DBDEC2.143DFCB0] Good Afternoon Joy, Attached is the information you requested for Grand Canyon Dairy, WQ0002950000. Please let me know if you have any questions. Thank you, Jourdan Mullin From: Joy Alabi@tceq.texas.gov<mailto:Joy.Alabi@tceq.texas.gov>> Sent: Tuesday, June 10, 2025 2:08 PM To: Richard George <rgeorge@enviroag.com<mailto:rgeorge@enviroag.com>> Cc: Jourdan Mullin < jmullin@enviroag.com < mailto: jmullin@enviroag.com >>; Robert Chavez <Robert.Chavez@tceq.texas.gov<mailto:Robert.Chavez@tceq.texas.gov>> Subject: Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC, WQ0002950000 - Major Amendment CAUTION: This email originated from outside of Enviro-Ag Engineering. Do not click links or open attachments unless you have verified the sender and know the content is safe. Good afternoon Richard. Please find below our comments on the subject major amendment application. - 1. In Section 2.D of the application and Item #6 of the plain language summaries, the proposed LMU 2 is 21 acres which is not consistent with the rest of the application. Also see Section 2.1 of the calculations and Specifications showing 56 acres for the same LMU. Please revise. - 2. Please correct the acreage of current and proposed LMU #3 in Section 2.1 (2nd paragraph) of the Calculations and Specifications. - 3. Section 2.A.2) of the technical information packet (TIP) (Phase 1 & Phase 2) shows zero in open lots, however Section 2.A.3) listed 21 hours in open lots. Please reconcile. - 4. On Table 6 of the TIP (Well Table), the protective measure for Wells #6 and #8 is "see approved well buffer exception", even though Table 5.4 of the recharge feature certification shows plugged. Please revise. - 5. Please show the 136 ft buffer zone that is referenced in the Map legend for Figure 1.3A Site Map. - 6. The manure production tables show that the animals will be in the pasture for 6 hours. Please reconcile this with comment 3) above. - 7. The effluent application rates (acre-feet/acre) for LMUs #1, #2, #3, #3A and #5 on Table 4 of the TIP for Phase 1 is not consistent with the planned effluent application rate of the Phase 1 NMP. Please revise. - 8. Please revise the effluent application rate for LMUs #1 and #5, and also the unit for LMU #5 for Phase II on Table 4 of the TIP to be consistent with the planned effluent rate of the Phase II NMP. - 9. The old and new RCS table says it is for a minor amendment. Please confirm that the re-designation of the RCSs is still applicable to this major amendment. - 10. I am unable to identify the liner certifications for RCSs #1 and #3 in the supporting documents. Please note it on the documents. - 11. Please submit the list of alternative crops/yield goals that was approved for this site. - 12. Sections X.A.1 and 4 of the current permit require the Permittee to clean out sludge from RCSs #2 and #3 and all RCSs modifications prior to exceeding 2,150 head, of which 1,950 head are milking. Please verify if the Permittee has complied with this Special Provision. - 13. If the permit amendment will reflect the current condition of the production area in Phase 1, then the proposed number of head should also be based on the 2,150 head, of which 1,950 head are milking. Please revise the application to be consistent. - 14. Please label Phase 1 and Phase 2 on the Site Maps. - 15. Please label Phase 1 and Phase 2 on Runoff Control Maps. - 16. Please label the additional flow arrow on Figure 1.4A - 17. Please increase the font of the feedlane on Figure 1.4A and 1.4B - 18. Please increase the font on the Composting/Manure Storage Area on Figure 1.4B - 19. Please enlarge all the runoff labels fonts (i.e. dry scrape, runoff, processed WW, etc) on the WW flowchart on Figure 2.1A and 2.1B - 20. Please verify the 30% efficiency for the settling pond. - 21. Please indicate why the settling efficiency from Phase 1 and 2 is different when nothing has changed. - 22. Confirm that Table 2.3C does not have any double cropping. The response is due on June 24, 2025. Please let me know if you have any questions. Thank you, Joy Alabi Land Applications Team, Water Quality Division Texas Commission on Environmental Quality P.O. Box 13087 Austin, Texas 78711-3087 Phone: 512-239-1318 #### Disclaimer The information contained in this communication from the sender is confidential. It is intended solely for use by the recipient and others authorized to receive it. If you are not the recipient, you are hereby notified that any disclosure, copying, distribution or taking action in relation of the contents of this information is strictly prohibited and may be unlawful. This email
has been scanned for viruses and malware, and may have been automatically archived by Mimecast Ltd, an innovator in Software as a Service (SaaS) for business. Providing a safer and more useful place for your human generated data. Specializing in; Security, archiving and compliance. To find out more Click Herehttp://www.mimecast.com/products/>. #### Disclaimer The information contained in this communication from the sender is confidential. It is intended solely for use by the recipient and others authorized to receive it. If you are not the recipient, you are hereby notified that any disclosure, copying, distribution or taking action in relation of the contents of this information is strictly prohibited and may be unlawful. This email has been scanned for viruses and malware, and may have been automatically archived by Mimecast Ltd, an innovator in Software as a Service (SaaS) for business. Providing a safer and more useful place for your human generated data. Specializing in; Security, archiving and compliance. To find out more Click Herehttp://www.mimecast.com/products/>. #### Disclaimer The information contained in this communication from the sender is confidential. It is intended solely for use by the recipient and others authorized to receive it. If you are not the recipient, you are hereby notified that any disclosure, copying, distribution or taking action in relation of the contents of this information is strictly prohibited and may be unlawful. This email has been scanned for viruses and malware, and may have been automatically archived by Mimecast Ltd, an innovator in Software as a Service (SaaS) for business. Providing a safer and more useful place for your human generated data. Specializing in; Security, archiving and compliance. To find out more Click Herehttp://www.mimecast.com/products/>. #### **Disclaimer** The information contained in this communication from the sender is confidential. It is intended solely for use by the recipient and others authorized to receive it. If you are not the recipient, you are hereby notified that any disclosure, copying, distribution or taking action in relation of the contents of this information is strictly prohibited and may be unlawful. This email has been scanned for viruses and malware, and may have been automatically archived by **Mimecast Ltd**, an innovator in Software as a Service (SaaS) for business. Providing a **safer** and **more useful** place for your human generated data. Specializing in; Security, archiving and compliance. To find out more <u>Click Here</u>. Jon Niermann, Chairman Emily Lindley, Commissioner Bobby Janecka, Commissioner Kelly Keel, Interim Executive Director ### TEXAS COMMISSION ON ENVIRONMENTAL QUALITY Protecting Texas by Reducing and Preventing Pollution August 25, 2023 Tim Miranda, Member Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC 965 Waddington Road Ferndale, California 95536 RE: Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC Permit No. WQ0002950000 This letter is your notice that the Texas Commission on Environmental Quality (TCEQ) executive director (ED) has acted on the above-named application. According to 30 Texas Administrative Code (TAC) Section 50.135 the ED's action became effective on the date the ED signed the permit or other action. A copy of the final action is enclosed and cites the effective date. For certain matters, a **motion to overturn**, which is a request that the commission review the ED's action on an application, may be filed with the chief clerk. Whether a motion to overturn is procedurally available for a specific matter is determined by Title 30 of the Texas Administrative Code Chapter 50. According to 30 TAC Section 50.139, an action by the ED is not affected by a motion to overturn filed under this section unless expressly ordered by the commission. If a motion to overturn is filed, the motion must be received by the chief clerk within 23 days after the date of this letter. An original and 7 copies of a motion must be filed with the chief clerk in person or by mail. The Chief Clerk's mailing address is Office of the Chief Clerk (MC 105), TCEQ, P.O. Box 13087, Austin, Texas 78711-3087. On the same day the motion is transmitted to the chief clerk, please provide copies to the Environmental Law Deputy Director (MC 173), and the Public Interest Counsel (MC 103), both at the same TCEQ address listed above. If a motion is not acted on by the commission within 45 days after the date of this letter, then the motion shall be deemed overruled. You may also request **judicial review** of the ED's action. The procedure and timelines for seeking judicial review of a commission or ED action are governed by Texas Water Code Section 5.351. Individual members of the public may seek further information by calling the TCEQ Public Education Program, toll free, at 1-800-687-4040. Sincerely, Laurie Gharis Chief Clerk LG/cb cc: Garrett T. Arthur, TCEQ Public Interest Counsel (MC 103) Paurie Gharis Jon Niermann, *Presidente* Emily Lindley, *Comisionada* Bobby Janecka, *Comisionado* Kelly Keel, *Director Ejecutivo interino* ### COMISIÓN DE CALIDAD AMBIENTAL DE TEXAS Protegiendo a Texas al Reducir y Prevenir la Contaminación Agosto 25, 2023 Tim Miranda, Member Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC 965 Waddington Road Ferndale, California 95536 RE: Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC Permiso No. WQ0002950000 Esta carta es su aviso de que el director ejecutivo (ED, por sus siglas en inglés) de la Comisión de Calidad Ambiental de Texas (TCEQ, por sus siglas en inglés) ha actuado sobre la solicitud mencionada anteriormente. De acuerdo con 30 Código Administrativo de Texas (TAC, por sus siglas en inglés) Sección 50.135, la acción del ED entró en vigencia en la fecha en que el ED firmó el permiso u otra acción. Se adjunta una copia de la acción final y se cita la fecha de vigencia. Para ciertos asuntos, una **moción para revocar**, que es una solicitud para que la comisión revise la acción del ED sobre una solicitud, puede presentarse ante el secretario oficial. Si una moción para revocar está disponible desde el punto de vista procesal para un asunto específico está determinado por el Título 30 del Capítulo 50 del Código Administrativo de Texas. De acuerdo con 30 TAC Sección 50.139, una acción del ED no se ve afectada por una moción de revocación presentada bajo esta sección a menos que la comisión lo ordene expresamente. Si se presenta una moción para revocarla, la moción debe ser recibida por el secretario oficial dentro de los 23 días posteriores a la fecha de esta carta. Se debe presentar una copia original y 7 copias de una moción ante el secretario oficial en persona o por correo. La dirección postal del Secretario Oficial es Office of the Chief Clerk (MC 105), TCEQ, P.O. Box 13087, Austin, Texas 78711-3087. El mismo día en que se transmite la moción al secretario oficial, proporcione copias al Director Adjunto de Derecho Ambiental D (MC 173) y al Asesor de Interés Público (MC 103), ambos en la misma dirección de la TCEQ mencionada anteriormente. Si una moción no es tomada en cuenta por la comisión dentro de los 45 días posteriores a la fecha de esta carta, entonces la moción se considerará anulada. También puede solicitar una **revisión judicial** de la acción del ED. El procedimiento y los plazos para solicitar la revisión judicial de una comisión o acción del ED se rigen por la Sección 5.351 del Código de Agua de Texas. Los miembros individuales del público pueden solicitar más información llamando al Programa de Educación Pública de la TCEQ, al número gratuito, al 1-800-687-4040. Atentamente, Laurie Gharis Secretaria Oficial aurie Gharis LG/cb | cc: | Garrett T. Arthur, Asesor de Interés Público de la TCEQ (MC 103) | | | | | | |-----|--|--|--|--|--|--| TPDES Permit No. WQ0002950000 This Permit supersedes and replaces Permit No. WQ0002950000 issued on July 23, 2019 [For TCEQ use only EPA ID No. TX0130923] #### TEXAS COMMISSION ON ENVIRONMENTAL QUALITY P.O. Box 13087 Austin, Texas 78711-3087 #### TPDES PERMIT FOR CONCENTRATED ANIMAL FEEDING OPERATIONS under provisions of Section 402 of the Clean Water Act Chapter 26 of the Texas Water Code and Section 382.051 of the Texas Clean Air Act #### I. Permittee: A. Owner: Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC B. Business Name: Grand Canyon DairyC. Owner Address: 965 Waddington Road Ferndale, California 95536 **II. Type of Permit:** Major Amendment / Air & Water Quality III. Nature of Business Producing Waste: Concentrated Animal Feeding Operation (CAFO): Dairy Cattle; SIC No. 0241 IV. General Description and Location of Waste Disposal System: Maximum Capacity: 4,000 total head, all of which are milking cows Site Plan: See Attachment A Retention Control Structures (RCSs) total required capacities without freeboard (AcreFeet): RCS #1 (Covered Digester) – 0, RCS #2 – 58.81 (Digester operational) or 54.96 (Digester bypassed), RCS #3 – 22.79; RCS #1 and #2 act in-series. Other components of the waste management system are a covered anaerobic digester, screw press separator, and a methane generating system Land Management Units (LMUs) (Acres): LMU #1 – 103, LMU #2 – 83, LMU #3 – 78, LMU #4 – 60, LMU #5 - 210, LMU #6 - 65, LMU #7 - 30, LMU #8 – 87, LMU #9 - 20, LMU #10 - 50, LMU #11 - 56, LMU #12
– 91, LMU #13 - 53, LMU #14 - 52; See Attachment B for locations Terms of the Nutrient Management Plan (NMP): See Attachments E and F Location: The facility is located at 2179 County Road 308, Dublin, Erath County, Texas. Latitude: 32.023055° N and Longitude: 98.270833° W. See Attachment C Drainage Basin: The facility is located in the drainage area of the North Bosque River in Segment No. 1226 of the Brazos River Basin This permit contained herein shall expire at midnight, five years after the date of Commission approval. ISSUED DATE: August 17, 2023 For the Commission #### V. Rule and Statute Applicability - **A. Definitions.** All definitions in Chapter 26 of the Texas Water Code, 30 Texas Administrative Code (TAC) Chapters 305 and 321, Subchapter B shall apply to this permit and are incorporated by reference. - B. Amendments, renewals, transfers, corrections, revocation, and suspension of permit. The requirements in 30 TAC Chapter 305, Subchapter D apply to this permit. #### VI. Permit Applicability and Coverage - **A. Discharge Authorization**. No discharge is authorized by this permit except as allowed by the provisions in this permit and 40 Code of Federal Regulations Chapter 412, which is adopted by reference in 30 TAC Chapter 305.541. - **B. Application Applicability**. The application pursuant to which the permit has been issued is incorporated herein; provided, however, that in the event of a conflict between the provisions of this permit and the application, the provisions of the permit shall control. - **C. Air Quality Authorization**. The permittee shall comply with the requirements listed in Section VII.D. of this permit and shall: - maintain a minimum treatment capacity of 18.41 acre-feet in RCS #2 when the covered digester is operational and 15.28 acre-feet when the covered digester is bypassed; - 2. identify the maximum sludge volume and the minimum treatment volume on the permanent pond marker in RCS #2; - 3. maintain a copy of the odor control plan in the Pollution Prevention Plan; and - 4. include a stage storage table for the treatment pond in the RCS Management Plan. # VII. Pollution Prevention Plan (PPP) Requirements A. Technical Requirements - 1. PPP General Requirements. - (a) The permittee shall update and implement a PPP for this facility upon issuance of this permit. The PPP shall: - (1) be prepared in accordance with good engineering practices; - (2) include measures necessary to limit the discharge of pollutants to surface water in the state: - (3) describe and ensure the implementation of practices which are to be used to assure compliance with the limitations and conditions of this permit; - (4) include all information listed in Section VII.A.; - (5) identify specific individual(s) who is/are responsible for development, implementation, operation, maintenance, inspections, recordkeeping, and revision of the PPP. The activities and responsibilities of the pollution prevention personnel shall address all aspects of the facility's PPP; - (6) be signed by the permittee or other signatory authority in accordance with 30 TAC §305.44 (relating to Signatories to Applications); and - (7) be retained on-site. - (b) The permittee shall amend the PPP: - (1) before any change in the number or configuration of LMUs; - (2) before any increase in the maximum number of animals; - (3) before operation of any new control facilities; - (4) before any change that has a significant effect on the potential for the discharge of pollutants to water in the state; - (5) if the PPP is not effective in achieving the general objectives of controlling discharges of pollutants from the production area or LMUs; or - (6) within 90 days following written notification from the Executive Director that the plan does not meet one or more of the minimum requirements of this permit. - (c) Maps. The permittee shall maintain the following maps as part of the PPP. - (1) Site Map. The permittee shall update the site map as needed, by permit amendment, to reflect the layout of the facility. The map shall include, at a minimum, the following information: facility boundaries; pens; barns; berms; open lots; manure storage areas; areas used for composting; dead animal burial sites; RCSs or other control facilities; LMUs; water wells, abandoned and in use, which are on-site or within 500 feet of the facility boundary; and all springs, lakes, or ponds located on-site or within one mile of the facility boundary. - (2) Land Application Map. Natural Resource Conservation Service (NRCS) soil survey maps of all LMUs shall depict: - (i) the boundary of each LMU and acreage; - (ii) all buffer zones required by this permit; and - (iii) the unit name and symbol of all soils in the LMU(s). - (d) Potential Pollutant Sources/Site Evaluation. - (1) Potential Pollutant Sources. The PPP shall include a description of potential pollutant sources and indicate all measures that will be used to prevent contamination from the pollutant sources. Potential pollutant sources include any activity or material that may reasonably be expected to add pollutants to surface water in the state from the facility. - (2) Soil Erosion. The PPP shall identify areas that, due to topography, activities, or other factors, have a high potential for significant soil erosion. If these areas have the potential to contribute pollutants to surface water in the state, the PPP shall identify measures used to limit erosion and pollutant runoff. - (3) Control Facilities. The PPP shall include the location and a description of control facilities. The control facilities shall be appropriate for the identified sources of pollutants at the CAFO. - (4) Recharge Feature Certification. The recharge feature certification submitted in the permit application shall be implemented, updated by the permittee as often as necessary, and maintained in the PPP. - (5) 100-year Floodplain. All control facilities, including holding pens and RCSs, shall be located outside of the 100-year floodplain or protected from inundation and damage that may occur during the flood. - (e) Spill Prevention and Recovery. The permittee shall take appropriate measures necessary to prevent spills and to clean up spills of any toxic pollutant. Where potential spills can occur, materials, handling procedures and storage shall be specified. The permittee shall identify the procedures for cleaning up spills and shall make available the necessary equipment to personnel to implement a clean up. The permittee shall store, use, and dispose of all pesticides in accordance with label instructions. There shall be no disposal of pesticides, solvents or heavy metals, or of spills or residues from storage or application equipment or containers, into RCSs. Incidental amounts of such substances entering a RCS as a result of stormwater transport of properly applied chemicals is not a violation of this permit. - 2. Discharge Restrictions and Monitoring Requirements. - (a) Discharge Restrictions. Wastewater may be discharged to water in the state from a properly designed (25-year frequency 10-day duration (25 year/10 day)), constructed, operated and maintained RCS whenever chronic or catastrophic rainfall, or catastrophic conditions cause an overflow. There shall be no effluent limitations on discharges from RCSs which meet the above criteria. - (b) Monitoring Requirements. The permittee shall sample all discharges from the RCS(s) and LMU(s). The effluent shall be analyzed by a National Environmental Laboratory Accreditation Conference (NELAC) accredited lab for the parameters shown in Table 1. **Table 1: Monitoring Requirements** | Parameter | Sample Type | Sample Frequency | |---|-------------|------------------| | 5 Day Biochemical Oxygen Demand (BOD ₅) | Grab | 1/day¹ | | Escherichia coli | Grab | 1/day¹ | | Total Dissolved Solids (TDS) | Grab | 1/day¹ | | Total Suspended Solids (TSS) | Grab | 1/day¹ | | Nitrate (N) | Grab | 1/day¹ | | Total Phosphorus | Grab | 1/day¹ | | Ammonia Nitrogen | Grab | 1/day¹ | | Pesticides ² | Grab | 1/day¹ | ¹Sample shall be taken within the first thirty (30) minutes following the initial discharge and then once per day while discharging. ²Any pesticide which the permittee has reason to believe could be present in the wastewater. - (c) If the permittee is unable to collect samples due to climatic conditions that create dangerous conditions for personnel (such as local flooding, high winds, hurricane, tornadoes, electrical storms, etc.), the permittee shall document why discharge samples could not be collected. Once dangerous conditions have passed, the permittee shall conduct the required sampling. - 3. RCS Design and Construction. - (a) RCS Certifications - (1) The permittee shall ensure that the design and completed construction of the modified RCS(s) and the anaerobic digester system (See Special Provision X.A.) is certified by a licensed Texas Professional Engineer prior to use. The certification shall be signed and sealed in accordance with the Texas Board of Professional Engineers requirements. - (2) Documentation of liner and capacity certifications must be completed for each RCS prior to use and kept on-site in the PPP. Once construction is complete, and the sludge cleanout in RCSs #2 and #3, new capacity and liner certifications for the RCSs will be provided. Table 2 below shows the current RCS liner and capacity certifications. **Table 2: Current Liner and Capacity Certifications** | RCS Name | Liner
Certification
Date | Capacity
Certification
Date | Certified Capacity
(Acre-Feet) | |-------------------|--------------------------------|-----------------------------------|-----------------------------------| | RCS #1 | June 14, 1989 | March 10, 2010 | 4.04 | | RCS #2 | August 27, 2010 | August 27, 2010 | 64.87 | | RCS #3 | August 13, 1990 | August 1, 2007 | 25.95 | | Settling Basin #1 | July 3, 1989 | | | | Settling Basin #2
| July 3, 1989 | Not Applicable | | | Settling Basin #3 | February 8, 1989 | | | - (b) Design and Construction Standards. The permittee shall ensure that each RCS is designed and constructed in accordance with the technical standards developed by the NRCS, American Society of Agricultural and Biological Engineers, American Society of Civil Engineers, or American Society of Testing Materials that are in effect at the time of construction. Where site-specific variations are warranted, a licensed Texas Professional Engineer must document these variations and their appropriateness to the design. - (c) RCS Drainage Area. - (1) The permittee shall describe in the PPP and implement measures that will be used to minimize entry of uncontaminated stormwater into the RCS(s). - (2) Stormwater must be diverted, as indicated in Attachment A Site Map from contact with feedlots and holding pens, and manure and/or process wastewater storage systems. In cases where it is not feasible to divert stormwater from the production area, the retention structures shall include adequate storage capacity for the additional stormwater. Stormwater includes rain falling on the roofs of facilities, runoff from adjacent land, or other sources. - (3) The permittee shall maintain the drainage area to minimize ponding or puddling of water outside the RCS(s). - (d) RCS Sizing - (1) The design plan must include documentation describing the sources of information, assumptions and calculations used in determining the appropriate volume capacity and structural features of each RCS, including embankment and liners. - (2) Design Rainfall Event. Each RCS authorized under this permit shall be designed and constructed to meet or exceed the margin of safety, equivalent to the volume of runoff and direct precipitation from the 25 year/10 day rainfall event. The design rainfall event for this CAFO is **12.0** inches. - (3) Any RCS capacity that is greater than the minimum capacity required by this permit may be allocated to additional sludge storage volume, which will increase the design sludge cleanout interval for the RCS. The new sludge cleanout interval will be identified in the RCS management plan maintained in the PPP, the stage storage tables will accurately reflect the new volumes, and the pond markers will visually identify the new volume levels. - (e) Irrigation Equipment Design. The permittee shall ensure that the irrigation system design is capable of removing wastewater from the RCS(s) on a regular schedule. Equipment capable of dewatering the RCS(s) shall be available and Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC TPDES Permit No. WQ0002950000 operational whenever needed to restore the operating capacity required by the RCS management plan. - (f) Embankment Design and Construction. The RCS(s) have a depth of water impounded against the embankment at the spillway elevation of three feet or more, therefore the RCS(s) are considered to be designed with an embankment. The PPP shall include a description of the design specifications for the RCS embankments. The following design specifications are required for all new construction and/or the modified portions of existing RCSs. - (1) Soil Requirements. Soils used in the embankment shall be free of foreign material such as rocks larger than four (4) inches, trash, brush, and fallen trees. - (2) Embankment Lifts. The embankment shall be constructed in lifts or layers no more than eight (8) inches compacted to six (6) inches thick at a minimum compaction effort of 95 per cent (%) Standard Proctor Density (ASTM D698) at -1% to +3% of optimum moisture content. - (3) Stabilize Embankment Walls. All embankment walls shall be stabilized to prevent erosion or deterioration. - (4) Compaction Testing. Embankment construction must be accompanied by certified compaction tests including in place density and moisture in accordance with the American Society of Testing Materials (ASTM) D1556, D2167 or D2937 for density and D2216, D4643, D4944 or D4959 for moisture, or D6938 for moisture and density or equivalent testing standards. Compaction tests will provide support for the liner certification performed by a licensed Texas Professional Engineer as meeting a permeability no greater than 1 ×10-7 centimeters per second (cm/sec) over a thickness of 18 inches or its equivalency in other materials, and not to exceed a specific discharge through the liner of 1.1 × 10-6 cm/sec with a water level at spillway depth. - (5) Spillway or Equivalent Protection. The new or modified RCS(s), which are constructed with embankments, shall be constructed with a spillway or other outflow device properly sized according to NRCS design and specifications to protect the integrity of the embankment. - (6) Embankment Protection. The new or modified RCS(s) must have a minimum of two (2) vertical feet of materials equivalent to those used at the time of design and construction between the top of the embankment and the structure's spillway. RCS(s) without spillways must have a minimum of two (2) vertical feet between the top of the embankment and the required storage capacity. - (g) RCS Liner Requirements. For all new construction and for all structural modifications of existing RCS(s), the RCS must have a liner consistent with one of the following: - (1) In-situ Material. In-situ material is undisturbed, in-place, native soil material. In-situ materials must at least meet the minimum criteria for hydraulic conductivity and thickness and specific discharge as described in Section VII.A.3(g)(2) of this permit. Samples shall be collected and analyzed in accordance with Section VII.A.3(g)(3) of this permit. This documentation must be certified by a licensed Texas Professional Engineer or licensed Texas Professional Geoscientist. - (2) Constructed or Installed Liner. - (i) Constructed or installed liners must be designed by a licensed Texas Professional Engineer. The liner must be constructed in accordance with the design and certified as such by a licensed Texas Professional Engineer. Compaction tests and post construction sampling and analyses, conducted in accordance with Sections VII.A.3(f)(4) and VII.A.3(g)(3) of this permit, will provide support for the liner certification. - (ii) Liners shall be designed and constructed to have hydraulic conductivities no greater than 1×10^{-7} centimeters per second (cm/sec), with a thickness of 18 inches or its equivalency in other materials, and not to exceed a specific discharge through the liner of 1.1×10^{-6} cm/sec with a water level at spillway depth. - (iii) Constructed or installed liners must be designed and constructed to meet the soil requirements, lift requirements, and compaction testing requirements as listed in Section VII.A.3(f)(1), (2) and (4) of this permit. - (3) Liner Sampling and Analyses - (i) The licensed Texas Professional Engineer or licensed Texas Professional Geoscientist shall use best professional practices to ensure that corings or other liner samples will be appropriately plugged with material that also meets liner requirements of this subsection. - (ii) Samples shall be collected in accordance with ASTM D1587 or other method approved by the Executive Director. For each RCS, a minimum of two core samples collected from the bottom of the RCS and a minimum of at least one core sample from each sidewall shall be collected. Additional samples may be necessary based on the best professional judgment of the licensed Professional Engineer. Distribution of the samples shall be representative of liner characteristics, and proportional to the surface area of the sidewalls and floor. Documentation shall be provided identifying the sample locations with respect to the RCS liner. - (iii) Undisturbed samples shall be analyzed for hydraulic conductivity in accordance with ASTM D5084 or other method approved by the Executive Director. - (4) Leak Detection System. If notified by the Executive Director that significant potential exists for the adverse impact of water in the state or drinking water from leakage of a RCS, the permittee shall install a leak detection system or monitoring well(s) in accordance with that notice. Documentation of compliance with the notification must be kept with the PPP, as well as copies of all sampling data. - 4. Special Considerations for Existing RCS(s). An existing RCS that has been properly maintained without any modifications and has no apparent structural problems or leakage is considered to be properly designed with respect to the embankment design and construction and liner requirements of this permit, provided that any required documentation was completed in accordance with the requirements at the time of construction. If no documentation exists, the RCS must be certified by a licensed Texas Professional Engineer as providing protection equivalent to the requirements of this permit. - 5. Operation and Maintenance of RCSs. - (a) The permittee must operate and maintain a margin of safety in the RCS(s) to contain the volume of runoff and direct precipitation from the 25 year/10 day rainfall event. - (b) The permittee shall implement a RCS management plan incorporating the margin of safety developed by a licensed Texas Professional Engineer. The management plan shall become a component of the PPP, shall be developed for each RCS, and must describe or include: - (1) RCS management controls appropriate for the CAFO and the methods and procedures for implementing such controls; - (2) the methods and procedures for proper operation and maintenance of each RCS consistent with the system design; - (3) the appropriateness and priorities of any controls reflecting the identified sources of pollutants at the facility; - (4) a stage/storage table for each RCS with minimum depth increments of one-foot, including the storage volume provided at each depth; - (5) a second table or sketch that includes increments of water level ranges for volumes of
total design storage, including the storage volume provided at each specified depth (or water level) and the type of storage designated by that depth; and - (6) the planned end of month storage volume anticipated for each RCS for each month of the year and the corresponding operating depth expected at the end of each month of the year, based on the design assumptions. - (c) The wastewater level in the RCS shall be maintained at or below the maximum operating level expected during that month, according to the design of the RCS. When rainfall volumes exceed average rainfall data used in design calculations planned end of month storage volumes may encroach into the design storm event storage provided that documentation is available to support that the design parameters have been exceeded and that the RCS is otherwise being managed according to the RCS management plan criteria. In circumstances where the RCS has a water level exceeding the expected end of the month depth, the permittee shall document in the PPP why the level of water in the structure is not at or below the expected depth. Also, if the water level in the RCS encroaches into the storage volume reserved for the design rainfall event, the permittee must document, in the PPP, the conditions that resulted in this occurrence. As soon as irrigation is feasible and not prohibited by Section VII.A.8(f) and (g), the permittee shall irrigate until the RCS water level is at or below the maximum operating level expected during that month. - (d) Imminent Overflow. If a RCS is in danger of imminent overflow from chronic or catastrophic rainfall or catastrophic conditions, the permittee shall take reasonable steps to irrigate wastewater to the LMU(s) only to the extent necessary to prevent overflow from the RCS. If irrigation results in a discharge from a LMU, the permittee shall collect samples from the drainage pathway at the point of the discharge from the edge of the LMU where the discharge occurs, analyze the samples for the parameters listed in Section VII.A.2.(b), and provide Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC TPDES Permit No. WQ0002950000 the appropriate notifications as required by Section VIII.B of this permit and 30 TAC §321.44. - (e) Permanent Pond Marker. The permittee shall install and maintain a permanent pond marker (measuring device) in the RCS(s), visible from the top of the levee to show the following: - (1) the volume for the design rainfall event; - (2) one-foot increments beginning from the predetermined minimum treatment volume of the RCS, or the bottom of the RCS for those without treatment volume, to the top of the embankment or spillway; and - (3) design volume levels for maximum sludge accumulation and operating volume (calculated process generated wastewater plus rainfall runoff minus evaporation) must be identifiable on the marker. - (f) Rain Gauge. A rain gauge capable of measuring the design rainfall event shall be kept on-site and properly maintained. - (g) Sludge Removal. The permittee shall monitor sludge accumulation and depth, based upon the design sludge storage volume in the RCS. (See Special Provision X.E for additional requirements related to sludge monitoring.) Sludge shall be removed from the RCS(s) in accordance with the design schedule for cleanout in the RCS Management Plan to prevent the accumulation of sludge from exceeding the designed sludge volume of the structure. Removal of sludge shall be conducted during favorable wind conditions that carry odors away from nearby receptors. Sludge may only be beneficially utilized by land application to a LMU if in accordance with a nutrient management plan or disposed of in accordance with Section VII.A.8(e) of this permit. A sludge sample must be collected and analyzed in accordance with Section VII.A.9(a) prior to each clean out. - (h) Liner Protection and Maintenance. The permittee shall maintain the liner to inhibit infiltration of wastewater. Liners must be protected from animals by fences or other protective devices. No tree shall be allowed to grow such that the root zone would intrude or compromise the structure of the liner or embankment. Any mechanical or structural damage to the liner shall be evaluated by a licensed Texas Professional Engineer within thirty (30) days of the damage. - (i) Closure Requirements. A closure plan must be developed when a RCS will no longer be used and/or when the CAFO ceases or plans to cease operation. The closure plan shall be submitted to the appropriate regional office and the CAFO Permits Team of the Water Quality Division in Austin (MC-150) within ninety (90) days of when operation of the CAFO or the RCS terminates. The closure plan for the RCS must, at a minimum, be developed using standards contained in the NRCS Practice Standard Code 360 (Closures of Waste Impoundments), as amended, and using the guidelines contained in the Texas AgriLife Extension/NRCS publication #B-6122 (Closure of Lagoons and Earthen Manure Storage Structures), as amended. The permittee shall maintain or renew its existing authorization and maintain compliance with the requirements of this permit until the facility has been closed. - 6. General Operating Requirements. - (a) Flush/Scrape Systems. Flush/scrape systems shall be flushed/scraped in accordance with design criteria in the application. - (b) Pen Maintenance. The permittee shall maintain earthen pens to ensure good drainage, minimize ponding, and minimize the entrance of uncontaminated storm water to the RCSs. - (c) Carcass Disposal. Carcasses shall be collected within twenty four (24) hours of death and properly disposed of within three days of death in accordance with Texas Water Code, Chapter 26; Texas Health and Safety Code, Chapter 361; and 30 TAC Chapter 335 (relating to Industrial Solid Waste and Municipal Hazardous Waste) unless otherwise provided for by the commission. Animals must not be disposed of in any liquid manure or process wastewater system. Disposal of diseased animals shall also be conducted in a manner that prevents a public health hazard in accordance with Texas Agriculture Code, §161.004, and 4 TAC §31.3, §58.31(b), and §59.12. The collection area for carcasses shall be addressed in the potential pollutant sources section of the PPP with the management practices to prevent contamination of surface or groundwater, control access, and minimize odor. - (d) Manure and Sludge Storage - (1) Manure and sludge storage capacity requirements shall be based on manure and sludge production, land availability, and the NRCS Field Office Technical Guide (Part 651, Chapter 10) or equivalent standards. (See Special Provision X.I for the storage requirements applicable to slurry collected from freestall barns.) - (2) When manure is stockpiled, it shall be stored in a well-drained area, and the top and sides of stockpiles shall be adequately sloped to ensure proper drainage and prevent ponding of water. Runoff from manure or sludge storage piles must be retained on-site. If the manure or sludge areas are not roofed or covered with impermeable material, protected from external rainfall, or bermed to protect from runoff during the design rainfall event, the manure or sludge areas must be located within the drainage area of a RCS and accounted for in the design calculations of the RCS. - (3) Manure or sludge stored for more than thirty (30) days must be stored within the drainage area of a RCS or stored in a manner (i.e. storage shed, bermed area, tarp covered area, etc.) that otherwise prevents contaminated storm water runoff from leaving the storage area. All storage sites and structures located outside the drainage area shall be designated on the site map. Storage for more than thirty (30) days is prohibited in the 100-year floodplain. - (4) Temporary storage of manure or sludge shall not exceed thirty (30) days and is allowed only in a LMU or a RCS drainage area. Temporary storage of manure and sludge in the 100-year floodplain, near water courses or near recharge features may be allowed if protected by berms or other structures to prevent inundation or damage that may occur. - (e) Composting. Composting on-site shall be performed in accordance with 30 TAC Chapter 332 (relating to Composting). The permittee may compost waste generated on-site, including manure, sludge, bedding, feed and dead animals. The permittee may add agricultural products to provide an additional carbon source or bulking agent to aid in the composting process. If the compost areas are not roofed or covered with impermeable material, protected from external rainfall, or bermed to protect from runoff in the case of the design rainfall event, the compost areas must be located within the drainage of an RCS and must be shown on the site plan and accounted for in the design calculations of the RCS. - 7. Site Specific Conservation Practice. - (a) Well Protection Requirements - (1) The permittee shall not locate or operate a new RCS, holding pen, or LMU within the following buffer zones: - (i) public water supply wells 500 feet; - (ii) wells used exclusively for private water supply 150 feet; or - (iii) wells used exclusively for agriculture irrigation 100 feet. - (2) Irrigation of wastewater directly over a well head will require a structure protective of the wellhead that will prevent contact from irrigated wastewater. - (3) Construction of any new water wells must be done by a licensed water well driller. - (4) All abandoned and unuseable wells shall be plugged according to 16 TAC §76.104. - (5) The permittee may continue the operation and use of any existing holding pens and RCSs located within the required well buffer zones provided they are in accordance with the facility's approved recharge feature evaluation and certification. Buffer zone variance documentation must be kept on-site and made available to TCEQ personnel upon request. A Well Buffer Exception requests for Wells #3, #4, #5, #7, and #9 were submitted
to and approved by the TCEQ Water Quality Assessment Team. Permittee shall implement the requirements of the Well Buffer Exception approval by TCEQ. Table 3 below shows the status of all wells on the facility and the best management practices (BMPs) used to protect them. **Table 3: Well Status and Best Management Practices** | Well Number* | Status | BMPs | | | |--------------|---------------|---|--|--| | 1 | Producing | Maintain 150 ft buffer | | | | 2 | Producing | Maintain 150 ft buffer | | | | 3 | Producing | Maintain surface gradients sloping away from wellhead | | | | 4 | Producing | Maintain surface gradients sloping away from wellhead | | | | 5 | Producing | Maintain surface gradients sloping away from wellhead | | | | 6 | Non-Producing | Plugged | | | | 7 | Producing | Maintain surface gradients sloping away from wellhead | | | | 8 | Non-Producing | Plugged | | | | 9 | Producing | Concrete surface slab | | | | 10 | Producing | Maintain 150 ft buffer | | | | 11 | Producing | Maintain 150 ft buffer | | | | 12 | Producing | Maintain 100 ft buffer | | | | 13 | Producing | Maintain 100 ft buffer | | | | 14 | Producing | Maintain 100 ft buffer | | | | 15 | Non-Producing | No evidence of well | | | | Well Number* | Status | BMPs | |--------------|-----------|------------------------| | 16 | Producing | Maintain 100 ft buffer | | 17 | Producing | Maintain 100 ft buffer | | 18 | Producing | Maintain 100 ft buffer | | 19 Producing | | Maintain 100 ft buffer | | 20 Producing | | Maintain 100 ft buffer | ^{*}Well Numbers correspond with Attachment D (b) Soil Limitations. The permittee shall implement the BMPs on Table 4 for the specified soil series. **Table 4: Soil Limitations and Best Management Practices** | Soil Series | Potential Limitations | BMPs* | |-----------------------------|---|--| | and Map ID | | | | Bolar-Denton:
BdC | Depth to bedrock, Slow water movement | Land application will be based on the
Available Water Capacity of the soil and will | | Topsey: Lab
Hico: HwD3 | Depth to Soft Bedrock | not exceed agronomic rates for nutrients (refer to the nutrient management plan (NMP)) | | Maloterre: Ma | Depth to Bedrock,
Droughty | No land application to inundated soils | | Bunyan: Bu
Frio: FriA | Flooding | Land application will not exceed soil hydraulic rates (refer to NMP) | | Bastsil: BsB, BsC, BtB | Seepage | Maintain clay liners in RCS | | May: MfB
Fairy: FhC2 | | No land application to inundated soils | | Denton: DeB
Slidell: HoB | Slow water movement | Land application not to exceed agronomic rates for nutrients and soil hydraulic rates. | | Fairy: FhC2 | | No land application to inundated soils. | | Clairette: CtB | Slow water movement
Depth to Saturated Zone | | | Windthorst: Wnc | Filtering capacity | | | Purves: PcC, PcB | Droughty,
Depth to bedrock, Slow | Land application will be based on the
Available Water Capacity of the soil and will | | | water movement | not exceed agronomic rates for nutrients (refer | | Purves-Dugout: | Droughty, | to the nutrient management plan (NMP)) | | Pd | Depth to bedrock,
Slow water movement
Large stones on surface | Irrigation events will be managed to assist in maintaining soil moisture levels within the range of the available water holding capacity of the soils in the LMUs. | | | | No land application to inundated soils. | ^{*}or an equivalent protective measure identified in an NRCS Practice Standard. (c) Pollutant Sources and Management. The permittee shall implement the BMPs on Table 5 for handling dead animals and pesticides. **Table 5: Pollutant Sources and Best Management Practices** | Tuble 3.1 onutunt bources and Dest Management I factices | | | | |--|---|--|--| | Potential Pollutant Source | BMPs* | | | | Dead Animals | Collect within 24 hours of death and remove within three | | | | | days of death by a third-party rendering service, compost | | | | | in accordance with Section VII.A.6(e) or bury onsite in | | | | | accordance with Section X.Q of this permit | | | | Pesticides/Parlor Chemicals | Store under roof | | | | | Handle and dispose according to label directions | | | ^{*}or an alternative BMP as allowed by 30 TAC 321 Subchapter B or an equivalent protective measure identified in an NRCS Practice Standard. ## 8. Land Application. - (a) Nutrient Management Plan (NMP) Required. The certified NMP submitted in the permit application shall be implemented upon issuance of this permit. The plan shall be updated as appropriate or at a minimum of annually according to NRCS Practice Standard Code 590. The permittee shall make available to the Executive Director, upon request, a copy of the site specific NMP and documentation of the implementation. - (1) For Terms of the NMP see Attachments E and F. - (2) The following changes to the terms of the NMP are substantial: - (i) Increase in animal headcount; - (ii) Increase in LMU acreage or a change in LMU location; - (iii) Change in crop and yield goal (not listed in Attachment F); - (3) Substantial and Non-Substantial Change to the terms of the NMP - (i) Any changes (substantial or non- substantial) to the NMP, other than the Annual Recalculation of Application Rates outlined in Attachment E, must be submitted to the Executive Director for review, and may be subject to public comment; - (ii) If the Executive Director determines that the changes to the NMP are not substantial, the revised NMP will be made publicly available and included in the permit record; and - (iii) If the Executive Director determines that the changes to the NMP are substantial, the information provided by the permittee will be subject to a major amendment process as set in 30 TAC §§305.61-305.72. - (b) Comprehensive Nutrient Management Plan (CNMP) required. The permittee must continue to operate under a CNMP certified by the Texas State Soil and Water Conservation Board. - (c) Critical Phosphorus Level - (1) When results of the annual soil analysis show a phosphorus level in the soil of more than 200 ppm but not more than 500 ppm in Zone 1 depth (0-6 inch incorporated; 0-2 or 2-6 inch if not incorporated) for a particular LMU or if ordered by the commission to do so in order to protect the quality of water in the state, then the permittee shall: - (i) file with the Executive Director a new or amended nutrient utilization plan (NUP) with a phosphorus reduction component based on crop removal that is certified as acceptable by a person described in (3) below; or - (ii) show that the level is supported by a NUP that is certified as acceptable by a person described in (3) below. - (2) The permittee shall cease land application of compost, manure, sludge, slurry and wastewater to the affected area until the NUP has been approved by the TCEQ. After a NUP is approved, the permittee shall land apply in accordance with the NUP until soil phosphorus is reduced below the critical phosphorus level of 200 ppm extractable phosphorus. Thereafter, the permittee shall implement the requirements of the nutrient management plan. - (3) NUP. A NUP is a NMP, based on NRCS Practice Standard Code 590, which utilizes a crop removal application rate. The NUP, based on crop removal, must be developed and certified by one of the following individuals or entities: - (i) an employee of the NRCS; - (ii) a nutrient management specialist certified by the NRCS; - (iii) the Texas State Soil and Water Conservation Board; - (iv) the Texas AgriLife Extension; - (v) an agronomist or soil scientist on full-time staff at an accredited university located in the State of Texas; or - (vi) a Certified Professional Agronomist certified by the American Society of Agronomy, a Certified Professional Soil Scientist certified by the Soil Science Society of America, or a licensed Texas Professional Geoscientist-soil scientist after approval by the Executive Director based on a determination by the Executive Director that another person or entity identified in this paragraph cannot develop the plan in a timely manner. - (4) When results of the annual soil analysis for extractable phosphorus indicate a level greater than 500 ppm in Zone 1 depth (0-6 inch incorporated; 0-2 or 2-6 inch if not incorporated), the permittee shall file with the Executive Director a new or amended NUP with a phosphorus reduction component, based on crop removal, that is certified as acceptable by a person described in (3) above. After the new or amended NUP is approved, the permittee shall land apply in accordance with the NUP until soil phosphorus is reduced below 500 ppm extractable phosphorus. - (5) If the permittee is required to have a NUP with a phosphorus reduction component based on crop removal, and if the results of tests performed on composite soil samples collected 12 months or more after the plan is filed do not show a reduction in phosphorus concentration in Zone 1 depth (0-6 inch incorporated; 0-2 or 2-6 inch if not incorporated), then the permittee is subject to enforcement action at the discretion of the Executive Director. - (d) Buffer Requirements. The permittee shall meet the following buffer requirements for each LMU: - (1) Water in the State. The permittee shall not apply compost, manure, sludge, slurry and wastewater within the buffer distances as noted on Attachment B and Special Provision X.D. Vegetative buffers shall be maintained in accordance with NRCS Field Office Technical Guidance. The permittee shall maintain the filter strip (according to NRCS Code 393) between the vegetative buffer and the land application area. If the land application
area - is cropland, the permittee shall install and maintain contour buffer strips (according to NRCS Code 332) within the land application area in addition to the buffer distances required by this permit. - (2) Water Wells. The permittee shall comply with the well protection requirements listed in Section VII.A.7.(a). - (e) Exported wastewater, sludge, and/or manure. Wastewater, sludge, and/or manure removed from the operation shall be disposed of by: - (1) delivery to a composting facility authorized by the Executive Director; - (2) delivery to a permitted landfill located outside of the major sole source impairment zone; - (3) beneficial use by land application to land located outside of the major sole source impairment zone; - (4) put to another beneficial use approved by the Executive Director; or - (5) providing wastewater, sludge, and/or manure to operators of third-party fields, i.e. areas of land in the major sole source impairment zone not owned, operated, controlled, rented, or leased by the CAFO owner or operator, that have been identified in the PPP. - (i) There must be a written contract between the permittee and the recipient that includes, but is not limited to, the following provisions: - (A) All transferred wastewater, sludge, and/or manure shall be beneficially applied to third-party fields identified in the PPP in accordance with the applicable requirements in 30 TAC §321.36 and §321.40 at an agronomic rate based on soil test phosphorus. The requirements for development or implementation of a nutrient management plan or nutrient utilization plan, under 30 TAC §321.40, do not apply to third-party fields. - (B) Manure and sludge must be incorporated on cultivated fields within forty-eight (48) hours after land application. - (C) Land application rates shall not exceed the crop nitrogen requirement when the soil phosphorus concentration in Zone 1 depth (0-6 inch if incorporated; 0-2 or 2-6 inch if not incorporated) is less than or equal to 50 ppm phosphorus. - (D) Land application rates shall not exceed two times the phosphorus crop removal rate, and not to exceed the crop nitrogen requirement, when soil phosphorus concentration in Zone 1 depth (0-6 inch if incorporated; 0-2 or 2-6 inch if not incorporated) is greater than 50 ppm phosphorus and less than or equal to 150 ppm phosphorus. - (E) Land application rates shall not exceed one times the phosphorus crop removal rate, and not to exceed the crop nitrogen requirement, when soil phosphorus concentration in Zone 1 depth (0-6 inch if incorporated; 0-2 or 2-6 inch if not incorporated) is greater than 150 ppm phosphorus and less than 200 ppm phosphorus. - (F) Before commencing manure, wastewater, compost, and/or sludge application to third-party fields, at least one representative soil sample from each third-party field must be collected by a certified nutrient management specialist and analyzed in accordance with - 30 TAC §321.36. Third-party fields which have had wastewater, sludge, compost, and/or manure applied during the preceding year must be sampled annually by a certified nutrient management specialist and the samples analyzed in accordance with 30 TAC §321.36. For third-party fields that have not received wastewater, sludge, compost, and/or manure during the preceding year, initial sampling must be completed before restarting land application to the third-party field. - (G) A copy of the annual soil analyses shall be provided to the permittee within sixty (60) days of the date the samples were taken. - (H) Temporary storage of wastewater, sludge, and/or manure is prohibited on third-party fields. - (ii) The permittee is prohibited from delivering wastewater, sludge, and/or manure to an operator of a third-party field once the soil test phosphorus analysis shows a level equal to or greater than 200 ppm or after becoming aware that the third-party operator is not following appropriate provisions of 30 TAC §321.36, §321.40 and/or the contract. - (iii) The permittee will be subject to enforcement action for violations of the land application requirements on any third-party field under contract. - (iv) The permittee shall submit records to the appropriate regional office quarterly that contain the name, locations, and amounts of wastewater, sludge, and/or manure transferred to operators of third-party fields. - (f) Irrigation Operating Requirements - (1) Minimize Ponding. Irrigation practices shall be managed so as to minimize ponding or puddling of wastewater on the site, prevent tailwater discharges to water in the state, and prevent the occurrence of nuisance conditions. - (2) Discharge Prohibited - (i) The drainage of compost, manure, sludge, slurry and wastewater is prohibited from the LMU(s), unless authorized under Section VII.A.5(d). - (ii) Where compost, manure, sludge, slurry and wastewater is applied in accordance with the nutrient management plan and/or NUP, precipitation-related runoff from the LMU(s) under the control of the permittee is authorized. - (iii) If a discharge from the irrigation system is documented as a violation, the permittee may be required by the Executive Director to install an automatic emergency shut-down or alarm system to notify the permittee of system problems. - (3) Backflow Prevention. If the permittee introduces wastewater or chemicals to water well heads for the purpose of irrigation, then backflow prevention devices shall be installed according to 16 TAC Chapter 76 (related to Water Well Drillers and Water Well Pump Installers). - (g) Nighttime Application - (1) Land application at night shall only be allowed if there is no occupied residence(s) within one quarter (0.25) of a mile from the outer boundary of the actual area receiving compost, manure, sludge, slurry and wastewater application. In areas with an occupied residence within one quarter (0.25) of a mile from the outer boundary of the actual area receiving compost, manure, sludge, slurry and wastewater application, application shall only be allowed from one (1) hour after sunrise until one (1) hour before sunset, unless the current occupant of such residences have, in writing, agreed to specified nighttime applications. - (2) Land application of compost, manure, sludge, slurry and wastewater is prohibited between 12 a.m. and 4 a.m. during normal operating conditions. - 9. Sampling and Testing. - (a) Manure and Wastewater. The permittee shall collect and analyze at least one representative sample of wastewater and one representative sample of manure each year for total nitrogen, total phosphorus, and total potassium. The results of these analyses shall be used in determining application rates. - (b) Soils - (1) Initial Sampling. Before commencing compost, manure, sludge, slurry and wastewater application to the LMU(s), the permittee shall have at least one representative soil sample from each LMU, collected and analyzed according to the following procedures. - (2) Annual Sampling. The TCEQ or its designee shall have soil samples collected annually for each current and historical LMU. - (3) Sampling Procedures. Sampling procedures shall employ accepted techniques of soil science for obtaining representative samples and analytical results, and be consistent with approved methods described in the Executive Director's guidance entitled "Soil Sampling for Concentrated Animal Feeding Operations (CAFOs) (RG-408)." - (i) Soil samples must be collected by one of the following persons: - (A) the NRCS; - (B) a certified nutrient management specialist; - (C) the Texas State Soil and Water Conservation Board; - (D) the Texas AgriLife Extension; or - (E) an agronomist or soil scientist on full-time staff at an accredited university located in the State of Texas. - (ii) Samples shall be collected and analyzed within the same forty-five (45) day time frame each year, except when crop rotations or inclement weather require a change in the sampling time. The reason for a change in sampling timeframe shall be documented in the PPP. - (iii) Obtain one composite sample for each soil depth zone per uniform soil type (soils with the same characteristics and texture) within each LMU. - (iv) Composite samples shall be comprised of 10 15 randomly sampled cores obtained from each of the following soil depth zones: - (A) Zone 1: 0-6 inches (where the manure, sludge, slurry, or compost is physically incorporated or injected directly into the soil) or 0-2 inches (where the manure, sludge or slurry is not incorporated into the soil). Wastewater is considered to be incorporated upon land application if it is less than two percent (2%) solids. Slurry from freestall barns is treated like manure for this sampling requirement. If a 0-2 inch sample is required, then an additional sample from the 2-6 inch soil depth zone shall be obtained in accordance with the provisions of this section; and - (B) Zone 2: 6-24 inches. - (4) Laboratory Analysis. Samples shall be analyzed by a soil testing laboratory. Physical and chemical parameters and analytical procedures for laboratory analysis of soil samples shall include the following: - (i) nitrate reported as nitrogen in ppm; - (ii) phosphorus (extractable, ppm) using Mehlich III with Inductively Coupled Plasma (ICP); - (iii) potassium (extractable, ppm); - (iv) sodium (extractable, ppm); - (v) magnesium (extractable, ppm); - (vi) calcium (extractable, ppm); - (vii) soluble salts (ppm) or electrical conductivity (dS/m) determined from extract of 2:1 (v/v) water/soil mixture; and - (viii) soil water pH (soil:water, 1:2 ratio). - 10. Preventative Maintenance Program. - (a) Facility Inspections - (1) General Requirements - (i) Inspections shall include visual inspections and equipment testing to determine conditions that could cause breakdowns or failures resulting in discharge of pollutants to water in the state or the creation of a nuisance condition. - (ii) The permittee shall draft a report, to be maintained in the PPP, to document
the date of inspections, observations and actions taken in response to deficiencies identified during the inspection. The permittee shall correct all the deficiencies within thirty (30) days or shall document the factors preventing immediate correction. - (2) Daily Inspections. The permittee shall conduct daily inspections on all water lines, including drinking water and cooling water lines, which are located within the drainage area of a RCS. - (3) Weekly Inspections. The permittee shall conduct weekly inspections on: - all control facilities, including RCSs, storm water diversion devices, runoff diversion structures, control devices for management of potential pollutant sources, and devices channeling contaminated storm water to RCSs; and - (ii) equipment used for land application of compost, manure, sludge, slurry and wastewater. - (4) Monthly Inspections. The permittee shall conduct monthly inspections on: - (i) mortality management systems, including collection areas; and - (ii) disposal and storage of toxic pollutants, including pesticide containers. - (5) Annual Site Inspection. - (i) The permittee shall annually conduct a complete site inspection of the production area and the LMU(s). - (ii) The inspection shall verify that: - (A) the description of potential pollutant sources is accurate; - (B) the site plan/map has been updated or otherwise modified to reflect current conditions; and - (C) the controls outlined in the PPP to reduce pollutants and avoid nuisance conditions are being implemented and are adequate. - (b) Five Year Evaluation. Once every five years the permittee shall have a licensed Texas Professional Engineer review the existing engineering documentation, complete a site evaluation of the structural controls, review existing liner and RCS capacity documentation, and complete and certify a report of their findings. The report must be kept in the PPP. - 11. Management Documentation. The permittee shall maintain the following records in the PPP: - (a) a copy of the administratively complete and technically complete individual water quality permit application and the written authorization issued by the commission or Executive Director; - (b) a copy of the approved recharge feature certification and appropriate updates; - (c) a copy of the comprehensive nutrient management plan, nutrient management plan, nutrient utilization plan and appropriate updates to these plans, if required; - (d) the RCS liner certification(s); - (e) any written agreement with a landowner which documents the allowance of nighttime application of compost, manure, sludge, slurry and wastewater; - (f) documentation of employee and operator training, including verification of the date, time of attendance, and completion of training; - (g) the RCS management plan; - (h) the capacity of each RCS as certified by a licensed Texas Professional Engineer; and - (i) a copy of all third-party field contracts. # **B.** General Requirements - 1. The permittee shall not construct any component of the production area in any stream, river, lake, wetland, or playa (except as defined by and in accordance with the Texas Water Code §26.048). - 2. Animals confined on the CAFO shall be restricted from coming into direct contact with surface water in the state through the use of fences or other controls. - 3. The permittee shall prevent the discharge of pesticide contaminated waters into water in the state. All wastes from dipping vats, pest and parasite control units, and other facilities used for the application of potentially hazardous or toxic chemicals shall be handled and disposed of in a manner that prevents any significant pollutants from entering water in the state or creating a nuisance condition. - 4. The permittee shall operate the CAFO in such a manner as to prevent nuisance conditions of air pollution as mandated by Texas Health and Safety Code, Chapters 341 and 382. - 5. The permittee shall take reasonable steps necessary to prevent adverse effects to human health or safety, or to the environment. - 6. The permittee shall maintain control of the RCS(s), required LMU(s), and control facilities identified on the site map submitted in the application. In the event the - Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC TPDES Permit No. WQ0002950000 permittee loses control of any of these areas, the permittee shall notify the Executive Director within five (5) working days. - 7. If animals are maintained in pastures, the permittee shall maintain crops, vegetation, forage growth or post harvest residues in those pastures during the normal growing season, excluding the feed and/or water trough areas. #### C. Training - 1. Employee Training - (a) Employees at the CAFO facility who are responsible for work activities relating to compliance with provisions of this permit must be regularly trained or informed of any information pertinent to the proper operation and maintenance of the facility and land application of manure, sludge, and wastewater. - (b) Employee training shall address all levels of responsibility of the general components and goals of the PPP. Training shall include appropriate topics, such as land application of manure, sludge, and wastewater, proper operation and maintenance of the facility, good housekeeping, material management practices, recordkeeping requirements, and spill response and clean up. - (c) The permittee is responsible for determining the appropriate training frequency for different levels of personnel. The PPP shall identify periodic dates for such training. - 2. Operator Training. The operator shall attend at least eight (8) hours of continuing education in animal waste management or its equivalent, developed by the Executive Director and the Texas AgriLife Extension, for each two year period. - 3. Verification of the date and time(s) of attendance and completion of required training shall be documented in the PPP. # D. Air Standard Permit Requirements - 1. Air emission limitations. - (a) Facilities shall be operated in such a manner as to prevent the creation of a nuisance as defined by Texas Health and Safety Code, 30 TAC §§341.011 and 321.32(32), and as prohibited by 30 TAC §101.4. Facilities shall be operated in such a manner as to prevent a condition of air pollution as defined by Texas Health and Safety Code and 30 TAC §382.003(3). - (b) The permittee shall take necessary action to identify any nuisance condition that occurs. The permittee shall take action to abate any nuisance condition as soon as practicable or as specified by the Executive Director. - 2. Wastewater treatment. The permittee shall design and operate RCSs to minimize odors in accordance with accepted engineering practices. Each RCS shall be operated in accordance with the design and an operation and maintenance plan that minimizes odors. The primary lagoon in a multi-stage lagoon system shall be designed with a minimum treatment volume so that the lagoon maintains a constant level at all times unless prohibited by climatic conditions. A multi-stage lagoon system shall be designed to minimize the amount of contaminated storm water runoff entering the primary lagoon by routing the contaminated storm water runoff into a secondary RCS. - (a) Accepted engineering practices to minimize odors include anaerobic treatment lagoons, aerobic treatment lagoons, or other equivalent technology. - (b) Accepted design standards and requirements for each of these methods of treatment are: - (1) an anaerobic treatment lagoon shall be designed in accordance with American National Standards Institute/American Society of Agricultural Engineers EP403.3 July 1999 (or subsequent updates); NRCS Field Office Technical Guidance, Practice Standard 359, Waste Treatment Lagoon, or the equivalent for the control of odors. The primary lagoon in a multi-stage lagoon system shall be designed with a minimum treatment volume so that the lagoon maintains a constant level at all times unless prohibited by climatic conditions. A multi-stage lagoon system shall be designed to minimize the amount of contaminated storm water runoff entering the primary lagoon by routing the contaminated storm water runoff into a secondary RCS; - (2) aerobic treatment lagoons shall be designed in accordance with NRCS, Field Office Technical Guidance, Practice Standard 359, Waste Treatment Lagoon; or technical requirements for sizing the aeration portion of the system located in 30 TAC Chapter 317; and - (3) equivalent technology or design standards shall indicate how the design of the RCS minimizes odors equivalent to an aerobic or anaerobic lagoon. These designs shall be developed and certified by a licensed Texas Professional Engineer. An "as-built" certification in letter form shall be completed by a licensed Texas Professional Engineer before operation of the RCSs. - (c) This permit authorizes the use of a covered anaerobic digester system. - 3. Dust Control. To minimize dust emissions, the CAFO shall be operated and maintained as follows: - (a) Fugitive emissions from all grain receiving pits, where a pit is used, shall be minimized through the use of "choke feeding" or through an equivalent method of control. If choke feeding is used, operation of conveyors associated with receiving shall not commence until the receiving pits are full. - (b) As necessary, emissions from all in-plant roads, truck loading and unloading areas, parking areas, and other traffic areas shall be controlled with one or more of the following methods to minimize nuisance conditions and maintain compliance with all applicable commission requirements: - (1) sprinkled with water; - (2) treated with effective dust suppressant(s); or - (3) paved with a cohesive hard surface and cleaned. - (c) All non-vehicular external conveyors or other external conveying systems associated with the feedmill shall be enclosed. - (d) On-site feed milling operations with processing equipment using a pneumatic conveying system (which
may include, but are not limited to, pellet mill/pellet cooler systems, flaker systems, grinders, and roller-mills) shall vent the exhaust air through a properly-sized high efficiency cyclone collector or an equivalent control device before releasing the exhaust air to the atmosphere. This requirement does not include cyclones used as product separators. - (e) If the Executive Director determines that the implementation and employment of these practices is not effective in controlling dust, the permittee shall implement any necessary additional abatement measures to control and minimize this contaminant within the time period specified by the Executive Director. - 4. Maintenance and Housekeeping. The permittee shall comply with the following to help prevent nuisance conditions. - (a) The premises shall be maintained to prevent the occurrence of nuisance conditions from odors and dust. Spillage of any raw products or waste products causing a nuisance condition shall be picked up and properly disposed of daily. - (b) Proper pen drainage shall be maintained at all times. Earthen pen areas shall be maintained by scraping uncompacted manure and shaping pen surfaces as necessary to minimize odors and ponding. #### VIII. Recordkeeping, Reporting, and Notification Requirements #### A. Recordkeeping The permittee shall keep records on-site for a minimum of five (5) years from the date the record was created and shall submit them within five (5) days of a written request by the Executive Director. - 1. The permittee shall update records daily to include: - (a) all measurable rainfall events; and - (b) the wastewater levels in each RCS, as shown on the depth marker. In circumstances where a RCS has a water level exceeding the expected end of the month depth, the permittee shall document in the PPP why the level of water in the structure is not at or below the expected depth. - 2. The permittee shall update records weekly to include: - (a) records of all wastewater, sludge, and/or manure removed from the CAFO that shows the dates, amount, and recipient. The permittee must make the most recent nutrient analysis available to any hauler; and - (b) inspections of control facilities and land application equipment. - 3. The permittee shall update records monthly to include: - (a) records describing mortality management practices; - (b) storage and disposal of chemicals, including pesticide containers; and - (c) records of all compost, manure, sludge, slurry and wastewater applied on the LMU(s). Such records must include the following information: - (i) date of compost, manure, sludge, slurry and wastewater application to each LMU; - (ii) location of the specific LMU and the volume applied during each application event; - (iii) acreage on which compost, manure, sludge, slurry and wastewater is applied; - (iv) basis for and the total amount of nitrogen and phosphorus applied per acre to each LMU on a dry basis, including sources of nutrients other than compost, manure, sludge, slurry and wastewater; and - (v) weather conditions, such as temperature, precipitation, and cloud cover, during the land application and twenty-four (24) hours before and after the land application. - 4. The permittee shall update records annually to include: - (a) annual nutrient analysis for at least one representative sample of wastewater and one representative sample of manure for total nitrogen, total phosphorus, and total potassium; - (b) any initial and annual soil analysis reports; - (c) the annual site inspection report; - (d) percent moisture content of the manure, sludge, slurry, and wastewater; and - (e) actual annual yield of each harvested crop for each LMU. - 5. The Five Year Evaluation report must be updated every five (5) years. - 6. The permittee shall keep the following records on-site: - (a) a list of any significant spills of potential pollutants at the CAFO that have a significant potential to reach water in the state; - (b) documentation of liner maintenance by an NRCS engineer, a licensed Texas Professional Engineer or a licensed Texas Professional Geoscientist; - (c) RCS design calculations and as built capacity certification; - (d) embankment certification; - (e) liner certification; - (f) a copy of current and amended site plans; - (g) copies of all notifications to the Executive Director, including any made to a regional office; and - (h) the record of digester maintenance. #### B. Reporting and Notifications - 1. The permittee shall provide written notice to the appropriate TCEQ regional office as soon as the RCS cleaning is scheduled, but not less than ten (10) days before cleaning. The permittee shall also provide written verification of completion to the same regional office within five (5) days after the cleaning has been completed. This paragraph does not apply to the cleaning of solid separators or settling basins that are functioning as solid separators. - 2. The permittee shall notify the appropriate TCEQ regional office in writing or by electronic mail with the date, time, and location at least ten (10) working days before collecting soil samples from current and historical LMUs; and third-party fields. - 3. Discharge Notification. If for any reason there is a discharge of manure, sludge or wastewater into water in the state, the permittee shall notify the appropriate TCEQ regional office orally within one (1) hour of discovery; unless it is not reasonably possible to do so in which event the discharge shall be reported as soon as reasonably possible, but in no event later than twenty-four (24) hours from when the discharge occurred. The permittee shall also submit written notice, within fourteen (14) working days of the discharge to the Office of Compliance and Enforcement, Enforcement Division (MC 224). In addition, the permittee shall document the following information, keep the information on-site, and submit the information to the appropriate regional office within fourteen (14) working days of becoming aware of such discharge. The written notification must include: - (a) a description and cause of the discharge, including a description of the flow path to the receiving water body and an estimation of the volume discharged; - (b) the period of discharge, including exact dates and times, and, if not corrected, the anticipated time the discharge is expected to continue, and steps being taken to reduce, eliminate and prevent recurrence of the discharge; - (c) if caused by a precipitation event(s), the date(s) of the event(s) and the rainfall amount(s) recorded from an on-site rain gauge; and - (d) discharge monitoring analyses required by this permit. - 4. In the event of a discharge of manure, sludge, or wastewater from a RCS or a LMU during a chronic or catastrophic rainfall event or resulting from catastrophic conditions, the permittee shall orally notify the appropriate TCEQ regional office within one (1) hour of the discovery of the discharge. The permittee shall send written notification to the appropriate regional office within fourteen (14) working days. - 5. Chronic Rainfall Discharge. In the event of a discharge of manure, sludge or wastewater from a RCS or a LMU due to chronic rainfall, the permittee shall submit a report to the appropriate TCEQ regional office showing the CAFO records that substantiates that the overflow was a result of cumulative rainfall that exceeded the design rainfall event without the opportunity for dewatering, and was beyond the control of the permittee. After review of the report, if required by the Executive Director, the permittee shall have an engineering evaluation by a licensed Texas Professional Engineer developed and submitted to the Executive Director. This requirement is in addition to the discharge notification requirement in this permit. - 6. Impacts to Human Health or Safety, or the Environment. The permittee shall provide the following noncompliance notifications: - (a) Any noncompliance which may endanger human health or safety, or the environment shall be reported by the permittee to the TCEQ. Report of such information shall be provided orally, by e-mail, or electronic facsimile transmission (Fax) to the TCEQ regional office within twenty four (24) hours of becoming aware of the noncompliance. A written submission of such information shall also be provided by the permittee to the TCEQ regional office and the Enforcement Division (MC 224) within five (5) days of becoming aware of the noncompliance. The written submission shall contain a description of the noncompliance and its cause; the potential danger to human health or safety, or the environment; the period of noncompliance, including exact dates and times. If the noncompliance has not been corrected, the anticipated time it is expected to continue, and steps taken or planned to reduce, eliminate, and prevent recurrence of the noncompliance and to mitigate its adverse effects. - (b) In the event the permittee discharges manure, sludge, or wastewater other than as authorized in the permit, the permittee shall give twenty four (24) hour oral, e-mail, or fax notice and five (5) day written notice to TCEQ as required by paragraph (a) above. - 7. The permittee shall submit an annual report to the appropriate regional office and the Enforcement Division (MC 224) by March 31 of each year for the 12-month reporting period of January 1 to December 31 of the previous year. The report shall be submitted on forms prescribed by the Executive Director to include, but not limited to: - (a) number and type of animals, whether in open confinement or housed under roof; - (b) estimated total manure, sludge, and wastewater generated during the reporting period; - (c) total compost, manure, sludge, slurry and wastewater land applied during the last twelve (12) months on-site at the CAFO facility; - (d) total wastewater, sludge, and/or manure transferred to other persons during the reporting period; - (e) total number of acres for
land application under the control of the permittee and all third-party acreage; - (f) summary of discharges of manure, sludge, or wastewater from the production area that occurred during the reporting period including dates, times, and approximate volume; - (g) a statement indicating that the NMP/NUP, under which the CAFO is operating, was developed and approved by a certified nutrient management specialist; - (h) a copy of the initial soil analysis for each new LMU, regardless of whether manure, wastewater, or sludge has been applied; - (i) soil monitoring reports of all soil samples collected in accordance with the requirements of this permit; - (j) groundwater monitoring reports (if applicable); - (k) the actual crop(s) planted and yield(s) for each LMU; - (l) the actual nitrogen and phosphorus content of manure, sludge or process wastewater that was land applied; - (m) the results of data used in calculations and the results of calculations conducted in accordance with Attachment E; - (n) the results of any soil testing for nitrogen and phosphorus conducted during the previous 12 months; - (o) the amount of any supplemental fertilizer applied during the previous 12 months; and - (p) any other information requested by the Executive Director. - 8. The permittee shall furnish to the appropriate regional office, and the Enforcement Division (MC 224), soil testing analysis for third-party fields of all soil samples within sixty (60) days of the date the samples were taken in accordance with the requirements of this permit. #### IX. Standard Permit Conditions - A. The permittee has a duty to comply with all permit conditions. Failure to comply with any permit conditions is a violation of the permit and statutes under which it was issued and is ground for enforcement action, for permit amendment, revocation or suspension, or for denial of a permit renewal application or an application for a permit for another facility. - B. The permittee must apply for an amendment or renewal before the expiration of the existing permit in order to continue a permitted activity after the expiration date of the permit. Authorization to continue such activity terminates upon the effective denial of said permit. - C. It is not a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity to maintain compliance with the permit conditions. - D. The permittee shall take all reasonable steps to minimize or prevent any discharge or sludge use or disposal or other permit violation which has a reasonable likelihood of adversely affecting human health or the environment. - E. The permittee shall at all times properly operate and maintain all facilities and systems of treatment and control (and related appurtenances) installed or used by the permittee to achieve compliance with the permit conditions. Proper operation and maintenance also includes adequate laboratory and process controls, and appropriate quality assurance procedures. This provision requires the operation of back-up or auxiliary facilities or similar systems only when necessary to achieve compliance with the permit conditions. - F. The permittee shall furnish any information, at the request of the Executive Director, which is necessary to determine whether cause exists for revoking, suspending, or terminating authorization under this permit. The requested information must be provided within a reasonable time frame and in no case later than thirty (30) days from the date of the request. - G. The permittee shall give notice to the Executive Director before physical alterations or additions to the permitted facility if such alterations or additions would require a permit amendment or result in a violation of permit requirements. - H. Authorization from the Commission is required before beginning any change in the permitted facility or activity that would result in noncompliance with other permit requirements. - I. Inspection and entry shall be allowed under Texas Water Code, Chapters 26-28, Health and Safety Code, §§361.032-361.033 and §361.037, and 40 Code of Federal Regulations (CFR) §122.41(I). The statement in Texas Water Code, §26.014 that the Commission entry of a facility shall occur in accordance with an establishment's rules and regulations concerning safety, internal security, and fire protection is not grounds for denial or restriction of entry to any part of the facility, but merely describes the Commission's duty to observe appropriate rules and regulations during inspection. - J. Standard Monitoring Requirements - 1. Samples required by this permit shall be collected and measurements shall be taken at times and in a manner so as to be representative of the monitored discharge or activity. Samples shall be delivered to the laboratory immediately upon collection, in accordance with any applicable analytical method and required maximum holding time. Unless otherwise specified in this permit, test procedures for the analysis of pollutants shall comply with procedures specified in 30 TAC §§319.11 319.12. Measurements, tests and calculations shall be accurately accomplished in a representative manner. - 2. Records of monitoring activities must include: - (a) the date, time, and place of sample or measurement; - (b) the identity of any individual who collected the sample or made the measurement; - (c) the chain-of-custody procedures used to maintain sample integrity from sample collection to laboratory delivery; - (d) the date and time of laboratory analysis; - (e) the identity of the individual and laboratory who performed the analysis; - (f) the technique or method of analysis; and - (g) the results of the analysis or measurement and quality assurance/quality control records. - 3. The permittee shall ensure that properly trained and authorized personnel monitor and sample the soil or wastewater related to any permitted activity. - K. Any noncompliance other than that specified in this section, or any required information not submitted or submitted incorrectly shall be reported to the Executive Director as promptly as possible. - L. A permit may be transferred only according to the provisions of 30 TAC §305.64 (relating to Transfer of Permits) and 30 TAC §305.97 (relating to Action on Application for Transfer). - M. PPPs, reports, and other information requested or required by the Executive Director shall be signed in accordance with the requirements of 30 TAC §305.128 (relating to Signatories to Reports). - N. A permit may be amended, suspended and re-issued, or revoked for cause. The filing of a request by the permittee for a permit amendment, suspension and re-issuance, or termination, or a notification of planned changes or anticipated noncompliance does not stay any permit condition. - O. A permit does not convey any property rights of any sort or any exclusive privilege. - P. Reports of compliance or noncompliance with, or any progress reports on, interim and final requirements contained in any compliance schedule of the permit shall be submitted no later than fourteen (14) days following each schedule date. - Q. If the permittee becomes aware that he/she failed to submit any relevant facts in a permit application, or submitted incorrect information in an application, or in any report to the Executive Director, the permittee shall promptly submit such facts or information. - R. The permittee is subject to administrative, civil, and criminal penalties, as applicable, under Texas Water Code, §§26.136, 26.212, and 26.213, for violations including but not limited to the following: - 1. negligently or knowingly violating Clean Water Act (CWA) §§301, 302, 306, 307, 308, 318, or 405 or any condition or limitation implementing any sections in a permit issued under CWA §402, or any requirement imposed in a pretreatment program approved under CWA §402(a)(3) or §402(b)(8); - 2. falsifying, tampering with, or knowingly rendering inaccurate any monitoring device or method required to be maintained under a permit; or - 3. knowingly making any false statement, representation, or certification in any record or other document submitted or required to be maintained under a permit, including monitoring reports or reports of compliance or noncompliance. - S. The permittee shall comply with all applicable rules and regulations of the commission, including 30 TAC 321, Subchapter B. - T. This permit is granted on the basis of the information supplied and representations made by the permittee during action on an application, and relying upon the accuracy and completeness of that information and those representations. After notice and opportunity for a hearing, this permit may be modified, suspended, or revoked, in whole or in part, in accordance with 30 TAC Chapter 305, Subchapter D, during its term for good cause including, but not limited to, the following: - 1. Violation of any terms or conditions of this permit; - 2. Obtaining this permit by misrepresentation or failure to disclose fully all relevant facts; or - 3. A change in any condition that requires either a temporary or permanent reduction or elimination of the authorized discharge. - U. Acceptance of the permit by the person to whom it is issued constitutes acknowledgement and agreement that such person will comply with all the terms and conditions embodied in the permit, and the rules and other orders of the Commission. - V. In accordance with the Texas Water Code §26.029(b), after a public hearing, notice of which shall be given to the permittee, the Commission may require the permittee, from time to time, for good cause, in accordance with applicable laws, to conform to new or additional conditions. - W. The conditions of this permit are severable, and if any provision of this permit, or the application of any provision of this permit to any circumstances, is held invalid, the Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC TPDES Permit No. WQ0002950000
application of such provision to other circumstances, and the remainder of this permit, shall not be affected thereby. #### X. Notice of Bankruptcy. - 1. Each permittee shall notify the Executive Director, in writing, immediately following the filing of a voluntary or involuntary petition for bankruptcy under any chapter of Title 11 (Bankruptcy) of the United States Code (11 USC) by or against: - (a) the permittee; - (b) an entity (as that term is defined in 11 USC, §101(14)) controlling the permittee or listing the permit or permittee as property of the estate; or - (c) an affiliate (as that term is defined in 11 USC, §101(2)) of the permittee. - 2. This notification must indicate: - (a) the name of the permittee; - (b) the permit number(s); - (c) the bankruptcy court in which the petition for bankruptcy was filed; and - (d) the date of filing of the petition. ## X. Special Provisions #### A. RCS Volumes - 1. The permittee shall remove sludge from existing RCS #2 and RCS #3 to meet the total required capacity as listed on page 1 of this permit. This sludge removal shall be completed within 180 days from the issuance date of this permit and prior to exceeding 2,150 head, of which 1,950 head are milking. Once sludge removal from RCSs is completed, the RCS management plan shall be developed and implemented within thirty (30) days. - 2. The permittee shall construct the other components of the waste management system, which includes a covered digester, screw separator, and a methane generating system. Modifications shall comply with Section VII.A.3 of this permit. - 3. The permittee shall maintain the wastewater volumes in each RCS in accordance with Table 6. **Table 6: Volume Allocations for RCSs (Acre-Feet)** | RCS | Design | Process | Minimum | Sludge | Water | Required | Actual | |----------|----------|------------|-----------|--------------|---------|-----------|-----------| | Name | Rainfall | Generated | Treatment | Accumulation | Balance | Capacity | Capacity | | | Event | Wastewater | Volume | | | Without | Without | | | Runoff | | | | | Freeboard | Freeboard | | RCS #1 | 0 | 0 | 0 | 0 | О | 0 | 4.04 | | *RCS #2 | 27.80 | 10.00 | 15.28 | 5.73 | О | 58.81 | 64.87 | | **RCS #2 | 27.80 | 5.52 | 18.41 | 3.23 | О | 54.96 | 64.87 | | RCS #3 | 5.89 | 0 | 0 | 0.02 | 16.89 | 22.79 | 25.95 | ^{*} Volumes to be maintained in RCS #2 when the covered digester is operational. 4. Compliance Schedule. All RCS modifications required by this permit shall be completed within 180 days after the issuance date of this permit and prior to exceeding 2,150 head. Upon written request to the TCEQ Regional Office, the Executive Director may grant an extension to the 180 day requirement. However, all modifications must be completed prior to exceeding 2,150 head. ^{**} Volumes to be maintained in RCS #2 during the digester bypass. - 5. All certifications required by Section VII.A.3(a) of this permit shall be submitted to the TCEQ Regional Office and CAFO Permitting, Water Quality Division (MC 150) within 30 days of completing construction and/or modification. - B. Future Revisions to Bosque River Total Maximum Daily Load (TMDL). The permittee is hereby placed on notice that this permit may be amended by the TCEQ in order to make the terms and conditions of this permit consistent with any revisions to the Bosque River TMDL, associated Implementation Plan, and any revisions to federal regulations. - C. The permittee shall submit the following record to the appropriate Regional Office and the Enforcement Division (MC 224) by March 31 of each year for the 12-month reporting period of January 1 to December 31 of the previous year. - 1. date of compost, manure, sludge, slurry and wastewater application to each LMU; - 2. location of the specific LMU and the volume applied during each application event; - 3. acreage of each individual crop on which compost, manure, sludge, slurry and wastewater is applied; - 4. basis for and the total amount of nitrogen and phosphorus applied per acre to each LMU, including sources of nutrients other than compost, manure, sludge, slurry and wastewater on a dry basis; - 5. weather conditions, such as temperature, precipitation, and cloud cover, during the land application and twenty-four (24) hours before and after the land application; - 6. annual nutrient analysis for at least one (1) representative sample of manure, sludge (if applicable), slurry, and wastewater for total nitrogen, total phosphorus, and total potassium; and - 7. any measurements of sludge accumulations as required in each RCS. - D. Table 7 describes the buffers that the permittee is required to install and maintain according to the NRCS practice standards in the referenced code. The map in Attachment B includes the location and distance requirements for all buffers. **Table 7: Buffer Distances** | LMU Name | Vegetative Buffer
Setback (feet) | Additional Buffer Setback NRCS Code
393 Filter Strip Flow Length (feet) | |----------|-------------------------------------|--| | LMU #1 | 100 | 36 | | LMU #2 | 100 | 36 | | LMU #3 | 100 | 36 | | LMU #4 | 100 | 36 | | LMU #5 | 100 | 36 | | LMU #6 | 100 | 36 | | LMU #7 | 100 | 36 | | LMU #8 | 100 | 36 | | LMU #9 | 100 | 36 | | LMU #10 | 100 | 36 | | LMU #11 | 100 | 36 | | LMU #12 | 100 | 36 | | LMU #13 | 100 | 36 | | LMU #14 | 100 | 36 | - E. The sludge volume in each RCS will be measured and recorded in the PPP as necessary, but at least annually. - F. There will be no grazing of livestock on the LMUs for this CAFO unless the NMP reflects grazing and the grazing practices mentioned in the NRCS Conservation Practice Code 393, Filter Strip, are implemented to protect buffers. - G. Settling Basin Solids. - 1. For the purpose of this permit, settling basin solids shall be defined as manure. - 2. If settling basin solids are land applied, an annual sample must be collected and analyzed in accordance with Section VII.A.9(a), in addition to other manure and wastewater. - 3. Settling basin solids shall be cleaned out regularly to maintain the percent settling basin design efficiency. - H. All runoff from silage, commodity, and hay storage outside the RCS drainage area will be contained. Appropriate provisions for that containment will be stated in the PPP upon issuance of the permit. This permit does not authorize any discharge from the silage, commodity, or hay storage areas located outside the drainage area of the RCSs. - I. Slurry from freestall barn - For the purpose of this permit, slurry from freestall barns shall be defined as manure. - 2. If slurry from freestall barns is land applied, an annual sample must be collected and analyzed in accordance with Section VII.A.9(a), in addition to other manure and wastewater. - 3. Slurry removed from freestall barns must be stored within the drainage area of an RCS, and the storage area must be large enough to prevent overflow into settling basins and/or RCSs. Any overflow of these storage basins shall be recorded in the PPP and notification shall be provided to the Regional Office within thirty (30) days. Based on review of the information this permit may be formally amended to require additional controls or other requirements. - J. Irrigation of wastewater from the LMU #5 center pivot sprinkler is prohibited over the buffered areas. The irrigation system must be capable of restricting flow to the required number of drop nozzles (and end gun if present) to protect the buffer. Cut-off points for center pivot in LMU #5 must be clearly identified on the surface of the LMU. - K. During the annual site inspection, the permittee will inspect Wells #3, #4, #5 #7, and #9 (if applicable). Special attention should be given to ensure that the concrete slabs, well heads, and the best management practices listed in Table 3 are in place and functional. Integrity compromises, such as the concrete slab cracking, sanitary seal deterioration, cracks in the well casing, or well house deterioration will be repaired within 30 days of the discovery. Permittee shall ensure no runoff or wastes encroach upon the wells. Fertilizers and pesticides will not be stored on or in any structure that houses the water wellhead. Maintenance records for the wells shall be maintained onsite. - L. Sludge must be analyzed for nutrient content prior to routing offsite for any land application. The analysis for each haul off shall be maintained in the PPP. (See Section VII.A.5(g) for additional requirements relating to sludge cleanout.) - M. Manure and settled solids accumulations in the settling pond must be removed on a regular and consistent basis so as to assure attainment of the 30% designed removal efficiency; and maintain 42% anaerobic digester efficiency, and 76% Dissolved Air Flotation efficiency. - N. The culverts located between Settling Basin #2 and Settling Basin #3 should be inspected at least once a month to ensure wastewater can adequately drain to Settling Basin #3. - O. The surface water features (drainage/waterway) on LMU #13 that are to be leveled shall be completed before any land application of manure or wastewater to the LMU. - P. A LMU map showing historical LMUs shall be maintained in the PPP. - Q. Onsite Burial. - 1. The permittee shall collect non-diseased carcasses within 24 hours of death and properly dispose of them within three days of death, in accordance with Texas Water Code Section 26.0405; Texas Health and Safety Code Section 361.090; and 30 TAC 335.4–335.6, unless otherwise provided for by the TCEQ. - 2. The permittee shall comply with the following requirements: - (a) The permittee shall properly design or install the pit or trench, and shall not cause contamination of ground water, seepage, or contamination of stream systems from surface drainage or floodwater. - (b) Animal burial sites that have highly permeable soils, fractured or cavernous bedrock, or a seasonal high water table
are not suitable. - (c) Depth to ground water table shall be at least 5 feet below the bottom of the excavation. The site shall not be subject to flooding and surface water should be diverted from the excavation. - (d) The soil for the final cover of the pit or trench shall be of soil material that favors revegetation and shall not contain excess sodium or salts and shall not be too acid. It is recommended that topsoil from the excavation be set aside for the top layer of final cover. - (e) Burial sites should be located in an area not likely to be disturbed in the near future. - (f) The permittee shall maintain the following setbacks for burial: - (i) Minimum of 300 feet downgradient from any ground water supply source and nearest drinking water well. - (ii) Minimum of 300 feet from the nearest surface water including but not limited to creek, stream, pond, lake, or river, and not in a floodplain. - (iii) Minimum of 200 feet from adjacent property lines. - (iv) Depth of burial shall be at least 3 feet below the natural surface of the ground, with at least 3 feet of earthen material (soil) over the carcass. #### R. Anaerobic Digester - The permittee shall have adequate RCS capacity to maintain minimum treatment volume for odor control at all times, including when the digester is bypassed or during digester maintenance. - 2. The facility shall maintain the ability to bypass the digester in the event it is taken offline for maintenance or repair. If the digester is taken offline for a period lasting longer than 90 days, the Permittee shall notify the TCEQ Regional Office. If the digester is to be permanently discontinued, a permit amendment must be obtained. - 3. The permittee shall use only cattle manure as feedstock and shall obtain a major amendment prior to use of cattle manure that is generated by another AFO for digester feedstock. The use of additional feedstocks other than cattle manure is prohibited by this permit. - 4. The permittee shall ensure that the owner and operator of the digester obtains all necessary authorizations from the TCEQ Air Permits Division for the digester operation. Off-gasses, flares, internal combustion engines, or other emissions associated with the digester are not authorized under the CAFO standard air permit. - 5. Digestate shall be defined as manure. The permittee shall land apply the digestate in accordance with the site-specific certified nutrient management plan. - 6. The anaerobic digester and any appurtenances such as recirculation basins and mixing pits shall be certified in accordance with 30 TAC §321.38(g)(2). - 7. Discharges from the digester or digester appurtenances are not authorized under this permit. Any leaks or spills shall be retained on site. - S. Upon issuance of the permit, prior to land application of manure or wastewater, a current NMP must be in place and it shall thereafter be updated annually with the most recent soil, manure, and wastewater analyses. For LMUs that have a phosphorus level in the soil of more than 200 ppm, a NUP must be developed or updated in accordance with Section VII.A.8(c). # Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC TPDES Permit No. WQ0002950000 ATTACHMENT A - SITE MAP Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC TPDES Permit No. WQ0002950000 ATTACHMENT B - LAND MANAGEMENT UNITS Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC TPDES Permit No. WQ0002950000 ATTACHMENT C - VICINITY MAP Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC TPDES Permit No. WQ0002950000 ATTACHMENT D - WELL LOCATION AREAS ## METHODOLOGY FOR CALCULATING MAXIMUM APPLICATION RATES AND ANNUAL RECALCULATION OF APPLICATION RATES 1. Identify the Soil Test Phosphorus (P) Level (Extremely Low, Very Low- Low, Medium, High, Very High) on the soil test analysis. | Soil Test P Rating | Soil Test P Levels (ppm*) | |--------------------|------------------------------| | Extremely Low | Less than 5 | | Very Low - Low | 5 to less than 20 | | Medium | 20 to less than 50 | | High | 50 to less than 100 | | Very High | Greater than or equal to 100 | *ppm is equivalent to mg/kg of solids - 2. Update Table 1 to Attachment E: - (a) Populate the Sub Total column with the point value that corresponds to the Site Characteristic for each. - (b) Calculate the Total Index Points - (c) Select the P Runoff Potential from the total sum of the Index Points of the Site Characteristics using the Phosphorus Index Classification Table. - 3. Determine which of the tables (Table 2A or Table 2B) of Table 2 to Attachment E on the following page is appropriate to use. Each table describes the criteria for its use. - 4. Determine which application rate column is appropriate using the following criteria: - (a) Use the Maximum TMDL Annual P Rate if this LMU is located in a segment with an approved TMDL. - (b) Use Maximum Annual P Application if this LMU is <u>not</u> located in a segment with an approved TMDL and you wish to apply annually. - (c) Use Maximum Biennial Application Rate if this LMU is <u>not</u> located in a segment with an approved TMDL and you wish to apply biennially. - 5. Determine the Maximum Application Rate using the table identified in Step 3, the column identified in Step 4, and the P Runoff Potential identified in Step 2.(c). - 6. Using one of the approved crops and yield goals identified on Attachment F for this LMU, determine the maximum application rate (in lbs/ac) for that crop and yield goal and the Maximum Application Rate identified in Step 5 from the S-Crop Table. - (a) Example 1: If the Maximum Application Rate in Step 5 is "1.5 Times Annual Crop P Requirement", find the number identified on the S-Crop Table under the column "Crop P₂O₅ requirement" for your crop/yield goal, then multiply that number by 1.5 to determine your maximum application rate (in lbs/ac P₂O₅). - (b) Example 2: If the Maximum Application Rate in Step 5 is "0.5 Times Annual Crop P Removal", find the number identified on the S-Crop Table under the column "Crop P_2O_5 Removal Rate" for your crop/yield goal, then multiply that number by 0.5 to determine your maximum application rate (in lbs/ac P_2O_5). TABLE 1: PHOSPHORUS INDEX WORKSHEET FOR EAST TEXAS FROM NRCS PRACTICE STANDARD 590 | Client Name: | | | Field(s): | | Date: | | |---|---------------------|--|---|--|--|-------| | Planner: | | | Location: | | Crop: | | | Impaired Watershed | | | | | | | | (Y or N): | | Rund | off Curve No.: | | % Slope: | | | Site Characteristic | | [Weighting Fac | tor Times the | Column Factor] | | Sub | | (Weighting Factor) | 0 | 1 | 2 | 4 | 8 | Total | | Soil Test P Rating | N/A | Very Low – Low | Moderate | High | Very High | | | (1.00) | [0] | [1.0] | [2.0] | [4.0] | [8.0] | | | Fertilizer Phosphorus
(P ₂ O ₅)
Application Rate | None Applied | 1-40 lbs/ac
P ₂ O ₅ | 41-90 lbs/ac
P ₂ O ₅ | 91-150 lbs/ac
P ₂ O ₅ | >150 lbs/ac
P ₂ O ₅ | | | (0.75) | [0] | [0.75] | [1.5] | [3.0] | [6.0] | | | Organic Phosphorus
(P ₂ O ₅) Application
Rate | None Applied | 1-40 lbs/ac
P ₂ O ₅ | 41-90 lbs/ac
P ₂ O ₅ | 91-150 lbs/ac
P ₂ O ₅ | >150 lbs/ac
P ₂ O ₅ | | | (0.75) | [0] | [0.75] | [1.5] | [3.0] | [6.0] | | | Phosphorus Fertilizer Application Method and Timing | None Applied | Placed deeper
than 2 in. or
broadcast and
incorporated
within 48 hours | Surface
applied
12/1-2/15 | Surface applied
2/16-4/15 or 6/16-
11/30 | Surface Applied
4/16-6/15 | | | (0.50) | [0] | [0.50] | [1.0] | [2.0] | [4.0] | | | Organic Phosphorus
source Application
Method and Timing | None Applied | Placed deeper
than 2 in. or
broadcast and
incorporated
within 48 hours | Surface
applied
12/1-2/15 | Surface applied
2/16-4/15 or 6/16-
11/30 | Surface Applied
4/16-6/15 | | | (0.50) | [0] | [0.50] | [1.0] | [2.0] | [4.0] | | | Proximity of nearest field edge to named stream or lake | > 2000 feet | 1000 – 1999 feet | 500 – 999
feet | 100 – 499 feet | < 100 feet | | | (1.25) | [0] | [1.25] | [2.5] | [5.0] | [10.0] | | | Runoff Class
(Runoff Class Table 3) | Negligible | Low | Moderate | High | Very High | | | (1.00) | [0] | [1.0] | [2.0] | [4.0] | [8.0] | | | Soil Erosion
(all sources) | Very Low
<1 t/ac | Low
1-3 t/ac | Medium
3-5 t/ac | High
5-10 t/ac | Very High
>10 t/ac | | | (1.50) | [0] | [1.5] | [3.0] | [6.0] | [12.0] | | | , | | | | Т | otal Index Points: | | ### TABLE 2: APPLICATION RATES FROM NRCS PRACTICE STANDARD 590 Commercial fertilizers must be applied in accordance with SWFTL* recommendations. Application of all organic soil amendments must not exceed the values in Table 2A or 2B. <u>Table 2A</u>. A Nutrient Management Plan (NMP)¹ is required where any organic soil amendments are applied where Soil Test P Level is less than 200 ppm statewide or, less than 350 ppm in arid areas² with distance to a named stream greater than one mile. | P – Index | Maximum TMDL Annual | Maximum Annual P | Maximum Biennial Application | |-----------|--------------------------|---------------------------------|-----------------------------------| | Rating | P Application Rate | Application Rate | Rate | | Very Low, | Annual Crop Nitrogen | 1.0 Times Annual | 2.0 Times Annual Crop N | | Low | (N) Requirement | Crop N Requirement | Requirement | | Medium | 2.0 Times Annual Crop P | 2.0 Times Annual | 2.0 Times Annual Crop N | | | Requirement ³ | Crop P Requirement ³ | Requirement | | High | 1.5 Times Annual Crop P | 1.5 Times Annual Crop | Double the Maximum Annual P | | | Requirement ³ | P Requirement | Application Not to Exceed 2 Times | | | | | the Annual Crop N Requirement | | Very High | 1.0 Times Annual Crop P | 1.0 Times Annual | Double the Maximum
Annual P | | | Requirement ³ | Crop P Requirement ³ | Application Not to Exceed 2 Times | | | | | the Annual Crop N Requirement | **Table 2B.** A Nutrient Utilization Plan (NUP)¹ is required where Soil Test P Level is: equal to or greater than 200 ppm in nonarid areas², or equal to or greater than 350 ppm in arid areas² with distance to a named stream greater than one mile and erosion control is adequate to keep erosion at the soil loss tolerance (T) or less, or equal to or greater than 200 ppm in arid areas² with distance to a named stream less than one mile. | P – Index
Rating | Maximum TMDL Annual
P Application Rate | Maximum Annual
P Application Rate | Maximum Biennial Application Rate | |---------------------|---|---|---| | Very Low,
Low | 1.0 Times Annual Crop P
Removal ⁴ | Annual Crop N
Removal | 2.0 Times Crop N Removal | | Medium | 1.0 Times Annual Crop P
Removal ⁴ | 1.5 Times Annual
Crop P Removal ⁴ | Double the Maximum Annual P
Application Not to Exceed 2 Times
the Annual Crop N Removal | | High | 1.0 Times Annual Crop P
Removal ⁴ | 1.0 Times Annual
Crop P Removal ⁴ | Double the Maximum Annual P
Application Not to Exceed 2 Times
the Annual Crop N Removal | | Very High | o.5 Times Annual Crop P
Removal ⁴ | 0.5 Times Annual
Crop P Removal ⁴ | Double the Maximum Annual P
Application Not to Exceed 2 Times
the Annual Crop N Removal | #### Footnotes Applicable to both Tables ¹NMP and NUP designations are consistent with 30 TAC §321.40. ²All counties must use the 200 ppm P level limit to determine whether to use Table 2A or Table 2B. However, in counties receiving less than 25 inches of annual rainfall, the 350 ppm P level limit applies if the field application area is greater than 1 mile from a named stream or lake. See map in current Texas Agronomy Technical Note 15, Phosphorus Assessment Tool for Texas for county rainfall designations. ³Not to exceed the annual nitrogen requirement rate. ⁴Not to exceed the annual nitrogen removal rate. SWFTL* Texas A&M AgriLife Extension Soil, Water and Forage Testing Laboratory Table 1: Alternative Crops and Yield Goals Applicable to ALL Land Management Units: - 1,034 Acres | Crop and Yield Goal
Alfalfa Hay 10 Tons | Requirement | | | | |--|----------------|------------|-------------|----------| | | 1 ACQUITERIENT | Removal | Requirement | Remova | | | 530 | 532 | 180 | 101 | | Alfalfa Hay 12 Tons | 640 | 638 | 180 | 121 | | Alfaifa Hay 2 Tons | 120 | 106 | 35 | 20 | | Alfalfa Hay 4 Tons | 210 | 213 | 80 | 40 | | Alfalfa Hay 6 Tons | 300 | 319 | 130 | 60 | | Alfalfa Hay 8 Tons | 420 | 426 | 180 | 81 | | Bahia 2 Cut Hay 7000 # | 140 | 89 | 70 | 21 | | Bahia 3 Cut Hay 8000 # | 210 | 102 | 80 | 24 | | Bahia 4 Cut Hay 9000 # | 280 | 114 | 115 | 27 | | Bahia Grazing + 1 Hay | 110 | 83 | 70 | 19 | | Bahia Grazing 1 AU/1 ac | 260 | 114 | 70 | 27 | | Bahia Grazing 1 AU/2 ac | 220 | 108 | 45 | 25 | | Bahia Grazing 1 AU/3 ac | 180 | 102 | 45 | 24 | | Bahia Grazing 1 AU/4 ac | 140 | 95 | 45 | 22 | | Bahia Grazing I AU/5 ac | 100 | 79 | 45 | 18 | | Bahia Grazing 1 AU/6 ac | 60 | 65 | 45 | 15 | | Cantaloupes 15-20 tons | 120 | 88 | 105 | 82 | | Coastal 2 Cut + Graze | 260 | 198 | 125 | 62 | | Coastal 2 Cut + Graze | 200 | 169 | 125 | 39 | | Coastal 3 Cut + Graze | 360 | 257 | 125 | 80 | | Coastal 3 Cut Hay | 300 | 238 | 125 | 74 | | Coastal 4 Cut Hay | 400 | 257 | 170 | 80 | | Coastal 5-6 Cut Hay | 500 | 297 | 170 | 93 | | Coastal Grazing + 1 Hay | 160 | 145 | 70 | 34 | | Coastal Grazing 1 AU/0.5 ac | 300 | 218 | 70 | 68 | | Coastal Grazing 1 AU/1 ac | 240 | 198 | 70 | 62 | | Coastal Grazing 1 AU/2 ac | 200 | 169 | 70 | 39 | | Coastal Grazing 1 AU/3 ac | 160 | 145 | 70 | 34 | | Coastal Grazing 1 AU/4 ac | 120 | 120 | 70 | 28 | | Coastal Grazing 1 AU/4 ac | 90 | 103 | 70 | 24 | | Coastal Grazing 1 AU/5 ac | 60 | 86 | 70 | 20 | | Coastal Grazing 1 AU/6 ac | 400 | 345 | 170 | 95 | | Coastal GC (30%DM) 21-23 Ton | 350 | 300 | 170 | 82 | | Coastal GC (30%DM) 18-20 Ton | 300 | 255 | 125 | 70 | | Coastal GC (30%DM) 15-17 Ton | 200 | 170 | 125 | 47 | | Coastal GC (30%DM) 9-11 Ton | 140 | 113 | 80 | 26 | | Common 2 Cut Hay 6000 # | 210 | 141 | 80 | 46 | | Common 3 Cut Hay 7400 # | 280 | 152 | 80 | 49 | | Common 4 Cut Hay 8000 # | | | 80 | 56 | | Common 5-6 Cut Hay 9000 # | 350 | 171 | 70 | 23 | | Common Grazing + 1 Hay | 110 | 100
132 | 80 | 30 | | Common Grazing + 2 Hay | 180 | | | 48 | | Common Grazing + 3 Hay | 250 | 148 | 80
70 | 49 | | Common Grazing 1 AU/1ac | 260 | 152 | | | | Common Grazing 1 AU/2 ac | 220 | 143 | 45 | 46
30 | | Common Grazing 1 AU/3 ac | 180 | 132 | 45 | | | Common Grazing 1 AU/4 ac | 140 | 113 | 45 | 26 | | Common Grazing 1 AU/5 ac
Common Grazing 1 AU/6 ac | 100 | 94
79 | 45
45 | 22
18 | Table 1: Alternative Crops and Yield Goals Applicable to ALL Land Management Units: - 1,034 Acres | 0 125-14 0 1 | Nitro | gen | P20 |)5 | |------------------------------|-------------|---------|-------------|--------| | Crop and Yield Goal | Requirement | Removal | Requirement | Remova | | Corn 111 - 130 bu | 144 | 117 | 105 | 47 | | Corn 131 - 150 bu | 164 | 135 | 105 | 54 | | Com 151 - 170 bu | 180 | 153 | 130 | 61 | | Corn 171 - 190 bu | 210 | 171 | 130 | 68 | | Corn 191 - 210 bu | 250 | 189 | 130 | 75 | | Corn 211 - 230 bu | 280 | 207 | 130 | 83 | | Com 231 - 250 bu | 300 | 225 | 130 | 90 | | Com 250 - 275 bu | 325 | 243 | 130 | 97 | | Com 276 - 300 bu | 350 | 261 | 130 | 104 | | Com 301 - 350 bu | 375 | 279 | 130 | 111 | | Corn 50 - 70 bu | 70 | 63 | 80 | 25 | | Сога 71 - 90 bu | 90 | 81 | 80 | 32 | | Corn 91 - 110 bu | 120 | 99 | 105 | 39 | | Cotton 0.5 Bale | 25 | 18 | 30 | 9 | | Cotton 1.0 Bale | 50 | 36 | 55 | 18 | | Cotton 2.0 Bale | 100 | 71 | 105 | 35 | | Cotton 3.0 Bale | 150 | 107 | 105 | 53 | | Cotton 3.5 Bale | 175 | 125 | 105 | 62 | | Cotton 4.0 Bale | 200 | 142 | 105 | 71 | | Cotton 4.5 Bale | 225 | 160 | 105 | 80 | | Cotton 5.0 Bale | 250 | 178 | 105 | 89 | | Eastern gamagrass- 3000 # | 80 | 57 | 40 | 21 | | Eastern gamagrass- 6000 # | 120 | 114 | 60 | 41 | | Fescue, Tall Hay/Graze 7000# | 150 | 140 | 80 | 42 | | Grain Sorg, 1000# | 20 | 17 | 30 | - 8 | | Grain Sorg, 10000 # | 200 | 167 | 130 | 82 | | Grain Sorg, 1500 # | 30 | 25 | 30 | 12 | | Grain Sorg, 2000 # | 40 | 33 | 30 | 16 | | Grain Sorg. 3000 # | 60 | 50 | 55 | 25 | | Grain Sorg, 4000 # | 80 | 67 | 55 | 33 | | Grain Sorg. 5000 # | 100 | 84 | 80 | 41 | | Grain Sorg. 6000 # | 120 | 100 | 80 | 49 | | Grain Sorg. 7000# | 140 | 117 | 130 | 58 | | Grain Sorg. 8000 # | 160 | 134 | 130 | 66 | | Grain Sorg. 9000 # | 180 | 150 | 130 | 74 | | Guar 3500 lbs | 25 | 22 | 80 | 76 | | Johnsongrass Hay 6000 # | 140 | 101 | 80 | 32 | | Klein 3 Cut Hay 7200 # | 150 | 83 | 55 | 16 | | Klein 4 Cut Hay 7800 # | 150 | 90 | 55 | 18 | | Klein Grazing + 1 Hay | 80 | 69 | 55 | 14 | | Klein Grazing 1 AU/1.5 ac | 150 | 90 | 80 | 18 | | Klein Grazing 1 AU/2.5 ac | 80 | 69 | 55 | 14 | | Klein Grazing 1 AU/6 ac | 40 | 58 | 5.5 | 11 | | Legume Overseeded | 80 | 60 | 105 | 15 | | Legume w/ryegrass | 160 | 94 | 160 | 38 | | Midland Bermuda 4000 # | 120 | 75 | 80 | 17 | | Midland Bermuda 6000 # | 150 | 113 | 105 | 26 | | Midland Bermuda 8000 # | 200 | 150 | 105 | 35 | Table 1: Alternative Crops and Yield Goals Applicable to ALL Land Management Units: - 1,034 Acres | 0 130 110 11 | Nitro | gen | P2O5 | | | |--|-------------|-----------|-------------|--------|--| | Crop and Yield Goal | Requirement | Removal | Requirement | Remova | | | Native Grazing or Hay 4000# | 80 | 44 | 70 | 34 | | | Native Grazing or Hay 3000# | 40 | 33 | 55 | 25 | | | Native Grazing or Hay 1500# | 20 | 17 | 27 | 13 | | | Native Grazing or Hay 750# | 10 | - 8 | 13 | 6 | | | Oat Light Grazing | 120 | 107 | 55 | 40 | | | Oat Moderate Grazing | 160 | 110 | 80 | 41 | | | Oats Hay 2-3 tons | 120 | 100 | 55 | 37 | | | Oats Heavy Grazing plus Hay | 200 | 117 | 80 | 43 | | | Old World Bluestem- 3000 # | 40 | 33 | 55 | 25 | | | Old World Bluestem- 6000 # | 80 | 66 | 55 | 51 | | | Peanut Hay Dryland 1 Ton | 50 | 47 | 70 | 11 | | | Peanut Hay Dryland 2 Tons | 100 | 93 | 70 | 22 | | | Peanut Hay Irrigated 3 Tons | 150 | 140 | 95 | 33 | | | Peanuts Irrigated 5 10ths Peanuts Irrigated 4500 # | 180 | 162 | 95 | 18 | | | Rice Early 7500 # | 195 | 104 | 45 | 41 | | | Rice Late 7500 # | 180 | 104 | 45 | 41 | | | Rice plus Ratoon Early 10000 # | 295 | 139 | 60 | 55 | | | Rice plus Ratoon Late 10000 # | 280 | 139 | 60 | 55 | | | Rye Forage 5000 # | 140 | 84 | 55 | 31 | | | Rye Forage 7000 # | 240 | 117 | 80 | 43 | | | Ryegrass Hay 6000 | 140 | 100 | 55 | 37 | | | Ryegrass Heavy Grazing | 200 | 117 | 80 | 43 | | | Ryegrass Moderate Grazing | 140 | 84 | 55 | 31 | | | SG Green Chop(25% DM) 8 to 9 tons | 260 | 203 | 90 | 73 | | | SG Green Chop(25% DM) 6 to 7 tons | 200 | 158 | 80 | 57 | | | SG Green Chop(25% DM) 4 to 5 tons | 135 | 113 | 60 | 41 | | | SG Green Chop(25% DM) 4 to 3 tons | 75 | 68 | 40 | 24 | | | SG Silage(35% DM) 12 to 14 tons | 160 | 128 | 90 | 67 | | | SG Silage(35% DM) 12 to 14 tons | 120 | 101 | 70 | 53 | | | SG Silage(35% DM) 8 to 9 tons | 95 | 83 | 40 | 43 | | | SG Silage(35% DM) 5 to 7 tons | 70 | 64 | 30 | 34 | | | Strate Com/(25% DM) 11 15 Ton | 140 | 119 | 80 | 58 | | | Silage - Corn(35% DM) 11 - 15 Ton | 240 | 183 | 100 | 77 | | | Silage - Corn(35% DM) 16 - 20 Ton
Silage - Corn(35% DM) 21 - 25 Ton | 350 | 263 | 105 | 96 | | | Shage - Com(35% DM) 21 - 23 10h | 420 | 315 | 135 | 115 | | | Silage - Corn(35% DM) 26 - 30 Ton | 85 | 79 | 60 | 38 | | | Silage - Corn(35% DM) 7 - 10 Ton | 200 | 179 | 75 | 55 | | | Silage - Sorg(35% DM) 11 - 15 Ton | 280 | 238 | 95 | 74 | | | Silage -
Sorg(35% DM) 16 - 20 Ton | 360 | 298 | 115 | 92 | | | Silage - Sorg(35% DM) 21 - 25 Ton | 380 | 315 | 130 | 111 | | | Silage - Sorg(35% DM) 26 - 30 Ton | | 364 | 155 | 135 | | | Silage - Sorg(35% DM) 31 - 40 Ton | 450 | 455 | 190 | 168 | | | Silage - Sorg(35% DM) 41 - 50 Ton | 580 | 550 | 220 | 202 | | | Silage - Sorg(35% DM) 51 - 60 Ton | 700 | 119 | 60 | 37 | | | Silage - Sorg(35% DM) 7 - 10 Ton | 125 | 112 | 105 | 41 | | | Small Grain Heavy Grazing | 240 | 75 | 80 | 28 | | | Small Grain Light Grazing | 60 | | 105 | 36 | | | Small Grain Moderate Grazing
Sorg Sudan Hay/Graze 11000 # | 160
240 | 97
219 | 105 | 83 | | Table 1: Alternative Crops and Yield Goals Applicable to ALL Land Management Units: - 1,034 Acres | Crop and Yield Goal | Nitro | gen | P2O5 | | | |--------------------------------------|-------------|---------|-------------|---------|--| | Crop and Yield Goal | Requirement | Removal | Requirement | Removal | | | Sorg Sudan Hay/Graze 7500# | 160 | 149 | 55 | 57 | | | Sorg Forage Hay/Graze 11000# | 240 | 219 | 105 | 83 | | | Sorg Forage Hay/Graze 7500 # | 160 | 151 | 55 | 57 | | | Soybean 30 bu | 110 | 119 | 60 | 24 | | | Soybean 50 bu | 180 | 180 | 80 | 40 | | | Sunflower 2000# | 100 | 71 | 56 | 30 | | | Sunflower 3000# | 175 | 107 | 65 | 45 | | | Triticale Graze or Hay 7000 # | 160 | 117 | 105 | 43 | | | Triticale Graze or Hay 9000 # | 240 | 150 | 105 | 56 | | | Watermelons 12 tons | 80 | 53 | 55 | 49 | | | Weeping Lovegrass 3500 # | 70 | 39 | 55 | 30 | | | Wheat Forage 2000 # | 60 | 33 | 80 | 12 | | | Wheat Forage 4000 # | 160 | 67 | 105 | 25 | | | Wheat Forage 6000 # | 240 | 100 | 105 | 37 | | | Wheat Grain 20 - 30 bu + Grazing | 60 | 58 | 35 | 40 | | | Wheat Grain 20 - 30 bu | 45 | 37 | 55 | 26 | | | Wheat Grain 31 - 40 bu + Grazing | 80 | 71 | 75 | 48 | | | Wheat Grain 31 - 40 bu | 60 | 50 | 75 | 34 | | | Wheat Grain 41 - 50 bu + Grazing | 100 | 83 | 75 | 57 | | | Wheat Grain 41 - 50 bu | 75 | 62 | 75 | 43 | | | Wheat Grain 51 - 60 bu + Grazing | 120 | 96 | 90 | 65 | | | Wheat Grain 51 - 60 bu | 90 | 75 | 90 | 51 | | | Wheat Grain 61 - 70 bu + Grazing | 140 | 108 | 90 | 74 | | | Wheat Grain 61 - 70 bu | 105 | 87 | 90 | 60 | | | Wheat Grain 71 - 80 bu + Grazing | 160 | 121 | 95 | 82 | | | Wheat Grain 71 - 80 bu | 120 | 100 | 95 | 68 | | | Wheat Grain 81 - 90 bu + Grazing | 180 | 133 | 95 | 91 | | | Wheat Grain 81 - 90 bu | 135 | 112 | 95 | 77 | | | Wheat Grain 91 - 100 bu + Grazing | 200 | 146 | 95 | 99 | | | Wheat Grain 91 - 100 bu | 150 | 125 | 95 | 85 | | | | 240 | 114 | 105 | 42 | | | Wheat Heavy Grazing | 60 | 75 | 80 | 28 | | | Wheat Light Grazing | 160 | 97 | 105 | 36 | | | Wheat Moderate Grazing | 180 | 140 | 60 | 46 | | | Millet GC (25% DM) 18 - 24 Ton | 150 | 95 | 45 | 40 | | | Millet Hay/Graze 11000 # | 190 | 139 | 60 | 46 | | | Silage - Millet(35% DM) 15 - 18 Ton | 80 | 74 | 80 | 27 | | | Popcom Shelled 3000 - 4000 # | 100 | 92 | 80 | 33 | | | Popcorn Shelled 4000 - 5000# | | | 80 | 40 | | | Popcom Shelled 5000 - 6000# | 120 | 110 | 105 | 14 | | | Vetch Hay 1 Ton | 70 | | | | | | Vetch Hay 2 Tons | 140 | 120 | 105 | 28 | | | Vetch Green chop(25%DM) 4 Tons | 70 | 56 | 105 | 7 | | | Vetch Green chop(25%DM) 8 Tons | 140 | 112 | 105 | 14 | | | Winter Pea Hay 5000# | 140 | 137 | 105 | 35 | | | Winter Pea Green chop(25%DM)8-9 Tons | 140 | 123 | 105 | 32 | | | Cowpea Hay 2 Tons | 140 | 120 | 105 | 26 | | | Cowpea GreenChop 8Tons(25%DM) Tons | 140 | 120 | 105 | 26 | | # SITE SPECIFIC INFORMATION FOR LAND MANAGEMENT UNITS (LMUs) FROM NUTRIENT MANAGEMENT PLAN **Table 2: Current Site Specific Information from NMP** | LMU | Acreage | Crop(s) and Yield Goal(s) | *Nitrogen | *Phosphorus as | Nitrogen | Phosphorus as | |---------|---------|---------------------------|----------------|----------------|----------------|---------------------------------------| | Name | | | Recommendation | P_2O_5 | Maximum | P ₂ O ₅ Maximum | | | | | (lbs/ac)(*1) | Recommendatio | Application | Application | | | | | | n (lbs/ac)(*1) | Rates | Rates (lbs/ac)* | | | | | | | (lbs/ac)* (*1) | (*1) | | LMU #1 | 103 | Silage-Corn: 21-25 Tons | 417 | 256 | 417 | 256 | | | | Small Grain Mod Graze | | | | | | LMU #2 | 83 | Silage-Corn: 21-25 Tons | 503 | 308 | 503 | 308 | | | | Small Grain Mod Graze | | | | | | LMU #3 | 78 | Silage-Corn: 21-25 Tons | 503 | 308 | 503 | 308 | | | | Small Grain Mod Graze | | | | | | LMU #4 | 60 | Silage-Corn: 21-25 Tons | 503 | 308 | 503 | 308 | | | | Small Grain Mod Graze | | | | | | LMU #5 | 210 | Coastal Graze: 1 AU/1 | 399 | 236 | 399 | 236 | | | | Acre | | | | | | | | Small Grain Mod Graze | | | | | | LMU #6 | 65 | Silage-Corn: 21-25 Tons | 503 | 308 | 503 | 308 | | | | Small Grain Mod Graze | | | | | | LMU #7 | 30 | Coastal Graze: 1 AU/ 1 | 400 | 245 | 400 | 245 | | | | Acre | | | | | | | | Small Grain Mod Graze | | | | | | LMU #8 | 87 | Silage-Corn: 21-25 Tons | 503 | 308 | 503 | 308 | | | | Small Grain Mod Graze | | | | | | LMU #9 | 20 | Silage-Corn: 21-25 Tons | 417 | 256 | 417 | 256 | | | | Small Grain Mod Graze | | | | | | LMU #10 | 15 | Silage-Corn: 21-25 Tons | 417 | 256 | 417 | 256 | | | | Small Grain Mod Graze | | | | | | LMU #11 | 56 | Silage-Corn: 21-25 Tons | 503 | 308 | 503 | 308 | | | | Small Grain Mod Graze | | | | | | LMU #12 | 91 | Silage-Corn: 21-25 Tons | 216 | 132 | 216 | 132 | Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC TPDES Permit No. WQ0002950000 | LMU
Name | Acreage | Crop(s) and Yield Goal(s) | *Nitrogen
Recommendation
(lbs/ac)(*1) | *Phosphorus as P ₂ O ₅ Recommendatio n (lbs/ac)(*1) | Nitrogen
Maximum
Application
Rates
(lbs/ac)* (*1) | Phosphorus as P ₂ O ₅ Maximum Application Rates (lbs/ac)* (*1) | |-------------|---------|--|---|---|---|--| | | | Small Grain Mod Graze | | | | | | LMU #13 | 53 | Silage-Corn: 21-25 Tons
Small Grain Mod Graze | 503 | 308 | 503 | 308 | | LMU #14 | 52 | Silage-Corn: 21-25 Tons
Small Grain Mod Graze | 503 | 308 | 503 | 308 | #### NOTE ^{*}Nutrients Applied When Application is At Maximum Rates from NMP 590-633 Plan V 5.0 with the Print Date 01/27/2023. Any future revision to the NMP will be based on the current version of the 590-633 CNMP Component (NMP/NUP) Worksheet. Maximum rates are based on wastewater and manure analyses dated 07/23/2021 and soil analysis reports dated 09/15/2021, 09/16/2021, and 03/04/2022 by the Soil, Water and Forage Testing Laboratory, AgriLife Extension, College Station, Texas. The Maximum Rates (lb/ac) for nitrogen (N) and phosphorus (P_2O_5) will be updated based on most recent annual analyses of soil and waste. ^(*1) Nutrient recommendations and maximum amount of nutrients derived from all sources have been established for both nitrogen and phosphorus based on the NMP submitted with the application. The permittee is required to recalculate these values annually in accordance with the requirements of this permit. These annual recalculations do not constitute a substantial change and therefore do not require an amendment of this permit. ### **Fact Sheet and Executive Director's Preliminary Decision** ## I. Description of Application Applicant: Circle 7 Dairy, LLC & Grand Canyon Dairy, LLC Permit No.: WQ0002950000 Regulated Activity: Concentrated Animal Feeding Operation; dairy cattle Permit Action: Major Amendment Authorization: Air & Water Quality Authorization ## II. Executive Director's Recommendation The Executive Director has made a preliminary decision that this permit, if issued, meets all statutory and regulatory requirements. For New, Major Amend & Renewal: The proposed permit shall be issued for a 5-year term in accordance with 30 TAC Chapter 305. ### III. Reason for Proposed Project The applicant has applied to the Texas Commission on Environmental Quality (TCEQ) for a major amendment of Texas Pollutant Discharge Elimination System Permit No. WQ0002950000 to authorize the permittee to modify an existing dairy cattle Concentrated Animal Feeding Operation (CAFO) by constructing the proposed changes to the site that were approved in the permit that was issued on August 17, 2023 in phases, including the addition of freestall barns and an anaerobic digester to the waste management system, and the headcount change from 2,150 head to 4,000 head, all of which are milking cows. Two phases are proposed: Phase 1: Confine a total of 2,500 head, all of which will be milking cows; reconfigure existing land management units (LMUs) as follows: create LMU #1A – 41 acres from current LMU #1 – 103 acres, decrease LMU #1 to 62 acres, create LMU #2A – 21 from current LMU #2 – 83 acres and decrease LMU #2 to 62 acres, create LMU #3A – 21 acres from current LMU #3 – 78 acres and decrease LMU #3 to 56 acres; decrease LMU #6 from 65 to 62 acres, reconfigure LMU #12 and LMU #14 to create LMU #12A – 30 acres from current LMU #12 - 91 acres, decrease LMU #12 to 66 acres; and decrease LMU #14 from 52 to 47 acres, which will decrease the total land application area from 1,038 to 1,034 acres; and update the facility maps to reflect current conditions (which includes to remove the proposed structures such as the digester, freestall barns; and show the reconfigured LMUs boundaries). Phase 2: Increase the maximum capacity to the currently authorized 4,000 head, all of which are milking cows; add the authorized digester and associated equipment, and the freestall barns. ## IV. Facility Description and Location Maximum Capacity: 4,000 total head, of which 4,000 head are milking Land Management Units (LMUs) (Acres): LMU #1 – 62, LMU #1A - 41, LMU #2 – 62, LMU #2A – 21, LMU #3 – 56, LMU #3A – 21, LMU #4 – 60, LMU #5 – 210, LMU #6 – 62, LMU #7 – 30, LMU #8 – 87, LMU #9 – 20, LMU #10 –
50, LMU #11 – 56, LMU #12 – 66, LMU #12A – 30, LMU #13 – 53, LMU #14 - 47 Location: The facility is located at 2179 County Road 308, Dublin in Erath County, Texas. Latitude: 32.023333° N and Longitude: 98.270833° W. Drainage Basin: The facility is located in the drainage area of the North Bosque River in Segment No. 1226 of the Brazos River Basin. The facility consists of three (3) Retention Control Structures (RCSs) and three (3) Settling Basins. The tables below indicate the volume allocations for the RCSs: RCS #1 and #2 act in-series. Table 1: Volume Allocations for RCSs (Acre-Feet) - Phase 1 | RCS Name | Design
Rainfall
Event
Runoff | Process
Generated
Wastewater | Minimum
Treatment
Volume | Sludge
Accumulation | Water
Balance | Required
Capacity
Without
Freeboard | Actual
Capacity
Without
Freeboard | |----------|---------------------------------------|------------------------------------|--------------------------------|------------------------|------------------|--|--| | RCS #1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.04 | | RCS #2 | 34.59 | 3.45 | 11.51 | 2.30 | 0.0 | 51.84 | 64.87 | | RCS #3 | 5.89 | 0.0 | 0.0 | 0.02 | 10.84 | 16.74 | 25.95 | Table 2: Volume Allocations for RCSs (Acre-Feet) – Phase 2 – Digester Operational or on Bypass | RCS
Name | Design
Rainfall
Event
Runoff | Process
Generated
Wastewater | Minimum
Treatment
Volume | Sludge
Accumulation | Water
Balance | Required
Capacity
Without
Freeboard | Actual
Capacity
Without
Freeboard | |-------------|---------------------------------------|------------------------------------|--------------------------------|------------------------|------------------|--|--| | RCS #1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.04 | | RCS #2 | 27.80 | 10.0 | 15.28 | 5.72 | 0.0 | 58.81 | 64.87 | | RCS #2* | 27.80 | 5.52 | 18.41 | 3.22 | 0.0 | 54.96 | 64.87 | | RCS #3 | 5.89 | 0.0 | 0.0 | 0.02 | 16.83 | 22.73 | 25.95 | | RCS #3* | 5.89 | 0.0 | 0.0 | 0.02 | 12.20 | 18.10 | 25.95 | ^{*}Volumes to be maintained in RCSs #2 and #3 when the Digester is on Bypass. - A. The volume allocations are determined using Natural Resource Conservation Service standards, American Society of Agricultural and Biological Engineers standards, and/or site-specific data submitted in the permit application. - B. The Design Rainfall Event is the volume of runoff from the 25 year, 10 day storm event. The RCS is required to include adequate capacity to contain this amount of runoff as a margin of safety to protect against discharges during rainfall events that may exceed the average monthly values used to design the RCS, but do not constitute chronic or catastrophic rainfall. This volume allocation accommodates runoff from open lot surfaces, all areas between the open lots and the RCS, runoff from roofed areas that contribute to the RCS and direct rainfall on the surface of the RCS. Runoff curve numbers used to calculate the runoff volume from the open lot surfaces are reflective of the characteristics of open lot surfaces and range between 90 and 95. Runoff curve numbers used to compute the runoff from areas between the open lots and the RCS are reflective of the land use and condition of the areas between the open lots and RCS. A curve number of 100 is used for the RCS surface and all roofed areas. - C. Process Generated Wastewater is the volume of wet manure and wastewater generated by the facility that is flushed or otherwise directed to the RCS. Wastewater includes all water used directly or indirectly by the facility that comes in contact with manure or other waste. The RCS must contain the process generated wastewater from a 21 day period or greater. RCS #2 is designed to contain 30 days of process generated wastewater for this permit. - D. Treatment volume is required to minimize odors for facilities requesting air authorization under the Air Standard Permit in 30 TAC Section 321.43. Treatment volume is based on the amount of volatile solids produced and the volatile solids loading rate. Volatile solids are solid material in waste that can be decomposed through biological, physical, and chemical activity. The rate of solids decomposition is based on temperature; therefore it varies by geographic location. The volatile solids loading rate for this facility is 5.3 pounds per day of volatile solids per 1000 ft³ of treatment volume. - E. Sludge accumulation volumes are required in the RCS that receives runoff from open lots, flushwater from freestall barns and flushwater from the milking parlor. The sludge accumulation volume for flushwater entering the RCS is based on a rate of 0.0729 cubic feet of storage capacity per pound of total solids in the wet manure entering the RCS during the design sludge accumulation period. The sludge accumulation volume allocated for runoff from open lots is calculated using USDA Agricultural Field Waste Handbook, Kansas, Part 651.1083, which uses the following equation: (%SC) × (MAR) × (DA) × (SP), where %SC = percent solids content of runoff, MAR = mean annual runoff (in inches), DA = contributing drainage area (in acres), and SP = sediment storage period (in years). A minimum of one year of sludge storage is required in the RCS. Design sludge volumes in this permit reflect a one (1) year sludge accumulation period. - The RCS volume designated as Water Balance is the capacity needed in addition to the F. Process Generated Wastewater volume to provide adequate operating capacity so that the operating volume does not encroach into the design storm volume. The water balance is an analysis of the inflow into the RCS, all outflows from the RCS and the consumptive use requirements of the crops on the land areas being irrigated. The water balance is developed on a monthly basis. It estimates all inflows into the RCS including process generated wastewater and runoff from open lots, areas between open lots and the RCS, roofed areas and direct rainfall onto the RCS surface. Consumptive use potential for the areas to be irrigated is developed based on the potential evapotranspiration of the crops and the effective average monthly rainfall on the area to be irrigated. Runoff curve numbers used for the water balance are adjusted from one (1) day to 30 day curve numbers to more accurately reflect monthly values. Evaporation from the RCS surface is computed on a monthly basis. Monthly withdrawals from the RCS are developed based on the total inflow to the RCS minus evaporation from the RCS surface and limited by the monthly crop consumptive use potential. - G. Anaerobic Digester. The other components of the waste management system are a covered anaerobic digester system, and a methane generating system to process the wastewater from the milking parlor only. At the end of the digester process, the resulting liquid (wastewater) and the solids that are separated from the process generated wastewater will be land applied in accordance with the facility's nutrient management plan. The NRCS Practice Standard Code 366 describes the digester is a component of a waste management system in which biological treatment breaks down animal manure and other organic materials in the absence of oxygen. This practice is applicable for one or more of the following purposes: - Manage odors - Reduce the net effect of greenhouse gas emissions - Reduce pathogens - Captures biogas to facilitate energy production - Biogas production and capture are components of a waste management system plan and comprehensive nutrient management plan (CNMP) - Sufficient and suitable organic feedstocks are readily available. The table below shows the summary of impact of anaerobic digestion of dairy cattle manure on odor, greenhouse gas, ammonia, water quality and net farm income. Table 2: Summary of observed impacts of anaerobic digestion on semisolid dairy cattle manure management. | Parameters | Impact | |--------------------------|---| | Odor | Substantial reduction | | Greenhouse gas emissions | Methane – substantial reduction | | _ | (2.32 tons/cow/yr on a carbon dioxide equivalent | | | basis) | | | Carbon dioxide | | | 1.33 tons/cow/yr associated with the reduction in | | | fossil fuel use to generate electricity | | Ammonia emissions | No significant reduction | | Potential Water quality | Oxygen demand – substantial reduction | | impacts | (5.1 lbs/cow/day) | | | Indicator organisms and potentially pathogens – | | | significant reduction | | | (fecal coliforms: >99 % | | | (Fecal streptococcus: > 90% | | | Nutrient enrichment – no reduction | | Economic impact | Significant increase in net farm income | | | (\$101/cow/year after recovery of capital invested in | | | 6.3 years) | Source: John H. Martin, Jr. Ph.D., July 20, 2005. An Evaluation of a Mesophilic, Modified Plug Flow Anaerobic Digester For Dairy Cattle Manure. ## V. Summary of Changes from Existing Authorization - A. The following changes have been made to Section IV on page 1 of the permit: - 1. Added Phase 1 and Phase 2; included the number of heads and RCSs required capacity for each phase; and the reconfigured LMUs and acreage. - 2. Revised the other components of the waste management system to include a mixing pit, anaerobic digester, screw press separator and dissolved air flotation. - B. Amended Section VI.C.1 that relates to the Air Quality Authorization to include the phases and the minimum treatment volume required in RCS #2 for each phase. C. Section X.A that relates to the retention control structure volume allocation has been amended as follows: Added Phase 1 to X.A.1, created tables for each proposed phase, renumbered tables to Table 6A and 6B, added Phase 2, and the compliance schedule for each phase (as shown
below). In addition, the total number of dairy cattle was changed from 2,150 head of which 1,950 head are milking, to 2,500 head of which 2,500 head are milking. #### A. RCS Volumes. 1. **Phase 1**. The permittee shall remove sludge from existing RCS #2 and RCS #3 to meet the total required capacity as listed on page 1 of this permit. This sludge removal shall be completed within 180 days from the issuance date of this permit and prior to exceeding 2,500 head, of which 2,500 head are milking. Upon written request to the TCEQ Regional Office, the Executive Director may grant an extension to the 180 day requirement. Once sludge removal from RCSs is completed, the RCS management plan shall be developed and implemented within thirty (30) days. The permittee shall maintain the wastewater volumes in each RCS in accordance with Table 6A. **Table 6A: Volume Allocations for RCSs (Acre-Feet)** | RCS
Name | Design
Rainfall
Event
Runoff | Process
Generated
Wastewater | Minimum
Treatment
Volume | Sludge
Accumul
ation | Water
Balance | Required
Capacity
Without
Freeboard | Actual
Capacity
Without
Freeboard | |-------------|---------------------------------------|------------------------------------|--------------------------------|----------------------------|------------------|--|--| | RCS #1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.04 | | RCS #2 | 34.59 | 3.45 | 11.51 | 2.30 | 0.0 | 51.84 | 64.87 | | RCS #3 | 5.89 | 0.0 | 0.0 | 0.02 | 10.84 | 16.74 | 25.95 | 2. **Phase 2**. The permittee shall construct the freestall barns, the other components of the waste management system, which includes a mixing pit, anaerobic digester, screw press separator and dissolved air flotation. Modifications shall comply with Section VII.A.3 of this permit. The permittee shall maintain the wastewater volumes in each RCS in accordance with Table 6B. Table 6B: Volume Allocations for RCSs (Acre-Feet) – Digester Installed & Operational or on Rypass | RCS
Name | Design
Rainfall
Event
Runoff | Process
Generated
Wastewater | Minimum
Treatment
Volume | Sludge
Accumul
ation | Water
Balance | Required
Capacity
Without
Freeboard | Actual
Capacity
Without
Freeboard | |-------------|---------------------------------------|------------------------------------|--------------------------------|----------------------------|------------------|--|--| | RCS #1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.04 | | RCS #2 | 27.80 | 10.0 | 15.28 | 5.72 | 0.0 | 58.81 | 64.87 | | RCS #2* | 27.80 | 5.52 | 18.41 | 3.22 | 0.0 | 54.96 | 64.87 | | RCS #3 | 5.89 | 0.0 | 0.0 | 0.02 | 16.83 | 22.73 | 25.95 | | RCS #3* | 5.89 | 0.0 | 0.0 | 0.02 | 12.20 | 18.10 | 25.95 | ^{*}Volumes to be maintained in RCSs #2 and #3 when the Digester is on Bypass. - 3. **Compliance Schedule Phase 1**. Within 180 days of permit issuance, the Permittee shall decrease the total dairy cattle from 4,000 to 2,500 head, of which 2,500 head are milking cows, maintain the RCS drainage area as shown on Attachment A Phase 1, the volume allocations on Table 6A to the permit Phase 1, and update the Nutrient Management Plan for this phase. - 4. **Compliance Schedule Phase 2**. Once construction of the freestall barns, and the other components of the waste management system are complete (as shown in Attachment A Phase 2, to the permit, the Permittee shall notify the TCEQ Region 4- Stephenville Office within 7 business days. The Permittee will increase the number of total dairy cattle from 2,500 head to 4,000 head, all of which will be milking cows, and update the NMP for this phase upon TCEQ Regional office approval. (see note *** to Table 2 of Attachment F to the permit). This permit prohibits any headcount increase at this phase until the TCEQ Stephenville Office has certified that the modifications for the phase have been completed, and the facility can function as indicated on Attachment A- Phase 2). - 5. In Phase 2, all drainage area modifications required by this permit shall be completed within 180 days after the completion of Phase 1. Upon written request to the TCEQ Regional Office, the Executive Director may grant an extension to the 180 day requirement. - D. Added the new LMUs #1A, #2A, #3A and #12A that were created from the current LMUs to Table 7, and Table 2 to Attachment F to the permit. - E. Corrected the acreage of LMU #10 from 15 to 50 acres on Table 2 to Attachment F to the permit. - F. Added Attachments A runoff control map; and Attachment B -land management units for Phases 1 and 2. ## VI. Proposed Permit Conditions and Monitoring Requirements #### A. Effluent Limitations Compost, manure, sludge, slurry and wastewater may only be discharged from a LMU or a properly designed, constructed, operated and maintained RCS into water in the state from this CAFO if any of the following conditions are met: - discharge resulting from a catastrophic condition other than a rainfall event that the permittee cannot reasonably prevent or control; - a discharge resulting from a catastrophic rainfall event from a RCS; - a discharge resulting from a chronic rainfall event from a RCS; or - a discharge resulting from a chronic rainfall event from a LMU that occurs because the permittee takes measures to de-water the RCS in accordance with the individual permit, relating to imminent overflow. 40 CFR §122.44 specifies that any requirements, in addition to or more stringent than promulgated effluent limitation guidelines, must be applied when they are necessary to achieve state water quality standards. Water quality based effluent limitations must be established when the TCEQ determines there is a reasonable potential to cause or to contribute to an in-stream excursion above the allowable ambient concentration of a state numeric criterion. For CAFO discharges the TCEQ must consider: - 1. existing controls on point and non-point sources of pollution; - 2. variability of the pollutant in the effluent; and 3. dilution of the effluent in the receiving water. In proposing this permit, the TCEQ addresses considerations 2 and 3 since continuous discharges are prohibited and effluent discharges are authorized only during catastrophic conditions or a chronic or catastrophic rainfall event from a RCS properly designed, constructed, operated and maintained. The effluent pollutant levels are variable and effluent is usually not discharged. Additionally, during these climatic events, water bodies receiving a contribution of CAFO wastewater should be significantly diluted by other rainfall runoff. Consideration 1 requires permit controls on CAFO discharges which will result in the numeric criteria of the water quality standards being met, thus ensuring that applicable uses of water in the state are attained. The principal pollutants of concern include organic matter causing biochemical oxygen demand, the discharge of ammonia-nitrogen, phosphorus and *Escherichia coli*. This permit requires discharges to be monitored for the pollutants of concern. Existing technology does not allow for practicable or economically achievable numeric effluent limitations at this time. The Environmental Protection Agency (EPA) has not promulgated effluent guidelines or numeric effluent limitations that would allow regular discharges of CAFO process wastewater or process-generated wastewater. The proposed permit addresses potential pollutant impacts through requirements including numerous narrative (non-numeric) controls on CAFO process wastewater and non-point sources of pollutant discharges associated with CAFOs. Setting specific water quality-based effluent limitations in this permit is not feasible (see 40 CFR §122.44 (k)(3)). The general and site-specific provisions which are expected to result in compliance with water quality criteria and protection of attainable water quality are discussed in the following sections of this fact sheet: RCS Design and Operational Requirements; Requirements for Beneficial Use of Manure, Sludge, and Wastewater; Additional Water Quality Requirements; and Monitoring and Reporting Requirements. ## **B.** RCS Design and Operational Requirements The draft permit includes the following requirements related to proper RCS design, construction, operation and maintenance: - 1. The RCS(s) must be designed and constructed to meet or exceed the margin of safety, equivalent to the volume of runoff and direct precipitation from the 25 year/10 day rainfall event. The design rainfall event, at which time the CAFO is authorized to discharge, is 12.0 inches. The application includes design calculations and certification by a Professional Engineer, which determine the design criteria for the RCS(s). - 2. A RCS management plan is required to be implemented. This plan must establish expected end of the month water storage volumes for each RCS. These maximum levels are based on the design assumptions used to determine the required size of the RCS. This plan assures the permittee will maintain wastewater volumes within the designed operating capacity of the structures, except during chronic or catastrophic rainfall events. The permittee must document and provide an explanation for all occasions where the water level exceeds the expected end of the month storage volumes. By maintaining the wastewater level at or below the expected monthly - volume, the RCS will be less likely to encroach into the volume reserved for the design rainfall event and/or discharge during smaller rainfall events. - 3. The pond marker must have one-foot increments. This requirement identifies the level of wastewater storage to assist the permittee in the implementation of the RCS management plan. It also acts as an enforcement tool for TCEQ to determine compliance with the RCS management plan.
- 4. The wastewater level in the RCS(s) must be recorded daily. This requirement will assist the permittee in the implementation of the RCS management plan and will provide a visual indication of compliance. - 5. The amount of sludge in the RCS(s) must be maintained at or below the designed sludge volume. Proper sludge management will reduce overflows associated with insufficient wastewater storage capacity. This permit requires that sludge accumulations in the RCS(s) be measured at least annually. - 6. The RCS(s) must be adequately lined and certified by a Texas Professional Engineer; alternatively, certification must document that in situ material meets the requirements of constructed and installed liners. Groundwater has the potential to resurface as surface water. Therefore, preventing impacts to groundwater also provides protection to surface water. A liner certification, certified by a Professional Engineer, for the existing RCSs was submitted with the application. Table 3: Existing RCS Liner Certifications | RCS Name | Liner Certification Date | |-------------------|--------------------------| | RCS #1 | July 3, 1989 | | RCS #2 | August 27, 2010 | | RCS #3 | March 16, 1990 | | Settling Basin #1 | July 3, 1989 | | Settling Basin #2 | July 3, 1989 | | Settling Basin #3 | February 8, 1989 | - 7. The RCS(s) must maintain two vertical feet of material equivalent to construction materials between the top of the embankment and the structure's spillway to protect from overtopping the structure. RCS(s) without spillways must have a minimum of two vertical feet between the top of the embankment and the required storage capacity. - 8. The entry of uncontaminated stormwater runoff into RCS(s) must be minimized. The site includes diversion structures to direct contaminated runoff into the RCS(s) and to prevent uncontaminated stormwater runoff from entering the RCS(s). ## C. Requirements for Beneficial Use of Manure, Sludge, and Wastewater Nutrient pollutants of concern have narrative criteria and are discharged in CAFO wastewater. Nutrient pollutants have been addressed through imposition of BMPs. No water quality impacts are expected to occur from land application based upon properly prepared and implemented nutrient management practices. The proposed permit contains requirements related to the collection, handling, storage and beneficial use of manure, wastewater, and sludge. These requirements were established based on TCEQ rules, EPA guidance, NRCS Field Operations Technical Guidance and the Animal Waste Management Field Handbook, recommendations from the TCEQ's Water Quality Assessment Team, and best professional judgment. The elements of a NMP as listed in 40 CFR §122.42(e)(1) have been incorporated into this permit. This permit requires a NMP developed by a certified nutrient management specialist, based on United States Department of Agriculture/Natural Resource Conservation Service (NRCS) Practice Standard 590 and each of the required elements to be implemented upon issuance of this permit. In relation to these items, the proposed permit meets federal requirements. - 1. For LMUs with a soil phosphorus concentration of less than 200 ppm in Zone 1 depth (0-6 inches if incorporated, 0-2 or 2-6 inch if not incorporated), land application of commercial fertilizer, compost, manure, sludge, slurry and wastewater must be in accordance with a certified NMP. This plan is based on the NRCS Practice Standard Code 590. This plan involves a site-specific evaluation of the LMU to include soils, crops, nutrient need and includes the phosphorus index tool. The phosphorus index is a site-specific evaluation of the risk potential for phosphorus movement into watercourses. The risk potential is determined by site characteristics such as soil phosphorus level, proposed phosphorus application rate, application method and timing, proximity of the nearest field edge to a named stream or lake, runoff class, and soil erosion potential. The application rates are adjusted according to the risk potential. The higher the risk potential, the lower the application rate; thus there is minimal potential to have excess nutrients available to leave the site and affect water quality. - 2. For LMUs with a soil phosphorus concentration of 200-500 ppm in Zone 1 depth (0-6 inches if incorporated, 0-2 or 2-6 inch if not incorporated), land application of commercial fertilizer, compost, manure, sludge, slurry and wastewater must be in accordance with a nutrient utilization plan (NUP). The NUP is a revised NMP based on crop removal. A crop removal application rate is the amount of nutrients contained in and removed by the proposed crop. At the discretion of the certified nutrient management specialist, the NUP may also include a phosphorus reduction component. This NUP must be submitted to the TCEQ for review and approval. - 3. For LMUs with a soil phosphorus concentration of greater than 500 ppm in Zone 1 depth (0-6 inches if incorporated, 0-2 or 2-6 inch if not incorporated), land application of commercial fertilizer, compost, manure, sludge, slurry and wastewater must be in accordance with a NUP based on crop removal which also includes a phosphorus reduction component. A phosphorus reduction component is a management practice, incorporated into the NUP, which is designed to further reduce the soil phosphorus concentration by means such as phosphorus mining, moldboard plowing, or other practices utilized by the permittee. This revised NUP must also be submitted to the TCEQ for review and approval. Permittees required to operate under a NUP with a phosphorus reduction component must show a reduction in the soil phosphorus concentration within twelve (12) months or may be subject to enforcement actions. - 4. Table 4 below identifies the maximum application rate, as shown in the NMP submitted in the permit application. NMPs are routinely updated and the values shown below are subject to change. Table 4: LMU Maximum Application Rates and Soil Phosphorus Levels | LMU Name | Soil Test P (ppm) | Max Annual P ₂ O ₅ (lbs/ac) | |----------|-------------------|---| | LMU #1 | 194 | 277 | | LMU #1A | 194 | 208 | | LMU #2 | 140 | 410 | | LMU #2A | 140 | 208 | | LMU #3 | 224 | 132 | | LMU #3A | 224 | 104 | | LMU #4 | 57 | 308 | | LMU #5 | 141 | 307 | | LMU #6 | 146 | 270 | | LMU #7 | 88 | 270 | | LMU #8 | 93 | 318 | | LMU #9 | 95 | 318 | | LMU #10 | 121 | 270 | | LMU #11 | 27 | 270 | | LMU #12 | 207 | 104 | | LMU #12A | 207 | 156 | | LMU #13 | 79 | 270 | | LMU #14 | 26 | 270 | - 5. All generated manure, sludge or wastewater in excess of the amount allowed to be land applied by the NMP or NUP must be delivered to a composting facility authorized by the Executive Director, delivered to a permitted landfill, beneficially used by land application on land located outside of the major sole source impairment zone, or provided to operators of third-party fields for beneficial use subject to specified land application requirements and testing. By requiring specific outlets for excess manure, sludge and wastewater, the permit limits unregulated use of manure, sludge and wastewater within the watershed. - 6. The permittee must continue to operate under a Comprehensive NMP (CNMP) certified by the Texas State Soil and Water Conservation Board (TSSWCB). The CNMP must be developed by a qualified individual(s) in accordance with TSSWCB regulations. The CNMP is a whole farm plan that addresses nutrient management from the origin in the feed rations to final disposition. The CNMP considers all nutrient inputs, onsite use and treatment, outputs, and losses. Inputs include animal feed, purchased animals, and commercial fertilizer. Outputs include animals sold, harvested crops removed from the facility, and manure removed from the facility. Losses include volatilization, stormwater runoff, and leaching. - 7. The permittee must implement additional conservation practices on LMUs adjacent to water in the state. These conservation practices include a 100-foot vegetative buffer, filter strips, vegetative barrier, and/or contour buffer strips. Site specific conditions and NRCS practice standards specify which conservation practices, in addition to the required 100-foot vegetative buffer, must be implemented. The conservation practices reduce erosion, suspended solids and nutrients in runoff from LMUs. This will improve the quality of stormwater runoff prior to entering water in the state. 8. In Table 5 below, the Additional Buffer Setback distance was determined by using the NRCS Conservation Practice Code 393, Filter Strip. The practice code uses a combination of hydrologic soil groups and field slope percentages to calculate an appropriate filter strip length. Table 5: Buffer Distances for Each LMU | LMU Name | Vegetative Buffer
Setback (feet) | Additional Buffer Setback NRCS Code
393 Filter Strip Flow Length (feet) | |----------|-------------------------------------|--| | LMU #1 | 100 | 36 | | LMU #1A | 100 | 36 | | LMU #2 | 100 | 36 | | LMU #2A | 100 | 36 | | LMU #3 | 100 | 36 | | LMU #3A | 100 | 36 | | LMU #4 | 100 | 36 | | LMU #5 | 100 | 36 | | LMU #6 | 100 | 36 | | LMU #7 | 100 | 36 | | LMU #8 | 100 | 36 | | LMU #9 | 100 | 36 | | LMU #10 | 100 | 36 | | LMU #11 | 100 | 36 | | LMU #12 | 100 | 36 | | LMU #12A | 100 | 36 | | LMU #13 | 100 | 36 | | LMU #14 | 100 | 36 | - 9. Land application is prohibited between the hours of 12 a.m. and 4 a.m. This provision reduces the potential of irrigation related discharges associated with equipment malfunctions. - 10. Discharge of wastewater from irrigation is prohibited, except a discharge resulting from irrigation events associated with imminent overflow conditions. Precipitation-related runoff from LMUs is allowed by the permit, when land application practices are consistent with a NMP or NUP. - 11. Terms of the
NMP and Changes to the Terms of the NMP The permit addresses the terms of the NMP and changes to the terms of the NMP to clarify substantial and non-substantial changes. - (a) Attachment E of the draft permit describes the methodology for calculating maximum application rates and annual recalculation of application rates and Attachment F of the draft permit shows the list of the proposed alternative crops, their yield goals, and the N and P requirements and removal rates for each crop and yield goal. - (b) To the extent that the alternative crops were identified in the application, annual recalculations do not constitute a substantial change to the terms of the NMP, and therefore will not require a permit amendment. The maximum - amounts of N and P from all sources of nutrients and the amounts of manure and process wastewater to be applied on alternative crops will be determined in accordance with the methodology described in Attachment E of the draft permit when such crops are being used. - (c) Nutrient recommendations and maximum amount of nutrients derived from all sources have been established for both nitrogen (N) and phosphorus (P) based on the NMP that was submitted with the application. The permittee is required to recalculate these values annually based on the most recent analyses of wastewater, manure, and soil. - (d) Section VII.A.8(a)(2) of the permit lists changes to the terms of the NMP that will require a major amendment to the permit. Changes that would result in a major amendment are: - Increase in animal headcount; - Increase in LMU acreage or a change in LMU location; or - Change in crop and yield goal (not listed in Attachment F of the proposed permit). - (e) Any changes (substantial or non-substantial) to the NMP, other than the annual recalculation of application rates outlined in Attachment E, must be submitted to the ED for review. If the ED determines that the changes to the NMP are non-substantial, the revised NMP will be made publicly available and included in the permit record. If the ED determines that the changes to the NMP are substantial, the information provided by the permittee will be subject to the major amendment process. #### 12. Third-Party Fields. The proposed permit authorizes the use of third-party fields, i.e. land not owned, operated, controlled, rented, or leased by the CAFO owner or operator that have been identified in the Pollution Prevention Plan (PPP). The permittee must have a contract with the operator of the third-party fields. The written contract must require all transferred manure, wastewater, and sludge to be beneficially applied to third-party fields in accordance with the applicable requirements in 30 Texas Administrative Code §321.36 and §321.40 at an agronomic rate based on soil test phosphorus in Zone 1 depth (0-6 inches if incorporated, 0-2 or 2-6 inch if not incorporated). A certified nutrient management specialist must annually collect soil samples from each third-party field used and have the samples analyzed in accordance with the requirements for permitted LMUs. The permittee is prohibited from delivering manure, wastewater, and sludge to an operator of a third-party field once the soil test phosphorus analysis shows a level equal to or greater than 200 ppm in Zone 1 depth (0-6 inches if incorporated, 0-2 or 2-6 inch if not incorporated) or after becoming aware that the third-party operator is not following the specified requirements and the contract. The permittee will be subject to enforcement action for violations of the land application requirements on any third-party field. The third-party fields must be identified in the PPP. The permittee must submit a quarterly report with the name, locations, and amounts of manure, wastewater, and sludge transferred to operators of third-party fields. ### VII. Additional Water Quality Requirements The approved recharge feature certification submitted in the permit application must be updated and maintained in the onsite PPP. The recharge feature certification identifies any natural or artificial features on the CAFO site, either on or beneath the ground surface, which could provide or create significant pathways for wastewater or manure to enter the underlying aquifer, and describes measures to prevent adverse impacts to groundwater. Groundwater has the potential to resurface as surface water. Therefore, preventing impacts to groundwater also provides protection to surface water. Table 6 below shows potential soil limitations identified in the recharge feature evaluation and the proposed management practices to address those limitations. **Table 6: Soil Limitations** | Soil Series | Potential Limitations | BMPs | |--|---|---| | and Map ID | | | | Bolar-Denton: BdC Topsey: Lab Hico: HwD3 | Depth to bedrock, Slow
water movement
Depth to Soft Bedrock | Land application will be based on the
Available Water Capacity of the soil and will
not exceed agronomic rates for nutrients (refer
to the nutrient management plan (NMP)) | | Maloterre: Ma | Depth to Bedrock,
Droughty | No land application to inundated soils | | Bunyan: Bu
Frio: FriA | Flooding | Land application will not exceed soil hydraulic rates (refer to NMP) | | Bastsil: BsB, BsC, BtB | Seepage | Maintain clay liners in RCS | | May: MfB
Fairy: FhC2 | | No land application to inundated soils | | Denton: DeB
Slidell: HoB
Fairy: FhC2 | Slow water movement | Land application not to exceed agronomic rates for nutrients and soil hydraulic rates. | | Clairette: CtB | Slow water movement
Depth to Saturated Zone | No land application to inundated soils. | | Windthorst: Wnc | Filtering capacity | | | Purves: PcC, PcB | Droughty, Depth to bedrock, Slow water movement | Land application will be based on the
Available Water Capacity of the soil and will
not exceed agronomic rates for nutrients (refer | | Purves-Dugout:
Pd | Droughty, Depth to bedrock, Slow water movement Large stones on surface | to the nutrient management plan (NMP)) Irrigation events will be managed to assist in maintaining soil moisture levels within the range of the available water holding capacity of the soils in the LMUs. No land application to inundated soils. | Table 7 below lists all wells on the facility, their status, and what BMP will be implemented to protect groundwater. A Well Buffer Exception request for Wells #3, #4, #5, #7, and #9 was submitted to and approved by the TCEQ Water Quality Assessment Team. **Table 7: Water Well Protection** | Well Number | Status | BMPs | | | |--------------|----------------|---|--|--| | 1 | Producing | Maintain 150 ft buffer | | | | 2 | Producing | Maintain 150 ft buffer | | | | 3 | Producing | Maintain surface gradients sloping away from wellhead | | | | 4 | Producing | Maintain surface gradients sloping away from wellhead | | | | 5 Producing | | Maintain surface gradients sloping away from wellhead | | | | 6 | Non-Producing | Plugged | | | | 7 | Producing | Maintain surface gradients sloping away from wellhead | | | | 8 | Non- Producing | Plugged | | | | 9 | Producing | Concrete Surface Slab | | | | 10 | Producing | Maintain 150 ft buffer | | | | 11 | Producing | Maintain 150 ft buffer | | | | 12 | Producing | Maintain 100 ft buffer | | | | 13 | Producing | Maintain 100 ft buffer | | | | 14 | Producing | Maintain 100 ft buffer | | | | 15 | Non- Producing | No evidence of well | | | | 16 | Producing | Maintain 100 ft buffer | | | | 17 | Producing | Maintain 100 ft buffer | | | | 18 | Producing | Maintain 100 ft buffer | | | | 19 Producing | | Maintain 100 ft buffer | | | | 20 | Producing | Maintain 100 ft buffer | | | ### VIII. Monitoring and Reporting Requirements - A. The permittee is required to report all discharges to TCEQ. Discharges resulting from a chronic or catastrophic rainfall event or catastrophic conditions must be reported orally within one hour of the discovery of the discharge and in writing within fourteen (14) working days. For any discharges, grab samples must be collected and analyzed for Biochemical Oxygen Demand, *Escherichia coli*, Total Dissolved Solids, Total Suspended Solids, Nitrate, Total Phosphorus, Ammonia Nitrogen and pesticides (if suspected). - B. The permittee must provide a report to the TCEQ to substantiate a chronic rainfall discharge. After review of the report, if required by the Executive Director, the permittee must have an engineering evaluation by a licensed Texas Professional Engineer developed and submitted to the Executive Director. The report and engineering evaluation may be used to verify that the facility was maintained and operated according to the permit conditions. Information reviewed may include rainfall records at the CAFO, RCS wastewater levels preceding the discharge, irrigation records, and the current sludge volume. This requirement allows for closer scrutiny by TCEQ for discharges resulting from chronic conditions and provides documentation for enforcement of unauthorized discharges. - C. Soil samples must be taken annually from LMUs and analyzed for Nitrate, Phosphorus, Potassium, Sodium, Magnesium, Calcium, Soluble salts/electrical conductivity, and pH. The results are used in the NMP to determine land application rates. Annual soil samples must be collected by one of the following persons: - the NRCS; a certified nutrient management specialist; - the Texas State Soil and Water Conservation Board: - the Texas AgriLife Extension; or - an agronomist or soil scientist on full-time staff at an accredited university located in the State of
Texas. The TCEQ or its designee shall have soil samples collected annually for each current and historical LMUs and the TCEQ Regional Office must be notified ten (10) days prior to annual soil sample collection activities on third-party fields. The permittee is required to submit soil analyses for third-party fields to TCEQ. - D. The permittee is required to annually collect and analyze at least one (1) representative sample of wastewater, sludge (if applicable), or manure for total nitrogen, total phosphorus, and total potassium. The results are used in the NMP to determine land application rates. - E. Some of the land application records maintained by the permittee must be submitted to the TCEQ annually. These records include: date of compost, manure, sludge, slurry and wastewater application to each LMU; location of the specific LMU and the volume applied during each application event; acreage of each individual crop on which compost, manure, sludge, slurry and wastewater is applied; basis for and the total amount of nitrogen and phosphorus applied per acre to each LMU, including sources of nutrients and amount of nutrients on a dry weight basis other than compost, manure, sludge, slurry and wastewater and; weather conditions, such as temperature, precipitation, and cloud cover, during the land application and twenty-four (24) hours before and after the land application. - F. Other recordkeeping requirements include: daily records of RCS wastewater levels and measurable rainfall; weekly records of manure, wastewater, and sludge removed from the facility, inspections of control facilities and land application equipment; and monthly records of compost, manure, sludge, slurry and wastewater land applied. ## IX. 303(D) Listing and Total Maximum Daily Load (TMDL) The facility for this permit action is located within the watershed of the North Bosque River in Segment No. 1226 of the Brazos River Basin. The designated uses and dissolved oxygen criterion as stated in Appendix A of the Texas Surface Water Quality Standards (30 TAC §307.10) for Segment No. 1226 are primary contact recreation, public water supply, high aquatic life use, and 5.0 mg/L dissolved oxygen. Green Creek, in its entirety, is currently listed on the State's inventory of impaired and threatened waters (the 2024 Clean Water Act (CWA) Section 303(d) list) for depressed dissolved oxygen. The North Bosque River (Segments 1226 and 1255) was included in the 1998 Texas Clean Water Act 303(d) List and deemed impaired under narrative water quality standards related to nutrients and aquatic plant growth. Segment No. 1226 is included in the Agency's document Two Total Maximum Daily Loads for Phosphorus in the North Bosque River, adopted by the Commission on February 9, 2001 and approved by EPA on December 13, 2001. An Implementation Plan for Soluble Reactive Phosphorus in the North Bosque River Watershed (I-Plan) was approved by the Commission on December 13, 2002 and approved by the Texas State Soil and Water Conservation Board on January 16, 2003. According to the TMDL I-Plan, management measures for control of phosphorus loading will also have some corollary effect on reducing bacteria loading, since the nonpoint source nutrient and bacteria loads largely originate from the same sites and materials and are transported via the same processes and pathways. Similarly, TCEQ expects that management measures for control of phosphorus loading will also have direct and indirect effects on dissolved oxygen by reducing the load of oxygen demanding materials. The TMDL for the North Bosque River, Segments 1226 and 1255, identified the amount of phosphorus introduced into these segments, i.e. the load. Phosphorus load from two categories of sources was modeled to calculate the expected reductions in phosphorus load to meet instream water quality standards. Point sources included wastewater treatment plants; non-point sources included all other sources, such as CAFOs. The TMDL called for an average 50% reduction in the average concentration of soluble reactive phosphorus loadings from both point sources and non-point sources. The TMDL was developed assuming implementation of specific best management practices. This set of best management practices represents one way to achieve the water quality targets in stream and the overall reduction goal of the TMDL. The TMDL was approved with the understanding that an adaptive management approach was an appropriate means to manage phosphorus load to the stream. The I-Plan emphasized this approach to achieve the phosphorus reductions targeted in the TMDL. Adaptive management envisions adjustment of management practices over time as necessary to reach this target. The TMDL anticipated that, to control loading to the stream, dairy CAFO permittees would implement those best management practices which best addressed site-specific conditions. Accordingly, the TMDL is not directly tied to the number of animal units permitted in the watershed; it is instead tied to the amount of nutrients that may be land applied consistent with management practices that ensure appropriate agricultural utilization of nutrients. Primary management strategies for dairies, both voluntary and regulatory, were identified in the I-Plan which included: phosphorus-based application rates in LMUs, voluntarily measures to reduce the amount of phosphorus in dairy cow diets, voluntarily removing 50% of dairy-generated manure from the watershed, more stringent RCS design requirements to reduce the potential for overflows from RCSs, evaluation of chronic rainfall and incidences of RCS overflows, additional tailwater requirements, additional protective measures to prevent runoff caused by excessive irrigation, CNMPs, and educational requirements for dairy operators and employees. The proposed permit includes the following requirements to address the recommendations in the I-Plan: - RCS(s) designed and constructed for 25 year, 10 day rainfall event - RCS management plan - pond marker with one foot increments - daily recordkeeping of wastewater levels - chronic rainfall discharge notification, including records that substantiate that the overflow was a result of cumulative rainfall that exceeded the design rainfall event without the opportunity for dewatering - NMP and NUP based on phosphorus risk index - CNMP - specific outlets for excess manure, sludge and wastewater - additional record-keeping for exported manure, sludge and wastewater to track each permittee's contribution toward the 50% voluntary removal goal in the Bosque River Total Maximum Daily Load (TMDL) - prohibition of discharges from LMUs, except as related to imminent overflow - minimize ponding and puddling of wastewater and prevent tailwater discharges - additional conservation practices between land application areas and water in the state - prohibition of land application between 12 a.m. and 4 a.m. - automatic shutdown or alarm system may be required if unauthorized discharge occurs from irrigation system - employee and operator required training related to land application of manure, sludge, and wastewater, proper operation and maintenance of the facility, good housekeeping, material management practices, recordkeeping requirements, and spill response and clean up The voluntary phosphorus diet reductions may be implemented through consultations between a nutritionist and the permittee. Any such dietary phosphorus reductions will result in reduced phosphorus concentrations in manure. These strategies are facets of CNMPs. The RCS storage capacity requirements, nutrient management practices, increased TCEQ oversight of operational activities, and requirements of the I-Plan, which are incorporated into the draft permit, are designed to reduce the potential for this CAFO to contribute to further impairment from bacteria, oxygen-demanding constituents and nutrients such as total phosphorus. Furthermore, it is anticipated the implementation of the primary management strategies and permit provisions identified above will result in phosphorus load reduction in the watershed and achieve the reductions targeted in the TMDL. The draft permit provisions are consistent with the approved TMDL and I-Plan that establish measures for reductions in loading of phosphorus (and consequently other potential pollutants) to the North Bosque River Watershed. Therefore, the draft permit is consistent with the requirements of the antidegradation implementation procedures in 30 Texas Administrative Code Section 307.5 (c)(2)(G) of the Texas Surface Water Quality Standards. ## X. Threatened or Endangered Species The discharge from this permit action is not expected to have an effect on any federal endangered or threatened aquatic or aquatic dependent species or proposed species or their critical habitat. This determination is based on the United States Fish and Wildlife Service's (USFWS) Biological Opinion on the State of Texas authorization of the Texas Pollutant Discharge Elimination System (TPDES) dated September 14, 1998 and the October 21, 1998 update. To make this determination for TPDES permits, TCEQ and Environmental Protection Agency only considered aquatic or aquatic dependent species occurring in watersheds of critical concern or high priority as listed in Appendix A of the USFWS Biological Opinion. This determination is subject to reevaluation due to subsequent updates or amendments to the Biological Opinion. The permit does not require Environmental Protection Agency review with respect to the presence of endangered or threatened species. ### XI. Procedures for Final Decision When an application is declared administratively complete, the Chief Clerk sends a letter to the applicant instructing the applicant to publish the Notice of Receipt of Application and Intent to Obtain Permit in the newspaper. In addition, the Chief Clerk instructs the applicant to place a copy of the application in a public place for review
and copying in the county where the facility is or will be located. This application will be in a public place throughout the comment period. The Chief Clerk also mails this notice to any interested persons and, if required, to landowners identified in the permit application. This notice informs the public about the application, and provides that an interested person may file comments on the application or request a contested case hearing or a public meeting. Once a draft permit is completed, it is sent, along with the Fact Sheet and Executive Director's Preliminary Decision, to the Office of the Chief Clerk. At that time, Notice of Application and Preliminary Decision will be mailed to the individuals identified on the Office of the Chief Clerk mailing list and published in the newspaper. This notice sets a deadline for making public comments. The applicant must place a copy of the Executive Director's Preliminary Decision and draft permit in the public place with the application. Any interested person may request a public meeting on the application. A public meeting is intended for the taking of public comment, and is not a contested case proceeding. After the public comment deadline, the Executive Director prepares a response to all timely, relevant and material, or significant public comments significant on the application or the draft permit raised during the public comment period. The Office of the Chief Clerk then mails the Executive Director's Response to Comments and Final Decision to individuals who have filed comments, requested a contested case hearing, or requested to be on the mailing list. This notice provides that a person may request a contested case hearing or file a request for reconsideration of the Executive Director's decision within thirty (30) days after the notice is mailed. The Executive Director will issue the permit unless a written hearing request or request for reconsideration is filed within thirty (30) days after the Executive Director's Response to Comments and Final Decision is mailed. If a hearing request or request for reconsideration is filed, the Executive Director will not issue the permit and will forward the application and request to the TCEQ's Commissioners for their consideration at a scheduled Commission meeting. If a contested case hearing is held, it will be a legal proceeding similar to a civil trial in state district court. If the Executive Director calls a public meeting or the Commission grants a contested case hearing as described above, the Commission will give notice of the date, time, and place of the meeting or hearing. If a hearing request or request for reconsideration is made, the Commission will consider all public comments in making its decision and shall either adopt the Executive Director's response to public comments or prepare its own response. For additional information about this application, contact Joy Alabi at (512) 239-1318. ### XII. Administrative Record The following items were considered in developing the proposed draft permit: - TCEQ Permit No. WQ0002950000 issued August 17, 2023. - The application received on May 12, 2025 and subsequent revisions. - Interoffice Memorandum for groundwater review from the Water Quality Assessment Team, Water Quality Assessment Section, Water Quality Division dated June 6, 2025. - Interoffice Memorandum for NMP review from the Water Quality Assessment Team, Water Quality Assessment Section, Water Quality Division, dated June 18, 2025. - Interoffice Memorandum from the Standards Implementation Team, Water Quality Assessment Section, Water Quality Division, dated June 12, 2025. - Bosque River TMDL Implementation Plan. - Federal Clean Water Act Section 402; Section 382.051 of the; Texas Water Code §26.027; 30 TAC §39, §305, §321 Subchapter B; Commission Policies; and EPA Guidelines. - Texas 2024 Clean Water Act Section 303(d) List, Texas Commission on Environmental Quality, June 26, 2024; approved by EPA on November 13, 2024. - NRCS Animal Waste Management Field Handbook and Field Office Technical Guidance for Texas. - NRCS, ASABE and ASTM Standards. - John Borrelli, Clifford B. Fedler & James M. Gregory, February 1, 1998. Mean Crop Consumptive Use and Free-Water Evaporation for Texas. - U.S. Department of Agriculture, Natural Resources Conservation Service, 25-Year, 10 Day precipitation (inches), Arkansas, Louisiana, New Mexico, Oklahoma and Texas. USDA, Technical Paper No 49, Weather Bureau. - American Society of Agricultural and Biological Engineers (ASABE) Standards: - ➤ ASABE D384.2 MAR05 R2010) Manure Production and Characteristics - ASABE EP403 4 FEB2011- Figure 2 (Loading Rate) and Table 1 (Sludge accumulation Rate)