

This file contains the following documents:

- 1. Summary of application (in plain language)
 - English
 - Alternative Language (Spanish)
- 2. First Notice (NORI-Notice of Receipt of Application and Intent to Obtain a Permit)
 - English
 - Alternative Language (Spanish)
- 3. Application materials

Este archivo contiene los siguientes documentos:

- 1. Resumen en lenguaje sencillo (PLS, por sus siglas en inglés) de la actividad propuesta
 - Inglés
 - Idioma alternativo (español)
- 2. Primer aviso (NORI, por sus siglas en inglés)
 - Inglés
 - Idioma alternativo (español)
- 3. Solicitud original

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

NOTICE OF RECEIPT OF APPLICATION AND INTENT TO OBTAIN A BENEFICIAL LAND USE PERMIT RENEWAL

PERMIT NO. WQ0004450000

APPLICATION. K-3 Resources, L.P., 9458 Farm-to-Market Road 362, Pattison, Texas 77423, has applied to the Texas Commission on Environmental Quality (TCEQ) to renew beneficial land use Permit No. WQ0004450000 to authorize the land application of wastewater treatment plant Class B biosolids and water treatment plant residuals for beneficial use on approximately 164.2 acres. The beneficial land use site is located approximately 1.4 miles west of the intersection of Farm-to-Market Road 529 and Farm-to-Market Road 362, near the city of Brookshire, in Waller County, Texas 77423. TCEQ received this application on May 13, 2024. The permit application will be available for viewing and copying at Waller County Courthouse, Joe Kuciemba Annex, 425 Farm-to-Market Road 1488, Hempstead, in Waller County, Texas prior to the date this notice is published in the newspaper. The application, including any updates, and associated notices are available electronically at the following webpage: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/sludge-applications. This link to an electronic map of the site or facility's general location is provided as a public courtesy and not part of the application or notice. For the exact location, refer to the application.

https://gisweb.tceg.texas.gov/LocationMapper/?marker=-95.98432,29.918021&level=18

ALTERNATIVE LANGUAGE NOTICE. Alternative language notice in Spanish is available at https://www.tceq.texas.gov/permitting/wastewater/pending-permits/sludge-applications. https://www.tceq.texas.gov/permitting/wastewater/pending-permits/sludge-applications.

ADDITIONAL NOTICE. TCEQ's Executive Director has determined the application is administratively complete and will conduct a technical review of the application. After technical review of the application is complete, the Executive Director may prepare a draft permit and will issue a preliminary decision on the application. Notice of the Application and Preliminary Decision will be published and mailed to those who are on the countywide mailing list and to those who are on the mailing list for this application. That notice will contain the deadline for submitting public comments.

PUBLIC COMMENT / **PUBLIC MEETING.** You may submit public comments or request a public meeting on this application. The purpose of a public meeting is to provide the opportunity to submit comments or to ask questions about the application. TCEQ will hold a public meeting if the Executive Director determines that there is a significant degree of public

interest in the application or if requested by a local legislator. A public meeting is not a contested case hearing.

OPPORTUNITY FOR A CONTESTED CASE HEARING. After the deadline for submitting public comments, the Executive Director will consider all timely comments and prepare a response to all relevant and material, or significant public comments. Unless the application is directly referred for a contested case hearing, the response to comments, and the Executive Director's decision on the application, will be mailed to everyone who submitted public comments and to those persons who are on the mailing list for this application. If comments are received, the mailing will also provide instructions for requesting reconsideration of the Executive Director's decision and for requesting a contested case hearing. A person who may be affected by the application may request a hearing. A contested case hearing is a legal proceeding similar to a civil trial in state district court.

TO REQUEST A CONTESTED CASE HEARING, YOU MUST INCLUDE THE FOLLOWING ITEMS IN YOUR REQUEST: your name, address, phone number; applicant's name and proposed permit number; the location and distance of your property/activities relative to the proposed facility; a specific description of how you would be adversely affected by the facility in a way not common to the general public; a list of all disputed issues of fact that you submit during the comment period and, the statement "[I/we] request a contested case hearing." If the request for contested case hearing is filed on behalf of a group or association, the request must designate the group's representative for receiving future correspondence; identify by name and physical address an individual member of the group who would be adversely affected by the proposed facility or activity; provide the information discussed above regarding the affected member's location and distance from the facility or activity; explain how and why the member would be affected; and explain how the interests the group seeks to protect are germane to the group's purpose.

Following the close of all applicable comment and request periods, the Executive Director will forward the application and any requests for reconsideration or for a contested case hearing to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

The Commission may only grant a request for a contested case hearing on issues the requestor submitted in their timely comments that were not subsequently withdrawn. If a hearing is granted, the subject of a hearing will be limited to disputed issues of fact or mixed questions of fact and law relating to relevant and material water quality concerns submitted during the comment period. TCEQ may act on an application to renew a permit without providing an opportunity for a contested case hearing if certain criteria are met.

MAILING LIST. If you submit public comments, a request for a contested case hearing or a reconsideration of the Executive Director's decision, you will be added to the mailing list for this specific application to receive future public notices mailed by the Office of the Chief Clerk. In addition, you may request to be placed on: (1) the permanent mailing list for a specific applicant name and permit number; and/or (2) the mailing list for a specific county. If you wish to be placed on the permanent and/or the county mailing list, clearly specify which list(s) and send your request to TCEQ Office of the Chief Clerk at the address below.

INFORMATION AVAILABLE ONLINE. For details about the status of the application, visit the

Commissioners' Integrated Database at www.tceq.texas.gov/goto/cid. Search the database using the permit number for this application, which is provided at the top of this notice.

AGENCY CONTACTS AND INFORMATION. All public comments and requests must be submitted either electronically at http://www14.tceq.texas.gov/epic/eComment/, or in writing to the Texas Commission on Environmental Quality, Office of the Chief Clerk, MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Please be aware that any contact information you provide, including your name, phone number, email address and physical address will become part of the agency's public record. For more information about this permit application or the permitting process, please call the TCEQ Public Education Program, Toll Free, at 1-800-687-4040 or visit their website at www.tceq.texas.gov/goto/pep. Si desea información en Español, puede llamar al 1-800-687-4040.

Further information may also be obtained from K-3 Resources, L.P. at the address stated above or by calling Mr. Andy Drennan at 281-375-5778.

Issuance Date: July 30, 2024

Comisión de Calidad Ambiental del Estado de Texas

AVISO DE RECIBIMIENTO DE LA SOLICITUD E INTENCIÓN DE OBTENER UN PERMISO DE USO BENÉFICO DEL SUELO RENOVACIÓN

PERMISO N.º WQ0004450000

SOLICITUD. K-3 Resources, L.P., 9458 Farm to Market Road 362, Pattison, Texas 77423, ha solicitado a la Comisión de Calidad Ambiental de Texas (TCEQ, por sus siglas en inglés) para renovar permiso de uso benéfico del suelo N.º WQ0004450000 para autorizar la solicitud de tierra de planta de tratamiento de aguas residuales clase B biosólidos, residuos de plantas de tratamiento de aguas para uso benéfico en aproximadamente 164.2 acres. El sitio de uso benéfico del suelo se encuentra 1.4 millas al oeste de la intersección de Farm-to-Market Road 529 y Farm-to-Market Road 362, cerca de la ciudad de Brookshire, en Waller Condado, Texas 77423. La TCEQ recibió esta solicitud el 13 de mayo de 2024. La solicitud de permiso estará disponible para ver y copiar en Palacio de Justicia del Condado de Waller, Anexo Joe Kuciemba, 425 Farm-to-Market Road 1488, Hempstead, en el condado de Waller, Texas antes de la fecha de publicación de este aviso en el periódico. La solicitud (cualquier actualización y aviso inclusive) está disponible electrónicamente en la siguiente página web: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/sludge-applications. Este enlace a un mapa electrónico de la ubicación general del sitio o instalación se proporciona como cortesía pública y no como parte de la solicitud o aviso. Para conocer la ubicación exacta, consulte la solicitud.

AVISO DE IDIOMA ALTERNATIVO. Aviso de idioma alternativo en español está disponible en https://www.tceq.texas.gov/permitting/wastewater/pending-permits/sludge-applications

AVISO ADICIONAL. El Director Ejecutivo de la TCEQ ha determinado que la solicitud está administrativamente completa y llevará a cabo una revisión técnica de la solicitud. Una vez completada la revisión técnica de la solicitud, el Director Ejecutivo puede preparar un bosquejo del permiso y emitirá una decisión preliminar sobre la solicitud. El aviso de la solicitud y la decisión preliminar se publicarán y enviarán por correo a aquellos que están en la lista de correo de todo el condado y a aquellos que están en la lista de correo para esta solicitud. Ese aviso contendrá la fecha límite para enviar comentarios públicos.

COMENTARIO PÚBLICO / REUNIÓN PÚBLICA. Puede enviar comentarios públicos o solicitar una reunión pública sobre esta solicitud. El propósito de una reunión pública es para brindar la oportunidad de enviar comentarios o hacer preguntas sobre la solicitud. La TCEQ convocará una reunión pública si el Director Ejecutivo determina que existe un grado significativo de interés público en la solicitud o si lo solicita un legislador local. Una reunión

pública no es una audiencia de caso impugnado.

OPORTUNIDAD PARA UNA AUDIENCIA DE CASO IMPUGNADO. Después de la fecha límite para presentar comentarios públicos, el Director Ejecutivo considerará todos los comentarios oportunos y preparará una respuesta a todos los comentarios públicos relevantes y materiales, o significativos. A menos que la solicitud se remita directamente para una audiencia de caso impugnado, la respuesta a los comentarios y la decisión del Director Ejecutivo sobre la solicitud se enviarán por correo a todos los que hayan presentado comentarios públicos y a las personas que estén en la lista de correo para esta solicitud. Si se reciben comentarios, el correo también proporcionará instrucciones para solicitar la reconsideración de la decisión del Director Ejecutivo y para solicitar una audiencia de caso impugnado. Una persona que pueda verse afectada por la solicitud puede solicitar una audiencia. Una audiencia de caso impugnado es un procedimiento legal similar a un juicio civil en un tribunal de distrito estatal.

PARA SOLICITAR UNA AUDIENCIA DE CASO IMPUGNADO, DEBE INCLUIR LOS SIGUIENTES ELEMENTOS EN SU SOLICITUD: su nombre, dirección, número de teléfono; nombre del solicitante y número de permiso propuesto; la ubicación y distancia de su propiedad/actividades en relación con la instalación propuesta; una descripción específica de cómo se vería afectado negativamente por la instalación de una manera que no es común para el público en general; una lista de todas las cuestiones de hecho controvertidas que presente durante el periodo de comentarios y la declaración "[Yo/nosotros] solicito/amos una audiencia de caso impugnado". Si la solicitud de audiencia de caso impugnado se presenta en nombre de un grupo o asociación, la solicitud debe designar al representante del grupo para recibir correspondencia futura; identificar por nombre y dirección física a un miembro individual del grupo que se vería afectado negativamente por la instalación o actividad propuesta; proporcionar la información discutida anteriormente con respecto a la ubicación y distancia del miembro afectado de la instalación o actividad; explicar cómo y por qué el miembro se vería afectado; y explicar cómo los intereses que el grupo busca proteger están relacionados con el propósito del grupo.

Tras el cierre de todos los periodos de comentarios y solicitudes aplicables, el Director Ejecutivo remitirá la solicitud y cualquier solicitud de reconsideración o de una audiencia de caso impugnado a los Comisionados de la TCEQ para su consideración en una reunión programada de la Comisión.

La Comisión sólo podrá conceder una solicitud de audiencia de un asunto impugnado sobre cuestiones que el solicitante haya presentado en sus observaciones oportunas que no hayan sido retiradas posteriormente. Si se concede una audiencia, el tema de una audiencia se limitará a cuestiones de hecho en disputa o cuestiones mixtas de hecho y de derecho relacionadas con preocupaciones relevantes y materiales sobre la calidad del agua presentadas durante el periodo de comentarios. La TCEQ puede actuar sobre una solicitud para renovar un permiso sin brindar la oportunidad de una audiencia de caso impugnado si se cumplen ciertos criterios.

LISTA DE CORREO. Si envían comentarios públicos, una solicitud de una audiencia de caso impugnado o una reconsideración de la decisión del Director Ejecutivo, se le agregará a la lista de correo de esta solicitud específica para recibir futuros avisos públicos enviados por

correo por la Oficina del Secretario Oficial. Además, puede solicitar ser colocado en: (1) la lista de correo permanente para un nombre de solicitante específico y número de permiso; y/o (2) la lista de correo para un condado específico. Si desea ser colocado en la lista de correo permanente y/o del condado, especifique claramente qué lista(s) y envíe su solicitud a la Oficina del Secretario Oficial de la TCEQ a la dirección a continuación.

INFORMACIÓN DISPONIBLE EN LÍNEA. Para obtener detalles sobre el estado de la solicitud, visite la Base de Datos Integrada de los Comisionados en www.tceq.texas.gov/goto/cid. Busque en la base de datos utilizando el número de permiso para esta aplicación, que se proporciona en la parte superior de este aviso.

CONTACTOS E INFORMACIÓN DE LA AGENCIA. Todos los comentarios y solicitudes públicas deben enviarse electrónicamente a

http://www14.tceq.texas.gov/epic/eComment/, o por escrito a Texas Commission on Environmental Quality, Office of the Chief Clerk, MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Tenga en cuenta que cualquier información de contacto que proporcione, incluido su nombre, número de teléfono, dirección de correo electrónico y dirección física, se convertirá en parte del registro público de la agencia. Para obtener más información sobre esta solicitud de permiso o el proceso de permisos, llame al Programa de Educación Pública de la TCEQ, sin cargo, al 1-800-687-4040 o visite su sitio web en www.tceq.texas.gov/goto/pep. Si desea información en español, puede llamar al 1-800-687-4040.

También se puede obtener más información de K-3 Resources, L.P. en la dirección indicada anteriormente o llamando a Andy Drennan al 281-375-5778.

Fecha de emisión: 30 de julio de 2024

Andy Drennan K-3 Resources, LP 9458 FM 362 Brookshire, TX 77423 Email: andy@k3bmi.com

Office: (281) 375-5778

2/16/24

Land Application Team MC150 Texas Commission on Environmental Quality P.O. Box 13087 Austin, Texas 78711-3087

Re: Renewal

Water Quality Division,

K-3 Resources LP CN603843426 is applying for a new permit for a previously permitted land application site for Class B Municipal Biosolids and Water Treatment Residuals on approximately 164.2 acres of 236.9 acres total. The site is located 1.4 miles West of the intersection of Farm-to-Market Road 362 and Farm-to-Market Road 529, on the north side of Farm-to-Market Road 529, in Brookshire, Texas Waller County, Texas 77423. This letter contains the application for beneficial use of sewage sludge completed with requested attachments.

To clarify, the purpose of this application is to renew Permit No. WQ0004450000 associated with RN102911898. The site will be 3 reporting fields with boundaries described in further detail in this application.

I will be the primary administrative and technical contact for the application, and the primary contact for the operational processes of this permit. Feel free to contact me at any time.

Sincerely,

Andy Drennan

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

APPLICATION FOR A PERMIT FOR BENEFICIAL LAND USE OF BIOSOLIDS

If you have questions about completing this form please contact the Applications Review and Processing Team at 512-239-4671.

SECTION 1. TYPE OF APPLICATION

	New (original, site not permitted)	
	New (previously permitted but allowed to expire or canceled)	
	Major Amendment (including renewals with changes to substantive provisions o the permit)	ıf
	Minor Amendment (including non-substantive provisions of the registration, expiration date remains the same)	
\boxtimes	Renewal	
	Renewal with Minor Amendment	
For	amendments, describe the proposed changes:	
-	No amendments.	
Гол	a ovietina or na overeito.	

For existing permits:

What is the permit number? <u>WQ000445000</u>

SECTION 2. APPLICATION FEE

The application fee varies from \$1,000 to \$5,000 based on the quantity of biosolids to be applied annually. See instructions to determine the appropriate fee.

Provide your payment information below, for verification of payment Check/Money Order Number:

Check/Money Order Amount: 2000

Name Printed on Check: K-3 Resources LP

SECTION 3. APPLICANT INFORMATION

A. The **site operator** must apply for the permit. What is the legal name of the site operator (applicant)? The legal name must be spelled exactly as filed with the Texas Secretary of State, County, or in the legal document forming the entity.

K-3 Resources LP

- **B.** If the applicant is an existing TCEQ customer, provide the Customer Number (CN) issued to this entity. CN <u>603843426</u>
- **C.** What is the contact information for this applicant?

Contact Name: <u>Andy Drennan</u>
Mailing Address: 9458 FM 362

City, State, and Zip Code: Brookshire, TX 77423

Phone Number: <u>281-375-5778</u> Fax Number: <u>281-585-4262</u>

E-mail Address: Compliance@k3bmi.com

SECTION 4. CO-APPLICANT INFORMATION

Complete this section only if more than one person or entity is a site operator.

- **A.** What is the legal name of the co-applicant? The legal name must be spelled exactly as filed with the Texas Secretary of State, County, or in the legal document forming the entity.
- **B.** If the co-applicant is an existing TCEQ customer, provide the Customer Number (CN) issued to this entity. CN
- **C.** What is the contact information for this applicant?

Contact Name:

Mailing Address:

City, State, and Zip Code:

Phone Number: _ Fax Number:

E-mail Address:

SECTION 5. APPLICATION CONTACT INFORMATION

These are the individuals that TCEQ will contact if additional information is needed about this application.

A. Prefix (Mr., Ms., Miss): Mr.

Application Contact First and Last Name: Andy Drennan

Title: <u>COO/VP</u> Credentials: <u>N/A</u>

Organization Name: <u>K-3 Resources, LP</u>

Mailing Address: 9458 FM 362

City, State, and Zip Code: <u>Brookshire</u>, TX 77423

Phone Number: <u>281-375-5778</u> Fax Number: <u>281-585-4262</u>

E-mail Address: Compliance@k3bmi.com

B. Prefix (Mr., Ms., Miss): N/A

Application Contact First and Last Name: N/A

Title: <u>N/A</u> Credentials: <u>N/A</u>

Organization Name: N/A

Mailing Address: N/A

City, State, and Zip Code: N/A

Phone Number: N/A Fax Number: N/A

E-mail Address: N/A

SECTION 6. PERMIT CONTACT INFORMATION

These are the individuals that TCEQ can contact during the term of the permit.

A. Prefix (Mr., Ms., Miss): Mr.

Permit Contact First and Last Name: Andy Drennan

Title: <u>COO/ VP</u> Credentials: <u>N/A</u>

Organization Name: K-3 Resources, LP

Mailing Address: 9458 FM 362

City, State, and Zip Code: <u>Brookshire, TX 77423</u>

Phone Number: <u>281-375-5778</u> Fax Number: <u>281-585-4262</u>

E-mail Address: Compliance@k3BMI.com

B. Prefix (Mr., Ms., Miss): Mr.

Permit Contact First and Last Name: Andy Drennan

Title: <u>COO/VP</u> Credentials: <u>N/A</u>
Organization Name: K-3 Resources, LP

Mailing Address: 9458 FM 362

City, State, and Zip Code: Brookshire, TX 77423

Phone Number: <u>281-375-5778</u> Fax Number: <u>281-585-4262</u>

E-mail Address: andy@k3bmi.com

SECTION 7. BILLING CONTACT INFORMATION

This is the person that TCEQ will contact if additional information is needed about the annual fee invoices.

Prefix (Mr., Ms., Miss): Mr.

Billing Contact First and Last Name: Andy Drennan

Title: <u>COO/VP</u> Credentials: <u>N/A</u>
Organization Name: <u>K-3 Resources, LP</u>

Mailing Address: 9458 FM 362

City, State, and Zip Code: <u>Brookshire</u>, TX 77423

Phone Number: <u>281-375-5778</u> Fax Number: <u>281-585-4262</u>

E-mail Address: compliance@k3bmi.com

SECTION 8. REPORTING CONTACT INFORMATION

This is the person that TCEQ will contact if additional information is needed about the annual biosolids land application reports.

Prefix (Mr., Ms., Miss): Mr.

Reporting Contact First and Last Name: Andy Drennan

Title: <u>COO/VP</u> Credentials: <u>N/A</u>
Organization Name: K-3 Resources, LP

Mailing Address: 9458 FM 362

City, State, and Zip Code: Brookshire, TX 77423

Phone Number: <u>281-375-5778</u> Fax Number: <u>281-585-4262</u>

E-mail Address: compliance@k3bmi.com

SECTION 9. NOTICE INFORMATION

A. Individual responsible for publishing the notices in the newspaper

Prefix (Mr., Ms., Miss): Mr.

First and Last Name: Andy Drennan

Title: <u>COO/VP</u> Credentials: <u>N/A</u>

Company Name: K-3 Resources, LP

Mailing Address: 9458 FM 362

City, State, and Zip Code: <u>Brookshire</u>, TX 77423

Phone Number: <u>281-375-5778</u> Fax Number: <u>281-585-4262</u>

E-mail Address: compliance@k3bmi.com

B. Method for receiving the notice package for the Notice of Receipt and Intent

⊠ E-mail: <u>compliance@k3bmi.com</u>

☐ Fax Number:

☐ Regular Mail:

Mailing Address:

City, State, and Zip Code:

C. Contact person to be listed in the notice

Prefix (Mr., Ms., Miss): Mr.

First and Last Name: Andy Drennan

Title: COO/VP Credentials: N/A

Company Name: K-3 Resource, LP

Phone Number: <u>281-375-5778</u>

D. Public viewing location

If the facility is located in more than one county, a public viewing location for each county must be provided.

Public Building Name: Waller County Courthouse

Physical Address of Building: 425 FM 1488, Suite 112

City: <u>Hempstead</u> County: <u>Waller</u>

Phone Number: <u>979-826-7711</u>

E. Bilingual Notice Requirement

For new, major amendment, and renewal applications. This information can be obtained by contacting the bilingual/ESL coordinator at the nearest elementary or middle school.

1. Is a bilingual education program required by the Texas Education Code at the nearest elementary or middle school to the facility or proposed facility?

Yes ⊠ No □

(**If No**, alternative language notice publication is not required; skip to Section 10. Regulated Entity (Site) Information.)

	2.	scho	the studen ool enrolled Yes ⊠	its who attend in a biling No □	nd ual	d either the elementary school or the middle al education program at that school?
	3.	ano	he student ther location es 🗆		cho	nools attend a bilingual education program at
	4.	the		_		ed to provide a bilingual education program but f this requirement under 19 TAC §89.1205(g)?
	5.	lang		quired. Whic		3, or 4, public notice in an alternative language is required by the bilingual
Co	mplet	e the		olvement Pl		n (PIP) Form (TCEQ-20960) for each or amendment to a permit and include as an
	Attac	hmer	nt Number:	<u>N/A</u> Exen	ıpt-	t- Not new permit and no major amendments
SE	ECTIO	N 1	0. REGUL	ATED EN	ΤI	ITY (SITE) INFORMATION
A.	Site N	lame:	Carl Mille	r Farms 710	08	<u>84</u>
В.			n existing _] e. RN <u>1029</u>	=	te,	e, provide the Regulated Entity Number (RN) issued
C.	Site A	ddre	ss/Locatio	n:		
	Is the	loca	tion of the	application	sit	site used in the existing permit accurate?
		\boxtimes	Yes			l No
	addre not ha	ess of ave a	the site supply the site supply the site of the site o	uch as: 1210 address, pro	00 I vid	application is for a new site, provide the physical Park 35 Circle, Austin, TX 78753. If the site does de a location description such as: located on the t of the intersection of FM 123 and Highway 1.
	<u>N/A</u>					
D.	Coun	ty wh	ere the sit	e is located:	W	<u>Valler</u>
E.	Latitu	ıde: <u>N</u>	N 29 55' 02	<u>"</u> Long	itu	rude: <u>W 95 59' 07"</u>
F.	Lando	owne	r Informat	ion:		
	Attac	h an	additional	sheet if mo	re t	than one landowner.

Prefix (Mr., Ms., Miss): See attached

First and Last Name:

Organization Name:

Mailing Address:

City, State, and Zip Code:

Phone Number:

G. County Judge

Provide the name of the county judge in each county where the site is located. Attach an additional sheet if more than one county.

Prefix (Mr., Ms., Miss): Mr.

First and Last Name: Carbett "Trey" Duhon III

Mailing Address: 425 FM 1488 Suite 112

City, State, and Zip Code: <u>Hempstead</u>, TX 77445

Phone Number: <u>979-826-7700</u>

Name of County: Waller

SECTION 11. LAND APPLICATION INFORMATION

- **A.** Provide the anticipated date (MM/DD/YY) of the first application of biosolids after issuance or re-issuance of the permit. NOTE: This date must be at least 330 days after the date TCEQ receives this application. 2/1/2025
- **B.** The application area is:
 - \square within the city limit of:
 - □ within the extraterritorial jurisdiction of:
 - outside the extraterritorial jurisdiction of: <u>Brookshire</u>

C. Types of Waste

Identify the types of waste that will be land applied at this site.

- ☑ Wastewater Treatment Plant Class B Biosolids
- ⊠ Water Treatment Plant Residuals
- ☐ Domestic Septage

D. Sources of Biosolids or Residuals

Provide the sources of generation, any water quality or public water supply permit number issued by TCEQ, and the location of the sources. Complete Table 1 for each source identified below.

A. Sources of Biosolids or Residuals

Provide the sources of generation, any water quality or public water supply permit number issued by TCEQ, and the location of the sources. Complete Table 1 for each source identified below.

Facility Name	Permit Number	Location
HC 26	WQ0011406001	Harris County
HC WCID 92	WQ0010908001	Harris County
Allens Creek - Sealy WWTP	WQ0010276001	Austin County
Rosenberg #1A WWTP	WQ0010607003	Fort Bend County
Treschwig Central D1 WWTF	WQ0011141001	Harris County
FB 30	WQ0012068001	Fort Bend County
Pecan Grove WWTF	WQ0011655001	Fort Bend County
Tomball South	WQ0010616002	Harris County
Waller WWTP	WQ0010310001	Waller County
HC 200	WQ0012294001	Harris County
WHC 7	WQ0012140001	Harris County

	\n_ t ₁	
Facility Name	Permit	Location
	Number	
Property Acreage		
Total acreage of the entire propert 236.9	y, including the a	pplication area and buffer zones:
Application Area Acreage		

F. Application Area Acreage

E.

Total acreage where the biosolids may be applied, excluding the buffer zones: 164.2

SE	ECTION	12. MISCELLANEOUS INFORMA	ATION								
Α.	Let Did any person who was formerly employed by the TCEQ represent your company and get paid for service regarding this application? Yes □ No ☒										
	If yes, p	rovide the name(s) of the former TCE	Q employee	(s):							
В.	_	te located on Indian Lands? No ⊠									
C.	Is any po	ermanent school fund land affected b	y this appli	cation?							
	Yes □	No ⊠									
	If yes , p	provide the location, forseeable impactors.	cts, and effe	cts this application has on							
D.	Delinque	ent Fees and Penalties:									
	Do you	owe fees to the TCEQ?	Yes □	No 🗵							
	Do you	owe any penalties to the TCEQ?	Yes □	No ⊠							
	•	nswered yes to either of the above qu		vide the amount owed, the							

type of fee or penalty, and an identifying number.

SECTION 13. AFFECTED LANDOWNER INFORMATION

A. Landowner map. Attach a landowner map or drawing. See instructions for information that must be displayed on the map.

WQ0004450000 Carl Miller Farms 710084 ¹/₄ Mi Living Landowners Mailing List:

- 1 Stone Keith & Stacy D 36076 FM 529 RD Brookshire, TX 77423
- White Wanda Miller10720 Bonner Rd Brookshire, TX 77423
- 3 Accurate Inc.PO BOX 1296 Taylor, TX 76574-6574
- 4 Garcia Manuel 4914 Westerdale Dr. Fulshear, TX 77441
- 5 Trevino Real Estate Holdings LLC5415 Arcadia Glen Ln. Katy, TX 77494
- 6 MRO Ventures LP 4603 Joyce Blvd. Houston, TX 77084
- 7 Miller W A34861 FM 529 Brookshire, TX 77423

Miller W A Accurate Inc. Stone, Keith & Stacy D 34861 FM 529 PO BOX 1296 36076 FM 529 Rd Taylor, TX 76574-6574 Brookshire, TX 77423 Brookshire, TX 77423 Miller W A Accurate Inc. Stone, Keith & Stacy D PO BOX 1296 34861 FM 529 36076 FM 529 Rd Taylor, TX 76574-6574 Brookshire, TX 77423 Brookshire, TX 77423 Accurate Inc. Miller W A Stone, Keith & Stacy D PO BOX 1296 34861 FM 529 36076 FM 529 Rd Taylor, TX 76574-6574 Brookshire, TX 77423 Brookshire, TX 77423 Accurate Inc. Miller W A Stone, Keith & Stacy D PO BOX 1296 34861 FM 529 36076 FM 529 Rd Taylor, TX 76574-6574 Brookshire, TX 77423 Brookshire, TX 77423 White Wanda Miller Garcia Manuel Trevino Real Estate Holdings LLC 10720 Bonner Rd 4914 Westerdale Dr. 5415 Arcadia Glen Ln. Brookshire, TX 77423 Fulshear, TX 77441 Katy, TX 77494 White Wanda Miller Garcia Manuel Trevino Real Estate Holdings LLC 10720 Bonner Rd 4914 Westerdale Dr. 5415 Arcadia Glen Ln. Brookshire, TX 77423 Fulshear, TX 77441 Katy, TX 77494 Garcia Manuel White Wanda Miller Trevino Real Estate Holdings LLC 10720 Bonner Rd 4914 Westerdale Dr. 5415 Arcadia Glen Ln. Brookshire, TX 77423 Fulshear, TX 77441 Katy, TX 77494 White Wanda Miller Garcia Manuel Trevino Real Estate Holdings LLC 10720 Bonner Rd 4914 Westerdale Dr. 5415 Arcadia Glen Ln. Brookshire, TX 77423 Fulshear, TX 77441 Katy, TX 77494 MRO Ventures LP MRO Ventures LP 4603 Joyce Blvd. 4603 Joyce Blvd. Houston, TX 77084 Houston, TX 77084 MRO Ventures LP MRO Ventures LP

4603 Joyce Blvd.

Houston, TX 77084

4603 Joyce Blvd.

Houston, TX 77084

Attachment Number: 2

B. Landowner list. Attach a list of the landowners' names and mailing addresses. The list must be cross-referenced to the letter or number identified on the landowner map.

Attachment Number: 3

- C. Landowner list media. Indicate the format of the landowners list.
 - □ Read/Writeable CD
 - ✓ 4 sets of mailing labels
- **D.** Landowner data source. Provide the source of the landowners' names and mailing addresses. Waller CAD

SECTION 14. INSURANCE INFORMATION

This information is not required for an applicant that is a political subdivision (e.g. city, county, state agency, water district, etc.).

A. Commercial Liability Insurance

Attach a copy of the certificate of insurance in regard to commercial liability.

Attachment Number: <u>4</u>

B. Environmental Impairment Insurance

Attach a copy of the certificate of insurance in regard to environmental impairment.

Attachment Number: <u>5</u>

SECTION 15. MAPS AND ATTACHMENTS

A. TCEQ Core Data Form

Complete and submit a TCEQ Core Data Form (TCEQ-10400).

Attachment Number: <u>6</u>

B. TCEQ Public Involvement Plan Form

Complete and submit a TCEQ Public Involvement Plan Form (TCEQ-20960) for new and major amendment applications.

Attachment Number: I Exempt- Not new and no major amendments

C. General Highway (County) Map

Submit an ORIGINAL General Highway (County) Map. See instructions for information that must be displayed on the map.

Attachment Number: 8

CERTIFICATE OF INSURANCE FOR COMMERCIAL LIABILITY

Name and address of insurer (herein called the "Insurer"):

Highpoint Insurance Group, LLC Nautilus Insurance Company Lloyds of London/Pantheon Specialty

4300 FM 2351 Road 7233 East Butherus Drive 2 India Street

Friendswood, TX 77546 Scottsdale, AZ 85260 London EC3N2PX, UK

Name, physical addresses and mailing address of Insured (herein called the "Insured"):

K-3 Resources, LP

9458 FM 362

Brookshire, TX 77423

Additional Insured:

Texas Commission on Environmental Quality

Physical Address: 12100 Park 35 Circle, MC 1-84, Austin, TX 78753

Mailing Address: MC 184, PO Box 13087, Austin, TX 78711

Facilities Covered:

(1) #WQ0004450000, Carl Miller Farms 710084: 1.4 miles west of the intersection of FM 529 and FM 362

• Facility address: 34719 FM 529 Road, Brookshire, Texas 77423

Mailing address: 34719 FM 529 Road, Brookshire, Texas 77423

Nautilus Per Occurrence Limit: \$3,000,000 **Annual Aggregate Limit:** \$3,000,000 **Policy Number:** SSP-2025469-16 **Effective Date:** 02/26/2024 Lloyds Per Occurrence Limit: \$3,000,000 **Annual Aggregate Limit:** \$3,000,000 **Policy Number:** B1881S240420 **Effective Date:** 02/26/2024

The Insurer hereby certifies that it has issued to the Insured a Commercial Liability and Excess Policy of Insurance identified above to provide financial assurance for corrective action related to the facilities identified above. The Insurer further warrants that such policy confirms in all respects with the requirements of 30 Texas Administrative Code (TAC) §37.9105 (relating to Commercial Liability and Excess Liability Insurance), as applicable and as such regulation were constituted on the date show immediately below.

It is agreed that any provision of the policy inconsistent with such regulation is hereby amended to eliminate such inconsistency.

Whenever requested by the Executive Director of the Texas Commission on Environmental Quality, the Insurer agrees to furnish to the Executive Director a duplicate original of the policy listed above, including all endorsements thereon.

I hereby certify that the wording of this certificate is identical to the wording specified in 30 TAC §37.9155 (relating to Commercial Liability and Excess Liability Insurance) such as regulations were constituted on the date shown immediately below. The undersigned Insurer certifies that it is authorized to transact or be a surplus lines insurer eligible to engage in the business of insurance in Texas and it has a minimum financial strength rating of A- as assigned by the A.M. Best Company.

Authorized Signature of Insurer:

Name and Title of Person Signing:

M. Brandon Smyrl, President

Signature of Witness or Notary:

AMBER ALLISON
Notary Public, State of Texas
Comm. Expires 07-08-2024
Notary ID 130731190

Signed this 22nd day of March 2024 in Harris County, Texas. My commission expires 07/08/2024.

CERTIFICATE OF INSURANCE FOR ENVIRONMENTAL IMPAIRMENT

Name and address of insurer (herein called the "Insurer"):

Highpoint Insurance Group, LLC

Nautilus Insurance Company

4300 FM 2351 Road

7233 East Butherus Drive

Friendswood, TX 77546

Scottsdale, AZ 85260

Name, physical addresses and mailing address of Insured (herein called the "Insured"):

K-3 Resources, LP

9458 FM 362

Brookshire, TX 77423

Additional Insured:

Texas Commission on Environmental Quality

Physical Address: 12100 Park 35 Circle, MC 1-84, Austin, TX 78753

Mailing Address: MC 184, PO Box 13087, Austin, TX 78711

Facilities Covered:

(1) #WQ0004450000, Carl Miller Farms 710084: 1.4 miles west of the intersection of FM 529 and FM 362.

Facility Address: 34719 FM 529 Road, Brookshire, Texas 77423

Mailing address: 34719 FM 529 Road, Brookshire, Texas 77423

Per Occurrence Limit:

\$3,000,000

Annual Aggregate Limit:

\$3,000,000

Policy Number:

SSP-2025469-16 Effective Date:

02/26/2024

The Insurer hereby certifies that it has issued to the Insured an Environmental Impairment Policy of Insurance identified above to provide financial assurance for corrective action related to the facilities identified above. The Insurer further warrants that such policy confirms in all respects with the requirements of 30 Texas Administrative Code (TAC) §37.9105 (relating to Environmental Impairment Insurance), as applicable and as such regulation were constituted on the date show immediately below.

It is agreed that any provision of the policy inconsistent with such regulation is hereby amended to eliminate such inconsistency.

Whenever requested by the Executive Director of the Texas Commission on Environmental Quality, the Insurer agrees to furnish to the Executive Director a duplicate original of the policy listed above, including all endorsements thereon.

I hereby certify that the wording of this certificate is identical to the wording specified in 30 TAC §37.9155 (relating to Certificate of Insurance for Environmental Impairment) such as regulations were constituted on the date shown immediately below. The undersigned Insurer certifies that it is authorized to transact or be a surplus lines insurer eligible to engage in the business of insurance in Texas and it has a minimum financial strength rating of A- as assigned by the A.M. Best Company.

Authorized Signature of Insurer:

Name and Title of Person Signing:

M. Brandon Smyrl, President

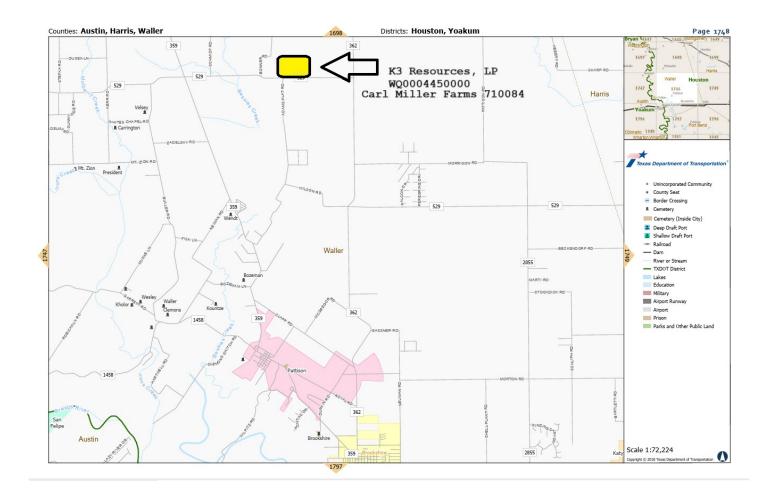
Signature of Witness or Notary:

Ember allian

AMBER ALLISON
Notary Public, State of Texas
Comm. Expires 07-08-2024
Notary ID 130731190

Signed this 22nd day of March 2024 in Harris County, Texas. My commission expires 07/08/2024.

TCEQ Use Only


TCEQ Core Data Form

For detailed instructions regarding completion of this form, please read the Core Data Form Instructions or call 512-239-5175. <u>SECTION I: General Information</u>

		on (If other is classion or Authoriz						the pr	ogram application	.)		
		Form should be					Oth		- NO.			
2. Customer Reference Number (if issued) CN 603843426 Follow this link to search for CN or RN numbers in Central Registry**						rch s in	Regulated Entity Reference Number (if issued)					
ECTION	II: Cust	omer Info	rmation						The state of the s			
4. General Cu				Date fo	r Customer	Inform	ation U	pdate	s (mm/dd/yyyy)	9/29/2	2023	
☐ New Custo	mer egal Name	(Verifiable with			o Customer			ller of I	Change in F Public Accounts)	Regulated E	Entity Ownership	
The Custor	ner Name	submitted State (SOS)	here may	be upd	ated auto	matic	ally ba	sed o	on what is cur	rent and	active with the	
		e (If an individual							tomer, enter previo	ous Custome	er below:	
		(II air iriaividaal	, print race rian									
K-3 Resou 7. TX SOS/CF 080059371	A Filing N	umber	8. TX State		(11 digits)			edera	I Tax ID (9 digits)	10. DUN N/A	S Number (if applicable)	
11. Type of C	ustomer:	☐ Corporati	on		☐ Individ	lual		Par	tnership: Genera	al Limited		
		ounty Federal		er		ropriet	orship		Other:			
12. Number o			251-500		501 and high		13.	Indep Yes	endently Owned	and Opera	ated?	
14. Custome	Role (Prop	oosed or Actual) -	- as it relates to	o the Reg	ulated Entity	isted on	this form	n. Pleas	e check one of the	following		
Owner Occupation		Opera			Owner &	& Opera	itor		☐Other:			
15. Mailing	9458 F	M 362										
Address:		Brookshire		St	tate TX		ZIP	7742	23	ZIP + 4		
40.0					121				S (if applicable)			
16. Country	viailing into	ormation (if outs	ide USA)			-			k3bmi.com			
18. Telephor	e Number			19. Ex	ctension or		р		20. Fax Numbe	r (if applica	able)	
(281)37					2179				()	-		
ECTION	III: Re	gulated E	ntity Info	ormat	ion							
21. General	Regulated ulated Entit	Entity Informa	tion (If 'New to Regulate	Regulate	d Entity" is s	selected Updat	below to Reg	this for Julated	m should be acco	mpanied by	y a permit application)	
The Regul	ated Enti		bmitted ma	ay be u	pdated in						dards (removal	
22. Regulate	d Entity Na	ame (Enter name	e of the site wh	ere the re	gulated action	n is takii	g place.))				
Carl Mille												

К													
23. Street Address of the Regulated Entity:													
(No PO Boxes)	City	Brooksh	ire	State	TX	ZI	P 7	77423		ZIP	+ 4		
24. County	Walle	er		'									
		Enter Physica	I Loc	ation Descrip	tion if no s	treet	address is	s provi	led.				
25. Description to Physical Location:	1.4 m	1.4 miles West of the intersection of FM529 and FM 362 on the North side of FM 529											
26. Nearest City							St	ate			Near	est ZIP Code	
Brookshire							T	X				23	
27. Latitude (N) In De	cimal:	29.91802	21		32,000,000		itude (W)			-95.9	8432		
Degrees	Minutes	New York	Se	conds	Degr		~ -	Mir	nutes	50		Seconds	
29		55		02			95			59		07	
29. Primary SIC Code	(4 digits)	30. Secondary S	SIC C	ode (4 digits)	31. Prima (5 or 6 digi	-	AICS Cod	e	(5 or 6	digits)	y NAI	CS Code	
139		212			111940)			1121	111			
33. What is the Prima				o not repeat the S	IC or NAICS de	escripti	on.)						
Hay and Forager	roductio	n; cattle proc	lucti	ion									
24 Mailing													
34. Mailing Address:				Ţ-	34	719 F	M 529						
Addition.	City	y Brooksl	nire	State	TX		ZIP	77	423	ZIP	+ 4		
35. E-Mail Addre	ess:						ance@k3b						
36. Tele	phone Nun	nber		37. Extens	ion or Code	9		38.	Fax Nu	ımber (i	f appi	icable)	
	1) 375-5778								() -	•		
9. TCEQ Programs an	d ID Numbe	ers Check all Prog	rams	and write in the	permits/regist	ration	numbers th	at will be	e affected	d by the u	ıpdate	s submitted on this	
Dam Safety		stricts	IIdanio	☐ Edwards A	quifer		Emission	s Invent	ory Air	☐ Ir	ndustria	al Hazardous Wast	
☐ Municipal Solid Wast	e 🗆 Ne	ew Source Review	OSSF		☐ Petroleum S		n Storag	Storage Tank		☐ PWS			
							_			 			
	☐ St	torm Water	☐ Title V Air	Tires					Used Oil				
		I I Maka		□ Mastawats	or Agriculturo	riculture		ights [П	Other:		
☐ Voluntary Cleanup		/aste Water	Wastewater Agriculture Water			water iti	Trigito cuto						
SECTION IV.	Duanana	u Informati	ion										
40. Andy Dre		r Informaci	011		41. Titl	le:	COO						
Name:		10 1 14	F	Number	45 E	Mail	Address						
42. Telephone Numb	er 43. Ext.	./Code 44	. Fax	Number				hmi	iom.				
(281) 375-5778) -	com	рпа	nce@k3	odiii.C	com		_		
SECTION V: A. 6. By my signature be ignature authority to su	low Loorif	fy to the best of a	my kr	nowledge, that atity specified i	the informate n Section II,	tion p	rovided in l 6 and/or a	this for as requi	m is tru	e and co	mplet tes to	e, and that I have the ID numbers	
dentified in field 39.						_			1				
900 NO. 100	-3 Resource	1			Job T	itle:	e: Owner Phone:			1 281	(281) 375- 5778		
Name (In Print): A	ndy Drenna								-2010-20	(201			
Signature:	#							Da	te:		>-	9-2024	

Page 2 of 2

D. United States Geological Survey (USGS) Topographic Map

Submit an ORIGINAL United States Geological Survey (USGS) Topographic Map (1:24,000 scale). See instructions for information that must be displayed on the map.

Attachment Number: 9

E. USDA-NRCS Soil Map

Submit a legible copy of a USDA-NRCS Soil Map. See instructions for information that must be displayed on the map.

Attachment Number: 10

F. Federal Emergency Management Agency (FEMA) Map

Submit a copy of the FEMA map that shows the approximate application area boundaries, the surrounding area within one-quarter mile of the application area, and the appropriate legend.

Attachment Number: 11

G. Nutrient Management Plan

Attach a copy of the nutrient management plan that has been prepared by a certified nutrient management specialist, in accordance with the NRCS.

Attachment Number: 12

H. TCEQ Transporters Registration Approval Documents

Attach a copy of the TCEQ Transporters Registration approval documents.

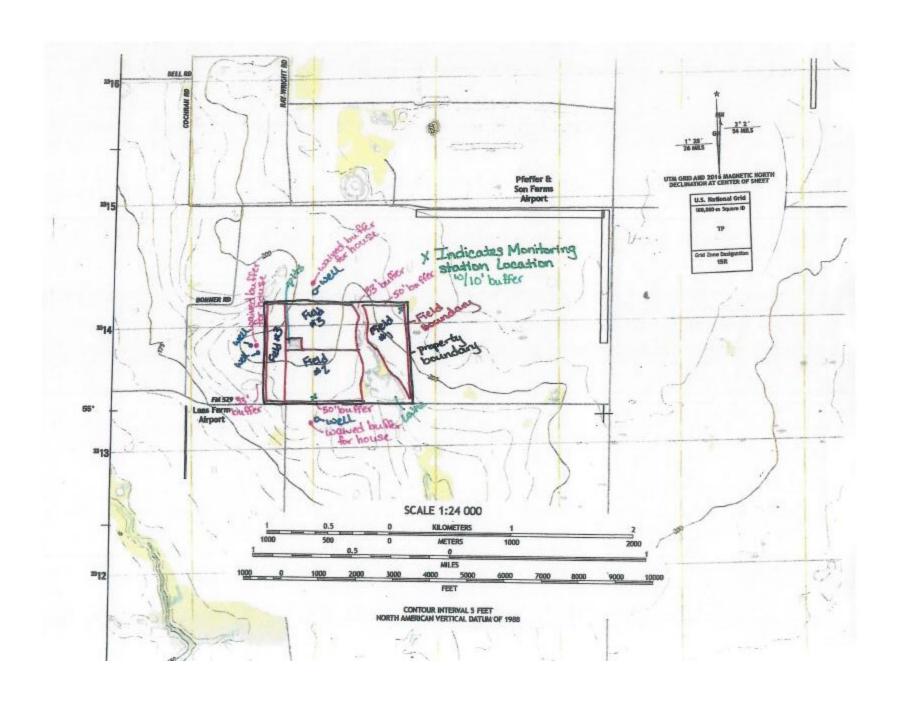
Attachment Number: 13

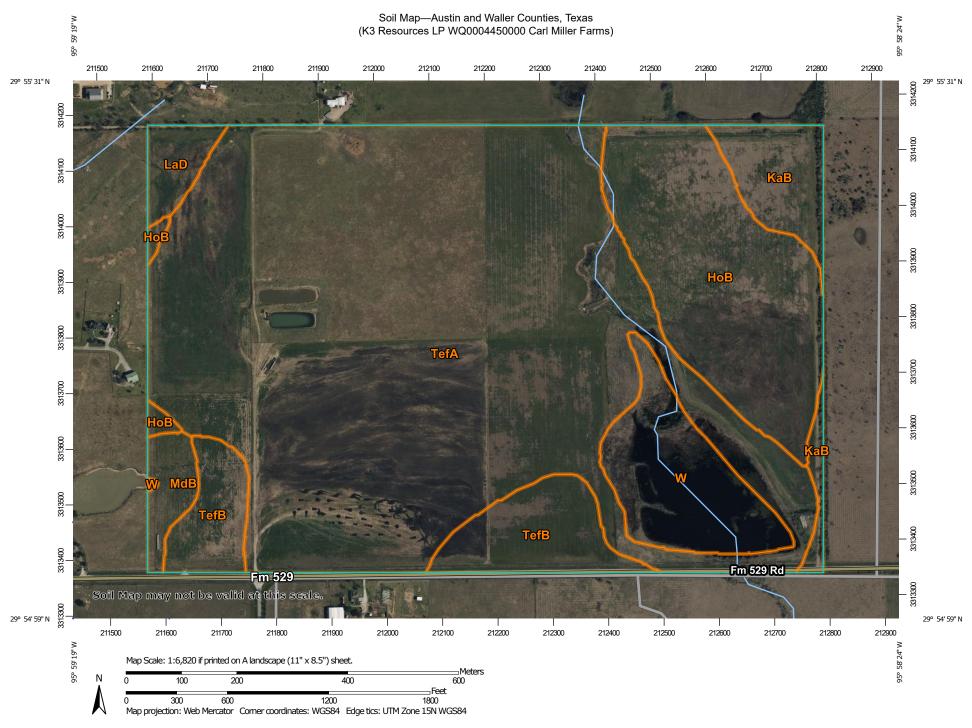
I. Soil Analysis

Attach a copy of the soil laboratory analysis for the application area.

Attachment Number: <u>14</u>

H. Biosolids or Residuals Analyses


Attach a laboratory analysis for each source.


Attachment Number: <u>15</u>

I. Metal and Nutrient Concentrations (Table 1)

Use the laboratory analyses to complete Table 1 for each source.

J. Volume Weighted Averages of Metal and Nutrient Concentrations (Table 2)

MAP LEGEND

Area of Interest (AOI) Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill

Lava Flow Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole Slide or Slip

Sodic Spot

Spoil Area

Stony Spot

Very Stony Spot

Wet Spot Other

Special Line Features

Water Features

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

Major Roads

Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Austin and Waller Counties, Texas Survey Area Data: Version 21, Sep 5, 2023

Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

Date(s) aerial images were photographed: Mar 13, 2022—Mar 25. 2022

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
НоВ	Hockley loamy fine sand, 1 to 3 percent slopes	35.9	14.7%
КаВ	Katy fine sandy loam, 1 to 3 percent slopes	9.9	4.1%
LaD	Lake Charles clay, 3 to 8 percent slopes	4.0	1.6%
MdB	Midfield loam, 0 to 2 percent slopes	4.0	1.6%
TefA	Telf fine sandy loam, 0 to 1 percent slopes	156.2	64.2%
TefB	Telf fine sandy loam, 1 to 3 percent slopes	17.2	7.0%
W	Water	16.3	6.7%
Totals for Area of Interest		243.4	100.0%

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repository should be

To obtain more detailed information in areas where Base Flood Elevations (FEE) and/or Toology's have been determined, users are excuraged to consult the Flood Profiles and Floodway Data and/or Summary of Sithest Elevations that FIRM. Users all the FIRM sections of the FIRM representation of the summary of the summary of the summary of the FIRM representation information. Accordingly, Stood elevation data presented in the FIRM constitution and/or summary of the FIRM representation of the FIRM representation and the FIRM represent

Coastal Base Flood Elevations shown on this map apply only landward of 0.0" North American Vertical Datum of 1988 (NIVD 88). Listers of this FIFM should be aware that coastal flood elevations are also provided in the Summary of Silveter Elevations table in the Flood Issurance Study report for this jurisdiction. Elevations shown in the Summary of Silveter Elevations table should be used for construction and/or floodsplain management purposes

Boundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance. Study report for the kindrich sections.

Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to Section 2.4 "Flood Protection Measures" of the Flood insurance Study report for information on flood control structures

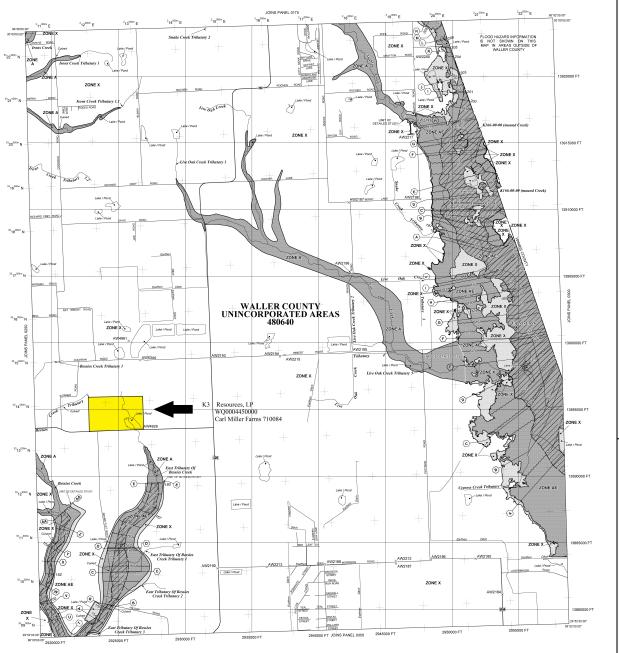
The projection used in the preparation of this map was Texas State Plane south central zone (FIPSZOM 4204). The Anotzontal datum was NADIS, GRB1980 spheroid. Differences in family spheroid, projection or State Plane zones used in the production of FIRMs for adjacent predictions may result in slight positional differences in map features across jurisdiction boundaries. These differences in not affect the acrosary of the FIRM.

Fixed elevations on this may are infectioned to be Aerth. Annotions. Virtical Dollarin of 1688 in These fixed elevations must be compared to structure and ground elevations enferenced to the asservertical datum. For information regarding convention between the National Goodsfor Verdical Datum of 1200. Survey, website at http://www.ngs.noa.gov/ or contact the National Geodetic Survey at the 1040mg auditess.

NOAA, N/NGS12 National Geodatic Survey SSMC- 3, #0202 1315 East- West Highway Silver Spring, MD 20910- 3282

To obtain current elevation, description, and/or location information for bench marks shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242, or visit its website at http://www.ngs.noea.gow/.

Base map information shown on this FIRM was provided in digital format by Waller County and Houston-Galveston Area Council (H-GAC). This dataset was digitized at


This map reflects more detailed and up-to-date stream channel configurations has into the choice of the previous FIRM for this jurisdiction. The foodplains and floodways that were transferred from the previous FIRM may have been adjusted to confrom to these new stream channel configurations. As a property of the configuration of the config

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed Map Index for an overview map of the country showing the layout of map panets; community map repository addresses and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

Contact the FEMA Map Service Center at 1: 800: 388-9616 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood /assurance Study report, and/or digital versions of this map. The FEMA Map Service Center may also be reached by Fax at 1: 800: 388-9620 and its velocities the velocities of the map.

If you have questions about this map or questions concerning the National Flood Insurance Program in general, stease call 1-877-FEMA MAP (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/.

LEGEND SPECIAL FLOOD HAZARD AREAS (SPHAS) SUBJECT TO INUNDATION BY THE 1% ANNUAL CHANCE FLOOD The 1% annual chance flood (100-year flood), also known as the base flood, is the that has a 1% chance of being equaled or exceeding in any years year. The 1 Flood Hazord Area is the error subject to flooding by the 1% annual chance flood of Special Flood Hazord Induced Zones A, AE, AH, AD, AR, ASS, V and VE. The Flood Elevation is the water-unknown developed in the Service Area (AR). are ourse witer-surface developed of the 1% annual chance flood. No Base Flood Elevelores determined. Base Flood Elevelores determined. Flood depths of 1 to 3 feet (usually areas of ponding); Base Flood Elevelores determined. ZONE A ZONE AE ZONE AH ZONE AO Flood depths of 1 to 3 feet (usually sheet flow on sloping termin); average depths determined. For areas of alluvial fan flooding, velocities also determined. Area to be protected from 1% annual chance flood by a Federal flood protection system under construction; no Base Flood Bievations ZONE V Coestal flood zone with velocity hexard (wave action); no Base Flood limutions determined. ZONE VE Coastal flood zone with velocity hazard (wave action); Base Flood FLOODWAY AREAS IN ZONE AE OTHER FLOOD AREAS ZONE X OTHER AREAS COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS 2000 OTHERWISE PROTECTED AREAS (OPAs) CBRS areas and OPAs are normally located within or adjacent to Special Flood Hazard Areas Base Flood Elevation line and value; elevation in feet* (EL 987) Base Flood Elevation value where uniform within zone elevation in feet* -(A) **⊘**·····**⊘** Geographic coordinates referenced to the North American Datum of 1983 (NAD 83) 97'07'30', 32'22'30' 1000 meter Universal Transverse Mercator grid , zone 1 6000000 FT DX5510 Bench mark (see expla this FIRM panel) MAP REPOSITORIES Refer to Map Repositories list on Map Index EFFECTIVE DATE OF COUNTYWIDE FLOOD INSURANCE RATE MAP Fabruary 18, 2009 EFFECTIVE DATE(S) OF REMISION(S) TO THIS PANE For community map revision history prior to countywide mapping, refer to the Community Map History table located in the Flood Insurance Study report for this jurisdiction. To determine if food insurance is available in this community, contact your insurar agent or call the National Flood Insurance Program at 1-800-638-6620. 1000 0 SCALE 1" = 2000' 0 2000 METERS 1200 NFIP PANEL 0275E FIRM FLOOD INSURANCE RATE MAP PROG WALLER COUNTY, TEXAS AND INCORPORATED AREAS INSURANCE PANEL 275 OF 425 (SEE MAP INDEX FOR FIRM PANEL LAYOUT) 1000 MAP NUMBER 48473C0275E EFFECTIVE DATE

FEBRUARY 18, 2009

Federal Emergency Management Agency

Waste Utilization and Nutrient Management Plan

Carl Miller Farms 710084 1.4 Mi W of X FM529 &FM362 Brookshire, TX 979-826-2127

TCEQ Permit Number:

WQ0004450000

Owner

Multiple- Wanda White, Millers 35600 FM 529 Brookshire, TX 77423 979-826-2127

Operator

K-3 Resources, LP 9458 FM 362 Brookshire, TX 77423 281-375-5778

Type of Organic Nutrient Management Plan:

Biosolids

located in Waller County

Prepared By:

(Signature)

Kevin Seawright

Consultant

Certificate Number = TX202311

Expiration Date = January 31, 2025

Erthra Consulting, LLC

3880 FM 3318 Rd

Pattison, TX 77423

832-504-2757

This plan is based on: 590 Organic Nutrient Management Plan V 5.0

5/1/24 11:38 AM

Waste Utilization and Nutrient Management Plan

EXECUTIVE SUMMARY: Permit #: WQ0004450000

This Nutrient Management Plan has fields that meet NUPs requirements.

Based on a the 2023 soil samples from permit WQ000445000 the following are allowed to be applied for the Coastal Bermuda grass with with cool season grazing at 1AU/acre (1000 lbs average) and having 14,100 lbs of dry matter total of hay production:

Field 1- 3.2 Tons/acre

Field 2 - 3.2 Tons/Acre

Field 3 - 3.2 Tons/ Acre

The above amounts are the total Tons/ Acre that can be applied for the 2024 growing season.

These totals are based on the 2023 soil samples and the P index and crop removal of P.

LOCATION AND PURPOSE OF THE PLAN

Located in:

Waller

County

See plan map for location. The purpose of this plan is to outline the details of land application of biosolids on this land. This plan, when applied, will meet the requirements of the Natural Resources Conservation Service Nutrient Management Standard (590) and Waste Utilization Standard (633). When the appropriate land treatment practices needed to reduce runoff are fully implemented and maintained in each field the plan will provide the more comprehensive benefits of minimizing the affects of the land application of biosolids on the air, soil, water, and animal resources in and around the application area. Annual maximum application rates are determined using **Table 2 & 2a** depending on the current soil test P level and P index result for each field receiving biosolids.

Table 3 provides an estimate of the nutrients removed in the harvested portion of the crop at the planned yield goal for hay, grain, and fiber crops. The values used for grazed crops are the estimated amount of nutrients taken up in the above ground portion of the plants.

Page1 Printed on: 5/1/24 11:38 AM Plan is based on: 590 Organic Nutrient Management

Waste Utilization and Nutrient Management Plan

SIGNATURE PAGE

WQ0004450000

Plan Prepared by:

Kevin Seawright

5/1/2024

Plan Approved by:

ate: 5/8

Producer Signature:

ate: 5-8

The producer's signature indicates that this plan has been discussed with him/her.

If this plan is not signed by the producer, indicate how the plan was provided to the producer.

Printed on: 10/1/05 12:05 PM

Plan is based on: 590 Organic Nutrient Management

BIOSOLIDS STORAGE

Permit #

WQ0004450000

Biosolids may be temporarily stockpiled and covered with durable plastic or other suitable tarp material. Stockpiled biosolids must be sited on suitable soil, geology, and topography to prevent contamination of waterways. Runoff from stockpiled biosolids must be retained on-site by use of berms or other adequate structures where there is potential transport of biosolids into waterways.

COLLECTING SOIL SAMPLES FOR ANALYSIS

If your biosolids application area is permitted by the Texas Commission on Environmental Quality (TCEQ), follow the sampling requirements of your permit. If application area is not regulated by TCEQ:

Collect a composite sample for each field (or area of similar soils and management not more than about 40 acres) comprised of 10 - 15 randomly selected cores. Each core should represent 0 - 6 inches below the surface. Thoroughly mix each set of core samples, and select about a pint of the mixture as the sample for analysis. Label each sample for the field that it represents. Request that the samples be analyzed for nitrate nitrogen, available phosphorus, potassium, sodium, magnesium, calcium, sulfur, boron, conductivity, and pH. Also note on the samples that they are from a biosolids application area.

SOIL ANALYSIS

If your biosolids application area is permitted by the Texas Commission on Environmental Quality (TCEQ), follow the sampling requirements of your permit. If application area is not regulated by TCEQ:

A base line soil analysis will be completed for all areas to be used for biosolids application. The area will be tested every year that biosolids are applied to monitor P build up. If soil test values rise to a higher category, i.e., Low to Medium, contact the local Soil and Water Conservation District or USDA/NRCS office to revise the Waste Utilization Plan and to assist in development of a plan to reduce P in the field(s).

RECORD KEEPING

If your biosolids application area is permitted by the Texas Commission on Environmental Quality (TCEQ), follow the record keeping requirements of your permit. If application area is not regulated by TCEQ:

Detailed records should be maintained for all applications of biosolids for a period of at least 5 years. Records should include date, time, location, and amount of application; they could also include weather conditions, estimated wind speed and direction, etc. Keep all soil and biosolids analyses for the same period.

OPERATION AND MAINTENANCE

Application equipment should be maintained in good working order, and it should be calibrated at least once a year, so that the desired rate and amount of biosolids will be applied. Any changes in this system must be discussed with Texas Commission on Environmental Quality (TCEQ) prior to their initiation on permitted sites. If your site is not permitted by TCEQ, contact your local NRCS office for updates and assistance.

Page 4 Printed on: 5/1/24 11:38 AM Plan is based on: 590 Organic Nutrient Management

FILTER STRIPS, ETC

Permit #:

WO0004450000

Acres of biosolids exclusion zones are noted in **Table 8**. Location of buffers and other exclusion zones are found on the application area map.

Filter Strips will meet the Texas USDA/NRCS standard (393). A minimum 100 foot wide grassed and/or wooded buffer providing at least 70% ground cover will be maintained between the application area and all water courses, ponds, lakes, wetlands, etc.

Riparian Forested Buffers (if used) will meet the Texas USDA/NRCS Standard (391). When planned, a minimum 50 foot wide wooded buffer will be maintained between the application area and the edge of streams, creeks, rivers, etc. to protect water quality, decrease water temperatures, improve aquatic organism habitat, reduce sediment and nutrient loading and reduce bank erosion. Select harvesting within this zone may be done in accordance with guidelines of the Texas Forest Service. If the wooded buffer is only 50 feet wide, there still must be a minimum 100 feet between biosolids application area and stream bank. Another vegetated buffer will be established or maintained to account for the remaining distance. Biosolids will not be applied within 100 feet of any waterway, stream, creek, pond, lake, or wetlands.

The minimum application distance from private or public wells will be 150 feet and 500 feet respectively. Private wells that are located within a field where biosolids are applied and are part of a center pivot irrigation system are exempt from the set-back requirement. The minimum suggested application distance from schools, institutions, and densely populated residential, business, or similar development is 1000 feet.

Biosolids will not be applied to any buffer areas or any frequently flooded areas, as designated by county soil survey.

PLANNED METHOD OF APPLICATION

Biosolids may be surface applied uniformly, injected, or incorporated below the surface of the soil within the root zone of the planned crop. To reduce soil compaction, applications should only be made when soil conditions are favorable. Biosolids should not be spread if heavy rains are forecast to occur within 1 day of a proposed application date.

ODOR MANAGEMENT

The following steps should be taken when spreading biosolids to reduce problems associated with odor.

- 1. Avoid spreading biosolids when wind will blow odors toward populated areas.
- Avoid spreading biosolids immediately before weekends or holidays, if people are likely to be engaged in nearby outdoor activities.
- 3. Avoid spreading biosolids near heavily traveled highways.

Printed on: 5/1/24 11:38 AM

4. Make biosolids applications in the morning when the air is warming, rather than in the late afternoon.

BIOSOLIDS TESTING

If your biosolids application area is permitted by the Texas Commission on Environmental Quality (TCEQ), follow the sampling and testing requirements of your permit. For applications not permitted by TCEQ, the biosolids need to be analyzed for percent moisture, total nitrogen, total phosphorus, and total potassium.

Plan is based on: 590 Organic Nutrient Management

ESTIMATED NUTRIENT AVAILABILITY

Permit #:

WQ0004450000

Refer to **Table 4** for field specific maximum biosolids application rates. Values in **Table 4** are based on the data in **Table 1**. Application will be based on biosolids analysis. Applying biosolids at **MAXIMUM** rates shown in **Table 4** will result in a more rapid build-up of phosphorus than if applied at lower rates. Phosphorus will build up more rapidly on pastureland than on hayland or cropland, since a much small amount of nutrients are actually removed from the farm by grazing animals. Biosolids may be applied to the same acreage every year, but if the soil test P level exceeds the critical level, or the Texas P Index result changes the rates of application will have to be reduced in accordance with Texas NRCS Nutrient Management Standard (590). This plan is valid only if the annual application of biosolids to the crops listed in **Table 4** does not exceed the per acre rates by more than 10%. If the yield of a crop does not meet the expected goal, the application rate should be adjusted accordingly the following year.

Recommended annual application amounts that are smaller than can physically be applied due to limitation of the application equipment should be doubled and applied to the field every other year. No other P fertilizer may be used the second year, but supplemental N and K2O should be applied, if needed. If the P index critical P level is exceeded, it is recommended that no additional biosolids be applied to those fields until the level is reduced. Biosolids applications should be made at appropriate times to meet crop needs, but may be applied at any time as long as soils are not saturated, snow covered, or frozen, and the annual maximum is not exceeded.

SUPPLEMENTAL NUTRIENTS TO MEET YIELD GOAL

Table 5 shows the estimated amount of nutrients that are applied in pounds per acre for each field where biosolids are applied using per acre amounts shown in **Table 4**. Supplemental nitrogen (N) and potassium (K2O) will be applied to achieve the yield goals noted in **Table 5**, when recommended based on soil analysis and the annual biosolids application does not meet the requirements as detailed in **Table 5**.

Deep soil sampling is recommended on application areas where loamy to clayey soils are present and biosolids have been applied previously. If this deep testing reveals accumulated nitrate N in the root zone, it should be deducted from any supplemental N to be applied to meet the planned yield goal. Sampling in 6 inch increments to a depth of 3 feet is sufficient for most crops.

ADJUSTMENTS TO APPLY LESS THAN THE MAXIMUM RATES

In situations where more land is available than is needed to utilize the maximum application rate on each field, the application rates in **Table 6** can be reduced down to the level that does not exceed the amount of solids available. **Table 7** indicates the amount of nutrients provided and, if needed, the supplemental nutrients which must be applied when the application is based on these reduced rates. The amount of supplemental nutrients in **Table 7** are based on the actual amount of waste available rather than the maximum rate that "**could**" be applied.

The second line from the bottom of **Table 6** on the right has a box that will be "YES" or "NO". When the reduced rates uses all solids to be produced in a year, this box will be "Yes". If the percentages are too low, it will be "No". If "No", either more acreage is needed on which to apply the solids or the solids will need to be transported off-site.

Page2

Printed on: 5/1/24 11:38 AM

Plan is based on: 590 Organic Nutrient Management

PI Index by Field

				nvey_		Soil Test	Date:	12/21/23	12/21/23	12/21/23
WQ0004450000	24	ır	shes	1 1						
WQ	5/1/2024	Waller	>25.0 inches				P Runoff Potential	Medium	Medium	Medium
Permit #:	Date:	Location:	Rainfall:	ts.	nio9 x	əpul is	tоТ	19	18	18
				- On	uo	iso13 l	ioS	9	9	9
V 5.0				64	SSE	lO flor	Rur	-	~	_
t Plan				ot lo		yimity 18 bən	2.7	0	0	0
gemen				.8	poqte	M oing ling		4	4	4
lutrient Management Plan V 5.0			Ph.	d &	odjeM	ojusgi ing		0	0	0
utrient				pl Rate	qA ₂O₂	d oins	Org	9	9	9
				lqqA	P ₂ O ₅	.ganic	ionl Rat	0	0	0
ased				İ	Fevel	i tesT i	lio2	2	_	_
plan is based on:					LVe	nO ffor	Rur	61-L	74-L	74-L
This pl		1	î			əd	lolS	1-3%	0-1%	0-1%
								raze	raze	iraze
								9 mod G	9 mod G	9 mod 6
	084							ac, RG	ac, RG	l ac, RG
Σ	rms 710	t t		17.				e 1 AU/1	e 1 AU/	e 1 AU/
11:39 A	ller Fa	Seawrig						1 Common graze 1 AU/1 ac, RG mod Graze	2 Common graze 1 AU/1 ac, RG mod Graze	3 Common graze 1 AU/1 ac, RG mod Graze
5/1/24	Carl M	Kevin					Crop	Commi	Comm	Comm
Printed on: 5/1/24 11:39 AM	Client Name: Carl Miller Farms 710084	Planner: Kevin Seawright					LMU or Fields Crop	_	2	က
Print	Client	Δ.		iniqu) cim 11.			LMU or	40 ,		

Table 1 - Est. Amount of Waste Allowed for Land Application

Permit #:

WQ0004450000

Biosolids Type Other

Est. Max DRY tons applied annually 708.2

Contact your agronomic consultant, TCEQ or local USDA Natural Resources Conservation Service office, if the application quantities change by more than 10 percent so your plan can be revised.

> **Estimated Nutrient Availabilty** Solids

**

pounds / pounds / yr ton N 3,644 5.1 P205 41,025 57.9

8.3

** Effluent Values Based on Analysis

5,874 ** Solids Values Based on Analysis

K20

Explanation of Other Biosolids Type:

Class B- aerobically digested meeting Pathogen and Vector requirements

Default values were used on all fields for plant removal of nutrients and yield levels.

TABLE 2. A Nutrient Management Plan (NMP) is required where Soil Test P Level 1/2 is:

- · less than 200 ppm statewide or
- or < 350 ppm in arid areas 2/ with a named stream > one mile.

P – Index Rating	Maximum TMDL Annual P Application Rate 5/	Maximum Annual P Application	Maximum Biennial Application Rate		
Very Low, Low	Annual Nitrogen (N) Requirement	Annual Nitrogen (N) Requirement	2.0 Times Annual N Requirement		
Medium	2.0 Times Annual Crop P Requirement 3/	2.0 Times Annual Crop P Requirement 3/	2.0 Times Annual N Requirement		
High ⁵	1.5 Times Annual Crop P Requirement ^{3/}	1.5 Times Annual Crop P Requirement 3/	Double the Maximum Annual P Application Not to Exceed 2 times the Annual N Requirement		
Very High ⁵	1.0 Times Annual Crop P Requirement 3/	1.0 Times Annual Crop P Requirement 3/	Double the Maximum Annual P Application Not to Exceed 2 times the Annual N Requirement		

TABLE 2a. A Nutrient Utilization Plan (NUP) is required by TCEQ where Soil Test P Level 1/2 is:

- equal to or greater than 200 ppm in non-arid areas ^{2/} or
- equal to or greater than 350 ppm in arid areas ^{2/2} with a named stream greater than one mile or
- equal to or greater than 200 ppm in arid areas ^{2l} with a named stream less than one mile.

P – Index Rating	Maximum TMDL Annual P Application Rate ^{5/}	Maximum Annual P Application	Maximum Biennial Application Rate 2.0 Times Annual N Removal		
Very Low, Low	1.0 Times Annual Crop P Removal 4/	Annual N Crop Removal			
Medium	1.0 Times Annual Crop P Removal ^{4/}	1.5 Times Annual Crop P Removal 4/	Double the Maximum Annual P Application Not to Exceed 2 times the Annual N Crop Removal		
High ⁵	1.0 Times Annual Crop P Removal ^{4/}	1.0 Times Annual Crop P Removal 4/	Double the Maximum Annual P Application Not to Exceed 2 times the Annual N Crop Removal		
Very High ⁵	0.5 Times Annual Crop P Removal ^{4/}	0.5 Times Annual Crop P Removal 4/	Double the Maximum Annual P Application Not to Exceed 2 times the Annual N Crop Removal		

Footnotes Applicable to both Tables

- 1/ Soil test P will be Mehlich III by inductively coupled plasma (ICP).
- 2/ Non-arid areas, counties receiving => 25 inches annual rainfall, will use the 200 ppm P level while arid areas, counties receiving < 25 inches of annual rainfall, will use the 350 ppm P level. See map in TX Agronomy Technical Note 15, Phosphorus Assessment Tool for Texas, for county designations.</p>
- 3/ Not to exceed the annual nitrogen requirement rate.
- 4/ Not to exceed the annual nitrogen removal rate.
- 5/ When soil test phosphorus levels are ≥ 500 ppm, with a P-Index rating of "High" or "Very High", there will be no additional application of phosphorus to a CMU or field.

Page 7 Printed on: 5/1/24 11:39 AM Plan is based on: 590 Organic Nutrient Management Plan V 5.0

Table 3 - Crop Removal Rates (For Information Only)

Permit #: WQ0004450000

tal Est. Total Est. Total Est. N P2Ot K2O

LMU or Field No.		Crop and P Index Common graze 1 AU/	Level 1 ac, RG mod Graze M 1 ac, RG mod Graze M 1 ac, RG mod Graze M	inun-	TCEQ Plan Type NMP NMP	Arctual Crop Analysis or Default	Total Est. N Removal lbs/Ac/Yr 268 268 268	Total Est. P ₂ O ₅ Removal lbs/Ac/Yr 87 87 87	Total Est. K ₂ O Removal lbs/Ac/Yr 239 239 239
					honor Laure Avera	Delian I	200	01	200
Sanda Sila Talah	notel c	restrantino Agricari			1 10111				"Hinto
Amenda During Device	Copers	Mariett Affice (2011	S DATE	n a leven.			dyniz ig
	to che	men of sold and song		THE STATE OF THE S	e Li (T milita) maria	LIVIY 250 C	Landrace man Contract man man		tun a in anti na t anti na t
in Tilgg	inger de S	na mumikahi		1 11	u Joi	AT mus		4.00	(America)
		a multiples		A ma				W	ententar la
A law serve a sejan 9 to 11 a gifte	in In I o	paril tarry, Li train the gill, m) qu	ide limit Pri	en			¹ aým
land Ora		Marillangarati Light Completion 18 by January		l e	2 1				
,63 mm	in the last	us folk partet film p art om mont i KE o		min t	i Signi Hillion isl Sillion	oja Postini Dosesti Ilmesti Postini			

NOTE: When crops are used for grazing, only a portion of the nutrients used by the crop are removed from the field in the live weight gain of the livestock, the remainder is returned to the land in manure and urine. The book "Southern Forages" estimates the N, P, & K removed in 100 pounds live weight gain as follows: 2.5 lbs N, 0.68 lbs P, 0.15 lbs K

Table 4 - Maximum Solids Application per Field

Permit #:

WQ0004450000

Est. Solids Produced Annually (wet tons) 0	LMU or Field No. 1 2 3	Acres 37.1 55.0 72.0	Crop Management and PI runoff potential Common graze 1 AU/1 ac, RG mod Graze M Common graze 1 AU/1 ac, RG mod Graze M Common graze 1 AU/1 ac, RG mod Graze M	Current Soil Test P Level (ppm) 125 25 46	Max Annual P2O5 lbs/acre 250 250 250	A A A Amnal/Biennial	Maximum Solids Allowable Tons/Acre 4.3 4.3	Maximum Allowable Application Per field (Tons) 160 237 311
Total Solids Application Acres	1							
Application Allowable on-site (tons) 708.2 Adequate Solids to be used off site (tons) 0.0					,			

Table 5 - Nutrients Applied/Needs at Maximum Solids Rates

Permit #:

WO0004450000

	Maximum Rates						
LMU / Field #	N Lb/ac	P ₂ O ₅ Lb/ac	K ₂ O Lb/ac				
1	22	250	36				
2	22	250	36				
3	22	250	36				

		n Rates	
N Lb/ac	P ₂ O ₅ Lb/ac	K ₂ O Lb/ac	Lime T/A
285	0	0	0
275	0	0	0
280	0	0	0
			100
			The state of the s
			The project
			March 1

			Solids Application Rates	1			Permit #:	WQ0004	Planned
LMU or Field No.	ouble crop	A	Crop Management and PI runoff potential	Current Soil Test P ppm	Annual / Riennial	Max Rate tons/ac	% of Maximum to apply	Planned Solids tons/ac	Solids pe field (tons)
	D		Common graze 1 AU/1 ac, RG mod Graze M	125			75	3.2	120.1
1		37.1	Common graze 1 AU/1 ac, RG mod Graze M Common graze 1 AU/1 ac, RG mod Graze M		A	4.3			
2		55.0	784	25	A	4.3	75	3.2	178.0
3		72.0	Common graze 1 AU/1 ac, RG mod Graze M	46	A	4.3	75	3.2	233.0
Acres	T	164.1		Will the	plan	ned per	acre applic	ation rates	531.2
70	B		Tons wet of solids to be used				the Solids?		NO
				Tons to be used off-site at planned rates					

Page 11

Printed: 5/1/24 11:40 AM

Plan is based on: 590 Organic Nutrient Management Pla

Table 7 - Nutrients Applied/Needed at Planned Solids Rates

Permit #:

WQ0004450000

Red cells? Proceed to adjustment page and fix.

	Nutrients	Applied at Plant	ned Rates	Supplemer	ntal Nutrients Ne	eded at Planne	d Rates
LMU / Field #	N Lb/ac	P ₂ O ₅ Lb/ac	K ₂ O Lb/ac	N Lb/ac	P ₂ O ₅ Lb/ac	K ₂ O Lb/ac	Lime T/Ac
1	17	188	27	290	0	0	0
2	17	188	27	280	0	0	0
3	17	188	27	285	. 0	0	0
			7				

Printed on: 5/1/24 11:40 AM

Plan is based on: 590 Organic Nutrient Management Plan V 5.0

Table 8 - Non Application Areas by Field

Permit #:

WQ0004450000

FS = 393-Filter Strip; FB = 386-Field Border, RFB = 391-Riparian Forest Buffer; OLEA = Other Land Excluded Ar

	FS	FB	RFB	OLEA	Total	TAGIA	FS	FB	RFB	OLEA	Total
LMU / Field #	Acres	Acres	Acres		Excluded	LMU / Field #	Acres	Acres	Acres	Acres	Excluded
1	0.0	0.0	110100	110100		I Iold II					
2	0.0	0.0									
2 3	0.0	0.0									
	0.0	0.0									
<u>L</u>	<u> </u>			01 00			0.0	0.0	0.0	0.0	0.0
See Ap	plication	Map for	location o	t buffers		Totals	0.0	0.0	0.0	0.0	0.0

See Application Map for location of buffers
Total 590-633 application acres: 164.1

Totals 0.0 0.0 0.0 0.0 0.0 Total 590-633 Field Acres: ERROR

Page 13 Printed on: 5/1/24 11:40 AM

Plan is based on: 590 Organic Nutrient Management Plan V 5.0

Table 8 - Non Application Areas by Field

Permit #:

WQ0004450000

FS = 393-Filter Strip; FB = 386-Field Border, RFB = 391-Riparian Forest Buffer; OLEA = Other Land Excluded Ar

LMU/	FS	FB	RFB	OLEA	Total	13.01/	FS	FB	RFB	OLEA	Total
Field #	Acres	Acres	Acres	Acres	Excluded	LMU / Field #	Acres	Acres	Acres	Acres	Excluded
1	0.0	0.0				, 101d #			1	1 1 201 00	aciducu
2	0.0	0.0									
3	0.0	0.0			-1.5						
1											
See Anni	lication N	Ian for le	ocation of	huffers	LUNCI	Totals	0.0	0.0	0.0	0.0	0.0

See Application Map for location of buffers
Total 590-633 application acres: 164.1

Totals 0.0 0.0 0.0 0.0 0.0 0.0 Total 590-633 Field Acres: ERROR

Page 13

Printed on: 5/1/24 11:40 AM

Plan is based on: 590 Organic Nutrient Management Plan V 5.0

Waste Utilization and Nutrient Management Data Entries

General Data

Date:

5/1/2024

Farmer Name:

Carl Miller Farms 710084

County in which the Land is located:

Waller

Type of Waste Plan:

Biosolids

Is this plan in a TMDL watershed for nutrients?

No

Yes or No:

Is any field PERMITTED by TCEQ?

Yes

Yes or No:

Permit #:

WQ0004450000

All other entries on General Page appear on the Cover Page

Biosolids Information

Plan Year :	2024
Biosolid Type :	Other
Analysis Date:	5/15/2023
Nitrogen % From Biosolids Analysis:	0.40
Phosphorus % From Biosolids Analysis:	1.58
Potassium % From Biosolids Analysis:	0.43
Moisture % From Biosolids Analysis:	20.00
Does this site generate biosolids?	No
If B11 = "Yes", How many dry tons/year?	

Explain Other:

Class B- aerobically digested meeting Pathogen and Vector

requirements

This plan is based on: rganic Nutrient Management Plan V 5.0

Printed on:

5/1/24 11:40 AM

Field and Buffer Entries

Permit #:

WQ0004450000

Printed on: 5/1/24 11:41 AM

Plan is based on: 590 Organic Nutrient Management Plan

FS = 393-Filter Strip, FB = 386-Field Border, RFB = 391-Riparian Forest Buffer, OLEA = Other Land Exclusion Areas or non-application areas (i.e. headquarters, freq. flooded areas, wooded areas, water bodies, etc)

NOTE: Field Border (FR) is expressed in ACDES on this spreadshoot but as LINEAD EFET a

Field No.	Total LMU or Field Acres	FS	FB	RFB	OLEA	Total Buffer Acres	Actual Application Acres	This Column Intentionally Left Blank
1	71.44				34.34	34.3	37.1	
2	63.92				8.92	8.9	55.0	1
3	91.79			N/ N	19.79	19.8	72.0	
	n yinganacii ili i	LAVE		10000		90,1 00	(POLE)	
114	ALMS SCHOOL	III III II		SUL LEVE		THE STATE OF	miller .	
	111111111			-115/11		THE PERSON NAMED IN	eurie ikiri iii	The respective
				-0=4-		wheel the		to the state of th
				-				- Marian and Allendaria
							HARMAN HARMAN PARLA	
		7.7.7.2.2.2.1.1.7.1.3.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1				7/10/11/11	LUBIL DE ARTLES	CATELON BULLING
			The Committee of the	map ing	pro homili	The page that	an office I don't	
			VIA.	J46 F 1 1 1 1		are to Mile		
_								

Soil Test, Crop Information and Plant Analysis Data Entries

	Soil Test Analysis	Analysis						s		nalysis &	Plant Analysis & Yield (optional) Use Only When Crop Removal is Required	Plant Analysis & Yield (optional) Use Only When Crop Removal is Required
z	۵	. 🛂	Lime (enter amt or leave		LMU or	Appl.	Crop/Land-Use and P Index Runoff Potential	lant Analysi (N \ Y	14 /0	L /6	2 %	Yield Air Dry Production
(ppm) 46 12	(ppm)	(ppm)	blank)	Pountry	Field #	Acres 37.1	Common graze 1 AU/1 ac. RG mod Graze M	d Z		1.0/	N 8/	(insignal)
52.06	25.03	404.94			2	55.0	Common graze 1 AU/1 ac, RG mod Graze M	z		1		
19.91	46.3	442.69			3	72.0	Common graze 1 AU/1 ac, RG mod Graze M	Z			i i	
										1		
									Ca.			
									rige			
										W-		
									1 1	eri n i		9344
										e de		
									inus inus	entre		
									THO .			01
									un t			
												54

Solids Application Rate Entries

71	10	Set the Planned Application Rates				Permit #:	W
70	08	Maximum dry tons that may be applied.	1	Vill the	planned ra	tes use the	Maximum
				Di	y Tons to be	e used on-s	ite at plar
MU or Field No.	Acres	Crop Management and PI runoff potential	Current Soil Test P ppm	Crop P ₂ O ₅ Req.	Annual or Biennial Application Cycle	Maximum Solids Allowable Tons/Ac	Enter % o Maximum Planned to Apply
1	37.1	Common graze 1 AU/1 ac, RG mod Graze M	125	125	Annual	4.3	75.0
2	55.0	Common graze 1 AU/1 ac, RG mod Graze M	25	125	Annual	4.3	75.0
3	72.0	Common graze 1 AU/1 ac, RG mod Graze M	46	125	Annual	4.3	75.0
					20.00		
				1			
				[]			
			1 0		3		

Printed on: 5/1/24 11:41 AM

Plan is based on: 590 Organi

Jon Niermann, Chairman Emily Lindley, Commissioner Bobby Janecka, Commissioner Kelly Keel, Interim Executive Director

Texas Commission on Environmental Quality

Protecting Texas by Reducing and Preventing Pollution

July 14, 2023

ANDY DRENNAN K-3 RESOURCES INC 9458 FM 362 RD PATTISON, TX 77423-1706

Re: Sludge Transportation Registration

K3 RESOURCES EL CELOSO RANCH

Registration Number: 22430

CN603111196

RN111333043

Dear Andy Drennan:

The Section Manager of the Registration and Reporting Section has issued the enclosed registration in accordance with Title 30 of the Texas Administrative Code (30 TAC) Chapter 312 Subsection (§) 312.147 (b). This action is taken under authority delegated by the Executive Director of the Texas Commission on Environmental Quality.

Issuance of this authorization is not an acknowledgment that your operation is in full compliance with state and federal rules and regulations. Failure to comply with all rules and regulations may result in enforcement action and/or the revocation of your registration.

Your registration number is required to appear on all tanks and containers used for the collection and transportation of sewage sludge and similar waste. It should also be used on all correspondence regarding your sludge registration.

A copy of your sludge transporter registration, a copy of your application for registration and copies of all amendments to this registration must be available at all times and at all locations where business is being transacted under this registration, including all motorized vehicles operated under this registration.

If you have any questions or comments, please contact the Sludge Transporter Registration Program at (512) 239-6413.

Sincerely.

Shannon W. Frazier, Manager Registration & Reporting Section

Enclosures

CC: TCEQ Region 12, HOUSTON

SLUDGE TRANSPORTER

Registration Number: 22430

CN603111196

RN111333043

Print Date: July 14, 2023

For the Commission

Company: K-3 RESOURCES INC

Registered Since: June 25, 2002 Expiration Date: August 31, 2024

Regulated Entity: K3 RESOURCES EL CELOSO RANCH

Status: ACTIVE

Organization Type: PARTNERSHIP

County: WALLER

Transport Waste into Texas: NO

TCEQ Region: 12

Transport Waste out of Texas: NO

Physical Address:

9458 FM 362 RD

PATTISON, TX 77423-1706

Contact Information

Contact: ANDY DRENNAN

Phone: 281-375-5778

Fax:

E-Mail: COMPLIANCE@K3BMI.COM

Mailing Address:

9458 FM 362 RD

PATTISON, TX 77423-1706

Sticker Numbers Issued and Listed below will expire on August 31, 2024:

This is your registration which reflects the information submitted on your application to the Register or Renew as a Transporter of Municipal Sludge(s) and Similar Wastes. Requirements for transportation are provided in accordance with 30 TAC Chapter 312. Issuance of this registration is not acknowledgement by the TCEQ that your operation is in full compliance with the rules and regulations of the TCEQ. Changes or additions referred to this notice require written notification to the TCEQ. Please keep a copy of this registration in every vehicle transporting sludge and all locations where business is being transacted under this registration.

SLUDGE TRANSPORTER

Registration Number: 22430

CN603111196

RN111333043

For the Commission

Print Date: July 14, 2023

Disposal Facility Information

Facility ID	Waste Type	Facility Name	Program
2234D	DS; GS; PP; WW	LIQUID ENVIRONMENTAL SOLUTIONS	SLUDGETR
2270	WT; WW	FORT BEND REGIONAL LANDFILL	MSWDISP
720056	WT; WW	K-3 RESOURCES	SLUDGETR
WQ0004445000	WT; WW	CARL MILLER FARMS	SLUDGE
WQ0004448000	WT; WW	CARL MILLER FARMS 4	SLUDGE
WQ0004450000	WT; WW	CARL MILLER FARMS	SLUDGETR
WQ0004454000	WT; WW	JEFFRIES RANCH	SLUDGE
WQ0004518000	DS; WT; WW	EL CELOSO RANCH	SLUDGE
WQ0004538000	DS; WT; WW	WALLER LIME STABILIZATION FACILITY	SLUDGE
WQ0005222000	WT; WW	ORTEGA RANCH	SLUDGETR
WQ0005248000	WT; WW	CARL MILLER FARMS SOUTH	SLUDGETR
WQ0010137033	DS; PP	STEVEN M CLOUSE WATER RECYCLING CENTER	WWPERMIT
WQ0010543011	DS; PP; WT; WW	WALNUT CREEK WWTP	WWPERMIT

Waste Types

DS - Septic Tank Waste

GS - Grease Trap Waste

GT - Grit Trap Waste

PP - Chemical Toilet Waste

WT - Water Treatment Residuals WW- Sewage Sludge/Biosolids

SLUDGE TRANSPORTER

Registration Number: 22430

CN603111196

RN111333043

XXeel

Print Date: July 14, 2023

For the Commission

Vehicle Information

License Plate	Year	Vehicle Make	Sticker Issued	Vehicle Capacity
KBP0146	2012	KENWORTH-T800	07/20/2012	30 CY
R091387	2013	KENWORTH-T800 DC	02/18/2013	7000 GAL
R091378	2012	KENWORTH-T800 DC	06/30/2016	7000 GAL
R181153	2015	KENWORTH-T800 DC	06/30/2016	7000 GAL
R251143	2016	KENWORTH-T800 DC	06/30/2016	7000 GAL
R251144	2016	KENWORTH-T800 DC	06/30/2016	7000 GAL
R091412	2013	KENWORTH-T800 DC	08/10/2018	7000 GAL
R337867	2018	KENWORTH-T800 DC	08/10/2018	7000 GAL
LPP7627	2018	KENWORTH-T800	08/10/2018	30 CY
R374785	2019	KENWORTH-T800 DC	08/10/2018	7000 GAL
R439393	2019	567 DC PETERBILT	10/29/2019	7000 GAL
R439394	2019	567 DC PETERBILT	10/29/2019	7000 GAL
R439395	2019	567 DC PETERBILT	10/29/2019	7000 GAL
R439396	2019	567 DC PETERBILT	10/29/2019	7000 GAL
R439397	2019	567 DC PETERBILT	10/29/2019	7000 GAL
R439398	2019	567 DC PETERBILT	10/29/2019	7000 GAL
R411512	2019	389 PETERBILT	10/29/2019	7000 GAL
R091413	2013	KENWORTH-T800 DC	10/29/2019	7000 GAL
R091433	2015	KENWORTH-T800 DC	10/29/2019	7000 GAL
R379075	2019	KENWORTH-T880 DC	10/29/2019	7000 GAL
R438741	2019	567 PETERBILT	06/11/2020	7000 GAL
R453415	2020	KENWORTH T-880	06/11/2020	7000 GAL
R411923	2018	KENWORTH T800 DC	03/03/2021	7000 GAL
R419006	2019	389 PETERBILT	06/23/2021	7000 GAL
R091400	2013	KENWORTH-T800 DC	09/01/2021	7000 GAL
R091423	2014	KENWORTH T800 DC	09/01/2021	7000 GAL
R091432	2015	KENWORTH T800 DC	09/01/2021	7000 GAL
337866	2018	KENWORTH T800 DC	09/01/2021	7000 GAL
R361379	2018	KENWORTH T880 DC	09/01/2021	7000 GAL
R374784	2019	KENWORTH-T880 DC	09/01/2021	7000 GAL
R391671	2018	KENWORTH-T800 DC	09/01/2021	7000 GAL
411922	2018	KENWORTH T800 DC	09/01/2021	7000 GAL
411513	2019	389 PETERBILT	09/01/2021	7000 GAL
419007	2019	389 PETERBILT	09/27/2021	7000 GAL
136782	2015	KENWORTH T880	09/27/2021	7000 GAL
3K10489	2005	INTERNATIONAL	06/16/2022	2100 GAL
1VW2388	2019	PETERBILT 348	06/16/2022	2100 GAL
R091422	2014	KENWORTH T800 DC		7000 GAL
R356898	2018	KENWORTH-T800		7000 GAL

SLUDGE TRANSPORTER

Registration Number: 22430

CN603111196

RN111333043

XXeel

Print Date: J	uly 14, 2023			-	For the Commission
R562815	2022	KENWORTH DC T880	06/16/2022	7000 GAL	
R562816	2022	KENWORTH DC T880	06/16/2022	7000 GAL	
R562817	2022	KENWORTH DC T880	06/16/2022	7000 GAL	
R562818	2022	KENWORTH DC T880	06/16/2022	7000 GAL	
R574005	2022	KENWORTH T-880	06/16/2022	7000 GAL	
R574006	2022	KENWORTH T-880	06/16/2022	7000 GAL	
R582315	2022	KENWORTH W 900	06/16/2022	7000 GAL	
R582316	2022	KENWORTH W 900	06/16/2022	7000 GAL	
R594541	2022	KENWORTH W 900	06/16/2022	7000 GAL	
R604431	2019	KENWORTH T-880	06/16/2022	2100 GAL	
RCP1653	2020	KENWORTH T-880	06/16/2022	30 CY	
RCP1654	2021	KENWORTH T880	06/16/2022	30 CY	
RCP1655	2021	KENWORTH T880	06/16/2022	30 CY	
PPP7885	2016	KENWORTH	02/24/2023	7000 GAL	
R356897	2018	KENWORTH	02/24/2023	7000 GAL	
R379076	2019	KENWORTH	02/24/2023	7000 GAL	
R391670	2018	KENWORTH	02/24/2023	7000 GAL	
2452J70	2024	PETERBUILT	07/13/2023	7000 GAL	
2452J71	2024	PETERBUILT	07/13/2023	7000 GAL	
2604R22	2024	PETERBUILT	07/13/2023	7000 GAL	
2604T37	2024	PETERBUILT	07/13/2023	7000 GAL	
2604U32	2023	PETERBUILT	07/13/2023	7000 GAL	
R379077	2019	KENWORTH	07/13/2023	7000 GAL	
R361380	2018	KENWORTH	07/13/2023	7000 GAL	

^{*}UOM - Units of Measure

Print Date: July 14, 2023

Texas Commission on Environmental Quality

SLUDGE TRANSPORTER

Registration Number: 22430

CN603111196

RN111333043

For the Commission

Leel

10 April 2024

K-3 BMI Renee Tom P.O. Box 2236 Alvin, TX 77511

K-3BMI

Enclosed are the results of analyses for samples received by the laboratory on 21-Dec-23 15:00. The analytical data provided relates only to the samples as received in this laboratory report.

ELI certifies that all results are NELAP compliant and performed in accordance with the referenced method except as noted in the Case Narrative or as noted with a qualifier. Any reproductions of this laboratory report should be in full and only with the written authorization from the client.

The total number of pages in this report is 11

Thank you for selecting ELI for your analytical needs. If you have any questions regarding this report, please contact us.

Sincerely,

Laura Bonjonia For Sherry Walker

Customer Service Representativ

Laura Brynin

TNI

Certificate No: T104704265-22-20

Envirodyne Laboratories, Inc 11011 Brooklet Dr., # 230 Houston, TX 77099 281.568.7880 Phone www.envirodyne.com

Client:

K-3 BMI

Project:

K-3BMI

Work Order: 23L2469

Reported:

10-Apr-24 15:26

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
4450 Field 1 0"-6"	23L2469-01	Solids	19-Dec-23 11:17	21-Dec-23 15:00
4450 Field 1 6"-24"	23L2469-02	Solids	19-Dec-23 12:22	21-Dec-23 15:00
4450 Field 2 0"-6"	23L2469-03	Solids	19-Dec-23 11:17	21-Dec-23 15:00
4450 Field 2 6"-24"	23L2469-04	Solids	19-Dec-23 11:17	21-Dec-23 15:00
4450 Field 3 0"-6"	23L2469-05	Solids	19-Dec-23 11:49	21-Dec-23 15:00
4450 Field 3 6"-24"	23L2469-06	Solids	19-Dec-23 11:49	21-Dec-23 15:00

Envirodyne Laboratories, Inc.

ENVIRODYNE LABORATORIES, INC.

 CLIENT:
 K-3BMI
 LAB NUMBER:
 23L2469-01 and -02

 LOCATION:
 4450 FIELD 1
 DATE RECEIVED:
 December 21, 2023

SAMPLED BY: K-3 DATE ANALYZED: March 20, 2024

DATE COLLECTED: December 19, 2023 DATE COMPLETED: March 25, 2024

PARAMETERS:	SOIL	SOIL	METHOD	Reporting Limit
(*) DENOTES: DRY WEIGHT BASIS	0" - 6"	6" - 24"		
pH - Soil (UNITS)	6.35	6.51	EPA SW 846-9045C	0.10
TOT.NITROGEN-N * (mg/kg)	221.37	226.60	Calc	0.01
TKN-N * (mg/kg)	175.25	158.20	SM 4500 NH3 D	0.01
NO3-N * (mg/kg)	46.12	68.38	SM 4500-NO3 E 1 N KCI	0.01
NH3-N * (mg/kg)	46.12	48.84	SM 4500-NH3 F 1 N KCI	0.01
NH4-N * (mg/kg)	48.85	51.73	Calc	0.01
TOTAL PHOSPHORUS, Extractable * (mg/l	124.52	112.34	SM 4500-P E	0.01
POTASSIUM, Extractable * (mg/kg)	248.11	300.00	EPA SW 846-6010B	0.002
CALCIUM, Extractable * (mg/kg)	978.78	1,420.00	EPA SW 846-6010B	0.001
MAGNESIUM, Extractable * (mg/kg)	255.83	609.00	EPA SW 846-6010B	0.001
SODIUM, Extractable * (mg/kg)	184.47	195.37	EPA SW 846-6010B	0.001
CONDUCTANCE at 25c (ummhos/cm) 2:1 V/v (Water/Soil)	219	253	EPA SW 846-9050A	
CONDUCTANCE at 25c (dS/m) 2:1 V/v (Water/Soil)	0.00219	0.00253	Calc	
ARSENIC * (mg/kg)	2.03	0.66	EPA SW 846-6010B, 3050	0.001
CADMIUM * (mg/kg)	1.16	0.52	EPA SW 846-6010B, 3050	0.001
CHROMIUM * (mg/kg)	13.84	11.04	EPA SW 846-6010B, 3050	0.005
COPPER * (mg/kg)	57.37	14.55	EPA SW 846-6010B, 3050	0.002
LEAD * (mg/kg)	12.51	6.93	EPA SW 846-6010B, 3050	0.005
MERCURY * (mg/kg)	0.214	0.089	EPA SW 846-7471, 3050	0.0002
MOLYBDENUM * (mg/kg)	1.03	0.50	EPA SW 846-6010B, 3050	0.001
NICKEL * (mg/kg)	2.88	1.61	EPA SW 846-6010B, 3050	0.008
SELENIUM * (mg/kg)	2.88	1.20	EPA SW 846-6010B, 3050	0.002
ZINC * (mg/kg)	164.00	27.55	EPA SW 846-6010B, 3050	0.001
TOTAL SOLIDS (%)	89.60	86.50	SM 2540 B	

ENVIRODYNE LABORATORIES, INC.

 CLIENT:
 K-3BMI
 LAB NUMBER:
 23L2469-03 and -04

 LOCATION:
 4450 FIELD 2
 DATE RECEIVED:
 December 21, 2023

 SAMPLED BY:
 K-3
 DATE ANALYZED:
 March 20, 2024

DATE COLLECTED: December 19, 2023 DATE COMPLETED: March 25, 2024

PARAMETERS:	SOIL	SOIL	METHOD	Reporting Limit
(*) DENOTES: DRY WEIGHT BASIS	0" - 6"	6" - 24"		
pH - Soil (UNITS)	6.45	6.28	EPA SW 846-9045C	0.10
TOT.NITROGEN-N * (mg/kg)	195.21	159.90	Calc	0.01
TKN-N * (mg/kg)	143.15	109.30	SM 4500 NH3 D	0.01
NO3-N * (mg/kg)	52.06	50.60	SM 4500-NO3 E 1 N KCl	0.01
NH3-N * (mg/kg)	67.07	54.65	SM 4500-NH3 F 1 N KCl	0.01
NH4-N * (mg/kg)	71.04	57.88	Calc	0.01
TOTAL PHOSPHORUS, Extractable * (mg/l	25.03	10.12	SM 4500-P E	0.01
POTASSIUM, Extractable * (mg/kg)	404.94	614.50	EPA SW 846-6010B	0.002
CALCIUM, Extractable * (mg/kg)	1,409.52	1,785.19	EPA SW 846-6010B	0.001
MAGNESIUM, Extractable * (mg/kg)	585.73	1,058.57	EPA SW 846-6010B	0.001
SODIUM, Extractable * (mg/kg)	200.20	202.40	EPA SW 846-6010B	0.001
CONDUCTANCE at 25c (ummhos/cm) 2:1 V/v (Water/Soil)	345	259	EPA SW 846-9050A	
CONDUCTANCE at 25c (dS/m) 2:1 V/v (Water/Soil)	0.00345	0.00259	Calc	
ARSENIC * (mg/kg)	6.87	5.04	EPA SW 846-6010B, 3050	0.001
CADMIUM * (mg/kg)	0.97	0.64	EPA SW 846-6010B, 3050	0.001
CHROMIUM * (mg/kg)	28.53	15.99	EPA SW 846-6010B, 3050	0.005
COPPER * (mg/kg)	2.89	6.72	EPA SW 846-6010B, 3050	0.002
LEAD * (mg/kg)	14.42	26.41	EPA SW 846-6010B, 3050	0.005
MERCURY * (mg/kg)	0.0165	0.01	EPA SW 846-7471, 3050	0.0002
MOLYBDENUM * (mg/kg)	0.56	<0.25	EPA SW 846-6010B, 3050	0.001
NICKEL * (mg/kg)	11.41	6.60	EPA SW 846-6010B, 3050	0.008
SELENIUM * (mg/kg)	<0.25	<0.25	EPA SW 846-6010B, 3050	0.002
ZINC * (mg/kg)	32.33	36.53	EPA SW 846-6010B, 3050	0.001
TOTAL SOLIDS (%)	88.40	87.60	SM 2540 B	

Run hys

ENVIRODYNE LABORATORIES, INC.

 CLIENT:
 K-3BMI
 LAB NUMBER:
 23L2469-05 and -06

 LOCATION:
 4450 FIELD 3
 DATE RECEIVED:
 December 21, 2023

SAMPLED BY: K-3 DATE ANALYZED: March 20, 2024

DATE COLLECTED: December 19, 2023 DATE COMPLETED: March 25, 2024

PARAMETERS:	SOIL	SOIL	METHOD	Reporting Limit
(*) DENOTES: DRY WEIGHT BASIS	0" - 6"	6" - 24"		
pH - Soil (UNITS)	6.12	6.37	EPA SW 846-9045C	0.10
TOT.NITROGEN-N * (mg/kg)	229.95	173.56	Calc	0.01
TKN-N * (mg/kg)	180.04	129.08	SM 4500 NH3 D	0.01
NO3-N * (mg/kg)	49.91	44.48	SM 4500-NO3 E 1 N KCl	0.01
NH3-N * (mg/kg)	53.48	50.58	SM 4500-NH3 F 1 N KCl	0.01
NH4-N * (mg/kg)	56.64	53.53	Calc	0.01
TOTAL PHOSPHORUS, Extractable * (mg/l	46.30	43.61	SM 4500-P E	0.01
POTASSIUM, Extractable * (mg/kg)	442.69	480.99	EPA SW 846-6010B	0.002
CALCIUM, Extractable * (mg/kg)	2,209.45	2,318.16	EPA SW 846-6010B	0.001
MAGNESIUM, Extractable * (mg/kg)	637.61	825.75	EPA SW 846-6010B	0.001
SODIUM, Extractable * (mg/kg)	178.25	174.43	EPA SW 846-6010B	0.001
CONDUCTANCE at 25c (ummhos/cm) 2:1 V/v (Water/Soil)	126	114	EPA SW 846-9050A	
CONDUCTANCE at 25c (dS/m) 2:1 V/v (Water/Soil)	0.00126	0.00114	Calc	
ARSENIC * (mg/kg)	0.53	2.31	EPA SW 846-6010B, 3050	0.001
CADMIUM * (mg/kg)	1.02	0.87	EPA SW 846-6010B, 3050	0.001
CHROMIUM * (mg/kg)	16.67	19.27	EPA SW 846-6010B, 3050	0.005
COPPER * (mg/kg)	52.23	31.92	EPA SW 846-6010B, 3050	0.002
LEAD * (mg/kg)	13.73	15.52	EPA SW 846-6010B, 3050	0.005
MERCURY * (mg/kg)	0.179	0.061	EPA SW 846-7471, 3050	0.0002
MOLYBDENUM * (mg/kg)	0.57	<0.25	EPA SW 846-6010B, 3050	0.001
NICKEL * (mg/kg)	3.91	5.19	EPA SW 846-6010B, 3050	0.008
SELENIUM * (mg/kg)	0.94	<0.25	EPA SW 846-6010B, 3050	0.002
ZINC * (mg/kg)	95.37	67.68	EPA SW 846-6010B, 3050	0.001
TOTAL SOLIDS (%)	85.00	88.20	SM 2540 B	

10-Apr-24 15:26

Client:

K-3 BMI

Project: Work Order: K-3BMI 23L2469 Reported:

Wet Chemistry - Quality Control Envirodyne Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3L6186 - Inorganics										
Duplicate (B3L6186-DUP1)	Source	ce: 23L1494	-05	Prepared &	: Analyzed:	28-Dec-23		2-18		
Total Solids	1,17	0.01	%		1.18			0.851	20	
Volatile Solids	0.910	0.01			0.920			1.09	20	
Batch B3L6187 - Inorganics										
Duplicate (B3L6187-DUP1)	Source	e: 23L2110-	-08	Prepared &	Analyzed:	28-Dec-23				
Total Solids	1.70	0.01	%		1.75		120000000000000000000000000000000000000	2.90	20	
Volatile Solids	1.28	0.01	**		1.32			3.08	20	
Batch B4A3526 - Inorganics										
Blank (B4A3526-BLK1)				Prepared &	Analyzed:	04-Jan-24				
Conductivity at 25 C	<30	30	umho/cm							
Duplicate (B4A3526-DUP1)	Source	e: 23L2339-	-07	Prepared & Analyzed: 04-Jan-24						
Conductivity at 25 C	106	30	umho/cm		106			0.00	20	
Reference (B4A3526-SRM1)				Prepared &	Analyzed:	04-Jan-24				
Conductivity at 25 C	182		umho/cm	180		101	90-110			
Batch B4B5494 - Inorganics										
Blank (B4B5494-BLK1)				Prepared &	Analyzed:	28-Feb-24				
Phosphorus, Total	< 0.10	0.10	mg/L							

Envirodyne Laboratories, Inc.

Client: K-3 BMI

Project: K-3BMI Work Order: 23L2469 Reported:

10-Apr-24 15:26

Wet Chemistry - Quality Control Envirodyne Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B4B5494 - Inorganics										
LCS (B4B5494-BS1)				Prepared &	Analyzed:	28-Feb-24				
Phosphorus, Total	0.990		mg/L	1.00		99.0	80-120			
Matrix Spike (B4B5494-MS1)	Source	e: 23L2341-	01	Prepared &	Analyzed:	28-Feb-24				
Phosphorus, Total	1.11	0.10	mg/L	1.00	0.100	101	80-120			
Matrix Spike Dup (B4B5494-MSD1)	Source	e: 23L2341-	01	Prepared &	Analyzed:	28-Feb-24				
Phosphorus, Total	1.09	0.10	mg/L	1.00	0.100	99.0	80-120	1.82	20	

Envirodyne Laboratories, Inc.

Client: K-3 BMI

 Project:
 K-3BMI
 Reported:

 Work Order:
 23L2469
 10-Apr-24 15:26

Notes and Definitions

P Sample preserved at bench

H Hold time exceeded

<a < 100

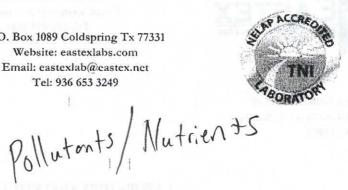
< < 0.25

ND Analyte NOT DETECTED at or above the reporting limit

< Result is less than the RL

a Analyte not available for TNI/NELAP accreditation

n Not accredited


Envirodyne Laboratories, Inc.

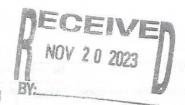
Jime TCEQ Certification # T104704265 garreth Je K3bon Low S No % sisylanA eal Intact? eal Intact? eal Intact? Temp .O.Q Work Order #: Date:12/21/23 Time: 180 Date: 19721 Lime: D/S Hd Phone: 281 725-0121-or 281-375-5778 Email: compliance@k3bmi.com - See Albached Enail ANALYSIS REQUESTED -20 ALL and App Alternate Contact Analysis Request and Chain of Custody Record Site Representative: Phone (281) 568-7880 - Fax (281) 568-8004 6 Received by Lab: Date: 12/21/23 Received by: 2. 6 Comments: (Signature) (Signature) Time: 10; 14.4 m (Signature Received b Envirodyne Laboratories, Inc. M. 12 12 12 31 23 Houston, Texas 77099-3543 11011 Brooklet Dr, Ste. 230 Therm. ID: 17 Arrival Temp. A D Act: 2 8 Date: Time: Time: Date: Corr Sample Type (Liquid, Zip: 77423 Cl, Correction: Sample Container (Size/Mat'I) Cl, Residual: 2 gallon Client/Project 7269 State: TX dwoj Contact: Brate Glose Janut Sinds Relinquished by: Relinquished by Grab Refinquished Meter Reading (Signature) 22/41/21 11:49AM 12:27M 111,49 000 12/11/13 11:17am (Signature) (Signature) 111.17pm 2/19/23 Date & FLOW: Field I 10"-24" Feb 1 0"-6" Field Sample No. / Field 2 0'-10" Field 2 6"-24" Rield 3 6"-24" Field 3 0"-" Identification Project No. 445C Samplers: (Signature) Garrelt Sinks Address: 9458 FM 362 ENVIRODYNE LABORATORIES INC Affiliation InterLab City: Brookshire Name: K-3 BMI Remarks: LabiD No.

1111

P.O. Box 1089 Coldspring Tx 77331 Website: eastexlabs.com Email: eastexlab@eastex.net Tel: 936 653 3249

June 09, 2023

Municipal District Services, LLC. Fort Bend County MUD 30 406 W Grand Pkwy S, Ste 260 Katy, TX 77494


FBC 30 Digester

Enclosed are the results of analyses for samples received by the laboratory on 05/05/23 14:06, with Lab ID Number C3E0162. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mark Bourgeois Special Projects Manager ENTERED NOV 2 1 2023

Sludge Manager Master Spreadsheet Metals ☐ TCLP □& Solid ØF/S

P.O. Box 1089 Coldspring Tx 77331 Website: eastexlabs.com Email: eastexlab@eastex.net Tel: 936 653 3249

Fort Bend County MUD 30 406 W Grand Pkwy S, Ste 260 Katy TX, 77494

LABORATORY ANALYTICAL REPORT

Project:

Client Matrix:

Waste

FBC 30 Digester a

Sample Date & Time: 05/05/2023 09:40

Collector: CSW

Sample Type:Grab Print Date: 6/9/2023

Digester C3E0162-01 (Waste)

Analyte	Result	Reporting Limit	Units	Nelue Status	Batch	Analyzed Date & Time	Method	Notes
			Metals		1			
- Arsenic	<7.14	514	and a day	l light	Darrette	00/07/0000 45 04		
Cadmium		7.14	mg/Kg dry	۸	B3F0516	06/07/2023 15:04	EPA SW 846-6010, 3050	
Thromium	<7.14	7.14	mg/Kg dry	A	B3F0516	06/07/2023 15:04	EPA SW 846-6010, 3050	
	15.5	7.14	mg/Kg dry	Α	B3F0516	06/07/2023 15:04	EPA SW 846-6010, 3050	
'opper	194	7.14	mg/Kg dry	٨	B3F0516	06/07/2023 15:04	EPA SW 846-6010, 3050	
Lead	<7.14	7.14	mg/Kg dry	Α,	B3F0516	06/07/2023 15:04	EPA SW 846-6010, 3050	
Mercury, Total	0.280	0.143	mg/Kg dry	Λ	B3E4445	05/30/2023 09:55	EPA SW 846-74713	
4olybdenum	8.07	7.14	mg/Kg dry	٨	B3F0516	06/07/2023 15:04	EPA SW 846-6010, 3050	
lickel	15.1	7.14	mg/Kg dry	A	B3FQ516	06/07/2023 15:04	EPA SW 846-6010, 3050	
thosphorus, %	1.63	1.00	% dry	Λ	B3F0520	06/08/2023 11:22	EPA SW 846-6010, 3050	
otassium, %	0.525	0.357	% dry	A	B3F0516	, 06/07/2023 15:04	EPA SW 846-6010, 3050	
elenium	8.14	7.14	mg/Kg dry	A	B3F0516	06/07/2023 15:04	EPA SW 846-6010, 3050	
line	786	7.14	mg/Kg dry	۸	B3F0516	d6/07/2023 15:04	EPA SW 846-6010, 3050	
	£	ı	Net Lab					
		_			, i			
IH3N %	<2.86	2.86	% dry	Α	B3E1800	05/11/2023 14:45	EPA 350.2	1
litrate-N, %	1.07	0.000143	% dry	N	B(3E4290	05/29/2023 14:37	SM 4500 NO3 D	
ercent Solid	1.4	0.1	90	۸	B3E1603	05/10/2023 13:02	SM 2540G	
H-Sludge	4.76	,,,,,	std unit	۸	B3E0865	05/09/2023 09:25	EPA SW 846-9040	
KN %	3.32	0.0714	% dry	N	B3E4288	05/31/2023 10:53		
	0 0 6 3.32	0.0714	20 MJ	125	Derwares	03/3/1/2023 10:53	EPA 351,2	
	15							

r Hii

P.O. Box 1089 Coldspring Tx 77331 Website: eastexlabs.com Email: eastexlab@eastex.net Tel: 936 653 3249

Fort Bend County MUD 30 406 W Grand Pkwy S, Ste 260 Katy TX, 77494

EPA SW 846-9040 - Quality Control

Eastex Environmental Laboratory - Coldspring

Analyte	Result	Reporting Limit Unit	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes		
Batch B3E0865 - No Prep	Prepared: 0	5/09/23 09:25	The	Distanti	enementi						
LCS (B3E0865-BS1)	All and A folia		Analyzed	: 5/9/2023	9:25:00AM			The second			
pH-Sludge	6.86	std ur			100	0-200					
Duplicate (B3E0865-DUP1)		e: C3D5827-01			9:25:00AM						
nH-Sludge	6.92	std m	it	6,94			0.289	20			
Batch B3E1603 - No Prep	Prepared: 0	5/10/23 13:02									
Blank (B3E1603-BLKI)			Analyzed	: 5/10/2023	1:02:00PM			7. (10.000	****		
Percent Solid	H11 ND	0.1 %		1	1						
Duplicate (B3E1603-DUP1)	Source	e: C3E2612-02	Analyzed	: 5/10/2023	1:02:00PM						
Percent Solid	1.6	0.1 %		1.6	DE AUDIT		0,00	20	-		
Batch B3E1800 - No Prep	Prepared: 0	5/11/23 14:45									
Blank (B3E1800-BLK1)			Analyzed	: 5/11/2023	2:45:00PM						
NH3N %	ND	0.0400 % wo	ı								
LCS (B3E1800-BS1)	1		Analyzed	: 5/11/2023	2:45:00PM						
W NEHN	1 2,07	mg/l	2.00		104	80-120					
Matrix Spike (B3E1800-MS1)	Source	e: C3D5827-01	Analyzed	: 5/11/2023	2:45:00PM						
NH3N %	1.08	3.08 % dr	0.385	0.652	111	80-120					
Matrix Spike Dup (B3E1800-MSD1)	Source	e; C3D5827-01	Analyzed	: 5/11/2023	2:45:00PM						
NII3N %	1:09	3.08 % dr	0.385	0.652	115	80-120	1.49	20			
Batch B3E4288 - SM 4500 Norg C	Prepared: 05	3/31/23 10:53									
lank (B3E4288-BLK1)				Analyzed: 5/31/2023 10:53:00AM							
KN %	ND	0.00100 % we									
.CS (B3E4288-BS1)	- 1		Analyzed	: 5/31/2023	10:53:00AN	1					
'KN %	9.72	mg/L	10.0	11	97.2	80-120					
Aatrix Spike (B3E4288-MS1)	Source	:: C3D2550-01	Analyzed	5/31/2023	10:53:00AM	1					
KN %	7.175933	0.0833 % dry		5.156041	97.0	80-120					
Aatrix Spike Dup (B/3E4288-MSD1)	Nource	: C3D2550-01	Analyzed	5/31/2023	10:53:00AM				1		
KN%	6.788192	0.0833 % dry		5.156041	78.3	80-120	5.55	20			

Eastex Environmental Laboratory - Coldspring

The results in this report apply to the samples analyzed in accordance with the chain of custody document.

*NELAC Status: A=Accredited, N=Accreditation not offered, O=Not Accredited, P=Approved

PromiumforCold.v5 W&O; revision date 11192021

P.O. Box 1089 Coldspring Tx 77331 Website: eastexlabs.com Email: eastexlab@eastex.net Tel: 936 653 3249

1.111

Fort Bend County MUD 30 406 W Grand Pkwy S, Ste 260 Katy TX, 77494

SM 4500 NO3 D - Quality Control

Eastex Environmental Laboratory - Coldspring

		п.		4. 14	6:		0.15			
Analyte	Result	Reporting	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3E4290 - No Prep	Prepared	: 05/29/23 14	:37				ľ			
Blank (B3E4290-BLK1)				Analyzed	: 5/29/2023	2:37:00PM				
Nitrate-N, %	ND	0.00000200	% wet		1					
LCS (B3E4290-BS1)				Analyzed	: 5/29/2023	2:37:00PM				
Nitrate-N, %	1.051		mg/L	1.00		105	80-120			
Matrix Spike (B3E4290-MSI)	Soi	urce: C3D2550	0-01	Analyzed	: 5/29/2023	2:37:00PM				
Nitrate-N. %	1.1359	0.000167	% dry	0.417	0.8553666	67.3	80-120			2.
Matrix Spike Dup (B3E4290-MSD1)	Sou	arce: C3D2550	0-01	Analyzed	: 5/29/2023	2:37:00PM			l.	
Nitrate-N ₂ %	1.108608	0.000167	% dry	0.417	0.8553666	60.8	80-120	2.43	20	il
Batch B3E4445 - SW 846-7471B	Prepared	: 05/29/23 11	:10							
Blank (B3E4445-BLK1)				Analyzed	: 5/30/2023	9:32:46AN	1			
Mercury, Total	ND	0.00200	mg/Kg wet		1	11				
LCS (B3E4445-BS1)				Analyzed	: 5/30/2023	9:35:17AM	1			
Mercury, Total	0.0241	0.00200	mg/Kg wet	0.0250		96.4	80-120			
Matrix Spike (B3E4445-MS1)	Sor	arce: C3D2550	0-01	Analyzed	: 5/30/2023	9:45:24AN	F	î		
Mercury, Total	1.98		mg/Kg dry	2.08	0.0658	91.6	75-125			
Matrix Spike Dup (B3E4445-MSD1)	So	urce: C3D2550	0-01	Analyzed	: 5/30/2023	9:47:56AN	1		investin)	
Mercury, Total	2.06	200000000000000000000000000000000000000	mg/Kg dry	2.08	0.0658	95.6	75-125	4.13	20	
Batch B3F0516 - SW846-3050	Prenared	: 06/02/23 15	-53						1	I
Blank (B3F0516-BLK1)	Терите	. 00/02/25 10		Analyzed	: 6/7/2023	2:40:27PM				
Molybdenum	ND	0.100	mg/Kg wet	rinarjaco					THEFT	
Arsenie	ND	0.100	mg/Kg wet					7.		
Cadmium	ND	0.100	mg/kg wet							
Chromium	ND	0.100	mg/Kg wet			Å				
Copper	ND	0,100	mg/Kg wet							
Lead	ND	0.100	mg/Kg wet							
Nickel	ND	0.100	mg/Kg wet							
Potassium, %	ND	0.00500	% wel							
Selenium	ND	0.100	mg/Kg wei			1			į.	
Zine	ND	0.100	mg/Kg wet						Y., 11 111.	100
LCS (B3F0516-BS1)	11	1 - ! - 1		Analyzed	1: 6/7/2023	2:43:55PM	146		1	1

Eastex Environmental Laboratory - Coldspring

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

*NELAC Status: A=Accredited, N=Accreditation not offered, O=Not Accredited, P=Approved

PromiumforCold.v5 W&O; revision date 11192021

Page 3 of 6

Fort Bend County MUD 30 406 W Grand Pkwy S, Ste 260 Katy TX, 77494

EPA SW 846-6010, 3050 - Quality Control Eastex Environmental Laboratory - Coldspring

Analyte	114	Result	Rep	orting Limit	Units	Spike Level	Source Result	I GREC	%REC Limits	RPD	RPD Limit	Notes
Batch B3F0516 - SW846-3050		Prepared:	06/02	/23 15	:53		(Line	December 1		_ 418		WHILE.
CS (B3F0516-BS1)			1			Analyzed:	6/7/2023	2:43:55PM				
Aolyhdenum		2,45	-	0,100	mg/Kg wet	2.50		98.0	80-120			
Arsenic		2.29		0.100	mg/Kg wet	2.50	1	91.6	80-120			
'admium	1	2.4	1:	0,100	mg/Kg wet	2.50		94.0	80-120			
hromium		2.59		0.100	mg/Kg wet	2.50		104	80-120			
opper	1	2.54		0.100	mg/Kg wet	2.50		102	80-120			
ead	1	2.39		0.100	ing/Kg wet	2.50		95.6	80-120			
ickel		2.48		0.100	mg/Kg wei	2.50		97.2	80-120			
otassium, %		0.0278	0.	0500	% wet	0.0250		111	80-120			
elenium		2.19		0.100	ing/Kg wet	2.50		87.6	80-120			
inc		2.53		0.100	mg/Kg wet	2.50		101	80-120	2		
latrix Spike (B3F0516-MS1)		Sour	ce: C	3D2550	0-01	Analyzed:	6-7/2023	2:54:07PM				
folybdenum		215		8.33	mg/Kg dry	208	6.225	100	75-125			
rsenic		, 196		8.33	mg/Kg dry	208	3.34	92.4	75-125			
admium		210		8.33	mg/Kg dry	208	ND	98,8	75-125			
hromium		225		8.33	mg/Kg dry	208	8.50	104	75-125			
opper		418		8.33	mg/Kg dry	208	199	105	75-125			
cad		202		8.33	mg/Kg dry	208	1.73	96.0	75-125			
lickel		218	T	8.33	mg/Kg dry	208	8.92	101	75-125			
otassium, %		2.60	1	0.417	% dry	2.08	0.504	101	75-125			
ielenium		197		8,33	mg/Kg dry	208	10.8	89.2	75-125			
ine		1041.667		8.33	mg/Kg dry	208	850	92.0	75-125			
latrix Spike Dup (B3F0516-MSI	D1)	Sour	ce: C	3D2550)-01	Analyzed:	6/7/2023	2:57:35PM				
lolybdenum		217.5		8.33	mg/Kg dry	208	6.225	101	75-125	1.16	20	
rsenic		199		8.33	mg/Kg dry	208	3.34	94.0	75-125	1.69	20	
udmium		210	í	8.33	mg/Kg dry	208	ND	99.6	75-125	0.806	20	
hromium		228	1	8.33	mg/Kg dry	208	8.50	105	75-125	1.10	20	
opper		419		8.33	mg/Kg dry	208	199	106	75-125	0.398	20	
ead	1	208		8.33	mg/Kg dry	208	1.73	98.8	75-125	2.85	20	
ickel	(A)	215		8.33	mg/Kg dry	208	8.92	98,9	75-125	1,54	20	
otassium, %	f .	2.64		0.417	% dry	2.08	0.504	103	75-125	1.59	20	
elenium	U.	192		8.33	mg/Kg dry	208	10.8	87.2	75-125	2.14	20	
ine		1041.667		8.33	mg/Kg dry	208	850	92,0	75-125	0.00	20	
atch B3F0520 - SW846-3050		Prepared: (06/08	/23 10	:58							
lank (B3F0520-BLK1)						*		10:58:21AM				

Eastex Environmental Laboratory - Coldspring

The results in this report apply to the samples analyzed in accordance with the chain of custody document.

This analytical report must be reproduced in its entirety.

111 1 *NELAC Status: A=Accredited, N=Accreditation not offered, O=Not Accredited, P=Approved

PromiumforCold.v5 W&O; revision date 11192021

1 1111

Fort Bend County MUD 30 406 W Grand Pkwy S, Ste 260 Katy TX, 77494

EPA SW 846-6010, 3050 - Quality Control

Eastex Environmental Laboratory - Coldspring

Analyic	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3F0520 - SW846-3050	Prepar	ed: 06/08/23 10:	:58		. 1			•		
Blank (B3F0520-BLK1)				Analyzed:	6/8/2023	10:58:21AM	1			
Phosphorus, %	ND	1.00	% wet							
LCS (B3F0520-BS1)				Analyzed:	6/8/2023	11:01:50AM			ř	
Phosphorus, %	0.00246	1.00	% wet	0.00252		97.7	80-120			
Matrix Spike (B3F0520-MS1)	1 1 5	Source: C3D2550	-01	Analyzed:	£/8/2023	11:12:17AM	UH		1	1
Phosphorus, %	2,07	1.00	% dry	0.420	1.71	86.9	75-125			
Matrix Spike Dup (B3F0520-MSD1)		Source: C3D2550	-01	Analyzed:	6/8/2023	¹ 11:15:45ΛΜ				
Phosphorus, %	2.11	1.00	% dry	0.420	1.71	95.4	75-125	1.72	20	

Fort Bend County MUD 30 406 W Grand Pkwy S, Ste 260 Katy TX, 77494

Notes and Definitions

23	Spike recovery outside of acceptance limits due to matrix interference.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

11111

1111

Lavirora wai festing

ANALYTICAL REPORT

PREPARED FOR

8

Attn: Mark Bourgeois
Eastex Environmental Laboratory Inc.
PO BOX 1089
Coldspring, Texas 77331

1 111

Generated 5/18/2023 3:11:28 PM

JOB DESCRIPTION

For Bend County MUD30

JOB NUMBER

860-49176-1

Eurofins Houston 4145 Greenbriar Dr Stafford TX 77477

See page two for job notes and contact information.

Page 1 of 17

Eurofins Houston

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e+mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

50y

Generated 5/18/2023 3:11:28 PM

5

Authorized for release by Sylvia Garza, Project Manager Sylvia, Garza@et, eurofinsus.com (832)544-2004

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	11
Lab Chronicle	12
Lab Chronicle	13
Method Summary	14
Sample Summary	15
Chain of Custody	16
Receipt Checklists	17

Definitions/Glossary

Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD30

#11-1

811 1

Job ID: 860-49176-1

G	los	Sã	ary	
---	-----	----	-----	--

	These commonly used abbreviations, may or may not be present in this report.	
n	Listed under the "D" qolumn to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	1
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Rediochlemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

Eurofins Houston

11 11 11

Narrative	Job Narrative		
Laboratory: Eurofins Houston		1	
Job ID: 860-49176-1			
Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD30		1	Jod ID: 860-4917
A TORS OF THE COLUMN TWO COLUMN TO THE COLUMN TWO COLUMN TO THE COLUMN TWO CO	Case Narrativ	/e	1 1

Receipt

The sample was received on 5/11/2023 7:20 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.7°C

PCBs

Method 8082A: sludge, weighed to 5 gramsFBC 30 Digester a (860-49176-1)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Houston 5/18/2023

Page 5 of 17

Detection Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD30 Job ID: 860-49176-1

Client Sample ID: FBC 30 Digester a

Lab Sample ID: 860-49176-1

No Detections.

5

8

9

13

This Detection Summary does not include radiochemical test results.

1111

Eurofins Houston

Client Sample Results

Client: Eastex Environmental Laboratory Inc.

Project/Site: For Bend County MUD30

Job ID: 860-49176-1

Client Sample ID: FBC 30 Digester a

Date Collected: 05/05/23 09:40 Date Received: 05/11/23 07:20

Percent Moisture (EPA Moisture)

Percent Solids (EPA Moisture)

Lab Sample ID: 860-49176-1

05/16/23 17:06

05/16/23 17:06

1 111

1 110

Matrix: Solid

Percent Solids: 1.6

Analyte	Result	Qualifier	RL	MDL Unit	1	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		6.2	mg/Kg		1:	05/16/23 13:01	05/17/23 13:55	1
PCB-1221	ND		6.2	mg/Kg		17	05/16/2β 13:01	05/17/23 13:55	1
PCB-1232	ND		6.2	mg/Kg	- 1	12	05/16/23 13:01	05/17/23 13:55	1
PCB-1242	ND		6.2	mg/Kg		Ė.	05/16/23 13:01	05/17/23 13:55	1
PCB-1248	ND		6.2	mg/Kg		U_{i}^{s}	05/16/23 13:01	05/17/23 13:55	1
PCB-1254	ND		6.2	mg/Kg		12	05/16/23 13:01	05/17/23 13:55	1
PCB-1260	ND		6.2	mg/Kg		1,3	05/16/23 13:01	05/17/23 13:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	78		35 - 140				05/16/23 13:01	05/17/23 13:55	1
DCB Decachlorobiphenyl (Surr)	113		37 - 142			1	05/16/23 13:01	05/17/23 13:55	1
General Chemistry	1 1	1 1		Ī		ì	(1)	1 . 1 1	
Analyte	Result	Qualifier	NONE	NONE Unit		D	Prepared	Analyzed	DII Fac

%

98.4

1.6

Eurofins Houston

Surrogate Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD30

Job ID: 860-49176-1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

111 1

1111

Matrix: Solid Prep Type: Total/NA

Lab Sample ID	Client Sample ID	1	TCX1 (35-140)	DCB1 (37-142)	Percent Surrogate Recovery (Acceptance Limits)	on against whether
860-49176-1	FBC 30 Digester a	- 1	78	113		/
LCS 860-103444/14-A	Lab Control Sample	1	87	103		
LCSD 860-103444/15-A	Lab Control Sample Dup	4	87	107		
MB 860-103444/1-A	Method Blank		82	96	Usel	
Surrogate Legend	1					
TCX = Tetrachloro-m-xyle	ene grand	Turbin .	1			
DCB = DCB Decachlorob	iphenyl (Surr)	Della	1			

Eurofins Houston

Page 8 of 17

5/18/2023

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 860-103444/1-A

Matrix: Solid

Analysis Batch: 103519

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 103444

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.017		mg/Kg		05/16/23 13:01	05/17/23 10:33	1
PCB-1221	ND		0.017		mg/Kg		05/16/23 13:01	05/17/23 10:33	1
PCB-1232	ND		0.017		mg/Kg		05/16/23 13:01	05/17/23 10:33	1
PCB-1242	ND		0.017		mg/Kg		05/16/23 13:01	05/17/23 10:33	1
PCB-1248	ND		0.017		mg/Kg		05/16/23 13:01	05/17/23 10:33	1
PCB-1254	ND		0.017		mg/Kg		05/16/23 13:01	05/17/23 10:33	130.5
PCB-1260	ND ND	MB	0.017	F	mg/Kg	1	05/16/23 13:01	05/17/23 10:33	1

Surrogate %Recovery Qualifier Limits Tetrachloro-m-xylene 82 35 - 140 DCB Decachlorobiphenyl (Surr) 96

37 - 142

Prepared Analyzed Dil Fac 05/16/23 13:01 05/17/23 10:33 05/16/23 13:01 05/17/23 10:33

Lab Sample ID: LCS 860-103444/14-A

Matrix: Solid

Analysis Batch: 103519

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 103444

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits PCB-1016 0.167 0.131 mg/Kg 79 27 - 121 PCB-1260 0.167 0.143 mg/Kg 86 27 - 139

LCS LCS

%Recovery Surrogate Qualifier Limits Tetrachloro-m-xylene 35 - 140 87 DCB Decachlorobiphenyl (Surr) 103 37 - 142

Lab Sample ID: LCSD 860-103444/15-A

Matrix: Solid

Analysis Batch: 103519

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 103444

rinary sid Baton. 100010								i ieb r	Jaicii, i	03444
		Spike	LCSD	LCSD				%Rec		RPD
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
PCB-1016		0.167	0.132		mg/Kg	1	79	27 - 121	1	20
PCB-1260		0.167	0.145		mg/Kg		87	27 - 139	1	20
¥ 4	LESDILESD	1 1		1		1111		1)	1 1	

LCSD LCSD Surrogate %Recovery Qualifier Limits 35 - 140 Tetrachioro-m-xylene 87 DCB Decachlorobiphenyl (Surr) 107 37 - 142

Method: Moisture - Percent Moisture

Lab Sample ID: MB 860-103533/1

Matrix: Solid

Analysis Batch: 103533

Client S	ample ID:	Method	Blank
	D	T T.	A-LINIA

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	-0.01	-			%	1		05/16/23 17:06	1
Percent Solids	100.0				%	į I		05/16/23 17:06	1

Eurofins Houston

QC Sample Results

Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD30

Job ID: 860-49176-1

Method: Moisture - Percent Moisture (Continued)

1111 1

1111

 $\left\{ \begin{smallmatrix} 1\\ 2\\ 1\end{smallmatrix} \right\} = 1$

Lab Sample ID: 860-49011-B-1 DU

Matrix: Solid

Analysis Batch: 103533

Client	Sampl	e ID:	Duplicate
	Prep	Туре	: Total/NA

Пор	·ype.	Totalita	
		RPD	

	Sample	Sample		U D	ıu						RPD
Analyte	Result	Qualifier	Res	it C	lualifi	ier	Unit	D		RPD	Limit
Percent Moisture	18.3	Und)	18	3	1		%			0	20
Percent Solids	81.7	1 1	81	.7			%		Q.	0	20

9

13

QC Association Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD30

Job ID: 860-49176-1

proper pro		* Carrier *	110	
1 -1	: Se	mı	1/(141

Prep	Batch:	103444
------	--------	--------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-49176-1	FBC 30 Digester a	Total/NA	Solid	3550C	
MB 860-103444/1-A	Method Blank	Total/NA	Solid	3550C	
LCS 860-103444/14-A	Lab Control Sample	Total/NA	Solid	3550C	
LCSD 860-103444/15-A	Lab Control Sample Dup	Total/NA	Solid	3550C	

Analysis Batch: 103519

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-49176-1	FBC 30 Digester a	Total/NA	Solid	8082A	103444
MB 860-103444/1-A	Method Blank	Total/NA	Solid	8082A	103444
LCS 860-103444/14-A	Lab Control Sample	Total/NA	Solid	8082A	103444
LCSD 860-103444/15-A	Lab Control Sample Dup	Total/NA	Solld	8082A	103444

General Chemistry

Analysis Batch: 103533

Lab Sample ID	Client Sample ID		Prep Type	Matrix	Method	Prep Batch
860-49176-1	FBC 30 Digester a	1	Total/NA	Solid	Moisture	1
MB 860-103533/1	Method Blank		Total/NA	Solid	Moisture	1
860-49011-B-1 DU	Duplicate	301 - 321	Total/NA	Solid	Moisture	
	Color Color Color Color	4 1				Y.

1 [11]

: 111

Eurofins Houston

5/18/2023

Page 11 of 17

Lab Chronicle

Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD30 (1)

Job ID: 860-49176-1

Client Sample ID: FBC 30 Digester a

Date Collected: 05/05/23 09:40

Lab Sample ID: 860-49176-1

Matrix: Solid

Date Received: 05/11/23 07:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture	1	-1			103533	05/16/23 17:06	JM	EET HOU

Client Sample ID: FBC 30 Digester, a

Date Collected: 05/05/23 09:40 Date Received: 05/11/23 07:20 Lab Sample ID: 860-49176-1

Matrix: Solid Percent Solids: 1.6

Final Batch Batch Dil Initial Batch Prepared Method Factor Number Prep Type Type Run Amount Amount or Analyzed Analyst Lab 3550C Prep Total/NA 5.06 g 5 mL 103444 05/16/23 13:01 TH EET HOU Total/NA 8082A 103519 Analysis 05/17/23 13:55 WP EET HOU

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Staffqrd, TX 77477, TEL (281)240-4200

1111 1

811 1

Marian N

Accreditation/Certification Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD30

Job ID: 860-49176-1

Laboratory: Eurofins Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date	
Arkansas DEQ	State	88-00759	08-04-23	î
Florida	NELAP	E871002	06-30-23	
Louisiana	NELAP	03054	06430-23	ij i
Louisiana (All)	NELAP	03054	06-30-23	
Oklahoma	State	1306	08-31-23	
Texas	NELAP	T104704215-23-50	06-30-23	
Texas	TCEQ Water Supply	T104704215	12-28-25	
USDA	US Federal Programs	525-23-79-79507	03-20-26	
5				

| Eurofins Houston

1 1111

1 111

5/18/2023

Page 13 of 17

Method Summary

Client: Eastex Environmental Laboratory Inc.

Project/Site: For Bend County MUD30

Job ID: 860-49176-1

Method		Method Description				Protocol	Laboratory
3082A	þ	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	The	1 1	1 1	SW846	EETHOU
oisture		Percent Moisture	250 1	3 30	3 5	EPA	EETHOU
3550C		Ultrasonic Extraction				SW846	EET HOU

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr. Stafford, TX 77477, TEL (281)240-4200

111 1

1111

Eurofins Houston

Page 14 of 17

5/18/2023

9

E

Sample Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD30

Job ID: 860-49176-1

1 1111

1 111

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
860-49176-1	FBC83r8s ig sD 1980	Solid	05/05/23 09:40	05/11/23 07:20

3

3

SUBCONTRACT ORDER

Eastex Environmental Labora PO Box 1089 Coldspring, TX 77331 Phone: 936-653-3249	tory - Coldspring	4147 (Staffor Phone	ns Xenco LLC Greenbriar Dr rd, TX 77477 : 713-690-4444	de l'artifementale sont estre détauménte de l'action d
Fax 936-653-3172	P	Fax /	13-690-5646	
051023J	1 1		The state of the s	STATE OF THE STATE
OJECT NAME ort Bend County MUD 30		Turnai	round	Matrix Wa ste
tainers Date Time	EEL Sample ID	Sample Type		Analysis to be Performed
5/5/23 9 40 am	FBC 30 Digester a	Grab		CB 8082
See Attached	Special Instructions. PCBIMO	SIKG %SOLIDS	1 1 1	ALA SERBER SERBERS
1			86040	176 Chain of Custody
	1			Tro Chain of Custody
4	P 1		1	CIF-0.24. Q IR ID HOU-3.
	1 1		Received Iced Y	7N Temp

PRINT DATE/TIME. 5/9/2023 / 2 51:40PM

Released By

sco_PrimaryForm rpt.02122019 Page 16 of 17

Received By

5/11/23 0720 Date & Time

P3/98/2623

Login Sample Receipt Checklist

Client: Eastex Environmental Laboratory Inc.

Job Number: 860-49176-1

5 8 9

Login Number: 49176

List Source: Eurofins Houston

1 1111

1 111

List Number: 1 Creator: Rubio, Yuri

Question	Answer Comment	
The cooler's custody seal, if present, is intact.	True '	rend in this is guilly to-
Sample custody seals, if present, are intact.	True	and the second second second
The cooler or samples do not appear to have been compromised or tampered with.	True	1 1001 100 100
Samples were received on ice.	True	THE PART OF THE PART OF
Cooler Temperature is acceptable.	True	COLLECTION OF THE STATE OF THE
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate	True	, m
HTs) Sample containers have legible labels.	True	1 1 1
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	problem of the
Sample Preservation Verified.	True	1
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	f fl
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	Sugar A and ha

Eurofins Houston

Page 17 of 17

5/18/2023

May 19, 2023

Municipal District Services, LLC. Fort Bend County MUD 30 406 W Grand Pkwy S, Ste 260 Katy, TX 77494

RE: FBC 30 Digester

Enclosed are the results of analyses for samples received by the laboratory on 05/05/23 14:06, with Lab ID Number C3E0163. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mark Bourgeois

Special Projects Manager

HIE I

Fort Bend County MUD 30 406 W Grand Pkwy S, Ste 260 Katy TX, 77494

Case Narrative

40 CFR 503 Criterion for Fecal Coliform Class B = 2,000,000 MPN/g. for Class A = 1,000 MPN/g 40 CFR 503 Criterion for Vector Class B = <1.5mg/O2/g Solids/hr *Fecal Coliform result is a geometric mean of seven individual samples.

LABORATORY ANALYTICAL REPORT

Project:

FBC 30 Digester b

Client Matrix:

Waste

Sample Date & Time: 05/05/2023 09:40

Collector: CSW

Sample Type:Grab

Print Date: 5/19/2023

Digester C3E0163-01 (Waste)

Analyte	Result	Reporting Limit	Units	Nelac Status	Batch	Analyzed Date & Time	Method	Notes
		Microb	iological	Lab	1		I.	i
- Fecal Coliform IDEXX	61584	1000	mpn/gram	N	B3E1197	05/05/2023 14:25	Colilert 18	
Vector	<0.1		mg O2/hr/g	N	B3E2993	05/05/2023 16:00	TAC 312.83(b)(4)	
		V	Vet Lab		1			
		_			1			
- Percent Solid	1.4	0.1	%	Α	B3E1598	05/10/2023 12:03	SM 2540G	
Volatile Percent Solid	80.8	0.1	%	A	B3E1593	05/11/2023 12:43	SM 2540G	
						ř	<i>i</i>	

i ! lii

Fort Bend County MUD 30 406 W Grand Pkwy S, Ste 260 Katy TX, 77494 P.O. Box 1089 Coldspring Tx 77331 Website: eastexlabs.com Email: eastexlab@eastex.net Tel: 936 653 3249

Colilert 18 - Quality Control

Eastex Environmental Laboratory - Coldspring

* · ·	- !!++ 		i	and the	L	.h.
Analyte	Reporting Result Limit U	Spike Source Inits Level Result	NEWS CO.		RPD Limit	Notes
atch B3E1197 - No Prep Micro	Prepared: 05/05/23 14:25					
Blank (B3E1197-BLK1)		Analyzed: 5/5/2023	2:25:00PM			
ecal Coliform IDEXX	ND 1000 mpn	n/gram				
Ouplicate (B3E1197-DUP1)	Source: C3E0163-01	Analyzed: 5/5/2023	2:25:00PM			
ecal Coliform IDEXX	50400 1000 mpn	/gram 61584		20.0	200	
atch B3E1593 - No Prep	Prepared: 05/11/23 12:43					
lank (B3E1593-BLK1)		Analyzed: 5/11/202	3 12:43:00PM			
olatile Percent Solid	ND 0.1	%	100-100			
uplicate (B3E1593-DUP1)	Source: C3E0163-01	Analyzed: 5/11/202	3 12:43:00PM			
olatile Percent Solid	80.8 0.1	% 80.8		0.00	10	
atch B3E1598 - No Prep	Prepared: 05/10/23 12:03					
lank (B3E1598-BLK1)		Analyzed: 5/10/202	3 12:03:00PM			
ercent Solid	ND 0.1	%			(m)-1110-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
uplicate (B3E1598-DUP1)	Source: C3E0163-01	Analyzed: 5/10/202	3 12:03:00PM			
ercent Solid	1.4 0.1	% 1.4		0.00	20	
atch B3E2993 - No Prep Micro	Prepared: 05/05/23 16:00					
lank (B3E2993, BLK1)	III I	Analyzed: 5/5/2023	4:00:00PM			
ector	ND 0.1 mg C	02/hr/g	· · · · · · · · · · · · · · · · · · ·		m.	
uplicate (B3E2993-DUP1)	Source: C3E1066-01	Analyzed: 5/5/2023	4:00:00PM			
ector	1.92 0.1 mg C	02/hr/g 1.96		2.06	200	

Eastex Environmental Laboratory - Coldspring

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

*NELAC Status: A=Accredited, N=Accreditation not offered, O=Not Accredited, P=Approved

PromiumforCold.v5 W&O; revision date 11192021

Fort Bend County MUD 30 406 W Grand Pkwy S, Ste 260 Katy TX, 77494

Notes and Definitions

DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

EASTEX ENVIRONMENTAL LABORATORY, INC.

P.O. Box 1089 * Coldspring, TX 77331 (936) 653-3249 * (800) 525-0508

77331 P.O. Box 631375 * Nacogdoches, TX 75963-1375 25-0508 (936) 569-8879 * FAX (936) 569-8951 — www.eastexlabs.com

White Copy-Follows Samples Yellow Copy-Laboratory Pink Copy-Client Copy

REPORT TO:	INVOICE TO:		
Address:	Address: SAME	STED	
97 50	- 1	QUE	
Attn:	Attn:	5 REG	
Phone#:	Phone#:	YSIS	
Email:	INSTRUCTIONS:	ANAI	
P.O. #:	C or G: C= Composite G= Grab	A .	
	DW=Drinking V	er SO=Soil/Sludge OT=Other	
Sampier's Name (Print)	Container Size: 1=Gallon 2=1/2 Gallon 3=Quart/Liter 4=500mL 5= 6=125mL (4oz) 7=60mL (2 oz) 8= 40mL Vial 9=Other	3=Quart/Liter	
Sampler's Signature; 0 0 0	Type: P= Plastic G= Glass T= Teflon S= Sterile	Sterile	
	rvatives: C=Chilled S=Sulfuric A	B=Base/Caustic Z= Zn Acetate	
Project Name TO CYNUS DO	SI=Sodium Iniosulfate H=HCL O= Other Field Data	Cither — Containers	
Work Order ID Sample ID Date	Time Matrix C or G DO pH CI2	Flow Temp # Size Type Pres	
C3501U3 Diask 560	50 5	7 6 6	1
62 Discour HS	S 05 and 8	7 300	
Diaster Dist	20449 50 G	1346	
Digester 5151	10\$040\$ so []	1500	
c			+
1			-
10	1 1	-	1.
	11 31		
1			
Relinquished By:	Received By:	Date Time =-	Received Icad: VES
Relinquished By:	Received By:	DateTime	
Relinquished By:	Received By and/or Checked in By:	Time /UW	Received Iced:
	ible: (YES) / NO	C *Therm ID Logged In By:	Date
Alternate Check in:	Date Time	4.2 15	5-5-23 1458

1 | 1 |

6 1 5

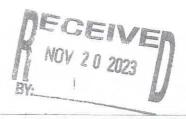
1 111

May 16, 2023

Municipal District Services, LLC. Fort Bend County MUD 30 406 W Grand Pkwy S, Ste 260 Katy, TX 77494

RE: FBC 30 Digester

Enclosed are the results of analyses for samples received by the laboratory on 04/28/23 13:36, with Lab ID Number C3D5824. If you have any questions concerning this report, please feel free to contact me.


Sincerely,

Mark Bourgeois

Special Projects Manager

R11 1

ENTERED NOV 2 1 2023

Sludge Manager

Master Spreadsheet

□ PCB □F/S

■ & Solid

Fort Bend County MUD 30 406 W Grand Pkwy S, Ste 260 Katy TX, 77494

LABORATORY ANALYTICAL REPORT

Project:

FBC 30 Digester c

Client Matrix:

Waste

Sample Date & Time: 04/28/2023 09:35

Collector: PU

Sample Type:Grab

Print Date: 5/16/2023

Digester C3D5824-01 (Waste)

Analyte	Result	Reporting Limit	Units	Nelac Status	Batch	Analyzed Date & Time	Method	Notes
		N	et Lab			1		
_	William Charles Co.	and some			1	T.	nales and through	
Percent Solid	1.2	0.1	%	A	B3E0200	05/02/2023 09:35	SM 2540G	

r Flar

811 (

P.O. Box 1089 Coldspring Tx 77331 Website: eastexlabs.com Email: eastexlab@eastex.net Tel: 936 653 3249

Fort Bend County MUD 30 406 W Grand Pkwy S, Ste 260 Katy TX, 77494

SM 2540G - Quality Control

Eastex Environmental Laboratory - Coldspring

Analyte		Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3E0200 - No Prep		Prepared:	05/02/23 09:	35							
Blank (B3E0200-BLK1)					Analyzed:	5/2/2023	9:35:00AM				
Percent Solid		ND	0.1	%							
Duplicate (B3E0200-DUP1)	[4]	Sou	rce: C3D6675	-01	Analyzed:	5/2/2023	9:35:00AM	1			1
Percent Solid		1.6	0.1	%		1.6			0.00	20	

Fort Bend County MUD 30 406 W Grand Pkwy S, Ste 260 Katy TX, 77494

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

1 1 1 1 1

ANALYTICAL REPORT

PREPARED FOR

8 9

12 13 14

Attn: Mark Bourgeois
Eastex Environmental Laboratory Inc.

PO BOX 1089 Coldspring, Texas 77331

Generated 5/11/2023 5:50:09 PM

JOB DESCRIPTION

For Bend County MUD 30

JOB NUMBER

860-48518-1

Eurofins Houston 4145 Greenbriar Dr Stafford TX 77477

See page two for job notes and contact information.

Page 1 of 34

e ny EOL

Eurofins Houston

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

50m

Generated 5/11/2023 5:50:09 PM

Authorized for release by Sylvia Garza, Project Manager Sylvia.Garza@et.eurofinsus.com (832)544-2004

13

15

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	9
QC Sample Results	12
QC Association Summary	25
Lab Chronicle	29
Certification Summary	30
Method Summary	31
Sample Summary	32
Chain of Custody	33
Receipt Checklists	34

5

6

8

9

12

13

14

	Definitions/Glossary			
	Environmental Laboratory Inc.			Job ID: 860-48518
Project/Site: Fo	or Bend County MUD 30		Į.	£.
Qualifiers				W 100 W
GC/MS Semi V	OA		1 1111	
Qualifier	Qualifier Description			
1	LCS/LCSD RPD exceeds control limits.			
)	Result is less than the RL but greater than or equal to the MDL and the concentration is an	n approximate	value.	
GC Semi VOA		1		
Qualifier	Qualifier Description	ř		
51+	Surrogate recovery exceeds control limits, high biased.			
01				
Glossary		+		
Abbreviation	These commonly used abbreviations may or may not be present in this report.			
1	Listed under the "D" column to designate that the result is reported on a dry weight basis	1		real blance class
%R	Percent Recovery			
DFL	Contains Free Liquid			1 1
FU	Colony Forming Unit			Land that the control of the
NF	Contains No Free Liquid			
ER	Duplicate Error Ratio (normalized absolute difference)	'	1	
il Fac	Dilution Factor			
)L	Detection Limit (DoD/DOE)	1		
L, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of	of the sample		
DLC	Decision Level Concentration (Radiochemistry)			
DL	Estimated Detection Limit (Dioxin)			
.OD	Limit of Detection (DoD/DOE)			
.00	Limit of Quantitation (DoD/DOE)		1	1
MCL	EPA recommended "Maximum Contaminant Level"			
MDA	Minimum Detectable Activity (Radiochemistry)		1 114	i
MDC	Minimum Detectable Concentration (Radiochemistry)			
NDL	Method Detection Limit			
ИL	Minimum Level (Dioxin)	<u> </u>		
MPN	Most Probable Number			
MQL	Method Quantitation Limit	li		
VC	Not Calculated	1	i i	ř
ND.	Not Detected at the reporting limit (or MDL or EDL if shown)			į.
IEG	Negative / Absent			Ī
POS	Positive / Present			1 1
PQL	Practical Quantitation Limit			
PRES	Presumptive	Ŷ.		
ac	Quality Control	1 . 1		
RER	Relative Error Ratio (Radiochemistry)	I n		1
₹L	Reporting Limit or Requested Limit (Radiochemistry)			
200	D. L. C. Devent Difference a manager of the solution difference between two points			Y.

Eurofins Houston

Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin)
Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count

RPD TEF

TEQ TNTC

Case Narrative

Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD 30

Job ID: 860-48518-1

Job ID: 860-48518-1

Laboratory: Eurofins Houston

Narrative

Job Narrative 860-48518-1

Receipt

The sample was received on 5/2/2023 10:15 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.9°C

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC/MS Semi VOA

Method 8270D: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 860-102484 and analytical batch 860-102521 recovered outside control limits for the following analyte: Pyridine.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Herbicides

Method 8151A_MOD: Surrogate recovery for the following sample was outside the upper control limit: FBC 30 Digester c (860-48518-1). This sample did not contain any target analytes; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

PCBs

Method 8082A: Liquid sludge sample. Extracted at 1 gram.FBC 30 Digester c (860-48518-1)

11111

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Pesticides

No additional analytical of quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Houston

Page 5 of 34

Detection Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD 30

Job ID: 860-48518-1

234567

9 10

13

Client Sample ID: FBC 30 Digester c

Lab Sample ID: 860-48518-1

No Detections.

This Detection Summary does not include radiochemical test results.

Eurofins Houston

5/11/2023

i (4);

Page 6 of 34

Client Sample Results

Client: Eastex Environmental Laboratory Inc. Project/Site! For Bend County MUD 30

Job ID: 860-48518-1

Client Sample ID: FBC 30 Digester c

Date Collected: 04/28/23 10:15 Date Received: 05/02/23 10:15 Lab Sample ID: 860-48518-1

Matrix: Solid

Analyte		Result	Qualifier	RL	MDL	. Unit	D	Prepared	Analyzed	Dil Fac
Benzene		ND		0.050		mg/L			05/09/23 17:39	50
Carbon tetrachloride		ND	10	0.25		mg/L			05/09/23 17:39	50
Chlorobenzene		ND	l l	0.050		mg/L			05/09/23 17:39	50
Chloroform -		ND	Face of the	0.050		mg/L			05/09/23 17:39	50
1,2-Dichloroethane		ND		0.050		mg/L			05/09/23 17:39	50
1,1-Dichloroethene		ND		0.050		mg/L			05/09/23 17:39	
2-Butanone	111 1	ND	1	2.5		mg/L	1 1		The property of the party of th	50
Tetrachloroethene		ND		0.050		mg/L			05/09/23 17:39	50
Trichloroethene	A Aprel I	ND		0.25		mg/L			05/09/23 17:39	50
Vinyl chloride		ND		0.10		100			05/09/23 17:39	50
300- 6 2/2000 3000		140		0.10		mg/L			05/09/23 17:39	50
Surrogate	%Re	covery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	A THE THE REAL PROPERTY.	95	79	63 - 144			-		05/09/23 17:39	50
4-Bromofluorobenzene (Surr)		100	p. and	74 - 124					05/09/23 17:39	50
Dibromofluoromethane (Surr)		96	The state of	75 - 131	E				05/09/23 17:39	50
Toluene-d8 (Surr)	THE PERSON NAMED IN	100		80 - 117					05/09/23 17:39	50

Analyte	atile Organic Compounds Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	IND	0.13	mg/L		05/09/23 18:27	05/11/23 02:17	DII Fac
2,4,5-Trichlorophenol	ND	0.13	mg/L		05/09/23 18:27	05/11/23 02:17	5
2,4,6-Trichlorophenol	ND	0.13	mg/L		05/09/23 18:27	05/11/23 02:17	5
2,4-Dinitrotoluene	ND	0.13	mg/L		05/09/23 18:27	05/11/23 02:17	5
2-Methylphenol	ND	0.13	mg/L		05/09/23 18:27	05/11/23 02:17	5
Hexachlorobenzene	ND	0.13	mg/L	100	05/09/23 18:27	05/11/23 02:17	5
Hexachlorobutadiene	, ND	0.13	mg/L		05/09/23 18:27	05/11/23 02:17	5
lexachloroethane	ND	0.13	mg/L		05/09/23 18:27	05/11/23 02:17	5
Vitrobenzene	ND	0.13	mg/L		05/09/23 18:27	05/11/23 02:17	5
Pentachlorophenol	ND	0.25	mg/L		05/09/23 18:27	05/11/23 02:17	5
Pyridine	ND *1	0.25	mg/L		05/09/23 18:27	05/11/23 02:17	5
& 4 Methylphenol	ND	0.25	mg/L		05/09/23 18:27	05/11/23 02:17	5

Surrogate	%Recovery	Qualifier L	imits	1 1	1	Prepared	Analyzeo	Dil Fac
2,4,6-Tribromophenol (Surr)	49		1 - 132			05/09/23 18:27	05/11/23 02:17	DII Pac
2-Fluorobiphenyl (Surt)	67	2	9 - 112			05/09/23 18:27	05/11/23 02:17	5
2-Fluorophenol (Surr)	55	2	1 - 114			05/09/23 18:27	05/11/23 02:17	5
Nitrobenzene-d5 (Surr)	70		6 - 110			05/09/23 18:27	05/11/23 02:17	5
p-Terphenyl-d14 (Surr)	72		0 - 141			05/09/23 18:27		5
Phenol-d5 (Surr)	40		6 - 117			EST-2-200 L. L.	05/11/23 02:17	5
	The state of the s		0-111			05/09/23 18:27	05/11/23 02:17	5

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlorodane	ND		0.0025		mg/L		05/10/23 11:17	05/10/23 16:43	1
Endrin	ND		0.000050		mg/L		05/10/23 11:17	05/10/23 16:43	- 1
Heptachlor	ND		0.000050	4	mg/L		05/10/23 11:17	05/10/23 16:43	1
Heptachlor epoxide	· ND	1	0.000050	- 1	mg/L		05/10/23 11:17	05/10/23 16:43	1
gamma-BHC (Lindane)	ND	-)	0.000050		mg/L		05/10/23 11:17	05/10/23 16:43	1
Methexychlor	ND	,	0.00020	1	mg/L		05/10/23 11:17	05/10/23 16:43	1
Toxaphene	ND	. 1	0.0020		mg/L		05/10/23 11:17	05/10/23 16:43	4

lient: Eastex Environmental Laborato	nry Inc	Client	Sample I	Results	K	tr.			lat ID: 000	10510 1
Project/Site: For Bend County MUD 36						1		STATE OF THE STATE	Job ID: 860-	48518-1
Client Sample ID: FBC 30 Dige	ster c						10	Lab Sam	ple ID: 860-4	8518-1
Date Collected: 04/28/23 10:15					1			1		x: Solid
Date Received: 05/02/23 10:15										A TOTAL SHOW
										Belief Little
Surrogate	%Recovery	Qualifier	Limits		l.	1		Prepared	Analyzea	DII Fac
DCB Decachlorobiphenyl (Surr)	83	1 1	15 - 136		1	1		05/10/23 11:17	05/10/23 16:43	1
Tetrachloro-m-xylene	75		18 - 126					05/10/23 11:17	05/10/23 16:43	1
Method: SW846 8151A - Herbicides	(GC) - TCI F	•						1		
Analyte	Result		RL	MDL	Unit		b	Prepared	Analyzed	Dil Fac
2.4-D	ND		0.00020		mg/L		-	05/09/23 18:39	05/10/23 22:54	1
2,4,5-TP (Silvex)	ND		0.00020		mg/L			05/09/23 18:39	05/10/23 22:54	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	184	S1+	70 - 162					05/09/23 18:39	05/10/23 22:54	1
Method: SW846 6010B - Metals (ICI Analyte	P) - TCLP Result	Qualifier	RL	MDL	Unit		D	Prepared	Analyzed	Dil Fac
Arsenic	, ND	Qualifier	0.050	INDL	mg/L		=	05/09/23 10:30	05/09/23 17:27	- III Fac
Antimony	ND	1 1	0.10		mg/L		1	05/09/23 10:30	05/09/23 17:27	
Barium	ND		0.050		mg/L			05/09/23 10:30	05/09/23 17:27	1
Cadmium	ND		0.025		mg/L			05/09/23 10:30	05/09/23 17:27	4
Chromium	ND		0.050	7	mg/L			05/09/23 10:30	05/09/23 17:27	1
Beryllium	ND		0.020	1	mg/L	ii		05/09/23 10:30	05/09/23 17:27	Iborit of
Lead	ND		0.050		mg/L	1		05/09/23 10:30	05/09/23 17:27	1
Selenium	ND		0.15		mg/L	:1	- 1	05/09/23 10:30	05/09/23 17:27	1
Silver	ND		0.10		mg/L			05/09/23 10:30	05/09/23 17:27	1
Nickel	ND		0.050		mg/L			05/09/23 10:30	05/09/23 17:27	1
					1			,	177.004.0	
Method: SW846 7470A - Mercury (C	1,55				ř					
Analyte		Qualifier	RL _	MDL	-	1	D	Prepared	Analyzed	Dil Fac
Mercury	ND	1 1	0.00020		mg/L	Auth		05/09/23 11:21	05/09/23 19:11	1
- -										
General Chemistry	Result	Qualifier	NONE	NONE	Unit	7	D	Prepared	Analyzed	Dil Fac
Analyte (FRA Maiatura)	98.8	Quaimer	- NONE	HONE	%	+	Ŧ	Tieparco	05/08/23 08:28	1
Percent Moisture (EPA Moisture)	1.2		T T		%				05/08/23 08:28	1
Percent Solids (EPA Moisture)	1.2		1.		,,					
Client Sample ID: FBC 30 Dige	ster c							Lab Sam	ple ID: 860-4	
									Matri	x: Solid
Date Collected: 04/28/23 10:15									Percent So	

111

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	, ND	f 9	40	î	mg/Kg	n	05/06/23 08:22	05/09/23 01:25	1
PCB-1221	I ND	1 1	40	1	mg/Kg	ra ca	05/06/23 08:22	05/09/23 01:25	1
PCB-1232	ND		40		mg/Kg	Ω	05/06/23 08:22	05/09/23 01:25	1
PCB-1242	ND		40		mg/Kg	p	05/06/23 08:22	05/09/23 01:25	1
PCB-1248	ND		40	7	mg/Kg	п	05/06/23 08:22	05/09/23 01:25	1
PCB-1254	ND		40	ļ	mg/Kg	Ø	05/06/23 08:22	05/09/23 01:25	1
PCB-1260	ND		40		mg/Kg	n	05/06/23 08:22	05/09/23 01:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	57		35 - 140				05/06/23 08:22	05/09/23 01:25	1
DCB Decachlorobiphenyl (Surr)	91		37 - 142		. 1		05/06/23 08:22	05/09/23 01:25	1

Eurofins Houston

1

Surrogate Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD 30

Job ID: 860-48518-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid

Pron	Typo:	Total/NA
1 1ch	Type.	IULAIIINA

	DESCRIPTION OF THE PARTY OF THE				Percent Sur	rogate Reco	overy (Acceptance Limits	3)
1 1	CLUBS INCOME PROPERTY	Ĭ	DCA	BFB	DBFM	TOL		
Lab Sample ID	Client Sample ID		(63-144)	(74-124)	(75-131)	(80-117)		
LCS 860-102314/3	Lab Control Sample		103	100	107	98		
CS 860-102315/1013	Lab Control Sample		96	100	100	102		
CSD 860-102314/4	Lab Control Sample Dup		106	101	109	98	1	
CSD 860-102315/14	Lab Control Sample Dup		99	98	103	100		
AB 860-102314/10	Method Blank		101	105	102	106		
1B 860-102315/19	Method Blank		99	101	92	101		
Surrogate Legend								
DCA = 1,2-Dichloroethar	ne-d4 (Surr)	1						
BFB = 4-Bromofluorober	zene (Surr)							
DBFM = Dibromofluorem TOL = Toluene-d8 (Surr)			1		1	1		

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid

Prep Type: TCLP

				Percent Sur	rogate Reco	overy (Acceptance Limits)	
Lab Sample ID	Client Sample ID	DCA (63-144)	BFB (74-124)	DBFM (75-131)	TOL (80-117)		
860-48516-A-1-D MS	Matrix Spike	104	103	110	99		
860-48518-1	FBC 30 Digester b	95	100	96	100		
LB 860-102319/1-A	Method Blank	102	105	100	105		

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

IAI	d	u	IX.	201	IQ
_	_				_

Prep Type: Total/NA

	l _l			Percent Sur	rogate Reco	very (Accepta	ance Limits)	
a name of the	area (I e) a lee	TBP	FBP	2FP	NBZ	TPHd14	PHL	
Lab Sample ID	Client Sample ID	(31-132)	(29-112)	(21-114)	(26-110)	(20-141)	(16-117)	
LCS 860-102484/2-A	Lab Control Sample	76	68	43	73	82	30	
CSD 860-102484/3-A	Lab Control Sample Dup	70	59	39	61	76	28	
MB 860-102484/1-A	Method Blank	70	74	43	80	81	28	

Surrogate Legend

TBP = 2,4,6-Tribromophenol (Surr)

FBP = 2-Fluorobiphenyl (Surr)

2FP = 2-Fluorophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

PHL = Phenol-d5 (Surr)

Eurofins Houston

Page 9 of 34

5/11/2023

8

12

13

14

	nivolatile Organic Comp	ounds (GC	/MS)	- 4				
latrix: Solid			Ettu	30 yr i		ri) lulin (fr	O als light	Prep Type: TCL
				Percent Sur	rogate Reco	very (Accepta	nce imits)	1
		TBP	FBP	2FP	NBZ	TPHd14	PHL	. 6
Lab Sample ID	Client Sample ID	(31-132)	(29-112)	(21-114)	(26-110)	(20-141)	(16-117)	
860-48490-A-1-E MS	Matrix Spike	67	61	47	61	76	40	
860-48518-1	FBC 30 Digester c	49	67	55	70	72	40	
LB 860-102256/1-E	Method Blank	74	67	58 1	73	77	47	
EB 000 TOZZOOT E	metriod Blank	557.5	110			20.35 Sarrigadi (g. 1111)		
Surrogate Legend								
TBP = 2,4,6-Tribromophen	ol (Surr)							
FBP = 2-Fluorobiphenyl (S	urr)							
2FP = 2-Fluorophenol (Sur	r)							ř.
NBZ = Nitrobenzene-d5 (S	urr)					,		
TPHd14 = p-Terphenyl-d14 PHL = Phenol-d5 (Surr)	(Surr)	1 1 1		1		1 [11]		1 1
	anochlorine Pesticides	(GC)			1			
latrix: Solid				- 1	T.	100	io moni	Prep Type: Total/N
				Percent Sur	rogate Reco	very (Accepta	ince Limits)	
		DCB1	TCX1		1	F	1	
Lab Sample ID	Client Sample ID	(15-136)	(18-126)					
LCS 860-102544/2-A	Lab Control Sample	80	80		1		1	
LCSD 860-102544/3-A	Lab Control Sample Dup	90	89		1		me 4	1 things of
MB 860-102544/1-A	Method Blank	92	91					1
2								1
Surrogate Legend DCB = DCB Decachlorobin	showd (Surr)	1 1						
TCX = Tetrachloro-m-xyler		1 i						l , - l, win
Method: 8081B - Org Matrix: Solid	anochlorine Pesticides	(GC)			1	T		Prep Type: TCI
-					1		55 55 8	
				Percent Su	rrogate Rec	overy (Accept	ance Limits)	
		DCB1	TCX1	2 12 11				
	Client Sample ID	(15-136)	(18-126)					
Lab Sample ID			75					
860-48518-1	FBC 30 Digester c	83						
	FBC 30 Digester c Method Blank	83 90	90			¥.		1
860-48518-1			90	-		1		i
860-48518-1 LB 860-102256/1-G Surrogate Legend	Method Blank		90			l r (te		
860-48518-1 LB 860-102256/1-G	Method Blank		90		ja]	 		
860-48518-1 LB 860-102256/1-G Surrogate Legend DCB = DCB Decachlorobi TdX = Tetrachloro-m-xylei	Method Blank chenyl (Surr)	90		romatogr	aphy	r (la		1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
860-48518-1 LB 860-102256/1-G Surrogate Legend DCB = DCB Decachlorobi TdX = Tetrachloro-m-xylei	Method Blank	90		romatogr	aphy	r (In		Prep Type: Total/
860-48518-1 LB 860-102256/1-G Surrogate Legend DCB = DCB Decachlorobi TdX = Tetrachloro-m-xylei Method: 8082A - Pol	Method Blank chenyl (Surr)	90						
860-48518-1 LB 860-102256/1-G Surrogate Legend DCB = DCB Decachlorobi TdX = Tetrachloro-m-xylei Method: 8082A - Pol	Method Blank chenyl (Surr)	90				overy (Accept		
860-48518-1 LB 860-102256/1-G Surrogate Legend DCB = DCB Decachlorobi TdX = Tetrachloro-m-xyler Method: 8082A - Pol Matrix: Solid	Method Blank phenyl (Surr) ne ychlorinated Biphenyls	90 i	Gas Ch					
860-48518-1 LB 860-102256/1-G Surrogate Legend DCB = DCB Decachlorobi TCX = Tetrachloro-m-xylet Method: 8082A - Pol Matrix: Solid Lab Sample ID	Method Blank shenyl (Surr) ne ychlorinated Biphenyls Client Sample ID	90 i s (PCBs) by (TCX1 (35-140)	Gas Ch					
860-48518-1 LB 860-102256/1-G Surrogate Legend DCB = DCB Decachlorobi TdX = Tetrachloro-m-xyler Method: 8082A - Pol Matrix: Solid Lab Sample ID 860-48444-B-4-B MS	Method Blank Shenyl (Surr) ne ychlorinated Biphenyls Client Sample ID Matrix Spike	90 (PCBs) by (TCX1 (35-140) 66	Gas Chr DCB1 (37-142)					
860-48518-1 LB 860-102256/1-G Surrogate Legend DCB = DCB Decachlorobi TdX = Tetrachloro-m-xyler Method: 8082A - Pol Matrix: Solid Lab Sample ID 860-48444-B-4-B MS 860-48444-B-4-C MSD	Method Blank Shenyl (Surr) ne ychlorinated Biphenyls Client Sample ID Matrix Spike Matrix Spike Duplicate	TCX1 (35-140) 66 63	DCB1 (37-142)					
860-48518-1 LB 860-102256/1-G Surrogate Legend DCB = DCB Decachlorobi TdX = Tetrachloro-m-xyler Method: 8082A - Pol Matrix: Solid Lab Sample ID 860-48444-B-4-B MS 860-48518-1	Method Blank Shenyl (Surr) ne ychlorinated Biphenyls Client Sample ID Matrix Spike Matrix Spike Duplicate FBC 30 Digester c	TCX1 (35-140) 66 63 57	DCB1 (37-142) 89 90 91					
860-48518-1 LB 860-102256/1-G Surrogate Legend DCB = DCB Decachlorobi TdX = Tetrachloro-m-xyler Method: 8082A - Pol Matrix: Solid Lab Sample ID 860-48444-B-4-B MS 860-48518-1 LCS 860-102044/2-A	Method Blank Shenyl (Surr) ne ychlorinated Biphenyls Client Sample ID Matrix Spike Matrix Spike Duplicate FBC 30 Digester c Lab Control Sample	TCX1 (35-140) 66 63 57 64	DCB1 (37-142) 89 90					
860-48518-1 LB 860-102256/1-G Surrogate Legend DCB = DCB Decachlorobi TCX = Tetrachloro-m-xyler Method: 8082A - Pol Matrix: Solid Lab Sample ID 860-48444-B-4-B MS 860-48444-B-4-C MSD 860-48518-1 LCS 860-102044/2-A LCSD 860-102044/3-A	Method Blank Chenyl (Surr) Pe Client Sample ID Matrix Spike Matrix Spike Duplicate FBC 30 Digester c Lab Control Sample Lab Control Sample Dup	TCX1 (35-140) 66 63 57 64 69	DCB1 (37-142) 89 90 91 76					
860-48518-1 LB 860-102256/1-G Surrogate Legend DCB = DCB Decachlorobi TdX = Tetrachloro-m-xyler Method: 8082A - Pol Matrix: Solid Lab Sample ID 860-48444-B-4-B MS 860-48518-1 LCS 860-102044/2-A	Method Blank Shenyl (Surr) ne ychlorinated Biphenyls Client Sample ID Matrix Spike Matrix Spike Duplicate FBC 30 Digester c Lab Control Sample	TCX1 (35-140) 66 63 57 64	DCB1 (37-142) 89 90 91 76 80					
860-48518-1 LB 860-102256/1-G Surrogate Legend DCB = DCB Decachlorobi TCX = Tetrachloro-m-xyler Method: 8082A - Pol Matrix: Solid Lab Sample ID 860-48444-B-4-B MS 860-48444-B-4-C MSD 860-48518-1 LCS 860-102044/2-A LCSD 860-102044/3-A	Method Blank Chenyl (Surr) Pe Client Sample ID Matrix Spike Matrix Spike Duplicate FBC 30 Digester c Lab Control Sample Lab Control Sample Dup	TCX1 (35-140) 66 63 57 64 69	DCB1 (37-142) 89 90 91 76 80					

Page 10 of 34

5/11/2023

Surrogate Summary Client: Eastex Environmental Laboratory Inc. Job ID: 860-48518-1 Project/Site: For Bend County MUD 30 TCX = Tetrachloro-m-xylene DCB = DCB Decachlorobiphenyl (Surr) Method: 8151A - Herbicides (GC) Matrix: Solid Prep Type: Total/NA Percent Surrogate Recovery (Acceptance Limits) DCPAA1 Lab Sample ID Client Sample ID (70-162)LC\$ 860-102500/2-A Lab Control Sample 125 LC\$D 860-102500/3-A Lab Control Sample Dup 125 MB 860-102500/1-A Method Blank 101 Surrogate Legend DCPAA = 2,4-Dichlorophenylacetic acid Method: 8151A - Herbicides (GC) Matrix: Solid Prep Type: TCLP Percent Surrogate Recovery (Acceptance Limits) DCPAA1 Lab Sample ID Client Sample ID (70-162) 860-48518-1 FBC 30 Digester c 184 S1+ LB 860-102256/1-F Method Blank 86 Surrogate Legend DCPAA = 2,4-Dichlorophenylacetic acid

#11 t

Hii i

Eurofins Houston

Page 11 of 34

5/11/2023

Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD 30

Job ID: 860-48518-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 860-102314/10

Matrix: Solid

Analysis Batch: 102314

Client Sample ID: Method Blank

Prep Type: Total/NA

		· ypc.	TOTALITY	

	MB	MB								
Analyte	Result	Qualifier		RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND			0.0010	II INIT	mg/L			05/09/23 10:52	0.000
Carbon tetrachloride	ND			0.0050		mg/L	I w		05/09/23 10:52	1
Chlorobenzene	ND			0.0010		mg/L	100		05/09/23 10:52	1
Chloroform	ND	1	1 1	0.0010	1	mg/L	1.1	ii -	0\$/09/23 10:52	4
1,2-Dichloroethane	ND		1 1	0.0010		mg/L	*		05/09/23 10:52	4
1,1-Dichloroethene	ND			0.0010		mg/L			05/09/23 10:52	4
2-Butanone	ND			0.050		mg/L			05/09/23 10:52	mod 4
Tetrachloroethene	ND			0.0010	1	mg/L			05/09/23 10:52	
Trichloroethene	ND			0.0050	18	mg/L	i		05/09/23 10:52	1
Vinyl chloride	ND.			0.0020		mg/L	- 1 -	-	05/09/23 10:52	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	İ	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		63 - 144	1 '	- TOTAL STREET	05/09/23 10:52	1
4-Bromofluorobenzene (Surr)	105		74 - 124	: K:		05/09/23 10:52	11
Dibromofluoromethane (Surr)	102		75 - 131	1		05/09/23 10:52	1
Toluene-d8 (Surr)	106	1 1	80 - 117	1 1		05/09/23 10:52	1

Lab Sample ID: LCS 860-102314/3

Lab Sample ID: LCSD 860-102314/4

Matrix: Solid

Trichloroethene

Matrix: Solid

Analysis Ratch: 102314

Vinyl chtoride

Analysis Batch: 102314

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA

75 - 135

60 - 140

Spike LCS LCS %Rec Analyte Result Qualifier Unit Added %Rec Limits Benzene 0.0500 0.0455 91 75 - 125 mg/L Carbon tetrachloride 0.0500 0.0495 mq/L 99 70 - 130 Chlorobenzene 0.0500 mg/L 0.0443 89 65 - 135 Chloroform 0.0500 0.0463 mg/L 93 70 - 121 1,2-Dichloroethane 0.0500 0.0452 mg/L 90 72 - 130 1,1-Dichloroethene 0.0500 0.0395 mg/L 79 50 - 150 2-Butanone 0.250 0.207 mg/L 83 60 -1140 Tetrachloroethene 0.0500 0.0448 mg/L 90 71 - 125

0.0500

0.0500

0.0449

0.0414

mg/L

mg/L

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	103		63 - 144
4-Bromofluorobenzene (Surr)	100		74 - 124
Dibromofluoromethane (Surr)	107		75 - 131
Toluene-d8 (Surr)	98		80 - 117

Client Sample ID: Lab Control Sample Dup

90

83

Prep Type: Total/NA

Analysis baton. 102014	Spike	LCSD	LCSD				9	%Rec	4	RPD
Analyte	Added	Result	Qualifier	Unit		D	%Rec	Limits	RPD	Limit
Benzene	0.0500	0.0434		mg/L	1		87	75 - 125	5	25
Carbon tetrachloride	0.0500	0.0468		mg/L			94	70 - 130	6	25
Chlorobenzene	0.0500	0.0442	Ÿ	mg/L			88	65 - 135	0	25
Chloroform	0.0500	0.0440	4	mg/L			88	70 - 121	5	25

Eurofins Houston

Page 12 of 34 5/11/2023

1 (1)

Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD 30

Job ID: 860-48518-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

LCSD LCSD

106

101

109

98

Qualifier

%Recovery

Lab Sample ID: LCSD 860-102314/4 Matrix: Solid

Analysis Batch: 102314

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Analysis Batch: 102315

Lab Sample ID: MB 860-102315/19

Toluene-d8 (Surr)

Matrix: Solid

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifler	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dichloroethane			0.0500	0.0431		mg/L		86	72 - 130		25
1,1-Dichloroethene		1	0.0500	0.0394		mg/L		79	50 - 150	0	25
2-Butanone		1	0.250	0.209		mg/L		84	60 - 140	1	25
Tetrachloroethene			0.0500	0.0420		mg/L		84	71 - 125	6	25
Trichloroethene	e .		0.0500	0.0424		mg/L		85	75 - 135	6	25
Vinyl chloride			0.0500	0.0477		mg/L		95	60 - 140	14	25

Limits

63 - 144

74 - 124

75 - 131

80 - 117

Client Sample ID: Method Blank Prep Type: Total/NA

MB	MB						
Result	Qualifier	RL	MDL	Unit	D Prepared	Analyzed	Dil Fa
ND		0.0010	1755-6-7	mg/L		05/09/23 13:12	
ND ND	1	0.0050		mg/L	1	05/09/23 13:12	1
ND		0.0010		mg/L		05/09/23 13:12	
ND		0.0010		mg/L		05/09/23 13:12	
ND		0.0010		mg/L		05/09/23 13:12	
ND		0.0010		mg/L		05/09/23 13:12	
ND		0.050		mg/L		05/09/23 13:12	
ND	1	0.0010		mg/L		05/09/23 13:12	
ND	1	0.0050		mg/L		05/09/23 13:12	
ND	1	0.0020	1	mg/L		05/09/23 13:12	
	Result ND ND ND ND ND ND ND ND ND ND ND	Result Qualifier ND ND ND ND ND ND ND ND ND N	Result Qualifier RL ND 0.0010 ND 0.0050 ND 0.0010 ND 0.0010 ND 0.0010 ND 0.0010 ND 0.050 ND 0.050 ND 0.0010 ND 0.0010 ND 0.0050 ND 0.0050	Result Qualifier RL MDL ND 0.0010 0.0050 ND 0.0010 0.0010 ND 0.0010 0.0010 ND 0.0010 0.0010 ND 0.0050 0.0050 ND 0.0050 0.0050 ND 0.0050 0.0050	Result Qualifier RL MDL Unit ND 0.0010 mg/L ND 0.0050 mg/L ND 0.0010 mg/L ND 0.0010 mg/L ND 0.0010 mg/L ND 0.0010 mg/L ND 0.050 mg/L ND 0.0010 mg/L ND 0.0010 mg/L ND 0.0050 mg/L ND 0.0050 mg/L	Result Qualifier RL MDL Unit D Prepared ND 0.0010 mg/L <	Result Qualifier RL MDL Unit D Prepared Analyzed ND 0.0010 mg/L 0.5/09/23 13:12 ND 0.0050 mg/L 0.5/09/23 13:12 ND 0.0010 mg/L 0.5/09/23 13:12 ND 0.0050 mg/L 0.5/09/23 13:12 ND 0.0010 mg/L 0.5/09/23 13:12 ND 0.0010 mg/L 0.5/09/23 13:12 ND 0.0010 mg/L 0.5/09/23 13:12 ND 0.0050 mg/L 0.5/09/23 13:12

MB MB

Surrogate	%Recovery	Qualifier	Limits	1,	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		63 - 144		ALPERT CO	05/09/23 13:12	1
4-Bromofluorobenzene (Surr)	101		74 - 124	1		05/09/23 13:12	1
Dibromofluoromethane (Surr)	92	1	75 - 131			05/09/23 13:12	1
Toluene-d8 (Surr)	101	4	80 - 117			05/09/23 13:12	1

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Solid

Lab Sample ID: LCS 860-102315/1013

Analysis Batch: 102315

				Spike	LCS	LCS				%Rec	
Analyte				Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene				0.0500	0.0513		mg/L		103	75 - 125	
Carbon tetrachloride			E	0.0500	0.0536		mg/L		107	70 - 130	
Chlorobenzene			4	0.0500	0.0501		mg/L		100	65 - 135	
Chloroform				0.0500	0.0519		mg/L		104	70 - 121	
1,2-Dichloroethane	· į	M; +		0.0500	0.0\$03	1 :	mg/L	4	101	72 - 130	the part lost
1,1-Dichloroethene				0.0500	0.0515		mg/L		103	50 - 150	
2-Butanone	i.	į.		0.250	0.261		mg/L		104	60 - 140	
Tetrachloroethene				0.0500	0.0507		mg/L		101	71 - 125	

Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD 30

Job ID: 860-48518-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 860-102315/1013

Matrix: Solid

Analysis Batch: 102315

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits Trichloroethene 0.0500 0.0538 108 mg/L 75 - 135 Vinyl chloride 0.0500 0.0486 mg/L 97 60 - 140

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	96	MI	63 - 144
4-Bromofluorobenzene (Surr)	100		74 - 124
Dibromofluoromethane (Surr)	100		75 - 131
Toluene-d8 (Surr)	102		80 - 117

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Lab Sample ID: LCSD 860-102315/14 Matrix: Solid

Analysis Batch: 102315

Allalysis Datoll. 102010												
				Spike	LCSD	LCSD	4		1	%Rec		RPD
Analyte			Į.	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene				0.0500	0.0519	-	mg/L		104	75 - 125	1	25
Carbon tetrachloride				0.0500	0.0533		mg/L		107	70 - 130	1	25
Chlorobenzene				0.0500	0.0506		mg/L		101	65 - 135	1	25
Chloroform				0.0500	0.0521		mg/L		104	70 - 121	0	25
1,2-Dichloroethane				0.0500	0.0515		mg/L		103	72 - 130	2	25
1,1-Dichloroethene				0.0500	0.0521		mg/L		104	50 - 150	1	25
2-Butanone				0.250	0.263		mg/L		105	60 - 140	1	25
Tetrachloroethene				0.0500	0.0509		mg/L	1	102	71 - 125	0	25
Trichloroethene				0.0500	0.0538	4	mg/L		108	75 - 135	. 0	25
Vinyl chloride	1	3		0.0500	0.0504	3	mg/L		101	60 - 140	1 1 4	25

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		63 - 144
4-Bromofluorobenzene (Surr)	98		74 - 124
Dibromofluoromethane (Surr)	103		75 - 131
Toluene-d8 (Surr)	100		80 - 117

Client Sample ID: Method Blank

Prep Type: TCLP

Matrix: Solid

Lab Sample ID: LB 860-102319/1-A

Analysis Batch: 102314

Analysis Batch: 102314					71					1
	LB	LB			3					
Analyte	Result	Qualifier	RL	MDL	Unit		D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0050		mg/L				05/09/23 10:31	5
Carbon tetrachloride	ND		0.025		mg/L			ř	05/09/23 10:31	5
Chlorobenzene	ND		0.0050		mg/L	į			05/09/23 10:31	5
Chloroform	ND		0.0050		mg/L		1.		05/09/23 10:31	5
1.2-Dichloroethane	ND		0.0050		mg/L				05/09/23 10:31	5
1.1-Dichloroethene	ND		0.0050		mg/L				05/09/23 10:31	5
2-Butanone	ND		0.25		mg/L				05/09/23 10:31	5
Tetrachloroethene	ND		0.0050		mg/L				05/09/23 10:31	5
Trichloroethene	ND		0.025		mg/L				05/09/23 10:31	5
Vinyl chloride	ND		0.010		mg/L				05/09/23 10:31	5

Client: Eastex Environmental Laboratory Inc.

Job ID: 860-48518-1

Project/Site: For Bend County MUD 30

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LB 860-102319/1-A

Matrix: Solid

Client Sample ID: Method Blank

Prep Type: TCLP

Analysis Batch: 102314 1 | 1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		63 - 144		05/09/23 10:31	5
4-Bromofluorobenzene (Surr)	105		74 - 124		05/09/23 10:31	5
Dibromofluoromethane (Surr)	100		75 - 131		05/09/23 10:31	5
Toluene-d8 (Surr)	105		80 - 117		05/09/23 10:31	5

Lab Sample ID: 860-48516-A-1-D MS

Matrix: Solid

Analysis Batch: 102314

Client	Sample	ID:	Matrix	Spik	e
		Dret	Type'	TCI	Р

AMERICA TO AND THE PARTY OF THE	Sample	Sample	Spike	MS	MS	1			%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	ND	- 3	2.50	2.13		mg/L		85	66 - 142	2 3 to 10 to 100 12 to 100
Carbon tetrachloride	ND	lime! min	2.50	2.41		mg/L		96	62 - 125	
Chlorobenzene	ND		2.50	2.07		mg/L		83	60 - 133	
Chloroform	ND	1	2.50	2.18	1	mg/L		87	70 - 130	
1,2-Dichloroethane	ND	i t	2.50	2.10		mg/L		84	68 - 127	
1,1-Dichloroethene	ND	inna ti	2.50	1.92		mg/L		77	59 - 172	
2-Butanone	ND		12.5	10.2		mg/L		81	60 - 140	
Tetrachloroethene	, ND		2.50	2.18		mg/L		87	71 - 125	
Trichloroethene	ND	i	2.50	2.11		mg/L		84	62 - 137	
Vinyl chloride	ND	Am	2.50	1.99		mg/L		80	60 - 140	
	MS	MS								

921	2222	2 6000	575 15
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	104		63 - 144
4-Bromofluorobenzene (Surr)	103		74 - 124
Dibromofluoromethane (Surr)	110		75 - 131
Toluene-d8 (Surr)	99		80 - 117

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 860-102484/1-A

Matrix: Solid

Analysis Batch: 102521

Client Sample ID: I	Method	Blank
---------------------	--------	-------

Prep Type: Total/NA

Analysis Batch: 102521								Prep Batch: 1024		
	MB	MB								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
1,4-Dichlorobenzene	ND		0.0050		mg/L		05/09/23 18:27	05/10/23 13:32	1	
2,4,5-Trichlorophenol	ND		0.0050	4	mg/L		05/09/23 18:27	05/10/23 13:32	1	
2,4,6-Trichlorophenol	ND	İ	0.0050	milyan 3	mģ/L		05/09/23 18:27	05/10/23 13:32	1	
2,4-Dinitrotoluene	ND		0.0050		mg/L		05/09/23 18:27	05/10/23 13:32	1	
2-Methylphenol	ND		0.0050	1	mg/L		05/09/23 18:27	05/10/23 13:32	1	
Hexachlorobenzene	ND	. 1	0.0050		mg/L		05/09/23 18:27	05/10/23 13:32	1	
Hexachlorobutadiene	ND	1	0.0050		mg/L		05/09/23 18:27	05/10/23 13:32	1	
Hexachloroethane	ND		0.0050		mg/L	1	05/09/23 18:27	05/10/23 13:32	1	
Nitrobenzene	ND		0.0050		mg/L		05/09/23 18:27	05/10/23 13:32	1	
Pentachlorophenol	ND		0.010		mg/L		05/09/23 18:27	05/10/23 13:32	1	
Pyridine	ND	i	0.010		mg/L		05/09/23 18:27	05/10/23 13:32	1	
3 & 4 Methylphenol	ND		0.010		mg/L		05/09/23 18:27	05/10/23 13:32	1	

Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD 30

Job ID: 860-48518-1

Project in the last

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 860-102484/1-A

Lab Sample ID: LCS 860-102484/2-A

Lab Sample ID: LCSD 860-102484/3-A

Matrix: Solid

Matrix: Solid

Matrix: Solid

Analysis Batch: 102521

Analysis Batch: 102521

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 102484

	MB	MB					
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	70		31 - 132		05/09/23 18:27	05/10/23 13:32	1
2-Fluorobiphenyl (Surr)	74		29 - 112	1	05/09/23 18:27	05/10/23 1/3:32	1
2-Fluorophenol (Surr)	43		21 - 114	1	05/09/23 18:27	05/10/23 13:32	1
Nitrobenzene-d5 (Surr)	80	i	26 - 110		05/09/23 18:27	05/10/23 13:32	1 1
p-Terphenyl-d14 (Surr)	81		20 - 141	1	05/09/23 18:27	05/10/23 13:32	1 1
Phenol-d5 (Surr)	28	1 1	16 - 117	, 1	05/09/23 18:27	05/10/23 13:32	1
ree .						1	

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 102484

					Spike	LCS	LCS	ī			%Rec		
Analyte	W				Added	Result	Qualifier	Unit	D	%Rec	Limits		
1,4-Dichlorobenzene					0.0400	0.0256		mg/L		64	37 - 111		The second Market
2,4,5-Trichlorophenol					0.0400	0.0325		mg/L		81	39 - 125		
2,4,6-Trichlorophenol					0.0400	0.0316		mg/L		79	42 - 125		
2,4-Dinitrotoluene					0.0400	0.0323		mg/L		81	41 - 128		
2-Methylphenol					0.0400	0.0242		mg/L	1	60	36 - 105		
Hexachlorobenzene					0.0400	0.0307		mg/L		77	39 - 128		
Hexachiorobutadiene	1	1	T.	į	p.04po	0.0263	1	mg/L	1 111	66	31 1120	1 1	
Hexachloroethane					0.0400	0.0246		mg/L		62	37 - 109		
Nitrobenzene					0.0400	0.0314		mg/L		79	37 - 114		
Pentachlorophenol					0.0400	0.0310		mg/L		78	10 - 137		
Pyridine					0.0400	0.00866	J	mg/L		22	5 - 130		
3 & 4 Methylphenol					0.0400	0.0217		mg/L		54	35 - 116		
								F	mile a	-			

LCS LCS

Surrogate	%Recovery	Qualifier		Limits	
2,4,6-Tribromophenol (Surr)	76			31 - 132	
2-Fluorobiphenyl (Surr)	68			29 - 112	
2-Fluorophenol (Surr)	43		1	21 - 114	
Nitrobenzene-d5 (Surr)	73			26 - 110	
p-Terphenyl-d14 (Surr)	82	‡	i	20 - 141	
Phenol-d5 (Surr)	30	,	3	16 - 117	

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 102484

Analysis Batch: 102521			20			1			Ligh	Detch. I	02404
			Spike	LCSD	LCSD	T			%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,4-Dichlorobenzene	-		0.0400	0.0222	Name and Sales	mg/L		55	37 - 111	15	30
2,4,5-Trichlorophenol			0.0400	0.0293		mg/L		73	39 - 125	10	30
2,4,6-Trichlorophenol			0.0400	0.0285		mg/L		71	42 - 125	10	30
2.4-Dinitrotoluene			0.0400	0.0291		mg/L		73	41 - 128	10	30
2-Methylphenol			0.0400	0.0227		mg/L		57	36 - 105	6	30
Hexachlorobenzene	1	1 !	0.0400	0.0275	1	mg/L	: 14.	69	39 - 128	111	30
Hexachlorobutadiene			0.0400	0.0234		mg/L		59	31 - 120	12	30
Hexachloroethane			0.0400	0.0221		mg/L		55	37 - 109	- 11	30
Nitrobenzene			0.0400	0.0258		mg/L		64	37 - 114	20	30
Pentachlorophenol			0.0400	0.0288	1	mg/L		72	10 - 137	8	40

Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD 30

Job ID: 860-48518-1

Method: 8270D - Semivolat	le Organic Compounds	(GC/MS)	(Continued)
			1

	Lab Sample	ID: LCSD	860-102484/3-A
--	------------	----------	----------------

Lab Sample ID: LB 860-102256/1-E

Matrix: Solid

Matrix: Solid

Analysis Batch: 102521

Client Sample ID:	Lab	Control	Sample Dup
		Prep Ty	pe: Total/NA

Prep Batch: 102484

	1	Бріке	LCSD	LCSD				%Rec		RPD
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Pyridine		0.0400	0.00493	J *1	mg/L	~ =	12	5 - 130	55	50
3 & 4 Methylphenol		0.0400	0.0201		mg/L		50	35 - 116	7	30
	CD LCCD			1	1	1				

Surrogate Qualifie Limits 2,4,6-Tribromophenol (Surr) 70 31 - 132 2-Fluorobiphenyl (Surr) 59 29 - 112 2-Fluorophenol (Surr) 39 21 - 114 61 26 - 110

Nitrobenzene-d5 (Surr) p-Terphenyl-d14 (Surr) 76 20 - 141 Phenol-d5 (Surr) 28 16 - 117

Client Sample ID: Method Blank

Prep Type: TCLP Prep Batch: 102484

Analysis Batch: 102521 LB LB

101 1

Analyte Qualifier Result MDL RL Prepared Analyzed Dil Fac 1,4-Dichlorobenzene ND 0.025 mg/L 05/09/23 18:27 05/10/23 22:20 2,4,5-Trichlorophenol ND 0.025 mg/L 05/10/23 22:20 05/09/23 18:27 2,4,6-Trichlorophenol ND 0.025 mg/L 05/10/23 22:20 05/09/23 18:27 2,4-Dinitrotoluene ND 0.025 mg/L 05/09/23 18:27 05/10/23 22:20 2-Methylphenol ND 0.025 mg/L 05/09/23 18:27 05/10/23 22:20

Hexachlorobenzene ND 0.025 mg/L 05/09/23 18:27 05/10/23 22:20 Hexachlorobutadiene ND 0.025 mg/L 05/09/23 18:27 05/10/23 22:20 Hexachloroethane ND 0.025 mg/L 05/09/23 18:27 05/10/23 22:20 Nitrobenzene ND 0.025 mg/L 05/09/23 18:27 05/10/23 22:20 Pentachlorophenol ND 0.050 mg/L 05/09/23 18:27 05/10/23 22:20 Pyridine ND 0.050 mg/L 05/09/23 18:27 05/10/23 22:20 3 & 4 Methylphenol ND 0.050 mg/L 05/09/23 18:27 05/10/23 22:20

·	LB	LB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	74		31 - 132	05/09/23 18:27	05/10/23 22 20	1
2-Fluorobiphenyl (Surr)	67		29 - 112	05/09/23 18:27	05/10/23 22 20	1
2-Fluorophenol (Surr)	58		21 - 114	05/09/23 18:27	05/10/23 22:20	1
Nitrobenzene-d5 (Surr)	73	Y	26 - 110	05/09/23 18:27	05/10/23 22:20	1
p-Terphenyl-d14 (Surr)	77	1	20 - 141	05/09/23 18:27	05/10/23 22:20	,
Phenol-d5 (Surr)	47		16 - 117	05/09/23 18:27	05/10/23 22:20	1

Lab Sample ID: 860-48490-A-1-E MS

Matrix: Solid

Analysis Batch: 102521

Client Sample ID: Matrix Spike

Prep Type: TCLP

Prep Batch: 102484

A STATE OF	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dichlorobenzene	ND		0.200	ND		mg/L		55	37 - 111	
2,4,5-Trichlorophenol	ND	1 1	0.200	0.141		mg/L		70	39 - 125	
2,4,6-Trichlorophenol	ND	Į.	0.200	0.135		mg/L		68	42 - 125	
2,4-Dinitrotoluene	ND		0.200	0.162		mg/L		81	41 - 128	
2-Methylphenol	' ND		0.200	ND		mg/L		57	36 - 105	
Hexachlorobenzene	ND	Ì	0.200	0.148		mg/L		74	39 - 128	

Eurofins Houston

Page 17 of 34

5/11/2023

Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD 30

Job ID: 860-48518-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 860-48490-A-1-E MS Matrix: Solid

Client Sample ID: Matrix Spike Prep Type: TCLP

Analysis Batch: 102521

Prep Batch: 102484

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Sample	Sample	•		Spike	MS	MS			%Rec	
Analyte	Result	Qualifie	er	i	Added	Result	Qualifier	Unit	%Rec	Limits	100
Hexachlorobutadiene	ND			200	0.200	ND		mg/L	60	31 - 120	uniking
Hexachloroethane	ND				0.200	ND		mg/L	55	37 - 109	
Nitrobenzene	ND		1	-	0.200	0.131		mg/L	65	37 - 114	1
Pentachlorophenol	ND				0.200	ND		mg/L	102	10 - 137	1
Pyridine	ND	*1			0.200	ND		mg/L	32	5 - 135	
3 & 4 Methylphenol	ND	(18)			0.200	ND		mg/L	64	35 - 116	

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	67		31 - 132
2-Fluorobiphenyl (Surr)	61		29 - 112
2-Fluorophenol (Surr)	47		21 - 114
Nitrobenzene-d5 (Surr)	61		26 - 110
p-Terphenyl-d14 (Surr)	76		20 - 141
Phenol-d5 (Surr)	40	E É	16 - 117

Method: 8081B - Organochlorine Pesticides (GC)

Lab Sample ID: MB 860-102544/1-A

Matrix: Solid

Analysis Batch: 102466

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 102544

		мв	MB				E I		1		
Analyte		Result	Qualifier	RL	MDL	Unit	10.10	D	Prepared	Analyzed	Dil Fac
Chlorodane		ND		0.0020		mg/L		_	05/10/23 11:17	05/10/23 14:38	1
Endrin		ND		0.000040		mg/L			05/10/23 11:17	05/10/23 14:38	1
Heptachlor		ND		0.000040		mg/L			05/10/23 11:17	05/10/23 14:38	1
Heptachlor epoxide		ND	Det 6	0.000040		mg/L			05/10/23 11:17	05/10/23 14:38	1
gamma-BHC (Lindane)		ND		0.000040		mg/L	1		05/10/23 11:17	05/10/23 14:38	1
Methoxychlor		ND	1 1	0.00016		mg/L	1		05/10/23 11:17	05/10/23 14:38	1
Toxaphene		ND		0.0016		mg/L			05/10/23 11:17	05/10/23 14:38	1
		MB	МВ				- 1		(†		
Surrogate		%Recovery	Qualifier	Limits			- 0		Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr))	92	,	15 - 136					05/10/23 11:17	05/10/23 14:38	1
Tetrachloro-m-vulene		91		18 - 126		- , 1			05/10/23 11:17	05/10/23 14:38	1

Lab Sample ID: LCS 860-102544/2-A

Matrix: Solid

Tetrachloro-m-xylene

Analysis Batch: 102466

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 102544

Analysis Batch. 102400			Spike	LCS	LCS		1		%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	(2)	17.11
Endrin			0.008000	0.000800	1	mg/L	1 1 1	100	14 - 169	1 4	
Heptachlor	1	1 4	0.000800	0.000752	2	mg/L		94	10 - 157	1	
Heptachlor epoxide			0.000800	0.000800		mg/L		100	15 - 155		
gamma-BHC (Lindane)			0.000800	0.000765		mg/L		96	8 - 157		
Methoxychlor			0.000800	0.000775		mg/L		97	25 - 161		

Page 18 of 34

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl (Surr)	80		15 - 136
Tetrachloro-m-xylene	80		18 - 126

Job ID: 860-48518-1

Project/Site: For Bend County MUD 30

Method: 8081B - Organochlorine Pesticides (GC	:)
---	----

Lab	Sample	ID:	LCSD	860-102544/3-A	

Lab Sample ID: LB 860-102256/1-G

Matrix: Solid

Analysis Batch: 102466

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Solid Analysis Batch: 102466

Prep Batch: 102544

Analyte	- U - U - U - U - U	Added		LCSD Qualifier	Unit	D	%Rec	%Rec Limits	RPD	RPD Limit
Endrin		0.000800	0.000859		mg/L	- 2	107	14 - 169	7	25
Heptachlor		0.000800	0.000824		mg/L		103	10 - 157	0	25
Heptachlor epoxide		0.000800	0.000874		mg/L		109	15 - 155	9	25
gamma-BHC (Lindane)	7	0.000800	0.000840		mg/L		105	8 - 157	9	25
Methoxychlor		0.000800	0.000848		mg/L		106	25 - 161	9	25
k . h	LCSD LCSD		81	4	1	,				THE ST

%Recovery Qualifier

Surrogate DCB Decachlorobiphenyl (Surr) 90 15 - 136 Tetrachloro-m-xylene 89 18 - 126

Client Sample ID: Method Blank

Prep Type: TCLP

Prep Baich: 102544

	LB LB								
Analyte	Result Qual	lifier RL	MDL	Unit		D	Prepared	Analyzed	Dil Fac
Chlorodane	ND	0.0025		mg/L	f:	-	05/10/23 11:17	05/10/23 14:51	1
Endrin	ND	0.000050		mg/L			05/10/23 11:17	05/10/23 14:51	- 1
Heptachlor	ND	0.000050		mg/L			05/10/23 11:17	05/10/23 14:51	4
Heptachlor epoxide	,ND	0.000050	1	mg/L			05/10/23 11:17	05/10/23 14:51	- 1
gamma-BHC (Lindane)	ND	0.000050		mg/L			05/10/23 11:17	05/10/23 14:51	
Methoxychlor	ND	0.00020		mg/L			05/10/23 11:17	05/10/23 14:51	The state of
Toxaphene	ND	0.0020	1	mg/L			05/10/23 11:17	05/10/23 14:51	1
III hall	LB LB								

%Recovery Qualifier Limits Prepared Analyzed Dil Fac DCB Decachlorobiphenyl (Surr) 90 15 - 136 05/10/23 11:17 05/10/23 14:51 Tetrachloro-m-xylene 90 18 - 126 05/10/23 11:17 05/10/23 14:51

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

		, ,
Г	1	
Lab Sample ID: MB 860-102044/1-A		

Matrix: Solid

Analysis Batch: 102105

Client Sample ID: Method	Blank
Prep Type: To	tai/NA

Prep Batch: 102044

		MR	MR						
Analyte		Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016		ND	74	0.017	mg/Kg		05/06/23 08:22	05/08/23 13:47	Dirac
PCB-1221		ND		0.017	mg/Kg		05/06/23 08:22		1
PCB-1232		ND		0.017			Company of the Compan	05/08/23 13:47	1
PCB-1242					mg/Kg		05/06/23 08:22	05/08/23 13:47	1
27 12 12		ND	1	0.017	mg/Kg		05/06/23 08:22	05/08/23 13:47	1
PCB-1248		ND	1	0.017	mg/Kg		05/06/23 08:22	05/08/23 13:47	1
PCB-1254		ND		0.017	mg/Kg		05/06/23 08:22	05/08/23 13:47	- 4
PCB-1260		ŅD		0.017	mg/Kg		05/06/23 08:22	05/08/23 13:47	1
	1	МВ	MB						
Surrogate		%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene		65	ī	35 - 140			05/06/23 08:22		Dirrac
DCB Decachlorobiphenyl (Surr)		76		1,000,000,000				05/08/23 13:47	1
- I follow		70		37 - 142			05/06/23 08:22	05/08/23 13:47	4

Method: 8082A - Polychlorinated E	Biphenyls (PCBs) by Gas Chromatography (Contir	nued)
Method. 6002A - Folychlormated L	Diplientitis (1 003) by das official agraphity (contin	iucuj

Lab Sample ID: LCS 860-102044/2-A										
Matrix: Solid Analysis Batch: 102105					į	3.				Type: Total/NA
	3	0				1 1			Prep	Batch: 102044
	1		Spike	LCS	LCS	99			%Rec	1
			Added	Result	Qualifier	Unit	D	%Rec	Limits	31.116
	1	S-	0.167	0.112		mg/Kg		67	27 - 121	platell.
			0.167	0.108		mg/Kg		65	27 - 139	
1.00	1.00		1			ŧ				
122.20			warnen in		7	i				
%Recovery	Qualifier		Limits							
64			35 - 140							
76			37 - 142							
	LCS %Recovery 64	LCS LCS %Recovery Qualifier 64	LCS LCS %Recovery Qualifier 64	Spike Added 0.167	Spike LCS Added Result 0.167 0.112 0.167 0.108 LCS LCS %Recovery Qualifier Limits 64 35 - 140	Spike LCS LCS Added Result Qualifier 0.167 0.112 0.167 0.108 LCS LCS KRecovery Qualifier Limits 64 35-140	Spike LCS LCS	Spike LCS LCS	Spike LCS LCS	Spike LCS LCS D

-	10.50										
Lab Sample ID: LCSD 860-102 Matrix: Solid	044/3-A					Cli	ent Sam	ple ID:	Lab Control Prep T	Sampl	
Analysis Batch: 102105	1 1	1	Spike	LCSD	LCSD		i Hil		Prep E	Batch: 1	02044 RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
PCB-1016			0.167	0.119		mg/Kg		72	27 - 121	6	20
PCB-1260			0.167	0.112		mg/Kg		67	27 - 139	4	20
	LCSD	LCSD			1	ij					
Surrogate	%Recovery	Qualifier	Limits								
Tetrachloro-m-xylene	69		35 - 140	in the							
DCB Decachlorobiphenyl (Surr)	80		37 - 142								
									1	1 1	
Lab Sample ID: 860-48444-B-4-B MS					‡			Client	Sample ID:	Matrix	The Carry

Matrix: Solid Analysis Batch: 102105			1			Prep Type: Total/NA Prep Batch: 102044				
Analysis Batom 102100		Sample	Spike		MS	Unit	D	%Rec	%Rec Limits	Ĭ
Analyte	Result	Qualifier	Added		Qualifier					
PCB-1016	ND		0.214	0.153		mg/Kg	ū	72	27 - 121	
PCB-1260	ND	į.	0.214	0.156		mg/Kg	n	73	27 - 139	
	MS	MS	1			ř.				
Surrogate	%Recovery	Qualifier	Limits			1				
Tetrachloro-m-xylene	66	V	35 - 140							
DCB Decachlorobiphenyl (Surr)	89		37 - 142							

Lab Sample ID: 860-48444-B- Matrix: Solid	4-C MSD					- (Client	Sample II		pike Dur Type: To Batch: 1	tal/NA
Analysis Batch: 102105		Sample Qualifier	Spike Added	MSD Result	MSD Qualifier	Unit	Ė	%Rec	%Rec Limits	RPD	RPD
PCB-1016	ND		0.214	0.146		mg/Kg	ŗ.	69	27 - 121	5	20
PCB-1260	ND		0.214	0.150		mg/Kg	3	70	27 - 139	4	20
	MSD	MSD			į						
Surrogate	%Recovery	Qualifier	Limits			ij					
Tetrachloro-m-xylene	63		35 - 140			1	1		1		
DCB Decachlorobiphenyl (Surr)	90		37 - 142								

Page 21 of 34

0.020

mg/L

05/09/23 10:30

ND

Antimony

5/11/2023

Eurofins Houston

05/09/23 15:41

Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD 30

Job ID: 860-48518-1

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: MB 860-102374/1-A Matrix: Solid

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 102374

Analysis Batch: 102516

MB	MB								
Result	Qualifier		RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
ND			0.010		mg/L	- F	05/09/23 10:30	05/09/23 15:41	1.
ND			0.0050		mg/L		05/09/23 10:30	05/09/23 15:41	1
ND			0.010		mg/L		05/09/23 10:30	05/09/23 15:41	1
ND			0.0040		mg/L		05/09/23 10:30	05/09/23 15:41	1
ND			0.010		mg/L		05/09/23 10:30	05/09/23 15:41	1
ND			0.030		mg/L	1	05/09/23 10:30	05/09/23 15:41	1
, ND	4 1	3 (0.020	1	mg/L		05/09/23 10:30	05/09/23 15:41	1
ND	1; 1	1 1	0.010	1	mg/L	1. 1	05/09/23 10:30	05/09/23 15:41	1
	Result ND ND ND ND ND ND ND ND	Result Qualifier ND ND ND ND ND ND ND ND ND N	Result Qualifier ND ND ND ND ND ND ND ND ND N	Result Qualifier RL ND 0.010 ND 0.0050 ND 0.010 ND 0.0040 ND 0.010 ND 0.030 ND 0.020	Result Qualifier RL MDL ND 0.010 ND 0.010 ND 0.0040 ND 0.010 ND 0.010 ND 0.030 ND 0.020	Result Qualifier RL MDL Unit ND 0.010 mg/L ND 0.0050 mg/L ND 0.010 mg/L ND 0.0040 mg/L ND 0.010 mg/L ND 0.030 mg/L ND 0.020 mg/L	Result Qualifier RL MDL Unit D ND 0.010 mg/L mg/L ND 0.010 mg/L mg/L ND 0.0040 mg/L mg/L ND 0.010 mg/L mg/L ND 0.030 mg/L mg/L ND 0.020 mg/L	Result Qualifier RL MDL Unit D Prepared ND 0.010 mg/L 05/09/23 10:30 ND 0.0050 mg/L 05/09/23 10:30 ND 0.010 mg/L 05/09/23 10:30 ND 0.0040 mg/L 05/09/23 10:30 ND 0.010 mg/L 05/09/23 10:30 ND 0.030 mg/L 05/09/23 10:30 ND 0.020 mg/L 05/09/23 10:30	Result ND Qualifier RL MDL Unit D Prepared Prepared Analyzed ND 0.010 mg/L 05/09/23 10:30 05/09/23 15:41 ND 0.010 mg/L 05/09/23 10:30 05/09/23 15:41 ND 0.0040 mg/L 05/09/23 10:30 05/09/23 15:41 ND 0.010 mg/L 05/09/23 10:30 05/09/23 15:41 ND 0.030 mg/L 05/09/23 10:30 05/09/23 15:41 ND 0.030 mg/L 05/09/23 10:30 05/09/23 15:41 ND 0.020 mg/L 05/09/23 10:30 05/09/23 15:41

Matrix: Solid

Lab Sample ID: LCS 860-102374/2-A

Analysis Batch: 102516

Client Sample	ID:	Lab	Control	Sample
		Pre	Type:	Total/NA

Prep Batch: 102374

		S	pike	LCS	LCS	1.0			%Rec		
Analyte		Ac	lded	Result	Qualifier	Unit	D	%Rec	Limits		
Arsenic	+ 1		1.00	1.02		mg/L	=1115	102	80 - 120		
Antimony	1		1.00	0.990		_i mg/L		99	80 - 120	1	
Barium			1.00	0.963		mg/L		96	80 - 120	1	
Cadmium		i	1.00	0.982	į.	mg/L		98	80 - 120		1
Chromium			1.00	1.00	1	mg/L		100	80 - 120		67.7
Beryllium			1.00	0.994		mg/L		99	80 - 120		
Lead	1		1.00	1.01		mg/L		101	80 - 120	le de	
Selenium			1.00	1.02		mg/L		102	80 - 120		

0.500

1.00

0.485

0.983

mg/L

mg/L

Lab Sample ID: LCSD 860-102374/3-A

Matrix: Solid

Silver

Nickel

Analysis Batch: 102516

Client Sample	ID:	Lab	Control Sample Dup
			Dran Tunas Tatal/NA

80 - 120

80 - 120

Prep Type: Total/NA Prep Batch: 102374

Allalysis	Daten. 10251	•				Sp	oike	LCSD	LCSD				%Rec		RPD
Analyte						Ad	ded	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic						-	1.00	1.02		mg/L	T	102	80 - 120	0	20
Antimony							1.00	0.995		mg/L		100	80 - 120	1	20
Barium			F V	1	1	8.3	1.00	0.966	1	mg/L	1 11:	97	80 - 120	1 10	20
Cadmium			ii sa	,		1.	1.00	0.988		mg/L		99	80 - 120	1	20
Chromium							1.00	1.01		mg/L		101	80 - 120	1	20
Beryllium							1.00	1.00		mg/L		100	80 - 120	1	20
							1.00	1.02		mg/L		102	80 - 120	1	20
Lead Selenium							1.00	1.02	4	mg/L		102	80 - 120	0	20
							.500	0.487		mg/L		97	80 - 120	0	20
Silver Nickel							1.00	0.989		mg/L	,	99	80 - 120	1	20

Lab Sample ID: 830-3498-A-2- Matrix: Solid	C MSD ^5		ī		1	(Client Sa	ample ID	: Matrix Sp Prep T Prep E		tal/NA
Analysis Batch: 102516	100000000000000000000000000000000000000	Sample Qualifier	Spike		MSD Qualifier	Unit	D	%Rec	%Rec Limits	RPD	RPD Limit
Analyte	ND	Qualities	1.00	1.10		mg/L		110	75 - 125	0	20
Arsenic				1.10		mg/L		110	75 - 125	3	20
Antimony	ND 0.055	-	1.00	1.13		mg/L		107	75 - 125	1	20

Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD 30

Job ID: 860-48518-1

Method: 6010B - Metals (ICP) (Continued)

1111

Lab Sample ID: 830-3498-A-2-C MSD ^5

Matrix: Solid

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Analysis Batch: 102516	e		12.00	1						lype: To Batch: 1	
Analyte		Sample Qualifier	Spike Added		MSD Qualifier	Unit	D	%Rec	%Rec Limits	RPD	RPD Limit
Cadmium	ND	Apple	1.00	1.08		mg/L		108	75 - 125	1	20
Chromium	ND	i i	1.00	1.11	1 1	mg/L		111	75 - 125	2	20
Beryllium	ND	1	1.00	1.11	100	mg/L		111	75 - 125	1	20
Lead	ND		1.00	1.11		mg/L		111	75 - 125	1	20
Selenium	ND		1.00	1.10		mg/L		110	75 - 125	1	20
Silver	ND	1	0.500	0.530		mg/L		106	75 - 125	1	20
Nickel	ND		1.00	1.09		mg/L	1	109	75 - 125	-1	20

Lab Sample ID: LB 860-102256/1-C

Matrix: Solid

Analysis Batch: 102516

Client Sample ID: Method Blank

Prep Type: TCLP

Prep Batch: 102374

PROTECTION AND DESCRIPTION OF THE PROTECTION OF	LB	LB						op Baton.	102074
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.050	-	mg/L		05/09/23 10:30	05/09/23 16:53	1
Antimony	III ND	The state of the s	0.10		mg/L		05/09/23 10:30	05/09/23 16:53	1 1
Barium	ND	·	0.050		mg/L	9	05/09/23 10:30	05/09/23 16:53	1
Cadmium	ND		0.025		mg/L		05/09/23 10:30	05/09/23 16:53	1
Chromium	ND		0.050		mg/L		05/09/23 10:30	05/09/23 16:53	1
Beryllium	ND		0.020		mg/L		05/09/23 10:30	05/09/23 16:53	1
Lead	ND		0.050		mg/L		05/09/23 10:30	05/09/23 16:53	1
Selenium	ND		0.15		mg/L		05/09/23 10:30	05/09/23 16:53	1
Silver	ND	i 1	0.10		mg/L		05/09/23 10:30	05/09/23 16:53	1
Nickel	ND	1	0.050		mg/L		05/09/23 10:30	05/09/23 16:53	1

Lab Sample ID: 860-48516-A-1-F MS

Matrix: Solid

Analysis Batch: 102516

Client Sample ID: Matrix Spike Prep Type: TCLP

Andrysis Batch. 102510						1 1					Prep	Batch: 102374
Analyte		Sample Qualifier	1	Spike Added		MS Qualifier	Unit		D	%Rec	%Rec Limits	
Arsenic	ND			1.00	1.07		mg/L		-	107	75 - 125	
Antimony	ND			1.00	1,04	- 1	mg/L			104	75 - 125	
Barium	0.050	1		1.00	1.08		mg/L			103	75 - 125	
Cadmium	ND			1.00	1.05		mg/L	1		105	75 - 125	
Chromium	ND	1		1.00	1.05		mg/L			105	75 - 125	
Beryllium	ND	t.		1.00	1.06		mg/L			106	75 - 125	
Lead	ND	1	1	1.00	1.05		mg/L			105	75 - 125	
Selenium	ND		1	1.00	1.11		mg/L			111	75 - 125	
Silver	ND	2 8		0.500	0.505		mg/L			101	75 - 125	
Nickel	ND			1.00	1.05		mg/L			105	75 - 125	

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 860-102388/1-A

Matrix: Solid

Analysis Ratch: 102487

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch: 102487								Prep Batch	102200
A. A.	MB	MB						riep baten	. 102300
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020		ma/l				Dirac
	1		0.00020		mg/L		05/09/23 11:20	05/09/23 18.19	1

Eurofins Houston

Page 23 of 34

5/11/2023

LCS LCS

LCSD LCSD

Result

0.00204

Qualifier

Qualifier

MDL Unit

MS

MSD MSD

Result

0.00213

Result

0.00211

mg/L

Qualifier

Qualifier

NONE Unit

DU DU

Result

97.5

2.5

Qualifier

%

%

1 114

%

%

Unit

mg/L

Unit

mg/L

Unit

mg/L

Result

0.00210

Spike

Added

Spike

Added

0.00020

Spike

Added

0.00200

Spike

Added

0100200

0.00200

0.00200

Method: 7470A - Mercury (CVAA) (Continued)

LB LB

ND

Sample

Qualifier

Qualifier

MB MB

Qualifier

Result

0.2

99.8

Sample Sample

Qualifier

Result

Sample

Result

Sample Sample

Result

0.00021

0.00021

Result Qualifier

Lab Sample ID: LCS 860-102388/2-A Matrix: Solid

Analysis Batch: 102487

Lab Sample ID: LCSD 860-102388/3-A Matrix: Solid

Analysis Batch: 102487

Analyte

Lab Sample ID: LB 860-102256/1-D

Matrix: Solid

Mercury

Mercury

Analysis Batch: 102487

Analyte

Mercury Lab Sample ID: 860-48165-A-1-H MS

Matrix: Solid

Analysis Batch: 102487

Mercury

Lab Sample ID: 860-48165-A-1-I MSD Matrix: Solid

Analysis Batch: 102487

Analyte

Mercury

Method: Moisture - Percent Moisture

Lab Sample ID: MB 860-102147/1 Matrix: Solid

Analysis Batch: 102147

Percent Moisture

Percent Solids

Lab Sample ID: 860-48490-B-1 DU

Matrix: Solid

Analysis Batch: 102147

Analyte

97.4 Percent Moisture 2.6 Percent Solids

Prep Batch: 102388

Client Sample ID: Lab Control Sample

%Rec Limits 105 80 - 120

Prepared

%Rec

D

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 102388

Prep Type: Total/NA

%Rec Limits Limit Unit 102 80 - 120 mg/L

Client Sample ID: Method Blank

Prep Type: TCLP

Prep Batch: 102388

Analyzed Dil Fac 05/09/23 18:53 05/09/23 11:21

Client Sample ID: Matrix Spike

Prep Type: TCLP

Prep Batch: 102388

%Rec

Limits 95 75 - 125

Client Sample ID: Matrix Spike Duplicate

Prep Type: TCLP

Prep Batch: 102388 %Rec RPD

Limit Limits 75 - 125 20

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyzed

05/08/23 08:28 05/08/23 08:28

Client Sample ID: Duplicate

Prep Type: Total/NA

Dil Fac

RPD Limit 20 20

Eurofins Houston

5/11/2023

Page 24 of 34

NONE

oject/Site: For Bend Cou	inty MUD 30		F 9			A THE PERSON NAMED IN
C/MS VOA		-		+		ACT NOTES
nalysis Batch: 102314		***			**************************************	Managara da da da da da da da da da da da da da
Lab Sample ID	Client Sample ID		Prep Type	Matrix	Method	Prep Batch
LB 860-102319/1-A	Method Blank		TCLP	Solid	8260C	107319
MB 860-102314/10	Method Blank		Total/NA	Solid	8260C	
CS 860-102314/3	Lab Control Sample		Total/NA	Solid	8260C	
LCSD 860-102314/4	Lab Control Sample Dup		Total/NA	Solid	8260C	
860-48516-A-1-D MS	Matrix Spike		TCLP	Solid	8260C	102319
bis-la Databa 400045	- Aller Control			SHARIDE		
nalysis Batch: 102315	1					
Lab Sample ID	Client Sample ID		Prep Type	Matrix	Method	Prep Batch
860-48518-1	FBC 30 Digester c		TCLP	Solid	8260C	102319
MB 860-102315/19	Method Blank		Total/NA	Solid	8260C	
LCS 860-102315/1013	Lab Control Sample		Total/NA	Solid	8260C	
LCSD 860-102315/14	Lab Control Sample Dup		Total/NA	Solid	8260C	
each Batch: 102319	PER STATE OF THE S			1		
Lab Sample ID	Client Sample ID		Prep Type	Matrix	Method	Prep Batch
860-48518-1	FBC 30 Digester c		TCLP	Solid	1311	
.B 860-102319/1-A	Method Blank		TCLP	Solid	1311	
860-48516-A-1-D MS	Matrix Spike		TCLP	Solid	1311	
C/MS Semi VOA				J 100	entra se ser	
each Batch: 102256	(I) I I	1	1 1 1	1 1		
Lab Sample ID	Client Sample ID		Prep Type	Matrix	Method	Prep Batch
360-48518-1	FBC 30 Digester c	my por	TCLP	Solid	1311	in sumbir the
LB 860-102256/1-E	Method Blank		TCLP	Solid	1311	
860-48490-A-1-E MS	Matrix Spike		TCLP	Solid	1311	
B-4-1- 400404						
rep Batch: 102484	the first section of the first					
_ab Sample ID	Client Sample ID		Prep Type	Matrix	Method	Prep Batch
860-48518-1	FBC 30 Digester c		TCLP	Solid	3510C	102256
.B 860-102256/1-E	Method Blank		TCLP	Solid	3510C	102256
MB 860-102484/1-A	Method Blank		Total/NA	Solid	3510C	
.CS 860-102484/2-A	Lab Control Sample		Total/NA	Solid	3510C	
.CSD 860-102484/3-A	Lab Control Sample Dup		Total/NA	Solid	3510C	
60-48490-A-1-E MS	Matrix Spike		TCLP	Solid	3510C	102256
nalysis Batch: 102521	The state of the s		Ĩ			
ah Samala ID	Client Samuela ID		Deep Trees	*******		
_ab Sample ID _B 860-102256/1-E	Client Sample ID Method Blank		Prep Type TCLP	Matrix Solid	Method 8270D	Prep Batch 102484
TO TOP TOP TOP TOP	mosilod bidiin					102484
MB 860-102484/1-A	Method Blank		Total/NA	Solid	8270D	102484

Eurofins Houston

Total/NA

Total/NA

Total/NA

Prep Type

TCLP

TCLP

MB 860-102484/1-A

LCS 860-102484/2-A

860-48490-A-1-E MS

Lab Sample ID

860-48518-1

LCSD 860-102484/3-A

Analysis Batch: 102631

Method Blank

Matrix Spike

Client Sample ID

FBC 30 Digester c

Lab Control Sample

Lab Control Sample Dup

Solid

Solid

Solid

Solid

Matrix

Solid

8270D

8270D

8270D

8270D

Method

8270D

102484

102484

102484

102484

Prep Batch

102484

QC Association Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD 30

Job ID: 860-48518-1

~	~	0	_	1	: 1	11	~	A
G	L	3	eı	ш	١,	V١	J	м

LB 860-102256/1-G

MB 860-102544/1-A

Method Blank

Method Blank

Lab Sample ID	Client Sample ID			Prep Type	Matr	x	Method	€	Prep Batch
860-48518-1	FBC 30 Digester c			Total/NA	Solid		3550C		p outor
MB 860-102044/1-A	Method Blank	ŧ		Total/NA	Solid	1.4.1	3550C	4 - 1	ì
LCS 860-102044/2-A	Lab Control Sample			Total/NA	Solid		3550C		
LCSD 860-102044/3-A	Lab Control Sample Dup			Total/NA	Solid		3550C		
860-48444-B-4-B MS	Matrix Spike			Total/NA	Solid		3550C		
860-48444-B-4-C MSD	Matrix Spike Duplicate			Total/NA	Solid		3550C		
Analysis Batch: 102105					1	1	T.		
Lab Sample ID	Client Sample ID			Prep Type	Matr	ix	Method		Prep Batch
860-48518-1	FBC 30 Digester c			Total/NA	Solid		8082A		102044
MB 860-102044/1-A	Method Blank			Total/NA	Solid		8082Å		102044
LCS 860-102044/2-A	Lab Control Sample	(Total/NA	Solid		8082A		102044
LCSD 860-102044/3-A	Lab Control Sample Dup			Total/NA	Solid		8082A	1	102044
860-48444-B-4-B MS	Matrix Spike			Total/NA	Solid		8082A		102044
860-48444-B-4-C MSD	Matrix Spike Duplicate	1 1		Total/NA	Solid		8082A	Ė	102044
Leach Batch: 102256							1		
Lab Sample ID	Client Sample ID			Prep Type	Matr		Method		Prep Batch
860-48518-1	FBC 30 Digester c			TCLP	Solid		1311		riep batti
LB 860-102256/1-F	Method Blank			TCLP	Solid		1311		
LB 860-102256/1-G	Method Blank			TCLP	Solid		1311		
Lab Sample ID 860-48518-1	Client Sample ID FBC 30 Digester c			TCLP	Matr Solid		Method 8081B		Prep Batch 102544
LB 860-102256/1-G	Method Blank			TCLP	Solid		8081B		102544
MB 860-102544/1-A	Method Blank	1	1 1	Total/NA	Solid	1 1 1 1 1 1 1	8081B	1	102544
LCS 860-102544/2-A	Lab Control Sample		340 9	Total/NA	Solid	I	8081B		102544
LCSD 860-102544/3-A	Lab Control Sample Dup			Total/NA	Solid	. Il instruction	8081B		102544
Prep Batch: 102500				1					
Lab Sample ID	Client Sample ID			Prep Type	Mati	ix	Method		Prep Batch
860-48518-1	FBC 30 Digester c			TCLP	Solid	1	3511		102256
LB 860-102256/1-F	Method Blank			TCLP	Solid	1	3511		102256
MB 860-102500/1-A	Method Blank			Total/NA	Solid	1	3511		
LCS 860-102500/2-A	Lab Control Sample			Total/NA	Solid	d	3511	i	
LCSD 860-102500/3-A	Lab Control Sample Dup	į,		Total/NA	Solid	t	3511	1 12 13	in the Residence
Analysis Batch: 102528					1	T		-	
Lab Sample ID	Client Sample ID	l i	Harm	Prep Type	Mate		Method		Prep Batch
860-48518-1	FBC 30 Digester c			TCLP	Soli		8151A		102500
LB 860-102256/1-F	Method Blank			TCLP	Soli	1	8151A		102500
MB 860-102500/1-A	Method Blank			Total/NA	Soli		8151A		102500
LCS 860-102500/2-A	Lab Control Sample		1	Total/NA	Soli		8151A		102500
LCSD 860-102500/3-A	Lab Control Sample Dup			Total/NA	Soli	d	8151A		10250
Prep Batch: 102544					c.				
Lab Sample ID	Client Sample ID			Prep Type	Mat	rix	Method		Prep Batch
860-48518-1	FBC 30 Digester c			TCLP	Soli	d	3510C		102256
					Call		25100		102256

Eurofins Houston

3510C

3510C

Solid

Solid

102256

TCLP

Total/NA

Project/Site: For Bend Cou	tal Laboratory Inc.				300	ID: 860-48518-1
GC Semi VOA (Contir						
Prep Batch: 102544 (Cont	tinued)			p	enun Strott, IVII.	Francis et applica
Lab Sample ID	Client Sample ID	100	Prep Type	Matrix	Method	Deep Gesel
LCS 860-102544/2-A	Lab Control Sample		Total/NA	Solid	3510C	Prep Batc
LCSD 860-102544/3-A	Lab Control Sample Dup		Total/NA	Solid	3510C	
Metals						
each Batch: 102256					They	r sharp, dayle
Lab Sample ID	Client Sample ID		Prep Type	Matrix	Method	Prep Batc
860-48518-1	FBC 30 Digester c		TCLP	Solid	1311	
LB 860-102256/1-C	Method Blank		TCLP	Solid	1311	
LB 860-102256/1-D	Method Blank		TCLP	Solid	1311	
860-48165-A-1-H MS	Matrix Spike		TCLP	Solid	1311	
860-48165-A-1-I MSD	Matrix Spike Duplicate		TCLP	Solid	1311	
860-48516-A-1-F MS	Matrix Spike		TCLP	Solid	1311	
Prep Batch: 102374						
Lab Sample ID	Client Sample ID		Prep Type	Matrix	Method	Prep Batc
860-48518-1	FBC 30 Digester c		TCLP	Solid	3010A	10225
LB 860-102256/1-C	Method Blank		TCLP	Solid	3010A	10225
MB 860-102374/1-A	Method Blank		Total/NA	Solid	3010A	10223
LCS 860-102374/2-A	Lab Control Sample		Total/NA	Solid	3010A	
LCSD 860-102374/3-A	Lab Control Sample Dup		Total/NA	Solid	3010A	
830-3498-A-2-C MSD ^5	Matrix Spike Duplicate		Total/NA	Solid		
860-48516-A-1-F MS	Matrix Spike Duplicate		TCLP	Solid	3010A 3010A	10225
- Prep Batch: 102388						10220
Lab Sample ID	Client Samuel ID	1	Bran band	Matrix	**-**	
860-48518-1	Client Sample ID FBC 30 Digester c		Prep Type TCLP	Solid	Method 7470A	Prep Batcl
LB 860-102256/1-D	Method Blank		TCLP	Solid		
MB 860-102388/1-A	Method Blank		Total/NA	Solid	7470A	10225
					7470A	
LCS 860-102388/2-A	Lab Control Sample		Total/NA	Solid	7470A	
LCSD 860-102388/3-A	Lab Control Sample Dup		Total/NA	Solid	7470A	
860-48165-A-1-H MS 860-48165-A-1-I MSD	Matrix Spike Matrix Spike Duplicate		TCLP	Solid Solid	7470A	10225
analysis Batch: 102487	Wath Spine Depicale		1	Solid	7470A	102256
• · · · · · · · · · · · · · · · · · · ·	L			-A-v		
Lab Sample ID 860-48518-1	Client Sample ID FBC 30 Digester c		Prep Type	Matrix	Method	Prep Batci
The state of the s	Statement was a second or selection of the second of the s		TCLP	Solid	7470A	10238
LB 860-102256/1-D	Method Blank		TCLP	Solid	7470A	10238
MB 860-102388/1-A	Method Blank		Total/NA	Solid	7470A	10238
LCS 860-102388/2-A LCSD 860-102388/3-A	Lab Control Sample		Total/NA	Solid	7470A	10238
11.511 800 ETO 2008/3-A	Lab Control Sample Dup		Total/NA	Solid	7470A	10238
860-48165-A-1-H MS	Matrix Spike		TCLP	Solid	7470A	102388

Eurofins Houston

Prep Type

TCLP

TCLP

Total/NA

Total/NA

Total/INA

Matrix

Solid

Solid

Solid

Solid

Solid

Method

6010B

6010B

6010B

6010B

6010B

Lab Sample ID

LB 860-102256/1-C

MB 860-102374/1-A

LCS 860-102374/2-A

LCSD 860-102374/3-A

860-48518-1

Client Sample ID

Method Blank

Method Blank

FBC 30 Digester c

Lab Control Sample

Lab Control Sample Dup

Prep Batch

102374

102374

102374

102374

102374

QC Association Summary Client: Eastex Environmental Laboratory Inc. Job ID: 860-48518-1 Project/Site: For Bend County MUD 30 Metals (Continued) 1 111 Analysis Batch: 102516 (Continued) Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch 830-3498-A-2-C MSD ^5 Matrix Spike Duplicate Total/NA Solid 6010B 102374 5 860-48516-A-1-F MS Matrix Spike TCLP Solid 6010B 102374 **General Chemistry** 6 Analysis Batch: 102147 Lab Sample ID Matrix Client Sample ID Prep Type Method Prep Batch 860-48518-1 FBC 30 Digester c Total/NA Solid Moisture 8 MB 860-102147/1 Total/NA Solid Method Blank Moisture 860-48490-B-1 DU Total/NA Solid Duplicate Moisture 9

Page 28 of 34

Eurofins Houston

5/11/2023

Lab Chronicle

Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD 30

Job ID: &60-48518-1

Client Sample ID: FBC 30 Digester c

Date Collected: 04/28/23 10:15 Date Received: 05/02/23 10:15

Lab Sample ID: 860-48518-1

Matrix: Solid

Prep Type	Batch Type	Batch Method	Run	Dil	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	A	SPECIAL SECTION
TCLP	Leach	1311			1.0 g	1.0 mL	102319	05/08/23 14:00	Analyst SYB	Lab
1 1		10.1			F	1	Completed:	05/09/23 06:00 1	SID	EET HOL
TCLP	Analysis	8260C		50	5 mL	5 mL	102315	05/09/23 17:39	TTD	EET HOL
TCLP	Leach	1311			1.0 g	1.0 mL	102256	05/08/23 13:00	EMC	EET HOU
							Completed:	05/09/23 05:00 1		
TCLP	Prep	3510C			200 mL	1 mL	102484	05/09/23 18:27	RC	EET HOU
TCLP	Analysis	8270D		5			102631	05/11/23 02:17	PXS	EET HOU
TCLP	Leach	1311	7		1.0 g	1.0 mL	102256	05/08/23 13:00	EMC	EET HOU
			1 1				Completed:	05/09/23 05:00 1	1077101 2	
CLP	Prep	3510C	1		200 mL	2 mL	102544	05/10/23 11:17	ВН	EET HOU
TCLP	Analysis	8081B		1	1 mL	1 mL	102466	05/10/23 16:43	BNW	EET HOU
CLP	Leach	1311			1.0 g	1.0 mL	102256	05/08/23 13:00	EMC	EET HOU
	É						Completed:	05/09/23 05:00 1	3-110-5	2211100
CLP '	Prep	3511	1		50.2 mL	4 mL	102500	05/09/23 18:39	JN	EET HOU
CLP	Analysis	8151A		1		,	102528	05/10/23 22:54	WP	EET HOU
CLP	Leach	1311	1		1.0 g	1.0 mL	102256	05/08/23 13:00	EMC	EET HOU
			1				Completed:	05/09/23 05:00 1	CIVIO	EET HOU
CLP	Prep	301DA	1		10 mL	50 mL	102374	05/09/23 10:30	MD	EET HOU
CLP	Analysis	6010B		1			102516	05/09/23 17:27	JDM	EET HOU
CLP	Leach	1311			1.0 g	1.0 mL	102256	05/08/23 13:00	EMC	EET HOU
			le-				Completed:	05/09/23 05:00 1	LIVIO	EE1 HOU
CLP	Prep	7470A	1	f	50 mL	50 mL	102388	05/09/23 11:21	PB	EET HOU
CLP	Analysis	7470A		1			102487	05/09/23 19:11	SHZ	EET HOU
otal/NA	Analysis	Moisture	1	1			102147	05/08/23 08:28	JM	EET HOU

Client Sample ID: FBC 30 Digester c

Date Collected: 04/28/23 10:15 Date Received: 05/02/23 10:15

Lab Sample ID: 860-48518-1

Matrix: Solid

Percent Solids: 1.2

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed		
Total/NA	Prep	3550C			1.04 g				Analyst	Lab
Total/NA					1.04 g	5 mL	102044	05/06/23 08:22	OH	EET HOU
	Analysis	8082A ated length of time	1	1			102105	05/09/23 01:25	WP	EET HOU

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Page 29 of 34

5/11/2023

Accreditation/Certification Summary

Clienti Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD 30

Job IDI 860-48518-1

1 111

1 1111

1 | 1;

Laboratory: Eurofins Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date		
Arkansas DEQ	State	88-00759	08-04-23		
Florida	NELAP	E871002	06-30-23		
Louisiana	NELAP	03054	06-30-23	- 11	
Louisiana (All)	NELAP	03054	06-30-23	1	
Oklahoma	State	1306	08-31-23	100	1
Texas	NELAP	T104704215-23-50	06-30-23		
Texas	TCEQ Water Supply	T104704215	12-28-25	9 E	
USDA	US Federal Programs	525-23-79-79507	03-20-26	1	

Method Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD 30

Job ID: 860-48518-1

Method		Method Description			!				Protocol	Laboratory
8260C		Volatile Organic Compounds by GC/MS	TYLE I						SW846	EET HOU
8270D		Semivolatile Organic Compounds (GC/MS)					1		SW846	EET HOU
8081B		Organochlorihe Pesticides (GC)							SW846	EET HOU
8082A		Polychlorinated Biphenyls (PCBs) by Gas Chromat	ography						SW846	EET HOU
B151A		Herbicides (GC)							SW846	EET HOU
6010B		Metals (ICP)	1						SW846	EET HOU
7470A		Mercury (CVAA)							SW846	EET HOU
Moisture		Percent Moisture							EPA	EET HOU
311		TCLP Extraction							SW846	EET HOU
3010A	ļ	Preparation, Total Metals		Į.	1	1	4	1	SW846	EET HOU
3510C		Liquid-Liquid Extraction (Separatory Funnel)							SW846	EET HOU
3511		Microextraction of Organic Compounds							SW846	EET HOU
3550C		Ultrasonic Extraction							SW846	EET HOU
6030C		Purge and Trap							SW846	EET HOU
7470A		Preparation, Mercury							SW846	EET HOU

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

911

2

3

4

6

7

8

9

12

13

14

15

Sample Summary

Client: Eastex Environmental Laboratory Inc.

Project/Site: For Bend County MUD 30

Job ID: 860-48518-1

+ 114

i i lii

 Lab Sample ID
 Client Sample ID
 Matrix
 Collected
 Received

 860-48518-1
 FBC 30 Digester c
 Solid
 04/28/23 10:15
 05/02/23 10:15

2

2

3

5

6

7

8

9

12

13

B

PO Box 1089 Coldspring, Texas 77331 Website eastexlabs com Email. eastexlab@eastex.net Tel. 936 653 3249

SUBCONTRACT ORDER

Sending Laboratory:

Eastex Environmental Laboratory - Coldspring PO Box 1089 Coldspring, TX 77331 Phone 936-653-3249 Fax 936-653-3172

141 1

Subcontracted Laboratory:

Eurofins Xenco LLC 4147 Greenbriar Dr Stafford, TX 77477 Phone: 713-690-4444 Fax. 713-690-5646

PO 050223C

PROJECT NAME

Fort Bend County MUD 30

Turnaround

(C)DAYS

Matrix

Waste

Containers Date

4/28/23 9 35 am

Time

EEL Sample ID FBC 30 Digester

Special Instructions:

111 1

Sample Type Grab

Sample No. G3D5824-01 Analysis to be Performed

TCLP SUBCONTRACT

Grab

PCB SUBCONTRACT

See Attached

FULL TCLP REPORT, PCB MG/KG %SOLIDS

IR ID:HOU-344 C/F -02

Corrected Temp: 0 . 9

Received Iced Y/N

Temp

Received

PRINT DATE/TIME. 5/1/2023 / 1.47 25PM

sco_PrimaryForm rpt.02122019 Page 33 of 34

Page 1 of 1 5/11/2023

Login Sample Receipt Checklist

Client: Eastex Environmental Laboratory Inc.

Job Number: 860-48518-1

Login Number: 48518 List Number: 1 List Source: Eurofins Houston

List Nun	nber: 1	
Creator:	Rubio,	Yur

Question	The state of the s	Answer	Comment	
The cooler's custody seal, if present, is intact.	house of	True		William Property
Sample custody seals, if present, are intact.		True		
The cooler or samples do not appear to have been compromised o tampered with.	ring.	True		
Samples were received on ice.		True		destrict points shorts
Cooler Temperature is acceptable.		True	E INVEST	23.10.001408.1611-1
Cooler Temperature is recorded.	1 1	True	+ (4))	1 1
COC is present.		True		
COC is filled out in ink and legible.		True	j	
COC is filled out with all pertinent information.		True		
Is the Field Sampler's name present on COC?		True		
There are no discrepancies between the containers received and t	he COC.	True	1 .	
Samples are received within Holding Time (excluding tests with important HTs)		True	1.	
Sample containers have legible labels.		True	1	I Film, Cluster
Containers are not broken or leaking.		True	,	Fire Send County with Si-
Sample collection date/times are provided.		True	- I	
Appropriate sample containers are used.		True	and the second	
Sample bottles are completely filled.		True		The second secon
Sample Preservation Verified.		True		1
There is sufficient vol. for all requested analyses, incl. any request MS/MSDs	ed	True	, [
Containers requiring zero headspace have no headspace or bubb	le is	True	und del mail	

Eurofins Houston

<6mm (1/4").

Page 34 of 34

1 111

5/11/2023

EASTEX ENVIRONMENTAL LABORATORY, INC.

P.O. Box 1089 * Coldspring, TX 77331 P.O. Box (936) 653-3249 * (800) 525-0508 (936) 569

www.eastexlabs.com

P.O. Box 631375 * Nacogdoches, TX 75963-1375 (936) 569-8879 * FAX (936) 569-8951

White Copy-Follows Samples Yellow Copy-Laboratory Pink Copy-Client Copy

REPORT TO:		_	INVOICE TO:	0																		
: 3	00		Company:	יאָר					Ren	Remarks:				2	\dashv	1		4	\dashv	-	-	
			Address:	- 1	SAME								-	STE				_	-	_		
**	on 2:10													QUE	_	_	_	_	_	_		
Attn:			Attn:						Ш					S RE	1.		_	_	-			-
Phone#:		-	Phone#:	•										LYSI	_			_	_	_		-
Email:			INSTRUCTIONS:	TIONS:										NAMA S	d		_					-
P.O. #:			C or G:	ဂူ	C= Composite	G= Grab	0							1	1	_	-	_	_			
1		>	Matrix:	DW	≖Drinking	DW=Drinking Water WW=Wastewater SO=Soil/Sludge OT= Other	/W=Wast	ewater	SO=Soil/	Sludge	OT= OH	ъ		7	1	_	_			_	_	
Sampler's Name (print):		-	Container Size:		àallon 2= 25mL (4o:	1=Gallon 2=1/2 Gallon 3=Quart/Liter 4=500mL 5=250mL 6=125mL (4oz) 7=60mL (2 oz) 8= 40mL Vial 9=Other	3=Quar L (2 oz) 8	t/Liter '	4=500mL Vial 9=C	5=250 ther	具	!		-{	20							
Sampler's Signature:			Type:	P	Plastic G	P= Plastic G= Glass T= Teflon S= Sterile	= Teflon	S= Steri	ø					7	5				+		_	-
)	4		Preservatives:		Sodium T	C=Chilled S=Sulfuric Acid N=Nitric Acid ST=Sodium Thiosulfate H=HCL O= Other	Acid N=	Nitric Aci		B=Base/Caustic		Z= Zn Acetate		5	[1				_	-	_	-
FIDIOR Mailies 710	いうそり	VC		H		Fie	Field Data			H	Cont	ontainers		I		-				_	_	on quantum
Work Order ID	Sample ID	Date	Time Ma	Matrix C or G	re Do	O PH	H CI2	2 Flow	W Temp	*	Size	100	Pres		+				_	_	-	L
E3D5824	Digester	85 x00 x18C1)U3K 5	\vdash	4					¥	I	9	~	1	+	<u> </u>		_		-		
	Digistr) select	13 Jan 30	9	-			-		-	S	0	C						_	_		
	U					1	*	-													-	-
																						-
							-		-		İ			_	-				-		1	-
	·			!			1		-					!				-			-	-
	4							-		-			1		+					1 8	+	-
	F				1			1	-						+++	-+						-
		117			- !!				_						!				V			
	ļ																					_
		-									İ											
Relinquished By:			Re	Received By:	.π ₈						Date			Time	1	!	Rece	Received Iced:	ced:	YES	NO NO	
Relinquished By:		1	Re	Received By:	ву:						Date			Time	1		Rece	Received Iced:	ced:		<u>~ 1</u>	
Refinquished By:		•	Rec	ceived By a	Received By and/or Checked in By:	ked in By:	C_{I}		ı	_	PER	50	5	Time \		6	Rece	Received Iced:	~	YES	NO	
LAB USE ONLY	Sample	Sample Condition Acceptable:	cceptable		YES) /	No			Temp C	17	*Therm ID	1089g	Loaged in By:)	Date	.	Time	Ö	-
Alternate Check In:			Date			Time		7	2		S	1				5	4-78-73	73	_	ohs!	J	

1 [1]

11 []

l i thi

Email: lab@nwdsls.com

www. NWDLS.com

TCEQ Lab ID #: TX204, Accreditation ID: T104704238

October 20, 2023

LABORATORY REPORT

John Montgomery Municipal Operations and Consulting 27316 Spectrum Way Oak Ridge, TX 77385

Report ID: 20231020084017Sta..

RE: HC MUD 26 - Non Potable - Class B Annual

The following test results meet all NELAP requirements for analytes for which certification is available. Any deviations from our quality system will be noted in the case narrative. All analyses performed by North Water District Laboratory Services, Inc. unless noted.

For questions regarding this report, contact Monica Martin at 936-321-6060.

Sincerely,

Stations For Deena Higginbotham Director of Client Services

Master Spreadsheet ☐ TCLP ☐ Metals

	PCF
_	

Email: lab@nwdsls.com

www. NWDLS.com

TCEQ Lab ID #: TX204, Accreditation ID: T104704238

Municipal Operations and Consulting

27316 Spectrum Way Oak Ridge, TX 77385 Project: HC MUD 26 - Non Potable - Class B Annual

Project Number: 4

Project Manager: John Montgomery

Reported:

10/20/2023 08:40

Sample Results

Client Sample ID:

Digester

Lab Sample ID:

23J3697-01

Sample Matrix:

Solid

Date Collected:

10/16/2023 10:00

Collected by:

Jose Gutierrez

Method	Analyte	Result Q	Units	Batch	Date Analyzed	Analyst
Colilert-18	Fecal coliforms	148000	MPN/g TS dry	BGJ2544	10/17/2023 10:46	ЈКВ
Colilert-18	Fecal coliforms	69500	MPN/g TS dry	BGJ2544	10/17/2023 10:46	JKB
Colilert-18	Fecal coliforms	125000	MPN/g TS dry	BGJ2544	10/17/2023 10:46	JKB
Colilert-18	Fecal coliforms	59600	MPN/g TS dry	BGJ2544	10/17/2023 10:46	ЈКВ
Colilert-18	Fecal coliforms	75900	MPN/g TS dry	BGJ2544	10/17/2023 10:46	ЈКВ
Colilert-18	Fecal coliforms	78200	MPN/g TS dry	BGJ2544	10/17/2023 10:46	ЈКВ
Colilert-18	Fecal coliforms	103000	MPN/g TS dry	BGJ2544	10/17/2023 10:46	JKB
SM 2710 B	Specific Oxygen Uptake Rate (SOUR)	0.428	mg O2/hr/g TS @ 20°C dry	BGJ2584	10/17/2023 09:00	AKA
SM 2550 B	Temperature °C Field	20.9	°C	BGJ2651	10/16/2023 10:00	JG
SM 2540 G	% Solids	1.61 V	%	BGJ2580	10/18/2023 10:00	JRU

The total solids is diluted to <=2.0% for the S.O.U.R. test when necessary.

CLASS B - Pass

Per Title 30, Texas Administrative Code, Chapter 312, for a Class B to pass, the fecal coliform geometric mean must be less than or equal to 2,000,000 CFU/ug TS and the S.O.U.R must be less than or equal to 1.5 mg O2/hr/g TS.

e5 a 200 95 a 200 94 1 11.43 1,5

Email: lab@nwdsls.com

www. NWDLS.com

TCEQ Lab ID #: TX204, Accreditation ID: T104704238

Municipal Operations and Consulting 27316 Spectrum Way

Project: HC MUD 26 - Non Potable - Class B Annual

Project Number: 4

Project Manager: John Montgomery

Reported:

10/20/2023 08:40

Quality Control

General Chemistry

Oak Ridge, TX 77385

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGJ2580 - Percen	nt Solids					1.1.	Minchell 24	MARKET SERVICE	
Blank (BGJ2580-BLK1)			Pre	pared: 10/17	/2023 Analyze	ed: 10/18/20	23		
% Solids	<0.100U	0.100	%		121				
Duplicate (BGJ2580-DUP1)	Sour	ce: 23J3698-01	Pre	pared: 10/17	7/2023 Analyze	ed: 10/18/20	23		
% Solids		0.100	%		1,62			0.126	20
Duplicate (BGJ2580-DUP2)	Sour	ce: 23J3792-06	Pre	pared: 10/17	7/2023 Analyz	ed: 10/18/20	23		
% Solids		0.100	%		0.436			0.278	30
Reference (BGJ2580-SRM1)			Pre	pared: 10/17	7/2023 Analyz	ed: 10/18/20	23		
% Solids		0.100	%	0.350		110	78.9-118		

Email: lab@nwdsls.com

www. NWDLS.com

TCEQ Lab ID #: TX204, Accreditation ID: T104704238

Municipal Operations and Consulting

27316 Spectrum Way Oak Ridge, TX 77385 Project: HC MUD 26 - Non Potable - Class B Annual

Project Number: 4

Project Manager: John Montgomery

Reported:

10/20/2023 08:40

Quality Control (Continued)

Microbiology

Analyte	Result Qual	Reporting		Spike	Source		%REC		RPD
	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit

Batch: BGJ2544 - FC Quantitray

Blank (BGJ2544-BLK1)

Fecal coliforms

<10.0U

Prepared: 10/16/2023 Analyzed: 10/17/2023

10.0 MPN/g TS wet

Duplicate (BGJ2544-DUP1) Fecal coliforms

Source: 23J3697-01

Prepared: 10/16/2023 Analyzed: 10/17/2023

621 MPN/g TS

S 148000

32.2

200

Email: lab@nwdsls.com

www. NWDLS.com

TCEQ Lab ID #: TX204, Accreditation ID: T104704238

Municipal Operations and Consulting

Dofinition

27316 Spectrum Way Oak Ridge, TX 77385 Project: HC MUD 26 - Non Potable - Class B Annual

Project Number: 4

Project Manager: John Montgomery

Reported:

10/20/2023 08:40

Term and Qualfier Definitions

item	Definition	
U	Non-detected compound.	
V	Analyte was detected in both sample and method blank.	
DF	Dilution Factor - the factor applied to the reported data due to sample preparation, dilution, or moisture content	
RPD	Relative Percent Difference	
%REC	Percent Recovery	
Source	Sample that was matrix spiked or duplicated	

CHAIN OF CUSTODY RECORD

North Water District Laboratory Services
130 S. Trade Center Pkwy, Conroe Tx 77385
(936) 321-6060 - lab@nwdls.com

2313697 Page 1 of 1

TCEQ T104704238-23-39

Lab PM: Deena Higginbotham	Project Name: HC MUD 26 - Non Potable - Class B Annual	
Municipal Operations and Consulting John Montgomery 27316 Spectrum Way Oak Ridge, TX 77385 Phone: (281) 367-5511	Project Comments: 21615 Dawn Timbers Ct Humble 77338 Gate Combo 2146 Mikey Sarricolea 281-825-1854 MUST CALL OPERATOR 30 BEFORE ARRIVAL	Schedule Comments.

Field Results	Temp C Field 26.4c
	Na2S203 <10°C 4°C 4°C
Analysis/Preservation	FC/CB-QT-LR SOUR-2710 SOUR TS-2540 G TS-2540 G
Container	A HDPE \$150mL Na2S203 B HDPE \$150mL Na2S203 C HDPE \$150mL Na2S203 E HDPE \$150mL Na2S203 F HDPE \$150mL Na2S203 G HDPE \$150mL Na2S203 G HDPE \$150mL
Sample Type	S Grab
Date/Time Sampled	10/16/202:/10:00 s Grab
Date/Time Begin	
Sample ID Collection Point	Digester
Sample ID	23J3697-01 Digester

Field Remarks:			Lab Preservation: H2SO4 (Circle and Write ID Below)	HZSO4 HNO3	МаОН	Other:
Sampler (Signature)	Relinquished By: (Signature)		Date/Time	Received By: (Signature)		Date/Time
Print Name TOSE (TLUTICY NCZ	Refinquished By: (Signature)		Date/Time	Received By: (Signature)		Date/Time
Affiliation NWD/S	Relinquished To Lab By: (Signature)	Bru B.	Date/Time	Received for Laboratory By (Signature)	nature) PoP	Date/Time 1.3
Custody Seal: Yes / No Container Intact: Yes / No	COC Labels Agree: Yes / No Appropriate Containers: Yes / No	Appropriate Volume: Yes / No Coolers Intact. Yes / No		Received on Ice: Yes / No Samples Accepted: Yes / No	Temperature: Thermometer ID:	ů,
Spring South					wko_NWDLS_COC_LS!	wko_NWDLS_COC_LS Revision 4.1 Effective: 2/7/1/2022

Page 6 of 6

www. NWDLS.com

November 17, 2023

Laboratory Report

John Montgomery Municipal Operations and Consulting 27316 Spectrum Way Oak Ridge, TX 77385

Report ID: 20231117112001AEN

Xc No

The following test results meet all NELAP requirements for analytes for which certification is available. Any deviations from our quality system will be noted in the case narrative. All analyses performed by North Water District Laboratory Services, Inc. unless noted.

For questions regarding this report, contact Monica Martin at 936-321-6060.

Sincerely,

Aundra Noe For Deena Higginbotham

Director of Client Services

DEC 2 9 2023

ENTERED DEC 2 9 2023

Reported: 11/17/2023 11:20

TCEQ T104704238-23-39

Sample Results

Client Sample ID:

Digester

Lab Sample ID: HC MUD 26 - Sewage Sludge Annual

23J3698-01

Sample Matrix:

Solid

Date Collected:

10/16/2023 9:50

Collected by: Jose Gutierrez

								25550		
Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Organics by GC										
SW-8082	PCBs, Total	Α	<1.21U	mg/kg (dry wt) dry	10	0.605	1.21	BGJ3644	10/31/2023 04:46	CDG
SW-8082 SW-8082	Surrogate: 2,4,5,6 Tetrachloro-m-xylene-s Surrogate: Decachlorobiphenyl-surr	suri	119% 125%	60-140 60-140				**********	10/31/2023 04:46 10/31/2023 04:46	
Metals, Total									ELECTRICAL STATES	
SW-6010C	Arsenic	Α	6.23	mg/kg dry	1	0.449	2.05	BGJ3262	10/24/2023 12:07	FAA
SW-6010C	Cadmium	Α	0.969	mg/kg dry	1	0.0532	0.205	BGJ3262	10/24/2023 12:07	FAA
SW-6010C	Chromium	Α	30.7	mg/kg dry	1	0.768	1.03	BGJ3262	10/24/2023 12:07	
SW-6010C	Copper	Α	240	mg/kg dry	5	1.09	10.2	BGJ3262	10/24/2023 12:07	FAA
SW-7471B	Mercury	Α	0.299	mg/kg dry	1	0.0123	0.0245	BGJ4936	10/31/2023 16:22	FAA
SW-6010C	Lead	Α	14.3	mg/kg dry	1	0.522	1.03	BGJ3262	10/24/2023 12:07	AKR
SW-6010C	Molybdenum	Α	7.74	mg/kg dry	1	1.03	1.03	BGJ3262	10/24/2023 12:07	FAA
SW-6010C	Nickel	Α	15.1	mg/kg dry	1	0.277	1.03	BGJ3262	10/24/2023 12:07	FAA
SW-6010C	Potassium	Α	2890	mg/kg dry	1	17.6	205	BGJ3262	10/24/2023 12:07	FAA
SW-6010C	Selenium	Α	13.3	mg/kg dry	1	0.799	2.05	BGJ3262	10/24/2023 12:07	FAA
SW-6010C	Total Phosphorus	Α	15200	mg/kg dry	5	43.0	1020	BGJ3262	10/24/2023 12:07	FAA FAA
SW-6010C	Zinc	Α	1160	mg/kg dry	25	25.7	25.7	BGJ3262	10/24/2023 14:48	FAA
General Chemis	strv			3/.19 /		25.7	25.7	5005202	10/2 1/2020 11/10	FAA
EPA 350.2	Ammonia as N	A	12800	mg/kg dry	1	613	1230	BGJ2578	10/17/2023 09:08	CTIAL
SW-9056A	Nitrate as N	Α	65.5	mg/kg dry	1	3.08	7.69	BGJ2669	10/17/2023 03:08	GIW
EPA 351.3	Total Kjeldahl Nitrogen - (TKN)	N	53100	mg/kg dry	1	1510	1510	BGJ3202	10/20/2023 10:59	ORP
SM 2540 G	% Solids	A	1.62V	mg/kg ury %	1	0.100		BGJ2580	10/20/2023 10:39	NAZ
TCLP			1.02 V	70	1	0.100	0.100	DGJ2380	10/16/2023 10:00	JRU
SW-6010C	Arsenic	A	-5.0011	- i				DOMANA	10/20/2022 15.01	
SW-6010C	Barium		<5.00U	mg/L	1	0.0200	5.00	BGJ3041	10/20/2023 15:04	FAA
J11 0010C	baridin	Α	<100 V2, U	mg/L	5	0.0500	100	BGJ3041	10/20/2023 15:07	FAA
SW-6010C	Cadmium	Α	<1.00 U	mg/L	1	0.00100	1.00	BGJ3041	10/20/2023 15:04	FAA
SW-6010C	Chromium	Α	<5.00 U	mg/L	1	0.00500	5.00	BGJ3041	10/20/2023 15:04	FAA
SW-8151	2,4-D	Α	<10.0C+, U	mg/L	2	0.000476	10.0	BGJ2829	10/24/2023 01:27	KRB
SW-8151	Silvex (2,4,5-TP)	Α	<1.00U	mg/L	2	0.000476	1.00	BGJ2829	10/24/2023 01:27	KRB
SW-8151	Surrogate: DCAA-surr		137% S	70-130	*****				10/24/2023 01:27	
SW-7471B	Mercury	Α	<0.200U	mg/L	1.	0.000200	0.200	BGK1044	11/07/2023 15:01	AKR
SW-6010C	Lead	Α	<5.00 U	mg/L	1	0.0100	5.00	BGJ3041	10/20/2023 15:04	FAA
SW-8081	Chlordane (Total)	Α	<0.0300U	mg/L	1	3.00E-6	0.0300	BGJ3693	10/28/2023 09:38	ALA
SW-8081	Endrin	N	<0.0200U	mg/L	1	3.00E-6	0.0200	BGJ3693	10/28/2023 09:38	ALA
				.=27						

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 11/17/2023 11:20

Sample Results (Continued)

Client Sample ID:

Digester (Continued)

(Continued

Sample Matrix: So

Solid

10/16/2023 9:50

Lab Sample ID: 23J3698-01 HC MUD 26 - Sewage Sludge Annual

Date Collected: Collected by:

Jose Gutierrez

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
TCLP (Cont	tinued)		Ald	April 1						pertir san
SW-8081	gamma-BHC (Lindane, gamma-HexachlorocyclohexanE)	Α	<0.400U	mg/L	1	3.00E-6	0.400	BGJ3693	10/28/2023 09:38	ALA
SW-8081	Heptachlor	Α	<0.00800U	mg/L	1	3.00E-6	0.00800	BGJ3693	10/28/2023 09:38	ALA
SW-8081	Heptachlor epoxide	Α	<0.00800U	mg/L	1	3.00E-6	0.00800	BGJ3693	10/28/2023 09:38	ALA
SW-8081	Methoxychlor	Α	<10.0U	mg/L	1	3.00E-6	10.0	BGJ3693	10/28/2023 09:38	ALA
SW-8081	Toxaphene (Chlorinated Camphene)	Α	<0.500C+, U	mg/L	1	3.00E-6	0.500	BGJ3693	10/28/2023 09:38	ALA
SW-8081	Surrogate: 2,4,5,6 Tetrachloro-m-xylene	-suri	89.0%	60-140		FRE ESTATE (1)			10/28/2023 09:38	
SW-8081	Surrogate: Decachlorobiphenyl-surr	3	84.7%	60-140					10/28/2023 09:38	
SW-6010C	Selenium	Α	<1.00U	mg/L	1	0.0200	1.00	BGJ3041	10/20/2023 15:04	FAA
SW-6010C	Silver	Α	<5.00U	mg/L	1	0.00200	5.00	BGJ3041	10/20/2023 15:04	FAA
SW-8270	2,4,5-Trichlorophenol	Α	<400 U	mg/L	1	0.00250	400	BGJ3234	10/20/2023 02:10	krb
SW-8270	2,4,6-Trichlorophenol	Α	<2.00U	mg/L	1	0.00250	2.00	BGJ3234	10/20/2023 02:10	krb
SW-8270	2,4-Dinitrotoluene (2,4-DNT)	Α	<0.130U	mg/L	1	0.00250	0.130	BGJ3234	10/20/2023 02:10	krb
SW-8270	2-Methylphenol	Α	<200U	mg/L	1	0.00250	200	BGJ3234	10/20/2023 02:10	krb
SW-8270	3,4-Methylphenol	Α	<200U	mg/L	1	0.00250	200	BGJ3234	10/20/2023 02:10	krb
SW-8270	Hexachlorobenzene	Α	<0.130U	mg/L	1	0.00250	0.130	BGJ3234	10/20/2023 02:10	krb
SW-8270	Hexachlorobutadiene	Α	<0.500U	mg/L	1	0.00250	0.500	BGJ3234	10/20/2023 02:10	krb
SW-8270	Hexachloroethane	A	<3.00U	mg/L	1	0.00250	3.00	BGJ3234	10/20/2023 02:10	krb
SW-8270	Nitrobenzene	A	<2.00U	mg/L	1	0.00250	2.00	BGJ3234	10/20/2023 02:10	krb
SW-8270	Pentachlorophenol	A	<100U	mg/L	1	0.00250	100	BGJ3234	10/20/2023 02:10	krb
SW-8270	Pyridine	A	<5.00U	mg/L	1	0.00250	5.00	BGJ3234	10/20/2023 02:10	krb
SW-8270	Surrogate: 2-Fluorobiphenyl-surr		78.9%	54.6-148	4 + 4 + 4 + 4 +			rossionour	10/20/2023 02:10	
SW-8270	Surrogate: 2-Fluorophenol-surr		80.7%	55-152					10/20/2023 02:10	
SW-8270	Surrogate: 2,4,6-Tribromophenol-surr		94.8%	52.4-136					10/20/2023 02:10	
SW-8270	Surrogate: Nitrobenzene-d5-surr		90.2%	52-162					10/20/2023 02:10	
SW-8270	Surrogate: Phenol-d5-surr		84.5%	58.7-152					10/20/2023 02:10	
SW-8270	Surrogate: p-Terphenyl-d14-surr		72.7%	51.9-147					10/20/2023 02:10	

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 11/17/2023 11:20

Quality Control

Organics by GC

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGJ3644 - SW-3570										
MB PCB (BGJ3644-BLK1)				Prep	ared: 10/23/	2023 Analyze	ed: 10/31/20	23		
Aroclor-1016 (PCB-1016)	<0.0200	U	0.0200	mg/kg (dry wt) wet						
Aroclor-1260 (PCB-1260)	<0.0200	U	0.0200	mg/kg (dry wt) wet						
PCBs, Total	<0.0200	U	0.0200	mg/kg (dry wt) wet						
Surrogate: 2,4,5,6			0.00604		0.00000			CO 140	5 224 224 2	
Tetrachloro-m-xylene-surr			0.00604	mg/kg (dry wt) wet	0.00600		101	60-140		
Surrogate; Decachlorobiphenyl-surr			0.00703	mg/kg (dry wt) wet	0.00600		117	60-140		
BS PCB (BGJ3644-BS1)			-	Prep	ared: 10/23/	2023 Analyze	ed: 10/31/20	23		14
Aroclor-1016 (PCB-1016)	0.0503		0.0200	mg/kg (dry wt) wet	0.0600		83.8	60-140		
Aroclor-1260 (PCB-1260)	0.0587		0.0200	mg/kg (dry wt) wet	0.0600		97.9	60-140		
PCBs, Total	0.0571		0.0200	mg/kg (dry wt) wet	0.0600		95.2	60-140		
Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr			0.00582	mg/kg (dry wt) wet	0.00600		97.0	60-140		
Surrogate: Decachlorobiphenyl-surr			0.00700	mg/kg (dry wt) wet	0.00600		117	60-140		
BSD PCB (BGJ3644-BSD1)				Prep	ared: 10/23/	2023 Analyze	ed: 10/31/20	23		INT
Aroclor-1016 (PCB-1016)	0.0612		0.0200	mg/kg (dry wt) wet	0.0600		102	60-140	19.6	40
Aroclor-1260 (PCB-1260)	0.0659		0.0200	mg/kg (dry wt) wet	0.0600		110	60-140	11.5	40
PCBs, Total	0.0650		0.0200	mg/kg (dry wt) wet	0.0600		108	60-140	12.9	40
Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr			0.00625	mg/kg (dry wt) wet	0.00600		104	60-140		
Surrogate: Decachlorobiphenyl-surr			0.00757	mg/kg (dry wt) wet	0.00600	1115	126	60-140		
23J3144-01 MS (BGJ3644-MS1)		Source: 23	3144-01	Prep	ared: 10/23/	2023 Analyze	ed: 10/31/20	23		
Aroclor-1016 (PCB-1016)	6.12		2.60	mg/kg (dry wt) dry	7.80	<2.60	78.5	60-140		
Aroclor-1260 (PCB-1260)	7.15		2.60	mg/kg (dry wt) dry	7.80	<2.60	91.7	60-140		
PCBs, Total	6.96		2.60	mg/kg (dry wt) dry	7.80	<2.60	89.2	60-140		
Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr			0.835	mg/kg (dry wt) dry	0.780	occadet kiel i i	107	60-140		
Surrogate: Decachlorobiphenyl-surr			0.891	mg/kg (dry wt) dry	0.780		114	60-140		

23J3144-01 MSD (BGJ3644-MSD1)

Source: 23J3144-01

Prepared: 10/23/2023 Analyzed: 10/31/2023

^{*} A = Accredited, N = Not Accredited or Accreditation not available

Reported: 11/17/2023 11:20

Quality Control (Continued)

Organics by GC (Continued)

Analyte	Result	Reporti Qual Lir	ng nit Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGJ3644 - SW-3570 (Co.	ntinued)								
23J3144-01 MSD (BGJ3644-MSD1)	de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la	Source: 23J3144-01	Prep	pared: 10/23	/2023 Analyze	ed: 10/31/20	23		
Aroclor-1016 (PCB-1016)	6.86	2.	60 mg/kg (dry wt) dry	7.80	<2.60	88.0	60-140	11.4	40
Aroclor-1260 (PCB-1260)	7.76	2.	60 mg/kg (dry wt) dry	7.80	<2.60	99.6	60-140	8.23	40
PCBs, Total	7.59	2.	60 mg/kg (dry wt) dry	7.80	<2.60	97.4	60-140	8.79	40
Surrogate: 2,4,5,6	***************************************	0.8	70 mg/kg (dry	0.780	1111 (11	112	60-140		//2017-10-20-20-20-20-20-20-20-20-20-20-20-20-20
Tetrachloro-m-xylene-surr Surrogate: Decachlorobiphenyl-surr		0.9	wt) dry 128 mg/kg (dry wt) dry	0.780		119	60-140		

A = Accredited, N = Not Accredited or Accreditation not available

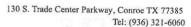
Reported: 11/17/2023 11:20

Quality Control (Continued)

Metals, Total

Analyte	THE T	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGJ3262 - SV	V-3050 for 6	5010						4.00	0.61,1011		
Blank (BGJ3262-BLK1)					Prep	ared: 10/19	/2023 Analyze	ed: 10/24/202	23		
Arsenic		<1.81	U	1.81	mg/kg wet						
Cadmium		< 0.181	U	0.181	mg/kg wet						
Chromium		< 0.906	U	0.906	mg/kg wet						
Copper		<1.81	U	1.81	mg/kg wet						
Lead		< 0.906	U	0.906	mg/kg wet						
Molybdenum		< 0.906	U	0.906	mg/kg wet						
Nickel		< 0.906	U	0.906	mg/kg wet						
Potassium		<181		181	mg/kg wet						
Selenium		<1.81		1.81	mg/kg wet						
Total Phosphorus		<181		181	mg/kg wet						
Zinc		<0.906		0.906	mg/kg wet						
LCS (BGJ3262-BS1)					Prep	ared: 10/19	/2023 Analyze	rd: 10/24/202	3		
Arsenic		45.7		1.90	mg/kg wet	47.5	/ 2020 / Wildiy 20	96.2	80-120		
Cadmium		4.64		0.190	mg/kg wet	4.75		97.6	80-120		
Chromium		23.4		0.952	mg/kg wet	23.8		98.5	80-120		
Copper		46.2		1.90	mg/kg wet	47.5		97.3	80-120		
Lead		23.3		0.952	mg/kg wet	23.8		98.0	80-120		
Molybdenum		23.1		0.952	mg/kg wet	23.8		97.2	80-120		
Nickel		23.2		0.952	mg/kg wet	23.8		97.7	80-120		
Potassium		4600		190	mg/kg wet	4750		96.7	80-120		
Selenium		46.0		1.90	mg/kg wet	47.5		96.9	80-120		
Total Phosphorus		4640		190	mg/kg wet	4750		97.6	80-120		
Zinc		24.8			mg/kg wet	23.8		104	80-120		
Matrix Spike (BGJ3262-N	1S1)		Source: 2	3J2900-01	Prep	ared: 10/19	/2023 Analyze	ed: 10/24/202	13		
Arsenic		64.4		2.42	mg/kg dry	60.6	5.76	96.7	75-125		
Cadmium		6.82		0.242	mg/kg dry	6.06	0.919	97.4	75-125		
Chromium		48.5		1.21	mg/kg dry	30.3	19.8	94.6	75-125		
Copper		1480		48.4	mg/kg dry	1270	366	87.2	75-125		
Lead		39.9		1.21	mg/kg dry	30.3	11.1	94.9	75-125		
Molybdenum		33.1		1.21	mg/kg dry	30.3	5.10	92.5	75-125		
Nickel		43.0		1.21	mg/kg dry	30.3	14.6	93.6	75-125		
Potassium		8710		242	mg/kg dry	6060	2610	101	75-125		
Selenium		69.7		2.42	mg/kg dry	60.6	7.98	102	75-125		
Total Phosphorus		2110	11	1210	mg/kg dry	12100	13000	NR.	75-125		
Zinc		2420	m.m		mg/kg dry	1240	1140	103	75-125		

A = Accredited, N = Not Accredited or Accreditation not available


Reported: 11/17/2023 11:20

Quality Control (Continued)

Metals, Total (Continued)

recais, rotal (continuea)									
Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGJ3262 - SW-3050 for 6	010 (Continued	D					EL PURINT	6 - 943.53	716
Matrix Spike Dup (BGJ3262-MSD1)	Source	: 23J2900-01	Prep	ared: 10/19,	/2023 Analyze	d: 10/24/202	23		
Arsenic	65.5	2.42	mg/kg dry	60.6	5.76	98.7	75-125	1.84	20
Cadmium	6.88	0.242	mg/kg dry	6.06	0.919	98.4	75-125	0.886	20
Chromium	48.5	1.21	mg/kg dry	30.3	19.8	94.7	75-125	0.0483	20
Copper	1610	48.4	mg/kg dry	1270	366	98.1	75-125	8.92	20
Lead	41.7	1.21	mg/kg dry	30.3	11.1	101	75-125	4.34	20
Molybdenum	33.6	1.21	mg/kg dry	30.3	5.10	94.2	75-125	1.45	20
Nickel	42.9	1.21	mg/kg dry	30.3	14.6	93.5	75-125	0.0420	20
Potassium	8380	242	mg/kg dry	6060	2610	95.1	75-125	3.95	20
Selenium	69.8	2.42	mg/kg dry	60.6	7.98	102	75-125	0.143	20
Total Phosphorus	19200 J1	1210	mg/kg dry	12100	13000	51.7	75-125	160	20
Zinc	2440	60.7	mg/kg dry	1240	1140	105	75-125	0.875	20
Post Spike (BGJ3262-PS1)	Source	: 23J2900-01	Prep	ared: 10/19	/2023 Analyze	d: 10/24/20	23		
Arsenic	527		ug/L	500	44.9	96.4	80-120		
Cadmium	56.1		ug/L	50.0	7.17	97.9	80-120		
Chromium	398		ug/L	250	155	97.5	80-120		
Copper	3640 J1		ug/L	500	2860	156	80-120		
Lead	332		ug/L	250	86.9	97.9	80-120		
Molybdenum	279		ug/L	250	39.8	95.5	80-120		
Nickel	353		ug/L	250	114	95.7	80-120		
Potassium	69500		ug/L	50000	20400	98.2	80-120		
Selenium	568		ug/L	500	62.2	101	80-120		
Total Phosphorus	162000 J1		ug/L	50000	101000	122	80-120		
Zinc	9540 J1		ug/L	250	8930	247	80-120		
Dilution Check (BGJ3262-SRL1)	Source	: 23J2900-01	Prep	ared: 10/19	/2023 Analyze	d: 10/24/20	23		
Arsenic	6.74 U	12.1			5.76			15.7	10
Cadmium	0.958 U	1.21	mg/kg dry		0.919			4.16	10
Chromium	20.9	6.08	mg/kg dry		19.8			5.08	10
Copper	368	12.1	mg/kg dry		366			0.538	10
Lead	12.2	6.08	mg/kg dry		11.1			9.09	10
Molybdenum	<6.08 U	6.08	mg/kg dry		<6.08			200	10
Nickel	15.8	6.08	mg/kg dry		14.6			7.52	10
Potassium	2550	1210	mg/kg dry		2610			2.43	10
Selenium	7.29 U	12.1	mg/kg dry		7.98			8.99	10
Total Phosphorus	13300	1210	mg/kg dry		13000			2.41	10

A = Accredited, N = Not Accredited or Accreditation not available

Email: lab@nwdls.com www. NWDLS.com TCEQ T104704238-23-39

Municipal Operations and Consulting 27316 Spectrum Way Oak Ridge, TX 77385

Reported: 11/17/2023 11:20

Quality Control (Continued)

Metals, Total (Continued)

Analyte	Result Qual	Reportin Lim	-	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGJ4936 - SW-7471				Con	TOTAL IN	U - 68 - 151	to be said	1,751	1316 -
MDL Check (BGJ4936-MRL1)				Prepared 8	Analyzed: 10	/31/2023			
Mercury	0.0103 U	0.019	6 mg/kg wet	0.00982		105			
Matrix Spike (BGJ4936-MS1)	Sou	rce: 23J4078-01		Prepared 8	Analyzed: 10	/31/2023			
Mercury	0.486	0.035	2 mg/kg dry	0.440	0.0995	87.9	80-120		
Matrix Spike Dup (BGJ4936-MSD1)	Sou	rce: 23J4078-01		Prepared &	Analyzed: 10	/31/2023			
Mercury	0.430 J1	0.035	1 mg/kg dry	0.439	0.0995	75.4	80-120	12.2	20

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 11/17/2023 11:20

www. NWDLS.com TCEQ T104704238-23-39

Quality Control (Continued)

General Chemistry

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGJ2578 - TKN T						114	off offs and	in Nulls	- 707	STORY WAY
Blank (BGJ2578-BLK1) Ammonia as N	<9.98	U	9.98	mg/kg wet	Prepared 8	Analyzed: 1	0/17/2023			
LCS (BGJ2578-BS1) Ammonia as N	97.6		9.99	mg/kg wet	Prepared & 99.9	Analyzed: 1	.0/17/2023 97.7	85-115		
Duplicate (BGJ2578-DUP1)	72 11 17	Source: 23	12900-01	and the	Prepared &	Analyzed: 1	0/17/2023	Light		
Ammonia as N	3290			mg/kg dry	r repared o	2770	0/17/2023		17.3	20
MRL Check (BGJ2578-MRL1) Ammonia as N	9.78	U	9.98	mg/kg wet	Prepared & 9.98	Analyzed: 1	.0/17/2023 98.0	50-150		
Matrix Spike (BGJ2578-MS1)		Source: 23	J2900-01		Prepared &	Analyzed: 1	0/17/2023			
Ammonia as N	17400		1450	mg/kg dry	14500	2770	101	85-115		
Batch: BGJ2580 - Percent Solids Blank (BGJ2580-BLK1)				110	Into Logue					
% Solids	<0.100	U	0.100	Prej %	pared: 10/17	/2023 Analyz	zed: 10/18/202	23		
Duplicate (BGJ2580-DUP1)		Source: 23	J3698-01	Prei	pared: 10/17	/2023 Analyz	zed: 10/18/202	3		-1
% Solids	1.62		0.100	%		1.62			0.126	20
Duplicate (BGJ2580-DUP2)		Source: 23	J3792-06	Pre	pared: 10/17	/2023 Analyz	zed: 10/18/202	13		
% Solids	0.438		0.100	%		0.436	248 0		0.278	30
Reference (BGJ2580-SRM1)				Pre	pared: 10/17,	/2023 Analyz	zed: 10/18/202	13		
% Solids	0.387		0.100	%	0.350		110	78.9-118		

A = Accredited, N = Not Accredited or Accreditation not available

Email: lab@nwdls.com www. NWDLS.com

TCEQ T104704238-23-39

Municipal Operations and Consulting 27316 Spectrum Way Oak Ridge, TX 77385

Reported: 11/17/2023 11:20

Quality Control (Continued)

General Chemistry (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGJ2669 - Solid Anions	No Prep							T VI		1.15.1924
Duplicate (BGJ2669-DUP1)		Source: 2	3J3698-01		Prepared 8	Analyzed: 10	/17/2023			
Nitrate as N	65.4		7.69	mg/kg dry		65.5			0.282	15
MRL Check (BGJ2669-MRL1)					Prepared 8	Analyzed: 10)/17/2023			
Nitrate as N	0.112	U	0.125	mg/kg wet	0.100		112	50-150		
Matrix Spike (BGJ2669-MS1)		Source: 2	3J3698-01		Prepared 8	k Analyzed: 10)/17/2023			
Nitrate as N	206		8.55	mg/kg dry	137	65.5	103	80-120		
Batch: BGJ3202 - TKN T										
Blank (BGJ3202-BLK1)				Pres	pared: 10/19	/2023 Analyze	ed: 10/20/20	23		
Total Kjeldahl Nitrogen - (TKN)	<9.92	U	9.92	mg/kg wet				11161	entru	1921771117
LCS (BGJ3202-BS1)				Prej	pared: 10/19	/2023 Analyze	ed: 10/20/20	23		
Total Kjeldahl Nitrogen - (TKN)	19.9		9.88	mg/kg wet	20.0		99.8	85-115		
Duplicate (BGJ3202-DUP1)		Source: 2	333698-01	Prej	pared: 10/19	/2023 Analyz	ed: 10/20/20	23		
Total Kjeldahl Nitrogen - (TKN)	69300	31	1490	mg/kg dry		53100			26.5	20
Matrix Spike (BGJ3202-MS1)		Source: 2	333698-01	Pre	pared: 10/19	2/2023 Analyz	ed: 10/20/20	23		
Total Kjeldahl Nitrogen - (TKN)	73000	31	1510	mg/kg dry	6030	53100	330	85-115		

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 11/17/2023 11:20

Quality Control (Continued)

TCLP

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGJ2829 - SW-3511					(Yulks	wings)	LELE-VIE	- (1,511)	10.1
MB HERB (BGJ2829-BLK1)			Pre	epared: 10/18	/2023 Analyze	ed: 10/23/20	23		
2,4-D	<10.0 U	10.0	mg/L		, 2020 / 11/01/20				
Silvex (2,4,5-TP)	<1.00 U	1.00	mg/L						
Surrogate: DCAA-surr		0.0251	mg/L	0.0249	*********	101	70-130		
BS HERB (BGJ2829-BS1)			Pre	epared: 10/18	/2023 Analyze	ed: 10/23/20	23		VIII.
2,4-D	0.00480 U	10.0	mg/L	0.00508	/2025 Allalyze	94	70-130		
Silvex (2,4,5-TP)	0.00474 U	1.00	mg/L	0.00493		96	70-130		
Surrogate: DCAA-surr	******************	0.0216	mg/L	0.0247	*******	88	70-130		
BSD HERB (BGJ2829-BSD1)			Pre	enared: 10/18	/2023 Analyze	d: 10/23/20	22		
2,4-D	0.00492 U	10.0	mg/L	0.00511	/2023 Allalyze	96	70-130	2	20
Silvex (2,4,5-TP)	0.00463 U	1.00	mg/L	0.00311		93	70-130	2	30 30
Surrogate: DCAA-surr		0.0222	mg/L	0.0248		90	70-130		
BGJ1444-BLK1 (BGJ2829-LBK1)			Dro	nared: 10/19	/2023 Analyze	d. 10/24/20	12		
2,4-D	<10.0 U	10.0	mg/L	.parcu. 10/10/	/2023 Allalyze	:u: 10/24/202	23		
Silvex (2,4,5-TP)	<1.00 U	1.00	mg/L						
Surrogate: DCAA-surr		0.120	mg/L	0.100	********	120	70-130		
BGJ2741-BLK1 (BGJ2829-LBK2)	1.00		Pro	enared: 10/19	/2023 Analyze	d: 10/24/20	13		
2,4-D	<10.0 U	10.0	mg/L	.pu.cu. 10/10/	LUZJ Allalyze	u. 10/24/202	.5		
Silvex (2,4,5-TP)	<1.00 U	1.00	mg/L						
Surrogate: DCAA-surr	5	0.142	mg/L	0.100	*********	142	70-130		
23J2360-01 MS (BGJ2829-MS1)	Source: 2	3J2360-01	Dec	pared: 10/10	/2022 Amel	4. 10/22/22			
2,4-D	0.0216 U	10.0	mg/L	0.0206	/2023 Analyze				
Silvex (2,4,5-TP)	0.0210 U	1.00	mg/L	0.0200	<10.0 <1.00	105 106	70-130 70-130		
			9/ -	0.0200	~1.00	100	10-130		

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 11/17/2023 11:20

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGJ2829 - SW-3511 (Con	tinued)								10.00	Live
23J2360-01 MSD (BGJ2829-MSD1)	5	Source: 2	23J2360-01	Pre	pared: 10/18,	/2023 Analyze	ed: 10/23/20	23		
2,4-D	0.0215	U	10.0	mg/L	0.0206	<10.0	104	70-130	0.5	30
Silvex (2,4,5-TP)	0.0204	U	1.00	mg/L	0.0200	<1.00	102	70-130	4	30
Surrogate: DCAA-surr			0.0967	mg/L	0.100		97	70-130		
Batch: BGJ3041 - EPA 200.2 TCL	P									
Blank (BGJ3041-BLK1)				Pre	pared: 10/19	/2023 Analyze	ed: 10/20/20	23		
Arsenic	<5.00	U	5.00	mg/L						
Barium	<100	U	100	mg/L						
Cadmium	<1.00	U	1.00	mg/L						
Chromium	<5.00	U	5.00	mg/L						
Lead	<5.00	U	5.00	mg/L						
Selenium	<1.00	U	1.00	mg/L						
Silver	<5.00	U	5.00	mg/L						7 m
LCS (BGJ3041-BS1)				Pre	epared: 10/19	/2023 Analyz	ed: 10/20/20	123		
Arsenic	0.515	U	5.00	mg/L	0.500		103	80-120		
Barium	0.518		100	mg/L	0.500		104	80-120		
Cadmium	0.0517	U	1.00	mg/L	0.0500		103	80-120		
Chromium	0.257	U	5.00	mg/L	0.250		103	80-120		
Lead	0.260	U	5.00	mg/L	0.250		104	80-120		
Selenium	0.513	U	1.00	mg/L	0.500		103	80-120		
Silver	0.0509	U	5.00	mg/L	0.0500		102	80-120		
Duplicate (BGJ3041-DUP1)		Source:	23J2900-01	Pro	epared: 10/19	9/2023 Analyz	ed: 10/20/20	023		
Arsenic	< 5.00	U	5.00	mg/L		<5.00			att and a	20
Barium	1.05	5 U	100	mg/L		1.12			6.61	20
Cadmium	<1.00	U	1.00	mg/L		<1.00				20
Chromium	<5.00) U	5.00	mg/L		<5.00				20
Lead	<5.0	U	5.00	mg/L		<5.00				20
Selenium	<1.0	o U	1.00	mg/L		<1.00				20
Silver	<5.0	U	5.00	mg/L		<5.00				20

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 11/17/2023 11:20

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGJ3041 - EPA 200.2 TC	.P (Contin	ued)					1	U. HE	111111111	DIL Ider
BGJ2741-BLK1 (BGJ3041-LBK1)	ingligated —	HILL THE		Pre	pared: 10/19/	2023 Analyze	ed: 10/20/2023			
Arsenic	<5.00	U	5.00	mg/L		The Market				
Barium	0.669		100	mg/L						
Cadmium	<1.00		1.00	mg/L						
Chromium	<5.00	U	5.00	mg/L						
Lead	<5.00		5.00	mg/L						
Selenium	<1.00		1.00	mg/L						
Silver	<5.00		5.00	mg/L						
Matrix Spike (BGJ3041-MS1)		Source:	23J2900-01	Pre	pared: 10/19	/2023 Analyze	ed: 10/20/2023			
Arsenic	0.547	U	5.00	mg/L	0.500	<5.00	109	75-125		
Barium	1.64	U	100	mg/L	0.500	1.12	104	75-125		
Cadmium	0.0559		1.00	mg/L	0.0500	<1.00	112	75-125		
Chromium	0.261	U	5.00	mg/L	0.250	<5.00	104	75-125		
Lead	0.258		5.00	mg/L	0.250	<5.00	103	75-125		
Selenium	0.530	U	1.00	mg/L	0.500	<1.00	106	75-125		
Silver	0.0524	U	5.00	mg/L	0.0500	<5.00	105	75-125		
Post Spike (BGJ3041-PS1)		Source:	23J2900-01	Pre	epared: 10/19	/2023 Analyze	ed: 10/20/2023			
Arsenic	537			ug/L	500	7.81	106	80-120		
Barium	1550			ug/L	500	1090	92.4	80-120		
Cadmium	53.9			ug/L	50.0	0.673	106	80-120		
Chromium	257			ug/L	250	1.17	102	80-120		
Lead	257			ug/L	250	1.42	102	80-120		
Selenium	521			ug/L	500	2.93	104	80-120		
Silver	51.3			ug/L	50.0	0.448	102	80-120		
Dilution Check (BGJ3041-SRL1)		Source:	23J2900-01	Pre	epared: 10/19	/2023 Analyz	ed: 10/20/2023	3		
Arsenic	<5.00	U	5.00	mg/L		<5.00				10
Barium	1.12	U	100	mg/L		1.12			0.00	10
Cadmium	<1.00		1.00	mg/L		<1.00				10
Chromium	<5.00		5.00	mg/L		<5.00				10
Lead	<5.00		5.00	mg/L		<5.00				10
Selenium	<1.00		1.00	mg/L		<1.00				10
Silver	<5.00		5.00	mg/L		<5.00				10

^{*} A = Accredited, N = Not Accredited or Accreditation not available

Reported: 11/17/2023 11:20

Quality Control (Continued)

Analyte	Result Q	ual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGJ3234 - SW-3511							a market			
MB SV (BGJ3234-BLK1)					Prepared &	Analyzed: 10	/19/2023			
2,4,5-Trichlorophenol	<400 U		400	mg/L	, , , , , , , , , , , , , , , , , , , ,	, w.a., 200, 10	120120			
2,4,6-Trichlorophenol	<2.00 U		2.00	mg/L						
2,4-Dinitrotoluene (2,4-DNT)	<0.130 U		0.130	mg/L						
2-Methylphenol	<200 U		200	mg/L						
3,4-Methylphenol	<200 U		200	mg/L						
Hexachlorobenzene	<0.130 U		0.130	mg/L						
Hexachlorobutadiene	<0.500 U		0.500	mg/L						
Hexachloroethane	<3.00 U		3.00	mg/L						
Nitrobenzene	<2.00 U		2.00	mg/L						
Pentachlorophenol	<100 U		100	mg/L						
Pyridine	<5.00 U		5.00	mg/L						
Surrogate: 2-Fluorobiphenyl-surr			0.00862	mg/L	0.00978		88.1	54.6-148		
Surrogate: 2-Fluorophenol-surr			0.00002	mg/L	0.0196		96.6	55-152		
Surrogate: 2,4,6-Tribromophenol-surr			0.0210	mg/L	0.0196		108	52.4-136		
Surrogate: Nitrobenzene-d5-surr			0.00980	mg/L	0.00978		100	52-162		
Surrogate: Phenol-d5-surr			0.0160	mg/L	0.0196		81.8	58.7-152		
Surrogate: p-Terphenyl-d14-surr			0.00913	mg/L	0.00978		93.3	51.9-147		
BS SV (BGJ3234-BS1)		***************************************			Prepared &	Analyzed: 10	/19/2023			
2,4,5-Trichlorophenol	0.0215 U		400	mg/L	0.0197		109	60-140		
2,4,6-Trichlorophenol	0.0200 U		2.00	mg/L	0.0197		102	60-140		
2,4-Dinitrotoluene (2,4-DNT)	0.0117 U		0.130	mg/L	0.00984		119	60-140		
2-Methylphenol	0.0182 U		200	mg/L	0.0197		92.7	60-140		
3,4-Methylphenol	0.0340 U		200	mg/L	0.0394		86.4	60-140		
Hexachlorobenzene	0.00901 U		0.130	mg/L	0.00984		91.6	60-140		
Hexachlorobutadiene	0.00718 U		0.500	mg/L	0.00984		73.0	60-140		
Hexachloroethane	0.00791 U		3.00	mg/L	0.00984		80.4	60-140		
Nitrobenzene	0.0102 U		2.00	mg/L	0.00984		104	60-140		
Pentachlorophenol	0.0221 U		100	mg/L	0.0197		112	36.8-149		
Pyridine	0.0223 U		5.00	mg/L	0.0492		45.3	2.5-101		
Surrogate: 2-Fluorobiphenyl-surr			0.00847	mg/L	0.00984		86.1	54.6-148		****
Surrogate: 2-Fluorophenol-surr			0.0191	mg/L	0.0197		97.1	55-152		
Surrogate: 2,4,6-Tribromophenol-surr			0.0162	mg/L	0.0197		82.4	52.4-136		
Surrogate: Nitrobenzene-d5-surr			0.00906	mg/L	0.00984		92.0	52-162		
Surrogate: Phenol-d5-surr			0.0177	mg/L	0.0197		90.0	58.7-152		
Surrogate: p-Terphenyl-d14-surr			0.00750	mg/L	0.00984		76.2	51.9-147		

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 11/17/2023 11:20

Quality Control (Continued)

	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGJ3234 - SW-3511 (C	Continued)					The same	- Name of the	11000-171	- 644.4	umile V
BSD SV (BGJ3234-BSD1)	FEET TOTAL TIMES				Prepared &	Analyzed: 10	/19/2023			
2,4,5-Trichlorophenol	0.0223	H H	400	mg/L	0.0199		112	60-140	3.71	40
2,4,6-Trichlorophenol	0.0228		2.00	mg/L	0.0199		115	60-140	13.2	40
2,4-Dinitrotoluene (2,4-DNT)	0.0116		0.130	mg/L	0.00993		117	60-140	0.518	40
2-Methylphenol	0.0194		200	mg/L	0.0199		97.7	60-140	6.12	40
3,4-Methylphenol	0.0378		200	mg/L	0.0397		95.3	60-140	10.7	40
Hexachlorobenzene	0.00985		0.130	mg/L	0.00993		99.2	60-140	8.89	40
Hexachlorobutadiene	0.00817		0.500	mg/L	0.00993		82.3	60-140	13.0	40
Hexachloroethane	0.00891		3.00	mg/L	0.00993		89.7	60-140	11.8	40
Nitrobenzene	0.0111		2.00	mg/L	0.00993		112	60-140	8.31	40
Pentachlorophenol	0.0226		100	mg/L	0.0199		114	36.8-149	2.11	40
Pyridine	0.0234		5.00	mg/L	0.0497		47.1	2.5-101	4.85	40
Surrogate: 2-Fluorobiphenyl-surr			0.00896	mg/L	0.00993		90.3	54.6-148		
Surrogate: 2-Fluorophenol-surr			0.0203	mg/L	0.0199		102	55-152		
Surrogate: 2,4,6-Tribromophenol-surr			0.0177	mg/L	0.0199		88.9	52.4-136		
Surrogate: Nitrobenzene-d5-surr			0.00919	mg/L	0.00993		92.5	52-162		
Surrogate: Phenol-d5-surr			0.0198	mg/L	0.0199		99.7	58.7-152		
Surrogate: p-Terphenyl-d14-surr			0.00842	mg/L	0.00993		84.8	51.9-147		
DC12741 DLV1 (DC12224 LDV2)				De	epared: 10/19	/2022 Applica	d. 10/20/20	172		TV V
BGJ2741-BLK1 (BGJ3234-LBK2) 2,4,5-Trichlorophenol	.400	20	400	mg/L	epareu: 10/19	/2023 Analyze	ed: 10/20/20	123		
2,4,6-Trichlorophenol	<400		2.00	mg/L						
2,4-Dinitrotoluene (2,4-DNT)	<2.00		0.130	mg/L						
2-Methylphenol	<0.130		200							
see was Arbrid in	<200			mg/L						
3,4-Methylphenol Hexachlorobenzene	<200		200	mg/L						
UNIT OF STORY	<0.130		0.130	mg/L						
Hexachlorobutadiene Hexachloroethane	<0.500		0.500 3.00	mg/L						
Nitrobenzene	<3.00			mg/L						
Pentachlorophenol	<2.00		2.00 100	mg/L						
Pyridine	<100 <5.00		5.00	mg/L mg/L						
	<5.00									*****
Surrogate: 2-Fluorobiphenyl-surr			0.0360	mg/L	0.0400		90.1	54.6-148		
Surrogate: 2-Fluorophenol-surr			0.0836	mg/L	0.0800		105	55-152		
Surrogate: 2,4,6-Tribromophenol-surr			0.0926	mg/L	0.0800		116	52.4-136		
Surrogate: Nitrobenzene-d5-surr			0.0406	mg/L	0.0400		102	52-162		
Surrogate: Phenol-d5-surr Surrogate: p-Terphenyl-d14-surr			0.0803 0.0277	mg/L mg/L	0.0800 0.0400		100 69.3	58.7-152 51.9-147		

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 11/17/2023 11:20

Quality Control (Continued)

Analyte	Result	Qual		Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGJ3234 - SW-3511 (C	ontinued)						11.5	ndeli attiv	LIFE-SN	- 110	thu u
MDL SV (BGJ3234-MRL1)						Prepared &	Analyzed: 10	/19/2023			
2,4,5-Trichlorophenol	0.00135	Ü		400	mg/L	0.000985	,, 200, 10	137			
2,4,6-Trichlorophenol	0.00159			2.00	mg/L	0.000985		161			
2,4-Dinitrotoluene (2,4-DNT)	0.000941			0.130	mg/L	0.000492		191			
2-Methylphenol	0.00122			200	mg/L	0.000985		124			
3,4-Methylphenol	0.00231			200	mg/L	0.00197		117			
Hexachlorobenzene	0.000383			0.130	mg/L	0.000492		77.8			
Hexachlorobutadiene	0.000555			0.500	mg/L	0.000492		113			
Hexachloroethane	0.000388			3.00	mg/L	0.000492		78.8			
Nitrobenzene	0.000747			2.00	mg/L	0.000492		152			
Pentachlorophenol	0.00104			100	mg/L	0.000985		105			
Pyridine	0.00328			5.00	mg/L	0.00246		133			
Surrogate: 2-Fluorobiphenyl-surr		titores								****	ecces es
Surrogate: 2-Fluorophenol-surr				0.00930	mg/L	0.00985		94.4	54.6-148		
Currogatas 3.4.6 Tribiamanhanal aum				0.0193	mg/L	0.0197		98.0	55-152		
Surrogate: Nitrobenzene-d5-surr				0.0233	mg/L	0.0197		118	52.4-136		
Surrogate: Phenol-d5-surr				0.0110 0.0176	mg/L	0.00985 0.0197		112 89.2	52-162 58.7-152		
Surrogate: p-Terphenyl-d14-surr				0.0176	mg/L mg/L	0.0197		98.2	51.9-147		
					mg/ L			********	51.5 117		
23J3307-02 MS (BGJ3234-MS1)			e: 23J3	307-02			Analyzed: 10	0 107			
2,4,5-Trichlorophenol	0.0201	/,:		400	mg/L	0.0199	<400	101	44.9-171		
2,4,6-Trichlorophenol	0.0204	U		2.00	mg/L	0.0199	<2.00	102	34.7-143		
2,4-Dinitrotoluene (2,4-DNT)	0.0105	U		0.130	mg/L	0.00995	< 0.130	106	50.3-144		
2-Methylphenol	0.0173	U		200	mg/L	0.0199	<200	86.8	17.3-182		
3,4-Methylphenol	0.0349	U		200	mg/L	0.0398	<200	87.6	43.4-188		
Hexachlorobenzene	0.00857	U		0.130	mg/L	0.00995	< 0.130	86.1	56.1-137		
Hexachlorobutadiene	0.00723	U		0.500	mg/L	0.00995	<0.500	72.7	33.1-110		
Hexachloroethane	0.00752	U		3.00	mg/L	0.00995	<3.00	75.6	36.2-106		
Nitrobenzene	0.0109	U		2.00	mg/L	0.00995	<2.00	109	54.9-156		
Pentachlorophenol	0.0209	U		100	mg/L	0.0199	<100	105	42.2-151		
Pyridine	0.0346	U		5.00	mg/L	0.0497	<5.00	69.5	2-87.4		rea rea rela
Surrogate: 2-Fluorobiphenyl-surr	- 1 - 123 133 133 133 133. 	1,000,000	2,200,200	0.00775	mg/L	0.00995		77.9	54.6-148		100 100 100
Surrogate: 2-Fluorophenol-surr				0.0188	mg/L	0.0199		94.5	55-152		
Surrogate: 2,4,6-Tribromophenol-surr				0.0155	mg/L	0.0199		77.8	52.4-136		
Surrogate: Nitrobenzene-d5-surr				0.00839	mg/L	0.00995		84.4	52-162		
Surrogate: Phenol-d5-surr				0.0184	mg/L	0.0199		92.4	58.7-152		
Surrogate: p-Terphenyl-d14-surr				0.00659	mg/L	0.00995		66.2	51.9-147		

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 11/17/2023 11:20

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGJ3234 - SW-351.	1 (Continued)					150,00	phononic participation of the contraction of the co	1, 1,01,-141	- 1300	
23J3307-02 MSD (BGJ3234-MSI		Source: 2	3J3307-02		Prepared &	Analyzed: 10	/19/2023			
2,4,5-Trichlorophenol	0.0207		400	mg/L	0.0199	<400	104	44.9-171	2.80	40
2,4,6-Trichlorophenol	0.0215		2.00	mg/L	0.0199	<2.00	108	34.7-143	5.59	40
2,4-Dinitrotoluene (2,4-DNT)	0.0112		0.130	mg/L	0.00996	< 0.130	112	50.3-144	5.75	40
2-Methylphenol	0.0178		200	mg/L	0.0199	<200	89.3	17.3-182	3.01	40
3,4-Methylphenol	0.0343		200	mg/L	0.0398	<200	86.0	43.4-188	1.75	40
Hexachlorobenzene	0.00865		0.130	mg/L	0.00996	< 0.130	86.9	56.1-137	0.966	40
Hexachlorobutadiene	0.00765		0.500	mg/L	0.00996	< 0.500	76.9	33.1-110	5.74	40
Hexachloroethane	0.00809		3.00	mg/L	0.00996	<3.00	81.2	36.2-106	7.39	40
Nitrobenzene	0.0110		2.00	mg/L	0.00996	<2.00	111	54.9-156	1.66	40
Pentachlorophenol	0.0215		100	mg/L	0.0199	<100	108	42.2-151	2.53	40
Pyridine	0.0332		5.00	mg/L	0.0498	<5.00	66.7	2-87.4	3.92	40
Surrogate: 2-Fluorobiphenyl-surr			0.00826	mg/L	0.00996		82.9	54.6-148		
Surrogate: 2-Fluorophenol-surr			0.0183	mg/L	0.0199		92.1	55-152		
Surrogate: 2,4,6-Tribromophenol-surr			0.0162	mg/L	0.0199		81.5	52.4-136		
Surrogate: Nitrobenzene-d5-surr			0.00876	mg/L	0.00996		87.9	52-162		
Surrogate: Phenol-d5-surr			0.0178	mg/L	0.0199		89.4	58.7-152		
Surrogate: p-Terphenyl-d14-surr			0.00690	mg/L	0.00996		69.3	51.9-147		
Batch: BGJ3693 - SW-351	1									
Blank (BGJ3693-BLK1)				Pr	epared: 10/23	/2023 Analyze	ed: 10/28/20	023		
Chlordane (Total)	< 0.0300	U	0.0300	mg/L						
Endrin	< 0.0200	U	0.0200	mg/L						
gamma-BHC (Lindane,	< 0.400	U	0.400	mg/L						
gamma-HexachlorocyclohexanE)										
Heptachlor	<0.00800	U	0.00800	mg/L						
Heptachlor epoxide	<0.00800	U	0.00800	mg/L						
Methoxychlor	<10.0	U	10.0	mg/L						
Toxaphene (Chlorinated Camphene)	<0.500	U	0.500	mg/L						
Surrogate: 2,4,5,6		05 CAR (C.C.)	0.000102	mg/L	0.000120		85.2	60-140		
Tetrachloro-m-xylene-surr				000 500 000						
Surrogate: Decachlorobiphenyl-surr			0.000100	mg/L	0.000120		83.7	60-140		

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 11/17/2023 11:20

TCEQ T104704238-23-39

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGJ3693 - SW-3511 (C	Continued)					4594	High .	YUTUM	2 - 1/7/1	11016
LCS TOX (BGJ3693-BS1)				Pre	epared: 10/23/	2023 Analyze	d: 10/28/20	23		
Toxaphene (Chlorinated Camphene)	0.00114	U	0.500	mg/L	0.00120		94.7	60-140		
Surrogate: 2,4,5,6		ttts:teree	9.30E-5	mg/L	0.000120		77.5	60-140		
Tetrachloro-m-xylene-surr				3/ -	0,000120		77.5	00-140		
Surrogate: Decachlorobiphenyl-surr	di man		0.000106	mg/L	0.000120		88.6	60-140		
.CS (BGJ3693-BS2)		1411		Pre	epared: 10/23/	2023 Analyze	d: 10/28/20	23		
Chlordane (Total)	0.000561	U	0.0300	mg/L	0.000480		117	60-140		
Endrin	0.000132	U	0.0200	mg/L	0.000120		110	60-140		
gamma-BHC (Lindane,	0.000136	U	0.400	mg/L	0.000120		113	60-140		
gamma-HexachlorocyclohexanE)										
Heptachlor	0.000146	J	0.00800	mg/L	0.000120		121	60-140		
Heptachlor epoxide	0.000137	J	0.00800	mg/L	0.000120		114	60-140		
Methoxychlor	0.000109	J	10.0	mg/L	0.000120		90.7	60-140		
Surrogate: 2,4,5,6			9.70E-5	mg/L	0.000120		80.8	60-140		
Tetrachloro-m-xylene-surr										
Surrogate: Decachlorobiphenyl-surr			0.000100	mg/L	0.000120		83.7	60-140		
CSD TOX (BGJ3693-BSD1)				Pre	epared: 10/23/	2023 Analyze	d: 10/28/20	23		
Toxaphene (Chlorinated Camphene)	0.00118	J	0.500	mg/L	0.00120		98.6	60-140	4.09	40
Surrogate: 2,4,5,6		101 103 1010	8.65E-5	mg/L	0.000120		72.1	60-140		
Tetrachloro-m-xylene-surr										
Surrogate: Decachlorobiphenyl-surr			0.000105	mg/L	0.000120		87.4	60-140		
.CS Dup (BGJ3693-BSD2)				Pre	pared: 10/23/	2023 Analyze	d: 10/28/20	23		
Chlordane (Total)	0.000503	J	0.0300	mg/L	0.000480		105	60-140	11.0	40
Endrin	0.000114	J	0.0200	mg/L	0.000120		95.2	60-140	14.5	40
gamma-BHC (Lindane,	0.000119	J	0.400	mg/L	0.000120		99.5	60-140	12.7	40
gamma-HexachlorocyclohexanE)										
Heptachlor	0.000129		0.00800	mg/L	0.000120		107	60-140	12.3	40
Heptachlor epoxide	0.000122		0.00800	mg/L	0.000120		102	60-140	11.7	40
Methoxychlor	0.000113	J 	10.0	mg/L	0.000120		94.3	60-140	3.92	40
Surrogate: 2,4,5,6			9.12E-5	mg/L	0.000120		76.0	60-140		
Tetrachloro-m-xylene-surr										
Surrogate: Decachlorobiphenyl-surr			0.000105	mg/L	0.000120		87.5	60-140		

^{*} A = Accredited, N = Not Accredited or Accreditation not available

Reported: 11/17/2023 11:20

Quality Control (Continued)

Analyte	Result Qual		Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
									4 314	
Batch: BGJ3693 - SW-3511 (Co	ontinued)			100			40/00/0			
BGJ2741-BLK1 (BGJ3693-LBK1)					pared: 10/23/2	2023 Analyzed	i: 10/28/202	23		
Chlordane (Total)	<0.0300 U		0.0300	mg/L						
Endrin	<0.0200 U		0.0200	mg/L						
gamma-BHC (Lindane, gamma-HexachlorocyclohexanE)	2.31E-6 U		0.400	mg/L						
Heptachlor	<0.00800 U		0.00800	mg/L						
Heptachlor epoxide	<0.00800 U		0.00800	mg/L						
Methoxychlor	<10.0 U		10.0	mg/L						
Toxaphene (Chlorinated Camphene)	<0.500 U		0.500	mg/L			2 444 2444 2722			
Surrogate: 2,4,5,6			8.45E-5	mg/L	0.000120		70.4	60-140		
Tetrachloro-m-xylene-surr Surrogate: Decachlorobiphenyl-surr			7.75E-5	mg/L	0.000120		64.6	60-140		
MRL TOX (BGJ3693-MRL1)	And the second second second			Pre	pared: 10/23/	2023 Analyzeo	i: 10/28/20	23	- 1	1711
Toxaphene (Chlorinated Camphene)	0.000293 U		0.500	mg/L	0.000300	(F ³ -	97.5	T. A		
Surrogate: 2,4,5,6			7.78E-5	mg/L	0.000120		64.9	60-140		
Tetrachloro-m-xylene-surr										
Surrogate: Decachlorobiphenyl-surr			9.79E-5	mg/L	0.000120		81.6	60-140		
MRL Check (BGJ3693-MRL2)				Pre	epared: 10/23/	2023 Analyzed	d: 10/28/20	23		
Chlordane (Total)	5.56E-5 U		0.0300	mg/L	4.80E-5		116			
Endrin	1.49E-5 U		0.0200	mg/L	1.20E-5		124			
gamma-BHC (Lindane,	1.50E-5 U		0.400	mg/L	1.20E-5		125			
gamma-HexachlorocyclohexanE)										
Heptachlor	1.71E-5 U		0.00800	mg/L	1.20E-5		143			
Heptachlor epoxide	1.36E-5 U		0.00800	mg/L	1.20E-5		114			
Methoxychlor	1.58E-5 U		10.0	mg/L	1.20E-5		131			
Surrogate: 2,4,5,6			9.14E-5	mg/L	0.000120		76.1	60-140		
Tetrachloro-m-xylene-surr										
Surrogate: Decachlorobiphenyl-surr			0.000100	mg/L	0.000120		83.6	60-140		
Matrix Spike (BGJ3693-MS1)	Sou	rce: 23J	2995-01	Pre	epared: 10/23/	2023 Analyze	d: 10/28/20	23		
Chlordane (Total)	0.000462 U		0.0300	mg/L	0.000480	<0.0300	96.2	60-140		
Endrin	0.000115 U		0.0200	mg/L	0.000120	<0.0200	95.5	60-140		
gamma-BHC (Lindane,	0.000111 U		0.400	mg/L	0.000120	<0.400	92.5	60-140		
gamma-HexachlorocyclohexanE)			0.00000	/I	0.000130	<0.00000	102	60 140		
Heptachlor	0.000124 U		0.00800	mg/L	0.000120	<0.00800	103	60-140		
Heptachlor epoxide	0.000109 U		0.00800	mg/L	0.000120	<0.00800	91.0	60-140		
Methoxychlor	0.000121 U		10.0	mg/L	0.000120	<10.0	101	60-140		
Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr			7.20E-5	mg/L	0.000120		60.0	60-140		
Surrogate: Decachlorobiphenyl-surr			0.000115	mg/L	0.000120		95.5	60-140		

^{*} A = Accredited, N = Not Accredited or Accreditation not available

Reported: 11/17/2023 11:20

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGJ3693 - SW-3511 (Cont.	inued)				-		1,452	1 187 -1	6 - 18401	EL ELEX
Matrix Spike Dup (BGJ3693-MSD1)		Source: 2	332995-01	Pre	epared: 10/23,	/2023 Analyze	d: 10/28/20	23		
Chlordane (Total)	0.000498	U	0.0300	mg/L	0.000480	<0.0300	104	60-140	7.46	40
Endrin	0.000122	U	0.0200	mg/L	0.000120	<0.0200	102	60-140	6.58	40
gamma-BHC (Lindane, gamma-HexachlorocyclohexanE)	0.000119	U	0.400	mg/L	0.000120	<0.400	98.8	60-140	6.68	40
Heptachlor	0.000133	U	0.00800	mg/L	0.000120	<0.00800	111	60-140	7.50	40
Heptachlor epoxide	0.000118	U	0.00800	mg/L	0.000120	<0.00800	98.2	60-140	7.61	40
Methoxychlor	0.000118	U	10.0	mg/L	0.000120	<10.0	98.8	60-140	2.07	40
Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr		5	6.94E-5	mg/L	0.000120		57.8	60-140		
Surrogate: Decachlorobiphenyl-surr			0.000109	mg/L	0.000120		91.2	60-140		
Batch: BGK1044 - SW-7471 TCLP Duplicate (BGK1044-DUP1)		Source: 2	3J5785-02		Prepared 8	k Analyzed: 11	/7/2023			
Duplicate (BGK1044-DUP1) Mercury	<0.200	U	0.200	mg/L		<0.200		(a m		200
Ouplicate (BGK1044-DUP1) Mercury Ouplicate (BGK1044-DUP2)	<0.200	Source: 2	0.200	mg/L				EL III		200
	<0.200	Source: 2	0.200	mg/L		<0.200		() The state of t		200
Duplicate (BGK1044-DUP1) Mercury Duplicate (BGK1044-DUP2) Mercury BGK0140-LBK1 (BGK1044-LBK1)	<0.200 <0.200	Source: 2	0.200 3 332900-01 0.200	mg/L	Prepared 8	<0.200 k Analyzed: 11	/7/2023	(± 17)		
Duplicate (BGK1044-DUP1) Mercury Duplicate (BGK1044-DUP2) Mercury BGK0140-LBK1 (BGK1044-LBK1)	<0.200	Source: 2	0.200		Prepared 8	<0.200 A Analyzed: 11 <0.200	/7/2023	e (a II) Innovitor		11 -140
Duplicate (BGK1044-DUP1) Mercury Duplicate (BGK1044-DUP2) Mercury BGK0140-LBK1 (BGK1044-LBK1) Mercury BGJ2741-LBK2 (BGK1044-LBK2)	<0.200 <0.200	Source: 2	0.200 3 332900-01 0.200 0.200	mg/L	Prepared 8	<0.200 A Analyzed: 11 <0.200	/7/2023 /7/2023	(a market		
Duplicate (BGK1044-DUP1) Mercury Duplicate (BGK1044-DUP2) Mercury BGK0140-LBK1 (BGK1044-LBK1) Mercury	<0.200 <0.200	Source: 2	0.200 3 332900-01 0.200	mg/L	Prepared 8	<0.200 Analyzed: 11 <0.200 Analyzed: 11	/7/2023 /7/2023	(a m)		Cale
Duplicate (BGK1044-DUP1) Mercury Duplicate (BGK1044-DUP2) Mercury BGK0140-LBK1 (BGK1044-LBK1) Mercury BGJ2741-LBK2 (BGK1044-LBK2) Mercury MDL Check (BGK1044-MRL1)	<0.200 <0.200 <0.200	Source: 2	0.200 3 332900-01 0.200 0.200	mg/L	Prepared 8 Prepared 8 Prepared 8	<0.200 Analyzed: 11 <0.200 Analyzed: 11	/7/2023 /7/2023 /7/2023	(a Ti	on the state of th	
Duplicate (BGK1044-DUP1) Mercury Duplicate (BGK1044-DUP2) Mercury BGK0140-LBK1 (BGK1044-LBK1) Mercury BGJ2741-LBK2 (BGK1044-LBK2) Mercury MDL Check (BGK1044-MRL1)	<0.200 <0.200 <0.200	Source: 2 U	0.200 3 332900-01 0.200 0.200	mg/L mg/L mg/L	Prepared 8 Prepared 8 Prepared 8	<0.200 A Analyzed: 11 <0.200 A Analyzed: 11 A Analyzed: 11	/7/2023 /7/2023 /7/2023	(a market		Cale
Duplicate (BGK1044-DUP1) Mercury Duplicate (BGK1044-DUP2) Mercury BGK0140-LBK1 (BGK1044-LBK1) Mercury BGJ2741-LBK2 (BGK1044-LBK2)	<0.200 <0.200 <0.200 <0.200 0.000211	Source: 2 U U	0.200 332900-01 0.200 0.200 0.200	mg/L mg/L mg/L	Prepared 8 Prepared 8 Prepared 8 Prepared 8 0.000200	<0.200 A Analyzed: 11 <0.200 A Analyzed: 11 A Analyzed: 11	/7/2023 /7/2023 /7/2023 /7/2023 106	(a III)		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -

A = Accredited, N = Not Accredited or Accreditation not available

130 S. Trade Center Parkway, Conroe TX 77385

Tel: (936) 321-6060 Email: lab@nwdls.com www. NWDLS.com

TCEQ T104704238-23-39

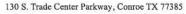
Municipal Operations and Consulting 27316 Spectrum Way Oak Ridge, TX 77385

Reported: 11/17/2023 11:20

Quality Control (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGK1044 - SW-7471 To	CLP (Continued)								
Matrix Spike (BGK1044-MS2)	Source: 2	332900-01		Prepared &	Analyzed: 11	/7/2023			
				0.00500	< 0.200	103	80-120		

130 S. Trade Center Parkway, Conroe TX 77385
Tel: (936) 321-6060
Email: lab@nwdls.com
www. NWDLS.com
TCEQ T104704238-23-39


Reported: 11/17/2023 11:20

Sample Condition Checklist

Work Order: 23J3698

Check Points

No	Custody Seals
Yes	Containers Intact
Yes	COC/Labels Agree
Yes	Received On Ice
Yes	Appropriate Containers
Yes	Appropriate Sample Volume
Yes	Coolers Intact
Yes	Samples Accepted

Tel: (936) 321-6060 Email: lab@nwdls.com www. NWDLS.com TCEQ T104704238-23-39

Municipal Operations and Consulting 27316 Spectrum Way Oak Ridge, TX 77385

Item

Definition

Reported: 11/17/2023 11:20

Term and Qualifier Definitions

C+	The associated calibration QC is higher than the established quality control criteria for accuracy - no hit in sample; data not affected and acceptable to report.
J1	Estimated value - The reported value is outside the established quality control criteria for accuracy and/or precision.
L	Off scale high - The concentration of the analyte exceeds the linear range.
S	The surrogate recovery was outside the established laboratory recovery limit.
U	Non-detected compound.
V	Analyte was detected in both sample and method blank.
V2	The analyte was detected in the sample and the associated leach blank.
RPD	Relative Percent Difference
%REC	Percent Recovery
Source	Sample that was matrix spiked or duplicated
*	A = Accredited, N = Not Accredited or Accreditation not available
DF	Dilution Factor - the factor applied to the reported data due to sample preparation, dilution, or moisture content
MDL	Method Detection Limit - The minimum concentration of a substance (or analyte) that can be measured and reported with 99% confidence that the
	analyte concentration is greater than zero. Based on standard deviation of replicate spiked samples take through all steps of the analytical
	procedure following 40 CFR Part 136 Appendix B.
SDL	Sample Detection Limit - The minimum concentration of a substance (analyte) that can be measured and reported with 99% confidence that the
	analyte concentration is greater than zero. The SDL is an adjusted limit thus sample specific and accounts for preparation weights and volumes,
	dilutions, and moisture content of soil/sediments. If there are no sample specific parameters, the MDL = SDL.
MRL	Method Reporting Limit - Analyte concentration that corresponds to the lowest level lab reports with confidence in accuracy of quantitation and
	without qualification (i.e. J-flagged). The MRL is at or above the lowest calibration standard.
LRL	Laboratory Reporting Limit - Analyte concentration that corresponds to the lowest level lab reports with confidence in accuracy of quantitation and
	without qualification (i.e. 3-flagged). The LRL is an adjusted limit thus sample specific and accounts for preparation weights and volumes, dilutions,
	and moisture content of soil/sediments. If there are no sample specific parameters, the MRL = LRL.

A = Accredited, N = Not Accredited or Accreditation not available

CHAIN OF CUSTODY RECORD

North Water District Laboratory Services
130 S. Trade Center Pkwy, Conroe Tx 77385
(936) 321-5060 - lab@nwdls.com TCEQ T104704238-23-39

Page 1 of 2

2313698

Schedule Comments:		Field Results																										
		Analysis/Preservation	Arsenic ICP 6010 4°C		0	•		Chromium ICP TCLP 4°C	Copper ICP 6010 4°C	Hg-7471 4°C	Hg-7471-TCLP 4°C	Lead ICP 6010 4°C	Lead ICP TCLP 4°C	6010	Nickel ICP 6010 4°C	_	CLP.	Silver ICP TCLP 4°C	US ICP 60	0	ı.			Sub_VOA-TCLP 4°C	NH3-N T-350.2 4°C	Nitrate as N IC 9056 4°C	TKN T-351.3 4°C	TS-2540 G 4°C
e Annual	nble 77338	Container	A Glass 250mL w/ Teffon-lined Lid	B HDPE IC 250mL			E Glass Wide 11 w/		G HDPE 250mL		in the		glion e															
6 - Sewage Sludg	615 Dawn Timbers Ct. Humble 77338 25-1854 PR 30 BEFORE ARRIVAL	Sample Type	S Grab																									
Project Name: HC MUD 26 - Sewage Sludge Annual	Project Comments: 21615 Dawn Timbers Ct Hi Gate Combo 2146 Mikey Sarricolea 281-825-1854 MUST CALL OPERATOR 30 BEFORE ARRIVAL	Date/Time Sampled	10/16/2023/4:50	2011																								
Proj		Date/Time Begin																										
Lab PM: Deena Higginbotham	Municipal Operations and Consulting John Montgomery 27316 Spectrum Way Oak Ridge, TX 77385 Phone: (281) 367-5511	Sample ID Collection Point	Digester																									
Lab PM : De	Municipal Operations a John Montgomery 27316 Spectrum Way Oak Ridge, TX 77385 Phone: (281) 367-5511	Sample ID	23J3698-01																									

CHAIN OF CUSTODY RECORD

North Water District Laboratory Services 130 S. Trade Center Pkwy, Conroe Tx 77385 (936) 321-6060 - lab@nwdls.com

TCEQ T104704238-23-39

Page 2 of 2

2313698

(Continued)

Schedule Comments: Project Comments: 21615 Dawn Timbers Ct Humble 77338 Gate Combo 2146 Project Name: HC MUD 26 - Sewage Sludge Annual Mikey Sarricolea 281-825-1854 MUST CALL OPERATOR 30 BEFORE ARRIVAL Municipal Operations and Consulting Lab PM: Deena Higginbotham John Montgomery 27316 Spectrum Way Oak Ridge, TX 77385 Phone: (281) 367-5511

Field Remarks:		Lab Preservatio (Circle and Write ID Below)	Lab Preservation: H2SO4 HNO3 (Circle and Market) Below)	TOPA TOPA	
Sampler (Signature)	Relinquished By: (Signature)	Date/Time	Received By: (Signature)	estini T	Date/Time
Print Name	Relinquished By: (Signature)	Date/Time	Received By: (Signature)	1	Date/Time
Affliation Complete Affliation Complete	Relinquished To Lab By: (Signature)	My BaterTime	Date/Time Received for Laboratory By: (Signature)	2	Date/Time, 23
	COC Labels Agree: Yes / No	Appropriate Volume: Yes / No Coolers Intact: Yes / No	Received on Ice: Yes / No Samples Accepted: Yes / No	Temperature: Thermometer ID:	ů

Spring South

Laboratory Analysis Report

Total Number of Pages:

Job ID: 23101996

10100 East Freeway, Suite 100, Houston, TX 77029 tel: 713-453-6060, fax: 713-453-6091, http://www.ablabs.com

Client Project Name: 23J3698

Report To:

Client Name:

NWDLS

Attn: Deena Higginbotham

Client Address: 130 S Trade Center Pkwy

City, State, Zip: Conroe, Texas, 77385 P.O.# .: 23J3698

Sample Collected By:

Date Collected: 10/16/23

A&B Labs has analyzed the following samples...

Client Sample ID

Matrix

A&B Sample ID

23J3698-01

Solid

23101996.01

Released By: Gobinath Rangasamy

Title:

Project Manager

Date:

10/24/2023

This Laboratory is NELAP (T104704213-23-31) accredited. Effective: 04/13/2023; Expires: 3/31/2024

Scope: Non-Potable Water, Drinking Water, Air, Solid, Biological Tissue, Hazardous Waste

I am the laboratory manager, or his/her designee, and I am responsible for the release of this data package. This laboratory data package has been reviewed and is complete and technically compliant with the requirements of the methods used, except where noted in the attached exception reports. I affirm, to the best of my knowledge that all problems/anomalies observed by this laboratory (and if applicable, any and all laboratories subcontracted through this laboratory) that might affect the quality of the data, have been identified in the Laboratory Review Checklist, and that no information or data have been knowingly withheld that would affect the quality of the data.

This report cannot be reproduced, except in full, without prior written permission of A&B Labs. Results shown relate only to the items tested. Results apply to the sample as received. Samples are assumed to be in acceptable condition unless otherwise noted. Blank correction is not made unless otherwise noted. Air concentrations reported are based on field sampling information provided by client. Soil samples are reported on a wet weight basis unless otherwise noted. Uncertainty estimates are available on request.

ab-q210-0321

Date Received: 10/18/2023 08:45

Page 26 of 32

LABORATORY TERM AND QUALIFIER DEFINITION REPORT

Job ID: 23101996

Date: 10/24/2023

General Term Definition

Back-Wt

Back Weight

BRL cfu

Below Reporting Limit colony-forming units

Conc.

Concentration

D.F.

Dilution Factor

Front-Wt

Front Weight

Estimation. Below calibration range but above MDL

LCS

Laboratory Check Standard

LCSD

Laboratory Check Standard Duplicate

MS

Matrix Spike

MSD

Matrix Spike Duplicate

MW

Molecular Weight

MQL

Unadjusted Minimum Quantitation Limit

Post-Wt

ppm Pre-Wt parts per million Previous Weight

Qualifier

Post Weight

Q

RegLimit

RPD

RptLimit

SDL

T

TNTC

UQL

Reporting Limit Sample Detection Limit

surr

Surrogate

Time

Too numerous to count

Regulatory Limit

Relative Percent Difference

Unadjusted Upper Quantitation Limit

Qualifier Definition

U

Undetected at SDL (Sample Detection Limit).

Page 2 of 7

Page 27 of 32

LABORATORY TEST RESULTS

Job ID: 23101996

Date 10/24/2023

Attn: Deena Higginbotham

Client Name:

NWDLS

Project Name:

23J3698

Client Sample ID:

Date Collected: Time Collected: Other Information: 23J3698-01 10/16/23

09:50

Job Sample ID:

23101996.01

Sample Matrix

Solid

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	SQL	Reg Limit	Q	Date Time	Analyst
SW-846 8260C	TCLP VOC	Harrie —	pint pp					gg in the	unit part	Tur
	1,1-Dichloroethylene	< 0.017	mg/L	1.00	0.017	0.125	0.6	U	10/23/23 22:08	ZQ
	1,2-Dichloroethane	<0.026	mg/L	1.00	0.026	0.125	0.5	U	10/23/23 22:08	ZQ
	1,4-Dichlorobenzene	<0.018	mg/L	1.00	0.018	0.125	7.5	U	10/23/23 22:08	ZQ
	Benzene	< 0.016	mg/L	1.00	0.016	0.125	0.5	U	10/23/23 22:08	ZQ
	Carbon tetrachloride	<0.043	mg/L	1.00	0.043	0.125	0.5	U	10/23/23 22:08	ZQ
	Chlorobenzene	<0.017	mg/L	1.00	0.017	0.125	70	U	10/23/23 22:08	ZQ
	Chloroform	<0.018	mg/L	1.00	0.018	0.125	6	U	10/23/23 22:08	ZQ
	MEK	<0.072	mg/L	1.00	0.072	0.125	200	U	10/23/23 22:08	ZQ
	Tetrachloroethylene	<0.017	mg/L	1.00	0.017	0.125	0.7	U	10/23/23 22:08	ZQ
	Trichloroethylene	<0.020	mg/L	1.00	0.020	0.125	0.5	U	10/23/23 22:08	ZQ
	Vinyl Chloride	<0.021	mg/L	1.00	0.021	0.125	0.2	U	10/23/23 22:08	ZQ
	1,2-Dichloroethane-d4(surr)	105	%	1.00		70-130			10/23/23 22:08	ZQ
	Dibromofluoromethane(surr)	101	%	1.00		70-130			10/23/23 22:08	ZQ
	p-Bromofluorobenzene(surr)	101	%	1.00		70-130			10/23/23 22:08	ZQ
	Toluene-d8(surr)	100	%	1.00		70-130			10/23/23 22:08	ZQ

ab-q212-0321

QUALITY CONTROL CERTIFICATE

Job ID: 23101996

Date:

10/24/2023

Analysis : TCLP VOC

Method:

SW-846 8260C

Reporting Units: mg/L

QC Batch ID: Qb23102401

Created Date: 10/23/23

Created By: Zeeshan

Samples in This QC Batch:

23101996.01

Prep Date:

10/23/23 10:00 Prep By:

Zeeshan

Sample Preparation:

PB23102401

Prep Method: SW-846 5030C

10/20/23 16:51 Prep By:

TCLP Prep:

PB23102106

Prep Method: SW-846 1311

Prep Date:

JCoku

QC Type: Method Blank Qual MDL Parameter CAS # Result Units D.F. MQL 0.0165 mg/L 1.00 0.125 1,1-Dichloroethylene 75-35-4 < MDL 0.026 0.125 1,2-Dichloroethane 107-06-2 < MDL mg/L 1.00 1.00 0.125 0.018 < MDL mg/L 1,4-Dichlorobenzene 106-46-7 0.0158 1.00 0.125 < MDL mg/L Benzene 71-43-2 1.00 0.125 0.0433 < MDL mg/L Carbon tetrachloride 56-23-5 0.0173 Chlorobenzene 108-90-7 < MDL mg/L 1.00 0.125 0.125 0.018 < MDL mg/L 1.00 Chloroform 67-66-3 0.0715 0.125 MEK 78-93-3 < MDL mg/L 1.00 0.0165 0.125 Tetrachloroethylene 127-18-4 < MDL mg/L 1.00 0.0198 < MDL mg/L 1.00 0.125 Trichloroethylene 79-01-6 0.0205 < MDL 1.00 0.125 Vinyl Chloride 75-01-4 mg/L 1.00 1,2-Dichloroethane-d4(surr 17060-07-0 101 % Dibromofluoromethane(surr 1868-53-7 101 % 1.00 p-Bromofluorobenzene(surr 460-00-4 103 % 1.00 1.00 100 % Toluene-d8(surr) 2037-26-5

- Constitution Co.	LCS	LCS	LCS	LCSD	LCSD	LCSD	DDD	RPD CtrlLimit	%Recovery CtrlLimit	Qual
Parameter	Spk Added	Result	% Rec	Spk Added	Result	% Rec	RPD			Quai
1,1-Dichloroethylene	1	1.04	104	1	1.00	100	4.1	35	70-130	
1,2-Dichloroethane	1	0.957	95.7	1	0.983	98.3	2.6	35	70-130	
1,4-Dichlorobenzene	1	0.983	98.3	1	0.949	94.9	3.5	35	70-130	
Benzene	1	0.957	95.7	1	0.945	94.5	1.3	35	70-130	
Carbon tetrachloride	1	1.02	102	1	1.00	100	2	35	70-130	-
Chlorobenzene	1	0.992	99.2	1	0.980	98	1.2	35	70-130	- 1
Chloroform	1	1.03	103	1	0.986	98.6	3.9	35	70-130	
MEK	1	0.898	89.8	1	0.911	91.1	1.4	35	70-130	
Tetrachloroethylene	1	0.943	94.3	1	0.942	94.2	0.1	35	70-130	1
Trichloroethylene	1	0.986	98.7	1	0.977	97.7	1	35	70-130	
Vinyl Chloride	1	1.02	102	1	0.981	98.1	4.4	35	70-130	

QC Type: MS and MS	D										
QC Sample ID: 2310	1844.01										
Parameter	Sample Result	MS Spk Added	MS Result	MS % Rec	MSD Spk Added	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLimit	Qual
1,1-Dichloroethylene	BRL	1	1.03	103						70-130	213-0321

Refer to the Definition page for terms.

QUALITY CONTROL CERTIFICATE

Job ID: 23101996

Date:

10/24/2023

Analysis : TCLP VOC

Method:

SW-846 8260C

Reporting Units : mg/L

QC Batch ID: Qb23102401

Created Date: 10/23/23

Created By: Zeeshan

Samples in This QC Batch: 23101996.01

QC Type: MS and MSD QC Sample ID: 23101844.01											
Parameter	Sample Result	MS Spk Added	MS Result	MS % Rec	MSD Spk Added	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLimit	Qual
1,2-Dichloroethane	BRL	1	0.948	94.8						70-130	·
1,4-Dichlorobenzene	BRL	1	1.01	101			1147			70-130	
Benzene	BRL	1	0.972	97.2			T- 74		The sum	70-130	
Carbon tetrachloride	BRL	1	1.05	105			100			70-130	
Chlorobenzene	BRL	1	1.01	101					The same of	70-130	
Chloroform	BRL	1	0.991	99.1						70-130	
MEK	BRL	1	0.937	93.7						70-130	
Tetrachloroethylene	BRL	1	0.992	99.2						70-130	
Trichloroethylene	BRL	1	1.02	102						70-130	
Vinyl Chloride	BRL	1	0.995	99.5						70-130	

ab-q213-0321

SUBCONTRACT ORDER

Sending Laboratory:

North Water District Laboratory Services, Inc. 130 South Trade Center Parkway

Conroe, TX 77385 Phone: 936-321-6060 Fax: 936-321-6061

Project Manager: Deena Higginbotham

Subcontracted Laboratory:

A & B Labs 10100 East Freeway, Suite 100 Houston, TX 77029 Phone: (713) 453-6060

Fax: (713) 453-6091

Work Order: 23J3698

Analysis

Due

Expires

Comments

Sample ID: 23J3698-01

Solid Sampled: 10/16/2023 09:50

Sub_VOA-TCLP

10/30/2023

10/30/2023 09:50

Analyte(s): 1,1-Dichloroethylene

1,4-Dichlorobenzene (p-Dichlorobenzene)

Benzene

Chloroform

Toluene-d8-surr

1,2-Dichloroethane (Ethylene dichloride) 2-Butanone (Methyl ethyl ketone, MEK)

Carbon tetrachloride

Dibromofluoromethane-surr

Trichloroethene (Trichloroethylene)

1,2-Dichloroethane-d4-surr

4-Bromoflurobenzene-surr

Chlorobenzene

Tetrachloroethylene (Perchloroethylene)

Vinyl chloride (Chloroethene)

Containers Supplied:

DIA

Released By

Job ID:23101996 NWDLS AMS 10/18/2023

Page 31 of 32

Sample Condition Checklist

~	kB JobID : 23101996	Date Received : 10/18/2023 Time Received :	8:45AM		
CI	ent Name : NWDLS		erde Lyr		-
	mperature : 8.1°C	Sample pH: NA	<u> </u>		
_	ermometer ID : IR5	pH Paper ID : NA	V III		-
Pe	erservative :	THE PARTY LAND	The same		_
		Check Points	Yes	No	N/A
1.	Cooler Seal present and signed.			X	
2.	Sample(s) in a cooler.		×		
3.	If yes, ice in cooler.	2 132048	X	Milita	N
4.	Sample(s) received with chain-of-cu	stody.	Х	eyhen	
5.	C-O-C signed and dated.	WARRING THE REPORT OF THE PARTY	X	dam	e
6.	Sample(s) received with signed sam	ple custody seal.	LIDIT-	X	E
7.	Sample containers arrived intact. (If	No comment)	X	614	
8.	Matrix: Soil Liquid	Sludge Solid Cassette Tube Bulk Badge Food Othe	r		
9.	Samples were received in appropriate	e container(s)	х	mili	
10.	Sample(s) were received with Prope	r preservative	WINE IN	CHARLE	X
L1.	All samples were tagged or labeled.		х		
12.	Sample ID labels match C-O-C ID's.		Х	Y	
L3.	Bottle count on C-O-C matches bottl	es found.	Х		
L4.	Sample volume is sufficient for analy	rses requested.	X		
L5.	Samples were received with in the h	old time.	×		
L6.	VOA vials completely filled.				X
١7.	Sample accepted.		х		
. 8.	Has client been contacted about sub	-out			Х
	nments : Include actions taken to res				
am	ples do not meet temp requirements. CC	C shows solid matrix, received sludge. ~EV 10/18/2023			

Brought by : Client

Received by: EValdez

Check in by/date: EValdez / 10/18/2023

ab-s005-0321

Phone: 713-453-6060

www.ablabs.com

HC 200

8725 Fawn Trail The Woodlands, TX 77385
 Tel: (936) 321-6060 | Fax: (936) 321 6061

Email: lab@nwdsls.com

www. NWDLS.com

TCEQ Lab ID #: TX204, Accreditation ID: T104704238

May 01, 2023

LABORATORY REPORT

John Montgomery Municipal Operations and Consulting 27316 Spectrum Way Oak Ridge, TX 77385

Report ID: 20230501123128DLH

RE: HC MUD 200 - Non Potable - Class B Annual

The following test results meet all NELAP requirements for analytes for which certification is available. Any deviations from our quality system will be noted in the case narrative. All analyses performed by North Water District Laboratory Services, Inc. unless noted.

For questions regarding this report, contact Monica Martin at 936-321-6060.

Sincerely,

Deena Higginbotham

Director of Client Services

Opena Higginborham

8725 Fawn Trail The Woodlands, TX 77385 Tel: (936) 321-6060 | Fax: (936) 321 6061

Email: lab@nwdsls.com www. NWDLS.com

TCEQ Lab ID #: TX204, Accreditation ID: T104704238

Municipal Operations and Consulting

27316 Spectrum Way Oak Ridge, TX 77385 Project: HC MUD 200 - Non Potable - Class B Annual

Project Number: 2

Project Manager: John Montgomery

Reported: 05/01/2023 12:31

Sample Results

Client Sample ID: Lab Sample ID: Digester

23D4754-01

Sample Matrix:

Solid

Date Collected:

04/24/2023 8:10

Collected by:

Angel Rodriguez

			CC	niected by:	Angel Rodriguez		
Method	Analyte	Result Q	Units	Batch	Date Analyzed	Analyst	
Colilert-18	Fecal coliforms	455000	MPN/g TS dry	BGD3694	04/25/2023 09:22		
Colilert-18	Fecal coliforms	163000	MPN/g TS dry	BGD3694	04/25/2023 09:22	AKA	
Colilert-18	Fecal coliforms	286000	MPN/g TS dry	BGD3694	04/25/2023 09:22	AKA	
Colilert-18	Fecal coliforms	196000	MPN/g TS dry	BGD3694	04/25/2023 09:22	AKA AKA	
Colilert-18	Fecal coliforms	196000	MPN/g TS dry	BGD3694	04/25/2023 09:22	AKA	
Colilert-18	Fecal coliforms	187000	MPN/g TS dry	BGD3694	04/25/2023 09:22	AKA	
Colilert-18	Fecal coliforms	229000	MPN/g TS dry	BGD3694	04/25/2023 09:22	AKA	
SM 2710 B	Specific Oxygen Uptake Rate (SOUR)	1.46	mg O2/hr/g TS @ 20°C dry	BGD3708	04/24/2023 15:28	AKA	
SM 2550 B	Temperature °C Field	23.7	°C	BGD3770	04/24/2023 08:10	AR	
SM 2540 G	% Solids	1.20	%	BGD3710	04/25/2023 12:03	JRU	

The total solids is diluted to <=2.0% for the S.O.U.R. test when necessary.

CLASS B - Pass

Per Title 30, Texas Administrative Code, Chapter 312, for a Class B to pass, the fecal coliform geometric mean must be less than or equal to 2,000,000 CFU/ug TS and the S.O.U.R must be less than or equal to 1.5 mg O2/hr/g TS.

8725 Fawn Trail The Woodlands, TX 77385 Tel: (936) 321-6060 | Fax: (936) 321 6061

Email: lab@nwdsls.com

www. NWDLS.com TCEQ Lab ID #: TX204, Accreditation ID: T104704238

Municipal Operations and Consulting

27316 Spectrum Way Oak Ridge, TX 77385 Project: HC MUD 200 - Non Potable - Class B Annual

Project Number: 2

Reported: Project Manager: John Montgomery 05/01/2023 12:31

Quality Control

General Chemistry

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGD3710 - Percent Sol	ids					abelide	111111	ennis i	A 11.11
Blank (BGD3710-BLK1)			Pre	pared: 04/24	/2023 Analyze	d: 04/25/202	23		
% Solids	<0.100U	0.100	%		HILL				
Duplicate (BGD3710-DUP1)	Source: 2	3D4479-06	Prej	pared: 04/24	/2023 Analyze	d: 04/25/20	23		
% Solids	يدامس يردنان بافر	0.100	%	all birts	0.614			1.28	10
Reference (BGD3710-SRM1)		Prej	pared: 04/24	/2023 Analyze	d: 04/25/20	23			
% Solids		0.100	%	0.350		103	78.9-118		

8725 Fawn Trail The Woodlands, TX 77385 Tel: (936) 321-6060 | Fax: (936) 321 6061

Email: lab@nwdsls.com

www. NWDLS.com

TCEQ Lab ID #: TX204, Accreditation ID: T104704238

Municipal Operations and Consulting

27316 Spectrum Way Oak Ridge, TX 77385 Project: HC MUD 200 - Non Potable - Class B Annual

Project Number: 2

Project Manager: John Montgomery

Reported:

05/01/2023 12:31

Quality Control (Continued)

Microbiology

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGD3694 - FC Quantitray Blank (BGD3694 BLK1)			Prec	pared: 04/24	/2023 Analyze	d: 04/25/202	3		W A
Fecal coliforms	<10.0U	10.0	MPN/g TS		,,	0. 0., 20, 202	=======================================		
			wet						

Fecal coliforms

Source: 23D4754-01

Prepared: 04/24/2023 Analyzed: 04/25/2023

831 MPN/g TS dry

455000

79.6

200

8725 Fawn Trail The Woodlands, TX 77385 Tel: (936) 321-6060 | Fax: (936) 321 6061

Email: lab@nwdsls.com

www. NWDLS.com

TCEQ Lab ID #: TX204, Accreditation ID: T104704238

Municipal Operations and Consulting

27316 Spectrum Way Oak Ridge, TX 77385 Project: HC MUD 200 - Non Potable - Class B Annual

Project Number: 2

Project Manager: John Montgomery

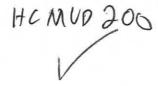
Reported: 05/01/2023 12:31

Term and Qualfier Definitions

Item	Definition	
U	Non-detected compound.	
DF	Dilution Factor - the factor applied to the reported data due to sample preparation, dilution, or moisture content	
RPD	Relative Percent Difference	
%REC	Percent Recovery	
Source	Sample that was matrix spiked or duplicated	

CHAIN OF CUSTODY RECORD
North Water District Laboratory Services
130 S. Trade Center Pkwy, Conroe Tx 77385
(936) 321-6060 - lab@nwdls.com

23D4754 Page 1 of 1


TCEQ T104704238-23-39

Lab PM : Deena Higginbotham	Project Name: HC MUD 200 - Non Potable - Class B Annual	Schedule Comments:
Municipal Operations and Consulting John Montgomery 27316 Spectrum Way Oak Ridge, TX 77385 Phone: (281) 367-5511	Project Comments: 13050 Stonefield Dr Houston 77014 Gate Combo 2006	

Sample ID	Sample ID Collection Point	Date/Time	Date/Time	Sample Type	Container	Analysis/Preservation	ion	Field Results	
		Deg.	pauduno						12 12
23D4754-01 Digester	Digester		4/24/2023 ~	S Grab	A HDPE S150mL	FC/CB-QT-LR	Na2S203	Temp C Field	1
			5:50		Na2S203		<10°C		
					B HDPE S150mL	SOUR-2710	4°C	ıff	
					Na2S2O3	000	اره ر		
					C HDPE S150mL		0 0		
					Na2S2O3	15-2540 G	4°C		
					D HDPE S150mL		Pro-		
					Na2S2O3		In		
					E HDPE S150mL				
					Na2S2O3				
					F HDPE S150mL			1	
					Na2S2O3	100	36		
					G HDPE S150mL	is .			
					Na2S2O3				
					H HDPE 1L				
					I HDPE 250mL		bir		

Field Remarks:		Lab Preservation: H2SO4	ion: H2SO4 HNO3	NaOH Other:	er:
	and the state of the contract of the state o	(CITCLE and Write ID Below)		STATE OF THE PROPERTY OF THE P	
Sampler (Signature)	Relinquished By: (Signature)	Date/Time	Received By: (Signature)	o o o o o o o o o o o o o o o o o o o	Date/Time
Pript Name	Relinquished By: (Signature)	Date/Time	Received By: (Signature)		Date/Time
Affiliation Action	Relinquished To lab By: (Signature)	16×12	Received for Laboratory By: (Signature)	NS (a)	Date/Time 14 60
Custody Seal: Yes / No	COC Labels Agree: Yes / No Appropriate Containers: Yes No	Appropriate Volume: Yes / No Coolers Intact: Yes / No	Received on Ice: Yes / No Samples Accepted: Yes / No	Temperature: Thermometer ID:	J.
North West				wko_NWDLS_COC_LS Revision 4.1 Effective: 2/17/2022	ion 4.1 Effective: 2/17/20

130 S. Trade Center Parkway, Conroe TX 77385
Tel: (936) 321-6060
Email: lab@nwdls.com
www. NWDLS.com

May 24, 2023

Laboratory Report

John Montgomery Municipal Operations and Consulting 27316 Spectrum Way Oak Ridge, TX 77385

Report ID: 20230524132502AEN

The following test results meet all NELAP requirements for analytes for which certification is available. Any deviations from our quality system will be noted in the case narrative. All analyses performed by North Water District Laboratory Services, Inc. unless noted.

For questions regarding this report, contact Monica Martin at 936-321-6060.

Sincerely,

Aundra Noe For Deena Higginbotham

Director of Client Services

Reported: 05/24/2023 13:25

Sample Results

Client Sample ID:

Digester

Lab Sample ID:

23D1283-01

Sample Matrix:

Solid

Date Collected:

04/04/2023 10:00

HC MUD 200	- Non Potable - Sewage Sludge Annua			2		Col	ected by:	Franc	isco Gutierrez	Z	
Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	WELL I	Analysi
Metals, Tota	ai								31117 × 1		
SW-6010C	Arsenic	Α	7.30	mg/kg dry	1	0.821	3.74	BGD0607	04/20/2023	11:45	FAL
SW-6010C	Cadmium	Α	0.717	mg/kg dry	1	0.0972	0.374	BGD0607	04/20/2023	11:45	FAL
SW-6010C	Chromium	Α	9.47	mg/kg dry	1	1.40	1.88	BGD0607	04/20/2023	11:45	FAL
SW-6010C	Copper	Α	264	mg/kg dry	5	2.00	18.7	BGD0607	04/21/2023	16:38	FAL
SW-7471B	Mercury	Α	0.211	mg/kg dry	1	0.0224	0.0448	BGD1436	04/12/2023	15:11	AKR
SW-6010C	Lead	Α	5.37	mg/kg dry	1	0.954	1.88	BGD0607	04/20/2023	11:45	FAL
SW-6010C	Molybdenum	Α	5.95	mg/kg dry	1	1.88	1.88	BGD0607	04/20/2023	11:45	FAL
5W-6010C	Nickel	Α	13.4	mg/kg dry	1	0.505	1.88	BGD0607	04/20/2023	11:45	FAL
SW-6010C	Potassium	Α	6120	mg/kg dry	1	32.1	374	BGD0607	04/20/2023	11:45	FAL
SW-6010C	Selenium	Α	4.12	mg/kg dry	1	1.46	3.74	BGD0607	04/24/2023 1	13:56	FAL
SW-6010C	Total Phosphorus	Α	18100	mg/kg dry	1	15.7	374	BGD0607	04/20/2023 1	11:45	FAL
SW-6010C	Zinc	Α	744	mg/kg dry	10	18.8	18.8	BGD0607	04/21/2023	16:41	FAL
General Che	emistry										
PA 350.2	Ammonia as N	Α	18500	mg/kg dry	1	1110	2220	BGD2245	04/17/2023 0	09:29	GIW
SW-9056A	Nitrate as N	Α	<14.0U, TV	mg/kg dry	1	5.62	14.0	BGD0625	04/05/2023	14:41	ORP
EPA 351.3	Total Kjeldahl Nitrogen - (TKN)	N	86000	mg/kg dry	1	2580	2580	BGD2244	04/17/2023 1	12:58	GIW
SM 2540 G	% Solids	Α	0.890V, TV	%	1	0.100	0.100	BGD0694	04/06/2023	16:22	AKA
TCLP											
SW-6010C	Arsenic	Α	<5.00U, TV	mg/L	1	0.0200	5.00	BGD2687	05/12/2023 1	13:11	FAL
SW-6010C	Barium	Α	<100U, V2, TV	mg/L	5	0.0500	100	BGD2687	05/12/2023	15:01	FAL
5W-6010C	Cadmium	Α	<1.00U, TV	mg/L	1	0.00100	1.00	BGD2687	05/12/2023	13:11	FAL
SW-6010C	Chromium	Α	<5.00U, TV	mg/L	1	0.00500	5.00	BGD2687	05/12/2023	13:11	FAL
SW-8151	2,4-D	Α	<10.0U, TV	mg/L	2	0.000476	10.0	BGD2443	04/25/2023	11:00	cdg
SW-8151	Silvex (2,4,5-TP)	Α	<1.00 U, TV	mg/L	2	0.000476	1.00	BGD2443	04/25/2023	11:00	cdg
5W-8151	Surrogate: DCAA-surr	2011500	104%	70-130	32132				04/25/2023	11:00	
SW-7471B	Mercury	Α	<0.200U, TV	mg/L	1	0.000200	0.200	BGD2137	04/17/2023	14:42	AKR
SW-6010C	Lead	Α	<5.00U,	mg/L	1	0.0100	5.00	BGD2687	05/12/2023	13:11	FAL
SW-8081	Chlordane (Total)	Α	<0.0300U,	mg/L	1	3.00E-6	0.0300	BGD2621	05/01/2023	22:19	ala
SW-8081	Endrin	N	<0.0200U, TV	mg/L	1	3.00E-6	0.0200	BGD2621	05/01/2023	22:19	ala

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 05/24/2023 13:25

Sample Results (Continued)

Client Sample ID: Lab Sample ID:

Digester (Continued)

23D1283-01

Sample Matrix:

Solid

Date Collected:

04/04/2023 10:00 Francisco Gutierrez

HC MUD 200	- Non Potable - Sewage Sludge Annu	al		2		Col	lected by:	Franci	isco Gutierrez	
Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
TCLP (Cont	rinued)									290914
SW-8081	gamma-BHC (Lindane, gamma-HexachlorocyclohexanE)	Α	<0.400U, TV	mg/L	1	3.00E-6	0.400	BGD2621	05/01/2023 22:1	ala ala
SW-8081	Heptachlor	Α	<0.00800U, TV	mg/L	1	3.00E-6	0.00800	BGD2621	05/01/2023 22:1	ela e
SW-8081	Heptachlor epoxide	Α	<0.00800U, TV	mg/L	1	3.00E-6	0.00800	BGD2621	05/01/2023 22:1	e ala
SW-8081	Methoxychlor	A	<10.0U, TV	mg/L	1	3.00E-6	10.0	BGD2621	05/01/2023 22:1	ala ala
SW-8081	Toxaphene (Chlorinated Camphene)	Α	<0.500U, TV	mg/L	1	3.00E-6	0.500	BGD2621	05/01/2023 22:1	9 ala
SW-8081	Surrogate: 2,4,5,6 Tetrachloro-m-xylene	e-suri	111%	60-140		*****			05/01/2023 22:1	9
SW-8081	Surrogate: Decachlorobiphenyl-surr		90.9%	60-140					05/01/2023 22:1	9
SW-6010C	Selenium	Α	<1.00U, TV	mg/L	1	0.0200	1.00	BGD2687	05/12/2023 13:1	1 FAL
SW-6010C	Silver	Α	<5.00U, TV	mg/L	1	0.00200	5.00	BGD2687	05/12/2023 13:1	1 FAL
SW-8270	2,4,5-Trichlorophenol	Α	<400 U, TV	mg/L	1	0.00250	400	BGD2179	05/14/2023 08:2	7 KRB
SW-8270	2,4,6-Trichlorophenol	Α	<2.00U, TV	mg/L	1	0.00250	2,00	BGD2179	05/14/2023 08:2	7 KRB
SW-8270	2,4-Dinitrotoluene (2,4-DNT)	Α	<0.130U, TV	mg/L	1	0.00250	0.130	BGD2179	05/14/2023 08:2	7 KRB
SW-8270	2-Methylphenol	Α	<200U, TV	mg/L	1	0.00250	200	BGD2179	05/14/2023 08:2	7 KRB
SW-8270	Hexachlorobenzene	Α	<0.130U, TV	mg/L	1	0.00250	0.130	BGD2179	05/14/2023 08:2	7 KRB
SW-8270	Hexachlorobutadiene	Α	<0.500U, TV	mg/L	1	0.00250	0.500	BGD2179	05/14/2023 08:2	7 KRB
SW-8270	Hexachloroethane	Α	<3.00 U, TV	mg/L	1	0.00250	3.00	BGD2179	05/14/2023 08:2	7 KRB
SW-8270	Nitrobenzene	Α	<2.00U, TV	mg/L	1	0.00250	2.00	BGD2179	05/14/2023 08:2	7 KRB
SW-8270	Pentachlorophenol	Α	<100U, TV	mg/L	1	0.00250	100	BGD2179	05/14/2023 08:2	7 KRB
SW-8270	Pyridine	Α	<5.00U,	mg/L	1	0.00250	5.00	BGD2179	05/14/2023 08:2	7 KRB

54.6-148

55-152

52.4-136

52-162

58.7-152

51.9-147

93.8%

107%

114%

106%

97.8%

110%

Surrogate: 2-Fluorobiphenyl-surr

Surrogate: Nitrobenzene-d5-surr

Surrogate: p-Terphenyl-d14-surr

Surrogate: Phenol-d5-surr

Surrogate: 2,4,6-Tribromophenol-surr

Surrogate: 2-Fluorophenol-surr

05/14/2023 08:27

05/14/2023 08:27

05/14/2023 08:27

05/14/2023 08:27 05/14/2023 08:27

05/14/2023 08:27

SW-8270

SW-8270

SW-8270

SW-8270

SW-8270

SW-8270

A = Accredited, N = Not Accredited or Accreditation not available

130 S. Trade Center Parkway, Conroe TX 77385

Tel: (936) 321-6060 Email: lab@nwdls.com www. NWDLS.com TCEQ T104704238-23-39

Municipal Operations and Consulting 27316 Spectrum Way Oak Ridge, TX 77385

Reported: 05/24/2023 13:25

Sample Results (Continued)

Client Sample ID: Lab Sample ID: Digester

23D1283-01RE1

continueu

Sample Matrix:

Solid

Date Collected:

04/04/2023 10:00

HC MUD 200	- Non Potable - Sewage Sludge Annual		2		Colle	ected by:		isco Gutierrez	
Method	Analyte *	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Organics by	GC							Umpelat	
SW-8082	PCBs, Total (Rerun) A	<2250U, TV	ug/kg dry	10	1120	2250	BGD0593	05/09/2023 07:25	CRO
SW-8082	Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr	92.8%	60-140			********		05/09/2023 07:25	******
SW-8082	Surrogate: Decachlorobiphenyl-surr (Rerun)	92.8%	60-140					05/09/2023 07:25	
TCLP									
SW-8270	3,4-Methylphenol (Rerun) A	<200 U, TV	mg/L	3	0.00750	200	BGD2179	05/16/2023 05:09	KRB
SW-8270	Surrogate: 2-Fluorophenol-surr (Rerun)	123%	55-152					05/16/2023 05:09	
SW-8270	Surrogate: 2,4,6-Tribromophenol-surr (Rerur.	99.7%	52.4-136					05/16/2023 05:09	
SW-8270	Surrogate: Phenol-d5-surr (Rerun)	110%	58.7-152					05/16/2023 05:09	

^{*} A = Accredited, N = Not Accredited or Accreditation not available

Reported: 05/24/2023 13:25

Quality Control

Organics by GC

Analyte	Result Qu	Reporting ual Limit		Spike Level	Source Result	* %REC	%REC Limits	RPD	RPD Limit
Batch: BGD0593 - SW-3570					Die ei	red a distrib	TI-WHY	reducti	1, 11
Blank (BGD0593-BLK1)			Р	repared: 4/5/	2023 Analyze	ed: 4/29/2023			
Aroclor-1016 (PCB-1016)	<20.0 U	20.0							
Aroclor-1260 (PCB-1260)	<20.0 U	20.0			L				
Blank (BGD0593-BLK2)			1	Prepared: 4/5,	/2023 Analyz	ed: 5/9/2023			
Aroclor-1016 (PCB-1016)	<20.0 U	20.0	ug/kg wet						
Aroclor-1260 (PCB-1260)	<20.0 U	20.0	ug/kg wet						
PCBs, Total	<20.0 U	20.0	ug/kg wet						
Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr		4.13	ug/kg wet	6.00		68.8	60-140		
Surrogate: Decachlorobiphenyl-surr		5.28	ug/kg wet	6.00		88.0	60-140		
LCS (BGD0593-BS2)			1	Prepared: 4/5,	/2023 Analyz	ed: 5/9/2023			
Aroclor-1016 (PCB-1016)	50.2	20.0	ug/kg wet	60.0		83.7	60-140		
Aroclor-1260 (PCB-1260)	57.5	20.0	ug/kg wet	60.0		95.9	60-140		
PCBs, Total	54.6	20.0	ug/kg wet	60.0		91.0	60-140		
Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr		4.42	ug/kg wet	6.00		73.5	60-140		
Surrogate: Decachlorobiphenyl-surr		5.74	ug/kg wet	6.00		95.6	60-140		
LCS Dup (BGD0593-BSD2)			1	Prepared: 4/5,	/2023 Analyz	ed: 5/9/2023			
Aroclor-1016 (PCB-1016)	50.2	20.0	ug/kg wet	60.0		83.6	60-140	0.0681	40
Aroclor-1260 (PCB-1260)	57.8	20.0	ug/kg wet	60.0		96.3	60-140	0.491	40
PCBs, Total	54.8	20.0		60.0		. 91.3	60-140	0.286	40
Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr		4.35	ug/kg wet	6.00		72.6	60-140		
Surrogate: Decachlorobiphenyl-surr		5.80	ug/kg wet	6.00		96.7	60-140		
Matrix Spike (BGD0593-MS2)	So	ource: 23D1094-01R	E1	Prepared: 4/5	/2023 Analyz	ed: 5/9/2023			
Arocior-1016 (PCB-1016)	5660	2280		6830	<2280	82.9	60-140		
Aroclor-1260 (PCB-1260)	6330	2280		6830	<2280	92.7	60-140		
PCBs, Total	6060	2280		6830	<2280	88.8	60-140		
Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr		576	ug/kg dry	683		84.4	60-140		
Surrogate: Decachlorobiphenyl-surr		665	ug/kg dry	683		97.5	60-140		

A = Accredited, N = Not Accredited or Accreditation not available

130 S. Trade Center Parkway, Conroe TX 77385
Tel: (936) 321-6060
Email: lab@nwdls.com
www. NWDLS.com
TCEQ T104704238-23-39

Municipal Operations and Consulting 27316 Spectrum Way Oak Ridge, TX 77385

Reported: 05/24/2023 13:25

Quality Control (Continued)

Organics by GC (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Satch: BGD0593 - SW-3570 (Co.	ntinued)						8	201.201	- 11110	tion of
Matrix Spike Dup (BGD0593-MSD2)		Source: 23	D1094-01RE	1	Prepared: 4/5,	/2023 Analyze	d: 5/9/2023			
Aroclor-1016 (PCB-1016)	6400		2280	ug/kg dry	6830	<2280	93.8	60-140	12,4	40
Aroclor-1260 (PCB-1260)	6950		2280	ug/kg dry	6830	<2280	102	60-140	9.29	40
PCBs, Total	6730		2280	ug/kg dry	6830	<2280	98.6	60-140	10.5	40
Surrogate: 2,4,5,6	7		718	ug/kg dry	683		105	60-140		*******
Tetrachloro-m-xylene-surr										
Surrogate: Decachlorobiphenyl-surr			726	ug/kg dry	683		106	60-140		

Reported:

05/24/2023 13:25

Quality Control (Continued)

Metals, Total

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGD0607 - SW-3	3050 for 6010				Upwy	ايمارطه	Miles Vil	де н	1,000	100
Blank (BGD0607-BLK1)				Pre	pared: 4/18,	2023 Analyze	ed: 4/20/2023			
Arsenic	<1.70	U	1.70	mg/kg wet						
Cadmium	<0.170	U	0.170	mg/kg wet						
Chromium	<0.855	U	0.855	mg/kg wet						
Copper	<1.70	U	1.70	mg/kg wet						
Lead	<0.855	U	0.855	mg/kg wet						
Molybdenum	<0.855	U	0.855	mg/kg wet			*			
Nickel	<0.855	U	0.855	mg/kg wet						
Potassium	<170	U	170	mg/kg wet						
Selenium	<1.70	U	1.70	mg/kg wet						
Total Phosphorus	<170	U	170	mg/kg wet						
Zinc	<0.855	U	0,855	mg/kg wet						
LCS (BGD0607-BS1)				Pre	pared: 4/18,	/2023 Analyze	ed: 4/20/2023			
Arsenic	43.5		1.91	mg/kg wet	47.8		91.0	80-120		
Cadmium	4.24		0.191	mg/kg wet	4.78		88.6	80-120		
Chromium	22.2		0.958	mg/kg wet	23.9		92.8	80-120		
Copper	43.5		1.91	mg/kg wet	47.8		90.9	80-120		
Lead	21.4		0.958	mg/kg wet	23.9		89.7	80-120		
Molybdenum	21.1		0.958	mg/kg wet	23.9		88.4	80-120		
Nickel	21.5		0.958	mg/kg wet	23.9		89.8	80-120		
Potassium	4450		191	mg/kg wet	4780		93.2	80-120		
Selenium	44.7		1.91	mg/kg wet	47.8		93.5	80-120		
Total Phosphorus	4540		191	mg/kg wet	4780		95.0	80-120		
Zinc	21,8		0.958	mg/kg wet	23.9		91.3	80-120		
Matrix Spike (BGD0607-MS:	l)	Source:	23C5686-01	Pre	pared: 4/18	/2023 Analyze	ed: 4/20/2023			
Arsenic	84.7	J1	4.41	mg/kg dry	110	3.71	73.4	75-125		
Cadmium	8.66	J1	0.441	mg/kg dry	11.0	0.547	73.5	75-125		
Chromium	50.3	J1	2.21	mg/kg dry	55.2	9.06	74.8	75-125		
Lead	45.6	J1	2.21	mg/kg dry	55.2	5.69	72.3	75-125		
Molybdenum	41.8	J1	2.21	mg/kg dry	55.2	3.96	68.7	75-125		
Nickel	50.9		2.21	mg/kg dry	55.2	12.7	69.2	75-125		
Potassium	15400		441	mg/kg dry	11000	4750	96.5	75-125		
Selenium	88.7		4.41	mg/kg dry	110	4.32	76.5	75-125		

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 05/24/2023 13:25

Quality Control (Continued)

Metals, Total (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGD0607 - SW-3050 for	6010 (Con	tinued)					T Um -skill to	171.443	in high	10 TO
Matrix Spike (BGD0607-MS2)		Source: 2	3C6098-01	Pre	pared: 4/18	/2023 Analyze	ed: 4/20/202	3		
Arsenic	45,9	J1	2.14		53.5	5.89	74.8	75-125		
Cadmium	4.29	J1	0.214	mg/kg dry	5.35	0.427	72.3	75-125		
Chromium	25.4		1.07	mg/kg dry	26.7	5.33	75.3	75-125		
Lead	25.0	J1	1.07	mg/kg dry	26.7	5.25	73.7	75-125		
Molybdenum	25.1	J1	1.07	mg/kg dry	26.7	6.35	70.2	75-125		
Nickel	25.9	J1	1.07	mg/kg dry	26.7	6.42	72.9	75-125		
Matrix Spike (BGD0607-MS3)		Source: 2	3C5686-01	Pre	pared: 4/18	/2023 Analyze	ed: 4/21/2023	3		
Copper	2560		110	mg/kg dry	2320	131	105	75-125		
Total Phosphorus	32800		4410		22100	10700	100	75-125		
Matrix Spike (BGD0607-MS4)		Source: 2	3C6098-01	Pre	pared: 4/18,	/2023 Analyze	ed: 4/21/2023	3	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Copper	1180		53.4	mg/kg dry	1120	161	90.7	75-125		
Potassium	12600		1070	mg/kg dry	5350	7400	96.6	75-125		
Selenium	51.1		10.7	mg/kg dry	53.5	<10.7	95.6	75-125		
Total Phosphorus	32400		1070	mg/kg dry	10700	21100	106	75-125		
Matrix Spike (BGD0607-MS5)		Source: 2	3C5686-01	Pre	pared: 4/18	/2023 Analyze	ed: 4/24/2023	3		
Zinc	1870	J1	55.3	mg/kg dry	2260	483	61.4	75-125		
Matrix Spike (BGD0607-MS6)		Source: 2	3C6098-01	Pre	pared: 4/18,	/2023 Analyze	ed: 4/24/2023	3		
Zinc	1400		53.6	mg/kg dry	1100	523	80.1	75-125		
Matrix Spike Dup (BGD0607-MSD1)		Source: 2	3C5686-01	Pre	pared: 4/18	/2023 Analyze	ed: 4/20/2023	3		
Arsenic	74.1	J1	4.41	mg/kg dry	110	3.71	63.7	75-125	13.4	20
Cadmium	7.66	J1	0.441	mg/kg dry	11.0	0.547	64.4	75-125	12.3	20
Chromium	44.1	J1	2.21	mg/kg dry	55.2	9.06	63.4	75-125	13.2	20
Lead	40.0	J1	2.21	mg/kg dry	55.2	5.69	62.1	75-125	13.0	20
Molybdenum	36.6		2.21	mg/kg dry	55.2	3.96	59.0	75-125	13.5	20
Nickel	44.3	J1	2.21	mg/kg dry	55.2	12.7	57.3	75-125	13.7	20
Potassium	15200		441	mg/kg dry	11000	4750	94.3	75-125	1.47	20
Selenium	75.8	11	4.41	mg/kg dry	110	4.32	64.7	75-125	15.6	20

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 05/24/2023 13:25

Quality Control (Continued)

Metals, Total (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGD0607 - SW-3050 for 6	010 (Con	tinued)			Quesa	the little		Tiky blo-		
Matrix Spike Dup (BGD0607-MSD2)		Source: 2	3C6098-01	Pre	pared: 4/18,	2023 Analyze	d: 4/20/2023	3		
Arsenic	50.9		2.13	mg/kg dry	53.4	5.89	84.4	75-125	10.5	20
Cadmium	5.00		0.213	mg/kg dry	5.34	0.427	85.6	75-125	15.2	20
Chromium	28.3		1.07	mg/kg dry	26.7	5.33	86.1	75-125	10.7	20
Lead	27.5		1.07	mg/kg dry	26.7	5.25	83.5	75-125	9.81	20
Molybdenum	28.1		1.07	mg/kg dry	26.7	6.35	81.7	75-125	11.4	20
Nickel	28.5		1.07	mg/kg dry	26.7	6.42	82.6	75-125	9.46	20
Aatrix Spike Dup (BGD0607-MSD3)	1.26-26-6	Source: 2	3C5686-01	Pre	pared: 4/18,	/2023 Analyze	ed: 4/21/2023	3		
Copper	2290		110	mg/kg dry	2320	131	93.2	75-125	11.1	20
Total Phosphorus	32600		4410	mg/kg dry	22100	10700	98.9	75-125	0.747	20
Matrix Spike Dup (BGD0607-MSD4)		Source: 2	3C6098-01	Pre	pared: 4/18,	/2023 Analyze	ed: 4/21/202	3		
Copper	1120		107	mg/kg dry	1120	161	85.3	75-125	5.41	20
Potassium	12100		1070	mg/kg dry	5340	7400	88.4	75-125	3.61	20
Selenium	50.7		10.7	mg/kg dry	53.4	<10.7	95.0	75-125	0.843	20
Total Phosphorus	31400		1070	mg/kg dry	10700	21100	96.7	75-125	3.02	20
Zinc	1510		53.5	mg/kg dry	1090	523	89.8	75-125	7.23	20
Matrix Spike Dup (BGD0607-MSD5)		Source: 2	3C5686-01	Pre	pared: 4/18	/2023 Analyze	ed: 4/24/202	3		
Zinc	2480	J1	55.4	mg/kg dry	2260	483	88.1	75-125	27.9	20
Post Spike (BGD0607-PS1)		Source: 2	3C5686-01	Pre	pared: 4/18	/2023 Analyze	ed: 4/20/202	3		
Arsenic	336	J1		ug/L	500	15.9	64.1	80-120		
Cadmium	34.6			ug/L	50.0	2.34	64.4	80-120		
Chromium	207			ug/L	250	38.8	67.1	80-120		
Copper	803			ug/L	500	561	48.4	80-120		
Lead	180			ug/L	250	24.4	62.1	80-120		
Molybdenum	169			ug/L	250	17.0	60.9	80-120		
Nickel	206			ug/L	250	54.3	60.6	80-120		
Potassium	71300	. 407		ug/L	50000	20300	102	80-120		
Selenium	346	J1		ug/L	500	18.5	65.6	80-120		
Total Phosphorus	96800			ug/L	50000	45900	102	80-120		

^{*} A = Accredited, N = Not Accredited or Accreditation not available

Reported: 05/24/2023 13:25

Quality Control (Continued)

Metals, Total (Continued)

Analyte	Result	Qual		Reporting Limit		Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGD0607 - SW-3050 fo	or 6010 (Con	itinu	ied)				111100T B	THIS RATES	Til min's		45 0
Post Spike (BGD0607-PS2)			rce: 23C60	98-01	Pre	epared: 4/18	/2023 Analyze	d: 4/20/2023			
Arsenic	556				ug/L	500	52.1	101	80-120		
Cadmium	50.1				ug/L	50.0	3.78	92.7	80-120		
Chromium	303				ug/L	250	47.1	103	80-120		
Lead	287				ug/L	250	46.4	96.2	80-120		
Molybdenum	311				ug/L	250	56.2	102	80-120		
Nickel	305				ug/L	250	56.8	99.3	80-120		
Post Spike (BGD0607-PS3)		Soul	rce: 23C56	86-01	Pre	pared: 4/18	/2023 Analyze	d: 4/21/2023			
Zinc	3330	J1			ug/L	250	2070	503	80-120		
Post Spike (BGD0607-PS4)		Soul	rce: 23C60	98-01	Pre	pared: 4/18	/2023 Analyze	d: 4/21/2023			
Copper	2220	J1			ug/L	500	1430	160	80-120		
Potassium	118000				ug/L	50000	65500	105	80-120		
Selenium	519				ug/L	500	32.7	97.3	80-120		
Total Phosphorus	257000	J1			ug/L	50000	186000	141	80-120		
Zinc	5640	J1			ug/L	250	4630	403	80-120		
Dilution Check (BGD0607-SRL1)		Sour	rce: 23C56	86-01	Pre	pared: 4/18	/2023 Analyze	d: 4/20/2023			
Arsenic	5.99			22.0	mg/kg dry	po. co. 1/10/	<22.0	u. 1/20/2025		47.0	10
Cadmium	0.573			2.20	mg/kg dry		<2.20			4.73	10
Chromium	<11.0			11.0	mg/kg dry		9.06			200	10
Copper	108			22.0	mg/kg dry		131			19.1	10
Lead	5.80			11.0	mg/kg dry		5.69			1.92	10
Molybdenum	<11.0			11.0	mg/kg dry		<11.0			200	1
Vickel	10.7			11.0	mg/kg dry		12.7				10
Potassium	4940	9		2200	mg/kg dry		4750			16.6	10
Selenium	<22.0	Ti		22.0	mg/kg dry mg/kg dry		<22.0			3.92	10
Total Phosphorus	11200	U		22.0						200	10
Zinc	483			11.0	mg/kg dry mg/kg dry		10700 483			4.07 0.00166	10 10

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 05/24/2023 13:25

TCEQ T104704238-23-39

Quality Control (Continued)

Metals, Total (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	· %REC	%REC Limits	RPD	RPD Limit
Batch: BGD0607 - SW-3050 for	6010 (Con	tinued)					right raids	A Irring	7 902	15 (61
Dilution Check (BGD0607-SRL2)		Source: 2	3C6098-01	Pre	epared: 4/18,	/2023 Analyz	ed: 4/20/2023			
Arsenic	9.37	U	10.7	mg/kg dry		5.89			45.6	10
Cadmium	0.539	U	1.07	mg/kg dry		0.427			23.2	10
Chromium	5.83		5.35	mg/kg dry		5.33			9.02	10
Copper	155		10.7	mg/kg dry		161			3.82	10
Lead	6.54		5.35	mg/kg dry		5.25			22.0	10
Molybdenum	7.90		5.35	mg/kg dry		6.35			21.7	10
Nickel	7.44		5.35	mg/kg dry		6.42			14.8	10
Potassium	7230		1070	mg/kg dry		7400			2.36	10
Total Phosphorus	21100		1070	mg/kg dry		21100			0.00	10
Dilution Check (BGD0607-SRL4)		Source: 2	3C6098-01	Pre	epared: 4/18,	/2023 Analyz	ed: 4/24/2023			
Selenium	<10.7	U	10.7	mg/kg dry		<10.7			200	10
			nealine research		V 92			HUUN	- 1 74	than t
Batch: BGD1436 - SW-7471										
MDL Check (BGD1436-MRL1)				Pre	epared: 4/11	/2023 Analyz	ed: 4/12/2023			
Mercury	0.0161	U	0.0197	mg/kg wet	0.00987	(manana a manana 4 m	163			
Matrix Spike (BGD1436-MS1)		Source: 2	3C5936-01	Pre	epared: 4/11,	/2023 Analyz	ed: 4/12/2023			
Mercury	0.667		0.0468	mg/kg dry	0.585	0.157	87.0	80-120		

0.0469 mg/kg dry

Prepared: 4/11/2023 Analyzed: 4/12/2023

0.157

74.9

80-120

11.1

0.587

Source: 23C5936-01

0.596 J1

Matrix Spike Dup (BGD1436-MSD1)

Mercury

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 05/24/2023 13:25

Quality Control (Continued)

General Chemistry

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGD0625 - Solid Anions No	Prep				0	W 1 1	10000	to Ha	3.00	april silas
Duplicate (BGD0625-DUP1)		Source: 2	3D1094-01		Prepared	& Analyzed: 4	/5/2023			
Nitrate as N	11400		711	mg/kg dry		11400			0.150	15
MRL Check (BGD0625-MRL1)					Prepared	& Analyzed: 4	/5/2023			
Nitrate as N	0.116	U	0.125	mg/kg wet	0.100		116	50-150		L. L.
Matrix Spike (BGD0625-MS1)		Source: 2	3D1094-01		Prepared	& Analyzed: 4	/5/2023			
Nitrate as N	11800	J1	790	mg/kg dry	253	11400	169	80-120		
	6562									n Kunti
Batch: BGD0694 - Percent Solids										
Blank (BGD0694-BLK1)					Prepared: 4/5	/2023 Analyze	ed: 4/6/2023			
% Solids	<0.100	U	0.100	%						1/44
Duplicate (BGD0694-DUP1)		Source: 2	3D1274-08		Prepared: 4/5	/2023 Analyze	ed: 4/6/2023			
% Solids	0.639	A CONTRACT OF THE CONTRACT OF	0.100	%		0.642			0.563	20
Duplicate (BGD0694-DUP2)		Source: 2	3D1471-01		Prepared: 4/5	/2023 Analyze	ed: 4/6/2023			
% Solids	0.775		0.100	%		0.770			0.564	20
Reference (BGD0694-SRM1)				44.4	Prepared: 4/5	5/2023 Analyze	ed: 4/6/2023			
% Solids	0.376		0.100	%	0.350		107	78.9-118		
	ic with	the L		All In	og Love		Til			DOMESTICAL PROPERTY.
Batch: BGD2244 - TKN T										
Blank (BGD2244-BLK1)				P	repared: 4/14	/2023 Analyze	ed: 4/17/202	3		
Total Kjeldahl Nitrogen - (TKN)	<9.84	U	9.84	mg/kg wet						

A = Accredited, N = Not Accredited or Accreditation not available

Tel: (936) 321-6060 Email: lab@nwdls.com www. NWDLS.com TCEQ T104704238-23-39

Reported: 05/24/2023 13:25

Quality Control

(Continued)

General Chemistry (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGD2244 - TKN T (Cont	inued)						1000	principal	CHILAR	M. of
LCS (BGD2244-BS1)	Life du com El			Pre	pared: 4/14	/2023 Analyze	ed: 4/17/2023			
Total Kjeldahl Nitrogen - (TKN)	33.6		10.0	mg/kg wet	35.6		94.4	85-115		
Duplicate (BGD2244-DUP1)		Source: 2	3D0681-45	Prej	pared: 4/14,	/2023 Analyze	ed: 4/17/2023			
Total Kjeldahl Nitrogen - (TKN)	215		14.1	mg/kg dry		200			7.59	20
MRL Check (BGD2244-MRL1)				Prej	pared: 4/14,	/2023 Analyze	ed: 4/17/2023			
Total Kjeldahl Nitrogen - (TKN)	25.7		9.96	mg/kg wet	39.8		64.4	50-150		
Matrix Spike (BGD2244-MS1)		Source: 2	3D0681-45	Pre	pared: 4/14,	/2023 Analyze	ed: 4/17/2023			
				627 3		I INSEE	2744	100 100		
Total Kjeldahl Nitrogen - (TKN) Batch: BGD2245 - NH3-N T	279	31	14.1	mg/kg dry	56.3	200	141	85-115		
Batch: BGD2245 - NH3-N T	<9.92					200 /2023 Analyze				
Batch: BGD2245 - NH3-N T Blank (BGD2245-BLK1) Ammonia as N	N per			Prej mg/kg wet	pared: 4/14,	/2023 Analyze	ed: 4/17/2023	5 , 6		
Batch: BGD2245 - NH3-N T Blank (BGD2245-BLK1) Ammonia as N	N per			Prej mg/kg wet Prej	pared: 4/14,		ed: 4/17/2023	5 , 6		
Batch: BGD2245 - NH3-N T Blank (BGD2245-BLK1) Ammonia as N LCS (BGD2245-BS1) Ammonia as N	<9.92	U	9.92	Prej mg/kg wet Prej mg/kg wet	pared: 4/14, pared: 4/14, 99.0	/2023 Analyze	ed: 4/17/2023 ed: 4/17/2023 94.1	85-115		
Batch: BGD2245 - NH3-N T Blank (BGD2245-BLK1) Ammonia as N LCS (BGD2245-BS1) Ammonia as N	<9.92	U Source: 2	9.92 9.90	Prej mg/kg wet Prej mg/kg wet	pared: 4/14, pared: 4/14, 99.0	/2023 Analyze /2023 Analyze	ed: 4/17/2023 ed: 4/17/2023 94.1	85-115	31.2	20
Batch: BGD2245 - NH3-N T Blank (BGD2245-BLK1) Ammonia as N LCS (BGD2245-BS1) Ammonia as N Duplicate (BGD2245-DUP1)	<9.92 93.1	U Source: 2	9.92 9.90 3 D0681-45	Prej mg/kg wet Prej mg/kg wet Prej mg/kg dry	pared: 4/14, pared: 4/14, 99.0 pared: 4/14,	/2023 Analyze /2023 Analyze /2023 Analyze	ed: 4/17/2023 ed: 4/17/2023 94.1 ed: 4/17/2023	85-115	31,2	20
Batch: BGD2245 - NH3-N T Blank (BGD2245-BLK1) Ammonia as N LCS (BGD2245-BS1) Ammonia as N Duplicate (BGD2245-DUP1) Ammonia as N	<9.92 93.1	Source: 2	9.92 9.90 3 D0681-45	Prej mg/kg wet Prej mg/kg wet Prej mg/kg dry Prej	pared: 4/14, pared: 4/14, 99.0 pared: 4/14,	/2023 Analyze /2023 Analyze /2023 Analyze 13.0	ed: 4/17/2023 ed: 4/17/2023 94.1 ed: 4/17/2023	85-115	31.2	20
Batch: BGD2245 - NH3-N T Blank (BGD2245-BLK1) Ammonia as N LCS (BGD2245-BS1) Ammonia as N Duplicate (BGD2245-DUP1) Ammonia as N MRL Check (BGD2245-MRL1)	<9.92 93.1 17.8	Source: 2	9.92 9.90 3 D0681-45 13.8	Prej mg/kg wet Prej mg/kg wet Prej mg/kg dry Prej mg/kg wet	pared: 4/14, 99.0 pared: 4/14, pared: 4/14, 9.97	/2023 Analyze /2023 Analyze /2023 Analyze 13.0	ed: 4/17/2023 94.1 ed: 4/17/2023 95.2	85-115 50-150	31.2	20

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 05/24/2023 13:25

Quality Control (Continued)

TCLP

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGD2137 - SW-7471 TCLF	,						markin et	of word	- but to	22 0
Duplicate (BGD2137-DUP1)		Source: 2	23D1481-01		Prepared: 4/14,	/2023 Analyze	d: 4/17/2023			
Mercury	<0.200	U	0.200	mg/L		<0.200				200
BGD1470-LBK1 (BGD2137-LBK1)					Prepared: 4/14	/2023 Analyze	d: 4/17/2023			
Mercury	<0.200	U	0.200	mg/L		LITE			er	
MDL Check (BGD2137-MRL1)					Prepared: 4/14	2023 Analyze	d: 4/17/2023	PERMIT		
Mercury	0.000225	u	0.200	mg/L	0.000200		112		T	
Matrix Spike (BGD2137-MS1)		Source: 2	23D1481-01		Prepared: 4/14	/2023 Analyze	d: 4/17/2023			
Mercury	0,00504	U	0.200	mg/L	0.00500	<0.200	101	80-120		
Batch: BGD2179 - SW-3511	262									
MB SV (BGD2179-BLK1)					Prepared: 4/14	/2023 Analyze	d· 5/13/2023			
2,4,5-Trichlorophenol	<400	H	400	mg/L	repared. 1/11/	2025 Analyze	u. 5/15/2025			
2,4,6-Trichlorophenol	<2.00		2.00	mg/L						
2,4-Dinitrotoluene (2,4-DNT)	<0.130		0.130	mg/L						
2-Methylphenol	<200		200	mg/L						
3,4-Methylphenol	<200		200	mg/L						
Hexachlorobenzene	<0.130	U	0.130	mg/L						
Hexachlorobutadiene	<0.500	U	0.500	mg/L						
Hexachloroethane	<3.00	U	3.00	mg/L						
Nitrobenzene	<2.00	U	2.00	mg/L						
Pentachlorophenol	<100	U	100	mg/L						
Pyridine	<5.00	U	5.00	mg/L						
Surrogate: 2-Fluorobiphenyl-surr			0.0100	mq/L	0.0100		100	54.6-148	N.C. LINE	
Surrogate: 2-Fluorophenol-surr			0.0251	mg/L	0.0200		125	55-152		
Surrogate: 2,4,6-Tribromophenol-surr			0.0254	mg/L	0.0200		127	52.4-136		
Surrogate: Nitrobenzene-d5-surr			0.0110	mg/L	0.0100		110	52-162		
Surrogate: Phenol-d5-surr			0.0203	mg/L	0.0200		102	58.7-152		
Surrogate: p-Terphenyl-d14-surr			0.0109	mg/L	0.0100		109	51.9-147		

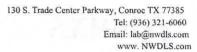
A = Accredited, N = Not Accredited or Accreditation not available

Reported: 05/24/2023 13:25

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGD2179 - SW-3511 (Co	ontinued)					Character	structly b		874.11.03	M.
BS SV (BGD2179-BS1)				Pr	epared: 4/14/	2023 Analyze	d: 5/14/202	3		
2,4,5-Trichlorophenol	0.0210	u	400	mg/L	0.0200		105	60-140		
2,4,6-Trichlorophenol	0.0222		2.00	mg/L	0.0200		111	60-140		
2,4-Dinitrotoluene (2,4-DNT)	0.0111		0.130	mg/L	0.0100		111	60-140		
2-Methylphenol	0.0204		200	mg/L	0.0200		102	60-140		
3,4-Methylphenol	0.0379		200	mg/L	0.0400		94.8	60-140		
Hexachlorobenzene	0.0111		0.130	mg/L	0.0100		111	60-140		
Hexachlorobutadiene	0.00529		0.500	mg/L	0.0100		52.9	60-140		
Hexachloroethane	0.00594		3.00	mg/L	0.0100		59.4	60-140		
Nitrobenzene	0.0117		2.00	mg/L	0.0100		117	60-140		
Pentachlorophenol	0.0186		100	mg/L	0.0200		93.2	36.8-149		
Pyridine	0.0103		5.00	mg/L	0.0500		20.7	2.5-101		
Surrogate: 2-Fluorobiphenyl-surr			0.00986	mg/L	0.0100		98.6	54.6-148	3.131.11	
Surrogate: 2-Fluorophenol-surr			0.0251	mg/L	0.0200		125	55-152		
Surrogate: 2,4,6-Tribromophenol-surr			0.0216	mg/L	0.0200		108	52.4-136		
Surrogate: Nitrobenzene-d5-surr			0.0106	mg/L	0.0100		106	52-162		
Surrogate: Phenol-d5-surr			0.0226	mg/L	0.0200		113	58.7-152		
Surrogate: p-Terphenyl-d14-surr			0.00990	mg/L	0.0100		99.0	51.9-147		
BSD SV (BGD2179-BSD1)		/11		Pr	epared: 4/14	/2023 Analyze	ed: 5/14/202	3		
2,4,5-Trichlorophenol	0.0222	11	400	mg/L	0.0200		111	60-140	5.56	40
2,4,6-Trichlorophenol	0.0222		2.00	mg/L	0.0200		112	60-140	0,765	40
2,4-Dinitrotoluene (2,4-DNT)	0.0224		0.130	mg/L	0.0100		113	60-140	0.942	40
2-Methylphenol	0.0211		200	mg/L	0.0200		105	60-140	3.07	40
3,4-Methylphenol	0.0211		200	mg/L	0.0400		95.9	60-140	1.20	40
Hexachlorobenzene	0.0304		0.130	mg/L	0.0100		111	60-140	0.130	40
Hexachlorobutadiene	0.00573		0,500	mg/L	0.0100		57.3	60-140	7.86	40
Hexachloroethane	0.00573	100000	3.00	mg/L	0.0100		62.8	60-140	5.60	40
Nitrobenzene	0.00626		2.00	mg/L	0.0100		112	60-140	4.69	40
Pentachlorophenol	0.0112		100	mg/L	0.0200		85.6	36.8-149	8.47	40
Pyridine	0.00699		5.00	mg/L	0.0500		14.0	2.5-101	38.7	40
Surrogate: 2-Fluorobiphenyl-surr			0.0102	mg/L	0.0100		102	54.6-148		
Surrogate: 2-Fluorophenol-surr			0.0241	mg/L	0.0200		121	55-152		
Surrogate: 2,4,6-Tribromophenol-surr			0.0219	mg/L	0.0200		110	52.4-136		
Surrogate: Nitrobenzene-d5-surr			0.0104	mg/L	0.0100		104	52-162		
Surrogate: Phenol-d5-surr			0.0234	mg/L	0.0200		117	58.7-152		
Surrogate: p-Terphenyl-d14-surr			0.00978	mg/L	0.0100		97.8	51.9-147		

A = Accredited, N = Not Accredited or Accreditation not available



Reported: 05/24/2023 13:25

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGD2179 - SW-3511 (Co	ontinued)							Buchin	00,000	2.50
BGD1470-BLK1 (BGD2179-LBK1)				Pr	epared: 4/14	/2023 Analyze	d: 5/14/202	3		
2,4,5-Trichlorophenol	<400	U	400	mg/L	political Arms	,				
2,4,6-Trichlorophenol	<2.00	U	2.00	mg/L						
2,4-Dinitrotoluene (2,4-DNT)	< 0.130	U	0.130	mg/L						
2-Methylphenol	<200	U	200	mg/L						
3,4-Methylphenol	0.00275	U	200	mg/L						
Hexachlorobenzene	< 0.130	U	0.130	mg/L						
Hexachlorobutadiene	<0.500	U	0.500	mg/L						
Hexachloroethane	<3.00	U	3.00	mg/L						
Nitrobenzene	<2.00	U.	2.00	mg/L						
Pentachlorophenol	<100	U	100	mg/L						
Pyridine	<5.00	U	5.00	mg/L						
Surrogate: 2-Fluorobiphenyl-surr			0.0386	mg/L	0.0400		96.4	54.6-148	*******	
Surrogate: 2-Fluorophenol-surr			0.0925	mg/L	0.0800		116	55-152		
Surrogate: 2,4,6-Tribromophenol-surr			0.0919	mg/L	0.0800		115	52.4-136		
Surrogate: Nitrobenzene-d5-surr			0.0465	mg/L	0.0400		116	52-162		
Surrogate: Phenol-d5-surr			0.0745	mg/L	0.0800		93.1	58.7-152		
Surrogate: p-Terphenyl-d14-surr			0.0364	mg/L	0.0400		90.9	51.9-147		
23D1094-01 MS (BGD2179-MS1)	*	Source: 2	3D1094-01	Pre	epared: 4/14/	/2023 Analyze	d: 5/14/202	3		
2,4,5-Trichlorophenol	0.116	U	400	mg/L	0.0800	<400	145	44.9-171		
2,4,6-Trichlorophenol	0.101	U	2.00	mg/L	0.0800	<2.00	126	34.7-143		
2,4-Dinitrotoluene (2,4-DNT)	0.0600	J1, U	0.130	mg/L	0.0400	< 0.130	150	50.3-144		
2-Methylphenol	0.0815	U	200	mg/L	0.0800	<200	102	17.3-182		
3,4-Methylphenol	0.167	L, U	200	mg/L	0.160	<200	105	43.4-188		
Hexachlorobenzene	0.0419	U	0.130	mg/L	0.0400	< 0.130	105	56.1-137		
Hexachlorobutadiene	0.0195	U	0.500	mg/L	0.0400	< 0.500	48.7	33.1-110		
Hexachloroethane	0.0229	U	3.00	mg/L	0.0400	<3.00	57.3	36.2-106		
Nitrobenzene	0.0502	U	2.00	mg/L	0.0400	<2.00	125	54.9-156		
Pentachlorophenol	0.124	J1, U	100	mg/L	0.0800	<100	156	42.2-151		
Pyridine	0.0669	U	5.00	mg/L	0.200	<5.00	33.5	2-87.4		
Surrogate: 2-Fluorobiphenyl-surr			0.0397	mg/L	0.0400		99.3	54.6-148		
Surrogate: 2-Fluorophenol-surr			0.0969	mg/L	0.0800		121	55-152		
Surrogate: 2,4,6-Tribromophenol-surr			0.0890	mg/L	0.0800		111	52.4-136		
Surrogate: Nitrobenzene-d5-surr			0.0473	mg/L	0.0400		118	52-162		
Surrogate: Phenol-d5-surr			0.0936	mg/L	0.0800		117	58.7-152		
Surrogate: p-Terphenyl-d14-surr			0.0435	mg/L	0.0400		109	51.9-147		

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 05/24/2023 13:25

TCEQ T104704238-23-39

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGD2179 - SW-3511 (Con	tinued)					Heinig	ldmga i Y	(HX 202	LH JU	hall the
23D1094-01 MSD (BGD2179-MSD1)		Source: 2	3D1094-01	P	repared: 4/14,	2023 Analyze	d: 5/14/202	3		
2,4,5-Trichlorophenol	0.105	U	400	mg/L	0.0800	<400	131	44.9-171	9.92	40
2,4,6-Trichlorophenol	0.0941	U	2.00	mg/L	0.0800	<2.00	118	34.7-143	6.87	40
2,4-Dinitrotoluene (2,4-DNT)	0.0545	U	0.130	mg/L	0.0400	< 0.130	136	50.3-144	9.56	40
2-Methylphenol	0.0787	U	200	mg/L	0.0800	<200	98.4	17.3-182	3.42	40
3,4-Methylphenol	0.162	L, U	200	mg/L	0.160	<200	101	43.4-188	3.09	40
Hexachlorobenzene	0.0414	U	0.130	mg/L	0.0400	< 0.130	104	56.1-137	1.17	40
Hexachlorobutadiene	0.0218	U	0.500	mg/L	0.0400	<0.500	54.5	33.1-110	11.3	40
Hexachloroethane	0.0249	U	3.00	mg/L	0.0400	<3.00	62.4	36.2-106	8.46	40
Nitrobenzene	0.0486	U	2.00	mg/L	0.0400	<2.00	121	54.9-156	3.23	40
Pentachlorophenol	0.109	U	100	mg/L	0.0800	<100	136	42.2-151	13.5	40
Pyridine	0.0659	U	5.00	mg/L	0.200	<5.00	32.9	2-87.4	1.64	40
Surrogate: 2-Fluorobiphenyl-surr			0.0381	mg/L	0.0400		95.2	54.6-148		, , , , , , , ,
Surrogate: 2-Fluorophenol-surr			0.0955	mg/L	0.0800		119	55-152		
Surrogate: 2,4,6-Tribromophenol-surr			0.0879	mg/L	0.0800		110	52.4-136		
Surrogate: Nitrobenzene-d5-surr			0.0416	mg/L	0.0400		104	52-162		
Surrogate: Phenol-d5-surr			0.0901	mg/L	0.0800		113	58.7-152		
Surrogate: p-Terphenyl-d14-surr			0.0429	mg/L	0.0400		107	51.9-147		
Batch: BGD2443 - SW-3511						/2022 A-sk	4. 4/25/202			
Blank (BGD2443-BLK1) 2,4-D			100		repared: 4/17,	2023 Analyze	:0: 4/25/202	3		
Silvex (2,4,5-TP)	<10.0 <1.00		10.0	mg/L mg/L						
Surrogate: DCAA-surr		······	0.0216		0.0250	********	86	70-130		
Surroyate, Dervi-surr			0.0216	mg/L	0.0230		00	70-130		
LCS (BGD2443-BS1)				P	repared: 4/17,	/2023 Analyze	d: 4/25/202	3		
2,4-D	0.00427	U	10.0	mg/L	0.00515		83	70-130		
Silvex (2,4,5-TP)	0.00419	U	1.00	mg/L	0.00500		84	70-130		
Surrogate: DCAA-surr			0.0204	mg/L	0.0250		82	70-130	externed	

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 05/24/2023 13:25

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGD2443 - SW-3511 (Con	tinued)						Marian L	. Au	- Lysta	16 14
LCS Dup (BGD2443-BSD1)				P	repared: 4/17,	2023 Analyze	ed: 4/25/2023			
2,4-D	0.00465	U	10.0	mg/L	0.00515		90	70-130	9	30
Silvex (2,4,5-TP)	0.00434	U	1.00	mg/L	0.00500		87	70-130	4	30
Surrogate: DCAA-surr			0.0227	mg/L	0.0250		91	70-130	M	
BGD1470-BLK1 (BGD2443-LBK3)				Р	repared: 4/17	2023 Analyze	ed: 5/13/2023			m that 4
2,4-D	<10.0	U	10.0	mg/L						
Silvex (2,4,5-TP)	<1.00	U	1.00	mg/L						
Surrogate: DCAA-surr		5	0.153	mg/L	0.100	1 1 1	153	70-130		
BGD1975-BLK1 (BGD2443-LBK4)				P	repared: 4/17,	2023 Analyze	ed: 5/13/2023			11 = 11/67 =
2,4-D	<10.0	U	10.0	mg/L						
Silvex (2,4,5-TP)	<1.00		1.00	mg/L						
Surrogate: DCAA-surr		5	0.155	mg/L	0.100	*****	155	70-130		
Matrix Spike (BGD2443-MS1)		Source: 2	3D0909-01	Р	repared: 4/17,	2023 Analyze	ed: 4/25/2023			
2,4-D	0.0205	U	10.0	mg/L	0.0206	<10.0	99	70-130		
Silvex (2,4,5-TP)	0.0191	U	1.00	mg/L	0.0200	<1.00	96	70-130		
Surrogate: DCAA-surr			0.0911	mg/L	0.100		91	70-130		
Matrix Spike Dup (BGD2443-MSD1)		Source: 2	3D0909-01	Р	repared: 4/17/	2023 Analyze	ed: 4/25/2023			
2,4-D	0.0215	U	10.0	mg/L	0.0206	<10.0	104	70-130	5	30
Silvex (2,4,5-TP)	0.0199	U	1.00	mg/L	0.0200	<1.00	100	70-130	4	30
Surrogate: DCAA-surr			0.112	mg/L	0.100		112	70-130		
Batch: BGD2621 - SW-3511										
Blank (BGD2621-BLK1)					Prepared: 4/18	/2023 Analyz	ed: 5/1/2023			
Chlordane (Total)	< 0.0300	II.	0.0300	mg/L						
Endrin	<0.0200		0.0200	mg/L						
gamma-BHC (Lindane, gamma-HexachlorocyclohexanE)	<0.400		0,400	mg/L						
Heptachlor	<0.00800	U	0.00800	mg/L						
Heptachlor epoxide	<0.00800	U	0.00800	mg/L						
Methoxychlor	<10.0	U	10.0	mg/L						
Toxaphene (Chlorinated Camphene)	<0.500	U	0.500	mg/L						
Surrogate: 2,4,5,6	en en en en en en en en en en en en en e	ar avis 500.50	9.55E-5	mg/L	0.000120		79.6	60-140		
Tetrachloro-m-xylene-surr Surrogate: Decachlorobiphenyl-surr			0.000102	mg/L	0.000120		84.6	60-140		

A = Accredited, N = Not Accredited or Accreditation not available

TCEQ T104704238-23-39

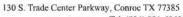
Municipal Operations and Consulting 27316 Spectrum Way Oak Ridge, TX 77385

Reported: 05/24/2023 13:25

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD_	RPD Limit
Batch: BGD2621 - SW-3511 (Continued)					Tubes	Asset Trans	To Foliate	15 year	14, 5
TOX LCS (BGD2621-BS1)	I made a				Prepared: 4/18,	/2023 Analyz	ed: 5/1/2023			
Toxaphene (Chlorinated Camphene)	0.00124	U	0.500	mg/L	0.00120		103	60-140		
Surrogate: 2,4,5,6			0.000133	mg/L	0.000120		111	60-140		
Tetrachloro-m-xylene-surr				-						
Surrogate: Decachlorobiphenyl-surr			0.000141	mg/L	0.000120		118	60-140		
LCS (BGD2621-BS2)					Prepared: 4/18	/2023 Analyz	ed: 5/1/2023			
Chlordane (Total)	0.000346	U	0.0300	mg/L	0.000480		72.2	60-140		
Endrin	9.31E-5		0.0200	mg/L	0.000120		77.6	60-140		
gamma-BHC (Lindane,	8.69E-5	U	0,400	mg/L	0.000120		72.4	60-140		
gamma-HexachlorocyclohexanE)										
Heptachlor	8.74E-5	U	0.00800	mg/L	0.000120		72.8	60-140		
Heptachlor epoxide	8.70E-5		0.00800	mg/L	0.000120		72.5	60-140		
Methoxychlor	9.64E-5	U	10.0	mg/L	0.000120		80.3	60-140		
Surrogate: 2,4,5,6			8.78E-5	mg/L	0.000120		73.1	60-140		
Tetrachloro-m-xylene-surr							(4)			
Surrogate: Decachlorobiphenyl-surr			0.000102	mg/L	0.000120		85.4	60-140		
TOX LCSD (BGD2621-BSD1)					Prepared: 4/18,	/2023 Analyz	ed: 5/1/2023			
Toxaphene (Chlorinated Camphene)	0.00129	U	0.500	mg/L	0.00120		107	60-140	3.66	40
Surrogate: 2,4,5,6			0.000122	mg/L	0.000120		102	60-140	Timb	
Tetrachloro-m-xylene-surr										
Surrogate: Decachlorobiphenyl-surr			0.000133	mg/L	0.000120		111	60-140		
LCS Dup (BGD2621-BSD2)					Prepared: 4/18,	/2023 Analyz	ed: 5/1/2023			
Chlordane (Total)	0.000345	U	0.0300	mg/L	0.000480		71.9	60-140	0.436	40
Endrin	9.13E-5	U	0.0200	mg/L	0.000120		76.1	60-140	2.03	40
gamma-BHC (Lindane,	9.06E-5	U	0.400	mg/L	0.000120		75.5	60-140	4.26	40
gamma-HexachlorocyclohexanE)										
Heptachlor	8.87E-5	U	0.00800	mg/L	0.000120		73.9	60-140	1.44	40
Heptachlor epoxide	8.69E-5	U	0.00800	mg/L	0.000120		72.4	60-140	0.186	40
Methoxychlor	9.20E-5	U	10.0	mg/L	0.000120		76.7	60-140	4.66	40
Surrogate: 2,4,5,6			9.70E-5	mg/L	0.000120		80.8	60-140		
Tetrachloro-m-xylene-surr										
Surrogate: Decachlorobiphenyl-surr			0.000104	mg/L	0.000120		87.0	60-140		

A = Accredited, N = Not Accredited or Accreditation not available



Reported: 05/24/2023 13:25

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGD2621 - SW-3511 (C	ontinued)					H mare	hjarat i l	1117		tris in the same
BGD1470-BLK1 (BGD2621-LBK1)	,				Prepared: 4/18	1/2023 Analyze	d: 5/2/2023			
Chlordane (Total)	<0.0300	U	0.0300	mg/L	,					
Endrin	6.93E-6		0.0200	mg/L						
gamma-BHC (Lindane,	<0.400		0.400	mg/L						
gamma-HexachlorocyclohexanE)		47-	led (55)							
Heptachlor	<0.00800	U	0.00800	mg/L						
Heptachlor epoxide	<0.00800		0.00800	mg/L						
Methoxychlor	<10.0		10.0	mg/L						
Toxaphene (Chlorinated Camphene)	<0.500	U	0.500	mg/L			***	Tale -		
Surrogate: 2,4,5,6	1		0.000572	mg/L	0.000600		95.3	60-140		
Tetrachloro-m-xylene-surr					and the second section of the second		energy (19 18)			
Surrogate: Decachlorobiphenyl-surr			0.000505	mg/L	0.000600		84.1	60-140		
3GD2228-BLK2 (BGD2621-LBK2)			i Him		Prepared: 4/18	1/2023 Analyze	d: 5/2/2023			ME - I
Chlordane (Total)	<0.0300	U	0.0300	mg/L						
Endrin	2.59E-6		0.0200	mg/L						
gamma-BHC (Lindane,	3.39E-6	75-75	0.400	mg/L						
gamma-HexachlorocyclohexanE)			I mortification	ming.						
Heptachlor	<0.00800	U	0.00800	mg/L						
Heptachlor epoxide	<0.00800	U	0.00800	mg/L						
Methoxychlor	1.66E-5	U	10.0	mg/L						
Toxaphene (Chlorinated Camphene)	<0.500	U	0.500	mg/L				viging agreement and an	paragraph some	
Surrogate: 2,4,5,6			0.000138	mg/L	0.000120		115	60-140		- 6 4 4 4 4 4 4 4
Tetrachloro-m-xylene-surr								Secure IIII		
Surrogate: Decachlorobiphenyl-surr		where the second	9.98E-5	mg/L	0.000120		83.1	60-140	Na. 2 15 17	
TOX MRL (BGD2621-MRL1)		11111		ufin i	Prepared: 4/18	1/2023 Analyze	d: 5/1/2023			
Toxaphene (Chlorinated Camphene)	0.000515	U	0.500	mg/L	0.000300		172			
Surrogate: 2,4,5,6			0.000151	mg/L	0.000120		126	60-140	V0.0	ministration
Tetrachloro-m-xylene-surr				3/ =						
Surrogate: Decachlorobiphenyl-surr			0.000170	mg/L	0.000120		142	60-140	41	
ARL Check (BGD2621-MRL2)		U 4 T	II TILL		Prepared: 4/18	/2023 Analyze	d: 5/1/2023			
Chlordane (Total)	3.65E-5	U	0.0300	mg/L	4,80E-5	The same of the sa	76.1			
Endrin	9.91E-6		0.0200	mg/L	1,20E-5		82.6			
gamma-BHC (Lindane,	1.06E-5		0.400	mg/L	1.20E-5		88.1			
gamma-HexachlorocyclohexanE)	1,005-3		-1,30	⇒ 1 =						
Heptachlor	1.11E-5	U	0.00800	mg/L	1.20E-5		92.8			
Heptachlor epoxide	9.00E-6		0.00800	mg/L	1.20E-5		75.0			
Methoxychlor	1.11E-5		10.0	mg/L	1.20E-5		92.2			
Surrogate: 2,4,5,6			9.95E-5	mg/L	0.000120		82.9	60-140		
Tetrachloro-m-xylene-surr										
Surrogate: Decachlorobiphenyl-surr			0.000102	mg/L	0.000120		85.2	60-140		

A = Accredited, N = Not Accredited or Accreditation not available

Reported:

05/24/2023 13:25

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGD2621 - SW-3511 (Con	tinued)				184	1103	1 180	14.14.4	- 111170	18 111
Matrix Spike (BGD2621-MS1)		Source: 2	3D0985-01	F	Prepared: 4/18,	/2023 Analyze	d: 5/1/2023			
Chlordane (Total)	0.00252	U	0.0300	mg/L	0.00240	4.98E-6	105	60-140		
Endrin	0.000707	U	0.0200	mg/L	0.000600	<0.0200	118	60-140		
gamma-BHC (Lindane, gamma-HexachlorocyclohexanE)	0.000692	U	0.400	mg/L	0.000600	<0.400	115	60-140		
Heptachlor	0.000690	U	0.00800	mg/L	0.000600	<0.00800	115	60-140		
Heptachlor epoxide	0.000668	U	0.00800	mg/L	0.000600	4.98E-6	111	60-140		
Methoxychlor	0.000793	U	10.0	mg/L	0.000600	<10.0	132	60-140		
Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr			0.000646	mg/L	0.000600		108	60-140	- DRALU III	17-1
Surrogate: Decachlorobiphenyl-surr			0.000526	mg/L	0.000600		87.7	60-140		
Matrix Spike Dup (BGD2621-MSD1)		Source: 2	3D0985-01	F	Prepared: 4/18,	/2023 Analyze	d: 5/1/2023			
Chlordane (Total)	0.00283	U	0.0300	mg/L	0.00240	4.98E-6	118	60-140	11.4	40
Endrin	0.000804	U	0.0200	mg/L	0.000600	< 0.0200	134	60-140	12.8	40
gamma-BHC (Lindane, gamma-HexachlorocyclohexanE)	0.000811	U	0.400	mg/L	0.000600	<0.400	135	60-140	15.9	40
Heptachlor	0.000776	U	0.00800	mg/L	0.000600	<0.00800	129	60-140	11.8	40
Heptachlor epoxide	0.000762	U	0.00800	mg/L	0.000600	4.98E-6	126	60-140	13.1	40
Methoxychlor	0.000891	U	10.0	mg/L	0.000600	<10.0	148	60-140	11.6	40
Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr			0.000745	mg/L	0.000600		124	60-140		
Surrogate: Decachlorobiphenyl-surr			0.000553	mg/L	0.000600		, 92.2	60-140		
	1000									
Batch: BGD2687 - EPA 200.2 TCL Blank (BGD2687-BLK1)	P			D	repared: 4/18/	2023 Analyze	H- 5/12/202	2		
Arsenic	-5.00	ul In	F 00		repared. 4/10/	2025 Analyze	1. 3/12/202.			
Barium	<5.00		5.00 100	mg/L mg/L						
Cadmium	<100		1.00	mg/L						
Chromium	<1.00 <5.00		5.00	mg/L						
Lead	<5.00 <5.00		5.00	mg/L						
Selenium			1.00	mg/L						
Silver	<1.00 <5.00		5.00	mg/L						

A = Accredited, N = Not Accredited or Accreditation not available

Tel: (936) 321-6060 Email: lab@nwdls.com www. NWDLS.com TCEQ T104704238-23-39

Reported: 05/24/2023 13:25

Quality Control (Continued)

Analyte	114	Result	Qual	tra la	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGD2687 - EPA	200.2 TCLP (Contin	ued)					The same		ro - July	IS USE	ine sa
LCS (BGD2687-BS1)						P	repared: 4/18	2023 Analyze	d: 5/12/2023	1.000		
Arsenic		0.510	U		5.00	mg/L	0.500		102	80-120		
Barium		0.513	U		100	mg/L	0.500		103	80-120		
Cadmium		0.0513	U		1.00	mg/L	0.0500		103	80-120		
Chromium		0.256	U		5.00	mg/L	0.250		102	80-120		
Lead		0.255	U		5.00	mg/L	0.250		102	80-120		
Selenium		0.506	U		1.00	mg/L	0.500		101	80-120		
Silver		0.0531	U		5.00	mg/L	0.0500		106	80-120		
Duplicate (BGD2687-DUP1))		Sourc	e: 23D1	481-01	P	repared: 4/18,	/2023 Analyze	d: 5/12/2023			
Arsenic		<5.00	U		5.00	mg/L		<5.00				20
Barium		1.13	U		100	mg/L		1.17			4.18	20
Cadmium		<1.00	U		1.00	mg/L		<1.00				20
Chromium		<5.00	U		5.00	mg/L		<5.00				20
Lead		<5.00	U		5.00	mg/L		<5.00				20
Selenium		<1.00	U		1.00	mg/L		<1.00				20
Silver		<5.00	U		5.00	mg/L		<5.00		jai i	effel sys	20
Duplicate (BGD2687-DUP2))		Sourc	e: 23D2	913-01	P	repared: 4/18	/2023 Analyze	d: 5/12/2023	1		
Arsenic		<5.00	U		5.00	mg/L		<5.00				20
Barium		1.67	U		100	mg/L		1.85			9.95	20
Cadmium		<1.00	U		1.00	mg/L		<1.00				20
Chromium		<5.00	U		5.00	mg/L		<5.00				20
Lead		<5.00	U		5.00	mg/L		<5.00				20
Selenium		<1.00	U		1.00	mg/L		<1.00				20
Silver		<5.00	U		5.00	mg/L		<5.00	ADALL.	M. El	- 5 (M. L.O	20
BGD1470-BLK1 (BGD2687-	LBK1)					Р	repared: 4/18	/2023 Analyze	d: 5/12/2023	3		
Arsenic		<5.00	U		5.00	mg/L						
Barium		0.843	U		100	mg/L						
Cadmium		<1.00	U		1.00	mg/L						
Chromium		<5.00	U		5.00	mg/L						
Lead	5	<5.00	U		5.00	mg/L						
Selenium		<1.00	U		1.00	mg/L						
Silver		<5.00	U		5.00	mg/L						

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 05/24/2023 13:25

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGD2687 - EPA 2	00.2 TCLP (Contin	ued)			Use	milde (C)	4 11 1	41-44	-900)	4 10
BGD1975-BLK1 (BGD2687-LE		de la la de		P	repared: 4/18/	2023 Analyze	d: 5/12/2023			
Arsenic	<5.00	U	5.00	mg/L						
Barium	0.0112		100	mg/L						
Cadmium	<1.00		1.00	mg/L						
Chromium	<5.00		5.00	mg/L						
Lead	<5.00		5.00	mg/L			*			
Selenium	<1.00		1.00	mg/L						
Silver	<5.00		5.00	mg/L						
Matrix Spike (BGD2687-MS1)	al dafal action	Source: 2	3D1481-01	Р	repared: 4/18/	2023 Analyze	ed: 5/12/2023	19.75 11.4		
Arsenic	0.537	U	5.00	mg/L	0.500	<5.00	107	75-125		
Barium	1,58		100	mg/L	0.500	1.17	81.0	75-125		
Cadmium	0,0535		1.00	mg/L	0.0500	<1.00	107	75-125		
Chromium	0,246		5.00	mg/L	0.250	<5.00	98.4	75-125		
Lead	0.253		5.00	mg/L	0.250	<5.00	101	75-125		
Selenium	0.515		1.00	mg/L	0.500	<1.00	103	75-125		
Silver	0.0523		5.00	mg/L	0.0500	<5.00	105	75-125		
Matrix Spike (BGD2687-MS2)	June (201) promise o	Source: 2	3D2913-01	P	Prepared: 4/18/	2023 Analyze	ed: 5/12/2023	3		
Arsenic	0.505		5.00	mg/L	0.500	<5.00	101	75-125		
Barium		J1, U	100	mg/L	0.500	1.85	NR	75-125		
Cadmium	0.0526		1.00	mg/L	0.0500	<1.00	105	75-125		
Chromium	0.253		5.00	mg/L	0.250	<5.00	101	75-125		
Lead	0,251		5.00	mg/L	0.250	<5.00	100	75-125		
Selenium	0,505		1.00	mg/L	0.500	<1.00	101	75-125		
Silver	0.0531		5.00	mg/L	0.0500	<5.00	106	75-125		
Post Spike (BGD2687-PS1)		Source: 2	23D1481-01	F	repared: 4/18	/2023 Analyze	ed: 5/12/202	3		
Arsenic	531			ug/L	500	13.2	104	80-120		
Barium	1470	J1		ug/L	500	1140	65.4	80-120		
Cadmium	52.1			ug/L	50.0	0.478	103	80-120		
Chromium	250			ug/L	250	1.89	99.4	80-120		
Lead	249			ug/L	250	3.28	98.3	80-120		
Selenium	505			ug/L	500	3.60	100	80-120		
Silver	53.0			ug/L	50.0	0.410	105	80-120		

A = Accredited, N = Not Accredited or Accreditation not available

Tel: (936) 321-6060 Email: lab@nwdls.com www. NWDLS.com TCEQ T104704238-23-39

Municipal Operations and Consulting 27316 Spectrum Way Oak Ridge, TX 77385

Reported: 05/24/2023 13:25

Quality Control (Continued)

Analyte	Result (Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGD2687 - EPA 200.2 TC	LP (Continu	ied)					u thirt is	m, Ada	- Kabi	ion do
Post Spike (BGD2687-PS2)	S	Source: 23D29	13-01	Pr	epared: 4/18/	/2023 Analyze	d: 5/12/2023			
Arsenic	530			ug/L	500	14.0	103	80-120		
Barium	2190	11		ug/L	500	1800	77.6	80-120		
Cadmium	52.0			ug/L	50.0	0.351	103	80-120		
Chromium	249			ug/L	250	0.897	99.4	80-120		
Lead	248			ug/L	250	0.546	98.9	80-120		
Selenium	515			ug/L	500	1.80	103	80-120		
Silver	52.3			ug/L	50.0	0.634	103	80-120		
Dilution Check (BGD2687-SRL1)	S	Source: 23D14	81-01	Pre	epared: 4/18/	2023 Analyze	d: 5/12/2023			
Arsenic	<5.00 L		5.00	mg/L	Parisar, 1/20/	<5.00	J, 12/2025			10
Barium	1.17 L		100	mg/L		1.17			0.00	10
Cadmium	- <1.00 L		1.00	mg/L		<1.00			0.00	10
Chromium	<5.00 L		5.00	mg/L		<5.00				10
Lead	<5.00 U		5.00	mg/L		<5.00				10
Selenium	<1.00 L		1.00	mg/L		<1.00				10
Silver	<5.00 L		5.00	mg/L		<5.00				10
Dilution Check (BGD2687-SRL2)	s	ource: 23D29:	13-01	Pre	epared: 4/18/	2023 Analyze	d: 5/12/2023			
Arsenic	<5.00 L		5.00	mg/L		<5.00				10
Barium	1.85 L		100	mg/L		1.85			0.00	10
Cadmium	<1.00 U		1.00	mg/L		<1.00			0.00	10
Chromium	<5.00 L		5.00	mg/L		<5.00				10
Lead	<5.00 U		5.00	mg/L		<5.00				10
Selenium	<1.00 U		1.00	mg/L		<1.00				10
Silver	<5.00 U		5.00	mg/L		<5.00				10

A = Accredited, N = Not Accredited or Accreditation not available

130 S. Trade Center Parkway, Conroe TX 77385
Tel; (936) 321-6060
Email: lab@nwdls.com
www. NWDLS.com
TCEQ T104704238-23-39

Reported: 05/24/2023 13:25

Sample Condition Checklist

Work Order: 23D1283

Check Points

No	Custody Seals
Yes	Containers Intact
Yes	COC/Labels Agree
Yes	Received On Ice
Yes	Appropriate Containers
Yes	Appropriate Sample Volume
Yes	Coolers Intact
Yes	Samples Accepted

Item

Definition

130 S. Trade Center Parkway, Conroe TX 77385
Tel: (936) 321-6060
Email: lab@nwdls.com
www. NWDLS.com
TCEQ T104704238-23-39

Reported: 05/24/2023 13:25

Term and Qualifier Definitions

J1	Estimated value - The reported value is outside the established quality control criteria for accuracy and/or precision	on,	
L	Off scale high - The concentration of the analyte exceeds the linear range.		
S	The surrogate recovery was outside the established laboratory recovery limit,		
TV	Estimated value - The method required temperature requirement was outside of the acceptable range.		
U	Non-detected compound.		
V	Analyte was detected in both sample and method blank.		
V2	The analyte was detected in the sample and the associated leach blank.		
RPD	Relative Percent Difference		
%REC	Percent Recovery		
Source	Sample that was matrix spiked or duplicated		
*	A = Accredited, N = Not Accredited or Accreditation not available		
DF	Dilution Factor - the factor applied to the reported data due to sample preparation, dilution, or moisture content		
MDL	Method Detection Limit - The minimum concentration of a substance (or analyte) that can be measured and repor	ted with 99% confidence th	nat the
	analyte concentration is greater than zero. Based on standard deviation of replicate spiked samples take through	all steps of the analytical	
	procedure following 40 CFR Part 136 Appendix B.		
SDL	Sample Detection Limit - The minimum concentration of a substance (analyte) that can be measured and reported	d with 99% confidence that	the
	analyte concentration is greater than zero. The SDL is an adjusted limit thus sample specific and accounts for pre	paration weights and volum	ies,
	dilutions, and moisture content of soil/sediments. If there are no sample specific parameters, the MDL = SDL.		
MRL	Method Reporting Limit - Analyte concentration that corresponds to the lowest level lab reports with confidence in	accuracy of quantitation a	nd
	without qualification (i.e. J-flagged), The MRL is at or above the lowest calibration standard.		
LRL	Laboratory Reporting Limit - Analyte concentration that corresponds to the lowest level lab reports with confidence	e in accuracy of quantitatio	n and
	without qualification (i.e. J-flagged), The LRL is an adjusted limit thus sample specific and accounts for preparation	n weights and volumes, dil	utions,
	and moisture content of soil/sediments. If there are no sample specific parameters, the MRL = LRL.		

A = Accredited, N = Not Accredited or Accreditation not available

CHAIN OF CUSTODY RECORD
North Water District Laboratory Services
130 S. Trade Center Pkwy, Conroe Tx 77385
(936) 321-6060 - lab@nwdls.com TCEQ T104704238-23-38

TCEQ-TOX T104704202-22-17

23D1283 Page 1 of 2

Lab PM : Deena Higginbotham	inbotham	Pre	ject Name: HC MUD	200 - Non Potable -	Project Name: HC MUD 200 - Non Potable - Sewage Sludge Annual		Schedule Comments:
Municipal Operations and Consulting John Montgomery 27316 Spectrum Way Oak Ridge, TX 77385 Phone: (281) 367-5511	and Consulti		Project Comments: 13050 Stonefield Dr Houston 77014 Gate Combo 2006	Stonefield Dr			
Sample ID Collecti	Collection Point	Date/Time Begin	Date/Time Sampled	Sample Type	Container	Analysis/Preservation	Field Results
T)					
23D1283-01 Digester			4/4/2023 ID D	S Grab	A Glass 250mL W		
	eta irii)		B HDPE IC 250ml		
						Cadmium ICP 6010 4*C	
					E Glass VOA 60mL		
		Contract Con					
					Teflon-lined Lid		
					G HDPE 250mL		
						TCLP	
			24327				
			N			Lead ICP TCLP 4°C	
						6010	
						0	79
						LP.	
						Silver ICP TCLP 4°C	
					1	rus ICP 60	
						0	
						۵.	
							-
			Zijk-			PCB-8082 4°C	
						SVOA-TCLP 4°C	
						TCLP Bottle 4°C	
						Δ.	
						C 9056	
			A. M.			TKN T-351.3 4°C	
			66574			TS-2540 G 4°C	

CHAIN OF CUSTODY RECORD

TCEQ-TOX T104704202-22-17 North Water District Laboratory Services 130 S. Trade Center Pkwy, Conroe Tx 77385 (936) 321-6060 - lab@nwdls.com TCEQ T104704238-23-38

(Continued)

Schedule Comments:

Project Name: HC MUD 200 - Non Potable - Sewage Sludge Annual Project Comments: 13050 Stonefield Dr Houston 77014 Gate Combo 2006 Municipal Operations and Consulting Lab PM: Deena Higginbotham John Montgomery 27316 Spectrum Way Oak Ridge, TX 77385 Phone: (281) 367-5511

Field Remarks:		Lab Preserv (Circle and	Lab Preservation: H2SO4 (Circle and	4 HNO3	NaOH Ott	Other.
		Write ID Below)	lelow)			
Sampler (Signature)	Relinquished By. (Signature)	Date/Time		Received By. (Signature)		Date/Time
Print Name	Relinquished By. (Signature)	Date/Time		Received By: (Signature)		Date/Time
Affiliation NWDL S	Relinquished To Lab By: (Signature)	Date/Time	3/1635	Received for Laboratory By: (Signature)	RoZ	Date/Time 2
Custody Seal: Yes / No COC	COC Labels Agree. Yes / No Appropriate Containers: Yes / No	Appropriate Volume: Yes / No Coolers Intact: Yes / No	Recei	Received on Ice: Yes / No Samples Accepted: Yes / No	Temperature: Thermometer ID:	၁ _ႏ

wko_NWDLS_COC_LS Revision 4.1 Effective: 2/17/2022

Laboratory Analysis Report

Total Number of Pages:

Job ID: 23040458

10100 East Freeway, Suite 100, Houston, TX 77029 tel: 713-453-6060, fax: 713-453-6091, http://www.ablabs.com

Client Project Name : 23D1283

Report To:

Client Name:

NWDLS

m) m

Deena Higginbotham

Client Address:

130 S Trade Center Pkwy

City, State, Zip: (

Conroe, Texas, 77385

P.O.#.: 23D1283

Sample Collected By:

Date Collected: 04/04/23

A&B Labs has analyzed the following samples...

Client Sample ID

Matrix

A&B Sample ID

23D1283-01

Solid

23040458.01

-s-dht:

Released By: Senthilkumar Sevukan

Title:

Vice President Operations

Date:

4/14/2023

This Laboratory is NELAP (T104704213) accredited. Effective: 04/01/2023; Expires: 3/31/2024 Scope: Non-Potable Water, Drinking Water, Air, Solid, Biological Tissue, Hazardous Waste

I am the laboratory manager, or his/her designee, and I am responsible for the release of this data package. This laboratory data package has been reviewed and is complete and technically compliant with the requirements of the methods used, except where noted in the attached exception reports. I affirm, to the best of my knowledge that all problems/anomalies observed by this laboratory (and if applicable, any and all laboratories subcontracted through this laboratory) that might affect the quality of the data, have been identified in the Laboratory Review Checklist, and that no information or data have been knowingly withheld that would affect the quality of the data.

This report cannot be reproduced, except in full, without prior written permission of A&B Labs. Results shown relate only to the items tested. Results apply to the sample as received. Samples are assumed to be in acceptable condition unless otherwise noted. Blank correction is not made unless otherwise noted. Air concentrations reported are based on field sampling information provided by client. Soil samples are reported on a wet weight basis unless otherwise noted. Uncertainty estimates are available on request.

ab-q210-0321

Date Received: 04/05/2023 17:42

Report Number: RPT230414046

LABORATORY TERM AND QUALIFIER DEFINITION REPORT

Job ID: 23040458

Date:

4/14/2023

General Term Definition

Back-Wt	Back Weight	Post-Wt	Post Weight
BRL	Below Reporting Limit	ppm	parts per million
cfu	colony-forming units	Pre-Wt	Previous Weight
Conc.	Concentration	Q	Qualifier
D.F.	Dilution Factor	RegLimit	Regulatory Limit
Front-Wt	Front Weight	RPD	Relative Percent Difference
LCS	Laboratory Check Standard	RptLimit	Reporting Limit
LCSD	Laboratory Check Standard Duplicate	SDL	Sample Detection Limit
MS	Matrix Spike	surr	Surrogate
MSD	Matrix Spike Duplicate	т	Time
MW	Molecular Weight	TNTC	Too numerous to count
J	Estimation. Below calibration range but above MDL	MQL	Minimum Quantitation Limit

Qualifier Definition

V1

CCV recovery is above acceptance limits. This target analyte was not detected in the sample.

LABORATORY TEST RESULTS

Job ID: 23040458

4/14/2023

Client Name:

NWDLS

Project Name:

23D1283

Attn: Deena Higginbotham

Client Sample ID:

23D1283-01

Date Collected: Time Collected:

04/04/23

Job Sample ID:

Sample Matrix

23040458.01 Solid

% Moisture

10:00

Other Information:

odici miornad										
Test Method	Parameter/Test Description	Result	Units	DF	SDL	SQL	Reg Limit	Q	Date Time	Analyst
SW-846 8270D	TCLP Semivolatiles									
	2,4,5-Trichlorophenol	< 0.004	mg/L	1.00	0.004	0.025	400		04/10/23 21:24	GM
	2,4,6-Trichlorophenol	< 0.004	mg/L	1.00	0.004	0.025	2		04/10/23 21:24	GM
	2,4-Dinitrotoluene	< 0.005	mg/L	1.00	0.005	0.025	0.13	V1	04/10/23 21:24	GM
	2-Methylphenol	< 0.005	mg/L	1.00	0.005	0.025	200		04/10/23 21:24	GM
	3- & 4-Methylphenols	0.07975	mg/L	1.00	0.007	0.025	200		04/10/23 21:24	GM
	Hexachlorobenzene	< 0.003	mg/L	1.00	0.003	0.025	0.13		04/10/23 21:24	GM
	Hexachlorobutadiene	< 0.002	mg/L	1.00	0.002	0.025	0.5		04/10/23 21:24	GM
	Hexachloroethane	< 0.002	mg/L	1.00	0.002	0.025	3		04/10/23 21:24	GM
	Nitrobenzene	< 0.005	mg/L	1.00	0.005	0.025	2		04/10/23 21:24	GM
	Pentachlorophenol	< 0.003	mg/L	1.00	0.003	0.025	100		04/10/23 21:24	GM
	Pyridine	< 0.002	mg/L	1.00	0.002	0.025	5		04/10/23 21:24	GM
	2,4,6-Tribromophenol(surr)	58.8	%	1.00		10-120			04/10/23 21:24	GM
	2-Fluorobiphenyl(surr)	70.9	%	1.00		30-115			04/10/23 21:24	GM
	2-Fluorophenol(surr)	40.9	%	1.00		17-115			04/10/23 21:24	GM
	Nitrobenzene-d5(surr)	68.8	%	1.00		20-120			04/10/23 21:24	GM
	Phenol-d6(surr)	41	%	1.00		15-120			04/10/23 21:24	GM
	p-Terphenyl-d14(surr)	88.1	%	1.00		30-140			04/10/23 21:24	GM

ab-q212-0321

QUALITY CONTROL CERTIFICATE

Job ID: 23040458

Date:

4/14/2023

Analysis : TCLP Semivolatiles

Method:

SW-846 8270D

Reporting Units : mg/L

QC Batch ID: Qb230410117 Created Date: 03/10/23

Created By : GeMu

Samples in This QC Batch: 23040458.01

Prep Method: SW-846 3510C

Prep Date: 04/10/23 10:30 Prep By:

MMuteen

Extraction: TCLP Prep: PB23041035 PB23040801

Prep Method: SW-846 1311

Prep Date: 04/07/23 17:00 Prep By:

Msoria

Parameter	CAS #	Result	Units	D.F.	MQL	MDL		Qual
2,4,5-Trichlorophenol	95-95-4	< MDL	mg/L	0.20	0.005	0.00425		
2,4,6-Trichlorophenol	88-06-2	< MDL	mg/L	0.20	0.005	0.00395	1	
2,4-Dinitrotoluene	121-14-2	< MDL	mg/L	0.20	0.005	0.00485		
2-Methylphenol	95-48-7	< MDL	mg/L	0.20	0.005	0.005		- 1
3- & 4-Methylphenols	65794-96-9	< MDL	mg/L	0.20	0.005	0.0066		
Hexachlorobenzene	118-74-1	< MDL	mg/L	0.20	0.005	0.00345	THE PERSON	
Hexachlorobutadiene	87-68-3	< MDL	mg/L	0.20	0.005	0.00205	1.5	
Hexachloroethane	67-72-1	< MDL	mg/L	0.20	0.005	0.00235	production of the second	
Nitrobenzene	98-95-3	< MDL	mg/L	0.20	0.005	0.00455		- 1
Pentachlorophenol	87-86-5	< MDL	mg/L	0.20	0.005	0.0025		
Pyridine	110-86-1	< MDL	mg/L	0.20	0.005	0.00175		
2-Fluorophenol(surr)	367-12-4	48.5	%	0.20				
Phenol-d6(surr)	13127-88-3	15.8	%	0.20				
Nitrobenzene-d5(surr)	4165-60-0	70.8	%	0.20				
2-Fluorobiphenyl(surr)	321-60-8	60.2	%	0.20				
2,4,6-Tribromophenol(surr)	118-79-6	87.9	%	0.20				
p-Terphenyl-d14(surr)	1718-51-0	81.8	%	0.20				

Parameter	LCS Spk Added	LCS Result	LCS % Rec	LCSD Spk Added	LCSD Result	LCSD % Rec	RPD	RPD CtrlLimit	%Recovery CtrlLimit	Qual
2,4,5-Trichlorophenol	0.25	0.186	74.6	0.25	0.182	72.8	2.4	35	10-115	
2,4,6-Trichlorophenol	0.25	0.190	75.9	0.25	0.186	74.5	2	35	40-138	
2,4-Dinitrotoluene	0.25	0.184	73.8	0.25	0.187	74.7	1.4	35	32-114	
2-Methylphenol	0.25	0.166	66.4	0.25	0.169	67.6	1.7	35	10-132	
3- & 4-Methylphenols	0.5	0.317	63.5	0.5	0.338	67.7	6.3	35	29-132	
Hexachlorobenzene	0.25	0.226	90.6	0.25	0.240	96	5.8	35	44-142	
Hexachlorobutadiene	0.25	0.208	83	0.25	0.196	78.5	5.7	35	20-124	
Hexachloroethane	0.25	0.160	64.2	0.25	0.159	63.8	0.9	35	14-136	
Nitrobenzene	0.25	0.159	63.5	0.25	0.167	66.6	5.1	35	38-146	
Pentachlorophenol	0.25	0.207	82.6	0.25	0.198	79	4.2	35	25-125	
Pyridine	0.25	0.142	57	0.25	0.137	54.6	3.9	35	10-112	
Pyridine	0.25	0.142	57	0.25	0.137	54.6	3.9	35	10-112	

ab-q213-0321

QUALITY CONTROL CERTIFICATE

Job ID: 23040458

Date:

4/14/2023

Analysis : TCLP Semivolatiles

Method:

SW-846 8270D

Reporting Units : mg/L

Created By : GeMu

Samples in This QC Batch: 23040458.01

QC Type: MS and MSD											-
QC Sample ID: 23040	467.01										
Parameter	Sample Result	MS Spk Added	MS Result	MS % Rec	MSD Spk Added	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLimit	Qual
2,4,5-Trichlorophenol	BRL	0.25	0.221	88.5						10-115	
2,4,6-Trichlorophenol	BRL	0.25	0.220	88.1				name in	and the	40-138	L.
2,4-Dinitrotoluene	BRL	0.25	0.237	94.9						32-114	
2-Methylphenol	BRL	0.25	0.211	84.4						10-132	
3- & 4-Methylphenols	BRL	0.5	0.412	82.4						29-132	
Hexachlorobenzene	BRL	0.25	0.291	116	- 10/00/09		FA THERE	10-6	the region of	44-142	
Hexachlorobutadiene	BRL	0.25	0.260	104) h/1 10					20-124	
Hexachloroethane	BRL	0.25	0.203	81.1						14-136	
Nitrobenzene	BRL	0.25	0.200	79.8						38-146	1
Pentachlorophenol	BRL	0.25	0.283	113	1 1 1 1 1					25-125	
Pyridine	BRL	0.25	0.219	87.7						10-112	

SUBCONTRACT ORDER

Sending Laboratory:

North Water District Laboratory Services, Inc.

130 South Trade Center Parkway

Conroe, TX 77385 Phone: 936-321-6060 Fax: 936-321-6061

Project Manager: Deena Higginbotham

Subcontracted Laboratory:

A & B Labs 10100 East Freeway, Suite 100 Houston, TX 77029 Phone: (713) 453-6060

Fax: (713) 453-6091

Work Order: 23D1283

Due Expires Comments Analysis

Solid Sampled: 04/04/2023 10:00 Sample ID: 23D1283-01

Job ID:23040458

SVOA-TCLP

Analyte(s): 2,4,5 & 2,4,6 -Trichlorophenol

2,4,6-Trichlorophenol

2-Fluorophenol-surr

Hexachlorobenzene

Nitrobenzene

Phenot-d5-surr

04/18/2023 04/11/2023 10:00

2,4,5-Trichlorophenol

2,4-Dinitrotoluene (2,4-DNT)

2-Methylphenol

Hexachlorobutadiene

Nitrobenzene-d5-surr

p-Terphenyl-d14-surr

2,4,6-Tribromophenol-surr

2-Fluorobiphenyl-surr

3,4-Methylphenol

Hexachloroethane

Pentachlorophenol

Pyridine

Containers Supplied:

Released By

Received By

04/05/2023

a-b

Sample Condition Checklist

A&I	3 JobID : 23040458	Date Received	04/05	/2023		Tir	ne Recei	/ed : 5: 4	42PM		
Clie	nt Name : NWDLS										
Ter	nperature : 2.1°C	Sample pH:	NA								
The	pH Paper ID : NA										
Pe	rservative :										
	Check Points								Yes	No	N/A
1.	Cooler Seal present and signed.									Х	
2.	Sample(s) in a cooler.					¥			Х		
3.	If yes, ice in cooler.								Х		
4.	Sample(s) received with chain-of-custody.								x		
5.	C-O-C signed and dated.							Х			
6.	. Sample(s) received with signed sample custody seal.								Х		
7.	A Proposition of the Control of the							X			
8.	Water Soil Liquid S	Sludge Solid C	assette 1	Tube	Bulk	Badge	Food	Other			
9.	. Samples were received in appropriate container(s)						Х				
10.	3. Sample(s) were received with Proper preservative									Х	
11.	1. All samples were tagged or labeled.								Х		
12.	2. Sample ID labels match C-O-C ID's.								Х		
13.	Bottle count on C-O-C matches bottle	es found.							Х		
14.	Sample volume is sufficient for analy	ses requested.							X		
15.	Samples were received with in the h	old time.				+.			X		
16.	VOA vials completely filled.										Х
17.	Sample accepted.								Х		
18.	Has client been contacted about sub	-out									Х
[-											
_	mments: Include actions taken to res shows solid, received sludge. ~EV 4/5/2		/problem:								
	. s solidy received sludge, 124 1/3/2										

Received by: EValdez

Check in by/date: EValdez / 04/05/2023

ab-s005-0321

Phone: 713-453-6060 www.ablabs.com

I Hateman Organização Diministra P

White the selection of

enting to the second

STATEMENT OF THE STATEM

15% Shiner

Trime I am I am I am I am

July 07, 2023

Water District Management Harris County WCID 92 P.O. Box 579 Spring, TX 77383

RE: HC WCID 92 Digester

Enclosed are the results of analyses for samples received by the laboratory on 06/01/23 17:30, with Lab ID Number C3E5990. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mark Bourgeois

Special Projects Manager

DECEIVE DCT 18 2023 entered 10/29

Sludge Manager

Master Spreadsheet

□ TCLP ☑ Metals

□ PCB □F/S

Harris County WCID 92 P.O. Box 579 Spring TX, 77383

LABORATORY ANALYTICAL REPORT

Project:

HC WCID 92 Digester a

Client Matrix:

Waste

Sample Date & Time: 06/01/2023 11:37

Collector: CNG

Sample Type:Grab

Print Date: 7/7/2023

Digester C3E5990-01 (Waste)

Analyte	Result	Reporting Limit	Units	Nelac Status	Batch	Analyzed Date & Time	Method	Notes
			Metals					
- Arsenic	<11.1	11.1	mg/Kg dry	A	B3G0040	07/06/2023 12:00		
Cadmium	<11.1	11.1	mg/Kg dry	A	B3G0040	07/06/2023 12:00	EPA SW 846-6010, 3050	
Chromium	14.2	11.1	mg/Kg dry	A	B3G0040		EPA SW 846-6010, 3050	
Copper	240	11.1	mg/Kg dry		B3G0040	07/06/2023 12:00	EPA SW 846-6010, 3050	
Lead	<11.1	11.1	mg/Kg dry	A	B3G0040	07/06/2023 12:00	EPA SW 846-6010, 3050	
Mercury, Total	0.373			A		07/06/2023 12:00	EPA SW 846-6010, 3050	
Molybdenum	0.373 <11.1	0.222	mg/Kg dry	۸	B3F3803	06/26/2023 15:47	EPA SW 846-7471B	
Nickel		11.1	mg/Kg dry	Α	B3G0040	07/06/2023 12:00	EPA SW 846-6010, 3050	
Phosphorus, %	<11.1	11.1	mg/Kg dry	Α	B3G0040	07/06/2023 12:00	EPA SW 846-6010, 3050	
Potassium, %	1.54	1.00	% dry	Α	B3G0041	07/06/2023 14:38	EPA SW 846-6010, 3050	
Selenium	<0.556	0.556	% dry	Α	B3G0040	07/06/2023 12:00	EPA SW 846-6010, 3050	
	<11.1	11.1	mg/Kg dry	Α	B3G0040	07/06/2023 12:00	EPA SW 846-6010, 3050	
Zinc	838	11.1	mg/Kg dry	A	B3G0040	07/06/2023 12:00	EPA SW 846-6010, 3050	
	¥	<u>1</u>	Vet Lab					
	15.4%		95/5/7/6					
NH3N %	<4.44	4.44	% dry	Α	B3F2073	06/22/2023 08:50	EPA 350.2	
Nitrate-N, %	0.457	0.000222	% dry	N	B3F2589	06/20/2023 11:34	SM 4500 NO3 D	
Percent Solid	0.9	0.1	%	Α	B3F2399	06/15/2023 12:48	SM 2540G	.3
H-Sludge	6.6		std unit	Α	B3F2126	06/14/2023 16:25	EPA SW 846-9040	
rkn %	4.87	0.111	% dry	N	B3F2345	06/22/2023 10:23	EPA 351.2	13

Eastex Environmental Laboratory - Coldspring

The results in this report apply to the samples analyzed in accordance with the chain of custody document.

Harris County WCID 92 P.O. Box 579 Spring TX, 77383

EPA 350.2 - Quality Control

Eastex Environmental Laboratory - Coldspring

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD	
, marye	Kesuji	Lunit	Onts	Level	Result	76KEC	Limits	RPD	Limit	Notes
Batch B3F2073 - No Prep	Prepared	06/22/23 08	:50						-	
Blank (B3F2073-BLK1)				Analyzed	: 6/22/2023	8:50:00AM				
NH3N %	ND	0.0400	% wet						7	***************************************
LCS (B3F2073-BS1)				Analyzed	: 6/22/2023	8:50:00AM				
NH3N %	2.03		mg/L	2.00		101	80-120	**********		0.00
Matrix Spike (B3F2073-MS1)	Sou	rce: C3E5990	-01	Analyzed	: 6/22/2023	8:50:00AM				
NH3N %	2.51	WASTA STATE OF THE	mg/L	2.50	0.00300	100	80-120			
Matrix Spike Dup (B3F2073-MSD1)	Sou	rce: C3E5990	-01	Analyzed	: 6/22/2023	8:50:00AM				
NH3N %	2.52		mg/L	2.50	0.00300	100	80-120	0.159	20	
Batch B3F2126 - No Prep	Pranarad	06/14/23 16	.25							
	тератец.	00/14/23 10	.23		CU 1/2022	4.05.00014				
LCS (B3F2126-BS1) pH-Sludge	6.88		std unit	6.86	: 6/14/2023	4:25:00PM	0.200			
					420000000000000000000000000000000000000	THE STATE OF THE S	0-200			
Duplicate (B3F2126-DUP1)		rce: C3E5990		Analyzed		4:25:00PM			-	THE RESERVE
pH-Sludge	6.6		std unit		6.6			0.00	20	
Batch B3F2345 - SM 4500 Norg C	Prepared:	06/22/23 10:	23							
Blank (B3F2345-BLK1)				Analyzed	: 6/22/2023	10:23:00AM				
TKN %	ND	0.00100	% wct						-	
LCS (B3F2345-BS1)				Analyzed:	: 6/22/2023	10:23:00AM	ı			
TKN%	8.124		mg/L	10.0		81.2	80-120			
Matrix Spike (B3F2345-MS1)	Sou	rce: C3E5990	-01	Analyzed:	6/22/2023	10:23:00AM				
rkn %	7.275178	0.111	% dry	2.78	4.871811	86.5	80-120			
Matrix Spike Dup (B3F2345-MSD1)	Sou	rce: C3E5990-	-01	Analyzed:	6/22/2023	10:23:00AM				
TKN%	7.441434	0.111	% dry	2,78	4.871811	92.5	80-120	2.26	20	
Batch B3F2399 - No Prep	Droporodi	06/15/23 12:	40							
Blank (B3F2399-BLK1)	r repared:	00/13/23 12:	40		6/15/2053	12 12 005:				
Percent Solid	ND	0.1	%	Analyzed:	0/15/2023	12:48:00PM				
Dunlingto (B2E2200 DUDI)					Visamore.					
Ouplicate (B3F2399-DUP1)		ce: C3F3098-		Analyzed:		12:48:00PM				
erecit build	1.5	0.1	%		1.5			0.00	20	

Eastex Environmental Laboratory - Coldspring

The results in this report apply to the samples analyzed in accordance with the chain of custody document.

Harris County WCID 92 P.O. Box 579 Spring TX, 77383

SM 4500 NO3 D - Quality Control

Eastex Environmental Laboratory - Coldspring

Analyte	Result	Reporting Limit		Spike Level	Source Result	%REC	%REC Limits	RPD	RPD	¥1
Batch B3F2589 - No Prep	Prepared	: 06/20/23 1			Reduit	70KEC	Linius	KPD	Limit	Notes
Blank (B3F2589-BLK1)		. 00/20/25 1	1.54	Analyzad	. 6/20/2022	11:34:00AN	,			
Nitrate-N, %	ND	0.00000200	% wet	Anatyzeu	: 0/20/2023	11:34:00AN	<u> </u>			
LCS (D2E2500 DC1)			70 1101	V 100 0	All					
LCS (B3F2589-BS1) Nitrate-N, %					: 6/20/2023	11:34:00AN	1			I-L-UL-U
14111 die-14, 76	0.996		mg/L	1.00	(95)	99.6	80-120			
Matrix Spike (B3F2589-MS1)	So	ırce: C3E599	0-01	Analyzed	6/20/2023	11:34:00AN	1			
Nitrate-N. %	1.016667	0.000222	% dry	0.556	0.4566667	101	80-120			
Matrix Spike Dup (B3F2589-MSD1)	Sor	rce: C3E599	0-01	Analyzed	6/20/2023	11:34:00AN	1			
Nitrate-N, %	1.106667	0.000222	% dry	0.556	0.4566667	117	80-120	8.48	20	
Batch B3F3803 - SW 846-7471B	Prepared	: 06/23/23 13	3:50							
Blank (B3F3803-BLK1)	313			Analyzada	6/26/2023	3:30:00PM				
Mercury, Total	ND	0.00200	mg/Kg wet	Analyzeu	0/20/2023	3.30.001101				
LCS (B3F3803-BS1)				Analyzod	6/26/2023	3:32:31PM				
Mercury, Total	0.0252	0.00200	mg/Kg wei	0.0250	0/20/2023	101	80-120			
Matrix Spike (B3F3803-MS1)	e.	rce: C3E598			6/26/2022		00-120			
Mercury, Total	1.51	0.133		1.67		3:40:54PM	74.104			
	1.51	0.133	mg/Kg dry	1.07	0.150	8.18	75-125			
Matrix Spike Dup (B3F3803-MSD1)	Sou	rce: C3E5984	4-01	Analyzed:	6/26/2023	3:43:26PM				
Mercury, Total	1.67	0.133	mg/Kg dry	1.67	0.150	91.0	75-125	9.64	20	
Batch B3G0040 - SW846-3050	Prepared	07/03/23 15	5:29							
Blank (B3G0040-BLK1)				Analyzed:	7/6/2023 1	1:36:56AM			· · · · · · · · · · · · · · · · · · ·	
Aolybdenum	ND	0.100	mg/Kg wet							
Arsenic	ND	0.100	mg/Kg wet							
Cadmium Cadmium	ND	0.100	mg/Kg wet							
Chromium	ND	0.100	mg/Kg wet							
`opper	ND	0.100	mg/Kg wet							
cad	ND	0.100	mg/Kg wet							
lickel	ND	0.100	mg/Kg wet							
otassium, %	ND	0.00500	% wet							
elenium	ND	0.100	mg/Kg wet							
line	ND	0.100	mg/Kg wet							
CS (B3G0040-BS1)				Analyzed:	7/6/2023 1	1:40:23 A M				

Eastex Environmental Laboratory - Coldspring

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Harris County WCID 92 P.O. Box 579 Spring TX, 77383

EPA SW 846-6010, 3050 - Quality Control

Eastex Environmental Laboratory - Coldspring

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3G0040 - SW846-3050	Prepared:	07/03/23 15	5:29				100000			
LCS (B3G0040-BS1)				Analyzed:	7/6/2023	11:40:23AM				
Molybdenum	2.72	0.100	mg/Kg wet	2.50		109	80-120			
Arsenic	2.56	0.100	mg/Kg wet	2.50		102	80-120			
Cadmium	2.7	0.100	mg/Kg wet	2.50		107	80-120			
Chromium	2.67	0.100	mg/Kg wet	2.50		107	80-120			
Copper	2.91	0.100	mg/Kg wet	2.50		116	80-120			
Lead	2.66	0.100	mg/Kg wet	2.50		106	80-120			
Nickel	2.73	0.100	mg/Kg wet	2.50		109	80-120			
otassium, %	0.0276	0.00500	% wet	0.0250		110	80-120			
Selenium	2,43	0,100	mg/Kg wet	2,50		97.2	80-120			
Zine	2.7	0.100	mg/Kg wet	2.50		108	80-120			
Matrix Spike (B3G0040-MS1)	Sou	rce: C3E283	4-01	Analyzed:	7/6/2023	11:50:42AM				
Molybdenum	883.3333	33.3	mg/Kg dry	833	3.4	106	75-125			
Arsenic	850	33.3	mg/Kg dry	833	ND	102	75-125			
Cadmium	870	33.3	mg/Kg dry	833	ND	105	75-125			
Chromium	937	33.3	mg/Kg dry	833	81.7	103	75-125			
Copper	1380	33.3	mg/Kg dry	833	433	114	75-125			
Lead	870	33.3	mg/Kg dry	833	11.1	103	75-125			
Nickel	930	33.3	mg/Kg dry	833	13.7	110	75-125			
otassium, %	9.40	1.67	% dry	8.33	1.16	98.8	75-125			
Selenium	817	33.3	mg/Kg dry	833	ND	98.0	75-125			
Zine	4133.333	33.3	mg/Kg dry	833	3220	110	75-125			
Matrix Spike Dup (B3G0040-MSD1)	Sou	rce: C3E283	4-01	Analyzed:	7/6/2023	11:54:11AM				
Molybdenum	883.3333	33.3	mg/Kg dry	833	3.4	106	75-125	0.00	20	
Arsenie	853	33.3	mg/Kg dry	833	ND	102	75-125	0.391	20	
Cadmium	880	33.3	mg/Kg dry	833	ND	105	75-125	0.381	20	
Chromium	937	33.3	mg/Kg dry	833	81.7	103	75-125	0.00	20	
Copper	1370	33.3	mg/Kg dry	833	433	112	75-125	0.727	20	
Lead	880	33.3	mg/Kg dry	833	11.1	104	75-125	1.14	20	
Nickel	927	33.3	mg/Kg dry	833	13.7	110	75-125	0.359	20	
otassium, %	9.37	1.67	% dry	8.33	1.16	98.4	75-125	0.355	20	
Selenium	817	33.3	mg/Kg dry	833	ND	98.0	75-125	0.00	20	
Zine	4066.667	33.3	mg/Kg dry	833	3220	102	75-125	1.63	20	
Parts B2C6041 CW046 2050		05/06/05 1								
Batch B3G0041 - SW846-3050	Prepared:	07/06/23 14	:17							

Eastex Environmental Laboratory - Coldspring

Blank (B3G0041-BLK1)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Analyzed: 7/6/2023 2:17:15PM

Harris County WCID 92 P.O. Box 579 Spring TX, 77383

EPA SW 846-6010, 3050 - Quality Control

Eastex Environmental Laboratory - Coldspring

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3G0041 - SW846-3050	Prepared:	07/06/23 14:	17							
Blank (B3G0041-BLK1)				Analyzed:	7/6/2023	2:17:15PM				
Phosphorus, %	ND	1.00	% wet			2.171121141				-
LCS (B3G0041-BS1)				Analyzed:	7/6/2023	2:20:44PM				
Phosphorus, %	0.00233	1.00	% wet	0.00252	.,0,000	92.3	80-120			
Matrix Spike (B3G0041-MS1)	Sou	rce: C3E2834-	-01	Analyzed:	7/6/2023	2:31:09PM				
Phosphorus, %	3.50	1.00	% dry	0.840	2.61	105	75-125			
Matrix Spike Dup (B3G0041-MSD1)	Sou	rce: C3E2834-	01	Analyzed:	7/6/2023	2:34:36PM				
Phosphorus, %	3.46	1.00	% dry	0.840	2.61	101	75-125	0.986	20	

Harris County WCID 92 P.O. Box 579 Spring TX, 77383

Notes and Definitions

3	Sample analysis performed out of holding time.
13	LCS associated with sample batch outside of acceptance limits.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	 Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

ANALYTICAL REPORT

PREPARED FOR

13

Attn: Mark Bourgeois
Eastex Environmental Laboratory Inc.
PO BOX 1089
Coldspring, Texas 77331
Generated 6/19/2023 11:24:51 AM

JOB DESCRIPTION

Harris County WCID 92

JOB NUMBER

860-51255-1

Eurofins Houston 4145 Greenbriar Dr Stafford TX 77477

Page 1 of 17

Eurofins Houston

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

50 gr

Generated 6/19/2023 11:24:51 AM

5 6

8

9

Authorized for release by Sylvia Garza, Project Manager Sylvia, Garza@et.eurofinsus.com (832)544-2004

Table of Contents

i dolo of oolitoits	
Cover Page	1
Table of Contents	3
Definitions/Glossany	4
Case Narrativo	5
Detection Summary	
Client Sample Results	7
Surrogato Summani	0
OC Sample Possite	8
	9
QC Association Summary	11
lab Chuamiala	12
Cartification	13
Motheral Communication	14
Computer O	15
	ÇI
	16
Receipt Checklists	17

1

21

5

8

9

Definitions/Glossary

Client: Eastex Environmental Laboratory Inc. Project/Site: Harris County WCID 92

Job ID: 860-51255-1

 G	OS:	sary
-		,

TNTC

Too Numerous To Count

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
D	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
-	

Case Narrative

Client: Eastex Environmental Laboratory Inc. Project/Site: Harris County WCID 92

Job ID: 860-51255-1

Job ID: 860-51255-1

Laboratory: Eurofins Houston

Narrative

Job Narrative 860-51255-1

Receipt

The sample was received on 6/14/2023 2:05 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.4°C

PCBs

Method 8082A: liquid sludge, weighed to 5 gramsHC WCID 92 Digester a (860-51255-1)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

anae

5

7

0

9

Detection Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: Harris County WCID 92

Job ID: 860-51255-1

4 5

Client Sample ID: HC WCID 92 Digester a

No Detections.

Lab Sample ID: 860-51255-1

This Detection Summary does not include radiochemical test results.

Client Sample Results

Client: Eastex Environmental Laboratory Inc.

Project/Site: Harris County WCID 92

Job ID: 860-51255-1

Client Sample ID: HC WCID 92 Digester a

Date Collected: 06/01/23 11:37 Date Received: 06/14/23 14:05 Lab Sample ID: 860-51255-1

Matrix: Solid
Percent Solids: 0.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		14		mg/Kg	121	06/15/23 13:56	06/16/23 10:51	1
PCB-1221	ND		14		mg/Kg	12	06/15/23 13:56	06/16/23 10:51	1
PCB-1232	ND		14		mg/Kg	13	06/15/23 13:56	06/16/23 10:51	
PCB-1242	ND		14		mg/Kg	13	06/15/23 13:56	06/16/23 10:51	
PCB-1248	ND		14		mg/Kg	£3	06/15/23 13:56	06/16/23 10:51	1
PCB-1254	ND		14		mg/Kg	ш	06/15/23 13:56	06/16/23 10:51	
PCB-1260	ND		14		mg/Kg	п	06/15/23 13:56	06/16/23 10:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	76		35 - 140				06/15/23 13:56	06/16/23 10:51	1
DCB Decachlorobiphenyl (Surr)	92		37 - 142				06/15/23 13:56	06/16/23 10:51	1
General Chemistry									
Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	DII Fac
Percent Moisture (EPA Moisture)	99.3				%			06/15/23 15:19	1
Percent Solids (EPA Moisture)	(0.7))			%			06/15/23 15:19	1

Surrogate Summary

Client: Eastex Environmental Laboratory Inc.

Project/Site: Harris County WCID 92

Job ID: 860-51255-1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid

Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)	
		TCX1	DCB1		
Lab Sample ID	Client Sample ID	(35-140)	(37-142)		
860-51255-1	HC WCID 92 Digester a	76	92		M
LCS 860-107986/2-A	Lab Control Sample	81	88		
LCSD 860-107986/3-A	Lab Control Sample Dup	81	88		
MB 860-107986/1-A	Method Blank	78	87	Nic Control of the Co	
Surrogate Legend					
TCX = Tetrachloro-m-xyl	ene				
DCR = DCR Describer					

2 4 5

QC Sample Results

Client: Eastex Environmental Laboratory Inc.

Project/Site: Harris County WCID 92

Job ID: 860-51255-1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 860-107986/1-A

Matrix: Solid

Analysis Batch: 107881

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 107986

5

	MB I	MB						Frep batch	10/986
Analyte	Result (Qualifier	RL	MDL	Unit	D	Dronousd	4 4 2	
PCB-1016	ND		0.017			_ =	Prepared	Analyzed	Dil Fac
PCB-1221	ND				mg/Kg		06/15/23 13:55	06/15/23 17:01	1
PCB-1232	ND		0.017		mg/Kg		06/15/23 13:55	06/15/23 17:01	104
Townson and the	ND		0.017		mg/Kg		06/15/23 13:55	12.1	
PCB-1242	ND		0.017		5,000			06/15/23 17:01	1
PCB-1248					mg/Kg		06/15/23 13:55	06/15/23 17:01	1
NOTE ATOM	ND		0.017		mg/Kg		06/15/23 13:55	06/15/23 17:01	1
PCB-1254	ND		0.017		mg/Kg		06/15/23 13:55	COLUMN CONTRACTOR A TAXABOA	
PCB-1260	ND							06/15/23 17:01	1
	NO		0.017		mg/Kg		06/15/23 13:55	06/15/23 17:01	1
	MB N	//B							

Surrogate	%Recovery	Qualifier	Limits
Tetrachioro-m-xylene	78		35 - 140
DCB Decachlorobiphenyl (Surr)	87		37 - 142

Prepared Analyzed Dil Fac 06/15/23 13:55 06/15/23 17:01 06/15/23 13:55 06/15/23 17:01

Lab Sample ID: LCS 860-107986/2-A

Matrix: Solid

Analysis Batch: 107881

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 107986 Spike LCS LCS %Rec Analyte Added Result Unit %Rec Limits PCB-1016 0.167 0.121 mg/Kg 73 27 - 121 PCB-1260 0.167 0.119 mg/Kg 71 27 - 139

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	81		35 - 140
DCB Decachlorobiphenyl (Surr)	88		37 142

Lab Sample ID: LCSD 860-107986/3-A

Matrix: Solid

Analysis Batch: 107881

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 107986

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit %Rec Limits RPD Limit PCB-1016 0.167 0.122 mg/Kg 73 27 - 121 0 20 PCB-1260 0.167 0.119 mg/Kg 72 27 - 139 0 20

LCSD LCSD

	LOOD	LUGD	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	81		35 - 140
DCB Decachlorobiphenyl (Surr)	88		37 - 142

Method: Moisture - Percent Moisture

Lab Sample ID: MB 860-108051/1

Matrix: Solid

Analysis Batch: 108051

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB Analyte Result Qualifier NONE NONE Unit Analyzed DII Fac Percent Moisture 0.4 06/15/23 15:19 Percent Solids 99.6 % 06/15/23 15:19

Eurofins Houston

QC Sample Results

Client: Eastex Environmental Laboratory Inc. Project/Site: Harris County WCID 92 Job ID: 860-51255-1

Method: Moisture - Percent Moisture (Continued)

Lab Sample ID: 860-51255-1 DU Matrix: Solid

Client Sample ID: HC WCID 92 Digester a

Prep Type: Total/NA

Analysis Batch: 108051

Analysis Baton: 100001	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Percent Moisture	99.3		99.3		%		2.004	0	20
Percent Solids	0.7		0.7		%			0	20

5

9

QC Association Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: Harris County WCID 92

Job ID: 860-51255-1

GC	Sam	i	VOA	
GC	Sell	и	VUA	

Analysis	Batch:	107881
----------	--------	--------

ient Sample ID	Prep Type	Matrix	Method	Lord Jugard
arnod Blank	Total/NA	Solid		Prep Batch
b Control Sample			8082A	107986
	lotal/NA	Solid	8082A	107986
5 Control Sample Dup	Total/NA	Solid	8082A	107986
	ethod Blank b Control Sample b Control Sample Dup	b Control Sample Total/NA	b Control Sample Total/NA Solid b Control Sample Dup	######################################

Prep Batch: 107986

Lab Sample ID	Client Sample ID	David Toward	**		
860-51255-1	HC WCID 92 Digester a	Prep Type	Matrix	Method	Prep Batch
MD 000 torocott		Total/NA	Solid	3550C	
MB 860-107986/1-A	Method Blank	Total/NA	Solid		
LCS 860-107986/2-A	Lab Control Sample		Solid	3550C	
LCSD 860-107986/3-A	V N N	Total/NA	Solid	3550C	
LC3D 660-107986/3-A	Lab Control Sample Dup	Total/NA	Solid	3550C	
Analysis Databatha					

Analysis Batch: 108126

Lab Sample ID	Client Sample ID	Prep Type	Matrix		
860-51255-1	HC WCID 92 Digester a	Total/NA	Solid	Method 8082A	Prep Batch
					107986

General Chemistry

Analysis Batch: 108051

Client Sample ID	Prep Type	Matrix	Manage 1	
HC WCID 92 Digester a				Prep Batch
		Solid	Moisture	-51 200
Wethod Blank	Total/NA	Solid	Moisture	
HC WCID 92 Digester a	Total/NA	Solid		
	Iotal/NA	Solid	Moisture	
	HC WCID 92 Digester a Method Blank	HC WCID 92 Digester a Total/NA Method Blank Total/NA	HC WCID 92 Digester a Total/NA Solid Method Blank Total/NA Solid	HC WCID 92 Digester a Total/NA Solid Moisture Method Blank Total/NA Solid Moisture HC WCID 92 Digester a

Lab Chronicle

Client: Eastex Environmental Laboratory Inc.

Project/Site: Harris County WCID 92

Job ID: 860-51255-1

Client Sample ID: HC WCID 92 Digester a

Date Collected: 06/01/23 11:37 Date Received: 06/14/23 14:05 Lab Sample ID: 860-51255-1

Matrix: Solid

Batch Dil Initial Final Batch Prepared Prep Type Type Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis Moisture 108051 06/15/23 15:19 JM EET HOU

Client Sample ID: HC WCID 92 Digester a

Date Collected: 06/01/23 11:37

Date Received: 06/14/23 14:05

Lab Sample ID: 860-51255-1

Matrix: Solid

Percent Solids: 0.7

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3550C		(5.02 g	5 mL	107986	06/15/23 13:56	BH	EET HOU
Total/NA	Analysis	8082A		1			108126	06/16/23 10:51	BNW	EET HOU

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Eurofins Houston

5

6

8

9

Accreditation/Certification Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: Harris County WCID 92

Job ID: 860-51255-1

Laboratory: Eurofins Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date	
Arkansas DEQ	State	88-00759	08-04-23	
Florida	NELAP	E871002	06-30-23	
Louisiana	NELAP	03054	06-30-23	
Louisiana (All)	NELAP	03054	06-30-23	
Oklahoma	State	1306	08-31-23	
Texas	NELAP	T104704215-23-50	06-30-23	
Texas	TCEQ Water Supply	T104704215	12-28-25	
USDA	US Federal Programs	525-23-79-79507	03-20-26	
-	US Federal Programs	525-23-79-79507	03-20-26	

4

5

8

9

13

Method Summary

Client: Eastex Environmental Laboratory Inc.

Project/Site: Harris County WCID 92

Job ID: 860-51255-1

Method	Method Description	Protocol	Laboratory
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	EET HOU
Moisture	Percent Moisture	EPA	EET HOU
3550C	Ultrasonic Extraction	SW846	EET HOU

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

7

5

1

7

8

9

Sample Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: Harris County WCID 92

Job ID: 860-51255-1

 Lab Sample ID
 Client Sample ID
 Matrix
 Collected
 Received

 860-51255-1
 HC WCID 92 Digester a
 Solid
 06/01/23 11:37
 06/14/23 14:05

5

(3)

0

SUBCONTRACT ORDER

Sending Laboratory:

Eastex Environmental Laboratory - Coldspring PO Box 1089 Coldspring, TX 77331 Phone 936-653-3249 Fax: 936-653-3172

Subcontracted Laboratory:

Eurofins Xenco LLC 4147 Greenbriar Dr Stafford, TX 77477 Phone 713-690-4444 Fax 713-690-5646

PO 061423D

PROJECT NAME.

Harris County WCID 92

Turnaround

Matrix

IDDAYS

Waste

Special instruction

See Attached

PCB MG/KG %SOLIDS

Temp. 1. 8 IR ID:HOU-343 C/F -0.4 1. 8

Received Iced Y/N Temp _____

Released By

WILLIAM IYOT

me

Received By

6/14/23 1405

Date & Time

Pape 9/2623

Login Sample Receipt Checklist

Client: Eastex Environmental Laboratory Inc.

Job Number: 860-51255-1

5

Login Number: 51255 List Number: 1 Creator: Rubio, Yuri

List Source: Eurofins Houston

Question	Answer Comment	
The cooler's custody seal, if present, is intact.	True	Territoria California
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	GETYTES 0.
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

EASTEX ENVIRONMENTAL LABORATORY, INC.

P.O. Box 1089 * Coldspring, TX 77331 P.0 (936) 653-3249 * (800) 525-0508 (93

INVOICE TO:

77331 P.O. Box 631375 * Nacogdoches, TX 75963-1375 25-0508 (936) 569-8879 * FAX (936) 569-8951 www.eastexlabs.com

> White Copy-Follows Samples Yellow Copy-Laboratory Pink Copy-Client Copy

Alternate Check In:	LAB USE ONLY	Reilliquistied by:	Reiniquisned by	Tompus of by	Delinguished By					345940		(353991	Work Order ID	11	Project Name:	Sampler's Signature:	Sampler's Name (print)		D .	Email:	Phone#:	Attn:		Address:	Company: () /
	Sample	7						d.				DICA	Sample ID	1/2 CIV()	200	100	newuch				Jal 114	0, 176)		
Date	Sample Condition Acceptable:	Necesives	Rec	7					M +E1166.10	N 4611 56.10	N 4511 86 10	V 120 120 10	Date Time Matrix		Preservatives:	Туре:	Container Size:	Matrix:	Cor G:	INSTRUCTIONS:	Phone#:	Attn:		Address:	Company:
Time	(YES// NO	by an an Checked in By	ed By:	Neceived by.					V 6	NG	NG	W6	C or G DO	F	s: C=Chilled S=Sulfuric Acid N=Nitric Acid ST=Sodium Thiosulfate H=HCL O= Other	P= Plastic G= Glass		DW=Drinking Water WW=Wastewater	C= Composite G= Grab	IONS:				: SAME	Y.
6-D	Temp												pH CI2 Flow T	Field Data		G= Glass T= Teflon S= Sterile	1=Gallon 2=1/2 Gallon 3=Quart/Liter 4=500mL 5= 6=125mL (4oz) 7=60mL (2 oz) 8= 40mL Vial 9=Other	W=Wastewater	irab						771
 	C *Therm ID	(pate)	Date	Date)				7 10 5	156	11 3 P	136	Temp # Size Type	Containers	B=Base/Caustic Z= Zn Acetate		0mL 5=250mL 9=Other								Remarks:
C1	Logged In By:	3 Time 10	Time	Time					C)(\overline{C}	0	Pres	W		t	V	T	AI De	NAL 2	YSI	S RE(QUES	TEL	
101-23	Date	29 Received Iced:	Received Iced:	Received Iced:																					
1730	Time	d Iced: YES NO	d Iced: YES / NO	d Iced: YES / NO																					

7

* * *

July 14, 2023

Water District Management Harris County WCID 92 P.O. Box 579 Spring, TX 77383

RE: HC WCID 92 Digester

Enclosed are the results of analyses for samples received by the laboratory on 06/01/23 16:24, with Lab ID Number C3E5991. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mark Bourgeois

Special Projects Manager

DECEIVED OCT 18 2023 entered 10/29

Harris County WCID 92 P.O. Box 579 Spring TX, 77383

Case Narrative

40 CFR 503 Criterion for Fecal Coliform Class B = 2,000,000 MPN/g. for Class A = 1,000 MPN/g 40 CFR 503 Criterion for Vector Class B = <1.5mg/O2/g Solids/hr *Fecal Coliform result is a geometric mean of seven individual samples.

LABORATORY ANALYTICAL REPORT

Project:

HC WCID 92 Digester b

Client Matrix:

Waste

Sample Date & Time: 06/01/2023 11:37

Collector: CNG Sample Type:Grab

Print Date: 7/14/2023

Digester C3E5991-01 (Waste)

Analyte	Result	Reporting Limit	Units	Nelac Status	Batch	Analyzed Date & Time	Method	Notes
		Microl	piological	Lab				
- Fecal Coliform IDEXX	231400	1000	mpn/gram	N	B3F0416	06/01/2023 17:50	Colilert 18	
Vector	1.8	0.1	mg O2/hr/g	N	B3G1691	06/01/2023 17:00	TAC 312.83(b)(4)	
			Wet Lab					
					5			
Percent Solid	0.9	0.1	%	Α	B3F0457	06/02/2023 16:44	SM 2540G	
Volatile Percent Solid	70.2	0.1	%	Α	B3F0431	06/05/2023 10:38	SM 2540G	

Harris County WCID 92 P.O. Box 579 Spring TX, 77383

Colilert 18 - Quality Control

Eastex Environmental Laboratory - Coldspring

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B3F0416 - No Prep Micro	Prepared:	06/01/23 17	:50	WF						
Blank (B3F0416-BLK1)				Analyzed:	6/1/2023	5:50:00PM				
Feeal Coliform IDEXX	ND	1000	mpn/gram							
Duplicate (B3F0416-DUP1)	Sou	rce: C3F0733	-03	Analyzed:	6/1/2023	5:50:00PM				
Fecal Coliform IDEXX	183500	1000	mpn/gram		248100			29.9	200	
Batch B3F0431 - No Prep	Prepared:	06/05/23 10:	:38		- tale-					***************************************
Blank (B3F0431-BLK1)				Analyzed:	6/5/2023	10:38:00AM				
Volatile Percent Solid	ND	0.1	%							
Duplicate (B3F0431-DUP1)	Sou	rce: C3E5991	-01	Analyzed:	6/5/2023	10:38:00AM				
Volatile Percent Solid	68.2	0.1	%		70.2			2.89	10	
Batch B3F0457 - No Prep	Prepared:	06/02/23 16:	:44							
Blank (B3F0457-BLK1)				Analyzed:	6/2/2023	4:44:00PM				
Percent Solid	ND	0.1	%							
Duplicate (B3F0457-DUP1)	Sou	rce: C3E5991	-01	Analyzed:	6/2/2023	4:44:00PM				
Percent Solid	0.9	0.1	%		0.9			0.00	20	9741
Batch B3G1691 - No Prep Micro	Prepared:	06/01/23 17:	:00							
Blank (B3G1691-BLK1)				Analyzed:	6/1/2023	5:00:00PM				
Vector	ND	0.1	mg O2/hr/g	ACTUAL TO A STATE OF THE STATE						
Duplicate (B3G1691-DUP1)	Sou	rce: C3F0530	-01	Analyzed:	6/1/2023	5:00:00PM		2-1-1		
Vector	5.85	0.1	mg O2/hr/g		2.66			75.0	200	

Harris County WCID 92 P.O. Box 579 Spring TX, 77383

Notes and Definitions

DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

June 09, 2023

Water District Management Harris County WCID 92 P.O. Box 579 Spring, TX 77383

RE: HC WCID 92 Digester

Enclosed are the results of analyses for samples received by the laboratory on 05/18/23 17:07, with Lab ID Number C3D5831. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mark Bourgeois

Special Projects Manager

DECENTED 2023
LOWERED 10/29

Sludge Manager
Master Spreadsheet
TCLP Metals

Harris County WCID 92 P.O. Box 579 Spring TX, 77383

LABORATORY ANALYTICAL REPORT

Project:

HC WCID 92 Digester c

Client Matrix:

Waste

Sample Date & Time: 05/18/2023 12:40

Collector: TMF

Sample Type:Grab

Print Date: 6/9/2023

Digester C3D5831-01 (Waste)

Analyte	Result	Reporting Limit	Units	Nelac Status	Batch	Analyzed Date & Time	Method	Notes
		N	/et Lab					
Percent Solid	0.6	0.1	%	Α	B3E3232	05/19/2023 14:09	SM 2540G	

Harris County WCID 92 P.O. Box 579 Spring TX, 77383

SM 2540G - Quality Control

Eastex Environmental Laboratory - Coldspring

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B3E3232 - No Prep	Prepared: 0	5/19/23 14:	09							
Blank (B3E3232-BLK1)				Analyzed:	5/19/2023	2:09:00PM				
Percent Solid	ND	0.1	%							
Duplicate (B3E3232-DUP1)	Source	e: C3E5025	-02	Analyzed:	5/19/2023	2:09:00PM				
Percent Solid	1.8	0.1	%		1.8			0.00	20	

Harris County WCID 92 P.O. Box 579 Spring TX, 77383

Notes and Definitions

DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

ANALYTICAL REPORT

PREPARED FOR

Attn: Mark Bourgeois Eastex Environmental Laboratory Inc. PO BOX 1089

Coldspring, Texas 77331

Generated 6/5/2023 1:47:13 PM

JOB DESCRIPTION

Harris County WCID 92

JOB NUMBER

860-49823-1

Eurofins Houston 4145 Greenbriar Dr Stafford TX 77477

Eurofins Houston

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

50 mg

Generated 6/5/2023 1:47:13 PM

Authorized for release by Sylvia Garza, Project Manager Sylvia.Garza@et.eurofinsus.com (832)544-2004

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
	6
Client Sample Results	7
	9
QC Sample Results	11
	21
	24
	25
	26
	27
	28
	29

Definitions/Glossary Client: Eastex Environmental Laboratory Inc. Job ID: 860-49823-1 Project/Site: Harris County WCID 92 Qualifiers GC/MS Semi VOA Qualifier Qualifier Description Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. GC Semi VOA Qualifier Qualifier Description Surrogate recovery exceeds control limits, low biased. Glossary Abbreviation These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis %R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid DER Duplicate Error Ratio (normalized absolute difference) Dil Fac Dilution Factor DL Detection Limit (DoD/DOE) DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample DLC Decision Level Concentration (Radiochemistry) EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE) LOQ MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry) MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MOI Method Quantitation Limit

NC

ND

NEG

POS

POL

PRES

QC

RER

RL

RPD

TEF

TEQ

TNTC

Not Calculated

Negative / Absent

Positive / Present

Presumptive

Quality Control

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Not Detected at the reporting limit (or MDL or EDL if shown)

Case Narrative

Client: Eastex Environmental Laboratory Inc. Project/Site: Harris County WCID 92

Job ID: 860-49823-1

5

Job ID: 860-49823-1

Laboratory: Eurofins Houston

Narrative

Job Narrative 860-49823-1

Receipt

The sample was received on 5/23/2023 10:16 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.0°C

GC/MS VOA

Method 8260C: The continuing calibration verification (CCV) associated with batch 860-105101 recovered above the upper control limit for Tetrachloroethene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: (CCVIS 860-105101/2).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC/MS Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Herbicides

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Pesticides

Method 8081B: The laboratory is using 70 - 130% as interim acceptance criteria for recoveries of spiked analytes, until in-house LCS limits are developed. Data is flagged and reported. HC WCID 92 Digester C (860-49823-1), (LB 860-104900/1-F), (LCS 860-105332/2-A), (LCSD 860-105332/3-A) and (MB 860-105332/1-A)

Method 8081B: The laboratory is using 70 - 130% as interim acceptance criteria for recoveries of spiked analytes, until in-house LCS limits are developed. Data is flagged and reported.HC WCID 92 Digester C (860-49823-1), (LB 860-104900/1-F) and (MB 860-105332/1-A)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Houston 6/5/2023

Detection Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: Harris County WCID 92

Job ID: 860-49823-1

5

Client Sample ID: HC WCID 92 Digester C

Lab Sample ID: 860-49823-1

No Detections.

This Detection Summary does not include radiochemical test results.

Client: Eastex Environmental Laboratory Inc.

Project/Site: Harris County WCID 92

Client Sample ID: HC WCID 92 Digester C

Date Collected: 05/18/23 12:40 Date Received: 05/23/23 10:16

Lab Sample ID: 860-49823-1

Matrix: Solid

Analyte	 Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.050		mg/L	-		05/27/23 02:51	50
Carbon tetrachloride	ND		0.25		mg/L			05/27/23 02:51	50
Chlorobenzene	ND		0.050		mg/L			05/27/23 02:51	50
Chloroform	ND		0.050		mg/L			05/27/23 02:51	50
1,2-Dichloroethane	ND		0.050		mg/L			05/27/23 02:51	50
1,1-Dichloroethene	ND		0.050		mg/L			05/27/23 02:51	50
2-Butanone	ND		2.5		mg/L			05/27/23 02:51	50
Tetrachloroethene	ND		0.050		mg/L			05/27/23 02:51	50
Trichloroethene	ND		0.25		mg/L			05/27/23 02:51	50
Vinyl chloride	ND		0.10		mg/L			05/27/23 02:51	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	94		63 - 144			_		05/27/23 02:51	50
4-Bromofluorobenzene (Surr)	101		74 - 124					05/27/23 02:51	50
Dibromofluoromethane (Surr)	97		75 - 131					05/27/23 02:51	50
Toluene-d8 (Surr)	103		80 - 120					05/27/23 02:51	50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND	THE STATE OF THE S	0.13		mg/L		05/31/23 14:00	06/01/23 19:32	- 5
2,4,5-Trichlorophenol	ND		0.13		mg/L		05/31/23 14:00	06/01/23 19:32	5
2,4,6-Trichlorophenol	ND		0.13		mg/L		05/31/23 14:00	06/01/23 19:32	5
2,4-Dinitrotoluene	ND		0.13		mg/L		05/31/23 14:00	06/01/23 19:32	5
2-Methylphenol	ND		0.13		mg/L		05/31/23 14:00	06/01/23 19:32	5
Hexachlorobenzene	ND		0.13		mg/L		05/31/23 14:00	06/01/23 19:32	5
Hexachlorobutadiene	ND		0.13		mg/L		05/31/23 14:00	06/01/23 19:32	5
Hexachloroethane	ND		0.13		mg/L		05/31/23 14:00	06/01/23 19:32	5
Nitrobenzene	ND		0.13		mg/L		05/31/23 14:00	06/01/23 19:32	5
Pentachlorophenol	ND		0.25		mg/L		05/31/23 14:00	06/01/23 19:32	5
Pyridine	ND		0.25		mg/L		05/31/23 14:00	06/01/23 19:32	5
3 & 4 Methylphenol	ND		0.25		mg/L		05/31/23 14:00	06/01/23 19:32	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	58		31 - 132				05/31/23 14:00	06/01/23 19:32	5
2-Fluorobiphenyl (Surr)	50		29 - 112				05/31/23 14:00	06/01/23 19:32	5
2-Fluorophenol (Surr)	43		21 - 114				05/31/23 14:00	06/01/23 19:32	5
Nitrobenzene-d5 (Surr)	57		26 - 110				05/31/23 14:00	06/01/23 19:32	5
o-Terphenyl-d14 (Surr)	73	2	20 - 141				05/31/23 14:00	06/01/23 19:32	5
Phenol-d5 (Surr)	33		16 - 117				05/31/23 14:00	06/01/23 19:32	5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlorodane	ND		0.00098		mg/L		05/30/23 10:34	05/30/23 16:24	-
Endrin	ND		0.000049		mg/L		05/30/23 10:34	05/30/23 16:24	1
Heptachlor	ND		0.000049		mg/L		05/30/23 10:34	05/30/23 16:24	-1
Heptachlor epoxide	ND		0.000049		mg/L		05/30/23 10:34	05/30/23 16:24	4
gamma-BHC (Lindane)	ND		0.000049		mg/L		05/30/23 10:34	05/30/23 16:24	4
Methoxychlor	ND		0.000049		mg/L		05/30/23 10:34	05/30/23 16:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	48	S1-	70 - 130				05/30/23 10:34	05/30/23 16:24	Dii Fac

Client Sample Results

Client: Eastex Environmental Laboratory Inc.

Project/Site: Harris County WCID 92

Job ID: 860-49823-1

Client Sample ID: HC WCID 92 Digester C

Date Collected: 05/18/23 12:40 Date Received: 05/23/23 10:16

Mercury

Lab Sample ID: 860-49823-1

Matrix: Solid

Surrogate	%Recovery	Qualifier	Limits				Prepared		
Tetrachloro-m-xylene	62	S1-	70 - 130				05/30/23 10:34	O5/30/23 16:24	Dil Fa
Mathad: 518/946 90945 0		19. VIII 21. 1	2412						
Method: SW846 8081B - Organ Analyte									
Toxaphene		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
roxapriene	ND		0.00098		mg/L		05/30/23 10:34	06/02/23 13:30	Sections,
Method: SW846 8151A - Herbic	ides (GC) - TCI E								
Analyte		Qualifier	RL	MIDI	Unit		-		
2,4-D	ND		0.00020		1200000	D	Prepared	Analyzed	Dil Fa
2,4,5-TP (Silvex)	ND		0.00020		mg/L		05/28/23 17:53	06/01/23 16:21	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ND		0.00020		mg/L		05/28/23 17:53	06/01/23 16:21	
Gurrogate	%Recovery	Qualifier	Limits				Prepared	Analyzad	Dil Es
Surrogate 2,4-Dichlorophenylacetic acid	%Recovery 82	Qualifier	Limits 70 - 162				Prepared 05/28/23 17:53	Analyzed	Dil Fa
2.4-Dichlorophenylacetic acid	82	Qualifier			, I		Prepared 05/28/23 17:53	Analyzed 06/01/23 16:21	Dil Fa
	82	Qualifier			Mh .			7	Dil Fa
2.4-Dichlorophenylacetic acid Method: SW846 6010B - Metals Analyte	(ICP) - TCLP	Qualifier Qualifier		MDL	Unit	D		7	
2,4-Dichlorophenylacetic acid Method: SW846 6010B - Metals	(ICP) - TCLP		70 - 162	MDL	Unit mg/L	<u>D</u>	05/28/23 17:53	06/01/23 16:21	Dil Fa
2.4-Dichlorophenylacetic acid Method: SW846 6010B - Metals Analyte	82 (ICP) - TCLP Result		70 - 162 RL	MDL		<u>D</u>	05/28/23 17:53 Prepared	06/01/23 16:21 Analyzed 05/26/23 18:31	
2.4-Dichlorophenylacetic acid Method: SW846 6010B - Metals Analyte Arsenic	82 (ICP) - TCLP Result ND		70 - 162 RL 0.050	MDL	mg/L	<u>D</u>	05/28/23 17:53 Prepared 05/26/23 10:00	06/01/23 16:21 Analyzed 05/26/23 18:31 05/26/23 18:31	
2.4-Dichlorophenylacetic acid Method: SW846 6010B - Metals Analyte Analyte Analyte Analyte Analyte Analyte	(ICP) - TCLP Result ND ND		70 - 162 RL 0.050 0.10	MDL	mg/L mg/L mg/L	<u>D</u>	05/28/23 17:53 Prepared 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00	06/01/23 16:21 Analyzed 05/26/23 18:31 05/26/23 18:31	
A.4-Dichlorophenylacetic acid Method: SW846 6010B - Metals Analyte Arsenic Antimony Barium	82 (ICP) - TCLP Result ND ND ND		70 - 162 RL 0.050 0.10 0.050	MDL	mg/L mg/L	<u>D</u>	05/28/23 17:53 Prepared 05/26/23 10:00 05/26/23 10:00	Analyzed 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31	
A.4-Dichlorophenylacetic acid Method: SW846 6010B - Metals Analyte Arsenic Antimony Barium Cadmium	82 (ICP) - TCLP Result ND ND ND ND		RL 0.050 0.10 0.050 0.025	MDL	mg/L mg/L mg/L mg/L	<u>D</u>	05/28/23 17:53 Prepared 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00	Analyzed 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31	
A.4-Dichlorophenylacetic acid Method: SW846 6010B - Metals Analyte Arsenic Antimony Barium Cadmium Chromium	82 (ICP) - TCLP Result ND ND ND ND ND ND ND		RL 0.050 0.10 0.050 0.025 0.025	MDL	mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	Prepared 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00	Analyzed 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31	
A.4-Dichlorophenylacetic acid Method: SW846 6010B - Metals Analyte Arsenic Antimony Barium Cadmium Chromium Beryllium	82 (ICP) - TCLP Result ND ND ND ND ND ND ND ND ND ND		RL 0.050 0.10 0.050 0.025 0.025 0.050	MDL	mg/L mg/L mg/L mg/L mg/L mg/L	D Stranger	Prepared 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00	Analyzed 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31	
A.4-Dichlorophenylacetic acid Method: SW846 6010B - Metals Analyte Arsenic Antimony Barium Cadmium Chromium Beryllium Bead	82 (ICP) - TCLP Result ND ND ND ND ND ND ND ND ND ND ND ND ND		RL 0.050 0.10 0.050 0.050 0.025 0.050 0.020 0.050	MDL	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	D STATE OF THE STA	Prepared 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00	Analyzed 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31	
Method: SW846 6010B - Metals Analyte Arsenic Antimony Barium Cadmium Chromium Beryllium Bead Belenium	82 (ICP) - TCLP Result ND ND ND ND ND ND ND ND ND ND ND ND ND		RL 0.050 0.10 0.050 0.050 0.025 0.050 0.020 0.050	MDL	mg/L mg/L mg/L mg/L mg/L mg/L	D STATE OF THE STA	Prepared 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00	Analyzed 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31	

0.00020

mg/L

05/26/23 11:29

05/26/23 19:16

ND

Client: Eastex Environmental Laboratory Inc.

Project/Site: Harris County WCID 92

Job ID: 860-49823-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid

Prep Type: Total/NA

				Percent Sur	rogate Recovery (Acceptance Limits)
		DCA	BFB	DBFM	TOL	
Lab Sample ID	Client Sample ID	(63-144)	(74-124)	(75-131)	(80-120)	
LCS 860-105101/3	Lab Control Sample	103	87	94	99	
LCSD 860-105101/4	Lab Control Sample Dup	104	86	92	100	
MB 860-105101/8	Method Blank	95	108	99	107	*
Surrogate Legend						

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid

Prep Type: TCLP

				Percent Sur	rogate Recovery	(Acceptance Limits)
		DCA	BFB	DBFM	TOL	Without Collection 1 - Charles and
Lab Sample ID	Client Sample ID	(63-144)	(74-124)	(75-131)	(80-120)	
860-49823-1	HC WCID 92 Digester C	94	101	97	103	

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid

Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance L						
lab Camatalia			TBP	FBP	2FP	NBZ	TPHd14	PHL	
Lab Sample ID	Client Sample ID		(31-132)	(29-112)	(21-114)	(26-110)	(20-141)	(16-117)	
LCS 860-105600/2-A	Lab Control Sample		89	69	40	66	87	28	
LCSD 860-105600/3-A	Lab Control Sample Dup	9	89	73	49	69	87	36	
MB 860-105600/1-A	Method Blank		77	80	48	80	94	30	

Surrogate Legend

TBP = 2,4,6-Tribromophenol (Surr)

FBP = 2-Fluorobiphenyl (Surr)

2FP = 2-Fluorophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

PHL = Phenol-d5 (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid

Prep Type: TCLP

				Percent Sur	rogate Reco	very (Accept	ance Limits)		
Lab Sample ID	Client Sample ID	TBP (31-132)	FBP (29-112)	2FP (21-114)	NBZ (26-110)	TPHd14 (20-141)	PHL (16-117)		
860-49778-A-1-F MS	Matrix Spike	67	58	41	50	79	33	2 Hours	TREE
360-49823-1	HC WCID 92 Digester C	58	50	43	57	73	33		
.B 860-104900/1-G	Method Blank	84	85	61	87	94	51		

Surrogate Legend

Lab Sample ID (70-162)Client Sample ID 860-49823-1 HC WCID 92 Digester C 82 LB 860-104900/1-E Method Blank 85

Surrogate Legend

DCPAA = 2,4-Dichlorophenylacetic acid

Project/Site: Harris County WCID 92

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 860-105101/8

Matrix: Solid

Analysis Batch: 105101

Client Sample ID: Mothod Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Anghana	511-
B34z343	ND		0.0010		mg/L		riepared	Analyzed	Dil Fac
Carbon tetrachloride	ND		0.0050					05/27/23 01:09	1
Chlorobenzene					mg/L			05/27/23 01:09	1
	ND		0.0010		mg/L			05/27/23 01:09	1
Chloroform	ND		0.0010		mg/L			05/27/23 01:09	III AIITE
1,2-Dichloroethane	ND		0.0010		mg/L			SWSWS-A-COLON III	'
1,1-Dichloroethene	ND		0.0010					05/27/23 01:09	1
2-Butanone	ND				mg/L			05/27/23 01:09	1
Tetrachloroethene			0.050		mg/L			05/27/23 01:09	1
	ND		0.0010		mg/L			05/27/23 01:09	1
Trichloroethene	ND		0.0050		mg/L				
Vinyl chloride	ND		0.0020		3.50			05/27/23 01:09	1
attribute the commentation	ind.		0.0020		mg/L			05/27/23 01:09	1
	MP	MP							

•	77.0-	777			
Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	02.5
1,2-Dichloroethane-d4 (Surr)	95	-	63 - 144		Dil Fac
4-Bromofluorobenzene (Surr)	108		74 - 124	05/27/23 01:	09 1
Dibromofluoromethane (Surr)				05/27/23 01:	09 1
	99		75 - 131	05/27/23 01:	09 1
Toluene-d8 (Surr)	107		80 - 120	05/27/23 01:	
pr-m				03/21/23 01.	19 7

Lab Sample ID: LCS 860-105101/3

Matrix: Solid

Analysis Batch: 105101

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analyte	Spike	LCS				%Rec	
	Added	Result	Qualifier Unit	D	%Rec	Limits	
Benzene	0.0500	0.0519	mg/L		104	75 - 125	
Carbon tetrachloride	0.0500	0.0497	mg/L		99	70 - 130	
Chlorobenzene	0.0500	0.0500	mg/L		100	65 - 135	
Chloroform	0.0500	0.0497	mg/L		99	70 - 121	
1,2-Dichloroethane	0.0500	0.0541	mg/L		108	72 - 130	
1,1-Dichloroethene	0.0500	0.0457	mg/L		91	50 - 150	
2-Butanone	0.250	0.231	mg/L		92	60 - 140	
Tetrachloroethene	0.0500	0.0556	mg/L		111	850 1/155	
Trichloroethene	0.0500	0.0520	mg/L			71 - 125	
Vinyl chloride	0.0500	0.0365			104	75 - 135	
	0.0000	5.0505	mg/L		73	60 - 140	

LCS LCS

	200	LUS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	103		63 - 144
4-Bromofluorobenzene (Surr)	87		74 - 124
Dibromofluoromethane (Surr)	94		75 - 131
Toluene-d8 (Surr)	99		80 - 120

Lab Sample ID: LCSD 860-105101/4

Matrix: Solid

Analysis Batch: 105101

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analyte	Spike Added		LCSD Qualifier	Unit	0	%Rec	%Rec	dentil e	RPD
Benzene	0,0500			-	_ =	70KeC	Limits	RPD	Limit
Carbon tetrachloride	0.0500	0.0517		mg/L		103	75 - 125	0	25
	0.0500	0.0506		mg/L		101	70 - 130	2	25
Chlorobenzene	0.0500	0.0507		mg/L		101	65 - 135		
Chloroform	0.0500	0.0407				101	05 - 135	1	25
	0.0500	0.0497		mg/L		99	70 - 121	0	25

QC Sample Results

Client: Eastex Environmental Laboratory Inc.

Project/Site: Harris County WCID 92

Job ID: 860-49823-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 860-105101/4

Matrix: Solid

Analysis Batch: 105101

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dichloroethane	0.0500	0.0529		mg/L		106	72 - 130	2	25
1,1-Dichloroethene	0.0500	0.0478		mg/L		96	50 - 150	5	25
2-Butanone	0.250	0.239		mg/L		96	60 - 140	4	25
Tetrachloroethene	0.0500	0.0569		mg/L		114	71 - 125	2	25
Trichloroethene	0.0500	0.0512		mg/L		102	75 - 135	2	25
Vinyl chloride	0.0500	0.0375		mg/L		75	60 - 140	3	25

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	104		63 - 144
4-Bromofluorobenzene (Surr)	86		74 - 124
Dibromofluoromethane (Surr)	92		75 - 131
Toluene-d8 (Surr)	100		80 - 120

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 860-105600/1-A

Matrix: Solid

Analysis Batch: 105501

Client Sample ID: Method Blank

rep	Type: Total/NA	26434200
rep	Batch: 105600	
		100

Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND	0.0050		mg/L		05/31/23 14:00	05/31/23 19:36	1
2,4,5-Trichlorophenol	ND	0.0050		mg/L		05/31/23 14:00	05/31/23 19:36	1
2,4,6-Trichlorophenol	ND	0.0050		mg/L		05/31/23 14:00	05/31/23 19:36	- 1
2,4-Dinitrotoluene	ND	0.0050		mg/L		05/31/23 14:00	05/31/23 19:36	1
2-Methylphenol	ND	0.0050		mg/L		05/31/23 14:00	05/31/23 19:36	1
Hexachlorobenzene	ND	0.0050		mg/L		05/31/23 14:00	05/31/23 19:36	1
Hexachlorobutadiene	ND	0.0050		mg/L		05/31/23 14:00	05/31/23 19:36	1
Hexachloroethane	ND	0.0050		mg/L		05/31/23 14:00	05/31/23 19:36	1
Nitrobenzene	ND	0.0050		mg/L		05/31/23 14:00	05/31/23 19:36	1
Pentachlorophenol	ND	0.010		mg/L		05/31/23 14:00	05/31/23 19:36	1
Pyridine	ND	0.010		mg/L		05/31/23 14:00	05/31/23 19:36	1
3 & 4 Methylphenol	ND	0.010		mg/L		05/31/23 14:00	05/31/23 19:36	1

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
2,4.6-Tribromophenol (Surr)	77		31 - 132		05/31/23 14:00	05/31/23 19:36	1
2-Fluorobiphenyl (Surr)	80		29 - 112		05/31/23 14:00	05/31/23 19:36	1
2-Fluorophenol (Surr)	48		21 - 114		05/31/23 14:00	05/31/23 19:36	1
Nitrobenzene-d5 (Surr)	80		26 - 110		05/31/23 14:00	05/31/23 19:36	1
p-Terphenyl-d14 (Surr)	94		20 - 141		05/31/23 14:00	05/31/23 19:36	1
Phenol-d5 (Surr)	30		16 - 117		05/31/23 14:00	05/31/23 19:36	1

Lab Sample ID: LCS 860-105600/2-A

Matrix: Solid

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 105600

Analysis Batch: 105501							rrep	Daten. 10:	3000
And I have the Last	Spike	LCS	LCS				%Rec		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
1,4-Dichlorobenzene	0.0400	0.0216	2	mg/L		54	37 - 111		
2.4.5-Trichlorophenol	0.0400	0.0306		mg/L		77	39 - 125		

QC Sample Results

Client: Eastex Environmental Laboratory Inc. Project/Site: Harris County WCID 92

Job ID: 860-49823-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 860-105600/2-A

Matrix: Solid

Analysis Batch: 105501

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 105600

Analyte		Spike		LCS				%Rec	atcn. 103000
		Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,4,6-Trichlorophenol		0.0400	0.0281	- 1-01-15-1111-00	mg/L		70	42 - 125	
2,4-Dinitrotoluene		0.0400	0.0345		mg/L		86	41 - 128	
2-Methylphenol		0.0400	0.0209		mg/L		52	36 - 105	
Hexachlorobenzene		0.0400	0.0308		mg/L		77	39 - 128	
Hexachlorobutadiene		0.0400	0.0227		mg/L		57	31 - 120	
Hexachloroethane		0.0400	0.0188		mg/L		47	37 - 109	
Nitrobenzene		0.0400	0.0260		mg/L		65	37 - 103	
Pentachlorophenol		0.0400	0.0292		mg/L		73	10 - 137	
Pyridine		0.0400	0.00943	J	mg/L		24		
3 & 4 Methylphenol		0.0400	0.0198		mg/L		49	5 - 130 35 - 116	
					200		1.50	00 - 110	

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	89	-	31 - 132
2-Fluorobiphenyl (Surr)	69		29 - 112
2-Fluorophenol (Surr)	40		21 - 114
Nitrobenzene-d5 (Surr)	66		26 - 110
p-Terphenyl-d14 (Surr)	87		20 - 141
Phenol-d5 (Surr)	28		16 - 117

Lab Sample ID: LCSD 860-105600/3-A

Matrix: Solid

Analysis Batch: 105501

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

			• "						Prep	Batch: 1	05600
Analyte			Spike		LCSD				%Rec		RPD
		 	 Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,4-Dichlorobenzene			0.0400	0.0253		mg/L	COLUMN COLUMN	63	37 - 111	16	30
2,4,5-Trichlorophenol			0.0400	0.0319		mg/L		80	39 - 125	4	30
2,4,6-Trichlorophenol			0.0400	0.0313		mg/L		78	42 - 125	11	30
2,4-Dinitrotoluene			0.0400	0.0355		mg/L		89	41 - 128	3	30
2-Methylphenol			0.0400	0.0255		mg/L		64	36 - 105	20	30
Hexachlorobenzene			0.0400	0.0322		mg/L		80	39 - 128	4	30
Hexachlorobutadiene			0.0400	0.0246		mg/L		62	31 - 120	8	30
Hexachloroethane			0.0400	0.0233		mg/L		58	37 - 109	22	30
Nitrobenzene			0.0400	0.0274		mg/L		69	37 - 114	5	30
Pentachlorophenol			0.0400	0.0303		mg/L		76	10 - 137	4	40
Pyridine			0.0400	0.0111		mg/L		28	5 - 130	17	50
3 & 4 Methylphenol			0.0400	0.0234		mg/L		59	35 - 116	17	30
										3.5	30

Surrogate		Qualifier	Limits
2,4,6-Tribromophenol (Surr)	89	waamirer	31 - 132
2-Fluorobiphenyl (Surr)	73		29 - 112
2-Fluorophenol (Surr)	49		21 - 114
Nitrobenzene-d5 (Surr)	69		26 - 110
p-Terphenyl-d14 (Surr)	87		20 - 141
Phenol-d5 (Surr)	36		16 117

Client: Eastex Environmental Laboratory Inc. Project/Site: Harris County WCID 92

Job ID: 860-49823-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LB 860-104900/1-G

Matrix: Solid

Analysis Batch: 105311

Client Sample ID: Method Blank

Prep Type: TCLP

Prep Batch: 105294

	LB	LB							
Analyte	Result	Qualifier	RL	MD	L Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND		0.025	Jugar D	mg/L		05/30/23 11:48	05/30/23 15:51	1
2,4,5-Trichlorophenol	ND		0.025		mg/L		05/30/23 11:48	05/30/23 15:51	- Univole
2,4,6-Trichlorophenol	ND		0,025		mg/L		05/30/23 11:48	05/30/23 15:51	
2,4-Dinitrotoluene	ND		0.025		mg/L		05/30/23 11:48	05/30/23 15:51	-
2-Methylphenol	ND		0.025		mg/L		05/30/23 11:48	05/30/23 15:51	
Hexachlorobenzene	ND		0.025		mg/L		05/30/23 11:48	05/30/23 15:51	rate and
Hexachlorobutadiene	ND		0.025		mg/L		05/30/23 11:48	05/30/23 15:51	-
Hexachloroethane	ND		0.025		mg/L		05/30/23 11:48	05/30/23 15:51	1
Nitrobenzene	ND		0.025		mg/L		05/30/23 11:48	05/30/23 15:51	1
Pentachlorophenol	ND		0.050		mg/L		05/30/23 11:48	05/30/23 15:51	1
Pyridine	ND		0.050		mg/L		05/30/23 11:48	05/30/23 15:51	1
3 & 4 Methylphenol	ND		0.050		mg/L		05/30/23 11:48	05/30/23 15:51	1

LB LB

1						
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	84		31 - 132	05/30/23 11:48	05/30/23 15:51	1
2-Fluorobiphenyl (Surr)	85		29 - 112	05/30/23 11:48	05/30/23 15:51	1
2-Fluorophenol (Surr)	61		21 - 114	05/30/23 11:48	05/30/23 15:51	1
Nitrobenzene-d5 (Surr)	87		26 - 110	05/30/23 11:48	05/30/23 15:51	1
p-Terphenyl-d14 (Surr)	94		20 - 141	05/30/23 11:48	05/30/23 15.51	1
Phenol-d5 (Surr)	51		16 - 117	05/30/23 11:48	05/30/23 15:51	1

Lab Sample ID: 860-49778-A-1-F MS

Matrix: Solid

Analysis Batch: 105501

Client Sample ID: Matrix Spike

Prep Type: TCLP

Prep Batch: 105600

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	er Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dichlorobenzene	ND		0.200	ND		mg/L		51	37 - 111	
2,4,5-Trichlorophenol	ND		0.200	ND		mg/L		60	39 - 125	
2,4,6-Trichlorophenol	ND		0.200	ND		mg/L		52	42 - 125	
2,4-Dinitrotoluene	ND		0.200	ND		mg/L		63	41 - 128	
2-Methylphenol	ND		0.200	ND		mg/L		45	36 - 105	
Hexachlorobenzene	ND		0.200	0.145		mg/L		72	39 - 128	
Hexachlorobuladiene	ND		0.200	ND		mg/L		49	31 - 120	
Hexachloroethane	ND		0.200	ND		mg/L		44	37 - 109	
Nitrobenzene	ND		0.200	ND	18	mg/L		50	37 - 114	
Pentachlorophenol	ND		0.200	ND		mg/L		77	10 - 137	
Pyridine	ND		0.200	ND		mg/L		31	5 - 135	
3 & 4 Methylphenol	ND		0.200	ND		mg/L		48	35 - 116	

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	67	-	31 - 132
2-Fluorobiphenyl (Surr)	58		29 - 112
2-Fluorophenol (Surr)	41		21 - 114
Nitrobenzene-d5 (Surr)	50		26 - 110
p-Terphenyl-d14 (Surr)	79		20 - 141
Phenol-d5 (Surr)	33		16 - 117

Project/Site: Harris County WCID 92

Method: 8081B - Organochlorine Pesticides (GC)

Lab Sample ID: MB	860-105332/1-A
-------------------	----------------

Matrix: Solid

Analysis Batch: 105355

Client	Sample	ID:	Meth	bo	Blank	
	Π.		~	-		

Prep Type: Total/NA Prep Batch: 105332

MB	MB							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND	111111	0.0010		mg/L		05/30/23 10:34	05/30/23 13:36	1
ND		0.000052		mg/L		05/30/23 10:34	05/30/23 13:36	7
ND		0.000052		mg/L		05/30/23 10:34	05/30/23 13:36	- 4

Chlorodane Endrin Heptachlor Heptachlor epoxide 0.000052 mg/L 05/30/23 10:34 05/30/23 13:36 gamma-BHC (Lindane) 0.000052 05/30/23 10:34 mg/L 05/30/23 13:36 Methoxychlor ND 0.000052 mg/L 05/30/23 10:34 05/30/23 13:36 Toxaphene ND 0.0010 mg/L 05/30/23 10:34 05/30/23 13:36

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	56	S1-	70 - 130	05/30/23 10:34	05/30/23 13:36	1
Tetrachloro-m-xylene	64	S1-	70 - 130	05/30/23 10:34	05/30/23 13.36	1

Lab Sample ID: MB 860-105332/1-A

Matrix: Solid

Analysis Batch: 105807

Client Sample ID:	Method Blank
Prep	Type: Total/NA

Prep Batch: 105332

	,,,,,								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Toxaphene	ND	NO.	0.0010		mg/L		05/30/23 10:34	06/02/23 11:04	1

Lab Sample ID: LCS 860-105332/2-A

Matrix: Solid

Analysis Batch: 105355

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 105332

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Endrin	0.00130	0.00118		mg/L		91	55 - 102	
Heptachlor	0.00130	0.00124		mg/L		96	55 - 106	
Heptachlor epoxide	0.00130	0.00123		mg/L		95	56 - 109	
gamma-BHC (Lindane)	0.00130	0.00131		mg/L		101	59 - 107	
Methoxychlor	0.00130	0.00110		mg/L		85	53 - 102	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl (Surr)	52	S1-	70 - 130
Tetrachloro-m-xvlene	69	S1-	70 - 130

Lab Sample ID: LCSD 860-105332/3-A

Matrix: Solid

Analysis Batch: 105355

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 105332

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Endrin	0.00129	0.00119		mg/L	-	92	55 - 102	1	25
Heptachlor	0.00129	0.00125		mg/L		96	55 - 106	0	25
Heptachlor epoxide	0.00129	0.00124		mg/L		96	56 - 109	1	25
gamma-BHC (Lindane)	0.00129	0.00132		mg/L		102	59 - 107	0	25
Methoxychlor	0.00129	0.00111		mg/L		86	53 - 102	1	25

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl (Surr)	63	S1-	70 - 130
Tetrachloro-m-xylene	67	S1-	70 - 130

QC Sample Results

Client: Eastex Environmental Laboratory Inc.

Project/Site: Harris County WCID 92

Job ID: 860-49823-1

Method: 8081B - Organochlorine Pesticides (GC)

Lab Sample ID: LB 860-104900/1-F

Matrix: Solid

Analysis Batch: 105355

Client Sample ID: Method Blank

Prep Type: TCLP

	LB	LB						Prep Batch	105332
Analyte	Result	Qualifier	RL	MDL	Unit	D	December	2 2	
Chlorodane	ND		0.00098		-	 _	Prepared	Analyzed	Dil Fac
Endrin			- 20		mg/L		05/30/23 10:34	05/30/23 14:32	1
	ND		0.000049		mg/L		05/30/23 10:34	05/30/23 14:32	4
Heptachlor	ND		0.000049		mg/L		05/30/23 10:34	The many sold in the same	
Heptachlor epoxide	ND		0.000049		175.7			05/30/23 14:32	- 1
gamma-BHC (Lindane)	144				mg/L		05/30/23 10:34	05/30/23 14:32	1
E. Carrey	ND		0.000049		mg/L		05/30/23 10:34	05/30/23 14:32	4
Methoxychlor	ND		0.000049		mg/L		05/30/23 10:34	05/30/23 14:32	Mr. Contract
Toxaphene	ND		0.00098				.0000		1
	ALC: 100		0.00036		mg/L		05/30/23 10:34	05/30/23 14:32	1
	LB	LB							

Surrogate %Recovery Qualifier Limits DCB Decachlorobiphenyl (Surr) 50 S1-70 - 130 Tetrachloro-m-xylene 70 - 130

Prepared Analyzed 05/30/23 10:34 05/30/23 14:32 05/30/23 10:34 05/30/23 14:32

Lab Sample ID: LB 860-104900/1-F

Matrix: Solid

Analyte

Toxaphene

Analysis Batch: 105807

LB LB

Qualifier

Result

ND

MB MB

Client Sample ID: Method Blank Prep Type: TCLP Prep Batch: 105332

Prepared Analyzed Dil Fac 05/30/23 10:34 06/02/23 11:38

Method: 8151A - Herbicides (GC)

Lab Sample ID: MB 860-105229/1-A

Matrix: Solid

Analysis Batch: 105485

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 105229

Analyte			Qualifier	RL	MDL	Unit	D	Prepared	Analyzad	Du c
2,4-D		ND		0.00020		7 7		-	Analyzed	Dil Fac
2,4,5-TP (Silvex)						mg/L		05/28/23 17:53	05/31/23 13:34	1
2,4,0-11 (011/6x)		ND		0.00020		mg/L		05/28/23 17:53	05/31/23 13:34	1
		MR	MB							

0.00098

MDL Unit

mg/L

Surrogate %Recovery Qualifier Limits Analyzed 2.4-Dichlorophenylacetic acid 70 - 162 05/28/23 17:53 05/31/23 13:34

Lab Sample ID: LCS 860-105229/2-A

Matrix: Solid

Analysis Batch: 105485

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 105229

Dil Fac

The state of the s	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,4-D	0.00202	0.00173		mg/L		86	67 - 124	-
2,4,5-TP (Silvex)	0.00202	0.00185		mg/L		92	66 - 141	

LCS LCS

Surrogate %Recovery Qualifier Limits 2,4-Dichlorophenylacetic acid 85 70 - 162

Client: Eastex Environmental Laboratory Inc.

Project/Site: Harris County WCID 92

Method: 8151A - Herbicides (GC) (Continued)

Lab Sample ID: LCSD 860-105229/3-A

Matrix: Solid

Analysis Batch: 105485

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 105229 Spike LCSD LCSD Analyte %Rec RPD Added Result Qualifier Unit 2,4-D %Rec RPD Limit 0.00202 0.00183 mg/L 91 2,4,5-TP (Silvex) 67 - 124 6 25 0.00202 0.00213 mg/L 105 66 - 141 14 25 LCSD LCSD

Surrogate %Recovery Qualifier Limits 2,4-Dichlorophenylacetic acid 70 - 162

Lab Sample ID: LB 860-104900/1-E

Matrix: Solid

Analysis Batch: 105485

Client Sample ID: Method Blank

Prep Type: TCLP

Prep Batch: 105229

LB LB Analyte Result Qualifier RL MDL Unit 2,4-D Prepared Analyzed ND 0.00020 mg/L 05/28/23 17:53 2,4,5-TP (Silvex) 05/31/23 16:13 ND 0.00020 mg/L 05/28/23 17:53 05/31/23 16:13 LB LB Surrogate %Recovery Qualifier

Limits 2,4-Dichlorophenylacetic acid Prepared Analyzed Dil Fac 85 70 - 162 05/28/23 17:53 05/31/23 16:13

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 860-105040/1-A

Matrix: Solid

Analysis Batch: 105326

Client Sample ID: Method Blank

Prep Type: Total/NA

	TA SECTION	мв	MB					Prep Batch:	105040
Analyte	1, 1,527	Result	Qualifier	RL	MDL Unit	D	D		
Arsenic		ND		0.010		- =	Prepared	Analyzed	Dil Fac
Antimony		ND			mg/L		05/26/23 10:00	05/26/23 17:02	1
Barium		The state of the s		0.020	mg/L		05/26/23 10:00	05/26/23 17:02	1
Cadmium		ND		0.010	mg/L		05/26/23 10:00	05/26/23 17:02	PONT
		ND		0.0050	mg/L		No. 1 and Chillian Chillians		1
Chromium		ND		0.010	250		05/26/23 10:00	05/26/23 17:02	1
Beryllium		ND			mg/L		05/26/23 10:00	05/26/23 17:02	1
Lead				0.0040	mg/L		05/26/23 10:00	05/26/23 17:02	4
		ND		0.010	mg/L		05/26/23 10:00		1
Selenium		ND		0.030	mg/L			05/26/23 17:02	1
Silver		ND			1.00		05/26/23 10:00	05/26/23 17:02	1
Nickel				0.020	mg/L		05/26/23 10:00	05/26/23 17:02	1
army officer		ND		0.010	mg/L		05/26/23 10:00	05/26/23 17:02	

Lab Sample ID: LCS 860-105040/2-A

Matrix: Solid

Analysis Batch: 105326

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analyte	with the same of t	Spike	LCS	LCS					Satch: 105040
Arsenic		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony		1.00	0.937		mg/L		94	80 - 120	
Barium		1.00	0.935		mg/L		94	80 - 120	
Cadmium		1.00	0.926		mg/L		93	80 - 120	
Chromium		1.00	0.947		mg/L		95	80 - 120	
Beryllium		1.00	0.959		mg/L		96	80 - 120	
Lead		1.00	0.946		mg/L		95	80 - 120	
Selenium		1.00	0.946		mg/L		95	80 - 120	
zerezineni.		1.00	0.947		mg/L		95	80 - 120	

QC Sample Results

Client: Eastex Environmental Laboratory Inc.

Project/Site: Harris County WCID 92

Job ID: 860-49823-1

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: LCS 860-105040/2-A

Matrix: Solid

Analysis Batch: 105326

Client	Sample	ID:	Lab	Control	Sample
			_		

Prep Type: Total/NA

Prep Batch: 105040

-	marysis batch. 100020								Datoii. 1000 10
100	A DE LOUIS DE LOS TENERS POR LA	Spike	LCS	LCS				%Rec	
A	nalyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
S	lver	0.500	0.469		mg/L		94	80 - 120	
	ickel	1.00	0.947		mg/L		95	80 - 120	

Lab Sample ID: LCSD 860-105040/3-A

Matrix: Solid

Analysis Batch: 105326

Client	Sample	e ID:	Lab	Control	Sample Dup	
--------	--------	-------	-----	---------	------------	--

Prep Type: Total/NA

Prep Batch: 105040

Analysis Batch. 100020	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	1.00	0.938	New York	mg/L		94	80 - 120	0	20
Antimony	1.00	0.943		mg/L		94	80 - 120	1	20
Barium	1.00	0.931		mg/L		93	80 - 120	1	20
Cadmium	1.00	0.958		mg/L		96	80 - 120	1	20
Chromium	1.00	0.962		mg/L		96	80 - 120	0	20
Beryllium	1.00	0.954		mg/L		95	80 - 120	1	20
Lead	1.00	0.952		mg/L		95	80 - 120	1	20
Selenium	1,00	0.949		mg/L		95	80 - 120	0	20
Silver	0.500	0.472		mg/L		94	80 - 120	1	20
Nickel	1.00	0.951		mg/L		95	80 - 120	0	20

Lab Sample ID: LB 860-104900/1-C

Matrix: Solid

Analysis Batch: 105326

Client Sample ID: Method Blank Prep Type: TCLP

Prep Batch: 105040

Chartel Bage 1981	LB LB							
Analyte	Result Quality	fier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND ND	0.050		mg/L		05/26/23 10:00	05/26/23 17:12	1
Antimony	ND	0.10	,	mg/L		05/26/23 10:00	05/26/23 17:12	1
Barium	ND	0.050		mg/L		05/26/23 10:00	05/26/23 17:12	1
Cadmium	ND	0.025		mg/L		05/26/23 10:00	05/26/23 17:12	1
Chromium	ND	0.050		mg/L		05/26/23 10:00	05/26/23 17:12	1
Beryllium	ND	0.020		mg/L		05/26/23 10:00	05/26/23 17:12	1
Lead	ND	0.050		mg/L		05/26/23 10:00	05/26/23 17:12	1
Selenium	ND	0.15		mg/L		05/26/23 10:00	05/26/23 17:12	1
Silver	ND	0.10		mg/L		05/26/23 10:00	05/26/23 17:12	1
Nickel	ND	0.050		mg/L		05/26/23 10:00	05/26/23 17:12	1

Lab Sample ID: 830-3604-A-1-E MS

Matrix: Solid

Client Sample ID: Matrix Spike

Prep Type: TCLP

Prep Batch: 105040

Analysis Batch: 105326									, icp	Daton. 1000-10
Allarysis Batch. 103520	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	ND	-	1.00	0.980		mg/L		98	75 - 125	
Antimony	ND		1.00	0.925		mg/L		93	75 - 125	
Barium	0.15		1.00	1.10		mg/L		95	75 - 125	
Cadmium	ND		1.00	0.995		mg/L		100	75 - 125	
Chromium	ND		1.00	1.01		mg/L		99	75 - 125	
Beryllium	ND		1.00	1.00		mg/L		100	75 - 125	
	ND		1.00	0.985		mg/L		99	75 - 125	
Lead	ND		1.00	1.03		mg/L		103	75 - 125	
Selenium Silver	ND		0.500	0.483		mg/L		97	75 - 125	

MS

Qualifier

Qualifier

Unit

mg/L

Unit

mg/L

mg/L

mg/L

ma/L

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

D

Result

1.03

MSD MSD

Result

0.990

0.925

1.10

1.00

1.02

1.00

0.960

1.03

0.483

1.04

MDL Unit

LCS LCS

LCSD LCSD

Result

0.00201

Qualifier

Qualifier

Result

0.00202

mg/L

Spike

Added

Sample

ND

0.15

ND

ND

ND

ND

ND

ND

ND

Qualifier

MB MB Result

ND

Qualifier

1.00

Spike

Added

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.500

1.00

RL

0,00020

Spike

Added

Spike

Added

0.00200

0.00200

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: 830-3604-A-1-E MS

Matrix: Solid

Analysis Batch: 105326

	Sample	Sample
Analyte	Result	Qualifier
Nickel	ND	

Lab Sample ID: 830-3604-A-1-F MSD

Matrix: Solid

Analysis Batch: 1053	26
	Sample
Analyte	Result
Arsenic	ND

Selenium		
Silver		
Nickel		

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 860-105056/10-A Matrix: Solid

Antimony

Cadmium

Chromium

Beryllium

Lead

Barium

Analysis Batch: 105153

Analyte		

Mercury

-					
Lab	Sample	ID:	LCS	860-1050	56/11-A

Matrix: Solid Analysis Batch: 105153

Analyte

Mercury

Analyte

Mercury

Lab Sample ID: LCSD 860-105056/12-A

Matrix: Solid

Analysis Batch: 105153

(77.5						
	l ah	Sample	In. I	D	960 104000/	4 D

Matrix: Solid

Analysis Batch: 105153

LB LB Analyte Result Qualifier Mercury ND

RL 0.00020 MDL Unit

Unit

mg/L

Unit

mg/L

Prepared 05/26/23 11:29

Analyzed 05/26/23 19:21 Dil Fac

Limit

Job ID: 860-49823-1

Client Sample ID: Matrix Spike

Prep Type: TCLP

Prep Batch: 105040 %Rec

75 - 125

Limits

%Rec

%Rec

99

93

100

100

100

96

103

97

101

Prepared

05/26/23 11:29

%Rec

%Rec

101

101

D

101

Client Sample ID: Matrix Spike Duplicate

Limits

75 - 125

75 - 125

75 - 125

75 - 125

75 - 125

75 - 125

75 - 125

75 - 125

75 - 125

75 - 125

Client Sample ID: Method Blank

Analyzed

05/26/23 18:58

Client Sample ID: Lab Control Sample

%Rec

Limits

Client Sample ID: Lab Control Sample Dup

80 - 120

%Rec

Limits

80 - 120

Prep Batch: 105040 %Rec

Prep Type: TCLP

0

0

0

0

3

0

0

0

Prep Type: Total/NA

Prep Batch: 105056

Prep Type: Total/NA

Prep Batch: 105056

Prep Type: Total/NA

Prep Batch: 105056

RPD

0

RPD RPD Limit 20

20

20

20

20

Dil Fac

5

Client Sample ID: Method Blank Prep Type: TCLP

Prep Batch: 105056

QC Sample Results

Client: Eastex Environmental Laboratory Inc.

Project/Site: Harris County WCID 92

Job ID: 860-49823-1

Prep Type: TCLP

Prep Batch: 105056

Method:	7470A	- Mercury	(CVAA)	(Continued)
-			,	

Lab Sample ID: 860-49821-A-1-E MS

Lab Sample ID: 860-49821-A-1-F MSD

Matrix: Solid

Matrix: Solid

Analyte

Mercury

Analyte

Mercury

Analysis Batch: 105153

Analysis Batch: 105153

Sample Sample Result Qualifier 0.00025

Sample Sample

Qualifier

Result

0.00025

Spike Added 0.00200

Spike

Added

0.00200

0.00221

MS MS Result Qualifier

Qualifier

Unit

mg/L

MSD MSD

Result

0.00224

Unit mg/L

%Rec Limits 75 - 125

Client Sample ID: Matrix Spike

Client Sample ID: Matrix Spike Duplicate Prep Type: TCLP

%Rec

Prep Batch: 105056

RPD

RPD Limit

Limits 75 - 125 20

5

8

QC Association Summary

Client: Eastex Environmental Laboratory Inc.

Project/Site: Harris County WCID 92

Job ID: 860-49823-1

GC	~ 1 R 1		10	
1 -1	/ IV/	-	V ()	Λ

Leach Batch: 104913	h Batch: 104	1913
---------------------	--------------	------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-49823-1	HC WCID 92 Digester C	TCLP	Solid	1311	1 rep baten
van havings as a visit	The second secon				

Analysis Batch: 105101

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-49823-1	HC WCID 92 Digester C	TCLP	Solid	8260C	104913
MB 860-105101/8	Method Blank	Total/NA	Solid	8260C	The strengthing
LCS 860-105101/3	Lab Control Sample	Total/NA	Solid	8260C	
LCSD 860-105101/4	Lab Control Sample Dup	Total/NA	Solid	8260C	

GC/MS Semi VOA

Leach Batch: 104900

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-49823-1	HC WCID 92 Digester C	TCLP	Solid	1311	
LB 860-104900/1-G	Method Blank	TCLP	Solid	1311	
860-49778-A-1-F MS	Matrix Spike	TCLP	Solid	1311	

Prep Batch: 105294

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LB 860-104900/1-G	Method Blank	TCLP	Solid	3510C	104900

Analysis Batch: 105311

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	9
LB 860-104900/1-G	Method Blank	TCLP	Solid	8270D	105294	100

Analysis Batch: 105501

Client Sample ID	Prep Type	Matrix	Method	D D
Method Blank	Total/NA	Solid		Prep Batch 105600
Lab Control Sample	Total/NA	Solid		105600
Lab Control Sample Dup	Total/NA		13-224-13-22-1	105600
Matrix Spike	TCLP	Solid	8270D	105600
	Method Blank Lab Control Sample Lab Control Sample Dup	Method Blank Total/NA Lab Control Sample Total/NA Lab Control Sample Dup Total/NA	Method Blank Total/NA Solid Lab Control Sample Total/NA Solid Lab Control Sample Dup Total/NA Solid	Method Blank Total/NA Solid 8270D Lab Control Sample Total/NA Solid 8270D Lab Control Sample Dup Total/NA Solid 8270D Methor College Total/NA Solid 8270D

Prep Batch: 105600

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-49823-1	HC WCID 92 Digester C	TCLP	Solid	3510C	104900
MB 860-105600/1-A	Method Blank	Total/NA	Solid	3510C	104300
LCS 860-105600/2-A	Lab Control Sample	Total/NA	Solid	3510C	
LCSD 860-105600/3-A	Lab Control Sample Dup	Total/NA	Solid	3510C	
860-49778-A-1-F MS	Matrix Spike	TCLP	Solid	3510C	104900

Analysis Batch: 105851

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-49823-1	HC WCID 92 Digester C	TCLP	Solid	8270D	105600

GC Semi VOA

Leach Batch: 104900

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-49823-1 - RA	HC WCID 92 Digester C	TCLP	Solid	1311	
860-49823-1	HC WCID 92 Digester C	TCLP	Solid	1311	
LB 860-104900/1-E	Method Blank	TCLP	Solid	1311	
LB 860-104900/1-F	Method Blank	TCLP	Solid	1311	

Eurofins Houston

1

5

8

9

QC Association Summary

Client: Eastex Environmental Laboratory Inc.

Project/Site: Harris County WCID 92

Job ID: 860-49823-1

GC Semi VOA

Prep	Batch:	105229
------	--------	--------

Lab Sample ID	Client Sample ID	Prep Type	Matrix		
860-49823-1	HC WCID 92 Digester C	TCLP	Solid	Method 3511	Prep Batch
LB 860-104900/1-E	Method Blank	TCLP			104900
MB 860-105229/1-A	Method Blank		Solid	3511	104900
		Total/NA	Solid	3511	
LCS 860-105229/2-A	Lab Control Sample	Total/NA	Solid	3511	
LCSD 860-105229/3-A	Lab Control Sample Dup	Total/NA	Solid	3511	

Prep Batch: 105332

ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
60-49823-1	HC WCID 92 Digester C	TCLP	Solid	3511	104900
60-49823-1 - RA	HC WCID 92 Digester C	TCLP	Solid	3511	104900
B 860-104900/1-F	Method Blank	TCLP	Solid	3511	104900
MB 860-105332/1-A	Method Blank	Total/NA	Solid	3511	104900
CS 860-105332/2-A	Lab Control Sample	Total/NA	Solid	3511	
CSD 860-105332/3-A	Lab Control Sample Dup	Total/NA	Solid	3511	

Analysis Batch: 105355

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-49823-1	HC WCID 92 Digester C	TCLP	Solid	8081B	105332
LB 860-104900/1-F	Method Blank	TCLP	Solid	8081B	105332
MB 860-105332/1-A	Method Blank	Total/NA	Solid	8081B	105332
LCS 860-105332/2-A	Lab Control Sample	Total/NA	Solid	8081B	105332
LCSD 860-105332/3-A	Lab Control Sample Dup	Total/NA	Solid	8081B	105332
maluaia Databa 405405					411 164 164 164

Analysis Batch: 105485

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LB 860-104900/1-E	Method Blank	TCLP	Solid	8151A	105229
MB 860-105229/1-A	Method Blank	Total/NA	Solid	8151A	105229
LCS 860-105229/2-A	Lab Control Sample	Total/NA	Solid	8151A	105229
LCSD 860-105229/3-A	Lab Control Sample Dup	Total/NA	Solid	8151A	105229

Analysis Batch: 105707

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-49823-1	HC WCID 92 Digester C	TCLP	Solid	8151A	105229

Analysis Batch: 105807

Lab Sample ID	Client Sample ID	Prep T	pe Matrix	Method	Prep Batch
860-49823-1 - RA	HC WCID 92 Digester C	TCLP	Solid	8081B	105332
LB 860-104900/1-F	Method Blank	TCLP	Solid	8081B	105332
MB 860-105332/1-A	Method Blank	Total/N	A Solid	8081B	105332

Metals

Leach Batch: 104900

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-49823-1	HC WCID 92 Digester C	TCLP	Solid	1311	Prep Batch
LB 860-104900/1-C	Method Blank	TCLP	Solid	1311	
LB 860-104900/1-D	Method Blank	TCLP	Solid	1311	
830-3604-A-1-E MS	Matrix Spike	TCLP	Solid	1311	
830-3604-A-1-F MSD	Matrix Spike Duplicate	TCLP	Solid	1311	
860-49821-A-1-E MS	Matrix Spike	TCLP	Solid	1311	
860-49821-A-1-F MSD	Matrix Spike Duplicate	TCLP	Solid	1311	

QC Association Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: Harris County WCID 92

Job ID: 860-49823-1

Metals

Prep	Batch:	105040
------	--------	--------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-49823-1	HC WCID 92 Digester C	TCLP	Solid	3010A	104900
LB 860-104900/1-C	Method Blank	TCLP	Solid	3010A	104900
MB 860-105040/1-A	Method Blank	Total/NA	Solid	3010A	
LCS 860-105040/2-A	Lab Control Sample	Total/NA	Solid	3010A	
LCSD 860-105040/3-A	Lab Control Sample Dup	Total/NA	Solid	3010A	
830-3604-A-1-E MS	Matrix Spike	TCLP	Solid	3010A	104900
830-3604-A-1-F MSD	Matrix Spike Duplicate	TCLP	Solid	3010A	104900

Prep Batch: 105056

Lab Sample ID	Client Sample ID	i.	Prep Type	Matrix	Method	Prep Batch
860-49823-1	HC WCID 92 Digester C		TCLP	Solid	7470A	104900
LB 860-104900/1-D	Method Blank		TCLP	Solid	7470A	104900
MB 860-105056/10-A	Method Blank		Total/NA	Solid	7470A	
LCS 860-105056/11-A	Lab Control Sample		Total/NA	Solid	7470A	
LCSD 860-105056/12-A	Lab Control Sample Dup		Total/NA	Solid	7470A	
860-49821-A-1-E MS	Matrix Spike		TCLP	Solid	7470A	104900
860-49821-A-1-F MSD	Matrix Spike Duplicate		TCLP	Solid	7470A	104900

Analysis Batch: 105153

ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
360-49823-1	HC WCID 92 Digester C	TCLP	Solid	7470A	105056
B 860-104900/1-D	Method Blank	TCLP	Solid	7470A	105056
MB 860-105056/10-A	Method Blank	Total/NA	Solid	7470A	105056
CS 860-105056/11-A	Lab Control Sample	Total/NA	Solid	7470A	105056
CSD 860-105056/12-A	Lab Control Sample Dup	Total/NA	Solid	7470A	105056
860-49821-A-1-E MS	Matrix Spike	TCLP	Solid	7470A	105056
860-49821-A-1-F MSD	Matrix Spike Duplicate	TCLP	Solid	7470A	105056

Analysis Batch: 105326

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-49823-1	HC WCID 92 Digester C	TCLP	Solid	6010B	105040
LB 860-104900/1-C	Method Blank	TCLP	Solid	6010B	105040
MB 860-105040/1-A	Method Blank	Total/NA	Solid	6010B	105040
LCS 860-105040/2-A	Lab Control Sample	Total/NA	Solid	6010B	105040
LCSD 860-105040/3-A	Lab Control Sample Dup	Total/NA	Solid	6010B	105040
830-3604-A-1-E MS	Matrix Spike	TCLP	Solid	6010B	105040
830-3604-A-1-F MSD	Matrix Spike Duplicate	TCLP	Solid	6010B	105040

Lab Chronicle

Client: Eastex Environmental Laboratory Inc. Project/Site: Harris County WCID 92

Job ID: 860-49823-1

Client Sample ID: HC WCID 92 Digester C

Date Collected: 05/18/23 12:40 Date Received: 05/23/23 10:16 Lab Sample ID: 860-49823-1

Matrix: Solid

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Landing
TCLP	Leach	1311			1.0 g	1.0 mL	104913	05/25/23 14:00	SYB	EET HOU
							Completed:	05/26/23 06:00 1	318	EE I HOU
TCLP	Analysis	8260C		50	5 mL	5 mL	105101	05/27/23 02:51	NA	EET HOU
TCLP	Leach	1311			1.0 g	1.0 mL	104900	05/25/23 12:30		
							Completed:	05/26/23 04:30	EMC	EET HOU
TCLP	Prep	3510C			200 mL	1.0 mL	105600		MDO	
TCLP	Analysis	8270D		5		1.01112	105851	05/31/23 14:00 06/01/23 19:32	MPC	EET HOU
CLP	Leach	1311			100	10-1			PXS	EET HOU
					1.0 g	1.0 mL	104900	05/25/23 12:30	EMC	EET HOU
CLP	Prep	3511			51,1 mL	C mal	Completed:	05/26/23 04:30 1		
CLP	Analysis	8081B		1	31.1 ML	5 mL	105332	05/30/23 10:34	TH	EET HOU
CLP	Leach	1311			16/27		105355	05/30/23 16:24	BNW	EET HOU
OL,	Leacii	1311	RA		1.0 g	1.0 mL	104900	05/25/23 12:30	EMC	EET HOU
CLP	Prep	2544					Completed:	05/26/23 04:30 1		
CLP	Analysis	3511	RA		51.1 mL	5 mL	105332	05/30/23 10:34	TH	EET HOU
		8081B	RA	1			105807	06/02/23 13:30	BNW	EET HOU
CLP	Leach	1311			1.0 g	1.0 mL	104900	05/25/23 12:30	EMC	EET HOU
	-					25	Completed:	05/26/23 04:30 1		
CLP	Prep	3511			49.3 mL	4 mL	105229	05/28/23 17:53	JN	EET HOU
CLP	Analysis	8151A		1			105707	06/01/23 16:21	BNW	EET HOU
CLP	Leach	1311			1.0 g	1.0 mL	104900	05/25/23 12:30	EMC	EET HOU
							Completed:	05/26/23 04:30 1		
CLP	Prep	3010A			10 mL	50 mL	105040	05/26/23 10:00	MD	EET HOU
CLP	Analysis	6010B	v	1			105326	05/26/23 18:31	JDM	EET HOU
CLP	Leach	1311			1.0 g	1.0 mL	104900	05/25/23 12:30	EMC	EET HOU
							Completed:	05/26/23 04:30 1	LIVIO	LETHOU
CLP	Prep	7470A			50 mL	50 mL	105056	05/26/23 11:29	PB	EET HOU
CLP	Analysis	7470A		1		Control of the Contro	105153		SHZ	EET HOU

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Accreditation/Certification Summary

Client: Eastex Environmental Laboratory Inc.

Project/Site: Harris County WCID 92

Job ID: 860-49823-1

Laboratory: Eurofins Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	88-00759	08-04-23
Florida	NELAP	E871002	06-30-23
Louisiana	NELAP	03054	06-30-23
Louisiana (All)	NELAP	03054	06-30-23
Oklahoma	State	1306	08-31-23
Texas	NELAP	T104704215-23-50	06-30-23
Texas	TCEQ Water Supply	T104704215	12-28-25
USDA	US Federal Programs	525-23-79-79507	03-20-26

5

9

13

Method Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: Harris County WCID 92

Job ID: 860-49823-1

Method	Method Description	Protocol	Laboratory
3260C	Volatile Organic Compounds by GC/MS	SW846	EET HOU
3270D	Semivolatile Organic Compounds (GC/MS)	SW846	EET HOU
081B	Organochlorine Pesticides (GC)	SW846	EET HOU
1151A	Herbicides (GC)	SW846	EET HOU
010B	Metals (ICP)	SW846	EET HOU
470A	Mercury (CVAA)	SW846	EET HOU
311	TCLP Extraction	SW846	EET HOU
010A	Preparation, Total Metals	SW846	EET HOU
510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	EET HOU
511	Microextraction of Organic Compounds	SW846	EET HOU
030C	Purge and Trap	SW846	EET HOU
470A	Preparation, Mercury	SW846	EET HOU

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Sample Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: Harris County WCID 92

Job ID: 860-49823-1

4 5 6

Matrix	Collected	Received
Solid	05/18/23 12:40	05/23/23 10:16

P O. Box 1089 Coldspring, Texas 77331 Website eastexlabs com Email. eastexlab@eastex net Tel. 936 653 3249

SUBCONTRACT ORDER

Sending Laboratory:

Eastex Environmental Laboratory - Coldspring PO Box 1089 Coldspring, TX 77331 Phone 936-653-3249 Fax 936-653-3172

Subcontracted Laboratory:

Eurofins Xenco LLC 4147 Greenbriar Dr. Stafford, TX 77477 Phone 713-690-4444 Fax. 713-690-5646

PO 052323E

PROJECT NAME.

Harris County WCID 92

Turnaround

10 DAYS

Matrix

Waste

Containers Date Time **EEL Sample ID** Sample Type Sample No. Analysis to be Performed 5/18/23 12.40 pm C3D5831-01 HC WCID 92 Digester Grab TCLP SUBCONTRACT

Special Instructions:

See Attached

FULL TCLP REPORT

Corrected Temp

Received Iced Y/N

Temp

PRINT DATE/TIME. 5/22/2023 / 4 05 06PM

sco_PrimaryForm rpt.02122019 Page 28 of 29

Page 1 of 1 6/5/2023

Login Sample Receipt Checklist

Client: Eastex Environmental Laboratory Inc.

Job Number: 860-49823-1

Login Number: 49823

List Source: Eurofins Houston

List Number: 1 Creator: Rubio, Yuri

Question	Answer	Comment			
The cooler's custody seal, if present, is intact.	True			70	-
Sample custody seals, if present, are intact.	True				
The cooler or samples do not appear to have been compromised or tampered with.	True				
Samples were received on ice.	True				
Cooler Temperature is acceptable.	True				
Cooler Temperature is recorded.	True				
COC is present.	True				
COC is filled out in ink and legible.	True				
COC is filled out with all pertinent information.	True				
Is the Field Sampler's name present on COC?	True				
There are no discrepancies between the containers received and the COC.	True				
Samples are received within Holding Time (excluding tests with immediate HTs)	True				
Sample containers have legible labels.	True				
Containers are not broken or leaking.	True				
Sample collection date/times are provided.	True				
Appropriate sample containers are used.	True				
Sample bottles are completely filled.	True				
Sample Preservation Verified.	True				
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True				
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True				

REPORT TO:

EASTEX ENVIRONMENTAL LABORATORY, INC.

P.O. Box 1089 * Coldspring, TX 77331 P.O. Box (936) 653-3249 * (800) 525-0508 (936) 565

(77331 P.O. Box 631375 * Nacogdoches, TX 75963-1375 25-0508 (936) 569-8879 * FAX (936) 569-8951 www.eastexlabs.com

> White Copy-Follows Samples Yellow Copy-Laboratory Pink Copy-Client Copy

Alternate Check In:	LAB USE ONLY	1/h	Relinguished By:	Relinquished By:	Relinquished By:				12	(0)	a de la composição de l	2 8	1000	CXCAC	Work Order ID	The state of the s	Project Names	Sampler's Signature:		Sampler's Name (print):	P.O. #:	Email:	Phone#:	Attn:		Address:	
	Sample Condition Acceptable:							10			100 miles		12/81/5 VANCTON ON	THORDEN SUNCO	Sample ID Date		1000		TAVIS FRANZE!		validing.			ing M	CITA	300	
	Acceptable: XES / NO	registration of Checked in By:		Received By:	Received By:						ni au		C)MIN OHE	S MM OHEI	Time Matrix C or G DO		Preservatives: C=Chilled S ST=Sodium T		container Size: 1=Gallon 2= 6=125mL (4oz		C or G: C= Composite G= Grab	INSTRUCTIONS:	Phone#:	Attn:		Address: SAME	Company:
lemp		d in By:						+							-	Field Data	C=Chilled S=Sulfuric Acid N=Nitric Acid ST=Sodium Thiosulfate H=HCL O= Other	G= Glass T= Teflon S= Sterile	6=125mL (4oz) 7=60mL (2 oz) 8= 40mL Vial 9=Other	DW=Drinking Water WW=Wastewater SO=Soll/Sludge OT= Other	G= Grab		101		nus nus mit mit nuc		
togged in by:		Date //o /	Date		Date						et e		ーのフ	14.30 00.44	Temp # Size Type	Containers	B=Base/Caustic Z= Zn Acetate		s600mL 5=250mL al 9=Other	O=Soil/Sludge OT= Other			uu liip	res la	ple.	100	Remarks:
1		/ ₇₇ Time			Time								_		Pres \	1000 1000 1000		P	00		A	NAL	YSIS	REC	QUE:	STEC	-
) Date	icea.		Received Iced:	Received Iced:																							
- Ime	LES NO	NO NO	YES / NO	YES / NO				<u> </u>								_		_									

28 August 2023

Envirodyne Laboratories, Inc 11011 Brooklet Dr., # 230 Houston, TX 77099 281.568.7880 Phone www.envirodyne.com

Si Environmental, LLC Chris Manthei 6420 Reading Road Rosenberg, TX 77471

Pecan Grove MUD WWTP

Enclosed are the results of analyses for samples received by the laboratory on 22-Jun-23 15:10. The analytical data provided relates only to the samples as received in this laboratory report.

ELI certifies that all results are NELAP compliant and performed in accordance with the referenced method except as noted in the Case Narrative or as noted with a qualifier. Any reproductions of this laboratory report should be in full and only with the written authorization from the client.

The total number of pages in this report is 7

Thank you for selecting ELI for your analytical needs. If you have any questions regarding this report, please contact us.

Sincerely,

Laura Bonjonia For Sarah Chaplain

Client Services Representative

Laura Brymin

LA BORATOR'S

Certificate No: T104704265-22-20

DECEIVED
JAN 02 2024

XX

Sludge Manager Master Spreadsheet

TCLP M

KI& Solid

Page 1 of 7

Envirodyne Laboratories, Inc 11011 Brooklet Dr., # 230 Houston, TX 77099 281.568.7880 Phone www.envirodyne.com

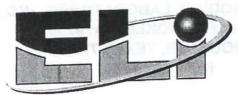
Client: Project: Si Environmental, LLC Pecan Grove MUD WWTP

Work Order:

23F2402

Reported:

28-Aug-23 10:50


ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Digester	23F2402-01	Solids	22-Jun-23 12:35	22-Jun-23 15:10

L - Sample analyzed by TNI certified lab: T104704215-22-47

Envirodyne Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ENVIRODYNE LABORATORIES, INC.

CLIENT: PECAN GROVE WWTP

LAB NUMBER:

23F2402A

DATE COLLECTED:

(Si Environmental) 22-Jun-23

DATE RECEIVED:

22-Jun-23

DATE COMPLETED:

28-Jul-23

SAMPLED BY:

DATE ANALYZED:

28-Jul-23

(*) DENOTES: DRY WEIGHT BASIS

() DENOTES: [RY WEIGHT BASIS	SLUDGE LIMITS	
LOCATION:	CAKE @ 1235	METHOD	Clean / Ceiling (mg/kg)	MDL (mg/l)
PARAMETERS:				
pH (UNITS)	6.20	9045	> 6.00	
TOT.NITROGEN-N * (%)	0.48	Calc	N.A.	0.01
TKN-N * (%)	0.25	EPA 351.2	N.A.	0.01
NO3-N * (%)	0.20	SM 4500-NO3 E	N.A	0.01
NH3-N * (%)	0.01	SM 4500-NH3 F	N.A.	0.01
NH4-N * (%)	0.01	Calc	N,A.	0.01
TOTAL PHOSPHORUS* (%)	2.80	SM 4500-P E	N.A	0.01
PHOSPHORUS PENTOXIDE * (%)	2.10	Calc	N.A	0.01
POTASSIUM * (%)	0.16	6010B	N.A	0.002
ARSENIC * (mg/kg)	2.39	6010B	< 41 / < 75	0.001
No. 10	0.42	6010B	< 39 / < 85	0.001
CADMIUM * (mg/kg)	193.78	6010B	< 1,500 / < 4,300	0.002
COPPER * (mg/kg)	3.00	6010B	Monitor Only	0.001
MOLYBDENUM * (mg/kg)	7.28	6010B	< 420 / < 420	0.008
NICKEL * (mg/kg)		6010B	< 300 / < 840	0.005
LEAD * (mg/kg)	7.46		< 1.200 / < 3.000	0.005
CHROMIUM * (mg/kg)	13.02	6010B		0.0002
MERCURY * (mg/kg)	<0.02	7471	14 ODES	
SELENIUM * (mg/kg)	<0.25	6010B	< 36 / < 100	0.002
ZINC * (mg/kg)	347.34	6010B	< 2,800 / < 7,500	0.001
PCB's (mg/kg)	< 1.0	8080	< 2 / 10	0.001
TOTAL SOLIDS (%)	13.50	SM 2540 B	N.A.	
VOLATILE SOLIDS (%)	9.12		N.A	
Org.CONC. (%)	67.6		N.A.	
KETMICK K I			My	

Ref. SW-846

*EPA CHEMICAL ANALYSIS

Lab Representative

ENVIRODYNE LABORATORIES, INC. 11011 BROOKLET Dr. #230 HOUSTON, TEXAS 77099 (281) 568-7880

CERTIFICATE OF ANALYSIS

CLIENT: PECAN GROVE WWTP

LAB NUMBER:

23F2402B

DATE COLLECTED:

(Si Environmental) 22-Jun-23

DATE RECEIVED:

22-Jun-23

DATE COMPLETED:

28-Jul-23

SAMPLED BY:

Si

SAMPLE TYPE:

Processes to Significantly Reduce Pathogens (PSRP)

LOCATION:

CAKE @ 1235 LIMITS

PARAMETERS:

Microbial Populations

Fecal Coliform (Colonies/gram) Dry Wt. (Geo Mean = 7)

4,030

2,000,000 CFU/g/TS

Vector Attraction Pontential

Specific Oxygen Uptake Rate (mg Oxygen/gram solids/Hr.)

0.24

1.5 mgO2/gram/Hr.

Sludge Characteristics

Total Solids (%)

13.50

N/A

Volatile Solids (%)

9.12

N/A

Organic Conc. (%)

67.6

Soil pH - Measured in Water (Units)

6.20

> 5.50

Sample Temp. (C/F)

N/A

20/68 (+/- 10C)

Ambient Temp. (C/F)

N/A

N/A

Test Temp. - Start / Stop (C)

22/22

(+/- 1C) - Var.

SOUR diluted to TS < 2.0%

Ref. STANDARD METHODS 21st Ed. & *EPA SW-846

9222D - F. COLI 2710B - SOUR 2540G - TS & VS

*9045 - pH

CERTIFIED BY

ENVIRODYNE LABORATORIES, INC.

CERTIFICATE OF ANALYSIS

CLIENT: PECAN GRO		LAB NUMBER:	23F2402C
(Si Environn		DATE RECEIVED:	22-Jun-23
DATE COLLECTED: 22-Jun-2	23	DATE RECEIVED.	22.001.20
DATE COMPLETED: 28-Jun-2	23	SAMPLED BY:	Si
Toxicity Characteristic Leaching Procedur			
EXTRACTION DATE: 27-Jun-	23		
TESTING DATE: 28-Jun-	23		T.C.L.P.
SAMPLE TYPE:	CAKE		MAXIMUM LIM
LOCATION:	@ 1235		(mg/l)
PARAMETERS			
SW 846 1311 EPA 6010B			
ANTIIMONY (mg/l)	<0.10		
ARSENIC (mg/l)	<0.05		5.0
BARIUM (mg/l)	0.40		100.0
BERYLLIUM (mg/l)	<0.02		0.080
CADMIUM (mg/l)	<0.025		1.0
CHROMIUM (mg/l)	<0.05		5.0
LEAD (mg/l)	<0.05		5.0
NICKEL (mg/l)	<0.05		70.0
SELENIUM (mg/l)	<0.150		1,0
SILVER (mg/l)	<0.100		5.0
SW 846 1311 EPA 7470			212
MERCURY (mg/l)	<0.002		0.2
SW 846 1311 EPA 8260			
BENZENE (mg/l)	< 0.05		0,5
CARBON TETRACHLORIDE (mg/l)	<0.25		0,5
CHLOROBENZENE (mg/l)	<0.05		100.0
CHLOROFORM (mg/l)	<0.05		6.0
METHYL ETHYL KETONE (mg/l)	<2.50		200.0
1.2-DICHLOROETHANE (mg/l)	<0.05		0.5
1.1-DICHLOROETHENE (mg/l)	<0.05		0.7
TETRACHLOROETHENE (mg/l)	<0.05		0.7
TRICHLOROETHENE (mg/l)	<0.250		0.5
VINYL CHLORIDE (mg/l)	<0.10		0.2
SW 846 1311 EPA 8270			
Total Cresol (mg/l)	<0.250		200.0
1,4-DICHLOROBENZENE (mg/l)	<0.0250		7.5 0.13
2.4-DINITROTOLUENE (mg/l)	<0.0250		0.13
HEXACHLOROBENZENE (mg/l)	<0.0250		0.13
HEXACHLOROBUTADIENE (mg/l)	<0.0250		3.0
HEXACHLOROETHANE (mg/l)	<0.0250		2.0
NITROBENZENE (mg/l)	<0.0250		
PENTRACHLOROPHENOL (mg/l)	<0.0250		100.0
2.4,5-TRICHLOROPHENOL (mg/l)	<0.0250		400.0 2.0
2,4,6-TRICHLOROPHENOL (mg/l)	<0.0250		5.0
PYRIDINE (mg/l)	<0.0500		200.0
2-Methylphenol (mg/l)	<0.0500		1
3&4 Methylphenol (mg/l)	<0.0500		200.0
SW 846 1311 EPA 8081	G-1/2912		0.03
CHLORDANE (mg/l)	<0.00105		0.03
ENDRIN (mg/l)	<0.00005		0.008
HEPTACHLOR (mg/l)	<0.00005		0.008
HEPTACHLOR EPOXIDE (mg/l)	<0.00005		0.4
LINDANE (mg/l)	<0.00005		10.0
METHOXYCHLOR (mg/l)	<0.00005		0.5
TOXAPHENE (mg/l)	<0.00105		***
PCBs (mg/l)	<0.01		
SW 846 1311 EPA 8150	<0.000201		10.0
2,4-D (mg/l)	<0.000201		1.0
2,4.5-TP (Silvex) (mg/l)	-0,000201	1 :	1007
Indiana engana na managana		Yan	
Ref. EPA SW-846	101701015	Lab Représentativ	e
Qual: Analyzed by NELAC Certified lab T	104704215	Can itchicacinativ	- 411-417

Envirodyne Laboratories, Inc 11011 Brooklet Dr., # 230 Houston, TX 77099 281.568.7880 Phone www.envirodyne.com

Client:

Si Environmental, LLC

Project: Work Order: Pecan Grove MUD WWTP

23F2402

Reported:

28-Aug-23 10:50

Microbiology - Quality Control Envirodyne Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit =	Notes
Batch B3G3558 - Microbiology										
Blank (B3G3558-BLK1)				Prepared &	Analyzed:	28-Jun-23				
Fecal Coliform (geomean of 7)	<1	1	CFU/g							
Duplicate (B3G3558-DUP1)	Sour	rce: 23F2402-	01	Prepared &	: Analyzed:	28-Jun-23				
Fecal Coliform (geomean of 7)	<1	ı	CFU/g		4030				200	

Envirodyne Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laura Bonjonia For Sarah Chaplain, Client Services Representative

Page 5 of 7

Client: Project: Si Environmental, LLC

Work Order:

Pecan Grove MUD WWTP

23F2402

Reported:

28-Aug-23 10:50

Wet Chemistry - Quality Control Envirodyne Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
			1000000			%REC	Limits	RPD	Limit	Notes
Analyte	Result	Limit	Units	Level	Result	WHEC	Limits	KLD	Limit	,.0.00

Batch B3F5660 - Inorganics

Duplicate (B3F5660-DUP1)	Sourc	e: 23F2233-0)5	Prepared & Analyzed: 28-Jun-23		
Total Solids	0,910	0.01	%	0.910	0.00	20
Volatile Solids	0,660	0.01	н	0.650	1.53	20

Envirodyne Laboratories, Inc.

Laura Brymin

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Client:

Si Environmental, LLC

Project: Work Order: Pecan Grove MUD WWTP

23F2402

Reported:

28-Aug-23 10:50

Notes and Definitions

Н	Hold time exceeded
ND -	Analyte NOT DETECTED at or above the reporting limi
<	Result is less than the RL
3	Analyte not available for TNI/NELAP accreditation
n	Not accredited

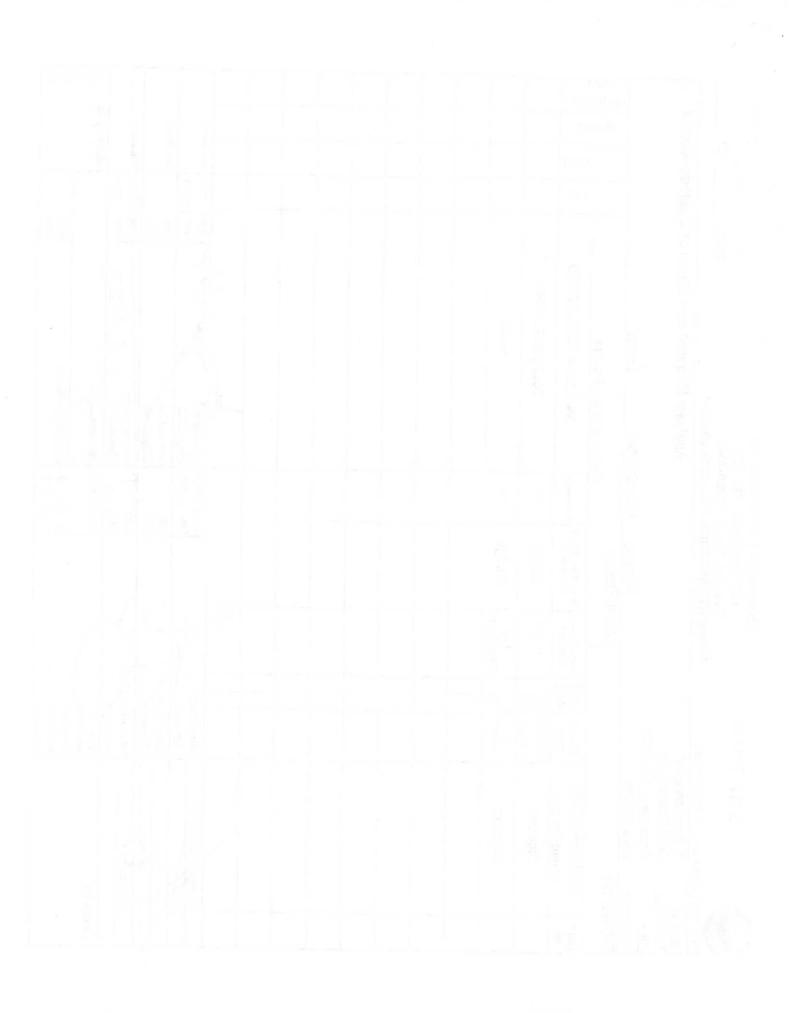
Envirodyne Laboratories, Inc.

Laura Brymin

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Ó

Page


23F 2402

Envirodyne Laboratories, Inc. 11011 Brookles, Ste. 230

Houston, Texas 77099-3543

Phone (281)568-7880 - Fax (281)568-8004

Analysis _aboratory No. Analysis Request and Chain of Custody Record fronty Date 12 Seal Intact? Seal Intact? Date: 1422/2-3 Seal Intact? .dmsT .O.Q Time: しい Time: 125 Hd Date: Time: Date: Time: ANALYSIS REQUESTED O TCLP, BLF, PSRP Fecal Email: Pecan Grove - Sludge Site Representative: Arrival Temp. Data Results To: Received by Lab: (Signature) Received by: (Signature) Date 12 - Received by (Signature) 832-490-1507 2113.3 Jale 12-15 RHM Preservative Time N 10 Time: 1250 Ice Ice Time: Dale: Sample Container Sample Type (Liquid, (Size/Mat') Sludge, etc.) Sludge Sludge Phone: Client/Project 20ml/ldex 1 L/P Сошр Relinquished by: Relinquished by Relinquished by Meter Reading: Grab Mn Correction: (Signature) (Signatura) (Signatuye) Ct, Residual: Cl, Corrected FLOW: Date & 12:35 Time Rosenberg, TX 77471 TCEQ Certification # T104704265 6420 Reading Rd. Si Environmental Mike Thornhi I Field Sample No./ Indentification (Signature) Digester Digester **Affiliation** Samplera Project No. Remarks: Address: Contact: Name: City: Lab ID No.

30 October 2023

Si Environmental, LLC Mike Thornhill 6420 Reading Road Rosenberg, TX 77471

Rosenberg #1A - WWTP

Enclosed are the results of analyses for samples received by the laboratory on 26-Jul-23 08:25. The analytical data provided relates only to the samples as received in this laboratory report.

ELI certifies that all results are NELAP compliant and performed in accordance with the referenced method except as noted in the Case Narrative or as noted with a qualifier. Any reproductions of this laboratory report should be in full and only with the written authorization from the client.

The total number of pages in this report is 10

Thank you for selecting ELI for your analytical needs. If you have any questions regarding this report, please contact us.

Sincerely.

Laura Bonjonia For Sarah Chaplain

Client Services Representative

Haura Brynin

I PROBATORI

Certificate No: T104704265-22-20

ENTERED JAN 0 2 2024

ENTERED JAN 0 3 2024

Envirodyne Laboratories, Inc 11011 Brooklet Dr., # 230 Houston, TX 77099 281.568.7880 Phone www.envirodyne.com

Sludge Manager
Master Spreadsheet

PCB

F/S

Page 1 of 10

Client:

Si Environmental, LLC

Project: Work Order: Rosenberg #1A - WWTP 23G2876 Reported:

30-Oct-23 21:21

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory LD	Matrix	Date Sampled	Date Received
Digester	23G2876-01	Solids	25-Jul-23 06:25	26-Jul-23 08:25

L - Sample analyzed by TNI certified lab: T104704215-22-47

Envirodyne Laboratories, Inc.

Jaura Brymin

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laura Bonjonia For Sarah Chaplain, Client Services Representative

Page 2 of 10

ENVIRODYNE LABORATORIES, INC.

CLIENT: ROSENBERG #1

LAB NUMBER:

23G2876A

DATE COLLECTED:

(Si Environmental) 25-Jul-23

DATE RECEIVED:

25-Jul-23

DATE COMPLETED: DATE ANALYZED: 28-Aug-23 28-Aug-23 SAMPLED BY:

GM

(*) DENOTES: DRY WEIGHT BASIS

			SLUDGE LIMITS	
LOCATION:	DIGESTER @ 0625	METHOD	Clean / Ceiling (mg/kg)	MDL (mg/l)
PARAMETERS:			ell onwell attack?	
pH (UNITS)	6.48	9045	> 6.00	
TOT.NITROGEN-N * (%)	0.18	Calc	N.A.	0.01
TKN-N * (%)	0.10	EPA 351.2	N.A.	0.01
NO3-N * (%)	0.01	SM 4500-NO3 E	N.A	0.01
NH3-N * (%)	0.01	SM 4500-NH3 F	N.A.	0.01
NH4-N * (%)	0.01	Calc	N.A.	0.01
TOTAL PHOSPHORUS* (%)	0.08	SM 4500-P E	N.A	0.01
PHOSPHORUS PENTOXIDE * (%)	0.06	Calc	N.A	0.01
POTASSIUM * (%)	0.46	6010B	N.A	0.002
ARSENIC * (mg/kg)	<0.25	6010B	< 41 / < 75	0.001
CADMIUM * (mg/kg)	<0.25	6010B	< 39 / < 85	0.001
COPPER * (mg/kg)	303.00	6010B	< 1,500 / < 4,300	0.002
MOLYBDENUM * (mg/kg)	<0.25	6010B	Monitor Only	0.001
NICKEL * (mg/kg)	<0.25	6010B	< 420 / < 420	0.008
LEAD * (mg/kg)	34.90	6010B	< 300 / < 840	0.005
CHROMIUM * (mg/kg)	24.60	6010B	< 1,200 / < 3,000	0.005
MERCURY * (mg/kg)	<0.02	7471	< 17 / < 57	0.0002
SELENIUM * (mg/kg)	<0.25	6010B	< 36 / < 100	0.002
ZINC * (mg/kg)	846.00	6010B	< 2,800 / < 7,500	0.001
PCB's (mg/kg)	< 1.0	8080	< 2 / 10	0.001
TOTAL SOLIDS (%)	1.20	SM 2540 B	N.A.	
VOLATILE SOLIDS (%)	0.83		N.A	
Org.CONC. (%)	69.2		N.A.	

Ref. SW-846

*EPA CHEMICAL ANALYSIS

Lab Representative

ENVIRODYNE LABORATORIES, INC. 11011 BROOKLET Dr. #230 HOUSTON, TEXAS 77099 (281) 568-7880

CERTIFICATE OF ANALYSIS

CLIENT: ROSENBERG #1

LAB NUMBER:

23G2876B

(Si Environmental)

25-Jul-23

DATE RECEIVED:

25-Jul-23

DATE COMPLETED:

DATE COLLECTED:

28-Aug-23

SAMPLED BY:

GM

SAMPLE TYPE:

Processes to Significantly Reduce Pathogens (PSRP)

LOCATION:

DIGESTER @ 0625 LIMITS

PARAMETERS:

Microbial Populations

Fecal Coliform (Colonies/gram) Dry Wt.

131,000

2,000,000 CFU/g/TS

(Geo Mean = 7)

Vector Attraction Pontential

Specific Oxygen Uptake Rate

(mg Oxygen/gram solids/Hr.)

Soil pH - Measured in Water (Units)

0.50

1.5 mgO2/gram/Hr.

Sludge Characteristics

Total Solids (%)

1.20

N/A

Volatile Solids (%)

0.83

N/A

Organic Conc. (%)

69.2 6.48

> 5.50

Sample Temp. (C/F)

N/A

20/68 (+/- 10C)

Ambient Temp. (C/F)

N/A

N/A

Test Temp. - Start / Stop (C)

22/22

(+/- 1C) - Var.

SOUR diluted to TS < 2.0%

Ref. STANDARD METHODS 21st Ed. & *EPA SW-846 9222D - F. COLI 2540G - TS & VS

2710B - SOUR

*9045 - pH

CERTIFIED BY

ENVIRODYNE LABORATORIES, INC.

CERTIFICATE OF ANALYSIS

CLIENT: ROSENBERG #1		LAB NUMBER:	23G2876C
(Si Environmental) DATE COLLECTED: 25-Jul-23		DATE RECEIVED:	25-Jul-23
DATE COMPLETED: 28-Aug-23		SAMPLED BY:	GM
Toxicity Characteristic Leaching Procedure			
EXTRACTION DATE: 28-Jul-23			
TESTING DATE: 28-Aug-23			T.C.L.P.
SAMPLE TYPE:	DIGESTER		MAXIMUM LIMIT
LOCATION:	@ 0625		(mg/l)
PARAMETERS:	0		2 15 2
SW 846 1311 EPA 6010B			
ANTIIMONY (mg/l)	<0.10		
ARSENIC (mg/l)	< 0.05		5.0
BARIUM (mg/l)	0.51		100.0
BERYLLIUM (mg/l)	<0.02		0.080
CADMIUM (mg/l)	< 0.025		1.0
CHROMIUM (mg/l)	<0.05		5.0
LEAD (mg/l)	<0.05		5.0
NICKEL (mg/l)	< 0.05		70.0
SELENIUM (mg/l)	< 0.150		1.0
SILVER (mg/l)	< 0.100		5.0
SW 846 1311 EPA 7470			
MERCURY (mg/l)	< 0.002		0.2
SW 846 1311 EPA 8260			
BENZENE (mg/l)	<0.05		0.5
CARBON TETRACHLORIDE (mg/l)	<0.25		0.5
CHLOROBENZENE (mg/l)	<0.05		100.0
CHLOROFORM (mg/l)	<0.05		6.0
METHYL ETHYL KETONE (mg/l)	<2.50		200.0
1,2-DICHLOROETHANE (mg/l)	< 0.05		0.5
1.1-DICHLOROETHENE (mg/l)	< 0.05		0.7
TETRACHLOROETHENE (mg/l)	<0.05		0.7
TRICHLOROETHENE (mg/l)	< 0.250		0.5
VINYL CHLORIDE (mg/l)	< 0.10		0.2
SW 846 1311 EPA 8270			
Total Cresol (mg/l)	< 0.250		200.0
1,4-DICHLOROBENZENE (mg/l)	< 0.125		7.5
2,4-DINITROTOLUENE (mg/l)	< 0.125		0,13
HEXACHLOROBENZENE (mg/l)	< 0.125		0.13
HEXACHLOROBUTADIENE (mg/l)	< 0.125		0.5
HEXACHLOROETHANE (mg/l)	< 0.125		3.0
NITROBENZENE (mg/l)	<0.125		2.0
PENTRACHLOROPHENOL (mg/l)	< 0.250		100.0
2.4,5-TRICHLOROPHENOL (mg/l)	<0.125		400.0
2,4,6-TRICHLOROPHENOL (mg/l)	< 0.125		2.0
PYRIDINE (mg/l)	< 0.250		5.0
2-Methylphenol (mg/l)	< 0.250		200.0
3&4 Methylphenol (mg/l)	< 0.250		200.0
SW 846 1311 EPA 8081			
CHLORDANE (mg/l)	< 0.00102		0.03
ENDRIN (mg/l)	< 0.00005		0.02
HEPTACHLOR (mg/l)	< 0.00005		0.008
HEPTACHLOR EPOXIDE (mg/l)	< 0.00005		0.008
LINDANE (mg/l)	< 0.00005		0.4
METHOXYCHLOR (mg/l)	<0.00005		10.0
TOXAPHENE (mg/l)	<0.00102		0.5
PCBs (mg/l)	<0.01		
SW 845 1311 EPA 8150			
2,4-D (mg/l)	< 0.000201		10.0
2,4,5-TP (Silvex) (mg/l)	< 0.000201		1.0

Ref. EPA SW-846

Qual: Analyzed by NELAC Certified lab T104704215

ab Representative

Client:

Si Environmental, LLC

Project:

Rosenberg #1A - WWTP (Permit Renewal)

Work Order:

23G2876

Reported: 30-Oct-23 21:21

Microbiology - Quality Control Envirodyne Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3G5744 - Microbiology										11
Blank (B3G5744-BLK1)				Prepared &	Analyzed:	26-Jul-23				W
Fecal Coliform (geomean of 7)	<1	1	CFU/g							
Duplicate (B3G5744-DUP1)	Sou	rce: 23G2876-	-01	Prepared &	Analyzed:	26-Jul-23				
Feeal Coliform (geomean of 7)	<1000	1000	CFU/g		13100000				200	

Envirodyne Laboratories, Inc.

Haura Bynin

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laura Bonjonia For Sarah Chaplain, Client Services Representative

Page 5 of 10

Client:

Si Environmental, LLC

Project:

Rosenberg #1A - WWTP (Permit Renewal)

Work Order:

23G2876

Reported:

30-Oct-23 21:21

Wet Chemistry - Quality Control

Envirodyne Laboratories, Inc.

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B3H3846 - Inorganics

Duplicate (B3H3846-DUP1)	Sourc	e: 23G2653-	01	Prepared & Analyzed: 09-Aug-23			
Total Solids	0.740	0.01	%	0,760	2.67	20	Н
Volatile Solids	0.330	0.01	9	0.330	0.00	20	Н

Envirodyne Laboratories, Inc.

Haura Brymin

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Client:

Si Environmental, LLC

Project:

Rosenberg #1A - WWTP (Permit Renewal)

Work Order:

23G2876

Reported: 30-Oct-23 21:21

Total Metals by ICP - Quality Control

Envirodyne Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B3H6110 - Metals - EPA 3050B

Blank (B3H6110-BLK1)				Prepared: 23-Aug-23 Analyzed: 28-Aug-23	
Cadmium	< 0.50	0.50	mg/kg		 1 65 5
Chromium	≪0.5	0.5			
Lead	<0.50	0.50			
Selenium	< 0.50	0.50			
Arsenic	< 0.50	0.50	*		
Zinc	<0.5	0.5	**		
Copper	<0.5	0.5			
Molybdenum	<500	500			
Niekel	<0.5	0.5			
Potassium	< 0.02	0.02	%		

Envirodyne Laboratories, Inc.

Haura Brymin

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety,

Client:

Si Environmental, LLC

Project:

Rosenberg #1A - WWTP (Permit Renewal)

Work Order:

23G2876

Reported: 30-Oct-23 21:21

RPD

TCLP Extraction by EPA 1311 - Quality Control

Envirodyne Laboratories, Inc.

Spike

Source

%REC

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B3H5541 - Metals - TCLP EPA	1311						January 1984		1117-11	de orbit
Blank (B3H5541-BLK1)		H		Prepared:	23-Aug-23	Analyzed:	25-Aug-23			H He
Chromium	<0.01	0.01	mg/L							
Copper	< 0.01	0.01								
Nickel	<0.01	0.01	**							
Arsenie	< 0.01	0.01								
Lead	<0.01	0.01								
Silver	< 0.01	0.01								
Selenium	< 0.01	10.0	**							
Barium	< 0.01	0.01	2360							
Cadmium	<0.01	0.01								
Beryllium	< 0.01	0.01	7							
Antimony	< 0.01	0.01								
LCS (B3H5541-BS1)				Prepared:	23-Aug-23 A	Analyzed:	25-Aug-23			
Arsenie	0.263		mg/L	0.250		105	85-115			HILLIAN AT ACTUAL
Vickel	0.228		*	0.250		91.2	85-115			
Thromium	0.240		*	0.250		96.0	85-115			
lilver	0.220		367.0	0.250		88.0	85-115			
Copper	0.251		**	0.250		100	85-115			
.ead	0.232		-	0.250		92.8	85-115			
Selenium	0.268		**	0.250		107	85-115			
Sarium	0.253		2.1	0.250		101	85-115			
Antimony	0.262		9	0.250		105	85-115			
Beryllium	0.244		ж	0.250		97.6	85-115			
Antrix Spike (B3H5541-MS1)	S	ource: 23G2653-	-01	Prepared: 2	23-Aug-23 A	Analyzed: 2	25-Aug-23			
ilver	0.0991	0.01	mg/L	0.125	0.00314	76.8	80-120			Ç
elenium	0.115	0.01		0.125	0.00613	87,3	80-120			
lickel	0.102	10.0		0.125	0.00214	80.0	80-120			
'opper	0.191	0.01	**	0.125	0.0160	140	80-120			Ç
ead	0,102	0.01		0.125	0.0154	69.1	80-120			Č
rsenic	0.106	0.01	-	0.125	ND	84.8	80-120			,
hromium	0.104	0.01		0.125	ND	83.2	80-120			
arium	0.215	0.01	**	0.125	0.0456	135	80-120			Q

Envirodyne Laboratories, Inc.

Laura Brymin

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Client:

Si Environmental, LLC

Project:

Rosenberg #1A - WWTP (Permit Renewal)

Work Order:

23G2876

Reported: 30-Oct-23 21:21

TCLP Extraction by EPA 1311 - Quality Control

Envirodyne Laboratories, Inc.

	Reporting					Source		%REC		RPD	
Analyte	Result		Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B3H5541 - Metals - TCLP EPA 1311

Matrix Spike (B3H5541-MS1)	Source	e: 23G2653-	-01	Prepared:	23-Aug-23 A	nalyzed:	25-Aug-23
Beryllium	0.106	0.01	mg/L	0.125	0.000158	85.0	80-120
Antimony	0.116	0.01		0.125	0.00888	85.4	80-120

Envirodyne Laboratories, Inc.

Haura Brymin

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Client:

Si Environmental, LLC

Project:

Rosenberg #1A - WWTP (Permit Renewal)

Work Order:

23G2876

Reported: 30-Oct-23 21:21

Notes and Definitions

Q QC did not meet ELI acceptance criteria

H Hold time exceeded

< < 0.25

ND Analyte NOT DETECTED at or above the reporting limit

< Result is less than the RL

a Analyte not available for TNI/NELAP accreditation

n Not accredited

Envirodyne Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Maura Bymin

236,2876

TCEQ Certification # T104704265

Envirodyne Laboratories, Inc. Houston, Texas 77099-3543 11011 Brooklet, Ste. 230

Ó Page

Phone (281)568-7880 - Fax (281)568-8004

Time Analysis Analysis Request and Chain of Custody Record Laboratory No. .qmaT Date: 73/7Seal Intact? Seal Intact? Seal Intact? D.O. Hd ime: Time: Date: Date: me: 1 1 Fecal Coliform (Geomean) ANALYSIS REQUESTED 0 BLF, PSRP TCLP Email: Rosenberg 1A Arrival Temp. Data Results To: Received by Lab. Date:7/25/23/Received by Received by: (Signature) (Signature) lime:/(, c.~> (Signature) 832-490-1507 Prosenvative Time: 7:00 See 93 lce Date/ L.F Time: Date: Sample Centainer Sample Type (Liquid, (Suze/Nath Sludge, etc.) Sludge Sludge Sludge Phone: Client/Project Relinquished by Crown Makennow (7)120ml IDEXX 1 LVP 1 Lt/P Comp V 8082/7 Relinquished by Relinquished by VES/23/V V12521V 6.2551V Grab (Signature) Meter Reading (Signature) (Signature) Date & Rosenberg, TX 77471 Time FLOW 6420 Reading Rd. Si Environmental Mike Thornhi I Field Sample No./ Indentification Digester Digester Digester Samplers: (Signature) C >.cnv. Affiliation Project No. Address: Contact: Remarks: Name: City: Co. TRI No.

Date:

Site Representative:

32/30

Machinistian

Ch. Pi - dual

861 State Hwy 19 P.O. Box 1622 Huntsville, TX 77342-1622 www.chaparrallabs.com Phone: 936-291-1881 Fax: 936-295-1731

Certificate of Analysis

City of Sealy Attn: Travis Cochran P.O. Box 517

Sealy, TX 77474

Customer ID: CSEALY

Sample ID: 23090412

Date Received: 09/14/2023

Date Reported: 10/11/2023

City of Sealy WWTP Project: Location: Austin County, TX

Analytical Results

Collection Point: Digester

Sample Type: Grab

Date/Time Collected: 09/14/2023 10:30

Collector: JAS

<u>Parameter</u>	Result	Units		Date/Time	Analyst	Bottle	Method	OC ID	Acrd
Ammonia Nitrogen	1032	mg/kg		09/28/2023 10:15	JCG	-01	EPA 350.2	QC2310195	NELAP
Arsenic	5.0	mg/kg		10/04/2023 07:51	RS	-01	EPA 6010 C	QC2310124	NELAP
Cadmium	<2.5	mg/kg		10/04/2023 07:51	RS	-01	EPA 6010 C	QC2310126	NELAP
Chromium	34.0	mg/kg	1	10/04/2023 07:51	RS	-01	EPA 6010 C	QC2310127	NELAP
Copper	308.5	mg/kg		10/04/2023 07:51	RS	-01	EPA 6010 C	QC2310128	NELAP
Lead	37.4	mg/kg		10/04/2023 07:51	RS	-01	EPA 6010 C	QC2310134	NELAP
Mercury	1.52	mg/kg		09/19/2023 10:26	MHE	-01	EPA 7471 A	QC2309263	NELAP
Molybdenum	6.1	mg/kg	1	10/04/2023 07:51	RS	-01	EPA 6010 C	QC2310131	NELAP
Nickel	16.4	mg/kg		10/04/2023 07:51	RS	-01	EPA 6010 C	QC2310132	NELAP
Phosphorus	10068	mg/kg		10/04/2023 07:51	RS	-01	EPA 6010 C	QC2310133	NELAP
Potassium	1391	mg/kg		10/04/2023 07:51	RS	-01	EPA 6010 C	QC2310129	NELAP
Selenium	8.4	mg/kg		10/04/2023 07:51	RS	-01	EPA 6010 C	QC2310135	NELAP
Total Kjeldahl Nitrogen	16702	mg/kg		09/28/2023 09:41	JCG	-01	SM 4500-NH3 C	QC2310205	
Total Solids	20.7	%		09/15/2023 13:01	DKH	-01	SM 2540 G	QC2309374	NELAP
Zinc	6737.4	mg/kg		10/04/2023 07:51	RS	-01	EPA 6010 C	QC2310136	NELAP
7 Pt Fecal Geometric Mean	525491	CFU/g/TS		09/15/2023 15:54	MHE	-02	Calculation	QC2309435	
Fecal Coliform	671494	CFU/g/TS		09/14/2023 15:40	JCG	-02	SM 9222 D	QC2309434	NELAP
Fecal Coliform	190832	CFU/g/TS		09/14/2023 15:40	JCG :	-03	SM 9222 D	QC2309434	NELAP
Fecal Coliform	570469	CFU/g/TS		09/14/2023 15:40	JCG	-04	SM 9222 D	QC2309434	NELAP
Fecal Coliform	955671	CFU/g/TS		09/14/2023 15:40	JCG	-05	SM 9222 D	QC2309434	NELAP
Fecal Coliform	. 287726	CFU/g/T\$		09/14/2023 15:40	JĊG	-06	SM 9222 D	QC2309434	NELAP
Fecal Coliform	574995	CFU/g/TS		09/14/2023 15:40	JCG	-07	SM 9222 D	QC2309434	NELAP
Fecal Coliform	957376	CFU/g/TS		09/14/2023 15:40	JCG	-08	SM 9222 D	QC2309434	NELAP
Nitrate Nitrogen	151.0	mg/kg		09/25/2023 19:48	SA	-09	EPA 9056	QC2310232	NELAP
TCLP	See SPL Report	1			SA	-09	N/A	QC2310221	NELAP
PCB	See SPL Report	3	E		SA	-10	N/A	QC2310222	NELAP
Oxygen Uptake Rate	<0.1	mg/g/h		09/15/2023 09:04	JFL	-11	ENTOBRED	NOV 3451	2023

Sludge Manager Master Spreadsheet

861 State Hwy 19 P.O. Box 1622 Huntsville, TX 77342-1622 www.chaparrallabs.com Phone: 936-291-1881 Fax: 936-295-1731

Certificate of Analysis

City of Sealy

Attn: Travis Cochran

P.O. Box 517

Sealy, TX 77474

Customer ID: CSEALY

Sample ID: 23090412

Date Received: 09/14/2023

Date Reported: |10/11/2023

Project: City of Sealy WWTP Location: Austin County, TX

Qua	lity	Con	trol	

OC ID			1		000			N	4	T1 14	771
OC ID	<u>Param</u>				OC Type			Result		Units	Flag
QC2309263	Mercury				į.		1				
					Duplicate %RPD	ļ		19.9		%	
					LCS			100.2		%	
					Method Blank			< 0.040		mg/kg	
					MS %R			105		%	
					MSD %R			105		%	
QC2309374	Total Solids	1 1	t	1		1		1 11		1	
					Duplicate %RPD			0		%	
					LCS		i	102.3		%	
					Method Blank	Į.	1.	< 0.0005		%	
QC2309434	Fecal Coliform						- 1				
					Duplicate %RPD		-	33.6		%	
					Method Blank		1	<1.0		CFU/g/TS	
QC2309451	Oxygen Uptake	Rate				1	-				1
					Duplicate %RPD	f		0		%	
				4.11	Method Blank	1	, !	<0.1		mg/g/h	
QC2310124	Arsenic										1
					Duplicate %RPD			0.9	i	%	*
					LCS			94.1		%	
					Method Blank		ł.	<2.5		mg/kg	
					MS %R	!	Į:	99.7		%	
QC2310126	Cadmium										
					Duplicate %RPD			0		%	
					LCS			86.3		% .	
					Method Blank			<2.5		mg/kg	
		l i	- 1	1	MS %R	1		101.2		o)	1 1

861 State Hwy 19 P.O. Box 1622 Huntsville, TX 77342-1622 www.chaparrallabs.com Phone: 936-291-1881 Fax: 936-295-1731

Certificate of Analysis

City of Sealy Attn: Travis Cochran P.O. Box 517

Customer ID: CSEALY

Sample ID: 23090412

Date Received: 09/14/2023

Date Reported: 10/11/2023

City of Sealy WWTP Project: Location: Austin County, TX

QC2310127

QC2310128

QC2310129

QC2310131

QC2310132

Sealy, TX 77474

Chromium

Copper

Potassium

Duplicate %RPD LCS

Method Blank

MS %R

Duplicate %RPD LCS

Method Blank MS %R

Duplicate %RPD

LCS

Method Blank MS %R

Duplicate %RPD

LCS

Method Blank MS %R

Duplicate %RPD LCS

Method Blank MS %R

Duplicate %RPD Method Blank

MS %R

97.7 % < 2.5 mg/kg

94.1

< 2.5

113.1

0.2 103.4

<250

106

88.5

< 5.0

100.6

91.5

< 2.5

0

<50

117

100.7 24.6

% mg/kg

> % %

0% mg/kg %

% %

mg/kg %

% mg/kg %

103.5 %

mg/kg %

QC2310133

Phosphorus

Nickel

Wednesday, October 11, 2023

Certificate of Analysis Page 3 of 5

Page 3 of 26

Customer ID: CSEALY

861 State Hwy 19 P.O. Box 1622 Huntsville, TX 77342-1622 www.chaparrallabs.com Phone: 936-291-1881 Fax: 936-295-1731

Cer	tificate	of Ana	lvsis
~~	CLLICATO	OI I HILL	-, 010

City of Sealy Attn: Travis Cochran P.O. Box 517

P.O. Box 517 Sealy, TX 77474

Sample ID: 23090412

Date Received: 09/14/2023

Date Reported: 10/11/2023

Project: City of Sealy WWTP
Location: Austin County, TX

QC2310134 Lead

LCS

Method Blank

MS %R

QC2310135 Selenium

Duplicate %RPD

LCS

Method Blank

MS %R

QC2310136 Zinc

QC2310195 Ammonia Nitrogen

QC2310205 Total Kjeldahl Nitrogen

Duplicate %RPD 2.4 %

LCS 100.8 %

Method Blank <2.5 mg/kg

MS %R 102.4 %

MS %R 102.4 %

Duplicate %RPD 0 %

LCS 86.9 %

Method Blank <2.5 mg/kg

MS %R 94.9 %

Duplicate %RPD 0.2 %

 LCS
 93.7
 %

 Method Blank
 <2.5</td>
 mg/kg

 MS %R
 106.8
 %

 Duplicate %RPD
 0.1
 %

 Duplicate %RPD
 2
 %

 LCS
 95.2
 %

 Method Blank
 <11.0</td>
 mg/kg

 MS %R
 117.9
 %

 MSD %R
 104.7
 %

Wednesday, October 11, 2023

Certificate of Analysis Page 4 of 5

P.O. Box 1622 861 State Hwy 19

Huntsville, TX 77342-1622

www.chaparrallabs.com Phone: 936-291-1881

Certificate of Analysis

City of Sealy

Attn: Travis Cochran

P.O. Box 517

Sealy, TX 77474

Customer ID: CSEALY

Sample ID: 23090412

Date Received: 09/14/2023

Date Reported: 10/11/2023

Project:

City of Sealy WWTP

Location: Austin County, TX

Notes:

Initials of SA = Subcontract Analysis sent to SPL for testing

The analytical results in this Certificate of Analysis relate only to the samples tested. This Certificate of Analysis, with its corresponding Chain of Custody, completes the data package. This data package may not be reproduced, except in full, without the written approval of Chaparral Laboratories, Inc. Chaparral Laboratories, Inc NELAP accredited certification # T104704204. (<) = Result was below quantitation limits. (>) = Result was above quantitation limits. Samples analyzed for Oxygen Uptake Rate are diluted to <2% total solids for analysis. Results reported as mg/kg, %, or CFU/g/TS are calculated on a dry weight basis, unless otherwise noted. Precision Criteria for Fecal Coliform, Escherichia coli and Enterococci analyses are calculated according to SM 9020 B 8.5.b. Acceptable = meets Precision Criteria; Unacceptable = does not meet Precision Criteria.

*Note 1: Laboratory Approval by TCEQ

Approved by David H. Veinotte Laboratory Director

Wednesday, October 11, 2023

Line Science of S

Page 1 of 1

Project 1076460

Printed

10/11/2023

10:22

CLDV-G

Chaparral Labs Dave Veinotte 861 Hwy 19 Huntsville, TX 77320

TABLE OF CONTENTS

Ign remove

This report consists of this Table of Contents and the following pages:

	Total Pages:	19
1076460_r10_05_ProjectQC	SPL Kilgore Project P:1076460 C:CLDV Project Quality Control Groups	13
1076460_r03_03_ProjectResults	SPL Kilgore Project P:1076460 C:CLDV Project Results t:304	6
Report Name	Description	Pages

Email: Kilgore.projectmanager@spl-inc.com

Report Page 1 of 20

CLDV-G

HI I

Chaparral Labs Dave Veinotte 861 Hwy 19 Huntsville, TX 77320

Page I of 6

Project 1076460

Printed:

10/11/2023

Ign remove

RESULTS

		1 1,							
				Sample Results				A TORRESTOR	
	2238598 23090412 S	EALY	1	in again triving .			Received:	09/20)/202
	id & Chemical Materials	Collected by: C	2023	Chaparral Labs 10:30:00	in I	PO:	PS	in the second	
Supp									
EP.	A 6020A		Prepared:	1082717 09/21/2023	13:00:00	Analyzed 1082980	09/22/2023	16:05:00	Н
-	Parameter		Results	Units RL	TOTAL TOTAL	Flags	CAS		Bot
C	TCLP Arsenic		<0.050	mg/L 0.050			7440-38-2		
C	TCLP Barium		0.268	mg/L 0.050			7440-39-3		
c	TCLP Cadmium	Tr.	< 0.005	mg/L 0.005			7440-43-9		
C	TCLP Chromium		<0.050	mg/L 0.050	4		7440-47-3		
c	TCLP Lead		<0.050	mg/L 0.050	- 4		7439-92-1		
C	TCLP Selenium		<0.050	mg/L 0.050	i	В	7782-49-2		
EP	A 6020A	1	Prepared:	1082717 09/21/2023	13:00:00	Analyzed 1083033	09/22/2023	19:57:00	
-	Parameter		Results	Units RL	1	Flags	CAS		Bo
C	TCLP Silver		<0.050	mg/L 0.050			7440-22-4		
EP	A 7470 A		Prepared:	1082677 09/21/2023	12:25:00	Analyzed 1082761	09/21/2023	15:26:00	
-	Parameter	1	Results	Units RL		Flags	CAS		Вс
C	TCLP Mercury		<0.00113	mg/L 0.001	13		7439-97-6		
EP	A 8081A		Prepared:	1082716 09/21/2023	13:30:00	Analyzed 1084248	09/25/2023	18:51:00	
-	Parameter	1111	Results	Units RL	1 1	Flags	CAS		В
C	TCLP Chlordane	KARAS	<0.001	mg/L 0.001	real day		57-74-9		
C	TCLP Endrin		< 0.00005	mg/L 0.000	05		72-20-8		
C	TCLP gamma-BHC (Lindane)		< 0.00005	mg/L 0.000	05		58-89-9		
C	TCLP Heptachlor		<0.00005	mg/L 0.000	05		76-44-8		
C	TCLP Heptachlor Epoxide		< 0.00005	mg/L 0.000	05		1024-57-3		
4C	TCLP Methoxychlor		<0.00005	mg/L 0.000	05		72-43-5		
AC	TCLP Toxaphene		<0.001	mg/L 0.001			8001-35-2		

Report Page 2 of 20

CLDV-G

Chaparral Labs Dave Veinotte 861 Hwy 19 Huntsville, TX 77320

Page 2 of 6

Project 1076460

Printed:

10/11/2023

	2238598	23090412 SEA	LY			*			Received:	09/20	/202
So	lid & Chemica	Materials	Collected by:	Client	Chaparral I	abs		PO:	1		
			Part V	4/2023		30:00					
Supp	lement to Test	Report 2232400	1 1	1	1	1		1 1 1	1 4 1		
EP	A 8082			Prepared:	1083342 0	9/26/2023	16:34:53	Analyzed 1083728	09/28/2023	04:14:00	В
9	Parameter			Results	Units	RL		Flags	CAS		Bott
AC	PCB-1016			<1000 *	ug/kg				12674-11-2		1
AC	PCB-1221			<1000 *	ug/kg		1	Î 4: 9	11104-28-2		1
AC	PCB-1232			<1000 *	ug/kg	F-7-2-7-7-7-7-7			11141-16-5		1
AC	PCB-1242			<1000 *	ug/kg	1400004			53469-21-9		1
LAC	PCB-1248			<1000 *	ug/kg	Section 200	1		12672-29-6		1
LAC	PCB-1254			<1000 *	ug/kg				11097-69-1	12.10	1
LAC	PCB-1260			<1000 *	ug/kg			X	11096-82-5		î
		Dry Weight Basis			-5-4			I		l.	
		ery meight bosis		111				}			
m					122222				00/00/0003	07.24.00	
EF	PA 8151			Prepared:	1083228 0	19/26/2023	10:45:00	Analyzed 1083861	09/29/2023	03:34:00	В
	Parameter	25-68		Results	Units	RL	1100-	Flags	CAS		Bot
LAC	TCLP 2,4 D			<0.500	mg/L	0.500			94-75-7		1
LAC	TCLP 2,4,5-7	TP (Silvex)		< 0.300	mg/L		. 1		93-72-1		1
								——————————————————————————————————————			
EI	PA 8260B			Prepared:	1082851 (09/21/2023	17:30:00	Analyzed 1083209	09/25/2023	15:30:00	P
	Parameter			Results	Units	s RL		Flags	CAS		Bot
LAC	TCLP 1,1-Di	chloroethene		< 0.010	mg/L	0.010		1	75-35-4		1
LAC	TCLP 1,2-Di	chloroethane		< 0.010	mg/L	0.010		1	107-06-2		1
LAC	TCLP 1,4 Di	chlorobenzene	1 1	<0.010	mg/L	0.010		1 11	106-46-7		1
LAC	TCLP Benze	ne		<0.010	mg/L				71-43-2	9	1
LAC	TCLP Carbo	n tetrachloride		<0.010	mg/L	0.010			56-23-5		
LAC	TCLP Chlore	benzene		<0.010	mg/L	0.010	i		108-90-7		1
LAC	TCLP Chlore	oform		< 0.010	mg/I	0.010			67-66-3		1
LAC	TCLP MEK			<0.010	mg/I	0.010	1		78-93-3		- 1
LAC	TCLP Tetrac	hloroethylene		<0.010	mg/I	0.010		9 4	127-18-4		1
LAC	TCLP Trichle	oroethylene		<0.010	mg/I	0.010		1	79-01-6		- 1
LAC	TCLP Vinyl	chloride	1	<0.010	mg/I	0.010	0.0		75-01-4		1
	PA 8270C	2-µ- 0		Prepared:	1083292	09/26/2023	14:15:00	Analyzed 1084018	09/30/2023	00:14:00	В
El							4-19				
EI.	Parameter			Results	Unit	s RL		Flags	CAS		Bott
EI •		Prichlorophenol		Results	Units mg/L			Flags	CAS 95-95-4		Bott 1

Report Page 3 of 20

2

3

2600 Dudley Rd. Kilgore, Texas 75662 24 Waterway Avenue, Suite 375 The Woodlands, TX 77380 Office: 903-984-0551 * Fax: 903-984-5914

CLDV-G

Chaparral Labs
Dave Veinotte
861 Hwy 19
Huntsville, TX 77320

Page 3 of 6

Project

1076460

Printed:

10/11/2023

09/20/2023 2238598 23090412 SEALY Received: PO: Solid & Chemical Materials Collected by: Client Chaparral Labs 10:30:00 Taken: 09/14/2023 Supplement to Test Report 2232400 Prepared: 1083292 09/26/2023 14:15:00 Analyzed 1084018 09/30/2023 00:14:00 BLF EPA 8270C RLFlags CAS Bottle Results Units Parameter 0.035 121-14-2 13 < 0.035 mg/L TCLP 2,4-Dinitrotoluene NELAC 95-48-7 13 0.052 mg/L TCLP 2-Methylphenol (o-Cresol) < 0.052 NELAC 108-39-4 13 0.062 TCLP 3&4-Methylphenol (m&p-Creso < 0.062 mg/L NELAC Mil i 118-74-1 13 0.010 mg/L TCLP Hexachlorobenzene < 0.010 NELAC 87-68-3 13 0.010 TCLP Hexachlorobutadiene < 0.010 mg/L NELAC 67-72-1 13 TCLP Hexachloroethane < 0.010 mg/L 0.010 NELAC 98-95-3 13 TCLP Nitrobenzene < 0.010 mg/L 0.010 NELAC 0.010 87-86-5 13 <0.010 mg/L TCLP Pentachlorophenol NELAC 0.054 110-86-1 13 < 0.054 mg/L TCLP Pyridine (Reg. Limit 5) NELAC Calculated 1084018 10/04/2023 07:38:33 CAL 09/26/2023 14:15:00 Prepared: 1083292 EPA 8270C Bottle Units RLFlags CAS Results Parameter 0.062 108-39-4,ect. 13 TCLP Total Cresols (Reg Lim 200) < 0.062 mg/L Analyzed 1083217 09/25/2023 19:48:00 KAP Prepared: 1083139 09/25/2023 16:20:12 EPA 9056 Flags CAS Bottle Parameter Results Units RT. 151 * 14797-55-8 1.09 Π mg/kg Nitrate-Nitrogen * Dry Weight Basis 1082592 09/20/2023 14:30:00 JK1 Prepared: 1082592 09/20/2023 14:30:00 Analyzed SM2540 G-1997 /MOD Units RL Flags CAS Bottle Results Parameter 02 Total Solids for Dry Wt Conversi 20.8 % 0.010 NELAC Sample Preparation 09/20/2023 2238598 23090412 SEALY Received: 09/14/2023

Thu Control

Report Page 4 of 20

09/20/2023

CLDV-G

Chaparral Labs
Dave Veinotte
861 Hwy 19
Huntsville, TX 77320

23090412 SEALY

2238598

Printed: 10/11/2023

: 11

	09/14/2	023		ĺ	A.D.					
EPA 3510C		Prepared:	1082501	09/20/2023	14:40:00	Analyzed	1082716	09/21/2023	13:30:00	МС
		(Partition)			1			- f	a dallan	750
TCLP Liq-Liq Extr. W/Hex Exch.		10/200	m	L			!			05
EPA 3510C		Prepared:	1082501	09/20/2023	14:40:00	Analyzed	1083292	09/26/2023	14:15:00	MC
TCLP Liquid-Liquid Extract		1/100	mi	1	W.*					05
EPA 1311		Prepared:	1082501	09/20/2023	14:40:00	Analyzed	1082501	09/20/2023	14:40:00	SLI
TCLP Extraction Non-Volatile	Technic in	SOLID EXT	1 m	1	f					01
EPA 1311ZHE	Turk	Prepared:	1082851	09/21/2023	17:30:00	Analyzed	1082851	09/21/2023	17:30:00	SLI
ELAC TCLP Extraction ZHE Volatiles		100% SOLII) m	1				1		01
EPA 3005A		Prepared:	1082501	09/20/2023	14:40:00	Analyzed	1082717	09/21/2023	13:00:00	TES
Metals Digestion TCLP Extract		50/10	m	1	Ü					04
EPA 3550B		Prepared:	1083342	09/26/2023	16:31:53	Analyzed	1083342	09/26/2023	16:31:53	NA.
PCB Total Sonic Extr. W/Hex Exch	i -	10/2.01	gr	ams	. 1		1	r I		02
EPA 7470A		Prepared:	1082501	09/20/2023	4:40:00	Analyzed	1082677	09/21/2023	12:25:00	AL_{\parallel}
Metals Digestion TCLP 7470		50/2.5	mi	1	!			l.	1	04
EPA 8081A		Prepared:	1082716	09/21/2023	13:30:00	Applyzed	1084248	09/25/2023	18:51:00	KLE

Report Page 5 of 20

CLDV-G

Chaparral Labs Dave Veinotte 861 Hwy 19 Huntsville, TX 77320

Page 5 of 6 Project 1076460

10/11/2023 Printed: 09/20/2023 Received: 2238598 23090412 SEALY 09/14/2023 Analyzed 1084248 09/25/2023 18:51:00 KLB Prepared: 1082716 09/21/2023 13:30:00 EPA 8081A 07 Entered GC TCLP Pesticide NELAC BLF Prepared: 1083342 09/26/2023 04:14:00 16:31:53 Analyzed 1083728 09/28/2023 EPA 8082 14 Entered Polychlorinated Biphenyls NELAC Analyzed 1083861 09/29/2023 03:34:00 BLF Prepared: 1083228 09/26/2023 10:45:00 EPA 8151 12 GC TCLP Herbicide Entered Analyzed 1083228 09/26/2023 10:45:00 CED Prepared: 1082501 09/20/2023 14:40:00 EPA 8151A (Prep) 05 ml 10/1 Esterification of TCLP Extract Analyzed 1083209 15:30:00 PM1 09/25/2023 Prepared: 1082851 09/21/2023 17:30:00 EPA 8260B 10 Entered MS TCLP Volatile Analysis Analyzed 1084018 09/30/2023 Prepared: 1083292 09/26/2023 14:15:00 00:14:00 BLF EPA 8270C 13 MS TCLP Semivolatile Analysis Entered NELAC £ Analyzed 1083139 09/25/2023 16:20:12 NAZ Prepared: 1083139 09/25/2023 16:20:12 EPA 9056 02 50/4.99 Water Extract-Ion Chromatography grams

Report Page 6 of 20

CLDV-G

Chaparral Labs Dave Veinotte 861 Hwy 19 Huntsville, TX 77320

Page 6 of 6 Project 1076460

Printed:

10/11/2023

2238598

23090412 SEALY

Received:

09/20/2023

09/14/2023

SM 2540 G-1997

Prepared: 1082454 09/20/2023

14:30:00

Analyzed 1082454

1 1

1 11

09/20/2023

14:30:Q0

JKI

Total Solids Start Code

Started

Qualiflers

B - Analyte detected in the associated method blank

D - Duplicate RPD was higher than expected

X - Standard reads higher than desired.

We report results on an As Received (or Wet) basis unless marked Dry Weight.

Unless otherwise noted, testing was performed at SPL, Inc. - Kilgure laboratory which holds international, Federal, and state accreditations. Please see our Websites flor details

(N)ELAC - Covered in our NELAC scope off accreditation z -- Not covered by our NELAC scope of accreditation

These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval off SPL Kilgore. Unless otherwise specified, these test results meet the requirements of NELAC RL is the Reporting Limit (sample specific quantitation limit) and is at or above the Method Detection Limit (MDL). CAS is Chemical Abstract Service number. RL is our Reporting Limit, or Minimum Quantitation Level. The RL takes into account the instrument Detection Limit (IDL), Method Detection Limit (MDL), and Practical Quantitation Limit (PQL), and any dilutions and/or concentrations performed during sample preparation (EQL). Our analytical result must be above this RL beflore we report a value in the Results' column off our report (without a 'J' flag). Otherwise, we report ND (Not Detected above RL), because the result is "<" (less than) the number in the RL column. MAL is Minimum Analytical Level and is typically from regulatory agencies Unless we report a result in the

result column, or interflerences prevent it, we work to have our RL at or below the MAL.

Bill Peery, MS, VP Technical Services

Report Page 7 of 20

1111

Page 1 of 13

2

Project 1076460

Printed 10/11/2023

CLDV-G

Chaparral Labs Dave Veinotte 861 Hwy 19

Huntsville, TX 77320

A Latest C-+	1082592	The state of the s	**************************************	a meadal and a few					SM2540	G-199	7/MOD
Analytical Set <u>Parameter</u> Cotal Solids for Dry Wt Conversi	PrepSet 1082592	Reading 0	MDL	MQL	Units grams			File 125457012			
arameter otal Solids for Dry Wt Conversi otal Solids for Dry Wt Conversi	Sample 2231691 2232002	110	Result 100 3.16	Unknown 100 3.18	incate		Unit % %		RPD 0 0.631		Limit% 20.0 20.0
Analytical Set	1083217					T.				El	PA 9056
	1	1			ank	4:		THE STATE OF THE S			
arameter litrate-Nitrogen	PrepSet 1083139	0.00542	MDL 0.00185	MQL 0.0226	Units mg/kg			File 125471967			
arameter Vitrate-Nitrogen Vitrate-Nitrogen Vitrate-Nitrogen	Amount consisted	Reading 2.31 2.31 2.31	2.26 2.26	Units mg/kg mg/kg mg/kg	Recover% 102 102 102	Limits% 90.0 - 110 90.0 - 110 90.0 - 110		File 125471966 125471982 125471984			
ituate-ivitiogen					S Dup		104			1	
Parameter Vitrate-Nitrogen	PrepSet 1083139	LCS 1.12	LCSD 1.12		Known 1.13	Limits% 75.0 - 120	LCS% 99.1	LCSD% 99.1	'Units mg/kg	RPD 0	Limit% 20.0
	- 1111		N/OD		MSD Known	Limits	MS%	MSD%	Units	RPD	Limit%
P <u>arameter</u> Nitrate-Nitrogen	Sample 2232323	MS 2.30	MSD 2.35	UNK 0.0722	2.26	80.0 - 120	98.6	101	mg/kg	2.22	20.0
Analytical Set	1082761				ot and a		LEAD II			EPA	4 7470
	(in a in a		MOL		Blank Units			File			
Parameter TCLP Mercury	PrepSet 1082677	Reading ND	MDL 0.000113		mg/L CCV		100	125460229			
Parameter TCLP Mencury		Reading	Known	Units mg/L	Recover%	Limits% 90.0 - 110		File 125460227			
TCLP Mercury TCLP Mercury		0.00501	0.005	mg/L mg/L	100 95.0	90.0 - 110 90.0 - 110		125460228 125460236			
TCLP Mercury		0.00484	0.005	mg/L	96.8 ICL	90.0 - 110		125460239			
Doministra		Reading	Known	Units	Recover%	Limits%		File			
Parameter TCLP Mercury		0.0208	0.02	mg/L	104 ICV	90.0 - 110		125460226			
Parameter_		Reading	Known	Units	Recover%	Limits%		File			
TCLP Mercury	!!!:	0.00486		mg/L	97.2	90.0 - 110	11	125460225			

Report Page 8 of 20

2

CLDV-G

Chaparral Labs Dave Veinotte 861 Hwy 19 Huntsville, TX 77320 Page 2 of 13
| Project | 1076460

111

							3		Printed	10/11/20	23
					L	CS Dup		1			
Parameter		PrepS		LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD Limit%
TCLP Mercury		10826	77 0.00934	0.00987		0.010	85.1 - 117	93.4	98.7	mg/IL	5.52 20.0
				1		MSD			1	J 1	1.2
<u>Parameter</u>		Samp	e MS	MSD	UNK	Known	Limits	MS%	MSD%	Units	RPD Limit%
TCLP Mercury		22322	85 0.095	0.0968	ND	0.100	80.9 - 121	95.0	96.8	mg/L	1.88 20.0
	Analytical Set	108298)			William III a S San			and the second second	With the Paris of the Control of the	EPA 6020A
						Blank		1			
Parameter		PrepS	et Reading	MDL	MQL	Units		1 4	File		
TCLP Arsenic		10827	17 ND	0.010	0.010	mg/L	- 6		125465513		
TCLP Barium		10827	17 ND	0.010	0.010	mg/L	, 1		125465513		
TCLP Cadmium		10827	17 ND	0.001	0.001	mg/L	į		125465513		
TCLP Chromium	1	10827	17 ND	0.010	0.010	mg/L			125465513		
TCLP Lead		10827	17 ND	0.010	0.010	mg/L			125465513		
TCLP Selenium		10827		0.010	0.010	mg/L			125465513		
			100000	0.010	0.010	CCV			123403313)	
Parameter ;			Reading	Known	rete.		3 807 30 300				
TCLP Arsenic			0.0506		Units	Recover%	Limits%	1 1 1 11	File		lt .
TCLP Arsenic			0.0308	0.05	mg/L	101	90.0 - 110		125465510		
TCLP Arsenic			0.0454	0.05	mg/L	92.6	90.0 - 110		125465520		
TCLP Barium				0.05	mg/L	90.8	90.0 - 110		125465532		
TCLP Barium			0.050 0.0469	0.05	mg/L	100	90.0 - 110	, 0.1	125465510		
TCLP Barium				0.05	mg/L	93.8	90.0 - 110	1	125465520		
TCLP Cadmium			0.0459	0.05	mg/L	91.8	90.0 - 110	1 1	125465532		
TCLP Cadmium			0.0481	0.05	mg/L	96.2	90.0 - 110	1	125465510		
TCLP Cadmium			0.047	0.05	mg/L	94.0	90.0 - 110		125465520		
TCLP Chromium			0.0454	0.05	mg/L	90.8	90.0 - 110		125465532	1	
TCLP Chromium			0.0492	0.05	mg/L	98.4	90.0 - 110		125465510		
TCLP Chromium			0.0483	0.05	mg/L	96.6	90.0 - 110		125465520		1
TCLP Lead			0.0476	0.05	mg/L	95.2	90.0 - 110	į.	125465532	1	4
TCLP Lead			0.0485	0.05	mg/L	97.0	90.0 - 110	1	125465510	4	
TCLP Lead			0.048	0.05	mg/L	96.0	90.0 - 110		125465520		
TCLP Selenium			0.0473	0.05	mg/L	94.6	90.0 - 110	1	125465532	0.00	
			0.0496	0.05	mg/L	99.2	90.0 - 110	the of	125465510		
TCLP Selenium			0.0528	0.05	mg/L	106	90.0 - 110	7 10 0	125465520		
TCLP Selenium			0.0484	0.05	mg/L	96.8	90.0 - 110		125465532		
						ICV					
Parameter			Reading	Known	Units	Recover%	Limits%		File		
TCLP Arsenic			0.0514	0.05	mg/L	103	90.0 - 110		125465476		
TCLP Barium			0.0515	0.05	mg/L	103	90.0 - 110		125465476		
TCLP Cadmium			0.0501	0.05	mg/L	100	90.0 - 110	1	125465476	- 1	
TCLP Chromium			0.0502	0.05	mg/L	100	90.0 - 110	Ţ.	125465476		
CLP Lead	±.		0.0518	0.05	mg/L	104	90.0 - 110	1 (1)	125465476	1 1 4	
TCLP Selenium			0.0511	0.05	mg/L	102	90.0 - 110	1 1 1 1 1 1 1 1		4 . 1 4	
				(53,374))		102	30.0 - 110		125465476		

Report Page 9 of 20

QUALITY CONTROL

CLDV-G

Chaparral Labs Dave Veinotte 861 Hwy 19 Huntsville, TX 77320 The Science of Sure

Page 3 of 13

Project 1076460

Printed 10/11/2023

			,				Printed	10/11/202	13	
	1 : 1	ļ!	1	LCS Dup	i I	1 1			į	
Parameter .		PrepSet LCS	LCSD	Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
TCLP Arsenic	1	1082717 0.459	0.471	0.500	82.8 - 120	91.8	94.2	mg/L	2.58	14.0
TCLP Barium		1082717 0.463	0.468	0.500	83.1 - 113	92.6	93.6	mg/L	1.07	14.0
TCLP Cadmium		1082717 0.222	0.228	0.250	86.0 - 115	88.8	91.2	mg/L	2.67	14.0
TCLP Chromium		1082717 0.486	0.479	0.500	84.3 - 118	97.2	95.8	mg/L	1.45	14.0
TCLP Lead		1082717 0.438	0.444	0.500	85.1 - 115	87.6	88.8	mg/L	1.36	14.0
TCLP Selenium		1082717 0.496	0.494	0.500	83.5 - 121	99.2	98.8	mg/L	0.404	14.0
). T+		MSD						
Parameter		Sample MS	MSD	UNK Known	Limits	MS%	MSD%	Units	RPD	Limit%
TCLP Arsenic	6	2232285 2.30	2.28	ND 2.50	84.9 - 114	92.0	91.2	mg/L	0.873	20.0
TCLP Barium	1	2232285 3.07	3.03	0.644 2.50	80.3 - 115	97.0	95.4	mg/L	1.66	20.0
TCLP Cadmium		2232285 1.11	1.14	ND 1.25	78.2 120	88.8	91.2	mg/L	2.67	20.0
CLP Chromium	1	2232285 2.39	2,37	0.0139 2.50	86.0 - 117	95.0	94.2	mg/L	0.845	20.0
TCLP Lead		2232285 2.22	2.26	ND 2.50	85.0 - 116	88.8	90.4	mg/L	1.79	20.0
TCLP Selenium	i	2232285 2.37	2.34	0.0847 2.50	80.2 - 121	91.4	90.2	mg/L	1.32	20.0
	Analytical Set	1083033		177.1					EP	A 6020A
		Harris A F		Blank		P				
Danamatan		Prom Cat Pools	no MDI	MQL Units			File			
Parameter		PrepSet Read		Services Englished			125467805			
TCLP Silver		1082717 ND	0.010	0.010 mg/L			125407005			
				CCV						
Parameter		Read	ng Known	Units Recover%	Limits%		File			
TCLP Silver	1 1 : 1	0.049	2 0.05	mg/L 98.4	90.0 - 110	1	125467802			
TCLP Silver	0 1 1	0.049	5 0.05	mg/L 99.0	90.0 - 110		125467808	1 11 11	- 4	
TCLP Silver		0.049	4 0.05	mg/L 98.8	90.0 - 110		125467820			
		T.		ICV						
Parameter		Read	ing Known	Units Recover%	Limits%		File			
TCLP Silver		0.049		mg/L 99.0	90.0 - 110		125467747			
		thin de		LCS Dup						
Downwaton		PrepSet LCS	LCSD	1990	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Parameter				0.100			104		0.966	14.0
TCLP Silver		1082717 0.103	0.104		80.1 - 118	103	104	mg/L	0.966	14.0
	4	1		MSD						
Parameter Parame	ľ	Sample MS	MSD	UNK Known	Limits	MS%	MSD%	Units	RPD	Limit%
TCLP Silver	!	2232285 0.523	0.531	ND 0.500	80.7 - 115	105	106	mg/L	1.52	20.0
	Analytical Set	1083209		Value of the latest of the lat	71111		THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NA		EF	A 8260E
			t	BFB	1					
Parameter		Sample RefM	fass Reading				File			
BFB Mass 173		1083209 174	0	0.0 0 - 2.00			125471872			
BFB Mass 174		1083209 95.0	938	64.1 50.0 - 100		1	125471872			
BFB Mass 175		1083209 174	80	8.5 5.00 - 9.00			125471872			
BFB Mass 176		1083209 174	902	96.2 95.0 - 101			125471872			
		,	İ							
			!	of acend					E	
				1101				Report	Page '	10 of 20
				A CHARLES						

111

Page 4 of 13

Project 1076460

Printed 10/1/1/2023

CLDV-G

Chaparral Labs Dave Veinotte 861 Hwy 19 Huntsville, TX 77320

			ļ	BF	В	i						1		
Parameter	Sample	RefMass	Reading	%	Limits%	. 1	Ē			File				
BFB Mass 177	1083209	176	52	5.7	5.00 - 9.00		1			125471872				
BFB Mass 50	1083209	95.0	316	21.6	15.0 - 40.0	1				125471872	1		1	
BFB Mass 75	1083209	95.0	821	56.1	30.0 - 60.0					125471872		180		
BFB Mass 95	1083209	95.0	1462	100.0	100 - 100		1			125471872				
BFB Mass 96	1083209	95.0	89	6.1	5.00 - 9.00			1		125471872				
DI D Mass 50	1003207	75.0				1					1			
				Bia	ank	1 1								
Purameter	PrepSet	Reading	MDL	MQL	Units	15				File				
TCLP 1,1-Dichloroethene	1083209	ND	0.000574	0.001	mg/L					125471876				
TCLP 1,2-Dichloroethane	1083209	ND	0.00059	0.001	mg/L					125471876				
TCLP 1,4 Dichlorobenzene	1083209	ND	0.000837	0.001	mg/L					125471876				
TCLP Benzene	1083209	ND	0.000453	0.001	mg/L			1		125471876		1		
TCLP Carbon tetrachloride	1083209	ND	0.000299	0.001	mg/L			3.		125471876				
TCLP Chlorobenzene	1083209	ND I	0.000558	0.001	mg/L	1			111	125471876	1	. 1	1	
TCLP Chloroform	1083209	ND	0.000463	0.001	mg/L				70.02	125471876	7		3	
TCLP MEK	1083209	ND	0.000742	0.001	mg/L					125471876				
TCLP Tetrachloroethylene	1083209	ND	0.000607	0.001	mg/L	Ť				125471876				
TCLP Trichloroethylene	1083209	ND	0.000521	0.001	mg/L	F				125471876				
TCLP Vinyl chloride	1083209	ND	0.000702	0.001	mg/L		li			125471876				
					cv		1		7	į.				
				C	CV		Í							
<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%				File				
TCLP 1,1-Dichloroethene		0.0212	0.020	mg/L	106	70.0 - 130				125471873		7.1		
TCLP 1,2-Dichloroethane		0.0229	0.020	mg/L	114	70.0 - 130				125471873		1 1		
TCLP 1,4 Dichlorobenzene		0.0193	0.020	mg/L	96.5	70.0 - 130				125471873				
TCLP Benzene		0.0216	0.020	mg/L	108	70.0 - 130	1			125471873		-1		
TCLP Carbon tetrachloride		0.0216	0.020	mg/L	108	70.0 - 130	1			125471873				
TCLP Chlorobenzene		0.0196	0.020	mg/L	98.0	70.0 - 130				125471873		ŧ	1	
TCLP Chloroform		0.022	0.020	mg/L	110	70.0 - 130				125471873		90		
TCLP MEK		0.0226	0.020	mg/L	113	70.0 - 130	1	-		125471873				
TCLP Tetrachloroethylene		0.019	0.020	mg/L	95.0	70.0 - 130		1.		125471873				
TCLP Trichloroethylene		0.0197	0.020	mg/L	98.5	70.0 - 130				125471873				
TCLP Vinyl chloride		0.0238	0.020	mg/L	119	70.0 - 130				125471873				
				IS A	reas									
Parameter .	Sample	Type	Reading	CCVISM	Low	High				File		PrepS	Set	
1,4-DichlorobenzeneD4 (ISTD)	1083209	CCV	42720	42720	29900	55540				125471873		10832		
1,4-DichlorobenzeneD4 (ISTD)	1083209	LCS	46180	42720	29900	55540		T		125471874		10832		
1,4-DichlorobenzeneD4 (ISTD)	1083209	LCS Dup	41510	42720	29900	55540		1		125471875		10832		
1,4-DichlorøbenzeneD4 (ISTD)	1083209	Blank	33810	42720	29900	55540			Hii	125471876	a	10832		
ChlorobenzeneD5 (ISTD)	1083209	CCV	85560	85560	59900	111200		1	111	125471873	3	10832	- 4	
ChlorobenzeneD5 (ISTD)	1083209	LCS	92160	85560	59900	111200				125471873		10832		
ChlorobenzeneD5 (ISTD)	1083209	LCS Dup	82640	85560	59900	111200				125471875		10832		
ChlorobenzeneD5 (ISTD)	1083209	Blank	77000	85560	59900	111200				125471876		10832		
1,4-DichlorobenzeneD4 (ISTD)	2232400	MS	33870	42720	29900	55540	lt			125471881		10832		
1,4-DichlorobenzeneD4 (ISTD)	2232400	MSD	36430	42720	29900	55540	4			125471882		10828		
(in th)	ZEJZ-100	HILL	30-30	42/20	29900	33340			1	1234/1002		10828	331	

Report Page 11 of 20

QUALITY CONTROL

CLDV-G

Chaparral Labs Dave Veinotte 861 Hwy 19 Huntsville, TX 77320

Page 5 of 13

Project 1076460

Printed 10/11/2023

	re	

Parameter	Sample 7	Type Reading	CCVISM Low	High	File	PrepSet	
ChlorobenzeneD5 (ISTD)	2232400 M	MS 68560	85560 59900	111200	125471881	1082851	
ChlorobenzeneD5 (ISTD)	2232400 N	MSD 74250	85560 59900	111200	125471882	1082851	
, ,	CONTRACT HIE	117	IS RetTime	I below I would		, , , , , ,	
Parameter	Sample 7	Type Reading	CCVISM Low	High	File	PrepSet	
1,4-DichlorobenzeneD4 (ISTD)	120-120-120-1	LCS 11.97	11.97 11.91	12.03	125471874	1083209	
1,4-DichlorobenzeneD4 (ISTD)	1083209 I	LCS Dup 11.97	11.97 11.91	12.03	125471875	1083209	
1,4-DichlorobenzeneD4 (ISTD)		Blank 11.97	11.97 11.91	12.03	125471876	1083209	
ChlorobenzeneD5 (ISTD)		LCS 9.597	9.597 9.537	9.657	125471874	1083209	
ChlorobenzeneD5 (ISTD)		LCS Dup 9.597	9.597 9.537	9.657	125471875	1083209	
ChlorobenzeneD5 (ISTD)		Blank 9.597	9.597 9.537	9.657	125471876	1083209	
1,4-DichlorobenzeneD4 (ISTD)	2232400	MS 11.97	11.97 11.91	12.03	125471881	1082851	
1,4-DichlorobenzeneD4 (ISTD)	The state of the s	MSD 11.97	11.97 11.91	12.03	125471882	1082851	
ChlorobenzeneD5 (ISTD)	2232400 1	MS 9.597	9.597 9.537	9.657	125471881	1082851	
ChlorobenzeneD5 (ISTD)		MSD 9.597	9.597 9.537	9.657	125471882	1082851	
T		Total Total	LCS Dup				
Parameter		LCS LCSD	Known	Limits% LCS%	LCSD%	Units RPD	Limit%
TCLP 1,1-Dichloroethene		0.0157 0.0163	0.020	56.7 - 135 78.5	81.5	mg/L 3.75	30.0
TCLP 1,2-Dichloroethane	Consideration in	0.0192 0.0216	0.020	69.8 - 132 96.0	108	mg/L 11.8	30.0
TCLP 1,4 Dichlorobenzene		0.0184 0.0199	0.020	74.8 - 116 92.0	99.5	mg/L 7.83	30.0
TCLP Benzene		0.0185 0.0204	0.020	67.1 - 123 92.5	102	mg/L 9.77	30.0
TCLP Carbon tetrachloride		0.0186 0.0192	0.020	60.1 - 132 93.0	96.0	mg/L 3.17	30.0
TCLP Chlorobenzene		0.0177 0.0193	0.020	74.0 - 115 88.5	96.5	mg/L 8.65	30.0
TCLP Chloroform		0.019 0.0206	0.020	71.1 - 128 95.0	103	mg/L 8.08	30.0
TCLP MEK		0.0209 0.0248	0.020	40.7 - 166 104	124	mg/L 17.5	30.0
TCLP Tetrachloroethylene		0.0158 0.0181	0.020	71.2 - 126 79.0	90.5	mg/L 13.6	30.0
TCLP Trichloroethylene	202B 225	0.0174 0.0178	0.020	71.4 - 126 87.0	89.0	mg/L 2.27	30.0
TCLP Vinyl chloride	1083209	0.0241 0.0249	0.020	18.5 - 155 120	124	mg/L 3.28	30.0
£			MSD				
Parameter	Sample	MS MSD	UNK Known	Limits MS%	MSD%	Units RPD	Limit%
TCLP 1,1-Dichloroethene	1-25-4-60-27	0.152 0.135	ND 0.200	0.100 - 168 76.0	67.5	mg/L 11.8	30.0
TCLP 1,2-Dichloroethane	2232400	0.220 0.194	ND 0.200	48.4 - 134 110	97.0	mg/L 12.6	30.0
TCLP 1,4 Dichlorobenzene	2232400	0.190 0,177	ND 0.200	45.4 - 121 95.0	88.5	mg/L 7.08	30.0
TCLP Benzene	2232400	0.201 0.180	ND 0.200	5.00 - 119 100	90.0	mg/L 11.0	30.0
TCLP Carbon tetrachloride	2232400	0.182 0.152	ND 0.200	0.100 - 164 91.0	76.0	mg/L 18.0	30.0
TCLP Chlorobenzene	2232400	0.186 0.172	ND 0.200	32.5 - 130 93.0	86.0	mg/L 7.82	30.0
TCLP Chloroform		0.209 0.194	ND 0.200	22.1 - 141 104	97.0	mg/L 7.44	30.0
TCLP MEK	The state of the s	0.210 0.212	ND 0.200	9.88 - 197 105	106	mg/L 0.948	30.0
TCLP Tetrachloroethylene		0.164 0.137	ND 0.200	0.100 - 157 82.0	68.5	mg/L 17.9	30.0
TCLP Trichloroethylene	2232400	0.178 0.150	ND 0.200	0.100 - 161 89.0	75.0	mg/L 17.1	30.0
TCLP Vinyl chloride	2232400	0.183 0.167	ND 0.200	0.100 - 197 91.5	83.5	mg/L 9.14	30.0
1 1	Dr. State of	- 101 - 10.0	Surrogate	Logical Control of the Control of th		THE TOTAL METAL (1997)	
Parameter	Sample	Type Reading	Known Units	Recover% Limits%	i File		

Report Page 12 of 20

111

: 11

2

CLDV-G

Chaparral Labs Dave Veinotte 861 Hwy 19 Huntsville, TX 77320

					Suri	ogate			1	
Parameter		Sample	Type	Reading	Known	Units	Recover%	Limits%	File	
1,2-DCA-d4 (SURR)		1083209	CCV	0.0212	0.020	mg/L	106	74.2 - 132	125471873	
1,2-DCA-d4 (SURR)		1083209	LCS	0.0212	0.020	mg/L	106	74.2 - 132	125471874	
1,2-DCA-d4 (SURR)		1083209	LCS Dup	0.0206	0.020	mg/L	103	74.2 - 132	125471875	
1,2-DCA-d4 (SURR)		1083209	Blank	0.0215	0.020	mg/L	108	74.2 - 132	125471876	
Bromofluorobenzene (SURR)		1083209	CCV	0.020	0.020	mg/L	100	77.2 - 134	125471873	
Bromofluorobenzene (SURR)		1083209	LCS	0.020	0.020	mg/L	100	77.2 - 134	125471874	
Bromofluorobenzene (SURR)		1083209	LCS Dup	0.0207	0.020	mg/L	104	77.2 - 134	125471875	
Bromofluorobenzene (SURR)		1083209	Blank	0.0213	0.020	mg/L	106	77.2 - 134	125471876	of the sample of the
Dibromofluoromethane (SURR)		1083209	CCV	0.0194	0.020	mg/L	97.0	67.2 - 122	125471873	The second second second
Dibromofluoromethane (SURR)		1083209	LCS	0.0191	0.020	mg/L	95.5	67.2 - 122	125471874	I III PANT mare e- 1
Dibromofluoromethane (SURR)		1083209	LCS Dup	0.0186	0.020	mg/L	93.0	67.2 - 122	125471875	
Dibromofluoromethane (SURR)		1083209	Blank	0.0198	0.020	mg/L	99.0	67.2 - 122	125471876	
TolueneD8 (SURR)		1083209	CCV	0.0198	0.020	mg/L	99.0	69.2 - 122	125471873	
TolueneD8 (SURR)		1083209	LCS	0.0191	0.020	mg/L	95.5	69.2 - 122	125471874	
TolueneD8 (SURR)		1083209	LCS Dup	0.0192	0.020	mg/L	96.0	69.2 - 122	125471875	
TolueneD8 (SURR)		1083209	Blank	0.0195	0.020	mg/L	97.5	69.2 - 122	125471876	
1,2-DCA-d4 (SURR)		2232400	MS	0.0217	0.020	mg/L	108	74.2 - 132	125471881	
1,2-DCA-d4 (SURR)		2232400	MSD	0.0213	0.020	mg/L	106	74.2 - 132	125471882	
Bromofluorobenzene (SURR)		2232400	MS	0.0206	0.020	mg/L	103	77.2 - 134	125471881	11
Bromofluorobenzene (SURR)		2232400	MSD	0.0205	0.020	mg/L	102	77.2 - 134	125471882	
Dibromofluoromethane (SURR)		2232400	MS	0.0204	0.020	mg/L	102	67.2 - 122	125471881	
Dibromofluoromethane (SURR)		2232400	MSD	0.0198	0.020	mg/L	99.0	67.2 - 122	125471882	The state of the s
TolueneD8 (SURR)		2232400	MS	0.0196	0.020	mg/L	98.0	69.2 - 122	125471881	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
TolueneD8 (SURR)		2232400	MSD	0.0193	0.020	mg/L	96.5	69.2 - 122	125471882	
Analytical Set	1	083728	100					embro , but		EPA 8082

	Analytical Set	1083728							el.			EPA 8082
					1	Blank				,		
Parameter		PrepSet	Reading	MDL	MQL	Units	1 1			File		
PCB-1016		1083342	ND	43.0	250	ug/kg	4			125481650		
PCB-1221		1083342	ND	43.0	250	ug/kg				125481650		
PCB-1232		1083342	ND	43.0	250	ug/kg				125481650		
PCB-1242		1083342	ND	43.0	250	ug/kg				125481650		
PCB-1248		1083342	ND	43.0	250	ug/kg			The C	125481650)	
PCB-1254		1083342	ND	43,0	250	ug/kg				125481650		
PCB-1260		1083342	ND	43.0	250	ug/kg	l med an		1 111	125481650		†
						CCV						
Parameter			Reading	Known	Units	Recover%	Limits%			File		
PCB-1016			1080	1000	ug/kg	108	80.0 - 120			125481649		
PCB-1016			1090	1000	ug/kg	109	80.0 - 120	l		125481663		
PCB-1016			847	1000	ug/kg	84.7	80.0 - 120	1		125481665		
PCB-1260			1130	1000	ug/kg	113	80.0 - 120	- 1	1	125481649		
PCB-1260			2250	1000	ug/kg	225	80.0 - 120			125481663		
PCB-1260			3290	1000	ug/kg	329	80.0 - 120	٠		125481665	i	1

Report Page 13 of 20

QUALITY CONTROL

CLDV-G

Chaparral Labs Dave Veinotte 861 Hwy 19 Huntsville, TX 77320

<u>Parameter</u>

PCB-1016

PCB-1260

Page 7 of 13

RPD

4.48

2.88

Limit%

30.0

30.0

Project 1076460

Units

ug/kg

ug/kg

Printed 10/11/2023

LCSD%

137

141

			I	М	SD						
Parameter PCB-1016 PCB-1260	Sample 2231591 2231591	MS 11500 7700	MSD 11500 8440	UNK ND ND	10000 10000	Limits 0.100 - 427 0.100 - 470	MS% 115 77.0	MSD% 115 84.4	Units ug/kg ug/kg	RPD 0 9.17	Limit% 30.0 30.0
	in the second			Surr	ogate		7117				
Parameter Decachlorobiphenyl Tetrachloro-m-Xylene (Surr)	Sample 1083342 1083342	Type Blank Blank	Reading 77.9 100	Known 100 100	Units ug/kg ug/kg	Recover% 77.9 100	Limits% 10.0 - 200 10.0 - 160	File 125481650 125481650			
Analytical Set	1083861		Ì	Aur	196.5	454c. h	100			EI	A 8151
				ВІ	ank						
Parameter TCLP 2,4 D TCLP 2,4,5-TP (Silvex) TCLP 2,4 D TCLP 2,4 D TCLP 2,4,5-TP (Silvex)	PrepSet 1082501 1082501 1083228 1083228 1083228	Reading ND ND ND ND ND ND	MDL 0.000159 0.0000893 0.000159 0.000159 0.0000893	0.0005 0.0005	Units mg/L mg/L mg/L mg/L mg/L mg/L	1 1	other account of the country of the	File 125486022 125486022 125486019 125486029 125486019			
TCLP 2,4,5-TP (Silvex)	1083228	ND	0.0000893	0.0003	mg/L	1		125486029			
i l		1	Ì	c	CV						
Parameter TCLP 2,4 D TCLP 2,4 D TCLP 2,4 D TCLP 2,4,5-TP (Silvex) TCLP 2,4,5-TP (Silvex) TCLP 2,4,5-TP (Silvex)	1	Reading 0.150 0.156 0.156 0.157 0.158 0.157	Known 0.150 0.150 0.150 0.150 0.150 0.150	Units mg/L mg/L mg/L mg/L mg/L mg/L	Recover% 100 104 104 104 105 105	Limits% 70.0 - 130 70.0 - 130 70.0 - 130 70.0 - 130 70.0 - 130 70.0 - 130	COMMITTEE AND ASSESSMENT OF THE PARTY OF THE	File 125486018 125486036 125486040 125486018 125486036 125486040			
	Hr.	1	- 1	LC	S Dup	i ı	1 1				
Parameter TCLP 2,4 D TCLP 2,4,5-TP (Silvex)	PrepSet 1083228 1083228	LCS 0.000371 0.000423	0.000275 0.000314	Suc	6.001 0.001 0.001	Limits% 2.06 - 194 19.3 - 162	LC\$% 37.1 42.3	LCSD% 27.5 31.4	Units mg/L mg/L	RPD 29.7 29.6	30.0 30.0
Title .		120			-		F1 1 04	F11			
Parameter 2,4-Dichlorophenylacetic Acid 2,4-Dichlorophenylacetic Acid	Sample	CCV CCV	Reading 0,151 0.152	0.200 0.200	Units mg/L mg/L	Recover% 75.5 76.0	Limits% 0.100 - 294 0.100 - 294	File 125486018 125486036			
2,4-Dichlorophenylacetic Acid 2,4-Dichlorophenylacetic Acid 2,4-Dichlorophenylacetic Acid 2,4-Dichlorophenylacetic Acid	1082501 1083228 1083228	CCV Blank Blank LCS	0.152 0.0373 0.0328 0.0411	0.200 0.200 0.200 0.200	mg/L mg/L mg/L mg/L	76.0 18.6 16.4 20.6	0.100 - 294 0.100 - 294 0.100 - 294 0.100 - 294	125486040 125486022 125486019 125486020			
2,4-Dichlorophenylacetic Acid	1083228	LCS Dup	0.0322	0.200	mg/L	16.1	0.100 - 294	125486021			

LCS Dup

Known

5000

5000

LCSD

6830

7030

LGS

6540

6870

PrepSet

1083342

1083342

Limits%

28.4 - 187

22.3 - 183

LCS%

131

137

Report Page 14 of 20

QUALITY CONTROL

CLDV-G

Chaparral Labs Dave Veinotte 861 Hwy 19 Huntsville, TX 77320

Printed 10/11/2023

Surrogate

				Sur	rogate	F i						
<u>Parameter</u> 2,4-Dichlorophenylacetic Acid	Sample 108322	Type B Blank	Reading 0.0349	Known 0.200	Units mg/L	Recover%	Limits% 0.100 - 294	File 125486029		THE REAL PROPERTY.	COLUMN VICE TO SERVICE	
Analytical Set	1084018		111	YXX				11/1				EPA 8270C
				В	llank					1		
Parameter	PrepSet	Reading	MDL	MQL	Units	,	1.00	File	it			
TCLP 2,4,5-Trichlorophenol	108250	A	0.000734	0.001	mg/L	1	1 1 11	125490260	Ų		1	
TCLP 2,4,6-Trichlorophenol	108250	l ND	0.000704	0.001	mg/L			125490260				
TCLP 2,4-Dinitrotoluene	108250	l ND	0.00335	0.0035	mg/L			125490260				
TCLP 2-Methylphenol (o-Cresol)	108250	l ND	0.00513	0.0052	mg/L			125490260				
TCLP 3&4-Methylphenol (m&p-Creso	108250	l ND	0.00615	0.0062	mg/L	6	1	125490260				
TCLP Hexachlorobenzene	108250	l ND	0.000187	0.001	mg/L		1	125490260				
TCLP Hexachlorobutadiene	108250	l ND	0.000618	0.001	mg/L		1	125490260				
TCLP Hexachloroethane	108250	l ND	0.000789	0.001	mg/L			125490260				
TCLP Nitrobenzene	108250	l ND	0.00039	0.001	mg/L	1		125490260		90	F	
TCLP Pentachlorophenol	108250	0.00058	0.000129	0.001	mg/L	1 '		125490260		4	1	
TCLP Pyridine (Reg. Limit 5)	108250	l ND	0.00533	0.0054	mg/L	1		125490260		3		
TCLP 2,4,5-Trichlorophenol	108329	2 ND	0.000734	0.001	mg/L	1	3	125490257		1		! [
TCLP 2,4,6-Trichlorophenol	108329	2 ND	0.000704	0.001	mg/L			125490257				
TCLP 2,4-Dinitrotoluene	108329	2 ND	0.00335	0.0035	mg/L	3		125490257	į.		1	
TCLP 2-Methylphenol (o-Cresol)	108329	2 ND	0.00513	0.0052	mg/L			125490257				
TCLP 3&4-Methylphenol (m&p-Creso	108329	2 ND	0.00615	0.0062	mg/L			125490257				
TCLP Hexachlorobenzene	108329	2 ND	0.000187	0.001	mg/L		1	125490257				
TCLP Hexachlorobutadiene	108329	2 ND	0.000618	0.001	mg/L	F.		125490257				
TCLP Hexachloroethane	108329	2 ND	0.000789	0.001	mg/L	r I		125490257				
TCLP Nitrobenzene	108329	2 ND	0.00039	0.001	mg/L	ŧ.		125490257				
TCLP Pentachlorophenol	108329	0.00057	0.000129	0.001	mg/L			125490257				
TCLP Pyridine (Reg. Limit 5)	108329	2 ND	0.00533	0.0054	mg/L			125490257				
					CCV							
Parameter		Reading	Known	Units	Recover%	Limits%		File		1		
TCLP 2,4,5†Trichlorophenol		55.7	50.0	mg/L	111	70.0 - 130	1 111	125490256	n	ř	ıi.	
TCLP 2,4,6 Trichlorophenol		55.4	50.0	mg/L	111	70.0 - 130	1 : 1	125490256	ıį	ŧ.		
TCLP 2,4-Dinitrotoluene		45.0	50.0	mg/L	90.0	70.0 - 130		125490256				
TCLP 2-Methylphenol (o-Cresol)		50.9	50.0	mg/L	102	70.0 - 130		125490256				
TCLP 3&4-Methylphenol (m&p-Creso		51.5	50.0	mg/L	103	70.0 - 130		125490256				
TCLP Hexachlorobenzene		48.1	50.0	mg/L	96.2	70.0 - 130	li	125490256				
TCLP Hexachlorobutadiene		44.6	50.0	mg/L	89.1	70.0 - 130	1,	125490256				
TCLP Hexachloroethane		46.9	50.0	mg/L	93.8	70.0 - 130	1 1	125490256				
TCLP Nitrobenzene		50.7	50.0	mg/L	101	70.0 - 130		125490256				
TCLP Pentachlorophenol		46.6	50.0	mg/L	93.2	70.0 - 130		125490256		247	ř Imai	
TCLP Pyridine (Reg. Limit 5)		44.5	50.0	mg/L	89.0	70.0 - 130		125490256			1	
		9071-02		The second second	FTPP	70.0 7 150		120-170250		1		200
D					rier		1000			1		and the last of
Parameter 100		RefMass	Reading	%	Limits%	1	1000	File				the state of the
DFTPP Mass 127	620075	198	24765	54.6	40.0 - 60.0			125490255	ì		1	

Report Page 15 of 20

CLDV-G

Chaparral Labs Dave Veinotte 861 Hwy 19 Huntsville, TX 77320

Page 9 of 13

Project 1076460

Printed 10/11/2023

		1 1	1	DFT	PP						
Parameter		RefMass	Reading	%	Limits%	E		F	ile		
DFTPP Mass 197	620075	198	0	0.0	0 - 1.00	k.		1	25490255		
DFTPP Mass 198	620075	198	45389	100.0	100 - 100			1	25490255		
DFTPP Mass 199	620075	198	3244	7.1	5.00 - 9.00		100	1	25490255		
DFTPP Mass 275	620075	198	13168	29.0	10.0 - 30.0			1	25490255		
DFTPP Mass 365	620075	198	2783	6.1	1.00 - 100			1	25490255		
DFTPP Mass 441	620075	443	5068	92.3	0 - 100			1	25490255		
DFTPP Mass 442	620075	198	28888	63.6	40.0 - 100			1	25490255		
DFTPP Mass 443	620075	442	5490	19.0	17.0 - 23.0			1	25490255		
DFTPP Mass 51	620075	198	26144	57.6	30.0 - 60.0			1	25490255		
DFTPP Mass 68	620075	69.0	0	0.0	0 - 2.00			1	25490255		
DFTPP Mass 69	620075	198	27388	60.3	0 - 100	1 1		1	25490255		
DFTPP Mass 70	620075	69.0	116	0.4	0 - 2.00			1	25490255		
DI III Mass 10				IS A	roas						
				13 A	eas						
Parameter	Sample	Type	Reading	CCVISM	Low	High			File	PrepSet	
1,4-Dichlorobenzene-d4-ISTD	620073	CCV	61950	61950	30970	92920			25490256	620073	
Acenaphthene-d10-ISTD	620073	CCV	101200	101200	50580	151700			25490256	620073	
Naphthalene-d8-ISTD	620073	CCV	194200	194200	97100	291300			25490256	620073	
Phenanthrene-d10-ISTD	620073	CCV	153900	153900	76930	230800			125490256	620073	
1,4-Dichlorobenzene-d4-ISTD	1082501		60370	61950	30970	92920	, I'M		125490260	1082501	
Acenaphthene-d10-ISTD	1082501	Blank	105600	101200	50580	151700	1		125490260	1082501	
Naphthalene-d8-ISTD	1082501	Blank	190300	194200	97100	291300			125490260	1082501	
Phenanthrene-d10-ISTD	1082501	Blank	200400	153900	76930	230800			125490260	1082501	
4,4-Dichlorobenzene-d4-ISTD	1083292	Blank	59390	61950	30970	92920			125490257	1083292	
1,4-Dichlorobenzene-d4-ISTD	1083292	LCS	61190	61950	30970	92920			125490258	1083292	
1,4-Dichlorobenzene-d4-ISTD	1083292	LCS Dup	64690	61950	30970	92920			125490259	1083292	
Acenaphthene-d10-ISTD	1083292	Blank	102300	101200	50580	151700			125490257	1083292	
Acenaphthene-d10-ISTD	1083292	LCS	102900	101200	50580	151700			125490258	1083292	
Acenaphthene-d10-ISTD	1083292	LCS Dup	106000	101200	50580	151700			125490259	1083292	
Naphthalene-d8-ISTD	1083292	Blank	191400	194200	97100	291300			125490257	1083292	
Naphthalene-d8-ISTD	1083292	LCS	190700	194200	97100	291300			125490258	1083292	
Naphthalene-d8-ISTD	1083292	LCS Dup	198700	194200	97100	291300			125490259	1083292	
Phenanthrene-d10-ISTD	1083292	Blank	186500	153900	76930	230800			125490257	1083292	
Phenanthrene-d10-ISTD	1083292	LCS	162900	153900	76930	230800			125490258	1083292	
Phenanthrene-d10-ISTD	1083292	LCS Dup	212700	153900	76930	230800			125490259	1083292	
1,4-Dichlorobenzene-d4 ISTD	2232209	MS	51200	61950	30970	92920		1	125490266	1083292	
Acenaphthene-d10-ISTD	2232209	MS	88740	101200	50580	151700			125490266	1083292	
Naphthalene-d8-ISTD	2232209	MS	161100	194200	97100	291300			125490266	1083292	
Phenanthrene-d10-ISTD	2232209	MS	150700	153900	76930	230800			125490266	1083292	
	,			IS Re	tTime						
Parameter	Sample	Туре	Reading	CCVISM	Low	High			File	PrepSet	
1,4-Dichlorobenzene-d4-ISTD	620073	CCV	8,690	8.690	8.630	8.750			125490256	620073	
Acenaphthene-d10-ISTD	620073	CCV	15.20	15.20	15.14	15.26			125490256	620073	
Naphthalene-d8-ISTD	620073	ccv	11.22	11.22	11.16	11.28			125490256	620073	

Report Page 16 of 20

Page 10 of 13

2

Project 1076460

Printed 10/11/2023

CLDV-G

Chaparral Labs
Dave Veinotte
861 Hwy 19
Huntsville, TX 77320

IS RetTime Parameter Sample Туре Reading CCVISM Low PrepSet High File 125490256 Phenanthrene-d10-ISTD 620073 CCV 17.74 17.80 620073 17.74 17.68 1,4-Dichlorobenzene-d4-ISTD 1082501 Blank 8.680 8.750 125490260 108250 8.690 8.630 Acenaphthene-d10-ISTD 1082501 Blank 15.20 15.20 15.14 15.26 125490260 1082501 Naphthalene-d8-ISTD 1082501 Blank 11.21 11.22 11.16 11.28 125490260 1082501 Phenanthrene-d10-ISTD 1082501 Blank 17.73 17.74 17.68 17.80 125490260 1082501 1.4-Dichlorobenzene-d4-ISTD Blank 1083292 8.690 8.750 125490257 8.690 8.630 1083292 1,4-Dichlorobenzene-d4-ISTD 1083292 LCS 8.690 8.690 8.630 8.750 125490258 1083292 1,4-Dichlorobenzene-d4-ISTD 1083292 LCS Dup 8.690 125490259 8.690 8.630 8.750 1083292 Acenaphthene-d10-ISTD 1083292 Blank 15.20 15.20 15.14 15.26 125490257 1083292 Acenaphthene-d10-ISTD 1083292 LCS 15.20 15.14 125490258 15.20 15.26 1083292 Acenaphthene-d10-ISTD 1083292 LCS Dup 15.20 125490259 1083292 15.20 15.26 15.14 Naphthalene-d8-ISTD 1083292 Blank 11.22 11.22 11.16 11.28 125490257 1083292 Naphthalene-d8-ISTD 1083292 LCS 11.22 11 22 11.16 11.28 125490258 1083292 Naphthalene-d8-ISTD 1083292 LCS Dup 11.21 11.22 11.28 125490259 1083292 11.16 Phenanthrene-d10-ISTD 1083292 Blank 17.73 125490257 1083292 17.74 17.68 17.80 Phenanthrene-d10-ISTD 1083292 LCS 17.73 17.74 17.68 17.80 125490258 1083292 Phenanthrene-d10-ISTD 1083292 LCS Dup 17.73 17.74 17.80 125490259 1083292 17.68 1,4-Dichlorobenzene-d4-ISTD 2232209 MS 8,680 8.690 8.630 8.750 125490266 1083292 Acenaphthene-d10-ISTD 2232209 MS 15.20 15.20 15.14 15.26 125490266 1083292 Naphthalene-d8-ISTD 2232209 MS 11.22 11 22 11.16 11.28 125490266 1083292 2232209 Phenanthrene-d10-ISTD MS 17.73 17.74 125490266 17.68 17.80 1083292 LCS Dup Parameter PrepSet LCS LCSD Known Limits% LCS% LCSD% Units RPD Limit% TCLP 2,4,5-Trichlorophenol 1083292 0.0218 0.0228 0.025 39.3 - 111 87.2 91.2 mg/L 4.48 30.0 TCLP 2,4,6-Trichlorophenol 1083292 0.0226 0.0246 0.025 38.2 - 109 90.4 98.4 mg/L 8.47 30.0 TCLP 2,4-Dinitrotoluene 1083292 0.0202 0.0227 0.025 36.3 - 132 80.8 90.8 mg/L 11.7 30.0 111 TCLP 2-Methylphenol (o-Cresol) 1083292 0.017 0.0155 0.025 23.0 - 87.8 62.0 mg/L 9.23 68.0 30.0 TCLP 3&4-Methylphenol (m&p-Creso 1083292 0.0163 0.0157 0.025 14.9 - 92.5 65.2 62.8 mg/L 3.75 30.0 TCLP Hexachlorobenzene 1083292 0.020 0.0191 0.025 44.4 - 117 80.0 76.4 mg/L 4.60 30.0 TCLP Hexachlorobutadiene 1083292 0.0146 0.014 0.025 17.2 - 88.9 58.4 56.0 mg/L 4.20 30.0 TCLP Hexachloroethane 1083292 0.0137 0.0135 0.025 14.6 - 88.8 54.8 54.0 mg/L 1.47 30.0 TCLP Nitrobenzene 1083292 0.0202 0.0192 0.025 34.3 - 113 80.8 76.8 mg/L 5.08 30.0 TCLP Pentachlorophenol 1083292 0.0191 0.0198 0.025 15.7 - 129 76.4 79.2 mg/L 3.60 30.0 TCLP Pyridine (Reg. Limit 5) 1083292 0.0103 0.0068 0.025 0.0753 - 83.441.2 27.2 mg/L 40.9 * 30.0 MS Parameter Sample MS MSD UNK MS% MSD% Known Limits Units RPD Limit% TCLP 2,4,5-Trichlorophenol 2232209 0.193 0 0.0057 0.250 33.7 - 116 74.9 mg/L 30.0 TCLP 2,4,6-Trichlorophenol 2232209 0.193 0 0.0057 0.250 20.1 - 131 74.9 mg/L 30.0 TCLP 2,4-Dinitrotoluene 2232209 0.173 0 0.0057 0.250 31.8 - 135 66 9 30.0 mg/L TCLP 2-Methylphenol (o-Cresol) 2232209 0.152 0 0.0057 0.250 10.6 - 106 58.5 mg/L 30.0 TCLP 3&4-Methylphenol (m&p-Creso 2232209 0.146 0 ND 0.250 0.100 - 14958.4 mg/L 30.0 TCLP Hexachlorobenzene 2232209 0.177 0 0.0057 0.250 35.9 - 125 68.5 mg/L 30.0

0.250

11.1 - 88.5

47.7

1 111

Report Page 17 of 20

30.0

mg/L

TCLP Hexachlorobutadiene

2232209

0.125

0

0.0057

QUALITY CONTROL

11111

CLDV-G

Chaparral Labs Dave Veinotte 861 Hwy 19 Huntsville, TX 77320

Page 11 of 13

Project 1076460

Printed 10/11/2023

	Ti I		MS			
<u>Parameter</u>	Sample MS 2232209 0.130	Recommend to	NK Known 0.0057 0.250	Limits MS% 8.41 - 88.1 49.7	MSD%	Units RPD Limit% mg/L 30.0
TCLP Hexachloroethane		A	0.0057 0.250	28.7 119 74.5		mg/L 30.0
TCLP Nitrobenzene			0.005 0.250	8.33 - 141 58.4		mg/L 30.0
TCLP Pentachlorophenol			0.250	0.100 - 97.2 33.8		mg/L 30.0
TCLP Pyridine (Reg. Limit 5)	2232209 0.0901	9 (A. I	0.100-97.2 55.0		Marie I age
- PARTY -			SPCC			
Parameter	Sample	RF 1	Minimum		File	
TCLP 2,4-Dinitrophenol	620073	48.8	0.050		125490256	
TCLP 4-Nitrophenol	620073	48.8	0.050		125490256	
TCLP Hexachlorocyclopentadiene	620073	56.2	0.050		125490256	
TCLP N-Nitroso-n-propylamine	620073	49.6	0.050		125490256	
		Ē.	Surrogate			
	Sample Type	Reading	Known Units	Recover% Limits%	File	
Parameter	620073 CCV		100 mg/L	44.0 9.79 - 123	125490256	and the language of
2,4,6-Tribromophenpl	620073 CCV		50.0 mg/L	110 0.100 - 131	125490256	the state of the state of
2-Fluorobiphenyl-SURR	620073 CCV		100 mg/L	47.5 5.36 - 80.2	125490256	
2-Fluorophenol-SURR	620073 CCV	47.00	50.0 mg/L	69.6 0.100 - 137	125490256	
4-Terphenyl-d14-SURR	620073 CCV		50.0 mg/L	107 0.100 - 131	125490256	
Nitrobenzene-d5-SURR	620073 CCV		100 mg/L	52.1 0.100 - 66.5	125490256	
Phenol-d6-SURR	1082501 Blank		3.33 mg/L	53.5 9.79 - 123	125490260	
2,4,6-Tribromophenol	1082501 Blank		50.0 mg/L	41.0 0.100 - 131	125490260	
2-Fluorobiphenyl-SURR	1082501 Blank	32.5	100 mg/L	32.5 5.36 - 80.2	125490260	
2-Fluorophenol-SURR	1082501 Blank		50.0 mg/L	51.0 0.100 - 137	125490260	
4-Terphenyl-d14-SURR	1082501 Blank	23.7	50.0 mg/L	47.4 0.100 - 131	125490260	
Nitrobenzene-d5-SURR	1082501 Blank	20.2	100 mg/L	20.2 0.100 - 66.5	125490260	
Phenol-d6-SURR	1083292 Blank	1.65	3.33 mg/L	49.5 9.79 - 123	125490257	
2,4,6-Tribromophenol	1083292 LCS	1.74	3.33 mg/L	52.3 9.79 - 123	125490258	
2,4,6-Tribromophenol	1083292 LCS Du	A SELECTION OF THE PERSON OF T	3.33 mg/L	61.3 9.79 - 123	125490259	
2,4,6-Tribtomophenol 2-Fluorobiphenyl-SURR	1083292 Blank	19.9	50.0 mg/L	39.8 0.100 - 131	125490257	
2-Fluorobiphenyl-SURR	1083292 LCS	21.2	50.0 mg/L	42.4 0.100 - 131	125490258	
2-Fluorobiphenyl-SURR	1083292 LCS Do	1	50.0 mg/L	38.8 0.100 - 131	125490259	
	1083292 Blank	30.7	100 mg/L	30.7 5.36 - 80.2	125490257	
2-Fluorophenol-SURR	1083292 LCS	31.9	100 mg/L	31.9 5.36 - 80.2	125490258	
2-Fluorophenol-SURR	1083292 LCS Do		100 mg/L	28.3 5.36 - 80.2	125490259	
2-Fluorophenol-SURR	1083292 Blank	22.3	50.0 mg/L	44.6 0.100 - 137	125490257	
4-Terphenyl-d14-SURR	1083292 LCS	22.8	50.0 mg/L	45.6 0.100 - 137	125490258	
4-Terphenyl-d14-SURR	1083292 LCS Do		50.0 mg/L	46.2 0.100 - 137	125490259	
4-Terphenyl-d14-SURR Nitrobenzene-d5-SURR	1083292 Ecs Di 1083292 Blank	22.2	50.0 mg/L	44.4 0.100 - 131	125490257	
Nitrobenzene-d5-SURR	1083292 LCS	23.8	50.0 mg/L	47.6 0.100 - 131	125490258	f
Nitrobenzene-d5-SURR	1083292 LCS D		50.0 mg/L	46.2 0.100 - 131	125490259	
Phenol-d6-SURR	1083292 Blank	19.8	100 mg/L	19.8 0.100 - 66.5		
Phenol-d6-SURR	1083292 LCS	21.6	100 mg/L	21.6 0.100 - 66.5		
Phenol-d6-SURR	1083292 LCS D		100 mg/L	18.8 0.100 - 66.5		
2,4,6-Tribromophenol	2232209 MS	0.462	1.00 mg/L	46.2 9.79 - 123	125490266	
-, ,	A CONTRACT OF THE PARTY OF THE					

Report Page 18 of 20

EPA 8081A

CLDV-G

Chaparral Labs Dave Veinotte 861 Hwy 19 Huntsville, TX 77320

Page 12 of 13 Project 1076460

	I	1	1	Sur	rogate	ţ	1 [1]	Printed	10/11/2023
Parameter 2-Fluorobiphenyl-SURR	Sample 2232209	Type MS	Reading	Known 0.500	Units mg/L	Recover%	Limits% 0.100 - 131	File 125490266	
2-Fluorophenol-SURR	2232209	MS	0.278	1.00	mg/L	27.8	5.36 - 80.2	125490266	
4-Terphenyl-d14-SURR	2232209	MS	0.197	0.500	mg/L	39.4	0.100 - 137	125490266	
Nitrobenzene-d5-SURR	2232209	MS	0.212	0.500	mg/L	42.4	0.100 - 131	125490266	
Phenol-d6-SURR	2232209	: MS	0.189	1.00	mg/L	18.9	0.100 - 66.5	125490266	
Analytical Set	1084248								
			1	В	lank				1
Parameter	PrenSet	Reading	MDI	MOL	Linite			File	

			1	В	lank				
Parameter .	PrepSet	Reading	MDL	MQL	Units	1		File	Salaman and a salaman
TCLP Chlordane	1082501	ND	0.0183	0.020	mg/L	- 1		125495468	to the man has been been been a
TCLP Endrin	1082501	ND	0.000538	0.001	mg/L		I.	125495468	1
TCLP gamma-BHC (Lindane)	1082501	ND	0.000385	0.001	mg/L			125495468	ii dk
TCLP Heptachlor	1082501	0.000858	0.000207	0.001	mg/L		Ĭ.	125495468	"
TCLP Heptachlor Epoxide	1082501	ND	0.00066	0.001	mg/L		·	125495468	
TCLP Methoxychlor	1082501	ND	0.000898	0.001	mg/L			125495468	
TCLP Toxaphene	1082501	ND	0.000169	0.0002	mg/L	7 1		125495468	
TCLP Chlordane	1082716	ND	0.0183	0.020	mg/L			125495465	
TCLP Endrin	1082716	ND	0.000538	0.001	mg/L			125495465	
TCLP gamma-BHC (Lindane)	1082716	ND	0.000385	0.001	mg/L			125495465	
TCLP Heptachlor	1082716	ND	0.000207	0.001	mg/L			125495465	
TCLP Heptachlor Epoxide	1082716	ND	0.00066	0.001	mg/L			125495465	1
TCLP Methoxychlor	1082716	ND	0.000898	0.001	mg/L		1	125495465	I He & Fe man Marketon
TCLP Toxaphene	1082716	ND 1	0.000169	0.0002	mg/L	1	1 1111	125495465	1 : 1 #
		MILA.	3100000	1	CCV		3 7 2 3 1	125455405	
Parameter .		Reading	Known	Units	Recover%	Limits%		File	
TCLP Endrin		0.0512	0.050	mg/L	102	70.0 - 130		125495464	
TCLP Endrin		0.0488	0.050	mg/L	97.5	70.0 - 130	II.	125495472	
TCLP Endrin		0.0464	0.050	mg/L	92.8	70.0 - 130		125495476	
TCLP gamma-BHC (Lindane)		0.0492	0.050	mg/L	98.5	70.0 - 130	1	125495464	
TCLP gamma-BHC (Lindane)		0.0512	0.050	mg/L	102	70.0 - 130		125495472	
TCLP gamma-BHC (Lindane)		0.0488	0.050	mg/L	97.6	70.0 - 130		125495476	and the first state of the
TCLP Heptachlor		0.048	0.050	mg/L	96.1	70.0 - 130		125495464	THE HOUSE TELL
TCLP Heptachlor		0.0443	0.050	mg/L	88.7	70.0 - 130		125495472	1
TCLP Heptachlor		0.0435	0.050	mg/L	86.9	70.0 - 130	1,00	125495476	
TCLP Heptachlor Epoxide		0.0478	0.050	mg/L	95.7	70.0 - 130	H H G	125495464	The second of th
TCLP Heptachlor Epoxide		0.048	0.050	mg/L	96.1	70.0 - 130		125495472	k drij krincijimi (722-
TCLP Heptachlor Epoxide		0.0462	0.050	mg/L	92.4	70.0 - 130		125495476	A TOTAL OF THE STREET
TCLP Methoxychlor		0.0576	0.050	mg/L	115	70.0 - 130		125495464	
TCLP Methoxychlor		0.0405	0.050	mg/L	81.1	70.0 - 130	In the latest	125495472	
TCLP Methoxychlor		0.0395	0.050	mg/L	79.0	70.0 - 130		125495476	
			10,400,000			.0.0		125455470	
				LC	S Dup	1			

Known

0.100

Limits%

42.6 - 137

LCS%

1 11

72.7

LCSD%

Report Page 19 of 20

RPD

14.7

Limit%

30.0

Units

mg/L

Parameter

TCLP Endrin

LCSD

0.0842

PrepSet

1082716 0.0727

QUALITY CONTROL

Hri 1

Page 13 of 13

CLDV-G

Chaparral Labs Dave Veinotte 861 Hwy 19 Huntsville, TX 77320

Project 1076460

Printed 10/11/2023

				LCS	Dup						
Dama wanter	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Parameter TCLP gamma-BHC (Lindane)	1082716	100000000000000000000000000000000000000	0.0768		0.100	33.0 - 129	66.1	76.8	mg/L	15.0	30.0
	1082716		0.076		0.100	24.2 - 129	62.6	76.0	mg/L	19.3	30.0
CCLP Heptachlor	1082716		0.0778		0.100	40.8 - 128	67.5	77.8	mg/L	14.2	30.0
TCLP Heptachlor Epoxide TCLP Methoxychlor	1082716	2021212	0.0977		0.100	33.3 - 146	79.3	97.7	mg/L	20.8	30.0
ICLF Methoxychiol	1002.10			1	MS	1 1					
* 4		1 1	17722	. n. u.c		Limits	MS%	MSD%	Units	RPD	Limit%
Parameter	Sample	MIS	MSD	UNK	Known	24.3 - 151	82.4	WISD 70	mg/L	117.12	30.0
CLP Endrin	2232468	0.00412	0	ND	0.005	1	80.4		mg/L		30.0
TCLP gamma-BHC (Lindane)	2232468	0.00402	0	ND	0.005	21.3 - 144	A THE SHALL		mg/L		30.0
TCLP Heptachlor	2232468	0.00362	0	ND	0.005	14.9 - 138	72.4		mg/L		30.0
TCLP Heptachlor Epoxide	2232468	0.00394	0	ND	0.005	29.9 - 133	78.8				30.0
TCLP Methoxychlor	2232468	0.00364	0	ND	0.005	10.3 - 183	72.8		mg/L		30.0
	, ,	1		Sur	rogate						
Baramatar	Sample	Туре	Reading	Known	Units	Recover%	Limits%	File			
Parameter Decachlorobiphenyl	Bumpie	CCV	0.0529	0.100	mg/L	52.9	10.0 - 150	125495464			
		CCV	0.0411	0.100	mg/L	41.1	10.0 - 150	125495472			
Decachlorobiphenyl Decachlorobiphenyl		CCV	0.046	0.100	mg/L	46.0	10.0 - 150	125495476			
	11.1	CCV	0.0493	0.100	mg/L	49.3	10.0 - 150	125495464			
Tetrachloro-m-Xylene (\$urr)	111	CCV	0.0487	0.100	mg/L	48.7	10.0 - 150	125495472	,		
Tetrachloro-m-Xylene (Surr)		CCV	0.0489	0.100	mg/L	48.9	10.0 - 150	125495476			
Tetrachloro-m-Xylene (Surr)	1082501	Blank	0.096	0.100	mg/L	96.0	10.0 - 150	125495468			
Decachlorobiphenyl	1082501	Blank	0.0785	0.100	mg/L	78.5	10.0 - 150	125495468			
Tetrachloro-m-Xylene (Surr)	1082301	Blank	0.0768	0.100	mg/L	76.8	10.0 - 150	125495465			
Decachlorobiphenyl		LCS	0.0708	0.100	mg/L	89.5	10.0 - 150	125495466			
Decachlorobiphenyl	1082716		0.0893	0.100	mg/L	97.5	10.0 - 150	125495467			
Decachlorobiphenyl	1082716	LCS Dup		0.100	mg/L	61.4	10.0 - 150	125495465			
Tetrachloro-m-Xylene (Surr)	1082716		0.0614	0.100		63.0	10.0 - 150	125495466			
Tetrachloro-m-Xylene (Surr)	1082716		0.063	10.000	mg/L	81.5	10.0 - 150	125495467			
Tetrachloro-m-Xylene (Surr)	1082716			0.100	mg/L	88.4	10.0 - 150	125495475			
Decachlorobiphenyl	2232468	MS	0.00442	0.005	mg/L		10.0 - 150	125495475			
Tetrachloro-m-Xylene (Surr)	2232468	MS	0.00417	0.005	mg/L	83.4	10.0 - 150	123473473			107 117 Y

* Out RPD is Relative Percent Difference: abs(r1-r2) / mean(r1,r2) * 100%

Blank - Method Blank (reagent water or other blank matrices that contains all reagents except standard(s) and is processed simultaneously with and under the same conditions as samples, carried through preparation and analytical procedures exactly like a sample; monitors); CCV - Continuing Calibration Verification used to prepare the curve; ppically a mid-range concentration; verifles the continued validity of the calibration curve); MSD -Matrix Spike Duplicate

(same standard (replicate off the

matrix spike; same solution and amount off target analyte added to the MS is added to a third aliquot off sample; quantifles matrix bias and precision.); ICV - Initial (replicate LCS; analyzed when there is insuficient sample flor duplicate or MSD; quantifles Calibration Verification; LCS Dup - Laboratory Control Sample Duplicate

accuracy and precision.); BFB - Bromofluor benzene, GC/MS Tuning Compound (mass intensity used as tuning acceptance criteria.); Surrogate - Surrogate

(mimics the

analyte of interest but is unlikely to be flound in engironmental samplesadded to analytical samples flor QC purposes **ANSI/ASQC E4 1994 Refl#4 TRADE QA Resources Guide.); IS Areas - Internal Standard Area (The area off the internal stadard relative to a check standard Internal Standard is a known concentration off an analytes) that is not a sample component or standard that is added to the sample and standard and is used to measure the relative responses of other analytes in the same sample or standard.); IS RetTime - Internal Standard Retention Time (the time the internal standard comes off the column. Internal Stardard is a known concentration off an analyte(s) that is not a sample component or standard that is added to the sample and standard and is used to measure the relative responses of other analytes in the same sample or standard.); MS - Matrix Spike (same solution and amount off target analyte added to the LCS is added to a second aliquot off samplequantifles matrix bias.);

Report Page 20 of 20

oratoric, Chaparra

Chaparral Laboratories, Inc.

861 State Hwy 19 P.O. Box 1622—Huntsville, TX. 77342 www.chaparrallabs.com reports@chaparrallabs.com Phone: 936-291-1881 FAX: 936-295-1731

Chain of Custody Record

					the second	CHI	HILL AND	5	-	1				
Name	City of Sealy	Sealy		,			The same	Same as Cheat	I!-	COC Page	ge	l Jo		
Atta:	Travic C	ochem		l ou		Cit	City of Sealy			PO#	#		Colleg	Collection Code
	Thurst Stanis	Sellall				Acc	Accounts Payable	le		Sampler.	•	1		Special
Address	P.O. Box 517	x 517				P.O	P.O. Box 517		10	Sample Type	ype	Code		
City, State, Zip	Sealy, TX 77474	X 77474				Sea	Sealy, TX 77474			Grab i pt Comp		D Drinking Water NP Non-Potable Water	GA Class	
Phone #				i		070	1766 588		1 2	duo ni		Solids/Soil	P Plastic	HNOS F-HZSQI
Fax#	Hij	alf-li				217	7/7-003-2/01		44.1	48 Hr Comp			W Thowhirlbag==	
E-Mail				ıl		1		1				1		to Na2S2O3
Lab Use Only	only	Project	Collection	Sample	Matrix	Date	Timo				1			S Other
Transie #	Bottle #	1	Point	-	Code	Collected	Collected	(mgd)	Code	(mls)	Pres.		Analysis	
くつ こしごへ	C	City of Sealy WWTP	Belt Press	Grab	do .	72		\dashv	,		, and	As, Cd. Cr. Cu. Hq. Mo. NH3N Ni Ph. Sa TV TO TIG	AO NH3N NI DA C	177
	02	City of Sealy WWTP	Belt Press	Grah	n		-	+		1000	-		%TS, Zn	
	03	City of Sealy WWTP	Rell Proce		2				8	100	_		Fecal Coliform	
	P9	City of Sealy WWTP	Belt Press	Graph Graph	0				8	100			Fecal Coliform	
	35	City of Sealy WWTP	Belt Press	Gran	0		MANAGE IN	m	×	100			Fecal Coliform	
	06-	City of Sealy WWTP	Re# Press	G.	,		1		W	100	_	!	Fecal Coliform	
	67	City of Sealy MANTE	0	0 0	0				×	100	_		Fecal Coliform	
	80	City of Cook MANATTO	Ser Liao	Grab	co		1		¥	100	_,		Fecal Coliform	
	1 80	City of Geary WWWIT	Belt Press	Grab	S		1		8	100	'		Fecal Coliform	
NA _{DOLO}	5	City of Sealy WWITP	Belt Press	Grab	s				ဂ	250	<u> </u>	1	TOID MOAL	
4	11	City of Sealy WWTP	Belt Press	Grab	S			- (1)	G	120	_		PCR PCR	
	-	city of Sealy WWTP	Digester	Grab	S		1 0		ס	1000	NA NA		SOUR	
)											+			
Sample Conditions as Received from Client Samples intact: Y N KIA	as Received	from Client	Relinq	Relinquished by:	-	Date	7	Time		-	-			
		If N: Temperature	*70	,				,,,,	7	Received by:	Ŋ.	D	Date Time	пе
1	emperature take	5	noted		1	Q_	\$ 1.19/2	15.5						
Sample Conditions as Received by Lab Samples intact: \(\frac{\psi}{V}\) N NA Received on Ice: \(\frac{\psi}{V}\) N NA	as Received	by Lab		10				1 1			-			
Notes:			U			-				23	E C	1 Fronch 9	1/4/23	1537

Email: lab@nwdsls.com

www. NWDLS.com

TCEQ Lab ID #: TX204, Accreditation ID: T104704238

August 16, 2023

LABORATORY REPORT

Glen Williams City of Tomball 501 James Street Tomball, TX 77375

Report ID: 20230816173515DLH

RE: City of Tomball - South Plant - Class B

The following test results meet all NELAP requirements for analytes for which certification is available. Any deviations from our quality system will be noted in the case narrative. All analyses performed by North Water District Laboratory Services, Inc. unless noted.

For questions regarding this report, contact Monica Martin at 936-321-6060.

Sincerely,

Deena Higginbotham

Director of Client Services

Joena Higginbocham

ENTERED DEC 1 2023

Sludge Manager

Master Spreadsheet

TCLP Metals

PCB F/S D& Solid

> Email: lab@nwdsls.com www. NWDLS.com

TCEQ Lab ID #: TX204, Accreditation ID: T104704238

City of Tomball 501 James Street

Tomball, TX 77375

Project: City of Tomball - South Plant - Class B

Project Number: 55

Project Manager: Glen Williams

Reported:

08/16/2023 17:35

Sample Results

Client Sample ID: Lab Sample ID: Digester

23F1980-01

Sample Matrix:

Solid

Date Collected:

06/08/2023 8:15

Collected by:

Hermilo Cortes

				nected by:	nermilo Cortes	
Method	Analyte	Result Q	Units	Batch	Date Analyzed	Analyst
Colilert-18	Fecal coliforms	112000	MPN/g TS dry	BGF1337	06/09/2023 09:14	AKA
Colilert-18	Fecal coliforms	42600	MPN/g TS dry	BGF1337	06/09/2023 09:14	AKA
Colilert-18	Fecal coliforms	84100	MPN/g TS dry	BGF1337	06/09/2023 09:14	AKA
Colilert-18	Fecal coliforms	63600	MPN/g TS dry	BGF1337	06/09/2023 09:14	AKA
Colilert-18	Fecal coliforms	61000	MPN/g TS dry	BGF1337	06/09/2023 09:14	AKA
Colilert-18	Fecal coliforms	31300	MPN/g TS dry	BGF1337	06/09/2023 09:14	AKA
Colilert-18	Fecal coliforms	42600	MPN/g TS dry	BGF1337	06/09/2023 09:14	AKA
SM 2710 B	Specific Oxygen Uptake Rate (SOUR)	0.590	mg O2/hr/g TS @ 20°C dry	BGF1351	06/08/2023 16:10	AKA
SM 2550 B	Temperature °C Field	38.5	°C	BGF1562	06/08/2023 08:15	HCJ
SM 2540 G	% Solids	3.90 V	%	BGF1366	06/09/2023 11:45	JRU / BP

The total solids is diluted to <=2.0% for the S.O.U.R. test when necessary.

NWDLS Class B Report Revison1.2 Effective: 7/6/2022

CLASS B - Pass

Per Title 30, Texas Administrative Code, Chapter 312, for a Class B to pass, the fecal coliform geometric mean must be less than or equal to 2,000,000 CFU/ug TS and the S.O.U.R must be less than or equal to 1.5 mg O2/hr/g TS.

62,457,14

Email: lab@nwdsls.com

www. NWDLS.com

TCEQ Lab ID #: TX204, Accreditation ID: T104704238

City of Tomball

Project: City of Tomball - South Plant - Class B

501 James Street Tomball, TX 77375 Project Number: 55

niect Number: 55

Project Manager: Glen Williams

Reported: 08/16/2023 17:35

Quality Control

General Chemistry

Analyte	7.00	ResultQual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF1366 - Percen	t Solids						Munti	nemer) 3	- Val 1-	ol I
Blank (BGF1366-BLK1)				Prep	ared: 06/08	3/2023 Analyze	ed: 06/09/20	23		
% Solids		<0.100U	0.100	%		120 111				
Duplicate (BGF1366-DUP1)		Source	e: 23F1810-04	Prep	ared: 06/08	3/2023 Analyze	ed: 06/09/20	23		
% Solids		in to the other	0.100	%		0.902			1.08	10
Duplicate (BGF1366-DUP2)		Source	e: 23F2123-01	Prep	ared: 06/08	3/2023 Analyze	ed: 06/09/20	23		
% Solids			0.100	%		1.65			1.94	10
Reference (BGF1366-SRM1)				Prep	ared: 06/08	3/2023 Analyze	ed: 06/09/20	23		
% Solids			0.100	%	0.350		112	78.9-118		

Email: lab@nwdsls.com

www. NWDLS.com

TCEQ Lab ID #: TX204, Accreditation ID: T104704238

City of Tomball

501 James Street

Project: City of Tomball - South Plant - Class B

Project Number: 55

Reported:

Tomball, TX 77375

Project Manager: Glen Williams

08/16/2023 17:35

Quality Control (Continued)

Microbiology

Reporting Spike %REC RPD Source Analyte Result Qual Limit Units Level Result %REC Limits RPD Limit

Batch: BGF1337 - FC Quantitray

Blank (BGF1337-BLK1)

Prepared: 06/08/2023 Analyzed: 06/09/2023

Fecal coliforms

<10.0U

10.0 MPN/g TS

Duplicate (BGF1337-DUP1)

Source: 23F1980-01

Prepared: 06/08/2023 Analyzed: 06/09/2023

256 MPN/g TS

112000

89.4

200

Fecal coliforms

City of Tomball

501 James Street

Tomball, TX 77375

8725 Fawn Trail The Woodlands, TX 77385 Tel: (936) 321-6060 | Fax: (936) 321 6061

Email: lab@nwdsls.com www. NWDLS.com

TCEQ Lab ID #: TX204, Accreditation ID: T104704238

Project: City of Tomball - South Plant - Class B

Project Number: 55

Project Manager: Glen Williams

Reported:

08/16/2023 17:35

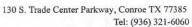
Term and Qualfier Definitions

rtem	Definition
U	Non-detected compound.
V	Analyte was detected in both sample and method blank.
DF	Dilution Factor - the factor applied to the reported data due to sample preparation, dilution, or moisture content
RPD	Relative Percent Difference
%REC	Percent Recovery
Source	Sample that was matrix spiked or duplicated

CHAIN OF CUSTODY RECORD

North Water District Laboratory Services 130 S. Trade Center Pkwy, Conroe Tx 77385 (936) 321-6060 - lab@nwdls.com

TCEQ T104704238-23-39


Lab PM : Deena Higginbotham	Project Name: City of Tomball - South Plant - Class B	Schedule Comments:
City of Tomball Glen Williams 501 James Street Tomball, TX 77375 Phone: 832-349-8027	Project Comments: 12411 Holderrieth Rd Tomball 77375 Combo # 9898 Glen Williams - 832-349-8027 ENTER CODE TO CLOSE GATE WHEN YOU LEAVE	Heal made

Sample ID Collection Point Date/Time Sample Type Container Analysis/Preservation Field Results 23F1980-01 Digester Begin Sampled A HDPE S150mL FC/CB-OT-LR Na2S2O3 Temp C Field 33 ⋅ 5 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2	Tomball, TX 77375 Phone: 832-349-8027	Sireet (77375 -349-8027								I ma ⁿ
Begin Sampled A HDPE S150mL FC/CB-QT-LR Na2S2O3 Na2S2O3 Temp C Field 6/8/2023 S Grab A HDPE S150mL FC/CB-QT-LR Na2S2O3 Na2S2O3 Temp C Field Na2S2O3 B HDPE S150mL SOUR-2710 4°C A°C A°C Na2S2O3 D HDPE S150mL TS-2540 G 4°C A°C Na2S2O3 E HDPE S150mL Na2S2O3 F HDPE S150mL Na2S2O3 G HDPE S150mL Na2S2O3 H HDPE 11 I HDPE 250mL	Sample ID	Collection Point	Date/Time	Date/Time	Sample Type	Container	Analysis/Preservation		Field Results	
6/8/2023 S Grab A HDPE S150mL FC/CB-QT-LR Na2S203 Temp C Field Na2S203 SOUR-2710 4°C Na2S203 SOUR TS-2540 G 4°C C HDPE S150mL Na2S203 D HDPE S150mL Na2S203 F HDPE S150mL Na2S203 F HDPE S150mL Na2S203 F HDPE S150mL Na2S203 F HDPE S150mL Na2S203 G HDPE S150mL Na2S203 H HDPE S150mL Na2S203 H HDPE S150mL Na2S203 H HDPE S150mL Na2S203 H HDPE S150mL Na2S203			Begin	Sampled						
B HDPE S150mL Na2S203 C HDPE S150mL Na2S203 D HDPE S150mL Na2S203 E HDPE S150mL Na2S203 F HDPE S150mL Na2S203 G HDPE S150mL Na2S203 H HDPE 11 I HDPE 150mL	23F1980-01	Digester		6/8/2023		A HDPE S150mL Na2S2O3		23	Temp C Field	38.56
C HDPE \$150mL Na2S203 C HDPE \$150mL Na2S203 D HDPE \$150mL Na2S203 E HDPE \$150mL Na2S203 F HDPE \$150mL Na2S203 G HDPE \$150mL Na2S203 H HDPE \$150mL Na2S203 H HDPE \$150mL Na2S203)		
C HDPE \$150mL TS-2540 G Na2S203 D HDPE \$150mL Na2S203 F HDPE \$150mL Na2S203 G HDPE \$150mL Na2S203 H HDPE 1L I HDPE 250mL				1,00		Na2S2O3	40 G			
				78.7		C HDPE S150mL				
D HDPE S150mL Na2S203 E HDPE S150mL Na2S203 F HDPE S150mL Na2S203 G HDPE S150mL Na2S203 H HDPE 1L I HDPE 1L						Na2S2O3				
Na2S2O3 E HDPE S150mL Na2S2O3 F HDPE S150mL Na2S2O3 G HDPE S150mL Na2S2O3 H HDPE 1L H HDPE 1L H HDPE 250mL						D HDPE S150mL				
E HDPE S150mL Na2S203 F HDPE S150mL Na2S203 G HDPE S150mL Na2S203 H HDPE 1L I HDPE 1L						Na2S203				
Na2S203 F HDPE S150mL Na2S203 G HDPE S150mL Na2S203 H HDPE 1L I HDPE 250mL						E HDPE S150mL				
F HDPE S150mL Na2S203 G HDPE S150mL Na2S203 H HDPE 1L I HDPE 1250mL						Na2S203				
Na2S2O3 G HDPE S150mL Na2S2O3 H HDPE 1L I HDPE 250mL						F HDPE S150mL		1/		
G HDPE S150mL Na2S2O3 H HDPE 1L I HDPE 250mL						Na2S203				
Na2S2O3 H HDPE 1L I HDPE 250mL						G HDPE S150mL				
H HDPE 1L I HDPE 250mL						Na2S2O3		Ų.		
1 HDPE 250mL						H HDPE 1L				
						I HDPE 250mL				

Sampler (Signature) Sampler (Signature) Sampler (Signature) Print Name H. C. est Affiliation L. C. est Affiliation Custody Seal: Yes / No Appropriate Containers: Yes / No Container Infact: Yes / No Container Infact: Yes / No Container Infact: Yes / No Container Samples Agree Custody Samples Agree Container Infact: Yes / No Container Infact: Yes	Lab Preservation: H2SO4 HNO3	NaOH Other:	ier.
Relinquished By. (Signature) Date/Time	ircte and rite ID Below)		
Relinquished By: (Signature) H. (2/) es Relinquished To Lab By: (Signature) Pate/Time 1.8.03 13.45 1	ate/Time Received By: (Signature)		Date/Time
Selinquished To Lab By: (Signature) Selinquished To Lab By: (Signature) COC Labels Agree: Yes / No Appropriate Volume: Yes / No Re Appropriate Containers: Yes / No Coolers Intact: Yes / No Selinquish Containers: Yes / No Coolers Intact: Yes / No Selinquish Containers: Yes / No Coolers Intact: Yes / No Selinquish Containers: Yes / No Coolers Intact: Yes / No Selinquish Containers: Yes / No Coolers Intact: Yes / No Selinquish Containers: Yes / No Coolers Intact: Yes / No Selinquish Coolers Intact: Yes / Y	ate/Time Received By: (Signature)		Date/Time
COC Labels Agree: Yes / No Appropriate Volume: Yes / No Appropriate Containers: Yes / No Coolers Intact: Yes / No	Received for Laboratory By. (Signature)	TZOR	Date/Time/345
	No Received on Ice: Yes / No No Samples Accepted: Yes / No	Temperature: Thermometer ID:	၁့

Tomball

Page 6 of 6

Email: lab@nwdls.com www. NWDLS.com

August 01, 2023

Laboratory Report

Glen Williams
City of Tomball
501 James Street
Tomball, TX 77375

Report ID: 20230801105311AEN

The following test results meet all NELAP requirements for analytes for which certification is available. Any deviations from our quality system will be noted in the case narrative. All analyses performed by North Water District Laboratory Services, Inc. unless noted.

For questions regarding this report, contact Monica Martin at 936-321-6060.

Sincerely,

Aundra Noe For Deena Higginbotham

Director of Client Services

Tel: (936) 321-6060 Email: lab@nwdls.com www. NWDLS.com TCEQ T104704238-23-39

City of Tomball 501 James Street Tomball, TX 77375

Reported: 08/01/2023 10:53

Sample Results

Client Sample ID: Lab Sample ID:

Centrifuge

23F1979-01

Sample Matrix:

Solid

Date Collected:

06/08/2023 7:00

City of Tomball - South Plant - Annual Sludge

55

Collected by:

Hermilo Cortes

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Organics by G	С									
SW-8082	PCBs, Total	A	<0.150U	mg/kg (dry wt) dry	10	0.0750	0.150	BGF2732	06/26/2023 08:	27 KRB
5W-8082 SW-8082	Surrogate: 2,4,5,6 Tetrachloro-m-xylen Surrogate: Decachlorobiphenyl-surr	e-suri	133% 90.5%	60-140 60-140					06/26/2023 08: 06/26/2023 08:	
Metals, Total	n I militar								um I I r =	
SW-6010C	Arsenic	А	4.44	mg/kg dry	1	0.437	1,99	BGF2504	06/28/2023 12:	08 FAL
SW-6010C	Cadmium	Α	0.540	mg/kg dry	1	0.0517	0.199	BGF2504	06/28/2023 12:	TAME IN
SW-6010C	Chromium	Α	17.6	mg/kg dry	1	0.747	0.998	BGF2504	06/28/2023 12:	U 75
5W-6010C	Copper	Α	316	mg/kg dry	5	1.06	9.95	BGF2504	06/28/2023 14:	
SW-7471B	Mercury	Α	0.491	mg/kg dry	5	0.0499	0.0997	BGF2130	06/14/2023 16:3	
SW-6010C	Lead	Α	11.7	mg/kg dry	1	0.507	0.998	BGF2504	06/28/2023 12:	
SW-6010C	Molybdenum	Α	4.87	mg/kg dry	1	0.998	0.998	BGF2504	06/28/2023 12:0	
SW-6010C	Nickel	Α	11.3	mg/kg dry	1	0.269	0.998	BGF2504	06/28/2023 12:0	8 FAL
SW-6010C	Potassium	Α	1700	mg/kg dry	1	17.1	199	BGF2504	06/28/2023 12:0	8 FAL
SW-6010C	Selenium	Α	4.47	mg/kg dry	1	0.777	1.99	BGF2504	06/28/2023 12:0	
5W-6010C	Total Phosphorus	Α	8950	mg/kg dry	1	8.37	199	BGF2504	06/28/2023 12:0	8 FAL
SW-6010C	Zinc	Α	737	mg/kg dry	20	20.0	20.0	BGF2504	06/28/2023 14:	4 FAL
General Chemi	stry									
EPA 350.2	Ammonia as N	А	5880	mg/kg dry	1	76.7	153	BGF1604	06/12/2023 13:0	3 GIW
SW-9056A	Nitrate as N	Α	88.8	mg/kg dry	1	3,88	9.70	BGF1622	06/09/2023 17:	1 ORP
SW-9065	Free Liquids	Α	AbsentU	11. 2 00.1113	1	0.00	1.00	BGF2012	06/13/2023 15:3	9 EM
EPA 351.3	Total Kjeldahl Nitrogen - (TKN)	N	50800	mg/kg dry	1	194	194	BGF1608	06/12/2023 09:2	9 GIW
SM 2540 G	% Solids	Α	12.9V	%	1	0.100	0.100	BGF1881	06/13/2023 11:4	4 JRU
TCLP										
5W-6010C	Arsenic	А	<5.00U	mg/L	1	0.0200	5.00	BGF2074	06/15/2023 14:3	0 твв
5W-6010C	Barium	Α	<100 V2, U	mg/L	1	0.0100	100	BGF2074	06/15/2023 14:3	0 твв
SW-6010C	Cadmium	Α	<1.00U	mg/L	1	0.00100	1.00	BGF2074	06/15/2023 14:3	0 твв
6W-6010C	Chromium	Α	<5.00U	mg/L	1	0.00500	5.00	BGF2074	06/15/2023 14:3	0 твв
SW-8151	2,4-D	Α	<10.0 C+, U	mg/L	2	0.000476	10.0	BGF2849	07/09/2023 02:0	5 KRB
SW-8151	Silvex (2,4,5-TP)	Α	<1.00C+, U	mg/L	2	0.000476	1.00	BGF2849	07/09/2023 02:0	5 KRB
SW-8151	Surrogate: DCAA-surr	esa nasa	129%	70-130			*******		07/09/2023 02:0	
5W-7471B	Mercury	Α	<0.200U	mg/L	1	0.000200	0.200	BGF1994	06/15/2023 13:2	
SW-6010C	Lead	Α	<5.00U	mg/L	1	0.0100	5.00	BGF2074	06/15/2023 14:3	0 твв

A = Accredited, N = Not Accredited or Accreditation not available

Email: lab@nwdls.com www. NWDLS.com TCEQ T104704238-23-39

City of Tomball 501 James Street Tomball, TX 77375

Reported:

08/01/2023 10:53

Sample Results (Continued)

Client Sample ID:

Centrifuge (Continued)

Sample Matrix:

Solid

Lab Sample ID:

23F1979-01

Date Collected:

06/08/2023 7:00

City of Tomball - South Plant - Annual Sludge

55

Collected by: Hermilo Cortes

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
TCLP (Cont	inued)									
SW-8081	Chlordane (Total)	Α	<0.0300C+, U	mg/L	1	3.00E-6	0.0300	BGF2470	07/13/2023 00:11	cdg
SW-8081	Endrin	N	<0.0200U	mg/L	1	3.00E-6	0.0200	BGF2470	07/13/2023 00:11	cdg
SW-8081	gamma-BHC (Lindane, gamma-HexachlorocyclohexanE)	Α	<0.400C+, U	mg/L	1	3.00E-6	0.400	BGF2470	07/13/2023 00:11	cdg
5W-8081	Heptachlor	Α	<0.00800C+, U	mg/L	1	3.00E-6	0.00800	BGF2470	07/13/2023 00:11	cdg
SW-8081	Heptachlor epoxide	Α	<0.00800U	mg/L	1	3.00E-6	0.00800	BGF2470	07/13/2023 00:11	cdg
SW-8081	Toxaphene (Chlorinated Camphene)	Α	<0.500U	mg/L	1	3.00E-6	0.500	BGF2470	07/13/2023 00:11	cdg
SW-8081	Surrogate: 2,4,5,6 Tetrachloro-m-xylene	-suri	106%	60-140		********		**********	07/13/2023 00:11	
SW-8081	Surrogate: Decachlorobiphenyl-surr		64.7%	60-140					07/13/2023 00:11	
SW-6010C	Selenium	Α	<1.00U	mg/L	1	0.0200	1.00	BGF2074	06/15/2023 14:30	TBB
SW-6010C	Silver	Α	<5.00U	mg/L	1	0.00200	5.00	BGF2074	06/16/2023 11:43	TBB
SW-8270	2,4,5 & 2,4,6 -Trichlorophenol	N	<0.0100U	mg/L	1	0.00500	0.0100	BGF1942	07/11/2023 19:54	KRB
SW-8270	2,4-Dinitrotoluene (2,4-DNT)	Α	<0.130U	mg/L	1	0.00250	0.130	BGF1942	07/11/2023 19:54	KRB
SW-8270	2-Methylphenol	Α	<200U	mg/L	1	0.00250	200	BGF1942	07/11/2023 19:54	KRB
5W-8270	3,4-Methylphenol	Α	<200U	mg/L	1	0.00250	200	BGF1942	07/11/2023 19:54	KRB
SW-8270	Hexachlorobenzene	Α	<0.130U	mg/L	1	0.00250	0.130	BGF1942	07/11/2023 19:54	KRB
SW-8270	Hexachlorobutadiene	Α	<0.500U	mg/L	1	0.00250	0.500	BGF1942	07/11/2023 19:54	KRB
SW-8270	Hexachloroethane	Α	<3.00U	mg/L	1	0.00250	3.00	BGF1942	07/11/2023 19:54	KRB
SW-8270	Nitrobenzene	Α	<2.00U	mg/L	1	0.00250	2.00	BGF1942	07/11/2023 19:54	KRB
SW-8270	Pentachlorophenol	Α	<100U	mg/L	1	0.00250	100	BGF1942	07/11/2023 19:54	KRB
SW-8270	Pyridine	Α	<5.00U	mg/L	1	0.00250	5.00	BGF1942	07/11/2023 19:54	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-surr		105%	54.6-148		*******	* * * * * * * * * *		07/11/2023 19:54	
SW-8270	Surrogate: 2-Fluorophenol-surr		98.3%	55-152					07/11/2023 19:54	
SW-8270	Surrogate: 2,4,6-Tribromophenol-surr		118%	52.4-136					07/11/2023 19:54	
SW-8270	Surrogate: Nitrobenzene-d5-surr		109%	52-162					07/11/2023 19:54	
SW-8270	Surrogate: Phenol-d5-surr		96.1%	58.7-152					07/11/2023 19:54	
SW-8270	Surrogate; p-Terphenyl-d14-surr		95.8%	51.9-147					07/11/2023 19:54	

A = Accredited, N = Not Accredited or Accreditation not available

130 S. Trade Center Parkway, Conroe TX 77385

Tel: (936) 321-6060 Email: lab@nwdls.com www. NWDLS.com

TCEQ T104704238-23-39

City of Tomball 501 James Street Tomball, TX 77375

Reported:

08/01/2023 10:53

Sample Results

(Continued)

Client Sample ID: Lab Sample ID: Centrifuge

23F1979-01RE1

ontinueu)

Sample Matrix:

Solid

Date Collected: 06/

06/08/2023 7:00

City of Tomball - South Plant - Annual Sludge

55

Collected by:

Hermilo Cortes

	_								
Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
								I Jan H	
Methoxychlor (Rerun)	Α	<10.0U	mg/L	1	3.00E-6	10.0	BGF2470	07/14/2023 01:21	cdg
Surrogate: 2,4,5,6 Tetrachloro-m-xylend	e-suri	91.0%	60-140		**********			07/14/2023 01:21	
Surrogate: Decachlorobiphenyl-surr (Re	run)	71.0%	60-140					07/14/2023 01:21	
	Methoxychlor (Rerun) Surrogate: 2,4,5,6 Tetrachloro-m-xylene	Methoxychlor (Rerun) A Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr	Methoxychlor (Rerun) A <10.0U Surrogate: 2,4,5,6 Tetrachloro-m-xylene-suri 91.0%	Methoxychlor (Rerun) A <10.0U mg/L Surrogate: 2,4,5,6 Tetrachloro-m-xylene-suri 91.0% 60-140	Methoxychlor (Rerun) A <10.0U mg/L 1 Surrogate: 2,4,5,6 Tetrachloro-m-xylene-suri 91.0% 60-140	Methoxychlor (Rerun) A <10.0U mg/L 1 3.00E-6 Surrogate: 2,4,5,6 Tetrachloro-m-xylene-suri 91.0% 60-140	Methoxychlor (Rerun) A <10.0U mg/L 1 3.00E-6 10.0 Surrogate: 2,4,5,6 Tetrachloro-m-xylene-sun 91.0% 60-140	Methoxychlor (Rerun) A <10.0U mg/L 1 3.00E-6 10.0 BGF2470 Surrogate: 2,4,5,6 Tetrachloro-m-xylene-sun 91.0% 60-140	Methoxychlor (Rerun) A <10.0U mg/L 1 3.00E-6 10.0 BGF2470 07/14/2023 01:21 Surrogate: 2,4,5,6 Tetrachloro-m-xylene-sun 91.0% 60-140 07/14/2023 01:21

Reported: 08/01/2023 10:53

TCEQ T104704238-23-39

Quality Control

Organics by GC

Analyte		Result Qual	pungé Marah	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF2732 - SW-3570							Çnew	(Mar (19) (1	COLANG	- CECEN	DN 100
Blank (BGF2732-BLK1)					Pre	pared: 6/16/	2023 Analyze	d: 6/26/2023			
Aroclor-1016 (PCB-1016)		<0.0198 U		0.0198	mg/kg (dry wt) wet	•	30.0				
Aroclor-1260 (PCB-1260)		<0.0198 U		0.0198	mg/kg (dry wt) wet						
PCBs, Total		<0.0198 U		0.0198	mg/kg (dry wt) wet						
Surrogate: 2,4,5,6				0.00641	mg/kg (dry	0,00593	**********	108	60-140		
Tetrachloro-m-xylene-surr					wt) wet			250	PE 22		
Surrogate: Decachlorobiphenyl-surr	No.		THE S	0.00585	mg/kg (dry wt) wet	0.00593		98.7	60-140		n* h+
LCS (BGF2732-BS1)					Pre		2023 Analyze				
Aroclor-1016 (PCB-1016)		0.0417			mg/kg (dry wt) wet	0.0598		69.7	60-140		
Aroclor-1260 (PCB-1260)		0.0641		0.0199	mg/kg (dry wt) wet	0.0598		107	60-140		
PCBs, Total		0.0529		0.0199	mg/kg (dry wt) wet	0.0598		88.4	60-140		
Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr	ar bes bes			0.00648	mg/kg (dry wt) wet	0.00598		108	60-140		
Surrogate: Decachlorobiphenyl-surr				0.00633	mg/kg (dry wt) wet	0.00598		106	60-140		
LCS Dup (BGF2732-BSD1)					Pre	pared: 6/16/	/2023 Analyze	d: 6/26/2023			
Aroclor-1016 (PCB-1016)		0.0384			mg/kg (dry wt) wet	0.0585		65.7	60-140	8.19	40
Aroclor-1260 (PCB-1260)		0.0590			mg/kg (dry wt) wet	0.0585		101	60-140	8.32	40
PCBs, Total		0.0487	ng garanen	0.0195	mg/kg (dry wt) wet	0.0585	g <u>177</u> 6 ym 1260 (m	83,2	60-140	8.27	40
Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr				0.00567	mg/kg (dry wt) wet	0.00585		97.0	60-140		
Surrogate: Decachlorobiphenyl-surr				0.00575	mg/kg (dry wt) wet	0.00585		98.3	60-140		
Matrix Spike (BGF2732-MS1)		Sour	ce: 23F:	1467-01	Pre	pared: 6/16/	/2023 Analyze	d: 6/26/2023			
Aroclor-1016 (PCB-1016)		3.90		2.00	mg/kg (dry wt) dry	5.99	<2.00	65.0	60-140		
Aroclor-1260 (PCB-1260)		5.80		2.00	mg/kg (dry wt) dry	5.99	<2,00	96,9	60-140		
PCBs, Total		4.86		2.00	mg/kg (dry wt) dry	5.99	<2.00	81.1	60-140		
Surrogate: 2,4,5,6		*********		0.762	mg/kg (dry	0.599		127	60-140	******	
Tetrachloro-m-xylene-surr					wt) dry						
Surrogate: Decachlorobiphenyl-surr				0.570	mg/kg (dry wt) dry	0.599		95.2	60-140		

Matrix Spike Dup (BGF2732-MSD1)

Source: 23F1467-01

Prepared: 6/16/2023 Analyzed: 6/26/2023

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 08/01/2023 10:53

Quality Control (Continued)

Organics by GC (Continued)

Analyte	Result		Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF2732 - SW-3570 (Con	tinued)								CITY	
Matrix Spike Dup (BGF2732-MSD1)		Source: 23F146	7-01	Pre	pared: 6/16	/2023 Analyze	d: 6/26/2023	3		
Aroclor-1016 (PCB-1016)	4.58		1.99	mg/kg (dry wt) dry	5.96	<1.99	76.8	60-140	16.1	40
Aroclor-1260 (PCB-1260)	6.35		1.99	mg/kg (dry wt) dry	5.96	<1.99	106	60-140	8.97	40
PCBs, Total	5.47		1.99	mg/kg (dry wt) dry	5.96	<1.99	91.7	60-140	11.9	40
Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr		later	0.780	mg/kg (dry wt) dry	0.596		131	60-140		
Surrogate: Decachlorobiphenyl-surr			0.645	mg/kg (dry wt) dry	0.596		108	60-140		

Reported:

08/01/2023 10:53

Quality Control (Continued)

Metals, Total

Zinc

Total Phosphorus

Analyte	Result	Qual		Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF2130 - SW-7471						(Ann)	avalue de la	17/1 18/1	Bur bu	n - 1432 5	pagas inm
MDL Check (BGF2130-MRL1)						Prepared 8	& Analyzed: 6,	/14/2023			
Mercury	0.00974	U.	4 14	0.0199	mg/kg wet	0.00993		98.0			
Matrix Spike (BGF2130-MS1)		Source	e: 23F1	1434-18		Prepared 8	& Analyzed: 6,	/14/2023			
Mercury	0.470	J1	ultin	0.0199	mg/kg dry	0.249	0.168	121	80-120		
Matrix Spike Dup (BGF2130-MSD1)		Source	e: 23F:	1434-18		Prepared 8	& Analyzed: 6,	/14/2023			
Mercury	0.414		120	0.0199	mg/kg dry	0.249	0.168	98.9	80-120	12.5	20
Batch: BGF2504 - SW-3050 for 6	010										
Blank (BGF2504-BLK1)					Pre	epared: 6/15	/2023 Analyze	ed: 6/28/202	3		
Arsenic	<1.77	U		1.77	mg/kg wet						
Cadmium	< 0.177	U		0.177	mg/kg wet						
Chromium	<0.885	U		0.885	mg/kg wet						
Copper	<1.77	U		1.77	mg/kg wet						
Lead	<0.885	U		0.885	mg/kg wet						
Molybdenum	< 0.885	U		0.885	mg/kg wet						
Nickel	<0.885	U		0.885	mg/kg wet						
Potassium	<177	U		177	mg/kg wet						
Selenium	<1.77	U		1.77	mg/kg wet						
Total Phosphorus	<177			177	mg/kg wet						
Zinc	<0,885	U		0,885	mg/kg wet						
LCS (BGF2504-BS1)					Pre	epared: 6/15	/2023 Analyze	ed: 6/28/202	3		
Arsenic	41.8			1.73	mg/kg wet	43.3		96.7	80-120		
Cadmium	4.04			0.173	mg/kg wet	4.33		93.5	80-120		
Chromium	20.7			0.867	mg/kg wet	21.6		95.9	80-120		
Copper	41.2			1.73	mg/kg wet	43.3		95.2	80-120		
Lead	20.7			0.867	mg/kg wet	21.6		95.8	80-120		
Molybdenum	21.4			0.867	mg/kg wet	21.6		99.0	80-120		
Nickel	20.7			0.867	mg/kg wet	21.6		95.7	80-120		
Potassium	3930			173	mg/kg wet	4330		90.9	80-120		
Selenium	41.3			1.73		43.3		95.5	80-120		
	477.7										

173 mg/kg wet

0.867 mg/kg wet

4330

21.6

97.7

96.1

80-120

80-120

4230

20.8

A = Accredited, N = Not Accredited or Accreditation not available

Reported:

08/01/2023 10:53

Quality Control (Continued)

Metals, Total (Continued)

Analyte		Result	Qual		Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF2504 - SW-	3050 for 6	010 (Con	tinue	ed)				1907.009.011		151120	1 1 1 1 1	ASSE MEA
Matrix Spike (BGF2504-MS		- /			0762-01	Pre	enared: 6/15	/2023 Analyze	rd: E/38/303			
Arsenic		43.4			2.00	mg/kg dry	50.0	4.56	77.7	75-125		
Cadmium		4.25			0.200	mg/kg dry	5.00	0.400	77.0	75-125		
Chromium		34.9	J1		1.00	mg/kg dry	25.0	17.1	71.2	75-125		
Copper		956			20.0	mg/kg dry	1050	150	76.8	75-125		
Lead		30.9	31		1.00	mg/kg dry	25.0	12.3	74.5	75-125		
Molybdenum		25.0			1.00	mg/kg dry	25.0	6.72	73.3	75-125		
Nickel		31.6			1.00	mg/kg dry	25.0	14.1	69.8	75-125		
Potassium		9250			200	mg/kg dry	5000	5210	80.7	75-125		
Selenium		44.2			2.00	mg/kg dry	50.0	3.53	. 81.4	75-125		
Total Phosphorus		24200			2000	mg/kg dry	10000	15400	88.0	75-125		
Zinc		1390			50.1	mg/kg dry	1020	493	87.9	75-125		
Matrix Spike (BGF2504-MS	2)		Sau	225	2769-01	D		(2022 4 - 1	1. 6 (20 (200)			
Arsenic	2)	84.2	Sourc	e: 23F.			10 10 10	/2023 Analyze				
Cadmium		7.62			2.92 0.292	mg/kg dry	73.2	13.0	97.2	75-125		
Chromium		7.62			14.7	mg/kg dry	7.32	0.702	94.5	75-125		
Copper					14.7	mg/kg dry	36.6	39.1	98.7	75-125		
Lead		1550 40.1				mg/kg dry	1540	242	85.2	75-125		
Molybdenum					1.47	mg/kg dry	36.6	6.12	92.8	75-125		
Nickel		41.1 46.6			1.47 1.47	mg/kg dry mg/kg dry	36.6 36.6	7.57	91.6	75-125		
Potassium		13200			292			12.6	93.0	75-125		
Selenium						mg/kg dry	7320	5710	103	75-125		
Total Phosphorus		80.8	14		2.92	mg/kg dry	73.2	8.38	98.9	75-125		
Zinc		32100 2570	11		2920 73.3	mg/kg dry mg/kg dry	14600 1500	23600 1040	58.0 102	75-125 75-125		
	* 10 m . at 10 m	2370			75.5	mg/kg dry	1300	1010	102	73-123		
Matrix Spike Dup (BGF2504	-MSD1)			e: 23E	0762-01		WW	2023 Analyze	d: 6/28/2023	3		
Arsenic		39.4	J1		2.00	mg/kg dry	50.0	4.56	69.6	75-125	9.80	20
Cadmium		3.90	J1		0.200	mg/kg dry	5.00	0.400	70.0	75-125	8.55	20
Chromium		31.6	J1		1.00	mg/kg dry	25.0	17.1	58.0	75-125	9.95	20
Copper		802	J1		20.0	mg/kg dry	1050	150	62.2	75-125	17.4	20
Lead		28.0	J1		1.00	mg/kg dry	25.0	12.3	62.8	75-125	9.97	20
Molybdenum		22.7	J1		1.00	mg/kg dry	25.0	6.72	64.1	75-125	9.61	20
Nickel		29.0	J1		1.00	mg/kg dry	25.0	14.1	59.5	75-125	8.57	20
Potassium		8200	J1		200	mg/kg dry	5000	5210	59.8	75-125	12.0	20
Selenium		40.0	J1		2.00	mg/kg dry	50.0	3,53	73.0	75-125	9.97	20
Total Phosphorus		22200	J1		2000	mg/kg dry	10000	15400	68.7	75-125	8.32	20
Zinc		984	J1		50.1	mg/kg dry	1020	493	47.9	75-125	34.4	20

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 08/01/2023 10:53

Quality Control (Continued)

Metals, Total (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF2504 - SW-3050 1	for 6010 (Con	tinued)				midentary to	LUNE VIII	THE PARTY	- wii2/29	elaborario
Matrix Spike Dup (BGF2504-MSD2)	Source: 2	3F2769-01	Pre	pared: 6/15	/2023 Analyze	d: 6/28/202	3		
Arsenic	83.7		2.93	mg/kg dry	73.2	13.0	96.5	75-125	0.604	20
Cadmium	7.60		0.293	mg/kg dry	7.32	0.702	94.2	75-125	0.256	20
Chromium	73.6		14.7	mg/kg dry	36.6	39.1	94.2	75-125	2.19	20
Copper	1630		146	mg/kg dry	1540	242	90.4	75-125	5.02	20
Lead	40.0		1.47	mg/kg dry	36.6	6.12	92.4	75-125	0,331	20
Molybdenum	40.9		1.47	mg/kg dry	36.6	7.57	91.1	75-125	0.433	20
Nickel	46.2		1.47	mg/kg dry	36.6	12.6	91.9	75-125	0.863	20
Potassium	13200		293	mg/kg dry	7320	5710	102	75-125	0.216	20
Selenium	80.4		2.93	mg/kg dry	73.2	8.38	98.4	75-125	0.442	20
Total Phosphorus	29900	J1	2930	mg/kg dry	14600	23600	43.0	75-125	7.08	20
Zinc	2720		73.4	mg/kg dry	1500	1040	111	75-125	5.43	20
Post Spike (BGF2504-PS1)		Source: 2	3E0762-01	Pre	pared: 6/15	/2023 Analyze	d: 6/28/202	3		
Arsenic	533		020,02 01	ug/L	500	43.1	97.9	80-120		
Cadmium	53.8			ug/L	50.0	3.78	100	80-120		
Chromium	398			ug/L	250	162	94.6	80-120		
Copper	2120	11		ug/L	500	1420	141	80-120		
Lead	349	31		ug/L	250	116	93.3	80-120		
Molybdenum	300			ug/L	250	63,5	94.6	80-120		
Nickel	367			ug/L	250	134	93.2	80-120		
Potassium	94200			ug/L	50000	49200	89.8	80-120		
Selenium	544			ug/L	500	33.4	102	80-120		
Total Phosphorus	206000	11		ug/L	50000	145000	122	80-120		
Zinc	5580			ug/L	250	4660	367	80-120		
Post Spike (BGF2504-PS2)		Source: 2	3F2769-01	Pre	pared: 6/15	/2023 Analyze	d: 6/28/2023	3		
Arsenic	573			ug/L	500	84.1	97.7	80-120		
Cadmium	54.1			ug/L	50.0	4.53	99.1	80-120		
Chromium	517			ug/L	250	252	106	80-120		
Copper	1750	11		ug/L	500	1560	37.8	80-120		
Lead	274	5.5		ug/L	250	39.5	93.8	80-120		
Molybdenum	290			ug/L	250	48.9	96.5	80-120		
Nickel	318			ug/L	250	81.3	94.9	80-120		
Potassium	89200			ug/L	50000	36800	105	80-120		
Selenium	562			ug/L	500	54.1	102	80-120		
Total Phosphorus	175000	31		ug/L	50000	152000	46.6	80-120		
Zinc	7940			ug/L	250	6730	483	80-120		

A = Accredited, N = Not Accredited or Accreditation not available

Reported:

08/01/2023 10:53

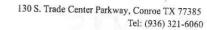
Quality Control (Continued)

Metals, Total (Continued)

Analyte	1714		Result (Qual	Rep	oorting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	
Batch: BGF2504 -	SW-3050	for 601	0 (Conti	nued)			1	eddinas i jil	ali Claver I	107-W	in the fact of	W.	
Dilution Check (BGF2	504-SRL1)		S	ource:	23E0762	-01	Pre	pared: 6/15	/2023 Analyze	d: 6/28/2023				
Arsenic			4.74 L	J		10.0	mg/kg dry		4.56			4.04	10	
Cadmium			0.310 L	J		1.00	mg/kg dry		0.400			25.3	10	
Chromium			14.2			5,01	mg/kg dry		17.1			18.3	10	
Copper			150			10.0	mg/kg dry		150			0.0791	10	
Lead			9.48			5.01	mg/kg dry		12.3			25.5	10	
Molybdenum			5.57			5.01	mg/kg dry		6.72			18.7	10	
Nickel			11.5			5.01	mg/kg dry		14.1	**		20.5	10	
Potassium			4570 J	1		1000	mg/kg dry		5210			13.1	10	
Selenium			<10.0 L	j.		10.0	mg/kg dry		<10.0			200	10	
Total Phosphorus			15400		hila	1000	mg/kg dry		15400			0.0791	10	
Dilution Check (BGF2	504-SRL2)		s	ource:	23F2769-	-01	Pre	pared: 6/15	/2023 Analyze	d: 6/28/2023				
Arsenic			18.6			14.6	mg/kg dry		13.0			35.4	10	
Cadmium			0.828	j.		1.46	mg/kg dry		0.702			16.5	10	
Chromium			51.5			7.34	mg/kg dry		39.1			27.5	10	
Copper			242			14.6	mg/kg dry		242			0.00334	10	
Lead			7.82			7.34	mg/kg dry		6.12			24.3	10	
Molybdenum			9.92			7.34	mg/kg dry		7.57			26.8	10	
Nickel			17.1			7.34	mg/kg dry		12.6			30.2	10	
Potassium			7230 J	1		1460	mg/kg dry		5710			23.5	10	
Selenium			12.2 L	1		14.6	mg/kg dry		8.38			36.9	10	
Total Phosphorus			23600			1460	mg/kg dry		23600			0,00330	10	

A = Accredited, N = Not Accredited or Accreditation not available

Reported:


08/01/2023 10:53

Quality Control (Continued)

General Chemistry

Analyte	Resul	t Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF1604 - NH3-N T						1616	All the state	47 (1)	- LDA	William Des
Blank (BGF1604-BLK1)				Pr	epared: 6/9/	2023 Analyze	ed: 6/12/2023			
Ammonia as N	<10.0) U	10.0	mg/kg wet		N JEF				A MI COM
LCS (BGF1604-BS1)				Pr	epared: 6/9/	2023 Analyze	ed: 6/12/2023			
Ammonia as N	93.6	5	9.92	mg/kg wet	99.2	= 0	94.4	85-115		
Duplicate (BGF1604-DUP1)		Source: 23E	2399-13	Pr	epared: 6/9/	2023 Analyze	ed: 6/12/2023			
Ammonia as N	13:	1	24.4	mg/kg dry	0.0	116			12.2	20
MRL Check (BGF1604-MRL1)				Pr	epared: 6/9/	2023 Analyze	ed: 6/12/2023			
Ammonia as N	10.	1	9.99	mg/kg wet	9.99		101	50-150		
Matrix Spike (BGF1604-MS1)		Source: 23E	2399-13	Pr	epared: 6/9/	2023 Analyze	ed: 6/12/2023			
Ammonia as N	340)	25.4	mg/kg dry	254	116	88.3	85-115		
Batch: BGF1608 - TKN T				194						
Blank (BGF1608-BLK1)			12.5		epared: 6/9/	2023 Analyze	ed: 6/12/2023			
Total Kjeldahl Nitrogen - (TKN)	<12.0	o U	12.0	mg/kg wet						
LCS (BGF1608-BS1)				Pr	epared: 6/9/	'2023 Analyze	ed: 6/12/2023			
Total Kjeldahl Nitrogen - (TKN)	23.:	1	12.1	mg/kg wet	24.5		94.3	85-115		
Duplicate (BGF1608-DUP1)		Source: 23E	5251-01	Pr	epared: 6/9/	2023 Analyze	ed: 6/12/2023			
Total Kjeldahl Nitrogen - (TKN)	40800)]1	2410			52000			24.2	20
Matrix Spike (BGF1608-MS1)		Source: 23E	5251-01	Pr	epared: 6/9/	2023 Analyze	ed: 6/12/2023			
Total Kjeldahl Nitrogen - (TKN)	58900		2390	mg/kg dry	9560	52000	72.3	85-115		

A = Accredited, N = Not Accredited or Accreditation not available

www. NWDLS.com TCEQ T104704238-23-39

Email: lab@nwdls.com

City of Tomball 501 James Street Tomball, TX 77375

Reported: 08/01/2023 10:53

Quality Control (Continued)

General Chemistry (Continued)

Analyte	7114	Result	Qual	Rep	orting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF1622 - Solid Al	nions with	Prep								111.71	V . I	Mark In
Blank (BGF1622-BLK1)							Prepared	& Analyzed: 6	/9/2023			
Nitrate as N		<1.21	U		1.21	mg/kg wet		Una				
LCS (BGF1622-BS1)							Prepared	& Analyzed: 6	/9/2023		7	
Nitrate as N		18.6			1.24	mg/kg wet	19.9		93.7	90-110		
Duplicate (BGF1622-DUP1)			Source	e: 23F1977-	01		Prepared	& Analyzed: 6	/9/2023		av mil	
Nitrate as N		175			8.70	mg/kg dry	(35)	196			11.3	15
Matrix Spike (BGF1622-MS1)			Source	e: 23F1977-	01		Prepared	& Analyzed: 6	/9/2023			
Nitrate as N		530				mg/kg dry	139	196	240	80-120		
	t Solids											
Blank (BGF1881-BLK1)	t Solids				2.400		pared: 6/12	/2023 Analyze	d: 6/13/2023	(p. 10)		
Blank (BGF1881-BLK1) % Solids	t Solids	<0.100			0.100	%						
Blank (BGF1881-BLK1) % Solids Duplicate (BGF1881-DUP1)	t Solids			e: 23F0644-	05	% Pre		/2023 Analyze				Linker and the second
Blank (BGF1881-BLK1) % Solids	t Solids			e: 23F0644-		%					0.583	10
Blank (BGF1881-BLK1) % Solids Duplicate (BGF1881-DUP1) % Solids Duplicate (BGF1881-DUP2)	t Solids	1.34	Source	e: 23F0644-	05 0.100	% Pre %	pared: 6/12	/2023 Analyze	ed: 6/13/2023		0.583	10
Blank (BGF1881-BLK1) % Solids Duplicate (BGF1881-DUP1) % Solids	t Solids	1.34	Source	e: 23F0644- e: 23F2214-	05 0.100	% Pre %	pared: 6/12	/2023 Analyze	ed: 6/13/2023		11.01	10
Duplicate (BGF1881-DUP1) % Solids Duplicate (BGF1881-DUP2)	t Solids	1.34	Source	e: 23F0644- e: 23F2214-	05 0.100 02	% Pre	pared: 6/12	/2023 Analyze 1.33 /2023 Analyze	d: 6/13/2023		11.01	Anne (Billia)
Blank (BGF1881-BLK1) % Solids Duplicate (BGF1881-DUP1) % Solids Duplicate (BGF1881-DUP2) % Solids	t Solids	1.34	Source	e: 23F0644- e: 23F2214-	05 0.100 02	% Pre	pared: 6/12	/2023 Analyze 1.33 /2023 Analyze 2.03	d: 6/13/2023		11.01	Anne (Billia)
Blank (BGF1881-BLK1) % Solids Duplicate (BGF1881-DUP1) % Solids Duplicate (BGF1881-DUP2) % Solids Reference (BGF1881-SRM1) % Solids	ED YEAR	2.03	Source	e: 23F0644- e: 23F2214-	05 0.100 02 0.100	% Pre %	pared: 6/12	/2023 Analyze 1.33 /2023 Analyze 2.03	d: 6/13/2023 d: 6/13/2023 d: 6/13/2023		11.01	Aure (Bill)
Blank (BGF1881-BLK1) % Solids Duplicate (BGF1881-DUP1) % Solids Duplicate (BGF1881-DUP2) % Solids Reference (BGF1881-SRM1)	ED YEAR	1.34 2.03 0.382	Source	e: 23F0644- e: 23F2214-	05 0.100 02 0.100	% Pre %	epared: 6/12 epared: 6/12 epared: 6/12 0.350	/2023 Analyze 1.33 /2023 Analyze 2.03	d: 6/13/2023 d: 6/13/2023 d: 6/13/2023 109		11.01	Anne (Billia)

A = Accredited, N = Not Accredited or Accreditation not available

%REC

City of Tomball 501 James Street Tomball, TX 77375

Reported:

08/01/2023 10:53

RPD

Quality Control (Continued)

Spike

Source

Reporting

TCLP

Analyte		Result	Qual		Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGF1942 - SW-3511	!							Consu	March 1		-3,179.3	Columbia
MB SV (BGF1942-BLK1)						Pr	repared: 6/13	/2023 Analyze	d: 7/11/202	3		
2,4,5 & 2,4,6 -Trichlorophenol		< 0.00250	U		0.00250	mg/L		4 1 1 1				
2,4-Dinitrotoluene (2,4-DNT)		<0.130			0.130	mg/L						
2-Methylphenol		<200			200	mg/L						
3,4-Methylphenol		<200			200	mg/L						
Hexachlorobenzene		<0.130			0.130	mg/L						
Hexachlorobutadiene		<0.500			0.500	mg/L						
Hexachloroethane		<3.00			3.00	mg/L						
Nitrobenzene		<2.00			2.00	mg/L						
Pentachlorophenol		<100			100	mg/L						
Pyridine		<5.00			5,00	mg/L						
Surrogate: 2-Fluorobiphenyl-surr			****	****	0.0102	mg/L	0.0100		102	54.6-148		
Surrogate: 2-Fluorophenol-surr					0.0188	mg/L	0.0200		93.8	55-152		
Surrogate: 2,4,6-Tribromophenol-surr					0.0187	mg/L	0.0200		93.4	52.4-136		
Surrogate: Nitrobenzene-d5-surr					0.00947	mg/L	0.0100		94.7	52-162		
Surrogate: Phenol-d5-surr					0.0196	mg/L	0.0200		97.8	58.7-152		
Surrogate: p-Terphenyl-d14-surr					0.00902	mg/L	0.0100		90.2	51.9-147		
BS SV (BGF1942-BS2)						Pr	repared: 6/13	/2023 Analyze	d: 7/11/202	3		
2,4,5 & 2,4,6 -Trichlorophenol		0.0407			0.00250	mg/L	0.0400		102	60-140		
2,4-Dinitrotoluene (2,4-DNT)		0.00997	U		0.130	mg/L	0.0100		99.7	60-140		
2-Methylphenol		0.0151			200	mg/L	0.0200		75.7	60-140		
3,4-Methylphenol		0.0327			200	mg/L	0.0400		81.8	60-140		
Hexachlorobenzene		0.00953			0.130	mg/L	0.0100		95.3	60-140		
Hexachlorobutadiene		0.00799			0.500	mg/L	0.0100		79.9	60-140		
Hexachloroethane		0.00778			3.00	mg/L	0.0100		77.8	60-140		
Nitrobenzene		0.00981			2.00	mg/L	0.0100		98.1	60-140		
Pentachlorophenol		0.0177			100	mg/L	0.0200		88.5	36.8-149		
Pyridine		0.00611			5.00	mg/L	0.0500		12.2	2.5-101		
Surrogate: 2-Fluorobiphenyl-surr					0.0101	mg/L	0.0100		101	54.6-148		
Surrogate: 2-Fluorophenol-surr					0.0186	mg/L	0.0200		93.1	55-152		
Surrogate: 2,4,6-Tribromophenol-surr					0.0185	mg/L	0.0200		92.7	52.4-136		
Surrogate: Nitrobenzene-d5-surr					0.00886	mg/L	0.0100		88.6	52-162		
Surrogate: Phenol-d5-surr					0.0190	mg/L	0.0200		95.0	58.7-152		
Surrogate: p-Terphenyl-d14-surr					0.00935	mg/L	0.0100		93.5	51.9-147		

A = Accredited, N = Not Accredited or Accreditation not available

Reported:

08/01/2023 10:53

Quality Control (Continued)

Analyte		Result	Qual	I MILL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF1942 - SW-351.	1 (Conti	nued)								11.00	L Line	6. 761
BSD SV (BGF1942-BSD2)						Pr	epared: 6/13	/2023 Analyzed	1: 7/11/202	3		
2,4,5 & 2,4,6 -Trichlorophenol		0.0434			0.00250	mg/L	0.0400		108	60-140	6.48	40
2,4-Dinitrotoluene (2,4-DNT)		0.0101	U		0.130	mg/L	0.0100		101	60-140	0.858	40
2-Methylphenol		0.0161	U		200	mg/L	0.0200		80.6	60-140	6.31	40
3,4-Methylphenol		0.0341	U		200	mg/L	0.0400		85.2	60-140	4.06	40
Hexachlorobenzene		0.00963			0.130	mg/L	0.0100		96.3	60-140	1.09	40
Hexachlorobutadiene		0.00716			0.500	mg/L	0.0100		71.6	60-140	11.0	40
Hexachloroethane		0.00812			3.00	mg/L	0.0100		81.2	60-140	4.30	40
Nitrobenzene		0.0103			2.00	mg/L	0.0100		103	60-140	4.58	40
Pentachlorophenol		0,0173			100	mg/L	0.0200		86.4	36.8-149	2.51	40
Pyridine		0.0186			5.00	mg/L	0.0500		37.3	2.5-101	101	40
Surrogate: 2-Fluorobiphenyl-surr					0.0101	mg/L	0.0100		101	54.6-148		
Surrogate: 2-Fluorophenol-surr					0.0193	mg/L	0.0200		96.6	55-152		
Surrogate: 2,4,6-Tribromophenol-surr					0,0183	mg/L	0.0200		91.5	52.4-136		
Surrogate: Nitrobenzene-d5-surr					0.00930	mg/L	0.0100		93.0	52-162		
Surrogate: Phenol-d5-surr					0.0199	mg/L	0.0200		99.3	58.7-152		
Surrogate: p-Terphenyl-d14-surr				ij., i	0.00921	mg/L	0.0100		92.1	51.9-147		
BGF1262-BLK1 (BGF1942-LBK1))					Pr	epared: 6/13	/2023 Analyzed	: 7/11/202	3		
2,4,5 & 2,4,6 -Trichlorophenol		<0.0100	u		0.0100	mg/L						
2,4-Dinitrotoluene (2,4-DNT)		<0.130			0.130	mg/L						
2-Methylphenol		<200			200	mg/L						
3,4-Methylphenol		0.00574			200	mg/L						
Hexachlorobenzene		<0.130			0.130	mg/L						
Hexachlorobutadiene		<0.500			0.500	mg/L						
Hexachloroethane		<3.00			3.00	mg/L						
Nitrobenzene		<2.00			2.00	mg/L					5.00	
Pentachlorophenol		<100			100	mg/L						
Pyridine		<5.00			5.00	mg/L						
Surrogate: 2-Fluorobiphenyl-surr					0.0402	mg/L	0.0400		101	54.6-148	COCK PAGE EX	
Surrogate: 2-Fluorophenol-surr					0.0731	mg/L	0.0800		91.4	55-152		
Surrogate: 2,4,6-Tribromophenol-surr					0.0852	mg/L	0.0800		107	52.4-136		
Surrogate: Nitrobenzene-d5-surr					0.0377	mg/L	0.0400		94.2	52-162		
Surrogate: Phenol-d5-surr					0.0759	mg/L	0.0800		94.9	58.7-152		
Surrogate: p-Terphenyl-d14-surr					0.0303	mg/L	0.0400		75.8	51.9-147		

A = Accredited, N = Not Accredited or Accreditation not available

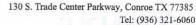
Reported:

08/01/2023 10:53

Quality Control (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF1942 - SW-3511 (C	ontinued)				Code	(Destrie	CHE MIS	1,341.19	
BGF1811-BLK1 (BGF1942-LBK2)	AND THE SEA CHARLES IN		P	repared: 6/13,	/2023 Analyze	d: 7/11/202	3		
2,4,5 & 2,4,6 -Trichlorophenol	<0.0100 U	0.0100	mg/L			27 5			
2,4-Dinitrotoluene (2,4-DNT)	<0.130 U	0.130	mg/L						
2-Methylphenol	<200 U	200	mg/L						
3,4-Methylphenol	0.00399 U	200	mg/L						
Hexachlorobenzene	<0.130 U	0.130	mg/L						
Hexachlorobutadiene	<0.500 U	0.500	mg/L						
Hexachloroethane	<3.00 U	3.00	mg/L						
Nitrobenzene	<2,00 U	2.00	mg/L						
Pentachlorophenol	<100 U	100	mg/L						
Pyridine	<5.00 U	5.00	mg/L						
Surrogate: 2-Fluorobiphenyl-surr		0.0416	mg/L	0.0400		104	54.6-148		
Surrogate: 2-Fluorophenol-surr		0.0810	mg/L	0.0800		101	55-152		
Surrogate: 2,4,6-Tribromophenol-surr		0.0954	mg/L	0.0800		119	52.4-136		
Surrogate: Nitrobenzene-d5-surr		0.0460	mg/L	0.0400		115	52-162		
Surrogate: Phenol-d5-surr		0.0797	mg/L	0.0800		99.6	58.7-152		
Surrogate: p-Terphenyl-d14-surr		0.0384	mg/L	0.0400		95.9	51.9-147		
MDL SV (BGF1942-MRL2)			Р	repared: 6/13,	/2023 Analyze	d: 7/11/202	3	TO DE	
2,4,5 & 2,4,6 -Trichlorophenol	0.00134 U	0.00250	mg/L	0.00200		66.9			
2,4-Dinitrotoluene (2,4-DNT)	0.000635 U	0.130	mg/L	0.000500		127			
2-Methylphenol	0.000484 U	200	mg/L	0.00100		48.4			
3,4-Methylphenol	0.00217 U	200	mg/L	0.00200		109			
Hexachlorobenzene	0.000215 U	0.130	mg/L	0.000500		42.9			
Hexachlorobutadiene	0.000379 U	0.500	mg/L	0.000500		75.9			
Hexachloroethane	0.000362 U	3.00	mg/L	0.000500		72.4			
Nitrobenzene	0.000568 U	2.00	mg/L	0.000500		114			
Pentachlorophenol	0.000753 U	100	mg/L	0.00100		75.3			
Pyridine	0.00611 U	5.00	mg/L	0.00250		244			
Surrogate: 2-Fluorobiphenyl-surr	******************	0.0103	mg/L	0.0100		103	54.6-148		
Surrogate: 2-Fluorophenol-surr		0.0195	mg/L	0.0200		97.7	55-152		
Surrogate: 2,4,6-Tribromophenol-surr		0.0200	mg/L	0.0200		99.8	52.4-136		
Surrogate: Nitrobenzene-d5-surr		0.0105	mg/L	0.0100		105	52-162		
Surrogate: Phenol-d5-surr		0.0184	mg/L	0.0200		92.0	58.7-152		
Surrogate: p-Terphenyl-d14-surr		0.00917	mg/L	0.0100		91.7	51.9-147		

A = Accredited, N = Not Accredited or Accreditation not available


Reported:

08/01/2023 10:53

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch: BGF1942 - SW-3511 (C	Continued)					Unite	oldany il			CABB -
23F1434-02 MS (BGF1942-MS1)	TIV THEFT	Source:	23F1434-02	P	repared: 6/13	/2023 Analyzed	d: 7/11/202	3		
2,4,5 & 2,4,6 -Trichlorophenol	0.0405		0.00249	mg/L	0.0398	<0.00249	102	44.9-143		
2,4-Dinitrotoluene (2,4-DNT)	0.0102	U	0.130	mg/L	0.00995	< 0.130	102	50.3-144		
2-Methylphenol	0.0162	U	200	mg/L	0.0199	<200	81.5	17.3-182		
3,4-Methylphenol	0.0373		200	mg/L	0.0398	<200	93.7	43.4-188		
Hexachlorobenzene	0.00865		0.130	mg/L	0.00995	<0.130	86.9	56.1-137		
Hexachlorobutadiene	0.00626		0.500	mg/L	0.00995	<0.500	63.0	33.1-110		
Hexachloroethane	0.00696		3.00	mg/L	0.00995	<3.00	70.0	36.2-106		
Nitrobenzene	0.0112	U	2.00	mg/L	0.00995	<2.00	112	54,9-156		
Pentachlorophenol	0,0163		100	mg/L	0.0199	<100	81.8	42.2-151		
Pyridine	0.0234		5.00	mg/L	0.0497	<5.00	47.1	2-87.4		
Surrogate: 2-Fluorobiphenyl-surr		LINE	0.00991	mg/L	0.00995		99.6	54.6-148		
Surrogate: 2-Fluorophenol-surr			0.0190	mg/L	0.0199		95.5	55-152		
Surrogate: 2,4,6-Tribromophenol-surr			0.0171	mg/L	0.0199		86.2	52.4-136		
Surrogate: Nitrobenzene-d5-surr			0.00995	mg/L	0.00995		100	52-162		1 E 1
Surrogate: Phenol-d5-surr			0.0223	mg/L	0.0199		112	58.7-152		
Surrogate: p-Terphenyl-d14-surr			0.00836	mg/L	0.00995		84.0	51.9-147		
3F1434-02 MSD (BGF1942-MSD1)		Source:	23F1434-02	D	renared: 6/12	/2023 Analyzed	4. 7/11/202	3		
2,4,5 & 2,4,6 -Trichlorophenol	0.0439		0.00249	mg/L	0.0398	<0.00249	110	44.9-143	8.24	40
2,4-Dinitrotoluene (2,4-DNT)	0.0439		0.130	mg/L	0.00996	< 0.130	111	50.3-144	8.32	40
2-Methylphenol	0.0110		200	mg/L	0.00990	<200	76.6	17.3-182	6.06	40
3,4-Methylphenol	0.0153		200	mg/L	0.0398	<200	88.6	43.4-188	5.45	40
Hexachlorobenzene	0.00981		0.130	mg/L	0.00996	<0.130	98.5	56.1-137	12.6	40
Hexachlorobutadiene	0.00961		0.500	mg/L	0.00996	<0.500	77.0	33.1-110	20.2	40
Hexachloroethane	0.00787		3.00	mg/L	0.00996	<3.00	82.4	36.2-106	16.4	40
Vitrobenzene	0.00821		2.00	mg/L	0.00996	<2.00	111	54.9-156	0.818	40
Pentachlorophenol	0.0180		100	mg/L	0.0199	<100	90.5	42.2-151	10.3	40
Pyridine	0.0314		5.00	mg/L	0.0498	<5.00	63.0	2-87.4	28.9	40
Surrogate: 2-Fluorobiphenyl-surr			0.0109	mg/L	0.00996		110	54.6-148		
Surrogate: 2-Fluorophenol-surr			0.0195	mg/L	0.0199		98.1	55-152		
Surrogate: 2,4,6-Tribromophenol-surr			0.0188	mg/L	0.0199		94.1	52.4-136		
Surrogate: Nitrobenzene-d5-surr			0.00973	mg/L	0.00996		97.7	52-162		
Service and the service and passes			0.0184	mg/L	0.0199		92.6	58.7-152		
Surrogate: Phenol-d5-surr										

A = Accredited, N = Not Accredited or Accreditation not available

Reported:

08/01/2023 10:53

Quality Control (Continued)

Analyte	11.44	Result	Qual	level.	Reporting Limit	Units	lànu	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF1994 - SW-74	471 TCLP							- 0	SAMPLE CO	years to	305, 893	37.35	at de
Duplicate (BGF1994-DUP1)			Source	ce: 23F2	123-01		Prepa	red: 6/14	/2023 Analyze	d: 6/15/2023			
Mercury	0 10	<0.200	U	tradi'	0.200	mg/L			<0.200	10 0			200
BGF1262-LBK1 (BGF1994-LB	K1)						Prepa	ared: 6/14	/2023 Analyze	d: 6/15/2023			m 768
Mercury	11	<0,200	U		0,200	mg/L			il helig				THE RESERVE
BGF1811-LBK2 (BGF1994-LB	K2)						Prepa	red: 6/14	/2023 Analyze	d: 6/15/2023			
Mercury		<0.200	U		0.200	mg/L							Land of the Control
MDL Check (BGF1994-MRL1)							Prepa	red: 6/14	/2023 Analyze	d: 6/15/2023			
Mercury		0.000191	U		0.200	mg/L	1.50	0.000200		95.5			
Matrix Spike (BGF1994-MS1)			Source	ce: 23F2	123-01		Prepa	red: 6/14	/2023 Analyze	d: 6/15/2023			
Mercury		0.00497	U		0.200	mg/L		0.00500	<0.200	99.4	80-120		
Batch: BGF2074 - EPA 2	00.2 TCLP												
Blank (BGF2074-BLK1)							Prepa	red: 6/14	/2023 Analyze	d: 6/15/2023			
Arsenic		<5.00	U		5.00	mg/L	230	, ,		7.71.57.53			
Barium		<100	U		100	mg/L							
Cadmium		<1.00	U		1.00	mg/L							
Chromium		<5.00	U		5.00	mg/L							
Lead		<5.00	U		5.00	mg/L							
Selenium		<1.00	U		1.00	mg/L	9		. Transfer				
Blank (BGF2074-BLK2)							Prepa	red: 6/14	/2023 Analyze	d: 6/16/2023			
Silver		<5.00	U		5.00	mg/L							

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 08/01/2023 10:53

Quality Control (Continued)

Analyte	Result	Qual	Rep	orting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF2074 - EPA 20	0.2 TCLP (Contin	ued)						4.55	1707-480	-1991	ADA TREE
LCS (BGF2074-BS1)					P	repared: 6/14	2023 Analyze	ed: 6/15/2023			
Arsenic	0.510	U		5.00	mg/L	0.500		102	80-120		
Barium	0.502	U		100	mg/L	0.500		100	80-120		
Cadmium	0.0491	U		1.00	mg/L	0.0500		98.2	80-120		
Chromium	0.255	U		5.00	mg/L	0.250		102	80-120		
Lead	0.256			5.00	mg/L	0.250		102	80-120		
Selenium	0.511	U	i parmini	1.00	mg/L	0,500		102	80-120		
LCS (BGF2074-BS2)					Р	repared: 6/14	2023 Analyze	ed: 6/16/2023			
Silver	0.0515	U	Lond A	5.00	mg/L	0.0500		103	80-120		ii) also iul a
Duplicate (BGF2074-DUP1)		Source	e: 23F1031	-01	Р	repared: 6/14,	2023 Analyze	ed: 6/15/2023			
Arsenic	<5.00	U		5.00	mg/L		<5.00				20
Barium	1.12			100	mg/L		1.37			20.4	20
Cadmium	<1.00	U		1.00	mg/L		<1.00				20
Chromium	<5.00	U		5.00	mg/L		<5.00				20
Lead	<5.00	U		5.00	mg/L		<5.00				20
Selenium	<1.00	U	i british H	1.00	mg/L		<1.00				20
Duplicate (BGF2074-DUP2)		Source	e: 23F1031	-01	Р	repared: 6/14	/2023 Analyze	ed: 6/16/2023			
Silver	<5.00	U		5.00	mg/L		<5.00				20
BGF1262-BLK1 (BGF2074-LBK	1)				Р	repared: 6/14	/2023 Analyze	ed: 6/15/2023			
Arsenic	<5.00	U		5.00	mg/L						
Barium	0.800			100	mg/L						
Cadmium	<1.00			1.00	mg/L						
Chromium	<5.00	U		5.00	mg/L						
Lead	<5.00	U		5.00	mg/L						
Selenium	<1.00	U		1.00	mg/L						

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 08/01/2023 10:53

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF2074 - EPA 200.2	TCLP (Contin	ued)			0	Seattle of	on the same	THE COUR		Other State
BGF1811-BLK1 (BGF2074-LBK2)					Prepared: 6/14	/2023 Analyz	ed: 6/15/2023			
Arsenic	<5.00	U	5.00	mg/L			,			
Barium	0.780	U	100	mg/L						
Cadmium	<1.00	U	1.00	mg/L						
Chromium	<5.00	U	5.00	mg/L						
Lead	<5.00	U	5.00	mg/L						
Selenium	<1.00	U	1.00	mg/L						
BGF1262-BLK1 (BGF2074-LBK3)					Prepared: 6/14	/2023 Analyza	ed: 6/16/2022			
Silver	<5,00	U	5.00	mg/L	rrepared. 0/17	2025 Analyzi	ed. 0/10/2023			
BGF1811-BLK1 (BGF2074-LBK4)			Contan		Prepared: 6/14	/2023 Analyze	ed: 6/16/2023		1071	
Silver	- <5.00	U	5.00	mg/L		2020 / 11/01/25	. 0/10/2020			
Matrix Spike (BGF2074-MS1)		Source:	23F1031-01		Prepared: 6/14	/2023 Analyze	ed: 6/15/2023			
Arsenic	0.524		5.00	mg/L	0.500	<5.00	105	75-125		
Barium		J1, U	100	mg/L	0.500	1.37	50.9	75-125		
Cadmium	0.0509		1.00	mg/L	0.0500	<1.00	102	75-125		
Chromium	0.240		5.00	mg/L	0.250	<5.00	96.0	75-125		
Lead	0.246		5.00	mg/L	0.250	<5.00	98.3	75-125		
Selenium	0,507		1.00	mg/L	0.500	<1.00	101	75-125		
Matrix Spike (BGF2074-MS2)		Source:	23F1031-01		Prepared: 6/14/	2023 Analyze	ed: 6/16/2023			
Silver	0.0433	U	5.00	mg/L	0.0500	<5.00	86,5	75-125		
Post Spike (BGF2074-PS1)		Source:	23F1031-01	19.69	Prepared: 6/14/	2023 Analyze	ed: 6/15/2023			
Arsenic	534			ug/L	500	15.3	104	80-120		
Barium	1600	J1		ug/L	500	1330	53.6	80-120		
Cadmium	51.9			ug/L	50.0	0.117	104	80-120		
Chromium	249			ug/L	250	2.37	98.7	80-120		
Lead	253			ug/L	250	1.72	101	80-120		
Selenium	516			ug/L	500	1.73	103	80-120		

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 08/01/2023 10:53

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF2074 - EPA 200.2	TCLP (Contin	ued)				101010		155.4%	, - MARI	Nag in
Post Spike (BGF2074-PS2)			23F1031-01	F	Prepared: 6/14/	2023 Analyze	ed: 6/16/2023			
Silver	50,7			ug/L	50.0	1.05	99.2	80-120		
Dilution Check (BGF2074-SRL1)		Source:	23F1031-01	F	Prepared: 6/14/	2023 Analyze	ed: 6/15/2023			
Arsenic	<5.00	U	5.00	mg/L		<5.00				10
Barium	1.37	U	100	mg/L		1.37			0.00	10
Cadmium	<1.00		1.00	mg/L		<1.00				10
Chromium	<5.00	U	5.00	mg/L		<5.00				10
Lead	<5.00	U	5.00	mg/L		<5.00	*.			10
Selenium	<1.00	U	1.00	mg/L		<1.00				10
					9 201 13				- b	
Dilution Check (BGF2074-SRL2)			23F1031-01		Prepared: 6/14/		ed: 6/16/2023			~
Silver	<5.00	U	5.00	mg/L		<5.00				10
Batch: BGF2470 - SW-3511 MB OCP (BGF2470-BLK1)					Prepared: 6/15/	2023 Analyze	ed: 7/11/2023			
Chlordane (Total)	< 0.0300	U	0.0300	mg/L						
Endrin	< 0.0200	U	0.0200	mg/L						
gamma-BHC (Lindane, gamma-HexachlorocyclohexanE)	<0.400	U	0.400	mg/L						
Heptachlor	<0.00800	U	0.00800	mg/L						
Heptachlor epoxide	<0.00800	U	0.00800	mg/L						
Methoxychlor	<10.0	U	10.0	mg/L						
Toxaphene (Chlorinated Camphene)	<0.500	U	0.500	mg/L						
Surrogate: 2,4,5,6			0.000121	mg/L	0.000119		101	60-140		
Tetrachloro-m-xylene-surr										
Surrogate: Decachlorobiphenyl-surr			8.97E-5	mg/L	0.000119		75.2	60-140		
BS TOX (BGF2470-BS1)					Prepared: 6/15,	/2023 Analyz	ed: 7/12/2023			
Toxaphene (Chlorinated Camphene)	0.0010) U	0.500	mg/L	0.00119	1111	91.2	60-140		1111111111111
Surrogate: 2,4,5,6			0.000133	mg/L	0.000119		111	60-140		
Tetrachloro-m-xylene-surr Surrogate: Decachlorobiphenyl-surr			9.93E-5	mg/L	0.000119		. 83.2	60-140		

A = Accredited, N = Not Accredited or Accreditation not available

Reported:

08/01/2023 10:53

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF2470 - SW-3511 (C	Continued)					- United	e Physics 1	till, gift	77.15	Side des
BS OCP (BGF2470-BS2)	APPLE CONSTRUCT			F	repared: 6/15/	2023 Analyze	d: 7/12/2023	3		
Chlordane (Total)	0.000475	U	0.0300	mg/L	0.000480		99.1	60-140		
Endrin	0.000121		0.0200	mg/L	0.000120		101	60-140		
gamma-BHC (Lindane,	0,000118		0.400	mg/L	0.000120		98.2	60-140		
gamma-HexachlorocyclohexanE)										
Heptachlor	0.000130	Ü	0.00800	mg/L	0.000120		109	60-140		
Heptachlor epoxide	0.000117	U	0.00800	mg/L	0.000120		97.2	60-140		
Methoxychlor	0.000117	U	10.0	mg/L	0.000120		97.7	60-140		
Surrogate: 2,4,5,6			0.000138	mg/L	0.000120		115	60-140		
Tetrachloro-m-xylene-surr										
Surrogate: Decachlorobiphenyl-surr			9.24E-5	mg/L	0.000120		77.0	60-140	30.00	1 1100
BSD TOX (BGF2470-BSD1)				F	Prepared: 6/15/	2023 Analyze	d: 7/12/2023	3		
Toxaphene (Chlorinated Camphene)	0.00117	U	0.500	mg/L	0.00119		98.3	60-140	7.43	40
Surrogate: 2,4,5,6			0.000137	mg/L	0.000119		115	60-140		
Tetrachloro-m-xylene-surr										
Surrogate: Decachlorobiphenyl-surr			9.95E-5	mg/L	0.000119		83.4	60-140		
BSD OCP (BGF2470-BSD2)					Prepared: 6/15/	2023 Analyze	d: 7/12/2023	3		
Chlordane (Total)	0.000467	U	0.0300	mg/L	0.000477		97.9	60-140	1.84	40
Endrin	0.000134	U	0.0200	mg/L	0.000119		113	60-140	10.5	40
gamma-BHC (Lindane,	0.000117	U	0.400	mg/L	0.000119		98,5	60-140	0.353	40
gamma-HexachlorocyclohexanE)										
Heptachlor	0.000123	U	0.00800	mg/L	0.000119		103	60-140	5.54	40
Heptachlor epoxide	0.000117	U	0.00800	mg/L	0.000119		98.4	60-140	0.648	40
Methoxychlor	0.000116	U	10.0	mg/L	0.000119		97.3	60-140	1.06	40
Surrogate: 2,4,5,6			0.000135	mg/L	0.000119		113	60-140		
Tetrachloro-m-xylene-surr										
Surrogate: Decachlorobiphenyl-surr			8.96E-5	mg/L	0.000119		75.2	60-140		
BGF1811-BLK1 (BGF2470-LBK1)				ı	Prepared: 6/15/	2023 Analyze	d: 7/13/2023	3		
Chlordane (Total)	< 0.0300	u ·	0.0300	mg/L						
Endrin	<0.0200		0.0200	mg/L						
gamma-BHC (Lindane,	<0.400		0,400	mg/L						
gamma-HexachlorocyclohexanE)	30,400	-	31.766	31						
Heptachlor	<0.00800	U	0.00800	mg/L						
Heptachlor epoxide	<0.00800		0.00800	mg/L						
Toxaphene (Chlorinated Camphene)	<0.500		0.500	mg/L						
Surrogate: 2,4,5,6	61 64 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Element to	0.000672	mg/L	0.000600		112	60-140	*******	
Tetrachloro-m-xylene-surr Surrogate: Decachlorobiphenyl-surr		S	0.000281	mg/L	0.000600		46.8	60-140		

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 08/01/2023 10:53

Quality Control (Continued)

Analyte	1 18	Result Qual		Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF2470 - SW-3511	(Contin	ued)					Strong	garec'i).	L-284	07000	7300 TVa
BGF1811-BLK1 (BGF2470-LBK3)					P	repared: 6/15	/2023 Analyze	d: 7/14/2023			
Methoxychlor		<10.0 U		10.0	mg/L						
Surrogate: 2,4,5,6	Щ			0.000533	mg/L	0.000600	******	88.9	60-140		
Tetrachloro-m-xylene-surr					Mig			7.77			
Surrogate: Decachlorobiphenyl-surr		5		0.000332	mg/L	0.000600		55.3	60-140		
MDL TOX (BGF2470-MRL1)					Р	repared: 6/15	/2023 Analyze	d: 7/12/2023			
Toxaphene (Chlorinated Camphene)		0.000249 U		0.500	mg/L	0.000296		84.4			
Surrogate: 2,4,5,6		5	I I	0.000167	mg/L	0.000118	d filter telte	142	60-140	*** ***	
Tetrachloro-m-xylene-surr											
Surrogate: Decachlorobiphenyl-surr				9.40E-5	mg/L	0.000118		79.5	60-140		
MDL OCP (BGF2470-MRL2)					Р	repared: 6/15/	/2023 Analyzed	d: 7/12/2023			TELL KOT II
Chlordane (Total)		4.32E-5 U		0.0300	mg/L	4.74E-5	II Potnih	91.1			
Endrin		9.35E-6 U		0.0200	mg/L	1.18E-5		78.9			
gamma-BHC (Lindane,		9.71E-6 U		0.400	mg/L	1.18E-5		81.9			
gamma-HexachlorocyclohexanE)											
Heptachlor		1.28E-5 U		0.00800	mg/L	1.18E-5		108			
Heptachlor epoxide		1.18E-5 U		0.00800	mg/L	1.18E-5		99.9			
Methoxychlor		1.04E-5 U		10.0	mg/L	1.18E-5		87.8		- 170 0494 - 201	600000 F000 F0
Surrogate: 2,4,5,6				0.000130	mg/L	0.000118		109	60-140	1,115,000,000	1000110010
Tetrachloro-m-xylene-surr											
Surrogate: Decachlorobiphenyl-surr				8.36E-5	mg/L	0.000118		70.5	60-140		
23F0710-02 MS (BGF2470-MS1)		Sour	ce: 23F0	710-02	Р	repared: 6/15/	2023 Analyzeo	d: 7/12/2023			
Chlordane (Total)		0.000421 U		0.0300	mg/L	0.000478	< 0.0300	88.0	60-140		
Endrin	9	0.000119 U		0.0200	mg/L	0.000119	<0.0200	99.3	60-140		
gamma-BHC (Lindane,	į.	0.000118 U		0.400	mg/L	0.000119	<0.400	98.8	60-140		
gamma-HexachlorocyclohexanE)											
Heptachlor		0.000109 U		0.00800	mg/L	0.000119	<0.00800	91.1	60-140		
Heptachlor epoxide	4.114.43	0.000118 U		0.00800	mg/L	0.000119	<0.00800	98.5	60-140		
Methoxychlor		7.21E-5 U		10.0	mg/L	0.000119	<10.0	60.3	60-140		
Surrogate: 2,4,5,6				0.000131	mg/L	0.000119		110	60-140		
Tetrachloro-m-xylene-surr											
Surrogate: Decachlorobiphenyl-surr				8.54E-5	mg/L	0.000119		71.5	60-140		

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 08/01/2023 10:53

Quality Control (Continued)

Analyte	Result	Oual	Reporting	Unite	Spike	Source	0/ 000	%REC	-	RPD
	Result	Quai	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGF2470 - SW-351										
23F0710-02 MSD (BGF2470-MS	D1)	Source:	23F0710-02		Prepared: 6/15/	/2023 Analyzed	1: 7/12/2023	3		
Chlordane (Total)	0.000434	U	0.0300	mg/L	0.000478	<0.0300	90.7	60-140	3.09	40
Endrin	0.000123	U	0.0200	mg/L	0.000120	<0.0200	103	60-140	3.71	40
gamma-BHC (Lindane,	0.000117	U	0,400	mg/L	0.000120	<0.400	98.2	60-140	0.566	40
gamma-HexachlorocyclohexanE)			79,000,000		8 0000					
Heptachlor	0.000107		0.00800	mg/L	0.000120	<0.00800	89.6	60-140	1.54	40
Heptachlor epoxide	0.000121		0.00800	mg/L	0.000120	<0.00800	101	60-140	2.32	40
Methoxychlor	7.15E-5	J1, U	10.0	mg/L	0.000120	<10.0	59.8	60-140	0,735	40
Surrogate: 2,4,5,6			0.000126	mg/L	0.000120		105	60-140		
Tetrachloro-m-xylene-surr										
Surrogate: Decachlorobiphenyl-surr			8.09E-5	mg/L	0.000120		67.6	60-140		
2,4-D Silvex (2,4,5-TP) Surrogate: DCAA-surr	<10.0 <1.00		10.0 1.00 0.0258	mg/L mg/L mg/L	0.0250	*********	103			
			0.0258			Newscar 2		X = 1 = 0.50		
LCS (BGF2849-BS1)					Prepared: 6/19	/2023 Analyze	d: 7/8/2023			
2,4-D	. 0.00565		10.0	mg/L	0.00515		110	70-130		
Silvex (2,4,5-TP)	0.00503	U	1.00	mg/L	0.00500	******	101	70-130		p to the control of t
Company DC44 som			0.0222		0.0250			70 120		
Surrogate: DCAA-surr			0.0292	mg/L			117	70-130		
LCS Dup (BGF2849-BSD1)			0.0292	- NEW	Prepared: 6/19	/2023 Analyze				-
LCS Dup (BGF2849-BSD1) 2,4-D	0.00594	U	10.0	- NEW		/2023 Analyze			5	30
LCS Dup (BGF2849-BSD1)	0.00594 0.00524				Prepared: 6/19	/2023 Analyze	ed: 7/8/2023		5 4	30 30
LCS Dup (BGF2849-BSD1) 2,4-D	0.00524		10.0	mg/L	Prepared: 6/19, 0.00515	/2023 Analyze	ed: 7/8/2023 115	70-130		30.3%
LCS Dup (BGF2849-BSD1) 2,4-D Silvex (2,4,5-TP) Surrogate: DCAA-surr	0.00524	U	10.0 1.00	mg/L mg/L <i>mg/L</i>	Prepared: 6/19, 0.00515 0.00500	THE REPORT OF 1	ed: 7/8/2023 115 105 <i>132</i>	70-130 70-130 <i>70-130</i>		35,500
LCS Dup (BGF2849-BSD1) 2,4-D Silvex (2,4,5-TP) Surrogate: DCAA-surr	0.00524	U S	10.0 1.00	mg/L mg/L <i>mg/L</i>	Prepared: 6/19 0.00515 0.00500 0.0250	THE REPORT OF 1	ed: 7/8/2023 115 105 <i>132</i>	70-130 70-130 <i>70-130</i>		35,500
LCS Dup (BGF2849-BSD1) 2,4-D Silvex (2,4,5-TP) Surrogate: DCAA-surr BGF1811-BLK1 (BGF2849-LBK1	0.00524	. U	10.0 1.00 <i>0.0331</i>	mg/L mg/L mg/L	Prepared: 6/19 0.00515 0.00500 0.0250	THE REPORT OF 1	ed: 7/8/2023 115 105 <i>132</i>	70-130 70-130 <i>70-130</i>		

A = Accredited, N = Not Accredited or Accreditation not available

Reported:

08/01/2023 10:53

Quality Control (Continued)

Analyte	As as MIN	450.00	Result (Qual		Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF2849 - SV	V-3511 (Contin	ued)						The state of	101111111111	511,48	n Janiska	an sec
BGF2702-BLK1 (BGF2849	-LBK2)							Prepared: 6/19	9/2023 Analyz	ed: 7/9/2023		'n	
2,4-D			<10.0	J		10.0	mg/L						
Silvex (2,4,5-TP)			<1.00	J		1.00	mg/L						
Surrogate: DCAA-surr	1411	111				0.115	mg/L	0.100		115	70-130	*****	
Matrix Spike (BGF2849-N	IS1)		5	ource	: 23F2	847-02		Prepared: 6/19	9/2023 Analyz	ed: 7/9/2023			1, 11 7 7 3.1
2,4-D			0.00582	J		10.0	mg/L	0.00515	<10.0	113	70-130		
Silvex (2,4,5-TP)	61111		0.00498	J		1.00	mg/L	0.00500	<1.00	100	70-130		
Surrogate: DCAA-surr	114-		S			0.0355	mg/L	0.0250		142	70-130		
Matrix Spike Dup (BGF28	49-MSD1)		S	ource	: 23F2	847-02		Prepared: 6/19	9/2023 Analyz	ed: 7/9/2023			
2,4-D			0.00731	11, U		10.0	mg/L	0.00515	<10.0	142	70-130	23	30
Silvex (2,4,5-TP)			0.00628	J		1.00	mg/L	0.00500	<1.00	126	70-130	23	30
Surrogate: DCAA-surr	******		5			0.0408	mg/L	0.0250		163	70-130		

City of Tomball 501 James Street Tomball, TX 77375 130 S. Trade Center Parkway, Conroe TX 77385
Tel: (936) 321-6060
Email: lab@nwdls.com
www. NWDLS.com
TCEQ T104704238-23-39

Reported:

08/01/2023 10:53

Sample Condition Checklist

Work Order: 23F1979

Check Points

No	Custody Seals
Yes	Containers Intact
Yes	COC/Labels Agree
Yes	Received On Ice
Yes	Appropriate Containers
Yes	Appropriate Sample Volume
Yes	Coolers Intact
Yes	Samples Accepted

NWDLS

Definition

130 S. Trade Center Parkway, Conroe TX 77385 Tel: (936) 321-6060

> Email: lab@nwdls.com www. NWDLS.com

TCEQ T104704238-23-39

City of Tomball 501 James Street Tomball, TX 77375

Item

Reported: 08/01/2023 10:53

Term and Qualifier Definitions

C+	The associated calibration QC is higher than the established quality control criteria for accuracy - no hit in sample; data affected and acceptable to report.	ı not	
J1	Estimated value - The reported value is outside the established quality control criteria for accuracy and/or precision.		
S	The surrogate recovery was outside the established laboratory recovery limit.		
U	Non-detected compound,		
V	Analyte was detected in both sample and method blank.		
V2	The analyte was detected in the sample and the associated leach blank.		
RPD	Relative Percent Difference		
%REC	Percent Recovery		
Source	Sample that was matrix spiked or duplicated		
*	A = Accredited, N = Not Accredited or Accreditation not available		
DF	Dilution Factor - the factor applied to the reported data due to sample preparation, dilution, or moisture content		
MDL	Method Detection Limit - The minimum concentration of a substance (or analyte) that can be measured and reported w	ith 99% confidence that	t the
	analyte concentration is greater than zero. Based on standard deviation of replicate spiked samples take through all ste	ps of the analytical	
	procedure following 40 CFR Part 136 Appendix B.		
SDL	Sample Detection Limit - The minimum concentration of a substance (analyte) that can be measured and reported with	99% confidence that the	ne
	analyte concentration is greater than zero. The SDL is an adjusted limit thus sample specific and accounts for preparati	on weights and volumes	š,
	dilutions, and moisture content of soil/sediments. If there are no sample specific parameters, the MDL = SDL.		
MRL	Method Reporting Limit - Analyte concentration that corresponds to the lowest level lab reports with confidence in accurate	racy of quantitation and	í
	without qualification (i.e. J-flagged). The MRL is at or above the lowest calibration standard.	+	
LRL	Laboratory Reporting Limit - Analyte concentration that corresponds to the lowest level lab reports with confidence in a	ccuracy of quantitation	and
	without qualification (i.e. J-flagged). The LRL is an adjusted limit thus sample specific and accounts for preparation wei		
	and moisture content of soil/sediments. If there are no sample specific parameters, the MRL = LRL.	and relatively effect	
	and the second s		

A = Accredited, N = Not Accredited or Accreditation not available

CHAIN OF CUSTODY RECORD

North Water District Laboratory Services 130 S. Trade Center Pkwy, Conroe Tx 77385 (936) 321-6060 - lab@nwdls.com

TCEQ T104704238-23-39

Page 1 of 2 23F1979

Sample ID Collection Point 23F1979-01 501 James Street Glen Williams Phone: 832-349-8027 City of Tomball Lab PM: Deena Higginbotham Tomball, TX 77375 Centrifuge Date/Time Begin Project Comments: 12411 Holderrieth Rd Tomball 77375 Combo # 9898 Glen Williams - 832-349-8027 ENTER CODE TO CLOSE GATE WHEN YOU LEAVE Project Name: City of Tomball - South Plant - Annual Sludge 6/8/2023 0700 collected operator 200 Date/Time Sampled S Sample Type Container 0 00 HDPE IC 250mL HDPE 250mL Glass 1L HDPE WC 250mL HDPE MET 250mL Glass 250mL w/ Glass VOA 60ml Glass Wide 1L w/ Teflon-lined Lid Teflon-lined Lid Paint Filter-9095 Nitrate as N IC 9056 NH3-N T-350.2 PCB-8082 OCP-TCLP Selenium ICP TCLP Selenium ICP 6010 Hg-7471 Copper ICP 6010 Chromium ICP TCLP Chromium ICP 6010 Cadmium ICP TCLP Barium ICP TCLP Arsenic ICP TCLP Arsenic ICP 6010 Analysis/Preservation VOA-TCLP SVOA-TCLF Zinc ICP 6010 Silver ICP TCLP Potassium ICP 6010 Nickel ICP 6010 Molybdenum ICP 6010 Hg-7471-TCLP Cadmium ICP 6010 TCLP ZHE Total Phosphorus ICP 6(4°C Lead ICP TCLP TKN T-351.3 TCLP Bottle HERB TOLP Lead ICP 6010 4°C 4°C 4°C 4 4 6 4°C 4°C 4°C to Field Results Schedule Comments

Glen Williams 501 James Street Tomball, TX 77375 Phone: 832-349-8027

City of Tomball

Page 2 of 2

(Continued)

Schedule Comments:

23F1979

Lab PM : Deena Higginbotham Project Comments: 12411 Holderrieth Rd Tomball 77375 Combo # 9898 Glen Williams - 832-349-8027 ENTER CODE TO CLOSE GATE WHEN YOU LEAVE Project Name: City of Tomball - South Plant - Annual Sludge CHAIN OF CUSTODY RECORD

North Water District Laboratory Services
130 S. Trade Center Pkwy, Conroe Tx 77385
(936) 321-6060 - lab@nwdls.com TCEQ T104704238-23-39

Field Remarks:		Lab Preservation: H2SO4	12SO4 HNO3	NaOH Other	
	Annual Control of Cont	(Circle and Write ID Below)			
Sampler (Signature)	Relinquished By: (Signature)	Date/Time	Received By: (Signature)		Date/Time
Print Name	Relinquished By: (Signature)	Date/Time	Received By: (Signature)		Date/Time
Affiliation	Relinquished To Lab By: (Signature)	Date/Time	Received for Laboratory By: (Signature)	re)	Date/Time, 345
JWOLS	the think	6.8.23/1345		ROR	6.8.23
Custody Seal: Yes / No	COC Labels Agree: Yes / No		Received on Ice: Yes / No	Temperature:	°C
Container Intact: Yes / No	Appropriate Containers: Yes / No	Coolers Intact Yes / No S	Samples Accepted: Yes / No	Thermometer ID:	

Tomball

wko_NWDLS_COC_LS Revision 4.1 Effective: 2/17/2022

Laboratory Analysis Report

Total Number of Pages:

Job ID: 23061168

10100 East Freeway, Suite 100, Houston, TX 77029 tel: 713-453-6060, fax: 713-453-6091, http://www.ablabs.com

Client Project Name: 23F1979

Report To:

Client Name:

NWDLS

Attn:

Deena Higginbotham

Client Address:

130 S Trade Center Pkwy

City, State, Zip:

Conroe, Texas, 77385

P.O.# .: 23F1979

Sample Collected By:

Date Collected: 06/08/23

A&B Labs has analyzed the following samples...

Client Sample ID

Matrix

A&B Sample ID

23F1979-01

Solid

23061168.01

Released By: Title:

Senthilkumar Sevukan Vice President Operations

Date:

6/15/2023

This Laboratory is NELAP (T104704213-23-31) accredited. Effective: 04/13/2023; Expires: 3/31/2024

Scope: Non-Potable Water, Drinking Water, Air, Solid, Biological Tissue, Hazardous Waste

I am the laboratory manager, or his/her designee, and I am responsible for the release of this data package. This laboratory data package has been reviewed and is complete and technically compliant with the requirements of the methods used, except where noted in the attached exception reports. I affirm, to the best of my knowledge that all problems/anomalies observed by this laboratory (and if applicable, any and all laboratories subcontracted through this laboratory) that might affect the quality of the data, have been identified in the Laboratory Review Checklist, and that no information or data have been knowingly withheld that would affect the quality of the data.

This report cannot be reproduced, except in full, without prior written permission of A&B Labs. Results shown relate only to the items tested. Results apply to the sample as received. Samples are assumed to be in acceptable condition unless otherwise noted. Blank correction is not made unless otherwise noted. Air concentrations reported are based on field sampling information provided by client. Soil samples are reported on a wet weight basis unless otherwise noted. Uncertainty estimates are available on request.

ab-q210-0321

Date Received: 06/13/2023 09:50

LABORATORY TERM AND QUALIFIER DEFINITION REPORT

Post-Wt

Pre-Wt

RegLimit

RptLimit

RPD

SDL

ppm

Q

Job ID: 23061168

Date:

6/15/2023

General Term Definition

Back-Wt

Back Weight

BRL

Below Reporting Limit

cfu

colony-forming units Concentration

Conc. D.F.

Dilution Factor

Front-Wt

Front Weight

LCS

Laboratory Check Standard

LCSD

Laboratory Check Standard Duplicate

MS

MSD

Matrix Spike Duplicate

MW

Molecular Weight

J

Estimation. Below calibration range but above MDL

Matrix Spike

surr T TNTC Surrogate Time

Too numerous to count MQL

Post Weight

Qualifier

parts per million

Previous Weight

Regulatory Limit

Reporting Limit

Minimum Quantitation Limit

Relative Percent Difference

Sample Detection Limit

Qualifier Definition

U

Undetected at SDL (Sample Detection Limit).

Page 30 of 35

Page 2 of 7

LABORATORY TEST RESULTS

Job ID: 23061168

Date 6/15/2023

Client Name:

NWDLS

Attn: Deena Higginbotham

Project Name:

23F1979

Client Sample ID:

23F1979-01

Date Collected:

06/08/23

Time Collected: 07:00 Other Information:

Job Sample ID:

23061168.01

Sample Matrix

Solid

% Moisture

Other Informat	ion:									
Test Method	Parameter/Test Description	Result	Units	DF	SDL	SQL	Reg Limit	Q	Date Time	Analyst
SW-846 8260C	TCLP VOC									
	1,1-Dichloroethylene	< 0.017	mg/L	1.00	0.017	0.125	0.6	U	06/14/23 13:37	ZQ
	1,2-Dichloroethane	< 0.026	mg/L	1.00	0.026	0.125	0.5	U	06/14/23 13:37	ZQ
	1,4-Dichlorobenzene	<0.018	mg/L	1.00	0.018	0.125	7.5	U	06/14/23 13:37	ZQ
	Benzene	< 0.016	mg/L	1.00	0.016	0.125	0.5	U	06/14/23 13:37	ZQ
	Carbon tetrachloride	< 0.043	mg/L	1.00	0.043	0.125	0.5	U	06/14/23 13:37	ZQ
	Chlorobenzene	< 0.017	mg/L	1.00	0.017	0.125	70	U	06/14/23 13:37	ZQ
	Chloroform	<0.018	mg/L	1.00	0.018	0.125	6	U	06/14/23 13:37	ZQ
	MEK	<0.072	mg/L	1.00	0.072	0.125	200	U	06/14/23 13:37	ZQ
	Tetrachloroethylene	< 0.017	mg/L	1.00	0.017	0.125	0.7	U	06/14/23 13:37	ZQ
	Trichloroethylene	< 0.020	mg/L	1.00	0.020	0.125	0.5	U	06/14/23 13:37	ZQ
	Vinyl Chloride	< 0.021	mg/L	1.00	0.021	0.125	0.2	U	06/14/23 13:37	ZQ
	1,2-Dichloroethane-d4(surr)	105	%	1.00		70-130			06/14/23 13:37	ZQ
	Dibromofluoromethane(surr)	102	%	1.00		70-130			06/14/23 13:37	ZQ
	p-Bromofluorobenzene(surr)	106	%	1.00		70-130			06/14/23 13:37	ZQ
	Toluene-d8(surr)	105	%	1.00		70-130			06/14/23 13:37	ZQ

ab-q212-0321

Page 31 of 35

QUALITY CONTROL CERTIFICATE

Job ID: 23061168

Date:

6/15/2023

Analysis : TCLP VOC

Method:

SW-846 8260C

Reporting Units : mg/L

QC Batch ID: Qb23061501

Created Date: 06/14/23

Created By : Zeeshan

Samples in This QC Batch: 23061168.01

Prep Method: SW-846 5030C PB23061501

Prep Date: 06/14/23 10:00 Prep By:

Zeeshan

TCLP Prep:

Sample Preparation : PB23061430

Prep Method: SW-846 1311

Prep Date: 06/13/23 17:40 Prep By:

JCoku

QC Type: Method Blank			00	in Philips		ar uitte muh	till til	
Parameter	CAS #	Result	Units	D.F.	MQL	MDL		Qual
1,1-Dichloroethylene	75-35-4	< MDL	mg/L	1.00	0.125	0.0165		
1,2-Dichloroethane	107-06-2	< MDL	mg/L	1.00	0.125	0.026	J TO SEC.	
1,4-Dichlorobenzene	106-46-7	< MDL	mg/L	1.00	0.125	0.018		
Benzene	71-43-2	< MDL	mg/L	1.00	0.125	0.0158		
Carbon tetrachloride	56-23-5	< MDL	mg/L	1.00	0.125	0.0433		
Chlorobenzene	108-90-7	< MDL	mg/L	1.00	0.125	0.0173	Samuel S	
Chloroform	67-66-3	< MDL	mg/L	1.00	0.125	0.018		
MEK	78-93-3	< MDL	mg/L	1.00	0.125	0.0715		
Tetrachloroethylene	127-18-4	< MDL	mg/L	1.00	0.125	0.0165	197	
Trichloroethylene	79-01-6	< MDL	mg/L	1.00	0.125	0.0198		
Vinyl Chloride	75-01-4	< MDL	mg/L	1.00	0.125	0.0205		
1,2-Dichloroethane-d4(surr	17060-07-0	102	%	1.00			HILLAND I	
Dibromofluoromethane(surr	1868-53-7	101	%	1.00		Common		
p-Bromofluorobenzene(surr	460-00-4	106	%	1.00				
Toluene-d8(surr)	2037-26-5	104	%	1.00				

Parameter	LCS Spk Added	LCS Result	LCS % Rec	LCSD Spk Added	LCSD Result	LCSD % Rec	RPD	RPD CtrlLimit	%Recovery CtrlLimit	Qual
1,1-Dichloroethylene	1	1.06	106	1	1.05	105	0.6	35	70-130	
1,2-Dichloroethane	1	0.992	99.2	1	1.01	101	1.8	35	70-130	
1,4-Dichlorobenzene	1	0.999	99.9	1	0.998	99.8	0.1	35	70-130	
Benzene	1	0.999	99.9	1	0.986	98.6	1.3	35	70-130	
Carbon tetrachloride	1	1.04	104	1	1.03	103	0.9	35	70-130	
Chlorobenzene	1	0.982	98.3	1	0.984	98.4	0.2	35	70-130	
Chloroform	1	1.03	103	1	1.03	103	0.4	35	70-130	
MEK	1	1.06	106	1	1.01	101	4.6	35	70-130	
Tetrachloroethylene	1	0.915	91.5	1	0.831	83.1	9.6	35	70-130	
Trichloroethylene	1	0.951	95.1	1	0.958	95.8	0.8	35	70-130	
Vinyl Chloride	1	1.11	111	1	1.09	109	2	35	70-130	

QC Type: MS and MS QC Sample ID: 2306	SD 51167.01										
Parameter	Sample Result	MS Spk Added	MS Result	MS % Rec	MSD Spk Added	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLimit	Qual
1,1-Dichloroethylene	BRL	1	1.09	109						70-130 ab-o	213-0321

Refer to the Definition page for terms.

QUALITY CONTROL CERTIFICATE

Job ID: 23061168

Date:

6/15/2023

Analysis : TCLP VOC

Method:

SW-846 8260C

Reporting Units : mg/L

QC Batch ID: Qb23061501

23061501 Created Date:

06/14/23

Created By : Zeeshan

Samples in This QC Batch: 23061168.01

QC Type: MS and MS QC Sample ID: 2306	5D 51167.01					7	To have) indiguida	il velor	
Parameter	Sample Result	MS Spk Added	MS Result	MS % Rec	MSD Spk Added	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLimit	Qual
1,2-Dichloroethane	BRL .	1	1.04	104				115.01	THE THE	70-130	DVI
1,4-Dichlorobenzene	BRL	1	1.01	101						70-130	F
Benzene	BRL	1	1.03	103						70-130	m5.l
Carbon tetrachloride	BRL	1	1.00	100	ALUE COM		nosa 1 W		i various	70-130	
Chlorobenzene	BRL	1	0.995	99.5						70-130	
Chloroform	BRL	1	1.08	108	THE PERSON					70-130	1
MEK	BRL	1	0.884	88.4						70-130	
Tetrachloroethylene	BRL	1	0.804	80.4						70-130	
Trichloroethylene	BRL	1	0.995	99.5	A KITCH TO					70-130	
Vinyl Chloride	BRL	1	1.14	114						70-130	

ab-q213-0321

SUBCONTRACT ORDER

Sending Laboratory:

North Water District Laboratory Services, Inc.

130 South Trade Center Parkway

Conroe, TX 77385 Phone: 936-321-6060 Fax: 936-321-6061

Project Manager: Deena Higginbotham

Subcontracted Laboratory:

A & B Labs

10100 East Freeway, Suite 100

Houston, TX 77029

Phone: (713) 453-6060

Fax: (713) 453-6091

Work Order: 23F1979

Analysis

Due

Expires

Comments

Sample ID: 23F1979-01

Solid Sampled: 06/08/2023 07:00

06/22/2023 07:00

Auto-Included

VOA-TCLP

TCLP ZHE

OIA

06/22/2023

06/22/2023

06/22/2023 07:00

Analyte(s): 1,1-Dichloroethylene

1,4-Dichlorobenzene (p-Dichlorobenzene)

Benzene

Chloroform

Toluene-d8-surr

1,2-Dichloroethane (Ethylene dichloride) 2-Butanone (Methyl ethyl ketone, MEK)

Carbon tetrachloride

Dibromoflucromethane-surr

Trichloroethene (Trichloroethylene)

1,2-Dichloroethane-d4-surr

4-Bromoflurobenzene-surr

Chlorobenzene

Tetrachloroethylene (Perchloroethylene)

Vinvl chloride (Chloroethene)

Containers Supplied:

Released By

Learly 04:48 613.73 9:50

Job ID:23061168

06/13/2023

NWDLS

AM5

Page 34 of 35

NWDLS Rev 1.2 Effective: 11/12/2021

Sample Condition Checklist

Phone: 713-453-6060

	_						
A&I	3 JobID :	23061168	Date Received: 06/13/2023 Time F	Received: 9:5	MAO		
Clie	ent Name :	NWDLS					
Ter	nperature :	4.8°C	Sample pH: NA				
The	ermometer ID	: IR5	pH Paper ID : NA				
Pe	rservative :						
			Check Points		Yes	No	N/A
1.	Cooler Seal p	present and signed.				Х	
2.	Sample(s) in	a cooler.			Х		
3.	If yes, ice in	cooler.			Х		
4.	Sample(s) re	eceived with chain-of-cust	ody.		Х		
5.	C-O-C signed	l and dated.			Х		
6.	Sample(s) re	ceived with signed sample	e custody seal.	ACC. 145 A		X	
7.		ainers arrived intact. (If N			Х		
8.	Wat Matrix:	er Soil Liquid Slu	idge Solid Cassette Tube Bulk Badge Fo	ood Other			
9.	Samples wer	e received in appropriate	container(s)		Х		
10.	Sample(s) w	ere received with Proper p	reservative				Х
11.	All samples v	were tagged or labeled.			Х		
12.	Sample ID la		Х				
13,	Bottle count		Х				
14.	Sample volu		Х				
15.	Samples wer	e received with in the hole	I time.		Х		
16.	VOA vials co	mpletely filled.					х
17.	Sample acce	pted.			Х		
18.	Has client be	en contacted about sub-o	ut				Х
-							
COI	innents : Inci	ude actions taken to resor	ve discrepancies/problem:			-	
		20					
Red	ceived by:	Valdez	Check in by/date : EValdez /	06/13/2023			

Page 35 of 35

www.ablabs.com

ab-s005-0321

Treschwig

8725 Fawn Trail The Woodlands, TX 77385 Tel: (936) 321-6060 | Fax: (936) 321 6061

> Email: lab@nwdsls.com www. NWDLS.com

TCEQ Lab ID #: TX204, Accreditation ID: T104704238

May 24, 2023

LABORATORY REPORT

Gregory Camp Inframark 32259 Morton Road Brookshire, TX 77423

Report ID: 20230524134812Sta..

RE: Treschwig JP - Non Potable - Class B Annual

The following test results meet all NELAP requirements for analytes for which certification is available. Any deviations from our quality system will be noted in the case narrative. All analyses performed by North Water District Laboratory Services, Inc. unless noted.

For questions regarding this report, contact Monica Martin at 936-321-6060.

Sincerely,

Stations For Deena Higginbotham Director of Client Services

Email: lab@nwdsls.com

www. NWDLS.com

TCEQ Lab ID #: TX204, Accreditation ID: T104704238

Inframark

32259 Morton Road Brookshire, TX 77423 Project: Treschwig JP - Non Potable - Class B Annual

Project Number: 50

Project Manager: Gregory Camp

Reported:

05/24/2023 13:48

Sample Results

Client Sample ID: Lab Sample ID:

Digester 1

23E4378-01

Sample Matrix:

Solid

Date Collected:

05/22/2023 8:40

Collected by:

Jacob Smith

				pliected by:	Jacob Smith	
Method	Analyte	Result Q	Units	Batch	Date Analyzed	Analyst
Colilert-18	Fecal coliforms	17450507		A Committee of the Comm	300	
Colilert-18		19600	MPN/g TS dry	BGE3527	05/23/2023 10:43	JKB
Colilert-18	Fecal coliforms	24200	MPN/g TS dry	BGE3527	05/23/2023 10:43	JKB
	Fecal coliforms	16000	MPN/g TS dry	BGE3527	05/23/2023 10:43	JKB
Colilert-18	Fecal coliforms	25700	MPN/g TS dry	BGE3527	05/23/2023 10:43	JKB
Colilert-18	Fecal coliforms	18200	MPN/g TS dry	BGE3527	05/23/2023 10:43	JKB
Colilert-18	Fecal coliforms	14800	MPN/g TS dry	BGE3527	05/23/2023 10:43	JKB
Colilert-18	Fecal coliforms	24800	MPN/g TS dry	BGE3527	05/23/2023 10:43	JKB
SM 2710 B	Specific Oxygen Uptake Rate (SOUR)	0.576	mg O2/hr/g TS @ 20°C dry	BGE3528	05/22/2023 15:17	AKA
SM 2550 B	Temperature °C Field	13.2	°C	BGE3593	05/22/2023 08:40	JTS
SM 2540 G	% Solids	1.08 V	%	BGE3555	05/23/2023 11:17	JRU
terminal programme in the second contract of						

The total solids is diluted to <=2.0% for the S.O.U.R. test when necessary.

CLASS B - Pass

Per Title 30, Texas Administrative Code, Chapter 312, for a Class B to pass, the fecal coliform geometric mean must be less than or equal to 2,000,000 CFU/ug TS and the S.O.U.R must be less than or equal to 1.5 mg O2/hr/g TS.

Email: lab@nwdsls.com

www. NWDLS.com

TCEQ Lab ID #: TX204, Accreditation ID: T104704238

Inframark

32259 Morton Road Brookshire, TX 77423 Project: Treschwig JP - Non Potable - Class B Annual

Project Number: 50

Project Manager: Gregory Camp

Reported:

05/24/2023 13:48

Quality Control

General Chemistry

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGE3555 - Percent Solids Blank (BGE3555-BLK1)			Pr	epared: 5/22	/2023 Analyze	ed: 5/23/202	3		
% Solids	<0.100U	0.100	%		1				
Duplicate (BGE3555-DUP1)	Source: 2	3E4424-01	Pr	epared: 5/22	/2023 Analyze	ed: 5/23/202	3		
% Solids		0.100	%		1.67			0.399	20
Reference (BGE3555-SRM1)			Pr	epared: 5/22	2/2023 Analyze	ed: 5/23/202	3		
% Solids		0.100	%	0.350		105	78.9-118		

Email: lab@nwdsls.com

www. NWDLS.com TCEQ Lab ID #: TX204, Accreditation ID: T104704238

Inframark

32259 Morton Road

Brookshire, TX 77423

Project: Treschwig JP - Non Potable - Class B Annual

Project Number: 50

Project Manager: Gregory Camp

Reported:

05/24/2023 13:48

Quality Control (Continued)

Microbiology

Analyte Result Qual Reporting Spike Source %REC RPD Limit Units Level Result %REC Limits RPD Limit

Batch: BGE3527 - FC Quantitray

Blank (BGE3527-BLK1) Fecal coliforms

<10.0U

Prepared: 5/22/2023 Analyzed: 5/23/2023

10.0 MPN/g TS wet

Duplicate (BGE3527-DUP1) Fecal coliforms

Source: 23E4378-01

Prepared: 5/22/2023 Analyzed: 5/23/2023 S 19600

922 MPN/g TS

11/9

14.4

200

Email: lab@nwdsls.com

www. NWDLS.com

TCEQ Lab ID #: TX204, Accreditation ID: T104704238

Inframark

32259 Morton Road Brookshire, TX 77423 Project: Treschwig JP - Non Potable - Class B Annual

Project Number: 50

Project Manager: Gregory Camp

Reported:

05/24/2023 13:48

Term and Qualfier Definitions

Item	Definition	
U	Non-detected compound.	
V	Analyte was detected in both sample and method blank.	
DF	Dilution Factor - the factor applied to the reported data due to sample preparation, dilution, or moisture content	5
RPD	Relative Percent Difference	
%REC	Percent Recovery	
Source	Sample that was matrix spiked or duplicated	

CHAIN OF CUSTODY RECORD

North Water District Laboratory Services 130 S. Trade Center Pkwy, Conroe Tx 77385 (936) 321-6060 - lab@nwdls.com TCEQ T104704238-23-39 Page 1 of 2 23E4378

Sample ID	Collection Point	Date/Time Begin	Date/Time Sampled	Sample Type	Container	Analysis/Preservation	Field Results
23E4378-01	Digester 1		5/22/2023	S Grab	A HDPE \$150mL Na2\$203 B HDPE \$150mL Na2\$203 C HDPE \$150mL Na2\$203 D HDPE \$150mL Na2\$203 E HDPE \$150mL Na2\$203 F HDPE \$150mL Na2\$203 G HDPE \$150mL Na2\$203 HDPE \$150mL Na2\$203 HDPE \$150mL Na2\$203 HDPE \$150mL Na2\$203 HDPE \$150mL Na2\$203 HDPE \$150mL Na2\$203	FC/CB-QT-LR Na2S2O3 <10°C SOUR-2710 4°C SOUR TS-2540 G 4°C TS-2540 G 4°C	Temp C Field S.C
23E4378-02	Digester 2		5/22/2023	S grab	I HDPE 250mL A HDPE S150mL Na2S2O3 B HDPE S150mL Na2S2O3 C HDPE S150mL Na2S2O3 D HDPE S150mL	FC/CB-QT-LR Na2S2O3 <10°C SOUR-2710 4°C SOUR TS-2540 G 4°C TS-2540 G 4°C	Temp C Field
	,				Ne26203 E HDPE S150mL Na25203 F HDPE S150mL Na25203 G HDPE S150mL Na25203 H HDPE 1L I HDPE 1L		

Page 6 of 7

Spring South

CHAIN OF CUSTODY RECORD North Water District Laboratory Services 130 S. Trade Center Pkwy, Conroe Tx 77385 (936) 321-6060 - lab@nwdls.com

23E4378

	TCEQ T104704238-23-39	(Continued)
Lab PM : Deena Higginbotham	Project Name : Treschwig JP - Non Potable - Class B Annual	Schedule Comments:
Inframark Gregory Camp 32259 Morton Road Brookshire, TX 77423 Phone: (281) 902-0966	Project Comments: 4414 Treschwig Rd - Spring 77373 Gate 1515 in the event of on-site chemical release call 911 and operator Laura Zito – 832-302-4323 Chris - 713-657-5188 EDP helper	

Field Remarks:		Lab Preservation: H (Circle and Write ID Below)	2SO4 HNO3 NaOH Other	
Sampler (Signature)	Relinquished By: (Signature)	Date/Time	Received By: (Signature)	Date/Time
Print Name	Relinquished By: (Signature)	Date/Time	Received By: (Signature)	Date/Time
Affiliation NWO	Relinquished To Lab By: (Signature)	Date/Time 5-22-3/39	Received for Laboratory By. (Skina)ure)	Date/Time 5-77-23 13:50
Custody Seal: Yes / No COC	Labels Agree: Yes / No Appropriate Volume: Y opriate Containers: Yes / No Coolers Intact: Y	es / No F	Received on Ice: Yes / No Temperature: Samples Accepted: Yes / No Thermometer ID: wko_NWDLS_COC_LS Revis	°C

Page 7 of 7

July 25, 2023

LAB REPORT

Gregory Camp Inframark 32259 Morton Road Brookshire, TX 77423

Report ID: 20230725114901AEN

RE: Treschwig JP - Non Potable - Sewage Sludge Annual

The following test results meet all NELAP requirements for analytes for which certification is available. Any deviations from our quality system will be noted in the case narrative. All analyses performed by North Water District Laboratory Services, Inc. unless noted.

For questions regarding this report, contact Monica Martin at 936-321-6060.

Sincerely,

Aundra Noe For Deena Higginbotham

Director of Client Services

Tel: (936) 321-6060 . Email: lab@nwdls.com www. NWDLS.com

TCEQ T104704238-23-39

Inframark

32259 Morton Road Brookshire, TX 77423 Project: Treschwig JP - Non Potable - Sewage Sludge Annual

Project Number: 50

Project Manager: Gregory Camp

Reported:

07/25/2023 11:49

Sample Results

Client Sample ID:

Digester 1

Lab Sample ID:

23E4380-01

Sample Alias:

Sample Matrix:

Solid

Date Collected:

05/22/2023 8:40

						Co	ollected by:	Jaco	b Smith	
Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Anal
Organics by	y GC									Aliai
SW-8082	PCBs, Total	Α	<1.84U	mg/kg (dry wt) dry	10	0.922	1.84	BGF0514	06/16/2023 09:25	KF
SW-8082	Surrogate: 2,4,5,6 Tetrachloro-		195% S	60-140		*********		*******	neuemann as se	
SW-8082	Surrogate: Decachlorobiphenyl	-surr	93.4%	60-140					06/16/2023 09:25 06/16/2023 09:25	
Metals, Tot	al								00/10/2023 09:23	
SW-6010C	Arsenic	Α	6.32	ma/ka da						
W-6010C	Cadmium	A	0.922	mg/kg dry	1	0.674	3.07	BGE4698	06/07/2023 10:41	FA
W-6010C	Chromium	A	26.5	mg/kg dry	1	0.0797	0.307	BGE4698	06/07/2023 10:41	FA
W-6010C	Copper	A	245	mg/kg dry	1	1.15	1.54	BGE4698	06/07/2023 10:41	FA
W-7471B	Mercury	A		mg/kg dry	5	1.64	15.3	BGE4698	06/07/2023 12:21	FA
W-6010C	Lead	A	0.366	mg/kg dry	1	0.0184	0.0369	BGE4918	06/01/2023 14:58	AK
W-6010C	Molybdenum	A	18.8	mg/kg dry	1	0.782	1.54	BGE4698	06/07/2023 10:41	FA
W-6010C	Nickel	A	5.01	mg/kg dry	1	1.54	1.54	BGE4698	06/07/2023 10:41	FA
W-6010C	Potassium	A	13.8	mg/kg dry	1	0.415	1.54	BGE4698	06/07/2023 10:41	FA
W-6010C	Selenium	A	4800	mg/kg dry	1	26.4	307	BGE4698	06/07/2023 10:41	FA
N-6010C	Total Phosphorus		10.1	mg/kg dry	1	1.20	3.07	BGE4698	06/07/2023 10:41	FA
W-6010C	Zinc	A	16000	mg/kg dry	5	64.5	1530	BGE4698	06/07/2023 12:21	FA
		Α	1060	mg/kg dry	20	30.8	30.8	BGE4698	06/07/2023 12:32	FAI
eneral Che	emistry									
PA 350.2	Ammonia as N	Α	3540	mg/kg dry	1	917	1830	BGF0371	06/06/2023 13:11	GIV
W-9056A	Nitrate as N	Α	3880	mg/kg dry	10	46.1	115	BGE3627	05/22/2023 20:45	ORI
M 2540 G	% Solids	Α	1.08V	%	1	0.100	0.100	BGE3555	05/23/2023 20:43	JRL
CLP						51025	01100	5023333	03/23/2023 11.17	JAC
V-6010C	Arsenic	Α	<5.00U	mg/L	1	0.0200	5.00	BGF0509	06/06/2023 11:26	EAL
V-6010C	Barium	Α	<100 V2, U	mg/L	5	0.0500	100	BGF0509	06/06/2023 11:28	FAL
V-6010C	Cadmium	Α	<1.00U	mg/L	1	0.00100	1.00	BGF0509		FAL
V-6010C	Chromium	Α	<5.00U	mg/L	1	0.00500	5.00	BGF0509	06/06/2023 11:26	FAL
V-8151	2,4-D	Α	<10.0C+, U	mg/L	2	0.000476	10.0		06/06/2023 11:26	FAL
V-8151	Silvex (2,4,5-TP)	A	<1.00C+, U	mg/L	2	0.000476	1.00	BGF0530 BGF0530	07/09/2023 08:06 07/09/2023 08:06	KRE
N-8151	Surrogate: DCAA-surr	**********	125%	70.120		* * * * * * * * * *	******			
V-7471B	Mercury	Α	<0.200U	70-130	9.5	0.000300	0.200	DCE0424	07/09/2023 08:06	2002
V-6010C	Lead	A	<5.00U	mg/L	1	0.000200	0.200	BGF0431	06/05/2023 12:43	AKR
V-8081	Chlordane (Total)	A	<0.0300U	mg/L	1	0.0100	5.00	BGF0509	06/06/2023 11:26	FAL
V-8081	Endrin	N	<0.0200U	mg/L mg/L	1	3.00E-6	0.0300	BGF0708	06/29/2023 11:10	cdg
V-8081	gamma-BHC (Lindane, gamma-Hexachlorocyclohexa nE)	A	<0.400U	mg/L	1	3.00E-6 3.00E-6	0.0200	BGF0708 BGF0708	06/29/2023 11:10 06/29/2023 11:10	cdg cdg
/-8081	Heptachlor	Α	<0.00800U	mg/L	1	3.00E-6	0.00800	BCE0709	06/20/2022 11:40	- da
V-8081	Heptachlor epoxide	A	<0.00800U		1			BGF0708	06/29/2023 11:10	cdg
			30,000000	mg/L	1	3.00E-6	0.00800	BGF0708	06/29/2023 11:10	cdg

Inframark

Project: Treschwig JP - Non Potable - Sewage Sludge Annual

32259 Morton Road

Project Number: 50

Reported:

Brookshire, TX 77423

Project Manager: Gregory Camp

07/25/2023 11:49

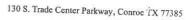
Sample Results (Continued)

Client Sample ID:

Digester 1 (Continued)

Lab Sample ID:

23E4380-01


Sample Matrix:

Solid

Date Collected:

05/22/2023 8:40

Sample Alias:						Colle	cted by:	Jacob	Smith	
Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analys
TCLP (Conti	inued)									
SW-8081	Methoxychlor	Α	<10.0U	mg/L	1	3.00E-6	10.0	BGF0708	06/29/2023 11:10	cdg
SW-8081	Toxaphene (Chlorinated Camphene)	Α	<0.500U	mg/L	1	3.00E-6	0.500	BGF0708	06/29/2023 11:10	cdg
SW-8081	Surrogate: 2,4,5,6 Tetrachloro-n	n-xylene-suri	111%	60-140					06/29/2023 11:10	
SW-8081	Surrogate: Decachlorobiphenyl-s	urr	104%	60-140					06/29/2023 11:10	2220
SW-6010C	Selenium	Α	<1.00U	mg/L	1	0.0200	1.00	BGF0509	06/06/2023 11:26	FAL
SW-6010C	Silver	Α	<5.00U	mg/L	1	0.00200	5.00	BGF0509	06/06/2023 11:26	FAL
SW-8270	2,4,5-Trichlorophenol	Α	<400 U	mg/L	1	0.00250	400	BGF0760	06/21/2023 10:10	KRE
SW-8270	2,4,6-Trichlorophenol	Α	<2.00 U	mg/L	1	0.00250	2.00	BGF0760	06/21/2023 10:10	KR
SW-8270	2,4-Dinitrotoluene (2,4-DNT)	Α	<0.130U	mg/L	1	0.00250	0.130	BGF0760	06/21/2023 10:10	KRE
SW-8270	2-Methylphenol	Α	<200U	mg/L	1	0.00250	200	BGF0760	06/21/2023 10:10	KRE
SW-8270	3,4-Methylphenol	Α	<200 U	mg/L	1	0.00250	200	BGF0760	06/21/2023 10:10	KRE
SW-8270	Hexachlorobenzene	Α	<0.130U	mg/L	1	0.00250	0.130	BGF0760	06/21/2023 10:10	KRE
SW-8270	Hexachlorobutadiene	Α	<0.500U	mg/L	1	0.00250	0.500	BGF0760	06/21/2023 10:10	KR
SW-8270	Hexachloroethane	Α	<3.00U	mg/L	1	0.00250	3.00	BGF0760	06/21/2023 10:10	KRI
SW-8270	Nitrobenzene	Α	<2.00U	mg/L	1	0.00250	2.00	BGF0760	06/21/2023 10:10	KRI
SW-8270	Pentachlorophenol	Α	<100U	mg/L	1	0.00250	100	BGF0760	06/21/2023 10:10	KR
SW-8270	Pyridine	A	<5.00U	mg/L	1	0.00250	5:00	BGF0760	06/21/2023 10:10	KR
************	Surrogate: 2-Fluorobiphenyl-sur		103%	54.6-148					06/21/2023 10:10	
SW-8270	Surrogate: 2-Fluorophenol-surr	Į.	87.5%	55-152					06/21/2023 10:10	
SW-8270 SW-8270	Surrogate: 2-ridorophenor-surr	ol-surr	86.5%	52.4-136					06/21/2023 10:10	
SW-8270	Surrogate: Nitrobenzene-d5-sur		108%	52-162					06/21/2023 10:10	7
SW-8270	Surrogate: Phenol-d5-surr		88.1%	58.7-152					06/21/2023 10:10	
SW-8270	Surrogate: p-Terphenyl-d14-sur	7	77.9%	51.9-147					06/21/2023 10:10	7

Tel: (936) 321-6060 Email: lab@nwdls.com

www. NWDLS.com TCEQ T104704238-23-39

Inframark

32259 Morton Road Brookshire, TX 77423 Project: Treschwig JP - Non Potable - Sewage Sludge Annual

Project Number: 50

Project Manager: Gregory Camp

Reported:

07/25/2023 11:49

Sample Results

(Continued)

Client Sample ID:

Digester 1

Lab Sample ID:

Sample Alias:

23E4380-01RE2

Solid

Sample Matrix: Date Collected:

05/22/2023 8:40

Sumple Allas						Colle	ected by:	Jacol		
Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
General Che	emistry									
EPA 351.3	Total Kjeldahl Nitrogen - (TKN) (Rerun)	N	45300	mg/kg dry	1	2280	2280	BGF0406	06/05/2023 13:28	GIW

Inframark

Project: Treschwig JP - Non Potable - Sewage Sludge Annual

32259 Morton Road Brookshire, TX 77423 Project Number: 50

Project Manager: Gregory Camp

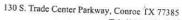
Reported:

07/25/2023 11:49

Sample Results (Continued)

Client Sample ID: Lab Sample ID:

Digester 2


23E4380-02

Sample Matrix: Date Collected: Solid

05/22/2023 8:40 Jacob Smith

Collected by:

Sample Alias:						Colle	cted by:	Jacob	Smith	
Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analy
Organics by	GC							1000		
SW-8082	PCBs, Total	Α	<1.85U	mg/kg (dry wt) dry	10	0.927	1.85	BGF0514	06/16/2023 09:5	0 KR
errana	Surrogate: 2,4,5,6 Tetrachloro-m-	vylene-suri	150% 5	60-140	**********				06/16/2023 09::	0
5W-8082 SW-8082	Surrogate: Decachlorobiphenyl-su		84.0%	60-140					06/16/2023 09:	70
Metals, Tota										
SW-6010C	Arsenic	A	6.33	mg/kg dry	1	0.677	3.08	BGE4698	06/07/2023 10:4	14 FA
SW-6010C	Cadmium	Α	0.901	mg/kg dry	1	0.0801	0.308	BGE4698	06/07/2023 10:	14 FA
SW-6010C	Chromium	Α	26.6	mg/kg dry	1	1.16	1.55	BGE4698	06/07/2023 10:	14 FA
SW-6010C SW-6010C	Copper	Α	239	mg/kg dry	5	1.65	15.4	BGE4698	06/07/2023 12:	35 FA
SW-7471B	Mercury	A	0.361	mg/kg dry	1	0.0185	0.0371	BGF0125	06/01/2023 17:	38 AK
SW-6010C	Lead	A	19.2	mg/kg dry	1	0.786	1.55	BGE4698	06/07/2023 10:	14 FA
SW-6010C	Molybdenum	Α	5.08	mg/kg dry	1	1.55	1,55	BGE4698	06/07/2023 10:	14 FA
SW-6010C	Nickel	Α	13.4	mg/kg dry	1	0.417	1.55	BGE4698	06/07/2023 10:	14 FA
SW-6010C	Potassium	A	4830	mg/kg dry	î	26.5	308	BGE4698	06/07/2023 10:	44 FA
SW-6010C	Selenium	Α	10.1	mg/kg dry	1	1.20	3.08	BGE4698	06/07/2023 10:	44 FA
SW-6010C	Total Phosphorus	Α	15500	mg/kg dry	5	64.8	1540	BGE4698	06/07/2023 12:	35 FA
SW-6010C	Zinc	Α	954	mg/kg dry	20	30.9	30.9	BGE4698	06/07/2023 12:	38 F/
General Che	emistry									
EPA 350.2	Ammonia as N	Α	2920	mg/kg dry	1	914	1830	BGE4355	05/30/2023 08:	
SW-9056A	Nitrate as N	Α	3880	mg/kg dry	10	46.3	116	BGE3627	05/22/2023 22:	45 O
SM 2540 G	% Solids	Α	1.08V	%	1	0.100	0.100	BGE3555	05/23/2023 11	17 JF
TCLP										
SW-6010C	Arsenic	Α	<5.00U	mg/L	1	0.0200	5.00	BGF0509	06/06/2023 11	
SW-6010C	Barium	Α	<100 U, V2	mg/L	5	0.0500	100	BGF0509	06/06/2023 11	
SW-6010C	Cadmium	Α	<1.00U	mg/L	1	0.00100	1.00	BGF0509	06/06/2023 11	
SW-6010C	Chromium	Α	<5.00U	mg/L	1	0.00500	5.00	BGF0509	06/06/2023 11	
SW-8151	2,4-D	Α	<10.0C+, U	mg/L	2	0.000476	10.0	BGF0530	07/09/2023 08	
SW-8151	Silvex (2,4,5-TP)	Α	<1.00C+, U	mg/L	2	0.000476	1,00	BGF0530	07/09/2023 08	:36 K
SW-8151	Surrogate: DCAA-surr		142% 5	70-130				terier tie treebele (miliet)	07/09/2023 08	
SW-7471B	Mercury	Α	<0.200U	mg/L	1	0.000200	0.200	BGF0431	06/05/2023 12	
SW-6010C	Lead	Α	<5.00U	mg/L	1	0.0100	5.00	BGF0509	06/06/2023 11	
SW-8081	Chlordane (Total)	Α	<0.0300U	mg/L	1	3.00E-6	0.0300	BGF0708	06/29/2023 11	
SW-8081	Endrin	N	<0.0200U	mg/L	1	3.00E-6	0.0200	BGF0708	06/29/2023 11	
SW-8081	gamma-BHC (Lindane, gamma-Hexachlorocyclohexa nE)	Α	<0.400U	mg/L	1	3.00E-6	0.400	BGF0708	06/29/2023 11	
SW-8081	Heptachlor	Α	<0.00800U	mg/L	1	3.00E-6	0.00800	BGF0708	06/29/2023 11	
211 0001	, iopassinoi	(a) (a)				3.00E-6	0.00800	BGF0708	06/29/2023 11	:40

Inframark

32259 Morton Road Brookshire, TX 77423 Project: Treschwig JP - Non Potable - Sewage Sludge Annual

Project Number: 50

Project Manager: Gregory Camp

Reported:

07/25/2023 11:49

Sample Results (Continued)

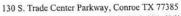
Client Sample ID:

Digester 2 (Continued)

Lab Sample ID: Sample Alias:

23E4380-02

Sample Matrix:


Solid

Date Collected:

05/22/2023 8:40

Callanted by

						Coll	ected by:	Jaco	b Smith	
Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
TCLP (Conf	tinued)									
SW-8081	Methoxychlor	Α	<10.0U	mg/L	1	3.00E-6	10.0	200000	Distriction for the	
SW-8081	Toxaphene (Chlorinated Camphene)	Α	<0.500 U	mg/L	1	3.00E-6	0.500	BGF0708 BGF0708	06/29/2023 11:40 06/29/2023 11:40	cdg cdg
SW-8081	Surrogate: 2,4,5,6 Tetrachloro-n	n-xylene-suri	135%	60-140						
SW-8081	Surrogate: Decachlorobiphenyl-s		105%	60-140					06/29/2023 11:40	
SW-6010C	Selenium	Α	<1.00U	mg/L	1	0.0200	1,00	BCCCCC	06/29/2023 11:40	
SW-6010C	Silver	Α	<5.00U	mg/L	1	0.00200		BGF0509	06/06/2023 11:31	FAL
SW-8270	2,4,5-Trichlorophenol	A	<400 U	mg/L	1	0.00250	5.00	BGF0509	06/06/2023 11:31	FAL
SW-8270	2,4,6-Trichlorophenol	A	<2.00U	mg/L	1		400	BGF0760	06/21/2023 10:45	KRB
SW-8270	2,4-Dinitrotoluene (2,4-DNT)	Α	<0.130U	000E000		0.00250	2.00	BGF0760	06/21/2023 10:45	KRB
5W-8270	2-Methylphenol	Α	<200 U	mg/L	1	0.00250	0.130	BGF0760	06/21/2023 10:45	KRB
SW-8270	3,4-Methylphenol	Α	<200 U	mg/L	1	0.00250	200	BGF0760	06/21/2023 10:45	KRB
SW-8270	Hexachlorobenzene	A	<0.130U	mg/L	1	0.00250	200	BGF0760	06/21/2023 10:45	KRB
SW-8270	Hexachlorobutadiene	A	<0.500U	mg/L	1	0.00250	0.130	BGF0760	06/21/2023 10:45	KRB
SW-8270	Hexachloroethane			mg/L	1	0.00250	0.500	BGF0760	06/21/2023 10:45	KRB
SW-8270	Nitrobenzene	A	<3.00 U	mg/L	1	0.00250	3.00	BGF0760	06/21/2023 10:45	KRB
SW-8270	Pentachlorophenol	A	<2.00U	mg/L	1	0.00250	2.00	BGF0760	06/21/2023 10:45	KRB
SW-8270		Α	<100 U	mg/L	1	0.00250	100	BGF0760	06/21/2023 10:45	KRB
· · · · · · · · · · · · · · · · · · ·	Pyridine •	A	<5.00U	mg/L	1	0.00250	5.00	BGF0760	06/21/2023 10:45	KRB
5W-8270	Surrogate: 2-Fluorobiphenyl-surr		100%	54.6-148					***********	
5W-8270	Surrogate: 2-Fluorophenol-surr		90.2%	55-152					06/21/2023 10:45	
W-8270	Surrogate: 2,4,6-Tribromophenol	-surr	80.4%	52.4-136					06/21/2023 10:45	
5W-8270	Surrogate: Nitrobenzene-d5-surr		110%	52-162					06/21/2023 10:45 06/21/2023 10:45	
SW-8270	Surrogate: Phenol-d5-surr		100%	58.7-152					06/21/2023 10:45	
SW-8270	Surrogate: p-Terphenyl-d14-surr		75.3%	51.9-147					06/21/2023 10:45	

Inframark

Project: Treschwig JP - Non Potable - Sewage Sludge Annual

32259 Morton Road

Project Number: 50

Reported:

Brookshire, TX 77423

Project Manager: Gregory Camp

07/25/2023 11:49

Sample Results

(Continued)

Client Sample ID: Lab Sample ID:

Digester 2

23E4380-02RE2

Sample Matrix:

Solid

05/22/2023 8:40

Date Collected: Collected by:

Jacob Smith

Sample Alias:					Collected by:			Jacob	Smith	1111
Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
General Ch	emistry		The same of the sa						TANK TOWN THAT THE COLUMN	
EPA 351.3	Total Kjeldahl Nitrogen - (TKN) (Rerun)	N	53200	mg/kg dry	1	2270	2270	BGF0406	06/05/2023 13:28	GIW

Inframark

32259 Morton Road Brookshire, TX 77423 Project: Treschwig JP - Non Potable - Sewage Sludge Annual

Project Number: 50

Project Manager: Gregory Camp

Reported:

07/25/2023 11:49

Quality Control

Organics by GC

Analyte	Result Qual	Reporting Limit		Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF0514 - SW-3570								11.5	
Blank (BGF0514-BLK1)			D.	ronned. CIT	2022 4	t euele			
Aroclor-1016 (PCB-1016)	<0.0200 H	0.00		repared: 6/5/	2023 Analyze	ed: 6/16/2023	3		
(32 2020)	. <0.0200 U	0.0200	mg/kg (dry						
Aroclor-1260 (PCB-1260)	<0.0300_11	0.0200	wt) wet						
conscience states a North State of Marian	<0.0200 U	0.0200	mg/kg (dry						
PCBs, Total	<0.0200 11	0.0300	wt) wet						
	<0.0200 U	0.0200	mg/kg (dry						
Surrogate: 2,4,5,6			wt) wet						ereces consistent
A STATE OF THE PROPERTY OF THE	5	0.00967	mg/kg (dry	0.00600		161	60-140		
Tetrachloro-m-xylene-surr Surrogate: Decachlorobiphenyl-surr			wt) wet						
Junogace. Decacinorodiphenyi-surr		0.00645	mg/kg (dry	0.00600		107	60-140		
			wt) wet						
LCS (BGF0514-BS1)			De	enared: E/F/	2022 Annher	d. 6/16/2022			
Aroclor-1016 (PCB-1016)	0.0422	0.0200	mg/kg (dry		2023 Analyze				
	0.0422	0.0200		0.0600		70.3	60-140		
Aroclor-1260 (PCB-1260)	0.0430	0.0200	wt) wet	0.0600		74.6			
in a commonwell district green of the product of th	0.0-130	0.0200	mg/kg (dry wt) wet	0.0600		71.6	60-140		
PCBs, Total	0.0426	0.0200	mg/kg (dry	0.0600		71.0	60 140		
	0.0 .20	0.0200	wt) wet	0.0000		71.0	60-140		
Surrogate: 2,4,5,6		0.00040		0.00555					
Tetrachloro-m-xylene-surr	3	<i>U.UU949</i>	mg/kg (dry	0.00600		158	60-140		
Surrogate: Decachlorobiphenyl-surr		0.00674	wt) wet	0.00000					
et an industrial and a second	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.006/4	mg/kg (dry wt) wet	0.00600		112	60-140		
LCS Dup (BGF0514-BSD1)			Pre	epared: 6/5/2	2023 Analyze	d: 6/16/2023	,		
Aroclor-1016 (PCB-1016)	0.0411	0.0200	mg/kg (dry	0.0600		68.5	60-140	2.66	40
			wt) wet	310000		00.5	30-140	2.00	40
Aroclor-1260 (PCB-1260)	0.0412	0.0200	mg/kg (dry	0.0600		68.7	60-140	4.16	40
		ಬರಿಸಲ್-ನಾಡೆ ಹೆ.)	wt) wet			5517	00 110	7,10	-10
PCBs, Total	0.0412	0.0200	mg/kg (dry	0.0600		68.6	60-140	3.41	40
			wt) wet			5335	550 S. 180	E118	. 10
Surrogate: 2,4,5,6	5	0.0108	mg/kg (dry	0.00600		180	60-140		
Tetrachloro-m-xylene-surr	V.52	2,2100	wt) wet	2,0000		100	50-170		
Surrogate: Decachlorobiphenyl-surr		0.00625	mg/kg (dry	0.00600		104	60-140		
		3,00023	wt) wet	0.00000		104	00-170		
Matrix Spike (BGF0514-MS1)	Source: 2	3E4380-01	Pre	epared: 6/5/2	023 Analyzed	i: 6/16/2023			4 111
Aroclor-1016 (PCB-1016)	3.97	1.84	mg/kg (dry	5.53	<1.84	71.7	60-140		
			wt) dry	1150	19350	(0).E50	155 545		
Aroclor-1260 (PCB-1260)	3.97	1.84	mg/kg (dry	5.53	<1.84	71.7	60-140		
			wt) dry			121/1977	V2.01 - 527-71		
PCBs, Total	3.97	1.84	mg/kg (dry	5.53	<1.84	71.7	60-140		
			wt) dry						
Surrogate: 2,4,5,6	<i>S</i>	1.06	mg/kg (dry	0.553		192	60-140	5.555.555.55	******
Tetrachloro-m-xylene-surr	~	1.00	wt) dry	0.555		192	00-140		
Surrogate: Decachlorobiphenyl-surr		0.655	mg/kg (dry	0.553		118	60-140		
50		0.000	wt) dry	0.000		110	00 170		

Matrix Spike Dup (BGF0514-MSD1)

Source: 23E4380-01

Prepared: 6/5/2023 Analyzed: 6/16/2023

Inframark

Project: Treschwig JP - Non Potable - Sewage Sludge Annual

32259 Morton Road Brookshire, TX 77423 Project Number: 50

Reported:

Project Manager: Gregory Camp

07/25/2023 11:49

Quality Control (Continued)

Organics by GC (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF0514 - SW-3570 (Com	inued)									
Matrix Spike Dup (BGF0514-MSD1)		Source: 23	E4380-01	Pre	pared: 6/5/	2023 Analyzed	d: 6/16/2023			
Aroclor-1016 (PCB-1016)	4.01		1.84	mg/kg (dry wt) dry	5.53	<1.84	72.6	60-140	1.14	40
Aroclor-1260 (PCB-1260)	3.85		1.84	mg/kg (dry wt) dry	5.53	<1.84	69.6	60-140	2.91	40
PCBs, Total	3.93		1.84		5.53	<1.84	71.1	60-140	0.865	40
Surrogate: 2,4,5,6		<i>s</i>	2.23	mg/kg (dry wt) dry	0.553		403	60-140		
Tetrachloro-m-xylene-surr Surrogate: Decachlorobiphenyl-surr		S	1.10	mg/kg (dry wt) dry	0.553		199	60-140		

Tel: (936) 321-6060 Email: lab@nwdls.com

www. NWDLS.com TCEQ T104704238-23-39

Inframark

32259 Morton Road Brookshire, TX 77423 Project: Treschwig JP - Non Potable - Sewage Sludge Annual

Project Number: 50

Project Manager: Gregory Camp

Reported:

07/25/2023 11:49

Quality Control (Continued)

Metals, Total

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGE4698 - SW-3050 fo	r 6010									Little
Blank (BGE4698-BLK1)				D-	d. E/3	0/2022 4				
Arsenic	<1.80	TT.	1.80		epared: 5/3	0/2023 Analyz	ed: 6/7/2023			
Cadmium	<0.180		0.180	mg/kg wet mg/kg wet						
Chromium	<0.901		0.100							
Copper	<1.80			mg/kg wet						
Lead	<0.901		1.80	mg/kg wet						
Molybdenum	<0.901		0.901	mg/kg wet						
Nickel	<0.901		0.901	mg/kg wet						
Potassium			0.901	mg/kg wet						
Selenium	<180		180	mg/kg wet						
Total Phosphorus	<1.80	8	1.80	mg/kg wet						
Zinc	<180		180	mg/kg wet						
	<0.901	U	0.901	mg/kg wet						
LCS (BGE4698-BS1)				Pre	nared: 5/30	0/2023 Analyze	nd: 6/7/2022			
Arsenic	45.7		1.81	mg/kg wet	45.3	7 2025 Alialy26		00.400		
Cadmium	4.54		0.181	mg/kg wet	4.53		101	80-120		
Chromium	22.7		0.908	mg/kg wet	22.6		100	80-120		
Copper	45.3		1.81	mg/kg wet			100	80-120		
Lead	22.7		0.908	mg/kg wet	45.3 22.6		100	80-120		
Molybdenum	22.6			mg/kg wet			100	80-120		
Nickel	22.6		0.908	mg/kg wet	22.6		99.9	80-120		
Potassium	4380			mg/kg wet	22.6		99.7	80-120		
Selenium	45.5				4530		96.6	80-120		
Total Phosphorus	4470			mg/kg wet	45.3		101	80-120		
Zinc	23.1			mg/kg wet mg/kg wet	4530		98.8	80-120		
	25,1		0.506	mg/kg wet	22.6		102	80-120		
Matrix Spike (BGE4698-MS1)		Source: 23	E0151-01	Pre	pared: 5/30	/2023 Analyze	d: 6/7/2023			
Arsenic	52.2		1.99	mg/kg dry	49.8	3.51	97.7	75-125		
Cadmium	5.65		0.199	mg/kg dry	4.98	0.856	96.2	75-125		
Chromium	48.2		0.998	mg/kg dry	24.9	24.2	96.7	75-125		
Copper	1580		39.8	mg/kg dry	1050	658	88.0	75-125		
Lead	37.9		0.998	mg/kg dry	24.9	13.9	96.7	75-125		
Molybdenum	32.0			mg/kg dry	24.9	8.07	96.2	75-125		
Nickel	34.0		0.998	mg/kg dry	24.9	9.93	96.5	75-125		
Potassium	7810			mg/kg dry	4980	2820	100	75-125		
Selenium	71.3		1.99	mg/kg dry	49.8	18.3	107	75-125		
Total Phosphorus	17900	11	3980	mg/kg dry	9970	10500	73.7	75-125		
Zinc	1420	-		mg/kg dry	1020	371	103	75-125 75-125		

Inframark

Project: Treschwig JP - Non Potable - Sewage Sludge Annual

Project Number: 50

Reported:

32259 Morton Road Brookshire, TX 77423

Project Manager: Gregory Camp

07/25/2023 11:49

TCEQ T104704238-23-39

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Patch: BGE4698 - SW-3050 for 60	010 (Con	tinued)			-		olo od tel		mices/h-1	A III
Matrix Spike (BGE4698-MS2)			3E4735-01	Pre	pared: 5/30	/2023 Analyze	ed: 6/7/2023			
Arsenic	53.9		2.00	mg/kg dry	50.1	5.35	96.8	75-125		
Cadmium	5.60		0.200	mg/kg dry	5.01	0.747	96.8	75-125		
Chromium	33.9		1.00	mg/kg dry	25.1	10.7	92.7	75-125		
Copper	1140		40.1	mg/kg dry	1050	41.3	104	75-125		
Lead	27.4		1.00	mg/kg dry	25.1	4.93	. 89.8	75-125		
Molybdenum	29.7		1.00	mg/kg dry	25.1	6.94	91.0	75-125		
Nickel	40.2		1.00	mg/kg dry	25.1	17.6	90.5	75-125		
Potassium	10000	11	4010	mg/kg dry	5010	6760	64.6	75-125	10.0	
Selenium	58.3		2,00	mg/kg dry	50.1	8.35	99.7	75-125		
Total Phosphorus	28900	11	4010	mg/kg dry	10000	22200	67.1	75-125		
Zinc	1940	31	50.2	mg/kg dry	1030	1000	91.6	75-125		
Matrix Spike Dup (BGE4609_MSD1)		Source: 2	3E0151-01	Pre	epared: 5/30)/2023 Analyz	ed: 6/7/2023			
Matrix Spike Dup (BGE4698-MSD1)	F4.2	Jource, 2	2.00	mg/kg dry	49.9	3.51	95.7	75-125	1.75	20
Arsenic	51.3		0.200	mg/kg dry	4.99	0.856	95.7	75-125	0.290	2
Cadmium	5.63		1.00	mg/kg dry	25.0	24.2	95.0	75-125	0.789	2
Chromium	47.9		39.9	mg/kg dry	1050	658	91.3	75-125	2.29	2
Copper	1620		1.00	mg/kg dry	25.0	13.9	94.8	75-125	1.16	2
Lead	37.5		1.00	mg/kg dry	25.0	8.07	91.5	75-125	3.59	2
Molybdenum	30.9		1.00	mg/kg dry	25.0	9.93	93.5	75-125	2.05	2
Nickel	33.3			15/11/5/	4990	2820	97.2	75-125	1.76	2
Potassium	7680		200	mg/kg dry mg/kg dry	49.9	18.3	103	75-125	2.10	2
Selenium	69.9		2.00		9990	10500	71.9	75-125	0.937	2
Total Phosphorus	17700		3990 50.0	mg/kg dry mg/kg dry	1020	371	102	75-125	0.358	2
Zinc	1420		50.0			55,5				
Matrix Spike Dup (BGE4698-MSD2)		Source: 2	3E4735-01			0/2023 Analyz			2.42	2
Arsenic	55.0		2.01	7.00 mm	50.2	5.35	98.9	75-125	2.12	2
Cadmium	5.73		0.201		5.02	0.747	99.3	75-125	2.34	2
Chromium	35.3		1.01		25.1	10.7	97.9	75-125	3.89	2
Copper	991		40.1	5. 5	1050	41.3	90.1	75-125	13.8	2
Lead	28.1		1.01		25.1	4.93	92.1	75-125	2.27	2
Molybdenum	29.9		1.01		25.1	6.94	91.6	75-125	0.677	2
Nickel	41.2		1.01		25.1	17.6	94.1	75-125	2.34	2
Potassium	5890	J1	4010		5020	6760	NR	75-125	51.8	2
Selenium	59,3		2.01	mg/kg dry	50.2	8.35	101	75-125	1.68	2
Total Phosphorus	17400	J1	4010	mg/kg dry	10000	22200	NR	75-125	49.8	2
Zinc	1890	ľ	50.3	mg/kg dry	1030	1000	86.2	75-125	2.75	2

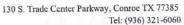
Tel: (936) 321-6060 Email: lab@nwdls.com www. NWDLS.com

TCEQ T104704238-23-39

Inframark

32259 Morton Road Brookshire, TX 77423 Project: Treschwig JP - Non Potable - Sewage Sludge Annual

Project Number: 50


Project Manager: Gregory Camp

Reported:

07/25/2023 11:49

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit		Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGE4698 - SW-3050	for 6010 (Con	tinued)							000000	
Post Spike (BGE4698-PS1)			3E0151-01	Di	renared: E/2	1/2022 4	-J. C/7/2022			
Arsenic	536		320131-01	ug/L	500	0/2023 Analyze				
Cadmium	58.7			ug/L	50.0	33.2	101	80-120		
Chromium	482			ug/L	250	8.11 229	101	80-120		
Copper	7090	11		ug/L	500	6230	101	80-120		
Lead	379			ug/L	250		172	80-120		
Molybdenum	328			ug/L		131	99.2	80-120		
Nickel	344			ug/L ug/L	250 250	76.4	101	80-120		
Potassium	79700					94.0	99.9	80-120		
Selenium	79700			ug/L	50000	26700	106	80-120		
Total Phosphorus				ug/L	500	173	107	80-120		
Zinc	153000	11		ug/L	50000	99600	106	80-120		
	3920	71		ug/L	250	3510	164	80-120		
ost Spike (BGE4698-PS2)		Source: 23	3E4735-01	Pr	epared: 5/30	/2023 Analyze	d: 6/7/2023			
Arsenic	552			ug/L	500	50.3	100	80-120		
Cadmium	58.1			ug/L	50.0	7.01	102	80-120		
Chromium	348			ug/L	250	100	99.1	80-120		
Copper	2420	J1		ug/L	500	388	406	80-120		
ead	293			ug/L	250	46.3	98.7	80-120		
Aalybdenum	316			ug/L	250	65.2	100	80-120		
Nickel	416			ug/L	250	165	101	80-120		
Potassium	109000			ug/L	50000	63500	91.0	80-120		
elenium	607			ug/L	500	78.4	106	80-120		
Total Phosphorus	256000			ug/L	50000	208000	96.2	80-120		
Zinc	9970	01		ug/L	250	9410	223	80-120		
ilution Check (BGE4698-SRL1)		Source: 23	BE0151-01	Pre	epared: 5/30	/2023 Analyze	d: 6/7/2023			
Arsenic	5.14	NEWSCHOOL STATE	9.98	mg/kg dry	-,	3.51	0///2023		37.7	10
Cadmium	0.649		0.998	mg/kg dry		0.856			27.5	10
Chromium	18.5	Z/A	5.00	mg/kg dry		24.2			26.7	
ead	11.1		5.00	mg/kg dry		13.9			22.1	10 10
folybdenum	6.03		5.00	mg/kg dry		8.07			28.9	10
lickel	7.71		5.00	mg/kg dry		9.93				
Potassium	2600		998	mg/kg dry					25.3	10
Selenium						2820			8.39	10
Fotal Phosphorus	14.0		9.98	mg/kg dry		18.3			26.8	10
rotal rinosphorus	10500		998	mg/kg dry		10500			0.0513	10

Email: lab@nwdls.com www. NWDLS.com TCEQ T104704238-23-39

Inframark

Project: Treschwig JP - Non Potable - Sewage Sludge Annual

32259 Morton Road Brookshire, TX 77423

Project Number: 50

Project Manager: Gregory Camp

Reported:

07/25/2023 11:49

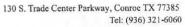
Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGE4698 - SW-3050 for 60	10 (Com	tinued)								
Dilution Check (BGE4698-SRL2)			3E4735-01	Pre	epared: 5/30	/2023 Analyze	ed: 6/7/2023			
Arsenic	7.26	11	10.1	mg/kg dry		5.35			30.2	10
Cadmium	0.735		1.01	mg/kg dry		0.747			1.61	10
Chromium	10.5	1	5.04	mg/kg dry		10.7			1.39	10
Copper	202	31	10.1	mg/kg dry		41.3			132	10
Lead	5.06		5.04	mg/kg dry		4.93			2.49	10
Molybdenum	6.76		5.04	mg/kg dry		6.94			2.53	10
Nickel	16.9		5.04	mg/kg dry		17.6			3.71	10
Potassium	6490		1010	mg/kg dry		6760			4.17	10
Selenium	7.18		10.1	mg/kg dry		8.35			15.0	10
Total Phosphorus	21600		1010	mg/kg dry		22200			2.30	10
Ratch: RGF4918 - SW-7471										
				Pr	epared: 5/3:	1/2023 Analyz	ed: 6/1/2023			
Batch: BGE4918 - SW-7471 MDL Check (BGE4918-MRL1) Mercury	0.0102	U	0.0196	Pr mg/kg wet	epared: 5/3: 0.00980	1/2023 Analyz	ed: 6/1/2023 104			
MDL Check (BGE4918-MRL1) Mercury	0.0102		0.0196	mg/kg wet	0.00980	1/2023 Analyz 1/2023 Analyz	104		ž.	
MDL Check (BGE4918-MRL1) Mercury	0.0102	Source: 2		mg/kg wet	0.00980		104	80-120	£	
MDL Check (BGE4918-MRL1) Mercury Matrix Spike (BGE4918-MS1) Mercury		Source: 2	3E3563-01	mg/kg wet Pr mg/kg dry	0.00980 epared: 5/3: 0.542	1/2023 Analyz	104 red: 6/1/2023 34.4	80-120	Y	
MDL Check (BGE4918-MRL1) Mercury Matrix Spike (BGE4918-MS1)		Source: 2	23E3563-01 0.0434	mg/kg wet Pr mg/kg dry	0.00980 epared: 5/3: 0.542	1/2023 Analyz 0.595	104 red: 6/1/2023 34.4	80-120	E.	
MDL Check (BGE4918-MRL1) Mercury Matrix Spike (BGE4918-MS1) Mercury Matrix Spike (BGE4918-MS2) Mercury	0.782	Source: 2 J1 Source: 2 J1	3E3563-01 0.0434 3E0740-22	mg/kg wet Pr mg/kg dry Pr mg/kg dry	0.00980 epared: 5/3 0.542 epared: 5/3 0.247	1/2023 Analyz 0.595 1/2023 Analyz	104 red: 6/1/2023 34.4 red: 6/1/2023 68.7	80-120	£	
MDL Check (BGE4918-MRL1) Mercury Matrix Spike (BGE4918-MS1) Mercury Matrix Spike (BGE4918-MS2) Mercury	0.782	Source: 2 J1 Source: 2 J1 Source: 2	.3E3563-01 0.0434 23E0740-22 0.0197	mg/kg wet Pr mg/kg dry Pr mg/kg dry Pr	0.00980 epared: 5/3 0.542 epared: 5/3 0.247	1/2023 Analyz 0.595 1/2023 Analyz 0.107	104 red: 6/1/2023 34.4 red: 6/1/2023 68.7	80-120	19.5	20
MDL Check (BGE4918-MRL1) Mercury Matrix Spike (BGE4918-MS1) Mercury Matrix Spike (BGE4918-MS2) Mercury Matrix Spike (BGE4918-MSD1)	0.782	Source: 2 J1 Source: 2 J1 Source: 2 J1	3E3563-01 0.0434 23E0740-22 0.0197 23E3563-01	pr mg/kg dry Pr mg/kg dry Pr mg/kg dry	0.00980 epared: 5/3 0.542 epared: 5/3 0.247 epared: 5/3 0.543	1/2023 Analyz 0.595 1/2023 Analyz 0.107 1/2023 Analyz	ted: 6/1/2023 34.4 red: 6/1/2023 68.7 red: 6/1/2023 8.81	80-120	19.5	2

Inframark 32259 Morton Road Brookshire, TX 77423

Project: Treschwig JP - Non Potable - Sewage Sludge Annual

Project Number: 50


Project Manager: Gregory Camp

Reported:

07/25/2023 11:49

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit		Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF0125 - SW-7471										
MDL Check (BGF0125-MRL1)					Prepared	& Analyzed: 6	5/1/2023			
Mercury	0.0106	·U	0.0195	mg/kg wet	0.00976		109			
Matrix Spike (BGF0125-MS1)		Source: 2	3E4642-01		Prepared	& Analyzed: 6	6/1/2023		-	
Mercury	0.539	J1	0.0254	mg/kg dry	0.317	0.470	21.8	80-120		
Matrix Spike (BGF0125-MS2)		Source: 2	3E4380-02		Prepared & Analyzed: 6/1/2023					
Mercury	0.814		0.0371	mg/kg dry	0.463	0.361	98.0	80-120		
Matrix Spike Dup (BGF0125-MSD1)		Source: 2	3E4642-01		Prepared 8	& Analyzed: 6	/1/2023			
Mercury	0.571	J1	0.0254	mg/kg dry	0.317	0.470	31.9	80-120	5.73	20
Matrix Spike Dup (BGF0125-MSD2)	4	Source: 23	BE4380-02		Prepared 8	& Analyzed: 6,	/1/2023			
Mercury	0.682	J1	0.0370	mg/kg dry	0.463	0.361	69.5	80-120	17.7	20

Email: lab@nwdls.com www. NWDLS.com

TCEQ T104704238-23-39

Inframark

Project: Treschwig JP - Non Potable - Sewage Sludge Annual

32259 Morton Road Brookshire, TX 77423 Project Number: 50

Project Manager: Gregory Camp

Reported:

07/25/2023 11:49

Quality Control (Continued)

General Chemistry

Analyte	Result (Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPC Limi
Batch: BGE3555 - Percent Solid	s						47,679		90	
Blank (BGE3555-BLK1)	-			Pre	epared: 5/22/	2023 Analyz	ed: 5/23/202	3		
% Solids	<0.100	U	0.100	%	-,					
	-				,	/2022 1 1	-d. F/22/202			
Duplicate (BGE3555-DUP1)	5	Source: 23	E4424-01		epared: 5/22/	3500 A CEDO GRADA G CARACO	ed: 5/23/202	3	0.202	20
% Solids	1.68		0.100	%		1.67			0.399	20
Reference (BGE3555-SRM1)				Pr	epared: 5/22,	/2023 Analyz	ed: 5/23/202	3		
% Solids	0.367		0.100	%	0.350		105	78.9-118		
Batch: BGE3627 - Solid Anions of Duplicate (BGE3627-DUP1) Nitrate as N		Source: 23	BE4380-01	mg/kg dry	Prepared 8	k Analyzed: 5 3880	5/22/2023		0.119	15
Duplicate (BGE3627-DUP1) Nitrate as N		Source: 23		mg/kg dry	V 2004-1-100-00-0	3880			0.119	15
Duplicate (BGE3627-DUP1) Nitrate as N	3870	Source: 23	115		Prepared 8		5/22/2023	50.150	0.119	15
Duplicate (BGE3627-DUP1)		Source: 23	115	mg/kg dry mg/kg wet	V 2004-1-100-00-0	3880		50-150	0.119	15
Duplicate (BGE3627-DUP1) Nitrate as N MRL Check (BGE3627-MRL1)	3870 0.128		115		Prepared 8	3880	5/22/2023 128		0.119	15
Duplicate (BGE3627-DUP1) Nitrate as N MRL Check (BGE3627-MRL1) Nitrate as N	3870 0.128		0.125		Prepared 8	3880 & Analyzed: 5	5/22/2023 128	50-150 80-120	0.119	15
Duplicate (BGE3627-DUP1) Nitrate as N MRL Check (BGE3627-MRL1) Nitrate as N Matrix Spike (BGE3627-MS1) Nitrate as N	3870 0.128		0.125 BE4380-01	mg/kg wet	Prepared 8 0.100 Prepared 8	3880 & Analyzed: !	5/22/2023 128 5/22/2023		0.119	15
Duplicate (BGE3627-DUP1) Nitrate as N MRL Check (BGE3627-MRL1) Nitrate as N Matrix Spike (BGE3627-MS1) Nitrate as N Batch: BGE4355 - NH3-NT	3870 0.128		0.125 BE4380-01	mg/kg wet	Prepared 8 0.100 Prepared 8 205	3880 & Analyzed: \$ & Analyzed: \$ 3880	5/22/2023 128 5/22/2023	80-120	0.119	15
Duplicate (BGE3627-DUP1) Nitrate as N MRL Check (BGE3627-MRL1) Nitrate as N Matrix Spike (BGE3627-MS1) Nitrate as N	3870 0.128	Source: 23	0.125 BE4380-01 128	mg/kg wet	Prepared 8 0.100 Prepared 8 205	3880 & Analyzed: \$ & Analyzed: \$ 3880	5/22/2023 128 5/22/2023 92.2	80-120	0.119	15
Duplicate (BGE3627-DUP1) Nitrate as N MRL Check (BGE3627-MRL1) Nitrate as N Matrix Spike (BGE3627-MS1) Nitrate as N Batch: BGE4355 - NH3-N T Blank (BGE4355-BLK1)	3870 0.128 4070	Source: 23	0.125 BE4380-01 128	mg/kg wet mg/kg dry Pr mg/kg wet	Prepared 8 0.100 Prepared 8 205 repared: 5/26	3880 & Analyzed: ! & Analyzed: ! 3880 /2023 Analyz	5/22/2023 128 5/22/2023 92.2	80-120	0.119	15

Tel: (936) 321-6060 Email: lab@nwdls.com www. NWDLS.com

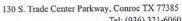
TCEQ T104704238-23-39

Inframark 32259 Morton Road Brookshire, TX 77423

Project: Treschwig JP - Non Potable - Sewage Sludge Annual

Project Number: 50

Project Manager: Gregory Camp


Reported:

07/25/2023 11:49

Quality Control (Continued)

General Chemistry (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGE4355 - NH3-N T (Con	tinued)									
Duplicate (BGE4355-DUP1)		Source: 2	3D4568-16	Pre	pared: 5/26	/2023 Analyze	ed: 5/30/2023			
Ammonia as N	179		29.5		Pa. 34. 5/25	143	20. 5/30/2023		22.1	20
MRL Check (BGE4355-MRL1)				Pre	pared: 5/26	/2023 Analyze	ed: 5/30/2023			
Ammonia as N	10.8		9.92	mg/kg wet	9.92		109	50-150		
Matrix Spike (BGE4355-MS1) Ammonia as N		Source: 2	3D4568-16	Pre	pared: 5/26	/2023 Analyze	ed: 5/30/2023			
	460		29.5	mg/kg dry	295	143	107	85-115		
Batch: BGE4886 - NH3-N T Blank (BGE4886-BLK1) Total Kjeldahl Nitrogen - (TKN)	<10.0	U	10.0	Pre mg/kg wet	pared: 5/31	/2023 Analyze	ed: 6/1/2023			
LCS (BGE4886-BS1)				Dro	nared: 5/31	/2023 Analyze	nd: 6/1/2022			
Total Kjeldahl Nitrogen - (TKN)	10.0		9.92	mg/kg wet	20.0	/2023 Allaly20	49.9	85-115		
Batch: BGF0371 - TKN T										
Blank (BGF0371-BLK1)				Pre	enared: 6/2/	2023 Analyze	4. 6/6/2022			
Ammonia as N	<9.99	U	9.99	mg/kg wet	sparca. 0/2/	2023 Analyze	u. 0/0/2023			
LCS (BGF0371-BS1)				Pre	epared: 6/2/	2023 Analyze	d: 6/6/2023			
Ammonia as N	97.1		9.97	mg/kg wet	99.7		97.4	85-115		
Duplicate (BGF0371-DUP1)		Source: 23	3E1320-54	Pre	epared: 6/2/	2023 Analyze	d: 6/6/2023			
Ammonia as N	240			mg/kg dry		190	, -, 2025		23.1	20

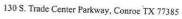
Tel: (936) 321-6060 Email: lab@nwdls.com www. NWDLS.com

Inframark

Project: Treschwig JP - Non Potable - Sewage Sludge Annual

32259 Morton Road Brookshire, TX 77423 Project Number: 50

Project Manager: Gregory Camp


Reported: 07/25/2023 11:49

TCEQ T104704238-23-39

Quality Control (Continued)

General Chemistry (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	Limit
Batch: BGF0371 - TKN T (Continue	ed)									
MRL Check (BGF0371-MRL1)	/			Pr	epared: 6/2	/2023 Analyze	ed: 6/6/2023			4
Ammonia as N	9.77	U	9.97	mg/kg wet	9.97		98.0	50-150		
Matrix Spike (BGF0371-MS1)		Source: 2	3E1320-54	Pr	epared: 6/2	/2023 Analyze	ed: 6/6/2023			
Ammonia as N	511		29.0	mg/kg dry	290	190	111	85-115		
Batch: BGF0406 - NH3-N T				_	1.610	12022 AL-	4. C/E/2022			
Biank (BGF0406-BLK1)					epared: 6/2	2/2023 Analyze	20: 6/5/2023			
Total Kjeldahl Nitrogen - (TKN)	<9.88	U	9.88	mg/kg wet						
LCS (BGF0406-BS1)				Pi	epared: 6/2	2/2023 Analyze	ed: 6/5/2023			
Total Kjeldahl Nitrogen - (TKN)	17.8		9.92	mg/kg wet	20.0		88.7	85-115		
Duplicate (BGF0406-DUP1)		Source: 2	3E3943-01RE	2 P	repared: 6/2	2/2023 Analyz	ed: 6/5/2023			
Total Kjeldahl Nitrogen - (TKN)	65500		1870	mg/kg dry		76300			15.3	20
Matrix Spike (BGF0406-MS1)		Source: 2	3E3943-01RE	2 P	repared: 6/2	2/2023 Analyz	ed: 6/5/2023			
Total Kjeldahl Nitrogen - (TKN)	84800		1870	mg/kg dry	7500	76300	113	85-115		

↑NWDLS

Tel: (936) 321-6060 Email: lab@nwdls.com www. NWDLS.com

TCEQ T104704238-23-39

Inframark

32259 Morton Road Brookshire, TX 77423 Project: Treschwig JP - Non Potable - Sewage Sludge Annual

Project Number: 50

Project Manager: Gregory Camp

Reported:

07/25/2023 11:49

Quality Control (Continued)

TCLP

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF0431 - SW-7471 TCLP										
Duplicate (BGF0431-DUP1)		Source: 7	3E4999-01		Deserved 510	/2022 4				
Mercury	<0.200		0.200		Prepared: 6/2		d: 6/5/2023			
	<0.200	U	0.200	mg/L		<0.200				200
BGF0102-LBK1 (BGF0431-LBK1)					Prepared: 6/2,	/2023 Analyzo	d. E/E/2022			
Mercury	<0.200	11	0.200	mg/L	ricpared, 6/2/	2023 Analyze	u. 6/5/2023			
- 44 (4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	10.200		0.200	mg/L						
MDL Check (BGF0431-MRL1)					Prepared: 6/2,	2023 Analyze	d: 6/5/2023			
Mercury	0.000211	U	0.200	mg/L	0.000200	2025 Analyze	106			
		V71		1119/ 2	0.000250		100			
Matrix Spike (BGF0431-MS1)		Source: 2	3E4999-01		Prepared: 6/2/	2023 Analyze	d: 6/5/2023			
Mercury	0.00499	U	0.200	mg/L	0.00500	<0.200	99.9	80-120		
Batch: BGF0509 - EPA 200.2 TCLP Blank (BGF0509-BLK1)					Prepared: 6/5/	2023 Analyze	4: 6/6/2023			
Blank (BGF0509-BLK1)		n.	5.00		Prepared: 6/5/	2023 Analyze	d: 6/6/2023			
Blank (BGF0509-BLK1) Arsenic	<5.00		5.00	mg/L	Prepared: 6/5/	2023 Analyze	d: 6/6/2023			
Blank (BGF0509-BLK1) Arsenic Barium	<5.00 <100	U	100	mg/L	Prepared: 6/5/	2023 Analyze	d: 6/6/2023			
Blank (BGF0509-BLK1) Arsenic Barium Cadmium	<5.00 <100 <1.00	U U	100 1.00	mg/L mg/L	Prepared: 6/5/	2023 Analyze	d: 6/6/2023			
Blank (BGF0509-BLK1) Arsenic Barium Cadmium Chromium	<5.00 <100 <1.00 <5.00	ນ ບ ບ	1.00 1.00 5.00	mg/L mg/L mg/L	Prepared: 6/5/	2023 Analyzer	d: 6/6/2023			
Blank (BGF0509-BLK1) Arsenic Barium Cadmium Chromium Lead	<5.00 <100 <1.00 <5.00 <5.00	υ υ υ	100 1.00 5.00 5.00	mg/L mg/L mg/L mg/L	Prepared: 6/5/	2023 Analyze	d: 6/6/2023			
Blank (BGF0509-BLK1) Arsenic Barium Cadmium Chromium Lead Selenium	<5.00 <100 <1.00 <5.00 <5.00 <1.00	υ υ υ υ	100 1.00 5.00 5.00 1.00	mg/L mg/L mg/L mg/L mg/L	Prepared: 6/5/	2023 Analyze	d: 6/6/2023			
Blank (BGF0509-BLK1) Arsenic Barium Cadmium Chromium Lead	<5.00 <100 <1.00 <5.00 <5.00	υ υ υ υ	100 1.00 5.00 5.00	mg/L mg/L mg/L mg/L	Prepared: 6/5/	2023 Analyze	d: 6/6/2023			
Blank (BGF0509-BLK1) Arsenic Barium Cadmium Chromium Lead Selenium	<5.00 <100 <1.00 <5.00 <5.00 <1.00	υ υ υ υ	100 1.00 5.00 5.00 1.00	mg/L mg/L mg/L mg/L mg/L						
Blank (BGF0509-BLK1) Arsenic Barium Cadmium Chromium Lead Selenium Silver LCS (BGF0509-BS1)	<5.00 <100 <1.00 <5.00 <5.00 <1.00	U U U U U	100 1.00 5.00 5.00 1.00 5.00	mg/L mg/L mg/L mg/L mg/L	Prepared: 6/5/		1: 6/6/2023	80-120		
Blank (BGF0509-BLK1) Arsenic Barium Cadmium Chromium Lead Selenium Silver LCS (BGF0509-BS1)	<5.00 <100 <1.00 <5.00 <5.00 <1.00 <5.00	U U U U U U	100 1.00 5.00 5.00 1.00	mg/L mg/L mg/L mg/L mg/L mg/L	Prepared: 6/5/ 0.500		i: 6/6/2023 100	80-120 80-120		
Blank (BGF0509-BLK1) Arsenic Barium Cadmium Chromium Lead Selenium Silver LCS (BGF0509-BS1) Arsenic	<5.00 <100 <1.00 <5.00 <5.00 <1.00 <5.00	U U U U U U	100 1.00 5.00 5.00 1.00 5.00	mg/L mg/L mg/L mg/L mg/L mg/L	Prepared: 6/5/ 0.500 0.500		d: 6/6/2023 100 100	80-120		
Blank (BGF0509-BLK1) Arsenic Barium Cadmium Chromium Lead Selenium Silver LCS (BGF0509-BS1) Arsenic Barium	<5.00 <100 <1.00 <5.00 <5.00 <1.00 <5.00 0.501 0.500 0.0497	U U U U U U	100 1.00 5.00 5.00 1.00 5.00 5.00	mg/L mg/L mg/L mg/L mg/L mg/L	Prepared: 6/5/ 0.500 0.500 0.0500		1: 6/6/2023 100 100 99.5	80-120 80-120		
Blank (BGF0509-BLK1) Arsenic Barium Cadmium Chromium Lead Selenium Silver LCS (BGF0509-BS1) Arsenic Barium Cadmium	<5.00 <100 <1.00 <5.00 <5.00 <1.00 <5.00 0.501 0.500 0.0497 0.254	U U U U U U U U	100 1.00 5.00 5.00 1.00 5.00 5.00	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Prepared: 6/5/ 0.500 0.500 0.0500 0.250		1: 6/6/2023 100 100 99.5 102	80-120 80-120 80-120		
Blank (BGF0509-BLK1) Arsenic Barium Cadmium Chromium Lead Selenium Silver LCS (BGF0509-BS1) Arsenic Barium Cadmium Chromium	<5.00 <100 <1.00 <5.00 <5.00 <1.00 <5.00 0.501 0.500 0.0497	U U U U U U U U U U U U U U U U U U U	100 1.00 5.00 5.00 1.00 5.00 5.00	mg/L mg/L mg/L mg/L mg/L mg/L	Prepared: 6/5/ 0.500 0.500 0.0500		1: 6/6/2023 100 100 99.5	80-120 80-120		

Inframark

Project: Treschwig JP - Non Potable - Sewage Sludge Annual

32259 Morton Road

Project Number: 50

Reported:

Brookshire, TX 77423

Project Manager: Gregory Camp

07/25/2023 11:49

Quality Control (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGF0509 - EPA 200.2 TC	LP (Contin	ued)								
Duplicate (BGF0509-DUP1)	100		3E4999-01		Prepared: 6/5/	2023 Analyze	ed: 6/6/2023			
Arsenic	<5.00	U	5.00	mg/L		<5.00				20
Barium	1.02		100	mg/L		1.14			10.2	20
Cadmium	<1.00		1.00	mg/L		<1.00				20
Chromium	<5.00	U	5.00	mg/L		<5.00				20
Lead	<5.00	U	5.00	mg/L		<5.00				20
Selenium	<1.00	U	1.00	mg/L		<1.00				20
Silver	<5.00	U	5.00	mg/L		<5.00				20
BGF0102-BLK1 (BGF0509-LBK1)					Prepared: 6/5/	2023 Analyze	ed: 6/6/2023			
Arsenic	<5.00	U	5.00	mg/L						
Barium	0.830	U	100	mg/L						
Cadmium	<1.00	U	1.00	mg/L						
Chromium	<5.00	U	5.00	mg/L						
Lead	<5.00	U	5.00	mg/L						
Selenium	<1.00	U	1.00	mg/L						
Silver	<5.00	U	5.00	mg/L						
Matrix Spike (BGF0509-MS1)		Source: 2	3E4999-01		Prepared: 6/5/	/2023 Analyze	ed: 6/6/2023			
Arsenic	0.525	U	5.00	mg/L	0.500	<5.00	105	75-125		
Barium	1.50	J1, U	100	mg/L	0.500	1,14	73.2	75-125		
Cadmium	0.0527	U	1.00	mg/L	0.0500	<1.00	105	75-125		
Chromium	0.259	U	5.00	mg/L	0.250	<5.00	103	75-125		
Lead	0,251	U	5.00	mg/L	0.250	<5.00	100	75-125		
Selenium	0.532	U	1.00	mg/L	0.500	<1.00	106	75-125		
Silver	0.0414	U	5.00	mg/L	0.0500	<5.00	82.7	75-125		
Post Spike (BGF0509-PS1)		Source: 2	3E4999-01		Prepared: 6/5/	/2023 Analyze	ed: 6/6/2023			
Arsenic	530			ug/L	500	9.53	104	80-120		
Barium	1450	J1		ug/L	500	1110	68.2	80-120		
Cadmium	54.1			ug/L	50.0	0.400	107	80-120		
Chromium	265			ug/L	250	1.96	105	80-120		
Lead	253			ug/L	250	3.06	99.9	80-120		
Selenium	536			ug/L	500	2.94	107	80-120		
Silver	53.1			ug/L	50.0	0.478	105	80-120		

Inframark 32259 Morton Road Brookshire, TX 77423

Project: Treschwig JP - Non Potable - Sewage Sludge Annual

Project Number: 50

Project Manager: Gregory Camp

Reported:

07/25/2023 11:49

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF0509 - EPA 200.2 TC	LP (Contin	ued)								
Dilution Check (BGF0509-SRL1)			3E4999-01		Prepared: 6/5	/2023 Analyze	ed: 6/6/2023			
Arsenic	<5.00		5.00	mg/L		<5.00				10
Barium	1.14		100	mg/L		1.14			0.00	10
Cadmium	<1.00	U	1.00	mg/L		<1.00				10
Chromium	<5.00	U	5.00	mg/L		<5.00				10
Lead	<5.00	U	5.00	mg/L		<5.00				10
Selenium	<1.00	U	1.00	mg/L		<1.00				10
Silver	<5.00	U	5.00	mg/L		<5.00				10
Batch: BGF0530 - SW-3511										
Blank (BGF0530-BLK1)					Prepared: 6/5	/2023 Analyze	ed: 7/9/2023			
2,4-D	<10.0	Œ	10.0	mg/L		, ,,				
Silvex (2,4,5-TP)	<1.00		1.00	mg/L						
Surrogate: DCAA-surr			0.0224	mg/L	0.0250	********	90	70-130		ERI EKI EKI
LCS (BGF0530-BS1)					Prepared: 6/5	/2023 Analyze	ed: 7/9/2023			
2,4-D	0.00627	U	10.0	mg/L	0.00515		122	70-130		
Silvex (2,4,5-TP)	0.00536	U	1.00	mg/L	0.00500		107	70-130		
Surrogate: DCAA-surr		5	0.0345	mg/L	0.0250		138	70-130		
LCS Dup (BGF0530-BSD1)					Prepared: 6/5	/2023 Analyze	ed: 7/9/2023			
2,4-D	0.00648	U	10.0	mg/L	0.00515		126	70-130	3	30
Silvex (2,4,5-TP)	0.00579	U	1.00	mg/L	0.00500		116	70-130	8	30
Surrogate: DCAA-surr	*	5	0.0370	mg/L	0.0250		148	70-130		
BGF0102-BLK1 (BGF0530-LBK1)					Prepared: 6/5	/2023 Analyze	ed: 7/9/2023			
2,4-D	<10.0	U	10.0	mg/L						
Silvex (2,4,5-TP)	<1.00	U	1.00	mg/L						
Surrogate: DCAA-surr		S	0.144	mg/L	0.100		144	70-130		

Inframark

Project: Treschwig JP - Non Potable - Sewage Sludge Annual

32259 Morton Road Brookshire, TX 77423

Project Number: 50

Project Manager: Gregory Camp

Reported:

07/25/2023 11:49

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF0530 - SW-3511 (Con	tinued)					Um				
Matrix Spike (BGF0530-MS1)		Source: 2	3E5251-01		Prepared: 6/5	/2023 Analyzed	1: 7/9/2023			
2,4-D	0.0247	= 1500 (500)	10.0	mg/L	0.0206	<10.0	120	70-130		
Silvex (2,4,5-TP)	0.0247		1.00	mg/L	0.0200	0.000702	101	70-130		
Surrogate: DCAA-surr		5	0.147	mg/L	0.100		147	70-130		
Matrix Spike Dup (BGF0530-MSD1)		Source: 2	3E5251-01		Prepared: 6/5,	/2023 Analyzed	d: 7/9/2023			
2,4-D	0.0257	U	10.0	mg/L	0.0206	<10.0	125	70-130	4	30
Silvex (2,4,5-TP)	0.0228	U	1.00	mg/L	0.0200	0.000702	111	70-130	9	30
Surrogate: DCAA-surr		5	0.149	mg/L	0.100		149	70-130		0.5.5.5.5.5.5.5.5
Endrin gamma-BHC (Lindane, gamma-HexachlorocyclohexanE) Heptachlor	<0.0200 <0.400 <0.00800	U U	0.0200 0.400 0.00800	mg/L mg/L mg/L						
Heptachlor epoxide	<0.00800	7	0.00800	mg/L						
Methoxychlor Townshape (Chlorinated Campbase)	<10.0		10.0	mg/L						
Toxaphene (Chlorinated Camphene)	<0.500		0.500	mg/L						
Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr			0.000126	mg/L	0.000120		105	60-140		
Surrogate: Decachlorobiphenyl-surr			0.000123	mg/L	0.000120		103	60-140		
TOX LCS (BGF0708-BS1)					Prepared: 6/6/	2023 Analyzed	l: 6/29/2023			
Toxaphene (Chlorinated Camphene)	0.000998	U	0.500	mg/L	0.00120		83.2	60-140		
Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr			0.000107	mg/L	0.000120		89.5	60-140		
Surrogate: Decachlorobiphenyl-surr			0.000124	mg/L	0.000120		103	60-140		

↑NWDLS

Tel: (936) 321-6060 Email: lab@nwdls.com www. NWDLS.com TCEQ T104704238-23-39

Inframark

32259 Morton Road Brookshire, TX 77423 Project: Treschwig JP - Non Potable - Sewage Sludge Annual

Project Number: 50

Project Manager: Gregory Camp

Reported:

07/25/2023 11:49

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF0708 - SW-3511 (Co	ontinued)									
LCS (BGF0708-BS2)				9	Prepared: 6/6/2	2023 Analyze	d: 6/29/2023			
Chlordane (Total)	0.000293	U	0.0300	mg/L	0.000480	JOES / MOITE	61.1	60-140		
Endrin	8.34E-5		0.0200	mg/L	0.000120		69.5	60-140		
gamma-BHC (Lindane,	9.12E-5		0.400	mg/L	0.000120		76.0	60-140		
gamma-HexachlorocyclohexanE)		3					, 0.0	00 1 10		
Heptachlor	6.58E-5	J1, U	0.00800	mg/L	0.000120		54.9	60-140		
Heptachlor epoxide	7.53E-5	U	0.00800	mg/L	0.000120		62.8	60-140		
Methoxychlor	7.67E-5	U	10.0	mg/L	0.000120		63.9	60-140		
Surrogate: 2,4,5,6			0.000130	mg/L	0.000120		108	60-140		
Tetrachloro-m-xylene-surr			0,000,00	111972	0,000120		100	00-140		
Surrogate: Decachlorobiphenyl-surr			0.000123	mg/L	0.000120		103	60-140		
TOX LCSD (BGF0708-BSD1)					Prepared: 6/6/2	2023 Analyze	d: 6/29/2023			
Toxaphene (Chlorinated Camphene)	0.000920	U	0.500	mg/L	0.00120	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	76.7	60-140	8.12	40
Surrogate: 2,4,5,6			0.000116	mg/L	0.000120		96.6	60-140		
Tetrachloro-m-xylene-surr			0.000110	mg/L	0,000120		30.0	00 170		
Surrogate: Decachlorobiphenyl-surr			0.000119	mg/L	0.000120		98.8	60-140		
LCS Dup (BGF0708-BSD2)				ļ	Prepared: 6/6/2	2023 Analyze	d: 6/29/2023			
Chlordane (Total)	0.000308	U	0.0300	mg/L	0.000480		64.2	60-140	4.99	40
Endrin	8.43E-5	U	0.0200	mg/L	0.000120		70.2	60-140	1.04	40
gamma-BHC (Lindane, gamma-HexachlorocyclohexanE)	8.20E-5	U	0,400	mg/L	0.000120		68.3	60-140	10.7	40
Heptachlor	6.67E-5	31, U	0.00800	mg/L	0.000120		55.6	60-140	1.30	40
Heptachlor epoxide	8.19E-5	U	0.00800	mg/L	0.000120		68.3	60-140	8.39	40
Methoxychlor	7.98E-5	U	10.0	mg/L	0.000120		66.5	60-140	3.90	40
Surrogate: 2,4,5,6			0.000118	mg/L	0.000120		98.1	60-140		
Tetrachloro-m-xylene-surr										
Surrogate: Decachlorobiphenyl-surr			0.000126	mg/L	0.000120		105	60-140		
BGF0102-BLK1 (BGF0708-LBK1)				- 1	Prepared: 6/6/2	2023 Analyze	d: 6/29/2023			
Chlordane (Total)	<0.0300	U	0.0300	mg/L						
Endrin	< 0.0200	U	0.0200	mg/L						
gamma-BHC (Lindane, gamma-HexachlorocyclohexanE)	<0.400	U	0.400	mg/L						
Heptachlor	<0.00800	U	0.00800	mg/L						
Heptachlor epoxide	<0.00800	U	0.00800	mg/L						
Methoxychlor	<10.0	U	10.0	mg/L						
Toxaphene (Chlorinated Camphene)	<0.500	U	0.500	mg/L						
Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr			0.000751	mg/L	0.000600		125	60-140		
Surrogate: Decachlorobiphenyl-surr			0.000540	mg/L	0.000600		89.9	60-140		

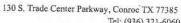
Tel: (936) 321-6060 Email: lab@nwdls.com www. NWDLS.com TCEQ T104704238-23-39

Inframark

Project: Treschwig JP - Non Potable - Sewage Sludge Annual

32259 Morton Road Brookshire, TX 77423

Project Number: 50


Project Manager: Gregory Camp

Reported:

07/25/2023 11:49

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF0708 - SW-3511 (Col	ntinued)							100	w. 131	AL HITT
TOX MRL (BGF0708-MRL1)					Prepared: 6/6/	2023 Analyzed	1: 6/29/2023			
Toxaphene (Chlorinated Camphene)	0.000676	U	0.500	mg/L	0.000300	a.,zec	225	5.		
Surrogate: 2,4,5,6		*******	0.000113	mg/L	0.000120		94.2	60-140		*****
Tetrachloro-m-xylene-surr			0.000115	mg/L	0.000120		37.2	00-140		
Surrogate: Decachlorobiphenyl-surr			0.000127	mg/L	0.000120		106	60-140		
MRL Check (BGF0708-MRL2)			11111		Prepared: 6/6/	2023 Analyzed	1: 6/29/2023			
Chlordane (Total)	3.24E-5	U	0.0300	mg/L	4.80E-5		67.5			
Endrin	7.60E-6		0.0200	mg/L	1.20E-5		63.3			
gamma-BHC (Lindane,	7.71E-6		0.400	mg/L	1.20E-5		64.2			
gamma-HexachlorocyclohexanE)		3					S 115			
Heptachlor	6.98E-6	U	0.00800	mg/L	1.20E-5		58,1			
Heptachlor epoxide	8.05E-6	U	0.00800	mg/L	1.20E-5		67.1			
Methoxychlor	8.32E-6	U	10.0	mg/L	1.20E-5		69.4			
Surrogate: 2,4,5,6	11101101101		0.000122	mg/L	0.000120	********	101	60-140		
Tetrachloro-m-xylene-surr				3/-	0,000120		101	00 110		
Surrogate: Decachlorobiphenyl-surr			0.000126	mg/L	0.000120		105	60-140		
Matrix Spike (BGF0708-MS1)		Source: 2	3E5597-01		Prepared: 6/6/2	2023 Analyzed	6/29/2023			
Chlordane (Total)	0.00183		0.0300	mg/L	0.00240	<0.0300	76.3	60-140		
Endrin	0.000507		0.0200	mg/L	0.000600	<0.0200	84.6	60-140		
gamma-BHC (Lindane,	0.000514		0.400	mg/L	0.000600	<0.400	85.6	60-140		
gamma-HexachlorocyclohexanE)	0.000311	U	0.100	mg/ L	0.000000	X0.100	05.0	00-140		
Heptachlor	0.000455	U	0.00800	mg/L	0.000600	<0.00800	75.8	60-140		
Heptachlor epoxide	0.000486	U	0.00800	mg/L	0.000600	<0.00800	81.0	60-140		
Methoxychlor	0.000444	U	10.0	mg/L	0.000600	<10.0	74.0	60-140		
Surrogate: 2,4,5,6			0.000646	mg/L	0.000600			*******		
Tetrachloro-m-xylene-surr			0.000040	mg/L	0.000000		108	60-140		
Surrogate: Decachlorobiphenyl-surr			0.000633	mg/L	0.000600		106	60-140		
Matrix Spike Dup (BGF0708-MSD1)		Source: 2	3E5597-01		Prepared: 6/6/2	2023 Analyzed	: 6/29/2023			
Chlordane (Total)	0.00196		0.0300	mg/L	0.00240	<0.0300	81.8	60-140	7.02	40
Endrin	0.000534	0.20	0.0200	mg/L	0.000600	<0.0200	89.1	60-140	5.18	40
gamma-BHC (Lindane,	0.000532		0.400	mg/L	0.000600	<0.400	88.7	60-140	3.58	40
gamma-HexachlorocyclohexanE)				J. –				00 1 10	5.50	10
Heptachlor	0.000465	U	0.00800	mg/L	0.000600	<0.00800	77.5	60-140	2.23	40
Heptachlor epoxide	0.000524	U	0.00800	mg/L	0.000600	<0.00800	87.3	60-140	7.49	40
Methoxychlor	0.000459		10.0	mg/L	0.000600	<10.0	76.5	60-140	3.41	40
Surrogate: 2,4,5,6			0.000706	mg/L	0.000600		118	60-140	*****	
Tetrachloro-m-xylene-surr			0.000,00	mg/L	0.000000		110	50-170		
Surrogate: Decachlorobiphenyl-surr			0.000632	mg/L	0.000600		105	60-140		

↑NWDLS

Tel: (936) 321-6060 Email: lab@nwdls.com www. NWDLS.com TCEQ T104704238-23-39

Inframark

32259 Morton Road Brookshire, TX 77423 Project: Treschwig JP - Non Potable - Sewage Sludge Annual

Project Number: 50

Project Manager: Gregory Camp

Reported:

07/25/2023 11:49

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF0760 - SW-3511									11000	
MB SV (BGF0760-BLK1)	:00				Prepared: 6/6/	2023 Analyze	d: 6/21/2023			
2,4,5-Trichlorophenol	<400	U.	400	mg/L						
2,4,6-Trichlorophenol	<2.00	U	2.00	mg/L						
2,4-Dinitrotoluene (2,4-DNT)	< 0.130	U	0.130	mg/L						
2-Methylphenol	<200		200	mg/L						
3,4-Methylphenol	<200	U	200	mg/L						
Hexachlorobenzene	<0.130		0.130	mg/L						
Hexachlorobutadiene	<0.500	U	0.500	mg/L						
Hexachloroethane	<3.00	U	3.00	mg/L						
Nitrobenzene	<2.00	U	2.00	mg/L						
Pentachlorophenol	<100	U	100	mg/L						
Pyridine	<5.00	U	5.00	mg/L						
Surrogate: 2-Fluorobiphenyl-surr			0.00950	mg/L	0.0100		95.0	54.6-148		21121511
Surrogate: 2-Fluorophenol-surr			0.0171	mq/L	0.0200		85.4	55-152		
Surrogate: 2,4,6-Tribromophenol-surr			0.0169	mg/L	0.0200		84.5	52.4-136		
Surrogate: Nitrobenzene-d5-surr			0.00971	mg/L	0.0100		97.1	52-162		
Surrogate: Phenol-d5-surr			0.0170	mg/L	0.0200		84.9	58.7-152		
Surrogate: p-Terphenyl-d14-surr			0.00794	mg/L	0.0100		79.4	51.9-147		
BS SV (BGF0760-BS1)					Prepared: 6/6/	/2023 Analyze	d: 6/21/2023			
2,4,5-Trichlorophenol	0.0188	U	400	mg/L	0.0200		93.9	60-140		
2,4,6-Trichlorophenol	0.0202	U	2.00	mg/L	0.0200		101	60-140		
2,4-Dinitrotoluene (2,4-DNT)	0.00935	U	0.130	mg/L	0.0100		93.5	60-140		
2-Methylphenol	0.0169	U	200	mg/L	0.0200		84.3	60-140		
3,4-Methylphenol	0.0319	U	200	mg/L	0.0400		79.7	60-140		
Hexachlorobenzene	0.00810	U	0.130	mg/L	0.0100		81.0	60-140		
Hexachlorobutadiene	. 0.00498	J1, U	0.500	mg/L	0.0100		49.8	60-140		
Hexachloroethane	0.00546		3.00	mg/L	0.0100		54.6	60-140		
Nitrobenzene	0.00946	U	2.00	mg/L	0.0100		94.6	60-140		
Pentachlorophenol	0.0176	U	100	mg/L	0.0200		87.8	36.8-149		
Pyridine	0.0204	U	5.00	mg/L	0.0500		40.7	2.5-101		
Surrogate: 2-Fluorobiphenyl-surr		12712111	0.00964	mg/L	0.0100		96.4	54.6-148		
Surrogate: 2-Fluorophenol-surr			0.0177	mg/L	0.0200		88.3	55-152		
Surrogate: 2,4,6-Tribromophenol-surr			0.0159	mg/L	0.0200		79.7	52.4-136		
Surrogate: Nitrobenzene-d5-surr			0.0103	mg/L			103	52-162		
Surrogate: Phenol-d5-surr			0.0188	mg/L	0.0200		94.2	58.7-152		
Surrogate: p-Terphenyl-d14-surr			0.00827	mg/L			82.7	51.9-147		

Inframark

Project: Treschwig JP - Non Potable - Sewage Sludge Annual

32259 Morton Road Brookshire, TX 77423 Project Number: 50

Reported:

Project Manager: Gregory Camp

07/25/2023 11:49

Quality Control (Continued)

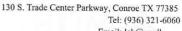
			Reporting		Spike	Source		%REC		RPD
Analyte	Result Q	ual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
atch: BGF0760 - SW-3511 (Co	ontinued)									
BSD SV (BGF0760-BSD1)				Pr	repared: 6/6/	2023 Analyze	d: 6/21/2023			
2,4,5-Trichlorophenol	0.0191 U		400	mg/L	0.0200		95.4	60-140	1.62	40
2,4,6-Trichlorophenol	0.0208 U		2.00	mg/L	0.0200		104	60-140	3.21	40
2,4-Dinitrotoluene (2,4-DNT)	0.00960 U		0.130	mg/L	0.0100		96.0	60-140	2.55	40
2-Methylphenol	0.0165 U		200	mg/L	0.0200		82.5	60-140	2.10	40
3,4-Methylphenol	0.0307		200	mg/L	0.0400		76.8	60-140	3.64	40
Hexachlorobenzene	0.00825 U		0.130	mg/L	0.0100		82.5	60-140	1.87	40
Hexachlorobutadiene	0.00440 J		0.500	mg/L	0.0100		44.0	60-140	12.3	40
Hexachloroethane	0.00492 J	Photos .	3.00	mg/L	0.0100		49.2	60-140	10.3	40
Nitrobenzene	0.00961 L		2.00	mg/L	0.0100		96.1	60-140	1.54	40
Pentachlorophenol	0.0177 U		100	mg/L	0.0200		88.4	36.8-149	0.712	40
Pyridine	0.0203		5.00	mg/L	0.0500		40.6	2.5-101	0.451	40
	0.0205		0.00948	mg/L	0.0100		94.8	54.6-148		
Surrogate: 2-Fluorobiphenyl-surr			0.0171	mg/L	0.0200		85.3	55-152		
Surrogate: 2-Fluorophenol-surr			0.0171	mg/L	0.0200		79.3	52.4-136		
Surrogate: 2,4,6-Tribromophenol-surr			0.00939	mg/L	0.0100		93.9	52-162		
Surrogate: Nitrobenzene-d5-surr			0.0180	mg/L	0.0200		90.1	58.7-152		
Surrogate: Phenol-d5-surr			0.00863	mg/L	0.0100		86.3	51.9-147		
Surrogate: p-Terphenyl-d14-surr			0.00005							
BFG0102-BLK1 (BGF0760-LBK1)				Р	repared: 6/6/	2023 Analyze	ed: 6/21/2023	3		
2,4,5-Trichlorophenol	<400 L	J	400	mg/L						
2,4,6-Trichlorophenol	<2.00 l	J	2.00	mg/L						
2,4-Dinitrotoluene (2,4-DNT)	<0.130 l	J	0.130	mg/L						
2-Methylphenol	<200 l	J	200	mg/L						
3,4-Methylphenol	<200 l	j	200	mg/L						
Hexachlorobenzene	<0.130	J	0.130	mg/L						
Hexachlorobutadiene	<0.500 l	J	0.500	mg/L						
Hexachloroethane	<3.00 l		3.00	mg/L						
Nitrobenzene	<2.00 l	J	2.00	mg/L						
Pentachlorophenol	<100 (100	mg/L						
Pyridine	<5.00		5.00	mg/L	rumanensi bara					*****
Surrogate: 2-Fluorobiphenyl-surr		*****	0.0464	mg/L	0.0400		116	54.6-148		
Surrogate: 2-Fluorophenol-surr			0.0663	mg/L	0.0800		82.9	55-152		
Surrogate: 2,4,6-Tribromophenol-surr			0.0689	mg/L	0.0800		86.1	52.4-136		
			0.0441	mg/L	0.0400		110	52-162		
Surrogate: Nitrobenzene-d5-surr Surrogate: Phenol-d5-surr			0.0768	mg/L	0.0800		96.0	58.7-152		

Tel: (936) 321-6060 Email: lab@nwdls.com www. NWDLS.com TCEQ T104704238-23-39

Inframark

32259 Morton Road Brookshire, TX 77423 Project: Treschwig JP - Non Potable - Sewage Sludge Annual

Project Number: 50


Project Manager: Gregory Camp

Reported:

07/25/2023 11:49

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF0760 - SW-3511 (Con	tinued)									
23E4427-01 MS (BGF0760-MS1)		Source: 2	3E4427-01		Prepared: 6/6/	2022 Analyza	4. (/24/202			
2,4,5-Trichlorophenol	0.0753		400	mg/L	0.0800					
2,4,6-Trichlorophenol	0.0711		2.00	mg/L	0.0800	<400	94,2	44.9-171		
2,4-Dinitrotoluene (2,4-DNT)	0.0368		0.130	mg/L	0.0400	<2.00	88.9	34.7-143		
2-Methylphenol	0.0710		200	mg/L	0.0800	<0.130	91.9	50.3-144		
3,4-Methylphenol	0.131		200	mg/L	0.160	<200	88.8	17.3-182		
Hexachlorobenzene	0.0344		0.130	mg/L	0.160	<200	81.7	43.4-188		
Hexachlorobutadiene	0.0187		0.500			<0.130	86.0	56.1-137		
Hexachloroethane	0.0208		3.00	mg/L	0.0400	<0.500	46.8	33.1-110		
Nitrobenzene	0.0208		2.00	mg/L	0.0400	<3.00	52.0	36.2-106		
Pentachlorophenol	0.0374		100	mg/L	0.0400	<2.00	93.6	54.9-156		
Pyridine	0.0737		5.00	mg/L	0.0800	<100	92.1	42.2-151		
6	0.0403		5.00	mg/L	0.200	<5.00	24.3	2-87.4		a contract
Surrogate: 2-Fluorobiphenyl-surr			0.0384	mg/L	0.0400		95.9	54.6-148		
Surrogate: 2-Fluorophenol-surr			0.0713	mg/L	0.0800		89.2	55-152		
Surrogate: 2,4,6-Tribromophenol-surr			0.0674	mg/L	0.0800		84.2	52.4-136		
Surrogate: Nitrobenzene-d5-surr			0.0400	mg/L	0.0400		99.9	52-162		
Surrogate: Phenol-d5-surr			0.0770	mg/L	0.0800		96.3	58.7-152		
Surrogate: p-Terphenyl-d14-surr			0.0328	mg/L	0.0400		82.1	51.9-147		
23E4427-01 MSD (BGF0760-MSD1)		Source: 2	3E4427-01	1	Prepared: 6/6/2	2023 Analyzed	: 6/21/2023			
2,4,5-Trichlorophenol	0.0763	U	400	mg/L	0.0800	<400	95.4	44.9-171	1.30	40
2,4,6-Trichlorophenol	0.0746	U	2.00	mg/L	0.0800	<2.00	93.3	34.7-143	4.80	40
2,4-Dinitrotoluene (2,4-DNT)	0.0357	U	0.130	mg/L	0.0400	<0.130	89.2	50.3-144	2.99	40
2-Methylphenol	0.0713	U	200	mg/L	0.0800	<200	89.1	17.3-182	0.364	40
3,4-Methylphenol	0.133	U	200	mg/L	0.160	<200	83.2	43.4-188	1.84	40
Hexachlorobenzene	0.0293	U	0.130	mg/L	0.0400	< 0.130	73.2	56.1-137	16.1	40
Hexachlorobutadiene	0.0180	U	0.500	mg/L	0.0400	<0.500	45.1	33.1-110	3.78	40
Hexachloroethane	0.0207	U	3.00	mg/L	0.0400	<3.00	51.6	36.2-106	0.667	40
Nitrobenzene	0.0364	U	2.00	mg/L	0.0400	<2.00	91.0	54.9-156	2.85	40
Pentachlorophenol	0.0668	U	100	mg/L	0.0800	<100	83.5	42.2-151	9.83	40
Pyridine	0.0487	U	5.00	mg/L	0.200	<5.00	24.4	2-87.4	0.420	40
Surrogate: 2-Fluorobiphenyl-surr			0.0376	mg/L	0.0400		93.9	54.6-148		*******
Surrogate: 2-Fluorophenol-surr			0.0643	mg/L	0.0800		80.3	55-152		
Surrogate: 2,4,6-Tribromophenol-surr			0.0589	mg/L	0.0800		73.7	52.4-136		
Surrogate: Nitrobenzene-d5-surr			0.0389	mg/L	0.0400		97.3	52-162		
Surrogate: Phenol-d5-surr			0.0767	mg/L	0.0800		95.9	58.7-152		
Surrogate: p-Terphenyl-d14-surr			0.0314	mg/L	0.0400		78.5	51.9-147		

Email: lab@nwdls.com www. NWDLS.com TCEQ T104704238-23-39

Inframark

Project: Treschwig JP - Non Potable - Sewage Sludge Annual

32259 Morton Road Brookshire, TX 77423

Project Number: 50

Project Manager: Gregory Camp

Reported:

07/25/2023 11:49

Sample Condition Checklist

Work Order: 23E4380

Check Points

No

Custody Seals

Yes

Containers Intact

COC/Labels Agree

Yes

Yes

Received On Ice

Yes

Appropriate Containers

Yes

Appropriate Sample Volume

Yes

Coolers Intact

Yes

Samples Accepted

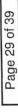
Definition

Inframark

Item

32259 Morton Road Brookshire, TX 77423 Project: Treschwig JP - Non Potable - Sewage Sludge Annual

Project Number: 50


Project Manager: Gregory Camp

Reported:

07/25/2023 11:49

Term and Qualifier Definitions

C+	The associated calibration QC is higher than the established quality control criteria for accuracy - no hit in sample; data not affected and acceptable to report.
J1	Estimated value - The reported value is outside the established quality control criteria for accuracy and/or precision.
S	The surrogate recovery was outside the established laboratory recovery limit.
U	Non-detected compound.
V	Analyte was detected in both sample and method blank.
V2	The analyte was detected in the sample and the associated leach blank.
RPD	Relative Percent Difference
%REC	Percent Recovery
Source	Sample that was matrix spiked or duplicated
*	A = Accredited, N = Not Accredited or Accreditation not available
DF	Dilution Factor - the factor applied to the reported data due to sample preparation, dilution, or moisture content
MDL	Method Detection Limit - The minimum concentration of a substance (or analyte) that can be measured and reported with 99% confidence that the analyte concentration is greater than zero. Based on standard deviation of replicate spiked samples take through all steps of the analytical procedure following 40 CFR Part 136 Appendix B.
SDL	Sample Detection Limit - The minimum concentration of a substance (analyte) that can be measured and reported with 99% confidence that the analyte concentration is greater than zero. The SDL is an adjusted limit thus sample specific and accounts for preparation weights and volumes, dilutions, and moisture content of soil/sediments. If there are no sample specific parameters, the MDL = SDL.
MRL	Method Reporting Limit - Analyte concentration that corresponds to the lowest level lab reports with confidence in accuracy of quantitation and without qualification (i.e. J-flagged). The MRL is at or above the lowest calibration standard.
LRL	Laboratory Reporting Limit - Analyte concentration that corresponds to the lowest level lab reports with confidence in accuracy of quantitation and without qualification (i.e. J-flagged). The LRL is an adjusted limit thus sample specific and accounts for preparation weights and volumes, dilutions, and moisture content of soil/sediments. If there are no sample specific parameters, the MRL = LRL.

CHAIN OF CUSTODY RECORD
North Water District Laboratory Services
130 S. Trade Center Pkwy, Conroe Tx 77385
(936) 321-6060 - lab@nwdls.com TCEQ T104704238-23-39

23E4380 Page 1 of 3

Lab PM : Deens	Lab PM : Deena Higginbotham	<u>a.</u>	oject Name: Treschwi	g JP - Non Potable -	Project Name: Treschwig JP - Non Potable - Sewage Sludge Annual		Schedule Comments:
Inframark Gregory Camp 32259 Morton Road Brookshire, TX 77423 Phone: (281) 902-0966	coad 77423 22-0966	g ii N O	Project Comments: 4414 Treschwig Rd - Spring 77373 Gate 1515 in the event of on-site chemical release call 911 and operator Laura Zito – 832-302-4323 Chris - 713-657-5188 EDP helper	Treschwig Rd - Spring 77373 Gate 1515 nical release call 911 and operator Laura helper	7373 Gate 1515 d operator Laura		
Sample ID Co	Collection Point	Date/Time	Date/Time Sampled	Sample Type	Container	Analysis/Preservation	Field Results
23E4380-01 Dig	Digester 1		65/22/2023	S Grab	A Glass 250mL w/ Teflon-lined Lid B HDPE IC 250mL C HDPE MET 250mL D HDPE WC 250mL E Glass Wide 1L w/ Teflon-lined Lid F HDPE 250mL G Glass VOA 60mL	6010 TCLP TCLP TCLP TCLP SP 6010 CP TCLP 6010 TLP TLP TLP TCLP COP TCLP TCLP TCLP TCLP TCLP TCLP TCLP TCLP	
						PCB-8082 4°C SVOA-TCLP 4°C TCLP Bottle 4°C TCLP ZHE 4°C VOA-TCLP 4°C V	

CHAIN OF CUSTODY RECORD
North Water District Laboratory Services
130 S. Trade Center Pkwy, Conroe Tx 77385
(936) 321-6060 - lab@nwdis.com TCEQ T104704238-23-39

Page 2 of 3

23E4380

						(Continued)
Lab Fin : Deena Higginbotham		roject Name: Treschwi	ig JP - Non Potable	Project Name: Treschwig JP - Non Potable - Sewage Sludge Annual		
Inframark Gregory Camp 32259 Morton Road Brookshire, TX 77423 Phone: (281) 902-0966	P. ii Zili	Project Comments: 4414 Treschwig Rd - Spring 77373 Gate 1515 in the event of on-site chemical release call 911 and operator Laura Zito - 832-302-4323 Chris - 713-657-5188 EDP helper	reschwig Rd - Spring cal release call 911 a elper	77373 Gate 1515 nd operator Laura		Schedule Comments:
23E4380-02 Digester 2		5/22/2023	S grab	A Glass 250mL w/ Teflon-lined Lid	Arsenic ICP 6010 4°C	
		12		B HDPE IC 250mL		
		58		C HDPE MET 250mL	Cadmium ICP 6010 4°C	
				E Glass Wide 1L w/		
		120				
				F HDPE 250mL	Chromium ICP ICLP 4°C	
				G Glass VOA 60mL	Ha-7471	
					TCLP	
		YK.				
					Lead ICP TCLP 4°C	
		300			9 6010	
		⊋				
		, ,			0	
		192	-			-
		7,633			Selenium ICP TCLP 4°C	
		W			Silver ICP TCLP 4°C	
		2.0			rus ICP 60	
					HERB-TCI B	
		-200				
		200			•	
		1993			TCLP Bottle 4°C	
					TCLP ZHE 4°C	
					VOA-TCLP 4°C	
					NH3-N T-350.2 4°C	Man
					C 9056	
					3	
					13-2340 G 4°C	

CHAIN OF CUSTODY RECORD
North Water District Laboratory Services
130 S. Trade Center Pkwy, Conroe Tx 77385
(936) 321-5060 - lab@nwdls.com

TCEQ T104704238-23-39

23E4380 Page 3 of 3

(Continued)

Lab PM : Deena Higginbotham	Project Name : Treschwig JP - Non Potable - Sewage Sludge Annual	Schedule Comments:
Inframark Gregory Camp 32259 Morton Road Brookshire, TX 77423 Phone: (281) 902-0966	Project Comments: 4414 Treschwig Rd - Spring 77373 Gate 1515 in the event of on-site chemical release call 911 and operator Laura Zito — 832-302-4323 Chris - 713-657-5188 EDP helper	

Field Remarks:			Lab Preservation: H2SO4	2SO4 HNO3	NaOH Other	er
			Write ID Below)			
Sampler (Signature)	Relinquished By: (Signature)		Date/Time	Received By: (Signature)		Date/Time
Print Name Sub TSwish	Relinquished By. (Signature)		Date/Time	Received By: (Signature)		Date/Time
Affiliation NWN S	Relinquished To Lab By: (Signature)		S-22-23 (g)	Received for Laboratory By: (Signature)	iture) A	Date/Time
Custody Seal: Yes / No CC Container Intact: Yes / No Ap	COC Labels Agree: Yes / No Appropriate Containers: Yes / No	Appropriate Volume: Yes / No Coolers Intact: Yes / No		Received on Ice: Yes / No Samples Accepted: Yes / No	Temperature: Thermometer ID:	O.
Spring South					wko NWDIS COC 1.8 Revision 4.1 Effective: 2/17/2022	sion 4.1 Effective: 2/17/2

Laboratory Analysis Report

Total Number of Pages:

Job ID: 23053102

10100 East Freeway, Suite 100, Houston, TX 77029 tel: 713-453-6060, fax: 713-453-6091, http://www.ablabs.com

Client Project Name: 23E4380

Report To:

Client Name:

Attn:

NWDLS

Deena Higginbotham

130 S Trade Center Pkwy

Client Address: City, State, Zip:

Conroe, Texas, 77385

P.O.# .: 23E4380

Sample Collected By:

Date Collected: 05/22/23

A&B Labs has analyzed the following samples...

Client Sample ID

Matrix

A&B Sample ID

23E4380-01

Sludae

23053102.01

23E4380-02

Sludge

23053102.02

Released By: Amanda Shute

Title:

Project Manager

Date:

6/5/2023

This Laboratory is NELAP (T104704213-23-31) accredited. Effective: 04/13/2023; Expires: 3/31/2024

Scope: Non-Potable Water, Drinking Water, Air, Solid, Biological Tissue, Hazardous Waste

I am the laboratory manager, or his/her designee, and I am responsible for the release of this data package. This laboratory data package has been reviewed and is complete and technically compliant with the requirements of the methods used, except where noted in the attached exception reports. I affirm, to the best of my knowledge that all problems/anomalies observed by this laboratory (and if applicable, any and all laboratories subcontracted through this laboratory) that might affect the quality of the data, have been identified in the Laboratory Review Checklist, and that no information or data have been knowingly withheld that would affect the quality of the data.

This report cannot be reproduced, except in full, without prior written permission of A&B Labs. Results shown relate only to the items tested. Results apply to the sample as received. Samples are assumed to be in acceptable condition unless otherwise noted. Blank correction is not made unless otherwise noted. Air concentrations reported are based on field sampling information provided by client. Soil samples are reported on a wet weight basis unless otherwise noted. Uncertainty estimates are available on request.

Page 1 of 8

ab-q210-0321

Date Received: 05/26/2023 13:25

Page 32 of 39

LABORATORY TERM AND QUALIFIER DEFINITION REPORT

Job ID: 23053102

Date:

6/5/2023

General Term Definition

Post Weight Post-Wt Back-Wt Back Weight parts per million Below Reporting Limit ppm BRL Pre-Wt Previous Weight cfu colony-forming units Qualifier Conc. Concentration Regulatory Limit RegLimit D.F. **Dilution Factor** Relative Percent Difference RPD Front-Wt Front Weight Reporting Limit **RptLimit** LCS Laboratory Check Standard Sample Detection Limit Laboratory Check Standard Duplicate SDL LCSD Surrogate surr MS Matrix Spike T Time Matrix Spike Duplicate MSD TNTC Too numerous to count MW Molecular Weight

Estimation. Below calibration range but above MDL

Qualifier Definition

J

M2

Matrix Spike and/or Matrix Spike Duplicate recovery is below laboratory control limits due to matrix interference."The sample randomly selected as QC for this batch was not part of your project. Therefore, this sample matrix is not applicable to your project samples."

MQL

Minimum Quantitation Limit

LABORATORY TEST RESULTS

Job ID: 23053102

Date 6/5/2023

Client Name:

NWDLS

Project Name:

23E4380

Attn: Deena Higginbotham

Client Sample ID:

23E4380-01

Date Collected:

Time Collected: Other Information: 05/22/23

08:40

Job Sample ID:

23053102.01

Sample Matrix

Sludge

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	SQL	Reg Limit	0	Date Time	Analyst
SW-846 8260C	TCLP VOC						Transition of the second	٧.	Date Time	Arialyst
	1,1-Dichloroethylene	< 0.017	mg/L	1.00	0.017	0.125	0.6	U	05/31/23 04:09	ZQ
	1,2-Dichloroethane	<0.026	mg/L	1.00	0.026	0.125	0.5	U	05/31/23 04:09	ZQ
	1,4-Dichlorobenzene	<0.018	mg/L	1.00	0.018	0.125	7.5	U	05/31/23 04:09	ZQ
	Benzene	< 0.016	mg/L	1.00	0.016	0.125	0.5	U	05/31/23 04:09	ZQ
	Carbon tetrachloride	<0.043	mg/L	1.00	0.043	0.125	0.5	U	05/31/23 04:09	ZQ
	Chlorobenzene	< 0.017	mg/L	1.00	0.017	0.125	70	U	05/31/23 04:09	ZQ
	Chloroform	<0.018	mg/L	1.00	0.018	0.125	6	U	05/31/23 04:09	ZQ
	MEK	< 0.072	mg/L	1.00	0.072	0.125	200	U	05/31/23 04:09	ZQ
	Tetrachloroethylene	< 0.017	mg/L	1.00	0.017	0.125	0.7	U	05/31/23 04:09	ZQ
	Trichloroethylene	<0.020	mg/L	1.00	0.020	0.125	0.5	U	05/31/23 04:09	ZQ
	Vinyl Chloride	< 0.021	mg/L	1.00	0.021	0.125	0.2	U	05/31/23 04:09	ZQ
	1,2-Dichloroethane-d4(surr)	104	%	1.00		70-130			05/31/23 04:09	ZQ
	Dibromofluoromethane(surr)	98.6	%	1.00		70-130			05/31/23 04:09	ZQ
	p-Bromofluorobenzene(surr)	96.7	%	1.00		70-130			05/31/23 04:09	ZQ
	Toluene-d8(surr)	94.2	%	1.00		70-130			05/31/23 04:09	ZQ

ab-q212-0321

LABORATORY TEST RESULTS

Job ID: 23053102

6/5/2023 Date

Attn: Deena Higginbotham

Client Name:

NWDLS

Project Name:

23E4380

Client Sample ID: Date Collected:

05/22/23

Time Collected:

08:40

Job Sample ID: 23E4380-02

23053102.02

Sample Matrix

Sludge

% Moisture

Other Informat	08.40 ion:						7. 1711111			
Test Method	Parameter/Test Description	Result	Units	DF	SDL	SQL	Reg Limit	Q	Date Time	Analyst
SW-846 8260C	TCLP VOC									
	1,1-Dichloroethylene	< 0.017	mg/L	1.00	0.017	0.125	0.6	U	05/31/23 04:27	ZQ
	1,2-Dichloroethane	< 0.026	mg/L	1.00	0.026	0.125	0.5	U	05/31/23 04:27	ZQ
	1,4-Dichlorobenzene	<0.018	mg/L	1.00	0.018	0.125	7.5	U	05/31/23 04:27	ZQ
	Benzene	< 0.016	mg/L	1.00	0.016	0.125	0.5	U	05/31/23 04:27	ZQ
	Carbon tetrachloride	< 0.043	mg/L	1.00	0.043	0.125	0.5	U	05/31/23 04:27	ZQ
	Chlorobenzene	< 0.017	mg/L	1.00	0.017	0.125	70	U	05/31/23 04:27	ZQ
	Chloroform	<0.018	mg/L	1.00	0.018	0.125	6	U	05/31/23 04:27	ZQ
	MEK	< 0.072	mg/L	1.00	0.072	0.125	200	U	05/31/23 04:27	ZQ
	Tetrachloroethylene	< 0.017	mg/L	1.00	0.017	0.125	0.7	U	05/31/23 04:27	ZQ
	Trichloroethylene	<0.020	mg/L	1.00	0.020	0.125	0.5	U	05/31/23 04:27	ZQ
	Vinyl Chloride	< 0.021	mg/L	1.00	0.021	0,125	0.2	U	05/31/23 04:27	ZQ
	1,2-Dichloroethane-d4(surr)	103	%	1.00		70-130			05/31/23 04:27	ZQ
	Dibromofluoromethane(surr)	95.8	%	1.00		70-130			05/31/23 04:27	ZQ
	p-Bromofluorobenzene(surr)	95.4	%	1.00		70-130			05/31/23 04:27	ZQ
	Toluene-d8(surr)	94.9	%	1.00		70-130			05/31/23 04:27	ZQ

ab-q212-0321

QUALITY CONTROL CERTIFICATE

Job ID: 23053102

Date:

6/5/2023

Analysis : TCLP VOC

Method:

SW-846 8260C

Reporting Units : mg/L

QC Batch ID : Qb23053101

Created Date: 05/30/23

Created By : Zeeshan

Samples in This QC Batch : 23053102.01,02

Prep Method: SW-846 5030C

Prep Date: 05/30/23 10:00 Prep By:

Zeeshan

TCLP Prep:

Sample Preparation: PB23053101 PB23052801

Prep Method: SW-846 1311

Prep Date: 05/27/23 13:26 Prep By:

Msoria

Parameter	CAS #	Result	Units	D.F.	MQL	MDL		Qua
1,1-Dichloroethylene	75-35-4	< MDL	mg/L	1.00	0.125	0.0165		Quan
1,2-Dichloroethane	107-06-2	< MDL	mg/L	1.00	0.125	0.026	inner -	
1,4-Dichlorobenzene	106-46-7	< MDL	mg/L	1.00	0.125	0.018		
Benzene	71-43-2	< MDL	mg/L	1.00	0.125	0.0158		
Carbon tetrachloride	56-23-5	< MDL	mg/L	1.00	0.125	0.0433		
Chlorobenzene	108-90-7	< MDL	mg/L	1.00	0.125	0.0173		
Chloroform	67-66-3	< MDL	mg/L	1.00	0.125	0.018		
MEK	78-93-3	< MDL	mg/L	1.00	0.125	0.0715		- 11
Tetrachloroethylene	127-18-4	< MDL	mg/L	1.00	0.125	0.0165		
Trichloroethylene	79-01-6	< MDL	mg/L	1.00	0.125	0.0198		
Vinyl Chloride	75-01-4	< MDL	mg/L	1.00	0.125	0.0205		
1,2-Dichloroethane-d4(surr	17060-07-0	106	%	1.00	220000			
Dibromofluoromethane(surr	1868-53-7	104	%	1.00				
p-Bromofluorobenzene(surr	460-00-4	95.4	%	1.00			_	
Toluene-d8(surr)	2037-26-5	94.5	%	1.00				

QC Type: LCS and L	CSD									
Parameter	LCS Spk Added	LCS Result	LCS % Rec	LCSD Spk Added	LCSD Result	LCSD % Rec	RPD	RPD CtrlLimit	%Recovery CtrlLimit	Qual
1,1-Dichloroethylene	1	1.01	101	1	0.968	96.8	3.8	35	70-130	T
1,2-Dichloroethane	1.	0.985	98.5	1	0.945	94.5	4.1	35	70-130	1
1,4-Dichlorobenzene	1	0.934	93.4	1	0.911	91.1	2.5	35	70-130	
Benzene	1	1.01	101	1	0.952	95.2	5.4	35	70-130	
Carbon tetrachloride	1	1.04	104	1	0.994	99.4	4.1	35	70-130	
Chlorobenzene	1	1.04	104	1	0.969	96.9	7	35	70-130	
Chloroform	1	0.994	99.4	1	0.961	96.1	3.4	35	70-130	
MEK	1	0.802	80.2	1	0.728	72.8	9.7	35	70-130	1
Tetrachloroethylene	1	1.06	106	1	0.980	98	8	35	70-130	
Trichloroethylene	1	1.05	105	1	0.993	99.3	5.9	35	70-130	
Vinyl Chloride	1	0.943	94.3	1	0.925	92.5	1.9	35	70-130	

QC Type: MS and MS	D										
QC Sample ID: 2305	2883.01										
Parameter	Sample Result	MS Spk Added	MS Result	MS % Rec	MSD Spk Added	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLimit	Qual
1,1-Dichloroethylene	BRL	1	0.928	92.8						70-130	
										ah-n	213-03

Refer to the Definition page for terms.

QUALITY CONTROL CERTIFICATE

Job ID: 23053102

05/30/23

Date:

6/5/2023

Analysis : TCLP VOC

Method:

SW-846 8260C

Reporting Units: mg/L

QC Batch ID: Qb23053101

Created Date:

Created By: Zeeshan

Samples in This QC Batch: 23053102.01,02

QC Type: MS and MS		÷									
QC Sample ID: 2305 Parameter	2883.01 Sample Result	MS Spk Added	MS Result	MS % Rec	MSD Spk Added	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLimit	Qual
1,2-Dichloroethane	BRL	1	0.928	92.8				,7/1" . H		70-130	
1,4-Dichlorobenzene	BRL	1	0.854	85.4						70-130	
Benzene	BRL	1	0.919	91.9						70-130	
Carbon tetrachloride	BRL	1	0.964	96.4	die bei				4 11	70-130	
Chlorobenzene	BRL	1	0.940	94						70-130	
Chloroform	BRL	1	0.923	92.3						70-130	
MEK	BRL	1	0.667	66.7						70-130	M2
Tetrachloroethylene	BRL	1	0.888	88.8						70-130	
Trichloroethylene	BRL	1	0.983	98.3						70-130	
Vinyl Chloride	BRL	1	0.873	87.3						70-130	

ab-q213-0321

SUBCONTRACT **ORDER**

Sending Laboratory:

North Water District Laboratory Services, Inc.

130 South Trade Center Parkway

Conroe, TX 77385 Phone: 936-321-6060 Fax: 936-321-6061

Project Manager: Deena Higginbotham

Subcontracted Laboratory:

A & B Labs

10100 East Freeway, Suite 100

Houston, TX 77029 Phone: (713) 453-6060 Fax: (713) 453-6091

Work Order: 23E4380

Analysis Due Expires Comments

Sample ID: 23E4380-01 Solid Sampled: 05/22/2023 08:40

TCLP ZHE

06/05/2023 06/05/2023 08:40 Auto-Included

VOA-TCLP

06/05/2023 06/05/2023 08:40

Analyte(s):

1,1-Dichloroethylene

1.4 Dichlorobenzene (p-Dichlorobenzene)

Benzene Chloroform Toluene-d8-surr

Containers Supplied:

1,2-Dichloroethane (Ethylene dichloride) 2-Butanone (Methyl ethyl ketone, MEK)

Carbon tetrachloride Dibromofluoromethane-surr

Trichloroethene (Trichloroethylene)

1,2-Dichloroethane-d4-surr 4-Bromoflurobenzene-surr

Chlorobenzene

Tetrachloroethylene (Perchloroethylene)

Vinyl chloride (Chloroethene)

Sample ID: 23E4380-02 Solid Sampled: 05/22/2023 08:40

TCLP ZHE

06/05/2023

06/05/2023 08:40 Auto-Included

VOA-TCLP

Analyte(s):

1,1 Dichloroethylene

1,4-Dichlorobenzene (p-Dichlorobenzene)

621r

Benzene Chleroform

Toluene-d8-surr

06/05/2023

06/05/2023 08:40

1,2-Dichloroethane (Ethylene dichloride)

2-Butanone (Methyl ethyl ketone, MEK)

Carbon tetrachloride

Dibromofluoromethane-surr

Trichloroethene (Trichloroethylene)

1.2-Dichloroethane-d4-surr

4 Bromoffurobenzene-surr

Chlorobenzene

Tetrachloroethylene (Perchloroethylene)

Vinvi chloride (Chloroethene)

Containers Supplied:

Received By

08/26/23 1325

Date

3.9

(a-b)

Sample Condition Checklist

A&I	3 JobID : 23053102	Date Received: 05/26/2023	ime Received : 1:2	25PM		
Clie	nt Name : NWDLS	-				
Ter	perature : 3.9°C	Sample pH: NA				
The	rmometer ID : IR5	pH Paper ID: NA				
Pe	servative :					
		Check Points		Yes	No	N/A
1.	Cooler Seal present and signed.				Х	
2.	Sample(s) in a cooler.			Х		
3.	If yes, ice in cooler.			Х		
4.	Sample(s) received with chain-of-custo	ody.		Х		
5.	C-O-C signed and dated.			Х		
6.	Sample(s) received with signed sample	e custody seal.			X	
7.	Sample containers arrived intact. (If N	o comment)		х		
8.	Water Soil Liquid Slu Matrix:	udge Solid Cassette Tube Bulk Badge	Food Other			
9.	Samples were received in appropriate	container(s)	9	X		
10.	Sample(s) were received with Proper p	reservative				х
11.	All samples were tagged or labeled.			Х		
12.	Sample ID labels match C-O-C ID's.			Х		
13.	Bottle count on C-O-C matches bottles	found.		Х		
14.	Sample volume is sufficient for analyse	es requested.		Х		
15.	Samples were received with in the hole	f time.		X		
16.	VOA vials completely filled.					Х
17.	Sample accepted.			Х		
18.	Has client been contacted about sub-o	ut				X
	nments: Include actions taken to resol shows solid, recieved sludge. ~JE 05/26/2					
COC	snows soliu, recieved sludge. ~JE 05/26/2	3				

Received by: Jedralin

Check in by/date: ASmith / 05/26/2023

ab-s005-0321

Page 39 of 39

Phone: 713-453-6060

www.ablabs.com

December 21, 2023

City of Waller Waller, City of 1218 Farr St Waller, TX 77484

RE: Waller Digester

4/5 12/2/12 KUROPAN

Enclosed are the results of analyses for samples received by the laboratory on 11/28/23 15:40, with Lab ID Number C3K7384. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mark Bourgeois

Special Projects Manager

ENTERED DEC 2 8 2023

Pass

☐ Sludge Manager

Master Spreadsheet

TCLP

PCE

Metals F/S 2 & Solid

Waller, City of 1218 Farr St Waller TX, 77484

Case Narrative

40 CFR 503 Criterion for Fecal Coliform Class B = 2,000,000 MPN/g. for Class A = 1,000 MPN/g 40 CFR 503 Criterion for Vector Class B = <1.5mg/O2/g Solids/hr *Fecal Coliform result is a geometric mean of seven individual samples.

LABORATORY ANALYTICAL REPORT

Project:

Waller Digester b

Client Matrix:

Waste

Sample Date & Time: 11/28/2023 13:25

Collector: JMY

Sample Type:Grab

Print Date: 12/21/2023

Digester C3K7384-01 (Waste)

Analyte	Result	Reporting Limit	Units	Nelac Status	Batch	Analyzed Date & Time	Method	Note
		Microt	piological	<u>Lab</u>			7	
Feeal Coliform IDEXX	147687 1.0	1000 0.1	mpn/gram mg O2/hr/g	N	B3K4594 B3K4740	11/28/2023 16:05 11/28/2023 16:55	Colifert 18 TAC 312.83(b)(4)	
		<u> </u>	Vet Lab					
ercent Solid	1.5	0.1	%	А	B3K4607	11/29/2023 16:03	SM 2540G	
olatile Percent Solid	59.8	0.1	%	A	B3K4603	11/30/2023 14:09	SM 2540G	

Waller, City of 1218 Farr St Waller TX, 77484

Colilert 18 - Quality Control

Eastex Environmental Laboratory - Coldspring

	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Vezatt	Limit	O.M.W				••••			
Batch B3K4594 - No Prep Micro	Prepared	11/28/23 16	:05		·					
Blank (B3K4594-BLK1)				Analyzed:	11/28/2023	4:05:00PM	1			
Fecal Coliform IDEXX	ND	1000	mpn/gram							
Duplicate (B3K4594-DUP1)	Sou	rce: C3K465	9-01	Analyzed:	11/28/2023	4:05:00PN	1			
Fecal Coliform IDEXX	98700	1000	mpn/gram		148300			40.2	200	
Batch B3K4603 - No Prep	Prepared	: 11/30/23 14	:09	4						
Blank (B3K4603-BLK1)				Analyzed:	11/30/2023	2:09:00PN	1			
Volatile Percent Solid	ND	0.1	%							
Duplicate (B3K4603-DUP1)	So	arce: C3K690	5-01	Analyzed:	: 11/30/2023	2:09:00PN	1			
Voiatile Percent Solid	82.3	0.1	%		83.0			0.847	10	
Batch B3K4607 - No Prep	Prepared	: 11/29/23 16	:03							
Blank (B3K4607-BLK1)				Analyzed	: 11/29/2023	4:03:00PN	1			
Percent Solid	ND	1.0	%							
Duplicate (B3K4607-DUP1)	So	urce: C3K690	5-01	Analyzed	: 11/29/2023	4:03:00PN	И			
Percent Solid	1.30	0.1	%		1.30			0.00	20	
Batch B3K4740 - No Prep Micro	Prepared	: 11/28/23 16	5:55							
Blank (B3K4740-BLK1)				Analyzed	: 11/28/2023	4:55:00PN	M			
Vector	ND	0.1	mg O2/hr/g							
Duplicate (B3K4740-DUP1)	So	urce: C3K738	4-01	Analyzed	1: 11/28/2023	4:55:00PI	M			
Vector	0.800	0.1	mg O2/hr/g		1.00			22.2	200	

Waller, City of 1218 Farr St Waller TX, 77484

Notes and Definitions

DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

December 12, 2023

City of Waller Waller, City of 1218 Farr St Waller, TX 77484

RE: Waller Digester

Enclosed are the results of analyses for samples received by the laboratory on 11/28/23 15:40, with Lab ID Number C3K6938. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mark Bourgeois

Special Projects Manager

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

8

Attn: Mark Bourgeois Eastex Environmental Laboratory Inc. PO BOX 1089

Coldspring, Texas 77331

Generated 12/8/2023 4:07:05 PM

JOB DESCRIPTION

Waller, City of

JOB NUMBER

860-62517-1

Eurofins Houston 4145 Greenbriar Dr Stafford TX 77477

Eurofins Houston

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

50y

Generated 12/8/2023 4:07:05 PM

Authorized for release by Sylvia Garza, Project Manager Sylvia Garza@et.eurofinsus.com (832)544-2004 4

5

6

8

9

10

12

10

16

Table of Contents

Cover Page	. 4010	. 0	,			re	11	rs)						
Table of Contents Definitions/Glossary				• •		٠.	٠.				٠.	٠.	•		1
Definitions/Glossary			•	٠.,	٠.	٠.	٠.	٠.			•		٠.		3
Definitions/Glossary Case Narrative	*******		• •		• •		• •	٠.			٠.		• •		4
Case Narrative		ion out	• • •	12.25	• •		٠.	٠.	٠.	٠.		• 19		• •	5
Detection Summary Client Sample Results			• • •	• 100		٠,	• •			٠.	٠.	٠.			6
Client Sample Results .			• • •	• •		٠.			٠	٠.	٠.			٠.,	7
Surrogate Summary QC Sample Results	******			• •	٠.,		٠.	• •	٠.	٠.	٠.	٠.		٠.	9
QC Sample Results	· · · · · · · · ·		• • •	• • •		٠.			٠						12
QC Association Summa	y				• •	٠.			٠.	٠,	٠,		٠.	٠.	23
Lab Chronicle			:		٠.,			• •	٠.		٠.			٠.	27
ocitineation Summary.			2 2 12												28
Method Summary			٠.,		٠.		• :		٠.						29
ourniple ournitially					2 V27 IS										30
chain of Custody			٠.					٠.							31
Receipt Checklists	10														

Ē	No. of Lot
ı	9
ı	
'n	MONTH NAME OF THE PARTY NAME O

201	186	18
182	330	.B
HW	mayq	90

40	1
	1
	9
40	H

Definitions/Glossary

Client: Eastex Environmental Laboratory Inc.

Job ID: 860-62517-1

Project/Site: Waller, City of

Qualifiers

GC/MS Semi VOA

Qualifier	Qualifier	Description
	-	

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

TEQ

TNTC

Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count

Glossary	TO STATE OF THE PARTY OF THE PA
Abbreviation	These commonly used abbreviations may or may not be present in this report.
п	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
	record of the Control

Case Narrative

Client: Eastex Environmental Laboratory Inc. Project/Site: Waller, City of

Job ID: 860-62517-1

Job ID: 860-62517-1

Laboratory: Eurofins Houston

Narrative

Job Narrative 860-62517-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 11/30/2023 9:58 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.9°C

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC/MS Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Herbicides

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Pesticides

Method 8081B: The DCB Decachlorobiphenyl (Surr) surrogate recovery for the following samples was outside acceptance limits (low biased) on the primary column: (LCS 860-133535/2-A) and (LCSD 860-133535/3-A). The recovery is within acceptance limits on the other column, indicating that the extraction process was in control.

Method 8081B: The following sample was diluted due to the nature of the sample matrix: Waller Digester c Digester (860-62517-1). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Mark Mark

3

4

6

7

8

10

12

14

15

Detection Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: Waller, City of

Job ID: 860-62517-1

Client Sample ID: Waller Digester

	1 1 0 1 10 000 00547.4
ent Sample ID: Waller Digester c Digester	Lab Sample ID: 860-62517-1
elit Sample ib. Waller Digester o Bigester	

1	Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Ргер Туре
	Barium	0.087	A STATE OF THE STA	0.050		mg/L	1		6010D	TCLP

This Detection Summary does not include radiochemical test results.

Client Sample Results

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62517-1

Client Sample ID: Waller Digester c Digester

Date Collected: 11/28/23 13:25 Date Received: 11/30/23 09:58 Lab Sample ID: 860-62517-1

Matrix: Water

Method: SW846 8260C - Volat Analyte	Result	Qualifier	RL	MDL	Unit	D			
Benzene	ND		0.050		mg/L	<u>_</u> .	Prepared	Analyzed	Dil Fac
Carbon tetrachloride	ND		0.25					12/04/23 15:13	50
Chlorobenzene	ND		0.050		mg/L			12/04/23 15:13	50
Chloroform	ND		1117/7/E		mg/L			12/04/23 15:13	50
1,2-Dichloroethane	ND		0.050		mg/L			12/04/23 15:13	50
1,1-Dichloroethene	ND		0.050		mg/L			12/04/23 15:13	50
2-Butanone	ND ND		0.050		mg/L			12/04/23 15:13	50
Tetrachloroethene	ND ND		2.5		mg/L			12/04/23 15:13	50
Trichloroethene			0.050		mg/L			12/04/23 15:13	50
Vinyl chloride	ND		0.25		mg/L			12/04/23 15:13	0.51
The state of the s	ND		0.10		mg/L			12/04/23 15:13	50 50
Surrogate	%Recovery	Qualifier	Limits					12/04/20 10:10	50
1,2-Dichloroethane-d4 (Surr)	105	Qualition .	63 - 144			-	Prepared	Analyzed	DII Fac
4-Bromofluorobenzene (Surr)	102							12/04/23 15:13	50
Dibromofluoromethane (Surr)	101		74 - 124					12/04/23 15:13	50
Toluene-d8 (Surr)	97		75 - 131					12/04/23 15:13	50
- Control Color Color Colors (Colors Colors	91		80 - 120					12/04/23 15:13	50

_ roluene-as (Surr)	97		80 - 120					12/04/23 15:13	50
								12/04/23 15:13	50
Method: SW846 8270D - Sen	nivolatile Organic (Compounds	s (GC/MS) - TCL	Р					
1,4-Dichlorobenzene		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND		0.13		mg/L		12/04/23 06:37	12/04/23 15:05	5
2,4,6-Trichlorophenol	ND		0.13		mg/L		12/04/23 06:37	12/04/23 15:05	5
2,4-Dinitrotoluene	ND		0.13		mg/L		12/04/23 06:37	12/04/23 15:05	5
2-Methylphenol	ND		0.13		mg/L		12/04/23 06:37	12/04/23 15:05	5
Hexachlorobenzene	ND		0.13		mg/L		12/04/23 06:37	12/04/23 15:05	5
Hexachlorobutadiene	ND		0.13		mg/L		12/04/23 06:37	12/04/23 15:05	5
Hexachloroethane	ND		0.13		mg/L		12/04/23 06:37	12/04/23 15:05	5
Nitrobenzene	ND		0.13		mg/L		12/04/23 06:37	12/04/23 15:05	5
Pentachlorophenol	ND		0.13		mg/L		12/04/23 06:37	12/04/23 15:05	5
Pyridine	ND		0.25		mg/L		12/04/23 06:37	12/04/23 15:05	5
0.05 W.0.05 0.052	ND		0.25		mg/L		12/04/23 06:37	12/04/23 15:05	5
3 & 4 Methylphenol	ND		0.25		mg/L		12/04/23 06:37	12/04/23 15:05	5
Surrogate	%Recovery	Qualifier	Limits				100		9
2,4,6-Tribromophenol (Surr)	48		31 - 132			9	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	52		29 - 112				12/04/23 06:37	12/04/23 15:05	5
2-Fluorophenol (Surr)	45		21 - 114				12/04/23 06:37	12/04/23 15:05	5
Nitrobenzene-d5 (Surr)	48		26 - 110				12/04/23 06:37	12/04/23 15:05	5
p-Terphenyl-d14 (Surr)	85		20 - 110				12/04/23 06:37	12/04/23 15:05	5
Phenol-d5 (Surr)	38						12/04/23 06:37	12/04/23 15:05	5
7.00	36		16 - 117				12/04/23 06:37	12/04/23 15:05	5

	nochlorine Pesticides (GC) - TCLP - DL						
Analyte	Result Qualit	ier RL	MDL	Unit	D	Prepared	Analyzed	DII E
Chlorodane	ND	0.010		mg/L		12/04/23 08:52	12/05/23 11:31	Dil Fa
Endrin	ND	0.00051		mg/L		12/04/23 08:52	Andrews Allend	1
Heptachlor	ND	0.00051		mg/L		12/04/23 08:52	12/05/23 11:31	1
Heptachlor epoxide	ND	0.00051		mg/L			12/05/23 11:31	1
gamma-BHC (Lindane)	ND	0.00051				12/04/23 08:52	12/05/23 11:31	1
Methoxychlor	ND			mg/L		12/04/23 08:52	12/05/23 11:31	10
Toxaphene	273/2731	0.00051		mg/L		12/04/23 08:52	12/05/23 11:31	1
AND CONTROLLING THE	ND	0.010		mg/L		12/04/23 08:52	12/05/23 11:31	1

Eurofins Houston

2

4

6

8

10

12

13

14 45

Client Sample Results

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62517-1

Lab Sample ID: 860-62517-1

Matrix: Water

Client Sample ID: Waller Digester c Digester

Date Collected: 11/28/23 13:25

Date Received: 11/30/23 09:58

Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	30	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	28 - 94					12/04/23 08:52	12/05/23 11:31	10
Tetrachloro-m-xylene	72		52 - 134					12/04/23 08:52	12/05/23 11:31	10
Method: SW846 8151A - Herbid	folder (CC) TO									alla
Analyte										
2,4-D	ND	Qualifier	RL	MDL	Unit		D	Prepared	Analyzed	Dil Fac
2,4,5-TP (Silvex)			0.00020		mg/L			12/05/23 14:58	12/07/23 14:50	1
2,4,5-1P (Silvex)	ND		0.00020		mg/L			12/05/23 14:58	12/07/23 14:50	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	90		42 - 150				,	12/05/23 14:58	12/07/23 14:50	1
Method: SW846 6010D - Metals Analyte	Result	Qualifier	RL	MDL	Unit		D	Prepared	Analyzed	Dil Fac
Arsenic	ND	Augustus (Carlotte	0.050		mg/L	·	-	12/04/23 10:00	12/06/23 11:23	1
Barium	0.087		0.050		mg/L			12/04/23 10:00	12/06/23 11:23	,
Cadmium	ND		0.025		mg/L			12/04/23 10:00	12/06/23 11:23	day)
Chromium	ND		0.050		mg/L			12/04/23 10:00	12/06/23 11:23	
Lead	ND		0.050		mg/L			12/04/23 10:00	12/06/23 11:23	
Nickel	ND		0.050		mg/L			12/04/23 10:00	12/06/23 11:23	1
Selenium	ND		0.15		mg/L			12/04/23 10:00	12/06/23 11:23	
Silver	ND		0.10		mg/L			12/04/23 10:00		1
Beryllium	ND		0.020		mg/L			12/04/23 10:00	12/06/23 11:23 12/06/23 11:23	3
Antimony	ND		0.10		mg/L			12/04/23 10:00	A SERVICE STANDARD	1
M-11 - 1. OUIO 40 74704 . M		area.						12104123 10.00	12/06/23 11:23	1
Method: SW846 7470A - Mercui										
Analyte		Qualifier	RL	MDL	Unit	Leady-	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020		mg/L		_	12/03/23 21:45	12/04/23 17:10	

Method: SW846 7470A - Mercury	(CVAA) - TCLI	5							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020		mg/L		12/03/23 21:45	12/04/23 17:10	1

2

Surrogate Summary

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62517-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water

Prep Type: Total/NA

				Percent Sur	rrogate Recover	y (Acceptance Limits)
Lab Sample ID	Client Sample ID	DCA (63-144)	BFB (74-124)	DBFM (75-131)	TOL (80-120)	th are
CS 860-133533/3	Lab Control Sample	101	104	106	99	
CSD 860-133533/4	Lab Control Sample Dup	101	102	106	98	
MB 860-133533/9	Method Blank	104	102	104	98	

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

Prep Type: TCLP

				Percent Sur	rogate Recovery (Ac	ceptance Limits)	
		DCA	BFB	DBFM	TOL		
Lab Sample ID	Client Sample ID	(63-144)	(74-124)	(75-131)	(80-120)		
860-62517-1	Waller Digester c Digester	105	102	101	97		
860-62591-A-4-C MS	Matrix Spike	102	103	105	99		
_B 860-133351/1-A	Method Blank	104	101	99	97		
Surrogate Legend							

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Water

Prep Type: Total/NA

				Percent Sur	rogate Reco	very (Accepta	ance Limits)	
		TBP	FBP	2FP	NBZ	TPHd14	PHL	
Lab Sample ID	Client Sample ID	(31-132)	(29-112)	(21-114)	(26-110)	(20-141)	(16-117)	
LCS 860-133494/2-A	Lab Control Sample	99	77	43	77	114	31	
LCSD 860-133494/3-A	Lab Control Sample Dup	99	85	47	85	109	34	
MB 860-133494/1-A	Method Blank	58	74	38	76	120	22	

Surrogate Legend

TBP = 2,4,6-Tribromophenol (Surr)

FBP = 2-Fluorobiphenyl (Surr)

2FP = 2-Fluorophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

PHL = Phenol-d5 (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Water

Prep Type: TCLP

				Percent Sur	rogate Reco	ery (Accepta	ance Limits)
		TBP	FBP	2FP	NBZ	TPHd14	PHL
Lab Sample ID	Client Sample ID	(31-132)	(29-112)	(21-114)	(26-110)	(20-141)	(16-117)
860-62517-1	Waller Digester c Digester	48	52	45	48	85	38
860-62567-A-1-F MS	Matrix Spike	74	62	46	56	89	40

Eurofins Houston

12/8/2023

Method: 8081B - Organochlorine Pesticides (GC)

Matrix: Water Prep Type: TCLP

Surrogate Legend
DCB = DCB Decachlorobiphenyl (Surr)

TCX = Tetrachloro-m-xylene

Surrogate Summary Client: Eastex Environmental Laboratory Inc. Project/Site: Waller, City of Job ID: 860-62517-1 Method: 8151A - Herbicides (GC) Matrix: Water Prep Type: Total/NA Percent Surrogate Recovery (Acceptance Limits) DCPAA1 Lab Sample ID Client Sample ID (42-150)LCS 860-133832/2-A Lab Control Sample 102 LCSD 860-133829/3-A Lab Control Sample Dup 62 LCSD 860-133832/3-A Lab Control Sample Dup 99 MB 860-133829/1-A Method Blank 74 MB 860-133832/1-A Method Blank 81 Surrogate Legend DCPAA = 2.4-Dichlorophenylacetic acid Method: 8151A - Herbicides (GC) Matrix: Water Prep Type: TCLP

Prep Type: TCLi

Percent Surrogate Recovery (Acceptance Limits)

Lab Sample ID Client Sample ID (42-150)

860-62517-1 Waller Digester c Digester 90

LB 860-133362/1-F Method Blank 71

Surrogate Legend

DCPAA = 2,4-Dichlorophenylacetic acid

Eurofins Houston

7

3

5

6 7

9

10

12

13

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62517-1

Method: 8260C - Volatile Organic Compounds by GC/MS

		Lab	Sample	ID:	MB	860-133533/9	
--	--	-----	--------	-----	----	--------------	--

Matrix: Water

Analyte

Analysis Batch: 133533

Client Sample ID: Method Blan	k
Prep Type: Total/N	Α

MDL	Unit	D	Prepared	Analyzed	Dil Fac
	mg/L		***************************************	12/04/23 12:50	1
	mg/L			12/04/23 12:50	1

Benzene ND 0.0010 0.0050 ND Carbon tetrachloride 12/04/23 12:50 0.0010 mg/L ND Chlorobenzene 12/04/23 12:50 mg/L 0.0010 Chloroform ND 1,2-Dichloroethane ND 0.0010 mg/L 12/04/23 12:50 0.0010 mg/L 12/04/23 12:50 ND 1,1-Dichloroethene 12/04/23 12:50 ND 0.050 mg/L 2-Butanone mg/L 12/04/23 12:50 Tetrachloroethene ND 0.0010 12/04/23 12:50 0.0050 mg/L Trichloroethene ND ND 0.0020 mg/L 12/04/23 12:50 Vinyl chloride

RL

MB MB

MB MB Result Qualifier

0	%Recovery		Limits	Prepared	Analyzed	Dil Fac
Surrogate 1,2-Dichloroethane-d4 (Surr)	104	- Qualifier	63 - 144		12/04/23 12:50	1
4-Bromofluorobenzene (Surr)	102		74 - 124		12/04/23 12:50	1
Dibromofluoromethane (Surr)	104		75 - 131		12/04/23 12:50	1
Toluene-d8 (Surr)	98		80 - 120		12/04/23 12:50	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Matrix: Water

Lab Sample ID: LCS 860-133533/3

Analysis Batch: 133533

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.0500	0.0496		mg/L		99	75 - 125	
Carbon tetrachloride	0.0500	0.0491		mg/L		98	70 - 130	
Chlorobenzene	0.0500	0.0473		mg/L		95	65 - 135	
Chloraform	0.0500	0.0537		mg/L		107	70 - 121	
1,2-Dichloroethane	0.0500	0.0524		mg/L		105	72 - 130	
1,1-Dichloroethene	0.0500	0.0488		mg/L		98	50 - 150	
2-Butanone	0.250	0.299		mg/L		120	60 - 140	
Tetrachloroethene	0.0500	0.0446		mg/L		89	71 - 125	
Trichloroethene	0.0500	0.0438		mg/L		88	75 - 135	
Vinyl chloride	0.0500	0.0453		mg/L		91	60 - 140	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	101	***************************************	63 - 144
4-Bromofluorobenzene (Surr)	104		74 - 124
Dibromofluoromethane (Surr)	106		75 - 131
Toluene-d8 (Surr)	99		80 - 120

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Water Analysis Batch: 133533

Lab Sample ID: LCSD 860-133533/4

•	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.0500	0.0510		mg/L		102	75 - 125	3	25
Carbon tetrachloride	0.0500	0.0537		mg/L		107	70 - 130	9	25
Chlorobenzene	0.0500	0.0488		mg/L		98	65 - 135	3	25
Chloroform	0.0500	0.0548		mg/L		110	70 - 121	2	25

Eurofins Houston

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62517-1

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 860-133533/4

Matrix: Water Analysis Batch: 133533

Analyte	Spike Added		LCSD Qualifier	Unit	_	*****	%Rec		RPD
1,2-Dichloroethane	0.0500		Qualifier			%Rec	Limits	RPD	Limit
1,1-Dichloroethene	Liverence	0.0532		mg/L		106	72 - 130	2	25
2-Butanone	0.0500	0.0529		mg/L		106	50 - 150	8	25
	0.250	0.326		mg/L		130			
Tetrachloroethene	0.0500	0.0513					60 - 140	8	25
Trichloraethene				mg/L		103	71 - 125	14	25
Vinyl chloride	0.0500	0.0467		mg/L		93	75 - 135	7	25
Viriyi Childride	0.0500	0.0492		mg/L		98	60 - 140	8	25
L	CSD LCSD							-	20

	LUSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	101		63 - 144
4-Bromofluorobenzene (Surr)	102		74 - 124
Dibromofluoromethane (Surr)	106		75 - 131
Toluene-d8 (Surr)	98		80 - 120
_			

LB LB

Lab Sample ID: LB 860-133351/1-A

Matrix: Water

Analysis Batch: 133533

Client Sample ID: Method Blank Prep Type: TCLP

Result	Qualifier	RL	MDI	Unit				
ND			MUL			Prepared	Analyzed	DII Fac
				mg/L			12/04/23 12:28	5
		0.025		mg/L			12/04/23 12:28	5
ND		0.0050		mg/L			12/04/23 12:28	5
ND		0.0050		ma/l			Control Control Control	
ND		0.0050		Lance CO. Chie				5
				A CONTRACTOR OF THE PARTY OF TH			12/04/23 12:28	5
		0.0050		mg/L			12/04/23 12:28	5
ND		0.25		mg/L			12/04/23 12:28	5
ND		0.0050		ma/I				_
ND		0.025					SENERAL SERVE	5
				mg/L			12/04/23 12:28	5
ND		0.010		mg/L			12/04/23 12:28	5
	ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND 0.0050 ND 0.0050 ND 0.0050 ND 0.0050 ND 0.0050 ND 0.0050 ND 0.0050 ND 0.0050 ND 0.25 ND 0.0050 ND 0.0050	ND 0.0050 ND 0.0050 ND 0.0050 ND 0.0050 ND 0.0050 ND 0.0050 ND 0.0050 ND 0.0050 ND 0.0050 ND 0.25 ND 0.0050 ND 0.0050	ND 0.0050 mg/L ND 0.0050 mg/L ND 0.0050 mg/L ND 0.0050 mg/L ND 0.0050 mg/L ND 0.0050 mg/L ND 0.0050 mg/L ND 0.0050 mg/L ND 0.0050 mg/L ND 0.055 mg/L ND 0.055 mg/L ND 0.0550 mg/L	ND 0.0050 mg/L ND 0.0050 mg/L ND 0.0050 mg/L ND 0.0050 mg/L ND 0.0050 mg/L ND 0.0050 mg/L ND 0.0050 mg/L ND 0.0050 mg/L ND 0.0050 mg/L ND 0.0050 mg/L ND 0.0050 mg/L ND 0.0050 mg/L	ND	ND 0.0050 mg/L 12/04/23 12:28 ND 0.025 mg/L 12/04/23 12:28 ND 0.0050 mg/L 12/04/23 12:28 ND 0.050 mg/L 12/04/23 12:28 ND 0.25 mg/L 12/04/23 12:28 ND 0.0050 mg/L 12/04/23 12:28 ND 0.025 mg/L 12/04/23 12:28 ND 0.025 mg/L 12/04/23 12:28

		Limite	~	
			Prepared Analyzed	Dil Fac
			12/04/23 12:20	3 5
		74 - 124	12/04/23 12:20	3 5
99		75 - 131	12/04/23 12:21	
97		80 - 120		
			12/04/23 12:20	5
	%Recovery 104 101 99	101 99	%Recovery Qualifier Limits 104 63 . 144 101 74 . 124 99 75 . 131	%Recovery Qualifier Limits Prepared Analyzed 104 63 - 144 12/04/23 12:28 101 74 - 124 12/04/23 12:28 99 75 - 131 12/04/23 12:28

Lab Sample ID: 860-62591-A-4-C MS

Matrix: Water

Analysis Batch: 133533

Client Sample ID: Matrix Spike Prep Type: TCLP

Acceptan	Sample	name of the contract of the co	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	ND		2.50	2.73		mg/L		109	66 - 142	
Carbon tetrachloride	ND		2.50	2.70		mg/L		108	62 - 125	
Chlorobenzene	ND		2.50	2.68		mg/L		107	60 - 133	
Chloroform	ND		2.50	2.90		mg/L		116	70 - 130	
1,2-Dichloroethane	ND		2.50	2.77		mg/L		111	68 - 127	
1,1-Dichloroethene	ND		2.50	2.61		mg/L		104	59 - 172	
2-Butanone	ND		12.5	15.5		mg/L		124	60 - 140	
Tetrachloroethene	ND		2.50	2.69		mg/L		108	71 - 125	

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62517-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 860-62591-A-4-C MS

Matrix: Water

Analysis Batch: 133533

Client Sample ID: Matrix Spike

Prep Type: TCLP

Spike MS MS Sample Sample %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Trichloroethene ND 2.50 2.41 mg/L 96 62 - 137 Vinyl chloride ND 2.50 2.19 mg/L 88 60 - 140

MS MS Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 102 63 - 144 4-Bromofluorobenzene (Surr) 103 74 - 124 Dibromofluoromethane (Surr) 105 75 - 131 Toluene-d8 (Surr) 99 80 - 120

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 860-133494/1-A

Matrix: Water

Analysis Batch: 133626

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 133494

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
1,4-Dichlorobenzene	ND		0.0050		mg/L	2000	12/04/23 06:37	12/04/23 20:20	1
2,4,5-Trichlorophenol	ND		0.0050		mg/L		12/04/23 06:37	12/04/23 20:20	1
2,4,6-Trichlorophenol	ND		0.0050		mg/L		12/04/23 06:37	12/04/23 20:20	1
2,4-Dinitrotoluene	ND		0.0050		mg/L		12/04/23 06:37	12/04/23 20:20	1
2-Methylphenol	ND		0.0050		mg/L		12/04/23 06:37	12/04/23 20:20	1
Hexachlorobenzene	ND		0.0050		mg/L		12/04/23 06:37	12/04/23 20:20	1
Hexachlorobutadiene	ND		0.0050		mg/L		12/04/23 06:37	12/04/23 20:20	1
Hexachloroethane	ND		0.0050		mg/L		12/04/23 06:37	12/04/23 20:20	1
Nitrobenzene	ND		0.0050		mg/L		12/04/23 06:37	12/04/23 20:20	1
Pentachlorophenol	ND		0.010		mg/L		12/04/23 06:37	12/04/23 20:20	1.
Pyridine	ND		0.010		mg/L		12/04/23 06:37	12/04/23 20:20	1
3 & 4 Methylphenol	ND		0.010		mg/L		12/04/23 06:37	12/04/23 20:20	1

	MD	IVID				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	58		31 - 132	12/04/23 06:37	12/04/23 20:20	
2-Fluorobiphenyl (Surr)	74		29 - 112	12/04/23 06:37	12/04/23 20:20	1
2-Fluorophenol (Surr)	38		21 - 114	12/04/23 06:37	12/04/23 20:20	1
Nitrobenzene-d5 (Surr)	76		26 - 110	12/04/23 06:37	12/04/23 20:20	1
p-Terphenyl-d14 (Surr)	120		20 - 141	12/04/23 06:37	12/04/23 20:20	1
Phenol-d5 (Surr)	22		16 - 117	12/04/23 06:37	12/04/23 20:20	1

Lab Sample ID: LCS 860-133494/2-A

Matrix: Water

Analysis Batch: 133626

Client Sample ID:	Lab Control Sample
	m

Prep Type: Total/NA Prep Batch: 133494

, , , , , , , , , , , , , , , , , , , ,					riep Dateil. 133434
	Spike	LCS LCS			%Rec
Analyte	Added	Result Qualifi	ier Unit	D %Rec	Limits
1,4-Dichlorobenzene	0.0400	0.0253	mg/L	63	37 - 111
2,4,5-Trichlorophenol	0.0400	0.0354	mg/L	89	39 - 125
2,4,6-Trichlorophenol	0.0400	0.0332	mg/L	83	42 - 125
2,4-Dinitrotoluene	0.0400	0.0379	mg/L	95	41 - 128
2-Methylphenol	0.0400	0.0241	mg/L	60	36 - 105
Hexachlorobenzene	0.0400	0.0406	mg/L	101	39 - 128

Project/Site: Waller, City of

Job ID: 860-62517-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab	Sampl	le ID:	LCS	860-133494/2-A	
	and the second				

Matrix: Water

Analysis Batch: 133626

Client	Sample	ID:	Lab	Control	Sample

Prep Type: Total/NA

6

Prep Batch: 133494

Analyte		Spike		LCS .				%Rec	m: 133494
		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Hexachlorobutadiene		0.0400	0.0268		mg/L		67	31 - 120	
Hexachloroethane		0.0400	0.0244		mg/L		61	37 - 109	
Nitrobenzene		0.0400	0.0305		mg/L		76	37 - 114	
Pentachlorophenol		0.0400	0.0281		mg/L		70	10 - 137	
Pyridine		0.0400	0.00717	J	mg/L		18	5 - 130	
3 & 4 Methylphenol		0.0400	0.0213		mg/L		53	35 - 116	
	LCS LCS								

Surrogate `	%Recovery	Limits
2,4,6-Tribromophenol (Surr)	99	 31 - 132
2-Fluorobiphenyl (Surr)	77	29 - 112
2-Fluorophenol (Surr)	43	21 - 114
Nitrobenzene-d5 (Surr)	77	26 - 110
p-Terphenyl-d14 (Surr)	114	20 - 141
Phenol-d5 (Surr)	31	16 - 117

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 133494

Matrix: Water

Lab Sample ID: LCSD 860-133494/3-A

Analysis Batch: 133626

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,4-Dichlorobenzene	0.0400	0.0289	-	mg/L		72	37 - 111	13	30
2,4.5-Trichlorophenol	0.0400	0.0383		mg/L		96	39 - 125	8	30
2,4,6-Trichlorophenol	0.0400	0.0367		mg/L		92	42 - 125	10	30
2,4-Dinitrotoluene	0.0400	0.0374		mg/L		94	41 - 128	1	30
2-Methylphenol	0.0400	0.0274		mg/L		69	36 - 105	13	30
Hexachlorobenzene	0.0400	0.0410		mg/L		102	39 - 128	1	30
Hexachlorobutadiene	0.0400	0.0319		mg/L		80	31 - 120	17	30
Hexachloroethane	0.0400	0.0288		mg/L		72	37 - 109	16	30
Nitrobenzene	0.0400	0.0358		mg/L		90	37 - 114	16	30
Pentachlorophenol	0.0400	0.0284		mg/L		71	10 - 137	1	40
Pyridine	0.0400	0.0103		mg/L		26	5 - 130	36	50
3 & 4 Methylphenol	0.0400	0.0246		mg/L		61	35 - 116	14	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
2.4,6-Tribromophenol (Surr)	99		31 - 132
2-Fluorobiphenyl (Surr)	85		29 - 112
2-Fluorophenol (Surr)	47		21 - 114
Nitrobenzene-d5 (Surr)	85		26 - 110
p-Terphenyl-d14 (Surr)	109		20 - 141
Phenol-d5 (Surr)	34		16 - 117

Client Sample ID: Method Blank

Prep Type: TCLP Prep Batch: 133494

Lab Sample ID: LB 860-133362/1-C

Matrix: Water

Analysis Batch: 133626

LB LB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND		0.025		mg/L		12/04/23 06:37	12/04/23 20:45	1
2,4,5-Trichlorophenol	ND		0.025		mg/L		12/04/23 06:37	12/04/23 20:45	1

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62517-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LB 860-133362/1-C

Matrix: Water

Analysis Batch: 133626

Prep Type: TCLP

Prep Batch: 133494

	LB	LB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,6-Trichlorophenol	ND	3-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	0.025		mg/L		12/04/23 06:37	12/04/23 20:45	1
2,4-Dinitrotoluene	ND		0.025		mg/L		12/04/23 06:37	12/04/23 20:45	1
2-Methylphenal	ND		0.025		mg/L		12/04/23 06:37	12/04/23 20:45	1
Hexachlorobenzene	ND		0.025		mg/L		12/04/23 06:37	12/04/23 20:45	1
Hexachlorobutadiene	ND		0.025		mg/L		12/04/23 06:37	12/04/23 20:45	1
Hexachloroethane	ND		0.025		mg/L		12/04/23 06:37	12/04/23 20:45	1
Nitrobenzene	ND		0.025		mg/L		12/04/23 06:37	12/04/23 20:45	1
Pentachlorophenol	ND		0.050		mg/L		12/04/23 06:37	12/04/23 20:45	1
Pyridine	ND		0.050		mg/L		12/04/23 06:37	12/04/23 20:45	1
3 & 4 Methylphenol	ND		0.050		mg/L		12/04/23 06:37	12/04/23 20:45	1

	LD	LD				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	57		31 - 132	12/04/23 06:37	12/04/23 20:45	1
2-Fluorobiphenyl (Surr)	60		29 - 112	12/04/23 06:37	12/04/23 20:45	1
2-Fluorophenol (Surr)	50		21 - 114	12/04/23 06:37	12/04/23 20:45	1
Nitrobenzene-d5 (Surr)	66		26 - 110	12/04/23 06:37	12/04/23 20:45	1
p-Terphenyl-d14 (Surr)	117		20 - 141	12/04/23 06:37	12/04/23 20:45	1
Phenol-d5 (Surr)	34		16 - 117	12/04/23 06:37	12/04/23 20:45	1

Lab Sample ID: 860-62567-A-1-F MS

Matrix: Water

Analysis Batch: 133626

Client Sample ID: Matrix Spike

Prep Type: TCLP

Prep Batch: 133494

Amaryone batem receze	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dichlorobenzene	ND		0.200	ND		mg/L		50	37 - 111	·
2,4,5-Trichlorophenol	ND		0.200	ND		mg/L		48	39 - 125	
2,4,6-Trichlorophenol	ND		0.200	ND		mg/L		48	42 - 125	
2,4-Dinitrotoluene	ND		0.200	0.138		mg/L		69	41 - 128	
2-Methylphenal	ND		0.200	ND		mg/L		46	36 - 105	
Hexachlorobenzene	ND		0.200	0.148		mg/L		74	39 - 128	
Hexachlorobutadiene	ND		0.200	ND		mg/L		53	31 - 120	
Hexachloroethane	ND		0.200	0.147		mg/L		73	37 - 109	
Nitrobenzene	ND		0.200	ND		mg/L		57	37 - 114	
Pentachlorophenol	ND		0.200	ND		mg/L		56	10 - 137	
Pyridine	ND		0.200	ND		mg/L		10	5 - 135	
3 & 4 Methylphenol	ND		0.200	ND		mg/L		49	35 - 116	

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	74		31 - 132
2-Fluorobiphenyl (Surr)	62		29 - 112
2-Fluorophenol (Surr)	46		21 - 114
Nitrobenzene-d5 (Surr)	56		26 - 110
p-Terphenyl-d14 (Surr)	89		20 - 141
Phenol-d5 (Surr)	40		16 - 117

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62517-1

Method: 8081B - Organochlorine Pesticides (GC)

Lab	Sample	ID:	MB	860-133535/1-A

Matrix: Water

Analysis Batch: 133580

Client	Sample ID: Method Blank
	Pron Type: Tetalina

Prep Type: Total/NA Prep Batch: 133535

***	MB	MB						riep baten:	133335
Analyte	Result	Qualifier	RL	MDL	Unit	D	D	8 5	
Chlorodane	ND		0.0010		200 200		Prepared	Analyzed	DII Fac
Endrin	ND				mg/L		12/04/23 08:52	12/04/23 13:37	1
Heptachlor	ND		0.000051		mg/L		12/04/23 08:52	12/04/23 13:37	
X 1975	ND		0.000051		mg/L		12/04/23 08:52		
Heptachlor epoxide	ND		0.000051		mg/L		The Laboratory and the Control of th	12/04/23 13:37	1
gamma-BHC (Lindane)	ND				15,		12/04/23 08:52	12/04/23 13:37	1
Methoxychlor			0.000051		mg/L		12/04/23 08:52	12/04/23 13:37	1
	ND		0.000051		mg/L		12/04/23 08:52	12/04/23 13:37	1.97
Toxaphene	ND		0.0010		mg/L			SHELL MODERN STREET	
			217.21.24		mg/L		12/04/23 08:52	12/04/23 13:37	1
	MB	MB							

Surrogate	%Recovery	Qualifier	Limits	
DCB Decachlorobiphenyl (Surr)	67			Prepared
	07		28 - 94	12/04/23 08:52
Tetrachioro-m-xylene	101		52 - 134	12/04/23 08:52

Client Sample ID: Lab Control Sample

Analyzed

12/04/23 13:37

12/04/23 13:37

Prep Type: Total/NA Prep Batch: 133535

Dil Fac

Lab Sample ID: LCS 860-133535/2-A Matrix: Water

Analysis Batch: 133580

Analyte	Spike	LCS	LCS				%Rec	cn: 13353
	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Endrin	0.00129	0.000989		mg/L		77	55 - 102	
Heptachlor	0.00129	0.000718		mg/L		56	55 - 106	
Heptachlor epoxide	0.00129	0.00100		mg/L		78	56 - 109	
gamma-BHC (Lindane)	0.00129	0.000987		mg/L		77	59 - 107	
Methoxychlor	0.00129	0.000852		mg/L		66	53 - 102	

LCS LCS Surrogate %Recovery Qualifier Limits DCB Decachlorobiphenyl (Surr) 33 28 - 94 Tetrachloro-m-xylene 60 52 - 134

Lab Sample ID: LCSD 860-133535/3-A

Matrix: Water

Analysis Batch: 133580

Client Sample	ID: Lab	Control	Sample Dup
---------------	---------	---------	------------

Prep Type: Total/NA

Prep Batch: 133535

		0100001011					riop Buton, 1000		
Analyte	Spike	LCSD	LCSD				%Rec		RPD
	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Endrin	0.00131	0.000972		mg/L		74	55 - 102	2	25
Heptachlor	0.00131	0.000716		mg/L		55	55 - 106	0	25
Heptachlor epoxide	0.00131	0.000981		mg/L		75	56 - 109	2	25
gamma-BHC (Lindane)	0.00131	0.000969		mg/L		74	59 - 107	2	25
Methoxychlor	0.00131	0.000849		mg/L		65	53 - 102	0	25

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl (Surr)	30		28.94
Tetrachloro-m-xylene	57		52 - 134

Lab Sample ID: LB 860-133362/1-E

Matrix: Water

Analysis Batch: 133580

Client Sample ID: Method Blank

Prep Type: TCLP

Prep Batch: 133535

	LD	LB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlorodane	110							Analyzou	Direc
Gillorodarte	ND		0.0010		mg/L		12/04/23 08:52	12/04/23 14:33	1

Job ID: 860-62517-1

Project/Site: Waller, City of

Method: 8081B - Organochlorine Pesticides	(GC)	(Continued)
---	------	-------------

Lab Sample ID: LB 860-133362/1-E Matrix: Water Analysis Batch: 133580		LB					Client Sa	mple ID: Metho Prep Typ Prep Batch:	e: TCLP
A second			71	*****		120		The second	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Endrin	ND		0.000051		mg/L		12/04/23 08:52	12/04/23 14:33	1
Heptachlor	ND		0.000051		mg/L		12/04/23 08:52	12/04/23 14:33	1
Heptachlor epoxide	ND		0.000051		mg/L		12/04/23 08:52	12/04/23 14:33	1
gamma-BHC (Lindane)	ND		0.000051		mg/L		12/04/23 08:52	12/04/23 14:33	- 1
Methoxychlor	ND		0.000051		mg/L		12/04/23 08:52	12/04/23 14:33	1
Toxaphene	ND		0.0010		mg/L		12/04/23 08:52	12/04/23 14:33	1

LB LB

81

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	55		28 - 94	12/04/23 08:52	12/04/23 14:33	1
Tetrachloro-m-xylene	85		52 - 134	12/04/23 08:52	12/04/23 14:33	1

Method: 8151A - Herbicides (GC)

Lab Sample ID: MB 860-133829/1-A							Client Sa	mple ID: Metho	d Blank
Matrix: Water								Prep Type: 1	
Analysis Batch: 133924								Prep Batch:	
	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	ND		0.00020		mg/L		12/05/23 14:31	12/06/23 11:48	1
2,4,5-TP (Silvex)	ND		0.00020		mg/L		12/05/23 14:31	12/06/23 11:48	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	74		42 - 150				12/05/23 14:31	12/06/23 11:48	1

2,4-Dichlorophenylacetic acid

Lab Sample ID: LCSD 860-133829/3-A						Clie	nt Sam	ple ID:	Lab Contro	I Sampl	e Dup
Matrix: Water									Prep 7	ype: To	tal/NA
Analysis Batch: 133924									Prep Batch:		133829
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,4-D	-		0.00201	0.00109		mg/L		54	45 - 124	7	25
2,4,5-TP (Silvex)			0.00201	0.00129		mg/L		64	45 - 124	10	25
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
2,4-Dichlorophenylacetic acid	62		42 - 150								

Lab Sample ID: MB 860-133832/1	-A						Client Sa	mple ID: Metho	d Blank
Matrix: Water								Prep Type:	Total/NA
Analysis Batch: 134118								Prep Batch	133832
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	ND		0.00020		mg/L		12/05/23 14:58	12/07/23 10:55	1
2,4,5-TP (Silvex)	ND		0.00020		mg/L		12/05/23 14:58	12/07/23 10:55	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

42 - 150

Eurofins Houston

12/07/23 10:55

12/05/23 14:58

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62517-1

TANKS THE STATE				
Method:	8151A	 Herbicides 	(GC)	(Continued)

Lab Sample ID: LCS 860-133832/2-A Matrix: Water

Lab Sample ID: LCSD 860-133832/3-A

Matrix: Water

Analysis Batch: 134118

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Pren Batch: 133832

5

8

9.77		Spike	LCS	LCS				%Rec	icn: 133
Analyte 2,4-D		Added	Result	Qualifier	Unit	D	%Rec	Limits	
-M-2		0.00200	0.00144		mg/L		72	45 - 124	
2.4,5-TP (Silvex)		0.00200	0.00184		mg/L		92	45 - 124	
	Was ves								

LCS LCS

Surrogate %Recovery Qualifier Limits 2,4-Dichlorophenylacetic acid 102 42 - 150

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 134118 Prep Batch: 133832 Spike LCSD LCSD

%Rec RPD Analyte Added Result Qualifier Unit %Rec Limits RPD Limit 2,4-D 0.00202 0.00144 mg/L 45 - 124 25 2,4,5-TP (Silvex) 0.00202 0.00184 mg/L 91 45 - 124 0 25

LCSD LCSD

Surrogate %Recovery Qualifier Limits 2,4-Dichlorophenylacetic acid 99 42 - 150

Lab Sample ID: LB 860-133362/1-F

Matrix: Water

Analysis Batch: 133924

Client Sample ID: Method Blank

Prep Type: TCLP

Prep Batch: 133495

	LB	LB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
2,4-D	ND		0.00020		mg/L		12/04/23 13:07	12/06/23 13:34	1
2,4,5-TP (Silvex)	ND		0.00020		mg/L		12/04/23 13:07	12/06/23 13:34	1
	LB	LB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	71		42 - 150				12/04/23 13:07	12/06/23 13:34	1

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 860-133556/1-A

Matrix: Water

Analysis Batch: 134049

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 133556

esult Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND	0.010		mg/L		12/04/23 10:00	12/05/23 21:02	1
ND	0.010		mg/L		12/04/23 10:00	12/05/23 21:02	1
ND	0,0050		mg/L		12/04/23 10:00	12/05/23 21:02	1
ND	0.010		mg/L		12/04/23 10:00	12/05/23 21:02	1
ND	0.010		mg/L		12/04/23 10:00	12/05/23 21:02	1
ND	0.010		mg/L		12/04/23 10:00	12/05/23 21:02	1
ND	0.030		mg/L		12/04/23 10:00	12/05/23 21:02	1
ND	0.020		mg/L		12/04/23 10:00	12/05/23 21:02	1
ND	0.0040		mg/L		12/04/23 10:00	12/05/23 21:02	1
ND	0.020		mg/L		12/04/23 10:00	12/05/23 21:02	1
3	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 0.010 ND 0.010 ND 0.0050 ND 0.010 ND 0.010 ND 0.010 ND 0.010 ND 0.020 ND 0.0040	ND 0.010 ND 0.010 ND 0.0050 ND 0.010 ND 0.010 ND 0.010 ND 0.010 ND 0.030 ND 0.020 ND 0.0040	ND 0.010 mg/L ND 0.010 mg/L ND 0.050 mg/L ND 0.010 mg/L ND 0.010 mg/L ND 0.010 mg/L ND 0.030 mg/L ND 0.020 mg/L ND 0.0040 mg/L	ND 0.010 mg/L ND 0.010 mg/L ND 0.0050 mg/L ND 0.010 mg/L ND 0.010 mg/L ND 0.010 mg/L ND 0.030 mg/L ND 0.020 mg/L ND 0.0040 mg/L	ND 0.010 mg/L 12/04/23 10:00 ND 0.010 mg/L 12/04/23 10:00 ND 0.0050 mg/L 12/04/23 10:00 ND 0.010 mg/L 12/04/23 10:00 ND 0.010 mg/L 12/04/23 10:00 ND 0.010 mg/L 12/04/23 10:00 ND 0.030 mg/L 12/04/23 10:00 ND 0.020 mg/L 12/04/23 10:00 ND 0.0040 mg/L 12/04/23 10:00	ND 0.010 mg/L 12/04/23 10:00 12/05/23 21:02 ND 0.010 mg/L 12/04/23 10:00 12/05/23 21:02 ND 0.0050 mg/L 12/04/23 10:00 12/05/23 21:02 ND 0.010 mg/L 12/04/23 10:00 12/05/23 21:02 ND 0.030 mg/L 12/04/23 10:00 12/05/23 21:02 ND 0.020 mg/L 12/04/23 10:00 12/05/23 21:02 ND 0.020 mg/L 12/04/23 10:00 12/05/23 21:02 ND 0.0040 mg/L 12/04/23 10:00 12/05/23 21:02

Client: Eastex Environmental Laboratory Inc.

Job ID: 860-62517-1

Project/Site: Waller, City of

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: LCS 860-133556/2-A Matrix: Water Analysis Batch: 134049					Client	Sample	Prep Type: Total/NA Prep Batch: 133556
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	1.00	0.961		mg/L		96	80 - 120
Barium	1.00	0.950		mg/L		95	80 - 120
Cadmium	1.00	0.944		mg/L		94	80 - 120

Alsenic	1.00	0.501	mg/L	30	00 - 120	
Barium	1.00	0.950	mg/L	95	80 - 120	
Cadmium	1.00	0.944	mg/L	94	80 - 120	
Chromium	1.00	0.969	mg/L	97	80 - 120	
Lead	1.00	0.977	mg/L	98	80 - 120	
Nickel	1.00	0.969	mg/L	97	80 - 120	
Selenium	1.00	0.965	mg/L	97	80 - 120	
Silver	0.500	0.484	mg/L	97	80 - 120	
Beryllium	1.00	0.929	mg/L	93	80 - 120	
Antimony	1.00	0.917	mg/L	92	80 - 120	

Lab Sample ID: LCSD 860-133556/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Water Prep Type: Total/NA
Analysis Batch: 134049 Prep Batch: 133556

Allalysis Datell. 154645							i iep i	Jacon. I	00000
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	1.00	0.944	*******	mg/L		94	80 - 120	2	20
Barium	1.00	0.933		mg/L		93	80 - 120	2	20
Cadmium	1.00	0.924		mg/L		92	80 - 120	2	20
Chromium	1.00	0.950		mg/L		95	80 - 120	2	20
Lead	1.00	0,959		mg/L		96	80 - 120	2	20
Nickel	1.00	0.951		mg/L		95	80 - 120	2	20
Selenium	1.00	0.937		mg/L		94	80 - 120	3	20
Silver	0.500	0.475		mg/L		95	80 - 120	2	20
Beryllium	1.00	0.911		mg/L		91	80 - 120	2	20
Antimony	1.00	0.928		mg/L		93	80 - 120	1	20

Lab Sample ID: 560-114411-J-1-A MSD

Client Sample ID: Matrix Spike Duplicate

Matrix: Water

Prep Type: Total/NA

Matrix: Water Prep Type: Total/NA
Analysis Batch: 134049 Prep Batch: 133556

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	ND		1.00	1.06		mg/L		106	75 - 125	1	20
Barium	0.52		1.00	1.49		mg/L		97	75 - 125	0	20
Cadmium	ND		1.00	1.02		mg/L		102	75 - 125	0	20
Chromium	ND		1.00	1.01		mg/L		101	75 - 125	0	20
Lead	ND		1.00	1.00		mg/L		100	75 - 125	0	20
Nickel	ND		1.00	1.01		mg/L		101	75 - 125	0	20
Selenium	0.060		1.00	1.12		mg/L		106	75 - 125	3	20
Silver	ND		0.500	0.544		mg/L		109	75 - 125	1	20
Beryllium	ND		1.00	0.991		mg/L		99	75 - 125	1	20
Antimony	ND		1.00	1.04		mg/L		102	75 - 125	0	20

Lab Sample ID: LB 860-133362/1-D Client Sample ID: Method Blank

Matrix: Water Prep Type: TCLP
Analysis Batch: 134055 Prep Batch: 133556

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Arsenic
 ND
 0.050
 mg/L
 12/04/23 10:00
 12/06/23 10:51
 1

Eurofins Houston

5

3

4

6 7

8

10

12

14

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62517-1

Method:	6010D	- Metals	(ICP)	(Continued
			(101)	(Commune)

Lab	Sample	ID:	LB	860-133362/1-D

Matrix: Water

Analysis Batch: 134055

Client	Sample	ID:	Method	Blank	
		_			

Prep Type: TCLP

Prep Batch: 133556

	LB L	_B						. rop Buten.	100000
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyses	
Barium	ND		0.050		mg/L	— ·	12/04/23 10:00	Analyzed	Dil Fac
Cadmium	ND				10000000		ACCESS TO A SECURITION OF THE	12/06/23 10:51	1
Chromium			0.025		mg/L		12/04/23 10:00	12/06/23 10:51	1
	ND		0.050		mg/L		12/04/23 10:00	12/06/23 10:51	4
Lead	ND		0.050		mg/L		12/04/23 10:00		1
Nickel	ND						ANNUAL TO SECOND	12/06/23 10:51	1
			0.050		mg/L		12/04/23 10:00	12/06/23 10:51	1
Selenium	ND		0.15		mg/L		12/04/23 10:00	12/06/23 10:51	
Silver	ND		0.10		mg/L		THE STATE OF THE PARTY OF THE PARTY.		
Beryllium	NG						12/04/23 10:00	12/06/23 10:51	1
and the same of th	ND		0.020		mg/L		12/04/23 10:00	12/06/23 10:51	1
_Antimony	ND		0.10		mg/L		12/04/23 10:00	12/06/23 10:51	4

Lab Sample ID: 860-62567-A-1-H MS

Matrix: Water

Analysis Batch: 134055

Client Sample ID: Matrix Spi	ke
------------------------------	----

Prep Type: TCLP

	Sample	Sample	Spike	MS	MS				Prep Batch: 1335:
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	ND		1.00	0.995	-	mg/L		100	75 - 125
Barlum	1.4		1.00	2.38		mg/L		94	75 - 125
Cadmium	ND		1.00	1.02		mg/L		102	75 - 125
Chromium	ND		1.00	1.01		mg/L		101	75 - 125
Lead	ND		1.00	1.05		mg/L		105	75 - 125
Nickel	ND		1.00	1.05		mg/L		105	75 - 125
Selenium	ND		1.00	0.965		mg/L		97	75 - 125
Silver	ND		0.500	0.515		mg/L		103	75 - 125
Beryllium	ND		1.00	1.03		mg/L		103	75 - 125
Antimony	ND		1.00	0.995		mg/L		100	75 - 125

Method: 7470A - Mercury (CVAA)

I als Camerl	ID: MB 860-13348	
Lan Samni	111. MR XPU-13373	CULT IN _ A

Matrix: Water

Analysis Batch: 133676

Clions	Cample	In.	Method Blank	
CHEIL	Samble	11.7	Methou Riank	

Prep Type: Total/NA Prep Batch: 133489

	100000								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
Mercury	ND		0.00020		mg/L		12/03/23 21:45	12/04/23 16:25	1

Lab Sample ID: LCS 860-133489/11-A

Matrix: Water

Analysis Batch: 133676

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 133489

Spike LCS LCS Analyte Added Result Qualifier Unit %Rec Limits Mercury 0.00200 0.00185 mg/L 80 - 120

MR MR

Lab Sample ID: LCSD 860-133489/12-A

Matrix: Water

Analysis Batch: 133676

Client	Sample	ID:	Lab	Control	Sample	Dup
				See the second second section 1		

Prep Type: Total/NA

Prep Batch: 133489 %Rec RPD

Spike LCSD LCSD Analyte Added Result Qualifier Unit %Rec Limits Limit Mercury 0.00200 0.00187 mg/L

Project/Site: Waller, City of

Method: 7470A - Mercury (CVAA) (Continued)

Lab Sample ID: LB 860-133184/1-F

Matrix: Water

LB LB

Analysis Batch: 133676

Client Sample ID: Method Blank Prep Type: TCLP

Client Sample ID: Method Blank

Prep Batch: 133489

Prep Type: TCLP

Prep Batch: 133489

Prep Batch: 133489

Analyte Result Qualifier RL MDL Unit DII Fac Analyzed Mercury ND 0.00020 mg/L 12/03/23 21:45 12/04/23 16:29

Lab Sample ID: LB 860-133362/1-B

Matrix: Water

Analyte

Mercury

Analysis Batch: 133676

LB LB

ND

Result Qualifier RL 0.00020

MDL Unit

mg/L

Prepared 12/03/23 21:45

%Rec

Analyzed 12/04/23 16:56 8

5

Lab Sample ID: 860-62417-B-1-J MS Client Sample ID: Matrix Spike Matrix: Water Prep Type: TCLP

Matrix: Water

Mercury

Analysis Batch: 133676

Analysis Batch: 133676

Sample Sample Analyte Mercury

Lab Sample ID: 860-62417-B-1-K MSD

ND

Result Qualifier

Sample

Result

ND

Sample

Qualifier

Added 0.00200

Spike

Spike

Added

0.00200

Result Qualifier 0.00217

> MSD MSD

Result

0.00199

MS MS

Qualifier

Unit

mg/L

Unit %Rec mg/L

Limits 109 75 - 125

%Rec

Client Sample ID: Matrix Spike Duplicate Prep Type: TCLP

Prep Batch: 133489 %Rec RPD Limit Limits RPD 75 - 125 9 20

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62517-1

C	0	BAC	VO	
u	01	IVI	vu	1

Leach	Batch:	133351
-------	--------	--------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	
860-62517-1	Waller Digester c Digester	TCLP	Water	1311	Prep Batch
LB 860-133351/1-A	Method Blank	TCLP	Water	1311	
860-62591-A-4-C MS	Matrix Spike	TCLP	Water	1311	

Analysis Batch: 133533

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	
860-62517-1	Waller Digester c Digester	TCLP	Water	8260C	Prep Batch
LB 860-133351/1-A	Method Blank	TCLP	Water		133351
MB 860-133533/9	Method Blank	Total/NA	Water	8260C	133351
LCS 860-133533/3	Lab Control Sample	Total/NA	Water	8260C	
LCSD 860-133533/4	Lab Control Sample Dup	Total/NA		8260C	
860-62591-A-4-C MS			Water	8260C	
300-02391-A-4-C MS	Matrix Spike	TCLP	Water	8260C	133351

GC/MS Semi VOA

Leach Batch: 133362

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Desc Batch
860-62517-1	Waller Digester c Digester	TCLP	Water	1311	Prep Batch
LB 860-133362/1-C	Method Blank	TCLP	Water	1311	
860-62567-A-1-F MS	Matrix Spike	TCLP	Water	1311	

Prep Batch: 133494

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-62517-1	Waller Digester c Digester	TCLP	Water	3510C	133362
LB 860-133362/1-C	Method Blank	TCLP	Water	3510C	133362
MB 860-133494/1-A	Method Blank	Total/NA	Water	3510C	133302
LCS 860-133494/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 860-133494/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	
860-62567-A-1-F MS	Matrix Spike	TCLP	Water	3510C	133362

Analysis Batch: 133584

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
860-62517-1	Waller Digester c Digester	TCLP	Water	8270D	133494

Analysis Batch: 133626

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LB 860-133362/1-C	Method Blank	TCLP	Water	8270D	133494
MB 860-133494/1-A	Method Blank	Total/NA	Water	8270D	133494
LCS 860-133494/2-A	Lab Control Sample	Total/NA	Water	8270D	133494
LCSD 860-133494/3-A	Lab Control Sample Dup	Total/NA	Water	8270D	133494
860-62567-A-1-F MS	Matrix Spike	TCLP	Water	8270D	133494

GC Semi VOA

Leach Batch: 133362

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-62517-1 - DL	Waller Digester c Digester	TCLP	Water	1311	_
860-62517-1	Waller Digester c Digester	TCLP	Water	1311	
LB 860-133362/1-E	Method Blank	TCLP .	Water	1311	
LB 860-133362/1-F	Method Blank	TCLP	Water	1311	

Eurofins Houston

2

5

7

9

10

12

14

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62517-1

SC Semi VOA					
rep Batch: 133495					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LB 860-133362/1-F	Method Blank	TCLP	Water	3511	133362
rep Batch: 133535					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-62517-1 - DL	Waller Digester c Digester	TCLP	Water	3511	133362
LB 860-133362/1-E	Method Blank	TCLP	Water	3511	13336
MB 860-133535/1-A	Method Blank	Total/NA	Water	3511	
LCS 860-133535/2-A	Lab Control Sample	Total/NA	Water	3511	
LCSD 860-133535/3-A	Lab Control Sample Dup	Total/NA	Water	3511	
nalysis Batch: 133580)				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
LB 860-133362/1-E	Method Blank	TCLP	Water	8081B	133535
MB 860-133535/1-A	Method Blank	Total/NA	Water	8081B	133535
LCS 860-133535/2-A	Lab Control Sample	Total/NA	Water	8081B	133535
LCSD 860-133535/3-A	Lab Control Sample Dup	Total/NA	Water	8081B	133535
Analysis Batch: 133720	0				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-62517-1 - DL	Waller Digester c Digester	TCLP	Water	8081B	13353
Prep Batch: 133829					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
MB 860-133829/1-A	Method Blank	Total/NA	Water	3511	
LCSD 860-133829/3-A	Lab Control Sample Dup	Total/NA	Water	3511	
Prep Batch: 133832					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
860-62517-1	Waller Digester c Digester	TCLP	Water	3511	13336
MB 860-133832/1-A	Method Blank	Total/NA	Water	3511	
LCS 860-133832/2-A	Lab Control Sample	Total/NA	Water	3511	
LCSD 860-133832/3-A	Lab Control Sample Dup	Total/NA	Water	3511	
Analysis Batch: 13392	4				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
LB 860-133362/1-F	Method Blank	TCLP	Water	8151A	13349
MB 860-133829/1-A	Method Blank	Total/NA	Water	8151A	13382
LCSD 860-133829/3-A	Lab Control Sample Dup	Total/NA	Water	8151A	13382
Analysis Batch: 13411	8				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bato
860-62517-1	Waller Digester c Digester	TCLP	Water	8151A	13383
MB 860-133832/1-A	Method Blank	Total/NA	Water	8151A	13383
LCS 860-133832/2-A	Lab Control Sample	Total/NA	Water	8151A	13383
LCSD 860-133832/3-A	Lab Control Sample Dup	Total/NA	Water	8151A	13383
Metals					
Leach Batch: 133184					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bato
LB 860-133184/1-F	Method Blank	TCLP	Water	1311	

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62517-1

Metals (Continued	i)				
Leach Batch: 133184	(Continued)				
Lab Sample ID	Client Sample ID				
860-62417-B-1-J MS	Matrix Spike	Prep Type TCLP	Matrix	Method	Prep Batch
860-62417-B-1-K MSD	Matrix Spike Duplicate		Water	1311	
– Leach Batch: 133362	Daphodic	TCLP	Water	1311	
Lab Sample ID	SU				
860-62517-1	Waller Digester c Digester	Prep Type	Matrix	Method	Prep Batch
LB 860-133362/1-B	Method Blank	TCLP	Water	1311	
LB 860-133362/1-D	Method Blank	TCLP	Water	1311	
860-62567-A-1-H MS	Matrix Spike	TCLP	Water	1311	
	машх эрке	TCLP	Water	1311	
Prep Batch: 133489					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	B
860-62517-1	Waller Digester c Digester	TCLP	Water	7470A	Prep Batch 133362
LB 860-133184/1-F	Method Blank	TCLP	Water	7470A	133184
LB 860-133362/1-B	Method Blank	TCLP	Water	7470A	133362
MB 860-133489/10-A	Method Blank	Total/NA	Water	7470A	133362
LCS 860-133489/11-A	Lab Control Sample	Total/NA	Water	7470A	
LCSD 860-133489/12-A	Lab Control Sample Dup	Total/NA	Water	7470A	
860-62417-B-1-J MS	Matrix Spike	TCLP	Water	7470A	133184
860-62417-B-1-K MSD	Matrix Spike Duplicate	TCLP	Water	7470A	133184
ab Sample ID 360-62517-1	Client Sample ID Waller Digester c Digester	Prep Type TCLP	Matrix	Method	Prep Batch
_B 860-133362/1-D	Method Blank		Water	3010A	133362
MB 860-133556/1-A	Method Blank	TCLP	Water	3010A	133362
CS 860-133556/2-A	Lab Control Sample	Total/NA	Water	3010A	
.CSD 860-133556/3-A	Lab Control Sample Dup	Total/NA	Water	3010A	
60-114411-J-1-A MSD	Matrix Spike Duplicate	Total/NA	Water	3010A	
860-62567-A-1-H MS	Matrix Spike	Total/NA TCLP	Water	3010A 3010A	
nalysis Batch: 133676	117		· · ·	3010A	133362
Lab Sample ID	Client Sample ID	Bron Tuno	Manage	G2	
860-62517-1	Waller Digester c Digester	Prep Type TCLP	Matrix Water	Method 7470A	Prep Batch
B 860-133184/1-F	Method Blank	TCLP	Water		133489
B 860-133362/1-B	Method Blank	TCLP	Water	7470A	133489
//B 860-133489/10-A	Method Blank	Total/NA	Water	7470A	133489
CS 860-133489/11-A	Lab Control Sample	Total/NA	Water	7470A	133489
CSD 860-133489/12-A	Lab Control Sample Dup	Total/NA	Water	7470A	133489
60-62417-B-1-J MS	Matrix Spike	TCLP		7470A	133489
60-62417-B-1-K MSD	Matrix Spike Duplicate	TCLP	Water	7470A	133489
alysis Batch: 134049		, olf	Water	7470A	133489
ab Sample ID					
1B 860-133556/1-A	Client Sample ID Method Blank	Prep Type	Matrix	Method	Prep Batch
		Total/NA	Water	6010D	133556
CS 860-133556/2-A			Mater	60100	400000
	Lab Control Sample	Total/NA	Water	6010D	133556
CS 860-133556/2-A CSD 860-133556/3-A 60-114411-J-1-A MSD	Lab Control Sample Dup Matrix Spike Duplicate	Total/NA Total/NA	Water Water	6010D 6010D	133556

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62517-1

Metals

Analysis Batch: 134055

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-62517-1	Waller Digester c Digester	TCLP	Water	6010D	133556
LB 860-133362/1-D	Method Blank	TCLP	Water	6010D	133556
860-62567-A-1-H MS	Matrix Spike	TCLP	Water	6010D	133556

0-62517-1

3

4

5

6

7

9

10

12

14

Lab Chronicle

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62517-1

Client Sample ID: Waller Digester c Digester

Date Collected: 11/28/23 13:25 Date Received: 11/30/23 09:58 Lab Sample ID: 860-62517-1

Matrix: Water

Ргер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed		
TCLP	Leach	1311			1.0 g	1.0 mL	133351	12/01/23 14:00	Analyst JCM	Lab
					11.8- 💌	V0-058118411 73	Completed:	12/02/23 06:00 1	JCIVI	EET HOU
TCLP	Analysis	8260C		50	5 mL	5 mL	133533	12/04/23 15:13	NA	EET HOU
TCLP	Leach	1311			1.0 g	1.0 mL	133362	12/01/23 13:00	EMC	EET HOU
							Completed:	12/02/23 05:00 1		LLI 1100
TCLP	Prep	3510C			200 mL	1.00 mL	133494	12/04/23 06:37	DR	EET HOU
TCLP	Analysis	8270D		5			133584	12/04/23 15:05	PXS	EET HOU
TCLP	Leach	1311	DL		1.0 g	1.0 mL	133362	12/01/23 13:00	EMC	EET HOU
							Completed:	12/02/23 05:00 1		2211100
TCLP	Prep	3511	DL		48.7 mL	5 mL	133535	12/04/23 08:52	TH	EET HOU
TCLP	Analysis	8081B	DL	10			133720	12/05/23 11:31	WP	EET HOU
TCLP	Leach	1311			1.0 g	1.0 mL	133362	12/01/23 13:00	EMC	EET HOU
							Completed:	12/02/23 05:00 1		
TCLP	Prep	3511			49.7 mL	4 mL	133832	12/05/23 14:58	JN	EET HOU
TCLP	Analysis	8151A		1			134118	12/07/23 14:50	WP	EET HOU
TCLP	Leach	1311			1.0 g	1.0 mL	133362	12/01/23 13:00	EMC	EET HOU
							Completed:	12/02/23 05:00 1		
TCLP	Prep	3010A			10 mL	50 mL	133556	12/04/23 10:00	MD	EET HOU
TCLP	Analysis	6010D		1			134055	12/06/23 11:23	DP	EET HOU
TCLP	Leach	1311			1.0 g	1.0 mL	133362	12/01/23 13:00	EMC	EET HOU
							Completed:	12/02/23 05:00 1		
TCLP	Prep	7470A			50 mL	50 mL	133489	12/03/23 21:45	AGR	EET HOU
TCLP	Analysis	7470A		1			133676	12/04/23 17:10	SHZ	EET HOU

This procedure uses a method stipulated length of time for the process. Both start and end times are displayed.

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Accreditation/Certification Summary

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62517-1

Laboratory: Eurofins Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	88-00759	08-03-24
Florida	NELAP	E871002	06-30-24
Louisiana (All)	NELAP	03054	06-30-24
Oklahoma	NELAP	1306	08-31-24
Oklahoma	State	2023-139	08-31-24
Texas	NELAP	T104704215-23-53	06-30-24
Texas	TCEQ Water Supply	T104704215	12-28-25
USDA	US Federal Programs	525-23-79-79507	03-20-26

Method Summary

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62517-1

Method	Method Description		
3260C	Volatile Organic Compounds by GC/MS	Protocol	Laboratory
270D	Semivolatile Organic Compounds (GC/MS)	SW846	EET HOU
081B	Organochlorine Pesticides (GC)	SW846	EET HOU
151A	Herbicides (GC)	SW846	EET HOU
010D	Metals (ICP)	SW846	EET HOU
470A	Mercury (CVAA)	SW846	EET HOU
311	TCLP Extraction	SW846	EET HOU
10A	Preparation, Total Metals	SW846	EET HOU
10C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	EET HOU
511	Microextraction of Organic Compounds	SW846	EET HOU
30C	Purge and Trap	SW846	EET HOU
70A	200 PB (100 PB	SW846	EET HOU
196	Preparation, Mercury	SW846	EET HOU

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition. November 1986 And Its Updates.

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

5

6

8

9

TO

12

Sample Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: Waller, City of

Job ID: 860-62517-1

Lab Sample ID 860-62517-1

Client Sample ID

Waller Digester c Digester

Matrix Water

Collected

11/28/23 13:25

Received 11/30/23 09:58

SUBCONTRACT ORDER

Sending Laboratory:

Eastex Environmental Laboratory - Coldspring PO Box 1089 Coldspring, TX 77331

Phone: 936-653-3249 eastexlab@eastex net

Project Manager: Daniel Bowen dbowen@eastexiabs.com

PO 113023D

Subcontracted Laboratory:

Eurofins Xenco LLC

4147 Greenbriar Dr. Stafford, TX 77477

Phone. 713-690-4444 Fax: 713-690-5646

Requested Turnaround / ODays

Sample ID: Waller Digester c Digester

Sample No: C3K6938-01

Waste Sampled: 11/28/2023 13:25

6

7

2 TCLP SUBCONTRACT

Containers Supplied: 2

Special Instructions. FULL TCLP REPORT

Temp: 0.9 (R ID HOU-369) Corrected Temp. 0 . 9

See Attached

Received Iced Y/N

Temp

Waller, City of

Released By

1

Received 8

sco_2023SubcontractOrder rpt 10062023

Page 31

Page 1 of 1 12/8/2023

Login Sample Receipt Checklist

Client: Eastex Environmental Laboratory Inc.

Job Number: 860-62517-1

Login Number: 62517

List Source: Eurofins Houston

List Number: 1 Creator: Rubio, Yuri

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

December 21, 2023

City of Waller Waller, City of 1218 Farr St Waller, TX 77484

RE: Waller Digester

Enclosed are the results of analyses for samples received by the laboratory on 11/28/23 15:40, with Lab ID Number C3K6939. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mark Bourgeois

Special Projects Manager

Waller, City of 1218 Farr St Waller TX, 77484

LABORATORY ANALYTICAL REPORT

Project:

Waller Digester a

Client Matrix:

Waste

Sample Date & Time: 11/28/2023 13:25

Collector: JMY

Sample Type:Grab

Print Date: 12/21/2023

Digester C3K6939-01 (Waste)

Analyte	Result	Reporting Limit	Units	Nelac Status	Batch	Analyzed Date & Time	Method	Notes
			Metals			1100		
- Arsenic	7.87	6.67	mg/Kg dry	А	B3L0303	12/06/2023 12:10	EPA SW 846-6010, 3050	
Cadmium	<6.67	6.67	mg/Kg dry	Α	B3L0303	12/06/2023 12:10	EPA SW 846-6010, 3050	
Chromium	43,4	6.67	mg/Kg dry	A	B3L0303	12/06/2023 12:10	EPA SW 846-6010, 3050	
Copper	887	6.67	mg/Kg dry	Α	B3L0303	12/06/2023 12:10	EPA SW 846-6010, 3050	
Lead	115	6.67	mg/Kg dry	Α	B3L0303	12/06/2023 12:10	EPA SW 846-6010, 3050	
Mercury, Total	0.321	0.133	mg/Kg dry	A	B3L1437	12/12/2023 13:24	EPA SW 846-7471B	
Molybdenum	10.8	6.67	mg/Kg dry	A	B3L0303	12/06/2023 12:10	EPA SW 846-6010, 3050	
Nickel	29.5	6.67	mg/Kg dry	A	B3L0303	12/06/2023 12:10	EPA SW 846-6010, 3050	
Phosphorus, %	1.45	1.00	% dry	Α	B3L0304	12/06/2023 16:14	EPA SW 846-6010, 3050	
Potassium, %	0.420	0.333	% dry	A	B3L0303	12/06/2023 12:10	EPA SW 846-6010, 3050	
Selenium	<6.67	6.67	mg/Kg dry	Α	B3L0303	12/06/2023 12:10	EPA SW 846-6010, 3050	
Zinc	953	6.67	mg/Kg dry	Α	B3L0303	12/06/2023 12:10	EPA SW 846-6010, 3050	
		1	Net Lab					
- NH3N %	<0.667	0.667	% dry	A	B3K3632	12/07/2023 12:17	EPA 350.2	
Nitrate-N. %	0.664	0.000133	% dry	N	B3K4988	11/30/2023 17:27	SM 4500 NO3 D	
Percent Solid	1.5	0.1	%	Α	B3K4607	11/29/2023 16:03	SM 2540G	
pH-Sludge	5.59	7.53	std unit	A	B3L0021	12/01/2023 08:15	EPA SW 846-9040	
TKN %	<1.0	0.0667	% dry	N	B3L3576	12/13/2023 13:33	EPA 351.2	S

Waller, City of 1218 Farr St Waller TX, 77484

EPA 350.2 - Quality Control

Eastex Environmental Laboratory - Coldspring

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Notes
Batch B3K3632 - No Prep	Prepared	: 12/07/23 12	:17					1010	Limit	Notes
Blank (B3K3632-BLK1)				Analyzed	12/7/2022	12:17:00PN				
NH3N %	ND	0.0100	% wet	Anatyzeu	12/1/2023	12:17:00PN	1			
LCS (B3K3632-BS1)				Amalous	12/2/2022	12 12 12				
NH3N %	2.02		mg/L	2.00	12/1/2023	12:17:00PN				
Matrix Spike (B3K3632-MS1)	C			2000000			80-120			
NH3N %	0.829	rce: C3K3103				12:17:00PN				
Matric C. II. D. Marris can a service	0.02)	1.23	% dry	0.500	0.345	96.8	80-120			
Matrix Spike Dup (B3K3632-MSD1) NH3N %		rce: C3K3103		Analyzed:	12/7/2023	12:17:00PM	1			
11317 76	0.827	1.25	% dry	0.500	0.345	96.5	80-120	0.181	20	
Batch B3K4607 - No Prep	Prepared:	11/29/23 16:	03							
Blank (B3K4607-BLK1)				Analyzed	11/20/202	4:03:00PN	4			
Percent Solid	ND	0.1	%	Allalyzeu.	11/29/2022	4.05.00PA	71			
Ouplicate (B3K4607-DUP1)	San	rce: C3K6905	01	Anolymody	11/20/2023	1.03.000	2			
Percent Solid	1.30	0.1	-01	Analyzeu:	1.30	4:03:00PN	4	* * * *		
Batch B3K4988 - No Prep	Prepared:	11/30/23 17:			1.50			0.00	20	
Blank (B3K4988-BLK1)				Analyzadi	11/20/2022	. 5.27.00ps				
litrate-N, %	ND	0.00000200	% wet	Anatyzeu:	11/30/2023	5:27:00PN	1			
CS (B3K4988-BS1)										
Vitrate-N, %	1.0123				11/30/2023	5:27:00PN				
Anti-C. D. (WAY) 1600 had			mg/L	1.00		101	80-120			
Matrix Spike (B3K4988-MS1)		rce: C3K3103-				5:27:00PM	1			
	0.7318749	0.000250	% dry	0.625	0.02125	114	80-120			
fatrix Spike Dup (B3K4988-MSD1)	Sour	rce: C3K3103-	-01	Analyzed:	11/30/2023	5:27:00PM	i			
itrate-N, %	0.7287499	0.000250	% dry	0.625	0.02125	113	80-120	0.428	20	
atch B3L0021 - No Prep	Prepared:	12/01/23 08:	15							
CS (B3L0021-BS1)		22,01,20 00.	A =/	Analysis	12/1/2022	0.15.007			_	
H-Sludge	6.88		std unit	Analyzed:	12/1/2023	8:15:00AM				
uplicate (B3L0021-DUP1)						60000	0-200			
4-Sludge		ce: C3K6939-		Analyzed:		8:15:00AM				
- Simogo	5.59		std unit		5.59			0.00	20	

Eastex Environmental Laboratory - Coldspring

The results in this report apply to the samples analyzed in accordance with the chain () custody document. This analytical report must be reproduced in its entirety.

*NELAC Status: A=Accredited, N=Accreditation not offered, O=Not Accredited, P=Approved

PromiumforCold.v5 W&O; revision date 11192021

Waller, City of 1218 Farr St Waller TX, 77484

EPA SW 846-6010, 3050 - Quality Control

Eastex Environmental Laboratory - Coldspring

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3L0303 - SW846-3050	Propored	12/04/23 15	.28							
	T repareu.	12/04/23 13	.20	Anabaadi	12/6/2022	11:32:54A	M			
Blank (B3L0303-BLK1)		21022		Anaiyzeu:	12/0/2023	11:32:34A	IVI			
Molybdenum	ND	0.100	mg/Kg wet							
Arsenic	ND	0.100	mg/Kg wet							
Cadmium	ND	0.100	mg/Kg wet							
Chromium	ND	0.100	mg/Kg wet							
Соррег	ND	0.100	mg/Kg wet							
ead	ND	0.100	mg/Kg wet							
Nickel	ND	0.100	mg/Kg wet							
Potassium, %	ND	0.00500	% wet							
Selenium	ND	0.100	mg/Kg wet							
Zinc	ND	0.100	mg/Kg wet							
LCS (B3L0303-BS1)				Analyzed:	12/6/2023	11:36:21A	.M			
Aolybdenum	2.66	0.100	mg/Kg wet	2.50		106	80-120			
Arsenic	2.45	0.100	mg/Kg wet	2.50		98.0	80-120			
Cadmium	2.4	0.100	mg/Kg wet	2.50		95.6	80-120			
Chromium	2.62	0.100	mg/Kg wet	2.50		105	80-120			
Copper	2.68	0.100	mg/Kg wet	2.50		107	80-120			
Lead	2.55	0.100	mg/Kg wet	2.50		102	80-120			
Nickel	2.47	0.100	mg/Kg wet	2.50		98.8	80-120			
Potassium, %	0.0208	0.00500	% wei	0.0250		83.2	80-120			
Selenium	2.25	0.100	mg/Kg wet	2.50		90.0	80-120			
Zinc	2,51	0.100	mg/Kg wet	2.50		100	80-120			
Matrix Spike (B3L0303-MS1)	Son	irce: C3K386	0-01	Analyzed	: 12/6/2023	11:46:41A	м			
Molybdenum	255	10.0		250	6.5	99.4	75-125			
Arsenic	244	10.0		250	9.12	94.0	75-125			
Cadmium	230	10.0	mg/Kg dry	250	ND	92.8	75-125			
Chromium	270	10.0	mg/Kg dry	250	20.8	99.7	75-125			
Copper	509	10.0	mg/Kg dry	250	236	109	75-125			
Lead	250	10.0		250	7.35	97.1	75-125			
Nickel	253	10.0		250	17.9	94.0	75-125			
Potassium, %	3.40	0.500	% dry	2.50	0.877	101	75-125			
Selenium	222	10.0		250	9.39	85.0	75-125			
Zinc	1680	10.0		250	1460	0.88	75-125			
Matrix Spike Dup (B3L0303-MSD1)	So	ırce: C3K386	0-01	Analyzed	: 12/6/2023	11:50:10A	M			
Molybdenum	265		mg/Kg dry	250	6.5	103	75-125	3.85	20	

Eastex Environmental Laboratory - Coldspring

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

*NELAC Status: A=Accredited, N=Accreditation not offered, O=Not Accredited, P=Approved

Waller, City of 1218 Farr St Waller TX, 77484

EPA SW 846-6010, 3050 - Quality Control

Eastex Environmental Laboratory - Coldspring

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Note:
Batch B3L0303 - SW846-3050	Prepared:	12/04/23 15	5:28							isole
Matrix Spike Dup (B3L0303-MSD1)	Sou	rce: C3K386	0-01	Analyzed:	12/6/2023	11:50:10A	М		-	
Arsenic	250	10.0	mg/Kg dry	250	9.12	96.4	75-125	2.43	20	
Cadmium	240	10.0	mg/Kg dry	250	ND	96.0	75-125	3.39	20	
Chromium	277	10.0	mg/Kg dry	250	20.8	102	75-125	2.56	20	
Copper	522	10.0	mg/Kg dry	250	236	114	75-125	2.52	20	
Lead	260	10.0	mg/Kg dry	250	7.35	101	75-125	3.92	20	
Nickel	261	10.0	mg/Kg dry	250	17.9	97.2	75-125	3.11	20	
Potassium, %	3.40	0.500	% dry	2.50	0.877	101	75-125	0.00	20	
Selenium	227	10.0	mg/Kg dry	250	9.39	87.0	75-125	2.23	20	
Zinc	1700	10.0	mg/Kg dry	250	1460	96.0	75-125	1.18	20	
Batch B3L0304 - SW846-3050	Prepared:	12/06/23 15	:58							
Blank (B3L0304-BLK1)				Analyzed:	12/6/2023	3:58:35PM	1			
Phosphorus, %	ND	1.00	% wet							
LCS (B3L0304-BS1)				Analyzed:	12/6/2023	4:00:11PM	Í			
Phosphorus, %	0.00232	1.00	% wet	0.00252		91.9	80-120			
Matrix Spike (B3L0304-MS1)	Sou	rce: C3K386	0-01	Analyzed:	12/6/2023	4:04:59PM	1			
Phosphorus, %	2.73	1.00	% dry	0.252	2.48	99.L	75-125			
Matrix Spike Dup (B3L0304-MSD1)	Sou	rce: C3K3860	0-01	Analyzed:	12/6/2023	4:06:35PM	L			
Phosphorus, %	2.70	1.00	% dry	0.252	2.48	88.3	75-125	1.00	20	
Batch B3L1437 - SW 846-7471B	Prepared:	12/11/23 10	:14							
Blank (B3L1437-BLK1)				Analyzed:	12/12/2023	12:56:37P	М			
Mercury, Total	ND	0.00200	mg/Kg wet						7	
LCS (B3L1437-BS1)				Analyzed:	12/12/2023	12:59:08P	M			
Mercury, Total	0.0255	0.00200	mg/Kg wet	0.0250		102	80-120			
Matrix Spike (B3L1437-MS1)	Sour	ce: C3K3860	0-01	Analyzed:	12/12/2023	1:07:37PI	М			
Mercury, Total	2.64	0.200	mg/Kg dry	2.50	0.240	96.0	75-125			
Matrix Spike Dup (B3L1437-MSD1)	Sour	ce: C3K3860	0-01	Analyzed:	12/12/2023	1:11:06PN	М			
Mercury, Total	2.72	0.200	mg/Kg dry	2.50	0.240	99.2	75-125	2.99	20	

Eastex Environmental Laboratory - Coldspring

The results in this report apply to the samples analyzed in accordance with the chain of custody document.

This analytical report must be reproduced in its entirety.

*NELAC Status: A=Accredited, N=Accreditation not offered, O=Not Accredited, P=Approved

PromiumforCold.v5 W&O; revision date 11192021

Waller, City of 1218 Farr St Waller TX, 77484

Notes and Definitions

S Analysis performed by subcontract lab. Report available upon request.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

ANALYTICAL REPORT

PREPARED FOR

Attn: Mark Bourgeois
Eastex Environmental Laboratory Inc.
PO BOX 1089
Coldspring, Texas 77331

Generated 12/8/2023 4:04:02 PM

JOB DESCRIPTION

Waller, City of

JOB NUMBER

860-62514-1

Eurofins Houston 4145 Greenbriar Dr Stafford TX 77477

Eurofins Houston

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 12/8/2023 4:04:02 PM

Authorized for release by Sylvia Garza, Project Manager Sylvia.Garza@et.eurofinsus.com (832)544-2004

Table of Contents

C D	0		-	-		-		ı	0	•								
Cover Page																		1
Table of Contents							0 72						•	•		•	• •	3
Definitions/Glossary							• •	• 2	•		•	•		•	•		•	
Case Narrative		•	• •		• •	* O		•	•		•	• •			٠	• •	٠	4
Detection Summany			• •	• •	٠.	• •	•		•	• •	•			•	٠			5
Detection Summary		*			• •	٠.				٠								. 6
Client Sample Results												-	120					7
Surrogate Summary							2							2 12				8
QC Sample Results									i	•			•			•	•	9
QC Association Summary		•	•					•		•		•	•			•	٠.	9
Lab Chronicle	• • • •	• •	•	•				•	٠.	K		٠		٠	٠	٠	٠.	11
Lab Chronicle			٠.	٠.	٠.	٠.	•		٠.		::::				¥ 2			12
Certification Summary												(61)	2 5					13
Method Summary	20.00	12 151										:50			•	•		14
Sample Summary	(2) 2 (2)		• •	• •		• •	:•:		•	• •	•	• •		•	• •	6.3	•	1.7
Chain of Custodia			• •	• •	٠.		٠	٠.	•		•	٠.	•	٠				15
Chain of Custody					• • •							٠						16
Receipt Checklists				2 2 3								-	w					17

Date Service	5	
Minus 479.	SAN.	W

10	STOCK OF	mar	r
B	F	2	Į
Ð	W I		ì

8	
9	

-	N.	ď		l
1	di.	F	S	į
- 3	4	ı	۱	ŀ

1	E . 1
100	185
Print	-
7	
备	100
	W .40

١	
١	6 164
-	

Definitions/Glossary

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62514-1

GI	os	s	a	ry

Abbreviation	These commonly used abbreviations may or may not be present in this report.
п	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA. RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Case Narrative

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62514-1

Job ID: 860-62514-1

Laboratory: Eurofins Houston

Narrative

Job Narrative 860-62514-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 11/30/2023 9:58 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.9°C

PCBs

Method 8082A: liquid sludge, weighed to 5 grams

Waller Digester a Digester (860-62514-1)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

٠,

5

6

7

8

9

W

12

13

14

Christens

Detection Summary

Client: Eastex Environmental Laboratory Inc.

Job ID: 860-62514-1

Project/Site: Waller, City of

Client Sample ID: Waller Digester a Digester

Lab Sample ID: 860-62514-1

No Detections.

Client Sample Results

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62514-1

Client Sample ID: Waller Digester a Digester

Date Collected: 11/28/23 13:25 Date Received: 11/30/23 09:58

Lab Sample ID: 860-62514-1

Matrix: Solid

Percent Solids: 1.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Amelicant	
PCB-1016	ND		7.6		mg/Kg	— <u>-</u>	12/06/23 16:18	Analyzed	Dil Fac
PCB-1221	ND		7.6		mg/Kg			12/07/23 18:44	1
PCB-1232	ND		7.6		520	О	12/06/23 16:18	12/07/23 18:44	1
PCB-1242	200				mg/Kg	D	12/06/23 16:18	12/07/23 18:44	1
PCB-1248	ND		7.6		mg/Kg	33	12/06/23 16:18	12/07/23 18:44	1
	ND		7.6		mg/Kg	43	12/06/23 16:18	12/07/23 18:44	1
PCB-1254	ND		7.6		mg/Kg	33	12/06/23 16:18	12/07/23 18:44	
PCB-1260	ND		7.6		mg/Kg	D	12/06/23 16:18	12/07/23 18:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	A == 1 ==	
Tetrachioro-m-xylena	69		35 - 140				12/06/23 16:18	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	131		37 - 142					12/07/23 18:44	1
	1001		07.2.742				12/06/23 16:18	12/07/23 18:44	1
General Chemistry									
Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared		4.7-
Percent Moisture (EPA Moisture)	98.7			10.700.7	%	_ =	riepared	Analyzed	Dil Fac
Percent Solids (EPA Moisture)	1.3							12/04/23 17:38	1
,	1.3				%			12/04/23 17:38	9

Eurofins Houston

Surrogate Summary

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62514-1

Prep Type: Total/NA

١		×	
ı	۲	4	ı
١	b	L	d

	5	
I	1000	200

7	Á		1	ă
D	9	W	0	a
d	0	Ġ	B	ğ

3	7	À	ı
	Ы		ě
_	-		

	į			
Ξ			_	
	P	ų		ä

		t		l		
				4		
'n	y	٩	ģ	B	ij	Š

1 1 1	ge.	g	×	菱
2 2 × E	d	r	ĕ	ž.
	0	Ø,	٠.	Æ

Method: 8082A - Pol	ychlorinated	Biphenyls	(PCBs)	by Gas	Chromatography

Matrix: Solid

		TCX1	DCB1	
Lab Sample ID	Client Sample ID	(35-140)	(37-142)	
860-62514-1	Waller Digester a Digester	69	131	
860-63062-D-1-I MS	Matrix Spike	85	126	
860-63062-D-1-J MSD	Matrix Spike Duplicate	82	130	
LCS 860-134047/4-A	Lab Control Sample	96	120	
LCSD 860-134047/5-A	Lab Control Sample Dup	95	120	
MB 860-134047/1-A	Method Blank	82	112	
Surrogate Legend				

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Tetrachloro-m-xylene

DCB Decachlorobiphenyl (Surr)

Job ID: 860-62514-1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography Lab Sample ID: MB 860-134047/1-A Client Sample ID: Method Blank Matrix: Solid Analysis Batch: 134121 Prep Type: Total/NA Prep Batch: 134047 MB MB Analyte Result Qualifier RL MDL Unit D Prepared PCB-1016 Analyzed DII Fac ND 0.017 mg/Kg 12/06/23 16:18 12/07/23 13:46 PCB-1221 ND 0.017 mg/Kg 12/06/23 16:18 12/07/23 13:46 PCB-1232 ND 0.017 mg/Kg 12/06/23 16:18 PCB-1242 12/07/23 13:46 ND 0.017 mg/Kg 12/06/23 16:18 12/07/23 13:46 PCB-1248 ND 0.017 mg/Kg 12/06/23 16:18 12/07/23 13:46 PCB-1254 ND 0.017 mg/Kg 12/06/23 16:18 12/07/23 13:46 PCB-1260 ND 0.017 mg/Kg 12/06/23 16:18 12/07/23 13:46 MR MR Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Tetrachloro-m-xylene 82 35 - 140 12/06/23 16:18 12/07/23 13:46 DCB Decachlorobiphenyl (Surr) 112 37 - 142 12/06/23 16:18 12/07/23 13:46 Lab Sample ID: LCS 860-134047/4-A Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA Analysis Batch: 134121 Prep Batch: 134047 Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits PCB-1016 0.167 0.159 mg/Kg 95 27 - 121 PCB-1260 0.167 0.166 mg/Kg 99 27 - 139 LCS LCS Surrogate %Recovery Qualifier Limits Tetrachloro-m-xylene 96 35 - 140 DCB Decachlorobiphenyl (Surr) 120 37 - 142 Lab Sample ID: LCSD 860-134047/5-A Client Sample ID: Lab Control Sample Dup Matrix: Solid Prep Type: Total/NA Analysis Batch: 134121 Prep Batch: 134047 Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier %Rec Limits RPD Limit PCB-1016 0.167 0.164 mg/Kg 98 27 - 121 3 20 PCB-1260 0.167 0.182 mg/Kg 109 27 - 139 20 LCSD LCSD Surrogate %Recovery Qualifier Limits Tetrachioro-m-xylene 95 35 - 140 DCB Decachlorobiphenyl (Surr) 120 37 - 142 Lab Sample ID: 860-63062-D-1-I MS Client Sample ID: Matrix Spike Matrix: Solid Prep Type: Total/NA Analysis Batch: 134121 Prep Batch: 134047 Sample Sample Snike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits PCB-1016 ND 0.200 0.154 mg/Kg 77 D 27 - 121 PCB-1260 ND 0.200 0.184 mg/Kg 3.1 92 27 - 139 MS MS Surrogate %Recovery Qualifier Limits

Eurofins Houston

35 - 140

37 - 142

85

QC Sample Results

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62514-1

Client Sample ID: Method Blank

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: 860-63062-D-	1-J MSD					С	lient Sa	ample ID	: Matrix Sp	oike Dup	licate
Matrix: Solid									Prep T	ype: To	tal/NA
Analysis Batch: 134121									Prep I	Batch: 1	34047
,	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
PCB-1016	ND		0.200	0.150	3	mg/Kg	D	75	27 - 121	3	20
PCB-1260	ND		0.200	0.188		mg/Kg	33	94	27 - 139	3	20
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
Tetrachloro-m-xylene	82		35 - 140								
DCB Decachlorobiphenyl (Surr)	130		37 - 142								

Method: Moisture - Percent Moisture

Lab Sample ID: MB 860-133677/1

Matrix: Solid Analysis Batch: 133677								Prep Type: 1	Total/NA
W. Walter, Ev.	MB	MB							
Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	DII Fac
Percent Moisture	-0.08				%			12/04/23 17:38	1
Percent Solids	100.1				%			12/04/23 17:38	1

Percent Solids	1	00.1		%			12/04/23 17:38	1
Lab Sample ID: 860-6266 Matrix: Solid Analysis Batch: 133677	69-C-15 DU						Client Sample ID: Dup Prep Type: Tot	
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Percent Moisture	5.4		5.2		%		3	20
Percent Solids	94.6		94.8		%		0.2	20

QC Association Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: Waller, City of

Job ID: 860-62514-1

GC Semi VOA

Prep Batch: 1340	47
------------------	----

Lab Sample ID 860-62514-1	Client Sample ID	Prep Type	Matrix	Maria	
000-025 14-1	Waller Digester a Digester	Total/NA	Solid	Method	Prep Batch
MB 860-134047/1-A	Method Blank		30110	3550C	
LCS 860-134047/4-A	SALE SECTION OF THE S	Total/NA	Solid	3550C	
White the comment of	Lab Control Sample	Total/NA	Solid	3550C	
LCSD 860-134047/5-A	Lab Control Sample Dup	Total/NA		UC	
860-63062-D-1-I MS	Matrix Spike		Solid	3550C	
860-63062-D-1-J MSD	versus eller es	Total/NA	Solid	3550C	
Matrix Spike Duplicate	Matrix Spike Duplicate	Total/NA	Solid	3550C	

Analysis Batch: 134121

Lab Sample ID	Client Sample ID	Prep Type	44.4		
860-62514-1	Waller Digester a Digester		Matrix	Method	Prep Batch
MB 860-134047/1-A	Description Control Medical Control of the Control	Total/NA	Solid	8082A	134047
	Method Blank	Total/NA	Solid	8082A	
CS 860-134047/4-A	Lab Control Sample	Total/NA	Solid		134047
CSD 860-134047/5-A	Lab Control Sample Dup			8082A	134047
860-63062-D-1-I MS		Total/NA	Solid	8082A	134047
	Matrix Spike	Total/NA	Solid	8082A	134047
360-63062-D-1-J MSD	Matrix Spike Duplicate	Total/NA	Solid	Part 8040 DV	134047
		101411111	Solid	8082A	134047

General Chemistry

Analysis Batch: 133677

Lab Sample ID	Client Sample ID	Prep Type	Matrix	0.0000000000000000000000000000000000000	
860-62514-1	Waller Digester a Digester	Total/NA		Method	Prep Batch
MB 860-133677/1		IOIaI/NA	Solid	Moisture	
TOWNS CONTROL TO SERVICE STATE OF THE SERVICE STATE	Method Blank	Total/NA	Solid	Moisture	
860-62669-C-15 DU	Duplicate	Total/NA	Solid	A STATE OF THE STA	
		Totalities	Solid	Moisture	

4

6

7

9

10

12

13

14

Lab Chronicle

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62514-1

Client Sample ID: Waller Digester a Digester

Date Collected: 11/28/23 13:25

Lab Sample ID: 860-62514-1

Matrix: Solid

Date Received: 11/30/23 09:58

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			133677	12/04/23 17:38	JM	EET HOU

Client Sample ID: Waller Digester a Digester

Date Collected: 11/28/23 13:25 Date Received: 11/30/23 09:58

Lab Sample ID: 860-62514-1

Matrix: Solid

Percent Solids: 1.3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			5.03 g	5 mL	134047	12/06/23 16:18	вн	EET HOU
Total/NA	Analysis	8082A		1			134121	12/07/23 18:44	WP	EET HOU

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Accreditation/Certification Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: Waller, City of

Job ID: 860-62514-1

Laboratory: Eurofins Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	88-00759	08-03-24
Florida	NELAP	E871002	06-30-24
Louisiana (All)	NELAP	03054	06-30-24
Oklahoma	NELAP	1306	08-31-24
Oklahoma	State	2023-139	08-31-24
Texas	NELAP	T104704215-23-53	06-30-24
Texas	TCEQ Water Supply	T104704215	12-28-25
USDA	US Federal Programs	525-23-79-79507	03-20-26

2

4

6

7

8

9

W

12

14

Method Summary

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62514-1

Method	Method Description	Protocol	Laboratory
a xA	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	EET HOU
Moisture	Percent Moisture	EPA	EET HOU
3550C	Ultrasonic Extraction	SW846	EET HOU

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Sample Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: Waller, City of

Job ID: 860-62514-1

Lab Sample ID Client Sample ID Matrix Collected Received 860-62514-1 Waller Digester a Digester Solid 11/28/23 13:25 11/30/23 09:58

SUBCONTRACT **ORDER**

5

Sending Laboratory:

Eastex Environmental Laboratory - Coldspring PO Box 1089 Coldspring, TX 77331

Phone. 936-653-3249 eastexlab@eastex.net Project Manager Daniel Bowen dbowen@eastexlabs.com

Subcontracted Laboratory:

Eurofins Xenco LLC

4147 Greenbriar Dr. Stafford, TX 77477

Phone 713-690-4444 Fax. 713-690-5646

Requested Turnaround ODays

PO 113023B

Sample ID: Waller Digester a Digester

Sample No: C3K6939-01

Waste

Sampled: 11/28/2023 13:25

PCB 8082

Containers Supplied:

Special Instructions. PCB MG/KG &SOLIDS

Temp. Q IR ID HOU-369 Corrected Temp: 0.9

See Attached

Received Iced Y/N

Temp

Waller City of

Released By

sco_2023SubcontractOrder rpt 10062023

Page 16 of

Page 1 of 1 12/8/2023

Login Sample Receipt Checklist

Client: Eastex Environmental Laboratory Inc.

Job Number: 860-62514-1

Login Number: 62514 List Number: 1 Creator: Rubio, Yuri

List Source: Eurofins Houston

Question	Answer Comment
The cooler's custody seal, if present, is intact.	True
Sample custody seals, if present, are intact.	True
The cooler or samples do not appear to have been compromised or tampered with.	True
Samples were received on ice.	True
Cooler Temperature is acceptable.	True
Cooler Temperature is recorded.	True
COC is present.	True
COC is filled out in ink and legible.	True
COC is filled out with all pertinent information.	True
Is the Field Sampler's name present on COC?	True
There are no discrepancies between the containers received and the COC.	True
Samples are received within Holding Time (excluding tests with immediate HTs)	True
Sample containers have legible labels.	True
Containers are not broken or leaking.	True
Sample collection date/times are provided.	True
Appropriate sample containers are used.	True
Sample bottles are completely filled.	True
Sample Preservation Verified.	True
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True
Containers requiring zero headspace have no headspace or bubble is	True

<6mm (1/4").

ANALYTICAL REPORT

PREPARED FOR

Attn: Mark Bourgeois
Eastex Environmental Laboratory Inc.
PO BOX 1089
Coldspring, Texas 77331
Generated 12/13/2023 5:40:43: PM

JOB DESCRIPTION

Waller, City of

JOB NUMBER

860-62703-1

Eurofins Houston 4145 Greenbriar Dr Stafford TX 77477

Eurofins Houston

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 12/13/2023 5:40:43 PM

Authorized for release by Sylvia Garza, Project Manager Sylvia.Garza@et.eurofinsus.com (832)544-2004

Table of Contents	
Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
QC Sample Results	8
QC Association Summary	9
Lab Chronicle	10
Certification Summary	11
Method Summary	12
Sample Summary	13
Chain of Custody	
Receipt Checklists	15

Definitions/Glossary

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62703-1

Qualifiers

RL

RPD

TEF

TEQ TNTC Reporting Limit or Requested Limit (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Relative Percent Difference, a measure of the relative difference between two points

General	Chemistr	У
---------	----------	---

Qualifier	Qualifier Description	
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not	
	applicable.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
U	Indicates the analyte was analyzed for but not detected.	
-		

· ·	mulcates the allalyte was allalyzed for but not detected.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
п	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Delectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantilation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	

Case Narrative

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62703-1

Job ID: 860-62703-1

Laboratory: Eurofins Houston

Narrative

Job Narrative 860-62703-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

The sample was received on 12/1/2023 9:11 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.4°C

General Chemistry

Method 351.2: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 860-134764 and analytical batch 860-135028 were outside control limits. Sample matrix interference is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Detection Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: Waller, City of

Job ID: 860-62703-1

Client	Sample II	D.	Waller	Digester
Onone	oumpic ii	υ.	Andilei	Digester

Lab Sample ID: 860-62703-1

Anglista								•	
Analyte Nitrogen, Kjeldahl		Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Livid ogen, Njeldani	494		49.0	24.1	mg/Kg	5.882	_	351.2	Total/NA
	494		49.0	24.1	mg/Kg	5.882		351.2	

Client Sample Results

Client: Eastex Environmental Laboratory Inc.

Client Sample ID: Waller Digester

Project/Site: Waller, City of

Job ID: 860-62703-1

Lab Sample ID: 860-62703-1

Matrix: Waste

Date Collected: 11/28/23 13:25 Date Received: 12/01/23 09:11

General Chemistry MDL Unit D Prepared Analyte Result Qualifier RL Analyzed Dil Fac 49.0 2N.1 mg/Kg 12/12/23 11:12 12/13/23 13:33 5.882 Nitrogen, Kjeldahl (EPA 351.2) 494

QC Sample Results

RL

8.00

Spike

Added

Spike

Added

83.3

Spike

Added

8.16

Spike

Added

Spike

Added

78.4

78.4

83.3

MDL Unit

3.93 mg/Kg

LCS LCS

LCSD LCSD

LLCS LLCS

MS MS

6753 4

Result

7194 4

Result Qualifier

MSD MSD

Qualifier

Result

85.77

Result

4.518

Result

83.52

Qualifier

Qualifier

Qualifier

Unit

Unit

Unit

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62703-1

Method:	351.2	 Nitroger 	n, Total	Kjeldahl
Lab Sam	ple ID:	MB 860-134	764/4-A	

Matrix: Solid

Analysis Batch: 135028

	MB	MB
Analyte	Result	Qualifier
Nitrogen, Kjeldahl	<3.93	U

Lab Sample ID: LCS 860-134764/6-A Matrix: Solid

Analysis Batch: 135028

Analyte

Nitrogen, Kjeldahl

Lab Sample ID: LCSD 860-134764/7-A

Matrix: Solid

Analysis Batch: 135028

Analyte

Nitrogen, Kjeldahl

Lab Sample ID: LLCS 860-134764/5-A Matrix: Solid

Analysis Batch: 135028

Analyte Nitrogen, Kjeldahl

Lab Sample ID: 860-62478-A-1-B MS

Matrix: Solid

Analysis Batch: 135028

Analyte

Nitrogen, Kjeldahl Lab Sample ID: 860-62478-A-1-C MSD

Matrix: Solid

Analysis Batch: 135028

Sample Sample Qualifier Result Nitrogen, Kjeldahl 6750

Sample Sample

6750

Result Qualifier

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 134764

Prepared Analyzed Dil Fac 12/12/23 11:12 12/13/23 13:04

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 134764

%Rec Unit Limits mg/Kg 100 90 - 110

%Rec

%Rec

%Rec

55

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 134764 %Rec RPD

Limits RPD Limit

103 90 - 110

Client Sample ID: Lab Control Sample

50 - 150

Prep Type: Total/NA Prep Batch: 134764

%Rec Limits

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 134764

%Rec Limits -0.8 90 - 110

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA Prep Batch: 134764

RPD

Limits RPD Limit 90 - 110

QC Association Summary

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62703-1

General Chemistry Prep Batch: 134764

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-62703-1	Waller Digester	Total/NA	Waste	351.2	
MB 860-134764/4-A	Method Blank	Total/NA	Solid	351.2	
LCS 860-134764/6-A	Lab Control Sample	Total/NA	Solid	351.2	
LCSD 860-134764/7-A	Lab Control Sample Dup	Total/NA	Solid	351.2	
LLCS 860-134764/5-A	Lab Control Sample	Total/NA	Solid	351.2	
860-62478-A-1-B MS	Matrix Spike	Total/NA	Solid	351.2	
860-62478-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	351.2	

Analysis Batch: 135028

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-62703-1	Waller Digester	Total/NA	Waste	351.2	134764
MB 860-134764/4-A	Method Blank	Total/NA	Solid	351.2	134764
LCS 860-134764/6-A	Lab Control Sample	Total/NA	Solid	351.2	134764
LCSD 860-134764/7-A	Lab Control Sample Dup	Total/NA	Solid	351.2	134764
LLCS 860-134764/5-A	Lab Control Sample	Total/NA	Solid	351.2	134764
860-62478-A-1-B MS	Matrix Spike	Total/NA	Solid	351.2	134764
860-62478-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	351.2	134764

Lab Chronicle

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62703-1

Client Sample ID: Waller Digester

Date Collected: 11/28/23 13:25 Date Received: 12/01/23 09:11

Lab Sample ID: 860-62703-1

Matrix: Waste

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial	Final	Batch	Prepared		
Total/NA	Prep	351.2		- actor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	351.2		5 000	0.48 mL	20 mL	134764	12/12/23 11:12	LD	EET HOU
Transporter strate	, mary and	001,2		5.882			135028	12/13/23 13:33	AA	EET HOU

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr. Stafford, TX 77477, TEL (281)240-4200

Accreditation/Certification Summary

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62703-1

Laboratory: Eurofins Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Program	Identification Number	Expiration Date
State	88-00759	08-03-24
NELAP	E871002	06-30-24
NELAP	03054	06-30-24
NELAP	1306	08-31-24
State	2023-139	08-31-24
NELAP	T104704215-23-53	06-30-24
TCEQ Water Supply	T104704215	12-28-25
US Federal Programs	525-23-79-79507	03-20-26
	Slate NELAP NELAP NELAP State NELAP TCEQ Water Supply	State 88-00759 NELAP E871002 NELAP 03054 NELAP 1306 State 2023-139 NELAP T104704215-23-53 TCEQ Water Supply T104704215

1

2

3

4

5

6

8

9

(0)

Method Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: Waller, City of

Job ID: 860-62703-1

Nethod	Method Description		
51.2	Nitrogen, Total Kjeldahl	Protocol	Laboratory
351.2	Nitrogen, Total Kjeldahl	EPA	EET HOU
	1 th	EPA	EET HOU

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Rock

5

6

7

9

D

12

13

Sample Summary

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62703-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
860-62703-1	Waller Digester	Waste	11/28/23 13:25	12/01/23 09:11

SUBCONTRACT ORDER

7

Sending Laboratory:

Eastex Environmental Laboratory - Coldspring PO Box 1089 Coldspring, TX 77331

Phone 936-653-3249 eastexlab@eastex.net Project Manager Daniel Bowen dbowen@eastexlabs.com

Subcontracted Laboratory:

Eurofins Xenco LLC

4147 Greenbriar Dr Stafford, TX 77477

Phone: 713-690-4444 Fax: 713-690-5646

PO 120123D

Requested Turnaround () Days

Sample ID: Waller Digester a Digester

Sample No: C3K6939-01

Waste Sampled: 11/28/2023 13:25

TKN %

Containers Supplied:

Special Instructions

Temp: 1.4 IR ID HOU-369 Corrected Temp: 1. 4

See Attached

Received Iced Y/N

Temp_

Waller City of

Released By

Received By

Login Sample Receipt Checklist

Client: Eastex Environmental Laboratory Inc.

Containers requiring zero headspace have no headspace or bubble is

Job Number: 860-62703-1

List Source: Eurofins Houston

Login Number: 62703 List Number: 1 Creator: Rubio, Yuri

	• 0.2000.200	Comment
Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
MINERAL P.P.	The state of the s	

True

<6mm (1/4").

EASTEX ENVIRONMENTAL LABORATORY, INC. bix 1089 * Coldspring, TX 77331 P.O. Box 631375 * Nacogdoches, TX 75963-1375 (936) 663-3249 * (800) 525-0508 (936) 569-8879 * FAX (936) 569-8951

P.O. Box 1089 * Coldspring, TX 77331 (936) 653-3249 * (800) 525-0508

www.eastexlabs.com

White Copy-Follows Samples Yellow Copy-Laboratory Pink Copy-Client Copy

	Alternate Check In:	LAB USE ONLY Sample Condition Acceptable:	Relinquished By:	Relinquished By:		Relinquished By:					Mary Mary	20000		Sample ID		Project Name:	Sampler's Signature	Jan Jan Doo C	Sampler's Name (scient)	P.O. #:	Email:	rnone#:	Auni:		
*Thermometer has 0.0 fac	Date Time	on Acceptable: YES / NO	Received By and/or Checked in By:	Received By:	Received By:						D B X XVV	D B S MOO	() () () () () ()	2	4	Preservatives: C=Chilled S=Sulfuric Acid N=Nitric Acid ST=Sodium Thiosulfate H=HCL O= Other		Container Size: 1=Gallon 2=1/2 Gallon 3=Quart/Liter 4=500mL 5= 6=125mL (4oz) 7=60mL (2 oz) 8= 40mL Viai 9=Other	Matrix: DW=Drinking Water WW=Wastewater	C or G: C= Composite G= Grab	INSTRUCTIONS:	Phone#:	Attn:		
*Thermometer has 0.0 factor and recorded temperature is actual temperature	1	Temp C Them ID Logge	Date	Date	Date						765	2815 0	200	е Туре	ata Containers	N=Nitric Acid B=Base/Caustic Z= Zn Acetate +CL O= Other	flon S= Sterile	3=Quart/Liter	Vastewater SO=Soil/Sludge OT=Other						
emperature // // // //		1 S IIII S 1		Timo	Time						7	7	7	Pres T	LAN	- LFNC	7	PA	CP	P	NAL	YSIS	RE	QUE	
1033 Ma33	n Care	Iced: YE	Received Iced: YES / NO	Necelved Iced: YES / NO	- 1																				

02 January 2024

Envirodyne Laboratories, Inc 11011 Brooklet Dr., # 230 Houston, TX 77099 281.568.7880 Phone www.envirodyne.com

Water District Management (WDM) c/o Myrtle Cruz, Inc. - Mary Jarmon 1621 Milam, (3rd Floor) Houston, TX 77002

WHCMUD #7

Enclosed are the results of analyses for samples received by the laboratory on 14-Dec-23 15:15. The analytical data provided relates only to the samples as received in this laboratory report.

ELI certifies that all results are NELAP compliant and performed in accordance with the referenced method except as noted in the Case Narrative or as noted with a qualifier. Any reproductions of this laboratory report should be in full and only with the written authorization from the client.

The total number of pages in this report is 14

Thank you for selecting ELI for your analytical needs. If you have any questions regarding this report, please contact us.

Sincerely,

Laura Bonjonia For Brooke Milton

Haura Brymin

Customer Service Representative

ABORATOR

Certificate No: T104704265-22-20

JAN 02 2005

Sludge Manager

Master Spreadsheet

TCLP

PCB

Metals

□AS

□

s ☑‰ Solid

Envirodyne Laboratories, Inc 11011 Brooklet Dr., # 230 Houston, TX 77099 281,568,7880 Phone www.envirodyne.com

Client:

Water District Management (WDM)

Project: Work Order: WHCMUD #7

23L1356

Reported: 02-Jan-24 09:39

ANALYTICAL REPORT FOR SAMPLES

		Date Sampled	Date Received
Laboratory ID	Matrix	14 Dec-23 07:00	14-Dec-23 15:15
23L1356-01	Water		14-Dec-23 15:15
23L1356-02	Water		14-Dec-23 15:15
23L1356-03	Water		
	Solids	14-Dec-23 06:52	14-Dec-23 15:15
		14-Dec-23 06:56	14-Dec-23 15:15
		14-Dec-23 06:54	14-Dec-23 15:1:
231.1356-06	Solids		
	23L1356-01	23L1356-01 Water 23L1356-02 Water 23L1356-03 Water 23L1356-04 Solids 23L1356-05 Solids	Laboratory ID Matrix 23L1356-01 Water 23L1356-02 Water 23L1356-03 Water 23L1356-04 Solids 23L1356-05 Solids 14-Dec-23 06:56 14-Dec-23 06:54

Envirodyne Laboratories, Inc.

Haura Congrain

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ENVIRODYNE LABORATORIES, INC.

CLIENT: WHCMUD #7

LAB NUMBER:

23L1356A

DATE COLLECTED:

(WDM) 14-Dec-23

DATE RECEIVED:

14-Dec-23

DATE COMPLETED:

30-Dec-23

SAMPLED BY:

MB

DATE ANALYZED:

30-Dec-23

(*) DENOTES: DRY WEIGHT BASIS

	() ==		SLUDGE LIMITS	
LOCATION:	DIGESTER @ 0656	METHOD	Clean / Ceiling (mg/kg)	MDL (mg/l)
PARAMETERS:				
pH (UNITS)	6.85	9045	> 6.00	
TOT.NITROGEN-N * (%)	1.02	Calc	N.A.	0.01
TKN-N * (%)	0.51	EPA 351.2	N.A.	0.01
NO3-N * (%)	0.51	SM 4500-NO3 E	N.A	0.01
NH3-N * (%)	0.10	SM 4500-NH3 F	N.A.	0.01
NH4-N * (%)	0.11	Calc	N.A.	0.01
TOTAL PHOSPHORUS* (%)	0.61	SM 4500-P E	N.A	0.01
PHOSPHORUS PENTOXIDE * (%)	0.27	Calc	N.A	0.01
POTASSIUM * (%)	0.41	6010B	N.A	0.002
ARSENIC * (mg/kg)	<10.20	6010B	< 41 / < 75	0.001
CADMIUM * (mg/kg)	<10.20	6010B	< 39 / < 85	0.001
COPPER * (mg/kg)	551.02	6010B	< 1,500 / < 4,300	0.002
MOLYBDENUM * (mg/kg)	<10.20	6010B	Monitor Only	0.001
NICKEL * (mg/kg)	40.82	6010B	< 420 / < 420	0.008
LEAD * (mg/kg)	20.41	6010B	< 300 / < 840	0.005
CHROMIUM * (mg/kg)	51.02	6010B	< 1,200 / < 3,000	0.005
MERCURY * (mg/kg)	<0.20	7471	< 17 / < 57	0.0002
SELENIUM * (mg/kg)	<10.20	6010B	< 36 / < 100	0.002
ZINC * (mg/kg)	969.39	6010B	< 2,800 / < 7,500	0.001
PCB's (mg/kg)	< 1.0	8080	< 2 / 10	0.001
TOTAL SOLIDS (%)	0.98	SM 2540 B	N.A.	
VOLATILE SOLIDS (%)	0.79		N.A	
Org.CONC. (%)	80.6		N.A	

Ref. SW-846

*EPA CHEMICAL ANALYSIS

Lab Representative

ENVIRODYNE LABORATORIES, INC. 11011 BROOKLET Dr. #230 HOUSTON, TEXAS 77099 (281) 568-7880

CERTIFICATE OF ANALYSIS

CLIENT:

WHCMUD #7

LAB NUMBER:

23L1356B

(WDM)

DATE COLLECTED: 14-Dec-23

DATE RECEIVED:

14-Dec-23

DATE COMPLETED:

30-Dec-23

SAMPLED BY:

MB

SAMPLE TYPE:

Processes to Significantly Reduce Pathogens (PSRP)

LOCATION:

DIGESTER @ 0656 LIMITS

PARAMETERS:

Microbial Populations

Fecal Coliform (Colonies/gram) Dry Wt.

35,000

2,000,000 CFU/g/TS

(Geo Mean = 7)

Vector Attraction Pontential

Specific Oxygen Uptake Rate (mg Oxygen/gram solids/Hr.) 0.80

1.5 mgO2/gram/Hr.

Sludge Characteristics

Total Solids (%)

0.98

N/A

Volatile Solids (%)

0.79

N/A

Organic Conc. (%)

80.6 6.85

> 5.50

Sample Temp. (C/F)

N/A

20/68 (+/- 10C)

Ambient Temp. (C/F)

N/A

N/A

Test Temp. - Start / Stop (C)

Soil pH - Measured in Water (Units)

22/22

(+/- 1C) - Var.

SOUR diluted to TS < 2.0%

Ref. STANDARD METHODS 21st Ed. & *EPA SW-846 9222D - F. COLI 2540G - TS & VS

2710B - SOUR

*9045 - pH

CERTIFIED BY

ENVIRODYNE LABORATORIES, INC.

CERTIFICATE OF ANALYSIS

CLIENT:	WHCMUD #7 (WDM)		LAB NUMBER:	23L1356C
DATE COLLECTED:	14-Dec-23		DATE RECEIVED:	14-Dec-23
DATE COMPLETED:	30-Dec-23		SAMPLED BY:	MB
Toxicity Characteristic Leach	ing Procedure			
EXTRACTION DATE:	15-Dec-23			
TESTING DATE:	30-Dec-23			T.C.L.P.
SAMPLE TYPE:		DIGESTER		MAXIMUM LIMIT
LOCATION:		@ 0656		(mg/l)
PARAMETERS:		_		, ,
SW 846 1311 EPA 6010B				
ANTIIMONY (mg/l)		< 0.10		
ARSENIC (mg/l)		< 0.05		5.0
BARIUM (mg/l)		0.18		100.0
BERYLLIUM (mg/l)		<0.02		0.080
CADMIUM (mg/l)		<0.025		1.0
CHROMIUM (mg/l)		< 0.05		5.0
LEAD (mg/l)		< 0.05		5.0
NICKEL (mg/l)		<0.05		70.0
SELENIUM (mg/l)		<0.150		1.0
SILVER (mg/l)		<0.100		5.0
SW 846 1311 EPA 7470		5,100		5.0
MERCURY (mg/l)		< 0.002		0.2
SW 846 1311 EPA 8260		40.00L		0.2
BENZENE (mg/l)		<0.05		0.5
CARBON TETRACHLORIDE (m	20/1)	<0.25		
CHLOROBENZENE (mg/l)	1911/	<0.05		0.5
CHLOROFORM (mg/l)		<0.05		100.0
METHYL ETHYL KETONE (mg/	1)	<2.50		6.0 200.0
1,2-DICHLOROETHANE (mg/l)	·/	<0.05		
1,1-DICHLOROETHENE (mg/l)		<0.05		0.5
TETRACHLOROETHENE (mg/l)		<0.05		0.7
TRICHLOROETHENE (mg/l)		<0.250		0.7
VINYL CHLORIDE (mg/l)		<0.10		0,5
SW 846 1311 EPA 8270		<0.10		0.2
Total Cresol (mg/l)		< 0.250		***
1,4-DICHLOROBENZENE (mg/l)		<0.125		200.0
2,4-DINITROTOLUENE (mg/l)		<0.125		7.5
HEXACHLOROBENZENE (mg/l)		<0.125		0.13
HEXACHLOROBUTADIENE (mo		<0.125		0.13
HEXACHLOROETHANE (mg/l)	31.7	<0.125		0.5
NITROBENZENE (mg/l)		<0.125		3.0
PENTRACHLOROPHENOL (mg.	Λ).	< 0.250		2.0
2,4,5-TRICHLOROPHENOL (mg		< 0.125		100.0
2,4,6-TRICHLOROPHENOL (mg		<0.125		400.0
PYRIDINE (mg/l)	97.	< 0.250		2.0
2-Methylphenol (mg/l)		<0.250		5.0
384 Methylphenol (mg/l)		<0.250		200.0 200.0
SW 846 1311 EPA 8081		-0.230		200.0
CHLORDANE (mg/l)		-0.00100		222
ENDRIN (mg/l)		<0.00102		0.03
HEPTACHLOR (mg/l)		<0.00005		0.02
HEPTAGHLOR EPOXIDE (mg/l)		<0.00005 <0.00005		0.008
LINDANE (mg/l)				0.008
METHOXYCHLOR (mg/l)		<0.00005 <0.00005		0.4
TOXAPHENE (mg/l)		<0.00102		10.0
PCBs (mg/l)		< 0.0005		0.5
SW 846 1311 EPA 8150		-0.0000		
2.4-D (mg/l)		<0.000201		10.0
2.4.5-TP (Silvex) (mg/l)		<0.000201		10.0
AND SHE STEEL STEE		30.00001	11	1.0
Ref. EPA SW-845			X /	
Qual: Analyzed by NELAC Certific	ed lab T104704215	-	Lati Representative	
			ren Lebiesentanine	

Envirodyne Laboratories, Inc 11011 Brooklet Dr., # 230 Houston, TX 77099 281.568.7880 Phone

Client:

Water District Management (WDM)

Project: Work Order: WHCMUD #7 23L1356 Reported: 02-Jan-24 09:39

Wet Chemistry - Quality Control Envirodyne Laboratories, Inc.

		Reporting		Spike	Source	%REC	%REC	RPD	RPD Limit	Notes
Analyte	Result	1.imit	Units	Level	Result	, great	1.111113			
Batch B3L5088 - Inorganics										
Ouplicate (B3L5088-DUP1)	Sou	rce: 23L1518-0)8	Prepared &		18-Dec-23		1.36	20	
Total Solids	0.740	0.01	%		0.730					
Volatile Solids	0.570	0.01			0.570			0.00	20	
Batch B3L5098 - Inorganies										
Blank (B31,5098-BLK1)				Prepared &	k Analyzed	: 19-Dec-23				
TSS	< 2.0	2.0	mg/L							
VSN	<2.0	2.0	*							
LCS (B3L5098-BS1)					ž Analyzed	: 19-Dec-23				
ISS	95.0		mg/L	100		95.0	80-120			
Duplicate (B31.5098-DUP1)	Sou	rce: 23L1284-	-03	Prepared a		: 19-Dec-23				
ISS	160	2.0	mg/L		198			21.2	30	
VSS	1.53	2.0	*		156			1.94	70	
Batch B3L5100 - Inorganies										
Blank (B3L5100-BLK1)				Prepared	& Analyzee	l: 19-Dec-21	3			
188	<2.00	2.00	mg/L							
vss	<2.0	2.0								
LCS (B3L5100-BS1)				Prepared	& Analyze	1: 19-Dec-2.				
TSS	86.0		mg/L	100		86.0	80-120			
Duplicate (B3L5100-DUP1)	So	urce: 23L0986	-02	Prepared		d: 19-Dec-2	3			
VSS	4710	2.0	mg/L		4110			13.6	20	
188	5540	2.00			5190			6,52	20	

Envirodyne Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laura Brynin

Envirodyne Laboratories, Inc 11011 Brooklet Dr., # 230 Houston, TX 77099 281.568.7880 Phone www.envirodyne.com

Client:

Water District Management (WDM)

Project:

WHCMUD #7

Work Order:

23L1356

Reported:

02-Jan-24 09:39

Wet Chemistry - Quality Control Envirodyne Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source	A.D.D.O.	%REC		RPD	
	The state	Limit	Cints	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B3L5167 - Inorganies										
Blank (B31.5167-BLK1)				Prepared &	Analyzed;	19-Dec-23				
Ammonia-N (NH3-N)	< 0.20	0.20	mg/L		· · · · · · · · · · · · · · · · · · ·	17 1700 23			***************************************	
LCS (B31,5167-BS1)				Prepared &	Analyzed:	10 Day 22				
Ammonia-N (NH3-N)	1.06		mg/L	1.00	rinaryzeu.	106	90-110			
Matrix Spike (B3L5167-MS1)	Source	e: 23L1342-	01	Prepared &	Analyzed:	19-Dec-23				
Ammonia-N (NH3-N)	1.05	0.20	mg/L	1.00	ND	105	90-110			
Matrix Spike Dup (B3L5167-MSD1)	Source	e: 23L1342-	01	Prepared &	Analyzadi	10 Dec 22				
Ammonia-N (NH3-N)	1.04	0.20	mg/L	1.00	ND ND	104	90-110	0.957	20	
Batch B3L5194 - Inorganies										
Blank (B3L5194-BLK1)				Prepared &	Analyzed	19-Dec 23				
TSS	<2.0	2.0	mg/L	riopared ce	rthatyzed.	13-10-23				
.CS (B3L5194-BS1)				Prepared &	Analyzadi	10 Dec 22				
rss	87.0		mg/L	100	rilaryzed.	87.0	80-120			
Ouplicate (B3L5194-DUP1)	Source	e: 23L1268-	0.1	Prepared &	Analyzadi	10 Dan 22				
rss	216	2.0	mg/L	1 repared &	142	19-Dec-23		41.3	20	
Batch B3L5261 - Inorganics								1000	5%	
Blank (B3L5261-BLK1)				Prepared &	Analyzad	20 Das 22				
Ammonia-N (NH3-N)	<10.0	10.0	mg/L	, repared &	rularyzed: .	40-DCC-23				

Envirodyne Laboratories, Inc.

Laura Brymin

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Envirodyne Laboratories, Inc 11011 Brooklet Dr., # 230 Houston, TX 77099 281.568.7880 Phone www.envirodyne.com

Client:

Water District Management (WDM)

Project: Work Order: WHCMUD #7 23L1356 Reported:

02-Jan-24 09:39

Wet Chemistry - Quality Control Envirodyne Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC*	Limits	RPD	1, imit	Notes
Batch B31.5261 - Inorganics										
				Prepared &	Analyzed:	20-Dec-23				
LCS (B3L5261-BS1) Ammonia-N (NH3-N)	19.1		mg/L	20.0		95.5	90-110			
Matrix Spike (B3L5261-MS1)	Sourc	e: 23L1457-	-03	Prepared &	k Analyzed:	20-Dec-23				
Ammonia-N (NH3-N)	65.6	20.0	mg/L	32.8	33.4	98.2	80-120			
Matrix Spike Dup (B3L5261-MSD1)	Source	e: 23L1457-	-03	Prepared &	& Analyzed:	20-Dec-23				
Ammonia-N (NH3-N)	65.4	20.0	mg/L	32.8	13,4	97.6	80-120	0.305	20	
Batch B3L5272 - Inorganics										
Blank (B3L5272-BLK1)				Prepared a	& Analyzed:	14-Dec-23				
BOD-5	<2.0	2.0	mg/L							
LCS (B3L5272-BS1)				Prepared	& Analyzed	14-Dec-23				
BOD-5	195		mg/L	198		98.6	84.6-115.4			
Duplicate (B3L5272-DUP1)	Sour	ce: 23L1374	-02	Prepared	& Analyzed	: 14-Dec-23	3			
BOD-S	311	2.0	mg/L		306			1.62	20	
Batch B3L5640 - Inorganics										
Blank (B3L5640-BLK1)				Prepared	& Analyzed	: 15-Dec-2:	3			
CBOD-5	<2.0	2.0	mg/L							
LCS (B3L5640-BS1)				Prepared	& Analyzed	: 15-Dec-2				
CBOD-5	195		mg/L	198		98.4	84.6-115.4			

Envirodyne Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laura Brymin

Envirodyne Laboratories, Inc 11011 Brooklet Dr., # 230 Houston, TX 77099 281,568,7880 Phone www.envirodyne.com

Client:

Water District Management (WDM)

Project:

WHCMUD #7

Work Order:

23L1356

Reported:

02-Jan-24 09:39

Wet Chemistry - Quality Control Envirodyne Laboratories, Inc.

		Reporting		Spike	Source		%REC	Tonace of	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
3atch B3L5640 - Inorganics					J.,					
Duplicate (B3L5640-DUP1)	Sour	ce: 23L1339-	91	Prepared &		15-Dec-23				
BOD-5	2.90	2.0	mg/L		2.50			14.8	20	
Batch B3L6074 - Inorganics										
Blank (B3L6074-BLK1)				Prepared &	k Analyzed	: 29-Dec-23				
Phosphorus, Total	<0.10	0.10	mg/L							
LCS (B3L6074-BS1)				Prepared &	k Analyzed	: 29-Dec-23				
Phosphorus, Total	1,10		mg/L	1,00		110	80-120			
Matrix Spike (B3L6074-MS1)	Source: 23L1062-01			Prepared &	& Analyzed	: 29-Dec-23	3			
Phosphorus, Total	1.38	0.10	mg/L	1.00	0.290	100	80-120			
Matrix Spike Dup (B3L6074-MSD1)	Sou	rce: 231.1062	-01	Prepared &	& Analyzed	: 29-Dec-2	3			
Phosphorus, Total	1.34	0.10	mg/L	1.00	0.290	105	80-120	2.94	20	
Batch B3L6075 - Inorganics										
Blank (B3L6075-BLK1)				Prepared:	28-Dec-23	Analyzed:	29-Dec-23			
Phosphorus, Total	<0.10	0.10	mg/L							
LCS (B3L6075-BS1)				Prepared: 28-Dec-23 Analyzed: 29-Dec-23						
Phosphorus, Total	1,01		mg/L	1,00		101	80-120			
Matrix Spike (B3L6075-MS1)	Sou	ree: 23L1356	-01	Prepared:	28-Dec-23	Analyzed:	29-Dec-23			
Phosphorus, Total	1.09	0.10	mg/L	1.00	ND	109	80-120			

Envirodyne Laboratorics, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laura Bonjonia For Brooke Milton, Customer Service Representative

Page 12 of 14

Envirodyne Laboratories, Inc 11011 Brooklet Dr., # 230 Houston, TX 77099 281.568.7880 Phone www.envirodync.com

Client:

Water District Management (WDM)

Project: Work Order: WHCMUD #7

23L1356

Reported:

02-Jan-24 09:39

Wet Chemistry - Quality Control Envirodyne Laboratories, Inc.

		Reporting		Spike	Source		%RLC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B3L6075 - Inorganics

Matrix Spike Dup (B3L6075-MSD1)	Source	e: 23L1356-	01	Prepared: 2	28-Dec-23 /	Analyzed:	29-Dec-23			
Phosphorus, Total	1.12	0.10	mg/L	1.00	ND	112	80-120	2.71	20	

Envirodyne Laboratories, Inc.

Laura Brymin

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Envirodyne Laboratories, Inc 11011 Brooklet Dr., # 230 Houston, TX 77099 281.568.7880 Phone www.envirodyne.com

Client:

Water District Management (WDM)

Project: Work Order: WHCMUD #7

23L1356

Reported:

02-Jan-24 09:39

Notes and Definitions

Q QC did not meet ELI acceptance criteria

Greater than 30% difference between highest and lowest values

ND Analyte NOT DETECTED at or above the reporting limit

< Result is less than the RL

a Analyte not available for TNI/NELAP accreditation

n Not accredited

Envirodyne Laboratories, Inc.

Laura Brynin

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Envirodyne Laboratories, Inc. 11011 Brooklet, Ste. 230

396 T 597 E

of

Page

Houston, Texas 77099-3543

Analysis Request and Chain of Custody Record Phone (281)568-7880 - Fax (281)568-8004

Water District Management (WDM)

19440 Kuykendal Rd.

Address

Name:

TCEQ Certification # T104704265

37.00

A CANAL

14651 570 Time Analysis Laboratory No. 1 7.58 7.82 27 Seal Intact? Seal Intact? Seal Intact? .qmaT (.O.a 1 Date: I. Heller 131 Hd pH,TS, VS, Org. Conc. 1615 PSH. Date Time: Date: Time: Time: HIE Date pH,BOD, TSS, VSS, Org. Conc. pH,TSS, VSS, Org. Conc. pH,TSS, VSS, Org. Conc. ANALYSIS REQUESTED Total Phosphorous Total Phosphorous pH, DO, Temp CBOD, TSS NH3-N NH3-N Email: Site Representative: Arrival Temp. Data Results To: -- Received by Lab: Received by: W HCMUD #7 Received by: (Signature) (Signature) (Signature) ICE, H2SO4 CE, H2SO4 ICE, H2SO4 ICE, H2SO4 Semple Container Sample Typo (Liquid, Presonative Studie, etc.) 2.3113-3 Date - T 13 B SE CE CE XX HRE. Date: Time: Date: Sludge Liquid Sludge Liquid Sludge Liquid Liquid Liquid Liquid Liquid Phone: Client/Project 250 ml P 250 ml P 250 ml P 500ml/P 500ml/P 500ml/P 500ml/P 1G-P 1 L P ٧N Relinquished by: Relinquished by: Relinquished by: Grab PLOAT TOLKY REALTH Signature Signature) Signature Whi Ochablina 12 FS C. Feersalt 1-1-413 (7-5-3 14/17 21/4/20 3 Date & Time Spring, TX 77379 Wk 2-5 Field Sample No./ Samplers: A Signaluse Indentification Aeration 2 Digester Influent Aeration Effluent Effluent Effluent Effluent Influent Influent Affiliation Project No. Remarks: Contact: City: Lab ID No.

Complete this table **for each source** of biosolids and residuals.

Facility Name: HC 26

TCEQ Authorization Number: wq0011406001

POLLUTANT/METAL ANALYSIS

Pollutant	Maximum Concentration, mg/kg dry weight	Test Results, mg/kg dry weight	Sample Date	Detection Level for Analysis	Sample Method
Arsenic (As)	75	6.23	11/17/2023	0.001	SW-3050- 6010B
Cadmium (Cd)	85	0.969	11/17/2023	0.001	SW-3050- 6010B
Chromium (Cr)	3000	30.7	11/17/2023	0.005	SW-3050- 6010B
Copper (Cu)	4300	240	11/17/2023	0.002	SW-3050- 6010B
Lead (Pb)	840	14.3	11/17/2023	0.005	SW-3050- 6010B
Mercury (Hg)	57	0.299	11/17/2023	0.0002	SW-3050-6010/ 7471
Molybdenum (Mo)	75	7.74	11/17/2023	0.001	SW-3050- 6010B
Nickel (Ni)	420	15.1	11/17/2023	0.008	SW-3050- 6010B
Selenium (Se)	100	13.3	11/17/2023	0.002	SW-3050- 6010B
Zinc (Zn)	7500	1160	11/17/2023	0.001	SW-3050- 6010B
PCB (ppm)	50.0 ppm	0.00121	11/17/2023	0.001	SW-3570 8080

Nutrient	Concentration (%)	Sample Date	Detection Level for Analysis	Sample Method
Total Kjeldahl Nitrogen (TKN)	5.31	11/17/2023	0.01	TKN T EPA 351.2
Ammonium Nitrogen (NH4-N)	1.28	11/17/2023	0.01	NH3-N T
Nitrate Nitrogen (NO3-N)	0.00655	11/17/2023	0.01	EPA 300.0 SM4500-NO3 E
Total Phosphorus (P)	1.52	11/17/2023	0.01	SM 4500-P E
Total Potassium (K)	0.289	11/17/2023	0.002	SW-3050- 6010B

Complete this table **for each source** of biosolids and residuals.

Facility Name: HC WCID 92

TCEQ Authorization Number: wq0010908001

POLLUTANT/METAL ANALYSIS

Pollutant	Maximum Concentration, mg/kg dry weight	Test Results, mg/kg dry weight	Sample Date	Detection Level for Analysis	Sample Method
Arsenic (As)	75	11.1	7/7/2023	0.001	SW-3050- 6010B
Cadmium (Cd)	85	11.1	7/7/2023	0.001	SW-3050- 6010B
Chromium (Cr)	3000	14.2	7/7/2023	0.005	SW-3050- 6010B
Copper (Cu)	4300	240	7/7/2023	0.002	SW-3050- 6010B
Lead (Pb)	840	11.1	7/7/2023	0.005	SW-3050- 6010B
Mercury (Hg)	57	0.373	7/7/2023	0.0002	SW-3050-6010/ 7471
Molybdenum (Mo)	75	11.1	7/7/2023	0.001	SW-3050- 6010B
Nickel (Ni)	420	11.1	7/7/2023	0.008	SW-3050- 6010B
Selenium (Se)	100	11.1	7/7/2023	0.002	SW-3050- 6010B
Zinc (Zn)	7500	838	7/7/2023	0.001	SW-3050- 6010B
PCB (ppm)	50.0 ppm	0.001	7/7/2023	0.001	SW-3570 8080

Nutrient	Concentration (%)	Sample Date	Detection Level for Analysis	Sample Method
Total Kjeldahl Nitrogen (TKN)	4.87	7/7/2023	0.01	TKN T EPA 351.2
Ammonium Nitrogen (NH4-N)	0.457	7/7/2023	0.01	NH3-N T
Nitrate Nitrogen (NO3-N)	4.44	7/7/2023	0.01	EPA 300.0 SM4500-NO3 E
Total Phosphorus (P)	1.54	7/7/2023	0.01	SM 4500-P E
Total Potassium (K)	0.556	7/7/2023	0.002	SW-3050- 6010B

Complete this table **for each source** of biosolids and residuals.

Facility Name: Allens Creek - Sealy WWTP

TCEQ Authorization Number: wq0010276001

POLLUTANT/METAL ANALYSIS

Pollutant	Maximum Concentration, mg/kg dry weight	Test Results, mg/kg dry weight	Sample Date	Detection Level for Analysis	Sample Method
Arsenic (As)	75	5	10/11/2023	0.001	SW-3050- 6010B
Cadmium (Cd)	85	2.5	10/11/2023	0.001	SW-3050- 6010B
Chromium (Cr)	3000	34	10/11/2023	0.005	SW-3050- 6010B
Copper (Cu)	4300	308	10/11/2023	0.002	SW-3050- 6010B
Lead (Pb)	840	37.4	10/11/2023	0.005	SW-3050- 6010B
Mercury (Hg)	57	1.52	10/11/2023	0.0002	SW-3050-6010/ 7471
Molybdenum (Mo)	75	6.1	10/11/2023	0.001	SW-3050- 6010B
Nickel (Ni)	420	16.4	10/11/2023	0.008	SW-3050- 6010B
Selenium (Se)	100	8.4	10/11/2023	0.002	SW-3050- 6010B
Zinc (Zn)	7500	6737.4	10/11/2023	0.001	SW-3050- 6010B
PCB (ppm)	50.0 ppm	1	10/11/2023	0.001	SW-3570 8080

Nutrient	Concentration (%)	Sample Date	Detection Level for Analysis	Sample Method
Total Kjeldahl Nitrogen (TKN)	1.6702	10/11/2023	0.01	TKN T EPA 351.2
Ammonium Nitrogen (NH4-N)	0.1032	10/11/2023	0.01	NH3-N T
Nitrate Nitrogen (NO3-N)	0.0151	10/11/2023	0.01	EPA 300.0 SM4500-NO3 E
Total Phosphorus (P)	1.0068	10/11/2023	0.01	SM 4500-P E
Total Potassium (K)	0.1391	10/11/2023	0.002	SW-3050- 6010B

Complete this table **for each source** of biosolids and residuals.

Facility Name: Rosenberg #1A WWTP

TCEQ Authorization Number: wq0010607003

POLLUTANT/METAL ANALYSIS

Pollutant	Maximum Concentration, mg/kg dry weight	Test Results, mg/kg dry weight	Sample Date	Detection Level for Analysis	Sample Method
Arsenic (As)	75	0.25	8/28/2023	0.001	SW-3050- 6010B
Cadmium (Cd)	85	0.25	8/28/2023	0.001	SW-3050- 6010B
Chromium (Cr)	3000	24.6	8/28/2023	0.005	SW-3050- 6010B
Copper (Cu)	4300	303	8/28/2023	0.002	SW-3050- 6010B
Lead (Pb)	840	34.9	8/28/2023	0.005	SW-3050- 6010B
Mercury (Hg)	57	0.02	8/28/2023	0.0002	SW-3050-6010/ 7471
Molybdenum (Mo)	75	0.25	8/28/2023	0.001	SW-3050- 6010B
Nickel (Ni)	420	0.25	8/28/2023	0.008	SW-3050- 6010B
Selenium (Se)	100	0.25	8/28/2023	0.002	SW-3050- 6010B
Zinc (Zn)	7500	846	8/28/2023	0.001	SW-3050- 6010B
PCB (ppm)	50.0 ppm	0.001	8/28/2023	0.001	SW-3570 8080

Nutrient	Concentration (%)	Sample Date	Detection Level for Analysis	Sample Method
Total Kjeldahl Nitrogen (TKN)	0.1	8/28/2023	0.01	TKN T EPA 351.2
Ammonium Nitrogen (NH4-N)	0.01	8/28/2023	0.01	NH3-N T
Nitrate Nitrogen (NO3-N)	0.01	8/28/2023	0.01	EPA 300.0 SM4500-NO3 E
Total Phosphorus (P)	0.08	8/28/2023	0.01	SM 4500-P E
Total Potassium (K)	0.46	8/28/2023	0.002	SW-3050- 6010B

Complete this table **for each source** of biosolids and residuals.

Facility Name: Treschwig Central D1 WWTF

TCEQ Authorization Number: wqoo11141001

POLLUTANT/METAL ANALYSIS

Pollutant	Maximum Concentration, mg/kg dry weight	Test Results, mg/kg dry weight	Sample Date	Detection Level for Analysis	Sample Method
Arsenic (As)	75	6.32	7/25/2023	0.001	SW-3050- 6010B
Cadmium (Cd)	85	0.922	7/25/2023	0.001	SW-3050- 6010B
Chromium (Cr)	3000	26.5	7/25/2023	0.005	SW-3050- 6010B
Copper (Cu)	4300	245	7/25/2023	0.002	SW-3050- 6010B
Lead (Pb)	840	18.8	7/25/2023	0.005	SW-3050- 6010B
Mercury (Hg)	57	0.366	7/25/2023	0.0002	SW-3050-6010/ 7471
Molybdenum (Mo)	75	5.01	7/25/2023	0.001	SW-3050- 6010B
Nickel (Ni)	420	13.8	7/25/2023	0.008	SW-3050- 6010B
Selenium (Se)	100	10.1	7/25/2023	0.002	SW-3050- 6010B
Zinc (Zn)	7500	1060	7/25/2023	0.001	SW-3050- 6010B
PCB (ppm)	50.0 ppm	0.00184	7/25/2023	0.001	SW-3570 8080

Nutrient	Concentration (%)	Sample Date	Detection Level for Analysis	Sample Method
Total Kjeldahl Nitrogen (TKN)	4.53	7/25/2023	0.01	TKN T EPA 351.2
Ammonium Nitrogen (NH4-N)	0.354	7/25/2023	0.01	NH3-N T
Nitrate Nitrogen (NO3-N)	0.388	7/25/2023	0.01	EPA 300.0 SM4500-NO3 E
Total Phosphorus (P)	1.6	7/25/2023	0.01	SM 4500-P E
Total Potassium (K)	0.48	7/25/2023	0.002	SW-3050- 6010B

Complete this table **for each source** of biosolids and residuals.

Facility Name: FB 30

TCEQ Authorization Number: wq0012068001

POLLUTANT/METAL ANALYSIS

Pollutant	Maximum Concentration, mg/kg	Test Results, mg/kg	Sample Date	Detection Level for Analysis	Sample Method
	dry weight	dry weight		,	
Arsenic (As)	75	7.14	6/9/2023	0.001	SW-3050- 6010B
Cadmium (Cd)	85	7.14	6/9/2023	0.001	SW-3050- 6010B
Chromium (Cr)	3000	15.5	6/9/2023	0.005	SW-3050- 6010B
Copper (Cu)	4300	194	6/9/2023	0.002	SW-3050- 6010B
Lead (Pb)	840	7.14	6/9/2023	0.005	SW-3050- 6010B
Mercury (Hg)	57	0.28	6/9/2023	0.0002	SW-3050-6010/ 7471
Molybdenum (Mo)	75	8.07	6/9/2023	0.001	SW-3050- 6010B
Nickel (Ni)	420	15.1	6/9/2023	0.008	SW-3050- 6010B
Selenium (Se)	100	8.14	6/9/2023	0.002	SW-3050- 6010B
Zinc (Zn)	7500	786	6/9/2023	0.001	SW-3050- 6010B
PCB (ppm)	50.0 ppm	0.0062	6/9/2023	0.001	SW-3570 8080

Nutrient	Concentration (%)	Sample Date	Detection Level for Analysis	Sample Method
Total Kjeldahl Nitrogen (TKN)	3.32	6/9/2023	0.01	TKN T EPA 351.2
Ammonium Nitrogen (NH4-N)	2.86	6/9/2023	0.01	NH3-N T
Nitrate Nitrogen (NO3-N)	1.07	6/9/2023	0.01	EPA 300.0 SM4500-NO3 E
Total Phosphorus (P)	1.63	6/9/2023	0.01	SM 4500-P E
Total Potassium (K)	0.525	6/9/2023	0.002	SW-3050- 6010B

Complete this table **for each source** of biosolids and residuals.

Facility Name: Pecan Grove WWTF

TCEQ Authorization Number: wq0011655001

POLLUTANT/METAL ANALYSIS

Pollutant	Maximum Concentration, mg/kg dry weight	Test Results, mg/kg dry weight	Sample Date	Detection Level for Analysis	Sample Method
Arsenic (As)	75	2.39	8/28/2023	0.001	SW-3050- 6010B
Cadmium (Cd)	85	0.42	8/28/2023	0.001	SW-3050- 6010B
Chromium (Cr)	3000	13.02	8/28/2023	0.005	SW-3050- 6010B
Copper (Cu)	4300	193.78	8/28/2023	0.002	SW-3050- 6010B
Lead (Pb)	840	7.46	8/28/2023	0.005	SW-3050- 6010B
Mercury (Hg)	57	0.02	8/28/2023	0.0002	SW-3050-6010/ 7471
Molybdenum (Mo)	75	3	8/28/2023	0.001	SW-3050- 6010B
Nickel (Ni)	420	7.28	8/28/2023	0.008	SW-3050- 6010B
Selenium (Se)	100	0.25	8/28/2023	0.002	SW-3050- 6010B
Zinc (Zn)	7500	347.34	8/28/2023	0.001	SW-3050- 6010B
PCB (ppm)	50.0 ppm	0.001	8/28/2023	0.001	SW-3570 8080

Nutrient	Concentration (%)	Sample Date	Detection Level for Analysis	Sample Method
Total Kjeldahl Nitrogen (TKN)	0.25	8/28/2023	0.01	TKN T EPA 351.2
Ammonium Nitrogen (NH4-N)	0.01	8/28/2023	0.01	NH3-N T
Nitrate Nitrogen (NO3-N)	0.2	8/28/2023	0.01	EPA 300.0 SM4500-NO3 E
Total Phosphorus (P)	2.8	8/28/2023	0.01	SM 4500-P E
Total Potassium (K)	0.16	8/28/2023	0.002	SW-3050- 6010B

Complete this table **for each source** of biosolids and residuals.

Facility Name: Tomball South

TCEQ Authorization Number: wq0010616002

POLLUTANT/METAL ANALYSIS

Pollutant	Maximum Concentration, mg/kg dry weight	Test Results, mg/kg dry weight	Sample Date	Detection Level for Analysis	Sample Method
Arsenic (As)	75	4.44	8/1/2023	0.001	SW-3050- 6010B
Cadmium (Cd)	85	0.54	8/1/2023	0.001	SW-3050- 6010B
Chromium (Cr)	3000	17.6	8/1/2023	0.005	SW-3050- 6010B
Copper (Cu)	4300	316	8/1/2023	0.002	SW-3050- 6010B
Lead (Pb)	840	11.7	8/1/2023	0.005	SW-3050- 6010B
Mercury (Hg)	57	0.491	8/1/2023	0.0002	SW-3050-6010/ 7471
Molybdenum (Mo)	75	4.87	8/1/2023	0.001	SW-3050- 6010B
Nickel (Ni)	420	11.3	8/1/2023	0.008	SW-3050- 6010B
Selenium (Se)	100	4.47	8/1/2023	0.002	SW-3050- 6010B
Zinc (Zn)	7500	737	8/1/2023	0.001	SW-3050- 6010B
PCB (ppm)	50.0 ppm	0.00015	8/1/2023	0.001	SW-3570 8080

Nutrient	Concentration (%)	Sample Date	Detection Level for Analysis	Sample Method
Total Kjeldahl Nitrogen (TKN)	5.08	8/1/2023	0.01	TKN T EPA 351.2
Ammonium Nitrogen (NH4-N)	0.588	8/1/2023	0.01	NH3-N T
Nitrate Nitrogen (NO3-N)	0.00888	8/1/2023	0.01	EPA 300.0 SM4500-NO3 E
Total Phosphorus (P)	0.895	8/1/2023	0.01	SM 4500-P E
Total Potassium (K)	0.17	8/1/2023	0.002	SW-3050- 6010B

Complete this table **for each source** of biosolids and residuals.

Facility Name: waller wwtp

TCEQ Authorization Number: wq0010310001

POLLUTANT/METAL ANALYSIS

Pollutant	Maximum Concentration, mg/kg dry weight	Test Results, mg/kg dry weight	Sample Date	Detection Level for Analysis	Sample Method
Arsenic (As)	75	7.87	12/21/2023	0.001	SW-3050- 6010B
Cadmium (Cd)	85	6.67	12/21/2023	0.001	SW-3050- 6010B
Chromium (Cr)	3000	43.4	12/21/2023	0.005	SW-3050- 6010B
Copper (Cu)	4300	887	12/21/2023	0.002	SW-3050- 6010B
Lead (Pb)	840	115	12/21/2023	0.005	SW-3050- 6010B
Mercury (Hg)	57	0.321	12/21/2023	0.0002	SW-3050-6010/ 7471
Molybdenum (Mo)	75	10.8	12/21/2023	0.001	SW-3050- 6010B
Nickel (Ni)	420	29.5	12/21/2023	0.008	SW-3050- 6010B
Selenium (Se)	100	6.67	12/21/2023	0.002	SW-3050- 6010B
Zinc (Zn)	7500	953	12/21/2023	0.001	SW-3050- 6010B
PCB (ppm)	50.0 ppm	0.001	12/21/2023	0.001	SW-3570 8080

Nutrient	Concentration (%)	Sample Date	Detection Level for Analysis	Sample Method
Total Kjeldahl Nitrogen (TKN)	1	12/21/2023	0.01	TKN T EPA 351.2
Ammonium Nitrogen (NH4-N)	0.667	12/21/2023	0.01	NH3-N T
Nitrate Nitrogen (NO3-N)	0.664	12/21/2023	0.01	EPA 300.0 SM4500-NO3 E
Total Phosphorus (P)	1.45	12/21/2023	0.01	SM 4500-P E
Total Potassium (K)	0.42	12/21/2023	0.002	SW-3050- 6010B

Complete this table **for each source** of biosolids and residuals.

Facility Name: HC 200

TCEQ Authorization Number: wq0012294001

POLLUTANT/METAL ANALYSIS

Pollutant	Maximum Concentration, mg/kg dry weight	Test Results, mg/kg dry weight	Sample Date	Detection Level for Analysis	Sample Method
Arsenic (As)	75	7.3	5/24/2023	0.001	SW-3050- 6010B
Cadmium (Cd)	85	0.717	5/24/2023	0.001	SW-3050- 6010B
Chromium (Cr)	3000	9.47	5/24/2023	0.005	SW-3050- 6010B
Copper (Cu)	4300	264	5/24/2023	0.002	SW-3050- 6010B
Lead (Pb)	840	5.37	5/24/2023	0.005	SW-3050- 6010B
Mercury (Hg)	57	0.211	5/24/2023	0.0002	SW-3050-6010/ 7471
Molybdenum (Mo)	75	5.95	5/24/2023	0.001	SW-3050- 6010B
Nickel (Ni)	420	13.4	5/24/2023	0.008	SW-3050- 6010B
Selenium (Se)	100	4.12	5/24/2023	0.002	SW-3050- 6010B
Zinc (Zn)	7500	744	5/24/2023	0.001	SW-3050- 6010B
PCB (ppm)	50.0 ppm	2.25	5/24/2023	0.001	SW-3570 8080

Nutrient	Concentration (%)	Sample Date	Detection Level for Analysis	Sample Method
Total Kjeldahl Nitrogen (TKN)	8.6	5/24/2023	0.01	TKN T EPA 351.2
Ammonium Nitrogen (NH4-N)	1.85	5/24/2023	0.01	NH3-N T
Nitrate Nitrogen (NO3-N)	0.0014	5/24/2023	0.01	EPA 300.0 SM4500-NO3 E
Total Phosphorus (P)	1.81	5/24/2023	0.01	SM 4500-P E
Total Potassium (K)	0.612	5/24/2023	0.002	SW-3050- 6010B

Complete this table **for each source** of biosolids and residuals.

Facility Name: whc 7

TCEQ Authorization Number: wq0012140001

POLLUTANT/METAL ANALYSIS

Pollutant	Maximum Concentration, mg/kg dry weight	Test Results, mg/kg dry weight	Sample Date	Detection Level for Analysis	Sample Method
Arsenic (As)	75	10.2	12/30/2023	0.001	SW-3050- 6010B
Cadmium (Cd)	85	10.2	12/30/2023	0.001	SW-3050- 6010B
Chromium (Cr)	3000	51.02	12/30/2023	0.005	SW-3050- 6010B
Copper (Cu)	4300	551.02	12/30/2023	0.002	SW-3050- 6010B
Lead (Pb)	840	20.41	12/30/2023	0.005	SW-3050- 6010B
Mercury (Hg)	57	0.2	12/30/2023	0.0002	SW-3050-6010/ 7471
Molybdenum (Mo)	75	10.2	12/30/2023	0.001	SW-3050- 6010B
Nickel (Ni)	420	40.82	12/30/2023	0.008	SW-3050- 6010B
Selenium (Se)	100	10.2	12/30/2023	0.002	SW-3050- 6010B
Zinc (Zn)	7500	969.39	12/30/2023	0.001	SW-3050- 6010B
PCB (ppm)	50.0 ppm	0.001	12/30/2023	0.001	SW-3570 8080

Nutrient	Concentration (%)	Sample Date	Detection Level for Analysis	Sample Method
Total Kjeldahl Nitrogen (TKN)	0.51	12/30/2023	0.01	TKN T EPA 351.2
Ammonium Nitrogen (NH4-N)	0.11	12/30/2023	0.01	NH3-N T
Nitrate Nitrogen (NO3-N)	0.51	12/30/2023	0.01	EPA 300.0 SM4500-NO3 E
Total Phosphorus (P)	0.61	12/30/2023	0.01	SM 4500-P E
Total Potassium (K)	0.41	12/30/2023	0.002	SW-3050- 6010B

Source Facility	TCEQ Authorization		Pollutant Concentration mg/kg							Nutrient Concentration %						
Name	Number	As	Cd	Cr	Cu	Pb	Hg	Мо	Ni	Se	Zn	TKN	NH ₄ -N	NO₃-N	Р	к
HC 26	WQ0011406001	6.23	0.969	30.7	240	14.3	0.299	7.74	15.1	13.3	1160	5.31	1.28	0.00655	1.52	0.289
HC WCID 92	WQ0010908001	11.1	11.1	14.2	240	11.1	0.373	11.1	11.1	11.1	838	4.87	0.457	4.44	1.54	0.556
Allens Creek - Sealy WWTP	WQ0010276001	5	2.5	34	308	37.4	1.52	6.1	16.4	8.4	6737.4	1.6702	0.1032	0.0151	1.0068	0.1391
Rosenberg #1A WWTP	WQ0010607003	0.25	0.25	24.6	303	34.9	0.02	0.25	0.25	0.25	846	0.1	0.01	0.01	0.08	0.46
Treschwig Central D1 WWTF	WQ0011141001	6.32	0.922	26.5	245	18.8	0.366	5.01	13.8	10.1	1060	4.53	0.354	0.388	1.6	0.48
FB 30	WQ0012068001	7.14	7.14	15.5	194	7.14	0.28	8.07	15.1	8.14	786	3.32	2.86	1.07	1.63	0.525
Pecan Grove WWTF	WQ0011655001	2.39	0.42	13.02	193.78	7.46	0.02	3	7.28	0.25	347.34	0.25	0.01	0.2	2.8	0.16
Tomball South	WQ0010616002	4.44	0.54	17.6	316	11.7	0.491	4.87	11.3	4.47	737	5.08	0.588	0.00888	0.895	0.17
Waller WWTP	WQ0010310001	7.87	6.67	43.4	887	115	0.321	10.8	29.5	6.67	953	1	0.667	0.664	1.45	0.42
HC 200	WQ0012294001	7.3	0.717	9.47	264	5.37	0.211	5.95	13.4	4.12	744	8.6	1.85	0.0014	1.81	0.612
WHC 7	WQ0012140001	10.2	10.2	51.02	551.02	20.41	0.2	10.2	40.82	10.2	969.39	0.51	0.11	0.51	0.61	0.41

TCEQ Authorization	Estimated Dry		Pollutant Concentrations mg/kg X Estimated Dry Metric Tons								
Number	Metric Tons	As	Cd	Cr	Cu	Pb	Hg	Мо	Ni	Se	Zn
WQ0011406001	46.883	292.078	45.429	1439.294	11251.812	670.420	14.018	362.871	707.927	623.538	54383.758
WQ0010908001	14.679	162.942	162.942	208.448	3523.072	162.942	5.475	162.942	162.942	162.942	12301.394
WQ0010276001	2.783	13.915	6.957	94.621	857.159	104.084	4.230	16.976	45.641	23.377	18750.066
WQ0010607003	27.915	6.979	6.979	686.720	8458.383	974.249	0.558	6.979	6.979	6.979	23616.475
WQ0011141001	29.359	185.548	27.069	778.012	7192.939	551.948	10.745	147.088	405.153	296.525	31120.472
WQ0012068001	25.307	180.690	180.690	392.255	4909.517	180.690	7.086	204.226	382.133	205.997	19891.138
WQ0011655001	39.359	94.069	16.531	512.458	7627.050	293.621	0.787	118.078	286.536	9.840	13671.067
WQ0010616002	20.093	89.211	10.850	353.628	6349.237	235.083	9.865	97.851	227.045	89.814	14808.188
WQ0010310001	34.864	274.378	232.541	1513.086	30924.134	4009.330	11.191	376.528	1028.480	232.541	33225.140
WQ0012294001	98.425	718.502	70.571	932.085	25984.200	528.542	20.768	585.629	1318.895	405.511	73228.199
WQ0012140001	7.340	74.865	74.865	374.473	4044.340	149.804	1.468	74.865	299.608	74.865	7115.065
Total	347.01	2093.18	835.43	7285.08	111121.84	7860.71	86.19	2154.03	4871.34	2131.93	302110.96
Units		mg/kg									
Metal	l	As	Cd	Cr	Cu	Pb	Hg	Мо	Ni	Se	Zn
Volume Weight	ted Means	6.032	2.408	20.994	320.230	22.653	0.248	6.207	14.038	6.144	870.620
Pounds Pe	r Ton	0.0121	0.0048	0.0420	0.6405	0.0453	0.0005	0.0124	0.0281	0.0123	1.7412

TCEQ Authorization	Estimated Dry	Nutrient Concentrations % X Estimated Dry Metric Tons						
Number	Metric Tons	TKN	NH ₄ -N	NO ₃ -N	Р	К		
WQ0011406001	46.883	248.946	60.010	0.307	71.261	13.549		
WQ0010908001	14.679	71.489	6.709	65.177	22.606	8.162		
WQ0010276001	2.783	4.648	0.287	0.042	2.802	0.387		
WQ0010607003	27.915	2.792	2.792 0.279 0.279		2.233	12.841		
WQ0011141001	29.359	132.996	132.996 10.393 11.391		46.974	14.092		
WQ0012068001	25.307	84.019	72.377	27.078	41.250	13.286		
WQ0011655001	39.359	9.840	0.394	7.872	110.206	6.297		
WQ0010616002	20.093	102.070	11.814	0.178	17.983	3.416		
WQ0010310001	34.864	34.864	23.254	23.150	50.552	14.643		
WQ0012294001	98.425	846.455	182.086	0.138	178.149	60.236		
WQ0012140001	7.340	3.743	0.807	3.743	4.477	3.009		
Total	347.01	1541.86	368.41	139.36	548.50	149.92		
Unit	s			%				
Nutrient		TKN	NH4-N	NO3-N	Р	К		
Volume Weigh	nted Means	4.443	1.062	0.402	1.581	0.432		
Pounds Per Ton		88.866	21.234	8.032	31.613	8.641		

If more than one source of biosolids or residuals are land applied, complete Table 2.

K. Agronomic Rate Calculations (Appendix A)

Determine the agronomic application rate by completing and attaching Appendix A.

L. Pathogen Reduction Options (Appendix B)

Identify the pathogen reduction options by completing and attaching Appendix B.

M. Vector Attraction Reduction Options (Appendix C)

Identify the vector attraction reduction options by completing and attaching Appendix C.

N. On-Site Storage (Appendix D)

If on-site storage will occur at this site, complete and attach Appendix D.

APPENDIX A AGRONOMIC RATE CALCULATIONS

Note: The maximun allowable agronomic rate for land application of Class B Biosolids is 12 tons/ acre/year

APPENDIX A, PART 1. APPLICATION RATE

STEP 1. CALCULATE QUANTY OF NUTRIENTS AND METALS IN BIOSOLIDS AND RESIDUALS POUNDS PER TON.

Nutrient	Concentration (%)**	Conversion Factor	Pounds per Ton
Total Kjeldahl Nitrogen (TKN)	4.443321406	x 20	88.86642812
Ammonium Nitrogen (NH4-N)	1.06168258	x 20	21.2336516
Nitrate Nitrogen (NO ₃ -N)	0.401593333	x 20	8.031866655
Total Phosphorus (P)	1.580648167	x 20	31.61296334
Total Potassium (K)	0.432034556	x 20	8.640691124

Pollutant		Test Results, mg/kg dry weight	Conversion Factor	Pounds per Ton
Total Arsenic	(As)	6.032100564	x 0.002	0.012064201
Total Cadmium	(Cd)	2.407519881	x 0.002	0.00481504
Total Chromium	(Cr)	20.99408038	x 0.002	0.041988161
Total Copper	(Cu)	320.2298634	x 0.002	0.640459727
Total Lead	(Pb)	22.65292717	x 0.002	0.045305854
Total Mercury	(Hg)	0.24838882	x 0.002	0.000496778
Total Molybdenum	(Mo)	6.207471953	x 0.002	0.012414944
Total Nickel	(Ni)	14.03817739	x 0.002	0.028076355
Total Selenium	(Se)	6.143773354	x 0.002	0.012287547
Total Zinc	(Zn)	870.6204825	x 0.002	1.741240965

^{**} Values from laboratory analysis (dry weight only).

Conversions: $mg/kg \div 10,000 = \%$ ppm = mg/kg

STEP 2. CROPPING PLAN AND N	IUTRIENT NEEDS	
Warm Season Intended Crop(s): Impro	ved Coastal Bermuda Grass	
Yield Goal: 7.2 DT/A & Grazing Nit	rogen Requirement, in lb/yr:	360
Cool Season Intended Crop(s):	Winter Pasture	
	itrogen Requirement, in lb/yr:	180
Provide the data source for the nitrogen i	requirement above.	
Crop nutrient need is based on 50 lb.N/ton of forage, Texas Agricultural	_	
Perennial Pastures, Publication L-2210.		
Nirtrogen needed by crop:		
2A. Total Nitrogen Requirement*	540	
2B. Nitrogen availiable in soil**	502.52	
2C. Nitrogen amount still needed	27.40	
Line 2A - Line 2B	37.48	
*Line 2A = Sum of the nitrogen requiremen season crop and cool season crop	t for the specified yelld goals for the warm	1
** Line $2B = 2*NO_3-N (ppm)(0-6"soil depth)$	th) + 6*NO ₃ -N(ppm)(6-24"soil depth)	
	_	
	_	
	_	
	_	
	_	
	_	
TCEQ - 10451 (5/22/2020)		
/	Page 21	

PROVIDED BY THE BIOSOLID		E NITROGE PESIDIJALS	
Use the TKN, NH ₄ -N, and NO ₃ -N from Step 1		LESIDUALS	
Organic Nitrogen = TKN - (NH ₄ -N + NO ₃	59.60091		
Mineralization Rate (%)*	, 11)	30%	
3A. Organic Nitrogen x Mineralization Rate		17.880273	
3B. Ammonium Nitrogen = (NH ₄ -N) x V		10.616826	
V= 0.5 if biosolids are left on soil surface	;		
V= 1.0 if biosolids are worked into the so			
3C. Nitrate Nitrogen (NO ₃ -N) =		8.0318667	
3D. Total PAN = (Line $3A + Line 3B + Line 3$	SC)=	36.528965	
*Mineralization Rates:	,		
Treatment Method	Mine	eralization	
		Rates	
Unstabilized Primary and Waste Activated		40%	
Bio Solids			
Aerobically Digested Bioslolids		30%	
Anaerobically Digested Biosolids		20%	
		10%	
•	LIDS AI		
Step 4. CALCULATE MAXIUM BIOSO ON CROP NITROGEN NEEDS (A. Nitrogen amount still needed (lbs/acre/yea Enter amount from Step 2C. B. Total PAN (lbs/ton) Enter amount from Step 3D.	SAR _N)	37.48 36.528965	
 4A. Nitrogen amount still needed (lbs/acre/year Enter amount from Step 2C. 4B. Total PAN (lbs/ton)	SAR _N)	37.48 36.528965	

STEP 5. CALCULATE MAXIMUM APPLICATION RATE BASED ON METALS (SAR_{M})

	A	В	С	D	Е	F
METAL	Cumulat ive Metal Limits (lbs/ac)	Max Loading Rate (lbs/ac/yr)	Metals in Biosolids (lbs/ton)	Metals Applied Yearly at BAR _N (lbs/ac/yr)	Metals Applied Annually at SAR _M (lb./ac./yr)	Max Sludge Loading Rate (ton/ac.)
			(Step 1)	C x SAR _N	B/C	A/C
Arsenic	36	1.8	0.012064201	0.0124	N/A	2984.04
Cadmium	35	1.7	0.00481504	0.0049	N/A	7268.89
Chromiun	2677	134	0.041988161	0.0431	N/A	63756.07
Copper	1339	67	0.640459727	0.6571	N/A	2090.69
Lead	268	13	0.045305854	0.0465	N/A	5915.35
Mercury	15	0.76	0.000496778	0.0005	N/A	30194.60
Molybdenu	Monitor	Monitor				
Nickel	375	18.7	0.028076355	0.0288	N/A	13356.43
Selenium	89	4.5	0.012287547	0.0126	N/A	7243.11
Zinc	2500	125	1.741240965	1.7866	N/A	1435.76
Other						

Note: For each metal, if the value in column B is greater than the value in column D (B>D), the BAR_N dictates the maximum biosolids application rate. Enter N/A in column E. If the value in column B is less than value in column D (B<D), then the BAR_M dictates the maximum biosolids application rate and the value of $E = B \div C$.

STEP 6. CALCULATE THE CUMULATIVE LOADING RATE

6A. Maximum allowable cumulative biosolids loading rate						
Lowest value in Step 5, Column F (tons/acre)	1435.76					
6B. Previous applications of biosolids (tons/acre)	12.43					
6C. Remaining biosolids application rate to reach metal lin	nits					
Line 6A - Line 6B (tons/acre)	1423.33					
6D. Maximun allowable biosolids application rate						
Lowest value of Step 4C and Step 5, Column E(tons/a	cre/year)					
	1.03					
6E. Years remaining to reach the maximum cumulative loa	ding					
Line 6C ÷ Line 6D (years)	1387					
	-					

STEP 1. CRO	PPING	PI A N	AND NH	TRIENT NEEL	D S		
Warm Season I							
Yield Goal:	N/A	Crop(s	147.4	Nitrogen Re	equirement,	in lb/	yr: N/A
Cool Season Int	ended (Crop(s):	Winter Past	ure/fescue hay			
Yield Goal:	N/A			Nitrogen Re	equirement,	in lb/	yr: N/A
D : 1 .1 1 .		C .1	••				
Provide the dat	a source	e for the	e nitrogen r	equirements.			
N/A							
Nitrogen neede	d by cro	m.					
1A. Total Nitro		_	ent*		N/A		
1B. Nitrogen a		_			N/A		
1C. Nitrogen a					N/A		
Line A - l	Line B						
*Line 1A = Sum o	f the nitr	ogen reg	uirement for	the specified viel	ld goals for the	e warn	1
season crop and o			un cincin for	the specifical yield	d goals for the	c waiii	1
**Line 1B = 2*NO			-6" soil depth	ı) + 6*NO ₃ - N(ppm	n)(in the 6-24"	soil	
depth)				-			
The annual applic	cation rat	e is base				culated	l
using the following	ng equation	on:					
$AAR = N \div 0.00$	26						
		lication :	rate, in galloi	ns per acre per 3	 65 day period		
N = Nitrog	gen amou	nt still r	needed for th	e crop, in pound	s per acre per	365	
day period	1.						
2A. Enter amo	unt fron	n Step 1	C				N/A
2B. Conversion							0.0026
2C. Annual Ap		n Rate (gal/acre/yr)			
	A ÷ Line		gai/ acrc/ yr	,			N/A
LIIIC 2.	A - LIIIC						11/ /1
		1					

APPENDIX A, PART 3: PROPORTIONATE AGI	RONOMIC
RATE	
Complete if both sewage and septage are applied in the same	year.
Biosolids:	
A. Biosolids Application Rate (tons/acre/year)	N/A
B. Percentage of plant nutrient supplied by the biosolids	
= 100 ÷ 100	N/A
C. Multiple Line A by Line B (tons/acre/year)	N/A
Domestic Septage:	
A. Biosolids Application Rate (tons/acre/year)	N/A
B. Percentage of plant nutrient supplied by the biosolids	
= 100 ÷ 100	N/A
C. Multiple Line A by Line B (tons/acre/year)	N/A
TCEQ - 10451 (5/22/2020)	D 25
Application for Permit for Benificial Land Use of Biosolids	Page 25

APPENDIX A AGRONOMIC RATE CALCULATIONS

Note: The maximun allowable agronomic rate for land application of Class B Biosolids is 12 tons/ acre/year

APPENDIX A, PART 1. APPLICATION RATE

STEP 1. CALCULATE QUANTY OF NUTRIENTS AND METALS IN BIOSOLIDS AND RESIDUALS POUNDS PER TON.

Nutrient	Concentration (%)**	Conversion Factor	Pounds per Ton
Total Kjeldahl Nitrogen (TKN)	4.443321406	x 20	88.86642812
Ammonium Nitrogen (NH4-N)	1.06168258	x 20	21.2336516
Nitrate Nitrogen (NO ₃ -N)	0.401593333	x 20	8.031866655
Total Phosphorus (P)	1.580648167	x 20	31.61296334
Total Potassium (K)	0.432034556	x 20	8.640691124

Pollutar	ıt	Test Results, mg/kg dry weight	Conversion Factor	Pounds per Ton
Total Arsenic	(As)	6.032100564	x 0.002	0.012064201
Total Cadmium	(Cd)	2.407519881	x 0.002	0.00481504
Total Chromium	(Cr)	20.99408038	x 0.002	0.041988161
Total Copper	(Cu)	320.2298634	x 0.002	0.640459727
Total Lead	(Pb)	22.65292717	x 0.002	0.045305854
Total Mercury	(Hg)	0.24838882	x 0.002	0.000496778
Total Molybdenum	(Mo)	6.207471953	x 0.002	0.012414944
Total Nickel	(Ni)	14.03817739	x 0.002	0.028076355
Total Selenium	(Se)	6.143773354	x 0.002	0.012287547
Total Zinc	(Zn)	870.6204825	x 0.002	1.741240965

^{**} Values from laboratory analysis (dry weight only).

Conversions: $mg/kg \div 10,000 = \%$ ppm = mg/kg

STEP 2. CROPPING PLAN AND N	NUTRIENT NEEDS	
Warm Season Intended Crop(s): Impro	oved Coastal Bermuda Grass	
Yield Goal: 7.2 DT/A & Grazing Ni	trogen Requirement, in lb/yr:	360
Cool Season Intended Crop(s):	Winter Pasture	
	Vitrogen Requirement, in lb/yr:	180
Provide the data source for the nitrogen	requirement above.	
Crop nutrient need is based on 50 lb.N/ton of forage, Texas Agricultura	1 Extension Service, Fertilizing Summer	
Perennial Pastures, Publication L-2210.		
Nirtrogen needed by crop:	540	
2A. Total Nitrogen Requirement*	540	
2B. Nitrogen available in soil**	407.72	
2C. Nitrogen amount still needed	122.20	
Line 2A - Line 2B	132.28	
*Line 2A = Sum of the nitrogen requirement	nt for the specified yeild goals for the warm	1
season crop and cool season crop		
** Line $2B = 2*NO_3-N (ppm)(0-6"soil dep$	$_{\text{oth}}$) + 6*NO ₃ -N(ppm)(6-24"soil depth)	
	_	
	_	
	_	
	_	
TOTAL 10 111 (1/02/020)		
TCEQ - 10451 (5/22/2020) Application for Permit for Benificial Land Use of Biosolids	Page 21	
	Page 21	

PROVIDED BY THE BIOSOLID	SANDI	E NITROGE PESIDIJALS
Use the TKN, NH ₄ -N, and NO ₃ -N from Step 1		LESIDUALS
Organic Nitrogen = $TKN - (NH_4-N + NO_3)$		59.60091
Mineralization Rate (%)*)-1 \)	30%
3A. Organic Nitrogen x Mineralization Rate		17.880273
3B. Ammonium Nitrogen = (NH ₄ -N) x V		10.616826
V=0.5 if biosolids are left on soil surface	<u>.</u>	10.010020
V= 1.0 if biosolids are worked into the so		
3C. Nitrate Nitrogen (NO ₃ -N) =	11	8.0318667
3D. Total PAN = (Line 3A + Line 3B + Line 3	3C)=	36.528965
*Mineralization Rates:	,	
Treatment Method	Mine	eralization
		Rates
Unstabilized Primary and Waste Activated		40%
Bio Solids		
Aerobically Digested Bioslolids		30%
Anaerobically Digested Biosolids		20%
Composted Biosolids	LIDS AI	10%
Composted Biosolids Step 4. CALCULATE MAXIUM BIOSO ON CROP NITROGEN NEEDS (4A. Nitrogen amount still needed (lbs/acre/yea Enter amount from Step 2C. 4B. Total PAN (lbs/ton) Enter amount from Step 3D.	SAR _N) or)	10% PPLICATIO 132.28 36.528965
Composted Biosolids Step 4. CALCULATE MAXIUM BIOSO ON CROP NITROGEN NEEDS (4A. Nitrogen amount still needed (lbs/acre/yea Enter amount from Step 2C. 4B. Total PAN (lbs/ton) Enter amount from Step 3D. 4C. Biosolids Application Rate (BAR _N) (tons/	SAR _N) or)	10% PPLICATIO 132.28 36.528965

STEP 5. CALCULATE MAXIMUM APPLICATION RATE BASED ON METALS (SAR_{M})

	A	В	С	D	Е	F
METAL	Cumulat ive Metal Limits (lbs/ac)	Max Loading Rate (lbs/ac/yr)	Metals in Biosolids (lbs/ton)	Metals Applied Yearly at BAR _N (lbs/ac/yr)	Metals Applied Annually at SAR _M (lb./ac./yr)	Max Sludge Loading Rate (ton/ac.)
			(Step 1)	C x SAR _N	B/C	A/C
Arsenic	36	1.8	0.012064201	0.0437	N/A	2984.04
Cadmiun	35	1.7	0.00481504	0.0174	N/A	7268.89
Chromiun	2677	134	0.041988161	0.1520	N/A	63756.07
Copper	1339	67	0.640459727	2.3193	N/A	2090.69
Lead	268	13	0.045305854	0.1641	N/A	5915.35
Mercury	15	0.76	0.000496778	0.0018	N/A	30194.60
Molybdenu	Monitor	Monitor				
Nickel	375	18.7	0.028076355	0.1017	N/A	13356.43
Selenium	89	4.5	0.012287547	0.0445	N/A	7243.11
Zinc	2500	125	1.741240965	6.3054	N/A	1435.76
Other						

Note: For each metal, if the value in column B is greater than the value in column D (B>D), the BAR_N dictates the maximum biosolids application rate. Enter N/A in column E. If the value in column B is less than value in column D (B<D), then the BAR_M dictates the maximum biosolids application rate and the value of $E = B \div C$.

STEP 6. CALCULATE THE CUMULATIVE LOADING RATE

6A. Maximum allowable cumulative biosolids loading rate	e
Lowest value in Step 5, Column F (tons/acre)	1435.76
6B. Previous applications of biosolids (tons/acre)	11.97
6C. Remaining biosolids application rate to reach metal lin	nits
Line 6A - Line 6B (tons/acre)	1423.79
6D. Maximun allowable biosolids application rate	
Lowest value of Step 4C and Step 5, Column E(tons/a	cre/year)
	3.62
6E. Years remaining to reach the maximum cumulative los	ading
Line 6C ÷ Line 6D (years)	393

STEP 1. CRO	PPING	PI A N	AND NH	TRIENT NEEL	D S		
Warm Season I							
Yield Goal:	N/A	Crop(s	147.4	Nitrogen Re	equirement,	in lb/	yr: N/A
Cool Season Int	ended (Crop(s):	Winter Past	ure/fescue hay			
Yield Goal:	N/A			Nitrogen Re	equirement,	in lb/	yr: N/A
D : 1 .1 1 .		C .1	••				
Provide the dat	a source	e for the	e nitrogen r	equirements.			
N/A							
Nitrogen neede	d by cro	m.					
1A. Total Nitro		_	ent*		N/A		
1B. Nitrogen a		_			N/A		
1C. Nitrogen a					N/A		
Line A - l	Line B						
*Line 1A = Sum o	f the nitr	ogen reg	uirement for	the specified viel	ld goals for the	e warn	1
season crop and o			un cincin for	the specifical yield	d goals for the	c waiii	1
**Line 1B = 2*NO			-6" soil depth	ı) + 6*NO ₃ - N(ppm	n)(in the 6-24"	soil	
depth)				-			
The annual applic	cation rat	e is base				culated	l
using the following	ng equation	on:					
$AAR = N \div 0.00$	26						
		lication :	rate, in galloi	ns per acre per 3	 65 day period		
N = Nitrog	gen amou	nt still r	needed for th	e crop, in pound	s per acre per	365	
day period	1.						
2A. Enter amo	unt fron	n Step 1	C				N/A
2B. Conversion							0.0026
2C. Annual Ap		n Rate (gal/acre/yr)			
	A ÷ Line		gai/ acrc/ yr	,			N/A
LIIIC 2.	A - LIIIC						11/ /1
		1					

APPENDIX A, PART 3: PROPORTIONATE AGI	RONOMIC
RATE	
Complete if both sewage and septage are applied in the same	year.
Biosolids:	
A. Biosolids Application Rate (tons/acre/year)	N/A
B. Percentage of plant nutrient supplied by the biosolids	
= 100 ÷ 100	N/A
C. Multiple Line A by Line B (tons/acre/year)	N/A
Domestic Septage:	
A. Biosolids Application Rate (tons/acre/year)	N/A
B. Percentage of plant nutrient supplied by the biosolids	
= 100 ÷ 100	N/A
C. Multiple Line A by Line B (tons/acre/year)	N/A
TCEQ - 10451 (5/22/2020)	D 25
Application for Permit for Benificial Land Use of Biosolids	Page 25

APPENDIX A AGRONOMIC RATE CALCULATIONS

Note: The maximun allowable agronomic rate for land application of Class B Biosolids is 12 tons/ acre/year

APPENDIX A, PART 1. APPLICATION RATE

STEP 1. CALCULATE QUANTY OF NUTRIENTS AND METALS IN BIOSOLIDS AND RESIDUALS POUNDS PER TON.

Nutrient	Concentration (%)**	Conversion Factor	Pounds per Ton
Total Kjeldahl Nitrogen (TKN)	4.443321406	x 20	88.86642812
Ammonium Nitrogen (NH4-N)	1.06168258	x 20	21.2336516
Nitrate Nitrogen (NO ₃ -N)	0.401593333	x 20	8.031866655
Total Phosphorus (P)	1.580648167	x 20	31.61296334
Total Potassium (K)	0.432034556	x 20	8.640691124

Pollutan	ıt	Test Results, mg/kg dry weight	Conversion Factor	Pounds per Ton
Total Arsenic	(As)	6.032100564	x 0.002	0.012064201
Total Cadmium	(Cd)	2.407519881	x 0.002	0.00481504
Total Chromium	(Cr)	20.99408038	x 0.002	0.041988161
Total Copper	(Cu)	320.2298634	x 0.002	0.640459727
Total Lead	(Pb)	22.65292717	x 0.002	0.045305854
Total Mercury	(Hg)	0.24838882	x 0.002	0.000496778
Total Molybdenum	(Mo)	6.207471953	x 0.002	0.012414944
Total Nickel	(Ni)	14.03817739	x 0.002	0.028076355
Total Selenium	(Se)	6.143773354	x 0.002	0.012287547
Total Zinc	(Zn)	870.6204825	x 0.002	1.741240965

^{**} Values from laboratory analysis (dry weight only).

Conversions: $mg/kg \div 10,000 = \%$ ppm = mg/kg

STEP 2. CROPPING PLAN AND N	UTRIENT NEEDS	
Warm Season Intended Crop(s): Improv	ved Coastal Bermuda Grass	
Yield Goal: 7.2 DT/A & Grazing Niti	rogen Requirement, in lb/yr:	360
Cool Season Intended Crop(s):	Winter Pasture	
Yield Goal: 3.6 DT/A & Grazing Ni	trogen Requirement, in lb/yr:	180
Provide the data source for the nitrogen r Crop nutrient need is based on 50 lb.N/ton of forage, Texas Agricultural Perennial Pastures, Publication L-2210.		
Nirtrogen needed by crop:		
2A. Total Nitrogen Requirement*	540	
2B. Nitrogen availiable in soil**	366.7	
2 C. Nitrogen amount still needed		
Line 2A - Line 2B	173.3	
	_	
	_	
	_	
TCEQ - 10451 (5/22/2020)	_	
Application for Permit for Benificial Land Use of Biosolids	Page 21	

Step 3. CALCULATE THE PLANT AVA		
PROVIDED BY THE BIOSOLID		ESIDUALS
Use the TKN, NH ₄ -N, and NO ₃ -N from Step 1		50 60001
Organic Nitrogen = TKN - $(NH_4-N + NO_3)$	3-N)	59.60091
Mineralization Rate (%)*		30%
3A. Organic Nitrogen x Mineralization Rate		17.880273
3B. Ammonium Nitrogen = $(NH_4-N) \times V$		10.616826
V= 0.5 if biosolids are left on soil surface		
V= 1.0 if biosolids are worked into the so	oil	
3C. Nitrate Nitrogen (NO ₃ -N) =		8.0318667
3D. Total PAN = (Line $3A + Line 3B + Line $	3C)=	36.528965
*Mineralization Rates:		
Treatment Method	Mine	ralization
	ŀ	Rates
Unstabilized Primary and Waste Activated		40%
Bio Solids		
Aerobically Digested Bioslolids]	30%
received and a receiv		
Anaerobically Digested Biosolids	}	20%
Anaerobically Digested Biosolids Composted Biosolids	<u>'</u>	10%
Anaerobically Digested Biosolids Composted Biosolids Step 4. CALCULATE MAXIUM BIOSO ON CROP NITROGEN NEEDS (4A. Nitrogen amount still needed (lbs/acre/yea Enter amount from Step 2C. 4B. Total PAN (lbs/ton) Enter amount from Step 3D.	OLIDS AP (SAR _N) ar)	10%
Anaerobically Digested Biosolids Composted Biosolids Step 4. CALCULATE MAXIUM BIOSO ON CROP NITROGEN NEEDS (4A. Nitrogen amount still needed (lbs/acre/yea Enter amount from Step 2C. 4B. Total PAN (lbs/ton)	OLIDS AP (SAR _N) ar)	10% PLICATION 173.3

STEP 5. CALCULATE MAXIMUM APPLICATION RATE BASED ON METALS (SAR_{M})

A	В	С	D	Е	F	
Cumulat			Metals	Metals		
ive	Max Loading	Metals in	Applied	Applied	Max Sludge Loading	
Metal	Rate	Biosolids	Yearly at	Annually at	Rate (ton/ac.)	
Limits	(lbs/ac/yr)	(lbs/ton)	\underline{BAR}_N	\underline{SAR}_{M}	Rate (ton/ac.)	
(lbs/ac)			(lbs/ac/yr)	(lb./ac./yr)		
		(Step 1)	C x SAR _N	B/C	A/C	
36	1.8	0.012064201	0.0572	N/A	2984.04	
35	1.7	0.00481504	0.0228	N/A	7268.89	
2677	134	0.041988161	0.1992	N/A	63756.07	
1339	67	0.640459727	3.0385	N/A	2090.69	
268	13	0.045305854	0.2149	N/A	5915.35	
15	0.76	0.000496778	0.0024	N/A	30194.60	
Monitor	Monitor					
375	18.7	0.028076355	0.1332	N/A	13356.43	
89	4.5	0.012287547	0.0583	N/A	7243.11	
2500	125	1.741240965	8.2608	N/A	1435.76	
	_					
	Cumulat ive Metal Limits (lbs/ac) 36 35 2677 1339 268 15 Monitor 375 89	Cumulat ive Max Loading Rate (lbs/ac) 36 1.8 35 1.7 2677 134 1339 67 268 13 15 0.76 Monitor Monitor 375 18.7 89 4.5	Cumulat ive Metal ive Metal ive Metal Limits (lbs/ac/yr) Max Loading Metals in Biosolids (lbs/ton) (lbs/ac) (lbs/ac/yr) (Step 1) 36 1.8 0.012064201 35 1.7 0.00481504 2677 134 0.041988161 1339 67 0.640459727 268 13 0.045305854 15 0.76 0.000496778 Monitor Monitor 375 18.7 0.028076355 89 4.5 0.012287547	Cumulative Metal ive Metal ive Metal I Limits (lbs/ac/yr) Max Loading Rate (lbs/ton) Metals in Biosolids (lbs/ton) Metals Applied Yearly at BAR _N (lbs/ac/yr) (lbs/ac) (lbs/ac/yr) (Step 1) C x SAR _N (lbs/ac/yr) 36 1.8 0.012064201 0.0572 35 1.7 0.00481504 0.0228 2677 134 0.041988161 0.1992 1339 67 0.640459727 3.0385 268 13 0.045305854 0.2149 15 0.76 0.000496778 0.0024 Monitor Monitor Monitor 0.028076355 0.1332 89 4.5 0.012287547 0.0583	Cumulat ive Metal ive Metal ive Metal I Limits (lbs/ac/yr) Max Loading Rate (lbs/ton) Metals in Biosolids (lbs/ton) Metals Applied Yearly at Annually at SAR _M (lbs/ac/yr) Metals Applied Yearly at SAR _M (lbs/ac/yr) Metals Applied Yearly at SAR _M (lbs/ac/yr) Metals Applied Yearly at SAR _M (lbs/ac/yr) Metals Applied Yearly at SAR _M (lbs/ac/yr) Metals Applied Yearly at SAR _M (lbs/ac/yr) Metals Applied Yearly at SAR _M (lbs/ac/yr) Metals Applied Yearly at SAR _M (lbs/ac/yr) Metals Applied Yearly at SAR _M (lbs/ac/yr) Metals Applied Yearly at SAR _M (lbs/ac/yr) Metals Applied Yearly at SAR _M (lbs/ac/yr) Metals Applied Yearly at SAR _M (lbs/ac/yr) Metals Applied Yearly at SAR _M (lbs/ac/yr) Metals Applied Yearly at SAR _M (lbs/ac/yr) Annually at SAR _M (lbs/ac/yr) SAR _M (lbs/ac/yr) M/A 36 1.8 0.012064201 0.0572 N/A N/A 2677 134 0.041988161 0.1992 N/A 1339 67 0.640459727 3.0385 N/A 268 13 0.045305854 0.2149 N/A 15 0.76 0.000496778 0.0024 N/A Monitor 375 18.7 0.028076355 0.1332 N/A 89	

Note: For each metal, if the value in column B is greater than the value in column D (B>D), the BAR_N dictates the maximum biosolids application rate. Enter N/A in column E. If the value in column B is less than value in column D (B<D), then the BAR_M dictates the maximum biosolids application rate and the value of $E = B \div C$.

STEP 6. CALCULATE THE CUMULATIVE LOADING RATE

6A. Maximum allowable cumulative biosolids loading rate							
Lowest value in Step 5, Column F (tons/acre)	1435.76						
6B. Previous applications of biosolids (tons/acre)	11.97						
6C. Remaining biosolids application rate to reach metal lin	nits						
Line 6A - Line 6B (tons/acre)	1423.79						
6D. Maximun allowable biosolids application rate							
Lowest value of Step 4C and Step 5, Column E(tons/acre/year)							
	4.74						
6E. Years remaining to reach the maximum cumulative loa	ding						
Line 6C ÷ Line 6D (years)	300						

STEP 1. CRO	PPING	PI A N	AND NH	TRIFNT NFF	D S		
Warm Season I				I IXILIN I INLLI			
Yield Goal:	N/A	Crop(s	147.4	Nitrogen Re	equirement,	in lb/	yr: N/A
Cool Season Int	ended (Crop(s):	Winter Past	ure/fescue hay			
Yield Goal:	N/A			Nitrogen Re	equirement,	in lb/	yr: N/A
		0 1					
Provide the dat	a source	e for the	e nitrogen r	requirements.			
N/A							
Nitrogen neede	d by cre	nn:					
1A. Total Nitro		nt*		N/A			
1B. Nitrogen a		_			N/A		
1C. Nitrogen a					N/A		
Line A - I							
		ogon nog	winamant fan	the energified viol	d goals for th	0 1110 1110	
*Line 1A = Sum o season crop and o			ulrement for	the specified yiel	u goals for the	e warii	1
**Line 1B = 2*NO:			-6" soil depth	n) + 6*NO ₃ - N(ppm)(in the 6-24"	soil	
depth)	, 41 ,			,			
The annual applic	cation rat	e is base				culated	1
using the followin	ng equatio	on:					
$AAR = N \div 0.00$	 26						
		lication 1	rate, in gallo	ns per acre per 3	65 day period		
				ie crop, in pound			
day period	1.						
2A. Enter amo	unt fron	ı Step 1	LC				N/A
2B. Conversion		-1-					0.0026
2C. Annual Ap		n Data (gal/acro/ym	·)			0.000
	A ÷ Line		gai/ aci t/ yi	,			N/A
LIIIe 2	A - LIHE	2 D					IN/A

APPENDIX A, PART 3: PROPORTIONATE AGRONOMIC				
RATE				
Complete if both sewage and septage are applied in the same	year.			
Biosolids:				
A. Biosolids Application Rate (tons/acre/year)	N/A			
B. Percentage of plant nutrient supplied by the biosolids				
= 100 ÷ 100	N/A			
C. Multiple Line A by Line B (tons/acre/year)	N/A			
Domestic Septage:				
A. Biosolids Application Rate (tons/acre/year)	N/A			
B. Percentage of plant nutrient supplied by the biosolids				
= 100 ÷ 100	N/A			
C. Multiple Line A by Line B (tons/acre/year)	N/A			
TCEQ - 10451 (5/22/2020)	D 25			
Application for Permit for Benificial Land Use of Biosolids	Page 25			

APPENDIX B PATHOGEN REDUCTION REQUIREMENTS

For each source, select the pathogen reduction alternative that will be used prior to land application of biosolids septage. Requirements for each alternative can be found in 30 TAC §312.82.

TCEQ Permit Number	Pathogen Reduction Alternative Used	Fecal Coliform Geometric Mean (cfu/gram total solids)*	Fecal Test Date*	Is PSRP Certification Attached?** (Yes/No/NA)
WQ0011406001	Option 1: Density of Fecal Coliform	94171.43	10/20/2023	N/A
WQ0010908001	Option 1: Density of Fecal Coliform	231400.00	7/14/2023	N/A
WQ0010276001	Option 1: Density of Fecal Coliform	525491.00	10/11/2023	N/A
WQ0010607003	Option 1: Density of Fecal Coliform	131000.00	8/28/2023	N/A
WQ0011141001	Option 1: Density of Fecal Coliform	20471.43	5/24/2023	N/A
WQ0012068001	Option 1: Density of Fecal Coliform	61584.00	5/19/2023	N/A
WQ0011655001	Option 1: Density of Fecal Coliform	4030.00	8/28/2023	N/A
WQ0010616002	Option 1: Density of Fecal Coliform	62457.14	8/16/2023	N/A
WQ0010310001	Option 1: Density of Fecal Coliform	147687.00	12/21/2023	N/A
WQ0012294001	Option 1: Density of Fecal Coliform	244571.43	5/1/2023	N/A
WQ0012140001	Option 1: Density of Fecal Coliform	35000.00	12/30/2023	N/A

APPENDIX C VECTOR ATTRACTION REDUCTION REQUIREMENTS

For each source, provide the vector attraction reduction option that will be used prior to or after land application of biosolids/septage. Requirements for each alternative can be found in 30 TAC §312.83.

TCEQ Permit	Vector Attraction Reduction Alternative Used*	Monitoring Criteria and results needed
Number		for alternative
WQ0011406001	Option 4: SOUR <=1.5mg 02/hr/g total solids at 20C (<2% solids)	Aerobically digested, 2.0% solids, SOUR=1.5 mg/g
WQ0010908001	Option 4: SOUR <=1.5mg 02/hr/g total solids at 20C (<2% solids)	Aerobically digested, 2.0% solids, SOUR=1.5 mg/g
WQ0010276001	Option 4: SOUR <=1.5mg 02/hr/g total solids at 20C (<2% solids)	Aerobically digested, 2.0% solids, SOUR=1.5 mg/g
WQ0010607003	Option 4: SOUR <=1.5mg 02/hr/g total solids at 20C (<2% solids)	Aerobically digested, 2.0% solids, SOUR=1.5 mg/g
WQ0011141001	Option 4: SOUR <=1.5mg 02/hr/g total solids at 20C (<2% solids)	Aerobically digested, 2.0% solids, SOUR=1.5 mg/g
WQ0012068001	Option 4: SOUR <=1.5mg 02/hr/g total solids at 20C (<2% solids)	Aerobically digested, 2.0% solids, SOUR=1.5 mg/g
WQ0011655001	Option 4: SOUR <=1.5mg 02/hr/g total solids at 20C (<2% solids)	Aerobically digested, 2.0% solids, SOUR=1.5 mg/g
WQ0010616002	Option 4: SOUR <=1.5mg 02/hr/g total solids at 20C (<2% solids)	Aerobically digested, 2.0% solids, SOUR=1.5 mg/g
WQ0010310001	Option 4: SOUR <=1.5mg 02/hr/g total solids at 20C (<2% solids)	Aerobically digested, 2.0% solids, SOUR=1.5 mg/g
WQ0012294001	Option 4: SOUR <=1.5mg 02/hr/g total solids at 20C (<2% solids)	Aerobically digested, 2.0% solids, SOUR=1.5 mg/g
WQ0012140001	Option 4: SOUR <=1.5mg 02/hr/g total solids at 20C (<2% solids)	Aerobically digested, 2.0% solids, SOUR=1.5 mg/g

APPENDIX B PATHOGEN REDUCTION REQUIREMENTS

For each source, select the pathogen reduction alternative that will be used prior to land application of biosolids septage. Requirements for each alternative can be found in 30 TAC §312.82.

TCEQ Permit Number	Vector Attraction Reduction Alternative Used*	
Number		for alternative

^{*}Options 1-8 are Class B biosolids treatment alternatives. Options 9-10 are onsite alternatives. Option 12 is for domestic septage only.

LABORATORY ACCREDITATION

All laboratory tests performed must meet the requirements of 30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification, unless the laboratory meets the following general exemptions from National Environmental Laboratory Accreditation Program (NELAP) certification requirements.

- The laboratory is an in-house laboratory and is:
 - o periodically inspected by the TCEQ;
 - o located in another state and is accredited or inspected by that state;
 - o performing work for another company with a unit located in the same site; or
 - o performing pro bono work for a governmental agency or charitable organization.
- The laboratory is accredited under federal law.
- The data are needed for emergency-response activities, and a laboratory accredited under the Texas Laboratory Accreditation Program is not available.
- The laboratory supplies data for which the TCEQ does not offer accreditation.

The applicant should review 30 TAC Chapter 25 for specific requirements. The following certification statement shall be signed and submitted with every application.

CERTIFICATION

I certify that all laboratory tests submitted with this application meet the requirements of 30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification.

Printed Name: Andy Drennan

Title: COO/VP

Signature:

Date: 5-8-2024

SITE OPERATOR SIGNATURE PAGE

If co-applicants are necessary, each co-applicant must submit an original, separate signature page.

Permit Number: WQ0004450000

Applicant: K-3 Resources, LP

I understand that I am responsible for operating the site described in this permit application in accordance with the requirements in 30 TAC Chapter 312, the conditions set forth in this application, and any additional conditions as required by the Texas Commission on Environmental Quality.

I certify, under penalty of law, that all information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine, imprisonment for violations, and revocation of this permit.

I further certify that I am authorized under 30 Texas Administrative Code §305.44 to sign and submit this document, and can provide documentation in proof of such authorization upon request.

Signatory Name: <u>Andy Drennan</u>	
Title: COO/VP	A
Signature (use blue ink):	Date: 5-8-2024
SUBSCRIBED AND SWORN to b	before me by the said Andy Drennan on
this <u>D</u> day ofday of	10th day of June, 20 26
(Seal)	Notary Public
LAURA A KOCIAN Notary ID #11248492 My Commission Expires June 10, 2026	County, Texas

LANDOWNER SIGNATURE PAGE

Required if the landowner is not the applicant or co-applicant. Each landowner must submit an original, separate signature page.

Permit Number: <u>WQ0004450000</u> Applicant: K-3 Resources, <u>LP</u>

I certify, as the owner of the land described in this permit application, that I have all rights and covenants to authorize the applicant to use this site for the land application of Wastewater Treatment Plant, Water Treatment (identify the type(s) of waste). I understand that 30 TAC Chapter 312 requires me to make a reasonable effort to see that the applicant complies with the requirements in 30 TAC Chapter 312, the conditions set forth in this application, and any additional conditions as required by the TCEQ. I also certify, under penalty of law, that all information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine, imprisonment for violations, and revocation of the permit.

Signatory Name: Ruth Miller Smith

Title: Landowner

Signature (use blue ink): Quth Miller	Smith Date: 4-17-24
SUBSCRIBED AND SWORN to before me b	by the said Buth Miller Smith on
this 17th day of April	
My commission expires on the 22 rd	day of August , 20 27
(Seal)	Notary Public
BRENT BAKER MY COMMISSION EXPIRES AUGUST 22 2027	Tyavis County, Texas

NOTARY ID: 134522060

LANDOWNER SIGNATURE PAGE

Required if the landowner is not the applicant or co-applicant. Each landowner must submit an original, separate signature page.

Permit Number: WQ0004450000

Applicant: K-3 Resources, LP

I certify, as the owner of the land described in this permit application, that I have all rights and covenants to authorize the applicant to use this site for the land application of Wastewater Treatment Plant, Water Treatment (identify the type(s) of waste). I understand that 30 TAC Chapter 312 requires me to make a reasonable effort to see that the applicant complies with the requirements in 30 TAC Chapter 312, the conditions set forth in this application, and any additional conditions as required by the TCEQ. I also certify, under penalty of law, that all information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine, imprisonment for violations, and revocation of the permit.

Signatory Name: Terry Pinkering

Title: Landowner

Signature (use blue ink): _	Terry Pulling Date: 4/18/24
SUBSCRIBED AND SWO	RN to before me by the said TEVVY PICKEVING on
this GTD day	of APVII , 20 24
My commission expires	on the 21st day of September, 2027
(Seal)	Janul Jahn Notary Public
DANIELLE N ZAHN Notary ID #1345681	County, Texas

My Commission Expires September 21, 2027 LANDOWNER SIGNATURE PAGE

Required if the landowner is not the applicant or co-applicant. Each landowner must submit an original, separate signature page.

Permit Number: WQ0004450000

Applicant: K-3 Resources, LP

I certify, as the owner of the land described in this permit application, that I have all rights and covenants to authorize the applicant to use this site for the land application of Wastewater Treatment Plant, Water Treatment (identify the type(s) of waste). I understand that 30 TAC Chapter 312 requires me to make a reasonable effort to see that the applicant complies with the requirements in 30 TAC Chapter 312, the conditions set forth in this application, and any additional conditions as required by the TCEQ. I also certify, under penalty of law, that all information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine, imprisonment for violations, and revocation of the permit.

K. and a second
Signatory Name: Miller, <u>Wanda White</u>
Title: <u>Landowner</u>
Signature (use blue ink): Nanda Ahi Date: 16, 2024
SUBSCRIBED AND SWORN to before me by the said Wanda White or
this 16th day of February, 20 24
My commission expires on the 16th day of September, 20 24
Rence D Form
Renee D Torn (Seal) Notary Public
09/16/2024 D No 125660248 Waller County

County, Texas

Attachment 1 Individual Information

Complete this attachment if the applicant or co-applicant is an individual. Make additional copies of this attachment if both are individuals.

Prefix (Mr., Ms., Miss): N/A

Full Legal Name, including middle name: N/A

Driver's License or State Identification Number: N/A

State that Issued the License or Identification Number: N/A

Date of Birth: N/A

Mailing Address: N/A

City, State, and Zip Code: N/A

Phone Number: N/A Fax Number: N/A

E-mail Address: N/A

For TCEQ Use Only
Customer Number Regulated Entity Number Permit Number

TECHNICAL REPORT FOR BENEFICIAL LAND USE OF CLASS B BIOSOLIDS

Note: The term "biosolids" also includes the combination of water treatment plant residuals with Class B Biosolids material.

SECTION 1. SITE HISTORY

Have biosolids or septage been previously land a	applied at this site?
--	-----------------------

⊠ Yes □ No

If Yes, provide a short narrative on the agricultural practices previously used at the site. The narrative must discuss the following elements:

- crops grown;
- tillage practices;
- previous biosolids application amount (dry tons) and rates (dry tons per acre);
 and
- previous septage application amount (gallons) and rates (gallons per acre).

Sewage sludge has been applied to all three fields for many years. The current crops that are being grown on the fields are Coastal Bermuda grass and a winter grass. The three fields are currently being used for hay cuttings and cattle grazing. The fields are tilled every couple of years as needed, to make sure all the nutrients are used as much as possible. Septage has not and will not be applied to any of the three fields. The average sludge application amount over the last five years for the entire three fields is approximately 1038.1 tons a year and the average rate is 6.32 tons an acre.

SECTION 2. PROPOSED LAND APPLICATION ACTIVITIES

Provide a short narrative on the proposed land application activities at the site. The narrative must discuss the following elements:

- crops grown;
- planting dates;
- times per year applied;
- frequency of application; and
- tillage practices.

No Crops. Hay and Grazing only. Coastal Bermuda grass and winter rye grass are dominate. The rye grass will be seeded during the fall. Coastal Bermuda grass will be cut and bailed for hay during the summer months. The fields will be used for grazing when hay is not being cut and bailed and when sludge is not being applied. Application on all three fields may be applied all year around. Perched water may become present from December to March according the soil map in Field 1. Therefore, to apply in field 1 during those months we will check the monitoring station location in the field for perched water. In fields adjacent to surface water, sludge will be incorporated into the soil as it is applied. Additional tillage will occur as needed.

SECTION 3. SOIL INFORMATION

A. Soil Properties

Complete the table below using the Physical and Chemical Properties and the Engineering Tables found in the USDA Natural Resources Conservation Service (NRCS) soils descriptions.

Map Symbol	Soil Type	Slope	рН	Depth to Bedrock* (inches)	Depth to Groundwater (feet)	Permeability (inches/hour)	Soil Depth** (inches)
НоВ	Hockley Loamy Fine Sand	1-3		>80	3-5	.2057	80
KaB	Katy Fine Sandy Loam	1-3		>80	1.5-3	.0620	80
LaD	Lake Charles Clay	3-8		>80	>6	0-0.01	80
MdB	Verland Clay Loam	1-3		>80	0.5-1.5	0-0.06	80
TefA	Telf Fine Sandy Loam	0-1		>80	>6	0-0.06	80
TefB	Telf Fine Sandy Loam	1-3		>80	>6	0-0.06	80

^{*} If depth to bedrock is not specified in the soil survey, use the maximum depth shown.

B. Restrictive Soil Characteristics

In the table below, identify all soils that have the following restrictive characteristics and the management practices to be used.

- Soils with at least an "occasional flooding" classification may flood between 5 to 50 times in 100 years;
- Soil permeability of >6 inches per hour; and
- Seasonal groundwater or groundwater table below the treatment zone at least:
 - o 3 feet for soil with permeability of <2 inches per hour
 - o 4 feet for soil with permeability of 2-6 inches per hour.

Soil Type	Restrictive Characteristic	Best Management Practices

^{**} If soil depth is less than two feet, provide rationale for using these shallow soils. The rationale should include site specific investigation results.

Soil Type	Restrictive	Best Management Practices
	Characteristic	
Hockley Loamy Fine	Perched Water	Monitoring Stations Seasonal
Sand		
Katy Fine Sandy	Perched Water	Monitoring Stations Seasonal
Loam		

SECTION 4. WELL INFORMATION

In the table below, provide information about each well located on-site and within 500 feet of the application area. Water well information is available from the Texas Water Development Board, 512-936-0837. Oil and gas well information is available from the Texas Railroad Commission, 512-463-6851.

Well Type (Water Well, Oil Well, Injection Well)	Producing or Non-Producing	Open, Cased, or Capped*	Protective Measures**
Water well	Producing	Cased	150ft vegetative buffer
Water well	Producing	Cased	150ft vegetative buffer
Water well	Producing	Cased	150ft vegetative buffer
Water well	Producing	Cased	150ft vegetative buffer

^{*} Casing, capping, and plugging rules are located in 16 TAC Chapter 76.

- If the well is producing and cased, no action is needed.
- If the well is producing and not cased, the well must be cased or describe other protective measures.
- If the well is non-producing and cased, the well must be plugged or capped.
- If the well is non-producing and not cased, the well must be plugged.

SECTION 5. HYDROLOGIC CHARACTERISTICS

Submit information listed below, or equivalent documentation, regarding the hydrologic characteristics of the surface and groundwater at the application site and within one-quarter mile of the site.

- Aquifer identification per Texas Water Development Board Report 345
- Location of the area according to the Geologic Atlas of Texas, published by the University of Texas, Bureau of Economic Geology.
- Any feature that exhibits a direct hydrologic connection between surface and subsurface water.
- List periods of seasonal perched and/or high water table, if any.

Attachment Number: 21

^{**} The following protective measures are required prior to initial biosolids/septage application:

8. Hydrologic Characteristics Information.

- a. According to the TWDB Report 345, the site is located in the area of the Gulf Coast Aquifer as it was in the last permit renewal. (See attached Description and Map from TWDB Report 345).
- b. According to the Geologic Atlas of Texas, the site is still located in the area of the Lissie formation and has not changed since the last permit renewal.
- c. Other than the three wells listed on page 19 of there is no direct hydrologic connection between the surface and subsurface within ½ mile of the site.
- d. As stated page 18, the Verland soil series has a seasonal perched water table a 1.0 foot depth.

Seasonally perched water, Carl Miller Farms 710084

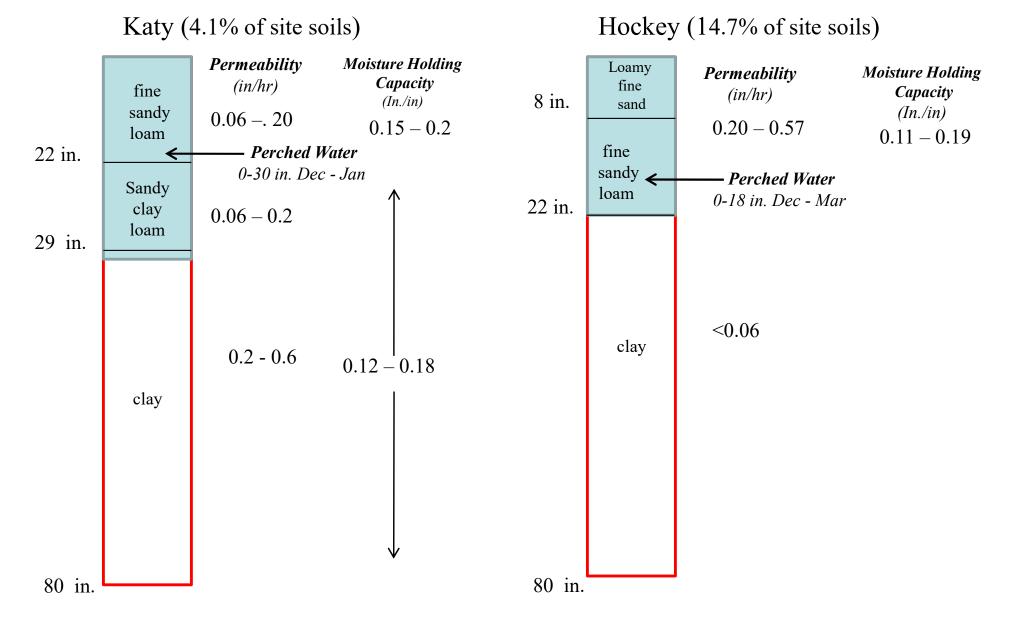
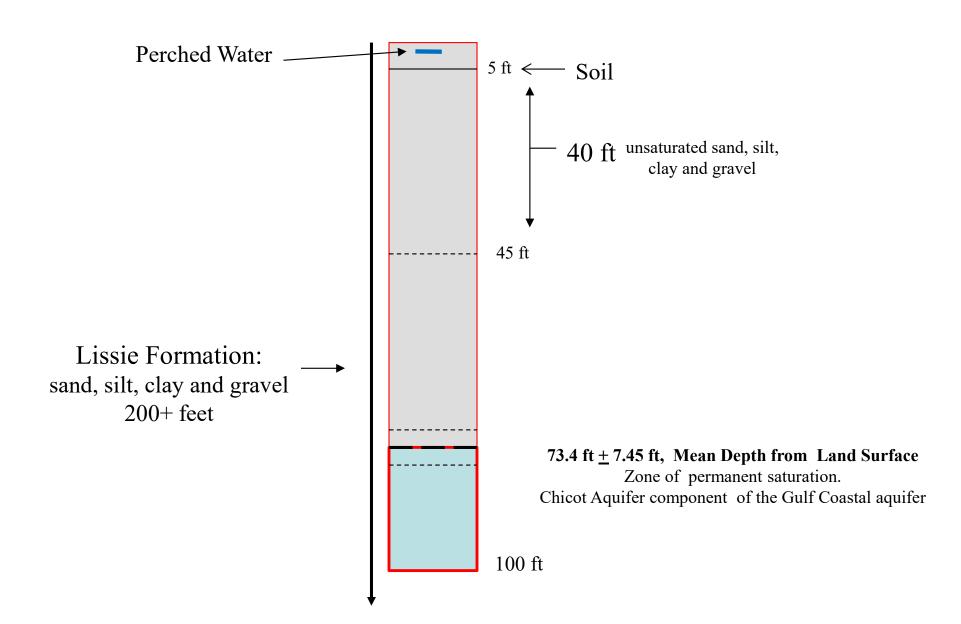



Figure 2. Hydro geologic conditions, Carl Miller Farms 710084 Waller, County, TX

Table 1 Pollutant and Nutrient Concentrations in Biosolids and Water Treatment Residuals (if applicable)

Complete this table **for each source** of biosolids and residuals.

Facility Name: Click here to enter text.

TCEQ Authorization Number: Click here to enter text.

POLLUTANT/METAL ANALYSIS

Pollutant	Maximum Concentration, mg/kg dry weight	Test Results, mg/kg dry weight	Sample Date	Detection Level for Analysis	Sample Method
Arsenic (As)	75				
Cadmium (Cd)	85				
Chromium (Cr)	3000				
Copper (Cu)	4300				
Lead (Pb)	840				
Mercury (Hg)	57				
Molybdenum (Mo)	75				
Nickel (Ni)	420				
Selenium (Se)	100				
Zinc (Zn)	7500				
PCB (ppm)	50.0 ppm				

NUTRIENT ANALYSIS

Nutrient	Concentration (%)	Sample Date	Detection Level for Analysis	Sample Method
Total Kjeldahl Nitrogen (TKN)				
Ammonium Nitrogen (NH4-N)				
Nitrate Nitrogen (NO3-N)				
Total Phosphorus (P)				
Total Potassium (K)				

TABLE 2

Volume Weighted Average (Mean) of Nutrient and Pollutant Concentration

Complete this table if more than one source is land applied at the site.

Directions:

- 1. For each pollutant, multiply the Pollutant Concentrations from Table 1 by the estimated number of dry tons you expect to apply from each facility.
- 2. Sum the individual columns. Enter results in last row of the table.
- 3. Divide the sum of each column by the dry tons sum (bottom of second column). Enter number in the appropriate Volume Weighted Average Box (row below table).
- 4. Use these final results to complete Appendix A, Step 1.

TCEQ Auth. Number	Est. Dry Tons*	As	Cd	Cr	Cu	Pb	Hg	Мо	Ni	Se	Zn	TKN	NH ₄ -	NO ₃ -N	P	K
Sum																
Volume Weighted Average																

^{*}Total estimated dry tons to be land applied from the source facility.

APPENDIX A AGRONOMIC RATE CALCULATIONS

Note: The maximum allowable agronomic rate for land application of Class B Biosolids is 12 tons/acre/year.

APPENDIX A, PART 1. APPLICATION RATE

STEP 1. CALCULATE QUANTITY OF NUTRIENTS AND METALS IN BIOSOLIDS AND RESIDUALS IN LBS/TON

Nutrient	Concentration (%)**	Conversion Factor	Pounds per Ton
Total Kjeldahl Nitrogen (TKN)		x 20	
Ammonium Nitrogen (NH4-N)		x 20	
Nitrate Nitrogen (NO3-N)		x 20	
Total Phosphorus (P)		x 20	
Total Potassium (K)		x 20	

Pollutant	Test Results, mg/kg dry weight	Conversion Factor	Pounds per Ton
Total Arsenic (As)		x 0.002	
Total Cadmium (Cd)		x 0.002	
Total Chromium (Cr)		x 0.002	
Total Copper (Cu)		x 0.002	
Total Lead (Pb)		x 0.002	
Total Mercury (Hg)		x 0.002	
Total Molybdenum (Mo)		x 0.002	
Total Nickel (Ni)		x 0.002	
Total Selenium (Se)		x 0.002	
Total Zinc (Zn)		x 0.002	

^{**}Values from laboratory analysis (dry weight only).

Conversions:

 $mg/kg \div 10,000 = \%$ ppm = mg/kg

STEP 2. CROPPING PLAN AND NUTRIENT NEEDS

Warm Season Intended Crop(s): Click here to enter text.

Yield Goal: <u>Click here to enter text.</u> Nitrogen Requirement, in lb/yr: <u>Click here to enter text.</u>

Cool Season Intended Crop(s): Click here to enter text.

Yield Goal: <u>Click here to enter text.</u> Nitrogen Requirement, in lb/yr: <u>Click here to enter text.</u>

Provide the data source for the nitrogen requirements above.

Click here to enter text.

Nitrogen needed by crop:

2A. Total Nitrogen Requirement* Click here to enter text.

2B. Nitrogen available in soil**

<u>Click here to enter text.</u>

2C. Nitrogen amount still needed

Line 2A – Line 2B Click here to enter text.

^{*}Line 2A = Sum of the nitrogen requirement for the specified yield goals for the warm season crop and cool season crop

^{**}Line $2B = 2*NO_3-N$ (ppm)(in the 0-6" soil depth) + $6*NO_3-N$ (ppm)(in the 6-24" soil depth)

STEP 3. CALCULATE THE PLANT AVAILABLE NITROGEN (PAN) PROVIDED BY THE BIOSOLIDS AND RESIDUALS

Use the TKN, NH₄-N, and NO₃-N from Step 1.

Organic Nitrogen = TKN - (NH_4-N) - (NO_3-N) Click here to enter text.

Mineralization Rate (%) * Click here to enter text.

3A. Organic Nitrogen x Mineralization Rate

Click here to enter text.

3B. Ammonium Nitrogen = $(NH_4-N) \times V$ Click here to enter text.

V = 0.5 if biosolids are left on soil surface

V = 1.0 if biosolids are worked into the soil

3C. Nitrate Nitrogen (NO₃-N) Click here to enter text.

3D. Total PAN = (Line 3A + Line 3B + Line 3C)= Click here to enter text.

^{*}Mineralization Rates:

Treatment Method	Mineralization
	Rates
Unstabilized Primary and Waste Activated	40 %
Biosolids	
Aerobically Digested Biosolids	30 %
Anaerobically Digested Biosolids	20 %
Composted Biosolids	10 %

STEP 4. CALCULATE MAXIMUM BIOSOLIDS APPLICATION RATES BASED ON CROP NITROGEN NEEDS (SAR $_{\rm N}$)

4A. Nitrogen amount still needed (lbs/acre/year)

Enter amount from Step 2C. Click here to enter text.

4B. Total PAN (lbs/ton)

Enter amount from Step 3D. Click here to enter text.

4C. Biosolids Application Rate (BAR_N) (tons/acre/year)

Line 4A ÷ Line 4B Click here to enter text.

STEP 5. CALCULATE MAXIMUM APPLICATION RATE BASED ON METALS (SAR_{M})

METAL	A Cumulative Metal Limits (lbs/ac)	B Max Loading Rate (lbs/ac/yr)	C Metals In Biosolids (lbs/ton) (Step 1)	D Metals Applied Yearly at <u>BAR</u> _N (lbs/acre/yr) (C x SAR _N)	$E \\ Biosolids Applied \\ Yearly at \underline{BAR_M} \\ (tons/acre/yr) \\ (B \div C)$	F Max Loading Rate (tons/acre) (A ÷ C)
Arsenic	36	1.8				
Cadmium	35	1.7				
Chromium	2677	134				
Copper	1339	67				
Lead	268	13				
Mercury	15	0.76				
Molybdenum	Monitor	Monitor				
Nickel	375	18.7				
Selenium	89	4.5				
Zinc	2500	125				
Other						

Note: For each metal, if the value in column B is greater than the value in column D (B>D), the BAR_N dictates the maximum biosolids application rate. Enter N/A in column E. If the value in column B is less than the value in column D (B<D), then the BAR_M dictates the maximum biosolids application rate and the value of E = B \div C.

STEP 6. CALCULATE THE CUMULATIVE LOADING RATE

6A. Maximum allowable cumulative biosolids loading rate

Lowest value in Step 5, Column F (tons/acre) <u>Click here to enter text.</u>

6B. Previous applications of biosolids (tons/acre) Click here to enter text.

6C. Remaining biosolids application rate to reach metal limits

Line 6A – Line 6B (tons/acre) <u>Click here to enter text.</u>

6D. Maximum allowable biosolids application rate
Lowest value of Step 4C and Step 5, Column E (tons/acre/year)

Click here to enter text.

6E. Years remaining to reach the maximum cumulative loading

Line 6C ÷ Line 6D (years) Click here to enter text.

APPENDIX A, PART 2: SEPTAGE APPLICATION RATE

Complete Part 2 and 3 if sewage and septage are both applied at the site.

STEP 1. CROPPING PLAN AND NUTRIENT NEEDS

Warm Season Intended Crop(s): Click here to enter text.

Yield Goal: <u>Click here to enter text.</u> Nitrogen Requirement, in lb/yr: <u>Click here to enter text.</u>

Cool Season Intended Crop(s): <u>Click here to enter text.</u>

Yield Goal: <u>Click here to enter text.</u> Nitrogen Requirement, in lb/yr: <u>Click here to enter text.</u>

Provide the data source for the nitrogen requirements.

Click here to enter text.

Nitrogen needed by crop:

1A. Total Nitrogen Requirement*1B. Nitrogen available in soil**Click here to enter text.

1C. Nitrogen amount still needed

Line A - Line B <u>Click here to enter text.</u>

STEP 2. CALCULATE ANNUAL APPLICATION RATE

The annual application rate is based on the nitrogen needs of the crop. It is calculated using the following equation:

 $AAR = N \div 0.0026$

AAR = Annual application rate, in gallons per acre per 365 day period.

N = Nitrogen amount still needed for the crop, in pounds per acre per 365 day period.

2A. Enter amount from Step 1C Click here to enter text.

2B. Conversion Factor 0.0026

2C. Annual Application Rate (gal/acre/yr)

Line 2A ÷ Line 2B Click here to enter text.

^{*}Line 1A = Sum of the nitrogen requirement for the specified yield goals for the warm season crop and cool season crop

^{**}Line $1B = 2*NO_3-N$ (ppm)(in the 0-6" soil depth) + $6*NO_3-N$ (ppm)(in the 6-24" soil depth)

APPENDIX A, PART 3: PROPORTIONATE AGRONOMIC RATE

Complete if both sewage and septage are applied in the same year.

Biosolids:

A. Biosolids Application Rate (tons/acre/year) Click here to enter text.

B. Percentage of plant nutrient supplied by the biosolids

= <u>Click here to enter text.</u> ÷ 100 <u>Click here to enter text.</u>

C. Multiple Line A by Line B (tons/acre/year) Click here to enter text.

Domestic Septage:

A. Biosolids Application Rate (tons/acre/year) Click here to enter text.

B. Percentage of plant nutrient supplied by the biosolids

= <u>Click here to enter text.</u> ÷ 100 <u>Click here to enter text.</u>

C. Multiple Line A by Line B (tons/acre/year) Click here to enter text.

APPENDIX B PATHOGEN REDUCTION REQUIREMENTS

For each source, select the pathogen reduction alternative that will be used prior to land application of biosolids septage. Requirements for each alternative can be found in 30 TAC §312.82.

TCEQ Permit Number		Fecal Coliform Geometric Mean (cfu/gram total	Date*	Certification Attached?**
		solids)*		(Yes/No/NA)
	Option 1: Density of Fecal Coliform			N/A
	Option 1: Density of Fecal Coliform			N/A
	Option 1: Density of Fecal Coliform			N/A
	Option 1: Density of Fecal Coliform			N/A
	Option 1: Density of Fecal Coliform			N/A
	Option 1: Density of Fecal Coliform			N/A

^{*}Applicable to Option 1 only.

If Other is selected as the Alternative Used, please explain:

^{**}Applicable to Option 2a - f.

APPENDIX B PATHOGEN REDUCTION REQUIREMENTS

For each source, select the pathogen reduction alternative that will be used prior to land application of biosolids septage. Requirements for each alternative can be found in 30 TAC §312.82.

TCEQ Permit Number	Pathogen Reduction Alternative Used	Fecal Coliform Geometric Mean (cfu/gram total solids)*	Fecal Test Date*	Is PSRP Certification Attached?** (Yes/No/NA)
Example WQ11280-001	Option 1: Density of Fecal Coliform	300,000 cfu/g	12/2/98	NA
	Choose an item.			
	Choose an item.			
	Choose an item.			
	Choose an item.			
	Choose an item.			
	Choose an item.			
	Choose an item.			
	Choose an item.			
	Choose an item.			
	Choose an item.			
	Choose an item.			

^{*}Applicable to Option 1 only.

If Other is selected as the Alternative Used, please explain: Click here to enter text.

^{**}Applicable to Option 2a - f.

APPENDIX C VECTOR ATTRACTION REDUCTION REQUIREMENTS

For each source, provide the vector attraction reduction option that will be used prior to or after land application of biosolids/septage. Requirements for each alternative can be found in 30 TAC §312.83.

TCEQ Permit	Vector Attraction Reduction Alternative Used*	Monitoring Criteria and results needed
Number		for alternative
Example WQ11280-001	Option 10: Incorporate within 6 hrs	Visual inspection of area after tilling
Example WQ13450-003	Option 4: SOUR <=1.5 mg 02/hr/g total solids at 20C (<2% solids)	Aerobically digested, 2.0% solids, SOUR=1.3 mg/g
	Choose an item.	
	Choose an item.	
	Choose an item.	
	Choose an item.	
	Choose an item.	
	Choose an item.	
	Choose an item.	
	Choose an item.	
	Choose an item.	

^{*}Options 1-8 are Class B biosolids treatment alternatives. Options 9-10 are onsite alternatives. Option 12 is for domestic septage only.

APPENDIX D ON-SITE STORAGE

If on-site storage will occur at the site, this Appendix must be completed in its entirety. On-site storage does not include staging of biosolids or septage for up to seven (7) days prior to applying it. On-site storage cannot exceed the 90-day maximum per 30 TAC §312.50 unless properly authorized for each instance. Construction of the storage area cannot begin until written authorization for this action is received from the TCEQ. Materials cannot be treated without proper authorization from the TCEQ.

A. Provide a complete description of operational plans for the temporary storage, including all steps to be taken to control odors, vectors and other nuisance conditions.

Click here to enter text.

- **B.** The location of the temporary storage area(s) must be accurately shown on the USGS topographic map submitted with the application, including all main features of the storage area(s) (e.g. berms, tanks, pads, liners, storm water retention, etc.).
- **C.** Provide a copy of the liner and storage tank certification as per 30 TAC §312.50(a)(4) or 312.50(a)(8).

Attachment Number: Click here to enter text.

- **D.** Describe the proposed spill prevention and cleanup methods. Click here to enter text.
- **E.** Provide a certification that the berm(s) will hold the required volume(s) without discharging as per 30 TAC §312.50 (a)(7).

Attachment Number: Click here to enter text.

- **F.** Describe the method for stormwater runoff collection and disposal. Click here to enter text.
- **G.** Describe methods to be used to ensure no loads of biosolids remain at the temporary storage site for longer than 90 days, including how exceptions to this restriction will be requested (as provided by 30 TAC §312.50), when needed. Click here to enter text.

INSTRUCTIONS FOR PERMIT FOR BENEFICIAL LAND USE OF CLASS B BIOSOLIDS

GENERAL INFORMATION

Purpose of the Application

This form is to be used to:

- Permit a new site for beneficial land use of Class B biosolids:
- Submit a Major Amendment to change acreage or to make any other substantive change to a permitted site for beneficial land use of Class B biosolids; or
- Renew an existing permitted site for beneficial land use of Class B biosolids.

NOTE: If the land application site is within or adjacent to a publicly-owned wastewater treatment plant (WWTP) and the site is owned or operated by the WWTP, the WWTP's existing wastewater discharge permit may be amended to authorize land application of Class B biosolids. To amend the wastewater discharge permit, complete and submit this application form and the Domestic Wastewater Permit Application (TCEO Form 10054).

Who Should Apply?

This application must be submitted by the site operator. If there is more than one operator, then a co-applicant is required.

When Is The Application Submitted?

For new and amendment applications, the completed application must be submitted at least 180 days before the proposed date of land application. For renewal applications, the completed application must be submitted at least 180 days before the expiration date of the current registration.

Where to Send the Application Form

One original and three copies of the application, including attachments, must be provided to the address below:

Regular U.S. Mail:

TCEQ ARP Team, MC 148 PO Box 13087 Austin TX 78711-3087

Express Mail or Hand Delivery:

TCEQ ARP Team, MC 148 Building F Room 2101

TCEQ Contact List

Permit Information and Application Forms: 512-239-4671

Technical Information, Land ApplicationTeam,

Attn: Biosolids Group: 512-239-4671 Environmental Law Division: 512-239-0600

Copies of records on file with the TCEQ may be obtained for a minimal fee from the Records Management Office at 512-239-2900.

INSTRUCTIONS FOR FILLING OUT THE APPLICATION FORM

Section 1. Type of Application

Select the appropriate type of application.

For amendment applications, describe the proposed changes.

For existing permits, provide the TCEQ permit number.

Section 2. Application Fee

The permit application fee varies from \$1,000 to \$5,000, based on the quantity of biosolids to be applied annually under the permit.

Quantity of Biosolids Applied	Application
Annually	Fee
2,000 dry tons or less	\$1,000
2,001 to 5,000 dry tons	\$2,000
5,001 to 10,000 dry tons	\$3,000
10,001 to 20,000 dry tons	\$4,000
20,001 dry tons or more	\$5,000

Application fees must be paid by check or money order made payable to the Texas Commission on Environmental Quality. Fees are to be sent under separate cover making reference to the type of application, name of applicant, and permit number of existing permit, and mailed to:

TCEQ Revenues Section (MC 214) P.O. Box 13088 Austin, Texas 78711-3088

To verify receipt of payment or any other questions you may have regarding payment of fees to the TCEQ, you may call the Revenues Section, Cashiers Office at (512) 239-0357.

Section 3. Applicant Information

Provide the full legal name of the site operator.

If the site operator is an existing TCEQ customer, provide the customer number (CN) for the site operator. The Customer Number is available at the following website: http://www15.tceq.texas.gov/crpub/. If the site operator is not an existing TCEQ customer, leave blank.

Provide the following contact information for the site operator: mailing address, phone number, fax number, and email address.

Section 4. Co-Applicant Information

If there is more than one operator, then a co-applicant is required. Provide the full legal name of the co-applicant.

If the co-applicant is an existing TCEQ customer, provide the customer number (CN) for the co-applicant. The Customer Number is available at the following website: http://www15.tceq.texas.gov/crpub/. If the co-applicant is not an existing TCEQ customer, leave blank.

Provide the following contact information for the co-applicant: mailing address, phone number, fax number, and email address.

Explain the need for a co-applicant.

Section 5. Application Contact Information

Provide the name and contact information for the person that TCEQ will contact if additional information is needed about this application. Provide one contact for the operator and one contact for the landowner.

Section 6. Permit Contact Information

Provide the name and contact information for two individuals that TCEQ can contact if additional information is needed during the term of the permit.

Section 7. Billing Contact Information

Provide the name and contact information for the person that TCEQ can contact regarding the annual fee invoices.

Section 8. Reporting Contact Information

Provide the name and contact information for the person that TCEQ can contact regarding the annual biosolids land application reports.

Section 9. Notice Information

A. Individual publishing the notices

Provide the name, company name, mailing address, telephone number and fax number of the person that will publish the public notices required during the processing of the application. Only one name can be provided. This individual will be contacted to publish the required public notices in a newspaper of the largest general circulation in the county where the facility is/will be located. This person must be available during the application processing since the first public notice. The "Notice of Receipt of Application and Intent to Obtain a Water Quality Permit" must be published within 30 days of the application being declared Administratively Complete.

B. Method of Receiving Notice Package

Provide the method of receiving the required public notice information. When the application is declared Administratively Complete, the notice package will be sent via the method selected. The notice package includes the TCEQ declaration of completeness, a notice ready for publication, instructions for publishing the notice, a publication affidavit, and a public notice verification form.

C. Contact Person in the Notice

Provide the person's name, company name, mailing address, telephone number and fax number of the one individual that will be identified as the notice contact in the two public notices that are published as part of the permitting process. This individual may be contacted by the public to answer questions about all aspects of the permit application.

D. Public Viewing Location

Provide the name and physical address for the public place where the complete application, draft permit, and Technical Summary/Fact Sheet will be made available for viewing and copying by the general public. Please verify with the proper authority they will make the application available for public viewing and copying. The address must be a physical address. Post office box addresses are not acceptable. The public place must be located within the county in which the facility is/will be located. If the facility is located in more than one county, a public viewing place for each county must be provided.

E. Bilingual Notice Requirement

Bilingual notice may be required for new, major amendment, and renewal applications if an elementary school or middle school nearest to the facility is required to make a bilingual education program available to qualifying students.

The applicant is required to call the bilingual/ESL coordinator at the nearest elementary and middle schools to obtain answers to questions 1. – 4. These questions will determine if an alternative language notice is required.

If it is determined that a bilingual notice is required, the applicant is responsible for ensuring that the publication in the alternate language is complete and accurate in that language.

F. Public Involvement Plan Form

Complete and attach one Public Involvement Plan (PIP) Form (TCEQ Form 20960) for each application for a new permit or major amendment to a permit. This form is not required for renewal or minor amendment applications.

Section 10. Regulated Entity (Site) Information

- **A.** Provide the name of the site as known by the public in the area where the site is located.
- **B.** If the site is currently regulated by TCEQ, provide the regulated entity reference number (RN) for the site. The RN is available at the following website: http://www15.tceq.texas.gov/crpub/. If the site is not currently regulated by TCEQ, leave blank.
- **C.** If the location in the existing permit is not correct or if this is a new site, provide the physical address of the site. If a physical address is not available, provide a location description.
- **D.** Provide the county in which the site is located.
- **E.** Provide the latitude and longitude for the site.
- **F.** Provide the name and contact information for the landowner of the application site.
- **G.** Provide the name and contact information for the county judge in each county where the site is located. Attach an additional sheet if the site is located in more than one county.

Section 11. Land Application Information

If the land application site is within or adjacent to a publicly-owned wastewater treatment plant (WWTP) and the site is owned or operated by the WWTP, the WWTP's existing wastewater discharge permit may be amended to authorize land application of biosolids. To amend the wastewater discharge permit, complete and submit this application form and the Domestic Wastewater Permit Application (TCEQ Form 10054).

- **A.** Provide the anticipated date that you plan to start applications on this site. This date must be at least 330 days from the date TCEQ receives this application form.
- **B.** Indicate by a checkmark if the beneficial land use area is within the city limits, within the extraterritorial jurisdiction, or outside the extraterritorial jurisdiction of a city. Provide the city or municipality name in the space provided.
- C. Identify the types of wastes that will be land applied at this site.
- **D.** For each source, provide the facility name, TCEQ authorization number, and the location. Add additional rows to the table, if necessary.
- **E.** Provide the total acreage of the property where the application site is located. Include the application area and the buffer zones.
- **F.** Provide the total acreage where biosolids may be applied. Do not include buffer zones.

NOTE: A minimum buffer of 500 feet is required for water wells and surface water

when land application of Class B Biosolids occurs in a county that borders the Gulf of Mexico (Aransas, Brazoria, Calhoun, Cameron, Chambers, Galveston, Jefferson, Kenedy, Kleberg, Matagorda, Nueces, San Patricio, and Willacy Counties).

Section 12. Miscellaneous Information

- **A.** Provide the name of each person that was previously employed by TCEQ and who was paid for services regarding this application.
- **B.** Identify if the application site is located on Indian lands. If the answer is yes, TCEQ does not have jurisdiction to process this application. Do not send this application to TCEQ. Contact the Land Application Team, Attn: Biosolids Group at 512-239-4671.
- C. Identify if any permanent school fund land is affected by this application. If yes, provide the location and potential impacts on the school fund land.
- **D.** Indicate if the site operator or co-applicant(s) owe fees or penalties to TCEQ. If yes, provide the amount owed, the type of fee or penalty, and the account number for fees or the TCEQ Docket number for penalties.

The following TCEQ website will help you determine if you owe any fees or penalties to the TCEQ and how to make a payment: https://www.tceq.texas.gov/agency/fees/delin/index.html. For questions about delinquent fees and penalties, contact the Financial Administration Division, Revenue Section, at 512-239-0354.

NOTE: TCEQ will not declare any application administratively complete or issue a permit if the applicant or co-applicant is delinquent on a fee or penalty.

Section 13. Affected Landowner Information

- **A.** Attach a landowner map or drawing that includes a scale, the applicant's property boundaries, the application area boundaries, the approximate property boundaries of all landowners located within 1/4 mile of the property boundaries. Assign a letter or number to each landowner.
- **B.** Attach a list of landowners that live on land within 1/4 mile of the property boundaries. The list must include the landowner's name and address, and include a cross-reference to the letter or number identified on the landowner map. The applicant may choose to attach a list of all landowners within 1/4 mile of the property boundary, regardless of whether the landowner lives on the land.
- **C.** Identify the format of the landowners list.
- **D.** Provide the source of the landowner's names and mailing addresses. Sources may include City or County Tax Records.

Section 14. Insurance Information

This information is <u>not</u> required for an applicant that is a political subdivision (e.g., city, county, state agency, water district, etc.).

Note: The insurance policies required by this section must be maintained for the duration of the permit which is normally issued for a term of five years.

TCEQ -10451 (3/24/2022)

A. Commercial Liability Insurance

Attach a copy of the certificate of insurance in regard to commercial liability, reflecting total coverage of not less than \$3 million per occurrence with an annual aggregate of not less than \$3 million, exclusive of legal defense costs. The certificate must be worded identically to the wording specified in 30 TAC §37.9145 (relating to Certificate of Insurance for Commercial Liability) or an endorsement worded identically to the wording specified in 30 TAC §37.9150 (relating to Endorsement for Commercial Liability). The certificate of insurance must be issued by an insurance company authorized to transact business in the State of Texas and that has a rating of A- or better by A.M. Best Company.

B. Environmental Impairment Insurance

Attach a copy of the certificate of insurance in regard to environmental impairment, reflecting total coverage of not less than \$3 million per occurrence with a policy limit of not less than \$3 million, exclusive of legal defense costs. The certificate must be worded identically to the wording specified in 30 TAC §37.9155 (relating to Certificate of Insurance for Environmental Impairment). The certificate of insurance must be issued by an insurance company authorized to transact business in the State of Texas and that has a rating of A- or better by A.M. Best Company.

Section 15. Maps and Attachments

- **A.** Complete and submit the TCEQ Core Data Form (TCEQ-10400).
- **B.** Complete and attach one Public Involvement Plan (PIP) Form (TCEQ Form 20960) for each application for a new permit or major amendment to a permit.
- **C.** Submit an original General Highway (County) Map showing all boundaries of the site area and all areas within 1000 feet of the area boundaries. These can be ordered from the Texas Department of Transportation Map Sales from the following web site: http://www.txdot.gov/travel/county_grid_search.htm
- **D.** Submit a full-sized USGS topographic map (1:24,000 scale). These are available by contacting the Texas Natural Resource Information System at 512-463-8337. The map must show:
 - the boundaries of the property(s) being permitted;
 - the boundaries of the application area within the property boundaries;
 - all areas within ¼ mile of the site (if the site is on the border of the USGS map, the adjoining map is also required); and
 - the location of all wells, springs, public water supply intakes, water treatment plants, potable water storage facilities, and wastewater treatment plants onsite and within ¼ mile of the application area (including off-site).

If the land application unit boundaries cannot fit or are too small to depict on the required USGS topographic map, a zoomed-in version must be submitted on a separate 81/2 X 12 map or larger. This map may be a zoomed-in version of the topographic map or an accurately self-generated map.

E. Submit a legible copy of a USDA Natural Resources Conservation Service (NRCS) Soil Map that shows the approximate application area boundaries, the soil legend,

- necessary interpretative information, and the location of each grab sample of the composite soil sample(s) taken for analyses. If the specific county is not mapped, have a soil scientist identify the soils.
- **F.** Submit a copy of the Federal Emergency Management Agency (FEMA) Map that shows the approximate application area boundaries, the surrounding area within ¼ mile of the property boundaries, and the appropriate legend.
- **G.** Submit a copy of the nutrient management plan that has been prepared by a certified nutrient management specialist, in accordance with the practice standards of the USDA-NRCS.
- **H.** Submit a copy of the TCEQ transporters registration approval documents.
- I. Attach the soil laboratory analysis for the application area. Additional information about collecting and analyzing the soil samples is available at the end of these instructions.
- **J.** Attach a laboratory analysis for each source. Additional information about testing is available at the end of these instructions.
- **K.** Metal and Nutrient Concentrations (Table 1). Use the laboratory analyses to complete Table 1 for each source.
- L. Volume Weighted Averages of Metal and Nutrient Concentrations (Table 2). If more than one source of is land applied, complete Table 2.
- **M.** Agronomic Rate Calculations (Appendix A). Determine the agronomic application rate by completing and attaching Appendix A.
- **N.** Pathogen Reduction Requirements (Appendix B). Identify the pathogen reduction alternative for each source by completing and attaching Appendix B.
- **O.** Vector Attraction Reduction Requirements (Appendix C). Identify the vector attraction reduction alternative for each source by completing and attaching Appendix C.
- **P.** On-Site Storage (Appendix D). If on-site storage will occur at the site, complete and attach Appendix D.

Signature Page

A separate signature page must be provided for the site operator, each co-applicant, and the landowner of the application site (if the landowner is different from the site operator and co-applicant). The signature page must bear an original signature and the seal of a notary public. The date signed by the applicant must be the same as the date notarized. The signature page will not be acceptable if the dates are different.

In accordance with 30 Texas Administrative Code §305.44 relating to Signatories to Applications, all applications shall be signed as follows:

For a corporation, the application shall be signed by a responsible corporate officer. For purposes of this paragraph, a responsible corporate officer means a president, secretary, treasurer, or vice-president of the corporation in charge of a principal business function, or any other person who performs similar policy or decision-making

functions for the corporation; or the manager of one or more manufacturing, production, or operating facilities employing more than 250 persons or having gross annual sales or expenditures exceeding \$25 million (in second-quarter 1980 dollars), if authority to sign documents has been assigned or delegated to the manager in accordance with corporate procedures. Corporate procedures governing authority to sign permit or post-closure order applications may provide for assignment or delegation to applicable corporate positions rather than to specific individuals.

For a partnership or sole proprietorship, the application shall be signed by a general partner or the proprietor, respectively.

For a municipality, state, federal, or other public agency, the application shall be signed by either a principal executive officer or a ranking elected official. For purposes of this paragraph, a principal executive officer of a federal agency includes the chief executive officer of the agency, or a senior executive officer having responsibility for the overall operations of a principal geographic unit of the agency (e.g., regional administrator of the EPA).

SOIL TESTING INFORMATION

Soil samples shall be taken prior to any application of commercial fertilizer. Do not use a galvanized container as this could give a false reading on zinc. Samples will need to be taken within the same 45 day time-frame each year, or by an approved sampling plan and analyzed within 30 days of sample collection. The initial soil sample for application approval may be taken whenever necessary.

Obtain one composite sample for each soil depth per 80 acres and per uniform soil type (soils with the same characteristics and texture) within the 80 acres, or per approved soil sampling plan. Composite samples shall be comprised of 10 - 15 random sample cores taken from each of the following soil depth zones: 0-6 inches and 6-24 inches.

Soil samples shall be submitted to a soil testing laboratory along with a previous crop history of the site, intended crop growth and yield goal. Soil reports shall include fertilizer recommendations for the crop yield goal. Samples shall be analyzed for the parameters below:

Parameter (7)		0-6"	6 -24"
Nitrate Nitrogen (NO3-N, mg/kg)	(1)	X	X
Ammonium Nitrogen (NH4-N, mg/kg)	(1)	X	X
Total Kjeldahl Nitrogen (TKN, mg/kg)	(2)	X	X
Phosphorus (plant available, mg/kg)	(3)	X	X
Potassium (plant available, mg/kg)	(3)	X	X
Sodium (plant available, mg/kg)	(3)	X	X
Magnesium (plant available, mg/kg)	(3)	X	X
Calcium (plant available, mg/kg)	(3)	X	X
Electrical Conductivity	(4)	X	X
Soil Water pH (S.U.)	(5)	X	X
Total Arsenic (mg/kg)	(6)	X	N/A
Total Cadmium (mg/kg)	(6)	X	N/A
Total Chromium (mg/kg)	(6)	X	N/A
Total Copper (mg/kg)	(6)	X	N/A
Total Lead (mg/kg)	(6)	X	N/A
Total Mercury (mg/kg)	(6)	X	N/A
Total Molybdenum (mg/kg)	(6)	X	N/A
Total Nickel (mg/kg)	(6)	X	N/A
Total Selenium (mg/kg)	(6)	X	N/A
Total Zinc (mg/kg)	(6)	X	N/A

- 1. Determined in a 1 N KCl soil extract (http://soiltesting.tamu.edu/webpages/swftlmethods1209.html).
- 2. Determined by Kjeldahl digestion or an equivalent accepted procedure. Methods that rely on Mercury as a catalyst are not acceptable.
- 3. Mehlich III extraction (yields plant-available concentrations) with inductively coupled plasma.
- 4. Electrical Conductivity (EC) determine from extract of 2:1 (volume/volume) water/soil mixture and expressed in dS/m (same as mmho/cm).
- 5. Soil pH must be analyzed by the electrometric method in Test Methods for Evaluating Solid Waste, EPA SW-846, 40 CFR 260.11; method 9045C determine from extract of 2:1 (volume/volume) water/soil mixture.
- 6. Analysis for metals in soil must be performed according to methods outlined in Test Methods for Evaluating Solid Waste, EPA SW-846; method 3050.
- 7. All parameters must be analyzed on a dry weight basis, except Soil Water pH and Electrical Conductivity.

Please be advised that the maximum acceptable soil concentrations of metals are listed below. These rates are based on the maximum cumulative loading rates found in 30 TAC §312.43 Table 2- Cumulative Metal Loading Rate.

Metal	Soil Concentration Limit (mg/kg)
Total Arsenic	20.5
Total Cadmium	19.5
Total Chromium	1500
Total Copper	750
Total Lead	150
Total Mercury	8.5
Total Molybdenum	Monitor
Total Nickel	210
Total Selenium	50
Total Zinc	1,400

BIOSOLIDS AND RESIDUALS TESTING INFORMATION

Testing Parameters (dry weight basis) for Class B Biosolids and Water Treatment Plant Residuals

Nutrients (%)	Metals (mg/kg)	Other
Total Kjeldahl Nitrogen	Total Arsenic	Total PCBs
Ammonium-Nitrogen	Total Cadmium	
Nitrate-Nitrogen	Total Chromium	
Total Phosphorus	Total Copper	
Total Potassium	Total Lead	
	Total Mercury	
	Total Molybdenum	
	Total Nickel	
	Total Selenium	
	Total Zinc	

- 1. If accepting from multiple sources,
 - a) perform a new analysis on the mixed material if blended before land application, or
 - b) use Table 2 of the application form to determine the volume weighted average (mass balance) which will accurately reflect the amount of metals contributed by each facility.
- 2. The metal and nutrient tests shall be used to calculate the Maximum Biosolids Application Rate and Site Life in Appendix A of the application form. These tests and calculations will also be required in an annual report for the permitted site.
- 3. Copies of all laboratory test data with Quality Control (QA/QC) and Chain of Custody sheets must be kept on file at the site operator's place of business for at least five (5) years and can be requested by TCEQ at any time.
- 4. Include the most recent full Toxicity Characteristic Leaching Procedure (TCLP) analysis for each wastewater treatment plant source (Appendix E).

Maximum Metal Loadings & Concentrations

If background soil concentrations exceed the values listed below, then land application is only possible if biosolids concentrations are below the concentrations found in Table 3 of 30 TAC §312.43(b)(3).

If the concentration of any metal in the biosolids exceeds the metal ceiling concentration, then the land application of that biosolids is prohibited.

Pollutant	Cumulative Loading (lbs/acre)	Table 3 §312.43(b)(3) (mg/kg)	Metal Ceiling Concentration (mg/kg)
Arsenic	36	41	75
Cadmium	35	39	85
Chromium	2,677	1,200	3,000

Pollutant	Cumulative	Table 3 §312.43(b)(3)	Metal Ceiling Concentration
	Loading	(mg/kg)	(mg/kg)
Copper	(lbs/acre) 1,339	1,500	4,300
Lead	268	300	840
Mercury	15	17	57
Molybdenum	Monitor	Monitor	75
Nickel	375	420	420
Selenium	89	36	100
Zinc	2,500	2,800	7,500

 ${\bf APPENDIX\;E}$ Toxicity Characteristic Leaching Procedure (TCLP) Regulatory Levels

METALS	TCLP Regulatory Level, mg/L	EPA Hazardous Waste Number	Recommended Test Method
Arsenic	5.0	D004	7061
Barium	100.0	D005	7080
Cadmium	1.0	D006	7130
Chromium	5.0	D007	7190
Lead	5.0	D008	7420
Mercury	0.2	D009	7471
Selenium	1.0	D010	7741
Silver	5.0	D011	7760

VOLATILE ORGANICS	TCLP Regulatory Level, mg/L	EPA Hazardous Waste Number	Recommended Test Method
Benzene	0.5	D018	8260B
Carbon Tetrachloride	0.5	D019	8260B
Chlorobenzene	100.0	D021	8260B
Chloroform	6.0	D022	8260B
1,4-Dichlorobenzene	7.5	D027	8260B
1,2-Dichloroethane	0.5	D028	8260B
1,1-Dichloroethylene	0.7	D029	8260B
Methyl Ethyl Ketone	200.0	D035	8260B
Tetrachloroethylene	0.7	D039	8260B
Trichloroethylene	0.5	D040	8260B
Vinyl Chloride	0.2	D043	8260B

SEMIVOLATILE ORGANICS	TCLP Regulatory Level, mg/L	EPA Hazardous Waste Number	Recommended Test Method
o-Cresol *	200	D023	8270C
m-Cresol *	200	D024	8270C
p-Cresol *	200	D025	8270C
Cresol *	200	D026	8270C
2,4-Dinitrotoluene	0.13	D030	8270C
Hexachlorobenzene	0.13	D032	8270C
Hexachlorobutadiene	0.5	D033	8270C
Hexachloroethane	3.0	D034	8270C
Nitrobenzene	2.0	D036	8270C
Pentachlorophenol	100.0	D037	8270C
Pyridine	5.0	D038	8270C
2,4,5-Trichlorophenol	400.0	D041	8270C
2,4,6-Trichlorophenol	2.0	D042	8270C

ORGANOCHLORINE PESTICIDES	TCLP Regulatory Level, mg/L	EPA Hazardous Waste Number	Recommended Test Method
Chlordane	0.03	D020	8081A
Endrin	0.02	D012	8081A
Heptachlor (and its Epoxide)	0.008	D031	8081A
Lindane	0.4	D013	8081A
Methoxychlor	10.0	D014	8081A
Toxaphene	0.5	D015	8081A

CHLOROPHENOXY ACID HERBICIDES	TCLP Regulatory Level, mg/L	EPA Hazardous Waste Number	Recommended Test Method
2,4-D	10.0	D016	8150
2,4,5-TP (Silvex)	1.0	D017	8150

 $^{^{\}ast}$ If o-, m-, and p-Cresol concentrations cannot be differentiated, the total cresol (D026) concentration is used.

Reference: 40 CFR 261, Appendix II, 1993 ed., as amended by 58 FR 46040, August 31, 1993.

Leah Whallon

From: Compliance K3BMI < compliance@k3bmi.com>

Sent: Friday, May 24, 2024 11:19 AM

To: Leah Whallon

Subject: RE: Application to Renew Permit No. WQ0004450000; K-3 Resources, L.P.; Carl Miller

Farms

Attachments: 4450 CMF application- land owners list.pdf; WQ Sludge NORI beneficial use (Spanish)

(003)- draft.docx; Check # 37130 TCEQ 5.10.2024.pdf

Follow Up Flag: Follow up Flag Status: Flagged

Leah,

Good morning,

- 1. WQ0004450000 check # 37130 was mailed. I hand wrote the check number on the hard copies and then mailed. It was not on the electronic, however I will be happy to get you the check number and a copy of the check that was mailed.
- 2. Land owner list is attached.- I will attach the paper with the application on the FTP website and resend a link back to you when complete.
- 3. No errors on the NORI paragraph.
- 4. Spanish copy is attached.

Anything else, let me know.

Kevin Seawright Erthra Consulting, LLC

www.k3bmi.com

From: Leah Whallon < Leah. Whallon@Tceg. Texas. Gov>

Sent: Thursday, May 23, 2024 4:50 PM

To: Compliance K3BMI < compliance@k3bmi.com>

Subject: Application to Renew Permit No. WQ0004450000; K-3 Resources, L.P.; Carl Miller Farms

Good Afternoon,

Please see the attached Notice of Deficiency letter dated May 23, 2024 requesting additional information needed to declare the application administratively complete. Please send the complete response by June 6, 2024.

Please let me know if you have any questions.

Thank you,

How is our customer service? Fill out our online customer satisfaction survey at www.tceq.texas.gov/customersurvey

COMISIÓN DE CALIDAD AMBIENTAL DE TEXAS

AVISO DE RECIBIMIENTO DE LA SOLICITUD E INTENCIÓN DE OBTENER UN PERMISO DE USO BENÉFICO DEL SUELO (RENOVACIÓN)

PROPUESTA DE PERMISO N.º WQ0004450000

SOLICITUD. *K-3 Resources, L.P. 9458 Farm to Market Road 362, Pattison, Texas 77423,* ha solicitado a la Comisión de Calidad Ambiental de Texas (TCEQ, por sus siglas en inglés) *para renovar* permiso de uso benéfico del suelo N.º WQ0004450000 para autorizar la solicitud de tierra de *planta de tratamiento de aguas residuales clase B biosólidos, residuos de plantas de tratamiento de aguas residuales* para uso benéfico en aproximadamente 164.2 acres. El sitio de uso benéfico del suelo se encuentra 1.4 millas al oeste de la intersección de Farm-to-Market Road 529 y Farm-to-Market Road 362, cerca de la ciudad de Brookshire, en Waller

Condado, Texas 77423. Si corresponde: la autorización para la aplicación de suelos se permitió previamente mediante el permiso vencido N.º WQ004450000. La TCEQ recibió esta solicitud el fecha en que se recibió la solicitud. Para solicitudes de nuevos permisos: La fecha anticipada de la primera aplicación de biosólidos Clase B, sujeto a la emisión del permiso es fecha prevista para la primera aplicación de biosólidos Clase B que se indica en la solicitud. La solicitud de permiso estará disponible para ver y copiar en Palacio de Justicia del Condado de Waller, Anexo Joe Kuciemba, 425 Farm-to-Market Road 1488, Hempstead, en el condado de Waller, Texas antes de la fecha de publicación de este aviso en el periódico. Este enlace a un mapa electrónico de la ubicación general del sitio o instalación se proporciona como cortesía pública y no como parte de la solicitud o aviso. Para conocer la ubicación exacta, consulte la solicitud. https://gisweb.tceq.texas.gov/LocationMapper/?marker=-95.98432,29.918021&level=18

AVISO DE IDIOMA ALTERNATIVO. Aviso de idioma alternativo en espano está disponible en [https://www.....]Repita la oración en idioma alt.

AVISO ADICIONAL. El Director Ejecutivo de la TCEQ ha determinado que la solicitud está administrativamente completa y llevará a cabo una revisión técnica de la solicitud. Una vez completada la revisión técnica de la solicitud, el Director Ejecutivo puede preparar un bosquejo del permiso y emitirá una decisión preliminar sobre la solicitud. El aviso de la solicitud y la decisión preliminar se publicarán y enviarán por correo a aquellos que están en la lista de correo de todo el condado y a aquellos que están en la lista de correo para esta solicitud. Ese aviso contendrá la fecha límite para enviar comentarios públicos.

COMENTARIO PÚBLICO / REUNIÓN PÚBLICA. Puede enviar comentarios públicos o solicitar una reunión pública sobre esta solicitud. El propósito de una

reunión pública es para brindar la oportunidad de enviar comentarios o hacer preguntas sobre la solicitud. La TCEQ convocará una reunión pública si el Director Ejecutivo determina que existe un grado significativo de interés público en la solicitud o si lo solicita un legislador local. Una reunión pública no es una audiencia de caso impugnado.

OPORTUNIDAD PARA UNA AUDIENCIA DE CASO IMPUGNADO. Después de la fecha límite para presentar comentarios públicos, el Director Ejecutivo considerará todos los comentarios oportunos y preparará una respuesta a todos los comentarios públicos relevantes y materiales, o significativos. A menos que la solicitud se remita directamente para una audiencia de caso impugnado, la respuesta a los comentarios y la decisión del Director Ejecutivo sobre la solicitud se enviarán por correo a todos los que hayan presentado comentarios públicos y a las personas que estén en la lista de correo para esta solicitud. Si se reciben comentarios, el correo también proporcionará instrucciones para solicitar la reconsideración de la decisión del Director Ejecutivo y para solicitar una audiencia de caso impugnado. Una persona que pueda verse afectada por la solicitud puede solicitar una audiencia. Una audiencia de caso impugnado es un procedimiento legal similar a un juicio civil en un tribunal de distrito estatal.

PARA SOLICITAR UNA AUDIENCIA DE CASO IMPUGNADO, DEBE INCLUIR LOS SIGUIENTES ELEMENTOS EN SU SOLICITUD: su nombre, dirección, número de teléfono; nombre del solicitante y número de permiso propuesto; la ubicación y distancia de su propiedad/actividades en relación con la instalación propuesta: una descripción específica de cómo se vería afectado negativamente por la instalación de una manera que no es común para el público en general; una lista de todas las cuestiones de hecho controvertidas que presente durante el periodo de comentarios y la declaración "[Yo/nosotros] solicito/amos una audiencia de caso impugnado". Si la solicitud de audiencia de caso impugnado se presenta en nombre de un grupo o asociación, la solicitud debe designar al representante del grupo para recibir correspondencia futura; identificar por nombre y dirección física a un miembro individual del grupo que se vería afectado negativamente por la instalación o actividad propuesta; proporcionar la información discutida anteriormente con respecto a la ubicación y distancia del miembro afectado de la instalación o actividad; explicar cómo y por qué el miembro se vería afectado; y explicar cómo los intereses que el grupo busca proteger están relacionados con el propósito del grupo.

Tras el cierre de todos los periodos de comentarios y solicitudes aplicables, el Director Ejecutivo remitirá la solicitud y cualquier solicitud de reconsideración o de una audiencia de caso impugnado a los Comisionados de la TCEQ para su consideración en una reunión programada de la Comisión.

La Comisión sólo podrá conceder una solicitud de audiencia de un asunto impugnado sobre cuestiones que el solicitante haya presentado en sus observaciones oportunas que no hayan sido retiradas posteriormente. Si se concede una audiencia, el tema de una audiencia se limitará a cuestiones de hecho en disputa o cuestiones mixtas de hecho y de derecho relacionadas con preocupaciones relevantes y materiales sobre la calidad del agua presentadas durante el periodo de comentarios. Para las solicitudes de renovación que no incluyen una enmienda importante, incluya: La TCEQ puede actuar sobre una solicitud para renovar un permiso sin brindar la oportunidad de una audiencia de caso impugnado si se cumplen ciertos criterios.

LISTA DE CORREO. Si envían comentarios públicos, una solicitud de una audiencia de caso impugnado o una reconsideración de la decisión del Director Ejecutivo, se le agregará a la lista de correo de esta solicitud específica para recibir futuros avisos públicos enviados por correo por la Oficina del Secretario Oficial. Además, puede solicitar ser colocado en: (1) la lista de correo permanente para un nombre de solicitante específico y número de permiso; y/o (2) la lista de correo para un condado específico. Si desea ser colocado en la lista de correo permanente y/o del condado, especifique claramente qué lista(s) y envíe su solicitud a la Oficina del Secretario Oficial de la TCEQ a la dirección a continuación.

INFORMACIÓN DISPONIBLE EN LÍNEA. Para obtener detalles sobre el estado de la solicitud, visite la Base de Datos Integrada de los Comisionados en www.tceq.texas.gov/goto/cid. Busque en la base de datos utilizando el número de permiso para esta aplicación, que se proporciona en la parte superior de este aviso.

CONTACTOS E INFORMACIÓN DE LA AGENCIA. Todos los comentarios y solicitudes públicas deben enviarse electrónicamente a http://www14.tceq.texas.gov/epic/eComment/, o por escrito a Texas Commission on Environmental Quality, Office of the Chief Clerk, MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Tenga en cuenta que cualquier información de contacto que proporcione, incluido su nombre, número de teléfono, dirección de correo electrónico y dirección física, se convertirá en parte del registro público de la agencia. Para obtener más información sobre esta solicitud de permiso o el proceso de permisos, llame al Programa de Educación Pública de la TCEQ, sin cargo, al 1-800-687-4040 o visite su sitio web en www.tceq.texas.gov/goto/pep. Si desea información en español, puede llamar al 1-800-687-4040.

También se puede obtener más información de *K-3 Resources, L.P.* en la dirección indicada anteriormente o llamando a Andy Drennan al 281-375-5778.

Fecha de emisión: fecha de emisión

Andy Drennan K-3 Resources, LP 9458 FM 362 Brookshire, TX 77423 Email: andy@k3bmi.com Office: (281) 375-5778

2/16/24

Land Application Team MC150 Texas Commission on Environmental Quality P.O. Box 13087 Austin, Texas 78711-3087

Re: Renewal

Water Quality Division,

K-3 Resources LP CN603843426 is applying for a renewal for a previously permitted land application site for Class B Municipal Biosolids and Water Treatment Residuals on approximately 164.2 acres of 236.9 acres total. The site is located 1.4 miles West of the intersection of Farm-to-Market Road 362 and Farm-to-Market Road 529, on the north side of Farm-to-Market Road 529, in Brookshire, Texas Waller County, Texas 77423. This letter contains the application for beneficial use of sewage sludge completed with requested attachments.

To clarify, the purpose of this application is to renew Permit No. WQ0004450000 associated with RN102911898. The site will be 3 reporting fields with boundaries described in further detail in this application.

I will be the primary administrative and technical contact for the application, and the primary contact for the operational processes of this permit. Feel free to contact me at any time.

Sincerely,			
Andy Drennan			

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

APPLICATION FOR A PERMIT FOR BENEFICIAL LAND USE OF BIOSOLIDS

If you have questions about completing this form please contact the Applications Review and Processing Team at 512-239-4671.

SECTION 1. TYPE OF APPLICATION

	New (original, site not permitted)
	New (previously permitted but allowed to expire or canceled)
	Major Amendment (including renewals with changes to substantive provisions of the permit)
	Minor Amendment (including non-substantive provisions of the registration, expiration date remains the same)
\boxtimes	Renewal
	Renewal with Minor Amendment
For	amendments, describe the proposed changes:
_	No amendments.
For	existing permits:

What is the permit number? WQ000445000

SECTION 2. APPLICATION FEE

The application fee varies from \$1,000 to \$5,000 based on the quantity of biosolids to be applied annually. See instructions to determine the appropriate

Provide your payment information below, for verification of payment Check/Money Order Number:

Check/Money Order Amount: 2000

Name Printed on Check: K-3 Resources LP

SECTION 3. APPLICANT INFORMATION

A. The **site operator** must apply for the permit. What is the legal name of the site operator (applicant)? The legal name must be spelled exactly as filed with the Texas Secretary of State, County, or in the legal document forming the entity.

K-3 Resources LP

- **B.** If the applicant is an existing TCEQ customer, provide the Customer Number (CN) issued to this entity. CN <u>603843426</u>
- **C.** What is the contact information for this applicant?

Contact Name: <u>Andy Drennan</u>
Mailing Address: 9458 FM 362

City, State, and Zip Code: Brookshire, TX 77423

Phone Number: <u>281-375-5778</u> Fax Number: <u>281-585-4262</u>

E-mail Address: Compliance@k3bmi.com

SECTION 4. CO-APPLICANT INFORMATION

Complete this section only if more than one person or entity is a site operator.

- **A.** What is the legal name of the co-applicant? The legal name must be spelled exactly as filed with the Texas Secretary of State, County, or in the legal document forming the entity.
- **B.** If the co-applicant is an existing TCEQ customer, provide the Customer Number (CN) issued to this entity. CN
- **C.** What is the contact information for this applicant?

Contact Name:

Mailing Address:

City, State, and Zip Code:

Phone Number: _ Fax Number:

E-mail Address:

SECTION 5. APPLICATION CONTACT INFORMATION

These are the individuals that TCEQ will contact if additional information is needed about this application.

A. Prefix (Mr., Ms., Miss): Mr.

Application Contact First and Last Name: Andy Drennan

Title: <u>COO/VP</u> Credentials: <u>N/A</u>

Organization Name: <u>K-3 Resources, LP</u>

Mailing Address: 9458 FM 362

City, State, and Zip Code: <u>Brookshire</u>, TX 77423

Phone Number: <u>281-375-5778</u> Fax Number: <u>281-585-4262</u>

E-mail Address: Compliance@k3bmi.com

B. Prefix (Mr., Ms., Miss): N/A

Application Contact First and Last Name: N/A

Title: <u>N/A</u> Credentials: <u>N/A</u>

Organization Name: N/A

Mailing Address: N/A

City, State, and Zip Code: N/A

Phone Number: N/A Fax Number: N/A

E-mail Address: N/A

SECTION 6. PERMIT CONTACT INFORMATION

These are the individuals that TCEQ can contact during the term of the permit.

A. Prefix (Mr., Ms., Miss): Mr.

Permit Contact First and Last Name: Andy Drennan

Title: <u>COO/ VP</u> Credentials: <u>N/A</u>

Organization Name: K-3 Resources, LP

Mailing Address: 9458 FM 362

City, State, and Zip Code: <u>Brookshire, TX 77423</u>

Phone Number: <u>281-375-5778</u> Fax Number: <u>281-585-4262</u>

E-mail Address: Compliance@k3BMI.com

B. Prefix (Mr., Ms., Miss): Mr.

Permit Contact First and Last Name: Andy Drennan

Title: <u>COO/VP</u> Credentials: <u>N/A</u>
Organization Name: K-3 Resources, LP

Mailing Address: <u>9458 FM 362</u>

City, State, and Zip Code: <u>Brookshire, TX 77423</u>

Phone Number: <u>281-375-5778</u> Fax Number: <u>281-585-4262</u>

E-mail Address: andy@k3bmi.com

SECTION 7. BILLING CONTACT INFORMATION

This is the person that TCEQ will contact if additional information is needed about the annual fee invoices.

Prefix (Mr., Ms., Miss): Mr.

Billing Contact First and Last Name: Andy Drennan

Title: <u>COO/VP</u> Credentials: <u>N/A</u>
Organization Name: <u>K-3 Resources, LP</u>

Mailing Address: 9458 FM 362

City, State, and Zip Code: <u>Brookshire</u>, TX 77423

Phone Number: <u>281-375-5778</u> Fax Number: <u>281-585-4262</u>

E-mail Address: compliance@k3bmi.com

SECTION 8. REPORTING CONTACT INFORMATION

This is the person that TCEQ will contact if additional information is needed about the annual biosolids land application reports.

Prefix (Mr., Ms., Miss): Mr.

Reporting Contact First and Last Name: Andy Drennan

Title: <u>COO/VP</u> Credentials: <u>N/A</u>
Organization Name: <u>K-3 Resources, LP</u>

Mailing Address: 9458 FM 362

City, State, and Zip Code: Brookshire, TX 77423

Phone Number: <u>281-375-5778</u> Fax Number: <u>281-585-4262</u>

E-mail Address: compliance@k3bmi.com

SECTION 9. NOTICE INFORMATION

A. Individual responsible for publishing the notices in the newspaper

Prefix (Mr., Ms., Miss): Mr.

First and Last Name: Andy Drennan

Title: <u>COO/VP</u> Credentials: <u>N/A</u>

Company Name: K-3 Resources, LP

Mailing Address: 9458 FM 362

City, State, and Zip Code: <u>Brookshire</u>, TX 77423

Phone Number: <u>281-375-5778</u> Fax Number: <u>281-585-4262</u>

E-mail Address: compliance@k3bmi.com

B. Method for receiving the notice package for the Notice of Receipt and Intent

⊠ E-mail: <u>compliance@k3bmi.com</u>

☐ Fax Number:

□ Regular Mail:

Mailing Address:

City, State, and Zip Code:

C. Contact person to be listed in the notice

Prefix (Mr., Ms., Miss): Mr.

First and Last Name: Andy Drennan

Title: COO/VP Credentials: N/A

Company Name: K-3 Resource, LP

Phone Number: <u>281-375-5778</u>

D. Public viewing location

If the facility is located in more than one county, a public viewing location for each county must be provided.

Public Building Name: Waller County Courthouse

Physical Address of Building: 425 FM 1488, Suite 112

City: <u>Hempstead</u> County: <u>Waller</u>

Phone Number: <u>979-826-7711</u>

E. Bilingual Notice Requirement

For new, major amendment, and renewal applications. This information can be obtained by contacting the bilingual/ESL coordinator at the nearest elementary or middle school.

1. Is a bilingual education program required by the Texas Education Code at the nearest elementary or middle school to the facility or proposed facility?

Yes ⊠ No □

(**If No**, alternative language notice publication is not required; skip to Section 10. Regulated Entity (Site) Information.)

	2.		nts who attend either the elementary school or the middle d in a bilingual education program at that school?							
	3.	Do the studen another locati Yes \square	ts at these schools attend a bilingual education program at on? No 🗵							
	4.		ool be required to provide a bilingual education program but waived out of this requirement under 19 TAC §89.1205(g)? No ⊠							
	5.		s yes to 1, 2, 3, or 4, public notice in an alternative quired. Which language is required by the bilingual hish							
Co ap	mplet	on for a new p	Plan Folvement Plan (PIP) Form (TCEQ-20960) for each ermit or major amendment to a permit and include as an							
	Attac	hment Number	: <u>N/A</u>							
SE	ECTIO	N 10. REGUI	ATED ENTITY (SITE) INFORMATION							
A.	Site N	lame: <u>Carl Mille</u>	<u>r Farms 710084</u>							
В.		s is an existing s site. RN <u>1029</u>	permitted site, provide the Regulated Entity Number (RN) issued $\underline{11898}$							
C.	Site A	ddress/Locatio	n:							
	Is the	location of the	application site used in the existing permit accurate?							
		⊠ Yes	□ No							
	If YES , skip to D. If NO , or if this application is for a new site, provide the physical address of the site such as: 12100 Park 35 Circle, Austin, TX 78753. If the site does not have a physical address, provide a location description such as: located on the north side of FM 123, 2 miles west of the intersection of FM 123 and Highway 1.									
	N/A									
D.	Coun	ty where the si	re is located: <u>Waller</u>							
E.	Latitu	ıde: <u>N 29 55' 02</u>	Longitude: <u>W 95 59' 07"</u>							
F.	Lando	owner Informat	ion:							

Attach an additional sheet if more than one landowner.

Prefix (Mr., Ms., Miss): See attached

First and Last Name:

Organization Name:

Mailing Address:

City, State, and Zip Code:

Phone Number:

G. County Judge

Provide the name of the county judge in each county where the site is located. Attach an additional sheet if more than one county.

Prefix (Mr., Ms., Miss): Mr.

First and Last Name: Carbett "Trey" Duhon III

Mailing Address: 425 FM 1488 Suite 112

City, State, and Zip Code: <u>Hempstead</u>, TX 77445

Phone Number: <u>979-826-7700</u>

Name of County: Waller

SECTION 11. LAND APPLICATION INFORMATION

- **A.** Provide the anticipated date (MM/DD/YY) of the first application of biosolids after issuance or re-issuance of the permit. NOTE: This date must be at least 330 days after the date TCEQ receives this application. 2/1/2025
- **B.** The application area is:
 - \square within the city limit of:
 - within the extraterritorial jurisdiction of:
 - outside the extraterritorial jurisdiction of: <u>Brookshire</u>

C. Types of Waste

Identify the types of waste that will be land applied at this site.

- ☑ Wastewater Treatment Plant Class B Biosolids
- ☐ Domestic Septage

D. Sources of Biosolids or Residuals

Provide the sources of generation, any water quality or public water supply permit number issued by TCEQ, and the location of the sources. Complete Table 1 for each source identified below.

A. Sources of Biosolids or Residuals

Provide the sources of generation, any water quality or public water supply permit number issued by TCEQ, and the location of the sources. Complete Table 1 for each source identified below.

Facility Name	Permit Number	Location			
HC 26	WQ0011406001	Harris County			
HC WCID 92	WQ0010908001	Harris County			
Allens Creek - Sealy WWTP	WQ0010276001	Austin County			
Rosenberg #1A WWTP	WQ0010607003	Fort Bend County			
Treschwig Central D1 WWTF	WQ0011141001	Harris County			
FB 30	WQ0012068001	Fort Bend County			
Pecan Grove WWTF	WQ0011655001	Fort Bend County			
Tomball South	WQ0010616002	Harris County			
Waller WWTP	WQ0010310001	Waller County			
HC 200	WQ0012294001	Harris County			
WHC 7	WQ0012140001	Harris County			

Facility Name	Permit	Location
	Number	
Property Acreage		
Total acreage of the entire property 236.9	y, including the a	pplication area and buffer zones:
A 12 42 A A		

F. Application Area Acreage

F.,

Total acreage where the biosolids may be applied, excluding the buffer zones: 164.2

SECTION 12. MISCELLANEOUS INFORMATION									
A. Did any person who was formerly employed by the TCEQ represent your company and get paid for service regarding this application?									
Yes □ No ⊠									
If yes, provide the name(s) of the former TCEQ employee(s):									
3. Is the site located on Indian Lands?									
Yes □ No ⊠									
C. Is any permanent school fund land affected by this application?									
Yes □ No ⊠									
If yes, provide the location, forseeable impacts, and effects this application has on the land(s).									
D. Delinquent Fees and Penalties:									

Do you owe fees to the TCEQ? Yes \square No \boxtimes Do you owe any penalties to the TCEQ? Yes \square No \boxtimes

If you answered yes to either of the above questions, provide the amount owed, the type of fee or penalty, and an identifying number.

SECTION 13. AFFECTED LANDOWNER INFORMATION

A. Landowner map. Attach a landowner map or drawing. See instructions for information that must be displayed on the map.

WQ0004450000 Carl Miller Farms 710084 ¹/₄ Mi Living Landowners Mailing List:

- 1 Stone Keith & Stacy D 36076 FM 529 RD Brookshire, TX 77423
- White Wanda Miller10720 Bonner Rd Brookshire, TX 77423
- 3 Accurate Inc.PO BOX 1296 Taylor, TX 76574-6574
- 4 Garcia Manuel 4914 Westerdale Dr. Fulshear, TX 77441
- 5 Trevino Real Estate Holdings LLC5415 Arcadia Glen Ln. Katy, TX 77494
- 6 MRO Ventures LP 4603 Joyce Blvd. Houston, TX 77084
- 7 Miller W A34861 FM 529 Brookshire, TX 77423

Miller W A Accurate Inc. Stone, Keith & Stacy D 34861 FM 529 PO BOX 1296 36076 FM 529 Rd Taylor, TX 76574-6574 Brookshire, TX 77423 Brookshire, TX 77423 Miller W A Accurate Inc. Stone, Keith & Stacy D PO BOX 1296 34861 FM 529 36076 FM 529 Rd Taylor, TX 76574-6574 Brookshire, TX 77423 Brookshire, TX 77423 Accurate Inc. Miller W A Stone, Keith & Stacy D PO BOX 1296 34861 FM 529 36076 FM 529 Rd Taylor, TX 76574-6574 Brookshire, TX 77423 Brookshire, TX 77423 Accurate Inc. Miller W A Stone, Keith & Stacy D PO BOX 1296 34861 FM 529 36076 FM 529 Rd Taylor, TX 76574-6574 Brookshire, TX 77423 Brookshire, TX 77423 White Wanda Miller Garcia Manuel Trevino Real Estate Holdings LLC 10720 Bonner Rd 4914 Westerdale Dr. 5415 Arcadia Glen Ln. Brookshire, TX 77423 Fulshear, TX 77441 Katy, TX 77494 White Wanda Miller Garcia Manuel Trevino Real Estate Holdings LLC 10720 Bonner Rd 4914 Westerdale Dr. 5415 Arcadia Glen Ln. Brookshire, TX 77423 Fulshear, TX 77441 Katy, TX 77494 Garcia Manuel White Wanda Miller Trevino Real Estate Holdings LLC 10720 Bonner Rd 4914 Westerdale Dr. 5415 Arcadia Glen Ln. Brookshire, TX 77423 Fulshear, TX 77441 Katy, TX 77494 White Wanda Miller Garcia Manuel Trevino Real Estate Holdings LLC 10720 Bonner Rd 4914 Westerdale Dr. 5415 Arcadia Glen Ln. Brookshire, TX 77423 Fulshear, TX 77441 Katy, TX 77494 MRO Ventures LP MRO Ventures LP 4603 Joyce Blvd. 4603 Joyce Blvd. Houston, TX 77084 Houston, TX 77084 MRO Ventures LP MRO Ventures LP

4603 Joyce Blvd.

Houston, TX 77084

4603 Joyce Blvd.

Houston, TX 77084

Attachment Number: 2

B. Landowner list. Attach a list of the landowners' names and mailing addresses. The list must be cross-referenced to the letter or number identified on the landowner map.

Attachment Number: 3

- C. Landowner list media. Indicate the format of the landowners list.
 - П Read/Writeable CD
 - 4 sets of mailing labels
- **D.** Landowner data source. Provide the source of the landowners' names and mailing addresses. Waller CAD

SECTION 14. INSURANCE INFORMATION

This information is not required for an applicant that is a political subdivision (e.g. city, county, state agency, water district, etc.).

A. Commercial Liability Insurance

Attach a copy of the certificate of insurance in regard to commercial liability.

Attachment Number: 4

B. Environmental Impairment Insurance

Attach a copy of the certificate of insurance in regard to environmental impairment.

Attachment Number: 5

SECTION 15. MAPS AND ATTACHMENTS

A. TCEO Core Data Form

Complete and submit a TCEQ Core Data Form (TCEQ-10400).

Attachment Number: 6

B. TCEQ Public Involvement Plan Form

Complete and submit a TCEQ Public Involvement Plan Form (TCEQ-20960) for new and major amendment applications.

Attachment Number: 7

C. General Highway (County) Map

Submit an ORIGINAL General Highway (County) Map. See instructions for information that must be displayed on the map.

Attachment Number: 8

CERTIFICATE OF INSURANCE FOR COMMERCIAL LIABILITY

Name and address of insurer (herein called the "Insurer"):

Highpoint Insurance Group, LLC Nautilus Insurance Company Lloyds of London/Pantheon Specialty

4300 FM 2351 Road 7233 East Butherus Drive 2 India Street

Friendswood, TX 77546 Scottsdale, AZ 85260 London EC3N2PX, UK

Name, physical addresses and mailing address of Insured (herein called the "Insured"):

K-3 Resources, LP

9458 FM 362

Brookshire, TX 77423

Additional Insured:

Texas Commission on Environmental Quality

Physical Address: 12100 Park 35 Circle, MC 1-84, Austin, TX 78753

Mailing Address: MC 184, PO Box 13087, Austin, TX 78711

Facilities Covered:

(1) #WQ0004450000, Carl Miller Farms 710084: 1.4 miles west of the intersection of FM 529 and FM 362

Facility address: 34719 FM 529 Road, Brookshire, Texas 77423

Mailing address: 34719 FM 529 Road, Brookshire, Texas 77423

Nautilus Per Occurrence Limit: \$3,000,000 **Annual Aggregate Limit:** \$3,000,000 Policy Number: SSP-2025469-16 Effective Date: 02/26/2024 Lloyds Per Occurrence Limit: \$3,000,000 Annual Aggregate Limit: \$3,000,000 **Policy Number:** B1881S240420 Effective Date: 02/26/2024

The Insurer hereby certifies that it has issued to the Insured a Commercial Liability and Excess Policy of Insurance identified above to provide financial assurance for corrective action related to the facilities identified above. The Insurer further warrants that such policy confirms in all respects with the requirements of 30 Texas Administrative Code (TAC) §37.9105 (relating to Commercial Liability and Excess Liability Insurance), as applicable and as such regulation were constituted on the date show immediately below.

It is agreed that any provision of the policy inconsistent with such regulation is hereby amended to eliminate such inconsistency.

Whenever requested by the Executive Director of the Texas Commission on Environmental Quality, the Insurer agrees to furnish to the Executive Director a duplicate original of the policy listed above, including all endorsements thereon.

I hereby certify that the wording of this certificate is identical to the wording specified in 30 TAC §37.9155 (relating to Commercial Liability and Excess Liability Insurance) such as regulations were constituted on the date shown immediately below. The undersigned Insurer certifies that it is authorized to transact or be a surplus lines insurer eligible to engage in the business of insurance in Texas and it has a minimum financial strength rating of A- as assigned by the A.M. Best Company.

Authorized Signature of Insurer:

Name and Title of Person Signing: M. Brandon S

Signature of Witness or Notary:

M. Brandon Smyrl, President

AMBER ALLISON
Notary Public, State of Texas
Comm. Expires 07-08-2024
Notary ID 130731199

Signed this 22nd day of March 2024 in Harris County, Texas. My commission expires 07/08/2024.

CERTIFICATE OF INSURANCE FOR ENVIRONMENTAL IMPAIRMENT

Name and address of insurer (herein called the "Insurer"):

Highpoint Insurance Group, LLC

Nautilus Insurance Company

4300 FM 2351 Road

7233 East Butherus Drive

Friendswood, TX 77546

Scottsdale, AZ 85260

Name, physical addresses and mailing address of Insured (herein called the "Insured"):

K-3 Resources, LP

9458 FM 362

Brookshire, TX 77423

Additional Insured:

Texas Commission on Environmental Quality

Physical Address: 12100 Park 35 Circle, MC 1-84, Austin, TX 78753

Mailing Address: MC 184, PO Box 13087, Austin, TX 78711

Facilities Covered:

(1) #WQ0004450000, Carl Miller Farms 710084: 1.4 miles west of the intersection of FM 529 and FM 362.

Facility Address: 34719 FM 529 Road, Brookshire, Texas 77423

Mailing address: 34719 FM 529 Road, Brookshire, Texas 77423

Per Occurrence Limit:

\$3,000,000

Annual Aggregate Limit:

\$3,000,000

Policy Number:

SSP-2025469-16 Effective Date:

02/26/2024

The Insurer hereby certifies that it has issued to the Insured an Environmental Impairment Policy of Insurance identified above to provide financial assurance for corrective action related to the facilities identified above. The Insurer further warrants that such policy confirms in all respects with the requirements of 30 Texas Administrative Code (TAC) §37.9105 (relating to Environmental Impairment Insurance), as applicable and as such regulation were constituted on the date show immediately below.

It is agreed that any provision of the policy inconsistent with such regulation is hereby amended to eliminate such inconsistency.

Whenever requested by the Executive Director of the Texas Commission on Environmental Quality, the Insurer agrees to furnish to the Executive Director a duplicate original of the policy listed above, including all endorsements thereon.

I hereby certify that the wording of this certificate is identical to the wording specified in 30 TAC §37.9155 (relating to Certificate of Insurance for Environmental Impairment) such as regulations were constituted on the date shown immediately below. The undersigned Insurer certifies that it is authorized to transact or be a surplus lines insurer eligible to engage in the business of insurance in Texas and it has a minimum financial strength rating of A- as assigned by the A.M. Best Company.

Authorized Signature of Insurer:

Name and Title of Person Signing:

M. Brandon Smyrl, President

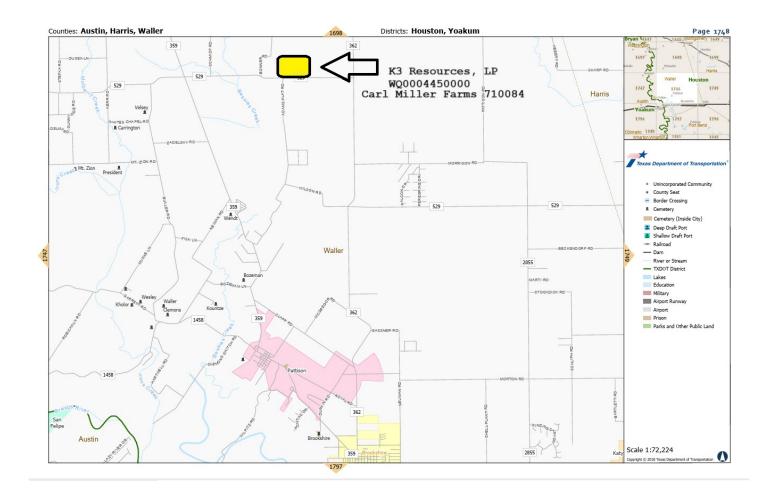
Signature of Witness or Notary:

amber allian.

AMBER ALLISON
Notary Public, State of Texas
Comm. Expires 07-08-2024
Notary ID 130731190

Signed this 22nd day of March 2024 in Harris County, Texas. My commission expires 07/08/2024.

TCEQ Use Only


TCEQ Core Data Form

For detailed instructions regarding completion of this form, please read the Core Data Form Instructions or call 512-239-5175. <u>SECTION I: General Information</u>

		on (If other is classion or Authoriz						the pro	ogram application	.)			
		Form should be			☐ Other								
· ·	Reference	Number (if iss	Follow this link to search for CN or RN numbers in Central Registry**		rch s in	Regulated Entity Reference Number (if issued) RN 102911898							
ECTION	II: Cust	omer Info	rmation						V				
4. General Cu				Date fo	Inforn	ation U	pdate	s (mm/dd/yyyy)	9/29/2	2023			
☐ New Custo	mer egal Name	(Verifiable with			o Customer			ller of I	Change in Fublic Accounts)	Regulated E	Entity Ownership		
The Custor	ner Name	submitted State (SOS)	here may l	be upd	ated auto	matic	ally ba	sed o	on what is cur	rent and	active with the		
		e (If an individual							tomer, enter previo	ous Custome	er below:		
		(II air iriaividaal	, print race nam										
K-3 Resou 7. TX SOS/CF 080059371	A Filing N	umber	, and the contract of	TX State Tax ID (11 digits) 7603210539				9. Federal Tax ID (9 digits) 76-0321053			$\begin{array}{c} \textbf{10. DUNS Number} \ (\textit{if applicable}) \\ N/A \end{array}$		
11. Type of C	ustomer:	☐ Corporati	ion	☐ Individual			Partnersh		tnership: Genera	hip: ☐ General ☐ Limited			
				er			orship		Other:				
Government: City County Federal State Other Sole Proprietorship Other: 12. Number of Employees 0-20 21-100 101-250 251-500 501 and higher Sole Proprietorship Other: Oth										ated?			
14. Custome	Role (Prop	oosed or Actual) -	- as it relates to	o the Reg	ulated Entity	isted or	this form	. Pleas	e check one of the	following			
Owner Occupation		Opera			Owner &	& Opera	itor		☐Other:				
15. Mailing	9458 F	M 362											
Address:		Brookshire		S	tate TX	8	ZIP	7742	23	ZIP + 4			
40.0							7. E-Mail Address (if applicable)						
16. Country	viailing into	ormation (if outs	ide USA)			-			k3bmi.com				
18. Telephor	e Number			19. Ex	xtension or		р		20. Fax Numbe	r (if applica	able)		
(281)37							() -						
ECTION	III: Re	gulated E	ntity Info	rmat	ion								
21. General	Regulated ulated Entit	Entity Informa	tion (If 'New	Regulate	ed Entity" is s	selected Updat	below to Reg	this for ulated	m should be acco	mpanied by	y a permit application)		
The Regul	ated Enti		bmitted ma	ay be u	pdated in						dards (removal		
22. Regulate	d Entity Na	ame (Enter name	e of the site wh	ere the re	gulated action	n is taki	ng place.)						
Carl Mille													
							_						

К													
23. Street Address o the Regulated Entity													
(No PO Boxes)	City	Brooksh	nire	State	TX	ZII	P 73	7423		ZIP + 4			
24. County	Wall	er											
		Enter Physica	al Loc	ation Descrip	tion if no st	treet	address is	provided.	9				
25. Description to Physical Location:	1.4 n	niles West of	the	intersection	n of FM5	29 a	nd FM 3	62 on th	ne Nor	th side	of FM 529		
26. Nearest City							Sta	te		Near	est ZIP Code		
Brookshire							TX			774	23		
27. Latitude (N) In De	cimal:	29.91802	21	2,000			itude (W) Ir	Decimal Minutes	27	5.98432			
Degrees	Minutes	to the first of	Se	conds	Degr	Degrees				Seconds			
29		55		02		95			59		07		
29. Primary SIC Code	e (4 digits)	30. Secondary	SIC C	ode (4 digits)	31. Prima (5 or 6 digi	Primary NAICS Code or 6 digits)			or 6 digits	CS Code			
139		212		111940				1	12111				
33. What is the Prima				o not repeat the Si	IC or NAICS de	scriptio	on.)						
Hay and Forage	production	on; cattle pro	duct	ion						_			
24 Mailing													
34. Mailing Address:				Ţ.	34	34719 FM 529							
Addition.	Cit	City Brookshii		State	TX		ZIP	77423		ZIP + 4			
35. E-Mail Addr	ess:						nce@k3bn		4				
36. Tele	phone Nu	mber		37. Extens	ion or Code	n or Code 38. Fax Number (if applicable)							
	1) 375-577								()				
9. TCEQ Programs an	d ID Numb	ers Check all Prog	grams uidano	and write in the p	permits/regist	ration	numbers tha	t will be affe	ected by	the updates	s submitted on this		
Dam Safety		Districts					☐ Emissions Inventory Air			☐ Industrial Hazardous Wast			
☐ Municipal Solid Wast	e 🗆 N	lew Source Review	OSSF		L	Petroleum	Storage Tank [☐ PWS				
					_			□ H4 0il					
⊠ Sludge		Storm Water	☐ Title V Air			Tires		- 1	Used O	II			
		N 1 N 1 N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	□ Westswats	+	☐ Water Rigi	nts		Other:					
☐ Voluntary Cleanup	LJ v	Vaste Water	☐ Wastewater Agriculture			Water Rights							
SECTION IV.	Duanana	u Informat	ion										
40. Andy Dro		er imormat	1011		41. Titl	e:	COO						
Name:		10 1		Number	45 E	Mail	Address						
42. Telephone Numb	er 43. Ex	t./Code 44	ı. Fax	Number				mi oon					
(281) 375-5778		() -	com	рпа	nce@k3t	omi.com	1				
6. By my signature be ignature authority to si	alone I corti	fy to the best of	my kı	nowledge, that atity specified in	the informat n Section II,	ion p	rovided in the local field of the local field in th	his form is required	true and	d complet	e, and that I have the ID numbers		
dentified in field 39.						_		H)				
		Resources, LP				ob Title: Owner				(281) 375- 5778			
Name (In Print):	ndy Drenn							Phone					
Signature:	#							Date:		5-	8-2024		

Page 2 of 2

D. United States Geological Survey (USGS) Topographic Map

Submit an ORIGINAL United States Geological Survey (USGS) Topographic Map (1:24,000 scale). See instructions for information that must be displayed on the map.

Attachment Number: 9

E. USDA-NRCS Soil Map

Submit a legible copy of a USDA-NRCS Soil Map. See instructions for information that must be displayed on the map.

Attachment Number: 10

F. Federal Emergency Management Agency (FEMA) Map

Submit a copy of the FEMA map that shows the approximate application area boundaries, the surrounding area within one-quarter mile of the application area, and the appropriate legend.

Attachment Number: 11

G. Nutrient Management Plan

Attach a copy of the nutrient management plan that has been prepared by a certified nutrient management specialist, in accordance with the NRCS.

Attachment Number: 12

H. TCEQ Transporters Registration Approval Documents

Attach a copy of the TCEQ Transporters Registration approval documents.

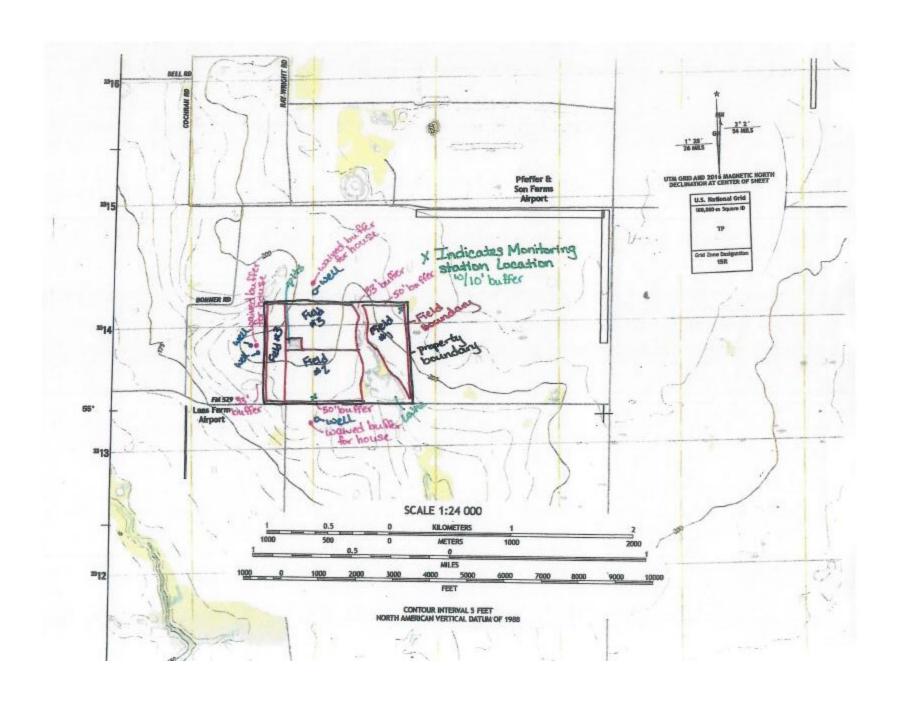
Attachment Number: 13

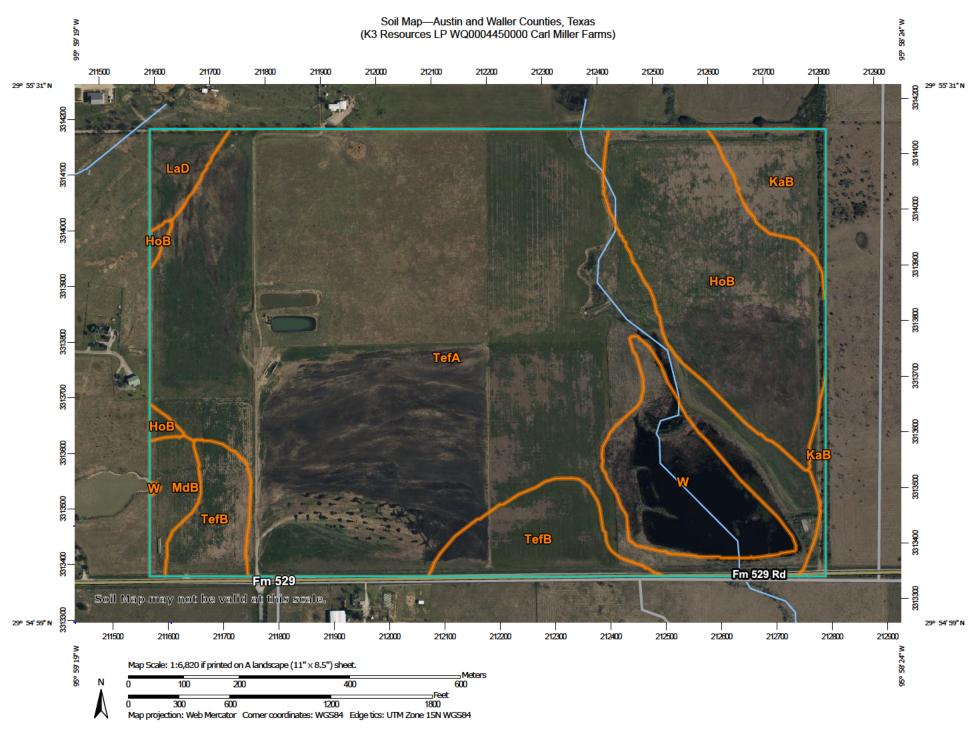
I. Soil Analysis

Attach a copy of the soil laboratory analysis for the application area.

Attachment Number: <u>14</u>

H. Biosolids or Residuals Analyses


Attach a laboratory analysis for each source.


Attachment Number: 15

I. Metal and Nutrient Concentrations (Table 1)

Use the laboratory analyses to complete Table 1 for each source.

J. Volume Weighted Averages of Metal and Nutrient Concentrations (Table 2)

MAP LEGEND

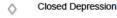
Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Lines


Soil Map Unit Points

Special Point Features

Blowout

Clay Spot

Gravelly Spot

Candfill

Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

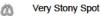
Rock Outcrop

→ Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole


Slide or Slip

Sodic Spot

-

Spoil Area

Stony Spot

Wet Spot
Other

Δ

Special Line Features

Water Features

Streams and Canals

Transportation

Rails

Interstate Highways

~

US Routes

Local Roads

Major Roads

 \sim

Background

1

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

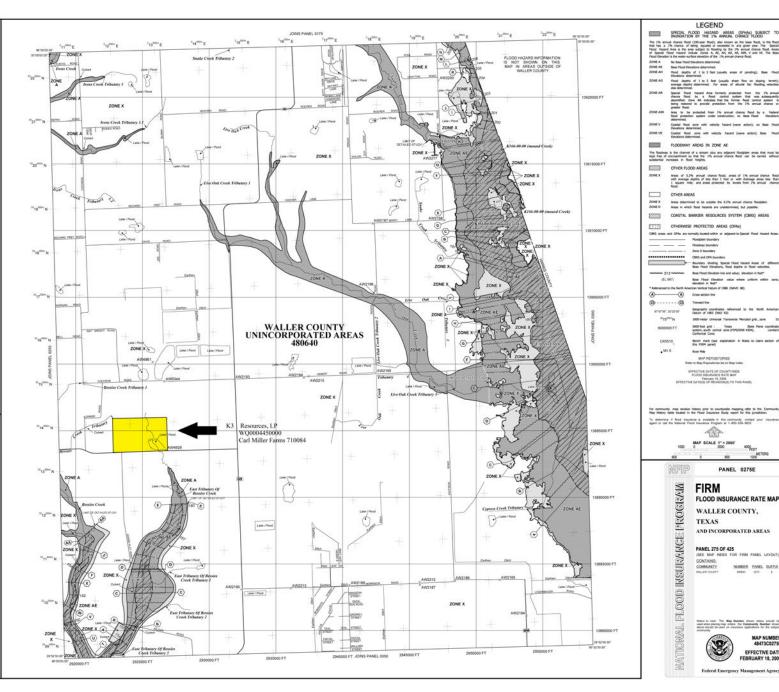
Soil Survey Area: Austin and Waller Counties, Texas Survey Area Data: Version 21, Sep 5, 2023

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Mar 13, 2022—Mar 25, 2022

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend


Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
НоВ	Hockley loamy fine sand, 1 to 3 percent slopes	35.9	14.7%
КаВ	Katy fine sandy loam, 1 to 3 percent slopes	9.9	4.1%
LaD	Lake Charles clay, 3 to 8 percent slopes	4.0	1.6%
MdB	Midfield loam, 0 to 2 percent slopes	4.0	1.6%
TefA	Telf fine sandy loam, 0 to 1 percent slopes	156.2	64.2%
TefB	Telf fine sandy loam, 1 to 3 percent slopes	17.2	7.0%
W	Water	16.3	6.7%
Totals for Area of Interest		243.4	100.0%

NOTES TO USERS

ease refer to the separately printed Map Index for an overview map of surly showing the layout of map panels community map repository addre

Contact the FEMA Map Service Center at 1-800-358-9616 for in available products associated with this FFRA. Available products proviously issued Letters of Map Change, a Fipor insurance proviously insurance of this map. The FEMA Map Service Center and/or digital versions of this map. The FEMA Map Service Center machind by Fax at 1-800-358-9600 and its vertices at http://www.neuclidus.com/products/at-1900-358-9600 and its vertices at http://www.neuclidus.com/products/at-1900-358-9600 and its vertices at http://www.neuclidus.com/products/at-1900-358-9600 and its vertices at 1-800-358-9600 and its vertices a

If you have questions about this map or questions concerning the National Flood Insurance Program in general, please calls-877-FEMA MAP (1-677-336-262) or visit the FEMA website at http://www.fema.gov/.

LEGEND SPECIAL FLOOD HAZARD AREAS (SPHAI) SUBJECT TO INUNDATION BY THE 1% ANNUAL CHANCE FLOOD

Flood depths of 1 to 3 feet (usually areas of ponding); Siese Flood fibruations determined.

Flood depths of 1 to 3 feet (usually sheet flow on sloping ternsin); average depths determined. For areas of alluvial fan flooding, velocities also determined. -e recordiné. Special Flood Parad Area Somerly potential from the 1% annual chance flood by a flood control system that when subsequently descrifted. Jone AR industra that the former flood control system is being matured to provide protection from the 1% annual chance or greater flood.

Area to be protected from 1% annual chance fixed by a Federal fixed protection system under construction; no flase Fixed : Elevations

Costal food one with velocity heard (were action); no Base Pood file-actions determined.

Coastal flood zone with velocity hazard (wave action); flase Plood

is the channel of a stream plus any adjacent floodplain areas that must be nonachment so that the 1% annual chance flood can be carried without mases in flood heights.

COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS

Sese Flood Devation line and value; elevation in feet*

Since Flood Elevation value where uniform within zone; elevation in feet* SUR OF 1988 CHAVE BE

Geographic coordinates referenced to the North American Detum of 1983 (NAD 83)

Bench mark (see explanation in Natus to Users section of this FIRM panel)

PANEL 0275E

FLOOD INSURANCE RATE MAP

AND INCORPORATED AREAS

MAP NUMBER 48473C0275E

EFFECTIVE DATE

Federal Emergency Management Agency

WALLER COUNTY,

MAP REPOSITORIES Refer to Map Repositories list on Map Index

1

1000 0 MAP SCALE 1" = 2000"

FIRM

TEXAS

PANEL 275 OF 425

INSURANCE

1000

1000 meter Universal Transverse Mercator grid , zone

OTHERWISE PROTECTED AREAS (OPAs)

FLOODWAY AREAS IN ZONE AE

Carl Miller Farms 710084 1.4 Mi W of X FM529 &FM362 Brookshire, TX 979-826-2127

TCEQ Permit Number:

WQ0004450000

Owner

Multiple- Wanda White, Millers 35600 FM 529 Brookshire, TX 77423 979-826-2127

Operator

K-3 Resources, LP 9458 FM 362 Brookshire, TX 77423 281-375-5778

Type of Organic Nutrient Management Plan:

Biosolids

located in Waller County

Prepared By:

(Signature)

Kevin Seawright

Consultant

Certificate Number = TX202311

Expiration Date = January 31, 2025

Erthra Consulting, LLC

3880 FM 3318 Rd

Pattison, TX 77423

832-504-2757

This plan is based on: 590 Organic Nutrient Management Plan V 5.0

5/1/24 11:38 AM

EXECUTIVE SUMMARY: Permit #: WQ0004450000

This Nutrient Management Plan has fields that meet NUPs requirements.

Based on a the 2023 soil samples from permit WQ000445000 the following are allowed to be applied for the Coastal Bermuda grass with with cool season grazing at 1AU/acre (1000 lbs average) and having 14,100 lbs of dry matter total of hay production:

Field 1- 3.2 Tons/acre

Field 2 - 3.2 Tons/Acre

Field 3 - 3.2 Tons/ Acre

The above amounts are the total Tons/ Acre that can be applied for the 2024 growing season.

These totals are based on the 2023 soil samples and the P index and crop removal of P.

LOCATION AND PURPOSE OF THE PLAN

Located in:

Waller

County

See plan map for location. The purpose of this plan is to outline the details of land application of biosolids on this land. This plan, when applied, will meet the requirements of the Natural Resources Conservation Service Nutrient Management Standard (590) and Waste Utilization Standard (633). When the appropriate land treatment practices needed to reduce runoff are fully implemented and maintained in each field the plan will provide the more comprehensive benefits of minimizing the affects of the land application of biosolids on the air, soil, water, and animal resources in and around the application area. Annual maximum application rates are determined using **Table 2 & 2a** depending on the current soil test P level and P index result for each field receiving biosolids.

Table 3 provides an estimate of the nutrients removed in the harvested portion of the crop at the planned yield goal for hay, grain, and fiber crops. The values used for grazed crops are the estimated amount of nutrients taken up in the above ground portion of the plants.

Page1 Printed on: 5/1/24 11:38 AM Plan is based on: 590 Organic Nutrient Management

SIGNATURE PAGE

WQ0004450000

Plan Prepared by:

Kevin Seawright

5/1/2024

Plan Approved by:

ate: 5/8

Producer Signature:

Date: 5-8-2

The producer's signature indicates that this plan has been discussed with him/her.

If this plan is not signed by the producer, indicate how the plan was provided to the producer.

BIOSOLIDS STORAGE

Permit #

WQ0004450000

Biosolids may be temporarily stockpiled and covered with durable plastic or other suitable tarp material. Stockpiled biosolids must be sited on suitable soil, geology, and topography to prevent contamination of waterways. Runoff from stockpiled biosolids must be retained on-site by use of berms or other adequate structures where there is potential transport of biosolids into waterways.

COLLECTING SOIL SAMPLES FOR ANALYSIS

If your biosolids application area is permitted by the Texas Commission on Environmental Quality (TCEQ), follow the sampling requirements of your permit. If application area is not regulated by TCEQ:

Collect a composite sample for each field (or area of similar soils and management not more than about 40 acres) comprised of 10 - 15 randomly selected cores. Each core should represent 0 - 6 inches below the surface. Thoroughly mix each set of core samples, and select about a pint of the mixture as the sample for analysis. Label each sample for the field that it represents. Request that the samples be analyzed for nitrate nitrogen, available phosphorus, potassium, sodium, magnesium, calcium, sulfur, boron, conductivity, and pH. Also note on the samples that they are from a biosolids application area.

SOIL ANALYSIS

If your biosolids application area is permitted by the Texas Commission on Environmental Quality (TCEQ), follow the sampling requirements of your permit. If application area is not regulated by TCEQ:

A base line soil analysis will be completed for all areas to be used for biosolids application. The area will be tested every year that biosolids are applied to monitor P build up. If soil test values rise to a higher category, i.e., Low to Medium, contact the local Soil and Water Conservation District or USDA/NRCS office to revise the Waste Utilization Plan and to assist in development of a plan to reduce P in the field(s).

RECORD KEEPING

If your biosolids application area is permitted by the Texas Commission on Environmental Quality (TCEQ), follow the record keeping requirements of your permit. If application area is not regulated by TCEQ:

Detailed records should be maintained for all applications of biosolids for a period of at least 5 years. Records should include date, time, location, and amount of application; they could also include weather conditions, estimated wind speed and direction, etc. Keep all soil and biosolids analyses for the same period.

OPERATION AND MAINTENANCE

Application equipment should be maintained in good working order, and it should be calibrated at least once a year, so that the desired rate and amount of biosolids will be applied. Any changes in this system must be discussed with Texas Commission on Environmental Quality (TCEQ) prior to their initiation on permitted sites. If your site is not permitted by TCEQ, contact your local NRCS office for updates and assistance.

Page 4 Printed on: 5/1/24 11:38 AM Plan is based on: 590 Organic Nutrient Management

FILTER STRIPS, ETC

Permit #:

WO0004450000

Acres of biosolids exclusion zones are noted in **Table 8**. Location of buffers and other exclusion zones are found on the application area map.

Filter Strips will meet the Texas USDA/NRCS standard (393). A minimum 100 foot wide grassed and/or wooded buffer providing at least 70% ground cover will be maintained between the application area and all water courses, ponds, lakes, wetlands, etc.

Riparian Forested Buffers (if used) will meet the Texas USDA/NRCS Standard (391). When planned, a minimum 50 foot wide wooded buffer will be maintained between the application area and the edge of streams, creeks, rivers, etc. to protect water quality, decrease water temperatures, improve aquatic organism habitat, reduce sediment and nutrient loading and reduce bank erosion. Select harvesting within this zone may be done in accordance with guidelines of the Texas Forest Service. If the wooded buffer is only 50 feet wide, there still must be a minimum 100 feet between biosolids application area and stream bank. Another vegetated buffer will be established or maintained to account for the remaining distance. Biosolids will not be applied within 100 feet of any waterway, stream, creek, pond, lake, or wetlands.

The minimum application distance from private or public wells will be 150 feet and 500 feet respectively. Private wells that are located within a field where biosolids are applied and are part of a center pivot irrigation system are exempt from the set-back requirement. The minimum suggested application distance from schools, institutions, and densely populated residential, business, or similar development is 1000 feet.

Biosolids will not be applied to any buffer areas or any frequently flooded areas, as designated by county soil survey.

PLANNED METHOD OF APPLICATION

Biosolids may be surface applied uniformly, injected, or incorporated below the surface of the soil within the root zone of the planned crop. To reduce soil compaction, applications should only be made when soil conditions are favorable. Biosolids should not be spread if heavy rains are forecast to occur within 1 day of a proposed application date.

ODOR MANAGEMENT

The following steps should be taken when spreading biosolids to reduce problems associated with odor.

- 1. Avoid spreading biosolids when wind will blow odors toward populated areas.
- Avoid spreading biosolids immediately before weekends or holidays, if people are likely to be engaged in nearby outdoor activities.
- 3. Avoid spreading biosolids near heavily traveled highways.

Printed on: 5/1/24 11:38 AM

4. Make biosolids applications in the morning when the air is warming, rather than in the late afternoon.

BIOSOLIDS TESTING

If your biosolids application area is permitted by the Texas Commission on Environmental Quality (TCEQ), follow the sampling and testing requirements of your permit. For applications not permitted by TCEQ, the biosolids need to be analyzed for percent moisture, total nitrogen, total phosphorus, and total potassium.

Plan is based on: 590 Organic Nutrient Management

ESTIMATED NUTRIENT AVAILABILITY

Permit #:

WQ0004450000

Refer to **Table 4** for field specific maximum biosolids application rates. Values in **Table 4** are based on the data in **Table 1**. Application will be based on biosolids analysis. Applying biosolids at **MAXIMUM** rates shown in **Table 4** will result in a more rapid build-up of phosphorus than if applied at lower rates. Phosphorus will build up more rapidly on pastureland than on hayland or cropland, since a much small amount of nutrients are actually removed from the farm by grazing animals. Biosolids may be applied to the same acreage every year, but if the soil test P level exceeds the critical level, or the Texas P Index result changes the rates of application will have to be reduced in accordance with Texas NRCS Nutrient Management Standard (590). This plan is valid only if the annual application of biosolids to the crops listed in **Table 4** does not exceed the per acre rates by more than 10%. If the yield of a crop does not meet the expected goal, the application rate should be adjusted accordingly the following year.

Recommended annual application amounts that are smaller than can physically be applied due to limitation of the application equipment should be doubled and applied to the field every other year. No other P fertilizer may be used the second year, but supplemental N and K2O should be applied, if needed. If the P index critical P level is exceeded, it is recommended that no additional biosolids be applied to those fields until the level is reduced. Biosolids applications should be made at appropriate times to meet crop needs, but may be applied at any time as long as soils are not saturated, snow covered, or frozen, and the annual maximum is not exceeded.

SUPPLEMENTAL NUTRIENTS TO MEET YIELD GOAL

Table 5 shows the estimated amount of nutrients that are applied in pounds per acre for each field where biosolids are applied using per acre amounts shown in **Table 4**. Supplemental nitrogen (N) and potassium (K2O) will be applied to achieve the yield goals noted in **Table 5**, when recommended based on soil analysis and the annual biosolids application does not meet the requirements as detailed in **Table 5**.

Deep soil sampling is recommended on application areas where loamy to clayey soils are present and biosolids have been applied previously. If this deep testing reveals accumulated nitrate N in the root zone, it should be deducted from any supplemental N to be applied to meet the planned yield goal. Sampling in 6 inch increments to a depth of 3 feet is sufficient for most crops.

ADJUSTMENTS TO APPLY LESS THAN THE MAXIMUM RATES

In situations where more land is available than is needed to utilize the maximum application rate on each field, the application rates in **Table 6** can be reduced down to the level that does not exceed the amount of solids available. **Table 7** indicates the amount of nutrients provided and, if needed, the supplemental nutrients which must be applied when the application is based on these reduced rates. The amount of supplemental nutrients in **Table 7** are based on the actual amount of waste available rather than the maximum rate that "**could**" be applied.

The second line from the bottom of **Table 6** on the right has a box that will be "YES" or "NO". When the reduced rates uses all solids to be produced in a year, this box will be "Yes". If the percentages are too low, it will be "No". If "No", either more acreage is needed on which to apply the solids or the solids will need to be transported off-site.

Page2

Printed on: 5/1/24 11:38 AM

Plan is based on: 590 Organic Nutrient Management

PI Index by Field

				nvey_		Soil Test	Date:	12/21/23	12/21/23	12/21/23
WQ0004450000	24	ır	shes	1 1						
WQ	5/1/2024	Waller	>25.0 inches				P Runoff Potential	Medium	Medium	Medium
Permit #:	Date:	Location:	Rainfall:	ts.	nio9 x	əpul is	tоТ	19	18	18
				- On	uo	iso13 l	ioS	9	9	9
V 5.0				64	SSE	lO flor	Rur	-	~	_
t Plan				ot lo		yimity 18 ben	2.7	0	0	0
gemen				.8	poqte	M oing ling		4	4	4
lutrient Management Plan V 5.0			Ph.	d &	odjeM	ojusgi ing		0	0	0
utrient				pl Rate	qA ₂O₂	d oins	Org	9	9	9
				lqqA	P ₂ O ₅	.ganic	ionl Rat	0	0	0
ased				İ	Fevel	i tesT i	lio2	2	_	_
plan is based on:					LVe	nO ffor	Rur	61-L	74-L	74-L
This pl		1	î			əd	lolS	1-3%	0-1%	0-1%
								raze	raze	iraze
								9 mod G	9 mod G	9 mod 6
	084							ac, RG	ac, RG	l ac, RG
Σ	rms 710	th.		17.				e 1 AU/1	e 1 AU/	e 1 AU/
11:39 A	ller Fa	Seawrig						1 Common graze 1 AU/1 ac, RG mod Graze	2 Common graze 1 AU/1 ac, RG mod Graze	3 Common graze 1 AU/1 ac, RG mod Graze
5/1/24	Carl M	Kevin					Crop	Commi	Comm	Comm
Printed on: 5/1/24 11:39 AM	Client Name: Carl Miller Farms 710084	Planner: Kevin Seawright					LMU or Fields Crop	_	2	က
Print	Client	Δ.		iniqu) cim 11.			LMU or	40 ,		

Table 1 - Est. Amount of Waste Allowed for Land Application

Permit #:

WQ0004450000

Biosolids Type Other

Est. Max DRY tons applied annually 708.2

Contact your agronomic consultant, TCEQ or local USDA Natural Resources Conservation Service office, if the application quantities change by more than 10 percent so your plan can be revised.

> **Estimated Nutrient Availabilty** Solids

**

pounds / pounds / yr ton N 3,644 5.1 P205 41,025 57.9

8.3

** Effluent Values Based on Analysis

5,874 ** Solids Values Based on Analysis

K20

Explanation of Other Biosolids Type:

Class B- aerobically digested meeting Pathogen and Vector requirements

Default values were used on all fields for plant removal of nutrients and yield levels.

TABLE 2. A Nutrient Management Plan (NMP) is required where Soil Test P Level 1/2 is:

- · less than 200 ppm statewide or
- or < 350 ppm in arid areas 2/ with a named stream > one mile.

P – Index Rating	Maximum TMDL Annual P Application Rate 5/	Maximum Annual P Application	Maximum Biennial Application Rate
Very Low, Low	Annual Nitrogen (N) Requirement	Annual Nitrogen (N) Requirement	2.0 Times Annual N Requirement
Medium	2.0 Times Annual Crop P Requirement 3/	2.0 Times Annual Crop P Requirement 3/	2.0 Times Annual N Requirement
High ⁵	1.5 Times Annual Crop P Requirement ^{3/}	1.5 Times Annual Crop P Requirement 3/	Double the Maximum Annual P Application Not to Exceed 2 times the Annual N Requirement
Very High ⁵	1.0 Times Annual Crop P Requirement 3/	1.0 Times Annual Crop P Requirement 3/	Double the Maximum Annual P Application Not to Exceed 2 times the Annual N Requirement

TABLE 2a. A Nutrient Utilization Plan (NUP) is required by TCEQ where Soil Test P Level 1/2 is:

- equal to or greater than 200 ppm in non-arid areas ^{2/} or
- equal to or greater than 350 ppm in arid areas ^{2/2} with a named stream greater than one mile or
- equal to or greater than 200 ppm in arid areas ^{2l} with a named stream less than one mile.

P – Index Rating	Maximum TMDL Annual P Application Rate ^{5/}	Maximum Annual P Application	Maximum Biennial Application Rate		
Very Low, Low	1.0 Times Annual Crop P Removal 4/	Annual N Crop Removal	2.0 Times Annual N Removal		
Medium	1.0 Times Annual Crop P Removal ^{4/}	1.5 Times Annual Crop P Removal 4/	Double the Maximum Annual P Application Not to Exceed 2 times the Annual N Crop Removal		
High ⁵	1.0 Times Annual Crop P Removal ^{4/}	1.0 Times Annual Crop P Removal 4/	Double the Maximum Annual P Application Not to Exceed 2 times the Annual N Crop Removal		
Very High ⁵	0.5 Times Annual Crop P Removal ^{4/}	0.5 Times Annual Crop P Removal 4/	Double the Maximum Annual P Application Not to Exceed 2 times the Annual N Crop Removal		

Footnotes Applicable to both Tables

- 1/ Soil test P will be Mehlich III by inductively coupled plasma (ICP).
- 2/ Non-arid areas, counties receiving => 25 inches annual rainfall, will use the 200 ppm P level while arid areas, counties receiving < 25 inches of annual rainfall, will use the 350 ppm P level. See map in TX Agronomy Technical Note 15, Phosphorus Assessment Tool for Texas, for county designations.</p>
- 3/ Not to exceed the annual nitrogen requirement rate.
- 4/ Not to exceed the annual nitrogen removal rate.
- 5/ When soil test phosphorus levels are ≥ 500 ppm, with a P-Index rating of "High" or "Very High", there will be no additional application of phosphorus to a CMU or field.

Page 7 Printed on: 5/1/24 11:39 AM Plan is based on: 590 Organic Nutrient Management Plan V 5.0

Table 3 - Crop Removal Rates (For Information Only)

Permit #: WO0004450000

Table 5	Стор к	kemovai Rates (For	Information Only)			or or	Total Est.	Permit #: Total Est.	Total Est.
LMU or Field No.		Crop and P Index	Level	C by	TCEQ Plan Type	Actual Crop Analysis or Default	N Removal lbs/Ac/Yr	P ₂ O ₅ Removal lbs/Ac/Yr	K ₂ O Removal lbs/Ac/Yr
1 2 3	37.1 55.0 72.0	Common graze 1 AU/	I ac, RG mod Graze M I ac, RG mod Graze M I ac, RG mod Graze M	()	NMP NMP NMP	Default Default Default	268 268 268	87 87 87	239 239 239
	Marke	up am 100			franci	id man			enol e
Million A million y An million home		Maria de Maria de la Composición del Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición		11 (2)	1 1011				
Amenda V Vicini		distribution in the state of th		N IP	n owner Liver	i eum			
		nove a la sua fillipela		INIT ST		Littly Art 1	Lanthar Hart	milw. A	
		The second state of the second		diay 1	11.011.		nun nits		
n silga		Masting, etc. Ben		100,111	u Jor	AT mos L Tys	plane) projecti	- thurs	Amst
Remodel	e lacie	n multips		Luc	V. Miller		L.	William	
taran militara Maran		er gelt gerger i en det e fille de op de jeuge 1974							
regarden Segun 9 to 11 = 80 co	nimi n ma 16 gra 1	grant constitution that streets of		74	ida lawii	on est			
		w it good Light hopeings It has see		l e	146				
mrgg		g of the proof these				igas Vieni	Ja Crist		
				L III	olije o Sarije		internal Ista		

NOTE: When crops are used for grazing, only a portion of the nutrients used by the crop are removed from the field in the live weight gain of the livestock, the remainder is returned to the land in manure and urine. The book "Southern Forages" estimates the N, P, & K removed in 100 pounds live weight gain as follows: 2.5 lbs N, 0.68 lbs P, 0.15 lbs K

Table 4 - Maximum Solids Application per Field

Permit #:

WQ0004450000

Est. Solids Produced Annually (wet tons) 0	LMU or Field No. 1 2 3	Acres 37.1 55.0 72.0	Crop Management and PI runoff potential Common graze 1 AU/1 ac, RG mod Graze M Common graze 1 AU/1 ac, RG mod Graze M Common graze 1 AU/1 ac, RG mod Graze M	Current Soil Test P Level (ppm) 125 25 46	Max Annual P2O5 lbs/acre 250 250 250	A A A Amnal/Biennial	Maximum Solids Allowable Tons/Acre 4.3 4.3	Maximum Allowable Application Per field (Tons) 160 237 311
Total Solids Application Acres	1							
Application Allowable on-site (tons) 708.2 Adequate Solids to be used off site (tons) 0.0					,			

Table 5 - Nutrients Applied/Needs at Maximum Solids Rates

Permit #:

WO0004450000

	Maximum Rates							
LMU / Field #	N Lb/ac	P ₂ O ₅ Lb/ac	K ₂ O Lb/ac					
1	22	250	36					
2	22	250	36					
3	22	250	36					

		n Rates	
N Lb/ac	P ₂ O ₅ Lb/ac	K ₂ O Lb/ac	Lime T/A
285	0	0	0
275	0	0	0
280	0	0	0
			100
			The state of the s
			The property
			March 1

Table 6 - Planned Solids Application Rates

LMU or Field No.	Oonble crop	Crop Management and PI runoff potential	Current Soil Test P ppm	Annual / Biennial	Max Rate tons/ac	% of Maximum to apply	Planned Solids tons/ac	Planned Solids per field (tons)
1	37.1	Common graze 1 AU/1 ac, RG mod Graze M	125	A	4.3	75	3.2	120.1
2	55.0	Common graze 1 AU/1 ac, RG mod Graze M	25	Α	4.3	75	3.2	178.0
2 3	72.0	I	46	A	4.3	75	3.2	233.0
Acres	164.1		Will the	planı	ned per	acre applic	cation rates	531.2
708 Tons wet of solids to be used use all of the Solids?								NO
0			Tons to	be u	sed off-	site at plan	nned rates	531

Page 11 Printed: 5/1/24 11:40 AM

Plan is based on: 590 Organic Nutrient Management Plan

Permit #:

WQ0004450000

Table 7 - Nutrients Applied/Needed at Planned Solids Rates

Permit #:

WQ0004450000

Red cells? Proceed to adjustment page and fix.

	Nutrients	Applied at Plant	ned Rates	Supplemental Nutrients Needed at Planned Rates					
LMU / Field #	N Lb/ac	P ₂ O ₅ Lb/ac	K ₂ O Lb/ac	N Lb/ac	P ₂ O ₅ Lb/ac	K ₂ O Lb/ac	Lime T/Ac		
1	17	188	27	290	0	0	0		
2	17	188	27	280	0	0	0		
3	17	188	27	285	. 0	0	0		
			7						

Printed on: 5/1/24 11:40 AM

Plan is based on: 590 Organic Nutrient Management Plan V 5.0

Table 8 - Non Application Areas by Field

Permit #:

WQ0004450000

FS = 393-Filter Strip; FB = 386-Field Border, RFB = 391-Riparian Forest Buffer; OLEA = Other Land Excluded Ar

	FS	FB	RFB	OLEA	Total	TAGIA	FS	FB	RFB	OLEA	Total
LMU / Field #	Acres	Acres	Acres		Excluded	LMU / Field #	Acres	Acres	Acres	Acres	Excluded
1	0.0	0.0	110100	110100		I Iola II					
2	0.0	0.0									
2 3	0.0	0.0									
	0.0	0.0									
<u>L</u>	<u> </u>			01 00			0.0	0.0	0.0	0.0	0.0
See Ap	plication	Map for	location o	t buffers		Totals	0.0	0.0	0.0	0.0	0.0

See Application Map for location of buffers
Total 590-633 application acres: 164.1

Totals 0.0 0.0 0.0 0.0 0.0 Total 590-633 Field Acres: ERROR

Page 13 Printed on: 5/1/24 11:40 AM

Plan is based on: 590 Organic Nutrient Management Plan V 5.0

Table 8 - Non Application Areas by Field

Permit #:

WQ0004450000

FS = 393-Filter Strip; FB = 386-Field Border, RFB = 391-Riparian Forest Buffer; OLEA = Other Land Excluded Ar

LMU/	FS	FB	RFB	OLEA	Total	13.01/	FS	FB	RFB	OLEA	Total
Field #	Acres	Acres	Acres	Acres	Excluded	LMU / Field #	Acres	Acres	Acres	Acres	Excluded
1	0.0	0.0				, 101d #			1	1 1 2 1 0 5	aciducu
2	0.0	0.0									
3	0.0	0.0			-1.5						
1											
See Anni	lication N	Ian for le	ocation of	huffers	LUNCI	Totals	0.0	0.0	0.0	0.0	0.0

See Application Map for location of buffers
Total 590-633 application acres: 164.1

Totals 0.0 0.0 0.0 0.0 0.0 0.0 Total 590-633 Field Acres: ERROR

Page 13

Printed on: 5/1/24 11:40 AM

Plan is based on: 590 Organic Nutrient Management Plan V 5.0

Waste Utilization and Nutrient Management Data Entries

General Data

Date:

5/1/2024

Farmer Name:

Carl Miller Farms 710084

County in which the Land is located:

Waller

Type of Waste Plan:

Biosolids

Is this plan in a TMDL watershed for nutrients?

No

Yes or No:

Is any field PERMITTED by TCEQ?

Yes

Yes or No:

Permit #:

WQ0004450000

All other entries on General Page appear on the Cover Page

Biosolids Information

Plan Year :	2024
Biosolid Type :	Other
Analysis Date:	5/15/2023
Nitrogen % From Biosolids Analysis:	0.40
Phosphorus % From Biosolids Analysis:	1.58
Potassium % From Biosolids Analysis:	0.43
Moisture % From Biosolids Analysis:	20.00
Does this site generate biosolids?	No
If B11 = "Yes", How many dry tons/year?	

Explain Other:

Class B- aerobically digested meeting Pathogen and Vector

requirements

This plan is based on: rganic Nutrient Management Plan V 5.0

Printed on:

5/1/24 11:40 AM

Field and Buffer Entries

Permit #:

WQ0004450000

Printed on: 5/1/24 11:41 AM

Plan is based on: 590 Organic Nutrient Management Plan

FS = 393-Filter Strip, FB = 386-Field Border, RFB = 391-Riparian Forest Buffer, OLEA = Other Land Exclusion Areas or non-application areas (i.e. headquarters, freq. flooded areas, wooded areas, water bodies, etc)

NOTE: Field Border (FR) is expressed in ACDES on this spreadshoot but as LINEAD EFET a

Field No.	Total LMU or Field Acres	FS	FB	RFB	OLEA	Total Buffer Acres	Actual Application Acres	This Column Intentionally Left Blank
1	71.44				34.34	34.3	37.1	
2	63.92				8.92	8.9	55.0	1
3	91.79			N/ N	19.79	19.8	72.0	
	n yinganacii ili i	LAVE		10000		90,124	(POLE)	
114	ALMS SCHOOL	III III II		SUL LEVE		THE STATE OF	miller .	
	111111111			-115/11		THE PERSON NAMED IN	eurie ikiri iii	The respective
				-0=4-		wheel the		to the state of th
				-				- Marian and Allendaria
							HARMAN HARMAN PARLA	
		7.7.7.2.2.2.1.1.7.1.3.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1				7/10/11/11	LUBIL DE ARTLES	CATELON BULLING
			The Committee of the	map ing	pro homili	The state of the s	an office I don't	
			VIA.	J46 F 1 1 1 1 1		are to Mile		
_								

Soil Test, Crop Information and Plant Analysis Data Entries

	Soil Test Analysis	Analysis						s		nalysis &	Plant Analysis & Yield (optional) Use Only When Crop Removal is Required	Plant Analysis & Yield (optional) Use Only When Crop Removal is Required
z	۵	. 🛂	Lime (enter amt or leave		LMU or	Appl.	Crop/Land-Use and P Index Runoff Potential	lant Analysi (N \ Y	14 /0	L /6	2 %	Yield Air Dry Production
(ppm) 46 12	(ppm)	(ppm)	blank)	Pountry	Field #	Acres 37.1	Common graze 1 AU/1 ac. RG mod Graze M	d Z		1.0/	N 8/	(insignal)
52.06	25.03	404.94			2	55.0	Common graze 1 AU/1 ac, RG mod Graze M	z		1		
19.91	46.3	442.69			3	72.0	Common graze 1 AU/1 ac, RG mod Graze M	Z			i i	
										1		
									Ca.			
									rige			
										W-		
									1 1	eri n i		9344
										e de		
									inus inus	entre		
									THO .			01
									un t			
												54

Solids Application Rate Entries

71	10	Set the Planned Application Rates				Permit #:	W
70	08	Maximum dry tons that may be applied.	1	Vill the	planned ra	tes use the	Maximum
	_			Di	y Tons to be	e used on-s	ite at plar
MU or Field No.	Acres	Crop Management and PI runoff potential	Current Soil Test P ppm	Crop P ₂ O ₅ Req.	Annual or Biennial Application Cycle	Maximum Solids Allowable Tons/Ac	Enter % o Maximum Planned to Apply
1	37.1	Common graze 1 AU/1 ac, RG mod Graze M	125	125	Annual	4.3	75.0
2	55.0	Common graze 1 AU/1 ac, RG mod Graze M	25	125	Annual	4.3	75.0
3	72.0	Common graze 1 AU/1 ac, RG mod Graze M	46	125	Annual	4.3	75.0
					20.00		
				1			
				[]			
			1 0		3		

Printed on: 5/1/24 11:41 AM

Plan is based on: 590 Organi

Jon Niermann, Chairman Emily Lindley, Commissioner Bobby Janecka, Commissioner Kelly Keel, Interim Executive Director

Texas Commission on Environmental Quality

Protecting Texas by Reducing and Preventing Pollution

July 14, 2023

ANDY DRENNAN K-3 RESOURCES INC 9458 FM 362 RD PATTISON, TX 77423-1706

Re: Sludge Transportation Registration

K3 RESOURCES EL CELOSO RANCH

Registration Number: 22430

CN603111196

RN111333043

Dear Andy Drennan:

The Section Manager of the Registration and Reporting Section has issued the enclosed registration in accordance with Title 30 of the Texas Administrative Code (30 TAC) Chapter 312 Subsection (§) 312.147 (b). This action is taken under authority delegated by the Executive Director of the Texas Commission on Environmental Quality.

Issuance of this authorization is not an acknowledgment that your operation is in full compliance with state and federal rules and regulations. Failure to comply with all rules and regulations may result in enforcement action and/or the revocation of your registration.

Your registration number is required to appear on all tanks and containers used for the collection and transportation of sewage sludge and similar waste. It should also be used on all correspondence regarding your sludge registration.

A copy of your sludge transporter registration, a copy of your application for registration and copies of all amendments to this registration must be available at all times and at all locations where business is being transacted under this registration, including all motorized vehicles operated under this registration.

If you have any questions or comments, please contact the Sludge Transporter Registration Program at (512) 239-6413.

Sincerely.

Shannon W. Frazier, Manager Registration & Reporting Section

Enclosures

CC: TCEQ Region 12, HOUSTON

SLUDGE TRANSPORTER

Registration Number: 22430

CN603111196

RN111333043

Print Date: July 14, 2023

For the Commission

Company: K-3 RESOURCES INC

Registered Since: June 25, 2002 Expiration Date: August 31, 2024

Regulated Entity: K3 RESOURCES EL CELOSO RANCH

Status: ACTIVE

Organization Type: PARTNERSHIP

County: WALLER

Transport Waste into Texas: NO

TCEQ Region: 12

Transport Waste out of Texas: NO

Physical Address:

9458 FM 362 RD

PATTISON, TX 77423-1706

Contact Information

Contact: ANDY DRENNAN

Phone: 281-375-5778

Fax:

E-Mail: COMPLIANCE@K3BMI.COM

Mailing Address:

9458 FM 362 RD

PATTISON, TX 77423-1706

Sticker Numbers Issued and Listed below will expire on August 31, 2024:

This is your registration which reflects the information submitted on your application to the Register or Renew as a Transporter of Municipal Sludge(s) and Similar Wastes. Requirements for transportation are provided in accordance with 30 TAC Chapter 312. Issuance of this registration is not acknowledgement by the TCEQ that your operation is in full compliance with the rules and regulations of the TCEQ. Changes or additions referred to this notice require written notification to the TCEQ. Please keep a copy of this registration in every vehicle transporting sludge and all locations where business is being transacted under this registration.

SLUDGE TRANSPORTER

Registration Number: 22430

CN603111196

RN111333043

For the Commission

Print Date: July 14, 2023

Disposal Facility Information

Facility ID	Waste Type	Facility Name	Program
2234D	DS; GS; PP; WW	LIQUID ENVIRONMENTAL SOLUTIONS	SLUDGETR
2270	WT; WW	FORT BEND REGIONAL LANDFILL	MSWDISP
720056	WT; WW	K-3 RESOURCES	SLUDGETR
WQ0004445000	WT; WW	CARL MILLER FARMS	SLUDGE
WQ0004448000	WT; WW	CARL MILLER FARMS 4	SLUDGE
WQ0004450000	WT; WW	CARL MILLER FARMS	SLUDGETR
WQ0004454000	WT; WW	JEFFRIES RANCH	SLUDGE
WQ0004518000	DS; WT; WW	EL CELOSO RANCH	SLUDGE
WQ0004538000	DS; WT; WW	WALLER LIME STABILIZATION FACILITY	SLUDGE
WQ0005222000	WT; WW	ORTEGA RANCH	SLUDGETR
WQ0005248000	WT; WW	CARL MILLER FARMS SOUTH	SLUDGETR
WQ0010137033	DS; PP	STEVEN M CLOUSE WATER RECYCLING CENTER	WWPERMIT
WQ0010543011	DS; PP; WT; WW	WALNUT CREEK WWTP	WWPERMIT

Waste Types

DS - Septic Tank Waste

GS - Grease Trap Waste

GT - Grit Trap Waste

PP - Chemical Toilet Waste

WT - Water Treatment Residuals WW- Sewage Sludge/Biosolids

SLUDGE TRANSPORTER

Registration Number: 22430

CN603111196

RN111333043

XXeel

Print Date: July 14, 2023

For the Commission

Vehicle Information

License Plate	Year	Vehicle Make	Sticker Issued	Vehicle Capacity
KBP0146	2012	KENWORTH-T800	07/20/2012	30 CY
R091387	2013	KENWORTH-T800 DC	02/18/2013	7000 GAL
R091378	2012	KENWORTH-T800 DC	06/30/2016	7000 GAL
R181153	2015	KENWORTH-T800 DC	06/30/2016	7000 GAL
R251143	2016	KENWORTH-T800 DC	06/30/2016	7000 GAL
R251144	2016	KENWORTH-T800 DC	06/30/2016	7000 GAL
R091412	2013	KENWORTH-T800 DC	08/10/2018	7000 GAL
R337867	2018	KENWORTH-T800 DC	08/10/2018	7000 GAL
LPP7627	2018	KENWORTH-T800	08/10/2018	30 CY
R374785	2019	KENWORTH-T800 DC	08/10/2018	7000 GAL
R439393	2019	567 DC PETERBILT	10/29/2019	7000 GAL
R439394	2019	567 DC PETERBILT	10/29/2019	7000 GAL
R439395	2019	567 DC PETERBILT	10/29/2019	7000 GAL
R439396	2019	567 DC PETERBILT	10/29/2019	7000 GAL
R439397	2019	567 DC PETERBILT	10/29/2019	7000 GAL
R439398	2019	567 DC PETERBILT	10/29/2019	7000 GAL
R411512	2019	389 PETERBILT	10/29/2019	7000 GAL
R091413	2013	KENWORTH-T800 DC	10/29/2019	7000 GAL
R091433	2015	KENWORTH-T800 DC	10/29/2019	7000 GAL
R379075	2019	KENWORTH-T880 DC	10/29/2019	7000 GAL
R438741	2019	567 PETERBILT	06/11/2020	7000 GAL
R453415	2020	KENWORTH T-880	06/11/2020	7000 GAL
R411923	2018	KENWORTH T800 DC	03/03/2021	7000 GAL
R419006	2019	389 PETERBILT	06/23/2021	7000 GAL
R091400	2013	KENWORTH-T800 DC	09/01/2021	7000 GAL
R091423	2014	KENWORTH T800 DC	09/01/2021	7000 GAL
R091432	2015	KENWORTH T800 DC	09/01/2021	7000 GAL
R337866	2018	KENWORTH T800 DC	09/01/2021	7000 GAL
R361379	2018	KENWORTH T880 DC	09/01/2021	7000 GAL
R374784	2019	KENWORTH-T880 DC	09/01/2021	7000 GAL
R391671	2018	KENWORTH-T800 DC	09/01/2021	7000 GAL
411922	2018	KENWORTH T800 DC	09/01/2021	7000 GAL
411513	2019	389 PETERBILT	09/01/2021	7000 GAL
419007	2019	389 PETERBILT	09/27/2021	7000 GAL
136782	2015	KENWORTH T880	09/27/2021	7000 GAL
3K10489	2005	INTERNATIONAL	06/16/2022	2100 GAL
1VW2388	2019	PETERBILT 348	06/16/2022	2100 GAL
R091422	2014	KENWORTH T800 DC		7000 GAL
R356898	2018	KENWORTH-T800		7000 GAL

SLUDGE TRANSPORTER

Registration Number: 22430

CN603111196

RN111333043

XXeel

Print Date: J	uly 14, 2023			_	For the Commission
R562815	2022	KENWORTH DC T880	06/16/2022	7000 GAL	
R562816	2022	KENWORTH DC T880	06/16/2022	7000 GAL	
R562817	2022	KENWORTH DC T880	06/16/2022	7000 GAL	
R562818	2022	KENWORTH DC T880	06/16/2022	7000 GAL	
R574005	2022	KENWORTH T-880	06/16/2022	7000 GAL	
R574006	2022	KENWORTH T-880	06/16/2022	7000 GAL	
R582315	2022	KENWORTH W 900	06/16/2022	7000 GAL	
R582316	2022	KENWORTH W 900	06/16/2022	7000 GAL	
R594541	2022	KENWORTH W 900	06/16/2022	7000 GAL	
R604431	2019	KENWORTH T-880	06/16/2022	2100 GAL	
RCP1653	2020	KENWORTH T-880	06/16/2022	30 CY	
RCP1654	2021	KENWORTH T880	06/16/2022	30 CY	
RCP1655	2021	KENWORTH T880	06/16/2022	30 CY	
PPP7885	2016	KENWORTH	02/24/2023	7000 GAL	
R356897	2018	KENWORTH	02/24/2023	7000 GAL	
R379076	2019	KENWORTH	02/24/2023	7000 GAL	
R391670	2018	KENWORTH	02/24/2023	7000 GAL	
2452J70	2024	PETERBUILT	07/13/2023	7000 GAL	
2452J71	2024	PETERBUILT	07/13/2023	7000 GAL	
2604R22	2024	PETERBUILT	07/13/2023	7000 GAL	
2604T37	2024	PETERBUILT	07/13/2023	7000 GAL	
2604U32	2023	PETERBUILT	07/13/2023	7000 GAL	
R379077	2019	KENWORTH	07/13/2023	7000 GAL	
R361380	2018	KENWORTH	07/13/2023	7000 GAL	

^{*}UOM - Units of Measure

Print Date: July 14, 2023

Texas Commission on Environmental Quality

SLUDGE TRANSPORTER

Registration Number: 22430

CN603111196

RN111333043

For the Commission

Leel

10 April 2024

K-3 BMI Renee Tom P.O. Box 2236 Alvin, TX 77511

K-3BMI

Enclosed are the results of analyses for samples received by the laboratory on 21-Dec-23 15:00. The analytical data provided relates only to the samples as received in this laboratory report.

ELI certifies that all results are NELAP compliant and performed in accordance with the referenced method except as noted in the Case Narrative or as noted with a qualifier. Any reproductions of this laboratory report should be in full and only with the written authorization from the client.

The total number of pages in this report is 11

Thank you for selecting ELI for your analytical needs. If you have any questions regarding this report, please contact us.

Sincerely,

Laura Bonjonia For Sherry Walker

Customer Service Representativ

Laura Brynin

TNI

Certificate No: T104704265-22-20

Envirodyne Laboratories, Inc 11011 Brooklet Dr., # 230 Houston, TX 77099 281.568.7880 Phone www.envirodyne.com

Envirodyne Laboratories, Inc 11011 Brooklet Dr., # 230 Houston, TX 77099 281.568.7880 Phone www.envirodyne.com

Client:

K-3 BMI

Project:

K-3BMI

Work Order: 23L2469

Reported:

10-Apr-24 15:26

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
4450 Field 1 0"-6"	23L2469-01	Solids	19-Dec-23 11:17	21-Dec-23 15:00
4450 Field 1 6"-24"	23L2469-02	Solids	19-Dec-23 12:22	21-Dec-23 15:00
4450 Field 2 0"-6"	23L2469-03	Solids	19-Dec-23 11:17	21-Dec-23 15:00
4450 Field 2 6"-24"	23L2469-04	Solids	19-Dec-23 11:17	21-Dec-23 15:00
4450 Field 3 0"-6"	23L2469-05	Solids	19-Dec-23 11:49	21-Dec-23 15:00
4450 Field 3 6"-24"	23L2469-06	Solids	19-Dec-23 11:49	21-Dec-23 15:00

Envirodyne Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ENVIRODYNE LABORATORIES, INC.

 CLIENT:
 K-3BMI
 LAB NUMBER:
 23L2469-01 and -02

 LOCATION:
 4450 FIELD 1
 DATE RECEIVED:
 December 21, 2023

SAMPLED BY: K-3 DATE ANALYZED: March 20, 2024

DATE COLLECTED: December 19, 2023 DATE COMPLETED: March 25, 2024

PARAMETERS:	SOIL	SOIL	METHOD	Reporting Limit
(*) DENOTES: DRY WEIGHT BASIS	0" - 6"	6" - 24"		
pH - Soil (UNITS)	6.35	6.51	EPA SW 846-9045C	0.10
TOT.NITROGEN-N * (mg/kg)	221.37	226.60	Calc	0.01
TKN-N * (mg/kg)	175.25	158.20	SM 4500 NH3 D	0.01
NO3-N * (mg/kg)	46.12	68.38	SM 4500-NO3 E 1 N KCI	0.01
NH3-N * (mg/kg)	46.12	48.84	SM 4500-NH3 F 1 N KCI	0.01
NH4-N * (mg/kg)	48.85	51.73	Calc	0.01
TOTAL PHOSPHORUS, Extractable * (mg/l	124.52	112.34	SM 4500-P E	0.01
POTASSIUM, Extractable * (mg/kg)	248.11	300.00	EPA SW 846-6010B	0.002
CALCIUM, Extractable * (mg/kg)	978.78	1,420.00	EPA SW 846-6010B	0.001
MAGNESIUM, Extractable * (mg/kg)	255.83	609.00	EPA SW 846-6010B	0.001
SODIUM, Extractable * (mg/kg)	184.47	195.37	EPA SW 846-6010B	0.001
CONDUCTANCE at 25c (ummhos/cm) 2:1 V/v (Water/Soil)	219	253	EPA SW 846-9050A	
CONDUCTANCE at 25c (dS/m) 2:1 V/v (Water/Soil)	0.00219	0.00253	Calc	
ARSENIC * (mg/kg)	2.03	0.66	EPA SW 846-6010B, 3050	0.001
CADMIUM * (mg/kg)	1.16	0.52	EPA SW 846-6010B, 3050	0.001
CHROMIUM * (mg/kg)	13.84	11.04	EPA SW 846-6010B, 3050	0.005
COPPER * (mg/kg)	57.37	14.55	EPA SW 846-6010B, 3050	0.002
LEAD * (mg/kg)	12.51	6.93	EPA SW 846-6010B, 3050	0.005
MERCURY * (mg/kg)	0.214	0.089	EPA SW 846-7471, 3050	0.0002
MOLYBDENUM * (mg/kg)	1.03	0.50	EPA SW 846-6010B, 3050	0.001
NICKEL * (mg/kg)	2.88	1.61	EPA SW 846-6010B, 3050	0.008
SELENIUM * (mg/kg)	2.88	1.20	EPA SW 846-6010B, 3050	0.002
ZINC * (mg/kg)	164.00	27.55	EPA SW 846-6010B, 3050	0.001
TOTAL SOLIDS (%)	89.60	86.50	SM 2540 B	

ENVIRODYNE LABORATORIES, INC.

 CLIENT:
 K-3BMI
 LAB NUMBER:
 23L2469-03 and -04

 LOCATION:
 4450 FIELD 2
 DATE RECEIVED:
 December 21, 2023

 SAMPLED BY:
 K-3
 DATE ANALYZED:
 March 20, 2024

DATE COLLECTED: December 19, 2023 DATE COMPLETED: March 25, 2024

PARAMETERS:	SOIL	SOIL	METHOD	Reporting Limit
(*) DENOTES: DRY WEIGHT BASIS	0" - 6"	6" - 24"		
pH - Soil (UNITS)	6.45	6.28	EPA SW 846-9045C	0.10
TOT.NITROGEN-N * (mg/kg)	195.21	159.90	Calc	0.01
TKN-N * (mg/kg)	143.15	109.30	SM 4500 NH3 D	0.01
NO3-N * (mg/kg)	52.06	50.60	SM 4500-NO3 E 1 N KCl	0.01
NH3-N * (mg/kg)	67.07	54.65	SM 4500-NH3 F 1 N KCl	0.01
NH4-N * (mg/kg)	71.04	57.88	Calc	0.01
TOTAL PHOSPHORUS, Extractable * (mg/l	25.03	10.12	SM 4500-P E	0.01
POTASSIUM, Extractable * (mg/kg)	404.94	614.50	EPA SW 846-6010B	0.002
CALCIUM, Extractable * (mg/kg)	1,409.52	1,785.19	EPA SW 846-6010B	0.001
MAGNESIUM, Extractable * (mg/kg)	585.73	1,058.57	EPA SW 846-6010B	0.001
SODIUM, Extractable * (mg/kg)	200.20	202.40	EPA SW 846-6010B	0.001
CONDUCTANCE at 25c (ummhos/cm) 2:1 V/v (Water/Soil)	345	259	EPA SW 846-9050A	
CONDUCTANCE at 25c (dS/m) 2:1 V/v (Water/Soil)	0.00345	0.00259	Calc	
ARSENIC * (mg/kg)	6.87	5.04	EPA SW 846-6010B, 3050	0.001
CADMIUM * (mg/kg)	0.97	0.64	EPA SW 846-6010B, 3050	0.001
CHROMIUM * (mg/kg)	28.53	15.99	EPA SW 846-6010B, 3050	0.005
COPPER * (mg/kg)	2.89	6.72	EPA SW 846-6010B, 3050	0.002
LEAD * (mg/kg)	14.42	26.41	EPA SW 846-6010B, 3050	0.005
MERCURY * (mg/kg)	0.0165	0.01	EPA SW 846-7471, 3050	0.0002
MOLYBDENUM * (mg/kg)	0.56	<0.25	EPA SW 846-6010B, 3050	0.001
NICKEL * (mg/kg)	11.41	6.60	EPA SW 846-6010B, 3050	0.008
SELENIUM * (mg/kg)	<0.25	<0.25	EPA SW 846-6010B, 3050	0.002
ZINC * (mg/kg)	32.33	36.53	EPA SW 846-6010B, 3050	0.001
TOTAL SOLIDS (%)	88.40	87.60	SM 2540 B	

Run hys

ENVIRODYNE LABORATORIES, INC.

 CLIENT:
 K-3BMI
 LAB NUMBER:
 23L2469-05 and -06

 LOCATION:
 4450 FIELD 3
 DATE RECEIVED:
 December 21, 2023

SAMPLED BY: K-3 DATE ANALYZED: March 20, 2024

DATE COLLECTED: December 19, 2023 DATE COMPLETED: March 25, 2024

PARAMETERS:	SOIL	SOIL	METHOD	Reporting Limit
(*) DENOTES: DRY WEIGHT BASIS	0" - 6"	6" - 24"		
pH - Soil (UNITS)	6.12	6.37	EPA SW 846-9045C	0.10
TOT.NITROGEN-N * (mg/kg)	229.95	173.56	Calc	0.01
TKN-N * (mg/kg)	180.04	129.08	SM 4500 NH3 D	0.01
NO3-N * (mg/kg)	49.91	44.48	SM 4500-NO3 E 1 N KCl	0.01
NH3-N * (mg/kg)	53.48	50.58	SM 4500-NH3 F 1 N KCl	0.01
NH4-N * (mg/kg)	56.64	53.53	Calc	0.01
TOTAL PHOSPHORUS, Extractable * (mg/l	46.30	43.61	SM 4500-P E	0.01
POTASSIUM, Extractable * (mg/kg)	442.69	480.99	EPA SW 846-6010B	0.002
CALCIUM, Extractable * (mg/kg)	2,209.45	2,318.16	EPA SW 846-6010B	0.001
MAGNESIUM, Extractable * (mg/kg)	637.61	825.75	EPA SW 846-6010B	0.001
SODIUM, Extractable * (mg/kg)	178.25	174.43	EPA SW 846-6010B	0.001
CONDUCTANCE at 25c (ummhos/cm) 2:1 V/v (Water/Soil)	126	114	EPA SW 846-9050A	
CONDUCTANCE at 25c (dS/m) 2:1 V/v (Water/Soil)	0.00126	0.00114	Calc	
ARSENIC * (mg/kg)	0.53	2.31	EPA SW 846-6010B, 3050	0.001
CADMIUM * (mg/kg)	1.02	0.87	EPA SW 846-6010B, 3050	0.001
CHROMIUM * (mg/kg)	16.67	19.27	EPA SW 846-6010B, 3050	0.005
COPPER * (mg/kg)	52.23	31.92	EPA SW 846-6010B, 3050	0.002
LEAD * (mg/kg)	13.73	15.52	EPA SW 846-6010B, 3050	0.005
MERCURY * (mg/kg)	0.179	0.061	EPA SW 846-7471, 3050	0.0002
MOLYBDENUM * (mg/kg)	0.57	<0.25	EPA SW 846-6010B, 3050	0.001
NICKEL * (mg/kg)	3.91	5.19	EPA SW 846-6010B, 3050	0.008
SELENIUM * (mg/kg)	0.94	<0.25	EPA SW 846-6010B, 3050	0.002
ZINC * (mg/kg)	95.37	67.68	EPA SW 846-6010B, 3050	0.001
TOTAL SOLIDS (%)	85.00	88.20	SM 2540 B	

Envirodyne Laboratories, Inc 11011 Brooklet Dr., # 230 Houston, TX 77099 281.568.7880 Phone www.envirodyne.com

10-Apr-24 15:26

Client:

K-3 BMI

Project: Work Order: K-3BMI 23L2469 Reported:

Wet Chemistry - Quality Control Envirodyne Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3L6186 - Inorganics										
Duplicate (B3L6186-DUP1)	Source	ce: 23L1494	-05	Prepared &	: Analyzed:	28-Dec-23		2-18		
Total Solids	1,17	0.01	%		1.18			0.851	20	
Volatile Solids	0.910	0.01			0.920			1.09	20	
Batch B3L6187 - Inorganics										
Duplicate (B3L6187-DUP1)	Source	e: 23L2110-	-08	Prepared &	Analyzed:	28-Dec-23				
Total Solids	1.70	0.01	%		1.75		120000000000000000000000000000000000000	2.90	20	
Volatile Solids	1.28	0.01	**		1.32			3.08	20	
Batch B4A3526 - Inorganics										
Blank (B4A3526-BLK1)				Prepared &	Analyzed:	04-Jan-24				
Conductivity at 25 C	<30	30	umho/cm							
Duplicate (B4A3526-DUP1)	Source	e: 23L2339-	-07	Prepared & Analyzed: 04-Jan-24						
Conductivity at 25 C	106	30	umho/cm		106			0.00	20	
Reference (B4A3526-SRM1)				Prepared &	Analyzed:	04-Jan-24				
Conductivity at 25 C	182		umho/cm	180		101	90-110			
Batch B4B5494 - Inorganics										
Blank (B4B5494-BLK1)				Prepared &	Analyzed:	28-Feb-24				
Phosphorus, Total	< 0.10	0.10	mg/L							

Envirodyne Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Envirodyne Laboratories, Inc 11011 Brooklet Dr., # 230 Houston, TX 77099 281.568.7880 Phone www.envirodyne.com

10-Apr-24 15:26

Client: K-3 BMI

Project: K-3BMI Work Order: 23L2469 Reported:

Wet Chemistry - Quality Control Envirodyne Laboratories, Inc.

Analyte	Reporting			Spike	Source		%REC		RPD	
	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B4B5494 - Inorganics										
LCS (B4B5494-BS1)	Prepared & Analyzed: 28-Feb-24									
Phosphorus, Total	0.990		mg/L	1.00		99.0	80-120			
Matrix Spike (B4B5494-MS1)	Source: 23L2341-01			Prepared & Analyzed: 28-Feb-24						
Phosphorus, Total	1.11	0.10	mg/L	1.00	0.100	101	80-120			
Matrix Spike Dup (B4B5494-MSD1)	Source: 23L2341-01			Prepared & Analyzed: 28-Feb-24						
Phosphorus, Total	1.09	0.10	mg/L	1.00	0.100	99.0	80-120	1.82	20	

Envirodyne Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Envirodyne Laboratories, Inc 11011 Brooklet Dr., # 230 Houston, TX 77099 281.568.7880 Phone www.cnvirodyne.com

Client: K-3 BMI

 Project:
 K-3BMI
 Reported:

 Work Order:
 23L2469
 10-Apr-24 15:26

Notes and Definitions

P Sample preserved at bench

H Hold time exceeded

<a < 100

< 0.25

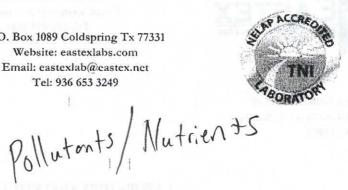
ND Analyte NOT DETECTED at or above the reporting limit

< Result is less than the RL

a Analyte not available for TNI/NELAP accreditation

n Not accredited

Envirodyne Laboratories, Inc.


The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

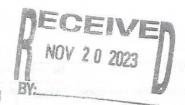
Jime TCEQ Certification # T104704265 garreth Je K3bon Low S No % sisylanA eal Intact? eal Intact? eal Intact? Temp .O.Q Work Order #: Date:12/21/23 Time: 180 Date: 19721 Lime: D/S Hd Phone: 281 725-0121-or 281-375-5778 Email: compliance@k3bmi.com - See Albached Enail ANALYSIS REQUESTED -20 ALL and App Alternate Contact Analysis Request and Chain of Custody Record Site Representative: Phone (281) 568-7880 - Fax (281) 568-8004 6 Received by Lab: Date: 12/21/23 Received by: 2.6 Comments: (Signature) (Signature) Time: 10; 14.4 m (Signature Received b Envirodyne Laboratories, Inc. M. 12 12 12 31 23 Houston, Texas 77099-3543 11011 Brooklet Dr, Ste. 230 Therm. ID: 17 Arrival Temp. A D Act: 2 8 Date: Time: Time: Date: Corr Sample Type (Liquid, Zip: 77423 Cl, Correction: Sample Container (Size/Mat'I) Cl, Residual: 2 gallon Client/Project 7269 State: TX dwoj Contact: Brate Glose Janut Sinds Relinquished by: Relinquished by Grab Refinquished Meter Reading (Signature) 22/41/21 11:49AM 12:27m 111,49 000 12/11/13 11:17am (Signature) (Signature) 111.17pm 2/19/23 Date & FLOW: Field I 10"-24" Feb 1 0"-6" Field Sample No. / Field 2 0'-10" Field 2 6"-24" Rield 3 6"-24" Field 3 0"-" Identification Project No. 445C Samplers: (Signature) Garrelt Sinks Address: 9458 FM 362 ENVIRODYNE LABORATORIES INC Affiliation InterLab City: Brookshire Name: K-3 BMI Remarks: LabiD No.

1111

P.O. Box 1089 Coldspring Tx 77331 Website: eastexlabs.com Email: eastexlab@eastex.net Tel: 936 653 3249

June 09, 2023

Municipal District Services, LLC. Fort Bend County MUD 30 406 W Grand Pkwy S, Ste 260 Katy, TX 77494


FBC 30 Digester

Enclosed are the results of analyses for samples received by the laboratory on 05/05/23 14:06, with Lab ID Number C3E0162. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mark Bourgeois Special Projects Manager ENTERED NOV 2 1 2023

Sludge Manager Master Spreadsheet Metals ☐ TCLP □& Solid ØF/S

Fort Bend County MUD 30 406 W Grand Pkwy S, Ste 260 Katy TX, 77494

LABORATORY ANALYTICAL REPORT

Project:

Client Matrix:

Waste

FBC 30 Digester a

Sample Date & Time: 05/05/2023 09:40

Collector: CSW

Sample Type:Grab Print Date: 6/9/2023

Digester C3E0162-01 (Waste)

Analyte	Result	Reporting Limit	Units	Nelue Status	Batch	Analyzed Date & Time	Method	Notes
			Metals		1			
- Arsenic	<7.14	711	and a day	Hg.	B3F0516	00/07/0000 45 04		
Cadmium	<7.14	7.14	mg/Kg dry	۸		06/07/2023 15:04	EPA SW 846-6010, 3050	
Thromium		7.14	mg/Kg dry	A	B3F0516	06/07/2023 15:04	EPA SW 846-6010, 3050	
	15.5	7.14	mg/Kg dry	A	B3F0516	06/07/2023 15:04	EPA SW 846-6010, 3050	
opper	194	7.14	mg/Kg dry	٨	B3F0516	06/07/2023 15:04	EPA SW 846-6010, 3050	
.ead	<7.14	7.14	mg/Kg dry	A	B3F0516	06/07/2023 15:04	EPA SW 846-6010, 3050	
Mercury, Total	0.280	0.143	mg/Kg dry	Λ !	B3E4445	05/30/2029 09:55	EPA SW 846-74713	
Aolybdenum	8.07	7.14	mg/Kg dry	٨	B3F0516	06/07/2023 15:04	EPA SW 846-6010, 3050	
lickel	15.1	7.14	mg/Kg dry	A	B3Fq516	06/07/2023 15:04	EPA SW 846-6010, 3050	
hosphorus, %	1.63	1.00	% dry	Λ	B3F0520	06/08/2023 11:22	EPA SW 846-6010, 3050	
otassium, %	0.525	0.357	% dry	A	B3F0516	, 06/07/2023 15:04	EPA SW 846-6010, 3050	
Selenium	8.14	7.14	mg/Kg dry	Α	B3F0516	06/07/2023 15:04	EPA SW 846-6010, 3050	
line	786	7.14	mg/Kg dry	Α	B3F0516	d6/07/2023 15:04	EPA SW 846-6010, 3050	
	Į.	L	Vet Lab					
		_			, i			
IH3N %	<2.86	2.86	% dry	Α	B3E1800	05/11/2023 14:45	EPA 350.2	
litrate-N, %	1.07	0.000143	% dry	N	B(3E4290	05/29/2023 14:37	SM 4500 NO3 D	
ercent Solid	1.4	0.1	9.0	Α	B3E1603	05/10/2023 13:02	SM 2540G	
H-Sludge	4.76		std unit	۸	B3E0865	05/09/2023 09:25	EPA SW 846-9040	
KN %	3.32	0.0714	% dry	N	B3E4288	05/31/2023 10:53		
	3.32	0.0714	20 dly	135	Darateo	00/0/1/2020 10:00	EPA 351,2	
	N.							

r Hii

Fort Bend County MUD 30 406 W Grand Pkwy S, Ste 260 Katy TX, 77494

EPA SW 846-9040 - Quality Control

Eastex Environmental Laboratory - Coldspring

Analyte	Result	Reporting Limit Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3E0865 ¬Nø Prep	Prepared: 0	5/09/23 09:25	Plant	DE SE	aruni			PA INT -	
LCS (B3E0865-BS1)	tellur i limi		Analyzed	: 5/9/2023	9:25:00AM			The	1
nH-Sludge	6.86	std unit			100	0-200			
Duplicate (B3E0865-DUP1)	Land Land	: C3D5827-01	Analyzad	5/0/2022	9:25:00AM				
hH-Sludge	6,92	std unit		6,94	9.25.00700		0.289	70	
		and thin		0.74			0.289	20	
Batch B3E1603 - No Prep	Prepared: 05	5/10/23 13:02							
Blank (B3E1603-BLK1)			Analyzed	5/10/2023	1:02:00PM				
Percent Solid	III ND	0.1 %		1 1					Ţ
Ouplicate (B3E1603-DUP1)	Source	: C3E2612-02	Analyzed	: 5/10/2023	1:02:00PM				
Percent Solid	1.6	0.1 %		1.6	12/14/1-		0.00	20	
Batch B3E1800 - No Prep	Prepared: 05	5/11/23 14:45							
Blank (B3E1800-BLK1)			Analyzed	: 5/11/2023	2:45:00PM				************
NH3N %	ND	0.0400 % wet		7					
CS (B3E1800-BS1)			Analyzed	5/11/2023	2:45:00PM				
IH3N %	1 2 07	mg/L	2.00		104	80-120			
Matrix Spike (B3E1800-MS1)	Source	: C3D5827-01	Analyzed	5/11/2023	2:45:00PM				
1H3N %	1.08	3.08 % dry	0.385	0.652	111	80-120			
Aatrix Spike Dup (B3E1800-MSD1)	Source	: C3D5827-01	Analyzed:	5/11/2023	2:45:00PM				
N113N %	1.09	3.08 % dry	0.385	0.652	115	80-120	1.49	20	
LL BYEARD ON A LEGAL .	1206	(1 'm,m,A		1				111111	
Batch B3E4288 - SM 4500 Norg C	Prepared: 05	/31/23 10:53							
llank (B3E4288-BLK1)	Service Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Co		Analyzed:	5/31/2023	10:53:00AN				
KN %	, ND	0.00100 % wet							
CS (B3E4288-BS1)	1		Analyzed:	5/31/2023	10:53:00AM				
KN %	9.75	mg/L	10.0	11	97.2	80-120			7.76
latrix Spike (B3E4288-MS1)	Source	: C3D2550-01	Analyzed:	5/31/2023	10:53:00AM				
KN %	7.175933	0.0833 % dry	2.08	5.156041	97.0	80-120			
Aatrix Spike Dup (B3E4288 ₇ MSD1)	Source:	C3D2550-01	Analyzed:	5/31/2023	10:53:00AM				1
KN %	6.788192	0.0833 % dry	2.08	5.156041	78.3	80-120	5.55	20	
1									

*NELAC Status: A=Accredited, N=Accreditation not offered, O=Not Accredited, P=Approved

PromiumforCold.v5 W&O; revision date 11192021

1.111

Fort Bend County MUD 30 406 W Grand Pkwy S, Ste 260 Katy TX, 77494

SM 4500 NO3 D - Quality Control

Eastex Environmental Laboratory - Coldspring

		п.		4. 14	6:		0.15			
Analyte	Result	Reporting	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3E4290 - No Prep	Prepared	: 05/29/23 14	:37				ľ			
Blank (B3E4290-BLK1)				Analyzed	: 5/29/2023	2:37:00PM				
Nitrate-N, %	ND	0.00000200	% wet		1					
LCS (B3E4290-BS1)				Analyzed	: 5/29/2023	2:37:00PM				
Nitrate-N, %	1.051		mg/L	1.00		105	80-120			
Matrix Spike (B3E4290-MSI)	Soi	urce: C3D2550	0-01	Analyzed	: 5/29/2023	2:37:00PM				
Nitrate-N. %	1.1359	0.000167	% dry	0.417	0.8553666	67.3	80-120			2.
Matrix Spike Dup (B3E4290-MSD1)	Sou	arce: C3D2550	0-01	Analyzed	: 5/29/2023	2:37:00PM			l.	
Nitrate-N ₂ %	1.108608	0.000167	% dry	0.417	0.8553666	60.8	80-120	2.43	20	1
Batch B3E4445 - SW 846-7471B	Prepared	: 05/29/23 11	:10							
Blank (B3E4445-BLK1)				Analyzed	: 5/30/2023	9:32:46AN	1			
Mercury, Total	ND	0.00200	mg/Kg wet		1	11				
LCS (B3E4445-BS1)				Analyzed	: 5/30/2023	9:35:17AM	1			
Mercury, Total	0.0241	0.00200	mg/Kg wet	0.0250		96.4	80-120			
Matrix Spike (B3E4445-MS1)	Sor	arce: C3D2550	0-01	Analyzed	: 5/30/2023	9:45:24AN	F	î		
Mercury, Total	1.98		mg/Kg dry	2.08	0.0658	91.6	75-125			
Matrix Spike Dup (B3E4445-MSD1)	So	urce: C3D2550	0-01	Analyzed	: 5/30/2023	9:47:56AN	1		investin)	
Mercury, Total	2.06	200000000000000000000000000000000000000	mg/Kg dry	2.08	0.0658	95.6	75-125	4.13	20	
Batch B3F0516 - SW846-3050	Prepared	: 06/02/23 15	:53							1
Blank (B3F0516-BLK1)	Treparea			Analyzed	: 6/7/2023	2:40:27PM				
Molybdenum	ND	0.100	mg/Kg wet							
Arsenic	ND	0.100	mg/Kg wet					7		
Cadmium	ND	0.100	mg/kg wet							
Chromium	ND	0.100	mg/Kg wet			Ž.				
Copper	ND	0.100	mg/Kg wet							
Lead	ND	0.100	mg/Kg wet							
Nickel	ND	0.100	mg/Kg wet							
Potassium, %	ND	0.00500	% wel							
Sclenium	ND	0.100	mg/Kg wei			1			į.	
Zine	ND	0.100	mg/Kg wet						Y., 11 111.	
LCS (B3F0516-BS1)	11	1 - ! - 1		Analyzed	1: 6/7/2023	2:43:55PM	146		1	1

Eastex Environmental Laboratory - Coldspring

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

*NELAC Status: A=Accredited, N=Accreditation not offered, O=Not Accredited, P=Approved

PromiumforCold.v5 W&O; revision date 11192021

Page 3 of 6

Fort Bend County MUD 30 406 W Grand Pkwy S, Ste 260 Katy TX, 77494

EPA SW 846-6010, 3050 - Quality Control Eastex Environmental Laboratory - Coldspring

Analyte	114	Result	Rep	orting Limit	Units	Spike Level	Source Result	I GREC	%REC Limits	RPD	RPD Limit	Notes
Batch B3F0516 - SW846-3050		Prepared:	06/02	/23 15	:53		(Liber	December 1		_ 418		WHILE.
CS (B3F0516-BS1)			1			Analyzed:	6/7/2023	2:43:55PM				
Aolyhdenum		2,45	-	0,100	mg/Kg wet	2.50		98.0	80-120			
Arsenic		2.29		0.100	mg/Kg wet	2.50		91.6	80-120			
'admium	1	2.4	1:	0,100	mg/Kg wet	2.50		94.0	80-120			
hromium		2.59		0.100	mg/Kg wei	2.50		104	80-120			
opper	1	2.54		0.100	mg/Kg wet	2.50		102	80-120			
ead	1	2.39		0.100	ing/Kg wet	2.50		95.6	80-120			
ickel		2.48		0.100	mg/Kg wei	2.50		97.2	80-120			
otassium, %		0.0278	0.	0500	% wet	0.0250		111	80-120			
elenium		2.19		0.100	ing/Kg wet	2.50		87.6	80-120			
inc		2.53		0.100	mg/Kg wet	2.50		101	80-120	2		
latrix Spike (B3F0516-MS1)		Sour	ce: C	3D2550	0-01	Analyzed:	6-7/2023	2:54:07PM				
folybdenum		215		8.33	mg/Kg dry	208	6.225	100	75-125			
rsenic		, 196		8.33	mg/Kg dry	208	3.34	92.4	75-125			
admium		210		8.33	mg/Kg dry	208	ND	98,8	75-125			
hromium		225		8.33	mg/Kg dry	208	8.50	104	75-125			
opper		418		8.33	mg/Kg dry	208	199	105	75-125			
cad		202		8.33	mg/Kg dry	208	1.73	96.0	75-125			
lickel		218	T	8.33	mg/Kg dry	208	8.92	101	75-125			
otassium, %		2.60	1	0.417	% dry	2.08	0.504	101	75-125			
ielenium		197		8,33	mg/Kg dry	208	10.8	89.2	75-125			
ine		1041.667		8.33	mg/Kg dry	208	850	92.0	75-125			
latrix Spike Dup (B3F0516-MSI	D1)	Sour	ce: C	3D2550)-01	Analyzed:	6/7/2023	2:57:35PM				
lolybdenum		217.5		8.33	mg/Kg dry	208	6.225	101	75-125	1.16	20	
rsenic		199		8.33	mg/Kg dry	208	3.34	94.0	75-125	1.69	20	
udmium		210	í	8.33	mg/Kg dry	208	ND	99.6	75-125	0.806	20	
hromium		228	1	8.33	mg/Kg dry	208	8.50	105	75-125	1.10	20	
opper		419		8.33	mg/Kg dry	208	199	106	75-125	0.398	20	
ead	1	208		8.33	mg/Kg dry	208	1.73	98.8	75-125	2.85	20	
ickel	(A)	215		8.33	mg/Kg dry	208	8.92	98,9	75-125	1,54	20	
otassium, %	f .	2.64		0.417	% dry	2.08	0.504	103	75-125	1.59	20	
elenium	U.	192		8.33	mg/Kg dry	208	10.8	87.2	75-125	2.14	20	
ine		1041.667		8.33	mg/Kg dry	208	850	92,0	75-125	0.00	20	
atch B3F0520 - SW846-3050		Prepared: (06/08	/23 10	:58							
lank (B3F0520-BLK1)						*		10:58:21AM				

Eastex Environmental Laboratory - Coldspring

The results in this report apply to the samples analyzed in accordance with the chain of custody document.

This analytical report must be reproduced in its entirety.

111 1 *NELAC Status: A=Accredited, N=Accreditation not offered, O=Not Accredited, P=Approved

PromiumforCold.v5 W&O; revision date 11192021

1 1111

Fort Bend County MUD 30 406 W Grand Pkwy S, Ste 260 Katy TX, 77494

EPA SW 846-6010, 3050 - Quality Control

Eastex Environmental Laboratory - Coldspring

Analyic	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3F0520 - SW846-3050	Prepar	ed: 06/08/23 10:	:58		. 1			•		
Blank (B3F0520-BLK1)				Analyzed:	6/8/2023	10:58:21AM	1			
Phosphorus, %	ND	1.00	% wet							
LCS (B3F0520-BS1)				Analyzed:	6/8/2023	11:01:50AM			ř	
Phosphorus, %	0.00246	1.00	% wet	0.00252		97.7	80-120			
Matrix Spike (B3F0520-MS1)	1 1 5	Source: C3D2550	-01	Analyzed:	£/8/2023	11:12:17AM	UH		1	1
Phosphorus, %	2,07	1.00	% dry	0.420	1.71	86.9	75-125			
Matrix Spike Dup (B3F0520-MSD1)		Source: C3D2550	-01	Analyzed:	6/8/2023	¹ 11:15:45ΛΜ				
Phosphorus, %	2.11	1.00	% dry	0.420	1.71	95.4	75-125	1.72	20	

Fort Bend County MUD 30 406 W Grand Pkwy S, Ste 260 Katy TX, 77494

Notes and Definitions

23	Spike recovery outside of acceptance limits due to matrix interference.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

11111

1111

Lavirora wai festing

ANALYTICAL REPORT

PREPARED FOR

8

Attn: Mark Bourgeois
Eastex Environmental Laboratory Inc.
PO BOX 1089
Coldspring, Texas 77331

1 111

Generated 5/18/2023 3:11:28 PM

JOB DESCRIPTION

For Bend County MUD30

JOB NUMBER

860-49176-1

Eurofins Houston 4145 Greenbriar Dr Stafford TX 77477

See page two for job notes and contact information.

Page 1 of 17

Eurofins Houston

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e+mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

50y

Generated 5/18/2023 3:11:28 PM

5

Authorized for release by Sylvia Garza, Project Manager Sylvia, Garza@et, eurofinsus.com (832)544-2004

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	11
Lab Chronicle	12
Lab Chronicle	13
Method Summary	14
Sample Summary	15
Chain of Custody	16
Receipt Checklists	17

Definitions/Glossary

Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD30

#11-1

811 1

Job ID: 860-49176-1

G	los	Sã	ary	
---	-----	----	-----	--

	These commonly used abbreviations, may or may not be present in this report.	
n	Listed under the "D" qolumn to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	1
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Rediochlemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

Eurofins Houston

11 11 11

	Case Narrative	l.	1 1
Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD30		1 1	Job ID: 860-4917
Job ID: 860-49176-1			
Laboratory: Eurofins Houston			
Narrative	1	1	
	Job Narrative 860-49176-1		

Receipt

The sample was received on 5/11/2023 7:20 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.7°C

PCBs Method 8082A: sludge, weighed to 5 gramsFBC 30 Digester a (860-49176-1)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Houston 5/18/2023

Detection Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD30 Job ID: 860-49176-1

Client Sample ID: FBC 30 Digester a

Lab Sample ID: 860-49176-1

No Detections.

5

8

9

13

This Detection Summary does not include radiochemical test results.

1111

Eurofins Houston

Client Sample Results

Client: Eastex Environmental Laboratory Inc.

Project/Site: For Bend County MUD30

Job ID: 860-49176-1

Client Sample ID: FBC 30 Digester a

Date Collected: 05/05/23 09:40 Date Received: 05/11/23 07:20

Percent Moisture (EPA Moisture)

Percent Solids (EPA Moisture)

Lab Sample ID: 860-49176-1

05/16/23 17:06

05/16/23 17:06

1 111

1 110

Matrix: Solid

Percent Solids: 1.6

Analyte	Result	Qualifier	RL	MDL Unit	1	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		6.2	mg/Kg		1:	05/16/23 13:01	05/17/23 13:55	1
PCB-1221	ND		6.2	mg/Kg		17	05/16/2β 13:01	05/17/23 13:55	1
PCB-1232	ND		6.2	mg/Kg	1	12	05/16/23 13:01	05/17/23 13:55	1
PCB-1242	ND		6.2	mg/Kg		Ė.	05/16/23 13:01	05/17/23 13:55	1
PCB-1248	ND		6.2	mg/Kg		U_{i}^{s}	05/16/23 13:01	05/17/23 13:55	1
PCB-1254	ND		6.2	mg/Kg		12	05/16/23 13:01	05/17/23 13:55	1
PCB-1260	ND		6.2	mg/Kg		1,3	05/16/23 13:01	05/17/23 13:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	78		35 - 140				05/16/23 13:01	05/17/23 13:55	1
DCB Decachlorobiphenyl (Surr)	113		37 - 142			1	05/16/23 13:01	05/17/23 13:55	1
General Chemistry	1 1	1 1		I		ì	(1)	1 . 1 1	
Analyte	Result	Qualifier	NONE	NONE Unit		D	Prepared	Analyzed	DII Fac

%

98.4

1.6

Eurofins Houston

Surrogate Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD30

Job ID: 860-49176-1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

111 1

1111

Matrix: Solid Prep Type: Total/NA

Lab Sample ID	Client Sample ID	1	TCX1 (35-140)	DCB1 (37-142)	Percent Surrogate Recovery (Acceptance Limits)	on against whether
860-49176-1	FBC 30 Digester a	- 1	78	113		/
LCS 860-103444/14-A	Lab Control Sample	1	87	103		
LCSD 860-103444/15-A	Lab Control Sample Dup	4	87	107		
MB 860-103444/1-A	Method Blank		82	96	Usel	
Surrogate Legend	1					
TCX = Tetrachloro-m-xyle	ene grand	Turbin .	1			
DCB = DCB Decachlorob	iphenyl (Surr)	Della	1			

Eurofins Houston

Page 8 of 17

5/18/2023

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 860-103444/1-A

Matrix: Solid

Analysis Batch: 103519

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 103444

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.017		mg/Kg		05/16/23 13:01	05/17/23 10:33	1
PCB-1221	ND		0.017		mg/Kg		05/16/23 13:01	05/17/23 10:33	1
PCB-1232	ND		0.017		mg/Kg		05/16/23 13:01	05/17/23 10:33	1
PCB-1242	ND		0.017		mg/Kg		05/16/23 13:01	05/17/23 10:33	1
PCB-1248	ND		0.017		mg/Kg		05/16/23 13:01	05/17/23 10:33	1
PCB-1254	ND		0.017		mg/Kg		05/16/23 13:01	05/17/23 10:33	130.5
PCB-1260	ND ND	MB	0.017	F	mg/Kg	1	05/16/23 13:01	05/17/23 10:33	1

Surrogate %Recovery Qualifier Limits Tetrachloro-m-xylene 82 35 - 140 DCB Decachlorobiphenyl (Surr) 96

37 - 142

Prepared Analyzed Dil Fac 05/16/23 13:01 05/17/23 10:33 05/16/23 13:01 05/17/23 10:33

Lab Sample ID: LCS 860-103444/14-A

Matrix: Solid

Analysis Batch: 103519

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 103444

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits PCB-1016 0.167 0.131 mg/Kg 79 27 - 121 PCB-1260 0.167 0.143 mg/Kg 86 27 - 139

LCS LCS

%Recovery Surrogate Qualifier Limits Tetrachloro-m-xylene 35 - 140 87 DCB Decachlorobiphenyl (Surr) 103 37 - 142

Lab Sample ID: LCSD 860-103444/15-A

Matrix: Solid

Analysis Batch: 103519

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 103444

rinary sid Baton. 100010								i ieb r	Jaicii, i	03444
		Spike	LCSD	LCSD				%Rec		RPD
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
PCB-1016		0.167	0.132		mg/Kg	1	79	27 - 121	1	20
PCB-1260		0.167	0.145		mg/Kg		87	27 - 139	1	20
¥ 4	LESDILESD	1 1		1		1111		1)	1 1	

LCSD LCSD Surrogate %Recovery Qualifier Limits 35 - 140 Tetrachioro-m-xylene 87 DCB Decachlorobiphenyl (Surr) 107 37 - 142

Method: Moisture - Percent Moisture

Lab Sample ID: MB 860-103533/1

Matrix: Solid

Analysis Batch: 103533

Client S	ample ID:	Method	Blank
	D	T T.	A-LINIA

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	-0.01	-			%	1		05/16/23 17:06	1
Percent Solids	100.0				%	1 1		05/16/23 17:06	1

Eurofins Houston

QC Sample Results

Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD30

Job ID: 860-49176-1

Method: Moisture - Percent Moisture (Continued)

1111 1

1111

 $\left\{ \begin{smallmatrix} 1\\ 2\\ 1\end{smallmatrix} \right\} = 1$

Lab Sample ID: 860-49011-B-1 DU

Matrix: Solid

Analysis Batch: 103533

Client	Sampl	e ID:	Duplicate
	Prep	Туре	: Total/NA

Пор	·ype.	Totalita	
		RPD	

	Sample	Sample		U D	ıu						RPD
Analyte	Result	Qualifier	Res	it C	lualifi	ier	Unit	D		RPD	Limit
Percent Moisture	18.3	Und)	18	3	1		%			0	20
Percent Solids	81.7	1 1	81	.7			%		Q.	0	20

9

13

QC Association Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD30

Job ID: 860-49176-1

proper pro		* Carrier *	110	
1 -1	: Se	mı	1/(141

Prep	Batch:	103444
------	--------	--------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-49176-1	FBC 30 Digester a	Total/NA	Solid	3550C	
MB 860-103444/1-A	Method Blank	Total/NA	Solid	3550C	
LCS 860-103444/14-A	Lab Control Sample	Total/NA	Solid	3550C	
LCSD 860-103444/15-A	Lab Control Sample Dup	Total/NA	Solid	3550C	

Analysis Batch: 103519

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-49176-1	FBC 30 Digester a	Total/NA	Solid	8082A	103444
MB 860-103444/1-A	Method Blank	Total/NA	Solid	8082A	103444
LCS 860-103444/14-A	Lab Control Sample	Total/NA	Solid	8082A	103444
LCSD 860-103444/15-A	Lab Control Sample Dup	Total/NA	Solld	8082A	103444

General Chemistry

Analysis Batch: 103533

Lab Sample ID	Client Sample ID		Prep Type	Matrix	Method	Prep Batch
860-49176-1	FBC 30 Digester a	1	Total/NA	Solid	Moisture	1
MB 860-103533/1	Method Blank		Total/NA	Solid	Moisture	1
860-49011-B-1 DU	Duplicate	301 - 321	Total/NA	Solid	Moisture	
	Color Color Color Color	4 1				Y.

1 [11]

: 111

Eurofins Houston

5/18/2023

Page 11 of 17

Lab Chronicle

Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD30

Job ID: 860-49176-1

Client Sample ID: FBC 30 Digester a

Date Collected: 05/05/23 09:40

Lab Sample ID: 860-49176-1

Matrix: Solid

Date Received: 05/11/23 07:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture	1	-1			103533	05/16/23 17:06	JM	EET HOU

Client Sample ID: FBC 30 Digester, a

Date Collected: 05/05/23 09:40 Date Received: 05/11/23 07:20 Lab Sample ID: 860-49176-1

Matrix: Solid Percent Solids: 1.6

Final Batch Batch Dil Initial Batch Prepared Method Factor Number Prep Type Type Run Amount Amount or Analyzed Analyst Lab 3550C Prep Total/NA 5.06 g 5 mL 103444 05/16/23 13:01 TH EET HOU Total/NA 8082A 103519 Analysis 05/17/23 13:55 WP EET HOU

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Staffqrd, TX 77477, TEL (281)240-4200

1111

811 1

Marian N

Accreditation/Certification Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD30

Job ID: 860-49176-1

Laboratory: Eurofins Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date	
Arkansas DEQ	State	88-00759	08-04-23	î
Florida	NELAP	E871002	06-30-23	
Louisiana	NELAP	03054	06430-23	ij i
Louisiana (All)	NELAP	03054	06-30-23	
Oklahoma	State	1306	08-31-23	
Texas	NELAP	T104704215-23-50	06-30-23	
Texas	TCEQ Water Supply	T104704215	12-28-25	
USDA	US Federal Programs	525-23-79-79507	03-20-26	
5				

| Eurofins Houston

1 1111

1 111

5/18/2023

Page 13 of 17

Method Summary

Client: Eastex Environmental Laboratory Inc.

Project/Site: For Bend County MUD30

Job ID: 860-49176-1

Method		Method Description				Protocol	Laboratory
3082A	þ	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	The	1 1	1 1	SW846	EETHOU
oisture		Percent Moisture	250 1	3 30	3 5	EPA	EETHOU
3550C		Ultrasonic Extraction				SW846	EET HOU

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr. Stafford, TX 77477, TEL (281)240-4200

111 1

1111

Eurofins Houston

Page 14 of 17

5/18/2023

9

E

Sample Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD30

Job ID: 860-49176-1

1 1111

1 111

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
860-49176-1	FBC83r8s ig sD 1980	Solld	05/05/23 09:40	05/11/23 07:20

3

3

SUBCONTRACT ORDER

Eastex Environmental Labora PO Box 1089 Coldspring, TX 77331 Phone: 936-653-3249	tory - Coldspring	4147 G Stafford Phone:	s Xenco LLC reenbriar Dr i, TX 77477 713-690-4444	at-lati tearitis kali situ attauni tu dita dita
Fax 936-653-3172	1 '	Fax /1	3-690-5646	
0 051023J		1	I VS	First promotion with the second
OJECT NAME Fort Bend County MUD 30		Turnard	ound \ODAYS	Matrix Wa ste
tainers Date Time	EEL Sample ID	Sample Type		nalysis to be Performed
5/5/23 9 40 am	FBC 30 Digester a	Grab		CB 8082
See Attached	Special Instructions. PCBIMG	/KG %SOLIDS	I I 1 1 1	A SERVICE AND A
1			860-49	176 Chain of Custody
	1			Tro Chain of Custody
1	1 1		1	CIF -0.24 - Q IR ID HOU-3. Corrected Temp: (4.7)
1 1		1	Received Iced Y	/N Temp
1	1			

PRINT DATE/TIME. 5/9/2023 / 2 51:40PM

Released By

sco_PrimaryForm rpt.02122019 Page 16 of 17

Received By

5/11/23 0720 Date & Time

P3/98/2623

Login Sample Receipt Checklist

Client: Eastex Environmental Laboratory Inc.

Job Number: 860-49176-1

5 8 9

Login Number: 49176

List Source: Eurofins Houston

1 1111

1 111

List Number: 1 Creator: Rubio, Yuri

Question	Answer Comment	
The cooler's custody seal, if present, is intact.	True '	rend in this is guilly to-
Sample custody seals, if present, are intact.	True	and the second second second
The cooler or samples do not appear to have been compromised or tampered with.	True	1 1001 100 100
Samples were received on ice.	True	THE PART OF THE PART OF
Cooler Temperature is acceptable.	True	COLLECTION OF THE STATE OF THE
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate	True	" . The
HTs) Sample containers have legible labels.	True	1 1 1
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	problem 2000
Sample Preservation Verified.	True	1
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	f fl
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	Sugar A and ha

Eurofins Houston

Page 17 of 17

5/18/2023

May 19, 2023

Municipal District Services, LLC. Fort Bend County MUD 30 406 W Grand Pkwy S, Ste 260 Katy, TX 77494

RE: FBC 30 Digester

Enclosed are the results of analyses for samples received by the laboratory on 05/05/23 14:06, with Lab ID Number C3E0163. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mark Bourgeois

Special Projects Manager

HIE I

Fort Bend County MUD 30 406 W Grand Pkwy S, Ste 260 Katy TX, 77494

Case Narrative

40 CFR 503 Criterion for Fecal Coliform Class B = 2,000,000 MPN/g. for Class A = 1,000 MPN/g 40 CFR 503 Criterion for Vector Class B = <1.5mg/O2/g Solids/hr *Fecal Coliform result is a geometric mean of seven individual samples.

LABORATORY ANALYTICAL REPORT

Project:

FBC 30 Digester b

Client Matrix:

Waste

Sample Date & Time: 05/05/2023 09:40

Collector: CSW

Sample Type:Grab

Print Date: 5/19/2023

Digester C3E0163-01 (Waste)

Analyte	Result	Reporting Limit	Units	Nelac Status	Batch	Analyzed Date & Time	Method	Notes
		Microb	iological	Lab	1		Į.	i
- Fecal Coliform IDEXX	61584	1000	mpn/gram	N	B3E1197	05/05/2023 14:25	Colilert 18	
Vector	<0.1		mg O2/hr/g	N	B3E2993	05/05/2023 16:00	TAC 312.83(b)(4)	
		V	Vet Lab		1			
		_			1			
- Percent Solid	1.4	0.1	%	A	B3E1598	05/10/2023 12:03	SM 2540G	
Volatile Percent Solid	80.8	0.1	%	A	B3E1593	05/11/2023 12:43	SM 2540G	
						ř	4	

1 ! ! !!

Fort Bend County MUD 30 406 W Grand Pkwy S, Ste 260 Katy TX, 77494 P.O. Box 1089 Coldspring Tx 77331 Website: eastexlabs.com Email: eastexlab@eastex.net Tel: 936 653 3249

Colilert 18 - Quality Control

Eastex Environmental Laboratory - Coldspring

*	- !!++ 		i I		L	
Analyte	Reporting Result Limit U	Spike Source Inits Level Result		RPD	RPD Limit	Notes
atch B3E1197 - No Prep Micro	Prepared: 05/05/23 14:25					
Blank (B3E1197-BLK1)		Analyzed: 5/5/2023	2:25:00PM			
ecal Coliform IDEXX	ND 1000 mpn	n/gram				
Ouplicate (B3E1197-DUP1)	Source: C3E0163-01	Analyzed: 5/5/2023	2:25:00PM			
ecal Coliform IDEXX	50400 1000 mpn	n/gram 61584		20.0	200	
atch B3E1593 - No Prep	Prepared: 05/11/23 12:43				-	
lank (B3E1593-BLK1)		Analyzed: 5/11/202	3 12:43:00PM			
olatile Percent Solid	ND 0.1	%	10			**************************************
uplicate (B3E1593-DUP1)	Source: C3E0163-01	Analyzed: 5/11/202	3 12:43:00PM			
olatile Percent Solid	80.8	% 80.8		0.00	10	
atch B3E1598 - No Prep	Prepared: 05/10/23 12:03					
lank (B3E1598-BLK1)		Analyzed: 5/10/202	3 12:03:00PM			
ercent Solid	ND 0.1	%			(# 21 22 2 2 2 	
uplicate (B3E1598-DUP1)	Source: C3E0163-01	Analyzed: 5/10/202	3 12:03:00PM			
ercent Solid	1.4 0.1	% 1.4		0.00	20	
atch B3E2993 - No Prep Micro	Prepared: 05/05/23 16:00					
lank (B3E2993, BLK1)	JIII I	Analyzed: 5/5/2023	4:00:00PM			
ector	ND 0.1 mg O)2/hr/g				
uplicate (B3E2993-DUP1)	Source: C3E1066-01	Analyzed: 5/5/2023	4:00:00PM			
ector	1.92 0.1 mg O	02/hr/g 1.96		2.06	200	

Eastex Environmental Laboratory - Coldspring

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

*NELAC Status: A=Accredited, N=Accreditation not offered, O=Not Accredited, P=Approved

PromiumforCold.v5 W&O; revision date 11192021

Fort Bend County MUD 30 406 W Grand Pkwy S, Ste 260 Katy TX, 77494

Notes and Definitions

DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

EASTEX ENVIRONMENTAL LABORATORY, INC.

P.O. Box 1089 * Coldspring, TX 77331 (936) 653-3249 * (800) 525-0508

77331 P.O. Box 631375 * Nacogdoches, TX 75963-1375 25-0508 (936) 569-8879 * FAX (936) 569-8951 — www.eastexlabs.com

White Copy-Follows Samples Yellow Copy-Laboratory Pink Copy-Client Copy

REPORT TO:	INVOICE TO:		
Address:	Address: SAME	STED	
97 50	- 1	QUE	
Attn:	Attn:	S RE(
Phone#:	Phone#:	Ysis	
Email:	INSTRUCTIONS:	NAA Q	
P.O. #:	C or G: C= Composite G= Grab	A .	
	DW=Drinking V	er SO=Soil/Studge OT=Other	
Sampier's Name (Print):	Container Sixe: 1=Gallon 2=1/2 Gallon 3=Quart/Liter 4=500mL 5= 6=125mL (4oz) 7=60mL (2 oz) 8= 40mL Vial 9=Other	3=Quart/Liter	
Sampler's Signature; 0 0 0	Type: P= Plastic G= Glass T= Teffon S= Sterile	Sterile	
	rvatives: C=Chilled S=Sulfuric A	B=Base/Caustic Z= Zn Acetate	
Project Name TO CYNUS DO		Containers Containers	
Work Order ID Sample ID Date	Time Matrix C or G DO pH CI2	Flow Temp # Size Type Pres	
C3501U3 Diask 560	50 5	7 6 6	1
62 Diceser 55	1 9 05 and R	7 300	
Diaster Dist	2) 03/ph/20	1346	
Digester 5151	12504450 [F]	1 5 P C V	
C			
1			1
10	i -		J°.
	=-		
1			
	_		-251
Relinquished By:	Received By:	Date Time =-	Received Iced: VES
Relinquished By:	Received By:	Date Time	
Relinquished By:	Received By and/or Checked in By:	Time /UW	Received Iced:
LAB USE ONLY Sample Condition Acceptable:	(YES) / NO	C *Therm ID Logged In By:	Date
Alternate Check in:	Date Time		5-5-23 1458

1 | 1 |

6 1 5

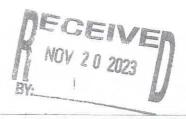
1 111

May 16, 2023

Municipal District Services, LLC. Fort Bend County MUD 30 406 W Grand Pkwy S, Ste 260 Katy, TX 77494

RE: FBC 30 Digester

Enclosed are the results of analyses for samples received by the laboratory on 04/28/23 13:36, with Lab ID Number C3D5824. If you have any questions concerning this report, please feel free to contact me.


Sincerely,

Mark Bourgeois

Special Projects Manager

R11 1

ENTERED NOV 2 1 2023

Sludge Manager

Master Spreadsheet

□ PCB □F/S

■ & Solid

Fort Bend County MUD 30 406 W Grand Pkwy S, Ste 260 Katy TX, 77494

LABORATORY ANALYTICAL REPORT

Project:

FBC 30 Digester c

Client Matrix:

Waste

Sample Date & Time: 04/28/2023 09:35

Collector: PU

Sample Type:Grab

Print Date: 5/16/2023

Digester C3D5824-01 (Waste)

Analyte	Result	Reporting Limit	Units	Nelac Status	Batch	Analyzed Date & Time	Method	Notes
		N	et Lab			1		
_	William Charles Co.	and some			1	T.	nales and through	
Percent Solid	1.2	0.1	%	A	B3E0200	05/02/2023 09:35	SM 2540G	

r Flar

811 (

P.O. Box 1089 Coldspring Tx 77331 Website: eastexlabs.com Email: eastexlab@eastex.net Tel: 936 653 3249

Fort Bend County MUD 30 406 W Grand Pkwy S, Ste 260 Katy TX, 77494

SM 2540G - Quality Control

Eastex Environmental Laboratory - Coldspring

Analyte)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3E0200 - No Prep		Prepared:	05/02/23 09:	35							
Blank (B3E0200-BLK1)					Analyzed:	5/2/2023	9:35:00AM				
Percent Solid		ND	0.1	%			NIC SELECTION OF THE SE				
Duplicate (B3E0200-DUP1)	[4]	Sou	rce: C3D6675	-01	Analyzed:	5/2/2023	9:35:00AM	}			ļ
Percent Solid		1.6	0.1	%		1.6			0.00	20	

Fort Bend County MUD 30 406 W Grand Pkwy S, Ste 260 Katy TX, 77494

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

1 1 1 1 1

ANALYTICAL REPORT

PREPARED FOR

8 9

12 13 14

Attn: Mark Bourgeois
Eastex Environmental Laboratory Inc.

PO BOX 1089 Coldspring, Texas 77331

Generated 5/11/2023 5:50:09 PM

JOB DESCRIPTION

For Bend County MUD 30

JOB NUMBER

860-48518-1

Eurofins Houston 4145 Greenbriar Dr Stafford TX 77477

See page two for job notes and contact information.

Page 1 of 34

e ny EOL

Eurofins Houston

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

50m

Generated 5/11/2023 5:50:09 PM

Authorized for release by Sylvia Garza, Project Manager Sylvia.Garza@et.eurofinsus.com (832)544-2004

13

15

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	9
QC Sample Results	12
QC Association Summary	25
Lab Chronicle	29
Certification Summary	30
Method Summary	31
Sample Summary	32
Chain of Custody	33
Receipt Checklists	34

5

6

8

9

12

13

14

	Definitions/Glossary			
	Environmental Laboratory Inc.			Job ID: 860-48518
Project/Site: Fo	r Bend County MUD 30		Į.	E.
Qualifiers				
GC/MS Semi V	OA		1 1500	and the second
Qualifier	Qualifier Description			
1	LCS/LCSD RPD exceeds control limits.			
)	Result is less than the RL but greater than or equal to the MDL and the concentration is an	approximate	value.	
GC Semi VOA		1		
Qualifier	Qualifier Description	i		
51+	Surrogate recovery exceeds control limits, high biased.			
01				
Glossary		+		
Abbreviation	These commonly used abbreviations may or may not be present in this report.			
1	Listed under the "D" column to designate that the result is reported on a dry weight basis			Parallel of the city
%R	Percent Recovery			
DFL	Contains Free Liquid			1 1
FU	Colony Forming Unit			- E. O
:NF	Contains No Free Liquid	1		
ER	Duplicate Error Ratio (normalized absolute difference)		ŧ	
il Fac	Dilution Factor	4		
DL	Detection Limit (DoD/DOE)	i		
L, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of	of the sample		
DLC	Decision Level Concentration (Radiochemistry)			
DL	Estimated Detection Limit (Dioxin)			
.OD	Limit of Detection (DoD/DOE)			
.00	Limit of Quantitation (DoD/DOE)		1	<u>K</u>
MCL	EPA recommended "Maximum Contaminant Level"			
MDA	Minimum Detectable Activity (Radiochemistry)		1 [1]	9 1 1
MDC	Minimum Detectable Concentration (Radiochemistry)			
NDL	Method Detection Limit			
ИL	Minimum Level (Dioxin)	6		
MPN	Most Probable Number			
MQL	Method Quantilation Limit	İ		
VC	Not Calculated	1	Ŷ.	Ē
ND.	Not Detected at the reporting limit (or MDL or EDL if shown)			İ
NEG	Negative / Absent			Ĭ
POS	Positive / Present			
PQL	Practical Quantitation Limit			
PRES	Presumptive	1		
ac	Quality Control	4 . 1		
RER	Relative Error Ratio (Radiochemistry)	£ ×		1
₹L	Reporting Limit or Requested Limit (Radiochemistry)			
200	D. Lettin Develop Difference is processed of the solution difference between two points			Y.

Eurofins Houston

Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin)
Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count

RPD TEF

TEQ TNTC

Case Narrative

Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD 30

Job ID: 860-48518-1

Job ID: 860-48518-1

Laboratory: Eurofins Houston

Narrative

Job Narrative 860-48518-1

Receipt

The sample was received on 5/2/2023 10:15 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.9°C

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC/MS Semi VOA

Method 8270D: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 860-102484 and analytical batch 860-102521 recovered outside control limits for the following analyte: Pyridine.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Herbicides

Method 8151A_MOD: Surrogate recovery for the following sample was outside the upper control limit: FBC 30 Digester c (860-48518-1). This sample did not contain any target analytes; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

PCBs

Method 8082A: Liquid sludge sample. Extracted at 1 gram.FBC 30 Digester c (860-48518-1)

11111

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Pesticides

No additional analytical of quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Houston

Page 5 of 34

Detection Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD 30

Job ID: 860-48518-1

234567

9 10

13

Client Sample ID: FBC 30 Digester c

Lab Sample ID: 860-48518-1

i (4);

No Detections.

This Detection Summary does not include radiochemical test results.

Eurofins Houston

5/11/2023

Page 6 of 34

Client Sample Results

Client: Eastex Environmental Laboratory Inc. Project/Site! For Bend County MUD 30

Job ID: 860-48518-1

Client Sample ID: FBC 30 Digester c

Date Collected: 04/28/23 10:15 Date Received: 05/02/23 10:15 Lab Sample ID: 860-48518-1

Matrix: Solid

Analyte		Result	Qualifier	RL	MDL	. Unit	D	Prepared	Analyzed	Dil Fac
Benzene		ND		0.050		mg/L			05/09/23 17:39	50
Carbon tetrachloride		ND	10	0.25		mg/L			05/09/23 17:39	50
Chlorobenzene		ND	l l	0.050		mg/L			05/09/23 17:39	50
Chloroform -		ND	Face of the	0.050		mg/L			05/09/23 17:39	50
1,2-Dichloroethane		ND		0.050		mg/L			05/09/23 17:39	50
1,1-Dichloroethene		ND		0.050		mg/L			05/09/23 17:39	
2-Butanone	111 1	ND	1	2.5		mg/L	1 1		The property of the party of th	50
Tetrachloroethene		ND		0.050		mg/L			05/09/23 17:39	50
Trichloroethene	A Aprel I	ND		0.25		mg/L			05/09/23 17:39	50
Vinyl chloride		ND		0.10		100			05/09/23 17:39	50
300- 6 2/2000 3000		140		0.10		mg/L			05/09/23 17:39	50
Surrogate	%Re	covery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	A THE THE REAL PROPERTY.	95	79	63 - 144			-		05/09/23 17:39	50
4-Bromofluorobenzene (Surr)		100	p. and	74 - 124					05/09/23 17:39	50
Dibromofluoromethane (Surr)		96	The second	75 - 131	E				05/09/23 17:39	50
Toluene-d8 (Surr)	THE PERSON NAMED IN	100		80 - 117					05/09/23 17:39	50

Analyte	atile Organic Compounds Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	IND	0.13	mg/L		05/09/23 18:27	05/11/23 02:17	DII Fac
2,4,5-Trichlorophenol	ND	0.13	mg/L		05/09/23 18:27	05/11/23 02:17	5
2,4,6-Trichlorophenol	ND	0.13	mg/L		05/09/23 18:27	05/11/23 02:17	5
2,4-Dinitrotoluene	ND	0.13	mg/L		05/09/23 18:27	05/11/23 02:17	5
2-Methylphenol	ND	0.13	mg/L		05/09/23 18:27	05/11/23 02:17	5
Hexachlorobenzene	ND	0.13	mg/L	100	05/09/23 18:27	05/11/23 02:17	5
Hexachlorobutadiene	, ND	0.13	mg/L		05/09/23 18:27	05/11/23 02:17	5
lexachloroethane	ND	0.13	mg/L		05/09/23 18:27	05/11/23 02:17	5
Vitrobenzene	ND	0.13	mg/L		05/09/23 18:27	05/11/23 02:17	5
Pentachlorophenol	ND	0.25	mg/L		05/09/23 18:27	05/11/23 02:17	5
Pyridine	ND *1	0.25	mg/L		05/09/23 18:27	05/11/23 02:17	5
& 4 Methylphenol	ND	0.25	mg/L		05/09/23 18:27	05/11/23 02:17	5

Surrogate	%Recovery	Qualifier L	imits	1 1	1	Prepared	Analyzeo	Dil Fac
2,4,6-Tribromophenol (Surr)	49		1 - 132			05/09/23 18:27	05/11/23 02:17	DII Pac
2-Fluorobiphenyl (Surt)	67	2	9 - 112			05/09/23 18:27	05/11/23 02:17	5
2-Fluorophenol (Surr)	55	2	1 - 114			05/09/23 18:27	05/11/23 02:17	5
Nitrobenzene-d5 (Surr)	70		6 - 110			05/09/23 18:27	05/11/23 02:17	5
p-Terphenyl-d14 (Surr)	72		0 - 141			05/09/23 18:27		5
Phenol-d5 (Surr)	40		6 - 117			EST-2-200 L. L.	05/11/23 02:17	5
	The state of the s		0-111			05/09/23 18:27	05/11/23 02:17	5

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlorodane	ND		0.0025		mg/L		05/10/23 11:17	05/10/23 16:43	1
Endrin	ND		0.000050		mg/L		05/10/23 11:17	05/10/23 16:43	- 1
Heptachlor	ND		0.000050	4	mg/L		05/10/23 11:17	05/10/23 16:43	1
Heptachlor epoxide	· ND	1	0.000050	- 1	mg/L		05/10/23 11:17	05/10/23 16:43	1
gamma-BHC (Lindane)	ND	-)	0.000050		mg/L		05/10/23 11:17	05/10/23 16:43	1
Methexychlor	ND	,	0.00020	1	mg/L		05/10/23 11:17	05/10/23 16:43	1
Toxaphene	ND	. 1	0.0020		mg/L		05/10/23 11:17	05/10/23 16:43	4

lient: Eastex Environmental Laborato	nry Inc	Client	Sample I	Results	K	tr.			lat ID: 000	10510 1
Project/Site: For Bend County MUD 36						1		STATE OF THE STATE	Job ID: 860-	48518-1
Client Sample ID: FBC 30 Dige	ster c						10	Lab Sam	ple ID: 860-4	8518-1
Date Collected: 04/28/23 10:15					1			1		x: Solid
Date Received: 05/02/23 10:15										A TOTAL SHOWL
										Belief Little
Surrogate	%Recovery	Qualifier	Limits		l.	1		Prepared	Analyzea	DII Fac
DCB Decachlorobiphenyl (Surr)	83	1 1	15 - 136		1	1		05/10/23 11:17	05/10/23 16:43	1
Tetrachloro-m-xylene	75		18 - 126					05/10/23 11:17	05/10/23 16:43	1
Method: SW846 8151A - Herbicides	(GC) - TO	•						1		
Analyte	Result		RL	MDL	Unit		b	Prepared	Analyzed	Dil Fac
2.4-D	ND		0.00020		mg/L		-	05/09/23 18:39	05/10/23 22:54	1
2,4,5-TP (Silvex)	ND		0.00020		mg/L			05/09/23 18:39	05/10/23 22:54	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	184	S1+	70 - 162					05/09/23 18:39	05/10/23 22:54	1
Method: SW846 6010B - Metals (ICI Analyte	P) - TCLP Result	Qualifier	RL	MDL	Unit		D	Prepared	Analyzed	Dil Fac
Arsenic	, ND	Qualifier	0.050	INDL	mg/L		=	05/09/23 10:30	05/09/23 17:27	- III Fac
Antimony	ND	1 1	0.10		mg/L		1	05/09/23 10:30	05/09/23 17:27	
Barium	ND		0.050		mg/L			05/09/23 10:30	05/09/23 17:27	1
Cadmium	ND		0.025		mg/L			05/09/23 10:30	05/09/23 17:27	4
Chromium	ND		0.050	7	mg/L			05/09/23 10:30	05/09/23 17:27	1
Beryllium	ND		0.020	1	mg/L	ii		05/09/23 10:30	05/09/23 17:27	Iborit of
Lead	ND		0.050		mg/L	1		05/09/23 10:30	05/09/23 17:27	1
Selenium	ND		0.15		mg/L	:1	- 1	05/09/23 10:30	05/09/23 17:27	1
Silver	ND		0.10		mg/L			05/09/23 10:30	05/09/23 17:27	1
Nickel	ND		0.050		mg/L			05/09/23 10:30	05/09/23 17:27	1
					1			,	177.004.0	
Method: SW846 7470A - Mercury (C	1,55				ř					
Analyte		Qualifier	RL _	MDL	-	1	D	Prepared	Analyzed	Dil Fac
Mercury	ND	1 1	0.00020		mg/L	Auth		05/09/23 11:21	05/09/23 19:11	1
- -										
General Chemistry	Result	Qualifier	NONE	NONE	Unit	7	D	Prepared	Analyzed	Dil Fac
Analyte (FRA Maiatura)	98.8	Quaimer	- NONE	HONE	%	+	Ŧ	Tieparco	05/08/23 08:28	1
Percent Moisture (EPA Moisture)	1.2		T T		%				05/08/23 08:28	1
Percent Solids (EPA Moisture)	1.2		1		,,					
Client Sample ID: FBC 30 Dige	ster c							Lab Sam	ple ID: 860-4	
									Matri	x: Solid
Date Collected: 04/28/23 10:15									Percent So	

111

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	, ND	f 9	40	î	mg/Kg	n	05/06/23 08:22	05/09/23 01:25	1
PCB-1221	I ND	1 1	40	1	mg/Kg	ra ca	05/06/23 08:22	05/09/23 01:25	1
PCB-1232	ND		40		mg/Kg	Ω	05/06/23 08:22	05/09/23 01:25	1
PCB-1242	ND		40		mg/Kg	p	05/06/23 08:22	05/09/23 01:25	1
PCB-1248	ND		40	7	mg/Kg	п	05/06/23 08:22	05/09/23 01:25	1
PCB-1254	ND		40	ļ	mg/Kg	Ø	05/06/23 08:22	05/09/23 01:25	1
PCB-1260	ND		40		mg/Kg	n	05/06/23 08:22	05/09/23 01:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	57		35 - 140				05/06/23 08:22	05/09/23 01:25	1
DCB Decachlorobiphenyl (Surr)	91		37 - 142		. 1		05/06/23 08:22	05/09/23 01:25	1

Eurofins Houston

1

Surrogate Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD 30

Job ID: 860-48518-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid

Pron	Typo:	Total/NA
1 1ch	Type.	IULAIIINA

	DESCRIPTION OF THE PARTY OF THE				Percent Sur	rogate Reco	overy (Acceptance Limits	3)
1 1	CLUBS INCOME PROPERTY	Ĭ	DCA	BFB	DBFM	TOL		
Lab Sample ID	Client Sample ID		(63-144)	(74-124)	(75-131)	(80-117)		
LCS 860-102314/3	Lab Control Sample		103	100	107	98		
CS 860-102315/1013	Lab Control Sample		96	100	100	102		
CSD 860-102314/4	Lab Control Sample Dup		106	101	109	98	1	
CSD 860-102315/14	Lab Control Sample Dup		99	98	103	100		
MB 860-102314/10	Method Blank		101	105	102	106		
1B 860-102315/19	Method Blank		99	101	92	101		
Surrogate Legend								
DCA = 1,2-Dichloroethar	ne-d4 (Surr)	1						
BFB = 4-Bromofluorober	zene (Surr)							
DBFM = Dibromofluorem TOL = Toluene-d8 (Surr)			1		1	1		

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid

Prep Type: TCLP

			Percent Surrogate Recovery (Acceptance Limits)						
Lab Sample ID	Client Sample ID	DCA (63-144)	BFB (74-124)	DBFM (75-131)	TOL (80-117)				
860-48516-A-1-D MS	Matrix Spike	104	103	110	99				
860-48518-1	FBC 30 Digester b	95	100	96	100				
LB 860-102319/1-A	Method Blank	102	105	100	105				

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

IAI	d	u	IX.	201	IQ
_	_				

Prep Type: Total/NA

	Percent Surrogate Recovery (Acceptance Limits)								
a name of the	area (I e) a lee	TBP	FBP	2FP	NBZ	TPHd14	PHL		
Lab Sample ID	Client Sample ID	(31-132)	(29-112)	(21-114)	(26-110)	(20-141)	(16-117)		
LCS 860-102484/2-A	Lab Control Sample	76	68	43	73	82	30		
CSD 860-102484/3-A	Lab Control Sample Dup	70	59	39	61	76	28		
MB 860-102484/1-A	Method Blank	70	74	43	80	81	28		

Surrogate Legend

TBP = 2,4,6-Tribromophenol (Surr)

FBP = 2-Fluorobiphenyl (Surr)

2FP = 2-Fluorophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

PHL = Phenol-d5 (Surr)

Eurofins Houston

Page 9 of 34

5/11/2023

8

12

13

14

	nivolatile Organic Comp	ounds (GC	/MS)	- 4				
latrix: Solid			Ettu	30 yr i		ri) lulin (fr	O als light	Prep Type: TCL
				Percent Sur	rogate Reco	very (Accepta	nce imits)	1
		TBP	FBP	2FP	NBZ	TPHd14	PHL	. 6
Lab Sample ID	Client Sample ID	(31-132)	(29-112)	(21-114)	(26-110)	(20-141)	(16-117)	
860-48490-A-1-E MS	Matrix Spike	67	61	47	61	76	40	
860-48518-1	FBC 30 Digester c	49	67	55	70	72	40	
LB 860-102256/1-E	Method Blank	74	67	58 1	73	77	47	
EB 000 TOZZOOT E	metriod Blank	557.5	110			20.35 Sarrigadi (g. 1111)	- 100 m	
Surrogate Legend								
TBP = 2,4,6-Tribromophen	ol (Surr)							
FBP = 2-Fluorobiphenyl (S	urr)							
2FP = 2-Fluorophenol (Sur	r)							ř.
NBZ = Nitrobenzene-d5 (S	urr)					,		
TPHd14 = p-Terphenyl-d14 PHL = Phenol-d5 (Surr)	(Surr)	1 1 1		1		1 [11]		1 1
	anochlorine Pesticides	(GC)			1			
latrix: Solid				- 1	T.	100	io moni	Prep Type: Total/N
				Percent Sur	rogate Reco	very (Accepta	ince Limits)	
		DCB1	TCX1		1	F	1	
Lab Sample ID	Client Sample ID	(15-136)	(18-126)					
LCS 860-102544/2-A	Lab Control Sample	80	80		1		1	
LCSD 860-102544/3-A	Lab Control Sample Dup	90	89		1		me 4	1 things of
MB 860-102544/1-A	Method Blank	92	91					1
2								1
Surrogate Legend DCB = DCB Decachlorobin	showd (Surr)	1 1						
TCX = Tetrachloro-m-xyler		1 i						l , - l, win
Method: 8081B - Org Matrix: Solid	anochlorine Pesticides	(GC)			1	T		Prep Type: TCI
-					1		55 55 8	
				Percent Su	rrogate Rec	overy (Accept	ance Limits)	
		DCB1	TCX1	2 12 11				
	Client Sample ID	(15-136)	(18-126)					
Lab Sample ID			75					
860-48518-1	FBC 30 Digester c	83						
	FBC 30 Digester c Method Blank	83 90	90			¥.		1
860-48518-1			90	-		1		i
860-48518-1 LB 860-102256/1-G Surrogate Legend	Method Blank		90			l r (te		
860-48518-1 LB 860-102256/1-G	Method Blank		90		ja]	 		
860-48518-1 LB 860-102256/1-G Surrogate Legend DCB = DCB Decachlorobi TdX = Tetrachloro-m-xylei	Method Blank chenyl (Surr)	90		romatogr	aphy	r (la		1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
860-48518-1 LB 860-102256/1-G Surrogate Legend DCB = DCB Decachlorobi TdX = Tetrachloro-m-xylei	Method Blank	90		romatogr	aphy	r (In		Prep Type: Total/
860-48518-1 LB 860-102256/1-G Surrogate Legend DCB = DCB Decachlorobi TdX = Tetrachloro-m-xylei Method: 8082A - Pol	Method Blank chenyl (Surr)	90						
860-48518-1 LB 860-102256/1-G Surrogate Legend DCB = DCB Decachlorobi TdX = Tetrachloro-m-xylei Method: 8082A - Pol	Method Blank chenyl (Surr)	90				overy (Accept		
860-48518-1 LB 860-102256/1-G Surrogate Legend DCB = DCB Decachlorobi TdX = Tetrachloro-m-xyler Method: 8082A - Pol Matrix: Solid	Method Blank phenyl (Surr) ne ychlorinated Biphenyls	90 i	Gas Ch					
860-48518-1 LB 860-102256/1-G Surrogate Legend DCB = DCB Decachlorobi TCX = Tetrachloro-m-xylet Method: 8082A - Pol Matrix: Solid Lab Sample ID	Method Blank shenyl (Surr) ne ychlorinated Biphenyls Client Sample ID	90 i s (PCBs) by (TCX1 (35-140)	Gas Ch					
860-48518-1 LB 860-102256/1-G Surrogate Legend DCB = DCB Decachlorobi TdX = Tetrachloro-m-xyler Method: 8082A - Pol Matrix: Solid Lab Sample ID 860-48444-B-4-B MS	Method Blank Shenyl (Surr) ne ychlorinated Biphenyls Client Sample ID Matrix Spike	90 (PCBs) by (TCX1 (35-140) 66	Gas Chr DCB1 (37-142)					
860-48518-1 LB 860-102256/1-G Surrogate Legend DCB = DCB Decachlorobi TdX = Tetrachloro-m-xyler Method: 8082A - Pol Matrix: Solid Lab Sample ID 860-48444-B-4-B MS 860-48444-B-4-C MSD	Method Blank Shenyl (Surr) ne ychlorinated Biphenyls Client Sample ID Matrix Spike Matrix Spike Duplicate	TCX1 (35-140) 66 63	DCB1 (37-142)					
860-48518-1 LB 860-102256/1-G Surrogate Legend DCB = DCB Decachlorobi TdX = Tetrachloro-m-xyler Method: 8082A - Pol Matrix: Solid Lab Sample ID 860-48444-B-4-B MS 860-48518-1	Method Blank Shenyl (Surr) ne ychlorinated Biphenyls Client Sample ID Matrix Spike Matrix Spike Duplicate FBC 30 Digester c	TCX1 (35-140) 66 63 57	DCB1 (37-142) 89 90 91					
860-48518-1 LB 860-102256/1-G Surrogate Legend DCB = DCB Decachlorobi TdX = Tetrachloro-m-xyler Method: 8082A - Pol Matrix: Solid Lab Sample ID 860-48444-B-4-B MS 860-48444-B-4-C MSD 860-48518-1 LCS 860-102044/2-A	Method Blank Shenyl (Surr) ne ychlorinated Biphenyls Client Sample ID Matrix Spike Matrix Spike Duplicate FBC 30 Digester c Lab Control Sample	TCX1 (35-140) 66 63 57 64	DCB1 (37-142) 89 90					
860-48518-1 LB 860-102256/1-G Surrogate Legend DCB = DCB Decachlorobi TCX = Tetrachloro-m-xyler Method: 8082A - Pol Matrix: Solid Lab Sample ID 860-48444-B-4-B MS 860-48444-B-4-C MSD 860-48518-1 LCS 860-102044/2-A LCSD 860-102044/3-A	Method Blank Chenyl (Surr) Pe Client Sample ID Matrix Spike Matrix Spike Duplicate FBC 30 Digester c Lab Control Sample Lab Control Sample Dup	TCX1 (35-140) 66 63 57 64 69	DCB1 (37-142) 89 90 91 76					
860-48518-1 LB 860-102256/1-G Surrogate Legend DCB = DCB Decachlorobi TdX = Tetrachloro-m-xyler Method: 8082A - Pol Matrix: Solid Lab Sample ID 860-48444-B-4-B MS 860-48444-B-4-C MSD 860-48518-1 LCS 860-102044/2-A	Method Blank Shenyl (Surr) ne ychlorinated Biphenyls Client Sample ID Matrix Spike Matrix Spike Duplicate FBC 30 Digester c Lab Control Sample	TCX1 (35-140) 66 63 57 64	DCB1 (37-142) 89 90 91 76 80					
860-48518-1 LB 860-102256/1-G Surrogate Legend DCB = DCB Decachlorobi TCX = Tetrachloro-m-xyler Method: 8082A - Pol Matrix: Solid Lab Sample ID 860-48444-B-4-B MS 860-48444-B-4-C MSD 860-48518-1 LCS 860-102044/2-A LCSD 860-102044/3-A	Method Blank Chenyl (Surr) Pe Client Sample ID Matrix Spike Matrix Spike Duplicate FBC 30 Digester c Lab Control Sample Lab Control Sample Dup	TCX1 (35-140) 66 63 57 64 69	DCB1 (37-142) 89 90 91 76 80					

Page 10 of 34

5/11/2023

Surrogate Summary Client: Eastex Environmental Laboratory Inc. Job ID: 860-48518-1 Project/Site: For Bend County MUD 30 TCX = Tetrachloro-m-xylene DCB = DCB Decachlorobiphenyl (Surr) Method: 8151A - Herbicides (GC) Matrix: Solid Prep Type: Total/NA Percent Surrogate Recovery (Acceptance Limits) DCPAA1 Lab Sample ID Client Sample ID (70-162)LC\$ 860-102500/2-A Lab Control Sample 125 LC\$D 860-102500/3-A Lab Control Sample Dup 125 MB 860-102500/1-A Method Blank 101 Surrogate Legend DCPAA = 2,4-Dichlorophenylacetic acid Method: 8151A - Herbicides (GC) Matrix: Solid Prep Type: TCLP Percent Surrogate Recovery (Acceptance Limits) DCPAA1 Lab Sample ID Client Sample ID (70-162) 860-48518-1 FBC 30 Digester c 184 S1+ LB 860-102256/1-F Method Blank 86 Surrogate Legend DCPAA = 2,4-Dichlorophenylacetic acid

#11 t

Hii i

Eurofins Houston

Page 11 of 34

5/11/2023

Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD 30

Job ID: 860-48518-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 860-102314/10

Matrix: Solid

Analysis Batch: 102314

Client Sample ID: Method Blank

Prep Type: Total/NA

		· ypc.	TOTALITY	

	MB	MB								
Analyte	Result	Qualifier		RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND			0.0010	II INIT	mg/L			05/09/23 10:52	0.000
Carbon tetrachloride	ND			0.0050		mg/L	I w		05/09/23 10:52	1
Chlorobenzene	ND			0.0010		mg/L	100		05/09/23 10:52	1
Chloroform	ND	1	1 1	0.0010	1	mg/L	1.1	ii -	0\$/09/23 10:52	4
1,2-Dichloroethane	ND		1 1	0.0010		mg/L	*		05/09/23 10:52	4
1,1-Dichloroethene	ND			0.0010		mg/L			05/09/23 10:52	4
2-Butanone	ND			0.050		mg/L			05/09/23 10:52	mod 4
Tetrachloroethene	ND			0.0010	1	mg/L			05/09/23 10:52	
Trichloroethene	ND			0.0050	18	mg/L	i		05/09/23 10:52	1
Vinyl chloride	ND.			0.0020		mg/L	- 1 -	-	05/09/23 10:52	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Ť	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		63 - 144	1 '	- TOTAL STREET	05/09/23 10:52	1
4-Bromofluorobenzene (Surr)	105		74 - 124	: K:		05/09/23 10:52	11
Dibromofluoromethane (Surr)	102		75 - 131	1		05/09/23 10:52	1
Toluene-d8 (Surr)	106	1 1	80 - 117	1 1		05/09/23 10:52	1

Lab Sample ID: LCS 860-102314/3

Lab Sample ID: LCSD 860-102314/4

Matrix: Solid

Trichloroethene

Matrix: Solid

Analysis Ratch: 102314

Vinyl chtoride

Analysis Batch: 102314

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA

75 - 135

60 - 140

Spike LCS LCS %Rec Analyte Result Qualifier Unit Added %Rec Limits Benzene 0.0500 0.0455 91 75 - 125 mg/L Carbon tetrachloride 0.0500 0.0495 mq/L 99 70 - 130 Chlorobenzene 0.0500 mg/L 0.0443 89 65 - 135 Chloroform 0.0500 0.0463 mg/L 93 70 - 121 1,2-Dichloroethane 0.0500 0.0452 mg/L 90 72 - 130 1,1-Dichloroethene 0.0500 0.0395 mg/L 79 50 - 150 2-Butanone 0.250 0.207 mg/L 83 60 -1140 Tetrachloroethene 0.0500 0.0448 mg/L 90 71 - 125

0.0500

0.0500

0.0449

0.0414

mg/L

mg/L

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	103		63 - 144
4-Bromofluorobenzene (Surr)	100		74 - 124
Dibromofluoromethane (Surr)	107		75 - 131
Toluene-d8 (Surr)	98		80 - 117

Client Sample ID: Lab Control Sample Dup

90

83

Prep Type: Total/NA

Analysis baton. 102014	Spike	LCSD	LCSD				9	%Rec	4	RPD
Analyte	Added	Result	Qualifier	Unit		D	%Rec	Limits	RPD	Limit
Benzene	0.0500	0.0434		mg/L	1		87	75 - 125	5	25
Carbon tetrachloride	0.0500	0.0468		mg/L			94	70 - 130	6	25
Chlorobenzene	0.0500	0.0442	Ÿ	mg/L			88	65 - 135	0	25
Chloroform	0.0500	0.0440	4	mg/L			88	70 - 121	5	25

Eurofins Houston

Page 12 of 34 5/11/2023

1 (1)

Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD 30

Job ID: 860-48518-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

LCSD LCSD

106

101

109

98

Qualifier

%Recovery

Lab Sample ID: LCSD 860-102314/4 Matrix: Solid

Analysis Batch: 102314

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Analysis Batch: 102315

Lab Sample ID: MB 860-102315/19

Toluene-d8 (Surr)

Matrix: Solid

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifler	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dichloroethane			0.0500	0.0431		mg/L		86	72 - 130		25
1,1-Dichloroethene		1	0.0500	0.0394		mg/L		79	50 - 150	0	25
2-Butanone		1	0.250	0.209		mg/L		84	60 - 140	1	25
Tetrachloroethene			0.0500	0.0420		mg/L		84	71 - 125	6	25
Trichloroethene	e .		0.0500	0.0424		mg/L		85	75 - 135	6	25
Vinyl chloride			0.0500	0.0477		mg/L		95	60 - 140	14	25

Limits

63 - 144

74 - 124

75 - 131

80 - 117

Client Sample ID: Method Blank Prep Type: Total/NA

MB	MB						
Result	Qualifier	RL	MDL	Unit	D Prepared	Analyzed	Dil Fa
ND		0.0010	1755-6-7	mg/L		05/09/23 13:12	
ND ND	1	0.0050		mg/L	1	05/09/23 13:12	1
ND		0.0010		mg/L		05/09/23 13:12	
ND		0.0010		mg/L		05/09/23 13:12	
ND		0.0010		mg/L		05/09/23 13:12	
ND		0.0010		mg/L		05/09/23 13:12	
ND		0.050		mg/L		05/09/23 13:12	
ND	1	0.0010		mg/L		05/09/23 13:12	
ND	1	0.0050		mg/L		05/09/23 13:12	
ND	1	0.0020	1	mg/L		05/09/23 13:12	
	Result ND ND ND ND ND ND ND ND ND ND ND	Result Qualifier ND ND ND ND ND ND ND ND ND N	Result Qualifier RL ND 0.0010 ND 0.0050 ND 0.0010 ND 0.0010 ND 0.0010 ND 0.0010 ND 0.050 ND 0.050 ND 0.0010 ND 0.0010 ND 0.0050 ND 0.0050	Result Qualifier RL MDL ND 0.0010 0.0050 ND 0.0010 0.0010 ND 0.0010 0.0010 ND 0.0010 0.0010 ND 0.0050 0.0050 ND 0.0050 0.0050 ND 0.0050 0.0050	Result Qualifier RL MDL Unit ND 0.0010 mg/L ND 0.0050 mg/L ND 0.0010 mg/L ND 0.0010 mg/L ND 0.0010 mg/L ND 0.0010 mg/L ND 0.050 mg/L ND 0.0010 mg/L ND 0.0010 mg/L ND 0.0050 mg/L ND 0.0050 mg/L	Result Qualifier RL MDL Unit D Prepared ND 0.0010 mg/L <	Result Qualifier RL MDL Unit D Prepared Analyzed ND 0.0010 mg/L 0.5/09/23 13:12 ND 0.0050 mg/L 0.5/09/23 13:12 ND 0.0010 mg/L 0.5/09/23 13:12 ND 0.0050 mg/L 0.5/09/23 13:12 ND 0.0010 mg/L 0.5/09/23 13:12 ND 0.0010 mg/L 0.5/09/23 13:12 ND 0.0010 mg/L 0.5/09/23 13:12 ND 0.0050 mg/L 0.5/09/23 13:12

MB MB

Surrogate	%Recovery	Qualifier	Limits	1,	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		63 - 144		ALPERT CO	05/09/23 13:12	1
4-Bromofluorobenzene (Surr)	101		74 - 124	1		05/09/23 13:12	1
Dibromofluoromethane (Surr)	92	1	75 - 131			05/09/23 13:12	1
Toluene-d8 (Surr)	101	4	80 - 117			05/09/23 13:12	1

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Solid

Lab Sample ID: LCS 860-102315/1013

Analysis Batch: 102315

				Spike	LCS	LCS				%Rec	
Analyte				Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene				0.0500	0.0513		mg/L		103	75 - 125	
Carbon tetrachloride			E	0.0500	0.0536		mg/L		107	70 - 130	
Chlorobenzene			4	0.0500	0.0501		mg/L		100	65 - 135	
Chloroform				0.0500	0.0519		mg/L		104	70 - 121	
1,2-Dichloroethane	· į	M; +		0.0500	0.0\$03	1 :	mg/L	4	101	72 - 130	the term lost
1,1-Dichloroethene				0.0500	0.0515		mg/L		103	50 - 150	
2-Butanone	i.	į		0.250	0.261		mg/L		104	60 - 140	
Tetrachloroethene				0.0500	0.0507		mg/L		101	71 - 125	

Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD 30

Job ID: 860-48518-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 860-102315/1013

Matrix: Solid

Analysis Batch: 102315

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits Trichloroethene 0.0500 0.0538 108 mg/L 75 - 135 Vinyl chloride 0.0500 0.0486 mg/L 97 60 - 140

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	96	MI	63 - 144
4-Bromofluorobenzene (Surr)	100		74 - 124
Dibromofluoromethane (Surr)	100		75 - 131
Toluene-d8 (Surr)	102		80 - 117

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Lab Sample ID: LCSD 860-102315/14 Matrix: Solid

Analysis Batch: 102315

Allalysis Datoli. 102010												
				Spike	LCSD	LCSD	4		1	%Rec		RPD
Analyte			Į.	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene				0.0500	0.0519	-	mg/L		104	75 - 125	1	25
Carbon tetrachloride				0.0500	0.0533		mg/L		107	70 - 130	1	25
Chlorobenzene				0.0500	0.0506		mg/L		101	65 - 135	1	25
Chloroform				0.0500	0.0521		mg/L		104	70 - 121	0	25
1,2-Dichloroethane				0.0500	0.0515		mg/L		103	72 - 130	2	25
1,1-Dichloroethene				0.0500	0.0521		mg/L		104	50 - 150	1	25
2-Butanone				0.250	0.263		mg/L		105	60 - 140	1	25
Tetrachloroethene				0.0500	0.0509		mg/L	1	102	71 - 125	0	25
Trichloroethene				0.0500	0.0538	4	mg/L		108	75 - 135	. 0	25
Vinyl chloride	1	3		0.0500	0.0504	3	mg/L		101	60 - 140	1 1 4	25

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		63 - 144
4-Bromofluorobenzene (Surr)	98		74 - 124
Dibromofluoromethane (Surr)	103		75 - 131
Toluene-d8 (Surr)	100		80 - 117

Client Sample ID: Method Blank

Prep Type: TCLP

Matrix: Solid

Lab Sample ID: LB 860-102319/1-A

Analysis Batch: 102314

Analysis Batch: 102314										1
	LB	LB			3					
Analyte	Result	Qualifier	RL	MDL	Unit		D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0050		mg/L				05/09/23 10:31	5
Carbon tetrachloride	ND		0.025		mg/L			ř	05/09/23 10:31	5
Chlorobenzene	ND		0.0050		mg/L	į			05/09/23 10:31	5
Chloroform	ND		0.0050		mg/L		1.		05/09/23 10:31	5
1.2-Dichloroethane	ND		0.0050		mg/L				05/09/23 10:31	5
1.1-Dichloroethene	ND		0.0050		mg/L				05/09/23 10:31	5
2-Butanone	ND		0.25		mg/L				05/09/23 10:31	5
Tetrachloroethene	ND		0.0050		mg/L				05/09/23 10:31	5
Trichloroethene	ND		0.025		mg/L				05/09/23 10:31	5
Vinyl chloride	ND		0.010		mg/L				05/09/23 10:31	5

Client: Eastex Environmental Laboratory Inc.

Job ID: 860-48518-1

Project/Site: For Bend County MUD 30

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LB 860-102319/1-A

Matrix: Solid

Client Sample ID: Method Blank

Prep Type: TCLP

Analysis Batch: 102314 1 . 1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		63 - 144		05/09/23 10:31	5
4-Bromofluorobenzene (Surr)	105		74 - 124		05/09/23 10:31	5
Dibromofluoromethane (Surr)	100		75 - 131		05/09/23 10:31	5
Toluene-d8 (Surr)	105		80 - 117		05/09/23 10:31	5

Lab Sample ID: 860-48516-A-1-D MS

Matrix: Solid

Analysis Batch: 102314

Client	Sample	ID:	Matrix	Spik	e
		Dret	Type'	TCI	Р

AMERICA TO AND THE PARTY OF THE	Sample	Sample	Spike	MS	MS	1			%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	ND	- 3	2.50	2.13		mg/L		85	66 - 142	2 3 to 10 to 100 12 to 100
Carbon tetrachloride	ND	lime! min	2.50	2.41		mg/L		96	62 - 125	
Chlorobenzene	ND		2.50	2.07		mg/L		83	60 - 133	
Chloroform	ND	1	2.50	2.18	1	mg/L		87	70 - 130	
1,2-Dichloroethane	ND	i t	2.50	2.10		mg/L		84	68 - 127	
1,1-Dichloroethene	ND	minu M	2.50	1.92		mg/L		77	59 - 172	
2-Butanone	ND		12.5	10.2		mg/L		81	60 - 140	
Tetrachloroethene	, ND		2.50	2.18		mg/L		87	71 - 125	
Trichloroethene	ND	i	2.50	2.11		mg/L		84	62 - 137	
Vinyl chloride	ND	Am	2.50	1.99		mg/L		80	60 - 140	
	MS	MS								

921	2222	2 6000	575 15
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	104		63 - 144
4-Bromofluorobenzene (Surr)	103		74 - 124
Dibromofluoromethane (Surr)	110		75 - 131
Toluene-d8 (Surr)	99		80 - 117

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 860-102484/1-A

Matrix: Solid

Analysis Batch: 102521

Client Sample ID: I	Method	Blank
---------------------	--------	-------

Prep Type: Total/NA

Analysis Batch: 102521								Prep Batch: 102484		
	MB	MB								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
1,4-Dichlorobenzene	ND		0.0050		mg/L		05/09/23 18:27	05/10/23 13:32	1	
2,4,5-Trichlorophenol	ND		0.0050	4	mg/L		05/09/23 18:27	05/10/23 13:32	1	
2,4,6-Trichlorophenol	ND	İ	0.0050	milyan 3	mģ/L		05/09/23 18:27	05/10/23 13:32	1	
2,4-Dinitrotoluene	ND		0.0050		mg/L		05/09/23 18:27	05/10/23 13:32	1	
2-Methylphenol	ND		0.0050	1	mg/L		05/09/23 18:27	05/10/23 13:32	1	
Hexachlorobenzene	ND	. 1	0.0050		mg/L		05/09/23 18:27	05/10/23 13:32	1	
Hexachlorobutadiene	ND	1	0.0050		mg/L		05/09/23 18:27	05/10/23 13:32	1	
Hexachloroethane	ND		0.0050		mg/L	1	05/09/23 18:27	05/10/23 13:32	1	
Nitrobenzene	ND		0.0050		mg/L		05/09/23 18:27	05/10/23 13:32	1	
Pentachlorophenol	ND		0.010		mg/L		05/09/23 18:27	05/10/23 13:32	1	
Pyridine	ND	i	0.010		mg/L		05/09/23 18:27	05/10/23 13:32	1	
3 & 4 Methylphenol	ND		0.010		mg/L		05/09/23 18:27	05/10/23 13:32	1	

Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD 30

Job ID: 860-48518-1

Project in the last

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 860-102484/1-A

Lab Sample ID: LCS 860-102484/2-A

Lab Sample ID: LCSD 860-102484/3-A

Matrix: Solid

Matrix: Solid

Matrix: Solid

Analysis Batch: 102521

Analysis Batch: 102521

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 102484

	MB	MB					
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	70		31 - 132		05/09/23 18:27	05/10/23 13:32	1
2-Fluorobiphenyl (Surr)	74		29 - 112	1	05/09/23 18:27	05/10/23 1/3:32	1
2-Fluorophenol (Surr)	43		21 - 114	1	05/09/23 18:27	05/10/23 13:32	1
Nitrobenzene-d5 (Surr)	80	i	26 - 110		05/09/23 18:27	05/10/23 13:32	1 1
p-Terphenyl-d14 (Surr)	81		20 - 141	1	05/09/23 18:27	05/10/23 13:32	1 1
Phenol-d5 (Surr)	28	1 1	16 - 117	, 1	05/09/23 18:27	05/10/23 13:32	1
ree .						1	

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 102484

					Spike	LCS	LCS	ī			%Rec		
Analyte	W				Added	Result	Qualifier	Unit	D	%Rec	Limits		
1,4-Dichlorobenzene					0.0400	0.0256		mg/L		64	37 - 111		The second Market
2,4,5-Trichlorophenol					0.0400	0.0325		mg/L		81	39 - 125		
2,4,6-Trichlorophenol					0.0400	0.0316		mg/L		79	42 - 125		
2,4-Dinitrotoluene					0.0400	0.0323		mg/L		81	41 - 128		
2-Methylphenol					0.0400	0.0242		mg/L	1	60	36 - 105		
Hexachlorobenzene					0.0400	0.0307		mg/L		77	39 - 128		
Hexachiorobutadiene	1	1	T.	į	p.04po	0.0263	1	mg/L	1 111	66	31 1120	1 1	
Hexachloroethane					0.0400	0.0246		mg/L		62	37 - 109		
Nitrobenzene					0.0400	0.0314		mg/L		79	37 - 114		
Pentachlorophenol					0.0400	0.0310		mg/L		78	10 - 137		
Pyridine					0.0400	0.00866	J	mg/L		22	5 - 130		
3 & 4 Methylphenol					0.0400	0.0217		mg/L		54	35 - 116		
								F	and a	-			

LCS LCS

Surrogate	%Recovery	Qualifier		Limits	
2,4,6-Tribromophenol (Surr)	76			31 - 132	
2-Fluorobiphenyl (Surr)	68			29 - 112	
2-Fluorophenol (Surr)	43		1	21 - 114	
Nitrobenzene-d5 (Surr)	73			26 - 110	
p-Terphenyl-d14 (Surr)	82	‡	i	20 - 141	
Phenol-d5 (Surr)	30	,	3	16 - 117	

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 102484

Analysis Batch: 102521			20			1			Ligh	Detch. I	02404
			Spike	LCSD	LCSD	T			%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,4-Dichlorobenzene	-		0.0400	0.0222	Name and Sales	mg/L		55	37 - 111	15	30
2,4,5-Trichlorophenol			0.0400	0.0293		mg/L		73	39 - 125	10	30
2,4,6-Trichlorophenol			0.0400	0.0285		mg/L		71	42 - 125	10	30
2.4-Dinitrotoluene			0.0400	0.0291		mg/L		73	41 - 128	10	30
2-Methylphenol			0.0400	0.0227		mg/L		57	36 - 105	6	30
Hexachlorobenzene	1 1	1 !	0.0400	0.0275	1	mg/L	: 14.	69	39 - 128	111	30
Hexachlorobutadiene			0.0400	0.0234		mg/L		59	31 - 120	12	30
Hexachloroethane			0.0400	0.0221		mg/L		55	37 - 109	- 11	30
Nitrobenzene			0.0400	0.0258		mg/L		64	37 - 114	20	30
Pentachlorophenol			0.0400	0.0288	1	mg/L		72	10 - 137	8	40

Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD 30

Job ID: 860-48518-1

Method: 8270D - Semivolat	le Organic Compounds	(GC/MS)	(Continued)
			1

	Lab Sample	ID: LCSD	860-102484/3-A
--	------------	----------	----------------

Lab Sample ID: LB 860-102256/1-E

Matrix: Solid

Matrix: Solid

Analysis Batch: 102521

Client Sample ID:	Lab	Control	Sample Dup
		Prep Ty	pe: Total/NA

Prep Batch: 102484

	1	Бріке	LCSD	LCSD				%Rec		RPD
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Pyridine		0.0400	0.00493	J *1	mg/L	~ =	12	5 - 130	55	50
3 & 4 Methylphenol		0.0400	0.0201		mg/L		50	35 - 116	7	30
	CD LCCD			1	1	1				

Surrogate Qualifie Limits 2,4,6-Tribromophenol (Surr) 70 31 - 132 2-Fluorobiphenyl (Surr) 59 29 - 112 2-Fluorophenol (Surr) 39 21 - 114 61 26 - 110

Nitrobenzene-d5 (Surr) p-Terphenyl-d14 (Surr) 76 20 - 141 Phenol-d5 (Surr) 28 16 - 117

Client Sample ID: Method Blank

Prep Type: TCLP Prep Batch: 102484

Analysis Batch: 102521 LB LB

101 1

Analyte Qualifier Result MDL RL Prepared Analyzed Dil Fac 1,4-Dichlorobenzene ND 0.025 mg/L 05/09/23 18:27 05/10/23 22:20 2,4,5-Trichlorophenol ND 0.025 mg/L 05/10/23 22:20 05/09/23 18:27 2,4,6-Trichlorophenol ND 0.025 mg/L 05/10/23 22:20 05/09/23 18:27 2,4-Dinitrotoluene ND 0.025 mg/L 05/09/23 18:27 05/10/23 22:20 2-Methylphenol ND 0.025 mg/L 05/09/23 18:27 05/10/23 22:20

Hexachlorobenzene ND 0.025 mg/L 05/09/23 18:27 05/10/23 22:20 Hexachlorobutadiene ND 0.025 mg/L 05/09/23 18:27 05/10/23 22:20 Hexachloroethane ND 0.025 mg/L 05/09/23 18:27 05/10/23 22:20 Nitrobenzene ND 0.025 mg/L 05/09/23 18:27 05/10/23 22:20 Pentachlorophenol ND 0.050 mg/L 05/09/23 18:27 05/10/23 22:20 Pyridine ND 0.050 mg/L 05/09/23 18:27 05/10/23 22:20 3 & 4 Methylphenol ND 0.050 mg/L 05/09/23 18:27 05/10/23 22:20

·	LB	LB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	74		31 - 132	05/09/23 18:27	05/10/23 22 20	1
2-Fluorobiphenyl (Surr)	67		29 - 112	05/09/23 18:27	05/10/23 22 20	1
2-Fluorophenol (Surr)	58		21 - 114	05/09/23 18:27	05/10/23 22:20	1
Nitrobenzene-d5 (Surr)	73	Y	26 - 110	05/09/23 18:27	05/10/23 22:20	1
p-Terphenyl-d14 (Surr)	77	1	20 - 141	05/09/23 18:27	05/10/23 22:20	,
Phenol-d5 (Surr)	47		16 - 117	05/09/23 18:27	05/10/23 22:20	1

Lab Sample ID: 860-48490-A-1-E MS

Matrix: Solid

Analysis Batch: 102521

Client Sample ID: Matrix Spike

Prep Type: TCLP

Prep Batch: 102484

A STATE OF	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dichlorobenzene	ND		0.200	ND		mg/L		55	37 - 111	
2,4,5-Trichlorophenol	ND	1 1	0.200	0.141		mg/L		70	39 - 125	
2,4,6-Trichlorophenol	ND	Į.	0.200	0.135		mg/L		68	42 - 125	
2,4-Dinitrotoluene	ND		0.200	0.162		mg/L		81	41 - 128	
2-Methylphenol	' ND		0.200	ND		mg/L		57	36 - 105	
Hexachlorobenzene	ND	Ì	0.200	0.148		mg/L		74	39 - 128	

Eurofins Houston

Page 17 of 34

5/11/2023

Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD 30 Job ID: 860-48518-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 860-48490-A-1-E MS

Client Sample ID: Matrix Spike

Matrix: Solid

Prep Type: TCLP Prep Batch: 102484

Analysis Batch: 102521

The Art of the State of the Sta	Sample	Sample			Spike	MS	MS			1	%Rec	1	
Analyte	Result	Qualifie	er	i	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Hexachlorobutadiene	ND				0.200	ND		mg/L		60	31 - 120		
Hexachloroethane	ND				0.200	ND	3	mg/L		55	37 - 109		
Nitrobenzene	ND		1	ţ	0.200	0.131		mg/L		65	37 - 114	r	
Pentachlorophenol	ND				0.200	ND		mg/L		102	10 - 137	1	
Pyridine	ND	*1			0.200	ND		mg/Ļ		32	5 - 135		
3 & 4 Methylphenol	ND	18			0.200	ND		mg/L		64	35 - 116		

MS MS

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	67		31 - 132
2-Fluorobiphenyl (Surr)	61		29 - 112
2-Fluorophenol (Surr)	47		21 - 114
Nitrobenzene-d5 (Surr)	61		26 - 110
p-Terphenyl-d14 (Surr)	76		20 - 141
Phenol-d5 (Surr)	40	.1	16 - 117

Method: 8081B - Organochlorine Pesticides (GC)

Lab Sample ID: MB 860-102544/1-A

Matrix: Solid

Analysis Batch: 102466

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 102544

TOTAL CONTROL		MB	MB				F		1		
Analyte		Result	Qualifier	RL	MDL	Unit	10.77	D	Prepared	Analyzed	Dil Fac
Chlorodane		ND		0.0020		mg/L			05/10/23 11:17	05/10/23 14:38	1
Endrin		ND		0.000040		mg/L			05/10/23 11:17	05/10/23 14:38	1
Heptachlor		ND		0.000040		mg/L			05/10/23 11:17	05/10/23 14:38	1
Heptachlor epoxide		ND	Det 6	0.000040		mg/L			05/10/23 11:17	05/10/23 14:38	1
gamma-BHC (Lindane)		ND		0.000040		mg/L	1		05/10/23 11:17	05/10/23 14:38	1
Methoxychlor		ND	1	0.00016		mg/L	1		05/10/23 11:17	05/10/23 14:38	1
Toxaphene		ND		0.0016		mg/L			05/10/23 11:17	05/10/23 14:38	1
		MB	MB								
Surrogate		%Recovery	Qualifier	Limits			- 17		Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	1	92	,	15 - 136					05/10/23 11:17	05/10/23 14:38	1
D OD D 00000000000000000000000000000000									- VACUAL FRANCES		1 2

18 - 126

Lab Sample ID: LCS 860-102544/2-A

Matrix: Solid

Tetrachloro-m-xylene

Analysis Batch: 102466

Client Sample ID: Lab Control Sample Prep Type: Total/NA

05/10/23 14:38

05/10/23 11:17

Prep Batch: 102544

			Spike	Spike LCS L	LCS		1		%Rec		
Analyte		Added		Result	Qualifier	Unit	D	%Rec	Limits	Ci iiq	
Endrin		T .	0.00800	0.000800	1	mg/L	1 11:	100	14 - 169	1 4	
Heptachlor	1 .		0.000800	0.000752	2	mg/L		94	10 - 157	J. Line	
Heptachlor epoxide			0.000800	0.000800		mg/L		100	15 - 155		
gamma-BHC (Lindane)			0.000800	0.000765		mg/L		96	8 - 157		
Methoxychlor			0.000800	0.000775	1	mg/L		97	25 - 161		
					P/.	- 1					

Page 18 of 34

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl (Surr)	80		15 - 136
Tetrachloro-m-xylene	80		18 - 126

Job ID: 860-48518-1

Project/Site: For Bend County MUD 30

Method: 8081B - Organochlorine Pesticides (GC	:)
---	----

Lab	Sample	ID:	LCSD	860-102544/3-A	

Lab Sample ID: LB 860-102256/1-G

Matrix: Solid

Analysis Batch: 102466

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Solid Analysis Batch: 102466

Prep Batch: 102544

Analyte	- U - U - U - U - U	Added		LCSD Qualifier	Unit	D	%Rec	%Rec Limits	RPD	RPD Limit
Endrin		0.000800	0.000859		mg/L	- 2	107	14 - 169	7	25
Heptachlor		0.000800	0.000824		mg/L		103	10 - 157	0	25
Heptachlor epoxide		0.000800	0.000874		mg/L		109	15 - 155	9	25
gamma-BHC (Lindane)	7	0.000800	0.000840		mg/L		105	8 - 157	9	25
Methoxychlor		0.000800	0.000848		mg/L		106	25 - 161	9	25
k . h	LCSD LCSD		81	4	1	,				THE ST

%Recovery Qualifier

Surrogate DCB Decachlorobiphenyl (Surr) 90 15 - 136 Tetrachloro-m-xylene 89 18 - 126

Client Sample ID: Method Blank

Prep Type: TCLP

Prep Baich: 102544

	LB LB									
Analyte	Result Qual	lifier RL	MDL	Unit		D	Prepared	Analyzed	Dil Fac	
Chlorodane	ND	0.0025		mg/L	f:	-	05/10/23 11:17	05/10/23 14:51	1	
Endrin	ND	0.000050		mg/L			05/10/23 11:17	05/10/23 14:51	- 1	
Heptachlor	ND	0.000050		mg/L			05/10/23 11:17	05/10/23 14:51		
Heptachlor epoxide	,ND	0.000050	1	mg/L			05/10/23 11:17	05/10/23 14:51	- 1	
gamma-BHC (Lindane)	ND	0.000050		mg/L			05/10/23 11:17	05/10/23 14:51		
Methoxychlor	ND	0.00020		mg/L			05/10/23 11:17	05/10/23 14:51	The state of	
Toxaphene	ND	0.0020	1	mg/L			05/10/23 11:17	05/10/23 14:51	1	
III hall	LB LB									

%Recovery Qualifier Limits Prepared Analyzed Dil Fac DCB Decachlorobiphenyl (Surr) 90 15 - 136 05/10/23 11:17 05/10/23 14:51 Tetrachloro-m-xylene 90 18 - 126 05/10/23 11:17 05/10/23 14:51

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

		, ,
Г	1	
Lab Sample ID: MB 860-102044/1-A		

Matrix: Solid

Analysis Batch: 102105

Client Sample ID: Method	Blank
Prep Type: To	tai/NA

Prep Batch: 102044

		MB	MR						
Analyte !		Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016		ND	74	0.017	mg/Kg		05/06/23 08:22	05/08/23 13:47	Dirac
PCB-1221		ND		0.017	mg/Kg		05/06/23 08:22		1
PCB-1232		ND		0.017			Company of the Compan	05/08/23 13:47	1
PCB-1242					mg/Kg		05/06/23 08:22	05/08/23 13:47	1
27 12 17		ND	1	0.017	mg/Kg		05/06/23 08:22	05/08/23 13:47	1
PCB-1248		ND	1	0.017	mg/Kg		05/06/23 08:22	05/08/23 13:47	1
PCB-1254		ND		0.017	mg/Kg		05/06/23 08:22	05/08/23 13:47	- 4
PCB-1260		ŅD		0.017	mg/Kg		05/06/23 08:22	05/08/23 13:47	1
	1	МВ	MB						
Surrogate		%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene		65	ī	35 - 140			05/06/23 08:22		Dirrac
DCB Decachlorobiphenyl (Surr)		76		1,000,000,000				05/08/23 13:47	1
- I follow		70		37 - 142			05/06/23 08:22	05/08/23 13:47	4

Method: 8082A - Polychlorinated E	Biphenyls (PCBs) by Gas Chromatography (Contir	nued)
Method. 6002A - Folychlormated L	Diplientitis (1 003) by cas officinategraphy (contin	iucuj

Lab Sample ID: LCS 860-102044/2-A							Client Sample ID: Lab Control Samp				
Matrix: Solid Analysis Batch: 102105					į	3.				Type: Total/NA	
	3	0				1 1			Prep	Batch: 102044	
	1		Spike	LCS	LCS	99			%Rec	1	
			Added	Result	Qualifier	Unit	D	%Rec	Limits	31.116	
	1	S-	0.167	0.112		mg/Kg		67	27 - 121	platell.	
			0.167	0.108		mg/Kg		65	27 - 139		
1.00	1.00		1			ŧ					
122.20			warnen in		7	i					
%Recovery	Qualifier		Limits								
64			35 - 140								
76			37 - 142								
	LCS %Recovery 64	LCS LCS %Recovery Qualifier 64	LCS LCS %Recovery Qualifier 64	Spike Added 0.167	Spike LCS Added Result 0.167 0.112 0.167 0.108 LCS LCS %Recovery Qualifier Limits 64 35 - 140	Spike LCS LCS Added Result Qualifier 0.167 0.112 0.167 0.108 LCS LCS KRecovery Qualifier Limits 64 35 - 140	Spike LCS LCS	Spike LCS LCS	Spike LCS LCS	Spike LCS LCS D Prep Pr	

-	10.50										
Lab Sample ID: LCSD 860-102 Matrix: Solid	044/3-A					Cli	ent Sam	ple ID:	Lab Control Prep T	Sampl	
Analysis Batch: 102105	1 1	1	Spike	LCSD	LCSD		i Hil		Prep E	Batch: 1	02044 RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
PCB-1016			0.167	0.119		mg/Kg		72	27 - 121	6	20
PCB-1260			0.167	0.112		mg/Kg		67	27 - 139	4	20
	LCSD	LCSD			1	ij					
Surrogate	%Recovery	Qualifier	Limits								
Tetrachloro-m-xylene	69		35 - 140	in the							
DCB Decachlorobiphenyl (Surr)	80		37 - 142								
									1	1 1	
Lab Sample ID: 860-48444-B-4	I-B MS				‡			Client	Sample ID:	Matrix	The Carry

Matrix: Solid Analysis Batch: 102105			1		1					Type: Total/NA Batch: 102044
Analysis Batom 102100		Sample	Spike		MS	Unit	D	%Rec	%Rec Limits	Ĭ
Analyte	Result	Qualifier	Added		Qualifier					
PCB-1016	ND		0.214	0.153		mg/Kg	ū	72	27 - 121	
PCB-1260	ND	į.	0.214	0.156		mg/Kg	n	73	27 - 139	
	MS	MS	i			ř.				
Surrogate	%Recovery	Qualifier	Limits			1				
Tetrachloro-m-xylene	66	V	35 - 140							
DCB Decachlorobiphenyl (Surr)	89		37 - 142							

Lab Sample ID: 860-48444-B- Matrix: Solid	4-C MSD					- (Client	Sample II		pike Dur Type: To Batch: 1	tal/NA
Analysis Batch: 102105		Sample Qualifier	Spike Added	MSD Result	MSD Qualifier	Unit	Ė	%Rec	%Rec Limits	RPD	RPD
PCB-1016	ND		0.214	0.146		mg/Kg	ŗ.	69	27 - 121	5	20
PCB-1260	ND		0.214	0.150		mg/Kg	3	70	27 - 139	4	20
	MSD	MSD			į						
Surrogate	%Recovery	Qualifier	Limits			ij					
Tetrachloro-m-xylene	63		35 - 140			1	7		1		
DCB Decachlorobiphenyl (Surr)	90		37 - 142								

Page 21 of 34

0.020

mg/L

05/09/23 10:30

ND

Antimony

5/11/2023

Eurofins Houston

05/09/23 15:41

Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD 30

Job ID: 860-48518-1

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: MB 860-102374/1-A Matrix: Solid

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 102374

Analysis Batch: 102516

MB	MB								
Result	Qualifier		RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
ND			0.010		mg/L	- F	05/09/23 10:30	05/09/23 15:41	1.
ND			0.0050		mg/L		05/09/23 10:30	05/09/23 15:41	1
ND			0.010		mg/L		05/09/23 10:30	05/09/23 15:41	1
ND			0.0040		mg/L		05/09/23 10:30	05/09/23 15:41	1
ND			0.010		mg/L		05/09/23 10:30	05/09/23 15:41	1
ND			0.030		mg/L	1	05/09/23 10:30	05/09/23 15:41	1
ND	4 1	3 (0.020	1	mg/L		05/09/23 10:30	05/09/23 15:41	1
ND	1, 1	1 1	0.010	1	mg/L	1. 1	05/09/23 10:30	05/09/23 15:41	1
	Result ND ND ND ND ND ND ND ND	Result Qualifier ND ND ND ND ND ND ND ND ND N	Result Qualifier ND ND ND ND ND ND ND ND ND N	Result Qualifier RL ND 0.010 ND 0.0050 ND 0.010 ND 0.0040 ND 0.010 ND 0.030 ND 0.020	Result Qualifier RL MDL ND 0.010 ND 0.010 ND 0.0040 ND 0.010 ND 0.010 ND 0.030 ND 0.020	Result Qualifier RL MDL Unit ND 0.010 mg/L ND 0.0050 mg/L ND 0.010 mg/L ND 0.0040 mg/L ND 0.010 mg/L ND 0.030 mg/L ND 0.020 mg/L	Result Qualifier RL MDL Unit D ND 0.010 mg/L mg/L ND 0.010 mg/L mg/L ND 0.0040 mg/L mg/L ND 0.010 mg/L mg/L ND 0.030 mg/L mg/L ND 0.020 mg/L	Result Qualifier RL MDL Unit D Prepared ND 0.010 mg/L 05/09/23 10:30 ND 0.0050 mg/L 05/09/23 10:30 ND 0.010 mg/L 05/09/23 10:30 ND 0.0040 mg/L 05/09/23 10:30 ND 0.010 mg/L 05/09/23 10:30 ND 0.030 mg/L 05/09/23 10:30 ND 0.020 mg/L 05/09/23 10:30	Result ND Qualifier RL MDL Unit D Prepared Prepared Analyzed ND 0.010 mg/L 05/09/23 10:30 05/09/23 15:41 ND 0.010 mg/L 05/09/23 10:30 05/09/23 15:41 ND 0.0040 mg/L 05/09/23 10:30 05/09/23 15:41 ND 0.010 mg/L 05/09/23 10:30 05/09/23 15:41 ND 0.030 mg/L 05/09/23 10:30 05/09/23 15:41 ND 0.030 mg/L 05/09/23 10:30 05/09/23 15:41 ND 0.020 mg/L 05/09/23 10:30 05/09/23 15:41

Matrix: Solid

Lab Sample ID: LCS 860-102374/2-A

Analysis Batch: 102516

Client Sample	ID:	Lab	Control	Sample
		Pre	Type:	Total/NA

Prep Batch: 102374

		S	pike	LCS	LCS	1.0			%Rec		
Analyte		Ac	lded	Result	Qualifier	Unit	D	%Rec	Limits		
Arsenic	+ 1		1.00	1.02		mg/L	=1115	102	80 - 120		
Antimony	1		1.00	0.990		_i mg/L		99	80 - 120	1	
Barium			1.00	0.963		mg/L		96	80 - 120	1	
Cadmium		i	1.00	0.982	į.	mg/L		98	80 - 120		1
Chromium			1.00	1.00	1	mg/L		100	80 - 120		67.7
Beryllium			1.00	0.994		mg/L		99	80 - 120		
Lead	1		1.00	1.01		mg/L		101	80 - 120	le de	
Selenium			1.00	1.02		mg/L		102	80 - 120		

0.500

1.00

0.485

0.983

mg/L

mg/L

Lab Sample ID: LCSD 860-102374/3-A

Matrix: Solid

Silver

Nickel

Analysis Batch: 102516

Client Sample	ID:	Lab	Control Sample Dup
			Dran Tunas Tatal/NA

80 - 120

80 - 120

Prep Type: Total/NA Prep Batch: 102374

Allalysis	Daten. 10251	•				Sp	oike	LCSD	LCSD				%Rec		RPD
Analyte						Ad	ded	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic						-	1.00	1.02		mg/L	T	102	80 - 120	0	20
Antimony							1.00	0.995		mg/L	1	100	80 - 120	1	20
Barium			F V	1	1	8.3	1.00	0.966	1	mg/L	1 11:	97	80 - 120	1 10	20
Cadmium			ii sa	,		1.	1.00	0.988		mg/L		99	80 - 120	1	20
Chromium							1.00	1.01		mg/L		101	80 - 120	1	20
Beryllium							1.00	1.00		mg/L		100	80 - 120	1	20
							1.00	1.02		mg/L		102	80 - 120	1	20
Lead Selenium							1.00	1.02	4	mg/L		102	80 - 120	0	20
							.500	0.487		mg/L		97	80 - 120	0	20
Silver Nickel							1.00	0.989		mg/L	,	99	80 - 120	1	20

Lab Sample ID: 830-3498-A-2- Matrix: Solid	C MSD ^5		ī		1	(Client Sa	ample ID	: Matrix Sp Prep T Prep E		tal/NA
Analysis Batch: 102516	100000000000000000000000000000000000000	Sample Qualifier	Spike		MSD Qualifier	Unit	D	%Rec	%Rec Limits	RPD	RPD Limit
Analyte	ND	Qualities	1.00	1.10		mg/L		110	75 - 125	0	20
Arsenic				1.10		mg/L		110	75 - 125	3	20
Antimony	ND 0.055	-	1.00	1.13		mg/L		107	75 - 125	1	20

Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD 30

Job ID: 860-48518-1

Method: 6010B - Metals (ICP) (Continued)

1111

Lab Sample ID: 830-3498-A-2-C MSD ^5

Matrix: Solid

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Analysis Batch: 102516	e		12.00	1						lype: To Batch: 1	
Analyte		Sample Qualifier	Spike Added		MSD Qualifier	Unit	D	%Rec	%Rec Limits	RPD	RPD Limit
Cadmium	ND	Apple	1.00	1.08		mg/L		108	75 - 125	1	20
Chromium	ND	i i	1.00	1.11	1 1	mg/L		111	75 - 125	2	20
Beryllium	ND	1	1.00	1.11	100	mg/L		111	75 - 125	1	20
Lead	ND		1.00	1.11		mg/L		111	75 - 125	1	20
Selenium	ND		1.00	1.10		mg/L		110	75 - 125	1	20
Silver	ND	1	0.500	0.530		mg/L		106	75 - 125	1	20
Nickel	ND		1.00	1.09		mg/L	1	109	75 - 125	-1	20

Lab Sample ID: LB 860-102256/1-C

Matrix: Solid

Analysis Batch: 102516

Client Sample ID: Method Blank

Prep Type: TCLP

Prep Batch: 102374

PROTECTION AND DESCRIPTION OF THE PROTECTION OF	LB	LB						op Baton.	102074
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.050	-	mg/L		05/09/23 10:30	05/09/23 16:53	1
Antimony	III ND	197	0.10		mg/L		05/09/23 10:30	05/09/23 16:53	1 1
Barium	ND	·	0.050		mg/L	9	05/09/23 10:30	05/09/23 16:53	1
Cadmium	ND		0.025		mg/L		05/09/23 10:30	05/09/23 16:53	1
Chromium	ND		0.050		mg/L		05/09/23 10:30	05/09/23 16:53	1
Beryllium	ND		0.020		mg/L		05/09/23 10:30	05/09/23 16:53	1
Lead	ND		0.050		mg/L		05/09/23 10:30	05/09/23 16:53	1
Selenium	ND		0.15		mg/L		05/09/23 10:30	05/09/23 16:53	1
Silver	ND	i 1	0.10		mg/L		05/09/23 10:30	05/09/23 16:53	1
Nickel	ND	1	0.050		mg/L		05/09/23 10:30	05/09/23 16:53	1

Lab Sample ID: 860-48516-A-1-F MS

Matrix: Solid

Analysis Batch: 102516

Client Sample ID: Matrix Spike Prep Type: TCLP

Andrysis Batch. 102510						1 1					Prep	Batch: 102374
Analyte		Sample Qualifier	1	Spike Added		MS Qualifier	Unit		D	%Rec	%Rec Limits	
Arsenic	ND			1.00	1.07		mg/L		-	107	75 - 125	
Antimony	ND			1.00	1,04	- 1	mg/L			104	75 - 125	
Barium	0.050	1		1.00	1.08		mg/L			103	75 - 125	
Cadmium	ND			1.00	1.05		mg/L	1		105	75 - 125	
Chromium	ND	1		1.00	1.05		mg/L			105	75 - 125	
Beryllium	ND	t.		1.00	1.06		mg/L			106	75 - 125	
Lead	ND	1	1	1.00	1.05		mg/L			105	75 - 125	
Selenium	ND		1	1.00	1.11		mg/L			111	75 - 125	
Silver	ND	2 8		0.500	0.505		mg/L			101	75 - 125	
Nickel	ND			1.00	1.05		mg/L			105	75 - 125	

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 860-102388/1-A

Matrix: Solid

Analysis Ratch: 102487

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch: 102487								Prep Batch	102200
A. A.	MB	MB						riep baten	. 102300
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020		ma/l				Dirac
	1		0.00020		mg/L		05/09/23 11:20	05/09/23 18.19	1

Eurofins Houston

Page 23 of 34

5/11/2023

LCS LCS

LCSD LCSD

Result

0.00204

Qualifier

Qualifier

MDL Unit

MS

MSD MSD

Result

0.00213

Result

0.00211

mg/L

Qualifier

Qualifier

NONE Unit

DU DU

Result

97.5

2.5

Qualifier

%

%

1 114

%

%

Unit

mg/L

Unit

mg/L

Unit

mg/L

Result

0.00210

Spike

Added

Spike

Added

0.00020

Spike

Added

0.00200

Spike

Added

0100200

0.00200

0.00200

Method: 7470A - Mercury (CVAA) (Continued)

LB LB

ND

Sample

Qualifier

Qualifier

MB MB

Qualifier

Result

0.2

99.8

Sample Sample

Qualifier

Result

Sample

Result

Sample Sample

Result

0.00021

0.00021

Result Qualifier

Lab Sample ID: LCS 860-102388/2-A Matrix: Solid

Analysis Batch: 102487

Lab Sample ID: LCSD 860-102388/3-A Matrix: Solid

Analysis Batch: 102487

Analyte

Lab Sample ID: LB 860-102256/1-D

Matrix: Solid

Mercury

Mercury

Analysis Batch: 102487

Analyte

Mercury Lab Sample ID: 860-48165-A-1-H MS

Matrix: Solid

Analysis Batch: 102487

Mercury

Lab Sample ID: 860-48165-A-1-I MSD Matrix: Solid

Analysis Batch: 102487

Analyte

Mercury

Method: Moisture - Percent Moisture

Lab Sample ID: MB 860-102147/1 Matrix: Solid

Analysis Batch: 102147

Percent Moisture

Percent Solids

Lab Sample ID: 860-48490-B-1 DU

Matrix: Solid

Analysis Batch: 102147

Analyte

97.4 Percent Moisture 2.6 Percent Solids

Prep Batch: 102388

Client Sample ID: Lab Control Sample

%Rec Limits 105 80 - 120

Prepared

%Rec

D

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 102388

Prep Type: Total/NA

%Rec Limits Limit Unit 102 80 - 120 mg/L

Client Sample ID: Method Blank

Prep Type: TCLP

Prep Batch: 102388

Analyzed Dil Fac 05/09/23 18:53 05/09/23 11:21

Client Sample ID: Matrix Spike

Prep Type: TCLP

Prep Batch: 102388

%Rec Limits

95 75 - 125

Client Sample ID: Matrix Spike Duplicate

Prep Type: TCLP

Prep Batch: 102388 %Rec RPD

Limit Limits 75 - 125 20

Client Sample ID: Method Blank

Prep Type: Total/NA

Dil Fac Analyzed 05/08/23 08:28 05/08/23 08:28

Client Sample ID: Duplicate

Prep Type: Total/NA

RPD Limit 20 20

Eurofins Houston

5/11/2023

Page 24 of 34

NONE

oject/Site: For Bend Cou	inty MUD 30		F 9			A THE PERSON NAMED IN
C/MS VOA				1		ACT NOTES
nalysis Batch: 102314		***			**************************************	Managara da da da da da da da da da da da da da
Lab Sample ID	Client Sample ID		Prep Type	Matrix	Method	Prep Batch
LB 860-102319/1-A	Method Blank		TCLP	Solid	8260C	107319
MB 860-102314/10	Method Blank		Total/NA	Solid	8260C	
CS 860-102314/3	Lab Control Sample		Total/NA	Solid	8260C	
LCSD 860-102314/4	Lab Control Sample Dup		Total/NA	Solid	8260C	
860-48516-A-1-D MS	Matrix Spike		TCLP	Solid	8260C	102319
bis-la Databa 400045	- Aller			SHARIDE		
nalysis Batch: 102315	1					
Lab Sample ID	Client Sample ID		Prep Type	Matrix	Method	Prep Batch
860-48518-1	FBC 30 Digester c		TCLP	Solid	8260C	102319
MB 860-102315/19	Method Blank		Total/NA	Solid	8260C	
LCS 860-102315/1013	Lab Control Sample		Total/NA	Solid	8260C	
LCSD 860-102315/14	Lab Control Sample Dup		Total/NA	Solid	8260C	
each Batch: 102319	PER STATE OF THE S			1		
Lab Sample ID	Client Sample ID		Prep Type	Matrix	Method	Prep Batch
860-48518-1	FBC 30 Digester c		TCLP	Solid	1311	
.B 860-102319/1-A	Method Blank		TCLP	Solid	1311	
860-48516-A-1-D MS	Matrix Spike		TCLP	Solid	1311	
C/MS Semi VOA				J 100	entra se ser	
each Batch: 102256	(I) I I	1	1 1 1	1 1		
Lab Sample ID	Client Sample ID		Prep Type	Matrix	Method	Prep Batch
360-48518-1	FBC 30 Digester c	my por	TCLP	Solid	1311	in sumbir the
LB 860-102256/1-E	Method Blank		TCLP	Solid	1311	
860-48490-A-1-E MS	Matrix Spike		TCLP	Solid	1311	
B-4-1- 400404						
rep Batch: 102484	the first section of the first					
_ab Sample ID	Client Sample ID		Prep Type	Matrix	Method	Prep Batch
860-48518-1	FBC 30 Digester c		TCLP	Solid	3510C	102256
.B 860-102256/1-E	Method Blank		TCLP	Solid	3510C	102256
MB 860-102484/1-A	Method Blank		Total/NA	Solid	3510C	
.CS 860-102484/2-A	Lab Control Sample		Total/NA	Solid	3510C	
.CSD 860-102484/3-A	Lab Control Sample Dup		Total/NA	Solid	3510C	
60-48490-A-1-E MS	Matrix Spike		TCLP	Solid	3510C	102256
nalysis Batch: 102521	The state of the s		Ĩ			
ah Samala ID	Client Samuela ID		Deep Trees	*******		
_ab Sample ID _B 860-102256/1-E	Client Sample ID Method Blank		Prep Type TCLP	Matrix Solid	Method 8270D	Prep Batch 102484
TO TOP TOP TOP TOP	mosilod bidiin					102484
MB 860-102484/1-A	Method Blank		Total/NA	Solid	8270D	102484

Eurofins Houston

Total/NA

Total/NA

Total/NA

Prep Type

TCLP

TCLP

MB 860-102484/1-A

LCS 860-102484/2-A

860-48490-A-1-E MS

Lab Sample ID

860-48518-1

LCSD 860-102484/3-A

Analysis Batch: 102631

Method Blank

Matrix Spike

Client Sample ID

FBC 30 Digester c

Lab Control Sample

Lab Control Sample Dup

Solid

Solid

Solid

Solid

Matrix

Solid

8270D

8270D

8270D

8270D

Method

8270D

102484

102484

102484

102484

Prep Batch

102484

QC Association Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD 30

Job ID: 860-48518-1

~	~	0	_	1	: 1	11	~	A
G	L	3	eı	ш	١,	V١	J	м

LB 860-102256/1-G

MB 860-102544/1-A

Method Blank

Method Blank

Lab Sample ID	Client Sample ID			Prep Type	Matr	x	Method	€	Prep Batch
860-48518-1	FBC 30 Digester c			Total/NA	Solid		3550C		p outor
MB 860-102044/1-A	Method Blank	ŧ		Total/NA	Solid	1.4.1	3550C	4 - 1	ì
LCS 860-102044/2-A	Lab Control Sample			Total/NA	Solid		3550C		
LCSD 860-102044/3-A	Lab Control Sample Dup			Total/NA	Solid		3550C		
860-48444-B-4-B MS	Matrix Spike			Total/NA	Solid		3550C		
860-48444-B-4-C MSD	Matrix Spike Duplicate			Total/NA	Solid		3550C		
Analysis Batch: 102105					1	1	F		
Lab Sample ID	Client Sample ID			Prep Type	Matr	ix	Method		Prep Batch
860-48518-1	FBC 30 Digester c			Total/NA	Solid		8082A		102044
MB 860-102044/1-A	Method Blank			Total/NA	Solid		8082Å		102044
LCS 860-102044/2-A	Lab Control Sample	(Total/NA	Solid		8082A		102044
LCSD 860-102044/3-A	Lab Control Sample Dup			Total/NA	Solid		8082A	1	102044
860-48444-B-4-B MS	Matrix Spike			Total/NA	Solid		8082A		102044
860-48444-B-4-C MSD	Matrix Spike Duplicate	1 1		Total/NA	Solid		8082A	Ė	102044
Leach Batch: 102256							1		
Lab Sample ID	Client Sample ID			Prep Type	Matr		Method		Prep Batch
860-48518-1	FBC 30 Digester c			TCLP	Solid		1311		riep batti
LB 860-102256/1-F	Method Blank			TCLP	Solid		1311		
LB 860-102256/1-G	Method Blank			TCLP	Solid		1311		
Lab Sample ID 860-48518-1	Client Sample ID FBC 30 Digester c			TCLP	Matr Solid		Method 8081B		Prep Batch 102544
LB 860-102256/1-G	Method Blank			TCLP	Solid		8081B		102544
MB 860-102544/1-A	Method Blank	1	1 1	Total/NA	Solid	1 1 1 1 1 1 1	8081B	1	102544
LCS 860-102544/2-A	Lab Control Sample		340 9	Total/NA	Solid	I	8081B		102544
LCSD 860-102544/3-A	Lab Control Sample Dup			Total/NA	Solid	. Il instruction	8081B		102544
Prep Batch: 102500				1					
Lab Sample ID	Client Sample ID			Prep Type	Mati	ix	Method		Prep Batch
860-48518-1	FBC 30 Digester c			TCLP	Solid	1	3511		102256
LB 860-102256/1-F	Method Blank			TCLP	Solid	1	3511		102256
MB 860-102500/1-A	Method Blank			Total/NA	Solid	1	3511		
LCS 860-102500/2-A	Lab Control Sample			Total/NA	Solid	d	3511	i	
LCSD 860-102500/3-A	Lab Control Sample Dup	į,		Total/NA	Solid	t	3511	1 12 13	in the Residence
Analysis Batch: 102528					1	T		-	
Lab Sample ID	Client Sample ID	l i	Harring	Prep Type	Mate		Method		Prep Batch
860-48518-1	FBC 30 Digester c			TCLP	Soli		8151A		102500
LB 860-102256/1-F	Method Blank			TCLP	Soli	1	8151A		102500
MB 860-102500/1-A	Method Blank			Total/NA	Soli		8151A		102500
LCS 860-102500/2-A	Lab Control Sample		1	Total/NA	Soli		8151A		102500
LCSD 860-102500/3-A	Lab Control Sample Dup			Total/NA	Soli	d	8151A		10250
Prep Batch: 102544					c				
Lab Sample ID	Client Sample ID			Prep Type	Mat	rix	Method		Prep Batch
860-48518-1	FBC 30 Digester c			TCLP	Soli	d	3510C		102256
					Call		25100		102256

Eurofins Houston

3510C

3510C

Solid

Solid

102256

TCLP

Total/NA

Project/Site: For Bend Cou	tal Laboratory Inc.				300	ID: 860-48518-1
GC Semi VOA (Contir						
Prep Batch: 102544 (Cont	tinued)			p	enun Strott, IVII.	Francis et applica
Lab Sample ID	Client Sample ID	100	Prep Type	Matrix	Method	Deep Gesel
LCS 860-102544/2-A	Lab Control Sample		Total/NA	Solid	3510C	Prep Batc
LCSD 860-102544/3-A	Lab Control Sample Dup		Total/NA	Solid	3510C	
Metals						
each Batch: 102256					They	r sharp, dayle
Lab Sample ID	Client Sample ID		Prep Type	Matrix	Method	Prep Batc
860-48518-1	FBC 30 Digester c		TCLP	Solid	1311	
LB 860-102256/1-C	Method Blank		TCLP	Solid	1311	
LB 860-102256/1-D	Method Blank		TCLP	Solid	1311	
860-48165-A-1-H MS	Matrix Spike		TCLP	Solid	1311	
860-48165-A-1-I MSD	Matrix Spike Duplicate		TCLP	Solid	1311	
860-48516-A-1-F MS	Matrix Spike		TCLP	Solid	1311	
Prep Batch: 102374						
Lab Sample ID	Client Sample ID		Prep Type	Matrix	Method	Prep Batc
860-48518-1	FBC 30 Digester c		TCLP	Solid	3010A	10225
LB 860-102256/1-C	Method Blank		TCLP	Solid	3010A	10225
MB 860-102374/1-A	Method Blank		Total/NA	Solid	3010A	10223
LCS 860-102374/2-A	Lab Control Sample		Total/NA	Solid	3010A	
LCSD 860-102374/3-A	Lab Control Sample Dup		Total/NA	Solid	3010A	
830-3498-A-2-C MSD ^5	Matrix Spike Duplicate		Total/NA	Solid		
860-48516-A-1-F MS	Matrix Spike Duplicate		TCLP	Solid	3010A 3010A	10225
- Prep Batch: 102388						10220
Lab Sample ID	Client Samuel ID	1	Bran band	Matrix	**-**	
860-48518-1	Client Sample ID FBC 30 Digester c		Prep Type TCLP	Solid	Method 7470A	Prep Batcl
LB 860-102256/1-D	Method Blank		TCLP	Solid		
MB 860-102388/1-A	Method Blank		Total/NA	Solid	7470A	10225
					7470A	
LCS 860-102388/2-A	Lab Control Sample		Total/NA	Solid	7470A	
LCSD 860-102388/3-A	Lab Control Sample Dup		Total/NA	Solid	7470A	
860-48165-A-1-H MS 860-48165-A-1-I MSD	Matrix Spike Matrix Spike Duplicate		TCLP	Solid Solid	7470A	10225
analysis Batch: 102487	Wath Spine Depicale		1	Solid	7470A	102256
• · · · · · · · · · · · · · · · · · · ·	L			-A-v		
Lab Sample ID 860-48518-1	Client Sample ID FBC 30 Digester c		Prep Type	Matrix	Method	Prep Batci
The state of the s	Statement was a second or such that a second or second o		TCLP	Solid	7470A	10238
LB 860-102256/1-D	Method Blank		TCLP	Solid	7470A	10238
MB 860-102388/1-A	Method Blank		Total/NA	Solid	7470A	10238
LCS 860-102388/2-A LCSD 860-102388/3-A	Lab Control Sample		Total/NA	Solid	7470A	10238
11.511 800 ETO 2008/3-A	Lab Control Sample Dup		Total/NA	Solid	7470A	10238
860-48165-A-1-H MS	Matrix Spike		TCLP	Solid	7470A	102388

Eurofins Houston

Prep Type

TCLP

TCLP

Total/NA

Total/NA

Total/INA

Matrix

Solid

Solid

Solid

Solid

Solid

Method

6010B

6010B

6010B

6010B

6010B

Lab Sample ID

LB 860-102256/1-C

MB 860-102374/1-A

LCS 860-102374/2-A

LCSD 860-102374/3-A

860-48518-1

Client Sample ID

Method Blank

Method Blank

FBC 30 Digester c

Lab Control Sample

Lab Control Sample Dup

Prep Batch

102374

102374

102374

102374

102374

QC Association Summary Client: Eastex Environmental Laboratory Inc. Job ID: 860-48518-1 Project/Site: For Bend County MUD 30 Metals (Continued) 1 111 Analysis Batch: 102516 (Continued) Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch 830-3498-A-2-C MSD ^5 Matrix Spike Duplicate Total/NA Solid 6010B 102374 5 860-48516-A-1-F MS Matrix Spike TCLP Solid 6010B 102374 **General Chemistry** 6 Analysis Batch: 102147 Lab Sample ID Matrix Client Sample ID Prep Type Method Prep Batch 860-48518-1 FBC 30 Digester c Total/NA Solid Moisture 8 MB 860-102147/1 Total/NA Solid Method Blank Moisture 860-48490-B-1 DU Total/NA Solid Duplicate Moisture 9

Page 28 of 34

Eurofins Houston

5/11/2023

Lab Chronicle

Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD 30

Job ID: &60-48518-1

Client Sample ID: FBC 30 Digester c

Date Collected: 04/28/23 10:15 Date Received: 05/02/23 10:15

Lab Sample ID: 860-48518-1

Matrix: Solid

Prep Type	Batch Type	Batch Method	Run	Dil	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	A	SA SET SALES
TCLP	Leach	1311			1.0 g	1.0 mL	102319	05/08/23 14:00	Analyst SYB	Lab
1 1		10.1			F	1	Completed:	05/09/23 06:00 1	SID	EET HOL
TCLP	Analysis	8260C		50	5 mL	5 mL	102315	05/09/23 17:39	TTD	EET HOL
TCLP	Leach	1311			1.0 g	1.0 mL	102256	05/08/23 13:00	EMC	EET HOU
							Completed:	05/09/23 05:00 1		
TCLP	Prep	3510C			200 mL	1 mL	102484	05/09/23 18:27	RC	EET HOU
TCLP	Analysis	8270D		5			102631	05/11/23 02:17	PXS	EET HOU
TCLP	Leach	1311	7		1.0 g	1.0 mL	102256	05/08/23 13:00	EMC	EET HOU
			1 1				Completed:	05/09/23 05:00 1	1077/10. 2 2	
CLP	Prep	3510C	1		200 mL	2 mL	102544	05/10/23 11:17	ВН	EET HOU
TCLP	Analysis	8081B		1	1 mL	1 mL	102466	05/10/23 16:43	BNW	EET HOU
CLP	Leach	1311			1.0 g	1.0 mL	102256	05/08/23 13:00	EMC	EET HOU
	É						Completed:	05/09/23 05:00 1		2211100
CLP '	Prep	3511	1		50.2 mL	4 mL	102500	05/09/23 18:39	JN	EET HOU
CLP	Analysis	8151A		1		,	102528	05/10/23 22:54	WP	EET HOU
CLP	Leach	1311	1		1.0 g	1.0 mL	102256	05/08/23 13:00	EMC	EET HOU
			1				Completed:	05/09/23 05:00 1	CIVIO	EET HOU
CLP	Prep	301DA	1		10 mL	50 mL	102374	05/09/23 10:30	MD	EET HOU
CLP	Analysis	6010B		1			102516	05/09/23 17:27	JDM	EET HOU
CLP	Leach	1311			1.0 g	1.0 mL	102256	05/08/23 13:00	EMC	EET HOU
			le-				Completed:	05/09/23 05:00 1	LIVIO	EE1 HOU
CLP	Prep	7470A	1	f	50 mL	50 mL	102388	05/09/23 11:21	PB	EET HOU
CLP	Analysis	7470A		1			102487	05/09/23 19:11	SHZ	EET HOU
otal/NA	Analysis	Moisture	1	1			102147	05/08/23 08:28	JM	EET HOU

Client Sample ID: FBC 30 Digester c

Date Collected: 04/28/23 10:15 Date Received: 05/02/23 10:15

Lab Sample ID: 860-48518-1

Matrix: Solid

Percent Solids: 1.2

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed		
Total/NA	Prep	3550C			1.04 g				Analyst	Lab
Total/NA					1.04 g	5 mL	102044	05/06/23 08:22	OH	EET HOU
	Analysis	8082A ated length of time	1	1			102105	05/09/23 01:25	WP	EET HOU

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Page 29 of 34

5/11/2023

Accreditation/Certification Summary

Clienti Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD 30

Job IDI 860-48518-1

1 111

1 1111

1 | 1;

Laboratory: Eurofins Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date		
Arkansas DEQ	State	88-00759	08-04-23		
Florida	NELAP	E871002	06-30-23		
Louisiana	NELAP	03054	06-30-23	- 11	
Louisiana (All)	NELAP	03054	06-30-23	1	
Oklahoma	State	1306	08-31-23	100	1
Texas	NELAP	T104704215-23-50	06-30-23		
Texas	TCEQ Water Supply	T104704215	12-28-25	9 E	
USDA	US Federal Programs	525-23-79-79507	03-20-26	1	

Method Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: For Bend County MUD 30

Job ID: 860-48518-1

Method		Method Description			!				Protocol	Laboratory
8260C		Volatile Organic Compounds by GC/MS	TYLE I						SW846	EET HOU
8270D		Semivolatile Organic Compounds (GC/MS)					1		SW846	EET HOU
8081B		Organochlorihe Pesticides (GC)							SW846	EET HOU
8082A		Polychlorinated Biphenyls (PCBs) by Gas Chromat	ography						SW846	EET HOU
B151A		Herbicides (GC)							SW846	EET HOU
6010B		Metals (ICP)	1						SW846	EET HOU
7470A		Mercury (CVAA)							SW846	EET HOU
Moisture		Percent Moisture							EPA	EET HOU
311		TCLP Extraction							SW846	EET HOU
3010A	ļ	Preparation, Total Metals		Į.	1	1	4	1	SW846	EET HOU
3510C		Liquid-Liquid Extraction (Separatory Funnel)							SW846	EET HOU
3511		Microextraction of Organic Compounds							SW846	EET HOU
3550C		Ultrasonic Extraction							SW846	EET HOU
6030C		Purge and Trap							SW846	EET HOU
7470A		Preparation, Mercury							SW846	EET HOU

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods". Third Edition, November 1986 And Its Updates.

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

911

2

3

4

6

7

8

9

12

13

14

15

Sample Summary

Client: Eastex Environmental Laboratory Inc.

Project/Site: For Bend County MUD 30

Job ID: 860-48518-1

+ 114

i i lii

 Lab Sample ID
 Client Sample ID
 Matrix
 Collected
 Received

 860-48518-1
 FBC 30 Digester c
 Solid
 04/28/23 10:15
 05/02/23 10:15

2

2

3

5

6

7

8

9

12

13

B

PO Box 1089 Coldspring, Texas 77331 Website eastexlabs com Email. eastexlab@eastex.net Tel. 936 653 3249

SUBCONTRACT ORDER

Sending Laboratory:

Eastex Environmental Laboratory - Coldspring PO Box 1089 Coldspring, TX 77331 Phone 936-653-3249 Fax 936-653-3172

111 1

Subcontracted Laboratory:

Eurofins Xenco LLC 4147 Greenbriar Dr Stafford, TX 77477 Phone: 713-690-4444 Fax. 713-690-5646

PO 050223C

PROJECT NAME

Fort Bend County MUD 30

Turnaround

(C)DAYS

Matrix

Waste

Containers Date

4/28/23 9 35 am

Time

EEL Sample ID FBC 30 Digester

Special Instructions:

111 1

Sample Type Grab

Sample No. G3D5824-01 Analysis to be Performed

TCLP SUBCONTRACT

Grab

PCB SUBCONTRACT

See Attached

FULL TCLP REPORT, PCB MG/KG %SOLIDS

IR ID:HOU-344 C/F -02

Corrected Temp: 0 . 9

Received Iced Y/N

Temp

Received

PRINT DATE/TIME. 5/1/2023 / 1.47 25PM

sco_PrimaryForm rpt.02122019

Page 33 of 34

Page 1 of 1 5/11/2023

Login Sample Receipt Checklist

Client: Eastex Environmental Laboratory Inc.

Job Number: 860-48518-1

Login Number: 48518 List Number: 1 List Source: Eurofins Houston

List Nun	nber: 1	
Creator:	Rubio,	Yur

Question	The state of the s	Answer	Comment	
The cooler's custody seal, if present, is intact.	house of	True		William Property
Sample custody seals, if present, are intact.		True		
The cooler or samples do not appear to have been compromised o tampered with.	ring.	True		
Samples were received on ice.		True		destrict points shorts
Cooler Temperature is acceptable.		True	E INVEST	23.10.001408.1611-1
Cooler Temperature is recorded.	1 1	True	+ (4))	1 1
COC is present.		True		
COC is filled out in ink and legible.		True	j	
COC is filled out with all pertinent information.		True		
Is the Field Sampler's name present on COC?		True		
There are no discrepancies between the containers received and t	he COC.	True	1 .	
Samples are received within Holding Time (excluding tests with important HTs)		True	1.	
Sample containers have legible labels.		True	1	I Film, Cluster
Containers are not broken or leaking.		True	,	Fire Send County with Si-
Sample collection date/times are provided.		True	- I	
Appropriate sample containers are used.		True	and the second	
Sample bottles are completely filled.		True		The second secon
Sample Preservation Verified.		True		1
There is sufficient vol. for all requested analyses, incl. any request MS/MSDs	ed	True	, [
Containers requiring zero headspace have no headspace or bubb	le is	True	und del mail	

Eurofins Houston

<6mm (1/4").

Page 34 of 34

1 111

5/11/2023

EASTEX ENVIRONMENTAL LABORATORY, INC.

P.O. Box 1089 * Coldspring, TX 77331 P.O. Box (936) 653-3249 * (800) 525-0508 (936) 569

www.eastexlabs.com

P.O. Box 631375 * Nacogdoches, TX 75963-1375 (936) 569-8879 * FAX (936) 569-8951

White Copy-Follows Samples Yellow Copy-Laboratory Pink Copy-Client Copy

REPORT TO:		_	INVOICE TO:	0																		
: 3	00		Company:	יאָר					Ren	Remarks:				2	\dashv	1		4	\dashv	-	-	
			Address:	- 1	SAME								-	STE				_	-	_		
**	on 2:10													QUE	_	_	_	_	_	_		
Attn:			Attn:						Ш					S RE	1.		_	_	-			-
Phone#:		-	Phone#:	•										LYSI				_	_	_		-
Email:			INSTRUCTIONS:	TIONS:										NAMA S	d		_					-
P.O. #:			C or G:	ဂူ	C= Composite	G= Grab	0							1	1	_	-	_	_			
1		>	Matrix:	DW	= Drinking	DW=Drinking Water WW=Wastewater SO=Soil/Sludge OT= Other	/W=Wast	ewater	SO=Soil/	Sludge	OT= OH	ъ		7	1	_	_			_	_	
Sampler's Name (print):		-	Container Size:		àallon 2= 25mL (4o:	1=Galion 2=1/2 Galion 3=Quart/Liter 4=500mL 5=250mL 6=125mL (4oz) 7=60mL (2 oz) 8= 40mL Vial 9=Other	3=Quar L (2 oz) 8	t/Liter '	4=500mL Vial 9=C	5=250 ther	具	!		-{	20							
Sampler's Signature:			Type:	P	Plastic G	P= Plastic G= Glass T= Teflon S= Sterile	= Teflon	S= Steri	ø					7	5				+		_	-
)	4		Preservatives:		Sodium T	C=Chilled S=Sulfuric Acid N=Nitric Acid ST=Sodium Thiosulfate H=HCL O= Other	Acid N=	Nitric Aci		B=Base/Caustic		Z= Zn Acetate		5	[1				_	-	_	-
FIDIOR Mailies 710	いうそり	VC		H		Fie	Field Data			H	Cont	ontainers		I		-				_	_	on quantum
Work Order ID	Sample ID	Date	Time Ma	Matrix C or G	re Do	O PH	H CI2	2 Flow	W Temp	*	Size	100	Pres		+				_	_	-	L
E3D5824	Digester	85 x00 x18C1)U3K 5	\vdash	4					¥	I	9	~	1	+	<u> </u>		_		-		
	Digistr) select	13 Jan 30	9	-			-		-	S	0	C						_	_		
	U					1	*	-													-	-
																						-
			-				-		-		İ			_	-				-		1	-
	·			!			1		-					!				-			-	-
	4		1					-		-			1		+					1 8	+	-
	F				1			1	-						+++	-+						-
		117			- !!				_						!				V			
	ļ																					_
		-									İ											
Relinquished By:			Re	Received By:	.π ₈						Date			Time	1	!	Rece	Received Iced:	ced:	YES	NO NO	
Relinquished By:		1	Re	Received By:	ву:						Date			Time	1		Rece	Received Iced:	ced:		<u>~ 1</u>	
Refinquished By:		•	Rec	ceived By a	Received By and/or Checked in By:	ked in By:	C_{I}		ı		PER	50	5	Time \		6	Rece	Received Iced:	~	YES	NO	
LAB USE ONLY	Sample	Sample Condition Acceptable:	cceptable		YES) /	No			Temp C	17	*Therm ID	1089g	Loaged in By:)	Date	.	Time	Ö	-
Alternate Check In:			Date			Time		7	2		S	1				5	4-78-73	73	_	ohs!	J	

1 [1]

11 []

l i thi

Email: lab@nwdsls.com

www. NWDLS.com

TCEQ Lab ID #: TX204, Accreditation ID: T104704238

October 20, 2023

LABORATORY REPORT

John Montgomery Municipal Operations and Consulting 27316 Spectrum Way Oak Ridge, TX 77385

Report ID: 20231020084017Sta..

RE: HC MUD 26 - Non Potable - Class B Annual

The following test results meet all NELAP requirements for analytes for which certification is available. Any deviations from our quality system will be noted in the case narrative. All analyses performed by North Water District Laboratory Services, Inc. unless noted.

For questions regarding this report, contact Monica Martin at 936-321-6060.

Sincerely,

Stations For Deena Higginbotham Director of Client Services

Master Spreadsheet ☐ TCLP ☐ Metals

	PCF
_	

Email: lab@nwdsls.com

www. NWDLS.com

TCEQ Lab ID #: TX204, Accreditation ID: T104704238

Municipal Operations and Consulting

27316 Spectrum Way Oak Ridge, TX 77385 Project: HC MUD 26 - Non Potable - Class B Annual

Project Number: 4

Project Manager: John Montgomery

Reported:

10/20/2023 08:40

Sample Results

Client Sample ID:

Digester

Lab Sample ID:

23J3697-01

Sample Matrix:

Solid

Date Collected:

10/16/2023 10:00

Collected by:

Jose Gutierrez

Method	Analyte	Result Q	Units	Batch	Date Analyzed	Analyst
Colilert-18	Fecal coliforms	148000	MPN/g TS dry	BGJ2544	10/17/2023 10:46	ЈКВ
Colilert-18	Fecal coliforms	69500	MPN/g TS dry	BGJ2544	10/17/2023 10:46	JKB
Colilert-18	Fecal coliforms	125000	MPN/g TS dry	BGJ2544	10/17/2023 10:46	JKB
Colilert-18	Fecal coliforms	59600	MPN/g TS dry	BGJ2544	10/17/2023 10:46	ЈКВ
Colilert-18	Fecal coliforms	75900	MPN/g TS dry	BGJ2544	10/17/2023 10:46	ЈКВ
Colilert-18	Fecal coliforms	78200	MPN/g TS dry	BGJ2544	10/17/2023 10:46	ЈКВ
Colilert-18	Fecal coliforms	103000	MPN/g TS dry	BGJ2544	10/17/2023 10:46	JKB
SM 2710 B	Specific Oxygen Uptake Rate (SOUR)	0.428	mg O2/hr/g TS @ 20°C dry	BGJ2584	10/17/2023 09:00	AKA
SM 2550 B	Temperature °C Field	20.9	°C	BGJ2651	10/16/2023 10:00	JG
SM 2540 G	% Solids	1.61 V	%	BGJ2580	10/18/2023 10:00	JRU

The total solids is diluted to <=2.0% for the S.O.U.R. test when necessary.

CLASS B - Pass

Per Title 30, Texas Administrative Code, Chapter 312, for a Class B to pass, the fecal coliform geometric mean must be less than or equal to 2,000,000 CFU/ug TS and the S.O.U.R must be less than or equal to 1.5 mg O2/hr/g TS.

e5 a 200 95 a 200 94 1 11.43 1,5

Email: lab@nwdsls.com

www. NWDLS.com

TCEQ Lab ID #: TX204, Accreditation ID: T104704238

Municipal Operations and Consulting 27316 Spectrum Way

Project: HC MUD 26 - Non Potable - Class B Annual

Project Number: 4

Project Manager: John Montgomery

Reported:

10/20/2023 08:40

Quality Control

General Chemistry

Oak Ridge, TX 77385

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGJ2580 - Percen	nt Solids					1.1.	Minchell 24	MARKET SERVICE	
Blank (BGJ2580-BLK1)			Pre	pared: 10/17	/2023 Analyze	ed: 10/18/20	23		
% Solids	<0.100U	0.100	%		121				
Duplicate (BGJ2580-DUP1)	Sour	ce: 23J3698-01	Pre	pared: 10/17	7/2023 Analyze	ed: 10/18/20	23		
% Solids		0.100	%		1,62			0.126	20
Duplicate (BGJ2580-DUP2)	Sour	ce: 23J3792-06	Pre	pared: 10/17	7/2023 Analyz	ed: 10/18/20	23		
% Solids		0.100	%		0.436			0.278	30
Reference (BGJ2580-SRM1)			Pre	pared: 10/17	7/2023 Analyz	ed: 10/18/20	23		
% Solids		0.100	%	0.350		110	78.9-118		

Email: lab@nwdsls.com

www. NWDLS.com
TCEQ Lab ID #: TX204, Accreditation ID: T104704238

Project: UC MUD 25 N

Municipal Operations and Consulting 27316 Spectrum Way Oak Ridge, TX 77385

Project: HC MUD 26 - Non Potable - Class B Annual

Project Number: 4
Project Manager: John Montgomery

Reported:

10/20/2023 08:40

Quality Control (Continued)

Microbiology

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit

Batch: BGJ2544 - FC Quantitray

Blank (BGJ2544-BLK1) Fecal coliforms

<10.0U

 $\mbox{Prepared: } 10/16/2023 \mbox{ Analyzed: } 10/17/2023 \\ 10.0 \mbox{ MPN/g TS}$

wet

Duplicate (BGJ2544-DUP1) Fecal coliforms

Source: 23J3697-01

Prepared: 10/16/2023 Analyzed: 10/17/2023

621 MPN/g TS

148000

32.2

200

Email: lab@nwdsls.com

www. NWDLS.com

TCEQ Lab ID #: TX204, Accreditation ID: T104704238

Municipal Operations and Consulting

Dofinition

27316 Spectrum Way Oak Ridge, TX 77385 Project: HC MUD 26 - Non Potable - Class B Annual

Project Number: 4

Project Manager: John Montgomery

Reported:

10/20/2023 08:40

Term and Qualfier Definitions

item	Definition	
U	Non-detected compound.	
V	Analyte was detected in both sample and method blank.	
DF	Dilution Factor - the factor applied to the reported data due to sample preparation, dilution, or moisture content	
RPD	Relative Percent Difference	
%REC	Percent Recovery	
Source	Sample that was matrix spiked or duplicated	

CHAIN OF CUSTODY RECORD

North Water District Laboratory Services
130 S. Trade Center Pkwy, Conroe Tx 77385
(936) 321-6060 - lab@nwdls.com

2313697 Page 1 of 1

TCEQ T104704238-23-39

Lab PM : Deena Higginbotham	Project Name : HC MUD 26 - Non Potable - Class B Annual	
Municipal Operations and Consulting John Montgomery 27316 Spectrum Way Oak Ridge, TX 77385 Phone: (281) 367-5511	Project Comments: 21615 Dawn Timbers Ct Humble 77338 Gate Combo 2146 Mikey Sarricolea 281-825-1854 MUST CALL OPERATOR 30 BEFORE ARRIVAL	Schedule Comments.

Field Results	Temp C Field 26.9c
	Na2S2O3 Tem <10°C 4°C 4°C 4°C 4°C
Analysis/Preservation	FC/CB-QT-LR SOUR-2710 SOUR TS-2540 G TS-2540 G
Container	A HDPE \$150mL Na2S203 B HDPE \$150mL Na2S203 C HDPE \$150mL Na2S203 D HDPE \$150mL Na2S203 F HDPE \$150mL Na2S203 G HDPE \$150mL Na2S203 G HDPE \$150mL Na2S203 G HDPE \$150mL Na2S203
Sample Type	S Grab
Date/Time Sampled	10/16/2022/10:00 s Grab
Date/Time Begin	
Sample ID Collection Point	Digester
Sample ID	23J3697-01 Digester

Field Remarks:			Lab Preservation: H2SO4 (Circle and Write ID Below)	HZSO4 HNO3	МаОН	Other.
Sampler (Signature)	Relinquished By: (Signature)		Date/Time	Received By: (Signature)		Date/Time
Print Name TOSE (TLUTICY NCZ	Refinquished By. (Signature)		Date/Time	Received By: (Signature)		Date/Time
Affiliation NWD/S	Relinquished To Lab By: (Signature)	Bru B.	Date/Time	Received for Laboratory By (Signature)	nature) PoP	Date/Time 125
Custody Seal: Yes / No Container Intact: Yes / No	COC Labels Agree: Yes / No Appropriate Containers: Yes / No	Appropriate Volume: Yes / No Coolers Intact. Yes / No		Received on Ice: Yes / No Samples Accepted: Yes / No	Temperature: Thermometer ID:	ů
Spring South					wko_NWDLS_COC_LS!	wko_NWDLS_COC_LS Revision 4.1 Effective: 2/7/1/2022

Page 6 of 6

www. NWDLS.com

November 17, 2023

Laboratory Report

John Montgomery Municipal Operations and Consulting 27316 Spectrum Way Oak Ridge, TX 77385

Report ID: 20231117112001AEN

Xc No

The following test results meet all NELAP requirements for analytes for which certification is available. Any deviations from our quality system will be noted in the case narrative. All analyses performed by North Water District Laboratory Services, Inc. unless noted.

For questions regarding this report, contact Monica Martin at 936-321-6060.

Sincerely,

Aundra Noe For Deena Higginbotham

Director of Client Services

DEC 2 9 2023

ENTERED DEC 2 9 2023

Reported: 11/17/2023 11:20

TCEQ T104704238-23-39

Sample Results

Client Sample ID:

Digester

Lab Sample ID: HC MUD 26 - Sewage Sludge Annual

23J3698-01

Sample Matrix:

Solid

Date Collected:

10/16/2023 9:50

Collected by: Jose Gutierrez

								25550		
Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Organics by GC										
SW-8082	PCBs, Total	Α	<1.21U	mg/kg (dry wt) dry	10	0.605	1.21	BGJ3644	10/31/2023 04:46	CDG
SW-8082 SW-8082	Surrogate: 2,4,5,6 Tetrachloro-m-xylene-s Surrogate: Decachlorobiphenyl-surr	suri	119% 125%	60-140 60-140				**********	10/31/2023 04:46 10/31/2023 04:46	
Metals, Total									ELECTRICAL STATES	
SW-6010C	Arsenic	Α	6.23	mg/kg dry	1	0.449	2.05	BGJ3262	10/24/2023 12:07	FAA
SW-6010C	Cadmium	Α	0.969	mg/kg dry	1	0.0532	0.205	BGJ3262	10/24/2023 12:07	FAA
SW-6010C	Chromium	Α	30.7	mg/kg dry	1	0.768	1.03	BGJ3262	10/24/2023 12:07	
SW-6010C	Copper	Α	240	mg/kg dry	5	1.09	10.2	BGJ3262	10/24/2023 12:07	FAA
SW-7471B	Mercury	Α	0.299	mg/kg dry	1	0.0123	0.0245	BGJ4936	10/31/2023 16:22	FAA
SW-6010C	Lead	Α	14.3	mg/kg dry	1	0.522	1.03	BGJ3262	10/24/2023 12:07	AKR
SW-6010C	Molybdenum	Α	7.74	mg/kg dry	1	1.03	1.03	BGJ3262	10/24/2023 12:07	FAA
SW-6010C	Nickel	Α	15.1	mg/kg dry	1	0.277	1.03	BGJ3262	10/24/2023 12:07	FAA
SW-6010C	Potassium	Α	2890	mg/kg dry	1	17.6	205	BGJ3262	10/24/2023 12:07	FAA
SW-6010C	Selenium	Α	13.3	mg/kg dry	1	0.799	2.05	BGJ3262	10/24/2023 12:07	FAA
SW-6010C	Total Phosphorus	Α	15200	mg/kg dry	5	43.0	1020	BGJ3262	10/24/2023 12:07	FAA FAA
SW-6010C	Zinc	Α	1160	mg/kg dry	25	25.7	25.7	BGJ3262	10/24/2023 14:48	FAA
General Chemis	strv			3/.19/		25.7	25.7	5005202	10/2 1/2020 11/10	FAA
EPA 350.2	Ammonia as N	A	12800	mg/kg dry	1	613	1230	BGJ2578	10/17/2023 09:08	CTIAL
SW-9056A	Nitrate as N	Α	65.5	mg/kg dry	1	3.08	7.69	BGJ2669	10/17/2023 03:08	GIW
EPA 351.3	Total Kjeldahl Nitrogen - (TKN)	N	53100	mg/kg dry	1	1510	1510	BGJ3202	10/20/2023 10:59	ORP
SM 2540 G	% Solids	A	1.62V	mg/kg ury %	1	0.100		BGJ2580	10/20/2023 10:39	NAZ
TCLP			1.02 V	70	1	0.100	0.100	DGJ2380	10/16/2023 10:00	JRU
SW-6010C	Arsenic	A	-5.0011	- i				DOMANA	10/20/2022 15.01	
SW-6010C	Barium		<5.00U	mg/L	1	0.0200	5.00	BGJ3041	10/20/2023 15:04	FAA
J., 0010C	barium	Α	<100 V2, U	mg/L	5	0.0500	100	BGJ3041	10/20/2023 15:07	FAA
SW-6010C	Cadmium	Α	<1.00 U	mg/L	1	0.00100	1.00	BGJ3041	10/20/2023 15:04	FAA
SW-6010C	Chromium	Α	<5.00 U	mg/L	1	0.00500	5.00	BGJ3041	10/20/2023 15:04	FAA
SW-8151	2,4-D	Α	<10.0C+, U	mg/L	2	0.000476	10.0	BGJ2829	10/24/2023 01:27	KRB
SW-8151	Silvex (2,4,5-TP)	Α	<1.00 U	mg/L	2	0.000476	1.00	BGJ2829	10/24/2023 01:27	KRB
SW-8151	Surrogate: DCAA-surr		137% S	70-130	*****				10/24/2023 01:27	
SW-7471B	Mercury	Α	<0.200U	mg/L	1.	0.000200	0.200	BGK1044	11/07/2023 15:01	AKR
SW-6010C	Lead	Α	<5.00 U	mg/L	1	0.0100	5.00	BGJ3041	10/20/2023 15:04	FAA
SW-8081	Chlordane (Total)	Α	<0.0300U	mg/L	1	3.00E-6	0.0300	BGJ3693	10/28/2023 09:38	ALA
SW-8081	Endrin	N	<0.0200U	mg/L	1	3.00E-6	0.0200	BGJ3693	10/28/2023 09:38	ALA
				.=27						

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 11/17/2023 11:20

Sample Results (Continued)

Client Sample ID:

Digester (Continued)

(Continued

Sample Matrix: So

Solid

10/16/2023 9:50

Lab Sample ID: 23J3698-01 HC MUD 26 - Sewage Sludge Annual

Date Collected: Collected by:

Jose Gutierrez

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
TCLP (Cont	tinued)		Ald	April 1						pertir san
SW-8081	gamma-BHC (Lindane, gamma-HexachlorocyclohexanE)	Α	<0.400U	mg/L	1	3.00E-6	0.400	BGJ3693	10/28/2023 09:38	ALA
SW-8081	Heptachlor	Α	<0.00800U	mg/L	1	3.00E-6	0.00800	BGJ3693	10/28/2023 09:38	ALA
SW-8081	Heptachlor epoxide	Α	<0.00800U	mg/L	1	3.00E-6	0.00800	BGJ3693	10/28/2023 09:38	ALA
SW-8081	Methoxychlor	Α	<10.0U	mg/L	1	3.00E-6	10.0	BGJ3693	10/28/2023 09:38	ALA
SW-8081	Toxaphene (Chlorinated Camphene)	Α	<0.500C+, U	mg/L	1	3.00E-6	0.500	BGJ3693	10/28/2023 09:38	ALA
SW-8081	Surrogate: 2,4,5,6 Tetrachloro-m-xylene	-suri	89.0%	60-140		FRE ESTATE (1)			10/28/2023 09:38	
SW-8081	Surrogate: Decachlorobiphenyl-surr	3	84.7%	60-140					10/28/2023 09:38	
SW-6010C	Selenium	Α	<1.00U	mg/L	1	0.0200	1.00	BGJ3041	10/20/2023 15:04	FAA
SW-6010C	Silver	Α	<5.00U	mg/L	1	0.00200	5.00	BGJ3041	10/20/2023 15:04	FAA
SW-8270	2,4,5-Trichlorophenol	Α	<400 U	mg/L	1	0.00250	400	BGJ3234	10/20/2023 02:10	krb
SW-8270	2,4,6-Trichlorophenol	Α	<2.00U	mg/L	1	0.00250	2.00	BGJ3234	10/20/2023 02:10	krb
SW-8270	2,4-Dinitrotoluene (2,4-DNT)	Α	<0.130U	mg/L	1	0.00250	0.130	BGJ3234	10/20/2023 02:10	krb
SW-8270	2-Methylphenol	Α	<200U	mg/L	1	0.00250	200	BGJ3234	10/20/2023 02:10	krb
SW-8270	3,4-Methylphenol	Α	<200U	mg/L	1	0.00250	200	BGJ3234	10/20/2023 02:10	krb
SW-8270	Hexachlorobenzene	Α	<0.130U	mg/L	1	0.00250	0.130	BGJ3234	10/20/2023 02:10	krb
SW-8270	Hexachlorobutadiene	Α	<0.500U	mg/L	1	0.00250	0.500	BGJ3234	10/20/2023 02:10	krb
SW-8270	Hexachloroethane	A	<3.00U	mg/L	1	0.00250	3.00	BGJ3234	10/20/2023 02:10	krb
SW-8270	Nitrobenzene	A	<2.00U	mg/L	1	0.00250	2.00	BGJ3234	10/20/2023 02:10	krb
SW-8270	Pentachlorophenol	A	<100U	mg/L	1	0.00250	100	BGJ3234	10/20/2023 02:10	krb
SW-8270	Pyridine	A	<5.00U	mg/L	1	0.00250	5.00	BGJ3234	10/20/2023 02:10	krb
SW-8270	Surrogate: 2-Fluorobiphenyl-surr		78.9%	54.6-148	4 + 4 + 4 + 4 +			rossionour	10/20/2023 02:10	
SW-8270	Surrogate: 2-Fluorophenol-surr		80.7%	55-152					10/20/2023 02:10	
SW-8270	Surrogate: 2,4,6-Tribromophenol-surr		94.8%	52.4-136					10/20/2023 02:10	
SW-8270	Surrogate: Nitrobenzene-d5-surr		90.2%	52-162					10/20/2023 02:10	
SW-8270	Surrogate: Phenol-d5-surr		84.5%	58.7-152					10/20/2023 02:10	
SW-8270	Surrogate: p-Terphenyl-d14-surr		72.7%	51.9-147					10/20/2023 02:10	

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 11/17/2023 11:20

Quality Control

Organics by GC

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGJ3644 - SW-3570										
MB PCB (BGJ3644-BLK1)				Prep	ared: 10/23/	2023 Analyze	ed: 10/31/20	23		
Aroclor-1016 (PCB-1016)	<0.0200	U	0.0200	mg/kg (dry wt) wet						
Aroclor-1260 (PCB-1260)	<0.0200	U	0.0200	mg/kg (dry wt) wet						
PCBs, Total	<0.0200	U	0.0200	mg/kg (dry wt) wet						
Surrogate: 2,4,5,6			0.00604		0.00000			CO 140	5 224 224 2	
Tetrachloro-m-xylene-surr			0.00604	mg/kg (dry wt) wet	0.00600		101	60-140		
Surrogate; Decachlorobiphenyl-surr			0.00703	mg/kg (dry wt) wet	0.00600		117	60-140		
BS PCB (BGJ3644-BS1)			1014	Prep	ared: 10/23/	2023 Analyze	ed: 10/31/20	23		14
Aroclor-1016 (PCB-1016)	0.0503		0.0200	mg/kg (dry wt) wet	0.0600		83.8	60-140		
Aroclor-1260 (PCB-1260)	0.0587		0.0200	mg/kg (dry wt) wet	0.0600		97.9	60-140		
PCBs, Total	0.0571		0.0200	mg/kg (dry wt) wet	0.0600		95.2	60-140		
Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr			0.00582	mg/kg (dry wt) wet	0.00600		97.0	60-140		
Surrogate: Decachlorobiphenyl-surr			0.00700	mg/kg (dry wt) wet	0.00600		117	60-140		
BSD PCB (BGJ3644-BSD1)				Prep	ared: 10/23/	2023 Analyze	ed: 10/31/20	23		INT
Aroclor-1016 (PCB-1016)	0.0612		0.0200	mg/kg (dry wt) wet	0.0600		102	60-140	19.6	40
Aroclor-1260 (PCB-1260)	0.0659		0.0200	mg/kg (dry wt) wet	0.0600		110	60-140	11.5	40
PCBs, Total	0.0650		0.0200	mg/kg (dry wt) wet	0.0600		108	60-140	12.9	40
Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr			0.00625	mg/kg (dry wt) wet	0.00600		104	60-140		
Surrogate: Decachlorobiphenyl-surr			0.00757	mg/kg (dry wt) wet	0.00600	1115	126	60-140		
23J3144-01 MS (BGJ3644-MS1)		Source: 23	3144-01	Prep	ared: 10/23/	2023 Analyze	ed: 10/31/20	23		
Aroclor-1016 (PCB-1016)	6.12		2.60	mg/kg (dry wt) dry	7.80	<2.60	78.5	60-140		
Aroclor-1260 (PCB-1260)	7.15		2.60	mg/kg (dry wt) dry	7.80	<2.60	91.7	60-140		
PCBs, Total	6.96		2.60	mg/kg (dry wt) dry	7.80	<2.60	89.2	60-140		
Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr			0.835	mg/kg (dry wt) dry	0.780	occadet kielû b	107	60-140		
Surrogate: Decachlorobiphenyl-surr			0.891	mg/kg (dry wt) dry	0.780		114	60-140		

23J3144-01 MSD (BGJ3644-MSD1)

Source: 23J3144-01

Prepared: 10/23/2023 Analyzed: 10/31/2023

^{*} A = Accredited, N = Not Accredited or Accreditation not available

Reported: 11/17/2023 11:20

Quality Control (Continued)

Organics by GC (Continued)

Analyte	Result	Reporti Qual Lir	ng nit Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGJ3644 - SW-3570 (Co.	ntinued)								
23J3144-01 MSD (BGJ3644-MSD1)	de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la	Source: 23J3144-01	Prep	pared: 10/23	/2023 Analyze	ed: 10/31/20	23		
Aroclor-1016 (PCB-1016)	6.86	2.	60 mg/kg (dry wt) dry	7.80	<2.60	88.0	60-140	11.4	40
Aroclor-1260 (PCB-1260)	7.76	2.	60 mg/kg (dry wt) dry	7.80	<2.60	99.6	60-140	8.23	40
PCBs, Total	7.59	2.	60 mg/kg (dry wt) dry	7.80	<2.60	97.4	60-140	8.79	40
Surrogate: 2,4,5,6	***************************************	0.8	70 mg/kg (dry	0.780	illi (ii	112	60-140		//2017-10-20-20-20-20-20-20-20-20-20-20-20-20-20
Tetrachloro-m-xylene-surr Surrogate: Decachlorobiphenyl-surr		0.9	wt) dry 128 mg/kg (dry wt) dry	0.780		119	60-140		

A = Accredited, N = Not Accredited or Accreditation not available

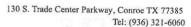
Reported: 11/17/2023 11:20

Quality Control (Continued)

Metals, Total

Analyte	THE STATE OF	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGJ3262 - SV	V-3050 for 6	5010						4.00	0.6.1.1.211		
Blank (BGJ3262-BLK1)					Prep	ared: 10/19	/2023 Analyze	ed: 10/24/202	23		
Arsenic		<1.81	U	1.81	mg/kg wet						
Cadmium		< 0.181	U	0.181	mg/kg wet						
Chromium		< 0.906	U	0.906	mg/kg wet						
Copper		<1.81	U	1.81	mg/kg wet						
Lead		< 0.906	U	0.906	mg/kg wet						
Molybdenum		< 0.906	U	0.906	mg/kg wet						
Nickel		< 0.906	U	0.906	mg/kg wet						
Potassium		<181		181	mg/kg wet						
Selenium		<1.81		1.81	mg/kg wet						
Total Phosphorus		<181		181	mg/kg wet						
Zinc		<0.906		0.906	mg/kg wet						
LCS (BGJ3262-BS1)					Prep	ared: 10/19	/2023 Analyze	rd: 10/24/202	3		
Arsenic		45.7		1.90	mg/kg wet	47.5	/ 2020 / Wildiy 20	96.2	80-120		
Cadmium		4.64		0.190	mg/kg wet	4.75		97.6	80-120		
Chromium		23.4		0.952	mg/kg wet	23.8		98.5	80-120		
Copper		46.2		1.90	mg/kg wet	47.5		97.3	80-120		
Lead		23.3		0.952	mg/kg wet	23.8		98.0	80-120		
Molybdenum		23.1		0.952	mg/kg wet	23.8		97.2	80-120		
Nickel		23.2		0.952	mg/kg wet	23.8		97.7	80-120		
Potassium		4600		190	mg/kg wet	4750		96.7	80-120		
Selenium		46.0		1.90	mg/kg wet	47.5		96.9	80-120		
Total Phosphorus		4640		190	mg/kg wet	4750		97.6	80-120		
Zinc		24.8			mg/kg wet	23.8		104	80-120		
Matrix Spike (BGJ3262-N	IS1)		Source: 2	3J2900-01	Prep	ared: 10/19	/2023 Analyze	ed: 10/24/202	13		
Arsenic		64.4		2.42	mg/kg dry	60.6	5.76	96.7	75-125		
Cadmium		6.82		0.242	mg/kg dry	6.06	0.919	97.4	75-125		
Chromium		48.5		1.21	mg/kg dry	30.3	19.8	94.6	75-125		
Copper		1480		48.4	mg/kg dry	1270	366	87.2	75-125		
Lead		39.9		1.21	mg/kg dry	30.3	11.1	94.9	75-125		
Molybdenum		33.1		1.21	mg/kg dry	30.3	5.10	92.5	75-125		
Nickel		43.0		1.21	mg/kg dry	30.3	14.6	93.6	75-125		
Potassium		8710		242	mg/kg dry	6060	2610	101	75-125		
Selenium		69.7		2.42	mg/kg dry	60.6	7.98	102	75-125		
Total Phosphorus		2110	11	1210	mg/kg dry	12100	13000	NR.	75-125		
Zinc		2420	m.m		mg/kg dry	1240	1140	103	75-125		

A = Accredited, N = Not Accredited or Accreditation not available


Reported: 11/17/2023 11:20

Quality Control (Continued)

Metals, Total (Continued)

recais, rotal (continuea)									
Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGJ3262 - SW-3050 for 6	010 (Continued	D					EL PURINT	6 - 943.53	716
Matrix Spike Dup (BGJ3262-MSD1)	Source	: 23J2900-01	Prep	ared: 10/19,	/2023 Analyze	d: 10/24/202	23		
Arsenic	65.5	2.42	mg/kg dry	60.6	5.76	98.7	75-125	1.84	20
Cadmium	6.88	0.242	mg/kg dry	6.06	0.919	98.4	75-125	0.886	20
Chromium	48.5	1.21	mg/kg dry	30.3	19.8	94.7	75-125	0.0483	20
Copper	1610	48.4	mg/kg dry	1270	366	98.1	75-125	8.92	20
Lead	41.7	1.21	mg/kg dry	30.3	11.1	101	75-125	4.34	20
Molybdenum	33.6	1.21	mg/kg dry	30.3	5.10	94.2	75-125	1.45	20
Nickel	42.9	1.21	mg/kg dry	30.3	14.6	93.5	75-125	0.0420	20
Potassium	8380	242	mg/kg dry	6060	2610	95.1	75-125	3.95	20
Selenium	69.8	2.42	mg/kg dry	60.6	7.98	102	75-125	0.143	20
Total Phosphorus	19200 J1	1210	mg/kg dry	12100	13000	51.7	75-125	160	20
Zinc	2440	60.7	mg/kg dry	1240	1140	105	75-125	0.875	20
Post Spike (BGJ3262-PS1)	Source	: 23J2900-01	Prep	ared: 10/19	/2023 Analyze	d: 10/24/20	23		
Arsenic	527		ug/L	500	44.9	96.4	80-120		
Cadmium	56.1		ug/L	50.0	7.17	97.9	80-120		
Chromium	398		ug/L	250	155	97.5	80-120		
Copper	3640 J1		ug/L	500	2860	156	80-120		
Lead	332		ug/L	250	86.9	97.9	80-120		
Molybdenum	279		ug/L	250	39.8	95.5	80-120		
Nickel	353		ug/L	250	114	95.7	80-120		
Potassium	69500		ug/L	50000	20400	98.2	80-120		
Selenium	568		ug/L	500	62.2	101	80-120		
Total Phosphorus	162000 J1		ug/L	50000	101000	122	80-120		
Zinc	9540 J1		ug/L	250	8930	247	80-120		
Dilution Check (BGJ3262-SRL1)	Source	: 23J2900-01	Prep	ared: 10/19	/2023 Analyze	d: 10/24/20	23		
Arsenic	6.74 U	12.1			5.76			15.7	10
Cadmium	0.958 U	1.21	mg/kg dry		0.919			4.16	10
Chromium	20.9	6.08	mg/kg dry		19.8			5.08	10
Copper	368	12.1	mg/kg dry		366			0.538	10
Lead	12.2	6.08	mg/kg dry		11.1			9.09	10
Molybdenum	<6.08 U	6.08	mg/kg dry		<6.08			200	10
Nickel	15.8	6.08	mg/kg dry		14.6			7.52	10
Potassium	2550	1210	mg/kg dry		2610			2.43	10
Selenium	7.29 U	12.1	mg/kg dry		7.98			8.99	10
Total Phosphorus	13300	1210	mg/kg dry		13000			2.41	10

A = Accredited, N = Not Accredited or Accreditation not available

Email: lab@nwdls.com www. NWDLS.com TCEQ T104704238-23-39

Municipal Operations and Consulting 27316 Spectrum Way Oak Ridge, TX 77385

Reported: 11/17/2023 11:20

Quality Control (Continued)

Metals, Total (Continued)

Analyte	Result Qual	Reportin Lim	-	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGJ4936 - SW-7471				. Con	TOTAL IN	U - 68 - 151	6-51 NE	1,751	1316 -
MDL Check (BGJ4936-MRL1)				Prepared 8	Analyzed: 10	/31/2023			
Mercury	0.0103 U	0.019	6 mg/kg wet	0.00982		105			
Matrix Spike (BGJ4936-MS1)	Sou	rce: 23J4078-01		Prepared 8	Analyzed: 10	/31/2023			
Mercury	0.486	0.035	2 mg/kg dry	0.440	0.0995	87.9	80-120		
Matrix Spike Dup (BGJ4936-MSD1)	Sou	rce: 23J4078-01		Prepared &	Analyzed: 10	/31/2023			
Mercury	0.430 J1	0.035	1 mg/kg dry	0.439	0.0995	75.4	80-120	12.2	20

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 11/17/2023 11:20

www. NWDLS.com TCEQ T104704238-23-39

Quality Control (Continued)

General Chemistry

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGJ2578 - TKN T						114	off offs and	in the unity of	- 70%	FIR WAY
Blank (BGJ2578-BLK1) Ammonia as N	<9.98	U	9.98	mg/kg wet	Prepared 8	Analyzed: 1	0/17/2023			
LCS (BGJ2578-BS1) Ammonia as N	97.6		9.99	mg/kg wet	Prepared & 99.9	Analyzed: 1	.0/17/2023 97.7	85-115		
Duplicate (BGJ2578-DUP1)	72 11 17	Source: 23	12900-01	and the	Prepared &	Analyzed: 1	0/17/2023	Light		
Ammonia as N	3290			mg/kg dry	r repared o	2770	0/17/2023		17.3	20
MRL Check (BGJ2578-MRL1) Ammonia as N	9.78	U	9.98	mg/kg wet	Prepared & 9.98	Analyzed: 1	.0/17/2023 98.0	50-150		
Matrix Spike (BGJ2578-MS1)		Source: 23	J2900-01		Prepared &	Analyzed: 1	0/17/2023			
Ammonia as N	17400		1450	mg/kg dry	14500	2770	101	85-115		
Batch: BGJ2580 - Percent Solids Blank (BGJ2580-BLK1)				110	Into Logue					
% Solids	<0.100	U	0.100	Prej %	pared: 10/17	/2023 Analyz	zed: 10/18/202	23		
Duplicate (BGJ2580-DUP1)		Source: 23	J3698-01	Prei	pared: 10/17	/2023 Analyz	zed: 10/18/202	3		-1
% Solids	1.62		0.100	%		1.62			0.126	20
Duplicate (BGJ2580-DUP2)		Source: 23	J3792-06	Pre	pared: 10/17	/2023 Analyz	zed: 10/18/202	13		
% Solids	0.438		0.100	%		0.436	246 0		0.278	30
Reference (BGJ2580-SRM1)				Pre	pared: 10/17,	/2023 Analyz	zed: 10/18/202	13		
% Solids	0.387		0.100	%	0.350		110	78.9-118		

A = Accredited, N = Not Accredited or Accreditation not available

Email: lab@nwdls.com www. NWDLS.com

TCEQ T104704238-23-39

Municipal Operations and Consulting 27316 Spectrum Way Oak Ridge, TX 77385

Reported: 11/17/2023 11:20

Quality Control (Continued)

General Chemistry (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGJ2669 - Solid Anions	No Prep							T VI		1.15.1924
Duplicate (BGJ2669-DUP1)		Source: 2	3J3698-01		Prepared 8	Analyzed: 10	/17/2023			
Nitrate as N	65.4		7.69	mg/kg dry		65.5			0.282	15
MRL Check (BGJ2669-MRL1)					Prepared 8	Analyzed: 10)/17/2023			
Nitrate as N	0.112	U	0.125	mg/kg wet	0.100		112	50-150		
Matrix Spike (BGJ2669-MS1)		Source: 2	3J3698-01		Prepared 8	k Analyzed: 10)/17/2023			
Nitrate as N	206		8.55	mg/kg dry	137	65.5	103	80-120		
Batch: BGJ3202 - TKN T										
Blank (BGJ3202-BLK1)				Pres	pared: 10/19	/2023 Analyze	ed: 10/20/20	23		
Total Kjeldahl Nitrogen - (TKN)	<9.92	U	9.92	mg/kg wet				11161	entru	1921771117
LCS (BGJ3202-BS1)				Prej	pared: 10/19	/2023 Analyze	ed: 10/20/20	23		
Total Kjeldahl Nitrogen - (TKN)	19.9		9.88	mg/kg wet	20.0		99.8	85-115		
Duplicate (BGJ3202-DUP1)		Source: 2	333698-01	Prej	pared: 10/19	/2023 Analyz	ed: 10/20/20	23		
Total Kjeldahl Nitrogen - (TKN)	69300	31	1490	mg/kg dry		53100			26.5	20
Matrix Spike (BGJ3202-MS1)		Source: 2	333698-01	Pre	pared: 10/19	2/2023 Analyz	ed: 10/20/20	23		
Total Kjeldahl Nitrogen - (TKN)	73000	31	1510	mg/kg dry	6030	53100	330	85-115		

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 11/17/2023 11:20

Quality Control (Continued)

TCLP

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGJ2829 - SW-3511					(Yulks	wings)	LELE-VIE	- (1,511)	10.1
MB HERB (BGJ2829-BLK1)			Pre	epared: 10/18	/2023 Analyze	ed: 10/23/20	23		
2,4-D	<10.0 U	10.0	mg/L		, 2020 / 11/01/20				
Silvex (2,4,5-TP)	<1.00 U	1.00	mg/L						
Surrogate: DCAA-surr		0.0251	mg/L	0.0249	*********	101	70-130		
BS HERB (BGJ2829-BS1)			Pre	epared: 10/18	/2023 Analyze	ed: 10/23/20	23		VIII.
2,4-D	0.00480 U	10.0	mg/L	0.00508	/2023 Allalyze	94	70-130		
Silvex (2,4,5-TP)	0.00474 U	1.00	mg/L	0.00493		96	70-130		
Surrogate: DCAA-surr	******************	0.0216	mg/L	0.0247	*******	88	70-130		
BSD HERB (BGJ2829-BSD1)			Pre	enared: 10/18	/2023 Analyze	d: 10/23/20	22		
2,4-D	0.00492 U	10.0	mg/L	0.00511	/2023 Allalyze	96	70-130	2	20
Silvex (2,4,5-TP)	0.00463 U	1.00	mg/L	0.00311		93	70-130	2	30 30
Surrogate: DCAA-surr		0.0222	mg/L	0.0248		90	70-130		
BGJ1444-BLK1 (BGJ2829-LBK1)			Dro	nared: 10/19	/2023 Analyze	d. 10/24/20	12		
2,4-D	<10.0 U	10.0	mg/L	.parcu. 10/10/	/2023 Allalyze	:u: 10/24/202	23		
Silvex (2,4,5-TP)	<1.00 U	1.00	mg/L						
Surrogate: DCAA-surr		0.120	mg/L	0.100	********	120	70-130		
BGJ2741-BLK1 (BGJ2829-LBK2)	1.00		Pro	enared: 10/19	/2023 Analyze	d: 10/24/20	13		
2,4-D	<10.0 U	10.0	mg/L	.pu.cu. 10/10/	LUZJ Allalyze	u. 10/24/202	.5		
Silvex (2,4,5-TP)	<1.00 U	1.00	mg/L						
Surrogate: DCAA-surr	5	0.142	mg/L	0.100	*********	142	70-130		
23J2360-01 MS (BGJ2829-MS1)	Source: 2	3J2360-01	Dec	pared: 10/10	/2022 Amel	J. 10/22/22			
2,4-D	0.0216 U	10.0	mg/L	0.0206	/2023 Analyze				
Silvex (2,4,5-TP)	0.0210 U	1.00	mg/L	0.0200	<10.0 <1.00	105 106	70-130 70-130		
			9/ -	0.0200	~1.00	100	10-130		

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 11/17/2023 11:20

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGJ2829 - SW-3511 (Con	tinued)									Luvel
23J2360-01 MSD (BGJ2829-MSD1)		Source: 2	23J2360-01	Pre	pared: 10/18/	2023 Analyze	ed: 10/23/20	23		
2,4-D	0.0215	U	10.0	mg/L	0.0206	<10.0	104	70-130	0.5	30
Silvex (2,4,5-TP)	0.0204		1.00	mg/L	0.0200	<1.00	102	70-130	4	30
Surrogate: DCAA-surr			0.0967	mg/L	0.100		97	70-130		
Batch: BGJ3041 - EPA 200.2 TCL	P									
Blank (BGJ3041-BLK1)				Pre	pared: 10/19,	2023 Analyze	ed: 10/20/20	23		
Arsenic	<5.00	U	5.00	mg/L						
Barium	<100		100	mg/L						
Cadmium	<1.00		1.00	mg/L						
Chromium	<5.00		5.00	mg/L						
Lead	<5.00	U	5.00	mg/L						
Selenium	<1.00		1.00	mg/L						
Silver	<5.00	U	5.00	mg/L						7 10 11
LCS (BGJ3041-BS1)				Pre	epared: 10/19	/2023 Analyz	ed: 10/20/20	23		
Arsenic	0.515	U	5.00	mg/L	0.500		103	80-120		
Barium	0.518	U	100	mg/L	0.500		104	80-120		
Cadmium	0.0517	U	1.00	mg/L	0.0500		103	80-120		
Chromium	0.257	U	5.00	mg/L	0.250		103	80-120		
Lead	0.260	U	5.00	mg/L	0.250		104	80-120		
Selenium	0.513	U	1.00	mg/L	0.500		103	80-120		
Silver	0.0509	U	5.00	mg/L	0.0500		102	80-120		
Duplicate (BGJ3041-DUP1)		Source:	23J2900-01	Pro	epared: 10/19	/2023 Analyz	ed: 10/20/20)23		
Arsenic	<5.00	U	5.00	mg/L		<5.00				20
Barium	1.05	5 U	100	mg/L		1.12			6.61	20
Cadmium	<1.00	U	1.00	mg/L		<1.00				20
Chromium	<5.00) U	5.00	mg/L		<5.00				20
Lead	<5.0	U	5.00	mg/L		<5.00				20
Selenium	<1.0	o U	1.00	mg/L		<1.00				20
Silver	<5.0	U	5.00	mg/L		<5.00				20

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 11/17/2023 11:20

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGJ3041 - EPA 200.2 TC	.P (Contin	ued)					1	U. HE	111111111	DIL Ider
BGJ2741-BLK1 (BGJ3041-LBK1)	ingligated —	HILL THE		Pre	pared: 10/19/	2023 Analyze	ed: 10/20/2023			
Arsenic	<5.00	U	5.00	mg/L		The Market				
Barium	0.669		100	mg/L						
Cadmium	<1.00		1.00	mg/L						
Chromium	<5.00	U	5.00	mg/L						
Lead	<5.00		5.00	mg/L						
Selenium	<1.00		1.00	mg/L						
Silver	<5.00		5.00	mg/L						
Matrix Spike (BGJ3041-MS1)		Source:	23J2900-01	Pre	pared: 10/19	/2023 Analyze	ed: 10/20/2023			
Arsenic	0.547	U	5.00	mg/L	0.500	<5.00	109	75-125		
Barium	1.64	U	100	mg/L	0.500	1.12	104	75-125		
Cadmium	0.0559		1.00	mg/L	0.0500	<1.00	112	75-125		
Chromium	0.261	U	5.00	mg/L	0.250	<5.00	104	75-125		
Lead	0.258		5.00	mg/L	0.250	<5.00	103	75-125		
Selenium	0.530	U	1.00	mg/L	0.500	<1.00	106	75-125		
Silver	0.0524	U	5.00	mg/L	0.0500	<5.00	105	75-125		
Post Spike (BGJ3041-PS1)		Source:	23J2900-01	Pre	epared: 10/19	/2023 Analyze	ed: 10/20/2023			
Arsenic	537			ug/L	500	7.81	106	80-120		
Barium	1550			ug/L	500	1090	92.4	80-120		
Cadmium	53.9			ug/L	50.0	0.673	106	80-120		
Chromium	257			ug/L	250	1.17	102	80-120		
Lead	257			ug/L	250	1.42	102	80-120		
Selenium	521			ug/L	500	2.93	104	80-120		
Silver	51.3			ug/L	50.0	0.448	102	80-120		
Dilution Check (BGJ3041-SRL1)		Source:	23J2900-01	Pre	epared: 10/19	/2023 Analyz	ed: 10/20/2023	3		
Arsenic	<5.00	U	5.00	mg/L		<5.00				10
Barium	1.12	U	100	mg/L		1.12			0.00	10
Cadmium	<1.00		1.00	mg/L		<1.00				10
Chromium	<5.00		5.00	mg/L		<5.00				10
Lead	<5.00		5.00	mg/L		<5.00				10
Selenium	<1.00		1.00	mg/L		<1.00				10
Silver	<5.00		5.00	mg/L		<5.00				10

^{*} A = Accredited, N = Not Accredited or Accreditation not available

Reported: 11/17/2023 11:20

Quality Control (Continued)

Analyte	Result Q	ual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGJ3234 - SW-3511							a market			
MB SV (BGJ3234-BLK1)					Prepared &	Analyzed: 10	/19/2023			
2,4,5-Trichlorophenol	<400 U		400	mg/L	, , , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,	120120			
2,4,6-Trichlorophenol	<2.00 U		2.00	mg/L						
2,4-Dinitrotoluene (2,4-DNT)	<0.130 U		0.130	mg/L						
2-Methylphenol	<200 U		200	mg/L						
3,4-Methylphenol	<200 U		200	mg/L						
Hexachlorobenzene	<0.130 U		0.130	mg/L						
Hexachlorobutadiene	<0.500 U		0.500	mg/L						
Hexachloroethane	<3.00 U		3.00	mg/L						
Nitrobenzene	<2.00 U		2.00	mg/L						
Pentachlorophenol	<100 U		100	mg/L						
Pyridine	<5.00 U		5.00	mg/L						
Surrogate: 2-Fluorobiphenyl-surr			0.00862	mg/L	0.00978		88.1	54.6-148		
Surrogate: 2-Fluorophenol-surr			0.00002	mg/L	0.0196		96.6	55-152		
Surrogate: 2,4,6-Tribromophenol-surr			0.0210	mg/L	0.0196		108	52.4-136		
Surrogate: Nitrobenzene-d5-surr			0.00980	mg/L	0.00978		100	52-162		
Surrogate: Phenol-d5-surr			0.0160	mg/L	0.0196		81.8	58.7-152		
Surrogate: p-Terphenyl-d14-surr			0.00913	mg/L	0.00978		93.3	51.9-147		
BS SV (BGJ3234-BS1)		***************************************			Prepared &	Analyzed: 10	/19/2023			
2,4,5-Trichlorophenol	0.0215 U		400	mg/L	0.0197		109	60-140		
2,4,6-Trichlorophenol	0.0200 U		2.00	mg/L	0.0197		102	60-140		
2,4-Dinitrotoluene (2,4-DNT)	0.0117 U		0.130	mg/L	0.00984		119	60-140		
2-Methylphenol	0.0182 U		200	mg/L	0.0197		92.7	60-140		
3,4-Methylphenol	0.0340 U		200	mg/L	0.0394		86.4	60-140		
Hexachlorobenzene	0.00901 U		0.130	mg/L	0.00984		91.6	60-140		
Hexachlorobutadiene	0.00718 U		0.500	mg/L	0.00984		73.0	60-140		
Hexachloroethane	0.00791 U		3.00	mg/L	0.00984		80.4	60-140		
Nitrobenzene	0.0102 U		2.00	mg/L	0.00984		104	60-140		
Pentachlorophenol	0.0221 U		100	mg/L	0.0197		112	36.8-149		
Pyridine	0.0223 U		5.00	mg/L	0.0492		45.3	2.5-101		
Surrogate: 2-Fluorobiphenyl-surr			0.00847	mg/L	0.00984		86.1	54.6-148		****
Surrogate: 2-Fluorophenol-surr			0.0191	mg/L	0.0197		97.1	55-152		
Surrogate: 2,4,6-Tribromophenol-surr			0.0162	mg/L	0.0197		82.4	52.4-136		
Surrogate: Nitrobenzene-d5-surr			0.00906	mg/L	0.00984		92.0	52-162		
Surrogate: Phenol-d5-surr			0.0177	mg/L	0.0197		90.0	58.7-152		
Surrogate: p-Terphenyl-d14-surr			0.00750	mg/L	0.00984		76.2	51.9-147		

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 11/17/2023 11:20

Quality Control (Continued)

	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGJ3234 - SW-3511 (C	Continued)					The same	- Name of the	11000-171	- 675.5	umali v
BSD SV (BGJ3234-BSD1)	FEET TOTAL TIMES				Prepared &	Analyzed: 10	/19/2023			
2,4,5-Trichlorophenol	0.0223	H H	400	mg/L	0.0199		112	60-140	3.71	40
2,4,6-Trichlorophenol	0.0228		2.00	mg/L	0.0199		115	60-140	13.2	40
2,4-Dinitrotoluene (2,4-DNT)	0.0116		0.130	mg/L	0.00993		117	60-140	0.518	40
2-Methylphenol	0.0194		200	mg/L	0.0199		97.7	60-140	6.12	40
3,4-Methylphenol	0.0378		200	mg/L	0.0397		95.3	60-140	10.7	40
Hexachlorobenzene	0.00985		0.130	mg/L	0.00993		99.2	60-140	8.89	40
Hexachlorobutadiene	0.00817		0.500	mg/L	0.00993		82.3	60-140	13.0	40
Hexachloroethane	0.00891		3.00	mg/L	0.00993		89.7	60-140	11.8	40
Nitrobenzene	0.0111		2.00	mg/L	0.00993		112	60-140	8.31	40
Pentachlorophenol	0.0226		100	mg/L	0.0199		114	36.8-149	2.11	40
Pyridine	0.0234		5.00	mg/L	0.0497		47.1	2.5-101	4.85	40
Surrogate: 2-Fluorobiphenyl-surr			0.00896	mg/L	0.00993		90.3	54.6-148		
Surrogate: 2-Fluorophenol-surr			0.0203	mg/L	0.0199		102	55-152		
Surrogate: 2,4,6-Tribromophenol-surr			0.0177	mg/L	0.0199		88.9	52.4-136		
Surrogate: Nitrobenzene-d5-surr			0.00919	mg/L	0.00993		92.5	52-162		
Surrogate: Phenol-d5-surr			0.0198	mg/L	0.0199		99.7	58.7-152		
Surrogate: p-Terphenyl-d14-surr			0.00842	mg/L	0.00993		84.8	51.9-147		
DC12741 DLV1 (DC12224 LDV2)				De	epared: 10/19	/2022 Applica	d. 10/20/20	172		TV V
BGJ2741-BLK1 (BGJ3234-LBK2) 2,4,5-Trichlorophenol	.400	20	400	mg/L	epareu: 10/19	/2023 Analyze	ed: 10/20/20	123		
2,4,6-Trichlorophenol	<400		2.00	mg/L						
2,4-Dinitrotoluene (2,4-DNT)	<2.00		0.130	mg/L						
2-Methylphenol	<0.130		200							
see was Arbrid in	<200			mg/L						
3,4-Methylphenol Hexachlorobenzene	<200		200	mg/L						
UNIT OF STORY	<0.130		0.130	mg/L						
Hexachlorobutadiene Hexachloroethane	<0.500		0.500 3.00	mg/L						
Nitrobenzene	<3.00			mg/L						
Pentachlorophenol	<2.00		2.00 100	mg/L						
Pyridine	<100 <5.00		5.00	mg/L mg/L						
	<5.00									*****
Surrogate: 2-Fluorobiphenyl-surr			0.0360	mg/L	0.0400		90.1	54.6-148		
Surrogate: 2-Fluorophenol-surr			0.0836	mg/L	0.0800		105	55-152		
Surrogate: 2,4,6-Tribromophenol-surr			0.0926	mg/L	0.0800		116	52.4-136		
Surrogate: Nitrobenzene-d5-surr			0.0406	mg/L	0.0400		102	52-162		
Surrogate: Phenol-d5-surr Surrogate: p-Terphenyl-d14-surr			0.0803 0.0277	mg/L mg/L	0.0800 0.0400		100 69.3	58.7-152 51.9-147		

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 11/17/2023 11:20

Quality Control (Continued)

Analyte	Result	Qual		Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGJ3234 - SW-3511 (C	ontinued)						11.5	ndeli attiv	LIFE-SN	- 11.	thu u
MDL SV (BGJ3234-MRL1)						Prepared &	Analyzed: 10	/19/2023			
2,4,5-Trichlorophenol	0.00135	Ü		400	mg/L	0.000985	,, 200, 10	137			
2,4,6-Trichlorophenol	0.00159			2.00	mg/L	0.000985		161			
2,4-Dinitrotoluene (2,4-DNT)	0.000941			0.130	mg/L	0.000492		191			
2-Methylphenol	0.00122			200	mg/L	0.000985		124			
3,4-Methylphenol	0.00231			200	mg/L	0.00197		117			
Hexachlorobenzene	0.000383			0.130	mg/L	0.000492		77.8			
Hexachlorobutadiene	0.000555			0.500	mg/L	0.000492		113			
Hexachloroethane	0.000388			3.00	mg/L	0.000492		78.8			
Nitrobenzene	0.000747			2.00	mg/L	0.000492		152			
Pentachlorophenol	0.00104			100	mg/L	0.000985		105			
Pyridine	0.00328			5.00	mg/L	0.00246		133			
Surrogate: 2-Fluorobiphenyl-surr		t to co								****	ecces es
Surrogate: 2-Fluorophenol-surr				0.00930	mg/L	0.00985		94.4	54.6-148		
Currogatas 3.4.6 Tribiamanhanal aum				0.0193	mg/L	0.0197		98.0	55-152		
Surrogate: Nitrobenzene-d5-surr				0.0233	mg/L	0.0197		118	52.4-136		
Surrogate: Phenol-d5-surr				0.0110 0.0176	mg/L	0.00985 0.0197		112 89.2	52-162 58.7-152		
Surrogate: p-Terphenyl-d14-surr				0.0176	mg/L mg/L	0.0197		98.2	51.9-147		
					mg/ L			********	51.5 117		
23J3307-02 MS (BGJ3234-MS1)			e: 23J3	307-02			Analyzed: 10	0 107			
2,4,5-Trichlorophenol	0.0201	/,:		400	mg/L	0.0199	<400	101	44.9-171		
2,4,6-Trichlorophenol	0.0204	U		2.00	mg/L	0.0199	<2.00	102	34.7-143		
2,4-Dinitrotoluene (2,4-DNT)	0.0105	U		0.130	mg/L	0.00995	< 0.130	106	50.3-144		
2-Methylphenol	0.0173	U		200	mg/L	0.0199	<200	86.8	17.3-182		
3,4-Methylphenol	0.0349	U		200	mg/L	0.0398	<200	87.6	43.4-188		
Hexachlorobenzene	0.00857	U		0.130	mg/L	0.00995	< 0.130	86.1	56.1-137		
Hexachlorobutadiene	0.00723	U		0.500	mg/L	0.00995	<0.500	72.7	33.1-110		
Hexachloroethane	0.00752	U		3.00	mg/L	0.00995	<3.00	75.6	36.2-106		
Nitrobenzene	0.0109	U		2.00	mg/L	0.00995	<2.00	109	54.9-156		
Pentachlorophenol	0.0209	U		100	mg/L	0.0199	<100	105	42.2-151		
Pyridine	0.0346	U		5.00	mg/L	0.0497	<5.00	69.5	2-87.4		roa roa 805
Surrogate: 2-Fluorobiphenyl-surr	- 1 123 133 133 133 133.	1,000,000	2,200,200	0.00775	mg/L	0.00995		77.9	54.6-148		100 100 100
Surrogate: 2-Fluorophenol-surr				0.0188	mg/L	0.0199		94.5	55-152		
Surrogate: 2,4,6-Tribromophenol-surr				0.0155	mg/L	0.0199		77.8	52.4-136		
Surrogate: Nitrobenzene-d5-surr				0.00839	mg/L	0.00995		84.4	52-162		
Surrogate: Phenol-d5-surr				0.0184	mg/L	0.0199		92.4	58.7-152		
Surrogate: p-Terphenyl-d14-surr				0.00659	mg/L	0.00995		66.2	51.9-147		

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 11/17/2023 11:20

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGJ3234 - SW-351.	1 (Continued)					150,00	phononic participation of the contraction of the co	1, 1,01,-141	- 1300	
23J3307-02 MSD (BGJ3234-MSI		Source: 2	3J3307-02		Prepared &	Analyzed: 10	/19/2023			
2,4,5-Trichlorophenol	0.0207		400	mg/L	0.0199	<400	104	44.9-171	2.80	40
2,4,6-Trichlorophenol	0.0215		2.00	mg/L	0.0199	<2.00	108	34.7-143	5.59	40
2,4-Dinitrotoluene (2,4-DNT)	0.0112		0.130	mg/L	0.00996	< 0.130	112	50.3-144	5.75	40
2-Methylphenol	0.0178		200	mg/L	0.0199	<200	89.3	17.3-182	3.01	40
3,4-Methylphenol	0.0343		200	mg/L	0.0398	<200	86.0	43.4-188	1.75	40
Hexachlorobenzene	0.00865		0.130	mg/L	0.00996	< 0.130	86.9	56.1-137	0.966	40
Hexachlorobutadiene	0.00765		0.500	mg/L	0.00996	< 0.500	76.9	33.1-110	5.74	40
Hexachloroethane	0.00809		3.00	mg/L	0.00996	<3.00	81.2	36.2-106	7.39	40
Nitrobenzene	0.0110		2.00	mg/L	0.00996	<2.00	111	54.9-156	1.66	40
Pentachlorophenol	0.0215		100	mg/L	0.0199	<100	108	42.2-151	2.53	40
Pyridine	0.0332		5.00	mg/L	0.0498	<5.00	66.7	2-87.4	3.92	40
Surrogate: 2-Fluorobiphenyl-surr			0.00826	mg/L	0.00996		82.9	54.6-148		
Surrogate: 2-Fluorophenol-surr			0.0183	mg/L	0.0199		92.1	55-152		
Surrogate: 2,4,6-Tribromophenol-surr			0.0162	mg/L	0.0199		81.5	52.4-136		
Surrogate: Nitrobenzene-d5-surr			0.00876	mg/L	0.00996		87.9	52-162		
Surrogate: Phenol-d5-surr			0.0178	mg/L	0.0199		89.4	58.7-152		
Surrogate: p-Terphenyl-d14-surr			0.00690	mg/L	0.00996		69.3	51.9-147		
Batch: BGJ3693 - SW-351	1									
Blank (BGJ3693-BLK1)				Pr	epared: 10/23	/2023 Analyze	ed: 10/28/20	023		
Chlordane (Total)	< 0.0300	U	0.0300	mg/L						
Endrin	< 0.0200	U	0.0200	mg/L						
gamma-BHC (Lindane,	< 0.400	U	0.400	mg/L						
gamma-HexachlorocyclohexanE)										
Heptachlor	<0.00800	U	0.00800	mg/L						
Heptachlor epoxide	<0.00800	U	0.00800	mg/L						
Methoxychlor	<10.0	U	10.0	mg/L						
Toxaphene (Chlorinated Camphene)	<0.500	U	0.500	mg/L						
Surrogate: 2,4,5,6		05 CAR (C.C.)	0.000102	mg/L	0.000120		85.2	60-140		
Tetrachloro-m-xylene-surr				000 500 000						
Surrogate: Decachlorobiphenyl-surr			0.000100	mg/L	0.000120		83.7	60-140		

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 11/17/2023 11:20

TCEQ T104704238-23-39

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGJ3693 - SW-3511 (C	Continued)					4594	High .	YUTUM	2 - 1/7/1	11)11
LCS TOX (BGJ3693-BS1)				Pre	epared: 10/23/	2023 Analyze	d: 10/28/20	23		
Toxaphene (Chlorinated Camphene)	0.00114	U	0.500	mg/L	0.00120		94.7	60-140		
Surrogate: 2,4,5,6		ttts:teree	9.30E-5	mg/L	0.000120		77.5	60-140		
Tetrachloro-m-xylene-surr				3/ -	0,000120		77.5	00-140		
Surrogate: Decachlorobiphenyl-surr	di man		0.000106	mg/L	0.000120		88.6	60-140		
.CS (BGJ3693-BS2)		1411		Pre	epared: 10/23/	2023 Analyze	d: 10/28/20	23		
Chlordane (Total)	0.000561	U	0.0300	mg/L	0.000480		117	60-140		
Endrin	0.000132	U	0.0200	mg/L	0.000120		110	60-140		
gamma-BHC (Lindane,	0.000136	U	0.400	mg/L	0.000120		113	60-140		
gamma-HexachlorocyclohexanE)										
Heptachlor	0.000146	J	0.00800	mg/L	0.000120		121	60-140		
Heptachlor epoxide	0.000137	J	0.00800	mg/L	0.000120		114	60-140		
Methoxychlor	0.000109	J	10.0	mg/L	0.000120		90.7	60-140		
Surrogate: 2,4,5,6			9.70E-5	mg/L	0.000120		80.8	60-140		
Tetrachloro-m-xylene-surr										
Surrogate: Decachlorobiphenyl-surr			0.000100	mg/L	0.000120		83.7	60-140		
CSD TOX (BGJ3693-BSD1)				Pre	epared: 10/23/	2023 Analyze	d: 10/28/20	23		
Toxaphene (Chlorinated Camphene)	0.00118	J	0.500	mg/L	0.00120		98.6	60-140	4.09	40
Surrogate: 2,4,5,6		101 103 1010	8.65E-5	mg/L	0.000120		72.1	60-140		
Tetrachloro-m-xylene-surr										
Surrogate: Decachlorobiphenyl-surr			0.000105	mg/L	0.000120		87.4	60-140		
.CS Dup (BGJ3693-BSD2)				Pre	pared: 10/23/	2023 Analyze	d: 10/28/20	23		
Chlordane (Total)	0.000503	J	0.0300	mg/L	0.000480		105	60-140	11.0	40
Endrin	0.000114	J	0.0200	mg/L	0.000120		95.2	60-140	14.5	40
gamma-BHC (Lindane,	0.000119	J	0.400	mg/L	0.000120		99.5	60-140	12.7	40
gamma-HexachlorocyclohexanE)										
Heptachlor	0.000129		0.00800	mg/L	0.000120		107	60-140	12.3	40
Heptachlor epoxide	0.000122		0.00800	mg/L	0.000120		102	60-140	11.7	40
Methoxychlor	0.000113	J 	10.0	mg/L	0.000120		94.3	60-140	3.92	40
Surrogate: 2,4,5,6			9.12E-5	mg/L	0.000120		76.0	60-140		
Tetrachloro-m-xylene-surr										
Surrogate: Decachlorobiphenyl-surr			0.000105	mg/L	0.000120		87.5	60-140		

^{*} A = Accredited, N = Not Accredited or Accreditation not available

Reported: 11/17/2023 11:20

Quality Control (Continued)

Analyte	Result Qual		Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
									4 314	
Batch: BGJ3693 - SW-3511 (Co	ontinued)			97			40/00/0			
BGJ2741-BLK1 (BGJ3693-LBK1)					pared: 10/23/2	2023 Analyzed	i: 10/28/202	23		
Chlordane (Total)	<0.0300 U		0.0300	mg/L						
Endrin	<0.0200 U		0.0200	mg/L						
gamma-BHC (Lindane, gamma-HexachlorocyclohexanE)	2.31E-6 U		0.400	mg/L						
Heptachlor	<0.00800 U		0.00800	mg/L						
Heptachlor epoxide	<0.00800 U		0.00800	mg/L						
Methoxychlor	<10.0 U		10.0	mg/L						
Toxaphene (Chlorinated Camphene)	<0.500 U		0.500	mg/L			2 444 2444 2722			
Surrogate: 2,4,5,6			8.45E-5	mg/L	0.000120		70.4	60-140		
Tetrachloro-m-xylene-surr Surrogate: Decachlorobiphenyl-surr			7.75E-5	mg/L	0.000120		64.6	60-140		
MRL TOX (BGJ3693-MRL1)	And the second second second			Pre	pared: 10/23/	2023 Analyzeo	1: 10/28/20	23	- 1	1711
Toxaphene (Chlorinated Camphene)	0.000293 U		0.500	mg/L	0.000300	(F ³ -	97.5	T. A		
Surrogate: 2,4,5,6			7.78E-5	mg/L	0.000120		64.9	60-140		
Tetrachloro-m-xylene-surr										
Surrogate: Decachlorobiphenyl-surr			9.79E-5	mg/L	0.000120		81.6	60-140		
MRL Check (BGJ3693-MRL2)				Pre	epared: 10/23/	2023 Analyzed	d: 10/28/20	23		
Chlordane (Total)	5.56E-5 U		0.0300	mg/L	4.80E-5		116			
Endrin	1.49E-5 U		0.0200	mg/L	1.20E-5		124			
gamma-BHC (Lindane,	1.50E-5 U		0.400	mg/L	1.20E-5		125			
gamma-HexachlorocyclohexanE)										
Heptachlor	1.71E-5 U		0.00800	mg/L	1.20E-5		143			
Heptachlor epoxide	1.36E-5 U		0.00800	mg/L	1.20E-5		114			
Methoxychlor	1.58E-5 U		10.0	mg/L	1.20E-5		131			
Surrogate: 2,4,5,6			9.14E-5	mg/L	0.000120		76.1	60-140		
Tetrachloro-m-xylene-surr										
Surrogate: Decachlorobiphenyl-surr			0.000100	mg/L	0.000120		83.6	60-140		
Matrix Spike (BGJ3693-MS1)	Sou	rce: 23J	2995-01	Pre	epared: 10/23/	2023 Analyze	d: 10/28/20	23		
Chlordane (Total)	0.000462 U		0.0300	mg/L	0.000480	<0.0300	96.2	60-140		
Endrin	0.000115 U		0.0200	mg/L	0.000120	<0.0200	95.5	60-140		
gamma-BHC (Lindane,	0.000111 U		0.400	mg/L	0.000120	<0.400	92.5	60-140		
gamma-HexachlorocyclohexanE)			0.00000	/I	0.000130	<0.00000	102	60 140		
Heptachlor	0.000124 U		0.00800	mg/L	0.000120	<0.00800	103	60-140		
Heptachlor epoxide	0.000109 U		0.00800	mg/L	0.000120	<0.00800	91.0	60-140		
Methoxychlor	0.000121 U		10.0	mg/L	0.000120	<10.0	101	60-140		
Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr			7.20E-5	mg/L	0.000120		60.0	60-140		
Surrogate: Decachlorobiphenyl-surr			0.000115	mg/L	0.000120		95.5	60-140		

^{*} A = Accredited, N = Not Accredited or Accreditation not available

Reported: 11/17/2023 11:20

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGJ3693 - SW-3511 (Cont.	inued)				-		1,4525	1 187 -1	6 - 18401	A SIEK
Matrix Spike Dup (BGJ3693-MSD1)		Source: 2	332995-01	Pre	epared: 10/23,	/2023 Analyze	d: 10/28/20	23		
Chlordane (Total)	0.000498	U	0.0300	mg/L	0.000480	<0.0300	104	60-140	7.46	40
Endrin	0.000122	U	0.0200	mg/L	0.000120	<0.0200	102	60-140	6.58	40
gamma-BHC (Lindane, gamma-HexachlorocyclohexanE)	0.000119	U	0.400	mg/L	0.000120	<0.400	98.8	60-140	6.68	40
Heptachlor	0.000133	U	0.00800	mg/L	0.000120	<0.00800	111	60-140	7.50	40
Heptachlor epoxide	0.000118	U	0.00800	mg/L	0.000120	<0.00800	98.2	60-140	7.61	40
Methoxychlor	0.000118	U	10.0	mg/L	0.000120	<10.0	98.8	60-140	2.07	40
Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr		5	6.94E-5	mg/L	0.000120		57.8	60-140		
Surrogate: Decachlorobiphenyl-surr			0.000109	mg/L	0.000120		91.2	60-140		
Batch: BGK1044 - SW-7471 TCLP Duplicate (BGK1044-DUP1)		Source: 2	3J5785-02		Prepared 8	k Analyzed: 11	/7/2023			
Duplicate (BGK1044-DUP1) Mercury	<0.200	U	0.200	mg/L		<0.200		(a m		200
Ouplicate (BGK1044-DUP1) Mercury Ouplicate (BGK1044-DUP2)	<0.200	Source: 2	0.200	mg/L				EL III		200
	<0.200	Source: 2	0.200	mg/L		<0.200		() The state of t		200
Duplicate (BGK1044-DUP1) Mercury Duplicate (BGK1044-DUP2) Mercury BGK0140-LBK1 (BGK1044-LBK1)	<0.200 <0.200	Source: 2	0.200 3 332900-01 0.200	mg/L	Prepared 8	<0.200 k Analyzed: 11	/7/2023	(± 17)		
Duplicate (BGK1044-DUP1) Mercury Duplicate (BGK1044-DUP2) Mercury BGK0140-LBK1 (BGK1044-LBK1)	<0.200	Source: 2	0.200		Prepared 8	<0.200 A Analyzed: 11 <0.200	/7/2023	e (a II) Innovitor		11 -140
Duplicate (BGK1044-DUP1) Mercury Duplicate (BGK1044-DUP2) Mercury BGK0140-LBK1 (BGK1044-LBK1) Mercury BGJ2741-LBK2 (BGK1044-LBK2)	<0.200 <0.200	Source: 2	0.200 3 332900-01 0.200 0.200	mg/L	Prepared 8	<0.200 A Analyzed: 11 <0.200	/7/2023 /7/2023	(a market		
Duplicate (BGK1044-DUP1) Mercury Duplicate (BGK1044-DUP2) Mercury BGK0140-LBK1 (BGK1044-LBK1) Mercury	<0.200 <0.200	Source: 2	0.200 3 332900-01 0.200	mg/L	Prepared 8	<0.200 Analyzed: 11 <0.200 Analyzed: 11	/7/2023 /7/2023	(a m)		T COM
Duplicate (BGK1044-DUP1) Mercury Duplicate (BGK1044-DUP2) Mercury BGK0140-LBK1 (BGK1044-LBK1) Mercury BGJ2741-LBK2 (BGK1044-LBK2) Mercury MDL Check (BGK1044-MRL1)	<0.200 <0.200 <0.200	Source: 2	0.200 3 332900-01 0.200 0.200	mg/L	Prepared 8 Prepared 8 Prepared 8	<0.200 Analyzed: 11 <0.200 Analyzed: 11	/7/2023 /7/2023 /7/2023	(a Ti	on the state of th	
Duplicate (BGK1044-DUP1) Mercury Duplicate (BGK1044-DUP2) Mercury BGK0140-LBK1 (BGK1044-LBK1) Mercury BGJ2741-LBK2 (BGK1044-LBK2) Mercury MDL Check (BGK1044-MRL1)	<0.200 <0.200 <0.200	Source: 2 U	0.200 3 332900-01 0.200 0.200	mg/L mg/L mg/L	Prepared 8 Prepared 8 Prepared 8	<0.200 A Analyzed: 11 <0.200 A Analyzed: 11 A Analyzed: 11	/7/2023 /7/2023 /7/2023	(a market		T COM
Duplicate (BGK1044-DUP1) Mercury Duplicate (BGK1044-DUP2) Mercury BGK0140-LBK1 (BGK1044-LBK1) Mercury BGJ2741-LBK2 (BGK1044-LBK2)	<0.200 <0.200 <0.200 <0.200 0.000211	Source: 2 U U	0.200 332900-01 0.200 0.200 0.200	mg/L mg/L mg/L	Prepared 8 Prepared 8 Prepared 8 Prepared 8 0.000200	<0.200 A Analyzed: 11 <0.200 A Analyzed: 11 A Analyzed: 11	/7/2023 /7/2023 /7/2023 /7/2023 106	(a III)		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -

A = Accredited, N = Not Accredited or Accreditation not available

130 S. Trade Center Parkway, Conroe TX 77385

Tel: (936) 321-6060 Email: lab@nwdls.com www. NWDLS.com

TCEQ T104704238-23-39

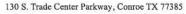
Municipal Operations and Consulting 27316 Spectrum Way Oak Ridge, TX 77385

Reported: 11/17/2023 11:20

Quality Control (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGK1044 - SW-7471 To	CLP (Continued)								
Matrix Spike (BGK1044-MS2)	Source: 2	332900-01		Prepared &	Analyzed: 11	/7/2023			
				0.00500	< 0.200	103	80-120		

130 S. Trade Center Parkway, Conroe TX 77385
Tel: (936) 321-6060
Email: lab@nwdls.com
www. NWDLS.com
TCEQ T104704238-23-39


Reported: 11/17/2023 11:20

Sample Condition Checklist

Work Order: 23J3698

Check Points

No	Custody Seals
Yes	Containers Intact
Yes	COC/Labels Agree
Yes	Received On Ice
Yes	Appropriate Containers
Yes	Appropriate Sample Volume
Yes	Coolers Intact
Yes	Samples Accepted

Tel: (936) 321-6060 Email: lab@nwdls.com www. NWDLS.com TCEQ T104704238-23-39

Municipal Operations and Consulting 27316 Spectrum Way Oak Ridge, TX 77385

Item

Definition

Reported: 11/17/2023 11:20

Term and Qualifier Definitions

C+	The associated calibration QC is higher than the established quality control criteria for accuracy - no hit in sample; data not affected and acceptable to report.
J1	Estimated value - The reported value is outside the established quality control criteria for accuracy and/or precision.
L	Off scale high - The concentration of the analyte exceeds the linear range.
S	The surrogate recovery was outside the established laboratory recovery limit.
U	Non-detected compound.
V	Analyte was detected in both sample and method blank.
V2	The analyte was detected in the sample and the associated leach blank.
RPD	Relative Percent Difference
%REC	Percent Recovery
Source	Sample that was matrix spiked or duplicated
*	A = Accredited, N = Not Accredited or Accreditation not available
DF	Dilution Factor - the factor applied to the reported data due to sample preparation, dilution, or moisture content
MDL	Method Detection Limit - The minimum concentration of a substance (or analyte) that can be measured and reported with 99% confidence that the
	analyte concentration is greater than zero. Based on standard deviation of replicate spiked samples take through all steps of the analytical
	procedure following 40 CFR Part 136 Appendix B.
SDL	Sample Detection Limit - The minimum concentration of a substance (analyte) that can be measured and reported with 99% confidence that the
	analyte concentration is greater than zero. The SDL is an adjusted limit thus sample specific and accounts for preparation weights and volumes,
	dilutions, and moisture content of soil/sediments. If there are no sample specific parameters, the MDL = SDL.
MRL	Method Reporting Limit - Analyte concentration that corresponds to the lowest level lab reports with confidence in accuracy of quantitation and
	without qualification (i.e. J-flagged). The MRL is at or above the lowest calibration standard.
LRL	Laboratory Reporting Limit - Analyte concentration that corresponds to the lowest level lab reports with confidence in accuracy of quantitation and
	without qualification (i.e. 3-flagged). The LRL is an adjusted limit thus sample specific and accounts for preparation weights and volumes, dilutions,
	and moisture content of soil/sediments. If there are no sample specific parameters, the MRL = LRL.

A = Accredited, N = Not Accredited or Accreditation not available

CHAIN OF CUSTODY RECORD

North Water District Laboratory Services
130 S. Trade Center Pkwy, Conroe Tx 77385
(936) 321-5060 - lab@nwdls.com TCEQ T104704238-23-39

Page 1 of 2

2313698

Schedule Comments:		Field Results																										
		Analysis/Preservation	Arsenic ICP 6010 4°C		0	•		Chromium ICP TCLP 4°C	Copper ICP 6010 4°C	Hg-7471 4°C	Hg-7471-TCLP 4°C	Lead ICP 6010 4°C	Lead ICP TCLP 4°C	6010	Nickel ICP 6010 4°C	_	CLP.	Silver ICP TCLP 4°C	US ICP 60	0	ı.			Sub_VOA-TCLP 4°C	NH3-N T-350.2 4°C	Nitrate as N IC 9056 4°C	TKN T-351.3 4°C	TS-2540 G 4°C
e Annual	nble 77338	Container	A Glass 250mL w/ Teffon-lined Lid	B HDPE IC 250mL			E Glass Wide 11 w/		G HDPE 250mL		in the		glion e															
6 - Sewage Sludg	615 Dawn Timbers Ct. Humble 77338 25-1854 PR 30 BEFORE ARRIVAL	Sample Type	S Grab																									
Project Name: HC MUD 26 - Sewage Sludge Annual	Project Comments: 21615 Dawn Timbers Ct Hi Gate Combo 2146 Mikey Sarricolea 281-825-1854 MUST CALL OPERATOR 30 BEFORE ARRIVAL	Date/Time Sampled	10/16/2023/4:50	2011																								
Proj		Date/Time Begin																										
Lab PM : Deena Higginbotham	Municipal Operations and Consulting John Montgomery 27316 Spectrum Way Oak Ridge, TX 77385 Phone: (281) 367-5511	Sample ID Collection Point	Digester																									
Lab PM : De	Municipal Operations a John Montgomery 27316 Spectrum Way Oak Ridge, TX 77385 Phone: (281) 367-5511	Sample ID	23J3698-01																									

CHAIN OF CUSTODY RECORD

North Water District Laboratory Services 130 S. Trade Center Pkwy, Conroe Tx 77385 (936) 321-6060 - lab@nwdls.com

TCEQ T104704238-23-39

Page 2 of 2

2313698

(Continued)

Schedule Comments: Project Comments: 21615 Dawn Timbers Ct Humble 77338 Gate Combo 2146 Project Name: HC MUD 26 - Sewage Sludge Annual Mikey Sarricolea 281-825-1854 MUST CALL OPERATOR 30 BEFORE ARRIVAL Municipal Operations and Consulting Lab PM: Deena Higginbotham John Montgomery 27316 Spectrum Way Oak Ridge, TX 77385 Phone: (281) 367-5511

Field Remarks:		Lab Preservatio (Circle and Write ID Below)	Lab Preservation: H2SO4 HNO3 (Circle and Market) Below)	TOPA TOPA	
Sampler (Signature)	Relinquished By: (Signature)	Date/Time	Received By: (Signature)	estini T	Date/Time
Print Name	Relinquished By: (Signature)	Date/Time	Received By: (Signature)	1	Date/Time
Affliation Complete Affliation Complete	Relinquished To Lab By: (Signature)	My BaterTime	Date/Time Received for Laboratory By: (Signature)	2	Date/Time, 23
	COC Labels Agree: Yes / No	Appropriate Volume: Yes / No Coolers Intact: Yes / No	Received on Ice: Yes / No Samples Accepted: Yes / No	Temperature: Thermometer ID:	ů

Spring South

Laboratory Analysis Report

Total Number of Pages:

Job ID: 23101996

10100 East Freeway, Suite 100, Houston, TX 77029 tel: 713-453-6060, fax: 713-453-6091, http://www.ablabs.com

Client Project Name: 23J3698

Report To:

Client Name:

NWDLS

Attn: Deena Higginbotham

Client Address: 130 S Trade Center Pkwy

City, State, Zip: Conroe, Texas, 77385 P.O.# .: 23J3698

Sample Collected By:

Date Collected: 10/16/23

A&B Labs has analyzed the following samples...

Client Sample ID

Matrix

A&B Sample ID

23J3698-01

Solid

23101996.01

Released By: Gobinath Rangasamy

Title:

Project Manager

Date:

10/24/2023

This Laboratory is NELAP (T104704213-23-31) accredited. Effective: 04/13/2023; Expires: 3/31/2024

Scope: Non-Potable Water, Drinking Water, Air, Solid, Biological Tissue, Hazardous Waste

I am the laboratory manager, or his/her designee, and I am responsible for the release of this data package. This laboratory data package has been reviewed and is complete and technically compliant with the requirements of the methods used, except where noted in the attached exception reports. I affirm, to the best of my knowledge that all problems/anomalies observed by this laboratory (and if applicable, any and all laboratories subcontracted through this laboratory) that might affect the quality of the data, have been identified in the Laboratory Review Checklist, and that no information or data have been knowingly withheld that would affect the quality of the data.

This report cannot be reproduced, except in full, without prior written permission of A&B Labs. Results shown relate only to the items tested. Results apply to the sample as received. Samples are assumed to be in acceptable condition unless otherwise noted. Blank correction is not made unless otherwise noted. Air concentrations reported are based on field sampling information provided by client. Soil samples are reported on a wet weight basis unless otherwise noted. Uncertainty estimates are available on request.

ab-q210-0321

Date Received: 10/18/2023 08:45

Page 26 of 32

LABORATORY TERM AND QUALIFIER DEFINITION REPORT

Job ID: 23101996

Date: 10/24/2023

General Term Definition

Back-Wt

Back Weight

BRL cfu

Below Reporting Limit colony-forming units

Conc.

Concentration

D.F.

Dilution Factor

Front-Wt

Front Weight

Estimation. Below calibration range but above MDL

LCS

Laboratory Check Standard

LCSD

Laboratory Check Standard Duplicate

MS

Matrix Spike

MSD

Matrix Spike Duplicate

MW

Molecular Weight

MQL

Unadjusted Minimum Quantitation Limit

Post-Wt

ppm Pre-Wt parts per million Previous Weight

Qualifier

Post Weight

Q

RegLimit

RPD

RptLimit

SDL

T

TNTC

UQL

Reporting Limit Sample Detection Limit

surr

Surrogate

Time

Too numerous to count

Regulatory Limit

Relative Percent Difference

Unadjusted Upper Quantitation Limit

Qualifier Definition

U

Undetected at SDL (Sample Detection Limit).

Page 2 of 7

Page 27 of 32

LABORATORY TEST RESULTS

Job ID: 23101996

Date 10/24/2023

Attn: Deena Higginbotham

Client Name:

NWDLS

Project Name:

23J3698

Client Sample ID:

Date Collected: Time Collected: Other Information: 23J3698-01 10/16/23

09:50

Job Sample ID:

23101996.01

Sample Matrix

Solid

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	SQL	Reg Limit	Q	Date Time	Analyst
SW-846 8260C	TCLP VOC	Harrie —	pint pp					iji iii ii	unit part	Tur
	1,1-Dichloroethylene	< 0.017	mg/L	1.00	0.017	0.125	0.6	U	10/23/23 22:08	ZQ
	1,2-Dichloroethane	<0.026	mg/L	1.00	0.026	0.125	0.5	U	10/23/23 22:08	ZQ
	1,4-Dichlorobenzene	<0.018	mg/L	1.00	0.018	0.125	7.5	U	10/23/23 22:08	ZQ
	Benzene	< 0.016	mg/L	1.00	0.016	0.125	0.5	U	10/23/23 22:08	ZQ
	Carbon tetrachloride	<0.043	mg/L	1.00	0.043	0.125	0.5	U	10/23/23 22:08	ZQ
	Chlorobenzene	<0.017	mg/L	1.00	0.017	0.125	70	U	10/23/23 22:08	ZQ
	Chloroform	<0.018	mg/L	1.00	0.018	0.125	6	U	10/23/23 22:08	ZQ
	MEK	<0.072	mg/L	1.00	0.072	0.125	200	U	10/23/23 22:08	ZQ
	Tetrachloroethylene	<0.017	mg/L	1.00	0.017	0.125	0.7	U	10/23/23 22:08	ZQ
	Trichloroethylene	<0.020	mg/L	1.00	0.020	0.125	0.5	U	10/23/23 22:08	ZQ
	Vinyl Chloride	<0.021	mg/L	1.00	0.021	0.125	0.2	U	10/23/23 22:08	ZQ
	1,2-Dichloroethane-d4(surr)	105	%	1.00		70-130			10/23/23 22:08	ZQ
	Dibromofluoromethane(surr)	101	%	1.00		70-130			10/23/23 22:08	ZQ
	p-Bromofluorobenzene(surr)	101	%	1.00		70-130			10/23/23 22:08	ZQ
	Toluene-d8(surr)	100	%	1.00		70-130			10/23/23 22:08	ZQ

ab-q212-0321

QUALITY CONTROL CERTIFICATE

Job ID: 23101996

Date:

10/24/2023

Analysis : TCLP VOC

Method:

SW-846 8260C

Reporting Units: mg/L

QC Batch ID: Qb23102401

Created Date: 10/23/23

Created By: Zeeshan

Samples in This QC Batch:

23101996.01

Prep Date:

10/23/23 10:00 Prep By:

Zeeshan

Sample Preparation:

PB23102401

Prep Method: SW-846 5030C

10/20/23 16:51 Prep By:

TCLP Prep:

PB23102106

Prep Method: SW-846 1311

Prep Date:

JCoku

QC Type: Method Blank Qual MDL Parameter CAS # Result Units D.F. MQL 0.0165 mg/L 1.00 0.125 1,1-Dichloroethylene 75-35-4 < MDL 0.026 0.125 1,2-Dichloroethane 107-06-2 < MDL mg/L 1.00 1.00 0.125 0.018 < MDL mg/L 1,4-Dichlorobenzene 106-46-7 0.0158 1.00 0.125 < MDL mg/L Benzene 71-43-2 1.00 0.125 0.0433 < MDL mg/L Carbon tetrachloride 56-23-5 0.0173 Chlorobenzene 108-90-7 < MDL mg/L 1.00 0.125 0.125 0.018 < MDL mg/L 1.00 Chloroform 67-66-3 0.0715 0.125 MEK 78-93-3 < MDL mg/L 1.00 0.0165 0.125 Tetrachloroethylene 127-18-4 < MDL mg/L 1.00 0.0198 < MDL mg/L 1.00 0.125 Trichloroethylene 79-01-6 0.0205 < MDL 1.00 0.125 Vinyl Chloride 75-01-4 mg/L 1.00 1,2-Dichloroethane-d4(surr 17060-07-0 101 % Dibromofluoromethane(surr 1868-53-7 101 % 1.00 p-Bromofluorobenzene(surr 460-00-4 103 % 1.00 1.00 100 % Toluene-d8(surr) 2037-26-5

- Constitution Co.	LCS	LCS	LCS	LCSD	LCSD	LCSD	DDD	RPD CtrlLimit	%Recovery CtrlLimit	Qual
Parameter	Spk Added	Result	% Rec	Spk Added	Result	% Rec	RPD			Quai
1,1-Dichloroethylene	1	1.04	104	1	1.00	100	4.1	35	70-130	
1,2-Dichloroethane	1	0.957	95.7	1	0.983	98.3	2.6	35	70-130	
1,4-Dichlorobenzene	1	0.983	98.3	1	0.949	94.9	3.5	35	70-130	
Benzene	1	0.957	95.7	1	0.945	94.5	1.3	35	70-130	
Carbon tetrachloride	1	1.02	102	1	1.00	100	2	35	70-130	-
Chlorobenzene	1	0.992	99.2	1	0.980	98	1.2	35	70-130	- 1
Chloroform	1	1.03	103	1	0.986	98.6	3.9	35	70-130	
MEK	1	0.898	89.8	1	0.911	91.1	1.4	35	70-130	
Tetrachloroethylene	1	0.943	94.3	1	0.942	94.2	0.1	35	70-130	1
Trichloroethylene	1	0.986	98.7	1	0.977	97.7	1	35	70-130	
Vinyl Chloride	1	1.02	102	1	0.981	98.1	4.4	35	70-130	

QC Type: MS and MS	D										
QC Sample ID: 2310	1844.01										
Parameter	Sample Result	MS Spk Added	MS Result	MS % Rec	MSD Spk Added	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLimit	Qual
1,1-Dichloroethylene	BRL	1	1.03	103						70-130	213-0321

Refer to the Definition page for terms.

QUALITY CONTROL CERTIFICATE

Job ID: 23101996

Date:

10/24/2023

Analysis : TCLP VOC

Method:

SW-846 8260C

Reporting Units : mg/L

QC Batch ID: Qb23102401

Created Date: 10/23/23

Created By : Zeeshan

Samples in This QC Batch: 23101996.01

QC Type: MS and MS QC Sample ID: 2310	SD 01844.01									gy mag	
Parameter	Sample Result	MS Spk Added	MS Result	MS % Rec	MSD Spk Added	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLimit	Qual
1,2-Dichloroethane	BRL	1	0.948	94.8						70-130	C
1,4-Dichlorobenzene	BRL	1	1.01	101			1147			70-130	
Benzene	BRL	1	0.972	97.2			T- 74		The sum	70-130	
Carbon tetrachloride	BRL	1	1.05	105			100			70-130	
Chlorobenzene	BRL	1	1.01	101					The same of	70-130	
Chloroform	BRL	1	0.991	99.1						70-130	
MEK	BRL	1	0.937	93.7						70-130	
Tetrachloroethylene	BRL	1	0.992	99.2						70-130	
Trichloroethylene	BRL	1	1.02	102						70-130	
Vinyl Chloride	BRL	1	0.995	99.5						70-130	

ab-q213-0321

SUBCONTRACT ORDER

Sending Laboratory:

North Water District Laboratory Services, Inc. 130 South Trade Center Parkway

Conroe, TX 77385 Phone: 936-321-6060 Fax: 936-321-6061

Project Manager: Deena Higginbotham

Subcontracted Laboratory:

A & B Labs 10100 East Freeway, Suite 100 Houston, TX 77029 Phone: (713) 453-6060

Fax: (713) 453-6091

Work Order: 23J3698

Analysis

Due

Expires

Comments

Sample ID: 23J3698-01

Solid Sampled: 10/16/2023 09:50

Sub_VOA-TCLP

10/30/2023

10/30/2023 09:50

Analyte(s): 1,1-Dichloroethylene

1,4-Dichlorobenzene (p-Dichlorobenzene)

Benzene

Chloroform

Toluene-d8-surr

1,2-Dichloroethane (Ethylene dichloride) 2-Butanone (Methyl ethyl ketone, MEK)

Carbon tetrachloride

Dibromofluoromethane-surr

Trichloroethene (Trichloroethylene)

1,2-Dichloroethane-d4-surr

4-Bromoflurobenzene-surr

Chlorobenzene

Tetrachloroethylene (Perchloroethylene)

Vinyl chloride (Chloroethene)

Containers Supplied:

DIA

Released By

Job ID:23101996 NWDLS AMS 10/18/2023

Page 31 of 32

Sample Condition Checklist

		Date Received: 10/18/2023 Time Received: 8:	45AM		
	ent Name : NWDLS		College Colleg		
	nperature : 8.1°C	Sample pH: NA			
	rmometer ID : IR5	pH Paper ID : NA	LM		
Per	rservative :	THE PERSON NAMED IN COLUMN TWO INCOME.	L MI		
		Check Points	Yes	No	N/A
1.	Cooler Seal present and signed.		7 70 00	Х	
2.	Sample(s) in a cooler.		X		
3.	If yes, ice in cooler.	SPACE S	X	M10	W
4.	Sample(s) received with chain-of-cust	ody. # #GPC	Х	nynen	
5.	C-O-C signed and dated.	WARRIER STORE OF THE THE STORE OF THE STORE	X	ahquan	e
6.	Sample(s) received with signed sampl	e custody seal.	COTH	X	e!
7.	Sample containers arrived intact. (If N	o comment)	x	014	
8.	Water Soil Liquid SI Matrix:	udge Solid Cassette Tube Bulk Badge Food Other			
9. 9	Samples were received in appropriate	container(s)	x	an in	
.0.	Sample(s) were received with Proper	preservative	52 IV	NAME OF	X
1.	All samples were tagged or labeled.		Х		
2. 5	Sample ID labels match C-O-C ID's.		х	Y	
з. І	Bottle count on C-O-C matches bottles	found.	х	milde b	
4. 5	Sample volume is sufficient for analyse	es requested.	х		
5. 5	Samples were received with in the hol	d time.	Х		
6.	VOA vials completely filled.				X
7. 5	Sample accepted.		х		
8. I	Has client been contacted about sub-o	ut approximation			Х
	ments : Include actions taken to resol	ve discrepancies/problem: shows solid matrix, received sludge. ~EV 10/18/2023			

Brought by : Client

Received by: EValdez

Check in by/date: EValdez / 10/18/2023

ab-s005-0321

Phone: 713-453-6060

www.ablabs.com

HC 200

8725 Fawn Trail The Woodlands, TX 77385
 Tel: (936) 321-6060 | Fax: (936) 321 6061

Email: lab@nwdsls.com

www. NWDLS.com

TCEQ Lab ID #: TX204, Accreditation ID: T104704238

May 01, 2023

LABORATORY REPORT

John Montgomery Municipal Operations and Consulting 27316 Spectrum Way Oak Ridge, TX 77385

Report ID: 20230501123128DLH

RE: HC MUD 200 - Non Potable - Class B Annual

The following test results meet all NELAP requirements for analytes for which certification is available. Any deviations from our quality system will be noted in the case narrative. All analyses performed by North Water District Laboratory Services, Inc. unless noted.

For questions regarding this report, contact Monica Martin at 936-321-6060.

Sincerely,

Deena Higginbotham

Director of Client Services

Opena Higginborham

Email: lab@nwdsls.com www. NWDLS.com

TCEQ Lab ID #: TX204, Accreditation ID: T104704238

Municipal Operations and Consulting

27316 Spectrum Way Oak Ridge, TX 77385 Project: HC MUD 200 - Non Potable - Class B Annual

Project Number: 2

Project Manager: John Montgomery

Reported: 05/01/2023 12:31

Sample Results

Client Sample ID: Lab Sample ID: Digester

23D4754-01

Sample Matrix:

Solid

Date Collected:

04/24/2023 8:10

Collected by:

Angel Rodriguez

			Co	niected by:	Angel Rodriguez	
Method	Analyte	Result Q	Units	Batch	Date Analyzed	Analyst
Colilert-18	Fecal coliforms	455000	MPN/g TS dry	BGD3694	04/25/2023 09:22	
Colilert-18	Fecal coliforms	163000	MPN/g TS dry	BGD3694	04/25/2023 09:22	AKA
Colilert-18	Fecal coliforms	286000	MPN/g TS dry	BGD3694	04/25/2023 09:22	AKA
Colilert-18	Fecal coliforms	196000	MPN/g TS dry	BGD3694	04/25/2023 09:22	AKA AKA
Colilert-18	Fecal coliforms	196000	MPN/g TS dry	BGD3694	04/25/2023 09:22	AKA
Colilert-18	Fecal coliforms	187000	MPN/g TS dry	BGD3694	04/25/2023 09:22	AKA
Colilert-18	Fecal coliforms	229000	MPN/g TS dry	BGD3694	04/25/2023 09:22	AKA
SM 2710 B	Specific Oxygen Uptake Rate (SOUR)	1.46	mg O2/hr/g TS @ 20°C dry	BGD3708	04/24/2023 15:28	AKA
SM 2550 B	Temperature °C Field	23.7	°C	BGD3770	04/24/2023 08:10	AR
SM 2540 G	% Solids	1.20	%	BGD3710	04/25/2023 12:03	JRU

The total solids is diluted to <=2.0% for the S.O.U.R. test when necessary.

CLASS B - Pass

Per Title 30, Texas Administrative Code, Chapter 312, for a Class B to pass, the fecal coliform geometric mean must be less than or equal to 2,000,000 CFU/ug TS and the S.O.U.R must be less than or equal to 1.5 mg O2/hr/g TS.

Email: lab@nwdsls.com

www. NWDLS.com

TCEQ Lab ID #: TX204, Accreditation ID: T104704238

Municipal Operations and Consulting

27316 Spectrum Way Oak Ridge, TX 77385 Project: HC MUD 200 - Non Potable - Class B Annual

Project Number: 2

Reported: 05/01/2023 12:31

Project Manager: John Montgomery

Quality Control

Canami	Chemistry	ì
	Lnemistr	å

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGD3710 - Percent Solids			- US-19-10011-00111			abe tran			
Blank (BGD3710-BLK1)			Pre	pared: 04/24	/2023 Analyze	d: 04/25/202	23		
% Solids	<0.100U	0.100	%		mign				
Duplicate (BGD3710-DUP1)	Source: 23	D4479-06	Pre	pared: 04/24	/2023 Analyze	d: 04/25/202	23		
% Solids		0.100	%	all knie	0.614			1.28	10
Reference (BGD3710-SRM1)			Pre	pared: 04/24	/2023 Analyze	d: 04/25/202	23		
% Solids		0.100	%	0.350		103	78.9-118		

Email: lab@nwdsls.com

www. NWDLS.com

TCEQ Lab ID #: TX204, Accreditation ID: T104704238

Municipal Operations and Consulting

27316 Spectrum Way Oak Ridge, TX 77385 Project: HC MUD 200 - Non Potable - Class B Annual

Project Number: 2

Project Manager: John Montgomery

Reported:

05/01/2023 12:31

Quality Control (Continued)

Microbiology

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGD3694 - FC Quantitray Blank (BGD3694 BLK1)			Prec	pared: 04/24	/2023 Analyze	d: 04/25/202	13		
Fecal coliforms	<10.0U	10.0	MPN/g TS		,,	0. 0., 20, 202	=======================================		
			wet						

Fecal coliforms

Source: 23D4754-01

Prepared: 04/24/2023 Analyzed: 04/25/2023

831 MPN/g TS dry

455000

79.6

200

Email: lab@nwdsls.com

www. NWDLS.com

TCEQ Lab ID #: TX204, Accreditation ID: T104704238

Municipal Operations and Consulting

27316 Spectrum Way Oak Ridge, TX 77385 Project: HC MUD 200 - Non Potable - Class B Annual

Project Number: 2

Project Manager: John Montgomery

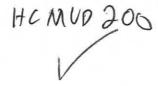
Reported: 05/01/2023 12:31

Term and Qualfier Definitions

Item	Definition	
U	Non-detected compound.	
DF	Dilution Factor - the factor applied to the reported data due to sample preparation, dilution, or moisture content	
RPD	Relative Percent Difference	
%REC	Percent Recovery	
Source	Sample that was matrix spiked or duplicated	

CHAIN OF CUSTODY RECORD
North Water District Laboratory Services
130 S. Trade Center Pkwy, Conroe Tx 77385
(936) 321-6060 - lab@nwdls.com

23D4754 Page 1 of 1


TCEQ T104704238-23-39

Lab PM : Deena Higginbotham	Project Name: HC MUD 200 - Non Potable - Class B Annual	Schedule Comments:
Municipal Operations and Consulting John Montgomery 27316 Spectrum Way Oak Ridge, TX 77385 Phone: (281) 367-5511	Project Comments: 13050 Stonefield Dr Houston 77014 Gate Combo 2006	

Sample ID	Sample ID Collection Point	Date/Time	Date/Time	Sample Type	Container	Analysis/Preservation	ion	Field Results	
		Degin.	pauduno						12 12
23D4754-01 Digester	Digester		4/24/2023 ~	S Grab	A HDPE S150mL	FC/CB-QT-LR	Na2S203	Temp C Field	1
			5:50		Na2S203		<10°C		
					B HDPE S150mL	SOUR-2710	4°C	ıff	
					Na2S2O3	000	اره ر		
					C HDPE S150mL		0 0		
					Na2S2O3	15-2540 G	4°C		
					D HDPE S150mL		1.0		
					Na2S2O3		In		
					E HDPE S150mL				
					Na2S2O3				
					F HDPE S150mL			1	
					Na2S2O3	100	36		
					G HDPE S150mL	is .			
					Na2S2O3				
					H HDPE 1L				
					I HDPE 250mL		bir		

Field Remarks:		Lab Preservation: H2SO4	ion: H2SO4 HNO3	NaOH Other:	er:
	and the state of the contract of the state o	(CITCLE and Write ID Below)		STATE OF THE PERSON NAMED IN COLUMN STATE OF THE PERSON NAMED IN C	
Sampler (Signature)	Relinquished By: (Signature)	Date/Time	Received By: (Signature)	o o o o o o o o o o o o o o o o o o o	Date/Time
Pript Name	Relinquished By: (Signature)	Date/Time	Received By: (Signature)		Date/Time
Affiliation Action	Relinquished To lab By: (Signature)	16×12	Received for Laboratory By: (Signature)	NS (a)	Date/Time 14 60
Custody Seal: Yes / No	COC Labels Agree: Yes / No Appropriate Containers: Yes No	Appropriate Volume: Yes / No Coolers Intact: Yes / No	Received on Ice: Yes / No Samples Accepted: Yes / No	Temperature: Thermometer ID:	J.
North West				wko_NWDLS_COC_LS Revision 4.1 Effective: 2/17/2022	ion 4.1 Effective: 2/17/20

130 S. Trade Center Parkway, Conroe TX 77385
Tel: (936) 321-6060
Email: lab@nwdls.com
www. NWDLS.com

May 24, 2023

Laboratory Report

John Montgomery Municipal Operations and Consulting 27316 Spectrum Way Oak Ridge, TX 77385

Report ID: 20230524132502AEN

The following test results meet all NELAP requirements for analytes for which certification is available. Any deviations from our quality system will be noted in the case narrative. All analyses performed by North Water District Laboratory Services, Inc. unless noted.

For questions regarding this report, contact Monica Martin at 936-321-6060.

Sincerely,

Aundra Noe For Deena Higginbotham

Director of Client Services

Reported: 05/24/2023 13:25

Sample Results

Client Sample ID:

Digester

Lab Sample ID:

23D1283-01

Sample Matrix:

Solid

Date Collected:

04/04/2023 10:00

HC MUD 200	- Non Potable - Sewage Sludge Annua			2		Col	ected by:	Franc	isco Gutierrez	Z	
Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	WELL I	Analysi
Metals, Tota	ai								31117 × 1		
SW-6010C	Arsenic	Α	7.30	mg/kg dry	1	0.821	3.74	BGD0607	04/20/2023	11:45	FAL
SW-6010C	Cadmium	Α	0.717	mg/kg dry	1	0.0972	0.374	BGD0607	04/20/2023	11:45	FAL
SW-6010C	Chromium	Α	9.47	mg/kg dry	1	1.40	1.88	BGD0607	04/20/2023	11:45	FAL
SW-6010C	Copper	Α	264	mg/kg dry	5	2.00	18.7	BGD0607	04/21/2023	16:38	FAL
SW-7471B	Mercury	Α	0.211	mg/kg dry	1	0.0224	0.0448	BGD1436	04/12/2023	15:11	AKR
SW-6010C	Lead	Α	5.37	mg/kg dry	1	0.954	1.88	BGD0607	04/20/2023	11:45	FAL
SW-6010C	Molybdenum	Α	5.95	mg/kg dry	1	1.88	1.88	BGD0607	04/20/2023	11:45	FAL
5W-6010C	Nickel	Α	13.4	mg/kg dry	1	0.505	1.88	BGD0607	04/20/2023	11:45	FAL
SW-6010C	Potassium	Α	6120	mg/kg dry	1	32.1	374	BGD0607	04/20/2023	11:45	FAL
SW-6010C	Selenium	Α	4.12	mg/kg dry	1	1.46	3.74	BGD0607	04/24/2023	13:56	FAL
SW-6010C	Total Phosphorus	Α	18100	mg/kg dry	1	15.7	374	BGD0607	04/20/2023 1	11:45	FAL
SW-6010C	Zinc	Α	744	mg/kg dry	10	18.8	18.8	BGD0607	04/21/2023	16:41	FAL
General Che	emistry										
PA 350.2	Ammonia as N	Α	18500	mg/kg dry	1	1110	2220	BGD2245	04/17/2023 0	09:29	GIW
SW-9056A	Nitrate as N	Α	<14.0U, TV	mg/kg dry	1	5.62	14.0	BGD0625	04/05/2023	14:41	ORP
EPA 351.3	Total Kjeldahl Nitrogen - (TKN)	N	86000	mg/kg dry	1	2580	2580	BGD2244	04/17/2023 1	12:58	GIW
SM 2540 G	% Solids	Α	0.890V, TV	%	1	0.100	0.100	BGD0694	04/06/2023	16:22	AKA
TCLP											
SW-6010C	Arsenic	Α	<5.00U, TV	mg/L	1	0.0200	5.00	BGD2687	05/12/2023 1	13:11	FAL
SW-6010C	Barium	Α	<100U, V2, TV	mg/L	5	0.0500	100	BGD2687	05/12/2023	15:01	FAL
5W-6010C	Cadmium	Α	<1.00U, TV	mg/L	1	0.00100	1.00	BGD2687	05/12/2023	13:11	FAL
SW-6010C	Chromium	Α	<5.00U, TV	mg/L	1	0.00500	5.00	BGD2687	05/12/2023	13:11	FAL
SW-8151	2,4-D	Α	<10.0U, TV	mg/L	2	0.000476	10.0	BGD2443	04/25/2023	11:00	cdg
SW-8151	Silvex (2,4,5-TP)	Α	<1.00 U, TV	mg/L	2	0.000476	1.00	BGD2443	04/25/2023	11:00	cdg
5W-8151	Surrogate: DCAA-surr	2011500	104%	70-130	32132				04/25/2023	11:00	
SW-7471B	Mercury	Α	<0.200U, TV	mg/L	1	0.000200	0.200	BGD2137	04/17/2023	14:42	AKR
SW-6010C	Lead	Α	<5.00U,	mg/L	1	0.0100	5.00	BGD2687	05/12/2023	13:11	FAL
SW-8081	Chlordane (Total)	Α	<0.0300U,	mg/L	1	3.00E-6	0.0300	BGD2621	05/01/2023	22:19	ala
SW-8081	Endrin	Ν	<0.0200U, TV	mg/L	1	3.00E-6	0.0200	BGD2621	05/01/2023	22:19	ala

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 05/24/2023 13:25

Sample Results (Continued)

Client Sample ID: Lab Sample ID:

Digester (Continued)

23D1283-01

Sample Matrix:

Solid

Date Collected:

04/04/2023 10:00 Francisco Gutierrez

HC MUD 200	- Non Potable - Sewage Sludge Annu	al		2		Col	lected by:	Franci	isco Gutierrez	
Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
TCLP (Cont	rinued)									290914
SW-8081	gamma-BHC (Lindane, gamma-HexachlorocyclohexanE)	Α	<0.400U, TV	mg/L	1	3.00E-6	0.400	BGD2621	05/01/2023 22:1	ala ala
SW-8081	Heptachlor	Α	<0.00800U, TV	mg/L	1	3.00E-6	0.00800	BGD2621	05/01/2023 22:1	ela e
SW-8081	Heptachlor epoxide	Α	<0.00800U, TV	mg/L	1	3.00E-6	0.00800	BGD2621	05/01/2023 22:1	e ala
SW-8081	Methoxychlor	A	<10.0U, TV	mg/L	1	3.00E-6	10.0	BGD2621	05/01/2023 22:1) ala
SW-8081	Toxaphene (Chlorinated Camphene)	Α	<0.500U, TV	mg/L	1	3.00E-6	0.500	BGD2621	05/01/2023 22:1	9 ala
SW-8081	Surrogate: 2,4,5,6 Tetrachloro-m-xylene	e-suri	111%	60-140		*****			05/01/2023 22:1	9
SW-8081	Surrogate: Decachlorobiphenyl-surr		90.9%	60-140					05/01/2023 22:1	9
SW-6010C	Selenium	Α	<1.00U, TV	mg/L	1	0.0200	1.00	BGD2687	05/12/2023 13:1	1 FAL
SW-6010C	Silver	Α	<5.00U, TV	mg/L	1	0.00200	5.00	BGD2687	05/12/2023 13:1	1 FAL
SW-8270	2,4,5-Trichlorophenol	Α	<400 U, TV	mg/L	1	0.00250	400	BGD2179	05/14/2023 08:2	7 KRB
SW-8270	2,4,6-Trichlorophenol	Α	<2.00U, TV	mg/L	1	0.00250	2,00	BGD2179	05/14/2023 08:2	7 KRB
SW-8270	2,4-Dinitrotoluene (2,4-DNT)	Α	<0.130U, TV	mg/L	1	0.00250	0.130	BGD2179	05/14/2023 08:2	7 KRB
SW-8270	2-Methylphenol	Α	<200U, TV	mg/L	1	0.00250	200	BGD2179	05/14/2023 08:2	7 KRB
SW-8270	Hexachlorobenzene	Α	<0.130U, TV	mg/L	1	0.00250	0.130	BGD2179	05/14/2023 08:2	7 KRB
SW-8270	Hexachlorobutadiene	Α	<0.500U, TV	mg/L	1	0.00250	0.500	BGD2179	05/14/2023 08:2	7 KRB
SW-8270	Hexachloroethane	Α	<3.00 U, TV	mg/L	1	0.00250	3.00	BGD2179	05/14/2023 08:2	7 KRB
SW-8270	Nitrobenzene	Α	<2.00U, TV	mg/L	1	0.00250	2.00	BGD2179	05/14/2023 08:2	7 KRB
SW-8270	Pentachlorophenol	Α	<100U, TV	mg/L	1	0.00250	100	BGD2179	05/14/2023 08:2	7 KRB
SW-8270	Pyridine	Α	<5.00U,	mg/L	1	0.00250	5.00	BGD2179	05/14/2023 08:2	7 KRB

54.6-148

55-152

52.4-136

52-162

58.7-152

51.9-147

93.8%

107%

114%

106%

97.8%

110%

Surrogate: 2-Fluorobiphenyl-surr

Surrogate: Nitrobenzene-d5-surr

Surrogate: p-Terphenyl-d14-surr

Surrogate: Phenol-d5-surr

Surrogate: 2,4,6-Tribromophenol-surr

Surrogate: 2-Fluorophenol-surr

05/14/2023 08:27

05/14/2023 08:27

05/14/2023 08:27

05/14/2023 08:27 05/14/2023 08:27

05/14/2023 08:27

SW-8270

SW-8270

SW-8270

SW-8270

SW-8270

SW-8270

A = Accredited, N = Not Accredited or Accreditation not available

130 S. Trade Center Parkway, Conroe TX 77385

Tel: (936) 321-6060 Email: lab@nwdls.com www. NWDLS.com TCEQ T104704238-23-39

Municipal Operations and Consulting 27316 Spectrum Way Oak Ridge, TX 77385

Reported: 05/24/2023 13:25

Sample Results (Continued)

Client Sample ID: Lab Sample ID: Digester

23D1283-01RE1

continueu

Sample Matrix:

Solid

Date Collected:

04/04/2023 10:00

HC MUD 200	- Non Potable - Sewage Sludge Annual		2		Colle	ected by:		isco Gutierrez	
Method	Analyte *	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Organics by	GC							Umpelat	
SW-8082	PCBs, Total (Rerun) A	<2250U, TV	ug/kg dry	10	1120	2250	BGD0593	05/09/2023 07:25	CRO
SW-8082	Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr	92.8%	60-140			********		05/09/2023 07:25	*****
SW-8082	Surrogate: Decachlorobiphenyl-surr (Rerun)	92.8%	60-140					05/09/2023 07:25	
TCLP									
SW-8270	3,4-Methylphenol (Rerun) A	<200 U, TV	mg/L	3	0.00750	200	BGD2179	05/16/2023 05:09	KRB
SW-8270	Surrogate: 2-Fluorophenol-surr (Rerun)	123%	55-152					05/16/2023 05:09	
SW-8270	Surrogate: 2,4,6-Tribromophenol-surr (Rerur.	99.7%	52.4-136					05/16/2023 05:09	
SW-8270	Surrogate: Phenol-d5-surr (Rerun)	110%	58.7-152					05/16/2023 05:09	

^{*} A = Accredited, N = Not Accredited or Accreditation not available

Reported: 05/24/2023 13:25

Quality Control

Organics by GC

Analyte	Result Qu	Reporting ual Limit		Spike Level	Source Result	* %REC	%REC Limits	RPD	RPD Limit
Batch: BGD0593 - SW-3570					Die ei	red a distrib	TI-WHY	reducti	1, 11
Blank (BGD0593-BLK1)			Р	repared: 4/5/	2023 Analyze	ed: 4/29/2023			
Aroclor-1016 (PCB-1016)	<20.0 U	20.0							
Aroclor-1260 (PCB-1260)	<20.0 U	20.0			L				
Blank (BGD0593-BLK2)			1	Prepared: 4/5,	/2023 Analyz	ed: 5/9/2023			
Aroclor-1016 (PCB-1016)	<20.0 U	20.0	ug/kg wet						
Aroclor-1260 (PCB-1260)	<20.0 U	20.0	ug/kg wet						
PCBs, Total	<20.0 U	20.0	ug/kg wet						
Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr		4.13	ug/kg wet	6.00		68.8	60-140		
Surrogate: Decachlorobiphenyl-surr		5.28	ug/kg wet	6.00		88.0	60-140		
LCS (BGD0593-BS2)			1	Prepared: 4/5,	/2023 Analyz	ed: 5/9/2023			
Aroclor-1016 (PCB-1016)	50.2	20.0	ug/kg wet	60.0		83.7	60-140		
Aroclor-1260 (PCB-1260)	57.5	20.0	ug/kg wet	60.0		95.9	60-140		
PCBs, Total	54.6	20.0	ug/kg wet	60.0		91.0	60-140		
Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr		4.42	ug/kg wet	6.00		73.5	60-140		
Surrogate: Decachlorobiphenyl-surr		5.74	ug/kg wet	6.00		95.6	60-140		
LCS Dup (BGD0593-BSD2)			1	Prepared: 4/5,	/2023 Analyz	ed: 5/9/2023			
Aroclor-1016 (PCB-1016)	50.2	20.0	ug/kg wet	60.0		83.6	60-140	0.0681	40
Aroclor-1260 (PCB-1260)	57.8	20.0	ug/kg wet	60.0		96.3	60-140	0.491	40
PCBs, Total	54.8	20.0		60.0		. 91.3	60-140	0.286	40
Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr		4.35	ug/kg wet	6.00		72.6	60-140		
Surrogate: Decachlorobiphenyl-surr		5.80	ug/kg wet	6.00		96.7	60-140		
Matrix Spike (BGD0593-MS2)	So	ource: 23D1094-01R	E1	Prepared: 4/5	/2023 Analyz	ed: 5/9/2023			
Arocior-1016 (PCB-1016)	5660	2280		6830	<2280	82.9	60-140		
Aroclor-1260 (PCB-1260)	6330	2280		6830	<2280	92.7	60-140		
PCBs, Total	6060	2280		6830	<2280	88.8	60-140		
Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr		576	ug/kg dry	683		84.4	60-140		
Surrogate: Decachlorobiphenyl-surr		665	ug/kg dry	683		97.5	60-140		

A = Accredited, N = Not Accredited or Accreditation not available

130 S. Trade Center Parkway, Conroe TX 77385
Tel: (936) 321-6060
Email: lab@nwdls.com
www. NWDLS.com
TCEQ T104704238-23-39

Municipal Operations and Consulting 27316 Spectrum Way Oak Ridge, TX 77385

Reported: 05/24/2023 13:25

Quality Control (Continued)

Organics by GC (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Satch: BGD0593 - SW-3570 (Co.	ntinued)						8	201.201	- 11110	tion of
Matrix Spike Dup (BGD0593-MSD2)		Source: 23	D1094-01RE	1	Prepared: 4/5,	/2023 Analyze	d: 5/9/2023			
Aroclor-1016 (PCB-1016)	6400		2280	ug/kg dry	6830	<2280	93.8	60-140	12,4	40
Aroclor-1260 (PCB-1260)	6950		2280	ug/kg dry	6830	<2280	102	60-140	9.29	40
PCBs, Total	6730		2280	ug/kg dry	6830	<2280	98.6	60-140	10.5	40
Surrogate: 2,4,5,6	7		718	ug/kg dry	683		105	60-140		*******
Tetrachloro-m-xylene-surr										
Surrogate: Decachlorobiphenyl-surr			726	ug/kg dry	683		106	60-140		

Reported:

05/24/2023 13:25

Quality Control (Continued)

Metals, Total

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGD0607 - SW-3	3050 for 6010				Upwy	ايداروا	Miles Vil	де н	1,000	100
Blank (BGD0607-BLK1)				Pre	pared: 4/18,	2023 Analyze	ed: 4/20/2023			
Arsenic	<1.70	U	1.70	mg/kg wet						
Cadmium	<0.170	U	0.170	mg/kg wet						
Chromium	<0.855	U	0.855	mg/kg wet						
Copper	<1.70	U	1.70	mg/kg wet						
Lead	<0.855	U	0.855	mg/kg wet						
Molybdenum	<0.855	U	0.855	mg/kg wet			*			
Nickel	<0.855	U	0.855	mg/kg wet						
Potassium	<170	U	170	mg/kg wet						
Selenium	<1.70	U	1.70	mg/kg wet						
Total Phosphorus	<170	U	170	mg/kg wet						
Zinc	<0.855	U	0,855	mg/kg wet						
LCS (BGD0607-BS1)				Pre	pared: 4/18,	/2023 Analyze	ed: 4/20/2023			
Arsenic	43.5		1.91	mg/kg wet	47.8		91.0	80-120		
Cadmium	4.24		0.191	mg/kg wet	4.78		88.6	80-120		
Chromium	22.2		0.958	mg/kg wet	23.9		92.8	80-120		
Copper	43.5		1.91	mg/kg wet	47.8		90.9	80-120		
Lead	21.4		0.958	mg/kg wet	23.9		89.7	80-120		
Molybdenum	21.1		0.958	mg/kg wet	23.9		88.4	80-120		
Nickel	21.5		0.958	mg/kg wet	23.9		89.8	80-120		
Potassium	4450		191	mg/kg wet	4780		93.2	80-120		
Selenium	44.7		1.91	mg/kg wet	47.8		93.5	80-120		
Total Phosphorus	4540		191	mg/kg wet	4780		95.0	80-120		
Zinc	21,8		0.958	mg/kg wet	23.9		91.3	80-120		
Matrix Spike (BGD0607-MS:	l)	Source:	23C5686-01	Pre	pared: 4/18	/2023 Analyze	ed: 4/20/2023			
Arsenic	84.7	J1	4.41	mg/kg dry	110	3.71	73.4	75-125		
Cadmium	8.66	J1	0.441	mg/kg dry	11.0	0.547	73.5	75-125		
Chromium	50.3	J1	2.21	mg/kg dry	55.2	9.06	74.8	75-125		
Lead	45.6	J1	2.21	mg/kg dry	55.2	5.69	72.3	75-125		
Molybdenum	41.8	J1	2.21	mg/kg dry	55.2	3.96	68.7	75-125		
Nickel	50.9		2.21	mg/kg dry	55.2	12.7	69.2	75-125		
Potassium	15400		441	mg/kg dry	11000	4750	96.5	75-125		
Selenium	88.7		4.41	mg/kg dry	110	4.32	76.5	75-125		

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 05/24/2023 13:25

Quality Control (Continued)

Metals, Total (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGD0607 - SW-3050 for	6010 (Con	tinued)					T Um -skill to	171.443	in high	10 TO
Matrix Spike (BGD0607-MS2)		Source: 2	3C6098-01	Pre	pared: 4/18	/2023 Analyze	ed: 4/20/202	3		
Arsenic	45,9	J1	2.14		53.5	5.89	74.8	75-125		
Cadmium	4.29	J1	0.214	mg/kg dry	5.35	0.427	72.3	75-125		
Chromium	25.4		1.07	mg/kg dry	26.7	5.33	75.3	75-125		
Lead	25.0	J1	1.07	mg/kg dry	26.7	5.25	73.7	75-125		
Molybdenum	25.1	J1	1.07	mg/kg dry	26.7	6.35	70.2	75-125		
Nickel	25.9	J1	1.07	mg/kg dry	26.7	6.42	72.9	75-125		
Matrix Spike (BGD0607-MS3)		Source: 2	3C5686-01	Pre	pared: 4/18	/2023 Analyze	ed: 4/21/2023	3		
Copper	2560		110	mg/kg dry	2320	131	105	75-125		
Total Phosphorus	32800		4410		22100	10700	100	75-125		
Matrix Spike (BGD0607-MS4)	OR:	Source: 2	3C6098-01	Pre	pared: 4/18,	/2023 Analyze	ed: 4/21/2023	3	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Copper	1180		53.4	mg/kg dry	1120	161	90.7	75-125		
Potassium	12600		1070	mg/kg dry	5350	7400	96.6	75-125		
Selenium	51.1		10.7	mg/kg dry	53.5	<10.7	95.6	75-125		
Total Phosphorus	32400		1070	mg/kg dry	10700	21100	106	75-125		
Matrix Spike (BGD0607-MS5)		Source: 2	3C5686-01	Pre	pared: 4/18	/2023 Analyze	ed: 4/24/2023	3		
Zinc	1870	J1	55.3	mg/kg dry	2260	483	61.4	75-125		
Matrix Spike (BGD0607-MS6)		Source: 2	3C6098-01	Pre	pared: 4/18,	/2023 Analyze	ed: 4/24/2023	3		
Zinc	1400		53.6	mg/kg dry	1100	523	80.1	75-125		
Matrix Spike Dup (BGD0607-MSD1)		Source: 2	3C5686-01	Pre	pared: 4/18	/2023 Analyze	ed: 4/20/2023	3		
Arsenic	74.1	J1	4.41	mg/kg dry	110	3.71	63.7	75-125	13.4	20
Cadmium	7.66	J1	0.441	mg/kg dry	11.0	0.547	64.4	75-125	12.3	20
Chromium	44.1	J1	2.21	mg/kg dry	55.2	9.06	63.4	75-125	13.2	20
Lead	40.0	J1	2.21	mg/kg dry	55.2	5.69	62.1	75-125	13.0	20
Molybdenum	36.6		2.21	mg/kg dry	55.2	3.96	59.0	75-125	13.5	20
Nickel	44.3	J1	2.21	mg/kg dry	55.2	12.7	57.3	75-125	13.7	20
Potassium	15200		441	mg/kg dry	11000	4750	94.3	75-125	1.47	20
Selenium	75.8	11	4.41	mg/kg dry	110	4.32	64.7	75-125	15.6	20

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 05/24/2023 13:25

Quality Control (Continued)

Metals, Total (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGD0607 - SW-3050 for 6	010 (Con	tinued)			Quesa	the little		Tiky blo-		
Matrix Spike Dup (BGD0607-MSD2)		Source: 2	3C6098-01	Pre	pared: 4/18,	2023 Analyze	d: 4/20/2023	3		
Arsenic	50.9		2.13	mg/kg dry	53.4	5.89	84.4	75-125	10.5	20
Cadmium	5.00		0.213	mg/kg dry	5.34	0.427	85.6	75-125	15.2	20
Chromium	28.3		1.07	mg/kg dry	26.7	5.33	86.1	75-125	10.7	20
Lead	27.5		1.07	mg/kg dry	26.7	5.25	83.5	75-125	9.81	20
Molybdenum	28.1		1.07	mg/kg dry	26.7	6.35	81.7	75-125	11.4	20
Nickel	28.5		1.07	mg/kg dry	26.7	6.42	82.6	75-125	9.46	20
Aatrix Spike Dup (BGD0607-MSD3)	1.00	Source: 2	3C5686-01	Pre	pared: 4/18,	/2023 Analyze	ed: 4/21/2023	3		
Copper	2290		110	mg/kg dry	2320	131	93.2	75-125	11.1	20
Total Phosphorus	32600		4410	mg/kg dry	22100	10700	98.9	75-125	0.747	20
Matrix Spike Dup (BGD0607-MSD4)		Source: 2	3C6098-01	Pre	pared: 4/18,	/2023 Analyze	ed: 4/21/202	3		
Copper	1120		107	mg/kg dry	1120	161	85.3	75-125	5.41	20
Potassium	12100		1070	mg/kg dry	5340	7400	88.4	75-125	3.61	20
Selenium	50.7		10.7	mg/kg dry	53.4	<10.7	95.0	75-125	0.843	20
Total Phosphorus	31400		1070	mg/kg dry	10700	21100	96.7	75-125	3.02	20
Zinc	1510		53.5	mg/kg dry	1090	523	89.8	75-125	7.23	20
Matrix Spike Dup (BGD0607-MSD5)		Source: 2	3C5686-01	Pre	pared: 4/18	/2023 Analyze	ed: 4/24/202	3		
Zinc	2480	J1	55.4	mg/kg dry	2260	483	88.1	75-125	27.9	20
Post Spike (BGD0607-PS1)		Source: 2	3C5686-01	Pre	pared: 4/18	/2023 Analyze	ed: 4/20/202	3		
Arsenic	336	J1		ug/L	500	15.9	64.1	80-120		
Cadmium	34.6			ug/L	50.0	2.34	64.4	80-120		
Chromium	207			ug/L	250	38.8	67.1	80-120		
Copper	803			ug/L	500	561	48.4	80-120		
Lead	180			ug/L	250	24.4	62.1	80-120		
Molybdenum	169			ug/L	250	17.0	60.9	80-120		
Nickel	206			ug/L	250	54.3	60.6	80-120		
Potassium	71300	. 407		ug/L	50000	20300	102	80-120		
Selenium	346	J1		ug/L	500	18.5	65.6	80-120		
Total Phosphorus	96800			ug/L	50000	45900	102	80-120		

^{*} A = Accredited, N = Not Accredited or Accreditation not available

Reported: 05/24/2023 13:25

Quality Control (Continued)

Metals, Total (Continued)

Analyte	Result	Qual		Reporting Limit		Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGD0607 - SW-3050 fo	or 6010 (Con	itinu	ied)				111100T B	THIS RATES	Til min's		45 0
Post Spike (BGD0607-PS2)			rce: 23C60	98-01	Pre	epared: 4/18	/2023 Analyze	d: 4/20/2023			
Arsenic	556				ug/L	500	52.1	101	80-120		
Cadmium	50.1				ug/L	50.0	3.78	92.7	80-120		
Chromium	303				ug/L	250	47.1	103	80-120		
Lead	287				ug/L	250	46.4	96.2	80-120		
Molybdenum	311				ug/L	250	56.2	102	80-120		
Nickel	305				ug/L	250	56.8	99.3	80-120		
Post Spike (BGD0607-PS3)		Soul	rce: 23C56	86-01	Pre	pared: 4/18	/2023 Analyze	d: 4/21/2023			
Zinc	3330	J1			ug/L	250	2070	503	80-120		
Post Spike (BGD0607-PS4)		Soul	rce: 23C60	98-01	Pre	pared: 4/18	/2023 Analyze	d: 4/21/2023			
Copper	2220	J1			ug/L	500	1430	160	80-120		
Potassium	118000				ug/L	50000	65500	105	80-120		
Selenium	519				ug/L	500	32.7	97.3	80-120		
Total Phosphorus	257000	J1			ug/L	50000	186000	141	80-120		
Zinc	5640	J1			ug/L	250	4630	403	80-120		
Dilution Check (BGD0607-SRL1)		Sour	rce: 23C56	86-01	Pre	pared: 4/18	/2023 Analyze	d: 4/20/2023			
Arsenic	5.99			22.0	mg/kg dry	po. co. 1/10/	<22.0	u. 1/20/2025		47.0	10
Cadmium	0.573			2.20	mg/kg dry		<2.20			4.73	10
Chromium	<11.0			11.0	mg/kg dry		9.06			200	10
Copper	108			22.0	mg/kg dry		131			19.1	10
Lead	5.80			11.0	mg/kg dry		5.69			1.92	10
Molybdenum	<11.0			11.0	mg/kg dry		<11.0			200	1
Vickel	10.7			11.0	mg/kg dry		12.7				10
Potassium	4940	9		2200	mg/kg dry		4750			16.6	10
Selenium	<22.0	Ti		22.0	mg/kg dry mg/kg dry		<22.0			3.92	10
Total Phosphorus	11200	U		22.0						200	10
Zinc	483			11.0	mg/kg dry mg/kg dry		10700 483			4.07 0.00166	10 10

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 05/24/2023 13:25

TCEQ T104704238-23-39

Quality Control (Continued)

Metals, Total (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	· %REC	%REC Limits	RPD	RPD Limit
Batch: BGD0607 - SW-3050 for	6010 (Con	tinued)					right raids	A Irring	7 902	18 901
Dilution Check (BGD0607-SRL2)		Source: 2	3C6098-01	Pre	epared: 4/18,	/2023 Analyz	ed: 4/20/2023			
Arsenic	9.37	U	10.7	mg/kg dry		5.89			45.6	10
Cadmium	0.539	U	1.07	mg/kg dry		0.427			23.2	10
Chromium	5.83		5.35	mg/kg dry		5.33			9.02	10
Copper	155		10.7	mg/kg dry		161			3.82	10
Lead	6.54		5.35	mg/kg dry		5.25			22.0	10
Molybdenum	7.90		5.35	mg/kg dry		6.35			21.7	10
Nickel	7.44		5.35	mg/kg dry		6.42			14.8	10
Potassium	7230		1070	mg/kg dry		7400			2.36	10
Total Phosphorus	21100		1070	mg/kg dry		21100			0.00	10
Dilution Check (BGD0607-SRL4)		Source: 2	3C6098-01	Pre	epared: 4/18,	/2023 Analyz	ed: 4/24/2023			
Selenium	<10.7	U	10.7	mg/kg dry		<10.7			200	10
			nealing the second		V 92			HUUN	- 1 74	than t
Batch: BGD1436 - SW-7471										
MDL Check (BGD1436-MRL1)				Pre	epared: 4/11	/2023 Analyz	ed: 4/12/2023			
Mercury	0.0161	U	0.0197	mg/kg wet	0.00987	(163			
Matrix Spike (BGD1436-MS1)		Source: 2	3C5936-01	Pre	epared: 4/11,	/2023 Analyz	ed: 4/12/2023			
Mercury	0.667		0.0468	mg/kg dry	0.585	0.157	87.0	80-120		

0.0469 mg/kg dry

Prepared: 4/11/2023 Analyzed: 4/12/2023

0.157

74.9

80-120

11.1

0.587

Source: 23C5936-01

0.596 J1

Matrix Spike Dup (BGD1436-MSD1)

Mercury

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 05/24/2023 13:25

Quality Control (Continued)

General Chemistry

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGD0625 - Solid Anions No	Prep				0	W 1 1	10000	to Ha	3.00	april silas
Duplicate (BGD0625-DUP1)		Source: 2	3D1094-01		Prepared	& Analyzed: 4	/5/2023			
Nitrate as N	11400		711	mg/kg dry		11400			0.150	15
MRL Check (BGD0625-MRL1)					Prepared	& Analyzed: 4	/5/2023			
Nitrate as N	0.116	U	0.125	mg/kg wet	0.100		116	50-150		L. L.
Matrix Spike (BGD0625-MS1)		Source: 2	3D1094-01		Prepared	& Analyzed: 4	/5/2023			
Nitrate as N	11800	J1	790	mg/kg dry	253	11400	169	80-120		
	6562									n Kunti
Batch: BGD0694 - Percent Solids										
Blank (BGD0694-BLK1)					Prepared: 4/5	/2023 Analyze	ed: 4/6/2023			
% Solids	<0.100	U	0.100	%						1/44
Duplicate (BGD0694-DUP1)		Source: 2	3D1274-08		Prepared: 4/5	/2023 Analyze	ed: 4/6/2023			
% Solids	0.639	A CONTRACT OF THE PARTY OF THE	0.100	%		0.642			0.563	20
Duplicate (BGD0694-DUP2)		Source: 2	3D1471-01		Prepared: 4/5	/2023 Analyze	ed: 4/6/2023			
% Solids	0.775		0.100	%		0.770			0.564	20
Reference (BGD0694-SRM1)				44.4	Prepared: 4/5	5/2023 Analyze	ed: 4/6/2023			
% Solids	0.376		0.100	%	0.350		107	78.9-118		
	ic with	the L		All In	og Love		Til			DOMESTICAL PROPERTY.
Batch: BGD2244 - TKN T										
Blank (BGD2244-BLK1)				P	repared: 4/14	/2023 Analyze	ed: 4/17/202	3		
Total Kjeldahl Nitrogen - (TKN)	<9.84	U	9.84	mg/kg wet						

A = Accredited, N = Not Accredited or Accreditation not available

Tel: (936) 321-6060 Email: lab@nwdls.com www. NWDLS.com TCEQ T104704238-23-39

Reported: 05/24/2023 13:25

Quality Control

(Continued)

General Chemistry (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGD2244 - TKN T (Cont	inued)						1000	principal	CHILAR	M. of
LCS (BGD2244-BS1)	Life du chia El			Pre	pared: 4/14	/2023 Analyze	ed: 4/17/2023			
Total Kjeldahl Nitrogen - (TKN)	33.6		10.0	mg/kg wet	35.6		94.4	85-115		
Duplicate (BGD2244-DUP1)		Source: 2	3D0681-45	Prej	pared: 4/14,	/2023 Analyze	ed: 4/17/2023			
Total Kjeldahl Nitrogen - (TKN)	215		14.1	mg/kg dry		200			7.59	20
MRL Check (BGD2244-MRL1)				Prej	pared: 4/14	/2023 Analyze	ed: 4/17/2023			
Total Kjeldahl Nitrogen - (TKN)	25.7		9.96	mg/kg wet	39.8		64.4	50-150		
Matrix Spike (BGD2244-MS1)		Source: 2	3D0681-45	Pre	pared: 4/14,	/2023 Analyze	ed: 4/17/2023			
				627 3		I INSEE	2744	100 100		
Total Kjeldahl Nitrogen - (TKN) Batch: BGD2245 - NH3-N T	279	31	14.1	mg/kg dry	56.3	200	141	85-115		
Batch: BGD2245 - NH3-N T	<9.92					200 /2023 Analyze				
Batch: BGD2245 - NH3-N T Blank (BGD2245-BLK1) Ammonia as N	N per			Prej mg/kg wet	pared: 4/14,	/2023 Analyze	ed: 4/17/2023	5 , 6		
Batch: BGD2245 - NH3-N T Blank (BGD2245-BLK1) Ammonia as N	N per			Prej mg/kg wet Prej	pared: 4/14,		ed: 4/17/2023	5 , 6		
Batch: BGD2245 - NH3-N T Blank (BGD2245-BLK1) Ammonia as N LCS (BGD2245-BS1) Ammonia as N	<9.92	U	9.92	Prej mg/kg wet Prej mg/kg wet	pared: 4/14, pared: 4/14, 99.0	/2023 Analyze	ed: 4/17/2023 ed: 4/17/2023 94.1	85-115		
Batch: BGD2245 - NH3-N T Blank (BGD2245-BLK1) Ammonia as N LCS (BGD2245-BS1) Ammonia as N	<9.92	U Source: 2	9.92 9.90	Prej mg/kg wet Prej mg/kg wet	pared: 4/14, pared: 4/14, 99.0	/2023 Analyze /2023 Analyze	ed: 4/17/2023 ed: 4/17/2023 94.1	85-115	31.2	20
Batch: BGD2245 - NH3-N T Blank (BGD2245-BLK1) Ammonia as N LCS (BGD2245-BS1) Ammonia as N Duplicate (BGD2245-DUP1)	<9.92 93.1	U Source: 2	9.92 9.90 3 D0681-45	Prej mg/kg wet Prej mg/kg wet Prej mg/kg dry	pared: 4/14, pared: 4/14, 99.0 pared: 4/14,	/2023 Analyze /2023 Analyze /2023 Analyze	ed: 4/17/2023 ed: 4/17/2023 94.1 ed: 4/17/2023	85-115	31,2	20
Batch: BGD2245 - NH3-N T Blank (BGD2245-BLK1) Ammonia as N LCS (BGD2245-BS1) Ammonia as N Duplicate (BGD2245-DUP1) Ammonia as N	<9.92 93.1	Source: 2	9.92 9.90 3 D0681-45	Prej mg/kg wet Prej mg/kg wet Prej mg/kg dry Prej	pared: 4/14, pared: 4/14, 99.0 pared: 4/14,	/2023 Analyze /2023 Analyze /2023 Analyze 13.0	ed: 4/17/2023 ed: 4/17/2023 94.1 ed: 4/17/2023	85-115	31.2	20
Batch: BGD2245 - NH3-N T Blank (BGD2245-BLK1) Ammonia as N LCS (BGD2245-BS1) Ammonia as N Duplicate (BGD2245-DUP1) Ammonia as N MRL Check (BGD2245-MRL1)	<9.92 93.1 17.8	Source: 2	9.92 9.90 3 D0681-45 13.8	Prej mg/kg wet Prej mg/kg wet Prej mg/kg dry Prej mg/kg wet	pared: 4/14, 99.0 pared: 4/14, pared: 4/14, 9.97	/2023 Analyze /2023 Analyze /2023 Analyze 13.0	ed: 4/17/2023 94.1 ed: 4/17/2023 95.2	85-115 50-150	31.2	20

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 05/24/2023 13:25

Quality Control (Continued)

TCLP

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGD2137 - SW-7471 TCLF	,						markin et	of word	- but to	22 0
Duplicate (BGD2137-DUP1)		Source: 2	23D1481-01		Prepared: 4/14,	/2023 Analyze	d: 4/17/2023			
Mercury	<0.200	U	0.200	mg/L		<0.200				200
BGD1470-LBK1 (BGD2137-LBK1)					Prepared: 4/14	/2023 Analyze	d: 4/17/2023			
Mercury	<0.200	U	0.200	mg/L		LITE			er	
MDL Check (BGD2137-MRL1)					Prepared: 4/14,	2023 Analyze	d: 4/17/2023	PERMIT		
Mercury	0.000225	u	0.200	mg/L	0.000200		112		T	
Matrix Spike (BGD2137-MS1)		Source: 2	23D1481-01		Prepared: 4/14	/2023 Analyze	d: 4/17/2023			
Mercury	0,00504	U	0.200	mg/L	0.00500	<0.200	101	80-120		
Batch: BGD2179 - SW-3511	262									
MB SV (BGD2179-BLK1)					Prepared: 4/14	/2023 Analyze	d· 5/13/2023			
2,4,5-Trichlorophenol	<400	H	400	mg/L	repared. 1/11/	2025 Analyze	u. 5/15/2025			
2,4,6-Trichlorophenol	<2.00		2.00	mg/L						
2,4-Dinitrotoluene (2,4-DNT)	<0.130		0.130	mg/L						
2-Methylphenol	<200		200	mg/L						
3,4-Methylphenol	<200		200	mg/L						
Hexachlorobenzene	<0.130	U	0.130	mg/L						
Hexachlorobutadiene	<0.500	U	0.500	mg/L						
Hexachloroethane	<3.00	U	3.00	mg/L						
Nitrobenzene	<2.00	U	2.00	mg/L						
Pentachlorophenol	<100	U	100	mg/L						
Pyridine	<5.00	U	5.00	mg/L						
Surrogate: 2-Fluorobiphenyl-surr			0.0100	mq/L	0.0100		100	54.6-148	ACTUAL:	
Surrogate: 2-Fluorophenol-surr			0.0251	mg/L	0.0200		125	55-152		
Surrogate: 2,4,6-Tribromophenol-surr			0.0254	mg/L	0.0200		127	52.4-136		
Surrogate: Nitrobenzene-d5-surr			0.0110	mg/L	0.0100		110	52-162		
Surrogate: Phenol-d5-surr			0.0203	mg/L	0.0200		102	58.7-152		
Surrogate: p-Terphenyl-d14-surr			0.0109	mg/L	0.0100		109	51.9-147		

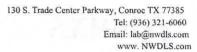
A = Accredited, N = Not Accredited or Accreditation not available

Reported: 05/24/2023 13:25

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGD2179 - SW-3511 (Co	ontinued)					Character	structly b		874.11.03	M.
BS SV (BGD2179-BS1)				Pr	epared: 4/14/	2023 Analyze	d: 5/14/202	3		
2,4,5-Trichlorophenol	0.0210	u	400	mg/L	0.0200		105	60-140		
2,4,6-Trichlorophenol	0.0222		2.00	mg/L	0.0200		111	60-140		
2,4-Dinitrotoluene (2,4-DNT)	0.0111		0.130	mg/L	0.0100		111	60-140		
2-Methylphenol	0.0204		200	mg/L	0.0200		102	60-140		
3,4-Methylphenol	0.0379		200	mg/L	0.0400		94.8	60-140		
Hexachlorobenzene	0.0111		0.130	mg/L	0.0100		111	60-140		
Hexachlorobutadiene	0.00529		0.500	mg/L	0.0100		52.9	60-140		
Hexachloroethane	0.00594		3.00	mg/L	0.0100		59.4	60-140		
Nitrobenzene	0.0117		2.00	mg/L	0.0100		117	60-140		
Pentachlorophenol	0.0186		100	mg/L	0.0200		93.2	36.8-149		
Pyridine	0.0103		5.00	mg/L	0.0500		20.7	2.5-101		
Surrogate: 2-Fluorobiphenyl-surr			0.00986	mg/L	0.0100		98.6	54.6-148	3.131.11	
Surrogate: 2-Fluorophenol-surr			0.0251	mg/L	0.0200		125	55-152		
Surrogate: 2,4,6-Tribromophenol-surr			0.0216	mg/L	0.0200		108	52.4-136		
Surrogate: Nitrobenzene-d5-surr			0.0106	mg/L	0.0100		106	52-162		
Surrogate: Phenol-d5-surr			0.0226	mg/L	0.0200		113	58.7-152		
Surrogate: p-Terphenyl-d14-surr			0.00990	mg/L	0.0100		99.0	51.9-147		
BSD SV (BGD2179-BSD1)		/11		Pr	epared: 4/14	/2023 Analyze	ed: 5/14/202	3		
2,4,5-Trichlorophenol	0.0222	11	400	mg/L	0.0200		111	60-140	5.56	40
2,4,6-Trichlorophenol	0.0222		2.00	mg/L	0.0200		112	60-140	0,765	40
2,4-Dinitrotoluene (2,4-DNT)	0.0224		0.130	mg/L	0.0100		113	60-140	0.942	40
2-Methylphenol	0.0211		200	mg/L	0.0200		105	60-140	3.07	40
3,4-Methylphenol	0.0211		200	mg/L	0.0400		95.9	60-140	1.20	40
Hexachlorobenzene	0.0304		0.130	mg/L	0.0100		111	60-140	0.130	40
Hexachlorobutadiene	0.00573		0,500	mg/L	0.0100		57.3	60-140	7.86	40
Hexachloroethane	0.00573	No. of the	3.00	mg/L	0.0100		62.8	60-140	5.60	40
Nitrobenzene	0.00626		2.00	mg/L	0.0100		112	60-140	4.69	40
Pentachlorophenol	0.0112		100	mg/L	0.0200		85.6	36.8-149	8.47	40
Pyridine	0.00699		5.00	mg/L	0.0500		14.0	2.5-101	38.7	40
Surrogate: 2-Fluorobiphenyl-surr			0.0102	mg/L	0.0100		102	54.6-148		
Surrogate: 2-Fluorophenol-surr			0.0241	mg/L	0.0200		121	55-152		
Surrogate: 2,4,6-Tribromophenol-surr			0.0219	mg/L	0.0200		110	52.4-136		
Surrogate: Nitrobenzene-d5-surr			0.0104	mg/L	0.0100		104	52-162		
Surrogate: Phenol-d5-surr			0.0234	mg/L	0.0200		117	58.7-152		
Surrogate: p-Terphenyl-d14-surr			0.00978	mg/L	0.0100		97.8	51.9-147		

A = Accredited, N = Not Accredited or Accreditation not available



Reported: 05/24/2023 13:25

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGD2179 - SW-3511 (Cd	ontinued)							Buchin	00,000	2.50
BGD1470-BLK1 (BGD2179-LBK1)				Pr	epared: 4/14	/2023 Analyze	d: 5/14/202	3		
2,4,5-Trichlorophenol	<400	U	400	mg/L	political Arms	,				
2,4,6-Trichlorophenol	<2.00	U	2.00	mg/L						
2,4-Dinitrotoluene (2,4-DNT)	< 0.130	U	0.130	mg/L						
2-Methylphenol	<200	U	200	mg/L						
3,4-Methylphenol	0.00275	U	200	mg/L						
Hexachlorobenzene	< 0.130	U	0.130	mg/L						
Hexachlorobutadiene	<0.500	U	0.500	mg/L						
Hexachloroethane	<3.00	U	3.00	mg/L						
Nitrobenzene	<2.00	U.	2.00	mg/L						
Pentachlorophenol	<100	U	100	mg/L						
Pyridine	<5.00	U	5.00	mg/L						
Surrogate: 2-Fluorobiphenyl-surr			0.0386	mg/L	0.0400		96.4	54.6-148	*******	
Surrogate: 2-Fluorophenol-surr			0.0925	mg/L	0.0800		116	55-152		
Surrogate: 2,4,6-Tribromophenol-surr			0.0919	mg/L	0.0800		115	52.4-136		
Surrogate: Nitrobenzene-d5-surr			0.0465	mg/L	0.0400		116	52-162		
Surrogate: Phenol-d5-surr			0.0745	mg/L	0.0800		93.1	58.7-152		
Surrogate: p-Terphenyl-d14-surr			0.0364	mg/L	0.0400		90.9	51.9-147		
23D1094-01 MS (BGD2179-MS1)	*	Source: 2	3D1094-01	Pre	epared: 4/14/	/2023 Analyze	d: 5/14/202	3		
2,4,5-Trichlorophenol	0.116	U	400	mg/L	0.0800	<400	145	44.9-171		
2,4,6-Trichlorophenol	0.101	U	2.00	mg/L	0.0800	<2.00	126	34.7-143		
2,4-Dinitrotoluene (2,4-DNT)	0.0600	J1, U	0.130	mg/L	0.0400	< 0.130	150	50.3-144		
2-Methylphenol	0.0815	U	200	mg/L	0.0800	<200	102	17.3-182		
3,4-Methylphenol	0.167	L, U	200	mg/L	0.160	<200	105	43.4-188		
Hexachlorobenzene	0.0419	U	0.130	mg/L	0.0400	< 0.130	105	56.1-137		
Hexachlorobutadiene	0.0195	U	0.500	mg/L	0.0400	< 0.500	48.7	33.1-110		
Hexachloroethane	0.0229	U	3.00	mg/L	0.0400	<3.00	57.3	36.2-106		
Nitrobenzene	0.0502	U	2.00	mg/L	0.0400	<2.00	125	54.9-156		
Pentachlorophenol	0.124	J1, U	100	mg/L	0.0800	<100	156	42.2-151		
Pyridine	0.0669	U	5.00	mg/L	0.200	<5.00	33.5	2-87.4		
Surrogate: 2-Fluorobiphenyl-surr			0.0397	mg/L	0.0400		99.3	54.6-148		
Surrogate: 2-Fluorophenol-surr			0.0969	mg/L	0.0800		121	55-152		
Surrogate: 2,4,6-Tribromophenol-surr			0.0890	mg/L	0.0800		111	52.4-136		
Surrogate: Nitrobenzene-d5-surr			0.0473	mg/L	0.0400		118	52-162		
Surrogate: Phenol-d5-surr			0.0936	mg/L	0.0800		117	58.7-152		
Surrogate: p-Terphenyl-d14-surr			0.0435	mg/L	0.0400		109	51.9-147		

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 05/24/2023 13:25

TCEQ T104704238-23-39

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGD2179 - SW-3511 (Con	tinued)					Heinig	ldmga i Y	(HX 202	LH JU	hall the
23D1094-01 MSD (BGD2179-MSD1)		Source: 2	3D1094-01	P	repared: 4/14,	2023 Analyze	d: 5/14/202	3		
2,4,5-Trichlorophenol	0.105	U	400	mg/L	0.0800	<400	131	44.9-171	9.92	40
2,4,6-Trichlorophenol	0.0941	U	2.00	mg/L	0.0800	<2.00	118	34.7-143	6.87	40
2,4-Dinitrotoluene (2,4-DNT)	0.0545	U	0.130	mg/L	0.0400	< 0.130	136	50.3-144	9.56	40
2-Methylphenol	0.0787	U	200	mg/L	0.0800	<200	98.4	17.3-182	3.42	40
3,4-Methylphenol	0.162	L, U	200	mg/L	0.160	<200	101	43.4-188	3.09	40
Hexachlorobenzene	0.0414	U	0.130	mg/L	0.0400	< 0.130	104	56.1-137	1.17	40
Hexachlorobutadiene	0.0218	U	0.500	mg/L	0.0400	<0.500	54.5	33.1-110	11.3	40
Hexachloroethane	0.0249	U	3.00	mg/L	0.0400	<3.00	62.4	36.2-106	8.46	40
Nitrobenzene	0.0486	U	2.00	mg/L	0.0400	<2.00	121	54.9-156	3.23	40
Pentachlorophenol	0.109	U	100	mg/L	0.0800	<100	136	42.2-151	13.5	40
Pyridine	0.0659	U	5.00	mg/L	0.200	<5.00	32.9	2-87.4	1.64	40
Surrogate: 2-Fluorobiphenyl-surr			0.0381	mg/L	0.0400		95.2	54.6-148		, , , , , , , ,
Surrogate: 2-Fluorophenol-surr			0.0955	mg/L	0.0800		119	55-152		
Surrogate: 2,4,6-Tribromophenol-surr			0.0879	mg/L	0.0800		110	52.4-136		
Surrogate: Nitrobenzene-d5-surr			0.0416	mg/L	0.0400		104	52-162		
Surrogate: Phenol-d5-surr			0.0901	mg/L	0.0800		113	58.7-152		
Surrogate: p-Terphenyl-d14-surr			0.0429	mg/L	0.0400		107	51.9-147		
Batch: BGD2443 - SW-3511						/2022 A-sk	4. 4/25/202			
Blank (BGD2443-BLK1) 2,4-D			100		repared: 4/17,	2023 Analyze	:0: 4/25/202	3		
Silvex (2,4,5-TP)	<10.0 <1.00		10.0	mg/L mg/L						
Surrogate: DCAA-surr			0.0216		0.0250	********	86	70-130		
Surroyate, Dervi-surr			0.0216	mg/L	0.0230		00	70-130		
LCS (BGD2443-BS1)				P	repared: 4/17,	/2023 Analyze	d: 4/25/202	3		
2,4-D	0.00427	U	10.0	mg/L	0.00515		83	70-130		
Silvex (2,4,5-TP)	0.00419	U	1.00	mg/L	0.00500		84	70-130		
Surrogate: DCAA-surr			0.0204	mg/L	0.0250		82	70-130	externed	

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 05/24/2023 13:25

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGD2443 - SW-3511 (Con	tinued)						Marian L	. Au	- Lysta	16 14
LCS Dup (BGD2443-BSD1)				P	repared: 4/17,	2023 Analyze	ed: 4/25/2023			
2,4-D	0.00465	U	10.0	mg/L	0.00515		90	70-130	9	30
Silvex (2,4,5-TP)	0.00434	U	1.00	mg/L	0.00500		87	70-130	4	30
Surrogate: DCAA-surr			0.0227	mg/L	0.0250		91	70-130	M	
BGD1470-BLK1 (BGD2443-LBK3)				Р	repared: 4/17	2023 Analyze	ed: 5/13/2023			m that 4
2,4-D	<10.0	U	10.0	mg/L						
Silvex (2,4,5-TP)	<1.00	U	1.00	mg/L						
Surrogate: DCAA-surr		5	0.153	mg/L	0.100	1 1 1	153	70-130		
BGD1975-BLK1 (BGD2443-LBK4)				P	repared: 4/17,	2023 Analyze	ed: 5/13/2023			11 = 11/67 =
2,4-D	<10.0	U	10.0	mg/L						
Silvex (2,4,5-TP)	<1.00		1.00	mg/L						
Surrogate: DCAA-surr		5	0.155	mg/L	0.100	*****	155	70-130		
Matrix Spike (BGD2443-MS1)		Source: 2	3D0909-01	Р	repared: 4/17,	2023 Analyze	ed: 4/25/2023			
2,4-D	0.0205	U	10.0	mg/L	0.0206	<10.0	99	70-130		
Silvex (2,4,5-TP)	0.0191	U	1.00	mg/L	0.0200	<1.00	96	70-130		
Surrogate: DCAA-surr			0.0911	mg/L	0.100		91	70-130		
Matrix Spike Dup (BGD2443-MSD1)		Source: 2	3D0909-01	Р	repared: 4/17/	2023 Analyze	ed: 4/25/2023			
2,4-D	0.0215	U	10.0	mg/L	0.0206	<10.0	104	70-130	5	30
Silvex (2,4,5-TP)	0.0199	U	1.00	mg/L	0.0200	<1.00	100	70-130	4	30
Surrogate: DCAA-surr			0.112	mg/L	0.100		112	70-130		
Batch: BGD2621 - SW-3511										
Blank (BGD2621-BLK1)					Prepared: 4/18	/2023 Analyz	ed: 5/1/2023			
Chlordane (Total)	< 0.0300	II.	0.0300	mg/L						
Endrin	<0.0200		0.0200	mg/L						
gamma-BHC (Lindane, gamma-HexachlorocyclohexanE)	<0.400		0,400	mg/L						
Heptachlor	<0.00800	U	0.00800	mg/L						
Heptachlor epoxide	<0.00800	U	0.00800	mg/L						
Methoxychlor	<10.0	U	10.0	mg/L						
Toxaphene (Chlorinated Camphene)	<0.500	U	0.500	mg/L						
Surrogate: 2,4,5,6	en en en en en en en en en en en en en e	ar avid 50005	9.55E-5	mg/L	0.000120		79.6	60-140		
Tetrachloro-m-xylene-surr Surrogate: Decachlorobiphenyl-surr			0.000102	mg/L	0.000120		84.6	60-140		

A = Accredited, N = Not Accredited or Accreditation not available

TCEQ T104704238-23-39

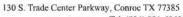
Municipal Operations and Consulting 27316 Spectrum Way Oak Ridge, TX 77385

Reported: 05/24/2023 13:25

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD_	RPD Limit
Batch: BGD2621 - SW-3511 (Continued)					Tubes	Asset Trans	To Foliate	15 year	14, 5
TOX LCS (BGD2621-BS1)	I made a				Prepared: 4/18,	/2023 Analyz	ed: 5/1/2023			
Toxaphene (Chlorinated Camphene)	0.00124	U	0.500	mg/L	0.00120		103	60-140		
Surrogate: 2,4,5,6			0.000133	mg/L	0.000120		111	60-140		
Tetrachloro-m-xylene-surr				-						
Surrogate: Decachlorobiphenyl-surr			0.000141	mg/L	0.000120		118	60-140		
LCS (BGD2621-BS2)					Prepared: 4/18	/2023 Analyz	ed: 5/1/2023			
Chlordane (Total)	0.000346	U	0.0300	mg/L	0.000480		72.2	60-140		
Endrin	9.31E-5		0.0200	mg/L	0.000120		77.6	60-140		
gamma-BHC (Lindane,	8.69E-5	U	0,400	mg/L	0.000120		72.4	60-140		
gamma-HexachlorocyclohexanE)										
Heptachlor	8.74E-5	U	0.00800	mg/L	0.000120		72.8	60-140		
Heptachlor epoxide	8.70E-5		0.00800	mg/L	0.000120		72.5	60-140		
Methoxychlor	9.64E-5	U	10.0	mg/L	0.000120		80.3	60-140		
Surrogate: 2,4,5,6			8.78E-5	mg/L	0.000120		73.1	60-140		
Tetrachloro-m-xylene-surr							(4)			
Surrogate: Decachlorobiphenyl-surr			0.000102	mg/L	0.000120		85.4	60-140		
TOX LCSD (BGD2621-BSD1)					Prepared: 4/18,	/2023 Analyz	ed: 5/1/2023			
Toxaphene (Chlorinated Camphene)	0.00129	U	0.500	mg/L	0.00120		107	60-140	3.66	40
Surrogate: 2,4,5,6			0.000122	mg/L	0.000120		102	60-140	Timb	
Tetrachloro-m-xylene-surr										
Surrogate: Decachlorobiphenyl-surr			0.000133	mg/L	0.000120		111	60-140		
LCS Dup (BGD2621-BSD2)					Prepared: 4/18,	/2023 Analyz	ed: 5/1/2023			
Chlordane (Total)	0.000345	U	0.0300	mg/L	0.000480		71.9	60-140	0.436	40
Endrin	9.13E-5	U	0.0200	mg/L	0.000120		76.1	60-140	2.03	40
gamma-BHC (Lindane,	9.06E-5	U	0.400	mg/L	0.000120		75.5	60-140	4.26	40
gamma-HexachlorocyclohexanE)										
Heptachlor	8.87E-5	U	0.00800	mg/L	0.000120		73.9	60-140	1.44	40
Heptachlor epoxide	8.69E-5	U	0.00800	mg/L	0.000120		72.4	60-140	0.186	40
Methoxychlor	9.20E-5	U	10.0	mg/L	0.000120		76.7	60-140	4.66	40
Surrogate: 2,4,5,6			9.70E-5	mg/L	0.000120		80.8	60-140		
Tetrachloro-m-xylene-surr										
Surrogate: Decachlorobiphenyl-surr			0.000104	mg/L	0.000120		87.0	60-140		

A = Accredited, N = Not Accredited or Accreditation not available



Reported: 05/24/2023 13:25

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGD2621 - SW-3511 (C	ontinued)					H mare	hjarat i l	1117		tris in the same
BGD1470-BLK1 (BGD2621-LBK1)	,				Prepared: 4/18	1/2023 Analyze	d: 5/2/2023			
Chlordane (Total)	<0.0300	U	0.0300	mg/L	,					
Endrin	6.93E-6		0.0200	mg/L						
gamma-BHC (Lindane,	<0.400		0.400	mg/L						
gamma-HexachlorocyclohexanE)		47-	led (55)							
Heptachlor	<0.00800	U	0.00800	mg/L						
Heptachlor epoxide	<0.00800		0.00800	mg/L						
Methoxychlor	<10.0		10.0	mg/L						
Toxaphene (Chlorinated Camphene)	<0.500	U	0.500	mg/L			***	Tale -		
Surrogate: 2,4,5,6	1		0.000572	mg/L	0.000600		95.3	60-140		
Tetrachloro-m-xylene-surr					and the second section of the second		energy (19 18)			
Surrogate: Decachlorobiphenyl-surr			0.000505	mg/L	0.000600		84.1	60-140		
3GD2228-BLK2 (BGD2621-LBK2)			i Him		Prepared: 4/18	1/2023 Analyze	d: 5/2/2023			ME - I
Chlordane (Total)	<0.0300	U	0.0300	mg/L						
Endrin	2.59E-6		0.0200	mg/L						
gamma-BHC (Lindane,	3.39E-6	75-75	0.400	mg/L						
gamma-HexachlorocyclohexanE)			I mohito	ming.						
Heptachlor	<0.00800	U	0.00800	mg/L						
Heptachlor epoxide	<0.00800	U	0.00800	mg/L						
Methoxychlor	1.66E-5	U	10.0	mg/L						
Toxaphene (Chlorinated Camphene)	<0.500	U	0.500	mg/L				viging agreement and an	paragraph some	
Surrogate: 2,4,5,6			0.000138	mg/L	0.000120		115	60-140		- 6 4 4 8 4 8 3
Tetrachloro-m-xylene-surr								Secure IIII		
Surrogate: Decachlorobiphenyl-surr		where the street	9.98E-5	mg/L	0.000120		83.1	60-140	Dec 1 15 17	
TOX MRL (BGD2621-MRL1)		11111		ufin i	Prepared: 4/18	1/2023 Analyze	d: 5/1/2023			
Toxaphene (Chlorinated Camphene)	0.000515	U	0.500	mg/L	0.000300		172			
Surrogate: 2,4,5,6			0.000151	mg/L	0.000120		126	60-140	V0.0	ministration
Tetrachloro-m-xylene-surr				3/ =						
Surrogate: Decachlorobiphenyl-surr			0.000170	mg/L	0.000120		142	60-140	41	
ARL Check (BGD2621-MRL2)		U 4 T	II TILL		Prepared: 4/18	/2023 Analyze	d: 5/1/2023			
Chlordane (Total)	3.65E-5	U	0.0300	mg/L	4,80E-5	The same of the sa	76.1			
Endrin	9.91E-6		0.0200	mg/L	1,20E-5		82.6			
gamma-BHC (Lindane,	1.06E-5		0.400	mg/L	1.20E-5		88.1			
gamma-HexachlorocyclohexanE)	1,005-3		-1,30	⇒ 1 =						
Heptachlor	1.11E-5	U	0.00800	mg/L	1.20E-5		92.8			
Heptachlor epoxide	9.00E-6		0.00800	mg/L	1.20E-5		75.0			
Methoxychlor	1.11E-5		10.0	mg/L	1.20E-5		92.2			
Surrogate: 2,4,5,6			9.95E-5	mg/L	0.000120		82.9	60-140		
Tetrachloro-m-xylene-surr										
Surrogate: Decachlorobiphenyl-surr			0.000102	mg/L	0.000120		85.2	60-140		

A = Accredited, N = Not Accredited or Accreditation not available

Reported:

05/24/2023 13:25

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGD2621 - SW-3511 (Con	tinued)				184	11163	1180	14.14.4	- 111170	100
Matrix Spike (BGD2621-MS1)		Source: 2	3D0985-01	F	Prepared: 4/18,	/2023 Analyze	d: 5/1/2023			
Chlordane (Total)	0.00252	U	0.0300	mg/L	0.00240	4.98E-6	105	60-140		
Endrin	0.000707	U	0.0200	mg/L	0.000600	<0.0200	118	60-140		
gamma-BHC (Lindane, gamma-HexachlorocyclohexanE)	0.000692	U	0.400	mg/L	0.000600	<0.400	115	60-140		
Heptachlor	0.000690	U	0.00800	mg/L	0.000600	<0.00800	115	60-140		
Heptachlor epoxide	0.000668	U	0.00800	mg/L	0.000600	4.98E-6	111	60-140		
Methoxychlor	0.000793	U	10.0	mg/L	0.000600	<10.0	132	60-140		
Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr			0.000646	mg/L	0.000600		108	60-140	- DRALU III	17-1
Surrogate: Decachlorobiphenyl-surr			0.000526	mg/L	0.000600		87.7	60-140		
Matrix Spike Dup (BGD2621-MSD1)		Source: 2	3D0985-01	F	Prepared: 4/18,	/2023 Analyze	d: 5/1/2023			
Chlordane (Total)	0.00283	U	0.0300	mg/L	0.00240	4.98E-6	118	60-140	11.4	40
Endrin	0.000804	U	0.0200	mg/L	0.000600	< 0.0200	134	60-140	12.8	40
gamma-BHC (Lindane, gamma-HexachlorocyclohexanE)	0.000811	U	0.400	mg/L	0.000600	<0.400	135	60-140	15.9	40
Heptachlor	0.000776	U	0.00800	mg/L	0.000600	<0.00800	129	60-140	11.8	40
Heptachlor epoxide	0.000762	U	0.00800	mg/L	0.000600	4.98E-6	126	60-140	13.1	40
Methoxychlor	0.000891	U	10.0	mg/L	0.000600	<10.0	148	60-140	11.6	40
Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr			0.000745	mg/L	0.000600		124	60-140		
Surrogate: Decachlorobiphenyl-surr			0.000553	mg/L	0.000600		, 92.2	60-140		
	1000									
Batch: BGD2687 - EPA 200.2 TCL Blank (BGD2687-BLK1)	P			D	repared: 4/18/	2023 Analyze	H- 5/12/202	2		
Arsenic	-5.00	ul In	F 00		repared. 4/10/	2025 Analyze	1. 3/12/202.			
Barium	<5.00		5.00 100	mg/L mg/L						
Cadmium	<100		1.00	mg/L						
Chromium	<1.00 <5.00		5.00	mg/L						
Lead	<5.00 <5.00		5.00	mg/L						
Selenium			1.00	mg/L						
Silver	<1.00 <5.00		5.00	mg/L						

A = Accredited, N = Not Accredited or Accreditation not available

Tel: (936) 321-6060 Email: lab@nwdls.com www. NWDLS.com TCEQ T104704238-23-39

Reported: 05/24/2023 13:25

Quality Control (Continued)

Analyte	114	Result	Qual	tra la	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGD2687 - EPA	200.2 TCLP (Contin	ued)					The same		ro - July	15 650	ine sa
LCS (BGD2687-BS1)						P	repared: 4/18	2023 Analyze	d: 5/12/2023	1.000		
Arsenic		0.510	U		5.00	mg/L	0.500		102	80-120		
Barium		0.513	U		100	mg/L	0.500		103	80-120		
Cadmium		0.0513	U		1.00	mg/L	0.0500		103	80-120		
Chromium		0.256	U		5.00	mg/L	0.250		102	80-120		
Lead		0.255	U		5.00	mg/L	0.250		102	80-120		
Selenium		0.506	U		1.00	mg/L	0.500		101	80-120		
Silver		0.0531	U		5.00	mg/L	0.0500		106	80-120		
Duplicate (BGD2687-DUP1))		Sourc	e: 23D1	481-01	P	repared: 4/18,	/2023 Analyze	d: 5/12/2023			
Arsenic		<5.00	U		5.00	mg/L		<5.00				20
Barium		1.13	U		100	mg/L		1.17			4.18	20
Cadmium		<1.00	U		1.00	mg/L		<1.00				20
Chromium		<5.00	U		5.00	mg/L		<5.00				20
Lead		<5.00	U		5.00	mg/L		<5.00				20
Selenium		<1.00	U		1.00	mg/L		<1.00				20
Silver		<5.00	U		5.00	mg/L		<5.00		jai i	effel sys	20
Duplicate (BGD2687-DUP2))		Sourc	e: 23D2	913-01	P	repared: 4/18	/2023 Analyze	d: 5/12/2023	1		
Arsenic		<5.00	U		5.00	mg/L		<5.00				20
Barium		1.67	U		100	mg/L		1.85			9.95	20
Cadmium		<1.00	U		1.00	mg/L		<1.00				20
Chromium		<5.00	U		5.00	mg/L		<5.00				20
Lead		<5.00	U		5.00	mg/L		<5.00				20
Selenium		<1.00	U		1.00	mg/L		<1.00				20
Silver		<5.00	U		5.00	mg/L		<5.00	ADALL.	M. Fil	- 5 (M. L.O	20
BGD1470-BLK1 (BGD2687-	LBK1)					Р	repared: 4/18	/2023 Analyze	d: 5/12/2023	3		
Arsenic		<5.00	U		5.00	mg/L						
Barium		0.843	U		100	mg/L						
Cadmium		<1.00	U		1.00	mg/L						
Chromium		<5.00	U		5.00	mg/L						
Lead	5	<5.00	U		5.00	mg/L						
Selenium		<1.00	U		1.00	mg/L						
Silver		<5.00	U		5.00	mg/L						

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 05/24/2023 13:25

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGD2687 - EPA 2	00.2 TCLP (Contin	ued)			Use	milde (C)	4 11 1	41-44	-900)	4 15
BGD1975-BLK1 (BGD2687-LE		de la la de		P	repared: 4/18/	2023 Analyze	d: 5/12/2023			
Arsenic	<5.00	U	5.00	mg/L						
Barium	0.0112		100	mg/L						
Cadmium	<1.00		1.00	mg/L						
Chromium	<5.00		5.00	mg/L						
Lead	<5.00		5.00	mg/L			*			
Selenium	<1.00		1.00	mg/L						
Silver	<5.00		5.00	mg/L						
Matrix Spike (BGD2687-MS1)	al dafal action	Source: 2	3D1481-01	Р	repared: 4/18/	2023 Analyze	ed: 5/12/2023	19.75 11.4		
Arsenic	0.537	U	5.00	mg/L	0.500	<5.00	107	75-125		
Barium	1,58		100	mg/L	0.500	1.17	81.0	75-125		
Cadmium	0,0535		1.00	mg/L	0.0500	<1.00	107	75-125		
Chromium	0,246		5.00	mg/L	0.250	<5.00	98.4	75-125		
Lead	0.253		5.00	mg/L	0.250	<5.00	101	75-125		
Selenium	0.515		1.00	mg/L	0.500	<1.00	103	75-125		
Silver	0.0523		5.00	mg/L	0.0500	<5.00	105	75-125		
Matrix Spike (BGD2687-MS2)	June (201) per mayora	Source: 2	3D2913-01	P	Prepared: 4/18/	2023 Analyze	ed: 5/12/2023	3		
Arsenic	0.505		5.00	mg/L	0.500	<5.00	101	75-125		
Barium		J1, U	100	mg/L	0.500	1.85	NR	75-125		
Cadmium	0.0526		1.00	mg/L	0.0500	<1.00	105	75-125		
Chromium	0.253		5.00	mg/L	0.250	<5.00	101	75-125		
Lead	0,251		5.00	mg/L	0.250	<5.00	100	75-125		
Selenium	0,505		1.00	mg/L	0.500	<1.00	101	75-125		
Silver	0.0531		5.00	mg/L	0.0500	<5.00	106	75-125		
Post Spike (BGD2687-PS1)		Source: 2	23D1481-01	F	repared: 4/18	/2023 Analyze	ed: 5/12/202	3		
Arsenic	531			ug/L	500	13.2	104	80-120		
Barium	1470	J1		ug/L	500	1140	65.4	80-120		
Cadmium	52.1			ug/L	50.0	0.478	103	80-120		
Chromium	250			ug/L	250	1.89	99.4	80-120		
Lead	249			ug/L	250	3.28	98.3	80-120		
Selenium	505			ug/L	500	3.60	100	80-120		
Silver	53.0			ug/L	50.0	0.410	105	80-120		

A = Accredited, N = Not Accredited or Accreditation not available

Tel: (936) 321-6060 Email: lab@nwdls.com www. NWDLS.com TCEQ T104704238-23-39

Municipal Operations and Consulting 27316 Spectrum Way Oak Ridge, TX 77385

Reported: 05/24/2023 13:25

Quality Control (Continued)

Analyte	Result (Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGD2687 - EPA 200.2 TC	LP (Continu	ied)					u thirt is	m, Man	- Kabi	ion de
Post Spike (BGD2687-PS2)	S	Source: 23D29	13-01	Pr	epared: 4/18/	/2023 Analyze	d: 5/12/2023			
Arsenic	530			ug/L	500	14.0	103	80-120		
Barium	2190	11		ug/L	500	1800	77.6	80-120		
Cadmium	52.0			ug/L	50.0	0.351	103	80-120		
Chromium	249			ug/L	250	0.897	99.4	80-120		
Lead	248			ug/L	250	0.546	98.9	80-120		
Selenium	515			ug/L	500	1.80	103	80-120		
Silver	52.3			ug/L	50.0	0.634	103	80-120		
Dilution Check (BGD2687-SRL1)	S	Source: 23D14	81-01	Pre	epared: 4/18/	2023 Analyze	d: 5/12/2023			
Arsenic	<5.00 L		5.00	mg/L	Parisar, 1/20/	<5.00	J, 12/2025			10
Barium	1.17 L		100	mg/L		1.17			0.00	10
Cadmium	- <1.00 L		1.00	mg/L		<1.00			0.00	10
Chromium	<5.00 L		5.00	mg/L		<5.00				10
Lead	<5.00 U		5.00	mg/L		<5.00				10
Selenium	<1.00 L		1.00	mg/L		<1.00				10
Silver	<5.00 L		5.00	mg/L		<5.00				10
Dilution Check (BGD2687-SRL2)	s	ource: 23D29:	13-01	Pre	epared: 4/18/	2023 Analyze	d: 5/12/2023			
Arsenic	<5.00 L		5.00	mg/L		<5.00				10
Barium	1.85 L		100	mg/L		1.85			0.00	10
Cadmium	<1.00 U		1.00	mg/L		<1.00			0.00	10
Chromium	<5.00 L		5.00	mg/L		<5.00				10
Lead	<5.00 U		5.00	mg/L		<5.00				10
Selenium	<1.00 U		1.00	mg/L		<1.00				10
Silver	<5.00 U		5.00	mg/L		<5.00				10

A = Accredited, N = Not Accredited or Accreditation not available

130 S. Trade Center Parkway, Conroe TX 77385
Tel; (936) 321-6060
Email: lab@nwdls.com
www. NWDLS.com
TCEQ T104704238-23-39

Reported: 05/24/2023 13:25

Sample Condition Checklist

Work Order: 23D1283

Check Points

No	Custody Seals
Yes	Containers Intact
Yes	COC/Labels Agree
Yes	Received On Ice
Yes	Appropriate Containers
Yes	Appropriate Sample Volume
Yes	Coolers Intact
Yes	Samples Accepted

Item

Definition

130 S. Trade Center Parkway, Conroe TX 77385
Tel: (936) 321-6060
Email: lab@nwdls.com
www. NWDLS.com
TCEQ T104704238-23-39

Reported: 05/24/2023 13:25

Term and Qualifier Definitions

J1	Estimated value - The reported value is outside the established quality control criteria for accuracy and/or precision	on,	
L	Off scale high - The concentration of the analyte exceeds the linear range.		
S	The surrogate recovery was outside the established laboratory recovery limit,		
TV	Estimated value - The method required temperature requirement was outside of the acceptable range.		
U	Non-detected compound.		
V	Analyte was detected in both sample and method blank.		
V2	The analyte was detected in the sample and the associated leach blank.		
RPD	Relative Percent Difference		
%REC	Percent Recovery		
Source	Sample that was matrix spiked or duplicated		
*	A = Accredited, N = Not Accredited or Accreditation not available		
DF	Dilution Factor - the factor applied to the reported data due to sample preparation, dilution, or moisture content		
MDL	Method Detection Limit - The minimum concentration of a substance (or analyte) that can be measured and repor	ted with 99% confidence th	nat the
	analyte concentration is greater than zero. Based on standard deviation of replicate spiked samples take through	all steps of the analytical	
	procedure following 40 CFR Part 136 Appendix B.		
SDL	Sample Detection Limit - The minimum concentration of a substance (analyte) that can be measured and reported	d with 99% confidence that	the
	analyte concentration is greater than zero. The SDL is an adjusted limit thus sample specific and accounts for pre	paration weights and volum	ies,
	dilutions, and moisture content of soil/sediments. If there are no sample specific parameters, the MDL = SDL.		
MRL	Method Reporting Limit - Analyte concentration that corresponds to the lowest level lab reports with confidence in	accuracy of quantitation a	nd
	without qualification (i.e. J-flagged), The MRL is at or above the lowest calibration standard.		
LRL	Laboratory Reporting Limit - Analyte concentration that corresponds to the lowest level lab reports with confidence	e in accuracy of quantitatio	n and
	without qualification (i.e. J-flagged), The LRL is an adjusted limit thus sample specific and accounts for preparation	n weights and volumes, dil	utions,
	and moisture content of soil/sediments. If there are no sample specific parameters, the MRL = LRL.		

A = Accredited, N = Not Accredited or Accreditation not available

CHAIN OF CUSTODY RECORD
North Water District Laboratory Services
130 S. Trade Center Pkwy, Conroe Tx 77385
(936) 321-6060 - lab@nwdls.com TCEQ T104704238-23-38

TCEQ-TOX T104704202-22-17

23D1283 Page 1 of 2

Lab PM : Deena Higginbotham	inbotham	Pre	ject Name: HC MUD	200 - Non Potable -	Project Name: HC MUD 200 - Non Potable - Sewage Sludge Annual		Schedule Comments:
Municipal Operations and Consulting John Montgomery 27316 Spectrum Way Oak Ridge, TX 77385 Phone: (281) 367-5511	and Consulti		Project Comments: 13050 Stonefield Dr Houston 77014 Gate Combo 2006	Stonefield Dr			
Sample ID Collecti	Collection Point	Date/Time Begin	Date/Time Sampled	Sample Type	Container	Analysis/Preservation	Field Results
Т)					
23D1283-01 Digester			4/4/2023 ID D	S Grab	A Glass 250mL W		
	eta irii)		B HDPF IC 250ml		
						Cadmium ICP 6010 4*C	
					E Glass VOA 60mL		
		Contract Con					
					Teflon-lined Lid		
					G HDPE 250mL		
						TCLP	
			24327				
			N			Lead ICP TCLP 4°C	
						6010	
						0	79
						LP.	
						Silver ICP TCLP 4°C	
					1	rus ICP 60	
						0	
						۵.	
							-
			Zijk-			PCB-8082 4°C	
						SVOA-TCLP 4°C	
						TCLP Bottle 4°C	
						Δ.	
						C 9056	
			A. M.			TKN T-351.3 4°C	
			66574			TS-2540 G 4°C	

CHAIN OF CUSTODY RECORD

TCEQ-TOX T104704202-22-17 North Water District Laboratory Services 130 S. Trade Center Pkwy, Conroe Tx 77385 (936) 321-6060 - lab@nwdls.com TCEQ T104704238-23-38

(Continued)

Schedule Comments:

Project Name: HC MUD 200 - Non Potable - Sewage Sludge Annual Project Comments: 13050 Stonefield Dr Houston 77014 Gate Combo 2006 Municipal Operations and Consulting Lab PM: Deena Higginbotham John Montgomery 27316 Spectrum Way Oak Ridge, TX 77385 Phone: (281) 367-5511

Field Remarks:		Lab Preserv (Circle and	Lab Preservation: H2SO4 (Circle and	4 HNO3	NaOH Ott	Other.
		Write ID Below)	lelow)			
Sampler (Signature)	Relinquished By. (Signature)	Date/Time		Received By. (Signature)		Date/Time
Print Name	Relinquished By. (Signature)	Date/Time		Received By: (Signature)		Date/Time
Affiliation NWDL S	Relinquished To Lab By: (Signature)	Date/Time	3/1635	Received for Laboratory By: (Signature)	RoZ	Date/Time 2
Custody Seal: Yes / No COC	COC Labels Agree. Yes / No Appropriate Containers: Yes / No	Appropriate Volume: Yes / No Coolers Intact: Yes / No	Recei	Received on Ice: Yes / No Samples Accepted: Yes / No	Temperature: Thermometer ID:	၁ _့

wko_NWDLS_COC_LS Revision 4.1 Effective: 2/17/2022

Laboratory Analysis Report

Total Number of Pages:

Job ID: 23040458

10100 East Freeway, Suite 100, Houston, TX 77029 tel: 713-453-6060, fax: 713-453-6091, http://www.ablabs.com

Client Project Name : 23D1283

Report To:

Client Name:

NWDLS

m) m

Deena Higginbotham

Client Address:

130 S Trade Center Pkwy

City, State, Zip: (

Conroe, Texas, 77385

P.O.#.: 23D1283

Sample Collected By:

Date Collected: 04/04/23

A&B Labs has analyzed the following samples...

Client Sample ID

Matrix

A&B Sample ID

23D1283-01

Solid

23040458.01

-s-dht:

Released By: Senthilkumar Sevukan

Title:

Vice President Operations

Date:

4/14/2023

This Laboratory is NELAP (T104704213) accredited. Effective: 04/01/2023; Expires: 3/31/2024 Scope: Non-Potable Water, Drinking Water, Air, Solid, Biological Tissue, Hazardous Waste

I am the laboratory manager, or his/her designee, and I am responsible for the release of this data package. This laboratory data package has been reviewed and is complete and technically compliant with the requirements of the methods used, except where noted in the attached exception reports. I affirm, to the best of my knowledge that all problems/anomalies observed by this laboratory (and if applicable, any and all laboratories subcontracted through this laboratory) that might affect the quality of the data, have been identified in the Laboratory Review Checklist, and that no information or data have been knowingly withheld that would affect the quality of the data.

This report cannot be reproduced, except in full, without prior written permission of A&B Labs. Results shown relate only to the items tested. Results apply to the sample as received. Samples are assumed to be in acceptable condition unless otherwise noted. Blank correction is not made unless otherwise noted. Air concentrations reported are based on field sampling information provided by client. Soil samples are reported on a wet weight basis unless otherwise noted. Uncertainty estimates are available on request.

ab-q210-0321

Date Received: 04/05/2023 17:42

Report Number: RPT230414046

LABORATORY TERM AND QUALIFIER DEFINITION REPORT

Job ID: 23040458

Date:

4/14/2023

General Term Definition

Back-Wt	Back Weight	Post-Wt	Post Weight
BRL	Below Reporting Limit	ppm	parts per million
cfu	colony-forming units	Pre-Wt	Previous Weight
Conc.	Concentration	Q	Qualifier
D.F.	Dilution Factor	RegLimit	Regulatory Limit
Front-Wt	Front Weight	RPD	Relative Percent Difference
LCS	Laboratory Check Standard	RptLimit	Reporting Limit
LCSD	Laboratory Check Standard Duplicate	SDL	Sample Detection Limit
MS	Matrix Spike	surr	Surrogate
MSD	Matrix Spike Duplicate	т	Time
MW	Molecular Weight	TNTC	Too numerous to count
J	Estimation. Below calibration range but above MDL	MQL	Minimum Quantitation Limit

Qualifier Definition

V1

CCV recovery is above acceptance limits. This target analyte was not detected in the sample.

LABORATORY TEST RESULTS

Job ID: 23040458

4/14/2023

Client Name:

NWDLS

Project Name:

23D1283

Attn: Deena Higginbotham

Client Sample ID:

23D1283-01

Date Collected: Time Collected:

04/04/23

Job Sample ID:

Sample Matrix

23040458.01 Solid

% Moisture

10:00

Other Information:

odici miornad										
Test Method	Parameter/Test Description	Result	Units	DF	SDL	SQL	Reg Limit	Q	Date Time	Analyst
SW-846 8270D	TCLP Semivolatiles									
	2,4,5-Trichlorophenol	< 0.004	mg/L	1.00	0.004	0.025	400		04/10/23 21:24	GM
	2,4,6-Trichlorophenol	< 0.004	mg/L	1.00	0.004	0.025	2		04/10/23 21:24	GM
	2,4-Dinitrotoluene	< 0.005	mg/L	1.00	0.005	0.025	0.13	V1	04/10/23 21:24	GM
	2-Methylphenol	< 0.005	mg/L	1.00	0.005	0.025	200		04/10/23 21:24	GM
	3- & 4-Methylphenols	0.07975	mg/L	1.00	0.007	0.025	200		04/10/23 21:24	GM
	Hexachlorobenzene	< 0.003	mg/L	1.00	0.003	0.025	0.13		04/10/23 21:24	GM
	Hexachlorobutadiene	< 0.002	mg/L	1.00	0.002	0.025	0.5		04/10/23 21:24	GM
	Hexachloroethane	< 0.002	mg/L	1.00	0.002	0.025	3		04/10/23 21:24	GM
	Nitrobenzene	< 0.005	mg/L	1.00	0.005	0.025	2		04/10/23 21:24	GM
	Pentachlorophenol	< 0.003	mg/L	1.00	0.003	0.025	100		04/10/23 21:24	GM
	Pyridine	< 0.002	mg/L	1.00	0.002	0.025	5		04/10/23 21:24	GM
	2,4,6-Tribromophenol(surr)	58.8	%	1.00		10-120			04/10/23 21:24	GM
	2-Fluorobiphenyl(surr)	70.9	%	1.00		30-115			04/10/23 21:24	GM
	2-Fluorophenol(surr)	40.9	%	1.00		17-115			04/10/23 21:24	GM
	Nitrobenzene-d5(surr)	68.8	%	1.00		20-120			04/10/23 21:24	GM
	Phenol-d6(surr)	41	%	1.00		15-120			04/10/23 21:24	GM
	p-Terphenyl-d14(surr)	88.1	%	1.00		30-140			04/10/23 21:24	GM

ab-q212-0321

QUALITY CONTROL CERTIFICATE

Job ID: 23040458

Date:

4/14/2023

Analysis : TCLP Semivolatiles

Method:

SW-846 8270D

Reporting Units : mg/L

QC Batch ID: Qb230410117 Created Date: 03/10/23

Created By : GeMu

Samples in This QC Batch: 23040458.01

Prep Method: SW-846 3510C

Prep Date: 04/10/23 10:30 Prep By:

MMuteen

Extraction: TCLP Prep: PB23041035 PB23040801

Prep Method: SW-846 1311

Prep Date: 04/07/23 17:00 Prep By:

Msoria

Parameter	CAS #	Result	Units	D.F.	MQL	MDL		Qual
2,4,5-Trichlorophenol	95-95-4	< MDL	mg/L	0.20	0.005	0.00425		
2,4,6-Trichlorophenol	88-06-2	< MDL	mg/L	0.20	0.005	0.00395	1	
2,4-Dinitrotoluene	121-14-2	< MDL	mg/L	0.20	0.005	0.00485		
2-Methylphenol	95-48-7	< MDL	mg/L	0.20	0.005	0.005		- 1
3- & 4-Methylphenols	65794-96-9	< MDL	mg/L	0.20	0.005	0.0066		
Hexachlorobenzene	118-74-1	< MDL	mg/L	0.20	0.005	0.00345	THE PERSON	
Hexachlorobutadiene	87-68-3	< MDL	mg/L	0.20	0.005	0.00205	11-14	
Hexachloroethane	67-72-1	< MDL	mg/L	0.20	0.005	0.00235	production of the second	
Nitrobenzene	98-95-3	< MDL	mg/L	0.20	0.005	0.00455		- 1
Pentachlorophenol	87-86-5	< MDL	mg/L	0.20	0.005	0.0025		
Pyridine	110-86-1	< MDL	mg/L	0.20	0.005	0.00175		
2-Fluorophenol(surr)	367-12-4	48.5	%	0.20				
Phenol-d6(surr)	13127-88-3	15.8	%	0.20				
Nitrobenzene-d5(surr)	4165-60-0	70.8	%	0.20				
2-Fluorobiphenyl(surr)	321-60-8	60.2	%	0.20				
2,4,6-Tribromophenol(surr)	118-79-6	87.9	%	0.20				
p-Terphenyl-d14(surr)	1718-51-0	81.8	%	0.20				

Parameter	LCS Spk Added	LCS Result	LCS % Rec	LCSD Spk Added	LCSD Result	LCSD % Rec	RPD	RPD CtrlLimit	%Recovery CtrlLimit	Qual
2,4,5-Trichlorophenol	0.25	0.186	74.6	0.25	0.182	72.8	2.4	35	10-115	
2,4,6-Trichlorophenol	0.25	0.190	75.9	0.25	0.186	74.5	2	35	40-138	
2,4-Dinitrotoluene	0.25	0.184	73.8	0.25	0.187	74.7	1.4	35	32-114	
2-Methylphenol	0.25	0.166	66.4	0.25	0.169	67.6	1.7	35	10-132	
3- & 4-Methylphenols	0.5	0.317	63.5	0.5	0.338	67.7	6.3	35	29-132	
Hexachlorobenzene	0.25	0.226	90.6	0.25	0.240	96	5.8	35	44-142	
Hexachlorobutadiene	0.25	0.208	83	0.25	0.196	78.5	5.7	35	20-124	
Hexachloroethane	0.25	0.160	64.2	0.25	0.159	63.8	0.9	35	14-136	
Nitrobenzene	0.25	0.159	63.5	0.25	0.167	66.6	5.1	35	38-146	
Pentachlorophenol	0.25	0.207	82.6	0.25	0.198	79	4.2	35	25-125	
Pyridine	0.25	0.142	57	0.25	0.137	54.6	3.9	35	10-112	
Pyridine	0.25	0.142	57	0.25	0.137	54.6	3.9	35	10-112	

ab-q213-0321

QUALITY CONTROL CERTIFICATE

Job ID: 23040458

Date:

4/14/2023

Analysis : TCLP Semivolatiles

Method:

SW-846 8270D

Reporting Units : mg/L

Created By : GeMu

Samples in This QC Batch: 23040458.01

QC Type: MS and MSD											-
QC Sample ID: 23040	467.01										
Parameter	Sample Result	MS Spk Added	MS Result	MS % Rec	MSD Spk Added	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLimit	Qual
2,4,5-Trichlorophenol	BRL	0.25	0.221	88.5						10-115	
2,4,6-Trichlorophenol	BRL	0.25	0.220	88.1				name in	and the	40-138	L.
2,4-Dinitrotoluene	BRL	0.25	0.237	94.9						32-114	
2-Methylphenol	BRL	0.25	0.211	84.4						10-132	
3- & 4-Methylphenols	BRL	0.5	0.412	82.4						29-132	
Hexachlorobenzene	BRL	0.25	0.291	116	- 10/00/09		FA THERE	10-6	the region of	44-142	
Hexachlorobutadiene	BRL	0.25	0.260	104) h/1 10					20-124	
Hexachloroethane	BRL	0.25	0.203	81.1						14-136	
Nitrobenzene	BRL	0.25	0.200	79.8						38-146	1
Pentachlorophenol	BRL	0.25	0.283	113	10-10-11					25-125	
Pyridine	BRL	0.25	0.219	87.7						10-112	

SUBCONTRACT ORDER

Sending Laboratory:

North Water District Laboratory Services, Inc. 130 South Trade Center Parkway

Conroe, TX 77385 Phone: 936-321-6060 Fax: 936-321-6061

Project Manager: Deena Higginbotham

Subcontracted Laboratory:

A & B Labs 10100 East Freeway, Suite 100 Houston, TX 77029 Phone: (713) 453-6060

Fax: (713) 453-6091

Work Order: 23D1283

Due Expires Comments Analysis

Solid Sampled: 04/04/2023 10:00 Sample ID: 23D1283-01

SVOA-TCLP

Analyte(s): 2,4,5 & 2,4,6 -Trichlorophenol

2,4,6-Trichlorophenol

2-Fluorophenol-surr

Hexachlorobenzene

Nitrobenzene

Phenot-d5-surr

04/18/2023 04/11/2023 10:00

2,4,5-Trichlorophenol

2,4-Dinitrotoluene (2,4-DNT)

2-Methylphenol

Hexachlorobutadiene

Nitrobenzene-d5-surr

p-Terphenyl-d14-surr

2,4,6-Tribromophenol-surr

2-Fluorobiphenyl-surr

3,4-Methylphenol

Hexachloroethane

Pentachlorophenol

Pyridine

Containers Supplied:

Released By

Received By

a-b

Sample Condition Checklist

A&I	3 JobID : 23040458	Date Received	04/05	/2023		Tir	ne Recei	/ed : 5: 4	42PM		
Clie	nt Name : NWDLS										
Ter	nperature : 2.1°C	Sample pH:	NA								
The	rmometer ID : IR4	pH Paper ID :	NA								
Pe	rservative :										
		Check	Points						Yes	No	N/A
1.	Cooler Seal present and signed.									Х	
2.	Sample(s) in a cooler.					¥			Х		
з.	If yes, ice in cooler.								Х		
4.	Sample(s) received with chain-of-cus	stody.							x		
5.	C-O-C signed and dated.								Х		
6.	Sample(s) received with signed samp	ole custody seal.								Х	
7.	Sample containers arrived intact. (If								X		
8.	Water Soil Liquid S	Sludge Solid C	assette 1	Tube	Bulk	Badge	Food	Other			
9.	Samples were received in appropriat	e container(s)							Х		
10.	Sample(s) were received with Prope	r preservative									Х
11.	All samples were tagged or labeled.								Х		
12.	Sample ID labels match C-O-C ID's.								Х		
13.	Bottle count on C-O-C matches bottle	es found.							Х		
14.	Sample volume is sufficient for analy	ses requested.							X		
15.	Samples were received with in the h	old time.				+.			X		
16.	VOA vials completely filled.										Х
17.	Sample accepted.								Х		
18.	Has client been contacted about sub	-out									X
_	mments: Include actions taken to res shows solid, received sludge. ~EV 4/5/2		/problem:								
	. S										

Received by: EValdez

Check in by/date: EValdez / 04/05/2023

ab-s005-0321

Phone: 713-453-6060 www.ablabs.com

I Hateman Organização Diministra P

White the selection of

enting to the second

STATEMENT OF THE STATE OF THE S

15% Shiner

Trime I am I am I am I am

July 07, 2023

Water District Management Harris County WCID 92 P.O. Box 579 Spring, TX 77383

RE: HC WCID 92 Digester

Enclosed are the results of analyses for samples received by the laboratory on 06/01/23 17:30, with Lab ID Number C3E5990. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mark Bourgeois

Special Projects Manager

DECEIVE DCT 18 2023 entered 10/29

Sludge Manager

Master Spreadsheet

□ TCLP ☑ Metals

□ PCB □F/S

Harris County WCID 92 P.O. Box 579 Spring TX, 77383

LABORATORY ANALYTICAL REPORT

Project:

HC WCID 92 Digester a

Client Matrix:

Waste

Sample Date & Time: 06/01/2023 11:37

Collector: CNG

Sample Type:Grab

Print Date: 7/7/2023

Digester C3E5990-01 (Waste)

Analyte	Result	Reporting Limit	Units	Nelac Status	Batch	Analyzed Date & Time	Method	Notes
			Metals					
- Arsenic	<11.1	11.1	mg/Kg dry	Α	B3G0040	07/06/2023 12:00		
Cadmium	<11.1	11.1	mg/Kg dry	A	B3G0040	07/06/2023 12:00	EPA SW 846-6010, 3050	
Chromium	14.2	11.1	mg/Kg dry	A	B3G0040		EPA SW 846-6010, 3050	
Copper	240	11.1	mg/Kg dry		B3G0040	07/06/2023 12:00	EPA SW 846-6010, 3050	
Lead	<11.1	11.1	mg/Kg dry	A	B3G0040	07/06/2023 12:00	EPA SW 846-6010, 3050	
Mercury, Total	0.373			A		07/06/2023 12:00	EPA SW 846-6010, 3050	
Molybdenum	0.373 <11.1	0.222	mg/Kg dry	۸	B3F3803	06/26/2023 15:47	EPA SW 846-7471B	
Nickel		11.1	mg/Kg dry	Α	B3G0040	07/06/2023 12:00	EPA SW 846-6010, 3050	
Phosphorus, %	<11.1	11.1	mg/Kg dry	Α	B3G0040	07/06/2023 12:00	EPA SW 846-6010, 3050	
Potassium, %	1.54	1.00	% dry	Α	B3G0041	07/06/2023 14:38	EPA SW 846-6010, 3050	
Selenium	<0.556	0.556	% dry	Α	B3G0040	07/06/2023 12:00	EPA SW 846-6010, 3050	
	<11.1	11.1	mg/Kg dry	Α	B3G0040	07/06/2023 12:00	EPA SW 846-6010, 3050	
Zinc	838	11.1	mg/Kg dry	A	B3G0040	07/06/2023 12:00	EPA SW 846-6010, 3050	
	¥	<u>1</u>	Vet Lab					
	15.4%		95/5/7/6					
NH3N %	<4.44	4.44	% dry	Α	B3F2073	06/22/2023 08:50	EPA 350.2	
Nitrate-N, %	0.457	0.000222	% dry	N	B3F2589	06/20/2023 11:34	SM 4500 NO3 D	
Percent Solid	0.9	0.1	%	Α	B3F2399	06/15/2023 12:48	SM 2540G	.3
H-Sludge	6.6		std unit	Α	B3F2126	06/14/2023 16:25	EPA SW 846-9040	
rkn %	4.87	0.111	% dry	N	B3F2345	06/22/2023 10:23	EPA 351.2	13

Eastex Environmental Laboratory - Coldspring

The results in this report apply to the samples analyzed in accordance with the chain of custody document.

Harris County WCID 92 P.O. Box 579 Spring TX, 77383

EPA 350.2 - Quality Control

Eastex Environmental Laboratory - Coldspring

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD	
, marye	Kesuji	Lunit	Onts	Level	Result	76KEC	Limits	RPD	Limit	Notes
Batch B3F2073 - No Prep	Prepared	06/22/23 08	:50						-	
Blank (B3F2073-BLK1)				Analyzed	: 6/22/2023	8:50:00AM				
NH3N %	ND	0.0400	% wet						7	***************************************
LCS (B3F2073-BS1)				Analyzed	: 6/22/2023	8:50:00AM				
NH3N %	2.03		mg/L	2.00		101	80-120	**********		0.00
Matrix Spike (B3F2073-MS1)	Sou	rce: C3E5990	-01	Analyzed	: 6/22/2023	8:50:00AM				
NH3N %	2.51	WASTA STATE OF THE	mg/L	2.50	0.00300	100	80-120			
Matrix Spike Dup (B3F2073-MSD1)	Sou	rce: C3E5990	-01	Analyzed	: 6/22/2023	8:50:00AM				
NH3N %	2.52		mg/L	2.50	0.00300	100	80-120	0.159	20	
Batch B3F2126 - No Prep	Pranarad	06/14/23 16	.25							
	тератец.	00/14/23 10	.23		CU 1/2022	4.05.00014				
LCS (B3F2126-BS1) pH-Sludge	6.88		std unit	6.86	: 6/14/2023	4:25:00PM	0.200			
					420000000000000000000000000000000000000	THE STATE OF THE S	0-200			
Duplicate (B3F2126-DUP1)		rce: C3E5990		Analyzed		4:25:00PM			-	THE RESERVE
pH-Sludge	6.6		std unit		6.6			0.00	20	
Batch B3F2345 - SM 4500 Norg C	Prepared:	06/22/23 10:	23							
Blank (B3F2345-BLK1)				Analyzed	: 6/22/2023	10:23:00AM				
TKN %	ND	0.00100	% wct						-	
LCS (B3F2345-BS1)				Analyzed	: 6/22/2023	10:23:00AM	ı			
TKN%	8.124		mg/L	10.0		81.2	80-120			
Matrix Spike (B3F2345-MS1)	Sou	rce: C3E5990	-01	Analyzed:	6/22/2023	10:23:00AM				
rkn %	7.275178	0.111	% dry	2.78	4.871811	86.5	80-120			
Matrix Spike Dup (B3F2345-MSD1)	Sou	rce: C3E5990-	-01	Analyzed:	6/22/2023	10:23:00AM				
TKN%	7.441434	0.111	% dry	2,78	4.871811	92.5	80-120	2.26	20	
Batch B3F2399 - No Prep	Droporodi	06/15/23 12:	40							
Blank (B3F2399-BLK1)	r repared:	00/13/23 12:	40		6/15/2053	12 12 005:				
Percent Solid	ND	0.1	%	Analyzed:	0/15/2023	12:48:00PM				
Dunlingto (B2E2200 DUDI)					Visamore.					
Ouplicate (B3F2399-DUP1)		ce: C3F3098-		Analyzed:		12:48:00PM				
erecit build	1.5	0.1	%		1.5			0.00	20	

Eastex Environmental Laboratory - Coldspring

The results in this report apply to the samples analyzed in accordance with the chain of custody document.

Harris County WCID 92 P.O. Box 579 Spring TX, 77383

SM 4500 NO3 D - Quality Control

Eastex Environmental Laboratory - Coldspring

Analyte	Result	Reporting Limit		Spike Level	Source Result	%REC	%REC Limits	RPD	RPD	¥1
Batch B3F2589 - No Prep	Prepared	: 06/20/23 1			Reduit	70KEC	Linius	KPD	Limit	Notes
Blank (B3F2589-BLK1)		. 00/20/25 1	1.54	Analyzad	. 6/20/2022	11:34:00AN	,			
Nitrate-N, %	ND	0.00000200	% wet	Anatyzeu	: 0/20/2023	11:34:00AN	<u> </u>			
LCS (D2E2500 DC1)			70 1101	V 100 0	All					
LCS (B3F2589-BS1) Nitrate-N, %					: 6/20/2023	11:34:00AN	1			I-L-UL-U
14111 die-14, 76	0.996		mg/L	1.00	(95)	99.6	80-120			
Matrix Spike (B3F2589-MS1)	So	ırce: C3E599	0-01	Analyzed	6/20/2023	11:34:00AN	1			
Nitrate-N. %	1.016667	0.000222	% dry	0.556	0.4566667	101	80-120			
Matrix Spike Dup (B3F2589-MSD1)	Sor	rce: C3E599	0-01	Analyzed	6/20/2023	11:34:00AN	1			
Nitrate-N, %	1.106667	0.000222	% dry	0.556	0.4566667	117	80-120	8.48	20	
Batch B3F3803 - SW 846-7471B	Prepared	: 06/23/23 13	3:50							
Blank (B3F3803-BLK1)	313			Analyzada	6/26/2023	3:30:00PM				
Mercury, Total	ND	0.00200	mg/Kg wet	Analyzeu	0/20/2023	3.30.001101				
LCS (B3F3803-BS1)				Analyzod	6/26/2023	3:32:31PM				
Mercury, Total	0.0252	0.00200	mg/Kg wei	0.0250	0/20/2023	101	80-120			
Matrix Spike (B3F3803-MS1)	e.	rce: C3E598			6/26/2022		00-120			
Mercury, Total	1.51	0.133		1.67		3:40:54PM	74.104			
	1.51	0.133	mg/Kg dry	1.07	0.150	8.18	75-125			
Matrix Spike Dup (B3F3803-MSD1)	Sou	rce: C3E5984	4-01	Analyzed:	6/26/2023	3:43:26PM				
Mercury, Total	1.67	0.133	mg/Kg dry	1.67	0.150	91.0	75-125	9.64	20	
Batch B3G0040 - SW846-3050	Prepared	07/03/23 15	5:29							
Blank (B3G0040-BLK1)				Analyzed:	7/6/2023 1	1:36:56AM				
Aolybdenum	ND	0.100	mg/Kg wet							
Arsenic	ND	0.100	mg/Kg wet							
Cadmium Cadmium	ND	0.100	mg/Kg wet							
Chromium	ND	0.100	mg/Kg wet							
`opper	ND	0.100	mg/Kg wet							
cad	ND	0.100	mg/Kg wet							
lickel	ND	0.100	mg/Kg wet							
otassium, %	ND	0.00500	% wet							
elenium	ND	0.100	mg/Kg wet							
line	ND	0.100	mg/Kg wet							
CS (B3G0040-BS1)				Analyzed:	7/6/2023 1	1:40:23 A M				

Eastex Environmental Laboratory - Coldspring

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Harris County WCID 92 P.O. Box 579 Spring TX, 77383

EPA SW 846-6010, 3050 - Quality Control

Eastex Environmental Laboratory - Coldspring

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Anatyc	Kesuit	Limit	Omts	Level	Nesan	701120	- Cillia	KII	Limit	Notes
Batch B3G0040 - SW846-3050	Prepared	07/03/23 15	:29					<u> </u>		
LCS (B3G0040-BS1)	747			Analyzed:	7/6/2023	11:40:23AM	i	A SECTION AND A SECTION AND ASSESSMENT		
Molybdenum	2.72	0.100	mg/Kg wet	2.50		109	80-120			
Arsenic	2.56	0.100	mg/Kg wet	2.50		102	80-120			
Cadmium	2.7	0.100	mg/Kg wet	2.50		107	80-120			
Chromium	2.67	0.100	mg/Kg wet	2.50		107	80-120			
Copper	2.91	0.100	mg/Kg wet	2.50		116	80-120			
Lead	2.66	0.100	mg/Kg wet	2.50		106	80-120			
Nickel	2.73	0.100	mg/Kg wet	2.50		109	80-120			
Potassium, %	0.0276	0.00500	% wet	0.0250		110	80-120			
Selenium	2,43	0,100	mg/Kg wet	2,50		97.2	80-120			
Zine	2.7	0.100	mg/Kg wet	2.50		108	80-120			
Matrix Spike (B3G0040-MS1)	Sou	rce: C3E283	4-01	Analyzed:	7/6/2023	11:50:42AN	1			
Molybdenum	883.3333	33.3	mg/Kg dry	833	3.4	106	75-125			
Arsenic	850	33.3	mg/Kg dry	833	ND	102	75-125			
Cadmium	870	33.3	mg/Kg dry	833	ND	105	75-125			
Chromium	937	33.3	mg/Kg dry	833	81.7	103	75-125			
Copper	1380	33.3	mg/Kg dry	833	433	114	75-125			
Lead	870	33.3	mg/Kg dry	833	11.1	103	75-125			
Nickel	930	33.3	mg/Kg dry	833	13.7	110	75-125			
Potassium, %	9.40	1.67	% dry	8.33	1.16	98.8	75-125			
Selenium	817	33.3	mg/Kg dry	833	ND	98.0	75-125			
Zine	4133.333	33.3	mg/Kg dry	833	3220	110	75-125			
Matrix Spike Dup (B3G0040-MSD1)	Sou	rce: C3E283	4-01	Analyzed:	7/6/2023	11:54:11AM	r			
Molybdenum	883.3333	33.3	mg/Kg dry	833	3.4	106	75-125	0.00	20	
Arsenie	853	33.3	mg/Kg dry	833	ND	102	75-125	0.391	20	
Cadmium	880	33.3	mg/Kg dry	833	ND	105	75-125	0.381	20	
Chromium	937	33.3	mg/Kg dry	833	81.7	103	75-125	0.00	20	
Copper	1370	33.3	mg/Kg dry	833	433	112	75-125	0.727	20	
Lead	880	33.3	mg/Kg dry	833	11.1	104	75-125	1.14	20	
Nickel	927	33.3	mg/Kg dry	833	13.7	110	75-125	0.359	20	
Potassium, %	9.37	1.67	% dry	8.33	1.16	98.4	75-125	0.355	20	
Selenium	817	33.3	mg/Kg dry	833	ND	98.0	75-125	0.00	20	
Zine	4066.667	33.3	mg/Kg dry	833	3220	102	75-125	1.63	20	
Potch P3C0041 SW846 2050	D	07/06/33 14	.17							
Batch B3G0041 - SW846-3050	Prepared	07/06/23 14	:17							

Eastex Environmental Laboratory - Coldspring

Blank (B3G0041-BLK1)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Analyzed: 7/6/2023 2:17:15PM

Harris County WCID 92 P.O. Box 579 Spring TX, 77383

EPA SW 846-6010, 3050 - Quality Control

Eastex Environmental Laboratory - Coldspring

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3G0041 - SW846-3050	Prepared:	07/06/23 14:	17							
Blank (B3G0041-BLK1)				Analyzed:	7/6/2023	2:17:15PM				
Phosphorus, %	ND	1.00	% wet			2.171121141				-
LCS (B3G0041-BS1)				Analyzed:	7/6/2023	2:20:44PM				
Phosphorus, %	0.00233	1.00	% wet	0.00252	.,0,000	92.3	80-120			
Matrix Spike (B3G0041-MS1)	Sou	rce: C3E2834-	-01	Analyzed:	7/6/2023	2:31:09PM				
Phosphorus, %	3.50	1.00	% dry	0.840	2.61	105	75-125			
Matrix Spike Dup (B3G0041-MSD1)	Sou	rce: C3E2834-	01	Analyzed:	7/6/2023	2:34:36PM				
Phosphorus, %	3.46	1.00	% dry	0.840	2.61	101	75-125	0.986	20	

Harris County WCID 92 P.O. Box 579 Spring TX, 77383

Notes and Definitions

3	Sample analysis performed out of holding time.
13	LCS associated with sample batch outside of acceptance limits.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	 Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

ANALYTICAL REPORT

PREPARED FOR

13

Attn: Mark Bourgeois
Eastex Environmental Laboratory Inc.
PO BOX 1089
Coldspring, Texas 77331
Generated 6/19/2023 11:24:51 AM

JOB DESCRIPTION

Harris County WCID 92

JOB NUMBER

860-51255-1

Eurofins Houston 4145 Greenbriar Dr Stafford TX 77477

Page 1 of 17

Eurofins Houston

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

50 gr

Generated 6/19/2023 11:24:51 AM

5 6

8

9

Authorized for release by Sylvia Garza, Project Manager Sylvia, Garza@et.eurofinsus.com (832)544-2004

Table of Contents

i dolo of oolitoits	
Cover Page	1
Table of Contents	3
Definitions/Glossany	4
Case Narrativo	5
Detection Summary	
Client Sample Results	7
Surrogato Summani	0
OC Sample Possite	8
	9
QC Association Summary	11
lab Chuamiala	12
Cartification	13
Motheral Communication	14
Computer O	15
	ÇI
	16
Receipt Checklists	17

1

21

5

8

9

Definitions/Glossary

Client: Eastex Environmental Laboratory Inc. Project/Site: Harris County WCID 92

Job ID: 860-51255-1

 G	OS:	sary
-		,

TNTC

Too Numerous To Count

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
D	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
-	

Case Narrative

Client: Eastex Environmental Laboratory Inc. Project/Site: Harris County WCID 92

Job ID: 860-51255-1

Job ID: 860-51255-1

Laboratory: Eurofins Houston

Narrative

Job Narrative 860-51255-1

Receipt

The sample was received on 6/14/2023 2:05 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.4°C

PCBs

Method 8082A: liquid sludge, weighed to 5 gramsHC WCID 92 Digester a (860-51255-1)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

anae

5

7

0

9

Detection Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: Harris County WCID 92

Job ID: 860-51255-1

4 5

Client Sample ID: HC WCID 92 Digester a

No Detections.

Lab Sample ID: 860-51255-1

This Detection Summary does not include radiochemical test results.

Client Sample Results

Client: Eastex Environmental Laboratory Inc.

Project/Site: Harris County WCID 92

Job ID: 860-51255-1

Client Sample ID: HC WCID 92 Digester a

Date Collected: 06/01/23 11:37 Date Received: 06/14/23 14:05 Lab Sample ID: 860-51255-1

Matrix: Solid
Percent Solids: 0.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		14		mg/Kg	121	06/15/23 13:56	06/16/23 10:51	1
PCB-1221	ND		14		mg/Kg	12	06/15/23 13:56	06/16/23 10:51	1
PCB-1232	ND		14		mg/Kg	13	06/15/23 13:56	06/16/23 10:51	
PCB-1242	ND		14		mg/Kg	13	06/15/23 13:56	06/16/23 10:51	
PCB-1248	ND		14		mg/Kg	£3	06/15/23 13:56	06/16/23 10:51	1
PCB-1254	ND		14		mg/Kg	ш	06/15/23 13:56	06/16/23 10:51	
PCB-1260	ND		14		mg/Kg	п	06/15/23 13:56	06/16/23 10:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	76		35 - 140				06/15/23 13:56	06/16/23 10:51	1
DCB Decachlorobiphenyl (Surr)	92		37 - 142				06/15/23 13:56	06/16/23 10:51	1
General Chemistry									
Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	DII Fac
Percent Moisture (EPA Moisture)	99.3				%			06/15/23 15:19	1
Percent Solids (EPA Moisture)	(0.7))			%			06/15/23 15:19	1

Surrogate Summary

Client: Eastex Environmental Laboratory Inc.

Project/Site: Harris County WCID 92

Job ID: 860-51255-1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid

Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)	
		TCX1	DCB1		
Lab Sample ID	Client Sample ID	(35-140)	(37-142)		
860-51255-1	HC WCID 92 Digester a	76	92		M
LCS 860-107986/2-A	Lab Control Sample	81	88		
LCSD 860-107986/3-A	Lab Control Sample Dup	81	88		
MB 860-107986/1-A	Method Blank	78	87	Nic .	
Surrogate Legend					
TCX = Tetrachloro-m-xyl	ene				
DCR = DCR Describer					

2 4 5

QC Sample Results

Client: Eastex Environmental Laboratory Inc.

Project/Site: Harris County WCID 92

Job ID: 860-51255-1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 860-107986/1-A

Matrix: Solid

Analysis Batch: 107881

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 107986

5

	MB I	MB						Frep batch	10/986
Analyte	Result (Qualifier	RL	MDL	Unit	D	Dronousd	4 4 2	
PCB-1016	ND		0.017			_ =	Prepared	Analyzed	Dil Fac
PCB-1221	ND				mg/Kg		06/15/23 13:55	06/15/23 17:01	1
PCB-1232	ND		0.017		mg/Kg		06/15/23 13:55	06/15/23 17:01	104
Townson and the	ND		0.017		mg/Kg		06/15/23 13:55	12.1	
PCB-1242	ND		0.017		5,000			06/15/23 17:01	1
PCB-1248					mg/Kg		06/15/23 13:55	06/15/23 17:01	1
NOTE ATOM	ND		0.017		mg/Kg		06/15/23 13:55	06/15/23 17:01	1
PCB-1254	ND		0.017		mg/Kg		06/15/23 13:55	COLUMN CONTRACTOR A TAXABOA	
PCB-1260	ND							06/15/23 17:01	1
	NO		0.017		mg/Kg		06/15/23 13:55	06/15/23 17:01	1
	MB N	//B							

Surrogate	%Recovery	Qualifier	Limits
Tetrachioro-m-xylene	78		35 - 140
DCB Decachlorobiphenyl (Surr)	87		37 - 142

Prepared Analyzed Dil Fac 06/15/23 13:55 06/15/23 17:01 06/15/23 13:55 06/15/23 17:01

Lab Sample ID: LCS 860-107986/2-A

Matrix: Solid

Analysis Batch: 107881

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 107986 Spike LCS LCS %Rec Analyte Added Result Unit %Rec Limits PCB-1016 0.167 0.121 mg/Kg 73 27 - 121 PCB-1260 0.167 0.119 mg/Kg 71 27 - 139

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	81		35 - 140
DCB Decachlorobiphenyl (Surr)	88		37 142

Lab Sample ID: LCSD 860-107986/3-A

Matrix: Solid

Analysis Batch: 107881

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 107986

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit %Rec Limits RPD Limit PCB-1016 0.167 0.122 mg/Kg 73 27 - 121 0 20 PCB-1260 0.167 0.119 mg/Kg 72 27 - 139 0 20

LCSD LCSD

	LOUD	LUGD	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	81		35 - 140
DCB Decachlorobiphenyl (Surr)	88		37 - 142

Method: Moisture - Percent Moisture

Lab Sample ID: MB 860-108051/1

Matrix: Solid

Analysis Batch: 108051

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB Analyte Result Qualifier NONE NONE Unit Analyzed DII Fac Percent Moisture 0.4 06/15/23 15:19 Percent Solids 99.6 % 06/15/23 15:19

Eurofins Houston

QC Sample Results

Client: Eastex Environmental Laboratory Inc. Project/Site: Harris County WCID 92 Job ID: 860-51255-1

Method: Moisture - Percent Moisture (Continued)

Lab Sample ID: 860-51255-1 DU Matrix: Solid

Client Sample ID: HC WCID 92 Digester a

Prep Type: Total/NA

Analysis Batch: 108051

Analysis Baton: 100001	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Percent Moisture	99.3		99.3		%		3 (0.00)	0	20
Percent Solids	0.7		0.7		%			0	20

5

9

QC Association Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: Harris County WCID 92

Job ID: 860-51255-1

GC	Sam	i	VOA	
GC	Sell	и	VUA	

Analysis	Batch:	107881
----------	--------	--------

ient Sample ID	Prep Type	Matrix	Method	Lord Jugard
arnod Blank	Total/NA	Solid		Prep Batch
b Control Sample			8082A	107986
The state of the s	lotal/NA	Solid	8082A	107986
5 Control Sample Dup	Total/NA	Solid	8082A	107986
	ethod Blank b Control Sample b Control Sample Dup	b Control Sample Total/NA	b Control Sample Total/NA Solid b Control Sample Dup	######################################

Prep Batch: 107986

Lab Sample ID	Client Sample ID	David Toward	**		
860-51255-1	HC WCID 92 Digester a	Prep Type	Matrix	Method	Prep Batch
MD 000 torocott		Total/NA	Solid	3550C	
MB 860-107986/1-A	Method Blank	Total/NA	Solid		
LCS 860-107986/2-A	Lab Control Sample		Solid	3550C	
LCSD 860-107986/3-A	V N N	Total/NA	Solid	3550C	
LC3D 660-107986/3-A	Lab Control Sample Dup	Total/NA	Solid	3550C	
Analysis Databatha					

Analysis Batch: 108126

Lab Sample ID	Client Sample ID	Prep Type	Matrix		
860-51255-1	HC WCID 92 Digester a	Total/NA	Solid	Method 8082A	Prep Batch
					107986

General Chemistry

Analysis Batch: 108051

Client Sample ID	Prep Type	Matrix	Manage 1	
HC WCID 92 Digester a				Prep Batch
		Solid	Moisture	-51 200
Wethod Blank	Total/NA	Solid	Moisture	
HC WCID 92 Digester a	Total/NA	Solid		
127 500 50000	Iotal/NA	Solid	Moisture	
	HC WCID 92 Digester a Method Blank	HC WCID 92 Digester a Total/NA Method Blank Total/NA	HC WCID 92 Digester a Total/NA Solid Method Blank Total/NA Solid	HC WCID 92 Digester a Total/NA Solid Moisture Method Blank Total/NA Solid Moisture HC WCID 92 Digester a

Lab Chronicle

Client: Eastex Environmental Laboratory Inc.

Project/Site: Harris County WCID 92

Job ID: 860-51255-1

Client Sample ID: HC WCID 92 Digester a

Date Collected: 06/01/23 11:37 Date Received: 06/14/23 14:05 Lab Sample ID: 860-51255-1

Matrix: Solid

Batch Dil Initial Final Batch Prepared Prep Type Type Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis Moisture 108051 06/15/23 15:19 JM EET HOU

Client Sample ID: HC WCID 92 Digester a

Date Collected: 06/01/23 11:37

Date Received: 06/14/23 14:05

Lab Sample ID: 860-51255-1

Matrix: Solid

Percent Solids: 0.7

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3550C		(5.02 g	5 mL	107986	06/15/23 13:56	BH	EET HOU
Total/NA	Analysis	8082A		1			108126	06/16/23 10:51	BNW	EET HOU

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Eurofins Houston

5

6

8

9

Accreditation/Certification Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: Harris County WCID 92

Job ID: 860-51255-1

Laboratory: Eurofins Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date	
Arkansas DEQ	State	88-00759	08-04-23	
Florida	NELAP	E871002	06-30-23	
Louisiana	NELAP	03054	06-30-23	
Louisiana (All)	NELAP	03054	06-30-23	
Oklahoma	State	1306	08-31-23	
Texas	NELAP	T104704215-23-50	06-30-23	
Texas	TCEQ Water Supply	T104704215	12-28-25	
USDA	US Federal Programs	525-23-79-79507	03-20-26	
-	US Federal Programs	525-23-79-79507	03-20-26	

4

5

8

9

13

Method Summary

Client: Eastex Environmental Laboratory Inc.

Project/Site: Harris County WCID 92

Job ID: 860-51255-1

Method	Method Description	Protocol	Laboratory
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	EET HOU
Moisture	Percent Moisture	EPA	EET HOU
3550C	Ultrasonic Extraction	SW846	EET HOU

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

7

5

1

7

8

9

Sample Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: Harris County WCID 92

Job ID: 860-51255-1

 Lab Sample ID
 Client Sample ID
 Matrix
 Collected
 Received

 860-51255-1
 HC WCID 92 Digester a
 Solid
 06/01/23 11:37
 06/14/23 14:05

5

(3)

0

SUBCONTRACT ORDER

Sending Laboratory:

Eastex Environmental Laboratory - Coldspring PO Box 1089 Coldspring, TX 77331 Phone 936-653-3249 Fax: 936-653-3172

Subcontracted Laboratory:

Eurofins Xenco LLC 4147 Greenbriar Dr Stafford, TX 77477 Phone 713-690-4444 Fax 713-690-5646

PO 061423D

PROJECT NAME.

Harris County WCID 92

Turnaround

Matrix

IDDAYS

Waste

Special instruction

See Attached

PCB MG/KG %SOLIDS

Temp. 1. 8 IR ID:HOU-343 C/F -0.4 1. 8

Received Iced Y/N Temp _____

Released By

WILLIAM IYOT

me

Received By

6/14/23 1405

Date & Time

Pape 9/2623

Login Sample Receipt Checklist

Client: Eastex Environmental Laboratory Inc.

Job Number: 860-51255-1

5

Login Number: 51255 List Number: 1 Creator: Rubio, Yuri

List Source: Eurofins Houston

Question	Answer Comment	
The cooler's custody seal, if present, is intact.	True	Territoria California
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	GEEVFEED 0.
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

EASTEX ENVIRONMENTAL LABORATORY, INC.

P.O. Box 1089 * Coldspring, TX 77331 P.0 (936) 653-3249 * (800) 525-0508 (93

INVOICE TO:

77331 P.O. Box 631375 * Nacogdoches, TX 75963-1375 25-0508 (936) 569-8879 * FAX (936) 569-8951 www.eastexlabs.com

> White Copy-Follows Samples Yellow Copy-Laboratory Pink Copy-Client Copy

Alternate Check In:	LAB USE ONLY	Reilliquistied by:	Reiniquisned by	Tompus of by	Delinguished By					345940		(353991	Work Order ID	11	Project Name:	Sampler's Signature:	Sampler's Name (print)		D .	Email:	Phone#:	Attn:		Address:	Company: () /
	Sample	7						d.				DICA	Sample ID	1/2 CIV()	200	100	newuch				Jal 114	0, 176)		
Date	Sample Condition Acceptable:	Necesives	Rec	7					M +E1166.10	N 4611 56.10	N 4511 86 10	V 120 120 10	Date Time Matrix		Preservatives:	Туре:	Container Size:	Matrix:	Cor G:	INSTRUCTIONS:	Phone#:	Attn:		Address:	Company:
Time	(YES// NO	by an an Checked in By	ed By:	Neceived by.					V 6	NG	NG	W6	C or G DO	F	s: C=Chilled S=Sulfuric Acid N=Nitric Acid ST=Sodium Thiosulfate H=HCL O= Other	P= Plastic G= Glass		DW=Drinking Water WW=Wastewater	C= Composite G= Grab	IONS:				: SAME	Y.
6-D	Temp												pH CI2 Flow T	Field Data		G= Glass T= Teflon S= Sterile	1=Gallon 2=1/2 Gallon 3=Quart/Liter 4=500mL 5= 6=125mL (4oz) 7=60mL (2 oz) 8= 40mL Vial 9=Other	W=Wastewater	irab						771
 	C *Therm ID	(pate)	Date	Date)				7 10 5	156	11 3 P	136	Temp # Size Type	Containers	B=Base/Caustic Z= Zn Acetate		0mL 5=250mL 9=Other								Remarks:
C1	Logged In By:	3 Time 10	Time	Time					C)(\overline{C}	0	Pres	W		t	V	T	AI De	NAL 2	YSI	S RE(QUES	TEL	
101-23	Date	29 Received Iced:	Received Iced:	Received Iced:																					
1730	Time	d Iced: YES NO	d Iced: YES / NO	d Iced: YES / NO																					

7

* * *

July 14, 2023

Water District Management Harris County WCID 92 P.O. Box 579 Spring, TX 77383

RE: HC WCID 92 Digester

Enclosed are the results of analyses for samples received by the laboratory on 06/01/23 16:24, with Lab ID Number C3E5991. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mark Bourgeois

Special Projects Manager

DECEIVED OCT 18 2023 entered 10/29

Harris County WCID 92 P.O. Box 579 Spring TX, 77383

Case Narrative

40 CFR 503 Criterion for Fecal Coliform Class B = 2,000,000 MPN/g. for Class A = 1,000 MPN/g 40 CFR 503 Criterion for Vector Class B = <1.5mg/O2/g Solids/hr *Fecal Coliform result is a geometric mean of seven individual samples.

LABORATORY ANALYTICAL REPORT

Project:

HC WCID 92 Digester b

Client Matrix:

Waste

Sample Date & Time: 06/01/2023 11:37

Collector: CNG Sample Type:Grab

Print Date: 7/14/2023

Digester C3E5991-01 (Waste)

Analyte	Result	Reporting Limit	Units	Nelac Status	Batch	Analyzed Date & Time	Method	Notes
		Microl	piological	Lab				
- Fecal Coliform IDEXX	231400	1000	mpn/gram	N	B3F0416	06/01/2023 17:50	Colilert 18	
Vector	1.8	0.1	mg O2/hr/g	N	B3G1691	06/01/2023 17:00	TAC 312.83(b)(4)	
			Wet Lab					
					5			
Percent Solid	0.9	0.1	%	Α	B3F0457	06/02/2023 16:44	SM 2540G	
Volatile Percent Solid	70.2	0.1	%	Α	B3F0431	06/05/2023 10:38	SM 2540G	

Harris County WCID 92 P.O. Box 579 Spring TX, 77383

Colilert 18 - Quality Control

Eastex Environmental Laboratory - Coldspring

		Reporting		Spike	Source		%REC	en Maria	RPD	p 147
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B3F0416 - No Prep Micro	Prepared:	06/01/23 17	7:50	W						
Blank (B3F0416-BLK1)				Analyzed:	6/1/2023	5:50:00PM				
Fecal Coliform IDEXX	ND	1000	mpn/gram							
Duplicate (B3F0416-DUP1)	Sou	rce: C3F0733	3-03	Analyzed:	6/1/2023	5:50:00PM				
Fecal Coliform IDEXX	183500	1000	mpn/gram		248100			29.9	200	
Batch B3F0431 - No Prep	Prepared:	06/05/23 10	:38		- training	deliner deliner Ameri				
Blank (B3F0431-BLK1)				Analyzed:	6/5/2023	10:38:00AM				
Volatile Percent Solid	ND	0.1	%							
Duplicate (B3F0431-DUP1)	Sou	rce: C3E599	1-01	Analyzed:	6/5/2023	10:38:00AM				
Volatile Percent Solid	68.2	0.1	%		70.2			2.89	10	
Batch B3F0457 - No Prep	Prepared:	06/02/23 16	5:44							
Blank (B3F0457-BLK1)				Analyzed:	6/2/2023	4:44:00PM				
Percent Solid	ND	0.1	%							
Duplicate (B3F0457-DUP1)	Sou	rce: C3E5991	1-01	Analyzed:	6/2/2023	4:44:00PM				
Percent Solid	0.9	0.1	%		0.9			0.00	20	
Batch B3G1691 - No Prep Micro	Prepared:	06/01/23 17	:00							
Blank (B3G1691-BLK1)			,	Analyzed:	6/1/2023	5:00:00PM				
Vector	ND	0.1	mg O2/hr/g	REMINITE.	100					
Duplicate (B3G1691-DUP1)	Sou	rce: C3F0530)-01	Analyzed:	6/1/2023	5:00:00PM				
Vector	5.85	0.1	mg O2/hr/g		2.66			75.0	200	

Harris County WCID 92 P.O. Box 579 Spring TX, 77383

Notes and Definitions

DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

June 09, 2023

Water District Management Harris County WCID 92 P.O. Box 579 Spring, TX 77383

RE: HC WCID 92 Digester

Enclosed are the results of analyses for samples received by the laboratory on 05/18/23 17:07, with Lab ID Number C3D5831. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mark Bourgeois

Special Projects Manager

DECENTED 2023
LOWERED 10/29

Harris County WCID 92 P.O. Box 579 Spring TX, 77383

LABORATORY ANALYTICAL REPORT

Project:

HC WCID 92 Digester c

Client Matrix:

Waste

Sample Date & Time: 05/18/2023 12:40

Collector: TMF

Sample Type:Grab

Print Date: 6/9/2023

Digester C3D5831-01 (Waste)

Analyte	Result	Reporting Limit	Units	Nelac Status	Batch	Analyzed Date & Time	Method	Notes
		N	/et Lab					
Percent Solid	0.6	0.1	%	Α	B3E3232	05/19/2023 14:09	SM 2540G	

Harris County WCID 92 P.O. Box 579 Spring TX, 77383

SM 2540G - Quality Control

Eastex Environmental Laboratory - Coldspring

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3E3232 - No Prep	Prepared:	05/19/23 14:	09							
Blank (B3E3232-BLK1)				Analyzed:	5/19/2023	2:09:00PM				
Percent Solid	ND	0.1	%							*************
Duplicate (B3E3232-DUP1)	Sour	ce: C3E5025-	-02	Analyzed:	5/19/2023	2:09:00PM				
Percent Solid	1.8	0.1	%		1.8			0.00	20	

Harris County WCID 92 P.O. Box 579 Spring TX, 77383

Notes and Definitions

DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

ANALYTICAL REPORT

PREPARED FOR

Attn: Mark Bourgeois Eastex Environmental Laboratory Inc. PO BOX 1089

Coldspring, Texas 77331

Generated 6/5/2023 1:47:13 PM

JOB DESCRIPTION

Harris County WCID 92

JOB NUMBER

860-49823-1

Eurofins Houston 4145 Greenbriar Dr Stafford TX 77477

Eurofins Houston

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

50 mg

Generated 6/5/2023 1:47:13 PM

Authorized for release by Sylvia Garza, Project Manager Sylvia.Garza@et.eurofinsus.com (832)544-2004

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
	6
Client Sample Results	7
	9
QC Sample Results	11
	21
	24
	25
	26
	27
	28
	29

Definitions/Glossary Client: Eastex Environmental Laboratory Inc. Job ID: 860-49823-1 Project/Site: Harris County WCID 92 Qualifiers GC/MS Semi VOA Qualifier Qualifier Description Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. GC Semi VOA Qualifier Qualifier Description Surrogate recovery exceeds control limits, low biased. Glossary Abbreviation These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis %R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid DER Duplicate Error Ratio (normalized absolute difference) Dil Fac Dilution Factor DL Detection Limit (DoD/DOE) DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample DLC Decision Level Concentration (Radiochemistry) EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE) LOQ MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry) MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MOI Method Quantitation Limit

NC

ND

NEG

POS

POL

PRES

QC

RER

RL

RPD

TEF

TEQ

TNTC

Not Calculated

Negative / Absent

Positive / Present

Presumptive

Quality Control

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Not Detected at the reporting limit (or MDL or EDL if shown)

Case Narrative

Client: Eastex Environmental Laboratory Inc. Project/Site: Harris County WCID 92

Job ID: 860-49823-1

5

Job ID: 860-49823-1

Laboratory: Eurofins Houston

Narrative

Job Narrative 860-49823-1

Receipt

The sample was received on 5/23/2023 10:16 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.0°C

GC/MS VOA

Method 8260C: The continuing calibration verification (CCV) associated with batch 860-105101 recovered above the upper control limit for Tetrachloroethene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: (CCVIS 860-105101/2).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC/MS Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Herbicides

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Pesticides

Method 8081B: The laboratory is using 70 - 130% as interim acceptance criteria for recoveries of spiked analytes, until in-house LCS limits are developed. Data is flagged and reported. HC WCID 92 Digester C (860-49823-1), (LB 860-104900/1-F), (LCS 860-105332/2-A), (LCSD 860-105332/3-A) and (MB 860-105332/1-A)

Method 8081B: The laboratory is using 70 - 130% as interim acceptance criteria for recoveries of spiked analytes, until in-house LCS limits are developed. Data is flagged and reported.HC WCID 92 Digester C (860-49823-1), (LB 860-104900/1-F) and (MB 860-105332/1-A)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Houston 6/5/2023

Detection Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: Harris County WCID 92

Job ID: 860-49823-1

5

Client Sample ID: HC WCID 92 Digester C

Lab Sample ID: 860-49823-1

No Detections.

This Detection Summary does not include radiochemical test results.

Client: Eastex Environmental Laboratory Inc.

Project/Site: Harris County WCID 92

Client Sample ID: HC WCID 92 Digester C

Date Collected: 05/18/23 12:40 Date Received: 05/23/23 10:16

Lab Sample ID: 860-49823-1

Matrix: Solid

Analyte	 Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.050		mg/L	-		05/27/23 02:51	50
Carbon tetrachloride	ND		0.25		mg/L			05/27/23 02:51	50
Chlorobenzene	ND		0.050		mg/L			05/27/23 02:51	50
Chloroform	ND		0.050		mg/L			05/27/23 02:51	50
1,2-Dichloroethane	ND		0.050		mg/L			05/27/23 02:51	50
1,1-Dichloroethene	ND		0.050		mg/L			05/27/23 02:51	50
2-Butanone	ND		2.5		mg/L			05/27/23 02:51	50
Tetrachloroethene	ND		0.050		mg/L			05/27/23 02:51	50
Trichloroethene	ND		0.25		mg/L			05/27/23 02:51	50
Vinyl chloride	ND		0.10		mg/L			05/27/23 02:51	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	94		63 - 144			_		05/27/23 02:51	50
4-Bromofluorobenzene (Surr)	101		74 - 124					05/27/23 02:51	50
Dibromofluoromethane (Surr)	97		75 - 131					05/27/23 02:51	50
Toluene-d8 (Surr)	103		80 - 120					05/27/23 02:51	50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND	THE STATE OF THE S	0.13		mg/L		05/31/23 14:00	06/01/23 19:32	- 5
2,4,5-Trichlorophenol	ND		0.13		mg/L		05/31/23 14:00	06/01/23 19:32	5
2,4,6-Trichlorophenol	ND		0.13		mg/L		05/31/23 14:00	06/01/23 19:32	5
2,4-Dinitrotoluene	ND		0.13		mg/L		05/31/23 14:00	06/01/23 19:32	5
2-Methylphenol	ND		0.13		mg/L		05/31/23 14:00	06/01/23 19:32	5
Hexachlorobenzene	ND		0.13		mg/L		05/31/23 14:00	06/01/23 19:32	5
Hexachlorobutadiene	ND		0.13		mg/L		05/31/23 14:00	06/01/23 19:32	5
Hexachloroethane	ND		0.13		mg/L		05/31/23 14:00	06/01/23 19:32	5
Nitrobenzene	ND		0.13		mg/L		05/31/23 14:00	06/01/23 19:32	5
Pentachlorophenol	ND		0.25		mg/L		05/31/23 14:00	06/01/23 19:32	5
Pyridine	ND		0.25		mg/L		05/31/23 14:00	06/01/23 19:32	5
3 & 4 Methylphenol	ND		0.25		mg/L		05/31/23 14:00	06/01/23 19:32	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	58		31 - 132				05/31/23 14:00	06/01/23 19:32	5
2-Fluorobiphenyl (Surr)	50		29 - 112				05/31/23 14:00	06/01/23 19:32	5
2-Fluorophenol (Surr)	43		21 - 114				05/31/23 14:00	06/01/23 19:32	5
Nitrobenzene-d5 (Surr)	57		26 - 110				05/31/23 14:00	06/01/23 19:32	5
o-Terphenyl-d14 (Surr)	73	2	20 - 141				05/31/23 14:00	06/01/23 19:32	5
Phenol-d5 (Surr)	33		16 - 117				05/31/23 14:00	06/01/23 19:32	5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlorodane	ND		0.00098		mg/L		05/30/23 10:34	05/30/23 16:24	-
Endrin	ND		0.000049		mg/L		05/30/23 10:34	05/30/23 16:24	1
Heptachlor	ND		0.000049		mg/L		05/30/23 10:34	05/30/23 16:24	-1
Heptachlor epoxide	ND		0.000049		mg/L		05/30/23 10:34	05/30/23 16:24	4
gamma-BHC (Lindane)	ND		0.000049		mg/L		05/30/23 10:34	05/30/23 16:24	4
Methoxychlor	ND		0.000049		mg/L		05/30/23 10:34	05/30/23 16:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	48	S1-	70 - 130				05/30/23 10:34	05/30/23 16:24	Dii Fac

Client Sample Results

Client: Eastex Environmental Laboratory Inc.

Project/Site: Harris County WCID 92

Job ID: 860-49823-1

Client Sample ID: HC WCID 92 Digester C

Date Collected: 05/18/23 12:40 Date Received: 05/23/23 10:16

Mercury

Lab Sample ID: 860-49823-1

Matrix: Solid

Surrogate	%Recovery	Qualifier	Limits				Prepared		
Tetrachloro-m-xylene	62	S1-	70 - 130				05/30/23 10:34	O5/30/23 16:24	Dil Fa
Mathad: 518/946 90945 0		re was an	2412						
Method: SW846 8081B - Organ Analyte									
Toxaphene		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
roxapriene	ND		0.00098		mg/L		05/30/23 10:34	06/02/23 13:30	Sections,
Method: SW846 8151A - Herbic	ides (GC) - TCI E								
Analyte		Qualifier	RL	MIDI	Unit				
2,4-D	ND		0.00020		1200000	D	Prepared	Analyzed	Dil Fa
2,4,5-TP (Silvex)	ND		0.00020		mg/L		05/28/23 17:53	06/01/23 16:21	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ND		0.00020		mg/L		05/28/23 17:53	06/01/23 16:21	
Gurrogate	%Recovery	Qualifier	Limits				Prepared	Analyzad	Dil Es
Surrogate 2,4-Dichlorophenylacetic acid	%Recovery 82	Qualifier	Limits 70 - 162				Prepared 05/28/23 17:53	Analyzed	Dil Fa
2.4-Dichlorophenylacetic acid	82	Qualifier					Prepared 05/28/23 17:53	Analyzed 06/01/23 16:21	Dil Fa
	82	Qualifier			Mh .			7	Dil Fa
2.4-Dichlorophenylacetic acid Method: SW846 6010B - Metals Analyte	(ICP) - TCLP	Qualifier Qualifier		MDL	Unit	D		7	
2,4-Dichlorophenylacetic acid Method: SW846 6010B - Metals	(ICP) - TCLP		70 - 162	MDL	Unit mg/L	<u>D</u>	05/28/23 17:53	06/01/23 16:21	Dil Fa
2.4-Dichlorophenylacetic acid Method: SW846 6010B - Metals Analyte	82 (ICP) - TCLP Result		70 - 162 RL	MDL		<u>D</u>	05/28/23 17:53 Prepared	06/01/23 16:21 Analyzed 05/26/23 18:31	
2.4-Dichlorophenylacetic acid Method: SW846 6010B - Metals Analyte Arsenic	82 (ICP) - TCLP Result ND		70 - 162 RL 0.050	MDL	mg/L	<u>D</u>	05/28/23 17:53 Prepared 05/26/23 10:00	06/01/23 16:21 Analyzed 05/26/23 18:31 05/26/23 18:31	
2.4-Dichlorophenylacetic acid Method: SW846 6010B - Metals Analyte Analyte Analyte Analyte Analyte Analyte	(ICP) - TCLP Result ND ND		70 - 162 RL 0.050 0.10	MDL	mg/L mg/L mg/L	<u>D</u>	05/28/23 17:53 Prepared 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00	06/01/23 16:21 Analyzed 05/26/23 18:31 05/26/23 18:31	
A.4-Dichlorophenylacetic acid Method: SW846 6010B - Metals Analyte Arsenic Antimony Barium	82 (ICP) - TCLP Result ND ND ND		70 - 162 RL 0.050 0.10 0.050	MDL	mg/L mg/L	<u>D</u>	05/28/23 17:53 Prepared 05/26/23 10:00 05/26/23 10:00	Analyzed 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31	
A.4-Dichlorophenylacetic acid Method: SW846 6010B - Metals Analyte Arsenic Antimony Barium Cadmium	82 (ICP) - TCLP Result ND ND ND ND		RL 0.050 0.10 0.050 0.025	MDL	mg/L mg/L mg/L mg/L	<u>D</u>	05/28/23 17:53 Prepared 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00	Analyzed 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31	
A.4-Dichlorophenylacetic acid Method: SW846 6010B - Metals Analyte Arsenic Antimony Barium Cadmium Chromium	82 (ICP) - TCLP Result ND ND ND ND ND ND ND		RL 0.050 0.10 0.050 0.025 0.025	MDL	mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	Prepared 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00	Analyzed 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31	
A.4-Dichlorophenylacetic acid Method: SW846 6010B - Metals Analyte Arsenic Antimony Barium Cadmium Chromium Beryllium	82 (ICP) - TCLP Result ND ND ND ND ND ND ND ND ND ND		RL 0.050 0.10 0.050 0.025 0.025 0.050	MDL	mg/L mg/L mg/L mg/L mg/L mg/L	D Stranger	Prepared 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00	Analyzed 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31	
A.4-Dichlorophenylacetic acid Method: SW846 6010B - Metals Analyte Arsenic Antimony Barium Cadmium Chromium Beryllium Bead	82 (ICP) - TCLP Result ND ND ND ND ND ND ND ND ND ND ND ND ND		RL 0.050 0.10 0.050 0.050 0.025 0.050 0.020 0.050	MDL	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	D STATE OF THE STA	Prepared 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00	Analyzed 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31	
Method: SW846 6010B - Metals Analyte Arsenic Antimony Barium Cadmium Chromium Beryllium Bead Belenium	82 (ICP) - TCLP Result ND ND ND ND ND ND ND ND ND ND ND ND ND		RL 0.050 0.10 0.050 0.050 0.025 0.050 0.020 0.050	MDL	mg/L mg/L mg/L mg/L mg/L mg/L	D STATE OF THE STA	Prepared 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00 05/26/23 10:00	Analyzed 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31 05/26/23 18:31	

0.00020

mg/L

05/26/23 11:29

05/26/23 19:16

ND

Client: Eastex Environmental Laboratory Inc.

Project/Site: Harris County WCID 92

Job ID: 860-49823-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid

Prep Type: Total/NA

				Percent Sur	rogate Recovery (Acceptance Limits)
		DCA	BFB	DBFM	TOL	
Lab Sample ID	Client Sample ID	(63-144)	(74-124)	(75-131)	(80-120)	
LCS 860-105101/3	Lab Control Sample	103	87	94	99	
LCSD 860-105101/4	Lab Control Sample Dup	104	86	92	100	
MB 860-105101/8	Method Blank	95	108	99	107	*
Surrogate Legend						

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid

Prep Type: TCLP

				Percent Sur	rogate Recovery	(Acceptance Limits)
		DCA	BFB	DBFM	TOL	Management - Carrier or
Lab Sample ID	Client Sample ID	(63-144)	(74-124)	(75-131)	(80-120)	
860-49823-1	HC WCID 92 Digester C	94	101	97	103	

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid

Prep Type: Total/NA

			ance Limits)						
lab Camatain			TBP	FBP	2FP	NBZ	TPHd14	PHL	
Lab Sample ID	Client Sample ID		(31-132)	(29-112)	(21-114)	(26-110)	(20-141)	(16-117)	
LCS 860-105600/2-A	Lab Control Sample		89	69	40	66	87	28	
LCSD 860-105600/3-A	Lab Control Sample Dup	9	89	73	49	69	87	36	
MB 860-105600/1-A	Method Blank		77	80	48	80	94	30	

Surrogate Legend

TBP = 2,4,6-Tribromophenol (Surr)

FBP = 2-Fluorobiphenyl (Surr)

2FP = 2-Fluorophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

PHL = Phenol-d5 (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid

Prep Type: TCLP

			Percent Surrogate Recovery (Acceptance Limits)							
Lab Sample ID	Client Sample ID	TBP (31-132)	FBP (29-112)	2FP (21-114)	NBZ (26-110)	TPHd14 (20-141)	PHL (16-117)			
860-49778-A-1-F MS	Matrix Spike	67	58	41	50	79	33	2 Hours	TREE	
360-49823-1	HC WCID 92 Digester C	58	50	43	57	73	33			
.B 860-104900/1-G	Method Blank	84	85	61	87	94	51			

Surrogate Legend

Lab Sample ID (70-162)Client Sample ID 860-49823-1 HC WCID 92 Digester C 82 LB 860-104900/1-E Method Blank 85

Surrogate Legend

DCPAA = 2,4-Dichlorophenylacetic acid

Project/Site: Harris County WCID 92

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 860-105101/8

Matrix: Solid

Analysis Batch: 105101

Client Sample ID: Mothod Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Anghana	511-
B34z343	ND		0.0010		mg/L		riepared	Analyzed	Dil Fac
Carbon tetrachloride	ND		0.0050					05/27/23 01:09	1
Chlorobenzene					mg/L			05/27/23 01:09	1
	ND		0.0010		mg/L			05/27/23 01:09	1
Chloroform	ND		0.0010		mg/L			05/27/23 01:09	III AIIFI A
1,2-Dichloroethane	ND		0.0010		mg/L			SWSWS-A-COLON III	'
1,1-Dichloroethene	ND		0.0010		-			05/27/23 01:09	1
2-Butanone	ND				mg/L			05/27/23 01:09	1
Tetrachloroethene			0.050		mg/L			05/27/23 01:09	1
	ND		0.0010		mg/L			05/27/23 01:09	1
Trichloroethene	ND		0.0050		mg/L				
Vinyl chloride	ND		0.0020		3.50			05/27/23 01:09	1
attribute the commentation	ind.		0.0020		mg/L			05/27/23 01:09	1
	MP	MP							

1	77.0	777			
Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	02.5
1,2-Dichloroethane-d4 (Surr)	95	-	63 - 144		Dil Fac
4-Bromofluorobenzene (Surr)	108		74 - 124	05/27/23 01:	09 1
Dibromofluoromethane (Surr)				05/27/23 01:	09 1
	99		75 - 131	05/27/23 01:	09 1
Toluene-d8 (Surr)	107		80 - 120	05/27/23 01:	
pr-m				03/21/23 01.	19 7

Lab Sample ID: LCS 860-105101/3

Matrix: Solid

Analysis Batch: 105101

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analyte	Spike	LCS				%Rec	
	Added	Result	Qualifier Unit	D	%Rec	Limits	
Benzene	0.0500	0.0519	mg/L		104	75 - 125	
Carbon tetrachloride	0.0500	0.0497	mg/L		99	70 - 130	
Chlorobenzene	0.0500	0.0500	mg/L		100	65 - 135	
Chloroform	0.0500	0.0497	mg/L		99	70 - 121	
1,2-Dichloroethane	0.0500	0.0541	mg/L		108	72 - 130	
1,1-Dichloroethene	0.0500	0.0457	mg/L		91	50 - 150	
2-Butanone	0.250	0.231	mg/L		92	60 - 140	
Tetrachloroethene	0.0500	0.0556	mg/L		111	850 1/155	
Trichloroethene	0.0500	0.0520	mg/L			71 - 125	
Vinyl chloride	0.0500	0.0365			104	75 - 135	
	0.0000	5.0505	mg/L		73	60 - 140	

LCS LCS

	200	LUS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	103		63 - 144
4-Bromofluorobenzene (Surr)	87		74 - 124
Dibromofluoromethane (Surr)	94		75 - 131
Toluene-d8 (Surr)	99		80 - 120

Lab Sample ID: LCSD 860-105101/4

Matrix: Solid

Analysis Batch: 105101

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analyte	Spike Added		LCSD Qualifier	Unit	0	%Rec	%Rec	dentil e	RPD
Benzene	0,0500			-	_ =	70KeC	Limits	RPD	Limit
Carbon tetrachloride	0.0500	0.0517		mg/L		103	75 - 125	0	25
	0.0500	0.0506		mg/L		101	70 - 130	2	25
Chlorobenzene	0.0500	0.0507		mg/L		101	65 - 135		
Chloroform	0.0500	0.0407				101	05 - 135	1	25
	0.0500	0.0497		mg/L		99	70 - 121	0	25

QC Sample Results

Client: Eastex Environmental Laboratory Inc.

Project/Site: Harris County WCID 92

Job ID: 860-49823-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 860-105101/4

Matrix: Solid

Analysis Batch: 105101

Client Sample	e ID: Lat	Control Sample Dup
		Dron Tunne Total/NA

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dichloroethane	0.0500	0.0529		mg/L	_ =	106	72 - 130	2	25
1,1-Dichloroethene	0.0500	0.0478		mg/L		96	50 - 150	5	25
2-Butanone	0.250	0.239		mg/L		96	60 - 140	4	25
Tetrachloroethene	0.0500	0.0569		mg/L		114	71 - 125	2	25
Trichloroethene	0.0500	0.0512		mg/L		102	75 - 135	2	25
Vinyl chloride	0.0500	0.0375		mg/L		75	60 - 140	3	25

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	104		63 - 144
4-Bromofluorobenzene (Surr)	86		74 - 124
Dibromofluoromethane (Surr)	92		75 - 131
Toluene-d8 (Surr)	100		80 - 120

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 860-105600/1-A

Matrix: Solid

Analysis Batch: 105501

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 105600

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND		0.0050		mg/L		05/31/23 14:00	05/31/23 19:36	1
2,4,5-Trichlorophenol	ND		0.0050		mg/L		05/31/23 14:00	05/31/23 19:36	1
2,4,6-Trichlorophenol	ND		0.0050		mg/L		05/31/23 14:00	05/31/23 19:36	- 1
2,4-Dinitrotoluene	ND		0.0050		mg/L		05/31/23 14:00	05/31/23 19:36	1
2-Methylphenol	ND		0.0050		mg/L		05/31/23 14:00	05/31/23 19:36	1
Hexachlorobenzene	ND		0.0050		mg/L		05/31/23 14:00	05/31/23 19:36	1
Hexachlorobutadiene	ND		0.0050		mg/L		05/31/23 14:00	05/31/23 19:36	1
Hexachloroethane	ND		0.0050		mg/L		05/31/23 14:00	05/31/23 19:36	1
Nitrobenzene	ND		0.0050		mg/L		05/31/23 14:00	05/31/23 19:36	1
Pentachlorophenol	ND		0.010		mg/L		05/31/23 14:00	05/31/23 19:36	1
Pyridine	ND		0.010		mg/L		05/31/23 14:00	05/31/23 19:36	1
3 & 4 Methylphenol	ND		0.010		mg/L		05/31/23 14:00	05/31/23 19:36	1

١		IVIB	IVID					
	Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
	2,4.6-Tribromophenol (Surr)	77		31 - 132		05/31/23 14:00	05/31/23 19:36	1
	2-Fluorobiphenyl (Surr)	80		29 - 112		05/31/23 14:00	05/31/23 19:36	1
	2-Fluorophenol (Surr)	48		21 - 114		05/31/23 14:00	05/31/23 19:36	1
	Nitrobenzene-d5 (Surr)	80		26 - 110		05/31/23 14:00	05/31/23 19:36	1
	p-Terphenyl-d14 (Surr)	94		20 - 141		05/31/23 14:00	05/31/23 19:36	1
	Phenol-d5 (Surr)	30		16 - 117		05/31/23 14:00	05/31/23 19:36	1

Lab Sample ID: LCS 860-105600/2-A

Matrix: Solid

Analysis Batch: 105501

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 105600

and the least the same and the	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dichlorobenzene	0.0400	0.0216		mg/L	_	54	37 - 111	
2,4,5-Trichlorophenol	0.0400	0.0306		mg/L		77	39 - 125	

QC Sample Results

Client: Eastex Environmental Laboratory Inc. Project/Site: Harris County WCID 92

Job ID: 860-49823-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 860-105600/2-A

Matrix: Solid

Analysis Batch: 105501

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 105600

Analyte		Spike		LCS				%Rec	atcn. 103000
		Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,4,6-Trichlorophenol		0.0400	0.0281	- 1-01-15-1111-00	mg/L		70	42 - 125	
2,4-Dinitrotoluene		0.0400	0.0345		mg/L		86	41 - 128	
2-Methylphenol		0.0400	0.0209		mg/L		52	36 - 105	
Hexachlorobenzene		0.0400	0.0308		mg/L		77	39 - 128	
Hexachlorobutadiene		0.0400	0.0227		mg/L		57	31 - 120	
Hexachloroethane		0.0400	0.0188		mg/L		47	37 - 109	
Nitrobenzene		0.0400	0.0260		mg/L		65	37 - 103	
Pentachlorophenol		0.0400	0.0292		mg/L		73	10 - 137	
Pyridine		0.0400	0.00943	J	mg/L		24		
3 & 4 Methylphenol		0.0400	0.0198		mg/L		49	5 - 130 35 - 116	
					200		1.50	00 - 110	

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	89	-	31 - 132
2-Fluorobiphenyl (Surr)	69		29 - 112
2-Fluorophenol (Surr)	40		21 - 114
Nitrobenzene-d5 (Surr)	66		26 - 110
p-Terphenyl-d14 (Surr)	87		20 - 141
Phenol-d5 (Surr)	28		16 - 117

Lab Sample ID: LCSD 860-105600/3-A

Matrix: Solid

Analysis Batch: 105501

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

			• "						Prep	Batch: 1	05600
Analyte			Spike		LCSD				%Rec		RPD
		 	 Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,4-Dichlorobenzene			0.0400	0.0253		mg/L	COLUMN COLUMN	63	37 - 111	16	30
2,4,5-Trichlorophenol			0.0400	0.0319		mg/L		80	39 - 125	4	30
2,4,6-Trichlorophenol			0.0400	0.0313		mg/L		78	42 - 125	11	30
2,4-Dinitrotoluene			0.0400	0.0355		mg/L		89	41 - 128	3	30
2-Methylphenol			0.0400	0.0255		mg/L		64	36 - 105	20	30
Hexachlorobenzene			0.0400	0.0322		mg/L		80	39 - 128	4	30
Hexachlorobutadiene			0.0400	0.0246		mg/L		62	31 - 120	8	30
Hexachloroethane			0.0400	0.0233		mg/L		58	37 - 109	22	30
Nitrobenzene			0.0400	0.0274		mg/L		69	37 - 114	5	30
Pentachlorophenol			0.0400	0.0303		mg/L		76	10 - 137	4	40
Pyridine			0.0400	0.0111		mg/L		28	5 - 130	17	50
3 & 4 Methylphenol			0.0400	0.0234		mg/L		59	35 - 116	17	30
										3.5	30

Surrogate		Qualifier	Limits
2,4,6-Tribromophenol (Surr)	89	waamirer	31 - 132
2-Fluorobiphenyl (Surr)	73		29 - 112
2-Fluorophenol (Surr)	49		21 - 114
Nitrobenzene-d5 (Surr)	69		26 - 110
p-Terphenyl-d14 (Surr)	87		20 - 141
Phenol-d5 (Surr)	36		16 117

Client: Eastex Environmental Laboratory Inc. Project/Site: Harris County WCID 92

Job ID: 860-49823-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LB 860-104900/1-G

Matrix: Solid

Analysis Batch: 105311

Client Sample ID: Method Blank

Prep Type: TCLP

Prep Batch: 105294

	LB	LB							
Analyte	Result	Qualifier	RL	MD	L Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND		0.025	Jugar D	mg/L		05/30/23 11:48	05/30/23 15:51	1
2,4,5-Trichlorophenol	ND		0.025		mg/L		05/30/23 11:48	05/30/23 15:51	- U - O - A
2,4,6-Trichlorophenol	ND		0,025		mg/L		05/30/23 11:48	05/30/23 15:51	
2,4-Dinitrotoluene	ND		0.025		mg/L		05/30/23 11:48	05/30/23 15:51	-
2-Methylphenol	ND		0.025		mg/L		05/30/23 11:48	05/30/23 15:51	
Hexachlorobenzene	ND		0.025		mg/L		05/30/23 11:48	05/30/23 15:51	and the same
Hexachlorobutadiene	ND		0.025		mg/L		05/30/23 11:48	05/30/23 15:51	-
Hexachloroethane	ND		0.025		mg/L		05/30/23 11:48	05/30/23 15:51	1
Nitrobenzene	ND		0.025		mg/L		05/30/23 11:48	05/30/23 15:51	1
Pentachlorophenol	ND		0.050		mg/L		05/30/23 11:48	05/30/23 15:51	1
Pyridine	ND		0.050		mg/L		05/30/23 11:48	05/30/23 15:51	1
3 & 4 Methylphenol	ND		0.050		mg/L		05/30/23 11:48	05/30/23 15:51	1

LB LB

1						
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	84		31 - 132	05/30/23 11:48	05/30/23 15:51	1
2-Fluorobiphenyl (Surr)	85		29 - 112	05/30/23 11:48	05/30/23 15:51	1
2-Fluorophenol (Surr)	61		21 - 114	05/30/23 11:48	05/30/23 15:51	1
Nitrobenzene-d5 (Surr)	87		26 - 110	05/30/23 11:48	05/30/23 15:51	1
p-Terphenyl-d14 (Surr)	94		20 - 141	05/30/23 11:48	05/30/23 15.51	1
Phenol-d5 (Surr)	51		16 - 117	05/30/23 11:48	05/30/23 15:51	1

Lab Sample ID: 860-49778-A-1-F MS

Matrix: Solid

Analysis Batch: 105501

Client Sample ID: Matrix Spike

Prep Type: TCLP

Prep Batch: 105600

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dichlorobenzene	ND		0.200	ND		mg/L		51	37 - 111	
2,4,5-Trichlorophenol	ND		0.200	ND		mg/L		60	39 - 125	
2,4,6-Trichlorophenol	ND		0.200	ND		mg/L		52	42 - 125	
2,4-Dinitrotoluene	ND		0.200	ND		mg/L		63	41 - 128	
2-Methylphenol	ND		0.200	ND		mg/L		45	36 - 105	
Hexachlorobenzene	ND		0.200	0.145		mg/L		72	39 - 128	
Hexachlorobuladiene	ND		0.200	ND		mg/L		49	31 - 120	
Hexachloroethane	ND		0.200	ND		mg/L		44	37 - 109	
Nitrobenzene	ND		0.200	ND	18	mg/L		50	37 - 114	
Pentachlorophenol	ND		0.200	ND		mg/L		77	10 - 137	
Pyridine	ND		0.200	ND		mg/L		31	5 - 135	
3 & 4 Methylphenol	ND		0.200	ND		mg/L		48	35 - 116	

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	67	-	31 - 132
2-Fluorobiphenyl (Surr)	58		29 - 112
2-Fluorophenol (Surr)	41		21 - 114
Nitrobenzene-d5 (Surr)	50		26 - 110
p-Terphenyl-d14 (Surr)	79		20 - 141
Phenol-d5 (Surr)	33		16 - 117

Project/Site: Harris County WCID 92

Method: 8081B - Organochlorine Pesticides (GC)

Lab Sample ID: MB	860-105332/1-A
-------------------	----------------

Matrix: Solid

Analysis Batch: 105355

Client	Sample	ID:	Meth	bo	Blank	
	Π.		-	-		

Prep Type: Total/NA Prep Batch: 105332

MB	MB							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND	111111	0.0010		mg/L		05/30/23 10:34	05/30/23 13:36	1
ND		0.000052		mg/L		05/30/23 10:34	05/30/23 13:36	7
ND		0.000052		mg/L		05/30/23 10:34	05/30/23 13:36	- 4

Chlorodane Endrin Heptachlor Heptachlor epoxide 0.000052 mg/L 05/30/23 10:34 05/30/23 13:36 gamma-BHC (Lindane) 0.000052 05/30/23 10:34 mg/L 05/30/23 13:36 Methoxychlor ND 0.000052 mg/L 05/30/23 10:34 05/30/23 13:36 Toxaphene ND 0.0010 mg/L 05/30/23 10:34 05/30/23 13:36

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	56	S1-	70 - 130	05/30/23 10:34	05/30/23 13:36	1
Tetrachloro-m-xylene	64	S1-	70 - 130	05/30/23 10:34	05/30/23 13.36	1

Lab Sample ID: MB 860-105332/1-A

Matrix: Solid

Analysis Batch: 105807

Client Sample ID:	Method Blank
Prep	Type: Total/NA

Prep Batch: 105332

	1112								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Toxaphene	ND	NO.	0.0010		mg/L		05/30/23 10:34	06/02/23 11:04	1

Lab Sample ID: LCS 860-105332/2-A

Matrix: Solid

Analysis Batch: 105355

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 105332

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Endrin	0.00130	0.00118		mg/L		91	55 - 102	
Heptachlor	0.00130	0.00124		mg/L		96	55 - 106	
Heptachlor epoxide	0.00130	0.00123		mg/L		95	56 - 109	
gamma-BHC (Lindane)	0.00130	0.00131		mg/L		101	59 - 107	
Methoxychlor	0.00130	0.00110		mg/L		85	53 - 102	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl (Surr)	52	S1-	70 - 130
Tetrachloro-m-xvlene	69	S1-	70 - 130

Lab Sample ID: LCSD 860-105332/3-A

Matrix: Solid

Analysis Batch: 105355

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 105332

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Endrin	0.00129	0.00119		mg/L	-	92	55 - 102	1	25
Heptachlor	0.00129	0.00125		mg/L		96	55 - 106	0	25
Heptachlor epoxide	0.00129	0.00124		mg/L		96	56 - 109	1	25
gamma-BHC (Lindane)	0.00129	0.00132		mg/L		102	59 - 107	0	25
Methoxychlor	0.00129	0.00111		mg/L		86	53 - 102	1	25

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl (Surr)	63	S1-	70 - 130
Tetrachloro-m-xylene	67	S1-	70 - 130

QC Sample Results

Client: Eastex Environmental Laboratory Inc.

Project/Site: Harris County WCID 92

Job ID: 860-49823-1

Method: 8081B - Organochlorine Pesticides (GC)

Lab Sample ID: LB 860-104900/1-F

Matrix: Solid

Analysis Batch: 105355

Client Sample ID: Method Blank

Prep Type: TCLP

	LB	LB						Prep Batch	105332
Analyte	Result	Qualifier	RL	MDL	Unit	D	December	2 2	
Chlorodane	ND		0.00098		-	 _	Prepared	Analyzed	Dil Fac
Endrin			- 20		mg/L		05/30/23 10:34	05/30/23 14:32	1
	ND		0.000049		mg/L		05/30/23 10:34	05/30/23 14:32	4
Heptachlor	ND		0.000049		mg/L		05/30/23 10:34	The many sold in the same	
Heptachlor epoxide	ND		0.000049		175.7			05/30/23 14:32	- 1
gamma-BHC (Lindane)	144				mg/L		05/30/23 10:34	05/30/23 14:32	1
E. Carrey	ND		0.000049		mg/L		05/30/23 10:34	05/30/23 14:32	4
Methoxychlor	ND		0.000049		mg/L		05/30/23 10:34	05/30/23 14:32	Mr. worth Add
Toxaphene	ND		0.00098				.0000		1
	ALC: 100		0.00030		mg/L		05/30/23 10:34	05/30/23 14:32	1
	LB	LB							

Surrogate %Recovery Qualifier Limits DCB Decachlorobiphenyl (Surr) 50 S1-70 - 130 Tetrachloro-m-xylene 70 - 130

Prepared Analyzed 05/30/23 10:34 05/30/23 14:32 05/30/23 10:34 05/30/23 14:32

Lab Sample ID: LB 860-104900/1-F

Matrix: Solid

Analyte

Toxaphene

Analysis Batch: 105807

LB LB

Qualifier

Result

ND

MB MB

Client Sample ID: Method Blank Prep Type: TCLP Prep Batch: 105332

Prepared Analyzed Dil Fac 05/30/23 10:34 06/02/23 11:38

Method: 8151A - Herbicides (GC)

Lab Sample ID: MB 860-105229/1-A

Matrix: Solid

Analysis Batch: 105485

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 105229

Analyte			Qualifier	RL	MDL	Unit	D	Prepared	Analyzad	Du c
2,4-D		ND		0.00020		7 7		-	Analyzed	Dil Fac
2,4,5-TP (Silvex)						mg/L		05/28/23 17:53	05/31/23 13:34	1
2,4,0-11 (011/6x)		ND		0.00020		mg/L		05/28/23 17:53	05/31/23 13:34	1
		MR	MB							

0.00098

MDL Unit

mg/L

Surrogate %Recovery Qualifier Limits Analyzed 2.4-Dichlorophenylacetic acid 70 - 162 05/28/23 17:53 05/31/23 13:34

Lab Sample ID: LCS 860-105229/2-A

Matrix: Solid

Analysis Batch: 105485

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 105229

Dil Fac

The state of the s	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,4-D	0.00202	0.00173		mg/L		86	67 - 124	-
2,4,5-TP (Silvex)	0.00202	0.00185		mg/L		92	66 - 141	

LCS LCS

Surrogate %Recovery Qualifier Limits 2,4-Dichlorophenylacetic acid 85 70 - 162

Client: Eastex Environmental Laboratory Inc.

Project/Site: Harris County WCID 92

Method: 8151A - Herbicides (GC) (Continued)

Lab Sample ID: LCSD 860-105229/3-A

Matrix: Solid

Analysis Batch: 105485

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 105229 Spike LCSD LCSD Analyte %Rec RPD Added Result Qualifier Unit 2,4-D %Rec RPD Limit 0.00202 0.00183 mg/L 91 2,4,5-TP (Silvex) 67 - 124 6 25 0.00202 0.00213 mg/L 105 66 - 141 14 25 LCSD LCSD

Surrogate %Recovery Qualifier Limits 2,4-Dichlorophenylacetic acid 70 - 162

Lab Sample ID: LB 860-104900/1-E

Matrix: Solid

Analysis Batch: 105485

Client Sample ID: Method Blank

Prep Type: TCLP

Prep Batch: 105229

LB LB Analyte Result Qualifier RL MDL Unit 2,4-D Prepared Analyzed ND 0.00020 mg/L 05/28/23 17:53 2,4,5-TP (Silvex) 05/31/23 16:13 ND 0.00020 mg/L 05/28/23 17:53 05/31/23 16:13 LB LB Surrogate %Recovery Qualifier

Limits 2,4-Dichlorophenylacetic acid Prepared Analyzed Dil Fac 85 70 - 162 05/28/23 17:53 05/31/23 16:13

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 860-105040/1-A

Matrix: Solid

Analysis Batch: 105326

Client Sample ID: Method Blank

Prep Type: Total/NA

	TA SECTION	мв	MB					Prep Batch:	105040
Analyte	1, 1,527	Result	Qualifier	RL	MDL Unit	D	D		
Arsenic		ND		0.010		- =	Prepared	Analyzed	Dil Fac
Antimony		ND			mg/L		05/26/23 10:00	05/26/23 17:02	1
Barium		The state of the s		0.020	mg/L		05/26/23 10:00	05/26/23 17:02	1
Cadmium		ND		0.010	mg/L		05/26/23 10:00	05/26/23 17:02	PONT
		ND		0.0050	mg/L		No. 1 and Chillian Chillians		1
Chromium		ND		0.010	250		05/26/23 10:00	05/26/23 17:02	1
Beryllium		ND			mg/L		05/26/23 10:00	05/26/23 17:02	1
Lead				0.0040	mg/L		05/26/23 10:00	05/26/23 17:02	
		ND		0.010	mg/L		05/26/23 10:00		1
Selenium		ND		0.030	mg/L			05/26/23 17:02	1
Silver		ND			1.00		05/26/23 10:00	05/26/23 17:02	1
Nickel				0.020	mg/L		05/26/23 10:00	05/26/23 17:02	1
army officer		ND		0.010	mg/L		05/26/23 10:00	05/26/23 17:02	

Lab Sample ID: LCS 860-105040/2-A

Matrix: Solid

Analysis Batch: 105326

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analyte	- A16/6	Spike	LCS	LCS					Satch: 105040
Arsenic		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony		1.00	0.937		mg/L		94	80 - 120	
Barium		1.00	0.935		mg/L		94	80 - 120	
Cadmium		1.00	0.926		mg/L		93	80 - 120	
Chromium		1.00	0.947		mg/L		95	80 - 120	
Beryllium		1.00	0.959		mg/L		96	80 - 120	
Lead		1.00	0.946		mg/L		95	80 - 120	
Selenium		1.00	0.946		mg/L		95	80 - 120	
zerezineni.		1.00	0.947		mg/L		95	80 - 120	

QC Sample Results

Client: Eastex Environmental Laboratory Inc.

Project/Site: Harris County WCID 92

Job ID: 860-49823-1

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: LCS 860-105040/2-A

Matrix: Solid

Analysis Batch: 105326

Client	Sample	ID:	Lab	Control	Sample
			_		

Prep Type: Total/NA

Prep Batch: 105040

-	marysis batch. 100020								Datoii. 1000 10
100	A DE LOUIS DE LOS TENERS POR LA	Spike	LCS	LCS				%Rec	
A	nalyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
S	lver	0.500	0.469		mg/L		94	80 - 120	
	ickel	1.00	0.947		mg/L		95	80 - 120	

Lab Sample ID: LCSD 860-105040/3-A

Matrix: Solid

Analysis Batch: 105326

Client	Sample	e ID:	Lab	Control	Sample Dup	
--------	--------	-------	-----	---------	------------	--

Prep Type: Total/NA

Prep Batch: 105040

Analysis Batch. 100020	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	1.00	0.938	New York	mg/L		94	80 - 120	0	20
Antimony	1.00	0.943		mg/L		94	80 - 120	1	20
Barium	1.00	0.931		mg/L		93	80 - 120	1	20
Cadmium	1.00	0.958		mg/L		96	80 - 120	1	20
Chromium	1.00	0.962		mg/L		96	80 - 120	0	20
Beryllium	1.00	0.954		mg/L		95	80 - 120	1	20
Lead	1.00	0.952		mg/L		95	80 - 120	1	20
Selenium	1,00	0.949		mg/L		95	80 - 120	0	20
Silver	0.500	0.472		mg/L		94	80 - 120	1	20
Nickel	1.00	0.951		mg/L		95	80 - 120	0	20

Lab Sample ID: LB 860-104900/1-C

Matrix: Solid

Analysis Batch: 105326

Client Sample ID: Method Blank Prep Type: TCLP

Prep Batch: 105040

Chartel Bage 1981	LB LB							
Analyte	Result Quality	fier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND ND	0.050		mg/L		05/26/23 10:00	05/26/23 17:12	1
Antimony	ND	0.10	,	mg/L		05/26/23 10:00	05/26/23 17:12	1
Barium	ND	0.050		mg/L		05/26/23 10:00	05/26/23 17:12	1
Cadmium	ND	0.025		mg/L		05/26/23 10:00	05/26/23 17:12	1
Chromium	ND	0.050		mg/L		05/26/23 10:00	05/26/23 17:12	1
Beryllium	ND	0.020		mg/L		05/26/23 10:00	05/26/23 17:12	1
Lead	ND	0.050		mg/L		05/26/23 10:00	05/26/23 17:12	1
Selenium	ND	0.15		mg/L		05/26/23 10:00	05/26/23 17:12	1
Silver	ND	0.10		mg/L		05/26/23 10:00	05/26/23 17:12	1
Nickel	ND	0.050		mg/L		05/26/23 10:00	05/26/23 17:12	1

Lab Sample ID: 830-3604-A-1-E MS

Matrix: Solid

Client Sample ID: Matrix Spike

Prep Type: TCLP

Prep Batch: 105040

Analysis Batch: 105326									, icp	Daton. 1000-10
Allarysis Batch. 103520	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	ND	-	1.00	0.980		mg/L		98	75 - 125	
Antimony	ND		1.00	0.925		mg/L		93	75 - 125	
Barium	0.15		1.00	1.10		mg/L		95	75 - 125	
Cadmium	ND		1.00	0.995		mg/L		100	75 - 125	
Chromium	ND		1.00	1.01		mg/L		99	75 - 125	
Beryllium	ND		1.00	1.00		mg/L		100	75 - 125	
	ND		1.00	0.985		mg/L		99	75 - 125	
Lead	ND		1.00	1.03		mg/L		103	75 - 125	
Selenium Silver	ND		0.500	0.483		mg/L		97	75 - 125	

MS

Qualifier

Qualifier

Unit

mg/L

Unit

mg/L

mg/L

mg/L

ma/L

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

D

Result

1.03

MSD MSD

Result

0.990

0.925

1.10

1.00

1.02

1.00

0.960

1.03

0.483

1.04

MDL Unit

LCS LCS

LCSD LCSD

Result

0.00201

Qualifier

Qualifier

Result

0.00202

mg/L

Spike

Added

Sample

ND

0.15

ND

ND

ND

ND

ND

ND

ND

Qualifier

MB MB Result

ND

Qualifier

1.00

Spike

Added

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.500

1.00

RL

0,00020

Spike

Added

Spike

Added

0.00200

0.00200

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: 830-3604-A-1-E MS

Matrix: Solid

Analysis Batch: 105326

	Sample	Sample
Analyte	Result	Qualifier
Nickel	ND	

Lab Sample ID: 830-3604-A-1-F MSD

Matrix: Solid

Analysis Batch: 1053	26
	Sample
Analyte	Result
Arsenic	ND

Selenium		
Silver		
Nickel		

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 860-105056/10-A Matrix: Solid

Antimony

Cadmium

Chromium

Beryllium

Lead

Barium

Analysis Batch: 105153

Analyte		

Mercury

-					
Lab	Sample	ID:	LCS	860-1050	56/11-A

Matrix: Solid Analysis Batch: 105153

Analyte

Mercury

Analyte

Mercury

Lab Sample ID: LCSD 860-105056/12-A

Matrix: Solid

Analysis Batch: 105153

(77.5						
	l ah	Sample	In. I	D	960 104000/	4 D

Matrix: Solid

Analysis Batch: 105153

LB LB Analyte Result Qualifier Mercury ND

RL 0.00020 MDL Unit

Unit

mg/L

Unit

mg/L

Prepared 05/26/23 11:29

Analyzed 05/26/23 19:21 Dil Fac

Limit

Job ID: 860-49823-1

Client Sample ID: Matrix Spike

Prep Type: TCLP

Prep Batch: 105040 %Rec

75 - 125

Limits

%Rec

%Rec

99

93

100

100

100

96

103

97

101

Prepared

05/26/23 11:29

%Rec

%Rec

101

101

D

101

Client Sample ID: Matrix Spike Duplicate

Limits

75 - 125

75 - 125

75 - 125

75 - 125

75 - 125

75 - 125

75 - 125

75 - 125

75 - 125

75 - 125

Client Sample ID: Method Blank

Analyzed

05/26/23 18:58

Client Sample ID: Lab Control Sample

%Rec

Limits

Client Sample ID: Lab Control Sample Dup

80 - 120

%Rec

Limits

80 - 120

Prep Batch: 105040 %Rec

Prep Type: TCLP

0

0

0

0

3

0

0

0

Prep Type: Total/NA

Prep Batch: 105056

Prep Type: Total/NA

Prep Batch: 105056

Prep Type: Total/NA

Prep Batch: 105056

RPD

0

RPD RPD Limit 20

20

20

20

20

Dil Fac

5

Client Sample ID: Method Blank Prep Type: TCLP

Prep Batch: 105056

QC Sample Results

Client: Eastex Environmental Laboratory Inc.

Project/Site: Harris County WCID 92

Job ID: 860-49823-1

Prep Type: TCLP

Prep Batch: 105056

Method:	7470A	- Mercury	(CVAA)	(Continued)
-			,	

Lab Sample ID: 860-49821-A-1-E MS

Lab Sample ID: 860-49821-A-1-F MSD

Matrix: Solid

Matrix: Solid

Analyte

Mercury

Analyte

Mercury

Analysis Batch: 105153

Analysis Batch: 105153

Sample Sample Result Qualifier 0.00025

Sample Sample

Qualifier

Result

0.00025

Spike Added 0.00200

Spike

Added

0.00200

0.00221

MS MS Result Qualifier

Qualifier

Unit

mg/L

MSD MSD

Result

0.00224

Unit mg/L

%Rec Limits 75 - 125

Client Sample ID: Matrix Spike

Client Sample ID: Matrix Spike Duplicate Prep Type: TCLP

%Rec

Prep Batch: 105056

RPD

RPD Limit

Limits 75 - 125 20

5

8

QC Association Summary

Client: Eastex Environmental Laboratory Inc.

Project/Site: Harris County WCID 92

Job ID: 860-49823-1

GC	~ 1 R 1		10	
	/ IV/	-	V ()	Λ

Leach Batch: 104913	h Batch: 104	1913
---------------------	--------------	------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-49823-1	HC WCID 92 Digester C	TCLP	Solid	1311	1 rep baten
van havings as a visit	The second secon				

Analysis Batch: 105101

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-49823-1	HC WCID 92 Digester C	TCLP	Solid	8260C	104913
MB 860-105101/8	Method Blank	Total/NA	Solid	8260C	The street in
LCS 860-105101/3	Lab Control Sample	Total/NA	Solid	8260C	
LCSD 860-105101/4	Lab Control Sample Dup	Total/NA	Solid	8260C	

GC/MS Semi VOA

Leach Batch: 104900

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-49823-1	HC WCID 92 Digester C	TCLP	Solid	1311	
LB 860-104900/1-G	Method Blank	TCLP	Solid	1311	
860-49778-A-1-F MS	Matrix Spike	TCLP	Solid	1311	

Prep Batch: 105294

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LB 860-104900/1-G	Method Blank	TCLP	Solid	3510C	104900

Analysis Batch: 105311

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	9
LB 860-104900/1-G	Method Blank	TCLP	Solid	8270D	105294	100

Analysis Batch: 105501

Client Sample ID	Prep Type	Matrix	Method	D D
Method Blank	Total/NA	Solid		Prep Batch 105600
Lab Control Sample	Total/NA	Solid		105600
Lab Control Sample Dup	Total/NA		134324.7547	105600
Matrix Spike	TCLP	Solid	8270D	105600
	Method Blank Lab Control Sample Lab Control Sample Dup	Method Blank Total/NA Lab Control Sample Total/NA Lab Control Sample Dup Total/NA	Method Blank Total/NA Solid Lab Control Sample Total/NA Solid Lab Control Sample Dup Total/NA Solid	Method Blank Total/NA Solid 8270D Lab Control Sample Total/NA Solid 8270D Lab Control Sample Dup Total/NA Solid 8270D Methor College Total/NA Solid 8270D

Prep Batch: 105600

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-49823-1	HC WCID 92 Digester C	TCLP	Solid	3510C	104900
MB 860-105600/1-A	Method Blank	Total/NA	Solid	3510C	104300
LCS 860-105600/2-A	Lab Control Sample	Total/NA	Solid	3510C	
LCSD 860-105600/3-A	Lab Control Sample Dup	Total/NA	Solid	3510C	
860-49778-A-1-F MS	Matrix Spike	TCLP	Solid	3510C	104900

Analysis Batch: 105851

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-49823-1	HC WCID 92 Digester C	TCLP	Solid	8270D	105600

GC Semi VOA

Leach Batch: 104900

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-49823-1 - RA	HC WCID 92 Digester C	TCLP	Solid	1311	
860-49823-1	HC WCID 92 Digester C	TCLP	Solid	1311	
LB 860-104900/1-E	Method Blank	TCLP	Solid	1311	
LB 860-104900/1-F	Method Blank	TCLP	Solid	1311	

Eurofins Houston

1

5

8

9

QC Association Summary

Client: Eastex Environmental Laboratory Inc.

Project/Site: Harris County WCID 92

Job ID: 860-49823-1

GC Semi VOA

Prep	Batch:	105229
------	--------	--------

Lab Sample ID	Client Sample ID	Prep Type	Matrix		
860-49823-1	HC WCID 92 Digester C	TCLP	Solid	Method 3511	Prep Batch
LB 860-104900/1-E	Method Blank	TCLP			104900
MB 860-105229/1-A	Method Blank		Solid	3511	104900
		Total/NA	Solid	3511	
LCS 860-105229/2-A	Lab Control Sample	Total/NA	Solid	3511	
LCSD 860-105229/3-A	Lab Control Sample Dup	Total/NA	Solid	3511	

Prep Batch: 105332

ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
60-49823-1	HC WCID 92 Digester C	TCLP	Solid	3511	104900
60-49823-1 - RA	HC WCID 92 Digester C	TCLP	Solid	3511	104900
B 860-104900/1-F	Method Blank	TCLP	Solid	3511	104900
MB 860-105332/1-A	Method Blank	Total/NA	Solid	3511	104900
CS 860-105332/2-A	Lab Control Sample	Total/NA	Solid	3511	
CSD 860-105332/3-A	Lab Control Sample Dup	Total/NA	Solid	3511	

Analysis Batch: 105355

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-49823-1	HC WCID 92 Digester C	TCLP	Solid	8081B	105332
LB 860-104900/1-F	Method Blank	TCLP	Solid	8081B	105332
MB 860-105332/1-A	Method Blank	Total/NA	Solid	8081B	105332
LCS 860-105332/2-A	Lab Control Sample	Total/NA	Solid	8081B	105332
LCSD 860-105332/3-A	Lab Control Sample Dup	Total/NA	Solid	8081B	105332
maluaia Databa 405405					411 164 164 164

Analysis Batch: 105485

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LB 860-104900/1-E	Method Blank	TCLP	Solid	8151A	105229
MB 860-105229/1-A	Method Blank	Total/NA	Solid	8151A	105229
LCS 860-105229/2-A	Lab Control Sample	Total/NA	Solid	8151A	105229
LCSD 860-105229/3-A	Lab Control Sample Dup	Total/NA	Solid	8151A	105229

Analysis Batch: 105707

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-49823-1	HC WCID 92 Digester C	TCLP	Solid	8151A	105229

Analysis Batch: 105807

Lab Sample ID	Client Sample ID	Prep T	pe Matrix	Method	Prep Batch
860-49823-1 - RA	HC WCID 92 Digester C	TCLP	Solid	8081B	105332
LB 860-104900/1-F	Method Blank	TCLP	Solid	8081B	105332
MB 860-105332/1-A	Method Blank	Total/N	A Solid	8081B	105332

Metals

Leach Batch: 104900

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-49823-1	HC WCID 92 Digester C	TCLP	Solid	1311	Prep Batch
LB 860-104900/1-C	Method Blank	TCLP	Solid	1311	
LB 860-104900/1-D	Method Blank	TCLP	Solid	1311	
830-3604-A-1-E MS	Matrix Spike	TCLP	Solid	1311	
830-3604-A-1-F MSD	Matrix Spike Duplicate	TCLP	Solid	1311	
860-49821-A-1-E MS	Matrix Spike	TCLP	Solid	1311	
860-49821-A-1-F MSD	Matrix Spike Duplicate	TCLP	Solid	1311	

QC Association Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: Harris County WCID 92

Job ID: 860-49823-1

Metals

Prep	Batch:	105040
------	--------	--------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-49823-1	HC WCID 92 Digester C	TCLP	Solid	3010A	104900
LB 860-104900/1-C	Method Blank	TCLP	Solid	3010A	104900
MB 860-105040/1-A	Method Blank	Total/NA	Solid	3010A	
LCS 860-105040/2-A	Lab Control Sample	Total/NA	Solid	3010A	
LCSD 860-105040/3-A	Lab Control Sample Dup	Total/NA	Solid	3010A	
830-3604-A-1-E MS	Matrix Spike	TCLP	Solid	3010A	104900
830-3604-A-1-F MSD	Matrix Spike Duplicate	TCLP	Solid	3010A	104900

Prep Batch: 105056

Lab Sample ID	Client Sample ID	i.	Prep Type	Matrix	Method	Prep Batch
860-49823-1	HC WCID 92 Digester C		TCLP	Solid	7470A	104900
LB 860-104900/1-D	Method Blank		TCLP	Solid	7470A	104900
MB 860-105056/10-A	Method Blank		Total/NA	Solid	7470A	
LCS 860-105056/11-A	Lab Control Sample		Total/NA	Solid	7470A	
LCSD 860-105056/12-A	Lab Control Sample Dup		Total/NA	Solid	7470A	
860-49821-A-1-E MS	Matrix Spike		TCLP	Solid	7470A	104900
860-49821-A-1-F MSD	Matrix Spike Duplicate		TCLP	Solid	7470A	104900

Analysis Batch: 105153

ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
360-49823-1	HC WCID 92 Digester C	TCLP	Solid	7470A	105056
B 860-104900/1-D	Method Blank	TCLP	Solid	7470A	105056
MB 860-105056/10-A	Method Blank	Total/NA	Solid	7470A	105056
CS 860-105056/11-A	Lab Control Sample	Total/NA	Solid	7470A	105056
CSD 860-105056/12-A	Lab Control Sample Dup	Total/NA	Solid	7470A	105056
860-49821-A-1-E MS	Matrix Spike	TCLP	Solid	7470A	105056
860-49821-A-1-F MSD	Matrix Spike Duplicate	TCLP	Solid	7470A	105056

Analysis Batch: 105326

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-49823-1	HC WCID 92 Digester C	TCLP	Solid	6010B	105040
LB 860-104900/1-C	Method Blank	TCLP	Solid	6010B	105040
MB 860-105040/1-A	Method Blank	Total/NA	Solid	6010B	105040
LCS 860-105040/2-A	Lab Control Sample	Total/NA	Solid	6010B	105040
LCSD 860-105040/3-A	Lab Control Sample Dup	Total/NA	Solid	6010B	105040
830-3604-A-1-E MS	Matrix Spike	TCLP	Solid	6010B	105040
830-3604-A-1-F MSD	Matrix Spike Duplicate	TCLP	Solid	6010B	105040

Lab Chronicle

Client: Eastex Environmental Laboratory Inc. Project/Site: Harris County WCID 92

Job ID: 860-49823-1

Client Sample ID: HC WCID 92 Digester C

Date Collected: 05/18/23 12:40 Date Received: 05/23/23 10:16 Lab Sample ID: 860-49823-1

Matrix: Solid

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Landing
TCLP	Leach	1311		-	1.0 g	1.0 mL	104913	05/25/23 14:00	SYB	EET HOU
							Completed:	05/26/23 06:00 1	318	EETHOU
TCLP	Analysis	8260C		50	5 mL	5 mL	105101	05/27/23 02:51	NA	EET HOU
TCLP	Leach	1311			1.0 g	1.0 mL	104900	05/25/23 12:30		
							Completed:	05/26/23 04:30	EMC	EET HOU
TCLP	Prep	3510C			200 mL	1.0 mL	105600		MDO	
CLP	Analysis	8270D		5		1.01112	105851	05/31/23 14:00 06/01/23 19:32	MPC	EET HOU
CLP	Leach	1311			100	10-1			PXS	EET HOU
					1.0 g	1.0 mL	104900	05/25/23 12:30	EMC	EET HOU
CLP	Prep	3511			51,1 mL	C mal	Completed:	05/26/23 04:30 1		
CLP	Analysis	8081B		1	DI,I ML	5 mL	105332	05/30/23 10:34	TH	EET HOU
CLP	Leach	1311			18/24		105355	05/30/23 16:24	BNW	EET HOU
OL,	Leacii	1311	RA		1.0 g	1.0 mL	104900	05/25/23 12:30	EMC	EET HOU
CLP	Prep	2544					Completed:	05/26/23 04:30 1		
CLP	Analysis	3511	RA		51.1 mL	5 mL	105332	05/30/23 10:34	TH	EET HOU
		8081B	RA	1			105807	06/02/23 13:30	BNW	EET HOU
CLP	Leach	1311			1.0 g	1.0 mL	104900	05/25/23 12:30	EMC	EET HOU
						25	Completed:	05/26/23 04:30 1		
CLP	Prep	3511			49.3 mL	4 mL	105229	05/28/23 17:53	JN	EET HOU
CLP	Analysis	8151A		1			105707	06/01/23 16:21	BNW	EET HOU
CLP	Leach	1311			1.0 g	1.0 mL	104900	05/25/23 12:30	EMC	EET HOU
							Completed:	05/26/23 04:30 1		
CLP	Prep	3010A			10 mL	50 mL	105040	05/26/23 10:00	MD	EET HOU
CLP	Analysis	6010B	v	4			105326	05/26/23 18:31	JDM	EET HOU
CLP	Leach	1311			1.0 g	1.0 mL	104900	05/25/23 12:30	EMC	EET HOU
							Completed:	05/26/23 04:30 1	LIVIO	LETHOU
CLP	Prep	7470A			50 mL	50 mL	105056	05/26/23 11:29	PB	EET HOU
CLP	Analysis	7470A		1			105153		SHZ	EET HOU

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Accreditation/Certification Summary

Client: Eastex Environmental Laboratory Inc.

Project/Site: Harris County WCID 92

Job ID: 860-49823-1

Laboratory: Eurofins Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	88-00759	08-04-23
Florida	NELAP	E871002	06-30-23
Louisiana	NELAP	03054	06-30-23
Louisiana (All)	NELAP	03054	06-30-23
Oklahoma	State	1306	08-31-23
Texas	NELAP	T104704215-23-50	06-30-23
Texas	TCEQ Water Supply	T104704215	12-28-25
USDA	US Federal Programs	525-23-79-79507	03-20-26

5

9

13

Method Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: Harris County WCID 92

Job ID: 860-49823-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	EET HOU
3270D	Semivolatile Organic Compounds (GC/MS)	SW846	EET HOU
081B	Organochlorine Pesticides (GC)	SW846	EET HOU
3151A	Herbicides (GC)	SW846	EET HOU
010B	Metals (ICP)	SW846	EET HOU
470A	Mercury (CVAA)	SW846	EET HOU
311	TCLP Extraction	SW846	EET HOU
010A	Preparation, Total Metals	SW846	EET HOU
510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	EET HOU
511	Microextraction of Organic Compounds	SW846	EET HOU
030C	Purge and Trap	SW846	EET HOU
470A	Preparation, Mercury	SW846	EET HOU

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Sample Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: Harris County WCID 92

Job ID: 860-49823-1

4 5 6

Matrix	Collected	Received
Solid	05/18/23 12:40	05/23/23 10:16

SUBCONTRACT ORDER

Sending Laboratory:

Eastex Environmental Laboratory - Coldspring PO Box 1089 Coldspring, TX 77331 Phone 936-653-3249 Fax 936-653-3172

Subcontracted Laboratory:

Eurofins Xenco LLC 4147 Greenbriar Dr. Stafford, TX 77477 Phone 713-690-4444 Fax. 713-690-5646

PO 052323E

PROJECT NAME.

Harris County WCID 92

Turnaround

10 DAYS

Matrix

Waste

Containers Date Time **EEL Sample ID** Sample Type Sample No. Analysis to be Performed 5/18/23 12.40 pm C3D5831-01 HC WCID 92 Digester Grab TCLP SUBCONTRACT

Special Instructions:

See Attached

FULL TCLP REPORT

Corrected Temp

Received Iced Y/N

Temp

PRINT DATE/TIME. 5/22/2023 / 4 05 06PM

sco_PrimaryForm rpt.02122019 Page 28 of 29

Page 1 of 1 6/5/2023

Login Sample Receipt Checklist

Client: Eastex Environmental Laboratory Inc.

Job Number: 860-49823-1

Login Number: 49823

List Source: Eurofins Houston

List Number: 1 Creator: Rubio, Yuri

Question	Answer	Comment			
The cooler's custody seal, if present, is intact.	True			70	-
Sample custody seals, if present, are intact.	True				
The cooler or samples do not appear to have been compromised or tampered with.	True				
Samples were received on ice.	True				
Cooler Temperature is acceptable.	True				
Cooler Temperature is recorded.	True				
COC is present.	True				
COC is filled out in ink and legible.	True				
COC is filled out with all pertinent information.	True				
Is the Field Sampler's name present on COC?	True				
There are no discrepancies between the containers received and the COC.	True				
Samples are received within Holding Time (excluding tests with immediate HTs)	True				
Sample containers have legible labels.	True				
Containers are not broken or leaking.	True				
Sample collection date/times are provided.	True				
Appropriate sample containers are used.	True				
Sample bottles are completely filled.	True				
Sample Preservation Verified.	True				
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True				
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True				

REPORT TO:

EASTEX ENVIRONMENTAL LABORATORY, INC.

P.O. Box 1089 * Coldspring, TX 77331 P.O. Box (936) 653-3249 * (800) 525-0508 (936) 565

(77331 P.O. Box 631375 * Nacogdoches, TX 75963-1375 25-0508 (936) 569-8879 * FAX (936) 569-8951 www.eastexlabs.com

> White Copy-Follows Samples Yellow Copy-Laboratory Pink Copy-Client Copy

Alternate Check In:	LAB USE ONLY	1/h	Relinguished By:	Relinquished By:	Relinquished By:				12	(0)	a de la composição de l	2 8	1000	CXCAC	Work Order ID	The state of the s	Project Names	Sampler's Signature:		Sampler's Name (print):	P.O. #:	Email:	Phone#:	Attn:		Address:	
	Sample Condition Acceptable:							10			100 miles		12/81/5 VANCTON ON	THORDEN SUNCO	Sample ID Date		1000		TAVIS FRANZE!		validing.			ing M	CITA	300	
	Acceptable: XES / NO	registration of Checked in By:		Received By:	Received By:						ni au		C)MIN OHE	S MM OHEI	Time Matrix C or G DO		Preservatives: C=Chilled S ST=Sodium T		container Size: 1=Gallon 2= 6=125mL (4oz		C or G: C= Composite G= Grab	INSTRUCTIONS:	Phone#:	Attn:		Address: SAME	Company:
lemp		d in By:						+							-	Field Data	C=Chilled S=Sulfuric Acid N=Nitric Acid ST=Sodium Thiosulfate H=HCL O= Other	G= Glass T= Teflon S= Sterile	6=125mL (4oz) 7=60mL (2 oz) 8= 40mL Vial 9=Other	DW=Drinking Water WW=Wastewater SO=Soll/Sludge OT= Other	G= Grab		101		nus nus mit mit nuc		
togged in by:		Date //o /	Date		Date						et e		ーのフ	14.30 00.44	Temp # Size Type	Containers	B=Base/Caustic Z= Zn Acetate		s600mL 5=250mL al 9=Other	O=Soil/Sludge OT= Other			uu liip	res la	ple.	100	Remarks:
1		/ ₇₇ Time			Time								_		Pres \	1000 1000 1000		P	00		A	NAL	YSIS	REC	QUE:	STEC	-
) Date	icea.		Received Iced:	Received Iced:																							
- Ime	LES NO	NO NO	YES / NO	YES / NO				<u> </u>								_		_									

28 August 2023

Envirodyne Laboratories, Inc 11011 Brooklet Dr., # 230 Houston, TX 77099 281.568.7880 Phone www.envirodyne.com

Si Environmental, LLC Chris Manthei 6420 Reading Road Rosenberg, TX 77471

Pecan Grove MUD WWTP

Enclosed are the results of analyses for samples received by the laboratory on 22-Jun-23 15:10. The analytical data provided relates only to the samples as received in this laboratory report.

ELI certifies that all results are NELAP compliant and performed in accordance with the referenced method except as noted in the Case Narrative or as noted with a qualifier. Any reproductions of this laboratory report should be in full and only with the written authorization from the client.

The total number of pages in this report is 7

Thank you for selecting ELI for your analytical needs. If you have any questions regarding this report, please contact us.

Sincerely,

Laura Bonjonia For Sarah Chaplain

Client Services Representative

Laura Brymin

LA BORATOR'S

Certificate No: T104704265-22-20

DECEIVED
JAN 02 2024

XX

Sludge Manager Master Spreadsheet

TCLP M

KI& Solid

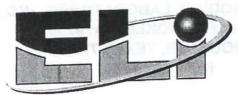
Page 1 of 7

Client: Project: Si Environmental, LLC Pecan Grove MUD WWTP

Work Order:

23F2402

Reported:


28-Aug-23 10:50

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Digester	23F2402-01	Solids	22-Jun-23 12:35	22-Jun-23 15:10

L - Sample analyzed by TNI certified lab: T104704215-22-47

Envirodyne Laboratories, Inc.

ENVIRODYNE LABORATORIES, INC.

CLIENT: PECAN GROVE WWTP

LAB NUMBER:

23F2402A

DATE COLLECTED:

(Si Environmental) 22-Jun-23

DATE RECEIVED:

22-Jun-23

DATE COMPLETED:

28-Jul-23

SAMPLED BY:

DATE ANALYZED:

28-Jul-23

(*) DENOTES: DRY WEIGHT BASIS

() DENOTES: [RY WEIGHT BASIS	SLUDGE LIMITS	
LOCATION:	CAKE @ 1235	METHOD	Clean / Ceiling (mg/kg)	MDL (mg/l)
PARAMETERS:				
pH (UNITS)	6.20	9045	> 6.00	
TOT.NITROGEN-N * (%)	0.48	Calc	N.A.	0.01
TKN-N * (%)	0.25	EPA 351.2	N.A.	0.01
NO3-N * (%)	0.20	SM 4500-NO3 E	N.A	0.01
NH3-N * (%)	0.01	SM 4500-NH3 F	N.A.	0.01
NH4-N * (%)	0.01	Calc	N,A.	0.01
TOTAL PHOSPHORUS* (%)	2.80	SM 4500-P E	N.A	0.01
PHOSPHORUS PENTOXIDE * (%)	2.10	Calc	N.A	0.01
POTASSIUM * (%)	0.16	6010B	N.A	0.002
ARSENIC * (mg/kg)	2.39	6010B	< 41 / < 75	0.001
No. 10.	0.42	6010B	< 39 / < 85	0.001
CADMIUM * (mg/kg)	193.78	6010B	< 1,500 / < 4,300	0.002
COPPER * (mg/kg)	3.00	6010B	Monitor Only	0.001
MOLYBDENUM * (mg/kg)	7.28	6010B	< 420 / < 420	0.008
NICKEL * (mg/kg)		6010B	< 300 / < 840	0.005
LEAD * (mg/kg)	7.46		< 1.200 / < 3.000	0.005
CHROMIUM * (mg/kg)	13.02	6010B		0.0002
MERCURY * (mg/kg)	<0.02	7471	14 ODES	
SELENIUM * (mg/kg)	<0.25	6010B	< 36 / < 100	0.002
ZINC * (mg/kg)	347.34	6010B	< 2,800 / < 7,500	0.001
PCB's (mg/kg)	< 1.0	8080	< 2 / 10	0.001
TOTAL SOLIDS (%)	13.50	SM 2540 B	N.A.	
VOLATILE SOLIDS (%)	9.12		N.A	
Org.CONC. (%)	67.6		N.A.	
KELMICK K I			My	

Ref. SW-846

*EPA CHEMICAL ANALYSIS

Lab Representative

ENVIRODYNE LABORATORIES, INC. 11011 BROOKLET Dr. #230 HOUSTON, TEXAS 77099 (281) 568-7880

CERTIFICATE OF ANALYSIS

CLIENT: PECAN GROVE WWTP

LAB NUMBER:

23F2402B

DATE COLLECTED:

(Si Environmental) 22-Jun-23

DATE RECEIVED:

22-Jun-23

DATE COMPLETED:

28-Jul-23

SAMPLED BY:

Si

SAMPLE TYPE:

Processes to Significantly Reduce Pathogens (PSRP)

LOCATION:

CAKE @ 1235 LIMITS

PARAMETERS:

Microbial Populations

Fecal Coliform (Colonies/gram) Dry Wt. (Geo Mean = 7)

4,030

2,000,000 CFU/g/TS

Vector Attraction Pontential

Specific Oxygen Uptake Rate (mg Oxygen/gram solids/Hr.)

0.24

1.5 mgO2/gram/Hr.

Sludge Characteristics

Total Solids (%)

13.50

N/A

Volatile Solids (%)

9.12

N/A

Organic Conc. (%)

67.6

Soil pH - Measured in Water (Units)

6.20

> 5.50

Sample Temp. (C/F)

N/A

20/68 (+/- 10C)

Ambient Temp. (C/F)

N/A

N/A

Test Temp. - Start / Stop (C)

22/22

(+/- 1C) - Var.

SOUR diluted to TS < 2.0%

Ref. STANDARD METHODS 21st Ed. & *EPA SW-846

9222D - F. COLI 2710B - SOUR 2540G - TS & VS

*9045 - pH

CERTIFIED BY

ENVIRODYNE LABORATORIES, INC.

CERTIFICATE OF ANALYSIS

	N GROVE MUD V	VWTP	LAB NUMBER:	23F2402C
The second secon	i Environmental)		DATE RECEIVED:	22-Jun-23
DATE COLLECTED:	22-Jun-23			9624
DATE COMPLETED:	28-Jun-23		SAMPLED BY:	Si
Toxicity Characteristic Leaching	Procedure			
EXTRACTION DATE:	27-Jun-23			T.C.L.P.
TESTING DATE:	28-Jun-23			MAXIMUM LIMIT
SAMPLE TYPE:		CAKE		
LOCATION:		@ 1235		(mg/l)
PARAMETERS:				
SW 846 1311 EPA 6010B				
ANTIIMONY (mg/l)		<0.10		5.0
ARSENIC (mg/l)		<0.05		100.0
BARIUM (mg/l)		0.40		0.080
BERYLLIUM (mg/l)		<0.02		1.0
CADMIUM (mg/l)		<0.025		
CHROMIUM (mg/l)		<0.05		5.0
LEAD (mg/l)		<0.05		5.0
NICKEL (mg/l)		< 0.05		70.0
SELENIUM (mg/l)		< 0.150		1,0
SILVER (mg/l)		< 0.100		5.0
SW 846 1311 EPA 7470				212
MERCURY (mg/l)		< 0.002		0.2
SW 846 1311 EPA 8260				
BENZENE (mg/l)		< 0.05		0.5
CARBON TETRACHLORIDE (mg.	A)	< 0.25		0,5
CHLOROBENZENE (mg/l)		<0.05		100.0
CHLOROFORM (mg/l)		< 0.05		6.0
METHYL ETHYL KETONE (mg/l)		<2.50		200.0
1.2-DICHLOROETHANE (mg/l)		< 0.05		0.5
1.1-DICHLOROETHENE (mg/l)		< 0.05		0.7
TETRACHLOROETHENE (mg/l)		< 0.05		0.7
TRICHLOROETHENE (mg/l)		<0.250		0.5
VINYL CHLORIDE (mg/l)		< 0.10		0.2
SW 846 1311 EPA 8270				SURGANITATION OF THE PROPERTY AND THE PR
Total Cresol (mg/l)		<0.250		200.0
1,4-DICHLOROBENZENE (mg/l)		<0.0250		7.5
2.4-DINITROTOLUENE (mg/l)		< 0.0250		0.13
HEXACHLOROBENZENE (mg/l)		< 0.0250		0.13
HEXACHLOROBUTADIENE (mg	/i)	< 0.0250		0.5
HEXACHLOROETHANE (mg/l)		< 0.0250		3.0
NITROBENZENE (mg/l)		< 0.0250		2.0
PENTRACHLOROPHENOL (mg/	1)	< 0.0250		100.0
2.4.5-TRICHLOROPHENOL (mg		< 0.0250		400.0
2.4.6-TRICHLOROPHENOL (mg		< 0.0250		2.0
PYRIDINE (mg/l)	7.55	< 0.0500		5.0
2-Methylphenol (mg/l)		< 0.0500		200.0
3&4 Methylphenol (mg/l)		< 0.0500		200.0
SW 846 1311 EPA 8081				
CHLORDANE (mg/l)		< 0.00105		0.03
ENDRIN (mg/l)		< 0.00005		0.02
HEPTACHLOR (mg/l)		<0.00005		0.008
HEPTACHLOR EPOXIDE (mg/l)		<0.00005		0.008
LINDANE (mg/l)		< 0.00005		0.4
METHOXYCHLOR (mg/l)		< 0.00005		10.0
TOXAPHENE (mg/l)		< 0.00105		0.5
PCBs (mg/l)		<0.01		
SW 846 1311 EPA 8150				******
2.4-D (mg/l)		< 0.000201		10.0
2.4.5-TP (Silvex) (mg/l)		< 0.000201	y: ±	1.0
			Vn .	
Ref. EPA SW-846			NUL	
			Lab Représentative	

Client:

Si Environmental, LLC

Project: Work Order: Pecan Grove MUD WWTP

23F2402

Reported:

28-Aug-23 10:50

Microbiology - Quality Control Envirodyne Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3G3558 - Microbiology										
Blank (B3G3558-BLK1)				Prepared &	Analyzed:	28-Jun-23				
Fecal Coliform (geomean of 7)	<1	1	CFU/g							
Duplicate (B3G3558-DUP1)	Sour	rce: 23F2402-	01	Prepared &	: Analyzed:	28-Jun-23				
Fecal Coliform (geomean of 7)	<1	ı	CFU/g		4030				200	

Envirodyne Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laura Bonjonia For Sarah Chaplain, Client Services Representative

Page 5 of 7

Client: Project: Si Environmental, LLC

Work Order:

Pecan Grove MUD WWTP

23F2402

Reported:

28-Aug-23 10:50

Wet Chemistry - Quality Control Envirodyne Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
			1000000			%REC	Limits	RPD	Limit	Notes
Analyte	Result	Limit	Units	Level	Result	WHEC	Limits	KLD	Limit	,.0.00

Batch B3F5660 - Inorganics

Duplicate (B3F5660-DUP1)	Sourc	e: 23F2233-0)5	Prepared & Analyzed: 28-Jun-23		
Total Solids	0,910	0.01	%	0.910	0.00	20
Volatile Solids	0,660	0.01	н	0.650	1.53	20

Envirodyne Laboratories, Inc.

Laura Brymin

Client:

Si Environmental, LLC

Project: Work Order: Pecan Grove MUD WWTP

23F2402

Reported:

28-Aug-23 10:50

Notes and Definitions

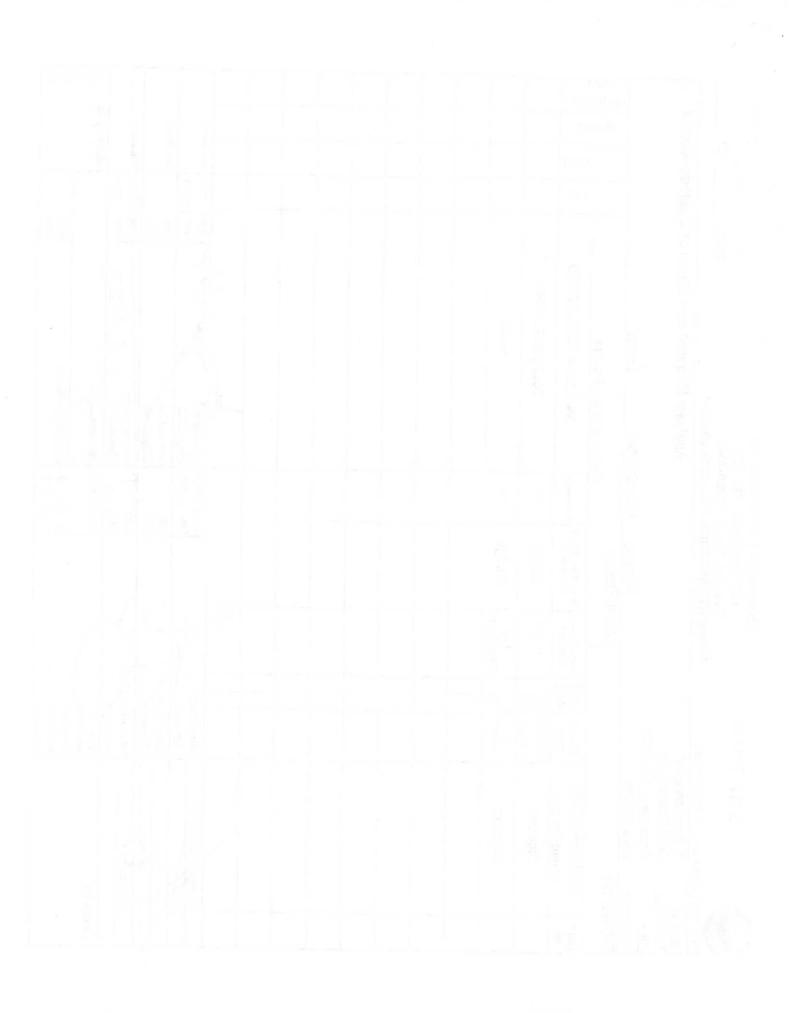
Н	Hold time exceeded
ND -	Analyte NOT DETECTED at or above the reporting limi
<	Result is less than the RL
3	Analyte not available for TNI/NELAP accreditation
n	Not accredited

Envirodyne Laboratories, Inc.

Laura Brymin

Ó

Page


23F 2402

Envirodyne Laboratories, Inc. 11011 Brookles, Ste. 230

Houston, Texas 77099-3543

Phone (281)568-7880 - Fax (281)568-8004

Analysis _aboratory No. Analysis Request and Chain of Custody Record fronty Date 12 Seal Intact? Seal Intact? Date: 1422/2-3 Seal Intact? .dmsT .O.Q Time: しい Time: 125 Hd Date: Time: Date: Time: ANALYSIS REQUESTED O TCLP, BLF, PSRP Fecal Email: Pecan Grove - Sludge Site Representative: Arrival Temp. Data Results To: Received by Lab: (Signature) Received by: (Signature) Date 12 - Received by (Signature) 832-490-1507 2113.3 Jale 12-15 RHM Preservative Time N 10 Time: 1250 Ice Ice Time: Dale: Sample Container Sample Type (Liquid, (Size/Mat') Sludge, etc.) Sludge Sludge Phone: Client/Project 20ml/ldex 1 L/P Сошр Relinquished by: Relinquished by Relinquished by Meter Reading: Grab Mn Correction: (Signature) (Signatura) (Signatuye) Ct, Residual: Cl, Corrected FLOW: Date & 12:35 Time Rosenberg, TX 77471 TCEQ Certification # T104704265 6420 Reading Rd. Si Environmental Mike Thornhi I Field Sample No./ Indentification (Signature) Digester Digester **Affiliation** Samplera Project No. Remarks: Address: Contact: Name: City: Lab ID No.

30 October 2023

Si Environmental, LLC Mike Thornhill 6420 Reading Road Rosenberg, TX 77471

Rosenberg #1A - WWTP

Enclosed are the results of analyses for samples received by the laboratory on 26-Jul-23 08:25. The analytical data provided relates only to the samples as received in this laboratory report.

ELI certifies that all results are NELAP compliant and performed in accordance with the referenced method except as noted in the Case Narrative or as noted with a qualifier. Any reproductions of this laboratory report should be in full and only with the written authorization from the client.

The total number of pages in this report is 10

Thank you for selecting ELI for your analytical needs. If you have any questions regarding this report, please contact us.

Sincerely.

Laura Bonjonia For Sarah Chaplain

Client Services Representative

Haura Brynin

I PROBATORI

Certificate No: T104704265-22-20

ENTERED JAN 0 2 2024

ENTERED JAN 0 3 2024

Envirodyne Laboratories, Inc 11011 Brooklet Dr., # 230 Houston, TX 77099 281.568.7880 Phone www.envirodyne.com

Sludge Manager
Master Spreadsheet

PCB

F/S

Page 1 of 10

Client:

Si Environmental, LLC

Project: Work Order: Rosenberg #1A - WWTP 23G2876 Reported:

30-Oct-23 21:21

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory LD	Matrix	Date Sampled	Date Received
Digester	23G2876-01	Solids	25-Jul-23 06:25	26-Jul-23 08:25

L - Sample analyzed by TNI certified lab: T104704215-22-47

Envirodyne Laboratories, Inc.

Jaura Brymin

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laura Bonjonia For Sarah Chaplain, Client Services Representative

Page 2 of 10

ENVIRODYNE LABORATORIES, INC.

CLIENT: ROSENBERG #1

LAB NUMBER:

23G2876A

DATE COLLECTED:

(Si Environmental) 25-Jul-23

DATE RECEIVED:

25-Jul-23

DATE COMPLETED: DATE ANALYZED: 28-Aug-23 28-Aug-23 SAMPLED BY:

GM

(*) DENOTES: DRY WEIGHT BASIS

	() 5 4 11 5 1 4 5 1 1		CLUDGELIMITE	
LOCATION:	DIGESTER @ 0625	METHOD	SLUDGE LIMITS Clean / Ceiling (mg/kg)	MDL (mg/l)
PARAMETERS:	0		el onwell offers	(3.7)
pH (UNITS)	6.48	9045	> 6.00	
TOT.NITROGEN-N * (%)	0.18	Calc	N.A.	0.01
TKN-N * (%)	0.10	EPA 351.2	N.A.	0.01
NO3-N * (%)	0.01	SM 4500-NO3 E	N.A	0.01
NH3-N * (%)	0.01	SM 4500-NH3 F	N.A.	0.01
NH4-N * (%)	0.01	Calc	N.A.	0.01
TOTAL PHOSPHORUS* (%)	0.08	SM 4500-P E	N.A	0.01
PHOSPHORUS PENTOXIDE * (%)	0.06	Calc	N.A	0.01
POTASSIUM * (%)	0.46	6010B	N.A	0.002
ARSENIC * (mg/kg)	<0.25	6010B	< 41 / < 75	0.001
CADMIUM * (mg/kg)	<0.25	6010B	< 39 / < 85	0.001
COPPER * (mg/kg)	303.00	6010B	< 1,500 / < 4,300	0.002
MOLYBDENUM * (mg/kg)	<0.25	6010B	Monitor Only	0.001
NICKEL * (mg/kg)	<0.25	6010B	< 420 / < 420	0.008
LEAD * (mg/kg)	34.90	6010B	< 300 / < 840	0.005
CHROMIUM * (mg/kg)	24.60	6010B	< 1,200 / < 3,000	0.005
MERCURY * (mg/kg)	<0.02	7471	< 17 / < 57	0.0002
SELENIUM * (mg/kg)	<0.25	6010B	< 36 / < 100	0.002
ZINC * (mg/kg)	846.00	6010B	< 2,800 / < 7,500	0.001
PCB's (mg/kg)	< 1.0	8080	< 2 / 10	0.001
TOTAL SOLIDS (%)	1.20	SM 2540 B	N.A.	
VOLATILE SOLIDS (%)	0.83		N.A	
Org.CONC. (%)	69.2		N.A.	

Ref. SW-846

*EPA CHEMICAL ANALYSIS

Lab Representative

ENVIRODYNE LABORATORIES, INC. 11011 BROOKLET Dr. #230 HOUSTON, TEXAS 77099 (281) 568-7880

CERTIFICATE OF ANALYSIS

CLIENT: ROSENBERG #1

LAB NUMBER:

23G2876B

(Si Environmental)

25-Jul-23

DATE RECEIVED:

25-Jul-23

DATE COMPLETED:

DATE COLLECTED:

28-Aug-23

SAMPLED BY:

GM

SAMPLE TYPE:

Processes to Significantly Reduce Pathogens (PSRP)

LOCATION:

DIGESTER @ 0625 LIMITS

PARAMETERS:

Microbial Populations

Fecal Coliform (Colonies/gram) Dry Wt.

131,000

2,000,000 CFU/g/TS

(Geo Mean = 7)

Vector Attraction Pontential

Specific Oxygen Uptake Rate

(mg Oxygen/gram solids/Hr.)

Soil pH - Measured in Water (Units)

0.50

1.5 mgO2/gram/Hr.

Sludge Characteristics

Total Solids (%)

1.20

N/A

Volatile Solids (%)

0.83

N/A

Organic Conc. (%)

69.2 6.48

> 5.50

Sample Temp. (C/F)

N/A

20/68 (+/- 10C)

Ambient Temp. (C/F)

N/A

N/A

Test Temp. - Start / Stop (C)

22/22

(+/- 1C) - Var.

SOUR diluted to TS < 2.0%

Ref. STANDARD METHODS 21st Ed. & *EPA SW-846 9222D - F. COLI 2540G - TS & VS

2710B - SOUR

*9045 - pH

CERTIFIED BY

ENVIRODYNE LABORATORIES, INC.

CERTIFICATE OF ANALYSIS

CLIENT: ROSENBERG #1		LAB NUMBER:	23G2876C
(Si Environmental) DATE COLLECTED: 25-Jul-23		DATE RECEIVED:	25-Jul-23
DATE COMPLETED: 28-Aug-23		SAMPLED BY:	GM
Toxicity Characteristic Leaching Procedure			
EXTRACTION DATE: 28-Jul-23			
TESTING DATE: 28-Aug-23			T.C.L.P.
SAMPLE TYPE:	DIGESTER		MAXIMUM LIMIT
LOCATION:	@ 0625		(mg/l)
PARAMETERS:	0		2 15 2
SW 846 1311 EPA 6010B			
ANTIIMONY (mg/l)	<0.10		
ARSENIC (mg/l)	< 0.05		5.0
BARIUM (mg/l)	0.51		100.0
BERYLLIUM (mg/l)	<0.02		0.080
CADMIUM (mg/l)	< 0.025		1.0
CHROMIUM (mg/l)	<0.05		5.0
LEAD (mg/l)	<0.05		5.0
NICKEL (mg/l)	< 0.05		70.0
SELENIUM (mg/l)	< 0.150		1.0
SILVER (mg/l)	< 0.100		5.0
SW 846 1311 EPA 7470			
MERCURY (mg/l)	< 0.002		0.2
SW 846 1311 EPA 8260			
BENZENE (mg/l)	<0.05		0.5
CARBON TETRACHLORIDE (mg/l)	<0.25		0.5
CHLOROBENZENE (mg/l)	<0.05		100.0
CHLOROFORM (mg/l)	<0.05		6.0
METHYL ETHYL KETONE (mg/l)	<2.50		200.0
1,2-DICHLOROETHANE (mg/l)	< 0.05		0.5
1.1-DICHLOROETHENE (mg/l)	< 0.05		0.7
TETRACHLOROETHENE (mg/l)	<0.05		0.7
TRICHLOROETHENE (mg/l)	< 0.250		0.5
VINYL CHLORIDE (mg/l)	< 0.10		0.2
SW 846 1311 EPA 8270			
Total Cresol (mg/l)	< 0.250		200.0
1,4-DICHLOROBENZENE (mg/l)	< 0.125		7.5
2,4-DINITROTOLUENE (mg/l)	< 0.125		0,13
HEXACHLOROBENZENE (mg/l)	< 0.125		0.13
HEXACHLOROBUTADIENE (mg/l)	< 0.125		0.5
HEXACHLOROETHANE (mg/l)	< 0.125		3.0
NITROBENZENE (mg/l)	<0.125		2.0
PENTRACHLOROPHENOL (mg/l)	< 0.250		100.0
2.4,5-TRICHLOROPHENOL (mg/l)	<0.125		400.0
2,4,6-TRICHLOROPHENOL (mg/l)	< 0.125		2.0
PYRIDINE (mg/l)	< 0.250		5.0
2-Methylphenol (mg/l)	< 0.250		200.0
3&4 Methylphenol (mg/l)	< 0.250		200.0
SW 846 1311 EPA 8081			
CHLORDANE (mg/l)	< 0.00102		0.03
ENDRIN (mg/l)	< 0.00005		0.02
HEPTACHLOR (mg/l)	< 0.00005		0.008
HEPTACHLOR EPOXIDE (mg/l)	< 0.00005		0.008
LINDANE (mg/l)	<0.00005		0.4
METHOXYCHLOR (mg/l)	<0.00005		10.0
TOXAPHENE (mg/l)	<0.00102		0.5
PCBs (mg/l)	<0.01		
SW 845 1311 EPA 8150			
2,4-D (mg/l)	< 0.000201		10.0
2,4,5-TP (Silvex) (mg/l)	< 0.000201		1.0

Ref. EPA SW-846

Qual: Analyzed by NELAC Certified lab T104704215

ab Representative

Client:

Si Environmental, LLC

Project:

Rosenberg #1A - WWTP (Permit Renewal)

Work Order:

23G2876

Reported: 30-Oct-23 21:21

Microbiology - Quality Control Envirodyne Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3G5744 - Microbiology										11
Blank (B3G5744-BLK1)				Prepared &	Analyzed:	26-Jul-23				W
Fecal Coliform (geomean of 7)	<1	1	CFU/g							
Duplicate (B3G5744-DUP1)	Sou	rce: 23G2876-	-01	Prepared &	Analyzed:	26-Jul-23				
Feeal Coliform (geomean of 7)	<1000	1000	CFU/g		13100000				200	

Envirodyne Laboratories, Inc.

Maura Bynin

Client:

Si Environmental, LLC

Project:

Analyte

Volatile Solids

Rosenberg #1A - WWTP (Permit Renewal)

Work Order:

23G2876

Reported:

30-Oct-23 21:21

RPD

Limit

20

Notes

%REC

Limits

RPD

0.00

Wet Chemistry - Quality Control

Envirodyne Laboratories, Inc.

Units

Spike

Level

Source

Result

0.330

%REC

Reporting

Limit

0.01

Result

0.330

Batch B3H3846 - Inorganics					OPERA NEW Y	lamit fila	
Duplicate (B3H3846-DUP1)	Sourc	e: 23G2653-0	1	Prepared & Analyzed: 09-Aug-23			
Total Solids	0.740	0.01	%	0.760	2.67	20	Н

Envirodyne Laboratories, Inc.

Haura Brymin

Client:

Si Environmental, LLC

Project:

Rosenberg #1A - WWTP (Permit Renewal)

Work Order:

23G2876

Reported: 30-Oct-23 21:21

Total Metals by ICP - Quality Control

Envirodyne Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	STREC	Limits	RPD	Limit	Notes

Batch B3H6110 - Metals - EPA 3050B

Blank (B3H6110-BLK1)				Prepared: 23-Aug-23 Analyzed: 28-Aug-23	
Cadmium	< 0.50	0.50	mg/kg		 1 65 5
Chromium	≪0.5	0.5			
Lead	<0.50	0.50			
Selenium	< 0.50	0.50			
Arsenic	< 0.50	0.50	*		
Zinc	<0.5	0.5	**		
Copper	<0.5	0.5			
Molybdenum	<500	500			
Niekel	<0.5	0.5			
Potassium	< 0.02	0.02	%		

Envirodyne Laboratories, Inc.

Haura Brymin

Client:

Si Environmental, LLC

Project:

Rosenberg #1A - WWTP (Permit Renewal)

Work Order:

23G2876

Reported: 30-Oct-23 21:21

RPD

TCLP Extraction by EPA 1311 - Quality Control

Envirodyne Laboratories, Inc.

Spike

Source

%REC

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B3H5541 - Metals - TCLP EPA	1311						January 1984		1117-11	de orbit
Blank (B3H5541-BLK1)		H		Prepared:	23-Aug-23	Analyzed:	25-Aug-23			H He
Chromium	<0.01	0.01	mg/L							
Copper	< 0.01	0.01								
Nickel	<0.01	0.01	**							
Arsenie	< 0.01	0.01								
Lead	<0.01	0.01								
Silver	< 0.01	0.01								
Selenium	< 0.01	10.0	**							
Barium	< 0.01	0.01	2360							
Cadmium	<0.01	0.01								
Beryllium	< 0.01	0.01	7							
Antimony	< 0.01	0.01								
LCS (B3H5541-BS1)				Prepared:	23-Aug-23 A	Analyzed:	25-Aug-23			
Arsenie	0.263		mg/L	0.250		105	85-115			HILLIAN AT ACTUAL
Vickel	0.228		*	0.250		91.2	85-115			
Thromium	0.240		*	0.250		96.0	85-115			
lilver	0.220		367.0	0.250		88.0	85-115			
Copper	0.251		**	0.250		100	85-115			
.ead	0.232		-	0.250		92.8	85-115			
Selenium	0.268		**	0.250		107	85-115			
Sarium	0.253		2.1	0.250		101	85-115			
Antimony	0.262		9	0.250		105	85-115			
Beryllium	0.244		ж	0.250		97.6	85-115			
Antrix Spike (B3H5541-MS1)	S	ource: 23G2653-	-01	Prepared: 2	23-Aug-23 A	Analyzed: 2	25-Aug-23			
ilver	0.0991	0.01	mg/L	0.125	0.00314	76.8	80-120			Ç
elenium	0.115	0.01		0.125	0.00613	87,3	80-120			
lickel	0.102	10.0		0.125	0.00214	80.0	80-120			
'opper	0.191	0.01	**	0.125	0.0160	140	80-120			Ç
ead	0,102	0.01		0.125	0.0154	69.1	80-120			Č
rsenic	0.106	0.01	-	0.125	ND	84.8	80-120			,
hromium	0.104	0.01		0.125	ND	83.2	80-120			
arium	0.215	0.01	**	0.125	0.0456	135	80-120			Q

Envirodyne Laboratories, Inc.

Laura Brymin

Client:

Si Environmental, LLC

Project:

Rosenberg #1A - WWTP (Permit Renewal)

Work Order:

23G2876

Reported: 30-Oct-23 21:21

TCLP Extraction by EPA 1311 - Quality Control

Envirodyne Laboratories, Inc.

		R	eporting		Spike	Source		%REC		RPD	
Analyte	Result		Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B3H5541 - Metals - TCLP EPA 1311

Matrix Spike (B3H5541-MS1)	Source	e: 23G2653-	-01	Prepared:	23-Aug-23 A	nalyzed:	25-Aug-23
Beryllium	0.106	0.01	mg/L	0.125	0.000158	85.0	80-120
Antimony	0.116	0.01		0.125	0.00888	85.4	80-120

Envirodyne Laboratories, Inc.

Haura Brymin

Client:

Si Environmental, LLC

Project:

Rosenberg #1A - WWTP (Permit Renewal)

Work Order:

23G2876

Reported: 30-Oct-23 21:21

Notes and Definitions

Q QC did not meet ELI acceptance criteria

H Hold time exceeded

< < 0.25

ND Analyte NOT DETECTED at or above the reporting limit

< Result is less than the RL

a Analyte not available for TNI/NELAP accreditation

n Not accredited

Envirodyne Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Maura Bymin

236,2876

TCEQ Certification # T104704265

Envirodyne Laboratories, Inc. Houston, Texas 77099-3543 11011 Brooklet, Ste. 230

Ó Page

Phone (281)568-7880 - Fax (281)568-8004

Time Analysis Analysis Request and Chain of Custody Record Laboratory No. .qmaT Date: 73/7Seal Intact? Seal Intact? Seal Intact? D.O. Hd ime: Time: Date: Date: me: 1 1 Fecal Coliform (Geomean) ANALYSIS REQUESTED 0 BLF, PSRP TCLP Email: Rosenberg 1A Arrival Temp. Data Results To: Received by Lab. Date:7/25/23/Received by Received by: (Signature) (Signature) lime:/(, c.~> (Signature) 832-490-1507 Prosenvative Time: 7:00 See 93 lce Date/ L.F Time: Date: Sample Centainer Sample Type (Liquid, (Suze/Nath Sludge, etc.) Sludge Sludge Sludge Phone: Client/Project Relinquished by Crown Makennow (7)120ml IDEXX 1 LVP 1 Lt/P Comp V 8082/7 Relinquished by Relinquished by VES/23/V V12521V 6.2551V Grab (Signature) Meter Reading (Signature) (Signature) Date & Rosenberg, TX 77471 Time FLOW 6420 Reading Rd. Si Environmental Mike Thornhi I Field Sample No./ Indentification Digester Digester Digester Samplers: (Signature) C >.cnv. Affiliation Project No. Address: Contact: Remarks: Name: City: Co. TRI No.

Date:

Site Representative:

32/30

Machinistian

Ch. Pi - dual

861 State Hwy 19 P.O. Box 1622 Huntsville, TX 77342-1622 www.chaparrallabs.com Phone: 936-291-1881 Fax: 936-295-1731

Certificate of Analysis

City of Sealy Attn: Travis Cochran P.O. Box 517

Sealy, TX 77474

Customer ID: CSEALY

Sample ID: 23090412

Date Received: 09/14/2023

Date Reported: 10/11/2023

City of Sealy WWTP Project: Location: Austin County, TX

Analytical Results

Collection Point: Digester

Sample Type: Grab

Date/Time Collected: 09/14/2023 10:30

Collector: JAS

<u>Parameter</u>	Result	Units		Date/Time	Analyst	Bottle	Method	OC ID	Acrd
Ammonia Nitrogen	1032	mg/kg		09/28/2023 10:15	JCG	-01	EPA 350.2	QC2310195	NELAP
Arsenic	5.0	mg/kg		10/04/2023 07:51	RS	-01	EPA 6010 C	QC2310124	NELAP
Cadmium	<2.5	mg/kg		10/04/2023 07:51	RS	-01	EPA 6010 C	QC2310126	NELAP
Chromium	34.0	mg/kg	1	10/04/2023 07:51	RS	-01	EPA 6010 C	QC2310127	NELAP
Copper	308.5	mg/kg		10/04/2023 07:51	RS	-01	EPA 6010 C	QC2310128	NELAP
Lead	37.4	mg/kg		10/04/2023 07:51	RS	-01	EPA 6010 C	QC2310134	NELAP
Mercury	1.52	mg/kg		09/19/2023 10:26	MHE	-01	EPA 7471 A	QC2309263	NELAP
Molybdenum	6.1	mg/kg	1	10/04/2023 07:51	RS	-01	EPA 6010 C	QC2310131	NELAP
Nickel	16.4	mg/kg		10/04/2023 07:51	RS	-01	EPA 6010 C	QC2310132	NELAP
Phosphorus	10068	mg/kg		10/04/2023 07:51	RS	-01	EPA 6010 C	QC2310133	NELAP
Potassium	1391	mg/kg		10/04/2023 07:51	RS	-01	EPA 6010 C	QC2310129	NELAP
Selenium	8.4	mg/kg		10/04/2023 07:51	RS	-01	EPA 6010 C	QC2310135	NELAP
Total Kjeldahl Nitrogen	16702	mg/kg		09/28/2023 09:41	JCG	-01	SM 4500-NH3 C	QC2310205	
Total Solids	20.7	%		09/15/2023 13:01	DKH	-01	SM 2540 G	QC2309374	NELAP
Zinc	6737.4	mg/kg		10/04/2023 07:51	RS	-01	EPA 6010 C	QC2310136	NELAP
7 Pt Fecal Geometric Mean	525491	CFU/g/TS		09/15/2023 15:54	MHE	-02	Calculation	QC2309435	
Fecal Coliform	671494	CFU/g/TS		09/14/2023 15:40	JCG	-02	SM 9222 D	QC2309434	NELAP
Fecal Coliform	190832	CFU/g/TS		09/14/2023 15:40	JCG :	-03	SM 9222 D	QC2309434	NELAP
Fecal Coliform	570469	CFU/g/TS		09/14/2023 15:40	JCG	-04	SM 9222 D	QC2309434	NELAP
Fecal Coliform	955671	CFU/g/TS		09/14/2023 15:40	JCG	-05	SM 9222 D	QC2309434	NELAP
Fecal Coliform	. 287726	CFU/g/T\$		09/14/2023 15:40	JĊG	-06	SM 9222 D	QC2309434	NELAP
Fecal Coliform	574995	CFU/g/TS		09/14/2023 15:40	JCG	-07	SM 9222 D	QC2309434	NELAP
Fecal Coliform	957376	CFU/g/TS		09/14/2023 15:40	JCG	-08	SM 9222 D	QC2309434	NELAP
Nitrate Nitrogen	151.0	mg/kg		09/25/2023 19:48	SA	-09	EPA 9056	QC2310232	NELAP
TCLP	See SPL Report	1			SA	-09	N/A	QC2310221	NELAP
PCB	See SPL Report	3	E		SA	-10	N/A	QC2310222	NELAP
Oxygen Uptake Rate	<0.1	mg/g/h		09/15/2023 09:04	JFL	-11	ENTOBRED	NOV 3451	2023

Sludge Manager Master Spreadsheet

861 State Hwy 19 P.O. Box 1622 Huntsville, TX 77342-1622 www.chaparrallabs.com Phone: 936-291-1881 Fax: 936-295-1731

Certificate of Analysis

City of Sealy

Attn: Travis Cochran

P.O. Box 517

Sealy, TX 77474

Customer ID: CSEALY

Sample ID: 23090412

Date Received: 09/14/2023

Date Reported: |10/11/2023

Project: City of Sealy WWTP Location: Austin County, TX

Qua	lity	Con	trol	

OC ID			1		000			N	4	T1 14	771
OC ID	<u>Param</u>				OC Type			Result		Units	Flag
QC2309263	Mercury				i i		1				
					Duplicate %RPD	ļ		19.9		%	
					LCS			100.2		%	
					Method Blank			< 0.040		mg/kg	
					MS %R			105		%	
					MSD %R			105		%	
QC2309374	Total Solids	1 1	t	1		1		1 11		1	
					Duplicate %RPD			0		%	
					LCS		i	102.3		%	
					Method Blank	Į.	1.	< 0.0005		%	
QC2309434	Fecal Coliform						- 1				
					Duplicate %RPD		-	33.6		%	
					Method Blank		1	<1.0		CFU/g/TS	
QC2309451	Oxygen Uptake	Rate				1	-				1
					Duplicate %RPD	f		0		%	
				4.11	Method Blank	1	, !	< 0.1		mg/g/h	
QC2310124	Arsenic										1
					Duplicate %RPD			0.9	i	%	*
					LCS			94.1		%	
					Method Blank		ł.	<2.5		mg/kg	
					MS %R	!	I:	99.7		%	
QC2310126	Cadmium										
					Duplicate %RPD			0		%	
					LCS			86.3		% .	
					Method Blank			<2.5		mg/kg	
		l i	- 1	1	MS %R	1		101.2		o)	1 1

861 State Hwy 19 P.O. Box 1622 Huntsville, TX 77342-1622 www.chaparrallabs.com Phone: 936-291-1881 Fax: 936-295-1731

Certificate of Analysis

City of Sealy Attn: Travis Cochran P.O. Box 517

Customer ID: CSEALY

Sample ID: 23090412

Date Received: 09/14/2023

Date Reported: 10/11/2023

City of Sealy WWTP Project: Location: Austin County, TX

QC2310127

QC2310128

QC2310129

QC2310131

QC2310132

Sealy, TX 77474

Chromium

Copper

Potassium

Duplicate %RPD LCS

Method Blank

MS %R

Duplicate %RPD LCS

Method Blank MS %R

Duplicate %RPD

LCS

Method Blank MS %R

Duplicate %RPD

LCS

Method Blank MS %R

Duplicate %RPD LCS

Method Blank MS %R

Duplicate %RPD Method Blank

MS %R

97.7 % < 2.5 mg/kg

94.1

< 2.5

113.1

0.2 103.4

<250

106

88.5

< 5.0

100.6

91.5

< 2.5

103.5

0

<50

117

100.7 24.6

% mg/kg

> % %

0% mg/kg %

% %

mg/kg %

% mg/kg

%

% mg/kg

%

QC2310133

Phosphorus

Nickel

Wednesday, October 11, 2023

Certificate of Analysis Page 3 of 5

Page 3 of 26

Customer ID: CSEALY

861 State Hwy 19 P.O. Box 1622 Huntsville, TX 77342-1622 www.chaparrallabs.com Phone: 936-291-1881 Fax: 936-295-1731

Cer	tificate	of Ana	lvsis
~~	CLLICATO	OI I HILL	-, 010

City of Sealy Attn: Travis Cochran P.O. Box 517

P.O. Box 517 Sealy, TX 77474

Sample ID: 23090412

Date Received: 09/14/2023

Date Reported: 10/11/2023

Project: City of Sealy WWTP
Location: Austin County, TX

QC2310134 Lead

LCS

Method Blank

MS %R

QC2310135 Selenium

Duplicate %RPD

LCS

Method Blank

MS %R

QC2310136 Zinc

QC2310195 Ammonia Nitrogen

QC2310205 Total Kjeldahl Nitrogen

Duplicate %RPD 2.4 %

LCS 100.8 %

Method Blank <2.5 mg/kg

MS %R 102.4 %

MS %R 102.4 %

Duplicate %RPD 0 %

LCS 86.9 %

Method Blank <2.5 mg/kg

MS %R 94.9 %

Duplicate %RPD 0.2 %

 LCS
 93.7
 %

 Method Blank
 <2.5</td>
 mg/kg

 MS %R
 106.8
 %

 Duplicate %RPD
 0.1
 %

 Duplicate %RPD
 2
 %

 LCS
 95.2
 %

 Method Blank
 <11.0</td>
 mg/kg

 MS %R
 117.9
 %

 MSD %R
 104.7
 %

Wednesday, October 11, 2023

Certificate of Analysis Page 4 of 5

P.O. Box 1622 861 State Hwy 19

Huntsville, TX 77342-1622

www.chaparrallabs.com Phone: 936-291-1881

Certificate of Analysis

City of Sealy

Attn: Travis Cochran

P.O. Box 517

Sealy, TX 77474

Customer ID: CSEALY

Sample ID: 23090412

Date Received: 09/14/2023

Date Reported: 10/11/2023

Project:

City of Sealy WWTP

Location: Austin County, TX

Notes:

Initials of SA = Subcontract Analysis sent to SPL for testing

The analytical results in this Certificate of Analysis relate only to the samples tested. This Certificate of Analysis, with its corresponding Chain of Custody, completes the data package. This data package may not be reproduced, except in full, without the written approval of Chaparral Laboratories, Inc. Chaparral Laboratories, Inc NELAP accredited certification # T104704204. (<) = Result was below quantitation limits. (>) = Result was above quantitation limits. Samples analyzed for Oxygen Uptake Rate are diluted to <2% total solids for analysis. Results reported as mg/kg, %, or CFU/g/TS are calculated on a dry weight basis, unless otherwise noted. Precision Criteria for Fecal Coliform, Escherichia coli and Enterococci analyses are calculated according to SM 9020 B 8.5.b. Acceptable = meets Precision Criteria; Unacceptable = does not meet Precision Criteria.

*Note 1: Laboratory Approval by TCEQ

Approved by David H. Veinotte Laboratory Director

Wednesday, October 11, 2023

Line Science of S

Page 1 of 1

Project 1076460

Printed

10/11/2023

10:22

CLDV-G

Chaparral Labs Dave Veinotte 861 Hwy 19 Huntsville, TX 77320

TABLE OF CONTENTS

Ign remove

This report consists of this Table of Contents and the following pages:

	Total Pages:	19
1076460_r10_05_ProjectQC	SPL Kilgore Project P:1076460 C:CLDV Project Quality Control Groups	13
1076460_r03_03_ProjectResults	SPL Kilgore Project P:1076460 C:CLDV Project Results t:304	6
Report Name	Description	Pages

Email: Kilgore.projectmanager@spl-inc.com

Report Page 1 of 20

CLDV-G

HI I

Chaparral Labs Dave Veinotte 861 Hwy 19 Huntsville, TX 77320

Page I of 6

Project 1076460

Printed:

10/11/2023

Ign remove

RESULTS

		1 1,							
				Sample Results				A TORRESTOR	
	2238598 23090412 S	EALY	1	in again triving .			Received:	09/20)/202
	id & Chemical Materials	Collected by: C	2023	Chaparral Labs 10:30:00	in I	PO:	PS	in the second	
Supp									
EP.	A 6020A		Prepared:	1082717 09/21/2023	13:00:00	Analyzed 1082980	09/22/2023	16:05:00	Н
-	Parameter		Results	Units RL	TOTAL TOTAL	Flags	CAS		Bot
C	TCLP Arsenic		<0.050	mg/L 0.050			7440-38-2		
C	TCLP Barium		0.268	mg/L 0.050			7440-39-3		
c	TCLP Cadmium	Tr.	< 0.005	mg/L 0.005			7440-43-9		
C	TCLP Chromium		<0.050	mg/L 0.050	4		7440-47-3		
c	TCLP Lead		<0.050	mg/L 0.050	- 4		7439-92-1		
C	TCLP Selenium		<0.050	mg/L 0.050	i	В	7782-49-2		
EP	A 6020A	1	Prepared:	1082717 09/21/2023	13:00:00	Analyzed 1083033	09/22/2023	19:57:00	
-	Parameter		Results	Units RL	1	Flags	CAS		Bo
C	TCLP Silver		<0.050	mg/L 0.050			7440-22-4		
EP	A 7470 A		Prepared:	1082677 09/21/2023	12:25:00	Analyzed 1082761	09/21/2023	15:26:00	
-	Parameter	1	Results	Units RL		Flags	CAS		Вс
C	TCLP Mercury		<0.00113	mg/L 0.001	13		7439-97-6		
EP	A 8081A		Prepared:	1082716 09/21/2023	13:30:00	Analyzed 1084248	09/25/2023	18:51:00	
-	Parameter	1111	Results	Units RL	1 1	Flags	CAS		В
C	TCLP Chlordane	KNAV.	<0.001	mg/L 0.001	r vir du'		57-74-9		
C	TCLP Endrin		< 0.00005	mg/L 0.000	05		72-20-8		
C	TCLP gamma-BHC (Lindane)		< 0.00005	mg/L 0.000	05		58-89-9		
C	TCLP Heptachlor		<0.00005	mg/L 0.000	05		76-44-8		
C	TCLP Heptachlor Epoxide		< 0.00005	mg/L 0.000	05		1024-57-3		
4C	TCLP Methoxychlor		<0.00005	mg/L 0.000	05		72-43-5		
AC	TCLP Toxaphene		<0.001	mg/L 0.001			8001-35-2		

Report Page 2 of 20

CLDV-G

Chaparral Labs Dave Veinotte 861 Hwy 19 Huntsville, TX 77320

Page 2 of 6

Project 1076460

Printed:

10/11/2023

	2238598	23090412 SEA	LY			*			Received:	09/20	/202
So	lid & Chemica	Materials	Collected by:	Client	Chaparral I	abs		PO:	1		
			Part V	4/2023		30:00		The same of the sa			
Supp	lement to Test	Report 2232400	1 1	1	1	1		1 1 1	1 4 1		
EP	A 8082			Prepared:	1083342 0	9/26/2023	16:34:53	Analyzed 1083728	09/28/2023	04:14:00	В
9	Parameter			Results	Units	RL		Flags	CAS		Bott
AC	PCB-1016			<1000 *	ug/kg				12674-11-2		1
AC	PCB-1221			<1000 *	ug/kg		1	Î 4: 9	11104-28-2		1
AC	PCB-1232			<1000 *	ug/kg	F-7-2-7-7-7-7-7		1	11141-16-5		1
AC	PCB-1242			<1000 *	ug/kg	1400004			53469-21-9		1
LAC	PCB-1248			<1000 *	ug/kg	5000000	1		12672-29-6		1
LAC	PCB-1254			<1000 *	ug/kg				11097-69-1	12.10	1
LAC	PCB-1260			<1000 *	ug/kg			X	11096-82-5		î
		Dry Weight Basis			-5-4		1	I		l.	
		ery meight bosis		1110				}			
m					122222				00/00/0003	07.24.00	
EF	PA 8151			Prepared:	1083228 0	19/26/2023	10:45:00	Analyzed 1083861	09/29/2023	03:34:00	В
	Parameter	25-68		Results	Units	RL	1100-	Flags	CAS		Bot
LAC	TCLP 2,4 D			<0.500	mg/L	0.500			94-75-7		1
LAC	TCLP 2,4,5-7	TP (Silvex)		< 0.300	mg/L		. 1		93-72-1		1
								——————————————————————————————————————			
EI	PA 8260B			Prepared:	1082851 (09/21/2023	17:30:00	Analyzed 1083209	09/25/2023	15:30:00	P
	Parameter			Results	Units	s RL		Flags	CAS		Bot
LAC	TCLP 1,1-Di	chloroethene		< 0.010	mg/L	0.010		1	75-35-4		1
LAC	TCLP 1,2-Di	chloroethane		< 0.010	mg/L	0.010		1	107-06-2		1
LAC	TCLP 1,4 Di	chlorobenzene	1 1	<0.010	mg/L	0.010		1 11	106-46-7		1
LAC	TCLP Benze	ne		<0.010	mg/L				71-43-2	9	1
LAC	TCLP Carbo	n tetrachloride		<0.010	mg/L	0.010			56-23-5		
LAC	TCLP Chlore	benzene		<0.010	mg/L	0.010	i		108-90-7		1
LAC	TCLP Chlore	oform		< 0.010	mg/I	0.010			67-66-3		1
LAC	TCLP MEK			<0.010	mg/I	0.010	1		78-93-3		- 1
LAC	TCLP Tetrac	hloroethylene		<0.010	mg/I	0.010		9 4	127-18-4		1
LAC	TCLP Trichle	oroethylene		<0.010	mg/I	0.010		1	79-01-6		- 1
LAC	TCLP Vinyl	chloride	1	<0.010	mg/I	0.010	0.0		75-01-4		1
	PA 8270C	2-µ- 0		Prepared:	1083292	09/26/2023	14:15:00	Analyzed 1084018	09/30/2023	00:14:00	В
El							4-19				
EI.	Parameter			Results	Unit	s RL		Flags	CAS		Bott
EI •		Prichlorophenol		Results	Units mg/L			Flags	CAS 95-95-4		Bott 1

Report Page 3 of 20

2

3

2600 Dudley Rd. Kilgore, Texas 75662 24 Waterway Avenue, Suite 375 The Woodlands, TX 77380 Office: 903-984-0551 * Fax: 903-984-5914

CLDV-G

Chaparral Labs
Dave Veinotte
861 Hwy 19
Huntsville, TX 77320

Page 3 of 6

Project

1076460

Printed:

10/11/2023

09/20/2023 2238598 23090412 SEALY Received: PO: Solid & Chemical Materials Collected by: Client Chaparral Labs 10:30:00 Taken: 09/14/2023 Supplement to Test Report 2232400 Prepared: 1083292 09/26/2023 14:15:00 Analyzed 1084018 09/30/2023 00:14:00 BLF EPA 8270C RLFlags CAS Bottle Results Units Parameter 0.035 121-14-2 13 < 0.035 mg/L TCLP 2,4-Dinitrotoluene NELAC 95-48-7 13 0.052 mg/L TCLP 2-Methylphenol (o-Cresol) < 0.052 NELAC 108-39-4 13 0.062 TCLP 3&4-Methylphenol (m&p-Creso < 0.062 mg/L NELAC Mil i 118-74-1 13 0.010 mg/L TCLP Hexachlorobenzene < 0.010 NELAC 87-68-3 13 0.010 TCLP Hexachlorobutadiene < 0.010 mg/L NELAC 67-72-1 13 TCLP Hexachloroethane < 0.010 mg/L 0.010 NELAC 98-95-3 13 TCLP Nitrobenzene < 0.010 mg/L 0.010 NELAC 0.010 87-86-5 13 <0.010 mg/L TCLP Pentachlorophenol NELAC 0.054 110-86-1 13 < 0.054 mg/L TCLP Pyridine (Reg. Limit 5) NELAC Calculated 1084018 10/04/2023 07:38:33 CAL 09/26/2023 14:15:00 Prepared: 1083292 EPA 8270C Bottle Units RLFlags CAS Results Parameter 0.062 108-39-4,ect. 13 TCLP Total Cresols (Reg Lim 200) < 0.062 mg/L Analyzed 1083217 09/25/2023 19:48:00 KAP Prepared: 1083139 09/25/2023 16:20:12 EPA 9056 Flags CAS Bottle Parameter Results Units RT. 151 * 14797-55-8 1.09 Π mg/kg Nitrate-Nitrogen * Dry Weight Basis 1082592 09/20/2023 14:30:00 JK1 Prepared: 1082592 09/20/2023 14:30:00 Analyzed SM2540 G-1997 /MOD Units RL Flags CAS Bottle Results Parameter 02 Total Solids for Dry Wt Conversi 20.8 % 0.010 NELAC Sample Preparation 09/20/2023 2238598 23090412 SEALY Received: 09/14/2023

Thu Control

Report Page 4 of 20

09/20/2023

CLDV-G

Chaparral Labs
Dave Veinotte
861 Hwy 19
Huntsville, TX 77320

23090412 SEALY

2238598

Printed: 10/11/2023

: 11

	09/14/2	023		ĺ	Ž.					
EPA 3510C		Prepared:	1082501	09/20/2023	14:40:00	Analyzed	1082716	09/21/2023	13:30:00	МС
		(Partition)			1		1	- f	a dahan	750
TCLP Liq-Liq Extr. W/Hex Exch.		10/200	m	Lin			1			05
EPA 3510C		Prepared:	1082501	09/20/2023	14:40:00	Analyzed	1083292	09/26/2023	14:15:00	MC
TCLP Liquid-Liquid Extract		1/100	mi	L.						05
EPA 1311		Prepared:	1082501	09/20/2023	14:40:00	Analyzed	1082501	09/20/2023	14:40:00	SLI
TCLP Extraction Non-Volatile	Talland In	SOLID EXT	1 m	1	1					01
EPA 1311ZHE	Turk	Prepared:	1082851	09/21/2023	17:30:00	Analyzed	1082851	09/21/2023	17:30:00	SLI
ELAC TCLP Extraction ZHE Volatiles		100% SOLII) m	l				1		01
EPA 3005A		Prepared:	1082501	09/20/2023	14:40:00	Analyzed	1082717	09/21/2023	13:00:00	TES
Metals Digestion TCLP Extract		50/10	m	l.	i _					04
EPA 3550B		Prepared:	1083342	09/26/2023	16:31:53	Analyzed	1083342	09/26/2023	16:31:53	NA.
PCB Total Sonic Extr. W/Hex Exch	i -	10/2.01	gr	ams	. 1	., -	1	í l		02
EPA 7470A		Prepared:	1082501	09/20/2023	14:40:00	Analyzed	1082677	09/21/2023	12:25:00	AL_{\parallel}
Metals Digestion TCLP 7470		50/2.5	mi	1				l.	1	04
EPA 8081A		Prepared:	1082716	09/21/2023	13:30:00	Analyzed	1084248	09/25/2023	18:51:00	KLE

Report Page 5 of 20

CLDV-G

Chaparral Labs Dave Veinotte 861 Hwy 19 Huntsville, TX 77320

Page 5 of 6 Project 1076460

10/11/2023 Printed: 09/20/2023 Received: 2238598 23090412 SEALY 09/14/2023 Analyzed 1084248 09/25/2023 18:51:00 KLB Prepared: 1082716 09/21/2023 13:30:00 EPA 8081A 07 Entered GC TCLP Pesticide NELAC BLF Prepared: 1083342 09/26/2023 04:14:00 16:31:53 Analyzed 1083728 09/28/2023 EPA 8082 14 Entered Polychlorinated Biphenyls NELAC Analyzed 1083861 09/29/2023 03:34:00 BLF Prepared: 1083228 09/26/2023 10:45:00 EPA 8151 12 GC TCLP Herbicide Entered Analyzed 1083228 09/26/2023 10:45:00 CED Prepared: 1082501 09/20/2023 14:40:00 EPA 8151A (Prep) 05 ml 10/1 Esterification of TCLP Extract Analyzed 1083209 15:30:00 PM1 09/25/2023 Prepared: 1082851 09/21/2023 17:30:00 EPA 8260B 10 Entered MS TCLP Volatile Analysis Analyzed 1084018 09/30/2023 Prepared: 1083292 09/26/2023 14:15:00 00:14:00 BLF EPA 8270C 13 MS TCLP Semivolatile Analysis Entered NELAC £ Analyzed 1083139 09/25/2023 16:20:12 NAZ Prepared: 1083139 09/25/2023 16:20:12 EPA 9056 02 50/4.99 Water Extract-Ion Chromatography grams

Report Page 6 of 20

CLDV-G

Chaparral Labs Dave Veinotte 861 Hwy 19 Huntsville, TX 77320

Page 6 of 6 Project 1076460

Printed:

10/11/2023

2238598

23090412 SEALY

Received:

09/20/2023

09/14/2023

SM 2540 G-1997

Prepared: 1082454 09/20/2023

14:30:00

Analyzed 1082454

1 1

1 11

09/20/2023

14:30:Q0

JKI

Started

Qualiflers

B - Analyte detected in the associated method blank

D - Duplicate RPD was higher than expected

X - Standard reads higher than desired.

Total Solids Start Code

We report results on an As Received (or Wet) basis unless marked Dry Weight.

Unless otherwise noted, testing was performed at SPL, Inc. - Kilgure laboratory which holds international, Federal, and state accreditations. Please see our Websites flor details

(N)ELAC - Covered in our NELAC scope off accreditation z -- Not covered by our NELAC scope of accreditation

These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval off SPL Kilgore. Unless otherwise specified, these test results meet the requirements of NELAC RL is the Reporting Limit (sample specific quantitation limit) and is at or above the Method Detection Limit (MDL). CAS is Chemical Abstract Service number. RL is our Reporting Limit, or Minimum Quantitation Level. The RL takes into account the instrument Detection Limit (IDL), Method Detection Limit (MDL), and Practical Quantitation Limit (PQL), and any dilutions and/or concentrations performed during sample preparation (EQL). Our analytical result must be above this RL beflore we report a value in the Results' column off our report (without a 'J' flag). Otherwise, we report ND (Not Detected above RL), because the result is "<" (less than) the number in the RL column. MAL is Minimum Analytical Level and is typically from regulatory agencies Unless we report a result in the result column, or interflerences prevent it, we work to have our RL at or below the MAL.

Bill Peery, MS, VP Technical Services

Report Page 7 of 20

1111

Page 1 of 13

2

Project 1076460

Printed 10/11/2023

CLDV-G

Chaparral Labs Dave Veinotte 861 Hwy 19

Huntsville, TX 77320

Az-ludad Car	1082592	A STATE OF THE PARTY OF THE PAR		a mentione and					SM2540	G-199	7/MOD
Analytical Set arameter otal Solids for Dry Wt Conversi	PrepSet 1082592	Reading	MDL	MQL	Units grams			File 125457012			
otal Solids for Dry Wt Conversional Solids for Dry Wt Conversi	Sample 2231691 2232002		Result 100 3.16	Unknown 100 3.18	iicate	Unit %			RPD 0 0.631		Limit% 20.0 20.0
Analytical Set	1083217									El	PA 9056
arameter	PrepSet	Reading	MDL	MQL BI	ank <i>Units</i>	E		File			
litrate-Nitrogen	1083139	0.00542	0.00185	0.0226	mg/kg CV		44 : TEP	125471967			
<i>Parameter</i> Vitrate-Nitrogen Vitrate-Nitrogen Vitrate-Nitrogen	egrs. vegt	Reading 2.31 2.31 2.31	2.26 2.26	Units mg/kg mg/kg mg/kg	Recover% 102 102 102	Limits% 90.0 - 110 90.0 - 110 90.0 - 110		File 125471966 125471982 125471984			
ntrate-Nitrogen		A.D.			S Dup	4	104			1	
Parameter Vitrate-Nitrogen	PrepSet 1083139	LCS 1.12	LCSD 1.12		Known 1.13	Limits% 75.0 - 120	LCS% 99.1	LCSD% 99.1	'Units mg/kg	RPD 0	Limit% 20.0
				N	MSD		Tolling.		***	n n n	Limit%
Parameter Nitrate-Nitrogen	Sample 2232323	MS 2.30	MSD 2.35	UNK 0.0722	Known 2.26	Limits 80.0 - 120	MS% 98.6	MSD% 101	Units mg/kg	RPD 2.22	20.0
Analytical Set	1082761			E	Blank i	THE N	DESCRIPTION OF THE PROPERTY OF			EPA	A 7470
Parameter TCLP Mercury	PrepSet 1082677	Reading ND	MDL 0.000113	MQL 0.0002	Units mg/L		11111	File 125460229			
Parameter TCLP Mercury		Reading 0.00502	Known 0,005	Units mg/L	Recover% 100	Limits% 90.0 - 110		File 125460227			
TCLP Mercury TCLP Mercury TCLP Mercury		0.00501 0.00475 0.00484	0.005 0.005 0.005	mg/L mg/L mg/L	100 95.0 96.8	90.0 - 110 90.0 - 110 90.0 - 110		125460228 125460236 125460239			
					ICL			3.			
Parameter TCLP Mercury	THE STATE OF THE S	Reading 0.0208	0.02	Units mg/L	Recover% 104 ICV	Limits% 90.0 - 110		File 125460226			
Parameter		Reading	Known	Units	Recover%	Limits%		File			

Report Page 8 of 20

2

CLDV-G

Chaparral Labs Dave Veinotte 861 Hwy 19 Huntsville, TX 77320

Page 2 of 13 Project 1076460

111

							3		Printed	10/11/2023	
					LC	CS Dup		1 1	es una l		
Parameter TCLP Mercury		PrepSet 1082677	LCS 0.00934	LCSD 0.00987		Known 0.010	Limits% 85.1 - 117	LCS% 93.4	LCSD% 98.7		RPD Limit% 5.52 20.0
				1		MSD			1	j 1	112
<u>Parameter</u>		Sample	MS	MSD	UNK	Known	Limits	MS%	MSD%	Units	RPD Limit%
TCLP Mercury		2232285	0.095	0.0968	ND	0.100	80.9 - 121	95.0	96.8	10000000	1.88 20.0
	Analytical Set	1082980				ATTENDED TO SERVICE STATE OF THE SERVICE STATE OF T					EPA 6020A
			1			Blank		1		,	
Parameter		PrepSet	Reading	MDL	MQL	Units		1 4	File		
TCLP Arsenic		1082717	ND	0.010	0.010	mg/L	£		125465513		
TCLP Barium		1082717	ND	0.010	0.010	mg/L	1 1		125465513		
TCLP Cadmium		1082717	ND	0.001	0.001	mg/L	į		125465513		
TCLP Chromium	1	1082717	ND	0.010	0.010	mg/L			125465513		
TCLP Lead		1082717	ND	0.010	0.010	mg/L			125465513		
TCLP Selenium		1082717	0.0524	0.010	0.010	mg/L		•	125465513		
				111777		CCV			125405515)	
Parameter		man and	Reading	Known	Units	Recover%	Limits%	7.00	E/I		
TCLP Arsenic		T.	0.0506	0.05	mg/L	101	90.0 - 110	1 111	File	1 1 1	
TCLP Arsenic			0.0463	0.05					125465510		
TCLP Arsenic			0.0454	0.05	mg/L	92.6 90.8	90.0 - 110		125465520		
TCLP Barium			0.050	0.05	mg/L	100	90.0 - 110		125465532		
TCLP Barium			0.0469	0.05	mg/L		90.0 - 110	La la la la la la la la la la la la la la	125465510		
TCLP Barium			0.0459	0.05	mg/L	93.8	90.0 - 110		125465520		
TCLP Cadmium			0.0439	0.05	mg/L	91.8	90.0 - 110	1 1	125465532		
TCLP Cadmium			0.0481		mg/L	96.2	90.0 - 110	,	125465510		
TCLP Cadmium				0.05	mg/L	94.0	90.0 - 110		125465520		
TCLP Chromium	(0.0454	0.05	mg/L	90.8	90.0 - 110		125465532	1	
TCLP Chromium			0.0492	0.05	mg/L	98.4	90.0 - 110		125465510	1 .	v 1
TCLP Chromium			0.0483	0.05	mg/L	96.6	90.0 - 110		125465520		1
TCLP Lead			0.0476	0.05	mg/L	95.2	90.0 - 110	Ė	125465532	4	
TCLP Lead			0.0485	0.05	mg/L	97.0	90.0 - 110	1	125465510	1	
TCLP Lead			0.048	0.05	mg/L	96.0	90.0 - 110		125465520		
TCLP Selenium			0.0473	0.05	mg/L	94.6	90.0 - 110	T.	125465532	000	
TCLP Selenium			0.0496	0.05	mg/L	99.2	90.0 - 110	4	125465510		
TCLP Selenium			0.0528	0.05	mg/L	106	90.0 - 110		125465520		
Teer Scientin			0.0484	0.05	mg/L	96.8	90.0 - 110		125465532		
20						ICV					
Parameter			Reading	Known	Units	Recover%	Limits%		File		
TCLP Arsenic			0.0514	0.05	mg/L	103	90.0 - 110		125465476		
TCLP Barium			0.0515	0.05	mg/L	103	90.0 - 110		125465476		
TCLP Cadmium			0.0501	0.05	mg/L	100	90.0 - 110	um ii ‡	125465476	1	
TCLP Chromium		¥1	0.0502	0.05	mg/L	100	90.0 - 110	Ţ.	125465476	- 4	
TCLP Lead			0.0518	0.05	mg/L	104	90.0 - 110	1 (1)	125465476	1 1 1	
TCLP Selenium			0.0511	0.05	mg/L	102	90.0 - 110		125465476	2 . 1 .4	
					7	Table					

Report Page 9 of 20

QUALITY CONTROL

CLDV-G

Chaparral Labs Dave Veinotte 861 Hwy 19 Huntsville, TX 77320 Page 3 of 13

Project 1076460

Printed 10/11/2023

Parameter	Limit% 14.0 14.0 14.0 14.0 14.0 14.0 20.0 20.0 20.0 20.0 20.0 20.0 PA 6020A
TCLP Arsenic 1082717 0.459 0.471 0.500 82.8 - 120 91.8 94.2 mg/L 2.58 TCLP Barium 1082717 0.463 0.468 0.500 83.1 - 113 92.6 93.6 mg/L 1.07 TCLP Cadmium 1082717 0.222 0.228 0.250 86.0 - 115 88.8 91.2 mg/L 2.67 TCLP Chromium 1082717 0.486 0.479 0.500 84.3 - 118 97.2 95.8 mg/L 1.45 TCLP Lead 1082717 0.438 0.444 0.500 85.1 - 115 87.6 88.8 mg/L 1.36 TCLP Selenium 1082717 0.496 0.494 0.500 83.5 - 121 99.2 98.8 mg/L 0.404 MSD Parameter Sample MS MSD UNK Known Limits MS% MSD% Units RPD TCLP Arsenic 2232285 2.30 2.28 ND 2.50 84.9 - 114 92.0 91.2 mg/L 0.873 TCLP Barium 2232285 3.07 3.03 0.644 2.50 80.3 - 115 97.0 95.4 mg/L 1.66 TCLP Cadmium 2232285 1.11 1.14 ND 1.25 78.2 120 88.8 91.2 mg/L 2.67 TCLP Cadmium 2232285 2.39 2.37 0.0139 2.50 86.0 - 117 95.0 94.2 mg/L 0.845 TCLP Lead 2232285 2.22 2.26 ND 2.50 85.0 - 116 88.8 90.4 mg/L 1.79 TCLP Selenium 2232285 2.37 2.34 0.0847 2.50 80.2 - 121 91.4 90.2 mg/L 1.32 Analytical Set 1083033 Elank Parameter PrepSet Realting MDL MQL Units File	14.0 14.0 14.0 14.0 14.0 14.0 20.0 20.0 20.0 20.0 20.0 20.0
TCLP Barium 1082717 0.463 0.468 0.500 83.1 - 113 92.6 93.6 mg/L 1.07 TCLP Cadmium 1082717 0.222 0.228 0.250 86.0 - 115 88.8 91.2 mg/L 2.67 TCLP Chromium 1082717 0.486 0.479 0.500 84.3 - 118 97.2 95.8 mg/L 1.45 TCLP Lead 1082717 0.438 0.444 0.500 85.1 - 115 87.6 88.8 mg/L 1.36 TCLP Selenium 1082717 0.496 0.494 0.500 83.5 - 121 99.2 98.8 mg/L 0.404 MSD MSD Parameter Sample MS MSD UNK Known Limits MS% MSD% Units RPD TCLP Arsenic 2232285 2.30 2.28 ND 2.50 84.9 - 114 92.0 91.2 mg/L 0.873 TCLP Barium 2232285 3.07 3.03 0.644 2.50 80.3 - 115 97.0 95.4 mg/L 1.66 TCLP Cadmium 2232285 1.11 1.14 ND 1.25 78.2 1.20 88.8 91.2 mg/L 2.67 TCLP Chromium 2232285 2.39 2.37 0.0139 2.50 86.0 - 117 95.0 94.2 mg/L 0.845 TCLP Lead 2232285 2.37 2.34 0.0847 2.50 80.2 - 121 91.4 90.2 mg/L 1.79 TCLP Selenium 12322285 2.37 2.34 0.0847 2.50 80.2 - 121 91.4 90.2 mg/L 1.32 Blank Parameter PrepSet Reading MDL MQL Units File	14.0 14.0 14.0 14.0 14.0 14.0 Limit% 20.0 20.0 20.0 20.0 20.0 20.0
TCLP Cadmium 1082717 0.222 0.228 0.250 86.0 - 115 88.8 91.2 mg/L 2.67 TCLP Chromium 1082717 0.486 0.479 0.500 84.3 - 118 97.2 95.8 mg/L 1.45 TCLP Lead 1082717 0.438 0.444 0.500 85.1 - 115 87.6 88.8 mg/L 1.36 TCLP Selenium 1082717 0.496 0.494 0.500 83.5 - 121 99.2 98.8 mg/L 0.404 MSD Parameter Sample MS MSD UNK Known Limits MS% MSD% Units RPD TCLP Arsenic 2232285 2.30 2.28 ND 2.50 84.9 - 114 92.0 91.2 mg/L 0.873 TCLP Barium 2232285 3.07 3.03 0.644 2.50 80.3 - 115 97.0 95.4 mg/L 1.66 TCLP Cadmium 2232285 1.11 1.14 ND 1.25 78.2 120 88.8 91.2 mg/L 2.67 TCLP Chromium 2232285 2.39 2.37 0.0139 2.50 86.0 - 117 95.0 94.2 mg/L 0.845 TCLP Lead 2232285 2.37 2.34 0.0847 2.50 80.2 - 121 91.4 90.2 mg/L 1.79 TCLP Selenium Analytical Set 1083033 EXAMPLE O.250 RELIGION MDL Units Blank Parameter PrepSet Reading MDL MQL Units File	14.0 14.0 14.0 14.0 20.0 20.0 20.0 20.0 20.0 20.0
TCLP Chromium 1082717 0,486 0,479 0,500 84,3 - 118 97.2 95.8 mg/L 1,45 TCLP Lead 1082717 0,438 0,444 0,500 85.1 - 115 87.6 88.8 mg/L 1,36 TCLP Selenium MSD Parameter Sample MS MSD UNK Known Limits MS% MSD% Units RPD TCLP Arsenic 2232285 2,30 2,28 ND 2,50 84.9 - 114 92.0 91.2 mg/L 0,873 TCLP Barium 2232285 1,11 1,14 ND 1,25 78.2 1,20 88.8 91.2 mg/L 2,67 TCLP Cdmium 2232285 2,39 2,37 0,0139 2,50 86.0 - 117 95.0 94.2 mg/L 0,845 TCLP Lead 2232285 2,37 2,34 0,0847 2,50 80.2 - 121 91.4 90.2 mg/L 1,79 TCLP Selenium 2232285 2,37 2,34 0,0847 2,50 80.2 - 121 91.4 90.2 mg/L 1,32 Analytical Set 1083033 E Blank Parameter PrepSet Realing MDL MQL Units File	14.0 14.0 14.0 20.0 20.0 20.0 20.0 20.0 20.0
TCLP Lead TCLP Selenium 1082717 0.438 0,444 0.500 85.1 - 115 87.6 88.8 mg/L 1.36 TCLP Selenium 1082717 0.496 0.494 0.500 83.5 - 121 99.2 98.8 mg/L 0.404 MSD Parameter Sample MS MSD UNK Known Limits MS% MSD% Units RPD TCLP Arsenic 2232285 2.30 2.28 ND 2.50 84.9 - 114 92.0 91.2 mg/L 0.873 TCLP Barium 2232285 3.07 3.03 0.644 2.50 80.3 - 115 97.0 95.4 mg/L 1.66 TCLP Cadmium 2232285 1.11 1.14 ND 1.25 78.2 120 88.8 91.2 mg/L 2.67 TCLP Chromium 2232285 2.39 2.37 0.0139 2.50 86.0 - 117 95.0 94.2 mg/L 0.845 TCLP Lead 2232285 2.22 2.26 ND 2.50 85.0 - 116 88.8 90.4 mg/L 1.79 TCLP Selenium 2232285 2.37 2.34 0.0847 2.50 80.2 - 121 91.4 90.2 mg/L 1.32 Analytical Set 1083033 E Blank Parameter PrepSet Reading MDL MQL Units File	14.0 14.0 Limit% 20.0 20.0 20.0 20.0 20.0 20.0
TCLP Selenium 1082717 0.496 0.494 0.500 83.5 - 121 99.2 98.8 mg/L 0.404 MSD Parameter Sample M\$ MSD UNK Known Limits MS% MSD% Units RPD TCLP Arsenic 2232285 2.30 2.28 ND 2.50 84.9 - 114 92.0 91.2 mg/L 0.873 TCLP Barium 2232285 3.07 3.03 0.644 2.50 80.3 - 115 97.0 95.4 mg/L 1.66 TCLP Cadmium 2232285 1.11 1.14 ND 1.25 78.2 120 88.8 91.2 mg/L 2.67 TCLP Chromium 2232285 2.39 2.37 0.0139 2.50 86.0 - 117 95.0 94.2 mg/L 0.845 TCLP Lead 2232285 2.22 2.26 ND 2.50 85.0 - 116 88.8 90.4 mg/L 1.79 TCLP Selenium 2232285 2.37 2.34 0.0847 2.50 80.2 - 121 91.4 90.2 mg/L 1.32 Analytical Set 1083033 EXAMPLE 1.404	14.0 Limit% 20.0 20.0 20.0 20.0 20.0 20.0 20.0
MSD MSD MSD MSD UNK Known Limits MS% MSD% Units RPD	20.0 20.0 20.0 20.0 20.0 20.0 20.0
Parameter Sample MS MSD UNK Known Limits MS% MSD% Units RPD	20.0 20.0 20.0 20.0 20.0 20.0 20.0
TCLP Arsenic 2232285 2.30 2.28 ND 2.50 84.9 - 114 92.0 91.2 mg/L 0.873 TCLP Barium 2232285 3.07 3.03 0.644 2.50 80.3 - 115 97.0 95.4 mg/L 1.66 TCLP Cadmium 2232285 1.11 1.14 ND 1.25 78.2 120 88.8 91.2 mg/L 2.67 TCLP Chromium 2232285 2.39 2 37 0.0139 2.50 86.0 - 117 95.0 94.2 mg/L 0.845 TCLP Lead 2232285 2.22 2.26 ND 2.50 85.0 - 116 88.8 90.4 mg/L 1.79 TCLP Selenium 2232285 2.37 2.34 0.0847 2.50 80.2 - 121 91.4 90.2 mg/L 1.32 Analytical Set 1083033 Elank Parameter PrepSet Realting MDL MQL Units File	20.0 20.0 20.0 20.0 20.0 20.0 20.0
TCLP Barium 2232285 3.07 3.03 0.644 2.50 80.3 - 115 97.0 95.4 mg/L 1.66 TCLP Cadmium 2232285 1.11 1.14 ND 1.25 78.2 120 88.8 91.2 mg/L 2.67 TCLP Chromium 2232285 2.39 2.37 0.0139 2.50 86.0 - 117 95.0 94.2 mg/L 0.845 TCLP Lead 2232285 2.22 2.26 ND 2.50 85.0 - 116 88.8 90.4 mg/L 1.79 TCLP Selenium 2232285 2.37 2.34 0.0847 2.50 80.2 - 121 91.4 90.2 mg/L 1.32 Analytical Set 1083033 Blank Parameter PrepSet Realting MDL MQL Units File	20.0 20.0 20.0 20.0 20.0
TCLP Cadmium 2232285 1.11 1.14 ND 1.25 78.2 120 88.8 91.2 mg/L 2.67 CLP Chromium 2232285 2.39 2.37 0.0139 2.50 86.0 - 117 95.0 94.2 mg/L 0.845 TCLP Lead 2232285 2.22 2.26 ND 2.50 85.0 - 116 88.8 90.4 mg/L 1.79 TCLP Selenium Analytical Set 1083033 Blank Parameter PrepSet Realting MDL MQL Units File	20.0 20.0 20.0 20.0
CLP Chromium 2232285 2.39 2.37 0.0139 2.50 86.0 - 117 95.0 94.2 mg/L 0.845	20.0 20.0 20.0
TCLP Lead 2232285 2.22 2.26 ND 2.50 85.0 - 116 88.8 90.4 mg/L 1.79 TCLP Selenium 2232285 2.37 2.34 0.0847 2.50 80.2 - 121 91.4 90.2 mg/L 1.32 Analytical Set 1083033 Elank Parameter PrepSet Realing MDL MQL Units File	20.0 20.0
TCLP Selenium 2232285 2.37 2.34 0.0847 2.50 80.2 - 121 91.4 90.2 mg/L 1.32 Analytical Set 1083033 Blank Parameter PrepSet Realing MDL MQL Units File	20.0
Parameter PrepSet Reading MDL MQL Units File	PA 6020A
Blank Parameter PrepSet Realting MDL MQL Units File	
Parameter PrepSet Reading MDL MQL Units File	
TCLP Silver 1082717 ND 0.010 0.010 mg/l 175467805	
ccv	
Parameter Reading Known Units Recover% Limits% File	
TCLP Silver 0.0492 0.05 mg/L 98.4 90.0 - 110 125467802	
TCLP Silver 0.0495 0.05 mg/L 99.0 90.0 - 110 125467808	
TCLP Silver 0.0494 0.05 mg/L 98.8 90.0 - 110 125467820	
ICV	
Parameter Reading Known Units Recover% Limits% File	
TCLP Silver 0.0495 0.05 mg/L 99.0 90.0 - 110 125467747	
LCS Dup	
Parameter PrepSet LCS LCSD Known Limits% LCS% LCSD% Units RPD	Limit%
TCLP Silver 1082717 0.103 0.104 0.100 80.1 - 118 103 104 mg/L 0.966	
MSD	
Parameter Sample MS MSD UNK Known Limits MS% MSD% Units RPD	Limit%
TCLP Silver 2232285 0.523 0.531 ND 0.500 80.7 115 105 106 mg/L 1.52	20.0
	PA 8260E
Analytical Set 1083209	FA 0200L
Parameter Sample RefMass Reading % Limits% File	
BFB Mass 173	
DED Mars 175	
BFB Mass 176 1083209 174 80 8.5 5.00 - 9.00 125471872 BFB Mass 176 1083209 174 902 96.2 95.0 - 101 125471872	
Report Page	

111

Page 4 of 13

Project 1076460

Printed 10/1/1/2023

CLDV-G

Chaparral Labs Dave Veinotte 861 Hwy 19 Huntsville, TX 77320

			ļ	В	В	i						1		
Parameter	Sample	RefMass	Reading	%	Limits%	. 1	Ē			File		1		
BFB Mass 177	1083209	176	52	5.7	5.00 - 9.00		1			125471872				
BFB Mass 50	1083209	95.0	316	21.6	15.0 - 40.0	1				125471872	1		1	
BFB Mass 75	1083209	95.0	821	56.1	30.0 - 60.0					125471872		100		
BFB Mass 95	1083209	95.0	1462	100.0	100 - 100		1			125471872				
BFB Mass 96	1083209	95.0	89	6.1	5.00 - 9.00			1		125471872				
DI D Mass 50	1005207	75.0				1					2			
				Bla	ank	1 1								
Parameter	PrepSet	Reading	MDL	MQL	Units	1				File				
TCLP 1,1-Dichloroethene	1083209	ND	0.000574	0.001	mg/L					125471876				
TCLP 1,2-Dichloroethane	1083209	ND	0.00059	0.001	mg/L					125471876				
TCLP 1,4 Dichlorobenzene	1083209	ND	0.000837	0.001	mg/L					125471876				
TCLP Benzene	1083209	ND	0.000453	0.001	mg/L			1		125471876		ī		
TCLP Carbon tetrachloride	1083209	ND	0.000299	0.001	mg/L			.1		125471876				
TCLP Chlorobenzene	1083209	ND I	0.000558	0.001	mg/L	1		i	111	125471876	1	. 1	#	
TCLP Chloroform	1083209	ND	0.000463	0.001	mg/L			,	- 1	125471876	7	. 1	3	
TCLP MEK	1083209	ND	0.000742	0.001	mg/L					125471876				
TCLP Tetrachloroethylene	1083209	ND	0.000607	0.001	mg/L	Ť				125471876				
TCLP Trichloroethylene	1083209	ND	0.000521	0.001	mg/L	F				125471876				
TCLP Vinyl chloride	1083209	ND	0.000702	0.001	mg/L		li			125471876				
1021 Villy1 dillottate	1003207	112	0.000702				13		2	125171070				
				C	CV		İ		4					
<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%				File				
TCLP 1,1-Dichloroethene		0.0212	0.020	mg/L	106	70.0 - 130				125471873		8.1		
TCLP 1,2-Dichloroethane		0.0229	0.020	mg/L	114	70.0 - 130				125471873		1 1		
TCLP 1,4 Dichlorobenzene		0.0193	0.020	mg/L	96.5	70.0 - 130				125471873		1		
TCLP Benzene		0.0216	0.020	mg/L	108	70.0 - 130	- 1			125471873		- 1		
TCLP Carbon tetrachloride		0.0216	0.020	mg/L	108	70.0 - 130	1			125471873				
TCLP Chlorobenzene		0.0196	0.020	mg/L	98.0	70.0 - 130				125471873			1	
TCLP Chloroform		0.022	0.020	mg/L	110	70.0 - 130				125471873		90		
TCLP MEK		0.0226	0.020	mg/L	113	70.0 - 130	1	1		125471873				
TCLP Tetrachloroethylene		0.019	0.020	mg/L	95.0	70.0 - 130		1.		125471873				
TCLP Trichloroethylene		0.0197	0.020	mg/L	98.5	70.0 - 130				125471873				
TCLP Vinyl chloride		0.0238	0.020	mg/L	119	70.0 - 130				125471873				
					reas	reselles a								
Parameter	P1-	T	D I			****				P.1				
1,4-DichlorobenzeneD4 (ISTD)	Sample	Туре	Reading	CCVISM		High				File		PrepS		
a contract contract the second contract of	1083209	CCV	42720	42720	29900	55540		100		125471873		10832		
1,4-DichlorobenzeneD4 (ISTD)	1083209	LCS	46180	42720	29900	55540		1		125471874		10832		
1,4-DichlorobenzeneD4 (ISTD)	1083209	LCS Dup	41510	42720	29900	55540			v 1.6	125471875		10832		
1,4-Dichlor benzeneD4 (ISTD)	1083209	Blank	33810	42720	29900	55540		1	Hiji	125471876	1	10832	- 4	
ChlorobenzeneD5 (ISTD)	1083209	CCV	85560	85560	59900	111200				125471873		10832		
ChlorobenzeneD5 (ISTD)	1083209	LCS	92160	85560	59900	111200				125471874		10832		
ChlorobenzeneD5 (ISTD)	1083209	LCS Dup	82640	85560	59900	111200				125471875		10832		
ChlorobenzeneD5 (ISTD)	1083209	Blank	77000	85560	59900	111200	1.			125471876		10832		
1,4-DichlorobenzeneD4 (ISTD)	2232400	MS	33870	42720	29900	55540				125471881		10828		
1,4-DichlorobenzeneD4 (ISTD)	2232400	MSD	36430	42720	29900	55540	1		1	125471882		10828	351	

Report Page 11 of 20

QUALITY CONTROL

CLDV-G

Chaparral Labs
Dave Veinotte
861 Hwy 19
Huntsville, TX 77320

Page 5 of 13

Project

1076460

Printed 10/11/2023

IS /	41	ea	IS
------	----	----	----

Parameter .	Sample	Type	Reading	CCVISM	Low	High		File	PrepSet		
ChlorobenzeneD5 (ISTD)	2232400	MS	68560	85560	59900	111200		125471881	1082851		
ChlorobenzeneD5 (ISTD)	2232400	MSD	74250	85560	59900	111200	1 1	125471882	1082851	100	
* 1	content HTP	1 1 1 1	m.	IS Re	tTime	1 1	4 1				
Parameter	Sample	Type	Reading	CCVISM	Low	High		File	PrepSet		
1,4-DichlorobenzeneD4 (ISTD)	1083209	LCS	11.97	11.97	11.91	12.03		125471874	1083209		
1,4-DichlorobenzeneD4 (ISTD)	1083209	LCS Dup	11.97	11.97	11.91	12.03		125471875	1083209		
1,4-DichlorobenzeneD4 (ISTD)	1083209	Blank	11.97	11.97	11.91	12.03		125471876	1083209		
ChlorobenzeneD5 (ISTD)	1083209	LCS	9,597	9.597	9.537	9.657		125471874	1083209		
ChlorobenzeneD5 (ISTD)	1083209	LCS Dup	9.597	9.597	9.537	9.657		125471875	1083209		
ChlorobenzeneD5 (ISTD)	1083209		9.597	9.597	9.537	9.657		125471876	1083209		
1,4-DichlorobenzeneD4 (ISTD)	2232400		11.97	11.97	11.91	12.03		125471881	1082851		
1,4-DichlorobenzeneD4 (ISTD)	2232400		11.97	11.97	11.91	12.03	1	125471882	1082851		
ChlorobenzeneD5 (ISTD)	2232400		9.597	9.597	9.537	9.657		125471881	1082851		
ChlorobenzeneD5 (ISTD)	2232400		9.597	9.597	9.537	9.657		125471882	1082851		
· ·	2202100		,,,,,			F100-1			, , , , _ , ,		
		- to		LCS	Dup						
Parameter	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
TCLP 1,1-Dichloroethene	1083209	0.0157	0.0163		0.020	56.7 - 135	78.5	81.5	mg/L	3.75	30.0
TCLP 1,2-Dichloroethane	1083209	0.0192	0.0216		0.020	69.8 - 132	96.0	108	mg/L	11.8	30.0
TCLP 1,4 Dichlorobenzene	1083209	0.0184	0.0199		0.020	74.8 - 116	92.0	99.5	mg/L	7.83	30.0
TCLP Benzene	1083209	0.0185	0.0204		0.020	67.1 - 123	92.5	102	mg/L	9.77	30.0
TCLP Carbon tetrachloride	1083209	0.0186	0.0192		0.020	60.1 - 132	93.0	96.0	mg/L	3.17	30.0
TCLP Chlorobenzene	1083209	0.0177	0.0193		0.020	74.0 - 115	88.5	96.5	mg/L	8.65	30.0
TCLP Chloroform	1083209	0.019	0.0206		0.020	71.1 - 128	95.0	103	mg/L	8.08	30.0
TCLP MEK	1083209	0.0209	0.0248		0.020	40.7 - 166	104	124	mg/L	17.5	30.0
TCLP Tetrachloroethylene	1083209	0.0158	0.0181		0.020	71.2 - 126	79.0	90.5	mg/L	13.6	30.0
TCLP Trichloroethylene	1083209	0.0174	0.0178		0.020	71.4 - 126	87.0	89.0	mg/L	2.27	30.0
TCLP Vinyl chloride	1083209	0.0241	0.0249		0.020	18.5 - 155	120	124	mg/L	3.28	30.0
F		F		N	ISD						
Parameter	Sample	MS	MSD	UNK	Known	Limits	MS%	MSD%	Units	RPD	Limit%
TCLP 1,1-Dichloroethene	2232400		0.135	ND	0.200	0.100 - 168	76.0	67.5	mg/L	11.8	30.0
TCLP 1,2-Dichloroethane	2232400		0.194	ND	0.200	48.4 - 134	110	97.0	mg/L	12.6	30.0
TCLP 1,4 Dichlorobenzene	2232400		0,177	ND	0.200	45.4 - 121	95.0	88.5	mg/L	7.08	30.0
TCLP Benzene	2232400		0.180	ND	0.200	5.00 - 119	100	90.0	mg/L	11.0	30.0
TCLP Carbon tetrachloride	2232400	20000000000	0.152	ND	0.200	0.100 - 164	91.0	76.0	mg/L	18.0	30.0
TCLP Chlorobenzene	2232400		0.172	ND	0.200	32.5 - 130	93.0	86.0	mg/L	7.82	30.0
TCLP Chloroform	2232400	A contract of	0.194	ND	0.200	22.1 - 141	104	97.0	mg/L	7.44	30.0
TCLP MEK	2232400		0.212	ND	0.200	9.88 - 197	105	106	mg/L	0.948	30.0
TCLP Tetrachloroethylene	2232400		0.137	ND	0.200	0.100 - 157	82.0	68.5	mg/L	17.9	30.0
TCLP Trichloroethylene	2232400		0.150	ND	0.200	0.100 - 161	89.0	75.0	mg/L	17.1	30.0
TCLP Vinyl chloride	2232400		0.167	ND	0.200	0.100 - 197		83.5	mg/L	9.14	30.0
			1		ogate	1.100 - 137		05.5	mg/L	2.17	30.0
Parameter	C1	Trans	Dog U			D	1 hada 42	F.1			
<u>Parameter</u>	Sample	Type	Reading	Known	Units	Recover%	Limits%	File			

Report Page 12 of 20

111

: 11

2

CLDV-G

Chaparral Labs Dave Veinotte 861 Hwy 19 Huntsville, TX 77320

					Suri	rogate			1			Ī	
Parameter		Sample	Type	Reading	Known	Units	Recover%	Limits%	File				
1,2-DCA-d4 (SURR)		1083209	CCV	0.0212	0.020	mg/L	106	74.2 - 132	125471873				
1,2-DCA-d4 (SURR)		1083209	LCS	0.0212	0.020	mg/L	106	74.2 - 132	125471874				
1,2-DCA-d4 (SURR)		1083209	LCS Dup	0.0206	0.020	mg/L	103	74.2 - 132	125471875				
1,2-DCA-d4 (SURR)		1083209	Blank	0.0215	0.020	mg/L	108	74.2 - 132	125471876				
Bromofluorobenzene (SURR)		1083209	CCV	0.020	0.020	mg/L	100	77.2 - 134	125471873				
Bromofluorobenzene (SURR)		1083209	LCS	0.020	0.020	mg/L	100	77.2 - 134	125471874				
Bromofluorobenzene (SURR)		1083209	LCS Dup	0.0207	0.020	mg/L	104	77.2 - 134	125471875				
Bromofluorobenzene (SURR)		1083209	Blank	0.0213	0.020	mg/L	106	77.2 - 134	125471876) in		
Dibromofluoromethane (SURR)		1083209	CCV	0.0194	0.020	mg/L	97.0	67.2 - 122	125471873	ii.			
Dibromofluoromethane (SURR)		1083209	LCS	0.0191	0.020	mg/L	95.5	67.2 - 122	125471874	Ų	1		
Dibromofluoromethane (SURR)		1083209	LCS Dup	0.0186	0.020	mg/L	93.0	67.2 - 122	125471875				
Dibromofluoromethane (SURR)		1083209	Blank	0.0198	0.020	mg/L	99.0	67.2 - 122	125471876				
TolueneD8 (SURR)		1083209	CCV	0.0198	0.020	mg/L	99.0	69.2 - 122	125471873				
TolueneD8 (SURR)		1083209	LCS	0.0191	0.020	mg/L	95.5	69.2 - 122	125471874				
TolueneD8 (SURR)		1083209	LCS Dup	0.0192	0.020	mg/L	96.0	69.2 - 122	125471875				
TolueneD8 (SURR)		1083209	Blank	0.0195	0.020	mg/L	97.5	69.2 - 122	125471876				
1,2-DCA-d4 (SURR)		2232400	MS	0.0217	0.020	mg/L	108	74.2 - 132	125471881				
1,2-DCA-d4 (SURR)		2232400	MSD	0.0213	0.020	mg/L	106	74.2 - 132	125471882		1		
Bromofluorobenzene (SURR)		2232400	MS	0.0206	0.020	mg/L	103	77.2 - 134	125471881		1		
Bromofluorobenzene (SURR)		2232400	MSD	0.0205	0.020	mg/L	102	77.2 - 134	125471882		i'		
Dibromofluoromethane (SURR)		2232400	MS	0.0204	0.020	mg/L	102	67.2 - 122	125471881				
Dibromofluoromethane (SURR)		2232400	MSD	0.0198	0.020	mg/L	99.0	67.2 - 122	125471882				
TolueneD8 (SURR)		2232400	MS	0.0196	0.020	mg/L	98.0	69.2 - 122	125471881	1		1	
TolueneD8 (SURR)		2232400	MSD	0.0193	0.020	mg/L	96.5	69.2 - 122	125471882				
Analytical Set	1	083728	100					embro , but				EPA	A 8082

	Analytical Set	1083728							d.			EPA 8082
					1	Blank				,		
Parameter		PrepSet	Reading	MDL	MQL	Units	1 1			File		
PCB-1016		1083342	ND	43.0	250	ug/kg	4			125481650		
PCB-1221		1083342	ND	43.0	250	ug/kg				125481650		
PCB-1232		1083342	ND	43.0	250	ug/kg				125481650		
PCB-1242		1083342	ND	43.0	250	ug/kg				125481650		
PCB-1248		1083342	ND	43.0	250	ug/kg			The I	125481650)	
PCB-1254		1083342	ND	43,0	250	ug/kg			1111	125481650		
PCB-1260		1083342	ND	43.0	250	ug/kg	Photo:		1 111	125481650		1
						CCV						
Parameter			Reading	Known	Units	Recover%	Limits%			File		
PCB-1016			1080	1000	ug/kg	108	80.0 - 120			125481649		
PCB-1016			1090	1000	ug/kg	109	80.0 - 120	1		125481663		
PCB-1016			847	1000	ug/kg	84.7	80.0 - 120	4		125481665		
PCB-1260			1130	1000	ug/kg	113	80.0 - 120	- t	1	125481649		
PCB-1260			2250	1000	ug/kg	225	80.0 - 120			125481663		
PCB-1260			3290	1000	ug/kg	329	80.0 - 120	٠		125481665	i	1

Report Page 13 of 20

QUALITY CONTROL

CLDV-G

Chaparral Labs Dave Veinotte 861 Hwy 19 Huntsville, TX 77320

<u>Parameter</u>

PCB-1016

PCB-1260

Page 7 of 13

RPD

4.48

2.88

Limit%

30.0

30.0

Project 1076460

Units

ug/kg

ug/kg

Printed 10/11/2023

LCSD%

137

141

			1	М	SD						
Parameter PCB-1016 PCB-1260	Sample 2231591 2231591	MS 11500 7700	MSD 11500 8440	UNK ND ND	10000 10000	Limits 0.100 - 427 0.100 - 470	MS% 115 77.0	MSD% 115 84.4	<i>Units</i> ug/kg ug/kg	RPD 0 9.17	Limit% 30.0 30.0
FCB-1200	223,139,1	7700	0110		ogate	0.140 .00	All June		,-66		
Parameter	Sample	Турс	Reading	Known	Units	Recover%	Limits%	File			
Decachlorobiphenyl	1083342	Blank	77.9	100	ug/kg	77.9	10.0 - 200	125481650			
Tetrachloro-m-Xylene (Surr)	1083342	Blank	100	100	ug/kg	100	10.0 - 160	125481650			
Analytical Set	1083861		i	The state of	196 5	With the	The last	NT.		E	PA 815
			•	BI	ank						
Parameter	PrepSet	Reading	MDL	MQL	Units			File			
TCLP 2,4 D	1082501	ND	0.000159	0.0005	mg/L		1	125486022			
TCLP 2,4,5-TP (Silvex)	1082501	ND	0.0000893	0.0003	mg/L		1	125486022			
TCLP 2,4 D	1083228	ND .	0.000159	0.0005	mg/L	V		125486019			
TCLP 2,4 D	1083228	ND	0.000159	0.0005	mg/L			125486029			
TCLP 2,4,5-TP (Silvex)	1083228	ND	0.0000893		mg/L			125486019			
TCLP 2,4,5-TP (Silvex)	1083228	ND	0.0000893		mg/L	1		125486029			
	i mar	1			ccv						
Parameter	- Indiana	Reading	Known	Units	Recover%	Limits%		File			
TCLP 2,4 D	1	0.150	0.150	mg/L	100	70.0 - 130	1178	125486018			
TCLP 2,4 D	1	0.156	0.150	mg/L	104	70.0 - 130		125486036			
TCLP 2,4 D		0.156	0.150	mg/L	104	70.0 - 130		125486040			
TCLP 2,4,5-TP (Silvex)		0.157	0.150	mg/L	104	70.0 - 130		125486018			
TCLP 2,4,5-TP (Silvex)		0.158	0.150	mg/L	105	70.0 - 130		125486036			
TCLP 2,4,5-TP (Silvex)		0.157	0.150	mg/L	105	70.0 - 130		125486040			
1CLF 2,4,3-1F (Silvex)		0.157	0.150		S Dup	70.0 - 150		125 1000 10		-	
4 1 1	Un	1	1	LC.	3 Dop	i i	1 1				200 800
<u>Parameter</u>	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit?
TCLP 2,4 D	1083228	0.000371	0.000275		0.001	2.06 - 194	37.1	27.5	mg/L	29.7	30.0
TCLP 2,4,5-TP (Silvex)	1083228	0.000423	0.000314		0.001	19.3 - 162	42.3	31.4	mg/L	29.6	30.0
				Sur	rogate						
Parameter	Sample	Type	Reading	Known	Units	Recover%	Limits%	File			
2,4-Dichlorophenylacetic Acid		CCV	0.151	0.200	mg/L	75.5	0.100 - 294	125486018			
2,4-Dichlorophenylacetic Acid		CCV	0.152	0.200	mg/L	76.0	0.100 - 294	125486036			
2,4-Dichlorophenylacetic Acid	d .	CCV	0.152	0.200	mg/L	76.0	0.100 - 294	125486040			
2,4-Dichlorophenylacetic Acid	1082501	Blank	0.0373	0.200	mg/L	18.6	0.100 - 294	125486022			
2,4-Dichlorophenylacetic Acid	1083228	Blank	0.0328	0.200	mg/L	16.4	0.100 - 294	125486019			
2,4-Dichlorophenylacetic Acid	1083228	LCS	0.0411	0.200	mg/L	20.6	0.100 - 294	125486020			
2,4-Dichlorophenylacetic Acid	1083228	LCS Dup	0.0322	0.200	mg/L	16.1	0.100 - 294	125486021			
		J.	1								
21					ALC: NO.						

LCS Dup

Known

5000

5000

LCSD

6830

7030

LGS

6540

6870

PrepSet

1083342

1083342

Limits%

28.4 - 187

22.3 - 183

LCS%

131

137

Report Page 14 of 20

QUALITY CONTROL

CLDV-G

Chaparral Labs Dave Veinotte 861 Hwy 19 Huntsville, TX 77320

Printed 10/11/2023

Surrogate

Parameter		Sample	Type	Reading	Known	Units	Recover%	Limits%	File				
2,4-Dichlorophenylacetic Acid		1083228	Blank	0.0349	0.200	mg/L	17.4	0.100 - 294	125486029				
2,7 Diemoropheny acone recta	Cale of the last	1005220		0.05-7	0.200	mg/L		0.100 - 274	ZONO ZONO ZONO ZONO ZONO ZONO ZONO ZONO			. Commercial	
Analytical Set		1084018											EPA 8270C
					В	lank					1		
Parameter .		PrepSet	Reading	MDL	MQL	Units	1	. (18)	File	И		1 3	
TCLP 2,4,5 Trichlorophenol		1082501	ND	0.000734	0.001	mg/L		1 111	125490260	Ų	ì	1	
TCLP 2,4,6-Trichlorophenol		1082501	ND	0.000704	0.001	mg/L			125490260				
TCLP 2,4-Dinitrotoluene		1082501	ND	0.00335	0.0035	mg/L	i i		125490260				
TCLP 2-Methylphenol (o-Cresol)		1082501	ND	0.00513	0.0052	mg/L			125490260				
TCLP 3&4-Methylphenol (m&p-C	reso	1082501	ND	0.00615	0.0062	mg/L		Ĭi	125490260				
TCLP Hexachlorobenzene		1082501	ND	0.000187	0.001	mg/L		1	125490260				
TCLP Hexachlorobutadiene		1082501	ND	0.000618	0.001	mg/L		1	125490260				
TCLP Hexachloroethane		1082501	ND	0.000789	0.001	mg/L			125490260				
TCLP Nitrobenzene		1082501	ND	0.00039	0.001	mg/L	ï		125490260			T.	
TCLP Pentachlorophenol		1082501	0.00058	0.000129	0.001	mg/L	1 1		125490260		1		
TCLP Pyridine (Reg. Limit 5)		1082501	ND	0.00533	0.0054	mg/L	1		125490260		3		
TCLP 2,4,5-Trichlorophenol		1083292	ND	0.000734	0.001	mg/L	1		125490257				
TCLP 2,4,6-Trichlorophenol		1083292	ND	0.000704	0.001	mg/L	1		125490257		2		
TCLP 2,4-Dinitrotoluene		1083292	ND	0.00335	0.0035	mg/L	3	1	125490257		i	1	
TCLP 2-Methylphenol (o-Cresol)		1083292	ND	0.00513	0.0052	mg/L			125490257				
TCLP 3&4-Methylphenol (m&p-C	reso	1083292	ND	0.00615	0.0062	mg/L		1	125490257			2	
TCLP Hexachlorobenzene		1083292	ND	0.000187	0.001	mg/L		1 1	125490257				
TCLP Hexachlorobutadiene		1083292	ND	0.000618	0.001	mg/L			125490257				
TCLP Hexachloroethane		1083292	ND	0.000789	0.001	mg/L	,		125490257				
TCLP Nitrobenzene		1083292	ND	0.000789	0.001				125490257				
TCLP Pentachlorophenol		1083292	0.00057	0.00039	0.001	mg/L							
TCLP Pyridine (Reg. Limit 5)		1083292	ND			mg/L			125490257				
TCLI Tyridine (Reg. Linit 3)		1083292	ND	0.00533	0.0054	mg/L			125490257				
						CCV					1		
Parameter Parame			Reading	Known	Units	Recover%	Limits%	.,	File				
TCLP 2,4,5 Trichlorophenol			55.7	50,0	mg/L	111	70.0 - 130	(11)	125490256	11	ï	1 1	
TCLP 2,4,6 ¹ Trichlorophenol			55.4	50.0	mg/L	111	70.0 - 130		125490256	3		F 4	
TCLP 2,4-Dinitrotoluene			45.0	50.0	mg/L	90.0	70.0 - 130		125490256				
TCLP 2-Methylphenol (o-Cresol)			50.9	50.0	mg/L	102	70.0 - 130		125490256				
TCLP 3&4-Methylphenol (m&p-C	reso		51.5	50.0	mg/L	103	70.0 - 130		125490256				
TCLP Hexachlorobenzene			48.1	50.0	mg/L	96.2	70.0 - 130		125490256				
TCLP Hexachlorobutadiene			44.6	50.0	mg/L	89.1	70.0 - 130	1	125490256				
TCLP Hexachloroethane			46.9	50.0	mg/L	93.8	70.0 - 130	1	125490256				
TCLP Nitrobenzene			50.7	50.0	mg/L	101	70.0 - 130		125490256				
TCLP Pentachlorophenol			46.6	50.0	mg/L	93.2	70.0 - 130		125490256		i.	ř III	
TCLP Pyridine (Reg. Limit 5)			44.5	50.0	mg/L	89.0	70.0 - 130		125490256			-	
				l.		FTPP					1		100
Downwater			117.0					100					a Puell III a
Parameter 100			RefMass	Reading	%	Limits%		Migral Migral	File				- by a set
DFTPP Mass 127		620075	198	24765	54.6	40.0 - 60.0			125490255			1	
									1				

Report Page 15 of 20

CLDV-G

Chaparral Labs Dave Veinotte 861 Hwy 19 Huntsville, TX 77320

Page 9 of 13

Project 1076460

Printed 10/11/2023

		1 1	1	DFT	PP						
Parameter		RefMass	Reading	%	Limits%	E		F	ile		
DFTPP Mass 197	620075	198	0	0.0	0 - 1.00	k.		1	25490255		
DFTPP Mass 198	620075	198	45389	100.0	100 - 100			1	25490255		
DFTPP Mass 199	620075	198	3244	7.1	5.00 - 9.00		100	1	25490255		
DFTPP Mass 275	620075	198	13168	29.0	10.0 - 30.0			1	25490255		
DFTPP Mass 365	620075	198	2783	6.1	1.00 - 100			1	25490255		
DFTPP Mass 441	620075	443	5068	92.3	0 - 100			1	25490255		
DFTPP Mass 442	620075	198	28888	63.6	40.0 - 100			1	25490255		
DFTPP Mass 443	620075	442	5490	19.0	17.0 - 23.0			1	25490255		
DFTPP Mass 51	620075	198	26144	57.6	30.0 - 60.0			1	25490255		
DFTPP Mass 68	620075	69.0	0	0.0	0 - 2.00			1	25490255		
DFTPP Mass 69	620075	198	27388	60.3	0 - 100	1 1		1	25490255		
DFTPP Mass 70	620075	69.0	116	0.4	0 - 2.00			1	25490255		
DI III Mass 10				IS A	roas						
				13 A	eas						
Parameter	Sample	Type	Reading	CCVISM	Low	High			File	PrepSet	
1,4-Dichlorobenzene-d4-ISTD	620073	CCV	61950	61950	30970	92920			25490256	620073	
Acenaphthene-d10-ISTD	620073	CCV	101200	101200	50580	151700			25490256	620073	
Naphthalene-d8-ISTD	620073	CCV	194200	194200	97100	291300			25490256	620073	
Phenanthrene-d10-ISTD	620073	CCV	153900	153900	76930	230800			125490256	620073	
1,4-Dichlorobenzene-d4-ISTD	1082501		60370	61950	30970	92920	, I'M		125490260	1082501	
Acenaphthene-d10-ISTD	1082501	Blank	105600	101200	50580	151700	1		125490260	1082501	
Naphthalene-d8-ISTD	1082501	Blank	190300	194200	97100	291300			125490260	1082501	
Phenanthrene-d10-ISTD	1082501	Blank	200400	153900	76930	230800			125490260	1082501	
4,4-Dichlorobenzene-d4-ISTD	1083292	Blank	59390	61950	30970	92920			125490257	1083292	
1,4-Dichlorobenzene-d4-ISTD	1083292	LCS	61190	61950	30970	92920			125490258	1083292	
1,4-Dichlorobenzene-d4-ISTD	1083292	LCS Dup	64690	61950	30970	92920			125490259	1083292	
Acenaphthene-d10-ISTD	1083292	Blank	102300	101200	50580	151700			125490257	1083292	
Acenaphthene-d10-ISTD	1083292	LCS	102900	101200	50580	151700			125490258	1083292	
Acenaphthene-d10-ISTD	1083292	LCS Dup	106000	101200	50580	151700			125490259	1083292	
Naphthalene-d8-ISTD	1083292	Blank	191400	194200	97100	291300			125490257	1083292	
Naphthalene-d8-ISTD	1083292	LCS	190700	194200	97100	291300			125490258	1083292	
Naphthalene-d8-ISTD	1083292	LCS Dup	198700	194200	97100	291300			125490259	1083292	
Phenanthrene-d10-ISTD	1083292	Blank	186500	153900	76930	230800			125490257	1083292	
Phenanthrene-d10-ISTD	1083292	LCS	162900	153900	76930	230800			125490258	1083292	
Phenanthrene-d10-ISTD	1083292	LCS Dup	212700	153900	76930	230800			125490259	1083292	
1,4-Dichlorobenzene-d4 ISTD	2232209	MS	51200	61950	30970	92920		1	125490266	1083292	
Acenaphthene-d10-ISTD	2232209	MS	88740	101200	50580	151700			125490266	1083292	
Naphthalene-d8-ISTD	2232209	MS	161100	194200	97100	291300			125490266	1083292	
Phenanthrene-d10-ISTD	2232209	MS	150700	153900	76930	230800			125490266	1083292	
	,			IS Re	tTime						
Parameter	Sample	Туре	Reading	CCVISM	Low	High			File	PrepSet	
1,4-Dichlorobenzene-d4-ISTD	620073	CCV	8,690	8.690	8.630	8.750			125490256	620073	
Acenaphthene-d10-ISTD	620073	CCV	15.20	15.20	15.14	15.26			125490256	620073	
Naphthalene-d8-ISTD	620073	ccv	11.22	11.22	11.16	11.28			125490256	620073	

Report Page 16 of 20

Page 10 of 13

2

Project 1076460

Printed 10/11/2023

CLDV-G

Chaparral Labs
Dave Veinotte
861 Hwy 19
Huntsville, TX 77320

IS RetTime Parameter Sample Туре Reading CCVISM Low PrepSet High File 125490256 Phenanthrene-d10-ISTD 620073 CCV 17.74 17.80 620073 17.74 17.68 1,4-Dichlorobenzene-d4-ISTD 1082501 Blank 8.680 8.750 125490260 108250 8.690 8.630 Acenaphthene-d10-ISTD 1082501 Blank 15.20 15.20 15.14 15.26 125490260 1082501 Naphthalene-d8-ISTD 1082501 Blank 11.21 11.22 11.16 11.28 125490260 1082501 Phenanthrene-d10-ISTD 1082501 Blank 17.73 17.74 17.68 17.80 125490260 1082501 1.4-Dichlorobenzene-d4-ISTD Blank 1083292 8.690 8.750 125490257 8.690 8.630 1083292 1,4-Dichlorobenzene-d4-ISTD 1083292 LCS 8.690 8.690 8.630 8.750 125490258 1083292 1,4-Dichlorobenzene-d4-ISTD 1083292 LCS Dup 8.690 125490259 8.690 8.630 8.750 1083292 Acenaphthene-d10-ISTD 1083292 Blank 15.20 15.20 15.14 15.26 125490257 1083292 Acenaphthene-d10-ISTD 1083292 LCS 15.20 15.14 125490258 15.20 15.26 1083292 Acenaphthene-d10-ISTD 1083292 LCS Dup 15.20 125490259 1083292 15.20 15.26 15.14 Naphthalene-d8-ISTD 1083292 Blank 11.22 11.22 11.16 11.28 125490257 1083292 Naphthalene-d8-ISTD 1083292 LCS 11.22 11 22 11.16 11.28 125490258 1083292 Naphthalene-d8-ISTD 1083292 LCS Dup 11.21 11.22 11.28 125490259 1083292 11.16 Phenanthrene-d10-ISTD 1083292 Blank 17.73 125490257 1083292 17.74 17.68 17.80 Phenanthrene-d10-ISTD 1083292 LCS 17.73 17.74 17.68 17.80 125490258 1083292 Phenanthrene-d10-ISTD 1083292 LCS Dup 17.73 17.74 17.80 125490259 1083292 17.68 1,4-Dichlorobenzene-d4-ISTD 2232209 MS 8,680 8.690 8.630 8.750 125490266 1083292 Acenaphthene-d10-ISTD 2232209 MS 15.20 15.20 15.14 15.26 125490266 1083292 Naphthalene-d8-ISTD 2232209 MS 11.22 11 22 11.16 11.28 125490266 1083292 2232209 Phenanthrene-d10-ISTD MS 17.73 17.74 125490266 17.68 17.80 1083292 LCS Dup Parameter PrepSet LCS LCSD Known Limits% LCS% LCSD% Units RPD Limit% TCLP 2,4,5-Trichlorophenol 1083292 0.0218 0.0228 0.025 39.3 - 111 87.2 91.2 mg/L 4.48 30.0 TCLP 2,4,6-Trichlorophenol 1083292 0.0226 0.0246 0.025 38.2 - 109 90.4 98.4 mg/L 8.47 30.0 TCLP 2,4-Dinitrotoluene 1083292 0.0202 0.0227 0.025 36.3 - 132 80.8 90.8 mg/L 11.7 30.0 111 TCLP 2-Methylphenol (o-Cresol) 1083292 0.017 0.0155 0.025 23.0 - 87.8 62.0 mg/L 9.23 68.0 30.0 TCLP 3&4-Methylphenol (m&p-Creso 1083292 0.0163 0.0157 0.025 14.9 - 92.5 65.2 62.8 mg/L 3.75 30.0 TCLP Hexachlorobenzene 1083292 0.020 0.0191 0.025 44.4 - 117 80.0 76.4 mg/L 4.60 30.0 TCLP Hexachlorobutadiene 1083292 0.0146 0.014 0.025 17.2 - 88.9 58.4 56.0 mg/L 4.20 30.0 TCLP Hexachloroethane 1083292 0.0137 0.0135 0.025 14.6 - 88.8 54.8 54.0 mg/L 1.47 30.0 TCLP Nitrobenzene 1083292 0.0202 0.0192 0.025 34.3 - 113 80.8 76.8 mg/L 5.08 30.0 TCLP Pentachlorophenol 1083292 0.0191 0.0198 0.025 15.7 - 129 76.4 79.2 mg/L 3.60 30.0 TCLP Pyridine (Reg. Limit 5) 1083292 0.0103 0.0068 0.025 0.0753 - 83.441.2 27.2 mg/L 40.9 * 30.0 MS Parameter Sample MS MSD UNK MS% MSD% Known Limits Units RPD Limit% TCLP 2,4,5-Trichlorophenol 2232209 0.193 0 0.0057 0.250 33.7 - 116 74.9 mg/L 30.0 TCLP 2,4,6-Trichlorophenol 2232209 0.193 0 0.0057 0.250 20.1 - 131 74.9 mg/L 30.0 TCLP 2,4-Dinitrotoluene 2232209 0.173 0 0.0057 0.250 31.8 - 135 66 9 30.0 mg/L TCLP 2-Methylphenol (o-Cresol) 2232209 0.152 0 0.0057 0.250 10.6 - 106 58.5 mg/L 30.0 TCLP 3&4-Methylphenol (m&p-Creso 2232209 0.146 0 ND 0.250 0.100 - 14958.4 mg/L 30.0 TCLP Hexachlorobenzene 2232209 0.177 0 0.0057 0.250 35.9 - 125 68.5 mg/L 30.0

0.250

11.1 - 88.5

47.7

1 111

Report Page 17 of 20

30.0

mg/L

TCLP Hexachlorobutadiene

2232209

0.125

0

0.0057

QUALITY CONTROL

11111

CLDV-G

Chaparral Labs Dave Veinotte 861 Hwy 19 Huntsville, TX 77320

Page 11 of 13

Project 1076460

Printed 10/11/2023

	Ti I		MS			
<u>Parameter</u>	Sample MS 2232209 0.130	Recommend to	NK Known 0.0057 0.250	Limits MS% 8.41 - 88.1 49.7	MSD%	Units RPD Limit% mg/L 30.0
TCLP Hexachloroethane		A	0.0057 0.250	28.7 119 74.5		mg/L 30.0
TCLP Nitrobenzene			0.005 0.250	8.33 - 141 58.4		mg/L 30.0
TCLP Pentachlorophenol			0.250	0.100 - 97.2 33.8		mg/L 30.0
TCLP Pyridine (Reg. Limit 5)	2232209 0.0901	9 (A. I	0.100-97.2 55.0		Marie I age
- PARTY -			SPCC			
Parameter	Sample	RF 1	Minimum		File	
TCLP 2,4-Dinitrophenol	620073	48.8	0.050		125490256	
TCLP 4-Nitrophenol	620073	48.8	0.050		125490256	
TCLP Hexachlorocyclopentadiene	620073	56.2	0.050		125490256	
TCLP N-Nitroso-n-propylamine	620073	49.6	0.050		125490256	
		ĵ.	Surrogate			
	Sample Type	Reading	Known Units	Recover% Limits%	File	
Parameter	620073 CCV		100 mg/L	44.0 9.79 - 123	125490256	and the language of
2,4,6-Tribromophenpl	620073 CCV		50.0 mg/L	110 0.100 - 131	125490256	the state of the state of
2-Fluorobiphenyl-SURR	620073 CCV		100 mg/L	47.5 5.36 - 80.2	125490256	
2-Fluorophenol-SURR	620073 CCV	47.00	50.0 mg/L	69.6 0.100 - 137	125490256	
4-Terphenyl-d14-SURR	620073 CCV		50.0 mg/L	107 0.100 - 131	125490256	
Nitrobenzene-d5-SURR	620073 CCV		100 mg/L	52.1 0.100 - 66.5	125490256	
Phenol-d6-SURR	1082501 Blank		3.33 mg/L	53.5 9.79 - 123	125490260	
2,4,6-Tribromophenol	1082501 Blank		50.0 mg/L	41.0 0.100 - 131	125490260	
2-Fluorobiphenyl-SURR	1082501 Blank	32.5	100 mg/L	32.5 5.36 - 80.2	125490260	
2-Fluorophenol-SURR	1082501 Blank		50.0 mg/L	51.0 0.100 - 137	125490260	
4-Terphenyl-d14-SURR	1082501 Blank	23.7	50.0 mg/L	47.4 0.100 - 131	125490260	
Nitrobenzene-d5-SURR	1082501 Blank	20.2	100 mg/L	20.2 0.100 - 66.5	125490260	
Phenol-d6-SURR	1083292 Blank	1.65	3.33 mg/L	49.5 9.79 - 123	125490257	
2,4,6-Tribromophenol	1083292 LCS	1.74	3.33 mg/L	52.3 9.79 - 123	125490258	
2,4,6-Tribromophenol	1083292 LCS Du	A SELECTION OF THE PERSON OF T	3.33 mg/L	61.3 9.79 - 123	125490259	
2,4,6-Tribtomophenol 2-Fluorobiphenyl-SURR	1083292 Blank	19.9	50.0 mg/L	39.8 0.100 - 131	125490257	
2-Fluorobiphenyl-SURR	1083292 LCS	21.2	50.0 mg/L	42.4 0.100 - 131	125490258	
2-Fluorobiphenyl-SURR	1083292 LCS Do	1	50.0 mg/L	38.8 0.100 - 131	125490259	
	1083292 Blank	30.7	100 mg/L	30.7 5.36 - 80.2	125490257	
2-Fluorophenol-SURR	1083292 LCS	31.9	100 mg/L	31.9 5.36 - 80.2	125490258	
2-Fluorophenol-SURR	1083292 LCS Do		100 mg/L	28.3 5.36 - 80.2	125490259	
2-Fluorophenol-SURR	1083292 Blank	22.3	50.0 mg/L	44.6 0.100 - 137	125490257	
4-Terphenyl-d14-SURR	1083292 LCS	22.8	50.0 mg/L	45.6 0.100 - 137	125490258	
4-Terphenyl-d14-SURR	1083292 LCS Do		50.0 mg/L	46.2 0.100 - 137	125490259	
4-Terphenyl-d14-SURR Nitrobenzene-d5-SURR	1083292 Ecs Di 1083292 Blank	22.2	50.0 mg/L	44.4 0.100 - 131	125490257	
Nitrobenzene-d5-SURR	1083292 LCS	23.8	50.0 mg/L	47.6 0.100 - 131	125490258	f
Nitrobenzene-d5-SURR	1083292 LCS D		50.0 mg/L	46.2 0.100 - 131	125490259	
Phenol-d6-SURR	1083292 Blank	19.8	100 mg/L	19.8 0.100 - 66.5		
Phenol-d6-SURR	1083292 LCS	21.6	100 mg/L	21.6 0.100 - 66.5		
Phenol-d6-SURR	1083292 LCS D		100 mg/L	18.8 0.100 - 66.5		
2,4,6-Tribromophenol	2232209 MS	0.462	1.00 mg/L	46.2 9.79 - 123	125490266	
-, ,	A CONTRACT OF THE PARTY OF THE					

Report Page 18 of 20

EPA 8081A

CLDV-G

Chaparral Labs Dave Veinotte 861 Hwy 19 Huntsville, TX 77320

Page 12 of 13 Project 1076460

	I	1	1	Sur	rogate	ţ	1 [1]	Printed	10/11/2023
Parameter 2-Fluorobiphenyl-SURR	Sample 2232209	Type MS	Reading	Known 0.500	Units mg/L	Recover%	Limits%	File 125490266	
2-Fluorophenol-SURR	2232209	MS	0.278	1.00	mg/L	27.8	5.36 - 80.2	125490266	
4-Terphenyl-d14-SURR	2232209	MS	0.197	0.500	mg/L	39.4	0.100 - 137	125490266	
Nitrobenzene-d5-SURR	2232209	MS	0.212	0.500	mg/L	42.4	0.100 - 131	125490266	
Phenol-d6-SURR	2232209	: MS	0.189	1.00	mg/L	18.9	0.100 - 66.5	125490266	
Analytical Set	1084248								
			1	В	lank				1
Parameter	PrenSet	Reading	MDI	MOL	Linite			File	

			1	В	lank				
Parameter .	PrepSet	Reading	MDL	MQL	Units	1		File	Salaman and a salaman
TCLP Chlordane	1082501	ND	0.0183	0.020	mg/L	- 1		125495468	to the man has been been been
TCLP Endrin	1082501	ND	0.000538	0.001	mg/L		I.	125495468	1
TCLP gamma-BHC (Lindane)	1082501	ND	0.000385	0.001	mg/L			125495468	ii dk
TCLP Heptachlor	1082501	0.000858	0.000207	0.001	mg/L		Ĭ.	125495468	"
TCLP Heptachlor Epoxide	1082501	ND	0.00066	0.001	mg/L		·	125495468	
TCLP Methoxychlor	1082501	ND	0.000898	0.001	mg/L			125495468	
TCLP Toxaphene	1082501	ND	0.000169	0.0002	mg/L	7 1		125495468	
TCLP Chlordane	1082716	ND	0.0183	0.020	mg/L			125495465	
TCLP Endrin	1082716	ND	0.000538	0.001	mg/L			125495465	
TCLP gamma-BHC (Lindane)	1082716	ND	0.000385	0.001	mg/L			125495465	
TCLP Heptachlor	1082716	ND	0.000207	0.001	mg/L			125495465	
TCLP Heptachlor Epoxide	1082716	ND	0.00066	0.001	mg/L			125495465	1
TCLP Methoxychlor	1082716	ND	0.000898	0.001	mg/L		1	125495465	I He & Form Marketon
TCLP Toxaphene	1082716	ND 1	0.000169	0.0002	mg/L	1	1 1111	125495465	1 : 1 #
		MILA.	3100000	1	CCV		3 7 2 3 1	125455405	
Parameter .		Reading	Known	Units	Recover%	Limits%		File	
TCLP Endrin		0.0512	0.050	mg/L	102	70.0 - 130		125495464	
TCLP Endrin		0.0488	0.050	mg/L	97.5	70.0 - 130	II.	125495472	
TCLP Endrin		0.0464	0.050	mg/L	92.8	70.0 - 130		125495476	
TCLP gamma-BHC (Lindane)		0.0492	0.050	mg/L	98.5	70.0 - 130	1	125495464	
TCLP gamma-BHC (Lindane)		0.0512	0.050	mg/L	102	70.0 - 130		125495472	
TCLP gamma-BHC (Lindane)		0.0488	0.050	mg/L	97.6	70.0 - 130		125495476	and the first state of the
TCLP Heptachlor		0.048	0.050	mg/L	96.1	70.0 - 130		125495464	THE ROOM TO SERVE
TCLP Heptachlor		0.0443	0.050	mg/L	88.7	70.0 - 130		125495472	1
TCLP Heptachlor		0.0435	0.050	mg/L	86.9	70.0 - 130	1,00	125495476	
TCLP Heptachlor Epoxide		0.0478	0.050	mg/L	95.7	70.0 - 130	H H G	125495464	The second of th
TCLP Heptachlor Epoxide		0.048	0.050	mg/L	96.1	70.0 - 130		125495472	k drij krincijimi (722-
TCLP Heptachlor Epoxide		0.0462	0.050	mg/L	92.4	70.0 - 130		125495476	A TOTAL OF THE COMPANY OF
TCLP Methoxychlor		0.0576	0.050	mg/L	115	70.0 - 130		125495464	
TCLP Methoxychlor		0.0405	0.050	mg/L	81.1	70.0 - 130	In the latest	125495472	
TCLP Methoxychlor		0.0395	0.050	mg/L	79.0	70.0 - 130		125495476	
			10,400,000			.0.0		125455470	
				LC	S Dup	1			

Known

0.100

Limits%

42.6 - 137

LCS%

1 11

72.7

LCSD%

Report Page 19 of 20

RPD

14.7

Limit%

30.0

Units

mg/L

Parameter

TCLP Endrin

LCSD

0.0842

PrepSet

1082716 0.0727

QUALITY CONTROL

Hri 1

Page 13 of 13

CLDV-G

Chaparral Labs Dave Veinotte 861 Hwy 19 Huntsville, TX 77320

Project 1076460

Printed 10/11/2023

				LCS	Dup						
Dama wanter	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Parameter TCLP gamma-BHC (Lindane)	1082716	177-20-2	0.0768		0.100	33.0 - 129	66.1	76.8	mg/L	15.0	30.0
	1082716		0.076		0.100	24.2 - 129	62.6	76.0	mg/L	19.3	30.0
CCLP Heptachlor	1082716		0.0778		0.100	40.8 - 128	67.5	77.8	mg/L	14.2	30.0
TCLP Heptachlor Epoxide TCLP Methoxychlor	1082716	2021212	0.0977		0.100	33.3 - 146	79.3	97.7	mg/L	20.8	30.0
ICLF Methoxychiol	1002.10			1	MS	1 1					
* 4		1 1	17722	. n. u.c		Limits	MS%	MSD%	Units	RPD	Limit%
Parameter	Sample	MIS	MSD	UNK	Known	24.3 - 151	82.4	WISD 70	mg/L	117.12	30.0
CLP Endrin	2232468	0.00412	0	ND	0.005	1	80.4		mg/L		30.0
TCLP gamma-BHC (Lindane)	2232468	0.00402	0	ND	0.005	21.3 - 144	A THE SHALL		mg/L		30.0
TCLP Heptachlor	2232468	0.00362	0	ND	0.005	14.9 - 138	72.4		mg/L		30.0
TCLP Heptachlor Epoxide	2232468	0.00394	0	ND	0.005	29.9 - 133	78.8				30.0
TCLP Methoxychlor	2232468	0.00364	0	ND	0.005	10.3 - 183	72.8		mg/L		30.0
	, ,	1		Sur	rogate						
Baramatar	Sample	Туре	Reading	Known	Units	Recover%	Limits%	File			
Parameter Decachlorobiphenyl	Bumpie	CCV	0.0529	0.100	mg/L	52.9	10.0 - 150	125495464			
		CCV	0.0411	0.100	mg/L	41.1	10.0 - 150	125495472			
Decachlorobiphenyl Decachlorobiphenyl		CCV	0.046	0.100	mg/L	46.0	10.0 - 150	125495476			
	11.1	CCV	0.0493	0.100	mg/L	49.3	10.0 - 150	125495464			
Tetrachloro-m-Xylene (\$urr)	111	CCV	0.0487	0.100	mg/L	48.7	10.0 - 150	125495472	,		
Tetrachloro-m-Xylene (Surr)		CCV	0.0489	0.100	mg/L	48.9	10.0 - 150	125495476			
Tetrachloro-m-Xylene (Surr)	1082501	Blank	0.096	0.100	mg/L	96.0	10.0 - 150	125495468			
Decachlorobiphenyl	1082501	Blank	0.0785	0.100	mg/L	78.5	10.0 - 150	125495468			
Tetrachloro-m-Xylene (Surr)	1082301	Blank	0.0768	0.100	mg/L	76.8	10.0 - 150	125495465			
Decachlorobiphenyl		LCS	0.0708	0.100	mg/L	89.5	10.0 - 150	125495466			
Decachlorobiphenyl	1082716		0.0893	0.100	mg/L	97.5	10.0 - 150	125495467			
Decachlorobiphenyl	1082716	LCS Dup		0.100	mg/L	61.4	10.0 - 150	125495465			
Tetrachloro-m-Xylene (Surr)	1082716		0.0614	0.100		63.0	10.0 - 150	125495466			
Tetrachloro-m-Xylene (Surr)	1082716		0.063	10.000	mg/L	81.5	10.0 - 150	125495467			
Tetrachloro-m-Xylene (Surr)	1082716			0.100	mg/L	88.4	10.0 - 150	125495475			
Decachlorobiphenyl	2232468	MS	0.00442	0.005	mg/L		10.0 - 150	125495475			
Tetrachloro-m-Xylene (Surr)	2232468	MS	0.00417	0.005	mg/L	83.4	10.0 - 150	123473473			107 117 Y

* Out RPD is Relative Percent Difference: abs(r1-r2) / mean(r1,r2) * 100%

Blank - Method Blank (reagent water or other blank matrices that contains all reagents except standard(s) and is processed simultaneously with and under the same conditions as samples, carried through preparation and analytical procedures exactly like a sample; monitors); CCV - Continuing Calibration Verification used to prepare the curve; ppically a mid-range concentration; verifles the continued validity of the calibration curve); MSD -Matrix Spike Duplicate

(same standard (replicate off the

matrix spike; same solution and amount off target analyte added to the MS is added to a third aliquot off sample; quantifles matrix bias and precision.); ICV - Initial (replicate LCS; analyzed when there is insuficient sample flor duplicate or MSD; quantifles Calibration Verification; LCS Dup - Laboratory Control Sample Duplicate

accuracy and precision.); BFB - Bromofluor benzene, GC/MS Tuning Compound (mass intensity used as tuning acceptance criteria.); Surrogate - Surrogate

(mimics the

analyte of interest but is unlikely to be flound in engironmental samplesadded to analytical samples flor QC purposes **ANSI/ASQC E4 1994 Refl#4 TRADE QA Resources Guide.); IS Areas - Internal Standard Area (The area off the internal stadard relative to a check standard Internal Standard is a known concentration off an analytes) that is not a sample component or standard that is added to the sample and standard and is used to measure the relative responses of other analytes in the same sample or standard.); IS RetTime - Internal Standard Retention Time (the time the internal standard comes off the column. Internal Stardard is a known concentration off an analyte(s) that is not a sample component or standard that is added to the sample and standard and is used to measure the relative responses of other analytes in the same sample or standard.); MS - Matrix Spike (same solution and amount off target analyte added to the LCS is added to a second aliquot off samplequantifles matrix bias.);

Report Page 20 of 20

oratoric, Chaparra

Chaparral Laboratories, Inc.

861 State Hwy 19 P.O. Box 1622—Huntsville, TX. 77342 www.chaparrallabs.com reports@chaparrallabs.com Phone: 936-291-1881 FAX: 936-295-1731

Chain of Custody Record

					the second	CHI	HILL AND	5	-	1				
Name	City of Sealy	Sealy		,			100	Same as Cheat	II-	COC Page	ge	l Jo		
Atta:	Travic C	ochem		l ou		Cit	City of Sealy			PO#	#		Colleg	Collection Code
	Thurst Stanis	Sellall				Acc	Accounts Payable	le		Sampler.	•	1	<u> </u>	Special
Address	P.O. Box 517	x 517				P.O	P.O. Box 517		10	Sample Type	ype	Code		
City, State, Zip	Sealy, TX 77474	X 77474				Sea	Sealy, TX 77474			Grab i pt Comp		D Drinking Water NP Non-Potable Water	GA Class	
Phone #				i		070	1766 588		1 2	duo ni		Solids/Soil	P Plastic	HNOS F-HZSQI
Fax#	Hij	alf-li				217	7/7-003-2/01		44.1	48 Hr Comp			W Thowhirlbag==	
E-Mail				ıl		1		1				1		to Na2S2O3
Lab Use Only	only	Project	Collection	Sample	Matrix	Date	Timo				1			S Other
Transie #	Bottle #	1	Point	-	Code	Collected	Collected	(mgd)	Code	(mls)	Pres.		Analysis	
くつ こしごへ	C	City of Sealy WWTP	Belt Press	Grab	do .	72		\dashv	,		, and	As, Cd. Cr. Cu. Hq. Mo. NH3N Ni Ph. Sa TV TO TIG	AO NH3N NI DA C	177
	02	City of Sealy WWTP	Belt Press	Grah	n		-	+		1000	-		%TS, Zn	
	03	City of Sealy WWTP	Rell Proce		2 (8	100	_		Fecal Coliform	
	P9	City of Sealy WWTP	Belt Press	Graph Graph	0				8	100			Fecal Coliform	
	35	City of Sealy WWTP	Belt Press	Gran	0		MANAGE IN	m	×	100			Fecal Coliform	
	06-	City of Sealy WWTP	Re# Press	G.	,		1		W	100	_	!	Fecal Coliform	
	67	City of Sealy MANTE	0	0 0	0				×	100	_		Fecal Coliform	
	80	City of Cook MANATTO	Ser Liao	Grab	co		1		¥	100	_,		Fecal Coliform	
	1 80	City of Geary WWWIT	Belt Press	Grab	S		1		8	100	'		Fecal Coliform	
NA _{DOLO}	5	City of Sealy WWITP	Belt Press	Grab	s				ဂ	250	<u> </u>	1	TOID MOAL	
4	11	City of Sealy WWTP	Belt Press	Grab	S			- (1)	G	120	_		PCR PCR	
	-	city of Sealy WWTP	Digester	Grab	S		1 0		ס	1000	NA NA		SOUR	
)											+			
Sample Conditions as Received from Client Samples intact: Y N KIA	as Received	from Client	Relinq	Relinquished by:	-	Date	7	Time		-	-			
		If N: Temperature	*70	,				,,,,	7	Received by:	Ŋ.	D	Date Time	пе
1	emperature take	5	noted		1	Q_	\$ 1.19/2	15.5						
Sample Conditions as Received by Lab Samples intact: \(\frac{\psi}{V}\) N NA Received on Ice: \(\frac{\psi}{V}\) N NA	as Received	by Lab		10				1 1			-			
Notes:			U			-				23	E C	1 Fronch 9	1/4/23	1537

Email: lab@nwdsls.com www. NWDLS.com

TCEQ Lab ID #: TX204, Accreditation ID: T104704238

August 16, 2023

LABORATORY REPORT

Glen Williams City of Tomball 501 James Street Tomball, TX 77375

Report ID: 20230816173515DLH

RE: City of Tomball - South Plant - Class B

Joena Higginbocham

The following test results meet all NELAP requirements for analytes for which certification is available. Any deviations from our quality system will be noted in the case narrative. All analyses performed by North Water District Laboratory Services, Inc. unless noted.

For questions regarding this report, contact Monica Martin at 936-321-6060.

Sincerely,

Deena Higginbotham

Director of Client Services

ENTERED DEC 1 2023

> Email: lab@nwdsls.com www. NWDLS.com

TCEQ Lab ID #: TX204, Accreditation ID: T104704238

City of Tomball 501 James Street Tomball, TX 77375

Project: City of Tomball - South Plant - Class B

Project Number: 55

Project Manager: Glen Williams

Reported:

08/16/2023 17:35

Sample Results

Client Sample ID: Lab Sample ID:

Digester

23F1980-01

Sample Matrix:

Solid

Date Collected:

06/08/2023 8:15

Collected by:

Hermilo Cortes

				nected by.	Herrino Cortes	
Method	Analyte	Result Q	Units	Batch	Date Analyzed	Analyst
Colilert-18	Fecal coliforms	112000	MPN/g TS dry	BGF1337	06/09/2023 09:14	AKA
Colilert-18	Fecal coliforms	42600	MPN/g TS dry	BGF1337	06/09/2023 09:14	AKA
Colilert-18	Fecal coliforms	84100	MPN/g TS dry	BGF1337	06/09/2023 09:14	AKA
Colilert-18	Fecal coliforms	63600	MPN/g TS dry	BGF1337	06/09/2023 09:14	AKA
Colilert-18	Fecal coliforms	61000	MPN/g TS dry	BGF1337	06/09/2023 09:14	AKA
Colilert-18	Fecal coliforms	31300	MPN/g TS dry	BGF1337	06/09/2023 09:14	AKA
Colilert-18	Fecal coliforms	42600	MPN/g TS dry	BGF1337	06/09/2023 09:14	AKA
SM 2710 B	Specific Oxygen Uptake Rate (SOUR)	0.590	mg O2/hr/g TS @ 20°C dry	BGF1351	06/08/2023 16:10	AKA
SM 2550 B	Temperature °C Field	38.5	°C	BGF1562	06/08/2023 08:15	HCJ
SM 2540 G	% Solids	3.90 V	%	BGF1366	06/09/2023 11:45	JRU / BP

The total solids is diluted to <=2.0% for the S.O.U.R. test when necessary.

CLASS B - Pass

Per Title 30, Texas Administrative Code, Chapter 312, for a Class B to pass, the fecal coliform geometric mean must be less than or equal to 2,000,000 CFU/ug TS and the S.O.U.R must be less than or equal to 1.5 mg O2/hr/g TS.

62,457,14

Email: lab@nwdsls.com

www. NWDLS.com

TCEQ Lab ID #: TX204, Accreditation ID: T104704238

City of Tomball

Project: City of Tomball - South Plant - Class B

501 James Street Tomball, TX 77375 Project Number: 55

niect Number: 55

Project Manager: Glen Williams

Reported: 08/16/2023 17:35

Quality Control

General Chemistry

Analyte	7.00	ResultQual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF1366 - Percen	t Solids						Munti	nemer) 3	- Val 1-	ol n
Blank (BGF1366-BLK1)				Prep	ared: 06/08	3/2023 Analyze	ed: 06/09/20	23		
% Solids		<0.100U	0.100	%		120 111				
Duplicate (BGF1366-DUP1)		Source	e: 23F1810-04	Prep	ared: 06/08	3/2023 Analyze	ed: 06/09/20	23		
% Solids		in to the other	0.100	%		0.902			1.08	10
Duplicate (BGF1366-DUP2)		Source	e: 23F2123-01	Prep	ared: 06/08	3/2023 Analyze	ed: 06/09/20	23		
% Solids			0.100	%		1.65			1.94	10
Reference (BGF1366-SRM1)				Prep	ared: 06/08	3/2023 Analyze	ed: 06/09/20	23		
% Solids			0.100	%	0.350		112	78.9-118		

Email: lab@nwdsls.com

www. NWDLS.com

TCEQ Lab ID #: TX204, Accreditation ID: T104704238

City of Tomball

501 James Street Tomball, TX 77375 Project: City of Tomball - South Plant - Class B

Project Number: 55

Project Manager: Glen Williams

Reported:

08/16/2023 17:35

Quality Control (Continued)

Microbiology

Reporting Spike %REC RPD Source Analyte Result Qual Limit Units Level Result %REC Limits RPD Limit

Batch: BGF1337 - FC Quantitray

Blank (BGF1337-BLK1)

Prepared: 06/08/2023 Analyzed: 06/09/2023

Fecal coliforms

Fecal coliforms

<10.0U

10.0 MPN/g TS

Duplicate (BGF1337-DUP1)

Source: 23F1980-01

Prepared: 06/08/2023 Analyzed: 06/09/2023

256 MPN/g TS

112000

89.4

200

NWDLS Class B Report Revison1.2 Effective: 7/6/2022

City of Tomball

501 James Street

Tomball, TX 77375

8725 Fawn Trail The Woodlands, TX 77385 Tel: (936) 321-6060 | Fax: (936) 321 6061

Email: lab@nwdsls.com www. NWDLS.com

TCEQ Lab ID #: TX204, Accreditation ID: T104704238

Project: City of Tomball - South Plant - Class B

Project Number: 55

Project Manager: Glen Williams

Reported:

08/16/2023 17:35

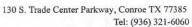
Term and Qualfier Definitions

rtem	Definition
U	Non-detected compound.
V	Analyte was detected in both sample and method blank.
DF	Dilution Factor - the factor applied to the reported data due to sample preparation, dilution, or moisture content
RPD	Relative Percent Difference
%REC	Percent Recovery
Source	Sample that was matrix spiked or duplicated

CHAIN OF CUSTODY RECORD

North Water District Laboratory Services 130 S. Trade Center Pkwy, Conroe Tx 77385 (936) 321-6060 - lab@nwdls.com

TCEQ T104704238-23-39


Lab PM : Deena Higginbotham	Project Name: City of Tomball - South Plant - Class B	Schedule Comments:
City of Tomball Glen Williams 501 James Street Tomball, TX 77375 Phone: 832-349-8027	Project Comments: 12411 Holderrieth Rd Tomball 77375 Combo # 9898 Glen Williams - 832-349-8027 ENTER CODE TO CLOSE GATE WHEN YOU LEAVE	Heal toward

Sample ID Collection Point Date/Time Sample Type Container Analysis/Preservation Field Results 23F1980-01 Digester Begin Sampled A HDPE S150mL FC/CB-OT-LR Na2S2O3 Temp C Field 33.5 € C 23F1980-01 Digester 6/8/2023 \$ Grab A HDPE S150mL FC/CB-OT-LR Na2S2O3 Temp C Field 33.5 € C Na2S2O3 B HDPE S150mL TS-2540 G 4°C A°C A°C A°C A°C A°C B°C<	Tomball, TX 77375 Phone: 832-349-8027	Sireet (77375 -349-8027								I ma ⁿ
Begin Sampled A HDPE S150mL FC/CB-QT-LR Na2S2O3 Na2S2O3 Temp C Field 6/8/2023 S Grab A HDPE S150mL FC/CB-QT-LR Na2S2O3 Na2S2O3 Temp C Field Na2S2O3 B HDPE S150mL SOUR-2710 4°C A°C A°C Na2S2O3 D HDPE S150mL TS-2540 G 4°C A°C Na2S2O3 E HDPE S150mL Na2S2O3 F HDPE S150mL Na2S2O3 G HDPE S150mL Na2S2O3 H HDPE 11 I HDPE 250mL	Sample ID	Collection Point	Date/Time	Date/Time	Sample Type	Container	Analysis/Preservation		Field Results	
6/8/2023 S Grab A HDPE S150mL FC/CB-QT-LR Na2S203 Temp C Field Na2S203 SOUR-2710 4°C Na2S203 SOUR TS-2540 G 4°C C HDPE S150mL Na2S203 D HDPE S150mL Na2S203 F HDPE S150mL Na2S203 F HDPE S150mL Na2S203 F HDPE S150mL Na2S203 F HDPE S150mL Na2S203 G HDPE S150mL Na2S203 H HDPE S150mL Na2S203 H HDPE S150mL Na2S203 H HDPE S150mL Na2S203 H HDPE S150mL Na2S203			Begin	Sampled						
B HDPE S150mL Na2S203 C HDPE S150mL Na2S203 D HDPE S150mL Na2S203 E HDPE S150mL Na2S203 F HDPE S150mL Na2S203 G HDPE S150mL Na2S203 H HDPE 11 I HDPE 150mL	23F1980-01	Digester		6/8/2023		A HDPE S150mL Na2S2O3		23	Temp C Field	38.56
C HDPE \$150mL Na2S203 C HDPE \$150mL Na2S203 D HDPE \$150mL Na2S203 E HDPE \$150mL Na2S203 F HDPE \$150mL Na2S203 G HDPE \$150mL Na2S203 H HDPE \$150mL Na2S203 H HDPE \$150mL Na2S203)		
C HDPE \$150mL TS-2540 G Na2S203 D HDPE \$150mL Na2S203 F HDPE \$150mL Na2S203 G HDPE \$150mL Na2S203 H HDPE 1L I HDPE 250mL				1,00		Na2S2O3	40 G			
				78.7		C HDPE S150mL				
D HDPE S150mL Na2S203 E HDPE S150mL Na2S203 F HDPE S150mL Na2S203 G HDPE S150mL Na2S203 H HDPE 1L I HDPE 1L						Na2S2O3				
Na2S2O3 E HDPE S150mL Na2S2O3 F HDPE S150mL Na2S2O3 G HDPE S150mL Na2S2O3 H HDPE 1L H HDPE 1L H HDPE 250mL						D HDPE S150mL				
E HDPE S150mL Na2S203 F HDPE S150mL Na2S203 G HDPE S150mL Na2S203 H HDPE 1L I HDPE 1L						Na2S203				
Na2S203 F HDPE S150mL Na2S203 G HDPE S150mL Na2S203 H HDPE 1L I HDPE 250mL						E HDPE S150mL				
F HDPE S150mL Na2S203 G HDPE S150mL Na2S203 H HDPE 1L I HDPE 1250mL						Na2S203				
Na2S2O3 G HDPE S150mL Na2S2O3 H HDPE 1L I HDPE 250mL						F HDPE S150mL		1/		
G HDPE S150mL Na2S2O3 H HDPE 1L I HDPE 250mL						Na2S203				
Na2S2O3 H HDPE 1L I HDPE 250mL						G HDPE S150mL				
H HDPE 1L I HDPE 250mL						Na2S2O3		Ų.		
1 HDPE 250mL						H HDPE 1L				
						I HDPE 250mL				

Sampler (Signature) Sampler (Signature) Sampler (Signature) Print Name H. C. est Affiliation L. C. est Affiliation Custody Seal: Yes / No Appropriate Containers: Yes / No Container Infact: Yes / No Container Infact: Yes / No Container Infact: Yes / No Container Samples Agree Custody Samples Agree Container Infact: Yes / No Container Infact: Yes	Lab Preservation: H2SO4 HNO3	NaOH Other:	ier.
Relinquished By. (Signature) Date/Time	ircte and rite ID Below)		
Relinquished By: (Signature) H. (2/) es Relinquished To Lab By: (Signature) Pate/Time 1.8.03 13.45 1	ate/Time Received By: (Signature)		Date/Time
Selinquished To Lab By: (Signature) Selinquished To Lab By: (Signature) COC Labels Agree: Yes / No Appropriate Volume: Yes / No Re Appropriate Containers: Yes / No Coolers Intact: Yes / No Se	ate/Time Received By: (Signature)		Date/Time
COC Labels Agree: Yes / No Appropriate Volume: Yes / No Appropriate Containers: Yes / No Coolers Intact: Yes / No	Received for Laboratory By. (Signature)	TZOR	Date/Time/345
	No Received on Ice: Yes / No No Samples Accepted: Yes / No	Temperature: Thermometer ID:	၁့

Tomball

Page 6 of 6

Email: lab@nwdls.com www. NWDLS.com

August 01, 2023

Laboratory Report

Glen Williams
City of Tomball
501 James Street
Tomball, TX 77375

Report ID: 20230801105311AEN

The following test results meet all NELAP requirements for analytes for which certification is available. Any deviations from our quality system will be noted in the case narrative. All analyses performed by North Water District Laboratory Services, Inc. unless noted.

For questions regarding this report, contact Monica Martin at 936-321-6060.

Sincerely,

Aundra Noe For Deena Higginbotham

Director of Client Services

Tel: (936) 321-6060 Email: lab@nwdls.com www. NWDLS.com TCEQ T104704238-23-39

City of Tomball 501 James Street Tomball, TX 77375

Reported: 08/01/2023 10:53

Sample Results

Client Sample ID: Lab Sample ID:

Centrifuge

23F1979-01

Sample Matrix:

Solid

Date Collected:

06/08/2023 7:00

City of Tomball - South Plant - Annual Sludge

55

Collected by:

Hermilo Cortes

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
Organics by G	С									
SW-8082	PCBs, Total	А	<0.150U	mg/kg (dry wt) dry	10	0.0750	0.150	BGF2732	06/26/2023 08:	27 KRB
5W-8082 SW-8082	Surrogate: 2,4,5,6 Tetrachloro-m-xylen Surrogate: Decachlorobiphenyl-surr	e-suri	133% 90.5%	60-140 60-140					06/26/2023 08: 06/26/2023 08:	
Metals, Total	n man and and a								um I I r =	
SW-6010C	Arsenic	Α	4.44	mg/kg dry	1	0.437	1,99	BGF2504	06/28/2023 12:	08 FAL
SW-6010C	Cadmium	Α	0.540	mg/kg dry	1	0.0517	0.199	BGF2504	06/28/2023 12:	TAME IN
SW-6010C	Chromium	Α	17.6	mg/kg dry	1	0.747	0.998	BGF2504	06/28/2023 12:	U 75
5W-6010C	Copper	Α	316	mg/kg dry	5	1.06	9.95	BGF2504	06/28/2023 14:	
SW-7471B	Mercury	Α	0.491	mg/kg dry	5	0.0499	0.0997	BGF2130	06/14/2023 16:3	
SW-6010C	Lead	Α	11.7	mg/kg dry	1	0.507	0.998	BGF2504	06/28/2023 12:	
SW-6010C	Molybdenum	Α	4.87	mg/kg dry	1	0.998	0.998	BGF2504	06/28/2023 12:0	
SW-6010C	Nickel	Α	11.3	mg/kg dry	1	0.269	0.998	BGF2504	06/28/2023 12:0	8 FAL
SW-6010C	Potassium	Α	1700	mg/kg dry	1	17.1	199	BGF2504	06/28/2023 12:0	8 FAL
SW-6010C	Selenium	Α	4.47	mg/kg dry	1	0.777	1.99	BGF2504	06/28/2023 12:0	
5W-6010C	Total Phosphorus	Α	8950	mg/kg dry	1	8.37	199	BGF2504	06/28/2023 12:0	8 FAL
SW-6010C	Zinc	Α	737	mg/kg dry	20	20.0	20.0	BGF2504	06/28/2023 14:	4 FAL
General Chemi	stry									
EPA 350.2	Ammonia as N	А	5880	mg/kg dry	1	76.7	153	BGF1604	06/12/2023 13:0	3 GIW
SW-9056A	Nitrate as N	Α	88.8	mg/kg dry	1	3,88	9.70	BGF1622	06/09/2023 17:1	1 ORP
SW-9065	Free Liquids	Α	AbsentU	11. 2 00.1113	1	0.00	1.00	BGF2012	06/13/2023 15:3	9 EM
EPA 351.3	Total Kjeldahl Nitrogen - (TKN)	N	50800	mg/kg dry	1	194	194	BGF1608	06/12/2023 09:2	9 GIW
SM 2540 G	% Solids	Α	12.9V	%	1	0.100	0.100	BGF1881	06/13/2023 11:4	4 JRU
TCLP										
5W-6010C	Arsenic	Α	<5.00U	mg/L	1	0.0200	5.00	BGF2074	06/15/2023 14:3	0 твв
5W-6010C	Barium	Α	<100 V2, U	mg/L	1	0.0100	100	BGF2074	06/15/2023 14:3	0 твв
SW-6010C	Cadmium	Α	<1.00U	mg/L	1	0.00100	1.00	BGF2074	06/15/2023 14:3	0 твв
6W-6010C	Chromium	Α	<5.00U	mg/L	1	0.00500	5.00	BGF2074	06/15/2023 14:3	0 твв
SW-8151	2,4-D	Α	<10.0 C+, U	mg/L	2	0.000476	10.0	BGF2849	07/09/2023 02:0	5 KRB
SW-8151	Silvex (2,4,5-TP)	Α	<1.00C+, U	mg/L	2	0.000476	1.00	BGF2849	07/09/2023 02:0	5 KRB
SW-8151	Surrogate: DCAA-surr	esa nasa	129%	70-130			*******		07/09/2023 02:0	
5W-7471B	Mercury	Α	<0.200U	mg/L	1	0.000200	0.200	BGF1994	06/15/2023 13:2	
SW-6010C	Lead	Α	<5.00U	mg/L	1	0.0100	5.00	BGF2074	06/15/2023 14:3	0 твв

A = Accredited, N = Not Accredited or Accreditation not available

Email: lab@nwdls.com www. NWDLS.com TCEQ T104704238-23-39

City of Tomball 501 James Street Tomball, TX 77375

Reported:

08/01/2023 10:53

Sample Results (Continued)

Client Sample ID:

Centrifuge (Continued)

Sample Matrix:

Solid

Lab Sample ID:

23F1979-01

Date Collected:

06/08/2023 7:00

City of Tomball - South Plant - Annual Sludge

55

Collected by: Hermilo Cortes

Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
TCLP (Cont	inued)									
SW-8081	Chlordane (Total)	Α	<0.0300C+, U	mg/L	1	3.00E-6	0.0300	BGF2470	07/13/2023 00:11	cdg
SW-8081	Endrin	N	<0.0200U	mg/L	1	3.00E-6	0.0200	BGF2470	07/13/2023 00:11	cdg
SW-8081	gamma-BHC (Lindane, gamma-HexachlorocyclohexanE)	Α	<0.400C+, U	mg/L	1	3.00E-6	0.400	BGF2470	07/13/2023 00:11	cdg
5W-8081	Heptachlor	Α	<0.00800C+, U	mg/L	1	3.00E-6	0.00800	BGF2470	07/13/2023 00:11	cdg
SW-8081	Heptachlor epoxide	Α	<0.00800U	mg/L	1	3.00E-6	0.00800	BGF2470	07/13/2023 00:11	cdg
SW-8081	Toxaphene (Chlorinated Camphene)	Α	<0.500U	mg/L	1	3.00E-6	0.500	BGF2470	07/13/2023 00:11	cdg
SW-8081	Surrogate: 2,4,5,6 Tetrachloro-m-xylene	-suri	106%	60-140				**********	07/13/2023 00:11	
SW-8081	Surrogate: Decachlorobiphenyl-surr		64.7%	60-140					07/13/2023 00:11	
SW-6010C	Selenium	Α	<1.00U	mg/L	1	0.0200	1.00	BGF2074	06/15/2023 14:30	TBB
SW-6010C	Silver	Α	<5.00U	mg/L	1	0.00200	5.00	BGF2074	06/16/2023 11:43	TBB
SW-8270	2,4,5 & 2,4,6 -Trichlorophenol	N	<0.0100U	mg/L	1	0.00500	0.0100	BGF1942	07/11/2023 19:54	KRB
SW-8270	2,4-Dinitrotoluene (2,4-DNT)	Α	<0.130U	mg/L	1	0.00250	0.130	BGF1942	07/11/2023 19:54	KRB
SW-8270	2-Methylphenol	Α	<200U	mg/L	1	0.00250	200	BGF1942	07/11/2023 19:54	KRB
5W-8270	3,4-Methylphenol	Α	<200U	mg/L	1	0.00250	200	BGF1942	07/11/2023 19:54	KRB
SW-8270	Hexachlorobenzene	Α	<0.130U	mg/L	1	0.00250	0.130	BGF1942	07/11/2023 19:54	KRB
SW-8270	Hexachlorobutadiene	Α	<0.500U	mg/L	1	0.00250	0.500	BGF1942	07/11/2023 19:54	KRB
SW-8270	Hexachloroethane	Α	<3.00U	mg/L	1	0.00250	3.00	BGF1942	07/11/2023 19:54	KRB
SW-8270	Nitrobenzene	Α	<2.00U	mg/L	1	0.00250	2.00	BGF1942	07/11/2023 19:54	KRB
SW-8270	Pentachlorophenol	Α	<100U	mg/L	1	0.00250	100	BGF1942	07/11/2023 19:54	KRB
SW-8270	Pyridine	Α	<5.00U	mg/L	1	0.00250	5.00	BGF1942	07/11/2023 19:54	KRB
SW-8270	Surrogate: 2-Fluorobiphenyl-surr		105%	54.6-148		*******	* * * * * * * * * *		07/11/2023 19:54	
SW-8270	Surrogate: 2-Fluorophenol-surr		98.3%	55-152					07/11/2023 19:54	
SW-8270	Surrogate: 2,4,6-Tribromophenol-surr		118%	52.4-136					07/11/2023 19:54	
SW-8270	Surrogate: Nitrobenzene-d5-surr		109%	52-162					07/11/2023 19:54	
SW-8270	Surrogate: Phenol-d5-surr		96.1%	58.7-152					07/11/2023 19:54	
SW-8270	Surrogate; p-Terphenyl-d14-surr		95.8%	51.9-147					07/11/2023 19:54	

A = Accredited, N = Not Accredited or Accreditation not available

130 S. Trade Center Parkway, Conroe TX 77385

Tel: (936) 321-6060 Email: lab@nwdls.com www. NWDLS.com

TCEQ T104704238-23-39

City of Tomball 501 James Street Tomball, TX 77375

Reported:

08/01/2023 10:53

Sample Results

(Continued)

Client Sample ID: Lab Sample ID: Centrifuge

23F1979-01RE1

ontinueu)

Sample Matrix:

Solid

Date Collected: 06/

06/08/2023 7:00

City of Tomball - South Plant - Annual Sludge

55

Collected by:

Hermilo Cortes

Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
								I Jan H	
Methoxychlor (Rerun)	Α	<10.0U	mg/L	1	3.00E-6	10.0	BGF2470	07/14/2023 01:21	cdg
Surrogate: 2,4,5,6 Tetrachloro-m-xylend	e-suri	91.0%	60-140		**********			07/14/2023 01:21	
Surrogate: Decachlorobiphenyl-surr (Re	run)	71.0%	60-140					07/14/2023 01:21	
	Methoxychlor (Rerun) Surrogate: 2,4,5,6 Tetrachloro-m-xylene	Methoxychlor (Rerun) A Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr	Methoxychlor (Rerun) A <10.0U Surrogate: 2,4,5,6 Tetrachloro-m-xylene-suri 91.0%	Methoxychlor (Rerun) A <10.0U mg/L Surrogate: 2,4,5,6 Tetrachloro-m-xylene-suri 91.0% 60-140	Methoxychlor (Rerun) A <10.0U mg/L 1 Surrogate: 2,4,5,6 Tetrachloro-m-xylene-suri 91.0% 60-140	Methoxychlor (Rerun) A <10.0U mg/L 1 3.00E-6 Surrogate: 2,4,5,6 Tetrachloro-m-xylene-suri 91.0% 60-140	Methoxychlor (Rerun) A <10.0U mg/L 1 3.00E-6 10.0 Surrogate: 2,4,5,6 Tetrachloro-m-xylene-sun 91.0% 60-140	Methoxychlor (Rerun) A <10.0U mg/L 1 3.00E-6 10.0 BGF2470 Surrogate: 2,4,5,6 Tetrachloro-m-xylene-sun 91.0% 60-140	Methoxychlor (Rerun) A <10.0U mg/L 1 3.00E-6 10.0 BGF2470 07/14/2023 01:21 Surrogate: 2,4,5,6 Tetrachloro-m-xylene-sun 91.0% 60-140 07/14/2023 01:21

Reported: 08/01/2023 10:53

TCEQ T104704238-23-39

Quality Control

Organics by GC

Analyte		Result Qual	pungé Marah	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF2732 - SW-3570							Çnew	(Mar (19) (1	COLANG	- CECEN	DN 100
Blank (BGF2732-BLK1)					Pre	pared: 6/16/	2023 Analyze	d: 6/26/2023			
Aroclor-1016 (PCB-1016)		<0.0198 U		0.0198	mg/kg (dry wt) wet	•	30.0				
Aroclor-1260 (PCB-1260)		<0.0198 U		0.0198	mg/kg (dry wt) wet						
PCBs, Total		<0.0198 U		0.0198	mg/kg (dry wt) wet						
Surrogate: 2,4,5,6				0.00641	mg/kg (dry	0,00593	**********	108	60-140		
Tetrachloro-m-xylene-surr					wt) wet			250	PE 22		
Surrogate: Decachlorobiphenyl-surr	No.		THE S	0.00585	mg/kg (dry wt) wet	0.00593		98.7	60-140		n" H
LCS (BGF2732-BS1)					Pre		2023 Analyze				
Aroclor-1016 (PCB-1016)		0.0417			mg/kg (dry wt) wet	0.0598		69.7	60-140		
Aroclor-1260 (PCB-1260)		0.0641		0.0199	mg/kg (dry wt) wet	0.0598		107	60-140		
PCBs, Total		0.0529		0.0199	mg/kg (dry wt) wet	0.0598		88.4	60-140		
Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr	ar bes bes			0.00648	mg/kg (dry wt) wet	0.00598		108	60-140		
Surrogate: Decachlorobiphenyl-surr				0.00633	mg/kg (dry wt) wet	0.00598		106	60-140		
LCS Dup (BGF2732-BSD1)					Pre	pared: 6/16/	/2023 Analyze	d: 6/26/2023			
Aroclor-1016 (PCB-1016)		0.0384			mg/kg (dry wt) wet	0.0585		65.7	60-140	8.19	40
Aroclor-1260 (PCB-1260)		0.0590			mg/kg (dry wt) wet	0.0585		101	60-140	8.32	40
PCBs, Total		0.0487	ng garanen	0.0195	mg/kg (dry wt) wet	0.0585	g <u>177</u> 6 ym 1260 (m	83,2	60-140	8.27	40
Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr				0.00567	mg/kg (dry wt) wet	0.00585		97.0	60-140		
Surrogate: Decachlorobiphenyl-surr				0.00575	mg/kg (dry wt) wet	0.00585		98.3	60-140		
Matrix Spike (BGF2732-MS1)		Sour	ce: 23F:	1467-01	Pre	pared: 6/16/	/2023 Analyze	d: 6/26/2023			
Aroclor-1016 (PCB-1016)		3.90		2.00	mg/kg (dry wt) dry	5.99	<2.00	65.0	60-140		
Aroclor-1260 (PCB-1260)		5.80		2.00	mg/kg (dry wt) dry	5.99	<2,00	96,9	60-140		
PCBs, Total		4.86		2.00	mg/kg (dry wt) dry	5.99	<2.00	81.1	60-140		
Surrogate: 2,4,5,6		*********		0.762	mg/kg (dry	0.599		127	60-140	******	
Tetrachloro-m-xylene-surr					wt) dry						
Surrogate: Decachlorobiphenyl-surr				0.570	mg/kg (dry wt) dry	0.599		95.2	60-140		

Matrix Spike Dup (BGF2732-MSD1)

Source: 23F1467-01

Prepared: 6/16/2023 Analyzed: 6/26/2023

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 08/01/2023 10:53

Quality Control (Continued)

Organics by GC (Continued)

Analyte	Result		Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF2732 - SW-3570 (Con	tinued)								CITY	
Matrix Spike Dup (BGF2732-MSD1)		Source: 23F146	7-01	Pre	pared: 6/16	/2023 Analyze	d: 6/26/2023	3		
Aroclor-1016 (PCB-1016)	4.58		1.99	mg/kg (dry wt) dry	5.96	<1.99	76.8	60-140	16.1	40
Aroclor-1260 (PCB-1260)	6.35		1.99	mg/kg (dry wt) dry	5.96	<1.99	106	60-140	8.97	40
PCBs, Total	5.47		1.99	mg/kg (dry wt) dry	5.96	<1.99	91.7	60-140	11.9	40
Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr		later	0.780	mg/kg (dry wt) dry	0.596		131	60-140		
Surrogate: Decachlorobiphenyl-surr			0.645	mg/kg (dry wt) dry	0.596		108	60-140		

Reported:

08/01/2023 10:53

Quality Control (Continued)

Metals, Total

Zinc

Total Phosphorus

Analyte	Result	Qual		Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF2130 - SW-7471						(Ann)	avalue de la	17/1 18/1	Bur bu	n - 1435 5	pagas inm
MDL Check (BGF2130-MRL1)						Prepared 8	& Analyzed: 6,	/14/2023			
Mercury	0.00974	U.	0.114	0.0199	mg/kg wet	0.00993		98.0			
Matrix Spike (BGF2130-MS1)		Source	e: 23F1	1434-18		Prepared 8	& Analyzed: 6,	/14/2023			
Mercury	0.470	J1	ultin	0.0199	mg/kg dry	0.249	0.168	121	80-120		
Matrix Spike Dup (BGF2130-MSD1)		Source	e: 23F:	1434-18		Prepared 8	& Analyzed: 6,	/14/2023			
Mercury	0.414		120	0.0199	mg/kg dry	0.249	0.168	98.9	80-120	12.5	20
Batch: BGF2504 - SW-3050 for 6	010										
Blank (BGF2504-BLK1)					Pre	epared: 6/15	/2023 Analyze	ed: 6/28/202	3		
Arsenic	<1.77	U		1.77	mg/kg wet						
Cadmium	< 0.177	U		0.177	mg/kg wet						
Chromium	<0.885	U		0.885	mg/kg wet						
Copper	<1.77	U		1.77	mg/kg wet						
Lead	<0.885	U		0.885	mg/kg wet						
Molybdenum	< 0.885	U		0.885	mg/kg wet						
Nickel	<0.885	U		0.885	mg/kg wet						
Potassium	<177	U		177	mg/kg wet						
Selenium	<1.77	U		1.77	mg/kg wet						
Total Phosphorus	<177			177	mg/kg wet						
Zinc	<0,885	U		0,885	mg/kg wet						
LCS (BGF2504-BS1)					Pre	epared: 6/15	/2023 Analyze	ed: 6/28/202	3		
Arsenic	41.8			1.73	mg/kg wet	43.3		96.7	80-120		
Cadmium	4.04			0.173	mg/kg wet	4.33		93.5	80-120		
Chromium	20.7			0.867	mg/kg wet	21.6		95.9	80-120		
Copper	41.2			1.73	mg/kg wet	43.3		95.2	80-120		
Lead	20.7			0.867	mg/kg wet	21.6		95.8	80-120		
Molybdenum	21.4			0.867	mg/kg wet	21.6		99.0	80-120		
Nickel	20.7			0.867	mg/kg wet	21.6		95.7	80-120		
Potassium	3930			173	mg/kg wet	4330		90.9	80-120		
Selenium	41.3			1.73		43.3		95.5	80-120		
	477.7										

173 mg/kg wet

0.867 mg/kg wet

4330

21.6

97.7

96.1

80-120

80-120

4230

20.8

A = Accredited, N = Not Accredited or Accreditation not available

Reported:

08/01/2023 10:53

Quality Control (Continued)

Metals, Total (Continued)

Analyte		Result	Qual		Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF2504 - SW-	3050 for 6	010 (Con	tinue	ed)				1907.009.011		151120	1 1 1 1 1	ASSE MEA
Matrix Spike (BGF2504-MS		- /			0762-01	Pre	enared: 6/15	/2023 Analyze	rd: E/38/303			
Arsenic		43.4			2.00	mg/kg dry	50.0	4.56	77.7	75-125		
Cadmium		4.25			0.200	mg/kg dry	5.00	0.400	77.0	75-125		
Chromium		34.9	J1		1.00	mg/kg dry	25.0	17.1	71.2	75-125		
Copper		956			20.0	mg/kg dry	1050	150	76.8	75-125		
Lead		30.9	31		1.00	mg/kg dry	25.0	12.3	74.5	75-125		
Molybdenum		25.0			1.00	mg/kg dry	25.0	6.72	73.3	75-125		
Nickel		31.6			1.00	mg/kg dry	25.0	14.1	69.8	75-125		
Potassium		9250			200	mg/kg dry	5000	5210	80.7	75-125		
Selenium		44.2			2.00	mg/kg dry	50.0	3.53	. 81.4	75-125		
Total Phosphorus		24200			2000	mg/kg dry	10000	15400	88.0	75-125		
Zinc		1390			50.1	mg/kg dry	1020	493	87.9	75-125		
Matrix Spike (BGF2504-MS	2)		Sau	225	2769-01	D		(2022 4 - 1	1. 6 (20 (200)			
Arsenic	2)	84.2	Sourc	e: 23F.			10 10 10	/2023 Analyze				
Cadmium		7.62			2.92 0.292	mg/kg dry	73.2	13.0	97.2	75-125		
Chromium		7.62			14.7	mg/kg dry	7.32	0.702	94.5	75-125		
Copper					14.7	mg/kg dry	36.6	39.1	98.7	75-125		
Lead		1550 40.1				mg/kg dry	1540	242	85.2	75-125		
Molybdenum					1.47	mg/kg dry	36.6	6.12	92.8	75-125		
Nickel		41.1 46.6			1.47 1.47	mg/kg dry mg/kg dry	36.6 36.6	7.57	91.6	75-125		
Potassium		13200			292			12.6	93.0	75-125		
Selenium						mg/kg dry	7320	5710	103	75-125		
Total Phosphorus		80.8	14		2.92	mg/kg dry	73.2	8.38	98.9	75-125		
Zinc		32100 2570	11		2920 73.3	mg/kg dry mg/kg dry	14600 1500	23600 1040	58.0 102	75-125 75-125		
	* 10 m . at 10 m	2370			75.5	mg/kg dry	1300	1010	102	73-123		
Matrix Spike Dup (BGF2504	-MSD1)			e: 23E	0762-01		WW	2023 Analyze	d: 6/28/2023	3		
Arsenic		39.4	J1		2.00	mg/kg dry	50.0	4.56	69.6	75-125	9.80	20
Cadmium		3.90	J1		0.200	mg/kg dry	5.00	0.400	70.0	75-125	8.55	20
Chromium		31.6	J1		1.00	mg/kg dry	25.0	17.1	58.0	75-125	9.95	20
Copper		802	J1		20.0	mg/kg dry	1050	150	62.2	75-125	17.4	20
Lead		28.0	J1		1.00	mg/kg dry	25.0	12.3	62.8	75-125	9.97	20
Molybdenum		22.7	J1		1.00	mg/kg dry	25.0	6.72	64.1	75-125	9.61	20
Nickel		29.0	J1		1.00	mg/kg dry	25.0	14.1	59.5	75-125	8.57	20
Potassium		8200	J1		200	mg/kg dry	5000	5210	59.8	75-125	12.0	20
Selenium		40.0	J1		2.00	mg/kg dry	50.0	3,53	73.0	75-125	9.97	20
Total Phosphorus		22200	J1		2000	mg/kg dry	10000	15400	68.7	75-125	8.32	20
Zinc		984	J1		50.1	mg/kg dry	1020	493	47.9	75-125	34.4	20

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 08/01/2023 10:53

Quality Control (Continued)

Metals, Total (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF2504 - SW-3050 1	for 6010 (Con	tinued)				midentary to	LUNE VIII	THE PARTY	- wii2/29	elabor de
Matrix Spike Dup (BGF2504-MSD2)	Source: 2	3F2769-01	Pre	pared: 6/15	/2023 Analyze	d: 6/28/202	3		
Arsenic	83.7		2.93	mg/kg dry	73.2	13.0	96.5	75-125	0.604	20
Cadmium	7.60		0.293	mg/kg dry	7.32	0.702	94.2	75-125	0.256	20
Chromium	73.6		14.7	mg/kg dry	36.6	39.1	94.2	75-125	2.19	20
Copper	1630		146	mg/kg dry	1540	242	90.4	75-125	5.02	20
Lead	40.0		1.47	mg/kg dry	36.6	6.12	92.4	75-125	0,331	20
Molybdenum	40.9		1.47	mg/kg dry	36.6	7.57	91.1	75-125	0.433	20
Nickel	46.2		1.47	mg/kg dry	36.6	12.6	91.9	75-125	0.863	20
Potassium	13200		293	mg/kg dry	7320	5710	102	75-125	0.216	20
Selenium	80.4		2.93	mg/kg dry	73.2	8.38	98.4	75-125	0.442	20
Total Phosphorus	29900	J1	2930	mg/kg dry	14600	23600	43.0	75-125	7.08	20
Zinc	2720		73.4	mg/kg dry	1500	1040	111	75-125	5.43	20
Post Spike (BGF2504-PS1)		Source: 2	3E0762-01	Pre	pared: 6/15	/2023 Analyze	d: 6/28/202	3		
Arsenic	533		020,02 01	ug/L	500	43.1	97.9	80-120		
Cadmium	53.8			ug/L	50.0	3.78	100	80-120		
Chromium	398			ug/L	250	162	94.6	80-120		
Copper	2120	11		ug/L	500	1420	141	80-120		
Lead	349	31		ug/L	250	116	93.3	80-120		
Molybdenum	300			ug/L	250	63,5	94.6	80-120		
Nickel	367			ug/L	250	134	93.2	80-120		
Potassium	94200			ug/L	50000	49200	89.8	80-120		
Selenium	544			ug/L	500	33.4	102	80-120		
Total Phosphorus	206000	11		ug/L	50000	145000	122	80-120		
Zinc	5580			ug/L	250	4660	367	80-120		
Post Spike (BGF2504-PS2)		Source: 2	3F2769-01	Pre	pared: 6/15	/2023 Analyze	d: 6/28/2023	3		
Arsenic	573			ug/L	500	84.1	97.7	80-120		
Cadmium	54.1			ug/L	50.0	4.53	99.1	80-120		
Chromium	517			ug/L	250	252	106	80-120		
Copper	1750	11		ug/L	500	1560	37.8	80-120		
Lead	274	5.5		ug/L	250	39.5	93.8	80-120		
Molybdenum	290			ug/L	250	48.9	96.5	80-120		
Nickel	318			ug/L	250	81.3	94.9	80-120		
Potassium	89200			ug/L	50000	36800	105	80-120		
Selenium	562			ug/L	500	54.1	102	80-120		
Total Phosphorus	175000	31		ug/L	50000	152000	46.6	80-120		
Zinc	7940			ug/L	250	6730	483	80-120		

A = Accredited, N = Not Accredited or Accreditation not available

Reported:

08/01/2023 10:53

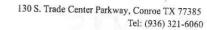
Quality Control (Continued)

Metals, Total (Continued)

Analyte	1714		Result (Qual	Rep	oorting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	
Batch: BGF2504 -	SW-3050	for 601	0 (Conti	nued)			1	eddinas i jil	ali Claver I	107-W	in the fact of	W.	
Dilution Check (BGF2	504-SRL1)		S	ource:	23E0762	-01	Pre	pared: 6/15	/2023 Analyze	d: 6/28/2023				
Arsenic			4.74 L	J		10.0	mg/kg dry		4.56			4.04	10	
Cadmium			0.310 L	J		1.00	mg/kg dry		0.400			25.3	10	
Chromium			14.2			5,01	mg/kg dry		17.1			18.3	10	
Copper			150			10.0	mg/kg dry		150			0.0791	10	
Lead			9.48			5.01	mg/kg dry		12.3			25.5	10	
Molybdenum			5.57			5.01	mg/kg dry		6.72			18.7	10	
Nickel			11.5			5.01	mg/kg dry		14.1	**		20.5	10	
Potassium			4570 J	1		1000	mg/kg dry		5210			13.1	10	
Selenium			<10.0 L	j.		10.0	mg/kg dry		<10.0			200	10	
Total Phosphorus			15400		hila	1000	mg/kg dry		15400			0.0791	10	
Dilution Check (BGF2	504-SRL2)		s	ource:	23F2769-	-01	Pre	pared: 6/15	/2023 Analyze	d: 6/28/2023				
Arsenic			18.6			14.6	mg/kg dry		13.0			35.4	10	
Cadmium			0.828	j.		1.46	mg/kg dry		0.702			16.5	10	
Chromium			51.5			7.34	mg/kg dry		39.1			27.5	10	
Copper			242			14.6	mg/kg dry		242			0.00334	10	
Lead			7.82			7.34	mg/kg dry		6.12			24.3	10	
Molybdenum			9.92			7.34	mg/kg dry		7.57			26.8	10	
Nickel			17.1			7.34	mg/kg dry		12.6			30.2	10	
Potassium			7230 J	1		1460	mg/kg dry		5710			23.5	10	
Selenium			12.2 L	1		14.6	mg/kg dry		8.38			36.9	10	
Total Phosphorus			23600			1460	mg/kg dry		23600			0,00330	10	

A = Accredited, N = Not Accredited or Accreditation not available

Reported:


08/01/2023 10:53

Quality Control (Continued)

General Chemistry

Analyte	Resul	t Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF1604 - NH3-N T						1879	All the state	47 (1)	- LDA	William Des
Blank (BGF1604-BLK1)				Pr	epared: 6/9/	2023 Analyze	ed: 6/12/2023			
Ammonia as N	<10.0) U	10.0	mg/kg wet		N JEF				A MI COM
LCS (BGF1604-BS1)				Pr	epared: 6/9/	2023 Analyze	ed: 6/12/2023			
Ammonia as N	93.6	5	9.92	mg/kg wet	99.2	= 0	94.4	85-115		-
Duplicate (BGF1604-DUP1)		Source: 23E	2399-13	Pr	epared: 6/9/	2023 Analyze	ed: 6/12/2023			
Ammonia as N	13:	1	24.4	mg/kg dry	0.0	116			12.2	20
MRL Check (BGF1604-MRL1)				Pr	epared: 6/9/	2023 Analyze	ed: 6/12/2023			
Ammonia as N	10.	1	9.99	mg/kg wet	9.99		101	50-150		
Matrix Spike (BGF1604-MS1)		Source: 23E	2399-13	Pr	epared: 6/9/	2023 Analyze	ed: 6/12/2023			
Ammonia as N	340)	25.4	mg/kg dry	254	116	88.3	85-115		
Batch: BGF1608 - TKN T				194						
Blank (BGF1608-BLK1)			12.5		epared: 6/9/	2023 Analyze	ed: 6/12/2023			
Total Kjeldahl Nitrogen - (TKN)	<12.0	o U	12.0	mg/kg wet						
LCS (BGF1608-BS1)				Pr	epared: 6/9/	'2023 Analyze	ed: 6/12/2023			
Total Kjeldahl Nitrogen - (TKN)	23.:	1	12.1	mg/kg wet	24.5		94.3	85-115		
Duplicate (BGF1608-DUP1)		Source: 23E	5251-01	Pr	epared: 6/9/	2023 Analyze	ed: 6/12/2023			
Total Kjeldahl Nitrogen - (TKN)	40800)]1	2410			52000			24.2	20
Matrix Spike (BGF1608-MS1)		Source: 23E	5251-01	Pr	epared: 6/9/	2023 Analyze	ed: 6/12/2023			
Total Kjeldahl Nitrogen - (TKN)	58900		2390	mg/kg dry	9560	52000	72.3	85-115		

A = Accredited, N = Not Accredited or Accreditation not available

www. NWDLS.com TCEQ T104704238-23-39

Email: lab@nwdls.com

City of Tomball 501 James Street Tomball, TX 77375

Reported: 08/01/2023 10:53

Quality Control (Continued)

General Chemistry (Continued)

Analyte	7114	Result	Qual	Rep	orting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF1622 - Solid Al	nions with	Prep								111.71	V . I	Mark In
Blank (BGF1622-BLK1)							Prepared	& Analyzed: 6	/9/2023			
Nitrate as N		<1.21	U		1.21	mg/kg wet		Una				
LCS (BGF1622-BS1)							Prepared	& Analyzed: 6	/9/2023		7	
Nitrate as N		18.6			1.24	mg/kg wet	19.9		93.7	90-110		
Duplicate (BGF1622-DUP1)			Source	e: 23F1977-	01		Prepared	& Analyzed: 6	/9/2023		av mil	
Nitrate as N		175			8.70	mg/kg dry	(35)	196			11.3	15
Matrix Spike (BGF1622-MS1)			Source	e: 23F1977-	01		Prepared	& Analyzed: 6	/9/2023			
Nitrate as N		530				mg/kg dry	139	196	240	80-120		
	t Solids											
Blank (BGF1881-BLK1)	t Solids				2.400		pared: 6/12	/2023 Analyze	d: 6/13/2023	(p. 10)		
Blank (BGF1881-BLK1) % Solids	t Solids	<0.100			0.100	%						
Blank (BGF1881-BLK1) % Solids Duplicate (BGF1881-DUP1)	t Solids			e: 23F0644-	05	% Pre		/2023 Analyze				Linker and the second
Blank (BGF1881-BLK1) % Solids	t Solids			e: 23F0644-		%					0.583	10
Blank (BGF1881-BLK1) % Solids Duplicate (BGF1881-DUP1) % Solids Duplicate (BGF1881-DUP2)	t Solids	1.34	Source	e: 23F0644-	05 0.100	% Pre %	pared: 6/12	/2023 Analyze	ed: 6/13/2023		0.583	10
Blank (BGF1881-BLK1) % Solids Duplicate (BGF1881-DUP1) % Solids	t Solids	1.34	Source	e: 23F0644- e: 23F2214-	05 0.100	% Pre %	pared: 6/12	/2023 Analyze	ed: 6/13/2023		11.01	10
Duplicate (BGF1881-DUP1) % Solids Duplicate (BGF1881-DUP2)	t Solids	1.34	Source	e: 23F0644- e: 23F2214-	05 0.100	% Pre	pared: 6/12	/2023 Analyze 1.33 /2023 Analyze	d: 6/13/2023		11.01	Anne (Billia)
Blank (BGF1881-BLK1) % Solids Duplicate (BGF1881-DUP1) % Solids Duplicate (BGF1881-DUP2) % Solids	t Solids	1.34	Source	e: 23F0644- e: 23F2214-	05 0.100	% Pre	pared: 6/12	/2023 Analyze 1.33 /2023 Analyze 2.03	d: 6/13/2023		11.01	Anne (Billia)
Blank (BGF1881-BLK1) % Solids Duplicate (BGF1881-DUP1) % Solids Duplicate (BGF1881-DUP2) % Solids Reference (BGF1881-SRM1) % Solids		2.03	Source	e: 23F0644- e: 23F2214-	05 0.100 02 0.100	% Pre %	pared: 6/12	/2023 Analyze 1.33 /2023 Analyze 2.03	d: 6/13/2023 d: 6/13/2023 d: 6/13/2023		11.01	Aure (Bill)
Blank (BGF1881-BLK1) % Solids Duplicate (BGF1881-DUP1) % Solids Duplicate (BGF1881-DUP2) % Solids Reference (BGF1881-SRM1)		1.34 2.03 0.382	Source	e: 23F0644- e: 23F2214-	05 0.100 02 0.100	% Pre %	epared: 6/12 epared: 6/12 epared: 6/12 0.350	/2023 Analyze 1.33 /2023 Analyze 2.03	d: 6/13/2023 d: 6/13/2023 d: 6/13/2023 109		11.01	Anne (Billia)

A = Accredited, N = Not Accredited or Accreditation not available

%REC

City of Tomball 501 James Street Tomball, TX 77375

Reported:

08/01/2023 10:53

RPD

Quality Control (Continued)

Spike

Source

Reporting

TCLP

Analyte		Result	Qual		Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGF1942 - SW-3511	!							Consu	March 1		-3,179.3	Columbia
MB SV (BGF1942-BLK1)						Pr	repared: 6/13	/2023 Analyze	d: 7/11/202	3		
2,4,5 & 2,4,6 -Trichlorophenol		< 0.00250	U		0.00250	mg/L		4 1 1 1				
2,4-Dinitrotoluene (2,4-DNT)		<0.130			0.130	mg/L						
2-Methylphenol		<200			200	mg/L						
3,4-Methylphenol		<200			200	mg/L						
Hexachlorobenzene		<0.130			0.130	mg/L						
Hexachlorobutadiene		<0.500			0.500	mg/L						
Hexachloroethane		<3.00			3.00	mg/L						
Nitrobenzene		<2.00			2.00	mg/L						
Pentachlorophenol		<100			100	mg/L						
Pyridine		<5.00			5,00	mg/L						
Surrogate: 2-Fluorobiphenyl-surr			****	****	0.0102	mg/L	0.0100		102	54.6-148		
Surrogate: 2-Fluorophenol-surr					0.0188	mg/L	0.0200		93.8	55-152		
Surrogate: 2,4,6-Tribromophenol-surr					0.0187	mg/L	0.0200		93.4	52.4-136		
Surrogate: Nitrobenzene-d5-surr					0.00947	mg/L	0.0100		94.7	52-162		
Surrogate: Phenol-d5-surr					0.0196	mg/L	0.0200		97.8	58.7-152		
Surrogate: p-Terphenyl-d14-surr					0.00902	mg/L	0.0100		90.2	51.9-147		
BS SV (BGF1942-BS2)						Pr	repared: 6/13	/2023 Analyze	d: 7/11/202	3		
2,4,5 & 2,4,6 -Trichlorophenol		0.0407			0.00250	mg/L	0.0400		102	60-140		
2,4-Dinitrotoluene (2,4-DNT)		0.00997	U		0.130	mg/L	0.0100		99.7	60-140		
2-Methylphenol		0.0151			200	mg/L	0.0200		75.7	60-140		
3,4-Methylphenol		0.0327			200	mg/L	0.0400		81.8	60-140		
Hexachlorobenzene		0.00953			0.130	mg/L	0.0100		95.3	60-140		
Hexachlorobutadiene		0.00799			0.500	mg/L	0,0100		79.9	60-140		
Hexachloroethane		0.00778			3.00	mg/L	0.0100		77.8	60-140		
Nitrobenzene		0.00981			2.00	mg/L	0.0100		98.1	60-140		
Pentachlorophenol		0.0177			100	mg/L	0.0200		88.5	36.8-149		
Pyridine		0.00611			5.00	mg/L	0.0500		12.2	2.5-101		
Surrogate: 2-Fluorobiphenyl-surr					0.0101	mg/L	0.0100		101	54.6-148		
Surrogate: 2-Fluorophenol-surr					0.0186	mg/L	0.0200		93.1	55-152		
Surrogate: 2,4,6-Tribromophenol-surr					0.0185	mg/L	0.0200		92.7	52.4-136		
Surrogate: Nitrobenzene-d5-surr					0.00886	mg/L	0.0100		88.6	52-162		
Surrogate: Phenol-d5-surr					0.0190	mg/L	0.0200		95.0	58.7-152		
Surrogate: p-Terphenyl-d14-surr					0.00935	mg/L	0.0100		93.5	51.9-147		

A = Accredited, N = Not Accredited or Accreditation not available

Reported:

08/01/2023 10:53

Quality Control (Continued)

Analyte		Result	Qual	I MILL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF1942 - SW-351.	1 (Conti	nued)								11.00	Little	. 761
BSD SV (BGF1942-BSD2)						Pr	epared: 6/13	/2023 Analyzed	1: 7/11/202	3		
2,4,5 & 2,4,6 -Trichlorophenol		0.0434			0.00250	mg/L	0.0400	, ====,, , ===	108	60-140	6.48	40
2,4-Dinitrotoluene (2,4-DNT)		0.0101	U		0.130	mg/L	0.0100		101	60-140	0.858	40
2-Methylphenol		0.0161			200	mg/L	0.0200		80.6	60-140	6.31	40
3,4-Methylphenol		0.0341			200	mg/L	0.0400		85.2	60-140	4.06	40
Hexachlorobenzene		0.00963			0.130	mg/L	0.0100		96.3	60-140	1.09	40
Hexachlorobutadiene		0.00716			0.500	mg/L	0.0100		71.6	60-140	11.0	40
Hexachloroethane		0.00812			3.00	mg/L	0.0100		81.2	60-140	4.30	40
Nitrobenzene		0.0103			2.00	mg/L	0.0100		103	60-140	4.58	40
Pentachlorophenol		0.0173			100	mg/L	0.0200		86.4	36.8-149	2.51	40
Pyridine		0.0186			5.00	mg/L	0.0500		37.3	2.5-101	101	40
Surrogate: 2-Fluorobiphenyl-surr					0.0101	mg/L	0.0100		101	54.6-148		
Surrogate: 2-Fluorophenol-surr					0.0193	mg/L	0.0200		96.6	55-152		
Surrogate: 2,4,6-Tribromophenol-surr					0,0183	mg/L	0.0200		91.5	52.4-136		
Surrogate: Nitrobenzene-d5-surr					0.00930	mg/L	0.0100		93.0	52-162		
Surrogate: Phenol-d5-surr					0.0199	mg/L	0.0200		99.3	58.7-152		
Surrogate: p-Terphenyl-d14-surr				lj., i	0.00921	mg/L	0.0100		92.1	51.9-147		
BGF1262-BLK1 (BGF1942-LBK1))					Pr	epared: 6/13	/2023 Analyzed	: 7/11/202	3		
2,4,5 & 2,4,6 -Trichlorophenol		<0.0100	U		0.0100	mg/L						
2,4-Dinitrotoluene (2,4-DNT)		<0.130			0.130	mg/L						
2-Methylphenol		<200			200	mg/L						
3,4-Methylphenol		0.00574			200	mg/L						
Hexachlorobenzene		<0.130			0.130	mg/L						
Hexachlorobutadiene		<0.500			0,500	mg/L						
Hexachloroethane		<3.00			3.00	mg/L						
Nitrobenzene		<2.00			2.00	mg/L						
Pentachlorophenol		<100			100	mg/L						
Pyridine		<5.00			5.00	mg/L						
Surrogate: 2-Fluorobiphenyl-surr					0.0402	mg/L	0.0400		101	54.6-148		
Surrogate: 2-Fluorophenol-surr					0.0731	mg/L	0.0800		91.4	55-152		
Surrogate: 2,4,6-Tribromophenol-surr					0.0852	mg/L	0.0800		107	52.4-136		
Surrogate: Nitrobenzene-d5-surr					0.0377	mg/L	0.0400		94.2	52-162		
Surrogate: Phenol-d5-surr					0.0759	mg/L	0.0800		94.9	58.7-152		
Surrogate: p-Terphenyl-d14-surr					0.0303	mg/L	0.0400		75.8	51.9-147		

A = Accredited, N = Not Accredited or Accreditation not available

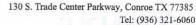
Reported:

08/01/2023 10:53

Quality Control (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF1942 - SW-3511 (C	ontinued)				Code	(Destrie	CHE MIS	1,341.19	rên) navê
BGF1811-BLK1 (BGF1942-LBK2)	MANUFACTURE AND ADDRESS OF THE PARTY OF THE		P	repared: 6/13,	/2023 Analyze	d: 7/11/202	3		
2,4,5 & 2,4,6 -Trichlorophenol	<0.0100 U	0.0100	mg/L			27 5			
2,4-Dinitrotoluene (2,4-DNT)	<0.130 U	0.130	mg/L						
2-Methylphenol	<200 U	200	mg/L						
3,4-Methylphenol	0.00399 U	200	mg/L						
Hexachlorobenzene	<0.130 U	0.130	mg/L						
Hexachlorobutadiene	<0.500 U	0.500	mg/L						
Hexachloroethane	<3.00 U	3.00	mg/L						
Nitrobenzene	<2.00 U	2.00	mg/L						
Pentachlorophenol	<100 U	100	mg/L						
Pyridine	<5.00 U	5.00	mg/L						
Surrogate: 2-Fluorobiphenyl-surr		0.0416	mg/L	0.0400		104	54.6-148		
Surrogate: 2-Fluorophenol-surr		0.0810	mg/L	0.0800		101	55-152		
Surrogate: 2,4,6-Tribromophenol-surr		0.0954	mg/L	0.0800		119	52.4-136		
Surrogate: Nitrobenzene-d5-surr		0.0460	mg/L	0.0400		115	52-162		
Surrogate: Phenol-d5-surr		0.0797	mg/L	0.0800		99.6	58.7-152		
Surrogate: p-Terphenyl-d14-surr		0.0384	mg/L	0.0400		95.9	51.9-147		
MDL SV (BGF1942-MRL2)			Р	repared: 6/13,	/2023 Analyze	d: 7/11/202	3	TO DE	
2,4,5 & 2,4,6 -Trichlorophenol	0,00134 U	0.00250	mg/L	0.00200	versamental severence (There	66.9			
2,4-Dinitrotoluene (2,4-DNT)	0.000635 U	0.130	mg/L	0.000500		127			
2-Methylphenol	0.000484 U	200	mg/L	0.00100		48.4			
3,4-Methylphenol	0.00217 U	200	mg/L	0.00200		109			
Hexachlorobenzene	0,000215 U	0.130	mg/L	0.000500		42.9			
Hexachlorobutadiene	0.000379 U	0.500	mg/L	0.000500		75.9			
Hexachloroethane	0.000362 U	3.00	mg/L	0.000500		72.4			
Nitrobenzene	0.000568 U	2.00	mg/L	0.000500		114			
Pentachlorophenol	0.000753 U	100	mg/L	0.00100		75.3			
Pyridine	0.00611 U	5.00	mg/L	0.00250		244			
Surrogate: 2-Fluorobiphenyl-surr	****************	0.0103	mg/L	0.0100		103	54.6-148		
Surrogate: 2-Fluorophenol-surr		0.0195	mg/L	0.0200		97.7	55-152		
Surrogate: 2,4,6-Tribromophenol-surr		0.0200	mg/L	0.0200		99.8	52.4-136		
Surrogate: Nitrobenzene-d5-surr		0.0105	mg/L	0.0100		105	52-162		
Surrogate: Phenol-d5-surr		0.0184	mg/L	0.0200		92.0	58.7-152		
Surrogate: p-Terphenyl-d14-surr		0.00917	mg/L	0.0100		91.7	51.9-147		

A = Accredited, N = Not Accredited or Accreditation not available


Reported:

08/01/2023 10:53

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch: BGF1942 - SW-3511 (G	Continued)					Unique	oldany il			CADA -
23F1434-02 MS (BGF1942-MS1)	TIV THEFT	Source: 2	23F1434-02	P	repared: 6/13	/2023 Analyzed	d: 7/11/202	3		
2,4,5 & 2,4,6 -Trichlorophenol	0.0405		0.00249	mg/L	0.0398	<0.00249	102	44.9-143		
2,4-Dinitrotoluene (2,4-DNT)	0.0102	U	0.130	mg/L	0.00995	< 0.130	102	50.3-144		
2-Methylphenol	0.0162	U	200	mg/L	0.0199	<200	81.5	17.3-182		
3,4-Methylphenol	0.0373		200	mg/L	0.0398	<200	93.7	43.4-188		
Hexachlorobenzene	0.00865		0.130	mg/L	0.00995	<0.130	86.9	56.1-137		
Hexachlorobutadiene	0.00626		0.500	mg/L	0.00995	<0.500	63.0	33.1-110		
Hexachloroethane	0.00696		3.00	mg/L	0.00995	<3.00	70.0	36.2-106		
Nitrobenzene	0.0112		2.00	mg/L	0.00995	<2.00	112	54,9-156		
Pentachlorophenol	0,0163		100	mg/L	0.0199	<100	81.8	42.2-151		
Pyridine	0.0234		5,00	mg/L	0.0497	<5.00	47.1	2-87.4		
Surrogate: 2-Fluorobiphenyl-surr			0.00991	mg/L	0.00995		99.6	54.6-148		1073455
Surrogate: 2-Fluorophenol-surr			0.0190	mg/L	0.0199		95.5	55-152		
Surrogate: 2,4,6-Tribromophenol-surr			0.0171	mg/L	0.0199		86.2	52.4-136		
Surrogate: Nitrobenzene-d5-surr			0.00995	mg/L	0.00995		100	52-162		m in E
Surrogate: Phenol-d5-surr			0.0223	mg/L	0.0199		112	58.7-152		
Surrogate: p-Terphenyl-d14-surr			0.00836	mg/L	0.00995		84.0	51.9-147		
3F1434-02 MSD (BGF1942-MSD1)		Source: 3	23F1434-02	Di	renared: 6/12	/2023 Analyzed	1. 7/11/202	3		
2,4,5 & 2,4,6 -Trichlorophenol	0.0439	Jource, 2	0.00249	mg/L	0.0398	<0.00249	110	44.9-143	8.24	40
2,4-Dinitrotoluene (2,4-DNT)	0.0110	ii .	0.130	mg/L	0.00996	< 0.130	111	50.3-144	8.32	40
2-Methylphenol	0.0110		200	mg/L	0.0199	<200	76.6	17.3-182	6.06	40
3,4-Methylphenol	0.0353		200	mg/L	0.0398	<200	88.6	43.4-188	5.45	40
Hexachlorobenzene	0.00981		0.130	mg/L	0.00996	<0.130	98.5	56.1-137	12.6	40
Hexachlorobutadiene	0.00767		0.500	mg/L	0.00996	<0.500	77.0	33.1-110	20.2	40
Hexachloroethane	0.00821		3.00	mg/L	0.00996	<3.00	82.4	36.2-106	16.4	40
Nitrobenzene	0.0111		2.00	mg/L	0.00996	<2.00	111	54.9-156	0.818	40
Pentachlorophenol	0.0180		100	mg/L	0.0199	<100	90.5	42.2-151	10.3	40
Pyridine	0.0314		5.00	mg/L	0.0498	<5.00	63.0	2-87.4	28.9	40
Surrogate: 2-Fluorobiphenyl-surr			0.0109	mg/L	0.00996		110	54.6-148		
Surrogate: 2-Fluorophenol-surr			0.0195	mg/L	0.0199		98.1	55-152		
Surrogate: 2,4,6-Tribromophenol-surr			0.0188	mg/L	0.0199		94.1	52.4-136		
Surrogate: Nitrobenzene-d5-surr			0.00973	mg/L	0.00996		97.7	52-162		
			0.0184	mg/L	0.0199		92.6	58.7-152		
Surrogate: Phenol-d5-surr			0,0104							

A = Accredited, N = Not Accredited or Accreditation not available

Reported:

08/01/2023 10:53

Quality Control (Continued)

Analyte		Result	Qual	Print.	Reporting Limit	Units	lànu	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF1994 - SW-74	471 TCLP							- 0	3A1901(-1)	y water to	305, 893	37.35	at de
Duplicate (BGF1994-DUP1)			Sour	ce: 23F2	123-01		Prepa	red: 6/14	/2023 Analyze	d: 6/15/2023			
Mercury	0 [1]	<0.200	U	trad"	0.200	mg/L			<0.200	10 0			200
BGF1262-LBK1 (BGF1994-LB	K1)						Prepa	ared: 6/14	/2023 Analyze	d: 6/15/2023			m 768
Mercury	ill and	<0.200	U		0,200	mg/L			il helly				THE RESERVE
BGF1811-LBK2 (BGF1994-LB	K2)						Prepa	red: 6/14	/2023 Analyze	d: 6/15/2023			
Mercury		<0.200	U		0.200	mg/L							Land of the Control
MDL Check (BGF1994-MRL1)							Prepa	red: 6/14	/2023 Analyze	d: 6/15/2023			
Mercury		0.000191	U		0.200	mg/L	1.50	0.000200		95.5			
Matrix Spike (BGF1994-MS1)			Sour	ce: 23F2	123-01		Prepa	red: 6/14	/2023 Analyze	d: 6/15/2023			
Mercury		0.00497	U		0.200	mg/L		0.00500	<0.200	99.4	80-120		
Batch: BGF2074 - EPA 2	00.2 TCLP												
Blank (BGF2074-BLK1)							Prepa	red: 6/14	/2023 Analyze	d: 6/15/2023			
Arsenic		<5.00	U		5.00	mg/L	230	, ,					
Barium		<100	U		100	mg/L							
Cadmium		<1.00	U		1.00	mg/L							
Chromium		<5.00	U		5.00	mg/L							
Lead		<5.00	U		5.00	mg/L							
Selenium		<1.00	U		1.00	mg/L	9		A Toler				
Blank (BGF2074-BLK2)							Prepa	red: 6/14	/2023 Analyze	d: 6/16/2023			
Silver		<5.00	U		5.00	mg/L							

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 08/01/2023 10:53

Quality Control (Continued)

Analyte	Result	Qual	Rep	orting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF2074 - EPA 20	0.2 TCLP (Contin	ued)						4.55	1767,486	-199X	ADA TREE
LCS (BGF2074-BS1)					P	repared: 6/14	/2023 Analyze	ed: 6/15/2023			
Arsenic	0.510	U		5.00	mg/L	0.500		102	80-120		
Barium	0.502	U		100	mg/L	0.500		100	80-120		
Cadmium	0.0491	U		1.00	mg/L	0.0500		98.2	80-120		
Chromium	0.255	U		5.00	mg/L	0.250		102	80-120		
Lead	0.256			5.00	mg/L	0.250		102	80-120		
Selenium	0.511	U	i parmini	1.00	mg/L	0.500		102	80-120		
LCS (BGF2074-BS2)	Prepared: 6/14/2023 Analyzed: 6/16/2023										
Silver	0.0515	U	Lond A	5.00	mg/L	0.0500	· · · · · · · · · · · · · · · · · · ·	103	80-120		ii) also iii la
Duplicate (BGF2074-DUP1)	te (BGF2074-DUP1)			Source: 23F1031-01 Prepar				pared: 6/14/2023 Analyzed: 6/15/2023			
Arsenic	<5.00	U		5.00	mg/L		<5.00				20
Barium	1.12			100	mg/L		1.37			20.4	20
Cadmium	<1.00	U		1.00	mg/L		<1.00				20
Chromium	<5.00	U		5.00	mg/L		<5.00				20
Lead	<5.00	U		5.00	mg/L		<5.00				20
Selenium	<1.00	U	i british H	1.00	mg/L		<1.00			11.18	20
Ouplicate (BGF2074-DUP2) Source: 23			e: 23F1031	1031-01 Prepared: 6/14/2023 Analyzed: 6/16/2023							
Silver	<5.00	U		5.00	mg/L		<5.00				20
BGF1262-BLK1 (BGF2074-LBK				Prepared: 6/14/2023 Analyzed: 6/15/2023							
Arsenic	<5.00	U		5.00	mg/L						
Barium	0.800			100	mg/L						
Cadmium	<1.00			1.00	mg/L						
Chromium	<5.00	U		5.00	mg/L						
Lead	<5.00	U		5.00	mg/L						
Selenium	<1.00	U		1.00	mg/L						

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 08/01/2023 10:53

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF2074 - EPA 200.2	TCLP (Contin	ued)			- 0	Seattle of	on the same of	THE COUR		Other State
BGF1811-BLK1 (BGF2074-LBK2)					Prepared: 6/14	/2023 Analyz	ed: 6/15/2023			
Arsenic	<5.00	U	5.00	mg/L			,			
Barium	0.780	U	100	mg/L						
Cadmium	<1.00	U	1.00	mg/L						
Chromium	<5.00	U	5.00	mg/L						
Lead	<5.00	U	5.00	mg/L						
Selenium	<1.00	U	1.00	mg/L						
BGF1262-BLK1 (BGF2074-LBK3)					Prepared: 6/14	/2023 Analyza	ed: 6/16/2022			
Silver	<5,00	U	5.00	mg/L	rrepared. 0/17	2025 Analyzi	ed. 0/10/2023			
BGF1811-BLK1 (BGF2074-LBK4)			Contan		Prepared: 6/14	/2023 Analyze	ed: 6/16/2023		1071	
Silver	- <5.00	U	5.00	mg/L		2020 / 11/01/25	. 0/10/2020			
Matrix Spike (BGF2074-MS1)		Source:	23F1031-01		Prepared: 6/14	/2023 Analyze	ed: 6/15/2023			
Arsenic	0.524		5.00	mg/L	0.500	<5.00	105	75-125		
Barium		J1, U	100	mg/L	0.500	1.37	50.9	75-125		
Cadmium	0.0509		1.00	mg/L	0.0500	<1.00	102	75-125 75-125		
Chromium	0.240		5.00	mg/L	0.250	<5.00	96.0	75-125		
Lead	0.246		5.00	mg/L	0.250	<5.00	98.3	75-125		
Selenium	0,507		1.00	mg/L	0.500	<1.00	101	75-125		
Matrix Spike (BGF2074-MS2)		Source:	23F1031-01		Prepared: 6/14/	2023 Analyze	ed: 6/16/2023			
Silver	0.0433	U	5.00	mg/L	0.0500	<5.00	86,5	75-125		
Post Spike (BGF2074-PS1)		Source:	23F1031-01	14/4	Prepared: 6/14/	2023 Analyze	ed: 6/15/2023			
Arsenic	534			ug/L	500	15.3	104	80-120		
Barium	1600	J1		ug/L	500	1330	53.6	80-120		
Cadmium	51.9			ug/L	50.0	0.117	104	80-120		
Chromium	249			ug/L	250	2.37	98.7	80-120		
Lead	253			ug/L	250	1.72	101	80-120		
Selenium	516			ug/L	500	1.73	103	80-120		

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 08/01/2023 10:53

Quality Control (Continued)

Analyte	R	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF2074 - EPA 200.2	TCLP (Col	ntinu	ued)				10100		105.633	- 17.0	100 0
Post Spike (BGF2074-PS2)				3F1031-01	F	Prepared: 6/14/	2023 Analyze	d: 6/16/2023			
Silver		50,7			ug/L	50.0	1.05	99.2	80-120		
Dilution Check (BGF2074-SRL1)			Source: 2	3F1031-01	F	Prepared: 6/14/	2023 Analyze	d: 6/15/2023			
Arsenic		<5.00	U	5.00	mg/L		<5.00				10
Barium		1.37	U	100	mg/L		1.37			0.00	10
Cadmium		<1.00		1.00	mg/L		<1.00				10
Chromium		<5.00	U	5.00	mg/L		<5.00				10
Lead	4	<5.00	U	5.00	mg/L		<5.00	*			10
Selenium		<1.00	U	1.00	mg/L		<1.00				10
						9 507 73				h	
Dilution Check (BGF2074-SRL2)			Source: 2	23F1031-01		Prepared: 6/14/		d: 6/16/2023			1000
Silver		<5.00	U	5.00	mg/L		<5.00				10
MB OCP (BGF2470-BLK1)	1 111			0.0300		Prepared: 6/15/	2023 Analyze	d: 7/11/2023			
Chlordane (Total)	<0	.0300	U	0.0300	mg/L						
Endrin	<0	.0200	U	0.0200	mg/L						
gamma-BHC (Lindane, gamma-HexachlorocyclohexanE)	<	0.400	U	0.400	mg/L						
Heptachlor	<0.0	00800	U	0,00800	mg/L						
Heptachlor epoxide	<0.0	00800	U	0.00800	mg/L						
Methoxychlor	Tillia 9	<10.0	U	10.0	mg/L						
Toxaphene (Chlorinated Camphene)	<	0.500	U	0.500	mg/L						
Surrogate: 2,4,5,6				0.000121	mg/L	0.000119		101	60-140		
Tetrachloro-m-xylene-surr									50 440		
Surrogate: Decachlorobiphenyl-surr		U.	Aurelian - Trans	8.97E-5	mg/L	0.000119		75.2	60-140		
BS TOX (BGF2470-BS1)					0	Prepared: 6/15,	2023 Analyze				
Toxaphene (Chlorinated Camphene)	0.	00109	U	0.500	mg/L	0.00119		91.2	60-140		
Surrogate: 2,4,5,6				0.000133	mg/L	0.000119		111	60-140		
Tetrachloro-m-xylene-surr											

A = Accredited, N = Not Accredited or Accreditation not available

Reported:

08/01/2023 10:53

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF2470 - SW-3511 (C	Continued)					- United	e Physics 1	till, gift	77.15	Side des
BS OCP (BGF2470-BS2)	APPLE CONSTRUCT			F	repared: 6/15/	2023 Analyze	d: 7/12/2023	3		
Chlordane (Total)	0.000475	U	0.0300	mg/L	0.000480		99.1	60-140		
Endrin	0.000121		0.0200	mg/L	0.000120		101	60-140		
gamma-BHC (Lindane,	0,000118		0.400	mg/L	0.000120		98.2	60-140		
gamma-HexachlorocyclohexanE)										
Heptachlor	0.000130	Ü	0.00800	mg/L	0.000120		109	60-140		
Heptachlor epoxide	0.000117	U	0.00800	mg/L	0.000120		97.2	60-140		
Methoxychlor	0.000117	U	10.0	mg/L	0.000120		97.7	60-140		
Surrogate: 2,4,5,6			0.000138	mg/L	0.000120		115	60-140		
Tetrachloro-m-xylene-surr										
Surrogate: Decachlorobiphenyl-surr			9.24E-5	mg/L	0.000120		77.0	60-140	30.00	1 1100
BSD TOX (BGF2470-BSD1)				F	Prepared: 6/15/	2023 Analyze	d: 7/12/2023	3		
Toxaphene (Chlorinated Camphene)	0.00117	U	0.500	mg/L	0.00119		98.3	60-140	7.43	40
Surrogate: 2,4,5,6			0.000137	mg/L	0.000119		115	60-140		
Tetrachloro-m-xylene-surr										
Surrogate: Decachlorobiphenyl-surr			9.95E-5	mg/L	0.000119		83.4	60-140		
BSD OCP (BGF2470-BSD2)					Prepared: 6/15/	2023 Analyze	d: 7/12/2023	3		
Chlordane (Total)	0.000467	U	0.0300	mg/L	0.000477		97.9	60-140	1.84	40
Endrin	0.000134	U	0.0200	mg/L	0.000119		113	60-140	10.5	40
gamma-BHC (Lindane,	0.000117	U	0.400	mg/L	0.000119		98,5	60-140	0.353	40
gamma-HexachlorocyclohexanE)										
Heptachlor	0.000123	U	0.00800	mg/L	0.000119		103	60-140	5.54	40
Heptachlor epoxide	0.000117	U	0.00800	mg/L	0.000119		98.4	60-140	0.648	40
Methoxychlor	0.000116	U	10.0	mg/L	0.000119		97.3	60-140	1.06	40
Surrogate: 2,4,5,6			0.000135	mg/L	0.000119		113	60-140		
Tetrachloro-m-xylene-surr										
Surrogate: Decachlorobiphenyl-surr			8.96E-5	mg/L	0.000119		75.2	60-140		
BGF1811-BLK1 (BGF2470-LBK1)				ı	Prepared: 6/15/	2023 Analyze	d: 7/13/2023	3		
Chlordane (Total)	< 0.0300	u ·	0.0300	mg/L						
Endrin	<0.0200		0.0200	mg/L						
gamma-BHC (Lindane,	<0.400		0,400	mg/L						
gamma-HexachlorocyclohexanE)	30,400	-	31.766	31						
Heptachlor	<0.00800	U	0.00800	mg/L						
Heptachlor epoxide	<0.00800		0.00800	mg/L						
Toxaphene (Chlorinated Camphene)	<0.500		0.500	mg/L						
Surrogate: 2,4,5,6		Element to	0.000672	mg/L	0.000600		112	60-140	*******	
Tetrachloro-m-xylene-surr Surrogate: Decachlorobiphenyl-surr		S	0.000281	mg/L	0.000600		46.8	60-140		

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 08/01/2023 10:53

Quality Control (Continued)

Analyte	1 18	Result Qua		Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF2470 - SW-3511	(Contin	ued)					Strong	garech).	L-284	07000	7300 TVa
BGF1811-BLK1 (BGF2470-LBK3)					P	repared: 6/15	/2023 Analyze	d: 7/14/2023			
Methoxychlor		<10.0 U		10.0	mg/L						
Surrogate: 2,4,5,6				0.000533	mg/L	0.000600	*****	88.9	60-140		
Tetrachloro-m-xylene-surr					MID				GB 5050		
Surrogate: Decachlorobiphenyl-surr		S		0.000332	mg/L	0.000600		55.3	60-140		
MDL TOX (BGF2470-MRL1)					Р	repared: 6/15,	/2023 Analyze	d: 7/12/2023			
Toxaphene (Chlorinated Camphene)		0.000249 U		0.500	mg/L	0.000296		84.4			
Surrogate: 2,4,5,6		5		0.000167	mg/L	0.000118		142	60-140	COLUMN COLUMN	
Tetrachloro-m-xylene-surr											
Surrogate: Decachlorobiphenyl-surr				9.40E-5	mg/L	0.000118		79.5	60-140		
MDL OCP (BGF2470-MRL2)					Р	repared: 6/15/	2023 Analyzeo	d: 7/12/2023			
Chlordane (Total)		4.32E-5 U		0.0300	mg/L	4.74E-5	II Francis	91.1			
Endrin		9.35E-6 U		0.0200	mg/L	1.18E-5		78.9			
gamma-BHC (Lindane,		9.71E-6 U		0.400	mg/L	1.18E-5		81.9			
gamma-HexachlorocyclohexanE)											
Heptachlor		1.28E-5 U		0.00800	mg/L	1.18E-5		108			
Heptachlor epoxide		1.18E-5 U		0.00800	mg/L	1.18E-5		99.9			
Methoxychlor		1.04E-5 U		10.0	mg/L	1,18E-5		87.8		- 10 000 200	600000 FUNE FO
Surrogate: 2,4,5,6				0.000130	mg/L	0.000118		109	60-140	nin con con	notes reess
Tetrachloro-m-xylene-surr											
Surrogate: Decachlorobiphenyl-surr				8.36E-5	mg/L	0.000118		70.5	60-140		
23F0710-02 MS (BGF2470-MS1)		Sou	ce: 23F0	710-02	Р	repared: 6/15/	2023 Analyzeo	d: 7/12/2023			
Chlordane (Total)	1	0.000421 U		0.0300	mg/L	0.000478	< 0.0300	88.0	60-140		
Endrin	9	0.000119 U		0.0200	mg/L	0.000119	<0.0200	99.3	60-140		
gamma-BHC (Lindane,)	0.000118 U		0.400	mg/L	0.000119	< 0.400	98.8	60-140		
gamma-HexachlorocyclohexanE)											
Heptachlor		0.000109 U		0.00800	mg/L	0.000119	<0.00800	91.1	60-140		
Heptachlor epoxide		0.000118 U		0.00800	mg/L	0.000119	<0.00800	98.5	60-140		
Methoxychlor		7.21E-5 U		10.0	mg/L	0.000119	<10.0	60.3	60-140		
Surrogate: 2,4,5,6				0.000131	mg/L	0.000119		110	60-140		
Tetrachloro-m-xylene-surr											
Surrogate: Decachlorobiphenyl-surr				8.54E-5	mg/L	0.000119		71.5	60-140		

A = Accredited, N = Not Accredited or Accreditation not available

Reported: 08/01/2023 10:53

Quality Control (Continued)

Analyte	Result	Oual	Reporting	I fair-	Spike	Source	0/ 050	%REC	-	RPD
	Result	Quai	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGF2470 - SW-351										
23F0710-02 MSD (BGF2470-MS	D1)	Source:	: 23F0710-02		Prepared: 6/15/	/2023 Analyzed	1: 7/12/2023	3		
Chlordane (Total)	0.000434	U	0.0300	mg/L	0.000478	<0.0300	90.7	60-140	3.09	40
Endrin	0.000123	U	0.0200	mg/L	0.000120	<0.0200	103	60-140	3.71	40
gamma-BHC (Lindane,	0.000117	U	0.400	mg/L	0.000120	<0.400	98.2	60-140	0.566	40
gamma-HexachlorocyclohexanE)			79,0000		S ARTHUR					
Heptachlor	0.000107		0.00800	mg/L	0.000120	<0.00800	89.6	60-140	1.54	40
Heptachlor epoxide	0.000121		0.00800	mg/L	0,000120	<0.00800	101	60-140	2.32	40
Methoxychlor	7.15E-5	J1, U	10.0	mg/L	0.000120	<10.0	59.8	60-140	0,735	40
Surrogate: 2,4,5,6			0.000126	mg/L	0.000120		105	60-140		
Tetrachloro-m-xylene-surr				-						
Surrogate: Decachlorobiphenyl-surr			8.09E-5	mg/L	0.000120		67.6	60-140		
2,4-D Silvex (2,4,5-TP) Surrogate: DCAA-surr	<10.0 <1.00		10.0 1.00 0.0258	mg/L mg/L mg/L	0.0250	********	103	70-130		
			0.0258					X = 157551		
LCS (BGF2849-BS1)					Prepared: 6/19	1/2023 Analyze	d: 7/8/2023			
2,4-D	. 0.00565		10.0	mg/L	0.00515		110	70-130		
Silvex (2,4,5-TP)	0.00503	U	1.00	mg/L	0.00500	******	101	70-130		p to the control of t
Company DC44										
Surrogate: DCAA-surr			0.0292	mg/L	0.0250		117	70-130		
LCS Dup (BGF2849-BSD1)			0.0292		0.0250 Prepared: 6/19	/2023 Analyze				
LCS Dup (BGF2849-BSD1) 2,4-D	0.00594	U	10.0			//2023 Analyze			5	30
LCS Dup (BGF2849-BSD1)	0.00594 0.00524				Prepared: 6/19	/2023 Analyze	d: 7/8/2023		5 4	30 30
LCS Dup (BGF2849-BSD1) 2,4-D	0.00524		10.0	mg/L	Prepared: 6/19, 0.00515	/2023 Analyze	d: 7/8/2023 115	70-130		30.3%
LCS Dup (BGF2849-BSD1) 2,4-D Silvex (2,4,5-TP) Surrogate: DCAA-surr	0.00524	. U	10.0 1.00	mg/L mg/L <i>mg/L</i>	Prepared: 6/19, 0.00515 0.00500	Car new service of	id: 7/8/2023 115 105 <i>132</i>	70-130 70-130 <i>70-130</i>		35,500
LCS Dup (BGF2849-BSD1) 2,4-D Silvex (2,4,5-TP) Surrogate: DCAA-surr	0.00524	U S	10.0 1.00	mg/L mg/L <i>mg/L</i>	Prepared: 6/19 0.00515 0.00500 0.0250	Car new service of	id: 7/8/2023 115 105 <i>132</i>	70-130 70-130 <i>70-130</i>		35,500
LCS Dup (BGF2849-BSD1) 2,4-D Silvex (2,4,5-TP) Surrogate: DCAA-surr BGF1811-BLK1 (BGF2849-LBK1	0.00524	. U S	10.0 1.00 <i>0.0331</i>	mg/L mg/L mg/L	Prepared: 6/19 0.00515 0.00500 0.0250	Car new service of	id: 7/8/2023 115 105 <i>132</i>	70-130 70-130 <i>70-130</i>		

A = Accredited, N = Not Accredited or Accreditation not available

Reported:

08/01/2023 10:53

Quality Control (Continued)

Analyte		450.00	Result (Qual		Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF2849 - SV	V-3511 (Contin	ued)						To the second	0.15-1-7-1	51,44	n Janisha	an sec
BGF2702-BLK1 (BGF2849	-LBK2)							Prepared: 6/19	9/2023 Analyz	ed: 7/9/2023		'n	
2,4-D			<10.0	J		10.0	mg/L						
Silvex (2,4,5-TP)			<1.00 \	J		1.00	mg/L						
Surrogate: DCAA-surr	1411	111			i i e	0.115	mg/L	0.100		115	70-130	*****	
Matrix Spike (BGF2849-N	IS1)		S	ource	: 23F2	847-02		Prepared: 6/19	9/2023 Analyz	ed: 7/9/2023			1, 11 7 7 3.1
2,4-D			0.00582	J		10.0	mg/L	0.00515	<10.0	113	70-130		
Silvex (2,4,5-TP)	61111		0.00498	J		1.00	mg/L	0.00500	<1.00	100	70-130		
Surrogate: DCAA-surr	11/4-		S		-	0.0355	mg/L	0.0250		142	70-130		
Matrix Spike Dup (BGF28	49-MSD1)		s	ource	: 23F2	847-02		Prepared: 6/19	9/2023 Analyze	ed: 7/9/2023			
2,4-D			0.00731	1, U		10.0	mg/L	0.00515	<10.0	142	70-130	23	30
Silvex (2,4,5-TP)			0.00628	J		1.00	mg/L	0.00500	<1.00	126	70-130	23	30
Surrogate: DCAA-surr	coore (date)		5			0.0408	mg/L	0.0250		163	70-130		

130 S. Trade Center Parkway, Conroe TX 77385
Tel: (936) 321-6060
Email: lab@nwdls.com
www. NWDLS.com
TCEQ T104704238-23-39

Reported:

08/01/2023 10:53

Sample Condition Checklist

Work Order: 23F1979

Check Points

No	Custody Seals
Yes	Containers Intact
Yes	COC/Labels Agree
Yes	Received On Ice
Yes	Appropriate Containers
Yes	Appropriate Sample Volume
Yes	Coolers Intact
Yes	Samples Accepted

NWDLS

Definition

130 S. Trade Center Parkway, Conroe TX 77385 Tel: (936) 321-6060

> Email: lab@nwdls.com www. NWDLS.com

TCEQ T104704238-23-39

City of Tomball 501 James Street Tomball, TX 77375

Item

Reported: 08/01/2023 10:53

Term and Qualifier Definitions

C+	The associated calibration QC is higher than the established quality control criteria for accuracy - no hit in sample; data affected and acceptable to report.	ı not	
J1	Estimated value - The reported value is outside the established quality control criteria for accuracy and/or precision.		
S	The surrogate recovery was outside the established laboratory recovery limit.		
U	Non-detected compound,		
V	Analyte was detected in both sample and method blank.		
V2	The analyte was detected in the sample and the associated leach blank.		
RPD	Relative Percent Difference		
%REC	Percent Recovery		
Source	Sample that was matrix spiked or duplicated		
*	A = Accredited, N = Not Accredited or Accreditation not available		
DF	Dilution Factor - the factor applied to the reported data due to sample preparation, dilution, or moisture content		
MDL	Method Detection Limit - The minimum concentration of a substance (or analyte) that can be measured and reported w	ith 99% confidence that	t the
	analyte concentration is greater than zero. Based on standard deviation of replicate spiked samples take through all ste	ps of the analytical	
	procedure following 40 CFR Part 136 Appendix B.		
SDL	Sample Detection Limit - The minimum concentration of a substance (analyte) that can be measured and reported with	99% confidence that the	ne
	analyte concentration is greater than zero. The SDL is an adjusted limit thus sample specific and accounts for preparati	on weights and volumes	š,
	dilutions, and moisture content of soil/sediments. If there are no sample specific parameters, the MDL = SDL.		
MRL	Method Reporting Limit - Analyte concentration that corresponds to the lowest level lab reports with confidence in accurate	racy of quantitation and	í
	without qualification (i.e. J-flagged). The MRL is at or above the lowest calibration standard.	+	
LRL	Laboratory Reporting Limit - Analyte concentration that corresponds to the lowest level lab reports with confidence in a	ccuracy of quantitation	and
	without qualification (i.e. J-flagged). The LRL is an adjusted limit thus sample specific and accounts for preparation wei		
	and moisture content of soil/sediments. If there are no sample specific parameters, the MRL = LRL.	and relatively effect	
	and the second s		

A = Accredited, N = Not Accredited or Accreditation not available

CHAIN OF CUSTODY RECORD

North Water District Laboratory Services 130 S. Trade Center Pkwy, Conroe Tx 77385 (936) 321-6060 - lab@nwdls.com

TCEQ T104704238-23-39

Page 1 of 2 23F1979

Sample ID Collection Point 23F1979-01 501 James Street Glen Williams Phone: 832-349-8027 City of Tomball Lab PM: Deena Higginbotham Tomball, TX 77375 Centrifuge Date/Time Begin Project Comments: 12411 Holderrieth Rd Tomball 77375 Combo # 9898 Glen Williams - 832-349-8027 ENTER CODE TO CLOSE GATE WHEN YOU LEAVE Project Name: City of Tomball - South Plant - Annual Sludge 6/8/2023 0700 collected operator 200 Date/Time Sampled S Sample Type Container 0 00 HDPE IC 250mL HDPE 250mL Glass 1L HDPE WC 250mL HDPE MET 250mL Glass 250mL w/ Glass VOA 60ml Glass Wide 1L w/ Teflon-lined Lid Teflon-lined Lid Paint Filter-9095 Nitrate as N IC 9056 NH3-N T-350.2 PCB-8082 OCP-TCLP Selenium ICP TCLP Selenium ICP 6010 Hg-7471 Copper ICP 6010 Chromium ICP TCLP Chromium ICP 6010 Cadmium ICP TCLP Barium ICP TCLP Arsenic ICP TCLP Arsenic ICP 6010 Analysis/Preservation VOA-TCLP SVOA-TCLF Zinc ICP 6010 Silver ICP TCLP Potassium ICP 6010 Nickel ICP 6010 Molybdenum ICP 6010 Hg-7471-TCLP Cadmium ICP 6010 TCLP ZHE Total Phosphorus ICP 6(4°C Lead ICP TCLP TKN T-351.3 TCLP Bottle HERB TOLP Lead ICP 6010 4°C 4°C 4°C 4 4 6 4°C 4°C 4°C to Field Results Schedule Comments

Glen Williams 501 James Street Tomball, TX 77375 Phone: 832-349-8027

City of Tomball

Page 2 of 2

(Continued)

Schedule Comments:

23F1979

Lab PM : Deena Higginbotham Project Comments: 12411 Holderrieth Rd Tomball 77375 Combo # 9898 Glen Williams - 832-349-8027 ENTER CODE TO CLOSE GATE WHEN YOU LEAVE Project Name: City of Tomball - South Plant - Annual Sludge CHAIN OF CUSTODY RECORD

North Water District Laboratory Services
130 S. Trade Center Pkwy, Conroe Tx 77385
(936) 321-6060 - lab@nwdls.com TCEQ T104704238-23-39

Field Remarks:		Lab Preservation: H2SO4	12SO4 HNO3	NaOH Other	
	Annual control of the	(Circle and Write ID Below)			
Sampler (Signature)	Relinquished By: (Signature)	Date/Time	Received By: (Signature)		Date/Time
Print Name	Relinquished By: (Signature)	Date/Time	Received By: (Signature)		Date/Time
Affiliation	Relinquished To Lab By: (Signature)	Date/Time	Received for Laboratory By: (Signature)	re)	Date/Time, 345
JWOLS	the thirt	6.8.23/1345		ROR	6.8.23
Custody Seal: Yes / No	COC Labels Agree: Yes / No		Received on Ice: Yes / No	Temperature:	°C
Container Intact: Yes / No	Appropriate Containers: Yes / No	Coolers Intact Yes / No S	Samples Accepted: Yes / No	Thermometer ID:	

Tomball

wko_NWDLS_COC_LS Revision 4.1 Effective: 2/17/2022

Laboratory Analysis Report

Total Number of Pages:

Job ID: 23061168

10100 East Freeway, Suite 100, Houston, TX 77029 tel: 713-453-6060, fax: 713-453-6091, http://www.ablabs.com

Client Project Name: 23F1979

Report To:

Client Name:

NWDLS

Attn:

Deena Higginbotham

Client Address:

130 S Trade Center Pkwy

City, State, Zip:

Conroe, Texas, 77385

P.O.# .: 23F1979

Sample Collected By:

Date Collected: 06/08/23

A&B Labs has analyzed the following samples...

Client Sample ID

Matrix

A&B Sample ID

23F1979-01

Solid

23061168.01

Released By: Title:

Senthilkumar Sevukan Vice President Operations

Date:

6/15/2023

This Laboratory is NELAP (T104704213-23-31) accredited. Effective: 04/13/2023; Expires: 3/31/2024

Scope: Non-Potable Water, Drinking Water, Air, Solid, Biological Tissue, Hazardous Waste

I am the laboratory manager, or his/her designee, and I am responsible for the release of this data package. This laboratory data package has been reviewed and is complete and technically compliant with the requirements of the methods used, except where noted in the attached exception reports. I affirm, to the best of my knowledge that all problems/anomalies observed by this laboratory (and if applicable, any and all laboratories subcontracted through this laboratory) that might affect the quality of the data, have been identified in the Laboratory Review Checklist, and that no information or data have been knowingly withheld that would affect the quality of the data.

This report cannot be reproduced, except in full, without prior written permission of A&B Labs. Results shown relate only to the items tested. Results apply to the sample as received. Samples are assumed to be in acceptable condition unless otherwise noted. Blank correction is not made unless otherwise noted. Air concentrations reported are based on field sampling information provided by client. Soil samples are reported on a wet weight basis unless otherwise noted. Uncertainty estimates are available on request.

ab-q210-0321

Date Received: 06/13/2023 09:50

LABORATORY TERM AND QUALIFIER DEFINITION REPORT

Post-Wt

Pre-Wt

RegLimit

RptLimit

RPD

SDL

ppm

Q

Job ID: 23061168

Date:

6/15/2023

General Term Definition

Back-Wt

Back Weight

BRL

Below Reporting Limit

cfu

colony-forming units Concentration

Conc. D.F.

Dilution Factor

Front-Wt

Front Weight

LCS

Laboratory Check Standard

LCSD

Laboratory Check Standard Duplicate

MS

MSD

Matrix Spike Duplicate

MW

Molecular Weight

J

Estimation. Below calibration range but above MDL

Matrix Spike

surr T TNTC Surrogate Time

Too numerous to count MQL

Post Weight

Qualifier

parts per million

Previous Weight

Regulatory Limit

Reporting Limit

Minimum Quantitation Limit

Relative Percent Difference

Sample Detection Limit

Qualifier Definition

U

Undetected at SDL (Sample Detection Limit).

Page 30 of 35

Page 2 of 7

LABORATORY TEST RESULTS

Job ID: 23061168

Date 6/15/2023

Client Name:

NWDLS

Attn: Deena Higginbotham

Project Name:

23F1979

Client Sample ID:

23F1979-01

Date Collected:

06/08/23

Time Collected: 07:00 Other Information:

Job Sample ID:

23061168.01

Sample Matrix

Solid

% Moisture

Other Informat	ion:									
Test Method	Parameter/Test Description	Result	Units	DF	SDL	SQL	Reg Limit	Q	Date Time	Analyst
SW-846 8260C	TCLP VOC									
	1,1-Dichloroethylene	< 0.017	mg/L	1.00	0.017	0.125	0.6	U	06/14/23 13:37	ZQ
	1,2-Dichloroethane	< 0.026	mg/L	1.00	0.026	0.125	0.5	U	06/14/23 13:37	ZQ
	1,4-Dichlorobenzene	<0.018	mg/L	1.00	0.018	0.125	7.5	U	06/14/23 13:37	ZQ
	Benzene	< 0.016	mg/L	1.00	0.016	0.125	0.5	U	06/14/23 13:37	ZQ
	Carbon tetrachloride	< 0.043	mg/L	1.00	0.043	0.125	0.5	U	06/14/23 13:37	ZQ
	Chlorobenzene	< 0.017	mg/L	1.00	0.017	0.125	70	U	06/14/23 13:37	ZQ
	Chloroform	<0.018	mg/L	1.00	0.018	0.125	6	U	06/14/23 13:37	ZQ
	MEK	<0.072	mg/L	1.00	0.072	0.125	200	U	06/14/23 13:37	ZQ
	Tetrachloroethylene	< 0.017	mg/L	1.00	0.017	0.125	0.7	U	06/14/23 13:37	ZQ
	Trichloroethylene	< 0.020	mg/L	1.00	0.020	0.125	0.5	U	06/14/23 13:37	ZQ
	Vinyl Chloride	< 0.021	mg/L	1.00	0.021	0.125	0.2	U	06/14/23 13:37	ZQ
	1,2-Dichloroethane-d4(surr)	105	%	1.00		70-130			06/14/23 13:37	ZQ
	Dibromofluoromethane(surr)	102	%	1.00		70-130			06/14/23 13:37	ZQ
	p-Bromofluorobenzene(surr)	106	%	1.00		70-130			06/14/23 13:37	ZQ
	Toluene-d8(surr)	105	%	1.00		70-130			06/14/23 13:37	ZQ

ab-q212-0321

Page 31 of 35

QUALITY CONTROL CERTIFICATE

Job ID: 23061168

Date:

6/15/2023

Analysis : TCLP VOC

Method:

SW-846 8260C

Reporting Units : mg/L

QC Batch ID: Qb23061501

Created Date: 06/14/23

Created By : Zeeshan

Samples in This QC Batch: 23061168.01

Prep Method: SW-846 5030C PB23061501

Prep Date: 06/14/23 10:00 Prep By:

Zeeshan

TCLP Prep:

Sample Preparation : PB23061430

Prep Method: SW-846 1311

Prep Date: 06/13/23 17:40 Prep By:

JCoku

QC Type: Method Blank			00	in Philips		ar uitte muh	till til	
Parameter	CAS #	Result	Units	D.F.	MQL	MDL		Qual
1,1-Dichloroethylene	75-35-4	< MDL	mg/L	1.00	0.125	0.0165		
1,2-Dichloroethane	107-06-2	< MDL	mg/L	1.00	0.125	0.026	J TO SEC.	
1,4-Dichlorobenzene	106-46-7	< MDL	mg/L	1.00	0.125	0.018		
Benzene	71-43-2	< MDL	mg/L	1.00	0.125	0.0158		
Carbon tetrachloride	56-23-5	< MDL	mg/L	1.00	0.125	0.0433		
Chlorobenzene	108-90-7	< MDL	mg/L	1.00	0.125	0.0173	Samuel S	
Chloroform	67-66-3	< MDL	mg/L	1.00	0.125	0.018		
MEK	78-93-3	< MDL	mg/L	1.00	0.125	0.0715		
Tetrachloroethylene	127-18-4	< MDL	mg/L	1.00	0.125	0.0165	197	
Trichloroethylene	79-01-6	< MDL	mg/L	1.00	0.125	0.0198		
Vinyl Chloride	75-01-4	< MDL	mg/L	1.00	0.125	0.0205		
1,2-Dichloroethane-d4(surr	17060-07-0	102	%	1.00			HILLAND I	
Dibromofluoromethane(surr	1868-53-7	101	%	1.00		Common		
p-Bromofluorobenzene(surr	460-00-4	106	%	1.00				
Toluene-d8(surr)	2037-26-5	104	%	1.00				

Parameter	LCS Spk Added	LCS Result	LCS % Rec	LCSD Spk Added	LCSD Result	LCSD % Rec	RPD	RPD CtrlLimit	%Recovery CtrlLimit	Qual
1,1-Dichloroethylene	1	1.06	106	1	1.05	105	0.6	35	70-130	
1,2-Dichloroethane	1	0.992	99.2	1	1.01	101	1.8	35	70-130	
1,4-Dichlorobenzene	1	0.999	99.9	1	0.998	99.8	0.1	35	70-130	
Benzene	1	0.999	99.9	1	0.986	98.6	1.3	35	70-130	
Carbon tetrachloride	1	1.04	104	1	1.03	103	0.9	35	70-130	
Chlorobenzene	1	0.982	98.3	1	0.984	98.4	0.2	35	70-130	
Chloroform	1	1.03	103	1	1.03	103	0.4	35	70-130	
MEK	1	1.06	106	1	1.01	101	4.6	35	70-130	
Tetrachloroethylene	1	0.915	91.5	1	0.831	83.1	9.6	35	70-130	
Trichloroethylene	1	0.951	95.1	1	0.958	95.8	0.8	35	70-130	
Vinyl Chloride	1	1.11	111	1	1.09	109	2	35	70-130	

QC Type: MS and MS QC Sample ID: 2306	SD 51167.01										
Parameter	Sample Result	MS Spk Added	MS Result	MS % Rec	MSD Spk Added	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLimit	Qual
1,1-Dichloroethylene	BRL	1	1.09	109						70-130 ab-o	213-0321

Refer to the Definition page for terms.

QUALITY CONTROL CERTIFICATE

Job ID: 23061168

Date:

6/15/2023

Analysis : TCLP VOC

Method:

SW-846 8260C

Reporting Units : mg/L

QC Batch ID: Qb23061501

23061501 Created Date:

06/14/23

Created By : Zeeshan

Samples in This QC Batch: 23061168.01

QC Type: MS and MS QC Sample ID: 2306	5D 51167.01					7	To have) magazin	il tayur	
Parameter	Sample Result	MS Spk Added	MS Result	MS % Rec	MSD Spk Added	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLimit	Qual
1,2-Dichloroethane	BRL .	1	1.04	104				115.00	THE RES	70-130	DVI
1,4-Dichlorobenzene	BRL	1	1.01	101						70-130	F
Benzene	BRL	1	1.03	103						70-130	m5.l
Carbon tetrachloride	BRL	1	1.00	100	ALUE COM		nosa 1 W		i various	70-130	
Chlorobenzene	BRL	1	0.995	99.5						70-130	
Chloroform	BRL	1	1.08	108	THE P					70-130	1
MEK	BRL	1	0.884	88.4						70-130	
Tetrachloroethylene	BRL	1	0.804	80.4						70-130	
Trichloroethylene	BRL	1	0.995	99.5	A KITCH TO					70-130	
Vinyl Chloride	BRL	1	1.14	114						70-130	

ab-q213-0321

SUBCONTRACT ORDER

Sending Laboratory:

North Water District Laboratory Services, Inc.

130 South Trade Center Parkway

Conroe, TX 77385 Phone: 936-321-6060 Fax: 936-321-6061

Project Manager: Deena Higginbotham

Subcontracted Laboratory:

A & B Labs

10100 East Freeway, Suite 100

Houston, TX 77029

Phone: (713) 453-6060

Fax: (713) 453-6091

Work Order: 23F1979

Expires Comments Due Analysis

Solid Sampled: 06/08/2023 07:00 Sample ID: 23F1979-01

TCLP ZHE

Auto-Included 06/22/2023 07:00 06/22/2023

OIA

06/22/2023 06/22/2023 07:00

VOA-TCLP Analyte(s):

1,1-Dichloroethylene

1,4-Dichlorobenzene (p-Dichlorobenzene)

Benzene

Chloroform

Toluene-d8-surr

1,2-Dichloroethane (Ethylene dichloride)

2-Butanone (Methyl ethyl ketone, MEK)

Carbon tetrachloride

Dibromoflucromethane-surr

Trichloroethene (Trichloroethylene)

1,2-Dichloroethane-d4-surr

4-Bromoflurobenzene-surr

Chlorobenzene

Tetrachloroethylene (Perchloroethylene)

Vinvl chloride (Chloroethene)

Containers Supplied:

Released By

Learly 04:48 613.73 9:50

Job ID:23061168

06/13/2023

NWDLS

AM5

Page 34 of 35

NWDLS Rev 1.2 Effective: 11/12/2021

Sample Condition Checklist

Phone: 713-453-6060

	_						
A&I	3 JobID :	23061168	Date Received: 06/13/2023 Time F	Received: 9:5	MAO		
Clie	ent Name :	NWDLS					
Ter	nperature :	4.8°C	Sample pH: NA				
The	ermometer ID	: IR5	pH Paper ID : NA				
Pe	rservative :						
			Check Points		Yes	No	N/A
1.	Cooler Seal p	present and signed.				Х	
2.	Sample(s) in	a cooler.			Х		
3.	If yes, ice in	cooler.			Х		
4.	Sample(s) re	eceived with chain-of-cust	ody.		Х		
5.	C-O-C signed	l and dated.			Х		
6.	Sample(s) re	ceived with signed sample	e custody seal.	ACC. 145 A		X	
7.		ainers arrived intact. (If N			Х		
8.	Wat Matrix:	er Soil Liquid Slu	idge Solid Cassette Tube Bulk Badge Fo	ood Other			
9.	Samples wer	e received in appropriate	container(s)		Х		
10.	Sample(s) w	ere received with Proper p	reservative				Х
11.	All samples v	were tagged or labeled.			Х		
12.	Sample ID la	bels match C-O-C ID's.			Х		
13,	Bottle count	on C-O-C matches bottles	found.		Х		
14.	Sample volu	me is sufficient for analyse	es requested.		Х		
15.	Samples wer	e received with in the hole	I time.		Х		
16.	VOA vials co	mpletely filled.					х
17.	Sample acce	pted.			Х		
18.	Has client be	en contacted about sub-o	ut				Х
-							
COI	innents : Inci	ude actions taken to resor	ve discrepancies/problem:			-	
		20					
Red	ceived by:	Valdez	Check in by/date : EValdez /	06/13/2023			

Page 35 of 35

www.ablabs.com

ab-s005-0321

Treschwig

8725 Fawn Trail The Woodlands, TX 77385 Tel: (936) 321-6060 | Fax: (936) 321 6061

> Email: lab@nwdsls.com www. NWDLS.com

TCEQ Lab ID #: TX204, Accreditation ID: T104704238

May 24, 2023

LABORATORY REPORT

Gregory Camp Inframark 32259 Morton Road Brookshire, TX 77423

Report ID: 20230524134812Sta..

RE: Treschwig JP - Non Potable - Class B Annual

The following test results meet all NELAP requirements for analytes for which certification is available. Any deviations from our quality system will be noted in the case narrative. All analyses performed by North Water District Laboratory Services, Inc. unless noted.

For questions regarding this report, contact Monica Martin at 936-321-6060.

Sincerely,

Stations For Deena Higginbotham Director of Client Services

Email: lab@nwdsls.com

www. NWDLS.com

TCEQ Lab ID #: TX204, Accreditation ID: T104704238

Inframark

32259 Morton Road Brookshire, TX 77423 Project: Treschwig JP - Non Potable - Class B Annual

Project Number: 50

Project Manager: Gregory Camp

Reported:

05/24/2023 13:48

Sample Results

Client Sample ID: Lab Sample ID:

Digester 1

23E4378-01

Sample Matrix:

Solid

Date Collected:

05/22/2023 8:40

Collected by:

Jacob Smith

				pliected by:	Jacob Smith	
Method	Analyte	Result Q	Units	Batch	Date Analyzed	Analyst
Colilert-18	Fecal coliforms	17450507		A Committee of the Comm	300	
Colilert-18		19600	MPN/g TS dry	BGE3527	05/23/2023 10:43	JKB
Colilert-18	Fecal coliforms	24200	MPN/g TS dry	BGE3527	05/23/2023 10:43	JKB
	Fecal coliforms	16000	MPN/g TS dry	BGE3527	05/23/2023 10:43	JKB
Colilert-18	Fecal coliforms	25700	MPN/g TS dry	BGE3527	05/23/2023 10:43	JKB
Colilert-18	Fecal coliforms	18200	MPN/g TS dry	BGE3527	05/23/2023 10:43	JKB
Colilert-18	Fecal coliforms	14800	MPN/g TS dry	BGE3527	05/23/2023 10:43	JKB
Colilert-18	Fecal coliforms	24800	MPN/g TS dry	BGE3527	05/23/2023 10:43	JKB
SM 2710 B	Specific Oxygen Uptake Rate (SOUR)	0.576	mg O2/hr/g TS @ 20°C dry	BGE3528	05/22/2023 15:17	AKA
SM 2550 B	Temperature °C Field	13.2	°C	BGE3593	05/22/2023 08:40	JTS
SM 2540 G	% Solids	1.08 V	%	BGE3555	05/23/2023 11:17	JRU
terminal programme in the part of the contract of						

The total solids is diluted to <=2.0% for the S.O.U.R. test when necessary.

CLASS B - Pass

Per Title 30, Texas Administrative Code, Chapter 312, for a Class B to pass, the fecal coliform geometric mean must be less than or equal to 2,000,000 CFU/ug TS and the S.O.U.R must be less than or equal to 1.5 mg O2/hr/g TS.

Email: lab@nwdsls.com

www. NWDLS.com

TCEQ Lab ID #: TX204, Accreditation ID: T104704238

Inframark

32259 Morton Road Brookshire, TX 77423 Project: Treschwig JP - Non Potable - Class B Annual

Project Number: 50

Project Manager: Gregory Camp

Reported:

05/24/2023 13:48

Quality Control

General Chemistry

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGE3555 - Percent Solids Blank (BGE3555-BLK1)			Pr	epared: 5/22	/2023 Analyze	ed: 5/23/202	3		
% Solids	<0.100U	0.100	%		1				
Duplicate (BGE3555-DUP1)	Source: 2	3E4424-01	Pr	epared: 5/22	/2023 Analyze	ed: 5/23/202	3		
% Solids		0.100	%		1.67			0.399	20
Reference (BGE3555-SRM1)			Pr	epared: 5/22	2/2023 Analyze	ed: 5/23/202	3		
% Solids		0.100	%	0.350		105	78.9-118		

Email: lab@nwdsls.com

www. NWDLS.com TCEQ Lab ID #: TX204, Accreditation ID: T104704238

Inframark

32259 Morton Road

Brookshire, TX 77423

Project: Treschwig JP - Non Potable - Class B Annual

Project Number: 50

Project Manager: Gregory Camp

Reported:

05/24/2023 13:48

Quality Control (Continued)

Microbiology

Analyte Result Qual Reporting Spike Source %REC RPD Limit Units Level Result %REC Limits RPD Limit

Batch: BGE3527 - FC Quantitray

Blank (BGE3527-BLK1) Fecal coliforms

<10.0U

Prepared: 5/22/2023 Analyzed: 5/23/2023

10.0 MPN/g TS wet

Duplicate (BGE3527-DUP1) Fecal coliforms

Source: 23E4378-01

Prepared: 5/22/2023 Analyzed: 5/23/2023 S 19600

922 MPN/g TS

11/9

14.4

200

Email: lab@nwdsls.com

www. NWDLS.com

TCEQ Lab ID #: TX204, Accreditation ID: T104704238

Inframark

32259 Morton Road Brookshire, TX 77423 Project: Treschwig JP - Non Potable - Class B Annual

Project Number: 50

Project Manager: Gregory Camp

Reported:

05/24/2023 13:48

Term and Qualfier Definitions

Item	Definition	
U	Non-detected compound.	
V	Analyte was detected in both sample and method blank.	
DF	Dilution Factor - the factor applied to the reported data due to sample preparation, dilution, or moisture content	5
RPD	Relative Percent Difference	
%REC	Percent Recovery	
Source	Sample that was matrix spiked or duplicated	

CHAIN OF CUSTODY RECORD

North Water District Laboratory Services 130 S. Trade Center Pkwy, Conroe Tx 77385 (936) 321-6060 - lab@nwdls.com TCEQ T104704238-23-39 Page 1 of 2 23E4378

Sample ID	Collection Point	Date/Time Begin	Date/Time Sampled	Sample Type	Container	Analysis/Preservation	Field Results
23E4378-01	Digester 1		5/22/2023	S Grab	A HDPE \$150mL Na2\$203 B HDPE \$150mL Na2\$203 C HDPE \$150mL Na2\$203 D HDPE \$150mL Na2\$203 E HDPE \$150mL Na2\$203 F HDPE \$150mL Na2\$203 G HDPE \$150mL Na2\$203 HDPE \$150mL Na2\$203 HDPE \$150mL Na2\$203 HDPE \$150mL Na2\$203 HDPE \$150mL Na2\$203 HDPE \$150mL Na2\$203	FC/CB-QT-LR Na2S2O3 <10°C SOUR-2710 4°C SOUR TS-2540 G 4°C TS-2540 G 4°C	Temp C Field S.C
23E4378-02	Digester 2		5/22/2023	S grab	I HDPE 250mL A HDPE S150mL Na2S2O3 B HDPE S150mL Na2S2O3 C HDPE S150mL Na2S2O3 D HDPE S150mL	FC/CB-QT-LR Na2S2O3 <10°C SOUR-2710 4°C SOUR TS-2540 G 4°C TS-2540 G 4°C	Temp C Field
	,				Ne26203 E HDPE S150mL Na25203 F HDPE S150mL Na25203 G HDPE S150mL Na25203 H HDPE 1L I HDPE 1L		

Page 6 of 7

Spring South

CHAIN OF CUSTODY RECORD North Water District Laboratory Services 130 S. Trade Center Pkwy, Conroe Tx 77385 (936) 321-6060 - lab@nwdls.com

23E4378

	TCEQ T104704238-23-39	(Continued)
Lab PM : Deena Higginbotham	Project Name : Treschwig JP - Non Potable - Class B Annual	Schedule Comments:
Inframark Gregory Camp 32259 Morton Road Brookshire, TX 77423 Phone: (281) 902-0966	Project Comments: 4414 Treschwig Rd - Spring 77373 Gate 1515 in the event of on-site chemical release call 911 and operator Laura Zito – 832-302-4323 Chris - 713-657-5188 EDP helper	

Field Remarks:		Lab Preservation: H (Circle and Write ID Below)	2SO4 HNO3 NaOH Other	
Sampler (Signature)	Relinquished By: (Signature)	Date/Time	Received By: (Signature)	Date/Time
Print Name	Relinquished By: (Signature)	Date/Time	Received By: (Signature)	Date/Time
Affiliation NWO	Relinquished To Lab By: (Signature)	Date/Time 5-22-3/39	Received for Laboratory By. (Skina)ure)	Date/Time 5-77-23 13:50
Custody Seal: Yes / No COC	Labels Agree: Yes / No Appropriate Volume: Y opriate Containers: Yes / No Coolers Intact: Y	es / No F	Received on Ice: Yes / No Temperature: Samples Accepted: Yes / No Thermometer ID: wko_NWDLS_COC_LS Revis	°C

Page 7 of 7

July 25, 2023

LAB REPORT

Gregory Camp Inframark 32259 Morton Road Brookshire, TX 77423

Report ID: 20230725114901AEN

RE: Treschwig JP - Non Potable - Sewage Sludge Annual

The following test results meet all NELAP requirements for analytes for which certification is available. Any deviations from our quality system will be noted in the case narrative. All analyses performed by North Water District Laboratory Services, Inc. unless noted.

For questions regarding this report, contact Monica Martin at 936-321-6060.

Sincerely,

Aundra Noe For Deena Higginbotham

Director of Client Services

Tel: (936) 321-6060 . Email: lab@nwdls.com www. NWDLS.com

TCEQ T104704238-23-39

Inframark

32259 Morton Road Brookshire, TX 77423 Project: Treschwig JP - Non Potable - Sewage Sludge Annual

Project Number: 50

Project Manager: Gregory Camp

Reported:

07/25/2023 11:49

Sample Results

Client Sample ID:

Digester 1

Lab Sample ID:

23E4380-01

Sample Alias:

Sample Matrix:

Solid

Date Collected:

05/22/2023 8:40

						Co	ollected by:	Jaco	b Smith	
Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Anal
Organics by	y GC									Aliai
SW-8082	PCBs, Total	Α	<1.84U	mg/kg (dry wt) dry	10	0.922	1.84	BGF0514	06/16/2023 09:25	KF
SW-8082	Surrogate: 2,4,5,6 Tetrachloro-		195% S	60-140		*********		*******	neuemann as se	
SW-8082	Surrogate: Decachlorobiphenyl	-surr	93.4%	60-140					06/16/2023 09:25 06/16/2023 09:25	
Metals, Tot	al								00/10/2023 09:23	
SW-6010C	Arsenic	Α	6.32	ma/ka da						
W-6010C	Cadmium	A	0.922	mg/kg dry	1	0.674	3.07	BGE4698	06/07/2023 10:41	FA
W-6010C	Chromium	A	26.5	mg/kg dry	1	0.0797	0.307	BGE4698	06/07/2023 10:41	FA
W-6010C	Copper	A	245	mg/kg dry	1	1.15	1.54	BGE4698	06/07/2023 10:41	FA
W-7471B	Mercury	A		mg/kg dry	5	1.64	15.3	BGE4698	06/07/2023 12:21	FA
W-6010C	Lead	A	0.366	mg/kg dry	1	0.0184	0.0369	BGE4918	06/01/2023 14:58	AK
W-6010C	Molybdenum	A	18.8	mg/kg dry	1	0.782	1.54	BGE4698	06/07/2023 10:41	FA
W-6010C	Nickel	A	5.01	mg/kg dry	1	1.54	1.54	BGE4698	06/07/2023 10:41	FA
W-6010C	Potassium	A	13.8	mg/kg dry	1	0.415	1.54	BGE4698	06/07/2023 10:41	FA
W-6010C	Selenium	A	4800	mg/kg dry	1	26.4	307	BGE4698	06/07/2023 10:41	FA
N-6010C	Total Phosphorus		10.1	mg/kg dry	1	1.20	3.07	BGE4698	06/07/2023 10:41	FA
W-6010C	Zinc	A	16000	mg/kg dry	5	64.5	1530	BGE4698	06/07/2023 12:21	FA
		Α	1060	mg/kg dry	20	30.8	30.8	BGE4698	06/07/2023 12:32	FAI
eneral Che	emistry									
PA 350.2	Ammonia as N	Α	3540	mg/kg dry	1	917	1830	BGF0371	06/06/2023 13:11	GIV
W-9056A	Nitrate as N	Α	3880	mg/kg dry	10	46.1	115	BGE3627	05/22/2023 20:45	ORI
M 2540 G	% Solids	Α	1.08V	%	1	0.100	0.100	BGE3555	05/23/2023 20:43	JRL
CLP						51025	01100	5023333	03/23/2023 11.17	JAC
V-6010C	Arsenic	Α	<5.00U	mg/L	1	0.0200	5.00	BGF0509	06/06/2023 11:26	EAL
V-6010C	Barium	Α	<100 V2, U	mg/L	5	0.0500	100	BGF0509	06/06/2023 11:28	FAL
V-6010C	Cadmium	Α	<1.00U	mg/L	1	0.00100	1.00	BGF0509		FAL
V-6010C	Chromium	Α	<5.00U	mg/L	1	0.00500	5.00	BGF0509	06/06/2023 11:26	FAL
V-8151	2,4-D	Α	<10.0C+, U	mg/L	2	0.000476	10.0		06/06/2023 11:26	FAL
V-8151	Silvex (2,4,5-TP)	Α	<1.00C+, U	mg/L	2	0.000476	1.00	BGF0530 BGF0530	07/09/2023 08:06 07/09/2023 08:06	KRE
N-8151	Surrogate: DCAA-surr	**********	125%	70.120		* * * * * * * * * *	******			
V-7471B	Mercury	Α	<0.200U	70-130	9.5	0.000300	0.200	DCE0424	07/09/2023 08:06	2002
V-6010C	Lead	A	<5.00U	mg/L	1	0.000200	0.200	BGF0431	06/05/2023 12:43	AKR
V-8081	Chlordane (Total)	A	<0.0300U	mg/L	1	0.0100	5.00	BGF0509	06/06/2023 11:26	FAL
V-8081	Endrin	N	<0.0200U	mg/L mg/L	1	3.00E-6	0.0300	BGF0708	06/29/2023 11:10	cdg
V-8081	gamma-BHC (Lindane, gamma-Hexachlorocyclohexa nE)	A	<0.400U	mg/L	1	3.00E-6 3.00E-6	0.0200	BGF0708 BGF0708	06/29/2023 11:10 06/29/2023 11:10	cdg cdg
/-8081	Heptachlor	Α	<0.00800U	mg/L	1	3.00E-6	0.00800	BCE0709	06/20/2022 11:40	- da
V-8081	Heptachlor epoxide	A	<0.00800U		1			BGF0708	06/29/2023 11:10	cdg
			30,000000	mg/L	1	3.00E-6	0.00800	BGF0708	06/29/2023 11:10	cdg

Inframark

Project: Treschwig JP - Non Potable - Sewage Sludge Annual

32259 Morton Road

Project Number: 50

Reported:

Brookshire, TX 77423

Project Manager: Gregory Camp

07/25/2023 11:49

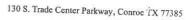
Sample Results (Continued)

Client Sample ID:

Digester 1 (Continued)

Lab Sample ID:

23E4380-01


Sample Matrix:

Solid

Date Collected:

05/22/2023 8:40

Sample Alias:					Colle	cted by:	Jacob	Smith		
Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analys
TCLP (Conti	inued)									
SW-8081	Methoxychlor	Α	<10.0U	mg/L	1	3.00E-6	10.0	BGF0708	06/29/2023 11:10	cdg
SW-8081	Toxaphene (Chlorinated Camphene)	Α	<0.500U	mg/L	1	3.00E-6	0.500	BGF0708	06/29/2023 11:10	cdg
SW-8081	Surrogate: 2,4,5,6 Tetrachloro-n	n-xylene-suri	111%	60-140					06/29/2023 11:10	
SW-8081	Surrogate: Decachlorobiphenyl-surr		104%	60-140					06/29/2023 11:10	2220
SW-6010C	Selenium	Α	<1.00U	mg/L	1	0.0200	1.00	BGF0509	06/06/2023 11:26	FAL
SW-6010C	Silver	Α	<5.00U	mg/L	1	0.00200	5.00	BGF0509	06/06/2023 11:26	FAL
SW-8270	2,4,5-Trichlorophenol	Α	<400 U	mg/L	1	0.00250	400	BGF0760	06/21/2023 10:10	KRE
SW-8270	2,4,6-Trichlorophenol	Α	<2.00 U	mg/L	1	0.00250	2.00	BGF0760	06/21/2023 10:10	KR
SW-8270	2,4-Dinitrotoluene (2,4-DNT)	Α	<0.130U	mg/L	1	0.00250	0.130	BGF0760	06/21/2023 10:10	KRE
SW-8270	2-Methylphenol	Α	<200 U	mg/L	1	0.00250	200	BGF0760	06/21/2023 10:10	KRE
SW-8270	3,4-Methylphenol	Α	<200 U	mg/L	1	0.00250	200	BGF0760	06/21/2023 10:10	KRE
SW-8270	Hexachlorobenzene	Α	<0.130U	mg/L	1	0.00250	0.130	BGF0760	06/21/2023 10:10	KRE
SW-8270	Hexachlorobutadiene	Α	<0.500U	mg/L	1	0.00250	0.500	BGF0760	06/21/2023 10:10	KR
SW-8270	Hexachloroethane	Α	<3.00U	mg/L	1	0.00250	3.00	BGF0760	06/21/2023 10:10	KRI
SW-8270	Nitrobenzene	Α	<2.00U	mg/L	1	0.00250	2.00	BGF0760	06/21/2023 10:10	KRI
SW-8270	Pentachlorophenol	Α	<100U	mg/L	1	0.00250	100	BGF0760	06/21/2023 10:10	KR
SW-8270	Pyridine	A	<5.00U	mg/L	1	0.00250	5:00	BGF0760	06/21/2023 10:10	KR
************	Surrogate: 2-Fluorobiphenyl-sur		103%	54.6-148					06/21/2023 10:10	
SW-8270	Surrogate: 2-Fluorophenol-surr	Į.	87.5%	55-152					06/21/2023 10:10	
SW-8270 SW-8270	Surrogate: 2-ridorophenor-surr	ol-surr	86.5%	52.4-136					06/21/2023 10:10	
SW-8270	Surrogate: Nitrobenzene-d5-sur		108%	52-162					06/21/2023 10:10	7
SW-8270	Surrogate: Phenol-d5-surr		88.1%	58.7-152					06/21/2023 10:10	
SW-8270	Surrogate: p-Terphenyl-d14-sur	7	77.9%	51.9-147					06/21/2023 10:10	7

Tel: (936) 321-6060 Email: lab@nwdls.com

www. NWDLS.com TCEQ T104704238-23-39

Inframark

32259 Morton Road Brookshire, TX 77423 Project: Treschwig JP - Non Potable - Sewage Sludge Annual

Project Number: 50

Project Manager: Gregory Camp

Reported:

07/25/2023 11:49

Sample Results

(Continued)

Client Sample ID:

Digester 1

Lab Sample ID:

Sample Alias:

23E4380-01RE2

Solid

Sample Matrix: Date Collected:

05/22/2023 8:40

Sumple Allas			Result Q			Colle	ected by:	Jacob Smith		
Method	Analyte	*		Units	DF	SDL	LRL	Batch	Analyzed	Analyst
General Che	emistry									
EPA 351.3	Total Kjeldahl Nitrogen - (TKN) (Rerun)	N	45300	mg/kg dry	1	2280	2280	BGF0406	06/05/2023 13:28	GIW

Inframark

Project: Treschwig JP - Non Potable - Sewage Sludge Annual

32259 Morton Road Brookshire, TX 77423 Project Number: 50

Project Manager: Gregory Camp

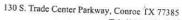
Reported:

07/25/2023 11:49

Sample Results (Continued)

Client Sample ID: Lab Sample ID:

Digester 2


23E4380-02

Sample Matrix: Date Collected: Solid

05/22/2023 8:40 Jacob Smith

Collected by:

Sample Alias:			Colle	cted by:	Jacob					
Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analy
Organics by	GC							1000		
SW-8082	PCBs, Total	Α	<1.85U	mg/kg (dry wt) dry	10	0.927	1.85	BGF0514	06/16/2023 09:5	0 KR
errana	Surrogate: 2,4,5,6 Tetrachloro-m-	vylene-suri	150% 5	60-140	*********				06/16/2023 09:5	0
5W-8082 SW-8082	Surrogate: Decachlorobiphenyl-su		84.0%	60-140					06/16/2023 09:5	50
Metals, Tota										
SW-6010C	Arsenic	A	6.33	mg/kg dry	1	0.677	3.08	BGE4698	06/07/2023 10:4	14 FA
SW-6010C	Cadmium	Α	0.901	mg/kg dry	1	0.0801	0.308	BGE4698	06/07/2023 10:4	14 FA
SW-6010C SW-6010C	Chromium	Α	26.6	mg/kg dry	1	1.16	1.55	BGE4698	06/07/2023 10:4	14 FA
SW-6010C SW-6010C	Copper	Α	239	mg/kg dry	5	1.65	15.4	BGE4698	06/07/2023 12:3	35 FA
SW-7471B	Mercury	A	0.361	mg/kg dry	1	0.0185	0.0371	BGF0125	06/01/2023 17:	38 AK
SW-6010C	Lead	A	19.2	mg/kg dry	1	0.786	1.55	BGE4698	06/07/2023 10:	14 FA
SW-6010C	Molybdenum	Α	5.08	mg/kg dry	1	1.55	1,55	BGE4698	06/07/2023 10:	14 FA
SW-6010C	Nickel	Α	13.4	mg/kg dry	1	0.417	1.55	BGE4698	06/07/2023 10:	14 FA
SW-6010C	Potassium	Α	4830	mg/kg dry	1	26.5	308	BGE4698	06/07/2023 10:	44 FA
SW-6010C	Selenium	Α	10.1	mg/kg dry	1	1.20	3.08	BGE4698	06/07/2023 10:	44 FA
SW-6010C	Total Phosphorus	Α	15500	mg/kg dry	5	64.8	1540	BGE4698	06/07/2023 12:	35 FA
SW-6010C	Zinc	Α	954	mg/kg dry	20	30.9	30.9	BGE4698	06/07/2023 12:	38 F/
General Che	emistry									
EPA 350.2	Ammonia as N	Α	2920	mg/kg dry	1	914	1830	BGE4355	05/30/2023 08:	
SW-9056A	Nitrate as N	Α	3880	mg/kg dry	10	46.3	116	BGE3627	05/22/2023 22:	45 O
SM 2540 G	% Solids	Α	1.08V	%	1	0.100	0.100	BGE3555	05/23/2023 11:	17 JF
TCLP										
SW-6010C	Arsenic	Α	<5.00U	mg/L	1	0.0200	5.00	BGF0509	06/06/2023 11:	
SW-6010C	Barium	Α	<100 U, V2	mg/L	5	0.0500	100	BGF0509	06/06/2023 11:	
SW-6010C	Cadmium	Α	<1.00U	mg/L	1	0.00100	1.00	BGF0509	06/06/2023 11:	
SW-6010C	Chromium	Α	<5.00U	mg/L	1	0.00500	5.00	BGF0509	06/06/2023 11	
SW-8151	2,4-D	Α	<10.0C+, U	mg/L	2	0.000476	10.0	BGF0530	07/09/2023 08	
SW-8151	Silvex (2,4,5-TP)	Α	<1.00C+, U	mg/L	2	0.000476	1.00	BGF0530	07/09/2023 08	:36 K
SW-8151	Surrogate: DCAA-surr		142% 5	70-130					07/09/2023 08	
SW-7471B	Mercury	Α	<0.200U	mg/L	1	0.000200	0.200	BGF0431	06/05/2023 12	
SW-6010C	Lead	Α	<5.00U	mg/L	1	0.0100	5.00	BGF0509	06/06/2023 11	
SW-8081	Chlordane (Total)	Α	<0.0300U	mg/L	1	3.00E-6	0.0300	BGF0708	06/29/2023 11	
SW-8081	Endrin	N	<0.0200U	mg/L	1	3.00E-6	0.0200	BGF0708	06/29/2023 11	
SW-8081	gamma-BHC (Lindane, gamma-Hexachlorocyclohexa nE)	Α	<0.400U	mg/L	1	3.00E-6	0.400	BGF0708	06/29/2023 11	
SW-8081	Heptachlor	Α	<0.00800U	mg/L	1	3.00E-6	0.00800	BGF0708	06/29/2023 11	
211 0001	, ispanion	A	<0.00800U	mg/L	1	3.00E-6	0.00800	BGF0708	06/29/2023 11	:40

Inframark

32259 Morton Road Brookshire, TX 77423 Project: Treschwig JP - Non Potable - Sewage Sludge Annual

Project Number: 50

Project Manager: Gregory Camp

Reported:

07/25/2023 11:49

Sample Results (Continued)

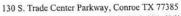
Client Sample ID:

Digester 2 (Continued)

Lab Sample ID: Sample Alias:

23E4380-02

Sample Matrix:


Solid

Date Collected:

05/22/2023 8:40

Callanted by

						Coll	ected by:	Jaco	Jacob Smith	
Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
TCLP (Conf	tinued)									
SW-8081	Methoxychlor	Α	<10.0U	mg/L	1	3.00E-6	10.0	2000000		
SW-8081	Toxaphene (Chlorinated Camphene)	Α	<0.500 U	mg/L	1	3.00E-6	0.500	BGF0708 BGF0708	06/29/2023 11:40 06/29/2023 11:40	cdg cdg
SW-8081	Surrogate: 2,4,5,6 Tetrachloro-n	n-xylene-suri	135%	60-140						
SW-8081	Surrogate: Decachlorobiphenyl-s		105%	60-140					06/29/2023 11:40	
SW-6010C	Selenium	Α	<1.00U	mg/L	1	0.0200	1,00	DCTOTOO	06/29/2023 11:40	
SW-6010C	Silver	Α	<5.00U	mg/L	1	0.00200		BGF0509	06/06/2023 11:31	FAL
SW-8270	2,4,5-Trichlorophenol	A	<400 U	mg/L	1	0.00250	5.00	BGF0509	06/06/2023 11:31	FAL
SW-8270	2,4,6-Trichlorophenol	A	<2.00U	mg/L			400	BGF0760	06/21/2023 10:45	KRB
SW-8270	2,4-Dinitrotoluene (2,4-DNT)	Α	<0.130U	000E000	1	0.00250	2.00	BGF0760	06/21/2023 10:45	KRB
5W-8270	2-Methylphenol	Α	<200 U	mg/L	1	0.00250	0.130	BGF0760	06/21/2023 10:45	KRB
SW-8270	3,4-Methylphenol	Α	<200 U	mg/L	1	0.00250	200	BGF0760	06/21/2023 10:45	KRB
SW-8270	Hexachlorobenzene	A	<0.130U	mg/L	1	0.00250	200	BGF0760	06/21/2023 10:45	KRB
SW-8270	Hexachlorobutadiene	A	<0.500U	mg/L	1	0.00250	0.130	BGF0760	06/21/2023 10:45	KRB
SW-8270	Hexachloroethane			mg/L	1	0.00250	0.500	BGF0760	06/21/2023 10:45	KRB
SW-8270	Nitrobenzene	A	<3.00 U	mg/L	1	0.00250	3.00	BGF0760	06/21/2023 10:45	KRB
SW-8270	Pentachlorophenol	A	<2.00U	mg/L	1	0.00250	2.00	BGF0760	06/21/2023 10:45	KRB
SW-8270		Α	<100 U	mg/L	1	0.00250	100	BGF0760	06/21/2023 10:45	KRB
	Pyridine •	A	<5.00U	mg/L	1	0.00250	5.00	BGF0760	06/21/2023 10:45	KRB
5W-8270	Surrogate: 2-Fluorobiphenyl-surr		100%	54.6-148						
5W-8270	Surrogate: 2-Fluorophenol-surr		90.2%	55-152					06/21/2023 10:45	
W-8270	Surrogate: 2,4,6-Tribromophenol	-surr	80.4%	52.4-136					06/21/2023 10:45	
5W-8270	Surrogate: Nitrobenzene-d5-surr		110%	52-162					06/21/2023 10:45 06/21/2023 10:45	
SW-8270	Surrogate: Phenol-d5-surr		100%	58.7-152					06/21/2023 10:45	
W-8270	Surrogate: p-Terphenyl-d14-surr		75.3%	51.9-147					06/21/2023 10:45	

Inframark

Project: Treschwig JP - Non Potable - Sewage Sludge Annual

32259 Morton Road

Project Number: 50

Reported:

Brookshire, TX 77423

Project Manager: Gregory Camp

07/25/2023 11:49

Sample Results

(Continued)

Client Sample ID: Lab Sample ID:

Digester 2

23E4380-02RE2

Sample Matrix:

Solid

05/22/2023 8:40

Date Collected: Collected by:

Jacob Smith

Sample Alias:			Colle	cted by:	Jacob	Smith	1111			
Method	Analyte	*	Result Q	Units	DF	SDL	LRL	Batch	Analyzed	Analyst
General Ch	emistry		The same of the sa						TANK TOWN THAT THE COLUMN	
EPA 351.3	Total Kjeldahl Nitrogen - (TKN) (Rerun)	N	53200	mg/kg dry	1	2270	2270	BGF0406	06/05/2023 13:28	GIW

Inframark

32259 Morton Road Brookshire, TX 77423 Project: Treschwig JP - Non Potable - Sewage Sludge Annual

Project Number: 50

Project Manager: Gregory Camp

Reported:

07/25/2023 11:49

Quality Control

Organics by GC

Analyte	Result Qual	Reporting Limit		Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF0514 - SW-3570								11.5	
Blank (BGF0514-BLK1)				repared. die	2022 4	.d. 614 = 15 -			
Aroclor-1016 (PCB-1016)	<0.0200 U	0.0000		ерагеа: 6/5/	2023 Analyze	ea: 6/16/2023	3		
7	~ <0.0200 U	0.0200	mg/kg (dry						
Aroclor-1260 (PCB-1260)	<0.0200 U	0.0300	wt) wet						
*************************************	~0.0200 U	0.0200	mg/kg (dry wt) wet						
PCBs, Total	<0.0200 U	0.0200	mg/kg (dry						
	30.0200	0.0200	mg/kg (ary wt) wet						
Surrogate: 2,4,5,6									
Tetrachloro-m-xylene-surr	3	0.00967	mg/kg (dry	0.00600		161	60-140		
Surrogate: Decachlorobiphenyl-surr		0.00045	wt) wet	0.00		g:00m			
- Spring Sur		0.00645	mg/kg (dry wt) wet	0.00600		107	60-140		
LCS (BGF0514-BS1)						22.22.2			
Aroclor-1016 (PCB-1016)					2023 Analyze				
,	0.0422	0.0200	mg/kg (dry	0.0600		70.3	60-140		
Aroclor-1260 (PCB-1260)	0.0400		wt) wet	20/6/2006					
	0.0430	0.0200	mg/kg (dry	0.0600		71.6	60-140		
PCBs, Total	0.0426	0.0200	wt) wet	0.0600		74.0	** ***		
	0.0420	0.0200	mg/kg (dry wt) wet	0.0600		71.0	60-140		
Surrogate: 2,4,5,6		n nno40	mg/kg (dry	0.00600			50.440		
Tetrachloro-m-xylene-surr	5	0.00349	mg/kg (ary wt) wet	0.00600		158	60-140		
Surrogate: Decachlorobiphenyl-surr		0.00674	mg/kg (dry	0.00600		112	60 140		
William Control of the Control of th		0.000/4	wt) wet	0.00000		112	60-140		
LCS Dup (BGF0514-BSD1)			Pre	enared: 6/5/3	2023 Analyze	4. 6/16/2023			
Aroclor-1016 (PCB-1016)	0.0411	0.0200	mg/kg (dry	0.0600	Jozo Allalyze	68.5		2.55	40
	0,0111	0.0200	wt) wet	0.0000		00.5	60-140	2.66	40
Aroclor-1260 (PCB-1260)	0.0412	0.0200	mg/kg (dry	0.0600		68.7	60-140	4.16	40
	with the same of t	0,0200	wt) wet	010000		55.7	00-140	7.10	40
PCBs, Total	0.0412	0.0200	mg/kg (dry	0.0600		68.6	60-140	3.41	40
			wt) wet	5004350			** * **	2.14	10
Surrogate: 2,4,5,6	5	0.0108	mg/kg (dry	0.00600		180	60-140		
Tetrachloro-m-xylene-surr	1/25	0.0100	wt) wet	0.00000		100	30-1-10		
Surrogate: Decachlorobiphenyl-surr		0.00625	mg/kg (dry	0.00600		104	60-140		
			wt) wet			107	00 170		
latrix Spike (BGF0514-MS1)	Source: 2	3E4380-01	Pre	epared: 6/5/2	023 Analyzed	1: 6/16/2023			
Aroclor-1016 (PCB-1016)	3.97		mg/kg (dry	5.53	<1.84	71.7	60-140		
	2,21	210.1	wt) dry	5,55	-1107	12.1	00 140		
Aroclor-1260 (PCB-1260)	3.97	1.84	mg/kg (dry	5.53	<1.84	71.7	60-140		
	50,50	RAE.	wt) dry	T.15.8		1.75			
PCBs, Total	3.97	1.84	mg/kg (dry	5.53	<1.84	71.7	60-140		
			wt) dry						
Surrogate: 2,4,5,6	<i>S</i>	1.06	mg/kg (dry	0.553	*******	192	60-140	5.75.7.7.7.5	
Tetrachloro-m-xylene-surr	-	1.00	wt) dry	0.555		192	00-140		
Surrogate: Decachlorobiphenyl-surr		0.655	mg/kg (dry	0.553		118	60-140		
150 M M			wt) dry	5.555		110	00 170		

Matrix Spike Dup (BGF0514-MSD1)

Source: 23E4380-01

Prepared: 6/5/2023 Analyzed: 6/16/2023

Inframark

Project: Treschwig JP - Non Potable - Sewage Sludge Annual

32259 Morton Road Brookshire, TX 77423 Project Number: 50

Reported:

Project Manager: Gregory Camp

07/25/2023 11:49

Quality Control (Continued)

Organics by GC (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF0514 - SW-3570 (Com	inued)									
Matrix Spike Dup (BGF0514-MSD1)		Source: 23	E4380-01	Pre	pared: 6/5/	2023 Analyzed	d: 6/16/2023			
Aroclor-1016 (PCB-1016)	4.01		1.84	mg/kg (dry wt) dry	5.53	<1.84	72.6	60-140	1.14	40
Aroclor-1260 (PCB-1260)	3.85		1.84	mg/kg (dry wt) dry	5.53	<1.84	69.6	60-140	2.91	40
PCBs, Total	3.93		1.84		5.53	<1.84	71.1	60-140	0.865	40
Surrogate: 2,4,5,6		<i>s</i>	2.23	mg/kg (dry wt) dry	0.553		403	60-140		
Tetrachloro-m-xylene-surr Surrogate: Decachlorobiphenyl-surr		S	1.10	mg/kg (dry wt) dry	0.553		199	60-140		

Tel: (936) 321-6060 Email: lab@nwdls.com

www. NWDLS.com TCEQ T104704238-23-39

Inframark

32259 Morton Road

Brookshire, TX 77423

Project: Treschwig JP - Non Potable - Sewage Sludge Annual

Project Number: 50

Project Manager: Gregory Camp

Reported:

07/25/2023 11:49

Quality Control (Continued)

Metals, Total

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGE4698 - SW-3050 fd	or 6010									Lime
Blank (BGE4698-BLK1)				Dr	enared: E/2	0/2022 41-	-1.617/2020			
Arsenic	<1.80	D.	1.80	mg/kg wet	charen 2/3	0/2023 Analyz	ea: 6///2023			
Cadmium	<0.180		0.180	mg/kg wet						
Chromium	<0.901		0.901	mg/kg wet						
Copper	<1.80		1.80	mg/kg wet						
Lead	<0.901		0.901	mg/kg wet						
Molybdenum	<0.901		0.901	mg/kg wet						
Nickel	< 0.901		0.901	mg/kg wet						
Potassium	<180		180	mg/kg wet						
Selenium	<1.80		1.80	mg/kg wet						
Total Phosphorus	<180	8.	180	mg/kg wet						
Zinc	<0.901		0.901	mg/kg wet						
LCS (BGE4698-BS1)										
Arsenic	19900		- 1 (March			/2023 Analyze	ed: 6/7/2023			
Cadmium	45.7		1.81	mg/kg wet	45.3		101	80-120		
Chromium	4.54		0.181	mg/kg wet	4.53		100	80-120		
Copper	22.7		0.908	mg/kg wet	22.6		100	80-120		
Lead	45.3		1.81	mg/kg wet	45.3		100	80-120		
Molybdenum	22.7		0.908	mg/kg wet	22.6		100	80-120		
Nickel	22.6		0.908	mg/kg wet	22.6		99.9	80-120		
Potassium	22.6		0.908	mg/kg wet	22.6		99.7	80-120		
Selenium	4380			mg/kg wet	4530		96.6	80-120		
Total Phosphorus	45.5			mg/kg wet	45.3		101	80-120		
Zinc	4470			mg/kg wet	4530		98.8	80-120		
Ziic	23.1		0.908	mg/kg wet	22.6		102	80-120		
Matrix Spike (BGE4698-MS1)	5	Source: 23E	0151-01	Pre	pared: 5/30	/2023 Analyze	ed: 6/7/2023			
Arsenic	52.2		1.99	mg/kg dry	49.8	3.51	97.7	75-125		
Cadmium	5.65		0.199	mg/kg dry	4.98	0.856	96.2	75-125		
Chromium	48.2		0.998	mg/kg dry	24.9	24.2	96.7	75-125		
Copper	1580		39.8	mg/kg dry	1050	658	88.0	75-125		
Lead	37.9		0.998	mg/kg dry	24.9	13.9	96.7	75-125		
Molybdenum	32.0		0.998	mg/kg dry	24.9	8,07	96.2	75-125		
Nickel	34.0		0.998	mg/kg dry	24.9	9.93	96.5	75-125		
Potassium	7810		199	mg/kg dry	4980	2820	100	75-125		
Selenium	71.3			mg/kg dry	49.8	18.3	107	75-125		
Total Phosphorus	17900	1	3980	mg/kg dry	9970	10500	73.7	75-125		
Zinc	1420			mg/kg dry	1020	371	103	75-125		

Inframark

Project: Treschwig JP - Non Potable - Sewage Sludge Annual

Project Number: 50

Reported:

32259 Morton Road Brookshire, TX 77423

Project Manager: Gregory Camp

07/25/2023 11:49

TCEQ T104704238-23-39

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Patch: BGE4698 - SW-3050 for 6	010 (Con	tinued)			-		olo od to	The state of	meanh.	4
Matrix Spike (BGE4698-MS2)			3E4735-01	Pre	pared: 5/30	/2023 Analyze	ed: 6/7/2023			
Arsenic	53.9		2.00	mg/kg dry	50.1	5.35	96.8	75-125		
Cadmium	5.60		0.200	mg/kg dry	5.01	0.747	96.8	75-125		
Chromium	33.9		1.00	mg/kg dry	25.1	10.7	92.7	75-125		
Copper	1140		40.1	mg/kg dry	1050	41.3	104	75-125		
Lead	27.4		1.00	mg/kg dry	25.1	4.93	. 89.8	75-125		
Molybdenum	29.7		1.00	mg/kg dry	25.1	6.94	91.0	75-125		
Nickel	40.2		1.00	mg/kg dry	25.1	17.6	90.5	75-125		
Potassium	10000	11	4010	mg/kg dry	5010	6760	64.6	75-125	10.0	
Selenium	58.3		2,00	mg/kg dry	50.1	8.35	99.7	75-125		
Total Phosphorus	28900	11	4010	mg/kg dry	10000	22200	67.1	75-125		
Zinc	1940	31	50.2	mg/kg dry	1030	1000	91.6	75-125		
Matrix Spike Dup (BGE4698-MSD1)		Source: 2	3E0151-01	Pre	epared: 5/30)/2023 Analyz	ed: 6/7/2023			
Arsenic	51.3	Douite. 2	2.00	mg/kg dry	49.9	3.51	95.7	75-125	1.75	20
Cadmium	5.63		0.200	mg/kg dry	4.99	0.856	95.7	75-125	0.290	2
Chromium	47.9		1.00	mg/kg dry	25.0	24.2	95.0	75-125	0.789	2
			39.9	mg/kg dry	1050	658	91.3	75-125	2.29	2
Copper Lead	1620		1.00	mg/kg dry	25.0	13.9	94.8	75-125	1.16	2
	37.5 30.9		1.00	mg/kg dry	25.0	8.07	91.5	75-125	3.59	2
Molybdenum			1.00	mg/kg dry	25.0	9.93	93.5	75-125	2.05	2
Nickel	33.3		200	mg/kg dry	4990	2820	97.2	75-125	1.76	2
Potassium	7680		2.00	mg/kg dry	49.9	18.3	103	75-125	2.10	2
Selenium	69.9		3990	mg/kg dry	9990	10500	71.9	75-125	0.937	2
Total Phosphorus Zinc	17700 1420		50.0		1020	371	102	75-125	0.358	2
			3E4735-01	Dr	enared: 5/3	0/2023 Analyz	ed: 6/7/2023	3		
Matrix Spike Dup (BGE4698-MSD2)		5.3 - 1 - 1 - 1	2.01		50.2	5.35	98.9	75-125	2.12	2
Arsenic	55.0		0.201		5.02	0.747	99.3	75-125	2.34	2
Cadmium	5.73		1.01		25.1	10.7	97.9	75-125	3.89	2
Chromium	35.3		40.1		1050	41.3	90.1	75-125	13.8	2
Copper	991				25.1	4.93	92.1	75-125	2.27	2
Lead	28.1		1.01 1.01		25.1	6.94	91.6	75-125	0.677	2
Molybdenum	29.9				25.1	17.6	94.1	75-125	2.34	2
Nickel	41.2		1.01 4010		5020	6760	NR.	75-125	51.8	2
Potassium	5890				50.2	8.35	101	75-125	1.68	2
Selenium	59,3		2.01		10000	22200	NR	75-125	49.8	2
Total Phosphorus	17400		4010			1000	86.2	75-125	2.75	2
Zinc	1890		50.3	mg/kg dry	1030	1000	00.2	/ 3-123	2.73	

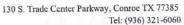
Tel: (936) 321-6060 Email: lab@nwdls.com www. NWDLS.com

TCEQ T104704238-23-39

Inframark

32259 Morton Road Brookshire, TX 77423 Project: Treschwig JP - Non Potable - Sewage Sludge Annual

Project Number: 50


Project Manager: Gregory Camp

Reported:

07/25/2023 11:49

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit		Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGE4698 - SW-3050	for 6010 (Con	tinued)							000000	
Post Spike (BGE4698-PS1)			3E0151-01	Di	renared: E/2	1/2022 4	-J. C/7/2022			
Arsenic	536		320131-01	ug/L	500	0/2023 Analyze				
Cadmium	58.7			ug/L	50.0	33.2	101	80-120		
Chromium	482			ug/L	250	8.11 229	101	80-120		
Copper	7090	11		ug/L	500	6230	101	80-120		
Lead	379			ug/L	250		172	80-120		
Molybdenum	328			ug/L	250	131	99.2	80-120		
Nickel	344			ug/L	250	76.4	101	80-120		
Potassium	79700					94.0	99.9	80-120		
Selenium	79700			ug/L	50000	26700	106	80-120		
Total Phosphorus				ug/L	500	173	107	80-120		
Zinc	153000	11		ug/L	50000	99600	106	80-120		
	3920	71		ug/L	250	3510	164	80-120		
ost Spike (BGE4698-PS2)		Source: 23	3E4735-01	Pr	epared: 5/30	/2023 Analyze	d: 6/7/2023			
Arsenic	552			ug/L	500	50.3	100	80-120		
Cadmium	58.1			ug/L	50.0	7.01	102	80-120		
Chromium	348			ug/L	250	100	99.1	80-120		
Copper	2420	J1		ug/L	500	388	406	80-120		
ead	293			ug/L	250	46.3	98.7	80-120		
Molybdenum	316			ug/L	250	65.2	100	80-120		
Nickel	416			ug/L	250	165	101	80-120		
Potassium	109000			ug/L	50000	63500	91.0	80-120		
elenium	607			ug/L	500	78.4	106	80-120		
Total Phosphorus	256000			ug/L	50000	208000	96.2	80-120		
Zinc	9970	01		ug/L	250	9410	223	80-120		
ilution Check (BGE4698-SRL1)		Source: 23	BE0151-01	Pre	epared: 5/30	/2023 Analyze	d: 6/7/2023			
Arsenic	5.14	NEWSCHOOL STATE	9.98	mg/kg dry		3.51	G. 5///2023		37.7	10
Cadmium	0.649		0.998	mg/kg dry		0.856			27.5	10
Chromium	18.5	Z/A	5.00	mg/kg dry		24.2			26.7	
ead	11.1		5.00	mg/kg dry		13.9			22.1	10 10
folybdenum	6.03		5.00	mg/kg dry		8.07			28.9	10
lickel	7.71		5.00	mg/kg dry		9.93				
Potassium	2600		998	mg/kg dry					25.3	10
Selenium						2820			8.39	10
Fotal Phosphorus	14.0		9.98	mg/kg dry		18.3			26.8	10
rotal r nosphorus	10500		998	mg/kg dry		10500			0.0513	10

Email: lab@nwdls.com www. NWDLS.com TCEQ T104704238-23-39

Inframark

Project: Treschwig JP - Non Potable - Sewage Sludge Annual

32259 Morton Road Brookshire, TX 77423

Project Number: 50

Project Manager: Gregory Camp

Reported:

07/25/2023 11:49

Quality Control (Continued)

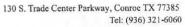
Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGE4698 - SW-3050 for 6	010 (Con	tinued)								
Dilution Check (BGE4698-SRL2)			3E4735-01	Pre	epared: 5/30	/2023 Analyz	ed: 6/7/2023			
Arsenic	7.26	11	10.1	mg/kg dry		5.35			30.2	10
Cadmium	0.735		1.01	mg/kg dry		0.747			1.61	10
Chromium	10.5		5.04	mg/kg dry		10.7			1.39	10
Copper	202	11	10.1	mg/kg dry		41.3			132	10
Lead	5.06		5.04	mg/kg dry		4.93			2.49	10
Molybdenum	6.76		5.04	mg/kg dry		6.94			2.53	10
Nickel	16.9		5.04	mg/kg dry		17.6			3.71	10
Potassium	6490		1010	mg/kg dry		6760			4.17	10
Selenium	7.18		10.1	mg/kg dry		8.35			15.0	10
Total Phosphorus	21600		1010	mg/kg dry		22200			2.30	10
Batch: BGE4918 - SW-7471 MDL Check (BGE4918-MRL1)				Pr	epared: 5/3	1/2023 Analyz	red: 6/1/2023			
Mercury	0.0102	U	0.0196	mg/kg wet	0.00980		104			
Matrix Spike (BGE4918-MS1)		Source: 2	3E3563-01	Pr	epared: 5/3	1/2023 Analyz	red: 6/1/2023		20	
Mercury	0.782	J1	0.0434	mg/kg dry	0.542	0.595	34.4	80-120		
Matrix Spike (BGE4918-MS2)		Source: 2	23E0740-22	Pr	epared: 5/3	1/2023 Analyz	zed: 6/1/2023			
Mercury	0.277) J1	0.0197	mg/kg dry	0.247	0.107	68.7	80-120		
Matrix Spike Dup (BGE4918-MSD1)		Source: 2	23E3563-01	Pi	repared: 5/3	1/2023 Analy2	zed: 6/1/2023	6		
Mercury	0.643	31	0.0434	mg/kg dry	0.543	0.595	8.81	80-120	19.5	20
Matrix Spike Dup (BGE4918-MSD2)		Source: 2	23E0740-22	Pi	repared: 5/3	1/2023 Analy	zed: 6/1/2023			
Mercury	0.337		0.0199	mg/kg dry	0.249	0.107	92.4	80-120	19.7	2

Tel: (936) 321-6060 Email: lab@nwdls.com www. NWDLS.com TCEQ T104704238-23-39

Inframark 32259 Morton Road Brookshire, TX 77423

Project: Treschwig JP - Non Potable - Sewage Sludge Annual

Project Number: 50


Project Manager: Gregory Camp

Reported:

07/25/2023 11:49

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit		Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF0125 - SW-7471										
MDL Check (BGF0125-MRL1)					Prepared	& Analyzed: 6	5/1/2023			
Mercury	0.0106	·U	0.0195	mg/kg wet	0.00976		109			
Matrix Spike (BGF0125-MS1)		Source: 2	3E4642-01		Prepared	& Analyzed: 6	6/1/2023			
Mercury	0.539	J1	0.0254	mg/kg dry	0.317	0.470	21.8	80-120		
Matrix Spike (BGF0125-MS2)		Source: 2	3E4380-02		Prepared i	& Analyzed: 6	/1/2023			
Mercury	0.814		0.0371	mg/kg dry	0.463	0.361	98.0	80-120		
Matrix Spike Dup (BGF0125-MSD1)		Source: 2	3E4642-01		Prepared 8	& Analyzed: 6	/1/2023			
Mercury	0.571	J1	0.0254	mg/kg dry	0.317	0.470	31.9	80-120	5.73	20
Matrix Spike Dup (BGF0125-MSD2)		Source: 23	3E4380-02		Prepared 8	& Analyzed: 6,	/1/2023			
Mercury	0.682	J1	0.0370	mg/kg dry	0.463	0.361	69.5	80-120	17.7	20

Email: lab@nwdls.com www. NWDLS.com

TCEQ T104704238-23-39

Inframark

Project: Treschwig JP - Non Potable - Sewage Sludge Annual

32259 Morton Road Brookshire, TX 77423 Project Number: 50

Project Manager: Gregory Camp

Reported:

07/25/2023 11:49

Quality Control (Continued)

General Chemistry

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGE3555 - Percent Solids									(8)	
Blank (BGE3555-BLK1)				Pre	epared: 5/22,	/2023 Analyze	ed: 5/23/2023	3		
% Solids	<0.100	U	0.100	%						
Duplicate (BGE3555-DUP1)		Source: 2	3E4424-01	Pre	epared: 5/22	/2023 Analyze	ed: 5/23/2023	3		- Service
% Solids	1.68		0.100	%		1.67			0.399	20
Reference (BGE3555-SRM1)				Pre	epared: 5/22	/2023 Analyze	ed: 5/23/2023	3		
% Solids	0.367		0.100	%	0.350		105	78.9-118		
Nitrate as N	3870		113	mg/kg dry	Prepared 8	3880 & Analyzed: 5	/22/2023		0.119	15
MRL Check (BGE3627-MRL1)			0.125	mg/kg wet	Prepared 8	& Analyzed: 5	/22/2023 128	50-150		
Nitrate as N	0.128		0.125	mg/kg wet	0.100					
Matrix Spike (BGE3627-MS1)		Source: 2	3E4380-01		Prepared :	& Analyzed: 5	/22/2023			
Nitrate as N	4070		128	mg/kg dry	205	3880	92.2	80-120		
Batch: BGE4355 - NH3-N T										
				Pr	epared: 5/26	5/2023 Analyz	ed: 5/30/202	3		
Batch: BGE4355 - NH3-N T Blank (BGE4355-BLK1) Ammonia as N	<9.98	s U	9.98	Pr mg/kg wet	epared: 5/26	5/2023 Analyz	ed: 5/30/202	3		
	<9.98	3 U	9.98	mg/kg wet		5/2023 Analyz 5/2023 Analyz	*			

Tel: (936) 321-6060 Email: lab@nwdls.com www. NWDLS.com

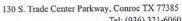
TCEQ T104704238-23-39

Inframark 32259 Morton Road Brookshire, TX 77423

Project: Treschwig JP - Non Potable - Sewage Sludge Annual

Project Number: 50

Project Manager: Gregory Camp


Reported:

07/25/2023 11:49

Quality Control (Continued)

General Chemistry (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGE4355 - NH3-N T (Con	tinued)									
Duplicate (BGE4355-DUP1)		Source: 2	3D4568-16	Pre	pared: 5/26	/2023 Analyze	ed: 5/30/2023			
Ammonia as N	179			mg/kg dry	pa. 34. 5/25	143	. 5/50/2025		22.1	20
MRL Check (BGE4355-MRL1)				Pre	pared: 5/26	/2023 Analyze	ed: 5/30/2023			
Ammonia as N	10.8		9.92	mg/kg wet	9.92		109	50-150		
Matrix Spike (BGE4355-MS1)		Source: 2	3D4568-16	Pre	pared: 5/26	/2023 Analyze	ed: 5/30/2023			
Ammonia as N	460		29.5		295	143	107	85-115		
Batch: BGE4886 - NH3-N T										
Blank (BGE4886-BLK1)					pared: 5/31	/2023 Analyze	ed: 6/1/2023			
Total Kjeldahl Nitrogen - (TKN)	<10.0	U	10,0	mg/kg wet						
LCS (BGE4886-BS1)				Pre	pared: 5/31	/2023 Analyze	ed: 6/1/2023			
Total Kjeldahl Nitrogen - (TKN)	10.0		9.92	mg/kg wet	20.0		49.9	85-115		
Batch: BGF0371 - TKN T										
Blank (BGF0371-BLK1)					1 615	(2022 4 1				
Ammonia as N	<9.99	er	0.00		epared: 6/2/	2023 Analyze	d: 6/6/2023			
7,111101112 02 11	<9.99	U	9.99	mg/kg wet						
LCS (BGF0371-BS1)				Pre	epared: 6/2/	2023 Analyze	d: 6/6/2023			
Ammonia as N	97.1		9.97	mg/kg wet	99.7	, , ,	97.4	85-115		
Duplicate (BGF0371-DUP1)		Source: 23	3E1320-54	Pre	epared: 6/2/	2023 Analyze	d: 6/6/2023			
Ammonia as N	240	J1	29.0	mg/kg dry	The second second	190	, -, -,		23.1	20

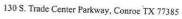
Tel: (936) 321-6060 Email: lab@nwdls.com www. NWDLS.com

Inframark

Project: Treschwig JP - Non Potable - Sewage Sludge Annual

32259 Morton Road Brookshire, TX 77423 Project Number: 50

Project Manager: Gregory Camp


Reported: 07/25/2023 11:49

TCEQ T104704238-23-39

Quality Control (Continued)

General Chemistry (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	Limit
Batch: BGF0371 - TKN T (Continue	ed)									
MRL Check (BGF0371-MRL1)	/			Pr	epared: 6/2	/2023 Analyze	ed: 6/6/2023			4
Ammonia as N	9.77	U	9.97	mg/kg wet	9.97		98.0	50-150		
Matrix Spike (BGF0371-MS1)		Source: 2	3E1320-54	Pr	epared: 6/2	/2023 Analyze	ed: 6/6/2023			
Ammonia as N	511		29.0	mg/kg dry	290	190	111	85-115		
Batch: BGF0406 - NH3-N T				_	1.610	12022 AL-	4. C/E/2022			
Biank (BGF0406-BLK1)					epared: 6/2	2/2023 Analyze	20: 6/5/2023			
Total Kjeldahl Nitrogen - (TKN)	<9.88	U	9.88	mg/kg wet						
LCS (BGF0406-BS1)				Pi	epared: 6/2	2/2023 Analyze	ed: 6/5/2023			
Total Kjeldahl Nitrogen - (TKN)	17.8		9.92	mg/kg wet	20.0		88.7	85-115		
Duplicate (BGF0406-DUP1)		Source: 2	3E3943-01RE	2 P	repared: 6/2	2/2023 Analyz	ed: 6/5/2023			
Total Kjeldahl Nitrogen - (TKN)	65500		1870	mg/kg dry		76300			15.3	20
Matrix Spike (BGF0406-MS1)		Source: 2	3E3943-01RE	2 P	repared: 6/2	2/2023 Analyz	ed: 6/5/2023			
Total Kjeldahl Nitrogen - (TKN)	84800		1870	mg/kg dry	7500	76300	113	85-115		

↑NWDLS

Tel: (936) 321-6060 Email: lab@nwdls.com www. NWDLS.com

TCEQ T104704238-23-39

Inframark

32259 Morton Road Brookshire, TX 77423 Project: Treschwig JP - Non Potable - Sewage Sludge Annual

Project Number: 50

Project Manager: Gregory Camp

Reported:

07/25/2023 11:49

Quality Control (Continued)

TCLP

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF0431 - SW-7471 TCLP										
Duplicate (BGF0431-DUP1)		Source: 7	3E4999-01		Deserved 510	/2022 4				
Mercury	<0.200		0.200		Prepared: 6/2		d: 6/5/2023			
	<0.200	U	0.200	mg/L		<0.200				200
BGF0102-LBK1 (BGF0431-LBK1)					Prepared: 6/2,	/2023 Analyzo	d. E/E/2022			
Mercury	<0.200	11	0.200	mg/L	ricpared, 6/2/	2023 Analyze	u. 6/5/2023			
- 44 (4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	10.200		0.200	mg/L						
MDL Check (BGF0431-MRL1)					Prepared: 6/2,	2023 Analyze	d: 6/5/2023			
Mercury	0.000211	U	0.200	mg/L	0.000200	2025 Analyze	106			
		V71		1119/ 2	0.000250		100			
Matrix Spike (BGF0431-MS1)		Source: 2	3E4999-01		Prepared: 6/2/	2023 Analyze	d: 6/5/2023			
Mercury	0.00499	U	0.200	mg/L	0.00500	<0.200	99.9	80-120		
Batch: BGF0509 - EPA 200.2 TCLP Blank (BGF0509-BLK1)					Prepared: 6/5/	2023 Analyze	4: 6/6/2023			
Blank (BGF0509-BLK1)		n.	5.00		Prepared: 6/5/	2023 Analyze	d: 6/6/2023			
Blank (BGF0509-BLK1) Arsenic	<5.00		5.00	mg/L	Prepared: 6/5/	2023 Analyze	d: 6/6/2023			
Blank (BGF0509-BLK1) Arsenic Barium	<5.00 <100	U	100	mg/L	Prepared: 6/5/	2023 Analyze	d: 6/6/2023			
Blank (BGF0509-BLK1) Arsenic Barium Cadmium	<5.00 <100 <1.00	U U	100 1.00	mg/L mg/L	Prepared: 6/5/	2023 Analyze	d: 6/6/2023			
Blank (BGF0509-BLK1) Arsenic Barium Cadmium Chromium	<5.00 <100 <1.00 <5.00	ນ ບ ບ	1.00 1.00 5.00	mg/L mg/L mg/L	Prepared: 6/5/	2023 Analyzer	d: 6/6/2023			
Blank (BGF0509-BLK1) Arsenic Barium Cadmium Chromium Lead	<5.00 <100 <1.00 <5.00 <5.00	υ υ υ	100 1.00 5.00 5.00	mg/L mg/L mg/L mg/L	Prepared: 6/5/	2023 Analyze	d: 6/6/2023			
Blank (BGF0509-BLK1) Arsenic Barium Cadmium Chromium Lead Selenium	<5.00 <100 <1.00 <5.00 <5.00 <1.00	υ υ υ υ	100 1.00 5.00 5.00 1.00	mg/L mg/L mg/L mg/L mg/L	Prepared: 6/5/	2023 Analyze	d: 6/6/2023			
Blank (BGF0509-BLK1) Arsenic Barium Cadmium Chromium Lead	<5.00 <100 <1.00 <5.00 <5.00	υ υ υ υ	100 1.00 5.00 5.00	mg/L mg/L mg/L mg/L	Prepared: 6/5/	2023 Analyze	d: 6/6/2023			
Blank (BGF0509-BLK1) Arsenic Barium Cadmium Chromium Lead Selenium	<5.00 <100 <1.00 <5.00 <5.00 <1.00	υ υ υ υ	100 1.00 5.00 5.00 1.00	mg/L mg/L mg/L mg/L mg/L						
Blank (BGF0509-BLK1) Arsenic Barium Cadmium Chromium Lead Selenium Silver LCS (BGF0509-BS1)	<5.00 <100 <1.00 <5.00 <5.00 <1.00	U U U U U	100 1.00 5.00 5.00 1.00 5.00	mg/L mg/L mg/L mg/L mg/L	Prepared: 6/5/		1: 6/6/2023	80-120		
Blank (BGF0509-BLK1) Arsenic Barium Cadmium Chromium Lead Selenium Silver LCS (BGF0509-BS1)	<5.00 <100 <1.00 <5.00 <5.00 <1.00 <5.00	U U U U U U	100 1.00 5.00 5.00 1.00	mg/L mg/L mg/L mg/L mg/L mg/L	Prepared: 6/5/ 0.500		i: 6/6/2023 100	80-120 80-120		
Blank (BGF0509-BLK1) Arsenic Barium Cadmium Chromium Lead Selenium Silver LCS (BGF0509-BS1) Arsenic	<5.00 <100 <1.00 <5.00 <5.00 <1.00 <5.00	U U U U U U	100 1.00 5.00 5.00 1.00 5.00	mg/L mg/L mg/L mg/L mg/L mg/L	Prepared: 6/5/ 0.500 0.500		d: 6/6/2023 100 100	80-120		
Blank (BGF0509-BLK1) Arsenic Barium Cadmium Chromium Lead Selenium Silver LCS (BGF0509-BS1) Arsenic Barium	<5.00 <100 <1.00 <5.00 <5.00 <1.00 <5.00 0.501 0.500 0.0497	U U U U U U	100 1.00 5.00 5.00 1.00 5.00 5.00	mg/L mg/L mg/L mg/L mg/L mg/L	Prepared: 6/5/ 0.500 0.500 0.0500		1: 6/6/2023 100 100 99.5	80-120 80-120		
Blank (BGF0509-BLK1) Arsenic Barium Cadmium Chromium Lead Selenium Silver LCS (BGF0509-BS1) Arsenic Barium Cadmium	<5.00 <100 <1.00 <5.00 <5.00 <1.00 <5.00 0.501 0.500 0.0497 0.254	U U U U U U U U	100 1.00 5.00 5.00 1.00 5.00 5.00	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Prepared: 6/5/ 0.500 0.500 0.0500 0.250		1: 6/6/2023 100 100 99.5 102	80-120 80-120 80-120		
Blank (BGF0509-BLK1) Arsenic Barium Cadmium Chromium Lead Selenium Silver LCS (BGF0509-BS1) Arsenic Barium Cadmium Chromium	<5.00 <100 <1.00 <5.00 <5.00 <1.00 <5.00 0.501 0.500 0.0497	U U U U U U U U U U U U U U U U U U U	100 1.00 5.00 5.00 1.00 5.00 5.00	mg/L mg/L mg/L mg/L mg/L mg/L	Prepared: 6/5/ 0.500 0.500 0.0500		1: 6/6/2023 100 100 99.5	80-120 80-120		

Inframark

Project: Treschwig JP - Non Potable - Sewage Sludge Annual

32259 Morton Road

Project Number: 50

Reported:

Brookshire, TX 77423

Project Manager: Gregory Camp

07/25/2023 11:49

Quality Control (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BGF0509 - EPA 200.2 TC	LP (Contin	ued)								
Duplicate (BGF0509-DUP1)	100		3E4999-01		Prepared: 6/5/	2023 Analyze	ed: 6/6/2023			
Arsenic	<5.00	U	5.00	mg/L		<5.00				20
Barium	1.02		100	mg/L		1.14			10.2	20
Cadmium	<1.00		1.00	mg/L		<1.00				20
Chromium	<5.00	U	5.00	mg/L		<5.00				20
Lead	<5.00	U	5.00	mg/L		<5.00				20
Selenium	<1.00	U	1.00	mg/L		<1.00				20
Silver	<5.00	U	5.00	mg/L		<5.00				20
BGF0102-BLK1 (BGF0509-LBK1)					Prepared: 6/5/	2023 Analyze	ed: 6/6/2023			
Arsenic	<5.00	U	5.00	mg/L						
Barium	0.830	U	100	mg/L						
Cadmium	<1.00	U	1.00	mg/L						
Chromium	<5.00	U	5.00	mg/L						
Lead	<5.00	U	5.00	mg/L						
Selenium	<1.00	U	1.00	mg/L						
Silver	<5.00	U	5.00	mg/L						
Matrix Spike (BGF0509-MS1)		Source: 2	3E4999-01		Prepared: 6/5/	/2023 Analyze	ed: 6/6/2023			
Arsenic	0.525	U	5.00	mg/L	0.500	<5.00	105	75-125		
Barium	1.50	J1, U	100	mg/L	0.500	1,14	73.2	75-125		
Cadmium	0.0527	U	1.00	mg/L	0.0500	<1.00	105	75-125		
Chromium	0.259	U	5.00	mg/L	0.250	<5.00	103	75-125		
Lead	0,251	U	5.00	mg/L	0.250	<5.00	100	75-125		
Selenium	0.532	U	1.00	mg/L	0.500	<1.00	106	75-125		
Silver	0.0414	U	5.00	mg/L	0.0500	<5.00	82.7	75-125		
Post Spike (BGF0509-PS1)		Source: 2	3E4999-01		Prepared: 6/5/	/2023 Analyze	ed: 6/6/2023			
Arsenic	530			ug/L	500	9.53	104	80-120		
Barium	1450	J1		ug/L	500	1110	68.2	80-120		
Cadmium	54.1			ug/L	50.0	0.400	107	80-120		
Chromium	265			ug/L	250	1.96	105	80-120		
Lead	253			ug/L	250	3.06	99.9	80-120		
Selenium	536			ug/L	500	2.94	107	80-120		
Silver	53.1			ug/L	50.0	0.478	105	80-120		

Inframark 32259 Morton Road Brookshire, TX 77423

Project: Treschwig JP - Non Potable - Sewage Sludge Annual

Project Number: 50

Project Manager: Gregory Camp

Reported:

07/25/2023 11:49

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF0509 - EPA 200.2 TC	LP (Contin	ued)								
Dilution Check (BGF0509-SRL1)			3E4999-01		Prepared: 6/5	/2023 Analyze	ed: 6/6/2023			
Arsenic	<5.00		5.00	mg/L		<5.00				10
Barium	1.14		100	mg/L		1.14			0.00	10
Cadmium	<1.00	U	1.00	mg/L		<1.00				10
Chromium	<5.00	U	5.00	mg/L		<5.00				10
Lead	<5.00	U	5.00	mg/L		<5.00				10
Selenium	<1.00	U	1.00	mg/L		<1.00				10
Silver	<5.00	U	5.00	mg/L		<5.00				10
Batch: BGF0530 - SW-3511										
Blank (BGF0530-BLK1)					Prepared: 6/5	/2023 Analyze	ed: 7/9/2023			
2,4-D	<10.0	Œ	10.0	mg/L		, ,,				
Silvex (2,4,5-TP)	<1.00		1.00	mg/L						
Surrogate: DCAA-surr			0.0224	mg/L	0.0250	********	90	70-130		ERI EKI EKI
LCS (BGF0530-BS1)					Prepared: 6/5	/2023 Analyze	ed: 7/9/2023			
2,4-D	0.00627	U	10.0	mg/L	0.00515		122	70-130		
Silvex (2,4,5-TP)	0.00536	U	1.00	mg/L	0.00500		107	70-130		
Surrogate: DCAA-surr		5	0.0345	mg/L	0.0250		138	70-130		
LCS Dup (BGF0530-BSD1)					Prepared: 6/5	/2023 Analyze	ed: 7/9/2023			
2,4-D	0.00648	U	10.0	mg/L	0.00515		126	70-130	3	30
Silvex (2,4,5-TP)	0.00579	U	1.00	mg/L	0.00500		116	70-130	8	30
Surrogate: DCAA-surr	*	5	0.0370	mg/L	0.0250		148	70-130		
BGF0102-BLK1 (BGF0530-LBK1)					Prepared: 6/5	/2023 Analyze	ed: 7/9/2023			
2,4-D	<10.0	U	10.0	mg/L						
Silvex (2,4,5-TP)	<1.00	U	1.00	mg/L						
Surrogate: DCAA-surr		S	0.144	mg/L	0.100		144	70-130		

Inframark

Project: Treschwig JP - Non Potable - Sewage Sludge Annual

32259 Morton Road Brookshire, TX 77423

Project Number: 50

Project Manager: Gregory Camp

Reported:

07/25/2023 11:49

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF0530 - SW-3511 (Con	tinued)					Um				
Matrix Spike (BGF0530-MS1)		Source: 2	3E5251-01		Prepared: 6/5	/2023 Analyzed	1: 7/9/2023			
2,4-D	0.0247	= 1500 (500)	10.0	mg/L	0.0206	<10.0	120	70-130		
Silvex (2,4,5-TP)	0.0247		1.00	mg/L	0.0200	0.000702	101	70-130		
Surrogate: DCAA-surr		5	0.147	mg/L	0.100		147	70-130		
Matrix Spike Dup (BGF0530-MSD1)		Source: 2	3E5251-01		Prepared: 6/5,	/2023 Analyzed	d: 7/9/2023			
2,4-D	0.0257	U	10.0	mg/L	0.0206	<10.0	125	70-130	4	30
Silvex (2,4,5-TP)	0.0228	U	1.00	mg/L	0.0200	0.000702	111	70-130	9	30
Surrogate: DCAA-surr		5	0.149	mg/L	0.100		149	70-130		0.5.5.5.5.5.5.5.5
Endrin gamma-BHC (Lindane, gamma-HexachlorocyclohexanE) Heptachlor	<0.0200 <0.400 <0.00800	U U	0.0200 0.400 0.00800	mg/L mg/L mg/L						
Heptachlor epoxide	<0.00800	7	0.00800	mg/L						
Methoxychlor Townshape (Chlorinated Campbase)	<10.0		10.0	mg/L						
Toxaphene (Chlorinated Camphene)	<0.500		0.500	mg/L						
Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr			0.000126	mg/L	0.000120		105	60-140		
Surrogate: Decachlorobiphenyl-surr			0.000123	mg/L	0.000120		103	60-140		
TOX LCS (BGF0708-BS1)					Prepared: 6/6/	2023 Analyzed	l: 6/29/2023			
Toxaphene (Chlorinated Camphene)	0.000998	U	0.500	mg/L	0.00120		83.2	60-140		
Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr			0.000107	mg/L	0.000120		89.5	60-140		
Surrogate: Decachlorobiphenyl-surr			0.000124	mg/L	0.000120		103	60-140		

↑NWDLS

Tel: (936) 321-6060 Email: lab@nwdls.com www. NWDLS.com TCEQ T104704238-23-39

Inframark

32259 Morton Road Brookshire, TX 77423 Project: Treschwig JP - Non Potable - Sewage Sludge Annual

Project Number: 50

Project Manager: Gregory Camp

Reported:

07/25/2023 11:49

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF0708 - SW-3511 (Co	ontinued)									
LCS (BGF0708-BS2)				9	Prepared: 6/6/2	2023 Analyze	d: 6/29/2023			
Chlordane (Total)	0.000293	U	0.0300	mg/L	0.000480	JOES / MOITE	61.1	60-140		
Endrin	8.34E-5		0.0200	mg/L	0.000120		69.5	60-140		
gamma-BHC (Lindane,	9.12E-5		0.400	mg/L	0.000120		76.0	60-140		
gamma-HexachlorocyclohexanE)		3					, 0.0	00 1 10		
Heptachlor	6.58E-5	J1, U	0.00800	mg/L	0.000120		54.9	60-140		
Heptachlor epoxide	7.53E-5	U	0.00800	mg/L	0.000120		62.8	60-140		
Methoxychlor	7.67E-5	U	10.0	mg/L	0.000120		63.9	60-140		
Surrogate: 2,4,5,6			0.000130	mg/L	0.000120		108	60-140		
Tetrachloro-m-xylene-surr			0,00020	111972	0,000120		100	00-140		
Surrogate: Decachlorobiphenyl-surr			0.000123	mg/L	0.000120		103	60-140		
TOX LCSD (BGF0708-BSD1)					Prepared: 6/6/2	2023 Analyze	d: 6/29/2023			
Toxaphene (Chlorinated Camphene)	0.000920	U	0.500	mg/L	0.00120	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	76.7	60-140	8.12	40
Surrogate: 2,4,5,6			0.000116	mg/L	0.000120		96.6	60-140		
Tetrachloro-m-xylene-surr			0.000110	mg/L	0,000120		30.0	00 170		
Surrogate: Decachlorobiphenyl-surr			0.000119	mg/L	0.000120		98.8	60-140		
LCS Dup (BGF0708-BSD2)				ļ	Prepared: 6/6/2	2023 Analyze	d: 6/29/2023			
Chlordane (Total)	0.000308	U	0.0300	mg/L	0.000480		64.2	60-140	4.99	40
Endrin	8.43E-5	U	0.0200	mg/L	0.000120		70.2	60-140	1.04	40
gamma-BHC (Lindane, gamma-HexachlorocyclohexanE)	8.20E-5	U	0.400	mg/L	0.000120		68.3	60-140	10.7	40
Heptachlor	6.67E-5	31, U	0.00800	mg/L	0.000120		55.6	60-140	1.30	40
Heptachlor epoxide	8.19E-5	U	0.00800	mg/L	0.000120		68.3	60-140	8.39	40
Methoxychlor	7.98E-5	U	10.0	mg/L	0.000120		66.5	60-140	3.90	40
Surrogate: 2,4,5,6			0.000118	mg/L	0.000120		98.1	60-140		
Tetrachloro-m-xylene-surr										
Surrogate: Decachlorobiphenyl-surr			0.000126	mg/L	0.000120		105	60-140		
BGF0102-BLK1 (BGF0708-LBK1)				- 1	Prepared: 6/6/2	2023 Analyze	d: 6/29/2023			
Chlordane (Total)	<0.0300	U	0.0300	mg/L						
Endrin	< 0.0200	U	0.0200	mg/L						
gamma-BHC (Lindane, gamma-HexachlorocyclohexanE)	<0.400	U	0.400	mg/L						
Heptachlor	<0.00800	U	0.00800	mg/L						
Heptachlor epoxide	<0.00800	U	0.00800	mg/L						
Methoxychlor	<10.0	U	10.0	mg/L						
Toxaphene (Chlorinated Camphene)	<0.500	U	0.500	mg/L						
Surrogate: 2,4,5,6 Tetrachloro-m-xylene-surr			0.000751	mg/L	0.000600		125	60-140		
Surrogate: Decachlorobiphenyl-surr			0.000540	mg/L	0.000600		89.9	60-140		

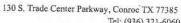
Tel: (936) 321-6060 Email: lab@nwdls.com www. NWDLS.com TCEQ T104704238-23-39

Inframark

Project: Treschwig JP - Non Potable - Sewage Sludge Annual

32259 Morton Road Brookshire, TX 77423

Project Number: 50


Project Manager: Gregory Camp

Reported:

07/25/2023 11:49

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF0708 - SW-3511 (Col	ntinued)							100	w. 131	AL HITT
TOX MRL (BGF0708-MRL1)					Prepared: 6/6/	2023 Analyzed	1: 6/29/2023			
Toxaphene (Chlorinated Camphene)	0.000676	U	0.500	mg/L	0.000300	a.,zec	225	5.		
Surrogate: 2,4,5,6			0.000113	mg/L	0.000120		94.2	60-140		*****
Tetrachloro-m-xylene-surr			0.000115	mg/L	0.000120		37.2	00-140		
Surrogate: Decachlorobiphenyl-surr			0.000127	mg/L	0.000120		106	60-140		
MRL Check (BGF0708-MRL2)			11111		Prepared: 6/6/	2023 Analyzed	1: 6/29/2023			
Chlordane (Total)	3.24E-5	U	0.0300	mg/L	4.80E-5		67.5			
Endrin	7.60E-6		0.0200	mg/L	1.20E-5		63.3			
gamma-BHC (Lindane,	7.71E-6		0.400	mg/L	1.20E-5		64.2			
gamma-HexachlorocyclohexanE)		3					S 115			
Heptachlor	6.98E-6	U	0.00800	mg/L	1.20E-5		58,1			
Heptachlor epoxide	8.05E-6	U	0.00800	mg/L	1.20E-5		67.1			
Methoxychlor	8.32E-6	U	10.0	mg/L	1.20E-5		69.4			
Surrogate: 2,4,5,6	11101101101		0.000122	mg/L	0.000120	********	101	60-140		
Tetrachloro-m-xylene-surr				3/ -	0,000120		101	00 110		
Surrogate: Decachlorobiphenyl-surr			0.000126	mg/L	0.000120		105	60-140		
Matrix Spike (BGF0708-MS1)		Source: 2	3E5597-01		Prepared: 6/6/2	2023 Analyzed	6/29/2023			
Chlordane (Total)	0.00183		0.0300	mg/L	0.00240	<0.0300	76.3	60-140		
Endrin	0.000507	_	0.0200	mg/L	0.000600	<0.0200	84.6	60-140		
gamma-BHC (Lindane,	0.000514		0.400	mg/L	0.000600	<0.400	85.6	60-140		
gamma-HexachlorocyclohexanE)	0.000311	U	0.100	mg/ L	0.000000	X0.100	05.0	00-140		
Heptachlor	0.000455	U	0.00800	mg/L	0.000600	<0.00800	75.8	60-140		
Heptachlor epoxide	0.000486	U	0.00800	mg/L	0.000600	<0.00800	81.0	60-140		
Methoxychlor	0.000444	U	10.0	mg/L	0.000600	<10.0	74.0	60-140		
Surrogate: 2,4,5,6			0.000646	mg/L	0.000600			*******		
Tetrachloro-m-xylene-surr			0.000040	mg/L	0.000000		108	60-140		
Surrogate: Decachlorobiphenyl-surr			0.000633	mg/L	0.000600		106	60-140		
Matrix Spike Dup (BGF0708-MSD1)		Source: 2	3E5597-01		Prepared: 6/6/2	2023 Analyzed	: 6/29/2023			
Chlordane (Total)	0.00196		0.0300	mg/L	0.00240	<0.0300	81.8	60-140	7.02	40
Endrin	0.000534	0.20	0.0200	mg/L	0.000600	<0.0200	89.1	60-140	5.18	40
gamma-BHC (Lindane,	0.000532		0.400	mg/L	0.000600	<0.400	88.7	60-140	3.58	40
gamma-HexachlorocyclohexanE)				J. –				00 1 10	5.50	10
Heptachlor	0.000465	U	0.00800	mg/L	0.000600	<0.00800	77.5	60-140	2.23	40
Heptachlor epoxide	0.000524	U	0.00800	mg/L	0.000600	<0.00800	87.3	60-140	7.49	40
Methoxychlor	0.000459		10.0	mg/L	0.000600	<10.0	76.5	60-140	3.41	40
Surrogate: 2,4,5,6			0.000706	mg/L	0.000600		118	60-140	*****	
Tetrachloro-m-xylene-surr			0.000,00	mg/L	0.000000		110	50-170		
Surrogate: Decachlorobiphenyl-surr			0.000632	mg/L	0.000600		105	60-140		

↑NWDLS

Tel: (936) 321-6060 Email: lab@nwdls.com www. NWDLS.com TCEQ T104704238-23-39

Inframark

32259 Morton Road Brookshire, TX 77423 Project: Treschwig JP - Non Potable - Sewage Sludge Annual

Project Number: 50

Project Manager: Gregory Camp

Reported:

07/25/2023 11:49

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF0760 - SW-3511									11000	
MB SV (BGF0760-BLK1)	:00				Prepared: 6/6/	2023 Analyze	d: 6/21/2023			
2,4,5-Trichlorophenol	<400	U.	400	mg/L						
2,4,6-Trichlorophenol	<2.00	U	2.00	mg/L						
2,4-Dinitrotoluene (2,4-DNT)	< 0.130	U	0.130	mg/L						
2-Methylphenol	<200		200	mg/L						
3,4-Methylphenol	<200	U	200	mg/L						
Hexachlorobenzene	<0.130		0.130	mg/L						
Hexachlorobutadiene	<0.500	U	0.500	mg/L						
Hexachloroethane	<3.00	U	3.00	mg/L						
Nitrobenzene	<2.00	U	2.00	mg/L						
Pentachlorophenol	<100	U	100	mg/L						
Pyridine	<5.00	U	5.00	mg/L						
Surrogate: 2-Fluorobiphenyl-surr			0.00950	mg/L	0.0100		95.0	54.6-148		21121511
Surrogate: 2-Fluorophenol-surr			0.0171	mq/L	0.0200		85.4	55-152		
Surrogate: 2,4,6-Tribromophenol-surr			0.0169	mg/L	0.0200		84.5	52.4-136		
Surrogate: Nitrobenzene-d5-surr			0.00971	mg/L	0.0100		97.1	52-162		
Surrogate: Phenol-d5-surr			0.0170	mg/L	0.0200		84.9	58.7-152		
Surrogate: p-Terphenyl-d14-surr			0.00794	mg/L	0.0100		79.4	51.9-147		
BS SV (BGF0760-BS1)					Prepared: 6/6/	/2023 Analyze	d: 6/21/2023			
2,4,5-Trichlorophenol	0.0188	U	400	mg/L	0.0200		93.9	60-140		
2,4,6-Trichlorophenol	0.0202	U	2.00	mg/L	0.0200		101	60-140		
2,4-Dinitrotoluene (2,4-DNT)	0.00935	U	0.130	mg/L	0.0100		93.5	60-140		
2-Methylphenol	0.0169	U	200	mg/L	0.0200		84.3	60-140		
3,4-Methylphenol	0.0319	U	200	mg/L	0.0400		79.7	60-140		
Hexachlorobenzene	0.00810	U	0.130	mg/L	0.0100		81.0	60-140		
Hexachlorobutadiene	. 0.00498	J1, U	0.500	mg/L	0.0100		49.8	60-140		
Hexachloroethane	0.00546		3.00	mg/L	0.0100		54.6	60-140		
Nitrobenzene	0.00946	U	2.00	mg/L	0.0100		94.6	60-140		
Pentachlorophenol	0.0176	U	100	mg/L	0.0200		87.8	36.8-149		
Pyridine	0.0204	U	5.00	mg/L	0.0500		40.7	2.5-101		
Surrogate: 2-Fluorobiphenyl-surr		12712111	0.00964	mg/L	0.0100		96.4	54.6-148		
Surrogate: 2-Fluorophenol-surr			0.0177	mg/L	0.0200		88.3	55-152		
Surrogate: 2,4,6-Tribromophenol-surr			0.0159	mg/L	0.0200		79.7	52.4-136		
Surrogate: Nitrobenzene-d5-surr			0.0103	mg/L			103	52-162		
Surrogate: Phenol-d5-surr			0.0188	mg/L	0.0200		94.2	58.7-152		
Surrogate: p-Terphenyl-d14-surr			0.00827	mg/L			82.7	51.9-147		

Inframark

Project: Treschwig JP - Non Potable - Sewage Sludge Annual

32259 Morton Road Brookshire, TX 77423 Project Number: 50

Reported:

Project Manager: Gregory Camp

07/25/2023 11:49

Quality Control (Continued)

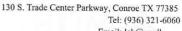
			Reporting		Spike	Source		%REC		RPD
Analyte	Result Q	ual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
atch: BGF0760 - SW-3511 (Co	ontinued)									
BSD SV (BGF0760-BSD1)				Pr	repared: 6/6/	2023 Analyze	d: 6/21/2023			
2,4,5-Trichlorophenol	0.0191 U		400	mg/L	0.0200		95.4	60-140	1.62	40
2,4,6-Trichlorophenol	0.0208 U		2.00	mg/L	0.0200		104	60-140	3.21	40
2,4-Dinitrotoluene (2,4-DNT)	0.00960 U		0.130	mg/L	0.0100		96.0	60-140	2.55	40
2-Methylphenol	0.0165 U		200	mg/L	0.0200		82.5	60-140	2.10	40
3,4-Methylphenol	0.0307		200	mg/L	0.0400		76.8	60-140	3.64	40
Hexachlorobenzene	0.00825 U		0.130	mg/L	0.0100		82.5	60-140	1.87	40
Hexachlorobutadiene	0.00440 J		0.500	mg/L	0.0100		44.0	60-140	12.3	40
Hexachloroethane	0.00492 J	Photos .	3.00	mg/L	0.0100		49.2	60-140	10.3	40
Nitrobenzene	0.00961 L		2.00	mg/L	0.0100		96.1	60-140	1.54	40
Pentachlorophenol	0.0177 U		100	mg/L	0.0200		88.4	36.8-149	0.712	40
Pyridine	0.0203		5.00	mg/L	0.0500		40.6	2.5-101	0.451	40
	0.0205		0.00948	mg/L	0.0100		94.8	54.6-148		
Surrogate: 2-Fluorobiphenyl-surr			0.0171	mg/L	0.0200		85.3	55-152		
Surrogate: 2-Fluorophenol-surr			0.0171	mg/L	0.0200		79.3	52.4-136		
Surrogate: 2,4,6-Tribromophenol-surr			0.00939	mg/L	0.0100		93.9	52-162		
Surrogate: Nitrobenzene-d5-surr			0.0180	mg/L	0.0200		90.1	58.7-152		
Surrogate: Phenol-d5-surr			0.00863	mg/L	0.0100		86.3	51.9-147		
Surrogate: p-Terphenyl-d14-surr			0.00005							
BFG0102-BLK1 (BGF0760-LBK1)				P	repared: 6/6/	2023 Analyze	ed: 6/21/2023	3		
2,4,5-Trichlorophenol	<400 L	J	400	mg/L						
2,4,6-Trichlorophenol	<2.00 l	J	2.00	mg/L						
2,4-Dinitrotoluene (2,4-DNT)	<0.130 l	J	0.130	mg/L						
2-Methylphenol	<200 l	J	200	mg/L						
3,4-Methylphenol	<200 l	j	200	mg/L						
Hexachlorobenzene	<0.130	J	0.130	mg/L						
Hexachlorobutadiene	<0.500 l	J	0.500	mg/L						
Hexachloroethane	<3.00 l		3.00	mg/L						
Nitrobenzene	<2.00 l	J	2.00	mg/L						
Pentachlorophenol	<100 (100	mg/L						
Pyridine	<5.00 l		5.00	mg/L	rumanensi bara					*****
Surrogate: 2-Fluorobiphenyl-surr		******	0.0464	mg/L	0.0400		116	54.6-148		
Surrogate: 2-Fluorophenol-surr			0.0663	mg/L	0.0800		82.9	55-152		
Surrogate: 2,4,6-Tribromophenol-surr			0.0689	mg/L	0.0800		86.1	52.4-136		
			0.0441	mg/L	0.0400		110	52-162		
Surrogate: Nitrobenzene-d5-surr Surrogate: Phenol-d5-surr			0.0768	mg/L	0.0800		96.0	58.7-152		

Tel: (936) 321-6060 Email: lab@nwdls.com www. NWDLS.com TCEQ T104704238-23-39

Inframark

32259 Morton Road Brookshire, TX 77423 Project: Treschwig JP - Non Potable - Sewage Sludge Annual

Project Number: 50


Project Manager: Gregory Camp

Reported:

07/25/2023 11:49

Quality Control (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BGF0760 - SW-3511 (Con	tinued)									
23E4427-01 MS (BGF0760-MS1)		Source: 2	3E4427-01		Prepared: 6/6/	2022 Analyza	4. (/24/202			
2,4,5-Trichlorophenol	0.0753		400	mg/L	0.0800					
2,4,6-Trichlorophenol	0.0711		2.00	mg/L	0.0800	<400	94,2	44.9-171		
2,4-Dinitrotoluene (2,4-DNT)	0.0368		0.130	mg/L	0.0400	<2.00	88.9	34.7-143		
2-Methylphenol	0.0710		200	mg/L	0.0800	<0.130	91.9	50.3-144		
3,4-Methylphenol	0.131		200	mg/L	0.160	<200	88.8	17.3-182		
Hexachlorobenzene	0.0344		0.130	mg/L	0.160	<200	81.7	43.4-188		
Hexachlorobutadiene	0.0187		0.500			<0.130	86.0	56.1-137		
Hexachloroethane	0.0208		3.00	mg/L	0.0400	<0.500	46.8	33.1-110		
Nitrobenzene	0.0208		2.00	mg/L	0.0400	<3.00	52.0	36.2-106		
Pentachlorophenol	0.0374		100	mg/L	0.0400	<2.00	93.6	54.9-156		
Pyridine	0.0737		5.00	mg/L	0.0800	<100	92.1	42.2-151		
6	0.0403		5.00	mg/L	0.200	<5.00	24.3	2-87.4		a contract
Surrogate: 2-Fluorobiphenyl-surr			0.0384	mg/L	0.0400		95.9	54.6-148		
Surrogate: 2-Fluorophenol-surr			0.0713	mg/L	0.0800		89.2	55-152		
Surrogate: 2,4,6-Tribromophenol-surr			0.0674	mg/L	0.0800		84.2	52.4-136		
Surrogate: Nitrobenzene-d5-surr			0.0400	mg/L	0.0400		99.9	52-162		
Surrogate: Phenol-d5-surr			0.0770	mg/L	0.0800		96.3	58.7-152		
Surrogate: p-Terphenyl-d14-surr			0.0328	mg/L	0.0400		82.1	51.9-147		
23E4427-01 MSD (BGF0760-MSD1)		Source: 2	3E4427-01	1	Prepared: 6/6/2	2023 Analyzed	: 6/21/2023			
2,4,5-Trichlorophenol	0.0763	U	400	mg/L	0.0800	<400	95.4	44.9-171	1.30	40
2,4,6-Trichlorophenol	0.0746	U	2.00	mg/L	0.0800	<2.00	93.3	34.7-143	4.80	40
2,4-Dinitrotoluene (2,4-DNT)	0.0357	U	0.130	mg/L	0.0400	<0.130	89.2	50.3-144	2.99	40
2-Methylphenol	0.0713	U	200	mg/L	0.0800	<200	89.1	17.3-182	0.364	40
3,4-Methylphenol	0.133	U	200	mg/L	0.160	<200	83.2	43.4-188	1.84	40
Hexachlorobenzene	0.0293	U	0.130	mg/L	0.0400	< 0.130	73.2	56.1-137	16.1	40
Hexachlorobutadiene	0.0180	U	0.500	mg/L	0.0400	<0.500	45.1	33.1-110	3.78	40
Hexachloroethane	0.0207	U	3.00	mg/L	0.0400	<3.00	51.6	36.2-106	0.667	40
Nitrobenzene	0.0364	U	2.00	mg/L	0.0400	<2.00	91.0	54.9-156	2.85	40
Pentachlorophenol	0.0668	U	100	mg/L	0.0800	<100	83.5	42.2-151	9.83	40
Pyridine	0.0487	U	5.00	mg/L	0.200	<5.00	24.4	2-87.4	0.420	40
Surrogate: 2-Fluorobiphenyl-surr			0.0376	mg/L	0.0400		93.9	54.6-148		*******
Surrogate: 2-Fluorophenol-surr			0.0643	mg/L	0.0800		80.3	55-152		
Surrogate: 2,4,6-Tribromophenol-surr			0.0589	mg/L	0.0800		73.7	52.4-136		
Surrogate: Nitrobenzene-d5-surr			0.0389	mg/L	0.0400		97.3	52-162		
Surrogate: Phenol-d5-surr			0.0767	mg/L	0.0800		95.9	58.7-152		
Surrogate: p-Terphenyl-d14-surr			0.0314	mg/L	0.0400		78.5	51.9-147		

Email: lab@nwdls.com www. NWDLS.com TCEQ T104704238-23-39

Inframark

Project: Treschwig JP - Non Potable - Sewage Sludge Annual

32259 Morton Road Brookshire, TX 77423

Project Number: 50

Project Manager: Gregory Camp

Reported:

07/25/2023 11:49

Sample Condition Checklist

Work Order: 23E4380

Check Points

No

Custody Seals

Yes

Containers Intact

COC/Labels Agree

Yes

Yes

Received On Ice

Yes

Appropriate Containers

Yes

Appropriate Sample Volume

Yes

Coolers Intact

Yes

Samples Accepted

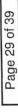
Definition

Inframark

Item

32259 Morton Road Brookshire, TX 77423 Project: Treschwig JP - Non Potable - Sewage Sludge Annual

Project Number: 50


Project Manager: Gregory Camp

Reported:

07/25/2023 11:49

Term and Qualifier Definitions

C+	The associated calibration QC is higher than the established quality control criteria for accuracy - no hit in sample; data not affected and acceptable to report.
J1	Estimated value - The reported value is outside the established quality control criteria for accuracy and/or precision.
S	The surrogate recovery was outside the established laboratory recovery limit.
U	Non-detected compound.
V	Analyte was detected in both sample and method blank.
V2	The analyte was detected in the sample and the associated leach blank.
RPD	Relative Percent Difference
%REC	Percent Recovery
Source	Sample that was matrix spiked or duplicated
*	A = Accredited, N = Not Accredited or Accreditation not available
DF	Dilution Factor - the factor applied to the reported data due to sample preparation, dilution, or moisture content
MDL	Method Detection Limit - The minimum concentration of a substance (or analyte) that can be measured and reported with 99% confidence that the analyte concentration is greater than zero. Based on standard deviation of replicate spiked samples take through all steps of the analytical procedure following 40 CFR Part 136 Appendix B.
SDL	Sample Detection Limit - The minimum concentration of a substance (analyte) that can be measured and reported with 99% confidence that the analyte concentration is greater than zero. The SDL is an adjusted limit thus sample specific and accounts for preparation weights and volumes, dilutions, and moisture content of soil/sediments. If there are no sample specific parameters, the MDL = SDL.
MRL	Method Reporting Limit - Analyte concentration that corresponds to the lowest level lab reports with confidence in accuracy of quantitation and without qualification (i.e. J-flagged). The MRL is at or above the lowest calibration standard.
LRL	Laboratory Reporting Limit - Analyte concentration that corresponds to the lowest level lab reports with confidence in accuracy of quantitation and without qualification (i.e. J-flagged). The LRL is an adjusted limit thus sample specific and accounts for preparation weights and volumes, dilutions, and moisture content of soil/sediments. If there are no sample specific parameters, the MRL = LRL.

CHAIN OF CUSTODY RECORD
North Water District Laboratory Services
130 S. Trade Center Pkwy, Conroe Tx 77385
(936) 321-6060 - lab@nwdls.com TCEQ T104704238-23-39

23E4380 Page 1 of 3

Lab PM : Deens	Lab PM : Deena Higginbotham	<u>a.</u>	oject Name: Treschwi	g JP - Non Potable -	Project Name: Treschwig JP - Non Potable - Sewage Sludge Annual		Schedule Comments:
Inframark Gregory Camp 32259 Morton Road Brookshire, TX 77423 Phone: (281) 902-0966	coad 77423 22-0966	g ii N O	Project Comments: 4414 Treschwig Rd - Spring 77373 Gate 1515 in the event of on-site chemical release call 911 and operator Laura Zito – 832-302-4323 Chris - 713-657-5188 EDP helper	Treschwig Rd - Spring 77373 Gate 1515 nical release call 911 and operator Laura helper	7373 Gate 1515 d operator Laura		
Sample ID Co	Collection Point	Date/Time	Date/Time Sampled	Sample Type	Container	Analysis/Preservation	Field Results
23E4380-01 Dig	Digester 1		65/22/2023	S Grab	A Glass 250mL w/ Teflon-lined Lid B HDPE IC 250mL C HDPE MET 250mL D HDPE WC 250mL E Glass Wide 1L w/ Teflon-lined Lid F HDPE 250mL G Glass VOA 60mL	6010 TCLP TCLP TCLP TCLP SP 6010 CP TCLP 6010 TLP TLP TLP TCLP COP TCLP TCLP TCLP TCLP TCLP TCLP TCLP TCLP	
						PCB-8082 4°C SVOA-TCLP 4°C TCLP Bottle 4°C TCLP ZHE 4°C VOA-TCLP 4°C V	

CHAIN OF CUSTODY RECORD
North Water District Laboratory Services
130 S. Trade Center Pkwy, Conroe Tx 77385
(936) 321-6060 - lab@nwdis.com TCEQ T104704238-23-39

Page 2 of 3

23E4380

						(Continued)
Lab Fin : Deena Higginbotham		roject Name: Treschwi	ig JP - Non Potable	Project Name: Treschwig JP - Non Potable - Sewage Sludge Annual		
Inframark Gregory Camp 32259 Morton Road Brookshire, TX 77423 Phone: (281) 902-0966	P. ii Zili	Project Comments: 4414 Treschwig Rd - Spring 77373 Gate 1515 in the event of on-site chemical release call 911 and operator Laura Zito - 832-302-4323 Chris - 713-657-5188 EDP helper	reschwig Rd - Spring cal release call 911 a elper	77373 Gate 1515 nd operator Laura		Schedule Comments:
23E4380-02 Digester 2		5/22/2023	S grab	A Glass 250mL w/ Teflon-lined Lid	Arsenic ICP 6010 4°C	
		12		B HDPE IC 250mL		
		58		C HDPE MET 250mL	Cadmium ICP 6010 4°C	
				E Glass Wide 1L w/		
		120				
				F HDPE 250mL	Chromium ICP ICLP 4°C	
				G Glass VOA 60mL	Ha-7471	
					TCLP	
		YK.				
					Lead ICP TCLP 4°C	
		300			9 6010	
		₹ •				
		, ,			0	
		192	-			-
		7,633			Selenium ICP TCLP 4°C	
		W			Silver ICP TCLP 4°C	
		2.0			rus ICP 60	
					HERB-TCI B	
		-200				
		200			•	
		1933			TCLP Bottle 4°C	
					TCLP ZHE 4°C	
					VOA-TCLP 4°C	
					NH3-N T-350.2 4°C	Man
					C 9056	
					3	
					13-2340 G 4°C	

CHAIN OF CUSTODY RECORD
North Water District Laboratory Services
130 S. Trade Center Pkwy, Conroe Tx 77385
(936) 321-5060 - lab@nwdls.com

TCEQ T104704238-23-39

23E4380 Page 3 of 3

(Continued)

Lab PM : Deena Higginbotham	Project Name : Treschwig JP - Non Potable - Sewage Sludge Annual	Schedule Comments:
Inframark Gregory Camp 32259 Morton Road Brookshire, TX 77423 Phone: (281) 902-0966	Project Comments: 4414 Treschwig Rd - Spring 77373 Gate 1515 in the event of on-site chemical release call 911 and operator Laura Zito — 832-302-4323 Chris - 713-657-5188 EDP helper	

Field Remarks:			Lab Preservation: H2SO4	2SO4 HNO3	NaOH Other	er
			Write ID Below)			
Sampler (Signature)	Relinquished By: (Signature)		Date/Time	Received By: (Signature)		Date/Time
Print Name Sub TSwish	Relinquished By. (Signature)		Date/Time	Received By: (Signature)		Date/Time
Affiliation NWN S	Relinquished To Lab By: (Signature)		S-22-23 (g)	Received for Laboratory By: (Signature)	iture) A	Date/Time
Custody Seal: Yes / No CC Container Intact: Yes / No Ap	COC Labels Agree: Yes / No Appropriate Containers: Yes / No	Appropriate Volume: Yes / No Coolers Intact: Yes / No		Received on Ice: Yes / No Samples Accepted: Yes / No	Temperature: Thermometer ID:	O.
Spring South					wko NWDIS COC 1.8 Revision 4.1 Effective: 2/17/2022	sion 4.1 Effective: 2/17/2

Laboratory Analysis Report

Total Number of Pages:

Job ID: 23053102

10100 East Freeway, Suite 100, Houston, TX 77029 tel: 713-453-6060, fax: 713-453-6091, http://www.ablabs.com

Client Project Name: 23E4380

Report To:

Client Name:

Attn:

NWDLS

Deena Higginbotham

130 S Trade Center Pkwy

Client Address: City, State, Zip:

Conroe, Texas, 77385

P.O.# .: 23E4380

Sample Collected By:

Date Collected: 05/22/23

A&B Labs has analyzed the following samples...

Client Sample ID

Matrix

A&B Sample ID

23E4380-01

Sludae

23053102.01

23E4380-02

Sludge

23053102.02

Released By: Amanda Shute

Title:

Project Manager

Date:

6/5/2023

This Laboratory is NELAP (T104704213-23-31) accredited. Effective: 04/13/2023; Expires: 3/31/2024

Scope: Non-Potable Water, Drinking Water, Air, Solid, Biological Tissue, Hazardous Waste

I am the laboratory manager, or his/her designee, and I am responsible for the release of this data package. This laboratory data package has been reviewed and is complete and technically compliant with the requirements of the methods used, except where noted in the attached exception reports. I affirm, to the best of my knowledge that all problems/anomalies observed by this laboratory (and if applicable, any and all laboratories subcontracted through this laboratory) that might affect the quality of the data, have been identified in the Laboratory Review Checklist, and that no information or data have been knowingly withheld that would affect the quality of the data.

This report cannot be reproduced, except in full, without prior written permission of A&B Labs. Results shown relate only to the items tested. Results apply to the sample as received. Samples are assumed to be in acceptable condition unless otherwise noted. Blank correction is not made unless otherwise noted. Air concentrations reported are based on field sampling information provided by client. Soil samples are reported on a wet weight basis unless otherwise noted. Uncertainty estimates are available on request.

Page 1 of 8

ab-q210-0321

Date Received: 05/26/2023 13:25

Page 32 of 39

LABORATORY TERM AND QUALIFIER DEFINITION REPORT

Job ID: 23053102

Date:

6/5/2023

General Term Definition

Post Weight Post-Wt Back-Wt Back Weight parts per million Below Reporting Limit ppm BRL Pre-Wt Previous Weight cfu colony-forming units Qualifier Conc. Concentration Regulatory Limit RegLimit D.F. **Dilution Factor** Relative Percent Difference RPD Front-Wt Front Weight Reporting Limit **RptLimit** LCS Laboratory Check Standard Sample Detection Limit Laboratory Check Standard Duplicate SDL LCSD Surrogate surr MS Matrix Spike T Time Matrix Spike Duplicate MSD TNTC Too numerous to count MW Molecular Weight

Estimation. Below calibration range but above MDL

Qualifier Definition

J

M2

Matrix Spike and/or Matrix Spike Duplicate recovery is below laboratory control limits due to matrix interference."The sample randomly selected as QC for this batch was not part of your project. Therefore, this sample matrix is not applicable to your project samples."

MQL

Minimum Quantitation Limit

LABORATORY TEST RESULTS

Job ID: 23053102

Date 6/5/2023

Client Name:

NWDLS

Project Name:

23E4380

Attn: Deena Higginbotham

Client Sample ID:

23E4380-01

Date Collected:

Time Collected: Other Information: 05/22/23

08:40

Job Sample ID:

23053102.01

Sample Matrix

Sludge

% Moisture

Test Method	Parameter/Test Description	Result	Units	DF	SDL	SQL	Reg Limit	0	Date Time	Analyst
SW-846 8260C	TCLP VOC						- reg Emile	٧.	Date Time	Arialyst
	1,1-Dichloroethylene	< 0.017	mg/L	1.00	0.017	0.125	0.6	U	05/31/23 04:09	ZQ
	1,2-Dichloroethane	<0.026	mg/L	1.00	0.026	0.125	0.5	U	05/31/23 04:09	ZQ
	1,4-Dichlorobenzene	<0.018	mg/L	1.00	0.018	0.125	7.5	U	05/31/23 04:09	ZQ
	Benzene	< 0.016	mg/L	1.00	0.016	0.125	0.5	U	05/31/23 04:09	ZQ
	Carbon tetrachloride	<0.043	mg/L	1.00	0.043	0.125	0.5	U	05/31/23 04:09	ZQ
	Chlorobenzene	< 0.017	mg/L	1.00	0.017	0.125	70	U	05/31/23 04:09	ZQ
	Chloroform	<0.018	mg/L	1.00	0.018	0.125	6	U	05/31/23 04:09	ZQ
	MEK	< 0.072	mg/L	1.00	0.072	0.125	200	U	05/31/23 04:09	ZQ
	Tetrachloroethylene	< 0.017	mg/L	1.00	0.017	0.125	0.7	U	05/31/23 04:09	ZQ
	Trichloroethylene	<0.020	mg/L	1.00	0.020	0.125	0.5	U	05/31/23 04:09	ZQ
	Vinyl Chloride	< 0.021	mg/L	1.00	0.021	0.125	0.2	U	05/31/23 04:09	ZQ
	1,2-Dichloroethane-d4(surr)	104	%	1.00		70-130			05/31/23 04:09	ZQ
	Dibromofluoromethane(surr)	98.6	%	1.00		70-130			05/31/23 04:09	ZQ
	p-Bromofluorobenzene(surr)	96.7	%	1.00		70-130			05/31/23 04:09	ZQ
	Toluene-d8(surr)	94.2	%	1.00		70-130			05/31/23 04:09	ZQ

ab-q212-0321

LABORATORY TEST RESULTS

Job ID: 23053102

6/5/2023 Date

Attn: Deena Higginbotham

Client Name:

NWDLS

Project Name:

23E4380

Client Sample ID: Date Collected:

05/22/23

Time Collected:

08:40

Job Sample ID: 23E4380-02

23053102.02

Sample Matrix

Sludge

% Moisture

Other Informat	08.40 ion:						7. 1711111			
Test Method	Parameter/Test Description	Result	Units	DF	SDL	SQL	Reg Limit	Q	Date Time	Analyst
SW-846 8260C	TCLP VOC									
	1,1-Dichloroethylene	< 0.017	mg/L	1.00	0.017	0.125	0.6	U	05/31/23 04:27	ZQ
	1,2-Dichloroethane	< 0.026	mg/L	1.00	0.026	0.125	0.5	U	05/31/23 04:27	ZQ
	1,4-Dichlorobenzene	<0.018	mg/L	1.00	0.018	0.125	7.5	U	05/31/23 04:27	ZQ
	Benzene	< 0.016	mg/L	1.00	0.016	0.125	0.5	U	05/31/23 04:27	ZQ
	Carbon tetrachloride	< 0.043	mg/L	1.00	0.043	0.125	0.5	U	05/31/23 04:27	ZQ
	Chlorobenzene	< 0.017	mg/L	1.00	0.017	0.125	70	U	05/31/23 04:27	ZQ
	Chloroform	<0.018	mg/L	1.00	0.018	0.125	6	U	05/31/23 04:27	ZQ
	MEK	< 0.072	mg/L	1.00	0.072	0.125	200	U	05/31/23 04:27	ZQ
	Tetrachloroethylene	< 0.017	mg/L	1.00	0.017	0.125	0.7	U	05/31/23 04:27	ZQ
	Trichloroethylene	<0.020	mg/L	1.00	0.020	0.125	0.5	U	05/31/23 04:27	ZQ
	Vinyl Chloride	< 0.021	mg/L	1.00	0.021	0,125	0.2	U	05/31/23 04:27	ZQ
	1,2-Dichloroethane-d4(surr)	103	%	1.00		70-130			05/31/23 04:27	ZQ
	Dibromofluoromethane(surr)	95.8	%	1.00		70-130			05/31/23 04:27	ZQ
	p-Bromofluorobenzene(surr)	95.4	%	1.00		70-130			05/31/23 04:27	ZQ
	Toluene-d8(surr)	94.9	%	1.00		70-130			05/31/23 04:27	ZQ

ab-q212-0321

QUALITY CONTROL CERTIFICATE

Job ID: 23053102

Date:

6/5/2023

Analysis : TCLP VOC

Method:

SW-846 8260C

Reporting Units : mg/L

QC Batch ID : Qb23053101

Created Date: 05/30/23

Created By : Zeeshan

Samples in This QC Batch : 23053102.01,02

Prep Method: SW-846 5030C

Prep Date: 05/30/23 10:00 Prep By:

Zeeshan

TCLP Prep:

Sample Preparation: PB23053101 PB23052801

Prep Method: SW-846 1311

Prep Date: 05/27/23 13:26 Prep By:

Msoria

Parameter	CAS #	Result	Units	D.F.	MQL	MDL		Qua
1,1-Dichloroethylene	75-35-4	< MDL	mg/L	1.00	0.125	0.0165		Quan
1,2-Dichloroethane	107-06-2	< MDL	mg/L	1.00	0.125	0.026	inner -	
1,4-Dichlorobenzene	106-46-7	< MDL	mg/L	1.00	0.125	0.018		
Benzene	71-43-2	< MDL	mg/L	1.00	0.125	0.0158		
Carbon tetrachloride	56-23-5	< MDL	mg/L	1.00	0.125	0.0433		
Chlorobenzene	108-90-7	< MDL	mg/L	1.00	0.125	0.0173		
Chloroform	67-66-3	< MDL	mg/L	1.00	0.125	0.018		
MEK	78-93-3	< MDL	mg/L	1.00	0.125	0.0715		- 11
Tetrachloroethylene	127-18-4	< MDL	mg/L	1.00	0.125	0.0165		
Trichloroethylene	79-01-6	< MDL	mg/L	1.00	0.125	0.0198		
Vinyl Chloride	75-01-4	< MDL	mg/L	1.00	0.125	0.0205		
1,2-Dichloroethane-d4(surr	17060-07-0	106	%	1.00	220000			
Dibromofluoromethane(surr	1868-53-7	104	%	1.00				
p-Bromofluorobenzene(surr	460-00-4	95.4	%	1.00			_	
Toluene-d8(surr)	2037-26-5	94.5	%	1.00				

QC Type: LCS and L	CSD									
Parameter	LCS Spk Added	LCS Result	LCS % Rec	LCSD Spk Added	LCSD Result	LCSD % Rec	RPD	RPD CtrlLimit	%Recovery CtrlLimit	Qual
1,1-Dichloroethylene	1	1.01	101	1	0.968	96.8	3.8	35	70-130	T
1,2-Dichloroethane	1.	0.985	98.5	1	0.945	94.5	4.1	35	70-130	1
1,4-Dichlorobenzene	1	0.934	93.4	1	0.911	91.1	2.5	35	70-130	
Benzene	1	1.01	101	1	0.952	95.2	5.4	35	70-130	
Carbon tetrachloride	1	1.04	104	1	0.994	99.4	4.1	35	70-130	
Chlorobenzene	1	1.04	104	1	0.969	96.9	7	35	70-130	
Chloroform	1	0.994	99.4	1	0.961	96.1	3.4	35	70-130	
MEK	1	0.802	80.2	1	0.728	72.8	9.7	35	70-130	1
Tetrachloroethylene	1	1.06	106	1	0.980	98	8	35	70-130	
Trichloroethylene	1	1.05	105	1	0.993	99.3	5.9	35	70-130	
Vinyl Chloride	1	0.943	94.3	1	0.925	92.5	1.9	35	70-130	

QC Type: MS and MS	D										
QC Sample ID: 2305	2883.01										
Parameter	Sample Result	MS Spk Added	MS Result	MS % Rec	MSD Spk Added	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLimit	Qual
1,1-Dichloroethylene	BRL	1	0.928	92.8						70-130	
										ah-n	213-03

Refer to the Definition page for terms.

QUALITY CONTROL CERTIFICATE

Job ID: 23053102

05/30/23

Date:

6/5/2023

Analysis : TCLP VOC

Method:

SW-846 8260C

Reporting Units: mg/L

QC Batch ID: Qb23053101

Created Date:

Created By: Zeeshan

Samples in This QC Batch: 23053102.01,02

QC Type: MS and MS		÷									
QC Sample ID: 2305 Parameter	2883.01 Sample Result	MS Spk Added	MS Result	MS % Rec	MSD Spk Added	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLimit	Qual
1,2-Dichloroethane	BRL	1	0.928	92.8				,7/1" . H		70-130	
1,4-Dichlorobenzene	BRL	1	0.854	85.4						70-130	
Benzene	BRL	1	0.919	91.9						70-130	
Carbon tetrachloride	BRL	1	0.964	96.4	of the late of				4 11	70-130	
Chlorobenzene	BRL	1	0.940	94						70-130	
Chloroform	BRL	1	0.923	92.3						70-130	
MEK	BRL	1	0.667	66.7						70-130	M2
Tetrachloroethylene	BRL	1	0.888	88.8	1					70-130	
Trichloroethylene	BRL	1 1	0.983	98.3						70-130	
Vinyl Chloride	BRL	1	0.873	87.3						70-130	

ab-q213-0321

SUBCONTRACT **ORDER**

Sending Laboratory:

North Water District Laboratory Services, Inc.

130 South Trade Center Parkway

Conroe, TX 77385 Phone: 936-321-6060 Fax: 936-321-6061

Project Manager: Deena Higginbotham

Subcontracted Laboratory:

A & B Labs

10100 East Freeway, Suite 100

Houston, TX 77029 Phone: (713) 453-6060 Fax: (713) 453-6091

Work Order: 23E4380

Analysis Due Expires Comments

Sample ID: 23E4380-01 Solid Sampled: 05/22/2023 08:40

TCLP ZHE

06/05/2023 06/05/2023 08:40 Auto-Included

VOA-TCLP

06/05/2023 06/05/2023 08:40

Analyte(s):

1,1-Dichloroethylene

1.4 Dichlorobenzene (p-Dichlorobenzene)

Benzene Chloroform Toluene-d8-surr

Containers Supplied:

1,2-Dichloroethane (Ethylene dichloride) 2-Butanone (Methyl ethyl ketone, MEK)

Carbon tetrachloride Dibromofluoromethane-surr

Trichloroethene (Trichloroethylene)

1,2-Dichloroethane-d4-surr 4-Bromoflurobenzene-surr

Chlorobenzene

Tetrachloroethylene (Perchloroethylene)

Vinyl chloride (Chloroethene)

Sample ID: 23E4380-02 Solid Sampled: 05/22/2023 08:40

TCLP ZHE

06/05/2023

06/05/2023 08:40 Auto-Included

VOA-TCLP

Analyte(s):

1,1 Dichloroethylene

1,4-Dichlorobenzene (p-Dichlorobenzene)

621r

Benzene Chleroform

Toluene-d8-surr

06/05/2023

06/05/2023 08:40

1,2-Dichloroethane (Ethylene dichloride)

2-Butanone (Methyl ethyl ketone, MEK)

Carbon tetrachloride

Dibromofluoromethane-surr

Trichloroethene (Trichloroethylene)

1.2-Dichloroethane-d4-surr

4 Bromoffurobenzene-surr

Chlorobenzene

Tetrachloroethylene (Perchloroethylene)

Vinvi chloride (Chloroethene)

Containers Supplied:

Received By

08/26/23 1325

Date

3.9

(a-b)

Sample Condition Checklist

A&I	&B JobID : 23053102 Date Received : 05/26/2023 Time Received : 1:25PM									
Clie	nt Name : NWDLS	-								
Ter	perature : 3.9°C	Sample pH: NA								
The	rmometer ID : IR5	pH Paper ID: NA								
Pe	servative :									
		Check Points		Yes	No	N/A				
1.	Cooler Seal present and signed.		Х							
2.	Sample(s) in a cooler.									
3.	If yes, ice in cooler.		Х							
4.	Sample(s) received with chain-of-custo	Х								
5.	. C-O-C signed and dated.									
6.	Sample(s) received with signed sample custody seal.									
7.	Sample containers arrived intact. (If No comment)									
8.	Water Soil Liquid Slu									
9.	Samples were received in appropriate container(s)									
10.	D. Sample(s) were received with Proper preservative									
11.	11. All samples were tagged or labeled.									
12.	12. Sample ID labels match C-O-C ID's.									
13.	3. Bottle count on C-O-C matches bottles found.									
14.	Sample volume is sufficient for analyse	es requested.		Х						
15.	5. Samples were received with in the hold time.									
16.	5. VOA vials completely filled.									
17.	7. Sample accepted.									
18.	8. Has client been contacted about sub-out									
COC shows solid, recieved sludge. ~JE 05/26/23										
COC	snows soliu, recieved sludge. ~JE 05/26/2	3								

Received by: Jedralin

Check in by/date: ASmith / 05/26/2023

ab-s005-0321

Page 39 of 39

Phone: 713-453-6060

www.ablabs.com

December 21, 2023

City of Waller Waller, City of 1218 Farr St Waller, TX 77484

RE: Waller Digester

4/5 12/2/12 KUROPAN

Enclosed are the results of analyses for samples received by the laboratory on 11/28/23 15:40, with Lab ID Number C3K7384. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mark Bourgeois

Special Projects Manager

ENTERED DEC 2 8 2023

Pass

☐ Sludge Manager

Master Spreadsheet

TCLP

PCE

Metals F/S 2 & Solid

Waller, City of 1218 Farr St Waller TX, 77484

Case Narrative

40 CFR 503 Criterion for Fecal Coliform Class B = 2,000,000 MPN/g. for Class A = 1,000 MPN/g 40 CFR 503 Criterion for Vector Class B = <1.5mg/O2/g Solids/hr *Fecal Coliform result is a geometric mean of seven individual samples.

LABORATORY ANALYTICAL REPORT

Project:

Waller Digester b

Client Matrix:

Waste

Sample Date & Time: 11/28/2023 13:25

Collector: JMY

Sample Type:Grab

Print Date: 12/21/2023

Digester C3K7384-01 (Waste)

Analyte	Result	Reporting Limit	Reporting Limit Units		Batch	Analyzed Date & Time	Method	Note
		Microt	piological	<u>Lab</u>			7	
Feeal Coliform IDEXX	147687 1.0	1000 0.1	mpn/gram mg O2/hr/g	N	B3K4594 B3K4740	11/28/2023 16:05 11/28/2023 16:55	Colifert 18 TAC 312.83(b)(4)	
		<u> </u>	Vet Lab					
ercent Solid	1.5	0.1	%	А	B3K4607	11/29/2023 16:03	SM 2540G	
olatile Percent Solid	59.8	0.1	%	A	B3K4603	11/30/2023 14:09	SM 2540G	

Waller, City of 1218 Farr St Waller TX, 77484

Colilert 18 - Quality Control

Eastex Environmental Laboratory - Coldspring

	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Vezait	Limit	O.M.W				••••			
Batch B3K4594 - No Prep Micro	Prepared	11/28/23 16	:05		·					
Blank (B3K4594-BLK1)				Analyzed:	11/28/2023	4:05:00PM	1			
Fecal Coliform IDEXX	ND	1000	mpn/gram							
Duplicate (B3K4594-DUP1)	Sou	rce: C3K465	9-01	Analyzed:	11/28/2023	4:05:00PN	1			
Fecal Coliform IDEXX	98700	1000	mpn/gram		148300			40.2	200	
Batch B3K4603 - No Prep	Prepared	: 11/30/23 14	:09							
Blank (B3K4603-BLK1)				Analyzed:	11/30/2023	2:09:00PN	1			
Volatile Percent Solid	ND	0.1	%							
Duplicate (B3K4603-DUP1)	So	arce: C3K690	5-01	Analyzed: 11/30/202		2:09:00PN	1			
Volatile Percent Solid	82.3	0.1	%		83.0			0.847	10	
Batch B3K4607 - No Prep	Prepared	: 11/29/23 16	:03							
Blank (B3K4607-BLK1)				Analyzed	: 11/29/2023	4:03:00PN	1			
Percent Solid	ND	1.0	%							
Duplicate (B3K4607-DUP1)	So	urce: C3K690	5-01	Analyzed: 11/29/2023		4:03:00PN	И			
Percent Solid	1.30	0.1	%		1.30			0.00	20	
Batch B3K4740 - No Prep Micro	Prepared	: 11/28/23 16	5:55							
Blank (B3K4740-BLK1)				Analyzed	: 11/28/2023	4:55:00PN	M			
Vector	ND	0.1	mg O2/hr/g							
Duplicate (B3K4740-DUP1)	So	urce: C3K738	4-01	Analyzed	1: 11/28/2023	4:55:00PI	M			
Vector	0.800	0.1	mg O2/hr/g		1.00			22.2	200	

Waller, City of 1218 Farr St Waller TX, 77484

Notes and Definitions

DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

December 12, 2023

City of Waller Waller, City of 1218 Farr St Waller, TX 77484

RE: Waller Digester

Enclosed are the results of analyses for samples received by the laboratory on 11/28/23 15:40, with Lab ID Number C3K6938. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mark Bourgeois

Special Projects Manager

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

8

Attn: Mark Bourgeois Eastex Environmental Laboratory Inc. PO BOX 1089

Coldspring, Texas 77331

Generated 12/8/2023 4:07:05 PM

JOB DESCRIPTION

Waller, City of

JOB NUMBER

860-62517-1

Eurofins Houston 4145 Greenbriar Dr Stafford TX 77477

Eurofins Houston

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

50y

Generated 12/8/2023 4:07:05 PM

Authorized for release by Sylvia Garza, Project Manager Sylvia Garza@et.eurofinsus.com (832)544-2004 4

5

6

8

9

10

12

10

Table of Contents	
Cover Page	
Table of Contents	
Definitions/Glossary 3	
Definitions/Glossary	
Case Narrative	
Client Sample Results	
Client Sample Results	
Gurrogate Summary	
QC Sample Results	2
QC Association Summary	3
ab Officiale	,
refuncation Summary	š
nethod Summary)
ample Summary)
Itali of Custody	
eceipt Checklists	

Definitions/Glossary

Client: Eastex Environmental Laboratory Inc.

Job ID: 860-62517-1

Project/Site: Waller, City of

Qualifiers

GC/MS Semi VOA

Qualifier	Qualifier	Description
	-	

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

TEQ

TNTC

Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count

Glossary	TO STATE OF THE PARTY OF THE PA
Abbreviation	These commonly used abbreviations may or may not be present in this report.
п	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
	record of the first of the second of the sec

Case Narrative

Client: Eastex Environmental Laboratory Inc. Project/Site: Waller, City of

Job ID: 860-62517-1

Job ID: 860-62517-1

Laboratory: Eurofins Houston

Narrative

Job Narrative 860-62517-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 11/30/2023 9:58 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.9°C

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC/MS Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Herbicides

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Pesticides

Method 8081B: The DCB Decachlorobiphenyl (Surr) surrogate recovery for the following samples was outside acceptance limits (low biased) on the primary column: (LCS 860-133535/2-A) and (LCSD 860-133535/3-A). The recovery is within acceptance limits on the other column, indicating that the extraction process was in control.

Method 8081B: The following sample was diluted due to the nature of the sample matrix: Waller Digester c Digester (860-62517-1). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Mark Mark

3

4

6

7

8

10

12

14

Detection Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: Waller, City of

Job ID: 860-62517-1

Client Sample ID: Waller Digester c Digester

Lab Sample ID: 860-62517-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type	
Barium	0.087		0.050		mg/L	1	_	6010D	TCLP	

This Detection Summary does not include radiochemical test results.

Client Sample Results

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62517-1

Client Sample ID: Waller Digester c Digester

Date Collected: 11/28/23 13:25 Date Received: 11/30/23 09:58 Lab Sample ID: 860-62517-1

Matrix: Water

Method: SW846 8260C - Volat Analyte	Result	Qualifier	RL	MDL	L Unit		12		
Benzene	ND		0.050		mg/L	D	Prepared	Analyzed	Dil Fa
Carbon tetrachloride	ND		0.25		0.0 5.000			12/04/23 15:13	5
Chlorobenzene	ND		0.050		mg/L			12/04/23 15:13	50
Chloroform	ND		0.050		mg/L			12/04/23 15:13	50
1,2-Dichloroethane	ND				mg/L			12/04/23 15:13	50
1,1-Dichloroethene	ND		0.050		mg/L			12/04/23 15:13	50
2-Butanone	ND ND		0.050		mg/L			12/04/23 15:13	50
Tetrachloroethene	ND ND		2.5		mg/L			12/04/23 15:13	50
Trichloroethene	ND ND		0.050		mg/L			12/04/23 15:13	50
Vinyl chloride			0.25		mg/L			12/04/23 15:13	50
	ND		0.10		mg/L			12/04/23 15:13	50
Surrogate	%Recovery Q	Qualifier	Limits					31	
1,2-Dichloroethane-d4 (Surr)	105	,dame,	63 - 144			-	Prepared	Analyzed	DII Fac
4-Bromofluorobenzene (Surr)	102		74 - 124					12/04/23 15:13	50
Dibromofluoromethane (Surr)	101							12/04/23 15:13	50
Toluene-d8 (Surr)	97		75 - 131					12/04/23 15:13	50
A second defends a reason of the second of t	9.0		80 - 120					12/04/23 15:13	50

Result	Qualifier			Hate	_			
			MDL		<u>D</u>	Prepared	Analyzed	Dil Fac
		232768				12/04/23 06:37	12/04/23 15:05	5
				1000 00 1000		12/04/23 06:37	12/04/23 15:05	5
				- E		12/04/23 06:37	12/04/23 15:05	5
				10.14		12/04/23 06:37	12/04/23 15:05	5
				mg/L		12/04/23 06:37	12/04/23 15:05	5
				mg/L		12/04/23 06:37	12/04/23 15:05	5
				mg/L		12/04/23 06:37	12/04/23 15:05	5
				mg/L		12/04/23 06:37	12/04/23 15:05	5
				mg/L		12/04/23 06:37	12/04/23 15:05	5
		0.25		mg/L		12/04/23 06:37		5
		0.25		mg/L		12/04/23 06:37		5
ND		0.25		mg/L		12/04/23 06:37	12/04/23 15:05	5
%Recovery	Qualifier	Limits						
					9		Analyzed	Dil Fac
52		Wast more					12/04/23 15:05	5
							12/04/23 15:05	5
						All and the second	12/04/23 15:05	5
							12/04/23 15:05	5
						12/04/23 06:37	12/04/23 15:05	5
	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Result Qualifier ND ND ND ND ND ND ND N	Result Qualifier RL	Result Qualifier RL MDL	Result Qualifier RL MDL Unit mg/L	Result Qualifier RL MDL Unit D	ND	Result Qualifier RL MDL Unit D Prepared Analyzed

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII =
Chlorodane	ND		0.010		mg/L		12/04/23 08:52		Dil Fa
Endrin	ND		0.00051					12/05/23 11:31	10
feptachlor	ND				mg/L		12/04/23 08:52	12/05/23 11:31	10
deptachlor epoxide			0.00051		mg/L		12/04/23 08:52	12/05/23 11:31	10
amma-BHC (Lindane)	ND		0.00051		mg/L		12/04/23 08:52	12/05/23 11:31	10
	ND		0.00051		mg/L		12/04/23 08:52	12/05/23 11:31	10
Methoxychlor	ND		0.00051		mg/L		12/04/23 08:52	12/05/23 11:31	
oxaphene	ND		0.010		mg/L		12/04/23 08:52	12/05/23 11:31	10

Eurofins Houston

2

3

5 6

8

9

<u>LU</u>

12

13

Client Sample Results

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62517-1

Lab Sample ID: 860-62517-1

Matrix: Water

Client Sample ID: Waller Digester c Digester

Date Collected: 11/28/23 13:25

Date Received: 11/30/23 09:58

Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	30	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	28 - 94					12/04/23 08:52	12/05/23 11:31	10
Tetrachloro-m-xylene	72		52 - 134					12/04/23 08:52	12/05/23 11:31	10
Method: SW846 8151A - Herbid	folder (CC) TO									alla
Analyte										
2,4-D	ND	Qualifier	RL	MDL	Unit		D	Prepared	Analyzed	Dil Fac
2,4,5-TP (Silvex)			0.00020		mg/L			12/05/23 14:58	12/07/23 14:50	1
2,4,5-1P (Silvex)	ND		0.00020		mg/L			12/05/23 14:58	12/07/23 14:50	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	90		42 - 150				,	12/05/23 14:58	12/07/23 14:50	1
Method: SW846 6010D - Metals Analyte	Result	Qualifier	RL	MDL	Unit		D	Prepared	Analyzed	Dil Fac
Arsenic	ND	ALL DINKERS	0.050		mg/L	·	-	12/04/23 10:00	12/06/23 11:23	1
Barium	0.087		0.050		mg/L			12/04/23 10:00	12/06/23 11:23	,
Cadmium	ND		0.025		mg/L			12/04/23 10:00	12/06/23 11:23	day)
Chromium	ND		0.050		mg/L			12/04/23 10:00	12/06/23 11:23	
Lead	ND		0.050		mg/L			12/04/23 10:00	12/06/23 11:23	
Nickel	ND		0.050		mg/L			12/04/23 10:00	12/06/23 11:23	1
Selenium	ND		0.15		mg/L			12/04/23 10:00	12/06/23 11:23	
Silver	ND		0.10		mg/L			12/04/23 10:00		1
Beryllium	ND		0.020		mg/L			12/04/23 10:00	12/06/23 11:23 12/06/23 11:23	3
Antimony	ND		0.10		mg/L			12/04/23 10:00	A SERVICE STANDARD	1
M-11 - 1. OUIO 40 74704 . M		area.						12104123 10.00	12/06/23 11:23	1
Method: SW846 7470A - Mercui										
Analyte		Qualifier	RL	MDL	Unit	Leady-	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020		mg/L		_	12/03/23 21:45	12/04/23 17:10	

Method: SW846 7470A - Mercury	(CVAA) - TCLI	5							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020		mg/L		12/03/23 21:45	12/04/23 17:10	1

2

Surrogate Summary

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62517-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water

Prep Type: Total/NA

				Percent Sur	rrogate Recover	y (Acceptance Limits)
Lab Sample ID	Client Sample ID	DCA (63-144)	BFB (74-124)	DBFM (75-131)	TOL (80-120)	th are
CS 860-133533/3	Lab Control Sample	101	104	106	99	
CSD 860-133533/4	Lab Control Sample Dup	101	102	106	98	
MB 860-133533/9	Method Blank	104	102	104	98	

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

Prep Type: TCLP

				Percent Sur	rogate Recovery (Ac	ceptance Limits)	
		DCA	BFB	DBFM	TOL		
Lab Sample ID	Client Sample ID	(63-144)	(74-124)	(75-131)	(80-120)		
860-62517-1	Waller Digester c Digester	105	102	101	97		
860-62591-A-4-C MS	Matrix Spike	102	103	105	99		
_B 860-133351/1-A	Method Blank	104	101	99	97		
Surrogate Legend							

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Water

Prep Type: Total/NA

				Percent Sur	rogate Reco	very (Accepta	ance Limits)	
		TBP	FBP	2FP	NBZ	TPHd14	PHL	
Lab Sample ID	Client Sample ID	(31-132)	(29-112)	(21-114)	(26-110)	(20-141)	(16-117)	
LCS 860-133494/2-A	Lab Control Sample	99	77	43	77	114	31	
LCSD 860-133494/3-A	Lab Control Sample Dup	99	85	47	85	109	34	
MB 860-133494/1-A	Method Blank	58	74	38	76	120	22	

Surrogate Legend

TBP = 2,4,6-Tribromophenol (Surr)

FBP = 2-Fluorobiphenyl (Surr)

2FP = 2-Fluorophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

PHL = Phenol-d5 (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Water

Prep Type: TCLP

				Percent Sur	rogate Reco	ery (Accepta	ance Limits)
		TBP	FBP	2FP	NBZ	TPHd14	PHL
Lab Sample ID	Client Sample ID	(31-132)	(29-112)	(21-114)	(26-110)	(20-141)	(16-117)
860-62517-1	Waller Digester c Digester	48	52	45	48	85	38
860-62567-A-1-F MS	Matrix Spike	74	62	46	56	89	40

Eurofins Houston

12/8/2023

Method: 8081B - Organochlorine Pesticides (GC)

Matrix: Water Prep Type: TCLP

Surrogate Legend
DCB = DCB Decachlorobiphenyl (Surr)

TCX = Tetrachloro-m-xylene

Surrogate Summary Client: Eastex Environmental Laboratory Inc. Project/Site: Waller, City of Job ID: 860-62517-1 Method: 8151A - Herbicides (GC) Matrix: Water Prep Type: Total/NA Percent Surrogate Recovery (Acceptance Limits) DCPAA1 Lab Sample ID Client Sample ID (42-150) LCS 860-133832/2-A Lab Control Sample 102 LCSD 860-133829/3-A Lab Control Sample Dup 62 LCSD 860-133832/3-A Lab Control Sample Dup 99 MB 860-133829/1-A Method Blank 74 MB 860-133832/1-A Method Blank 81 Surrogate Legend DCPAA = 2.4-Dichlorophenylacetic acid Method: 8151A - Herbicides (GC) Matrix: Water Prep Type: TCLP

Prep Type: TCLi

Percent Surrogate Recovery (Acceptance Limits)

Lab Sample ID Client Sample ID (42-150)

860-62517-1 Waller Digester c Digester 90

LB 860-133362/1-F Method Blank 71

Surrogate Legend

DCPAA = 2,4-Dichlorophenylacetic acid

Eurofins Houston

1

3

5

6 7

9

10

12

13

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62517-1

Method: 8260C - Volatile Organic Compounds by GC/MS

		Lab	Sample	ID:	MB	860-133533/9	
--	--	-----	--------	-----	----	--------------	--

Matrix: Water

Analyte

Analysis Batch: 133533

Client Sample ID: Method Blan	k
Prep Type: Total/N	Α

MDL	Unit	D	Prepared	Analyzed	Dil Fac
	mg/L		***************************************	12/04/23 12:50	1
	mg/L			12/04/23 12:50	1

Benzene ND 0.0010 0.0050 ND Carbon tetrachloride 12/04/23 12:50 0.0010 mg/L ND Chlorobenzene 12/04/23 12:50 mg/L 0.0010 Chloroform ND 1,2-Dichloroethane ND 0.0010 mg/L 12/04/23 12:50 0.0010 mg/L 12/04/23 12:50 ND 1,1-Dichloroethene 12/04/23 12:50 ND 0.050 mg/L 2-Butanone mg/L 12/04/23 12:50 Tetrachloroethene ND 0.0010 12/04/23 12:50 0.0050 mg/L Trichloroethene ND ND 0.0020 mg/L 12/04/23 12:50 Vinyl chloride

RL

MB MB

MB MB Result Qualifier

0	%Recovery		Limits	Prepared	Analyzed	Dil Fac
Surrogate 1,2-Dichloroethane-d4 (Surr)	104	- Qualifier	63 - 144		12/04/23 12:50	1
4-Bromofluorobenzene (Surr)	102		74 - 124		12/04/23 12:50	1
Dibromofluoromethane (Surr)	104		75 - 131		12/04/23 12:50	1
Toluene-d8 (Surr)	98		80 - 120		12/04/23 12:50	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Matrix: Water

Lab Sample ID: LCS 860-133533/3

Analysis Batch: 133533

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.0500	0.0496		mg/L		99	75 - 125	
Carbon tetrachloride	0.0500	0.0491		mg/L		98	70 - 130	
Chlorobenzene	0.0500	0.0473		mg/L		95	65 - 135	
Chloraform	0.0500	0.0537		mg/L		107	70 - 121	
1,2-Dichloroethane	0.0500	0.0524		mg/L		105	72 - 130	
1,1-Dichloroethene	0.0500	0.0488		mg/L		98	50 - 150	
2-Butanone	0.250	0.299		mg/L		120	60 - 140	
Tetrachloroethene	0.0500	0.0446		mg/L		89	71 - 125	
Trichloroethene	0.0500	0.0438		mg/L		88	75 - 135	
Vinyl chloride	0.0500	0.0453		mg/L		91	60 - 140	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	101	***************************************	63 - 144
4-Bromofluorobenzene (Surr)	104		74 - 124
Dibromofluoromethane (Surr)	106		75 - 131
Toluene-d8 (Surr)	99		80 - 120

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Water Analysis Batch: 133533

Lab Sample ID: LCSD 860-133533/4

•	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.0500	0.0510		mg/L		102	75 - 125	3	25
Carbon tetrachloride	0.0500	0.0537		mg/L		107	70 - 130	9	25
Chlorobenzene	0.0500	0.0488		mg/L		98	65 - 135	3	25
Chloroform	0.0500	0.0548		mg/L		110	70 - 121	2	25

Eurofins Houston

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62517-1

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 860-133533/4

Matrix: Water Analysis Batch: 133533

Analyte	Spike Added		LCSD Qualifier	Unit	_	*****	%Rec		RPD
1,2-Dichloroethane	0.0500		Qualifier			%Rec	Limits	RPD	Limit
1,1-Dichloroethene	Liverence	0.0532		mg/L		106	72 - 130	2	25
2-Butanone	0.0500	0.0529		mg/L		106	50 - 150	8	25
	0.250	0.326		mg/L		130			
Tetrachloroethene	0.0500	0.0513					60 - 140	8	25
Trichloraethene				mg/L		103	71 - 125	14	25
Vinyl chloride	0.0500	0.0467		mg/L		93	75 - 135	7	25
Viriyi Childride	0.0500	0.0492		mg/L		98	60 - 140	8	25
L	CSD LCSD							-	20

	LUSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	101		63 - 144
4-Bromofluorobenzene (Surr)	102		74 - 124
Dibromofluoromethane (Surr)	106		75 - 131
Toluene-d8 (Surr)	98		80 - 120
_			

LB LB

Lab Sample ID: LB 860-133351/1-A

Matrix: Water

Analysis Batch: 133533

Client Sample ID: Method Blank Prep Type: TCLP

Result	Qualifier	RL	MDI	Unit				
ND			MUL			Prepared	Analyzed	DII Fac
				mg/L			12/04/23 12:28	5
		0.025		mg/L			12/04/23 12:28	5
ND		0.0050		mg/L			12/04/23 12:28	5
ND		0.0050		ma/l			Control Control Control	
ND		0.0050		Lance CO. Chie				5
				A CONTRACTOR OF THE PARTY OF TH			12/04/23 12:28	5
		0.0050		mg/L			12/04/23 12:28	5
ND		0.25		mg/L			12/04/23 12:28	5
ND		0.0050		ma/I				_
ND		0.025					SENERAL SENERAL	5
				mg/L			12/04/23 12:28	5
ND		0.010		mg/L			12/04/23 12:28	5
	ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND 0.0050 ND 0.0050 ND 0.0050 ND 0.0050 ND 0.0050 ND 0.0050 ND 0.0050 ND 0.0050 ND 0.25 ND 0.0050 ND 0.0050	ND 0.0050 ND 0.0050 ND 0.0050 ND 0.0050 ND 0.0050 ND 0.0050 ND 0.0050 ND 0.0050 ND 0.0050 ND 0.25 ND 0.0050 ND 0.0050	ND 0.0050 mg/L ND 0.0050 mg/L ND 0.0050 mg/L ND 0.0050 mg/L ND 0.0050 mg/L ND 0.0050 mg/L ND 0.0050 mg/L ND 0.0050 mg/L ND 0.0050 mg/L ND 0.055 mg/L ND 0.055 mg/L ND 0.0550 mg/L	ND 0.0050 mg/L ND 0.0050 mg/L ND 0.0050 mg/L ND 0.0050 mg/L ND 0.0050 mg/L ND 0.0050 mg/L ND 0.0050 mg/L ND 0.0050 mg/L ND 0.0050 mg/L ND 0.0050 mg/L ND 0.0050 mg/L ND 0.0050 mg/L	ND	ND 0.0050 mg/L 12/04/23 12:28 ND 0.025 mg/L 12/04/23 12:28 ND 0.0050 mg/L 12/04/23 12:28 ND 0.0050 mg/L 12/04/23 12:28 ND 0.0050 mg/L 12/04/23 12:28 ND 0.0050 mg/L 12/04/23 12:28 ND 0.050 mg/L 12/04/23 12:28 ND 0.25 mg/L 12/04/23 12:28 ND 0.0050 mg/L 12/04/23 12:28 ND 0.025 mg/L 12/04/23 12:28 ND 0.025 mg/L 12/04/23 12:28

		Limite	~	
			Prepared Analyzed	Dil Fac
			12/04/23 12:20	3 5
		74 - 124	12/04/23 12:20	3 5
99		75 - 131	12/04/23 12:21	
97		80 - 120		
			12/04/23 12:20	5
	%Recovery 104 101 99	101 99	%Recovery Qualifier Limits 104 63 . 144 101 74 . 124 99 75 . 131	%Recovery Qualifier Limits Prepared Analyzed 104 63 - 144 12/04/23 12:28 101 74 - 124 12/04/23 12:28 99 75 - 131 12/04/23 12:28

Lab Sample ID: 860-62591-A-4-C MS

Matrix: Water

Analysis Batch: 133533

Client Sample ID: Matrix Spike Prep Type: TCLP

Acceptan	Sample	name of the second	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	ND		2.50	2.73		mg/L		109	66 - 142	
Carbon tetrachloride	ND		2.50	2.70		mg/L		108	62 - 125	
Chlorobenzene	ND		2.50	2.68		mg/L		107	60 - 133	
Chloroform	ND		2.50	2.90		mg/L		116	70 - 130	
1,2-Dichloroethane	ND		2.50	2.77		mg/L		111	68 - 127	
1,1-Dichloroethene	ND		2.50	2.61		mg/L		104	59 - 172	
2-Butanone	ND		12.5	15.5		mg/L		124	60 - 140	
Tetrachloroethene	ND		2.50	2.69		mg/L		108	71 - 125	

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62517-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 860-62591-A-4-C MS

Matrix: Water

Analysis Batch: 133533

Client Sample ID: Matrix Spike

Prep Type: TCLP

Spike MS MS Sample Sample %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Trichloroethene ND 2.50 2.41 mg/L 96 62 - 137 Vinyl chloride ND 2.50 2.19 mg/L 88 60 - 140

MS MS Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 102 63 - 144 4-Bromofluorobenzene (Surr) 103 74 - 124 Dibromofluoromethane (Surr) 105 75 - 131 Toluene-d8 (Surr) 99 80 - 120

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 860-133494/1-A

Matrix: Water

Analysis Batch: 133626

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 133494

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
1,4-Dichlorobenzene	ND		0.0050		mg/L	2000	12/04/23 06:37	12/04/23 20:20	1
2,4,5-Trichlorophenol	ND		0.0050		mg/L		12/04/23 06:37	12/04/23 20:20	1
2,4,6-Trichlorophenol	ND		0.0050		mg/L		12/04/23 06:37	12/04/23 20:20	1
2,4-Dinitrotoluene	ND		0.0050		mg/L		12/04/23 06:37	12/04/23 20:20	1
2-Methylphenol	ND		0.0050		mg/L		12/04/23 06:37	12/04/23 20:20	1
Hexachlorobenzene	ND		0.0050		mg/L		12/04/23 06:37	12/04/23 20:20	1
Hexachlorobutadiene	ND		0.0050		mg/L		12/04/23 06:37	12/04/23 20:20	1
Hexachloroethane	ND		0.0050		mg/L		12/04/23 06:37	12/04/23 20:20	1
Nitrobenzene	ND		0.0050		mg/L		12/04/23 06:37	12/04/23 20:20	1
Pentachlorophenol	ND		0.010		mg/L		12/04/23 06:37	12/04/23 20:20	1.
Pyridine	ND		0.010		mg/L		12/04/23 06:37	12/04/23 20:20	1
3 & 4 Methylphenol	ND		0.010		mg/L		12/04/23 06:37	12/04/23 20:20	1

	MD	IVID				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	58		31 - 132	12/04/23 06:37	12/04/23 20:20	
2-Fluorobiphenyl (Surr)	74		29 - 112	12/04/23 06:37	12/04/23 20:20	1
2-Fluorophenol (Surr)	38		21 - 114	12/04/23 06:37	12/04/23 20:20	1
Nitrobenzene-d5 (Surr)	76		26 - 110	12/04/23 06:37	12/04/23 20:20	1
p-Terphenyl-d14 (Surr)	120		20 - 141	12/04/23 06:37	12/04/23 20:20	1
Phenol-d5 (Surr)	22		16 - 117	12/04/23 06:37	12/04/23 20:20	1

Lab Sample ID: LCS 860-133494/2-A

Matrix: Water

Analysis Batch: 133626

Client Sample ID:	Lab Control Sample
	m

Prep Type: Total/NA Prep Batch: 133494

, , , , , , , , , , , , , , , , , , , ,					riep Dateil. 133434
	Spike	LCS LCS			%Rec
Analyte	Added	Result Qualifi	ier Unit	D %Rec	Limits
1,4-Dichlorobenzene	0.0400	0.0253	mg/L	63	37 - 111
2,4,5-Trichlorophenol	0.0400	0.0354	mg/L	89	39 - 125
2,4,6-Trichlorophenol	0.0400	0.0332	mg/L	83	42 - 125
2,4-Dinitrotoluene	0.0400	0.0379	mg/L	95	41 - 128
2-Methylphenol	0.0400	0.0241	mg/L	60	36 - 105
Hexachlorobenzene	0.0400	0.0406	mg/L	101	39 - 128

Project/Site: Waller, City of

Job ID: 860-62517-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab	Sampl	le ID:	LCS	860-133494/2-A	
	and the second				

Matrix: Water

Analysis Batch: 133626

Client	Sample	ID:	Lab	Control	Sample

Prep Type: Total/NA

6

Prep Batch: 133494

Analyte		Spike		LCS .				%Rec	m: 133494
		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Hexachlorobutadiene		0.0400	0.0268		mg/L		67	31 - 120	
Hexachloroethane		0.0400	0.0244		mg/L		61	37 - 109	
Nitrobenzene		0.0400	0.0305		mg/L		76	37 - 114	
Pentachlorophenol		0.0400	0.0281		mg/L		70	10 - 137	
Pyridine		0.0400	0.00717	J	mg/L		18	5 - 130	
3 & 4 Methylphenol		0.0400	0.0213		mg/L		53	35 - 116	
	LCS LCS								

Surrogate `	%Recovery	Limits
2,4,6-Tribromophenol (Surr)	99	 31 - 132
2-Fluorobiphenyl (Surr)	77	29 - 112
2-Fluorophenol (Surr)	43	21 - 114
Nitrobenzene-d5 (Surr)	77	26 - 110
p-Terphenyl-d14 (Surr)	114	20 - 141
Phenol-d5 (Surr)	31	16 - 117

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 133494

Matrix: Water

Lab Sample ID: LCSD 860-133494/3-A

Analysis Batch: 133626

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,4-Dichlorobenzene	0.0400	0.0289	-	mg/L		72	37 - 111	13	30
2,4.5-Trichlorophenol	0.0400	0.0383		mg/L		96	39 - 125	8	30
2,4,6-Trichlorophenol	0.0400	0.0367		mg/L		92	42 - 125	10	30
2,4-Dinitrotoluene	0.0400	0.0374		mg/L		94	41 - 128	1	30
2-Methylphenol	0.0400	0.0274		mg/L		69	36 - 105	13	30
Hexachlorobenzene	0.0400	0.0410		mg/L		102	39 - 128	1	30
Hexachlorobutadiene	0.0400	0.0319		mg/L		80	31 - 120	17	30
Hexachloroethane	0.0400	0.0288		mg/L		72	37 - 109	16	30
Nitrobenzene	0.0400	0.0358		mg/L		90	37 - 114	16	30
Pentachlorophenol	0.0400	0.0284		mg/L		71	10 - 137	1	40
Pyridine	0.0400	0.0103		mg/L		26	5 - 130	36	50
3 & 4 Methylphenol	0.0400	0.0246		mg/L		61	35 - 116	14	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
2.4,6-Tribromophenol (Surr)	99		31 - 132
2-Fluorobiphenyl (Surr)	85		29 - 112
2-Fluorophenol (Surr)	47		21 - 114
Nitrobenzene-d5 (Surr)	85		26 - 110
p-Terphenyl-d14 (Surr)	109		20 - 141
Phenol-d5 (Surr)	34		16 - 117

Client Sample ID: Method Blank

Prep Type: TCLP Prep Batch: 133494

Lab Sample ID: LB 860-133362/1-C

Matrix: Water

Analysis Batch: 133626

LB LB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND		0.025		mg/L		12/04/23 06:37	12/04/23 20:45	1
2,4,5-Trichlorophenol	ND		0.025		mg/L		12/04/23 06:37	12/04/23 20:45	1

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62517-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LB 860-133362/1-C

Matrix: Water

Analysis Batch: 133626

Prep Type: TCLP

Prep Batch: 133494

	LB	LB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,6-Trichlorophenol	ND	3-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	0.025		mg/L		12/04/23 06:37	12/04/23 20:45	1
2,4-Dinitrotoluene	ND		0.025		mg/L		12/04/23 06:37	12/04/23 20:45	1
2-Methylphenal	ND		0.025		mg/L		12/04/23 06:37	12/04/23 20:45	1
Hexachlorobenzene	ND		0.025		mg/L		12/04/23 06:37	12/04/23 20:45	1
Hexachlorobutadiene	ND		0.025		mg/L		12/04/23 06:37	12/04/23 20:45	1
Hexachloroethane	ND		0.025		mg/L		12/04/23 06:37	12/04/23 20:45	1
Nitrobenzene	ND		0.025		mg/L		12/04/23 06:37	12/04/23 20:45	1
Pentachlorophenol	ND		0.050		mg/L		12/04/23 06:37	12/04/23 20:45	1
Pyridine	ND		0.050		mg/L		12/04/23 06:37	12/04/23 20:45	1
3 & 4 Methylphenol	ND		0.050		mg/L		12/04/23 06:37	12/04/23 20:45	1

	LD	LD				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	57		31 - 132	12/04/23 06:37	12/04/23 20:45	1
2-Fluorobiphenyl (Surr)	60		29 - 112	12/04/23 06:37	12/04/23 20:45	1
2-Fluorophenol (Surr)	50		21 - 114	12/04/23 06:37	12/04/23 20:45	1
Nitrobenzene-d5 (Surr)	66		26 - 110	12/04/23 06:37	12/04/23 20:45	1
p-Terphenyl-d14 (Surr)	117		20 - 141	12/04/23 06:37	12/04/23 20:45	1
Phenol-d5 (Surr)	34		16 - 117	12/04/23 06:37	12/04/23 20:45	1

Lab Sample ID: 860-62567-A-1-F MS

Matrix: Water

Analysis Batch: 133626

Client Sample ID: Matrix Spike

Prep Type: TCLP

Prep Batch: 133494

Amaryone batem receze	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dichlorobenzene	ND		0.200	ND		mg/L		50	37 - 111	·
2,4,5-Trichlorophenol	ND		0.200	ND		mg/L		48	39 - 125	
2,4,6-Trichlorophenol	ND		0.200	ND		mg/L		48	42 - 125	
2,4-Dinitrotoluene	ND		0.200	0.138		mg/L		69	41 - 128	
2-Methylphenal	ND		0.200	ND		mg/L		46	36 - 105	
Hexachlorobenzene	ND		0.200	0.148		mg/L		74	39 - 128	
Hexachlorobutadiene	ND		0.200	ND		mg/L		53	31 - 120	
Hexachloroethane	ND		0.200	0.147		mg/L		73	37 - 109	
Nitrobenzene	ND		0.200	ND		mg/L		57	37 - 114	
Pentachlorophenol	ND		0.200	ND		mg/L		56	10 - 137	
Pyridine	ND		0.200	ND		mg/L		10	5 - 135	
3 & 4 Methylphenol	ND		0.200	ND		mg/L		49	35 - 116	

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	74		31 - 132
2-Fluorobiphenyl (Surr)	62		29 - 112
2-Fluorophenol (Surr)	46		21 - 114
Nitrobenzene-d5 (Surr)	56		26 - 110
p-Terphenyl-d14 (Surr)	89		20 - 141
Phenol-d5 (Surr)	40		16 - 117

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62517-1

Method: 8081B - Organochlorine Pesticides (GC)

Lab	Sample	ID:	MB	860-133535/1-A

Matrix: Water

Analysis Batch: 133580

Client	Sample ID: Method Blank
	Pron Type: Tetalina

Prep Type: Total/NA Prep Batch: 133535

***	MB	MB						riep baten:	133335
Analyte	Result	Qualifier	RL	MDL	Unit	D	D	8 5	
Chlorodane	ND		0.0010		200 200		Prepared	Analyzed	DII Fac
Endrin	ND				mg/L		12/04/23 08:52	12/04/23 13:37	1
Heptachlor	ND		0.000051		mg/L		12/04/23 08:52	12/04/23 13:37	
X 1975	ND		0.000051		mg/L		12/04/23 08:52		
Heptachlor epoxide	ND		0.000051		mg/L		The Laboratory and the Control of th	12/04/23 13:37	1
gamma-BHC (Lindane)	ND				15,		12/04/23 08:52	12/04/23 13:37	1
Methoxychlor			0.000051		mg/L		12/04/23 08:52	12/04/23 13:37	1
	ND		0.000051		mg/L		12/04/23 08:52	12/04/23 13:37	1.97
Toxaphene	ND		0.0010		mg/L			SHELL MODERN STREET	
			217.21.24		mg/L		12/04/23 08:52	12/04/23 13:37	1
	MB	MB							

Surrogate	%Recovery	Qualifier	Limits	
DCB Decachlorobiphenyl (Surr)	67			Prepared
	07		28 - 94	12/04/23 08:52
Tetrachioro-m-xylene	101		52 - 134	12/04/23 08:52

Client Sample ID: Lab Control Sample

Analyzed

12/04/23 13:37

12/04/23 13:37

Prep Type: Total/NA Prep Batch: 133535

Dil Fac

Lab Sample ID: LCS 860-133535/2-A Matrix: Water

Analysis Batch: 133580

Analyte	Spike	LCS	LCS				%Rec	cn: 13353
	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Endrin	0.00129	0.000989		mg/L		77	55 - 102	
Heptachlor	0.00129	0.000718		mg/L		56	55 - 106	
Heptachlor epoxide	0.00129	0.00100		mg/L		78	56 - 109	
gamma-BHC (Lindane)	0.00129	0.000987		mg/L		77	59 - 107	
Methoxychlor	0.00129	0.000852		mg/L		66	53 - 102	

LCS LCS Surrogate %Recovery Qualifier Limits DCB Decachlorobiphenyl (Surr) 33 28 - 94 Tetrachloro-m-xylene 60 52 - 134

Lab Sample ID: LCSD 860-133535/3-A

Matrix: Water

Analysis Batch: 133580

Client Sample	ID: Lab	Control	Sample Dup
---------------	---------	---------	------------

Prep Type: Total/NA

Prep Batch: 133535

		0100000000					i i op i	Jucon, I	00000
Analyte	Spike	LCSD	LCSD				%Rec		RPD
	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Endrin	0.00131	0.000972		mg/L		74	55 - 102	2	25
Heptachlor	0.00131	0.000716		mg/L		55	55 - 106	0	25
Heptachlor epoxide	0.00131	0.000981		mg/L		75	56 - 109	2	25
gamma-BHC (Lindane)	0.00131	0.000969		mg/L		74	59 - 107	2	25
Methoxychlor	0.00131	0.000849		mg/L		65	53 - 102	0	25

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl (Surr)	30		28.94
Tetrachloro-m-xylene	57		52 - 134

Lab Sample ID: LB 860-133362/1-E

Matrix: Water

Analysis Batch: 133580

Client Sample ID: Method Blank

Prep Type: TCLP

Prep Batch: 133535

	LD	LB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlorodane	110							Analyzou	Direc
Gillorodarte	ND		0.0010		mg/L		12/04/23 08:52	12/04/23 14:33	1

Job ID: 860-62517-1

Project/Site: Waller, City of

Method: 8081B - Organochlorine Pesticides	(GC)	(Continued)
---	------	-------------

Lab Sample ID: LB 860-133362/1-E Matrix: Water Analysis Batch: 133580		LB					Client Sa	mple ID: Metho Prep Typ Prep Batch:	e: TCLP
A second			71	*****		120		The second	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Endrin	ND		0.000051		mg/L		12/04/23 08:52	12/04/23 14:33	1
Heptachlor	ND		0.000051		mg/L		12/04/23 08:52	12/04/23 14:33	1
Heptachlor epoxide	ND		0.000051		mg/L		12/04/23 08:52	12/04/23 14:33	1
gamma-BHC (Lindane)	ND		0.000051		mg/L		12/04/23 08:52	12/04/23 14:33	- 1
Methoxychlor	ND		0.000051		mg/L		12/04/23 08:52	12/04/23 14:33	1
Toxaphene	ND		0.0010		mg/L		12/04/23 08:52	12/04/23 14:33	1

LB LB

81

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	55		28 - 94	12/04/23 08:52	12/04/23 14:33	1
Tetrachloro-m-xylene	85		52 - 134	12/04/23 08:52	12/04/23 14:33	1

Method: 8151A - Herbicides (GC)

Lab Sample ID: MB 860-133829/1-A							Client Sa	mple ID: Metho	d Blank
Matrix: Water								Prep Type: 1	
Analysis Batch: 133924								Prep Batch:	
	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	ND		0.00020		mg/L		12/05/23 14:31	12/06/23 11:48	1
2,4,5-TP (Silvex)	ND		0.00020		mg/L		12/05/23 14:31	12/06/23 11:48	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	74		42 - 150				12/05/23 14:31	12/06/23 11:48	1

2,4-Dichlorophenylacetic acid

Lab Sample ID: LCSD 860-133	829/3 - A					Clie	nt Sam	ple ID:	Lab Contro	I Sampl	e Dup
Matrix: Water									Prep 7	ype: To	tal/NA
Analysis Batch: 133924									Prep I	Batch: 1	33829
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,4-D	-		0.00201	0.00109		mg/L		54	45 - 124	7	25
2,4,5-TP (Silvex)			0.00201	0.00129		mg/L		64	45 - 124	10	25
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
2,4-Dichlorophenylacetic acid	62		42 - 150								

Lab Sample ID: MB 860-133832/1	-A						Client Sa	mple ID: Metho	d Blank
Matrix: Water								Prep Type:	Total/NA
Analysis Batch: 134118								Prep Batch	133832
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	ND		0.00020		mg/L		12/05/23 14:58	12/07/23 10:55	1
2,4,5-TP (Silvex)	ND		0.00020		mg/L		12/05/23 14:58	12/07/23 10:55	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

42 - 150

Eurofins Houston

12/07/23 10:55

12/05/23 14:58

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62517-1

TANKS THE TOTAL				
Method:	8151A	 Herbicides 	(GC)	(Continued)

Lab Sample ID: LCS 860-133832/2-A Matrix: Water

Lab Sample ID: LCSD 860-133832/3-A

Matrix: Water

Analysis Batch: 134118

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Pren Batch: 133832

5

8

9.77		Spike	LCS	LCS				%Rec	icn: 133
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,4-D		0.00200	0.00144		mg/L		72	45 - 124	
2.4,5-TP (Silvex)		0.00200	0.00184		mg/L		92	45 - 124	
	Was ves								

LCS LCS

Surrogate %Recovery Qualifier Limits 2,4-Dichlorophenylacetic acid 102 42 - 150

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 134118 Prep Batch: 133832 Spike LCSD LCSD

%Rec RPD Analyte Added Result Qualifier Unit %Rec Limits RPD Limit 2,4-D 0.00202 0.00144 mg/L 45 - 124 25 2,4,5-TP (Silvex) 0.00202 0.00184 mg/L 91 45 - 124 0 25

LCSD LCSD

Surrogate %Recovery Qualifier Limits 2,4-Dichlorophenylacetic acid 99 42 - 150

Lab Sample ID: LB 860-133362/1-F

Matrix: Water

Analysis Batch: 133924

Client Sample ID: Method Blank

Prep Type: TCLP

Prep Batch: 133495

	LB	LB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
2,4-D	ND		0.00020		mg/L		12/04/23 13:07	12/06/23 13:34	1
2,4,5-TP (Silvex)	ND		0.00020		mg/L		12/04/23 13:07	12/06/23 13:34	1
	LB	LB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	71		42 - 150				12/04/23 13:07	12/06/23 13:34	1

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 860-133556/1-A

Matrix: Water

Analysis Batch: 134049

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 133556

							10000	
esult Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
ND	0.010		mg/L		12/04/23 10:00	12/05/23 21:02	1	
ND	0.010		mg/L		12/04/23 10:00	12/05/23 21:02	1	
ND	0,0050		mg/L		12/04/23 10:00	12/05/23 21:02	1	
ND	0.010		mg/L		12/04/23 10:00	12/05/23 21:02	1	
ND	0.010		mg/L		12/04/23 10:00	12/05/23 21:02	1	
ND	0.010		mg/L		12/04/23 10:00	12/05/23 21:02	1	
ND	0.030		mg/L		12/04/23 10:00	12/05/23 21:02	1	
ND	0.020		mg/L		12/04/23 10:00	12/05/23 21:02	1	
ND	0.0040		mg/L		12/04/23 10:00	12/05/23 21:02	1	
ND	0.020		mg/L		12/04/23 10:00	12/05/23 21:02	1	
3	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 0.010 ND 0.010 ND 0.0050 ND 0.010 ND 0.010 ND 0.010 ND 0.010 ND 0.020 ND 0.0040	ND 0.010 ND 0.010 ND 0.0050 ND 0.010 ND 0.010 ND 0.010 ND 0.010 ND 0.030 ND 0.020 ND 0.0040	ND 0.010 mg/L ND 0.010 mg/L ND 0.050 mg/L ND 0.010 mg/L ND 0.010 mg/L ND 0.010 mg/L ND 0.030 mg/L ND 0.020 mg/L ND 0.0040 mg/L	ND 0.010 mg/L ND 0.010 mg/L ND 0.0050 mg/L ND 0.010 mg/L ND 0.010 mg/L ND 0.010 mg/L ND 0.030 mg/L ND 0.020 mg/L ND 0.0040 mg/L	ND 0.010 mg/L 12/04/23 10:00 ND 0.010 mg/L 12/04/23 10:00 ND 0.0050 mg/L 12/04/23 10:00 ND 0.010 mg/L 12/04/23 10:00 ND 0.010 mg/L 12/04/23 10:00 ND 0.010 mg/L 12/04/23 10:00 ND 0.030 mg/L 12/04/23 10:00 ND 0.020 mg/L 12/04/23 10:00 ND 0.0040 mg/L 12/04/23 10:00	ND 0.010 mg/L 12/04/23 10:00 12/05/23 21:02 ND 0.010 mg/L 12/04/23 10:00 12/05/23 21:02 ND 0.0050 mg/L 12/04/23 10:00 12/05/23 21:02 ND 0.010 mg/L 12/04/23 10:00 12/05/23 21:02 ND 0.010 mg/L 12/04/23 10:00 12/05/23 21:02 ND 0.010 mg/L 12/04/23 10:00 12/05/23 21:02 ND 0.010 mg/L 12/04/23 10:00 12/05/23 21:02 ND 0.030 mg/L 12/04/23 10:00 12/05/23 21:02 ND 0.020 mg/L 12/04/23 10:00 12/05/23 21:02 ND 0.020 mg/L 12/04/23 10:00 12/05/23 21:02 ND 0.0040 mg/L 12/04/23 10:00 12/05/23 21:02	

Client: Eastex Environmental Laboratory Inc.

Job ID: 860-62517-1

Project/Site: Waller, City of

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: LCS 860-133556/2-A Matrix: Water Analysis Batch: 134049			Client Sample ID: Lab Control Sample ID: Prep Type: Tota Prep Batch: 13				
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	1.00	0.961		mg/L		96	80 - 120
Barium	1.00	0.950		mg/L		95	80 - 120
Cadmium	1.00	0.944		mg/L		94	80 - 120

Alsenic	1.00	0.501	mg/L	30	00 - 120	
Barium	1.00	0.950	mg/L	95	80 - 120	
Cadmium	1.00	0.944	mg/L	94	80 - 120	
Chromium	1.00	0.969	mg/L	97	80 - 120	
Lead	1.00	0.977	mg/L	98	80 - 120	
Nickel	1.00	0.969	mg/L	97	80 - 120	
Selenium	1.00	0.965	mg/L	97	80 - 120	
Silver	0.500	0.484	mg/L	97	80 - 120	
Beryllium	1.00	0.929	mg/L	93	80 - 120	
Antimony	1.00	0.917	mg/L	92	80 - 120	

Lab Sample ID: LCSD 860-133556/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Water Prep Type: Total/NA
Analysis Batch: 134049 Prep Batch: 133556

Allalysis Datell. 154645							riep baten.		100000	
	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Arsenic	1.00	0.944	*******	mg/L		94	80 - 120	2	20	
Barium	1.00	0.933		mg/L		93	80 - 120	2	20	
Cadmium	1.00	0.924		mg/L		92	80 - 120	2	20	
Chromium	1.00	0.950		mg/L		95	80 - 120	2	20	
Lead	1.00	0,959		mg/L		96	80 - 120	2	20	
Nickel	1.00	0.951		mg/L		95	80 - 120	2	20	
Selenium	1.00	0.937		mg/L		94	80 - 120	3	20	
Silver	0.500	0.475		mg/L		95	80 - 120	2	20	
Beryllium	1.00	0.911		mg/L		91	80 - 120	2	20	
Antimony	1.00	0.928		mg/L		93	80 - 120	1	20	

Lab Sample ID: 560-114411-J-1-A MSD

Client Sample ID: Matrix Spike Duplicate

Matrix: Water

Prep Type: Total/NA

Matrix: Water Prep Type: Total/NA
Analysis Batch: 134049 Prep Batch: 133556

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	ND		1.00	1.06		mg/L		106	75 - 125	1	20
Barium	0.52		1.00	1.49		mg/L		97	75 - 125	0	20
Cadmium	ND		1.00	1.02		mg/L		102	75 - 125	0	20
Chromium	ND		1.00	1.01		mg/L		101	75 - 125	0	20
Lead	ND		1.00	1.00		mg/L		100	75 - 125	0	20
Nickel	ND		1.00	1.01		mg/L		101	75 - 125	0	20
Selenium	0.060		1.00	1.12		mg/L		106	75 - 125	3	20
Silver	ND		0.500	0.544		mg/L		109	75 - 125	1	20
Beryllium	ND		1.00	0.991		mg/L		99	75 - 125	1	20
Antimony	ND		1.00	1.04		mg/L		102	75 - 125	0	20

Lab Sample ID: LB 860-133362/1-D Client Sample ID: Method Blank

Matrix: Water Prep Type: TCLP
Analysis Batch: 134055 Prep Batch: 133556

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Arsenic
 ND
 0.050
 mg/L
 12/04/23 10:00
 12/06/23 10:51
 1

Eurofins Houston

5

3

4

6 7

8

10

12

14

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62517-1

Method:	6010D	- Metals	(ICP)	(Continued
			(101)	(Commune)

Lab	Sample	ID:	LB	860-133362/1-D

Matrix: Water

Analysis Batch: 134055

Client	Sample	ID:	Method	Blank	
		_			

Prep Type: TCLP

Prep Batch: 133556

	LB L	_B						. rop Buten.	100000
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyses	
Barium	ND		0.050		mg/L	— ·	12/04/23 10:00	Analyzed	Dil Fac
Cadmium	ND				10000000		ACCESS TO A SECURITION OF THE	12/06/23 10:51	1
Chromium			0.025		mg/L		12/04/23 10:00	12/06/23 10:51	1
	ND		0.050		mg/L		12/04/23 10:00	12/06/23 10:51	4
Lead	ND		0.050		mg/L		12/04/23 10:00		1
Nickel	ND						ANNUAL TO SECOND	12/06/23 10:51	1
			0.050		mg/L		12/04/23 10:00	12/06/23 10:51	1
Selenium	ND		0.15		mg/L		12/04/23 10:00	12/06/23 10:51	
Silver	ND		0.10		mg/L				
Beryllium	NG						12/04/23 10:00	12/06/23 10:51	1
and the same of th	ND		0.020		mg/L		12/04/23 10:00	12/06/23 10:51	1
_Antimony	ND		0.10		mg/L		12/04/23 10:00	12/06/23 10:51	4

Lab Sample ID: 860-62567-A-1-H MS

Matrix: Water

Analysis Batch: 134055

Client Sample ID: Matrix Spi	ke
------------------------------	----

Prep Type: TCLP

	Sample	Sample	Spike	MS	MS				Prep Batch: 1335:
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	ND		1.00	0.995	-	mg/L		100	75 - 125
Barlum	1.4		1.00	2.38		mg/L		94	75 - 125
Cadmium	ND		1.00	1.02		mg/L		102	75 - 125
Chromium	ND		1.00	1.01		mg/L		101	75 - 125
Lead	ND		1.00	1.05		mg/L		105	75 - 125
Nickel	ND		1.00	1.05		mg/L		105	75 - 125
Selenium	ND		1.00	0.965		mg/L		97	75 - 125
Silver	ND		0.500	0.515		mg/L		103	75 - 125
Beryllium	ND		1.00	1.03		mg/L		103	75 - 125
Antimony	ND		1.00	0.995		mg/L		100	75 - 125

Method: 7470A - Mercury (CVAA)

I als Camerl	ID: MB 860-13348	
Lan Samni	111. MR XPU-13373	CULT IN _ A

Matrix: Water

Analysis Batch: 133676

Clions	Cample	In.	Method Blank	
CHEIL	Samble	11.7	Methou Riank	

Prep Type: Total/NA Prep Batch: 133489

	100000								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
Mercury	ND		0.00020		mg/L		12/03/23 21:45	12/04/23 16:25	1

Lab Sample ID: LCS 860-133489/11-A

Matrix: Water

Analysis Batch: 133676

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 133489

Spike LCS LCS Analyte Added Result Qualifier Unit %Rec Limits Mercury 0.00200 0.00185 mg/L 80 - 120

MR MR

Lab Sample ID: LCSD 860-133489/12-A

Matrix: Water

Analysis Batch: 133676

Client	Sample	ID:	Lab	Control	Sample	Dup
				See the second second section 1		

Prep Type: Total/NA

Prep Batch: 133489 %Rec RPD

Spike LCSD LCSD Analyte Added Result Qualifier Unit %Rec Limits Limit Mercury 0.00200 0.00187 mg/L

Project/Site: Waller, City of

Method: 7470A - Mercury (CVAA) (Continued)

Lab Sample ID: LB 860-133184/1-F

Matrix: Water

LB LB

Analysis Batch: 133676

Client Sample ID: Method Blank Prep Type: TCLP

Client Sample ID: Method Blank

Prep Batch: 133489

Prep Type: TCLP

Prep Batch: 133489

Prep Batch: 133489

Analyte Result Qualifier RL MDL Unit DII Fac Analyzed Mercury ND 0.00020 mg/L 12/03/23 21:45 12/04/23 16:29

Lab Sample ID: LB 860-133362/1-B

Matrix: Water

Analyte

Mercury

Analysis Batch: 133676

LB LB

ND

Result Qualifier RL 0.00020

MDL Unit

mg/L

Prepared 12/03/23 21:45

%Rec

Analyzed 12/04/23 16:56 8

5

Lab Sample ID: 860-62417-B-1-J MS Client Sample ID: Matrix Spike Matrix: Water Prep Type: TCLP

Matrix: Water

Mercury

Analysis Batch: 133676

Analysis Batch: 133676

Sample Sample Analyte Mercury

Lab Sample ID: 860-62417-B-1-K MSD

ND

Result Qualifier

Sample

Result

ND

Sample

Qualifier

Added 0.00200

Spike

Spike

Added

0.00200

Result Qualifier 0.00217

> MSD MSD

Result

0.00199

MS MS

Qualifier

Unit

mg/L

Unit %Rec mg/L

Limits 109 75 - 125

%Rec

Client Sample ID: Matrix Spike Duplicate Prep Type: TCLP

Prep Batch: 133489 %Rec RPD Limit Limits RPD 75 - 125 9 20

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62517-1

C	0	BAC	VO	
u	01	IVI	vu	1

Leach	Batch:	133351
-------	--------	--------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	
860-62517-1	Waller Digester c Digester	TCLP	Water	1311	Prep Batch
LB 860-133351/1-A	Method Blank	TCLP	Water	1311	
860-62591-A-4-C MS	Matrix Spike	TCLP	Water	1311	

Analysis Batch: 133533

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	
860-62517-1	Waller Digester c Digester	TCLP	Water	8260C	Prep Batch
LB 860-133351/1-A	Method Blank	TCLP	Water		133351
MB 860-133533/9	Method Blank	Total/NA	Water	8260C	133351
LCS 860-133533/3	Lab Control Sample	Total/NA	Water	8260C	
LCSD 860-133533/4	Lab Control Sample Dup	Total/NA		8260C	
860-62591-A-4-C MS			Water	8260C	
300-02391-A-4-C MS	Matrix Spike	TCLP	Water	8260C	133351

GC/MS Semi VOA

Leach Batch: 133362

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Desc Batch
860-62517-1	Waller Digester c Digester	TCLP	Water	1311	Prep Batch
LB 860-133362/1-C	Method Blank	TCLP	Water	1311	
860-62567-A-1-F MS	Matrix Spike	TCLP	Water	1311	

Prep Batch: 133494

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-62517-1	Waller Digester c Digester	TCLP	Water	3510C	133362
LB 860-133362/1-C	Method Blank	TCLP	Water	3510C	133362
MB 860-133494/1-A	Method Blank	Total/NA	Water	3510C	133302
LCS 860-133494/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 860-133494/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	
860-62567-A-1-F MS	Matrix Spike	TCLP	Water	3510C	133362

Analysis Batch: 133584

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
860-62517-1	Waller Digester c Digester	TCLP	Water	8270D	133494

Analysis Batch: 133626

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LB 860-133362/1-C	Method Blank	TCLP	Water	8270D	133494
MB 860-133494/1-A	Method Blank	Total/NA	Water	8270D	133494
LCS 860-133494/2-A	Lab Control Sample	Total/NA	Water	8270D	133494
LCSD 860-133494/3-A	Lab Control Sample Dup	Total/NA	Water	8270D	133494
860-62567-A-1-F MS	Matrix Spike	TCLP	Water	8270D	133494

GC Semi VOA

Leach Batch: 133362

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-62517-1 - DL	Waller Digester c Digester	TCLP	Water	1311	_
860-62517-1	Waller Digester c Digester	TCLP	Water	1311	
LB 860-133362/1-E	Method Blank	TCLP .	Water	1311	
LB 860-133362/1-F	Method Blank	TCLP	Water	1311	

Eurofins Houston

2

5

7

9

10

12

14

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62517-1

SC Semi VOA					
rep Batch: 133495					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LB 860-133362/1-F	Method Blank	TCLP	Water	3511	133362
rep Batch: 133535					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-62517-1 - DL	Waller Digester c Digester	TCLP	Water	3511	133362
LB 860-133362/1-E	Method Blank	TCLP	Water	3511	13336
MB 860-133535/1-A	Method Blank	Total/NA	Water	3511	
LCS 860-133535/2-A	Lab Control Sample	Total/NA	Water	3511	
LCSD 860-133535/3-A	Lab Control Sample Dup	Total/NA	Water	3511	
nalysis Batch: 133580)				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
LB 860-133362/1-E	Method Blank	TCLP	Water	8081B	133535
MB 860-133535/1-A	Method Blank	Total/NA	Water	8081B	133535
LCS 860-133535/2-A	Lab Control Sample	Total/NA	Water	8081B	133535
LCSD 860-133535/3-A	Lab Control Sample Dup	Total/NA	Water	8081B	133535
Analysis Batch: 133720	0				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-62517-1 - DL	Waller Digester c Digester	TCLP	Water	8081B	13353
Prep Batch: 133829					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
MB 860-133829/1-A	Method Blank	Total/NA	Water	3511	
LCSD 860-133829/3-A	Lab Control Sample Dup	Total/NA	Water	3511	
Prep Batch: 133832					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
860-62517-1	Waller Digester c Digester	TCLP	Water	3511	13336
MB 860-133832/1-A	Method Blank	Total/NA	Water	3511	
LCS 860-133832/2-A	Lab Control Sample	Total/NA	Water	3511	
LCSD 860-133832/3-A	Lab Control Sample Dup	Total/NA	Water	3511	
Analysis Batch: 13392	4				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
LB 860-133362/1-F	Method Blank	TCLP	Water	8151A	13349
MB 860-133829/1-A	Method Blank	Total/NA	Water	8151A	13382
LCSD 860-133829/3-A	Lab Control Sample Dup	Total/NA	Water	8151A	13382
Analysis Batch: 13411	8				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bato
860-62517-1	Waller Digester c Digester	TCLP	Water	8151A	13383
MB 860-133832/1-A	Method Blank	Total/NA	Water	8151A	13383
LCS 860-133832/2-A	Lab Control Sample	Total/NA	Water	8151A	13383
LCSD 860-133832/3-A	Lab Control Sample Dup	Total/NA	Water	8151A	13383
Metals					
Leach Batch: 133184					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bato
LB 860-133184/1-F	Method Blank	TCLP	Water	1311	

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62517-1

Metals (Continued	i)				
Leach Batch: 133184	(Continued)				
Lab Sample ID	Client Sample ID				
860-62417-B-1-J MS	Matrix Spike	Prep Type TCLP	Matrix	Method	Prep Batch
860-62417-B-1-K MSD	Matrix Spike Duplicate		Water	1311	
– Leach Batch: 133362	Daphodic	TCLP	Water	1311	
Lab Sample ID	Su-15 - 15				
860-62517-1	Waller Digester c Digester	Prep Type	Matrix	Method	Prep Batch
LB 860-133362/1-B	Method Blank	TCLP	Water	1311	
LB 860-133362/1-D	Method Blank	TCLP	Water	1311	
860-62567-A-1-H MS	Matrix Spike	TCLP	Water	1311	
	машх эрке	TCLP	Water	1311	
Prep Batch: 133489					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	B
860-62517-1	Waller Digester c Digester	TCLP	Water	7470A	Prep Batch 133362
LB 860-133184/1-F	Method Blank	TCLP	Water	7470A	133184
LB 860-133362/1-B	Method Blank	TCLP	Water	7470A	133362
MB 860-133489/10-A	Method Blank	Total/NA	Water	7470A	133362
LCS 860-133489/11-A	Lab Control Sample	Total/NA	Water	7470A	
LCSD 860-133489/12-A	Lab Control Sample Dup	Total/NA	Water	7470A	
860-62417-B-1-J MS	Matrix Spike	TCLP	Water	7470A	133184
860-62417-B-1-K MSD	Matrix Spike Duplicate	TCLP	Water	7470A	133184
ab Sample ID 360-62517-1	Client Sample ID Waller Digester c Digester	Prep Type TCLP	Matrix	Method	Prep Batch
_B 860-133362/1-D	Method Blank		Water	3010A	133362
MB 860-133556/1-A	Method Blank	TCLP	Water	3010A	133362
CS 860-133556/2-A	Lab Control Sample	Total/NA	Water	3010A	
.CSD 860-133556/3-A	Lab Control Sample Dup	Total/NA	Water	3010A	
60-114411-J-1-A MSD	Matrix Spike Duplicate	Total/NA	Water	3010A	
860-62567-A-1-H MS	Matrix Spike	Total/NA TCLP	Water	3010A 3010A	
nalysis Batch: 133676	117		· · ·	3010A	133362
Lab Sample ID	Client Sample ID	Bron Tuno	Manage	G2	
860-62517-1	Waller Digester c Digester	Prep Type TCLP	Matrix Water	Method 7470A	Prep Batch
B 860-133184/1-F	Method Blank	TCLP	Water		133489
B 860-133362/1-B	Method Blank	TCLP	Water	7470A	133489
//B 860-133489/10-A	Method Blank	Total/NA	Water	7470A	133489
CS 860-133489/11-A	Lab Control Sample	Total/NA	Water	7470A	133489
CSD 860-133489/12-A	Lab Control Sample Dup	Total/NA	Water	7470A	133489
60-62417-B-1-J MS	Matrix Spike	TCLP		7470A	133489
60-62417-B-1-K MSD	Matrix Spike Duplicate	TCLP	Water	7470A	133489
alysis Batch: 134049		, olf	Water	7470A	133489
ab Sample ID					
1B 860-133556/1-A	Client Sample ID Method Blank	Prep Type	Matrix	Method	Prep Batch
		Total/NA	Water	6010D	133556
CS 860-133556/2-A			Mater	60100	400000
	Lab Control Sample	Total/NA	Water	6010D	133556
CS 860-133556/2-A CSD 860-133556/3-A 60-114411-J-1-A MSD	Lab Control Sample Dup Matrix Spike Duplicate	Total/NA Total/NA	Water Water	6010D 6010D	133556

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62517-1

Metals

Analysis Batch: 134055

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-62517-1	Waller Digester c Digester	TCLP	Water	6010D	133556
LB 860-133362/1-D	Method Blank	TCLP	Water	6010D	133556
860-62567-A-1-H MS	Matrix Spike	TCLP	Water	6010D	133556

0-62517-1

3

4

5

6

7

9

10

12

14

Lab Chronicle

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62517-1

Client Sample ID: Waller Digester c Digester

Date Collected: 11/28/23 13:25 Date Received: 11/30/23 09:58 Lab Sample ID: 860-62517-1

Matrix: Water

Ргер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed		
TCLP	Leach	1311			1.0 g	1.0 mL	133351	12/01/23 14:00	Analyst JCM	Lab
					11.8- 💌	V6-028118411 72	Completed:	12/02/23 06:00 1	JCIVI	EET HOU
TCLP	Analysis	8260C		50	5 mL	5 mL	133533	12/04/23 15:13	NA	EET HOU
TCLP	Leach	1311			1.0 g	1.0 mL	133362	12/01/23 13:00	EMC	EET HOU
							Completed:	12/02/23 05:00 1		LLI 1100
TCLP	Prep	3510C			200 mL	1.00 mL	133494	12/04/23 06:37	DR	EET HOU
TCLP	Analysis	8270D		5			133584	12/04/23 15:05	PXS	EET HOU
TCLP	Leach	1311	DL		1.0 g	1.0 mL	133362	12/01/23 13:00	EMC	EET HOU
							Completed:	12/02/23 05:00 1		2211100
TCLP	Prep	3511	DL		48.7 mL	5 mL	133535	12/04/23 08:52	TH	EET HOU
TCLP	Analysis	8081B	DL	10			133720	12/05/23 11:31	WP	EET HOU
TCLP	Leach	1311			1.0 g	1.0 mL	133362	12/01/23 13:00	EMC	EET HOU
							Completed:	12/02/23 05:00 1		
TCLP	Prep	3511			49.7 mL	4 mL	133832	12/05/23 14:58	JN	EET HOU
TCLP	Analysis	8151A		1			134118	12/07/23 14:50	WP	EET HOU
TCLP	Leach	1311			1.0 g	1.0 mL	133362	12/01/23 13:00	EMC	EET HOU
							Completed:	12/02/23 05:00 1		
TCLP	Prep	3010A			10 mL	50 mL	133556	12/04/23 10:00	MD	EET HOU
TCLP	Analysis	6010D		1			134055	12/06/23 11:23	DP	EET HOU
TCLP	Leach	1311			1.0 g	1.0 mL	133362	12/01/23 13:00	EMC	EET HOU
							Completed:	12/02/23 05:00 1		
TCLP	Prep	7470A			50 mL	50 mL	133489	12/03/23 21:45	AGR	EET HOU
TCLP	Analysis	7470A		1			133676	12/04/23 17:10	SHZ	EET HOU

This procedure uses a method stipulated length of time for the process. Both start and end times are displayed.

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Accreditation/Certification Summary

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62517-1

Laboratory: Eurofins Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	88-00759	08-03-24
Florida	NELAP	E871002	06-30-24
Louisiana (All)	NELAP	03054	06-30-24
Oklahoma	NELAP	1306	08-31-24
Oklahoma	State	2023-139	08-31-24
Texas	NELAP	T104704215-23-53	06-30-24
Texas	TCEQ Water Supply	T104704215	12-28-25
USDA	US Federal Programs	525-23-79-79507	03-20-26

Method Summary

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62517-1

Method	Method Description		
3260C	Volatile Organic Compounds by GC/MS	Protocol	Laboratory
270D	Semivolatile Organic Compounds (GC/MS)	SW846	EET HOU
081B	Organochlorine Pesticides (GC)	SW846	EET HOU
151A	Herbicides (GC)	SW846	EET HOU
010D	Metals (ICP)	SW846	EET HOU
470A	Mercury (CVAA)	SW846	EET HOU
311	TCLP Extraction	SW846	EET HOU
10A	Preparation, Total Metals	SW846	EET HOU
10C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	EET HOU
511	Microextraction of Organic Compounds	SW846	EET HOU
30C	Purge and Trap	SW846	EET HOU
70A	200 PB (100 PB	SW846	EET HOU
196	Preparation, Mercury	SW846	EET HOU

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition. November 1986 And Its Updates.

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

5

6

8

9

TO

12

Sample Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: Waller, City of

Job ID: 860-62517-1

Lab Sample ID 860-62517-1

Client Sample ID

Waller Digester c Digester

Matrix Water

Collected

11/28/23 13:25

Received 11/30/23 09:58

SUBCONTRACT ORDER

Sending Laboratory:

Eastex Environmental Laboratory - Coldspring PO Box 1089 Coldspring, TX 77331

Phone: 936-653-3249 eastexlab@eastex net

Project Manager: Daniel Bowen dbowen@eastexiabs.com

PO 113023D

Subcontracted Laboratory:

Eurofins Xenco LLC

4147 Greenbriar Dr. Stafford, TX 77477

Phone. 713-690-4444 Fax: 713-690-5646

Requested Turnaround / ODays

Sample ID: Waller Digester c Digester

Sample No: C3K6938-01

Waste Sampled: 11/28/2023 13:25

6

7

2 TCLP SUBCONTRACT

Containers Supplied: 2

Special Instructions. FULL TCLP REPORT

Temp: 0.9 (R ID HOU-369) Corrected Temp. 0 . 9

See Attached

Received Iced Y/N

Temp

Waller, City of

Released By

1

Received 8

sco_2023SubcontractOrder rpt 10062023

Page 31

Page 1 of 1 12/8/2023

Login Sample Receipt Checklist

Client: Eastex Environmental Laboratory Inc.

Job Number: 860-62517-1

Login Number: 62517

List Source: Eurofins Houston

List Number: 1 Creator: Rubio, Yuri

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

December 21, 2023

City of Waller Waller, City of 1218 Farr St Waller, TX 77484

RE: Waller Digester

Enclosed are the results of analyses for samples received by the laboratory on 11/28/23 15:40, with Lab ID Number C3K6939. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mark Bourgeois

Special Projects Manager

Waller, City of 1218 Farr St Waller TX, 77484

LABORATORY ANALYTICAL REPORT

Project:

Waller Digester a

Client Matrix:

Waste

Sample Date & Time: 11/28/2023 13:25

Collector: JMY

Sample Type:Grab

Print Date: 12/21/2023

Digester C3K6939-01 (Waste)

Analyte	Result	Reporting Limit	Units	Nelac Status	Batch	Analyzed Date & Time	Method	Notes
			Metals			1100		
- Arsenic	7.87	6.67	mg/Kg dry	А	B3L0303	12/06/2023 12:10	EPA SW 846-6010, 3050	
Cadmium	<6.67	6.67	mg/Kg dry	Α	B3L0303	12/06/2023 12:10	EPA SW 846-6010, 3050	
Chromium	43,4	6.67	mg/Kg dry	A	B3L0303	12/06/2023 12:10	EPA SW 846-6010, 3050	
Copper	887	6.67	mg/Kg dry	Α	B3L0303	12/06/2023 12:10	EPA SW 846-6010, 3050	
Lead	115	6.67	mg/Kg dry	Α	B3L0303	12/06/2023 12:10	EPA SW 846-6010, 3050	
Mercury, Total	0.321	0.133	mg/Kg dry	A	B3L1437	12/12/2023 13:24	EPA SW 846-7471B	
Molybdenum	10.8	6.67	mg/Kg dry	A	B3L0303	12/06/2023 12:10	EPA SW 846-6010, 3050	
Nickel	29.5	6.67	mg/Kg dry	A	B3L0303	12/06/2023 12:10	EPA SW 846-6010, 3050	
Phosphorus, %	1.45	1.00	% dry	Α	B3L0304	12/06/2023 16:14	EPA SW 846-6010, 3050	
Potassium, %	0.420	0.333	% dry	A	B3L0303	12/06/2023 12:10	EPA SW 846-6010, 3050	
Selenium	<6.67	6.67	mg/Kg dry	Α	B3L0303	12/06/2023 12:10	EPA SW 846-6010, 3050	
Zinc	953	6.67	mg/Kg dry	Α	B3L0303	12/06/2023 12:10	EPA SW 846-6010, 3050	
		1	Net Lab					
- NH3N %	<0.667	0.667	% dry	A	B3K3632	12/07/2023 12:17	EPA 350.2	
Nitrate-N. %	0.664	0.000133	% dry	N	B3K4988	11/30/2023 17:27	SM 4500 NO3 D	
Percent Solid	1.5	0.1	%	Α	B3K4607	11/29/2023 16:03	SM 2540G	
pH-Sludge	5.59	7.53	std unit	A	B3L0021	12/01/2023 08:15	EPA SW 846-9040	
TKN %	<1.0	0.0667	% dry	N	B3L3576	12/13/2023 13:33	EPA 351.2	S

Waller, City of 1218 Farr St Waller TX, 77484

EPA 350.2 - Quality Control

Eastex Environmental Laboratory - Coldspring

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Notes
Batch B3K3632 - No Prep	Prepared	: 12/07/23 12	:17					1010	Limit	Notes
Blank (B3K3632-BLK1)				Analyzed	12/7/2022	12:17:00PN				
NH3N %	ND	0.0100	% wet	Anatyzeu	12/1/2023	12:17:00PN	1			
LCS (B3K3632-BS1)				Amalous	12/2/2022	12 12 12				
NH3N %	2.02		mg/L	2.00	12/1/2023	12:17:00PN				
Matrix Spike (B3K3632-MS1)	C			2000000			80-120			
NH3N %	0.829	rce: C3K3103				12:17:00PN				
Matric C. II. D. Marris can a service	0.02)	1.23	% dry	0.500	0.345	96.8	80-120			
Matrix Spike Dup (B3K3632-MSD1) NH3N %		rce: C3K3103		Analyzed:	12/7/2023	12:17:00PM	1			
11317 76	0.827	1.25	% dry	0.500	0.345	96.5	80-120	0.181	20	
Batch B3K4607 - No Prep	Prepared:	11/29/23 16:	03							
Blank (B3K4607-BLK1)				Analyzed	11/20/202	4:03:00PN	4			
Percent Solid	ND	0.1	%	Allalyzeu.	11/29/2022	4.05.00PA	71			
Ouplicate (B3K4607-DUP1)	San	rce: C3K6905	01	Anolymody	11/20/2023	1.03.000	2			
Percent Solid	1.30	0.1	-01	Analyzeu:	1.30	4:03:00PN	4	* * * *		
Batch B3K4988 - No Prep	Prepared:	11/30/23 17:			1.50			0.00	20	
Blank (B3K4988-BLK1)				Analyzadi	11/20/2022	. 5.27.00ps				
litrate-N, %	ND	0.00000200	% wet	Anatyzeu:	11/30/2023	5:27:00PN	1			
CS (B3K4988-BS1)										
Vitrate-N, %	1.0123				11/30/2023	5:27:00PN				
Anti-C. D. (WAY) 1000 had			mg/L	1.00		101	80-120			
Matrix Spike (B3K4988-MS1)		rce: C3K3103-				5:27:00PM	1			
	0.7318749	0.000250	% dry	0.625	0.02125	114	80-120			
fatrix Spike Dup (B3K4988-MSD1)	Sour	rce: C3K3103-	-01	Analyzed:	11/30/2023	5:27:00PM	i			
itrate-N, %	0.7287499	0.000250	% dry	0.625	0.02125	113	80-120	0.428	20	
atch B3L0021 - No Prep	Prepared:	12/01/23 08:	15							
CS (B3L0021-BS1)		22,01,20 00.	A =/	Analysis	12/1/2022	0.15.007				
H-Sludge	6.88		std unit	Analyzed:	12/1/2023	8:15:00AM				
uplicate (B3L0021-DUP1)						60000	0-200			
4-Sludge		ce: C3K6939-		Analyzed:		8:15:00AM				
- Simogo	5.59		std unit		5.59			0.00	20	

Eastex Environmental Laboratory - Coldspring

The results in this report apply to the samples analyzed in accordance with the chain () custody document. This analytical report must be reproduced in its entirety.

*NELAC Status: A=Accredited, N=Accreditation not offered, O=Not Accredited, P=Approved

PromiumforCold.v5 W&O; revision date 11192021

Waller, City of 1218 Farr St Waller TX, 77484

EPA SW 846-6010, 3050 - Quality Control

Eastex Environmental Laboratory - Coldspring

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3L0303 - SW846-3050	Propored	12/04/23 15	.28							
	Trepareu	12/04/23 13	.20	Anabaadi	12/6/2022	11:32:54A	M			
Blank (B3L0303-BLK1)		21022		Anaiyzeu:	12/0/2023	11:32:34A	IVI			
Molybdenum	ND	0.100	mg/Kg wet							
Arsenic	ND	0.100	mg/Kg wet							
Cadmium	ND	0.100	mg/Kg wet							
Chromium	ND	0.100	mg/Kg wet							
Соррег	ND	0.100	mg/Kg wet							
ead	ND	0.100	mg/Kg wet							
Nickel	ND	0.100	mg/Kg wet							
Potassium, %	ND	0.00500	% wet							
Selenium	ND	0.100	mg/Kg wet							
Zinc	ND	0.100	mg/Kg wet							
LCS (B3L0303-BS1)				Analyzed:	12/6/2023	11:36:21A	.M			
Aolybdenum	2.66	0.100	mg/Kg wet	2.50		106	80-120			
Arsenic	2.45	0.100	mg/Kg wet	2.50		98.0	80-120			
Cadmium	2.4	0.100	mg/Kg wet	2.50		95.6	80-120			
Chromium	2.62	0.100	mg/Kg wet	2.50		105	80-120			
Copper	2.68	0.100	mg/Kg wet	2.50		107	80-120			
Lead	2.55	0.100	mg/Kg wet	2.50		102	80-120			
Nickel	2.47	0.100	mg/Kg wet	2.50		98.8	80-120			
Potassium, %	0.0208	0.00500	% wei	0.0250		83.2	80-120			
Selenium	2.25	0.100	mg/Kg wet	2.50		90.0	80-120			
Zinc	2,51	0.100	mg/Kg wet	2.50		100	80-120			
Matrix Spike (B3L0303-MS1)	Son	irce: C3K386	0-01	Analyzed	: 12/6/2023	11:46:41A	м			
Molybdenum	255	10.0		250	6.5	99.4	75-125			
Arsenic	244	10.0		250	9.12	94.0	75-125			
Cadmium	230	10.0	mg/Kg dry	250	ND	92.8	75-125			
Chromium	270	10.0	mg/Kg dry	250	20.8	99.7	75-125			
Copper	509	10.0	mg/Kg dry	250	236	109	75-125			
Lead	250	10.0		250	7.35	97.1	75-125			
Nickel	253	10.0		250	17.9	94.0	75-125			
Potassium, %	3.40	0.500	% dry	2.50	0.877	101	75-125			
Selenium	222	10.0		250	9.39	85.0	75-125			
Zinc	1680	10.0		250	1460	0.88	75-125			
Matrix Spike Dup (B3L0303-MSD1)	So	ırce: C3K386	0-01	Analyzed	: 12/6/2023	11:50:10A	M			
Molybdenum	265		mg/Kg dry	250	6.5	103	75-125	3.85	20	

Eastex Environmental Laboratory - Coldspring

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

*NELAC Status: A=Accredited, N=Accreditation not offered, O=Not Accredited, P=Approved

Waller, City of 1218 Farr St Waller TX, 77484

EPA SW 846-6010, 3050 - Quality Control

Eastex Environmental Laboratory - Coldspring

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3L0303 - SW846-3050	Prepared	: 12/04/23 15	5:28			***************************************		- Ki D	Limit	Notes
Matrix Spike Dup (B3L0303-MSD1)		rce: C3K386		Analyzed:	12/6/2023	11:50:10A	M			
Arsenic	250	10.0	mg/Kg dry	250	9.12	96.4	75-125	2.43	20	
Cadmium	240	10.0	mg/Kg dry	250	ND	96.0	75-125	3.39	20	
Chromium	277	10,0	mg/Kg dry	250	20.8	102	75-125	2.56	20	
Copper	522	10.0	mg/Kg dry	250	236	114	75-125	2.52	20	
Lead	260	10.0	mg/Kg dry	250	7.35	101	75-125	3.92	20	
Nickel	261	10.0	mg/Kg dry	250	17.9	97.2	75-125	3.11		
Potassium, %	3.40	0.500	% dry	2.50	0.877	101	75-125	0.00	20	
Selenium	227	10.0	mg/Kg dry	250	9.39	87.0	75-125	2.23	20	
Zinc	1700	10.0	mg/Kg dry	250	1460	96.0	75-125	1.18	20 20	
Batch B3L0304 - SW846-3050	Prepared:	Prepared: 12/06/23 15:58								
Blank (B3L0304-BLK1)				Analyzed:	12/6/2023	3:58:35PM	li.		***************************************	
Phosphorus, %	ND	1.00	% wet							
LCS (B3L0304-BS1)				Analyzed:	12/6/2023	4:00:11PM				
Phosphorus, %	0.00232	1.00	% wet	0.00252		91.9	80-120			
Matrix Spike (B3L0304-MS1)	Sou	rce: C3K386	0-01	Analyzed:	12/6/2023	4:04:59PM	U			
Phosphorus, %	2.73	1.00	% dry	0.252	2.48	99.L	75-125			
Matrix Spike Dup (B3L0304-MSD1)	Sou	rce: C3K386	0-01	Analyzed:	12/6/2023	4:06:35PM	Ų.			
Phosphorus, %	2.70	1.00	% dry	0.252	2.48	88.3	75-125	1.00	20	
Batch B3L1437 - SW 846-7471B	Prepared:	12/11/23 10	:14							
Blank (B3L1437-BLK1)				Analyzed:	12/12/2023	12:56:37P	М			
Mercury, Total	ND	0.00200	mg/Kg wet							-
CS (B3L1437-BS1)				Analyzed:	12/12/2023	12:59:08P	М			
Mercury, Total	0.0255	0.00200	mg/Kg wet	0.0250		102	80-120			-
Astrix Spike (B3L1437-MS1)	Sou	rce: C3K386	0-01	Analyzed:	12/12/2023	1:07:37PI	М			
Mercury, Total	2.64	0.200	mg/Kg dry	2.50	0.240	96.0	75-125			
Matrix Spike Dup (B3L1437-MSD1)	Sou	rce: C3K386	0-01	Analyzed:	12/12/2023	1:11:06PM	И			
Mercury, Total	2.72	0.200	mg/Kg dry	2.50	0.240	99.2	75-125	2,99	20	

Eastex Environmental Laboratory - Coldspring

The results in this report apply to the samples analyzed in accordance with the chain of customy document.

This analytical report must be reproduced in its entirety.

*NELAC Status: A=Accredited, N=Accreditation not offered, O=Not Accredited, P=Approved

PromiumforCold.v5 W&O; revision date 11192021

P.O. Box 1089 Coldspring Tx 77331 Website: eastexlabs.com Email: eastexlab@eastex.net Tel: 936 653 3249

Waller, City of 1218 Farr St Waller TX, 77484

Notes and Definitions

S	Analysis performed by subcontract lab.	Report available upon request.
---	--	--------------------------------

DET	Analyte	DETECTEI

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

ANALYTICAL REPORT

PREPARED FOR

Attn: Mark Bourgeois
Eastex Environmental Laboratory Inc.
PO BOX 1089
Coldspring, Texas 77331

Generated 12/8/2023 4:04:02 PM

JOB DESCRIPTION

Waller, City of

JOB NUMBER

860-62514-1

Eurofins Houston 4145 Greenbriar Dr Stafford TX 77477

Eurofins Houston

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 12/8/2023 4:04:02 PM

Authorized for release by Sylvia Garza, Project Manager Sylvia.Garza@et.eurofinsus.com (832)544-2004

Table of Contents

Cover Page		1160116	•		
Cover Page		• • • • • • • •		1	
Table of Contents				3	}
Definitions/Glossary				4	
Case Narrative				5	
Detection Summary	11111				
Client Sample Popults				6	
Client Sample Results				7	
Surrogate Summary				8	
QC Sample Results				9	
QC Association Summary				1	
Lab Chronicle				!	2
Cartification Summan			* * * * * * *	1	
Certification Summary		* * * * * * * * *		13	3
Method Summary				14	4
Sample Summary				15	5
Chain of Custody				4/	_
Paccint Charlelists			• • • • • • •	16)
Receipt Checklists				17	7

	1
ı	
ĕ	5

ļ			n	ı
9	Ø	B	ij	f
ğ	Ē.	ē	ä	ĕ

۱	91	140
ı	Ŀ	n
J	li i	
b	ANDER	per

Parties and	ì
PRINCE.	ļ.
T. Hal	L
海易"。	ŀ
SMT-SEC.	ŀ
(3)(2)(2)(3)	
2 B K	

THE OWNER OF THE PERSON NAMED IN
280

1	42
ı	IJ
i	EVENIAN
1	4 4

Definitions/Glossary

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62514-1

GI	os	s	a	ry

Abbreviation	These commonly used abbreviations may or may not be present in this report.
п	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA. RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Case Narrative

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62514-1

Job ID: 860-62514-1

Laboratory: Eurofins Houston

Narrative

Job Narrative 860-62514-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 11/30/2023 9:58 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.9°C

PCBs

Method 8082A: liquid sludge, weighed to 5 grams

Waller Digester a Digester (860-62514-1)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

6

7

8

9

D

12

Detection Summary

Client: Eastex Environmental Laboratory Inc.

Job ID: 860-62514-1

Project/Site: Waller, City of

Client Sample ID: Waller Digester a Digester

Lab Sample ID: 860-62514-1

No Detections.

Client Sample Results

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62514-1

Client Sample ID: Waller Digester a Digester

Date Collected: 11/28/23 13:25 Date Received: 11/30/23 09:58

Lab Sample ID: 860-62514-1

Matrix: Solid

Percent Solids: 1.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Amelicant	
PCB-1016	ND		7.6		mg/Kg	— <u>-</u>	12/06/23 16:18	Analyzed	Dil Fac
PCB-1221	ND		7.6		mg/Kg			12/07/23 18:44	1
PCB-1232	ND		7.6		520	C	12/06/23 16:18	12/07/23 18:44	1
PCB-1242	200				mg/Kg	D	12/06/23 16:18	12/07/23 18:44	1
PCB-1248	ND		7.6		mg/Kg	33	12/06/23 16:18	12/07/23 18:44	1
	ND		7.6		mg/Kg	43	12/06/23 16:18	12/07/23 18:44	1
PCB-1254	ND		7.6		mg/Kg	33	12/06/23 16:18	12/07/23 18:44	
PCB-1260	ND		7.6		mg/Kg	D	12/06/23 16:18	12/07/23 18:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	A == 1 ==	
Tetrachioro-m-xylena	69		35 - 140				12/06/23 16:18	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	131		37 - 142					12/07/23 18:44	1
	100		07.2.742				12/06/23 16:18	12/07/23 18:44	1
General Chemistry									
Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared		4.7-
Percent Moisture (EPA Moisture)	98.7			10.700.7	%	_ =	riepared	Analyzed	Dil Fac
Percent Solids (EPA Moisture)	1.3							12/04/23 17:38	1
,	1.3				%			12/04/23 17:38	9

Eurofins Houston

Surrogate Summary

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62514-1

Prep Type: Total/NA

١		×	
ı	۲	4	ı
١	b	L	d

	5	
I	1000	200

7	Á		1	ă
D	9	W	0	n
d	0	Ġ	B	ğ

3	7	À	ı
	Ы		ě
_	-		

	į			
Ξ			_	
	P	ų		ä

		t		l		
				4		
'n	y	۹	ğ	B	ij	Š

1 1 1	ge.	g	×	菱
2 2 × E	d	r	ĕ	ž.
	0	Ø,	٠.	Æ

Method: 8082A - Pol	ychlorinated	Biphenyls	(PCBs)	by Gas	Chromatography

Matrix: Solid

		TCX1	DCB1	
Lab Sample ID	Client Sample ID	(35-140)	(37-142)	
860-62514-1	Waller Digester a Digester	69	131	
860-63062-D-1-I MS	Matrix Spike	85	126	
860-63062-D-1-J MSD	Matrix Spike Duplicate	82	130	
LCS 860-134047/4-A	Lab Control Sample	96	120	
LCSD 860-134047/5-A	Lab Control Sample Dup	95	120	
MB 860-134047/1-A	Method Blank	82	112	
Surrogate Legend				

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Tetrachloro-m-xylene

DCB Decachlorobiphenyl (Surr)

Job ID: 860-62514-1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography Lab Sample ID: MB 860-134047/1-A Client Sample ID: Method Blank Matrix: Solid Analysis Batch: 134121 Prep Type: Total/NA Prep Batch: 134047 MB MB Analyte Result Qualifier RL MDL Unit D Prepared PCB-1016 Analyzed DII Fac ND 0.017 mg/Kg 12/06/23 16:18 12/07/23 13:46 PCB-1221 ND 0.017 mg/Kg 12/06/23 16:18 12/07/23 13:46 PCB-1232 ND 0.017 mg/Kg 12/06/23 16:18 PCB-1242 12/07/23 13:46 ND 0.017 mg/Kg 12/06/23 16:18 12/07/23 13:46 PCB-1248 ND 0.017 mg/Kg 12/06/23 16:18 12/07/23 13:46 PCB-1254 ND 0.017 mg/Kg 12/06/23 16:18 12/07/23 13:46 PCB-1260 ND 0.017 mg/Kg 12/06/23 16:18 12/07/23 13:46 MR MR Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Tetrachloro-m-xylene 82 35 - 140 12/06/23 16:18 12/07/23 13:46 DCB Decachlorobiphenyl (Surr) 112 37 - 142 12/06/23 16:18 12/07/23 13:46 Lab Sample ID: LCS 860-134047/4-A Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA Analysis Batch: 134121 Prep Batch: 134047 Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits PCB-1016 0.167 0.159 mg/Kg 95 27 - 121 PCB-1260 0.167 0.166 mg/Kg 99 27 - 139 LCS LCS Surrogate %Recovery Qualifier Limits Tetrachloro-m-xylene 96 35 - 140 DCB Decachlorobiphenyl (Surr) 120 37 - 142 Lab Sample ID: LCSD 860-134047/5-A Client Sample ID: Lab Control Sample Dup Matrix: Solid Prep Type: Total/NA Analysis Batch: 134121 Prep Batch: 134047 Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier %Rec Limits RPD Limit PCB-1016 0.167 0.164 mg/Kg 98 27 - 121 3 20 PCB-1260 0.167 0.182 mg/Kg 109 27 - 139 20 LCSD LCSD Surrogate %Recovery Qualifier Limits Tetrachioro-m-xylene 95 35 - 140 DCB Decachlorobiphenyl (Surr) 120 37 - 142 Lab Sample ID: 860-63062-D-1-I MS Client Sample ID: Matrix Spike Matrix: Solid Prep Type: Total/NA Analysis Batch: 134121 Prep Batch: 134047 Sample Sample Snike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits PCB-1016 ND 0.200 0.154 mg/Kg 77 D 27 - 121 PCB-1260 ND 0.200 0.184 mg/Kg 3.1 92 27 - 139 MS MS Surrogate %Recovery Qualifier Limits

Eurofins Houston

35 - 140

37 - 142

85

QC Sample Results

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62514-1

Client Sample ID: Method Blank

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: 860-63062-D-	ample ID: 860-63062-D-1-J MSD						Client Sample ID: Matrix Spike Du				licate
Matrix: Solid									Prep T	ype: To	tal/NA
Analysis Batch: 134121									Prep I	Batch: 1	34047
,	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
PCB-1016	ND		0.200	0.150	3	mg/Kg	D	75	27 - 121	3	20
PCB-1260	ND		0.200	0.188		mg/Kg	33	94	27 - 139	3	20
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
Tetrachloro-m-xylene	82		35 - 140								
DCB Decachlorobiphenyl (Surr)	130		37 - 142								

Method: Moisture - Percent Moisture

Lab Sample ID: MB 860-133677/1

Matrix: Solid Analysis Batch: 133677								Prep Type: 1	Total/NA
W. Walter, Ev.	MB	MB							
Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	DII Fac
Percent Moisture	-0.08				%			12/04/23 17:38	1
Percent Solids	100.1				%			12/04/23 17:38	1

Percent Solids	1	00.1		%			12/04/23 17:38	1
Lab Sample ID: 860-6266 Matrix: Solid Analysis Batch: 133677	69-C-15 DU						Client Sample ID: Dup Prep Type: Tot	
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Percent Moisture	5.4		5.2		%		3	20
Percent Solids	94.6		94.8		%		0.2	20

QC Association Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: Waller, City of

Job ID: 860-62514-1

GC Semi VOA

Prep Batch: 1340	47
------------------	----

Lab Sample ID 860-62514-1	Client Sample ID	Prep Type	Matrix	Maria	
000-025 14-1	Waller Digester a Digester	Total/NA	Solid	Method	Prep Batch
MB 860-134047/1-A	Method Blank		30110	3550C	
LCS 860-134047/4-A	SALE SECTION OF THE S	Total/NA	Solid	3550C	
White the comment of	Lab Control Sample	Total/NA	Solid	3550C	
LCSD 860-134047/5-A	Lab Control Sample Dup	Total/NA		UC	
860-63062-D-1-I MS	Matrix Spike		Solid	3550C	
860-63062-D-1-J MSD	versus eller es	Total/NA	Solid	3550C	
300-03002-D- I-J MSD	Matrix Spike Duplicate	Total/NA	Solid	3550C	

Analysis Batch: 134121

Lab Sample ID	Client Sample ID	Prep Type	44.4		
860-62514-1	Waller Digester a Digester		Matrix	Method	Prep Batch
MB 860-134047/1-A	Description Control Medical Control of the Control	Total/NA	Solid	8082A	134047
	Method Blank	Total/NA	Solid	8082A	
CS 860-134047/4-A	Lab Control Sample	Total/NA	Solid		134047
CSD 860-134047/5-A	Lab Control Sample Dup			8082A	134047
860-63062-D-1-I MS		Total/NA	Solid	8082A	134047
	Matrix Spike	Total/NA	Solid	8082A	134047
360-63062-D-1-J MSD	Matrix Spike Duplicate	Total/NA	Solid	Part 8040 DV	134047
		101411111	Solid	8082A	134047

General Chemistry

Analysis Batch: 133677

Lab Sample ID	Client Sample ID	Prep Type	Matrix	0.0000000000000000000000000000000000000	
860-62514-1	Waller Digester a Digester	Total/NA		Method	Prep Batch
MB 860-133677/1		IOIaI/NA	Solid	Moisture	
TOWNS CONTROL TO SERVICE STATE OF THE SERVICE STATE	Method Blank	Total/NA	Solid	Moisture	
860-62669-C-15 DU	Duplicate	Total/NA	Solid	A STATE OF THE STA	
		Totalities	Solid	Moisture	

4

6

7

9

10

12

13

14

Lab Chronicle

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62514-1

Client Sample ID: Waller Digester a Digester

Date Collected: 11/28/23 13:25

Lab Sample ID: 860-62514-1

Matrix: Solid

Date Received: 11/30/23 09:58

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			133677	12/04/23 17:38	JM	EET HOU

Client Sample ID: Waller Digester a Digester

Date Collected: 11/28/23 13:25 Date Received: 11/30/23 09:58

Lab Sample ID: 860-62514-1

Matrix: Solid

Percent Solids: 1.3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			5.03 g	5 mL	134047	12/06/23 16:18	вн	EET HOU
Total/NA	Analysis	8082A		1			134121	12/07/23 18:44	WP	EET HOU

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Accreditation/Certification Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: Waller, City of

Job ID: 860-62514-1

Laboratory: Eurofins Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	88-00759	08-03-24
Florida	NELAP	E871002	06-30-24
Louisiana (All)	NELAP	03054	06-30-24
Oklahoma	NELAP	1306	08-31-24
Oklahoma	State	2023-139	08-31-24
Texas	NELAP	T104704215-23-53	06-30-24
Texas	TCEQ Water Supply	T104704215	12-28-25
USDA	US Federal Programs	525-23-79-79507	03-20-26

2

4

6

7

8

9

W

12

14

Method Summary

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62514-1

Method Method Description		Protocol	Laboratory	
a xA	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	EET HOU	
Moisture	Percent Moisture	EPA	EET HOU	
3550C	Ultrasonic Extraction	SW846	EET HOU	

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Sample Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: Waller, City of

Job ID: 860-62514-1

Lab Sample ID Client Sample ID Matrix Collected Received 860-62514-1 Waller Digester a Digester Solid 11/28/23 13:25 11/30/23 09:58

SUBCONTRACT ORDER

5

Sending Laboratory:

Eastex Environmental Laboratory - Coldspring PO Box 1089 Coldspring, TX 77331

Columpting, 1x 77551

Phone. 936-653-3249 eastexlab@eastex.net Project Manager Daniel Bowen dbowen@eastexlabs.com

PO 113023B

Subcontracted Laboratory:

Eurofins Xenco LLC

4147 Greenbriar Dr. Stafford, TX 77477

Phone 713-690-4444 Fax. 713-690-5646

Requested Turnaround ODays

Sample ID: Waller Digester a Digester Sample No: C3K6939-01 Waste Sampled: 11/28/2023 13:25

PCB 8082

Containers Supplied:

Special Instructions. PCB MG/KG &SOLIDS

Temp: Q IR ID HOU-369 C/F:-0.0 Q IR ID HOU-369

☐ See Attached

Received Iced Y/N

Temp _____

Waller City of

Released By

Date & Time

Received By

Date & Time

Page 1 of 1 12/8/2023

sco_2023SubcontractOrder rpt 10062023

Page 16 of 17

Login Sample Receipt Checklist

Client: Eastex Environmental Laboratory Inc.

Job Number: 860-62514-1

Login Number: 62514 List Number: 1 Creator: Rubio, Yuri

List Source: Eurofins Houston

Question	Answer Comment
The cooler's custody seal, if present, is intact.	True
Sample custody seals, if present, are intact.	True
The cooler or samples do not appear to have been compromised or tampered with.	True
Samples were received on ice.	True
Cooler Temperature is acceptable.	True
Cooler Temperature is recorded.	True
COC is present.	True
COC is filled out in ink and legible.	True
COC is filled out with all pertinent information.	True
Is the Field Sampler's name present on COC?	True
There are no discrepancies between the containers received and the COC.	True
Samples are received within Holding Time (excluding tests with immediate HTs)	True
Sample containers have legible labels.	True
Containers are not broken or leaking.	True
Sample collection date/times are provided.	True
Appropriate sample containers are used.	True
Sample bottles are completely filled.	True
Sample Preservation Verified.	True
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True
Containers requiring zero headspace have no headspace or bubble is	True

<6mm (1/4").

ANALYTICAL REPORT

PREPARED FOR

Attn: Mark Bourgeois
Eastex Environmental Laboratory Inc.
PO BOX 1089
Coldspring, Texas 77331
Generated 12/13/2023 5:40:43: PM

JOB DESCRIPTION

Waller, City of

JOB NUMBER

860-62703-1

Eurofins Houston 4145 Greenbriar Dr Stafford TX 77477

Eurofins Houston

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 12/13/2023 5:40:43 PM

Authorized for release by Sylvia Garza, Project Manager Sylvia.Garza@et.eurofinsus.com (832)544-2004

Table of Contents	
Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
QC Sample Results	8
QC Association Summary	9
Lab Chronicle	10
Certification Summary	11
Method Summary	12
Sample Summary	13
Chain of Custody	
Receipt Checklists	15

Definitions/Glossary

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62703-1

Qualifiers

RL

RPD

TEF

TEQ TNTC Reporting Limit or Requested Limit (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Relative Percent Difference, a measure of the relative difference between two points

General	Chemistr	У
---------	----------	---

Qualifier	Qualifier Description	
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not	
	applicable.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
U	Indicates the analyte was analyzed for but not detected.	
-		

· ·	mulcates the allalyte was allalyzed for but not detected.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
п	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Delectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantilation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	

Case Narrative

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62703-1

Job ID: 860-62703-1

Laboratory: Eurofins Houston

Narrative

Job Narrative 860-62703-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

The sample was received on 12/1/2023 9:11 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.4°C

General Chemistry

Method 351.2: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 860-134764 and analytical batch 860-135028 were outside control limits. Sample matrix interference is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Detection Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: Waller, City of

Job ID: 860-62703-1

Client	Sample II	D.	Waller	Digester
Onone	oumpic ii	υ.	Andilei	Digester

Lab Sample ID: 860-62703-1

Anglista								•	
Analyte Nitrogen, Kjeldahl		Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Livid ogen, Njeldani	494		49.0	24.1	mg/Kg	5.882	_	351.2	Total/NA
	494		49.0	24.1	mg/Kg	5.882		351.2	

Client Sample Results

Client: Eastex Environmental Laboratory Inc.

Client Sample ID: Waller Digester

Project/Site: Waller, City of

Job ID: 860-62703-1

Lab Sample ID: 860-62703-1

Matrix: Waste

Date Collected: 11/28/23 13:25 Date Received: 12/01/23 09:11

General Chemistry MDL Unit D Prepared Analyte Result Qualifier RL Analyzed Dil Fac 49.0 2N.1 mg/Kg 12/12/23 11:12 12/13/23 13:33 5.882 Nitrogen, Kjeldahl (EPA 351.2) 494

QC Sample Results

RL

8.00

Spike

Added

Spike

Added

83.3

Spike

Added

8.16

Spike

Added

Spike

Added

78.4

78.4

83.3

MDL Unit

3.93 mg/Kg

LCS LCS

LCSD LCSD

LLCS LLCS

MS MS

6753 4

Result

7194 4

Result Qualifier

MSD MSD

Qualifier

Result

85.77

Result

4.518

Result

83.52

Qualifier

Qualifier

Qualifier

Unit

Unit

Unit

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62703-1

Method:	351.2	 Nitroger 	n, Total	Kjeldahl
Lab Sam	ple ID:	MB 860-134	764/4-A	

Matrix: Solid

Analysis Batch: 135028

	MB	MB
Analyte	Result	Qualifier
Nitrogen, Kjeldahl	<3.93	U

Lab Sample ID: LCS 860-134764/6-A Matrix: Solid

Analysis Batch: 135028

Analyte

Nitrogen, Kjeldahl

Lab Sample ID: LCSD 860-134764/7-A

Matrix: Solid

Analysis Batch: 135028

Analyte

Nitrogen, Kjeldahl

Lab Sample ID: LLCS 860-134764/5-A Matrix: Solid

Analysis Batch: 135028

Analyte Nitrogen, Kjeldahl

Lab Sample ID: 860-62478-A-1-B MS

Matrix: Solid

Analysis Batch: 135028

Analyte

Nitrogen, Kjeldahl Lab Sample ID: 860-62478-A-1-C MSD

Matrix: Solid

Analysis Batch: 135028

Sample Sample Qualifier Result Nitrogen, Kjeldahl 6750

Sample Sample

6750

Result Qualifier

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 134764

Prepared Analyzed Dil Fac 12/12/23 11:12 12/13/23 13:04

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 134764

%Rec Unit Limits mg/Kg 100 90 - 110

%Rec

%Rec

%Rec

55

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 134764 %Rec RPD

Limits RPD Limit

103 90 - 110

Client Sample ID: Lab Control Sample

50 - 150

Prep Type: Total/NA Prep Batch: 134764

%Rec Limits

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 134764

%Rec Limits -0.8 90 - 110

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA Prep Batch: 134764

RPD

Limits RPD Limit 90 - 110

QC Association Summary

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62703-1

General Chemistry Prep Batch: 134764

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-62703-1	Waller Digester	Total/NA	Waste	351.2	
MB 860-134764/4-A	Method Blank	Total/NA	Solid	351.2	
LCS 860-134764/6-A	Lab Control Sample	Total/NA	Solid	351.2	
LCSD 860-134764/7-A	Lab Control Sample Dup	Total/NA	Solid	351.2	
LLCS 860-134764/5-A	Lab Control Sample	Total/NA	Solid	351.2	
860-62478-A-1-B MS	Matrix Spike	Total/NA	Solid	351.2	
860-62478-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	351.2	

Analysis Batch: 135028

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-62703-1	Waller Digester	Total/NA	Waste	351.2	134764
MB 860-134764/4-A	Method Blank	Total/NA	Solid	351.2	134764
LCS 860-134764/6-A	Lab Control Sample	Total/NA	Solid	351.2	134764
LCSD 860-134764/7-A	Lab Control Sample Dup	Total/NA	Solid	351.2	134764
LLCS 860-134764/5-A	Lab Control Sample	Total/NA	Solid	351.2	134764
860-62478-A-1-B MS	Matrix Spike	Total/NA	Solid	351.2	134764
860-62478-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	351.2	134764

Lab Chronicle

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62703-1

Client Sample ID: Waller Digester

Date Collected: 11/28/23 13:25 Date Received: 12/01/23 09:11

Lab Sample ID: 860-62703-1

Matrix: Waste

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial	Final	Batch	Prepared		
Total/NA	Prep	351.2		- actor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	351.2		5 000	0.48 mL	20 mL	134764	12/12/23 11:12	LD	EET HOU
Transporter strate	, mary and	001,2		5.882			135028	12/13/23 13:33	AA	EET HOU

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr. Stafford, TX 77477, TEL (281)240-4200

Accreditation/Certification Summary

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62703-1

Laboratory: Eurofins Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Program	Identification Number	Expiration Date
State	88-00759	08-03-24
NELAP	E871002	06-30-24
NELAP	03054	06-30-24
NELAP	1306	08-31-24
State	2023-139	08-31-24
NELAP	T104704215-23-53	06-30-24
TCEQ Water Supply	T104704215	12-28-25
US Federal Programs	525-23-79-79507	03-20-26
	Slate NELAP NELAP NELAP State NELAP TCEQ Water Supply	State 88-00759 NELAP E871002 NELAP 03054 NELAP 1306 State 2023-139 NELAP T104704215-23-53 TCEQ Water Supply T104704215

1

2

3

4

5

6

8

9

(0)

Method Summary

Client: Eastex Environmental Laboratory Inc. Project/Site: Waller, City of

Job ID: 860-62703-1

Nethod	Method Description		
51.2	Nitrogen, Total Kjeldahl	Protocol	Laboratory
	Nitrogen, Total Kjeldahl	EPA	EET HOU
	The state of the s	EPA	EET HOU

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Rock

5

6

7

9

D

12

13

Sample Summary

Client: Eastex Environmental Laboratory Inc.

Project/Site: Waller, City of

Job ID: 860-62703-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
860-62703-1	Waller Digester	Waste	11/28/23 13:25	12/01/23 09:11

SUBCONTRACT ORDER

7

Sending Laboratory:

Eastex Environmental Laboratory - Coldspring PO Box 1089 Coldspring, TX 77331

Phone 936-653-3249 eastexlab@eastex.net Project Manager Daniel Bowen dbowen@eastexlabs.com

Subcontracted Laboratory:

Eurofins Xenco LLC

4147 Greenbriar Dr Stafford, TX 77477

Phone: 713-690-4444 Fax: 713-690-5646

PO 120123D

Requested Turnaround () Days

Sample ID: Waller Digester a Digester

Sample No: C3K6939-01

Waste Sampled: 11/28/2023 13:25

TKN %

Containers Supplied:

Special Instructions

Temp: 1.4 IR ID HOU-369 Corrected Temp: 1. 4

See Attached

Received Iced Y/N

Temp_

Waller City of

Released By

Received By

Login Sample Receipt Checklist

Client: Eastex Environmental Laboratory Inc.

Containers requiring zero headspace have no headspace or bubble is

Job Number: 860-62703-1

List Source: Eurofins Houston

Login Number: 62703 List Number: 1 Creator: Rubio, Yuri

	■ 0.2000.000	Comment
Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
MINERAL P.P.	The state of the s	

True

<6mm (1/4").

EASTEX ENVIRONMENTAL LABORATORY, INC. bix 1089 * Coldspring, TX 77331 P.O. Box 631375 * Nacogdoches, TX 75963-1375 (936) 663-3249 * (800) 525-0508 (936) 569-8879 * FAX (936) 569-8951

P.O. Box 1089 * Coldspring, TX 77331 (936) 653-3249 * (800) 525-0508

www.eastexlabs.com

White Copy-Follows Samples Yellow Copy-Laboratory Pink Copy-Client Copy

Afth: Phone#: Phone#: Phone#: Phone#: Phone#: Phone#: Phone#: Phone#: Phone#: Phone#: Phone#: Phone#: Phone		Alternate Check In:	HAI:LA	Relinquished By:	Relinquished By:		Relinquished By:						ALCIONA MA		1000 C	200	Work Order ID Sample ID Date	Project Name: Will Lev	Jon How Har	Sampler's Signature Mitty Durch OOU	Sampler's Name (print):	T.O. #!	cmail:	rilone#:	Dh	Attn:	,
LAND APP	*Thermometer has 0.0 fac		on Acceptable YES / NO	Received By and/or Checked in By:	Received By:	Received by:							0 8.3500 ()			7 1.1 1 1 1 1 1 0 DO	Time Matrix C or G		vatives:	mer Size:	DW=Drinking Water W		INSTRUCTIONS:	Phone#:	Attn:		
LAND APP	tor and recorded temperature is actua	mp C Triem ID	Date	Date	Date	Date		4 1	T.					7 8/5 6	200	Flow lemp # Size	1	Daniel Carrier	R-Base/Caustic	iz) 8= 40mL Vial 9=Other	SO=Soil/Sludge		,				
		-	547 III (1)		Time	Time				10 10 10 10 10 10 10 10 10 10 10 10 10 1				7	7	Pres	I(APV	LINC	PD	FP	PC T	EPP	INA	LYSI	S RE	QUI	E

02 January 2024

Envirodyne Laboratories, Inc 11011 Brooklet Dr., # 230 Houston, TX 77099 281.568.7880 Phone www.envirodyne.com

Water District Management (WDM) c/o Myrtle Cruz, Inc. - Mary Jarmon 1621 Milam, (3rd Floor) Houston, TX 77002

WHCMUD #7

Enclosed are the results of analyses for samples received by the laboratory on 14-Dec-23 15:15. The analytical data provided relates only to the samples as received in this laboratory report.

ELI certifies that all results are NELAP compliant and performed in accordance with the referenced method except as noted in the Case Narrative or as noted with a qualifier. Any reproductions of this laboratory report should be in full and only with the written authorization from the client.

The total number of pages in this report is 14

Thank you for selecting ELI for your analytical needs. If you have any questions regarding this report, please contact us.

Sincerely,

Laura Bonjonia For Brooke Milton

Haura Brymin

Customer Service Representative

ABORATOR

Certificate No: T104704265-22-20

JAN 02 2005

Sludge Manager

Master Spreadsheet

TCLP

PCB

Metals

□AS

□

s ☑‰ Solid

Envirodyne Laboratories, Inc 11011 Brooklet Dr., # 230 Houston, TX 77099 281,568,7880 Phone www.envirodyne.com

Client:

Water District Management (WDM)

Project: Work Order: WHCMUD #7

23L1356

Reported: 02-Jan-24 09:39

ANALYTICAL REPORT FOR SAMPLES

		Date Sampled	Date Received
Laboratory ID	Matrix	14 Day 23 07:00	14-Dec-23 15:15
23L1356-01	Water		14-Dec-23 15:15
221.1256-02	Water	14-Dec-23 07:00	
1 F100 2T 020 (22)		14-Dec-23 06:50	14-Dec-23 15:15
23L1356-03		14-Dec-23 06:52	14-Dec-23 15:15
23L1356-04	Solids		14-Dec-23 15:15
23L1356-05	Solids		
231 1356-06	Solids	14-Dec-23 06:54	14-Dec-23 15:15
2.101357 55			
	23L1356-01 23L1356-02 23L1356-03 23L1356-04	23L1356-01 Water 23L1356-02 Water 23L1356-03 Water 23L1356-04 Solids 23L1356-05 Solids	Laboratory ID Matrix 23L1356-01 Water 23L1356-02 Water 23L1356-03 Water 23L1356-04 Solids 23L1356-05 Solids 14-Dec-23 06:54 14-Dec-23 06:54

Envirodyne Laboratories, Inc.

Haura Brymin

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ENVIRODYNE LABORATORIES, INC.

CLIENT: WHCMUD #7

LAB NUMBER:

23L1356A

DATE COLLECTED:

(WDM) 14-Dec-23

DATE RECEIVED:

14-Dec-23

DATE COMPLETED:

30-Dec-23

SAMPLED BY:

MB

DATE ANALYZED:

30-Dec-23

(*) DENOTES: DRY WEIGHT BASIS

	() ==		SLUDGE LIMITS	
LOCATION:	DIGESTER @ 0656	METHOD	Clean / Ceiling (mg/kg)	MDL (mg/l)
PARAMETERS:				
pH (UNITS)	6.85	9045	> 6.00	
TOT.NITROGEN-N * (%)	1.02	Calc	N.A.	0.01
TKN-N * (%)	0.51	EPA 351.2	N.A.	0.01
NO3-N * (%)	0.51	SM 4500-NO3 E	N.A	0.01
NH3-N * (%)	0.10	SM 4500-NH3 F	N.A.	0.01
NH4-N * (%)	0.11	Calc	N.A.	0.01
TOTAL PHOSPHORUS* (%)	0.61	SM 4500-P E	N.A	0.01
PHOSPHORUS PENTOXIDE * (%)	0.27	Calc	N.A	0.01
POTASSIUM * (%)	0.41	6010B	N.A	0.002
ARSENIC * (mg/kg)	<10.20	6010B	< 41 / < 75	0.001
CADMIUM * (mg/kg)	<10.20	6010B	< 39 / < 85	0.001
COPPER * (mg/kg)	551.02	6010B	< 1,500 / < 4,300	0.002
MOLYBDENUM * (mg/kg)	<10.20	6010B	Monitor Only	0.001
NICKEL * (mg/kg)	40.82	6010B	< 420 / < 420	0.008
LEAD * (mg/kg)	20.41	6010B	< 300 / < 840	0.005
CHROMIUM * (mg/kg)	51.02	6010B	< 1,200 / < 3,000	0.005
MERCURY * (mg/kg)	<0.20	7471	< 17 / < 57	0.0002
SELENIUM * (mg/kg)	<10.20	6010B	< 36 / < 100	0.002
ZINC * (mg/kg)	969.39	6010B	< 2,800 / < 7,500	0.001
PCB's (mg/kg)	< 1.0	8080	< 2 / 10	0.001
TOTAL SOLIDS (%)	0.98	SM 2540 B	N.A.	
VOLATILE SOLIDS (%)	0.79		N.A	
Org.CONC. (%)	80.6		N.A	

Ref. SW-846

*EPA CHEMICAL ANALYSIS

Lab Representative

ENVIRODYNE LABORATORIES, INC. 11011 BROOKLET Dr. #230 HOUSTON, TEXAS 77099 (281) 568-7880

CERTIFICATE OF ANALYSIS

CLIENT:

WHCMUD #7

LAB NUMBER:

23L1356B

(WDM)

DATE COLLECTED: 14-Dec-23

DATE RECEIVED:

14-Dec-23

DATE COMPLETED:

30-Dec-23

SAMPLED BY:

MB

SAMPLE TYPE:

Processes to Significantly Reduce Pathogens (PSRP)

LOCATION:

DIGESTER @ 0656 LIMITS

PARAMETERS:

Microbial Populations

Fecal Coliform (Colonies/gram) Dry Wt.

35,000

2,000,000 CFU/g/TS

(Geo Mean = 7)

Vector Attraction Pontential

Specific Oxygen Uptake Rate (mg Oxygen/gram solids/Hr.) 0.80

1.5 mgO2/gram/Hr.

Sludge Characteristics

Total Solids (%)

0.98

N/A

Volatile Solids (%)

0.79

N/A

Organic Conc. (%)

80.6 6.85

> 5.50

Sample Temp. (C/F)

N/A

20/68 (+/- 10C)

Ambient Temp. (C/F)

N/A

N/A

Test Temp. - Start / Stop (C)

Soil pH - Measured in Water (Units)

22/22

(+/- 1C) - Var.

SOUR diluted to TS < 2.0%

Ref. STANDARD METHODS 21st Ed. & *EPA SW-846 9222D - F. COLI 2540G - TS & VS

2710B - SOUR

*9045 - pH

CERTIFIED BY

ENVIRODYNE LABORATORIES, INC.

CERTIFICATE OF ANALYSIS

CLIENT:	WHCMUD #7 (WDM)		LAB NUMBER:	23L1356C
DATE COLLECTED:	14-Dec-23		DATE RECEIVED:	14-Dec-23
DATE COMPLETED:	30-Dec-23		SAMPLED BY:	MB
Toxicity Characteristic Leaching	ng Procedure			
EXTRACTION DATE:	15-Dec-23			
TESTING DATE:	30-Dec-23			T.C.L.P.
SAMPLE TYPE:		DIGESTER		MAXIMUM LIMIT
LOCATION:		@ 0656		(mg/l)
PARAMETERS:		_		, ,
SW 846 1311 EPA 6010B				
ANTIIMONY (mg/l)		< 0.10		
ARSENIC (mg/l)		< 0.05		5.0
BARIUM (mg/l)		0.18		100.0
BERYLLIUM (mg/l)		<0.02		0.080
CADMIUM (mg/l)		<0.025		1.0
CHROMIUM (mg/l)		< 0.05		5.0
LEAD (mg/l)		< 0.05		5.0
NICKEL (mg/l)		<0.05		70.0
SELENIUM (mg/l)		<0.150		1.0
SILVER (mg/l)		<0.100		5.0
SW 846 1311 EPA 7470		5,100		5.0
MERCURY (mg/l)		< 0.002		0.2
SW 846 1311 EPA 8260		40.00L		0.2
BENZENE (mg/l)		<0.05		0.5
CARBON TETRACHLORIDE (me	0/1\	<0.25		
CHLOROBENZENE (mg/l)	911)	<0.05		0.5
CHLOROFORM (mg/l)		<0.05		100.0
METHYL ETHYL KETONE (mg/l)	ĺ	<2.50		6.0 200.0
1,2-DICHLOROETHANE (mg/l)	^	<0.05		
1,1-DICHLOROETHENE (mg/l)		<0.05		0.5
TETRACHLOROETHENE (mg/l)		<0.05		0.7
TRICHLOROETHENE (mg/l)		<0.250		0.7
VINYL CHLORIDE (mg/l)		<0.10		0,5
SW 846 1311 EPA 8270		<0.10		0.2
Total Cresol (mg/l)		< 0.250		***
1,4-DICHLOROBENZENE (mg/l)		<0.125		200.0
2,4-DINITROTOLUENE (mg/l)		<0.125		7.5
HEXACHLOROBENZENE (mg/l)		<0.125		0.13
HEXACHLOROBUTADIENE (mg/	rt)	<0.125		0.13
HEXACHLOROETHANE (mg/l)	"/	<0.125		0.5
NITROBENZENE (mg/l)		<0.125		3.0
PENTRACHLOROPHENOL (mg/l	1	< 0.250		2.0
2.4,5-TRICHLOROPHENOL (mg/		< 0.125		100.0
2,4,6-TRICHLOROPHENOL (mg/		<0.125		400.0
PYRIDINE (mg/l)	v.	< 0.250		2.0
2-Mothylphenol (mg/l)		<0.250		5.0
384 Methylphenol (mg/l)		<0.250		200.0 200.0
SW 846 1311 EPA 8081		-0.230		200.0
CHLORDANE (mg/l)		-0.00100		222
ENDRIN (mg/l)		<0.00102		0.03
HEPTACHLOR (mg/l)		<0.00005		0.02
HEPTACHLOR EPOXIDE (mg/l)		<0.00005 <0.00005		0.008
LINDANE (mg/l)		<0.00005		0.008
METHOXYCHLOR (mg/l)		<0.00005		0.4
TOXAPHENE (mg/l)				10.0
PCBs (mg/l)		<0.00102 <0.0005		0.5
SW 846 1311 EPA 8150		-0.000		
2.4-D (mg/l)		<0.000201		40.0
2.4.5-TP (Silvex) (mg/l)		<0.000201		10.0
and the second state of		-0.000201	11	1.0
Ref. EPA SW-846			X	
Qual: Analyzed by NELAC Certifie	ed lab T104704245	-	I/OH Consequent	
- J a) riculo define			Lab Representative	

Envirodyne Laboratories, Inc 11011 Brooklet Dr., # 230 Houston, TX 77099 281.568.7880 Phone

Client:

Water District Management (WDM)

Project: Work Order: WHCMUD #7 23L1356 Reported: 02-Jan-24 09:39

Wet Chemistry - Quality Control Envirodyne Laboratories, Inc.

		Reporting		Spike	Source	%REC	%REC	RPD	RPD Limit	Notes
Analyte	Result	1.imit	Units	Level	Result	, great	1.111113			
Batch B3L5088 - Inorganics										
Ouplicate (B3L5088-DUP1)	Sou	rce: 23L1518-0)8	Prepared &		18-Dec-23		1.36	20	
Total Solids	0.740	0.01	%		0.730					
Volatile Solids	0.570	0.01	•		0.570			0.00	20	
Batch B3L5098 - Inorganies										
Blank (B3L5098-BLK1)				Prepared &	k Analyzed	: 19-Dec-23				
ISS	< 2.0	2.0	mg/L							
VSN	<2.0	2.0	*							
LCS (B3L5098-BS1)					ž Analyzed	: 19-Dec-23				
ISS	95.0		mg/L	100		95.0	80-120			
Duplicate (B3L5098-DUP1)	Sou	rce: 23L1284-	-03	Prepared a		: 19-Dec-23				
ISS	160	2.0	mg/L		198			21.2	30	
VSS	1.53	2.0	*		156			1.94	70	
Batch B31.5100 - Inorganies										
Blank (B3L5100-BLK1)				Prepared	& Analyzee	l: 19-Dec-2	3			
188	<2.00	2.00	mg/L							
vss	<2.0	2.0								
LCS (B3L5100-BS1)				Prepared	& Analyze	1: 19-Dec-2.				
TSS	86.0		mg/L	100		86.0	80-120			
Duplicate (B31.5100-DUP1)	So	urce: 23L0986	-02	Prepared		d: 19-Dec-2	3			
VSS	4710	2.0	mg/L		4110			13.6	20	
188	5540	2.00			5190			6,52	20	

Envirodyne Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laura Brynin

Envirodyne Laboratories, Inc 11011 Brooklet Dr., # 230 Houston, TX 77099 281.568.7880 Phone www.envirodyne.com

Client:

Water District Management (WDM)

Project:

WHCMUD #7

Work Order:

23L1356

Reported:

02-Jan-24 09:39

Wet Chemistry - Quality Control Envirodyne Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B3L5167 - Inorganies										
Blank (B31.5167-BLK1)				Prepared &	Analyzed:	19-Dec-23				
Ammonia-N (NH3-N)	<0.20	0.20	mg/L			1, 000 25	-			
LCS (B31,5167-BS1)				Prepared &	Analyzed:	19-Dec-23				
Ammonia-N (NH3-N)	1.06		mg/L	1.00	/ maryzed.	106	90-110			
Matrix Spike (B3L5167-MS1)	Source	e: 23L1342-	01	Prepared &	Analyzed:	19-Dec-23				
Ammonia-N (NH3-N)	1,05	0.20	mg/L	1.00	ND	105	90-110			
Matrix Spike Dup (B3L5167-MSD1)	Source	e: 23L1342-	01	Prepared &	Analyzadi	10 Dec 22				
Ammonia-N (NH3-N)	1.04	0.20	mg/L	1.00	ND	104	90-110	0.957	20	
Batch B3L5194 - Inorganics										
Blank (B3L5194-BLK1)				Prepared &	Analyzed	19-Dec 23				
rss	<2.0	2.0	mg/L	r repared de	rtialyzed.	13-1000-23		***		
.CS (B3L5194-BS1)				Prepared &	Analyzed:	10 Dec 22				
rss	87.0	F	mg/L	100	maryzed.	87.0	80-120			
Ouplicate (B3L5194-DUP1)	Source	e: 23L1268-	0.1	Prepared &	Analyzadi	10 Dan 22				
SS	216	2.0	mg/L	1 repared &	142	19-Dec-23		41.3	20	
Batch B3L5261 - Inorganics								7.255	*5%	
Blank (B3L5261-BLK1)		***************************************		Prepared &	Analyzed	20 Dag 22				
ammonia-N (NH3-N)	<10.0	10.0	mg/L	. repared &	, waryzed.	40-DCC-23				

Envirodyne Laboratories, Inc.

Haura Brymin

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Envirodyne Laboratories, Inc 11011 Brooklet Dr., # 230 Houston, TX 77099 281.568.7880 Phone www.envirodyne.com

Client:

Water District Management (WDM)

Project: Work Order: WHCMUD #7 23L1356 Reported:

02-Jan-24 09:39

Wet Chemistry - Quality Control Envirodyne Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC*	Limits	RPD	1, imit	Notes
Batch B31.5261 - Inorganics										
				Prepared 8	k Analyzed:	20-Dec-23				
LCS (B3L5261-BS1) Ammonia-N (NH3-N)	19.1		mg/L	20.0		95.5	90-110			
Matrix Spike (B3L5261-MS1)	Sourc	e: 23L1457-	03	Prepared &	k Analyzed:	20-Dec-23				
Ammonia-N (NH3-N)	65.6	20.0	mg/L	32.8	33.4	98.2	80-120			
Matrix Spike Dup (B3L5261-MSDI)	Source	e: 23L1457-	-03	Prepared &	& Analyzed:	20-Dec-23				
Ammonia-N (NH3-N)	65.4	20.0	mg/L	32.8	13,4	97.6	80-120	0.305	20	
Batch B3L5272 - Inorganics										
Blank (B3L5272-BLK1)				Prepared o	兔 Analyzed:	14-Dec-23				
BOD-5	<2.0	2.0	mg/L							
LCS (B3L5272-BS1)				Prepared o	& Analyzed					
BOD-5	195		mg/L	198		98.6	84.6-115.4			
Duplicate (B3L5272-DUP1)	Sour	ce: 23L1374	-02	Prepared	& Analyzed	: 14-Dec-23	3			
BOD-S	311	2.0	mg/L		306			1.62	20	
Batch B3L5640 - Inorganics			(
Blank (B3L5640-BLK1)				Prepared	& Analyzed	: 15-Dec-2:	3			
CBOD-5	<2.0	2.0	mg/L							
LCS (B3L5640-BS1)				Prepared	& Analyzed	: 15-Dec-2				
CBOD-5	195		mg/L	198		98.4	84.6-115.4			

Envirodyne Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laura Brymin

Envirodyne Laboratories, Inc 11011 Brooklet Dr., # 230 Houston, TX 77099 281,568,7880 Phone www.envirodyne.com

Client:

Water District Management (WDM)

Project:

WHCMUD #7

Work Order:

23L1356

Reported:

02-Jan-24 09:39

Wet Chemistry - Quality Control Envirodyne Laboratories, Inc.

		Reporting		Spike	Source		%REC	Tonace of	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
3atch B3L5640 - Inorganics					J.,					
Duplicate (B3L5640-DUP1)	Sour	ce: 23L1339-	91	Prepared &		15-Dec-23				
BOD-5	2.90	2.0	mg/L		2.50			14.8	20	
Batch B3L6074 - Inorganics										
Blank (B3L6074-BLK1)				Prepared &	k Analyzed	: 29-Dec-23				
Phosphorus, Total	<0.10	0.10	mg/L							
LCS (B3L6074-BS1)				Prepared &	k Analyzed	: 29-Dec-23				
Phosphorus, Total	1,10		mg/L	1,00		110	80-120			
Matrix Spike (B3L6074-MS1)	Sou	rce: 23L.1062-	-01	Prepared &	& Analyzed	: 29-Dec-23	3			
Phosphorus, Total	1.38	0.10	mg/L	1.00	0.290	100	80-120			
Matrix Spike Dup (B3L6074-MSD1)	Sou	rce: 231.1062	-01	Prepared &	& Analyzed	: 29-Dec-2	3			
Phosphorus, Total	1.34	0.10	mg/L	1.00	0.290	105	80-120	2.94	20	
Batch B3L6075 - Inorganics										
Blank (B3L6075-BLK1)				Prepared:	28-Dec-23	Analyzed:	29-Dec-23			
Phosphorus, Total	<0.10	0.10	mg/L							
LCS (B3L6075-BS1)				Prepared:	28-Dec-23	Analyzed:				
Phosphorus, Total	1,01		mg/L	1,00		101	80-120			
Matrix Spike (B3L6075-MS1)	Sou	ree: 23L1356	-01	Prepared:	28-Dec-23	Analyzed:	29-Dec-23			
Phosphorus, Total	1.09	0.10	mg/L	1.00	ND	109	80-120			

Envirodyne Laboratorics, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laura Bonjonia For Brooke Milton, Customer Service Representative

Page 12 of 14

Envirodyne Laboratories, Inc 11011 Brooklet Dr., # 230 Houston, TX 77099 281.568.7880 Phone www.envirodync.com

Client:

Water District Management (WDM)

Project: Work Order: WHCMUD #7

23L1356

Reported:

02-Jan-24 09:39

Wet Chemistry - Quality Control Envirodyne Laboratories, Inc.

		Reporting		Spike	Source		%RLC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B3L6075 - Inorganics

Matrix Spike Dup (B3L6075-MSD1)	Source	e: 23L1356-	01	Prepared: 2	28-Dec-23 /	Analyzed:	29-Dec-23			
Phosphorus, Total	1.12	0.10	mg/L	1.00	ND	112	80-120	2.71	20	

Envirodyne Laboratories, Inc.

Laura Brymin

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Envirodyne Laboratories, Inc 11011 Brooklet Dr., # 230 Houston, TX 77099 281.568.7880 Phone www.envirodyne.com

Client:

Water District Management (WDM)

Project: Work Order: WHCMUD #7

23L1356

Reported:

02-Jan-24 09:39

Notes and Definitions

Q QC did not meet ELI acceptance criteria

Greater than 30% difference between highest and lowest values

ND Analyte NOT DETECTED at or above the reporting limit

< Result is less than the RL

a Analyte not available for TNI/NELAP accreditation

n Not accredited

Envirodyne Laboratories, Inc.

Laura Brynin

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Envirodyne Laboratories, Inc. 11011 Brooklet, Ste. 230

396 T 597 E

of

Page

Houston, Texas 77099-3543

Analysis Request and Chain of Custody Record Phone (281)568-7880 - Fax (281)568-8004

Water District Management (WDM)

19440 Kuykendal Rd.

Address

Name:

TCEQ Certification # T104704265

37.00

A CANAL

14651 570 Time Analysis Laboratory No. 1 7.58 7.82 27 Seal Intact? Seal Intact? Seal Intact? .qmaT (.O.a 1 Date: I. Heller 131 Hd pH,TS, VS, Org. Conc. 1615 PSH. Date Time: Date: Time: Time: HIE Date pH,BOD, TSS, VSS, Org. Conc. pH,TSS, VSS, Org. Conc. pH,TSS, VSS, Org. Conc. ANALYSIS REQUESTED Total Phosphorous Total Phosphorous pH, DO, Temp CBOD, TSS NH3-N NH3-N Email: Site Representative: Arrival Temp. Data Results To: -- Received by Lab: Received by: W HCMUD #7 Received by: (Signature) (Signature) (Signature) ICE, H2SO4 CE, H2SO4 ICE, H2SO4 ICE, H2SO4 Semple Container Sample Typo (Liquid, Presonative Studge, etc.) 2.3113-3 Date - T 13 B SE CE CE XX HRE. Date: Time: Date: Sludge Liquid Sludge Liquid Sludge Liquid Liquid Liquid Liquid Liquid Phone: Client/Project 250 ml P 250 ml P 250 ml P 500ml/P 500ml/P 500ml/P 500ml/P 1G-P 1 L P ٧N Relinquished by: Relinquished by: Relinquished by: Grab PLOAT TOLKY REALTH Signature Signature) Signature Whi Ochablina 12 FS C. Feerson 1-1-413 (7-5-3 14/17 21/4/20 3 Date & Time Spring, TX 77379 Wk 2-5 Field Sample No./ Samplers: A Signaluse Indentification Aeration 2 Digester Influent Aeration Effluent Effluent Effluent Effluent Influent Influent Affiliation Project No. Remarks: Contact: City: Lab ID No.

Complete this table **for each source** of biosolids and residuals.

Facility Name: HC 26

TCEQ Authorization Number: wq0011406001

POLLUTANT/METAL ANALYSIS

Pollutant	Maximum Concentration, mg/kg dry weight	Test Results, mg/kg dry weight	Sample Date	Detection Level for Analysis	Sample Method
Arsenic (As)	75	6.23	11/17/2023	0.001	SW-3050- 6010B
Cadmium (Cd)	85	0.969	11/17/2023	0.001	SW-3050- 6010B
Chromium (Cr)	3000	30.7	11/17/2023	0.005	SW-3050- 6010B
Copper (Cu)	4300	240	11/17/2023	0.002	SW-3050- 6010B
Lead (Pb)	840	14.3	11/17/2023	0.005	SW-3050- 6010B
Mercury (Hg)	57	0.299	11/17/2023	0.0002	SW-3050-6010/ 7471
Molybdenum (Mo)	75	7.74	11/17/2023	0.001	SW-3050- 6010B
Nickel (Ni)	420	15.1	11/17/2023	0.008	SW-3050- 6010B
Selenium (Se)	100	13.3	11/17/2023	0.002	SW-3050- 6010B
Zinc (Zn)	7500	1160	11/17/2023	0.001	SW-3050- 6010B
PCB (ppm)	50.0 ppm	0.00121	11/17/2023	0.001	SW-3570 8080

Nutrient	Concentration (%)	Sample Date	Detection Level for Analysis	Sample Method
Total Kjeldahl Nitrogen (TKN)	5.31	11/17/2023	0.01	TKN T EPA 351.2
Ammonium Nitrogen (NH4-N)	1.28	11/17/2023	0.01	NH3-N T
Nitrate Nitrogen (NO3-N)	0.00655	11/17/2023	0.01	EPA 300.0 SM4500-NO3 E
Total Phosphorus (P)	1.52	11/17/2023	0.01	SM 4500-P E
Total Potassium (K)	0.289	11/17/2023	0.002	SW-3050- 6010B

Complete this table **for each source** of biosolids and residuals.

Facility Name: HC WCID 92

TCEQ Authorization Number: wqoo10908001

POLLUTANT/METAL ANALYSIS

Pollutant	Maximum Concentration, mg/kg dry weight	Test Results, mg/kg dry weight	Sample Date	Detection Level for Analysis	Sample Method
Arsenic (As)	75	11.1	7/7/2023	0.001	SW-3050- 6010B
Cadmium (Cd)	85	11.1	7/7/2023	0.001	SW-3050- 6010B
Chromium (Cr)	3000	14.2	7/7/2023	0.005	SW-3050- 6010B
Copper (Cu)	4300	240	7/7/2023	0.002	SW-3050- 6010B
Lead (Pb)	840	11.1	7/7/2023	0.005	SW-3050- 6010B
Mercury (Hg)	57	0.373	7/7/2023	0.0002	SW-3050-6010/ 7471
Molybdenum (Mo)	75	11.1	7/7/2023	0.001	SW-3050- 6010B
Nickel (Ni)	420	11.1	7/7/2023	0.008	SW-3050- 6010B
Selenium (Se)	100	11.1	7/7/2023	0.002	SW-3050- 6010B
Zinc (Zn)	7500	838	7/7/2023	0.001	SW-3050- 6010B
PCB (ppm)	50.0 ppm	0.001	7/7/2023	0.001	SW-3570 8080

Nutrient	Concentration (%)	Sample Date	Detection Level for Analysis	Sample Method
Total Kjeldahl Nitrogen (TKN)	4.87	7/7/2023	0.01	TKN T EPA 351.2
Ammonium Nitrogen (NH4-N)	0.457	7/7/2023	0.01	NH3-N T
Nitrate Nitrogen (NO3-N)	4.44	7/7/2023	0.01	EPA 300.0 SM4500-NO3 E
Total Phosphorus (P)	1.54	7/7/2023	0.01	SM 4500-P E
Total Potassium (K)	0.556	7/7/2023	0.002	SW-3050- 6010B

Complete this table **for each source** of biosolids and residuals.

Facility Name: Allens Creek - Sealy WWTP

TCEQ Authorization Number: wqoo10276001

POLLUTANT/METAL ANALYSIS

Pollutant	Maximum Concentration, mg/kg dry weight	Test Results, mg/kg dry weight	Sample Date	Detection Level for Analysis	Sample Method
Arsenic (As)	75	5	10/11/2023	0.001	SW-3050- 6010B
Cadmium (Cd)	85	2.5	10/11/2023	0.001	SW-3050- 6010B
Chromium (Cr)	3000	34	10/11/2023	0.005	SW-3050- 6010B
Copper (Cu)	4300	308	10/11/2023	0.002	SW-3050- 6010B
Lead (Pb)	840	37.4	10/11/2023	0.005	SW-3050- 6010B
Mercury (Hg)	57	1.52	10/11/2023	0.0002	SW-3050-6010/ 7471
Molybdenum (Mo)	75	6.1	10/11/2023	0.001	SW-3050- 6010B
Nickel (Ni)	420	16.4	10/11/2023	0.008	SW-3050- 6010B
Selenium (Se)	100	8.4	10/11/2023	0.002	SW-3050- 6010B
Zinc (Zn)	7500	6737.4	10/11/2023	0.001	SW-3050- 6010B
PCB (ppm)	50.0 ppm	1	10/11/2023	0.001	SW-3570 8080

Nutrient	Concentration (%)	Sample Date	Detection Level for Analysis	Sample Method
Total Kjeldahl Nitrogen (TKN)	1.6702	10/11/2023	0.01	TKN T EPA 351.2
Ammonium Nitrogen (NH4-N)	0.1032	10/11/2023	0.01	NH3-N T
Nitrate Nitrogen (NO3-N)	0.0151	10/11/2023	0.01	EPA 300.0 SM4500-NO3 E
Total Phosphorus (P)	1.0068	10/11/2023	0.01	SM 4500-P E
Total Potassium (K)	0.1391	10/11/2023	0.002	SW-3050- 6010B

Complete this table **for each source** of biosolids and residuals.

Facility Name: Rosenberg #1A WWTP

TCEQ Authorization Number: wqoo10607003

POLLUTANT/METAL ANALYSIS

Pollutant	Maximum Concentration, mg/kg	Test Results, mg/kg	Sample Date	Detection Level for Analysis	Sample Method
	dry weight	dry weight			
Arsenic (As)	75	0.25	8/28/2023	0.001	SW-3050- 6010B
Cadmium (Cd)	85	0.25	8/28/2023	0.001	SW-3050- 6010B
Chromium (Cr)	3000	24.6	8/28/2023	0.005	SW-3050- 6010B
Copper (Cu)	4300	303	8/28/2023	0.002	SW-3050- 6010B
Lead (Pb)	840	34.9	8/28/2023	0.005	SW-3050- 6010B
Mercury (Hg)	57	0.02	8/28/2023	0.0002	SW-3050-6010/ 7471
Molybdenum (Mo)	75	0.25	8/28/2023	0.001	SW-3050- 6010B
Nickel (Ni)	420	0.25	8/28/2023	0.008	SW-3050- 6010B
Selenium (Se)	100	0.25	8/28/2023	0.002	SW-3050- 6010B
Zinc (Zn)	7500	846	8/28/2023	0.001	SW-3050- 6010B
PCB (ppm)	50.0 ppm	0.001	8/28/2023	0.001	SW-3570 8080

Nutrient	Concentration (%)	Sample Date	Detection Level for Analysis	Sample Method
Total Kjeldahl Nitrogen (TKN)	0.1	8/28/2023	0.01	TKN T EPA 351.2
Ammonium Nitrogen (NH4-N)	0.01	8/28/2023	0.01	NH3-N T
Nitrate Nitrogen (NO3-N)	0.01	8/28/2023	0.01	EPA 300.0 SM4500-NO3 E
Total Phosphorus (P)	0.08	8/28/2023	0.01	SM 4500-P E
Total Potassium (K)	0.46	8/28/2023	0.002	SW-3050- 6010B

Complete this table **for each source** of biosolids and residuals.

Facility Name: <u>Treschwig Central D1 WWTF</u>

TCEQ Authorization Number: wq0011141001

POLLUTANT/METAL ANALYSIS

Pollutant	Maximum Concentration, mg/kg dry weight	Test Results, mg/kg dry weight	Sample Date	Detection Level for Analysis	Sample Method
Arsenic (As)	75	6.32	7/25/2023	0.001	SW-3050- 6010B
Cadmium (Cd)	85	0.922	7/25/2023	0.001	SW-3050- 6010B
Chromium (Cr)	3000	26.5	7/25/2023	0.005	SW-3050- 6010B
Copper (Cu)	4300	245	7/25/2023	0.002	SW-3050- 6010B
Lead (Pb)	840	18.8	7/25/2023	0.005	SW-3050- 6010B
Mercury (Hg)	57	0.366	7/25/2023	0.0002	SW-3050-6010/ 7471
Molybdenum (Mo)	75	5.01	7/25/2023	0.001	SW-3050- 6010B
Nickel (Ni)	420	13.8	7/25/2023	0.008	SW-3050- 6010B
Selenium (Se)	100	10.1	7/25/2023	0.002	SW-3050- 6010B
Zinc (Zn)	7500	1060	7/25/2023	0.001	SW-3050- 6010B
PCB (ppm)	50.0 ppm	0.00184	7/25/2023	0.001	SW-3570 8080

Nutrient	Concentration (%)	Sample Date	Detection Level for Analysis	Sample Method
Total Kjeldahl Nitrogen (TKN)	4.53	7/25/2023	0.01	TKN T EPA 351.2
Ammonium Nitrogen (NH4-N)	0.354	7/25/2023	0.01	NH3-N T
Nitrate Nitrogen (NO3-N)	0.388	7/25/2023	0.01	EPA 300.0 SM4500-NO3 E
Total Phosphorus (P)	1.6	7/25/2023	0.01	SM 4500-P E
Total Potassium (K)	0.48	7/25/2023	0.002	SW-3050- 6010B

Complete this table **for each source** of biosolids and residuals.

Facility Name: FB 30

TCEQ Authorization Number: wqoo12068001

POLLUTANT/METAL ANALYSIS

Pollutant	Maximum Concentration, mg/kg dry weight	Test Results, mg/kg dry weight	Sample Date	Detection Level for Analysis	Sample Method
Arsenic (As)	75	7.14	6/9/2023	0.001	SW-3050- 6010B
Cadmium (Cd)	85	7.14	6/9/2023	0.001	SW-3050- 6010B
Chromium (Cr)	3000	15.5	6/9/2023	0.005	SW-3050- 6010B
Copper (Cu)	4300	194	6/9/2023	0.002	SW-3050- 6010B
Lead (Pb)	840	7.14	6/9/2023	0.005	SW-3050- 6010B
Mercury (Hg)	57	0.28	6/9/2023	0.0002	SW-3050-6010/ 7471
Molybdenum (Mo)	75	8.07	6/9/2023	0.001	SW-3050- 6010B
Nickel (Ni)	420	15.1	6/9/2023	0.008	SW-3050- 6010B
Selenium (Se)	100	8.14	6/9/2023	0.002	SW-3050- 6010B
Zinc (Zn)	7500	786	6/9/2023	0.001	SW-3050- 6010B
PCB (ppm)	50.0 ppm	0.0062	6/9/2023	0.001	SW-3570 8080

Nutrient	Concentration (%)	Sample Date	Detection Level for Analysis	Sample Method
Total Kjeldahl Nitrogen (TKN)	3.32	6/9/2023	0.01	TKN T EPA 351.2
Ammonium Nitrogen (NH4-N)	2.86	6/9/2023	0.01	NH3-N T
Nitrate Nitrogen (NO3-N)	1.07	6/9/2023	0.01	EPA 300.0 SM4500-NO3 E
Total Phosphorus (P)	1.63	6/9/2023	0.01	SM 4500-P E
Total Potassium (K)	0.525	6/9/2023	0.002	SW-3050- 6010B

Complete this table **for each source** of biosolids and residuals.

Facility Name: Pecan Grove WWTF

TCEQ Authorization Number: wqoo11655001

POLLUTANT/METAL ANALYSIS

Pollutant	Maximum Concentration, mg/kg	Test Results, mg/kg	Sample Date	Detection Level for Analysis	Sample Method
	dry weight	dry weight			
Arsenic (As)	75	2.39	8/28/2023	0.001	SW-3050- 6010B
Cadmium (Cd)	85	0.42	8/28/2023	0.001	SW-3050- 6010B
Chromium (Cr)	3000	13.02	8/28/2023	0.005	SW-3050- 6010B
Copper (Cu)	4300	193.78	8/28/2023	0.002	SW-3050- 6010B
Lead (Pb)	840	7.46	8/28/2023	0.005	SW-3050- 6010B
Mercury (Hg)	57	0.02	8/28/2023	0.0002	SW-3050-6010/ 7471
Molybdenum (Mo)	75	3	8/28/2023	0.001	SW-3050- 6010B
Nickel (Ni)	420	7.28	8/28/2023	0.008	SW-3050- 6010B
Selenium (Se)	100	0.25	8/28/2023	0.002	SW-3050- 6010B
Zinc (Zn)	7500	347.34	8/28/2023	0.001	SW-3050- 6010B
PCB (ppm)	50.0 ppm	0.001	8/28/2023	0.001	SW-3570 8080

Nutrient	Concentration (%)	Sample Date	Detection Level for Analysis	Sample Method
Total Kjeldahl Nitrogen (TKN)	0.25	8/28/2023	0.01	TKN T EPA 351.2
Ammonium Nitrogen (NH4-N)	0.01	8/28/2023	0.01	NH3-N T
Nitrate Nitrogen (NO3-N)	0.2	8/28/2023	0.01	EPA 300.0 SM4500-NO3 E
Total Phosphorus (P)	2.8	8/28/2023	0.01	SM 4500-P E
Total Potassium (K)	0.16	8/28/2023	0.002	SW-3050- 6010B

Complete this table **for each source** of biosolids and residuals.

Facility Name: Tomball South

TCEQ Authorization Number: wq0010616002

POLLUTANT/METAL ANALYSIS

Pollutant	Maximum Concentration, mg/kg dry weight	Test Results, mg/kg dry weight	Sample Date	Detection Level for Analysis	Sample Method
Arsenic (As)	75	4.44	8/1/2023	0.001	SW-3050- 6010B
Cadmium (Cd)	85	0.54	8/1/2023	0.001	SW-3050- 6010B
Chromium (Cr)	3000	17.6	8/1/2023	0.005	SW-3050- 6010B
Copper (Cu)	4300	316	8/1/2023	0.002	SW-3050- 6010B
Lead (Pb)	840	11.7	8/1/2023	0.005	SW-3050- 6010B
Mercury (Hg)	57	0.491	8/1/2023	0.0002	SW-3050-6010/ 7471
Molybdenum (Mo)	75	4.87	8/1/2023	0.001	SW-3050- 6010B
Nickel (Ni)	420	11.3	8/1/2023	0.008	SW-3050- 6010B
Selenium (Se)	100	4.47	8/1/2023	0.002	SW-3050- 6010B
Zinc (Zn)	7500	737	8/1/2023	0.001	SW-3050- 6010B
PCB (ppm)	50.0 ppm	0.00015	8/1/2023	0.001	SW-3570 8080

Nutrient	Concentration (%)	Sample Date	Detection Level for Analysis	Sample Method
Total Kjeldahl Nitrogen (TKN)	5.08	8/1/2023	0.01	TKN T EPA 351.2
Ammonium Nitrogen (NH4-N)	0.588	8/1/2023	0.01	NH3-N T
Nitrate Nitrogen (NO3-N)	0.00888	8/1/2023	0.01	EPA 300.0 SM4500-NO3 E
Total Phosphorus (P)	0.895	8/1/2023	0.01	SM 4500-P E
Total Potassium (K)	0.17	8/1/2023	0.002	SW-3050- 6010B

Complete this table **for each source** of biosolids and residuals.

Facility Name: Waller WWTP

TCEQ Authorization Number: wqoo10310001

POLLUTANT/METAL ANALYSIS

Pollutant	Maximum Concentration, mg/kg dry weight	Test Results, mg/kg dry weight	Sample Date	Detection Level for Analysis	Sample Method
Arsenic (As)	75	7.87	12/21/2023	0.001	SW-3050- 6010B
Cadmium (Cd)	85	6.67	12/21/2023	0.001	SW-3050- 6010B
Chromium (Cr)	3000	43.4	12/21/2023	0.005	SW-3050- 6010B
Copper (Cu)	4300	887	12/21/2023	0.002	SW-3050- 6010B
Lead (Pb)	840	115	12/21/2023	0.005	SW-3050- 6010B
Mercury (Hg)	57	0.321	12/21/2023	0.0002	SW-3050-6010/ 7471
Molybdenum (Mo)	75	10.8	12/21/2023	0.001	SW-3050- 6010B
Nickel (Ni)	420	29.5	12/21/2023	0.008	SW-3050- 6010B
Selenium (Se)	100	6.67	12/21/2023	0.002	SW-3050- 6010B
Zinc (Zn)	7500	953	12/21/2023	0.001	SW-3050- 6010B
PCB (ppm)	50.0 ppm	0.001	12/21/2023	0.001	SW-3570 8080

Nutrient	Concentration (%)	Sample Date	Detection Level for Analysis	Sample Method
Total Kjeldahl Nitrogen (TKN)	1	12/21/2023	0.01	TKN T EPA 351.2
Ammonium Nitrogen (NH4-N)	0.667	12/21/2023	0.01	NH3-N T
Nitrate Nitrogen (NO3-N)	0.664	12/21/2023	0.01	EPA 300.0 SM4500-NO3 E
Total Phosphorus (P)	1.45	12/21/2023	0.01	SM 4500-P E
Total Potassium (K)	0.42	12/21/2023	0.002	SW-3050- 6010B

Complete this table **for each source** of biosolids and residuals.

Facility Name: HC 200

TCEQ Authorization Number: wqoo12294001

POLLUTANT/METAL ANALYSIS

Pollutant	Maximum Concentration, mg/kg dry weight	Test Results, mg/kg dry weight	Sample Date	Detection Level for Analysis	Sample Method
Arsenic (As)	75	7.3	5/24/2023	0.001	SW-3050- 6010B
Cadmium (Cd)	85	0.717	5/24/2023	0.001	SW-3050- 6010B
Chromium (Cr)	3000	9.47	5/24/2023	0.005	SW-3050- 6010B
Copper (Cu)	4300	264	5/24/2023	0.002	SW-3050- 6010B
Lead (Pb)	840	5.37	5/24/2023	0.005	SW-3050- 6010B
Mercury (Hg)	57	0.211	5/24/2023	0.0002	SW-3050-6010/ 7471
Molybdenum (Mo)	75	5.95	5/24/2023	0.001	SW-3050- 6010B
Nickel (Ni)	420	13.4	5/24/2023	0.008	SW-3050- 6010B
Selenium (Se)	100	4.12	5/24/2023	0.002	SW-3050- 6010B
Zinc (Zn)	7500	744	5/24/2023	0.001	SW-3050- 6010B
PCB (ppm)	50.0 ppm	2.25	5/24/2023	0.001	SW-3570 8080

Nutrient	Concentration (%)	Sample Date	Detection Level for Analysis	Sample Method
Total Kjeldahl Nitrogen (TKN)	8.6	5/24/2023	0.01	TKN T EPA 351.2
Ammonium Nitrogen (NH4-N)	1.85	5/24/2023	0.01	NH3-N T
Nitrate Nitrogen (NO3-N)	0.0014	5/24/2023	0.01	EPA 300.0 SM4500-NO3 E
Total Phosphorus (P)	1.81	5/24/2023	0.01	SM 4500-P E
Total Potassium (K)	0.612	5/24/2023	0.002	SW-3050- 6010B

Complete this table **for each source** of biosolids and residuals.

Facility Name: whc 7

TCEQ Authorization Number: wqoo12140001

POLLUTANT/METAL ANALYSIS

Pollutant	Maximum Concentration, mg/kg dry weight	Test Results, mg/kg dry weight	Sample Date	Detection Level for Analysis	Sample Method
Arsenic (As)	75	10.2	12/30/2023	0.001	SW-3050- 6010B
Cadmium (Cd)	85	10.2	12/30/2023	0.001	SW-3050- 6010B
Chromium (Cr)	3000	51.02	12/30/2023	0.005	SW-3050- 6010B
Copper (Cu)	4300	551.02	12/30/2023	0.002	SW-3050- 6010B
Lead (Pb)	840	20.41	12/30/2023	0.005	SW-3050- 6010B
Mercury (Hg)	57	0.2	12/30/2023	0.0002	SW-3050-6010/ 7471
Molybdenum (Mo)	75	10.2	12/30/2023	0.001	SW-3050- 6010B
Nickel (Ni)	420	40.82	12/30/2023	0.008	SW-3050- 6010B
Selenium (Se)	100	10.2	12/30/2023	0.002	SW-3050- 6010B
Zinc (Zn)	7500	969.39	12/30/2023	0.001	SW-3050- 6010B
PCB (ppm)	50.0 ppm	0.001	12/30/2023	0.001	SW-3570 8080

Nutrient	Concentration (%)	Sample Date	Detection Level for Analysis	Sample Method
Total Kjeldahl Nitrogen (TKN)	0.51	12/30/2023	0.01	TKN T EPA 351.2
Ammonium Nitrogen (NH4-N)	0.11	12/30/2023	0.01	NH3-N T
Nitrate Nitrogen (NO3-N)	0.51	12/30/2023	0.01	EPA 300.0 SM4500-NO3 E
Total Phosphorus (P)	0.61	12/30/2023	0.01	SM 4500-P E
Total Potassium (K)	0.41	12/30/2023	0.002	SW-3050- 6010B

Source Facility	TCEQ Authorization				Polluta	int Con	centratio	on mg/l	(g				Nutrier	nt Concenti	ration %	
Name	Number	As	Cd	Cr	Cu	Pb	Hg	Мо	Ni	Se	Zn	TKN	NH ₄ -N	NO ₃ -N	Р	к
HC 26	WQ0011406001	6.23	0.969	30.7	240	14.3	0.299	7.74	15.1	13.3	1160	5.31	1.28	0.00655	1.52	0.289
HC WCID 92	WQ0010908001	11.1	11.1	14.2	240	11.1	0.373	11.1	11.1	11.1	838	4.87	0.457	4.44	1.54	0.556
Allens Creek - Sealy WWTP	WQ0010276001	5	2.5	34	308	37.4	1.52	6.1	16.4	8.4	6737.4	1.6702	0.1032	0.0151	1.0068	0.1391
Rosenberg #1A WWTP	WQ0010607003	0.25	0.25	24.6	303	34.9	0.02	0.25	0.25	0.25	846	0.1	0.01	0.01	0.08	0.46
Treschwig Central D1 WWTF	WQ0011141001	6.32	0.922	26.5	245	18.8	0.366	5.01	13.8	10.1	1060	4.53	0.354	0.388	1.6	0.48
FB 30	WQ0012068001	7.14	7.14	15.5	194	7.14	0.28	8.07	15.1	8.14	786	3.32	2.86	1.07	1.63	0.525
Pecan Grove WWTF	WQ0011655001	2.39	0.42	13.02	193.78	7.46	0.02	3	7.28	0.25	347.34	0.25	0.01	0.2	2.8	0.16
Tomball South	WQ0010616002	4.44	0.54	17.6	316	11.7	0.491	4.87	11.3	4.47	737	5.08	0.588	0.00888	0.895	0.17
Waller WWTP	WQ0010310001	7.87	6.67	43.4	887	115	0.321	10.8	29.5	6.67	953	1	0.667	0.664	1.45	0.42
HC 200	WQ0012294001	7.3	0.717	9.47	264	5.37	0.211	5.95	13.4	4.12	744	8.6	1.85	0.0014	1.81	0.612
WHC 7	WQ0012140001	10.2	10.2	51.02	551.02	20.41	0.2	10.2	40.82	10.2	969.39	0.51	0.11	0.51	0.61	0.41

TCEQ Authorization	Estimated Dry		Pollutant Concentrations mg/kg X Estimated Dry Metric Tons								
Number	Metric Tons	As	Cd	Cr	Cu	Pb	Hg	Мо	Ni	Se	Zn
WQ0011406001	46.883	292.078	45.429	1439.294	11251.812	670.420	14.018	362.871	707.927	623.538	54383.758
WQ0010908001	14.679	162.942	162.942	208.448	3523.072	162.942	5.475	162.942	162.942	162.942	12301.394
WQ0010276001	2.783	13.915	6.957	94.621	857.159	104.084	4.230	16.976	45.641	23.377	18750.066
WQ0010607003	27.915	6.979	6.979	686.720	8458.383	974.249	0.558	6.979	6.979	6.979	23616.475
WQ0011141001	29.359	185.548	27.069	778.012	7192.939	551.948	10.745	147.088	405.153	296.525	31120.472
WQ0012068001	25.307	180.690	180.690	392.255	4909.517	180.690	7.086	204.226	382.133	205.997	19891.138
WQ0011655001	39.359	94.069	16.531	512.458	7627.050	293.621	0.787	118.078	286.536	9.840	13671.067
WQ0010616002	20.093	89.211	10.850	353.628	6349.237	235.083	9.865	97.851	227.045	89.814	14808.188
WQ0010310001	34.864	274.378	232.541	1513.086	30924.134	4009.330	11.191	376.528	1028.480	232.541	33225.140
WQ0012294001	98.425	718.502	70.571	932.085	25984.200	528.542	20.768	585.629	1318.895	405.511	73228.199
WQ0012140001	7.340	74.865	74.865	374.473	4044.340	149.804	1.468	74.865	299.608	74.865	7115.065
Total	347.01	2093.18	835.43	7285.08	111121.84	7860.71	86.19	2154.03	4871.34	2131.93	302110.96
Units		mg/kg									
Meta	I	As Cd Cr Cu Pb Hg Mo Ni Se					Zn				
Volume Weight	ed Means	6.032 2.408 20.994 320.230 22.653 0.248 6.207 14.038 6.144					6.144	870.620			
Pounds Per Ton 0.0121 0.0048 0.0420 0.6405 0.0453 0.00					0.0005	0.0124	0.0281	0.0123	1.7412		

TCEQ Authorization	Estimated Dry	Nutrient Concentrations % X Estimated Dry Metric Tons						
Number	Metric Tons	TKN	NH₄-N	NO ₃ -N	Р	К		
WQ0011406001	46.883	248.946	60.010	0.307	71.261	13.549		
WQ0010908001	14.679	71.489	6.709	65.177	22.606	8.162		
WQ0010276001	2.783	4.648	0.287	0.042	2.802	0.387		
WQ0010607003	27.915	2.792	0.279	0.279	2.233	12.841		
WQ0011141001	29.359	132.996	10.393	11.391	46.974	14.092		
WQ0012068001	25.307	84.019	72.377	27.078	41.250	13.286		
WQ0011655001	39.359	9.840	0.394	7.872	110.206	6.297		
WQ0010616002	20.093	102.070	11.814	0.178	17.983	3.416		
WQ0010310001	34.864	34.864	23.254	23.150	50.552	14.643		
WQ0012294001	98.425	846.455	182.086	0.138	178.149	60.236		
WQ0012140001	7.340	3.743	0.807	3.743	4.477	3.009		
Total	347.01	1541.86	368.41	139.36	548.50	149.92		
Unit	s			%				
Nutrie	ent	TKN	NH4-N	NO3-N	Р	К		
Volume Weigh	nted Means	4.443	1.062	0.402	1.581	0.432		
Pounds P	er Ton	88.866	21.234	8.032	31.613	8.641		

If more than one source of biosolids or residuals are land applied, complete Table 2.

K. Agronomic Rate Calculations (Appendix A)

Determine the agronomic application rate by completing and attaching Appendix A.

L. Pathogen Reduction Options (Appendix B)

Identify the pathogen reduction options by completing and attaching Appendix B.

M. Vector Attraction Reduction Options (Appendix C)

Identify the vector attraction reduction options by completing and attaching Appendix C.

N. On-Site Storage (Appendix D)

If on-site storage will occur at this site, complete and attach Appendix D.

APPENDIX A AGRONOMIC RATE CALCULATIONS

Note: The maximun allowable agronomic rate for land application of Class B Biosolids is 12 tons/ acre/year

APPENDIX A, PART 1. APPLICATION RATE

STEP 1. CALCULATE QUANTY OF NUTRIENTS AND METALS IN BIOSOLIDS AND RESIDUALS POUNDS PER TON.

Nutrient	Concentration (%)**	Conversion Factor	Pounds per Ton
Total Kjeldahl Nitrogen (TKN)	4.443321406	x 20	88.86642812
Ammonium Nitrogen (NH4-N)	1.06168258	x 20	21.2336516
Nitrate Nitrogen (NO ₃ -N)	0.401593333	x 20	8.031866655
Total Phosphorus (P)	1.580648167	x 20	31.61296334
Total Potassium (K)	0.432034556	x 20	8.640691124

Pollutant		Test Results, mg/kg dry weight	Conversion Factor	Pounds per Ton
Total Arsenic	(As)	6.032100564	x 0.002	0.012064201
Total Cadmium	(Cd)	2.407519881	x 0.002	0.00481504
Total Chromium	(Cr)	20.99408038	x 0.002	0.041988161
Total Copper	(Cu)	320.2298634	x 0.002	0.640459727
Total Lead	(Pb)	22.65292717	x 0.002	0.045305854
Total Mercury	(Hg)	0.24838882	x 0.002	0.000496778
Total Molybdenum	(Mo)	6.207471953	x 0.002	0.012414944
Total Nickel	(Ni)	14.03817739	x 0.002	0.028076355
Total Selenium	(Se)	6.143773354	x 0.002	0.012287547
Total Zinc	(Zn)	870.6204825	x 0.002	1.741240965

^{**} Values from laboratory analysis (dry weight only).

Conversions: $mg/kg \div 10,000 = \%$ ppm = mg/kg

STEP 2. CROPPING PLAN AND NUTRIENT NEEDS	
Warm Season Intended Crop(s): Improved Coastal Bermuda Grass	
Yield Goal: 7.2 DT/A & Grazing Nitrogen Requirement, in lb/yr:	360
Cool Season Intended Crop(s): Winter Pasture	
Yield Goal: 3.6 DT/A & Grazing Nitrogen Requirement, in lb/yr:	180
Provide the data source for the nitrogen requirement above.	
Crop nutrient need is based on 50 lb.N/ton of forage, Texas Agricultural Extension Service Fertilizing Summer	
Perennial Pastures, Publication L-2210.	
Nirtrogen needed by crop:	
2A. Total Nitrogen Requirement* 540	
2B. Nitrogen available in soil** 502.52	
2C. Nitrogen amount still needed Line 2A - Line 2B 37.48	
*Line 2A = Sum of the nitrogen requirement for the specified yeild goals for the w season crop and cool season crop	am
** Line 2B = 2*NO ₃ -N (ppm)(0-6"soil depth) + 6*NO ₃ -N(ppm)(6-24"soil depth)	
TGTO 10451 (5/00/0000)	
TCEQ - 10451 (5/22/2020) Application for Permit for Benificial Land Use of Biosolids Page 21	

Step 3. CALCULATE THE PLANT AVA PROVIDED BY THE BIOSOLID		
		KESIDUAL
Use the TKN, NH ₄ -N, and NO ₃ -N from Step 1.		50 (0001
Organic Nitrogen = TKN - $(NH_4-N + NO_3 - NC_3 + $	-IN)	59.60091
Mineralization Rate (%)*		30%
3A. Organic Nitrogen x Mineralization Rate		17.88027
3B. Ammonium Nitrogen = (NH ₄ -N) x V		10.61682
V= 0.5 if biosolids are left on soil surface		
V= 1.0 if biosolids are worked into the so	il	
3C. Nitrate Nitrogen (NO ₃ -N) =		8.031866
3D. Total PAN = (Line $3A + \text{Line } 3B + \text{Line } 3$	C)=	36.52896
*Mineralization Rates:		
Treatment Method	Min	eralization
		Rates
Unstabilized Primary and Waste Activated		40%
Bio Solids		
Aerobically Digested Bioslolids		30%
Anaerobically Digested Biosolids		20%
Composted Biosolids	LIDS A	10%
Anaerobically Digested Biosolids Composted Biosolids Step 4. CALCULATE MAXIUM BIOSO ON CROP NITROGEN NEEDS (3) 4A. Nitrogen amount still needed (lbs/acre/year Enter amount from Step 2C. 4B. Total PAN (lbs/ton) Enter amount from Step 3D. 4C. Biosolids Application Rate (BAR _N) (tons/a Line 4A ÷ Line 4B	SAR _N)	10% PPLICATIO 37.48 36.52896
Step 4. CALCULATE MAXIUM BIOSO ON CROP NITROGEN NEEDS (STANDARD AND ASSESSED AND ASSESSED ASS	SAR _N)	10% PPLICATIO 37.48 36.528969

STEP 5. CALCULATE MAXIMUM APPLICATION RATE BASED ON METALS (SAR $_{ m M}$)

	A	В	C	D	Е	F
METAL	Cumulat ive Metal Limits (lbs/ac)	Max Loading Rate (lbs/ac/yr)	Metals in Biosolids (lbs/ton)	Metals Applied Yearly at BAR _N (lbs/ac/yr)	Metals Applied Annually at SAR _M (lb./ac./yr)	Max Sludge Loading Rate (ton/ac.)
			(Step 1)	C x SAR _N	B/C	A/C
Arsenic	36	1.8	0.012064201	0.0124	N/A	2984.04
Cadmium	35	1.7	0.00481504	0.0049	N/A	7268.89
Chromiun	2677	134	0.041988161	0.0431	N/A	63756.07
Copper	1339	67	0.640459727	0.6571	N/A	2090.69
Lead	268	13	0.045305854	0.0465	N/A	5915.35
Mercury	15	0.76	0.000496778	0.0005	N/A	30194.60
Molybdenu	Monitor	Monitor				
Nickel	375	18.7	0.028076355	0.0288	N/A	13356.43
Selenium	89	4.5	0.012287547	0.0126	N/A	7243.11
Zinc	2500	125	1.741240965	1.7866	N/A	1435.76
Other						

Note: For each metal, if the value in column B is greater than the value in column D (B>D), the BAR_N dictates the maximum biosolids application rate. Enter N/A in column E. If the value in column B is less than value in column D (B<D), then the BAR_M dictates the maximum biosolids application rate and the value of $E = B \div C$.

STEP 6. CALCULATE THE CUMULATIVE LOADING RATE

6A. Maximum allowable cumulative biosolids loading rate	
Lowest value in Step 5, Column F (tons/acre)	1435.76
6B. Previous applications of biosolids (tons/acre)	12.43
6C. Remaining biosolids application rate to reach metal lin	nits
Line 6A - Line 6B (tons/acre)	1423.33
6D. Maximun allowable biosolids application rate	
Lowest value of Step 4C and Step 5, Column E(tons/ac	ere/year)
	1.03
6E. Years remaining to reach the maximum cumulative loa	ding
Line 6C ÷ Line 6D (years)	1387

STEP 1. CRO	PPING I	PLAN	AND NU	TRIENT NEE	DS		
Warm Season I	ntended (Crop(s	N/A				
Yield Goal:	N/A			Nitrogen R	e <mark>quir</mark> ement,	in lb/	yr: N/A
Cool Season In		rop(s):	Winter Past				
Yield Goal:	N/A			Nitrogen R	equirement,	in lb/	yr: N/A
D		£ 41-					
Provide the dat	ta source	ior in	e mtrogen i T	requirements.			
<u>N/A</u> <u>N/A</u>							
Nitrogen neede	ad by croi	J.					
1A. Total Nitro			nt*		N/A		
1B. Nitrogen a					N/A		
1C. Nitrogen a					N/A		
Line A -							
*Line 1A = Sum o			uirement for	the specified yie	ld goals for th	e warn	<u>n</u>
season crop and **Line 1B = 2*NO			C" soil donth	A) 6*NO N(nnn)(in the 6 24"	noil	
	3-м (bbm)(г	ii tile t	-6 Son depu	1) + 6"NO ₃ - N(ppII	1)(III tile 6-24	SOII	
depth)							
STEP 2. CAL	CIII ATI	F A NI	MIJAI API	PLICATION R	ATF		
The annual appli			d on the nitr	ogen needs of the	crop. It is cal	culate	d T
using the following	ng equatio	n:					
$AAR = N \div 0.00$	126						
		cation	L rate in σallo	ns per acre per 3	⊥ 65 day period	 	
				ie crop, in pound			
day perio				1, 1			
2A. Enter amo	unt from	Ston	l C				N/A
		этер.					
2B. Conversion							0.0026
2C. Annual Ar			(gal/acre/yr	')			
Line 2	A ÷ Line	2B					N/A

APPEN RATE	IDIX .	A, PA	RT 3:	PROPORT	TONATE	AGRONC)MI	С
	a if hot	h cowan	a and s	septage are apj	liad in the s	ame vear		
Complete	e II DOL	II sewag	e and s	septage are app	med in the s	ame year.		
Biosolids	<u>s:</u>							
A. Biosol	ids App	plicatior	ı Rate (tons/acre/yea	r)			N/A
B. Percen	itage of	f plant n	utrient	t supplied by t	he biosolids			
=	10		÷ 100	,				N/A
C. Multip	ole Line	A by Li	ne B (to	ons/acre/year)				N/A
Domestic	c Septa	ıge:						
A. Biosol	ids Apj	plication	n Rate (tons/acre/yea	r)			N/A
				t supplied by t				
=	10		÷ 100					N/A
C Multin	le Line	A by Li	ne R (te	ons/acre/year)				N/A
C. Multip	ne Line	Aby Li	пс в (п	ms/acrc/ycar/				IN/A
]								
TCEQ - 10451 (Application for I		mificial I 41	In of Di	lide				Page 25
Application for I	cimit tot Be	anneiai Land	OSC OI DIOSO	nus .	I	1	I	1 age 20

APPENDIX A AGRONOMIC RATE CALCULATIONS

Note: The maximun allowable agronomic rate for land application of Class B Biosolids is 12 tons/ acre/year

APPENDIX A, PART 1. APPLICATION RATE

STEP 1. CALCULATE QUANTY OF NUTRIENTS AND METALS IN BIOSOLIDS AND RESIDUALS POUNDS PER TON.

Nutrient	Concentration (%)**	Conversion Factor	Pounds per Ton
Total Kjeldahl Nitrogen (TKN)	4.443321406	x 20	88.86642812
Ammonium Nitrogen (NH4-N)	1.06168258	x 20	21.2336516
Nitrate Nitrogen (NO ₃ -N)	0.401593333	x 20	8.031866655
Total Phosphorus (P)	1.580648167	x 20	31.61296334
Total Potassium (K)	0.432034556	x 20	8.640691124

Pollutan	ıt	Test Results, mg/kg dry weight	Conversion Factor	Pounds per Ton	
Total Arsenic	(As)	6.032100564	x 0.002	0.012064201	
Total Cadmium	(Cd)	2.407519881	x 0.002	0.00481504	
Total Chromium	(Cr)	20.99408038	x 0.002	0.041988161	
Total Copper	(Cu)	320.2298634	x 0.002	0.640459727	
Total Lead	(Pb)	22.65292717	x 0.002	0.045305854	
Total Mercury	(Hg)	0.24838882	x 0.002	0.000496778	
Total Molybdenum	(Mo)	6.207471953	x 0.002	0.012414944	
Total Nickel	(Ni)	14.03817739	x 0.002	0.028076355	
Total Selenium	(Se)	6.143773354	x 0.002	0.012287547	
Total Zinc	(Zn)	870.6204825	x 0.002	1.741240965	

^{**} Values from laboratory analysis (dry weight only).

Conversions: $mg/kg \div 10,000 = \%$ ppm = mg/kg

STEP 2. CROPPING PLAN AND NUTRIENT NEEDS	
Warm Season Intended Crop(s): Improved Coastal Bermuda Grass	
Yield Goal: 7.2 DT/A & Grazing Nitrogen Requirement, in lb/yr:	360
Cool Season Intended Crop(s): Winter Pasture	
Yield Goal: 3.6 DT/A & Grazing Nitrogen Requirement, in lb/yr:	180
Provide the data source for the nitrogen requirement above.	
Crop nutrient need is based on 50 lb.N/ton of forage, Texas Agricultural Extension Service Fertilizing Summer Perennial Pastures, Publication L-2210.	
Nirtrogen needed by crop:	
2A. Total Nitrogen Requirement* 540	
2B. Nitrogen availiable in soil** 407.72	
2C. Nitrogen amount still needed	
Line 2A - Line 2B 132.28	
*Line 2A = Sum of the nitrogen requirement for the specified yeild goals for the w	arm
season crop and cool season crop	
** Line $2B = 2*NO_3-N (ppm)(0-6"soil depth) + 6*NO_3-N(ppm)(6-24"soil depth)$	
TCEQ - 10451 (5/22/2020)	
Application for Permit for Benificial Land Use of Biosolids Page 21	

	ILABL	E NITROG
PROVIDED BY THE BIOSOLID	S AND	RESIDUALS
Use the TKN, NH4-N, and NO3-N from Step 1.		
Organic Nitrogen = TKN - (NH ₄ -N + NO ₃ -	-N)	59.60091
Mineralization Rate (%)*		30%
3A. Organic Nitrogen x Mineralization Rate		17.880273
3B. Ammonium Nitrogen = $(NH_4-N) \times V$		10.616826
V= 0.5 if biosolids are left on soil surface		
V= 1.0 if biosolids are worked into the so	il	
3C. Nitrate Nitrogen (NO ₃ -N) =		8.0318667
3D. Total PAN = (Line $3A + \text{Line } 3B + \text{Line } 3$	C)=	36.528965
*Mineralization Rates:		
Treatment Method	Min	eralization
		Rates
Unstabilized Primary and Waste Activated		40%
Bio Solids		
Aerobically Digested Bioslolids		30%
Anaerobically Digested Biosolids		200/
Allaerobically Digested Blosolids		20%
Composted Biosolids Step 4. CALCULATE MAXIUM BIOSO		10%
Composted Biosolids Step 4. CALCULATE MAXIUM BIOSO ON CROP NITROGEN NEEDS (S 4A. Nitrogen amount still needed (lbs/acre/year Enter amount from Step 2C. 4B. Total PAN (lbs/ton) Enter amount from Step 3D. 4C. Biosolids Application Rate (BAR _N) (tons/a Line 4A ÷ Line 4B	SAR _N)	10% PPLICATIO 132.28 36.528965
Step 4. CALCULATE MAXIUM BIOSO ON CROP NITROGEN NEEDS (\$ 4A. Nitrogen amount still needed (lbs/acre/year Enter amount from Step 2C. 4B. Total PAN (lbs/ton) Enter amount from Step 3D. 4C. Biosolids Application Rate (BAR _N) (tons/a	SAR _N)	10% PPLICATIO 132.28 36.528965

STEP 5. CALCULATE MAXIMUM APPLICATION RATE BASED ON METALS (SAR $_{ m M}$)

	A	В	С	D	Е	F
	Cumulat			Metals	Metals	
METAL	ive	Max Loading	Metals in	Applied	Applied	Max Sludge Loading
WILTAL	Metal	Rate	Biosolids	Yearly at	Annually at	Rate (ton/ac.)
	Limits	(lbs/ac/yr)	(lbs/ton)	\underline{BAR}_{N}	<u>SAR</u> _M	Rate (toll/ac.)
	(lbs/ac)			(lbs/ac/yr)	(lb./ac./yr)	
			(Step 1)	C x SAR _N	B/C	A/C
Arsenic	36	1.8	0.012064201	0.0437	N/A	2984.04
Cadmiun	35	1.7	0.00481504	0.0174	N/A	7268.89
Chromiun	2677	134	0.041988161	0.1520	N/A	63756.07
Copper	1339	67	0.640459727	2.3193	N/A	2090.69
Lead	268	13	0.045305854	0.1641	N/A	5915.35
Mercury	15	0.76	0.000496778	0.0018	N/A	30194.60
Molybdenu	Monitor	Monitor				
Nickel	375	18.7	0.028076355	0.1017	N/A	13356.43
Selenium	89	4.5	0.012287547	0.0445	N/A	7243.11
Zinc	2500	125	1.741240965	6.3054	N/A	1435.76
Other						

Note: For each metal, if the value in column B is greater than the value in column D (B>D), the BAR_N dictates the maximum biosolids application rate. Enter N/A in column E. If the value in column B is less than value in column D (B<D), then the BAR_M dictates the maximum biosolids application rate and the value of $E = B \div C$.

STEP 6. CALCULATE THE CUMULATIVE LOADING RATE

6A. Maximum allowable cumulative biosolids loading rate	
Lowest value in Step 5, Column F (tons/acre)	1435.76
6B. Previous applications of biosolids (tons/acre)	11.97
6C. Remaining biosolids application rate to reach metal lin	nits
Line 6A - Line 6B (tons/acre)	1423.79
6D. Maximun allowable biosolids application rate	
Lowest value of Step 4C and Step 5, Column E(tons/ac	ere/year)
	3.62
6E. Years remaining to reach the maximum cumulative loa	ding
Line 6C ÷ Line 6D (years)	393

STEP 1	. CRO	PPING	PLAN	AND NU	JTRIENT NEE	DS		
Warm Se	eason I	ntended	Crop(s	N/A				
Yield	Goal:	N/A			Nitrogen R	de <mark>quirement,</mark>	in lb/	yr: N/A
		1	crop(s):	Winter Pas	sture/fescue hay			
Yield	Goal:	N/A			Nitrogen R	lequirement,	in lb/	yr: N/A
_								
	the dat	a source	e for th	e nitrogen	requirements.			
N/A								
N/A		11					+	
Nitroger			_			NT/A		
1A. Tot						N/A N/A	-	
1B. Nitr						<u> </u>	_	
1C. Nitr			ти пее	eaea		N/A		
Li	ne A - 1	Line B						
*Line 1A	= Sum o	f the nitr	ogen rec	uirement fo	or the specified yie	eld goals for th	e warn	n
season cr								
**Line 1B	= 2*NO	3-N (ppm)	(in the 0	-6" soil dep	th) + 6*NO ₃ - N(ppr	n)(in the 6-24"	soil	
depth)								
STEP 2	. CAL	CULAT	E ANI	NUAL AP	PLICATION I	RATE		
The annu	al applic	ation rat	⊥ e is base	d on the nit	rogen needs of th	e crop. It is cal	culated	${f i}$
using the								
AAR = N								
					ons per acre per 3			
			nt still 1	needed for t	the crop, in pound	ds per acre per	365	
da	y period	1.						
2A. Ent	er amo	unt fron	n Step 1	lC				N/A
2B. Con	version	1 Factor						0.0026
			n Rate i	 (gal/acre/y	/r)		+	
ac. Aill		A ÷ Line		(βαι/ αCTC/)	11)		+	N/A
	Line 2	⊢ 	ZD				+	IN/A
							+	
							+	
							1	

APPENDIX A, PART 3: PROPORTIONATE AGRONOMIC RATE								
	a if hot	h cowan	a and s	septage are apj	liad in the s	ame vear		
Complete	e II DOL	II sewag	e and s	septage are app	med in the s	ame year.		
Biosolids	<u>s:</u>							
A. Biosol	ids App	plicatior	ı Rate (tons/acre/yea	r)			N/A
B. Percen	itage of	f plant n	utrient	t supplied by t	he biosolids			
=	10		÷ 100	,				N/A
C. Multip	ole Line	A by Li	ne B (to	ons/acre/year)				N/A
Domestic	c Septa	ıge:						
A. Biosol	ids Apj	plication	n Rate (tons/acre/yea	r)			N/A
				t supplied by t				
=	10		÷ 100					N/A
C Multin	le Line	A by Li	ne R (te	ons/acre/year)				N/A
C. Multip	ne Line	Aby Li	пс в (п	ms/acrc/ycar/				IN/A
]								
TCEQ - 10451 (Application for I		mificial I 41	In of Di	lide				Page 25
Application for I	crimit for Be	anneiai Land	OSC OI DIOSO	uus	I	1	I	1 age 20

APPENDIX A AGRONOMIC RATE CALCULATIONS

Note: The maximun allowable agronomic rate for land application of Class B Biosolids is 12 tons/ acre/year

APPENDIX A, PART 1. APPLICATION RATE

STEP 1. CALCULATE QUANTY OF NUTRIENTS AND METALS IN BIOSOLIDS AND RESIDUALS POUNDS PER TON.

Nutrient	Concentration (%)**	Conversion Factor	Pounds per Ton
Total Kjeldahl Nitrogen (TKN)	4.443321406	x 20	88.86642812
Ammonium Nitrogen (NH4-N)	1.06168258	x 20	21.2336516
Nitrate Nitrogen (NO ₃ -N)	0.401593333	x 20	8.031866655
Total Phosphorus (P)	1.580648167	x 20	31.61296334
Total Potassium (K)	0.432034556	x 20	8.640691124

Pollutan	ıt	Test Results, mg/kg dry weight	Conversion Factor	Pounds per Ton
Total Arsenic	(As)	6.032100564	x 0.002	0.012064201
Total Cadmium	(Cd)	2.407519881	x 0.002	0.00481504
Total Chromium	(Cr)	20.99408038	x 0.002	0.041988161
Total Copper	(Cu)	320.2298634	x 0.002	0.640459727
Total Lead	(Pb)	22.65292717	x 0.002	0.045305854
Total Mercury	(Hg)	0.24838882	x 0.002	0.000496778
Total Molybdenum	(Mo)	6.207471953	x 0.002	0.012414944
Total Nickel	(Ni)	14.03817739	x 0.002	0.028076355
Total Selenium	(Se)	6.143773354	x 0.002	0.012287547
Total Zinc	(Zn)	870.6204825	x 0.002	1.741240965

^{**} Values from laboratory analysis (dry weight only).

Conversions: $mg/kg \div 10,000 = \%$ ppm = mg/kg

TCEQ - 10451 (5/22/2020)

STEP 2. CROPPING PLAN AND NUTRIENT NEEDS	
Warm Season Intended Crop(s): Improved Coastal Bermuda Grass	
Yield Goal: 7.2 DT/A & Grazing Nitrogen Requirement, in lb/yr:	360
Cool Season Intended Crop(s): Winter Pasture	
Yield Goal: 3.6 DT/A & Grazing Nitrogen Requirement, in lb/yr:	180
Provide the data source for the nitrogen requirement above.	100
Crop nutrient need is based on 50 lb.N/ton of forage, Texas Agricultural Extension Service.Fertilizing Summer	
Perennial Pastures, Publication L-2210.	
Nirtrogen needed by crop:	
2A. Total Nitrogen Requirement* 540	
2B. Nitrogen available in soil** 366.7	
2C. Nitrogen amount still needed Line 2A - Line 2B 173.3	
*Line 2A = Sum of the nitrogen requirement for the specified yeild goals for the way	arm
season crop and cool season crop	a1111
** Line 2B = 2*NO ₃ -N (ppm)(0-6"soil depth) + 6*NO ₃ -N(ppm)(6-24"soil depth)	
TGTO 10451 (5/09/2009)	
TCEQ - 10451 (5/22/2020) Application for Permit for Benificial Land Use of Biosolids Page 21	

Step 3. CALCULATE THE PLANT AVA PROVIDED BY THE BIOSOLID		LILINOG	
Use the TKN, NH ₄ -N, and NO ₃ -N from Step 1			
Organic Nitrogen = TKN - (NH ₄ -N + NO ₃		59.60091	
Mineralization Rate (%)*	30%		
3A. Organic Nitrogen x Mineralization Rate	17.880273		
3B. Ammonium Nitrogen = (NH ₄ -N) x V		10.616826	
V= 0.5 if biosolids are left on soil surface			
V= 1.0 if biosolids are worked into the so			
3C. Nitrate Nitrogen (NO ₃ -N) =		8.0318667	
3D. Total PAN = (Line $3A + \text{Line } 3B + \text{Line } 3$	C)=	36.528965	
*Mineralization Rates:	,		
Treatment Method	Min	eralization	
		Rates	
Unstabilized Primary and Waste Activated		40%	
Bio Solids			
Aerobically Digested Bioslolids		30%	
Anaerobically Digested Biosolids		20%	
Composted Biosolids		10%	
	LIDS A		
ON CROP NITROGEN NEEDS (4A. Nitrogen amount still needed (lbs/acre/yea Enter amount from Step 2C. 4B. Total PAN (lbs/ton) Enter amount from Step 3D. 4C. Biosolids Application Rate (BAR _N) (tons/a Line 4A ÷ Line 4B	r)	173.3 36.528965	
 4A. Nitrogen amount still needed (lbs/acre/year Enter amount from Step 2C. 4B. Total PAN (lbs/ton)	SAR _N)	<u>173.3</u> <u>36.528965</u>	

STEP 5. CALCULATE MAXIMUM APPLICATION RATE BASED ON METALS (SAR $_{ m M}$)

	A	В	C	D	Е	F
METAL	Cumulat ive Metal Limits (lbs/ac)	Max Loading Rate (lbs/ac/yr)	Metals in Biosolids (lbs/ton)	Metals Applied Yearly at BAR _N (lbs/ac/yr)	Metals Applied Annually at SAR _M (lb./ac./yr)	Max Sludge Loading Rate (ton/ac.)
			(Step 1)	C x SAR _N	B/C	A/C
Arsenic	36	1.8	0.012064201	0.0572	N/A	2984.04
Cadmium	35	1.7	0.00481504	0.0228	N/A	7268.89
Chromiun	2677	134	0.041988161	0.1992	N/A	63756.07
Copper	1339	67	0.640459727	3.0385	N/A	2090.69
Lead	268	13	0.045305854	0.2149	N/A	5915.35
Mercury	15	0.76	0.000496778	0.0024	N/A	30194.60
Molybdenu	Monitor	Monitor				
Nickel	375	18.7	0.028076355	0.1332	N/A	13356.43
Selenium	89	4.5	0.012287547	0.0583	N/A	7243.11
Zinc	2500	125	1.741240965	8.2608	N/A	1435.76
Other						

Note: For each metal, if the value in column B is greater than the value in column D (B>D), the BAR_N dictates the maximum biosolids application rate. Enter N/A in column E. If the value in column B is less than value in column D (B<D), then the BAR_M dictates the maximum biosolids application rate and the value of $E = B \div C$.

STEP 6. CALCULATE THE CUMULATIVE LOADING RATE

6A. Maximum allowable cumulative biosolids loading rate				
Lowest value in Step 5, Column F (tons/acre)	1435.76			
6B. Previous applications of biosolids (tons/acre)	11.97			
6C. Remaining biosolids application rate to reach metal lin	nits			
Line 6A - Line 6B (tons/acre)	1423.79			
6D. Maximun allowable biosolids application rate				
Lowest value of Step 4C and Step 5, Column E(tons/ac	ere/year)			
	4.74			
6E. Years remaining to reach the maximum cumulative loa	ding			
Line 6C ÷ Line 6D (years)	300			

TCEQ - 10451 (5/22/2020)

STEP 1	. CRO	PPING	PLAN	AND NU	JTRIENT NEE	DS		
Warm Se	eason I	ntended	Crop(s	N/A				
Yield	Goal:	N/A			Nitrogen R	de <mark>quirement,</mark>	in lb/	yr: N/A
		1	crop(s):	Winter Pas	sture/fescue hay			
Yield	Goal:	N/A			Nitrogen R	lequirement,	in lb/	yr: N/A
_								
	the dat	a source	e for th	e nitrogen	requirements.			
N/A								
N/A		11					+	
Nitroger			_			NT/A		
1A. Tot						N/A N/A	-	
1B. Nitr						<u> </u>	_	
1C. Nitr			ти пее	eaea		N/A		
Li	ne A - 1	Line B						
*Line 1A	= Sum o	f the nitr	ogen rec	uirement fo	or the specified yie	eld goals for th	e warn	n
season cr								
**Line 1B	= 2*NO	3-N (ppm)	(in the 0	-6" soil dep	th) + 6*NO ₃ - N(ppr	n)(in the 6-24"	soil	
depth)								
STEP 2	. CAL	CULAT	E ANI	NUAL AP	PLICATION I	RATE		
The annu	al applic	ation rat	⊥ e is base	d on the nit	rogen needs of th	e crop. It is cal	culated	${f i}$
using the								
AAR = N								
					ons per acre per 3			
			nt still 1	needed for t	the crop, in pound	ds per acre per	365	
da	y period	1.						
2A. Ent	er amo	unt fron	n Step 1	lC				N/A
2B. Con	version	1 Factor						0.0026
			n Rate i	 (gal/acre/y	/r)		+	
ac. Aill		A ÷ Line		(βαι/ αCTC/)	11)		+	N/A
	Line 2	⊢ 	ZD				+	IN/A
							+	
							+	
							1	

APPENDIX A, PART 3: PROPORTIONATE AGRONOMIC RATE								
	a if hot	h cowan	a and s	septage are apj	liad in the s	ame vear		
Complete	e II DOL	II sewag	e and s	septage are app	med in the s	ame year.		
Biosolids	<u>s:</u>							
A. Biosol	ids App	plicatior	ı Rate (tons/acre/yea	r)			N/A
B. Percen	itage of	f plant n	utrient	t supplied by t	he biosolids			
=	10		÷ 100	,				N/A
C. Multip	ole Line	A by Li	ne B (to	ons/acre/year)				N/A
Domestic	c Septa	ıge:						
A. Biosol	ids Apj	plication	n Rate (tons/acre/yea	r)			N/A
				t supplied by t				
=	10		÷ 100					N/A
C Multin	le Line	A by Li	ne R (te	ons/acre/year)				N/A
C. Multip	ne Line	Aby Li	пс в (п	ms/acrc/ycar/				IN/A
]								
TCEQ - 10451 (Application for I		mificial I 41	In of Di	lide				Page 25
Application for I	crimit for Be	anneiai Land	OSC OI DIOSO	uus	I	1	I	1 age 20

APPENDIX B PATHOGEN REDUCTION REQUIREMENTS

For each source, select the pathogen reduction alternative that will be used prior to land application of biosolids septage. Requirements for each alternative can be found in 30 TAC §312.82.

TCEQ Permit Number	Pathogen Reduction Alternative Used	Fecal Coliform Geometric Mean	Fecal Test Date*	Certification
		(cfu/gram total solids)*		Attached?** (Yes/No/NA)
WQ0011406001	Option 1: Density of Fecal Coliform	94171.43	10/20/2023	N/A
WQ0010908001	Option 1: Density of Fecal Coliform	231400.00	7/14/2023	N/A
WQ0010276001	Option 1: Density of Fecal Coliform	525491.00	10/11/2023	N/A
WQ0010607003	Option 1: Density of Fecal Coliform	131000.00	8/28/2023	N/A
WQ0011141001	Option 1: Density of Fecal Coliform	20471.43	5/24/2023	N/A
WQ0012068001	Option 1: Density of Fecal Coliform	61584.00	5/19/2023	N/A
WQ0011655001	Option 1: Density of Fecal Coliform	4030.00	8/28/2023	N/A
WQ0010616002	Option 1: Density of Fecal Coliform	62457.14		N/A
WQ0010310001	Option 1: Density of Fecal Coliform	147687.00	12/21/2023	N/A
WQ0012294001	Option 1: Density of Fecal Coliform	244571.43	5/1/2023	N/A
WQ0012140001	Option 1: Density of Fecal Coliform	35000.00	12/30/2023	N/A

APPENDIX C VECTOR ATTRACTION REDUCTION REQUIREMENTS

For each source, provide the vector attraction reduction option that will be used prior to or after land application of biosolids/septage. Requirements for each alternative can be found in 30 TAC §312.83.

TCEQ Permit	Vector Attraction Reduction Alternative Used*	Monitoring Criteria and results needed
Number		for alternative
WQ0011406001	Option 4: SOUR <=1.5mg 02/hr/g total solids at 20C (<2% solids)	Aerobically digested, 2.0% solids, SOUR=1.5 mg/g
WQ0010908001	Option 4: SOUR <=1.5mg 02/hr/g total solids at 20C (<2% solids)	Aerobically digested, 2.0% solids, SOUR=1.5 mg/g
WQ0010276001	Option 4: SOUR <=1.5mg 02/hr/g total solids at 20C (<2% solids)	Aerobically digested, 2.0% solids, SOUR=1.5 mg/g
WQ0010607003	Option 4: SOUR <=1.5mg 02/hr/g total solids at 20C (<2% solids)	Aerobically digested, 2.0% solids, SOUR=1.5 mg/g
WQ0011141001	Option 4: SOUR <=1.5mg 02/hr/g total solids at 20C (<2% solids)	Aerobically digested, 2.0% solids, SOUR=1.5 mg/g
WQ0012068001	Option 4: SOUR <=1.5mg 02/hr/g total solids at 20C (<2% solids)	Aerobically digested, 2.0% solids, SOUR=1.5 mg/g
WQ0011655001	Option 4: SOUR <=1.5mg 02/hr/g total solids at 20C (<2% solids)	Aerobically digested, 2.0% solids, SOUR=1.5 mg/g
WQ0010616002	Option 4: SOUR <=1.5mg 02/hr/g total solids at 20C (<2% solids)	Aerobically digested, 2.0% solids, SOUR=1.5 mg/g
WQ0010310001	Option 4: SOUR <=1.5mg 02/hr/g total solids at 20C (<2% solids)	Aerobically digested, 2.0% solids, SOUR=1.5 mg/g
WQ0012294001	Option 4: SOUR <=1.5mg 02/hr/g total solids at 20C (<2% solids)	Aerobically digested, 2.0% solids, SOUR=1.5 mg/g
WQ0012140001	Option 4: SOUR <=1.5mg 02/hr/g total solids at 20C (<2% solids)	Aerobically digested, 2.0% solids, SOUR=1.5 mg/g

APPENDIX B PATHOGEN REDUCTION REQUIREMENTS

For each source, select the pathogen reduction alternative that will be used prior to land application of biosolids septage. Requirements for each alternative can be found in 30 TAC §312.82.

TCEQ Permit Number	Vector Attraction Reduction Alternative Used*	
Number		for alternative

^{*}Options 1-8 are Class B biosolids treatment alternatives. Options 9-10 are onsite alternatives. Option 12 is for domestic septage only.

LABORATORY ACCREDITATION

All laboratory tests performed must meet the requirements of 30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification, unless the laboratory meets the following general exemptions from National Environmental Laboratory Accreditation Program (NELAP) certification requirements.

- The laboratory is an in-house laboratory and is:
 - o periodically inspected by the TCEQ;
 - o located in another state and is accredited or inspected by that state;
 - o performing work for another company with a unit located in the same site; or
 - o performing pro bono work for a governmental agency or charitable organization.
- The laboratory is accredited under federal law.
- The data are needed for emergency-response activities, and a laboratory accredited under the Texas Laboratory Accreditation Program is not available.
- The laboratory supplies data for which the TCEQ does not offer accreditation.

The applicant should review 30 TAC Chapter 25 for specific requirements. The following certification statement shall be signed and submitted with every application.

CERTIFICATION

I certify that all laboratory tests submitted with this application meet the requirements of 30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification.

Printed Name: Andy Drennan

Title: COO/VP

Signature:

Date: 5-8-2024

SITE OPERATOR SIGNATURE PAGE

If co-applicants are necessary, each co-applicant must submit an original, separate signature page.

Permit Number: WQ0004450000

Applicant: K-3 Resources, LP

I understand that I am responsible for operating the site described in this permit application in accordance with the requirements in 30 TAC Chapter 312, the conditions set forth in this application, and any additional conditions as required by the Texas Commission on Environmental Quality.

I certify, under penalty of law, that all information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine, imprisonment for violations, and revocation of this permit.

I further certify that I am authorized under 30 Texas Administrative Code §305.44 to sign and submit this document, and can provide documentation in proof of such authorization upon request.

Signatory Name: <u>Andy Drennan</u>	
Title: COO/VP	A
Signature (use blue ink):	Date: 5-8-2024
SUBSCRIBED AND SWORN to b	before me by the said Andy Drennan on
this <u>D</u> day ofday of	10th day of June, 20 26
(Seal)	Notary Public
LAURA A KOCIAN Notary ID #11248492 My Commission Expires June 10, 2026	County, Texas

LANDOWNER SIGNATURE PAGE

Required if the landowner is not the applicant or co-applicant. Each landowner must submit an original, separate signature page.

Permit Number: <u>WQ0004450000</u> Applicant: K-3 Resources, <u>LP</u>

I certify, as the owner of the land described in this permit application, that I have all rights and covenants to authorize the applicant to use this site for the land application of Wastewater Treatment Plant, Water Treatment (identify the type(s) of waste). I understand that 30 TAC Chapter 312 requires me to make a reasonable effort to see that the applicant complies with the requirements in 30 TAC Chapter 312, the conditions set forth in this application, and any additional conditions as required by the TCEQ. I also certify, under penalty of law, that all information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine, imprisonment for violations, and revocation of the permit.

Signatory Name: Ruth Miller Smith

Title: Landowner

Signature (use blue ink): With Miller	Smith Date: 4-17-24
SUBSCRIBED AND SWORN to before me h	by the said Ruth Miller Smith on
this 17th day of April	, 2024
My commission expires on the 22rd	day of August , 20 27
	23
(Seal)	Notary Public
BRENT BAKER MY COMMISSION EXPIRES AUGUST 22, 2027	Tyavis County, Texas

NOTARY ID: 134522060

LANDOWNER SIGNATURE PAGE

Required if the landowner is not the applicant or co-applicant. Each landowner must submit an original, separate signature page.

Permit Number: WQ0004450000

Applicant: K-3 Resources, LP

I certify, as the owner of the land described in this permit application, that I have all rights and covenants to authorize the applicant to use this site for the land application of Wastewater Treatment Plant, Water Treatment (identify the type(s) of waste). I understand that 30 TAC Chapter 312 requires me to make a reasonable effort to see that the applicant complies with the requirements in 30 TAC Chapter 312, the conditions set forth in this application, and any additional conditions as required by the TCEQ. I also certify, under penalty of law, that all information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine, imprisonment for violations, and revocation of the permit.

Signatory Name: Terry Pinkering

Title: Landowner

Signature (use blue ink): _	Terry Pulling Date: 4/18/24
SUBSCRIBED AND SWO	RN to before me by the said TEVVY PICKEVING on
this GTD day	of APVII , 20 24
My commission expires	on the 21st day of September, 2027
(Seal)	Janul Jahn Notary Public
DANIELLE N ZAHN Notary ID #1345681	County, Texas

My Commission Expires September 21, 2027 LANDOWNER SIGNATURE PAGE

Required if the landowner is not the applicant or co-applicant. Each landowner must submit an original, separate signature page.

Permit Number: WQ0004450000

Applicant: K-3 Resources, LP

I certify, as the owner of the land described in this permit application, that I have all rights and covenants to authorize the applicant to use this site for the land application of Wastewater Treatment Plant, Water Treatment (identify the type(s) of waste). I understand that 30 TAC Chapter 312 requires me to make a reasonable effort to see that the applicant complies with the requirements in 30 TAC Chapter 312, the conditions set forth in this application, and any additional conditions as required by the TCEQ. I also certify, under penalty of law, that all information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine, imprisonment for violations, and revocation of the permit.

K. and a second
Signatory Name: Miller, <u>Wanda White</u>
Title: <u>Landowner</u>
Signature (use blue ink): Nanda Ahi Date: 16, 2024
SUBSCRIBED AND SWORN to before me by the said Wanda White or
this 16th day of February, 20 24
My commission expires on the 16th day of September, 20 24
Rence D Form
Renee D Torn (Seal) Notary Public
09/16/2024 D No 125660248 Waller County

County, Texas

Attachment 1 Individual Information

Complete this attachment if the applicant or co-applicant is an individual. Make additional copies of this attachment if both are individuals.

Prefix (Mr., Ms., Miss): N/A

Full Legal Name, including middle name: N/A

Driver's License or State Identification Number: N/A

State that Issued the License or Identification Number: N/A

Date of Birth: N/A

Mailing Address: N/A

City, State, and Zip Code: N/A

Phone Number: N/A Fax Number: N/A

E-mail Address: N/A

For TCEQ Use Only	
Customer Number Regulated Entity Number Permit Number	

TECHNICAL REPORT FOR BENEFICIAL LAND USE OF CLASS B BIOSOLIDS

Note: The term "biosolids" also includes the combination of water treatment plant residuals with Class B Biosolids material.

SECTION 1. SITE HISTORY

Have biosolids or septage been previously land applied at this site?
--

⊠ Yes □ No

If Yes, provide a short narrative on the agricultural practices previously used at the site. The narrative must discuss the following elements:

- crops grown;
- tillage practices;
- previous biosolids application amount (dry tons) and rates (dry tons per acre);
 and
- previous septage application amount (gallons) and rates (gallons per acre).

Sewage sludge has been applied to all three fields for many years. The current crops that are being grown on the fields are Coastal Bermuda grass and a winter grass. The three fields are currently being used for hay cuttings and cattle grazing. The fields are tilled every couple of years as needed, to make sure all the nutrients are used as much as possible. Septage has not and will not be applied to any of the three fields. The average sludge application amount over the last five years for the entire three fields is approximately 1038.1 tons a year and the average rate is 6.32 tons an acre.

SECTION 2. PROPOSED LAND APPLICATION ACTIVITIES

Provide a short narrative on the proposed land application activities at the site. The narrative must discuss the following elements:

- crops grown;
- planting dates;
- times per year applied;
- frequency of application; and
- tillage practices.

No Crops. Hay and Grazing only. Coastal Bermuda grass and winter rye grass are dominate. The rye grass will be seeded during the fall. Coastal Bermuda grass will be cut and bailed for hay during the summer months. The fields will be used for grazing when hay is not being cut and bailed and when sludge is not being applied. Application on all three fields may be applied all year around. Perched water may become present from December to March according the soil map in Field 1. Therefore, to apply in field 1 during those months we will check the monitoring station location in the field for perched water. In fields adjacent to surface water, sludge will be incorporated into the soil as it is applied. Additional tillage will occur as needed.

SECTION 3. SOIL INFORMATION

A. Soil Properties

Complete the table below using the Physical and Chemical Properties and the Engineering Tables found in the USDA Natural Resources Conservation Service (NRCS) soils descriptions.

Map Symbol	Soil Type	Slope	рН	Depth to Bedrock* (inches)	Depth to Groundwater (feet)	Permeability (inches/hour)	Soil Depth** (inches)
НоВ	Hockley Loamy Fine Sand	1-3		>80	3-5	.2057	80
KaB	Katy Fine Sandy Loam	1-3		>80	1.5-3	.0620	80
LaD	Lake Charles Clay	3-8		>80	>6	0-0.01	80
MdB	Midfield Loam	1-3		>80	0.5-1.5	0-0.06	80
TefA	Telf Fine Sandy Loam	0-1		>80	>6	0-0.06	80
TefB	Telf Fine Sandy Loam	1-3		>80	>6	0-0.06	80

^{*} If depth to bedrock is not specified in the soil survey, use the maximum depth shown.

B. Restrictive Soil Characteristics

In the table below, identify all soils that have the following restrictive characteristics and the management practices to be used.

- Soils with at least an "occasional flooding" classification may flood between 5 to 50 times in 100 years;
- Soil permeability of >6 inches per hour; and
- Seasonal groundwater or groundwater table below the treatment zone at least:
 - 3 feet for soil with permeability of <2 inches per hour
 - 4 feet for soil with permeability of 2-6 inches per hour.

Soil Type	Restrictive Characteristic	Best Management Practices

^{**} If soil depth is less than two feet, provide rationale for using these shallow soils. The rationale should include site specific investigation results.

Soil Type	Restrictive	Best Management Practices
	Characteristic	
Hockley Loamy Fine	Perched Water	Monitoring Stations Seasonal
Sand		_
Katy Fine Sandy	Perched Water	Monitoring Stations Seasonal
Loam		

SECTION 4. WELL INFORMATION

In the table below, provide information about each well located on-site and within 500 feet of the application area. Water well information is available from the Texas Water Development Board, 512-936-0837. Oil and gas well information is available from the Texas Railroad Commission, 512-463-6851.

Well Type (Water Well, Oil Well, Injection Well)	Producing or Non-Producing	Open, Cased, or Capped*	Protective Measures**
Water well	Producing	Cased	150ft vegetative buffer
Water well	Producing	Cased	150ft vegetative buffer
Water well	Producing	Cased	150ft vegetative buffer
Water well	Producing	Cased	150ft vegetative buffer

^{*} Casing, capping, and plugging rules are located in 16 TAC Chapter 76.

- If the well is producing and cased, no action is needed.
- If the well is producing and not cased, the well must be cased or describe other protective measures.
- If the well is non-producing and cased, the well must be plugged or capped.
- If the well is non-producing and not cased, the well must be plugged.

SECTION 5. HYDROLOGIC CHARACTERISTICS

Submit information listed below, or equivalent documentation, regarding the hydrologic characteristics of the surface and groundwater at the application site and within one-quarter mile of the site.

- Aquifer identification per Texas Water Development Board Report 345
- Location of the area according to the Geologic Atlas of Texas, published by the University of Texas, Bureau of Economic Geology.
- Any feature that exhibits a direct hydrologic connection between surface and subsurface water.
- List periods of seasonal perched and/or high water table, if any.

Attachment Number: 21

^{**} The following protective measures are required prior to initial biosolids/septage application:

8. Hydrologic Characteristics Information.

- a. According to the TWDB Report 345, the site is located in the area of the Gulf Coast Aquifer as it was in the last permit renewal. (See attached Description and Map from TWDB Report 345).
- b. According to the Geologic Atlas of Texas, the site is still located in the area of the Lissie formation and has not changed since the last permit renewal.
- c. Other than the four wells listed on page 20 of there is no direct hydrologic connection between the surface and subsurface within ½ mile of the site.
- d. As stated page 19, the Midfield Loam soil series has a seasonal perched water table a 1.0 foot depth.
- e. Perched Water monitoring stations are located in KaB (Katy fine sandy loam) and TefA (Telf fine sandy loam). There are currently no other monitoring stations.

Seasonally perched water, Carl Miller Farms 710084

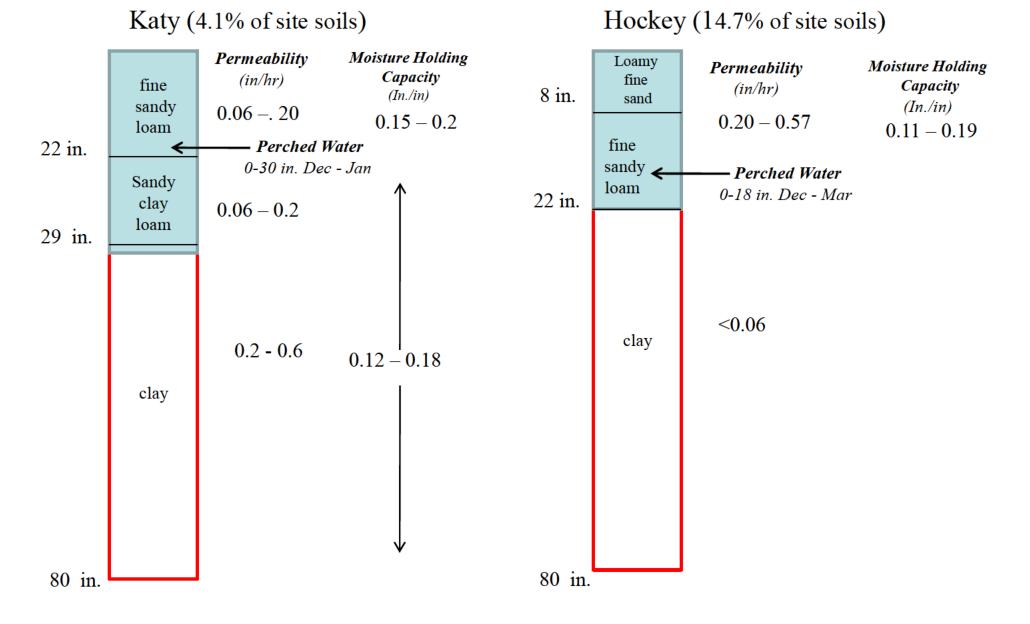
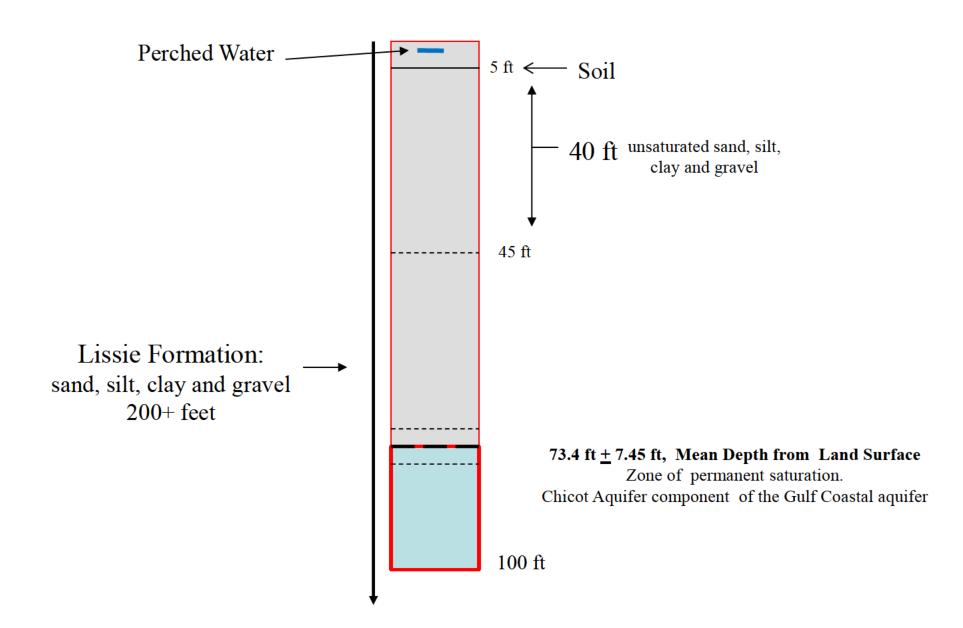



Figure 2. Hydro geologic conditions, Carl Miller Farms 710084 Waller, County, TX

Table 1 Pollutant and Nutrient Concentrations in Biosolids and Water Treatment Residuals (if applicable)

Complete this table for each source of biosolids and residuals.

Facility Name: Click here to enter text.

TCEQ Authorization Number: Click here to enter text.

POLLUTANT/METAL ANALYSIS

Pollutant	Maximum Concentration, mg/kg dry weight	Test Results, mg/kg dry weight	Sample Date	Detection Level for Analysis	Sample Method
Arsenic (As)	75				
Cadmium (Cd)	85				
Chromium (Cr)	3000				
Copper (Cu)	4300				
Lead (Pb)	840				
Mercury (Hg)	57				
Molybdenum (Mo)	75				
Nickel (Ni)	420				
Selenium (Se)	100				
Zinc (Zn)	7500				
PCB (ppm)	50.0 ppm				

NUTRIENT ANALYSIS

Nutrient	Concentration (%)	Sample Date	Detection Level for Analysis	Sample Method
Total Kjeldahl Nitrogen (TKN)				
Ammonium Nitrogen (NH4-N)				
Nitrate Nitrogen (NO ₃ -N)				
Total Phosphorus (P)				
Total Potassium (K)				

TABLE 2

Volume Weighted Average (Mean) of Nutrient and Pollutant Concentration

Complete this table if more than one source is land applied at the site.

Directions:

- 1. For each pollutant, multiply the Pollutant Concentrations from Table 1 by the estimated number of dry tons you expect to apply from each facility.
- 2. Sum the individual columns. Enter results in last row of the table.
- 3. Divide the sum of each column by the dry tons sum (bottom of second column). Enter number in the appropriate Volume Weighted Average Box (row below table).
- 4. Use these final results to complete Appendix A, Step 1.

TCEQ Auth. Number	Est. Dry Tons*	As	Cd	Cr	Cu	Pb	Hg	Мо	Ni	Se	Zn	TKN	NH ₄ -	NO ₃ -	P	K
Sum																
Volume Weighted Average																

^{*}Total estimated dry tons to be land applied from the source facility.

APPENDIX A AGRONOMIC RATE CALCULATIONS

Note: The maximum allowable agronomic rate for land application of Class B Biosolids is 12 tons/acre/year.

APPENDIX A, PART 1. APPLICATION RATE

STEP 1. CALCULATE QUANTITY OF NUTRIENTS AND METALS IN BIOSOLIDS AND RESIDUALS IN LBS/TON

Nutrient	Concentration (%)**	Conversion Factor	Pounds per Ton
Total Kjeldahl Nitrogen (TKN)		x 20	
Ammonium Nitrogen (NH4-N)		x 20	
Nitrate Nitrogen (NO3-N)		x 20	
Total Phosphorus (P)		x 20	
Total Potassium (K)		x 20	

Pollutant	Test Results, mg/kg dry weight	Conversion Factor	Pounds per Ton
Total Arsenic (As)		x 0.002	
Total Cadmium (Cd)		x 0.002	
Total Chromium (Cr)		x 0.002	
Total Copper (Cu)		x 0.002	
Total Lead (Pb)		x 0.002	
Total Mercury (Hg)		x 0.002	
Total Molybdenum (Mo)		x 0.002	
Total Nickel (Ni)		x 0.002	
Total Selenium (Se)		x 0.002	
Total Zinc (Zn)		x 0.002	

^{**}Values from laboratory analysis (dry weight only).

Conversions:

 $mg/kg \div 10,000 = \%$

ppm = mg/kg

STEP 2. CROPPING PLAN AND NUTRIENT NEEDS

Warm Season Intended Crop(s): Click here to enter text.

Yield Goal: <u>Click here to enter text.</u> Nitrogen Requirement, in lb/yr: <u>Click here to enter text.</u>

Cool Season Intended Crop(s): Click here to enter text.

Yield Goal: <u>Click here to enter text.</u> Nitrogen Requirement, in lb/yr: <u>Click here to enter text.</u>

Provide the data source for the nitrogen requirements above.

Click here to enter text.

Nitrogen needed by crop:

2A. Total Nitrogen Requirement* Click here to enter text.

2B. Nitrogen available in soil** Click here to enter text.

2C. Nitrogen amount still needed

Line 2A – Line 2B Click here to enter text.

^{*}Line 2A = Sum of the nitrogen requirement for the specified yield goals for the warm season crop and cool season crop

^{**}Line $2B = 2*NO_3-N$ (ppm)(in the 0-6" soil depth) + $6*NO_3-N$ (ppm)(in the 6-24" soil depth)

STEP 3. CALCULATE THE PLANT AVAILABLE NITROGEN (PAN) PROVIDED BY THE BIOSOLIDS AND RESIDUALS

Use the TKN, NH₄-N, and NO₃-N from Step 1.

Organic Nitrogen = $TKN - (NH_4-N) - (NO_3-N)$ Click here to enter text.

Mineralization Rate (%) * Click here to enter text.

3A. Organic Nitrogen x Mineralization Rate Click here to enter text.

3B. Ammonium Nitrogen = $(NH_4-N) \times V$ Click here to enter text.

V = 0.5 if biosolids are left on soil surface

V = 1.0 if biosolids are worked into the soil

3C. Nitrate Nitrogen (NO₃-N) Click here to enter text.

3D. Total PAN = (Line 3A + Line 3B + Line 3C)= Click here to enter text.

^{*}Mineralization Rates:

Treatment Method	Mineralization
	Rates
Unstabilized Primary and Waste Activated	40 %
Biosolids	
Aerobically Digested Biosolids	30 %
Anaerobically Digested Biosolids	20 %
Composted Biosolids	10 %

STEP 4. CALCULATE MAXIMUM BIOSOLIDS APPLICATION RATES BASED ON CROP NITROGEN NEEDS (SAR $_{\rm N}$)

4A. Nitrogen amount still needed (lbs/acre/year)

Enter amount from Step 2C. <u>Click here to enter text.</u>

4B. Total PAN (lbs/ton)

Enter amount from Step 3D. Click here to enter text.

4C. Biosolids Application Rate (BAR_N) (tons/acre/year)

Line 4A ÷ Line 4B <u>Click here to enter text.</u>

STEP 5. CALCULATE MAXIMUM APPLICATION RATE BASED ON METALS (SAR_M)

METAL	A Cumulative Metal Limits (lbs/ac)	B Max Loading Rate (lbs/ac/yr)	C Metals In Biosolids (lbs/ton) (Step 1)	D Metals Applied Yearly at <u>BAR</u> (lbs/acre/yr) (C x SAR _N)	E Biosolids Applied Yearly at BAR _M (tons/acre/yr) (B ÷ C)	F Max Loading Rate (tons/acre) (A ÷ C)
Arsenic	36	1.8				
Cadmium	35	1.7				
Chromium	2677	134				
Copper	1339	67				
Lead	268	13				
Mercury	15	0.76				
Molybdenum	Monitor	Monitor				
Nickel	375	18.7				
Selenium	89	4.5				
Zinc	2500	125				
Other						

Note: For each metal, if the value in column B is greater than the value in column D (B>D), the BAR_N dictates the maximum biosolids application rate. Enter N/A in column E. If the value in column B is less than the value in column D (B<D), then the BAR_M dictates the maximum biosolids application rate and the value of $E = B \div C$.

STEP 6. CALCULATE THE CUMULATIVE LOADING RATE

6A. Maximum allowable cumulative biosolids loading rate

Lowest value in Step 5, Column F (tons/acre) Click here to enter text.

6B. Previous applications of biosolids (tons/acre) Click here to enter text.

6C. Remaining biosolids application rate to reach metal limits

Line 6A – Line 6B (tons/acre) <u>Click here to enter text.</u>

6D. Maximum allowable biosolids application rate

Lowest value of Step 4C and Step 5, Column E (tons/acre/year)

Click here to enter text.

6E. Years remaining to reach the maximum cumulative loading

Line 6C ÷ Line 6D (years) <u>Click here to enter text.</u>

APPENDIX A, PART 2: SEPTAGE APPLICATION RATE

Complete Part 2 and 3 if sewage and septage are both applied at the site.

STEP 1. CROPPING PLAN AND NUTRIENT NEEDS

Warm Season Intended Crop(s): Click here to enter text.

Yield Goal: <u>Click here to enter text.</u> Nitrogen Requirement, in lb/yr: <u>Click here to enter text.</u>

Cool Season Intended Crop(s): <u>Click here to enter text.</u>

Yield Goal: <u>Click here to enter text.</u> Nitrogen Requirement, in lb/yr: <u>Click here to enter text.</u>

Provide the data source for the nitrogen requirements.

Click here to enter text.

Nitrogen needed by crop:

1A. Total Nitrogen Requirement*1B. Nitrogen available in soil**Click here to enter text.

1C. Nitrogen amount still needed

Line A - Line B <u>Click here to enter text.</u>

STEP 2. CALCULATE ANNUAL APPLICATION RATE

The annual application rate is based on the nitrogen needs of the crop. It is calculated using the following equation:

 $AAR = N \div 0.0026$

AAR = Annual application rate, in gallons per acre per 365 day period.

N = Nitrogen amount still needed for the crop, in pounds per acre per 365 day period.

2A. Enter amount from Step 1C Click here to enter text.

2B. Conversion Factor 0.0026

2C. Annual Application Rate (gal/acre/yr)

Line 2A ÷ Line 2B Click here to enter text.

^{*}Line 1A = Sum of the nitrogen requirement for the specified yield goals for the warm season crop and cool season crop

^{**}Line $1B = 2*NO_3-N$ (ppm)(in the 0-6" soil depth) + $6*NO_3-N$ (ppm)(in the 6-24" soil depth)

APPENDIX A, PART 3: PROPORTIONATE AGRONOMIC RATE

Complete if both sewage and septage are applied in the same year.

Biosolids:

A. Biosolids Application Rate (tons/acre/year) Click here to enter text.

B. Percentage of plant nutrient supplied by the biosolids

= <u>Click here to enter text.</u> ÷ 100 <u>Click here to enter text.</u>

C. Multiple Line A by Line B (tons/acre/year) Click here to enter text.

Domestic Septage:

A. Biosolids Application Rate (tons/acre/year) Click here to enter text.

B. Percentage of plant nutrient supplied by the biosolids

= Click here to enter text. ÷ 100 Click here to enter text.

C. Multiple Line A by Line B (tons/acre/year) Click here to enter text.

APPENDIX B PATHOGEN REDUCTION REQUIREMENTS

For each source, select the pathogen reduction alternative that will be used prior to land application of biosolids septage. Requirements for each alternative can be found in 30 TAC §312.82.

TCEQ Permit	Pathogen Reduction Alternative Used	Fecal Coliform	Fecal Test	Is PSRP
Number		Geometric Mean	Date*	Certification
		(cfu/gram total		Attached?**
		solids)*		(Yes/No/NA)
	Option 1: Density of Fecal Coliform			N/A
	Option 1: Density of Fecal Coliform			N/A
	Option 1: Density of Fecal Coliform			N/A
	Option 1: Density of Fecal Coliform			N/A
	Option 1: Density of Fecal Coliform			N/A
	Option 1: Density of Fecal Coliform			N/A

^{*}Applicable to Option 1 only.

If Other is selected as the Alternative Used, please explain:

^{**}Applicable to Option 2a - f.

APPENDIX B PATHOGEN REDUCTION REQUIREMENTS

For each source, select the pathogen reduction alternative that will be used prior to land application of biosolids septage. Requirements for each alternative can be found in 30 TAC §312.82.

TCEQ Permit Number	Pathogen Reduction Alternative Used	Fecal Coliform Geometric Mean (cfu/gram total solids)*	Fecal Test Date*	Is PSRP Certification Attached?** (Yes/No/NA)
Example WQ11280-001	Option 1: Density of Fecal Coliform	300,000 cfu/g	12/2/98	NA
	Choose an item.			
	Choose an item.			
	Choose an item.			
	Choose an item.			
	Choose an item.			
	Choose an item.			
	Choose an item.			
	Choose an item.			
	Choose an item.			
	Choose an item.			
	Choose an item.			

^{*}Applicable to Option 1 only.

If Other is selected as the Alternative Used, please explain: Click here to enter text.

^{**}Applicable to Option 2a - f.

APPENDIX C VECTOR ATTRACTION REDUCTION REQUIREMENTS

For each source, provide the vector attraction reduction option that will be used prior to or after land application of biosolids/septage. Requirements for each alternative can be found in 30 TAC §312.83.

TCEQ Permit	Vector Attraction Reduction Alternative Used*	Monitoring Criteria and results needed
Number		for alternative
Example	Option 10: Incorporate within 6 hrs	Visual inspection of area after tilling
WQ11280-001		
Example	Option 4: SOUR \leq 1.5 mg 02/hr/g total solids at 20C (\leq 2%	Aerobically digested, 2.0% solids, SOUR=1.3 mg/g
WQ13450-003	solids)	
	Choose an item.	

^{*}Options 1-8 are Class B biosolids treatment alternatives. Options 9-10 are onsite alternatives. Option 12 is for domestic septage only.

APPENDIX D ON-SITE STORAGE

If on-site storage will occur at the site, this Appendix must be completed in its entirety. On-site storage does not include staging of biosolids or septage for up to seven (7) days prior to applying it. On-site storage cannot exceed the 90-day maximum per 30 TAC §312.50 unless properly authorized for each instance. Construction of the storage area cannot begin until written authorization for this action is received from the TCEQ. Materials cannot be treated without proper authorization from the TCEQ.

A. Provide a complete description of operational plans for the temporary storage, including all steps to be taken to control odors, vectors and other nuisance conditions.

Click here to enter text.

- **B.** The location of the temporary storage area(s) must be accurately shown on the USGS topographic map submitted with the application, including all main features of the storage area(s) (e.g. berms, tanks, pads, liners, storm water retention, etc.).
- **C.** Provide a copy of the liner and storage tank certification as per 30 TAC §312.50(a)(4) or 312.50(a)(8).

Attachment Number: Click here to enter text.

- **D.** Describe the proposed spill prevention and cleanup methods. Click here to enter text.
- **E.** Provide a certification that the berm(s) will hold the required volume(s) without discharging as per 30 TAC §312.50 (a)(7).

Attachment Number: Click here to enter text.

- **F.** Describe the method for stormwater runoff collection and disposal. Click here to enter text.
- **G.** Describe methods to be used to ensure no loads of biosolids remain at the temporary storage site for longer than 90 days, including how exceptions to this restriction will be requested (as provided by 30 TAC §312.50), when needed. Click here to enter text.

INSTRUCTIONS FOR PERMIT FOR BENEFICIAL LAND USE OF CLASS B BIOSOLIDS

GENERAL INFORMATION

Purpose of the Application

This form is to be used to:

- Permit a new site for beneficial land use of Class B biosolids:
- Submit a Major Amendment to change acreage or to make any other substantive change to a permitted site for beneficial land use of Class B biosolids; or
- Renew an existing permitted site for beneficial land use of Class B biosolids.

NOTE: If the land application site is within or adjacent to a publicly-owned wastewater treatment plant (WWTP) and the site is owned or operated by the WWTP, the WWTP's existing wastewater discharge permit may be amended to authorize land application of Class B biosolids. To amend the wastewater discharge permit, complete and submit this application form and the Domestic Wastewater Permit Application (TCEO Form 10054).

Who Should Apply?

This application must be submitted by the site operator. If there is more than one operator, then a co-applicant is required.

When Is The Application Submitted?

For new and amendment applications, the completed application must be submitted at least 180 days before the proposed date of land application. For renewal applications, the completed application must be submitted at least 180 days before the expiration date of the current registration.

Where to Send the Application Form

One original and three copies of the application, including attachments, must be provided to the address below:

Regular U.S. Mail:

TCEQ ARP Team, MC 148 PO Box 13087 Austin TX 78711-3087

Express Mail or Hand Delivery:

TCEQ ARP Team, MC 148 Building F Room 2101

TCEQ Contact List

Permit Information and Application Forms: 512-239-4671

Technical Information, Land ApplicationTeam,

Attn: Biosolids Group: 512-239-4671 Environmental Law Division: 512-239-0600

Copies of records on file with the TCEQ may be obtained for a minimal fee from the Records Management Office at 512-239-2900.

INSTRUCTIONS FOR FILLING OUT THE APPLICATION FORM

Section 1. Type of Application

Select the appropriate type of application.

For amendment applications, describe the proposed changes.

For existing permits, provide the TCEQ permit number.

Section 2. Application Fee

The permit application fee varies from \$1,000 to \$5,000, based on the quantity of biosolids to be applied annually under the permit.

Quantity of Biosolids Applied	Application
Annually	Fee
2,000 dry tons or less	\$1,000
2,001 to 5,000 dry tons	\$2,000
5,001 to 10,000 dry tons	\$3,000
10,001 to 20,000 dry tons	\$4,000
20,001 dry tons or more	\$5,000

Application fees must be paid by check or money order made payable to the Texas Commission on Environmental Quality. Fees are to be sent under separate cover making reference to the type of application, name of applicant, and permit number of existing permit, and mailed to:

TCEQ Revenues Section (MC 214) P.O. Box 13088 Austin, Texas 78711-3088

To verify receipt of payment or any other questions you may have regarding payment of fees to the TCEQ, you may call the Revenues Section, Cashiers Office at (512) 239-0357.

Section 3. Applicant Information

Provide the full legal name of the site operator.

If the site operator is an existing TCEQ customer, provide the customer number (CN) for the site operator. The Customer Number is available at the following website: http://www15.tceq.texas.gov/crpub/. If the site operator is not an existing TCEQ customer, leave blank.

Provide the following contact information for the site operator: mailing address, phone number, fax number, and email address.

Section 4. Co-Applicant Information

If there is more than one operator, then a co-applicant is required. Provide the full legal name of the co-applicant.

If the co-applicant is an existing TCEQ customer, provide the customer number (CN) for the co-applicant. The Customer Number is available at the following website: http://www15.tceq.texas.gov/crpub/. If the co-applicant is not an existing TCEQ customer, leave blank.

Provide the following contact information for the co-applicant: mailing address, phone number, fax number, and email address.

Explain the need for a co-applicant.

Section 5. Application Contact Information

Provide the name and contact information for the person that TCEQ will contact if additional information is needed about this application. Provide one contact for the operator and one contact for the landowner.

Section 6. Permit Contact Information

Provide the name and contact information for two individuals that TCEQ can contact if additional information is needed during the term of the permit.

Section 7. Billing Contact Information

Provide the name and contact information for the person that TCEQ can contact regarding the annual fee invoices.

Section 8. Reporting Contact Information

Provide the name and contact information for the person that TCEQ can contact regarding the annual biosolids land application reports.

Section 9. Notice Information

A. Individual publishing the notices

Provide the name, company name, mailing address, telephone number and fax number of the person that will publish the public notices required during the processing of the application. Only one name can be provided. This individual will be contacted to publish the required public notices in a newspaper of the largest general circulation in the county where the facility is/will be located. This person must be available during the application processing since the first public notice. The "Notice of Receipt of Application and Intent to Obtain a Water Quality Permit" must be published within 30 days of the application being declared Administratively Complete.

B. Method of Receiving Notice Package

Provide the method of receiving the required public notice information. When the application is declared Administratively Complete, the notice package will be sent via the method selected. The notice package includes the TCEQ declaration of completeness, a notice ready for publication, instructions for publishing the notice, a publication affidavit, and a public notice verification form.

C. Contact Person in the Notice

Provide the person's name, company name, mailing address, telephone number and fax number of the one individual that will be identified as the notice contact in the two public notices that are published as part of the permitting process. This individual may be contacted by the public to answer questions about all aspects of the permit application.

D. Public Viewing Location

Provide the name and physical address for the public place where the complete application, draft permit, and Technical Summary/Fact Sheet will be made available for viewing and copying by the general public. Please verify with the proper authority they will make the application available for public viewing and copying. The address must be a physical address. Post office box addresses are not acceptable. The public place must be located within the county in which the facility is/will be located. If the facility is located in more than one county, a public viewing place for each county must be provided.

E. Bilingual Notice Requirement

Bilingual notice may be required for new, major amendment, and renewal applications if an elementary school or middle school nearest to the facility is required to make a bilingual education program available to qualifying students.

The applicant is required to call the bilingual/ESL coordinator at the nearest elementary and middle schools to obtain answers to questions 1. – 4. These questions will determine if an alternative language notice is required.

If it is determined that a bilingual notice is required, the applicant is responsible for ensuring that the publication in the alternate language is complete and accurate in that language.

F. Public Involvement Plan Form

Complete and attach one Public Involvement Plan (PIP) Form (TCEQ Form 20960) for each application for a new permit or major amendment to a permit. This form is not required for renewal or minor amendment applications.

Section 10. Regulated Entity (Site) Information

- **A.** Provide the name of the site as known by the public in the area where the site is located.
- **B.** If the site is currently regulated by TCEQ, provide the regulated entity reference number (RN) for the site. The RN is available at the following website: http://www15.tceq.texas.gov/crpub/. If the site is not currently regulated by TCEQ, leave blank.
- **C.** If the location in the existing permit is not correct or if this is a new site, provide the physical address of the site. If a physical address is not available, provide a location description.
- **D.** Provide the county in which the site is located.
- **E.** Provide the latitude and longitude for the site.
- **F.** Provide the name and contact information for the landowner of the application site.
- **G.** Provide the name and contact information for the county judge in each county where the site is located. Attach an additional sheet if the site is located in more than one county.

Section 11. Land Application Information

If the land application site is within or adjacent to a publicly-owned wastewater treatment plant (WWTP) and the site is owned or operated by the WWTP, the WWTP's existing wastewater discharge permit may be amended to authorize land application of biosolids. To amend the wastewater discharge permit, complete and submit this application form and the Domestic Wastewater Permit Application (TCEQ Form 10054).

- **A.** Provide the anticipated date that you plan to start applications on this site. This date must be at least 330 days from the date TCEQ receives this application form.
- **B.** Indicate by a checkmark if the beneficial land use area is within the city limits, within the extraterritorial jurisdiction, or outside the extraterritorial jurisdiction of a city. Provide the city or municipality name in the space provided.
- C. Identify the types of wastes that will be land applied at this site.
- **D.** For each source, provide the facility name, TCEQ authorization number, and the location. Add additional rows to the table, if necessary.
- **E.** Provide the total acreage of the property where the application site is located. Include the application area and the buffer zones.
- **F.** Provide the total acreage where biosolids may be applied. Do not include buffer zones.

NOTE: A minimum buffer of 500 feet is required for water wells and surface water

when land application of Class B Biosolids occurs in a county that borders the Gulf of Mexico (Aransas, Brazoria, Calhoun, Cameron, Chambers, Galveston, Jefferson, Kenedy, Kleberg, Matagorda, Nueces, San Patricio, and Willacy Counties).

Section 12. Miscellaneous Information

- **A.** Provide the name of each person that was previously employed by TCEQ and who was paid for services regarding this application.
- **B.** Identify if the application site is located on Indian lands. If the answer is yes, TCEQ does not have jurisdiction to process this application. Do not send this application to TCEQ. Contact the Land Application Team, Attn: Biosolids Group at 512-239-4671.
- C. Identify if any permanent school fund land is affected by this application. If yes, provide the location and potential impacts on the school fund land.
- **D.** Indicate if the site operator or co-applicant(s) owe fees or penalties to TCEQ. If yes, provide the amount owed, the type of fee or penalty, and the account number for fees or the TCEQ Docket number for penalties.

The following TCEQ website will help you determine if you owe any fees or penalties to the TCEQ and how to make a payment: https://www.tceq.texas.gov/agency/fees/delin/index.html. For questions about delinquent fees and penalties, contact the Financial Administration Division, Revenue Section, at 512-239-0354.

NOTE: TCEQ will not declare any application administratively complete or issue a permit if the applicant or co-applicant is delinquent on a fee or penalty.

Section 13. Affected Landowner Information

- **A.** Attach a landowner map or drawing that includes a scale, the applicant's property boundaries, the application area boundaries, the approximate property boundaries of all landowners located within 1/4 mile of the property boundaries. Assign a letter or number to each landowner.
- **B.** Attach a list of landowners that live on land within 1/4 mile of the property boundaries. The list must include the landowner's name and address, and include a cross-reference to the letter or number identified on the landowner map. The applicant may choose to attach a list of all landowners within 1/4 mile of the property boundary, regardless of whether the landowner lives on the land.
- **C.** Identify the format of the landowners list.
- **D.** Provide the source of the landowner's names and mailing addresses. Sources may include City or County Tax Records.

Section 14. Insurance Information

This information is <u>not</u> required for an applicant that is a political subdivision (e.g., city, county, state agency, water district, etc.).

Note: The insurance policies required by this section must be maintained for the duration of the permit which is normally issued for a term of five years.

TCEQ -10451 (3/24/2022)

A. Commercial Liability Insurance

Attach a copy of the certificate of insurance in regard to commercial liability, reflecting total coverage of not less than \$3 million per occurrence with an annual aggregate of not less than \$3 million, exclusive of legal defense costs. The certificate must be worded identically to the wording specified in 30 TAC §37.9145 (relating to Certificate of Insurance for Commercial Liability) or an endorsement worded identically to the wording specified in 30 TAC §37.9150 (relating to Endorsement for Commercial Liability). The certificate of insurance must be issued by an insurance company authorized to transact business in the State of Texas and that has a rating of A- or better by A.M. Best Company.

B. Environmental Impairment Insurance

Attach a copy of the certificate of insurance in regard to environmental impairment, reflecting total coverage of not less than \$3 million per occurrence with a policy limit of not less than \$3 million, exclusive of legal defense costs. The certificate must be worded identically to the wording specified in 30 TAC §37.9155 (relating to Certificate of Insurance for Environmental Impairment). The certificate of insurance must be issued by an insurance company authorized to transact business in the State of Texas and that has a rating of A- or better by A.M. Best Company.

Section 15. Maps and Attachments

- **A.** Complete and submit the TCEQ Core Data Form (TCEQ-10400).
- **B.** Complete and attach one Public Involvement Plan (PIP) Form (TCEQ Form 20960) for each application for a new permit or major amendment to a permit.
- **C.** Submit an original General Highway (County) Map showing all boundaries of the site area and all areas within 1000 feet of the area boundaries. These can be ordered from the Texas Department of Transportation Map Sales from the following web site: http://www.txdot.gov/travel/county_grid_search.htm
- **D.** Submit a full-sized USGS topographic map (1:24,000 scale). These are available by contacting the Texas Natural Resource Information System at 512-463-8337. The map must show:
 - the boundaries of the property(s) being permitted;
 - the boundaries of the application area within the property boundaries;
 - all areas within ¼ mile of the site (if the site is on the border of the USGS map, the adjoining map is also required); and
 - the location of all wells, springs, public water supply intakes, water treatment plants, potable water storage facilities, and wastewater treatment plants onsite and within ¼ mile of the application area (including off-site).

If the land application unit boundaries cannot fit or are too small to depict on the required USGS topographic map, a zoomed-in version must be submitted on a separate 81/2 X 12 map or larger. This map may be a zoomed-in version of the topographic map or an accurately self-generated map.

E. Submit a legible copy of a USDA Natural Resources Conservation Service (NRCS) Soil Map that shows the approximate application area boundaries, the soil legend,

Page 7

- necessary interpretative information, and the location of each grab sample of the composite soil sample(s) taken for analyses. If the specific county is not mapped, have a soil scientist identify the soils.
- **F.** Submit a copy of the Federal Emergency Management Agency (FEMA) Map that shows the approximate application area boundaries, the surrounding area within ¼ mile of the property boundaries, and the appropriate legend.
- **G.** Submit a copy of the nutrient management plan that has been prepared by a certified nutrient management specialist, in accordance with the practice standards of the USDA-NRCS.
- **H.** Submit a copy of the TCEQ transporters registration approval documents.
- I. Attach the soil laboratory analysis for the application area. Additional information about collecting and analyzing the soil samples is available at the end of these instructions.
- **J.** Attach a laboratory analysis for each source. Additional information about testing is available at the end of these instructions.
- **K.** Metal and Nutrient Concentrations (Table 1). Use the laboratory analyses to complete Table 1 for each source.
- **L.** Volume Weighted Averages of Metal and Nutrient Concentrations (Table 2). If more than one source of is land applied, complete Table 2.
- **M.** Agronomic Rate Calculations (Appendix A). Determine the agronomic application rate by completing and attaching Appendix A.
- **N.** Pathogen Reduction Requirements (Appendix B). Identify the pathogen reduction alternative for each source by completing and attaching Appendix B.
- **O.** Vector Attraction Reduction Requirements (Appendix C). Identify the vector attraction reduction alternative for each source by completing and attaching Appendix C.
- **P.** On-Site Storage (Appendix D). If on-site storage will occur at the site, complete and attach Appendix D.

Signature Page

A separate signature page must be provided for the site operator, each co-applicant, and the landowner of the application site (if the landowner is different from the site operator and co-applicant). The signature page must bear an original signature and the seal of a notary public. The date signed by the applicant must be the same as the date notarized. The signature page will not be acceptable if the dates are different.

In accordance with 30 Texas Administrative Code §305.44 relating to Signatories to Applications, all applications shall be signed as follows:

For a corporation, the application shall be signed by a responsible corporate officer. For purposes of this paragraph, a responsible corporate officer means a president, secretary, treasurer, or vice-president of the corporation in charge of a principal business function, or any other person who performs similar policy or decision-making

functions for the corporation; or the manager of one or more manufacturing, production, or operating facilities employing more than 250 persons or having gross annual sales or expenditures exceeding \$25 million (in second-quarter 1980 dollars), if authority to sign documents has been assigned or delegated to the manager in accordance with corporate procedures. Corporate procedures governing authority to sign permit or post-closure order applications may provide for assignment or delegation to applicable corporate positions rather than to specific individuals.

For a partnership or sole proprietorship, the application shall be signed by a general partner or the proprietor, respectively.

For a municipality, state, federal, or other public agency, the application shall be signed by either a principal executive officer or a ranking elected official. For purposes of this paragraph, a principal executive officer of a federal agency includes the chief executive officer of the agency, or a senior executive officer having responsibility for the overall operations of a principal geographic unit of the agency (e.g., regional administrator of the EPA).

SOIL TESTING INFORMATION

Soil samples shall be taken prior to any application of commercial fertilizer. Do not use a galvanized container as this could give a false reading on zinc. Samples will need to be taken within the same 45 day time-frame each year, or by an approved sampling plan and analyzed within 30 days of sample collection. The initial soil sample for application approval may be taken whenever necessary.

Obtain one composite sample for each soil depth per 80 acres and per uniform soil type (soils with the same characteristics and texture) within the 80 acres, or per approved soil sampling plan. Composite samples shall be comprised of 10 - 15 random sample cores taken from each of the following soil depth zones: 0-6 inches and 6-24 inches.

Soil samples shall be submitted to a soil testing laboratory along with a previous crop history of the site, intended crop growth and yield goal. Soil reports shall include fertilizer recommendations for the crop yield goal. Samples shall be analyzed for the parameters below:

Parameter (7)		0-6"	6 -24"
Nitrate Nitrogen (NO3-N, mg/kg)	(1)	X	X
Ammonium Nitrogen (NH4-N, mg/kg)	(1)	X	X
Total Kjeldahl Nitrogen (TKN, mg/kg)	(2)	X	X
Phosphorus (plant available, mg/kg)	(3)	X	X
Potassium (plant available, mg/kg)	(3)	X	X
Sodium (plant available, mg/kg)	(3)	X	X
Magnesium (plant available, mg/kg)	(3)	X	X
Calcium (plant available, mg/kg)	(3)	X	X
Electrical Conductivity	(4)	X	X
Soil Water pH (S.U.)	(5)	X	X
Total Arsenic (mg/kg)	(6)	X	N/A
Total Cadmium (mg/kg)	(6)	X	N/A
Total Chromium (mg/kg)	(6)	X	N/A
Total Copper (mg/kg)	(6)	X	N/A
Total Lead (mg/kg)	(6)	X	N/A
Total Mercury (mg/kg)	(6)	X	N/A
Total Molybdenum (mg/kg)	(6)	X	N/A
Total Nickel (mg/kg)	(6)	X	N/A
Total Selenium (mg/kg)	(6)	X	N/A
Total Zinc (mg/kg)	(6)	X	N/A

- 1. Determined in a 1 N KCl soil extract (http://soiltesting.tamu.edu/webpages/swftlmethods1209.html).
- 2. Determined by Kjeldahl digestion or an equivalent accepted procedure. Methods that rely on Mercury as a catalyst are not acceptable.
- 3. Mehlich III extraction (yields plant-available concentrations) with inductively coupled plasma.
- 4. Electrical Conductivity (EC) determine from extract of 2:1 (volume/volume) water/soil mixture and expressed in dS/m (same as mmho/cm).
- 5. Soil pH must be analyzed by the electrometric method in Test Methods for Evaluating Solid Waste, EPA SW-846, 40 CFR 260.11; method 9045C determine from extract of 2:1 (volume/volume) water/soil mixture.
- Analysis for metals in soil must be performed according to methods outlined in Test Methods for Evaluating Solid Waste, EPA SW-846; method 3050.
- 7. All parameters must be analyzed on a dry weight basis, except Soil Water pH and Electrical Conductivity.

Please be advised that the maximum acceptable soil concentrations of metals are listed below. These rates are based on the maximum cumulative loading rates found in 30 TAC §312.43 Table 2- Cumulative Metal Loading Rate.

Metal	Soil Concentration Limit (mg/kg)
Total Arsenic	20.5
Total Cadmium	19.5
Total Chromium	1500
Total Copper	750
Total Lead	150
Total Mercury	8.5
Total Molybdenum	Monitor
Total Nickel	210
Total Selenium	50
Total Zinc	1,400

BIOSOLIDS AND RESIDUALS TESTING INFORMATION

Testing Parameters (dry weight basis) for Class B Biosolids and Water Treatment Plant Residuals

Nutrients (%)	Metals (mg/kg)	Other
Total Kjeldahl Nitrogen	Total Arsenic	Total PCBs
Ammonium-Nitrogen	Total Cadmium	
Nitrate-Nitrogen	Total Chromium	
Total Phosphorus	Total Copper	
Total Potassium	Total Lead	
	Total Mercury	
	Total Molybdenum	
	Total Nickel	
	Total Selenium	
	Total Zinc	

- 1. If accepting from multiple sources,
 - a) perform a new analysis on the mixed material if blended before land application, or
 - b) use Table 2 of the application form to determine the volume weighted average (mass balance) which will accurately reflect the amount of metals contributed by each facility.
- 2. The metal and nutrient tests shall be used to calculate the Maximum Biosolids Application Rate and Site Life in Appendix A of the application form. These tests and calculations will also be required in an annual report for the permitted site.
- 3. Copies of all laboratory test data with Quality Control (QA/QC) and Chain of Custody sheets must be kept on file at the site operator's place of business for at least five (5) years and can be requested by TCEQ at any time.
- 4. Include the most recent full Toxicity Characteristic Leaching Procedure (TCLP) analysis for each wastewater treatment plant source (Appendix E).

Maximum Metal Loadings & Concentrations

If background soil concentrations exceed the values listed below, then land application is only possible if biosolids concentrations are below the concentrations found in Table 3 of 30 TAC §312.43(b)(3).

If the concentration of any metal in the biosolids exceeds the metal ceiling concentration, then the land application of that biosolids is prohibited.

Pollutant	Cumulative Loading (lbs/acre)	Table 3 §312.43(b)(3) (mg/kg)	Metal Ceiling Concentration (mg/kg)
Arsenic	36	41	75
Cadmium	35	39	85
Chromium	2,677	1,200	3,000

Pollutant		Table 3	Metal Ceiling
	Cumulative	§312.43(b)(3)	Concentration
	Loading	(mg/kg)	(mg/kg)
	(lbs/acre)		
Copper	1,339	1,500	4,300
Lead	268	300	840
Mercury	15	17	57
Molybdenum	Monitor	Monitor	75
Nickel	375	420	420
Selenium	89	36	100
Zinc	2,500	2,800	7,500

 ${\bf APPENDIX\ E}$ Toxicity Characteristic Leaching Procedure (TCLP) Regulatory Levels

METALS	TCLP Regulatory Level, mg/L	EPA Hazardous Waste Number	Recommended Test Method
Arsenic	5.0	D004	7061
Barium	100.0	D005	7080
Cadmium	1.0	D006	7130
Chromium	5.0	D007	7190
Lead	5.0	D008	7420
Mercury	0.2	D009	7471
Selenium	1.0	D010	7741
Silver	5.0	D011	7760

VOLATILE ORGANICS	TCLP Regulatory Level, mg/L	EPA Hazardous Waste Number	Recommended Test Method
Benzene	0.5	D018	8260B
Carbon Tetrachloride	0.5	D019	8260B
Chlorobenzene	100.0	D021	8260B
Chloroform	6.0	D022	8260B
1,4-Dichlorobenzene	7.5	D027	8260B
1,2-Dichloroethane	0.5	D028	8260B
1,1-Dichloroethylene	0.7	D029	8260B
Methyl Ethyl Ketone	200.0	D035	8260B
Tetrachloroethylene	0.7	D039	8260B
Trichloroethylene	0.5	D040	8260B
Vinyl Chloride	0.2	D043	8260B

SEMIVOLATILE ORGANICS	TCLP Regulatory Level, mg/L	EPA Hazardous Waste Number	Recommended Test Method
o-Cresol *	200	D023	8270C
m-Cresol *	200	D024	8270C
p-Cresol *	200	D025	8270C
Cresol *	200	D026	8270C
2,4-Dinitrotoluene	0.13	D030	8270C
Hexachlorobenzene	0.13	D032	8270C
Hexachlorobutadiene	0.5	D033	8270C
Hexachloroethane	3.0	D034	8270C
Nitrobenzene	2.0	D036	8270C
Pentachlorophenol	100.0	D037	8270C
Pyridine	5.0	D038	8270C
2,4,5-Trichlorophenol	400.0	D041	8270C
2,4,6-Trichlorophenol	2.0	D042	8270C

ORGANOCHLORINE PESTICIDES	TCLP Regulatory Level, mg/L	EPA Hazardous Waste Number	Recommended Test Method
Chlordane	0.03	D020	8081A
Endrin	0.02	D012	8081A
Heptachlor (and its Epoxide)	0.008	D031	8081A
Lindane	0.4	D013	8081A
Methoxychlor	10.0	D014	8081A
Toxaphene	0.5	D015	8081A

CHLOROPHENOXY ACID HERBICIDES	TCLP Regulatory Level, mg/L	EPA Hazardous Waste Number	Recommended Test Method
2,4-D	10.0	D016	8150
2,4,5-TP (Silvex)	1.0	D017	8150

 $^{^{*}}$ If o-, m-, and p-Cresol concentrations cannot be differentiated, the total cresol (D026) concentration is used.

Reference: 40 CFR 261, Appendix II, 1993 ed., as amended by 58 FR 46040, August 31, 1993.