

This file contains the following documents:

- 1. Summary of application (in plain language)
- 2. First notice (NORI-Notice of Receipt of Application and Intent to Obtain a Permit)
- 3. Second notice (NAPD-Notice of Preliminary Decision)
- 4. Application materials
- 5. Draft permit
- 6. Technical summary or fact sheet

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 Texas Administrative Code Chapter 39. The information provided in this summary may change during the technical review of the application and are not federal enforceable representations of the permit application.

The City of Sun Valley (CN600792808) operates the City of Sun Valley wastewater treatment plant (RN101517092), an activated sludge process plant using the extended aeration mode. The facility is located approximately 2,500 feet north of the intersection of U.S. Highway 82 and Shady Grove Road, in Lamar County, Texas 75462.

This application is for a renewal to dispose a daily average flow not to exceed 8,750 gallons per day of treated domestic wastewater via surface irrigation and evaporation of 6 acres of non-public access grass land. This permit will not authorize a discharge of pollutants into water in the state.

Land application of domestic wastewater from the facility are expected to contain five-day biochemical oxygen demand (BOD₅), total suspended solids (TSS), and *Escherichia coli*. Additional potential pollutants are included in the Domestic Technical Report 1.0, Section 7. Pollutant Analysis of Treated Effluent in the permit application package. Domestic wastewater is treated by an activated sludge process plant and the treatment units include a bar screen, an aeration basin, final clarifier, a sludge holding tank, and a chlorine contact chamber.

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

NOTICE OF RECEIPT OF APPLICATION AND INTENT TO OBTAIN WATER QUALITY PERMIT RENEWAL.

PERMIT NO. WQ0011413001

APPLICATION. City of Sun Valley, 800 Shady Grove Road, Paris, Texas 75462, has applied to the Texas Commission on Environmental Quality (TCEQ) to renew Texas Land Application Permit (TLAP) No. WQ0011413001 to authorize the disposal of treated wastewater at a volume not to exceed a daily average flow of 8,750 gallons per day via surface irrigation and evaporation of 6 acres of non-public access grass land. The domestic wastewater treatment facility and disposal area are located approximately 2,500 feet north of the intersection of U.S. Highway 82 and Shady Grove Road, near the city of Paris, in Lamar County, Texas 75462. TCEQ received this application on May 15, 2025. The permit application will be available for viewing and copying at Sun Valley City Hall, Foyer, 800 Shady Grove Road, Sun Valley, in Lamar County, Texas, prior to the date this notice is published in the newspaper. The application, including any updates, and associated notices are available electronically at the following webpage: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tlap-applications. This link to an electronic map of the site or facility's general location is provided as a public courtesy and not part of the application or notice. For the exact location, refer to the application.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-95.428333,33.669444&level=18

ADDITIONAL NOTICE. TCEQ's Executive Director has determined the application is administratively complete and will conduct a technical review of the application. After technical review of the application is complete, the Executive Director may prepare a draft permit and will issue a preliminary decision on the application. Notice of the Application and Preliminary Decision will be published and mailed to those who are on the countywide mailing list and to those who are on the mailing list for this application. That notice will contain the deadline for submitting public comments.

PUBLIC COMMENT / PUBLIC MEETING. You may submit public comments or request a public meeting on this application. The purpose of a public meeting is to provide the opportunity to submit comments or to ask questions about the application. TCEQ will hold a public meeting if the Executive Director determines that there is a significant degree of public interest in the application or if requested by a local legislator. A public meeting is not a contested case hearing.

OPPORTUNITY FOR A CONTESTED CASE HEARING. After the deadline for submitting public comments, the Executive Director will consider all timely comments and prepare a response to all relevant and material, or significant public comments. **Unless the application is directly referred for a contested case hearing, the response to comments, and the**

Executive Director's decision on the application, will be mailed to everyone who submitted public comments and to those persons who are on the mailing list for this application. If comments are received, the mailing will also provide instructions for requesting reconsideration of the Executive Director's decision and for requesting a contested case hearing. A contested case hearing is a legal proceeding similar to a civil trial in state district court.

TO REQUEST A CONTESTED CASE HEARING, YOU MUST INCLUDE THE FOLLOWING ITEMS IN YOUR REQUEST: your name, address, phone number; applicant's name and proposed permit number; the location and distance of your property/activities relative to the proposed facility; a specific description of how you would be adversely affected by the facility in a way not common to the general public; a list of all disputed issues of fact that you submit during the comment period and, the statement "[I/we] request a contested case hearing." If the request for contested case hearing is filed on behalf of a group or association, the request must designate the group's representative for receiving future correspondence; identify by name and physical address an individual member of the group who would be adversely affected by the proposed facility or activity; provide the information discussed above regarding the affected member's location and distance from the facility or activity; explain how and why the member would be affected; and explain how the interests the group seeks to protect are relevant to the group's purpose.

Following the close of all applicable comment and request periods, the Executive Director will forward the application and any requests for reconsideration or for a contested case hearing to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

The Commission may only grant a request for a contested case hearing on issues the requestor submitted in their timely comments that were not subsequently withdrawn. If a hearing is granted, the subject of a hearing will be limited to disputed issues of fact or mixed questions of fact and law relating to relevant and material water quality concerns submitted during the comment period.

TCEQ may act on an application to renew a permit for discharge of wastewater without providing an opportunity for a contested case hearing if certain criteria are met.

MAILING LIST. If you submit public comments, a request for a contested case hearing or a reconsideration of the Executive Director's decision, you will be added to the mailing list for this specific application to receive future public notices mailed by the Office of the Chief Clerk. In addition, you may request to be placed on: (1) the permanent mailing list for a specific applicant name and permit number; and/or (2) the mailing list for a specific county. If you wish to be placed on the permanent and/or the county mailing list, clearly specify which list(s) and send your request to TCEQ Office of the Chief Clerk at the address below.

INFORMATION AVAILABLE ONLINE. For details about the status of the application, visit the Commissioners' Integrated Database at www.tceq.texas.gov/goto/cid. Search the database using the permit number for this application, which is provided at the top of this notice.

AGENCY CONTACTS AND INFORMATION. All public comments and requests must be submitted either electronically at https://www14.tceq.texas.gov/epic/eComment/, or in writing to the Texas Commission on Environmental Quality, Office of the Chief Clerk, MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Please be aware that any contact information you

provide, including your name, phone number, email address and physical address will become part of the agency's public record. For more information about this permit application or the permitting process, please call the TCEQ Public Education Program, Toll Free, at 1-800-687-4040 or visit their website at www.tceq.texas.gov/goto/pep. Si desea información en Español, puede llamar al 1-800-687-4040.

Further information may also be obtained from City of Sun Valley at the address stated above or by calling Ms. Robin Butcko, Permitting Services LLC, at 713-458-8612.

Issuance Date: May 28, 2025

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

NOTICE OF APPLICATION AND PRELIMINARY DECISION FOR WATER QUALITY LAND APPLICATION PERMIT FOR MUNICIPAL WASTEWATER

RENEWAL

PERMIT NO. WQ0011413001

APPLICATION AND PRELIMINARY DECISION. City of Sun Valley, 800 Shady Grove Road, Paris, Texas, 75462, has applied to the Texas Commission on Environmental Quality (TCEQ) for a renewal of TCEQ Permit No. WQ0011413001 which authorizes the disposal of treated domestic wastewater at a daily average flow not to exceed 8,750 gallons per day via evaporation and surface irrigation of 6 acres of non-public access pastureland. This permit will not authorize a discharge of pollutants into water in the state. TCEQ received this application on May 15, 2025.

The wastewater treatment facility and disposal site are located approximately 2,500 feet north of the intersection for U.S. Highway 82 and Shady Grove Road, in the City of Sun Valley, Lamar County, Texas 75462. The wastewater treatment facility and disposal site are located in the drainage basin of Sulphur/South Sulpher River in Segment No. 0303 of the Sulphur River Basin. This link to an electronic map of the site or facility's general location is provided as a public courtesy and is not part of the application or notice. For the exact location, refer to the application.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-96.531944,31.695&level=18

The TCEQ Executive Director has completed the technical review of the application and prepared a draft permit. The draft permit, if approved, would establish the conditions under which the facility must operate. The Executive Director has made a preliminary decision that this permit, if issued, meets all statutory and regulatory requirements. The permit application, Executive Director's preliminary decision, and draft permit are available for viewing and copying at Sun Valley City Hall, Foyer, 800 Shady Grove Road, Sun Valley, in Lamar County, Texas. The application, including any updates, and associated notices are available electronically at the following webpage: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tlap-applications.

PUBLIC COMMENT / PUBLIC MEETING. You may submit public comments or request a public meeting about this application. The purpose of a public meeting is to

provide the opportunity to submit comments or to ask questions about the application. TCEQ holds a public meeting if the Executive Director determines that there is a significant degree of public interest in the application or if requested by a local legislator. A public meeting is not a contested case hearing.

OPPORTUNITY FOR A CONTESTED CASE HEARING. After the deadline for submitting public comments, the Executive Director will consider all timely comments and prepare a response to all relevant and material, or significant public comments. Unless the application is directly referred for a contested case hearing, the response to comments will be mailed to everyone who submitted public comments and to those persons who are on the mailing list for this application. If comments are received, the mailing will also provide instructions for requesting a contested case hearing or reconsideration of the Executive Director's decision. A contested case hearing is a legal proceeding similar to a civil trial in a state district court.

TO REQUEST A CONTESTED CASE HEARING, YOU MUST INCLUDE THE FOLLOWING ITEMS IN YOUR REQUEST: your name, address, phone number; applicant's name and proposed permit number; the location and distance of your property/activities relative to the proposed facility; a specific description of how you would be adversely affected by the facility in a way not common to the general public; a list of all disputed issues of fact that you submit during the comment period; and the statement "[I/we] request a contested case hearing." If the request for contested case hearing is filed on behalf of a group or association, the request must designate the group's representative for receiving future correspondence; identify by name and physical address an individual member of the group who would be adversely affected by the proposed facility or activity; provide the information discussed above regarding the affected member's location and distance from the facility or activity; explain how and why the member would be affected; and explain how the interests the group seeks to protect are relevant to the group's purpose.

Following the close of all applicable comment and request periods, the Executive Director will forward the application and any requests for reconsideration or for a contested case hearing to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

The Commission may only grant a request for a contested case hearing on issues the requestor submitted in their timely comments that were not subsequently withdrawn. If a hearing is granted, the subject of a hearing will be limited to disputed issues of fact or mixed questions of fact and law relating to relevant and material water quality concerns submitted during the comment period. TCEQ may act on an application to renew a permit for discharge of wastewater without providing an opportunity for a contested case hearing if certain criteria are met.

EXECUTIVE DIRECTOR ACTION. The Executive Director may issue final approval of the application unless a timely contested case hearing request or request for reconsideration is filed. If a timely hearing request or request for reconsideration is filed, the Executive Director will not issue final approval of the permit and will forward the application and request to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

MAILING LIST. If you submit public comments, a request for a contested case hearing or a reconsideration of the Executive Director's decision, you will be added to the mailing list for this

specific application to receive future public notices mailed by the Office of the Chief Clerk. In addition, you may request to be placed on: (1) the permanent mailing list for a specific applicant name and permit number; and/or (2) the mailing list for a specific county. If you wish to be placed on the permanent and/or the county mailing list, clearly specify which list(s) and send your request to TCEQ Office of the Chief Clerk at the address below.

All written public comments and public meeting requests must be submitted to the Office of the Chief Clerk, MC 105, Texas Commission on Environmental Quality, P.O. Box 13087, Austin, TX 78711-3087 or electronically at www.tceq.texas.gov/goto/comment within 30 days from the date of newspaper publication of this notice.

INFORMATION AVAILABLE ONLINE. For details about the status of the application, visit the Commissioners' Integrated Database at www.tceq.texas.gov/goto/cid. Search the database using the permit number for this application, which is provided at the top of this notice.

AGENCY CONTACTS AND INFORMATION. Public comments and requests must be submitted either electronically at www.tceq.texas.gov/goto/comment, or in writing to the Texas Commission on Environmental Quality, Office of the Chief Clerk, MC 105, P.O. Box 13087, Austin, Texas 78711-3087. Any personal information you submit to the TCEQ will become part of the agency's record; this includes email addresses. For more information about this permit application or the permitting process, please call the TCEQ Public Education Program, Toll Free, at 1-800-687-4040 or visit their website at www.tceq.texas.gov/goto/pep. Si desea información en Español, puede llamar al 1-800-687-4040.

Further information may also be obtained from City of Sun Valley at the address stated above or by calling Ms. Robin Butcko, Permitting Services LLC, at 713-458-8612.

Issuance Date <u>September 16, 2025</u>

Brooke T. Paup, *Chairwoman*Bobby Janecka, *Commissioner*Catarina R. Gonzales, *Commissioner*Kelly Keel, *Executive Director*

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Protecting Texas by Reducing and Preventing Pollution

May 15, 2025

Re: Confirmation of Submission of the Renewal without changes for Public Domestic Wastewater Authorization.

Dear Applicant:

This is an acknowledgement that you have successfully completed Renewal without changes for the Public Domestic Wastewater authorization.

ER Account Number: ER088113

Application Reference Number: 786810 Authorization Number: WQ0011413001 Site Name: City of Sun Valley WWTP

Regulated Entity: RN101517092 - City of Sun Valley WWTP

Customer(s): CN600792808 - City of Sun Valley

Please be aware that TCEQ staff may contact your designated contact for any additional information.

If you have any questions, you may contact the Applications Review and Processing Team by email at WQ-ARPTeam@tceq.texas.gov or by telephone at (512) 239-4671.

Sincerely, Applications Review and Processing Team Water Quality Division

Texas Commission on Environmental Quality

Update Domestic or Industrial Individual Permit WQ0011413001

Site Information (Regulated Entity)

What is the name of the site to be authorized? CITY OF SUN VALLEY WWTP

Does the site have a physical address?

Because there is no physical address, describe how to locate this site: APPROX 2500 FT N OF THE

INTERSECTION OF US HWY 82 &

SHADY GROVE RD

33.656524

City PARIS

State TX

ZIP 75462

County

Latitude (N) (##.#####) 33.669444

Longitude (W) (-###.#####) -95.428333

Primary SIC Code 4952

Secondary SIC Code

Primary NAICS Code 221320

Secondary NAICS Code

Regulated Entity Site Information

What is the Regulated Entity's Number (RN)? RN101517092

What is the name of the Regulated Entity (RE)? CITY OF SUN VALLEY WWTP

Does the RE site have a physical address?

Yes

Physical Address

Number and Street RR 2 BOX 800

City PARIS
State TX

ZIP 75462

County

Longitude (W) (-###.######) -95.483087

Facility NAICS Code

Latitude (N) (##.#####)

What is the primary business of this entity?

City of-Customer (Applicant) Information (Owner)

How is this applicant associated with this site?

Owner

What is the applicant's Customer Number (CN)? CN600792808

Yes

Type of Customer City Government

Full legal name of the applicant:

Legal Name City of Sun Valley

Texas SOS Filing Number

Federal Tax ID

State Franchise Tax ID

State Sales Tax ID

Local Tax ID

DUNS Number

Number of Employees

Independently Owned and Operated?

I certify that the full legal name of the entity applying for this permit

has been provided and is legally authorized to do business in Texas.

Responsible Authority Contact

Organization Name City of Sun Valley

Prefix THE HONORABLE

First

Middle

Last WAGNON

Suffix

Credentials

Title MAYOR

Responsible Authority Mailing Address

Enter new address or copy one from list:

Address Type Domestic

Mailing Address (include Suite or Bldg. here, if applicable) 800 SHADY GROVE RD

Routing (such as Mail Code, Dept., or Attn:)

City PARIS

State TX

ZIP 75462

Phone (###-####) 9039826112

Extension

Alternate Phone (###-####) 9037390111

Fax (###-###-###)

E-mail fuznut@suddenlink.net

Billing Contact

Responsible contact for receiving billing statements:

Select the permittee that is responsible for payment of the annual fee. CN600792808, City of Sun Valley

https://ida.tceq.texas.gov/steersstaff/index.cfm

Organization Name CITY OF SUN VALLEY

Prefix THE HONORABLE

First TOM

Middle

Last WAGNON

Suffix

Credentials

Title MAYOR

Enter new address or copy one from list:

Mailing Address

Address Type Domestic

Mailing Address (include Suite or Bldg. here, if applicable) 800 SHADY GROVE RD

Routing (such as Mail Code, Dept., or Attn:)

City PARIS

State TX

ZIP 75462

Phone (###-######) 9039826111

Extension

Alternate Phone (###-####) 9037390111

Fax (###-###-###)

E-mail fuznut@suddentlink.net

Application Contact

Person TCEQ should contact for questions about this application:

Same as another contact?

Billing Contact

Organization Name CITY OF SUN VALLEY

Prefix THE HONORABLE

First

Middle

Last WAGNON

Suffix

Credentials

Title MAYOR

Enter new address or copy one from list:

Mailing Address

Address Type Domestic

Mailing Address (include Suite or Bldg. here, if applicable) 800 SHADY GROVE RD

Routing (such as Mail Code, Dept., or Attn:)

City PARIS

State TX

ZIP 75462

Phone (###-###) 9039826111

Extension

Alternate Phone (###-####) 9037390111

Fax (###-###-###)

E-mail fuznut@suddentlink.net

Technical Contact

Person TCEQ should contact for questions about this application:

Same as another contact?

Application Contact

Organization Name Permitting Services LLC

Prefix MS
First Robin

Middle

Last Butcko

Suffix

Credentials

Title Senior Wastewater Consultant

Enter new address or copy one from list:

Mailing Address

Address Type Domestic

Mailing Address (include Suite or Bldg. here, if applicable) 4700 S KIRKWOOD RD APT 513

Routing (such as Mail Code, Dept., or Attn:)

City HOUSTON

State TX

ZIP 77072

Phone (###-####) 7134588612

Extension

Alternate Phone (###-###-###)

Fax (###-###-###)

E-mail robin@permittingservices.net

DMR Contact

Person responsible for submitting Discharge Monitoring Report Forms:

Same as another contact?

Billing Contact

Organization Name CITY OF SUN VALLEY
Prefix THE HONORABLE

First TOM

Middle

Last WAGNON

Suffix

Credentials

Title MAYOR

Enter new address or copy one from list:

Mailing Address:

Address Type Domestic

Mailing Address (include Suite or Bldg. here, if applicable) 800 SHADY GROVE RD

Routing (such as Mail Code, Dept., or Attn:)

City PARIS

State TX

ZIP 75462

Phone (###-####) 9039826111

Extension

Alternate Phone (###-####) 9037390111

Fax (###-###-###)

E-mail fuznut@suddentlink.net

Section 1# Permit Contact

Permit Contact#: 1

Person TCEQ should contact throughout the permit term.

1) Same as another contact?

2) Organization Name PERMITTING SERVICES LLC

3) Prefix MS

4) First ROBIN

5) Middle

6) Last BUTCKO

7) Suffix

8) Credentials

9) Title SENIOR WASTEWATER

CONSULTANT

Mailing Address

10) Enter new address or copy one from list

11) Address Type Domestic

11.1) Mailing Address (include Suite or Bldg. here, if applicable) 4700 S KIRKWOOD RD APT 513

11.2) Routing (such as Mail Code, Dept., or Attn:)

11.3) City HOUSTON

11.4) State TX

11.5) ZIP 77072

12) Phone (###-###+) 7134588612

13) Extension

14) Alternate Phone (###-###-####)

15) Fax (###-###-###)

16) E-mail ROBIN@PERMITTINGSERVICES.NE

Τ

Owner Information

Owner of Treatment Facility

1) Prefix

2) First and Last Name

3) Organization Name CITY OF SUN VALLEY

4) Mailing Address 800 SHADY GROVE ROAD

5) City PARIS

6) State TX

7) Zip Code 75462

8) Phone (###-###) 9039826112

9) Extension

10) Email FUZNUT@SUDDENLINK.NET

11) What is ownership of the treatment facility? Public

Owner of Land (where treatment facility is or will be)

12) Prefix

13) First and Last Name

14) Organization Name CITY OF SUN VALLEY

15) Mailing Address 800 SHADY GROVE ROAD

16) City PARIS

17) State TX

18) Zip Code 75462

19) Phone (###-###+) 9039826112

20) Extension

21) Email FUZNUT@SUDDENLINK.NET

22) Is the landowner the same person as the facility owner or co-

applicant?

General Information Renewal-Amendment

1) Current authorization expiration date: 01/01/2026

2) Current Facility operational status: Active

3) Is the facility located on or does the treated effluent cross American Indian Land?

4) What is the application type that you are seeking?

5) Current Authorization type:

5.1) What is the proposed total flow in MGD discharged at the facility?

5.2) Select the applicable fee

6) What is the classification for your authorization?

6.1) Is the location of the effluent disposal site in the existing permit accurate?

6.2) City nearest the disposal site:

6.3) County in which the disposal site is located:

6.4) Describe the routing of effluent from the treatment facility to the disposal site:

6.5) Identify the nearest watercourse to the disposal site to which rainfall runoff might flow if not contained:

6.6) If the existing permit contains an onsite sludge disposal authorization, is the location of the sewage sludge disposal site in the existing permit accurate?

Owner of Effluent TLAP Disposal Site

6.7) Prefix

6.8) First and Last Name

6.9) Organization Name

6.10) Mailing Address

6.11) City

6.12) State

6.13) Zip Code

6.14) Phone (###-###-###)

6.15) Extension

6.16) Email

6.17) Is the landowner the same person as the facility owner or co-

applicant?

7) Did any person formerly employed by the TCEQ represent your company and get paid for service regarding this application?

No

Renewal without changes

Public Domestic Wastewater

0.00875

< .05 MGD - Renewal - \$315

TLAP

Yes

PARIS

LAMAR

The effluent passes through the bar screen at the lift station then is pumped into a 4-chamber system including an aeration chamber, clarifier, chlorine contact chamber, and sludge holding area. The effluent from the chlorine contact chamber flows into 2 holding ponds then is sprayed from the ponds onto the spray fields. Sludge waste is hauled to the City of Paris for disposal through a class A process ATAD.

South Sulfur River

Not Applicable

CITY OF SUN VALLEY

800 SHADY GROVE ROAD

PARIS

TX

75462

9039826112

FUZNUT@SUDDENLINK.NET

Yes

No

7 of 12

Public Notice Information

Individual Publishing the Notices

1) Prefix MS

2) First and Last Name ROBIN BUTCKO

3) Credential

4) Title SENIOR WASTEWATER

CONSULTANT

5) Organization Name PERMITTING SERVICES LLC

6) Mailing Address 4700 S KIRKWOOD RD

7) Address Line 2 SUITE 513

8) City HOUSTON

9) State TX

10) Zip Code 77072

11) Phone (###-####) 7134588612

12) Extension

13) Fax (###-###-###)

14) Email ROBIN@PERMITTINGSERVICES.NE

Т

Contact person to be listed in the Notices

15) Prefix MS

16) First and Last Name ROBIN BUTCKO

17) Credential

18) Title SENIOR WASTEWATER

CONSULANT

19) Organization Name PERMITTING SERVICES LLC

20) Phone (###-###+) 7134588612

21) Fax (###-###-###)

22) Email ROBIN@PERMITTINGSERVICES.NE

Т

Bilingual Notice Requirements

23) Is a bilingual education program required by the Texas Education Code at the elementary or middle school nearest to the facility or proposed facility?

No

Section 1# Public Viewing Information

County#: 1

1) County LAMAR

2) Public building name SUN VALLEY CITY HALL

3) Location within the building FOYER

4) Physical Address of Building 800 SHADY GROVE ROAD

8 of 12

5) City SUN VALLEY

6) Contact Name TOM WAGNON

7) Phone (###-####) 9039826112

8) Extension

9) Is the location open to the public?

Plain Language

1) Plain Language

[File Properties]

File Name LANG_English PLS Summary (2-6-25).docx

Hash 02469E271E40689D16B11C0CCB5ACFF44A53E184BD7A2FABD36F16C37D1CB67F

MIME-Type application/vnd.openxmlformats-

officedocument.wordprocessingml.document

https://ida.tceq.texas.gov/steersstaff/index.cfm

Domestic Attachments

1) Attach an 8.5"x11", reproduced portion of the most current and original USGS Topographic Quadrangle Map(s) that meets the 1:24,000 scale.

[File Properties]

File Name MAP_USGS MAP.pdf

Hash BDE616BF5D4072A52DE9D8F9A73092426004558A496B8B209424596C9787DDB1

MIME-Type application/pdf

2) I confirm that all required sections of Technical Report 1.0 are Yes

complete and will be included in the Technical Attachment.

2.1) Are you planning to include Worksheet 2.1 (Stream Physical No

Characteristics) in the Technical Attachment?

2.2) I confirm that Worksheet 3.0 (Land Disposal of Effluent) is Yes

complete and included in the Technical Attachment.

2.3) Are you planning to include Worksheet 4.0 (Pollutant Analyses No

Requirements) in the Technical Attachment?

2.4) Are you planning to include Worksheet 5.0 (Toxicity Testing No

Requirements) in the Technical Attachment?

2.5) I confirm that Worksheet 6.0 (Industrial Waste Contribution) is

complete and included in the Technical Attachment.

2.6) Are you planning to include Worksheet 7.0 (Class V Injection Well No

Inventory/Authorization Form) in the Technical Attachment?

2.7) Technical Attachment

[File Properties]

File Name TECH_Sun Valley Domestic Technical Report

Form 10054.docx

Hash D712BBCD4E3CDD2B93E897F30AB237913219962CCC5C0713A7E48F4A8D1C2794

9 of 12

MIME-Type application/vnd.openxmlformats-

officedocument.wordprocessingml.document

3) Buffer Zone Map

4) Flow Diagram

[File Properties]

File Name FLDIA_FLOW DIAGRAM.pdf

Hash 22FEAA1E4CEE4F2F49CBD6E543833BFE986D1D6BF18FE2E655F58A1AD4F329AD

MIME-Type application/pdf

5) Site Drawing

[File Properties]

File Name SITEDR_SITE DRAWING.pdf

Hash 87D28CFA8757990265F9B379BB492F42F693861CC5BECB79650B80E586243E67

MIME-Type application/pdf

6) Design Calculations

[File Properties]

File Name DES_CAL_FLOW DIAGRAM.pdf

Hash 22FEAA1E4CEE4F2F49CBD6E543833BFE986D1D6BF18FE2E655F58A1AD4F329AD

MIME-Type application/pdf

7) Solids Management Plan

8) Water Balance

9) Other Attachments

[File Properties]

File Name OTHER_WRITTEN STATEMENT FROM PARIS

TX.pdf

Hash CBAC0655CE744C4447B761E7FF917F8D0224189C00FF2FDB4AD07A85544BBD42

MIME-Type application/pdf

[File Properties]

File Name OTHER_ANNUAL CROPPING PLAN.pdf

Hash FB9693A10E549F0C70E0DEE923491430DCE5CD30EB7C4DCBB7D39833981819E2

MIME-Type application/pdf

[File Properties]

File Name OTHER_WELL & MAP INFO.pdf

Hash 981FFCA0AD5A55FB2A88E4C2D340E1B4844C332B7CDC0582221DF500E0673F6D

MIME-Type application/pdf

[File Properties]

File Name OTHER_WELL & MAP INFO #2.pdf

Hash 7EF9247CF2D3DB59DEEBB0173CCDCDBBC4624D32B1EE93F91DBBC0136F433C4E

MIME-Type application/pdf

[File Properties]

File Name OTHER_Well Map.pdf

Hash 5A8F0A4155C5176DA21AA916F85CC2D62C47A06CF8FA669B93924DE831A0AC9F

MIME-Type application/pdf

[File Properties]

File Name OTHER_WellData_1721801.pdf

Hash 779A44DE5BCCD2784C6E1F99772E56CF3317F1C8A8568E1894D8ABFF6AE8DAF0

MIME-Type application/pdf

[File Properties]

File Name OTHER_WellData_1721806.pdf

Hash ACA1E4314F80D55D217939BACDA574D92E06FD77014E5C22C98CE66FDB8171F7

MIME-Type application/pdf

[File Properties]

File Name OTHER_SOIL MAP AND INFO.pdf

Hash A6BE454F35FF34D512A0DC7BD315CE5784C39ABAED01BFCE9B750D9A71B156D8

MIME-Type application/pdf

Certification

I certify that I am authorized under 30 Texas Administrative Code 305.44 to sign this document and can provide documentation in proof of such authorization upon request.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

- 1. I am Robin L Butcko, the owner of the STEERS account ER088113.
- 2. I have the authority to sign this data on behalf of the applicant named above.
- 3. I have personally examined the foregoing and am familiar with its content and the content of any attachments, and based upon my personal knowledge and/or inquiry of any individual responsible for information contained herein, that this information is true, accurate, and complete.
- 4. I further certify that I have not violated any term in my TCEQ STEERS participation agreement and that I have no reason to believe that the confidentiality or use of my password has been compromised at any time.
- 5. I understand that use of my password constitutes an electronic signature legally equivalent to my written signature.
- 6. I also understand that the attestations of fact contained herein pertain to the implementation, oversight and enforcement of a state and/or federal environmental program and must be true and complete to the best of my knowledge.

- 7. I am aware that criminal penalties may be imposed for statements or omissions that I know or have reason to believe are untrue or misleading.
- 8. I am knowingly and intentionally signing Update Domestic or Industrial Individual Permit WQ0011413001.
- 9. My signature indicates that I am in agreement with the information on this form, and authorize its submittal to the TCEQ.

OWNER Signature: Robin L Butcko OWNER

Customer Number: CN600792808

Legal Name: City of Sun Valley

Account Number: ER088113
Signature IP Address: 73.206.78.33
Signature Date: 2025-05-15

Signature Hash: 8A711E48704DF20C112ECDC18FBF0BA6F269DC43BD0341B766BD0A58E17F57AC

Form Hash Code at time

5E4B37CE0A2F64483336B482B5722BDB990E0E429C9EC1245880D6156A24804A

of Signature:

Fee Payment

Fee Amount: \$300.00

Check Date: The application fee was paid on 2024-12-23

Check Number: The check number is 12506

Submission

Reference Number: The application reference number is 786810

Submitted by: The application was submitted by ER088113/

Robin L Butcko

Submitted Timestamp: The application was submitted on 2025-05-15 at

14:44:03 CDT

Submitted From: The application was submitted from IP address

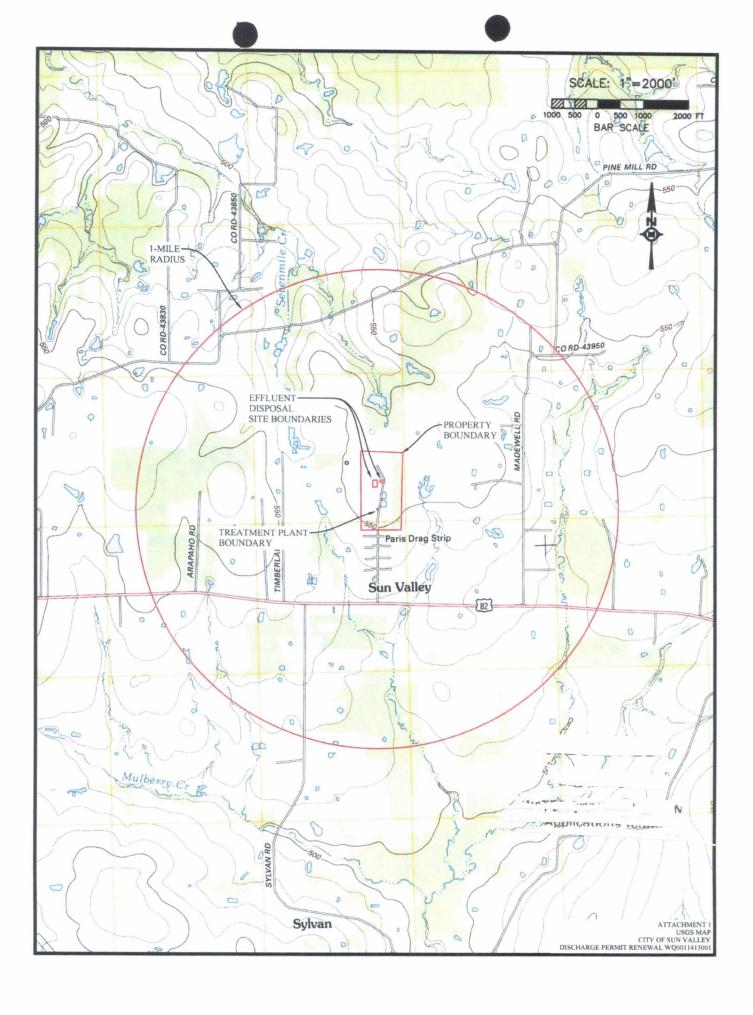
73.206.78.33

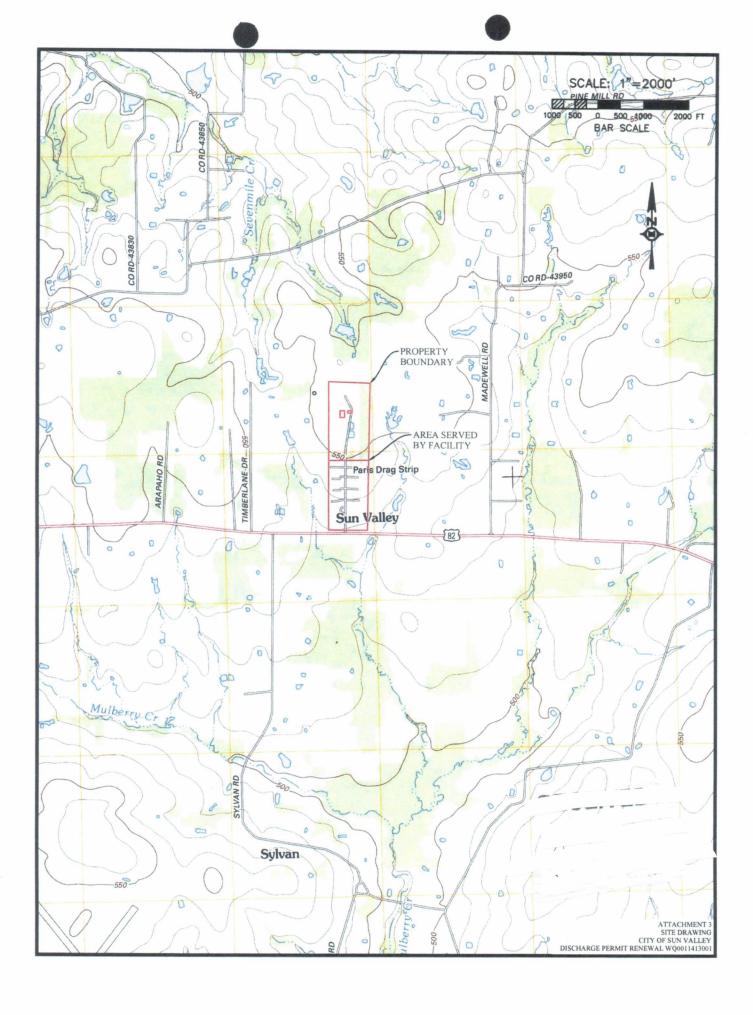
Confirmation Number: The confirmation number is 653366

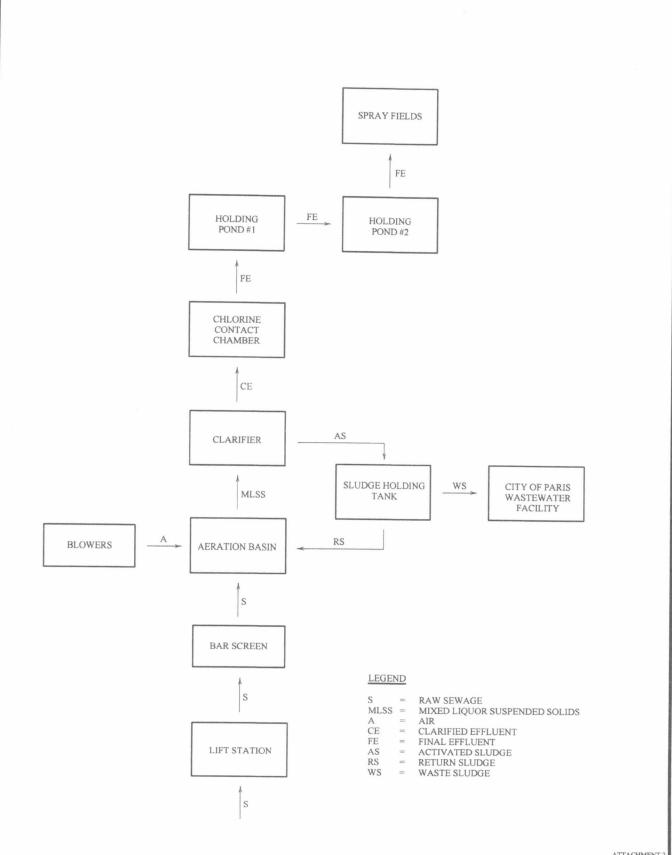
Steers Version: The STEERS version is 6.91

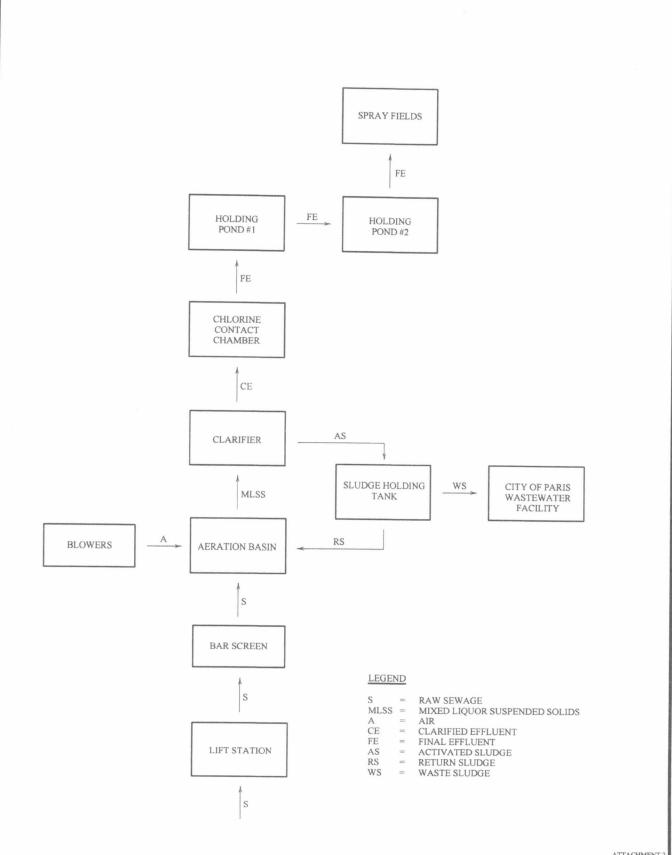
Permit Number: The permit number is WQ0011413001

Additional Information


Application Creator: This account was created by Robin L Butcko


The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 Texas Administrative Code Chapter 39. The information provided in this summary may change during the technical review of the application and are not federal enforceable representations of the permit application.


The City of Sun Valley (CN600792808) operates the City of Sun Valley wastewater treatment plant (RN101517092), an activated sludge process plant using the extended aeration mode. The facility is located approximately 2,500 feet north of the intersection of U.S. Highway 82 and Shady Grove Road, in Lamar County, Texas 75462.


This application is for a renewal to dispose a daily average flow not to exceed 8,750 gallons per day of treated domestic wastewater via surface irrigation and evaporation of 6 acres of non-public access grass land. This permit will not authorize a discharge of pollutants into water in the state.

Land application of domestic wastewater from the facility are expected to contain five-day biochemical oxygen demand (BOD₅), total suspended solids (TSS), and *Escherichia coli*. Additional potential pollutants are included in the Domestic Technical Report 1.0, Section 7. Pollutant Analysis of Treated Effluent in the permit application package. Domestic wastewater is treated by an activated sludge process plant and the treatment units include a bar screen, an aeration basin, final clarifier, a sludge holding tank, and a chlorine contact chamber.

THE TONMENTAL OUR LEVEL OF THE PROPERTY OF THE

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

DOMESTIC WASTEWATER PERMIT APPLICATION TECHNICAL REPORT 1.0

For any questions about this form, please contact the Domestic Wastewater Permitting Team at 512-239-4671.

The following information is required for all renewal, new, and amendment applications.

Section 1. Permitted or Proposed Flows (Instructions Page 43)

A. Existing/Interim I Phase

Design Flow (MGD): <u>0.00875</u>

2-Hr Peak Flow (MGD): N/A

Estimated construction start date: <u>N/A - EXISTING</u> Estimated waste disposal start date: <u>N/A - EXISTING</u>

B. Interim II Phase

Design Flow (MGD): N/A

2-Hr Peak Flow (MGD): N/A

Estimated construction start date: N/A

Estimated waste disposal start date: N/A

C. Final Phase

Design Flow (MGD): 0.00875

2-Hr Peak Flow (MGD): N/A

Estimated construction start date: N/A - EXISTING

Estimated waste disposal start date: N/A - EXISTING

D. Current Operating Phase

Provide the startup date of the facility: 1987

Section 2. Treatment Process (Instructions Page 43)

A. Current Operating Phase

Provide a detailed description of the treatment process. **Include the type of treatment plant, mode of operation, and all treatment units.** Start with the plant's head works and

finish with the point of discharge. Include all sludge processing and drying units. **If more than one phase exists or is proposed, a description of** *each phase* **must be provided**.

Activated sludge package plant concrete structure. Flow passes through the bar screen at the lift station then is pumped into a 4-chamber system including an aeration chamber, clarifier, chlorine contact chamber, and sludge holding area. The effluent from the chlorine contact chamber flows into 2 holding ponds then is sprayed from the ponds onto the spray fields. Sludge waste is hauled to the City of Paris for disposal through a class A process (ATAD).

B. Treatment Units

In Table 1.0(1), provide the treatment unit type, the number of units, and dimensions (length, width, depth) of each treatment unit, accounting for *all* phases of operation.

Table 1.0(1) - Treatment Units

Treatment Unit Type	Number of Units	Dimensions (L x W x D)	
Sludge Holding Tank	1	133" x 40" x 100"	
Aeration Chamber	1	176.5" x 133" x 101"	
Clarifier	1	85" x 85.5" x 115"	
Chlorine Contact Chamber	1	39" x 85" x 101"	
Holding Ponds	2	370,000 gallons each	

C. Process Flow Diagram

Provide flow diagrams for the existing facilities and **each** proposed phase of construction.

Attachment: T-1

Section 3. Site Information and Drawing (Instructions Page 44)

Provide the TPDES discharge outfall latitude and longitude. Enter N/A if not applicable.

• Latitude: Click to enter text.

• Longitude: Click to enter text.

Provide the TLAP disposal site latitude and longitude. Enter N/A if not applicable.

Latitude: <u>33.6694 N</u>

• Longitude: <u>-95.4284 W</u>

Provide a site drawing for the facility that shows the following:

- The boundaries of the treatment facility;
- The boundaries of the area served by the treatment facility;
- If land disposal of effluent, the boundaries of the disposal site and all storage/holding ponds; and
- If sludge disposal is authorized in the permit, the boundaries of the land application or disposal site.

Attachment: T-2

Provide the name and a des	cription of the area	served by the treatmen	t facility.
City of Sun Valley			
Collection System Informati each uniquely owned collection		<u> </u>	
satellite collection systems.			
examples.			
Collection System Informatio			
Collection System Name	Owner Name	Owner Type	Population Served
City of Orange Grove Wastewater Treatment Plant	City of Orange Grove	Publicly Owned	1,302
		Choose an item.	
		Choose an item.	
		Choose an item.	
	•		
Section 4. Unbuilt F	Phases (Instruct	ions Page 45)	
Is the application for a rene	wal of a permit that	contains an unbuilt ph	ase or phases?
□ Yes ⊠ No			
If yes, does the existing per	mit contain a phase	that has not been cons	tructed within five
years of being authorized b	y the TCEQ?		
□ Yes □ No			
<mark>If yes</mark> , provide a detailed di F <mark>ailure to provide sufficie</mark> r	0 0		-
recommending denial of th	ne unbuilt phase or	phases.	
Click to enter text.			
Section 5. Closure I	Plans (Instructio	ons Page 45)	
			ll any unita ha talzan
Have any treatment units be out of service in the next fiv		vice permanently, or Wi	ii any units de taken
□ Yes ⊠ No	•		

If y	yes, was a closure plan submitted to the TCEQ?
	□ Yes □ No
If y	yes, provide a brief description of the closure and the date of plan approval.
Se	ection 6. Permit Specific Requirements (Instructions Page 45) r applicants with an existing permit, check the Other Requirements or Special
	ovisions of the permit.
Α.	Summary transmittal Here plane and energifications have approved for the existing facilities and each proposed
	Have plans and specifications been approved for the existing facilities and each proposed phase?
	⊠ Yes □ No
	If yes, provide the date(s) of approval for each phase: <u>Unknown</u>
	Provide information, including dates, on any actions taken to meet a <i>requirement or provision</i> pertaining to the submission of a summary transmittal letter. Provide a copy of an approval letter from the TCEQ, if applicable .
	N/A
B.	Buffer zones
	Have the buffer zone requirements been met?
	⊠ Yes □ No
	Provide information below, including dates, on any actions taken to meet the conditions of the buffer zone. If available, provide any new documentation relevant to maintaining the buffer zones.
	Click to enter text.

C.	Ot.	her actions required by the current permit
	sul	bes the <i>Other Requirements</i> or <i>Special Provisions</i> section in the existing permit require bmission of any other information or other required actions? Examples include tification of Completion, progress reports, soil monitoring data, etc.
		□ Yes ⊠ No
		yes, provide information below on the status of any actions taken to meet the nditions of an <i>Other Requirement</i> or <i>Special Provision</i> .
	\mathbf{C}	lick to enter text.
D.	Gr	it and grease treatment
	1.	Acceptance of grit and grease waste
		Does the facility have a grit and/or grease processing facility onsite that treats and decants or accepts transported loads of grit and grease waste that are discharged directly to the wastewater treatment plant prior to any treatment?
		□ Yes ⊠ No
		If No, stop here and continue with Subsection E. Stormwater Management.
	2.	Grit and grease processing
		Describe below how the grit and grease waste is treated at the facility. In your description, include how and where the grit and grease is introduced to the treatment works and how it is separated or processed. Provide a flow diagram showing how grit and grease is processed at the facility.
		Click to enter text.
	3.	Grit disposal
	-	Does the facility have a Municipal Solid Waste (MSW) registration or permit for grit disposal?
		□ Yes ⊠ No

disposal requirements and restrictions.

If No, contact the TCEQ Municipal Solid Waste team at 512-239-2335. Note: A registration or permit is required for grit disposal. Grit shall not be combined with treatment plant sludge. See the instruction booklet for additional information on grit

		Describe the method of grit disposal.
		Click to enter text.
	4.	Grease and decanted liquid disposal
		Note: A registration or permit is required for grease disposal. Grease shall not be combined with treatment plant sludge. For more information, contact the TCEQ Municipal Solid Waste team at 512-239-2335.
		Describe how the decant and grease are treated and disposed of after grit separation.
		Click to enter text.
E.	Sto	ormwater management
	1.	Applicability
		Does the facility have a design flow of 1.0 MGD or greater in any phase?
		□ Yes ⊠ No
		Does the facility have an approved pretreatment program, under 40 CFR Part 403?
		□ Yes ⊠ No
		If no to both of the above, then skip to Subsection F, Other Wastes Received.
	2.	MSGP coverage
		Is the stormwater runoff from the WWTP and dedicated lands for sewage disposal currently permitted under the TPDES Multi-Sector General Permit (MSGP), TXR050000?
		□ Yes □ No
		If yes , please provide MSGP Authorization Number and skip to Subsection F, Other Wastes Received:
		TXR05 Click to enter text. or TXRNE Click to enter text.
		If no, do you intend to seek coverage under TXR050000?
		□ Yes □ No
	<i>3.</i>	Conditional exclusion
		Alternatively, do you intend to apply for a conditional exclusion from permitting based TXR050000 (Multi Sector General Permit) Part II B.2 or TXR050000 (Multi Sector General Permit) Part V, Sector T 3(b)?
		□ Yes □ No

	If yes, please explain below then proceed to Subsection F, Other Wastes Received:					
	Click to enter text.					
4.	Existing coverage in individual permit					
	Is your stormwater discharge currently permitted through this individual TPDES or TLAP permit?					
	□ Yes □ No					
	If yes , provide a description of stormwater runoff management practices at the site that are authorized in the wastewater permit then skip to Subsection F, Other Wastes Received.					
	Click to enter text.					
5 .	Zero stormwater discharge					
	Do you intend to have no discharge of stormwater via use of evaporation or other means?					
	□ Yes □ No					
	If yes, explain below then skip to Subsection F. Other Wastes Received.					
	Click to enter text.					
	Note: If there is a potential to discharge any stormwater to surface water in the state as the result of any storm event, then permit coverage is required under the MSGP or an individual discharge permit. This requirement applies to all areas of facilities with treatment plants or systems that treat, store, recycle, or reclaim domestic sewage, wastewater or sewage sludge (including dedicated lands for sewage sludge disposal located within the onsite property boundaries) that meet the applicability criteria of above. You have the option of obtaining coverage under the MSGP for direct discharges, (recommended), or obtaining coverage under this individual permit.					
6.	Request for coverage in individual permit					
	Are you requesting coverage of stormwater discharges associated with your treatment plant under this individual permit?					
	□ Yes □ No					
	If yes , provide a description of stormwater runoff management practices at the site for which you are requesting authorization in this individual wastewater permit and describe whether you intend to comingle this discharge with your treated effluent or discharge it via a separate dedicated stormwater outfall. Please also indicate if you					

		intend to divert stormwater to the treatment plant headworks and indirectly discharge it to water in the state.
		Click to enter text.
		Note: Direct stormwater discharges to waters in the state authorized through this individual permit will require the development and implementation of a stormwater pollution prevention plan (SWPPP) and will be subject to additional monitoring and reporting requirements. Indirect discharges of stormwater via headworks recycling will require compliance with all individual permit requirements including 2-hour peak flow limitations. All stormwater discharge authorization requests will require additional information during the technical review of your application.
F.	Di	scharges to the Lake Houston Watershed
	Do	es the facility discharge in the Lake Houston watershed?
		□ Yes □ No
		yes, attach a Sewage Sludge Solids Management Plan. See Example 5 in the instructions. ck to enter text.
G.	Ot	her wastes received including sludge from other WWTPs and septic waste
	1.	Acceptance of sludge from other WWTPs
		Does or will the facility accept sludge from other treatment plants at the facility site?
		□ Yes ⊠ No
		If yes, attach sewage sludge solids management plan. See Example 5 of instructions.
		In addition, provide the date the plant started or is anticipated to start accepting sludge, an estimate of monthly sludge acceptance (gallons or millions of gallons), an
		estimate of the BOD ₅ concentration of the sludge, and the design BOD ₅ concentration of the influent from the collection system. Also note if this information has or has not changed since the last permit action.
		Click to enter text.
		Note: Permits that accept sludge from other wastewater treatment plants may be required to have influent flow and organic loading monitoring.
	2.	Acceptance of septic waste
		Is the facility accepting or will it accept septic waste?
		□ Yes ⊠ No
		If yes, does the facility have a Type V processing unit?
		□ Yes □ No
		If yes, does the unit have a Municipal Solid Waste permit?
		□ Yes □ No

If yes to any of the above, provide the date the plant started or is anticipated to start accepting septic waste, an estimate of monthly septic waste acceptance (gallons or millions of gallons), an estimate of the BOD₅ concentration of the septic waste, and the design BOD₅ concentration of the influent from the collection system. Also note if this information has or has not changed since the last permit action.

Click to enter text.

Note: Permits that accept sludge from other wastewater treatment plants may be

required to have influent flow and organic loading monitoring.

3. Acceptance of other wastes (not including septic, grease, grit, or RCRA, CERCLA or as discharged by IUs listed in Worksheet 6)

Is or will the facility accept wastes that are not domestic in nature excluding the categories listed above?

□ Yes ⊠ No

If yes, provide the date that the plant started accepting the waste, an estimate how much waste is accepted on a monthly basis (gallons or millions of gallons), a description of the entities generating the waste, and any distinguishing chemical or other physical characteristic of the waste. Also note if this information has or has not changed since the last permit action.

Click to enter text.		

Section 7. Pollutant Analysis of Treated Effluent (Instructions Page 50)

Is the facility in operation?

⊠ Yes □ No

If no, this section is not applicable. Proceed to Section 8.

If yes, provide effluent analysis data for the listed pollutants. *Wastewater treatment facilities* complete Table 1.0(2). *Water treatment facilities* discharging filter backwash water, complete Table 1.0(3). Provide copies of the laboratory results sheets. **These tables are not applicable for a minor amendment without renewal.** See the instructions for guidance.

Note: The sample date must be within 1 year of application submission.

Table 1.0(2) - Pollutant Analysis for Wastewater Treatment Facilities

Pollutant	Average Conc.	Max Conc.	No. of Samples	Sample Type	Sample Date/Time
CBOD ₅ , mg/l					
Total Suspended Solids, mg/l					
Ammonia Nitrogen, mg/l					
Nitrate Nitrogen, mg/l					
Total Kjeldahl Nitrogen, mg/l					
Sulfate, mg/l					
Chloride, mg/l					
Total Phosphorus, mg/l					
pH, standard units					
Dissolved Oxygen*, mg/l					
Chlorine Residual, mg/l					
<i>E.coli</i> (CFU/100ml) freshwater					
Entercocci (CFU/100ml) saltwater					
Total Dissolved Solids, mg/l					
Electrical Conductivity, µmohs/cm, †					
Oil & Grease, mg/l					
Alkalinity (CaCO ₃)*, mg/l					

^{*}TPDES permits only †TLAP permits only

Table 1.0(3) - Pollutant Analysis for Water Treatment Facilities

Pollutant	Average Conc.	Max Conc.	No. of Samples	Sample Type	Sample Date/Time
Total Suspended Solids, mg/l	N/A	N/A	N/A	N/A	N/A
Total Dissolved Solids, mg/l	N/A	N/A	N/A	N/A	N/A
pH, standard units	N/A	N/A	N/A	N/A	N/A
Fluoride, mg/l	N/A	N/A	N/A	N/A	N/A
Aluminum, mg/l	N/A	N/A	N/A	N/A	N/A
Alkalinity (CaCO ₃), mg/l	N/A	N/A	N/A	N/A	N/A

Section 8. Facility Operator (Instructions Page 50)

Facility Operator Name: <u>Jack Baker</u>

Facility Operator's License Classification and Level: C

Facility Operator's License Number: WW0053593

Section 9. Sludge and Biosolids Management and Disposal (Instructions Page 51)

VV VV	1P'S Biosonus Management Facility Type
Che	ck all that apply. See instructions for guidance
	Design flow>= 1 MGD
	Serves >= 10,000 people
	Class I Sludge Management Facility (per 40 CFR § 503.9)
	Biosolids generator
\boxtimes	Biosolids end user – land application (onsite)
	Biosolids end user – surface disposal (onsite)
	Biosolids end user – incinerator (onsite)
ww	TP's Biosolids Treatment Process
Che	ck all that apply. See instructions for guidance.
	Aerobic Digestion
	Air Drying (or sludge drying beds)
	Lower Temperature Composting
	Lime Stabilization
	Higher Temperature Composting
	Heat Drying
	Thermophilic Aerobic Digestion
	Beta Ray Irradiation
	Gamma Ray Irradiation
	Pasteurization
	Preliminary Operation (e.g. grinding, de-gritting, blending)
	Thickening (e.g. gravity thickening, centrifugation, filter press, vacuum filter)
	Sludge Lagoon
	Temporary Storage (< 2 years)
	Long Term Storage (>= 2 years)
	Methane or Biogas Recovery
	Other Treatment Process: Click to enter text.

C. Biosolids Management

B.

Provide information on the *intended* biosolids management practice. Do not enter every management practice that you want authorized in the permit, as the permit will authorize

all biosolids management practices listed in the instructions. Rather indicate the management practice the facility plans to use.

Biosolids Management

Management Practice	Handler or Preparer Type	Bulk or Bag Container	Amount (dry metric tons)	Pathogen Reduction Options	Vector Attraction Reduction Option
Other	Choose an item.	Choose an item.		Choose an item.	Choose an item.
Choose an item.	Choose an item.	Choose an item.		Choose an item.	Choose an item.
Choose an item.	Choose an item.	Choose an item.		Choose an item.	Choose an item.

If "Other" is selected for Management Practice, please explain (e.g. monofill or transport to another WWTP): Transport to another WWTP – See Attachment T-4

D. Disposal site

Disposal site name: City of Paris Wastewater Treatment Facility

TCEQ permit or registration number: WQ0010479002

County where disposal site is located: Lamar

E. Transportation method

Method of transportation (truck, train, pipe, other): <u>Truck</u>

Name of the hauler: <u>A1 Sanitation</u> Hauler registration number: 22453

Sludge is transported as a:

Liquid □	semi-liquid ⊠	semi-solid \square	solid □
----------	---------------	----------------------	---------

Section 10. Permit Authorization for Sewage Sludge Disposal (Instructions Page 53)

A. Beneficial use authorization

Does the existing	ng permit inclu	de authoriz	ation for l	land appl	lication of	f sewage :	sludge for
beneficial use?							

□ Yes ⊠ No

If yes, are you requesting to continue this authorization to land apply sewage sludge for beneficial use?

□ Yes □ No

If yes, is the completed Application for Permit for Beneficial Land Use of Sewage Sludge (TCEQ Form No. 10451) attached to this permit application (see the instructions for details)?

	e existing permit include authorization for or disposal options?	r any	of the	follow	ing sludge processing,		
Slud	ge Composting		Yes		No		
Mark	keting and Distribution of sludge		Yes		No		
Slud	ge Surface Disposal or Sludge Monofill		Yes	\boxtimes	No		
Tem	porary storage in sludge lagoons		Yes	\boxtimes	No		
authoriz Technic	o any of the above sludge options and the zation, is the completed Domestic Wastew cal Report (TCEQ Form No. 10056) attached	vater	Permi	t Appl i	ication: Sewage Sludge		
	Yes □ No						
Section 1	11. Sewage Sludge Lagoons (Inst	truo	ctions	Page	2 53)		
Does this fa	acility include sewage sludge lagoons?						
□ Yes	No No						
If yes, comp	plete the remainder of this section. If no, p	roce	eed to S	ection	12.		
A. Location	n information						
	owing maps are required to be submitted the Attachment Number.	as p	art of th	ne app	lication. For each map,		
• C	Original General Highway (County) Map:						
A	Attachment: Click to enter text.						
• U	ISDA Natural Resources Conservation Serv	ice S	Soil Map):			
A	Attachment: Click to enter text.						
• F	ederal Emergency Management Map:						
A	Attachment: Click to enter text.						
• S	ite map:						
A	Attachment: Click to enter text.						
Discuss apply.	in a description if any of the following exi	ist w	ithin th	e lago	on area. Check all that		
	Overlap a designated 100-year frequency f	flood	l plain				
	Soils with flooding classification						
	Overlap an unstable area						
	Wetlands						
	Located less than 60 meters from a fault						
	None of the above						
Atta	chment: Click to enter text.						

B. Sludge processing authorization

	Click to enter text.
3.	Temporary storage information
	Provide the results for the pollutant screening of sludge lagoons. These results are in addition to pollutant results in <i>Section 7 of Technical Report 1.0.</i>
	Nitrate Nitrogen, mg/kg: Click to enter text.
	Total Kjeldahl Nitrogen, mg/kg: Click to enter text.
	Total Nitrogen (=nitrate nitrogen + TKN), mg/kg: Click to enter text.
	Phosphorus, mg/kg: Click to enter text.
	Potassium, mg/kg: Click to enter text.
	pH, standard units: Click to enter text.
	Ammonia Nitrogen mg/kg: Click to enter text.
	Arsenic: Click to enter text.
	Cadmium: Click to enter text.
	Chromium: Click to enter text.
	Copper: Click to enter text.
	Lead: Click to enter text.
	Mercury: Click to enter text.
	Molybdenum: Click to enter text.
	Nickel: Click to enter text.
	Selenium: <u>Click to enter text.</u>
	Zinc: Click to enter text.
	Total PCBs: Click to enter text.
	Provide the following information:
	Volume and frequency of sludge to the lagoon(s): Click to enter text.
	Total dry tons stored in the lagoons(s) per 365-day period: Click to enter text.
	Total dry tons stored in the lagoons(s) over the life of the unit: <u>Click to enter text.</u>

C. Liner information

Does the active/proposed sludge lagoon(s) have a liner with a maximum hydraulic conductivity of $1x10^{\text{--}7}\,\text{cm/sec?}$

Yes	No
Yes	No

	If yes	, describe the liner below. Please note that a liner is required.
	Click	to enter text.
D.	Site d	evelopment plan
	Provid	de a detailed description of the methods used to deposit sludge in the lagoon(s):
	Click	to enter text.
	Attac	n the following documents to the application.
	•	Plan view and cross-section of the sludge lagoon(s)
		Attachment: Click to enter text.
	•	Copy of the closure plan
		Attachment: Click to enter text.
	•	Copy of deed recordation for the site
		Attachment: Click to enter text.
	•	Size of the sludge lagoon(s) in surface acres and capacity in cubic feet and gallons
		Attachment: Click to enter text.
	•	Description of the method of controlling infiltration of groundwater and surface water from entering the site
		Attachment: Click to enter text.
	•	Procedures to prevent the occurrence of nuisance conditions
		Attachment: Click to enter text.
E.	Grou	ndwater monitoring
	groun	undwater monitoring currently conducted at this site, or are any wells available for dwater monitoring, or are groundwater monitoring data otherwise available for the e lagoon(s)?
		Yes □ No
	types	undwater monitoring data are available, provide a copy. Provide a profile of soil encountered down to the groundwater table and the depth to the shallowest dwater as a separate attachment.
	At	tachment: Click to enter text.

Section 12. Authorizations/Compliance/Enforcement (Instructions Page 55)

A.	Additional authorizations
	Does the permittee have additional authorizations for this facility, such as reuse authorization, sludge permit, etc?
	□ Yes ⊠ No
	If yes, provide the TCEQ authorization number and description of the authorization:
C	lick to enter text.
В.	Permittee enforcement status Is the permittee currently under enforcement for this facility?
	☐ Yes ☒ No Is the permittee required to meet an implementation schedule for compliance or enforcement?
	□ Yes ⊠ No
	If yes to either question, provide a brief summary of the enforcement, the implementation schedule, and the current status:
C	lick to enter text.
Se	ection 13. RCRA/CERCLA Wastes (Instructions Page 55)
Α.	RCRA hazardous wastes
	Has the facility received in the past three years, does it currently receive, or will it receive RCRA hazardous waste?

Yes 🖂

No

B. Remediation activity wastewater

Has the facility received in the past three years, does it currently receive, or will it receive CERCLA wastewater, RCRA remediation/corrective action wastewater or other remediation activity wastewater?

□ Yes ⊠ No

C. Details about wastes received

If yes to either Subsection A or B above, provide detailed information concerning these wastes with the application.

Attachment: Click to enter text.

Section 14. Laboratory Accreditation (Instructions Page 56)

All laboratory tests performed must meet the requirements of *30 TAC Chapter 25*, *Environmental Testing Laboratory Accreditation and Certification*, which includes the following general exemptions from National Environmental Laboratory Accreditation Program (NELAP) certification requirements:

- The laboratory is an in-house laboratory and is:
 - o periodically inspected by the TCEQ; or
 - o located in another state and is accredited or inspected by that state; or
 - o performing work for another company with a unit located in the same site; or
 - performing pro bono work for a governmental agency or charitable organization.
- The laboratory is accredited under federal law.
- The data are needed for emergency-response activities, and a laboratory accredited under the Texas Laboratory Accreditation Program is not available.
- The laboratory supplies data for which the TCEQ does not offer accreditation.

The applicant should review 30 TAC Chapter 25 for specific requirements.

The following certification statement shall be signed and submitted with every application. See the Signature Page section in the Instructions, for a list of designated representatives who may sign the certification.

CERTIFICATION:

I certify that all laboratory tests submitted with this application meet the requirements of 30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification.

Title: <u>Mayor</u>	
Signature:	
Date:	

Printed Name: Tom A. Wagnon

DOMESTIC WASTEWATER PERMIT APPLICATION TECHNICAL REPORT 1.1

The following information is required for new and amendment major applications.

Section 1. Justification for Permit (Instructions Page 57)

Α.	Justification	of	nermit	need
/ X .	Justification	O1	рсини	IICCU

B.

Provide a detailed discussion regarding the need for any phase(s) not currently permitted
Failure to provide sufficient justification may result in the Executive Director
recommending denial of the proposed phase(s) or permit.

160	commending demar of the proposed phase(s) of permit.
	Click to enter text.
Re	egionalization of facilities
	r additional guidance, please review <u>TCEQ's Regionalization Policy for Wastewater</u> <u>eatment</u> ¹ .
	ovide the following information concerning the potential for regionalization of domestic astewater treatment facilities:
1.	Municipally incorporated areas
	If the applicant is a city, then Item 1 is not applicable. Proceed to Item 2 Utility CCN areas.
	Is any portion of the proposed service area located in an incorporated city?
	□ Yes □ No □ Not Applicable
	If yes, within the city limits of: Click to enter text.
	If yes, attach correspondence from the city.
	Attachment: Click to enter text.
	If consent to provide service is available from the city, attach a justification for the proposed facility and a cost analysis of expenditures that includes the cost of connecting to the city versus the cost of the proposed facility or expansion attached.
	Attachment: Click to enter text.
2.	Utility CCN areas
	Is any portion of the proposed service area located inside another utility's CCN area?
	□ Yes □ No

¹ https://www.tceq.texas.gov/permitting/wastewater/tceq-regionalization-for-wastewater

If yes, attach a justification for the proposed facility and a cost analysis of expenditures that includes the cost of connecting to the CCN facilities versus the cost of the proposed facility or expansion.					
Attachment: Click to enter text.					
3. Nearby WWTPs or collection systems					
Are there any domestic permitted wastewater treatment facilities or collection systems located within a three-mile radius of the proposed facility?					
□ Yes □ No					
If yes, attach a list of these facilities and collection systems that includes each permittee's name and permit number, and an area map showing the location of these facilities and collection systems.					
Attachment: Click to enter text.					
If yes, attach proof of mailing a request for service to each facility and collection system, the letters requesting service, and correspondence from each facility and collection system.					
Attachment: Click to enter text.					
If the facility or collection system agrees to provide service, attach a justification for the proposed facility and a cost analysis of expenditures that includes the cost of connecting to the facility or collection system versus the cost of the proposed facility or expansion.					
Attachment: Click to enter text.					
Section 2. Proposed Organic Loading (Instructions Page 59)					
Is this facility in operation?					
☐ Yes ☐ No					
If no, proceed to Item B, Proposed Organic Loading.					
If yes, provide organic loading information in Item A, Current Organic Loading					
A. Current organic loading					
Facility Design Flow (flow being requested in application): Click to enter text.					
Average Influent Organic Strength or BOD ₅ Concentration in mg/l: Click to enter text.					
Average Influent Loading (lbs/day = total average flow X average BOD ₅ conc. X 8.34): $\underline{\text{Click}}$ to enter text.					
Provide the source of the average organic strength or BOD ₅ concentration.					
Click to enter text					

B. Proposed organic loading

This table must be completed if this application is for a facility that is not in operation or if this application is to request an increased flow that will impact organic loading.

Table 1.1(1) - Design Organic Loading

Source	Total Average Flow (MGD)	Influent BOD5 Concentration (mg/l)
Municipality		
Subdivision		
Trailer park - transient		
Mobile home park		
School with cafeteria and showers		
School with cafeteria, no showers		
Recreational park, overnight use		
Recreational park, day use		
Office building or factory		
Motel		
Restaurant		
Hospital		
Nursing home		
Other		
TOTAL FLOW from all sources		
AVERAGE BOD ₅ from all sources		

Section 3. Proposed Effluent Quality and Disinfection (Instructions Page 59)

A. Existing/Interim I Phase Design Effluent Quality

Biochemical Oxygen Demand (5-day), mg/l: Click to enter text.

Total Suspended Solids, mg/l: Click to enter text.

Ammonia Nitrogen, mg/l: Click to enter text.

Total Phosphorus, mg/l: Click to enter text.

Dissolved Oxygen, mg/l: Click to enter text.

Other: Click to enter text.

В.	interim ii Phase Design Efficient Quanty
	Biochemical Oxygen Demand (5-day), mg/l: Click to enter text.
	Total Suspended Solids, mg/l: Click to enter text.
	Ammonia Nitrogen, mg/l: Click to enter text.
	Total Phosphorus, mg/l: <u>Click to enter text.</u>
	Dissolved Oxygen, mg/l: Click to enter text.
	Other: Click to enter text.
C.	Final Phase Design Effluent Quality
	Biochemical Oxygen Demand (5-day), mg/l: Click to enter text.
	Total Suspended Solids, mg/l: Click to enter text.
	Ammonia Nitrogen, mg/l: Click to enter text.
	Total Phosphorus, mg/l: Click to enter text.
	Dissolved Oxygen, mg/l: Click to enter text.
	Other: Click to enter text.
D.	Disinfection Method
	Identify the proposed method of disinfection.
	Chlorine: <u>Click to enter text.</u> mg/l after <u>Click to enter text.</u> minutes detention time at peak flow
	Dechlorination process: Click to enter text.
	□ Ultraviolet Light: <u>Click to enter text.</u> seconds contact time at peak flow
	□ Other: <u>Click to enter text.</u>
Co	estion 4 Design Coloulations (Instructions Desc. 50)
	ection 4. Design Calculations (Instructions Page 59)
	tach design calculations and plant features for each proposed phase. Example 4 of the structions includes sample design calculations and plant features.
	Attachment: Click to enter text.
Se	ection 5. Facility Site (Instructions Page 60)
A.	100-year floodplain
	Will the proposed facilities be located <u>above</u> the 100-year frequency flood level?
	□ Yes □ No
	If no , describe measures used to protect the facility during a flood event. Include a site map showing the location of the treatment plant within the 100-year frequency flood level. If applicable, provide the size and types of protective structures.
	Click to enter text.

	Provide the source(s) used to determine 100-year frequency flood plain.
	Click to enter text.
	For a new or expansion of a facility, will a wetland or part of a wetland be filled?
	□ Yes □ No
	If yes, has the applicant applied for a US Corps of Engineers 404 Dredge and Fill Permit?
	☐ Yes ☐ No
	If yes, provide the permit number: <u>Click to enter text.</u>
	If no, provide the approximate date you anticipate submitting your application to the Corps: Click to enter text.
B.	Wind rose
	Attach a wind rose: Click to enter text.
Se	ection 6. Permit Authorization for Sewage Sludge Disposal (Instructions Page 60)
A.	Beneficial use authorization
	Are you requesting to include authorization to land apply sewage sludge for beneficial use on property located adjacent to the wastewater treatment facility under the wastewater permit?
	□ Yes □ No
	If yes, attach the completed Application for Permit for Beneficial Land Use of Sewage Sludge (TCEQ Form No. 10451) : Click to enter text.
B.	Sludge processing authorization
	Identify the sludge processing, storage or disposal options that will be conducted at the wastewater treatment facility:
	□ Sludge Composting
	□ Marketing and Distribution of sludge
	□ Sludge Surface Disposal or Sludge Monofill
	If any of the above, sludge options are selected, attach the completed Domestic Wastewater Permit Application: Sewage Sludge Technical Report (TCEQ Form No. 10056): Click to enter text.
Se	ection 7. Sewage Sludge Solids Management Plan (Instructions Page 61)

Attach a solids management plan to the application.

Attachment: Click to enter text.

The sewage sludge solids management plan must contain the following information:

Treatment units and processes dimensions and capacities

- Solids generated at 100, 75, 50, and 25 percent of design flow
- Mixed liquor suspended solids operating range at design and projected actual flow
- Quantity of solids to be removed and a schedule for solids removal
- Identification and ownership of the ultimate sludge disposal site
- For facultative lagoons, design life calculations, monitoring well locations and depths, and the ultimate disposal method for the sludge from the facultative lagoon

An example of a sewage sludge solids management plan has been included as Example 5 of the instructions.

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 2.0: RECEIVING WATERS

The following information is required for all TPDES permit applications.

Soc	ction 1 Democtic Drinking Water Supply (Instructions Dage 64)
	ction 1. Domestic Drinking Water Supply (Instructions Page 64)
	here a surface water intake for domestic drinking water supply located within 5 miles wastream from the point or proposed point of discharge?
	□ Yes □ No
If n	o, proceed it Section 2. If yes , provide the following:
(Owner of the drinking water supply: <u>Click to enter text.</u>
]	Distance and direction to the intake: Click to enter text.
د	Attach a USGS map that identifies the location of the intake.
	Attachment: Click to enter text.
Sec	ction 2. Discharge into Tidally Affected Waters (Instructions Page
	64)
Doe	es the facility discharge into tidally affected waters?
ļ	□ Yes □ No
	o , proceed to Section 3. If yes , complete the remainder of this section. If no, proceed to tion 3.
A.]	Receiving water outfall
1	Width of the receiving water at the outfall, in feet: Click to enter text.
В. (Oyster waters
	Are there oyster waters in the vicinity of the discharge?
	□ Yes □ No
]	If yes, provide the distance and direction from outfall(s).
	Click to enter text.
C. :	Sea grasses
د	Are there any sea grasses within the vicinity of the point of discharge?
	□ Yes □ No
]	If yes, provide the distance and direction from the outfall(s).
	Click to enter text.

36	CHOIL	5. Classified Segments (instructions Page 64)
Is	the disc	harge directly into (or within 300 feet of) a classified segment?
	□ Ye	es 🗆 No
If	yes , this	s Worksheet is complete.
If	no , com	plete Sections 4 and 5 of this Worksheet.
Se	ection	4. Description of Immediate Receiving Waters (Instructions
		Page 65)
Na	ame of t	he immediate receiving waters: <u>Click to enter text.</u>
A.	Receiv	ring water type
	Identif	y the appropriate description of the receiving waters.
		Stream
		Freshwater Swamp or Marsh
		Lake or Pond
		Surface area, in acres: Click to enter text.
		Average depth of the entire water body, in feet: Click to enter text.
		Average depth of water body within a 500-foot radius of discharge point, in feet: Click to enter text.
		Man-made Channel or Ditch
		Open Bay
		Tidal Stream, Bayou, or Marsh
		Other, specify: <u>Click to enter text.</u>
B.	Flow c	haracteristics
	existin	eam, man-made channel or ditch was checked above, provide the following. For g discharges, check one of the following that best characterizes the area <i>upstream</i> discharge. For new discharges, characterize the area <i>downstream</i> of the discharge one).
		Intermittent - dry for at least one week during most years
	□ mai	Intermittent with Perennial Pools - enduring pools with sufficient habitat to intain significant aquatic life uses
		Perennial - normally flowing
	Check dischar	the method used to characterize the area upstream (or downstream for new rgers).
		USGS flow records
		Historical observation by adjacent landowners
		Personal observation
		Other, specify: Click to enter text.

	List the names of all perennial streams that join the receiving water within three miles downstream of the discharge point.				
	Click t	o enter text.			
D.	Downs	stream characteristics			
		rge (e.g., natural or man-mad	_	rithin three miles downstream of the ads, reservoirs, etc.)?	
		Yes □ No			
		discuss how.			
	Click t	o enter text.			
E. Normal dry weather characteristics					
Provide general observations of the water body during normal dry weather conditions			during normal dry weather conditions.		
Click to enter text.					
	Date a	nd time of observation: Click	k to enter tex	t.	
	Was th	e water body influenced by	stormwater 1	runoff during observations?	
		Yes □ No			
Se	ection	5. General Characte Page 66)	eristics of	the Waterbody (Instructions	
A.	Upstre	am influences			
		mmediate receiving water u		ne discharge or proposed discharge site nat apply.	
		Oil field activities		Urban runoff	
		Upstream discharges		Agricultural runoff	
		Septic tanks		Other(s), specify: Click to enter text.	

C. Downstream perennial confluences

B. Waterbody uses Observed or evidences of the following uses. Check all that apply. Livestock watering Contact recreation Irrigation withdrawal Non-contact recreation **Fishing Navigation** Domestic water supply Industrial water supply Park activities Other(s), specify: Click to enter text. C. Waterbody aesthetics Check one of the following that best describes the aesthetics of the receiving water and the surrounding area. Wilderness: outstanding natural beauty; usually wooded or unpastured area; water clarity exceptional Natural Area: trees and/or native vegetation; some development evident (from fields, pastures, dwellings); water clarity discolored Common Setting: not offensive; developed but uncluttered; water may be colored or turbid Offensive: stream does not enhance aesthetics; cluttered; highly developed; dumping areas; water discolored

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 2.1: STREAM PHYSICAL CHARACTERISTICS

Required for new applications, major facilities, and applications adding an outfall.

Worksheet 2.1 is not required for discharges to intermittent streams or discharges directly to (or within 300 feet of) a classified segment.

Section 1. General information (instructions Page 66)				
Date of study: Click to enter text. Time of study: Click to enter text.				
Stream name: Click to enter text.				
Location: Click to enter text.				
Type of stream upstream of existing discharge or downstream of proposed discharge (check one).				
\square Perennial \square Intermittent with perennial pools				
Section 2. Data Collection (Instructions Page 66)				
Number of stream bends that are well defined: Click to enter text.				
Number of stream bends that are moderately defined: Click to enter text.				
Number of stream bends that are poorly defined: <u>Click to enter text.</u>				
Number of riffles: Click to enter text.				
Evidence of flow fluctuations (check one):				
□ Minor □ moderate □ severe				
Indicate the observed stream uses and if there is evidence of flow fluctuations or channel obstruction/modification.				
Click to enter text.				

Stream transects

In the table below, provide the following information for each transect downstream of the existing or proposed discharges. Use a separate row for each transect.

Table 2.1(1) - Stream Transect Records

Stream type at transect	Transect location	Water surface	Stream depths (ft) at 4 to 10 points along each
Select riffle, run, glide, or pool. See Instructions, Definitions section.		width (ft)	transect from the channel bed to the water surface. Separate the measurements with commas.
Choose an item.			

Section 3. Summarize Measurements (Instructions Page 66)

Streambed slope of entire reach, from USGS map in feet/feet: Click to enter text.

Approximate drainage area above the most downstream transect (from USGS map or county highway map, in square miles): <u>Click to enter text.</u>

Length of stream evaluated, in feet: Click to enter text.

Number of lateral transects made: Click to enter text.

Average stream width, in feet: Click to enter text.

Average stream depth, in feet: Click to enter text.

Average stream velocity, in feet/second: Click to enter text.

Instantaneous stream flow, in cubic feet/second: Click to enter text.

Indicate flow measurement method (type of meter, floating chip timed over a fixed distance, etc.): <u>Click to enter text.</u>

Size of pools (large, small, moderate, none): Click to enter text.

Maximum pool depth, in feet: Click to enter text.

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 3.0: LAND DISPOSAL OF EFFLUENT

The following is required for renewal, new, and amendment permit applications.

Section 1. Type of Disposal System (Instructions Page 68)

Identify the method of land disposal:					
	Surface application		Subsurface application		
\boxtimes	Irrigation		Subsurface soils absorption		
	Drip irrigation system		Subsurface area drip dispersal system		
	Evaporation		Evapotranspiration beds		
☐ Other (describe in detail): <u>Click to enter text.</u>					
NOTE: All applicants without authorization or proposing new/amended subsurface disposal MUST complete and submit Worksheet 7.0.					

For existing authorizations, provide Registration Number: N/A

Section 2. Land Application Site(s) (Instructions Page 68)

In table 3.0(1), provide the requested information for the land application sites. Include the agricultural or cover crop type (wheat, cotton, alfalfa, bermuda grass, native grasses, etc.), land use (golf course, hayland, pastureland, park, row crop, etc.), irrigation area, amount of effluent applied, and whether or not the public has access to the area. Specify the amount of land area and the amount of effluent that will be allotted to each agricultural or cover crop, if more than one crop will be used.

Table 3.0(1) - Land Application Site Crops

Crop Type & Land Use	Irrigation Area (acres)	Effluent Application (GPD)	Public Access? Y/N
Native Grasses - Pastureland	0.459	0*	N

Section 3. Storage and Evaporation Lagoons/Ponds (Instructions Page 68)

Table 3.0(2) - Storage and Evaporation Ponds

Pond Number	Surface Area (acres)	Storage Volume (acre-feet)	Dimensions	Liner Type
1	0.46	5.1	160' dia x 10' deep	Clay
2	0.35	3.9	140' dia x 10' deep	Clay

Attach a copy of a liner certification that was prepared, signed, and sealed by a Texas licensed professional engineer for each pond.

licensed professional engineer for each pond.
Attachment: No certification provided.
Section 4. Flood and Runoff Protection (Instructions Page 68)
Is the land application site <u>within</u> the 100-year frequency flood level?
□ Yes ⊠ No
If yes, describe how the site will be protected from inundation.
Click to enter text.
Provide the source used to determine the 100-year frequency flood level:
FEMA
Provide a description of tailwater controls and rainfall run-on controls used for the land
application site.
The effluent spray field site is depressed around the natural surroundings which creates a basin which
runoff cannot leave. The upstream side is very near a grade break which pushes much of the rainfall to
the north instead of flowing over the spray field to the south.

Section 5. Annual Cropping Plan (Instructions Page 68)

Attach an Annual Cropping Plan which includes a discussion of each of the following items. If not applicable, provide a detailed explanation indicating why. **Attachment**: <u>T-5</u>

- Soils map with crops
- Cool and warm season plant species
- Crop yield goals
- Crop growing season
- Crop nutrient requirements
- Additional fertilizer requirements
- Minimum/maximum harvest height (for grass crops)
- Supplemental watering requirements
- Crop salt tolerances
- Harvesting method/number of harvests
- Justification for not removing existing vegetation to be irrigated

Section 6. Well and Map Information (Instructions Page 69)

Attach a USGS map with the following information shown and labeled. If not applicable, provide a detailed explanation indicating why. **Attachment**: <u>T-6A & T-6B</u>

- The boundaries of the land application site(s)
- Waste disposal or treatment facility site(s)
- On-site buildings
- Buffer zones
- Effluent storage and tailwater control facilities
- All water wells within 1-mile radius of the disposal site or property boundaries
- All springs and seeps onsite and within 500 feet of the property boundaries
- All surface waters in the state onsite and within 500 feet of the property boundaries
- All faults and sinkholes onsite and within 500 feet of the property

List and cross reference all water wells located within a half-mile radius of the disposal site or property boundaries shown on the USGS map in the following table. Attach additional pages as necessary to include all of the wells.

Table 3.0(3) - Water Well Data

Well ID	Well Use	Producing? Y/N	Open, cased, capped, or plugged?	Proposed Best Management Practice
1721501	Unused	N	Plugged	Driller's Log
1721801	Plugged or Destroyed	N	Plugged	Routine Inspection
1721802	Unused	N	Plugged	Routine Inspection
1721806	Domestic	Y	Open	Driller's Log
1721803	Plugged or Destroyed	N	Plugged	Routine Inspection

If water quality data or well log information is available please include the information in an attachment listed by Well ID.

Attachment: T-7

Section 7. Groundwater Quality (Instructions Page 69)

Attach a Groundwater Quality Technical Report which assesses the impact of the wastewater disposal system on groundwater. This report shall include an evaluation of the water wells (including the information in the well table provided in Item 6. above), the wastewater application rate, and pond liners. Indicate by a check mark that this report is provided.

Attachment: Click to enter text.
Are groundwater monitoring wells available onsite? \square Yes \boxtimes No
Do you plan to install ground water monitoring wells or lysimeters around the land application site? \square Yes \boxtimes No
If yes, provide the proposed location of the monitoring wells or lysimeters on a site map.
Attachment: Click to enter text.

Section 8. Soil Map and Soil Analyses (Instructions Page 70)

A. Soil map

Attach a USDA Soil Survey map that shows the area to be used for effluent disposal.

Attachment: <u>T-8</u>

B. Soil analyses

Attach the laboratory results sheets from the soil analyses. **Note**: for renewal applications, the current annual soil analyses required by the permit are acceptable as long as the test date is less than one year prior to the submission of the application.

Attachment: <u>T-9</u>

List all USDA designated soil series on the proposed land application site. Attach additional pages as necessary.

Table 3.0(4) - Soil Data

Soil Series	Depth from Surface	Permeability	Available Water Capacity	Curve Number
Derly, occasionally ponded-Raino comples,	0-6"	Very Slow	Not available	0
Freestone-Hicota complex	0-6"	Moderately well- drained	Not available	0

Section 9. Effluent Monitoring Data (Instructions Page 71)

Is the facility in operation?

⊠ Yes □ No

If no, this section is not applicable and the worksheet is complete.

If yes, provide the effluent monitoring data for the parameters regulated in the existing permit. If a parameter is not regulated in the existing permit, enter N/A.

Table 3.0(5) - Effluent Monitoring Data

Date	30 Day Avg Flow MGD	BOD5 mg/l	TSS mg/l	рН	Chlorine Residual mg/l	Acres irrigated
1/9/2024		16.4	N/A	N/A	N/A	6
3/12/24		122	N/A	N/A	N/A	6
5/14/24		4.96	N/A	N/A	N/A	6
6/11/24		5.26	N/A	N/A	N/A	6
7/9/24		3.42	N/A	N/A	N/A	6
8/13/24		<3.0	N/A	N/A	N/A	6
9/10/24		9.60	N/A	N/A	N/A	6
10/3/24		14.3	N/A	N/A	N/A	6
11/12/24		10.7	N/A	N/A	N/A	6
12/10/24		13.5	N/A	N/A	N/A	6

N/A		

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 3.1: SURFACE LAND DISPOSAL OF EFFLUENT

The following is required for new and major amendment permit applications. Renewal and minor amendment permit applications may be asked for this worksheet on a case by case basis.

Section 1. Surface Disposal (Instructions Page 72)

Complete the item that applies for the method of disposal being used.

A. Irrigation

Area under irrigation, in acres: Click to enter text.

Design application frequency:

hours/day <u>Click to enter text.</u> And days/week <u>Click to enter text.</u>

Land grade (slope):

average percent (%): Click to enter text.

maximum percent (%): Click to enter text.

Design application rate in acre-feet/acre/year: Click to enter text.

Design total nitrogen loading rate, in lbs N/acre/year: Click to enter text.

Soil conductivity (mmhos/cm): Click to enter text.

Method of application: Click to enter text.

Attach a separate engineering report with the water balance and storage volume calculations, method of application, irrigation efficiency, and nitrogen balance.

Attachment: Click to enter text.

B. Evaporation ponds

Daily average effluent flow into ponds, in gallons per day: Click to enter text.

Attach a separate engineering report with the water balance and storage volume calculations.

Attachment: Click to enter text.

C. Evapotranspiration beds

Number of beds: Click to enter text.

Area of bed(s), in acres: <u>Click to enter text.</u>

Depth of bed(s), in feet: Click to enter text.

Void ratio of soil in the beds: Click to enter text.

Storage volume within the beds, in acre-feet: Click to enter text.

Attach a separate engineering report with the water balance and storage volume calculations, and a description of the lining.

Attachment: Click to enter text.

D. Overland flow Area used for application, in acres: Click to enter text. Slopes for application area, percent (%): Click to enter text. Design application rate, in gpm/foot of slope width: Click to enter text. Slope length, in feet: Click to enter text. Design BOD₅ loading rate, in lbs BOD₅/acre/day: Click to enter text. Design application frequency: hours/day: Click to enter text. **And** days/week: Click to enter text. Attach a separate engineering report with the method of application and design requirements according to 30 TAC Chapter 217. Attachment: Click to enter text.

Section 2. Edwards Aquifer (Instructions Page 73)

Is the facility subject to 30 TAC Chapter 213, Edwards Aquifer Rules?
□ Yes □ No
If yes , is the facility located on the Edwards Aquifer Recharge Zone?
□ Yes □ No
If yes, attach a geological report addressing potential recharge features.
Attachment: Click to enter text.

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 3.2: SURFACE LAND DISPOSAL OF EFFLUENT

The following **is required** for **new and major amendment** permit applications. Renewal and minor amendments applicants may be asked for the worksheet on a case by case basis.

NOTE: All applicants proposing new/amended subsurface disposal MUST complete and submit Worksheet 7.0. This worksheet applies to any subsurface disposal system that **does not meet** the definition of a subsurface area drip dispersal system as defined in *30 TAC Chapter 222, Subsurface Area Drip Dispersal System.*

Section 1. Subsurface Application (Instructions Page 74)
Identify the type of system:
□ Conventional Gravity Drainfield, Beds, or Trenches (new systems must be less than 5,000 GPD)
□ Low Pressure Dosing
☐ Other, specify: <u>Click to enter text.</u>
Application area, in acres: Click to enter text.
Area of drainfield, in square feet: Click to enter text.
Application rate, in gal/square foot/day: Click to enter text.
Depth to groundwater, in feet: Click to enter text.
Area of trench, in square feet: Click to enter text.
Dosing duration per area, in hours: <u>Click to enter text.</u>
Number of beds: <u>Click to enter text.</u>
Dosing amount per area, in inches/day: Click to enter text.
Infiltration rate, in inches/hour: Click to enter text.
Storage volume, in gallons: <u>Click to enter text.</u>
Area of bed(s), in square feet: <u>Click to enter text.</u>
Soil Classification: <u>Click to enter text.</u>
Attach a separate engineering report with the information required in $30\ TAC\ S\ 309.20$, excluding the requirements of $S\ 309.20\ b(3)(A)$ and (B) design analysis which may be asked for on a case by case basis. Include a description of the schedule of dosing basin rotation.
Attachment: Click to enter text.
Section 2. Edwards Aquifer (Instructions Page 74)
Is the subsurface system over the Edwards Aquifer Recharge Zone as mapped by TCEQ?
□ Yes □ No
Is the subsurface system over the Edwards Aquifer Transition Zone as mapped by TCEQ?
□ Yes □ No
If ves to either question, the subsurface system may be prohibited by 30 TAC §213.8. Please

call the Municipal Permits Team, at 512-239-4671, to schedule a pre-application meeting.

DOMESTIC WASTEWATER PERMIT APPLICATION **WORKSHEET 3.3: SUBSURFACE AREA DRIP DISPERSAL** (SADDS) LAND DISPOSAL OF EFFLUENT

The following **is required** for **new and major amendment** subsurface area drip dispersal system permit applications. Renewal and minor amendments applicants may be asked for the worksheet on a case by case basis.

NOTE: All applicants proposing new/amended subsurface disposal MUST complete and submit Worksheet 7.0. This worksheet applies to any subsurface disposal system that meets the definition of a subsurface area drip dispersal system as defined in 30 TAC Chapter 222, Subsurface Area Drip Dispersal System.

Se	ection 1. Administrative Information (Instructions Page 75)
Α.	Provide the legal name of all corporations or other business entities managed, owned, or otherwise closely related to the owner of the treatment facility:
В.	<u>Click to enter text.</u> Is the owner of the land where the treatment facility is located the same as the owner of the treatment facility?
	□ Yes □ No
	If no , provide the legal name of all corporations or other business entities managed, owned, or otherwise closely related to the owner of the land where the treatment facility is located.
	Click to enter text.
C.	Owner of the subsurface area drip dispersal system: <u>Click to enter text.</u>
D.	Is the owner of the subsurface area drip dispersal system the same as the owner of the wastewater treatment facility or the site where the wastewater treatment facility is located?
	□ Yes □ No
	If no , identify the names of all corporations or other business entities managed, owned, or otherwise closely related to the entity identified in Item 1.C.
	Click to enter text.
Е.	Owner of the land where the subsurface area drip dispersal system is located: <u>Click to enter text.</u>
F.	Is the owner of the land where the subsurface area drip dispersal system is located the same as owner of the wastewater treatment facility, the site where the wastewater treatment facility is located, or the owner of the subsurface area drip dispersal system?
	□ Yes □ No
	If no , identify the name of all corporations or other business entities managed, owned, or otherwise closely related to the entity identified in item 1.E.
	Click to enter text.

Section 2. Subsurface Area Drip Dispersal System (Instructions Page

A.	Type of system
	□ Subsurface Drip Irrigation
	□ Surface Drip Irrigation
	□ Other, specify: <u>Click to enter text.</u>
B.	Irrigation operations
	Application area, in acres: Click to enter text.
	Infiltration Rate, in inches/hour: Click to enter text.
	Average slope of the application area, percent (%): Click to enter text.
	Maximum slope of the application area, percent (%): Click to enter text.
	Storage volume, in gallons: <u>Click to enter text.</u>
	Major soil series: <u>Click to enter text.</u>
	Depth to groundwater, in feet: <u>Click to enter text.</u>
C.	Application rate
	Is the facility located west of the boundary shown in <i>30 TAC § 222.83</i> and also using a vegetative cover of non-native grasses over seeded with cool season grasses during the winter months (October-March)?
	□ Yes □ No
	If yes, then the facility may propose a hydraulic application rate not to exceed 0.1 gal/square foot/day.
	Is the facility located east of the boundary shown in <i>30 TAC § 222.83</i> or in any part of the state when the vegetative cover is any crop other than non-native grasses?
	□ Yes □ No
	If yes , the facility must use the formula in <i>30 TAC §222.83</i> to calculate the maximum hydraulic application rate.
	Do you plan to submit an alternative method to calculate the hydraulic application rate for approval by the executive director?
	□ Yes □ No
	Hydraulic application rate, in gal/square foot/day: Click to enter text.
	Nitrogen application rate, in lbs/gal/day: Click to enter text.
D.	Dosing information
	Number of doses per day: Click to enter text.
	Dosing duration per area, in hours: <u>Click to enter text.</u>

Rest period between doses, in hours: Click to enter text.

Dosing amount per area, in inches/day: Click to enter text.

	Number of zones: Click to enter text.
	Does the proposed subsurface drip irrigation system use tree vegetative cover as a crop?
	□ Yes □ No
	If yes , provide a vegetation survey by a certified arborist. Please call the Water Quality Assessment Team at (512) 239-4671 to schedule a pre-application meeting.
	Attachment: Click to enter text.
Se	ction 3. Required Plans (Instructions Page 75)
Α.	Recharge feature plan
	Attach a Recharge Feature Plan with all information required in 30 TAC §222.79.
	Attachment: Click to enter text.
B.	Soil evaluation
	Attach a Soil Evaluation with all information required in 30 TAC §222.73.
	Attachment: Click to enter text.
C.	Site preparation plan
	Attach a Site Preparation Plan with all information required in 30 TAC §222.75.
	Attachment: Click to enter text.
D.	Soil sampling/testing
	Attach soil sampling and testing that includes all information required in <i>30 TAC §222.157</i> .
	Attachment: Click to enter text.
Se	ection 4. Floodway Designation (Instructions Page 76)
A.	Site location
	Is the existing/proposed land application site within a designated floodway?
	□ Yes □ No
B.	Flood map
	Attach either the FEMA flood map or alternate information used to determine the floodway.
	Attachment: Click to enter text.
Se	ection 5. Surface Waters in the State (Instructions Page 76)

S

A. Buffer Map

Attach a map showing appropriate buffers on surface waters in the state, water wells, and springs/seeps.

Attachment: Click to enter text.

Do you plan to request a buffer variance from water wells or waters in the state?
□ Yes □ No
If yes, then attach the additional information required in 30 TAC § 222.81(c).
Attachment: Click to enter text.
Section 6 Edwards Aguifor (Instructions Dags 76)
Section 6. Edwards Aquifer (Instructions Page 76)
A. Is the SADDS located over the Edwards Aquifer Recharge Zone as mapped by TCEQ?
□ Yes □ No
B. Is the SADDS located over the Edwards Aquifer Transition Zone as mapped by TCEQ?
□ Yes □ No
If yes to either question , then the SADDS may be prohibited by <i>30 TAC §213.8</i> . Please call the Municipal Permits Team at 512-239-4671 to schedule a pre-application meeting.

B. Buffer variance request

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 4.0: POLLUTANT ANALYSIS REQUIREMENTS

The following **is required** for facilities with a permitted or proposed flow of **1.0 MGD or greater**, facilities with an approved **pretreatment** program, or facilities classified as a **major** facility. See instructions for further details.

This worksheet is not required minor amendments without renewal.

Section 1. Toxic Pollutants (Instructions Page 78)

For pollutants identified in Table 4.0(1)), indicate the type of sample.
---	---------------------------------

Grab □ Composite □

Date and time sample(s) collected: Click to enter text.

Table 4.0(1) - Toxics Analysis

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Acrylonitrile				50
Aldrin				0.01
Aluminum				2.5
Anthracene				10
Antimony				5
Arsenic				0.5
Barium				3
Benzene				10
Benzidine				50
Benzo(a)anthracene				5
Benzo(a)pyrene				5
Bis(2-chloroethyl)ether				10
Bis(2-ethylhexyl)phthalate				10
Bromodichloromethane				10
Bromoform				10
Cadmium				1
Carbon Tetrachloride				2
Carbaryl				5
Chlordane*				0.2
Chlorobenzene				10
Chlorodibromomethane				10

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (μg/l)	Number of Samples	MAL (μg/l)
Chloroform				10
Chlorpyrifos				0.05
Chromium (Total)				3
Chromium (Tri) (*1)				N/A
Chromium (Hex)				3
Copper				2
Chrysene				5
p-Chloro-m-Cresol				10
4,6-Dinitro-o-Cresol				50
p-Cresol				10
Cyanide (*2)				10
4,4'- DDD				0.1
4,4'- DDE				0.1
4,4'- DDT				0.02
2,4-D				0.7
Demeton (O and S)				0.20
Diazinon				0.5/0.1
1,2-Dibromoethane				10
m-Dichlorobenzene				10
o-Dichlorobenzene				10
p-Dichlorobenzene				10
3,3'-Dichlorobenzidine				5
1,2-Dichloroethane				10
1,1-Dichloroethylene				10
Dichloromethane				20
1,2-Dichloropropane				10
1,3-Dichloropropene				10
Dicofol				1
Dieldrin				0.02
2,4-Dimethylphenol				10
Di-n-Butyl Phthalate				10
Diuron				0.09
Endosulfan I (alpha)				0.01

Pollutant	AVG Effluent Conc. (μg/l)	MAX Effluent Conc. (μg/l)	Number of Samples	MAL (μg/l)
Endosulfan II (beta)				0.02
Endosulfan Sulfate				0.1
Endrin				0.02
Ethylbenzene				10
Fluoride				500
Guthion				0.1
Heptachlor				0.01
Heptachlor Epoxide				0.01
Hexachlorobenzene				5
Hexachlorobutadiene				10
Hexachlorocyclohexane (alpha)				0.05
Hexachlorocyclohexane (beta)				0.05
gamma-Hexachlorocyclohexane				0.05
(Lindane)				
Hexachlorocyclopentadiene				10
Hexachloroethane				20
Hexachlorophene				10
Lead				0.5
Malathion				0.1
Mercury				0.005
Methoxychlor				2
Methyl Ethyl Ketone				50
Mirex				0.02
Nickel				2
Nitrate-Nitrogen				100
Nitrobenzene				10
N-Nitrosodiethylamine				20
N-Nitroso-di-n-Butylamine				20
Nonylphenol				333
Parathion (ethyl)				0.1
Pentachlorobenzene				20
Pentachlorophenol				5
Phenanthrene				10

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Polychlorinated Biphenyls (PCB's) (*3)				0.2
Pyridine				20
Selenium				5
Silver				0.5
1,2,4,5-Tetrachlorobenzene				20
1,1,2,2-Tetrachloroethane				10
Tetrachloroethylene				10
Thallium				0.5
Toluene				10
Toxaphene				0.3
2,4,5-TP (Silvex)				0.3
Tributyltin (see instructions for explanation)				0.01
1,1,1-Trichloroethane				10
1,1,2-Trichloroethane				10
Trichloroethylene				10
2,4,5-Trichlorophenol				50
TTHM (Total Trihalomethanes)				10
Vinyl Chloride				10
Zinc				5

^(*1) Determined by subtracting hexavalent Cr from total Cr.

^(*2) Cyanide, amenable to chlorination or weak-acid dissociable.

^(*3) The sum of seven PCB congeners 1242, 1254, 1221, 1232, 1248, 1260, and 1016.

Section 2. Priority Pollutants

For 1	pollutants	identified	in	Tables	4.0(2)A-E,	indicate	type	of s	sample.
-------	------------	------------	----	--------	------------	----------	------	------	---------

Grab □ Composite □

Date and time sample(s) collected: Click to enter text.

Table 4.0(2)A - Metals, Cyanide, and Phenols

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Antimony				5
Arsenic				0.5
Beryllium				0.5
Cadmium				1
Chromium (Total)				3
Chromium (Hex)				3
Chromium (Tri) (*1)				N/A
Copper				2
Lead				0.5
Mercury				0.005
Nickel				2
Selenium				5
Silver				0.5
Thallium				0.5
Zinc				5
Cyanide (*2)				10
Phenols, Total				10

^(*1) Determined by subtracting hexavalent Cr from total Cr.

^(*2) Cyanide, amenable to chlorination or weak-acid dissociable

Table 4.0(2)B - Volatile Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Acrolein				50
Acrylonitrile				50
Benzene				10
Bromoform				10
Carbon Tetrachloride				2
Chlorobenzene				10
Chlorodibromomethane				10
Chloroethane				50
2-Chloroethylvinyl Ether				10
Chloroform				10
Dichlorobromomethane [Bromodichloromethane]				10
1,1-Dichloroethane				10
1,2-Dichloroethane				10
1,1-Dichloroethylene				10
1,2-Dichloropropane				10
1,3-Dichloropropylene				10
[1,3-Dichloropropene]				
1,2-Trans-Dichloroethylene				10
Ethylbenzene				10
Methyl Bromide				50
Methyl Chloride				50
Methylene Chloride				20
1,1,2,2-Tetrachloroethane				10
Tetrachloroethylene				10
Toluene				10
1,1,1-Trichloroethane				10
1,1,2-Trichloroethane				10
Trichloroethylene				10
Vinyl Chloride				10

Table 4.0(2)C - Acid Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
2-Chlorophenol				10
2,4-Dichlorophenol				10
2,4-Dimethylphenol				10
4,6-Dinitro-o-Cresol				50
2,4-Dinitrophenol				50
2-Nitrophenol				20
4-Nitrophenol				50
P-Chloro-m-Cresol				10
Pentalchlorophenol				5
Phenol				10
2,4,6-Trichlorophenol				10

Table 4.0(2)D - Base/Neutral Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Acenaphthene				10
Acenaphthylene				10
Anthracene				10
Benzidine				50
Benzo(a)Anthracene				5
Benzo(a)Pyrene				5
3,4-Benzofluoranthene				10
Benzo(ghi)Perylene				20
Benzo(k)Fluoranthene				5
Bis(2-Chloroethoxy)Methane				10
Bis(2-Chloroethyl)Ether				10
Bis(2-Chloroisopropyl)Ether				10
Bis(2-Ethylhexyl)Phthalate				10
4-Bromophenyl Phenyl Ether				10
Butyl benzyl Phthalate				10
2-Chloronaphthalene				10
4-Chlorophenyl phenyl ether				10
Chrysene				5
Dibenzo(a,h)Anthracene				5
1,2-(o)Dichlorobenzene				10
1,3-(m)Dichlorobenzene				10
1,4-(p)Dichlorobenzene				10
3,3-Dichlorobenzidine				5
Diethyl Phthalate				10
Dimethyl Phthalate				10
Di-n-Butyl Phthalate				10
2,4-Dinitrotoluene				10
2,6-Dinitrotoluene				10
Di-n-Octyl Phthalate				10
1,2-Diphenylhydrazine (as Azobenzene)				20
Fluoranthene				10

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Fluorene				10
Hexachlorobenzene				5
Hexachlorobutadiene				10
Hexachlorocyclo-pentadiene				10
Hexachloroethane				20
Indeno(1,2,3-cd)pyrene				5
Isophorone				10
Naphthalene				10
Nitrobenzene				10
N-Nitrosodimethylamine				50
N-Nitrosodi-n-Propylamine				20
N-Nitrosodiphenylamine				20
Phenanthrene				10
Pyrene				10
1,2,4-Trichlorobenzene				10

Table 4.0(2)E - Pesticides

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Aldrin				0.01
alpha-BHC (Hexachlorocyclohexane)				0.05
beta-BHC (Hexachlorocyclohexane)				0.05
gamma-BHC (Hexachlorocyclohexane)				0.05
delta-BHC (Hexachlorocyclohexane)				0.05
Chlordane				0.2
4,4-DDT				0.02
4,4-DDE				0.1
4,4,-DDD				0.1
Dieldrin				0.02
Endosulfan I (alpha)				0.01
Endosulfan II (beta)				0.02
Endosulfan Sulfate				0.1
Endrin				0.02
Endrin Aldehyde				0.1
Heptachlor				0.01
Heptachlor Epoxide				0.01
PCB-1242				0.2
PCB-1254				0.2
PCB-1221				0.2
PCB-1232				0.2
PCB-1248				0.2
PCB-1260				0.2
PCB-1016				0.2
Toxaphene				0.3

^{*} For PCBS, if all are non-detects, enter the highest non-detect preceded by a "<".

Section 3. Dioxin/Furan Compounds A. Indicate which of the following compounds from may be present in the influent from a contributing industrial user or significant industrial user. Check all that apply. 2,4,5-trichlorophenoxy acetic acid Common Name 2,4,5-T, CASRN 93-76-5 2-(2,4,5-trichlorophenoxy) propanoic acid Common Name Silvex or 2,4,5-TP, CASRN 93-72-1 2-(2,4,5-trichlorophenoxy) ethyl 2,2-dichloropropionate Common Name Erbon, CASRN 136-25-4 0,0-dimethyl 0-(2,4,5-trichlorophenyl) phosphorothioate Common Name Ronnel, CASRN 299-84-3 2,4,5-trichlorophenol Common Name TCP, CASRN 95-95-4 hexachlorophene Common Name HCP, CASRN 70-30-4 For each compound identified, provide a brief description of the conditions of its/their presence at the facility. Click to enter text.

B.	Do you know or have any reason to believe that 2,3,7,8 Tetrachlorodibenzo-P-Dioxin
	(TCDD) or any congeners of TCDD may be present in your effluent?

If **yes**, provide a brief description of the conditions for its presence.

Click to enter text.			

C.	If any of the compounds in Subsection A ${f or}$ B are present, complete Table 4.0(2)F.
	For pollutants identified in Table 4.0(2)F, indicate the type of sample.

Grab \square Composite \square

Date and time sample(s) collected: Click to enter text.

Table 4.0(2)F - Dioxin/Furan Compounds

Compound	Toxic Equivalenc y Factors	Wastewater Concentration (ppq)	Wastewater Equivalents (ppq)	Sludge Concentration (ppt)	Sludge Equivalents (ppt)	MAL (ppq)
2,3,7,8 TCDD	1					10
1,2,3,7,8 PeCDD	0.5					50
2,3,7,8 HxCDDs	0.1					50
1,2,3,4,6,7,8 HpCDD	0.01					50
2,3,7,8 TCDF	0.1					10
1,2,3,7,8 PeCDF	0.05					50
2,3,4,7,8 PeCDF	0.5					50
2,3,7,8 HxCDFs	0.1					50
2,3,4,7,8 HpCDFs	0.01					50
OCDD	0.0003					100
OCDF	0.0003					100
PCB 77	0.0001					0.5
PCB 81	0.0003					0.5
PCB 126	0.1					0.5
PCB 169	0.03					0.5
Total						

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 5.0: TOXICITY TESTING REQUIREMENTS

The following **is required** for facilities with a current operating design flow of **1.0 MGD or greater**, with an EPA-approved **pretreatment** program (or those required to have one under 40 CFR Part 403), or are required to perform Whole Effluent Toxicity testing. See instructions for further details.

This worksheet is not required minor amendments without renewal.

Section 1. Required Tests (Instructions Page 88)

Indicate the number of 7-day chronic or 48-hour acute Whole Effluent Toxicity (WET) tests performed in the four and one-half years prior to submission of the application.

7-day Chronic: <u>Click to enter text.</u> 48-hour Acute: <u>Click to enter text.</u>

Section 2.	Toxicity Reduction Evaluations (TREs)				
Has this facility completed a TRE in the past four and a half years? Or is the facility currently performing a TRE?					
□ Yes □	No				
If yes, describe the progress to date, if applicable, in identifying and confirming the toxicant.					
Click to enter to	ext.				

Section 3. Summary of WET Tests

If the required biomonitoring test information has not been previously submitted via both the Discharge Monitoring Reports (DMRs) and the Table 1 (as found in the permit), provide a summary of the testing results for all valid and invalid tests performed over the past four and one-half years. Make additional copies of this table as needed.

Table 5.0(1) Summary of WET Tests

Test Date	Test Species	NOEC Survival	NOEC Sub-lethal

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 6.0: INDUSTRIAL WASTE CONTRIBUTION

The following is required for all publicly owned treatment works.

Section 1. All POTWs (Instructions Page 89)

A. Industrial users (IUs)

Provide the number of each of the following types of industrial users (IUs) that discharge to your POTW and the daily flows from each user. See the Instructions for definitions of Categorical IUs, Significant IUs – non-categorical, and Other IUs.

If there are no users, enter 0 (zero). Categorical IUs: Number of IUs: o Average Daily Flows, in MGD: o Significant IUs - non-categorical: Number of IUs: o Average Daily Flows, in MGD: o Other IUs:

Average Daily Flows, in MGD: o

B. Treatment plant interference

Number of IUs: o

In the past three years, has your POTW experienced treatment plant interference (see instructions)?

□ Yes ⊠ No

If yes, identify the dates, duration, description of interference, and probable cause(s) and possible source(s) of each interference event. Include the names of the IUs that may have caused the interference.

Cli	ck to enter text.			

	in the past three years, has your POTW experienced pass through (see instructions)?
	□ Yes ⊠ No
	If yes, identify the dates, duration, a description of the pollutants passing through the treatment plant, and probable cause(s) and possible source(s) of each pass through event. Include the names of the IUs that may have caused pass through.
	Click to enter text.
D.	Pretreatment program
	Does your POTW have an approved pretreatment program?
	□ Yes ⊠ No
	If yes, complete Section 2 only of this Worksheet.
	Is your POTW required to develop an approved pretreatment program?
	□ Yes ⊠ No
	If yes, complete Section 2.c. and 2.d. only, and skip Section 3.
	If no to either question above , skip Section 2 and complete Section 3 for each significant industrial user and categorical industrial user.
Se	ction 2. POTWs with Approved Programs or Those Required to Develop a Program (Instructions Page 90)
A.	Substantial modifications
	Have there been any substantial modifications to the approved pretreatment program that have not been submitted to the TCEQ for approval according to <i>40 CFR §403.18</i> ?
	□ Yes □ No
	If yes , identify the modifications that have not been submitted to TCEQ, including the purpose of the modification.
	Click to enter text.

C. Treatment plant pass through

	Have there been any non-substantial modifications to the approved pretreatment program that have not been submitted to TCEQ for review and acceptance?						
	□ Yes □ No						
		non-substantial modose of the modifica		we not been subm	nitted to TCEQ,		
	Click to enter text.						
C.	Effluent paramete	ers above the MAL					
Tal		t all parameters means the last three years					
P	ollutant	Concentration	MAL	Units	Date		
D.	Industrial user int	terruptions					
	-	or other IU caused o ass throughs) at you			luding		
	□ Yes □ 1	No					
	If yes , identify the industry, describe each episode, including dates, duration, description of the problems, and probable pollutants.						
	Click to enter text.						

B. Non-substantial modifications

Section 3. Significant Industrial User (SIU) Information and Categorical Industrial User (CIU) (Instructions Page 90)

	Categorical industrial User (CIU) (instructions Page 90)
A.	General information
	Company Name: <u>N/A – No Industrial Users</u>
	SIC Code: Click to enter text.
	Contact name: <u>Click to enter text.</u>
	Address: Click to enter text.
	City, State, and Zip Code: Click to enter text.
	Telephone number: <u>Click to enter text.</u>
	Email address: Click to enter text.
В.	Process information
	Describe the industrial processes or other activities that affect or contribute to the SIU(s) or CIU(s) discharge (i.e., process and non-process wastewater).
	Click to enter text.
C.	Product and service information
	Provide a description of the principal product(s) or services performed.
	Click to enter text.
D.	Flow rate information
	See the Instructions for definitions of "process" and "non-process wastewater."
	Process Wastewater:
	Discharge, in gallons/day: Click to enter text.
	Discharge Type: □ Continuous □ Batch □ Intermittent
	Non-Process Wastewater:

Discharge, in gallons/day: Click to enter text.

Discharge Type: ☐ Continuous

Intermittent

Batch

E.	Pretreatment standards					
	Is the SIU or CIU subject to technically based local limits as defined in the <i>i</i> nstructions?					
	□ Yes □ No					
	Is the SIU or CIU subject to categorical pretreatment standards found in $40\ CFR\ Parts\ 405-471?$					
	□ Yes □ No					
	If subject to categorical pretreatment standards , indicate the applicable category and subcategory for each categorical process.					
	Category: Subcategories: Click to enter text.					
	Click or tap here to enter text. Click to enter text.					
	Category: Click to enter text.					
	Subcategories: <u>Click to enter text.</u>					
	Category: Click to enter text.					
	Subcategories: <u>Click to enter text.</u>					
	Category: Click to enter text.					
	Subcategories: <u>Click to enter text.</u>					
	Category: Click to enter text.					
	Subcategories: <u>Click to enter text.</u>					
F.	Industrial user interruptions					
	Has the SIU or CIU caused or contributed to any problems (e.g., interferences, pass through, odors, corrosion, blockages) at your POTW in the past three years?					
	□ Yes □ No					
	If yes , identify the SIU, describe each episode, including dates, duration, description of problems, and probable pollutants.					
	Click to enter text.					

WORKSHEET 7.0

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

CLASS V INJECTION WELL INVENTORY/AUTHORIZATION FORM

Submit the completed form to:

TCEQ IUC Permits Team Radioactive Materials Division MC-233 PO Box 13087 Austin, Texas 78711-3087 512-239-6466

For TCEQ Use Only
Reg. No
Date Received
Date Authorized

Section 1. General Information (Instructions Page 92)

1.	TCEQ Program	Area
----	--------------	------

Program Area (PST, VCP, IHW, etc.): Click to enter text.

Program ID: Click to enter text.

Contact Name: <u>Click to enter text.</u> Phone Number: <u>Click to enter text.</u>

2. Agent/Consultant Contact Information

Contact Name: Click to enter text.

Address: Click to enter text.

City, State, and Zip Code: Click to enter text.

Phone Number: Click to enter text.

3. Owner/Operator Contact Information

□ Owner □ Operator

Owner/Operator Name: Click to enter text.

Contact Name: Click to enter text.

Address: Click to enter text.

City, State, and Zip Code: Click to enter text.

Phone Number: Click to enter text.

4. Facility Contact Information

Facility Name: Click to enter text.

Address: Click to enter text.

City, State, and Zip Code: Click to enter text.

Location description (if no address is available): Click to enter text.

Facility Contact Person: Click to enter text.

Phone Number: Click to enter text.

5.	Latitude and Longitude, in degrees-minutes-seconds				
	Latitude: Click to enter text.				
	Longitude: Click to enter text.				
	Method of determination (GPS, TOPO, etc.): Click to enter text.				
	Attach topographic quadrangle map as attachment A.				
6.	Well Information				
	Type of Well Construction, select one:				
	□ Vertical Injection				
	□ Subsurface Fluid Distribution System				
	□ Infiltration Gallery				
	□ Temporary Injection Points				
	□ Other, Specify: <u>Click to enter text.</u>				
	Number of Injection Wells: Click to enter text.				
7.	Purpose				
	Detailed Description regarding purpose of Injection System:				
	Click to enter text.				
	Attach a Site Map as Attachment B (Attach the Approved Remediation Plan, if appropriate.)				
8.	Water Well Driller/Installer				
	Water Well Driller/Installer Name: Click to enter text.				
	City, State, and Zip Code: <u>Click to enter text.</u>				
	Phone Number: Click to enter text.				
	License Number: <u>Click to enter text.</u>				
Section	1 2. Proposed Down Hole Design				
Attach a	diagram signed and sealed by a licensed engineer as Attachment C.				
Table 7.0	(1) - Down Hole Design Table				

Name of String	Size	Setting Depth	Sacks Cement/Grout - Slurry Volume - Top of Cement	Hole Size	Weight (lbs/ft) PVC/Steel
Casing					
Tubing					
Screen					

Section 3. Proposed Trench System, Subsurface Fluid Distribution System, or Infiltration Gallery

Attach a diagram signed and sealed by a licensed engineer as Attachment D.

System(s) Dimensions: <u>Click to enter text.</u> System(s) Construction: Click to enter text.

Section 4.	Site Hydroge	ological and In	jection Zone Data
	<u> </u>		

- 1. Name of Contaminated Aquifer: Click to enter text.
- 2. Receiving Formation Name of Injection Zone: Click to enter text.
- 3. Well/Trench Total Depth: Click to enter text.
- **4.** Surface Elevation: Click to enter text.
- **5.** Depth to Ground Water: <u>Click to enter text.</u>
- **6.** Injection Zone Depth: <u>Click to enter text.</u>
- 7. Injection Zone vertically isolated geologically? \square Yes \square No Impervious Strata between Injection Zone and nearest Underground Source of Drinking Water:

Name: Click to enter text.

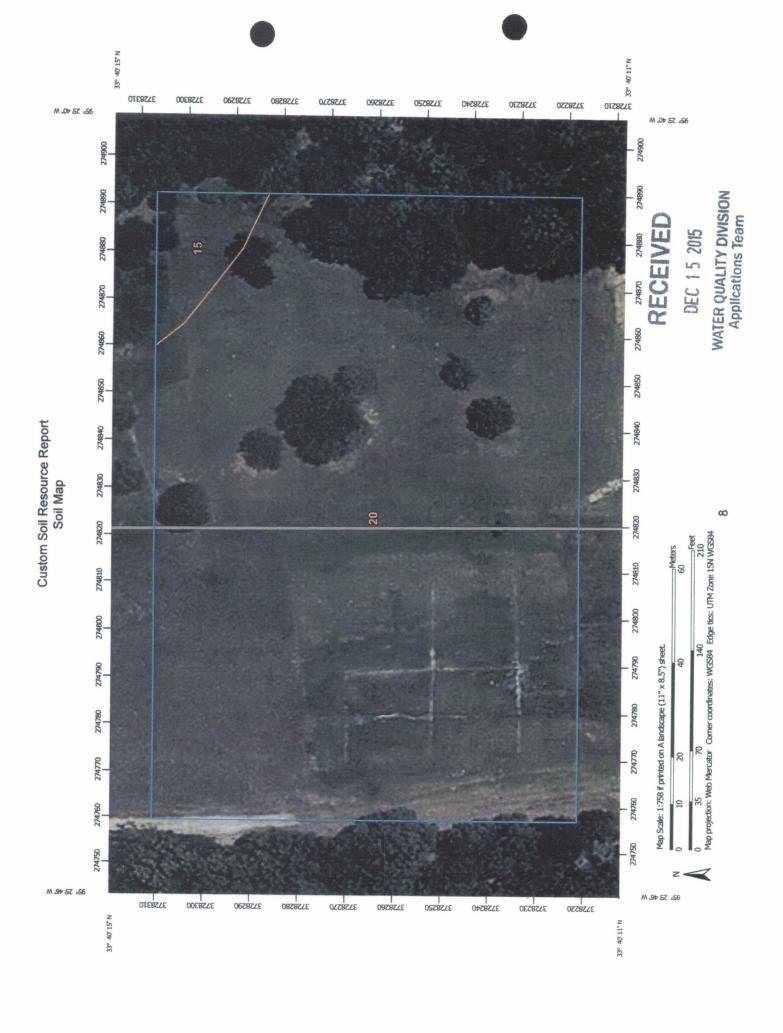
Thickness: Click to enter text.

- **8.** Provide a list of contaminants and the levels (ppm) in contaminated aquifer Attach as Attachment E.
- **9.** Horizontal and Vertical extent of contamination and injection plume Attach as Attachment F.
- **10.** Formation (Injection Zone) Water Chemistry (Background levels) TDS, etc. Attach as Attachment G.
- **11.** Injection Fluid Chemistry in PPM at point of injection Attach as Attachment H.
- 12. Lowest Known Depth of Ground Water with < 10,000 PPM TDS: Click to enter text.
- 13. Maximum injection Rate/Volume/Pressure: Click to enter text.
- **14.** Water wells within 1/4 mile radius (attach map as Attachment I): Click to enter text.
- 15. Injection wells within 1/4 mile radius (attach map as Attachment J): <u>Click to enter text.</u>
- 16. Monitor wells within 1/4 mile radius (attach drillers logs and map as Attachment K): Click to enter text.
- **17.** Sampling frequency: Click to enter text.
- **18.** Known hazardous components in injection fluid: Click to enter text.

Section 5. Site History

- **1.** Type of Facility: Click to enter text.
- **2.** Contamination Dates: Click to enter text.
- 3. Original Contamination (VOCs, TPH, BTEX, etc.) and Concentrations (attach as Attachment L): <u>Click to enter text.</u>
- **4.** Previous Remediation (attach results of any previous remediation as attachment M): Click to enter text.

NOTE: Authorization Form should be completed in detail and authorization given by the TCEQ before construction, operation, and/or conversion can begin. Attach additional pages as necessary.


Class V Injection Well Designations

- 5A07 Heat Pump/AC return (IW used for groundwater to heat and/or cool buildings)
- 5A19 Industrial Cooling Water Return Flow (IW used to cool industrial process equipment)
- 5B22 Salt Water Intrusion Barrier (IW used to inject fluids to prevent the intrusion of salt water into an aquifer)
- 5D02 Storm Water Drainage (IW designed for the disposal of rain water)
- 5D04 Industrial Stormwater Drainage Wells (IW designed for the disposal of rain water associated with industrial facilities)
- 5F01 Agricultural Drainage (IW that receive agricultural runoff)
- 5R21 Aquifer Recharge (IW used to inject fluids to recharge an aquifer)
- 5S23 Subsidence Control Wells (IW used to control land subsidence caused by ground water withdrawal)
- 5W09 Untreated Sewage
- 5W10 Large Capacity Cesspools (Cesspools that are designed for 5,000 gpd or greater)
- 5W11 Large Capacity Septic systems (Septic systems designed for 5,000 gpd or greater)
- 5W12 WTTP disposal
- 5W20 Industrial Process Waste Disposal Wells
- 5W31 Septic System (Well Disposal method)
- 5W32 Septic System Drainfield Disposal
- 5X13 Mine Backfill (IW used to control subsidence, dispose of mining byproducts, and/or fill sections of a mine)
- 5X25 Experimental Wells (Pilot Test) (IW used to test new technologies or tracer dye studies)
- 5X26 Aguifer Remediation (IW used to clean up, treat, or prevent contamination of a USDW)
- 5X27 Other Wells
- 5X28 Motor Vehicle Waste Disposal Wells (IW used to dispose of waste from a motor vehicle site These are currently banned)
- 5X29 Abandoned Drinking Water Wells (waste disposal)

ANNUAL CROPPING PLAN

There are no crops grown on the spray field, only native grasses are present on the spray field site. The native grasses grow year round and are shredded using a tractor with a batwing mower at least twice per year. The shredded vegetation is left onsite and decomposes into the soil over a few months. The soil analyses have shown no buildup of nutrients present in the soil. The lack of nutrient buildup is due to the very low flows experienced by the plant (the plant serves around 50 people) as well as no irrigation occurring in over 2 years.

The current operator has been there just over 2 years and no disposal of effluent through the spray irrigation system has occurred during this time. The holding ponds have a large enough surface area for the treated effluent to evaporate at a faster rate than the incoming flow.

MAP LEGEND

Special Line Features Streams and Canals Interstate Highways Aerial Photography Very Stony Spot Major Roads Local Roads Stony Spot Spoil Area **US Routes** Wet Spot Other Rails Water Features Transportation Background W 8 ‡ Soil Map Unit Polygons Area of Interest (AOI) Severely Eroded Spot Soil Map Unit Points Miscellaneous Water Soil Map Unit Lines Closed Depression Marsh or swamp Perennial Water Mine or Quarry Special Point Features **Gravelly Spot** Rock Outcrop Saline Spot Sandy Spot Slide or Slip **Borrow Pit** Area of Interest (AOI) Clay Spot **Gravel Pit** Lava Flow Blowout Sinkhole Landfill 9 00

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Lamar and Delta Counties, Texas Survey Area Data: Version 11, Sep 24, 2015

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Apr 16, 2011—Jun 12,

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Sodic Spot

Map Unit Legend

Lamar and Delta Counties, Texas (TX614)						
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI			
15	Derly-Raino complex, 0 to 1 percent slopes	0.1	3.8%			
20	Freestone-Hicota complex, 0 to 3 percent slopes	2.8	96.2%			
Totals for Area of Interest		2.9	100.0%			

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If

intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Lamar and Delta Counties, Texas

15—Derly-Raino complex, 0 to 1 percent slopes

Map Unit Setting

National map unit symbol: f69k Elevation: 150 to 450 feet

Mean annual precipitation: 36 to 48 inches
Mean annual air temperature: 63 to 70 degrees F

Frost-free period: 230 to 275 days

Farmland classification: Not prime farmland

Map Unit Composition

Derly and similar soils: 65 percent Raino and similar soils: 25 percent Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Derly

Setting

Landform: Depressions on stream terraces
Landform position (three-dimensional): Tread

Down-slope shape: Concave Across-slope shape: Concave

Parent material: Clayey alluvium of quaternary age derived from mixed sources

Typical profile

H1 - 0 to 8 inches: silt loam H2 - 8 to 12 inches: clay loam H3 - 12 to 50 inches: clay H4 - 50 to 80 inches: clay

Properties and qualities

Slope: 0 to 1 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.06 in/hr)

Depth to water table: About 0 inches

Frequency of flooding: None Frequency of ponding: Occasional

Calcium carbonate, maximum in profile: 2 percent

Gypsum, maximum in profile: 2 percent

Salinity, maximum in profile: Nonsaline to slightly saline (0.0 to 4.0 mmhos/cm)

Sodium adsorption ratio, maximum in profile: 6.0

Available water storage in profile: Moderate (about 8.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4w

Hydrologic Soil Group: D

Description of Raino

Setting

Landform: Stream terraces

Landform position (three-dimensional): Tread Microfeatures of landform position: Mounds

Down-slope shape: Linear Across-slope shape: Convex

Parent material: Loamy alluvium of pleistocene age derived from mixed sources

Typical profile

H1 - 0 to 25 inches: fine sandy loam

H2 - 25 to 36 inches: loam H3 - 36 to 63 inches: loam H4 - 63 to 72 inches: clay

Properties and qualities

Slope: 0 to 1 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Moderately well drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.06 in/hr)

Depth to water table: About 24 to 42 inches

Frequency of flooding: None Frequency of ponding: None

Sodium adsorption ratio, maximum in profile: 2.0

Available water storage in profile: High (about 10.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3s

Hydrologic Soil Group: C

Minor Components

Unnamed

Percent of map unit: 10 percent

20—Freestone-Hicota complex, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: f69q Elevation: 150 to 570 feet

Mean annual precipitation: 36 to 48 inches
Mean annual air temperature: 63 to 68 degrees F

Frost-free period: 225 to 275 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Freestone and similar soils: 63 percent Hicota and similar soils: 24 percent Minor components: 13 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Freestone

Setting

Landform: Stream terraces

Landform position (three-dimensional): Tread Microfeatures of landform position: Mounds

Down-slope shape: Linear Across-slope shape: Convex

Parent material: Loamy alluvium of quaternary age derived from mixed sources

Typical profile

H1 - 0 to 16 inches: fine sandy loam

H2 - 16 to 33 inches: loam
H3 - 33 to 44 inches: clay loam
H4 - 44 to 80 inches: clay

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Moderately well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 24 to 42 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 5 percent

Gypsum, maximum in profile: 2 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Available water storage in profile: Moderate (about 8.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: C

Ecological site: Loamy Terrace (F133BY029TX)

Description of Hicota

Setting

Landform: Stream terraces

Landform position (three-dimensional): Tread Microfeatures of landform position: Mounds

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Loamy alluvium of pleistocene age derived from mixed sources

Typical profile

H1 - 0 to 32 inches: very fine sandy loam H2 - 32 to 54 inches: very fine sandy loam

H3 - 54 to 80 inches: clay loam

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 36 to 60 inches

Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: High (about 9.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2s

Hydrologic Soil Group: B

Minor Components

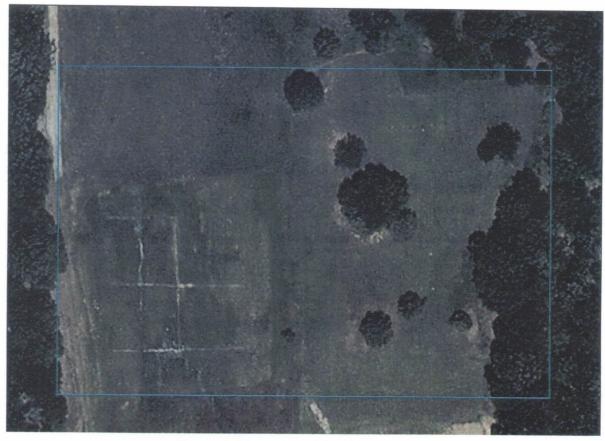
Derly

Percent of map unit: 10 percent

Landform: Terraces

Unnamed

Percent of map unit: 3 percent



United States Department of Agriculture

NRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Lamar and Delta Counties, Texas

See page 8 for scale and details

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (http://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2 053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means

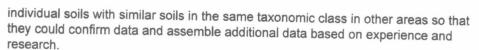
for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	2
Soil Map.	5
Soil Map	Ω
Legend	٥
Map Unit Legend	10
Map Unit Descriptions	10
Lamar and Delta Counties, Texas	12
15—Derly-Raino complex, 0 to 1 percent slopes	12
20—Freestone-Hicota complex, 0 to 3 percent slopes	13
Soil Information for All Uses	16
Soil Reports	16
Soil Physical Properties	16
Engineering Properties.	16
References	21

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.


Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil scientists classified and named the soils in the survey area, they compared the

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Soil Information for All Uses

Soil Reports

The Soil Reports section includes various formatted tabular and narrative reports (tables) containing data for each selected soil map unit and each component of each unit. No aggregation of data has occurred as is done in reports in the Soil Properties and Qualities and Suitabilities and Limitations sections.

The reports contain soil interpretive information as well as basic soil properties and qualities. A description of each report (table) is included.

Soil Physical Properties

This folder contains a collection of tabular reports that present soil physical properties. The reports (tables) include all selected map units and components for each map unit. Soil physical properties are measured or inferred from direct observations in the field or laboratory. Examples of soil physical properties include percent clay, organic matter, saturated hydraulic conductivity, available water capacity, and bulk density.

Engineering Properties

This table gives the engineering classifications and the range of engineering properties for the layers of each soil in the survey area.

Hydrologic soil group is a group of soils having similar runoff potential under similar storm and cover conditions. The criteria for determining Hydrologic soil group is found in the National Engineering Handbook, Chapter 7 issued May 2007(http:// directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=17757.wba). Listing HSGs by soil map unit component and not by soil series is a new concept for the engineers. Past engineering references contained lists of HSGs by soil series. Soil series are continually being defined and redefined, and the list of soil series names changes so frequently as to make the task of maintaining a single national list virtually impossible. Therefore, the criteria is now used to calculate the HSG using the component soil properties and no such national series lists will be maintained. All such references are obsolete and their use should be discontinued. Soil properties that influence runoff potential are those that influence the minimum rate of infiltration for a bare soil after prolonged wetting and when not frozen. These properties are depth to a seasonal high water table, saturated hydraulic conductivity after prolonged wetting, and depth to a layer with a very slow water transmission rate. Changes in soil properties caused by land management or climate changes also cause the hydrologic

soil group to change. The influence of ground cover is treated independently. There are four hydrologic soil groups, A, B, C, and D, and three dual groups, A/D, B/D, and C/D. In the dual groups, the first letter is for drained areas and the second letter is for undrained areas.

The four hydrologic soil groups are described in the following paragraphs:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

Depth to the upper and lower boundaries of each layer is indicated.

Texture is given in the standard terms used by the U.S. Department of Agriculture. These terms are defined according to percentages of sand, silt, and clay in the fraction of the soil that is less than 2 millimeters in diameter. "Loam," for example, is soil that is 7 to 27 percent clay, 28 to 50 percent silt, and less than 52 percent sand. If the content of particles coarser than sand is 15 percent or more, an appropriate modifier is added, for example, "gravelly."

Classification of the soils is determined according to the Unified soil classification system (ASTM, 2005) and the system adopted by the American Association of State Highway and Transportation Officials (AASHTO, 2004).

The Unified system classifies soils according to properties that affect their use as construction material. Soils are classified according to particle-size distribution of the fraction less than 3 inches in diameter and according to plasticity index, liquid limit, and organic matter content. Sandy and gravelly soils are identified as GW, GP, GM, GC, SW, SP, SM, and SC; silty and clayey soils as ML, CL, OL, MH, CH, and OH; and highly organic soils as PT. Soils exhibiting engineering properties of two groups can have a dual classification, for example, CL-ML.

The AASHTO system classifies soils according to those properties that affect roadway construction and maintenance. In this system, the fraction of a mineral soil that is less than 3 inches in diameter is classified in one of seven groups from A-1 through A-7 on the basis of particle-size distribution, liquid limit, and plasticity index. Soils in group A-1 are coarse grained and low in content of fines (silt and clay). At the other extreme, soils in group A-7 are fine grained. Highly organic soils are classified in group A-8 on the basis of visual inspection.

If laboratory data are available, the A-1, A-2, and A-7 groups are further classified as A-1-a, A-1-b, A-2-4, A-2-5, A-2-6, A-2-7, A-7-5, or A-7-6. As an additional refinement, the suitability of a soil as subgrade material can be indicated by a group index number.

Group index numbers range from 0 for the best subgrade material to 20 or higher for the poorest.

Rock fragments larger than 10 inches in diameter and 3 to 10 inches in diameter are indicated as a percentage of the total soil on a dry-weight basis. The percentages are estimates determined mainly by converting volume percentage in the field to weight percentage.

Percentage (of soil particles) passing designated sieves is the percentage of the soil fraction less than 3 inches in diameter based on an ovendry weight. The sieves, numbers 4, 10, 40, and 200 (USA Standard Series), have openings of 4.76, 2.00, 0.420, and 0.074 millimeters, respectively. Estimates are based on laboratory tests of soils sampled in the survey area and in nearby areas and on estimates made in the field

Liquid limit and plasticity index (Atterberg limits) indicate the plasticity characteristics of a soil. The estimates are based on test data from the survey area or from nearby areas and on field examination.

References:

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Absence of an entry indicates that the data were not estimated. The asterisk ** denotes the representative texture; other possible textures follow the dash. The criteria for determining the hydrologic soil group for individual soil components is found in the National Engineering Handbook, Chapter 7 issued May 2007(http://directives.sc.egov.usda.gov/OpenNonWebContent.aspx? content=17757.wba).

	7			Engineering Properties-Lamar and Delta Counties, Texas	roperties	amar and De	elta Count	ies, Texa						
map unit symbol and soil name	Pct. of	Hydrolo	Depth	USDA texture	Class	Classification	Frag	Fragments	Percent	age pass	Percentage passing sieve number-	number-		Plasticit
	Ť	group			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	Ĭ	y index
			ln				Pct	Pct					Pct	
15—Derly-Raino complex, 0 to 1 percent slopes														
Derly	65	۵	0-8	Sift loam	CL, CL- ML, ML	A-4	0-0-0	0-0-0	100-100	100-100	85-93-1	55-73-	16-23	NP-5 -10
			8-12	Clay loam, silty clay loam	CH, CL	A-6, A-7-6	0-0-0	0-0-0	100-100	100-100	90-95-1	70-83-	35-48	20-28-3 6
			12-50	Clay, silty clay loam	CH, CL	A-6, A-7-6	0-0-0	0-0-0	100-100	100-100	90-95-1	75-85-	39-50	26-31-3
			50-80	Clay, clay loam	CH, CL	A-6, A-7-6	0-0-0	0-0-0	100-100	100-100	90-95-1	-92-76- 95	34-47	20-28-3
Raino	25	O	0-25	Fine sandy loam	CL, CL- ML, ML	A-4	0-0-0	0-0-0	95-98-1	95-98-1	80-90-1	51-66-	0-15-30	NP-5
			25-36	Loam, fine sandy loam, very fine sandy loam	GL, CL- ML, ML	AA	0-0-0	0-0-0	95-98-1	95-98-1	80-90-1	51-66-	0-15 -30	NP-5 -10
			36-63	Loam, sandy clay loam, clay loam	CL, CL- ML, SC, SC-SM	A-4, A-6	0-0-0	0-0-0	95-98-1	95-98-1	80-90-1	40-56-	20-30	5-13-20
			63-72	Clay, sandy clay, clay CH, CL loam	CH, CL	A-7-6	0-0-0	0-0-0	95-98-1	95-98-1	80-90-1	55-73-	46-60	24-35-4

				Engineering Properties-Lamar and Delta Counties, Texas	roperties-La	amar and De	olta Count	ies, Texas						
Map unit symbol and	Pct. of	Hydrolo	Depth	USDA texture	Classi	Classification	Frag	Fragments	Percent	age passi	ng sieve	Percentage passing sieve number—		Plasticit
	m it	group			Unified	AASHTO	>10 inches	3-10 inches	4	10	64	200	Ĭ	y index
			ln				Pct	Pct					Pct	
20—Freestone-Hicota complex, 0 to 3 percent slopes														
Freestone	63	O	0-16	Fine sandy loam	CL-ML, ML, SC, SM	A-4	0-0-0	0-0-0	95-98-1	95-98-1	90-95-1	36-49-	15-21	NP-4 -7
			16-33	Loam, clay loam	CL, CL-ML A-4, A-6, A-7	A-4, A-6, A-7	0-0-0	0-0-0	95-98-1	95-98-1	90-95-1	55-70- 85	24-35	7-15-23
			33-44	Clay loam	сн, сг	A-7-6	0-0-0	0-0-0	95-98-1	95-98-1	90-95-1	65-80-	42-56	21-33-4
			44-80	Clay	сн, сг	A-6, A-7-6	0-0-0	0-0-0	99-100-	98-99-1	95-98-1	59-79-	39-57	24-36-4 8
Hicota	24	В	0-32	Very fine sandy loam	CL-ML, ML, SC- SM, SM	A A	0-0-0	0-0-0	100-100	100-100	70-85-1	40-58-	16-20	NP-3-6
			32-54	Very fine sandy loam, clay loam	CL, CL- ML, SC, SC-SM	A-4, A-6, A-7-6	0-0-0	0-0-0	100-100	100-100	80-90-1	40-60-	23-36	7-19-31
			54-80	Clay loam, sandy clay loam, clay	CH, CL, SC	A-7-6	0-0-0	0-0-0	100-100	100-100 85-93-1		45-70-	41-48	21-26-3

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_054262

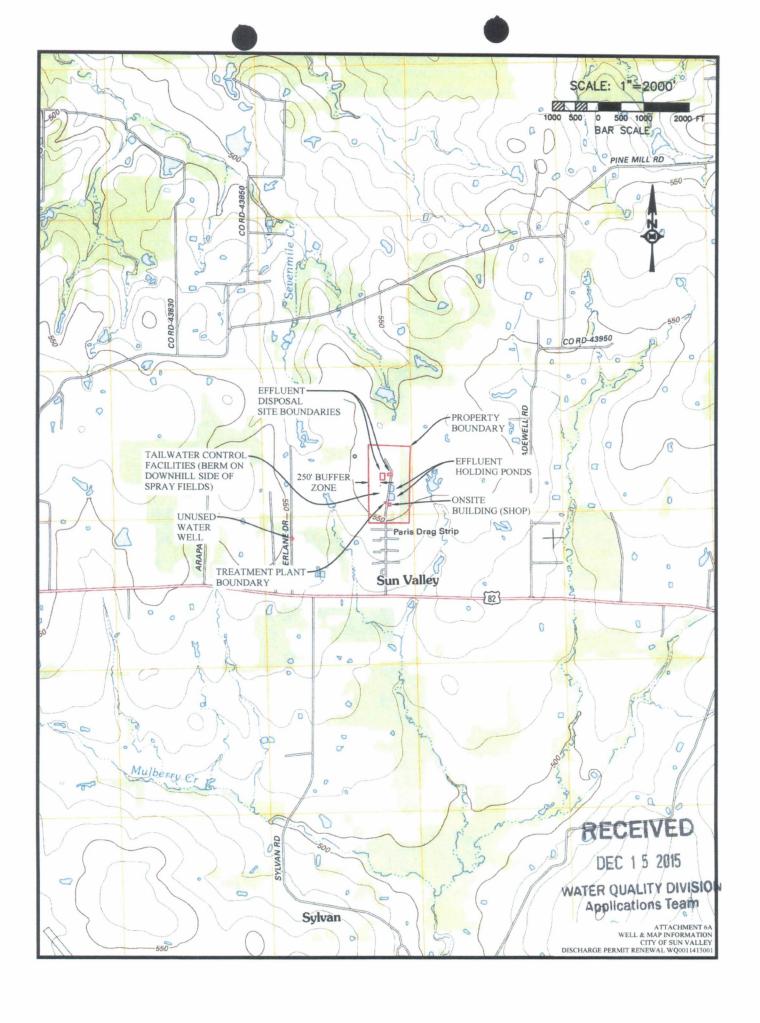
Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

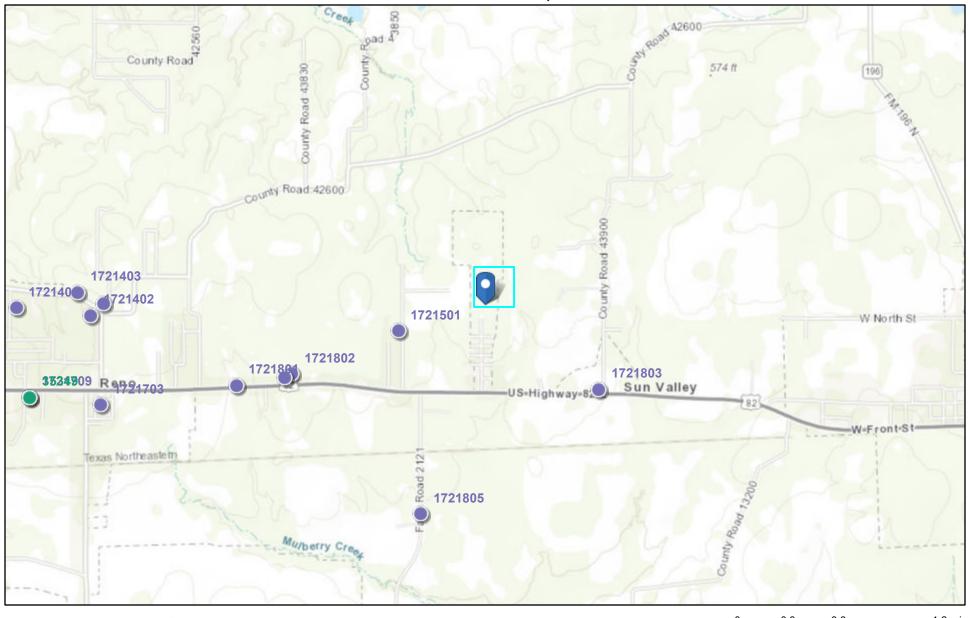
United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2_053374

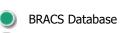

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

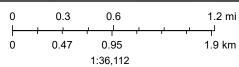


ATTACHMENT 6B - WELL & MAP INFORMATION


The following describes each item that is referenced under Item 6 in the Domestic Worksheet 3.0 (Land Disposal of Effluent).

- Boundaries of the land application sites Provided on Attachment 6A.
- Waste disposal or treatment facilities Provided on Attachment 6A.
- On-Site buildings Provided on Attachment 6A.
- Buffer zones Provided on Attachment 6A.
- Effluent storage and tailwater control facilities Provided on Attachment 6A.
- All water wells within 1 mile radius of the disposal site or property boundaries (1)
 Unused water well identified and is shown on Attachment 6A.
- All springs and seeps onsite and within 500 feet of the property boundaries Not shown on attachment 6A due to no springs or seeps onsite or within 500 feet of property.
- All surface water in the state onsite and within 500 feet of the property boundaries Provided on Attachment 6A.
- All faults and sinkholes onsite and within 500 feet of property Not shown on Attachment 6A due to no faults or sinkholes on site or within 500 feet or property.

Groundwater Data, Texas



TWDB Groundwater

Well Reports

February 6, 2025

3. purpose, contact

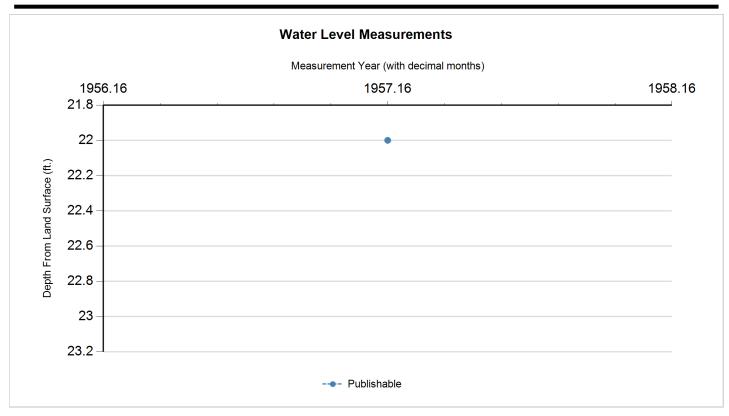
Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri

The data in Water Data Interactive represents the best available information provided by the TWDB and third-party cooperators of the TWDB. The TWDB provides information via this web site as a public service. Neither the State of Texas nor the TWDB assumes any legal liability or responsibility or makes any guarantees or warranties as to the accuracy, completeness or suitability of the information for any particular purpose. The TWDB systematically revises or removes data discovered to be incorrect. If you find inaccurate information or have questions, please contact WDI-Supportio wide. texas gov.

GWDB Reports and Downloads

Well Basic Details

Scanned Documents


State Well Number	1721801
	Lamar
County	
River Basin	Sulphur
Groundwater Management Area	8
Regional Water Planning Area	D - North East Texas
Groundwater Conservation District	GCD Does Not Exist
Latitude (decimal degrees)	33.663612
Latitude (degrees minutes seconds)	33° 39' 49" N
Longitude (decimal degrees)	-95.449722
Longitude (degrees minutes seconds)	095° 26' 59" W
Coordinate Source	+/- 10 Seconds
Aquifer Code	211BLSM - Blossom Sand
Aquifer	Blossom
Aquifer Pick Method	
Land Surface Elevation (feet above sea level)	535
Land Surface Elevation Method	Interpolated From Topo Map
Well Depth (feet below land surface)	70
Well Depth Source	Memory of Owner
Drilling Start Date	
Drilling End Date	0/0/1949
Drilling Method	Cable Tool
Borehole Completion	

Well Type	Withdrawal of Water
Well Use	Plugged or Destroyed
Water Level Observation	Miscellaneous Measurements
Water Quality Available	No
Pump	None
Pump Depth (feet below land surface)	
Power Type	
Annular Seal Method	
Surface Completion	
Owner	Mrs. Wright
Driller	D. T. Moore
Other Data Available	
Well Report Tracking Number	
Plugging Report Tracking Number	
U.S. Geological Survey Site Number	
Texas Commission on Environmental Quality Source Id	
Groundwater Conservation District Well Number	
Owner Well Number	
Other Well Number	
Previous State Well Number	
Reporting Agency	Texas Water Development Board
Created Date	5/26/1982
Last Update Date	3/4/2020

Borenoie - r Filter Pack -			Plugg	ed Back - No I	vers - No Data	
Borehole - N			Divers	ad Baak Na I	Data	
Annular Sea	al Range - No D)ata				
Lithology - I	No Data					
Well Tests -	No Data					
6	Blank					
Diameter (in.)	Casing Type	Casing Material	Schedule	Gauge	Top Depth (ft.)	Bottom Depth (ft.)
Casing						
Tromaino 1170	m dodnoyod.					
Remarks We	ell destroyed.					

Status Code	Date	Time	Water Level (ft. below land surface)	Change value in () indicates rise in level	Water Elevation (ft. above sea level)	#	Measuring Agency	Method	Remark ID	Comments
Р	0/0/1957		22		513	1	Other or Source of Measurement Unknown	Unknown		

Code Descriptions

Status Code	Status Description
Р	Publishable

Water Quality Analysis - No Data Available

GWDB DISCLAIMER: Except where noted, all of the information provided in the Texas Water Development Board (TWDB) Groundwater Database (https://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp) is believed to be accurate and reliable; however, the TWDB assumes no responsibility for any errors appearing in rules or otherwise. Further, TWDB assumes no responsibility for the use of the information provided. PLEASE NOTE that users of these data are responsible for checking the accuracy, completeness, currency and/or suitability of all information themselves. TWDB makes no guarantees or warranties as to the accuracy, completeness, currency, or suitability of the information provided via the Groundwater Database (GWDB). TWDB specifically disclaims any and all liability for any claims or damages that may result from providing GWDB data or the information it contains. For additional information or answers to questions concerning the TWDB GWDB, contact the Groundwater Data Team at GroundwaterData@twdb.texas.gov.

GWDB Reports and Downloads

Well Basic Details

Scanned Documents

State Well Number	1721806
County	Lamar
River Basin	Sulphur
Groundwater Management Area	8
Regional Water Planning Area	D - North East Texas
Groundwater Conservation District	GCD Does Not Exist
Latitude (decimal degrees)	33.664167
Latitude (degrees minutes seconds)	33° 39' 51" N
Longitude (decimal degrees)	-95.445556
Longitude (degrees minutes seconds)	095° 26' 44" W
Coordinate Source	+/- 1 Second
Aquifer Code	211BLSM - Blossom Sand
Aquifer	Blossom
Aquifer Pick Method	
Land Surface Elevation (feet above sea level)	551
Land Surface Elevation Method	Interpolated From Topo Map
Well Depth (feet below land surface)	85
Well Depth Source	Driller's Log
Drilling Start Date	
Drilling End Date	7/0/1968
Drilling Method	Cable Tool
Borehole Completion	Open Hole

Well Type	Withdrawal of Water
Well Use	Domestic
Water Level Observation	Miscellaneous Measurements
Water Quality Available	Yes
Pump	Jet
Pump Depth (feet below land surface)	
Power Type	Electric Motor
Annular Seal Method	
Surface Completion	
Owner	J. E. Shugart
Driller	D. T. Moore
Other Data Available	Drillers Log
Well Report Tracking Number	
Plugging Report Tracking Number	
U.S. Geological Survey Site Number	
Texas Commission on Environmental Quality Source Id	
Groundwater Conservation District Well Number	
Owner Well Number	
Other Well Number	
Previous State Well Number	
Reporting Agency	Texas Water Development Board
Created Date	6/24/1982
Last Update Date	3/4/2020

Remarks

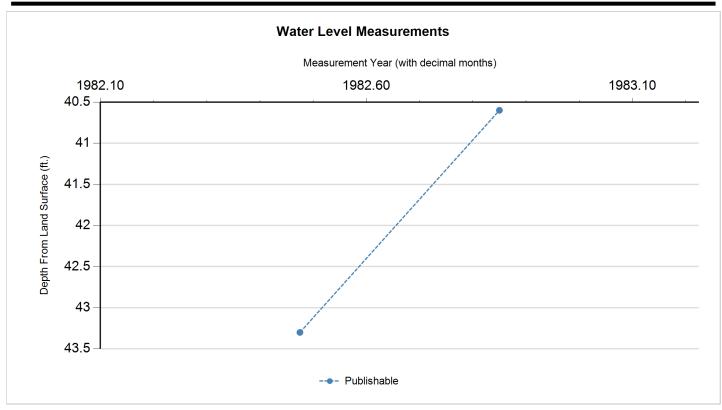
Ca		

_						
Diameter (in.)	Casing Type	Casing Material	Schedule	Gauge	Top Depth (ft.)	Bottom Depth (ft.)
6	Blank	Plastic (PVC)			0	30
	Open Hole				30	85

Well Tests - No Data

Lithology - No Data

Annular Seal Range - No Data


Borehole - No Data	Plugged Back - No Data

Filter Pack - No Data

Packers - No Data

Status Code	Date	Time	Water Level (ft. below land surface)		Water Elevation (ft. above sea level)		Measuring Agency	Method	Remark ID	Comments
Р	6/24/1982		43.3		507.7	1	Other or Source of Measurement Unknown	Unknown		
Р	11/11/1982		40.6	(2.70)	510.4	1	Other or Source of Measurement Unknown	Unknown		

Code Descriptions

Status Code	Status Description
Р	Publishable

Water Quality Analysis

Sample Date: 6/24/1982 Sample Time: 0000 Sample Number: 1 Collection Entity: Texas Water Development Board

Sampled Aquifer: Blossom Sand

Analyzed Lab: Texas Department of Health Reliability: Collected from pumped well, but not filtered or preserved

Collection Remarks: No Data

Parameter Code	Parameter Description	Flag	Value*	Units	Plus/Minus
00415	ALKALINITY, PHENOLPHTHALEIN (MG/L)		0	mg/L	
00410	ALKALINITY, TOTAL (MG/L AS CACO3)		253	mg/L as CACO 3	
00440	BICARBONATE ION, CALCULATED (MG/L AS HCO3)		308.75	mg/L	
00910	CALCIUM (MG/L)		8.8	mg/L	
00445	CARBONATE ION, CALCULATED (MG/L AS CO3)		0	mg/L	
00940	CHLORIDE, TOTAL (MG/L AS CL)		63	mg/L	
00950	FLUORIDE, DISSOLVED (MG/L AS F)		1	mg/L	
00900	HARDNESS, TOTAL, CALCULATED (MG/L AS CACO3)		27	mg/L as CACO 3	
00920	MAGNESIUM (MG/L)		1.45	mg/L	
71851	NITRATE NITROGEN, DISSOLVED, CALCULATED (MG/L AS NO3)		0.09	mg/L as NO3	
00400	PH (STANDARD UNITS), FIELD		8.3	SU	
71860	RESIDUAL SODIUM CARBONATE, CALCULATED		4.5		
00955	SILICA, DISSOLVED (MG/L AS SI02)		11	mg/L as SIO2	
00931	SODIUM ADSORPTION RATIO, CALCULATED (SAR)		15.48		
00932	SODIUM, CALCULATED, PERCENT		93	PCT	
00929	SODIUM, TOTAL (MG/L AS NA)		188	mg/L	
00094	SPECIFIC CONDUCTANCE, FIELD (UMHOS/CM AT 25C)		930	MICR	
00945	SULFATE, TOTAL (MG/L AS SO4)		98	mg/L as SO4	
70301	TOTAL DISSOLVED SOLIDS , SUM OF CONSTITUENTS (MG/L)		523	mg/L	

^{*} Value may not display all significant digits for parameter in results, check Scanned Documents for laboratory paperwork..

GWDB DISCLAIMER: Except where noted, all of the information provided in the Texas Water Development Board (TWDB) Groundwater Database (https://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp) is believed to be accurate and reliable; however, the TWDB assumes no responsibility for any errors appearing in rules or otherwise. Further, TWDB assumes no responsibility for the use of the information provided. PLEASE NOTE that users of these data are responsible for checking the accuracy, completeness, currency and/or suitability of all information themselves. TWDB makes no guarantees or warranties as to the accuracy, completeness, currency, or suitability of the information provided via the Groundwater Database (GWDB). TWDB specifically disclaims any and all liability for any claims or damages that may result from providing GWDB data or the information it contains. For additional information or answers to questions concerning the TWDB GWDB, contact the Groundwater Data Team at GroundwaterData@twdb.texas.gov.

November 18, 2015

Acceptance of Sludge from Sun Valley Wastewater Treatment Plant at the City of Re:

Paris WWTP

To whom it may concern:

This letter serves as acknowledgement of acceptance of sludge from the Sun Valley Wastewater Treatment Plant by the City of Paris Wastewater Treatment Plant. The City of Paris Wastewater Treatment Plant will accept this waste only if transported to the WWTP by a state licensed liquid waste hauler for the next five years unless the City of Paris deems it necessary to stop receiving the waste for regulatory, operational or other needs.

Facility:

City of Paris Wastewater Treatment Plant

Owner:

City of Paris, P.O. Box 9037, Paris, TX 75461-9037

Permit #:

TPDES 10479-002

Location:

6 miles north of the City of Paris and ½ mile east of U.S. Highway 271 in

Lamar County, Texas.

Longitude:

95° 32'00" West

Latitude:

33° 45' 40" North

spectfully

oug Harris

Director of Utilities

Cc: James Hinkle, Supt., City of Paris WWTP

Rainee Trevino

From: Robin Butcko <robin@permittingservices.net>

Sent: Monday, May 26, 2025 12:01 PM **To:** Rainee Trevino; fuznut@suddenlink.net

Subject: Re: Application to Renew Permit No. WQ0011413001- Notice of Deficiency Letter **Attachments:** Notarized Signature Page (12-10-24).pdf; TCEQ NOD Response Coverletter.docx

Importance: High

Hello Rainee,

I hope you are doing well. Please see the attached for our response to the NOD for City of Sun Valley WQ0011413001.

Do I still need to mail the original? Please let me know.

Thank you for your time and effort in reviewing our documents.

Regards, Robin

Robin Butcko

President & CEO 4700 S. Kirkwood

Road Suite 513 Houston, TX 77072

**** 713-458-8612

robin@permittingservices.net
www.permittingservices.net

From: Rainee Trevino < Rainee. Trevino@tceq.texas.gov>

Sent: Friday, May 23, 2025 2:11 PM

To: fuznut@suddenlink.net <fuznut@suddenlink.net> **Cc:** Robin Butcko <robin@permittingservices.net>

Subject: Application to Renew Permit No. WQ0011413001- Notice of Deficiency Letter

Good afternoon,

The attached Notice of Deficiency letter sent on May 23, 2025, requests additional information needed to declare the application administratively complete. Please send the complete response to my attention by June 6, 2025.

Regards,

Rainee Trevino

Water Quality Division | ARP Team Texas Commission on Environmental Quality

512-239-4324

May 26, 2025

Texas Commission on Environmental Quality
Water Quality Division
Applications Review and Processing Team (MC148)
P.O. Box 13087
Austin, TX 78711-3087

Re: Application to Renew Permit No. WQ0011413001

Customer Number: CN600792808

Regulated Entity Number: RN101517092

Dear Ms. Trevino,

The following is my response to the Notice of Deficiency Letter for City of Sun Valley.

Comment #1. The individual who certified the application does not match the Responsible Authority Contact listed. The Responsible Authority Contact must match the individual who certified the application. Please use the signature page, located in form number TCEQ-10053, to provide a notarized signature to match the Responsible Authority Contact. You may also provide Section 3 from form number TCEQ-10053 completed to match the individual who certified the application. If the signature page is submitted, please submit one original hard copy (including a cover letter) of the complete response.

Comment #2. The following is a portion of the Notice of Receipt of Application and Intent to Obtain a Water Quality Permit which contains information relevant to your application. Please read it carefully and indicate if it contains any errors or omissions. The complete notice will be sent to you once the application is declared administratively complete. <u>I have read the portion of the Notice of Receipt of Application and Intent to Obtain a Water Quality Permit and see no errors.</u>

I appreciate your time and effort with reviewing my summary. If you have any questions, please contact me at (713) 458-8612, or via email at robin@permittingservices.net.

Yours truly,

Robin Butcko Senior Wastewater Consultant (713) 458-8612 robin@permittingservices.net

Section 14. Signature Page (Instructions Page 39)

If co-applicants are necessary, each entity must submit an original, separate signature page.

Permit Number: <u>WQ0011413001</u> Applicant: <u>City of Sun Valley</u>

Certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

I further certify that I am authorized under 30 Texas Administrative Code § 305.44 to sign and submit this document, and can provide documentation in proof of such authorization upon request.

Signatory name (typed or printed): <u>Tom A. Wagnon</u>
Signatory title: Mayor
Signature: Date: 12/10/24 (Use blue ink)
Subscribed and Sworn to before me by the said Tom A. Wagnon
on this 10th day of DECEMBER ,2024.
My commission expires on the 31st day of August ,20,27

[SEAL]

Darkarne Inethen
Notary Public

Lamay County, Texas From: Sara Holmes
To: Robin Butcko

Subject: RE: CITY OF SUN VALLEY WWTP, APPLICATION FOR A RENEWAL, PERMIT NO. WQ0011413001

Date: Wednesday, July 2, 2025 1:43:00 PM

Attachments: image001.png

image002.png image003.png

Thank you much!

Sara Holmes
Natural Resource Specialist III
Water Quality Assessment Team
12100 Park 35 Circle
Austin, TX 78753
512-239-4534

From: Robin Butcko <robin@permittingservices.net>

Sent: Wednesday, July 2, 2025 1:37 PM

To: Sara Holmes <Sara.Holmes@tceq.texas.gov>

Subject: Fw: CITY OF SUN VALLEY WWTP, APPLICATION FOR A RENEWAL, PERMIT NO.

WQ0011413001

Thanks, Robin

Robin Butcko

President & CEO 4700 S. Kirkwood Road Suite 513 Houston, TX 77072

**** 713-458-8612

robin@permittingservices.net
www.permittingservices.net

From: Robin Butcko < robin@permittingservices.net >

Sent: Wednesday, July 2, 2025 11:30 AM

To: Sara Holmes <<u>Sara.Holmes@tceq.texas.gov</u>>; jackbaker <<u>jackbaker@blossomtel.com</u>>; Jack Baker <<u>jackbaker9851@gmail.com</u>>; <u>fuznut@suddenlink.net</u> <<u>fuznut@suddenlink.net</u>>

Cc: Andrew Gorton < <u>Andrew.Gorton@Tceq.Texas.Gov</u>>

Subject: Re: CITY OF SUN VALLEY WWTP, APPLICATION FOR A RENEWAL, PERMIT NO.

Good morning,

Please see the attached for the Lab Sheets and Table 1.0(2) Pollutant Analysis.

Thank you for your time and patience with this.

Regards, Robin

Robin Butcko

President & CEO 4700 S. Kirkwood Road Suite 513 Houston, TX 77072

**** 713-458-8612

 <u>robin@permittingservices.net</u> www.permittingservices.net

From: Sara Holmes < <u>Sara.Holmes@tceg.texas.gov</u>>

Sent: Tuesday, June 24, 2025 9:28 AM

To: Robin Butcko <<u>robin@permittingservices.net</u>>; jackbaker <<u>jackbaker@blossomtel.com</u>>; Jack Baker <<u>jackbaker9851@gmail.com</u>>; <u>fuznut@suddenlink.net</u> <<u>fuznut@suddenlink.net</u>>

Cc: Andrew Gorton < <u>Andrew.Gorton@Tceq.Texas.Gov</u>>

Subject: RE: CITY OF SUN VALLEY WWTP, APPLICATION FOR A RENEWAL, PERMIT NO.

WQ0011413001

Good morning, Robin,

I am just checking in on the progress of the sampling since our deadline is coming up. Please let me know if additional time may be needed.

Thank you,

Sara Holmes Natural Resource Specialist III Water Quality Assessment Team 12100 Park 35 Circle Austin, TX 78753 512-239-4534

From: Robin Butcko < <u>robin@permittingservices.net</u>>

Sent: Friday, June 6, 2025 10:54 AM

To: Sara Holmes <<u>Sara.Holmes@tceq.texas.gov</u>>; jackbaker <<u>jackbaker@blossomtel.com</u>>; Jack

Baker < jackbaker9851@gmail.com >; fuznut@suddenlink.net

Cc: Andrew Gorton < <u>Andrew.Gorton@Tceq.Texas.Gov</u>>

Subject: Re: CITY OF SUN VALLEY WWTP, APPLICATION FOR A RENEWAL, PERMIT NO.

WQ0011413001

Hello Sarah,

Thank you for the June 27th deadline. That should work because they are collecting on Monday.

Have a good weekend.

Regards,

Robin

Get Outlook for iOS

From: Sara Holmes < Sara.Holmes@tceq.texas.gov>

Sent: Friday, June 6, 2025 10:48:45 AM

To: Robin Butcko <<u>robin@permittingservices.net</u>>; jackbaker <<u>jackbaker@blossomtel.com</u>>; Jack

Baker < jackbaker9851@gmail.com >; fuznut@suddenlink.net < fuznut@suddenlink.net >

Cc: Andrew Gorton < <u>Andrew.Gorton@Tceq.Texas.Gov</u>>

Subject: RE: CITY OF SUN VALLEY WWTP, APPLICATION FOR A RENEWAL, PERMIT NO.

WQ0011413001

Good morning, Robin,

I spoke with my management about the extension and since we are still within our normal timeframes for technical NODs, this email will represent the first formal NOD. Let's shoot for 3 weeks for now, so June 27th, and if more time is needed than we can go from there. Please let me know if this works for the time being.

Thank you, Sara Holmes

From: Robin Butcko < <u>robin@permittingservices.net</u>>

Sent: Thursday, June 5, 2025 2:38 PM

To: Sara Holmes < <u>Sara.Holmes@tceq.texas.gov</u>>; jackbaker < <u>jackbaker@blossomtel.com</u>>; Jack

Baker < <u>jackbaker9851@gmail.com</u>>; <u>fuznut@suddenlink.net</u>

Cc: Andrew Gorton <Andrew.Gorton@Tceq.Texas.Gov>

Subject: Re: CITY OF SUN VALLEY WWTP, APPLICATION FOR A RENEWAL, PERMIT NO.

WQ0011413001 **Importance:** High

Sarah.

Thank you for requesting the extension of deadline for this application. The revised Cropping Plan is attached.

Regards,

Robin

Robin Butcko

President & CEO 4700 S. Kirkwood Road Suite 513 Houston, TX 77072

**** 713-458-8612

robin@permittingservices.net
www.permittingservices.net

From: Sara Holmes < <u>Sara.Holmes@tceq.texas.gov</u>>

Sent: Thursday, June 5, 2025 2:25 PM

To: Robin Butcko <<u>robin@permittingservices.net</u>>; jackbaker <<u>jackbaker@blossomtel.com</u>>; Jack Baker <<u>jackbaker9851@gmail.com</u>>; <u>fuznut@suddenlink.net</u>>

Cc: Andrew Gorton <<u>Andrew.Gorton@Tceg.Texas.Gov</u>>

Subject: RE: CITY OF SUN VALLEY WWTP, APPLICATION FOR A RENEWAL, PERMIT NO.

WQ0011413001

Of course. I will get with my management but I'm sure an extension will be fine. I will follow up with you tomorrow to confirm on that. I also have a couple of follow-up comments regarding the cropping plan. Can you please address the following in the cropping plan?

- Crop nutrient requirements native grasses usually require about 10-80 lbs/ac of Nitrogen and 13-70 lbs/ac of Phosphorus depending on if there's grazing occurring, according to Texas A&M Agrilife Extension s-crops table.
- Fertilizer requirements (if any)
- Supplemental watering (if any)

Please feel free to reach out with any questions.

Thank you, Sara Holmes

From: Robin Butcko < robin@permittingservices.net >

Sent: Thursday, June 5, 2025 2:14 PM

To: Sara Holmes < <u>Sara.Holmes@tceq.texas.gov</u>>; jackbaker < <u>jackbaker@blossomtel.com</u>>; Jack

Baker < <u>jackbaker9851@gmail.com</u>>; <u>fuznut@suddenlink.net</u>

Cc: Andrew Gorton < Andrew.Gorton@Tceq.Texas.Gov>

Subject: Re: CITY OF SUN VALLEY WWTP, APPLICATION FOR A RENEWAL, PERMIT NO.

WQ0011413001 Importance: High

Hello Sara,

Thank you for your clarification. We were not prepared for this additional testing please give this an extenion to the deadline for the Tech NOD. I will have to make additional phone calls and emails to acquire this requirement.

Regards,

Robin

Robin Butcko

President & CEO 4700 S. Kirkwood Road Suite 513 Houston, TX 77072

**** 713-458-8612

robin@permittingservices.net
www.permittingservices.net

From: Sara Holmes < <u>Sara.Holmes@tceq.texas.gov</u>>

Sent: Thursday, June 5, 2025 2:11 PM

To: Robin Butcko < robin@permittingservices.net Cc:Andrew.Gorton@Tceq.Texas.Gov

Subject: RE: CITY OF SUN VALLEY WWTP, APPLICATION FOR A RENEWAL, PERMIT NO.

WQ0011413001

Hi Robin,

Andy sent me your email asking the following question about the pollutant analysis:

1. Why do you require the Pollutant Analysis Section 7. Table 1.0(2) when this is a TLAP Permit? They do not discharge into any waters in the State of Texas.

Since I am the reviewing agronomist for this permit application, I wanted to reach out to you to answer this. While it is understood that this is not a discharge permit, the instructions in the application require that pollutant analyses are required to be submitted for all existing facilities including both discharge and land disposal. Although, facilities that dispose of effluent via land application do not have the same reporting requirements as discharge facilities.

I hope this helps. Thank you,

Sara Holmes
Natural Resource Specialist III
Water Quality Assessment Team
12100 Park 35 Circle
Austin, TX 78753
512-239-4534

From: Robin Butcko < robin@permittingservices.net >

Sent: Thursday, May 29, 2025 11:05 AM

To: Andrew Gorton < <u>Andrew.Gorton@Tceq.Texas.Gov</u>>

Cc: Sara Holmes < <u>Sara.Holmes@tceq.texas.gov</u>>

Subject: Re: CITY OF SUN VALLEY WWTP, APPLICATION FOR A RENEWAL, PERMIT NO.

WQ0011413001

Ok, thank you.

Robin Butcko

President & CEO

4700 S. Kirkwood Road

Suite 513 Houston, TX 77072

robin@permittingservices.net
www.permittingservices.net

From: Andrew Gorton < <u>Andrew.Gorton@Tceq.Texas.Gov</u>>

Sent: Thursday, May 29, 2025 8:18 AM

To: Robin Butcko < robin@permittingservices.net Cc: Sara Holmes < Sara.Holmes@tceq.texas.gov >

Subject: Re: CITY OF SUN VALLEY WWTP, APPLICATION FOR A RENEWAL, PERMIT NO.

WQ0011413001

Hi Robin, yes, if the facility is irrigating, that needs to be included in a revised Cropping Plan.

Thank you,

-Andy

Andrew Gorton, P.G.

Texas Commission on Environmental Quality

MC-150

PO Box 13087

Austin, TX 78711-3087

512.239.4585

Andrew.Gorton@tceq.texas.gov

From: Robin Butcko < <u>robin@permittingservices.net</u>>

Sent: Wednesday, May 28, 2025 3:46 PM

To: Andrew Gorton <<u>Andrew.Gorton@Tceq.Texas.Gov</u>>

Cc: Sara Holmes < <u>Sara.Holmes@tceq.texas.gov</u>>

Subject: Re: CITY OF SUN VALLEY WWTP, APPLICATION FOR A RENEWAL, PERMIT NO.

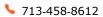
WQ0011413001

Hello Andrew,

I talked with Tom Wagnon the Mayor of Sun Valley and he said that they do spray the effluent onto land.

Should I revise the Cropping Plan to exclude the statement about not irrigating?

Please let me know.


Thanks, Robin

Robin Butcko

President & CEO

4700 S. Kirkwood Road

Suite 513 Houston, TX 77072

robin@permittingservices.net
www.permittingservices.net

From: Andrew Gorton <<u>Andrew.Gorton@Tceg.Texas.Gov</u>>

Sent: Wednesday, May 28, 2025 8:04 AM

To: Robin Butcko < robin@permittingservices.net Cc: Sara Holmes < Sara.Holmes@tceq.texas.gov robin@permittingservices.net Cc: Sara Holmes < Sara.Holmes@tceq.texas.gov robin@permittingservices.net robin@permittin

Subject: CITY OF SUN VALLEY WWTP, APPLICATION FOR A RENEWAL, PERMIT NO.

WQ0011413001

Good morning Ms. Butcko,

The Water Quality Assessment (WQA) Team of the Texas Commission on Environmental Quality has completed a preliminary review of the permit application information and identified deficiencies (attached) that must be addressed before the WQA Team can continue with the technical review. The deficient item(s) will require your response in a timely, complete, and accurate manner.

An accurate and complete revised permit application is essential for making recommendations to the commission regarding whether this permit should be issued.

Based on the information provided in the application, the executive director does not have sufficient information to make a recommendation. Therefore, you must send updated technically complete and accurate information within 14 days (June 11, 2025) of the date of this email.

Any revisions can be sent electronically to me (WQA Team Geologist) or to Ms. Sara Holmes (WQA Team Agronomist). If you have any questions, please feel free to contact me or Sara (email is preferred).

-Andy

Andrew Gorton, P.G.

Texas Commission on Environmental Quality

MC-150

PO Box 13087

Austin, TX 78711-3087

512.239.4585

Andrew.Gorton@tceq.texas.gov

Page 1 of 1

Printed

07/01/2025 12:21

SUN8-A

City of Sun Valley Mayor Tom Wagnon 800 Shady Grove Rd Paris, TX 75462-

TABLE OF CONTENTS

This report consists of this Table of Contents and the following pages:

Report Name	Description	<u>Pages</u>
1150306_r02_01_ProjectSamples	SPL Kilgore Project P:1150306 C:SUN8 Project Sample Cross Reference t:304	1
1150306_r03_03_ProjectResults	SPL Kilgore Project P:1150306 C:SUN8 Project Results t:304	5
1150306_r10_05_ProjectQC	SPL Kilgore Project P:1150306 C:SUN8 Project Quality Control Groups	8
1150306_r99_09_CoC1_of_1	SPL Kilgore CoC SUN8 1150306_1_of_1	5
	Total Pages:	19

SAMPLE CROSS REFERENCE

Printed

7/1/2025

Page 1 of 1

City of Sun Valley Mayor Tom Wagnon 800 Shady Grove Rd Paris, TX 75462-

Sample	Sample ID	Taken	Time	Received
2415406	Wasterwater Permit	06/09/2025	11:30:00	06/09/2025

Bottle 01 Na2S2O3 (0.008%) Polystyrene-100 mL Sterilized

Bottle 02 Polyethylene 1/2 gal (White)

Bottle 03 Polyethylene Quart

Bottle 04 16 oz HNO3 Metals Plastic

Bottle 05 8 oz Plastic H2SO4 pH \leq 2

Bottle 06 H2SO4 to pH <2 Glass Qt w/Teflon lined lid

Bottle 07 H2SO4 to pH <2 Glass Qt w/Teflon lined lid

Bottle~08~BOD~Titration~Beaker~A~(Batch~1179159)~Volume:~100.00000~mL <== Derived~from~02~(~100~ml~)

Bottle 09 BOD Analytical Beaker B (Batch 1179159) Volume: 100.00000 mL <== Derived from 02 (100 ml)

Bottle 10 Prepared Bottle: ICP Preparation for Metals (Batch 1179175) Volume: 50.00000 mL <= Derived from 04 (50 ml) Bottle 11 Prepared Bottle: NH3N TRAACS Autosampler Vial (Batch 1179301) Volume: 6.00000 mL <= Derived from 05 (6 ml)

Bottle 12 Prepared Bottle: TKN TRAACS Autosampler Vial (Batch 1179378) Volume: 20.00000 mL <== Derived from 05 (20 ml)

Method	Bottle	PrepSet	Preparation	QcGroup	Analytical
EPA 300.0 2.1	03	1179242	06/09/2025	1179242	06/09/2025
EPA 200.7 4.4	10	1179175	06/10/2025	1179236	06/10/2025
SM 2320 B-2011	02	1180353	06/16/2025	1180353	06/16/2025
SM 5210 B-2016 (TCMP Inhibitor)	02	1179159	06/15/2025	1179159	06/15/2025
SM 2510 B-2011	01	1180477	06/17/2025	1180477	06/17/2025
SM 4500-Cl G-2011		1179082	06/09/2025	1179082	06/09/2025
SM 4500-O G-2016		1179083	06/09/2025	1179083	06/09/2025
EPA 1664B (HEM)	07	1179683	06/11/2025	1179683	06/11/2025
SM 9223 B (Colilert-18 QT)-2016	01	1179135	06/10/2025	1179135	06/10/2025
SM 9223 B (Colilert-18 QT)-2016	01	1179134	06/10/2025	1179134	06/10/2025
EPA 350.1 2	11	1179301	06/10/2025	1180436	06/16/2025
SM 2540 C-2020	03	1179707	06/10/2025	1179707	06/10/2025
EPA 351.2 2	12	1179378	06/11/2025	1180203	06/14/2025
SM 2540 D-2020	02	1179596	06/11/2025	1179596	06/11/2025
SM 4500-H+ B-2011		1179084	06/09/2025	1179084	06/09/2025

SUN8-A

City of Sun Valley Mayor Tom Wagnon 800 Shady Grove Rd Paris, TX 75462Page 1 of 8

Project

1150306

Printed 07/01/2025

Analytical Set	1179134							SM 922	23 B (Colilert-	18 QT)-2016
				В	lank					
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File		
MPN, Total Coliform, Non-Pot	1179134	<1.0	1.00	1.00	MPN/100m	L		127683704		
				Mic	ro Dup					
<u>Parameter</u>	Sample	Туре	Result	Unknow	n		Unit		Range	Criterion
MPN, Total Coliform, Non-Pot	2415411	Duplicate	488.4	1203.3			MPN/100mL		0.392	0.7825
MPN, Total Coliform, Non-Pot	2415412	Duplicate	>2419.6	>2419.6			MPN/100mL			0.7825
				Sta	ındard					
<u>Parameter</u>	Sample	Reading	Known	Units	Recover%	Limits%		File		
P. aeruginosa	1179130	<1.0	<1.0	MPN/10	0m l	-		127683701		
Standard E. coli	1179130	>2419.6	>2419.6	MPN/10	0m]	-		127683703		
Standard K.varicola	1179130	>2419.6	>2419.6	MPN/10	0m i	-		127683702		
Analytical Set	1179135							SM 922	23 B (Colilert-	18 QT)-2016
,				В	lank				•	- /
Parameter	PrepSet	Reading	MDL	MQL	Units			File		
MPN, E.coli, Col18 - Non-Pot	1179135	<1.0	1.00	1.00	MPN/100m	L		127683728		
, ,				Mic	ro Dup					
Parameter	Sample	Туре	Result	Unknow	n		Unit		Range	Criterion
MPN, E.coli, Col18 - Non-Pot	2415411	Duplicate	22.8	20.1			MPN/100mL		0.0547	0.7825
MPN, E.coli, Col18 - Non-Pot	2415412	Duplicate	67.7	88.2			MPN/100mL		0.115	0.7825
				Sta	indard					
Parameter Parameter	Sample	Reading	Known	Units	Recover%	Limits%		File		
P. aeruginosa	1179130	<1.0	<1.0	MPN/10	0m l	-		127683725		
Standard E. coli	1179130	>2419.6	>2419.6	MPN/10	0m]	-		127683727		
Standard K.varicola	1179130	<1.0	<1.0	MPN/10	0m i	-		127683726		
Analytical Set	1179159							SM 5210) B-2016 (TCN	MP Inhibitor)
,				В	lank					
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File		
BOD Carbonaceous	1179159	0.1	0.200	0.500	mg/L			127684226		
				Dυ	plicate					
Parameter Parame	Sample		Result	Unknow	n		Unit		RPD	Limit%
BOD Carbonaceous	2415086		3.60	3.80			mg/L		5.41	30.0
				See	d Drop					
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File		
BOD Carbonaceous	1179159	0.630	0.200	0.500	mg/L			127684228		
				Sta	ındard					
<u>Parameter</u>	Sample	Reading	Known	Units	Recover%	Limits%		File		

SUN8-A

City of Sun Valley Mayor Tom Wagnon 800 Shady Grove Rd Paris, TX 75462Page 2 of 8

Project

1150306

Printed 07/01/2025

Analytical Set	1180203									EP	A 351.2 2
				AWR	L/LOQ C						
<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%		File			
Total Kjeldahl Nitrogen		0.223	0.200	mg/L	112	75.0 - 125		127710282			
				В	lank						
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File			
Total Kjeldahl Nitrogen	1179378	ND	0.00712	0.050	mg/L			127710255			
				(ССВ						
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File			
Total Kjeldahl Nitrogen	1179378	ND	0.00712	0.050	mg/L			127710258			
Total Kjeldahl Nitrogen	1179378	ND	0.00712	0.050	mg/L			127710271			
Total Kjeldahl Nitrogen	1180203	ND	0.00712	0.050	mg/L			127710286			
				(CCV						
<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%		File			
Total Kjeldahl Nitrogen		5.03	5.00	mg/L	101	90.0 - 110		127710254			
Total Kjeldahl Nitrogen		4.99	5.00	mg/L	99.8	90.0 - 110		127710256			
Total Kjeldahl Nitrogen		4.91	5.00	mg/L	98.2	90.0 - 110		127710267			
Total Kjeldahl Nitrogen		4.93	5.00	mg/L	98.6	90.0 - 110		127710273			
Total Kjeldahl Nitrogen		4.92	5.00	mg/L	98.4	90.0 - 110		127710277			
Total Kjeldahl Nitrogen		4.91	5.00	mg/L	98.2	90.0 - 110		127710281			
Total Kjeldahl Nitrogen		4.88	5.00	mg/L	97.6	90.0 - 110		127710287			
				Du	plicate						
<u>Parameter</u>	Sample		Result	Unknow	n		Unit		RPD		Limit%
Total Kjeldahl Nitrogen	2414793		46.4	46.4			mg/L		0		20.0
Total Kjeldahl Nitrogen	2415742		1.72	1.68			mg/L		2.35		20.0
					ICV						
Parameter Parame		Reading	Known	Units	Recover%	Limits%		File			
Total Kjeldahl Nitrogen		5.00	5.00	mg/L	100	90.0 - 110		127710253			
				LC	S Dup						
Parameter	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Total Kjeldahl Nitrogen	1179378	4.91	4.91		5.00	90.0 - 110	98.2	98.2	mg/L	0	20.0
				Mat	. Spike						
Parameter	Sample	Spike	Unknown	Known	Units	Recovery %	Limits %	File			
Total Kjeldahl Nitrogen	2414793	300	46.4	250	mg/L	101	80.0 - 120	127710285			
Total Kjeldahl Nitrogen	2415742	6.17	1.68	5.00	mg/L	89.8	80.0 - 120	127710262			
Analytical Set	1180436									EP	A 350.1 2
Allalytical Sec	1100100			В	lank						
Parameter	PrepSet	Reading	MDL	MQL	Units			File			
Ammonia Nitrogen	1179301	ND	0.00336	0.020	mg/L			127716826			

SUN8-A

City of Sun Valley Mayor Tom Wagnon 800 Shady Grove Rd Paris, TX 75462Page 3 of 8

Project

1150306

Printed 07/01/2025

				(ССВ						
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File			
Ammonia Nitrogen	1179301	ND	0.00336	0.020	mg/L			127716825			
				(CCV						
Parameter Parameter		Reading	Known	Units	Recover%	Limits%		File			
Ammonia Nitrogen		2.10	2.00	mg/L	105	90.0 - 110		127716791			
Ammonia Nitrogen		2.19	2.00	mg/L	110	90.0 - 110		127716801			
Ammonia Nitrogen		2.12	2.00	mg/L	106	90.0 - 110		127716812			
Ammonia Nitrogen		2.12	2.00	mg/L	106	90.0 - 110		127716821			
Ammonia Nitrogen		2.10	2.00	mg/L	105	90.0 - 110		127716832			
Ammonia Nitrogen		2.16	2.00	mg/L	108	90.0 - 110		127716843			
Ammonia Nitrogen		2.19	2.00	mg/L	110	90.0 - 110		127716850			
Ammonia Nitrogen		1.96	2.00	mg/L	98.0	90.0 - 110		127716860			
Ammonia Nitrogen		2.18	2.00	mg/L	109	90.0 - 110		127716862			
Ammonia Nitrogen		2.17	2.00	mg/L	108	90.0 - 110		127716865			
Ammonia Nitrogen		2.14	2.00	mg/L	107	90.0 - 110		127716874			
Ammonia Nitrogen		2.18	2.00	mg/L	109	90.0 - 110		127716880			
				Dup	olicate						
<u>Parameter</u>	Sample		Result	Unknown	7		Unit		RPD		Limit%
Ammonia Nitrogen	2415431		7.00	7.60			mg/L		8.22		20.0
				I	ICV						
<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%		File			
Ammonia Nitrogen		2.13	2.00	mg/L	106	90.0 - 110		127716790			
				LC	S Dup						
Parameter_	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Ammonia Nitrogen	1179301	2.20	2.16		2.00	90.0 - 110	110	108	mg/L	1.83	20.0
				Mat	. Spike						
<u>Parameter</u>	Sample	Spike	Unknown	Known	Units	Recovery %	Limits %	File			
Ammonia Nitrogen	2415431	10.3	7.60	2.00	mg/L	135	80.0 - 120	127716831		*	
Analytical Set	1179082								SM	[4500-0	Cl G-2011
·				Dup	olicate						
Parameter	Sample		Result	Unknowi	7		Unit		RPD		Limit%
Cl2 Res., Total (Onsite) Spec Mid [RL 0.05	2415406		0.070	0.060			mg/L		15.4		20
mg/L]											
				Sta	ndard						
<u>Parameter</u>	Sample	Reading	Known	Units	Recover%	Limits%		File			
Cl2 Res.,Total(Onsite)Spec Mid [RL 0.05 mg/L]	1179082	0.860	0.860	mg/L	100	90 - 110					
Cl2 Res.,Total(Onsite)Spec Mid [RL 0.05 mg/L]	1179082	1.61	1.61	mg/L	100	90 - 110					
Cl2 Res.,Total(Onsite)Spec Mid [RL 0.05 mg/L]	1179082	0.230	0.230	mg/L	100	90 - 110					

Email: Kilgore.ProjectManagement@spllabs.com

Analytical Set

1179083

SM 4500-O G-2016

SUN8-A

City of Sun Valley Mayor Tom Wagnon 800 Shady Grove Rd Paris, TX 75462-

Printed 07/01/2025

_	
I)ıın	licate

Analytical Set Parameter pH (Onsite)	1179084 Sample 2415406 1179596		Result	Du p <i>Unknown</i>	olicate				SM	4500-H	+ B-2011
	2415406			-	olicate						
	2415406			Unknown							
nH (Onsite)			7.0		1		Unit		RPD		Limit%
pri (onsite)	1179596			7.0			SU				20
Analytical Set									5	SM 2540	0 D-2020
				В	lank						
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File			
Total Suspended Solids	1179596	ND	2	2	mg/L			127692483			
				Con	trolBlk						
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File			
Total Suspended Solids	1179596	0.0001			grams			127692482			
				Dup	olicate						
<u>Parameter</u>	Sample		Result	Unknown	1		Unit		RPD		Limit%
Total Suspended Solids	2415406		79.0	79.0			mg/L		0		20.0
Total Suspended Solids	2415461 2415622		132 124	137 130			mg/L mg/L		3.72 4.72		20.0 20.0
Total Suspended Solids	2413022		124		_CS		mg/L		4.72		20.0
Parameter Total Sugmended Solids	<i>PrepSet</i> 1179596	Reading 50.0		<i>Known</i> 50.0	Units	Recover% 100	<i>Limits</i> 90.0 - 110	<i>File</i> 127692516			
Total Suspended Solids	1179390	30.0			mg/L ndard	100	90.0 - 110	12/092310			
	a .	D #				T 1 1 0/					
<u>Parameter</u> Total Suspended Solids	Sample	Reading 100	Known 100	<i>Units</i> mg/L	Recover%	<i>Limits%</i> 90.0 - 110		<i>File</i> 127692515			
Total Suspended Solids		100	100	шул	100	90.0 - 110		12/092313			
Analytical Set	1179683								EP	A 1664	B (HEM)
				В	lank						
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File			
Oil and Grease (HEM)	1179683	ND	0.804	4.00	mg/L			127696332			
				Con	trolBlk						
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File			
Oil and Grease (HEM)	1179683	0.0005			grams			127696331			
Oil and Grease (HEM)	1179683	0.0002			grams			127696356			
				L	_CS						
<u>Parameter</u>	PrepSet	Reading		Known	Units ~	Recover%	Limits	File			
Oil and Grease (HEM)	1179683	34.7		40.0	mg/L	86.8	78.0 - 114	127696333			
					MS						
<u>Parameter</u>	Sample	MS	MSD	UNK	Known	Limits	MS%	MSD%	Units	RPD	Limit%
Oil and Grease (HEM)	2414945	35.7	0	1.52	40.0	78.0 - 114	89.2		mg/L		20.0

SUN8-A

City of Sun Valley Mayor Tom Wagnon 800 Shady Grove Rd Paris, TX 75462Page 5 of 8

Project

1150306

Printed 07/01/2025

							Printed	07/01/2	025
1179707									SM 2540 C-2020
			В	ank					
PrepSet	Reading	MDL	MQL	Units			File		
1179707	ND	5.00		mg/L			127697006		
				trolBlk					
PropSet	Reading	MDI	MOI	Unite			File		
•	_	WIDL	MQL						
1177707	-0.0005		Dur	•			12/0/0///		
G 1		D to	-			FT 10		nnn	T: ':0/
				1					Limit%
2415406		208				mg/L		16./	20.0
			L	.CS					
PrepSet	Reading		Known	Units	Recover%	Limits	File		
1179707	202		200	mg/L	101	85.0 - 115	127696994		
1179242									EPA 300.0 2.1
			AWRI	_/LOQ.C					
	Reading	Known	I Inits	Recover%	Limits%		File		
	_								
	0.0209	0.0220	_		70.0 150		12,00052,		
•									
				-					
				-					
11/9242	ND	0.0003		_			12/080328		
			(.CB					
PrepSet	Reading	MDL	MQL	Units			File		
			0.300	=					
				mg/L					
				mg/L					
				-					
	0	0.00331	0.0226				127686344		
1179242	0	0.00331	0.0226	mg/L			127686347		
1179242	0	0.0605	0.300	mg/L			127686324		
1179242	0	0.0605	0.300	mg/L			127686344		
1179242	0	0.0605	0.300	mg/L			127686347		
			C	CV.					
	Reading	Known	Units	Recover%	Limits%		File		
	10.1	10.0	mg/L	101	90.0 - 110		127686323		
	10.3	10.0	-	103	90.0 - 110		127686343		
	10.2	10.0	mg/L	102	90.0 - 110		127686346		
		2.26	mg/L	108	90.0 - 110		127686323		
	2.43 2.42	2.26 2.26	mg/L mg/L	108 107	90.0 - 110 90.0 - 110		127686323 127686343		
	PrepSet 1179707 PrepSet 1179707 Sample 2415406 PrepSet 1179707 1179242 1179242 1179242 1179242 1179242 1179242 1179242 1179242 1179242 1179242 1179242 1179242 1179242 1179242 1179242 1179242 1179242 1179242 1179242	PrepSet Reading 1179707 NID PrepSet Reading 1179707 -0.0005 Sample 2415406 PrepSet Reading 1179707 202 1179242 Reading 1179242 NID 1179242 NID 1179242 NID 1179242 NID PrepSet Reading 1179242 0.0102 1179242 0.110 1179242 0 1179242 0 1179242 0 1179242 0 1179242 0 1179242 0 1179242 0 1179242 0 1179242 0 1179242 0 1179242 0 1179242 0 1179242 0 1179242 0 1179242 0 1179242 0 1179242<	PrepSet Reading MDL 1179707 ND 5.00 PrepSet Reading MDL 1179707 -0.0005 MDL Sample Result 2415406 208 PrepSet Reading Known 0.0289 0.0226 PrepSet Reading MDL 1179242 ND 0.0593 1179242 ND 0.0605 PrepSet Reading MDL 1179242 0.0102 0.00331 1179242 0.010 0.0593 1179242 0.110 0.0593 1179242 0 0.00331 1179242 0 0.00331 1179242 0 0.0605 1179242 0 0.0605 1179242 0 0.0605 1179242 0 0.0605 1179242 0 0.0605 1179242 0 0.0605 1179242 0 0.0605	PrepSet Reading MDL MQL	PrepSet Reading MDL MQL Units	PrepSet Reading MDL MQL Units	PrepSet	PrepSet Reading MDL MQL Units File	Blank

SUN8-A

City of Sun Valley Mayor Tom Wagnon 800 Shady Grove Rd Paris, TX 75462Page 6 of 8

Project

1150306

Printed 07/01/2025

ccv

<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%		File			
Sulfate		9.31	10.0	mg/L	93.1	90.0 - 110		127686323			
Sulfate		9.51	10.0	mg/L	95.1	90.0 - 110		127686343			
Sulfate		9.32	10.0	mg/L	93.2	90.0 - 110		127686346			
				LC	S Dup						
Parameter	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Chloride	1179242	5.38	5.41		5.00	85.0 - 115	108	108	mg/L	0.556	20.0
Nitrate-Nitrogen Total	1179242	1.28	1.27		1.13	86.3 - 117	113	112	mg/L	0.784	20.0
Sulfate	1179242	4.98	5.17		5.00	85.4 - 124	99.6	103	mg/L	3.74	20.0
				ı	MSD						
<u>Parameter</u>	Sample	MS	MSD	UNK	Known	Limits	MS%	MSD%	Units	RPD	Limit%
Chloride	2413282	704	708	649	100	80.0 - 120	55.0 *	59.0 *	mg/L	7.02	20.0
Nitrate-Nitrogen Total	2413282	68.4	67.8	44.7	22.6	80.0 - 120	105	102	mg/L	2.56	20.0
Sulfate	2413282	1470	1480	1520	100	80.0 - 120	-50.0 *	-40.0 *	mg/L	0.678	20.0
Chloride	2413296	24.2	24.2	14.1	10.0	80.0 - 120	101	101	mg/L	0	20.0
Nitrate-Nitrogen Total	2413296	2.70	2.62	ND	2.26	80.0 - 120	119	116	mg/L	3.01	20.0
Sulfate	2413296	9.96	10.4	ND	10.0	80.0 - 120	99.6	104	mg/L	4.32	20.0

Analytical Set 1179236 EPA 200.7 4.4

,				В	lank						
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File			
Phosphorus	1179175	ND	0.0353	0.040	mg/L			127686222			
				C	CCV						
Parameter		Reading	Known	Units	Recover%	Limits%		File			
Phosphorus		0.984	1.00	mg/L	98.4	90.0 - 110		127686221			
Phosphorus		1.04	1.00	mg/L	104	90.0 - 110		127686229			
Phosphorus		1.04	1.00	mg/L	104	90.0 - 110		127686230			
Phosphorus		1.05	1.00	mg/L	105	90.0 - 110		127686231			
	ICL										
<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%		File			
Phosphorus		25.1	25.0	mg/L	100	95.0 - 105		127686219			
				I	CV						
Parameter Parame		Reading	Known	Units	Recover%	Limits%		File			
Phosphorus		1.05	1.00	mg/L	105	90.0 - 110		127686220			
				LCS	5 Dup						
Parameter Parame	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Phosphorus	1179175	3.96	3.96		4.00	85.0 - 115	99.0	99.0	mg/L	0	25.0
				N	ISD						
<u>Parameter</u>	Sample	MS	MSD	UNK	Known	Limits	MS%	MSD%	Units	RPD	Limit%
Phosphorus	2414345	4.28	4.31	0.0858	4.00	75.0 - 125	105	106	mg/L	0.713	25.0

Analytical Set 1180353 SM 2320 B-2011

SUN8-A

City of Sun Valley Mayor Tom Wagnon 800 Shady Grove Rd Paris, TX 75462Page 7 of 8

Project

1150306

Printed 07/01/2025

			Bla	ank					
Parameter PrepSet	Reading	MDL	MQL	Units			File		
Total Alkalinity (as CaCO3) 1180353		1.00	1.00	mg/L			127715105		
				cv					
Parameter	Reading	Known	Units	Recover%	Limits%		File		
Total Alkalinity (as CaCO3)	26.7	25.0	mg/L	107	90.0 - 110		127715104		
Total Alkalinity (as CaCO3)	24.7	25.0	mg/L	98.8	90.0 - 110		127715118		
Total Alkalinity (as CaCO3)	27.2	25.0	mg/L	109	90.0 - 110		127715131		
			-	icate					
Parameter Sample		Result	Unknown			Unit		RPD	Limit%
Total Alkalinity (as CaCO3) 2413632		40.7	49.5			mg/L		19.5	20.0
Total Alkalinity (as CaCO3) 2414787		115	114			mg/L		0.873	20.0
				ZV		-3-			
Danagaratan	Dandin	V			Limita0/		Eila		
Parameter Tetal Alleshirity (as CaCO2)	Reading 26.7	<i>Known</i> 25.0	Units	Recover% 107	<i>Limits%</i> 90.0 - 110		<i>File</i> 127715103		
Total Alkalinity (as CaCO3)	20.7	25.0	mg/L		90.0 - 110		12//15105		
			Mat.	Spike					
<u>Parameter</u> Sample	Spike	Unknown	Known	Units	Recovery %	Limits %	File		
Total Alkalinity (as CaCO3) 2413632		49.5	25.0	mg/L	83.2	70.0 - 130	127715108		
Total Alkalinity (as CaCO3) 2414787	109	114	25.0	mg/L	0	70.0 - 130	127715121	*	
Analytical Set 1180477								SM 25	10 B-2011
			Bla	ank					
Parameter PrepSet	Reading	MDL	MQL	Units			File		
Lab Spec. Conductance at 25 C 1180477	_			umhos/cm			127719182		
			Dupl	icate					
Parameter Sample		Result	Unknown			Unit		RPD	Limit%
Lab Spec. Conductance at 25 C 2414809		2200	2200			umhos/cm		0	20.0
•			IC	ZV					
Parameter	Reading	Known	Units	Recover%	Limits%		File		
Lab Spec. Conductance at 25 C	13000	12900	umhos/cm	101	90.0 - 110		127719185		
			Stan	dard					
Parameter Sample	Reading	Known	Units	Recover%	Limits%		File		
Lab Spec. Conductance at 25 C 1180477		1410	umhos/cm	101	90.0 - 110		127719183		
Lab Spec. Conductance at 25 C 1180477	100	100	umhos/cm	100	90.0 - 110		127719184		
Lab Spec. Conductance at 25 C 1180477	1420	1410	umhos/cm	101	90.0 - 110		127719197		

* Out RPD is Relative Percent Difference: abs(r1-r2) / mean(r1,r2) * 100%

Recover% is Recovery Percent: result / known * 100%

Page 8 of 8

Printed 07/01/2025

SUN8-A

City of Sun Valley Mayor Tom Wagnon 800 Shady Grove Rd Paris, TX 75462-

Blank - Method Blank (reagent water or other blank matrices that contains all reagents except standard(s) and is processed simultaneously with and under the same conditions as samples; carried through preparation and analytical procedures exactly like a sample; monitors); CCV - Continuing Calibration Verification used to prepare the curve; typically a mid-range concentration; verifies the continued validity of the calibration curve); MSD - Matrix Spike Duplicate

matrix spike; same solution and amount of target analyte added to the MS is added to a third aliquot of sample; quantifies matrix bias and precision.); ICV - Initial

(same standard (replicate of the

Calibration Verification; LCS Dup - Laboratory Control Sample Duplicate (replicate LCS; analyzed when there is insufficient sample for duplicate or MSD; quantifies accuracy and precision.); CCB - Continuing Calibration Blank; AWRL/LOQ C - Ambient Water Reporting Limit/LOQ Check Std; LCS - Laboratory Control Sample (reagent water or other blank matrices that is spiked with a known quantity of target analyte(s) and carried through preparation and analytical procedures exactly like a sample; typically a mid-range concentration; verifies that bias and precision of the analytical process are within control limits; determines usability of the data.); MS -Matrix Spike (same solution and amount of target analyte added to the LCS is added to a second aliquot of sample; quantifies matrix bias.)

Page 1 of 3

2600 Dudley Rd. Kilgore, Texas 75662 Office: 903-984-0551 * Fax: 903-984-5914

SPL The Science of Sure

Printed 06/05/2025

CHAIN OF CUSTODY

City of Sun Valley Mayor Tom Wagnon 800 Shady Grove Rd Paris, TX 75462-

SUN8-A 108

Lab Number	2415406
PO Number	202,000
Phone	903/982-611

Hand Delivered by Client to Region or LAB

Wasterwater Permit

Mahailan Wan Bahaki at ta
Matrix: Non-Potable Water
Sample Collection Start
Date: 6 9 25 Time: 1130
Sampler Printed Name: 1914 With
Sampler Affiliation:
Sampler Signature: Chung Smith
Samples Radioactive? Samples Contains Dioxin? Samples Biological Hazard?
0 On Site Testing
NELAC Cl2O Cl2 Res.,Total(Onsite)Spec Mid [RL 0.05 mg/L] SM 4500-Cl G-2011
Cl2 Res.,Total(Onsite)Spec Mid [RL 0.05 mg/L]
Collected By JM1 Date 6/9/25 Time 1130 Analyzed By JM4 Date 6/9/25 Time 1133
Results 0,06 Units Mg/L Temp. 26,6 C Duplicate 0,07 Units Mg/L Temp. 26,6 C
RI 0, 07 R2 0.01 QCRI 0.08 QCR2 0.01
N/L & Short Hold DO Dissolved Oxygen Onsite SM 4500-O G-2016 (0.0104 days)
Dissolved Oxygen Onsite
•
Collected By JM1 Date 6/9/25 Time 1/30 Analyzed By JM1 Date 6/9/25 Time 1/3/
Results 2.09 Units Mg/L Temp. 27.1 C Duplicate 2.11 Units Mg/L Temp. 27.4 C
NELAC Short Hold pH pH (Onsite) SM 4500-H+ B-2011 (0.0104 days)

2600 Dudley Rd., Kilgore, Texas 75662 Office: 903-984-0551 * Fax: 903-984-5914

CHAIN OF CUSTODY

City of Sun Valley Mayor Tom Wagnon 800 Shady Grove Rd Paris, TX 75462SUN8-A 108

pH (Onsite)				
Collected By JM1	Date 6/9/25 Time 1130	Analyzed By JM 1	Date (6)9/25 Time	1132

Results 7.04 Units M Temp. 26.6 C Duplicate 7.03	Units SU Temp. 26.4 C
--	-----------------------

1 Na2S2O3 (0.008%) Polystyrene-100 mL Sterilized								
NELAC Short Hold	MPNW	W MPN, E.coli, Col18 - Non-Pot SM 9223 B (Colilert-18 QT)-2016 (0.333 days)						
2 H2SO4 to pH <2 GlQt w/Tef-lined lid								
NELAC	HEM	Oil and Grease (HEM)	EPA 1664B (HEM) (28.0 days)					
1 Pol	1 Polyethylene 1/2 gal (White)							
NELAC Short Hold	BODc	BOD Carbonaceous	SM 5210 B-2016 (TCMP Inhibitor) (2.04 days)					
NELAC .	TSS	Total Suspended Solids	SM 2540 D-2020 (7.00 days)					
1 HNO3 to pH <2 Polyethylene 500 mL for Metals								
NELAC	*PI	Phosphorus	EPA 200.7 4.4 CAS:7723-14-0 (180 days)					
	301L	Liquid Metals Digestion	EPA 200.2 2.8 (180 days)					
1 H25	SO4 to	pH <2 250 ml Polyethylene						
NELAC .	NHaN	Ammonia Nitrogen	EPA 350.1 2 (28.0 days)					
NELAC	TKN	Total Kjeldahl Nitrogen	EPA 351.2 2 CAS:7727-37-9 (28.0 days)					
1 Pol	yethyle	ne Quart						
NELAC	!CIL	Chloride	EPA 300.0 2.1 (28.0 days)					
MELIC Short Hold	!N3L	Nitrate-Nitrogen Total	EPA 300.0 2.1 CAS:14797-55-8 (2.00 days)					
NELAC	!S4L	Sulfate	EPA 300.0 2.1 (28.0 days)					
NELAC	AlkT	Total Alkalinity (as CaCO3)	SM 2320 B-2011 (14.0 days)					
NELAC	CONL	Lab Spec. Conductance at 25 C	SM 2510 B-2011 (28.0 days)					
NELAC	TDS	Total Dissolved Solids	SM 2540 C-2020 (7.00 days)					

1150306 CoC Print Group 001 of 001

2600 Dudley Rd., Kilgore, Texas 75662 Office: 903-984-0551 * Fax: 903-984-5914

CHAIN OF CUSTODY

City of Sun Valley Mayor Tom Wagnon 800 Shady Grove Rd Paris, TX 75462SUN8-A 108

Ambient Conditions/Comments

Date	Time	Relinquis	hed	Re	ceived
6/9/25	1450	Jenny Smith	SPL	Printed Name Dorls Stoke	r - SPL, Inc.
1	1130	Cionatan ()			a(V
		Primed Ane	Affiliation	Printed Name	Allifiation
		Signature		Signature	
		Printed Name	Affiliation	Printed Name	Affiliation
		Signature		Signature	
		Printed Name	Affiliation	Printed Name	.Affiliation
		Signature		Signature	

Sample Received on Ice?	150] Ao	
Cooler/Sample Secure?	TVes	No.	If Shipped: Tracking Number & Temp - See Atta-

The accredited column designates accreditation by A - AZLA, N - NELAC, or z - not listed under scope of accreditation. Unless otherwise specified, SPL shall provide these ordered services pursuant to our Standard Terms & Conditions Agreement. SPL personnel collect samples as specified by SPL SOP #000323.

Comments

2600 Dudley Rd. Kilgore, Texas 75662 Office: 903-984-0551 * Fax: 903-984-5914

The Science of Sure Printed 06/05/2025 Page 1 of 1

CHAIN OF CUSTODY

City of Sun Valley Mayor Tom Wagnon 800 Shady Grove Rd Paris, TX 75462SUN8-A 101

Lab Number	
PO Number	
Phone	903/982-6111

Hund Delivered by Client to Region or LAB

Matrix: Non-Potable Water			
Sample Collection Start			
Date: 6/9/25 Time: 1/30			
Sampler Printed Name: TUMY WITH	_		
Sampler Affiliation:	_		
Sampler Signature:	_		
Samples Radioactive?	Samples Contains Dioxin?	Samples Biological Hazard?	
0 Z No bottle required	1		

PuCh Sampling/Transport

Ambient Conditions/Comments

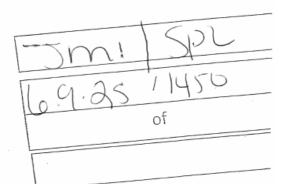
Date	Time	Relinquished		Received	
6/21	IIICA	Jenny Snith	Attiliation PL	Printed Name	Affiliation
6/9/25	1450	Signar Opening Smith		Signature	
		Printed The	A Diliation	Printed Name	Affiliation
		Signature		Signature	
		Printed Name	Affiliation	Printed Name	Affiliation
		Signature		Signature	
		Printed Name	Affiliation	Printed Name	Affiliation
		Signature		Signature	

Sample Received on Ice? | Yes | No | No | Cooler/Sample Secure? | Yes | No | If Shipped: Tracking Number & Temp - See Attached

The accredited column designates accreditation by A - A2LA, N - NELAC, or z - not listed under scope of accreditation. Unless otherwise specified. SPL shall provide these ordered services pursuant to our Standard Terms & Conditions Agreement. SPL personnel collect samples as specified by SPL SOP #000323.

Comments

Corporate - Kilgore: 2600 Dudley Road Kilgore TX 75662


COOLER CHECKIN

Region/Driver/Client

Date / Time:

Cooler:

Shipping Company:

Temp Label:

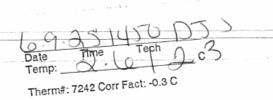


Table 1.0(2) - Pollutant Analysis for Wastewater Treatment Facilities

Pollutant	Average Conc.	Max Conc.	No. of Samples	Sample Type	Sample Date/Time
CBOD ₅ , mg/l		.00	1	Grab	6/9/25
Total Suspended Solids, mg/l		79.0	1	Grab	6/9/25
Ammonia Nitrogen, mg/l		48.5	1	Grab	6/9/25
Nitrate Nifrogen, mg/l		<0.1	1	Grab	6/9/25
Total Kjeldahl Nitrogen, mg/l		45.3	1	Grab	6/9/25
Sulfate, mg/l		37.3	1	Grab	6/9/25
Chloride, mg/l		26.7	1	Grab	6/9/25
Total Phosphorus, mg/l		5.05	1	Grab	6/9/25
pH, standard units		7.0	1	Grab	6/9/25
Dissolved Oxygen*, mg/l		2.1	1	Grab	6/9/25
Chlorine Residual, mg/l		0.060	1	Grab	6/9/25
<i>E.coli</i> (CFU/100ml) freshwater		>2419.6	1	Grab	6/9/25
Entercocci (CFU/100ml) saltwater		N/A	N/A	N/A	N/A
Total Dissolved Solids, mg/l		176	1	Grab	6/9/25
Electrical Conductivity, µmohs/cm, †		502	1	Grab	6/9/25
Oil & Grease, mg/l		6.04	1	Grab	6/9/25
Alkalinity (CaCO ₃)*, mg/l		114	1	Grab	6/9/25

^{*}TPDES permits only

Table1.0(3) - Pollutant Analysis for Water Treatment Facilities

Pollutant	Average Conc.	Max Conc.	No. of Samples	Sample Type	Sample Date/Time
Total Suspended Solids, mg/l	N/A	N/A	N/A	N/A	N/A
Total Dissolved Solids, mg/l	N/A	N/A	N/A	N/A	N/A
pH, standard units	N/A	N/A	N/A	N/A	N/A
Fluoride, mg/l	N/A	N/A	N/A	N/A	N/A
Aluminum, mg/l	N/A	N/A	N/A	N/A	N/A
Alkalinity (CaCO ₃), mg/l	N/A	N/A	N/A	N/A	N/A

Section 8. Facility Operator (Instructions Page 50)

Facility Operator Name: <u>Jack Baker</u>

Facility Operator's License Classification and Level: $\underline{\mathbf{C}}$

Facility Operator's License Number: WW0053593

[†]TLAP permits only

ANNUAL CROPPING PLAN

There are no crops grown on the spray field, only native grasses are present on the spray field site. The native grasses grow year round and are shredded using a tractor with a batwing mower at least twice a per year. The shredded vegetation is left onsite and decomposes into the soil over a few months. The soil analysis have shown no buildup on nutrients present in the soil. The lack of nutrient buildup is due to the very low flows experienced by the plant. Discharge takes place when the holding ponds are full; then spraying the field takes place. There is no grazing or animals on the field. Mowing is the only maintenance and the field contains itself by natural osmosis by the environment. The field is not fertilized and no supplemental watering happens at anytime during the year.

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY P.O. Box 13087 Austin, Texas 78711-3087

PERMIT TO DISCHARGE WASTES under provisions of Chapter 26 of the Texas Water Code This is a renewal of and replaces Permit No. WQoo11413001 issued on May 31, 2006.

City of Sun Valley

whose mailing address is

800 Shady Grove Road Paris, Texas 75462

Nature of Business Producing Waste: Domestic wastewater treatment operation, SIC Code 4952.

General Description and Location of Waste Disposal System:

Description: The City of Sun Valley Wastewater Treatment Facility consists of an activated sludge process plant using the extended aeration mode. Treatment units include a bar screen, an aeration basin, final clarifier, a sludge holding tank, and a chlorine contact chamber. Treated efluent is routed to two effluent holding ponds with a total surface area of 0.81 acres and total capacity of 9.0 acre-feet for storage of treated effluent prior to disposal by evaporation and irrigation on 6 acres of grassland. The permittee is authorized to dispose of treated domestic wastewater effluent at a daily average flow not to exceed 0.00875 million gallons per day (MGD) via surface irrigation and evaporation of 6 acres of non-public access grass land. Application rates to the irrigated land shall not exceed 2.0 acre-feet per year per acre irrigated. An additional 25 acres of grassland is held in reserve for irrigation purposes. The permittee will maintain native grasses on the disposal site.

Location: The wastewater treatment facility and disposal site are located approximately 2,500 feet north of the intersection of U.S. Highway 82 and Shady Grove Road, in Lamar County, Texas 75462. (See Attachment A.)

Drainage Area: The wastewater treatment facility and disposal site are located in the drainage basin of Sulphur/South Sulphur River in Segment No. 0303 of the Sulphur River Basin. No discharge of pollutants into water in the state is authorized by this permit.

This permit and the authorization contained herein shall expire at midnight on **January 1**, **2026**.

ISSUED DATE: July 21, 2016

For the Commission′

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

Conditions of the Permit: No discharge of pollutants into water in the state is authorized.

A. Effluent Limitations

Character: Treated Domestic Sewage Effluent

Volume: Daily Average Flow – 0.00875 MGD from the treatment

system

Quality: The following effluent limitations are required:

Effluent Concentrations

(Not to Exceed)
Daily Single
Average Grab
mg/l mg/l

Biochemical Oxygen
Demand (5-day)

N/A 30

The pH shall not be less than 6.0 standard units nor greater than 9.0 standard units.

The effluent shall be chlorinated in a chlorine contact chamber to a residual of 1.0 mg/l with a minimum detention time of 20 minutes. If the effluent is to be transferred to a holding pond or tank, re-chlorination prior to the effluent being delivered into the irrigation system will be required. A trace chlorine residual shall be maintained in the effluent at the point of irrigation application.

B. <u>Monitoring Requirements</u>:

<u>Parameter</u>	<u> Monitoring Frequency</u>	<u>Sample Type</u>
Flow	Five/week	Instantaneous
Biochemical Oxygen	One/month	Grab
Demand (5-day)		_
рH	One/month	Grab
Chlorine Residual	One/week	Grab

The monitoring shall be done after the final treatment unit and prior to storage of the treated effluent. If the effluent is land applied directly from the treatment system, monitoring shall be done after the final treatment unit and prior to land application. These records shall be maintained on a monthly basis and be available at the plant site for inspection by authorized representatives of the Commission for at least three years.

STANDARD PERMIT CONDITIONS

This permit is granted in accordance with the Texas Water Code and the rules and other Orders of the Commission and the laws of the State of Texas.

DEFINITIONS

All definitions in Section 26.001 of the Texas Water Code and 30 TAC Chapter 305 shall apply to this permit and are incorporated by reference. Some specific definitions of words or phrases used in this permit are as follows:

1. Flow Measurements

- a. Daily average flow the arithmetic average of all determinations of the daily flow within a period of one calendar month. The daily average flow determination shall consist of determinations made on at least four separate days. If instantaneous measurements are used to determine the daily flow, the determination shall be the arithmetic average of all instantaneous measurements taken during that month. Daily average flow determination for intermittent discharges shall consist of a minimum of three flow determinations on days of discharge.
- b. Annual average flow the arithmetic average of all daily flow determinations taken within the preceding 12 consecutive calendar months. The annual average flow determination shall consist of daily flow volume determinations made by a totalizing meter, charted on a chart recorder and limited to major domestic wastewater discharge facilities with 1 million gallons per day or greater permitted flow.
- c. Instantaneous flow the measured flow during the minimum time required to interpret the flow measuring device.

2. Concentration Measurements

- a. Daily average concentration the arithmetic average of all effluent samples, composite or grab as required by this permit, within a period of one calendar month, consisting of at least four separate representative measurements.
 - i. For domestic wastewater treatment plants When four samples are not available in a calendar month, the arithmetic average (weighted by flow) of all values in the previous four consecutive month period consisting of at least four measurements shall be utilized as the daily average concentration.
 - ii. For all other wastewater treatment plants When four samples are not available in a calendar month, the arithmetic average (weighted by flow) of all values taken during the month shall be utilized as the daily average concentration.
- b. 7-day average concentration the arithmetic average of all effluent samples, composite or grab as required by this permit, within a period of one calendar week, Sunday through Saturday.
- c. Daily maximum concentration the maximum concentration measured on a single day, by the sample type specified in the permit, within a period of one calendar month.

3. Sample Type

- a. Composite sample For domestic wastewater, a composite sample is a sample made up of a minimum of three effluent portions collected in a continuous 24-hour period or during the period of daily discharge if less than 24 hours, and combined in volumes proportional to flow, and collected at the intervals required by 30 TAC § 319.9 (a). For industrial wastewater, a composite sample is a sample made up of a minimum of three effluent portions collected in a continuous 24-hour period or during the period of daily discharge if less than 24 hours, and combined in volumes proportional to flow, and collected at the intervals required by 30 TAC § 319.9 (b).
- b. Grab sample an individual sample collected in less than 15 minutes.
- 4. Treatment Facility (facility) wastewater facilities used in the conveyance, storage, treatment, recycling, reclamation and/or disposal of domestic sewage, industrial wastes, agricultural wastes, recreational wastes, or other wastes including sludge handling or disposal facilities under the jurisdiction of the Commission.
- 5. The term "sewage sludge" is defined as solid, semi-solid, or liquid residue generated during the treatment of domestic sewage in 30 TAC Chapter 312. This includes the solids which have not been classified as hazardous waste separated from wastewater by unit processes.
- 6. Bypass the intentional diversion of a waste stream from any portion of a treatment facility.

MONITORING REQUIREMENTS

1. Monitoring Requirements

Monitoring results shall be collected at the intervals specified in the permit. Unless otherwise specified in this permit or otherwise ordered by the Commission, the permittee shall conduct effluent sampling in accordance with 30 TAC §§ 319.4 - 319.12.

As provided by state law, the permittee is subject to administrative, civil and criminal penalties, as applicable, for negligently or knowingly violating the Texas Water Code, Chapters 26, 27, and 28, and Texas Health and Safety Code, Chapter 361, including but not limited to knowingly making any false statement, representation, or certification on any report, record or other document submitted or required to be maintained under this permit, including monitoring reports, records or reports of compliance or noncompliance, or falsifying, tampering with or knowingly rendering inaccurate any monitoring device or method required by this permit or violating any other requirement imposed by state or federal regulations.

2. Test Procedures

- a. Unless otherwise specified in this permit, test procedures for the analysis of pollutants shall comply with procedures specified in 30 TAC §§ 319.11 319.12. Measurements, tests and calculations shall be accurately accomplished in a representative manner.
- b. All laboratory tests submitted to demonstrate compliance with this permit must meet the requirements of 30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification.

3. Records of Results

- a. Monitoring samples and measurements shall be taken at times and in a manner so as to be representative of the monitored activity.
- b. Except for records of monitoring information required by this permit related to the permittee's sewage sludge use and disposal activities, which shall be retained for a period of at least five years, monitoring and reporting records, including strip charts and records of calibration and maintenance, copies of all records required by this permit, and records of all data used to complete the application for this permit shall be retained at the facility site, or shall be readily available for review by a TCEQ representative for a period of three years from the date of the record or sample, measurement, report, or application. This period shall be extended at the request of the Executive Director.
- c. Records of monitoring activities shall include the following:
 - i. date, time and place of sample or measurement;
 - ii. identity of individual who collected the sample or made the measurement.
 - iii. date and time of analysis;
 - iv. identity of the individual and laboratory who performed the analysis;
 - v. the technique or method of analysis; and
 - vi. the results of the analysis or measurement and quality assurance/quality control records.

The period during which records are required to be kept shall be automatically extended to the date of the final disposition of any administrative or judicial enforcement action that may be instituted against the permittee.

4. Additional Monitoring by Permittee

If the permittee monitors any pollutant at the location(s) designated herein more frequently than required by this permit using approved analytical methods as specified above, all results of such monitoring shall be included in determining compliance with permit requirements.

5. Calibration of Instruments

All automatic flow measuring or recording devices and all totalizing meters for measuring flows shall be accurately calibrated by a trained person at plant start-up and as often thereafter as necessary to ensure accuracy, but not less often than annually unless authorized by the Executive Director for a longer period. Such person shall verify in writing that the device is operating properly and giving accurate results. Copies of the verification shall be retained at the facility site and/or shall be readily available for review by a TCEQ representative for a period of three years.

6. Compliance Schedule Reports

Reports of compliance or noncompliance with, or any progress reports on, interim and final requirements contained in any compliance schedule of the permit shall be submitted no later than 14 days following each schedule date to the Regional Office and the Enforcement Division (MC 224).

7. Noncompliance Notification

- a. In accordance with 30 TAC § 305.125(9), any noncompliance which may endanger human health or safety, or the environment shall be reported by the permittee to the TCEQ. Report of such information shall be provided orally or by facsimile transmission (FAX) to the Regional Office within 24 hours of becoming aware of the noncompliance. A written submission of such information shall also be provided by the permittee to the Regional Office and the Enforcement Division (MC 224) within five working days of becoming aware of the noncompliance. The written submission shall contain a description of the noncompliance and its cause; the potential danger to human health or safety, or the environment; the period of noncompliance, including exact dates and times; if the noncompliance has not been corrected, the time it is expected to continue; and steps taken or planned to reduce, eliminate, and prevent recurrence of the noncompliance, and to mitigate its adverse effects.
- b. The following violations shall be reported under Monitoring and Reporting Requirement 7.a.:
 - i. Unauthorized discharges as defined in Permit Condition 2(g).
 - ii. Any unanticipated bypass which exceeds any effluent limitation in the permit.
- c. In addition to the above, any effluent violation which deviates from the permitted effluent limitation by more than 40% shall be reported by the permittee in writing to the Regional Office and the Enforcement Division (MC 224) within 5 working days of becoming aware of the noncompliance.
- d. Any noncompliance other than that specified in this section, or any required information not submitted or submitted incorrectly, shall be reported to the Enforcement Division (MC 224) as promptly as possible.
- 8. In accordance with the procedures described in 30 TAC §§ 35.301 35.303 (relating to Water Quality Emergency and Temporary Orders) if the permittee knows in advance of the need for a bypass, it shall submit prior notice by applying for such authorization.
- 9. Changes in Discharges of Toxic Substances

All existing manufacturing, commercial, mining, and silvicultural permittees shall notify the Regional Office, orally or by facsimile transmission within 24 hours, and both the Regional Office and the Enforcement Division (MC 224) in writing within five (5) working days, after becoming aware of or having reason to believe:

- a. That any activity has occurred or will occur which would result in the discharge, on a routine or frequent basis, of any toxic pollutant listed at 40 CFR Part 122, Appendix D, Tables II and III (excluding Total Phenols) which is not limited in the permit, if that discharge will exceed the highest of the following "notification levels":
 - i. One hundred micrograms per liter (100 μ g/L);
 - ii. Two hundred micrograms per liter (200 μ g/L) for acrolein and acrylonitrile; five hundred micrograms per liter (500 μ g/L) for 2,4-dinitrophenol and for 2-methyl-4,6-dinitrophenol; and one milligram per liter (1 mg/L) for antimony;

- iii. Five (5) times the maximum concentration value reported for that pollutant in the permit application; or
- iv. The level established by the TCEQ.
- b. That any activity has occurred or will occur which would result in any discharge, on a nonroutine or infrequent basis, of a toxic pollutant which is not limited in the permit, if that discharge will exceed the highest of the following "notification levels":
 - i. Five hundred micrograms per liter (500 μ g/L);
 - ii. One milligram per liter (1 mg/L) for antimony;
 - iii. Ten (10) times the maximum concentration value reported for that pollutant in the permit application; or
 - iv. The level established by the TCEQ.

10. Signatories to Reports

All reports and other information requested by the Executive Director shall be signed by the person and in the manner required by 30 TAC § 305.128 (relating to Signatories to Reports).

PERMIT CONDITIONS

1. General

- a. When the permittee becomes aware that it failed to submit any relevant facts in a permit application, or submitted incorrect information in an application or in any report to the Executive Director, it shall promptly submit such facts or information.
- b. This permit is granted on the basis of the information supplied and representations made by the permittee during action on an application, and relying upon the accuracy and completeness of that information and those representations. After notice and opportunity for a hearing, this permit may be modified, suspended, or revoked, in whole or in part, in accordance with 30 TAC Chapter 305, Subchapter D, during its term for good cause including, but not limited to, the following:
 - i. Violation of any terms or conditions of this permit;
 - ii. Obtaining this permit by misrepresentation or failure to disclose fully all relevant facts; or
 - iii. A change in any condition that requires either a temporary or permanent reduction or elimination of the authorized discharge.
- c. The permittee shall furnish to the Executive Director, upon request and within a reasonable time, any information to determine whether cause exists for amending, revoking, suspending or terminating the permit. The permittee shall also furnish to the Executive Director, upon request, copies of records required to be kept by the permit.

2. Compliance

a. Acceptance of the permit by the person to whom it is issued constitutes acknowledgment and agreement that such person will comply with all the terms and conditions embodied in the permit, and the rules and other orders of the Commission.

- b. The permittee has a duty to comply with all conditions of the permit. Failure to comply with any permit condition constitutes a violation of the permit and the Texas Water Code or the Texas Health and Safety Code, and is grounds for enforcement action, for permit amendment, revocation or suspension, or for denial of a permit renewal application or an application for a permit for another facility.
- c. It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of the permit.
- d. The permittee shall take all reasonable steps to minimize or prevent any discharge or sludge use or disposal or other permit violation which has a reasonable likelihood of adversely affecting human health or the environment.
- e. Authorization from the Commission is required before beginning any change in the permitted facility or activity that may result in noncompliance with any permit requirements.
- f. A permit may be amended, suspended and reissued, or revoked for cause in accordance with 30 TAC §§ 305.62 and 305.66 and Texas Water Code Section 7.302. The filing of a request by the permittee for a permit amendment, suspension and reissuance, or termination, or a notification of planned changes or anticipated noncompliance, does not stay any permit condition.
- g. There shall be no unauthorized discharge of wastewater or any other waste. For the purpose of this permit, an unauthorized discharge is considered to be any discharge of wastewater into or adjacent to water in the state at any location not permitted as an outfall or otherwise defined in the Special Provisions section of this permit.
- h. The permittee is subject to administrative, civil, and criminal penalties, as applicable, under Texas Water Code §§ 7.051 7.075 (relating to Administrative Penalties), 7.101 7.111 (relating to Civil Penalties), and 7.141 7.202 (relating to Criminal Offenses and Penalties).

3. Inspections and Entry

- a. Inspection and entry shall be allowed as prescribed in the Texas Water Code Chapters 26, 27, and 28, and Texas Health and Safety Code Chapter 361.
- b. The members of the Commission and employees and agents of the Commission are entitled to enter any public or private property at any reasonable time for the purpose of inspecting and investigating conditions relating to the quality of water in the state or the compliance with any rule, regulation, permit or other order of the Commission. Members, employees, or agents of the Commission and Commission contractors are entitled to enter public or private property at any reasonable time to investigate or monitor or, if the responsible party is not responsive or there is an immediate danger to public health or the environment, to remove or remediate a condition related to the quality of water in the state. Members, employees, Commission contractors, or agents acting under this authority who enter private property shall observe the establishment's rules and regulations concerning safety, internal security, and fire protection, and if the property has management in residence, shall notify management or the person then in

charge of his presence and shall exhibit proper credentials. If any member, employee, Commission contractor, or agent is refused the right to enter in or on public or private property under this authority, the Executive Director may invoke the remedies authorized in Texas Water Code Section 7.002. The statement above, that Commission entry shall occur in accordance with an establishment's rules and regulations concerning safety, internal security, and fire protection, is not grounds for denial or restriction of entry to any part of the facility, but merely describes the Commission's duty to observe appropriate rules and regulations during an inspection.

4. Permit Amendment and/or Renewal

- a. The permittee shall give notice to the Executive Director as soon as possible of any planned physical alterations or additions to the permitted facility if such alterations or additions would require a permit amendment or result in a violation of permit requirements. Notice shall also be required under this paragraph when:
 - i. The alteration or addition could significantly change the nature or increase the quantity of pollutants discharged. This notification applies to pollutants which are subject neither to effluent limitations in the permit, nor to notification requirements in Monitoring and Reporting Requirements No. 9;
 - ii. The alteration or addition results in a significant change in the permittee's sludge use or disposal practices, and such alteration, addition, or change may justify the application of permit conditions that are different from or absent in the existing permit, including notification of additional use or disposal sites not reported during the permit application process or not reported pursuant to an approved land application plan.
- b. Prior to any facility modifications, additions, or expansions that will increase the plant capacity beyond the permitted flow, the permittee must apply for and obtain proper authorization from the Commission before commencing construction.
- c. The permittee must apply for an amendment or renewal at least 180 days prior to expiration of the existing permit in order to continue a permitted activity after the expiration date of the permit. If an application is submitted prior to the expiration date of the permit, the existing permit shall remain in effect until the application is approved, denied, or returned. If the application is returned or denied, authorization to continue such activity shall terminate upon the effective date of the action. If an application is not submitted prior to the expiration date of the permit, the permit shall expire and authorization to continue such activity shall terminate.
- d. Prior to accepting or generating wastes which are not described in the permit application or which would result in a significant change in the quantity or quality of the existing discharge, the permittee must report the proposed changes to the Commission. The permittee must apply for a permit amendment reflecting any necessary changes in permit conditions, including effluent limitations for pollutants not identified and limited by this permit.
- e. In accordance with the Texas Water Code § 26.029(b), after a public hearing, notice of which shall be given to the permittee, the Commission may require the permittee, from time to time, for good cause, in accordance with applicable laws, to conform to new or additional conditions.

5. Permit Transfer

- a. Prior to any transfer of this permit, Commission approval must be obtained. The Commission shall be notified in writing of any change in control or ownership of facilities authorized by this permit. Such notification should be sent to the Applications Review and Processing Team (MC 148) of the Water Quality Division.
- b. A permit may be transferred only according to the provisions of 30 TAC § 305.64 (relating to Transfer of Permits) and 30 TAC § 50.133 (relating to Executive Director Action on Application or WQMP update).

6. Relationship to Hazardous Waste Activities

This permit does not authorize any activity of hazardous waste storage, processing, or disposal which requires a permit or other authorization pursuant to the Texas Health and Safety Code.

7. Property Rights

A permit does not convey any property rights of any sort, or any exclusive privilege.

8. Permit Enforceability

The conditions of this permit are severable, and if any provision of this permit, or the application of any provision of this permit to any circumstances, is held invalid, the application of such provision to other circumstances, and the remainder of this permit, shall not be affected thereby.

9. Relationship to Permit Application

The application pursuant to which the permit has been issued is incorporated herein; provided, however, that in the event of a conflict between the provisions of this permit and the application, the provisions of the permit shall control.

10. Notice of Bankruptcy.

- a. Each permittee shall notify the Executive Director, in writing, immediately following the filing of a voluntary or involuntary petition for bankruptcy under any chapter of Title 11 (Bankruptcy) of the United States Code (11 USC) by or against:
 - i. the permittee;
 - ii. an entity (as that term is defined in 11 USC, § 101(14)) controlling the permittee or listing the permit or permittee as property of the estate; or
 - iii. an affiliate (as that term is defined in 11 USC, § 101(2)) of the permittee.

b. This notification must indicate:

- i. the name of the permittee;
- ii. the permit number(s);
- iii. the bankruptcy court in which the petition for bankruptcy was filed; and
- iv. the date of filing of the petition.

OPERATIONAL REQUIREMENTS

- 1. The permittee shall at all times ensure that the facility and all of its systems of collection, treatment, and disposal are properly operated and maintained. This includes, but is not limited to, the regular, periodic examination of wastewater solids within the treatment plant by the operator in order to maintain an appropriate quantity and quality of solids inventory as described in the various operator training manuals and according to accepted industry standards for process control. Process control, maintenance, and operations records shall be retained at the facility site, or shall be readily available for review by a TCEQ representative, for a period of three years.
- 2. Upon request by the Executive Director, the permittee shall take appropriate samples and provide proper analysis in order to demonstrate compliance with Commission rules. Unless otherwise specified in this permit or otherwise ordered by the Commission, the permittee shall comply with all applicable provisions of 30 TAC Chapter 312 concerning sewage sludge use and disposal and 30 TAC §§ 319.21 319.29 concerning the discharge of certain hazardous metals.
- 3. Domestic wastewater treatment facilities shall comply with the following provisions:
 - a. The permittee shall notify the Municipal Permits Team, Wastewater Permitting Section (MC 148) of the Water Quality Division, in writing, of any facility expansion at least 90 days prior to conducting such activity.
 - b. The permittee shall submit a closure plan for review and approval to the Municipal Permits Team, Wastewater Permitting Section (MC 148) of the Water Quality Division, for any closure activity at least 90 days prior to conducting such activity. Closure is the act of permanently taking a waste management unit or treatment facility out of service and includes the permanent removal from service of any pit, tank, pond, lagoon, surface impoundment and/or other treatment unit regulated by this permit.
- 4. The permittee is responsible for installing prior to plant start-up, and subsequently maintaining, adequate safeguards to prevent the discharge of untreated or inadequately treated wastes during electrical power failures by means of alternate power sources, standby generators, and/or retention of inadequately treated wastewater.
- 5. Unless otherwise specified, the permittee shall provide a readily accessible sampling point and, where applicable, an effluent flow measuring device or other acceptable means by which effluent flow may be determined.
- 6. The permittee shall remit an annual water quality fee to the Commission as required by 30 TAC Chapter 21. Failure to pay the fee may result in revocation of this permit under Texas Water Code § 7.302(b)(6).

7. Documentation

For all written notifications to the Commission required of the permittee by this permit, the permittee shall keep and make available a copy of each such notification under the same conditions as self-monitoring data are required to be kept and made available. Except for information specified as not confidential in 30 TAC § 1.5(d), any information submitted pursuant to this permit may be claimed as confidential by the submitter. Any such claim

must be asserted in the manner prescribed in the application form or by stamping the words "confidential business information" on each page containing such information. If no claim is made at the time of submission, information may be made available to the public without further notice. If the Commission or Executive Director agrees with the designation of confidentiality, the TCEQ will not provide the information for public inspection unless required by the Texas Attorney General or a court pursuant to an open records request. If the Executive Director does not agree with the designation of confidentiality, the person submitting the information will be notified.

- 8. Facilities which generate domestic wastewater shall comply with the following provisions; domestic wastewater treatment facilities at permitted industrial sites are excluded.
 - a. Whenever flow measurements for any domestic sewage treatment facility reach 75 percent of the permitted daily average or annual average flow for three consecutive months, the permittee must initiate engineering and financial planning for expansion and/or upgrading of the domestic wastewater treatment and/or collection facilities. Whenever the flow reaches 90 percent of the permitted daily average or annual average flow for three consecutive months, the permittee shall obtain necessary authorization from the Commission to commence construction of the necessary additional treatment and/or collection facilities. In the case of a domestic wastewater treatment facility which reaches 75 percent of the permitted daily average or annual average flow for three consecutive months, and the planned population to be served or the quantity of waste produced is not expected to exceed the design limitations of the treatment facility, the permittee shall submit an engineering report supporting this claim to the Executive Director of the Commission.

If in the judgement of the Executive Director the population to be served will not cause permit noncompliance, then the requirement of this section may be waived. To be effective, any waiver must be in writing and signed by the Director of the Enforcement Division (MC 169) of the Commission, and such waiver of these requirements will be reviewed upon expiration of the existing permit; however, any such waiver shall not be interpreted as condoning or excusing any violation of any permit parameter.

- b. The plans and specifications for domestic sewage collection and treatment works associated with any domestic permit must be approved by the Commission, and failure to secure approval before commencing construction of such works or making a discharge is a violation of this permit and each day is an additional violation until approval has been secured.
- c. Permits for domestic wastewater treatment plants are granted subject to the policy of the Commission to encourage the development of area-wide waste collection, treatment and disposal systems. The Commission reserves the right to amend any domestic wastewater permit in accordance with applicable procedural requirements to require the system covered by this permit to be integrated into an area-wide system, should such be developed; to require the delivery of the wastes authorized to be collected in, treated by or discharged from said system, to such area-wide system; or to amend this permit in any other particular to effectuate the Commission's policy. Such amendments may be made when the changes required are advisable for water quality control purposes and are feasible on the basis of waste treatment technology, engineering, financial, and related considerations existing at the time the changes are required, exclusive of the loss of investment in or revenues from any then existing or proposed waste collection, treatment or disposal system.

- 9. Domestic wastewater treatment plants shall be operated and maintained by sewage plant operators holding a valid certificate of competency at the required level as defined in 30 TAC Chapter 30.
- 10. Facilities which generate industrial solid waste as defined in 30 TAC § 335.1 shall comply with these provisions:
 - a. Any solid waste, as defined in 30 TAC § 335.1 (including but not limited to such wastes as garbage, refuse, sludge from a waste treatment, water supply treatment plant or air pollution control facility, discarded materials, discarded materials to be recycled, whether the waste is solid, liquid, or semisolid), generated by the permittee during the management and treatment of wastewater, must be managed in accordance with all applicable provisions of 30 TAC Chapter 335, relating to Industrial Solid Waste Management.
 - b. Industrial wastewater that is being collected, accumulated, stored, or processed before discharge through any final discharge outfall, specified by this permit, is considered to be industrial solid waste until the wastewater passes through the actual point source discharge and must be managed in accordance with all applicable provisions of 30 TAC Chapter 335.
 - c. The permittee shall provide written notification, pursuant to the requirements of 30 TAC § 335.8(b)(1), to the Environmental Cleanup Section (MC 127) of the Remediation Division informing the Commission of any closure activity involving an Industrial Solid Waste Management Unit, at least 90 days prior to conducting such an activity.
 - d. Construction of any industrial solid waste management unit requires the prior written notification of the proposed activity to the Registration and Reporting Section (MC 129) of the Permitting and Remediation Support Division. No person shall dispose of industrial solid waste, including sludge or other solids from wastewater treatment processes, prior to fulfilling the deed recordation requirements of 30 TAC § 335.5.
 - e. The term "industrial solid waste management unit" means a landfill, surface impoundment, waste-pile, industrial furnace, incinerator, cement kiln, injection well, container, drum, salt dome waste containment cavern, or any other structure vessel, appurtenance, or other improvement on land used to manage industrial solid waste.
 - f. The permittee shall keep management records for all sludge (or other waste) removed from any wastewater treatment process. These records shall fulfill all applicable requirements of 30 TAC Chapter 335 and must include the following, as it pertains to wastewater treatment and discharge:
 - i. Volume of waste and date(s) generated from treatment process;
 - ii. Volume of waste disposed of on-site or shipped off-site;
 - iii. Date(s) of disposal;
 - iv. Identity of hauler or transporter;
 - v. Location of disposal site; and
 - vi. Method of final disposal.

The above records shall be maintained on a monthly basis. The records shall be retained at the facility site, or shall be readily available for review by authorized representatives of

the TCEQ for at least five years.

11. For industrial facilities to which the requirements of 30 TAC Chapter 335 do not apply, sludge and solid wastes, including tank cleaning and contaminated solids for disposal, shall be disposed of in accordance with Chapter 361 of the Texas Health and Safety Code.

TCEQ Revision 06/2008

SLUDGE PROVISIONS

The permittee is authorized to dispose of sludge only at a Texas Commission on Environmental Quality (TCEQ) authorized land application site or co-disposal landfill. The disposal of sludge by land application on property owned, leased or under the direct control of the permittee is a violation of the permit unless the site is authorized with the TCEQ. This provision does not authorize Distribution and Marketing of sludge. This provision does not authorize land application of Class A or Class AB Sewage Sludge. This provision does not authorize the permittee to land apply sludge on property owned, leased or under the direct control of the permittee.

SECTION I. REQUIREMENTS APPLYING TO ALL SEWAGE SLUDGE LAND APPLICATION

A. General Requirements

- 1. The permittee shall handle and dispose of sewage sludge in accordance with 30 TAC § 312 and all other applicable state and federal regulations in a manner that protects public health and the environment from any reasonably anticipated adverse effects due to any toxic pollutants that may be present in the sludge.
- 2. In all cases, if the person (permit holder) who prepares the sewage sludge supplies the sewage sludge to another person for land application use or to the owner or lease holder of the land, the permit holder shall provide necessary information to the parties who receive the sludge to assure compliance with these regulations.
- 3. The permittee shall give 180 days prior notice to the Executive Director in care of the Wastewater Permitting Section (MC 148) of the Water Quality Division of any change planned in the sewage sludge disposal practice.

B. Testing Requirements

1. Sewage sludge shall be tested once during the term of this permit in accordance with the method specified in both 40 CFR Part 261, Appendix II and 40 CFR Part 268, Appendix I [Toxicity Characteristic Leaching Procedure (TCLP)] or other method that receives the prior approval of the TCEQ for the contaminants listed in 40 CFR Part 261.24, Table 1. Sewage sludge failing this test shall be managed according to RCRA standards for generators of hazardous waste, and the waste's disposition must be in accordance with all applicable requirements for hazardous waste processing, storage, or disposal. Following failure of any TCLP test, the management or disposal of sewage sludge at a facility other than an authorized hazardous waste processing, storage, or disposal facility shall be prohibited until such time as the permittee can demonstrate the sewage sludge no longer exhibits the hazardous waste toxicity characteristics (as demonstrated by the results of the TCLP tests). A written report shall be provided to both the TCEQ Registration and Reporting Section (MC 129) of the Permitting and Remediation Support Division and the Regional Director (MC Region 5) within seven (7) days after failing the TCLP Test.

The report shall contain test results, certification that unauthorized waste management has stopped and a summary of alternative disposal plans that comply with RCRA standards for the management of hazardous waste. The report shall be addressed to: Director, Registration, Review, and Reporting Division (MC 129), Texas Commission on Environmental Quality, P.O. Box 13087, Austin, Texas 78711-3087. In addition, the permittee shall prepare an annual report on the results of all sludge toxicity testing. This annual report shall be submitted to the TCEQ Regional Office (MC Region 5) and the Water Quality Compliance Monitoring Team (MC 224) of the Enforcement Division by September 30th of each year.

2. Sewage sludge shall not be applied to the land if the concentration of the pollutants exceeds the pollutant concentration criteria in Table 1. The frequency of testing for pollutants in Table 1 is found in Section I.C.

TABLE 1

<u>Pollutant</u>	<u>Ceiling Concentration</u> (Milligrams per kilogram)*
Arsenic	75
Cadmium	85
Chromium	3000
Copper	4300
Lead	840
Mercury	57
Molybdenum	75
Nickel	420
PCBs	49
Selenium	100
Zinc	7500

^{*} Dry weight basis

3. Pathogen Control

All sewage sludge that is applied to agricultural land, forest, a public contact site, or a reclamation site must be treated by one of the following methods to ensure that the sludge meets either the Class A, Class AB or Class B pathogen requirements.

a. For sewage sludge to be classified as Class A with respect to pathogens, the density of fecal coliform in the sewage sludge be less than 1,000 most probable number (MPN) per gram of total solids (dry weight basis), or the density of Salmonella sp. bacteria in the sewage sludge be less than three MPN per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed. In addition, one of the alternatives listed below must be met.

<u>Alternative 1</u> - The temperature of the sewage sludge that is used or disposed shall be maintained at or above a specific value for a period of time. See 30 TAC § 312.82(a)(2)(A) for specific information.

Alternative 5 (PFRP) - Sewage sludge that is used or disposed of must be treated in one of the Processes to Further Reduce Pathogens (PFRP) described in 40 CFR Part 503, Appendix B. PFRP include composting, heat drying, heat treatment, and thermophilic aerobic digestion.

Alternative 6 (PFRP Equivalent) - Sewage sludge that is used or disposed of must be treated in a process that has been approved by the U. S. Environmental Protection Agency as being equivalent to those in Alternative 5.

b. For sewage sludge to be classified as Class AB with respect to pathogens, the density of fecal coliform in the sewage sludge be less than 1,000 MPN per gram of total solids (dry weight basis), or the density of Salmonella sp. bacteria in the sewage sludge be less than three MPN per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed. In addition, one of the alternatives listed below must be met.

<u>Alternative 2</u> - The pH of the sewage sludge that is used or disposed shall be raised to above 12 std. units and shall remain above 12 std. units for 72 hours.

The temperature of the sewage sludge shall be above 52° Celsius for 12 hours or longer during the period that the pH of the sewage sludge is above 12 std. units.

At the end of the 72-hour period during which the pH of the sewage sludge is above 12 std. units, the sewage sludge shall be air dried to achieve a percent solids in the sewage sludge greater than 50%.

Alternative 3 - The sewage sludge shall be analyzed for enteric viruses prior to pathogen treatment. The limit for enteric viruses is less than one Plaque-forming Unit per four grams of total solids (dry weight basis) either before or following pathogen treatment. See 30 TAC § 312.82(a)(2)(C)(i-iii) for specific information. The sewage sludge shall be analyzed for viable helminth ova prior to pathogen treatment. The limit for viable helminth ova is less than one per four grams of total solids (dry weight basis) either before or following pathogen treatment. See 30 TAC § 312.82(a)(2)(C)(iv-vi) for specific information.

Alternative 4 - The density of enteric viruses in the sewage sludge shall be less than one Plaque-forming Unit per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed. The density of viable helminth ova in the sewage sludge shall be less than one per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed.

- c. Sewage sludge that meets the requirements of Class AB sewage sludge may be classified a Class A sewage sludge if a variance request is submitted in writing that is supported by substantial documentation demonstrating equivalent methods for reducing odors and written approval is granted by the executive director. The executive director may deny the variance request or revoke that approved variance if it is determined that the variance may potentially endanger human health or the environment, or create nuisance odor conditions.
- d. Three alternatives are available to demonstrate compliance with Class B criteria for sewage sludge.

Alternative 1

- i. A minimum of seven random samples of the sewage sludge shall be collected within 48 hours of the time the sewage sludge is used or disposed of during each monitoring episode for the sewage sludge.
- ii. The geometric mean of the density of fecal coliform in the samples collected shall be less than either 2,000,000 MPN per gram of total solids (dry weight basis) or 2,000,000 Colony Forming Units per gram of total solids (dry weight basis).

<u>Alternative 2</u> - Sewage sludge that is used or disposed of shall be treated in one of the Processes to Significantly Reduce Pathogens (PSRP) described in 40 CFR Part 503, Appendix B, so long as all of the following requirements are met by the generator of the sewage sludge.

- i. Prior to use or disposal, all the sewage sludge must have been generated from a single location, except as provided in paragraph v. below;
- ii. An independent Texas Licensed Professional Engineer must make a certification to the generator of a sewage sludge that the wastewater treatment facility generating the sewage sludge is designed to achieve one of the PSRP at the permitted design loading of the facility. The certification need only be repeated if the design loading of the facility is increased. The certification shall include a statement indicating the design meets all the applicable standards specified in Appendix B of 40 CFR Part 503;
- iii. Prior to any off-site transportation or on-site use or disposal of any sewage sludge generated at a wastewater treatment facility, the chief certified operator of the wastewater treatment facility or other responsible official who manages the processes to significantly reduce pathogens at the wastewater treatment facility for the permittee, shall certify that the sewage sludge underwent at least the minimum operational requirements necessary in order to meet one of the PSRP. The acceptable processes and the minimum operational and record keeping requirements shall be in accordance with established U.S. Environmental Protection Agency final guidance;
- iv. All certification records and operational records describing how the requirements of this paragraph were met shall be kept by the generator for a minimum of three years and be available for inspection by commission staff for review; and
- v. If the sewage sludge is generated from a mixture of sources, resulting from a person who prepares sewage sludge from more than one wastewater treatment facility, the resulting derived product shall meet one of the PSRP, and shall meet the certification, operation, and record keeping requirements of this paragraph.

<u>Alternative 3</u> - Sewage sludge shall be treated in an equivalent process that has been approved by the U.S. Environmental Protection Agency, so long as all of the following requirements are met by the generator of the sewage sludge.

i. Prior to use or disposal, all the sewage sludge must have been generated from a single location, except as provided in paragraph v. below;

- ii. Prior to any off-site transportation or on-site use or disposal of any sewage sludge generated at a wastewater treatment facility, the chief certified operator of the wastewater treatment facility or other responsible official who manages the processes to significantly reduce pathogens at the wastewater treatment facility for the permittee, shall certify that the sewage sludge underwent at least the minimum operational requirements necessary in order to meet one of the PSRP. The acceptable processes and the minimum operational and record keeping requirements shall be in accordance with established U.S. Environmental Protection Agency final guidance;
- iii. All certification records and operational records describing how the requirements of this paragraph were met shall be kept by the generator for a minimum of three years and be available for inspection by commission staff for review;
- iv. The Executive Director will accept from the U.S. Environmental Protection Agency a finding of equivalency to the defined PSRP; and
- v. If the sewage sludge is generated from a mixture of sources resulting from a person who prepares sewage sludge from more than one wastewater treatment facility, the resulting derived product shall meet one of the Processes to Significantly Reduce Pathogens, and shall meet the certification, operation, and record keeping requirements of this paragraph.

<u>In addition</u>, the following site restrictions must be met if Class B sludge is land applied:

- i. Food crops with harvested parts that touch the sewage sludge/soil mixture and are totally above the land surface shall not be harvested for 14 months after application of sewage sludge.
- ii. Food crops with harvested parts below the surface of the land shall not be harvested for 20 months after application of sewage sludge when the sewage sludge remains on the land surface for 4 months or longer prior to incorporation into the soil.
- iii. Food crops with harvested parts below the surface of the land shall not be harvested for 38 months after application of sewage sludge when the sewage sludge remains on the land surface for less than 4 months prior to incorporation into the soil.
- iv. Food crops, feed crops, and fiber crops shall not be harvested for 30 days after application of sewage sludge.
- v. Animals shall not be allowed to graze on the land for 30 days after application of sewage sludge.
- vi. Turf grown on land where sewage sludge is applied shall not be harvested for 1 year after application of the sewage sludge when the harvested turf is placed on either land with a high potential for public exposure or a lawn.
- vii. Public access to land with a high potential for public exposure shall be restricted for 1 year after application of sewage sludge.

- viii. Public access to land with a low potential for public exposure shall be restricted for 30 days after application of sewage sludge.
- ix. Land application of sludge shall be in accordance with the buffer zone requirements found in 30 TAC § 312.44.

4. Vector Attraction Reduction Requirements

All bulk sewage sludge that is applied to agricultural land, forest, a public contact site, or a reclamation site shall be treated by one of the following Alternatives 1 through 10 for vector attraction reduction.

- Alternative 1 The mass of volatile solids in the sewage sludge shall be reduced by a minimum of 38%.
- Alternative 2 If Alternative 1 cannot be met for an anaerobically digested sludge, demonstration can be made by digesting a portion of the previously digested sludge anaerobically in the laboratory in a bench-scale unit for 40 additional days at a temperature between 30° and 37° Celsius. Volatile solids must be reduced by less than 17% to demonstrate compliance.
- Alternative 3 If Alternative 1 cannot be met for an aerobically digested sludge, demonstration can be made by digesting a portion of the previously digested sludge with percent solids of two percent or less aerobically in the laboratory in a bench-scale unit for 30 additional days at 20° Celsius. Volatile solids must be reduced by less than 15% to demonstrate compliance.
- Alternative 4 The specific oxygen uptake rate (SOUR) for sewage sludge treated in an aerobic process shall be equal to or less than 1.5 milligrams of oxygen per hour per gram of total solids (dry weight basis) at a temperature of 20° Celsius.
- Alternative 5 Sewage sludge shall be treated in an aerobic process for 14 days or longer. During that time, the temperature of the sewage sludge shall be higher than 40° Celsius and the average temperature of the sewage sludge shall be higher than 45° Celsius.
- Alternative 6 The pH of sewage sludge shall be raised to 12 or higher by alkali addition and, without the addition of more alkali shall remain at 12 or higher for two hours and then remain at a pH of 11.5 or higher for an additional 22 hours at the time the sewage sludge is prepared for sale or given away in a bag or other container.
- Alternative 7 The percent solids of sewage sludge that does not contain unstabilized solids generated in a primary wastewater treatment process shall be equal to or greater than 75% based on the moisture content and total solids prior to mixing with other materials. Unstabilized solids are defined as organic materials in sewage sludge that have not been treated in either an aerobic or anaerobic treatment process.

Alternative 8 -

The percent solids of sewage sludge that contains unstabilized solids generated in a primary wastewater treatment process shall be equal to or greater than 90% based on the moisture content and total solids prior to mixing with other materials at the time the sludge is used. Unstabilized solids are defined as organic materials in sewage sludge that have not been treated in either an aerobic or anaerobic treatment process.

Alternative 9 -

- i. Sewage sludge shall be injected below the surface of the land.
- ii. No significant amount of the sewage sludge shall be present on the land surface within one hour after the sewage sludge is injected.
- iii. When sewage sludge that is injected below the surface of the land is Class A or Class AB with respect to pathogens, the sewage sludge shall be injected below the land surface within eight hours after being discharged from the pathogen treatment process.

Alternative 10-

- i. Sewage sludge applied to the land surface or placed on a surface disposal site shall be incorporated into the soil within six hours after application to or placement on the land.
- ii. When sewage sludge that is incorporated into the soil is Class A or Class AB with respect to pathogens, the sewage sludge shall be applied to or placed on the land within eight hours after being discharged from the pathogen treatment process.

C. Monitoring Requirements

Toxicity Characteristic Leaching Procedure (TCLP) Test
PCBs -

- once during the term of this permit

- once during the term of this permit

All metal constituents and fecal coliform or <u>Salmonella</u> sp. bacteria shall be monitored at the appropriate frequency shown below, pursuant to 30 TAC § 312.46(a)(1):

Amount of sewage sludge (*) metric tons per 365-day period	Monitoring Frequency
o to less than 290	Once/Year
290 to less than 1,500	Once/Quarter
1,500 to less than 15,000	Once/Two Months
15,000 or greater	Once/Month

(*) The amount of bulk sewage sludge applied to the land (dry wt. basis).

Representative samples of sewage sludge shall be collected and analyzed in accordance with the methods referenced in 30 TAC \S 312.7

SECTION II.

REQUIREMENTS SPECIFIC TO BULK SEWAGE SLUDGE FOR APPLICATION TO THE LAND MEETING CLASS A, CLASS AB or B PATHOGEN REDUCTION AND THE CUMULATIVE LOADING RATES IN TABLE 2, OR CLASS B PATHOGEN REDUCTION AND THE POLLUTANT CONCENTRATIONS IN TABLE 3

For those permittees meeting Class A, Class AB or B pathogen reduction requirements and that meet the cumulative loading rates in Table 2 below, or the Class B pathogen reduction requirements and contain concentrations of pollutants below listed in Table 3, the following conditions apply:

A. Pollutant Limits

Table 2

	Cumulative Pollutant Loading
	Rate
<u>Pollutant</u>	(pounds per acre)*
Arsenic	36
Cadmium	35
Chromium	2677
Copper	1339
Lead	268
Mercury	15
Molybdenum	Report Only
Nickel	375
Selenium	89
Zinc	2500

Table 3

	Monthly Average Concentration
<u>Pollutant</u>	(milligrams per kilogram)*
Arsenic	41
Cadmium	39
Chromium	1200
Copper	1500
Lead	300
Mercury	17
Molybdenum	Report Only
Nickel	420
Selenium	36
Zinc	2800
11 =	

*Dry weight basis

B. Pathogen Control

All bulk sewage sludge that is applied to agricultural land, forest, a public contact site, a reclamation site, shall be treated by either Class A, Class AB or Class B pathogen reduction requirements as defined above in Section I.B.3.

C. Management Practices

- 1. Bulk sewage sludge shall not be applied to agricultural land, forest, a public contact site, or a reclamation site that is flooded, frozen, or snow-covered so that the bulk sewage sludge enters a wetland or other waters in the State.
- 2. Bulk sewage sludge not meeting Class A requirements shall be land applied in a manner which complies with Applicability in accordance with 30 TAC §312.41 and the Management Requirements in accordance with 30 TAC § 312.44.
- 3. Bulk sewage sludge shall be applied at or below the agronomic rate of the cover crop.
- 4. An information sheet shall be provided to the person who receives bulk sewage sludge sold or given away. The information sheet shall contain the following information:
 - a. The name and address of the person who prepared the sewage sludge that is sold or given away in a bag or other container for application to the land.
 - b. A statement that application of the sewage sludge to the land is prohibited except in accordance with the instruction on the label or information sheet.
 - c. The annual whole sludge application rate for the sewage sludge application rate for the sewage sludge that does not cause any of the cumulative pollutant loading rates in Table 2 above to be exceeded, unless the pollutant concentrations in Table 3 found in Section II above are met.

D. Notification Requirements

- 1. If bulk sewage sludge is applied to land in a State other than Texas, written notice shall be provided prior to the initial land application to the permitting authority for the State in which the bulk sewage sludge is proposed to be applied. The notice shall include:
 - a. The location, by street address, and specific latitude and longitude, of each land application site.
 - b. The approximate time period bulk sewage sludge will be applied to the site.
 - c. The name, address, telephone number, and National Pollutant Discharge Elimination System permit number (if appropriate) for the person who will apply the bulk sewage sludge.
- 2. The permittee shall give 180 days prior notice to the Executive Director in care of the Wastewater Permitting Section (MC 148) of the Water Quality Division of any change planned in the sewage sludge disposal practice.

E. Record keeping Requirements

The sludge documents will be retained at the facility site and/or shall be readily available for review by a TCEQ representative. The person who prepares bulk sewage sludge or a sewage sludge material shall develop the following information and shall retain the information at

the facility site and/or shall be readily available for review by a TCEQ representative for a period of <u>five years</u>. If the permittee supplies the sludge to another person who land applies the sludge, the permittee shall notify the land applier of the requirements for record keeping found in 30 TAC § 312.47 for persons who land apply.

- The concentration (mg/kg) in the sludge of each pollutant listed in Table 3 above and the applicable pollutant concentration criteria (mg/kg), or the applicable cumulative pollutant loading rate and the applicable cumulative pollutant loading rate limit (lbs/ac) listed in Table 2 above.
- 2. A description of how the pathogen reduction requirements are met (including site restrictions for Class AB and Class B sludge, if applicable).
- 3. A description of how the vector attraction reduction requirements are met.
- 4. A description of how the management practices listed above in Section II.C are being met.
- 5. The following certification statement:
 - "I certify, under penalty of law, that the applicable pathogen requirements in 30 TAC § 312.82(a) or (b) and the vector attraction reduction requirements in 30 TAC § 312.83(b) have been met for each site on which bulk sewage sludge is applied. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate the information used to determine that the management practices have been met. I am aware that there are significant penalties for false certification including fine and imprisonment."
- 6. The recommended agronomic loading rate from the references listed in Section II.C.3. above, as well as the actual agronomic loading rate shall be retained. The person who applies bulk sewage sludge or a sewage sludge material shall develop the following information and shall retain the information at the facility site and/or shall be readily available for review by a TCEQ representative indefinitely. If the permittee supplies the sludge to another person who land applies the sludge, the permittee shall notify the land applier of the requirements for record keeping found in 30 TAC § 312.47 for persons who land apply:
 - a. A certification statement that all applicable requirements (specifically listed) have been met, and that the permittee understands that there are significant penalties for false certification including fine and imprisonment. See 30 TAC § 312.47(a)(4)(A)(ii) or 30 TAC § 312.47(a)(5)(A)(ii), as applicable, and to the permittee's specific sludge treatment activities.
 - b. The location, by street address, and specific latitude and longitude, of each site on which sludge is applied.
 - c. The number of acres in each site on which bulk sludge is applied.
 - d. The date and time sludge is applied to each site.

- The cumulative amount of each pollutant in pounds/acre listed in Table 2 applied to each site.
- f. The total amount of sludge applied to each site in dry tons.

The above records shall be maintained on-site on a monthly basis and shall be made available to the Texas Commission on Environmental Quality upon request.

F. Reporting Requirements

The permittee shall report annually to the TCEQ Regional Office (MC Region 5) and Water Quality Compliance Monitoring Team (MC 224) of the Enforcement Division, by September 30th of each year the following information:

- 1. Results of tests performed for pollutants found in either Table 2 or 3 as appropriate for the permittee's land application practices.
- 2. The frequency of monitoring listed in Section I.C. that applies to the permittee.
- 3. Toxicity Characteristic Leaching Procedure (TCLP) results.
- 4. Identity of hauler(s) and TCEQ transporter number.
- 5. PCB concentration in sludge in mg/kg.
- 6. Date(s) of disposal.
- 7. Owner of disposal site(s).
- 8. Texas Commission on Environmental Quality registration number, if applicable.
- 9. Amount of sludge disposal dry weight (lbs/acre) at each disposal site.
- 10. The concentration (mg/kg) in the sludge of each pollutant listed in Table 1 (defined as a monthly average) as well as the applicable pollutant concentration criteria (mg/kg) listed in Table 3 above, or the applicable pollutant loading rate limit (lbs/acre) listed in Table 2 above if it exceeds 90% of the limit.
- 11. Level of pathogen reduction achieved (Class A, Class AB or Class B).
- 12. Alternative used as listed in Section I.B.3.(a. or b.). Alternatives describe how the pathogen reduction requirements are met. If Class B sludge, include information on how site restrictions were met.
- 13. Vector attraction reduction alternative used as listed in Section I.B.4.
- 14. Annual sludge production in dry tons/year.
- 15. Amount of sludge land applied in dry tons/year.
- 16. The certification statement listed in either 30 TAC § 312.47(a)(4)(A)(ii) or 30 TAC § 312.47(a)(5)(A)(ii) as applicable to the permittee's sludge treatment activities, shall be attached to the annual reporting form.

- 17. When the amount of any pollutant applied to the land exceeds 90% of the cumulative pollutant loading rate for that pollutant, as described in Table 2, the permittee shall report the following information as an attachment to the annual reporting form.
 - a. The location, by street address, and specific latitude and longitude.
 - b. The number of acres in each site on which bulk sewage sludge is applied.
 - c. The date and time bulk sewage sludge is applied to each site.
 - d. The cumulative amount of each pollutant (i.e., pounds/acre) listed in Table 2 in the bulk sewage sludge applied to each site.
 - e. The amount of sewage sludge (i.e., dry tons) applied to each site.

The above records shall be maintained on a monthly basis and shall be made available to the Texas Commission on Environmental Quality upon request.

SECTION III. REQUIREMENTS APPLYING TO ALL SEWAGE SLUDGE DISPOSED IN A MUNICIPAL SOLID WASTE LANDFILL

- A. The permittee shall handle and dispose of sewage sludge in accordance with 30 TAC § 330 and all other applicable state and federal regulations to protect public health and the environment from any reasonably anticipated adverse effects due to any toxic pollutants that may be present. The permittee shall ensure that the sewage sludge meets the requirements in 30 TAC § 330 concerning the quality of the sludge disposed in a municipal solid waste landfill.
- B. If the permittee generates sewage sludge and supplies that sewage sludge to the owner or operator of a municipal solid waste landfill (MSWLF) for disposal, the permittee shall provide to the owner or operator of the MSWLF appropriate information needed to be in compliance with the provisions of this permit.
- C. The permittee shall give 180 days prior notice to the Executive Director in care of the Wastewater Permitting Section (MC 148) of the Water Quality Division of any change planned in the sewage sludge disposal practice.
- D. Sewage sludge shall be tested once during the term of this permit in accordance with the method specified in both 40 CFR Part 261, Appendix II and 40 CFR Part 268, Appendix I (Toxicity Characteristic Leaching Procedure) or other method, which receives the prior approval of the TCEQ for contaminants listed in Table 1 of 40 CFR § 261.24. Sewage sludge failing this test shall be managed according to RCRA standards for generators of hazardous waste, and the waste's disposition must be in accordance with all applicable requirements for hazardous waste processing, storage, or disposal.

Following failure of any TCLP test, the management or disposal of sewage sludge at a facility other than an authorized hazardous waste processing, storage, or disposal facility shall be prohibited until such time as the permittee can demonstrate the sewage sludge no longer exhibits the hazardous waste toxicity characteristics (as demonstrated by the results of the TCLP tests). A written report shall be provided to both the TCEQ Registration and Reporting Section (MC 129) of the Permitting and Remediation Support Division and the Regional Director (MC Region 5) of the appropriate TCEQ field office within 7 days after failing the TCLP Test.

The report shall contain test results, certification that unauthorized waste management has stopped and a summary of alternative disposal plans that comply with RCRA standards for the management of hazardous waste. The report shall be addressed to: Director, Registration, Review, and Reporting Division (MC 129), Texas Commission on Environmental Quality, P. O. Box 13087, Austin, Texas 78711-3087. In addition, the permittee shall prepare an annual report on the results of all sludge toxicity testing. This annual report shall be submitted to the TCEQ Regional Office (MC Region 5) and the Water Quality Compliance Monitoring Team (MC 224) of the Enforcement Division by September 30th of each year.

- E. Sewage sludge shall be tested as needed, in accordance with the requirements of 30 TAC \S 330.
- F. Record keeping Requirements

The permittee shall develop the following information and shall retain the information for five years.

- 1. The description (including procedures followed and the results) of all liquid Paint Filter Tests performed.
- 2. The description (including procedures followed and results) of all TCLP tests performed.

The above records shall be maintained on-site on a monthly basis and shall be made available to the Texas Commission on Environmental Quality upon request.

G. Reporting Requirements

The permittee shall report annually to the TCEQ Regional Office (MC Region 5) and Water Quality Compliance Monitoring Team (MC 224) of the Enforcement Division by September 30th of each year the following information:

- 1. Toxicity Characteristic Leaching Procedure (TCLP) results.
- 2. Annual sludge production in dry tons/year.
- 3. Amount of sludge disposed in a municipal solid waste landfill in dry tons/year.
- 4. Amount of sludge transported interstate in dry tons/year.
- 5. A certification that the sewage sludge meets the requirements of 30 TAC § 330 concerning the quality of the sludge disposed in a municipal solid waste landfill.
- 6. Identity of hauler(s) and transporter registration number.
- 7. Owner of disposal site(s).
- 8. Location of disposal site(s).
- 9. Date(s) of disposal.

The above records shall be maintained on-site on a monthly basis and shall be made available to the Texas Commission on Environmental Quality upon request.

SECTION IV. REQUIREMENTS APPLYING TO SLUDGE TRANSPORTED TO ANOTHER FACILITY FOR FURTHER PROCESSING

These provisions apply to sludge that is transported to another wastewater treatment facility or facility that further processes sludge. These provisions are intended to allow transport of sludge to facilities that have been authorized to accept sludge. These provisions do not limit the ability of the receiving facility to determine whether to accept the sludge, nor do they limit the ability of the receiving facility to request additional testing or documentation.

A. General Requirements

- 1. The permittee shall handle and dispose of sewage sludge in accordance with 30 TAC Chapter 312 and all other applicable state and federal regulations in a manner that protects public health and the environment from any reasonably anticipated adverse effects due to any toxic pollutants that may be present in the sludge.
- 2. Sludge may only be transported using a registered transporter or using an approved pipeline.

B. Record Keeping Requirements

- 1. For sludge transported by an approved pipeline, the permittee must maintain records of the following:
 - a. the amount of sludge transported;
 - b. the date of transport;
 - c. the name and TCEQ permit number of the receiving facility or facilities;
 - d. the location of the receiving facility or facilities;
 - e. the name and TCEQ permit number of the facility that generated the waste; and
 - f. copy of the written agreement between the permittee and the receiving facility to accept sludge.
- 2. For sludge transported by a registered transporter, the permittee must maintain records of the completed trip tickets in accordance with 30 TAC § 312.145(a)(1)-(7) and amount of sludge transported.
- 3. The above records shall be maintained on-site on a monthly basis and shall be made available to the TCEQ upon request. These records shall be retained for at least five years.

C. Reporting Requirements

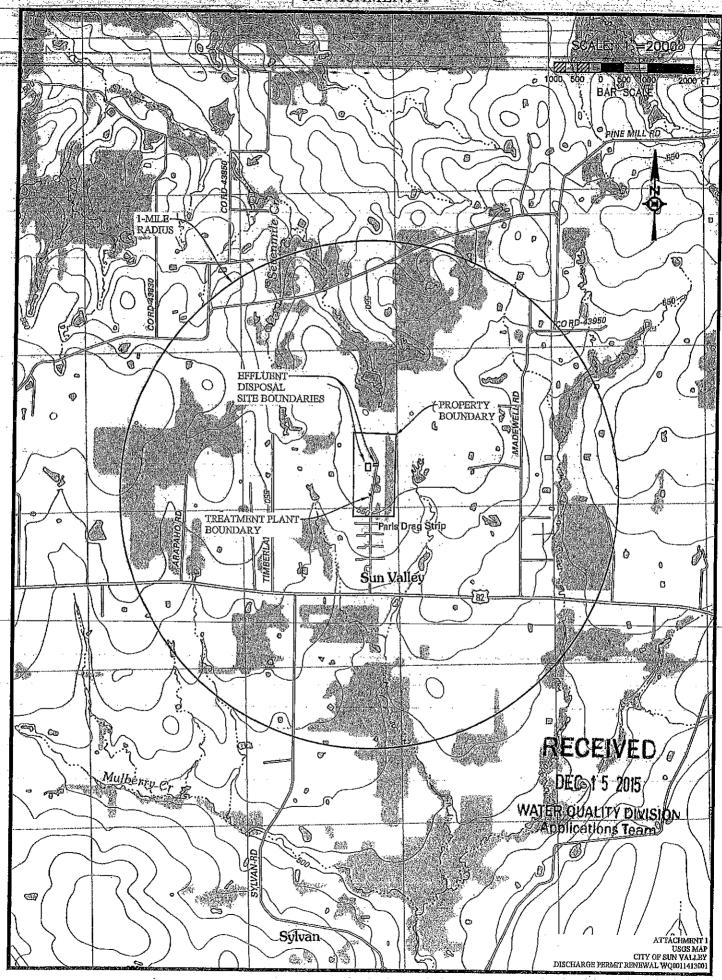
The permittee shall report the following information annually to the TCEQ Regional Office (MC Region 5) and Water Quality Compliance Monitoring Team (MC 224) of the Enforcement Division, by September 30th of each year:

- 1. the annual sludge production;
- 2. the amount of sludge transported;
- 3. the owner of each receiving facility;
- 4. the location of each receiving facility; and
- 5. the date(s) of disposal at each receiving facility.

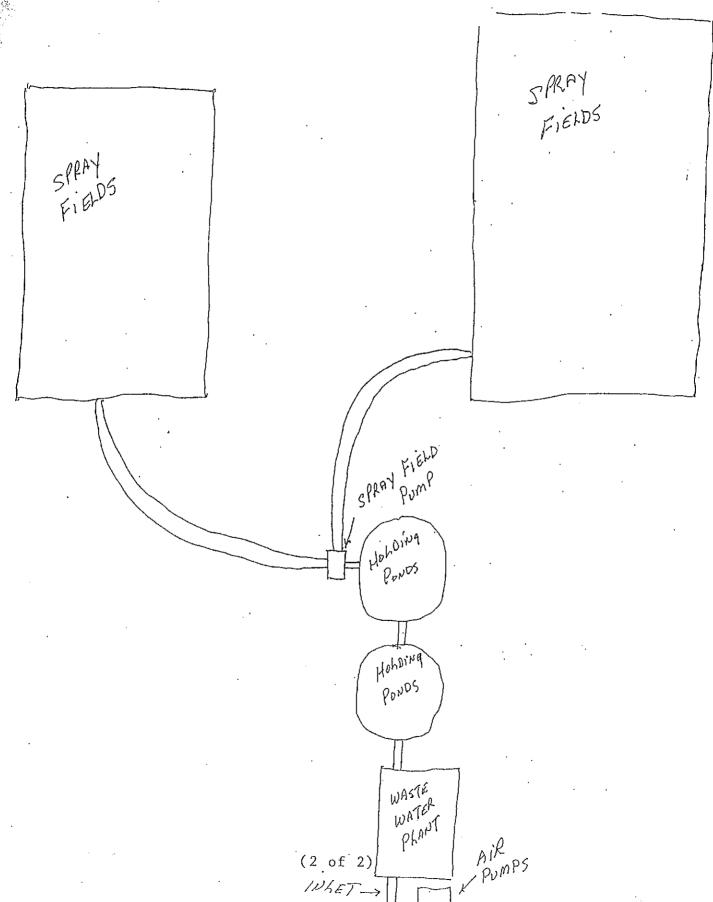
TCEQ Revision 6/2015

SPECIAL PROVISIONS:

- 1. This permit is granted subject to the policy of the Commission to encourage the development of area-wide waste collection, treatment, and disposal systems. The Commission reserves the right to amend this permit in accordance with applicable procedural requirements to require the system covered by this permit to be integrated into an area-wide system, if an area-wide system is developed; to require the delivery of the wastes authorized to be collected in, treated by, or discharged from the system, to an area-wide system; or to amend this permit in any other particular to effectuate the Commission's policy. Such amendments may be made when the changes required are advisable for water quality control purposes and are feasible on the basis of waste treatment technology, engineering, financial, and related considerations existing at the time the changes are required, exclusive of the loss of investment in or revenues from any then existing or proposed waste collection, treatment, or disposal system.
- 2. The permittee shall employ or contract with one or more licensed wastewater treatment facility operators or wastewater system operations companies holding a valid license or registration according to the requirements of 30 TAC § 30, Occupational Licenses and Registrations, and in particular 30 TAC § 30, Subchapter J, Wastewater Operators and Operations Companies.
 - This Category D facility must be operated by a chief operator or an operator holding a Category D license or higher. The facility must be operated a minimum of five days per week by the licensed chief operator or an operator holding the required level of license or higher. The licensed chief operator or operator holding the required level of license or higher must be available by telephone or pager seven days per week. Where shift operation of the wastewater treatment facility is necessary, each shift which does not have the on-site supervision of the licensed chief operator must be supervised by an operator in charge who is licensed not less than one level below the category for the facility.
- 3. The permittee shall maintain and operate the treatment facility in order to achieve optimum efficiency of treatment capability. This shall include required monitoring of effluent flow and quality as well as appropriate grounds and building maintenance.
- 4. Irrigation practices shall be designed and managed so as to prevent ponding of effluent or contamination of ground and surface waters and to prevent the occurrence of nuisance conditions in the area. Tailwater control facilities shall be provided as necessary to prevent the discharge of any effluent from the irrigated land.
- 5. Effluent shall not be applied for irrigation during rainfall events or when the ground is frozen or saturated.
- 6. The permittee will maintain native grasses on the disposal site. Application rates to the irrigated land shall not exceed 2.0 acre-feet per year per acre irrigated. The permittee is responsible for providing equipment to determine application rates and maintaining accurate records of the volume of effluent applied. These records shall be made available for review by the TCEQ and shall be maintained for at least three years.
- 7. Holdings ponds shall conform to the Texas Commission on Environmental Quality "Design Criteria for Sewerage Systems" requirements for stabilization ponds with regard to construction and levee design, and a minimum of 2 feet of freeboard shall be maintained.


8. The permittee shall obtain representative soil samples from the root zones of the land application area receiving wastewater. Composite sampling techniques shall be used. Each composite sample shall represent no more than 6 acres, with no less than 10 to 15 subsamples representing each composite sample. Subsamples shall be composited by like sampling depth and soil type for analysis and reporting. Soil types are soils that have like topsoil or plow layer textures. These soils shall be sampled individually from 0 to 6 inches, 6 inches to 18 inches, and 18 inches to 30 inches below ground level. The permittee shall sample soils in December to February of each year. Soil samples shall be analyzed within 30 days of sample collection.

The permittee shall provide annual soil analyses of the land application area according to the following table:


Parameter	Method	Minimum Analytical Level (MAL)	Reporting units
рН	2:1 (v/v) water to soil mixture		Reported to 0.1 pH units after calibration of pH meter
Electrical Conductivity	2:1 (v/v) water to soil mixture	0.01	dS/m (same as mmho/cm)
Nitrate-nitrogen Ammonium- nitrogen	From a 1 <u>N</u> KCl soil extract	1	mg/kg (dry weight basis)
Total Kjeldahl Nitrogen (TKN)	For determination of Organic plus Ammonium Nitrogen. Procedures that use Mercury (Hg) are not acceptable.	20	mg/kg (dry weight basis)
Total Nitrogen	= TKN + nitrate-nitrogen (same as, organic-nitrogen + ammonium-nitrogen + nitrate-nitrogen)		mg/kg (dry weight basis)
Plant-available: Phosphorus (P)	Mehlich III with inductively coupled plasma	1	mg/kg (dry weight basis)
Plant-available: Potassium (K)	May be determined in the same Mehlich III extract with inductively coupled plasma	5	mg/kg (dry weight basis)

The permittee shall provide a copy of this plan to the analytical laboratory prior to sample analysis. The permittee shall submit the results of the annual soil sample analyses with copies of the laboratory reports and a map depicting the areas that have received wastewater

- date of each year. If wastewater is not applied in a particular year, the permittee shall notify the same TCEQ offices and indicate that wastewater has not been applied on the approved land disposal sites during that year.
- 9. The permittee shall erect adequate signs stating that the irrigation water is from a non-potable water supply for any area where treated effluent is stored or where there exist hose bibs or faucets. Signs shall consist of a red slash superimposed over the international symbol for drinking water accompanied by the message "DO NOT DRINK THE WATER" in both English and Spanish. All piping transporting the effluent shall be clearly marked with these same signs.
- 10. Spray fixtures for the irrigation system shall be of such design that they cannot be operated by unauthorized personnel.
- 11. Irrigation with effluent shall be accomplished only when the area specified is not in use.
- 12. The permittee shall maintain a long term contract with the owner(s) of the land application site which is authorized for use in this permit, or own the land authorized for land application of treated effluent.
- 13. Permanent transmission lines shall be installed from the holding pond to each tract of land to be irrigated utilizing effluent from that pond.

TECHNICAL SUMMARY AND EXECUTIVE DIRECTOR'S PRELIMINARY DECISION

DESCRIPTION OF APPLICATION

Applicant: City of Sun Valley

TCEQ Permit No. WQ0011413001

Regulated Activity: Domestic Wastewater Permit

Type of Application: Renewal

Request: Renewal with no changes

Authority: Texas Water Code (TWC) § 26.027; 30 Texas Administrative

Code (TAC) Chapters 305, 309, 312, 319, and 30; and

Commission policies.

EXECUTIVE DIRECTOR RECOMMENDATION

The Executive Director has made a preliminary decision that this permit, if issued, meets all statutory and regulatory requirements. The draft permit includes an expiration date of **ten years from the date of issuance**, according to 30 TAC Section 305.127(1)(C)(ii)(III), Conditions to be Determined for Individual Permits.

REASON FOR PROJECT PROPOSED

City of Sun Valley has applied to the Texas Commission on Environmental Quality (TCEQ) for a renewal of Permit No. WQ0011413001 to authorize the disposal of treated domestic wastewater at a daily average flow not to exceed 0.00875 million gallons per day (MGD) via surface irrigation of 6 acres of non-public access pastureland. The facility includes two storage ponds with a total surface area of 0.81 acres and total capacity of 9.0 acre-feet for storage of treated effluent prior to evaporation and irrigation. The existing wastewater treatment facility will serve the City of Sun Valley.

PROJECT DESCRIPTION AND LOCATION

The City of Sun Valley Wastewater Treatment Plant consists of an activated sludge process plant using the extended aeration mode. Treatment units include bar screens, one aeration chamber, one clarifier, one chlorine contact chamber, and one sludge holding tank. The facility is in operation.

Sludge generated from the treatment facility is hauled by a registered transporter to City of Paris Wastewater Treatment Facility, Permit No. WQ0010479002 to be digested, dewatered, and then disposed of with the bulk of the sludge from the plant accepting the sludge. The draft permit also authorizes the disposal of sludge at a TCEQ-authorized land application site, co-disposal landfill, wastewater treatment facility, or facility that further processes sludge.

The wastewater treatment facility and disposal site are located approximately 2,500 ft north of the intersection for U.S. Highway 82 and Shady Grove Road, in the City of Sun Valley, Lamar

City of Sun Valley Permit No. WQ0011413001 Statement of Basis/Technical Summary and Executive Director's Preliminary Decision

County, Texas 75462.

The wastewater treatment facility and disposal site are located in the drainage basin of Sulphur/South Sulpher River in Segment No. 0303 of the Sulphur River Basin. No discharge of pollutants into water in the state is authorized by this permit.

SUMMARY OF EFFLUENT DATA

The following is a summary of the applicant's effluent monitoring data for the period June 2023 through June 2025. The average of the Single Grab value is computed by averaging of all Single Grab values for the reporting period for biochemical oxygen demand (BOD₅).

Parameter Average of Daily Average BOD₅, mg/l 28

DRAFT PERMIT CONDITIONS

The draft permit authorizes the disposal of treated domestic wastewater effluent at a daily average flow not to exceed 0.00875 MGD via surface irrigation of 6 acres of non-public access pastureland. The facility includes two storage ponds with a total surface area of 0.81 acres and total capacity of 9.0 acre-feet for storage prior to evaporation and irrigation. Application rates to the irrigated land shall not exceed 2.0 acre-feet per year per acre irrigated. The permittee will maintain native grasses on the disposal site.

The effluent limitation in the draft permit, based on a single grab, is 30 mg/l biochemical oxygen demand (BOD₅). The effluent shall contain a total chlorine residual of at least 1.0 mg/l after a detention time of at least 20 minutes based on peak flow.

The draft permit includes Sludge Provisions according to the requirements of 30 TAC Chapter 312, Sludge Use, Disposal, and Transportation. Sludge generated from the treatment facility is hauled by a registered transporter to City of Paris Wastewater Treatment Facility, Permit No. WQ0010479002 to be digested, dewatered, and then disposed of with the bulk of the sludge from the plant accepting the sludge. The draft permit also authorizes the disposal of sludge at a TCEQ-authorized land application site, co-disposal landfill, or wastewater treatment facility.

SUMMARY OF CHANGES FROM APPLICATION

None.

SUMMARY OF CHANGES FROM EXISTING PERMIT

The Sludge Provisions, Special Provisions, and Standard Provisions have been revised in the draft permit.

The draft permit includes all updates based on the 30 TAC 312 rule change effective April 23, 2020.

Special Provision Nos. 4 and 14 have been updated from the existing permit.

City of Sun Valley Permit No. WQ0011413001 Statement of Basis/Technical Summary and Executive Director's Preliminary Decision

Special Provision Nos. 8, 9, 10, 11, 12, 17, and 18 have been added to the draft permit.

BASIS FOR DRAFT PERMIT

The following items were considered in developing the draft permit:

- 1. Application received on May 15, 2025, and additional information received on May 26, 2025.
- 2. Existing TCEQ permit: Permit No. WQ0011413001 issued on June 21, 2016.
- 3. Interoffice Memorandum from the Water Quality Assessment Team, Water Quality Assessment & Standards Section, Water Quality Division.

PROCEDURES FOR FINAL DECISION

When an application is declared administratively complete, the Chief Clerk sends a letter to the applicant advising the applicant to publish the Notice of Receipt of Application and Intent to Obtain Permit in the newspaper. In addition, the Chief Clerk instructs the applicant to place a copy of the application in a public place for review and copying in the county where the facility is or will be located. This application will be in a public place throughout the comment period. The Chief Clerk also mails this notice to any interested persons and, if required, to landowners identified in the permit application. This notice informs the public about the application and provides that an interested person may file comments on the application or request a contested case hearing or a public meeting.

Once a draft permit is completed, it is sent, along with the Executive Director's preliminary decision, as contained in the technical summary or fact sheet, to the Chief Clerk. At that time, the Notice of Application and Preliminary Decision will be mailed to the same people and published in the same newspaper as the prior notice. This notice sets a deadline for making public comments. The applicant must place a copy of the Executive Director's preliminary decision and draft permit in the public place with the application.

Any interested person may request a public meeting on the application until the deadline for filing public comments. A public meeting is intended for the taking of public comment and is not a contested case proceeding.

After the public comment deadline, the Executive Director prepares a response to all significant public comments on the application or the draft permit raised during the public comment period. The Chief Clerk then mails the Executive Director's response to comments and final decision to people who have filed comments, requested a contested case hearing, or requested to be on the mailing list. This notice provides that if a person is not satisfied with the Executive Director's response and decision, they can request a contested case hearing or file a request to reconsider the Executive Director's decision within 30 days after the notice is mailed.

The Executive Director will issue the permit unless a written hearing request or request for reconsideration is filed within 30 days after the Executive Director's response to comments and final decision is mailed. If a hearing request or request for reconsideration is filed, the Executive Director will not issue the permit and will forward the application and request to the TCEQ Commissioners for their consideration at a scheduled Commission meeting. If a contested case

City of Sun Valley Permit No. WQ0011413001 Statement of Basis/Technical Summary and Executive Director's Preliminary Decision

hearing is held, it will be a legal proceeding similar to a civil trial in state district court.

If the Executive Director calls a public meeting or the Commission grants a contested case hearing as described above, the Commission will give notice of the date, time, and place of the meeting or hearing. If a hearing request or request for reconsideration is made, the Commission will consider all public comments in making its decision and shall either adopt the Executive Director's response to public comments or prepare its own response.

will consider all public comments in making its decision Director's response to public comments or prepare its ov	
For additional information about this application, contact	ct Garrison Layne at (512) 239-0849.
Garrison Layne Municipal Permits Team Wastewater Permitting Section (MC 148)	Date