

Administrative Package Cover Page

This file contains the following documents:

- 1. Summary of application (in plain language)
- 2. First Notice (NORI-Notice of Receipt of Application and Intent to Obtain a Permit)
- 3. Application Materials

LAIN LANGUAGE SUMMARY (PLS) For TLAP Permit Application – Renewal

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality (TCEQ) as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and is not a federally enforceable representation of the permit application.

Individual Care of Texas (CN601214281) operates the Individual Care of Texas Wastewater Treatment Plant (RN102287463), a privately-owned domestic wastewater treatment facility. The facility is an onsite treatment plant serving an assisted living center, located at 105 Wingo Way, near the city of Quinlan, in Hunt County, Texas, 75474.

This application is for a **renewal of a Texas Land Application Permit (TLAP)** to continue to treat and dispose of up to **10,000 gallons per day (0.010 MGD)** of treated domestic wastewater via subsurface irrigation. This permit does not authorize a discharge of pollutants into water in the state.

Discharges from the facility are expected to contain **carbonaceous biochemical oxygen demand (CBOD**₅), total suspended solids (TSS), ammonia nitrogen, nitrate nitrogen, total **Kjeldahl nitrogen (TKN), sulfate, chloride, total phosphorus, oil and grease, and E. coli**. Domestic wastewater is treated using a **biological fixed-film process**, including a **lift station**, **equalization basin, two trickling filters, two clarifiers, and two effluent filters**, followed by storage in a **1,500-gallon tank** before **subsurface land application**.

This treatment process and land disposal method are designed to minimize environmental impact and protect human health by ensuring that no wastewater is discharged to surface waters.

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

NOTICE OF RECEIPT OF APPLICATION AND INTENT TO OBTAIN WATER QUALITY PERMIT RENEWAL

PERMIT NO. WQ0014236001

APPLICATION. Individual Care of Texas, Inc., P.O. Box 3395, Abilene, Texas 79604, has applied to the Texas Commission on Environmental Quality (TCEQ) to renew Texas Land Application Permit (TLAP) No. WQ0014236001 to authorize the disposal of wastewater at a volume not to exceed a daily average flow of 10,000 gallons per day via: non-public access subsurface drip irrigation system with a minimum area of 204,732 square feet. The domestic wastewater treatment facility and disposal area are located at 1655 Private Road 2530, near the city of Quinlan, in Hunt County, Texas 75474. TCEQ received this application on May 27, 2025. The permit application will be available for viewing and copying at Quinlan City Hall, 105 West Main Street, Quinlan, in Hunt County, Texas, prior to the date this notice is published in the newspaper. The application, including any updates, and associated notices are available electronically at the following webpage:

<u>https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tlap-applications</u>. This link to an electronic map of the site or facility's general location is provided as a public courtesy and not part of the application or notice. For the exact location, refer to the application.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-96.166611,32.940325&level=18

ADDITIONAL NOTICE. TCEQ's Executive Director has determined the application is administratively complete and will conduct a technical review of the application. After technical review of the application is complete, the Executive Director may prepare a draft permit and will issue a preliminary decision on the application. **Notice of the Application and Preliminary Decision will be published and mailed to those who are on the county-wide mailing list and to those who are on the mailing list for this application. That notice will contain the deadline for submitting public comments.**

PUBLIC COMMENT / PUBLIC MEETING. You may submit public comments or request a public meeting on this application. The purpose of a public meeting is to provide the opportunity to submit comments or to ask questions about the application. TCEQ will hold a public meeting if the Executive Director determines that there is a significant degree of public interest in the application or if requested by a local legislator. A public meeting is not a contested case hearing.

OPPORTUNITY FOR A CONTESTED CASE HEARING. After the deadline for submitting public comments, the Executive Director will consider all timely comments and prepare a response to all relevant and material, or significant public comments. **Unless the application**

is directly referred for a contested case hearing, the response to comments, and the Executive Director's decision on the application, will be mailed to everyone who submitted public comments and to those persons who are on the mailing list for this application. If comments are received, the mailing will also provide instructions for requesting reconsideration of the Executive Director's decision and for requesting a contested case hearing. A contested case hearing is a legal proceeding similar to a civil trial in state district court.

TO REQUEST A CONTESTED CASE HEARING, YOU MUST INCLUDE THE FOLLOWING ITEMS IN YOUR REQUEST: your name, address, phone number; applicant's name and proposed permit number; the location and distance of your property/activities relative to the proposed facility; a specific description of how you would be adversely affected by the facility in a way not common to the general public; a list of all disputed issues of fact that you submit during the comment period and, the statement "[I/we] request a contested case hearing." If the request for contested case hearing is filed on behalf of a group or association, the request must designate the group's representative for receiving future correspondence; identify by name and physical address an individual member of the group who would be adversely affected by the proposed facility or activity; provide the information discussed above regarding the affected member's location and distance from the facility or activity; explain how and why the member would be affected; and explain how the interests the group seeks to protect are relevant to the group's purpose.

Following the close of all applicable comment and request periods, the Executive Director will forward the application and any requests for reconsideration or for a contested case hearing to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

The Commission may only grant a request for a contested case hearing on issues the requestor submitted in their timely comments that were not subsequently withdrawn. If a hearing is granted, the subject of a hearing will be limited to disputed issues of fact or mixed questions of fact and law relating to relevant and material water quality concerns submitted during the comment period.

TCEQ may act on an application to renew a permit for discharge of wastewater without providing an opportunity for a contested case hearing if certain criteria are met.

MAILING LIST. If you submit public comments, a request for a contested case hearing or a reconsideration of the Executive Director's decision, you will be added to the mailing list for this specific application to receive future public notices mailed by the Office of the Chief Clerk. In addition, you may request to be placed on: (1) the permanent mailing list for a specific applicant name and permit number; and/or (2) the mailing list for a specific county. If you wish to be placed on the permanent and/or the county mailing list, clearly specify which list(s) and send your request to TCEQ Office of the Chief Clerk at the address below.

INFORMATION AVAILABLE ONLINE. For details about the status of the application, visit the Commissioners' Integrated Database at <u>www.tceq.texas.gov/goto/cid</u>. Search the database using the permit number for this application, which is provided at the top of this notice.

AGENCY CONTACTS AND INFORMATION. All public comments and requests must be submitted either electronically at <u>https://www14.tceq.texas.gov/epic/eComment/</u>, or in writing to the Texas Commission on Environmental Quality, Office of the Chief Clerk, MC-105,

P.O. Box 13087, Austin, Texas 78711-3087. Please be aware that any contact information you provide, including your name, phone number, email address and physical address will become part of the agency's public record. For more information about this permit application or the permitting process, please call the TCEQ Public Education Program, Toll Free, at 1-800-687-4040 or visit their website at <u>www.tceq.texas.gov/goto/pep</u>. Si desea información en Español, puede llamar al 1-800-687-4040.

Further information may also be obtained from Individual Care of Texas, Inc. at the address stated above or by calling Ms. Natalia Rodriguez, ECG, LLC, at 832-776-5393.

Issuance Date: June 11, 2025

Municipal Wastewater Permit

Application

Facility

Individual Care of Texas

Wastewater Permit No:

WQ0014236001

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

DOMESTIC WASTEWATER PERMIT APPLICATION **CHECKLIST**

Complete and submit this checklist with the application.

APPLICANT NAME: Individual Care of Texas PERMIT NUMBER (If new, leave blank): WQ00WQ0014236-001 Indicate if each of the following items is included in your application.

	Y	Ν
Administrative Report 1.0	\boxtimes	
Administrative Report 1.1		\boxtimes
SPIF	\boxtimes	
Core Data Form	\boxtimes	
Summary of Application (PLS)	\boxtimes	\boxtimes
Public Involvement Plan Form		\boxtimes
Technical Report 1.0	\boxtimes	
Technical Report 1.1		\boxtimes
Worksheet 2.0		\boxtimes
Worksheet 2.1		\boxtimes
Worksheet 3.0	\boxtimes	
Worksheet 3.1		\boxtimes
Worksheet 3.2		\boxtimes
Worksheet 3.3		\boxtimes
Worksheet 4.0		\boxtimes
Worksheet 5.0		\boxtimes
Worksheet 6.0		\boxtimes
Worksheet 7.0		\boxtimes

	-	••
Original USGS Map	\boxtimes	
Affected Landowners Map		\boxtimes
Landowner Disk or Labels		\boxtimes
Buffer Zone Map		\boxtimes
Flow Diagram	\boxtimes	
Site Drawing	\boxtimes	
Original Photographs		\boxtimes
Design Calculations		\boxtimes
Solids Management Plan		\boxtimes
Water Balance		\boxtimes

Υ

Ν

For TCEQ Use Only

Segment Number	County
0	Region
Permit Number	

RETROMMENTAL CULL

DOMESTIC WASTEWATER PERMIT APPLICATION ADMINISTRATIVE REPORT 1.0

For any questions about this form, please contact the Applications Review and Processing Team at 512-239-4671.

Section 1. Application Fees (Instructions Page 26)

Indicate the amount submitted for the application fee (check only one).

Flow	New/Major Amendment	Renewal
<0.05 MGD	\$350.00 🗆	\$315.00
≥0.05 but <0.10 MGD	\$550.00 □	\$515.00
≥0.10 but <0.25 MGD	\$850.00 	\$815.00
≥0.25 but <0.50 MGD	\$1,250.00	\$1,215.00 🗆
≥0.50 but <1.0 MGD	\$1,650.00 □	\$1,615.00 🗆
≥1.0 MGD	\$2,050.00	\$2,015.00 🗆

Minor Amendment (for any flow) \$150.00 □

Payment Information:

Mailed	Check/Money Order Number: Click to enter text.	
	Check/Money Order Amount: Click to enter text.	
	Name Printed on Check: Click to enter text.	
EPAY	Voucher Number: Click to enter text.	
Copy of Payment Voucher enclosed? Yes 🗆		

Section 2. Type of Application (Instructions Page 26)

- **a.** Check the box next to the appropriate authorization type.
 - Publicly Owned Domestic Wastewater
 - Privately-Owned Domestic Wastewater
 - □ Conventional Water Treatment
- **b.** Check the box next to the appropriate facility status.
 - \boxtimes Active \square Inactive

- **c.** Check the box next to the appropriate permit type.
 - □ TPDES Permit
 - ⊠ TLAP
 - **TPDES Permit with TLAP component**
 - Subsurface Area Drip Dispersal System (SADDS)
- **d.** Check the box next to the appropriate application type
 - □ New

 \boxtimes

- □ Major Amendment <u>with</u> Renewal □ Minor Amendment <u>with</u> Renewal
- Major Amendment <u>without</u> Renewal

Minor Amendment without Renewal

e. For amendments or modifications, describe the proposed changes: Click to enter text.

f. For existing permits:

Permit Number: WQ00 <u>14236-001</u> EPA I.D. (TPDES only): TX Click to enter text.

Expiration Date: March 1, 2026

Section 3. Facility Owner (Applicant) and Co-Applicant Information (Instructions Page 26)

A. The owner of the facility must apply for the permit.

What is the Legal Name of the entity (applicant) applying for this permit?

Individual Care of Texas

(The legal name must be spelled exactly as filed with the Texas Secretary of State, County, or in the legal documents forming the entity.)

If the applicant is currently a customer with the TCEQ, what is the Customer Number (CN)? You may search for your CN on the TCEQ website at <u>http://www15.tceq.texas.gov/crpub/</u>

CN: <u>601214281</u>

What is the name and title of the person signing the application? The person must be an executive official meeting signatory requirements in *30 TAC § 305.44*.

Prefix: <u>Mrs.</u> Last Name, First Name: <u>Petersen, Sandra</u>

Title: <u>Owner</u> Credential: <u>N/A</u>

B. Co-applicant information. Complete this section only if another person or entity is required to apply as a co-permittee.

What is the Legal Name of the co-applicant applying for this permit?

<u>N/A</u>

(The legal name must be spelled exactly as filed with the TX SOS, with the County, or in the legal documents forming the entity.)

If the co-applicant is currently a customer with the TCEQ, what is the Customer Number (CN)? You may search for your CN on the TCEQ website at: <u>http://www15.tceq.texas.gov/crpub/</u>

CN: <u>N/A</u>

What is the name and title of the person signing the application? The person must be an executive official meeting signatory requirements in *30 TAC § 305.44*.

Prefix: <u>N/A</u>	Last Name, First Name: <u>N/A</u>
Title: <u>N/A</u>	Credential: <u>N/A</u>

Provide a brief description of the need for a co-permittee: N/A

C. Core Data Form

Complete the Core Data Form for each customer and include as an attachment. If the customer type selected on the Core Data Form is **Individual**, complete **Attachment 1** of Administrative Report 1.0. <u>Attachment 2</u>

Section 4. Application Contact Information (Instructions Page 27)

This is the person(s) TCEQ will contact if additional information is needed about this application. Provide a contact for administrative questions and technical questions.

A.	Prefix: <u>Miss.</u>	Last Name,	, First Name: <u>Rodrig</u>	uez, N	<u>latalia</u>
	Title: <u>Consultant</u>	Credential:	: <u>N/A</u>		
	Organization Name: ECG, LLC				
	Mailing Address: <u>4015 Cherrywood</u>	<u>l Rd</u> C	City, State, Zip Code	: <u>Aus</u>	<u>tin, TX 78722</u>
	Phone No.: <u>832-776-5393</u>	E-mail Add	dress: <u>natalia@envir</u> @	onme	ntalcgroup.com
	Check one or both: \square Adm	ninistrative	Contact	\boxtimes	Technical Contact
B.	Prefix: <u>Mrs.</u>	Last Name,	, First Name: <u>Peterse</u>	n, Sai	<u>ndra</u>
	Title: <u>Owner</u>	Credential:	: <u>N/A</u>		
	Organization Name: Individual Ca	<u>re of Texas</u>			
	Mailing Address: <u>PO Box 3395</u>	(City, State, Zip Code	: <u>Abil</u>	<u>ene, TX 79605</u>
	Phone No.: <u>214-356-7412</u>	E-mail Ado	dress: <u>sep4243@sbo</u>	glob	<u>al.net</u>
	Check one or both: 🛛 Adn	ninistrative	Contact		Technical Contact

Section 5. Permit Contact Information (Instructions Page 27)

Provide the names and contact information for two individuals that can be contacted throughout the permit term.

A.	Prefix: <u>Mrs.</u>	Last Name, First Name: <u>Petersen, Sandra</u>
	Title: <u>Owner</u>	Credential: <u>n/a</u>
	Organization Name: Individual Can	re of Texas
	Mailing Address: <u>PO BOX 3395</u>	City, State, Zip Code: <u>Abilene, TX 79605</u>
	Phone No.: <u>214-356-7412</u>	E-mail Address: <u>sep4243@sbcglobal.net</u>

B.	Prefix: <u>Mrs.</u>	Last Name, First Name: <u>Yarbrough, Sami</u>
	Title: <u>Admin & Owner</u>	Credential: Click to enter text.
	Organization Name: Individual Ca	re of Texas
	Mailing Address: <u>PO Box 3395</u>	City, State, Zip Code: <u>Abilene, TX 79605</u>
	Phone No.: <u>214-356-7412</u>	E-mail Address: Click to enter text.

Section 6. Billing Contact Information (Instructions Page 27)

The permittee is responsible for paying the annual fee. The annual fee will be assessed to permits *in effect on September 1 of each year*. The TCEQ will send a bill to the address provided in this section. The permittee is responsible for terminating the permit when it is no longer needed (using form TCEQ-20029).

Prefix: <u>Mrs.</u>	Last Name, First Name: <u>Petersen, Sandra</u>
Title: <u>Owner</u>	Credential: <u>N/A</u>
Organization Name: Individual Ca	are of Texas
Mailing Address: <u>PO Box 3395</u>	City, State, Zip Code: <u>Abilene, TX 79605</u>
Phone No.: <u>214-356-7412</u>	E-mail Address: <u>sep4243@sbcglobal.net</u>

Section 7. DMR/MER Contact Information (Instructions Page 27)

Provide the name and complete mailing address of the person delegated to receive and submit Discharge Monitoring Reports (DMR) (EPA 3320-1) or maintain Monthly Effluent Reports (MER).

Prefix: <u>Mr.</u>	Last Name, First Name: <u>Phillips, Rick</u>
Title: <u>Maintenance</u>	Credential: Click to enter text.
Organization Name: Individual Ca	re of Texas
Mailing Address: <u>PO Box 1810</u>	City, State, Zip Code: <u>Quinlan, TX 75474</u>
Phone No.: <u>903-214-7640</u>	E-mail Address: <u>rose@individuacareoftx.com</u>

Section 8. Public Notice Information (Instructions Page 27)

A. Individual Publishing the Notices

Prefix: <u>Miss.</u>	Last Name, First Name: <u>Rodriguez, Natalia</u>
Title: <u>Consultant</u>	Credential: <u>n/a</u>
Organization Name: ECG, LLC	
Mailing Address: 4515 Cherrywood	Ird City, State, Zip Code: <u>Austin, TX 78722</u>
Phone No.: <u>832-776-5393</u>	E-mail Address: <u>natalia@environmentalCgroup.com</u>

B. Method for Receiving Notice of Receipt and Intent to Obtain a Water Quality Permit Package

Indicate by a check mark the preferred method for receiving the first notice and instructions:

- ⊠ E-mail Address
- □ Fax
- □ Regular Mail

C. Contact permit to be listed in the Notices

Prefix: Miss.	Last Name, First Name: Rodriguez, Natalia
	Euser Hame, Thoe Hame <u>Roungaos, Hatana</u>

Title: <u>Consultant</u> Credential: <u>N/A</u>

Organization Name: <u>ECG,LLC</u>

Mailing Address: <u>4015 Cherrywood Rd</u> City, State, Zip Code: <u>Austin, TX 78722</u>

Phone No.: <u>832-776-5393</u> E-mail Address: <u>natalia@environmentalCgroup.com</u>

D. Public Viewing Information

If the facility or outfall is located in more than one county, a public viewing place for each county must be provided.

Public building name: City Hall

Location within the building: Quinlan

Physical Address of Building: 105 E Main St

City: <u>Quinlan</u>

Contact (Last Name, First Name): Click to enter text.

Phone No.: <u>903-356-3306</u> Ext.: Click to enter text.

E. Bilingual Notice Requirements

This information **is required** for **new, major amendment, minor amendment or minor modification, and renewal** applications.

County: Hunt

This section of the application is only used to determine if alternative language notices will be needed. Complete instructions on publishing the alternative language notices will be in your public notice package.

Please call the bilingual/ESL coordinator at the nearest elementary and middle schools and obtain the following information to determine whether an alternative language notices are required.

1. Is a bilingual education program required by the Texas Education Code at the elementary or middle school nearest to the facility or proposed facility?

🗆 Yes 🖾 No

If **no**, publication of an alternative language notice is not required; **skip to** Section 9 below.

2. Are the students who attend either the elementary school or the middle school enrolled in a bilingual education program at that school?

🗆 Yes 🖾 No

3. Do the students at these schools attend a bilingual education program at another location?

🗆 Yes 🖾 No

4. Would the school be required to provide a bilingual education program but the school has waived out of this requirement under 19 TAC §89.1205(g)?

🗆 Yes 🖾 No

5. If the answer is **yes** to **question 1, 2, 3, or 4**, public notices in an alternative language are required. Which language is required by the bilingual program? Click to enter text.

F. Summary of Application in Plain Language Template

Complete the F. Summary of Application in Plain Language Template (TCEQ Form 20972), also known as the plain language summary or PLS, and include as an attachment.

Attachment: Attachment 3

G. Public Involvement Plan Form

Complete the Public Involvement Plan Form (TCEQ Form 20960) for each application for a **new permit or major amendment to a permit** and include as an attachment.

Attachment: <u>N/A</u>

Section 9. Regulated Entity and Permitted Site Information (Instructions Page 29)

A. If the site is currently regulated by TCEQ, provide the Regulated Entity Number (RN) issued to this site. **RN** <u>102287463</u>

Search the TCEQ's Central Registry at <u>http://www15.tceq.texas.gov/crpub/</u> to determine if the site is currently regulated by TCEQ.

- **B.** Name of project or site (the name known by the community where located): Individual Care of Texas WWTP
- C. Owner of treatment facility: <u>Individual Care of Texas, Inc.</u>

Ownership of Facility: 🗆 Public 🛛 Private 🗆 Both 🗖 Federal

D. Owner of land where treatment facility is or will be:

Prefix: <u>N/A</u> Last Name, First Name: <u>N/A</u>

Title: N/ACredential: N/A

Organization Name: Individual Care of Texas Inc.

Mailing Address: <u>PO Box 3395</u> City, State, Zip Code: <u>Abilene, TX 79605</u>

Phone No.: (903) 356-4526 E-mail Address: info@individualcareoftx.com

If the landowner is not the same person as the facility owner or co-applicant, attach a lease agreement or deed recorded easement. See instructions.

Attachment: <u>n/a</u>

E. Owner of effluent disposal site:

Prefix: <u>n/a</u>	Last Name, First Name: <u>n/a</u>
Title: <u>n/a</u>	Credential: <u>n/a</u>
Organization Name: Individual C	are of Texas, Inc.
Mailing Address: <u>PO Box 3395</u>	City, State, Zip Code: <u>Abilene, TX 79605</u>
Phone No.: <u>(903) 356-4526</u>	E-mail Address: <u>info@individualcareoftx.com</u>
If the landowner is not the same agreement or deed recorded eas	e person as the facility owner or co-applicant, attach a lease sement. See instructions.

Attachment: <u>N/A</u>

F. Owner sewage sludge disposal site (if authorization is requested for sludge disposal on property owned or controlled by the applicant)::

Prefix: <u>N/A</u>	Last Name, First Name: <u>N/A</u>
Title: <u>N/A</u>	Credential: <u>N/A</u>
Organization Name: <u>N/A</u>	
Mailing Address: <u>N/A</u>	City, State, Zip Code: <u>N/A</u>
Phone No.: <u>N/A</u>	E-mail Address: <u>N/A</u>

If the landowner is not the same person as the facility owner or co-applicant, attach a lease agreement or deed recorded easement. See instructions.

Attachment: <u>N/A</u>

Section 10. TPDES Discharge Information (Instructions Page 31)

A. Is the wastewater treatment facility location in the existing permit accurate?

□ Yes □ No

If **no**, **or a new permit application**, please give an accurate description:

Click to enter text.

- **B.** Are the point(s) of discharge and the discharge route(s) in the existing permit correct?
 - 🗆 Yes 🗆 No

If **no**, **or a new or amendment permit application**, provide an accurate description of the point of discharge and the discharge route to the nearest classified segment as defined in 30 TAC Chapter 307:

Click to enter text.

City nearest the outfall(s): Click to enter text.

County in which the outfalls(s) is/are located: Click to enter text.

- **C.** Is or will the treated wastewater discharge to a city, county, or state highway right-of-way, or a flood control district drainage ditch?
 - □ Yes □ No

If **yes**, indicate by a check mark if:

Authorization granted □ Authorization pending

For **new and amendment** applications, provide copies of letters that show proof of contact and the approval letter upon receipt.

Attachment: Click to enter text.

D. For all applications involving an average daily discharge of 5 MGD or more, provide the names of all counties located within 100 statute miles downstream of the point(s) of discharge: Click to enter text.

Section 11. TLAP Disposal Information (Instructions Page 32)

A. For TLAPs, is the location of the effluent disposal site in the existing permit accurate?

 \boxtimes Yes No

If **no**, **or a new or amendment permit application**, provide an accurate description of the disposal site location:

Click to enter text.

- **B.** City nearest the disposal site: Ouinlan
- C. County in which the disposal site is located: Hunt
- **D.** For **TLAPs**, describe the routing of effluent from the treatment facility to the disposal site:

The secondary effluent flows by gravity to the effluent screen. Final Effluent is discharge into a subsurface field on intermittent basis.

E. For TLAPs, please identify the nearest watercourse to the disposal site to which rainfall runoff might flow if not contained: Basin of Lake Tawakoni - Segment 0507

Section 12. Miscellaneous Information (Instructions Page 32)

- A. Is the facility located on or does the treated effluent cross American Indian Land?
 - \boxtimes Yes No
- **B.** If the existing permit contains an onsite sludge disposal authorization, is the location of the sewage sludge disposal site in the existing permit accurate?

□ Yes

- □ No
 - ☑ Not Applicable

If No, or if a new onsite sludge disposal authorization is being requested in this permit application, provide an accurate location description of the sewage sludge disposal site.

Click to enter text.

- **C.** Did any person formerly employed by the TCEQ represent your company and get paid for service regarding this application?
 - 🗆 Yes 🖾 No

If yes, list each person formerly employed by the TCEQ who represented your company and was paid for service regarding the application: Click to enter text.

- **D.** Do you owe any fees to the TCEQ?
 - 🗆 Yes 🖾 No

If **yes**, provide the following information:

Account number: Click to enter text.

Amount past due: Click to enter text.

E. Do you owe any penalties to the TCEQ?

🗆 Yes 🖂 No

If **yes**, please provide the following information:

Enforcement order number: Click to enter text.

Amount past due: Click to enter text.

Section 13. Attachments (Instructions Page 33)

Indicate which attachments are included with the Administrative Report. Check all that apply:

□ Lease agreement or deed recorded easement, if the land where the treatment facility is located or the effluent disposal site are not owned by the applicant or co-applicant.

Original full-size USGS Topographic Map with the following information:

- Applicant's property boundary
- Treatment facility boundary
- Labeled point of discharge for each discharge point (TPDES only)
- Highlighted discharge route for each discharge point (TPDES only)
- Onsite sewage sludge disposal site (if applicable)
- Effluent disposal site boundaries (TLAP only)
- New and future construction (if applicable)
- 1 mile radius information
- 3 miles downstream information (TPDES only)
- All ponds.
- Attachment 1 for Individuals as co-applicants
- □ Other Attachments. Please specify: Click to enter text.

Section 14. Signature Page (Instructions Page 34)

If co-applicants are necessary, each entity must submit an original, separate signature page.

Permit Number: WQ0014236-001

Applicant: Individual Care of Texas, Inc.

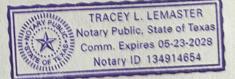
Certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

I further certify that I am authorized under 30 Texas Administrative Code § 305.44 to sign and submit this document, and can provide documentation in proof of such authorization upon request.

Signatory name (typed or printed): Sandra Petersen

Signatory title: Owner


Date: 5-1-2025 india Signature: (Use blue ink)

Subscribed and Sworn to before me by the said Spoppa Petersen							
on this	187	day of	Alcer	, 20_25			
My comm	nission expires on the_	23Rd	_day of May_	, 20 <u>28</u> .			

loader Votary Public

[SEAL]

Texas

Page 11 of 17

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

DOMESTIC WASTEWATER PERMIT APPLICATION TECHNICAL REPORT 1.0

For any questions about this form, please contact the Domestic Wastewater Permitting Team at 512-239-4671.

The following information is required for all renewal, new, and amendment applications.

Section 1. Permitted or Proposed Flows (Instructions Page 42)

A. Existing/Interim I Phase

Design Flow (MGD): <u>Click to enter text.</u>
2-Hr Peak Flow (MGD): <u>Click to enter text.</u>
Estimated construction start date: <u>Click to enter text.</u>
Estimated waste disposal start date: <u>Click to enter text.</u>

B. Interim II Phase

Design Flow (MGD):

2-Hr Peak Flow (MGD): <u>Click to enter text.</u>

Estimated construction start date: Click to enter text.

Estimated waste disposal start date: Click to enter text.

C. Final Phase

Design Flow (MGD): <u>0.010</u> 2-Hr Peak Flow (MGD): <u>0.015</u> Estimated construction start date: <u>06/01/2004</u> Estimated waste disposal start date: <u>06/01/2004</u>

D. Current Operating Phase

Provide the startup date of the facility: <u>Final</u>

Section 2. Treatment Process (Instructions Page 42)

A. Current Operating Phase

Provide a detailed description of the treatment process. **Include the type of treatment plant, mode of operation, and all treatment units.** Start with the plant's head works and

finish with the point of discharge. Include all sludge processing and drying units. **If more than one phase exists or is proposed, a description of** *each phase* **must be provided**.

It is a biological fixed film process. Treatment units include a lift station, equalization basin, 2 trickling filters (plastic media), 2 final clarifier + 2 effluent dual media filters. It includes a effluent storage tank with capacity of 1500 gal for storage of treated effluent prior to subsurface irrigation.

B. Treatment Units

In Table 1.0(1), provide the treatment unit type, the number of units, and dimensions (length, width, depth) **of each treatment unit, accounting for** *all* **phases of operation**.

Table 1.0(1) - Treatment Units

Treatment Unit Type	Number of Units	Dimensions (L x W x D)
Bioraptor Towers	1	24'6''x18'x8'5''
Computer control shed	1	10'x8'

C. Process Flow Diagram

Provide flow diagrams for the existing facilities and **each** proposed phase of construction. **Attachment**: <u>Attachment 5</u>

Section 3. Site Information and Drawing (Instructions Page 43)

Provide the TPDES discharge outfall latitude and longitude. Enter N/A if not applicable.

- Latitude: <u>N/A</u>
- Longitude: <u>N/A</u>

Provide the TLAP disposal site latitude and longitude. Enter N/A if not applicable.

- Latitude: <u>32°56'25.4"N</u>
- Longitude: <u>96°10'04.1"W</u>

Provide a site drawing for the facility that shows the following:

- The boundaries of the treatment facility;
- The boundaries of the area served by the treatment facility;
- If land disposal of effluent, the boundaries of the disposal site and all storage/holding ponds; and
- If sludge disposal is authorized in the permit, the boundaries of the land application or disposal site.

Attachment: <u>Attachment 6</u>

Individual Care of Texas is an assisted living facility

Collection System Information **for wastewater TPDES permits only**: Provide information for each **uniquely owned** collection system, existing and new, served by this facility, including satellite collection systems. **Please see the instructions for a detailed explanation and examples.**

Collection System Information

Collection System Name	Owner Name	Owner Type	Population Served
		Choose an item.	

Section 4. Unbuilt Phases (Instructions Page 44)

Is the application for a renewal of a permit that contains an unbuilt phase or phases?

🗆 Yes 🖾 No

If yes, does the existing permit contain a phase that has not been constructed **within five years** of being authorized by the TCEQ?

🗆 Yes 🗆 No

If yes, provide a detailed discussion regarding the continued need for the unbuilt phase. **Failure to provide sufficient justification may result in the Executive Director recommending denial of the unbuilt phase or phases**.

Click to enter text.		

Section 5. Closure Plans (Instructions Page 44)

Have any treatment units been taken out of service permanently, or will any units be taken out of service in the next five years?

If yes, was a closure plan submitted to the TCEQ?

🗆 Yes 🗆 No

If yes, provide a brief description of the closure and the date of plan approval.

Click to enter text.

Section 6. Permit Specific Requirements (Instructions Page 44)

For applicants with an existing permit, check the Other Requirements or Special Provisions of the permit.

A. Summary transmittal

Have plans and specifications been approved for the existing facilities and each proposed phase?

🖾 Yes 🗆 No

If yes, provide the date(s) of approval for each phase: <u>05/01/2004</u>

Provide information, including dates, on any actions taken to meet a *requirement or provision* pertaining to the submission of a summary transmittal letter. **Provide a copy of an approval letter from the TCEQ, if applicable**.

B. Buffer zones

Have the buffer zone requirements been met?

🖾 Yes 🗆 No

Provide information below, including dates, on any actions taken to meet the conditions of the buffer zone. If available, provide any new documentation relevant to maintaining the buffer zones.

Click to enter text.

C. Other actions required by the current permit

Does the *Other Requirements* or *Special Provisions* section in the existing permit require submission of any other information or other required actions? Examples include Notification of Completion, progress reports, soil monitoring data, etc.

🗆 Yes 🗵 No

If yes, provide information below on the status of any actions taken to meet the conditions of an *Other Requirement* or *Special Provision*.

Click to enter text.		

D. Grit and grease treatment

1. Acceptance of grit and grease waste

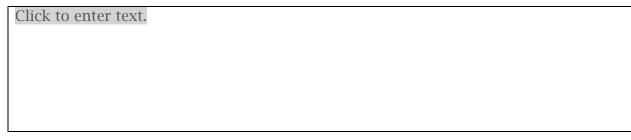
Does the facility have a grit and/or grease processing facility onsite that treats and decants or accepts transported loads of grit and grease waste that are discharged directly to the wastewater treatment plant prior to any treatment?

🗆 Yes 🖂 No

If No, stop here and continue with Subsection E. Stormwater Management.

2. Grit and grease processing

Describe below how the grit and grease waste is treated at the facility. In your description, include how and where the grit and grease is introduced to the treatment works and how it is separated or processed. Provide a flow diagram showing how grit and grease is processed at the facility.


Click to enter text.

3. Grit disposal

Does the facility have a Municipal Solid Waste (MSW) registration or permit for grit disposal?

🗆 Yes 🗆 No

If No, contact the TCEQ Municipal Solid Waste team at 512-239-2335. Note: A registration or permit is required for grit disposal. Grit shall not be combined with treatment plant sludge. See the instruction booklet for additional information on grit disposal requirements and restrictions.

4. Grease and decanted liquid disposal

Note: A registration or permit is required for grease disposal. Grease shall not be combined with treatment plant sludge. For more information, contact the TCEQ Municipal Solid Waste team at 512-239-2335.

Describe how the decant and grease are treated and disposed of after grit separation.

Click to enter text.

E. Stormwater management

1. Applicability

Does the facility have a design flow of 1.0 MGD or greater in any phase?

🗆 Yes 🗵 No

Does the facility have an approved pretreatment program, under 40 CFR Part 403?

🗆 Yes 🖂 No

If no to both of the above, then skip to Subsection F, Other Wastes Received.

2. MSGP coverage

Is the stormwater runoff from the WWTP and dedicated lands for sewage disposal currently permitted under the TPDES Multi-Sector General Permit (MSGP), TXR050000?

🗆 Yes 🗆 No

If yes, please provide MSGP Authorization Number and skip to Subsection F, Other Wastes Received:

TXR05 <u>Click to enter text.</u> or TXRNE <u>Click to enter text.</u>

If no, do you intend to seek coverage under TXR050000?

□ Yes □ No

3. Conditional exclusion

Alternatively, do you intend to apply for a conditional exclusion from permitting based TXR050000 (Multi Sector General Permit) Part II B.2 or TXR050000 (Multi Sector General Permit) Part V, Sector T 3(b)?

🗆 Yes 🗆 No

If yes, please explain below then proceed to Subsection F, Other Wastes Received:

Click to enter text.

4. Existing coverage in individual permit

Is your stormwater discharge currently permitted through this individual TPDES or TLAP permit?

🗆 Yes 🗆 No

If yes, provide a description of stormwater runoff management practices at the site that are authorized in the wastewater permit then skip to Subsection F, Other Wastes Received.

Click to enter text.

5. Zero stormwater discharge

Do you intend to have no discharge of stormwater via use of evaporation or other means?

□ Yes □ No

If yes, explain below then skip to Subsection F. Other Wastes Received.

Click to enter text.

Note: If there is a potential to discharge any stormwater to surface water in the state as the result of any storm event, then permit coverage is required under the MSGP or an individual discharge permit. This requirement applies to all areas of facilities with treatment plants or systems that treat, store, recycle, or reclaim domestic sewage, wastewater or sewage sludge (including dedicated lands for sewage sludge disposal located within the onsite property boundaries) that meet the applicability criteria of above. You have the option of obtaining coverage under the MSGP for direct discharges, (recommended), or obtaining coverage under this individual permit.

6. Request for coverage in individual permit

Are you requesting coverage of stormwater discharges associated with your treatment plant under this individual permit?

🗆 Yes 🗆 No

If yes, provide a description of stormwater runoff management practices at the site for which you are requesting authorization in this individual wastewater permit and describe whether you intend to comingle this discharge with your treated effluent or discharge it via a separate dedicated stormwater outfall. Please also indicate if you

intend to divert stormwater to the treatment plant headworks and indirectly discharge it to water in the state.

Click to enter text.

Note: Direct stormwater discharges to waters in the state authorized through this individual permit will require the development and implementation of a stormwater pollution prevention plan (SWPPP) and will be subject to additional monitoring and reporting requirements. Indirect discharges of stormwater via headworks recycling will require compliance with all individual permit requirements including 2-hour peak flow limitations. All stormwater discharge authorization requests will require additional information during the technical review of your application.

F. Discharges to the Lake Houston Watershed

Does the facility discharge in the Lake Houston watershed?

🗆 Yes 🖂 No

If yes, attach a Sewage Sludge Solids Management Plan. See Example 5 in the instructions. <u>Click to enter text.</u>

G. Other wastes received including sludge from other WWTPs and septic waste

1. Acceptance of sludge from other WWTPs

Does or will the facility accept sludge from other treatment plants at the facility site?

🗆 Yes 🖾 No

If yes, attach sewage sludge solids management plan. See Example 5 of instructions.

In addition, provide the date the plant started or is anticipated to start accepting sludge, an estimate of monthly sludge acceptance (gallons or millions of gallons), an

estimate of the BOD_5 concentration of the sludge, and the design BOD_5 concentration of the influent from the collection system. Also note if this information has or has not changed since the last permit action.

Click to enter text.

Note: Permits that accept sludge from other wastewater treatment plants may be required to have influent flow and organic loading monitoring.

2. Acceptance of septic waste

Is the facility accepting or will it accept septic waste?

🗆 Yes 🖾 No

If yes, does the facility have a Type V processing unit?

🗆 Yes 🗆 No

If yes, does the unit have a Municipal Solid Waste permit?

🗆 Yes 🗆 No

If yes to any of the above, provide the date the plant started or is anticipated to start accepting septic waste, an estimate of monthly septic waste acceptance (gallons or millions of gallons), an estimate of the BOD_5 concentration of the septic waste, and the

design BOD₅ concentration of the influent from the collection system. Also note if this information has or has not changed since the last permit action.

Click to enter text.

Note: Permits that accept sludge from other wastewater treatment plants may be required to have influent flow and organic loading monitoring.

3. Acceptance of other wastes (not including septic, grease, grit, or RCRA, CERCLA or as discharged by IUs listed in Worksheet 6)

Is or will the facility accept wastes that are not domestic in nature excluding the categories listed above?

□ Yes □ No

If yes, provide the date that the plant started accepting the waste, an estimate how much waste is accepted on a monthly basis (gallons or millions of gallons), a description of the entities generating the waste, and any distinguishing chemical or other physical characteristic of the waste. Also note if this information has or has not changed since the last permit action.

Click to enter text.

Section 7. Pollutant Analysis of Treated Effluent (Instructions Page 49)

Is the facility in operation?

🛛 Yes 🗆 No

If no, this section is not applicable. Proceed to Section 8.

If yes, provide effluent analysis data for the listed pollutants. *Wastewater treatment facilities* complete Table 1.0(2). *Water treatment facilities* discharging filter backwash water, complete Table 1.0(3). Provide copies of the laboratory results sheets. **These tables are not applicable for a minor amendment without renewal.** See the instructions for guidance.

Note: The sample date must be within 1 year of application submission.

Pollutant	Average Conc.	Max Conc.	No. of Samples	Sample Type	Sample Date/Time
CBOD ₅ , mg/l	19.6	19.6	1	Grab	04/15/2025 10:55
Total Suspended Solids, mg/l	16.2	16.2	1	Grab	04/15/2025 10:55
Ammonia Nitrogen, mg/l	5.27	5.27	1	Grab	04/15/2025 10:55
Nitrate Nitrogen, mg/l	1.62	1.62	1	Grab	04/15/2025 10:55
Total Kjeldahl Nitrogen, mg/l	29.1	29.1	1	Grab	04/15/2025 10:55
Sulfate, mg/l	103	103	1	Grab	04/15/2025 10:55
Chloride, mg/l	63.9	63.9	1	Grab	04/15/2025 10:55
Total Phosphorus, mg/l	4.96	4.96	1	Grab	04/15/2025 10:55
pH, standard units	7.5	7.5	1	Grab	04/15/2025 10:55
Dissolved Oxygen*, mg/l	1.9	1.9	1	Grab	04/15/2025 10:55
Chlorine Residual, mg/l	0.04	0.04	1	Grab	04/15/2025 10:55
<i>E.coli</i> (CFU/100ml) freshwater	> 2419.6	> 2419.6	1	Grab	04/15/2025 10:55
Entercocci (CFU/100ml) saltwater	N/A	N/A	N/A	N/A	N/A
Total Dissolved Solids, mg/l	470	470	1	Grab	04/15/2025 10:55
Electrical Conductivity, µmohs/cm, †	858	858	1	Grab	04/15/2025 10:55
Oil & Grease, mg/l	5.23	5.23	1	Grab	04/15/2025 10:55
Alkalinity (CaCO ₃)*, mg/l	211	211	1	Grab	04/15/2025 10:55

Table1.0(2) – Pollutant Analysis for Wastewater Treatment Facilities

*TPDES permits only †TLAP permits only

Table1.0(3) – Pollutant Analysis for Water Treatment Facilities

Pollutant	Average Conc.	Max Conc.	No. of Samples	Sample Type	Sample Date/Time
Total Suspended Solids, mg/l					
Total Dissolved Solids, mg/l					
pH, standard units					
Fluoride, mg/l					
Aluminum, mg/l					
Alkalinity (CaCO ₃), mg/l					

Section 8. Facility Operator (Instructions Page 49)

Facility Operator Name: <u>Rick Phillips</u>

Facility Operator's License Classification and Level: Click to enter text.

Facility Operator's License Number: Click to enter text.

Section 9. Sludge and Biosolids Management and Disposal (Instructions Page 50)

A. WWTP's Sewage Sludge or Biosolids Management Facility Type

Check all that apply. See instructions for guidance

- \Box Design flow>= 1 MGD
- \Box Serves >= 10,000 people
- Class I Sludge Management Facility (per 40 CFR § 503.9)
- □ Biosolids generator
- Biosolids end user land application (onsite)
- □ Biosolids end user surface disposal (onsite)
- □ Biosolids end user incinerator (onsite)

B. WWTP's Sewage Sludge or Biosolids Treatment Process

Check all that apply. See instructions for guidance.

- Aerobic Digestion
- Air Drying (or sludge drying beds)
- □ Lower Temperature Composting
- □ Lime Stabilization
- □ Higher Temperature Composting
- □ Heat Drying
- □ Thermophilic Aerobic Digestion
- Beta Ray Irradiation
- □ Gamma Ray Irradiation
- □ Pasteurization
- Preliminary Operation (e.g. grinding, de-gritting, blending)
- Thickening (e.g. gravity thickening, centrifugation, filter press, vacuum filter)
- □ Sludge Lagoon
- □ Temporary Storage (< 2 years)
- $\Box \quad \text{Long Term Storage (>= 2 years)}$
- □ Methane or Biogas Recovery

□ Other Treatment Process: <u>Click to enter text.</u>

C. Sewage Sludge or Biosolids Management

Provide information on the *intended* sewage sludge or biosolids management practice. Do not enter every management practice that you want authorized in the permit, as the permit will authorize all sewage sludge or biosolids management practices listed in the instructions. Rather indicate the management practice the facility plans to use.

Biosolids Management

Management Practice	Handler or Preparer Type	Bulk or Bag Container	Amount (dry metric tons)	Pathogen Reduction Options	Vector Attraction Reduction Option
Other	Off-site Third-Party Handler or Preparer	Bulk		Choose an item.	Choose an item.
Choose an item.	Choose an item.	Choose an item.		Choose an item.	Choose an item.
Choose an item.	Choose an item.	Choose an item.		Choose an item.	Choose an item.

If "Other" is selected for Management Practice, please explain (e.g. monofill or transport to another WWTP): <u>transport to another plant</u>

D. Disposal site

Disposal site name: Greenville Wastewater Reclamation Center

TCEQ permit or registration number: <u>22480</u>

County where disposal site is located: Hunt

E. Transportation method

Method of transportation (truck, train, pipe, other): <u>Truck</u>

Name of the hauler: McGee Septic Service

Hauler registration number: <u>22480</u>

Sludge is transported as a:

Liquid 🖂

semi-liquid \Box

semi-solid 🗆

solid \Box

Section 10. Permit Authorization for Sewage Sludge Disposal (Instructions Page 52)

A. Beneficial use authorization

Does the existing permit include authorization for land application of biosolids for beneficial use?

🗆 Yes 🖾 No

If yes, are you requesting to continue this authorization to land apply biosolids for beneficial use?

🗆 Yes 🗆 No

If yes, is the completed **Application for Permit for Beneficial Land Use of Sewage Sludge (TCEQ Form No. 10451)** attached to this permit application (see the instructions for details)?

🗆 Yes 🗆 No

B. Sludge processing authorization

Does the existing permit include authorization for any of the following sludge processing, storage or disposal options?

Sludge Composting	Yes	No
Marketing and Distribution of Biosolids	Yes	No
Sludge Surface Disposal or Sludge Monofill	Yes	No
Temporary storage in sludge lagoons	Yes	No

If yes to any of the above sludge options and the applicant is requesting to continue this authorization, is the completed **Domestic Wastewater Permit Application: Sewage Sludge Technical Report (TCEQ Form No. 10056)** attached to this permit application?

🗆 Yes 🗆 No

Section 11. Sewage Sludge Lagoons (Instructions Page 53)

Does this facility include sewage sludge lagoons?

🗆 Yes 🖾 No

If yes, complete the remainder of this section. If no, proceed to Section 12.

A. Location information

The following maps are required to be submitted as part of the application. For each map, provide the Attachment Number.

• Original General Highway (County) Map:

Attachment: Click to enter text.

• USDA Natural Resources Conservation Service Soil Map:

Attachment: Click to enter text.

• Federal Emergency Management Map:

Attachment: Click to enter text.

• Site map:

Attachment: Click to enter text.

Discuss in a description if any of the following exist within the lagoon area. Check all that apply.

- □ Overlap a designated 100-year frequency flood plain
- □ Soils with flooding classification

- Overlap an unstable area
- □ Wetlands
- □ Located less than 60 meters from a fault
- \Box None of the above

Attachment: Click to enter text.

If a portion of the lagoon(s) is located within the 100-year frequency flood plain, provide the protective measures to be utilized including type and size of protective structures:

Click	to	enter	text.

B. Temporary storage information

Provide the results for the pollutant screening of sludge lagoons. These results are in addition to pollutant results in *Section 7 of Technical Report 1.0.*

Nitrate Nitrogen, mg/kg: <u>Click to enter text.</u>

Total Kjeldahl Nitrogen, mg/kg: <u>Click to enter text.</u>

Total Nitrogen (=nitrate nitrogen + TKN), mg/kg: Click to enter text.

Phosphorus, mg/kg: <u>Click to enter text.</u>

Potassium, mg/kg: <u>Click to enter text.</u>

pH, standard units: <u>Click to enter text.</u>

Ammonia Nitrogen mg/kg: <u>Click to enter text.</u>

Arsenic: <u>Click to enter text.</u>

Cadmium: Click to enter text.

Chromium: Click to enter text.

Copper: <u>Click to enter text.</u>

Lead: Click to enter text.

Mercury: <u>Click to enter text.</u>

Molybdenum: Click to enter text.

Nickel: Click to enter text.

Selenium: Click to enter text.

Zinc: Click to enter text.

Total PCBs: <u>Click to enter text.</u>

Provide the following information:

Volume and frequency of sludge to the lagoon(s): <u>Click to enter text.</u>

Total dry tons stored in the lagoons(s) per 365-day period: Click to enter text.

Total dry tons stored in the lagoons(s) over the life of the unit: Click to enter text.

C. Liner information

Does the active/proposed sludge lagoon(s) have a liner with a maximum hydraulic conductivity of 1x10⁻⁷ cm/sec?

□ Yes □ No

If yes, describe the liner below. Please note that a liner is required.

Click to enter text.

D. Site development plan

Provide a detailed description of the methods used to deposit sludge in the lagoon(s):

Click to enter text.

Attach the following documents to the application.

• Plan view and cross-section of the sludge lagoon(s)

Attachment: Click to enter text.

- Copy of the closure plan Attachment: <u>Click to enter text.</u>
- Copy of deed recordation for the site **Attachment:** Click to enter text.
- Size of the sludge lagoon(s) in surface acres and capacity in cubic feet and gallons Attachment: <u>Click to enter text.</u>
- Description of the method of controlling infiltration of groundwater and surface water from entering the site

Attachment: Click to enter text.

• Procedures to prevent the occurrence of nuisance conditions Attachment: <u>Click to enter text.</u>

E. Groundwater monitoring

Is groundwater monitoring currently conducted at this site, or are any wells available for groundwater monitoring, or are groundwater monitoring data otherwise available for the sludge lagoon(s)?

□ Yes □ No

If groundwater monitoring data are available, provide a copy. Provide a profile of soil types encountered down to the groundwater table and the depth to the shallowest groundwater as a separate attachment.

Attachment: Click to enter text.

Section 12. Authorizations/Compliance/Enforcement (Instructions Page 54)

A. Additional authorizations

Does the permittee have additional authorizations for this facility, such as reuse authorization, sludge permit, etc?

🗆 Yes 🖂 No

If yes, provide the TCEQ authorization number and description of the authorization:

Click to enter text.

B. Permittee enforcement status

Is the permittee currently under enforcement for this facility?

🗆 Yes 🖾 No

Is the permittee required to meet an implementation schedule for compliance or enforcement?

🗆 Yes 🖾 No

If yes to either question, provide a brief summary of the enforcement, the implementation schedule, and the current status:

Click to enter text.

Section 13. RCRA/CERCLA Wastes (Instructions Page 55)

A. RCRA hazardous wastes

Has the facility received in the past three years, does it currently receive, or will it receive RCRA hazardous waste?

🗆 Yes 🖾 No

B. Remediation activity wastewater

Has the facility received in the past three years, does it currently receive, or will it receive CERCLA wastewater, RCRA remediation/corrective action wastewater or other remediation activity wastewater?

🗆 Yes 🖂 No

C. Details about wastes received

If yes to either Subsection A or B above, provide detailed information concerning these wastes with the application.

Attachment: Click to enter text.

Section 14. Laboratory Accreditation (Instructions Page 55)

All laboratory tests performed must meet the requirements of *30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification*, which includes the following general exemptions from National Environmental Laboratory Accreditation Program (NELAP) certification requirements:

- The laboratory is an in-house laboratory and is:
 - $\circ~$ periodically inspected by the TCEQ; or
 - \circ $\,$ located in another state and is accredited or inspected by that state; or
 - o performing work for another company with a unit located in the same site; or
 - performing pro bono work for a governmental agency or charitable organization.
- The laboratory is accredited under federal law.
- The data are needed for emergency-response activities, and a laboratory accredited under the Texas Laboratory Accreditation Program is not available.
- The laboratory supplies data for which the TCEQ does not offer accreditation.

The applicant should review 30 TAC Chapter 25 for specific requirements.

The following certification statement shall be signed and submitted with every application. See the Signature Page section in the Instructions, for a list of designated representatives who may sign the certification.

CERTIFICATION:

I certify that all laboratory tests submitted with this application meet the requirements of 30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and *Certification*.

Printed Name: Natalia Rodriguez

Title: <u>Consultant</u>

Signature: _____

Date: _____

DOMESTIC WASTEWATER PERMIT APPLICATION TECHNICAL REPORT 1.1

The following information is required for new and amendment major applications.

Section 1. Justification for Permit (Instructions Page 56)

A. Justification of permit need

Provide a detailed discussion regarding the need for any phase(s) not currently permitted. Failure to provide sufficient justification may result in the Executive Director recommending denial of the proposed phase(s) or permit.

Click to enter text.

B. Regionalization of facilities

For additional guidance, please review <u>TCEO's Regionalization Policy for Wastewater</u> <u>Treatment</u>¹.

Provide the following information concerning the potential for regionalization of domestic wastewater treatment facilities:

1. Municipally incorporated areas

If the applicant is a city, then Item 1 is not applicable. Proceed to Item 2 Utility CCN areas.

Is any portion of the proposed service area located in an incorporated city?

□ Yes □ No □ Not Applicable

If yes, within the city limits of: <u>Click to enter text.</u>

If yes, attach correspondence from the city.

Attachment: Click to enter text.

If consent to provide service is available from the city, attach a justification for the proposed facility and a cost analysis of expenditures that includes the cost of connecting to the city versus the cost of the proposed facility or expansion attached.

Attachment: Click to enter text.

2. Utility CCN areas

Is any portion of the proposed service area located inside another utility's CCN area?

🗆 Yes 🗆 No

¹ <u>https://www.tceq.texas.gov/permitting/wastewater/tceq-regionalization-for-wastewater</u>

If yes, attach a justification for the proposed facility and a cost analysis of expenditures that includes the cost of connecting to the CCN facilities versus the cost of the proposed facility or expansion.

Attachment: Click to enter text.

3. Nearby WWTPs or collection systems

Are there any domestic permitted wastewater treatment facilities or collection systems located within a three-mile radius of the proposed facility?

🗆 Yes 🗆 No

If yes, attach a list of these facilities and collection systems that includes each permittee's name and permit number, and an area map showing the location of these facilities and collection systems.

Attachment: Click to enter text.

If yes, attach proof of mailing a request for service to each facility and collection system, the letters requesting service, and correspondence from each facility and collection system.

Attachment: Click to enter text.

If the facility or collection system agrees to provide service, attach a justification for the proposed facility and a cost analysis of expenditures that includes the cost of connecting to the facility or collection system versus the cost of the proposed facility or expansion.

Attachment: Click to enter text.

Section 2. Proposed Organic Loading (Instructions Page 58)

Is this facility in operation?

□ Yes □ No

If no, proceed to Item B, Proposed Organic Loading.

If yes, provide organic loading information in Item A, Current Organic Loading

A. Current organic loading

Facility Design Flow (flow being requested in application): <u>Click to enter text.</u>

Average Influent Organic Strength or BOD₅ Concentration in mg/l: Click to enter text.

Average Influent Loading (lbs/day = total average flow X average BOD₅ conc. X 8.34): <u>Click</u> to enter text.

Provide the source of the average organic strength or BOD₅ concentration.

B. Proposed organic loading

This table must be completed if this application is for a facility that is not in operation or if this application is to request an increased flow that will impact organic loading.

Source	Total Average Flow (MGD)	Influent BOD5 Concentration (mg/l)
Municipality		
Subdivision		
Trailer park – transient		
Mobile home park		
School with cafeteria and showers		
School with cafeteria, no showers		
Recreational park, overnight use		
Recreational park, day use		
Office building or factory		
Motel		
Restaurant		
Hospital		
Nursing home		
Other		
TOTAL FLOW from all sources		
AVERAGE BOD ₅ from all sources		

Table 1.1(1) – Design Organic Loading

Section 3. Proposed Effluent Quality and Disinfection (Instructions Page 58)

A. Existing/Interim I Phase Design Effluent Quality

Biochemical Oxygen Demand (5-day), mg/l: Click to enter text.

Total Suspended Solids, mg/l: <u>Click to enter text.</u>

Ammonia Nitrogen, mg/l: <u>Click to enter text.</u>

Total Phosphorus, mg/l: <u>Click to enter text.</u>

Dissolved Oxygen, mg/l: Click to enter text.

Other: Click to enter text.

B. Interim II Phase Design Effluent Quality

Biochemical Oxygen Demand (5-day), mg/l: <u>Click to enter text.</u> Total Suspended Solids, mg/l: <u>Click to enter text.</u> Ammonia Nitrogen, mg/l: <u>Click to enter text.</u> Total Phosphorus, mg/l: <u>Click to enter text.</u> Dissolved Oxygen, mg/l: <u>Click to enter text.</u> Other: <u>Click to enter text.</u>

C. Final Phase Design Effluent Quality

Biochemical Oxygen Demand (5-day), mg/l: Click to enter text.

Total Suspended Solids, mg/l: Click to enter text.

Ammonia Nitrogen, mg/l: <u>Click to enter text.</u>

Total Phosphorus, mg/l: Click to enter text.

Dissolved Oxygen, mg/l: <u>Click to enter text.</u>

Other: Click to enter text.

D. Disinfection Method

Identify the proposed method of disinfection.

□ Chlorine: <u>Click to enter text.</u> mg/l after <u>Click to enter text.</u> minutes detention time at peak flow

Dechlorination process: <u>Click to enter text.</u>

- □ Ultraviolet Light: <u>Click to enter text.</u> seconds contact time at peak flow
- □ Other: <u>Click to enter text.</u>

Section 4. Design Calculations (Instructions Page 58)

Attach design calculations and plant features for each proposed phase. Example 4 of the instructions includes sample design calculations and plant features.

Attachment: Click to enter text.

Section 5. Facility Site (Instructions Page 59)

A. 100-year floodplain

Will the proposed facilities be located <u>above the 100-year frequency flood level?</u>

🗆 Yes 🗆 No

If no, describe measures used to protect the facility during a flood event. Include a site map showing the location of the treatment plant within the 100-year frequency flood level. If applicable, provide the size and types of protective structures.

Provide the source(s) used to determine 100-year frequency flood plain.

Click to enter text.

For a new or expansion of a facility, will a wetland or part of a wetland be filled?

🗆 Yes 🗆 No

If yes, has the applicant applied for a US Corps of Engineers 404 Dredge and Fill Permit?

🗆 Yes 🗆 No

If yes, provide the permit number: Click to enter text.

If no, provide the approximate date you anticipate submitting your application to the Corps: <u>Click to enter text.</u>

B. Wind rose

Attach a wind rose: <u>Click to enter text.</u>

Section 6. Permit Authorization for Sewage Sludge Disposal (Instructions Page 59)

A. Beneficial use authorization

Are you requesting to include authorization to land apply sewage sludge for beneficial use on property located adjacent to the wastewater treatment facility under the wastewater permit?

🗆 Yes 🗆 No

If yes, attach the completed Application for Permit for Beneficial Land Use of Sewage Sludge (TCEQ Form No. 10451): <u>Click to enter text.</u>

B. Sludge processing authorization

Identify the sludge processing, storage or disposal options that will be conducted at the wastewater treatment facility:

- □ Sludge Composting
- □ Marketing and Distribution of sludge
- □ Sludge Surface Disposal or Sludge Monofill

If any of the above, sludge options are selected, attach the completed **Domestic Wastewater Permit Application: Sewage Sludge Technical Report (TCEQ Form No. 10056**): <u>Click to enter text.</u>

Section 7. Sewage Sludge Solids Management Plan (Instructions Page 60)

Attach a solids management plan to the application.

Attachment: Click to enter text.

The sewage sludge solids management plan must contain the following information:

• Treatment units and processes dimensions and capacities

- Solids generated at 100, 75, 50, and 25 percent of design flow
- Mixed liquor suspended solids operating range at design and projected actual flow
- Quantity of solids to be removed and a schedule for solids removal
- Identification and ownership of the ultimate sludge disposal site
- For facultative lagoons, design life calculations, monitoring well locations and depths, and the ultimate disposal method for the sludge from the facultative lagoon

An example of a sewage sludge solids management plan has been included as Example 5 of the instructions.

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 2.0: RECEIVING WATERS

The following information is required for all TPDES permit applications.

Section 1. Domestic Drinking Water Supply (Instructions Page 63)

Is there a surface water intake for domestic drinking water supply located within 5 miles downstream from the point or proposed point of discharge?

□ Yes □ No

If **no**, proceed it Section 2. **If yes**, provide the following:

Owner of the drinking water supply: <u>Click to enter text.</u>

Distance and direction to the intake: <u>Click to enter text.</u>

Attach a USGS map that identifies the location of the intake.

Attachment: Click to enter text.

Section 2. Discharge into Tidally Affected Waters (Instructions Page 63)

Does the facility discharge into tidally affected waters?

□ Yes □ No

If **no**, proceed to Section 3. **If yes**, complete the remainder of this section. If no, proceed to Section 3.

A. Receiving water outfall

Width of the receiving water at the outfall, in feet: Click to enter text.

B. Oyster waters

Are there oyster waters in the vicinity of the discharge?

🗆 Yes 🗆 No

If yes, provide the distance and direction from outfall(s).

Click to enter text.

C. Sea grasses

Are there any sea grasses within the vicinity of the point of discharge?

🗆 Yes 🗆 No

If yes, provide the distance and direction from the outfall(s).

Section 3. Classified Segments (Instructions Page 63)

Is the discharge directly into (or within 300 feet of) a classified segment?

🗆 Yes 🗆 No

If yes, this Worksheet is complete.

If no, complete Sections 4 and 5 of this Worksheet.

Section 4. Description of Immediate Receiving Waters (Instructions Page 63)

Name of the immediate receiving waters: <u>Click to enter text.</u>

A. Receiving water type

Identify the appropriate description of the receiving waters.

- □ Stream
- □ Freshwater Swamp or Marsh
- □ Lake or Pond

Surface area, in acres: <u>Click to enter text.</u>

Average depth of the entire water body, in feet: Click to enter text.

Average depth of water body within a 500-foot radius of discharge point, in feet: <u>Click to enter text.</u>

- □ Man-made Channel or Ditch
- Open Bay
- □ Tidal Stream, Bayou, or Marsh
- □ Other, specify: <u>Click to enter text.</u>

B. Flow characteristics

If a stream, man-made channel or ditch was checked above, provide the following. For existing discharges, check one of the following that best characterizes the area *upstream* of the discharge. For new discharges, characterize the area *downstream* of the discharge (check one).

□ Intermittent - dry for at least one week during most years

□ Intermittent with Perennial Pools - enduring pools with sufficient habitat to maintain significant aquatic life uses

□ Perennial - normally flowing

Check the method used to characterize the area upstream (or downstream for new dischargers).

- $\Box \quad USGS flow records$
- □ Historical observation by adjacent landowners
- □ Personal observation
- □ Other, specify: <u>Click to enter text.</u>

C. Downstream perennial confluences

List the names of all perennial streams that join the receiving water within three miles downstream of the discharge point.

Click to enter text.

D. Downstream characteristics

Do the receiving water characteristics change within three miles downstream of the discharge (e.g., natural or man-made dams, ponds, reservoirs, etc.)?

🗆 Yes 🗆 No

If yes, discuss how.

Click to enter text.

E. Normal dry weather characteristics

Provide general observations of the water body during normal dry weather conditions.

Click to enter text.

Date and time of observation: Click to enter text.

Was the water body influenced by stormwater runoff during observations?

🗆 Yes 🗆 No

Section 5. General Characteristics of the Waterbody (Instructions Page 65)

A. Upstream influences

Is the immediate receiving water upstream of the discharge or proposed discharge site influenced by any of the following? Check all that apply.

- □ Oil field activities □ Urban runoff
- Upstream discharges
 Agricultural runoff
 Septic tanks
 Other(s), specify: <u>Click to enter text.</u>

B. Waterbody uses

Observed or evidences of the following uses. Check all that apply.

- Livestock watering
- □ Irrigation withdrawal
- Fishing

□ Domestic water supply

- □ Contact recreation
- Non-contact recreation
- □ Navigation
- Industrial water supply

C. Waterbody aesthetics

Check one of the following that best describes the aesthetics of the receiving water and the surrounding area.

- Wilderness: outstanding natural beauty; usually wooded or unpastured area; water clarity exceptional
- Natural Area: trees and/or native vegetation; some development evident (from fields, pastures, dwellings); water clarity discolored
- Common Setting: not offensive; developed but uncluttered; water may be colored or turbid
- Offensive: stream does not enhance aesthetics; cluttered; highly developed; dumping areas; water discolored

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 2.1: STREAM PHYSICAL CHARACTERISTICS

Required for new applications, major facilities, and applications adding an outfall.

Worksheet 2.1 is not required for discharges to intermittent streams or discharges directly to (or within 300 feet of) a classified segment.

Section 1. General Information (Instructions Page 65)

Date of study: <u>Click to enter text.</u> Time of study: <u>Click to enter text.</u>

Stream name: <u>Click to enter text.</u>

Location: <u>Click to enter text.</u>

Type of stream upstream of existing discharge or downstream of proposed discharge (check one).

□ Perennial □ Intermittent with perennial pools

Section 2. Data Collection (Instructions Page 65)

Number of stream bends that are well defined: Click to enter text.

Number of stream bends that are moderately defined: Click to enter text.

Number of stream bends that are poorly defined: Click to enter text.

Number of riffles: <u>Click to enter text.</u>

Evidence of flow fluctuations (check one):

Indicate the observed stream uses and if there is evidence of flow fluctuations or channel obstruction/modification.

Stream transects

In the table below, provide the following information for each transect downstream of the existing or proposed discharges. Use a separate row for each transect.

Stream type at transect	Transect location	Water surface	Stream depths (ft) at 4 to 10 points along each
Select riffle, run, glide, or pool. See Instructions, Definitions section.		width (ft)	transect from the channel bed to the water surface. Separate the measurements with commas.
Choose an item.			

 Table 2.1(1) - Stream Transect Records

Section 3. Summarize Measurements (Instructions Page 65)

Streambed slope of entire reach, from USGS map in feet/feet: Click to enter text.

Approximate drainage area above the most downstream transect (from USGS map or county highway map, in square miles): <u>Click to enter text.</u>

Length of stream evaluated, in feet: Click to enter text.

Number of lateral transects made: <u>Click to enter text.</u>

Average stream width, in feet: <u>Click to enter text.</u>

Average stream depth, in feet: <u>Click to enter text</u>.

Average stream velocity, in feet/second: Click to enter text.

Instantaneous stream flow, in cubic feet/second: Click to enter text.

Indicate flow measurement method (type of meter, floating chip timed over a fixed distance, etc.): <u>Click to enter text.</u>

Size of pools (large, small, moderate, none): <u>Click to enter text.</u>

Maximum pool depth, in feet: Click to enter text.

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 3.0: LAND DISPOSAL OF EFFLUENT

The following is required for renewal, new, and amendment permit applications.

Section 1. Type of Disposal System (Instructions Page 67)

Identify the method of land disposal:

	Surface application	\boxtimes	2
--	---------------------	-------------	---

□ Irrigation

Evaporation

- Subsurface application
- □ Subsurface soils absorption

Subsurface area drip dispersal system

- \Box Drip irrigation system \Box
 - Evapotranspiration beds
- □ Other (describe in detail): <u>Click to enter text.</u>

NOTE: All applicants without authorization or proposing new/amended subsurface disposal MUST complete and submit Worksheet 7.0.

For existing authorizations, provide Registration Number: Click to enter text.

Section 2. Land Application Site(s) (Instructions Page 67)

In table 3.0(1), provide the requested information for the land application sites. Include the agricultural or cover crop type (wheat, cotton, alfalfa, bermuda grass, native grasses, etc.), land use (golf course, hayland, pastureland, park, row crop, etc.), irrigation area, amount of effluent applied, and whether or not the public has access to the area. Specify the amount of land area and the amount of effluent that will be allotted to each agricultural or cover crop, if more than one crop will be used.

Table 3.0(1) – Land Application Site Crops

Crop Type & Land Use	Irrigation Area (acres)	Effluent Application (GPD)	Public Access? Y/N
Bermuda Grass	4.7	10,000	N

Section 3. Storage and Evaporation Lagoons/Ponds (Instructions Page 67)

Table 3.0(2) – Storage and Evaporation Ponds

Pond Number	Surface Area (acres)	Storage Volume (acre-feet)	Dimensions	Liner Type
Storage Tank 1		6,000 gal		Concrete

Attach a copy of a liner certification that was prepared, signed, and sealed by a Texas licensed professional engineer for each pond.

Attachment: Click to enter text.

Section 4. Flood and Runoff Protection (Instructions Page 67)

Is the land application site <u>within</u> the 100-year frequency flood level?

🗆 Yes 🖾 No

If yes, describe how the site will be protected from inundation.

Click to enter text.

Provide the source used to determine the 100-year frequency flood level:

Click to enter text.

Provide a description of tailwater controls and rainfall run-on controls used for the land application site.

Section 5. Annual Cropping Plan (Instructions Page 67)

Attach an Annual Cropping Plan which includes a discussion of each of the following items. If not applicable, provide a detailed explanation indicating why. **Attachment**: <u>Attachment 7</u>

- Soils map with crops
- Cool and warm season plant species
- Crop yield goals
- Crop growing season
- Crop nutrient requirements
- Additional fertilizer requirements
- Minimum/maximum harvest height (for grass crops)
- Supplemental watering requirements
- Crop salt tolerances
- Harvesting method/number of harvests
- Justification for not removing existing vegetation to be irrigated

Section 6. Well and Map Information (Instructions Page 68)

Attach a USGS map with the following information shown and labeled. If not applicable, provide a detailed explanation indicating why. **Attachment**: <u>Attachment 8</u>

- The boundaries of the land application site(s)
- Waste disposal or treatment facility site(s)
- On-site buildings
- Buffer zones
- Effluent storage and tailwater control facilities
- All water wells within 1-mile radius of the disposal site or property boundaries
- All springs and seeps onsite and within 500 feet of the property boundaries
- All surface waters in the state onsite and within 500 feet of the property boundaries
- All faults and sinkholes onsite and within 500 feet of the property

List and cross reference all water wells located within a half-mile radius of the disposal site or property boundaries shown on the USGS map in the following table. Attach additional pages as necessary to include all of the wells.

Well ID	Well Use	Producing? Y/N	Open, cased, capped, or plugged?	Proposed Best Management Practice
			Choose an item.	

Well ID	Well Use	Producing? Y/N	Open, cased, capped, or plugged?	Proposed Best Management Practice
			Choose an item.	
			Choose an item.	
			Choose an item.	
			Choose an item.	

If water quality data or well log information is available please include the information in an attachment listed by Well ID.

Attachment: <u>Attachment 9</u>

Section 7. Groundwater Quality (Instructions Page 68)

Attach a Groundwater Quality Technical Report which assesses the impact of the wastewater disposal system on groundwater. This report shall include an evaluation of the water wells (including the information in the well table provided in Item 6. above), the wastewater application rate, and pond liners. Indicate by a check mark that this report is provided.

Attachment: Attachment 10

Are groundwater monitoring wells available onsite? \Box Yes \boxtimes No

Do you plan to in	nstall	ground	water	monitoring	wells or	lysimeters	around	the land
application site?		Yes	\boxtimes	No				

If yes, provide the proposed location of the monitoring wells or lysimeters on a site map.

Attachment: Click to enter text.

Section 8. Soil Map and Soil Analyses (Instructions Page 69)

A. Soil map

Attach a USDA Soil Survey map that shows the area to be used for effluent disposal.

Attachment: <u>Attachment 11</u>

B. Soil analyses

Attach the laboratory results sheets from the soil analyses. **Note:** for renewal applications, the current annual soil analyses required by the permit are acceptable as long as the test date is less than one year prior to the submission of the application.

Attachment:

List all USDA designated soil series on the proposed land application site. Attach additional pages as necessary.

Table 3.0(4) – Soil Data

Soil Series	Depth from Surface	Permeability	Available Water Capacity	Curve Number
Leson Clay	72 in	Low to Moderate	0-0.06 in/hr	

Section 9. Effluent Monitoring Data (Instructions Page 70)

Is the facility in operation?

🖾 Yes 🗆 No

If no, this section is not applicable and the worksheet is complete.

If yes, provide the effluent monitoring data for the parameters regulated in the existing permit. If a parameter is not regulated in the existing permit, enter N/A.

Date	30 Day Avg Flow MGD	BOD5 mg/l	TSS mg/l	pН	Chlorine Residual mg/l	Acres irrigated
12/31/24	10,428 gal	129	27.6	7.1	N/A	
11/26/24	12,255 gal	97.6	31	6.9		
10/29/24	10,889 gal	87.7	27.3	7.29		
9/24/24	10,555 gal	48.4	18.4	7.2		
8/27/24	10,981 gal	110	25.5	7.1		
7/30/24	13,029 gal	17.4	14.6	7.0		
6/25/24	12,631 gal	9.58	7.80	6.8		
5/28/24	13,224 gal	15.3	3.70	7.3		
4/30/24	12,981 gal	36.1	34	7.6		
3/26/24	12,732 gal	47.7	16.5	7.4		
2/27/24	9731 gal	24.6	22	7.3		
1/30/24	8596 gal	37.4	38.5	7.3		
12/5/23	8688 gal	31.8	8.4	7.1		

Table 3.0(5) – Effluent Monitoring Data

Date	30 Day Avg Flow MGD	BOD5 mg/l	TSS mg/l	pН	Chlorine Residual mg/l	Acres irrigated
1/3/23	n/a	140	32	7.0		
2/7/23	n/a	165	34.7	7.0		
3/7/23	9372 gal	181	42.7	6.9		
4/4/23	9335 gal	29.6	29	7.2		
5/23/23	8819 gal	18.1	10.5	6.2		
6/6/23	8409 gal	55	48.7	7.3		
7/25/23	8744 gal	70.3	13.8	7		
8/15/23	9113 gal	15.4	12.7	7		
9/12/23	9039 gal	40.5	20.8	6.9		
10/3/23	9217 gal	59	20.3	6.9		
11/28/23	8750 gal	21	23.2	7.2		

Provide a discussion of all persistent excursions above the permitted limits and any corrective actions taken.

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 3.1: SURFACE LAND DISPOSAL OF EFFLUENT

The following is required for new and major amendment permit applications. Renewal and minor amendment permit applications may be asked for this worksheet on a case by case basis.

Section 1. Surface Disposal (Instructions Page 71)

Complete the item that applies for the method of disposal being used.

A. Irrigation

Area under irrigation, in acres: Click to enter text.

Design application frequency:

hours/day Click to enter text. And days/week Click to enter text.

Land grade (slope):

average percent (%): <u>Click to enter text.</u>

maximum percent (%): Click to enter text.

Design application rate in acre-feet/acre/year: Click to enter text.

Design total nitrogen loading rate, in lbs N/acre/year: Click to enter text.

Soil conductivity (mmhos/cm): Click to enter text.

Method of application: Click to enter text.

Attach a separate engineering report with the water balance and storage volume calculations, method of application, irrigation efficiency, and nitrogen balance.

Attachment: Click to enter text.

B. Evaporation ponds

Daily average effluent flow into ponds, in gallons per day: Click to enter text.

Attach a separate engineering report with the water balance and storage volume calculations.

Attachment: Click to enter text.

C. Evapotranspiration beds

Number of beds: <u>Click to enter text.</u>

Area of bed(s), in acres: <u>Click to enter text.</u>

Depth of bed(s), in feet: <u>Click to enter text.</u>

Void ratio of soil in the beds: <u>Click to enter text.</u>

Storage volume within the beds, in acre-feet: Click to enter text.

Attach a separate engineering report with the water balance and storage volume calculations, and a description of the lining.

Attachment: Click to enter text.

D. Overland flow

Area used for application, in acres: <u>Click to enter text.</u> Slopes for application area, percent (%): <u>Click to enter text.</u> Design application rate, in gpm/foot of slope width: <u>Click to enter text.</u> Slope length, in feet: <u>Click to enter text.</u>

Design BOD₅ loading rate, in lbs BOD₅/acre/day: <u>Click to enter text.</u>

Design application frequency:

hours/day: <u>Click to enter text.</u> And days/week: <u>Click to enter text.</u>

Attach a separate engineering report with the method of application and design requirements according to *30 TAC Chapter 217*.

Attachment: Click to enter text.

Section 2. Edwards Aquifer (Instructions Page 72)

Is the facility subject to 30 TAC Chapter 213, Edwards Aquifer Rules?

🗆 Yes 🗆 No

If **yes**, is the facility located on the Edwards Aquifer Recharge Zone?

□ Yes □ No

If yes, attach a geological report addressing potential recharge features.

Attachment: Click to enter text.

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 3.2: SURFACE LAND DISPOSAL OF EFFLUENT

The following **is required** for **new and major amendment** permit applications. Renewal and minor amendments applicants may be asked for the worksheet on a case by case basis.

NOTE: All applicants proposing new/amended subsurface disposal MUST complete and submit Worksheet 7.0. This worksheet applies to any subsurface disposal system that **does not meet** the definition of a subsurface area drip dispersal system as defined in *30 TAC Chapter 222, Subsurface Area Drip Dispersal System.*

Section 1. Subsurface Application (Instructions Page 73)

Identify the type of system:

- Conventional Gravity Drainfield, Beds, or Trenches (new systems must be less than 5,000 GPD)
- □ Low Pressure Dosing
- □ Other, specify: <u>Click to enter text.</u>

Application area, in acres: <u>Click to enter text.</u>

Area of drainfield, in square feet: <u>Click to enter text.</u>

Application rate, in gal/square foot/day: Click to enter text.

Depth to groundwater, in feet: Click to enter text.

Area of trench, in square feet: <u>Click to enter text.</u>

Dosing duration per area, in hours: <u>Click to enter text.</u>

Number of beds: Click to enter text.

Dosing amount per area, in inches/day: <u>Click to enter text.</u>

Infiltration rate, in inches/hour: Click to enter text.

Storage volume, in gallons: <u>Click to enter text.</u>

Area of bed(s), in square feet: <u>Click to enter text.</u>

Soil Classification: Click to enter text.

Attach a separate engineering report with the information required in *30 TAC § 309.20*, excluding the requirements of § 309.20 b(3)(A) and (B) design analysis which may be asked for on a case by case basis. Include a description of the schedule of dosing basin rotation.

Attachment: Click to enter text.

Section 2. Edwards Aquifer (Instructions Page 73)

Is the subsurface system over the Edwards Aquifer Recharge Zone as mapped by TCEQ?

🗆 Yes 🗆 No

Is the subsurface system over the Edwards Aquifer Transition Zone as mapped by TCEQ?

□ Yes □ No

If yes to either question, the subsurface system may be prohibited by *30 TAC §213.8*. Please call the Municipal Permits Team, at 512-239-4671, to schedule a pre-application meeting.

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 3.3: SUBSURFACE AREA DRIP DISPERSAL (SADDS) LAND DISPOSAL OF EFFLUENT

The following **is required** for **new and major amendment** subsurface area drip dispersal system permit applications. Renewal and minor amendments applicants may be asked for the worksheet on a case by case basis.

NOTE: All applicants proposing new/amended subsurface disposal MUST complete and submit Worksheet 7.0. This worksheet applies to any subsurface disposal system that **meets** the definition of a subsurface area drip dispersal system as defined in *30 TAC Chapter 222, Subsurface Area Drip Dispersal System*.

Section 1. Administrative Information (Instructions Page 74)

- **A.** Provide the legal name of all corporations or other business entities managed, owned, or otherwise closely related to the owner of the treatment facility:
- **B.** <u>Click to enter text.</u> Is the owner of the land where the treatment facility is located the same as the owner of the treatment facility?

□ Yes □ No

If **no**, provide the legal name of all corporations or other business entities managed, owned, or otherwise closely related to the owner of the land where the treatment facility is located.

Click to enter text.

- C. Owner of the subsurface area drip dispersal system: Click to enter text.
- **D.** Is the owner of the subsurface area drip dispersal system the same as the owner of the wastewater treatment facility or the site where the wastewater treatment facility is located?

□ Yes □ No

If **no**, identify the names of all corporations or other business entities managed, owned, or otherwise closely related to the entity identified in Item 1.C.

Click to enter text.

- E. Owner of the land where the subsurface area drip dispersal system is located: <u>Click to</u> <u>enter text.</u>
- **F.** Is the owner of the land where the subsurface area drip dispersal system is located the same as owner of the wastewater treatment facility, the site where the wastewater treatment facility is located, or the owner of the subsurface area drip dispersal system?

🗆 Yes 🗆 No

If **no**, identify the name of all corporations or other business entities managed, owned, or otherwise closely related to the entity identified in item 1.E.

Section 2. Subsurface Area Drip Dispersal System (Instructions Page 74)

A. Type of system

- □ Subsurface Drip Irrigation
- □ Surface Drip Irrigation
- □ Other, specify: <u>Click to enter text</u>.

B. Irrigation operations

Application area, in acres: <u>Click to enter text.</u>

Infiltration Rate, in inches/hour: Click to enter text.

Average slope of the application area, percent (%): Click to enter text.

Maximum slope of the application area, percent (%): Click to enter text.

Storage volume, in gallons: <u>Click to enter text.</u>

Major soil series: Click to enter text.

Depth to groundwater, in feet: Click to enter text.

C. Application rate

Is the facility located **west** of the boundary shown in *30 TAC § 222.83* **and** also using a vegetative cover of non-native grasses over seeded with cool season grasses during the winter months (October-March)?

🗆 Yes 🗆 No

If yes, then the facility may propose a hydraulic application rate not to exceed 0.1 gal/square foot/day.

Is the facility located **east** of the boundary shown in *30 TAC § 222.83* **or** in any part of the state when the vegetative cover is any crop other than non-native grasses?

□ Yes □ No

If **yes**, the facility must use the formula in *30 TAC §222.83* to calculate the maximum hydraulic application rate.

Do you plan to submit an alternative method to calculate the hydraulic application rate for approval by the executive director?

🗆 Yes 🗆 No

Hydraulic application rate, in gal/square foot/day: <u>Click to enter text.</u> Nitrogen application rate, in lbs/gal/day: <u>Click to enter text.</u>

D. Dosing information

Number of doses per day: <u>Click to enter text.</u>

Dosing duration per area, in hours: <u>Click to enter text.</u>

Rest period between doses, in hours: Click to enter text.

Dosing amount per area, in inches/day: Click to enter text.

Number of zones: Click to enter text.

Does the proposed subsurface drip irrigation system use tree vegetative cover as a crop?

🗆 Yes 🗆 No

If **yes**, provide a vegetation survey by a certified arborist. Please call the Water Quality Assessment Team at (512) 239-4671 to schedule a pre-application meeting.

Attachment: Click to enter text.

Section 3. Required Plans (Instructions Page 74)

A. Recharge feature plan

Attach a Recharge Feature Plan with all information required in *30 TAC §222.79*.

Attachment: <u>Click to enter text.</u>

B. Soil evaluation

Attach a Soil Evaluation with all information required in *30 TAC §222.73*.

Attachment: Click to enter text.

C. Site preparation plan

Attach a Site Preparation Plan with all information required in 30 TAC §222.75.

Attachment: Click to enter text.

D. Soil sampling/testing

Attach soil sampling and testing that includes all information required in *30 TAC §222.157*.

Attachment: Click to enter text.

Section 4. Floodway Designation (Instructions Page 75)

A. Site location

Is the existing/proposed land application site within a designated floodway?

□ Yes □ No

B. Flood map

Attach either the FEMA flood map or alternate information used to determine the floodway.

Attachment: Click to enter text.

Section 5. Surface Waters in the State (Instructions Page 75)

A. Buffer Map

Attach a map showing appropriate buffers on surface waters in the state, water wells, and springs/seeps.

Attachment: Click to enter text.

B. Buffer variance request

Do you plan to request a buffer variance from water wells or waters in the state?

🗆 Yes 🗆 No

If yes, then attach the additional information required in 30 TAC § 222.81(c).

Attachment: <u>Click to enter text.</u>

Section 6. Edwards Aquifer (Instructions Page 75)

A. Is the SADDS located over the Edwards Aquifer Recharge Zone as mapped by TCEQ?

🗆 Yes 🗆 No

B. Is the SADDS located over the Edwards Aquifer Transition Zone as mapped by TCEQ?

🗆 Yes 🗆 No

If yes to either question, then the SADDS may be prohibited by *30 TAC §213.8*. Please call the Municipal Permits Team at 512-239-4671 to schedule a pre-application meeting.

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 4.0: POLLUTANT ANALYSIS REQUIREMENTS

The following **is required** for facilities with a permitted or proposed flow of **1.0 MGD or greater**, facilities with an approved **pretreatment** program, or facilities classified as a **major** facility. See instructions for further details.

This worksheet is not required minor amendments without renewal.

Section 1. Toxic Pollutants (Instructions Page 76)

For pollutants identified in Table 4.0(1), indicate the type of sample.

Grab \Box Composite \Box

Date and time sample(s) collected: <u>Click to enter text.</u>

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Acrylonitrile				50
Aldrin				0.01
Aluminum				2.5
Anthracene				10
Antimony				5
Arsenic				0.5
Barium				3
Benzene				10
Benzidine				50
Benzo(a)anthracene				5
Benzo(a)pyrene				5
Bis(2-chloroethyl)ether				10
Bis(2-ethylhexyl)phthalate				10
Bromodichloromethane				10
Bromoform				10
Cadmium				1
Carbon Tetrachloride				2
Carbaryl				5
Chlordane*				0.2
Chlorobenzene				10
Chlorodibromomethane				10

Pollutant	AVG Effluent Conc. (μg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Chloroform				10
Chlorpyrifos				0.05
Chromium (Total)				3
Chromium (Tri) (*1)				N/A
Chromium (Hex)				3
Copper				2
Chrysene				5
p-Chloro-m-Cresol				10
4,6-Dinitro-o-Cresol				50
p-Cresol				10
Cyanide (*2)				10
4,4'- DDD				0.1
4,4'- DDE				0.1
4,4'- DDT				0.02
2,4-D				0.7
Demeton (O and S)				0.20
Diazinon				0.5/0.1
1,2-Dibromoethane				10
m-Dichlorobenzene				10
o-Dichlorobenzene				10
p-Dichlorobenzene				10
3,3'-Dichlorobenzidine				5
1,2-Dichloroethane				10
1,1-Dichloroethylene				10
Dichloromethane				20
1,2-Dichloropropane				10
1,3-Dichloropropene				10
Dicofol				1
Dieldrin				0.02
2,4-Dimethylphenol				10
Di-n-Butyl Phthalate				10
Diuron				0.09
Endosulfan I (alpha)				0.01

Pollutant	AVG Effluent Conc. (μg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Endosulfan II (beta)				0.02
Endosulfan Sulfate				0.1
Endrin				0.02
Epichlorohydrin				
Ethylbenzene				10
Ethylene Glycol				
Fluoride				500
Guthion				0.1
Heptachlor				0.01
Heptachlor Epoxide				0.01
Hexachlorobenzene				5
Hexachlorobutadiene				10
Hexachlorocyclohexane (alpha)				0.05
Hexachlorocyclohexane (beta)				0.05
gamma-Hexachlorocyclohexane				0.05
(Lindane)				
Hexachlorocyclopentadiene				10
Hexachloroethane				20
Hexachlorophene				10
4,4'-Isopropylidenediphenol				1
Lead				0.5
Malathion				0.1
Mercury				0.005
Methoxychlor				2
Methyl Ethyl Ketone				50
Methyl tert-butyl ether				
Mirex				0.02
Nickel				2
Nitrate-Nitrogen				100
Nitrobenzene				10
N-Nitrosodiethylamine				20
N-Nitroso-di-n-Butylamine				20
Nonylphenol				333

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Parathion (ethyl)				0.1
Pentachlorobenzene				20
Pentachlorophenol				5
Phenanthrene				10
Polychlorinated Biphenyls (PCB's) (*3)				0.2
Pyridine				20
Selenium				5
Silver				0.5
1,2,4,5-Tetrachlorobenzene				20
1,1,2,2-Tetrachloroethane				10
Tetrachloroethylene				10
Thallium				0.5
Toluene				10
Toxaphene				0.3
2,4,5-TP (Silvex)				0.3
Tributyltin (see instructions for explanation)				0.01
1,1,1-Trichloroethane				10
1,1,2-Trichloroethane				10
Trichloroethylene				10
2,4,5-Trichlorophenol				50
TTHM (Total Trihalomethanes)				10
Vinyl Chloride				10
Zinc				5

(*1) Determined by subtracting hexavalent Cr from total Cr.

(*2) Cyanide, amenable to chlorination or weak-acid dissociable.

(*3) The sum of seven PCB congeners 1242, 1254, 1221, 1232, 1248, 1260, and 1016.

Section 2. Priority Pollutants

For pollutants identified in Tables 4.0(2)A-E, indicate type of sample.

Grab \Box Composite \Box

Date and time sample(s) collected: Click to enter text.

Table 4.0(2)A – Metals, Cyanide, and Phenols

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Antimony				5
Arsenic				0.5
Beryllium				0.5
Cadmium				1
Chromium (Total)				3
Chromium (Hex)				3
Chromium (Tri) (*1)				N/A
Copper				2
Lead				0.5
Mercury				0.005
Nickel				2
Selenium				5
Silver				0.5
Thallium				0.5
Zinc				5
Cyanide (*2)				10
Phenols, Total				10

(*1) Determined by subtracting hexavalent Cr from total Cr.

(*2) Cyanide, amenable to chlorination or weak-acid dissociable

Pollutant	AVG Effluent Conc. (μg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Acrolein				50
Acrylonitrile				50
Benzene				10
Bromoform				10
Carbon Tetrachloride				2
Chlorobenzene				10
Chlorodibromomethane				10
Chloroethane				50
2-Chloroethylvinyl Ether				10
Chloroform				10
Dichlorobromomethane [Bromodichloromethane]				10
1,1-Dichloroethane				10
1,2-Dichloroethane				10
1,1-Dichloroethylene				10
1,2-Dichloropropane				10
1,3-Dichloropropylene				10
[1,3-Dichloropropene]				
1,2-Trans-Dichloroethylene				10
Ethylbenzene				10
Methyl Bromide				50
Methyl Chloride				50
Methylene Chloride				20
1,1,2,2-Tetrachloroethane				10
Tetrachloroethylene				10
Toluene				10
1,1,1-Trichloroethane				10
1,1,2-Trichloroethane				10
Trichloroethylene				10
Vinyl Chloride				10

Table 4.0(2)B – Volatile Compounds

Table 4.0(2)C – Acid Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
2-Chlorophenol				10
2,4-Dichlorophenol				10
2,4-Dimethylphenol				10
4,6-Dinitro-o-Cresol				50
2,4-Dinitrophenol				50
2-Nitrophenol				20
4-Nitrophenol				50
P-Chloro-m-Cresol				10
Pentalchlorophenol				5
Phenol				10
2,4,6-Trichlorophenol				10

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Acenaphthene				10
Acenaphthylene				10
Anthracene				10
Benzidine				50
Benzo(a)Anthracene				5
Benzo(a)Pyrene				5
3,4-Benzofluoranthene				10
Benzo(ghi)Perylene				20
Benzo(k)Fluoranthene				5
Bis(2-Chloroethoxy)Methane				10
Bis(2-Chloroethyl)Ether				10
Bis(2-Chloroisopropyl)Ether				10
Bis(2-Ethylhexyl)Phthalate				10
4-Bromophenyl Phenyl Ether				10
Butyl benzyl Phthalate				10
2-Chloronaphthalene				10
4-Chlorophenyl phenyl ether				10
Chrysene				5
Dibenzo(a,h)Anthracene				5
1,2-(o)Dichlorobenzene				10
1,3-(m)Dichlorobenzene				10
1,4-(p)Dichlorobenzene				10
3,3-Dichlorobenzidine				5
Diethyl Phthalate				10
Dimethyl Phthalate				10
Di-n-Butyl Phthalate				10
2,4-Dinitrotoluene				10
2,6-Dinitrotoluene				10
Di-n-Octyl Phthalate				10
1,2-Diphenylhydrazine (as Azo- benzene)				20
Fluoranthene				10

Table 4.0(2)D – Base/Neutral Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Fluorene				10
Hexachlorobenzene				5
Hexachlorobutadiene				10
Hexachlorocyclo-pentadiene				10
Hexachloroethane				20
Indeno(1,2,3-cd)pyrene				5
Isophorone				10
Naphthalene				10
Nitrobenzene				10
N-Nitrosodimethylamine				50
N-Nitrosodi-n-Propylamine				20
N-Nitrosodiphenylamine				20
Phenanthrene				10
Pyrene				10
1,2,4-Trichlorobenzene				10

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Aldrin				0.01
alpha-BHC (Hexachlorocyclohexane)				0.05
beta-BHC (Hexachlorocyclohexane)				0.05
gamma-BHC (Hexachlorocyclohexane)				0.05
delta-BHC (Hexachlorocyclohexane)				0.05
Chlordane				0.2
4,4-DDT				0.02
4,4-DDE				0.1
4,4,-DDD				0.1
Dieldrin				0.02
Endosulfan I (alpha)				0.01
Endosulfan II (beta)				0.02
Endosulfan Sulfate				0.1
Endrin				0.02
Endrin Aldehyde				0.1
Heptachlor				0.01
Heptachlor Epoxide				0.01
PCB-1242				0.2
PCB-1254				0.2
PCB-1221				0.2
PCB-1232				0.2
PCB-1248				0.2
PCB-1260				0.2
PCB-1016				0.2
Toxaphene				0.3

Table 4.0(2)E - Pesticides

* For PCBS, if all are non-detects, enter the highest non-detect preceded by a "<".

Section 3. Dioxin/Furan Compounds

A. Indicate which of the following compounds from may be present in the influent from a contributing industrial user or significant industrial user. Check all that apply.

2,4,5-trichlorophenoxy acetic acid
Common Name 2,4,5-T, CASRN 93-76-5
2-(2,4,5-trichlorophenoxy) propanoic acid
Common Name Silvex or 2,4,5-TP, CASRN 93-72-1
2-(2,4,5-trichlorophenoxy) ethyl 2,2-dichloropropionate
Common Name Erbon, CASRN 136-25-4
0,0-dimethyl 0-(2,4,5-trichlorophenyl) phosphorothioate
Common Name Ronnel, CASRN 299-84-3
2,4,5-trichlorophenol
Common Name TCP, CASRN 95-95-4
hexachlorophene
Common Name HCP, CASRN 70-30-4

For each compound identified, provide a brief description of the conditions of its/their presence at the facility.

Click to enter text.

B. Do you know or have any reason to believe that 2,3,7,8 Tetrachlorodibenzo-P-Dioxin (TCDD) or any congeners of TCDD may be present in your effluent?

🗆 Yes 🗆 No

If **yes**, provide a brief description of the conditions for its presence.

C. If any of the compounds in Subsection A **or** B are present, complete Table 4.0(2)F.

For pollutants identified in Table 4.0(2)F, indicate the type of sample.

Grab \Box Composite \Box

Date and time sample(s) collected: <u>Click to enter text</u>.

Table 4.0(2)F – Dioxin/Furan Compounds

Compound	Toxic Equivalenc y Factors	Wastewater Concentration (ppq)	Wastewater Equivalents (ppq)	Sludge Concentration (ppt)	Sludge Equivalents (ppt)	MAL (ppq)
2,3,7,8 TCDD	1					10
1,2,3,7,8 PeCDD	0.5					50
2,3,7,8 HxCDDs	0.1					50
1,2,3,4,6,7,8 HpCDD	0.01					50
2,3,7,8 TCDF	0.1					10
1,2,3,7,8 PeCDF	0.05					50
2,3,4,7,8 PeCDF	0.5					50
2,3,7,8 HxCDFs	0.1					50
2,3,4,7,8 HpCDFs	0.01					50
OCDD	0.0003					100
OCDF	0.0003					100
PCB 77	0.0001					0.5
PCB 81	0.0003					0.5
PCB 126	0.1					0.5
PCB 169	0.03					0.5
Total						

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 5.0: TOXICITY TESTING REQUIREMENTS

The following **is required** for facilities with a current operating design flow of**1.0 MGD or greater**, with an EPA-approved **pretreatment** program (or those required to have one under 40 CFR Part 403), or are required to perform Whole Effluent Toxicity testing. See Page 86 of the instructions for further details.

This worksheet is not required minor amendments without renewal.

Section 1. Required Tests

Indicate the number of 7-day chronic or 48-hour acute Whole Effluent Toxicity (WET) tests performed in the four and one-half years prior to submission of the application.

7-day Chronic: Click to enter text.

48-hour Acute: <u>Click to enter text.</u>

Section 2. Toxicity Reduction Evaluations (TREs)

Has this facility completed a TRE in the past four and a half years? Or is the facility currently performing a TRE?

□ Yes □ No

If yes, describe the progress to date, if applicable, in identifying and confirming the toxicant.

Section 3. Summary of WET Tests

If the required biomonitoring test information has not been previously submitted via both the Discharge Monitoring Reports (DMRs) and the Table 1 (as found in the permit), provide a summary of the testing results for all valid and invalid tests performed over the past four and one-half years. Make additional copies of this table as needed.

Table 5.0(1) Summary of WET Tests

Test Date	Test Species	NOEC Survival	NOEC Sub-lethal

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 6.0: INDUSTRIAL WASTE CONTRIBUTION

The following is required for all publicly owned treatment works.

Section 1. All POTWs (Instructions Page 87)

A. Industrial users (IUs)

Provide the number of each of the following types of industrial users (IUs) that discharge to your POTW and the daily flows from each user. See the Instructions for definitions of Categorical IUs, Significant IUs – non-categorical, and Other IUs.

If there are no users, enter 0 (zero).

Categorical IUs:

Number of IUs: Click to enter text.

Average Daily Flows, in MGD: Click to enter text.

Significant IUs – non-categorical:

Number of IUs: Click to enter text.

Average Daily Flows, in MGD: <u>Click to enter text.</u>

Other IUs:

Number of IUs: Click to enter text.

Average Daily Flows, in MGD: <u>Click to enter text.</u>

B. Treatment plant interference

In the past three years, has your POTW experienced treatment plant interference (see instructions)?

□ Yes □ No

If yes, identify the dates, duration, description of interference, and probable cause(s) and possible source(s) of each interference event. Include the names of the IUs that may have caused the interference.

C. Treatment plant pass through

In the past three years, has your POTW experienced pass through (see instructions)?

🗆 Yes 🗆 No

If yes, identify the dates, duration, a description of the pollutants passing through the treatment plant, and probable cause(s) and possible source(s) of each pass through event. Include the names of the IUs that may have caused pass through.

Click to enter text.			

D. Pretreatment program

Does your POTW have an approved pretreatment program?

🗆 Yes 🗆 No

If yes, complete Section 2 only of this Worksheet.

Is your POTW required to develop an approved pretreatment program?

□ Yes □ No

If yes, complete Section 2.c. and 2.d. only, and skip Section 3.

If no to either question above, skip Section 2 and complete Section 3 for each significant industrial user and categorical industrial user.

Section 2. POTWs with Approved Programs or Those Required to Develop a Program (Instructions Page 87)

A. Substantial modifications

Have there been any **substantial modifications** to the approved pretreatment program that have not been submitted to the TCEQ for approval according to *40 CFR §403.18*?

🗆 Yes 🗆 No

If yes, identify the modifications that have not been submitted to TCEQ, including the purpose of the modification.

B. Non-substantial modifications

Have there been any **non-substantial modifications** to the approved pretreatment program that have not been submitted to TCEQ for review and acceptance?

□ Yes □ No

If yes, identify all non-substantial modifications that have not been submitted to TCEQ, including the purpose of the modification.

Click to enter text.

C. Effluent parameters above the MAL

In Table 6.0(1), list all parameters measured above the MAL in the POTW's effluent monitoring during the last three years. Submit an attachment if necessary.

Table 6.0(1) – Parameters Above the MAL

Pollutant	Concentration	MAL	Units	Date

D. Industrial user interruptions

Has any SIU, CIU, or other IU caused or contributed to any problems (excluding interferences or pass throughs) at your POTW in the past three years?

🗆 Yes 🗆 No

If yes, identify the industry, describe each episode, including dates, duration, description of the problems, and probable pollutants.

Section 3. Significant Industrial User (SIU) Information and Categorical Industrial User (CIU) (Instructions Page 88)

A. General information

Company Name: <u>Click to enter text.</u> SIC Code: <u>Click to enter text.</u> Contact name: <u>Click to enter text.</u> Address: <u>Click to enter text.</u> City, State, and Zip Code: <u>Click to enter text.</u> Telephone number: <u>Click to enter text.</u> Email address: <u>Click to enter text.</u>

B. Process information

Describe the industrial processes or other activities that affect or contribute to the SIU(s) or CIU(s) discharge (i.e., process and non-process wastewater).

Click to enter text.

C. Product and service information

Provide a description of the principal product(s) or services performed.

Click to enter text.		

D. Flow rate information

See the Instructions for definitions of "process" and "non-process wastewater."

Process	Wastewater:
---------	-------------

Discharge, in gallons/day: <u>Click to enter text.</u>									
Discharge Type: 🗆	Continuous		Batch		Intermittent				
Non-Process Wastewate	er:								
Discharge, in gallons/day: <u>Click to enter text.</u>									
Discharge Type: 🗆	Continuous		Batch		Intermittent				

E. Pretreatment standards

Is the SIU or CIU subject to technically based local limits as defined in the *i*nstructions?

🗆 Yes 🗆 No

Is the SIU or CIU subject to categorical pretreatment standards found in *40 CFR Parts 405-471*?

🗆 Yes 🗆 No

If subject to categorical pretreatment standards, indicate the applicable category and subcategory for each categorical process.

Category: Subcategories: Click to enter text.

Click or tap here to enter text. Click to enter text.

Category: Click to enter text.

Subcategories: <u>Click to enter text.</u>

Category: <u>Click to enter text.</u>

Subcategories: <u>Click to enter text.</u>

Category: <u>Click to enter text.</u>

Subcategories: Click to enter text.

Category: <u>Click to enter text.</u>

Subcategories: Click to enter text.

F. Industrial user interruptions

Has the SIU or CIU caused or contributed to any problems (e.g., interferences, pass through, odors, corrosion, blockages) at your POTW in the past three years?

🗆 Yes 🗆 No

If yes, identify the SIU, describe each episode, including dates, duration, description of problems, and probable pollutants.

WORKSHEET 7.0 TEXAS COMMISSION ON ENVIRONMENTAL OUALITY

CLASS V INJECTION WELL INVENTORY/AUTHORIZATION FORM

Submit the completed form to:

TCEQ IUC Permits Team Radioactive Materials Division MC-233 PO Box 13087 Austin, Texas 78711-3087 512-239-6466 For TCEQ Use Only Reg. No.____ Date Received_____ Date Authorized_____

Section 1. General Information (Instructions Page 90)

1. TCEQ Program Area

Program Area (PST, VCP, IHW, etc.): <u>Click to enter text.</u>

Program ID: <u>Click to enter text.</u>

Contact Name: <u>Click to enter text.</u>

Phone Number: Click to enter text.

2. Agent/Consultant Contact Information

Contact Name: <u>Click to enter text.</u> Address: <u>Click to enter text.</u> City, State, and Zip Code: <u>Click to enter text.</u>

Phone Number: <u>Click to enter text.</u>

3. Owner/Operator Contact Information

Owner Operator
 Owner/Operator Name: <u>Click to enter text.</u>
 Contact Name: <u>Click to enter text.</u>
 Address: <u>Click to enter text.</u>
 City, State, and Zip Code: <u>Click to enter text.</u>
 Phone Number: Click to enter text.

4. Facility Contact Information

Facility Name: <u>Click to enter text.</u>
Address: <u>Click to enter text.</u>
City, State, and Zip Code: <u>Click to enter text.</u>
Location description (if no address is available): <u>Click to enter text.</u>
Facility Contact Person: <u>Click to enter text.</u>
Phone Number: <u>Click to enter text.</u>

5. Latitude and Longitude, in degrees-minutes-seconds

Latitude: <u>Click to enter text.</u> Longitude: <u>Click to enter text.</u> Method of determination (GPS, TOPO, etc.): <u>Click to enter text.</u> Attach topographic quadrangle map as attachment A.

6. Well Information

Type of Well Construction, select one:

- □ Vertical Injection
- □ Subsurface Fluid Distribution System
- □ Infiltration Gallery
- □ Temporary Injection Points
- □ Other, Specify: <u>Click to enter text.</u>

Number of Injection Wells: <u>Click to enter text.</u>

7. Purpose

Detailed Description regarding purpose of Injection System:

Click to enter text.

Attach a Site Map as Attachment B (Attach the Approved Remediation Plan, if appropriate.)

8. Water Well Driller/Installer

Water Well Driller/Installer Name: Click to enter text.

City, State, and Zip Code: Click to enter text.

Phone Number: <u>Click to enter text.</u>

License Number: <u>Click to enter text.</u>

Section 2. Proposed Down Hole Design

Attach a diagram signed and sealed by a licensed engineer as Attachment C.

Table 7.0(1) – Down Hole Design Table

Name of String	Size	Setting Depth	Sacks Cement/Grout – Slurry Volume – Top of Cement	Hole Size	Weight (lbs/ft) PVC/Steel
Casing					
Tubing					
Screen					

Section 3. Proposed Trench System, Subsurface Fluid Distribution System, or Infiltration Gallery

Attach a diagram signed and sealed by a licensed engineer as Attachment D.

System(s) Dimensions: <u>Click to enter text.</u>

System(s) Construction: Click to enter text.

Section 4. Site Hydrogeological and Injection Zone Data

- 1. Name of Contaminated Aquifer: <u>Click to enter text.</u>
- 2. Receiving Formation Name of Injection Zone: <u>Click to enter text.</u>
- **3.** Well/Trench Total Depth: <u>Click to enter text.</u>
- 4. Surface Elevation: <u>Click to enter text.</u>
- 5. Depth to Ground Water: <u>Click to enter text.</u>
- 6. Injection Zone Depth: <u>Click to enter text.</u>
- **7.** Injection Zone vertically isolated geologically? □ Yes □ No

Impervious Strata between Injection Zone and nearest Underground Source of Drinking Water:

Name: <u>Click to enter text.</u>

Thickness: Click to enter text.

- 8. Provide a list of contaminants and the levels (ppm) in contaminated aquifer Attach as Attachment E.
- **9.** Horizontal and Vertical extent of contamination and injection plume Attach as Attachment F.
- **10.** Formation (Injection Zone) Water Chemistry (Background levels) TDS, etc. Attach as Attachment G.
- **11.** Injection Fluid Chemistry in PPM at point of injection Attach as Attachment H.
- 12. Lowest Known Depth of Ground Water with < 10,000 PPM TDS: <u>Click to enter text.</u>
- 13. Maximum injection Rate/Volume/Pressure: <u>Click to enter text.</u>
- 14. Water wells within 1/4 mile radius (attach map as Attachment I): <u>Click to enter text.</u>
- **15.** Injection wells within 1/4 mile radius (attach map as Attachment J): <u>Click to enter</u> <u>text.</u>
- **16.** Monitor wells within 1/4 mile radius (attach drillers logs and map as Attachment K): <u>Click to enter text.</u>
- 17. Sampling frequency: <u>Click to enter text.</u>
- 18. Known hazardous components in injection fluid: <u>Click to enter text.</u>

Section 5. Site History

- 1. Type of Facility: <u>Click to enter text.</u>
- 2. Contamination Dates: <u>Click to enter text.</u>
- **3.** Original Contamination (VOCs, TPH, BTEX, etc.) and Concentrations (attach as Attachment L): <u>Click to enter text.</u>
- **4.** Previous Remediation (attach results of any previous remediation as attachment M): <u>Click to enter text.</u>

NOTE: Authorization Form should be completed in detail and authorization given by the TCEQ before construction, operation, and/or conversion can begin. Attach additional pages as necessary.

Class V Injection Well Designations

- 5A07 Heat Pump/AC return (IW used for groundwater to heat and/or cool buildings)
- 5A19 Industrial Cooling Water Return Flow (IW used to cool industrial process equipment)
- 5B22 Salt Water Intrusion Barrier (IW used to inject fluids to prevent the intrusion of salt water into an aquifer)
- 5D02 Storm Water Drainage (IW designed for the disposal of rain water)
- 5D04 Industrial Stormwater Drainage Wells (IW designed for the disposal of rain water associated with industrial facilities)
- 5F01 Agricultural Drainage (IW that receive agricultural runoff)
- 5R21 Aquifer Recharge (IW used to inject fluids to recharge an aquifer)
- 5S23 Subsidence Control Wells (IW used to control land subsidence caused by ground water withdrawal)
- 5W09 Untreated Sewage
- 5W10 Large Capacity Cesspools (Cesspools that are designed for 5,000 gpd or greater)
- 5W11 Large Capacity Septic systems (Septic systems designed for 5,000 gpd or greater)
- 5W12 WTTP disposal
- 5W20 Industrial Process Waste Disposal Wells
- 5W31 Septic System (Well Disposal method)
- 5W32 Septic System Drainfield Disposal
- 5X13 Mine Backfill (IW used to control subsidence, dispose of mining byproducts, and/or fill sections of a mine)
- 5X25 Experimental Wells (Pilot Test) (IW used to test new technologies or tracer dye studies)
- 5X26 Aquifer Remediation (IW used to clean up, treat, or prevent contamination of a USDW) 5X27 Other Wells
- 5X28 Motor Vehicle Waste Disposal Wells (IW used to dispose of waste from a motor vehicle site These are currently banned)
- 5X29 Abandoned Drinking Water Wells (waste disposal)

Attachments

- 1. Check
- 2. Core Data Form TCEQ 10400
- 3.PLS
- 4.USGS Map
- 5. Flow Diagram
- 6. Facility Map
- 7. Annual Cropping Plan
- 8. Wells Information
- 9. Wells log info
- 10.Groundwater Quality Technical

Report

- 11.USDA Soil survey map
- 12.Lab Analysis

WATER QUALITY PERMIT

PAYMENT SUBMITTAL FORM

Use this form to submit the Application Fee, if the mailing the payment.

- Complete items 1 through 5 below.
- Staple the check or money order in the space provided at the bottom of this document.
- Do Not mail this form with the application form.
- Do not mail this form to the same address as the application.
- Do not submit a copy of the application with this form as it could cause duplicate permit entries.

Mail this form and the check or money order to:

BY REGULAR U.S. MAIL

Texas Commission on Environmental Quality Financial Administration Division Cashier's Office, MC-214 P.O. Box 13088 Austin, Texas 78711-3088

BY OVERNIGHT/EXPRESS MAIL

Texas Commission on Environmental Quality Financial Administration Division Cashier's Office, MC-214 12100 Park 35 Circle Austin, Texas 78753

Fee Code: WQP Waste Permit No: WQ0014236-001

- 1. Check or Money Order Number: CK \$ 5033
- 2. Check or Money Order Amount: \$315.00
- 3. Date of Check or Money Order: May 1, 2025
- 4. Name on Check or Money Order: TO: TCEQ FROM: Individual Care of TX
- 5. APPLICATION INFORMATION

Name of Project or Site: Individual Care of Texas

Physical Address of Project or Site: 1655 Private Road 2530, in Hunt County, Texas 75474.

If the check is for more than one application, attach a list which includes the name of each Project or Site (RE) and Physical Address, exactly as provided on the application.

TCEQ Core Data Form

For detailed instructions on completing this form, please read the Core Data Form Instructions or call 512-239-5175.

SECTION I: General Information

1. Reason for Submission (If other is checked please describe in space provided.)									
New Permit, Registration or Authorization (<i>Core Data Form should be submitted with the program application.</i>)									
Renewal (Core Data Form should be submitted with the	e renewal form)	Other							
2. Customer Reference Number (if issued)	Follow this link to search for CN or RN numbers in	3. Regulated Entity Reference Number (if issued)							
CN 601214281	<u>Central Registry**</u>	RN 102287463							

SECTION II: Customer Information

4. General Customer Information 5. Effective Date for Customer Information Updates (mm/dd/yyyy)											
New Customer Dydate to Customer Information Change in Regulated Entity Ownership											
Change in Lo	egal Name (Verifiable with the Tex	as Secretary of S	tate or Texa	as Comp	otroller o	of Public	Accounts)			
The Custome	r Name su	Ibmitted here may l	be updated aut	omaticall	v base	d on wl	hat is cu	urrent and active	with th	e Texas Seci	retary of State
	The Customer Name submitted here may be updated automatically based on what is current and active with the Texas Secretary of State (SOS) or Texas Comptroller of Public Accounts (CPA).										
6. Customer	Legal Nam	e (If an individual, pri	nt last name first	: eg: Doe, Jo	ohn)			If new Customer, e	enter pre	evious Custom	er below:
Individual Care	of Texas, In	ic									
7. TX SOS/CP	A Filing No	umber	8. TX State Ta	x ID (11 di	gits)			9. Federal Tax II	D	10. DUNS	Number (if
0076425300			15-2051482					(0, 1:-:+-)		applicable)	
0076425500			15-2051482					(9 digits)			
11. Type of C	ustomer:	Corporat	tion				Individ	ual	Partne	rship: 🗌 Ger	eral 🗌 Limited
Government:	City 🗌 C	County 🗌 Federal 🗌	Local 🗌 State 🛛	Other			Sole Pr	oprietorship	Otł	ner:	
12. Number o	of Employ	ees						13. Independen	ntly Ow	ned and Op	erated?
⊠ 0-20 □ :	21-100] 101-250] 251-	500 🗌 501 ar	nd higher				🛛 Yes	No		
14. Customer	r Role (Proj	posed or Actual) – <i>as i</i>	t relates to the Re	egulated En	tity liste	ed on thi	is form. I	Please check one of	the follo	wing	
Owner		Operator	🔀 Own	er & Opera	tor			Other:			
	al Licensee	Responsible Pa	rty 🗌 VC	P/BSA App	licant			Other:			
15. Mailing	PO Box 3	395									
Address:											
Address.	City	Abilene		State	ТΧ		ZIP	79605		ZIP + 4	
16. Country Mailing Information (if outside USA)					17. E-Mail Address (if applicable)						
						info@i	individua	lcareoftx.com			

18. Telephone Number	19. Extension or Code	20. Fax Number (if applicable)
(903) 356-4544		() -

SECTION III: Regulated Entity Information

21. General Regulated Entity Information (If 'New Regulated Entity" is selected, a new permit application is also required.)									
New Regulated Entity Update to Regulated Entity Name 🛛 Update to Regulated Entity Information									
The Regulated Entity Nai	The Regulated Entity Name submitted may be updated, in order to meet TCEQ Core Data Standards (removal of organizational endings such								
as Inc, LP, or LLC).									
22. Regulated Entity Nam	ne (Enter name	e of the site where the	regulated action	is taking pla	ce.)				
Individual Care of Texas WW	ТР								
23. Street Address of	1655 Private	Rd 2530							
the Regulated Entity:									
<u>(No PO Boxes)</u>	City	Quinlan	State	тх	ZIP	75474	ZIP + 4		
24. County	Hunt								

If no Street Address is provided, fields 25-28 are required.

25. Description to	N/A								
Physical Location:	N/A								
26. Nearest City						State		Nea	rest ZIP Code
Latitude/Longitude are r	equired and	may be added/	updated to meet T	CEQ Core D	ata Standa	rds. (Geoco	oding of th	e Physical	Address may be
used to supply coordinate	es where no	ne have been pr	ovided or to gain a	iccuracy).					
27. Latitude (N) In Decim	al:	32°56'25.42"N		28. Lo	ongitude (W	V) In Decim	al:	96°10'4.0	7"W
Degrees	Minutes	:	Seconds	Degree	25	Mir	nutes		Seconds
29. Primary SIC Code	30.	Secondary SIC C	Code	31. Primar	y NAICS Co	de	32. Seco	ndary NAI	CS Code
(4 digits)	(4 d	igits)		(5 or 6 digit	s)		(5 or 6 dig	its)	
8361				623312					
33. What is the Primary E	Business of t	his entity? (Do	not repeat the SIC or	NAICS descri	ption.)				
Assited Living									
	PO Box 33	95							
34. Mailing									
Address:									
	City	Abilene	State	тх	ZIP	79605		ZIP + 4	
35. E-Mail Address:	info	@individualcareo	ftx.com						
36. Telephone Number	•		37. Extension or (Code	38. Fi	ax Number	(if applicab	le)	
(903) 356-4526					(903)) 356-4544			

39. TCEQ Programs and ID Numbers Check all Programs and write in the permits/registration numbers that will be affected by the updates submitted on this form. See the Core Data Form instructions for additional guidance.

Districts	Edwards Aquifer	Emissions Inventory Air	Industrial Hazardous Waste
New Source Review Air		Petroleum Storage Tank	D PWS
Storm Water	Title V Air	Tires	Used Oil
U Wastewater	Wastewater Agriculture	Water Rights	Other:
	New Source Review Air Storm Water	New Source Review Air Storm Water Title V Air	Districts Lowards requires New Source Review Air OSSF Storm Water Title V Air Title V Air Tires

SECTION IV: Preparer Information

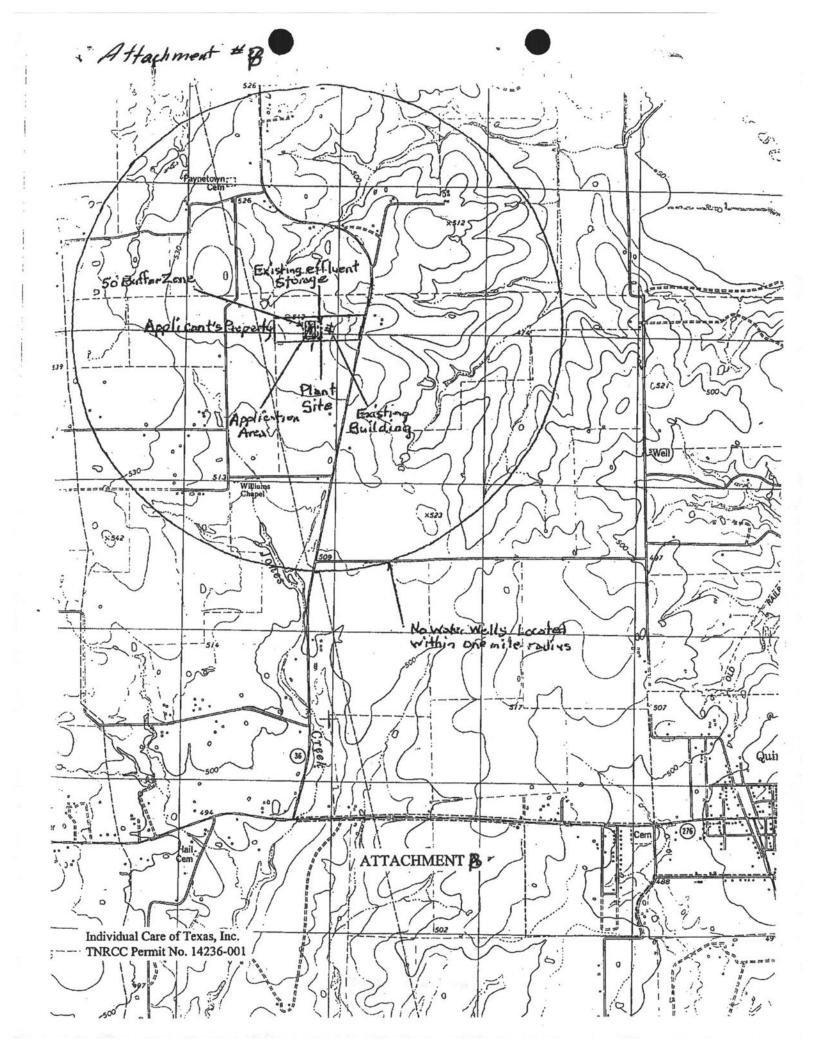
40. Name:	Natalia Rodri	iguez		41. Title:	Consultant	discharge route
42. Telephon	e Number	43. Ext./Code	44. Fax Number	45. E-Mai	l Address	
(832) 776-539	93		() -	natalia@er	nvironmentalcgroup.com	n

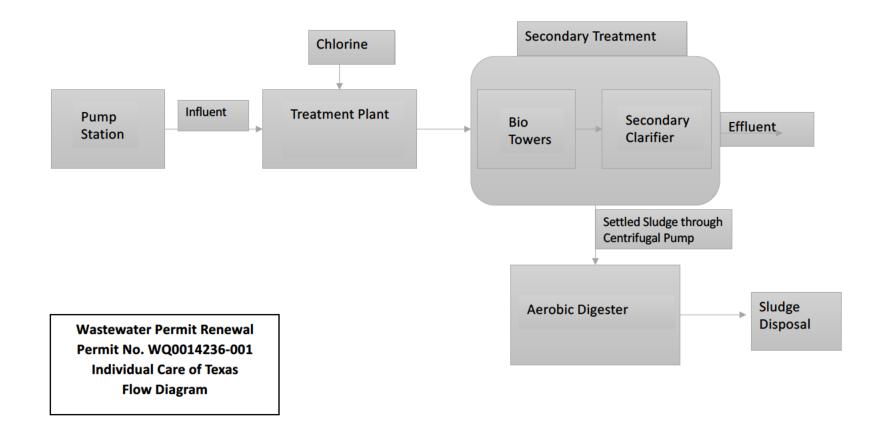
SECTION V: Authorized Signature

46. By my signature below, I certify, to the best of my knowledge, that the information provided in this form is true and complete, and that I have signature authority to submit this form on behalf of the entity specified in Section II, Field 6 and/or as required for the updates to the ID numbers identified in field 39.

Company:	Dany: Individual Care of Texas		Owner	ſ			
Name (In Print):	Sandra Petersen			Phone:	(214) 356-7412		
Signature:	Jandes Potoson			Date:	May 1, 2025		

LAIN LANGUAGE SUMMARY (PLS) For TLAP Permit Application – Renewal

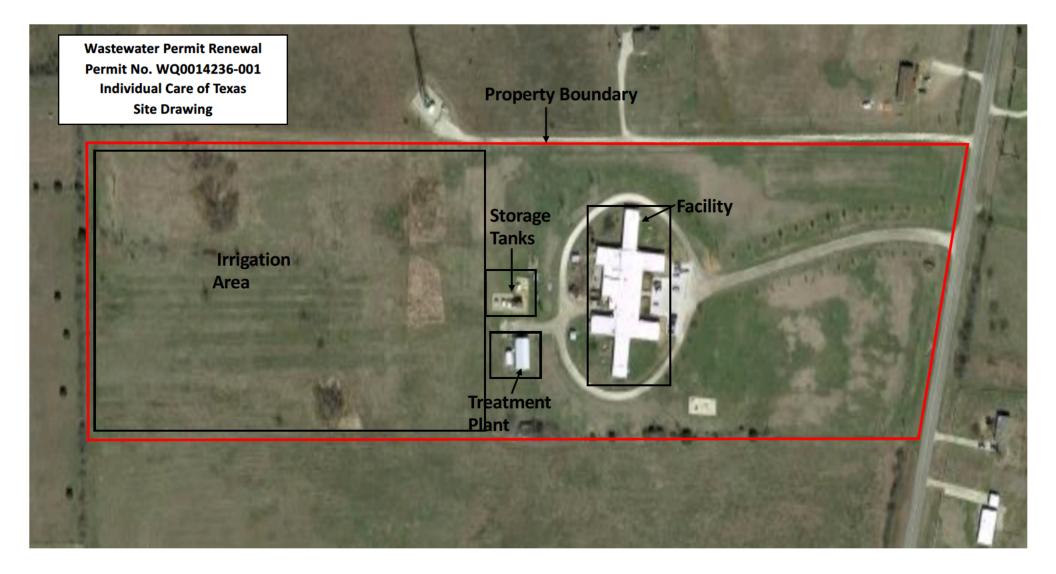

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality (TCEQ) as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and is not a federally enforceable representation of the permit application.


Individual Care of Texas (CN601214281) operates the Individual Care of Texas Wastewater Treatment Plant (RN102287463), a privately-owned domestic wastewater treatment facility. The facility is an onsite treatment plant serving an assisted living center, located at 105 Wingo Way, near the city of Quinlan, in Hunt County, Texas, 75474.

This application is for a **renewal of a Texas Land Application Permit (TLAP)** to continue to treat and dispose of up to **10,000 gallons per day (0.010 MGD)** of treated domestic wastewater via subsurface irrigation. This permit does not authorize a discharge of pollutants into water in the state.

Discharges from the facility are expected to contain **carbonaceous biochemical oxygen demand (CBOD**₅), total suspended solids (TSS), ammonia nitrogen, nitrate nitrogen, total **Kjeldahl nitrogen (TKN), sulfate, chloride, total phosphorus, oil and grease, and E. coli**. Domestic wastewater is treated using a **biological fixed-film process**, including a **lift station**, **equalization basin, two trickling filters, two clarifiers, and two effluent filters**, followed by storage in a **1,500-gallon tank** before **subsurface land application**.

This treatment process and land disposal method are designed to minimize environmental impact and protect human health by ensuring that no wastewater is discharged to surface waters.


Individual Care Of Texas Wastewaster Permit Renewal WQ0014236-001

Operating Description

Flow enters the pump station wet well where wastewater (influent) is pumped into the treatment plant. At this point a small amount of chlorine is pumped into the treatment plant. At this point a small amount of chlorine is added to reduce facility odors and to prevent Bio-Raptor corrosion. In the treatment process, wastewater undergoes secondary treatment by the trickling filter process. In the treatment plant wastewater first flows through the Bio towers where dissolved and suspended solids are converted to settleable solids. This water then flows into the secondary clarifier. In the clarifier, sedimentation takes place and the sludge settles leaving clear water on top (effluent). This water is discharged into the pond is called secondary effluent. Settled sludge on the bottom of the clarifier is removed by a centrifugal pump to the aerated sludge holding tank/ aerobic digester. In the aerobic digester the liquid is called aerobic sludge. After digestion, sludge can be separated and disposed of properly. Here the sludge settles leaving clear water on top. When this water is removed it is termed decant. Removal of the sludge. From the Raptor clarifier secondary effluent flows by gravity to the effluent screen Final Effluent. Final Effluent is discharged into the subsurface field on intermittent basis.

In Summary:

Wastewater into the facility is termed INFLUENT. Treated clear water on top of the clarifier leaving the facility is called EFFLUENT. Sludge Wasted into digester is called WS (waste sludge). Clear water removed from the aerobic digesters is called DECANT. Settled sludge removed from the aerobic digesters is called DIGESTED SLUDGE. Treated wastewater discharged from the plant is called SECONDARY EFFLUENT. Polished secondary effluent is called FINAL EFFLUENT.

Individual Care of Texas Wastewaster Permit Renewal WQ0014236-001

Attachment F: Annual Cropping Plan

a. Type of Grass:

The cropping plan involves with effluent land application on vegetated are with Bermuda grass and alfalfa.

b. Crop Growing Season:

Grass will be grown all year round with peak growing period to be expected from February through November.

c. Harvesting Method:

The crop will be harvested every 3-5 weeks depends on weather condition. It should be cut when it reaches 12"- 15" tall.

d. Nitrogen Requirement of Crop:

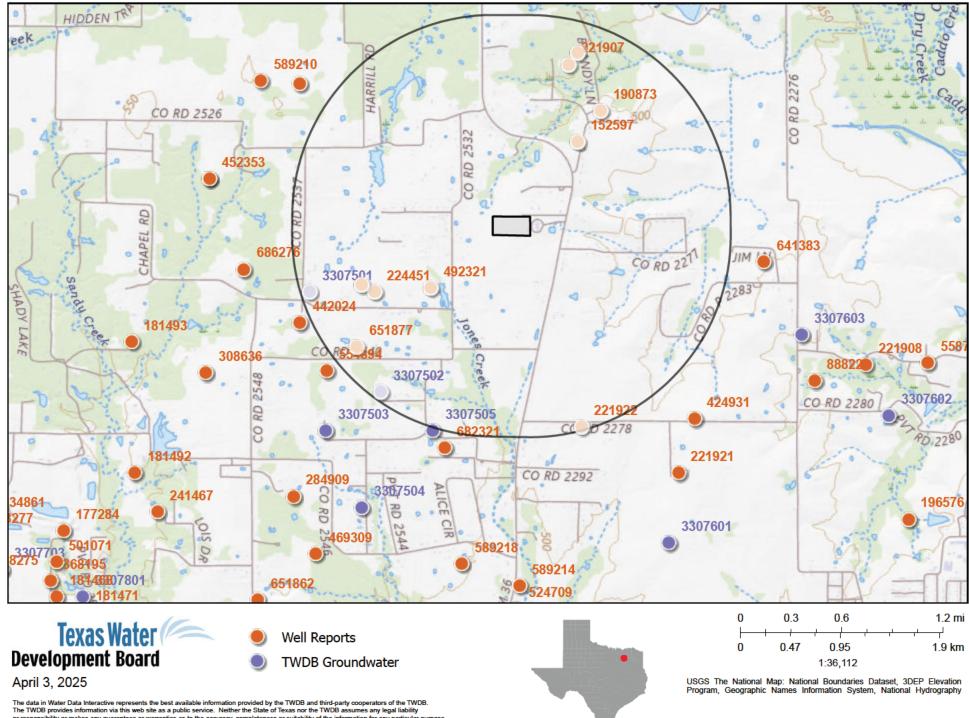
Crop	Nitrogen-N
	(lbs/ac-harvest)
Bermuda Grass	350 - 600
Ryegrass	200 - 480

e. Additional Fertilizer Requirements:

None is anticipated at this moment. Soil data such as pH, N, P, K and macronutrients will be collected and analyzed during wet and dry growing season. Additional fertilization will be performed based on the soil testing result.

f. Supplemental Watering Requirements:

None is required


g. Crop Salt Tolerances:

9.5 mmmho/cm with no anticipated reduction yield.

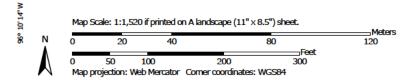
12.0 mmmho/cm with up to 25% reduction in yield.

(Source: 30 TAC 309.20 Table 3. Decrease in yield to be expected for forage and field crops resulting from high electrical conductivity in irrigation water)

Groundwater Data, Texas

The TWDB provides information via this web site as a public service. Neither the State of Texas nor the TWDB assumes any legal liability or responsibility or makes any guarantees or warranties as to the accuracy, completeness or suitability of the information for any particular purpose. The TWDB systematically revises or removes data discovered to be incorrect. If you find inaccurate information or have questions, please contact WDI-Support@twdb.texas.gov.

96° 10' 1" W


32° 56' 28" N

32° 56' 28" N

32° 56' 21" N

<u>USDA</u>

32° 56' 21" N

96° 10' 1" W

MAP LEGEND	MAP INFORMATION
Area of Interest (AOI) Area of Interest (AOI) Soils Soil Map Unit Polygons Soil Map Unit Polygons Soil Map Unit Points Soil Map Unit Points Soil Map Unit Points Special Line Features Borow Pit Borow Pit Soils Clays pot Clays pot Gravelly Spot Gravelly Spot Arand Flow Marsh or swamp Mine or Quary Mine or Quary Miscellaneous Water Perennial Water Rock Outcrop Saine Spot Sine	

Map Unit Legend

Hunt County, Texas (TX231)						
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI			
21	Leson clay, 1 to 3 percent slopes	10.8	100.0%			
Totals for Area of Interest		10.8	100.0%			

Well Summary Table – Individual Care of Texas

The following table lists known wells near the Individual Care of Texas facility. It includes the well ID, current use, production status, casing information, and proposed best management practices (BMPs) in compliance with TCEQ guidelines and 30 TAC §309.13.

Well ID	Well Use	Producing? Y/N	Open, cased, capped, or	Proposed Best Management
			plugged?	Practice
3307501	Domestic	Y	Cased (PVC 0-	Verify casing
			120 ft)	integrity;
				maintain
				sanitary seal;
				monitor
				drawdown.
3307502	Public Supply	Y	Cased (PVC 0-	Ensure casing
			275 ft, screened	and pump
			at 235–275 ft)	remain sealed;
				protect from
				surface runoff.
152597	Domestic	Y	Cased (PVC 0-	Check
			224 ft)	seal/grout;
				inspect
				wellhead
				protection;
				maintain setback.
190873	Domestic	Y	Cased (PVC 0–	Confirm screen
1900/3	Domestic	I	255 ft)	integrity; avoid
			255 ILJ	chemical use
				nearby; record
				inspections.
221864	Domestic	Y	Cased (PVC 0-	Maintain buffer
221001	Domestic	1	265 ft)	from irrigation
			200 10	zones; monitor
				for leaks; label
				well clearly.
221907	Domestic	Y	Cased (PVC 0-	Maintain casing
			255 ft)	and seals;
			,	ensure distance
				from aerobic
				system.
221922	Domestic	Y	Cased (PVC 0-	Maintain buffer
			192 ft)	zone; inspect
				for leaks;
				confirm proper
				grouting.
224451	Domestic	Y	Cased (PVC 0-	Monitor

			240 ft)	drawdown; maintain distance from septic field.
461750	Domestic	Y	Cased (PVC 0– 150 ft)	Inspect screen integrity; record water levels; label well.
492321	Domestic	Y	Cased (PVC 0– 197 ft)	Ensure protection from runoff; confirm annual inspection.
651877	Domestic	Y	Cased (PVC 0– 386 ft)	Monitor for pressure drop; verify distance from contamination sources.

Groundwater Quality Technical Report

Facility Name: Individual Care of Texas Permit Number: WQ0014236-001 TCEQ Regulated Entity Number: RN102287463 Site Coordinates: 32°56'25.4"N, 96°10'04.1"W

1. Purpose of the Report

This report evaluates the potential impact of the wastewater treatment and disposal system on groundwater resources at the Individual Care of Texas facility. It considers existing water wells, the wastewater application rate, and pond liner information, as required under 30 TAC §309.13.

2. Well Evaluation

A total of 11 wells were identified in proximity to the facility (see attached **Well Summary Table** and **Wells Map 1**). All wells are cased and currently in production. Their use includes domestic and public supply. Below is a summary of recommended Best Management Practices (BMPs) for protection:

Well ID Use	Status	Depth (ft)	BMP Summary
3307501 Domestic	Producing	120 (PVC)	Verify casing integrity, monitor drawdown
3307502 Public Supply	Producing	275 (PVC)	Protect from surface runoff
152597 Domestic	Producing	224 (PVC)	Inspect wellhead protection
190873 Domestic	Producing	255 (PVC)	Avoid chemical use nearby
221864 Domestic	Producing	265 (PVC)	Maintain buffer from irrigation
221907 Domestic	Producing	255 (PVC)	Ensure aerobic system setback
221922 Domestic	Producing	192 (PVC)	Confirm proper grouting
224451 Domestic	Producing	240 (PVC)	Maintain distance from septic field
461750 Domestic	Producing	150 (PVC)	Record water levels
492321 Domestic	Producing	197 (PVC)	Annual inspections recommended
651877 Domestic	Producing	386 (PVC)	Monitor for pressure drop, label well

3. Wastewater Application Rate

As stated in Technical Report 1.0, the final permitted design flow is **0.010 MGD** (10,000 gallons/day), with a **2-hour peak of 0.015 MGD**. Wastewater is treated using a fixed film

process and is disposed of via **subsurface irrigation**. The low volume and disposal method reduce the likelihood of groundwater infiltration.

4. Pond Liners and Storage

The treatment system includes a **1,500-gallon effluent storage tank** prior to irrigation, not open ponds. There are **no sludge lagoons** in operation, and sludge is managed off-site via aerobic digestion and transport to the Greenville Wastewater Reclamation Center.

5. Groundwater Protection Measures

- All identified wells are cased and located at varying distances from the facility, with BMPs in place to minimize risk.
- Subsurface irrigation reduces potential vertical migration to groundwater.
- No unlined ponds or sludge lagoons are used.
- Annual inspections and seal integrity checks are recommended for all wells.
- The treatment plant has no direct discharge to surface water and no known history of groundwater contamination.

6. Conclusion

Based on the proximity and condition of surrounding wells, controlled application rate, subsurface irrigation method, and lack of unlined holding ponds or lagoons, the current wastewater treatment and disposal system does **not present a significant threat to groundwater quality** at this time.

Pace Analytical ANALYTICAL REPORT

Ana-Lab Corp

Sample Delivery Group: Samples Received: Project Number: Description:

L1710719 03/01/2024

ICT1-A 104

March 05, 2024

Report To:

Ana-Lab Corp PO Box 9000 Kilgore, TX 75663

Entire Report Reviewed By: Raagan Journ

Ss

Cn

Sr

GI

Sc

Reagan Johnson Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and us the accuracy of the information provided. and as the samples are received.

Pace Analytical Services, LLC -Dallas

400 W. Bethany Drive Suite 190 Allen, TX 75013 972-727-1123 800 767-5859 www.pacenational.com

ACCOUNT: Ana-Lab Corp PROJECT:

SDG: L1710719

DATE/TIME: 03/05/24 14:43 PAGE: 1 of 16

TABLE OF CONTENTS

,

3 4

5 5

6 7

8 9 9

10 11 12

And the grant of the	
Ss: Sample Summary	ł
Cn: Case Narrative	
Sr: Sample Results	
2274462 L1710719-01	i
2274463 L1710719-02	
2274464 L1710719-03	
2276775 BLANK L1710719-04	
Qc: Quality Control Summary	
Wet Chemistry by Method 353.2	
GI: Glossary of Terms	
Al: Accreditations & Locations	
Sc: Sample Chain of Custody	

一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	■結婚時代の調整時代の10月~4~10月~	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
---	-----------------------	--

i

SAMPLE SUMMARY

			Collected by Client	Collected date/time 02/20/24 10:00	Received date 03/01/24 09:4	
2274462 L1710719-01 WW	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	·	
Wet Chemistry by Method 353.2	WG2238970	1	03/04/24 13:32	03/04/24 13:32	EIG	Allen, TX
			Collected by	Collected date/time	Received date	/time
2274463 L1710719-02 WW			Cliem	02/20/24 10:15	03/01/24 09:4	0
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Wet Chemistry by Method 353.2	WG2238970	1	date/time 03/04/24 13:34	date/time 03/04/24 13:34	EIG	Allen, TX
			Collected by	Collected date/time	ne Received date/time	
2274464 L1710719-03 WW			Client	02/20/24 10:30	03/01/24 09:4	0
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Wet Chemistry by Method 353.2	WG2238970	1	date/time 03/04/24 13:35	date/time 03/04/24 13:35	EIG	Allen, TX
			Collected by	Collected date/time	Received date	eAime
2276775 BLANK L1710719-04 WW			Client	02/20/24 00:00	03/01/24 09:4	0
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Wet Chemistry by Method 353.2	WG2238970	1	date/time 03/04/24 13:35	date/time 03/04/24 13:35	EIG	Allen, TX

ł

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Wagan John

Reagan Johnson Project Manager

Ss GI Sr

2274462 Collected date/time: 02/20/24 10:00

SAMPLE RESULTS - 01

Wet Chemistry by Method 353.2

	,					
	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Nitrate-Nitrite	<0.0500	<u>78</u>	0.0500	1	03/04/2024 13:32	WG2238970
Nitrate	<0.0500	<u>T8</u>	0.0500	1	03/04/2024 13:32	WG2238970
Nitrite	<0.0500	<u>T8</u>	0.0500	1	03/04/2024 13:32	WG2238970

2274463		
Collected date/time:	02/20/24	10:15

SAMPLE RESULTS - 02

Wet Chemistry by Method 353.2

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Nitrate-Nitrite	<0.0500	<u>T8</u>	0.0500	1	03/04/2024 13:34	WG2238970
Nitrate	<0.0500	<u>T8</u>	0.0500	1	03/04/2024 13:34	<u>WG2238970</u>
Nitrite	<0.0500	<u>T8</u>	0.0500	1	03/04/2024 13:34	<u>WG2238970</u>

į

2274464	
Collected date/time:	02/20/24 10:30

SAMPLE RESULTS - 03

Wet Chemistry by Method 353.2

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Nitrate-Nitrite	<0.0500	<u>T8</u>	0.0500	1	03/04/2024 13:35	WG2238970
Nitrate	<0.0500	<u>T8</u>	0.0500	1	03/04/2024 13:35	WG2238970
Nitrite	<0.0500	<u>T8</u>	0.0500	1	03/04/2024 13:35	WG2238970

Sn

i

2276775 BLANK Collected date/time: 02/20/24 00:00

SAMPLE RESULTS - 04

į

ł

Wet Chemistry by Method 353.2

, ,						
	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/i		mg/l		date / time	
Nitrate-Nitrite	<0.0500	<u>T8</u>	0.0500	1	03/04/2024 13:35	WG2238970
Nitrate	<0.0500	18	0.0500	1	03/04/2024 13:35	WG2238970
Nitrite	<0.0500	18	0.0500	1	03/04/2024 13:35	WG2238970

Wet Chemistry by Method 353.2 WG2238970

QUALITY CONTROL SUMMARY

N. Proc Black (MB)													
(MB) R4041149-1 03/04/24 13:10	13.10	to the second second second to the te	n and the second s			•	- Anno and American management of the second		¥	and which the Arman Arman server weeking and may a ser-	a le site d'un a combine e classique e	n e nadovna svenodnih v slovenih do vezelih do 1979. Aktor i za ko da yez do 1977. veze o	ana a su
	MB Result	MB Qualifier	MB MDL	MB RDL									e *
Analyte	mg/l		l∕gm	l/gm									
Nitrate-Nitrite	<0.0300		0.0300	0.0500									
Nitrite	<0.0300		0.0300	0.0500									Ss
Lehoratory Council Samon, RCS)	Samole EC	5											ភ្
(LCS) R4041149-2 03/04/24 13:17	13.17	And a second	· · · · · · · · · · · · · ·	A COMPANY OF A REAL PROPERTY OF	to a state of a state of the second state	•	No malo ambalante e entre		No market in some of the second	A MERICAN AND AND AND A MERICAN AND AND AND A MERICAN AND AND AND AND AND AND AND AND AND A	in the same conception of the set	 In the system of the system of	
	Spike Amount LCS Result	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier								کر
Analyte	∥gm	Шd	88	%									
Nitrate-Nitrite	2.50	2.63	105	90.0-110									č
Nitrite	2.50	2.64	106	90.0-110									
													_ ک
L1240416-02-01iginal Samplo (OS) • Mainx Splice (20S) • Mainix Splice Duplicate (480)	al Samplo (US) • Man	× Spire, etc.		Spike Dup.	Laate (MSC	(<						
(OS) L1710416-02 03/04/24 13:18 • (MS) R4041149-3 03/04/24 13:36 • (MSD) R4041149-4	4 13:18 • (MS) R4	4041149-3 03/()4/24 13:36 • (N	ASD) R4041149-	4 03/04/24 13:37	3:37		and a constraint of the second se				n a binde ar a mart a bara a statur a bhailte a bhailte ann an tha an tha an tha ann an tha ann an tha ann an t	Ä
	Spike Amount	Original Result MS Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	l∕gm	√gm	l∕gm	l/gm	ጽ	ጽ		ጽ			8	8	с <mark>3</mark> 6
Nitrate-Nitrite	2.50	<0.0500	2.68	2.70	107	108	-	011-0-06			0.743	20	200
Nitrite	2.50	<0.0500	2.74	2.70	110	108	-	90.0-110			1.47	20]
., 1762-27-02 Original Sample (OS) • Matrix Sisky (28) • Metrix Spike Duplic At (480)	al Sample ((OS) • Matri	Sei Contactoria Sei Contactoria Sei Sei Sei Sei Sei Sei Sei Sei Sei Sei	3 A 12 2 4 2	Spike Supi	he at e - Nos E	<i>S</i>						
(OS) L1710431-02 03/04/24 13:20 • (MS) R4041149-5 03/04/24 13:38 • (MSD) R4041149-6 03/04/24 13:38	4 13:20 • (MS) R	14041149-5 03	'04/24 13:38 • (MSD) R4041145	1-6 03/04/24	13:38			a vometer and a first the second s				
	e Amount		MS Result	Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	- mg# 	ling A	hgen 1 10		ر م		· •	00 0 40			л Эло	, C	
Nitrate-Initrite Nitrite	05.2	2.45 0.0747	4.10 7.67	5.4 77	704 104	^{32.0}		90.0-110 90.0-110			1.49	20	
			i										

PAGE: 9 of 16

Date/Time: 03/05/24 14:43

SDG: L1710719

PROJECT:

ACCOUNT: Ana-Lab Corp

Ss

Cn

Sr

Sc

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Bite Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample ana lysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific ch a racteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this c olumn may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or d uring the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description
T8	Sample(s) received past/too close to holding time expiration.

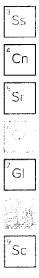
Τ8

Sample(s) received past/too close to holding time expiration.

ACCREDITATIONS & LOCATIONS

Parle Analytical Services, LLC "Daltas	400 W. Bethany Drive Suite 190 Al	en, f.X.75013
--	-----------------------------------	---------------

Arkansas	88-0647	Kansas	E10388
Florida	E871118	Texas	T104704232-23-39
lowa	408	Oklahoma	8727
Louisiana	30686		


÷

į

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

Pace Analytical D 400 West Bethany Suite 190 Allen, TX 75013			`1-A 04		ione D Number,	02 29 2024	Page 1 of 214 366-741 P M
	Sc	oil Monite	oring (at 5	+ 4	
							LM10=
urix, Solid & Cher	nical Materials	_					.
supler Printed Name	_ Clien T	2015 - Contraction (1997)					
umpler Affiliation	۲۳ (
ampler Signature							
ar Valence, M. Konstantion - State and an an and state of the state of	Samples Radioscrive?	Samples Cont	tains Diexa	с []	\$amples Biolog	ii al Hozard" 🗍	
2. 10 Martin and an	Glass 8 oz w/Tefl	on lined lid			······································		
٢	17 h Subcontract IN3K	Nitrate-nitrogen S	а вкстрь	.b,	EPA 353	ACAS.PACU428	(0 davs)
Ana-Lab #	Sample ID		Bottles	Date 1	Time	Notes	
	2-274462		(120/26	1000		
	1 463				1015		
	- 464				1030		
		gn K	Jacob		l l		
-	$\mathcal{L} \cup \mathcal{L} \not = \mathcal{L} \cup \mathcal{L} \cup \mathcal{L}$	411-		<u></u>			
-							

Corporate, 2600 Dudley Road Kilgore 1X, 75662

SUBCONTRACT CHAIN OF CUSTODY

Pace Analytical Dallas 400 West Bethany Drive Suite 190 Allen, TX 75013

ICT1-A	N .
104	Phone
	,

02/29/2024

Page 2 of 2

214.386-7412

PA(T)

Soil Monitoring 0-6"

Date	Time	Relingvished	Received	
2/		Consted Name Affiliation Kathy Tarver SPL, Inc.	Proted Name	Ajfileit - e
124	1500	Signature	Signature	
7/1/24	200	Center Althouter UPS	Algandra Galloges	Andreas in IACE
3/1/29	2940	n an	Den aline Jults	
		a da filipina. Dia gene	an ang antipagan. N	本代: 1992 ·
		$\gamma_{\mu}(jt)(t)$	Starting	
		nav 1197 a. Afrikalped	Annied Nurse	基 合称 计
		ç Gurtuna.	Signotore	
Sample Re Cooler/Sar		$\mathbf{r}_{\mathbf{c}}$ $\mathbf{f}_{\mathbf{v}}$ \mathbf{c} $\mathbf{f}_{\mathbf{v}}$ \mathbf{c} are inverse or purplication.	Fenge See Mached Hand De	ta [] BauDebere? [] (Pb divered to Region []]

The isorcented column design design design of p(A + A21A, N + NEUAC) or z - non-distertunder scope of a coordination. Unlies effectively, since the line N + A21A, N + NEUAC) or z - non-distertunder scope of a coordination. Unliest effectively, and the our Standard Lemis & Conditions Agreement (a) in definition of the line of each encoder z - hope to way an elable on the Ann-Lill personnel collect samples as specified by Ann-Lill SOP 200(§323).

Comments

Please send acknowledgements and reports to projectmanager@ana-lab.com. Please send invoices to projectmanager@ana-lab.com & ar@ana-lab.com

Corporate (2600 Dudley Road Kilgore FX (78662)

ł

COC REPORTING LIMITS

Page 1 of 1

Test	Name	<u>MDI_MQI</u>	Target MAL	Method
ICT1	104 Soil Monitoring 0-6	· ft	Solid & Chemi	eal Materials
Expre	WANGERS REALING STREET, WEIGHT DE		an	•••••
²N3K Ach	Nitrate-nitrogen SUB(KC1 Prep)	n dilutions in acco	rd with the sample	LPA3533 CAS PACE le matrix and listed method requirements
	· Method Quantitation I unit and corresponds to a le	the second se		COCOCCETED AND AND AND AND AND AND AND AND AND AN

(ug kg)

ļ	SDE is Simple Detection Limit and withe actustic [MDL] sample specific dilutions, day weight	PDF PC/PG FG DS12 (100.1 com et al. C.14, 150.2 [bd. graph	1
	MAL is immaining and which limit and both e selected target hards	(2) A the object of a first state of	1
	VEX. As interforming that which is the and a set cost of second spectrum of		

Corporate: 2600 Dudley Road Kilgore TX 75662

FROM: MKE GRIBBLE 1931 937-0104 UNARAE 18 - OROLEY PO Register TY 78851-3730 23 LBS 1 OF 1

SHIP TO:

SAMPLES -SUBCONTRACTS (972) 727-1123 PACE ANALYTICAL DALLAS SUITE 190 400 WEST BETHANY DRIVE ALLEN TX 75013

TX 753 5-77

1.15

BILLING P/P

. **i**

a claine e a valgance i i kaol putan.

۰.

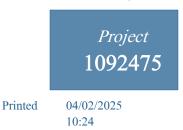
 $(\gamma_{ij}) = (\gamma_{ij}) + (\gamma_{ij})$

-

2

.

ł


Documes Sample Conditio	
Constant Sector Se	
F DAL-C OL	
Sample Cond	ition Upon Receipt
.∡Dallas	h 🗆 Corpus Christi 🖾 Austin
lient Name: SPL Proje	ect Work order (place lab e l):
CHERCE AND LIPS OF HSPS IT Client 1 LSD T PACE: Other:	
racking #: 12 (41 445 01 4648 8054	¢
Custody Seal on Cooler/Box: Yes T No P Received on ice: Wet Blue No ice T	
tereiving Lab 1 Thermometer Used: $ \mathcal{R} _{2}$ Cooler Ten	np C: 3.4 (Recorded) + D. A Correction factor) 3-6 (Venal)
teceiving Lab 2 Thermometer Used: Cooler Ten	np °C: (Recorded) (Correction Factor) (Actual)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	same day as receipt in which evidence of cooling is acceptable
Chain of Custody relinquished	Yes 7 No
Sampler name & signature on COC	Yes T No Z
Short HT analyses (<72 hrs)	Yes / No 🗅
Login Person AC Date 31(Yes / No rt
Correct Container used	Yes No :
Centainer Intact	Yes No ()
Sample pH Acceptable	Yes I NO D NA
pH Strips: Residual Chlorine Present	Yes T No II NA
CI Strips:	Yes No NA
Sulfide Present Lead Acetate Strips:	ies no in p
Are soil samples (volatiles, TPH) received in 5035A Kit inot applicable to TCLP VOA or PST Program TPH)	ts Yes No II NA
Unpreserved 5035A soil frozen within 48 hrs	Yes D No D HA
Headspace in VOA (>6mm)	
Project sampled in USDA Regulated Area outside of Texas State Sampled	Yest No LI NA Z
Non Conformance(s):	Yes = No Z
Labeling Person (if different than log-in).	Date:

.

Т

Page 1 of 1

ICT1-A

Individual Care of Texas Sandy Peterson P.O. Box 3395 Abilene, TX 79604

TABLE OF CONTENTS

This report consists of this Table of Contents and the following pages:

<u>Report Name</u>	Description	Pages
1092475_r02_01_ProjectSamples	SPL Kilgore Project P:1092475 C:ICT1 Project Sample Cross Reference t:304	3
1092475_r03_03_ProjectResults	SPL Kilgore Project P:1092475 C:ICT1 Project Results t:304	12
1092475_r10_05_ProjectQC	SPL Kilgore Project P:1092475 C:ICT1 Project Quality Control Groups	4
1092475_r99_09_CoC_1_of_1	SPL Kilgore CoC ICT1 1092475_1_of_1	10
	Total Pages:	29

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 1 of 30

SAMPLE CROSS REFERENCE

Sa P.	dividual Care of Texas andy Peterson .O. Box 3395 bilene, TX 79604		Ρ	Printed	4/2/2025	Page 1 of 3
Sample ID		Taken	Time		Received	
Soil Monitoring 0-6"		02/20/2024	10:00:00		02/20/2024	

Bottle 01 Glass Qt w/Teflon lined lid

Sample 2274462

Bottle 02 Glass 8 oz w/Teflon lined lid

Bottle 03 Prepared Bottle: Special Preparation (Batch 1105344) Volume: 100.00000 mL <== Derived from 01 (10.1 grams)

Bottle 04 Prepared Bottle: MPe Extraction (Batch 1105477) Volume: 15.00000 mL <== Derived from 01 (1.6 grams)

Bottle 05 Prepared Bottle: TKN TRAACS Autosampler Vial (Batch 1105573) Volume: 20.00000 mL <== Derived from 01 (1.0 grams)

Bottle 06 Prepared Bottle: TKN TRAACS Autosampler Vial (Batch 1105573) Volume: 20.00000 mL <== Derived from 01 (1.0 grams)

Bottle 07 Prepared Bottle: TKN TRAACS Autosampler Vial (Batch 1105573) Volume: 20.00000 mL <== Derived from 01 (1.0 grams)

Bottle 08 Prepared Bottle: 2 mL Glass vial (Batch 1105743) Volume: 50.00000 mL <== Derived from 02 (5 grams)

Bottle 09 Prepared Bottle: 2 mL Glass vial (Batch 1105743) Volume: 50.00000 mL <== Derived from 02 (5 grams) Bottle 10 Prepared Bottle: 2 mL Glass vial (Batch 1105743) Volume: 50.00000 mL <== Derived from 02 (5 grams)

			, iiio)	
Method	Bottle	PrepSet	Preparation	QcGroup
EPA 353.3		-	03/04/2024	
EPA 9056	08	1105743	02/22/2024	1105924
EPA 6010B	04	1105477	02/21/2024	1105828

2274463	Soil Monitoring 6-18"	02/20/2024	10:15:00		02/20/2024		
Sample	Sample ID	Taken	Time		Received		
	EPA 9045D 4	01	1106311	02/23/2024	1106311	02/23/2024	
	SM2540 G-1997 /MOD	01	1105836	02/22/2024	1105836	02/22/2024	
	Calculation	05	1105573	02/22/2024	1105763	03/04/2024	
	EPA 351.2 2	05	1105573	02/22/2024	1105763	02/22/2024	
	EPA 9056			03/06/2024		03/06/2024	
	EPA 9050	01	1106310	02/23/2024	1106310	02/23/2024	
	EPA 6010B	04	1105477	02/21/2024	1105623	02/22/2024	
	EPA 6010B	04	1105477	02/21/2024	1105828	02/22/2024	

Bottle 01 Glass Qt w/Teflon lined lid

Bottle 02 Glass 8 oz w/Teflon lined lid

Bottle 03 Prepared Bottle: Special Preparation (Batch 1105344) Volume: 100.00000 mL <== Derived from 01 (10.0 grams)

Bottle 04 Prepared Bottle: MPe Extraction (Batch 1105477) Volume: 15.00000 mL <== Derived from 01 (1.5 grams)

Bottle 05 Prepared Bottle: TKN TRAACS Autosampler Vial (Batch 1105573) Volume: 20.00000 mL <== Derived from 01 (1.0 grams)

Bottle 06 Prepared Bottle: 2 mL Glass vial (Batch 1105743) Volume: 50.00000 mL <== Derived from 02 (5 grams)

Method EPA 353.3	Bottle	PrepSet	Preparation 03/04/2024	QcGroup	Analytical 03/04/2024
EPA 9056	06	1105743	02/22/2024	1105924	02/22/2024
EPA 6010B	04	1105477	02/21/2024	1105828	02/22/2024
EPA 6010B	04	1105477	02/21/2024	1105623	02/22/2024

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 2 of 30

Analytical

03/04/2024 02/22/2024

1

SAMPLE CROSS REFERENCE

	Individual Care of Texas Sandy Peterson			Printed	4/2/2025	Page 2 of 3
	P.O. Box 3395 Abilene, TX 79604					
Sample ID		Taken	Time		Received	
Soil Monitoring 6-	18"	02/20/2024	10:15:00		02/20/2024	

Bottle 01 Glass Qt w/Teflon lined lid

Sample 2274463

Bottle 02 Glass 8 oz w/Teflon lined lid

Bottle 03 Prepared Bottle: Special Preparation (Batch 1105344) Volume: 100.00000 mL <== Derived from 01 (10.0 grams)

Bottle 04 Prepared Bottle: MPe Extraction (Batch 1105477) Volume: 15.00000 mL <== Derived from 01 (1.5 grams)

Bottle 05 Prepared Bottle: TKN TRAACS Autosampler Vial (Batch 1105573) Volume: 20.00000 mL <== Derived from 01 (1.0 grams)

Bottle 06 Prepared Bottle: 2 mL Glass vial (Batch 1105743) Volume: 50.00000 mL <== Derived from 02 (5 grams)

	Method EPA 9050	Bottle 01	PrepSet 1106310	Preparation 02/23/2024	QcGroup 1106310	Analytical 02/23/2024
	EPA 9056 EPA 351.2 2 Calculation	05 05	1105573 1105573	03/06/2024 02/22/2024 02/22/2024	1106215 1106215	03/06/2024 02/26/2024 03/04/2024
	SM2540 G-1997 /MOD EPA 9045D 4	01 01	1105836 1106311	02/22/2024 02/23/2024	1105836 1106311	02/22/2024 02/23/2024
Sample	Sample ID	Taken	Time		Received	
2274464	Soil Monitoring 18-30"	02/20/2024	10:30:00		02/20/2024	

Bottle 01 Glass Qt w/Teflon lined lid

Bottle 02 Glass 8 oz w/Teflon lined lid

Bottle 03 Prepared Bottle: Special Preparation (Batch 1105344) Volume: 100.00000 mL <== Derived from 01 (10 grams)

Bottle 04 Prepared Bottle: MPe Extraction (Batch 1105477) Volume: 15.00000 mL <== Derived from 01 (1.6 grams)

Bottle 05 Prepared Bottle: TKN TRAACS Autosampler Vial (Batch 1105573) Volume: 20.00000 mL <== Derived from 01 (1.0 grams)

Bottle 06 Prepared Bottle: 2 mL Glass vial (Batch 1105743) Volume: 50.00000 mL <== Derived from 02 (5 grams)

	Method EPA 353.3	Bottle	PrepSet	Preparation 03/04/2024	QcGroup	Analytical 03/04/2024
	EPA 9056	06	1105743	02/22/2024	1105924	02/22/2024
	EPA 6010B	04	1105477	02/21/2024	1105828	02/22/2024
	EPA 6010B	04	1105477	02/21/2024	1105623	02/22/2024
	EPA 9050	01	1106310	02/23/2024	1106310	02/23/2024
	EPA 9056			03/06/2024		03/06/2024
	EPA 351.2 2	05	1105573	02/22/2024	1106215	02/26/2024
	Calculation	05	1105573	02/22/2024	1106215	03/04/2024
	SM2540 G-1997 /MOD	01	1105836	02/22/2024	1105836	02/22/2024
	EPA 9045D 4	01	1106311	02/23/2024	1106311	02/23/2024
ple	Sample ID	Taken	Time		Received	

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 3 of 30

Samp

1

SAMPLE CROSS REFERENCE

		Individual Care of Texas Sandy Peterson P.O. Box 3395 Abilene, TX 79604			Printed	4/2/2025	Page 3 of 3
2276775	KCl Extract Blank	Abilene, 1X /9004	02/20/2024	10:00:00		02/20/2024	
Bottle 01 KCl	Extract BLANK						
	Method EPA 353.3		Bottle	PrepSet	Preparation 03/04/2024	QcGroup	Analytical 03/04/2024

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 4 of 30

ICT1-A

Individual Care of Texas Sandy Peterson P.O. Box 3395 Abilene, TX 79604

	Page 1 of 12
	Project 1092475
Report D	ate: 03/06/2024
Printed:	04/02/2025

RESULTS

					Sample	Result	S						
	2274462	Soil Monitoring 0	-6"								Received:	02/20)/2024
Sc	olid & Chemical		Collected Taken:	<i>d by:</i> ABW 02/20/2024	SPL Kilg 1	ore 0:00:00				PO:			
		Outlet Type:	null					Floor:	nu	III			
		Room/Location:	null		Last U	Jsed:		12/31/1899					
				Prepared:		02/21/2	024	10:40:07	Calculated		02/21/2024	10:40:07	CAI
z	Parameter SUB Shipped			<i>Results</i> Verified	Un	its	RL		Flags		CAS		Bottle
C	alculation			Prepared:	1105573	02/22/2	024	09:14:09	Calculated 11	05763	03/04/2024	17:07:40	CAL
	Parameter			Results	Un	its	RL		Flags		CAS		Bottle
NELAC	Total Nitrogen * [t (as N) Dry Weight Basis		1940.667 *	mg	/kg	13.8		Е				05
E	PA 351.2 2			Prepared:	1105573	02/22/2	024	09:14:09	Analyzed 11	05763	02/22/2024	15:57:00	AM
	Parameter			Results	Un	its	RL		Flags		CAS		Bottle
NELAC	Total Kjeldahl * [Nitrogen Dry Weight Basis		1940 *	mg	/kg	13.8		Р		7727-37-9		05
E	PA 353.3			Prepared:		03/04/2	024	13:32:00	Analyzed		03/04/2024	13:32:00	SUI
	Parameter			Results	Un	its	RL		Flags		CAS		Bottle
NELAC	Nitrate-nitroge	n SUB(KCl Prep)		0.05	mg	1	0.05				PACU		
E	PA 6010B			Prepared:	1105477	02/21/2	024	14:00:00	Analyzed 11	05828	02/22/2024	10:52:00	KB
	Parameter			Results	Un	its	RL		Flags		CAS		Bottle
z	Potassium, Me	hlich-3 extract		811 *	mg	/kg	33.3				7440-09-7		04
Ei	PA 6010B			Prepared:	1105477	02/21/2	024	14:00:00	Analyzed 11	05623	02/22/2024	11:05:00	KB
	Parameter			Results	Un	its	RL		Flags		CAS		Bottle

Report Page 5 of 30

SPL The Science of Sure

1 2

										Company of the	The Scien	ce of Sur	e
		ICT1-	A									age 2 of 1	2
		Individual Care o Sandy Peterson P.O. Box 3395 Abilene, TX 7960								Report I		2 475 6/2024	
										Printed:	04/02	2/2025	
	2274462	Soil Monitoring ()-6"								Received:	02/20)/2024
So	lid & Chemical M	Materials		<i>by:</i> ABW 02/20/2024	SPL Kilg 1	ore 0:00:0	0			PO:			
		Outlet Type:	null					Floor:		null			
		Room/Location	null		Last U	Jsed:		12/31/1899)				
EF	PA 6010B			Prepared:	1105477	02/21	/2024	14:00:00	Analyzed	1105623	02/22/2024	11:05:00	KE
-	Parameter Phosphorus, Me * D	ehlich-3 extract ry Weight Basis		<i>Results</i> <33.3 *	Un mg		<i>RL</i> 33.3		Flags	5	CAS		Botta 04
EF	PA 9045D 4			Prepared:	1106311	02/23	/2024	10:20:00	Analyzed	1106311	02/23/2024	10:20:00	Al
- LAC	Parameter pH Measured in	n Water/2:1 water:s		<i>Results</i> 6.4@20C	Un SU		RL		Flags	5	CAS 12408-02-5		<i>Botti</i> 01
Eł	PA 9050			Prepared:	1106310	02/23	2/2024	10:20:00	Analyzed	1106310	02/23/2024	10:20:00	Al
LAC	Parameter Conductivity (s	oluble) (2:1)		<i>Results</i> 26.6	Un um m	<i>its</i> hos/c	RL		Flags	5	CAS CONDSOL	2:1	Botta 01
EF	PA 9056			Prepared:		03/06	/2024	15:36:36	Calculated	,	03/06/2024	15:36:36	CA
- LAC	Parameter Nitrate-Nitroge	n (KCl Extract)		<i>Results</i> <1.41 *	Un mg		<i>RL</i> 1.41		Flags	5	<i>CAS</i> 14797-55-8		Bott
EF	PA 9056			Prepared:	1105743	02/22	/2024	15:42:09	Analyzed	1105924	02/22/2024	17:58:00	NA
LAC	Parameter Nitrate-Nitroge * D	n ry Weight Basis		<i>Results</i> 0.667 *	Un mg		<i>RL</i> 0.319		<i>Flags</i> P	5	<i>CAS</i> 14797-55-8		Botti 08
SA	M2540 G-1997 /N	MOD		Prepared:	1105836	02/22	/2024	08:00:00	Analyzed	1105836	02/22/2024	08:00:00	JK
LAC	Parameter Total Solids for	r Dry Wt Conversi		<i>Results</i> 70.8	Un %	its	<i>RL</i> 0.010		Flags	5	CAS		Bottl 01

Report Page 6 of 30

) SPL

1 2

						Eliman out it	The Scier	ice of Sui	re
	ICT1-A Individual Care of Texas Sandy Peterson						Proj	2 age 3 of 1 ect 2475	2
	P.O. Box 3395 Abilene, TX 79604					Report Printed	Date: 03/0	06/2024 02/2025	
	2274463 Soil Monitoring 6-18"						Received:	02/20	0/2024
S	olid & Chemical Materials Collector Taken:	ed by: ABW 02/20/2024	SPL Kilge 10	ore 0:15:00		PO:			
	Outlet Type: null				Floor:	null			
	Room/Location: null		Last U	Ised:	12/31/189	9			
		Prepared:		02/21/2024	10:40:09	Calculated	02/21/2024	10:40:09	CAL
	Parameter SUB Shipped	Results Verified	Um	ts RL		Flags	CAS		Bottle
С	alculation	Prepared:	1105573	02/22/2024	09:14:09	Calculated 1106215	5 03/04/2024	17:07:40	CA
IELAC	Parameter Total Nitrogen (as N) * Dry Weight Basis	<i>Results</i> 1550 *	Uni mg/			Flags	CAS		Bottle 05
E	PA 351.2 2	Prepared:	1105573	02/22/2024	09:14:09	Analyzed 1106215	5 02/26/2024	09:17:00	AM
ELAC	Parameter Total Kjeldahl Nitrogen * Dry Weight Basis	<i>Results</i> 1550 *	Uni mg/			Flags	CAS 7727-37-9		Bottle 05
E	PA 353.3	Prepared:		03/04/2024	13:34:00	Analyzed	03/04/2024	13:34:00	SUI
IELAC	Parameter Nitrate-nitrogen SUB(KCl Prep)	<i>Results</i> 0.05	Uni mg/			Flags	CAS PACU		Bottle
E	PA 6010B	Prepared:	1105477	02/21/2024	14:00:00	Analyzed 1105828	8 02/22/2024	11:05:00	KB
	Parameter Potassium, Mehlich-3 extract	<i>Results</i> 693 *	Uni mg/			Flags	<i>CAS</i> 7440-09-7		<i>Bottle</i> 04
E	PA 6010B	Prepared:	1105477	<i>02/21/2024</i>	14:00:00	Analyzed 1105623	02/22/2024	11:08:00	KB
	Parameter Phosphorus, Mehlich-3 extract * Dry Weight Basis	<i>Results</i> < 33.9 *	Uni mg/			Flags	CAS		Bottle 04

Report Page 7 of 30

1 2

011100. 905-984-0.	551 * Fax: 903-984	+-3914						anan and a start of the	The Science	ce of Sur	è
	ICT1-A								P Proje	age 4 of 1	2
	Individual Care of Sandy Peterson P.O. Box 3395	Texas							1092		
	Abilene, TX 7960	04						Report I Printed:		5/2024 2/2025	
2274463	Soil Monitoring 6	-18"							Received:	02/20)/2024
Solid & Chemical I		Collected by: Taken: 02	ABW /20/2024	SPL Kilg 1	ore 0:15:00			PO:			
	Outlet Type:	null				Floor:		null			
	Room/Location:	null		Last U	Jsed:	12/31/1899					
EPA 9045D 4			Prepared:	1106311	02/23/2024	10:20:00	Analyzed	1106311	02/23/2024	10:20:00	AL
Parameter AC pH Measured in	n Water/2:1 water:s		<i>Results</i> 6.6@20C	Un. SU			Flags	3	CAS 12408-02-5		Bottle 01
EPA 9050			Prepared:	1106310	02/23/2024	10:20:00	Analyzed	1106310	02/23/2024	10:20:00	AL
Parameter AC Conductivity (s	soluble) (2:1)		<i>Results</i> 36.8	Un um m	<i>its RL</i> hos/c		Flags	ž	CAS CONDSOL2	2:1	Bottle 01
EPA 9056			Prepared:		03/06/2024	15:36:36	Calculated		03/06/2024	15:36:36	CA
<i>Parameter</i> AC Nitrate-Nitroge	en (KCl Extract)		<i>Results</i> <1.37 *	Un mg			Flags	7	<i>CAS</i> 14797-55-8		Bottle
EPA 9056			Prepared:	1105743	02/22/2024	15:42:09	Analyzed	1105924	02/22/2024	19:09:00	NA
Parameter AC Nitrate-Nitroge * D	en Dry Weight Basis		<i>Results</i> <0.310 *	Un mg			Flags	3	<i>CAS</i> 14797-55-8		Bottle 06
SM2540 G-1997 /I	MOD		Prepared:	1105836	02/22/2024	08:00:00	Analyzed	1105836	02/22/2024	08:00:00	JK
Parameter AC Total Solids for	r Dry Wt Conversi		<i>Results</i> 72.9	Un. %	<i>its RL</i> 0.010		Flags	7	CAS		Bottle 01
2274464	Soil Monitoring 1	8-30"							Received:	02/20)/2024
Solid & Chemical I		Collected by: Taken: 02	: ABW /20/2024	SPL Kilg 1	ore 0:30:00			PO:			
	Outlet Type:	null				Floor:		null			
	Room/Location:	null		Last U	Jsed:	12/31/1899					
									Repo	rt Page 8	3 of 3

5PL of Sure

1 2

						and a second second	The Scien	ce of Sur	e
	ICT1-A						H	Page 5 of 1	2
	Individual Care of Texas Sandy Peterson P.O. Box 3395 Abilene, TX 79604					Donort	Proje 1092	2475	
						Report I Printed:		6/2024 2/2025	
	2274464 Soil Monitoring 18-30"						Received:	02/20)/2024
	Solid & Chemical Materials Collected by Taken: 02	7: ABW 2/20/2024	SPL Kilgo 10	re :30:00		PO:			
	Outlet Type: null				Floor:	null			
_	Room/Location: null		Last U	sed:	12/31/189	9			
		Prepared:		02/21/2024	10:40:10	Calculated	02/21/2024	10:40:10	CAL
z	Parameter SUB Shipped	<i>Results</i> Verified	Unit	is RL		Flags	CAS		Bottle
	Calculation	Prepared:	1105573	02/22/2024	09:14:09	Calculated 1106215	03/04/2024	17:07:40	CAL
NELAC	Parameter Total Nitrogen (as N) * Dry Weight Basis	<i>Results</i> 1270 *	Unit mg/l			Flags	CAS		Bottle 05
	EPA 351.2 2	Prepared:	1105573	02/22/2024	09:14:09	Analyzed 1106215	02/26/2024	09:17:00	AME
NELAC	Parameter Total Kjeldahl Nitrogen * Dry Weight Basis	<i>Results</i> 1270 *	Unit mg/l			Flags	CAS 7727-37-9		Bottle 05
	EPA 353.3	Prepared:		03/04/2024	13:35:00	Analyzed	03/04/2024	13:35:00	SUB
NELAC	Parameter Nitrate-nitrogen SUB(KCl Prep)	Results 0.05	Unit mg/l			Flags	CAS PACU		Bottle
	EPA 6010B	Prepared:	1105477	02/21/2024	14:00:00	Analyzed 1105828	02/22/2024	11:08:00	KB1
z	Parameter Potassium, Mehlich-3 extract	<i>Results</i> 594 *	Unit mg/l			Flags	<i>CAS</i> 7440-09-7		Bottle 04
	EPA 6010B	Prepared:	1105477	02/21/2024	14:00:00	Analyzed 1105623	02/22/2024	11:11:00	KB1
Ζ	Parameter Phosphorus, Mehlich-3 extract * Dry Weight Basis	<i>Results</i> <33.0 *	Unit mg/l			Flags	CAS		Bottle 04

Report Page 9 of 30

SPL The Science of Sur

<mark>1</mark> 2

011100. 905-90	84-0551 * Fax: 903-984	-3914						And	The Science	ce of Sur	è
	ICT1-A	A								age 6 of 1	2
	Individual Care of Sandy Peterson P.O. Box 3395								Proje 1092		
_	Abilene, TX 7960	94						Report I Printed:		5/2024 2/2025	
2274464	Soil Monitoring 1	8-30"							Received:	02/20)/2024
Solid & Chen	nical Materials	Collected Taken:	<i>d by:</i> ABW 02/20/2024	SPL Kilg 1	ore 0:30:00			PO:			
	Outlet Type:	null				Floor:		null			
	Room/Location:	null		Last U	Jsed:	12/31/1899	I				
EPA 9045D 4	4		Prepared:	1106311	02/23/2024	10:20:00	Analyzed	1106311	02/23/2024	10:20:00	ALI
Parameter	er ured in Water/2:1 water:s		<i>Results</i> 7.0@20C	Un SU			Flags	7	CAS 12408-02-5		Bottle 01
EPA 9050			Prepared:	1106310	02/23/2024	10:20:00	Analyzed	1106310	02/23/2024	10:20:00	AL.
Paramete	vity (soluble) (2:1)		<i>Results</i> 66.4	Un um m	<i>its RL</i> hos/c		Flags	7	CAS CONDSOL2	2:1	Bottle 01
EPA 9056			Prepared:		03/06/2024	15:36:36	Calculated		03/06/2024	15:36:36	CA
Parameter AC Nitrate-N	er litrogen (KCl Extract)		<i>Results</i> <1.36 *	Un mg	<i>its RL</i> / kg 1.36		Flags	7	<i>CAS</i> 14797-55-8		Bottle
EPA 9056			Prepared:	1105743	02/22/2024	15:42:09	Analyzed	1105924	02/22/2024	19:33:00	NA
Paramete LAC Nitrate-N			<i>Results</i> <0.308 *	Un mg	<i>its RL</i> / kg 0.308		Flags	7	<i>CAS</i> 14797-55-8		Bottle 06
SM2540 G-1.	997 /MOD		Prepared:	1105836	02/22/2024	08:00:00	Analyzed	1105836	02/22/2024	08:00:00	JK.
Paramete LAC Total Sol	er ids for Dry Wt Conversi		<i>Results</i> 73.4	Un %	<i>its RL</i> 0.010		Flags	7	CAS		Bottle 01
2276775	KCl Extract Blank	٢							Received:	02/20)/2024
Solid & Chen	nical Materials	Collected Taken:	<i>d by:</i> ABW 02/20/2024	SPL Kilg 1	ore 0:00:00			PO:			
	Outlet Type:	null				Floor:		null			
	Room/Location:	null		Last U	Jsed:	12/31/1899					
					AND ALCONO.				Report	Page 10) of 3

1 2

	ICT1-A	4							Page 7 of 12	2
								Proj	iect	
	Individual Care of Sandy Peterson	Texas								
	P.O. Box 3395							1092	2475	
	Abilene, TX 7960	94					Report	Data: $02/$	06/2024	
							Printed		02/2024	
2276775	KCl Extract Blanl	¢						Received:	02/20/	/202
Solid & Chemica		Collecto Taken:	ed by: ABW 02/20/2024	SPL Kil	gore 10:00:00		PO:			
	Outlet Type:	null				Floor:	null			
	Room/Location:	null		Last	Used:	12/31/1899)			
EPA 353.3			Prepared:		03/04/2024	13:35:00	Analyzed	03/04/2024	13:35:00	St
Parameter			Results	U	nits RL		Flags	CAS		Bot
	g en SUB(KCl Prep) * Dry Weight Basis		0.05 S	m ample P	g/l 0.05			PACU		
	* Dry Weight Basis	-6"			-				02/20	/202
		-6"	S		-			PACU Received:	02/20,	/202
	* Dry Weight Basis	-6"			-				02/20,	/202
	* Dry Weight Basis	-6" null	S		-	Floor:	null		02/20,	/202
	* Dry Weight Basis Soil Monitoring 0	null	S	ample P	-	Floor: 12/31/1899			02/20	/202
	* Dry Weight Basis Soil Monitoring 0 Outlet Type:	null	S	ample P	reparation				02/20, 10:40:07	
2274462	* Dry Weight Basis Soil Monitoring 0 Outlet Type:	null	S 02/20/2024	ample P	reparation Used:	12/31/1899)	Received:		
2274462	* Dry Weight Basis Soil Monitoring 0 Outlet Type: Room/Location:	null	S 02/20/2024 Prepared: Verified	ample P	reparation Used:	12/31/1899)	Received: 03/06/2024		C
2274462 Enviro Fee (* Dry Weight Basis Soil Monitoring 0 Outlet Type: Room/Location: //per Sampling Group)	null	S 02/20/2024 Prepared: Verified	ample Pr Last 1105344	reparation Used: 03/06/2024	12/31/1899 10:40:07	Calculated	Received: 03/06/2024	10:40:07	С. М
2274462 Enviro Fee (Black 84.2	* Dry Weight Basis Soil Monitoring 0 Outlet Type: Room/Location: //per Sampling Group)	null	S 02/20/2024 Prepared: Verified Prepared:	ample Pr Last 1105344	reparation Used: 03/06/2024 02/21/2024	12/31/1899 10:40:07	Calculated	Received: 03/06/2024	10:40:07	/202 <i>C</i> <i>M</i> 0 <i>C</i>

Report Page 11 of 30

ICT1-A

Individual Care of Texas Sandy Peterson P.O. Box 3395 Abilene, TX 79604

2274462 Soil Monitoring 0-6"

02/20/2024

_		Outlet Type: Room/Location:	null null		Last	Used:	Floor: 12/31/1899		null			
	EPA 351.2 2			Prepared:	1105573	02/22/2024	09:14:09	Analyzed	1105573	02/22/2024	09:14:09	SRJ
NELAC	TKN Block Dig	gestion		20/1.0248	gr	ams						01
-	EPA 9056			Prepared:	1105743	02/22/2024	15:42:09	Analyzed	1105743	02/22/2024	15:42:09	PEV
	Water Extract-I	on Chromatography		50/5.0	gr	ams						02
	Mehlich-3 Extractio	201		Prepared:	1105477	02/21/2024	14:00:00	Analyzed	1105477	02/21/2024	14:00:00	TES
z	Mehlich-3 Extr	action		15/1.59	gr	ams						01
	SM 2540 G-1997			Prepared:	1105300	02/22/2024	08:00:00	Analyzed	1105300	02/22/2024	08:00:00	JK1
NELAC	Total Solids Sta	urt Code		Started								
	2274463	Soil Monitoring 6-2	18"							Received:	02/20/	/2024
				02/20/2024								
		Outlet Type:	null				Floor:		null			
		Room/Location:	null		Last	Used:	12/31/1899					
	Black 84.2			Prepared:	1105344	02/21/2024	09:06:28	Analyzed	1105344	02/21/2024	09:06:28	MEG
z	KCl Extraction			100/10.03	gr	ams						01
										Repo	rt Page 12	of 30

Report Date:

Received:

Printed:

Project

1092475

03/06/2024

04/02/2025

02/20/2024

ICT1-A

Individual Care of Texas Sandy Peterson P.O. Box 3395 Abilene, TX 79604

2274463 Soil Monitoring 6-18"

02/20/2024

		Outlet Type: Room/Location:	null null		Last	Used:	Floor: 12/31/1899		null			
C	<i>Calculation</i>			Prepared.		03/06/2024	15:35:21	Calculated	,	03/06/2024	15:35:21	CAL
	As Received	to Dry Weight Basis		Calculated								
E	TPA 351.2 2			Prepared	• 1105573	02/22/2024	09:14:09	Analyzed	1105573	02/22/2024	09:14:09	SRJ
NELAC	TKN Block I	Digestion		20/1.0060	gr	ams						01
E	PA 9056			Prepared.	1105743	02/22/2024	15:42:09	Analyzed	1105743	02/22/2024	15:42:09	PEV
	Water Extrac	t-Ion Chromatography		50/5.0	gr	ams						02
A	Aehlich-3 Extra	ction		Prepared.	· 1105477	02/21/2024	14:00:00	Analyzed	1105477	02/21/2024	14:00:00	TES
Z	Mehlich-3 E	straction		15/1.52	gr	ams						01
S	M 2540 G-199	7		Prepared.	- 1105300	02/22/2024	08:00:00	Analyzed	1105300	02/22/2024	08:00:00	JK1
NELAC	Total Solids	Start Code		Started								
	2274464	Soil Monitoring 18	-30"							Received:	02/20,	/2024
				02/20/2024								
		Outlet Type: Room/Location:	null null		Last	Used:	Floor: 12/31/1899		null			

Report Page 13 of 30

Report Date:

Received:

Printed:

Page 9 of 12

Project

1092475

03/06/2024

04/02/2025

02/20/2024

ICT1-A

Individual Care of Texas Sandy Peterson P.O. Box 3395 Abilene, TX 79604

2274464 Soil Monitoring 18-30"

02/20/2024

		Outlet Type:	null				Floor:		null			
		Room/Location:	null		Last	Used:	12/31/1899	9				
	Black 84.2			Prepared:	1105344	02/21/2024	09:06:28	Analyzed	1105344	02/21/2024	09:06:28	MEG
Z	KCl Extraction			100/10.00	gr	ams						01
	Calculation			Prepared:		03/06/2024	15:35:21	Calculated	1	03/06/2024	15:35:21	CAL
	As Received to	Dry Weight Basis		Calculated								
	EPA 351.2 2			Prepared:	1105573	02/22/2024	09:14:09	Analyzed	1105573	02/22/2024	09:14:09	SRJ
NELAC	TKN Block Dig	gestion		20/1.0220	gr	ams						01
	EPA 9056			Prepared:	1105743	02/22/2024	15:42:09	Analyzed	1105743	02/22/2024	15:42:09	PEV
	Water Extract-I	on Chromatography		50/5.0	gr	ams						02
	Mehlich-3 Extractio	מס		Prepared:	1105477	02/21/2024	14:00:00	Analyzed	1105477	02/21/2024	14:00:00	TES
z	Mehlich-3 Extra	action		15/1.55	gr	ams						01
	SM 2540 G-1997			Prepared:	1105300	02/22/2024	08:00:00	Analyzed	1105300	02/22/2024	08:00:00	JK1

Total Solids Start Code NELAC

Started

Report Page 14 of 30

Report Date:

Received:

Printed:

Page 10 of 12

Project

1092475

03/06/2024

04/02/2025

02/20/2024

KCl Extracti	on		100/10.06	gran	15						01
Black 84.2			Prepared:	1105344	02/21/2024	09:06:28	Analyzed	1105344	02/21/2024	09:06:28	ME
	Room/Location:	null		Last U	sed:	12/31/1899)				
	Outlet Type:	null				Floor:		null			
			02/20/2024								
2276775	KCl Extract Blank								Received:	02/20)/2024
Technician H	Iourly Rate/\$75		Verified								
			Prepared:		02/21/2024	10:40:11	Calculated	1	02/21/2024	10:40:11	CA
	Room/Location:	null		Last U	sed:	12/31/1899)				
	Outlet Type:	null				Floor:		null			
			02/20/2024								
2274465	Soil sample/transpo	ort							Received:	02/20)/2024
								Report I Printed:		3/06/2024 4/02/2025	
	P.O. Box 3395 Abilene, TX 79604	÷									
	Individual Care of Sandy Peterson	Fexas								92475	
	ICTT-A	L							P	roject	
	ICT1-A									Page 11 of 1	2

Report Page 15 of 30

z

ICT1-A

Individual Care of Texas Sandy Peterson P.O. Box 3395 Abilene, TX 79604

Qualifiers:

E - Estimated Value P - Spike recovery outside control limits due to matrix effects.

We report results on an As Received (or Wet) basis unless marked Dry Weight.

Unless otherwise noted, testing was performed at SPL, Inc.- Kilgore laboratory which holds International, Federal, and state accreditations. Please see our Websites for details.

(N)ELAC - Covered in our NELAC scope of accreditation z -- Not covered by our NELAC scope of accreditation

These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of SPL Kilgore. Unless otherwise specified, these test results meet the requirements of NELAC.

RL is the Reporting Limit (sample specific quantitation limit) and is at or above the Method Detection Limit (MDL). CAS is Chemical Abstract Service number. RL is our Reporting Limit, or Minimum Quantitation Level. The RL takes into account the Instrument Detection Limit (IDL), Method Detection Limit (MDL), and Practical Quantitation Limit (PQL), and any dilutions and/or concentrations performed during sample preparation (EQL). Our analytical result must be above this RL before we report a value in the 'Results' column of our report (without a 'J' flag). Otherwise, we report ND (Not Detected above RL), because the result is "<" (less than) the number in the RL column. MAL is Minimum Analytical Level and is typically from regulatory agencies. Unless we report a result in the result column, or interferences prevent it, we work to have our RL at or below the MAL.

00

Bill Peery, MS, VP Technical Services

	Page 12 of 12
	Project
	1092475
Report Date:	03/06/2024

04/02/2025

Printed:

0

Report Page 16 of 30

ICT1-A

Individual Care of Texas Sandy Peterson P.O. Box 3395 Abilene, TX 79604

1 2 3

Page 1 of 4

Project 1092475

Printed 04/02/2025

Analytical Set	1105763									EPA	A 351.2 2
				В	lank						
Parameter	PrepSet	Reading	MDL	MQL	Units			File			
Total Kjeldahl Nitrogen	1105573	ND	0.378	1.00	mg/kg			126019974			
				C	CV						
Parameter		Reading	Known	Units	Recover%	Limits%		File			
Total Kjeldahl Nitrogen		5.38	5.00	mg/kg	108	90.0 - 110		126019973			
Total Kjeldahl Nitrogen		5.46	5.00	mg/kg	109	90.0 - 110		126019981			
Total Kjeldahl Nitrogen		5.46	5.00	mg/kg	109	90.0 - 110		126019982			
				Dup	olicate						
Parameter	Sample		Result	Unknown	1		Unit		RPD		Limit%
Total Kjeldahl Nitrogen	2274462		1300	1370			mg/kg		5.24		20.0
				I	CV						
Parameter		Reading	Known	Units	Recover%	Limits%		File			
Total Kjeldahl Nitrogen		5.35	5.00	mg/kg	107	90.0 - 110		126019972			
				LCS	5 Dup						
Parameter	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Total Kjeldahl Nitrogen	1105573	98.8	94.1		100	90.0 - 110	98.8	94.1	mg/kg	4.87	20.0
5				Mat	. Spike				00		
Parameter	Sample	Spike	Unknown		Units	Recovery %	I imite %	File			
Total Kjeldahl Nitrogen	2274462	1 460	1370	965	mg/kg	9.33	80.0 - 120	126019979		*	
Analytical Set	1106215			D	lank					EPA	A 351.2 2
D. (D <i>G</i> (D ('						F '1			
Parameter Total Kialdahl Nitrogan	PrepSet 1105573	<i>Reading</i> ND	MDL	MQL	Units			<i>File</i> 126034322			
Total Kjeldahl Nitrogen	11033/3							120034322			
		ND	0.378	1.00	mg/kg						
		ND	0.378		mg/kg CCV						
Parameter		Reading	Known		CV Recover%	Limits%		File			
Total Kjeldahl Nitrogen		<i>Reading</i> 5.38	Known 5.00	C <i>Units</i> mg/kg	CCV <i>Recover%</i> 108	90.0 - 110		<i>File</i> 126034321			
Total Kjeldahl Nitrogen Total Kjeldahl Nitrogen		<i>Reading</i> 5.38 5.39	Known 5.00 5.00	C <i>Units</i> mg/kg mg/kg	CCV <i>Recover%</i> 108 108	90.0 - 110 90.0 - 110		<i>File</i> 126034321 126034325			
Total Kjeldahl Nitrogen Total Kjeldahl Nitrogen Total Kjeldahl Nitrogen		<i>Reading</i> 5.38 5.39 5.37	<i>Known</i> 5.00 5.00 5.00	Units mg/kg mg/kg mg/kg	CCV <i>Recover%</i> 108 108 107	90.0 - 110 90.0 - 110 90.0 - 110		<i>File</i> 126034321 126034325 126034327			
Total Kjeldahl Nitrogen Total Kjeldahl Nitrogen Total Kjeldahl Nitrogen Total Kjeldahl Nitrogen		<i>Reading</i> 5.38 5.39 5.37 5.42	<i>Known</i> 5.00 5.00 5.00 5.00	Units mg/kg mg/kg mg/kg mg/kg	CCV <i>Recover%</i> 108 108 107 108	90.0 - 110 90.0 - 110 90.0 - 110 90.0 - 110		<i>File</i> 126034321 126034325 126034327 126034331			
Total Kjeldahl Nitrogen Total Kjeldahl Nitrogen Total Kjeldahl Nitrogen Total Kjeldahl Nitrogen Total Kjeldahl Nitrogen		<i>Reading</i> 5.38 5.39 5.37 5.42 5.39	<i>Known</i> 5.00 5.00 5.00 5.00 5.00	C Units mg/kg mg/kg mg/kg mg/kg mg/kg	CCV <i>Recover%</i> 108 108 107 108 108	90.0 - 110 90.0 - 110 90.0 - 110 90.0 - 110 90.0 - 110		<i>File</i> 126034321 126034325 126034327 126034331 126034332			
Total Kjeldahl Nitrogen Total Kjeldahl Nitrogen Total Kjeldahl Nitrogen Total Kjeldahl Nitrogen Total Kjeldahl Nitrogen Total Kjeldahl Nitrogen		<i>Reading</i> 5.38 5.39 5.37 5.42 5.39 5.36	<i>Known</i> 5.00 5.00 5.00 5.00 5.00 5.00	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	CCV <i>Recover%</i> 108 108 107 108 108 107	90.0 - 110 90.0 - 110 90.0 - 110 90.0 - 110 90.0 - 110 90.0 - 110		<i>File</i> 126034321 126034325 126034327 126034331 126034332 126034335			
Total Kjeldahl Nitrogen Total Kjeldahl Nitrogen Total Kjeldahl Nitrogen Total Kjeldahl Nitrogen Total Kjeldahl Nitrogen Total Kjeldahl Nitrogen Total Kjeldahl Nitrogen		<i>Reading</i> 5.38 5.39 5.37 5.42 5.39 5.36 5.37	<i>Known</i> 5.00 5.00 5.00 5.00 5.00 5.00 5.00	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	CV <i>Recover%</i> 108 108 107 108 108 107 107	90.0 - 110 90.0 - 110 90.0 - 110 90.0 - 110 90.0 - 110 90.0 - 110 90.0 - 110		<i>File</i> 126034321 126034325 126034327 126034331 126034332 126034335 126034335			
Total Kjeldahl Nitrogen Total Kjeldahl Nitrogen Total Kjeldahl Nitrogen Total Kjeldahl Nitrogen Total Kjeldahl Nitrogen Total Kjeldahl Nitrogen Total Kjeldahl Nitrogen		<i>Reading</i> 5.38 5.39 5.37 5.42 5.39 5.36 5.37 5.36	<i>Known</i> 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	CV <i>Recover%</i> 108 108 107 108 107 107 107 107	90.0 - 110 90.0 - 110		File 126034321 126034325 126034327 126034331 126034332 126034335 126034336 126034338			
Total Kjeldahl Nitrogen Total Kjeldahl Nitrogen		<i>Reading</i> 5.38 5.39 5.37 5.42 5.39 5.36 5.37 5.36 5.36	<i>Known</i> 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	CV <i>Recover%</i> 108 108 107 108 107 107 107 107 107	90.0 - 110 90.0 - 110		File 126034321 126034325 126034327 126034331 126034332 126034335 126034336 126034338 126034338			
Total Kjeldahl Nitrogen Total Kjeldahl Nitrogen		<i>Reading</i> 5.38 5.39 5.37 5.42 5.39 5.36 5.37 5.36 5.36 5.36 5.37	<i>Known</i> 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	CV <i>Recover%</i> 108 108 107 108 107 107 107 107 107 107	90.0 - 110 90.0 - 110		File 126034321 126034325 126034327 126034331 126034332 126034335 126034336 126034338 126034349 126034357			
Total Kjeldahl Nitrogen Total Kjeldahl Nitrogen		<i>Reading</i> 5.38 5.39 5.37 5.42 5.39 5.36 5.37 5.36 5.37 5.35	<i>Known</i> 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	C Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	CV <i>Recover%</i> 108 108 107 108 107 107 107 107 107 107 107	90.0 - 110 90.0 - 110		File 126034321 126034325 126034327 126034331 126034332 126034335 126034336 126034338 126034349 126034357 126034365			
Total Kjeldahl Nitrogen Total Kjeldahl Nitrogen		<i>Reading</i> 5.38 5.39 5.37 5.42 5.39 5.36 5.37 5.36 5.36 5.36 5.37	<i>Known</i> 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	CCV <i>Recover%</i> 108 108 107 108 108 107 107 107 107 107 107 107 107	90.0 - 110 90.0 - 110		File 126034321 126034325 126034327 126034331 126034332 126034335 126034336 126034338 126034349 126034357			
Total Kjeldahl Nitrogen Total Kjeldahl Nitrogen		<i>Reading</i> 5.38 5.39 5.37 5.42 5.39 5.36 5.37 5.36 5.37 5.35	<i>Known</i> 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	CCV Recover% 108 108 107 108 107 107 107 107 107 107 107 107	90.0 - 110 90.0 - 110		File 126034321 126034325 126034327 126034331 126034332 126034335 126034336 126034338 126034349 126034357 126034365			
Total Kjeldahl Nitrogen Total Kjeldahl Nitrogen	Sample	<i>Reading</i> 5.38 5.39 5.37 5.42 5.39 5.36 5.37 5.36 5.37 5.35	<i>Known</i> 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	CCV Recover% 108 108 107 108 107 107 107 107 107 107 107 107	90.0 - 110 90.0 - 110	Unit	File 126034321 126034325 126034327 126034331 126034332 126034335 126034336 126034338 126034349 126034357 126034365	RPD		Limit%
Total Kjeldahl Nitrogen Total Kjeldahl Nitrogen	Sample	Reading 5.38 5.39 5.37 5.42 5.39 5.36 5.37 5.36 5.36 5.36 5.37 5.35 5.40	Known 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	CCV Recover% 108 108 107 108 107 107 107 107 107 107 107 107	90.0 - 110 90.0 - 110	Unit	File 126034321 126034325 126034327 126034331 126034332 126034335 126034336 126034338 126034349 126034357 126034365			<i>Limit%</i> 17 of 30

3.25.3.21

ICT1-A

Individual Care of Texas Sandy Peterson P.O. Box 3395 Abilene, TX 79604

Page 2 of 4

Project 1092475

Printed 04/02/2025

				Dup	olicate						
Parameter	Sample		Result	Unknown	1		Unit		RPD		Limit%
Total Kjeldahl Nitrogen	2274462		1450	1490			mg/kg		2.72		20.0
				I	cv						
Parameter		Reading	Known	Units	Recover%	Limits%		File			
Total Kjeldahl Nitrogen		5.20	5.00	mg/kg	104	90.0 - 110		126034320			
				LCS	5 Dup						
Parameter	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Total Kjeldahl Nitrogen	1105573	107	109		100	90.0 - 110	107	109	mg/kg	1.85	20.0
				Mat	. Spike						
Parameter	Sample	Spike	Unknown	Known	Units	Recovery %	Limits %	File			
Total Kjeldahl Nitrogen	2274462	1590	1490	1930	mg/kg	5.18	80.0 - 120	126034340		*	
Analy tired Cat	1105836								SM25/	IA G 10	97 /MOD
Analytical Set	1105850			Cont	trolBlk				5101234	N 0-13	97 /IWIOD
<u>Parameter</u> Total Solids for Dry Wt Conversi	PrepSet 1105836	<i>Reading</i> 0.0001	MDL	MQL	Units			<i>File</i> 126021760			
Total Solids for Dry we conversi	1105850	0.0001		Dur	grams olicate			120021700			
-				-							
<u>Parameter</u>	Sample		Result		1		Unit		RPD		Limit%
Total Solids for Dry Wt Conversi Total Solids for Dry Wt Conversi	2273495 2273867		81.2 81.8	80.5 82.6			% %		0.866 0.973		20.0 20.0
Total Solids for Dry Wt Conversi	2273807		81.8 84.0	82.0 83.9			%		0.119		20.0
·										-	
Analytical Set	1105924									Ŀ	EPA 9056
				В	lank						
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File			
Nitrate-Nitrogen	1105743	ND	0.00185	0.0226	mg/kg			126024458			
				C	CV						
<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%		File			
Nitrate-Nitrogen		2.29	2.26	mg/kg	101	90.0 - 110		126024457			
Nitrate-Nitrogen Nitrate-Nitrogen		2.29 2.28	2.26 2.26	mg/kg mg/kg	101 101	90.0 - 110 90.0 - 110		126024474 126024483			
initale-initiogen		2.20	2.20		5 Dup	90.0 - 110		120024405			
			1.000	LC	•	T 1 1 0/	T. (2004)				T. 1.0/
<u>Parameter</u> Nitroto Nitrogon	<i>PrepSet</i> 1105743	<i>LCS</i> 1.14	<i>LCSD</i> 1.12		<i>Known</i> 1.13	<i>Limits%</i> 75.0 - 120	<i>LCS%</i> 101	<i>LCSD%</i> 99.1	Units	<i>RPD</i> 1.77	<i>Limit%</i> 20.0
Nitrate-Nitrogen	1105745	1.14	1.12		1.15 ISD	75.0 - 120	101	33.1	mg/kg	1.//	20.0
<u>Parameter</u> Nitroto Nitrogon	Sample	MS 2.26	MSD	UNK 0.472	Known	Limits	<i>MS%</i>	MSD%	Units	<i>RPD</i>	<i>Limit%</i>
Nitrate-Nitrogen	2274462	2.26	2.33	0.472	2.26	80.0 - 120	79.1 *	82.2	mg/kg	3.84	20.0
Analytical Set	1105623									EP	A 6010B
				B	lank						
Parameter	PrepSet	Reading	MDL	MQL	Units			File			
					S SCORE -						
Email: Kilgore.ProjectMa	anagement@	spllabs.	com		and the second				Renor	t Pane	18 of 30
					CTNI A				rispon	i uye	10 01 00

Duplicate

ICT1-A

Individual Care of Texas Sandy Peterson P.O. Box 3395 Abilene, TX 79604

Page 3 of 4

Project 1092475

Printed 04/02/2025

				В	lank					
Parameter	PrepSet	Reading	MDL	MQL	Units			File		
Phosphorus, Mehlich-3 extract	1105477	ND	0.100	0.100	mg/kg			126018040		
				(ccv					
Parameter		Reading	Known	Units	Recover%	Limits%		File		
Phosphorus, Mehlich-3 extract		0.989	1.00	mg/kg	98.9	90.0 - 110		126018021		
Phosphorus, Mehlich-3 extract		0.992	1.00	mg/kg	99.2	90.0 - 110		126018039		
Phosphorus, Mehlich-3 extract		1.01	1.00	mg/kg	101	90.0 - 110		126018044		
Phosphorus, Mehlich-3 extract		1.09	1.00	mg/kg	109	90.0 - 110		126018051		
				Duj	plicate					
Parameter	Sample		Result	Unknow	n		Unit		RPD	Limit%
Phosphorus, Mehlich-3 extract	2272067		15.9	15.3			mg/kg		3.85	20.0
					ICL					
<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%		File		
Phosphorus, Mehlich-3 extract		25.1	25.0	mg/kg	100	95.0 - 105		126018019		
					ICV					
Parameter_		Reading	Known	Units	Recover%	Limits%		File		
Phosphorus, Mehlich-3 extract		1.03	1.00	mg/kg	103	90.0 - 110		126018020		
Analytical Set	1105828									EPA 6010C
				В	lank					
Parameter	PrepSet	Reading	MDL	MQL	Units			File		
Potassium, Mehlich-3 extract	1105477	ND	0.284	0.500	mg/kg			126021038		
				(ccv					
Parameter		Reading	Known	Units	Recover%	Limits%		File		
Potassium, Mehlich-3 extract		24.6	25.0	mg/kg	98.4	90.0 - 110		126021019		
Potassium, Mehlich-3 extract		23.6	25.0	mg/kg	94.4	90.0 - 110		126021037		
Potassium, Mehlich-3 extract		23.4	25.0	mg/kg	93.6	90.0 - 110		126021046		
Potassium, Mehlich-3 extract		24.3	25.0	mg/kg	97.2	90.0 - 110		126021049		
				Du	plicate					
<u>Parameter</u>	Sample		Result	Unknow	n		Unit		RPD	Limit%
Potassium, Mehlich-3 extract	2272067		621	579			mg/kg		7.00	20.0
					ICL					
Parameter		Reading	Known	Units	Recover%	Limits%		File		
Potassium, Mehlich-3 extract		48.1	50.0	mg/kg	96.2	95.0 - 105		126021013		
					ICV					
Parameter		Reading	Known	Units	Recover%	Limits%		File		
Potassium, Mehlich-3 extract		24.6	25.0	mg/kg	98.4	90.0 - 110		126021017		
Analytical Set	1106310									EPA 9050

Email: Kilgore.ProjectManagement@spllabs.com

ICT1-A

Individual Care of Texas Sandy Peterson P.O. Box 3395 Abilene, TX 79604

1 2 3

Page 4 of 4

Project 1092475

Printed 04/02/2025

				AWRL/	LOQ C					
Parameter		Reading	Known	Units	Recover%	Limits%		File		
Conductivity (soluble) (2:1)		1.06	1.03	umhos/cm	103	70.0 - 130		126036465		
				Bla	ink					
Parameter	PrepSet	Reading	MDL	MQL	Units			File		
Conductivity (soluble) (2:1)	1106310	0.798			umhos/cm			126036461		
				Dupl	icate					
Parameter	Sample		Result	Unknown			Unit		RPD	Limit%
Conductivity (soluble) (2:1)	2273527		165	165			umhos/cm		0	20.0
				IC	:V					
Parameter		Reading	Known	Units	Recover%	Limits%		File		
Conductivity (soluble) (2:1)		13600	12900	umhos/cm	105	90.0 - 110		126036464		
				Stan	dard					
Parameter	Sample	Reading	Known	Units	Recover%	Limits%		File		
Conductivity (soluble) (2:1)	1106310	1420	1410	umhos/cm	101	90.0 - 110		126036462		
Conductivity (soluble) (2:1)	1106310	100	100	umhos/cm	100	90.0 - 110		126036463		
Conductivity (soluble) (2:1)	1106310	1410	1410	umhos/cm	100	90.0 - 110		126036477		
Analytical Set	1106311									EPA 9045D 4
.,				Dupl	icate					
Parameter	Sample		Result	Unknown			Unit		RPD	Limit%
pH Measured in Water/2:1 water:s	2273527		5.00	5.00			SU		0	20.0
				Stan	dard					
Parameter	Sample	Reading	Known	Units	Recover%	Limits%		File		
pH Measured in Water/2:1 water:s	1106311	7.01	7.00	SU	100	90.0 - 110		126036478		
pH Measured in Water/2:1 water:s	1106311	4.00	4.00	SU	100	90.0 - 110		126036479		
pH Measured in Water/2:1 water:s	1106311	9.99	10.0	SU	99.9	90.0 - 110		126036480		
pH Measured in Water/2:1 water:s	1106311	5.97	6.00	SU	99.5	90.0 - 110		126036481		
pH Measured in Water/2:1 water:s	1106311	7.95	8.00	SU	99.4	90.0 - 110		126036482		
pH Measured in Water/2:1 water:s	1106311	5.99	6.00	SU	99.8	90.0 - 110		126036494		
pH Measured in Water/2:1 water:s	1106311	7.95	8.00	SU	99.4	90.0 - 110		126036495		

* Out RPD is Relative Percent Difference: abs(r1-r2) / mean(r1,r2) * 100%

Recover% is Recovery Percent: result / known * 100%

 Blank - Method Blank
 (reagent water or other blank matrices that contains all reagents except standard(s) and is processed simultaneously with and under the same

 conditions as samples; carried through preparation and analytical procedures exactly like a sample; monitors); CCV - Continuing Calibration Verification
 (same standard)

 used to prepare the curve; typically a mid-range concentration; verifies the continued validity of the calibration curve); ICV - Initial Calibration Verification; LCS Dup Laboratory Control Sample Duplicate

 Laboratory Control Sample Duplicate
 (replicate LCS; analyzed when there is insufficient sample for duplicate or MSD; quantifies accuracy and precision.); MSD - Matrix

Spike Duplicate (replicate of the matrix spike; same solution and amount of target analyte added to the MS is added to a third aliquot of sample; quantifies matrix bias and precision.); AWRL/LOQ C - Ambient Water Reporting Limit/LOQ Check Std

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 20 of 30

3.25.3.21

2 3 4

1

1 of 10

1092475 CoC Print Group 001 of 001

2600 Dudley Rd. Kilgore, Texas 75662 24 Waterway Avenue, Suite 375 The Woodlands, TX 7 Office: 903-984-0551 * Fax: 903-984-5914	77380			
SUBCONTRACT CHAIN	OF CUSTO	DY	02/29/2024	he Science of Sure Page 1 of 2
Pace Analytical Dallas 400 West Bethany Drive Suite 190	ICT1-A 104	Phone		214/356-7412
Allen, TX 75013	Soil Monitoring	PO Number TAT	5+9	PACU
Matrix: Solid & Chemical Materials				
Sampler Printed Name		-	:	
Sampler Signature		-	i	
Samples Radioactive?	Samples Contains Dioxi	n? Samples Bi	ological Hazard?	
I Glass 8 oz w/Tef NELAC Subcontract !N3K	flon lined lid Nitrate-nitrogen SUB(KCl Pr	rep) EPA	353.3 CAS:PACU (28	0 days)
Ana-Lab # Sample ID	Bottles *	تقادم والمتحديد	Notes	**********
2274462	(2/20/24 1000	2	
463		1019	5	
\perp 464		103	0	
2276775 B	lank I			
Ambient Conditions/Comments	L			

Corporate: 2600 Dudley Road Kilgore TX 75662

2 of 10

1092475 CoC Print Group 001 of 001

2600 Dudley Rd. Kilgore, Texas 75662 24 Waterway Avenue, Suite 375 The Woodlands, TX 77380 Office: 903-984-0551 * Fax: 903-984-5914 Science of Sure SUBCONTRACT CHAIN OF CUSTODY 02/29/2024 Page 2 of 2 Pace Analytical Dallas ICT1-A 400 West Bethany Drive Phone 214/356-7412 104 Suite 190 PACU Allen, TX 75013 Soil Monitoring 0-6"

Time	Relinquishe	d	Receive	ed
		Affiliation Tarver SPL, Inc.	Printed Name	Affiliation
1500	Signature		Signature	
	Printed Name	Affiliation	Printed Name	Affiliation
	Signature		Signature	
	Printed Name	Affiliation	Printed Name	Affiliation
	-		Signature	
	Printed Name	Affiliation	Printed Name	Affiliation
	Signature		Signature	
	1500	Printed Name Kathy	Printed Name Affiliation Katay Tarver SPL, Inc. Signature Printed Name Affiliation Signature Printed Name Affiliation Signature Printed Name Affiliation	Printed Name Affiliation Printed Name ISO0 Signature Signature Signature Printed Name Affiliation Printed Name Signature Signature Printed Name Affiliation Printed Name Signature Signature Printed Name Affiliation Printed Name

 Sample Recieved on Ice?
 Yes
 No
 Method of Shipment:
 UPS
 Bus
 FedEx
 Lone Star
 Hand Delivered
 Other

 Cooler/Sample Secure?
 Yes
 No
 If Shipped: Tracking Number & Temp - See Attached
 Hand Delivered to Region []

The accredited column designates accreditation by A - A2LA, N - NELAC, or z - not listed under scope of accreditation. Unless otherwise specified, ANA-LAB shall provide these ordered services pursuant to our Standard Terms & Conditions Agreement (available for download from the welcome page at <htp://www.ana-lab.com>). Ana-Lab personnel collect samples as specified by Ana-Lab SOP #000323.

Comments

Please send acknowledgements and reports to projectmanager@ana-lab.com. Please send invoices to projectmanager@ana-lab.com & ar@ana-lab.com

Corporate: 2600 Dudley Road Kilgore TX 75662

Report Page 22 of 30

Form rptSUBVENCoCprojN Created 7/9/202019

3 of 10

1092475 CoC Print Group 001 of 001

2600 Dudley Rd. Kilgore, Texas 75662 24 Waterway Avenue, Suite 375 The Woodlands, TX 77380 Office: 903-984-0551 * Fax: 903-984-5914 The Science of Sure **COC REPORTING LIMITS** Printed 02/29/2024 Page 1 of 1 (ug/kg) Test Method Name MDL MQL Target/MAL Solid & Chemical Materials Soil Monitoring 0-6" TRRP GW & Soil (ing) - Residential 0.5 Acre 03-04-16 !N3K Nitrate-nitrogen SUB(KCl Prep) EPA 353.3 CAS:PACU Achievable reporting limits may vary with dilutions in accord with the sample matrix and listed method requirements COC is Chain of Custody MDL is Method Detection Limit (40 CFR 136 Appendix B) ug/L is micrograms per liter MQL is the Method Quantitation Limit and corresponds to a low standard SDL is Sample Detection Limit and is the adjusted MDL (sample specific dilutions, dry weight) MAL is minimum analytical limit and is the selected target limit

Ì

4 of 10

1092475 CoC Print Group 001 of 001

) Dudley Rd. Kilgore, Tesas Vaterway Avenne, Suite 375 ce: 903-984-0551 * Fax: 903	The Woodlands, D	Y 77380	A	en excensive à
HAIN OF C	USTOD	Y	Printed 01/30/203	24 Page Lof
			1 Lab Number _ 2271	4462
Individual Care of Texas Sandy Peterson P.O. Box 3395 Abilene, TX 79604		ICT1-A 104	PO Number	214/356-74
		Soil Monitoring	0-6"	
		C		by Client to Region or LAI
the cold to character				
atrix: Solid & Cher Sample Collection Start	aical Materi	als	· ·	
Date: 2 - 20 - 24	Time: 1000			
Sampler Printed Name:				
Sampler Affiliation: 5PL				
Sampler Signature:	k			
	ples Radioactive?	Samples Contains Dioxin	2 📋 Samples Biological Hazard?	· IJ
1_G	lass Qt w/Teflo	n lined lid		
	*Kn Potassi	um, Mehlich-3 extract	EPA 6010B CAS:7440-09-7 (180 da	ys)
	*MPe Mehlic	h-3 Extraction	Mehlich-3 Extraction (180 days)	
	*Pm Phosph	orus, Mehlich-3 extract	EPA 6010B (180 days)	
	lass 8 oz w/Tef			
VPAC Subcontract		-nitrogen SUB(KCl Prep)	EPA 353.3 CAS:PACU (28.0 days)	
	lass 4 oz w/Tef	lon lined lid		
	*KCL KCLEX	traction	Black 84.2 (180 days)	
NIIA	CONZ Condu	rtivity (soluble) (2:1)	EPA 9050 CAS:CONDSOL2:1 (180	(days)
M2 dr"	N3KS Nitrate	-Nitrogen (KCI Extract)	EPA 9056 CAS:14797-55-8 (28.0 da	iys)
X/9_4C	pHLZ pH Me	asured in Water/2:1 water:s	EPA 9045D 4 CAS:12408-02-5 (180) days)
N13 AC	TKN Total K	ijeldahl Nitrogen	EPA 351.2/2 CAS:7727-37-9 (28.0 d	tays)
$NZ4t^{+}$	TS% Total S	olids for Dry Wt Conversi	SM2540 G-1997 /MOD	
0 2	No bottle red	uired		
		eived to Dry Weight Basis	Calculation	
Subcontract	S50 SUBS	hipped		

2 3 4

1

Corporate, 2600 Didley Read Silgore Report Page 24 of 30

2 3 4

1

5 of 10

1092475 CoC Print Group 001 of 001

2600 Dudley Rd. Kilgore, Texas 75662 24 Waterway Avenue, Suite 375 The Woodlands, TX 77580 Office: 903-984-0551 * Fax: 903-984-5914

Printed 01/30/2024

Page 2 of 2

CHAIN OF CUSTODY

Individual Care of Texas Sandy Peterson P.O. Box <u>3395</u> Abilene, TX 79604

Sub Hold: PM Attn

TNit Total Nitrogen (as N)

SKL

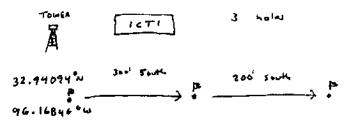
Calculation (28.0 days)

Ambient Conditions Comments

MEAU

Date	Time	Relinquished	Received
		Printed Name Attitution Ben Worsham - SPL, Inc.	Printed Name Artification McCabe Wheeler SPL, Inc.
7. 20-26	(60	Signadore	Suprana MCIABEN
		Printed Name Atilitation	Printed Nanze Athlifston
		Nganature	Signature
		Printed Name Attiliation	Printed Name Affiliation
		Signmar	Signature
		Printed Same Alliation	Princel Nature A /Itiliation
		Signature	Signature

ICT1-A


104

Sample Received on Ice?Yes λn Cooler/Sample Secure? λn

8 If No — If Shipped: Tracking Number & Temp - See Attached.

The accredited column designates association by A = APF4, N = NFF4C, or 2 = not byted ander scope of accreditation. Unless otherwise specified: A NA-FAII shall provide these university expression to our Stanzard Terms & Conditions Agreement Aveillable for Jownload from the welcome page at whitpe www.ana-bb comer-AnceTab personnel collect samples as specified by AmeTab SOP 400023.

Comments

02/20/2024 1759 MMV Temp: 2.2 / 2.2 C Therm#: 6205 Сол Fact: 0.0 C

6 of 10

1092475 CoC Print Group 001 of 001

HAIN OF C	UST		
		ODY	Printed 04/30/2024 Page Lot
Sandy Peterson P.O. Box 3395 Abilene, TX-79604		ICT1-A 105	Lab Number 21274463 PO Number 14/356-74 Phone 214/356-74
		Soil Monitoring 6-	-18"
		2	Hand Delivered by Client to Region or LA
trix: Solid & Cher	nical M	aterials	
Sample Collection Start Date: $2 \cdot 20 - 24$	Time: 1		
Sampler Printed Name:			
Sampler Affiliation: 594		<u> </u>	
Sampler Signature:	- 4		
	ples Radioaci	ive?	Samples Diological Hazard?
1_G	lass Qt w	/Teflon lined lid	
	*Kn	Potassium, Mohlich-3 extract	EPA 6010B CAS-7440-09-7 (180 days)
	*MPe	Mehlich-3 Extraction	Mehlich-3 Extraction (180 days)
	•Pm	Phosphorus, Mehlich-3 extract	EPA 6010B (180 days)
		w/Teflon lined lid	
		Nitrate-nitrogen SUB(KCI Prep)	EPA 353.3 CAS:PACU (28.0 days)
			ETT Sector The Content of Content
MPLAC Subcontract	!N3K		
MPLAC Subcontract	lass 4 oz	w/Teflon lined lid	
SPEAC Subcontract	ilass 4 oz •KCL	w/Teflon lined lid KClExtraction	Black 84.2 (180 days)
SPLAC Subcontract	lass 4 oz	w/Teflon lined lid	Black 84.2 (180 days) TPA 9050 ("AS:CONDSOL2:1 (180 days)
SPEAC Subcontract	ilass 4 oz •kCl CONZ N3KS	w/Teflon lined lid KClExtraction	TEPA 9050 CAS:CONDSOL2:1 (180 days) EPA 9056 CAS-14797-55-8 (28:0 days)
SPLAC Subcontract	ilass 4 oz •KCL CONZ N3KS pHLZ	w/Teflon lined lid KClExtraction Conductivity (satuble)(2:1)	EPA 9050 CAS:CONDSOL2:1 (180 days) EPA 9056 CAS:14797-55-8 (28:0 days) EPA 9045D 4 CAS:12408-02-5 (180 days)
SPEAC Subcontract	ilass 4 oz •kCl CONZ N3KS	w/Teflon lined lid KCI Extraction Conductivity (soluble) (2:1) Nitrate-Nitrogen (KCi Extract)	TEPA 9050 CAS:CONDSOL2:1 (180 days) EPA 9056 CAS-14797-55-8 (28:0 days)
VELAC Subcontract	ilass 4 oz •KCL CONZ N3KS pHLZ	w/Teflon lined lid KCIExtraction Conductivity (soluble) (2:1) Nitrate-Nitrogen (KCi Extract) pH Measured in Water/2:1 water:s	1:PA 9050 CAS:CONDSOL2:1 (180 days) EPA 9056 CAS-14797-55-8 (28.0 days) EPA 9045D 4 CAS:12408-02-5 (180 days)
SPEAC Subcontract	Hass 4 oz •KCL CONZ N3KS pHLZ TKN TS%	w/Teflon lined lid KCIExtraction Conductivity (satuble) (2:1) Nitrate-Nitrogen (KCi Extract) pH Measured in Water/2:1 water:s Total Kjeldabl Nitrogen	TEPA 9050 CAS:CONDSOL2:1 (180 days) EPA 9056 CAS-14797-55-8 (28.0 days) EPA 9045D 4 CAS:12408-02-5 (180 days) EPA 351.2 2 CAS:7727-37-9 (28.0 days)
SPEAC Subcontract	Hass 4 oz •KCL CONZ N3KS pHLZ TKN TS%	w/Teflon lined lid KCIExtraction Conductivity (soluble) (2:1) Nitrate-Nitrogen (KCI Extract) pH Measured in Water/2:1 water:s Total Kjeldabl Nitrogen Total Solids for Dry Wt Conversi	1:PA 9050 CAS:CONDSOL2:1 (180 days) EPA 9056 CAS:14797-55-8 (28.0 days) EPA 9045D 4 CAS:12408-02-5 (180 days) EPA 351.2 2 CAS:7727-37-9 (28.0 days)

1 2

7 of 10

1092475 CoC Print Group 001 of 001

2600 Dudley Rd. Kilgore, Texas 75662 24 Waterway Avenue, Suite 375 The Woodlands, TX 77380 Office: 903-984-0551 * Fay: 903-984-5914

Printed 01/30/2024

Page 2 of 2

CHAIN OF CUSTODY

Individual Care of Texas Sandy Peterson P.O. Box 3395 Abilene, TX 79604

Sub Hold: PM Attu

TNit Total Nitrogen (as N)

SKL.

Calculation (28.0 days)

Ambient Conditions Comments

MT.M

Date	Time	Reli	quished	Received				
		Printed Name Bon Worst	Attiliation Iero - SPL, Inc.	Printed Name McCat	A Milliution De Wheeler SPL, Inc.			
7·10·24	140	Shenanne 🚤 🔺		Signature MCCg				
		Pointed Name	Altifución	Printe-Name	Attiliation			
		Nanoturo		Signature				
	·	Printed Name	Affiliation	Polited Sume	40 diation			
		Signature		Signature				
		Printed Name	Affiliation	Printed Nume	Attitution			
		Signatore		Signature				

ICT1-A

105

Sample Received on Ice? Cooler/Sample Secure? Vo

📕 💯 — If Shipped: Tracking Number & Temp - See Attached

The according technin designates are reducing by A - APEA, N - NTAC, or 2 - not list of index some of accretionion. Endes otherwise specified. ANA LAB shall provide these vertexed seer decs pursuant to our Standard Terms & Conditions Agreement cavailable for download from the welcome page at ~ https://www.apu-lab.com^+/ Ante-Lab.personnel collect samples as specified by Ann-Lab.SOP #000323.

Comments

02/20/2024 1759 MMV

Temp: 2.2 / 2.2 C

Therm#: 6205 Corr Fact: 0.0 C

8 of 10

1092475 CoC Print Group 001 of 001

	USTO	YUY	Printed 01.30/20	
ndividual Care of Texas andy Peterson . O. Box 3395 Ibilene, TX 79604		ICT1-A 106	Lab Number <u>22</u> PO Number Phone	214:356-7412
		Soil Monitoring 1	'8-30"	
		5		d hy Clientio Region or LAB
trix: Solid & Cher Sample Collection Start	mical Mate	erials		
Date: 2 - 20- 24	Time: 703	۰.		
Sampler Printed Name:				
Sampler Affiliation:				
Sampler Signature; 💈	- hu-			
San	ples Radioactive?	Samples Contains Dioxi	in?	¹² C
		Samples Contains Dioxi	in? 📋 Samples Biological Hazard	
	lass Qt w/Te		EPA 6010B CAS:7440-09-7 (180 d	
	lass Qt w/Te *Kn Po	eflon lined lid		<u> </u>
	Hass Qt w/Te *Kn Po *MPe Me	effon lined lid tassium, Meblich-3 extract	EPA 6010B CAS:7440-09-7 (180 d	
<u> 1 </u> G	Hass Qt w/Te *Kn Po *MPe Me *Pm Ph	effon lined lid tassium, Mehlich-3 extract ehlich-3 Extraction osphorus, Mehlich-3 extract	EPA 6010B CAS:7440-09-7 (180 d Mehlich-3 Extraction (180 days)	
	Hass Qt w/Te *Kn Po *MPe Me *Pm Ph Hass 8 oz w/	effon lined lid tassium, Mehlich-3 extract ehlich-3 Extraction osphorus, Mehlich-3 extract Teflon lined lid	EPA 6010B CAS: 7440-09-7 (180 d Meblich-3 Extraction (180 days) EPA 6010B (180 days)	аук)
1 G 1 G 1 G 1/1 - G Subcontract	Hass Qt w/Te *Kn Po *MPe Me *Pm Ph Hass 8 oz w/ !N3K Ni	effon lined lid tassium, Meblich-3 extract ehlich-3 Extraction osphorus, Mehlich-3 extract Teflon lined lid trate-nitrogen SUB(KCI Prep)	EPA 6010B CAS:7440-09-7 (180 d Mehlich-3 Extraction (180 days)	аук)
1 G 1 G 1 G 1/1 - G Subcontract	Hass Qt w/Te *Kn Po *MPe Me *Pm Ph Hass 8 oz w/ !N3K Ni Hass 4 oz w/	effon lined lid tassium, Meblich-3 extract ehlich-3 Extraction osphorus, Meblich-3 extract Teflon lined lid trate-nitrogen SUB(KCI Prep) Teflon lined lid	EPA 6010B CAS: 7440-09-7 (180 d Mehlich-3 Extraction (180 days) EPA 6010B (180 days) EPA 353.3 CAS:PACU (28.0 days)	аук)
1 G 1 G Md AC Subcontract 1 G	Hass Qt w/Te *Kn Po *MPe Me *Pm Ph Hass 8 oz w/ !N3K Ni Hass 4 oz w/ *KCL KO	Effon lined lid tassium, Mehlich-3 extract ehlich-3 Extraction osphorus, Mehlich-3 extract Teflon lined lid trate-nitrogen SUB(KC) Prep) Teflon lined lid	EPA 6010B CAS: 7440-09-7 (180 d Meblich-3 Extraction (180 days) EPA 6010B (180 days) EPA 353.3 CAS:PACU (28.0 days) Black 84.2 (180 days)	аук)
1 G 1 G Md aC Subcontract 1 G Nd AC Subcontract	Hass Qt w/Te *Kn Po *MPe Me *Pm Ph Hass 8 oz w/ !N3K Ni Hass 4 oz w/ *KCL KC CONZ Co	effon lined lid tassium, Meblich-3 extract ehlich-3 Extraction osphorus, Mehlich-3 extract Teflon lined lid trate-nitrogen SUB(KC) Prop) Teflon lined lid I) Extraction enductivity (soluble)(2:1)	EPA 6010B CAS:7440-09-7 (180 d Meblich-3 Extraction (180 days) EPA 6010B (180 days) EPA 353.3 CAS:PACU (28.0 days) Black 84.2 (180 days) EPA 9050 CAS:CONDSOL2:1 (18	u ayx) ; ; ; ; ;
I G I G Met aC Subcontract I G Net AC G	Hass Qt w/Te *Kn Po *MPe Me *Pm Ph Hass 8 oz w/ !N3K Ni Hass 4 oz w/ *KCL KC CONZ Co N3KS Ni	effon lined lid tassium, Mehlich-3 extract ehlich-3 Extraction osphorus, Mehlich-3 extract Teflon lined lid trate-nitrogen SUB(KCI Prep) Teflon lined lid II Extraction enductivity (soluble) (2:1) trate-Nitrogen (KCI Extract)	EPA 6010B CAS: 7440-09-7 (180 d Meblich-3 Extraction (180 days) EPA 6010B (180 days) EPA 353.3 CAS:PACU (28.0 days) Black 84.2 (180 days) EPA 9050 CAS:CONDSOL2:1 (18 EPA 9056 CAS:L4797-55-8 (28.0 d	u ayx) ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
1 G 1 G Md aC Subcontract 1 G Nd aC Subcontract 1 G Nd AC Nd AC Nd AC	Hass Qt w/Te *Kn Po *MPe Me *Pm Ph Hass 8 oz w/ !N3K Ni Hass 4 oz w/ *KCL KC CONZ Co N3KS Ni pHL2 pH	effon lined lid tassium, Meblich-3 extract ehlich-3 Extraction osphorus, Mehlich-3 extract Teflon lined lid trate-nitrogen SUB(KC) Prop) Teflon lined lid II Extraction onductivity (soluble)(2:1) trate-Nitrogen (KC) Extract) (Measured in Water/2:1 water;s	EPA 6010B CAS:7440-09-7 (180 d Meblich-3 Extraction (180 days) EPA 6010B (180 days) EPA 353.3 CAS:PACU (28.0 days) Flack 84.2 (180 days) EPA 9050 CAS:CONDSOL2:1 (18 EPA 9056 CAS:14797-55-8 (28.0 d EPA 9045D 4 CA5:12408-02-5 (18	ays) ; ; () days) () days)
1 G 1 G 1 G 1 G 1 G 1 G 1 G 1 G 1 G 1 G 1 G 1 G 1 G 1 G 1 G 1 G 1 G 1 G	Hass Qt w/Te *Kn Po *MPe Me *Pm Ph Hass 8 oz w/ !N3K Ni Hass 4 oz w/ *KCL KC CONZ Co N3KS Ni pHL2 pH TKN To	effon lined lid tassium, Mehlich-3 extract ehlich-3 Extraction osphorus, Mehlich-3 extract Teflon lined lid trate-nitrogen SUB(KCI Prep) Teflon lined lid II Extraction enductivity (soluble) (2:1) trate-Nitrogen (KCI Extract) (Measured in Water/2:1 water:s mal Kjeldahl Nitrogen	EPA 6010B CAS: 7440-09-7 (180 d Meblich-3 Extraction (180 days) EPA 6010B (180 days) EPA 353.3 CAS:PACU (28.0 days) Black 84.2 (180 days) EPA 9050 CAS:CONDSOL2:1 (18 EPA 9056 CAS:14797-55-8 (28.0 d EPA 9045D 4 CAS:12408-02-5 (18 EPA 351.2 2 CAS:7727-37-9 (28.0	ays) ; ; () days) () days)
1 G 1 G MH AC Subcontract 1 G NH AC NH AC NH AC NH AC NH AC NH AC	Hass Qt w/Te *Kn Po *MPe Me *Pm Ph Hass 8 oz w/ !N3K Ni Hass 4 oz w/ *KCL KC CONZ Co N3KS Ni pHL2 pH TKN Te TS% To	Effon lined lid tassium, Mehlich-3 extract ehlich-3 Extraction osphorus, Mehlich-3 extract Teflon lined lid trate-nitrogen SUB(KCI Prep) Teflon lined lid II Extraction inductivity (soluble) (2:1) trate-Nitrogen (KCI Extract) (Measured in Water/2:1 water;s nal Kjeldahl Nitrogen tal Solids for Dry WI Conversi	EPA 6010B CAS:7440-09-7 (180 d Meblich-3 Extraction (180 days) EPA 6010B (180 days) EPA 353.3 CAS:PACU (28.0 days) Flack 84.2 (180 days) EPA 9050 CAS:CONDSOL2:1 (18 EPA 9056 CAS:14797-55-8 (28.0 d EPA 9045D 4 CA5:12408-02-5 (18	ays) ; ; () days) () days)
1 G 1 G MH BC Subcontract 1 G NH BC Subcontract 1 G NH BC NH BC	Hass Qt w/Te *Kn Po *MP6 Me *Pm Ph Hass 8 oz w/' !N3K Ni Hass 4 oz w/' *KCL KC CONZ Co N3KS Ni pHL2 pH TKN To TS% To C No bottle	Effon lined lid tassium, Mehlich-3 extract ehlich-3 Extraction osphorus, Mehlich-3 extract Teflon lined lid trate-nitrogen SUB(KCI Prep) Teflon lined lid II Extraction inductivity (soluble) (2:1) trate-Nitrogen (KCI Extract) (Measured in Water/2:1 water;s nal Kjeldahl Nitrogen tal Solids for Dry WI Conversi	EPA 6010B CAS: 7440-09-7 (180 d Meblich-3 Extraction (180 days) EPA 6010B (180 days) EPA 353.3 CAS:PACU (28.0 days) Black 84.2 (180 days) EPA 9050 CAS:CONDSOL2:1 (18 EPA 9056 CAS:14797-55-8 (28.0 d EPA 9045D 4 CAS:12408-02-5 (18 EPA 351.2 2 CAS:7727-37-9 (28.0	ays) ; ; () days) () days)

Corporate: 2600 Dudley Road Kilgore Report Page 28 of 30

9 of 10

1092475 CoC Print Group 001 of 001

2600 Dudley Rd. Kilgore, Texas 75662 24 Waterway Avenue, Suite 375 The Woodlands, TV 77380 Office. 903-984-0551 * Fax: 905-984-5914

CHAIN OF CUSTODY

Printed 01/30/2024

Page 2 of 2

Individual Care of Texas Sandy Peterson P.O. Box 3395

Abilene, TX 79604

Sub Hold: PM Attn

1'Nit Total Nitrogen (as N)

SKI.

Calculation (28.0 days)

WINC Ambient Conditions Comments

Date	Тіпе	Refi	nguished	Received				
		Printed Name Bon Wopst	Athlation sen_SPL, for:	Printed Name MC	Amilianoo Çabe Wheeler SPL, Inc.			
1-30-24	1640	Signature -		Signano ~ Clafe				
		Printed Name	ΔΕίπθου	Printed Nanie	Attiliation			
		Signuurs		Signation				
		Printed Name	A Diliatan	Proted Name	4/Dilistion			
		Signature		Signature				
		Printed Name	A Dilinition	Prince Name	Albhaion			
		Signature		Signatore				

ICT1-A

106

Sample Received on Ice? $\mathbf{I}^{Y_{CS}}$ ∎±.* Cooler/Sample Secure?

Νο Νο If Shipped: Tracking Number & Temp - See Attached

The ascredited column designates accreditation by A + A2LA, N + MTAC, or 2 + not listed under scope of accreditation. Fuless otherwise specified: ANA-LAU shall provide these indered services pursuant to our Standard Terms & Conditions Agreement Available dei download from the weldome page at shttps? www.ana-kib.com? 9 Ana-Lab personnel collect samples as specified by Ana-Lab SOP #000323

Comments

02/20/2024 1759 MMV

Temp: 2.2 / 2.2 C

Therm#: 6205 Corr Fact: 0.0 C

10 of 10

1092475 CoC Print Group 001 of 001

24 Wate	ers ây Aren	ilgore, Texas 75662 ue, Suite 375 The Woodlands. 51 * Fax: 903-984-5914	IX 77360			anterest and a statement of the second statement of th
CH	AIN	OF CUSTO	DY		Printed 01-3	0/2024 Page Fof 1
Sar P.C	ividual Care Idy Peterso). Box 3395 Ilene, TX-74	n	ICT 11		Lab Number PO Number Phone	314:356-7412
			Soil sample	e/transpor		livered by Client to Region or LAD
Da Sa Sa	umpler Printee umpler Affilia		Samples Cont	tains Dioxin?	Samples Biological H	azərd? []
1	at Condition	es Comments		·····		
Date	Time	Relinquish Trinted Name Bon Watsham	ed - SPL, Inc.	Printee	Received I.Name	Artifiation
7.20. EH	1 1650	Signature		Signal	л.,	·················
		Drined Same	Alliation	Printe	IName	Allibrition
		Signature		Signal		
		Ponted Same	Attidiation	Prince	INaare	Affibation
		Ngauton		Signal	(h):	<u>. </u>
		Printed Name	Athington	Prince	/Name	Millianon
		Signame		Signat		
Cooler/ The seen grounded	bese natered v personnet coli		s & Conditions Agreement	eeluniki soope of a	ccreditation. Unless otherwise	

Corporate: 2600 Dudley Road Kilgere Repost Page 30 of 30

SAMPLE CROSS REFERENCE

		Individual Care of Texas Sandy Peterson P.O. Box 3395 Abilene, TX 79604			Printed	4/25/2025	Page 1 of 1
Sample	Sample ID		Taken	Time		Received	
2399569	WW Permit		04/15/2025	10:55:00		04/15/2025	
Bottle 02 Na2S Bottle 03 Polye Bottle 04 Polye Bottle 05 16 oz Bottle 06 8 oz I Bottle 07 H2SC Bottle 08 H2SC Bottle 09 BOD Bottle 10 BOD Bottle 11 BOD Bottle 12 BOD Bottle 13 Prepa Bottle 14 Prepa	HNO3 Metals Plastic Plastic H2SO4 pH < 2 04 to pH <2 Glass Qt w/Te 04 to pH <2 Glass Qt w/Te Titration Beaker A (Bate Analytical Beaker B (Bate Titration Beaker A (Bate Analytical Beaker B (Bate red Bottle: ICP Preparation red Bottle: TKN TRAAC	e-100 mL Sterilized eflon lined lid	000 mL <== Derived fi 000 mL <== Derived fi 000 mL <== Derived 0 Volume: 50.00000 m 70588) Volume: 20.0	from 03 (100 ml) rom 03 (100 ml) from 03 (100 ml) L <== Derived from 05 0000 mL <== Derived :	from 06 (20 m	/	

Method	Bottle	PrepSet	Preparation	QcGroup	Analytical
EPA 300.0 2.1	04	1170902	04/16/2025	1170902	04/16/2025
EPA 200.8 5.4	13	1170528	04/16/2025	1170836	04/16/2025
SM 2320 B-2011	03	1171334	04/21/2025	1171334	04/21/2025
SM 5210 B-2016 (TCMP Inhibitor)	03	1170507	04/21/2025	1170507	04/21/2025
SM 2510 B-2011	04	1170817	04/16/2025	1170817	04/16/2025
SM 4500-Cl G-2011		1170461	04/15/2025	1170461	04/15/2025
SM 4500-O G-2016		1170462	04/15/2025	1170462	04/15/2025
EPA 1664B (HEM)	08	1171453	04/22/2025	1171453	04/22/2025
SM 9223 B (Colilert-18 QT)-2016	01	1170481	04/16/2025	1170481	04/16/2025
SM 9223 B (Colilert-18 QT)-2016	01	1170480	04/16/2025	1170480	04/16/2025
EPA 350.1 2	15	1170631	04/16/2025	1170923	04/17/2025
SM 2540 C-2015	04	1171899	04/22/2025	1171899	04/22/2025
EPA 351.2 2	14	1170588	04/16/2025	1171872	04/24/2025
SM 4500-P E-2011	06	1171113	04/21/2025	1171113	04/21/2025
SM 2540 D-2015	03	1171127	04/17/2025	1171127	04/17/2025
SM 4500-H+ B-2011		1170463	04/15/2025	1170463	04/15/2025

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 1 of 19

ICT1-A

Individual Care of Texas Sandy Peterson P.O. Box 3395 Abilene, TX 79604

Page 1 of 5 *Project* 1143884

Printed:

04/25/2025

RESULTS

				Sample	Res	ults						
	2399569	WW Permit								Received:	04/15	5/2025
N	on-Potable Wat	er	Collected by: RRF	SPL Kilg	gore				PO:			
			<i>Taken:</i> 04/15/2025	1	10:55:	00						
E	PA 1664B (HE	M)	Prepared:	1171453	04/2	2/2025	07:26:00	Analyzed	1171453	04/22/2025	07:26:00	MA
	Parameter		Results	Uı	nits	RL		Flags	7	CAS		Bottle
ELAC	Oil and Greas	se (HEM)	5.23	mg	g/L	4.65						08
E	PA 200.8 5.4		Prepared:	1170528	04/1	6/2025	06:00:00	Analyzed	1170836	04/16/2025	14:59:00	ESO
	Parameter		Results	Ut	nits	RL		Flags	7	CAS		Bottle
ELAC	Aluminum, T	otal	0.0437	mş	g/L	0.005				7429-90-5		13
Ε	TPA 300.0 2.1		Prepared:	1170902	04/1	6/2025	13:40:00	Analyzed	1170902	04/16/2025	13:40:00	KR
	Parameter		Results	Ut	nits	RL		Flags	7	CAS		Bottle
ELAC	Chloride		63.9	mg	g/L	3.00						04
ELAC	Fluoride		0.54	mg	-	0.5						04
ELAC	Nitrate-Nitrog	gen Total	1.62	mg		0.226				14797-55-8		04
ELAC	Sulfate		103	mg	ţ/L	3.00						04
E	TPA 350.1 2		Prepared:	1170631	04/1	6/2025	12:15:26	Analyzed	1170923	04/17/2025	12:49:00	AM
	Parameter		Results	Ut	nits	RL		Flags	7	CAS		Bottle
ELAC	Ammonia Nit	trogen	5.27	mg	g/L	0.020						15
Ε	TPA 351.22		Prepared:	1170588	04/1	6/2025	10:18:41	Analyzed	1171872	04/24/2025	15:04:00	AM
	Parameter		Results	UI	nits	RL		Flags	7	CAS		Bottle
ELAC	Total Kjeldah	l Nitrogen	29.1	mg	ŗ/L	1.00				7727-37-9		14
S	M 2320 B-2011		Prepared:	1171334	04/2	21/2025	13:36:00	Analyzed	1171334	04/21/2025	13:36:00	TRO
	Parameter		Results	Ut	nits	RL		Flags	7	CAS		Bottle
ELAC	Total Alkalin	ity (as CaCO3)	211	mg	g/L	1.00						03
						ACCRED						

Report Page 2 of 19

ICT1-A

Individual Care of Texas Sandy Peterson P.O. Box 3395 Abilene, TX 79604

		Abilene, TX 796	604							
							Printed:	04/2	5/2025	
	2399569	WW Permit						Received:	04/15	5/2025
No	on-Potable Wate	۲.	Collected by: RRF	SPL Kilg	ore		PO:			
110		ζ Α	<i>Taken:</i> 04/15/2025		0:55:00		10.			
	4.0510 D.0011			1170017	04/16/2025	05 20 00	4 1 1 1170017	0.1/1.5/2025	05 20 00	
SA	M 2510 B-2011			1170817	04/16/2025	05:30:00	Analyzed 1170817	04/16/2025	05:30:00	JMJ
	Parameter		Results		its RL		Flags	CAS		Bottle
LAC	Lab Spec. Cor	nductance at 25 C	858	um m	hos/c					04
SA	M 2540 C-2015		Prepared:	1171899	04/22/2025	07:15:00	Analyzed 1171899	04/22/2025	07:15:00	JME
-	Parameter		Results	Un	its RL		Flags	CAS		Bottle
LAC	Total Dissolve	ed Solids	470	mg	/L 50.0		C			04
SA	M 2540 D-2015		Prepared:	1171127	04/17/2025	06:43:00	Analyzed 1171127	04/17/2025	06:43:00	LSA
	Parameter		Results	Un	its RL		Flags	CAS		Bottle
LAC	Total Suspend	led Solids	16.2	mg	/L 4.00		-			03
SA	M 4500-Cl G-20	011	Prepared:	1170461	04/15/2025	11:00:00	Analyzed 1170461	04/15/2025	11:00:00	RRI
	Parameter		Results	Un	its RL		Flags	CAS		Bottle
LAC	Cl2 Res.,Total mg/L]	(Onsite)Spec Mid [RL	L 0.05 0.04	mg	/L 0.05					
SA	М 4500-Н+ В-2	011	Prepared:	1170463	04/15/2025	11:00:00	Analyzed 1170463	04/15/2025	11:00:00	RRI
	Parameter		Results	Un	its RL		Flags	CAS		Bottle
LAC	pH (Onsite)		7.5	SU	1					
SA	M 4500-O G-20	16	Prepared:	1170462	04/15/2025	11:00:00	Analyzed 1170462	04/15/2025	11:00:00	RRF
	Parameter		Results	Un	its RL		Flags	CAS		Bottle
LAC	Dissolved Oxy	ygen Onsite	1.9	mg	/L 1.0					
SA	M 4500-P E-201	1	Prepared:	1171113	04/21/2025	07:45:00	Analyzed 1171113	04/21/2025	07:45:00	AN
	Parameter		Results	Un	its RL		Flags	CAS		Bottle
LAC	Phosphorus (a	s P), total	4.96	mg	/L 0.600			7723-14-0		06

Report Page 3 of 19

Project

1143884

Page 2 of 5

1

3.25.4.16

ICT1-A

Individual Care of Texas Sandy Peterson P.O. Box 3395

		Abilene, TX 79	604							l			
										Printed:	04/2	25/2025	
	2399569	WW Permit									Received:	04/15	5/2025
No	on-Potable Wate	r	<i>Collected by:</i> RRF <i>Taken:</i> 04/15/202	25	SPL Kil	gore 10:55:00)			PO:			
SA	M 5210 B-2016 ((TCMP Inhibitor)		Prepared:	1170507	04/16,	/2025		Analyzed	1170507	04/21/2025	13:17:17	JW
	Parameter			Results		nits	RL		Flag	5	CAS		Bottle
AC	BOD Carbona	ceous		19.6	mį	g/L	2.00						03
SA	M 9223 B (Colile	ert-18 QT)-2016		Prepared:	1170480	04/16	/2025	11:24:00	Analyzed	1170480	04/16/2025	11:24:00	ML
	Parameter			Results		nits	RL		Flag	5	CAS		Bottl
AC	MPN, Total Co	oliform, Non-Pot		>2419.6	M On	PN/10 nL	1.00						01
SA	M 9223 B (Colile	ert-18 QT)-2016		Prepared:	1170481	04/16	/2025	11:24:00	Analyzed	1170481	04/16/2025	11:24:00	MI
	Parameter		R	Results	Ui	nits	RL		Flag	5	CAS		Bottl
AC	MPN, E.coli, (Col18 - Non-Pot		>2419.6	M On	PN/10 nL	1.00						01
				S	ample Pi	repara	ation						
	2399569	WW Permit									Received:	04/15	5/2025
			04/15/202	25									
				Prepared:		04/15,	/2025	16:47:40	Calculated	,	04/15/2025	16:47:40	CA
	Enviro Fee (pe	r Sampling Group)		Verified									
EF	PA 1664B (HEM	1)		Prepared:	1171220	04/22	/2025	07:26:00	Analyzed	1171220	04/22/2025	07:26:00	MA
AC	O&G HEM St	arted		Started									
							/2025	06:00:00			04/16/2025	06:00:00	HI

Report Page 4 of 19

The Science of Sure

Project

1143884

Page 3 of 5

ICT1 A

\bigcirc	SPL
Company and the second second	The Science of Sure

1

		ICT1-A Individual Care of Texas Sandy Peterson P.O. Box 3395 Abilene, TX 79604								Page 4 of 5 ject 3884	5
								Printed:	04/	/25/2025	
	2399569	WW Permit							Received:	04/15/	/2025
			04/15/2025								
	EPA 200.2 2.8		Prepared:	1170528	04/16/2025	06:00:00	Analyzed	1170528	04/16/2025	06:00:00	HLT
Z	Liquid Metals	Digestion	50/50	m	l						05
	EPA 350.1, Rev. 2	2.0	Prepared:	1170631	04/16/2025	12:15:26	Analyzed	1170631	04/16/2025	12:15:26	MEG
NELAC	Ammonia Dist	illation	6/6	m	l						06
	EPA 351.2, Rev 2.	0	Prepared:	1170588	04/16/2025	10:18:41	Analyzed	1170588	04/16/2025	10:18:41	MEG
NELAC	TKN Block Di	gestion	20/20	m	l						06
	SM 2540 C-2015		Prepared:	1171188	04/22/2025	07:15:00	Analyzed	1171188	04/22/2025	07:15:00	JMB
NELAC	Total Dissolve	d Solids Started	Started								
	SM 2540 D-2011		Prepared:	1170641	04/17/2025	06:43:00	Analyzed	1170641	04/17/2025	06:43:00	LSM
NELAC	TSS Set Starte	đ	Started								
,	SM 5210 B-2016 ((TCMP Inhibitor)	Prepared:	1170507	04/16/2025		Analyzed	1170507	04/16/2025	06:18:32	JW1
NELAC	BODc Set Star	ted	Started								
	SM 9223 B (Colile	ert-18 QT)-2016	Prepared:	1170478	04/15/2025	16:31:00	Analyzed	1170478	04/15/2025	16:31:00	MDM
NELAC	MPN (Colilert	-18) Start Non-Pot	STARTED								01

Report Page 5 of 19

ICT1-A

Individual Care of Texa Sandy Peterson P.O. Box 3395 Abilene, TX 79604

Qualifiers:

We report results on an As Received (or Wet) basis unless marked Dry Weight.

A	Page 5 of 5
fTexas	Project 1143884
Pr.	inted: 04/25/2025

Unless otherwise noted, testing was performed at SPL, Inc.- Kilgore laboratory which holds International, Federal, and state accreditations. Please see our Websites for details.

(N)ELAC - Covered in our NELAC scope of accreditation z -- Not covered by our NELAC scope of accreditation

These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of SPL Kilgore. Unless otherwise specified, these test results meet the requirements of NELAC. RL is the Reporting Limit (sample specific quantitation limit) and is at or above the Method Detection Limit (MDL). CAS is Chemical Abstract Service number. RL is our Reporting Limit, or Minimum Quantitation Level. The RL takes into account the Instrument Detection Limit (IDL), Method Detection Limit (MDL), and Practical Quantitation Limit (PQL), and any dilutions and/or concentrations performed during sample preparation (EQL). Our analytical result must be above this RL before we report a value in the 'Results' column of our report (without a 'J' flag). Otherwise, we report ND (Not Detected above RL), because the result is "<" (less than) the number in the RL column. MAL is Minimum Analytical Level and is typically from regulatory agencies. Unless we report a result in the result column, or interferences prevent it, we work to have our RL at or below the MAL.

SOU 100

Bill Peery, MS, VP Technical Services

Report Page 6 of 19

1

ICT1-A

Individual Care of Texas Sandy Peterson P.O. Box 3395 Abilene, TX 79604

Page 1 of 9 *Project* 1143884

Printed 04/25/2025

Analytical Set	1170480							SM 922	23 B (Colilert-	18 QT)-2016
				В	lank					
Parameter	PrepSet	Reading	MDL	MQL	Units			File		
MPN, Total Coliform, Non-Pot	1170480	<1.0	1.00	1.00	MPN/100m	L		127509060		
				Mic	ro Dup					
Parameter	Sample	Туре	Result	Unknow	n		Unit		Range	Criterion
MPN, Total Coliform, Non-Pot	2399607	Duplicate	52.9	79.8			MPN/100mL		0.179	0.7825
				Sta	indard					
Parameter	Sample	Reading	Known	Units	Recover%	Limits%		File		
P. aeruginosa	1170478	<1.0	<1.0	MPN/10	0 m]	-		127509057		
Standard E. coli	1170478	>2419.6	>2419.6	MPN/10	0m]	-		127509059		
Standard K.varicola	1170478	>2419.6	>2419.6	MPN/10	0m]	-		127509058		
Analytical Set	1170481							SM 922	23 B (Colilert-	18 QT)-2016
				В	lank					
Parameter	PrepSet	Reading	MDL	MQL	Units			File		
MPN, E.coli, Col18 - Non-Pot	1170481	<1.0	1.00	1.00	MPN/100m	L		127509078		
				Mic	ro Dup					
Parameter	Sample	Туре	Result	Unknow	n		Unit		Range	Criterion
MPN, E.coli, Col18 - Non-Pot	2399607	Duplicate	1.0	4.1			MPN/100mL		0.613	0.7825
				Sta	indard					
Parameter	Sample	Reading	Known	Units	Recover%	Limits%		File		
P. aeruginosa	1170478	<1.0	<1.0	MPN/10	0mi	-		127509075		
Standard E. coli	1170478	>2419.6	>2419.6	MPN/10	0mi	-		127509077		
Standard K.varicola	1170478	<1.0	<1.0	MPN/10	0 m]	-		127509076		
Analytical Set	1170507							SM 521) B-2016 (TCI	VIP Inhibitor)
				В	lank					
Parameter	PrepSet	Reading	MDL	MQL	Units			File		
BOD Carbonaceous	1170507	0.2	0.200	0.500	mg/L			127509484		
BOD Carbonaceous	1170507	0.2	0.200	0.500	mg/L			127509538		
				Du	plicate					
Parameter	Sample		Result	Unknow	n		Unit		RPD	Limit%
BOD Carbonaceous	2399258		4.44	3.40			mg/L		26.5	30.0
BOD Carbonaceous	2399569		19.8	19.6			mg/L		1.02	30.0
BOD Carbonaceous	2399733		150	148			mg/L		1.34	30.0
				See	d Drop					
Parameter	PrepSet	Reading	MDL	MQL	Units			File		
<u>Parameter</u> BOD Carbonaceous	<i>PrepSet</i> 1170507	<i>Reading</i> 0.530	<i>MDL</i> 0.200	<i>MQL</i> 0.500	<i>Units</i> mg/L			<i>File</i> 127509486		

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 7 of 19

ICT1-A

Individual Care of Texas Sandy Peterson P.O. Box 3395 Abilene, TX 79604

Page 2 of 9

Project 1143884

Printed 04/25/2025

				Sta	ndard						
<u>Parameter</u> BOD Carbonaceous BOD Carbonaceous	Sample	<i>Reading</i> 213 196	<u>Known</u> 198 198	<i>Units</i> mg/L mg/L	<i>Recover%</i> 108 99.0	<i>Limits%</i> 83.7 - 116 83.7 - 116		<i>File</i> 127509487 127509541			
Analytical Set	1170923									EP	A 350.1 2
				В	lank						
Parameter	PrepSet	Reading	MDL	MQL	Units			File			
Ammonia Nitrogen	1170631	ND	0.00336	0.020	mg/L			127518507			
				C	CV						
Parameter		Reading	Known	Units	Recover%	Limits%		File			
Ammonia Nitrogen		2.13	2.00	mg/L	106	90.0 - 110		127518505			
Ammonia Nitrogen		2.20	2.00	mg/L	110	90.0 - 110		127518506			
Ammonia Nitrogen		2.16	2.00	mg/L ~	108	90.0 - 110		127518516			
Ammonia Nitrogen Ammonia Nitrogen		2.18 2.17	2.00 2.00	mg/L mg/L	109 108	90.0 - 110 90.0 - 110		127518523 127518532			
Ammonia Nitrogen		2.17	2.00	mg/L	110	90.0 - 110 90.0 - 110		127518532			
Ammonia Nitrogen		2.19	2.00	mg/L	110	90.0 - 110		127518548			
Ammonia Nitrogen		2.16	2.00	mg/L	108	90.0 - 110		127518559			
Ammonia Nitrogen		2.08	2.00	mg/L	104	90.0 - 110		127518567			
Ammonia Nitrogen		2.08	2.00	mg/L	104	90.0 - 110		127518577			
Ammonia Nitrogen		2.05	2.00	mg/L	102	90.0 - 110		127518583			
Ammonia Nitrogen		2.03	2.00	mg/L	102	90.0 - 110		127518590			
Ammonia Nitrogen		2.06	2.00	mg/L ~	103	90.0 - 110		127518597			
Ammonia Nitrogen		2.06	2.00	mg/L	103	90.0 - 110		127518608			
Ammonia Nitrogen		2.10	2.00	mg/L	105	90.0 - 110		127518616			
				Dup	olicate						
<u>Parameter</u>	Sample		Result	Unknowi	1		Unit		RPD		Limit%
Ammonia Nitrogen	2399437		ND	ND			mg/L ~				20.0
Ammonia Nitrogen	2399484		ND	ND	-		mg/L				20.0
					CV						
Parameter		Reading	Known	Units	Recover%	Limits%		File			
Ammonia Nitrogen		2.12	2.00	mg/L	106	90.0 - 110		127518504			
				LC	S Dup						
Parameter	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Ammonia Nitrogen	1170631	2.20	2.19		2.00	90.0 - 110	110	110	mg/L	0.456	20.0
				Mat	. Spike						
Parameter	Sample	Spike	Unknown	Known	Units	Recovery %	Limits %	File			
Ammonia Nitrogen	2399437	2.11	ND	2.00	mg/L	106	80.0 - 120	127518512			
Ammonia Nitrogen	2399484	2.13	ND	2.00	mg/L	106	80.0 - 120	127518515			
Analytical Set	1171872									EP	A 351.2 2

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 8 of 19

ICT1-A

Individual Care of Texas Sandy Peterson P.O. Box 3395 Abilene, TX 79604

Page 3 of 9

Project 1143884

Printed 04/25/2025

				AWRI	L/LOQ C						
Parameter		Reading	Known	Units	Recover%	Limits%		File			
Total Kjeldahl Nitrogen		0.054	0.050	mg/L	108	75.0 - 125		127536028			
				-	lank						
Parameter	PrepSet	Reading	MDL	MQL	Units			File			
Total Kjeldahl Nitrogen	1170588	ND	0.00712	0.050	mg/L			127535955			
Total Kjeldahl Nitrogen	1170588	ND	0.00712	0.050	mg/L			127535956			
Total Kjeldahl Nitrogen	1170588	ND	0.00712	0.050	mg/L			127535957			
				C	cv						
Parameter		Reading	Known	Units	Recover%	Limits%		File			
Total Kjeldahl Nitrogen		5.26	5.00	mg/L	105	90.0 - 110		127535954			
Total Kjeldahl Nitrogen		5.45	5.00	mg/L	109	90.0 - 110		127535965			
Total Kjeldahl Nitrogen		5.41	5.00	mg/L	108	90.0 - 110		127535976			
Total Kjeldahl Nitrogen		5.47	5.00	mg/L	109	90.0 - 110		127535987			
Total Kjeldahl Nitrogen		5.45	5.00	mg/L	109	90.0 - 110		127535998			
Total Kjeldahl Nitrogen		5.39	5.00	mg/L	108	90.0 - 110		127536009			
Total Kjeldahl Nitrogen		5.50	5.00	mg/L	110	90.0 - 110		127536020			
Total Kjeldahl Nitrogen		5.48	5.00	mg/L	110	90.0 - 110		127536024			
Total Kjeldahl Nitrogen		5.19	5.00	mg/L	104	90.0 - 110		127536029			
Total Kjeldahl Nitrogen		5.30	5.00	mg/L	106	90.0 - 110		127536039			
Total Kjeldahl Nitrogen		5.24	5.00	mg/L	105	90.0 - 110		127536048			
Total Kjeldahl Nitrogen		5.13	5.00	mg/L	103	90.0 - 110		127536055			
				Dup	olicate						
Parameter	Sample		Result	Unknown	1		Unit		RPD		Limit%
Total Kjeldahl Nitrogen	2399728		ND	ND			mg/L				20.0
				I	cv						
Parameter		Reading	Known	Units	Recover%	Limits%		File			
Total Kjeldahl Nitrogen		5.19	5.00	mg/L	104	90.0 - 110		127535953			
				LCS	5 Dup						
Parameter	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Total Kjeldahl Nitrogen	1170588	5.42	5.34		5.00	90.0 - 110	108	107	mg/L	1.49	20.0
, ,				Mat	. Spike				U		
Parameter	Sample	Spike	Unknown		Units	Recovery %	Limits %	File			
Total Kjeldahl Nitrogen	2399728	5.88	ND	5.00	mg/L	118	80.0 - 120	127535962			
Analytical Set	1170461								SM	[4500-0	C1 G-2011
a day tical Dec				Dup	olicate						
Parameter	Sample		Result	Unknown	1		Unit		RPD		Limit%
Cl2 Res., Total(Onsite)Spec Mid [RL 0.05	2399569		0.040	0.040	•		mg/L				20
mg/L]											
				Sta	ndard						
<u>Parameter</u>	Sample	Reading	Known	Units	Recover%	Limits%		File			

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 9 of 19

ICT1-A

Individual Care of Texas Sandy Peterson P.O. Box 3395 Abilene, TX 79604

Page 4 of 9

U	
Project	
1143884	

Printed 04/25/2025

				Sta	ndard					
Parameter	Sample	Reading	Known	Units	Recover%	Limits%		File		
Cl2 Res., Total (Onsite) Spec Mid [RL 0.05 mg/L]	1170461	0.240	0.220	mg/L	109.1	90 - 110				
Cl2 Res., Total (Onsite) Spec Mid [RL 0.05	1170461	1.62	1.59	mg/L	101.9	90 - 110				
mg/L] Cl2 Res.,Total(Onsite)Spec Mid [RL 0.05 mg/L]	1170461	2.51	2.73	mg/L	91.9	90 - 110				
Analytical Set	1170462								SM 45	00-O G-2016
				Dup	olicate					
<u>Parameter</u> Dissolved Oxygen Onsite	Sample 2399605		<i>Result</i> 8.9	Unknown 8.9	1		Unit mg/L		RPD	<i>Limit%</i> 20
Analytical Set	1170463								SM 450	0-H+ B-2011
				c	CV					
<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%		File		
pH (Onsite) pH (Onsite)		6.0 6.0	6.0 6.0	SU SU	100 100	90 - 110 90 - 110				
pri (onsite)		0.0	0.0		licate	<i>yo</i> 110				
Parameter	Sample		Result	Unknown			Unit		RPD	Limit%
pH (Onsite)	2399608		7.2	7.2			SU		10.0	20
				Sta	ndard					
Parameter	Sample	Reading	Known	Units	Recover%	Limits%		File		
pH (Onsite)	1170463	7.9	8.0	SU	98.8	90 - 110				
pH (Onsite)	1170463	8.0	8.0	SU	100	90 - 110				
Analytical Set	1171127								SM	2540 D-2015
				BI	ank					
Parameter	PrepSet	Reading	MDL	MQL	Units			File		
Total Suspended Solids	1171127	ND	2	2 Cont	mg/L trolBlk			127522202		
	D <i>G</i> (D 1'						F 'I		
<u>Parameter</u> Total Suspended Solids	<i>PrepSet</i> 1171127	<i>Reading</i> -0.0001	MDL	MQL	Units grams			<i>File</i> 127522201		
Total Supplied Solids		0.0001		Dup	olicate			12/022201		
Parameter	Sample		Result	Unknown			Unit		RPD	Limit%
Total Suspended Solids	2399640		4440	4540			mg/L		2.23	20.0
Total Suspended Solids	2399641		70.7	68.7			mg/L		2.87	20.0
Total Suspended Solids	2399714		1330	1230			mg/L		7.81	20.0
				L	.CS					
Parameter Total Sumandad Salida	<i>PrepSet</i>	Reading		Known 500	Units	Recover%	Limits	<i>File</i>		
Total Suspended Solids	1171127	47.0		50.0 Stai	mg/L ndard	94.0	90.0 - 110	127522235		
Parameter	Sample	Reading	Known	Units	Recover%	Limits%		File		
	Î	-		Ouns	ACCOVEL %	Linnes70		THE		
Email: Kilgore.ProjectMan	agement@	spllabs.	com		TNI				Report Pa	age 10 of 19

ICT1-A

Individual Care of Texas Sandy Peterson P.O. Box 3395 Abilene, TX 79604

1 2

Page 5 of 9

Project 1143884

Printed 04/25/2025

				Sld	nuaru						
Parameter	Sample	Reading	Known	Units	Recover%	Limits%		File			
Total Suspended Solids		90.0	100	mg/L	90.0	90.0 - 110		127522234			
Analytical Set	1171453								EI	PA 1664	B (HEM
				В	lank						
Parameter	PrepSet	Reading	MDL	MQL	Units			File			
Oil and Grease (HEM)	1171453	ND	0.804	4.00	mg/L			127527630			
				Con	trolBlk						
Parameter	PrepSet	Reading	MDL	MQL	Units			File			
Oil and Grease (HEM)	1171453	0	ind b		grams			127527629			
Oil and Grease (HEM)	1171453	0			grams			127527654			
· · · · · · · · · · · · · · · · · · ·				L	_CS						
Parameter	PrepSet	Reading		Known	Units	Recover%	Limits	File			
Oil and Grease (HEM)	1171453	34.3		40.0	mg/L	85.8	78.0 - 114	127527631			
on and orease (menty)	11/1105	51.5			MS	00.0	/0.0 111	12/02/001			
Deremator	Comple	MC	MSD		Known	Limits	MS%	MSD%	Units	RPD	Limit%
<u>Parameter</u> Oil and Grease (HEM)	<i>Sample</i> 2399273	MS 37.3	0 0	UNK ND	40.0	78.0 - 114	MS% 93.2	MSD%	mg/L	RPD	20.0
		57.5	U	ND	+0.0	78.0 - 114	95.2		-		
Analytical Set	1171899									SM 254	0 C-2015
				В	lank						
Parameter	PrepSet	Reading	MDL	MQL	Units			File			
Total Dissolved Solids	1171899	ND	5.00	5.00	mg/L			127536333			
				Con	trolBlk						
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File			
Total Dissolved Solids	1171899	0.0003			grams			127536320			
				Dup	olicate						
Parameter	Sample		Result	Unknown	1		Unit		RPD		Limit%
Total Dissolved Solids	2399569		420	470			mg/L		11.2		20.0
				L	_CS						
Parameter	PrepSet	Reading		Known	Units	Recover%	Limits	File			
Total Dissolved Solids	1171899	204		200	mg/L	102	85.0 - 115	127536321			
Analytical Set	1170902									EPA	300.0 2.1
Analytical Set	11,0,02			AWR	L/LOQ C						
Parameter		Reading	Known	Units	Recover%	Limits%		File			
Fluoride		0.104	0.100	mg/L	104	70.0 - 130		127518034			
					lank						
Parameter	PrepSet	Reading	MDL	MQL	Units			File			
1 aranteter		ND ND	0.0593	0.300	mg/L			127518035			
Chloride	1170902							1010100000			
Chloride Fluoride	1170902 1170902										
Chloride Fluoride Nitrate-Nitrogen Total	1170902 1170902 1170902	ND ND ND	0.0112 0.00331	0.100 0.0226	mg/L mg/L			127518035 127518035			

Standard

Email: Kilgore.ProjectManagement@spllabs.com

ICT1-A

Individual Care of Texas Sandy Peterson P.O. Box 3395 Abilene, TX 79604

Page 6 of 9

Project 1143884

Printed 04/25/2025

				в	lank						
Parameter	PrepSet	Reading	MDL	MQL	Units			File			
Sulfate	1170902	ND	0.0605	0.300	mg/L			127518035			
				C	СВ						
Parameter	PrepSet	Reading	MDL	MQL	Units			File			
Chloride	1170902	0.017	0.0593	0.300	mg/L			127518031			
Chloride	1170902	0.019	0.0593	0.300	mg/L			127518051			
Chloride	1170902	0.020	0.0593	0.300	mg/L			127518063			
Fluoride	1170902	0	0.0112	0.100	mg/L			127518031			
Fluoride	1170902	0	0.0112	0.100	mg/L			127518051			
Fluoride	1170902	0	0.0112	0.100	mg/L			127518063			
Nitrate-Nitrogen Total	1170902	0	0.00331	0.0226	mg/L			127518031			
Nitrate-Nitrogen Total	1170902	0	0.00331	0.0226	mg/L			127518051			
Nitrate-Nitrogen Total	1170902	0	0.00331	0.0226	mg/L			127518063			
Sulfate	1170902	-0.162	0.0605	0.300	mg/L			127518031			
Sulfate	1170902	-0.165	0.0605	0.300	mg/L			127518051			
Sulfate	1170902	-0.157	0.0605	0.300	mg/L			127518063			
				C	CV						
Parameter		Reading	Known	Units	Recover%	Limits%		File			
Chloride		9.84	10.0	mg/L	98.4	90.0 - 110		127518030			
Chloride		10.2	10.0	mg/L	102	90.0 - 110		127518050			
Chloride		10.1	10.0	mg/L	101	90.0 - 110		127518062			
Fluoride		10.4	10.0	mg/L	104	90.0 - 110		127518030			
Fluoride		10.7	10.0	mg/L	107	90.0 - 110		127518050			
Fluoride		10.7	10.0	mg/L	107	90.0 - 110		127518062			
Nitrate-Nitrogen Total		2.31	2.26	mg/L	102	90.0 - 110		127518030			
Nitrate-Nitrogen Total		2.45	2.26	mg/L	108	90.0 - 110		127518050			
Nitrate-Nitrogen Total		2.45	2.26	mg/L	108	90.0 - 110		127518062			
Sulfate		9.79	10.0	mg/L	97.9	90.0 - 110		127518030			
Sulfate		10.1	10.0	mg/L	101	90.0 - 110		127518050			
Sulfate		10.1	10.0	mg/L	101	90.0 - 110		127518062			
				LCS	5 Dup						
Parameter	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Chloride	1170902	4.95	4.84		5.00	85.0 - 115	99.0	96.8	mg/L	2.25	20.0
Fluoride	1170902	5.36	5.24		5.00	88.0 - 118	107	105	mg/L	2.26	20.0
Nitrate-Nitrogen Total	1170902	1.11	1.08		1.13	86.3 - 117	98.2	95.6	mg/L	2.74	20.0
Sulfate	1170902	5.68	5.62		5.00	85.4 - 124	114	112	mg/L	1.06	20.0
				Ν	ISD						
Parameter	Sample	MS	MSD	UNK	Known	Limits	MS%	MSD%	Units	RPD	Limit%
Chloride	2398309	129	130	110	20.0	80.0 - 120	95.0	100	mg/L	5.13	20.0
Fluoride	2398309	21.0	20.7	1.28	20.0	80.0 - 120	98.6	97.1	mg/L	1.53	20.0
Nitrate-Nitrogen Total	2398309	3.21	3.22	0.470	4.52	80.0 - 120	60.6 *	60.8 *	mg/L	0.364	20.0
Sulfate	2398309	101	102	84.1	20.0	80.0 - 120	84.5	89.5	mg/L	5.75	20.0
Chloride	2398315	104	105	84.7	20.0	80.0 - 120	96.5	102	mg/L	5.05	20.0

Blank

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 12 of 19

3.25.4.16

ICT1-A

Individual Care of Texas Sandy Peterson P.O. Box 3395 Abilene, TX 79604

Page 7 of 9

Project 1143884

Printed 04/25/2025

				r	MSD						
Parameter	Sample	MS	MSD	UNK	Known	Limits	MS%	MSD%	Units	RPD	Limit%
Fluoride	2398315	20.3	20.3	ND	20.0	80.0 - 120	102	102	mg/L	0	20.0
Nitrate-Nitrogen Total	2398315	3.28	3.22	0.208	4.52	80.0 - 120	68.0 *	66.6 *	mg/L	1.97	20.0
Sulfate	2398315	134	135	118	20.0	80.0 - 120	80.0	85.0	mg/L	6.06	20.0
Analytical Set	1170836			_						EPA	200.8 5.4
					Blank						
Parameter	PrepSet	Reading	MDL	MQL	Units			File			
Aluminum, Total	1170528	ND	0.0039	0.005	mg/L			127516464			
Aluminum, Total	1170528	ND	0.0039	0.005	mg/L			127516478			
					ccv						
<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%		File			
Aluminum, Total		0.0508	0.05	mg/L 7	102	90.0 - 110		127516477			
Aluminum, Total		0.0504	0.05	mg/L	101	90.0 - 110		127516487			
Aluminum, Total Aluminum, Total		0.0509 0.0508	0.05 0.05	mg/L mg/I	102 102	90.0 - 110 90.0 - 110		127516498 127516524			
Aluminum, Total		0.0508	0.05	mg/L mg/L	102	90.0 - 110 90.0 - 110		127516534			
Aluminum, Total		0.0504	0.05	mg/L	101	90.0 - 110 90.0 - 110		127516576			
Aluminum, Total		0.0519	0.05	mg/L	102	90.0 - 110		127516584			
Aluminum, Total		0.0531	0.05	mg/L	106	90.0 - 110		127516585			
,				-	ICV						
Parameter		Reading	Known	Units	Recover%	Limits%		File			
Aluminum, Total		0.0516	0.05	mg/L	103	90.0 - 110		127516472			
		0.0510	0.05	-	S Dup	50.0 - 110		12/5104/2			
Parameter	PrepSet	LCS	LCSD	20	Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Aluminum, Total	1170528	0.501	0.498		0.500	85.0 - 115	100	99.6	mg/L	0.601	20.0
	11/0520	0.501	0.190		LDR	05.0 - 115	100	<i></i>	ing/E	0.001	20.0
Parameter		Reading	Known	Units	Recover%	Limits%		File			
Aluminum, Total		4.53	5	mg/L	90.6	90.0 - 110		127516475			
Thummun, Tour		1.55	5	-	MSD	<i>y</i> 0.0 110		12/0101/0			
Doromotor	Sampla	MS	MSD	UNK	Known	Limits	MS%	MSD%	Units	RPD	Limit%
<u>Parameter</u> Aluminum, Total	<i>Sample</i> 2399413	0.484	0.487	ND	0.500	70.0 - 130	96.8	97.4	mg/L	0.618	20.0
Aluminum, Total	2399697	0.633	0.631	0.172	0.500	70.0 - 130	92.2	91.8	mg/L	0.435	20.0
Analytical Set	1170817								-	SM 251	0 B-2011
- /				B	Blank						
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File			
Lab Spec. Conductance at 25 C	1170817	0.642			umhos/cm			127515845			
				Du	plicate						
Parameter	Sample		Result	Unknow	n		Unit		RPD		Limit%
Lab Spec. Conductance at 25 C	2399569		858	858			umhos/cm		0		20.0

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 13 of 19

ICT1-A

Individual Care of Texas Sandy Peterson P.O. Box 3395 Abilene, TX 79604

Page 8 of 9

Project	
1143884	

Printed 04/25/2025

			ŀ	cv						
Parameter	Reading	Known	Units	Recover%	Limits%		File			
Lab Spec. Conductance at 25 C	13100	12900	umhos/cn	n 102	90.0 - 110		127515848			
			Sta	ndard						
Parameter San	ple Reading	Known	Units	Recover%	Limits%		File			
Lab Spec. Conductance at 25 C 117	817 1420	1410	umhos/cn	n 101	90.0 - 110		127515846			
*	0817 101	100	umhos/cn		90.0 - 110		127515847			
Lab Spec. Conductance at 25 C 117	0817 1420	1410	umhos/cn	n 101	90.0 - 110		127515857			
Analytical Set 11711	13							S	M 4500-	P E-2011
			AWRL	L/LOQ C						
<u>Parameter</u>	Reading		Units	Recover%	Limits%		File			
Phosphorus (as P), total	0.0753	0.060	mg/L	126	70.0 - 130		127521686			
			BI	ank						
Parameter Prep	Set Reading	MDL	MQL	Units			File			
Phosphorus (as P), total 117	113 0.00359	0.00311	0.030	mg/L			127521685			
			C	CV						
Parameter	Reading	Known	Units	Recover%	Limits%		File			
Phosphorus (as P), total	0.295	0.300	mg/L	98.3	90.0 - 110		127521687			
Phosphorus (as P), total	0.318	0.300	mg/L	106	90.0 - 110		127521702			
Phosphorus (as P), total	0.286	0.300	mg/L	95.3	90.0 - 110		127521715			
			LCS	5 Dup						
Parameter Prep	Set LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Phosphorus (as P), total 117	113 0.302	0.306		0.300	80.0 - 120	101	102	mg/L	1.32	20.0
			Μ	ISD						
<u>Parameter</u> San	vle MS	MSD	UNK	Known	Limits	MS%	MSD%	Units	RPD	Limit%
Phosphorus (as P), total 240	615 0.273	0.484	0.155	0.150	70.0 - 130	78.7	219 *	mg/L	94.4 *	20.0
Phosphorus (as P), total 240	617 0.395	0.220	0.119	0.150	70.0 - 130	184 *	67.3 *	mg/L	92.8 *	20.0
Analytical Set 11713	34								SM 232	0 B-20 11
			BI	ank						
Parameter Prep	Set Reading	MDL	MQL	Units			File			
	.334 ND	1.00	1.00	mg/L			127526565			
Total Alkalinity (as CaCO3) 117	.334 ND	1.00	1.00	mg/L			127526592			
			С	CV						
Parameter	Reading	Known	Units	Recover%	Limits%		File			
Total Alkalinity (as CaCO3)	26.9	25.0	mg/L	108	90.0 - 110		127526564			
Total Alkalinity (as CaCO3)	24.4	25.0	mg/L	97.6	90.0 - 110		127526578			
Total Alkalinity (as CaCO3)	26.9	25.0	mg/L	108	90.0 - 110		127526591			
Total Alkalinity (as CaCO3)	26.9	25.0	mg/L	108	90.0 - 110		127526605			
Total Alkalinity (as CaCO3)	24.4	25.0	mg/L	97.6	90.0 - 110		127526609			

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 14 of 19

ICT1-A

Individual Care of Texas Sandy Peterson P.O. Box 3395 Abilene, TX 79604

Page 9 of 9

Project 1143884

Printed 04/25/2025

<u>Parameter</u>	Sample		Result	Unknown			Unit		RPD	Limit%
Total Alkalinity (as CaCO3)	2398652		120	118			mg/L		1.68	20.0
Total Alkalinity (as CaCO3)	2399631		79.2	91.9			mg/L		14.8	20.0
Total Alkalinity (as CaCO3)	2399899		650	632			mg/L		2.81	20.0
Total Alkalinity (as CaCO3)	2400191		84.6	98.7			mg/L		15.4	20.0
				ŀ	cv					
Parameter		Reading	Known	Units	Recover%	Limits%		File		
Total Alkalinity (as CaCO3)		26.9	25.0	mg/L	108	90.0 - 110		127526563		
				Mat.	Spike					
Parameter	Sample	Spike	Unknown	Known	Units	Recovery %	Limits %	File		
Total Alkalinity (as CaCO3)	2398652	146	118	25.0	mg/L	112	70.0 - 130	127526568		
Total Alkalinity (as CaCO3)	2399631	108	91.9	25.0	mg/L	64.4	70.0 - 130	127526581	*	¢
Total Alkalinity (as CaCO3)	2399899	623	632	25.0	mg/L	0	70.0 - 130	127526595	*	¢
Total Alkalinity (as CaCO3)	2400191	109	98.7	25.0	mg/L	41.2	70.0 - 130	127526608	*	•

Duplicate

* Out RPD is Relative Percent Difference: abs(r1-r2) / mean(r1,r2) * 100%

Recover% is Recovery Percent: result / known * 100%

CCV - Continuing Calibration Verification (same standard used to prepare the curve; typically a mid-range concentration; verifies the continued validity of the calibration curve); Blank - Method Blank (reagent water or other blank matrices that contains all reagents except standard(s) and is processed simultaneously with and under the same conditions as samples; carried through preparation and analytical procedures exactly like a sample; monitors); ICV - Initial Calibration Verification; MSD - Matrix Spike Duplicate (replicate of the matrix spike; same solution and amount of target analyte added to the MS is added to a third aliquot of sample; quantifies matrix bias and precision.); LCS Dup - Laboratory Control Sample Duplicate (replicate LCS; analyzed when there is insufficient sample for duplicate or MSD; quantifies accuracy and precision.); LDR - Linear Dynamic Range Standard; CCB - Continuing Calibration Blank; AWRL/LOQ C - Ambient Water Reporting Limit/LOQ Check Std; LCS - Laboratory Control Sample (reagent water or other blank matrices that is spiked with a known quantity of target analyte(s) and carried through preparation and analytical procedures exactly like a sample; typically a mid-range concentration; verifies that bias and precision of the analytical process are within control limits; determines usability of the data.); MS - Matrix Spike (same solution and amount of target analyte added to the LCS is added to a second aliquot of sample; quantifies matrix bias.)

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 15 of 19

1 of 4

Printed 04/08/2025 Page 1 of 3
Lab Number PO Number Phone214/356-7412
it
Hand Delivered by Client to Region or LAB
xin? Samples Biological Hazard?
xin? Samples Biological Hazard?
05 mg/L] SM 4500-Cl G-2011
Date 4.15-25 Time 1100
Units <u>Mg/L</u> TempC
0.10
SM 4500-O G-2016 (0.0104 days)
SH 4500-0 (2010 (0.0104 days)
11 -25 102
Date 4.15-25 Time 1120
_
Units C
Units Temp C
_
Units Temp C
C
C

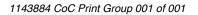
2 of 4

1143884 CoC Print Group 001 of (201
1143004 COC FIIII GIOUP OUT OI (JUI

AIN OF C	UST	ΓΟDΥ	Printed 04/08/2025 Page 2 of 3	
dividual Care of Texas ndy Peterson D. Box 3395 ilene, TX 79604		ICT1-A 112		
ite) Ilected By <u>ARF</u> Date	4-15-25	Time 1055 Analyzed By MAF	Date 4-15-25 Time 1100	
		mp. 19. (C Duplicate		
1 N	a2S2O3	(0.008%) Polystyrene-100 n	nL Sterilized	
NELAC Short HoldSub	cc ECPH	E.Coli WW MPN Panhandle (SUB)	SUB Lab CAS:EMLC (0.333 days)	
2 H	2SO4 to	pH <2 GlQt w/Tef-lined lid		
NELAC	HEM	Oil and Grease (HEM)	EPA 1664B (HEM) (28.0 days)	
1 P	olyethyle	ene 1/2 gal (White)		
NELAC Short Hold	BODc	BOD Carbonaceous	SM 5210 B-2016 (TCMP Inhibitor) (2.04 days)	
NELAC	TSS	Total Suspended Solids	SM 2540 D-2015 (7.00 days)	
0 Z	No bo	ttle required		
Subcontract	100S	SUB Shipped		
	SKL	Sub Hold: PM Attn		
1 H	NO3 to p	oH <2 Polyethylene 500 mL	for Metals	
NELAC	*AlM	Aluminum, Total	EPA 200.8 5.4 CAS:7429-90-5 (180 days)	
	301L	Liquid Metals Digestion	EPA 200.2 2.8 (180 days)	
1 H	2SO4 to	pH <2 250 ml Polyethylene		
	NHaN	Ammonia Nitrogen	EPA 350.1 2 (28.0 days)	
NELAC	TKN	Total Kjeldahl Nitrogen	EPA 351.2 2 CAS:7727-37-9 (28.0 days)	
NELAC NELAC	TPWB	Phosphorus (as P), total	SM 4500-P E-2011 CAS:7723-14-0 (28.0 days)	
	-	ene Quart		
NELAC NELAC	olyethyle		EPA 300.0 2.1 (28.0 days)	
NELAC NELAC	olyethyle !CIL	Chloride	EFA 500.0 2.1 (20.0 days)	
NELAC NELAC		Chloride Fluoride	EPA 300.0 2.1 (28.0 days)	

3 of 4

1143884 CoC Print Group 001 of 001


Individual Care of Sandy Peterson P.O. Box 3395 Abilene, TX 7960		ICT1-A 112		
NELAC Shor	t Hold IN3L	Nitrate-Nitrogen Total	EPA 300.0 2.1 CAS:14797-55-	8 (2.00 days)
NELAC	!S4L	Sulfate	EPA 300.0 2.1 (28.0 days)	
NELAC	AlkT	Total Alkalinity (as CaCO3)	SM 2320 B-2011 (14.0 days)	
NELAC	CONL	Lab Spec. Conductance at 25 C	SM 2510 B-2011 (28.0 days)	
NEL4C nt Conditions/Co	TDS	Total Dissolved Solids	SM 2540 C-2015 (7.00 days)	
Time		nquished		
A Pri	nted Name ROBE	Attribution	Printed Name Doris Stoker - SPL,	Affiliation
1530 Sig	mature Mh 20	1-	Signature I	,
	nted Name	Altiliation	Printed Name	(S Affiliation
Sig	hatun.		Signature	
Pri	nted Name	Affiliation	Printed Name	Attiliation
Sig	nature		Signature	
Pri	nted Name	Affiliation	Printed Name	Alliliation
Sig	nature		Signature	
e Received on Ic /Sample Secure? edited column design lered services pursua ents	Yes No	If Shipped: Tracking Number & Temp A2LA, N - NELAC, or z - not listed unde & Conditions Agreement - SPL personnel	- See Attached scope of accreditation. Unless otherwise sp collect samples as specified by SPL SOP #0	ecified, SPL shall provide 00323.

ge 18 of 19

1 2 3

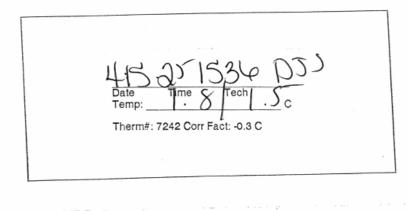
4 of 4

1536

COOLER CHECKIN

15.25

of


Region/Driver/Client

Date / Time:

Cooler:

Shipping Company:

Temp Label:

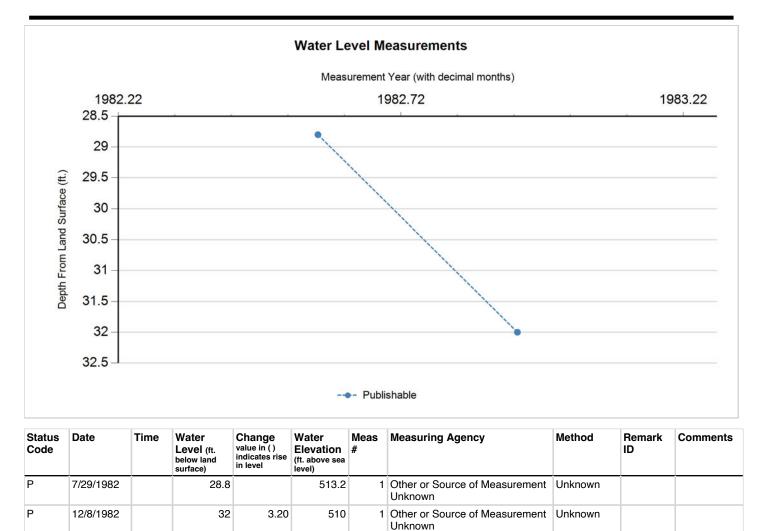
Texas Water Development Board (TWDB) Groundwater Database (GWDB) Well Information Report for State Well Number 33-07-501

GWDB Reports and Downloads

Well Basic Details

Scanned Documents

State Well Number	3307501
County	Hunt
River Basin	Sabine
Groundwater Management Area	8
Regional Water Planning Area	D - North East Texas
Groundwater Conservation District	GCD Does Not Exist
Latitude (decimal degrees)	32.935556
Latitude (degrees minutes seconds)	32° 56' 08" N
Longitude (decimal degrees)	-96.186111
Longitude (degrees minutes seconds)	096° 11' 10" W
Coordinate Source	+/- 1 Second
Aquifer Code	211NCTC - Nacatoch Sand
Aquifer	Nacatoch
Aquifer Pick Method	
Land Surface Elevation (feet above sea level)	542
Land Surface Elevation Method	Interpolated From Topo Map
Well Depth (feet below land surface)	120
Well Depth Source	Driller's Log
Drilling Start Date	
Drilling End Date	7/9/1979
Drilling Method	Mud (Hydraulic) Rotary
Borehole Completion	Perforated or Slotted


Well Type	Withdrawal of Water
Well Use	Domestic
Water Level Observation	Miscellaneous Measurements
Water Quality Available	Yes
Pump	Jet
Pump Depth (feet below land surface)	
Power Type	Electric Motor
Annular Seal Method	
Surface Completion	
Owner	Larry Roberts
Driller	Ford's Well Drilling
Other Data Available	Drillers Log; Specific Capacity
Well Report Tracking Number	
Plugging Report Tracking Number	
U.S. Geological Survey Site Number	
Texas Commission on Environmental Quality Source Id	
Groundwater Conservation District Well Number	
Owner Well Number	
Other Well Number	
Previous State Well Number	
Reporting Agency	Texas Water Development Board
Created Date	8/16/1982
Last Update Date	3/4/2020

Remarks Reported yield 10 GPM with 70 feet drawdown after bailing 1 hour in 1979. Specific capacity 0.14 GPM/- ft.

Casing						
Diameter (in.)	Casing Type	Casing Material	Schedule	Gauge	Top Depth (ft.)	Bottom Depth (ft.)
4	Blank	Plastic (PVC)			0	110
4	Screen	Plastic (PVC)			110	120
Lithology - N Annular Sea	lo Data I Range - No D	Data				
Borehole - No Data Plugged Back - No Data						
Filter Pack -	No Data			Pack	ers - No Data	

Code Descriptions

Water Quality Analysis

Sample Date:	7/29/1982	Sample Time:	0000	Sample Number:	1	Collection Entity:	Texas Water Development Board
Sampled Aquif	er: Nacatoc	h Sand					
Analyzed Lab:	Texas Depar	tment of Health		Reli	iability:	Collected from p	umped well, but not filtered or preserved
Collection Ren	narks: No D	ata					

Parameter Code	Parameter Description	Flag	Value*	Units	Plus/Minus
00415	ALKALINITY, PHENOLPHTHALEIN (MG/L)		0	mg/L	
00410	ALKALINITY, TOTAL (MG/L AS CACO3)		78	mg/L as CACO 3	
00440	BICARBONATE ION, CALCULATED (MG/L AS HCO3)		95.19	mg/L	
00910	CALCIUM (MG/L)		323	mg/L	
00445	CARBONATE ION, CALCULATED (MG/L AS CO3)		0	mg/L	
00940	CHLORIDE, TOTAL (MG/L AS CL)		82	mg/L	
00950	FLUORIDE, DISSOLVED (MG/L AS F)		0.1	mg/L	
00900			962	mg/L as CACO 3	
00920	MAGNESIUM (MG/L)		38	mg/L	
71851	NITRATE NITROGEN, DISSOLVED, CALCULATED (MG/L AS NO3)		3.54	mg/L as NO3	
00400	PH (STANDARD UNITS), FIELD		8	SU	
71860	RESIDUAL SODIUM CARBONATE, CALCULATED		0		
00955	55 SILICA, DISSOLVED (MG/L AS SI02)		28	mg/L as SIO2	
00931	SODIUM ADSORPTION RATIO, CALCULATED (SAR)		4.68		
00932	SODIUM, CALCULATED, PERCENT		43	PCT	
00929	SODIUM, TOTAL (MG/L AS NA)		334	mg/L	
00094	SPECIFIC CONDUCTANCE, FIELD (UMHOS/CM AT 25C)		4200	MICR	
00945	SULFATE, TOTAL (MG/L AS SO4)		1422	mg/L as SO4	
00010	TEMPERATURE, WATER (CELSIUS)		25	С	
70301	TOTAL DISSOLVED SOLIDS , SUM OF CONSTITUENTS (MG/L)		2277	mg/L	

* Value may not display all significant digits for parameter in results, check Scanned Documents for laboratory paperwork..

GWDB DISCLAIMER: Except where noted, all of the information provided in the Texas Water Development Board (TWDB) Groundwater Database (https://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp) is believed to be accurate and reliable; however, the TWDB assumes no responsibility for any errors appearing in rules or otherwise. Further, TWDB assumes no responsibility for the use of the information provided. PLEASE NOTE that users of these data are responsible for checking the accuracy, completeness, currency and/or suitability of all information themselves. TWDB makes no guarantees or warranties as to the accuracy, completeness, currency, or suitability of the information provided via the Groundwater Database (GWDB). TWDB specifically disclaims any and all liability for any claims or damages that may result from providing GWDB data or the information. For additional information or answers to questions concerning the TWDB GWDB, contact the Groundwater Data Team at GroundwaterData@twdb.texas.gov.

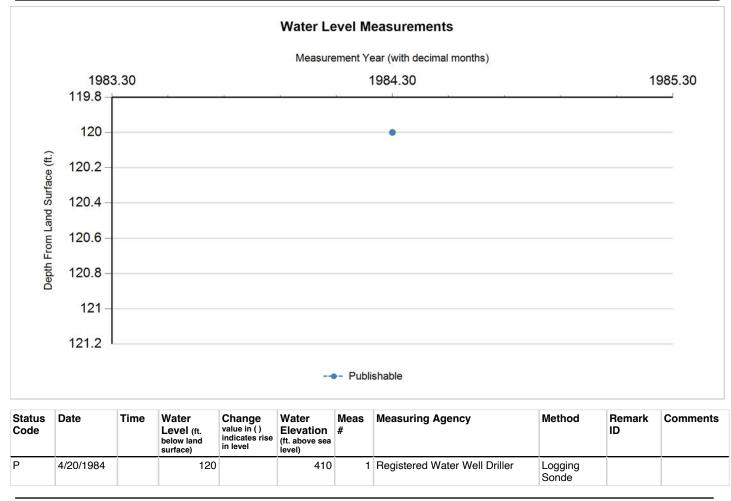
Texas Water Development Board (TWDB) Groundwater Database (GWDB) Well Information Report for State Well Number 33-07-502

GWDB Reports and Downloads

Well Basic Details

Scanned Documents

State Well Number	3307502
County	Hunt
River Basin	Sabine
Groundwater Management Area	8
Regional Water Planning Area	D - North East Texas
Groundwater Conservation District	GCD Does Not Exist
Latitude (decimal degrees)	32.928333
Latitude (degrees minutes seconds)	32° 55' 42" N
Longitude (decimal degrees)	-96.18
Longitude (degrees minutes seconds)	096° 10' 48" W
Coordinate Source	+/- 1 Second
Aquifer Code	211NCTC - Nacatoch Sand
Aquifer	Nacatoch
Aquifer Pick Method	
Land Surface Elevation (feet above sea level)	530
Land Surface Elevation Method	Interpolated From Topo Map
Well Depth (feet below land surface)	275
Well Depth Source	Driller's Log
Drilling Start Date	
Drilling End Date	4/18/1984
Drilling Method	Mud (Hydraulic) Rotary
Borehole Completion	Gravel Pack w/Perforations


Well Type	Withdrawal of Water
Well Use	Public Supply
Water Level Observation	Miscellaneous Measurements
Water Quality Available	No
Pump	Submersible
Pump Depth (feet below land surface)	
Power Type	Electric Motor
Annular Seal Method	
Surface Completion	
Owner	Country Wood
Driller	Wades Well Service
Other Data Available	Drillers Log
Well Report Tracking Number	
Plugging Report Tracking Number	
U.S. Geological Survey Site Number	
Texas Commission on Environmental Quality Source Id	G1160093D
Groundwater Conservation District Well Number	
Owner Well Number	
Other Well Number	
Previous State Well Number	
Reporting Agency	Texas Water Development Board
Created Date	8/5/1992
Last Update Date	3/4/2020

Remarks Owners well #1. Gravel packed from 228 to 275 feet.

Casing						
Diameter (in.)	Casing Type	Casing Material	Schedule	Gauge	Top Depth (ft.)	Bottom Depth (ft.)
4	Blank	Plastic (PVC)			C	235
4	Screen	Plastic (PVC)			235	5 275
Well Tests -						
Lithology - I	No Data					
Annular Sea	l Range - No L	Data				
Borehole - No Data Plugged Back - No Data						
Filter Pack - No Data				Pack	ers - No Data	

Code Descriptions

 Status Code
 Status Description

 P
 Publishable

Water Quality Analysis - No Data Available

GWDB DISCLAIMER: Except where noted, all of the information provided in the Texas Water Development Board (TWDB) Groundwater Database (https://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp) is believed to be accurate and reliable; however, the TWDB assumes no responsibility for any errors appearing in rules or otherwise. Further, TWDB assumes no responsibility for the use of the information provided. PLEASE NOTE that users of these data are responsible for checking the accuracy, completeness, currency and/or suitability of all information themselves. TWDB makes no guarantees or warranties as to the accuracy, completeness, currency, or suitability of the information provided via the Groundwater Database (GWDB). TWDB specifically disclaims any and all liability for any claims or damages that may result from providing GWDB data or the information. For additional information or answers to questions concerning the TWDB GWDB, contact the Groundwater Data Team at GroundwaterData@twdb.texas.gov.

	STATE OF TEXAS WELL REPORT for Tracking #152597				
Owner:	Sidney Stone	Owner Well #:	No Data		
Address:	7011 County Road 2294 Quinlan, TX 75474	Grid #:	33-07-6		
Well Location:		Latitude:	32° 56' 47" N		
	Quinlan, TX 75474	Longitude:	096° 09' 47" W		
Well County:	Hunt	Elevation:	No Data		
Type of Work:	New Well	Proposed Use:	Domestic		

Drilling Start Date: 7/1/2005

Drilling End Date: 7/2/2005

	Diameter (ïn.)	Top Depth (ft.)	Bottom Depth	(ft.)
Borehole:	8		0	224	
Drilling Method:	Mud (Hydraulic) Rotary				
Borehole Completion:	Filter Packed				
	Top Depth (ft.)	Bottom Depth (ft.)	Filter	Material	Size
Filter Pack Intervals:	180	224	Gr	avel	
	Top Depth (ft.)	Bottom Depth	(ft.) De	escription (number of sac	ks & material)
Annular Seal Data:	0	10		1 Cement	
	10	180		5 Cement	
Seal Method: Po	ortland Grout		Distance to P	roperty Line (ft.): 25	5
Sealed By: J.	Landrith			tic Field or other ontamination (ft.): 15	50
			Distance to	Septic Tank (ft.): No	o Data
			Metho	od of Verification: No	o Data
Surface Completion:	Surface Sleeve	Installed			
Water Level:	35 ft. below lar	nd surface on 200	5-07-06 Mea	surement Method:	Unknown
Packers:	No Data				
Type of Pump:	Submersible				
Well Tests:	Pump	Yield: 15 (GPM		

Water Quality:	No Data	No Data		
Trator Quality.	NO Data	NO Data		
	Chemical Analysis Made:			No
	Did the driller	knowingly penetrate any strata whic contained injurious constituents		
Certification Data:	driller's direct supervi correct. The driller up	at the driller drilled this well (or the v ision) and that each and all of the sta nderstood that failure to complete th turned for completion and resubmitt	atements he e required it	rein are true and
Certification Data: Company Information:	driller's direct supervi correct. The driller u the report(s) being re	ision) and that each and all of the stand nderstood that failure to complete the sturned for completion and resubmitt	atements he e required it	rein are true and
	driller's direct supervi correct. The driller u the report(s) being re	ision) and that each and all of the standerstood that failure to complete the turned for completion and resubmitt I Co LLC	atements he e required it	rein are true and
	driller's direct supervi correct. The driller up the report(s) being re Wades Water Well 3437 County Road	ision) and that each and all of the standerstood that failure to complete the oturned for completion and resubmitt I Co LLC I 2176 402	atements he e required it	rein are true and

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	1	Soil
1	7	Black Clay
7	39	Yellow Clay
39	96	Shale
96	106	Sand
106	196	Shale
196	224	Sand

Casing: BLANK PIPE & WELL SCREEN DATA

 Dia. (in.) New/Used Type Setting From/To (ft.)

 4 New SCH #40 PVC 0 204

 4 New SCH #40 Well Screen 204 224 20

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 334-5540

	STATE OF TEXAS WELL REPORT for Tracking #190873				
Owner:	Joe Miller	Owner Well #:	No Data		
Address:	7055 Brandy Ln Quinlan, TX 75474	Grid #:	33-07-6		
Well Location:	7055 Brandy Ln	Latitude:	32° 56' 55" N		
	Quinlan, TX 75474	Longitude:	096° 09' 40" W		
Well County:	Hunt	Elevation:	No Data		
Type of Work:	New Well	Proposed Use:	Domestic		

Drilling Start Date: 2/11/2006 Drilling End Date: 2/12/2006

	Diameter ((in.)	Top Depth (ft.)	Bottom Depti	h (ft.)
Borehole:	8		0	255	
Drilling Method:	Mud (Hydraulic) Rotary				
Borehole Completion:	Filter Packed				
	Top Depth (ft.)	Bottom Depth (ft.)	Filter	Material	Size
Filter Pack Intervals:	200	255	Gr	avel	
	Top Depth (ft.)	Bottom Depth	(ft.) D	escription (number of sa	cks & material)
Annular Seal Data:	0	10		1 Portland	
	100	200		4 Portland	l
Seal Method: Pr	essure Cement		Distance to F	Property Line (ft.): 1	25
Sealed By: M.	Wade			otic Field or other ontamination (ft.): 2	00
			Distance to	Septic Tank (ft.): N	o Data
			Metho	od of Verification: N	o Data
Surface Completion:	Surface Sleeve Installed				
Water Level:	40 ft. below land surface on 2006-02-12 Measurement Method: Unknown				
Packers:	No Data				
Type of Pump:	Submersible				
Well Tests:	Pump	Yield: 21 (GPM		

	Strata Depth (ft.)	Water Type	-	
Water Quality:	No Data	No Data No Data		
	Chemical Analysis Made:		: No	
	Did the driller	knowingly penetrate any strata which contained injurious constituents?		
Certification Data:	driller's direct superv correct. The driller u	nat the driller drilled this well (or the we rision) and that each and all of the stat Inderstood that failure to complete the eturned for completion and resubmitta	ements he required it	rein are true and
Certification Data: Company Information:	driller's direct superv correct. The driller u the report(s) being re	rision) and that each and all of the stat inderstood that failure to complete the eturned for completion and resubmitta	ements he required it	rein are true and
	driller's direct superv correct. The driller u the report(s) being re	rision) and that each and all of the stat inderstood that failure to complete the eturned for completion and resubmitta I Co, LLC	ements he required it	rein are true and
	driller's direct superv correct. The driller u the report(s) being re Wades Water Well 3437 CR 2176	rision) and that each and all of the stat inderstood that failure to complete the eturned for completion and resubmitta I Co, LLC 402	ements he required it	rein are true and

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	1	Soil
1	5	Brown Clay
5	28	Yellow Clay
28	58	Shale
58	68	Sand
68	216	S. Shale
216	255	Sand Streaks

Casing: BLANK PIPE & WELL SCREEN DATA

 Dia. (in.)
 New/Used
 Type
 Setting From/To (ft.)

 4
 New Sch #40 PVC 0 - 235

 4
 New Sch 40 Well Screen 235 - 255 18#

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 334-5540

	STATE OF TEXAS WELL REPORT for Tracking #221864				
Owner:	Ralph Green	Owner Well #:	1		
Address:	Stone Creek Dr. Quinlan, TX 75474	Grid #:	33-07-6		
Well Location:	·	Latitude:	32° 57' 10" N		
	Quinlan, TX 75474	Longitude:	096° 09' 47" W		
Well County:	Hunt	Elevation:	No Data		
Type of Work:	New Well	Proposed Use:	Domestic		

Drilling Start Date: 3/9/2007

Drilling End Date: 3/10/2007

	Diameter ((in.)	Top Depth (ft.)	Bottom Depth	n (ft.)
Borehole:	8		0	265	
Drilling Method:	Mud (Hydraulie	c) Rotary			
Borehole Completion:	Filter Packed				
	Top Depth (ft.)	Bottom Depth (ft.)	Filter	Material	Size
Filter Pack Intervals:	200	265	Gr	avel	
	Top Depth (ft.)	Bottom Depth	(ft.) D	escription (number of sad	cks & material)
Annular Seal Data:	0	10		1 Portland	
	100	200		3 Portland	
Seal Method: Ur	nknown		Distance to F	Property Line (ft.): n a	a
Sealed By: Ur	nknown			tic Field or other ontamination (ft.): 10	60
			Distance to	Septic Tank (ft.): N	o Data
			Metho	od of Verification: N	o Data
Surface Completion:	Surface Sleeve	Installed			
Water Level:	35 ft. below lar	nd surface on 200	7 -03-10 Mea	surement Method:	Unknown
Packers:	No Data				
Type of Pump:	Submersible				
Well Tests:	Pump	Yield: 16 (GPM		

Water Quality:	No Dete	Na Data			
Water Quanty.	No Data	No Data No Data			
		Chemical Analysis Made	: Unkno	wn	
	Did the driller	knowingly penetrate any strata which contained injurious constituents?			
Certification Data:	driller's direct superv correct. The driller u	nat the driller drilled this well (or the we rision) and that each and all of the stat inderstood that failure to complete the eturned for completion and resubmitta	ements he required it	rein are true and	
Certification Data: Company Information:	driller's direct superv correct. The driller u the report(s) being re	rision) and that each and all of the stat inderstood that failure to complete the eturned for completion and resubmitta	ements he required it	rein are true and	
	driller's direct superv correct. The driller u the report(s) being re	rision) and that each and all of the stat inderstood that failure to complete the eturned for completion and resubmitta I Co LLC	ements he required it	rein are true and	
	driller's direct superv correct. The driller u the report(s) being re Wades Water Wel 3437 CR 2176	rision) and that each and all of the stat inderstood that failure to complete the eturned for completion and resubmitta I Co LLC 402	ements he required it	rein are true and	

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	1	Sand
1	4	Brown Clay
4	29	Yellow
29	72	Shale
72	95	Sand
95	220	Shale
220	265	Sand Streaks

Casing: BLANK PIPE & WELL SCREEN DATA

Setting From/To (ft.)

4 New Sch #40 PVC 0 - 245

4 New Sch 40 Screen 245 - 265

Dia. (in.) New/Used Type

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 334-5540

STATE OF TEXAS WELL REPORT for Tracking #221907							
Owner:	Royce Davis	Owner Well #:	1				
Address:	6841 Deer Trail Quinlan, TX 75474	Grid #:	33-07-6				
Well Location:		Latitude:	32° 57' 07" N				
		Longitude:	096° 09' 50" W				
Well County:	Hunt	Elevation:	No Data				
Type of Work:	New Well	Proposed Use:	Domestic				

Drilling Start Date: 9/24/2007 Drilling End Date: 9/25/2007

	Diameter ((in.)	Top Depth (ft.)	Bottom Dept	h (ft.)		
Borehole: 8			0	255			
Drilling Method:	Mud (Hydraulic) Rotary						
Borehole Completion:	Filter Packed						
	Top Depth (ft.)	Bottom Depth (ft.)	Filter Material		Size		
Filter Pack Intervals:	200	255	Gravel				
	Top Depth (ft.)	Bottom Depth	(ft.) D	Description (number of sacks & material)			
Annular Seal Data:	0	10		1 Portland			
	100	200	200 3 Port		and		
Seal Method: Po	ouring		Distance to F	Property Line (ft.): 6	0		
Sealed By: M		Distance to Septic Field or other concentrated contamination (ft.): 60					
	Distance to Septic Tank (ft.): No Data						
			Metho	od of Verification: a	erobic system		
Surface Completion: Surface Sleeve Installed							
Water Level:	vel: 35 ft. below land surface on 2007-09-25 Measurement Method: Unknown						
Packers:	No Data						
Type of Pump:	Submersible						
Well Tests:	Pump Yield: 19 GPM						

	Strata Depth (ft.)	Water Type		
Water Quality:	No Data	No Data		
	Chemical Analysis Made:		e: Unkno	wn
	Did the driller	knowingly penetrate any strata whicl contained injurious constituents		
Certification Data:	driller's direct supervi correct. The driller u	at the driller drilled this well (or the w sion) and that each and all of the sta nderstood that failure to complete the turned for completion and resubmitta	atements he e required it	rein are true and
Certification Data: Company Information:	driller's direct supervi correct. The driller un the report(s) being re	sion) and that each and all of the stand nderstood that failure to complete the turned for completion and resubmitte	atements he e required it	rein are true and
	driller's direct supervi correct. The driller un the report(s) being re	sion) and that each and all of the standerstood that failure to complete the turned for completion and resubmitta	atements he e required it	rein are true and
	driller's direct supervi correct. The driller un the report(s) being re Wades Water Well 3437 CR 2176	sion) and that each and all of the standerstood that failure to complete the turned for completion and resubmitta	atements he e required it	rein are true and

Top (ft.)	Bottom (ft.)	Description
0	1	Sand
1	6	Red Clay
6	36	Yellow
36	126	S. Shale
126	150	Sand
150	225	Shale
225	255	Sand Streaks

Casing: BLANK PIPE & WELL SCREEN DATA

Dia. (in.) New/Used Type Setting From/To (ft.) 4 New Sch #40 PVC 0 - 235 4 New Sch 40 Screen 235 - 255 14#

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

	STATE OF TEXAS WELL REPORT for Tracking #221922				
Owner:	D. Garrett	Owner Well #:	1		
Address:	1699 CR 2278 Quinlan, TX 75474	Grid #:	33-07-6		
Well Location:	1699 CR 2278	Latitude:	32° 55' 33" N		
	Quinlan, TX 75474	Longitude:	096° 09' 46" W		
Well County:	Hunt	Elevation:	No Data		
Type of Work:	New Well	Proposed Use:	Domestic		

Drilling Start Date: 4/23/2008

Drilling End Date: 4/24/2008

	Diameter ((in.)	Top Depth (ft.)	Bottom Depth	ו (ft.)
Borehole:	8		0	192	
Drilling Method:	Mud (Hydraulic) Rotary				
Borehole Completion:	Filter Packed				
	Top Depth (ft.)	Bottom Depth (ft.)	Filter	Material	Size
Filter Pack Intervals:	100	192	Gr	avel	
	Top Depth (ft.)	Bottom Depth	(ft.) D	escription (number of sad	cks & material)
Annular Seal Data:	0	10		1 Portland	
	50	100		3 Portland	
Seal Method: Po	ouring		Distance to F	Property Line (ft.): 60)
Sealed By: M.	Wade	Distance to Septic Field or other concentrated contamination (ft.): 180			
			Distance to	Septic Tank (ft.): N	o Data
			Metho	od of Verification: N	o Data
Surface Completion:	Surface Sleeve	Installed			
Water Level:	45 ft. below lar	nd surface on 200	8-04-24 Mea	surement Method:	Unknown
Packers:	No Data				
Type of Pump:	Submersible				
Well Tests:	Pump	Yield: 18 (GPM		

	Strata Depth (ft.)	Water Type		
Water Quality:	No Data	No Data		
		Chemical Analysis Ma	de: Unkno	wn
	Did the driller kn	owingly penetrate any strata wh contained injurious constituent		
Certification Data:	driller's direct supervision correct. The driller und	the driller drilled this well (or the on) and that each and all of the s lerstood that failure to complete rned for completion and resubmi	tatements he he required it	rein are true and
Certification Data: Company Information:	driller's direct supervision correct. The driller und the report(s) being retu	on) and that each and all of the s lerstood that failure to complete t rned for completion and resubmi	tatements he he required it	rein are true and
	driller's direct supervision correct. The driller und the report(s) being retu	on) and that each and all of the s lerstood that failure to complete t rned for completion and resubmi Co LLC	tatements he he required it	rein are true and
	driller's direct supervisio correct. The driller und the report(s) being retu Wades Water Well C 3437 CR 2176	on) and that each and all of the s lerstood that failure to complete t rned for completion and resubmi Co LLC 2	tatements he he required it	rein are true and
Company Information:	driller's direct supervision correct. The driller und the report(s) being retu Wades Water Well C 3437 CR 2176 Greenville, TX 7540	on) and that each and all of the s lerstood that failure to complete t rned for completion and resubmi co LLC 2	tatements he he required it ttal.	erein are true and tems will result in 2892

Top (ft.)	Bottom (ft.)	Description
0	1	Soil
1	5	Black Clay
5	42	Yellow Clay
42	97	Shale
97	120	Sand
120	140	S. Streaks
140	192	Sand

Casing:				
BLANK PIPE & WELL SCREEN DATA				

Dia. (in.) New/Used	Туре	Setting From/To (ft.)	
4 New Sch #40 P	VC 0 -	172	
4 New Sch 40 Sc	reen 17	72 - 192 18#	

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

	STATE OF TEXAS WELL REPORT for Tracking #224451				
Owner:	Bobby McGill	Owner Well #:	1		
Address:	7064 Pr.2513 Quinlan, TX 75474	Grid #:	33-07-5		
Well Location:		Latitude:	32° 56' 08" N		
	Quinlan, TX 75474	Longitude:	096° 10' 50" W		
Well County:	Hunt	Elevation:	524 ft. above sea level		
Type of Work:	New Well	Proposed Use:	Domestic		

Drilling Start Date: 6/14/2010 Drilling End Date: 6/15/2010

	Diameter	(in.)	Top Depth (ft.)	Bottom Depth	(ft.)
Borehole:	8		0	240	
Drilling Method:	Mud (Hydraulic) Rotary				
Borehole Completion:	Filter Packed				
	Top Depth (ft.)	Bottom Depth (ft.)	Filter I	Material	Size
Filter Pack Intervals:	180	240	Gra	avel	
	Top Depth (ft.)	Bottom Depth	(ft.) De	escription (number of sac	ks & material)
Annular Seal Data:	0	10		1 cement	
	10	180		3 cement	
Seal Method: pu	Imp		Distance to P	roperty Line (ft.): 60	
Sealed By: Jo	e Landrith		Distance to Sept concentrated co	tic Field or other ontamination (ft.): 20	0
			Distance to	Septic Tank (ft.): No	Data
			Metho	od of Verification: dr	iller
Surface Completion:	Surface Sleeve	e Installed			
Water Level:	60 ft. below la	nd surface on 20	1 0-06-15 Mea	surement Method:	Unknown
Packers:	No Data				
Type of Pump:	Submersible		Ρι	ump Depth (ft.): 180)
Well Tests:	Unknown	Vield: 20	GPM with 100 ft	drawdown after 2	hours

Water Quality:	48	pottable	
	40	ροιιαρίο	
		Chemical Analysis Mac	de: No
	Did the driller kn	owingly penetrate any strata whi contained injurious constituent	
Certification Data:	driller's direct supervisio correct. The driller under	the driller drilled this well (or the on) and that each and all of the s erstood that failure to complete t rned for completion and resubmit	tatements herein are true and he required items will result in
Certification Data: Company Information:	driller's direct supervision correct. The driller under the report(s) being return	on) and that each and all of the s erstood that failure to complete t	tatements herein are true and he required items will result in
	driller's direct supervision correct. The driller under the report(s) being return	on) and that each and all of the s erstood that failure to complete t rned for completion and resubmit	tatements herein are true and he required items will result in
Company Information:	driller's direct supervisio correct. The driller under the report(s) being return Wades water well 3437 cr. 2176	on) and that each and all of the s erstood that failure to complete t rned for completion and resubmit	tatements herein are true and he required items will result in
	driller's direct supervisio correct. The driller under the report(s) being return Wades water well 3437 cr. 2176 Greenville, TX 75402	on) and that each and all of the s erstood that failure to complete t rned for completion and resubmit 2	tatements herein are true and he required items will result in tal.

Top (ft.)	Bottom (ft.)	Description
0	1	sand soil
1	7	blk clay
7	44	yellow
44	88	shale
88	104	sand
104	192	shale
192	240	sand

Casing: BLANK PIPE & WELL SCREEN DATA

Dia. (in.)	New/Used	Туре	Setting From/To (ft.)		
4 new sch #40 pvc 0-220					
4 new sch 40 pvc screen 220-240 #14					

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

	STATE OF TEXAS WELL REPORT for Tracking #461750				
Owner:	Brandon Kirby	Owner Well #:	No Data		
Address:	1880 Chappel rd Quinlan, TX 75474	Grid #:	33-07-5		
Well Location:	1880 Chappel rd	Latitude:	32° 56' 10" N		
	Quinlan, TX 75474	Longitude:	096° 10' 54" W		
Well County:	Hunt	Elevation:	500 ft. above sea level		
Type of Work:	New Well	Proposed Use:	Domestic		

Drilling Start Date: 8/10/2017 Drilling End Date: 8/11/2017

	Diameter (in) Tan Da	ath (ft)	Bottom Donth (ft.)
Borehole:				Bottom Depth (ft.)
Dorenole.	8	0		150
Drilling Method:	Mud (Hydraulic)	Rotary		
Borehole Completion:	Screened			
	Top Depth (ft.)	Bottom Depth (ft.)	Des	scription (number of sacks & material)
Annular Seal Data:	0	10		Cement 1 Bags/Sacks
	10	70	Cement 3 Bags/Sacks	
Seal Method: Po	oured	Dis	tance to Pr	operty Line (ft.): 300
Sealed By: D	riller			c Field or other ntamination (ft.): 200
		C	istance to S	Septic Tank (ft.): 100
			Metho	d of Verification: steel tape
Surface Completion:	Surface Sleeve I	nstalled	Sı	urface Completion by Driller
Water Level:	50 ft. below land	surface on 2017-08-1	4 Meas	urement Method: Steel Tape
Packers:	No Data			
Type of Pump:	Submersible		Pu	mp Depth (ft.): 140
Well Tests:	Yield: 10 GPM v	vith 60 ft. drawdown	after unspe	ecified hours

	Strata Depth (ft.)	Water Type	_	
Water Quality:	No Data	No Data		
		Chemical Analysis Made	: No	
	Did the driller	knowingly penetrate any strata which contained injurious constituents?		
Certification Data:	driller's direct superv correct. The driller u	nat the driller drilled this well (or the w rision) and that each and all of the sta inderstood that failure to complete the eturned for completion and resubmitta	tements he required it	rein are true and
Certification Data: Company Information:	driller's direct superv correct. The driller u the report(s) being re	rision) and that each and all of the sta inderstood that failure to complete the eturned for completion and resubmitta	tements he required it	rein are true and
	driller's direct superv correct. The driller u the report(s) being re	rision) and that each and all of the sta inderstood that failure to complete the eturned for completion and resubmitta	tements he required it	rein are true and
	driller's direct superv correct. The driller u the report(s) being re Wades water well 3437 cr 2176	vision) and that each and all of the sta inderstood that failure to complete the eturned for completion and resubmitta 402	tements he required it	rein are true and

Top (ft.)	Bottom (ft.)	Description
0	1	soil
1	11	brown clay
11	21	brown sand
21	32	brown clay
32	72	gray shale
72	90	sand
90	150	sand streaks

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
4	Blank	New Plastic (PVC)	40	0	130
4	Screen	New Plastic (PVC)	40 0.18	130	150

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

	STATE OF TEXAS WELL REPORT for Tracking #492321				
Owner:	Chad Cook	Owner Well #:	No Data		
Address:	7376 County Road 2532 Quinlan, TX 75474	Grid #:	33-07-5		
Well Location:	7376 County Road 2532	Latitude:	32° 56' 09.04" N		
	Quinlan, TX 75474	Longitude:	096° 10' 32.48" W		
Well County:	Hunt	Elevation:	No Data		
Type of Work:	New Well	Proposed Use:	Domestic		

Drilling Start Date: 8/20/2018 Drilling End Date: 8/21/2018

	Diamater (in		- + 1- (f+)	Dettern Denth (#)
Borehole:	Diameter (in	· · · · · ·		Bottom Depth (ft.)
Dorenole.	e: 8		0 197	
Drilling Method:	Mud (Hydraulic)	Rotary		
Borehole Completion:	Screened			
	Top Depth (ft.)	Bottom Depth (ft.)	Des	scription (number of sacks & material)
Annular Seal Data:	0	10		Cement 1 Bags/Sacks
	100	150	Cement 3 Bags/Sacks	
Seal Method: Po	oured	Dis	tance to Pr	operty Line (ft.): 200
Sealed By: D	riller			c Field or other ntamination (ft.): 300
		D	istance to S	Septic Tank (ft.): 200
			Metho	d of Verification: No Data
Surface Completion:	Surface Sleeve I	nstalled	Su	urface Completion by Driller
Water Level:	No Data on 201	8-08-21		
Packers:	No Data			
Type of Pump:	Submersible		Pu	mp Depth (ft.): 180
Well Tests:	Pump	Yield: 18 GPM a	fter 2 hour	s, no drawdown specified

	Strata Depth (ft.)	Water Type		
Water Quality:	197	No Data		
		Chemical Analysis Ma	ade: No	
	Did the driller	knowingly penetrate any strata wh contained injurious constituen		
Certification Data:	driller's direct supervi correct. The driller u	at the driller drilled this well (or the sion) and that each and all of the nderstood that failure to complete turned for completion and resubm	statements he the required it	rein are true and
Certification Data: Company Information:	driller's direct supervi correct. The driller up the report(s) being re	sion) and that each and all of the nderstood that failure to complete	statements he the required it	rein are true and
	driller's direct supervi correct. The driller up the report(s) being re	sion) and that each and all of the nderstood that failure to complete turned for completion and resubm	statements he the required it	rein are true and
	driller's direct supervi correct. The driller up the report(s) being re Wades water well 3437 cr 2176	ision) and that each and all of the inderstood that failure to complete turned for completion and resubm	statements he the required it	rein are true and

Top (ft.)	Bottom (ft.)	Description
0	2	sandy soil
2	8	brown clay
8	45	yellow clay
45	64	gray shale
64	78	sand
78	104	gray shale
104	107	rock
107	164	gray shale
164	167	rock
167	197	sand

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
4	Blank	New Plastic (PVC)	40	0	177
4	Screen	New Plastic (PVC)	40 0.18	177	197

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

	STATE OF TEXAS WELL REPORT for Tracking #651877				
Owner:	Kayly Fain	Owner Well #:	1		
Address:	1668 county road 2540 Quinlan, TX 75474	Grid #:	33-07-5		
Well Location:	1668 county road 2540	Latitude:	32° 55' 53.76" N		
	Quinlan, TX 75474	Longitude:	096° 10' 55.38" W		
Well County:	Hunt	Elevation:	No Data		
Type of Work:	New Well	Proposed Use:	Domestic		

Drilling Start Date: 9/7/2023

Drilling End Date: 9/11/2023

		<u> </u>					
5	Diameter (in.) Top		pth (ft.)	Bottom Depth (ft.)			
Borehole:	8)	386			
Drilling Method:	Mud (Hydraulic) Rotary						
Borehole Completion:	Screened						
	Top Depth (ft.)	Bottom Depth (ft.)	Description (number of sacks & material)				
Annular Seal Data:	0	10	Cement 1 Bags/Sacks				
	200	240	Cement 4 Bags/Sacks				
Seal Method: Pc	oured	Dis	stance to Pr	operty Line (ft.): 60			
Sealed By: Driller Distance to Septic Field or other concentrated contamination (ft.): none							
	Distance to Septic Tank (ft.): none						
	Method of Verification: wheel						
Surface Completion:	Surface Sleeve I	nstalled	Si	Surface Completion by Driller			
Water Level:	90 ft. below land surface on 2023-09-13 Measurement Method: Air Line						
Packers:	No Data						
Type of Pump:	Submersible Pump Depth (ft.): 280						
Well Tests:	Pump	mp Yield: 12 GPM after 4 hours, no drawdown specified					

	Strata Depth (ft.)	Water Type		
Water Quality:	360 - 386	No Data		
	Chemical Analysis Made:		e: No	
		vingly penetrate any strata which contained injurious constituents?		
Certification Data:	driller's direct supervision) correct. The driller unders	e driller drilled this well (or the w) and that each and all of the sta stood that failure to complete the ed for completion and resubmitta	tements herein are true and e required items will result in	
Certification Data: Company Information:	driller's direct supervision) correct. The driller unders the report(s) being returne) and that each and all of the sta stood that failure to complete the	tements herein are true and e required items will result in	
	driller's direct supervision) correct. The driller unders the report(s) being returne) and that each and all of the sta stood that failure to complete the	tements herein are true and e required items will result in	
	driller's direct supervision) correct. The driller unders the report(s) being returne Wades water well 3437 cr 2176) and that each and all of the sta stood that failure to complete the ed for completion and resubmitta	tements herein are true and e required items will result in	
Company Information:	driller's direct supervision) correct. The driller unders the report(s) being returne Wades water well 3437 cr 2176 Greenville, TX 75402) and that each and all of the sta stood that failure to complete the ed for completion and resubmitta License	tements herein are true and e required items will result in al.	

Top (ft.)	Bottom (ft.)	Description
0	1	sandy soil
1	41	brownclay
41	140	gray shale
140	165	sand streaks
165	248	sandy shale
248	262	sand
262	356	sandy shale
356	360	rock
360	386	sand

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
4.5	Blank	New Plastic (PVC)	40	0	366
4	Screen	New Plastic (PVC)	40	366	386

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Brandon Maldonado

From:Brandon MaldonadoSent:Friday, June 6, 2025 4:07 PMTo:Natalia Rodriguez PinillaCc:sep4243@sbcglobal.netSubject:RE: Application to Renew Permit No. WQ0014236001 - Notice of Deficiency Letter

Good afternoon,

Your response to all items of the NOD are sufficient. I will now work to admin complete your application.

Please let me know if you have any questions.

Regards,

Brandon Maldonado Texas Commission on Environmental Quality Water Quality Division 512-239-4331 Brandon.Maldonado@tceq.texas.gov

How is our customer service? Fill out our online customer satisfaction survey at www.tceq.texas.gov/customersurvey

From: Natalia Rodriguez Pinilla <natalia@environmentalcgroup.com>
Sent: Friday, June 6, 2025 1:45 PM
To: Brandon Maldonado <Brandon.Maldonado@tceq.texas.gov>
Cc: sep4243@sbcglobal.net
Subject: Re: Application to Renew Permit No. WQ0014236001 - Notice of Deficiency Letter

Hi Brandon,

Thank you for sending this. Yes, the portion of the NORI is correct, please move forward with next steps.

Let me know if you need me to send a letter approving it, or if this email is enough

Have a great weekend.

Get Outlook for Mac

From: Brandon Maldonado <<u>Brandon.Maldonado@tceq.texas.gov</u>>
Date: Friday, June 6, 2025 at 9:13 AM
To: sep4243@sbcglobal.net <sep4243@sbcglobal.net>
Cc: Natalia Rodriguez Pinilla <<u>natalia@environmentalcgroup.com</u>>
Subject: Application to Renew Permit No. WQ0014236001 - Notice of Deficiency Letter

Dear Ms. Sandra Petersen

The attached Notice of Deficiency (NOD) letter sent on <u>June 6, 2025</u>, requests additional information needed to declare the application administratively complete. Please send complete response to my attention by <u>June 20, 2025</u>.

Please let me know if you have any questions.

Regards,

Brandon Maldonado Texas Commission on Environmental Quality Water Quality Division 512-239-4331 Brandon.Maldonado@tceq.texas.gov

How is our customer service? Fill out our online customer satisfaction survey at www.tceq.texas.gov/customersurvey