

This file contains the following documents:

- 1. Summary of application (in plain language)
 - English
 - Alternative Language (Spanish)
- 2. First Notice (NORI-Notice of Receipt of Application and Intent to Obtain a Permit)
 - English
 - Alternative Language (Spanish)
- 3. Application materials

Este archivo contiene los siguientes documentos:

- 1. Resumen en lenguaje sencillo (PLS, por sus siglas en inglés) de la actividad propuesta
 - Inglés
 - Idioma alternativo (español)
- 2. Primer aviso (NORI, por sus siglas en inglés)
 - Inalés
 - Idioma alternativo (español)
- 3. Solicitud original

TCEQ

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

PLAIN LANGUAGE SUMMARY FOR TPDES OR TLAP PERMIT APPLICATIONS

Plain Language Summary Template and Instructions for Texas Pollutant Discharge Elimination System (TPDES) and Texas Land Application (TLAP) Permit Applications

Applicants should use this template to develop a plain language summary as required by Title 30, Texas Administrative Code (30 TAC), Chapter 39, Subchapter H. Applicants may modify the template as necessary to accurately describe their facility as long as the summary includes the following information: (1) the function of the proposed plant or facility; (2) the expected output of the proposed plant or facility; (3) the expected pollutants that may be emitted or discharged by the proposed plant or facility; and (4) how the applicant will control those pollutants, so that the proposed plant will not have an adverse impact on human health or the environment.

Fill in the highlighted areas below to describe your facility and application in plain language. Instructions and examples are provided below. Make any other edits necessary to improve readability or grammar and to comply with the rule requirements.

If you are subject to the alternative language notice requirements in 30 TAC Section 39.426, you must provide a translated copy of the completed plain language summary in the appropriate alternative language as part of your application package. For your convenience, a Spanish template has been provided below.

ENGLISH TEMPLATE FOR TPDES or TLAP NEW/RENEWAL/AMENDMENT APPLICATIONS INDUSTRIAL WASTEWATER/STORMWATER

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and is not a federal enforceable representation of the permit application.

Gladieux Metals Recycling, LLC. (GMR) (CN605364843) operates Gladieux Metals Recycling (RN100210129), a metals recycling facility. The facility is located at 302 Midway Road, in Freeport, Brazoria County, Texas 77542. GMR is submitting a renewal application to its TPDES permit to discharge up to 300,000 gallons per day of treated wastewater via Outfall 001 and up to 2.2 million gallons per day of stormwater via Outfall 002.

Discharges from the facility are expected to contain molybdenum oxide, vanadium oxide, cobalt/nickel alloy, and fused alumina. Cooling water will be treated by cooling towers and dedicated holding ponds.

PLANTILLA EN ESPAÑOL PARA SOLICITUDES NUEVAS/RENOVACIONES/ENMIENDAS DE TPDES o TLAP

AGUAS RESIDUALES INDUSTRIALES /AGUAS PLUVIALES

El siguiente resumen es proporcionado para la aplicación pendiente para esta solicitud del permiso de calidad del agua que esta siendo revisada por la Comisión de Calidad Ambiental de Texas (por sus siglas en ingles TCEQ) como es requerido por el Codigo Administrativo de Texas 30, capitulo 39. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la aplicación y no es una representación federal ejecutiva del permiso de la aplicación.

Gladieux Metals Recycling, LLC (GMR)(CN605364843) que es operada por Gladieux Metals Recycling (RN100210129) una instalación de metales reciclables. La instalación esta ubicada en 302 Midway Road, en Freeport, Brazoria, County, Texas 77542. GMR esta entregando esta aplicación para la renovación del permiso de Sistema de Eliminación de Descargas Contaminantes de Texas (TPDES), para la descarga de hasta 300,00 galones por día de aguas residuales tratas vía desagüe 001 y hasta 2.2 millones de galones por día de aguas pluviales vía desagüe 002.

Las descargas de la instalación se espera que contengan oxido de molibdeno, oxido de vanadio, aleación de cobalto/ níquel y alúmina fundida. El agua de refrigeración será tratada mediante las torres de enfriamiento y por los estanques de retención exclusivos

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

NOTICE OF RECEIPT OF APPLICATION AND INTENT TO OBTAIN WATER QUALITY PERMIT RENEWAL

PERMIT NO. WQ0001861000

APPLICATION. Gladieux Metals Recycling, LLC, 302 Midway Road, Freeport, Texas 77541, which owns a commercial industrial and hazardous waste management facility, has applied to the Texas Commission on Environmental Quality (TCEQ) to renew Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0001861000 (EPA I.D. No. TX0034738) to authorize the discharge of treated wastewater and stormwater at a volume not to exceed a daily average flow of 350,000 gallons per day via Outfall 001, and the discharge of stormwater on an intermittent and flow-variable rate via Outfall 002. The facility is located at 302 Midway Road, in the city of Freeport, in Brazoria County, Texas 77541. The discharge route is from the plant site via Outfall 001 to the Dow Chemical Plant "A" Canal; thence to the Brazos River Tidal; and via Outfall 002 to an unnamed drainage ditch; thence to Old Brazos River Channel Tidal. TCEQ received this application on August 7, 2024. The permit application will be available for viewing and copying at Freeport Branch Library, 410 Brazosport Boulevard, Freeport, in Brazoria County, Texas prior to the date this notice is published in the newspaper. The application, including any updates, and associated notices are available electronically at the following webpage:

https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. This link to an electronic map of the site or facility's general location is provided as a public courtesy and not part of the application or notice. For the exact location, refer to the application.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-95.338055,28.956388&level=18

ALTERNATIVE LANGUAGE NOTICE. Alternative language notice in Spanish is available at: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. El aviso de idioma alternativo en español está disponible en https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications.

ADDITIONAL NOTICE. TCEQ's Executive Director has determined the application is administratively complete and will conduct a technical review of the application. After technical review of the application is complete, the Executive Director may prepare a draft permit and will issue a preliminary decision on the application. Notice of the Application and Preliminary Decision will be published and mailed to those who are on the countywide mailing list and to those who are on the mailing list for this application. That notice will contain the deadline for submitting public comments.

PUBLIC COMMENT / PUBLIC MEETING. You may submit public comments or request a public meeting on this application. The purpose of a public meeting is to provide the opportunity to submit comments or to ask questions about the application. TCEQ will hold a public meeting if the Executive Director determines that there is a significant degree of public interest in the application or if requested by a local legislator. A public meeting is not a contested case hearing.

OPPORTUNITY FOR A CONTESTED CASE HEARING. After the deadline for submitting public comments, the Executive Director will consider all timely comments and prepare a response to all relevant and material, or significant public comments. Unless the application is directly referred for a contested case hearing, the response to comments, and the Executive Director's decision on the application, will be mailed to everyone who submitted public comments and to those persons who are on the mailing list for this application. If comments are received, the mailing will also provide instructions for requesting reconsideration of the Executive Director's decision and for requesting a contested case hearing. A contested case hearing is a legal proceeding similar to a civil trial in state district court.

TO REQUEST A CONTESTED CASE HEARING, YOU MUST INCLUDE THE FOLLOWING ITEMS IN YOUR REQUEST: your name, address, phone number; applicant's name and proposed permit number; the location and distance of your property/activities relative to the proposed facility; a specific description of how you would be adversely affected by the facility in a way not common to the general public; a list of all disputed issues of fact that you submit during the comment period and, the statement "[I/we] request a contested case hearing." If the request for contested case hearing is filed on behalf of a group or association, the request must designate the group's representative for receiving future correspondence; identify by name and physical address an individual member of the group who would be adversely affected by the proposed facility or activity; provide the information discussed above regarding the affected member's location and distance from the facility or activity; explain how and why the member would be affected; and explain how the interests the group seeks to protect are relevant to the group's purpose.

Following the close of all applicable comment and request periods, the Executive Director will forward the application and any requests for reconsideration or for a contested case hearing to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

The Commission may only grant a request for a contested case hearing on issues the requestor submitted in their timely comments that were not subsequently withdrawn. If a hearing is granted, the subject of a hearing will be limited to disputed issues of fact or mixed questions of fact and law relating to relevant and material water quality concerns submitted during the comment period.

TCEQ may act on an application to renew a permit for discharge of wastewater without providing an opportunity for a contested case hearing if certain criteria are met.

MAILING LIST. If you submit public comments, a request for a contested case hearing or a reconsideration of the Executive Director's decision, you will be added to the mailing list for this specific application to receive future public notices mailed by the Office of the Chief Clerk. In addition, you may request to be placed on: (1) the permanent mailing list for a specific applicant name and permit number; and/or (2) the mailing list for a specific county.

If you wish to be placed on the permanent and/or the county mailing list, clearly specify which list(s) and send your request to TCEQ Office of the Chief Clerk at the address below.

INFORMATION AVAILABLE ONLINE. For details about the status of the application, visit the Commissioners' Integrated Database at www.tceq.texas.gov/goto/cid. Search the database using the permit number for this application, which is provided at the top of this notice.

AGENCY CONTACTS AND INFORMATION. All public comments and requests must be submitted either electronically at https://www14.tceq.texas.gov/epic/eComment/, or in writing to the Texas Commission on Environmental Quality, Office of the Chief Clerk, MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Please be aware that any contact information you provide, including your name, phone number, email address and physical address will become part of the agency's public record. For more information about this permit application or the permitting process, please call the TCEQ Public Education Program, Toll Free, at 1-800-687-4040 or visit their website at www.tceq.texas.gov/goto/pep. Si desea información en Español, puede llamar al 1-800-687-4040.

Further information may also be obtained from Gladieux Metals Recycling, LLC at the address stated above or by calling Ms. Judy LeBlanc, at 979-415-1547.

Issuance Date: August 29, 2024

Comisión de Calidad Ambiental del Estado de Texas

AVISO DE RECIBO DE LA SOLICITUD Y EL INTENTO DE OBTENER PERMISO PARA LA CALIDAD DEL AGUA RENOVACION

PERMISO NO. WQ0001861000

SOLICITUD. Gladieux Metals Recycling LLC, ha solicitado a la Comisión de Calidad Ambiental del Estado de Texas (TCEQ) para renovar el Permiso No. WQ0001861000 (EPA I.D. No. TX0034738) del Sistema de Eliminación de Descargas de Contaminantes de Texas (TPDES) para autorizar la descarga de aguas residuales tratadas en un volumen que no sobrepasa un flujo promedio diario de 350,000 galones por día. La planta está ubicada 302 Midway Road en el Condado de Brazoria, Texas. La ruta de descarga es del sitio de la planta a vía emisario 001 hacia el canal "A" de la planta Química de Dow; de allí hasta la marea del rio Brazos y por el emisario 002 hasta la de drenaje sin nombre; de allí a la marea del antiguo canal del rio Brazos. La TCEQ recibió esta solicitud el día 07 de Agosto del 2024. La solicitud para el permiso estará disponible para leerla y copiarla en la biblioteca de Freeport Branch, 410 Brazos sport Boulevard, Freeport, en el condado de Brazos, Texas. antes de la fecha de publicación de este aviso en el periódico. Este enlace a un mapa electrónico de la ubicación general del sitio o de la instalación es proporcionado como una cortesía y no es parte de la solicitud o del aviso. Para la ubicación exacta, consulte la solicitud.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-95.338055,28.956388&level=1

AVISO ADICIONAL. El Director Ejecutivo de la TCEQ ha determinado que la solicitud es administrativamente completa y conducirá una revisión técnica de la solicitud. Después de completar la revisión técnica, el Director Ejecutivo puede preparar un borrador del permiso y emitirá una Decisión Preliminar sobre la solicitud. El aviso de la solicitud y la decisión preliminar serán publicados y enviado a los que están en la lista de correo de las personas a lo largo del condado que desean recibir los avisos y los que están en la lista de correo que desean recibir avisos de esta solicitud. El aviso dará la fecha límite para someter comentarios públicos.

COMENTARIO PUBLICO / REUNION PUBLICA. Usted puede presentar comentarios públicos o pedir una reunión pública sobre esta solicitud. El

propósito de una reunión pública es dar la oportunidad de presentar comentarios o hacer preguntas acerca de la solicitud. La TCEQ realiza una reunión pública si el Director Ejecutivo determina que hay un grado de interés público suficiente en la solicitud o si un legislador local lo pide. Una reunión pública no es una audiencia administrativa de lo contencioso.

OPORTUNIDAD DE UNA AUDIENCIA ADMINISTRATIVA DE LO

CONTENCIOSO. Después del plazo para presentar comentarios públicos, el Director Ejecutivo considerará todos los comentarios apropiados y preparará una respuesta a todo los comentarios públicos esenciales, pertinentes, o significativos. A menos que la solicitud haya sido referida directamente a una audiencia administrativa de lo contencioso, la respuesta a los comentarios y la decisión del Director Ejecutivo sobre la solicitud serán enviados por correo a todos los que presentaron un comentario público y a las personas que están en la lista para recibir avisos sobre esta solicitud. Si se reciben comentarios, el aviso también proveerá instrucciones para pedir una reconsideración de la decisión del Director Ejecutivo y para pedir una audiencia administrativa de lo contencioso. Una audiencia administrativa de lo contencioso es un procedimiento legal similar a un procedimiento legal civil en un tribunal de distrito del estado.

PARA SOLICITAR UNA AUDIENCIA DE CASO IMPUGNADO, USTED DEBE INCLUIR EN SU SOLICITUD LOS SIGUIENTES DATOS: su nombre, dirección, y número de teléfono: el nombre del solicitante y número del permiso; la ubicación y distancia de su propiedad/actividad con respecto a la instalación; una descripción específica de la forma cómo usted sería afectado adversamente por el sitio de una manera no común al público en general; una lista de todas las cuestiones de hecho en disputa que usted presente durante el período de comentarios; y la declaración "[Yo/nosotros] solicito/solicitamos una audiencia de caso impugnado". Si presenta la petición para una audiencia de caso impugnado de parte de un grupo o asociación, debe identificar una persona que representa al grupo para recibir correspondencia en el futuro; identificar el nombre y la dirección de un miembro del grupo que sería afectado adversamente por la planta o la actividad propuesta; proveer la información indicada anteriormente con respecto a la ubicación del miembro afectado y su distancia de la planta o actividad propuesta; explicar cómo y porqué el miembro sería afectado; v explicar cómo los intereses que el grupo desea proteger son pertinentes al propósito del grupo.

Después del cierre de todos los períodos de comentarios y de petición que aplican, el Director Ejecutivo enviará la solicitud y cualquier petición para reconsideración o para una audiencia de caso impugnado a los Comisionados de la TCEQ para su consideración durante una reunión programada de la Comisión. La Comisión sólo puede conceder una solicitud de una audiencia de caso impugnado sobre los temas que el solicitante haya presentado en sus comentarios oportunos que no fueron retirados

posteriormente. Si se concede una audiencia, el tema de la audiencia estará limitado a cuestiones de hecho en disputa o cuestiones mixtas de hecho y de derecho relacionadas a intereses pertinentes y materiales de calidad del agua que se hayan presentado durante el período de comentarios.

Si ciertos criterios se cumplen, la TCEQ puede actuar sobre una solicitud para renovar un permiso sin proveer una oportunidad de una audiencia administrativa de lo contencioso.

LISTA DE CORREO. Si somete comentarios públicos, un pedido para una audiencia administrativa de lo contencioso o una reconsideración de la decisión del Director Ejecutivo, la Oficina del Secretario Principal enviará por correo los avisos públicos en relación con la solicitud. Ademas, puede pedir que la TCEQ ponga su nombre en una or mas de las listas correos siguientes (1) la lista de correo permanente para recibir los avisos de el solicitante indicado por nombre y número del permiso específico y/o (2) la lista de correo de todas las solicitudes en un condado específico. Si desea que se agrega su nombre en una de las listas designe cual lista(s) y envia por correo su pedido a la Oficina del Secretario Principal de la TCEQ.

CONTACTOS E INFORMACIÓN A LA AGENCIA. Todos los comentarios públicos y solicitudes deben ser presentadas electrónicamente vía http://www14.tceq.texas.gov/epic/eComment/ o por escrito dirigidos a la Comisión de Texas de Calidad Ambiental, Oficial de la Secretaría (Office of Chief Clerk), MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Tenga en cuenta que cualquier información personal que usted proporcione, incluyendo su nombre, número de teléfono, dirección de correo electrónico y dirección física pasarán a formar parte del registro público de la Agencia. Para obtener más información acerca de esta solicitud de permiso o el proceso de permisos, llame al programa de educación pública de la TCEQ, gratis, al 1-800-687-4040. Si desea información en Español, puede llamar al 1-800-687-4040.

También se puede obtener información adicional Gladieux Metals Recycling, LLC a la dirección indicada arriba o llamando a Ms. Judy LeBlanc al 979-415-1547

Fecha de emisión: 29 de agosto de 2024

August 7, 2024

Jennifer Bowers Water Quality Division (MC-148) Texas Commission on Environmental Quality P.O. Box 13087 Austin, TX 78711-3087

Subject: Gladieux Metals Recycling, LLC

TPDES Permit No. WQ0001861000 Renewal Application

CN605364843, RN100210129

CEC Project 331-933

Dear Ms. Bowers,

Gladieux Metals Recycling (GMR) is pleased to submit this permit renewal application for the existing onsite wastewater treatment system. GMR is not proposing any changes to the current permit conditions as part of this renewal.

We are providing one original and three copies of the renewal application for your review. If you have any questions regarding this submittal, please feel free to contact me at 512-225-8102 or email at cperkin@cecinc.com

Sincerely,

CIVIL & ENVIRONMENTAL CONSULTANTS, INC.

Corey P. Perkin

Assistant Project Manager

Adam W. Mehevec, P.E.

Vice President

Enclosures:

cc: Judy LeBlanc (GMR)

TPDES PERMIT APPLICATION RENEWAL

Prepared For:

GLADIEUX METALS RECYCLING

302 MIDWAY ROAD FREEPORT, TEXAS

Prepared By:

CIVIL & ENVIRONMENTAL CONSULTANTS, INC. AUSTIN, TEXAS

CEC Project 331-933

AUGUST 2024

TABLE OF CONTENTS

1.0	COR	RE DATA FORM (TCEQ FORM 10400)]
2.0	IND	USTRIAL ADMINISTRATIVE REPORT (TCEQ FORM 10411)	
		` -	
3.0	IND	USTRIAL TECHNICAL REPORT (TCEQ FORM 10055)	
3.0		USTRIAL TECHNICAL REPORT (TCEQ FORM 10055)	
3.0	3.1		3

FIGURES

- Figure 1: Administrative Industrial Report USGS Map (Unchanged from Approved Permit Application)
- Figure 1A & 1B: Photo of 001 and 002 Outfall Discharge Locations (*Unchanged from Approved Permit Application*)
- Figure 2: Supplemental Permit Information USGS Map (Unchanged from Approved Permit Application)
- Figure 3: Affected Landowner's Map
- Figure 4: Facility Layout and Stormwater Outfall 002 Map (*Unchanged from Approved Permit Application*)
- Figure 5: Process Flow Diagram and Water Balance
- Figure 6: Detailed Wastewater Process Flow Diagram (New Figure)

ATTACHMENTS

Section 2 Attachments

Attachment 1: Plain Language Summary Template

Attachment 2: Supplemental Permit Information Form (TCEQ For 20971)

Attachment 3: Landowner Map, Landowner List and Mailing Labels

Attachment 4: Copy of Voucher

Section 3 Attachments

Attachment 5: List of Raw Materials, Intermediates, and Products (*Unchanged from Approved Permit Application*)

Attachment 6: Cooling Tower Chemical Dosage and Toxicity Data and Material Safety Data Sheets (MSDS) (*Unchanged from Approved Permit Application*)

Attachment 7: Production Breakdowns for Leach Tailings, Molybdenum Leachate/Solvent Raffinate and Technical Grade Molybdenum (*Unchanged from Approved Permit Application*)
Attachment 8: Analytical Laboratory Results

- A. Analytical Reports for Proposed Inflows
 - a. Stormwater Collected Below Roasters
 - b. Stormwater and Process Water from CB-2
 - c. Stormwater from Pond 4
- B. Analytical Reports for Existing Approved Inflows (*Unchanged from Approved Permit Application*)

1.0	CORE DATA FORM (TCEQ FORM	I 10400)

TCEQ Core Data Form

For detailed instructions on completing this form, please read the Core Data Form Instructions or call 512-239-5175.

SECTION I: General Information

1. Reason for	Submissi	on (If other is checked	d please descri	ibe in space pr	rovided.)						
☐ New Pern	nit, Registra	ation or Authorization	(Core Data Fo	rm should be	submitted w	ith the prog	gram application.)				
⊠ Renewal	(Core Data	Form should be submi	itted with the i	renewal form))		Other				
2. Customer Reference Number (if issued) Follow this link to search for CN or PN numbers in				<u></u>	gulated Entity Re	ference	Number (if is	ssued)			
CN 605364843 for CN or RN numbers in Central Registry**						100210129					
SECTIO	N II:	Customer	Infor	mation	<u>1</u>						
4. General Cu	ıstomer Ir	nformation	5. Effective	e Date for Cu	ustomer In	formation	Updates (mm/dd,	/уууу)		08/06/2024	
New Custon	mer	×υ	I Jpdate to Cust	omer Informa	ition	☐ Cha	nge in Regulated En	tity Own	ership		
☐Change in Lo	egal Name	(Verifiable with the Te	xas Secretary	of State or Tex	kas Comptro	ller of Publi	c Accounts)				
The Custome	r Name su	ıbmitted here may	be updated	automatical	lly based o	n what is	current and active	with th	ne Texas Secr	etary of State	
(SOS) or Texa	s Comptro	oller of Public Acco	ınts (CPA).								
6. Customer	Legal Nam	ne (If an individual, pr	int last name f	first: eg: Doe, J	John)		If new Customer,	enter pre	evious Custome	er below:	
Gladieux Meta	ls Recycling	LLC									
7. TX SOS/CP	A Filing N	umber	8. TX State	Tax ID (11 d	ligits)		9. Federal Tax ID 10. DUNS Number (if				
0802692118			320633800	52			(9 digits)		applicable)	applicable)	
							(* * 8 **)				
11. Type of C	ustomer:		tion			☐ Indivi	Individual Partnership: General			eral 🗌 Limited	
Government: [City 🔲 (County 🗌 Federal 📗	Local Stat	te 🗌 Other		Sole I	Proprietorship Other:				
12. Number	of Employ	ees					13. Independe	ntly Ow	ned and Ope	rated?	
□ 0-20 ⊠ i	21-100 [101-250 251	-500 🔲 50	1 and higher			Yes	⊠ No			
14. Customer	r Role (Pro	posed or Actual) – as	it relates to th	e Regulated Ei	ntity listed o	n this form.	Please check one o	f the follo	wing		
Owner		Operator	⊠o	wner & Opera	ator						
Occupation	al Licensee	Responsible Pa	rty	VCP/BSA App	olicant		Other				
	302 Midv	way Road									
15. Mailing											
Address:	City	Freeport		State	TX	ZIP	77542		ZIP + 4		
	City	Теерог		State	'^	211	77342		217 + 4		
16. Country I	Mailing In	formation (if outside	USA)		17	7. E-Mail A	ddress (if applicab	le)			
18 Telenhon	a Numbai	,		19 Extension	on or Code		20 Fay N	lumber	(if annlicable)		

TCEQ-10400 (11/22) Page 1 of 3

(979) 415-1500

SECTION III: Regulated Entity Information

21. General Regulated En	tity Informa	ation (If 'New Re	gulated E	Entity" is selec	ted, a new pe	ermit applica	ition is a	lso required.)		
☐ New Regulated Entity ☐ Update to Regulated Entity Name ☐ Update to Regulated Entity Information										
The Regulated Entity Name submitted may be updated, in order to meet TCEQ Core Data Standards (removal of organizational endings such as Inc, LP, or LLC).										
22. Regulated Entity Nam	22. Regulated Entity Name (Enter name of the site where the regulated action is taking place.)									
Gladieux Metals Recycling										
23. Street Address of the Regulated Entity: 302 Midway Road										
(No PO Boxes)	City	Freeport	Si	State	TX	ZIP	7754	2	ZIP + 4	
24. County	Brazoria Co	ounty	•				•			
		If no Stre	et Addre	ess is provid	led, fields 2	5-28 are re	quired			
25. Description to Physical Location:		reeport Facility ca at onto Midway R		essed via TX-2	88 South, tu	rning left on	to N Gulf	Boulevard, trav	eling east f	or three miles, and
26. Nearest City							State		Ne	arest ZIP Code
Freeport							TX		775	542
Latitude/Longitude are required and may be added/updated to meet TCEQ Core Data Standards. (Geocoding of the Physical Address may be used to supply coordinates where none have been provided or to gain accuracy).										
used to supply coordinate	es where no	-	-			ata Stanat	<i></i> (0	3.7	, ,	,
27. Latitude (N) In Decima		-	-		accuracy).	ongitude (\			-95.3380	
27. Latitude (N) In Decima		28.956607	-	d or to gain o	accuracy).	ongitude (\ es		ecimal:	_	Seconds
27. Latitude (N) In Decima	al: Minutes	28.956607 57	Seconds	d or to gain	accuracy). 28. Lo	ongitude (\		Minutes 20	-95.3380	Seconds 19
27. Latitude (N) In Decima	Minutes	28.956607	Seconds	d or to gain o	accuracy). 28. Lo	es -95	W) In De	Minutes 20	-95.3380	Seconds 19
27. Latitude (N) In Decima Degrees 28 29. Primary SIC Code	Minutes	28.956607 57 Secondary SIC	Seconds	d or to gain o	28. Lo Degre	es -95	W) In De	Minutes 20 32. Seco	-95.3380	Seconds 19
27. Latitude (N) In Decimal Degrees 28 29. Primary SIC Code (4 digits)	Minutes 30.	28.956607 57 Secondary SIC	Seconds Code	s 24	28. Lo Degre 31. Primar (5 or 6 digit	es -95 y NAICS Co	W) In De	Minutes 20 32. Seco	-95.3380	Seconds 19
27. Latitude (N) In Decimal Degrees 28 29. Primary SIC Code (4 digits) 3341	Minutes 30.	28.956607 57 Secondary SIC	Seconds Code	s 24	28. Lo Degre 31. Primar (5 or 6 digit	es -95 y NAICS Co	W) In De	Minutes 20 32. Seco	-95.3380	Seconds 19
27. Latitude (N) In Decimal Degrees 28 29. Primary SIC Code (4 digits) 3341 33. What is the Primary E	Minutes 30.	28.956607 57 Secondary SIC digits)	Seconds Code	s 24	28. Lo Degre 31. Primar (5 or 6 digit	es -95 y NAICS Co	W) In De	Minutes 20 32. Seco	-95.3380	Seconds 19
27. Latitude (N) In Decimal Degrees 28 29. Primary SIC Code (4 digits) 3341 33. What is the Primary E	Minutes 30. (4 d	28.956607 57 Secondary SIC digits)	Seconds Code	s 24	28. Lo Degre 31. Primar (5 or 6 digit	es -95 y NAICS Co	W) In De	Minutes 20 32. Seco	-95.3380	Seconds 19
27. Latitude (N) In Decimal Degrees 28 29. Primary SIC Code (4 digits) 3341 33. What is the Primary Exercises catalysts	Minutes 30. (4 d	28.956607 57 Secondary SIC digits)	Seconds Code	s 24	28. Lo Degre 31. Primar (5 or 6 digit	es -95 y NAICS Co	W) In De	Minutes 20 32. Seco (5 or 6 dig	-95.3380	Seconds 19
27. Latitude (N) In Decimal Degrees 28 29. Primary SIC Code (4 digits) 3341 33. What is the Primary Exercises catalysts	30. (4 d	28.956607 57 Secondary SIC digits) this entity? (E	Seconds Code	s 24 Deat the SIC of	28. Lo Degree 31. Primar (5 or 6 digit 331492 TX	es -95 y NAICS Co	W) In Do	Minutes 20 32. Seco (5 or 6 dig	-95.338(ndary NA	Seconds 19
27. Latitude (N) In Decimal Degrees 28 29. Primary SIC Code (4 digits) 3341 33. What is the Primary E Recycles catalysts 34. Mailing Address:	30. (4 d	28.956607 57 Secondary SIC digits) this entity? (E	Seconds Code Conot reponentation	s 24 Deat the SIC of	28. Lo Degree 31. Primar (5 or 6 digit) 331492 TAX	es -95 y NAICS Co	W) In Do	Minutes 20 32. Seco (5 or 6 dig	-95.338(ndary NA gits)	Seconds 19

39. TCEQ Programs and ID Numbers Check all Programs and write in the permits/registration numbers that will be affected by the updates submitted on this form. See the Core Data Form instructions for additional guidance.

TCEQ-10400 (11/22) Page 2 of 3

☐ Dam Safety	Districts	Edwards Aquifer	Emissions Inventory Air	☐ Industrial Hazardous Waste					
				50204					
Municipal Solid Waste	New Source Review Air	OSSF	Petroleum Storage Tank	☐ PWS					
	9803, 1157C, 19793								
Sludge	Storm Water	☐ Title V Air	Tires	Used Oil					
	WQ0001861000								
☐ Voluntary Cleanup	☑ Wastewater	☐ Wastewater Agriculture	☐ Water Rights	Other:					
	WQ0001861000								
SECTION IV: Pro	ECTION IV: Preparer Information								

40. Name: Corey P. Perkin				41. Title:	Assitant Project Manager
42. Telephone Number		43. Ext./Code	44. Fax Number	45. E-Mail /	Address
(512)225-8102			() -	cperkin@cec	inc.com

SECTION V: Authorized Signature

46. By my signature below, I certify, to the best of my knowledge, that the information provided in this form is true and complete, and that I have signature authority to submit this form on behalf of the entity specified in Section II, Field 6 and/or as required for the updates to the ID numbers identified in field 39.

Company:	Gladieux Metals Recycling	utive Officer			
Name (In Print):	Tarun Bhatt	Phone:	(979) 415- 1500		
Signature:	Laur Bhatt boxsion 42207084 19702086			Date:	08/07/5024

TCEQ-10400 (11/22) Page 3 of 3

2.0	INDUSTRIAL ADMINISTRATIVE REPORT (TCEQ FORM 10411)

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

INDUSTRIAL WASTEWATER PERMIT APPLICATION CHECKLIST

Complete and submit this checklist with the industrial wastewater permit application.

APPLICANT NAME: Gladieux Metals Recycling, LLC

PERMIT NUMBER (If new, leave blank): WQ00<u>01861000</u>

Indicate if each of the following items is included in your application.

	Y	N		Y	N
Administrative Report 1.0	\boxtimes		Worksheet 8.0		
Administrative Report 1.1	\boxtimes		Worksheet 9.0		
SPIF	\boxtimes		Worksheet 10.0		\boxtimes
Core Data Form	\boxtimes		Worksheet 11.0		\boxtimes
Public Involvement Plan Form	\boxtimes		Worksheet 11.1		\boxtimes
Plain Language Summary	\boxtimes		Worksheet 11.2		\boxtimes
Technical Report 1.0	\boxtimes		Worksheet 11.3		\boxtimes
Worksheet 1.0			Original USGS Map	\boxtimes	
Worksheet 2.0	\boxtimes		Affected Landowners Map	\boxtimes	
Worksheet 3.0			Landowner Disk or Labels	\boxtimes	
Worksheet 3.1			Flow Diagram	\boxtimes	
Worksheet 3.2			Site Drawing	\boxtimes	
Worksheet 3.3			Original Photographs	\boxtimes	
Worksheet 4.0	\boxtimes		Design Calculations	\boxtimes	
Worksheet 4.1			Solids Management Plan		\boxtimes
Worksheet 5.0			Water Balance	\boxtimes	
Worksheet 6.0					
Worksheet 7.0	\boxtimes				
For TCEQ Use Only					
Segment Number Expiration Date Permit Number		Region			

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

INDUSTRIAL WASTEWATER PERMIT APPLICATION **ADMINISTRATIVE REPORT 1.0**

This report is required for all applications for TPDES permits and TLAPs, except applications for oil and gas extraction operations subject to 40 CFR Part 435. Contact the Applications Review and Processing Team at 512-239-4671 with any questions about completing this report.

Applications for oil and gas extraction operations subject to 40 CFR Part 435 must use the Oil

	d Gas Exploration and Production Administr $\frac{\mathbf{St}^{1}}{\mathbf{St}^{1}}$.	rative Report (<u>TCEQ Form-20893 and 20893-</u>
Ite	em 1. Application Information a	nd Fees (Instructions, Page 26)
a.	Complete each field with the requested info	ormation, if applicable.
	Applicant Name: Gladieux Metals Recycling	<u>, LLC</u>
	Permit No.: <u>WQ0001861000</u>	
	EPA ID No.: <u>TX0034738</u>	
	Expiration Date: <u>Click to enter text.</u>	
b.	Check the box next to the appropriate auth	orization type.
	oxdim Industrial Wastewater (wastewater and s	tormwater)
	☐ Industrial Stormwater (stormwater only)	
c.	Check the box next to the appropriate facil:	ity status.
	□ Inactive	
d.	Check the box next to the appropriate perm	nit type.
	□ TPDES Permit □ TLAP □ TPD	DES with TLAP component
e.	Check the box next to the appropriate appl	ication type.
	□ New	
	☐ Renewal with changes	☑ Renewal without changes
	☐ Major amendment with renewal	☐ Major amendment without renewal
	\square Minor amendment without renewal	
	☐ Minor modification without renewal	
f.	If applying for an amendment or modificati	ion, describe the request: <u>Click to enter text.</u>
Foi	r TCEQ Use Only	
Seg	gment NumberCounty piration DateRegion	
La Per	rmit NumberKegion	

¹ https://www.tceq.texas.gov/publications/search_forms.html

g. Application Fee

EPA Classification	New	Major Amend. (with or without renewal)	Renewal (with or without changes)	Minor Amend. / Minor Mod. (without renewal)
Minor facility not subject to EPA categorical effluent guidelines (40 CFR Parts 400-471)	\$350	□ \$350	□ \$315	□ \$150
Minor facility subject to EPA categorical effluent guidelines (40 CFR Parts 400-471)	□ \$1,250	□ \$1,250	□ \$1,215	□ \$150
Major facility	N/A ²	□ \$2,050	⊠ \$2,015	□ \$450

h. Payment Information

Mailed

Check or money order No.: Click to enter text.

Check or money order amt.: Click to enter text.

Named printed on check or money order: Click to enter text.

Epay

Voucher number: 582EA000620265

Copy of voucher attachment: **Section 2 Attachment 4**

Item 2. Applicant Information (Instructions, Pages 26)

a. Customer Number, if applicant is an existing customer: <u>CN600124598</u> **Note:** Locate the customer number using the TCEQ's Central Registry Customer Search³.

b. Legal name of the entity (applicant) applying for this permit: <u>Gladieux Metals Recycling, LLC</u> **Note:** The owner of the facility must apply for the permit. The legal name must be spelled exactly as filed with the TX SOS, Texas Comptroller of Public Accounts, County, or in the legal documents forming the entity.

c. Name and title of the person signing the application. (**Note:** The person must be an executive official that meets signatory requirements in 30 TAC § 305.44.)

Prefix: Mr. Full Name (Last/First Name): Tarun Bhatt

Title: <u>Chief Executive Officer</u> Credential: <u>Click to enter text.</u>

d. Will the applicant have overall financial responsibility for the facility?

2

² All facilities are designated as minors until formally classified as a major by EPA.

³ https://www15.tceq.texas.gov/crpub/index.cfm?fuseaction=cust.CustSearch

Note: The entity with overall financial responsibility for the facility must apply as a coapplicant, if not the facility owner.

Item 3. Co-applicant Information (Instructions, Page 27)

- ☑ Check this box if there is no co-applicant.; otherwise, complete the below questions.
- a. Legal name of the entity (co-applicant) applying for this permit: <u>Click to enter text.</u>

Note: The legal name must be spelled exactly as filed with the TX SOS, Texas Comptroller of Public Accounts, County, or in the legal documents forming the entity.

b. Customer Number (if applicant is an existing customer): CNClick to enter text.

Note: Locate the customer number using the TCEO's Central Registry Customer Search.

c. Name and title of the person signing the application. (**Note:** The person must be an executive official that meets signatory requirements in 30 TAC § 305.44.)

Prefix: Click to enter text. Full Name (Last/First Name): Click to enter text.

Title: Click to enter text. Credential: Click to enter text.

d. Will the co-applicant have overall financial responsibility for the facility?

☐ Yes ☐ No

Note: The entity with overall financial responsibility for the facility must apply as a coapplicant, if not the facility owner.

Item 4. Core Data Form (Instructions, Pages 27)

a. Complete one Core Data Form (TCEQ Form 10400) for each customer (applicant and coapplicant(s)) and include as an attachment. If the customer type selected on the Core Data Form is Individual, complete Attachment 1 of the Administrative Report. Attachment: See Section 1

Item 5. Application Contact Information (Instructions, Page 27)

Provide names of two individuals who can be contact for additional information about this application. Indicate if the individual can be contact about administrative or technical information, or both.

а	□ Admi	inistrative	Contact	\square	Technical	Contact
a.	□ Auiii	uusuauve	Comaci .		recinincar	Comaci

Prefix: Ms. Full Name (Last/First Name): LeBlanc, Judy

Title: Environmental Health and Safety Specialist Credential: Click to enter text.

Organization Name: Gladieux Metals Recycling, LLC

Mailing Address: 302 Midway Road City/State/Zip: Freeport, TX 77542-2290

Phone No: <u>979-233-9474</u> Email: <u>JLeBlanc@aleonmetals.com</u>

b. ⊠ Administrative Contact ☐ Technical Contact

Prefix: Mr. Full Name (Last/First Name): Mehevec, Adam

Title: Vice President Credential: Engineer

Organization Name: Civil and Environmental Consultants, Inc.

Mailing Address: 1221 S. MoPac Expwy Suite 350 City/State/Zip: Austin, TX 78746

Phone No: 512-329-0006 Email: amehevec@cecinc.com

Attachment: Click to enter text.

Item 6. Permit Contact Information (Instructions, Page 28)

Provide two names of individuals that can be contacted throughout the permit term.

a. Prefix: Ms. Full Name (Last/First Name): LeBlanc, Judy

Title: Environmental Health and Safety Specialist Credential: Click to enter text.

Organization Name: Gladieux Metals Recycling, LLC

Mailing Address: 302 Midway Road City/State/Zip: Freeport, TX 77542-2290

Phone No: <u>979-415-1547</u> Email: <u>JLeBlanc@aleonmetals.com</u>

b. Prefix: Mr. Full Name (Last/First Name): Metric, John

Title: Director of Engineering Credential: Click to enter text.

Organization Name: Gladieux Metals Recycling, LLC

Mailing Address: 302 Midway road City/State/Zip: Freeport, TX 77542-2290

Phone No: 979-415-1540 Email: JMetric@aleonmetals.com

Attachment: Click to enter text.

Item 7. Billing Contact Information (Instructions, Page 28)

The permittee is responsible for paying the annual fee. The annual fee will be assessed for permits **in effect on September 1 of each year**. The TCEQ will send a bill to the address provided in this section. The permittee is responsible for terminating the permit when it is no longer needed (form TCEQ-20029).

Provide the complete mailing address where the annual fee invoice should be mailed and the name and phone number of the permittee's representative responsible for payment of the invoice.

Prefix: Ms. Full Name (Last/First Name): LeBlanc, Judy

Title: Environmental Health and Safety Specialist Credential: Click to enter text.

Organization Name: Gladieux Metals Recycling, LLC

Mailing Address: 302 Midway Road City/State/Zip: Freeport, TX 77542-2290

Phone No: <u>979-415-1547</u> Email: <u>JLeBlanc@aleonmetals.com</u>

Item 8. DMR/MER Contact Information (Instructions, Page 28)

Provide the name and mailing address of the person delegated to receive and submit DMRs or MERs. **Note:** DMR data must be submitted through the NetDMR system. An electronic reporting account can be established once the facility has obtained the permit number.

Prefix: Ms. Full Name (Last/First Name): LeBlanc, Judy

Title: Environmental Health and Safety Specialist Credential: Click to enter text.

Organization Name: Click to enter text.

Mailing Address: 302 Midway Road City/State/Zip: Freeport, TX 77542-2290

TCEQ-10411 (01/08/2024) Industrial Wastewater Application Administrative Report

Phone No: <u>979-415-1547</u> Email: <u>JLeBlanc@aleonmetals.com</u>

Item 9. Notice Information (Instructions, Pages 28)

a. Individual Publishing the Notices

Prefix: Ms. Full Name (Last/First Name): Perkin, Corey

Title: <u>Assistant Project Manager</u> Credential: <u>Click to enter text.</u>

Organization Name: Civil & Environmental Consultants, Inc.

Mailing Address: 1221 S. MoPac Expwy Suite 350 City/State/Zip: Austin, Texas 78746

Phone No: <u>512-225-8102</u> Email: <u>cperkin@cecinc.com</u>

- b. Method for Receiving Notice of Receipt and Intent to Obtain a Water Quality Permit Package (only for NORI, NAPD will be sent via regular mail)
 - ☑ E-mail: Click to enter text.
 - ☐ Fax: Click to enter text.
 - ⊠ Regular Mail (USPS)

Mailing Address: 1221 S. MoPac Expwy Suite 350

City/State/Zip Code: Austin, Texas 78746

c. Contact in the Notice

Prefix: Ms. Full Name (Last/First Name): LeBlanc, Judy

Title: Environmental Health and Safety Specialist Credential: Click to enter text.

Organization Name: Gladieux Metals

Phone No: <u>979-415-1547</u> Email: <u>JLeBlanc@aleonmetals.com</u>

d. Public Viewing Location Information

Note: If the facility or outfall is located in more than one county, provide a public viewing place for each county.

Public building name: <u>Freeport Public Library</u> Location within the building: <u>Click to</u>

enter text.

Physical Address of Building: 410 Brazosport Blvd.

City: Freeport County: Brazoria

e. Bilingual Notice Requirements

This information is required for new, major amendment, minor amendment or minor modification, and renewal applications.

This section of the application is only used to determine if alternative language notices will be needed. Complete instructions on publishing the alternative language notices will be in your public notice package.

Call the bilingual/ESL coordinator at the nearest elementary and middle schools and obtain the following information to determine if an alternative language notice(s) is required.

1. Is a bilingual education program required by the Texas Education Code at the elementary or middle school nearest to the facility or proposed facility?

		⊠ Yes □ No
		If no, publication of an alternative language notice is not required; skip to Item 8 (Regulated Entity and Permitted Site Information.)
	2.	Are the students who attend either the elementary school or the middle school enrolled in a bilingual education program at that school?
		⊠ Yes □ No
	3.	Do the students at these schools attend a bilingual education program at another location?
		□ Yes ⋈ No
	4.	Would the school be required to provide a bilingual education program, but the school has waived out of this requirement under 19 TAC §89.1205(g)?
		□ Yes ⊠ No □ N/A
	5.	If the answer is yes to question 1, 2, 3, or 4, public notices in an alternative language are required. Which language is required by the bilingual program? <u>Spanish</u>
f.		in Language Summary Template - Complete the Plain Language Summary (TCEQ Form 972) and include as an attachment. Attachment: Section 2 Attachment 1
g.		mplete one Public Involvement Plan (PIP) Form (TCEQ Form 20960) for each application a new permit or major amendment and include as an attachment. Attachment:
Ite	em	10. Regulated Entity and Permitted Site Information (Instructions
		Page 29)
		- 480 = 37
a.	TC	EQ issued Regulated Entity Number (RN), if available: RN100210129
a.	No ma the	
	No ma the reg	EQ issued Regulated Entity Number (RN), if available: RN100210129 Ite: If your business site is part of a larger business site, a Regulated Entity Number (RN) ay already be assigned for the larger site. Use the RN assigned for the larger site. Search at TCEQ's Central Registry to determine the RN or to see if the larger site may already be
	No ma the reg Na Rec	EQ issued Regulated Entity Number (RN), if available: RN100210129 Ite: If your business site is part of a larger business site, a Regulated Entity Number (RN) by already be assigned for the larger site. Use the RN assigned for the larger site. Search e TCEQ's Central Registry to determine the RN or to see if the larger site may already be gistered as a Regulated Entity. If the site is found, provide the assigned RN. The project or site (the name known by the community where located): Gladieux Metals
b.	No ma the reg Na Rec	EQ issued Regulated Entity Number (RN), if available: RN100210129 Ite: If your business site is part of a larger business site, a Regulated Entity Number (RN) by already be assigned for the larger site. Use the RN assigned for the larger site. Search are TCEQ's Central Registry to determine the RN or to see if the larger site may already be distered as a Regulated Entity. If the site is found, provide the assigned RN. The project or site (the name known by the community where located): Gladieux Metals cycling, LLC
b.	No mather reg	EQ issued Regulated Entity Number (RN), if available: RN100210129 Ite: If your business site is part of a larger business site, a Regulated Entity Number (RN) by already be assigned for the larger site. Use the RN assigned for the larger site. Search are TCEQ's Central Registry to determine the RN or to see if the larger site may already be gistered as a Regulated Entity. If the site is found, provide the assigned RN. The image is a regulated Entity in the community where located in the location address of the facility in the existing permit the same?
b. с.	No mather reg	EQ issued Regulated Entity Number (RN), if available: RN100210129 Inte: If your business site is part of a larger business site, a Regulated Entity Number (RN) by already be assigned for the larger site. Use the RN assigned for the larger site. Search at TCEQ's Central Registry to determine the RN or to see if the larger site may already be gistered as a Regulated Entity. If the site is found, provide the assigned RN. Interpretation of project or site (the name known by the community where located): Gladieux Metals cycling, LLC Interpretation address of the facility in the existing permit the same? Yes No N/A (new permit) Inte: If the facility is located in Bexar, Comal, Hays, Kinney, Medina, Travis, Uvalde, or Iliamson County, additional information concerning protection of the Edwards Aquifer
b. с.	No mather reg	EQ issued Regulated Entity Number (RN), if available: RN100210129 Ite: If your business site is part of a larger business site, a Regulated Entity Number (RN) by already be assigned for the larger site. Use the RN assigned for the larger site. Search at TCEQ's Central Registry to determine the RN or to see if the larger site may already be gistered as a Regulated Entity. If the site is found, provide the assigned RN. The of project or site (the name known by the community where located): Gladieux Metals cycling, LLC The location address of the facility in the existing permit the same? Yes No N/A (new permit) Ite: If the facility is located in Bexar, Comal, Hays, Kinney, Medina, Travis, Uvalde, or liamson County, additional information concerning protection of the Edwards Aquifer by be required.
b. с.	No mather reg	EQ issued Regulated Entity Number (RN), if available: RN100210129 Ite: If your business site is part of a larger business site, a Regulated Entity Number (RN) by already be assigned for the larger site. Use the RN assigned for the larger site. Search are TCEQ's Central Registry to determine the RN or to see if the larger site may already be distered as a Regulated Entity. If the site is found, provide the assigned RN. Important the interval of the interval
b. с.	No mather regions in the region in the regio	EQ issued Regulated Entity Number (RN), if available: RN100210129 Inte: If your business site is part of a larger business site, a Regulated Entity Number (RN) by already be assigned for the larger site. Use the RN assigned for the larger site. Search archive TCEQ's Central Registry to determine the RN or to see if the larger site may already be gistered as a Regulated Entity. If the site is found, provide the assigned RN. Interior of project or site (the name known by the community where located): Gladieux Metals cycling, LLC Interior of the facility in the existing permit the same? Interior of the facility is located in Bexar, Comal, Hays, Kinney, Medina, Travis, Uvalde, or alliamson County, additional information concerning protection of the Edwards Aquifer by be required. Interior of treatment facility: Interior of treatment facility fa
b. с.	No matthe regions in the region in the regio	EQ issued Regulated Entity Number (RN), if available: RN100210129 Ite: If your business site is part of a larger business site, a Regulated Entity Number (RN) by already be assigned for the larger site. Use the RN assigned for the larger site. Search a TCEQ's Central Registry to determine the RN or to see if the larger site may already be gistered as a Regulated Entity. If the site is found, provide the assigned RN. Ime of project or site (the name known by the community where located): Gladieux Metals cycling, LLC Ithe location address of the facility in the existing permit the same? Yes No N/A (new permit) Ite: If the facility is located in Bexar, Comal, Hays, Kinney, Medina, Travis, Uvalde, or community be required. In the facility is located in formation concerning protection of the Edwards Aquifer by be required. In the facility: Item of treatment facility: It

f.	Owner of land where treatment facility is or will be: Gladieux Metals Recycling, LLC			
Prefix: Mr. Full Name (Last/First Name): Bhatt, Tarun				
	or Organization Name: Gladieux Metals Red	cycling		
	Mailing Address: 302 Midway Road	City/State/Zip: Freeport, TX Z	77542-2290	
	Phone No: <u>979-415-1547</u> Email: <u>tbhatt</u>	<u>t@aleonmetals.com</u>		
	Note: If not the same as the facility owner, attach a long-term lease agreement in effect for at least six years (In some cases, a lease may not suffice - see instructions). Attachment: Click to enter text.			
g. Owner of effluent TLAP disposal site (if applicable): Click to enter text.				
	Prefix: <u>Click to enter text.</u> Full Name (L	ast/First Name): <u>Click to enter text.</u>		
	or Organization Name: Click to enter text.			
	Mailing Address: Click to enter text.	City/State/Zip: Click to enter	text.	
	Phone No: <u>Click to enter text.</u> Email: <u>Click</u>	to enter text.		
	Note: If not the same as the facility owner, at least six years. Attachment: Click to enter		n effect for	
h.	Owner of sewage sludge disposal site (if ap	pplicable):		
	Prefix: <u>Click to enter text.</u> Full Name (L	ast/First Name): <u>Click to enter text.</u>		
	or Organization Name: Click to enter text.			
	Mailing Address: Click to enter text.	City/State/Zip: Click to enter	text.	
	Phone No: <u>Click to enter text.</u> Email: <u>Click t</u>	o enter text.		
	Note: If not the same as the facility owner, at least six years. Attachment: Click to enter		n effect for	
Ite	em 11. TDPES Discharge/TLAP D	disposal Information (Instruc	ctions,	
	Page 31)			
a.	Is the facility located on or does the treate	d effluent cross Native American Lan	d?	
	□ Yes ⊠ No			
b.	Attach an original full size USGS Topographic Map (or an 8.5"×11" reproduced portion for renewal or amendment applications) with all required information. Check the box next to each item below to confirm it has been included on the map.			
	☑ One-mile radius	☑ Three-miles downstream informa	ıtion	
	☑ Applicant's property boundaries	☑ Treatment facility boundaries		
	☑ Labeled point(s) of discharge	⊠ Highlighted discharge route(s)		
	☐ Effluent disposal site boundaries	☑ All wastewater ponds		
	☐ Sewage sludge disposal site	☐ New and future construction		
	Attachment: <u>Figure 1</u>			
	Is the location of the sewage sludge dispos ☐ Yes ☑ No or New Permit EQ-10411 (01/08/2024) Industrial Wastewater Applic	0 -	e? Page 9 of 18	

	If no, or a new application, provide an accurate location description: <u>Click to enter text.</u>	
d.	Are the point(s) of discharge in the existing permit correct? $\ \ \ \ \ \ \ \ \ \ \ \ \ $	
	If no, or a new application, provide an accurate location description: <u>Click to enter text.</u>	
e.	Are the discharge route(s) in the existing permit correct?	
	☑ Yes ☐ No or New Permit	
	If no, or a new permit, provide an accurate description of the discharge route: <u>Click to enter text.</u>	
f.	City nearest the outfall(s): <u>Freeport, TX</u>	
g.	County in which the outfalls(s) is/are located: <u>Brazoria</u>	
h.	Is or will the treated wastewater discharge to a city, county, or state highway right-of-way, or a flood control district drainage ditch?	
	□ Yes ⋈ No	
	If yes, indicate by a check mark if: \square Authorization granted \square Authorization pending	
	For new and amendment applications, attach copies of letters that show proof of contact and provide the approval letter upon receipt. Attachment: Click to enter text.	
	For all applications involving an average daily discharge of 5 MGD or more, provide the names of all counties located within 100 statute miles downstream of the point(s) of discharge: $\underline{\text{N/A}}$	
i.	For TLAPs, is the location of the effluent disposal site in the existing permit accurate?	
	\square Yes No or New Permit \boxtimes $\underline{N/A}$	
	If no, or a new application, provide an accurate location description: <u>Click to enter text.</u>	
j.	City nearest the disposal site:	
k.	County in which the disposal site is located: <u>Click to enter text.</u>	
l.	For TLAPs, describe how effluent is/will be routed from the treatment facility to the disposal site: Click to enter text.	
m.	For TLAPs, identify the nearest watercourse to the disposal site to which rainfall runoff might flow if not contained: <u>Click to enter text.</u>	

Item 12. Miscellaneous Information (Instructions, Page 33)

a.	Did any person formerly employed by the TCEQ represent your company and get paid for service regarding this application?
	□ Yes ⊠ No
	If yes, list each person: <u>Click to enter text.</u>
b.	Do you owe any fees to the TCEQ?
	□ Yes ☒ No
	If yes, provide the following information:
	Account no.: Click to enter text.
	Total amount due: <u>Click to enter text.</u>
c.	Do you owe any penalties to the TCEQ?
	□ Yes ☒ No
	If yes, provide the following information:
	Enforcement order no.: Click to enter text.
	Amount due: Click to enter text.

Item 13. Signature Page (Instructions, Page 33)

Permit No: WQ0001861

Applicant Name: Gladieux Metals Recycling, LLC

Certification: I, <u>Tarun Bhatt</u>, certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

I further certify that I am authorized under 30 Texas Administrative Code §305.44 to sign and submit this document and can provide documentation in proof of such authorization upon request.

Signatory name (typed or printed): Tarun Bhatt

Signatory title: Chief Executive Officer

Signature: _	Town Chilt	Date:	08/07/2	
0 =	(Use blue ink)			

Subscribed and Sworn to before me by the said _____ Tarun Bhatt

on this _____ day of August , 20 24

My commission expires on the 4th day of March , 20 28

Mayha Estrada Notary Public

Brazoria

County, Texas

MARTHA ESTRADA
iD #132377694
My Commission Expires
March 04, 2028

Note: *If co-applicants are necessary, each entity must submit an original, separate signature page.*

INDUSTRIAL WASTEWATER PERMIT APPLICATION ADMINISTRATIVE REPORT 1.1

The following information is required for new and amendment applications.

Item 1. Affected Landowner Information (Instructions, Page 35)

☑ The facility site boundaries within the applicant's property boundaries.

- - ☑ The distance the buffer zone falls into adjacent properties and the property boundaries of the landowners located within the buffer zone.
 - ☑ The property boundaries of all landowners surrounding the applicant's property. (Note: if the application is a major amendment for a lignite mine, the map must include the property boundaries of all landowners adjacent to the new facility (ponds).)
 - ☑ The point(s) of discharge and highlighted discharge route(s) clearly shown for one mile downstream.
 - ☑ The property boundaries of the landowners located on both sides of the discharge route for one full stream mile downstream of the point of discharge.
 - ☑ The property boundaries of the landowners along the watercourse for a one-half mile radius from the point of discharge if the point of discharge is into a lake, bay, estuary, or affected by tides.
 - ☐ The boundaries of the effluent disposal site (e.g., irrigation area or subsurface drainfield site) and all evaporation/holding ponds within the applicant's property.
 - ☑ The property boundaries of all landowners surrounding the applicant's property boundaries where the effluent disposal site is located.
 - ☐ The boundaries of the sludge land application site (for land application of sewage sludge for beneficial use) and the property boundaries of landowners within one-quarter mile of the applicant's property boundaries where the sewage sludge land application site is located.
 - ☐ The property boundaries of landowners within one-half mile in all directions from the applicant's property boundaries where the sewage sludge disposal site (e.g., sludge surface disposal site or sludge monofil) is located.

Attachment: Section 2 Attachment 3

- b. Check the box next to the format of the landowners list:
 - ☐ Readable/Writeable CD

⊠ Four sets of labels

Attachment: Click to enter text.

- d. Provide the source of the landowners' names and mailing addresses: <u>Brazoria County Appraisal District</u>
- e. As required by Texas Water Code § 5.115, is any permanent school fund land affected by this application?

□ Yes ⊠ No	ı		
If yes, provid	le the location and foreseea	ble impacts and effects thi	s application has on the
land(s). Click	to enter text	_	

Item 2. Original Photographs (Instructions, Page 37)

Provide original ground level photographs. Check the box next to each of the following items to indicate it is included.

- ☐ At least one original photograph of the new or expanded treatment unit location.
- At least two photographs of the existing/proposed point of discharge and as much area downstream (photo 1) and upstream (photo 2) as can be captured. If the discharge is to an open water body (e.g., lake, bay), the point of discharge should be in the right or left edge of each photograph showing the open water and with as much area on each respective side of the discharge as can be captured.
- ☐ At least one photograph of the existing/proposed effluent disposal site.
- ☐ A plot plan or map showing the location and direction of each photograph.

Attachment: Section 3 Figure 1A and 1B

INDUSTRIAL WASTEWATER PERMIT APPLICATION SUPPLEMENTAL PERMIT INFORMATION FORM (SPIF)

This form applies to TPDES permit applications only. Complete and attach the Supplemental Permit information Form (SPIF) (TCEQ Form 20971).

Attachment: Section 2 Attachment 4

WATER QUALITY PERMIT

PAYMENT SUBMITTAL FORM

Use this form to submit the Application Fee, if mailing the payment. (Instructions, Page 36-37)

- Complete items 1 through 5 below.
- Staple the check or money order in the space provided at the bottom of this document.
- Do not mail this form with the application form.
- Do not mail this form to the same address as the application.
- Do not submit a copy of the application with this form as it could cause duplicate permit entries.

Mail this form and the check or money order to:

BY REGULAR U.S. MAIL

BY OVERNIGHT/EXPRESS MAIL

Texas Commission on Environmental Quality Texas Commission on Environmental Quality

Financial Administration Division Financial Administration Division

Cashier's Office, MC-214
P.O. Box 13088
12100 Park 35 Circle
Austin, Texas 78711-3088
Austin, Texas 78753

Fee Code: WQP Permit No: WQ0001861

1. Check or Money Order Number: Click to enter text.

2. Check or Money Order Amount: Click to enter text.

3. Date of Check or Money Order: Click to enter text.

4. Name on Check or Money Order: Click to enter text.

5. APPLICATION INFORMATION

Name of Project or Site: Click to enter text.

Physical Address of Project or Site: Click to enter text.

If the check is for more than one application, attach a list which includes the name of each Project or Site (RE) and Physical Address, exactly as provided on the application.

Attachment: Click to enter text.

Staple Check or Money Order in This Space

ATTACHMENT 1

INDIVIDUAL INFORMATION

Item 1. Individual information (Instructions, Page 38)

Complete this attachment if the facility applicant or co-applicant is an individual. Make additional copies of this attachment if both are individuals.

Prefix (Mr., Ms., or Miss): Click to enter text.

Full legal name (first, middle, and last): Click to enter text.

Driver's License or State Identification Number: Click to enter text.

Date of Birth: <u>Click to enter text.</u>

Mailing Address: <u>Click to enter text.</u>

City, State, and Zip Code: Click to enter text.

Phone No.: <u>Click to enter text.</u>

Fax No.: Click to enter text.

E-mail Address: Click to enter text.

CN: Click to enter text.

INDUSTRIAL WASTEWATER PERMIT APPLICATION CHECKLIST OF COMMON DEFICIENCIES

Below is a list of common deficiencies found during the administrative review of industrial wastewater permit applications. To ensure the timely processing of this application, please review the items below and indicate each item is complete and in accordance applicable rules at 30 TAC Chapters 21, 281, and 305 by checking the box next to the item. If an item is not required this application, indicate by checking N/A where appropriate. Please do not submit the application until all items below are addressed.

- □ Core Data Form (TCEQ Form No. 10400)
 (Required for all applications types. Must be completed in its entirety and signed. Note: Form may be signed by applicant representative.)
- ☑ Correct and Current Industrial Wastewater Permit Application Forms (*TCEQ Form Nos. 10055 and 10411. Version dated 5/10/2019 or later.*)
- Water Quality Permit Payment Submittal Form (Page 14) (Original payment sent to TCEQ Revenue Section. See instructions for mailing address.)
- ∑ 7.5 Minute USGS Quadrangle Topographic Map Attached (Full-size map if seeking "New" permit.

 ½ x 11 acceptable for Renewals and Amendments.)
- ☑ N/A ☐ Current/Non-Expired, Executed Lease Agreement or Easement Attached
- □ N/A ☑ Landowners Map
 (See instructions for landowner requirements.)

Things to Know:

- All the items shown on the map must be labeled.
- The applicant's complete property boundaries must be delineated which includes boundaries of contiguous property owned by the applicant.
- The applicant cannot be its own adjacent landowner. You must identify the landowners immediately adjacent to their property, regardless of how far they are from the actual facility.
- If the applicant's property is adjacent to a road, creek, or stream, the landowners on the opposite side must be identified. Although the properties are not adjacent to applicant's property boundary, they are considered potentially affected landowners. If the adjacent road is a divided highway as identified on the USGS topographic map, the applicant does not have to identify the landowners on the opposite side of the highway.
- □ N/A ⊠ Landowners Cross Reference List (See instructions for landowner requirements.)
- □ N/A ► Landowners Labels or CD-RW attached (See instructions for landowner requirements.)
- ☑ Original signature per 30 TAC § 305.44 Blue Ink Preferred (If signature page is not signed by an elected official or principle executive officer, a copy of signature authority/delegation letter must be attached.)
- ☑ Plain Language Summary

SECTION 2 ATTACHMENTS 1 THROUGH 4	

TCEQ

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

PLAIN LANGUAGE SUMMARY FOR TPDES OR TLAP PERMIT APPLICATIONS

Plain Language Summary Template and Instructions for Texas Pollutant Discharge Elimination System (TPDES) and Texas Land Application (TLAP) Permit Applications

Applicants should use this template to develop a plain language summary as required by Title 30, Texas Administrative Code (30 TAC), Chapter 39, Subchapter H. Applicants may modify the template as necessary to accurately describe their facility as long as the summary includes the following information: (1) the function of the proposed plant or facility; (2) the expected output of the proposed plant or facility; (3) the expected pollutants that may be emitted or discharged by the proposed plant or facility; and (4) how the applicant will control those pollutants, so that the proposed plant will not have an adverse impact on human health or the environment.

Fill in the highlighted areas below to describe your facility and application in plain language. Instructions and examples are provided below. Make any other edits necessary to improve readability or grammar and to comply with the rule requirements.

If you are subject to the alternative language notice requirements in 30 TAC Section 39.426, you must provide a translated copy of the completed plain language summary in the appropriate alternative language as part of your application package. For your convenience, a Spanish template has been provided below.

ENGLISH TEMPLATE FOR TPDES or TLAP NEW/RENEWAL/AMENDMENT APPLICATIONS INDUSTRIAL WASTEWATER/STORMWATER

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and is not a federal enforceable representation of the permit application.

Gladieux Metals Recycling, LLC. (GMR) (CN605364843) operates Gladieux Metals Recycling (RN100210129), a metals recycling facility. The facility is located at 302 Midway Road, in Freeport, Brazoria County, Texas 77542. GMR is submitting a renewal application to its TPDES permit to discharge up to 300,000 gallons per day of treated wastewater via Outfall 001 and up to 2.2 million gallons per day of stormwater via Outfall 002.

Discharges from the facility are expected to contain molybdenum oxide, vanadium oxide, cobalt/nickel alloy, and fused alumina. Cooling water will be treated by cooling towers and dedicated holding ponds.

PLANTILLA EN ESPAÑOL PARA SOLICITUDES NUEVAS/RENOVACIONES/ENMIENDAS DE TPDES o TLAP

AGUAS RESIDUALES INDUSTRIALES /AGUAS PLUVIALES

El siguiente resumen es proporcionado para la aplicación pendiente para esta solicitud del permiso de calidad del agua que esta siendo revisada por la Comisión de Calidad Ambiental de Texas (por sus siglas en ingles TCEQ) como es requerido por el Codigo Administrativo de Texas 30, capitulo 39. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la aplicación y no es una representación federal ejecutiva del permiso de la aplicación.

Gladieux Metals Recycling, LLC (GMR)(CN605364843) que es operada por Gladieux Metals Recycling (RN100210129) una instalación de metales reciclables. La instalación esta ubicada en 302 Midway Road, en Freeport, Brazoria, County, Texas 77542. GMR esta entregando esta aplicación para la renovación del permiso de Sistema de Eliminación de Descargas Contaminantes de Texas (TPDES), para la descarga de hasta 300,00 galones por día de aguas residuales tratas vía desagüe 001 y hasta 2.2 millones de galones por día de aguas pluviales vía desagüe 002.

Las descargas de la instalación se espera que contengan oxido de molibdeno, oxido de vanadio, aleación de cobalto/ níquel y alúmina fundida. El agua de refrigeración será tratada mediante las torres de enfriamiento y por los estanques de retención exclusivos

INSTRUCTIONS

- 1. Enter the name of applicant in this section. The applicant name should match the name associated with the customer number.
- 2. Enter the Customer Number in this section. Each Individual or Organization is issued a unique 11-digit identification number called a CN (e.g. CN123456789).
- 3. Choose "operates" in this section for existing facility applications or choose "proposes to operate" for new facility applications.
- 4. Enter the name of the facility in this section. The facility name should match the name associated with the regulated entity number.
- 5. Enter the Regulated Entity number in this section. Each site location is issued a unique 11-digit identification number called an RN (e.g. RN123456789).
- 6. Choose the appropriate article (a or an) to complete the sentence.
- 7. Enter a description of the facility in this section. For example: steam electric generating facility, nitrogenous fertilizer manufacturing facility, etc.
- 8. Choose "is" for an existing facility or "will be" for a new facility.
- 9. Enter the location of the facility in this section.
- 10. Enter the City nearest the facility in this section.
- 11. Enter the County nearest the facility in this section.
- 12. Enter the zip code for the facility address in this section.
- 13. Enter a summary of the application request in this section. For example: renewal to discharge 25,000 gallons per day of treated domestic wastewater, new application to discharge process wastewater and stormwater on an intermittent and flow-variable basis, or major amendment to reduce monitoring frequency for pH, etc. If more than one outfall is included in the application, provide applicable information for each individual outfall.
- 14. List all pollutants expected in the discharge from this facility in this section. If applicable, refer to the pollutants from any federal numeric effluent limitations that apply to your facility.
- 15. Enter the discharge types from your facility in this section (e.g., stormwater, process wastewater, once through cooling water, etc.)
- 16. Choose the appropriate verb tense to complete the sentence.
- 17. Enter a description of the wastewater treatment used at your facility. Include a description of each process, starting with initial treatment and finishing with the outfall/point of disposal. Use additional lines for individual discharge types if necessary.

Questions or comments concerning this form may be directed to the Water Quality Division's Application Review and Processing Team by email at wq-ARPTeam@tceq.texas.gov or by phone at (512) 239-4671.

Example

Individual Industrial Wastewater Application

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and are not federal enforceable representations of the permit application.

ABC Corporation (CN600000000) operates the Starr Power Station (RN10000000000), a two-unit gas-fired electric generating facility. Unit 1 has a generating capacity of 393 megawatts (MWs) and Unit 2 has a generating capacity of 528 MWs. The facility is located at 1356 Starr Street, near the City of Austin, Travis County, Texas 78753.

This application is for a renewal to discharge 870,000,000 gallons per day of once through cooling water, auxiliary cooling water, and also authorizes the following waste streams monitored inside the facility (internal outfalls) before it is mixed with the other wastewaters authorized for discharge via main Outfall 001, referred to as "previously monitored effluents" (low-volume wastewater, metal-cleaning waste, and stormwater (from diked oil storage area yards and storm drains)) via Outfall 001. Low-volume waste sources, metal-cleaning waste, and stormwater drains on a continuous and flow-variable basis via internal Outfall 101.

The discharge of once through cooling water via Outfall 001 and low-volume waste and metal-cleaning waste via Outfall 101 from this facility is subject to federal effluent limitation guidelines at 40 CFR Part 423. The pollutants expected from these discharges based on 40 CFR Part 423 are: free available chlorine, total residual chlorine, total suspended solids, oil and grease, total iron, total copper, and pH. Temperature is also expected from these discharges. Additional potential pollutants are included in the Industrial Wastewater Application Technical Report, Worksheet 2.0.

Cooling water and boiler make-up water are supplied by Lake Starr Reservoir. The City of Austin municipal water plant (CN600000000, PWS 00000) supplies the facility's potable water and serves as an alternate source of boiler make-up water. Water from the Lake Starr Reservoir is withdrawn at the intake structure and treated with sodium hypochlorite to prevent biofouling and sodium bromide as a chlorine enhancer to improve efficacy and then passed through condensers and auxiliary equipment on a once-through basis to cool equipment and condense exhaust steam.

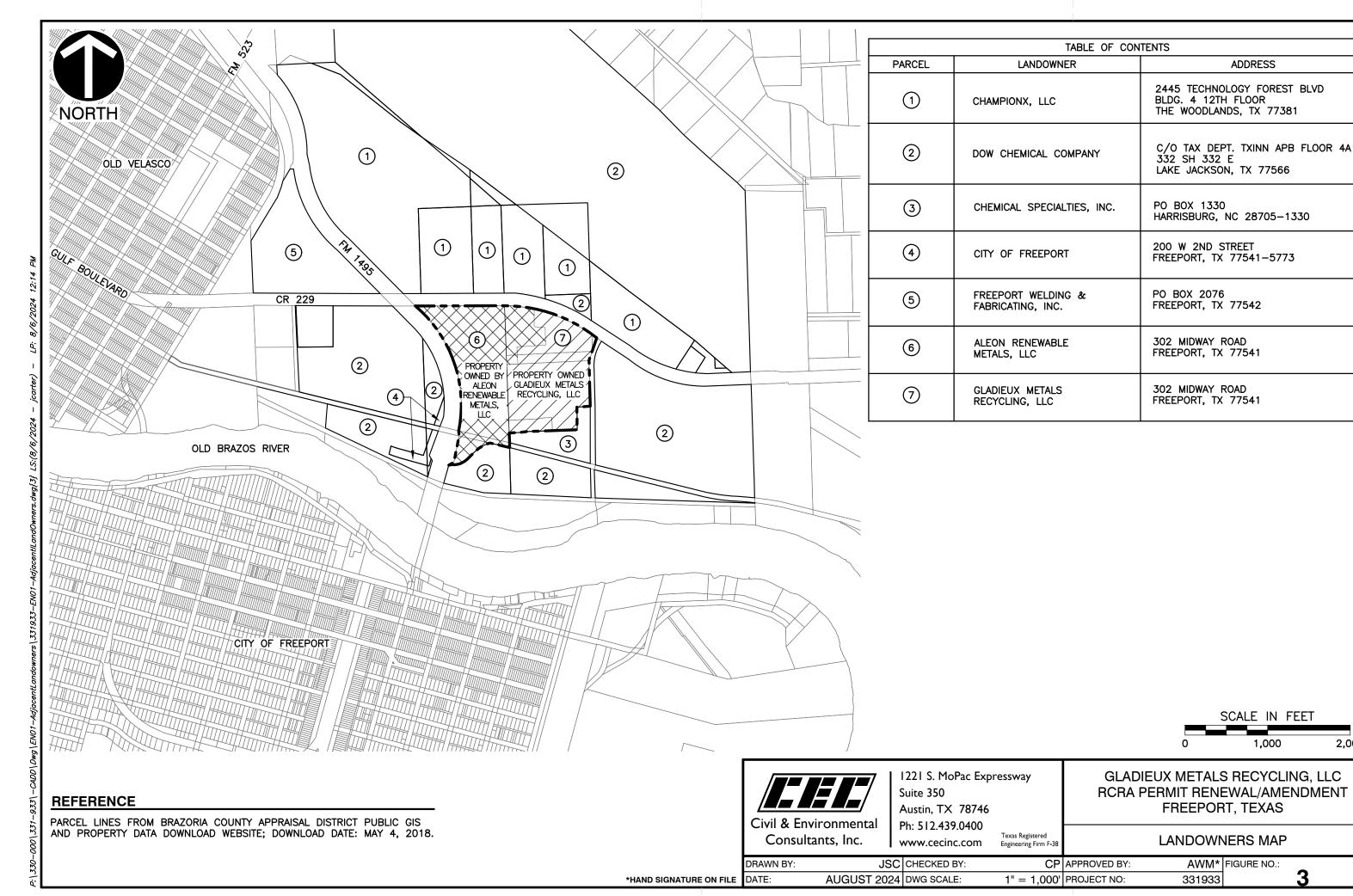
Low-volume wastewater from blowdown of boiler Units 1 and 2 and metal-cleaning wastes receive no treatment prior to discharge via Outfall 101. Plant floor and equipment drains and stormwater runoff from diked oil storage areas, yards, and storm drains are routed through an oil and water separator prior to discharge via Outfall 101. Domestic wastewater, blowdown, and backwash water from the service water filter, clarifier, and sand filter are routed to the Starr Creek Domestic Sewage Treatment Plant, TPDES Permit No. WQ0010000001, for treatment and disposal. Metal-cleaning waste from equipment cleaning is generally disposed of off-site.

GTEXAS COMMISSION ON ENVIRONMENTAL QUALITY SUPPLEMENTAL PERMIT INFORMATION FORM (SPIF)

FOR AGENCIES REVIEWING DOMESTIC OR INDUSTRIAL TPDES WASTEWATER PERMIT APPLICATIONS

TCEQ USE ONLY:	
•	AmendmentNew
County:	
Admin Complete Date:	
Agency Receiving SPIF:	
Texas Historical Commission	U.S. Fish and Wildlife
Texas Parks and Wildlife Department	U.S. Army Corps of Engineers
This form applies to TPDES permit applicati	ons only. (Instructions, Page 53)
our agreement with EPA. If any of the items a	TCEQ will mail a copy to each agency as required by re not completely addressed or further information information before issuing the permit. Address
application will not be declared administrative completed in its entirety including all attachn	Administrative Report of the application. The ely complete without this SPIF form being nents. Questions or comments concerning this form 's Application Review and Processing Team by
The following applies to all applications:	
1. Permittee: <u>Gladieux Metals Recycling, LLC</u>	
Permit No. WQ00 <u>01861</u>	EPA ID No. TX <u>0034738</u>
Address of the project (or a location descrand county):	ription that includes street/highway, city/vicinity,
302 Midway Road, Freeport, Texas 77542	-2290

answer	specific questions about the property.
Prefix ((Mr., Ms., Miss): <u>Mr.</u>
First ar	nd Last Name: <u>John Metric</u>
Creden	ntial (P.E, P.G., Ph.D., etc.):
Title: <u>D</u>	Director of Engineering
Mailing	g Address: <u>302 Midway Road</u>
City, St	tate, Zip Code: <u>Freeport, TX 77542-2290</u>
Phone	No.: <u>979-415-1547</u> Ext.: Fax No.:
E-mail	Address: <u>JMetric@aleonmetals.com</u>
List the	e county in which the facility is located: <u>Brazoria</u>
_	property is publicly owned and the owner is different than the permittee/applicant, list the owner of the property.
of efflu dischar	e a description of the effluent discharge route. The discharge route must follow the flow tent from the point of discharge to the nearest major watercourse (from the point of tree to a classified segment as defined in 30 TAC Chapter 307). If known, please identify ssified segment number.
Dow (<u>Chemical Plant "A" Canal</u>
plotted route f	provide a separate 7.5-minute USGS quadrangle map with the project boundaries and a general location map showing the project area. Please highlight the discharge from the point of discharge for a distance of one mile downstream. (This map is ed in addition to the map in the administrative report).
Provide	e original photographs of any structures 50 years or older on the property.
Does y	our project involve any of the following? Check all that apply.
	Proposed access roads, utility lines, construction easements
	Visual effects that could damage or detract from a historic property's integrity
	Vibration effects during construction or as a result of project design
\boxtimes	Additional phases of development that are planned for the future
	Sealing caves, fractures, sinkholes, other karst features


Provide the name, address, phone and fax number of an individual that can be contacted to

2.3.

4.

5.

	☐ Disturbance of vegetation or wetlands	
1.	List proposed construction impact (surface acres to be impacted, depth of excavation, sealing of caves, or other karst features):	ıg
	N/A	
2.	Describe existing disturbances, vegetation, and land use:	
	$\frac{N/A}{}$	
	HE FOLLOWING ITEMS APPLY ONLY TO APPLICATIONS FOR NEW TPDES PERMITS AND MAJOR MENDMENTS TO TPDES PERMITS	Ł
	List construction dates of all buildings and structures on the property:	
٥.	List construction dates of an buildings and structures on the property.	
4.	Provide a brief history of the property, and name of the architect/builder, if known.	
	Click here to enter text.	

ADDRESS

SCALE IN FEET

1,000

AWM* FIGURE NO.:

331933

2,000

LANDOWNERS LIST

The following table lists the names and mailing addresses of the adjacent and potentially affected landowners around the facility boundary. The list is based on the Brazoria County Appraisal District records (as of AUGUST 2024). *Aleon Renewable Metals, LLC and Gladieux Metals Recycling, LLC are both owned by the same parent company.

Number	Name	Address	
1	CHAMPIONX LLC	2445 TECHNOLOGY FOREST BLVD	
		BLDG 4 12TH FLOOR	
		THE WOODLANDS, TX 77381	
2	DOW CHEMICAL COMPANY	332 SH 332 E	
		LAKE JACKSON, TX 77566	
3	CHEMICAL SPECIALTIES, INC.	PO BOX 1330	
		HARRISBURG, NC 28705-1330	
4	CITY OF FREEPORT	200 W 2 ND STREET	
		FREEPORT, TX 77542	
5	FREEPORT WELDING & FAB INC	PO BOX 2076	
		FREEPORT, TX 77542-2076	
6	*ALEON RENEWABLE METALS, LLC	302 MIDWAY RD	
		FREEPORT, TX 77541	
7	*GLADIEUX METALS RECYCLING,	302 MIDWAY ROAD	
	LLC	FREEPORT, TX 77541	

CHAMPIONX LLC 2445 TECHNOLOGY FOREST BLVD BLDG 4 12TH FLOOR THE WOODLANDS, TX 77381

FREEPORT WELDING & FAB INC PO BOX 2076 FREEPORT, TX 77542-2076

DOW CHEMICAL COMPANY 332 SH 332 E LAKE JACKSON TX 77566 ALEON RENEWABLE METALS LLC 302 MIDWAY RD FREEPORT, TX 77541

CHEMICAL SPECIALTIES INC PO BOX 1330 HARRISBURG, NC 28705-1330 CITY OF FREEPORT 200 W 2ND STREET FREEPORT, TX 77541-5773

GLADIEUX METALS RECYCLING LLC 302 MIDWAY RD FREEPORT, TEX 77541 From: steers@tceq.texas.gov

To: Perkin, Corey

 Subject:
 TCEQ ePay Receipt for 582EA000620265

 Date:
 Monday, August 5, 2024 4:08:08 PM

This is an automated message from the TCEQ ePay system. Please do not reply.

Trace Number: 582EA000620265 Date: 08/05/2024 03:55 PM

Payment Method: CC - Authorization 0000092763

TCEQ Amount: \$2,015.00 Texas.gov Price: \$2,060.59*

* This service is provided by Texas.gov, the official website of Texas. The price of this service includes funds that support the ongoing operations and enhancements of Texas.gov, which is provided by a third party in partnership with the State.

Actor: COREY PERKIN Email: cperkin@cecinc.com

Payment Contact: RACHEL DORMAN

Phone: 512-952-2016

Company: CIVIL & ENVIRONMENTAL CONSULTANTS Address: 1221 S MO PAC EXPY, AUSTIN, TX 78746

Fees Paid:

Fee Description AR Number Amount

WW PERMIT - MAJOR INDUSTRIAL FACILITY - RENEWAL \$2,000.00

30 TAC 305.53B WQ RENEWAL NOTIFICATION FEE \$15.00

TCEQ Amount: \$2,015.00

Voucher: 715888

Trace Number: 582EA000620265 Date: 08/05/2024 03:55 PM

Payment Method: CC - Authorization 0000092763

Voucher Amount: \$2,000.00

Fee Paid: WW PERMIT - MAJOR INDUSTRIAL FACILITY - RENEWAL

RN Number: RN100210129

Site Name: GLADIUEX METALS RECYCLING

Site Location: 302 MIDWAY ROAD

Customer Name: GLADIEUX METALS RECYCLING

Customer Address: 302 MIDWAY ROAD, FREEPORT, TX 77542

Program Area ID: WQ00001861000

Voucher: 715889

Trace Number: 582EA000620265 Date: 08/05/2024 03:55 PM

Payment Method: CC - Authorization 0000092763

Voucher Amount: \$15.00

Fee Paid: 30 TAC 305.53B WQ RENEWAL NOTIFICATION FEE

To print out a copy of the receipt and vouchers for this transaction either click on or copy and paste the following url into your browser:

https://www3.tceq.texas.gov/epay/index.cfm?fuseaction=cor.search&trace_num_txt=582EA000620265.

This e-mail transmission and any attachments are believed to have been sent free of any virus or other defect that might affect any computer system into which it is received and opened. It is, however, the recipient's responsibility to ensure that the e-mail transmission and any attachments are virus free, and the sender accepts no responsibility for any damage that may in any way arise from their use.

3.0 INDUSTRIAL TECHNICAL REPORT (TCEQ FORM 10055)

- 3.1 WORKSHEET 2.0
- 3.2 WORKSHEET 4.0
- **3.3 WORKSHEET 7.0**

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

INDUSTRIAL WASTEWATER PERMIT APPLICATION TECHNICAL REPORT 1.0

The following information **is required** for all applications for a TLAP or an individual TPDES discharge permit.

For **additional information** or clarification on the requested information, please refer to the <u>Instructions for Completing the Industrial Wastewater Permit Application</u>¹ available on the TCEQ website. Please contact the Industrial Permits Team at 512-239-4671 with any questions about this form.

If more than one outfall is included in the application, provide applicable information for each individual outfall. **If an item does not apply to the facility, enter N/A** to indicate that the item has been considered. Include separate reports or additional sheets as **clearly cross-referenced attachments** and provide the attachment number in the space provided for the item the attachment addresses.

NOTE: This application is for an industrial wastewater permit only. Additional authorizations from the TCEQ Waste Permits Division or the TCEQ Air Permits Division may be needed.

Item 1. Facility/Site Information (Instructions, Page 39)

a. Describe the general nature of the business and type(s) of industrial and commercial activities. Include all applicable SIC codes (up to 4).

GMR is a secondary metals recovery facility. It processes primarily spent catalyst containing aluminum oxide, nickel, cobalt, molybdenum, vanadium and sulfur. Chemicals used in the process include sodium carbonate, sodium hydroxide, magnesium oxide, hydrochloric acid, sulfuric acid, quaternary amines, hydrogen peroxide and ammonia. GMR produces V2O5, MoO3, fused alumina, and mixed alloys of nickel and cobalt.

b. Describe all wastewater-generating processes at the facility.

Spent catalysts are roasted with soda ash and leached with water to dissolve and remove molybdenum and vanadium. The insoluble residue, containing nickel, cobalt, and aluminum oxide, is heated in a furnace to produce fused alumina and mixed nickel and cobalt alloys. The molybdenum and vanadium remaining in solution are recovered in a series of steps including precipitation, removal of impurities, acidification and heating in a furnace. Products of this process include vanadium pentoxide and molybdenum trioxide. The solutions depleted molybdenum and vanadium then undergo solvent extraction and steam heating to recover residual metals and ammonia. The resulting solutions are cooled, adjusted in pH, chemically treated to induce settling of solids and filtered to remove the suspended solids. The treated process stream is discharged through Outfall 001 as wastewater. Discharge through Outfall 001 is currently regulated under permit WQ0001861000.Outfall 002 only discharges stormwater

https://www.tceq.texas.gov/permitting/wastewater/industrial/TPDES_industrial_wastewater_steps.html

c. Provide a list of raw materials, major intermediates, and final products handled at the facility. **Materials List Raw Materials Intermediate Products Final Products** A complete list of raw materials, intermediate and final products can be found in Attachment 4. **Attachment: Section 3 Attachment 4** d. Attach a facility map (drawn to scale) with the following information: Production areas, maintenance areas, materials-handling areas, waste-disposal areas, and water intake structures. The location of each unit of the WWTP including the location of wastewater collection sumps, impoundments, outfalls, and sampling points, if significantly different from outfall locations. **Attachment:** Figure 1 e. Is this a new permit application for an existing facility? □ Yes \boxtimes No If **ves**, provide background discussion: Click to enter text.

f. Is/will the treatment facility/disposal site be located above the 100-year frequency flood

List source(s) used to determine 100-year frequency flood plain: The current FEMA Firm Panel 48039C0780 (Revised November 17, 1993) shows the area of the treatment plant at the very edge of a shallow floodplain extending to elevation 2.0 feet MSL. However, onsite surveying done as part of the RCRA permit renewal to address this issue, shows the area within the plant is all at or

above 3 feet MSL and thus above the stated water surface elevation on the FEMA map.

 $TCEQ-10055\ (01/08/2024)\ Industrial\ Wastewater\ Permit\ Application\ Technical\ Report$

level.

 \boxtimes

Yes

No

	rainfall run-on controls) of the treatment facility and disposal area: Click to enter text. Attachment: Click to enter text.
g.	For new or major amendment permit applications, will any construction operations result in a discharge of fill material into a water in the state?
h.	If yes to Item 1.g, has the applicant applied for a USACE CWA Chapter 404 Dredge and Fill permit?
	□ Yes □ No
	If yes , provide the permit number: Click to enter text.
	If no , provide an approximate date of application submittal to the USACE: Click to enter text.
It	em 2. Treatment System (Instructions, Page 40)
a.	List any physical, chemical, or biological treatment process(es) used/proposed to treat wastewater at this facility. Include a description of each treatment process, starting with initial treatment and finishing with the outfall/point of disposal.
	1. Chemical Precipitation 2. Steam/air stripping of ammonia 3. Flow equalization 4. Cooling 5. Addition of flocculant 6. Primary sedimentation 7. pH control 8. Multi-media filtration
b.	Attach a flow schematic with a water balance showing all sources of water and wastewater flow into the facility, wastewater flow into and from each treatment unit, and wastewater flow to each outfall/point of disposal. Attachment: Figures 5 and 6
It	em 3. Impoundments (Instructions, Page 40)
Do	bes the facility use or plan to use any wastewater impoundments (e.g., lagoons or ponds?) \boxtimes Yes \square No

If **no**, provide the elevation of the 100-year frequency flood plain and describe what protective measures are used/proposed to prevent flooding (including tail water and

If **no**, proceed to Item 4. If **yes**, complete **Item 3.a** for **existing** impoundments and **Items 3.a** - **3.e** for **new or proposed** impoundments. **NOTE:** See instructions, Pages 40-42, for additional information on the attachments required by Items 3.a - 3.e.

a. Complete the table with the following information for each existing, new, or proposed impoundment. Attach additional copies of the Impoundment Information table, if needed.

Use Designation: Indicate the use designation for each impoundment as Treatment (**T**), Disposal (**D**), Containment (**C**), or Evaporation (**E**).

Associated Outfall Number: Provide an outfall number if a discharge occurs or will occur.

Liner Type: Indicate the liner type as Compacted clay liner (**C**), In-situ clay liner (**I**), Synthetic/plastic/rubber liner (**S**), or Alternate liner (**A**). **NOTE:** See instructions for further detail on liner specifications. If an alternate liner (A) is selected, include an attachment that provides a description of the alternate liner and any additional technical information necessary for an evaluation.

Leak Detection System: If any leak detection systems are in place/planned, enter **Y** for yes. Otherwise, enter **N** for no.

Groundwater Monitoring Wells and Data: If groundwater monitoring wells are in place/planned, enter **Y** for yes. Otherwise, enter **N** for no. Attach any existing groundwater monitoring data.

Dimensions: Provide the dimensions, freeboard, surface area, storage capacity of the impoundments, and the maximum depth (not including freeboard). For impoundments with irregular shapes, submit surface area instead of length and width.

Compliance with 40 CFR Part 257, Subpart D: If the impoundment is required to be in compliance with 40 CFR Part 257, Subpart D, enter **Y** for yes. Otherwise, enter **N** for no.

Date of Construction: Enter the date construction of the impoundment commenced (mm/dd/yy).

Impoundment Information

Parameter	Pond #	Pond #	Pond #	Pond #
Use Designation: (T) (D) (C) or (E)	С	С		
Associated Outfall Number	001	001		
Liner Type (C) (I) (S) or (A)	S	S		
Alt. Liner Attachment Reference				
Leak Detection System, Y/N	Y	Y		
Groundwater Monitoring Wells, Y/N	N			
Groundwater Monitoring Data Attachment	N			
Pond Bottom Located Above The Seasonal High-Water Table, Y/N	Y			
Length (ft)	217	154		
Width (ft)	154	122		
Max Depth From Water Surface (ft), Not Including Freeboard	19	19		

Parameter	Pond #	Pond #	Pond #	Pond #
Freeboard (ft)	2	2		
Surface Area (acres)	0.96	0.53		
Storage Capacity (gallons)	3.23M	1.63M		
40 CFR Part 257, Subpart D, Y/N	N	N		
Date of Construction				

Attachment: Click to enter text.

The following information (**Items 3.b – 3.e**) is required only for **new or proposed** impoundments.

designed.
1. Liner data
\square Yes \boxtimes No \square Not yet designed
2. Leak detection system or groundwater monitoring data
□ Yes ⊠ No □ Not yet designed
3. Groundwater impacts

b. For new or proposed impoundments, attach any available information on the following

NOTE: Item b.3 is required if the bottom of the pond is not above the seasonal highwater table in the shallowest water-bearing zone.

Not yet designed

Attachment: Click to enter text.

No

Yes

For TLAP applications: Items 3.c - 3.e are not required, continue to Item 4.

c. Attach a USGS map or a color copy of original quality and scale which accurately locates and identifies all known water supply wells and monitor wells within ½-mile of the impoundments.

Attachment: Click to enter text.

d. Attach copies of State Water Well Reports (e.g., driller's logs, completion data, etc.), and data on depths to groundwater for all known water supply wells including a description of how the depths to groundwater were obtained.

Attachment: Click to enter text.

e. Attach information pertaining to the groundwater, soils, geology, pond liner, etc. used to assess the potential for migration of wastes from the impoundments or the potential for contamination of groundwater or surface water.

Attachment: Click to enter text.

Item 4. Outfall/Disposal Method Information (Instructions, Page 42)

Complete the following tables to describe the location and wastewater discharge or disposal operations for each outfall for discharge, and for each point of disposal for TLAP operations.

If there are more outfalls/points of disposal at the facility than the spaces provided, copies of pages 6 and/0r numbered accordingly (i.e., page 6a, 6b, etc.) may be used to provide information on the additional outfalls.

For TLAP applications: Indicate the disposal method and each individual irrigation area **I**, evaporation pond **E**, or subsurface drainage system **S** by providing the appropriate letter designation for the disposal method followed by a numerical designation for each disposal area in the space provided for **Outfall** number (e.g. **E1** for evaporation pond 1, **I2** for irrigation area No. 2, etc.).

Outfall Longitude and Latitude

Outfall No.	Latitude (Decimal Degrees)	Longitude (Decimal Degrees)	
001	28.95609	95.33782	
002	28.95698	95.33697	

Outfall Location Description

Outfall No.	Location Description
001	Adjacent (immediate south) to North Plant Entrance Gate
002	Adjacent (immediate north) to North Plant Entrance Gate

Description of Sampling Point(s) (if different from Outfall location)

Outfall No.	Description of sampling point		

Outfall Flow Information - Permitted and Proposed

Outfall No.	Permitted Daily Avg Flow (MGD)	Permitted Daily Max Flow (MGD)	Proposed Daily Avg Flow (MGD)	Proposed Daily Max Flow (MGD)	Anticipated Discharge Date (mm/dd/yy)
001	0.122	0.3	0.122	0.3	
002	Intermittent/	Intermittent/	Intermittent/	Intermittent/	
	Variable	Variable	Variable	Variable	

Outfall Discharge - Method and Measurement

Outfall No.	Pumped Discharge? Y/N	Gravity Discharge? Y/N	Type of Flow Measurement Device Used
001	Y	N	Flume
002	Y	Y	Flume

Outfall Discharge - Flow Characteristics

Outfall No.		Continuous Discharge? Y/N	Seasonal Discharge? Y/N	Discharge Duration (hrs/day)	Discharge Duration (days/mo)	Discharge Duration (mo/yr)
001	N	N	Y	24	30	12
002	N	Y	N	Varies	Varies	Varies

Outfall Wastestream Contributions

Outfall No. 001

Contributing Wastestream	Volume (MGD)	Percent (%) of Total Flow
Process Wastewater	Up to 0.22	43
Stormwater	Up to 0.23	46
Non-Contact Cooling Water	Up to 0.04	7
Domestic Sewage	Up to 0.01	1
Stormwater and Process Water from Catalyst Storage and Feed Areas	Up to 0.01	1
Stormwater from Process Pond #4	Up to 0.01	1
Stormwater from Offsite Remediation Excavation	Up to 0.01	1

Outfall No. 002

Contributing Wastestream	Volume (MGD)	Percent (%) of Total Flow
Stormwater	Varies	100

Contributing wastestream	volume (Mdb)	Tereent (70) or Total How
Outfall No. Click to enter text.		
Contributing Wastestream	Volume (MGD)	Percent (%) of Total Flow
	voidine (MGB)	Terecht (70) or Total How

Volume (MGD)

Attachment: Click to enter text.

Contributing Wastestream

Item 5. Blowdown and Once-Through Cooling Water Discharges (Instructions, Page 43)

a.	Indicate	if the	facility	currently	or	proposes to:
----	----------	--------	----------	-----------	----	--------------

oxtimes Yes $oxtimes$ No Use cooling towers that discharge blowde	lown or other wastestreams
---	----------------------------

 \square Yes \boxtimes No Use boilers that discharge blowdown or other wastestreams

oxdot Yes oxdot No Discharge once-through cooling water

NOTE: If the facility uses or plans to use cooling towers or once-through cooling water, Item 12 **is required**.

- b. If **yes** to any of the above, attach an SDS with the following information for each chemical additive.
 - Manufacturers Product Identification Number
 - Product use (e.g., biocide, fungicide, corrosion inhibitor, etc.)
 - Chemical composition including CASRN for each ingredient
 - Classify product as non-persistent, persistent, or bioaccumulative
 - Product or active ingredient half-life
 - Frequency of product use (e.g., 2 hours/day once every two weeks)
 - Product toxicity data specific to fish and aquatic invertebrate organisms
 - Concentration of whole product or active ingredient, as appropriate, in wastestream.

In addition to each SDS, attach a summary of the above information for each specific wastestream and the associated chemical additives. Specify which outfalls are affected.

Attachment: Attachment 2

Percent (%) of Total Flow

c. Cooling Towers and Boilers

If the facility currently or proposes to use cooling towers or boilers that discharge blowdown or other wastestreams to the outfall(s), complete the following table.

Cooling Towers and Boilers

Type of Unit	Number of Units	Daily Avg Blowdown (gallons/day)	Daily Max Blowdown (gallons/day)
Cooling Towers	6	18,100	34,373
Boilers	0	N/A	N/A

Item 6. Stormwater Management (Instructions, Page 44)

Will any existing/proposed outfalls discharge stormwater associated with industrial activities, as defined at $40 \ CFR \ \S \ 122.26(b)(14)$, commingled with any other wastestream?

□ Yes ⊠ No

If **yes**, briefly describe the industrial processes and activities that occur outdoors or in a manner which may result in exposure of the activities or materials to stormwater: Click to enter text.

Item 7. Domestic Sewage, Sewage Sludge, and Septage Management and Disposal (Instructions, Page 44)

Domestic Sewage - Waste and wastewater from humans or household operations that is discharged to a wastewater collection system or otherwise enters a treatment works.

a.	Check the box next to the appropriate method of domestic sewage and domestic sewage
	sludge treatment or disposal. Complete Worksheet 5.0 or Item 7.b if directed to do so.

\square D	omestic sewage is routed (i.e.	, connected to or	transported t	to) to a WWTP p	ermitted to
re	ceive domestic sewage for tro	eatment, disposa	l, or both. Con	nplete Item 7.b.	ı

Domestic sewage	disposed	of by ar	on-site	septic	tank and	drainfield	system.	Complet	te
Item 7.b.									

- ☑ Domestic and industrial treatment sludge ARE commingled prior to use or disposal.
- ☐ Industrial wastewater and domestic sewage are treated separately, and the respective sludge IS NOT commingled prior to sludge use or disposal. Complete Worksheet 5.0.
- ☐ Facility is a POTW. Complete Worksheet 5.0.
- ☐ Domestic sewage is not generated on-site.
- □ Other (e.g., portable toilets), specify and Complete Item 7.b: Click to enter text.
- b. Provide the name and TCEQ, NPDES, or TPDES Permit No. of the waste-disposal facility which receives the domestic sewage/septage. If hauled by motorized vehicle, provide the name and TCEQ Registration No. of the hauler.

Domestic Sewage Plant/Hauler Name

Plant/Hauler Name	Permit/Registration No.		

Plant/Hauler Name	Permit/Registration No.					
Item 8. Improvements or Compliance/Enforcement Requirements (Instructions, Page 45)						
a. Is the permittee currently required to meet a enforcement?	ny implementation schedule for compliance or					
⊠ Yes □ No						

b. Has the permittee completed or planned for any improvements or construction projects?

⊠ Yes □ No

c. If **yes** to either 8.a **or** 8.b, provide a brief summary of the requirements and a status update: New SWPPP was implemented prior to February 9, 2015. Pond 5 liner replacement was completed in December of 2014.All other process ponds to be relined prior to July 31, 2015. This requirement has been completed.

Item 9. Toxicity Testing (Instructions, Page 45)

Have any biological tests for acute or chronic toxicity been made on any of the discharges or on a receiving water in relation to the discharge within the last three years?

□ Yes ⊠ No

If **yes**, identify the tests and describe their purposes: Click to enter text.

Additionally, attach a copy of all tests performed which **have not** been submitted to the TCEQ or EPA. **Attachment**: Click to enter text.

Item 10. Off-Site/Third Party Wastes (Instructions, Page 45)

a. Does or will the facility receive wastes from off-site sources for treatment at the facility, disposal on-site via land application, or discharge via a permitted outfall?

□ Yes ⊠ No

If **yes**, provide responses to Items 10.b through 10.d below.

If **no**, proceed to Item 11.

- b. Attach the following information to the application:
 - List of wastes received (including volumes, characterization, and capability with on-site wastes).
 - Identify the sources of wastes received (including the legal name and addresses of the generators).
 - Description of the relationship of waste source(s) with the facility's activities.

Attachment: Click to enter text.

c.	Is or will wastewater from another TCEQ, NPDES, or with this facility's wastewater after final treatment a outfall/point of disposal?						
	□ Yes □ No						
	If yes , provide the name, address, and TCEQ, NPDES contributing facility and a copy of any agreements o						
	Attachment: Click to enter text.						
d.	. Is this facility a POTW that accepts/will accept process wastewater from any SIU and has/is required to have an approved pretreatment program under the NPDES/TPDES program?						
	□ Yes □ No						
If	yes, Worksheet 6.0 of this application is required.						
It	em 11. Radioactive Materials (Instru	ictions, Page 46)					
a.	Are/will radioactive materials be mined, used, stored						
	If yes , use the following table to provide the results radioactive materials that may be present. Provide re						
	dioactive Materials Mined, Used, Stored, or Processed						
R	Radioactive Material Name	Concentration (pCi/L)					
b.	Does the applicant or anyone at the facility have any radioactive materials may be present in the discharg radioactive materials in the source waters or on the	e, including naturally occurring					
	□ Yes ⊠ No						
	If yes , use the following table to provide the results radioactive materials that may be present. Provide reinformation provided in response to Item 11.a.						
Ra	dioactive Materials Present in the Discharge						
R	Radioactive Material Name	Concentration (pCi/L)					

Item 12. Cooling Water (Instructions, Page 46)

a. D	oes the facility	y use or propose to	use water for coon	ng purposes?	
	⊠ Yes	□ No			
If	no , stop here	. If yes , complete I	tems 12.b thru 12.f.		
b. C	ooling water i	s/will be obtained f	from a groundwater	source (e.g., on-site	e well).
	□ Yes	⊠ No			
If	yes , stop her	e. If no , continue.			
c. C	ooling Water S	Supplier			
1.		name of the owner or for cooling purpo	(s) and operator(s) foses to the facility.	or the CWIS that su	pplies or will
Cooli	ng Water Intak	e Structure(s) Owner	r(s) and Operator(s)		
CW	IS ID				
Ow	ner	Dow Chemical Company			
Оре	erator	Dow Chemical Company			
2.	If no , contin	Yes	ed from a Public Wa the PWS Registratio 0200531, 0200528, 0	n No. and stop here	e: <u>PWS No.</u>
3.	. Cooling wat	er is/will be obtain	ed from a reclaimed	l water source?	
		Yes 🗵 No			
	If no , contintext.	ue. If yes , provide	the Reuse Authoriz	ation No. and stop l	here: Click to enter
4.	. Cooling wat	er is/will be obtain	ed from an Indepen	dent Supplier	
		Yes □ No			
	Supplier's C		y es , provide the actuused to provide wat o <u>o</u>		
d. 3	16(b) General	Criteria			
1.			ater for cooling pur of 2 MGD or greater		has or will have a
		Yes 🗵 No			
2.			withdrawn by the C es on an annual aver		at the facility

			\boxtimes	Yes		No
	3.					/propose(s) to withdraw water for cooling purposes from t the definition of Waters of the United States in 40 CFR §
			\boxtimes	Yes		No
					_	ation of how the waterbody does not meet the definition of ites in 40 CFR § 122.2: Click to enter text.
•				-		Item 12.d, the facility meets the minimum criteria to be subject tion 316(b) of the CWA. Proceed to Item 12.f .
be	sub	ject to t	he	full requ	irem	Item 12.d, the facility does not meet the minimum criteria to ents of Section 316(b) of the CWA; however, a determination is eed to Item 12.e .
e.	of	Section	316	(b) and 1		the minimum requirements to be subject to the fill requirements proposes to use cooling towers.
		Yes [No		
	-	_				aplete Worksheet 11.0, Items 1.a, 1.b.1-3 and 6, 2.b.1, and 3.a to ased upon BPJ.
f.	Oil	and Ga	s Ex	xploratio	n and	d Production
	1.	The fac	ility	y is subje	ect to	requirements at 40 CFR Part 435, Subparts A or D.
		[Yes	\boxtimes	No
		If yes,	con	tinue. If	no , s	kip to Item 12.g.
	2.					g facility as defined at 40 CFR § 125.92(k) or a new unit at an ed at 40 CFR § 125.92(u).
		[Yes	\boxtimes	No
						neet 11.0, Items 1.a, 1.b.1-3 and 6, 2.b.1, and 3.a to allow for a on BPJ. If no , skip to Item 12.g.3.
g.	Co	mplianc	e Pl	hase and	Trac	k Selection
	1.	Phase I	- N	ew facili	ty su	bject to 40 CFR Part 125, Subpart I
		[Yes	\boxtimes	No
						xt to the compliance track selection, attach the requested ete Worksheet 11.0, Items 2 and 3, and Worksheet 11.2.
		□ Tra	ack	I - AIF g	reate	r than 2 MGD, but less than 10 MGD
		•	At	tach info	orma	tion required by 40 CFR §§ 125.86(b)(2)-(4).
		□ Tra	ack	I - AIF g	reate	r than 10 MGD
		•	At	tach info	orma	tion required by 40 CFR § 125.86(b).
		□ Tra	ack	II		
		_	Δt	tach info	rmet	tion required by 40 CFR 8 125 86(c)

	Attachment: Click to enter text.	
	Phase II – Existing facility subject to 40 CFR Part 125, Subpart J	
	□ Yes ⊠ No	
	If yes , complete Worksheets 11.0 through 11.3, as applicable.	
	Phase III - New facility subject to 40 CFR Part 125, Subpart N	
	□ Yes ⊠ No	
	If yes , check the box next to the compliance track selection and provide the requested information.	
	□ Track I – Fixed facility	
	• Attach information required by 40 CFR § 125.136(b) and complete Worksheet 11.0, Items 2 and 3, and Worksheet 11.2.	
	□ Track I – Not a fixed facility	
	• Attach information required by 40 CFR § 125.136(b) and complete Worksheet 11.0, Item 2 (except CWIS latitude/longitude under Item 2.a).	
	□ Track II - Fixed facility	
	• Attach information required by 40 CFR § 125.136(c) and complete Worksheet 11.0, Items 2 and 3.	
	Attachment: Click to enter text.	
	Attachment. Chek to chief text.	
Ite	n 13. Permit Change Requests (Instructions, Page 48)	
Thi	n 13. Permit Change Requests (Instructions, Page 48) item is only applicable to existing permitted facilities.	
Thi	n 13. Permit Change Requests (Instructions, Page 48)	
Thi	n 13. Permit Change Requests (Instructions, Page 48) item is only applicable to existing permitted facilities. the facility requesting a major amendment of an existing permit?	
Thi	n 13. Permit Change Requests (Instructions, Page 48) item is only applicable to existing permitted facilities. the facility requesting a major amendment of an existing permit? ☐ Yes ☑ No yes, list each request individually and provide the following information: 1) detailed formation regarding the scope of each request and 2) a justification for each request.	
Thi	n 13. Permit Change Requests (Instructions, Page 48) item is only applicable to existing permitted facilities. the facility requesting a major amendment of an existing permit? ☐ Yes ☑ No yes, list each request individually and provide the following information: 1) detailed formation regarding the scope of each request and 2) a justification for each request. ttach any supplemental information or additional data to support each request.	
Thi	n 13. Permit Change Requests (Instructions, Page 48) item is only applicable to existing permitted facilities. the facility requesting a major amendment of an existing permit? ☐ Yes ☑ No yes, list each request individually and provide the following information: 1) detailed formation regarding the scope of each request and 2) a justification for each request. ttach any supplemental information or additional data to support each request.	
Thi	n 13. Permit Change Requests (Instructions, Page 48) item is only applicable to existing permitted facilities. the facility requesting a major amendment of an existing permit? ☐ Yes ☑ No yes, list each request individually and provide the following information: 1) detailed formation regarding the scope of each request and 2) a justification for each request. ttach any supplemental information or additional data to support each request.	
Thi	n 13. Permit Change Requests (Instructions, Page 48) item is only applicable to existing permitted facilities. the facility requesting a major amendment of an existing permit? ☐ Yes ☑ No yes, list each request individually and provide the following information: 1) detailed formation regarding the scope of each request and 2) a justification for each request. ttach any supplemental information or additional data to support each request.	
Thi	n 13. Permit Change Requests (Instructions, Page 48) item is only applicable to existing permitted facilities. the facility requesting a major amendment of an existing permit? ☐ Yes ☑ No yes, list each request individually and provide the following information: 1) detailed formation regarding the scope of each request and 2) a justification for each request. ttach any supplemental information or additional data to support each request.	
Thi	n 13. Permit Change Requests (Instructions, Page 48) item is only applicable to existing permitted facilities. the facility requesting a major amendment of an existing permit? ☐ Yes ☑ No yes, list each request individually and provide the following information: 1) detailed formation regarding the scope of each request and 2) a justification for each request. ttach any supplemental information or additional data to support each request.	

b. Is the facility requesting any **minor amendments** to the permit?

		Yes	\boxtimes	No
	If yes,	list and	descr	ibe each change individually.
	Click	to enter	text.	
c.	Is the	facility r	eques	ting any minor modifications to the permit?
		Yes	\boxtimes	No
	If yes,	list and	descr	ibe each change individually.
	Click	to enter	text.	

Item 14. Laboratory Accreditation (Instructions, Page 49)

All laboratory tests performed must meet the requirements of *30 TAC Chapter 25*, *Environmental Testing Laboratory Accreditation and Certification*, which includes the following general exemptions from National Environmental Laboratory Accreditation Program (NELAP) certification requirements:

- The laboratory is an in-house laboratory and is:
 - o periodically inspected by the TCEQ; or
 - o located in another state and is accredited or inspected by that state; or
 - o performing work for another company with a unit located in the same site; or
 - performing pro bono work for a governmental agency or charitable organization.
- The laboratory is accredited under federal law.
- The data are needed for emergency-response activities, and a laboratory accredited under the Texas Laboratory Accreditation Program is not available.
- The laboratory supplies data for which the TCEQ does not offer accreditation.

The applicant should review 30 TAC Chapter 25 for specific requirements.

The following certification statement shall be signed and submitted with every application. See the *Signature Page* section in the Instructions, for a list of designated representatives who may sign the certification.

CERTIFICATION:

I certify that all laboratory tests submitted with this application meet the requirements of 30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification.

Printed Name: Tarun Bhatt

Title: Chief Operating Officer Authorized Representative

Date: Aug 6, 2024

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 1.0: EPA CATEGORICAL EFFLUENT GUIDELINES

Is this facility subject to any 40 CFR categorical ELGs outlined on page 53 of the instructions?

This worksheet **is required** for all applications for TPDES permits for discharges of wastewaters subject to EPA categorical effluent limitation guidelines (ELGs).

Item 1. Categorical Industries (Instructions, Page 53)

ndustry	40 CFR Part
Non-Metals Manufacturing	421

a. Production Data

Worksheet 12.0, Item 2 instead.

Provide appropriate data for effluent guidelines with production-based effluent limitations.

of oil and gas exploration and production wastewater (discharges into or adjacent to water in the state, falling under the Oil and Gas Extraction Effluent Guidelines – 40 CFR Part 435), see

Production Data

Subcategory	Actual Quantity/Day	Design Quantity/Day	Units
Technical Grade Molybdenum	15,00	20,00	Pounds
Technical Grade Vanadium	15,00	20,00	Pounds
See Attachment 3 for Production			
Breakdown, i.e. Leach Tailings			
Mo. Leach/Solv. Extr. Raff			

Subcategory	Actual Quantity/Day	Design Quantity/Day	Units
. Organic Chemi	icals, Plastics, and Syntheti	ic Fibers Manufacturing	Data (40 CFR Part 414)
earing and cyanic	cable subpart and the perce de-bearing wastestreams, as		
8. ercentage of Total	Draduction		
Subcategory	Percent of Total Production	Appendix A and B - Metals	Appendix A - Cyanide
N/A			
. Refineries (40	CFR Part 419)		
•	able subcategory and a brie	f iustification.	
	and our curegory und a price		
N/A			

Item 3. Process/Non-Process Wastewater Flows (Instructions, Page 54)

Provide a breakdown of wastewater flow(s) generated by the facility, including both process and non-process wastewater flow(s). Specify which wastewater flows are to be authorized for discharge under this permit and the disposal practices for wastewater flows, excluding domestic, which are not to be authorized for discharge under this permit.

There are no defined breakdown of process wastewater and non-process wastewater flows for this industry.
Item 4. New Source Determination (Instructions, Page 54)

Provide a list of all wastewater-generating processes subject to EPA categorical ELGs, identify the appropriate guideline Part and Subpart, and provide the date the process/construction commenced.

Wastewater Generating Processes Subject to Effluent Guidelines

EPA Guideline Part	EPA Guideline Subpart	Date Process/ Construction Commenced
421	Т	1973
		Suppart

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 2.0: POLLUTANT ANALYSIS

Worksheet 2.0 **is required** for all applications submitted for a TPDES permit. Worksheet 2.0 is not required for applications for a permit to dispose of all wastewater by land disposal or for discharges solely of stormwater associated with industrial activities.

Item 1. General Testing Requirements (Instructions, Page 55)

- a. Provide the date range of all sampling events conducted to obtain the analytical data submitted with this application (e.g., 05/01/2018-05/30/2018): 3/14/2017, 3/28/2017, 4/4/2017
- b. \square Check the box to confirm all samples were collected no more than 12 months prior to the date of application submittal.
- c. Read the general testing requirements in the instructions for important information about sampling, test methods, and MALs. If a contact laboratory was used, attach a list which includes the name, contact information, and pollutants analyzed for each laboratory/firm. Attachment: Section 3 Attachment 7

Item 2. Specific Testing Requirements (Instructions, Page 56)

Attach correspondence from TCEQ approving submittal of less than the required number of samples, if applicable. Attachment: N/A

Complete and (check and)

TABLE 1 and TABLE 2 (Instructions, Page 58)

Table 1 for Outfall No.

Completion of Tables 1 and 2 is required for all external outfalls for all TPDES permit applications.

Table 1 for Outfall No.:	Samples	are (check one)	: Desite	e 🔲 Grab
Pollutant	Sample 1 (mg/L)	Sample 2 (mg/L)	Sample 3 (mg/L)	Sample 4 (mg/L)
BOD (5-day)				
CBOD (5-day)				
Chemical oxygen demand				
Total organic carbon				
Dissolved oxygen				
Ammonia nitrogen				
Total suspended solids				
Nitrate nitrogen				
Total organic nitrogen				
Total phosphorus				
Oil and grease				

Pollutant	Sample 1 (mg/L)	Sample 2 (mg/L)	Sample 3 (mg/L)	Sample 4 (mg/L)
Total residual chlorine				
Total dissolved solids				
Sulfate				
Chloride				
Fluoride				
Total alkalinity (mg/L as CaCO3)				
Temperature (°F)				
pH (standard units)				

Table 2 for Outfall No.: <u>oo1</u> Samples are (check one): ☐ Composite ☐ Grab

Table 2 for Outlan No.: <u>001</u>	Samples are (check one): Composite Grab				
Pollutant	Sample 1 (µg/L)	Sample 2 (µg/L)	Sample 3 (µg/L)	Sample 4 (µg/L)	MAL (μg/L)
Aluminum, total					2.5
Antimony, total					5
Arsenic, total					0.5
Barium, total					3
Beryllium, total					0.5
Cadmium, total					1
Chromium, total					3
Chromium, hexavalent					3
Chromium, trivalent					N/A
Copper, total					2
Cyanide, available					2/10
Lead, total					0.5
Mercury, total					0.005/0.0005
Nickel, total					2
Selenium, total					5
Silver, total					0.5
Thallium, total					0.5
Zinc, total					5.0

TABLE 3 (Instructions, Page 58)

Completion of Table 3 **is required** for all **external outfalls** which discharge process wastewater.

Partial completion of Table 3 **is required** for all **external outfalls** which discharge non-process wastewater and stormwater associated with industrial activities commingled with other wastestreams (see instructions for additional guidance).

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)*
Acrylonitrile	(μg/ L)	(μg/ L)	(μβ/ L)	(με/ L)	50
Anthracene					10
Benzene					10
Benzidine					50
Benzo(a)anthracene					5
Benzo(a)pyrene					5
Bis(2-chloroethyl)ether					10
Bis(2-ethylhexyl)phthalate					10
Bromodichloromethane [Dichlorobromomethane]					10
Bromoform					10
Carbon tetrachloride					2
Chlorobenzene					10
Chlorodibromomethane [Dibromochloromethane]					10
Chloroform					10
Chrysene					5
m-Cresol [3-Methylphenol]					10
o-Cresol [2-Methylphenol]					10
p-Cresol [4-Methylphenol]					10
1,2-Dibromoethane					10
m-Dichlorobenzene [1,3-Dichlorobenzene]					10
o-Dichlorobenzene [1,2-Dichlorobenzene]					10
p-Dichlorobenzene [1,4-Dichlorobenzene]					10
3,3'-Dichlorobenzidine					5
1,2-Dichloroethane					10

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)*
1,1-Dichloroethene [1,1-Dichloroethylene]					10
Dichloromethane [Methylene chloride]					20
1,2-Dichloropropane					10
1,3-Dichloropropene [1,3-Dichloropropylene]					10
2,4-Dimethylphenol					10
Di-n-Butyl phthalate					10
Ethylbenzene					10
Fluoride					500
Hexachlorobenzene					5
Hexachlorobutadiene					10
Hexachlorocyclopentadiene					10
Hexachloroethane					20
Methyl ethyl ketone					50
Nitrobenzene					10
N-Nitrosodiethylamine					20
N-Nitroso-di-n-butylamine					20
Nonylphenol					333
Pentachlorobenzene					20
Pentachlorophenol					5
Phenanthrene					10
Polychlorinated biphenyls (PCBs) (**)					0.2
Pyridine					20
1,2,4,5-Tetrachlorobenzene					20
1,1,2,2-Tetrachloroethane					10
Tetrachloroethene [Tetrachloroethylene]					10
Toluene					10
1,1,1-Trichloroethane					10
1,1,2-Trichloroethane					10
Trichloroethene					10
[Trichloroethylene]					

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)*
2,4,5-Trichlorophenol					50
TTHM (Total trihalomethanes)					10
Vinyl chloride					10

^(*) Indicate units if different from µg/L.

TABLE 4 (Instructions, Pages 58-59)

Partial completion of Table 4 **is required** for each **external outfall** based on the conditions below.

a. Tributyltin

Is this facility an industrial/commercial facility which currently or proposes to directly dispose of wastewater from the types of operations listed below or a domestic facility which currently or proposes to receive wastewater from the types of industrial/commercial operations listed below?

	Yes No					
If yes , check the box next to each of the following criteria which apply and provide the appropriate testing results in Table 4 below (check all that apply).						
	Manufacturers and formulators of tributyltin or related compounds.					
	Painting of ships, boats and marine structures.					
	Ship and boat building and repairing.					
	Ship and boat cleaning, salvage, wrecking and scaling.					
	Operation and maintenance of marine cargo handling facilities and marinas.					
	Facilities engaged in wood preserving.					
	Any other industrial/commercial facility for which tributyltin is known to be					

b. Enterococci (discharge to saltwater)

in the effluent.

This facility discharges/proposes to discharge directly into saltwater receiving waters **and** Enterococci bacteria are expected to be present in the discharge based on facility processes.

present, or for which there is any reason to believe that tributyltin may be present

		Yes	\bowtie	No
Do	omes	tic was	tewater	is/will be discharged.
	\square	Vec		No

If **yes to either** question, provide the appropriate testing results in Table 4 below.

^(**) Total of detects for PCB-1242, PCB-1254, PCB-1221, PCB-1232, PCB-1248, PCB-1260, and PCB-1016. If all non-detects, enter the highest non-detect preceded by a "<".

c. E. coli (discharge to freshwater)

This facility discharges	s/proposes to dischar	ge directly into	freshwater rece	eiving waters and
E. coli bacteria are expe	ected to be present in	the discharge b	ased on facility	processes.

Yes No

Domestic wastewater is/will be discharged.

Yes No

If **yes to either** question, provide the appropriate testing results in Table 4 below.

Table 4 for Outfall No.: <u>001</u>	Sampl	es are (check	one): 🗆 Co	mposite 🛘	Grab
Pollutant	Sample 1	Sample 2	Sample 3	Sample 4	MAL
Tributyltin (µg/L)					0.010
Enterococci (cfu or MPN/100 mL)					N/A
E. coli (cfu or MPN/100 mL)					N/A

TABLE 5 (Instructions, Page 59)

Completion of Table 5 **is required** for all **external outfalls** which discharge process wastewater from a facility which manufactures or formulates pesticides or herbicides or other wastewaters which may contain pesticides or herbicides.

If this facility does not/will not manufacture or formulate pesticides or herbicides and does not/will not discharge other wastewaters that may contain pesticides or herbicides, check N/A.

 \boxtimes N/A

Table 5 for Outfall No.: Click	to enter text.	Samples ar	e (check one): 🛭	Composite	□ Grab
Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)*
Aldrin					0.01
Carbaryl					5
Chlordane					0.2
Chlorpyrifos					0.05
4,4'-DDD					0.1
4,4'-DDE					0.1
4,4'-DDT					0.02
2,4-D					0.7
Danitol [Fenpropathrin]					_
Demeton					0.20
Diazinon					0.5/0.1
Dicofol [Kelthane]					1
Dieldrin					0.02
Diuron					0.090

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)*
Endosulfan I (<i>alpha</i>)					0.01
Endosulfan II (<i>beta</i>)					0.02
Endosulfan sulfate					0.1
Endrin					0.02
Guthion [Azinphos methyl]					0.1
Heptachlor					0.01
Heptachlor epoxide					0.01
Hexachlorocyclohexane (alpha)					0.05
Hexachlorocyclohexane (beta)					0.05
Hexachlorocyclohexane (gamma) [Lindane]					0.05
Hexachlorophene					10
Malathion					0.1
Methoxychlor					2.0
Mirex					0.02
Parathion (ethyl)					0.1
Toxaphene					0.3
2,4,5-TP [Silvex]					0.3

^{*} Indicate units if different from µg/L.

TABLE 6 (Instructions, Page 59)

Completion of Table 6 is required for all external outfalls.

Table 6 for Outfall No.: <u>oo1</u> Samples are (check one): ☐ Composite ☐ Grab

Pollutants	Believed Present	Believed Absent	Sample 1 (mg/L)	Sample 2 (mg/L)	Sample 3 (mg/L)	Sample 4 (mg/L)	MAL (μg/L)*
Bromide							400
Color (PCU)							_
Nitrate-Nitrite (as N)							_
Sulfide (as S)							_
Sulfite (as SO3)							_
Surfactants							_
Boron, total							20
Cobalt, total							0.3
Iron, total							7
Magnesium, total							20
Manganese, total							0.5
Molybdenum, total							1
Tin, total							5
Titanium, total							30

TABLE 7 (Instructions, Page 60)

Check the box next to any of the industrial categories applicable to this facility. If no categories are applicable, check N/A. If GC/MS testing is required, check the box provided to confirm the testing results for the appropriate parameters are provided with the application.

□ N/A

Table 7 for Applicable Industrial Categories

Ind	ustrial Category	40 CFR Part	Volatiles Table 8	Acids Table 9	Bases/ Neutrals Table 10	Pesticides Table 11
	Adhesives and Sealants		□ Yes	□ Yes	□ Yes	No
	Aluminum Forming	467	□ Yes	□ Yes	□ Yes	No
	Auto and Other Laundries		□ Yes	□ Yes	□ Yes	□ Yes
	Battery Manufacturing	461	□ Yes	No	□ Yes	No
	Coal Mining	434	No	No	No	No
	Coil Coating	465	□ Yes	□ Yes	□ Yes	No
	Copper Forming	468	□ Yes	□ Yes	□ Yes	No
	Electric and Electronic Components	469	□ Yes	□ Yes	□ Yes	□ Yes
	Electroplating	413	□ Yes	□ Yes	□ Yes	No
	Explosives Manufacturing	457	No	□ Yes	□ Yes	No
	Foundries		□ Yes	□ Yes	□ Yes	No
	Gum and Wood Chemicals - Subparts A,B,C,E	454	□ Yes	□ Yes	No	No
	Gum and Wood Chemicals - Subparts D,F	454	□ Yes	□ Yes	□ Yes	No
	Inorganic Chemicals Manufacturing	415	□ Yes	□ Yes	□ Yes	No
	Iron and Steel Manufacturing	420	□ Yes	□ Yes	□ Yes	No
	Leather Tanning and Finishing	425	□ Yes	□ Yes	□ Yes	No
	Mechanical Products Manufacturing		□ Yes	□ Yes	□ Yes	No
\boxtimes	Nonferrous Metals Manufacturing	421,471	⊠ Yes	⊠ Yes	⊠ Yes	⊠ Yes
	Oil and Gas Extraction - Subparts A, D, E, F, G, H	435	□ Yes	□ Yes	□ Yes	No
	Ore Mining - Subpart B	440	No	□ Yes	No	No
	Organic Chemicals Manufacturing	414	□ Yes	□ Yes	□ Yes	□ Yes
	Paint and Ink Formulation	446,447	□ Yes	□ Yes	□ Yes	No
	Pesticides	455	□ Yes	□ Yes	□ Yes	□ Yes
	Petroleum Refining	419	□ Yes	No	No	No
	Pharmaceutical Preparations	439	□ Yes	□ Yes	□ Yes	No
	Photographic Equipment and Supplies	459	□ Yes	□ Yes	□ Yes	No
	Plastic and Synthetic Materials Manufacturing	414	□ Yes	□ Yes	□ Yes	□ Yes
	Plastic Processing	463	□ Yes	No	No	No
	Porcelain Enameling	466	No	No	No	No
	Printing and Publishing		□ Yes	□ Yes	□ Yes	□ Yes
	Pulp and Paperboard Mills - Subpart C	430	*	□ Yes	*	□ Yes
	Pulp and Paperboard Mills - Subparts F, K	430	*	□ Yes	*	*
	Pulp and Paperboard Mills - Subparts A, B, D, G, H	430	□ Yes	□ Yes	*	*
	Pulp and Paperboard Mills - Subparts I, J, L	430	□ Yes	□ Yes	*	□ Yes
	Pulp and Paperboard Mills - Subpart E	430	□ Yes	□ Yes	□ Yes	*
	Rubber Processing	428	□ Yes	□ Yes	□ Yes	No
	Soap and Detergent Manufacturing	417	□ Yes	□ Yes	□ Yes	No
	Steam Electric Power Plants	423	□ Yes	□ Yes	No	No
	Textile Mills (Not Subpart C)	410	□ Yes	□ Yes	□ Yes	No
	Timber Products Processing	429	□ Yes	□ Yes	□ Yes	□ Yes

^{*} Test if believed present.

TABLES 8, 9, 10, and 11 (Instructions, Page 60)

Completion of Tables 8, 9, 10, and 11 **is required** as specified in Table 7 for all **external outfalls** that contain process wastewater.

Completion of Tables 8, 9, 10, and 11 **may be required** for types of industry not specified in Table 7 for specific parameters that are believed to be present in the wastewater.

 Table 8 for Outfall No.: <u>001</u>
 Samples are (check one): □
 Composite
 □
 Grab

Table 8 for Outfall No.: <u>001</u>		ples are (chec		☐ Composite ☑	
Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)
Acrolein					50
Acrylonitrile					50
Benzene					10
Bromoform					10
Carbon tetrachloride					2
Chlorobenzene					10
Chlorodibromomethane					10
Chloroethane					50
2-Chloroethylvinyl ether					10
Chloroform					10
Dichlorobromomethane [Bromodichloromethane]					10
1,1-Dichloroethane					10
1,2-Dichloroethane					10
1,1-Dichloroethylene [1,1-Dichloroethene]					10
1,2-Dichloropropane					10
1,3-Dichloropropylene [1,3-Dichloropropene]					10
Ethylbenzene					10
Methyl bromide [Bromomethane]					50
Methyl chloride [Chloromethane]					50
Methylene chloride [Dichloromethane]					20
1,1,2,2-Tetrachloroethane					10
Tetrachloroethylene [Tetrachloroethene]					10
Toluene					10
1,2-Trans-dichloroethylene [1,2-Trans-dichloroethene]					10
					•

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)
1,1,1-Trichloroethane					10
1,1,2-Trichloroethane					10
Trichloroethylene [Trichloroethene]					10
Vinyl chloride					10

^{*} Indicate units if different from µg/L.

Samples are (check one): ☐ Composite Table 9 for Outfall No.: **001**

Grab

	r i i i					
Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)	
2-Chlorophenol					10	
2,4-Dichlorophenol					10	
2,4-Dimethylphenol					10	
4,6-Dinitro-o-cresol					50	
2,4-Dinitrophenol					50	
2-Nitrophenol					20	
4-Nitrophenol					50	
p-Chloro-m-cresol					10	
Pentachlorophenol					5	
Phenol					10	
2,4,6-Trichlorophenol					10	

^{*} Indicate units if different from µg/L.

Table 10 for Outfall No.: Click to enter text. Samples are (check one): ☐ Composite Grab

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)
Acenaphthene					10
Acenaphthylene					10
Anthracene					10
Benzidine					50
Benzo(a)anthracene					5
Benzo(a)pyrene					5
3,4-Benzofluoranthene [Benzo(b)fluoranthene]					10
Benzo(ghi)perylene					20
Benzo(k)fluoranthene					5
Bis(2-chloroethoxy)methane					10

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)
Bis(2-chloroethyl)ether					10
Bis(2-chloroisopropyl)ether					10
Bis(2-ethylhexyl)phthalate					10
4-Bromophenyl phenyl ether					10
Butylbenzyl phthalate					10
2-Chloronaphthalene					10
4-Chlorophenyl phenyl ether					10
Chrysene					5
Dibenzo(a,h)anthracene					5
1,2-Dichlorobenzene [o-Dichlorobenzene]					10
1,3-Dichlorobenzene [m-Dichlorobenzene]					10
1,4-Dichlorobenzene [p-Dichlorobenzene]					10
3,3'-Dichlorobenzidine					5
Diethyl phthalate					10
Dimethyl phthalate					10
Di-n-butyl phthalate					10
2,4-Dinitrotoluene					10
2,6-Dinitrotoluene					10
Di-n-octyl phthalate					10
1,2-Diphenylhydrazine (as Azobenzene)					20
Fluoranthene					10
Fluorene					10
Hexachlorobenzene					5
Hexachlorobutadiene					10
Hexachlorocyclopentadiene					10
Hexachloroethane					20
Indeno(1,2,3-cd)pyrene					5
Isophorone					10
Naphthalene					10
Nitrobenzene					10
N-Nitrosodimethylamine					50

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)
N-Nitrosodi-n-propylamine					20
N-Nitrosodiphenylamine					20
Phenanthrene					10
Pyrene					10
1,2,4-Trichlorobenzene					10

^{*} Indicate units if different from µg/L.

Table 11 for Outfall No.: <u>oo1</u> Samples are (check one): ☐ Composite ☐ Grab

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)
Aldrin					0.01
alpha-BHC [alpha-Hexachlorocyclohexane]					0.05
beta-BHC [beta-Hexachlorocyclohexane]					0.05
gamma-BHC [gamma-Hexachlorocyclohexane]					0.05
delta-BHC [delta-Hexachlorocyclohexane]					0.05
Chlordane					0.2
4,4'-DDT					0.02
4,4'-DDE					0.1
4,4'-DDD					0.1
Dieldrin					0.02
Endosulfan I (alpha)					0.01
Endosulfan II (beta)					0.02
Endosulfan sulfate					0.1
Endrin					0.02
Endrin aldehyde					0.1
Heptachlor					0.01
Heptachlor epoxide					0.01
PCB 1242					0.2
PCB 1254					0.2
PCB 1221					0.2
PCB 1232					0.2
PCB 1248					0.2

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)
PCB 1260					0.2
PCB 1016					0.2
Toxaphene					0.3

^{*} Indicate units if different from µg/L.

Attachment: Click to enter text.

TABLE 12 (DIOXINS/FURAN COMPOUNDS)

Complete of Table 12 **is required** for **external outfalls**, as directed below. (Instructions, Pages 59-60)

Indicate which compound(s) are manufactured or used at the facility and provide a brief description of the conditions of its/their presence at the facility (check all that apply).

- □ 2,4,5-trichlorophenoxy acetic acid (2,4,5-T) CASRN 93-76-5
- 2-(2,4,5-trichlorophenoxy) propanoic acid (Silvex, 2,4,5-TP) CASRN 93-72-1
- □ 2-(2,4,5-trichlorophenoxy) ethyl 2,2-dichloropropionate (Erbon) CASRN 136-25-4
- 0,0-dimethyl 0-(2,4,5-trichlorophenyl) phosphorothioate (Ronnel) CASRN 299-84-3
- □ 2,4,5-trichlorophenol (TCP) CASRN 95-95-4
- □ hexachlorophene (HCP) CASRN 70-30-4
- None of the above

Description: Click to enter text.

Does the applicant or anyone at the facility know or have any reason to believe that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or any congeners of TCDD may be present in the effluent proposed for discharge?

□ Yes ⊠ No

Description: Click to enter text.

If **yes** to either Items a **or** b, complete Table 12 as instructed.

Table 12 for Outfall No.: <u>oo1</u> Samples are (check one): ☐ Composite ☐ Grab

Compound	Toxicity Equivalent Factors	Wastewater Concentration (ppq)	Wastewater Toxicity Equivalents (ppq)	Sludge Concentration (ppt)	Sludge Toxicity Equivalents (ppt)	MAL (ppq)
2,3,7,8-TCDD	1					10
1,2,3,7,8- PeCDD	1.0					50
2,3,7,8- HxCDDs	0.1					50
1,2,3,4,6,7,8- HpCDD	0.01					50

Compound	Toxicity Equivalent Factors	Wastewater Concentration (ppq)	Wastewater Toxicity Equivalents (ppq)	Sludge Concentration (ppt)	Sludge Toxicity Equivalents (ppt)	MAL (ppq)
2,3,7,8-TCDF	0.1					10
1,2,3,7,8- PeCDF	0.03					50
2,3,4,7,8- PeCDF	0.3					50
2,3,7,8- HxCDFs	0.1					50
2,3,4,7,8- HpCDFs	0.01					50
OCDD	0.0003					100
OCDF	0.0003					100
PCB 77	0.0001					500
PCB 81	0.0003					500
PCB 126	0.1					500
PCB 169	0.03					500
Total						

TABLE 13 (HAZARDOUS SUBSTANCES)

Complete Table 13 **is required** for all **external outfalls** as directed below. (Instructions, Pages 60-61)

Are there any pollutants listed in the instructions (pages 55-62) believed present in the discharge?

⊠ Yes □ No

Are there pollutants listed in Item 1.c. of Technical Report 1.0 which are believed present in the discharge and have not been analytically quantified elsewhere in this application?

⊠ Yes □ No

If **yes** to either Items a **or** b, complete Table 13 as instructed.

Table 13 for Outfall No.: <u>o</u>	Samples are (check one): \square Composite \square Grab						
Pollutant	CASRN	Sample 1 (µg/L)	Sample 2 (µg/L)	Sample 3 (µg/L)	Sample 4 (µg/L)	Analytical Method	
Vanadium	07440- 62-2	42,000				EPA 207	

Pollutant	CASRN	Sample 1 (µg/L)	Sample 2 (µg/L)	Sample 3 (µg/L)	Sample 4 (µg/L)	Analytical Method

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 3.0: LAND APPLICATION OF EFFLUENT

This worksheet **is required** for all applications for a permit to disposal of wastewater by land application (i.e., TLAP)).

Item 1. Type of Disposal System (Instructions, Page 69)

Check the box next to the type of land disposal requested by this application:

	Irrigation			Subsurface application				
	Evaporation			Subsurface soils absorp	otion			
	Evapotranspiration	beds		Surface application				
	Drip irrigation syste	em		Other, specify: <u>Click to enter text.</u>				
Ite	em 2. Land Ap	plication Area	(Inst	ructions, Page 6	9)			
Lan	d Application Area In	formation						
	fluent Application allons/day)	Irrigation Acreage (acres)		cribe land use & cate type(s) of crop(s)	Public Access? (Y/N)			
1								

Item 3. Annual Cropping Plan (Instructions, Page 69)

Attach the required cropping plan that includes each of the following:

- Cool and warm season plant species
- Breakdown of acreage and percent of total acreage for each crop
- Crop growing season
- Harvesting method/number of harvests
- Minimum/maximum harvest height
- Crop yield goals
- Soils map
- Nitrogen requirements per crop
- Additional fertilizer requirements
- Supplemental watering requirements
- Crop salt tolerances
- Justification for not removing existing vegetation to be irrigated

Attachment:

Item 4. Well and Map Information (Instructions, Page 70)

a.		ck eacl S map:		quired inform	nation is shown and labe	eled on the attached
		The ex	xact boundaries of the	land applicati	ion area	
		On-sit	e buildings			
		Waste	-disposal or treatment	facilities		
		Efflue	nt storage and tailwate	er control faci	lities	
		Buffer	zones			
		All su	rface waters in the stat	te onsite and v	within 500 feet of the pr	operty boundaries
	bou	All wa ndaries		e of the dispos	sal site, wastewater pon	ds, or property
		All sp	rings and seeps onsite	and within 50	00 feet of the property b	oundaries
	Atta	ıchmen	t: Click to enter text.			
	was nece	tewate: essary		oundaries in t	on or within 500 feet o he following table. Attac	
W	ell II	D	Well Use	Producing? Y/N/U	Open, cased, capped, or plugged?	Proposed Best Management Practice
At	tachı	ment: (Click to enter text.			
c.			n site or wastewater po	•	re/will be installed arou	nd the land
	site lysii mod	es, promap a map a meters, lification	vide the existing/propo ttached for Item 4.a. Ao , sampling schedule, ar on, and approval.	dditionally, at	of the monitoring wells tach information on the parameters for TCEQ re	depth of the wells or
	Atta	achmei	at: Click to enter text.			
d.		ich a sl a chme i	_	nical report us	sing 30 TAC § 309.20(a)(4) as guidance.

Item 5. Soil Map and Soil Information (Instructions, Page 71)

Check each box to confirm that the following information is attached:

- a. USDA NRCS Soil Survey Map depicting the area to be used for land application with the locations identified by fields and crops.
- b. \square Breakdown of acreage and percent of total acreage for each soil type.
- c. ☐ Copies of laboratory soil analyses. Attachment: Click to enter text.

Item 6. Effluent Monitoring Data (Instructions, Page 72)

a. Completion of Table 14 **is required** for all **renewal** and **major amendment** applications. Complete the table with monitoring data for the previous two years for all parameters regulated in the current permit. An additional table has been provided with blank headers for parameters regulated in the current permit which are not listed in Table 14.

	or Outfall No.: (e (check one):	Composite	☐ Grab
Date (mo/yr)	Daily Avg Flow (gpd)	BOD5 (mg/L)	TSS (mg/L)	Nitrogen (mg/L)	Conductivity (mmhos/cm)	Total acres irrigated	Hydraulic Application rate (acre-feet/month
		<u> </u>					

Date (mo/yr)	, ,	BOD5 (mg/L)		_	Conductivity (mmhos/cm)	Total acres	Hydraulic Application rate
(110,)1)	Tiow (gpa)	(IIIg/ L)	(IIIg/ L)	(1118/12)	(IIIIIII)	irrigated	(acre-feet/month)

b. Use this table to provide effluent analysis for parameters regulated in the current permit which are not listed in Table 14.

Additional Parameter Effluent Analysis

Date (mo/yr)				

c. Attach an explanation of all persistent excursions to permitted parameters and corrective actions taken. **Attachment:** Click to enter text.

Item 7. Pollutant Analysis (Instructions, Page 72)

- a. Provide the date range of all sampling events conducted to obtain the analytical data submitted with this application (e.g., 05/01/2018-05/30/2018): 3/14/2017, 3/28/2017, 4/4/2017
- b. \square Check the box to confirm all samples were collected no more than 12 months prior to the date of application submittal.
- c. Complete Tables 15 and 16.

Pollutant	Sample 1 (mg/L)	Sample 2 (mg/L)	Sample 3 (mg/L)	Sample 4 (mg/L)
BOD (5-day)	(8,,	(8/ -/	(8/ -/	(8) -/
CBOD (5-day)				
Chemical oxygen demand				
Total organic carbon				
Dissolved oxygen				
Ammonia nitrogen				
Total suspended solids				
Nitrate nitrogen				
Total organic nitrogen				
Total phosphorus				
Oil and grease				
Total residual chlorine				
Total dissolved solids				
Sulfate				
Chloride				
Fluoride				
Total alkalinity (mg/L as CaCO3)				
Temperature (°F)				
pH (standard units)				

Table 16 for Outfall No.: Click	to enter text.	Samples are (check one): ☐ Composite ☐ Grab				
Pollutant	Sample 1 (µg/L)	Sample 2 (µg/L)	Sample 3 (µg/L)	Sample 4 (µg/L)	MAL (μg/L)	
Aluminum, total					2.5	
Antimony, total					5	
Arsenic, total					0.5	

Pollutant	Sample 1 (µg/L)	Sample 2 (µg/L)	Sample 3 (µg/L)	Sample 4 (µg/L)	MAL (μg/L)
Barium, total					3
Beryllium, total					0.5
Cadmium, total					1
Chromium, total					3
Chromium, hexavalent					3
Chromium, trivalent					N/A
Copper, total					2
Cyanide, available					2/10
Lead, total					0.5
Mercury, total					0.005/0.0005
Nickel, total					2
Selenium, total					5
Silver, total					0.5
Thallium, total					0.5
Zinc, total					5.0

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 3.1: SURFACE LAND APPLICATION AND APPLICATION

This worksheet **is required** for all applications for a permit to disposal of wastewater by surface land application or evaporation.

c. If *30 TAC Chapter 213, Subchapter A* applies, attach **either**: 1) a Geologic Assessment (if conducted in accordance with *30 TAC § 213.5*) **or** 2) a report that contains the following:

Item 1. Edwards Aquifer (Instructions, Page 73)

If **no**, proceed to Item 2. If **yes**, complete Items 1.b **and** 1.c.

b. Check the box next to the subchapter applicable to the facility.

No

30 TAC Chapter 213, Subchapter A

30 TAC Chapter 213, Subchapter B

Yes

a. Is the facility subject to 30 TAC Chapter 213, Edwards Aquifer Rules?

	• A description of the surface geological units within the proposed land application site and wastewater pond area.
	• The location and extent of any sensitive recharge features in the land application site and wastewater pond area
	• A list of any proposed BMPs to protect the recharge features.
	Attachment: Click to enter text.
It	em 2. Surface Spray/Irrigation (Instructions, Page 73)
a.	Provide the following information on the irrigation operations:
	Area under irrigation (acres): Click to enter text.
	Design application rate (acre-ft/acre/yr): Click to enter text.
	Design application frequency (hours/day): Click to enter text.
	Design application frequency (days/week): Click to enter text.
	Design total nitrogen loading rate (lbs nitrogen/acre/year): Click to enter text.
	Average slope of the application area (percent): Click to enter text.
	Maximum slope of the application area (percent): Click to enter text.
	Irrigation efficiency (percent): Click to enter text.
	Effluent conductivity (mmhos/cm): Click to enter text.
	Soil conductivity (mmhos/cm): Click to enter text.
	Curve number: Click to enter text.
	Describe the application method and equipment: Click to enter text.

b. Attach a detailed engineering report which includes a water balance, storage volume calculations, and a nitrogen balance. **Attachment**: Click to enter text.

Item 3. Evaporation Ponds (Instructions, Page 74)

- a. Daily average effluent flow into ponds: Click to enter text. gallons per day
- b. Attach a separate engineering report of evaporation calculations for average long-term and worst-case critical conditions. **Attachment:** Evapotranspiration Beds (Instructions, Page 74)
- a. Provide the following information on the evapotranspiration beds:

Number of beds: Click to enter text.

Area of bed(s) (acres): Click to enter text.

Depth of bed(s) (feet): Click to enter text.

Void ratio of soil in the beds: Click to enter text.

Storage volume within the beds (include units): Click to enter text.

Description of any lining to protect groundwater: Click to enter text.

- b. Attach a certification by a licensed Texas professional engineer that the liner meets TCEQ requirements. **Attachment:** Click to enter text.
- c. Attach a separate engineering report with water balance, storage volume calculations, and description of the liner. **Attachment:** Click to enter text.

Item 4. Overland Flow (Instructions, Page 74)

a. Provide the following information on the overland flow:

Area used for application (acres): Click to enter text.

Slopes for application area (percent): Click to enter text.

Design application rate (gpm/foot of slope width): Click to enter text.

Slope length (feet): Click to enter text.

Design BOD5 loading rate (lbs BOD5/acre/day): Click to enter text.

Design application frequency (hours/day): Click to enter text.

Design application frequency (days/week): Click to enter text.

b. Attach a separate engineering report with the method of application and design requirements according to *30 TAC § 217.212*. **Attachment:** Click to enter text.

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 3.2: SUBSURFACE IRRIGATION (NON-DRIP)

This worksheet **is required** for all applications for a permit to disposal of wastewater by subsurface land application.

□ Check the box to confirm the Class V Injection Well Inventory/Authorization Form (Worksheet 9.0) has been submitted to the TCEQ UIC Permits Team as directed.

Item 1. Edwards Aquifer (Instructions, Page 75)

a. The subsurface system is/will be located on the Edwards Aquifer Recharge Zone, as mapped by TCEQ?

□ Yes ⊠ No

b. The subsurface system is/will be located on the Edwards Aquifer Transition Zone, as mapped by TCEQ?

□ Yes ⊠ No

If **yes** to Item 1.a **or** 1.b, the subsurface system may be prohibited by *30 TAC § 213.8*. Contact the Water Quality Assessment Section at (512) 239-4671 for a preapplication meeting.

Item 2. Subsurface Application (Instructions, Page 75)

- a. Check the box next to the type of subsurface land disposal system requested:
 - ☐ Conventional drainfield, beds, or trenches
 - ☐ Low pressure dosing
 - □ Other: Click to enter text.
- b. Provide the following information on the irrigation operations:

Application area (acres): Click to enter text.

Area of drainfield (square feet): Click to enter text.

Application rate (gal/square ft/day): Click to enter text.

Depth to groundwater (feet): Click to enter text.

Area of trench (square feet): Click to enter text.

Dosing duration per area (hours): Click to enter text.

Number of beds: Click to enter text.

Dosing amount per area (inches/day): Click to enter text.

Soil infiltration rate (inches/hour): Click to enter text.

Storage volume (gallons): Click to enter text.

Area of bed(s) (square feet): Click to enter text.

Soil classification: Click to enter text.

c. Attach a separate engineering report using *30 TAC § 309.20, Subchapter C, Land Disposal of Sewage Effluent* as guidance, excluding items b(3)(A) and b(3)(B). Include a description of the schedule of dosing basin rotation. **Attachment:** Click to enter text.

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 3.3: SUBSURFACE AREA DRIP DISPERSAL SYSTEMS

This worksheet **is required** for all applications for a permit to dispose of wastewater using a subsurface area drip dispersal system (SADDS).

Check the box to confirm the Class V Injection Well Inventory/Authorization Form (Worksheet 9.0) has been submitted to the TCEQ UIC Permits Team as directed.

Item 1. Edwards Aquifer (Instructions, Page 76)

a.	The sub			em is/will be located on the Edwards Aquifer Recharge Zone, as
		Yes	\boxtimes	No
b.	The sub			em is/will be located on the Edwards Aquifer Transition Zone, as
		Yes	\boxtimes	No
				the subsurface system may be prohibited by $30\ TAC\ \S\ 213.8$. Contact sment Section at (512) 239-4671 for a preapplication meeting.
It	em 2.	Adm	inis	strative Information (Instructions, Page 76)
a.				ne of all corporations or other business entities managed, owned, or ated to the owner of the treatment facility: <u>Click to enter text.</u>
b.	The owr WWTF.	ner of th	ne lan	d where the WWTF is/will be located is the same as the owner of the
		Yes		No
		wise clo	osely	al name of all corporations or other business entities managed, owned related to the owner of the land where the WWTF is/will be located:
c.	Provide	the lega	al nar	ne of the owner of the SADDS: <u>Click to enter text.</u>
d.	The owr			DDS is the same as the owner of the WWTF or the site where the WWTF
		Yes		No
		•	•	gal name of all corporations or other business entities managed, owned related to the entity identified in Item 1.c: <u>Click to enter text.</u>
e.	Provide	the lega	al nan	ne of the owner of the land where the SADDS is located: Click to enter

text.

	WWTF, the site where the WWTF is located, or the owner of the SADDS.
	□ Yes □ No
	If no , provide the legal name of all corporations or other business entities managed, owned or otherwise closely related to the entity identified in item 1.e: Click to enter text.
Ite	em 3. SADDS (Instructions, Page 77)
a.	Check the box next to the type SADDS requested by this application:
	□ Subsurface drip/trickle irrigation
	□ Surface drip irrigation
	□ Other: Click to enter text.
	Attach a description of the SADDS proposed/used by the facility (see instructions for guidance). Attachment: Click to enter text.
c.	Provide the following information on the SADDS:
	Application area (acres): Click to enter text.
	Soil infiltration rate (inches/hour): <u>Click to enter text.</u>
	Average slope of the application area: Click to enter text.
	Maximum slope of the application area: <u>Click to enter text.</u>
	Storage volume (gallons): <u>Click to enter text.</u>
	Major soil series: <u>Click to enter text.</u>
	Depth to groundwater (feet): <u>Click to enter text.</u>
	Effluent conductivity (mmhos/cm): Click to enter text.
	The facility is/will be located west of the boundary shown in 30 TAC § 222.83 and using a vegetative cover of non-native grasses over seeded with cool-season grasses.
	□ Yes □ No
	If yes , the facility may propose a hydraulic application rate up to, but not to exceed, 0.1 gal/ft²/day.
	The facility is/will be located east of the boundary shown in 30 TAC § 222.83 or is the facility proposing any crop other than non-native grasses.
	□ Yes □ No
	If yes , the facility must use the formula in $30\ TAC\ \S\ 222.83$ to calculate the maximum hydraulic application rate.
	The facility has or plans to submit an alternative method to calculate the hydraulic application rate for approval by the ED.

	If yes , provide the following information on the hydraulic application rates:
	• Hydraulic application rate (gal/square foot/day): Click to enter text.
	• Nitrogen application rate (gal/square foot/day): <u>Click to enter text.</u>
g.	Provide the following dosing information:
	Number of doses per day: Click to enter text.
	Dosing duration per area (hours): Click to enter text.
	Rest period between doses (hours): Click to enter text.
	Dosing amount per area (inches/day): Click to enter text.
	Number of zones: Click to enter text.
h.	The system is/will be a surface drip irrigation system using existing native vegetation as a crop?
	□ Yes □ No
	If yes , attach the following information:
	• A vegetation survey by a certified arborist describing the percent canopy cover and relative percentage of major overstory and understory plant species.
	Attachment: Click to enter text.
	• Attach a separate engineering report using 30 TAC § 309.20, Subchapter C, Land Disposal of Sewage Effluent as guidance, excluding items b(3)(A) and b(3)(B). Include a description of the schedule of dosing basin rotation.
	Attachment: Click to enter text.
It	em 4. Required Plans (Instructions, Page 78)
a.	Attach a Soil Evaluation with all information required in <i>30 TAC § 222.73</i> . Attachment: Click to enter text.
b.	Attach a Site Preparation Plan with all information required in <i>30 TAC § 222.75</i> . Attachment: Click to enter text.
c.	Attach a Recharge Feature Plan with all information required in <i>30 TAC § 222.79</i> . Attachment: Click to enter text.
d.	Provide soil sampling and testing with all information required in <i>30 TAC § 222.157</i> . Attachment: Click to enter text.
It	em 5. Flood and Run-On Protection (Instructions, Page 79)
a.	Is the existing/proposed SADDS located within the 100-year frequency flood level? ☐ Yes ☐ No Source: Click to enter text. If yes, describe how the site will be protected from inundation: Click to enter text.

b.	Is the existing/proposed SADDS within a designated floodway?
	□ Yes □ No
	If yes , attach either the FEMA flood map or alternate information used to make this determination. Attachment : Click to enter text.
It	tem 6. Surface Waters in The State (Instructions, Page 79)
a.	Attach a buffer map which shows the appropriate buffers on surface waters in the state, water wells, and springs/seeps. Attachment : Click to enter text.
b.	The facility has or plans to request a buffer variance from water wells or waters in the state?
	□ Yes □ No
	yes, attach the additional information required in 30 TAC § 222.81(c). Attachment: Click to nter text.

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 4.0: RECEIVING WATERS

This worksheet is required for all TPDES permit applications.

Item 1. Domestic Drinking Water Supply (Instructions, Page 80)

a.	There is a surface water intake for domestic drinking water supply located within 5 (five) miles downstream from the point/proposed point of discharge.
	□ Yes ⊠ No
	If no , stop here and proceed to Item 2. If yes , provide the following information:
	1. The legal name of the owner of the drinking water supply intake: <u>Click to enter text.</u>
	2. The distance and direction from the outfall to the drinking water supply intake: <u>Click to enter text.</u>
b.	Locate and identify the intake on the USGS 7.5-minute topographic map provided for Administrative Report 1.0.
	☐ Check this box to confirm the above requested information is provided.
It	em 2. Discharge Into Tidally Influenced Waters (Instructions,
	Page 80)
	the discharge is to tidally influenced waters, complete this section. Otherwise, proceed to em 3.
a.	Width of the receiving water at the outfall: N/A feet
b.	Are there oyster reefs in the vicinity of the discharge?
	□ Yes ⊠ No
	If yes , provide the distance and direction from the outfall(s) to the oyster reefs: <u>Click to enter text.</u>
c.	Are there sea grasses within the vicinity of the point of discharge?
	□ Yes ⊠ No
	If yes , provide the distance and direction from the outfall(s) to the grasses: Click to enter text.
It	em 3. Classified Segment (Instructions, Page 80)
Th	e discharge is/will be directly into (or within 300 feet of) a classified segment.
	□ Yes ⊠ No
If	yes , stop here and do not complete Items 4 and 5 of this worksheet or Worksheet 4.1.
If 1	no , complete Items 4 and 5 and Worksheet 4.1 may be required.

Item 4. Description of Immediate Receiving Waters (Instructions, Page 80)

		(Instructions, Page 80)
a.	Name of	the immediate receiving waters: <u>Click to enter text.</u>
b.	Check th	e appropriate description of the immediate receiving waters:
	□ Lake	e or Pond
	• Su	ırface area (acres): <u>Click to enter text.</u>
	• A	verage depth of the entire water body (feet): Click to enter text.
		verage depth of water body within a 500-foot radius of the discharge point (feet): ick to enter text.
	⊠ Man	-Made Channel or Ditch
	□ Stre	am or Creek
	□ Fres	hwater Swamp or Marsh
	□ Tida	l Stream, Bayou, or Marsh
	□ Ope	n Bay
	□ Othe	er, specify:
	Man-Made ms 4.c - 4	Channel or Ditch or Stream or Creek were selected above, provide responses to 4.g below:
c.		ing discharges, check the description below that best characterizes the area n of the discharge.
		discharges , check the description below that best characterizes the area eam of the discharge.
		ntermittent (dry for at least one week during most years)
		ntermittent with Perennial Pools (enduring pools containing habitat to maintain uatic life uses)
		Perennial (normally flowing)
		te source(s) of the information used to characterize the area upstream (existing e) or downstream (new discharge):
	J 🗆	JSGS flow records
	\boxtimes	personal observation
		nistorical observation by adjacent landowner(s)
		other, specify: <u>Click to enter text.</u>
d.		names of all perennial streams that join the receiving water within three miles eam of the discharge point: <u>None</u>
e.		iving water characteristics change within three miles downstream of the discharge ural or man-made dams, ponds, reservoirs, etc.).
		Ves ⊠ No

If **yes**, describe how: Click to enter text. f. General observations of the water body during normal dry weather conditions: No significant run-off contribution, typical appearance of surface water for this area, i.e. average turbidity and color, slowly flowing with very small surface ripples due to light wind. Canal surface water level and flow velocity typical for weather conditions observed. Date and time of observation: 12/17/2008 at 5:00Pm g. The water body was influenced by stormwater runoff during observations. Yes \boxtimes No If **yes**, describe how: Click to enter text. Item 5. General Characteristics of Water Body (Instructions, **Page 81)** a. Is the receiving water upstream of the existing discharge or proposed discharge site influenced by any of the following (check all that apply): oil field activities \boxtimes urban runoff agricultural runoff septic tanks upstream discharges other, specify: Click to enter text. b. Uses of water body observed or evidence of such uses (check all that apply): industrial water supply livestock watering irrigation withdrawal non-contact recreation domestic water supply navigation picnic/park activities contact recreation other, specify: Click to enter text. fishing c. Description which best describes the aesthetics of the receiving water and the surrounding area (check only one): Wilderness: outstanding natural beauty; usually wooded or un-pastured area: water clarity exceptional Natural Area: trees or native vegetation common; some development evident (from fields, pastures, dwellings); water clarity discolored **Common Setting:** not offensive, developed but uncluttered; water may be colored or turbid **Offensive:** stream does not enhance aesthetics; cluttered; highly developed; dumping П areas; water discolored

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 4.1: WATERBODY PHYSICAL CHARACTERISTICS

The following information **is required** for new applications, EPA-designated Major facilities, and major amendment applications requesting to add an outfall if the receiving waters are perennial or intermittent with perennial pools (including impoundments) for a TDPES permit.

Complete the transects downstream of the existing or proposed discharges.

Item 1. Data Collection (Instructions, Page 82	Item	1.	Data	Collection	(Instructions	. Page	82
--	------	----	------	------------	---------------	--------	----

a.	Date of study: <u>Click to enter text.</u> Time of study: <u>Click to enter text.</u>
	Waterbody name: Click to enter text.
	General location: <u>Click to enter text.</u>
b.	Type of stream upstream of an existing discharge or downstream of a proposed discharge (check only one):
	\square perennial \square intermittent with perennial pools \square impoundment
c.	No. of defined stream bends:
	Well: <u>Click to enter text.</u> Moderately: <u>Click to enter text.</u> Poorly: <u>Click to enter text.</u>
d.	No. of riffles: <u>Click to enter text.</u>
e.	Evidence of flow fluctuations (check one):
	□ Minor □ Moderate □ Severe
f.	Provide the observed stream uses and where there is evidence of channel obstructions/modifications: Click to enter text.

g. Complete the following table with information regarding the transect measurements.

Stream Transect Data

Transect Location	Habitat Type*	Water Surface Width (ft)	Stream Depths (ft)**				

^{*} riffle, run, glide, or pool

^{**} channel bed to water surface

Item 2. Summarize Measurements (Instructions, Page 83)

Provide the following information regarding the transect measurements:

Streambed slope of entire reach (from USGS map in ft. /ft.): Click to enter text.

Approximate drainage area above the most downstream transect from USGS map or county highway map (square miles): <u>Click to enter text.</u>

Length of stream evaluated (ft): Click to enter text.

Number of lateral transects made: Click to enter text.

Average stream width (ft): Click to enter text.

Average stream depth (ft): Click to enter text.

Average stream velocity (ft/sec): Click to enter text.

Instantaneous stream flow (ft³/sec): Click to enter text.

Indicate flow measurement method (VERY IMPORTANT – type of meter, floating chip timed over a fixed distance, etc.): Click to enter text.

Flow fluctuations (i.e., minor, moderate, or severe): Click to enter text.

Size of pools (i.e., large, small, moderate, or none): Click to enter text.

Maximum pool depth (ft): Click to enter text.

Total number of stream bends: Click to enter text.

Number well defined: Click to enter text.

Number moderately defined: Click to enter text.

Number poorly defined: Click to enter text.

Total number of riffles: Click to enter text.

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 5.0: SEWAGE SLUDGE MANAGEMENT AND DISPOSAL

The following information **is required** for all TPDES permit applications that meet the conditions as outlined in Technical Report 1.0, Item 7.

Item 1. Sewage Sludge Solids Management Plan (Instructions, Page 84)

a.		his a □	a new pe Yes	ermit	application or an amendment permit application? No		
b.		es o	r will the Yes	e faci	lity discharge in the Lake Houston watershed? No		
If yes to either Item 1.a or 1.b, attach a solids management plan. Attachment : Click to enter text.							
It	em	2.	Sewa Page	_	Sludge Management and Disposal (Instructions		
a.					to the sludge disposal method(s) authorized under the facility's existing at apply).		
		Per	rmitted l	landf	ill		
		Ma	arketing	and o	listribution by the permittee, attach Form TCEQ-00551		
		Re	gistered	land	application site, attach Form TCEQ-00565		
		Pro	ocessed	by th	e permittee, attach Form TCEQ-00744		
		Su	rface dis	sposa	l site (sludge monofill), attach Form TCEQ-00744		
		Tra	ansporte	ed to	another WWTP		
		Be	neficial l	and a	application, attach Form TCEQ-10451		
		Inc	cineratio	n, att	ach Form TCEQ-00744		
	dire	ecte			on(s) made above, complete and attach the required TCEQ forms as submit the required TCEQ form will result in delays in processing the		
	Att	ach	ment: C	lick to	o enter text.		
b.					g information for each disposal site:		
		•			Click to enter text.		
				_	ration Number: Click to enter text.		
	COL	шцу	where (иѕро	sal site is located: <u>Click to enter text.</u>		

c.	Method of sewage sludge transportation:					
	\square truck \square train \square pipe \square other: Click to enter text.					
	TCEQ Hauler Registration Number: Click to enter text.					
d.	Sludge is transported as a:					
	□ liquid □ semi-liquid □ semi-solid □ solid					
e.	Purpose of land application: \square reclamation \square soil conditioning \square N/A					
f.	If sewage sludge is transported to another WWTP for treatment, attach a written statement or copy of contractual agreements confirming that the WWTP identified above will accept and be responsible for the sludge from this facility for the life of the permit (at least 5 years).					
	Attachment: Click to enter text.					
It	m 3. Authorization for Sewage Sludge Disposal					
	(Instructions, Page 85)					
slu	is is a new or major amendment application which requests authorization of a new sewag ge disposal method, check the new sewage disposal method(s) requested for authorizatio ck all that apply):					
	Marketing and distribution by the permittee, attach Form TCEQ-00551					
	Processed by the permittee, attach Form TCEQ-00744					
	Surface disposal site (sludge monofill), attach Form TCEQ-00744					
	Beneficial land application, attach Form TCEQ-10451					
	Incineration, attach Form TCEQ-00744					
dir	ed on the selection(s) made above, complete and attach any required TCEQ forms, as cted. Failure to submit the required TCEQ form will result in delays in processing the lication.					
	Attachment: Click to enter text.					
in for de	TE: New authorization for beneficial land application, incineration, processing, or disposal ne TPDES permit or TLAP requires a major amendment to the permit. New authorization composting may require a major amendment to the permit. See the instructions to remine if a major amendment is required or if authorization for composting can be added ugh the renewal process.					

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 6.0: INDUSTRIAL WASTE CONTRIBUTION

The following information **is required** for all applications for publicly-owned treatment works (POTWs).

For an explanation of the terms used in this worksheet, refer to the General Definitions on pages 4-12 and the Definitions Relating to Pretreatment on pages 13-14 of the Instructions.

Item 1. All POTWs (Instructions, Page 86)

a. Complete the following table with the number of each type of industrial users (IUs) that discharge to the POTW and the daily average flows from each.

Industrial User Information

Type of Industrial User	Number of Industrial Users	Daily Average Flow (gallons per da
CIU		
SIU - Non-categorical		
Other IU		
☐ Yes ☐ 1 If yes , identify the dat possible source(s) of e caused the interference	e(s), duration, nature of interfere ach interference event. Include th	nce, and probable cause(s) and ne names of the IU(s) that may have
☐ Yes ☐ 1 If yes , identify the date probable cause(s) and	No e(s), duration, pollutants passing	through the treatment plant, and hrough event. Include the names of
☐ Yes ☐ 1 If yes , answer all ques	or is it required to develop, an ap No tions in Item 2 and skip Item 3. answer all questions in Item 3 for	

Item 2. POTWs With Approved Pretreatment Programs or Those Required To Develop A Pretreatment Program (Instructions, Page 86)

a.	Have there been any substantial modifications to the POTW's approved pretreatment
	program that have not been submitted to the Approval Authority (TCEQ) for approval
	according to 40 CFR § 403.18?
	\square Ves \square No

	been submitted to the TCEC Attachment: Click to enter		of the mod	ifications.				
b.	b. Have there been any non-substantial modifications to the POTW's approved pretreatment program that have not been submitted to the Approval Authority (TCEQ)? Yes No If yes, include an attachment which identifies all non-substantial modifications that have not been submitted to the TCEQ and the purpose of the modification. Attachment: Click to enter text.							
c.	List all parameters measure last three years:	ed above the MAL i	n the POTW	's effluent mor	nitoring during the			
Eff	luent Parameters Measured Al	bove the MAL						
P	ollutant	Concentration	MAL	Units	Date			
	Attachment: Click to enter	text.		1				
d.	Has any SIU, CIU, or other II interference or pass-throug			, .	ns (excluding			
	□ Yes □ No							
	If yes , provide a description problems, and probable pol may have caused or contrib	lutants. Include th	ie name(s) o	of the SIU(s)/CIU	J(s)/other IU(s) that			
It	em 3. Significant Ir							
	User Informa	ation (Instru	ctions, I	Pages 88-8	7)			
	TWs that do not have an applowing information for each		nt program	are required to	o provide the			
a.	Mr. or Ms.: Click to enter tex	xt. First/Last Name	e: <u>Click to e</u>	nter text.				
	Organization Name: Click to	o enter text. SI	C Code: Clic	ck to enter text.				
	Phone number: Click to ente	er text. Er	nail address	s: <u>Click to enter</u>	text.			
	Physical Address: Click to e	nter text.	ty/State/ZI	P Code: Click to	enter text.			
	Attachment: Click to enter	text.						
b.	Attachment: <u>Click to enter text.</u> Describe the industrial processes or other activities that affect or contribute to the SIU(s) or CIU(s) discharge (e.g., process and non-process wastewater): <u>Click to enter text.</u>							

If **yes**, include an attachment which identifies all substantial modifications that have not

Flow Rate Inforn Effluent Type	nation	Discharge Day	Discharge I	Frequency
Lindent Type		(gallons per day)		s, batch, or intermit
Process Waster	water			
Non-process W	astewater			
e. Pretreatmen	t Standards			
instructi	ons?	ct to technology-based	local limits as defin	ned in the application
□ Yes	□ No			
2. Is the SIU	subject to ca	tegorical pretreatment	standards?	
□ Yes	□ No			
If yes , provi	de the categor	y and subcategory or s	ubcategories in the	SIUs Subject To
If yes , provi Categorical I	de the categor Pretreatment S	standards table.	ubcategories in the	SIUs Subject To
If yes , provi Categorical I	de the categor Pretreatment S	tandards table.	Subcategory in 40 CFR	SIUs Subject To Subcategory in 40 CFR
If yes, provi Categorical I SIUs Subject to C Category in	de the categor Pretreatment S ategorical Pret Subcategor	reatment Standards y in Subcategory in	Subcategory in	Subcategory in
If yes, provi Categorical I SIUs Subject to C Category in	de the categor Pretreatment S ategorical Pret Subcategor	reatment Standards y in Subcategory in	Subcategory in	Subcategory in
If yes, provi Categorical I SIUs Subject to C Category in	de the categor Pretreatment S ategorical Pret Subcategor	reatment Standards y in Subcategory in	Subcategory in	Subcategory in
If yes, provi Categorical I SIUs Subject to C Category in	de the categor Pretreatment S ategorical Pret Subcategor	reatment Standards y in Subcategory in	Subcategory in	Subcategory in
If yes, provi Categorical I SIUs Subject to C Category in	de the categor Pretreatment S ategorical Pret Subcategor	reatment Standards y in Subcategory in	Subcategory in	Subcategory in
If yes, provi Categorical I SIUs Subject to C Category in 40 CFR	de the categor Pretreatment S Sategorical Pret Subcategor 40 CFR	reatment Standards y in Subcategory in	Subcategory in 40 CFR problem(s) (e.g., into	Subcategory in 40 CFR
If yes, provi Categorical I SIUs Subject to C Category in 40 CFR	de the categor Pretreatment S Sategorical Pret Subcategor 40 CFR	reatment Standards y in Subcategory in 40 CFR or contributed to any p	Subcategory in 40 CFR problem(s) (e.g., into	Subcategory in 40 CFR

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 7.0: STORMWATER DISCHARGES ASSOCIATED WITH INDUSTRIAL ACTIVITIES

This worksheet **is required** for all TPDES permit applications requesting individual permit coverage for discharges consisting of **either**: 1) solely of stormwater discharges associated with industrial activities, as defined in 40 CFR § 122.26(b)(14)(i-xi), **or** 2) stormwater discharges associated with industrial activities and any of the listed allowable non-stormwater discharges, as defined in the MSGP (TXR05000), Part II, Section A, Item 6.

Discharges of stormwater as defined in 40 CFR § 122.26 (b)(13) are not required to obtain authorization under a TPDES permit (see exceptions at 40 CFR §§ 122.26(a)(1) and (9)). Authorization for discharge may be required from a local municipal separate storm sewer system.

Item 1. Applicability (Instructions, Page 89)

Do discharges from any of the existing/proposed outfalls consist either 1) solely of stormwater discharges associated with industrial activities **or** 2) stormwater discharges associated with industrial activities and any of the allowable non-stormwater discharges?

⊠ Yes □ No

If **no**, stop here. If **yes**, proceed as directed.

Item 2. Stormwater Coverage (Instructions, Page 89)

List each existing/proposed stormwater outfall at the facility and indicate which type of authorization covers or is proposed to cover discharges.

Authorization Coverage

Outfall	Authorization under MSGP	Authorized Under Individual Permit
002		

If **all** existing/proposed outfalls which discharge stormwater associated with industrial activities (and any of the allowable non-stormwater discharges) are **authorized under the MSGP**, **stop** here.

If **seeking authorization** for any outfalls which discharge stormwater associated with industrial activities (and any of the allowable non-stormwater discharges) **under an individual permit, proceed**.

NOTE: The following information is required for each existing/proposed stormwater outfall for which the facility is seeking individual permit authorization under this application

Item 3. Site Map (Instructions, Page 90)

Attach a site map or maps (drawn to scale) of the entire facility with the following information.

- the location of each stormwater outfall to be covered by the permit
- an outline of the drainage area that is within the facility's boundary and that contributes stormwater to each outfall to be covered by the permit
- connections or discharge points to municipal separate storm sewer systems
- locations of all structures (e.g. buildings, garages, storage tanks)
- structural control devices that are designed to reduce pollution in discharges of stormwater associated with industrial activities
- process wastewater treatment units (including ponds)
- bag house and other air treatment units exposed to stormwater (stormwater runoff, snow melt runoff, and surface runoff and drainage)
- landfills; scrapyards; surface water bodies (including wetlands)
- vehicle and equipment maintenance areas
- physical features of the site that may influence discharges of stormwater associated with industrial activities or contribute a dry weather flow
- locations where spills or leaks of reportable quality (as defined in 30 TAC § 327.4) have occurred during the three years before this application was submitted to obtain coverage under an individual permit
- processing areas, storage areas, material loading/unloading areas, and other locations where significant materials are exposed to stormwater (stormwater runoff, snow melt runoff, and surface runoff and drainage)

Check the b	ox to confirm	all above	information	was pi	rovided	on the	facility s	site r	nap(s)
Attachment:	Click to enter	text.							

Item 4. Facility/Site Information (Instructions, Page 90)

a. Provide the area of impervious surface and the total area drained by each stormwater outfall requested for authorization by this permit application.

Impervious Surfaces

Outfall	Area of Impervious Surface (include units)	Total Area Drained (include units)
002		

b. Provide the following local area rainfall information and the source of the information.

Wettest month: August

Average rainfall for wettest month (total inches): 6.53

25-year, 24-hour rainfall (inches): 10

Source: NOAA Online Data

- c. Attach an inventory, or list, of materials currently handled at the facility that may be exposed to precipitation. **Attachment:** <u>Alumina Concentrate</u>
- d. Attach narrative descriptions of the industrial processes and activities involving the materials in the above-listed inventory that occur outdoors or in some manner that may result in exposure of the materials to precipitation or runoff (see instructions for guidance). Attachment: Alumina concentrate is stored in plastic lined ponds and in storage yards. Stormwater from the lines ponds and storage yards is treated before discharge through Wastewater Outfall oo1.Loading and unloading areas for reagents, feedstocks and products, operating and maintenance areas generate stormwater that is collected in ponds. As necessary, the stormwater is treated prior to discharge through Wastewater Outfall oo1.
- e. Describe any BMPs and controls the facility uses/proposes to prevent or effectively reduce pollution in stormwater discharges from the facility: Stormwater from process areas is stored in lined ponds. This stormwater is treated prior to discharge through Outfall 001. Stormwater from non-process areas of the facility is collected in sumps and retention structures. If this stormwater meets the discharge limits of Permit 01861, the water is discharged through Outfall 002. Otherwise, the water is treated prior to discharge through Outfall 001.

Item 5. Pollutant Analysis (Instructions, Page 91)

a. Provide the date range of all sampling events conducted to obtain the analytical data submitted with this application (e.g., 05/01/2018-05/30/2018): **3/14/2017**,

3/21/2017, 3/28/2017, 4/4/2017

- b. \square Check the box to confirm all samples were collected no more than 12 months prior to the date of application submittal.
- c. Complete Table 17 as directed on page 92 of the Instructions.

Table 17 for Outfall No.: 002

Pollutant	Grab Sample* Maximum (mg/L)	Composite Sample** Maximum (mg/L)	Grab Sample* Average (mg/L)	Composite Sample** Average (mg/L)	Number of Storm Events Sampled	MAL (mg/L)
pH (standard units)	(max)8.4	_	(min)	_		_
Total suspended solids	25				1	_
Chemical oxygen demand	71				1	_
Total organic carbon	21				1	_
Oil and grease	ND				1	_
Arsenic, total	0.56				1	0.0005

Pollutant	Grab Sample* Maximum (mg/L)	Composite Sample** Maximum (mg/L)	Grab Sample* Average (mg/L)	Composite Sample** Average (mg/L)	Number of Storm Events Sampled	MAL (mg/L)
Barium, total	0.06				1	0.003
Cadmium, total	0.07				1	0.001
Chromium, total	ND				1	0.003
Chromium, trivalent	ND				1	_
Chromium, hexavalent	0.3				1	0.003
Copper, total	0.09				1	0.002
Lead, total	ND				1	0.0005
Mercury, total	ND				1	0.000005
Nickel, total	0.39				1	0.002
Selenium, total	ND				1	0.005
Silver, total	ND				1	0.0005
Zinc, total	0.32				1	0.005

^{*} Taken during first 30 minutes of storm event

d. Complete Table 18 as directed on pages 92-94 of the Instructions.

Table 18 for Outfall No.: 002

Pollutant	Grab Sample* Maximum (mg/L)	Composite Sample** Maximum (mg/L)	Grab Sample* Average (mg/L)	Composite Sample** Average (mg/L)	Number of Storm Events Sampled
Aluminum	0.878				
Iron	0.7				

^{**} Flow-weighted composite sample

Pollutant	Grab Sample* Maximum (mg/L)	Composite Sample** Maximum (mg/L)	Grab Sample* Average (mg/L)	Composite Sample** Average (mg/L)	Number of Storm Events Sampled

^{*} Taken during first 30 minutes of storm event

Attachment: Click to enter text.

Item 6. Storm Event Data (Instructions, Page 93)

Provide the following data for the storm event(s) which resulted in the maximum values for the analytical data submitted:

Date of storm event: December 23, 2008

Duration of storm event (minutes): 90 Minutes

Total rainfall during storm event (inches): <u>0.16</u>

Number of hours the between beginning of the storm measured and the end of the previous measurable storm event (hours): 312

Maximum flow rate during rain event (gallons/minute): Average=361 gallons/minute

Total stormwater flow from rain event (gallons): 31,047

Provide a description of the method of flow measurement or estimate:

Calibrated weir

^{**} Flow-weighted composite sample

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 8.0: AQUACULTURE

This worksheet **is required** for all TPDES permit applications requesting individual permit coverage for discharges of aquaculture wastewater.

Item 1. Facility/Site Information (Instructions, Page 94)

a. Complete the following table with information regarding production ponds, raceways, and fabricated tanks at the facility.

Production Pond Descriptions

Number of Ponds	Dimensions (include units)	Area of Each Pond (include units)	Number of Ponds x Area of Ponds (include Units)

Total surface area of all ponds: Click to enter text.

Raceway Descriptions

Number of Raceways	Dimensions (include units)

Fabricated Tank Descriptions

Number of Tanks	Dimensions (include units)

b.	Does the facility have	e a TPWD-approved e	mergency plan?								
	□ Yes □	No									
	If yes , attach a copy of the approved plan.										
	Attachment: Click to	enter text.									
c.	Does the facility have	e an aquatic plant tra	nsplant authorizat	tion?							
	□ Yes □	□ Yes □ No									
	If yes , attach a copy of	of the authorization	letter.								
	Attachment: Click to	enter text.									
d.	. Provide the number of aquaculture facilities located within 25-miles of this facility: <u>Click to enter text.</u>										
It	em 2. Species I	dentification	(Instructions	s, Page 95)							
of au	omplete the following to the stock. Identify and thorize the species. Ock Species Information	l attach copies of an									
_	pecies	Source of Stock	Origin of Stock	Disease Status	Authorizations						
	Attachment: Click to enter text.										
It	em 3. Stock Ma	anagement Pla	ın (Instructio	ns, Page 95)						
At	tach a detailed stock n	nanagement plan: <u>Cl</u>	ick to enter text.								

Item 4. Water Treatment and Discharge Description (Instructions, Page 96)

Attach a detailed description of the discharge practices and water treatment process(es): <u>Click</u> to enter text.

Item 5. Solid Waste Management (Instructions, Page 96)

Attach a description of the solid waste-disposal practices: Click to enter text.

Item 6. Site Assessment Report (Instructions, Page 96)

All new and expanding commercial shrimp facilities located/to be located within the coastal zone must attach a detailed site assessment report which identifies sensitive aquatic habitats within the coastal zone: Click to enter text.

WORKSHEET 9.0

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

CLASS V INJECTION WELL INVENTORY/AUTHORIZATION FORM

Submit the completed form to:

TCEQ IUC Permits Team Radioactive Materials Division MC-233 PO Box 13087 Austin, Texas 78711-3087 512-239-6466

For TCEQ Use Only
Reg. No
Date Received
Date Authorized

Item 1. General Information (Instructions Page 99)

1.	TCEO	Program	Area

Program Area (PST, VCP, IHW, etc.): Click to enter text.

Program ID: Click to enter text.

Contact Name: <u>Click to enter text.</u>
Phone Number: Click to enter text.

2. Agent/Consultant Contact Information

Contact Name: Click to enter text.

Address: Click to enter text.

City, State, and Zip Code: Click to enter text.

Phone Number: Click to enter text.

3. Owner/Operator Contact Information

□ Owner □ Operator

Owner/Operator Name: Click to enter text.

Contact Name: Click to enter text.

Address: Click to enter text.

City, State, and Zip Code: Click to enter text.

Phone Number: Click to enter text.

4. Facility Contact Information

Facility Name: Click to enter text.

Address: Click to enter text.

City, State, and Zip Code: Click to enter text.

Location description (if no address is available): Click to enter text.

Facility Contact Person: Click to enter text.

Phone Number: <u>Click to enter text.</u>

	Latitu	de: <u>Click</u>	to enter text	<u>t.</u>		
	Longi	tude: <u>Clic</u>	k to enter te	ext.		
	Metho	od of dete	rmination (GPS, TOPO, etc.): Click to enter to	ext.	
	Attacl	n topogra	phic quadra	ngle map as attachment A.		
6.	Well I	nformati	on			
	Type	of Well Co	onstruction,	select one:		
		□ Ver	tical Injectio	n		
		□ Sub	surface Flui	d Distribution System		
		□ Infil	tration Gall	ery		
		□ Ten	nporary Inje	ction Points		
		□ Oth	er, Specify:	Click to enter text.		
	Numb	er of Inje	ction Wells:	Click to enter text.		
7.	Purpo	se				
	- Detail	ed Descri	ption regard	ding purpose of Injection System	1:	
	Clic	k to enter	text.			
			ap as Attacl	nment B (Attach the Approved Re	emediation	n Plan, if
	appro	priate.)				
			ller/Installe			
				Name: <u>Click to enter text.</u>		
				Click to enter text.		
			Click to en			
	Licens	se Numbe	r: <u>Click to e</u>	nter text.		
Item	2. I	Propos	ed Dow	n Hole Design		
Attach	a diag	gram sign	ed and seal	ed by a licensed engineer as Atta	chment C	
Down I	Hole D	esign Tab	le			
Name	e of	Size	Setting	Sacks Cement/Grout - Slurry	Hole	Weight (lbs/ft)
String			Depth	Volume - Top of Center	Size	PVC/Steel
Casin	_					
Tubin	ıg					

5. Latitude and Longitude, in degrees-minutes-seconds

Screen

Item 3. Proposed Trench System, Subsurface Fluid Distribution System, or Infiltration Gallery

Attach a diagram signed and sealed by a licensed engineer as Attachment D.

System(s) Dimensions: Click to enter text. System(s) Construction: Click to enter text.

	o,	otem(o) Conoti action. Chek to cite texts
[t	en	1 4. Site Hydrogeological and Injection Zone Data
	1.	Name of Contaminated Aquifer: <u>Click to enter text.</u>
	2.	Receiving Formation Name of Injection Zone: Click to enter text.
	3.	Well/Trench Total Depth: <u>Click to enter text.</u>
	4.	Surface Elevation: Click to enter text.
	5.	Depth to Ground Water: <u>Click to enter text.</u>
	6.	Injection Zone Depth: <u>Click to enter text.</u>
	7.	Injection Zone vertically isolated geologically? Yes No Impervious Strata between Injection Zone and nearest Underground Source of Drinking Water: Name: Click to enter text. Thickness: Click to enter text.
	8.	Attach a list of contaminants and the levels (ppm) in contaminated aquifer as Attachment E.
	9.	Attach the Horizontal and Vertical extent of contamination and injection plume as Attachment F.
	10	. Attach Formation (Injection Zone) Water Chemistry (Background levels) TDS, etc., as Attachment G.
	11	. Injection Fluid Chemistry in PPM at point of injection. Attach as Attachment H.
	12	.Lowest Known Depth of Ground Water with < 10,000 PPM TDS: <u>Click to enter text.</u>
	13	. Maximum injection Rate/Volume/Pressure: <u>Click to enter text.</u>
	14	. Water wells within 1/4 mile radius (attach map as Attachment I): <u>Click to enter text.</u>
	15	. Injection wells within 1/4 mile radius (attach map as Attachment J): <u>Click to enter text.</u>
	16	. Monitor wells within 1/4 mile radius (attach drillers logs and map as Attachment K): <u>Click to enter text.</u>

18. Known hazardous components in injection fluid: Click to enter text.

17. Sampling frequency: Click to enter text.

Item 5. Site History

- 1. Type of Facility: Click to enter text.
- 2. Contamination Dates: Click to enter text.
- 3. Original Contamination (VOCs, TPH, BTEX, etc.) and Concentrations. Attach as Attachment L.
- 4. Previous Remediation. Attach results of any previous remediation as Attachment M.

NOTE: Authorization Form should be completed in detail and authorization given by the TCEQ before construction, operation, and/or conversion can begin. Attach additional pages as necessary.

Item 6. CLASS V INJECTION WELL DESIGNATIONS

- 5A07 Heat Pump/AC return (IW used for groundwater to heat or cool buildings)
- 5A19 Industrial Cooling Water Return Flow (IW used to cool industrial process equipment)
- 5B22 Salt Water Intrusion Barrier (IW used to inject fluids to prevent the intrusion of salt water into an aquifer)
- 5D02 Stormwater Drainage (IW designed for the disposal of rain water)
- 5D04 Industrial Stormwater Drainage Wells (IW designed for the disposal of rain water associated with industrial facilities)
- 5F01 Agricultural Drainage (IW that receive agricultural runoff)
- 5R21 Aquifer Recharge (IW used to inject fluids to recharge an aquifer)
- 5S23 Subsidence Control Wells (IW used to control land subsidence caused by groundwater withdrawal)
- 5W09 Untreated Sewage
- 5W10 Large Capacity Cesspools (Cesspools that are designed for 5,000 gpd or greater)
- 5W11 Large Capacity Septic systems (Septic systems designed for 5,000 gpd or greater)
- 5W12 WTTP disposal
- 5W20 Industrial Process Waste-disposal Wells
- 5W31 Septic System (Well Disposal method)
- 5W32 Septic System Drainfield Disposal
- 5X13 Mine Backfill (IW used to control subsidence, dispose of mining byproducts, or fill sections of a mine)
- 5X25 Experimental Wells (Pilot Test) (IW used to test new technologies or tracer dye studies)
- 5X26 Aguifer Remediation (IW used to clean up, treat, or prevent contamination of a USDW)
- 5X27 Other Wells
- 5X28 Motor Vehicle Waste-disposal Wells (IW used to dispose of waste from a motor vehicle site These are currently banned)
- 5X29 Abandoned Drinking Water Wells (waste disposal)

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 10.0: QUARRIES IN THE JOHN GRAVES SCENIC RIVERWAY

This worksheet **is required** for all applications for individual permits for a municipal solid waste facility or mining facility located within a Water Quality Protection Area in the John Graves Scenic Riverway. **Note: Review 30 TAC §§ 311.71-311.82 thoroughly prior to completing any portion of this worksheet.**

-	p	8	Portion of the worldstoot.
Ite	em	1.	Exclusions (Instructions, Page 100)
a.	Is th	nis a r	nunicipal solid waste facility?
		Yes	□ No
b.			quarry been in operation since January 1, 1994 without cessation of operation for n 30 consecutive days and under the same ownership?
		Yes	□ No
c.	Is th	nis a c	coal mine?
		Yes	□ No
d.	Is th	nis fac	cility mining clay and/or shale for use in manufacturing structural clay products?
		Yes	□ No
•		•	above question, stop here . The facility is required to maintain documentation, as $20 \ TAC \ \S \ 311.72(c)$, at the facility to demonstrate the exclusion(s).
Ite	em	2. 1	Location of the Quarry (Instructions, Page 101)
Ch	eck t	he bo	ox next to the distance between the quarry and the nearest navigable water body:
		< 20	0 feet \square 200 feet - 1,500 feet \square 1,500 feet - 1 mile \square > 1 mile
pro	ohibi	ited v	onstruction or operation of any new quarry or expansion of any existing quarry is within 200 feet of any water body located within a Water Quality Protection Area in ves Scenic Riverway.
Ite	em	3. <i>A</i>	Additional Requirements (Instructions, Page 101)
			e in the Instructions to determine if additional application requirements apply to ased on distance between the quarry and the nearest waterway. Attach as

a. Attach a Restoration Plan: Yes

appropriate or enter N/A.

b. Amount of Financial Assurance for Restoration: \$\frac{\capacter}{\capacter} \text{Click to enter text.}\$
 Attack a Tasknical Demonstration: Click to enter text.

c. Attach a Technical Demonstration: Click to enter text.

d. Attach a Reclamation Plan: Click to enter text.

e. Amount of Financial Assurance for Reclamation: \$\frac{\text{Click to enter text.}}{\text{Mechanism: Click to enter text.}}

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 11.0: COOLING WATER SYSTEM INFORMATION

This worksheet is required for all TPDES permit applications that meet the conditions outlined in Technical Report 1.0, Item 12.

Item 1. Cooling Water System Data (Instructions, Page 104)

a. Complete the following table with information regarding the cooling water system.

Cooling Water System Data

Parameter	Volume (include units)
Total DIF	
Total AIF	
Intake Flow Use(s) (%)	
Contact cooling	
Non-contact cooling	
Process Wastewater	
Other	

b. Attach the following information:

- 1. A narrative description of the design and annual operation of the facility's cooling water system and its relationship to the CWIS(s).
- 2. A scaled map depicting the location of each CWIS, impoundment, intake pipe, and canals, pipes, or waterways used to convey cooling water to, or within, the cooling water system. Provide the latitude and longitude for each CWIS and any intake pipe(s) on the map. Indicate the position of the intake pipe within the water column.
- 3. A description of water reuse activities, if applicable, reductions in total water withdrawals, if applicable, and the proportion of the source waterbody withdrawn (on a monthly basis).
- 4. Design and engineering calculations prepared by a qualified professional and data to support the information provided in above item a.
- 5. Previous year (a minimum of 12 months) of AIF data.
- 6. A narrative description of existing or proposed impingement and entrainment technologies or operation measures and a summary of their performance, including, but not limited to, reductions in impingement mortality and entrainment due to intake location and reductions in total water withdrawals and usage.

Attachment: Click to enter text.

Item 2. Cooling Water Intake Structure(s) Data (Instructions, Page 105)

a. Complete the following table with information regarding each cooling water intake structure (this includes primary and make-up CWIS(s)).

Cooling Water Intake Structure(s) Data

CWIS ID		
DIF (include units)		
AIF (include units)		
Intake Flow Use(s) (%)		
Contact cooling		
Non-contact cooling		
Process Wastewater		
Other		
Latitude (decimal degrees)		
Longitude (decimal degrees)		

- b. Attach the following information regarding the CWIS(s):
 - 1. A narrative description of the configuration of each CWIS, annual and daily operation, including any seasonal changes, and where it is located in the water body and in the water column.
 - 2. Engineering calculations for each CWIS.

Attachment: Click to enter text.

Item 3. Source Water Physical Data (Instructions, Page 105)

a. Complete the following table with information regarding the CWIS(s) source waterbody (this includes primary and make-up CWIS(s)).

Source Waterbody Data

CWIS ID		
Source Waterbody		
Mean Annual Flow		
Source		

- b. Attach the following information regarding the source waterbody.
 - 1. A narrative description of the source water for each CWIS, including areal dimensions, depths, salinity and temperature regimes, and other documentation that supports this determination of the water body type where each cooling water intake structure is located.

- 2. A narrative description of the source waterbody's hydrological and geomorphological features.
- 3. Scaled drawings showing the physical configuration of all source water bodies used by the facility, including the source waterbody's hydrological and geomorphological features. **NOTE:** The source waterbody's hydrological and geomorphological features may be included on the map submitted for item 1.b.ii of this worksheet.
- 4. A description of the methods used to conduct any physical studies to determine the intake's area of influence within the waterbody and the results of such studies.

Attachment: Click to enter text.

a.

b.

Item 4. Operational Status (Instructions, Page 106)

	• • • • • • • • • • • • • • • • • • • •
Is	this application for a power production or steam generation facility?
	□ Yes □ No
If	no, proceed to Item 4.b. If yes, provide the following information as an attachment:
1.	Describe the operating status of each individual unit, including age, capacity utilization rate (or equivalent) for the previous five years (a minimum of 60 months), and any seasonal changes in operation.
2.	Describe any extended or unusual outages or other factors which significantly affect current data for flow, impingement, entrainment.
3.	Identify any operating unit with a capacity utilization rate of less than 8 percent averaged over a contiguous period of two years (a minimum of 24 months).
4.	Describe any major upgrades completed within the last 15 years, including but not limited to boiler replacement, condenser replacement, turbine replacement, or changes of fuel type.
At	tachment: Click to enter text.
Pr	ocess Units
1.	Is this application for a facility which has process units that use cooling water (other than for power production or steam generation)?
	□ Yes □ No
	If no , proceed to Item 4.c. If yes , continue.
2.	Does the facility use or intend to use reductions in flow or changes in operations to meet the requirements of $40 \ CFR \ \S \ 125.94(c)$?
	□ Yes □ No
	If no , proceed to Item 4.c. If yes , attach descriptions of the following information:
	 Individual production processes and product lines The operating status, including age of each line and seasonal operation Any extended or unusual outages that significantly affect current data for flow, impingement, entrainment, or other factors

	 Any major upgrades completed within the last 15 years and plans or schedules for decommissioning or replacement of process units or production processes and product lines.
	Attachment: Click to enter text.
c.	Is this an application for a nuclear power production facility?
	□ Yes □ No
	If no , proceed to Item 4.d. If yes , attach a description of completed, approved, or scheduled upgrades and the Nuclear Regulatory Commission relicensing status for each unit at the facility.
	Attachment: Click to enter text.
d.	Is this an application for a manufacturing facility?
	□ Yes □ No
	If no , proceed to Worksheet 11.1. If yes , attach descriptions of current and future production schedules and any plans or schedules for any new units planned within the next five years (a minimum of 60 mos)
	Attachment: Click to enter text

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 11.1: IMPINGEMENT MORTALITY

This worksheet **is required** for all TPDES permit applications **that meet the conditions outlined in Technical Report 1.0, Item 12.** Complete one copy of this worksheet for **each** individual CWIS the facility uses or proposes to use.

Check the box next to the method of compliance for the Impingement Mortality Standard

CWIS ID: Click to enter text.

Item 1. Impingement Compliance Technology Selection (Instructions, Page 107)

□ Closed-cycle recirculating system(CCRS) [40 CFR § 125.94(c)(1)]
□ 0.5 ft/s Through-Screen Design Velocity [40 CFR § 125.94(c)(2)] - Proceed to Worksheet 11.2
□ 0.5 ft/s Through Screen Actual Velocity [40 CFR § 125.94(c)(3)]
□ Existing offshore velocity cap [40 CFR § 125.94(c)(4)] - Proceed to Worksheet 11.2
□ Modified traveling screens [40 CFR § 125.94(c)(5)]
□ System of technologies [40 CFR § 125.94(c)(6)]
□ Impingement mortality performance standard [40 CFR § 125.94(c)(7)]
□ De minimis rate of impingement [40 CFR § 125.94(c)(11)]
□ Low capacity utilization power-generation facilities [40 CFR § 125.94(c)(12)]
If 0.5 ft/s Through-Screen Design Velocity [40 CFR § 125.94(c)(2)] or existing offshore velocity

Item 2. Impingement Compliance Technology Information (Instructions, Page 107)

cap [40 CFR § 125.94(c)(4)] was selected, proceed to Worksheet 11.2. Otherwise, continue to

Complete the following sections based on the selection made for item 1 above.

	_	
a.	CC	RS [40 CFR § 125.94(c)(1)]
		Check this box to confirm the CWS meets the definition of CCRS located at 40 CFR \S $125.91(c)$ and provide a response to the following questions.
	1.	Does the facility use or propose to use a CWIS to replenish water losses to the CWS? Yes No
		If no , proceed to item a.2. If yes , provide the following information as an attachment and continue.
		• CWIS ID

Item 2.

• 12 months of intake flow data for any CWIS used for make-up intake flows to replenish cooling water losses, excluding intakes for losses due to blowdown, drift, or evaporation.

• A narrative description of any physical or operational measures taken to minimize make-up withdraws.

Attachment: Click to enter text.

NOTE: Do not complete a separate Worksheet 11.1 for a make-up CWIS.

- 2. Does the facility use or propose to use cooling towers?
 - □ Yes □ No.

If **no**, proceed to Worksheet 11.2. If **yes**, provide the following information and proceed to Worksheet 11.2.

• Average number of cycles of concentration (COCs) prior to blowdown:

Average COCs Prior to Blowdown

Cooling Tower ID		
COCs		

- Attach COC monitoring data for each cooling tower from the previous year (a minimum of 12 months): <u>Click to enter text.</u>
- Maximum number of COCs each cooling tower can accomplish based on design of the system.

Calculated COCs Prior to Blowdown

Cooling Tower ID		
COCs		

- Describe conditions that may limit the number of COCs prior to blowdown, if any, including but not limited to permit conditions: Click to enter text.
- b. 0.5 ft/s Through Screen Actual Velocity [40 CFR § 125.94(c)(3)]

Provide daily intake flow measurement monitoring data from the previous year (a minimum of 12 months) as an attachment and proceed to Worksheet 11.2.

Attachment: Click to enter text.

c. Modified traveling screens [40 CFR § 125.94(c)(5)]

Provide the following information as an attachment and proceed to Worksheet 11.2.

- 1. A description of the modified traveling screens and associated equipment.
- 2. A site-specific impingement technology performance optimization study that includes a narrative description of the biological data collection methods
- 3. Biological sampling data from the previous two years (a minimum of 24 months).

Attachment: Click to enter text.

d. System of technologies [$40 \ CFR \ \S \ 125.94(c)(6)$] or impingement mortality performance standard [$40 \ CFR \ \S \ 125.94(c)(7)$]

Provide the following information as an attachment and proceed to Worksheet 11.2.

1. A description of the system of technologies used or proposed for use by the facility to

achieve compliance with the impingement mortality standard.

- 2. A site-specific impingement technology performance optimization study that includes a narrative description of the biological data collection methods.
- 3. Biological sampling data from the previous two years (a minimum of 24 months).

Attachment: Click to enter text.

e. De minimis rate of impingement [40 CFR § 125.94(c)(11)]

Provide the following information and proceed to Worksheet 11.2.

1. Attach monitoring data from the previous year (a minimum of 12 months) of intake flow measured at a frequency of 1/day on days of operation.

Attachment: Click to enter text.

2. If the rate of impingement caused by the CWIS is extremely low (at an organism or ageone equivalent count), attach supplemental information to Worksheet 11.0, item 1.b.6. to support this determination.

Attachment: Click to enter text.

f. Low capacity utilization power-generation facilities [40 CFR § 125.94(c)(12)]

Attach monthly utilization data from the previous 2 years (a minimum of 24 months) for each operating unit and proceed to Worksheet 11.2.

Attachment: Click to enter text.

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 11.2: SOURCE WATER BIOLOGICAL DATA

This worksheet **is required** for all TPDES permit applications that **meet the conditions outlined in Technical Report 1.0, Item 12**. Complete one copy of this worksheet for **each** source waterbody of a CWIS for which a facility has selected an Impingement Mortality Technology Option described at $40 \ CFR \ \S S \ 125.94(c)(1)-(7)$.

Name of source waterbody: Click to enter text.

Item 1. Species Management (Instructions, Page 109)

a.	The facility has obtained an incidental take permit for its cooling water intake structure(s) from the USFWS or the NMFS.
	□ Yes □ No
	If yes, attach any information submitted in order to obtain that permit, which may be used to supplement the permit application information requirements of paragraph $40\ CFR\ S$ $125.95(f)$.
	Attachment: Click to enter text.
b.	Is the facility requesting a waiver from application requirements at 40 CFR § $122.21(r)(4)$ in accordance with 40 CFR § 125.95 for any CWIS(s) that withdraw from a man-made reservoir that is stocked and managed by a state or federal natural resources agency or the equivalent?
	□ Yes □ No
	If yes , attach a copy of the most recent managed fisheries report to TPWD, or equivalent.
	Attachment: Click to enter text.
c.	There are no federally listed threatened or endangered species or critical habitat designations within the source water body.
	□ True □ False
It	em 2. Source Water Biological Data (Instructions, Page 109)
Ne	w Facilities (Phase I, Track I and II)

Existing Facilities (Phase II)

- If the answer to **1.b.** above was **no**, provide responses to all items in this section and proceed to Worksheet 11.3.
- If the answer to **1.b.** was **yes** and **1.c.** was **true**, do not complete any items in this section and proceed to Worksheet 11.3.
- If the answer to **1.b.** was **yes** and **1.c.** was **false**, attach a response for any item in this section that is not contained within the most recent TPWD, or equivalent and proceed to Worksheet 11.3.

Attachment: Click to enter text.

• Provide responses to all items in this section and stop.

- a. A list of the data requested at *40 CFR § 122.21(r)(4)(ii)* through *(vi)* that are not available, and efforts made to identify sources of the data.
- b. Provide a list of species (or relevant taxa) in the vicinity of the CWIS and identify the following information regarding each species listed.
 - all life stages and their relative abundance,
 - identification of all species and life stages that would be most susceptible to impingement and entrainment,
 - forage base,
 - significance to commercial fisheries,
 - significance to recreational fisheries,
 - primary period of reproduction,
 - larval recruitment, and
 - period of peak abundance for relevant taxa.
- c. Data representative of the seasonal and daily activities (e.g., feeding and water column migration) of biological organisms in the vicinity of the CWIS(s).
- d. Identify all threatened, endangered, and other protected species that might be susceptible to impingement and entrainment at the CWIS(s).
- e. Documentation of any public participation or consultation with federal or state agencies undertaken.

The following is required for existing facilities only. Include the following information with the above listed attachment.

- f. Identify any protective measures and stabilization activities that have been implemented and provide a description of how these measures and activities affected the baseline water condition in the vicinity of the intake.
- g. A list of fragile species, as defined at 40 CFR § 125.92(m), at the facility. The applicant need only identify those species not already identified as fragile at 40 CFR § 125.92(m).

NOTE: New units at an existing facility are not required to resubmit this information if the cooling water withdrawals for the operation of the new unit are from an existing intake.

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 11.3: ENTRAINMENT

This worksheet is required for all TPDES permit applications that meet the conditions outlined in Technical Report 1.0, Item 12. Complete one copy of this worksheet for each individual CWIS the facility uses or proposes to use.

CWIS ID: Click to enter text.

Item 1. Applicability (Instructions, Page 111)

Is the AIF of the CWIS identified above greater than, or equal to, 125 MGD?

- □ Yes □ No
- If **no** or the facility has selected **CCRS** [40 CFR § 125.94(c)(1)] for the impingement mortality compliance method, complete Item 2 and stop here.
- If **yes** and the facility is **seeking a waiver** from application requirements in accordance with *40 CFR § 125.95* for any CWIS(s) that withdraw from a man-made reservoir that is stocked and managed by a state or federal natural resources agency or the equivalent, complete item 2 and stop.
- If **yes** and the facility is **not seeking a waiver** from application requirements in accordance *with 40 CFR § 125.95*, complete item 2 and provide any required and completed studies listed in item 3. For any required studies in item 3 that are not complete, provide a detailed explanation for the delay and an anticipated schedule for completion and submittal.

Item 2. Existing Entrainment Performance Studies (Instructions, Page 111)

Attach any previously conducted studies or studies obtained from other facilities addressing technology efficacy, through-facility entrainment survival, and other entrainment studies.

Attachment: Click to enter text.

Item 3. Facility Entrainment Performance Studies (Instructions, Page 111)

- a. Attach an entrainment characterization study, as described at 40 CFR § 122.21(r)(9): Click to enter text.
- b. Attach a comprehensive feasibility study, as described as 40 CFR § 122.21(r)(10): Click to enter text.
- c. Attach a benefits valuation study, as described as 40 CFR § 122.21(r)(11): Click to enter text.
- d. Attach a non-water quality environmental and other impacts study, as described as *40 CFR* § 122.21(r)(12): Click to enter text.
- e. Attach a peer review analysis, as described as 40 CFR § 122.21(r)(13): Click to enter text.

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 12.0: OIL AND GAS EXPLORATION, DEVELOPMENT, AND PRODUCTION WASTEWATER DISCHARGES

This worksheet **is required** for all TPDES permit applications that are subject to Effluent Limitation Guidelines in 40 CFR Part 435.

Item 1. Operational Information (Instructions, Page 112)

a.	Is the wastewater from an oil and gas exploration, development, or production facility located west of the 98th meridian? — Yes — No
	If yes, continue to the next question. If no, skip to Item 2 relating to Production/Process Data.
b.	Provide justification for how the wastewater is/will be used for agriculture or wildlife propagation.
	Click to enter text.
Ite	em 2. Production/Process Data (Instructions, Page 112)
	em 2. Production/Process Data (Instructions, Page 112) Provide the applicable 40 CFR Part 435 Subpart(s).
a.	Provide the applicable 40 CFR Part 435 Subpart(s).

		1	
Vastestream	Requesting authorization to discharge? (Yes/No)	Volume (MGD)	% of Total Flow
Attachment: Click to enter te	xt.		
. Provide information on misce			
Click to enter text.			
Click to enter text.			
Click to enter text.			
Click to enter text.			
Click to enter text.			

f. List of chemicals that are in use, or will be used, downhole. Provide the category, concentration used/to be used, and purpose of using the chemical. Attach a safety data sheet for each chemical listed.

Chemicals List

Category	Chemical Name	Concentration (include units)	Purpose

Attachment: Click to enter text.

g. List of chemicals that are in use, or will be used, to treat the wastewater to be discharged under this authorization. Provide the concentration used/to be used and purpose of using the chemical. Attach a safety data sheet for each chemical listed.

Water Treatment Chemicals List

Category	Chemical Name	Concentration (include units)	Purpose

Attachment: Click to enter text.

Item 3. Pollutant Analysis (Instructions, Page 113)

Tables 1, 2, 6, and 7 located in Worksheet 2.0 are required. In addition, Table 19 below is required and must be completed for each outfall and submitted with this application. The remaining tables in Worksheet 2.0, are required as applicable.

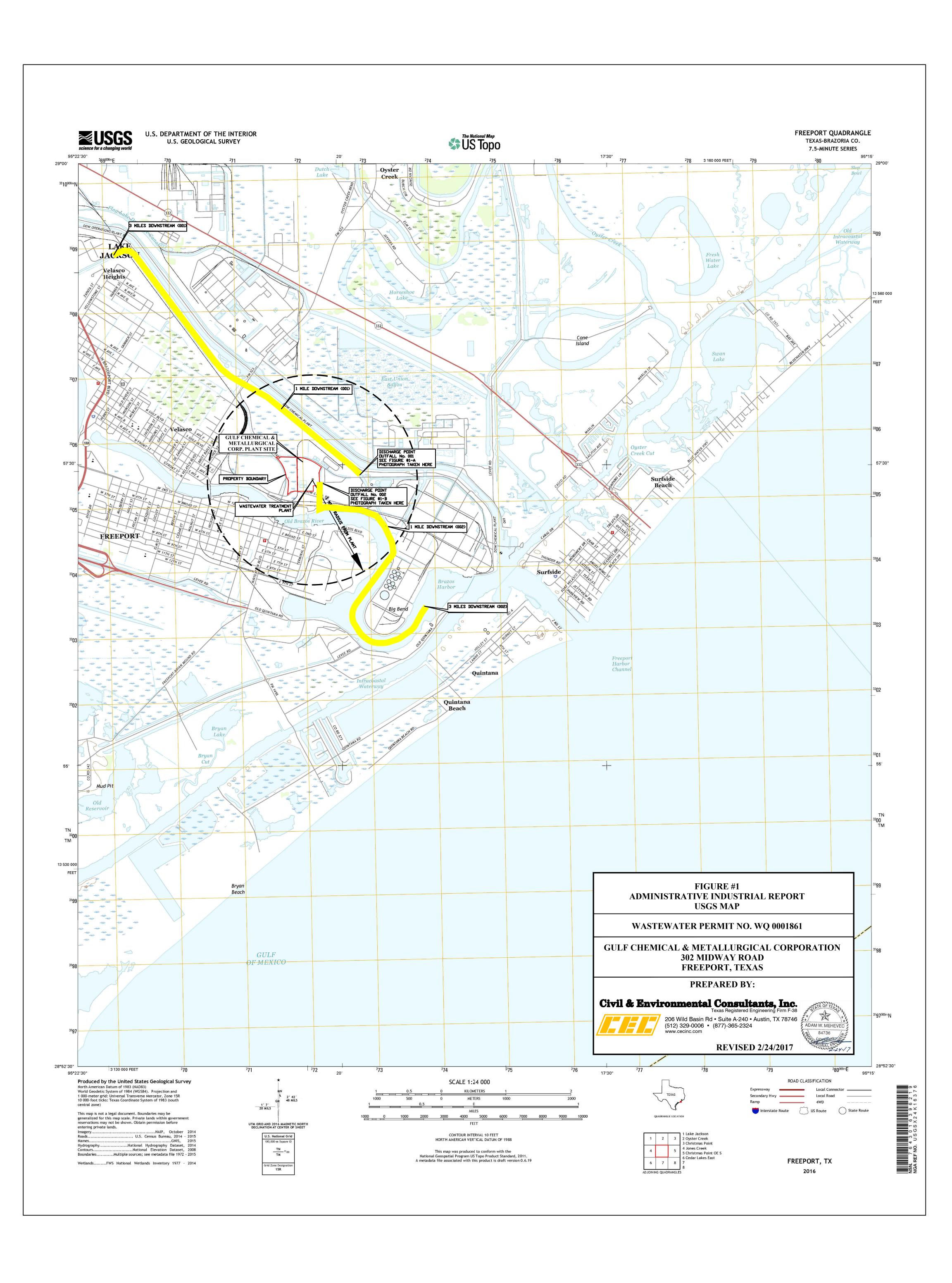

- a. Provide the date range of all sampling events conducted to obtain the analytical data submitted with this application (e.g., 05/01/2018-05/30/2018): Click to enter text.
- b. \square Check the box to confirm all samples were collected no more than 12 months prior to the date of application submittal.
- c. Read the general testing requirements in the instructions for important information about sampling, test methods, and MALs. If a contact laboratory was used, attach a list which includes the name, contact information, and pollutants analyzed for each laboratory/firm. **Attachment:** Click to enter text.
- d. Attach correspondence from TCEQ approving submittal of less than the required number of samples, if applicable. **Attachment:** Click to enter text.

Table 19 for Outfall No.: Click to enter text. Samples are (check one): ☐ Composite ☐ Grab

Pollutant	Sample 1 (mg/L)*	Sample 2 (mg/L)*	Sample 3 (mg/L)*	Sample 4 (mg/L)*
Calcium				
Potassium				
Sodium				

^{*}Indicate units if different from mg/L.

-		
	FIGURES	
	FIGURES	
	FIGURES	

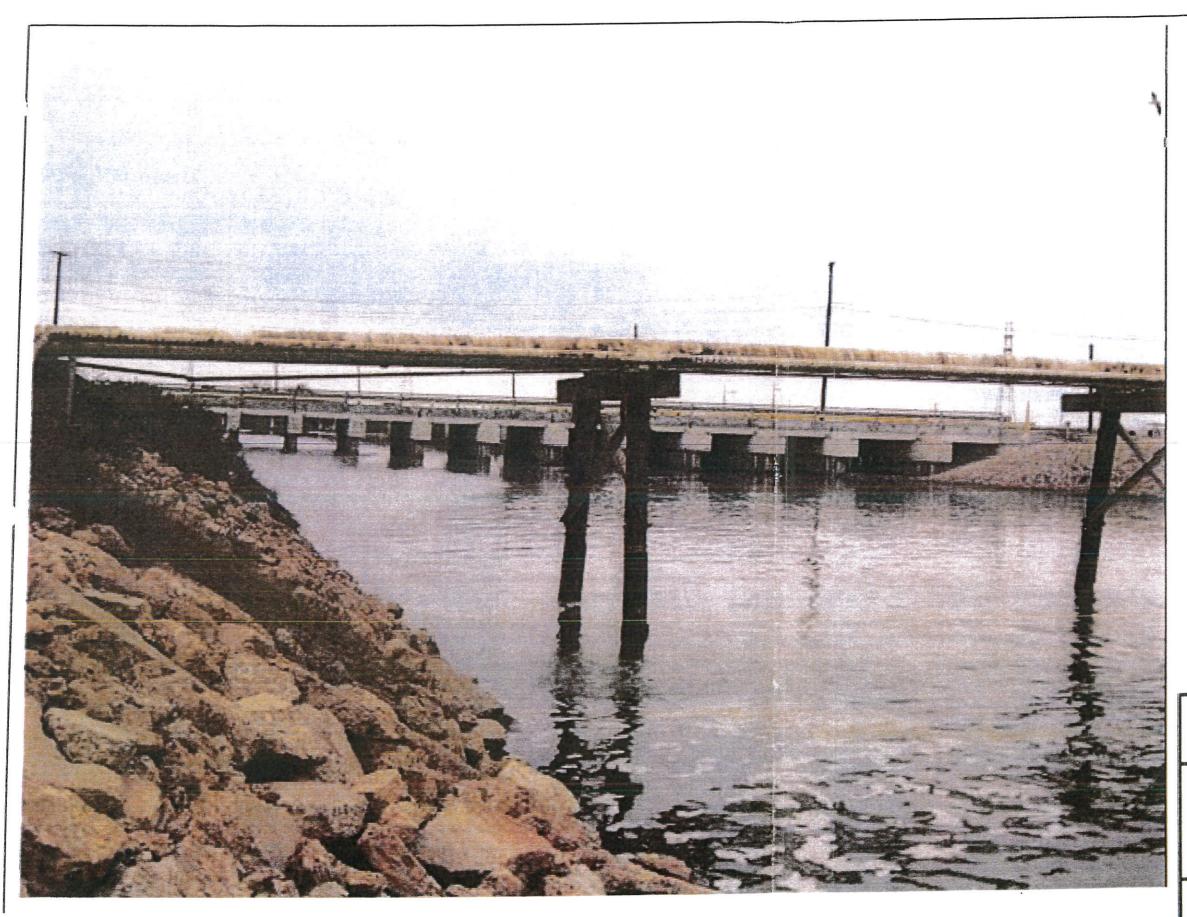


FIGURE #1-A OUTFALL OO1 DISCHARGE LOCATION FACING DOWNSTREAM

WASTEWATER PERMIT NO. WQ0001861000 APPLICATION FOR AMENDMENT DECEMBER 2008

GULF CHEMICAL AND METALLURGICAL CORP.

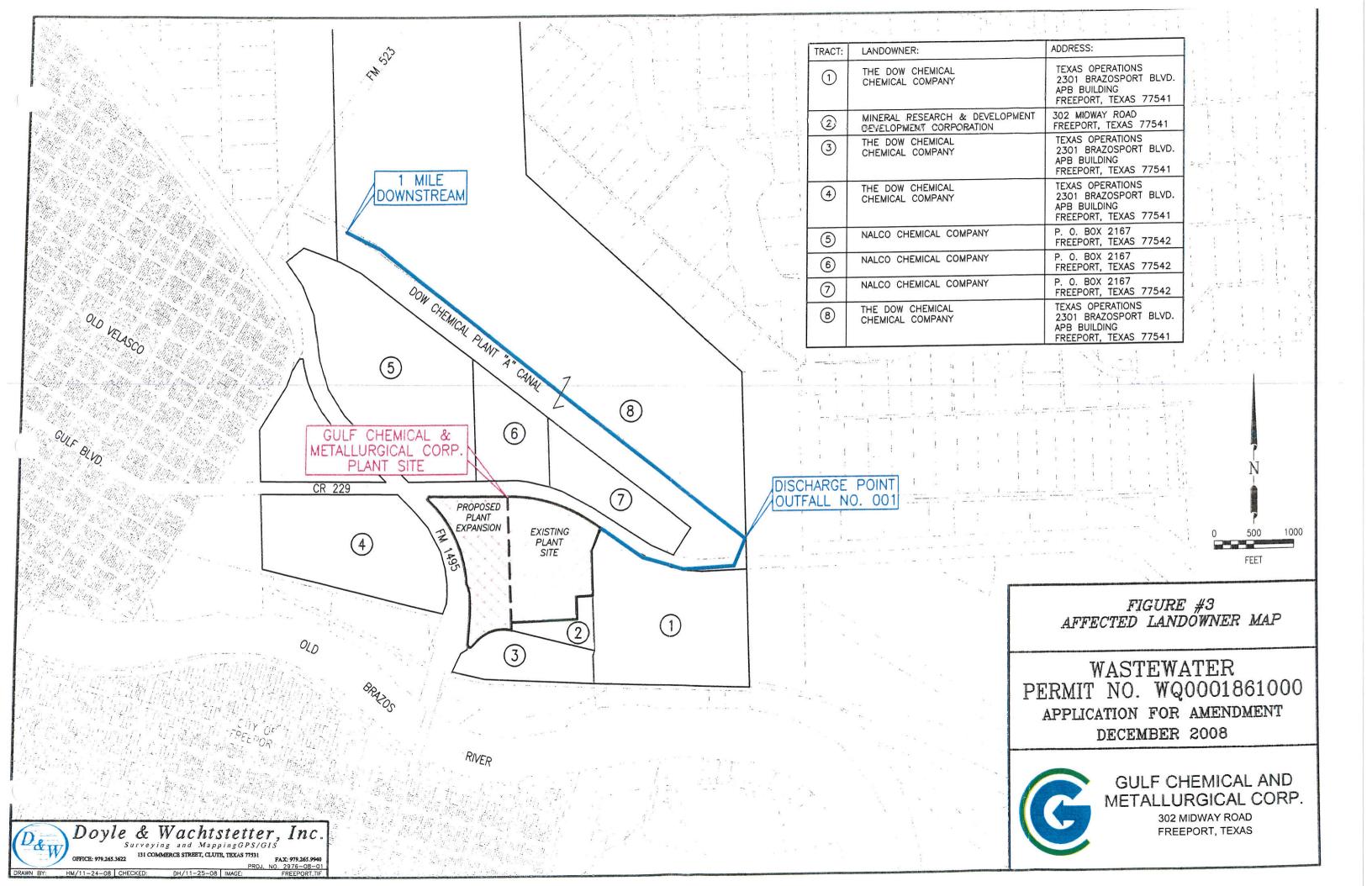
302 MIDWAY ROAD FREEPORT, TEXAS

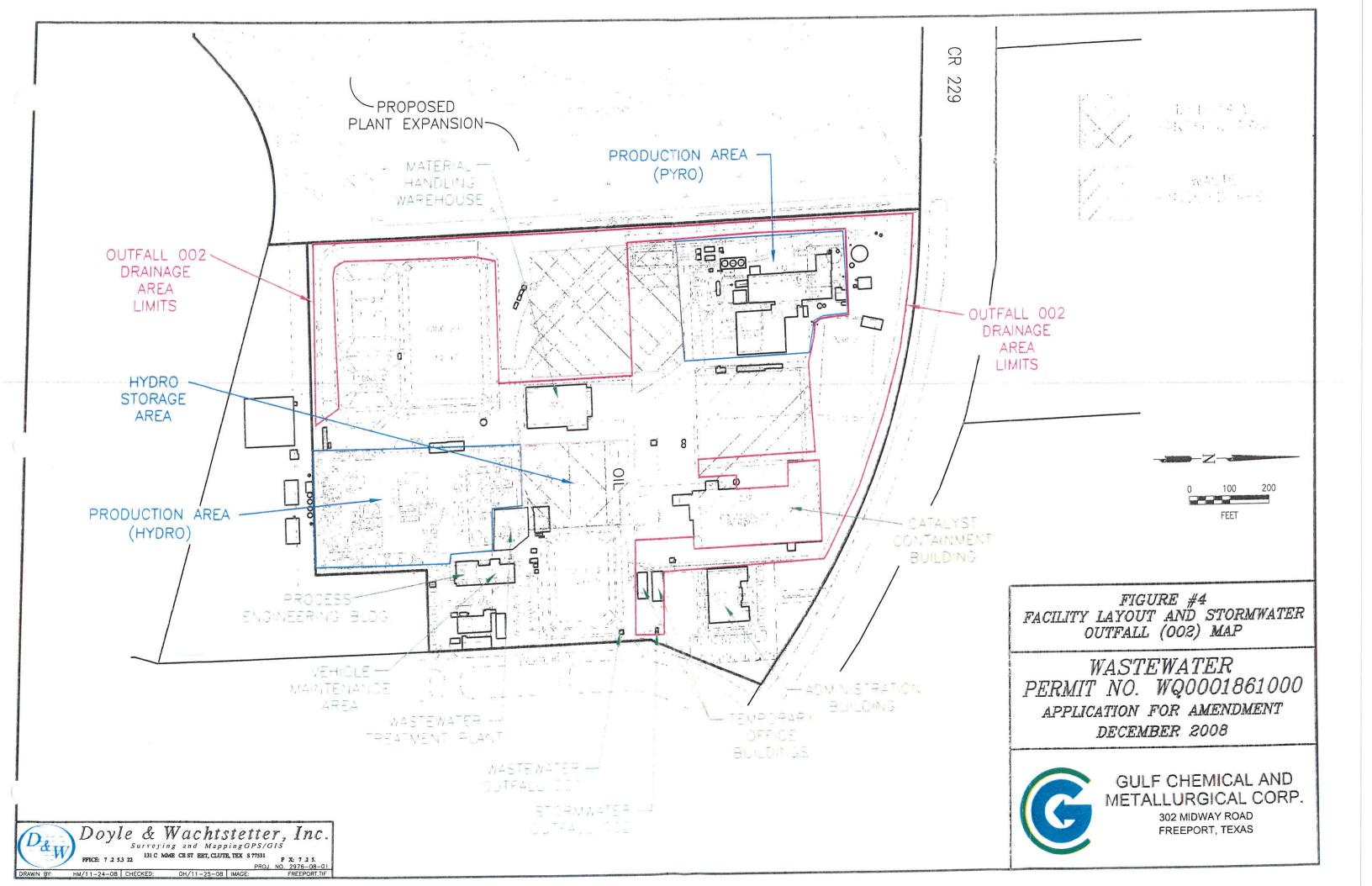
Doyle & Wachtstetter, Inc.

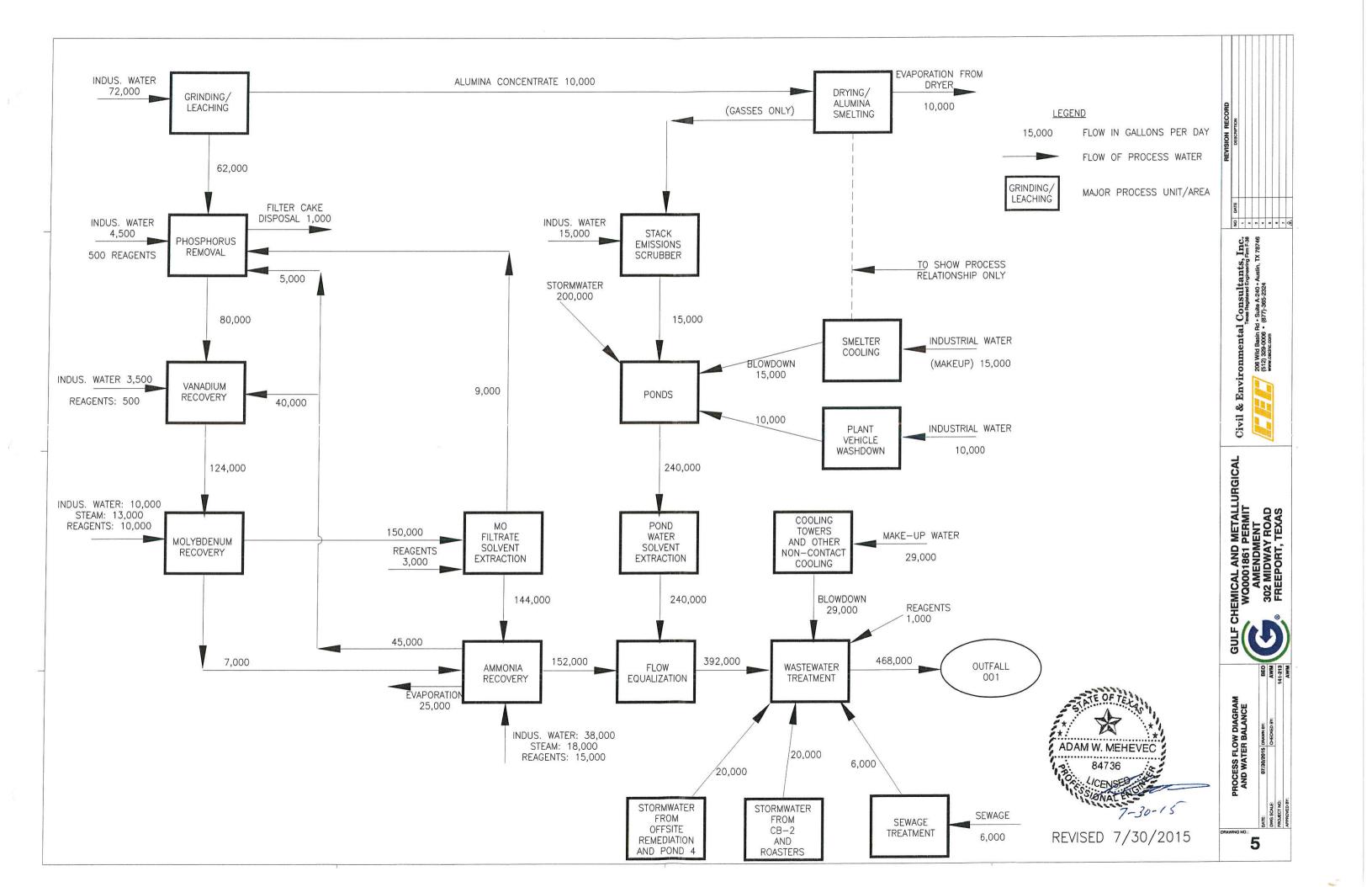
Surveying and Mapping GPS/GIS

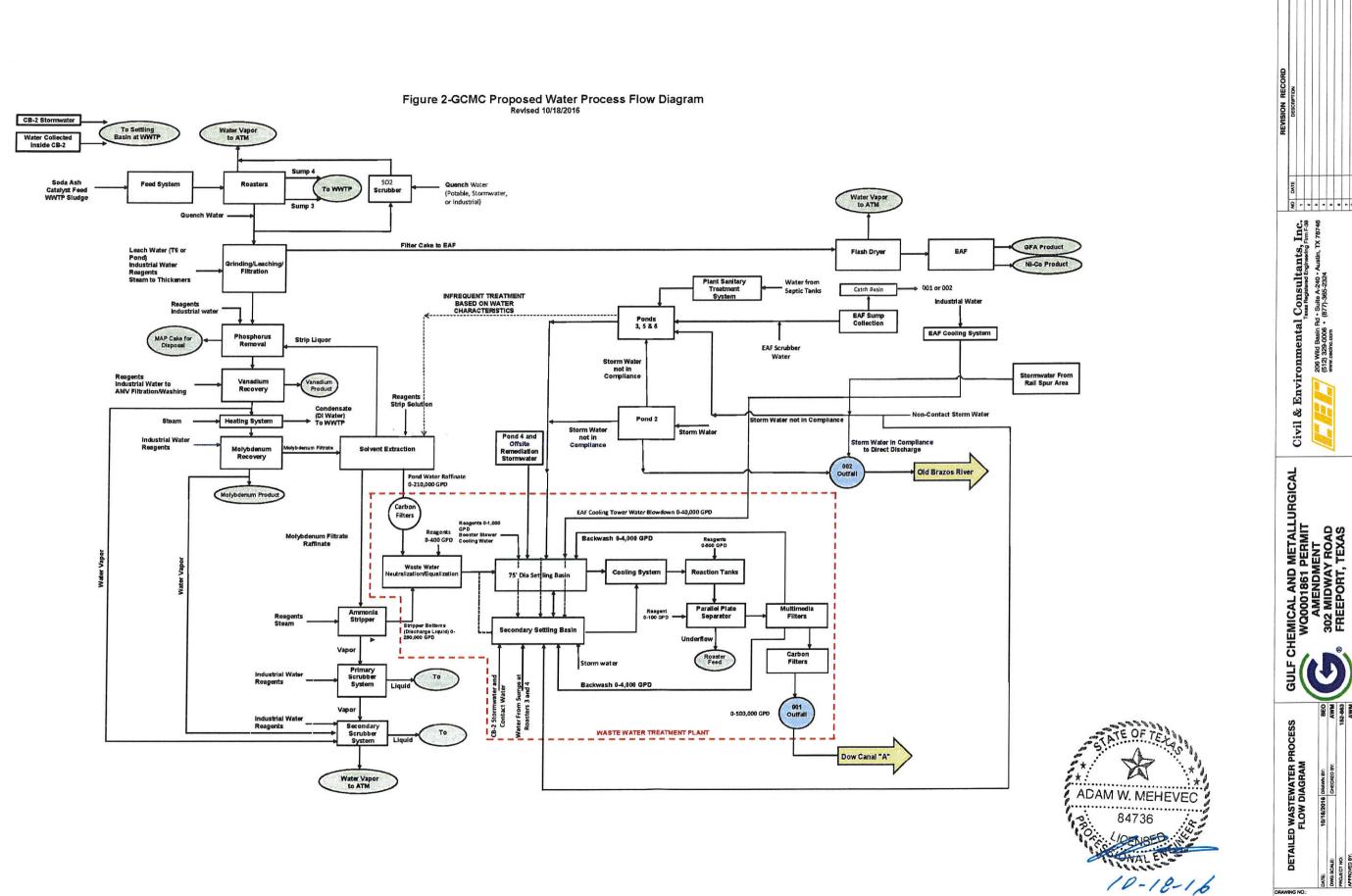
PROJ. NO. 2976-08-01

PROJ. NO. 2976-08-01


OUTFALL 002 SAMPLE COLLECTION
AND FLOW MONITORING POINT




OUTFALL 002 DISCHARGE POINT
INTO DITCH ALONG MIDWAY ROAD
(LOOKING EAST)



1-B

SECT ATTACHMENTS	ION 3 S 5 THROUGH 8	

SECTION 3 ATTACHMENT 5

Attachment 1

List of Raw Materials, Intermediates and Products

(Industrial Technical Report, Item 1.d)

Raw Material	CAS Number	
Hydrogen Peroxide	7722-84-1	
Methyl Tricapryl Ammonium Chloride	63393-96-4	
(Aliquat 336)		
Aluminum Chlorohydrate	12042-91-0	
Anhydrous Ammonia	7664-41-7	
Carbon Dioxide	124-38-9	
Floc 9779 (Anionic polymer flocculant contained in solvent)	64742-47-8	
Hydrochloric Acid	7647-01-0	
	68526-85-2	
Isodecyl Alcohol	8008-20-6	
Kerosene Magnesium Ovide	1309-48-4	
Magnesium Oxide	10034-99-8	
Magnesium Sulfate (Heptahydrate) Sodium Bisulfite	7631-90-5	
Sodium Bisumte Sodium Carbonate	497-19-8	
Sodium Calbonate Sodium Chloride (10% Solution)	7647-14-5	
Sodium Hydroxide	1310-73-2	
Spent Refinery Hydrotreating Catalysts	N/A	
Sperit Retinery Hydrotreating Catalysts Sulfuric Acid	7664-93-9	
Sandric Acid	7-000	
Intermediate	CAS Number	
Ammonium Chloride	12125-02-9	
Ammonium Metavanadate	7803-55-6	
Ammonium Molybdate	12054-85-2	
Ammonium Sulfate	7783-20-2	
Molybdic Acid	7782-91-4	
Alumina Concentrate (Referred to as "AC" in other portions of document	N/A	
III Onlot potentia av addattati		
Product	CAS Number	
Aluminum Oxide	1344-28-1	
Molybdic Trioxide	1313-27-5	
Nickel Alloy (May have Cobalt, Aluminum,	7440-02-0 (CAS No. for Nickel,	
Silicon, Molybdenum, Vanadium and Iron)	predominant component)	
Vanadium Pentoxide (Flake)	1314-62-1	

SECTION 3 ATTACHMENT 6

Attachment 2

Cooling Tower Chemical Dosage and Toxicity Data and Material Safety Data Sheets

(Industrial Technical Report Item No. 5c)

Inventory Summary

Wednesday, February 4, 2015 7:45 AM CST

GCMC Freeport Facility 302 Midway Road P.O. Box 2290 Freeport TX 77524-2290 (979) 233-7882 Generated By: Chris Wilkins (979) 292-6602 cwilkins@accomn.com

Date Range: 12/31/2014 - 2/4/2015

Plant Cooling - EAF

© CA-7110 - Recirculating System Organic Penetrant and Dispersant			
Usage	15.0		
Days	28.9		
Daily	0.5		
Weekiy	3.6		
Monthly	15.8		
Yearly	189.2	!	

© CA-7110 - Recirculating System Organic Penetrant and Dispersant			
Brain as most appearance were assure	The state of the s	The second second	
Usage	3.0		
Days	28.9		
Daily	0.1		
Weekly	0.7		
Monthly	3.2		
Yearly	37.8		

CA-7110 - Recirculating System Organic Penetrant and Dispersant			
Woldenstein er andere er		en antara antara en la Cedio.	
Usage	3.0		
Days	28.9		
Daily	0.1		
Weekly	0.7		
Monthly	3.2		
Yearly	37.8		

Inventory Summary

Wednesday, February 4, 2015 7:45 AM CST

GCMC Freeport Facility 302 Midway Road P.O. Box 2290 Freeport TX 77524-2290 (979) 233-7882 Generated By: Chris Wilkins (979) 292-6602 cwilkins@accomn.com

Date Range: 12/31/2014 - 2/4/2015

Plant Cooling - EAF

CT-6180 - Open Recirculating System Deposit & Corrosion Inhibitor		
tkortualvõitoses Usage	10.0	4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -
Days	28.9	
Daily	0.3	
Weekly	2.4	
Monthly	10.5	
Yearly	126.1	

© CT-6525 - Open Recirculating System Deposit & Corrosion Inhibitor				
		and the second sections		
Usage	5.0			
Days	28.9			
Daily	0.2			
Weekly	1.2			
Monthly	5.3			
Yearly	63.1			

NVM demica kovitela a sa sa		and the second of the second o
Usage	20.0	
Days	28.9	
Daily	0.7	
Weekly	4.8	
Monthly	21.0	
Yearly	252.3	

Inventory Summary

Wednesday, February 4, 2015 7:45 AM CST

GCMC Freeport Facility 302 Midway Road P.O. Box 2290 Freeport TX 77524-2290 (979) 233-7882

Generated By: Chris Wilkins (979) 292-6602

(979) 292-6602 cwilkins@accomn.com

Date Range: 12/31/2014 - 2/4/2015

Plant Cooling - EAF

REG 13 - 12.5 % Liquid Chlorine			
Usage	20.0		
Days	28.9		
Daily	0.7		
Weekly	4.8		
Monthly	21.0		
Yearly	252.3		

REG 13 - 12.5 % Liquid Chlorine		
I for the first the section of the section is		
Usage	60.0	
Days	28.9	
Daily	2.1	
Weekly	14.5	
Monthly	63.1	
Yearly	756.9	

REG 13 - 12.5 % Liquid	Chlorine
Usage	80.0
Days	28.9
Daily	2.8
Weekly	19.4
Monthly	84.1
Yearly	1,009.1

MATERIAL SAFETY DATA SHEET

Manufactured by:

ANDERSON

CHEMICAL COMPANY

325 SOUTH DAVIS AVENUE LITCHFIELD, MINNESOTA 55355 (320) 693-2477

Health Flammability 1 Reactivity 1 Personal Protection

NFPA Hazard Rating*

HMIS Hazard Rating*

24-HOUR EMERGENCY PHONE #: 1-800-424-9300 (CHEMTREC) Supersedes: 8/29/1996

Revised: 12/3/2004

I. IDENTIFICATION

Chemical Name And Synonyms:

DOT Shipping Name

Not applicable Not applicable

Chemical Family: DOT Hazard Class & I.D. Number PG

Not applicable

II. HAZARDOUS INGREDIENTS

CAS NO. PEL Hazard Component **Toxic** Not applicable NA

**Toxic chemical subject to the reporting requirements of Section 313 of the Emergency Planning and Community Right-To-Know Act of 1986 (40 CFR §372).

NA: Not applicable NE: Not established

III. PHYSICAL DATA

Form: Liquid Boiling Point: Not determined. **pH, Neat:** 4.5

Solubility In Water: Disperses in water Specific Gravity: 0.989 Odor: Slight amine Appearance: Clear, amber liquid

IV. FIRE AND EXPLOSION HAZARD DATA

Flashpoint: >200°F

Extinguishing Media: Water fog, carbon dioxide, foam, dry chemical.

Special Fire

Fighting Procedures: Although this product is not combustible, if a fire occurs in the near vicinity, good fire-fighting practice dictates the use of

self-contained breathing apparatus and other protective gear.

Unusual Fire And Explosion Hazards: None

V. HEALTH HAZARD DATA

Carcinogenic: The raw materials used in this product are not considered to be a carcinogen by ACGIH and OSHA.

Effects Of Over-exposure: Effects on eyes and skin range from moderate to severe depending on the length of exposure, solution concentration and first aid

measures. May cause irritation or corrosion of mucous membranes and the lungs if inhaled.

Emergency And First

Aid Procedures: Eyes: Flush immediately with water or normal saline (minimum of 15 minutes). Get immediate medical attention.

Skin: Wash thoroughly with soap and water. Repeat washing. Remove contaminated clothing and wash before reuse. If irritation persists, get medical attention.

Ingestion: Do NOT induce vomiting. Rinse with copious amounts of water or milk, first. Irrigate the esophagus and dilute stomach contents by slowly giving one to two glasses of water or milk. Avoid giving alcohol or alcohol related products. In cases where the individual is semi-comatose, comatose, or convulsing, do not give fluids by mouth. In case of intentional ingestion of the product seek medical assistance immediately; take individual to nearest medical facility. Note to Physician: No specific antidote is known.

Probable mucosal damage may contraindicate the use of gastric lavage. Treat symptoms.

Inhalation: If exposure by inhalation is suspected, immediately move exposed individual to fresh air. If individual experiences nausea, headache, dizziness, has difficulty in breathing or is cyanotic, seek a health care professional immediately.

* NFPA/HMIS Degree or Hazard: 4 = Extreme; 3 = High; 2 = Moderate; 1 = Slight; 0 = Insignificant. Continued On Back HMIS A. Safety Glasses B. Safety Glasses, Gloves C. Safety Glasses, Gloves, Apron D. Face Shield, Gloves, Apron E. Safety Glasses, Gloves, Dust Respirator F. Safety Glasses, Gloves, Apron, Dust Respirator G. Safety Glasses, Gloves, Vapor Respirator H. Splash Goggles, Gloves, Apron, Vapor Respirator I. Safety Glasses, Gloves, Vapor and Dust Respirator J. Splash Goggles, Gloves, Apron, Vapor and Dust Respirator K. Air Line, Hood or Mask, Gloves, Full Suit, Boots X. Ask your supervisor for guidance.

Page 2; Product Name: CA-7110 ■ VI. REACTIVITY DATA Stable: X Stability -Conditions To Avoid: None **Incompatibility:** Strong acids, strong alkali, strong oxidizers. (Materials To Avoid) **Hazardous Decomposition Products:** Oxides of carbon, oxides of nitrogen, and /or ammonia. VII. SPILL OR LEAK PROCEDURES Steps To Be Taken In Case Material Is Released Or Spilled: Initially minimize area affected by the spill or leak. Block any potential routes to water systems (e.g., sewers, streams, lakes, etc.). Based on the product's toxicological and chemical properties, and on the size and location of the spill or leak, assess the impact on contaminated environments (e.g. water systems, ground, air equipment, etc.). There are no methods available to completely eliminate any toxicity this product may have on aquatic environments. Minimize adverse effects on these environments. Recover as much of the pure product as possible into appropriate containers. Clay, soil, or commercially available absorbents may be used to recover any material that can not readily be recovered as pure product. Flushing material to an industrial sewer, if present at the site of a spill or leak incident, may be acceptable if authorized approval is obtained. If product and/or spill /leak residuals are flushed to an industrial sewer, insure that they do not come into contact with incompatible materials. Waste Disposal Method: Dispose of in accordance with local, state, and federal regulations. VIII. SPECIAL PROTECTION INFORMATION Respiratory Protection: Respiratory protection is not normally required. If mist level is high, wear NIOSH approved organic respirator. **Ventilation:** Local exhaust should be maintained to control vapor level. Protective Gloves: Rubber **Eye Protection:** Goggles Protective Clothing: Not needed for normal use. If splashing is anticipated, wear protective clothing. IX. SPECIAL PRECAUTIONS Precautions To Be Taken In Handling And Storing:

Store in a cool, dry, well-ventilated place away from incompatible materials.

Other Precautions: Safety showers and eyewash stations should be provided in the areas where this product is handled.

X. REVISED INFORMATION

MSDS Status: pH change

MATERIAL SAFETY DATA SHEET

Manufactured by:

Anderson Chemical Company

325 SOUTH DAVIS AVENUE LITCHFIELD, MINNESOTA 55355 (320) 693-2477

Health 3

Flammability

Personal Protection X

Reactivity

Health

Special

Hazard

Flammability

Reactivity * See Bottom

Imt

HMIS Rating System*

of Page NFPA Hazard Rating*

Product Name: CT-6180

24-HOUR EMERGENCY PHONE #: 1-800-424-9300 (CHEMTREC)

Revised: 4/14/2010

Supersedes: 10/2/2003

3

I. IDENTIFICATION

Chemical Name And Synonyms:

Sulfuric Acid, Oil of Vitriol - Mixture

DOT Shipping Name

Sulfuric Acid, Solution

Chemical Family:

Mineral Acid - Mixture

DOT Hazard Class & I.D. Number

PG

Corrosive Material UN2796

[]

II. HAZARDOUS INGREDIENTS

Component Sulfuric Acid

CAS NO. 7664-93-9

TLV 1 mg/m³

PEL 1 mg/m³ Toxic NA

Hazard Corrosive to skin, eyes, respiratory tract.

**Toxic chemical subject to the reporting requirements of Section 313 of the Emergency Planning and Community Right-To-Know Act of 1986 (40 CFR §372).

NA: Not applicable

NE: Not established

III. PHYSICAL DATA

Boiling Point: Not determined

Form: Liquid

pH, Neat: <1

Specific Gravity: 1,387

Solubility In Water: Complete

Appearance: Clear, colorless liquid

Odor: Pumgent

IV. FIRE AND EXPLOSION HAZARD DATA

Flashpoint: Not Applicable

Extinguishing Media: For fires in area, use appropriate media. For example: water spray, dry chemical, carbon dioxide, alcohol foam.

Special Fire Evacuate area of unprotected personnel. Wear protective clothing, including NIOSH-Approved self-contained breathing apparatus. Fighting Procedures: Cool fire-exposed containers with water spray. Product generates heat upon addition of water, with possible spattering. Run-off from fire control may cause pollution. Neutralize run-off with lime, soda ash, etc., to prevent corrosion of metals and formation of

Unusual Fire And Product may react with some metals (ex.: aluminum, zinc, tin, etc.) to release flammable hydrogen gas.

Explosion

Hazards:

V. HEALTH HAZARD DATA

Carcinogenic: The raw materials used in this product are not considered to be a carcinogen by ACGIH and OSHA.

Effects Of EYE CONTACT: CORROSIVE - Causes severe burns and destruction of tissues. Small quantities can result in permanent damage

Over-exposure: and loss of vision. Contact may cause blindness. SKIN CONTACT: Corrosive to skin. May cause irritating and severe burns to the skin. INHALATION: CORROSIVE - Causes burns to respiratory tract. Inhalation of dust or mists can cause damage to the upper respiratory tract and to the lung tissue depending upon the extent of exposure. INGESTION: CORROSIVE - Ingestion can cause very serious damage to the mouth, esophagus, stomach, and other tissues with which contact is made, and may be fatal. Ingestion

Emergency And First EYES: Immediately flush eyes with plenty of water for at least 15 minutes. Hold eyes open during this flushing with water. CALL A Aid Procedures: PHYSICIAN IMMEDIATELY.

> SKIN: Flush area with water while removing contaminated clothing and shoes. Follow by washing with soap and water. Do not reuse clothing or shoes until cleaned. CALL A PHYSICIAN. Do not apply offs or ointment unless ordered by the physician. INHALATION: Remove victim to fresh air. If not breathing, give artificial respiration, preferable mouth-to mouth. If breathing is difficult, give oxygen. CALL A PHYSICIAN.

INGESTION: If conscious, rinse mouth with water and give 1-2 glasses of water to dilute. DO NOT induce vomiting. CALL A PHYSICIAN IMMEDIATELY. If unconscious or in convulsions, take immediately to a hospital or a physician. NEVER induce vomiting or give anything by mouth to an unconscious victim.

* NFPA/HMIS Degree or Hazard: 4 = Extreme; 3 = High; 2 = Moderate; 1 = Slight: 0 = Insignificant. HMIS A. Safety Glasses B. Safety Glasses, Gloves C. Safety Glasses, Gloves, Apron D. Face Shield, Gloves, Apron E. Safety Glasses, Gloves, Dust Respirator F. Safety Glasses, Gloves, Apron D. Face Shield, Gloves, Apron E. Safety Glasses, Gloves, Dust Respirator F. Safety Glasses, Gloves, Apron D. Face Shield, Gloves, Apron D. Face Shield, Gloves, Apron D. Face Shield, Gloves, Apron E. Safety Glasses, Gloves, Dust Respirator F. Safety Glasses, Gloves, Apron D. Face Shield, Gloves, Ap Respirator G. Safety Glasses, Gloves, Vapor Respirator H. Spiash Goggles, Gloves, Apron, Vapor Respirator I. Safety Glasses, Gloves, Vapor and Dust Respirator J. Spiash Goggles, Gloves, Apron. Vapor and Dust Respirator K. Air Line, Hood or Mask, Gloves, Full Suit, Boots X. Ask your supervisor for guidance.

Page 2: Product Name: CT-6180

VI. REACTIVITY DATA

Stability -Unstable: Stable: x

Conditions To Avoid: Contact with water may cause violent reaction with evolution of heat. To dilute: Add product slowly to lukewarm water; not

water to product.

Incompatibility: Water, Alkalis. Metals, metal powders such as aluminum, zinc, tin, etc. Strong oxidizing agents (hypochlorites). Reducing

(Materials to Avoid) agents. Chlorates, Fulminates, Nitrates, Picrates, Cyanides, Sulfides, Carbides, Organic materials,

Hazardous Releases sulfur dioxide at extremely high temperatures. May react with certain metals to produce flammable hydrogen

Decomposition Products: gas. Hazardous gases are evolved on contact with chemicals such as cyanides, sulfides, carbides, etc.

VII. SPILL OR LEAK PROCEDURES

Steps To Be Taken In Case Material Is Released Or Spilled:

Evacuate nonessential personnel. Wear appropriate personal protection equipment. Maintain adequate ventilation. Completely contain spilled material with dikes or sandbags, etc., and prevent run-off into ground or surface waters or sewers. Recover as much material as possible into containers for disposal. Remaining material may be diluted with water and neutralized with sodium bicarbonate or soda ash. Neutralization products, both solid and liquid, must be recovered for disposal.

Waste Disposal Method: Observe all local, state, and federal regulations. Dispose of at approved waste treatment facility. If approved, neutralize material and flush to sewer.

VIII. SPECIAL PROTECTION INFORMATION

Respiratory Protection: If recommended exposure limits are exceeded wear: NIOSH-Approved respirator. Do not exceed limits established by the respirator manufacturer. Respiratory protection programs must comply with 29 CFR 1910.134.

Ventilation: Maintain adequate ventilation. Do not use in closed or confined space. Avoid mist formation.

Protective Gloves: Impervious gloves of natural latex or neoprene.

Eye Protection: Chemical safety goggles. Face shield. Do not wear contact lenses.

Protective Clothing: Wear as needed to minimize contact: Rubber apron. Chemical safety shoes. Rubber boots. Protective clothing. Fullrubber acid suit.

IX. SPECIAL PRECAUTIONS

Precautions To Be Taken In Handling And Storing:

Do not get in eyes, on skin or on clothing. Wash thoroughly after handling. Avoid breathing vapors and mists. Use with adequate ventilation. Keep containers tightly closed. Do not add water to contents while in container because of violent reaction. Store in a cool, well-ventilated area away from all sources of ignition and out of direct sunlight. Loosen closure carefully. Highly corrosive to most metals with evolution of hydrogen gas. Do not store in unlabeled or mislabeled containers. DO NOT pressurize, cut, weld, braze, solder, drill, grind or expose empty containers to heat, flame, sparks or other sources of ignition. Do not rinse out container.

Other Precautions Eyewash station and safety shower should be maintained in work area.

X. REVISED INFORMATION

MSDS Status: Updated supplier MSDS

The opinions expressed herein are those of qualified experts within ANDERSON Chemical Company. We believe that the information contained herein is current as of the date of this Material Safety Data Sheet. Since the use of this information and these opinions and the conditions of use of the product are not within the control of ANDERSON Chemical Company, it is the user's obligation to determine the conditions of safe use of the product.

MATERIAL SAFETY DATA SHEET

Manufactured by:

Anderson **Chemical Company**

325 SOUTH DAVIS AVENUE LITCHFIELD, MINNESOTA 55355 (320) 693-2477

Health 2

Flammability

Health

Reactivity 0

Flammability

Special

Reactivity

Personal Protection X Hazard HMIS Rating System*

See Bottom

of Page NFPA Hazard Rating*

Product Name: CT-6525

24-HOUR EMERGENCY PHONE #: 1-800-424-9300 (CHEMTREC)

Revised: 04/28/2014

Supersedes: 4/8/2010

I. IDENTIFICATION DOT Shipping Name

Chemical Name And Synonyms:

Not applicable.

Not applicable.

Chemical Family:

DOT Hazard Class & I.D. Number

PG

Not applicable.

Proprietary blend.

II. HAZARDOUS INGREDIENTS

Component Potassium Hydroxide CAS NO. 1310-58-3

TLV 2 mg/M3

PEL 2 mg/M3 Toxic

Hazard Corrosive

Trade Secret

TSRN 8500

ΝE

<1

e 1

ΝE

Corrosive

**Toxic chemical subject to the reporting requirements of Section 313 of the Emergency Planning and Community Right-To-Know Act of 1986 (40 CFR §372).

NA: Not applicable

NE: Not established

Boiling Point: About 212° F

Specific Gravity: 1,096

Appearance: Clear, light yellow liquid

Form: Liquid

pH, Neat: 10.8-11.2

Solubility In Water: Complete

Odor: Slight azole odor

IV. FIRE AND EXPLOSION HAZARD DATA

III. PHYSICAL DATA

Flashpoint: >200°F

Extinguishing Media: Use media appropriate to surrounding fire.

Special Fire Although this product is not combustible, if a fire occurs in the near vicinity, good fire-fighting practice dictates the use of self-Fighting Procedures: contained breathing apparatus and other protective gear.

Unusual Fire And Spills are slippery. Water should be used to cool closed containers.

Explosion

Hazards:-

V. HEALTH HAZARD DATA

Carcinogenic: The raw materials used in this product are not considered to be a carcinogen by ACGIH and OSHA.

Effects Of Causes skin and eye irritation and/or burns due to the pH of the concentrate. May be harmful if swallowed. May irritate respiratory

Over-exposure: tract.

Emergency And First Eyes: Immediately flush with water for at least 15 minutes, raising eyelids for complete rinsing. Get immediate medical attention. Aid Procedures: Skin: Immediately flush with water for at least 15 minutes while removing contaminated clothing. Wash contaminated clothing before reuse. Get prompt medical attention if irritation occurs.

Inhalation: Remove victim to fresh air. If breathing is difficult, Get immediate medical attention.

Ingestion: Do NOT induce vomiting. Give large quantities of water or milk. Get immediate medical attention. Never give anything by mouth to an unconscious person,

* NFPA/HMIS Degree or Hazard: 4 = Extreme; 3 = High; 2 = Moderate; 1 = Slight; 0 = Insignificant. Continued On Back HMIS A. Safety Glasses B. Safety Glasses, Gloves C. Safety Glasses, Gloves, Apron D. Face Shield, Gloves, Apron E. Safety Glasses, Gloves, Dust Respirator F. Safety Glasses, Gloves, Apron, Dust Respirator G Safety Glasses, Gloves, Vapor Respirator H. Splash Goggles, Gloves, Apron, Vapor Respirator I. Safety Glasses, Gloves, Vapor and Dust Respirator J. Splash Goggles, Gloves, Apron, Vapor and Dust Respirator K. Air Line, Hood or Mask, Gloves, Full Suit, Boots X. Ask your supervisor for guidance.

Page 2: Product Name: CT-6525

VI. REACTIVITY DATA

Stability -Unstable:

Stable: X

Conditions To Avoid: None known.

Incompatibility: Reacts with strong acids. Avoid contact with aluminum, tin, zinc and their alloys.

(Materials to Avoid)

Hazardous None known.

Decomposition Products:

VII. SPILL OR LEAK PROCEDURES

Steps To Be Taken In Case Material is Released Or Spilled:

Small spills can be diluted with a large amount of water and flushed to sewer. Larger spills, remove unnecessary personnel. Wear appropriate protective gear. Completely contain spilled material with dikes or sandbags, etc., and prevent run-off into ground or surface waters or sewers. Recover as much material as possible into containers for disposal. Neutralize alkalinity by adding a dilute acid (Dilute hydrochloric, dilute sulfuric, or dilute citric acid are acceptable neutralizing agents).

Waste Disposal Method: If material cannot be salvaged, neutralize and then discharge into a treatment system in accordance with local, state and federal regulations.

VIII. SPECIAL PROTECTION INFORMATION

Respiratory Protection: Not required for normal use. If mist levels are above TLV, wear an approved NIOSH self-contained breathing apparatus.

Ventilation: Adequate to meet exposure limit for alkaline mist.

Protective Gloves: Rubber or neoprene. Eye Protection: Chemical goggles.

Protective Clothing: Use appropriate protective clothing to minimize skin contact where liquid splashing or contact is expected.

IX. SPECIAL PRECAUTIONS

Precautions To Be Taken In Handling And Storing:

Store in cool area, avoid contamination. Keep container closed when not in use. Avoid contact with skin and eyes. Use goggles, rubber apron and boots where liquid splashing or contact is expected. Wash thoroughly after handling. Use with adequate ventilation.

Other Precautions Safety showers and eyewash stations should be provided in the areas where this product is handled.

X. REVISED INFORMATION

MSDS Status: Listed the two materials that contribute to the pH of this product. Not previously listed because OSHA does not require a component to be listed at <1% unless it is a carcinogen.

The opinions expressed herein are those of qualified experts within ANDERSON Chemical Company. We believe that the information contained herein is current as of the date of this Material Safety Data Sheet. Since the use of this information and these opinions and the conditions of use of the product are not within the control of ANDERSON Chemical Company. It is the user's obligation to determine the conditions of safe use of the product.

SAFETY DATA SHEET

Issue Date 27-Oct-2014

Revision Date 25-Nov-2014

Version 2

1. IDENTIFICATION OF THE SUBSTANCE/PREPARATION AND OF THE COMPANY/UNDERTAKING

Product Name

REG 13

Other means of identification

Product Code

UN/ID No.

UN1791

Synonyms

None

221

Registration Number(s)

15-150

Recommended use of the chemical and restrictions on use

Recommended Use

Liquid Chlorinated Sanitizer.

Uses advised against

No information available

Manufacturer Address

Anderson Chemical Company, 325 South Davis Avenue, Litchfield, MN 55355 (320-693-2477)

Emergency telephone number

Chemtrec 1-800-424-9300

2. HAZARDS IDENTIFICATION

Classification

OSHA Regulatory Status

This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200)

Skin corrosion/irritation	Category 1 Sub-category B
Serious eye damage/eye irritation	Category 1
Corrosive to metals	Category 1
Oxidizing liquids	Category 2

Label elements

Emergency Overview

Danger

Hazard statements

Causes severe skin burns and eye damage

May be corrosive to metals

May intensify fire; oxidizer

Appearance aqueous solution

Physical state liquid

Odor Chlorine

Precautionary Statements - Prevention

Do not breathe dust/fume/gas/mist/vapors/spray

Wash face, hands and any exposed skin thoroughly after handling

Wear protective gloves/protective clothing/eye protection/face protection

Keep away from heat

Keep/Store away from clothing/combustible materials

Take any precaution to avoid mixing with combustibles.

Keep only in original container

Precautionary Statements - Response

Immediately call a POISON CENTER or doctor/physician

Specific treatment (see Section 4 on this label)

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing Immediately call a POISON CENTER or doctor/physician

IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower

Wash contaminated clothing before reuse

IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing

Immediately call a POISON CENTER or doctor/physician IF SWALLOWED: Rinse mouth. DO NOT induce vomiting In case of fire: Use CO2, dry chemical, or foam for extinction

Absorb spillage to prevent material damage

Precautionary Statements - Storage

Store locked up

Store in a corrosive resistant container.

Precautionary Statements - Disposal

Dispose of contents/container to an approved waste disposal plant

Hazards not otherwise classified (HNOC)

Other Information

- · Very toxic to aquatic life with long lasting effects
- · Very toxic to aquatic life

3 COMPOSITION/INFORMATION ON INGREDIENTS

Chemical Name	CAS No.	Weight-%	Trade Secret
Sodium hypochlorite	7681-52-9	12.5	

^{*}The exact percentage (concentration) of composition has been withheld as a trade secret.

4. FIRST AID MEASURES

First aid measures

General advice Immediate medical attention is required.

Eye contact Flush immediately with water for 15 minutes. Lift upper and lower eyelids for complete

rinsing. Get immediate medical attention.

Skin Contact Flush with water for 15 minutes. Get medical attention. Remove contaminated clothing and

wash before reuse.

Inhalation Remove victim from immediate source of exposure to fresh air. If breathing is difficult,

administer oxygen if available. If victim is not breathing, administer CPR. If individual

experiences nausea, headache, or dizziness, get immediate medical attention.

Ingestion Rinse mouth with water. Give water to dilute. Do not induce vomiting. Get immediate

medical attention. Never give anything by mouth to a semi-comatose, comatose, convulsing

or unconscious person.

Most important symptoms and effects, both acute and delayed

Symptoms

Liquid and mists are severely irritating and may damage the eyes. The liquid will irritate the skin, causing redness and possible inflammation, or chemical burns to broken skin. Mists and liquid are extremely corrosive to the mouth and throat, mucous membranes and stomach. Swallowing burns the tissues, causes severe abdominal pain, nausea, vomiting, circulatory collapse, confusion, delirium, coma and collapse. Inhalation causes respiratory tract irritation and irritation of mucous membranes. Swallowing large quantities can cause death.

Indication of any immediate medical attention and special treatment needed

Note to physicians

Product is a corrosive material. Use of gastric lavage or emesis is contraindicated. Possible perforation of stomach or esophagus should be investigated. Do not give chemical antidotes. Asphyxia from glottal edema may occur. Marked decrease in blood pressure may occur with moist rales, frothy sputum, and high pulse pressure.

5. FIRE-FIGHTING MEASURES

Suitable extinguishing media

Use extinguishing measures that are appropriate to local circumstances and the surrounding environment.

Unsuitable extinguishing media No information available.

Specific hazards arising from the chemical

Containers of this material can explode as oxygen is liberated under high heat or fire conditions. Toxic fumes sililar to chlorine gas are liberated by contact with acids, ammonia, some detergent cleaners, organic materials, oxidizing agents and some reducing agents. Highly exothermic reactions with organic or oxidizable materials may cause fires in adjacent, heat sensitive materials; Do not store where contact may result with organic or oxidizable materials, e.g., sawdust, paper waste or others. Reacts to form explosive products with amines, ammonia or ammonium salts, methanol, aziridine. Explosive reaction with formic acid (@ 55°C), phenyl acetonitrile, ethylene amine.

Hazardous combustion products At flame temperatures, toxic phosphoric oxide fumes may be emitted.

Explosion data

Sensitivity to Mechanical Impact None. Sensitivity to Static Discharge None.

Protective equipment and precautions for firefighters

As in any fire, wear self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent) and full protective gear. Use water spray to cool fire exposed containers.

6. ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

Personal precautions

Evacuate personnel to safe areas. Use personal protective equipment as required.

Environmental precautions

Do not allow into any sewer, on the ground or into any body of water. See Section 12 for additional ecological information.

Methods for containment

Completely contain spilled material with dikes or sand bags, etc.

Methods for cleaning up

Recover as much material as possible into containers for disposal or reuse. Remaining material may be diluted with water and neutralized. Flush spill area with water. Neutralization products, both solid and liquid, must be recovered for disposal.

7. HANDLING AND STORAGE

Precautions for safe handling

Advice on safe handling

Do not get in eyes, on skin, or clothing. Do not breathe vapors or mists. Do not ingest. Wash thoroughly after handling. Wear protective clothing/equipment. Use with adequate

ventilation.

Conditions for safe storage, including any incompatibilities

Storage Conditions

Keep containers tightly closed and properly labeled. Containers that have been emptied will retain product residue and should be handled as if they were full. Store in a cool, dry, well-ventilated place away from incompatible materials. Wash hands before eating, drinking, using tobacco, applying make-up or using the toilet. Do not store, use, and/or consume foods, beverages, tobacco in areas where this product is stored.

Incompatible materials

Acids, ammonia, ether, halogenated compounds, oxidizing agents, reducing agents, oxidizable or combustible materials such as wood, cloth or organic materials, prolonged contact with aluminum, brass, bronze, copper, lead, tin, zinc or other alkali sensitive metals or alloys. Avoid contact with heavy metal such as iron, magnesium, aluminum, manganese, chromium, nickel and their alloys. Avoid contact with leather, wool, organic nitro compounds.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Control parameters

Exposure Guidelines Appropriate engineering controls

Showers Eyewash stations Ventilation systems.

Individual protection measures, such as personal protective equipment

Eye/face protection

Wear safety glasses with side shields (or gogales).

Skin and body protection

If contact is anticipated, wear protective clothing appropriate to use conditions.

Respiratory protection

If exposure limits are exceeded or irritation is experienced, NIOSH/MSHA approved respiratory protection should be worn. Positive-pressure supplied air respirators may be required for high airborne contaminant concentrations. Respiratory protection must be provided in accordance with current local regulations.

General Hygiene Considerations

Handle in accordance with good industrial hygiene and safety practice.

9. PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Physical state Appearance

liquid

aqueous solution

Odor Odor threshold Chlorine

Color

clear light yellow

No information available

Property pН

Values 11.4

Remarks • Method 1% Solution

Melting point/freezing point Boiling point / boiling range

Flash point

Evaporation rate Flammability (solid, gas) Flammability Limit in Air

No information available No information available No information available No information available

No information available

Upper flammability limit:

Lower flammability limit: Vapor pressure

Vapor density Specific Gravity

Water solubility Solubility in other solvents Partition coefficient Autoignition temperature Decomposition temperature

Kinematic viscosity Dynamic viscosity Explosive properties Oxidizing properties No information available No information available

No information available No information available

1.211

completely soluble
No information available
No information available
No information available
No information available

No information available No information available No information available No information available No information available

Other information

Softening point Molecular weight VOC Content (%) Density

No information available No information available No information available No information available No information available

10. STABILITY AND REACTIVITY

Reactivity

Bulk density

No data available

Chemical stability

Stable under recommended storage conditions.

Possibility of Hazardous Reactions

None under normal processing.

Conditions to avoid

No information available. Excessive heat, exposure to light, reduced alkalinity, contamination of any kind. Reduced alkalinity, contamination of any kind can result in evolution of chlorine (toxic) gas.

Incompatible materials

Acids, ammonia, ether, halogenated compounds, oxidizing agents, reducing agents, oxidizable or combustible materials such as wood, cloth or organic materials, prolonged contact with aluminum, brass, bronze, copper, lead, tin, zinc or other alkali sensitive metals or alloys. Avoid contact with heavy metal such as iron, magnesium, aluminum, manganese, chromium, nickel and their alloys. Avoid contact with leather, wool, organic nitro compounds.

Hazardous Decomposition Products

Toxic fumes of sodium oxide, HOCL, chlorine, HCl, NaCl, sodium chlorate and oxygen.

11. TOXICOLOGICAL INFORMATION

Information on likely routes of exposure

Product Information

No data available

Inhalation

May cause irritation of respiratory tract.

Eye contact

Corrosive to the eyes and may cause severe damage including blindness.

Skin Contact

Contact causes severe skin irritation and possible burns.

Ingestion

Ingestion causes burns of the upper digestive and respiratory tracts.

Oral LD50 Dermal LD50 Inhalation LC50	Chemical Name	Oral LD50	Dermal LD50	Inhalation LC50
---------------------------------------	---------------	-----------	-------------	-----------------

Sodium hypochlorite	= 8200 mg/kg (Rat)	> 10000 mg/kg (Rabbit)	- 1
	- One of Highing (Hat)	- roossinging (massin)	
17681-52-9			· ·
1.551 02 0		l	L

Information on toxicological effects

Symptoms

No information available.

Delayed and immediate effects as well as chronic effects from short and long-term exposure

Sensitization

No information available. No information available. No information available.

Germ cell mutagenicity
Carcinogenicity

 Chemical Name
 ACGIH
 IARC
 NTP
 OSHA

 Sodium hypochlorite
 Group 3

 7681-52-9

Reproductive toxicity
STOT - single exposure
STOT - repeated exposure
Aspiration hazard

No information available.
No information available.
No information available.
No information available.

Numerical measures of toxicity - Product Information

The following values are calculated based on chapter 3.1 of the GHS document .

ATEmix (oral) 65600 mg/kg ATEmix (dermal) 80080 mg/kg

12. ECOLOGICAL INFORMATION

Ecotoxicity

0% of the mixture consists of components(s) of unknown hazards to the aquatic environment

Chemical Name	Algae/aquatic plants	Fish	Crustacea
Sodium hypochlorite	0.095: 24 h Skeletonema costatum	0.06 - 0.11: 96 h Pimephales	2.1: 96 h Daphnia magna mg/L
7681-52-9	mg/L EC50	promelas mg/L LC50 flow-through	EC50 0.033 - 0.044; 48 h Daphnia
	_	4.5 - 7.6: 96 h Pimephales promelas	magna mg/L EC50 Static
		mg/L LC50 static 0.4 - 0.8: 96 h	
		Lepomis macrochirus mg/L LC50	
		static 0.28 - 1: 96 h Lepomis	
		macrochirus mg/L, LC50	
		flow-through 0.05 - 0.771; 96 h	
		Oncorhynchus mykiss mg/L LC50	
		flow-through 0.03 - 0.19: 96 h	· ·
		Oncorhynchus mykiss mg/L LC50	
		semi-static 0.18 - 0.22: 96 h	
		Oncorhynchus mykiss mg/L LC50	
		static	

Persistence and degradability

No information available.

Bioaccumulation

No information available.

Other adverse effects

No information available

13. DISPOSAL CONSIDERATIONS

Waste treatment methods

Disposal of wastes

Disposal should be in accordance with applicable regional, national and local laws and

regulations.

Contaminated packaging

Do not reuse container.

14 TRANSPORT INFORMATION

DOT

UN/ID No.

UN1791

Proper shipping name Hazardous ingredients

Hypochlorite solutions (sodium hypochlorite)

Hazard Class Packing Group

Ш

15. REGULATORY INFORMATION

International Inventories

TSCA

Complies DSL/NDSL Complies

EINECS/ELINCS

Complies

ENCS

Does not comply

IECSC

Complies

KECL

Complies

PICCS

Complies

AICS

Complies

Legend:

TSCA - United States Toxic Substances Control Act Section 8(b) Inventory

DSL/NDSL - Canadian Domestic Substances List/Non-Domestic Substances List

EINECS/ELINCS - European Inventory of Existing Chemical Substances/European List of Notified Chemical Substances

ENCS - Japan Existing and New Chemical Substances

IECSC - China Inventory of Existing Chemical Substances

KECL - Korean Existing and Evaluated Chemical Substances

PICCS - Philippines Inventory of Chemicals and Chemical Substances

AICS - Australian Inventory of Chemical Substances

US Federal Regulations

SARA 313

Section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 (SARA). This product does not contain any chemicals which are subject to the reporting requirements of the Act and Title 40 of the Code of Federal Regulations, Part 372

SARA 311/312 Hazard Categories

Acute health hazard Yes Chronic Health Hazard Nο Fire hazard Nο Sudden release of pressure hazard Νo Reactive Hazard Nο

CWA (Clean Water Act)

This product does not contain any substances regulated as pollutants pursuant to the Clean Water Act (40 CFR 122.21 and 40 CFR 122.42)

Chemical Name	CWA - Reportable Quantities	CWA - Toxic Pollutants	CWA - Priority Pollutants	CWA - Hazardous Substances
Sodium hypochlorite 7681-52-9	100 lb	-	-	X

CERCLA

This material, as supplied, does not contain any substances regulated as hazardous substances under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) (40 CFR 302) or the Superfund Amendments and Reauthorization Act (SARA) (40 CFR 355). There may be specific reporting requirements at the local, regional, or state level pertaining to releases of this material

Chemical Name	Hazardous Substances RQs	CERCLA/SARA RQ	Reportable Quantity (RQ)
Sodium hypochlorite	100 lb	-	RQ 100 lb final RQ
7681-52-9			RQ 45.4 kg final RQ

US State Regulations

California Proposition 65

This product does not contain any Proposition 65 chemicals

U.S. State Right-to-Know Regulations

Chemical Name	New Jersey	Massachusetts	Pennsylvania
Sodium hypochlorite	X	X	X
7681-52-9			

U.S. EPA Label Information

EPA Pesticide Registration Number Not Applicable

16. OTHER INF	ORMATION

NFPA

Health hazards 3

Flammability 0

Instability 1

Physical and Chemical

Properties OX

HMIS

Health hazards 3

kcs

Flammability 0

Physical hazards 1

Personal protection X

Prepared By

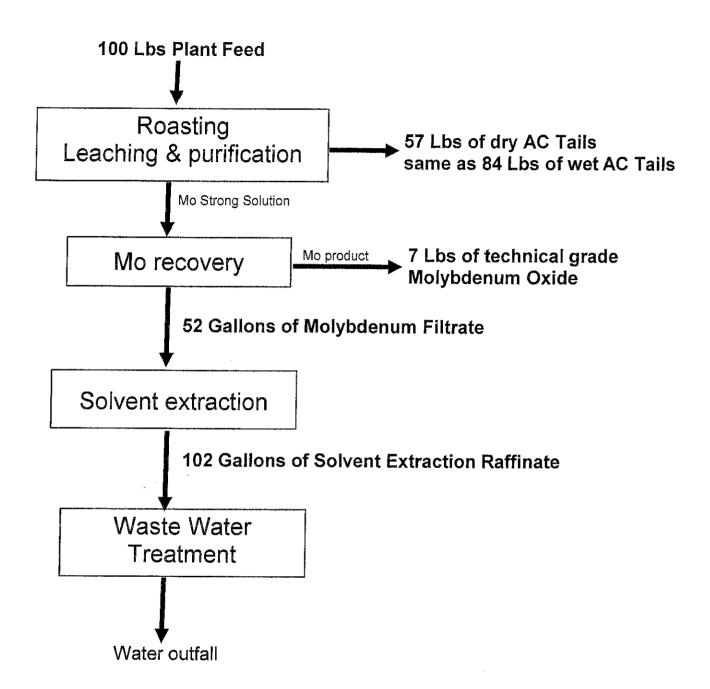
Issue Date Revision Date 27-Oct-2014 25-Nov-2014

Revision Note

No information available

Disclaimer

The information provided in this Material Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text.


End of Safety Data Sheet

SECTION 3 ATTACHMENT 7

Attachment 3

Production Breakdowns for Leach Tailings, Molybdenum Filtrate Solvent Extraction Raffinate and Technical Grade Molybdenum

SECTION 3 ATTACHMENT 8

Attachment 4

Analytical Laboratory Reports

ACCUTEST Gulf Coast

03/28/17

SGS ACCUTEST IS PART OF SGS, THE WORLD'S LEADING INSPECTION, VERIFICATION, TESTING AND CERTIFICATION COMPANY.

e-Hardcopy 2.0
Automated Report

Technical Report for

Gulf Chemical & Metallurgical Corp.

Permit

SGS Accutest Job Number: TD488

Sampling Date: 03/14/17

Gulf Chemical & Metallurgical Corp. P.O. Box 2290 Freeport, TX 77542

bobby.provence@eramet-gulf.com; robert.marsh@eramet-gulf.com

ATTN: Robert Marsh

Total number of pages in report: 68

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Electa Brown 713-271-4700

Certifications: TX (T104704220-17-26) AR (14-016-0) AZ (AZ0769) FL (E87628) KS (E-10366) LA (85695/04004) NJ (TX010) OK (2014-172) VA (7654)

This report shall not be reproduced, except in its entirety, without the written approval of SGS Accutest. Test results relate only to samples analyzed.

Richard Rodriguez

Laboratory Director

O.

7	7	7	

10

•	١
ŀ	١
_	

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Summary of Hits	4
Section 3: Sample Results	5
3.1: TD488-1: PERMIT RENEWEL	6
Section 4: Misc. Forms	15
4.1: Chain of Custody	16
Section 5: GC/MS Volatiles - QC Data Summaries	20
5.1: Method Blank Summary	21
5.2: Blank Spike Summary	23
5.3: Matrix Spike/Matrix Spike Duplicate Summary	25
Section 6: GC/MS Semi-volatiles - QC Data Summaries	27
6.1: Method Blank Summary	28
6.2: Blank Spike/Blank Spike Duplicate Summary	31
Section 7: General Chemistry - QC Data Summaries	34
7.1: Method Blank and Spike Results Summary	35
7.2: Blank Spike Duplicate Results Summary	36
7.3: Duplicate Results Summary	37
7.4: Matrix Spike Results Summary	38
Section 8: Misc. Forms (SGS Accutest New Jersey)	39
8.1: Chain of Custody	40
Section 9: GC Semi-volatiles - QC Data (SGS Accutest New Jersey)	44
9.1: Method Blank Summary	45
9.2: Blank Spike Summary	49
9.3: Blank Spike/Blank Spike Duplicate Summary	50
9.4: Matrix Spike/Matrix Spike Duplicate Summary	51
Section 10: Metals Analysis - QC Data (SGS Accutest New Jersey)	52
10.1: Prep QC MP99302: As,Ba,Cd,Cr,Pb,Se,Ag	53
10.2: Prep QC MP99331: Hg	57
Section 11: Misc. Forms (SGS Accutest Lafayette)	61
11.1: Chain of Custody	62
Section 12: General Chemistry - QC Data (SGS Accutest Lafayette)	65
12.1: Method Blank and Spike Results Summary	66
12.2: Blank Spike Duplicate Results Summary	67
12.3: Duplicate Results Summary	68

Sample Summary

Gulf Chemical & Metallurgical Corp.

Job No:

TD488

Permit

Sample	Collected	Matrix	Client
Number	Date Time B	Received Code Type	Sample ID
TD488-1	03/14/17 10:00	03/14/17 AQ Water	PERMIT RENEWEL

SGS 3 of 68
ACCUTEST
TD488

Summary of Hits Job Number: TD488

Account: Gulf Chemical & Metallurgical Corp.

Project: Permit **Collected:** 03/14/17

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
TD488-1 PERMIT RENEW	/EL				
Acetone	0.119	0.050	0.010	mg/l	EPA 624
Bromoform	0.0016	0.0010	0.00030	mg/l	EPA 624
Chlorobenzene	0.00050 J	0.0010	0.00030	mg/l	EPA 624
Chloroform	0.00067 J	0.0010	0.00030	mg/l	EPA 624
2-Hexanone	0.0158	0.010	0.0012	mg/l	EPA 624
4-Methyl-2-pentanone	0.0100	0.010	0.0023	mg/l	EPA 624
Methyl chloride	0.00053 J	0.0010	0.00030	mg/l	EPA 624
Methyl ethyl ketone	0.0699	0.010	0.0026	mg/l	EPA 624
Arsenic ^a	0.171	0.010	0.00034	mg/l	EPA 200.8
Barium ^a	0.0130	0.010	0.00028	mg/l	EPA 200.8
Lead ^a	0.00027 B	0.0050	0.00011	mg/l	EPA 200.8
Mercury ^b	0.000055 B	0.00020	0.000055	mg/l	EPA 245.1
Selenium ^a	0.530	0.010	0.0012	mg/l	EPA 200.8
Silver ^a	0.00072 B	0.020	0.00041	mg/l	EPA 200.8
BOD, 5 Day	13.5	6.0	3.0	mg/l	SM 5210B-2000
Nitrogen, Ammonia	111	5.0	1.0	mg/l	EPA 350.1
Nitrogen, Nitrite ^c	125	10	5.4	mg/l	EPA 300
Phosphorus, Total	0.33	0.020	0.010	mg/l	SM 4500PE-2011
Surfactants, MBAS as LAS d	0.28	0.10	0.080	mg/l	SM5540 C-11

⁽a) Elevated detection limit due to dilution required for matrix interference. Analysis performed at SGS Accutest, Dayton, NJ.

⁽b) Analysis performed at SGS Accutest, Dayton, NJ.

⁽c) Elevated reporting limit due to matrix interference.

⁽d) Analysis performed at SGS Accutest, Lafayette, LA.

Section 3 &

Report of Ar	nalveis	
Report of 711	iai y 515	

Client Sample ID: PERMIT RENEWEL

Lab Sample ID: TD488-1 **Date Sampled:** 03/14/17 Matrix: **Date Received:** 03/14/17 AQ - Water Method: EPA 624 Percent Solids: n/a

Project: Permit

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** VE2575 Run #1 E0058162.D 03/18/17 EM n/a n/a

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	0.119	0.050	0.010	mg/l	
71-43-2	Benzene	ND	0.0010	0.00030	mg/l	
75-27-4	Bromodichloromethane	ND	0.0010	0.00030	mg/l	
75-25-2	Bromoform	0.0016	0.0010	0.00030	mg/l	
108-90-7	Chlorobenzene	0.00050	0.0010	0.00030	mg/l	J
75-00-3	Chloroethane	ND	0.0010	0.00033	mg/l	
67-66-3	Chloroform	0.00067	0.0010	0.00030		J
75-15-0	Carbon disulfide	ND	0.0050	0.00075	mg/l	
56-23-5	Carbon tetrachloride	ND	0.0010	0.00054	mg/l	
75-34-3	1,1-Dichloroethane	ND	0.0010	0.00030	mg/l	
75-35-4	1,1-Dichloroethylene	ND	0.0010	0.00030	mg/l	
107-06-2	1,2-Dichloroethane	ND	0.0010	0.00030		
78-87-5	1,2-Dichloropropane	ND	0.0010	0.00030		
124-48-1	Dibromochloromethane	ND	0.0010	0.00030	mg/l	
156-59-2	cis-1,2-Dichloroethylene	ND	0.0010	0.00030	mg/l	
10061-01-5	cis-1,3-Dichloropropene	ND	0.0010	0.00030		
156-60-5	trans-1,2-Dichloroethylene	ND	0.0010	0.00030	mg/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.0010	0.00030	mg/l	
100-41-4	Ethylbenzene	ND	0.0010	0.00030	mg/l	
591-78-6	2-Hexanone	0.0158	0.010	0.0012	mg/l	
108-10-1	4-Methyl-2-pentanone	0.0100	0.010	0.0023	mg/l	
74-83-9	Methyl bromide	ND	0.0010	0.00049	mg/l	
74-87-3	Methyl chloride	0.00053	0.0010	0.00030	mg/l	J
75-09-2	Methylene chloride	ND	0.0050	0.0013	mg/l	
78-93-3	Methyl ethyl ketone	0.0699	0.010	0.0026	mg/l	
100-42-5	Styrene	ND	0.0010	0.00030	mg/l	
71-55-6	1,1,1-Trichloroethane	ND	0.0010	0.00030		
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.0010	0.00030	mg/l	
79-00-5	1,1,2-Trichloroethane	ND	0.0010	0.00030	mg/l	
127-18-4	Tetrachloroethylene	ND	0.0010	0.00030		
108-88-3	Toluene	ND	0.0010	0.00030		
79-01-6	Trichloroethylene	ND	0.0010	0.00030	mg/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

ACCUTEST

Page 2 of 2

Client Sample ID: PERMIT RENEWEL

 Lab Sample ID:
 TD488-1
 Date Sampled:
 03/14/17

 Matrix:
 AQ - Water
 Date Received:
 03/14/17

 Method:
 EPA 624
 Percent Solids:
 n/a

Project: Permit

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	0.0010 0.0030	0.00030 0.00065	C	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	100% 95% 97% 108%		72-12 68-12 80-11 72-12	24% 9%	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 3

Client Sample ID: PERMIT RENEWEL

Lab Sample ID: TD488-1 **Date Sampled:** 03/14/17 **Date Received:** 03/14/17 Matrix: AQ - Water Method: EPA 625 EPA 625 Percent Solids: n/a

Project: Permit

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	J186360.D	1	03/18/17	SC	03/17/17	OP43083	EJ2499
Run #2	J186361.D	10	03/18/17	SC	03/17/17	OP43083	EJ2499

	Initial Volume	Final Volume
Run #1	980 ml	1.0 ml
Run #2	980 ml	1.0 ml

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
65-85-0	Benzoic Acid	ND	0.020	0.0017	mg/l	
95-57-8	2-Chlorophenol	ND	0.0051	0.0014	mg/l	
59-50-7	4-Chloro-3-methyl phenol	ND	0.0051	0.0018	mg/l	
120-83-2	2,4-Dichlorophenol	ND	0.0051	0.0020	mg/l	
105-67-9	2,4-Dimethylphenol	ND	0.0051	0.0011	mg/l	
51-28-5	2,4-Dinitrophenol	ND	0.026	0.0012	mg/l	
534-52-1	4,6-Dinitro-o-cresol	ND	0.010	0.0039	mg/l	
95-48-7	2-Methylphenol	ND	0.0051	0.0014	mg/l	
	3&4-Methylphenol	ND	0.0051	0.0016	mg/l	
88-75-5	2-Nitrophenol	ND	0.0051	0.0018	mg/l	
100-02-7	4-Nitrophenol	ND	0.026	0.013	mg/l	
87-86-5	Pentachlorophenol	ND	0.026	0.0033	mg/l	
108-95-2	Phenol	ND	0.0051	0.0012	mg/l	
95-95-4	2,4,5-Trichlorophenol	ND	0.0051	0.0020	mg/l	
88-06-2	2,4,6-Trichlorophenol	ND	0.0051	0.0015	mg/l	
83-32-9	Acenaphthene	ND	0.0051	0.0017	mg/l	
208-96-8	Acenaphthylene	ND	0.0051	0.0017	mg/l	
120-12-7	Anthracene	ND	0.0051	0.0019	mg/l	
56-55-3	Benzo(a)anthracene	ND	0.0051	0.0018	mg/l	
50-32-8	Benzo(a)pyrene	ND	0.0051	0.0021	mg/l	
205-99-2	Benzo(b)fluoranthene	ND	0.0051	0.0023	mg/l	
191-24-2	Benzo(g,h,i)perylene	ND	0.0051	0.0020	mg/l	
207-08-9	Benzo(k)fluoranthene	ND	0.0051	0.0021	mg/l	
101-55-3	4-Bromophenyl phenyl ether	ND	0.0051	0.0019	mg/l	
85-68-7	Butyl benzyl phthalate	ND	0.0051	0.0019	mg/l	
100-51-6	Benzyl Alcohol	ND	0.0051	0.0017	mg/l	
91-58-7	2-Chloronaphthalene	ND	0.0051	0.0020	mg/l	
106-47-8	4-Chloroaniline	ND	0.0051	0.0017	mg/l	
86-74-8	Carbazole	ND	0.0051	0.0019	mg/l	
218-01-9	Chrysene	ND	0.0051	0.0018	mg/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	0.0051	0.0019	mg/l	
111-44-4	bis(2-Chloroethyl)ether	ND	0.0051	0.0016	mg/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$ N = Indicates presumptive evidence of a compound

8 of 68 **ACCUTEST**

Client Sample ID: PERMIT RENEWEL

 Lab Sample ID:
 TD488-1
 Date Sampled:
 03/14/17

 Matrix:
 AQ - Water
 Date Received:
 03/14/17

 Method:
 EPA 625
 EPA 625
 Percent Solids:
 n/a

Project: Permit

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
108-60-1	bis(2-Chloroisopropyl)ether	ND	0.0051	0.0016	mg/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	0.0051	0.0019	mg/l	
95-50-1	1,2-Dichlorobenzene	ND	0.0051	0.0018	mg/l	
541-73-1	1,3-Dichlorobenzene	ND	0.0051	0.0016	mg/l	
106-46-7	1,4-Dichlorobenzene	ND	0.0051	0.0017	mg/l	
121-14-2	2,4-Dinitrotoluene	ND	0.0051	0.0021	mg/l	
606-20-2	2,6-Dinitrotoluene	ND	0.0051	0.0019	mg/l	
91-94-1	3,3'-Dichlorobenzidine	ND	0.010	0.0020	mg/l	
53-70-3	Dibenzo(a,h)anthracene	ND	0.0051	0.0022	mg/l	
132-64-9	Dibenzofuran	ND	0.0051	0.0018	mg/l	
84-74-2	Di-n-butyl phthalate	ND	0.0051	0.0020	mg/l	
117-84-0	Di-n-octyl phthalate	ND	0.0051	0.0026	mg/l	
84-66-2	Diethyl phthalate	ND	0.0051	0.0019	mg/l	
131-11-3	Dimethyl phthalate	ND	0.0051	0.0020	mg/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	0.0051	0.0020	mg/l	
206-44-0	Fluoranthene	ND	0.0051	0.0022	mg/l	
86-73-7	Fluorene	ND	0.0051	0.0018	mg/l	
118-74-1	Hexachlorobenzene	ND	0.0051	0.0020	mg/l	
87-68-3	Hexachlorobutadiene	ND	0.0051	0.0020	mg/l	
77-47-4	Hexachlorocyclopentadiene	ND	0.010	0.0017	mg/l	
67-72-1	Hexachloroethane	ND	0.0051	0.0018	mg/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.0051	0.0024	mg/l	
78-59-1	Isophorone	ND	0.0051	0.0019	mg/l	
91-57-6	2-Methylnaphthalene	ND	0.0051	0.0016	mg/l	
88-74-4	2-Nitroaniline	ND	0.0051	0.0019	mg/l	
99-09-2	3-Nitroaniline	ND	0.0051	0.0016	mg/l	
100-01-6	4-Nitroaniline	ND	0.0051	0.0025	mg/l	
91-20-3	Naphthalene	ND	0.0051	0.0018	mg/l	
98-95-3	Nitrobenzene	ND	0.0051	0.0017	mg/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	0.0051	0.0020	mg/l	
86-30-6	N-Nitrosodiphenylamine	ND	0.0051	0.0019	mg/l	
85-01-8	Phenanthrene	ND	0.0051	0.0019	mg/l	
129-00-0	Pyrene	ND	0.0051	0.0018	mg/l	
120-82-1	1,2,4-Trichlorobenzene	ND	0.0051	0.0018	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	45%	33%	10-60	5%	
4165-62-2	Phenol-d5	39%	27%	10-63		
118-79-6	2,4,6-Tribromophenol	20% a	34%	32-12		

 $ND = Not detected \qquad MDL = N$

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Client Sample ID: PERMIT RENEWEL

 Lab Sample ID:
 TD488-1
 Date Sampled:
 03/14/17

 Matrix:
 AQ - Water
 Date Received:
 03/14/17

 Method:
 EPA 625
 EPA 625
 Percent Solids:
 n/a

Project: Permit

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-60-0	Nitrobenzene-d5	78%	71%	29-115%
321-60-8	2-Fluorobiphenyl	65%	59%	34-113%
1718-51-0	Terphenyl-d14	54%	49%	23-138%

(a) Outside control limits biased low. Confirmed by reanalysis.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Client Sample ID: PERMIT RENEWEL

Lab Sample ID: **Date Sampled:** 03/14/17 TD488-1 Matrix: **Date Received:** 03/14/17 AQ - Water Method: EPA 608 EPA 608 Percent Solids: n/a

Project: Permit

	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
Run #1 a	6G45118.D	1	03/21/17	ANJ	03/20/17	N:OP1248	N:G6G1288
Run #2 a	2G144055.D	1	03/21/17	ANJ	03/20/17	N:OP1247	N:G2G3968

	Initial Volume	Final Volume
Run #1	990 ml	5.0 ml
Run #2	990 ml	5.0 ml

PCB List

Compound	Result	RL M	IDL	Units	Q
Aldrin	ND	0.0000100	.00000	3 mg/1	
alpha-BHC	ND				
beta-BHC	ND	0.0000100	.00000	29mg/1	
delta-BHC	ND	0.0000100	.00000	23mg/1	
gamma-BHC (Lindane)	ND	0.0000100	.00000	14mg/1	
Chlordane	ND	0.00010 0	.00005	7 mg/l	
Dieldrin	ND	0.0000100	.00000	18mg/1	
4,4'-DDD	ND	0.0000100	.00000	19ng/l	
4,4'-DDE	ND	0.0000100	.00000	3 i mg/1	
4,4'-DDT	ND	0.0000100	.00000	25mg/l	
Endrin	ND	0.0000100	.00000	25mg/l	
Endosulfan sulfate	ND	0.0000100	.00000	27mg/l	
Endrin aldehyde	ND	0.0000100	.00000	26mg/l	
Endosulfan-I	ND	0.0000100	.00000	25mg/l	
Endosulfan-II	ND	0.0000100	.00000	22mg/l	
Heptachlor	ND	0.0000100	.00000	19ng/l	
Heptachlor epoxide	ND	0.0000100	.00000	33mg/1	
Methoxychlor	ND	0.0000100	.00000	29ng/l	
Toxaphene	ND	0.00013 0	.00009	3mg/l	
Aroclor 1016	ND b			_	
Aroclor 1221				_	
Aroclor 1232					
		0.00025 0	.00014	mg/l	
Aroclor 1248	ND b	0.00025 0	.00013	mg/l	
Aroclor 1254					
Aroclor 1260	ND b	0.00025 0	.00014	mg/l	
Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
Tetrachloro-m-xylene	88%	74%	10-13	56%	
Tetrachloro-m-xylene	92%	79%	10-13	56%	
Decachlorobiphenyl	81%	46%	10-14	43%	
	Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Chlordane Dieldrin 4,4'-DDD 4,4'-DDE 4,4'-DDT Endrin Endosulfan sulfate Endrin aldehyde Endosulfan-II Heptachlor Heptachlor epoxide Methoxychlor Toxaphene Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Surrogate Recoveries Tetrachloro-m-xylene Tetrachloro-m-xylene	Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Chlordane Dieldrin 4,4'-DDD 4,4'-DDE 4,4'-DDT Endrin Endosulfan sulfate Endrin aldehyde Endosulfan-II Heptachlor Heptachlor epoxide Methoxychlor Toxaphene Aroclor 1221 Aroclor 1232 Aroclor 1248 Aroclor 1254 Aroclor 1260 Surrogate Recoveries ND ND RD RND ND N	Aldrin alpha-BHC ND 0.0000100 delta-BHC ND 0.0000100 gamma-BHC (Lindane) ND 0.0000100 Qamma-BHC (Li	Aldrin alpha-BHC ND 0.0000100.00000 beta-BHC ND 0.0000100.00000 delta-BHC ND 0.0000100.00000 gamma-BHC (Lindane) ND 0.0000100.000000 Chlordane ND 0.0000100.000000 Chlordane ND 0.0000100.000000 Dieldrin ND 0.0000100.000000 4,4'-DDD ND 0.0000100.00000 4,4'-DDE ND 0.0000100.000000 4,4'-DDT ND 0.0000100.000000 Endrin ND 0.0000100.000000 Endrin ND 0.0000100.000000 Endrin aldehyde ND 0.0000100.000000 Endrin aldehyde ND 0.0000100.000000 Endrouslfan-II ND 0.0000100.000000 Heptachlor Heptachlor ND 0.0000100.000000 Methoxychlor ND 0.0000100.000000 Methoxychlor ND 0.0000100.000000 Methoxychlor ND 0.0000100.000000 Aroclor 1016 ND 0.000013 0.00001 Aroclor 1221 ND 0.000025 0.00015 Aroclor 1242 ND 0.00025 0.00014 Aroclor 1254 ND 0.00025 0.00014 Aroclor 1254 ND 0.00025 0.00014 Surrogate Recoveries Run# 1 Run# 2 Limi Tetrachloro-m-xylene 88% 74% 10-15 Tetrachloro-m-xylene	Aldrin alpha-BHC ND 0.0000100.00003 ing/1 alpha-BHC ND 0.0000100.00003 ing/1 delta-BHC ND 0.0000100.00002 ing/1 delta-BHC ND 0.0000100.00002 ing/1 gamma-BHC (Lindane) ND 0.000100.00001 ing/1 0.000100.00001 ing/1 0.000100.00001 ing/1 0.000100.00001 ing/1 0.000100.00001 ing/1 0.0000100.00001 ing/1 0.0000100.00002 ing/1 0.0000100.000002 ing/1 0.0000100.00002 ing/1 0.000100.00002 ing/1 0.000100.00001 ing/1 0.000100

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$ N = Indicates presumptive evidence of a compound

11 of 68 **ACCUTEST**

Client Sample ID: PERMIT RENEWEL

Lab Sample ID: TD488-1 **Date Sampled:** 03/14/17 Matrix: AQ - Water **Date Received:** 03/14/17 Method: EPA 608 EPA 608 **Percent Solids:** n/a

Project: Permit

PCB List

Surrogate Recoveries CAS No. Run#1 Run# 2 Limits Decachlorobiphenyl 68% 10-143% 2051-24-3 60%

(a) Analysis performed at SGS Accutest, Dayton, NJ.

(b) Result is from Run# 2

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: PERMIT RENEWEL

 Lab Sample ID:
 TD488-1
 Date Sampled:
 03/14/17

 Matrix:
 AQ - Water
 Date Received:
 03/14/17

 Percent Solids:
 n/a

Project: Permit

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic ^a	0.171	0.010	0.00034	mg/l	10	03/17/17	03/18/17 ANJ	EPA 200.8 ¹	EPA 200.8 ³
Barium ^a	0.0130	0.010	0.00028	mg/l	10	03/17/17	03/18/17 ANJ	EPA 200.8 ¹	EPA 200.8 ³
Cadmium ^a	0.0012 U	0.0050	0.0012	mg/l	10	03/17/17	03/18/17 ANJ	EPA 200.8 ¹	EPA 200.8 ³
Chromium a	0.0010 U	0.040	0.0010	mg/l	10	03/17/17	03/18/17 ANJ	EPA 200.8 ¹	EPA 200.8 ³
Lead a	0.00027 B	0.0050	0.00011	mg/l	10	03/17/17	03/18/17 ANJ	EPA 200.8 ¹	EPA 200.8 ³
Mercury b	0.000055 B	0.00020	0.00005	5mg/l	1	03/20/17	03/20/17 ANJ	EPA 245.1 ²	EPA 245.1 ⁴
Selenium ^a	0.530	0.010	0.0012	mg/l	10	03/17/17	03/18/17 ANJ	EPA 200.8 ¹	EPA 200.8 ³
Silver a	0.00072 B	0.020	0.00041	mg/l	10	03/17/17	03/18/17 ANJ	EPA 200.8 ¹	EPA 200.8 ³

(1) Instrument QC Batch: N:MA41590(2) Instrument QC Batch: N:MA41595(3) Prep QC Batch: N:MP99302(4) Prep QC Batch: N:MP99331

(a) Elevated detection limit due to dilution required for matrix interference. Analysis performed at SGS Accutest, Dayton, NJ.

(b) Analysis performed at SGS Accutest, Dayton, NJ.

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL

13 of 68 ACCUTEST TD488

Page 1 of 1

Client Sample ID: PERMIT RENEWEL

Lab Sample ID: TD488-1 **Date Sampled:** 03/14/17 Matrix: **Date Received:** 03/14/17 AQ - Water Percent Solids: n/a

Project: Permit

General Chemistry

Analyte	Result	RL	MDL	Units	DF	Analyzed	Ву	Method
BOD, 5 Day	13.5	6.0	3.0	mg/l	1	03/14/17 18:45	07	SM 5210B-2000
Nitrogen, Ammonia	111	5.0	1.0	mg/l	50			EPA 350.1
Nitrogen, Nitrate ^a	5.4 U	10	5.4	mg/l	20	03/15/17 11:07	ES	EPA 300
Nitrogen, Nitrite ^a	125	10	5.4	mg/l	20	03/15/17 11:07	ES	EPA 300
Phosphorus, Total	0.33	0.020	0.010	mg/l	1	03/24/17	BG	SM 4500PE-2011
Sulfide	0.010 U	0.20	0.010	mg/l	1	03/16/17	TH	SM 4500S+ F-2000
Sulfite	0.77 U	3.0	0.77	mg/l	1	03/16/17 08:45	CV	SM 4500 SO32 B-2011
Surfactants, MBAS as LAS b	0.28	0.10	0.080	mg/l	1	03/16/17 08:45	ALA	SM5540 C-11

(a) Elevated reporting limit due to matrix interference.

(b) Analysis performed at SGS Accutest, Lafayette, LA.

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL

Section 4

Misc. Forms	
Custody Documents and Other Forms	
Includes the following where applicable:	

	_
_	_

SGS ACCUTEST		CHAIN OF CUSTODY 10165 Harwin Dr, Ste 150 Houston, TX 77036 FED.EX Tracking #									PAGE OF																	
and the second second		TEL. 713-271-4700 FAX: 713-271-4770 www.accutest.com							Acc	utest Quot	e #			++	Accute	est Job #	12	7										
Client / Reporting Information			Projec			com	200000		C. Salara	70.25	erector	20000	DEM A										<u></u>	10	0			
Company Name	Project Name	Project Information Project Name:										Requeste						lyse		Matrix Codes								
Gulf Chemical & Metallurgical	Permit													1				1					1 1					
	Street			\$55000	01000000	-0.46		88783	20110.0	40,000	FD 5703	MARKET IN	tolen sees-o	_	ı	1		1						D/	N - Drinking Wate			
302 Midway City State 70		Dilling left and the first left								7							1			GI	W - Ground Wate							
Erooned . =	City	Dity State Silling Information (if different from Report to) Company Name								\dashv							1			SI	WW - Water W - Surface Wate							
Project Contact E-mail	Project #	Declared in			hemical	& N	letallı	urgio	al													1			SO - Soil SL- Sludge			
	FIOIECL#			Street A	ddress									7	-										SED-Sediment			
Phone # Fax #	Client Purchas	e Order #		City																				L	OI - Oil IQ - Other Liquid			
979-415-1537				City					State			Zij	р	1		1								8	AIR - Air SOL - Other Solid			
Sampler(s) Name(s) Phone #	Project Manage	er		Attention	ı:									-			ş		1		9			- 1	WP - Wipe FB-Field Blank			
Emanuel Alvarado																Pest/PCB-608	200.8-Metals-NJ	NO3,NO2,SO3	MBAS-Lafayette		Ammonia/TPO4				7 5 TICIO DIGIIK			
		Collection				I,		Num	ber of p	reserv	red Bol	ttles		27	SVOC-625	8	Met	0,	l in									
Accutest Sample # Field ID / Point of Collection					# of	П	T N		8	ater	I	ğ	SRE S	VOC-624	8	₩.	8.	3,8	AS	Sulfide	l e	۵	1 1					
1	Date	Time	Sampled By	Matrix	bottles	오	NaOH	HNO3	H2SO4	Di Wate	MEOH	NaHSO4	ENCOR	8 8	S	Pe	20	2	₩	Sul	Am	BOD	1 1	1.	AB USE ONLY			
Pernit Rovewal	3-14-17	10:000	de		13	x	x	x	x x		П	\top	\Box	X	x	х	X	х	x	x	x		\vdash					
						H	+	H	+	+	+	+	++	+^	+^	+^	^		1	 ^		X	\vdash	-				
				 		Н	+	+	+	H	+	+	++	-	-	-			\perp									
	 	 				Н	_	\sqcup	4	Н	Ц	\perp	Ш				_	/										
	 							Ш					p		1		1 1 2)										
								П		3		Q	1/0	1.77						2 6-90/V6CH	ra Terrir			+				
						П		\Box	1	\Box	+	+	m	1	A 4.14 6	1	-			-			 	+				
						\vdash	+	H	+	Н	+	+	╁	+	+	-	_		-	—	_		\vdash					
						\vdash	+	H	+	\vdash	-		-	-		ļ		7					\perp					
	 	l				1	1/10		16	3 2	s del) Ö	24 <i>E</i>	6			4			-			1	- 1				
							Y	1	1 41	il V	S 1855	30	2	47004	28 MARKET 160	MARKET NAME OF THE PARTY.	MALE WEEK	S.Z. (5.78404)	Kar L Pag	2517947 999520	Autosoful			\top				
-										П		Т	П	T					H					+				
						T		\Box	\top	П	\top	\forall	\vdash	t	+					-			-+					
						+	V D	200	110	981	8	+	\vdash	1 %	1	Σ		13.0	1	-								
Turnaround Time (Business days)				3030/32A(24)		ᆛ)ala l	Ų.	rable	SI		Ш						118	2	100								
Standard 5 Day RUSH	Approved By (Accu	test PM): / Date:		Пс	ommerci					Г		RRP		700000		\wedge	2000 974	20062	Com	ments /	Specia	l Instruc	tions					
4 Day RUSH				c	ommerci	al "B	" (Lev			L			Forma	t														
3 Day RUSH								Other			_ \						Projecty											
2 Day RUSH				HR	EDT1 (L ommerci:	evel	3141	8 B		1				49		4		D.I										
1 Day EMERGENCY Emergency & Rush T/A data available VIA Lablink			1		Jimilei Ci				'A" = F	'esult	e Onle				er ()	X			11									
Emorgency & Rush 17A data avaitable VIA Lablink			1										nmary					15	-14	\subset								
	San	ple Custody mus	t be docume	nted held	w oach	~	nmma	enial !	OI - F						mary				ch-		1				1 . 1			
Relinguished by Sampler Date Time:	2 15-70	Received By?		nica beic	w each	unie	Sam	Reling	enan Pasked	ge p	osse	SSIO	ı, incl	uding	courier				1	4	X		/					
	7 150pm	1 Received By:						2/1	4/	4/	_						Date fime: Received By:					8614 1545 3/14/17						
Date Time: Received By:						Relinquished By:									Sate Times						1 10 0 17							

Intact
Not intact

Relinquished by:

TD488: Chain of Custody Page 1 of 4

On Ice

Cooler Temp. 3.9

8 <u>8</u> h <u>C</u> #31		W. 2	2) (AC N	UPCSUB INWAPUTIONSUB	500 d 1/2 cd //	11250 hm/zd 3)VUH			Form: SM027-06 Rev 10/24/2016
ACCUTEST COOLER TEMP FORM	Delivered by (circle one): FedEx/UPS $ALGC$ Divers $ALGC$ Divers $ALGC$ Divers $ALGC$ Client Client $ALGC$ Client	Cooler Number:	SAMPLES CONTAINED IN COOLER ()				Client: Gramit Containens Crient: Gramit Containens project: Arbunit Containens		Form
	Deliver Date: Client:	Cooler Thermo						a service	

TD488: Chain of Custody Page 2 of 4

Page 1 of 2

_		
	_	_
	_	_

Job Number: TD488	Clie	ent: GULF CHI	GULF CHEMICAL Project: PERMIT					
Date / Time Received:		Delivery I	Method	:	Airbill #'s:			
No. Coolers:1 T	herm ID: IR-5;				Temp Adjustment Factor: 0;	;		
Cooler Temps (Initial/Adjusted):	#1: (3.9/3.9);							
Cooler Security Y or	<u>r N</u>		<u>Y</u> c	or N	Sample Integrity - Documentation	<u>Y</u>	or N	
Custody Seals Present:		C Present:	✓		Sample labels present on bottles:	✓		
2. Custody Seals Intact:	4. Smpl I	Dates/Time OK	✓		2. Container labeling complete:	\checkmark		
Cooler Temperature	Y or N				3. Sample container label / COC agree:	\checkmark		
1. Temp criteria achieved:	✓				Sample Integrity - Condition	<u>Y</u>	or N	
Cooler temp verification:					1. Sample recvd within HT:	✓		
3. Cooler media:	Ice (Bag)				2. All containers accounted for:	✓		
Quality Control Preservation	Y or N	<u>N/A</u>	WTB	STB	3. Condition of sample:		Intact	
1. Trip Blank present / cooler:		✓			Sample Integrity - Instructions	<u>Y</u>	or N	N/A
2. Trip Blank listed on COC:		✓			Analysis requested is clear:	~		
3. Samples preserved properly:	ightharpoonup				2. Bottles received for unspecified tests		✓	
4. VOCs headspace free:		✓			3. Sufficient volume recvd for analysis:	✓		
					4. Compositing instructions clear:			✓
					5. Filtering instructions clear:			✓
Comments Matrix is water.								

SGS Accutest Sample Receipt Summary

TD488: Chain of Custody

Page 3 of 4

4

Sample Receipt Log

 Job #:
 TD488
 Date / Time Received:
 3/14/2017 3:45:00 PM
 Initials:
 DS

Client: GULF CHEMICAL

Cooler#	Sample ID:	Vol	Bot #	Location	Pres	рН	Therm ID	Initial Temp	Therm CF	Corrected Temp
1	TD488-1	LAG	1	4V	N/P	Note #2 - Preservative check not applicable.	IR-5	3.9	0	3.9
1	TD488-1	LAG	2	4V	N/P	Note #2 - Preservative check not applicable.	IR-5	3.9	0	3.9
1	TD488-1	LAG	3	SUB	N/P	Note #2 - Preservative check not applicable.	IR-5	3.9	0	3.9
1	TD488-1	LAG	4	SUB	N/P	Note #2 - Preservative check not applicable.	IR-5	3.9	0	3.9
1	TD488-1	1000ml	5	3N	N/P	Note #2 - Preservative check not applicable.	IR-5	3.9	0	3.9
1	TD488-1	1000ml	6	SUB	N/P	Note #2 - Preservative check not applicable.	IR-5	3.9	0	3.9
1	TD488-1	500ml	7	3N	N/P	Note #2 - Preservative check not applicable.	IR-5	3.9	0	3.9
1	TD488-1	500ml	8	11	H2SO4	pH < 2	IR-5	3.9	0	3.9
1	TD488-1	500ml	9	SUB	HNO3	pH < 2	IR-5	3.9	0	3.9
1	TD488-1	250ml	10	11	NaOH+ZnAc	pH > 12	IR-5	3.9	0	3.9
1	TD488-1	40ml	11	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.9	0	3.9
1	TD488-1	40ml	12	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.9	0	3.9
1	TD488-1	40ml	13	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.9	0	3.9

TD488: Chain of Custody

Page 4 of 4

Section 5

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method Blank Summary

Job Number: TD488

Account: GCMC Gulf Chemical & Metallurgical Corp.

Project: Permit

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VE2575-MB	E0058152.D	1	03/18/17	EM	n/a	n/a	VE2575

The QC reported here applies to the following samples: Method: EPA 624

CAS No.	Compound	Result	RL	MDL	Units Q
67-64-1	Acetone	ND	50	10	ug/l
71-43-2	Benzene	ND	1.0	0.30	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.30	ug/l
75-25-2	Bromoform	ND	1.0	0.30	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.30	ug/l
75-00-3	Chloroethane	ND	1.0	0.33	ug/l
67-66-3	Chloroform	ND	1.0	0.30	ug/l
75-15-0	Carbon disulfide	ND	5.0	0.75	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	0.54	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.30	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.30	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.30	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.30	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.30	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.30	ug/l
10061-01-5	, 1	ND	1.0	0.30	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.30	ug/l
10061-02-6	, , ,	ND	1.0	0.30	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.30	ug/l
591-78-6	2-Hexanone	ND	10	1.2	ug/l
108-10-1	4-Methyl-2-pentanone	ND	10	2.3	ug/l
74-83-9	Methyl bromide	ND	1.0	0.49	ug/l
74-87-3	Methyl chloride	ND	1.0	0.30	ug/l
75-09-2	Methylene chloride	ND	5.0	1.3	ug/l
78-93-3	Methyl ethyl ketone	ND	10	2.6	ug/l
100-42-5	Styrene	ND	1.0	0.30	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.30	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.30	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l
108-88-3	Toluene	ND	1.0	0.30	ug/l
79-01-6	Trichloroethylene	ND	1.0	0.30	ug/l
75-01-4	Vinyl chloride	ND	1.0	0.30	ug/l
1330-20-7	Xylene (total)	ND	3.0	0.65	ug/l

Page 2 of 2

Method: EPA 624

Method Blank Summary
Job Number: TD488
Account: GCMC Gulf Chemical & Metallurgical Corp.

Project: Permit

Sample VE2575-MB	File ID E0058152.D	DF	Analyzed 03/18/17	By EM	Prep Date	Prep Batch	Analytical Batch VE2575
, 220, 0 1112	20000102.5	-	00, 10, 1,	21.1		11, 4	, 2 2 0, 10

The QC reported here applies to the following samples:

CAS No.	Surrogate Recoveries	Limits	
1868-53-7	Dibromofluoromethane	99%	72-122%
17060-07-0	1,2-Dichloroethane-D4	94%	68-124%
2037-26-5	Toluene-D8	89%	80-119%
460-00-4	4-Bromofluorobenzene	101%	72-126%

Page 1 of 2

Blank Spike Summary Job Number: TD488

Account: GCMC Gulf Chemical & Metallurgical Corp.

Project: Permit

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VE2575-BS	E0058150.D	1	03/18/17	EM	n/a	n/a	VE2575

The QC reported here applies to the following samples: Method: EPA 624

CAGN	C	Spike	BSP	BSP	T,
CAS No.	Compound	ug/l	ug/l	%	Limits
67-64-1	Acetone	125	102	82	46-129
71-43-2	Benzene	25	25.9	104	68-119
75-27-4	Bromodichloromethane	25	23.9	96	72-118
75-25-2	Bromoform	25	22.3	89	54-123
108-90-7	Chlorobenzene	25	25.4	102	74-120
75-00-3	Chloroethane	25	22.1	88	61-132
67-66-3	Chloroform	25	24.6	98	73-122
75-15-0	Carbon disulfide	25	29.1	116	55-140
56-23-5	Carbon tetrachloride	25	26.0	104	68-133
75-34-3	1,1-Dichloroethane	25	27.8	111	72-121
75-35-4	1,1-Dichloroethylene	25	28.4	114	67-140
107-06-2	1,2-Dichloroethane	25	23.4	94	68-121
78-87-5	1,2-Dichloropropane	25	23.4	94	72-116
124-48-1	Dibromochloromethane	25	26.5	106	68-119
156-59-2	cis-1,2-Dichloroethylene	25	26.0	104	72-117
10061-01-5	cis-1,3-Dichloropropene	25	24.2	97	71-118
156-60-5	trans-1,2-Dichloroethylene	25	29.8	119	68-124
10061-02-6	trans-1,3-Dichloropropene	25	24.0	96	72-127
100-41-4	Ethylbenzene	25	26.5	106	71-117
591-78-6	2-Hexanone	125	117	94	49-124
108-10-1	4-Methyl-2-pentanone	125	109	87	54-122
74-83-9	Methyl bromide	25	21.7	87	53-138
74-87-3	Methyl chloride	25	20.7	83	50-145
75-09-2	Methylene chloride	25	25.8	103	60-125
78-93-3	Methyl ethyl ketone	125	119	95	51-129
100-42-5	Styrene	25	25.0	100	74-119
71-55-6	1,1,1-Trichloroethane	25	25.4	102	72-129
79-34-5	1,1,2,2-Tetrachloroethane	25	23.3	93	62-121
79-00-5	1,1,2-Trichloroethane	25	24.6	98	70-119
127-18-4	Tetrachloroethylene	25	26.5	106	72-132
108-88-3	Toluene	25	25.5	102	73-119
79-01-6	Trichloroethylene	25	26.0	104	73-121
75-01-4	Vinyl chloride	25	22.1	88	54-126
1330-20-7	Xylene (total)	75	81.6	109	74-119

^{* =} Outside of Control Limits.

ن د

Page 2 of 2

Method: EPA 624

C

Blank Spike Summary Job Number: TD488

Account: GCMC Gulf Chemical & Metallurgical Corp.

Project: Permit

Sample VE2575-BS	File ID E0058150.D	DF 1	Analyzed 03/18/17	By EM	Prep Date n/a	Prep Batch n/a	Analytical Batch VE2575

The QC reported here applies to the following samples:

CAS No.	Surrogate Recoveries	BSP	Limits
1868-53-7	Dibromofluoromethane	98%	72-122%
17060-07-0	1,2-Dichloroethane-D4	93%	68-124%
2037-26-5	Toluene-D8	100%	80-119%
460-00-4	4-Bromofluorobenzene	98%	72-126%

^{* =} Outside of Control Limits.

Page 1 of 2

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: TD488

Account: GCMC Gulf Chemical & Metallurgical Corp.

Project: Permit

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
TD545-1MS	E0058154.D	1	03/18/17	EM	n/a	n/a	VE2575
TD545-1MSD	E0058155.D	1	03/18/17	EM	n/a	n/a	VE2575
TD545-1	E0058153.D	1	03/18/17	EM	n/a	n/a	VE2575

The QC reported here applies to the following samples: Method: EPA 624

CAS No.	Compound	TD545 ug/l	-1 Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
67-64-1	Acetone	84.6		125	186	81	125	185	80	1	46-129/25
71-43-2	Benzene	1.3		25	25.2	96	25	27.6	105	9	68-119/12
75-27-4	Bromodichloromethane	ND		25	21.2	85	25	23.7	95	11	72-118/16
75-25-2	Bromoform	ND		25	19.6	78	25	21.7	87	10	54-123/17
108-90-7	Chlorobenzene	89.8		25	110	81	25	121	125* a	10	74-120/12
75-00-3	Chloroethane	ND		25	20.9	84	25	21.7	87	4	61-132/16
67-66-3	Chloroform	3.8		25	25.9	88	25	28.3	98	9	73-122/13
75-15-0	Carbon disulfide	ND		25	24.8	99	25	27.8	111	11	55-140/24
56-23-5	Carbon tetrachloride	ND		25	23.0	92	25	25.7	103	11	68-133/20
75-34-3	1,1-Dichloroethane	ND		25	24.8	99	25	27.4	110	10	72-121/14
75-35-4	1,1-Dichloroethylene	ND		25	25.5	102	25	28.2	113	10	67-140/18
107-06-2	1,2-Dichloroethane	ND		25	21.2	85	25	23.3	93	9	68-121/12
78-87-5	1,2-Dichloropropane	ND		25	20.8	83	25	23.2	93	11	72-116/12
124-48-1	Dibromochloromethane	ND		25	23.2	93	25	26.0	104	11	68-119/15
156-59-2	cis-1,2-Dichloroethylene	ND		25	23.4	94	25	26.0	104	11	72-117/13
10061-01-5	cis-1,3-Dichloropropene	ND		25	20.9	84	25	23.2	93	10	71-118/18
156-60-5	trans-1,2-Dichloroethylene	ND		25	26.7	107	25	29.3	117	9	68-124/15
10061-02-6	trans-1,3-Dichloropropene	ND		25	20.9	84	25	23.3	93	11	72-127/17
100-41-4	Ethylbenzene	ND		25	23.5	94	25	25.9	104	10	71-117/12
591-78-6	2-Hexanone	ND		125	117	94	125	121	97	3	49-124/21
108-10-1	4-Methyl-2-pentanone	ND		125	107	86	125	112	90	5	54-122/20
74-83-9	Methyl bromide	ND		25	19.8	79	25	21.2	85	7	53-138/16
74-87-3	Methyl chloride	0.98	J	25	20.0	76	25	21.2	81	6	50-145/17
75-09-2	Methylene chloride	1.4	J	25	24.1	91	25	26.6	101	10	60-125/16
78-93-3	Methyl ethyl ketone	ND		125	123	98	125	124	99	1	51-129/22
100-42-5	Styrene	ND		25	21.1	84	25	23.3	93	10	74-119/19
71-55-6	1,1,1-Trichloroethane	ND		25	22.9	92	25	25.4	102	10	72-129/14
79-34-5	1,1,2,2-Tetrachloroethane	ND		25	21.5	86	25	23.0	92	7	62-121/17
79-00-5	1,1,2-Trichloroethane	ND		25	22.0	88	25	24.3	97	10	70-119/13
127-18-4	Tetrachloroethylene	ND		25	23.1	92	25	25.3	101	9	72-132/14
108-88-3	Toluene	ND		25	22.9	92	25	25.1	100	9	73-119/13
79-01-6	Trichloroethylene	ND		25	23.2	93	25	25.6	102	10	73-121/13
75-01-4	Vinyl chloride	ND		25	20.7	83	25	21.8	87	5	54-126/17
1330-20-7	Xylene (total)	ND		75	72.1	96	75	79.8	106	10	74-119/13

^{* =} Outside of Control Limits.

Page 2 of 2

Method: EPA 624

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: TD488

GCMC Gulf Chemical & Metallurgical Corp. Account:

Project: Permit

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
TD545-1MS	E0058154.D	1	03/18/17	EM	n/a	n/a	VE2575
TD545-1MSD	E0058155.D	1	03/18/17	EM	n/a	n/a	VE2575
TD545-1	E0058153.D	1	03/18/17	EM	n/a	n/a	VE2575

The QC reported here applies to the following samples:

TD488-1

CAS No. Su	rrogate Recoveries	MS	MSD	TD545-1	Limits
1868-53-7 Di	bromofluoromethane	99%	99%	99%	72-122%
17060-07-0 1,2	2-Dichloroethane-D4	94%	94%	95%	68-124%
2037-26-5 To	luene-D8	100%	100%	89%	80-119%
460-00-4 4-I	Bromofluorobenzene	98%	96%	101%	72-126%

(a) Outside control limits due to high level in sample relative to spike amount.

^{* =} Outside of Control Limits.

Section 6

GC/MS Semi-volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method Blank Summary

Job Number: TD488

Account: GCMC Gulf Chemical & Metallurgical Corp.

Project: Permit

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
OP43083-MB	J186336A.D	1	03/17/17	SC	03/17/17	OP43083	EJ2499

The QC reported here applies to the following samples: Method: EPA 625

CAS No.	Compound	Result	RL	MDL	Units Q
65-85-0	Benzoic Acid	ND	10	0.86	ug/l
95-57-8	2-Chlorophenol	ND	2.5	0.69	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	2.5	0.88	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.5	1.0	ug/l
105-67-9	2,4-Dimethylphenol	ND	2.5	0.52	ug/l
51-28-5	2,4-Dinitrophenol	ND	13	0.61	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.0	1.9	ug/l
95-48-7	2-Methylphenol	ND	2.5	0.71	ug/l
	3&4-Methylphenol	ND	2.5	0.77	ug/l
88-75-5	2-Nitrophenol	ND	2.5	0.90	ug/l
100-02-7	4-Nitrophenol	ND	13	6.3	ug/l
87-86-5	Pentachlorophenol	ND	13	1.6	ug/l
108-95-2	Phenol	ND	2.5	0.60	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	2.5	0.97	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	2.5	0.75	ug/l
83-32-9	Acenaphthene	ND	2.5	0.83	ug/l
208-96-8	Acenaphthylene	ND	2.5	0.84	ug/l
120-12-7	Anthracene	ND	2.5	0.93	ug/l
56-55-3	Benzo(a)anthracene	ND	2.5	0.89	ug/l
50-32-8	Benzo(a)pyrene	ND	2.5	1.0	ug/l
205-99-2	Benzo(b)fluoranthene	ND	2.5	1.1	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	2.5	1.0	ug/l
207-08-9	Benzo(k)fluoranthene	ND	2.5	1.0	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.5	0.95	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.5	0.92	ug/l
100-51-6	Benzyl Alcohol	ND	2.5	0.82	ug/l
91-58-7	2-Chloronaphthalene	ND	2.5	0.97	ug/l
106-47-8	4-Chloroaniline	ND	2.5	0.85	ug/l
86-74-8	Carbazole	ND	2.5	0.95	ug/l
218-01-9	Chrysene	ND	2.5	0.87	ug/l
111-91-1	bis(2-Chloroethoxy)methane	ND	2.5	0.93	ug/l
111-44-4	bis(2-Chloroethyl)ether	ND	2.5	0.78	ug/l
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.5	0.80	ug/l
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.5	0.92	ug/l
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.88	ug/l
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.79	ug/l

Method Blank Summary

Job Number: TD488

GCMC Gulf Chemical & Metallurgical Corp. **Account:**

Project: Permit

Sample OP43083-MB	File ID J186336A.D	DF 1	Analyzed 03/17/17	By SC	Prep Date 03/17/17	Prep Batch OP43083	Analytical Batch EJ2499

The QC reported here applies to the following samples:

TD488-1

CAS No.	Compound	Result	RL	MDL	Units Q
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.82	ug/l
121-14-2	2,4-Dinitrotoluene	ND	2.5	1.0	ug/l
606-20-2	2,6-Dinitrotoluene	ND	2.5	0.93	ug/l
91-94-1	3,3'-Dichlorobenzidine	ND	5.0	1.0	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	2.5	1.1	ug/l
132-64-9	Dibenzofuran	ND	2.5	0.89	ug/l
84-74-2	Di-n-butyl phthalate	ND	2.5	1.0	ug/l
117-84-0	Di-n-octyl phthalate	ND	2.5	1.3	ug/l
84-66-2	Diethyl phthalate	ND	2.5	0.93	ug/l
131-11-3	Dimethyl phthalate	ND	2.5	0.98	ug/l
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.5	0.96	ug/l
206-44-0	Fluoranthene	ND	2.5	1.1	ug/l
86-73-7	Fluorene	ND	2.5	0.89	ug/l
118-74-1	Hexachlorobenzene	ND	2.5	0.99	ug/l
87-68-3	Hexachlorobutadiene	ND	2.5	0.97	ug/l
77-47-4	Hexachlorocyclopentadiene	ND	5.0	0.81	ug/l
67-72-1	Hexachloroethane	ND	2.5	0.87	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	2.5	1.2	ug/l
78-59-1	Isophorone	ND	2.5	0.91	ug/l
91-57-6	2-Methylnaphthalene	ND	2.5	0.80	ug/l
88-74-4	2-Nitroaniline	ND	2.5	0.94	ug/l
99-09-2	3-Nitroaniline	ND	2.5	0.80	ug/l
100-01-6	4-Nitroaniline	ND	2.5	1.2	ug/l
91-20-3	Naphthalene	ND	2.5	0.88	ug/l
98-95-3	Nitrobenzene	ND	2.5	0.84	ug/l
621-64-7	N-Nitroso-di-n-propylamine	ND	2.5	0.97	ug/l
86-30-6	N-Nitrosodiphenylamine	ND	2.5	0.91	ug/l
85-01-8	Phenanthrene	ND	2.5	0.94	ug/l
129-00-0	Pyrene	ND	2.5	0.90	ug/l
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.90	ug/l

CAS No. **Surrogate Recoveries**

Limits

367-12-4	2-Fluorophenol	26%	10-66%
4165-62-2	Phenol-d5	18%	10-63%

Page 3 of 3

Method: EPA 625

Method Blank Summary

Job Number: TD488

Account: GCMC Gulf Chemical & Metallurgical Corp.

Project: Permit

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
OP43083-MB	J186336A.D	1	03/17/17	SC	03/17/17	OP43083	EJ2499

The QC reported here applies to the following samples:

CAS No.	Surrogate Recoveries	Limits	
118-79-6	2,4,6-Tribromophenol	80%	32-128%
4165-60-0	Nitrobenzene-d5	82%	29-115%
321-60-8	2-Fluorobiphenyl	70%	34-113%
1718-51-0	Terphenyl-d14	112%	23-138%

Page 1 of 3

Method: EPA 625

Blank Spike/Blank Spike Duplicate Summary

Job Number: TD488

Account: GCMC Gulf Chemical & Metallurgical Corp.

Project: Permit

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP43083-BS	J186338.D	1	03/17/17	SC	03/17/17	OP43083	EJ2499
OP43083-BSD a	J186339.D	1	03/17/17	SC	03/17/17	OP43083	EJ2499

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
65-85-0	Benzoic Acid	100	34.3	34	35.1	35	2	10-91/30
95-57-8	2-Chlorophenol	50	31.9	64	33.1	66	4	38-102/30
59-50-7	4-Chloro-3-methyl phenol	50	39.6	79	39.7	79	0	30-110/30
120-83-2	2,4-Dichlorophenol	50	43.7	87	43.1	86	1	41-107/30
105-67-9	2,4-Dimethylphenol	50	37.4	75	38.5	77	3	39-107/30
51-28-5	2,4-Dinitrophenol	50	44.1	88	45.1	90	2	24-119/30
534-52-1	4,6-Dinitro-o-cresol	50	57.7	115	55.9	112	3	40-121/30
95-48-7	2-Methylphenol	50	27.7	55	27.4	55	1	33-93/30
	3&4-Methylphenol	50	30.0	60	30.7	61	2	28-99/30
88-75-5	2-Nitrophenol	50	46.3	93	46.3	93	0	38-107/30
100-02-7	4-Nitrophenol	50	20.7	41	20.5	41	1	10-78/30
87-86-5	Pentachlorophenol	50	41.7	83	40.4	81	3	28-116/30
108-95-2	Phenol	50	16.4	33	16.2	32	1	15-70/30
95-95-4	2,4,5-Trichlorophenol	50	46.8	94	44.6	89	5	47-116/30
88-06-2	2,4,6-Trichlorophenol	50	49.7	99	48.6	97	2	44-112/30
83-32-9	Acenaphthene	50	49.5	99	48.0	96	3	44-106/30
208-96-8	Acenaphthylene	50	51.0	102	49.4	99	3	46-111/30
120-12-7	Anthracene	50	49.1	98	47.7	95	3	53-114/30
56-55-3	Benzo(a)anthracene	50	49.4	99	49.9	100	1	57-113/30
50-32-8	Benzo(a)pyrene	50	50.5	101	49.4	99	2	50-109/30
205-99-2	Benzo(b)fluoranthene	50	54.0	108	53.3	107	1	50-117/30
191-24-2	Benzo(g,h,i)perylene	50	52.8	106	51.5	103	2	43-127/30
207-08-9	Benzo(k)fluoranthene	50	51.4	103	50.7	101	1	52-123/30
101-55-3	4-Bromophenyl phenyl ether	50	52.3	105	50.7	101	3	48-113/30
85-68-7	Butyl benzyl phthalate	50	54.8	110	54.1	108	1	42-120/30
100-51-6	Benzyl Alcohol	50	34.8	70	35.3	71	1	31-97/30
91-58-7	2-Chloronaphthalene	50	51.1	102	50.5	101	1	35-123/30
106-47-8	4-Chloroaniline	50	42.6	85	43.3	87	2	36-104/30
86-74-8	Carbazole	50	49.7	99	49.2	98	1	50-113/30
218-01-9	Chrysene	50	48.9	98	49.2	98	1	59-116/30
111-91-1	bis(2-Chloroethoxy)methane	50	47.0	94	47.6	95	1	34-103/30
111-44-4	bis(2-Chloroethyl)ether	50	45.3	91	45.7	91	1	36-100/30
108-60-1	bis(2-Chloroisopropyl)ether	50	47.9	96	47.9	96	0	30-110/30
7005-72-3	4-Chlorophenyl phenyl ether	50	55.3	111	53.7	107	3	45-112/30
95-50-1	1,2-Dichlorobenzene	50	46.2	92	45.2	90	2	37-100/30
541-73-1	1,3-Dichlorobenzene	50	44.2	88	43.4	87	2	34-99/30

^{* =} Outside of Control Limits.

Page 2 of 3

Method: EPA 625

Blank Spike/Blank Spike Duplicate Summary

Job Number: TD488

Account: GCMC Gulf Chemical & Metallurgical Corp.

Project: Permit

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP43083-BS	J186338.D	1	03/17/17	SC	03/17/17	OP43083	EJ2499
OP43083-BSD a	J186339.D	1	03/17/17	SC	03/17/17	OP43083	EJ2499

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
106-46-7	1,4-Dichlorobenzene	50	44.4	89	44.2	88	0	36-99/30
121-14-2	2,4-Dinitrotoluene	50	62.2	124* b	59.3	119* b	5	52-115/30
606-20-2	2,6-Dinitrotoluene	50	58.3	117* b	57.4	115* b	2	52-111/30
91-94-1	3,3'-Dichlorobenzidine	50	48.0	96	47.2	94	2	37-125/30
53-70-3	Dibenzo(a,h)anthracene	50	52.3	105	52.3	105	0	47-125/30
132-64-9	Dibenzofuran	50	53.1	106	52.0	104	2	45-108/30
84-74-2	Di-n-butyl phthalate	50	54.6	109	53.5	107	2	47-118/30
117-84-0	Di-n-octyl phthalate	50	54.6	109	53.9	108	1	41-124/30
84-66-2	Diethyl phthalate	50	53.4	107	53.5	107	0	38-121/30
131-11-3	Dimethyl phthalate	50	52.6	105	50.6	101	4	41-116/30
117-81-7	bis(2-Ethylhexyl)phthalate	50	52.8	106	51.6	103	2	50-123/30
206-44-0	Fluoranthene	50	49.6	99	49.0	98	1	50-118/30
86-73-7	Fluorene	50	53.9	108	52.4	105	3	47-113/30
118-74-1	Hexachlorobenzene	50	55.9	112	54.3	109	3	49-114/30
87-68-3	Hexachlorobutadiene	100	94.2	94	95.9	96	2	30-104/30
77-47-4	Hexachlorocyclopentadiene	50	18.4	37	19.0	38	3	10-97/30
67-72-1	Hexachloroethane	50	45.1	90	45.1	90	0	30-100/30
193-39-5	Indeno(1,2,3-cd)pyrene	50	52.9	106	52.1	104	2	45-127/30
78-59-1	Isophorone	50	50.7	101	50.9	102	0	40-103/30
91-57-6	2-Methylnaphthalene	50	46.5	93	47.3	95	2	36-104/30
88-74-4	2-Nitroaniline	50	52.4	105	51.0	102	3	41-117/30
99-09-2	3-Nitroaniline	50	46.1	92	45.8	92	1	37-117/30
100-01-6	4-Nitroaniline	50	46.4	93	45.0	90	3	47-121/30
91-20-3	Naphthalene	50	46.4	93	46.6	93	0	40-104/30
98-95-3	Nitrobenzene	50	54.0	108* b	54.1	108* b	0	40-103/30
621-64-7	N-Nitroso-di-n-propylamine	50	52.9	106	53.7	107	2	36-112/30
86-30-6	N-Nitrosodiphenylamine	100	99.7	100	98.2	98	2	39-109/30
85-01-8	Phenanthrene	50	49.9	100	48.4	97	3	53-114/30
129-00-0	Pyrene	50	52.0	104	52.2	104	0	51-117/30
120-82-1	1,2,4-Trichlorobenzene	50	47.6	95	46.5	93	2	32-103/30

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
367-12-4	2-Fluorophenol	38%	37%	10-66%
4165-62-2	Phenol-d5	28%	29%	10-63%

^{* =} Outside of Control Limits.

6.2.1

Page 3 of 3

Method: EPA 625

Blank Spike/Blank Spike Duplicate Summary

Job Number: TD488

Account: GCMC Gulf Chemical & Metallurgical Corp.

Project: Permit

Sample OP43083-BS	File ID J186338.D	DF 1	Analyzed 03/17/17	By SC	Prep Date 03/17/17	Prep Batch OP43083	Analytical Batch EJ2499
OP43083-BSD ^a	J186339.D	1	03/17/17	SC	03/17/17	OP43083	EJ2499

The QC reported here applies to the following samples:

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
118-79-6	2,4,6-Tribromophenol	99%	98%	32-128%
4165-60-0	Nitrobenzene-d5	104%	104%	29-115%
321-60-8	2-Fluorobiphenyl	98%	95%	34-113%
1718-51-0	Terphenyl-d14	102%	103%	23-138%

⁽a) Insufficient sample for MS/MSD.

⁽b) Outside control limits biased high. Analyte not detected in associated samples.

^{* =} Outside of Control Limits.

Section 7

General Chemistry

QC Data Summaries

Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries

METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: TD488

Account: GCMC - Gulf Chemical & Metallurgical Corp.

Project: Permit

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
BOD, 5 Day	GP41175/GN80260	2.0	0.0	mg/l	198	200	101.0	82-114%
Bromide	GP41173/GN80200	0.50	0.0	mg/l	10	9.96	99.6	90-110%
Chloride	GP41177/GN80268	0.50	0.0	mg/l	10	9.57	95.7	90-110%
Fluoride	GP41177/GN80268	0.50	0.0	mg/1	10	9.45	94.5	90-110%
Nitrogen, Ammonia	GP41180/GN80280	0.10	0.0	mg/1	2	1.96	98.0	90-110%
Nitrogen, Nitrate	GP41177/GN80268	0.50	0.0	mg/l	10	9.45	94.5	90-110%
Nitrogen, Nitrite	GP41177/GN80268	0.50	0.0	mg/l	10	9.17	91.7	90-110%
Phosphorus, Total	GP41359/GN80523	0.020	0.0	mq/l	0.4	0.41	102.5	91-108%
Sulfate	GP41177/GN80268	0.60	0.0	mg/l	10	9.78	97.8	90-110%
Sulfide	GN80295	0.20	0.0	mg/l	1600	1600	100.0	90-105%
Sulfite	GN80302	3.0	0.0	mg/l	50	50.5	101.0	97-102%

Associated Samples:
Batch GN80295: TD488-1
Batch GN80302: TD488-1
Batch GP41175: TD488-1
Batch GP41177: TD488-1
Batch GP41180: TD488-1
Batch GP41359: TD488-1
(*) Outside of QC limits

BLANK SPIKE DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: TD488
Account: GCMC - Gulf Chemical & Metallurgical Corp.
Project: Permit

Analyte	Batch ID	Units	Spike Amount	BSD Result	RPD	QC Limit
Sulfide	GN80295	mg/l	1600	1600	0.0	

Associated Samples: Batch GN80295: TD488-1 (*) Outside of QC limits

SGS 36 of 68
ACCUTEST
TD488

DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: TD488

Account: GCMC - Gulf Chemical & Metallurgical Corp.

Project: Permit

Analyte	Batch ID	QC Sample	Units	Original Result	DUP Result	RPD	QC Limits
BOD, 5 Day	GP41175/GN80260	TD431-2A	mg/l	2.7	2.9	7.1	0-15%
Bromide	GP41177/GN80268	TD454-1	mg/l	0.0	0.0	0.0	0-20%
Chloride	GP41177/GN80268	TD454-1	mg/l	37.0	38.3	3.5	0-20%
Fluoride	GP41177/GN80268	TD454-1	mg/l	0.89	0.67	28.2(a)	0-20%
Nitrogen, Ammonia	GP41180/GN80280	TD416-2A	mg/l	0.0	0.0	0.0	0-20%
Nitrogen, Nitrate	GP41177/GN80268	TD454-1	mg/l	0.91	0.93	2.2	0-20%
Nitrogen, Nitrite	GP41177/GN80268	TD454-1	mg/l	0.0	0.0	0.0	0-20%
Phosphorus, Total	GP41359/GN80523	TD641-1	mg/l	0.19	0.19	0.0	0-20%
Sulfate	GP41177/GN80268	TD454-1	mg/l	54.6	55.2	1.1	0-20%
Sulfite	GN80302	TD488-1	mg/l	0.77 U	0.0	0.0	0-10%

Associated Samples: Batch GN80302: TD488-1 Batch GP41175: TD488-1 Batch GP41177: TD488-1 Batch GP41180: TD488-1 Batch GP41359: TD488-1 (*) Outside of QC limits

(a) RPD acceptable due to low duplicate and sample concentrations.

MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Project: Permit

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MS Result	%Rec	QC Limits
Bromide	GP41177/GN80268	TD454-1	mg/l	0.0	10	10	100.0	80-120%
Chloride	GP41177/GN80268	TD454-1	mg/l	37.0	10	48.5	115.0	80-120%
Fluoride	GP41177/GN80268	TD454-1	mg/l	0.89	10	10.6	97.1	80-120%
Nitrogen, Ammonia	GP41180/GN80280	TD416-2A	mg/l	0.0	2	2.0	100.0	90-110%
Nitrogen, Nitrate	GP41177/GN80268	TD454-1	mg/l	0.91	10	10.4	94.9	80-120%
Nitrogen, Nitrite	GP41177/GN80268	TD454-1	mg/l	0.0	10	9.3	93.0	80-130%
Phosphorus, Total	GP41359/GN80523	TD641-1	mg/l	0.19	0.8	0.97	97.5	83-110%
Sulfate	GP41177/GN80268	TD454-1	mg/l	54.6	10	63.0	84.0	80-120%
Sulfite	GN80302	TD488-1	mg/l	0.77 U	50	50.5	101.0	95-102%

Associated Samples: Batch GN80302: TD488-1 Batch GP41177: TD488-1 Batch GP41180: TD488-1 Batch GP41359: TD488-1 (*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

Section 8

Custo	dy Documen	ts and Other Forms	,
(SGS A	Accutest New J	ersey)	

• Chain of Custody

CHAIN	OF	CUSTODY
CHICALIA	OI.	COSTODI

F	a	qe	1	of	2

	909 V	CCUTE	CT										Ter.	ED EV	Tracking #					70					
~~~	OCO A	LLUIE	31	10165 H	Iarwin Dri	ve, Hous	iton, TX 7	7036					- 1	3	Tracking #	- 51	620	3	087	Bottle O	order Cont	rol#			
	r			TEL. 71.		0 FAX: w.sgs.com	713-271-	4770					Si	GS Acc	ulest Quot	e#				SGS Ac	cutest Joi		TD488		
	Client / Reporting Information	T		Project	Informa						~~~~		-												
Compa	iny Name:	Project N	ame:	7 10,000	Milonin	acion							-+		Requ	estea	Anaiy	SIS ( SE	e IES	CODE	E shee	t)			Matrix Codes
SG	S Accutest				Permit																				DW - Drinking Water
Street	Address	Street			7								_												GW - Ground Water
101	165 Harwin Drive									************											1			- 1	WW - Water SW - Surface Water
City	State	Zip City		State	Compan		on ( if diffe	rent fr	om R	eport t	0)		-												SO - Soil
Но	uston TX 77036																								SL- Sludge SED-Sediment
1 '	Contact E-mail	Project #			Street A	ddress							$\dashv$												OI - Oil LIQ - Other Liquid
L	meshia.Brown@sgs.com																								AIR - Air
Phone		Fax# Client Pu	rchase Order#		City			5	tate			Zip													SOL - Other Solid WP - Wipe
	3-271-4700 er(s) Name(s)																								FB-Field Blank
Campie	n(s) Name(s)	Phone Project M	anager		Attention	н:																		1	EB-Equipment Blank RB- Rinse Blank
-	I			Collection	1		,						_	S,										1	TB-Trip Blank
SGS				Conection	T	1	1	$\vdash$	Nume	TT		d Bottles	H	HM8ICPMS										-	
Accutest Sample #	Field ID / Point of Collection	MEOHVDI	Vial# Date	Time	Sampled by	Matrix	# of bottles	<u>5</u>	HNO3	H2SO4	Di Water	MEOH		W8	1										ĺ
1	PERMIT RENEWEL						<del> </del>	Î.	-	++	ž ä	1 m		-											LAB USE ONLY
<u> </u>	PERMIT RENEWEL		3/14/17	10:00:00 AN	4	AQ	1		×	Ш				Х											A39
					1					Ш					1										
								П	T	TT	T	$\Box$											-	+	
						-		++	+	++	+	+	-	-+	$\rightarrow$					-				+	
-					-		-	₩	+	++	+	+	-	-										$\perp$	
											$\perp$														
								П	1		T			_									-	+	
								$\vdash$	+-	++	+	$\vdash$	-	-+										-	
-				-				$\vdash$	+	₩	+		<u> </u>	$\dashv$										$\perp$	
-									_		_														
					1 1											1									
									T	П												-+	_	+	
								$\vdash$	+	$\vdash$	+	HH	-	-+	-+	-					-		-	+	
-	Turnaround Time ( Business days)				$\vdash$		D-1-	D-15		Inform	<u></u>	Ш												丄	
	Tarretona Timo ( Dasiress days)	Approved B	y (SGS Accutest PM): / Da	le.		`ommore	ial "A" (Le		rable			YASP Cat								nents / S				e .	
	Std. 10 Business Days	.44	, (				ial"B" (Le					YASP Cat								L ASE			מפ	33	
	5 Day RUSH				The same of		Level 3+4			F	_	ate Form		_					ΔΙΤΙΑ	ASE	SSM	ENT	EF.	Mary Comment	_
	3 Day EMERGENCY				N	IJ Reduc	ed				] EC	DD Form	at		_			1	idiin			-unk	, 4	~	
	2 Day EMERGENCY					Commerc	iai "C"			X	] 0:	her CO	MMB						LABE	L VER	RIFICA	(IIOn			1
	1 Day EMERGENCY X other Due 3/21/2017						Commerci																		
Eme	rgency & Rush T/A deta available VIA Lablink						Commerci NJ Reduce	al "B" = ad = P4	Resu	alts + Q	C Su	mmary	tial Daw	data	Ì										
1		1./	Sample Cus	tody must be do	ocumente	d below	v each tin	ne san	ples	chang	ge po	ossessio	on, incl	luding	courie	r delive	ery.								
Retin	quished by Sampler:	34/14/10	Received By:	FED &				Relinqu			P	(20)	1X	)		Te	Date Time	: //.	10	Received I	By:				
100	quished by Sampler:	701111	1	1000				2			16	7/	C .				376,	Z		2	$\mathcal{Z}$	7			
Relino 3	quisned by Sampler:	Date Time:	Received By:	•				Relinqu 4	ished	By:				_		E	ate Time	:		Received I	By:		,		
	juished by:	Date Time:	Received By:					Custod	Segl	4/					P	reserved	where ap	plicable	- 1	4		On logs		oler Ter	
5			5					_(	1	IE.	9		Noti	ntact			□ .					B		2 . /	1.7.3

**TD488: Chain of Custody** Page 1 of 4 **SGS** Accutest New Jersey

### **SGS Accutest Sample Receipt Summary**

Job Number: TD488	Client:		Project:	
Date / Time Received: 3/16/2	017 11:10:00 AM	Delivery Method:	Airbill #'s:	
Cooler Temps (Raw Measured Cooler Temps (Corrected	,	Cooler 2: (1.7); Cooler 3: (3.2) Cooler 2: (3.1); Cooler 3: (4.6)		
Cooler Security  1. Custody Seals Present: 2. Custody Seals Intact:  Cooler Temperature  Y  ✓  Cooler Temperature	or N	resent:	Sample labels present on bottles:	
1. Temp criteria achieved: 2. Cooler temp verification: 3. Cooler media: 4. No. Coolers:	IR Gun Ice (Bag)		Sample Integrity - Condition  1. Sample recvd within HT:  2. All containers accounted for:  3. Condition of sample:	
Quality Control Preservation  1. Trip Blank present / cooler:  2. Trip Blank listed on COC:  3. Samples preserved properly:  4. VOCs headspace free:	Y or N N/A  □ ✓ □ □ ✓ □ □ ✓ □ ✓ □ □ ✓ □		1. Analysis requested is clear: 2. Bottles received for unspecified tests 3. Sufficient volume recvd for analysis: 4. Compositing instructions clear:	
Comments		<u> </u>	5. Filtering instructions clear:	

SM089-02 Rev. Date 12/1/16

**TD488:** Chain of Custody

Page 2 of 4

### **SGS Accutest Sample Receipt Summary**

Job Number: TD488	Client:	Project	:
Date / Time Received: 3/17/2	017 10:50:00 AM <b>Delive</b>	ry Method: Airbill	#'s:
Cooler Temps (Raw Measured Cooler Temps (Corrected	,		
1. Custody Seals Present: 2. Custody Seals Intact: Cooler Temperature	or N	Y or N  ✓ □  1. Sample Integrity - Docur  1. Sample labels present or  2. Container labeling compl  3. Sample container label /	n bottles:
1. Temp criteria achieved: 2. Cooler temp verification: 3. Cooler media: 4. No. Coolers:	IR Gun Ice (Bag)	Sample Integrity - Cond 1. Sample recvd within HT: 2. All containers accounted 3. Condition of sample:	<u> </u>
Quality Control Preservation  1. Trip Blank present / cooler:  2. Trip Blank listed on COC:  3. Samples preserved properly:  4. VOCs headspace free:	Y or N N/A	Sample Integrity - Instru  1. Analysis requested is cle 2. Bottles received for unsp 3. Sufficient volume record 4. Compositing instructions 5. Filtering instructions clea	ear:  Decified tests  For analysis:  Decified tests  Decified
Comments		•	

SM089-02 Rev. Date 12/1/16

**TD488: Chain of Custody** 

Page 3 of 4

	SGC				C	HA	IN (	OF (	CUS'	Ю	D	Y.											. · J	Pa	ge '	1 of	f 2	
-		ACCUT	ES	T		10165 TEL.	Harwin E	rive, Hot	uston, TX K: 713-271	77036	i					FED	CH2	462	0.5	90		11:		er Contro		_	-	
	Client / Reporting Information	on .				!	w	nvw.sgs.co		-4770						SGS	Accutest Q	iole#				SGS	Accute	test Job		TD48		
Com	pany Name:		ct Name			Projec	ct Inform	nation			_						Red	ueste	d Anal	vsis ( :	see TE	STCO	DE s	sheef	n		_	Matrix Codes
	GS Accutest	1.					Perm	nit									T	T		T		T	Ī	<u></u>	_	Г	Т	
	Address 1165 Harwin Drive	Street				-								_		4	1					Ш.			Į.	1		DW - Drinking Wat GW - Ground Wat
City	State Duston TX 77036	Zip City				State	Billing	g Informati any Name	lion ( if diff	erent f	from	Repor	t to).		_	7					1:							WW - Water SW - Surface Water SO - Soil
Projec	ct Contact E-mail	Projec	t#			+	Street	Address																				SL- Sludge SED-Sediment OI - Oil
Phone		Fax # Client	Purchas	e Order#		+-	City				State	_		Zip		4						-						LIQ - Other Liquid AIR - Air SOL - Other Solid
Samp	er(s) Name(s)	Phone Project	Manag	er	· ·	+-	Attentic										1					11				'	-	WP - Wipe FB-Field Blank
<u> </u>	<del></del>						Attentio												1	1		11				1. 1	ŀ	EB-Equipment Blan RB- Rinse Blank
865					Colle	ection		J	Т	T,	Num	ber of	preserv	ed Boli	les	- 64					1:							TB-Trip Blank
Sample &	Field ID / Point of Collection	меон	/DJ Vial#	Date		Time	Samples	d Matrix	# of bottle	. g	HOH	HZSO4	NONE	EOH	ENCORE	ХР608РРР				1			1.					
1	PERMIT RENEWEL			3/14/17	10:0	00:00 A	.M	AQ	2	+	+	+	X	+	ш	$\frac{1}{x}$	1 2.	-	-	├-	+-	₩	- -	72	$\dashv$		-	LAB USE ONLY
					† -	一	+-	<del>                                     </del>	+-	+	┰	+	-	+	4	+^			-	╄	1	₩_	4	4	_4		<b>_</b>	E58
	1				+	+-	+	+	<del> </del>	╁┼	+	+	+	+-	+	-	<b>├</b>	<u> </u>	<u> </u>	-	1	Ш_	+	4	_			
			_	<del> </del>	╁	+-	+	<del> </del>	<del> </del>	₩	+	+	+	+-1	4	—	<u> </u>	-	<u> </u>		4	Щ_	$\perp$	$\downarrow$				
					+-	+	+	┼		+	+	+1	4	+	_	↓	_					Ц_	$\perp$	$\perp$			ļI	
					╆	+-	<del> </del>	┼		₩	+	$\sqcup$	-	$\bot$	_	<u> </u>	<u> </u>	<u></u>					L				,	
				<del> </del>	╁╌		┼	<del> </del>		4	+	Ш	$\perp$	Ш		<u> </u>						1						
				1	┾	<del>-</del>	—	<b> </b>	<u> </u>	$\bot$	$\downarrow$	Ш	1	$\perp \downarrow$									Т			$\neg$		
				<del></del>	ļ	+-	↓			Ц	$\perp$			Ш			l .						T			$\neg$		
				<u> </u>	-					LL.	·L	Ll		П							1	T	T	§1		一		
					_						T	П	Γ	П								$\dagger$	+	~	$\dashv$	$\neg$	-1	<u> </u>
-								1 7		П	T	П		Ħ	$\top$						<del>  -</del>	1-	+	+	$\rightarrow$	-+	$\dashv$	
	Turnaround Time ( Business days)									П	1	П	1	Ħ	$\top$				- :			+-	+-	+	$\dashv$	$\dashv$	$\dashv$	
	- Time ( adsitiess days)	Annoved	Dv (COC	Acculest PM): / Date:		T			Data i		rable	infor	mation	1	_'-					-	Сол	nments /	/Spe	cial In	structic	ons		<del></del>
	Std. 10 Business Days		Dy (363	Acculest PMJ: / Date:	•				ial "A" (Le			_			Categ													
	3 Day RUSH 3 Day EMERGENCY								al "B" ( Le Level 3+4			Ę	_	YASP ate Fo	Categ	ory B	ı					·	INIT	CLAI	ASE	22141	ENT.	36 Q
	2 Day EMERGENCY							NJ Reduce		,		Ė	_	DD Fo								1						(4)//
	1-1 Day EMERGENCY					-  -		Commercia					<u> </u>	her C	OMN	/B					,	ļ L	LAB	EL V	VERI	FICA"	TION	1
Emerg	other Due 3/28/2017  pency & Rush T/A data available V/A Lablins	k							Commercia Commercia NJ Reduce	al "B" =	Resu	ults + (	C Su			e dala				$\mathbb{N}$	$^{\prime}$	1		3				
Relinqu	ished by Sampler	Date Tir/2/	22	Sample Custo	dy.mu	st be do	cumente	d below	each tim	e sam	nples	char	ge po	sses	sion,	includin	g courie	r deliv	ry.			<del>  -</del>						
Rélinqu	ished by Sampler:	Date Time:		1 Received By:	ئىرىت ئىرچور	10				2	ished l	Byf	<u> </u>	<u> </u>	/ ć	:::/X	-		ato Time	່ ເວ	SO	Received 2	d By:	$\overline{}$	$ ot = \sqrt{2}$			
Relingu	ished by;	Date Yime:	;	3					F	Relinqui: 4	ished I	By:							ato Time	:		Received	d By:					
<u> </u>				Received By:	-					Custody	/ Seal	* .			0	Intact Not intact	F	reserved	where ap	plicable	Ť			0	On Igo	- (	Cooler T	lemp.

**TD488: Chain of Custody** 

Page 4 of 4



# **Section 9**

# GC Semi-volatiles

QC Data Summaries

(SGS Accutest New Jersey)

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

# Method Blank Summary Job Number: TD488

**Account:** ALGC SGS Accutest Gulf Coast

**Project:** GCMC: Permit

Sample OP1247-MB11	<b>File ID</b> 2G144051.D	<b>DF</b> 1	<b>Analyzed</b> 03/21/17	<b>By</b> HB	Prep Date 03/20/17	Prep Batch OP1247	Analytical Batch G2G3968

The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	MDL	Units Q
12674-11-2	Aroclor 1016	ND	0.050	0.034	ug/l
	Aroclor 1221	ND	0.050	0.029	ug/l
11141-16-5	Aroclor 1232	ND	0.050	0.020	ug/l
53469-21-9	Aroclor 1242	ND	0.050	0.027	ug/l
12672-29-6	Aroclor 1248	ND	0.050	0.025	ug/l
11097-69-1	Aroclor 1254	ND	0.050	0.034	ug/l
11096-82-5	Aroclor 1260	ND	0.050	0.027	ug/l

CAS No.	Surrogate Recoveries						
877-09-8	Tetrachloro-m-xylene	71%	10-156%				
877-09-8	Tetrachloro-m-xylene	80%	10-156%				
2051-24-3	Decachlorobiphenyl	25%	10-143%				
2051-24-3	Decachlorobiphenyl	33%	10-143%				

# Method Blank Summary Job Number: TD488

**Account:** ALGC SGS Accutest Gulf Coast

**Project:** GCMC: Permit

Sample OP1247-MB1	<b>File ID</b> 2G144052.D	<b>DF</b> 1	<b>Analyzed</b> 03/21/17	<b>By</b> HB	Prep Date 03/20/17	Prep Batch OP1247	Analytical Batch G2G3968

The QC reported here applies to the following samples:

CAS No. Compound	Result	RL	MDL	Units Q
12674-11-2 Aroclor 1016	ND	0.25	0.17	ug/l
11104-28-2 Aroclor 1221	ND	0.25	0.15	ug/l
11141-16-5 Aroclor 1232	ND	0.25	0.10	ug/l
53469-21-9 Aroclor 1242	ND	0.25	0.14	ug/l
12672-29-6 Aroclor 1248	ND	0.25	0.13	ug/l
11097-69-1 Aroclor 1254	ND	0.25	0.17	ug/l
11096-82-5 Aroclor 1260	ND	0.25	0.14	ug/l

CAS No.	Surrogate Recoveries		Limits
877-09-8	Tetrachloro-m-xylene	77%	10-156%
877-09-8	Tetrachloro-m-xylene	86%	10-156%
2051-24-3	Decachlorobiphenyl	26%	10-143%
2051-24-3	Decachlorobiphenyl	34%	10-143%

# Method Blank Summary Job Number: TD488

Account: ALGC SGS Accutest Gulf Coast

**Project:** GCMC: Permit

Sample OP1248-MB1	<b>File ID</b> 6G45115.D	<b>DF</b> 1	<b>Analyzed</b> 03/21/17	<b>By</b> KD	<b>Prep Date</b> 03/20/17	Prep Batch OP1248	Analytical Batch G6G1288

The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.010	0.0030	ug/l	
319-84-6	alpha-BHC	ND	0.010	0.0030	ug/l	
319-85-7	beta-BHC	ND	0.010	0.0028	ug/l	
319-86-8	delta-BHC	ND	0.010	0.0023	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.010	0.0014	ug/l	
12789-03-6	Chlordane	ND	0.10	0.057	ug/l	
60-57-1	Dieldrin	ND	0.010	0.0018	ug/l	
72-54-8	4,4'-DDD	ND	0.010	0.0019	ug/l	
72-55-9	4,4'-DDE	ND	0.010	0.0031	ug/l	
50-29-3	4,4'-DDT	ND	0.010	0.0025	ug/l	
72-20-8	Endrin	ND	0.010	0.0025	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.010	0.0026	ug/l	
7421-93-4	Endrin aldehyde	ND	0.010	0.0026	ug/l	
959-98-8	Endosulfan-I	ND	0.010	0.0025	ug/l	
33213-65-9	Endosulfan-II	ND	0.010	0.0021	ug/l	
76-44-8	Heptachlor	ND	0.010	0.0019	ug/l	
1024-57-3	Heptachlor epoxide	ND	0.010	0.0033	ug/l	
72-43-5	Methoxychlor	ND	0.010	0.0028	ug/l	
8001-35-2	Toxaphene	ND	0.13	0.092	ug/l	

CAS No.	<b>Surrogate Recoveries</b>		Limits		
877-09-8	Tetrachloro-m-xylene	66%	10-156%		
877-09-8	Tetrachloro-m-xylene	64%	10-156%		
2051-24-3	Decachlorobiphenyl	44%	10-143%		
2051-24-3	Decachlorobiphenyl	51%	10-143%		

# Method Blank Summary Job Number: TD488

**Account:** ALGC SGS Accutest Gulf Coast

**Project:** GCMC: Permit

Sample OP1248-MB11	<b>File ID</b> 6G45116.D	<b>DF</b> 1	<b>Analyzed</b> 03/21/17	<b>By</b> KD	Prep Date 03/20/17	Prep Batch OP1248	Analytical Batch G6G1288

The QC reported here applies to the following samples:

309-00-2         Aldrin         ND         0.0020         0.00060 ug/l           319-84-6         alpha-BHC         ND         0.0020         0.00060 ug/l           319-85-7         beta-BHC         ND         0.0020         0.00057 ug/l           319-86-8         delta-BHC         ND         0.0020         0.00046 ug/l           58-89-9         gamma-BHC (Lindane)         ND         0.0020         0.00028 ug/l           12789-03-6         Chlordane         ND         0.020         0.011 ug/l           60-57-1         Dieldrin         ND         0.0020         0.00036 ug/l           72-54-8         4,4'-DDD         ND         0.0020         0.00038 ug/l           72-55-9         4,4'-DDE         ND         0.0020         0.00062 ug/l           50-29-3         4,4'-DDT         ND         0.0020         0.00050 ug/l
319-85-7       beta-BHC       ND       0.0020       0.00057 ug/l         319-86-8       delta-BHC       ND       0.0020       0.00046 ug/l         58-89-9       gamma-BHC (Lindane)       ND       0.0020       0.0028 ug/l         12789-03-6       Chlordane       ND       0.020       0.011 ug/l         60-57-1       Dieldrin       ND       0.0020       0.00036 ug/l         72-54-8       4,4'-DDD       ND       0.0020       0.00038 ug/l         72-55-9       4,4'-DDE       ND       0.0020       0.00062 ug/l
319-86-8       delta-BHC       ND       0.0020       0.00046       ug/l         58-89-9       gamma-BHC (Lindane)       ND       0.0020       0.00028       ug/l         12789-03-6       Chlordane       ND       0.020       0.011       ug/l         60-57-1       Dieldrin       ND       0.0020       0.00036       ug/l         72-54-8       4,4'-DDD       ND       0.0020       0.00038       ug/l         72-55-9       4,4'-DDE       ND       0.0020       0.00062       ug/l
58-89-9       gamma-BHC (Lindane)       ND       0.0020       0.00028 ug/l         12789-03-6       Chlordane       ND       0.020       0.011 ug/l         60-57-1       Dieldrin       ND       0.0020       0.00036 ug/l         72-54-8       4,4'-DDD       ND       0.0020       0.00038 ug/l         72-55-9       4,4'-DDE       ND       0.0020       0.00062 ug/l
12789-03-6 Chlordane       ND       0.020       0.011       ug/l         60-57-1 Dieldrin       ND       0.0020       0.00036       ug/l         72-54-8 4,4'-DDD       ND       0.0020       0.00038       ug/l         72-55-9 4,4'-DDE       ND       0.0020       0.00062       ug/l
60-57-1       Dieldrin       ND       0.0020       0.00036 ug/l         72-54-8       4,4'-DDD       ND       0.0020       0.00038 ug/l         72-55-9       4,4'-DDE       ND       0.0020       0.00062 ug/l
72-54-8 4,4'-DDD ND 0.0020 0.00038 ug/l 72-55-9 4,4'-DDE ND 0.0020 0.00062 ug/l
72-55-9 4,4'-DDE ND 0.0020 0.00062 ug/l
50-29-3 4 4'-DDT ND 0.0020 0.0050 ug/l
72-20-8 Endrin ND 0.0020 0.00050 ug/l
1031-07-8 Endosulfan sulfate ND 0.0020 0.00053 ug/l
7421-93-4 Endrin aldehyde ND 0.0020 0.00051 ug/l
959-98-8 Endosulfan-I ND 0.0020 0.00050 ug/l
33213-65-9 Endosulfan-II ND 0.0020 0.00043 ug/l
76-44-8 Heptachlor ND 0.0020 0.00038 ug/l
1024-57-3 Heptachlor epoxide ND 0.0020 0.00065 ug/l
72-43-5 Methoxychlor ND 0.0020 0.00057 ug/l
8001-35-2 Toxaphene ND 0.025 0.018 ug/l
CAS No. Surrogate Recoveries Limits
877-09-8 Tetrachloro-m-xylene 69% 10-156%
877-09-8 Tetrachloro-m-xylene 68% 10-156%
2051-24-3 Decachlorobiphenyl 26% 10-143%
2051-24-3 Decachlorobiphenyl 28% 10-143%

# Blank Spike Summary Job Number: TD488

Account: ALGC SGS Accutest Gulf Coast

**Project:** GCMC: Permit

Sample OP1248-BS1	<b>File ID</b> 6G45117.D	<b>DF</b> 1	<b>Analyzed</b> 03/21/17	<b>By</b> KD	<b>Prep Date</b> 03/20/17	Prep Batch OP1248	Analytical Batch G6G1288

The QC reported here applies to the following samples:

		Spike	BSP	BSP	
CAS No.	Compound	ug/l	ug/l	%	Limits
	_	_			
309-00-2	Aldrin	0.25	0.098	39	18-142
319-84-6	alpha-BHC	0.25	0.18	72	40-149
319-85-7	beta-BHC	0.25	0.19	76	41-141
319-86-8	delta-BHC	0.25	0.19	76	34-160
58-89-9	gamma-BHC (Lindane)	0.25	0.18	72	40-148
60-57-1	Dieldrin	0.25	0.18	72	41-152
72-54-8	4,4'-DDD	0.25	0.21	84	38-153
72-55-9	4,4'-DDE	0.25	0.17	68	35-146
50-29-3	4,4'-DDT	0.25	0.19	76	36-158
72-20-8	Endrin	0.25	0.19	76	45-161
1031-07-8	Endosulfan sulfate	0.25	0.18	72	41-154
7421-93-4	Endrin aldehyde	0.25	0.19	76	41-153
959-98-8	Endosulfan-I	0.25	0.17	68	38-146
33213-65-9	Endosulfan-II	0.25	0.18	72	40-149
76-44-8	Heptachlor	0.25	0.11	44	27-141
1024-57-3	Heptachlor epoxide	0.25	0.16	64	39-148
72-43-5	Methoxychlor	0.25	0.18	72	38-153

CAS No.	Surrogate Recoveries	BSP	Limits
877-09-8	Tetrachloro-m-xylene	53%	10-156%
	•		
877-09-8	Tetrachloro-m-xylene	52%	10-156%
2051-24-3	Decachlorobiphenyl	38%	10-143%
2051-24-3	Decachlorobiphenyl	43%	10-143%

^{* =} Outside of Control Limits.

Page 1 of 1

# Blank Spike/Blank Spike Duplicate Summary

Job Number: TD488

Account: ALGC SGS Accutest Gulf Coast

**Project:** GCMC: Permit

Sample OP1247-BS1 OP1247-BSD	<b>File ID</b> 2G144053.D 2G144054.D	<b>DF</b> 1	<b>Analyzed</b> 03/21/17 03/21/17	<b>Ву</b> НВ НВ	Prep Date 03/20/17 03/20/17	Prep Batch OP1247 OP1247	Analytical Batch G2G3968 G2G3968

The QC reported here applies to the following samples:

Method: EPA 608

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
12674-11-2	Aroclor 1016	2	2.1	105 a	2.0	100 a	5 a	42-160/37
11104-28-2	Aroclor 1221		ND		ND		nc	70-130/30
11141-16-5	Aroclor 1232		ND		ND		nc	70-130/30
53469-21-9	Aroclor 1242		ND		ND		nc	70-130/30
12672-29-6	Aroclor 1248		ND		ND		nc	70-130/30
11097-69-1	Aroclor 1254		ND		ND		nc	70-130/30
11096-82-5	Aroclor 1260	2	1.8	90 a	1.8	90 a	0 a	41-158/40

CAS No.	<b>Surrogate Recoveries</b>	BSP	BSD	Limits
877-09-8	Tetrachloro-m-xylene	85%	84%	10-156%
877-09-8	Tetrachloro-m-xylene	94%	90%	10-156%
2051-24-3	Decachlorobiphenyl	31%	36%	10-143%
2051-24-3	Decachlorobiphenyl	40%	46%	10-143%

⁽a) Reported from 2nd signal. %D of check calibration on 1st signal exceed method criteria (15%) so using for confirmation only.

^{* =} Outside of Control Limits.

Page 1 of 1

Method: EPA 608

# Matrix Spike/Matrix Spike Duplicate Summary

Job Number: TD488

Account: ALGC SGS Accutest Gulf Coast

**Project:** GCMC: Permit

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	<b>Analytical Batch</b>
OP1248-MS	6G45120.D	1	03/21/17	KD	03/20/17	OP1248	G6G1288
OP1248-MSD	6G45121.D	1	03/21/17	KD	03/20/17	OP1248	G6G1288
JC38915-1	6G45119.D	1	03/21/17	KD	03/20/17	OP1248	G6G1288

The QC reported here applies to the following samples:

65%

69%

TD488-1

2051-24-3 Decachlorobiphenyl

2051-24-3 Decachlorobiphenyl

		JC38915-1	Spike	MS	MS	Spike	MSD	MSD		Limits
CAS No.	Compound	ug/l Q	ug/l	ug/l	%	ug/l	ug/l	%	RPD	Rec/RPD
309-00-2	Aldrin	ND	0.505	0.14	28	0.505	0.15	30	7	22-159/42
319-84-6	alpha-BHC	ND	0.505	0.57	113	0.505	0.62	123	8	34-168/37
319-85-7	beta-BHC	ND	0.505	0.52	103	0.505	0.48	95	8	31-165/42
319-86-8	delta-BHC	ND	0.505	0.64	127	0.505	0.62	123	3	42-170/41
58-89-9	gamma-BHC (Lindane)	ND	0.505	0.46	91	0.505	0.51	101	10	34-169/43
12789-03-6	Chlordane	ND		ND			ND		nc	50-150/30
60-57-1	Dieldrin	ND	0.505	0.49	97	0.505	0.51	101	4	32-170/41
72-54-8	4,4'-DDD	ND	0.505	0.57	113	0.505	0.56	111	2	37-164/37
72-55-9	4,4'-DDE	ND	0.505	0.41	81	0.505	0.41	81	0	35-159/40
50-29-3	4,4'-DDT	ND	0.505	0.50	99	0.505	0.50	99	0	24-175/35
72-20-8	Endrin	ND	0.505	0.53	105	0.505	0.54	107	2	42-177/38
1031-07-8	Endosulfan sulfate	ND	0.505	0.54	107	0.505	0.54	107	0	35-167/43
7421-93-4	Endrin aldehyde	ND	0.505	0.57	113	0.505	0.57	113	0	26-169/48
959-98-8	Endosulfan-I	ND	0.505	0.41	81	0.505	0.44	87	7	27-167/40
33213-65-9	Endosulfan-II	ND	0.505	0.52	103	0.505	0.52	103	0	30-165/39
76-44-8	Heptachlor	ND	0.505	0.22	44	0.505	0.21	42	5	29-158/39
1024-57-3	Heptachlor epoxide	ND	0.505	0.41	81	0.505	0.45	89	9	38-160/40
72-43-5	Methoxychlor	ND	0.505	0.48	95	0.505	0.47	93	2	33-163/43
8001-35-2	Toxaphene	ND		ND			ND		nc	50-150/30
CAS No.	<b>Surrogate Recoveries</b>	MS	MSD	JO	C38915-1	Limits				
877-09-8	Tetrachloro-m-xylene	75%	72%	10	)5%	10-156%	6			
877-09-8	Tetrachloro-m-xylene	66%	65%	92	2%	10-156%	ó			

62%

71%

58%

64%

10-143%

10-143%

^{* =} Outside of Control Limits.



# **Section 10**

# Metals Analysis

QC Data Summaries

(SGS Accutest New Jersey)

### Includes the following where applicable:

- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries



#### BLANK RESULTS SUMMARY Part 2 - Method Blanks

### Login Number: TD488 Account: ALGC - SGS Accutest Gulf Coast Project: GCMC: Permit

QC Batch ID: MP99302 Methods: EPA 200.8 Matrix Type: AQUEOUS Units: ug/l

Prep Date:

03/17/17

Metal	RL	IDL	MDL	MB raw	final
Aluminum	50	.23	1.3		
Antimony	2.0	.22	.26		
Arsenic	1.0	.017	.034	0.0085	<1.0
Barium	1.0	.0085	.028	0.012	<1.0
Beryllium	0.50	.0022	.013		
Boron	50	2.3			
Cadmium	0.50	.0032	.12	0.0030	<0.50
Calcium	250	1.4	3.7		
Chromium	4.0	.012	.1	0.027	<4.0
Cobalt	0.50	.0018	.018		
Copper	4.0	.035	.14		
Iron	50	.19	2		
Lead	0.50	.0079	.011	-0.012	<0.50
Magnesium	250	.21	3.6		
Manganese	1.0	.0078	.095		
Molybdenum	1.0	.023	.23		
Nickel	4.0	.018	.11		
Potassium	250	.77	8.8		
Selenium	1.0	.012	.12	-0.021	<1.0
Silver	2.0	.0058	.041	0.0028	<2.0
Sodium	250	.89	2.5		
Strontium	5.0	.006	.015		
Thallium	0.50	.002	.013		
Tin	5.0	.044	.38		
Titanium	1.0	.031	.56		
Vanadium	4.0	.03	.2		
Zinc	10	.067	1.2		

Associated samples MP99302: TD488-1

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

#### MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: TD488 Account: ALGC - SGS Accutest Gulf Coast Project: GCMC: Permit

QC Batch ID: MP99302 Methods: EPA 200.8 Matrix Type: AQUEOUS Units: ug/l

03/17/17 Prep Date:

riep Date.				03/11/11	
Metal	JC38604 Origina		Spikelot MPX200.8		QC Limits
Aluminum	anr				
Antimony					
Arsenic	0.089	101	100	100.9	70-130
Barium	1.9	102	100	100.1	70-130
Beryllium					
Boron					
Cadmium	0.011	101	100	101.0	70-130
Calcium					
Chromium	0.28	102	100	101.7	70-130
Cobalt					
Copper					
Iron	anr				
Lead	0.18	100	100	99.8	70-130
Magnesium					
Manganese					
Molybdenum					
Nickel					
Potassium					
Selenium	0.063	196	200	98.0	70-130
Silver	0.025	77.3	76.5	101.0	70-130
Sodium					
Strontium					
Thallium					
Tin					
Titanium					
Vanadium					
Zinc	anr				

Associated samples MP99302: TD488-1

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits



#### MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: TD488 Account: ALGC - SGS Accutest Gulf Coast Project: GCMC: Permit

QC Batch ID: MP99302 Methods: EPA 200.8 Matrix Type: AQUEOUS Units: ug/l

Prep Date:

03/17/17

					//-	
Metal	JC38604 Origina		Spikel MPX200	ot .8 % Rec	MSD RPD	QC Limit
Aluminum	anr					
Antimony						
Arsenic	0.089	102	100	101.9	1.0	10
Barium	1.9	102	100	100.1	0.0	20
Beryllium						
Boron						
Cadmium	0.011	102	100	102.0	1.0	10
Calcium						
Chromium	0.28	104	100	103.7	1.9	10
Cobalt						
Copper						
Iron	anr					
Lead	0.18	102	100	101.8	2.0	10
Magnesium						
Manganese						
Molybdenum						
Nickel						
Potassium						
Selenium	0.063	198	200	99.0	1.0	10
Silver	0.025	76.9	76.5	100.5	0.5	10
Sodium						
Strontium						
Thallium						
Tin						
Titanium						
Vanadium						
Zinc	anr					

Associated samples MP99302: TD488-1

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits (anr) Analyte not requested



#### SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: TD488 Account: ALGC - SGS Accutest Gulf Coast Project: GCMC: Permit

QC Batch ID: MP99302 Methods: EPA 200.8 Matrix Type: AQUEOUS Units: ug/l

Prep Date: 03/17/17

Prep Date:			03/17/17	
Metal	BSP Result	Spikelot MPX200.8		QC Limits
Aluminum	anr			
Antimony				
Arsenic	101	100	101.0	85-115
Barium	99.1	100	99.1	85-115
Beryllium				
Boron				
Cadmium	102	100	102.0	85-115
Calcium				
Chromium	101	100	101.0	85-115
Cobalt				
Copper				
Iron	anr			
Lead	99.8	100	99.8	85-115
Magnesium				
Manganese				
Molybdenum				
Nickel				
Potassium				
Selenium	199	200	99.5	85-115
Silver	76.2	76.5	99.6	85-115
Sodium				
Strontium				
Thallium				
Tin				
Titanium				
Vanadium				
Zinc	anr			

Associated samples MP99302: TD488-1

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested



#### BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: TD488 Account: ALGC - SGS Accutest Gulf Coast Project: GCMC: Permit

QC Batch ID: MP99331 Methods: EPA 245.1 Matrix Type: AQUEOUS Units: ug/l

Prep Date: 03/20/17

Metal	RL	IDL	MDL	MB raw	final
Mercury	0.20	.023	.055	0.065	<0.20

Associated samples MP99331: TD488-1

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits  $\bar{\ }$ 

#### MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: TD488 Account: ALGC - SGS Accutest Gulf Coast Project: GCMC: Permit

QC Batch ID: MP99331 Methods: EPA 245.1 Matrix Type: AQUEOUS Units: ug/l

Prep Date: 03/20/17

Metal	JC38818 Origina		Spikelo HGPW3	t % Rec	QC Limits		
Mercury	0.0	2.1	2	105.0	70-130		

Associated samples MP99331: TD488-1

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits  $\hfill \hfill$ 

(N) Matrix Spike Rec. outside of QC limits



#### MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: TD488 Account: ALGC - SGS Accutest Gulf Coast Project: GCMC: Permit

QC Batch ID: MP99331 Methods: EPA 245.1 Matrix Type: AQUEOUS Units: ug/l

Prep Date:

03/20/17

Metal	JC38818 Origina		Spikelo HGPW3	t % Rec	MSD RPD	QC Limit	
Mercury	0.0	2.1	2	105.0	0.0	19	

Associated samples MP99331: TD488-1

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits  $\hfill \hfill$ 

(N) Matrix Spike Rec. outside of QC limits



#### SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: TD488 Account: ALGC - SGS Accutest Gulf Coast Project: GCMC: Permit

QC Batch ID: MP99331 Methods: EPA 245.1 Matrix Type: AQUEOUS Units: ug/l

Prep Date: 03/20/17

Associated samples MP99331: TD488-1

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits  $\bar{\ }$ 



# Section 11

Misc. Forms
Custody Documents and Other Forms
(SGS Accutest Lafayette)
Includes the following where applicable:

• Chain of Custody



		CHAIN OF CUSTODY		
858	ACCUTEST	10165 Harwin Drive, Houston, TX 77036	FED-EX Tracking ≠	Bot

			(	CHAIN	O	F CI	UST	OD	Y											Pa	ige 1	of 2	
	SOUTH ACCU	irccr					2007 APR	027					[	FED-EX	Fracking #				Bottle	Order Con	strol #		
	- Selection Avec	Ji Levi			Harwin Drive, Houston, TX 77036 3-271-4700 FAX: 713-271-4770 www.sgs.com								SGS Accutest Quote #			SGS A	SGS Accutest Job TD488						
Г	Client / Reporting Information			Project I											Reque	sted A	nalysis	s ( see TE	ST COL	DE she	et)		Matrix Codes
C		Project Name:																					
3	SGS Accutest Street Address	Street			Permit								•				-			-			DW - Drinking Water GW - Ground Water WW - Water
8	10165 Harwin Drive	nteer															1						SW - Surface Water SO - Soil
-	:	City		State	Company		n ( if differ	ent iro	an ree	iport to						- 1	-					1	SL- Sludge
	Houston TX 77036															1		1					SED-Sediment OI - Oil
F	1	Project #			Street Ad	dress												ĺ					LIQ - Other Liquid
	Trameshia.Brown@sgs.com																						AIR - Air SOL - Other Solid
f	Phone # Fax #	Client Purchase C	order#	,	City			St	late			Zip						-					WP - Wipe
	713-271-4700															- 1							F8-Field Blank EB-Equipment Blank
1	Sampler(s) Name(s) Phone	Project Manager			Attention:																		RB- Rinse Blank
					L													-					TB-Trip Blank
				Collection				<del>-</del>	Numb	er of pre	1	Bottles	0 1					-					<del></del>
	SOS Annivisi				Sampled			NaOH HCI	HNO3	H2SO4	DI Wete	MEOH	5	MBAS									
S	Sample # Field ID / Point of Collection	MEOH/DI Viai ≉	Date	Ylme	by	Matrix	# of bottles	H N	1	물 물	ā	¥ 2	ŭ										LAB USE ONLY
	1 PERMIT RENEWEL		3/14/17	10:00:00 AM		AQ	1	Ш		)	L			Х							1		1
Г																							nga
-								П		П													
h									1	$\Box$	T												
H					<b></b>			H	t		$\dagger$	Ħ	1						-	1			
F								H	+	++	+	++	+			$-\dagger$			-	_		-	
-							<u> </u>	$\vdash$	+	++	╁	+	+				-+		+-	+	1		
L					ļ			$\vdash$	+	+	+-	++	+				-				+-+	+	
								Н	_	44	1	44	$\perp$										
L								Ш	$\perp$		1	11							_				
-									┸														
										Ш		Ш							$\perp$				
-											L	Ш											
Ī	Tumaround Time ( Business days)						Data	Delive	erable	e Inforr	natio	n						C	mments	s / Speci	al Instructio	ns	
ľ		Approved By (SGS	Accutest PM): / Date	e			ial "A" (L				_	IYASP											
	Std. 10 Business Days						cial "B" ( L				_	IYASP		ory B					/				
	5 Day RUSH						( Level 3+4	4)		L		tate Fo						/	14	1			
1	3 Day EMERGENCY					NJ Reduc				L		other C		/B				(	£				
-	2 Day EMERGENCY 1 Day EMERGENCY					Continerd	Commerc	dal "A"	= Re	_	_	ei _	J (1411)										
-	X other Due 3/21/2017						Commerc					umman	y										
1	Emergency & Rush T/A data available VIA Lablink		····				NJ Reduc	ed = R	Result	s + QC	Sumr	mary + I	Partial										
F		10736	Sample Cust	ody must be d	ocumen	ted belo	w each ti	me sa	mple	s cha	ige p	osses	ssion,	includ	ing courie		ery. Date Time		- Boc-	A But			
	Relinquished by Sampler: Date Tir	1830 4-17	Received By:	74 0	Dni	10/52	(5-17	Reling 2	uishe	g By:	1	000	rei	_				: 5-17	2//	Pro	N/W	Hel	eac'
İ		10: 11 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1	Received By:	Mark	-//	adl	7	Relinq									Date Time	:	Recei 4	ived By:	77		
-	Relinquished by: Date Tirr	10,15	Received By:	(max	_/_	and of			dy Se	al for	,		- E	Intact	F	reserve	q where at	plicable	170		On Ice		ler Temp.

**TD488: Chain of Custody** Page 1 of 3 **SGS** Accutest Lafayette

11.1

Date / Time: 3/14/2017 5:36:14 PM

CSR: TRAMESHB

Job #: TD488

Client Project: Permit
Deliverable: COMMB

TAT: Due 3/21/2017

Sub Lab: Accutest Gulf Coast Louisiana Address: 500 Ambassador Caffery Prkway

City: Scott

State: LA

Zip: 70583

Contact: Sample Receiving Phone: 800-304-5227

SGS Accutest Client Sample # Sample Description	Analysis	Location	Sampled By	Date Sampled	Time Sampled	Aliquo
TD488-1 PERMIT RENEWEL	MBAS_	11 .3N .4V .SUB .VR .		3/14/2017	10:00:00 AM	
Comments:						
Sample Management Receipt:		Date:				

TD488: Chain of Custody
Page 2 of 3

### **Accutest Laboratories Sample Receipt Summary**

Job Number: TD	)488		Client:	SGS (TX)			Project: PERMIT RENE	EWAL		
Date / Time Received: 3/	15/2017	7 10:15:00	) AM	Delivery Method:	Ac	cutest Courier	Airbill #'s:			
Cooler Temps (Initial/Adjus	ited):	<u>#1: (3.4/3</u>	.4);_							
	Y or			<u>Y</u> or		Sample Integri	ty - Documentation	<u>Y</u>	or N	
outloug could ricooni.	<b>~</b>		3. COC Pr			1. Sample labels	present on bottles:	✓		
Custody Seals Intact:	✓	4. S	mpi Date	s/Time OK 🔽		2. Container labe	• .	✓		
Cooler Temperature	צ	or N				Sample contain	iner label / COC agree:	✓		
1. Temp criteria achieved:	<b>✓</b>					Sample Integr	ity - Condition	<u>Y</u>	or N	
2. Thermometer ID:		;				Sample recvd	within HT:	✓		
3. Cooler media:	lce	(direct con	tact)			2. All containers	accounted for:	<b>✓</b>		
4. No. Coolers:		11				3. Condition of sa	ample:		Intact	
Quality Control Preservation	<u>on \</u>	Y or N				Sample Integr	ity - Instructions	<u>Y</u>	or N	N/A
Trip Blank present / cooler:			<b>✓</b>			1. Analysis requ	ested is clear:	<b>✓</b>		
2. Trip Blank listed on COC:			<b>✓</b>			2. Bottles receiv	red for unspecified tests		<b>~</b>	
3. Samples preserved properly	y: 🗸					3. Sufficient volu	ume recvd for analysis:	<b>✓</b>		
4. VOCs headspace free:			$\checkmark$			4. Compositing	instructions clear:			$\checkmark$
						5. Filtering instru	uctions clear:			✓
Comments										

TD488: Chain of Custody Page 3 of 3



# **Section 12**

# General Chemistry

QC Data Summaries

(SGS Accutest Lafayette)

Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries



# METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: TD488
Account: ALGC - SGS Accutest Gulf Coast
Project: GCMC: Permit

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
Surfactants, MBAS as LAS	GN10183	0.10	0.0	mg/l	.75	0.72	96.0	80-120%

Associated Samples: Batch GN10183: TD488-1 (*) Outside of QC limits

# BLANK SPIKE DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: TD488
Account: ALGC - SGS Accutest Gulf Coast
Project: GCMC: Permit

Analyte	Batch ID	Units	Spike Amount	BSD Result	RPD	QC Limit
Surfactants, MBAS as LAS	GN10183	mg/l	.75	0.72	0.7	

Associated Samples: Batch GN10183: TD488-1 (*) Outside of QC limits

#### DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: TD488
Account: ALGC - SGS Accutest Gulf Coast
Project: GCMC: Permit

Analyte	Batch ID	QC Sample	Units	Original Result	DUP Result	RPD	QC Limits	
Surfactants, MBAS as LAS	GN10183	TD488-1	mg/l	0.28	0.27	1.8	0-20%	·

Associated Samples: Batch GN10183: TD488-1 (*) Outside of QC limits



# ACCUTEST Gulf Coast

03/31/17

SGS ACCUTEST IS PART OF SGS, THE WORLD'S LEADING INSPECTION, VERIFICATION, TESTING AND CERTIFICATION COMPANY.



e-Hardcopy 2.0
Automated Report

### Technical Report for

Gulf Chemical & Metallurgical Corp.

Permit

SGS Accutest Job Number: TD801

Sampling Date: 03/21/17



Gulf Chemical & Metallurgical Corp.
P.O. Box 2290
Freeport, TX 77542
bobby.provence@eramet-gulf.com; robert.marsh@eramet-gulf.com

ATTN: Robert Marsh

Total number of pages in report: 64



Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Electa Brown 713-271-4700

Certifications: TX (T104704220-17-26) AR (14-016-0) AZ (AZ0769) FL (E87628) KS (E-10366) LA (85695/04004) NJ (TX010) OK (2014-172) VA (7654)

This report shall not be reproduced, except in its entirety, without the written approval of SGS Accutest. Test results relate only to samples analyzed.

Laboratory Director



# . .

# <del>د</del>ن

# 7

	•
v	J
	$\sim$

ř	_	7
7	-	5

P	7
F	ĸ

# 12

Table of Content	Ta	ble	of	<b>Content</b>
------------------	----	-----	----	----------------

-1-

Section 1: Sample Summary	3
Section 2: Summary of Hits	4
Section 3: Sample Results	5
3.1: TD801-1: PERMIT RENEWEL	6
Section 4: Misc. Forms	15
4.1: Chain of Custody	16
Section 5: GC/MS Volatiles - QC Data Summaries	20
5.1: Method Blank Summary	21
5.2: Blank Spike Summary	23
5.3: Matrix Spike/Matrix Spike Duplicate Summary	25
Section 6: GC/MS Semi-volatiles - QC Data Summaries	27
6.1: Method Blank Summary	28
6.2: Blank Spike/Blank Spike Duplicate Summary	31
Section 7: General Chemistry - QC Data Summaries	34
7.1: Method Blank and Spike Results Summary	35
7.2: Blank Spike Duplicate Results Summary	36
7.3: Duplicate Results Summary	37
7.4: Matrix Spike Results Summary	38
Section 8: Misc. Forms (SGS Accutest New Jersey)	39
8.1: Chain of Custody	40
Section 9: GC Semi-volatiles - QC Data (SGS Accutest New Jersey)	42
9.1: Method Blank Summary	43
9.2: Blank Spike Summary	45
9.3: Matrix Spike/Matrix Spike Duplicate Summary	47
Section 10: Metals Analysis - QC Data (SGS Accutest New Jersey)	
<b>10.1:</b> Prep QC MP99436: As,Ba,Cd,Cr,Pb,Se,Ag	
<b>10.2:</b> Prep QC MP99469: Hg	53
Section 11: Misc. Forms (SGS Accutest Lafayette)	
11.1: Chain of Custody	58
Section 12: General Chemistry - QC Data (SGS Accutest Lafayette)	61
12.1: Method Blank and Spike Results Summary	62
12.2: Matrix Spike Results Summary	
12.3: Matrix Spike Duplicate Results Summary	



# **Sample Summary**

Gulf Chemical & Metallurgical Corp.

Job No:

TD801

Permit

Sample	Collected	l		Matrix	Client
Number	Date	Time By	Received	Code Type	Sample ID
TD801-1	03/21/17	10:00	03/21/17	AQ Water	PERMIT RENEWEL

SGS 3 of 64
ACCUTEST
TD801

**Summary of Hits Job Number:** TD801

**Account:** Gulf Chemical & Metallurgical Corp.

**Project:** Permit **Collected:** 03/21/17

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
TD801-1 PERMIT RENEW	/EL				
Acetone	0.193	0.050	0.010	mg/l	EPA 624
Chlorobenzene	0.00035 J	0.0010	0.00030	mg/l	EPA 624
Chloroform	0.00084 J	0.0010	0.00030	mg/l	EPA 624
2-Hexanone	0.0093 J	0.010	0.0012	mg/l	EPA 624
4-Methyl-2-pentanone	0.0098 J	0.010	0.0023	mg/l	EPA 624
Methyl ethyl ketone	0.0560	0.010	0.0026	mg/l	EPA 624
Arsenic ^a	0.312	0.020	0.00068	mg/l	EPA 200.8
Barium ^a	0.0131 B	0.020	0.00056	mg/l	EPA 200.8
Cadmium ^a	0.0032 B	0.010	0.0024	mg/l	EPA 200.8
Lead ^a	0.0012 B	0.010	0.00021	mg/l	EPA 200.8
Selenium ^a	0.544	0.020	0.0023	mg/l	EPA 200.8
BOD, 5 Day	8.9	6.0	3.0	mg/l	SM 5210B-2000
Nitrogen, Ammonia	83.4	5.0	1.0	mg/l	EPA 350.1
Phosphorus, Total	0.55	0.040	0.020	mg/l	SM 4500PE-2011
Surfactants, MBAS as LAS b	0.21	0.10	0.080	mg/l	SM5540 C-11

⁽a) Elevated sample detection limit due to difficult sample matrix. Analysis performed at SGS Accutest, Dayton, NJ.

⁽b) Analysis performed at SGS Accutest, Lafayette, LA.

Section 3 &

Report of Ana	alysis	

**Client Sample ID:** PERMIT RENEWEL

 Lab Sample ID:
 TD801-1
 Date Sampled:
 03/21/17

 Matrix:
 AQ - Water
 Date Received:
 03/21/17

 Method:
 EPA 624
 Percent Solids:
 n/a

**Project:** Permit

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 Z55300.D 1 03/29/17 EM n/a n/a VZ5269

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

### **VOA TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	0.193	0.050	0.010	mg/l	
71-43-2	Benzene	ND	0.0010	0.00030	mg/l	
75-27-4	Bromodichloromethane	ND	0.0010	0.00030	mg/l	
75-25-2	Bromoform	ND	0.0010	0.00030	mg/l	
108-90-7	Chlorobenzene	0.00035	0.0010	0.00030	mg/l	J
75-00-3	Chloroethane	ND	0.0010	0.00033	mg/l	
67-66-3	Chloroform	0.00084	0.0010	0.00030	mg/l	J
75-15-0	Carbon disulfide	ND	0.0050	0.00075	mg/l	
56-23-5	Carbon tetrachloride	ND	0.0010	0.00054	mg/l	
75-34-3	1,1-Dichloroethane	ND	0.0010	0.00030	mg/l	
75-35-4	1,1-Dichloroethylene	ND	0.0010	0.00030	mg/l	
107-06-2	1,2-Dichloroethane	ND	0.0010	0.00030	mg/l	
78-87-5	1,2-Dichloropropane	ND	0.0010	0.00030	mg/l	
124-48-1	Dibromochloromethane	ND	0.0010	0.00030	mg/l	
156-59-2	cis-1,2-Dichloroethylene	ND	0.0010	0.00030	mg/l	
10061-01-5	cis-1,3-Dichloropropene	ND	0.0010	0.00030	mg/l	
156-60-5	trans-1,2-Dichloroethylene	ND	0.0010	0.00030	mg/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.0010	0.00030	mg/l	
100-41-4	Ethylbenzene	ND	0.0010	0.00030	mg/l	
591-78-6	2-Hexanone	0.0093	0.010	0.0012	mg/l	J
108-10-1	4-Methyl-2-pentanone	0.0098	0.010	0.0023	mg/l	J
74-83-9	Methyl bromide	ND	0.0010	0.00049	mg/l	
74-87-3	Methyl chloride	ND	0.0010	0.00030	mg/l	
75-09-2	Methylene chloride	ND	0.0050	0.0013	mg/l	
78-93-3	Methyl ethyl ketone	0.0560	0.010	0.0026	mg/l	
100-42-5	Styrene	ND	0.0010	0.00030	mg/l	
71-55-6	1,1,1-Trichloroethane	ND	0.0010	0.00030	mg/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.0010	0.00030	mg/l	
79-00-5	1,1,2-Trichloroethane	ND	0.0010	0.00030	mg/l	
127-18-4	Tetrachloroethylene	ND	0.0010	0.00030		
108-88-3	Toluene	ND	0.0010	0.00030		
79-01-6	Trichloroethylene	ND	0.0010	0.00030	mg/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



6 of 64
ACCUTEST

Page 2 of 2

Client Sample ID: PERMIT RENEWEL

 Lab Sample ID:
 TD801-1
 Date Sampled:
 03/21/17

 Matrix:
 AQ - Water
 Date Received:
 03/21/17

 Method:
 EPA 624
 Percent Solids:
 n/a

Project: Permit

### **VOA TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	0.0010 0.0030	0.00030 0.00065	C	
CAS No.	<b>Surrogate Recoveries</b>	Run# 1	Run# 2	Limi	ts	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	102% 108% 101% 101%		72-12 68-12 80-11 72-12	24% 19%	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



Client Sample ID: PERMIT RENEWEL

 Lab Sample ID:
 TD801-1
 Date Sampled:
 03/21/17

 Matrix:
 AQ - Water
 Date Received:
 03/21/17

 Method:
 EPA 625
 EPA 625
 Percent Solids:
 n/a

**Project:** Permit

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 J186422.D 1 03/22/17 SC 03/22/17 OP43129 EJ2502
Run #2

Run #1 950 ml 1.0 ml

Run #2

### **ABN TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
65-85-0	Benzoic Acid	ND	0.021	0.0018	mg/l	
95-57-8	2-Chlorophenol	ND	0.0053	0.0015	mg/l	
59-50-7	4-Chloro-3-methyl phenol	ND	0.0053	0.0018	mg/l	
120-83-2	2,4-Dichlorophenol	ND	0.0053	0.0021	mg/l	
105-67-9	2,4-Dimethylphenol	ND	0.0053	0.0011	mg/l	
51-28-5	2,4-Dinitrophenol	ND	0.026	0.0013	mg/l	
534-52-1	4,6-Dinitro-o-cresol	ND	0.011	0.0040	mg/l	
95-48-7	2-Methylphenol	ND	0.0053	0.0015	mg/l	
	3&4-Methylphenol	ND	0.0053	0.0016	mg/l	
88-75-5	2-Nitrophenol	ND	0.0053	0.0019	mg/l	
100-02-7	4-Nitrophenol	ND	0.026	0.013	mg/l	
87-86-5	Pentachlorophenol	ND	0.026	0.0034	mg/l	
108-95-2	Phenol	ND	0.0053	0.0013	mg/l	
95-95-4	2,4,5-Trichlorophenol	ND	0.0053	0.0020	mg/l	
88-06-2	2,4,6-Trichlorophenol	ND	0.0053	0.0016	mg/l	
83-32-9	Acenaphthene	ND	0.0053	0.0017	mg/l	
208-96-8	Acenaphthylene	ND	0.0053	0.0018	mg/l	
120-12-7	Anthracene	ND	0.0053	0.0020	mg/l	
56-55-3	Benzo(a)anthracene	ND	0.0053	0.0019	mg/l	
50-32-8	Benzo(a)pyrene	ND	0.0053	0.0021	mg/l	
205-99-2	Benzo(b)fluoranthene	ND	0.0053	0.0023	mg/l	
191-24-2	Benzo(g,h,i)perylene	ND	0.0053	0.0021	mg/l	
207-08-9	Benzo(k)fluoranthene	ND	0.0053	0.0021	mg/l	
101-55-3	4-Bromophenyl phenyl ether	ND	0.0053	0.0020	mg/l	
85-68-7	Butyl benzyl phthalate	ND	0.0053	0.0019	mg/l	
100-51-6	Benzyl Alcohol	ND	0.0053	0.0017	mg/l	
91-58-7	2-Chloronaphthalene	ND	0.0053	0.0020	mg/l	
106-47-8	4-Chloroaniline	ND	0.0053	0.0018	mg/l	
86-74-8	Carbazole	ND	0.0053	0.0020	mg/l	
218-01-9	Chrysene	ND	0.0053	0.0018	mg/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	0.0053	0.0019	mg/l	
111-44-4	bis(2-Chloroethyl)ether	ND	0.0053	0.0016	mg/l	

ND = Not detected MDL = Method Detection Limit J =

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



8 of 64
ACCUTEST
TD801

Client Sample ID: PERMIT RENEWEL

 Lab Sample ID:
 TD801-1
 Date Sampled:
 03/21/17

 Matrix:
 AQ - Water
 Date Received:
 03/21/17

 Method:
 EPA 625
 EPA 625
 Percent Solids:
 n/a

**Project:** Permit

### **ABN TCL List**

CAS No.	Compound	Result	RL	0053			
108-60-1	bis(2-Chloroisopropyl)ether	ND	0.0053	0.0017	mg/l		
7005-72-3	4-Chlorophenyl phenyl ether	ND	0.0053		-		
95-50-1	1,2-Dichlorobenzene	ND	0.0053				
541-73-1	1,3-Dichlorobenzene	ND	0.0053				
106-46-7	1,4-Dichlorobenzene	ND	0.0053		-		
121-14-2	2,4-Dinitrotoluene	ND	0.0053				
606-20-2	2,6-Dinitrotoluene	ND	0.0053	0.0019	_		
91-94-1	3,3'-Dichlorobenzidine	ND	0.011	0.0021	mg/l		
53-70-3	Dibenzo(a,h)anthracene	ND	0.0053	0.0022	mg/l		
132-64-9	Dibenzofuran	ND	0.0053	0.0019	mg/l		
84-74-2	Di-n-butyl phthalate	ND	0.0053	0.0021			
117-84-0	Di-n-octyl phthalate	ND	0.0053	0.0027	mg/l		
84-66-2	Diethyl phthalate	ND	0.0053	0.0019	mg/l		
131-11-3	Dimethyl phthalate	ND	0.0053	0.0021	mg/l		
117-81-7	bis(2-Ethylhexyl)phthalate	ND	0.0053	0.0020	mg/l		
206-44-0	Fluoranthene	ND	0.0053	0.0022	mg/l		
86-73-7	Fluorene	ND	0.0053	0.0019	mg/l		
118-74-1	Hexachlorobenzene	ND	0.0053	0.0021	mg/l		
87-68-3	Hexachlorobutadiene	ND	0.0053	0.0020	mg/l		
77-47-4	Hexachlorocyclopentadiene	ND	0.011	0.0017	mg/l		
67-72-1	Hexachloroethane	ND	0.0053	0.0018	mg/l		
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.0053	0.0025	mg/l		
78-59-1	Isophorone	ND	0.0053	0.0019	mg/l		
91-57-6	2-Methylnaphthalene	ND	0.0053	0.0017	mg/l		
88-74-4	2-Nitroaniline	ND	0.0053	0.0020	mg/l		
99-09-2	3-Nitroaniline	ND	0.0053		mg/l		
100-01-6	4-Nitroaniline	ND	0.0053	0.0026	mg/l		
91-20-3	Naphthalene	ND	0.0053	0.0018	mg/l		
98-95-3	Nitrobenzene	ND	0.0053	0.0018	mg/l		
621-64-7	N-Nitroso-di-n-propylamine	ND	0.0053	0.0020	mg/l		
86-30-6	N-Nitrosodiphenylamine	ND	0.0053	0.0019	mg/l		
85-01-8	Phenanthrene	ND	0.0053	0.0020	mg/l		
129-00-0	Pyrene	ND	0.0053	0.0019	mg/l		
120-82-1	1,2,4-Trichlorobenzene	ND	0.0053	0.0019	mg/l		
CAS No.	<b>Surrogate Recoveries</b>	Run# 1	Run# 2	Limi	ts		
367-12-4	2-Fluorophenol	53%		10-60	5%		
4165-62-2	Phenol-d5	47%		10-6.			
118-79-6	2,4,6-Tribromophenol	130% a		32-12			
110-17-0	2, <del>4</del> ,0-1110101110piicii01	130/0		34-12	20/0		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$ 

N = Indicates presumptive evidence of a compound



Page 2 of 3

C

Client Sample ID: PERMIT RENEWEL

 Lab Sample ID:
 TD801-1
 Date Sampled:
 03/21/17

 Matrix:
 AQ - Water
 Date Received:
 03/21/17

 Method:
 EPA 625
 EPA 625
 Percent Solids:
 n/a

**Project:** Permit

### **ABN TCL List**

CAS No.	<b>Surrogate Recoveries</b>	Run# 1	Run# 2	Limits
4165-60-0	Nitrobenzene-d5	92%		29-115%
321-60-8	2-Fluorobiphenyl	85%		34-113%
1718-51-0	Terphenyl-d14	116%		23-138%

(a) Outside control limits biased high. There are no detects associated with this surrogate.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



10 of 64 ACCUTEST TD801

Page 1 of 2

Client Sample ID: PERMIT RENEWEL

Lab Sample ID: TD801-1 **Date Sampled:** 03/21/17 Matrix: AQ - Water **Date Received:** 03/21/17 Method: EPA 608 EPA 608 Percent Solids: n/a

**Project:** Permit

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 a	6G45330.D	1	03/29/17	ANJ	03/26/17	N:OP1400	N:G6G1295
Run #2 a	2G144362.D	1	03/28/17	ANJ	03/26/17	N:OP1399	N:G2G3973
Run #3 b	6G45351.D	1	03/29/17	ANJ	03/26/17	N:OP1400	N:G6G1296

	Initial Volume	Final Volume
Run #1	990 ml	5.0 ml
Run #2	990 ml	5.0 ml
Run #3	990 ml	5.0 ml

### **PCB List**

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.00001	00.0000	)3 <b>i</b> mg/l	
319-84-6	alpha-BHC	ND	0.00001	00.0000	03 <b>6</b> ng/1	
319-85-7	beta-BHC	ND	0.00001	00.0000	029ng/l	
319-86-8	delta-BHC	ND	0.00001	00.0000	023mg/1	
58-89-9	gamma-BHC (Lindane)	ND	0.00001	00.0000	014mg/l	
12789-03-6	Chlordane	ND	0.00010	0.00005	57 mg/l	
60-57-1	Dieldrin	ND	0.00001	00.0000	)18ng/1	
72-54-8	4,4'-DDD	ND	0.00001	00.0000	019ng/1	
72-55-9	4,4'-DDE	ND	0.00001	00.0000	03 <b>l</b> mg/1	
50-29-3	4,4'-DDT	ND	0.00001	00.0000	025mg/1	
72-20-8	Endrin	ND	0.00001	00.0000	025mg/1	
1031-07-8	Endosulfan sulfate	ND	0.00001	00.0000	)27mg/l	
7421-93-4	Endrin aldehyde	ND	0.00001	00.0000	02 <b>6</b> ng/1	
959-98-8	Endosulfan-I	ND	0.00001	00.0000	025mg/1	
33213-65-9	Endosulfan-II	ND	0.00001	00.0000	)22ng/l	
76-44-8	Heptachlor	ND	0.00001	00.0000	019ng/l	
1024-57-3	Heptachlor epoxide	ND	0.00001	00.0000	)33mg/l	
72-43-5	Methoxychlor	ND	0.00001	00.0000	029ng/1	
8001-35-2	Toxaphene	ND	0.00013	0.00009	93 mg/l	
12674-11-2	Aroclor 1016	ND c	0.00025	0.00017	7 mg/l	
11104-28-2	Aroclor 1221	ND c	0.00025	0.00015	5 mg/l	
11141-16-5	Aroclor 1232	ND c	0.00025	0.00010	) mg/l	
53469-21-9	Aroclor 1242	ND c	0.00025	0.00014	1 mg/l	
12672-29-6	Aroclor 1248	ND c	0.00025	0.00013	3 mg/l	
11097-69-1	Aroclor 1254	ND c	0.00025	0.00017	7 mg/l	
11096-82-5	Aroclor 1260	ND c	0.00025	0.00014	1 mg/1	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Run	# 3	Limits

ND = Not detected MDL = Method Detection Limit J = Indicates an estimated value

129%

101%

RL = Reporting Limit

877-09-8

E = Indicates value exceeds calibration range

Tetrachloro-m-xylene

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

10-156%



126%

Page 2 of 2

Client Sample ID: PERMIT RENEWEL

 Lab Sample ID:
 TD801-1
 Date Sampled:
 03/21/17

 Matrix:
 AQ - Water
 Date Received:
 03/21/17

 Method:
 EPA 608
 EPA 608
 Percent Solids:
 n/a

**Project:** Permit

### **PCB List**

CAS No.	<b>Surrogate Recoveries</b>	Run# 1	Run# 2	Run# 3	Limits
877-09-8	Tetrachloro-m-xylene	106%	97%	104%	10-156%
2051-24-3	Decachlorobiphenyl	135%	63%	107%	10-143%
2051-24-3	Decachlorobiphenyl	109%	68%	86%	10-143%

(a) Analysis performed at SGS Accutest, Dayton, NJ.

(b) Confirmation run. Analysis performed at SGS Accutest, Dayton, NJ.

(c) Result is from Run# 2

ND = Not detected MDL =

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



Client Sample ID: PERMIT RENEWEL

Lab Sample ID: TD801-1 **Date Sampled:** 03/21/17 Matrix: **Date Received:** 03/21/17 AQ - Water Percent Solids: n/a

**Project:** Permit

### **Total Metals Analysis**

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic ^a	0.312	0.020	0.00068	mg/l	20	03/23/17	03/24/17 ANJ	EPA 200.8 ¹	EPA 200.8 ³
Barium ^a	0.0131 B	0.020	0.00056	mg/l	20	03/23/17	03/24/17 ANJ	EPA 200.8 ¹	EPA 200.8 ³
Cadmium ^a	0.0032 B	0.010	0.0024	mg/l	20	03/23/17	03/24/17 ANJ	EPA 200.8 ¹	EPA 200.8 ³
Chromium a	0.0021 U	0.080	0.0021	mg/l	20	03/23/17	03/24/17 ANJ	EPA 200.8 ¹	EPA 200.8 ³
Lead a	0.0012 B	0.010	0.00021	mg/l	20	03/23/17	03/24/17 ANJ	EPA 200.8 ¹	EPA 200.8 ³
Mercury b	0.000055 U	0.00020	0.00005	5mg/l	1	03/25/17	03/25/17 ANJ	EPA 245.1 ²	EPA 245.1 ⁴
Selenium ^a	0.544	0.020	0.0023	mg/l	20	03/23/17	03/24/17 ANJ	EPA 200.8 ¹	EPA 200.8 ³
Silver ^a	0.00083 U	0.040	0.00083	mg/l	20	03/23/17	03/24/17 ANJ	EPA 200.8 ¹	EPA 200.8 ³

(1) Instrument QC Batch: N:MA41634 (2) Instrument QC Batch: N:MA41639 (3) Prep QC Batch: N:MP99436 (4) Prep QC Batch: N:MP99469

(a) Elevated sample detection limit due to difficult sample matrix. Analysis performed at SGS Accutest, Dayton,

(b) Analysis performed at SGS Accutest, Dayton, NJ.

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL



**ACCUTEST** 

Page 1 of 1

Page 1 of 1

Client Sample ID: PERMIT RENEWEL

Lab Sample ID: TD801-1 **Date Sampled:** 03/21/17 Matrix: **Date Received:** 03/21/17 AQ - Water Percent Solids: n/a

**Project:** Permit

### **General Chemistry**

Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
BOD, 5 Day	8.9	6.0	3.0	mg/l	1	03/21/17 19:30 OZ SM 5210B-2000
Nitrogen, Ammonia	83.4	5.0	1.0	mg/l	50	03/22/17 TH EPA 350.1
Nitrogen, Nitrate a	14 U	25	14	mg/l	50	03/22/17 14:33 SM EPA 300
Nitrogen, Nitrite ^a	14 U	25	14	mg/l	50	03/22/17 14:33 SM EPA 300
Phosphorus, Total	0.55	0.040	0.020	mg/l	2	03/24/17 BG SM 4500PE-2011
Sulfide	0.010 U	0.20	0.010	mg/l	1	03/27/17 TH SM 4500S+ F-2000
Sulfite	0.77 U	3.0	0.77	mg/l	1	03/21/17 16:40 CV SM 4500 SO32 B-2011
Surfactants, MBAS as LAS b	0.21	0.10	0.080	mg/l	1	03/23/17 09:45 ALASM5540 C-11

(a) Elevated reporting limit due to matrix interference.

(b) Analysis performed at SGS Accutest, Lafayette, LA.

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL







# Section 4

Misc. Forms  Custody Documents and Other Forms	
Custody Documents and Other Porms	
Includes the following where applicable:	

SGS ACCUTEST			CHA	IN (	OF ·	CU	JS'	TC	D	Y												P	AGI	Ξ	_0	F
7,0001231			10165 Ha	arwin Dr.	Ste 150 H	loustor	n, TX	7703	16					FE	D-EX T	racking	#			+	Bottle	Order C	ontrol #			
	Man Russelland		TEL. 7	13-271-47 www	700 FAX	(: 713- .com	-271-	-4770						Ac	cutest C	tuote #				+	Accute	st Job#	·T	7	50	T
Client / Reporting Information	Project Name:		Projec	t Inform	ation					學學	9.1							Red	ues	ted	Ana	ilvs	es	1)		Matrix Code
Company Name	r roject Name.													T	T					T	T	T	Ť	T	T	Wattix Code
Gulf Chemical & Metallurgical	Permit		<u> </u>	and the second second	10000000000000000000000000000000000000	State Service	Managemen	Na la desposa	0000000	ON AND AND AND															1	
302 Midway				Dilling			90808														1.					DW - Drinking Wa GW - Ground Wa
City State Zip	City		State	Compa	Informat ny Name	ion ( ii	апте	erent	from	Repo	ort to	)		$\dashv$		- 1										WW - Water SW - Surface Wa
Freeport Texas 77541 Project Contact E-mail	Project#			Gulf C	hemica	1 & M	etallı	urgio	al																	SO - Soil SL- Sludge
	FTOJECL#			Street A	Address																					SED-Sediment OI - Oil
Phone # Fax #	Client Purchase	Order#		City					Stat	e		Z	ip	$\dashv$	-						1		1			LIQ - Other Liqui
979-415-1537 Sampler(s) Name(s)																		_	1				1	1		AIR - Air SOL - Other Soli
Encine (Alyancidi	Project Manager			Attentio	n:					-				7	- 1		8	Ž.	ទ	ett		9				WP - Wipe FB-Field Blank
1 1140000	1	Colle	ction			т-		Num	har at	prese				┙,	.   :	13	9 8	eta	2,5	afa		a/T				İ
Accutest				T	T	T	£	Ę I		1.	_		1 1 1 1	OTHER VOC. 624		SVOC-625	Pest/PCB-608	200.8-Metais-NJ	NO3,NO2,SO3	MBAS-Lafayette	용	Ammonia/TPO4				
Sample # Field ID / Point of Collection	Date	Time	Sampled By	Matrix	# of bottles	豆	ZANS	HN03	HZSO	NON W IS	MEOH	TSP	ENCORE	OTHER S		2	Pesi	200	ğ	Q Q	Sulfide	٤	80			
Permit Renewal	3-21-17	1000	EA		13	x	x	_	-	x	F	۲	++	,	+	-+			├	<del>                                     </del>	<del> </del>		+	+		LAB USE ONLY
					1	$\dagger \dagger$	+	+	H	-	+	+	++	+	+	X	X	X	Х	X	X	X	X	-		
				$\vdash$	-	++	+	+	+	+	$\vdash$	+	+	+-	+	+	-			Ц_			_	<u> </u>		
			<del> </del>	-	├	++	+	+	+	+	Н	+	H	+	+	4	4									
	<b> </b>				<u> </u>	$\vdash$	+	+	4	4	Н	4	$\sqcup$	4	$\perp$	$\perp$	_			_						
					ļ	$\sqcup$	_	11	4	4	Ш		Ц						_	+	1					
						Ш	$\perp$	Ш	$\perp$	L	Ш	T.	M	IG.	FD	13	37		7	7						
						Ш	$\perp$	Ш			П		П		T	T	T						-			***************************************
						Ш		П			П	T	П		T	$\top$						7	<del> </del>	$\vdash$		
						Π	T	П	T	T	П	3 71			1	$\top$	$\top$				5 /		<del> </del>	+-		
-						H	$\top$	$\sqcap$	$\dagger$	$\top$	H	1	-4	2 1	i	1	0	2		$\checkmark$	$\leq$		_	$\vdash$	-	
						$\vdash$	+	Ħ	$\dagger$	+	H	+	H	+	+	+	+			+				-	_	
						H	+	+	+	╁	Н	╁	H	+	+-	+	+	$\dashv$		+				$\vdash$		
Turnaround Time ( Business days)						ᆜ	ata C	Delive	erabl	e Info	mat	ion			SOURCE OF	ALIFECTOR'S	00000000		DANIES CO.				<u> </u>			NAME OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER O
Standard 5 Day RUSH	Approved By (Accute	est PM); / Date:			Commerc	iai "A"	' (Le	vel 1)	)			TRRP		94000	W/09388	- CONTRACT	92000092			Comr	nents /	Specia	il Instru	ctions		
4 Day RUSH					Commerc FULT1 (L			evel 2)	)				Form	at		L										
3 Day RUSH					REDT1 (I						Ш	Other				-										
☐ 2 Day RUSH ☐ 1 Day EMERGENCY					Commerc											-				+	<u> </u>					
Emergency & Rush T/A data available V/A Lablink	-							ercial '								_										
		· - A	<u> </u>			~	mma	acain!	- 40"	n		~~ ~	ımmar Surroç		nmarv					1	0					1110
Relinguished by Simpler Date Time:		ple Custody mu	st be docume	ented be	low each	time	sam	Reline	cha	nge	poss	essio	n, inc	luding	cour	ier de				4.5		, ,				HA C
<u> </u>	-17 1250 1	1 AHUV						2	4		2		_				-13	te fim	1/2/		Received	By:	/ -	/	7	1.7117
Relinquished by Sampler: Date Time: 3	R	Received By:						Relino	quish	ed By:	,							ite Time	/// ::		Received	By:		eg	$\overline{}$	2011
Relinquiehed but							. 1	4									ı				4	•		1	١	

TD801: Chain of Custody Page 1 of 4

Form: SM027-06 Rev 10/24/2016

90/									
10# 10 8°		0 5							
COOLER TEMP FORM	JPS (ALGC Drive) Client	Corrected Temp, ⁰ C	SAMPLES CONTAINED IN COOLER						
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Fedex/UPS	1 0 cf. °C	SAMPLES						
ACCUTEST ACCUTEST	Delivered by (circle one):  Date:  Client:	Cooler Number: Thermometer ID:							

**TD801: Chain of Custody** Page 2 of 4

# £

Page 1 of 2

### **SGS Accutest Sample Receipt Summary**

Job Number: TD801	Client:	GULF CHEMICAL 8	& METALLURGICAL	Project: PERMIT			
Date / Time Received: 3/21/2017 2:5	0:00 PM	Delivery Method:		Airbill #'s:			
No. Coolers:1 Therm	ID: IR9;			Temp Adjustment Factor:	0;		
Cooler Temps (Initial/Adjusted): #1:	(1.4/1.4);						
Cooler Security Y or N  1 Custody Seals Present:	3. COC F	Y or Present: ✓	_	ity - Documentation		r N	
cuctour countries = = =	4. Smpl Date			s present on bottles:	<b>✓</b>		
2. Custody Seals Intact:   ✓    □	Op. Du	56. Time 51.	2. Container lat	peling complete:	✓		
Cooler Temperature Y o	or N		3. Sample conta	ainer label / COC agree:	✓		
1. Temp criteria achieved:			Sample Integ	rity - Condition	<u>Y</u> o	r N	
Cooler temp verification:		-	1. Sample recvo	d within HT:	<b>✓</b>		
3. Cooler media: Ice	(Bag)	_	2. All containers	s accounted for:	<b>✓</b>		
Quality Control Preservation Y	or N N/A	WTB	STB 3. Condition of	sample:	Int	act	
1. Trip Blank present / cooler:	<b>v</b>		□ Sample Integ	rity - Instructions	Υo	r N	N/A
2. Trip Blank listed on COC:				uested is clear:	<b>✓</b>	П	
3. Samples preserved properly:				ved for unspecified tests		✓	
4. VOCs headspace free:			3. Sufficient vo	lume recvd for analysis:	<b>✓</b>		
			4. Compositing	instructions clear:			<b>✓</b>
			5. Filtering inst	ructions clear:			$\checkmark$
Comments			-				

TD801: Chain of Custody
Page 3 of 4

### 4

### Sample Receipt Log

Job #: TD801 Date / Time Received: 3/21/2017 2:50:00 PM 2:50:0 Initials: EC

Client: GULF CHEMICAL & METALLURGICAL

Cooler #	Sample ID:	Vol	Bot #	Location	Pres	рН	Therm ID	Initial Temp	Therm CF	Corrected Temp
1	TD801-1	1000ml	1	SUB	N/P	Note #2 - Preservative check not applicable.	IR9	1.4	0	1.4
1	TD801-1	1000ml	2	3P	N/P	Note #2 - Preservative check not applicable.	IR9	1.4	0	1.4
1	TD801-1	500ml	3	3P	N/P	Note #2 - Preservative check not applicable.	IR9	1.4	0	1.4
1	TD801-1	500ml	4	1M	H2SO4	pH < 2	IR9	1.4	0	1.4
1	TD801-1	250ml	5	1M	NaOH+ZnAc	pH > 12	IR9	1.4	0	1.4
1	TD801-1	LAG	6	4AA	N/P	Note #2 - Preservative check not applicable.	IR9	1.4	0	1.4
1	TD801-1	LAG	7	4AA	N/P	Note #2 - Preservative check not applicable.	IR9	1.4	0	1.4
1	TD801-1	LAG	8	4AA	N/P	Note #2 - Preservative check not applicable.	IR9	1.4	0	1.4
1	TD801-1	LAG	9	4AA	N/P	Note #2 - Preservative check not applicable.	IR9	1.4	0	1.4
1	TD801-1	500ml	10	SUB	HNO3	pH < 2	IR9	1.4	0	1.4
1	TD801-1	40ml	11	VR	HCL	Note #1 - Preservative to be checked by	IR9	1.4	0	1.4
1	TD801-1	40ml	12	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	1.4	0	1.4
1	TD801-1	40ml	13	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	1.4	0	1.4

**TD801: Chain of Custody** 

Page 4 of 4



# **Section 5**

## GC/MS Volatiles

QC Data Summaries

## Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method Blank Summary
Job Number: TD801
Account: GCMC Gulf Chemical & Metallurgical Corp.

**Project:** Permit

Sample	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	<b>Prep Date</b>	<b>Prep Batch</b>	<b>Analytical Batch</b>
VZ5269-MB	Z55290.D	1	03/28/17	EM	n/a	n/a	VZ5269

The QC reported here applies to the following samples: Method: EPA 624

CAS No.	Compound	Result	RL	MDL	Units Q
67-64-1	Acetone	ND	50	10	ug/l
71-43-2	Benzene	ND	1.0	0.30	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.30	ug/l
75-25-2	Bromoform	ND	1.0	0.30	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.30	ug/l
75-00-3	Chloroethane	ND	1.0	0.33	ug/l
67-66-3	Chloroform	ND	1.0	0.30	ug/l
75-15-0	Carbon disulfide	ND	5.0	0.75	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	0.54	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.30	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.30	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.30	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.30	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.30	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.30	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.30	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.30	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.30	ug/l
591-78-6	2-Hexanone	ND	10	1.2	ug/l
108-10-1	4-Methyl-2-pentanone	ND	10	2.3	ug/l
74-83-9	Methyl bromide	ND	1.0	0.49	ug/l
74-87-3	Methyl chloride	ND	1.0	0.30	ug/l
75-09-2	Methylene chloride	ND	5.0	1.3	ug/l
78-93-3	Methyl ethyl ketone	ND	10	2.6	ug/l
100-42-5	Styrene	ND	1.0	0.30	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.30	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.30	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l
108-88-3	Toluene	ND	1.0	0.30	ug/l
79-01-6	Trichloroethylene	ND	1.0	0.30	ug/l
75-01-4	Vinyl chloride	ND	1.0	0.30	ug/l
1330-20-7	Xylene (total)	ND	3.0	0.65	ug/l

### Page 2 of 2

Method Blank Summary
Job Number: TD801
Account: GCMC Gulf Chemical & Metallurgical Corp.

**Project:** Permit

Sample	File ID	DF	Analyzed	By	<b>Prep Date</b>	<b>Prep Batch</b>	Analytical Batch
VZ5269-MB	Z55290.D	1	03/28/17	EM	n/a	n/a	VZ5269

The QC reported here applies to the following samples:

Method: EPA 624

CAS No.	Surrogate Recoveries		Limits
1868-53-7	Dibromofluoromethane	101%	72-122%
	1,2-Dichloroethane-D4	104%	68-124%
2037-26-5	Toluene-D8	101%	80-119%
460-00-4	4-Bromofluorobenzene	99%	72-126%

Page 1 of 2

# Blank Spike Summary Job Number: TD801

GCMC Gulf Chemical & Metallurgical Corp. Account:

**Project:** Permit

Sample	File ID	DF	Analyzed	By	<b>Prep Date</b>	Prep Batch	Analytical Batch
VZ5269-BS	Z55288.D	1	03/28/17	EM	n/a	n/a	VZ5269

The QC reported here applies to the following samples: Method: EPA 624

		Spike	BSP	BSP	
CAS No.	Compound	ug/l	ug/l	<b>%</b>	Limits
67-64-1	Acetone	125	134	107	46-129
71-43-2	Benzene	25	24.9	100	68-119
75-27-4	Bromodichloromethane	25	25.2	101	72-118
75-25-2	Bromoform	25	24.3	97	54-123
108-90-7	Chlorobenzene	25	25.4	102	74-120
75-00-3	Chloroethane	25	25.2	101	61-132
67-66-3	Chloroform	25	24.9	100	73-122
75-15-0	Carbon disulfide	25	19.9	80	55-140
56-23-5	Carbon tetrachloride	25	26.0	104	68-133
75-34-3	1,1-Dichloroethane	25	24.5	98	72-121
75-35-4	1,1-Dichloroethylene	25	28.2	113	67-140
107-06-2	1,2-Dichloroethane	25	25.9	104	68-121
78-87-5	1,2-Dichloropropane	25	24.3	97	72-116
124-48-1	Dibromochloromethane	25	25.5	102	68-119
156-59-2	cis-1,2-Dichloroethylene	25	23.9	96	72-117
10061-01-5	cis-1,3-Dichloropropene	25	25.1	100	71-118
156-60-5	trans-1,2-Dichloroethylene	25	26.3	105	68-124
10061-02-6	trans-1,3-Dichloropropene	25	27.0	108	72-127
100-41-4	Ethylbenzene	25	26.1	104	71-117
591-78-6	2-Hexanone	125	126	101	49-124
108-10-1	4-Methyl-2-pentanone	125	122	98	54-122
74-83-9	Methyl bromide	25	24.9	100	53-138
74-87-3	Methyl chloride	25	31.0	124	50-145
75-09-2	Methylene chloride	25	25.2	101	60-125
78-93-3	Methyl ethyl ketone	125	134	107	51-129
100-42-5	Styrene	25	27.0	108	74-119
71-55-6	1,1,1-Trichloroethane	25	24.9	100	72-129
79-34-5	1,1,2,2-Tetrachloroethane	25	23.6	94	62-121
79-00-5	1,1,2-Trichloroethane	25	25.0	100	70-119
127-18-4	Tetrachloroethylene	25	26.3	105	72-132
108-88-3	Toluene	25	25.4	102	73-119
79-01-6	Trichloroethylene	25	26.2	105	73-121
75-01-4	Vinyl chloride	25	25.6	102	54-126
1330-20-7	Xylene (total)	75	79.2	106	74-119

^{* =} Outside of Control Limits.

Page 2 of 2

# Blank Spike Summary Job Number: TD801

GCMC Gulf Chemical & Metallurgical Corp. Account:

**Project:** Permit

Sample VZ5269-BS	<b>File ID</b> Z55288.D	<b>DF</b> 1	<b>Analyzed</b> 03/28/17	By EM	<b>Prep Date</b> n/a	<b>Prep Batch</b> n/a	Analytical Batch VZ5269

The QC reported here applies to the following samples: Method: EPA 624

CAS No.	<b>Surrogate Recoveries</b>	BSP	Limits
1868-53-7	Dibromofluoromethane	101%	72-122%
17060-07-0	1,2-Dichloroethane-D4	102%	68-124%
2037-26-5	Toluene-D8	100%	80-119%
460-00-4	4-Bromofluorobenzene	97%	72-126%

^{* =} Outside of Control Limits.

Page 1 of 2

Method: EPA 624

# Matrix Spike/Matrix Spike Duplicate Summary Job Number: TD801

GCMC Gulf Chemical & Metallurgical Corp. Account:

**Project:** Permit

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
TD1032-1MS	Z55292.D	1	03/28/17	EM	n/a	n/a	VZ5269
TD1032-1MSD	Z55293.D	1	03/28/17	EM	n/a	n/a	VZ5269
TD1032-1	Z55291.D	1	03/28/17	EM	n/a	n/a	VZ5269

The QC reported here applies to the following samples:

		TD103	2-1	Spike	MS	MS	Spike	MSD	MSD		Limits
CAS No.	Compound	ug/l	Q	ug/l	ug/l	%	ug/l	ug/l	%	RPD	Rec/RPD
			_			4.50			40=	10	
67-64-1	Acetone	16.2	J	125	166	120	125	150	107	10	46-129/25
71-43-2	Benzene	ND		25	25.2	101	25	24.7	99	2	68-119/12
75-27-4	Bromodichloromethane	6.3		25	32.6	105	25	31.8	102	2	72-118/16
75-25-2	Bromoform	ND		25	23.4	94	25	23.2	93	1	54-123/17
108-90-7	Chlorobenzene	ND		25	25.4	102	25	25.0	100	2	74-120/12
75-00-3	Chloroethane	ND		25	25.9	104	25	28.6	114	10	61-132/16
67-66-3	Chloroform	20.4		25	44.5	96	25	44.3	96	0	73-122/13
75-15-0	Carbon disulfide	ND		25	19.2	77	25	19.3	77	1	55-140/24
56-23-5	Carbon tetrachloride	ND		25	25.6	102	25	26.3	105	3	68-133/20
75-34-3	1,1-Dichloroethane	ND		25	25.0	100	25	24.0	96	4	72-121/14
75-35-4	1,1-Dichloroethylene	ND		25	27.5	110	25	27.6	110	0	67-140/18
107-06-2	1,2-Dichloroethane	ND		25	26.0	104	25	25.4	102	2	68-121/12
78-87-5	1,2-Dichloropropane	ND		25	24.4	98	25	23.5	94	4	72-116/12
124-48-1	Dibromochloromethane	ND		25	26.7	107	25	26.3	105	2	68-119/15
156-59-2	cis-1,2-Dichloroethylene	ND		25	23.6	94	25	22.8	91	3	72-117/13
10061-01-5	·	ND		25	24.9	100	25	24.2	97	3	71-118/18
156-60-5	trans-1,2-Dichloroethylene	ND		25	25.6	102	25	24.7	99	4	68-124/15
10061-02-6	trans-1,3-Dichloropropene	ND		25	26.6	106	25	26.1	104	2	72-127/17
100-41-4	Ethylbenzene	ND		25	26.0	104	25	25.6	102	2	71-117/12
591-78-6	2-Hexanone	ND		125	130	104	125	124	99	5	49-124/21
108-10-1	4-Methyl-2-pentanone	ND		125	126	101	125	120	96	5	54-122/20
74-83-9	Methyl bromide	ND		25	26.0	104	25	27.1	108	4	53-138/16
74-87-3	Methyl chloride	ND		25	32.2	129	25	32.4	130	1	50-145/17
75-09-2	Methylene chloride	ND		25	26.0	104	25	25.7	103	1	60-125/16
78-93-3	Methyl ethyl ketone	ND		125	140	112	125	132	106	6	51-129/22
100-42-5	Styrene	ND		25	26.9	108	25	26.2	105	3	74-119/19
71-55-6	1,1,1-Trichloroethane	ND		25	25.4	102	25	24.3	97	4	72-129/14
79-34-5	1,1,2,2-Tetrachloroethane	ND		25	24.5	98	25	23.3	93	5	62-121/17
79-00-5	1,1,2-Trichloroethane	ND		25	25.2	101	25	24.7	99	2	70-119/13
127-18-4	Tetrachloroethylene	ND		25	25.9	104	25	25.4	102	2	72-132/14
108-88-3	Toluene	ND		25	25.2	101	25	24.6	98	2	73-119/13
79-01-6	Trichloroethylene	ND		25	25.7	103	25	25.6	102	0	73-121/13
75-01-4	Vinyl chloride	ND		25	25.8	103	25	25.8	103	0	54-126/17
1330-20-7	Xylene (total)	ND		75	78.7	105	75	76.5	102	3	74-119/13
	÷ ' '										

^{* =} Outside of Control Limits.

Page 2 of 2

Method: EPA 624

## Matrix Spike/Matrix Spike Duplicate Summary

TD801 Job Number:

GCMC Gulf Chemical & Metallurgical Corp. Account:

**Project:** Permit

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	<b>Analytical Batch</b>
TD1032-1MS	Z55292.D	1	03/28/17	EM	n/a	n/a	VZ5269
TD1032-1MSD	Z55293.D	1	03/28/17	EM	n/a	n/a	VZ5269
TD1032-1	Z55291.D	1	03/28/17	EM	n/a	n/a	VZ5269

The QC reported here applies to the following samples:

CAS No.	Surrogate Recoveries	MS	MSD	TD1032-1	Limits
1868-53-7	Dibromofluoromethane	100%	101%	101%	72-122%
17060-07-0	1,2-Dichloroethane-D4	102%	102%	105%	68-124%
2037-26-5	Toluene-D8	99%	99%	101%	80-119%
460-00-4	4-Bromofluorobenzene	97%	96%	97%	72-126%

^{* =} Outside of Control Limits.



Section 6

## GC/MS Semi-volatiles

QC Data Summaries

### Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method: EPA 625

Method Blank Summary
Job Number: TD801
Account: GCMC Gulf Chemical & Metallurgical Corp.

**Project:** Permit

Sample OP43129-MB	<b>File ID</b> J186413A.D	<b>DF</b> 1	<b>Analyzed</b> 03/22/17	By SC	<b>Prep Date</b> 03/22/17	Prep Batch OP43129	Analytical Batch EJ2502

The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	MDL	Units Q
65-85-0	Benzoic Acid	ND	20	1.7	ug/l
95-57-8	2-Chlorophenol	ND	5.0	1.4	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.0	1.8	ug/l
120-83-2	2,4-Dichlorophenol	ND	5.0	2.0	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.0	1.0	ug/l
51-28-5	2,4-Dinitrophenol	ND	25	1.2	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	10	3.8	ug/l
95-48-7	2-Methylphenol	ND	5.0	1.4	ug/l
	3&4-Methylphenol	ND	5.0	1.5	ug/l
88-75-5	2-Nitrophenol	ND	5.0	1.8	ug/l
100-02-7	4-Nitrophenol	ND	25	13	ug/l
87-86-5	Pentachlorophenol	ND	25	3.2	ug/l
108-95-2	Phenol	ND	5.0	1.2	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.0	1.9	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.0	1.5	ug/l
83-32-9	Acenaphthene	ND	5.0	1.7	ug/l
208-96-8	Acenaphthylene	ND	5.0	1.7	ug/l
120-12-7	Anthracene	ND	5.0	1.9	ug/l
56-55-3	Benzo(a)anthracene	ND	5.0	1.8	ug/l
50-32-8	Benzo(a)pyrene	ND	5.0	2.0	ug/l
205-99-2	Benzo(b)fluoranthene	ND	5.0	2.2	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	5.0	2.0	ug/l
207-08-9	Benzo(k)fluoranthene	ND	5.0	2.0	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	5.0	1.9	ug/l
85-68-7	Butyl benzyl phthalate	ND	5.0	1.8	ug/l
100-51-6	Benzyl Alcohol	ND	5.0	1.6	ug/l
91-58-7	2-Chloronaphthalene	ND	5.0	1.9	ug/l
106-47-8	4-Chloroaniline	ND	5.0	1.7	ug/l
86-74-8	Carbazole	ND	5.0	1.9	ug/l
218-01-9	Chrysene	ND	5.0	1.7	ug/l
111-91-1	bis(2-Chloroethoxy)methane	ND	5.0	1.9	ug/l
111-44-4	bis(2-Chloroethyl)ether	ND	5.0	1.6	ug/l
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.0	1.6	ug/l
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.0	1.8	ug/l
95-50-1	1,2-Dichlorobenzene	ND	5.0	1.8	ug/l
541-73-1	1,3-Dichlorobenzene	ND	5.0	1.6	ug/l

Method: EPA 625

### **Method Blank Summary**

Job Number:

TD801 GCMC Gulf Chemical & Metallurgical Corp. **Account:** 

**Project:** Permit

Sample OP43129-MB	<b>File ID</b> J186413A.D	<b>DF</b> 1	<b>Analyzed</b> 03/22/17	By SC	<b>Prep Date</b> 03/22/17	Prep Batch OP43129	Analytical Batch EJ2502

Limits

The QC reported here applies to the following samples:

TD801-1

CAS No.	Compound	Result	RL	MDL	Units Q
106-46-7	1,4-Dichlorobenzene	ND	5.0	1.6	ug/l
121-14-2	2,4-Dinitrotoluene	ND	5.0	2.1	ug/l
606-20-2	2,6-Dinitrotoluene	ND	5.0	1.9	ug/l
91-94-1	3,3'-Dichlorobenzidine	ND	10	2.0	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	5.0	2.1	ug/l
132-64-9	Dibenzofuran	ND	5.0	1.8	ug/l
84-74-2	Di-n-butyl phthalate	ND	5.0	2.0	ug/l
117-84-0	Di-n-octyl phthalate	ND	5.0	2.6	ug/l
84-66-2	Diethyl phthalate	ND	5.0	1.9	ug/l
131-11-3	Dimethyl phthalate	ND	5.0	2.0	ug/l
117-81-7	bis(2-Ethylhexyl)phthalate	ND	5.0	1.9	ug/l
206-44-0	Fluoranthene	ND	5.0	2.1	ug/l
86-73-7	Fluorene	ND	5.0	1.8	ug/l
118-74-1	Hexachlorobenzene	ND	5.0	2.0	ug/l
87-68-3	Hexachlorobutadiene	ND	5.0	1.9	ug/l
77-47-4	Hexachlorocyclopentadiene	ND	10	1.6	ug/l
67-72-1	Hexachloroethane	ND	5.0	1.7	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.0	2.4	ug/l
78-59-1	Isophorone	ND	5.0	1.8	ug/l
91-57-6	2-Methylnaphthalene	ND	5.0	1.6	ug/l
88-74-4	2-Nitroaniline	ND	5.0	1.9	ug/l
99-09-2	3-Nitroaniline	ND	5.0	1.6	ug/l
100-01-6	4-Nitroaniline	ND	5.0	2.5	ug/l
91-20-3	Naphthalene	ND	5.0	1.8	ug/l
98-95-3	Nitrobenzene	ND	5.0	1.7	ug/l
621-64-7	N-Nitroso-di-n-propylamine	ND	5.0	1.9	ug/l
86-30-6	N-Nitrosodiphenylamine	ND	5.0	1.8	ug/l
85-01-8	Phenanthrene	ND	5.0	1.9	ug/l
129-00-0	Pyrene	ND	5.0	1.8	ug/l
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	1.8	ug/l

### **Surrogate Recoveries** CAS No.

367-12-4	2-Fluorophenol	30%	10-66%
4165-62-2	Phenol-d5	20%	10-63%

Page 3 of 3

Method: EPA 625

Method Blank Summary
Job Number: TD801
Account: GCMC Gulf Chemical & Metallurgical Corp.

**Project:** Permit

Sample OP43129-MB	<b>File ID</b> J186413A.D	<b>DF</b> 1	<b>Analyzed</b> 03/22/17	By SC	<b>Prep Date</b> 03/22/17	Prep Batch OP43129	Analytical Batch EJ2502

The QC reported here applies to the following samples:

CAS No.	Limits		
118-79-6	2,4,6-Tribromophenol	76%	32-128%
4165-60-0	Nitrobenzene-d5	79%	29-115%
321-60-8	2-Fluorobiphenyl	72%	34-113%
1718-51-0	Terphenyl-d14	79%	23-138%

Page 1 of 3

Method: EPA 625

## Blank Spike/Blank Spike Duplicate Summary

Job Number: TD801

GCMC Gulf Chemical & Metallurgical Corp. Account:

**Project:** Permit

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
OP43129-BS	J186414A.D	1	03/22/17	SC	03/22/17	OP43129	EJ2502
OP43129-BSD a	J186415.D	1	03/22/17	SC	03/22/17	OP43129	EJ2502

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
65-85-0	Benzoic Acid	100	26.5	26	26.8	27	1	10-91/30
95-57-8	2-Chlorophenol	50	23.9	48	23.4	47	2	38-102/30
59-50-7	4-Chloro-3-methyl phenol	50	34.0	68	33.8	68	1	30-110/30
120-83-2	2,4-Dichlorophenol	50	35.5	71	34.7	69	2	41-107/30
105-67-9	2,4-Dimethylphenol	50	31.3	63	30.9	62	1	39-107/30
51-28-5	2,4-Dinitrophenol	50	42.0	84	41.6	83	1	24-119/30
534-52-1	4,6-Dinitro-o-cresol	50	49.2	98	49.1	98	0	40-121/30
95-48-7	2-Methylphenol	50	20.3	41	20.3	41	0	33-93/30
	3&4-Methylphenol	50	19.9	40	18.7	37	6	28-99/30
88-75-5	2-Nitrophenol	50	33.4	67	32.9	66	2	38-107/30
100-02-7	4-Nitrophenol	50	18.4	37	18.2	36	1	10-78/30
87-86-5	Pentachlorophenol	50	38.8	78	40.2	80	4	28-116/30
108-95-2	Phenol	50	10.5	21	10.4	21	1	15-70/30
95-95-4	2,4,5-Trichlorophenol	50	39.9	80	38.4	77	4	47-116/30
88-06-2	2,4,6-Trichlorophenol	50	38.6	77	39.1	78	1	44-112/30
83-32-9	Acenaphthene	50	33.6	67	34.6	69	3	44-106/30
208-96-8	Acenaphthylene	50	35.4	71	36.2	72	2	46-111/30
120-12-7	Anthracene	50	39.4	79	39.2	78	1	53-114/30
56-55-3	Benzo(a)anthracene	50	39.8	80	39.6	79	1	57-113/30
50-32-8	Benzo(a)pyrene	50	40.2	80	39.6	79	2	50-109/30
205-99-2	Benzo(b)fluoranthene	50	41.6	83	41.1	82	1	50-117/30
191-24-2	Benzo(g,h,i)perylene	50	43.9	88	42.9	86	2	43-127/30
207-08-9	Benzo(k)fluoranthene	50	41.8	84	40.4	81	3	52-123/30
101-55-3	4-Bromophenyl phenyl ether	50	44.0	88	40.5	81	8	48-113/30
85-68-7	Butyl benzyl phthalate	50	40.6	81	40.4	81	0	42-120/30
100-51-6	Benzyl Alcohol	50	21.5	43	21.5	43	0	31-97/30
91-58-7	2-Chloronaphthalene	50	33.4	67	34.3	69	3	35-123/30
106-47-8	4-Chloroaniline	50	30.8	62	30.2	60	2	36-104/30
86-74-8	Carbazole	50	42.2	84	42.0	84	0	50-113/30
218-01-9	Chrysene	50	39.7	79	40.3	81	1	59-116/30
111-91-1	bis(2-Chloroethoxy)methane	50	31.0	62	30.5	61	2	34-103/30
111-44-4	bis(2-Chloroethyl)ether	50	30.1	60	28.3	57	6	36-100/30
108-60-1	bis(2-Chloroisopropyl)ether	50	28.5	57	27.6	55	3	30-110/30
7005-72-3	4-Chlorophenyl phenyl ether	50	42.0	84	42.0	84	0	45-112/30
95-50-1	1,2-Dichlorobenzene	50	27.5	55	26.8	54	3	37-100/30
541-73-1	1,3-Dichlorobenzene	50	27.3	55	26.6	53	3	34-99/30

^{* =} Outside of Control Limits.

Page 2 of 3

Method: EPA 625

## Blank Spike/Blank Spike Duplicate Summary

Job Number: TD801

Account: GCMC Gulf Chemical & Metallurgical Corp.

**Project:** Permit

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
OP43129-BS	J186414A.D	1	03/22/17	SC	03/22/17	OP43129	EJ2502
OP43129-BSD a	J186415.D	1	03/22/17	SC	03/22/17	OP43129	EJ2502

The QC reported here applies to the following samples:

		Spike	BSP	BSP	BSD	BSD		Limits
CAS No.	Compound	ug/l	ug/l	<b>%</b>	ug/l	<b>%</b>	RPD	Rec/RPD
106-46-7	1,4-Dichlorobenzene	50	27.7	55	27.2	54	2	36-99/30
121-14-2	2,4-Dinitrotoluene	50	46.6	93	49.8	100	7	52-115/30
606-20-2	2,6-Dinitrotoluene	50	43.4	87	46.1	92	6	52-111/30
91-94-1	3,3'-Dichlorobenzidine	50	40.3	81	40.4	81	0	37-125/30
53-70-3	Dibenzo(a,h)anthracene	50	44.2	88	43.5	87	2	47-125/30
132-64-9	Dibenzofuran	50	37.0	74	38.7	77	4	45-108/30
84-74-2	Di-n-butyl phthalate	50	43.3	87	43.3	87	0	47-118/30
117-84-0	Di-n-octyl phthalate	50	39.2	78	38.6	77	2	41-124/30
84-66-2	Diethyl phthalate	50	40.7	81	41.7	83	2	38-121/30
131-11-3	Dimethyl phthalate	50	39.2	78	41.1	82	5	41-116/30
117-81-7	bis(2-Ethylhexyl)phthalate	50	40.2	80	39.8	80	1	50-123/30
206-44-0	Fluoranthene	50	43.9	88	44.3	89	1	50-118/30
86-73-7	Fluorene	50	39.3	79	39.8	80	1	47-113/30
118-74-1	Hexachlorobenzene	50	47.6	95	48.1	96	1	49-114/30
87-68-3	Hexachlorobutadiene	100	61.6	62	62.2	62	1	30-104/30
77-47-4	Hexachlorocyclopentadiene	50	10.3	21	10.7	21	4	10-97/30
67-72-1	Hexachloroethane	50	25.8	52	24.9	50	4	30-100/30
193-39-5	Indeno(1,2,3-cd)pyrene	50	45.0	90	44.5	89	1	45-127/30
78-59-1	Isophorone	50	33.8	68	33.2	66	2	40-103/30
91-57-6	2-Methylnaphthalene	50	30.8	62	30.1	60	2	36-104/30
88-74-4	2-Nitroaniline	50	35.2	70	36.9	74	5	41-117/30
99-09-2	3-Nitroaniline	50	35.6	71	36.3	73	2	37-117/30
100-01-6	4-Nitroaniline	50	35.6	71	39.3	79	10	47-121/30
91-20-3	Naphthalene	50	30.4	61	30.4	61	0	40-104/30
98-95-3	Nitrobenzene	50	35.6	71	36.3	73	2	40-103/30
621-64-7	N-Nitroso-di-n-propylamine	50	32.9	66	32.1	64	2	36-112/30
86-30-6	N-Nitrosodiphenylamine	100	80.4	80	77.0	77	4	39-109/30
85-01-8	Phenanthrene	50	39.5	79	39.7	79	1	53-114/30
129-00-0	Pyrene	50	40.9	82	39.6	79	3	51-117/30
120-82-1	1,2,4-Trichlorobenzene	50	30.2	60	30.9	62	2	32-103/30

CAS No.	<b>Surrogate Recoveries</b>	BSP	BSD	Limits
367-12-4	2-Fluorophenol	27%	26%	10-66%
4165-62-2	Phenol-d5	19%	17%	10-63%

^{* =} Outside of Control Limits.

# 6.2.

Page 3 of 3

Method: EPA 625

## _____

## Blank Spike/Blank Spike Duplicate Summary

Job Number: TD801

**Account:** GCMC Gulf Chemical & Metallurgical Corp.

**Project:** Permit

Sample	File ID	DF	Analyzed	By	Prep Date	<b>Prep Batch</b>	<b>Analytical Batch</b>
OP43129-BS	J186414A.D	1	03/22/17	SC	03/22/17	OP43129	EJ2502
OP43129-BSD ^a	J186415.D	1	03/22/17	SC	03/22/17	OP43129	EJ2502

The QC reported here applies to the following samples:

TD801-1

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
118-79-6	2,4,6-Tribromophenol	91%	87%	32-128%
4165-60-0	Nitrobenzene-d5	69%	67%	29-115%
321-60-8	2-Fluorobiphenyl	62%	65%	34-113%
1718-51-0	Terphenyl-d14	83%	80%	23-138%

(a) Insufficient sample for MS/MSD.

^{* =} Outside of Control Limits.



## **Section 7**

## General Chemistry

QC Data Summaries

### Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries



### METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: TD801 Account: GCMC - Gulf Chemical & Metallurgical Corp.

Project: Permit

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
BOD, 5 Day	GP41291/GN80428	2.0	0.0	mg/l	198	197	99.5	82-114%
Chloride	GP41315/GN80465	0.50	0.0	mg/l	10	9.79	97.9	90-110%
Nitrogen, Ammonia	GP41310/GN80448	0.10	0.0	mg/l	2	1.93	96.5	90-110%
Nitrogen, Nitrate	GP41315/GN80465	0.50	0.0	mg/l	10	9.64	96.4	90-110%
Nitrogen, Nitrite	GP41315/GN80465	0.50	0.0	mg/l	10	9.97	99.7	90-110%
Phosphorus, Total	GP41359/GN80523	0.020	0.0	mg/l	0.4	0.41	102.5	91-108%
Sulfate	GP41315/GN80465	0.60	0.0	mg/l	10	9.86	98.6	90-110%
Sulfide	GN80491	0.20	0.0	mg/l	1600	1600	100.0	90-105%
Sulfite	GN80441	3.0	0.0	mg/l	50	50.5	101.0	97-102%

Associated Samples: Batch GN80441: TD801-1 Batch GN80491: TD801-1 Batch GP41291: TD801-1 Batch GP41310: TD801-1 Batch GP41315: TD801-1 Batch GP41359: TD801-1 (*) Outside of QC limits

## BLANK SPIKE DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: TD801 Account: GCMC - Gulf Chemical & Metallurgical Corp. Project: Permit

Analyte	Batch ID	Units	Spike Amount	BSD Result	RPD	QC Limit
Sulfide	GN80491	mg/l	1600	1600	0.0	

Associated Samples: Batch GN80491: TD801-1 (*) Outside of QC limits

## DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: TD801

Account: GCMC - Gulf Chemical & Metallurgical Corp.

Project: Permit

Analyte	Batch ID	QC Sample	Units	Original Result	DUP Result	RPD	QC Limits	
BOD, 5 Day	GP41291/GN80428	TD769-2A	mg/l	3.4	3.8	11.1	0-15%	
Chloride	GP41315/GN80465	TD800-3	mg/l	345	386	11.2	0-20%	
Nitrogen, Ammonia	GP41310/GN80448	TD812-1A	mg/l	0.0	0.0	0.0	0-20%	
Nitrogen, Nitrate	GP41315/GN80465	TD800-3	mg/l	0.0	0.0	0.0	0-20%	
Nitrogen, Nitrite	GP41315/GN80465	TD800-3	mg/l	0.0	0.0	0.0	0-20%	
Phosphorus, Total	GP41359/GN80523	TD641-1	mg/l	0.19	0.19	0.0	0-20%	
Sulfate	GP41315/GN80465	TD800-3	mg/l	61.7	61.5	0.3	0-20%	
Sulfite	GN80441	TD801-1	mg/l	0.77 U	0.0	0.0	0-10%	

Associated Samples: Batch GN80441: TD801-1 Batch GP41291: TD801-1 Batch GP41310: TD801-1 Batch GP41315: TD801-1 Batch GP41359: TD801-1 (*) Outside of QC limits

## MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: TD801
Account: GCMC - Gulf Chemical & Metallurgical Corp.

Project: Permit

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MS Result	%Rec	QC Limits
Chloride	GP41315/GN80465	TD800-3	mg/l	345	500	1020	135.0N(a)	80-120%
Nitrogen, Ammonia	GP41310/GN80448	TD812-1A	mg/l	0.0	2	2.0	100.0	90-110%
Nitrogen, Nitrate	GP41315/GN80465	TD800-3	mg/l	0.0	500	547	109.4	80-120%
Nitrogen, Nitrite	GP41315/GN80465	TD800-3	mg/l	0.0	500	574	114.8	80-130%
Phosphorus, Total	GP41359/GN80523	TD641-1	mg/l	0.19	0.8	0.97	97.5	83-110%
Sulfate	GP41315/GN80465	TD800-3	mg/l	61.7	500	638	115.3	80-120%
Sulfite	GN80441	TD801-1	mg/l	0.77 U	50	50.0	100.0	95-102%

Associated Samples: Batch GN80441: TD801-1 Batch GP41310: TD801-1 Batch GP41315: TD801-1 Batch GP41359: TD801-1 (*) Outside of OC limits

(*) Outside of QC limits
(N) Matrix Spike Rec. outside of QC limits

(a) Outside control limits due to matrix interference.





## **Section 8**

**Custody Documents and Other Forms** 

(SGS Accutest New Jersey)

Includes the following where applicable:

• Chain of Custody



### CHAIN OF CUSTODY

			(	CHAIN	OF	C	J <b>ST</b> (	OD	Y											F	age	e 1 c	f 2		
	CCC												F	ED-EX To	racking #			200	Bot	ttle Order	Control #				7
	SGS AG	CUTEST		10165 Har	win Drive	Housto	n, TX 770	36						56	42	460	05-	120	SG	S Accute	st Job	TDS	0.4		$\dashv$
	COCCO AU	001201		TEL. 713-2	271-4700	FAX: 7	13-271-47	70					S	SGS Accu	test Quote	•						108	101		-
				Project I											Requ	ested A	nalysis	(see	TEST C	ODE s	heet)			Matrix Codes	5
	Client / Reporting Information	Project Name:		Projecti	mormac	1011																		DW - Drinking Wa	iter
ompany		T TOJOST THEME			Permit																			GW - Ground Wa	
SGS	Accutest													PBMS										WW - Water SW - Surface Wa	iter
reet Ad		Street					n ( if differe		om Par	ort to						-								SO - Soil	
1016	5 Harwin Drive	0.1		State	Company		i ( ii diiiek	ELIC III	om res	1011 10				E, HG							1			SL- Sludge SED-Sediment	
ity		tip City												CRMS			1			- 1				OI - Oil LIQ - Other Liqu	nied .
Hous		Project #			Street Ad	dress								0			- 1			1				AIR - Air	1
roject C		1 Toject w												CDMS										SOL - Other Sol WP - Wipe	id
	guyen2@sgs.com	ax # Client Purchase O	rder#		City			5	State			Zip	- 1	0,7			1				-			FB-Field Blank	
hone #	271-4700													PPF				-						EB-Equipment BI RB- Rinse Blan	ank I
	s) Name(s)	Phone Project Manager			Attention								1	S, B						1				TB-Trip Blank	
ampien	aj 140111477				<u></u>				Mum	r of pre	sower	Bottles		ASMS BAMS,							1				_
Т				Collection	1			-	NUITIDE		1 2	Li Li		18.4	1										
sas					Sampled			_	NaOH HNO3	H2SO4	DI Wate	MEOH		AGMS .										LAB USE ON	LY
Accubest Sample #	Field ID / Point of Collection	MEOH/DI Vial#	Date	Time	by	Matrix	# of bottles	豆	코 호	至 2	0	2 0				-		-	-	-	-		_	FUU	
	PERMIT RENEWEL		3/21/17	10:00:00 AN	d	AQ	3		×	1	x			X					-+			-	-	£44 R3	$\dashv$
1	FERMIT RETURNS																							1/2	_
						-	<del>                                     </del>	H	_	ΙT	_														
					-			H	+	$\vdash$	+	$\vdash$	+-	-	+	-									
								Ш		$\sqcup$	_	$\vdash$	_			-					-+				$\neg$
					1		1															_	_		-
					-	1				$\sqcap$	T	П													
				-	-		-	$\vdash$	+	++	+	+	+	_	1	1									
								$\vdash$	-	$\vdash$	+	$\vdash$	+	-	+	+	-					-	_		
										Ш		Ш				-	-		-						-
																									_
				-	+	-	1	T		$\Box$		П				T						1			
					-	-	+	+	H	++	+	+	+	+	+	-									
								1	<u> </u>	$\vdash$	_	$\sqcup$	-		-	+	-				-	-+			-
								1		11													_		_
	Turnaround Time ( Business days)						Data	Del	iverabl	e Infor									Comn	nents /	Special	Instruction	ons [		$\dashv$
	Turnaround Tarre ( oranice sey)	Approved By (SGS	Accutest PM): / Dat	le:			rcial "A" (I						Categ												
	Std. 10 Business Days						rcial "B" (		2)	Ī			Categ	gory B								jx (	)[	3,A	
	5 Day RUSH						( Level 3+	4)		L	_	tate F	orms					INITI	AL AS	ESS	MENT		- Helita		
	3 Day EMERGENCY					NJ Red				L			COM							n.E.O		N_TA	. C.		
	2 Day EMERGENCY					Comme	Comme	rcial "	Δ" = Po	_		Julei -	00111	1410		1		LAB	EL VE	RIFIC	AIIO	N_04	2		
	1 Day EMERGENCY						Comme					umma	ry										)		
	X other Due 3/28/2017 ergency & Rush T/A data/Pallable VIA Lablin	k					MIDNE	and .	Pocus	e 4 OC	Sum	mary 4	- Partia	al Raw d	ata	1						$\rightarrow$	7		$\neg$
Em	ergency & Rush T/A data-paramacid VIA Cabilit	7 1 14	Sample Cus	stody must be	docume	nted bel	ow each t	ime	sample linquishe	es cha	ange	posse	ession	n, inclu	aing co	urier del	Date Tie	ne: C	7:15	Receive	d By:	#			
Rel	offuished by Sampler	3/2/11	Received By:	#	X			2				_1	9/	0			3-22	2-17		2 Receive	d Bur	4			$\overline{}$
Reli 3	nquished by Sampler:	Date Time:	Received By:	'				4	linquish				- 19	Intact		Preser	Date Ti			4	7.	On Ice		cooler Temp. O.	70
	nquished by:	Date Time:	Received By: 5					Cu	stody S		51	T		Not int	act									0.	7A
-																									

**TD801: Chain of Custody** Page 1 of 2 **SGS** Accutest New Jersey

### **SGS Accutest Sample Receipt Summary**

Job Number: TD801	Client:		Project:								
Date / Time Received: 3/22/20	017 9:15:00 AM <b>Deliv</b> e	ery Method:	Airbill #'s:								
Cooler Temps (Raw Measured) °C: Cooler 1: (0.7);  Cooler Temps (Corrected) °C: Cooler 1: (2.1);											
Cooler Security  1. Custody Seals Present: 2. Custody Seals Intact:  Cooler Temperature	or N	OK 🔽 🗆 1.	ample Integrity - Documentation  1. Sample labels present on bottles: 2. Container labeling complete: 3. Sample container label / COC agree:	<u>Y</u> or N ☑ □ ☑ □							
Temp criteria achieved:     Cooler temp verification:     Cooler media:     No. Coolers:	IR Gun Ice (Bag)	1. 2	Sample Integrity - Condition  I. Sample recvd within HT:  2. All containers accounted for:  3. Condition of sample:	<u>Y</u> or N ✓ □  ✓ Intact							
Quality Control Preservation  1. Trip Blank present / cooler:  2. Trip Blank listed on COC:  3. Samples preserved properly:  4. VOCs headspace free:	Y or N N/A  □ □ □ ☑  □ □ ☑  ☑ □ ☑	3	Analysis requested is clear: Bottles received for unspecified tests Sufficient volume recvd for analysis: Compositing instructions clear: Filtering instructions clear:	Y or N N/A  V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V							
Comments		·									

SM089-02 Rev. Date 12/1/16

**TD801: Chain of Custody** 

Page 2 of 2



## **Section 9**

## GC Semi-volatiles

QC Data Summaries

(SGS Accutest New Jersey)

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries



Method: EPA 608

# Method Blank Summary Job Number: TD801

ALGC SGS Accutest Gulf Coast **Account:** 

**Project:** GCMC: Permit

Sample OP1399-MB1	<b>File ID</b> 2G144360.D	<b>DF</b> 1	<b>Analyzed</b> 03/28/17	By SP	<b>Prep Date</b> 03/26/17	Prep Batch OP1399	Analytical Batch G2G3973

### The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	MDL	Units Q
12674-11-2	Aroclor 1016	ND	0.25	0.17	ug/l
11104-28-2	Aroclor 1221	ND	0.25	0.15	ug/l
11141-16-5	Aroclor 1232	ND	0.25	0.10	ug/l
53469-21-9	Aroclor 1242	ND	0.25	0.14	ug/l
12672-29-6	Aroclor 1248	ND	0.25	0.13	ug/l
11097-69-1	Aroclor 1254	ND	0.25	0.17	ug/l
11096-82-5	Aroclor 1260	ND	0.25	0.14	ug/l

CAS No.	<b>Surrogate Recoveries</b>		Limits
877-09-8	Tetrachloro-m-xylene	111%	10-156%
877-09-8	Tetrachloro-m-xylene	115%	10-156%
2051-24-3	Decachlorobiphenyl	33%	10-143%
2051-24-3	Decachlorobiphenyl	41%	10-143%

Method: EPA 608

# Method Blank Summary Job Number: TD801

Account: ALGC SGS Accutest Gulf Coast

GCMC: Permit **Project:** 

Sample OP1400-MB1	<b>File ID</b> 6G45319.D	<b>DF</b> 1	<b>Analyzed</b> 03/28/17	<b>By</b> KD	<b>Prep Date</b> 03/26/17	Prep Batch OP1400	Analytical Batch G6G1295

The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	MDL	Units Q
309-00-2	Aldrin	ND	0.010	0.0030	ug/l
319-84-6	alpha-BHC	ND	0.010	0.0030	ug/l
319-85-7	beta-BHC	ND	0.010	0.0028	ug/l
319-86-8	delta-BHC	ND	0.010	0.0023	ug/l
58-89-9	gamma-BHC (Lindane)	ND	0.010	0.0014	ug/l
12789-03-6	=	ND	0.10	0.057	ug/l
60-57-1	Dieldrin	ND	0.010	0.0018	ug/l
72-54-8	4,4'-DDD	ND	0.010	0.0019	ug/l
72-55-9	4,4'-DDE	ND	0.010	0.0031	ug/l
50-29-3	4,4'-DDT	ND	0.010	0.0025	ug/l
72-20-8	Endrin	ND	0.010	0.0025	ug/l
1031-07-8	Endosulfan sulfate	ND	0.010	0.0026	ug/l
7421-93-4	Endrin aldehyde	ND	0.010	0.0026	ug/l
959-98-8	Endosulfan-I	ND	0.010	0.0025	ug/l
33213-65-9	Endosulfan-II	ND	0.010	0.0021	ug/l
76-44-8	Heptachlor	ND	0.010	0.0019	ug/l
1024-57-3	Heptachlor epoxide	ND	0.010	0.0033	ug/l
72-43-5	Methoxychlor	ND	0.010	0.0028	ug/l
8001-35-2	Toxaphene	ND	0.13	0.092	ug/l

CAS No.	<b>Surrogate Recoveries</b>		Limits
877-09-8	Tetrachloro-m-xylene	96%	10-156%
877-09-8	Tetrachloro-m-xylene	100%	10-156%
2051-24-3	Decachlorobiphenyl	25%	10-143%
2051-24-3	Decachlorobiphenyl	23%	10-143%

Page 1 of 1

Method: EPA 608

# Blank Spike Summary Job Number: TD801

Account: ALGC SGS Accutest Gulf Coast

**Project:** GCMC: Permit

Sample OP1399-BS1	<b>File ID</b> 2G144361.D	<b>DF</b> 1	<b>Analyzed</b> 03/28/17	By SP	<b>Prep Date</b> 03/26/17	Prep Batch OP1399	Analytical Batch G2G3973

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
12674-11-2	Aroclor 1016	2	2.5	125 a	42-160
11104-28-2	Aroclor 1221		ND		70-130
11141-16-5	Aroclor 1232		ND		70-130
53469-21-9	Aroclor 1242		ND		70-130
12672-29-6	Aroclor 1248		ND		70-130
11097-69-1	Aroclor 1254		ND		70-130
11096-82-5	Aroclor 1260	2	2.1	105	41-158

CAS No.	<b>Surrogate Recoveries</b>	BSP	Limits
877-09-8	Tetrachloro-m-xylene	116%	10-156%
877-09-8	Tetrachloro-m-xylene	119%	10-156%
2051-24-3	Decachlorobiphenyl	28%	10-143%
2051-24-3	Decachlorobiphenyl	31%	10-143%

⁽a) Reported from 2nd signal. %D of check calibration on 1st signal exceed method criteria (15%) so using for confirmation only.

^{* =} Outside of Control Limits.

# Blank Spike Summary Job Number: TD801

Account: ALGC SGS Accutest Gulf Coast

**Project:** GCMC: Permit

Sample OP1400-BS1	<b>File ID</b> 6G45320.D	<b>DF</b> 1	<b>Analyzed</b> 03/28/17	<b>By</b> KD	<b>Prep Date</b> 03/26/17	Prep Batch OP1400	Analytical Batch G6G1295

The QC reported here applies to the following samples: Method: EPA 608

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
309-00-2	Aldrin	0.25	0.22	88	18-142
319-84-6	alpha-BHC	0.25	0.26	104	40-149
319-85-7	beta-BHC	0.25	0.26	104	41-141
319-86-8	delta-BHC	0.25	0.28	112	34-160
58-89-9	gamma-BHC (Lindane)	0.25	0.26	104	40-148
60-57-1	Dieldrin	0.25	0.27	108	41-152
72-54-8	4,4'-DDD	0.25	0.27	108	38-153
72-55-9	4,4'-DDE	0.25	0.27	108	35-146
50-29-3	4,4'-DDT	0.25	0.28	112	36-158
72-20-8	Endrin	0.25	0.28	112	45-161
1031-07-8	Endosulfan sulfate	0.25	0.27	108	41-154
7421-93-4	Endrin aldehyde	0.25	0.28	112	41-153
959-98-8	Endosulfan-I	0.25	0.26	104	38-146
33213-65-9	Endosulfan-II	0.25	0.27	108	40-149
76-44-8	Heptachlor	0.25	0.23	92	27-141
1024-57-3	Heptachlor epoxide	0.25	0.26	104	39-148
72-43-5	Methoxychlor	0.25	0.26	104	38-153
CAS No.	<b>Surrogate Recoveries</b>	BSP	Lim	its	

877-09-8	Tetrachloro-m-xylene	87%	10-156%
877-09-8	Tetrachloro-m-xylene	92%	10-156%
2051-24-3	Decachlorobiphenyl	66%	10-143%
2051-24-3	Decachlorobiphenyl	62%	10-143%

^{* =} Outside of Control Limits.

Page 1 of 1

# Matrix Spike/Matrix Spike Duplicate Summary Job Number: TD801

Account: ALGC SGS Accutest Gulf Coast

**Project:** GCMC: Permit

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP1399-MS	2G144324.D	1	03/27/17	SP	03/26/17	OP1399	G2G3972
OP1399-MSD	2G144325.D	1	03/27/17	SP	03/26/17	OP1399	G2G3972
JC39468-3	2G144323.D	1	03/27/17	SP	03/26/17	OP1399	G2G3972

The QC reported here applies to the following samples: Method: EPA 608

CAS No.	Compound	JC39468-3 ug/l Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
12674-11-2	Aroclor 1016	ND	4.94	6.4	130	4.94	6.6	134	3	27-180/37
11104-28-2	Aroclor 1221	ND		ND			ND		nc	70-130/30
11141-16-5	Aroclor 1232	ND		ND			ND		nc	70-130/30
53469-21-9	Aroclor 1242	ND		ND			ND		nc	70-130/30
12672-29-6	Aroclor 1248	ND		ND			ND		nc	70-130/30
11097-69-1	Aroclor 1254	ND		ND			ND		nc	70-130/2
11096-82-5	Aroclor 1260	ND	4.94	5.2	105	4.94	5.1	103	2	10-177/41
CAS No.	Surrogate Recoveries	MS	MSD	JC3	9468-3	Limits				

CAS No.	<b>Surrogate Recoveries</b>	MS	MSD	JC39468-3	Limits
877-09-8	Tetrachloro-m-xylene	116%	120%	106%	10-156%
877-09-8	Tetrachloro-m-xylene	119%	125%	105%	10-156%
2051-24-3	Decachlorobiphenyl	79%	83%	55%	10-143%
2051-24-3	Decachlorobiphenyl	103%	100%	65%	10-143%

^{* =} Outside of Control Limits.



## **Section 10**

## Metals Analysis

QC Data Summaries

(SGS Accutest New Jersey)

### Includes the following where applicable:

- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries



### BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: TD801 Account: ALGC - SGS Accutest Gulf Coast Project: GCMC: Permit

QC Batch ID: MP99436 Methods: EPA 200.8 Matrix Type: AQUEOUS Units: ug/l

Prep Date:

03/23/17

Metal	RL	IDL	MDL	MB raw	final
Aluminum	50	.19	1.3		
Antimony	2.0	.062	.26		
Arsenic	1.0	.0096	.034	-0.0053	<1.0
Barium	1.0	.0023	.028	0.0054	<1.0
Beryllium	0.50	.0026	.013		
Boron	50	.53			
Cadmium	0.50	.003	.12	-0.0049	<0.50
Calcium	250	1.4	3.7		
Chromium	4.0	.016	.1	-0.0021	<4.0
Cobalt	0.50	.002	.018		
Copper	4.0	.016	.14		
Iron	50	.13	2		
Lead	0.50	.0043	.011	0.016	<0.50
Magnesium	250	.14	3.6		
Manganese	1.0	.011	.095		
Molybdenum	1.0	.021	.23		
Nickel	4.0	.017	.11		
Potassium	250	1.5	8.8		
Selenium	1.0	.011	.12	0.038	<1.0
Silver	2.0	.0044	.041	0.0036	<2.0
Sodium	250	.89	2.5		
Strontium	5.0	.004	.015		
Thallium	0.50	.002	.013		
Tin	5.0	.038	.38		
Titanium	1.0	.022	.56		
Vanadium	4.0	.015	.2		
Zinc	10	.06	1.2		

Associated samples MP99436: TD801-1

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested



### MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: TD801 Account: ALGC - SGS Accutest Gulf Coast Project: GCMC: Permit

QC Batch ID: MP99436 Methods: EPA 200.8 Matrix Type: AQUEOUS Units: ug/l

03/23/17 Prep Date:

				,,-	
Metal	MC49905 Origina		Spikelot MPX200.8		QC Limits
Aluminum	anr				
Antimony					
Arsenic	0.93	105	100	104.1	70-130
Barium	27.7	137	100	109.3	70-130
Beryllium					
Boron					
Cadmium	0.025	103	100	103.0	70-130
Calcium					
Chromium	1.5	106	100	104.5	70-130
Cobalt					
Copper	anr				
Iron	anr				
Lead	5.9	116	100	110.1	70-130
Magnesium					
Manganese					
Molybdenum					
Nickel	anr				
Potassium					
Selenium	0.15	211	200	105.4	70-130
Silver	0.015	78.7	76.5	102.9	70-130
Sodium					
Strontium					
Thallium					
Tin					
Titanium					
Vanadium					
Zinc	anr				

Associated samples MP99436: TD801-1

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits (anr) Analyte not requested



### MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: TD801 Account: ALGC - SGS Accutest Gulf Coast Project: GCMC: Permit

QC Batch ID: MP99436 Matrix Type: AQUEOUS Methods: EPA 200.8 Units: ug/l

Prep Date:

03/23/17

					//-	
Metal	MC49905 Origina		Spikelo MPX200	ot .8 % Rec	MSD RPD	QC Limit
Aluminum	anr					
Antimony						
Arsenic	0.93	105	100	104.1	0.0	10
Barium	27.7	134	100	106.3	2.2	20
Beryllium						
Boron						
Cadmium	0.025	103	100	103.0	0.0	10
Calcium						
Chromium	1.5	105	100	103.5	0.9	10
Cobalt						
Copper	anr					
Iron	anr					
Lead	5.9	113	100	107.1	2.6	10
Magnesium						
Manganese						
Molybdenum						
Nickel	anr					
Potassium						
Selenium	0.15	211	200	105.4	0.0	10
Silver	0.015	77.2	76.5	100.9	1.9	10
Sodium						
Strontium						
Thallium						
Tin						
Titanium						
Vanadium						
Zinc	anr					

Associated samples MP99436: TD801-1

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits (anr) Analyte not requested

### SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: TD801 Account: ALGC - SGS Accutest Gulf Coast Project: GCMC: Permit

QC Batch ID: MP99436 Methods: EPA 200.8 Matrix Type: AQUEOUS Units: ug/l

Prep Date: 03/23/17

riep Date.			03/23/17	
Metal	BSP Result	Spikelot MPX200.8		QC Limits
Aluminum	anr			
Antimony				
Arsenic	107	100	107.0	85-115
Barium	105	100	105.0	85-115
Beryllium				
Boron				
Cadmium	107	100	107.0	85-115
Calcium				
Chromium	106	100	106.0	85-115
Cobalt				
Copper	anr			
Iron	anr			
Lead	105	100	105.0	85-115
Magnesium				
Manganese				
Molybdenum				
Nickel	anr			
Potassium				
Selenium	219	200	109.5	85-115
Silver	79.0	76.5	103.3	85-115
Sodium				
Strontium				
Thallium				
Tin				
Titanium				
Vanadium				
Zinc	anr			

Associated samples MP99436: TD801-1

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested



### BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: TD801 Account: ALGC - SGS Accutest Gulf Coast Project: GCMC: Permit

QC Batch ID: MP99469 Methods: EPA 245.1 Matrix Type: AQUEOUS Units: ug/l

Prep Date: 03/25/17

Associated samples MP99469: TD801-1

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits  $\bar{\ }$ 

### MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: TD801 Account: ALGC - SGS Accutest Gulf Coast Project: GCMC: Permit

QC Batch ID: MP99469 Methods: EPA 245.1 Matrix Type: AQUEOUS Units: ug/l

Prep Date: 03/25/17

Associated samples MP99469: TD801-1

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits  $\hfill \hfill$ 

(N) Matrix Spike Rec. outside of QC limits



### MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: TD801 Account: ALGC - SGS Accutest Gulf Coast Project: GCMC: Permit

QC Batch ID: MP99469 Methods: EPA 245.1 Matrix Type: AQUEOUS Units: ug/l

Prep Date:

03/25/17

Metal	TD801-1 Origina		Spikelo HGPW3	t % Rec	MSD RPD	QC Limit
Mercury	0.0	1.9	2	95.0	0.0	19

Associated samples MP99469: TD801-1

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits  $\hfill \hfill$ 

(N) Matrix Spike Rec. outside of QC limits



### SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: TD801 Account: ALGC - SGS Accutest Gulf Coast Project: GCMC: Permit

QC Batch ID: MP99469 Methods: EPA 245.1 Matrix Type: AQUEOUS Units: ug/l

Prep Date: 03/25/17

Associated samples MP99469: TD801-1

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits  $\bar{\ }$ 



## Section 11

Custod	Documents and Other Forms
(SGS Ac	cutest Lafayette)

• Chain of Custody



CHAIN OF CUSTODY

3-2241

#### Page 1 of 2

Total farwin Drive   Houston, TX 77036   FED-EX Tracking #   Solder Corer Cornel #   FED-EX Tracking #   Solder Core Cornel #   FED-EX Tracking #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #   Solder Cornel #	Matrix Codes  DW - Drinking Water GW - Ground Water WW - Water SW - Surface Water SU - Surface Water SU - Surface SED-Sediment OI - Oil LIQ - Other Liquid AIR - Air SQL - Other Solid WP - Wijpe FEF-Field Blank
Client / Reporting Information Project Information Requested Analysis (see TEST CODE sheet)  Project Name:  SGS Accutest  Permit  Street Address  10165 Harwin Drive  City State Zip Houston TX 77036  Project off Street Address  Street Address  Street Street Address  Site Street Address  Site Street Address  Site Street Address  Site Street Address  Site Street Address  Site Street Address  Site Street Address	DW - Drinking Water GW - Ground Water WW - Water SW - Surface Water SU - Surface Water SU - Surface GU - Qu LIQ - Other Liquid AIR - Air SQL - Other Surface FB-Field Blank
SGS Accutest   Permit	GW- Ground Water WW- Water SW- Surface Water SO- Soil SL- Studge SED-Sedment OI - Oil LIQ - Other Liquid AIR - Air SOL - Other Soid WP- Wilpe FEF-Field Blank
Street Address	GW- Ground Water WW- Water SW- Surface Water SO- Soil SL- Studge SED-Sedment OI - Oil LIQ - Other Liquid AIR - Air SOL - Other Soid WP- Wilpe FEF-Field Blank
10165 Harwin Drive   Billing Information ( if different from Report to)	SW - Surface Water SO - Soil SL - Sludge SED-Sediment OI - Oil LIQ - Other Liquid AIR - Air SOL - Other Solid WP - Wipe F6-Field Blank
Cly State Zip City State Zip City State Company Name  Houston TX 77036  Project Contact E-mail Project # Street Address	SO - Soil SL- Sludge SED-Sediment OI - Oil LIQ - Other Liquid AIR - Air SOL - Other Soild WP - Wipe F6-Field Blank
Houston TX 77036	SED-Sediment OI - Oil LIQ - Other Liquid AIR - Air SOL - Other Solid WP - Wipe F6F-Field Blank
	EIQ - Other Eiquid AIR - Air SOL - Other Solid WP - Wipe FB-Field Blank
	SO1 - Other Solid WP - Wipe FB-Field Blank
iong.nguyen2@sgs.com	FB-Field Blank
Phone # Fex # Cilent Purchase Order # City State Zip	
713-271-4700	EB-Equipment Blank
Simpler(s) Name(e) Phone Project Manager Attention:	R8- Rinse Blank TB-Trip Blank
Collection Number of preserved Bottles	
865	
Signs Authorities Surrour # Field ID / Point of Collection MECH/DI Visit # Dute Time Sampled by Mark # of bodfes R R R R R R R R R R R R R R R R R R R	LAB USE ONLY
1 PERMIT RENEWEL 3/21/17 10:00:00 AM AQ 1 X X X	
Tumaround Time ( Business days) Data Deliverable Information Comments / Special instruction	
Approved By (SGS Accutest PM): / Date: Commercial "A" (Level 1) NYASP Category A	
Std. 10 Business Days Category B	
5 Day RUSH FULLT1 (Level 3+4) State Forms	
3 Day EMERGENCY NJ Reduced EDD Format ( / / /	
2 Day EMERGENCY X Other COMMB	
1 Day EMERGENCY Commercial "A" = Results Only	
X     other     Due 3/28/2017       Emergency & Rush TIA data available VIA Lablink     NJ. Reduced = Results + QC Summary + Partial Raw data	
Sample Custody must be documented below each time samples change possession, including courier delivery.	
Retinquished by Sampler:  Date Tir 1807 Received By:  3-21-12 1 565 TK NSW 2 TX DNVL ( 3-22-17 2/LOLYWW)	Heli
Refinalished By: Sampley:  3   Date Time:   Date Time:   Received By:	
Reclinquished by: Date Time: Received By: Custody Seal Infact Preserved where applicable On ice 5 5 Oct Not Intact	- Cooler Temp.

**TD801: Chain of Custody** Page 1 of 3 **SGS** Accutest Lafayette

1.7

Date / Time: 3/21/2017 5:37:42 PM

CSR: LONGN Job#: TD801

Client Project: Permit

Deliverable: COMMB

TAT: Due 3/28/2017

Sub Lab: Accutest Gulf Coast Louisiana Address: 500 Ambassador Caffery Prkway

City: Scott

State: LA

Zip: 70583

Contact: Sample Receiving Phone: 800-304-5227

SGS Accutest Sample #	Client Sample Description	Analysis	Location	Sampled By	Date Sampled	Time Sampled	Aliquot
TD801-1	PERMIT RENEWEL	AGMS ASMS BAMS CDMS CRMS HG MBAS P608PCBAO P608PESTPPL PBMS SEMS	1M .3P .4AA .SUB .VR .		3/21/2017	10:00:00 AM	

Comments:

Sample Management Receipt:

Date:

1: (ther Up)

TD801: Chain of Custody Page 2 of 3

### **Accutest Laboratories Sample Receipt Summary**

Job Number: TD80	)1	Client: SGS (TX	)		Project: PERMIT RENEW	/AL	
Date / Time Received: 3/22/	2017 10:15:00	AM Delivery	Method: Ad	cutest Courier	Airbill #'s:		
Cooler Temps (Initial/Adjuste	d): #1: (1.8/1	.8);					
	or N		Y or N	Sample Integr	ity - Documentation	Y or N	
Custody Seals Intact:  Custody Seals Intact:		3. COC Present: impl Dates/Time OK		·	s present on bottles:		
z. sustady soule intact.	_	mpr bates/ fille OK		Container lab     Sample container	eling complete: ainer label / COC agree:		
Cooler Temperature  1. Temp criteria achieved:	Y or N ✓				·	•	
Thermometer ID:	<b>y</b> ;			1. Sample recvo	rity - Condition	Y or N ✓	
3. Cooler media:	Ice (direct cont	tact)		All containers		<b>v</b>	
4. No. Coolers:	1			3. Condition of s	sample:	Intact	_
Quality Control Preservation	·			Sample Integ	rity - Instructions		N/A
<ol> <li>Trip Blank present / cooler:</li> <li>Trip Blank listed on COC:</li> </ol>		<b>▽</b>		1. Analysis req			
Samples preserved properly:		_			ved for unspecified tests lume recvd for analysis:		
4. VOCs headspace free:		$\checkmark$			instructions clear:		✓
				5. Filtering instr	ructions clear:		<b>✓</b>
Comments							

TD801: Chain of Custody
Page 3 of 3



## **Section 12**

## General Chemistry

QC Data Summaries

(SGS Accutest Lafayette)

Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries



## METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: TD801 Account: ALGC - SGS Accutest Gulf Coast Project: GCMC: Permit

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
Surfactants, MBAS as LAS	GN10215	0.10	0.0	mg/l	.75	0.70	94.0	80-120%

Associated Samples: Batch GN10215: TD801-1 (*) Outside of QC limits

#### MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: TD801 Account: ALGC - SGS Accutest Gulf Coast

Project: GCMC: Permit

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MS Result	%Rec	QC Limits
Surfactants, MBAS as LAS	GN10215	TD801-1	mg/l	0.21	.75	0.42	27.0(a)	80-120%

Associated Samples:

Batch GN10215: TD801-1

- (*) Outside of QC limits
- (N) Matrix Spike Rec. outside of QC limits
- (a) Outside control limits due to matrix interference and/or sample nonhomogeneity.

#### MATRIX SPIKE DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: TD801

Account: ALGC - SGS Accutest Gulf Coast Project: GCMC: Permit

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MSD Result	RPD	QC Limit
Surfactants, MBAS as LAS	GN10215	TD801-1	mg/l	0.21	.75	0.42	1.2	

Associated Samples: Batch GN10215: TD801-1
(*) Outside of QC limits
(N) Matrix Spike Rec. outside of QC limits



# ACCUTEST Gulf Coast

04/06/17

SGS ACCUTEST IS PART OF SGS, THE WORLD'S LEADING INSPECTION, VERIFICATION, TESTING AND CERTIFICATION COMPANY.



e-Hardcopy 2.0
Automated Report

### Technical Report for

Gulf Chemical & Metallurgical Corp.

Permit

SGS Accutest Job Number: TD1123

Sampling Date: 03/28/17

#### Report to:

Gulf Chemical & Metallurgical Corp.
P.O. Box 2290
Freeport, TX 77542
bobby.provence@eramet-gulf.com; robert.marsh@eramet-gulf.com

ATTN: Robert Marsh

Total number of pages in report: 71



Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Electa Brown 713-271-4700

Certifications: TX (T104704220-17-26) AR (14-016-0) AZ (AZ0769) FL (E87628) KS (E-10366) LA (85695/04004) NJ (TX010) OK (2014-172) VA (7654)

This report shall not be reproduced, except in its entirety, without the written approval of SGS Accutest. Test results relate only to samples analyzed.



Laboratory Director

1 of 7

## **Table of Contents**

-1-

Section 1: Sample Summary	3
Section 2: Summary of Hits	4
Section 3: Sample Results	5
<b>3.1:</b> TD1123-1: PERMIT RENEWEL	6
Section 4: Misc. Forms	15
4.1: Chain of Custody	16
Section 5: GC/MS Volatiles - QC Data Summaries	21
5.1: Method Blank Summary	22
5.2: Blank Spike Summary	24
5.3: Matrix Spike/Matrix Spike Duplicate Summary	26
Section 6: GC/MS Semi-volatiles - QC Data Summaries	
6.1: Method Blank Summary	29
6.2: Blank Spike/Blank Spike Duplicate Summary	32
Section 7: General Chemistry - QC Data Summaries	
7.1: Method Blank and Spike Results Summary	36
7.2: Blank Spike Duplicate Results Summary	37
7.3: Duplicate Results Summary	38
7.4: Matrix Spike Results Summary	39
Section 8: Misc. Forms (SGS Accutest New Jersey)	<b>40</b>
8.1: Chain of Custody	41
Section 9: GC Semi-volatiles - QC Data (SGS Accutest New Jersey)	45
9.1: Method Blank Summary	46
9.2: Blank Spike Summary	50
9.3: Matrix Spike/Matrix Spike Duplicate Summary	53
Section 10: Metals Analysis - QC Data (SGS Accutest New Jersey)	55
<b>10.1:</b> Prep QC MP99643: As,Ba,Cd,Cr,Pb,Se,Ag	
<b>10.2:</b> Prep QC MP99659: Hg	60
Section 11: Misc. Forms (SGS Accutest Lafayette)	64
11.1: Chain of Custody	65
Section 12: General Chemistry - QC Data (SGS Accutest Lafayette)	68
12.1: Method Blank and Spike Results Summary	
12.2: Blank Spike Duplicate Results Summary	
12.3: Duplicate Results Summary	



## **Sample Summary**

Gulf Chemical & Metallurgical Corp.

Job No:

TD1123

Permit

Sample Collected			Matrix	Client	
Number	Date	Time By	Received	Code Type	Sample ID
TD1123-1	03/28/17	10:00	03/28/17	AQ Water	PERMIT RENEWEL

3 of 71
ACCUTEST
TD1123

**Summary of Hits Job Number:** TD1123

**Account:** Gulf Chemical & Metallurgical Corp.

**Project:** Permit **Collected:** 03/28/17

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
TD1123-1 PERMIT RENEW	/EL				
Acetone	0.140	0.050	0.010	mg/l	EPA 624
Chloroform	0.00083 J	0.0010	0.00030	mg/l	EPA 624
2-Hexanone	0.0046 J	0.010	0.0012	mg/l	EPA 624
4-Methyl-2-pentanone	0.0044 J	0.010	0.0023	mg/l	EPA 624
Methyl chloride	0.0011	0.0010	0.00030	mg/l	EPA 624
Methyl ethyl ketone	0.0241	0.010	0.0026	mg/l	EPA 624
gamma-BHC (Lindane) ^a	0.000012	0.000010	0.0000014	mg/l	EPA 608
Arsenic ^b	0.649	0.25	0.0085	mg/l	EPA 200.8
Barium ^b	0.0231 B	0.25	0.0070	mg/l	EPA 200.8
Lead ^b	0.0194 B	0.13	0.0026	mg/l	EPA 200.8
Mercury ^c	0.00034 B	0.00060	0.00017	mg/l	EPA 245.1
Selenium ^b	0.596	0.25	0.029	mg/l	EPA 200.8
Silver ^b	0.0138 B	0.50	0.010	mg/l	EPA 200.8
BOD, 5 Day	9.6	6.0	3.0	mg/l	SM 5210B-2000
Nitrogen, Ammonia	177	4.0	0.80	mg/l	EPA 350.1
Phosphorus, Total	1.3	0.10	0.050	mg/l	SM 4500PE-2011
Surfactants, MBAS as LAS d	0.26	0.10	0.080	mg/l	SM5540 C-11

- (a) Analysis performed at SGS Accutest, Dayton, NJ.
- (b) Elevated detection limit due to dilution required for matrix interference. Analysis performed at SGS Accutest, Dayton, NJ.
- (c) Elevated sample detection limit due to difficult sample matrix. Analysis performed at SGS Accutest, Dayton, NJ.
- (d) Analysis performed at SGS Accutest, Lafayette, LA.

Section 3 &

Sample Results	
Report of Analysis	
report of Timery Sis	

Client Sample ID: PERMIT RENEWEL

 Lab Sample ID:
 TD1123-1
 Date Sampled:
 03/28/17

 Matrix:
 AQ - Water
 Date Received:
 03/28/17

 Method:
 EPA 624
 Percent Solids:
 n/a

Project: Permit

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 E0058665.D 1 04/01/17 ZQ n/a n/a VE2599

Run #2

**Purge Volume** 

Run #1 5.0 ml

Run #2

#### **VOA TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	0.140	0.050	0.010	mg/l	
71-43-2	Benzene	ND	0.0010	0.00030	mg/l	
75-27-4	Bromodichloromethane	ND	0.0010	0.00030	mg/l	
75-25-2	Bromoform	ND	0.0010	0.00030	mg/l	
108-90-7	Chlorobenzene	ND	0.0010	0.00030	mg/l	
75-00-3	Chloroethane	ND	0.0010	0.00033	mg/l	
67-66-3	Chloroform	0.00083	0.0010	0.00030	mg/l	J
75-15-0	Carbon disulfide	ND	0.0050	0.00075	mg/l	
56-23-5	Carbon tetrachloride	ND	0.0010	0.00054	mg/l	
75-34-3	1,1-Dichloroethane	ND	0.0010	0.00030	mg/l	
75-35-4	1,1-Dichloroethylene	ND	0.0010	0.00030	mg/l	
107-06-2	1,2-Dichloroethane	ND	0.0010	0.00030	mg/l	
78-87-5	1,2-Dichloropropane	ND	0.0010	0.00030	mg/l	
124-48-1	Dibromochloromethane	ND	0.0010	0.00030	mg/l	
156-59-2	cis-1,2-Dichloroethylene	ND	0.0010	0.00030	mg/l	
10061-01-5	cis-1,3-Dichloropropene	ND	0.0010	0.00030	mg/l	
156-60-5	trans-1,2-Dichloroethylene	ND	0.0010	0.00030	mg/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.0010	0.00030	mg/l	
100-41-4	Ethylbenzene	ND	0.0010	0.00030	mg/l	
591-78-6	2-Hexanone	0.0046	0.010	0.0012	mg/l	J
108-10-1	4-Methyl-2-pentanone	0.0044	0.010	0.0023	mg/l	J
74-83-9	Methyl bromide	ND	0.0010	0.00049	mg/l	
74-87-3	Methyl chloride	0.0011	0.0010	0.00030	mg/l	
75-09-2	Methylene chloride	ND	0.0050	0.0013	mg/l	
78-93-3	Methyl ethyl ketone	0.0241	0.010	0.0026	mg/l	
100-42-5	Styrene	ND	0.0010	0.00030	mg/l	
71-55-6	1,1,1-Trichloroethane	ND	0.0010	0.00030	mg/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.0010	0.00030	mg/l	
79-00-5	1,1,2-Trichloroethane	ND	0.0010	0.00030	mg/l	
127-18-4	Tetrachloroethylene	ND	0.0010	0.00030	mg/l	
108-88-3	Toluene	ND	0.0010	0.00030	mg/l	
79-01-6	Trichloroethylene	ND	0.0010	0.00030	mg/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



Page 2 of 2

## **Report of Analysis**

Client Sample ID: PERMIT RENEWEL

Lab Sample ID: TD1123-1 **Date Sampled:** 03/28/17 Matrix: **Date Received:** 03/28/17 AQ - Water EPA 624 Method: Percent Solids: n/a

**Project:** Permit

#### **VOA TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	0.0010 0.0030	0.00030 0.00065	U	
CAS No.	<b>Surrogate Recoveries</b>	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	104%		72-12	22%	
17060-07-0	1,2-Dichloroethane-D4	109%		68-12	24%	
2037-26-5	Toluene-D8	100%		80-1	19%	
460-00-4	4-Bromofluorobenzene	103%		72-12	26%	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$ N = Indicates presumptive evidence of a compound



**ACCUTEST** 

Page 1 of 3

## Report of Analysis

Client Sample ID: PERMIT RENEWEL

 Lab Sample ID:
 TD1123-1
 Date Sampled:
 03/28/17

 Matrix:
 AQ - Water
 Date Received:
 03/28/17

 Method:
 EPA 625
 EPA 625
 Percent Solids:
 n/a

**Project:** Permit

 File ID
 DF
 Analyzed
 By
 Prep Date
 Prep Batch
 Analytical Batch

 Run #1
 J186547.D
 1
 03/30/17
 SC
 03/29/17
 OP43183
 EJ2507

Run #2

Initial Volume Final Volume
Run #1 950 ml 1.0 ml

Run #2

#### **ABN TCL List**

Compound	Result	RL	MDL	Units	Q
Benzoic Acid	ND	0.021	0.0018	mg/l	
2-Chlorophenol	ND	0.0053	0.0015	mg/l	
4-Chloro-3-methyl phenol	ND	0.0053	0.0018	mg/l	
2,4-Dichlorophenol	ND	0.0053	0.0021	mg/l	
2,4-Dimethylphenol	ND	0.0053	0.0011	mg/l	
2,4-Dinitrophenol	ND	0.026	0.0013	mg/l	
4,6-Dinitro-o-cresol	ND	0.011	0.0040	mg/l	
2-Methylphenol	ND	0.0053	0.0015	mg/l	
3&4-Methylphenol	ND	0.0053	0.0016	mg/l	
2-Nitrophenol	ND	0.0053	0.0019	mg/l	
4-Nitrophenol	ND	0.026	0.013	mg/l	
Pentachlorophenol	ND	0.026	0.0034	mg/l	
Phenol	ND	0.0053	0.0013	mg/l	
2,4,5-Trichlorophenol	ND	0.0053	0.0020	mg/l	
2,4,6-Trichlorophenol	ND	0.0053	0.0016	mg/l	
Acenaphthene	ND	0.0053	0.0017	mg/l	
Acenaphthylene	ND	0.0053	0.0018	mg/l	
Anthracene	ND	0.0053	0.0020	mg/l	
Benzo(a)anthracene	ND	0.0053	0.0019	mg/l	
Benzo(a)pyrene	ND	0.0053	0.0021	mg/l	
Benzo(b)fluoranthene	ND	0.0053	0.0023	mg/l	
Benzo(g,h,i)perylene	ND	0.0053	0.0021	mg/l	
Benzo(k)fluoranthene	ND	0.0053	0.0021	mg/l	
4-Bromophenyl phenyl ether	ND	0.0053	0.0020	mg/l	
Butyl benzyl phthalate	ND	0.0053	0.0019	mg/l	
Benzyl Alcohol	ND	0.0053	0.0017	mg/l	
-	ND	0.0053	0.0020	mg/l	
		0.0053		mg/l	
Carbazole		0.0053	0.0020	mg/l	
Chrysene	ND	0.0053	0.0018	mg/l	
	ND	0.0053	0.0019	mg/l	
bis(2-Chloroethyl)ether	ND	0.0053	0.0016	mg/l	
	Benzoic Acid 2-Chlorophenol 4-Chloro-3-methyl phenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 4,6-Dinitro-o-cresol 2-Methylphenol 3&4-Methylphenol 3-Nitrophenol 4-Nitrophenol 4-Nitrophenol Pentachlorophenol Pentachlorophenol Phenol 2,4,5-Trichlorophenol Acenaphthene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene 4-Bromophenyl phenyl ether Butyl benzyl phthalate Benzyl Alcohol 2-Chloronaphthalene 4-Chloroaniline Carbazole Chrysene bis(2-Chloroethoxy)methane	Benzoic Acid 2-Chlorophenol 4-Chloro-3-methyl phenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dimitrophenol ND 2,4-Dinitrophenol ND 2,4-Dinitrophenol ND 2,4-Dinitro-o-cresol ND 2-Methylphenol ND 3&4-Methylphenol ND 2-Nitrophenol ND 4-Nitrophenol ND Pentachlorophenol ND Pentachlorophenol ND 2,4,5-Trichlorophenol ND 2,4,6-Trichlorophenol ND Acenaphthene ND Acenaphthene ND Anthracene ND Benzo(a)anthracene ND Benzo(b)fluoranthene ND Benzo(b)fluoranthene ND Benzo(k)fluoranthene ND Benzoly Alcohol 2-Chloronaphthalene ND Carbazole ND Chrysene ND ND ND ND ND ND ND ND ND ND ND ND ND	Benzoic Acid         ND         0.021           2-Chlorophenol         ND         0.0053           4-Chloro-3-methyl phenol         ND         0.0053           2,4-Dichlorophenol         ND         0.0053           2,4-Dimethylphenol         ND         0.026           4,6-Dinitro-o-cresol         ND         0.011           2-Methylphenol         ND         0.0053           3&4-Methylphenol         ND         0.0053           2-Nitrophenol         ND         0.0053           2-Nitrophenol         ND         0.026           Pentachlorophenol         ND         0.026           Phenol         ND         0.0053           2,4,5-Trichlorophenol         ND         0.0053           2,4,6-Trichlorophenol         ND         0.0053           Acenaphthene         ND         0.0053           Acenaphthylene         ND         0.0053           Anthracene         ND         0.0053           Benzo(a)anthracene         ND         0.0053           Benzo(b)fluoranthene         ND         0.0053           Benzo(b)fluoranthene         ND         0.0053           Benzo(k)fluoranthene         ND         0.0053 <tr< td=""><td>  Benzoic Acid</td><td>  Benzoic Acid</td></tr<>	Benzoic Acid	Benzoic Acid

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound



8 of 71
ACCUTEST
TD1123

## **Report of Analysis**

Page 2 of 3

Client Sample ID: PERMIT RENEWEL

 Lab Sample ID:
 TD1123-1
 Date Sampled:
 03/28/17

 Matrix:
 AQ - Water
 Date Received:
 03/28/17

 Method:
 EPA 625
 EPA 625
 Percent Solids:
 n/a

**Project:** Permit

#### **ABN TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
108-60-1	bis(2-Chloroisopropyl)ether	ND	0.0053	0.0017	mg/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	0.0053	0.0019	mg/l	
95-50-1	1,2-Dichlorobenzene	ND	0.0053	0.0019	mg/l	
541-73-1	1,3-Dichlorobenzene	ND	0.0053	0.0017	mg/l	
106-46-7	1,4-Dichlorobenzene	ND	0.0053	0.0017	mg/l	
121-14-2	2,4-Dinitrotoluene	ND	0.0053	0.0022	mg/l	
606-20-2	2,6-Dinitrotoluene	ND	0.0053	0.0019	mg/l	
91-94-1	3,3'-Dichlorobenzidine	ND	0.011	0.0021	mg/l	
53-70-3	Dibenzo(a,h)anthracene	ND	0.0053	0.0022	mg/l	
132-64-9	Dibenzofuran	ND	0.0053	0.0019	mg/l	
84-74-2	Di-n-butyl phthalate	ND	0.0053	0.0021	mg/l	
117-84-0	Di-n-octyl phthalate	ND	0.0053	0.0027	mg/l	
84-66-2	Diethyl phthalate	ND	0.0053	0.0019	mg/l	
131-11-3	Dimethyl phthalate	ND	0.0053	0.0021	mg/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	0.0053	0.0020	mg/l	
206-44-0	Fluoranthene	ND	0.0053	0.0022	mg/l	
86-73-7	Fluorene	ND	0.0053	0.0019	mg/l	
118-74-1	Hexachlorobenzene	ND	0.0053	0.0021	mg/l	
87-68-3	Hexachlorobutadiene	ND	0.0053	0.0020	mg/l	
77-47-4	Hexachlorocyclopentadiene	ND	0.011	0.0017	mg/l	
67-72-1	Hexachloroethane	ND	0.0053	0.0018	mg/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.0053	0.0025	mg/l	
78-59-1	Isophorone	ND	0.0053	0.0019	mg/l	
91-57-6	2-Methylnaphthalene	ND	0.0053	0.0017	mg/l	
88-74-4	2-Nitroaniline	ND	0.0053	0.0020	mg/l	
99-09-2	3-Nitroaniline	ND	0.0053	0.0017	mg/l	
100-01-6	4-Nitroaniline	ND	0.0053	0.0026	mg/l	
91-20-3	Naphthalene	ND	0.0053	0.0018	mg/l	
98-95-3	Nitrobenzene	ND	0.0053	0.0018	mg/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	0.0053	0.0020	mg/l	
86-30-6	N-Nitrosodiphenylamine	ND	0.0053	0.0019	mg/l	
85-01-8	Phenanthrene	ND	0.0053	0.0020	mg/l	
129-00-0	Pyrene	ND	0.0053	0.0019	mg/l	
120-82-1	1,2,4-Trichlorobenzene	ND	0.0053	0.0019	mg/l	
CAS No.	<b>Surrogate Recoveries</b>	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	31%		10-60	5%	
4165-62-2	Phenol-d5	25%		10-63	3%	
118-79-6	2,4,6-Tribromophenol	93%		32-12	28%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$ 

N = Indicates presumptive evidence of a compound

## Report of Analysis

Client Sample ID: PERMIT RENEWEL

 Lab Sample ID:
 TD1123-1
 Date Sampled:
 03/28/17

 Matrix:
 AQ - Water
 Date Received:
 03/28/17

 Method:
 EPA 625
 EPA 625
 Percent Solids:
 n/a

**Project:** Permit

#### **ABN TCL List**

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-60-0	Nitrobenzene-d5	60%		29-115%
321-60-8	2-Fluorobiphenyl	52%		34-113%
1718-51-0	Terphenyl-d14	81%		23-138%

ND = Not detected MDL = Method Detection Limit J = Ir

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



10 of 71
ACCUTEST

Client Sample ID: PERMIT RENEWEL

 Lab Sample ID:
 TD1123-1
 Date Sampled:
 03/28/17

 Matrix:
 AQ - Water
 Date Received:
 03/28/17

 Method:
 EPA 608
 EPA 608
 Percent Solids:
 n/a

**Project:** Permit

	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	<b>Prep Date</b>	<b>Prep Batch</b>	Analytical Batch
Run #1 a	6G45515.D	1	04/03/17	ANJ	03/31/17	N:OP1541	N:G6G1299
Run #2 a	XX207432.D	1	04/01/17	ANJ	03/31/17	N:OP1540	N:GXX5980

	Initial Volume	Final Volume
Run #1	1000 ml	5.0 ml
Run #2	1000 ml	5.0 ml

#### **PCB List**

CAS No.	Compound	Result	RL M	<b>IDL</b>	Units	Q
309-00-2	Aldrin	ND	0.0000100	.00000	36ng/1	
319-84-6	alpha-BHC	ND	0.0000100	.00000	36mg/1	
319-85-7	beta-BHC	ND	0.0000100			
319-86-8	delta-BHC	ND	0.0000100	.00000	23mg/l	
58-89-9	gamma-BHC (Lindane)	0.000012	0.0000100	.00000	14mg/1	
12789-03-6	Chlordane	ND	0.00010 0	.00005	7mg/l	
60-57-1	Dieldrin	ND	0.0000100	.00000	18mg/1	
72-54-8	4,4'-DDD	ND	0.0000100	.00000	19ng/1	
72-55-9	4,4'-DDE	ND	0.0000100	.00000	3 <b>i</b> mg/1	
50-29-3	4,4'-DDT	ND	0.0000100	.00000	25mg/l	
72-20-8	Endrin	ND	0.0000100	.00000	25mg/l	
1031-07-8	Endosulfan sulfate	ND	0.0000100	.00000	2 <b>6</b> ng/l	
7421-93-4	Endrin aldehyde	ND	0.0000100	.00000	2 <b>6</b> ng/l	
959-98-8	Endosulfan-I	ND	0.0000100	.00000	25mg/l	
33213-65-9	Endosulfan-II	ND	0.0000100	.00000	2  mg/l	
76-44-8	Heptachlor	ND	0.0000100	.00000	19ng/1	
1024-57-3	Heptachlor epoxide	ND	0.0000100	.00000	33mg/l	
72-43-5	Methoxychlor	ND	0.0000100	.00000	28mg/1	
8001-35-2	Toxaphene	ND	0.00013 0		_	
12674-11-2	Aroclor 1016	ND b	0.00025 0		_	
11104-28-2	Aroclor 1221	ND b	0.00025 0	.00015	mg/l	
11141-16-5	Aroclor 1232	ND b	0.00025 0		_	
53469-21-9	Aroclor 1242	ND b	0.00025 0	.00014	mg/l	
12672-29-6	Aroclor 1248	ND ^b	0.00025 0	.00013	mg/l	
11097-69-1	Aroclor 1254	ND b	0.00025 0		_	
11096-82-5	Aroclor 1260	ND b	0.00025 0	.00014	mg/l	
CAS No.	<b>Surrogate Recoveries</b>	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	98%	94%	10-13	56%	
877-09-8	Tetrachloro-m-xylene	74%	76%	10-13	56%	
2051-24-3	Decachlorobiphenyl	50%	35%	10-14	43%	
	• •					

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



C

## **Report of Analysis**

Page 2 of 2

Client Sample ID: PERMIT RENEWEL

 Lab Sample ID:
 TD1123-1
 Date Sampled:
 03/28/17

 Matrix:
 AQ - Water
 Date Received:
 03/28/17

 Method:
 EPA 608
 EPA 608
 Percent Solids:
 n/a

**Project:** Permit

#### **PCB List**

CAS No.	<b>Surrogate Recoveries</b>	Run# 1	Run# 2	Limits
2051-24-3	Decachlorobinhenyl	40%	36%	10-143%

(a) Analysis performed at SGS Accutest, Dayton, NJ.

(b) Result is from Run# 2

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



12 of 71
ACCUTEST
TD1123

### **Report of Analysis**

Client Sample ID: PERMIT RENEWEL

Lab Sample ID: TD1123-1 **Date Sampled:** 03/28/17 Matrix: AQ - Water **Date Received:** 03/28/17 Percent Solids: n/a

**Project:** Permit

#### **Total Metals Analysis**

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic ^a	0.649	0.25	0.0085	mg/l	250	04/02/17	04/03/17 ANJ	EPA 200.8 ²	EPA 200.8 ³
Barium ^a	0.0231 B	0.25	0.0070	mg/l	250	04/02/17	04/03/17 ANJ	EPA 200.8 ²	EPA 200.8 ³
Cadmium ^a	0.030 U	0.13	0.030	mg/l	250	04/02/17	04/03/17 ANJ	EPA 200.8 ²	EPA 200.8 ³
Chromium a	0.026 U	1.0	0.026	mg/l	250	04/02/17	04/03/17 ANJ	EPA 200.8 ²	EPA 200.8 ³
Lead a	0.0194 B	0.13	0.0026	mg/l	250	04/02/17	04/03/17 ANJ	EPA 200.8 ²	EPA 200.8 ³
Mercury b	0.00034 B	0.00060	0.00017	mg/l	1	04/03/17	04/03/17 ANJ	EPA 245.1 ¹	EPA 245.1 ⁴
Selenium ^a	0.596	0.25	0.029	mg/l	250	04/02/17	04/03/17 ANJ	EPA 200.8 ²	EPA 200.8 ³
Silver ^a	0.0138 B	0.50	0.010	mg/l	250	04/02/17	04/03/17 ANJ	EPA 200.8 ²	EPA 200.8 ³

(1) Instrument QC Batch: N:MA41696 (2) Instrument QC Batch: N:MA41704 (3) Prep QC Batch: N:MP99643 (4) Prep QC Batch: N:MP99659

(a) Elevated detection limit due to dilution required for matrix interference. Analysis performed at SGS Accutest, Dayton, NJ.

(b) Elevated sample detection limit due to difficult sample matrix. Analysis performed at SGS Accutest, Dayton,

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL



**ACCUTEST** 

Page 1 of 1

Page 1 of 1

## **Report of Analysis**

Client Sample ID: PERMIT RENEWEL

Lab Sample ID: TD1123-1 **Date Sampled:** 03/28/17 Matrix: **Date Received:** 03/28/17 AQ - Water Percent Solids: n/a

**Project:** Permit

#### **General Chemistry**

Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
BOD, 5 Day	9.6	6.0	3.0	mg/l	1	03/28/17 18:39 OZ SM 5210B-2000
Nitrogen, Ammonia	177	4.0	0.80	mg/l	40	03/30/17 TH EPA 350.1
Nitrogen, Nitrate a	2.7 U	5.0	2.7	mg/l	10	03/29/17 01:26 ES EPA 300
Nitrogen, Nitrite ^a	2.7 U	5.0	2.7	mg/l	10	03/29/17 01:26 ES EPA 300
Phosphorus, Total	1.3	0.10	0.050	mg/l	5	03/31/17 BG SM 4500PE-2011
Sulfide	0.010 U	0.20	0.010	mg/l	1	04/04/17 TH SM 4500S+ F-2000
Sulfite	0.77 U	3.0	0.77	mg/l	1	03/28/17 16:10 CV SM 4500 SO32 B-2011
Surfactants, MBAS as LAS b	0.26	0.10	0.080	mg/l	1	03/29/17 13:40 ALASM5540 C-11

(a) Elevated reporting limit due to matrix interference.

(b) Analysis performed at SGS Accutest, Lafayette, LA.

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL







## Section 4

		CCUTES	P***		CHA		OF (					7				FED-E	X Tracki	ng#			-	Bottle	PA Order Co		=_	0	F
100150	Client / Barreti				TEL. 7	13-271-4	700 FAX	: 713	-271-4	770	•					Accute	st Quote	#				Accute	st Job#	-	A	+	22
0.000	Client / Reporting Inform	nation	Maria di Sala		Projec	t Inform		com	120756		540.00			Carter	GARAGO	-						$\perp$			$\mathcal{L}\mathcal{L}$	11	$\overline{\mathcal{U}}$
	pany Name		Project Name:						1130,000	****	100000000000000000000000000000000000000		PROPERTY.	25/95/00	886538	-	т	T	Re	ques	ted	Ana	lys	e s	·		Matrix Codes
Gulf	Chemical & Metallurgical		Permit														1		1					1			
302 N	Midway		Street			285.5	100000000	12860		0.00000	6 40	20,000	02.930	Visance.	2000	-	1		1	1							DW - Drinking Water
City	State	Zip	City			Billing	informati	on ( i	f differ	ent fr	om Re	port t	0)			1							1				GW - Ground Water
ree	port Texas	77541	J Silly		State	Compa	iny Name						-/			l							1	1			WW - Water SW - Surface Water
Projec	ct Contact	E-mail	Project #			Gulf (	Chemical Address	& M	etallu	rgica	1							l			1		1		1		SO - Soil SL- Sludge
hone						Journal of	Address														1				1		SED-Sediment OI - Oil
	** \$15-1537	Fax#	Client Purchase	Order#		City					State			Zip													LIQ - Other Liquid
	ler(s) Name(s)										,,,,,,			ΔIP					1	1						1	AIR - Air SOL - Other Solid
		Phone #	Project Manager			Attentio	n:												Ş	9	뱵		8				WP - Wipe FB-Field Blank
																	2	Pest/PCB-608	200.8-Metals-NJ	NO3,NO2,SO3	MBAS-Lafayette		Ammonia/TPO4	1		1	I Diffield blank
ccutest				Colle	Clion	т —	т	-		Vumbe	r of pre	erved	Bottles			324	-62	2	Me	02	Ļ		nia				
mple #	Field ID / Point of (	Collection	Date	Time			#of	;	ZANSOH	8 8	ا پواغ	Di Water MEOH	П	NaHSO4 ENCORE	8	VOC-624	SVOC-625	Str	8	S,	AS	Sulfide	E			1	
,	Permit Re	ila mal			Sampled By	Matrix	bottles	Ž :	ZANs	HN03	S S	ME B	TSP	E S	OTHER	>	જ	P.	200	일	8	la Sul	A	BOD			LAB USE ONLY
<b>.</b>	1,10	10 cm a.l	3/28/17	1000	EA		13	x	x	x >	( x	T	П	T	$\Box$	х	х	х	х	x	х	x	-	-	+	+	THE GOL CHE!
									$\top$	+	$\dagger \dagger$	十	$\vdash$	+	H	~	^		-	<u> </u>	^		X	X	┼	$\perp$	
						<b> </b>		+	+	+	+	+	$\vdash$	+	₩					ļ							
						-		+	++	+	++	+	Н	$\perp$	Ц							-		1			
			1					4	$\perp \perp$	$\perp$	$\sqcup$	L				- 1											
													П		П										<del> </del>	-	
_								T	П	T	$\sqcap$		$\top$		H	_	_	_				-			<del></del>	<del> </del>	
-								+	++	+	+	+	+	+	$\vdash$			-						<b>├</b>	11	1	
4								+	++	+-	+	+	+	+	4												
								4	+	+	$\sqcup$	$\perp$	$\perp$	$\perp$		H	14	30	CT	TP	v.		1	, 1	1/4	y	
T			<del>                                     </del>					$\perp$								f	13	3 6.7		1,3			-				
7			-									П	T		T						_		_	A !	$\vdash$	$\vdash$	
+								T	$\sqcap$	T	$\sqcap$	$\forall$	$\top$	+	+	-+	-+				-+	+			$\leftarrow$	$\vdash$	
								+	++	+	$\vdash$	+	+	++	+	$\dashv$	18.7	2 2 2	2 4					P		$\sqcup$	
	Turnaround Time ( Business d. Standard	ays)			50 PER 10 CO			느	ata De	livoro		Ш		Ш	1	- 1	L'A	11	ic	U	3 Y :	-		7	<u> </u>		
r	5 Day RUSH		Approved By (Accutes	t PM): / Date:		По	ommercia				Die in		TRRE		221						Comm	ents /	Special	Instruc	ctions		
Ē	4 Day RUSH						ommercia	! "B"	( Leve	12)		$\vdash$		Form	nat							No. of Con-					
	3 Day RUSH				ĺ		ULT1 (Le						Othe	r		-	r					+					
	2 Day RUSH						EDT1 (Le		+4)								L										
L	1 Day EMERGENCY				1	Ш с	ommercia		mmer-	ial "c"	- n																
	Emergency & Rush T/A data available	VIA Lablink							mmerci mmerci					mma	n,		-										
			Samo	le Custody mue	t be doour	atad b. ·										Summa	ry					9	1	1	1	1	
mqui	shed by Sampler	Date Time:	in them Re	le Custody mus	(C)	ned belo	w each t	ime :	sampi	es ch	gange	poss	essic	on, inc	cludi	ng co	urier d	elivery	1.		8		//	_#	# ,	1	2/1/8/11
lingui	ished by Sampler;	3-28-	1/ /1371	ASHUE	126/				2/	W	hed By							P	ate Time	1,14	30 2	eceived	( PS)	$\mathcal{M}$	7	y	1430
		Date Time:	lo-	nived Du		-	-			177 14	4/1/	-						6	-1081	11	U 12		" "		/	U	100/1

Intact
Not intact

Date Time:

TD1123: Chain of Custody Page 1 of 5

Form: SM027-06 Rev 10/24/2016

123						,								Clare chall \$500 files in a second			
TC# 77) // 23			ı									The state of the state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of		er menere (a representation of the first of the following the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the cont			
COOLER TEMP FORM	(ALGC Driver Client		0,5	SAMPLES CONTAINED IN COOLER								The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon		ACCIONISTE EN ESTANT (1990) TERMENTANT (1990) TE			
	FeďĚx/UPS	CHOMICAS	ا ر	5											The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon		
AUSUTEST	Delivered by (circle one): $3/2\%$	Client: GULF CHEMICAL	Cooler Number:	1 !													
									1		•	•	,			1	

TD1123: Chain of Custody Page 2 of 5

### **SGS Accutest Sample Receipt Summary**

Job Number: TD1123 Cli			Client: GULF Cl	HEMICAL	∟ & META	LLURGICAL Project: PERMIT			
Date / Time Received:			Delivery	Method	l:	Airbill #'s:			
No. Coolers: 1	Ther	m ID: IF	R-5;			Temp Adjustment Factor: (	0;		
Cooler Temps (Initial/Adjusted	i): <u>#</u>	1: (3/3);							
Cooler Security Y	or N	<u>l_</u>		<u>Y</u> (	or N	Sample Integrity - Documentation	<u>Y</u>	or N	
1. Custody Seals Present:			COC Present:	✓		Sample labels present on bottles:	<b>✓</b>		
2. Custody Seals Intact:   ✓		] 4. Sr	mpl Dates/Time OK	✓		Container labeling complete:	$\checkmark$		
Cooler Temperature	<u>Y</u>	or N				3. Sample container label / COC agree:	<b>✓</b>		
1. Temp criteria achieved:	<b>✓</b>					Sample Integrity - Condition	ΥΥ	or N	
Cooler temp verification:						Sample recvd within HT:	<b>✓</b>		
3. Cooler media:	lo	ce (Bag)				2. All containers accounted for:	<b>✓</b>		
Quality Control Preservation	<u>Y</u>	or N	N/A	WTB	STB	3. Condition of sample:		Intact	
1. Trip Blank present / cooler:			$\checkmark$			Sample Integrity - Instructions	<u>Y</u>	or N	N/A
2. Trip Blank listed on COC:			<b>✓</b>			Analysis requested is clear:	<b>~</b>		
3. Samples preserved properly:	<b>✓</b>					2. Bottles received for unspecified tests		<b>✓</b>	
4. VOCs headspace free:			$\checkmark$			3. Sufficient volume recvd for analysis:	<b>✓</b>		
						4. Compositing instructions clear:			$\checkmark$
						5. Filtering instructions clear:			$\checkmark$
Comments matrix is water.									
1									

TD1123: Chain of Custody Page 3 of 5

Page 1 of 3

#### **Problem Resolution**

Accutest Job Number: ID1	123	
CSR:	Response Date:	
Response:		

_

TD1123: Chain of Custody Page 4 of 5

### 4

### Sample Receipt Log

Job #: TD1123 Date / Time Received: 3/28/2017 Initials: BG

Client: GULF CHEMICAL & METALLURGICAL

Cooler #	Sample ID:	Vol	Bot #	Location	Pres	рН	Therm ID	Initial Temp	Therm CF	Corrected Temp
1	TD1123-1	1000ml	1	3A	N/P	Note #2 - Preservative check not applicable.	IR-5	3	0	3
1	TD1123-1	1000ml	2	3A	N/P	Note #2 - Preservative check not applicable.	IR-5	3	0	3
1	TD1123-1	1000ml	3	SUB	N/P	Note #2 - Preservative check not applicable.	IR-5	3	0	3
1	TD1123-1	500ml	4	SUB	HNO3	pH < 2	IR-5	3	0	3
1	TD1123-1	LAG	5	4GG	N/P	Note #2 - Preservative check not applicable.	IR-5	3	0	3
1	TD1123-1	LAG	6	4GG	N/P	Note #2 - Preservative check not applicable.	IR-5	3	0	3
1	TD1123-1	LAG	7	SUB	N/P	Note #2 - Preservative check not applicable.	IR-5	3	0	3
1	TD1123-1	LAG	8	SUB	N/P	Note #2 - Preservative check not applicable.	IR-5	3	0	3
1	TD1123-1	500ml	9	1P	H2SO4	pH < 2	IR-5	3	0	3
1	TD1123-1	250ml	10	1P	NaOH+ZnAc	pH > 12	IR-5	3	0	3
1	TD1123-1	40ml	11	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3	0	3
1	TD1123-1	40ml	12	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3	0	3
1	TD1123-1	40ml	13	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3	0	3

TD1123: Chain of Custody Page 5 of 5



## **Section 5**

## GC/MS Volatiles

QC Data Summaries

## Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method Blank Summary
Job Number: TD1123
Account: GCMC Gulf Chemical & Metallurgical Corp.

**Project:** Permit

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	<b>Analytical Batch</b>
VE2599-MB	E0058653.D	1	03/31/17	ZQ	n/a	n/a	VE2599

The QC reported here applies to the following samples: Method: EPA 624

CAS No.	Compound	Result	RL	MDL	Units Q
67-64-1	Acetone	ND	50	10	ug/l
71-43-2	Benzene	ND	1.0	0.30	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.30	ug/l
75-25-2	Bromoform	ND	1.0	0.30	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.30	ug/l
75-00-3	Chloroethane	ND	1.0	0.33	ug/l
67-66-3	Chloroform	ND	1.0	0.30	ug/l
75-15-0	Carbon disulfide	ND	5.0	0.75	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	0.54	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.30	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.30	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.30	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.30	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.30	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.30	ug/l
10061-01-5	·	ND	1.0	0.30	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.30	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.30	ug/l
591-78-6	2-Hexanone	ND	10	1.2	ug/l
108-10-1	4-Methyl-2-pentanone	ND	10	2.3	ug/l
74-83-9	Methyl bromide	ND	1.0	0.49	ug/l
74-87-3	Methyl chloride	ND	1.0	0.30	ug/l
75-09-2	Methylene chloride	ND	5.0	1.3	ug/l
78-93-3	Methyl ethyl ketone	ND	10	2.6	ug/l
100-42-5	Styrene	ND	1.0	0.30	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.30	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.30	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l
108-88-3	Toluene	ND	1.0	0.30	ug/l
79-01-6	Trichloroethylene	ND	1.0	0.30	ug/l
75-01-4	Vinyl chloride	ND	1.0	0.30	ug/l
1330-20-7	Xylene (total)	ND	3.0	0.65	ug/l

### Page 2 of 2

Method: EPA 624

Method Blank Summary

Job Number: TD1123
Account: GCMC Gulf Chemical & Metallurgical Corp.

**Project:** Permit

Sample VE2599-MB	<b>File ID</b> E0058653.D	<b>DF</b> 1	<b>Analyzed</b> 03/31/17	By ZQ	<b>Prep Date</b> n/a	<b>Prep Batch</b> n/a	Analytical Batch VE2599

The QC reported here applies to the following samples:

CAS No.	<b>Surrogate Recoveries</b>		Limits
1868-53-7	Dibromofluoromethane	104%	72-122%
17060-07-0	1,2-Dichloroethane-D4	106%	68-124%
2037-26-5	Toluene-D8	101%	80-119%
460-00-4	4-Bromofluorobenzene	102%	72-126%

Page 1 of 2

# Blank Spike Summary Job Number: TD1123

GCMC Gulf Chemical & Metallurgical Corp. Account:

**Project:** Permit

VE2599-BS E0058651.D 1 03/31/17 ZO n/a n/a VE	ID DF Analyzed By Prep Date Prep Batch Analytical Batch
VL2377-B5 E0036031.D 1 03/31/17 EQ 11/4 11/4 VL	58651.D 1 03/31/17 ZQ n/a n/a VE2599

The QC reported here applies to the following samples: Method: EPA 624

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
67-64-1	Acetone	125	159	127	46-129
71-43-2	Benzene	25	21.8	87	68-119
75-27-4	Bromodichloromethane	25	22.1	88	72-118
75-25-2	Bromoform	25	19.2	77	54-123
108-90-7	Chlorobenzene	25	21.5	86	74-120
75-00-3	Chloroethane	25	23.5	94	61-132
67-66-3	Chloroform	25	21.2	85	73-122
75-15-0	Carbon disulfide	25	22.9	92	55-140
56-23-5	Carbon tetrachloride	25	22.6	90	68-133
75-34-3	1,1-Dichloroethane	25	23.4	94	72-121
75-35-4	1,1-Dichloroethylene	25	23.6	94	67-140
107-06-2	1,2-Dichloroethane	25	22.0	88	68-121
78-87-5	1,2-Dichloropropane	25	22.2	89	72-116
124-48-1	Dibromochloromethane	25	20.4	82	68-119
156-59-2	cis-1,2-Dichloroethylene	25	22.1	88	72-117
10061-01-5	cis-1,3-Dichloropropene	25	19.3	77	71-118
156-60-5	trans-1,2-Dichloroethylene	25	25.8	103	68-124
10061-02-6	trans-1,3-Dichloropropene	25	19.9	80	72-127
100-41-4	Ethylbenzene	25	23.1	92	71-117
591-78-6	2-Hexanone	125	124	99	49-124
108-10-1	4-Methyl-2-pentanone	125	122	98	54-122
74-83-9	Methyl bromide	25	24.1	96	53-138
74-87-3	Methyl chloride	25	22.7	91	50-145
75-09-2	Methylene chloride	25	21.7	87	60-125
78-93-3	Methyl ethyl ketone	125	134	107	51-129
100-42-5	Styrene	25	25.2	101	74-119
71-55-6	1,1,1-Trichloroethane	25	22.4	90	72-129
79-34-5	1,1,2,2-Tetrachloroethane	25	21.0	84	62-121
79-00-5	1,1,2-Trichloroethane	25	21.9	88	70-119
127-18-4	Tetrachloroethylene	25	21.4	86	72-132
108-88-3	Toluene	25	21.3	85	73-119
79-01-6	Trichloroethylene	25	22.7	91	73-121
75-01-4	Vinyl chloride	25	25.7	103	54-126
1330-20-7	Xylene (total)	75	72.1	96	74-119

^{* =} Outside of Control Limits.

Page 2 of 2

Method: EPA 624

# Blank Spike Summary Job Number: TD1123

GCMC Gulf Chemical & Metallurgical Corp. Account:

**Project:** Permit

Sample VE2599-BS	<b>File ID</b> E0058651.D	<b>DF</b> 1	<b>Analyzed</b> 03/31/17	<b>By</b> ZQ	<b>Prep Date</b> n/a	<b>Prep Batch</b> n/a	Analytical Batch VE2599

The QC reported here applies to the following samples:

CAS No.	<b>Surrogate Recoveries</b>	BSP	Limits
1868-53-7	Dibromofluoromethane	101%	72-122%
17060-07-0	1,2-Dichloroethane-D4	102%	68-124%
2037-26-5	Toluene-D8	101%	80-119%
460-00-4	4-Bromofluorobenzene	102%	72-126%

^{* =} Outside of Control Limits.

Page 1 of 2

Method: EPA 624

# Matrix Spike/Matrix Spike Duplicate Summary Job Number: TD1123

Account: GCMC Gulf Chemical & Metallurgical Corp.

**Project:** Permit

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
TD1057-1MS	E0058659.D	5000	04/01/17	ZQ	n/a	n/a	VE2599
TD1057-1MSD	E0058660.D	5000	04/01/17	ZQ	n/a	n/a	VE2599
TD1057-1 a	E0058655.D	5000	04/01/17	ZQ	n/a	n/a	VE2599

The QC reported here applies to the following samples:

CAS No.	Compound	TD1057 ug/l	7-1 Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
67-64-1	Acetone	ND		625000	777000	124	625000	763000	122	2	46-129/25
71-43-2	Benzene	1600	J	125000	121000	96	125000	119000	94	2	68-119/12
75-27-4	Bromodichloromethane	ND	Ü	125000	113000	90	125000	107000	86	5	72-118/16
75-25-2	Bromoform	ND		125000	89500	72	125000	83800	67	7	54-123/17
108-90-7	Chlorobenzene	ND		125000	117000	94	125000	116000	93	1	74-120/12
75-00-3	Chloroethane	ND		125000	153000	122	125000	148000	118	3	61-132/16
67-66-3	Chloroform	ND		125000	117000	94	125000	115000	92	2	73-122/13
75-15-0	Carbon disulfide	ND		125000	126000	101	125000	125000	100	1	55-140/24
56-23-5	Carbon tetrachloride	ND		125000	128000	102	125000	125000	100	2	68-133/20
75-34-3	1,1-Dichloroethane	ND		125000	129000	103	125000	128000	102	1	72-121/14
75-35-4	1,1-Dichloroethylene	ND		125000	135000	108	125000	135000	108	0	67-140/18
107-06-2	1,2-Dichloroethane	ND		125000	120000	96	125000	116000	93	3	68-121/12
78-87-5	1,2-Dichloropropane	ND		125000	122000	98	125000	120000	96	2	72-116/12
124-48-1	Dibromochloromethane	ND		125000	96600	77	125000	89500	72	8	68-119/15
156-59-2	cis-1,2-Dichloroethylene	ND		125000	123000	98	125000	122000	98	1	72-117/13
10061-01-5	cis-1,3-Dichloropropene	ND		125000	101000	81	125000	98800	79	2	71-118/18
156-60-5	trans-1,2-Dichloroethylene	ND		125000	144000	115	125000	142000	114	1	68-124/15
10061-02-6	trans-1,3-Dichloropropene	ND		125000	102000	82	125000	100000	80	2	72-127/17
100-41-4	Ethylbenzene	ND		125000	128000	102	125000	126000	101	2	71-117/12
591-78-6	2-Hexanone	ND		625000	635000	102	625000	621000	99	2	49-124/21
108-10-1	4-Methyl-2-pentanone	ND		625000	625000	100	625000	611000	98	2	54-122/20
74-83-9	Methyl bromide	ND		125000	156000	125	125000	154000	123	1	53-138/16
74-87-3	Methyl chloride	ND		125000	147000	118	125000	147000	118	0	50-145/17
75-09-2	Methylene chloride	ND		125000	113000	90	125000	113000	90	0	60-125/16
78-93-3	Methyl ethyl ketone	ND		625000	674000	108	625000	652000	104	3	51-129/22
100-42-5	Styrene	ND		125000	137000	110	125000	135000	108	1	74-119/19
71-55-6	1,1,1-Trichloroethane	ND		125000	125000	100	125000	124000	99	1	72-129/14
79-34-5	1,1,2,2-Tetrachloroethane	ND		125000	2490	2*	125000	2630	2*	5	62-121/17
79-00-5	1,1,2-Trichloroethane	ND		125000	114000	91	125000	111000	89	3	70-119/13
127-18-4	Tetrachloroethylene	ND		125000	212000	170*	125000	215000	172*	1	72-132/14
108-88-3	Toluene	ND		125000	117000	94	125000	116000	93	1	73-119/13
79-01-6	Trichloroethylene	ND		125000	218000	174*	125000	215000	172*	1	73-121/13
75-01-4	Vinyl chloride	ND		125000	159000	127*	125000	158000	126	1	54-126/17
1330-20-7	Xylene (total)	ND		375000	395000	105	375000	391000	104	1	74-119/13

^{* =} Outside of Control Limits.

# 5.3.1

## -2

Page 2 of 2

Method: EPA 624

## Matrix Spike/Matrix Spike Duplicate Summary

Job Number: TD1123

**Account:** GCMC Gulf Chemical & Metallurgical Corp.

**Project:** Permit

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
TD1057-1MS	E0058659.D	5000	04/01/17	ZQ	n/a	n/a	VE2599
TD1057-1MSD	E0058660.D	5000	04/01/17	ZQ	n/a	n/a	VE2599
TD1057-1 a	E0058655.D	5000	04/01/17	ZQ	n/a	n/a	VE2599

The QC reported here applies to the following samples:

TD1123-1

CAS No.	<b>Surrogate Recoveries</b>	MS	MSD	TD1057-1	Limits
1868-53-7	Dibromofluoromethane	101%	100%		72-122%
17060-07-0	1,2-Dichloroethane-D4	102%	101%		68-124%
2037-26-5	Toluene-D8	100%	100%		80-119%
460-00-4	4-Bromofluorobenzene	102%	103%		72-126%

(a) Sample used for QC purposes only.

^{* =} Outside of Control Limits.



Section 6

## GC/MS Semi-volatiles

QC Data Summaries

## Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method Blank Summary

Job Number: TD1123

Account: GCMC Gulf Chemical & Metallurgical Corp.

**Project:** Permit

Sample OP43183-MB	<b>File ID</b> P47954A.D	<b>DF</b> 1	<b>Analyzed</b> 03/29/17	By SC	<b>Prep Date</b> 03/29/17	Prep Batch OP43183	Analytical Batch EP2314

The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	MDL	Units Q
65-85-0	Benzoic Acid	ND	20	1.7	ug/l
95-57-8	2-Chlorophenol	ND	5.0	1.4	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.0	1.8	ug/l
120-83-2	2,4-Dichlorophenol	ND	5.0	2.0	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.0	1.0	ug/l
51-28-5	2,4-Dinitrophenol	ND	25	1.2	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	10	3.8	ug/l
95-48-7	2-Methylphenol	ND	5.0	1.4	ug/l
	3&4-Methylphenol	ND	5.0	1.5	ug/l
88-75-5	2-Nitrophenol	ND	5.0	1.8	ug/l
100-02-7	4-Nitrophenol	ND	25	13	ug/l
87-86-5	Pentachlorophenol	ND	25	3.2	ug/l
108-95-2	Phenol	ND	5.0	1.2	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.0	1.9	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.0	1.5	ug/l
83-32-9	Acenaphthene	ND	5.0	1.7	ug/l
208-96-8	Acenaphthylene	ND	5.0	1.7	ug/l
120-12-7	Anthracene	ND	5.0	1.9	ug/l
56-55-3	Benzo(a)anthracene	ND	5.0	1.8	ug/l
50-32-8	Benzo(a)pyrene	ND	5.0	2.0	ug/l
205-99-2	Benzo(b)fluoranthene	ND	5.0	2.2	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	5.0	2.0	ug/l
207-08-9	Benzo(k)fluoranthene	ND	5.0	2.0	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	5.0	1.9	ug/l
85-68-7	Butyl benzyl phthalate	ND	5.0	1.8	ug/l
100-51-6	Benzyl Alcohol	ND	5.0	1.6	ug/l
91-58-7	2-Chloronaphthalene	ND	5.0	1.9	ug/l
106-47-8	4-Chloroaniline	ND	5.0	1.7	ug/l
86-74-8	Carbazole	ND	5.0	1.9	ug/l
218-01-9	Chrysene	ND	5.0	1.7	ug/l
111-91-1	bis(2-Chloroethoxy)methane	ND	5.0	1.9	ug/l
111-44-4	bis(2-Chloroethyl)ether	ND	5.0	1.6	ug/l
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.0	1.6	ug/l
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.0	1.8	ug/l
95-50-1	1,2-Dichlorobenzene	ND	5.0	1.8	ug/l
541-73-1	1,3-Dichlorobenzene	ND	5.0	1.6	ug/l

## **Method Blank Summary**

Job Number: TD1123

Account: GCMC Gulf Chemical & Metallurgical Corp.

**Project:** Permit

Sample OP43183-MB	<b>File ID</b> P47954A.D	<b>DF</b> 1	<b>Analyzed</b> 03/29/17	<b>By</b> SC	<b>Prep Date</b> 03/29/17	Prep Batch OP43183	Analytical Batch EP2314

The QC reported here applies to the following samples:

TD1123-1

CAS No.	Compound	Result	RL	MDL	Units Q
106-46-7	1,4-Dichlorobenzene	ND	5.0	1.6	ug/l
121-14-2	2,4-Dinitrotoluene	ND	5.0	2.1	ug/l
606-20-2	2,6-Dinitrotoluene	ND	5.0	1.9	ug/l
91-94-1	3,3'-Dichlorobenzidine	ND	10	2.0	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	5.0	2.1	ug/l
132-64-9	Dibenzofuran	ND	5.0	1.8	ug/l
84-74-2	Di-n-butyl phthalate	ND	5.0	2.0	ug/l
117-84-0	Di-n-octyl phthalate	ND	5.0	2.6	ug/l
84-66-2	Diethyl phthalate	ND	5.0	1.9	ug/l
131-11-3	Dimethyl phthalate	ND	5.0	2.0	ug/l
117-81-7	bis(2-Ethylhexyl)phthalate	ND	5.0	1.9	ug/l
206-44-0	Fluoranthene	ND	5.0	2.1	ug/l
86-73-7	Fluorene	ND	5.0	1.8	ug/l
118-74-1	Hexachlorobenzene	ND	5.0	2.0	ug/l
87-68-3	Hexachlorobutadiene	ND	5.0	1.9	ug/l
77-47-4	Hexachlorocyclopentadiene	ND	10	1.6	ug/l
67-72-1	Hexachloroethane	ND	5.0	1.7	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.0	2.4	ug/l
78-59-1	Isophorone	ND	5.0	1.8	ug/l
91-57-6	2-Methylnaphthalene	ND	5.0	1.6	ug/l
88-74-4	2-Nitroaniline	ND	5.0	1.9	ug/l
99-09-2	3-Nitroaniline	ND	5.0	1.6	ug/l
100-01-6	4-Nitroaniline	ND	5.0	2.5	ug/l
91-20-3	Naphthalene	ND	5.0	1.8	ug/l
98-95-3	Nitrobenzene	ND	5.0	1.7	ug/l
621-64-7	N-Nitroso-di-n-propylamine	ND	5.0	1.9	ug/l
86-30-6	N-Nitrosodiphenylamine	ND	5.0	1.8	ug/l
85-01-8	Phenanthrene	ND	5.0	1.9	ug/l
129-00-0	Pyrene	ND	5.0	1.8	ug/l
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	1.8	ug/l

### CAS No. **Surrogate Recoveries**

55% 2-Fluorophenol

Limits

367-12-4 10-66% 4165-62-2 Phenol-d5 42% 10-63%

Page 3 of 3

Method: EPA 625

Method Blank Summary
Job Number: TD1123
Account: GCMC Gulf Chemical & Metallurgical Corp.

**Project:** Permit

Sample OP43183-MB	<b>File ID</b> P47954A.D	<b>DF</b> 1	<b>Analyzed</b> 03/29/17	By SC	<b>Prep Date</b> 03/29/17	Prep Batch OP43183	Analytical Batch EP2314

The QC reported here applies to the following samples:

CAS No.	<b>Surrogate Recoveries</b>	Limits	
118-79-6	2,4,6-Tribromophenol	79%	32-128%
4165-60-0	Nitrobenzene-d5	89%	29-115%
321-60-8	2-Fluorobiphenyl	85%	34-113%
1718-51-0	Terphenyl-d14	93%	23-138%

Method: EPA 625

# Blank Spike/Blank Spike Duplicate Summary Job Number: TD1123

Account: GCMC Gulf Chemical & Metallurgical Corp.

**Project:** Permit

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP43183-BS	P47955A.D	1	03/29/17	SC	03/29/17	OP43183	EP2314
OP43183-BSD ^a	P47956A.D	1	03/29/17	SC	03/29/17	OP43183	EP2314

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
65-85-0	Benzoic Acid	50	24.4	49	26.4	53	8	10-91/30
95-57-8	2-Chlorophenol	50	29.5	59	30.7	61	4	38-102/30
59-50-7	4-Chloro-3-methyl phenol	50	35.2	70	36.9	74	5	30-110/30
120-83-2	2,4-Dichlorophenol	50	36.7	73	38.2	76	4	41-107/30
105-67-9	2,4-Dimethylphenol	50	34.9	70	35.7	71	2	39-107/30
51-28-5	2,4-Dinitrophenol	50	24.4	49	30.0	60	21	24-119/30
534-52-1	4,6-Dinitro-o-cresol	50	34.1	68	37.0	74	8	40-121/30
95-48-7	2-Methylphenol	50	24.7	49	26.3	53	6	33-93/30
	3&4-Methylphenol	50	22.5	45	24.4	49	8	28-99/30
88-75-5	2-Nitrophenol	50	36.2	72	36.9	74	2	38-107/30
100-02-7	4-Nitrophenol	50	12	24	13	25	3	10-78/30
87-86-5	Pentachlorophenol	50	33.7	67	35.4	71	5	28-116/30
108-95-2	Phenol	50	10.7	21	11.3	23	5	15-70/30
95-95-4	2,4,5-Trichlorophenol	50	38.3	77	39.1	78	2	47-116/30
88-06-2	2,4,6-Trichlorophenol	50	40.1	80	39.4	79	2	44-112/30
83-32-9	Acenaphthene	50	37.8	76	36.9	74	2	44-106/30
208-96-8	Acenaphthylene	50	40.5	81	39.6	79	2	46-111/30
120-12-7	Anthracene	50	40.4	81	38.9	78	4	53-114/30
56-55-3	Benzo(a)anthracene	50	40.1	80	39.2	78	2	57-113/30
50-32-8	Benzo(a)pyrene	50	42.5	85	40.9	82	4	50-109/30
205-99-2	Benzo(b)fluoranthene	50	43.5	87	42.2	84	3	50-117/30
191-24-2	Benzo(g,h,i)perylene	50	43.4	87	42.2	84	3	43-127/30
207-08-9	Benzo(k)fluoranthene	50	46.5	93	44.9	90	4	52-123/30
101-55-3	4-Bromophenyl phenyl ether	50	42.3	85	40.6	81	4	48-113/30
85-68-7	Butyl benzyl phthalate	50	38.9	78	42.0	84	8	42-120/30
100-51-6	Benzyl Alcohol	50	26.3	53	28.4	57	8	31-97/30
91-58-7	2-Chloronaphthalene	50	39.8	80	37.6	75	6	35-123/30
106-47-8	4-Chloroaniline	50	34.7	69	36.7	73	6	36-104/30
86-74-8	Carbazole	50	37.9	76	37.1	74	2	50-113/30
218-01-9	Chrysene	50	41.1	82	39.8	80	3	59-116/30
111-91-1	bis(2-Chloroethoxy)methane	50	38.6	77	39.3	79	2	34-103/30
111-44-4	bis(2-Chloroethyl)ether	50	37.3	75	37.7	75	1	36-100/30
108-60-1	bis(2-Chloroisopropyl)ether	50	34.5	69	35.6	71	3	30-110/30
7005-72-3	4-Chlorophenyl phenyl ether	50	38.8	78	39.5	79	2	45-112/30
95-50-1	1,2-Dichlorobenzene	50	33.4	67	33.7	67	1	37-100/30
541-73-1	1,3-Dichlorobenzene	50	32.6	65	32.7	65	0	34-99/30

^{* =} Outside of Control Limits.

Page 2 of 3

Method: EPA 625

## Blank Spike/Blank Spike Duplicate Summary

Job Number: TD1123

**Account:** GCMC Gulf Chemical & Metallurgical Corp.

Project: Permit

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	<b>Analytical Batch</b>
OP43183-BS	P47955A.D	1	03/29/17	SC	03/29/17	OP43183	EP2314
OP43183-BSD a	P47956A.D	1	03/29/17	SC	03/29/17	OP43183	EP2314

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
106-46-7	1,4-Dichlorobenzene	50	33.2	66	33.3	67	0	36-99/30
121-14-2	2,4-Dinitrotoluene	50	40.1	80	43.1	86	7	52-115/30
606-20-2	2,6-Dinitrotoluene	50	42.3	85	43.6	87	3	52-111/30
91-94-1	3,3'-Dichlorobenzidine	50	36.6	73	32.5	65	12	37-125/30
53-70-3	Dibenzo(a,h)anthracene	50	41.7	83	41.2	82	1	47-125/30
132-64-9	Dibenzofuran	50	39.0	78	38.6	77	1	45-108/30
84-74-2	Di-n-butyl phthalate	50	40.0	80	42.1	84	5	47-118/30
117-84-0	Di-n-octyl phthalate	50	46.0	92	45.8	92	0	41-124/30
84-66-2	Diethyl phthalate	50	40.1	80	43.0	86	7	38-121/30
131-11-3	Dimethyl phthalate	50	41.3	83	42.5	85	3	41-116/30
117-81-7	bis(2-Ethylhexyl)phthalate	50	39.7	79	38.9	78	2	50-123/30
206-44-0	Fluoranthene	50	36.4	73	35.5	71	3	50-118/30
86-73-7	Fluorene	50	38.7	77	38.3	77	1	47-113/30
118-74-1	Hexachlorobenzene	50	43.4	87	41.8	84	4	49-114/30
87-68-3	Hexachlorobutadiene	50	66.6	133*	65.6	131*	2	30-104/30
77-47-4	Hexachlorocyclopentadiene	50	14.9	30	13.8	28	8	10-97/30
67-72-1	Hexachloroethane	50	31.2	62	32.1	64	3	30-100/30
193-39-5	Indeno(1,2,3-cd)pyrene	50	39.4	79	39.0	78	1	45-127/30
78-59-1	Isophorone	50	40.8	82	41.5	83	2	40-103/30
91-57-6	2-Methylnaphthalene	50	33.3	67	33.9	68	2	36-104/30
88-74-4	2-Nitroaniline	50	39.9	80	40.7	81	2	41-117/30
99-09-2	3-Nitroaniline	50	34.2	68	36.5	73	7	37-117/30
100-01-6	4-Nitroaniline	50	31.4	63	34.4	69	9	47-121/30
91-20-3	Naphthalene	50	34.3	69	34.0	68	1	40-104/30
98-95-3	Nitrobenzene	50	38.7	77	38.4	77	1	40-103/30
621-64-7	N-Nitroso-di-n-propylamine	50	40.4	81	43.0	86	6	36-112/30
86-30-6	N-Nitrosodiphenylamine	100	79.7	80	75.6	76	5	39-109/30
85-01-8	Phenanthrene	50	40.9	82	39.0	78	5	53-114/30
129-00-0	Pyrene	50	40.6	81	47.5	95	16	51-117/30
120-82-1	1,2,4-Trichlorobenzene	50	32.4	65	31.5	63	3	32-103/30

CAS No.	<b>Surrogate Recoveries</b>	BSP	BSD	Limits
367-12-4	2-Fluorophenol	35%	35%	10-66%
4165-62-2	Phenol-d5	23%	24%	10-63%

^{* =} Outside of Control Limits.

Page 3 of 3

Method: EPA 625

Blank Spike/Blank Spike Duplicate Summary Job Number: TD1123

Account: GCMC Gulf Chemical & Metallurgical Corp.

**Project:** Permit

File ID	DF	Analyzed	By	<b>Prep Date</b>	Prep Batch	<b>Analytical Batch</b>
P47955A.D	1	03/29/17	SC	03/29/17	OP43183	EP2314
P47956A.D	1	03/29/17	SC	03/29/17	OP43183	EP2314
	P47955A.D	P47955A.D 1	P47955A.D 1 03/29/17	P47955A.D 1 03/29/17 SC	P47955A.D 1 03/29/17 SC 03/29/17	P47955A.D 1 03/29/17 SC 03/29/17 OP43183

The QC reported here applies to the following samples:

TD1123-1

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
118-79-6	2,4,6-Tribromophenol	80%	79%	32-128%
4165-60-0	Nitrobenzene-d5	78%	77%	29-115%
321-60-8	2-Fluorobiphenyl	81%	77%	34-113%
1718-51-0	Terphenyl-d14	84%	98%	23-138%

(a) Insufficient sample for MS/MSD.

^{* =} Outside of Control Limits.



## **Section 7**

## General Chemistry

QC Data Summaries

## Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries



## METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: TD1123
Account: GCMC - Gulf Chemical & Metallurgical Corp.

Project: Permit

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
BOD, 5 Day	GP41397/GN80593	2.0	0.0	mg/l	198	196	99.0	82-114%
Nitrogen, Ammonia	GP41419/GN80626	0.10	0.0	mg/l	2	1.98	99.0	90-110%
Nitrogen, Nitrate	GP41406/GN80590	0.50	0.0	mg/l	10	9.89	98.9	90-110%
Nitrogen, Nitrite	GP41406/GN80590	0.50	0.0	mg/l	10	10.3	103.0	90-110%
Phosphorus, Total	GP41463/GN80687	0.020	0.0	mg/l	0.4	0.42	105.0	91-108%
Sulfide	GN80716	0.20	0.0	mg/l	1600	1600	100.0	90-105%
Sulfite	GN80588	3.0	0.0	mg/l	50	50.0	100.0	97-102%

Associated Samples:
Batch GN80588: TD1123-1
Batch GN80716: TD1123-1
Batch GP41397: TD1123-1
Batch GP41406: TD1123-1
Batch GP41419: TD1123-1
Batch GP41463: TD1123-1
(*) Outside of QC limits

# BLANK SPIKE DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: TD1123
Account: GCMC - Gulf Chemical & Metallurgical Corp.
Project: Permit

Analyte	Batch ID	Units	Spike Amount	BSD Result	RPD	QC Limit
Sulfide	GN80716	mg/l	1600	1600	0.0	

Associated Samples: Batch GN80716: TD1123-1 (*) Outside of QC limits

## DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: TD1123

Account: GCMC - Gulf Chemical & Metallurgical Corp.

Project: Permit

Analyte	Batch ID	QC Sample	Units	Original Result	DUP Result	RPD	QC Limits
BOD, 5 Day	GP41397/GN80593	TD1098-2A	mg/l	3.9	4.0	2.5	0-15%
Nitrogen, Ammonia	GP41419/GN80626	TD1137-1A	mg/l	0.0	0.0	0.0	0-20%
Nitrogen, Nitrate	GP41406/GN80590	TD1103-1	mg/l	2.6	2.8	7.4	0-20%
Nitrogen, Nitrite	GP41406/GN80590	TD1103-1	mg/l	0.71	0.73	2.8	0-20%
Phosphorus, Total	GP41463/GN80687	LA31706-2	mg/l	0.094	0.094	0.0	0-20%
Sulfite	GN80588	TD1123-1	mg/l	0.77 U	0.0	0.0	0-10%

Associated Samples: Batch GN80588: TD1123-1 Batch GP41397: TD1123-1 Batch GP41406: TD1123-1 Batch GP41419: TD1123-1 Batch GP41463: TD1123-1 (*) Outside of QC limits

## MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: TD1123
Account: GCMC - Gulf Chemical & Metallurgical Corp.

Project: Permit

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MS Result	%Rec	QC Limits
Nitrogen, Ammonia	GP41419/GN80626	TD1137-1A	mg/l	0.0	2	2.0	100.0	90-110%
Nitrogen, Nitrate	GP41406/GN80590	TD1103-1	mg/l	2.6	10	11.9	93.0	80-120%
Nitrogen, Nitrite	GP41406/GN80590	TD1103-1	mg/l	0.71	10	10.2	94.9	80-130%
Phosphorus, Total	GP41463/GN80687	LA31706-2	mg/l	0.094	0.4	0.47	94.0	83-110%
Sulfite	GN80588	TD1123-1	mg/l	0.77 U	50	50.5	101.0	95-102%

Associated Samples: Batch GN80588: TD1123-1 Batch GP41406: TD1123-1 Batch GP41419: TD1123-1 Batch GP41463: TD1123-1 (*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits



## **Section 8**

Misc.	Forms		

**Custody Documents and Other Forms** 

(SGS Accutest New Jersey)

Includes the following where applicable:

• Chain of Custody

ç		
_		
0		

	242			CHAI	N	)F (	CUST	ľO	D)	ľ											Pa	ge '	1 of 2	2	,
	LUUU A	CCUTES	T	10165 F TEL 71	farwin D:	rive, Hous	ston, TX 7	77036						FED-E	X Trackie	* 44	20	583	34	1	Order Conf				
	Client / Reporting Information				wv	vw.sgs.cor	n /13-2/1	-4770						SGS A	coutest Q	iote #			7	SGS A	ccutest Jol	1	D1123		
Comp	pany Name:	Project Nam	0:	Project	Inform	nation									Red	queste	d Analy	rsis (s	ee TES	T COD	E shee	rt)		Matrix	x Codes
S	3S Accutest				D	14										T	T	T			T	ĺ		- Wildelia	V 000003
1	Address	Street			Permi	п																		DW - Drin	inking Wate round Wate
	165 Harwin Drive	1			-							~~		7										ww.	- Water
-	State Puston TX 77036	Zip City		Billing Information ( if different from Report to)  State Company Name								1										SO SL- S	rface Wate - Soil Sludge		
	d Contact E-mail cta.brown@sgs.com	Project #			Street A	Address								+										OI LIQ - Oti	Sediment I - Oil ther Liquid
71	3-271-4700	Fax # Client Purcha			City			8	State			Zip	0	1										SOL - O WP -	R - Air Other Solid - Wipe
овпр	er(s) Name(s)	Phone Project Mana	ger		Attention	n:								<u></u>										EB-Equipr RB- Rin	eld Blank oment Blank nse Blank
sgs				Collection			T		Numi	ber of p	reserv	ed Bot	tles	44	1									TB-Tnj	ip Blank
Accutest Sample #	Field ID / Point of Collection	MEOH/Di Vial	# Date	Time	Sampled by		# of bottles	HC!	HNO3	H2SO4	NONE	4EOH	ENCORE	XP608PPPP											
1	PERMIT RENEWEL		3/28/17	10:00:00 AM		AQ	2	H	+		x	-	-	X	-	+	-	-	-		-	-		LABUS	SE ONLY
							<u> </u>	H	+	+	^	+	$\vdash$	1^	-	-	-	-	-	-	$\perp$				
						-		-	+	H	+	+	$\vdash$	-	ــــ		-		<u> </u>						
				<del> </del>				1	$\perp$	$\sqcup$	1	1													
										Ш															
										П													_		
									T	П	T		П			<del>                                     </del>		<u> </u>	1	<del>                                     </del>			_		
									+	H	+	†	$\vdash$	<del>                                     </del>					-	-	-				
								+	+-	H	+	+	$\vdash$	-		-		-	-						
								+	+-	$\vdash$	+	Н	-	-											
								-	+	1	+	$\sqcup$												-	
			-							Ш	_														
			-																						
	Turnaround Time ( Business days)									П													-		
	Time ( Dusiness days)	Approved By (CC	S Accutest PM): / Date				Data E		able	Inforr	natio	n				- 14.07(33)	and State		Com	ments / S	Special I	Instructi	ons		
	Std. 10 Business Days	Approved by (ac	S Accutest PM): / Date	.			H"A" (Le						Catego		- 8	Send 6	08 to 1	IJ							
							evel 3+4			L			Catego	ry B	á							- 4			
-	3 Day EMERGENCY					J Reduce		,					orms ormat			IN	ITIAI	ASES	SME	NT_7	Am.	2A		/	- 1
	2 Day EMERGENCY 1 Day EMERGENCY	-			_ c	ommercia	ıl "C"						COMA	1B									Λ	1-4	
	other Due 4/4/2017		-			(	Commercia	l "A" =	Resu			-				LA	BFI \	/FRIF	ICATI	ON_	(hy)		1	/	
Emerg	ency & Rush T/A data available VIA Lablink	***************************************					Commercia U Reduced	d - D			_								. 0,	014	0	WHO.	/ Y		
Relinqu	ined y Sampler D	unit 1 K	Sample Custo	dy must be doo	umente	d below	each time	e sam	ples	chan	ge p	osse:	ssion,	law data	a couri	er deliv	erv								
	uest ?	3/19/10	Received By:	F808,			R	telinqui	shed I	By:	31	1	4				Date/Time	:/	(0	Received	By:	_ /			
<u> </u>		ate Time:	Received By:	10001	1		R R	elinqui	shed i	By:	DI	25	0				3/30   Date Time		1000	2 Received	Ву:	X			
Kelinqui	ished by: De	ate Time;	Received By:				c c	ustody	Seal	#				ntact	-	Preserved	where ap	plicable		4		On Ice	Coc	oler Temp. / (	

**TD1123: Chain of Custody** Page 1 of 4 **SGS** Accutest New Jersey

## CHAIN OF CUSTODY

SGS ACCUTEST CHAIN O

Page 1 of 2

	JUJ AC	CUTEST	TEST 10165 Harwin Drive, Houston, TX 77036									FED-EX Tracking #						Bottle Order Control #							
-		70011101		TEL. 713	271-4700		713-271-4							SGS A	cutest Qu	ote#				SGS Acc	cutest Job	1	D112	3	
	Client / Reporting Information			Project	Informa	tion									Rec	uested	Analys	is ( se	e TEST	CODE	shee	t)			Matrix Codes
Compa	ny Name:	Project Name:													T	T	T								
SG	S Accutest				Permit									co		-								. 1	DW - Drinking Water GW - Ground Water
Street A	ddress	Street												"PBMS							1				WW - Water
101	65 Harwin Drive				Billing I	nformatio	n ( if differ	ent fro	m Re	port to	)			- F											SW - Surface Water SO - Soil
City		Zip City		State	Company	Name								T.											SL- Sludge
	iston TX 77036													CRMS,											SED-Sediment OI - Oil
Project		Project #			Street Ad	idress								O,											LIQ - Other Liquid AIR - Air
	a.brown@sgs.com	ax # Client Purchase	0-1#		City			C4	ate			Zip		CDMS										. 1	SOL - Other Solid
Phone a	-271-4700	ax # Client Purchase	Order#		City			01	ate			Zip		S,		1									WP - Wipe FB-Field Blank
		Phone Project Manager			Attention									BAMS,			İ							. !	EB-Equipment Blank
Gampie	(s) Name(s)	Troject Manager			,									S.											RB- Rinse Blank TB-Trip Blank
			1	Collection				-	Vumb	er of pre	serve	d Bottle	es .	ASMS,						İ					
sgs				T				T.	T.	T+1.	ig .	-	끮	AS,										. 1	
Accutest Sample #	Field ID / Point of Collection	MEOH/DI Vial#	Date	Time	Sampled by	Matrix	# of bottles	HC!	HN03	H2804	DI Water	МЕОН	ENCORE	AGMS, SEMS											LAB USE ONLY
	PERMIT RENEWEL			10:00:00 AM	<del>-</del>	AQ	1	+	+-	+	+	+	-	X	+	+	+		-		-		-		
1	PERMIT RENEWEL		3/28/17	10:00:00 AN		AQ	1	$\vdash$	×	$\vdash$	+	4-4	_	+^	-	-			<u> </u>		ļ		-		
									T	TT	†	$\top$	$\top$	+	1	1	<del>                                     </del>	T		<b></b>	1			$\neg$	
			<del> </del>					$\vdash$	+-	++	+	++	+		+	+					-	<del> </del>			
									L	Ш	1														
																								. 1	
										TT	T				1	1									
							<del> </del>	-	+	++	+	+	+	+	+	+	+	├	-		-		-	-	
				ļ				$\vdash$	+	4-4	+	+		-		-									
																								. 1	
				1					T	$^{++}$	+	TT	+	_	+	+	<b></b>	<b>†</b>				<del>                                     </del>		-	
				-	-		-	$\vdash$	╀	₩	+	+	-	-		+	-				-				
				<u> </u>		<u> </u>			L													<u> </u>			
	Turnaround Time ( Business days)				-				rable	e Infort						_			Com	ments /	Specia	Instruc	tions		
		Approved By (SGS	Accutest PM): / Date	1:			ial "A" (L ial "B" (L	,		Ļ				gory A											
	Std. 10 Business Days 5 Day RUSH	-					Level 3+4	,				State F		gory B											
	3 Day EMERGENCY					NJ Reduc		,		-		EDD F													
	2 Day EMERGENCY				Lannard	Commerc						Other													
	1 Day EMERGENCY				_		Commerc	ial "A" =	Res	_	_					1									
	X other Due 4/4/2017						Commerc																		
Eme	ergency & Rush T/A data available VIA Lablink		01-0		<u> </u>		NJ Reduc																		
Relin	quished by Sampler:	Date Tin	Received By:	ody must be d	ocumen	ted belo	w each tir	Relinqu			ige j	posse	255101	ı, includ	ing co	irier dell	Date Tin			Receive	d By:				
1		-	1					2		-,.										2	7.				
	quished by Sampler:	Date Time:	Received By:					Relinqu	ishe	d By:							Date Tin	ne:		Receive	d By:				
3			3					4					Preserved where applicable												
Relin	quished by:	Date Time: Received By:			Custod	y Se	al#				Intact	_	Preserv	ed where :	applicable	!			On Ic	2	Cooler	Temp.			

TD1123: Chain of Custody Page 2 of 4

## **SGS Accutest Sample Receipt Summary**

Date / Time Received:     3/30/2017 10:00:00 AM     Delivery Method:     FedEx     Air	rbill #'s: 564246205834	
Cooler Temps (Raw Measured) °C: Cooler 1: (1.5); Cooler Temps (Corrected) °C: Cooler 1: (2.9);		
Cooler Security  1. Custody Seals Present:  2. Custody Seals Intact:  Y or N  3. COC Present:  4. Smpl Dates/Time OK  Y or N  1. Sample Integrity - Do  1. Sample labels prese 2. Container labeling occurrence of the container labeling occurrence of the container labeling occurrence of the container labeling occurrence of the container labeling occurrence of the container labeling occurrence of the container labeling occurrence of the container labeling occurrence of the container labeling occurrence of the container labeling occurrence of the container labeling occurrence of the container labeling occurrence of the container labeling occurrence of the container labeling occurrence of the container labeling occurrence of the container labeling occurrence of the container labeling occurrence of the container labeling occurrence of the container labeling occurrence of the container labeling occurrence of the container labeling occurrence of the container labeling occurrence of the container labeling occurrence of the container labeling occurrence of the container labeling occurrence of the container labeling occurrence of the container labeling occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurrence occurre	ent on bottles:	
Cooler Temperature     Y or N       1. Temp criteria achieved:     ✓ □       2. Cooler temp verification:     IR Gun       3. Cooler media:     Ice (Bag)       4. No. Coolers:     1       3. Condition of sample:	Condition         Y or N           HT:         Image: Condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the condition of the cond	
Quality Control Preservation     Y or N N/A       1. Trip Blank present / cooler:	is clear:  unspecified tests  cvd for analysis:  ctions clear:	<b>A</b> Z
Comments -1 Also rec'd Metals volume, Metals is not requested.		

SM089-02 Rev. Date 12/1/16

> TD1123: Chain of Custody Page 3 of 4

TD1123: Chain of Custody Page 4 of 4



## **Section 9**

## GC Semi-volatiles

QC Data Summaries

(SGS Accutest New Jersey)

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

# Method Blank Summary Job Number: TD1123

ALGC SGS Accutest Gulf Coast **Account:** 

**Project:** GCMC: Permit

Sample OP1540-MB1	File ID XX207423.D	<b>DF</b> 1	<b>Analyzed</b> 03/31/17	<b>By</b> JR	<b>Prep Date</b> 03/31/17	Prep Batch OP1540	Analytical Batch GXX5980

The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	MDL	Units Q
12674-11-2	Aroclor 1016	ND	0.25	0.17	ug/l
11104-28-2	Aroclor 1221	ND	0.25	0.15	ug/l
11141-16-5	Aroclor 1232	ND	0.25	0.10	ug/l
53469-21-9	Aroclor 1242	ND	0.25	0.14	ug/l
12672-29-6	Aroclor 1248	ND	0.25	0.13	ug/l
11097-69-1	Aroclor 1254	ND	0.25	0.17	ug/l
11096-82-5	Aroclor 1260	ND	0.25	0.14	ug/l

CAS No.	<b>Surrogate Recoveries</b>		Limits
877-09-8	Tetrachloro-m-xylene	106%	10-156%
877-09-8	Tetrachloro-m-xylene	110%	10-156%
2051-24-3	Decachlorobiphenyl	47%	10-143%
2051-24-3	Decachlorobiphenyl	57%	10-143%

# Method Blank Summary Job Number: TD1123

ALGC SGS Accutest Gulf Coast **Account:** 

**Project:** GCMC: Permit

Sample OP1540-MB11	File ID XX207425.D	<b>DF</b> 1	<b>Analyzed</b> 04/01/17	<b>By</b> JR	<b>Prep Date</b> 03/31/17	Prep Batch OP1540	Analytical Batch GXX5980

The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	MDL	Units Q
12674-11-2	Aroclor 1016	ND	0.050	0.034	ug/l
11104-28-2	Aroclor 1221	ND	0.050	0.029	ug/l
11141-16-5	Aroclor 1232	ND	0.050	0.020	ug/l
53469-21-9	Aroclor 1242	ND	0.050	0.027	ug/l
12672-29-6	Aroclor 1248	ND	0.050	0.025	ug/l
11097-69-1	Aroclor 1254	ND	0.050	0.034	ug/l
11096-82-5	Aroclor 1260	ND	0.050	0.027	ug/l

CAS No.	<b>Surrogate Recoveries</b>		Limits
877-09-8	Tetrachloro-m-xylene	93%	10-156%
877-09-8	Tetrachloro-m-xylene	102%	10-156%
2051-24-3	Decachlorobiphenyl	59%	10-143%
2051-24-3	Decachlorobiphenyl	64%	10-143%

# Method Blank Summary Job Number: TD1123

Account: ALGC SGS Accutest Gulf Coast

**Project:** GCMC: Permit

2051-24-3 Decachlorobiphenyl

Sample OP1541-MB2	<b>File ID</b> 6G45499.D	<b>DF</b> 1	<b>Analyzed</b> 04/03/17	<b>By</b> CP	<b>Prep Date</b> 03/31/17	Prep Batch OP1541	Analytical Batch G6G1299

The QC reported here applies to the following samples:

TD1123-1

CAS No.	Compound	Result	RL	MDL	Units Q
309-00-2	Aldrin	ND	0.010	0.0030	ug/l
319-84-6	alpha-BHC	ND	0.010	0.0030	ug/l
319-85-7	beta-BHC	ND	0.010	0.0028	ug/l
319-86-8	delta-BHC	ND	0.010	0.0023	ug/l
58-89-9	gamma-BHC (Lindane)	ND	0.010	0.0014	ug/l
12789-03-6	·	ND	0.10	0.057	ug/l
60-57-1	Dieldrin	ND	0.010	0.0018	ug/l
72-54-8	4,4'-DDD	ND	0.010	0.0019	ug/l
72-55-9	4,4'-DDE	ND	0.010	0.0031	ug/l
50-29-3	4,4'-DDT	ND	0.010	0.0025	ug/l
72-20-8	Endrin	ND	0.010	0.0025	ug/l
1031-07-8	Endosulfan sulfate	ND	0.010	0.0026	ug/l
7421-93-4	Endrin aldehyde	ND	0.010	0.0026	ug/l
959-98-8	Endosulfan-I	ND	0.010	0.0025	ug/l
33213-65-9	Endosulfan-II	ND	0.010	0.0021	ug/l
76-44-8	Heptachlor	ND	0.010	0.0019	ug/l
1024-57-3	Heptachlor epoxide	ND	0.010	0.0033	ug/l
72-43-5	Methoxychlor	ND	0.010	0.0028	ug/l
8001-35-2	Toxaphene	ND	0.13	0.092	ug/l
GAG M	G 4 T		<b>T.</b>		
CAS No.	Surrogate Recoveries		Limits		
877-09-8	Tetrachloro-m-xylene	68%	10-156	%	
877-09-8	Tetrachloro-m-xylene	69%	10-156	%	
2051-24-3	Decachlorobiphenyl	44%	10-143	%	

42%

10-143%

# Method Blank Summary Job Number: TD1123

Account: ALGC SGS Accutest Gulf Coast

**Project:** GCMC: Permit

Sample OP1541-MB1	<b>File ID</b> 6G45508.D	<b>DF</b> 1	<b>Analyzed</b> 04/03/17	<b>By</b> CP	<b>Prep Date</b> 03/31/17	Prep Batch OP1541	Analytical Batch G6G1299

## The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.010	0.0030	ug/l	
319-84-6	alpha-BHC	ND	0.010	0.0030	ug/l	
319-85-7	beta-BHC	ND	0.010	0.0028	ug/l	
319-86-8	delta-BHC	ND	0.010	0.0023	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.010	0.0014	ug/l	
12789-03-6	Chlordane	ND	0.10	0.057	ug/l	
60-57-1	Dieldrin	ND	0.010	0.0018	ug/l	
72-54-8	4,4'-DDD	ND	0.010	0.0019	ug/l	
72-55-9	4,4'-DDE	ND	0.010	0.0031	ug/l	
50-29-3	4,4'-DDT	ND	0.010	0.0025	ug/l	
72-20-8	Endrin	ND	0.010	0.0025	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.010	0.0026	ug/l	
7421-93-4	Endrin aldehyde	ND	0.010	0.0026	ug/l	
959-98-8	Endosulfan-I	ND	0.010	0.0025	ug/l	
33213-65-9	Endosulfan-II	ND	0.010	0.0021	ug/l	
76-44-8	Heptachlor	ND	0.010	0.0019	ug/l	
1024-57-3	Heptachlor epoxide	ND	0.010	0.0033	ug/l	
72-43-5	Methoxychlor	ND	0.010	0.0028	ug/l	
8001-35-2	Toxaphene	ND	0.13	0.092	ug/l	
a.a						

CAS No.	<b>Surrogate Recoveries</b>		Limits
877-09-8	Tetrachloro-m-xylene	83%	10-156%
877-09-8	Tetrachloro-m-xylene	87%	10-156%
2051-24-3	Decachlorobiphenyl	54%	10-143%
2051-24-3	Decachlorobiphenyl	53%	10-143%

# Blank Spike Summary Job Number: TD1123

Account: ALGC SGS Accutest Gulf Coast

**Project:** GCMC: Permit

Sample OP1540-BS1	File ID XX207424.D	<b>DF</b> 1	<b>Analyzed</b> 03/31/17	<b>By</b> JR	<b>Prep Date</b> 03/31/17	Prep Batch OP1540	Analytical Batch GXX5980

The QC reported here applies to the following samples:

TD1123-1

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
12674-11-2	Aroclor 1016	2	2.1	105	42-160
11104-28-2	Aroclor 1221		ND		70-130
11141-16-5	Aroclor 1232		ND		70-130
53469-21-9	Aroclor 1242		ND		70-130
12672-29-6	Aroclor 1248		ND		70-130
11097-69-1	Aroclor 1254		ND		70-130
11096-82-5	Aroclor 1260	2	1.6	80	41-158

CAS No.	<b>Surrogate Recoveries</b>	BSP	Limits
877-09-8	Tetrachloro-m-xylene	107%	10-156%
877-09-8	Tetrachloro-m-xylene	119%	10-156%
2051-24-3	Decachlorobiphenyl	52%	10-143%
2051-24-3	Decachlorobiphenyl	58%	10-143%

* = Outside of Control Limits.

# Blank Spike Summary Job Number: TD1123

Account: ALGC SGS Accutest Gulf Coast

GCMC: Permit **Project:** 

Sample OP1541-BS2	<b>File ID</b> 6G45500.D	<b>DF</b> 1	<b>Analyzed</b> 04/03/17	<b>By</b> CP	<b>Prep Date</b> 03/31/17	Prep Batch OP1541	Analytical Batch G6G1299

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
309-00-2	Aldrin	0.25	0.21	84	18-142
319-84-6	alpha-BHC	0.25	0.22	88	40-149
319-85-7	beta-BHC	0.25	0.20	80	41-141
319-86-8	delta-BHC	0.25	0.21	84	34-160
58-89-9	gamma-BHC (Lindane)	0.25	0.21	84	40-148
60-57-1	Dieldrin	0.25	0.22	88	41-152
72-54-8	4,4'-DDD	0.25	0.21	84	38-153
72-55-9	4,4'-DDE	0.25	0.22	88	35-146
50-29-3	4,4'-DDT	0.25	0.21	84	36-158
72-20-8	Endrin	0.25	0.23	92	45-161
1031-07-8	Endosulfan sulfate	0.25	0.20	80	41-154
7421-93-4	Endrin aldehyde	0.25	0.20	80	41-153
959-98-8	Endosulfan-I	0.25	0.21	84	38-146
33213-65-9	Endosulfan-II	0.25	0.21	84	40-149
76-44-8	Heptachlor	0.25	0.21	84	27-141
1024-57-3	Heptachlor epoxide	0.25	0.19	76	39-148
72-43-5	Methoxychlor	0.25	0.20	80	38-153

CAS No.	Surrogate Recoveries	BSP	Limits
877-09-8	Tetrachloro-m-xylene	80%	10-156%
877-09-8	Tetrachloro-m-xylene	84%	10-156%
2051-24-3	Decachlorobiphenyl	80%	10-143%
2051-24-3	Decachlorobiphenyl	80%	10-143%

^{* =} Outside of Control Limits.

Method: EPA 608

# Blank Spike Summary Job Number: TD1123

Account: ALGC SGS Accutest Gulf Coast

GCMC: Permit **Project:** 

Sample OP1541-BS1	<b>File ID</b> 6G45646.D	<b>DF</b> 1	<b>Analyzed</b> 04/06/17	<b>By</b> CP	<b>Prep Date</b> 03/31/17	Prep Batch OP1541	Analytical Batch G6G1302

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
309-00-2	Aldrin	0.25	0.26	104	18-142
319-84-6	alpha-BHC	0.25	0.27	108	40-149
319-85-7	beta-BHC	0.25	0.24	96	41-141
319-86-8	delta-BHC	0.25	0.26	104	34-160
58-89-9	gamma-BHC (Lindane)	0.25	0.26	104	40-148
60-57-1	Dieldrin	0.25	0.26	104	41-152
72-54-8	4,4'-DDD	0.25	0.25	100	38-153
72-55-9	4,4'-DDE	0.25	0.26	104	35-146
50-29-3	4,4'-DDT	0.25	0.23	92	36-158
72-20-8	Endrin	0.25	0.27	108	45-161
1031-07-8	Endosulfan sulfate	0.25	0.24	96	41-154
7421-93-4	Endrin aldehyde	0.25	0.24	96	41-153
959-98-8	Endosulfan-I	0.25	0.25	100	38-146
33213-65-9	Endosulfan-II	0.25	0.25	100	40-149
76-44-8	Heptachlor	0.25	0.25	100	27-141
1024-57-3	Heptachlor epoxide	0.25	0.24	96	39-148
72-43-5	Methoxychlor	0.25	0.21	84	38-153

CAS No.	Surrogate Recoveries	BSP	Limits
877-09-8	Tetrachloro-m-xylene	99%	10-156%
877-09-8	Tetrachloro-m-xylene	103%	10-156%
2051-24-3	Decachlorobiphenyl	84%	10-143%
2051-24-3	Decachlorobiphenyl	79%	10-143%

^{* =} Outside of Control Limits.

Method: EPA 608

# Matrix Spike/Matrix Spike Duplicate Summary Job Number: TD1123

Account: ALGC SGS Accutest Gulf Coast

GCMC: Permit **Project:** 

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	<b>Analytical Batch</b>
OP1540-MS	XX207430.D	1	04/01/17	JR	03/31/17	OP1540	GXX5980
OP1540-MSD	XX207431.D	1	04/01/17	JR	03/31/17	OP1540	GXX5980
JC39886-1	XX207429.D	1	04/01/17	JR	03/31/17	OP1540	GXX5980

The QC reported here applies to the following samples:

CAS No.	Compound	JC39886-1 ug/l Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
12674-11-2	Aroclor 1016	ND	4	2.6	65	4	2.7	68	4	27-180/37
11104-28-2	Aroclor 1221	ND		ND			ND		nc	70-130/30
11141-16-5	Aroclor 1232	ND		ND			ND		nc	70-130/30
53469-21-9	Aroclor 1242	ND		ND			ND		nc	70-130/30
12672-29-6	Aroclor 1248	ND		ND			ND		nc	70-130/30
11097-69-1	Aroclor 1254	ND		ND			ND		nc	70-130/2
11096-82-5	Aroclor 1260	ND	4	0.92	23	4	0.96	24	4	10-177/41

CAS No.	Surrogate Recoveries	MS	MSD	JC39886-1	Limits
877-09-8	Tetrachloro-m-xylene	57%	72%	39%	10-156%
877-09-8	Tetrachloro-m-xylene	68%	75%	43%	10-156%
2051-24-3	Decachlorobiphenyl	25%	24%	50%	10-143%
2051-24-3	Decachlorobiphenyl	30%	27%	16%	10-143%

^{* =} Outside of Control Limits.

Method: EPA 608

## Matrix Spike/Matrix Spike Duplicate Summary

Job Number: TD1123

Account: ALGC SGS Accutest Gulf Coast

**Project:** GCMC: Permit

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
OP1541-MS	6G45593.D	1	04/05/17	CP	03/31/17	OP1541	G6G1301
OP1541-MSD	6G45594.D	1	04/05/17	CP	03/31/17	OP1541	G6G1301
JC39811-1	6G45510.D	1	04/03/17	CP	03/31/17	OP1541	G6G1299

The QC reported here applies to the following samples:

CAS No.	Compound	JC39811-1 ug/l Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
309-00-2	Aldrin	ND	0.5	0.17	34	0.5	0.18	36	12	22-159/42
319-84-6	alpha-BHC	ND	0.5	0.44	88	0.5	0.91	182* a	44* b	34-168/37
319-85-7	beta-BHC	ND	0.5	0.47	94	0.5	0.49	98	31	31-165/42
319-86-8	delta-BHC	ND	0.5	0.14	28* a	0.5	0.16	32* a	13	42-170/41
58-89-9	gamma-BHC (Lindane)	ND	0.5	0.22	44	0.5	0.26	52	31	34-169/43
12789-03-6	Chlordane	ND		ND			ND		nc	50-150/30
60-57-1	Dieldrin	ND	0.5	0.22	44	0.5	0.25	50	13	32-170/41
72-54-8	4,4'-DDD	ND	0.5	0.25	50	0.5	0.29	58	15	37-164/37
72-55-9	4,4'-DDE	ND	0.5	0.089	18* a	0.5	0.093	19* a	4	35-159/40
50-29-3	4,4'-DDT	ND	0.5	0.11	22* a	0.5	0.10	20* a	10	24-175/35
72-20-8	Endrin	ND	0.5	0.33	66	0.5	0.34	68	3	42-177/38
1031-07-8	Endosulfan sulfate	ND	0.5	0.15	30* a	0.5	0.26	52	54* b	35-167/43
7421-93-4	Endrin aldehyde	ND	0.5	0.067	13* a	0.5	0.13	26	64* ^b	26-169/48
959-98-8	Endosulfan-I	ND	0.5	0.23	46	0.5	0.26	52	12	27-167/40
33213-65-9	Endosulfan-II	ND	0.5	0.065	13* a	0.5	0.062	12* a	5	30-165/39
76-44-8	Heptachlor	0.031	0.5	0.13	20* a	0.5	0.15	24* a	14	29-158/39
1024-57-3	Heptachlor epoxide	ND	0.5	0.11	22* a	0.5	0.12	24* a	9	38-160/40
72-43-5	Methoxychlor	ND	0.5	0.21	42	0.5	0.16	32* a	27	33-163/43
8001-35-2	Toxaphene	ND		ND			ND		nc	50-150/30

CAS No.	<b>Surrogate Recoveries</b>	MS	MSD	JC39811-1	Limits
877-09-8	Tetrachloro-m-xylene	706%* a	708% * a	440% * a	10-156%
877-09-8	Tetrachloro-m-xylene	105%	49%	363% * a	10-156%
2051-24-3	Decachlorobiphenyl	4% * a	5% * a	5% * c	10-143%
2051-24-3	Decachlorobiphenyl	8% * a	15%	8% * c	10-143%

- (a) Outside control limits due to matrix interference.
- (b) Analytical precision exceeds in-house control limits.
- (c) Outside control limits due to matrix interference. There's no sample left for re-extraction.

^{* =} Outside of Control Limits.



## **Section 10**

## Metals Analysis

QC Data Summaries

(SGS Accutest New Jersey)

## Includes the following where applicable:

- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries



BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: TD1123

Account: ALGC - SGS Accutest Gulf Coast Project: GCMC: Permit

QC Batch ID: MP99643 Matrix Type: AQUEOUS Methods: EPA 200.8 Units: ug/l

Prep Date:

04/02/17

Metal	RL	IDL	MDL	MB raw	final
Aluminum	50	. 23	1.3		
Antimony	2.0	. 22	.26		
Arsenic	1.0	.017	.034	0.012	<1.0
Barium	1.0	.0085	.028	0.016	<1.0
Beryllium	0.50	.0022	.013		
Boron	50	2.3			
Cadmium	0.50	.0032	.12	0.00052	<0.50
Calcium	250	1.4	3.7		
Chromium	4.0	.012	.1	-0.040	<4.0
Cobalt	0.50	.0018	.018		
Copper	4.0	.035	.14		
Iron	50	.19	2		
Lead	0.50	.0079	.011	0.018	<0.50
Magnesium	250	.21	3.6		
Manganese	1.0	.0078	.095		
Molybdenum	1.0	.023	.23		
Nickel	4.0	.018	.11		
Potassium	250	.77	8.8		
Selenium	1.0	.012	.12	0.0074	<1.0
Silver	2.0	.0058	.041	0.0072	<2.0
Sodium	250	.89	2.5		
Strontium	5.0	.006	.015		
Thallium	0.50	.002	.013		
Tin	5.0	.044	.38		
Titanium	1.0	.031	.56		
Vanadium	4.0	.03	.2		
Zinc	10	.067	1.2		

Associated samples MP99643: TD1123-1

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested



### MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: TD1123 Account: ALGC - SGS Accutest Gulf Coast Project: GCMC: Permit

QC Batch ID: MP99643

Methods: EPA 200.8 Units: ug/l

Prep Date:

Matrix Type: AQUEOUS

04/02/17

			04/02/1/	
				QC Limits
anr				
anr				
0.12	99.4	100	99.3	70-130
58.7	158	100	99.3	70-130
anr				
0.070	97.7	100	97.6	70-130
anr				
0.22	99.1	100	98.9	70-130
anr				
anr				
anr				
0.15	99.6	100	99.5	70-130
anr				
anr				
anr				
anr				
0.51	198	200	98.7	70-130
0.047	82.3	76.5	107.5	70-130
anr				
anr				
anr				
anr				
	origina anr anr 0.12 58.7 anr 0.070 anr 0.22 anr anr anr 0.15 anr anr anr anr anr anr anr anr	anr  0.12 99.4  58.7 158  anr  0.070 97.7  anr  0.22 99.1  anr  anr  0.15 99.6  anr  anr  0.51 198  0.047 82.3  anr  anr  anr	JC40067-1 Original MS  anr anr  0.12 99.4 100 58.7 158 100 anr  0.070 97.7 100 anr  0.22 99.1 100 anr anr  0.15 99.6 100 anr anr  anr  0.51 198 200 0.047 82.3 76.5 anr  anr  anr	JC40067-1 Original MS  anr  anr  0.12 99.4 100 99.3 58.7 158 100 99.3 anr  0.070 97.7 100 97.6 anr  0.15 99.6 100 99.5 anr  anr  anr  0.51 198 200 98.7 0.047 82.3 76.5 107.5 anr  anr  anr  anr  anr  anr

Associated samples MP99643: TD1123-1

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits (anr) Analyte not requested

### MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: TD1123 Account: ALGC - SGS Accutest Gulf Coast Project: GCMC: Permit

QC Batch ID: MP99643 Matrix Type: AQUEOUS Methods: EPA 200.8 Units: ug/l

Prep Date:

04/02/17

F					//-	
Metal	JC40067 Origina		Spikelo MPX200.	t 8 % Rec	MSD RPD	QC Limit
Aluminum	anr					
Antimony	anr					
Arsenic	0.12	98.8	100	98.7	0.6	10
Barium	58.7	158	100	99.3	0.0	20
Beryllium	anr					
Boron						
Cadmium	0.070	97.6	100	97.5	0.1	10
Calcium	anr					
Chromium	0.22	99.3	100	99.1	0.2	10
Cobalt	anr					
Copper	anr					
Iron	anr					
Lead	0.15	99.7	100	99.6	0.1	10
Magnesium	anr					
Manganese	anr					
Molybdenum						
Nickel	anr					
Potassium	anr					
Selenium	0.51	198	200	98.7	0.0	10
Silver	0.047	80.6	76.5	105.3	2.1	10
Sodium	anr					
Strontium						
Thallium	anr					
Tin						
Titanium						
Vanadium	anr					
Zinc	anr					

Associated samples MP99643: TD1123-1

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits (anr) Analyte not requested



### SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: TD1123
Account: ALGC - SGS Accutest Gulf Coast
Project: GCMC: Permit

QC Batch ID: MP99643 Methods: EPA 200.8 Matrix Type: AQUEOUS Units: ug/1

Prep Date: 04/02/17

			,,	
Metal	BSP Result	Spikelot MPX200.8		QC Limits
Aluminum	anr			
Antimony	anr			
Arsenic	100	100	100.0	85-115
Barium	99.7	100	99.7	85-115
Beryllium	anr			
Boron				
Cadmium	100	100	100.0	85-115
Calcium	anr			
Chromium	100	100	100.0	85-115
Cobalt	anr			
Copper	anr			
Iron	anr			
Lead	99.6	100	99.6	85-115
Magnesium	anr			
Manganese	anr			
Molybdenum				
Nickel	anr			
Potassium	anr			
Selenium	210	200	105.0	85-115
Silver	81.3	76.5	106.3	85-115
Sodium	anr			
Strontium				
Thallium	anr			
Tin				
Titanium				
Vanadium	anr			
Zinc	anr			

Associated samples MP99643: TD1123-1

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: TD1123

Account: ALGC - SGS Accutest Gulf Coast Project: GCMC: Permit

QC Batch ID: MP99659 Methods: EPA 245.1 Matrix Type: AQUEOUS Units: ug/l

Prep Date: 04/03/17

Associated samples MP99659: TD1123-1

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits  $\bar{\ }$ 

(anr) Analyte not requested

### MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: TD1123 Account: ALGC - SGS Accutest Gulf Coast Project: GCMC: Permit

QC Batch ID: MP99659 Methods: EPA 245.1 Matrix Type: AQUEOUS Units: ug/l

04/03/17 Prep Date:

Metal	JC40036-1 Original MS	Spike: HGPW3		QC Limits
Mercury	0.069 2.	1 2	101.6	70-130

Associated samples MP99659: TD1123-1

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits  $\hfill \hfill$ 

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested



### MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: TD1123 Account: ALGC - SGS Accutest Gulf Coast Project: GCMC: Permit

QC Batch ID: MP99659 Methods: EPA 245.1 Matrix Type: AQUEOUS Units: ug/l

Prep Date:

04/03/17

Metal	JC40036-1	Spikelot	MSD	QC
	Original MSD	HGPW3 % Rec	RPD	Limit
Mercury	0.069 1.9	2 91.6	10.0	19

Associated samples MP99659: TD1123-1

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits  $\hfill \hfill$ 

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested



### SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: TD1123 Account: ALGC - SGS Accutest Gulf Coast Project: GCMC: Permit

Methods: EPA 245.1

Units: ug/l

QC Batch ID: MP99659 Matrix Type: AQUEOUS

Prep Date: 04/03/17

Associated samples MP99659: TD1123-1

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits  $\bar{\ }$ (anr) Analyte not requested



# Section 11

Custo	dy Documents and Other Fo	orms
(SGS A	Accutest Lafayette)	

• Chain of Custody

6°%	A Part of	area.
Was N	<b>4</b>	<b>V.</b> J

## CHAIN OF CUSTODY

MGAS 03/29/17 Page 1 of 2

	CALLED ACC	UTEST		10165 Harwin Drive, Houston, TX 77036		FE	FED-EX Tracking #				Bottle Order Centrol #														
				TEL. 713	-271-4700		713-271-4						SG	S Accu	test Quote	#				SGS Ac	ccutest Job	· T	D1123		
	Client / Reporting Information			Project		·									Requ	ested .	Analysi	s (see	TEST	CODI	E sheet	:t)		7	Matrix Codes
Compar		Project Name:									-		T		Ī					T	T	ĺ		$\neg$	
	Accutest				Permit												-								DW - Drinking Water GW - Ground Water
Street A		Street																						-	WW - Water
City	55 Harwin Drive State Zip	City		State			n ( if diffe	rent fr	m Re	port to			_				i								SW - Surface Water SO - Soli
	ston TX 77036	City		State	Company	y ivame																		- 1	SL- Sludge SED-Sediment
Project		Project #			Street Ac	dress							$\dashv$					- 1		1		ACTION OF			OI - Oil
Tram	eshia.Brown@sgs.com																	1				-		-	LIQ - Other Liquid AIR - Air
Phone #		Client Purchase (	Order#		City		***************************************	S	tate			Zip	$\dashv$		1							-			SOL - Other Solid WP - Wipe
	271-4700														İ		-								FB-Field Blank EB-Equipment Blank
Sampler	(s) Name(s) Phone	Project Manager			Attention	0									İ					İ					RB- Rinse Blank TB-Trip Blank
				Collection		Γ		_	Numb	er of pres	erved	Bottles		- 1				1							15-10p Blank
sgs								Π.	T	4	to.	- #	П:	,MBAS			ann ann	Ì						-	
Accutest Sample #	Field ID / Point of Collection	MEOH/DI Vial #	Date	Time	Sampled by	Matrix	# of bottles	ᅙ	HNO3	H2SO4	Di Wa	MEOH		Σ,										MONTH	LAB USE ONLY
1	PERMIT RENEWEL		3/28/17	10:00:00 AN		AQ	1	Ħ	1	X	F		H	x	-						H		-	7	
			-					H	+		$\vdash$			_	-					-	++	$\vdash$		4	
								-	╀	$\vdash$	-	-	-	-							1			-	
									$\perp$	Ц.			Ш	_										i	
								Ш								į	- 1						-	9	
									Г				П											-	
									$\top$		П		$\vdash$			T							-	-	
								$\vdash$	+	++-	Н	$\vdash$	$\vdash$	-	-			-			+-	-			
								$\vdash$	+-		$\vdash$	$\vdash$	$\vdash\vdash$						- 1	1	+				
								1	1.		Ш	Ш													
																								-	
									Т		П			7						$\vdash$	+		$\dashv$	-	
				-				-	╁	H	Н	+-	$\vdash$	-	_			-		╁	+			-	
	Tumaround Time ( Business days)			L			Data	Delive	rahio	inform	etion								Com	manta (	Casada	Instruct			
		Approved By (SGS	Accutest PM): / Date	;	П	Commerci	iał "A" {Le		_	XIIOIIII		***************************************	tegory.	A		***************************************			Conn	ments /	Special	mstruce	ions		
	Std. 10 Susiness Days		,				ia("B" (Le			Ē			tegory		1										
	5 Day RUSH		<u> </u>				Level 3+4	)			-	ate Forr			l				AL PARTY		-				ž.
	3 Day EMERGENCY 2 Day EMERGENCY					NJ Reduc					-	D Fom			-					14	P] :				-
	1 Day EMERGENCY		<del></del>		، لـــا (	Commerci	ial "C" Commerci	ial "A"	: Rec			her <u>CC</u>	MMB							' '	/				vice and a second
	X other Due 4/4/2017						Commerci					nmary							1				11	10	=
Eme	gency & Rush T/A data available VIA Lablink				L		NJ Reduc	ed ≖ R	esults	+ QC S	umm	ary + Pa	rtial Rav	v data						,			- L.	£ &	
Relino	uisheday Sampler: Date Tir	1 /824	Received By:	ody must be d	ocument	ed below	yeach tin	ne sai	nples	s chang	e po	esess	ion, inc	ludin	g courie		ery. j	-	1	Danki .					
1	(1) 3/28/	10 "	1 25	1X	21	1011	//	250	5	5	X	7				\$	129	110	-	Receive	بثلة	أعسامه	ي لو	2	ا لامير
3 Jelion	uished by Sampler: Date Tir	1/1 /000	Received By	100				Relinq	aished	By:							Date Time			Receive	d By:	4			
	uished by: Date Tin		Received By:	7)				Custo			,		Inta	ct	1	reserved	where ap	plicable		1		On los		cooler)	enp 17 ./ s
5			5	<u> </u>				25	۸ز	يمت آن	4		□ Not	intact			2		- 1				and the second second	() - 12	S DVYIJ
																(	~								

**TD1123: Chain of Custody** Page 1 of 3 **SGS** Accutest Lafayette Date / Time: 3/28/2017 4:09:36 PM

CSR: TRAMESHB
Job #: TD1123
Client Project: Permit

Deliverable: COMMB TAT: Due 4/4/2017 Sub Lab: Accutest Gulf Coast Louisiana Address: 500 Ambassador Caffery Prkway

City: Scott

State: LA Zip: 70583

Contact: Sample Receiving Phone: 800-304-5227

	A COLONIA A A A A A A A A A A A A A A A A A A		1 1101.0. 000 00 1 0227				
SGS Accutest Sample #	Client Sample Description	Analysis	Location	Sampled By	Date Sampled	Time Sampled	Aliquot
TD1123-1	PERMIT RENEWEL	_,MBAS_	1P ,3A .4GG ,SUB ,VR .		<u>3/28/2017</u>	10:00:00 AM	
Comments	<b>S</b> :						
Sample Manag	gement Receipt:		Date:		<del></del>		
	1 TO THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF						
	1 District Visit						
						061	7
				0	(SU		<i>- )</i>
	211111111111111111111111111111111111111				1	D	

TD1123: Chain of Custody Page 2 of 3

## **Accutest Laboratories Sample Receipt Summary**

Job Number: TD	1123	Client:	SGS (TX)		Project: PERMIT		
Date / Time Received: 3/29	9/2017 10:2	0:00 AM	Delivery Method:	Accutest Courier	Airbill #'s:		
Cooler Temps (Initial/Adjust	ed): #1:(1	.8/1.8);					
1. Custody Seals Present:		COC Pr     Smpl Dates		1. Sample labels	ty - Documentation present on bottles:	Y or	
2. Custody Seals Intact:   Cooler Temperature  ✓		·	of time or 🔽	2. Container labe 3. Sample contain	eling complete: iner label / COC agree:	<b>∨</b>	
1. Temp criteria achieved: 2. Thermometer ID: 3. Cooler media: 4. No. Coolers:	; Ice (direct	contact)		Sample Integr  1. Sample recvd  2. All containers  3. Condition of si	within HT: accounted for:	Y or ✓ ✓ Intac	
Quality Control Preservation	n <u>Y or</u>	N N/A			ity - Instructions	Y or	
<ol> <li>Trip Blank present / cooler:</li> <li>Trip Blank listed on COC:</li> <li>Samples preserved properly:</li> <li>VOCs headspace free:</li> </ol>				Analysis requ     Bottles receiv     Sufficient volu	=	<u> </u>	
Comments				5. Filtering instru	uctions clear:		

TD1123: Chain of Custody Page 3 of 3



# **Section 12**

# General Chemistry

QC Data Summaries

(SGS Accutest Lafayette)

Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries



# METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: TD1123
Account: ALGC - SGS Accutest Gulf Coast
Project: GCMC: Permit

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
Surfactants, MBAS as LAS	GN10246	0.10	0.0	mg/l	.75	0.70	93.0	80-120%

Associated Samples: Batch GN10246: TD1123-1 (*) Outside of QC limits

#### BLANK SPIKE DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: TD1123
Account: ALGC - SGS Accutest Gulf Coast
Project: GCMC: Permit

Analyte	Batch ID	Units	Spike Amount	BSD Result	RPD	QC Limit	
Surfactants, MBAS as LAS	GN10246	mg/l	.75	0.70	0.7		

Associated Samples: Batch GN10246: TD1123-1 (*) Outside of QC limits

#### DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: TD1123
Account: ALGC - SGS Accutest Gulf Coast
Project: GCMC: Permit

Analyte	Batch ID	QC Sample	Units	Original Result	DUP Result	RPD	QC Limits	
Surfactants, MBAS as LAS	GN10246	LA31814-1	mg/l	1.7	1.7	0.3	0-20%	

Associated Samples: Batch GN10246: TD1123-1 (*) Outside of QC limits



# **ACCUTEST**

04/13/17

SGS ACCUTEST IS PART OF SGS, THE WORLD'S LEADING INSPECTION, VERIFICATION, TESTING AND CERTIFICATION COMPANY.



e-Hardcopy 2.0 **Automated Report** 

## Technical Report for

Gulf Chemical & Metallurgical Corp.

Permit

SGS Accutest Job Number: TD1443

Sampling Date: 04/04/17

## Report to:

Gulf Chemical & Metallurgical Corp. P.O. Box 2290 Freeport, TX 77542 bobby.provence@eramet-gulf.com; robert.marsh@eramet-gulf.com

ATTN: Robert Marsh

Total number of pages in report: 66



Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Electa Brown 713-271-4700

Certifications: TX (T104704220-17-26) AR (14-016-0) AZ (AZ0769) FL (E87628) KS (E-10366) LA (85695/04004) NJ (TX010) OK (2014-172) VA (7654)

This report shall not be reproduced, except in its entirety, without the written approval of SGS Accutest. Test results relate only to samples analyzed.

Laboratory Director

# ယ

# 5

•	3
V.	v

	×	
	_	
	-	

		١	,
7	١		L
١	Ċ	`	
		٦	

# **Table of Contents**

-1-

Section 1: Sample Summary	3
Section 2: Summary of Hits	4
Section 3: Sample Results	5
<b>3.1:</b> TD1443-1: PERMIT RENEWEL	6
Section 4: Misc. Forms	15
4.1: Chain of Custody	16
Section 5: GC/MS Volatiles - QC Data Summaries	<b>20</b>
5.1: Method Blank Summary	21
5.2: Blank Spike Summary	23
5.3: Matrix Spike/Matrix Spike Duplicate Summary	25
Section 6: GC/MS Semi-volatiles - QC Data Summaries	27
6.1: Method Blank Summary	28
6.2: Blank Spike/Blank Spike Duplicate Summary	31
Section 7: General Chemistry - QC Data Summaries	34
7.1: Method Blank and Spike Results Summary	35
7.2: Blank Spike Duplicate Results Summary	36
7.3: Duplicate Results Summary	37
7.4: Matrix Spike Results Summary	38
Section 8: Misc. Forms (SGS Accutest New Jersey)	39
8.1: Chain of Custody	
Section 9: GC Semi-volatiles - QC Data (SGS Accutest New Jersey)	45
9.1: Method Blank Summary	46
9.2: Blank Spike/Blank Spike Duplicate Summary	48
Section 10: Metals Analysis - QC Data (SGS Accutest New Jersey)	<b>50</b>
<b>10.1:</b> Prep QC MP99717: As,Ba,Cd,Cr,Pb,Se,Ag	51
<b>10.2:</b> Prep QC MP99751: Hg	55
Section 11: Misc. Forms (SGS Accutest Lafayette)	
11.1: Chain of Custody	60
Section 12: General Chemistry - QC Data (SGS Accutest Lafayette)	63
12.1: Method Blank and Spike Results Summary	64
12.2: Blank Spike Duplicate Results Summary	
12.3: Duplicate Results Summary	66



# **Sample Summary**

Gulf Chemical & Metallurgical Corp.

Job No:

TD1443

Permit

Sample	Collected	Matrix	Client
Number	Date Time By	Received Code Type	Sample ID
TD1443-1	04/04/17 10:05	04/04/17 AQ Water	PERMIT RENEWEL

3 of 66
ACCUTEST
TD1443

**Summary of Hits Job Number:** TD1443

**Account:** Gulf Chemical & Metallurgical Corp.

**Project:** Permit **Collected:** 04/04/17

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
TD1443-1 PERMIT RENEW	/EL				
Acetone	0.172	0.050	0.010	mg/l	EPA 624
Chloroform	0.00063 J	0.0010	0.00030	mg/l	EPA 624
2-Hexanone	0.0134	0.010	0.0012	mg/l	EPA 624
4-Methyl-2-pentanone	0.0111	0.010	0.0023	mg/l	EPA 624
Methyl chloride	0.00077 J	0.0010	0.00030	mg/l	EPA 624
Methyl ethyl ketone	0.0776	0.010	0.0026	mg/l	EPA 624
Arsenic ^a	1.05	0.50	0.017	mg/l	EPA 200.8
Barium ^a	0.0151 B	0.50	0.014	mg/l	EPA 200.8
Selenium ^a	0.681	0.50	0.058	mg/l	EPA 200.8
BOD, 5 Day	16.4	12	6.0	mg/l	SM 5210B-2000
Nitrogen, Ammonia	130	5.0	1.0	mg/l	EPA 350.1
Nitrogen, Nitrite ^b	48.9	25	14	mg/l	EPA 300
Phosphorus, Total	1.7	0.10	0.050	mg/l	SM 4500PE-2011
Surfactants, MBAS as LAS c	0.25	0.10	0.080	mg/l	SM5540 C-11

⁽a) Elevated detection limit due to dilution required for matrix interference. Analysis performed at SGS Accutest, Dayton, NJ.

⁽b) Elevated reporting limit due to matrix interference.

⁽c) Analysis performed at SGS Accutest, Lafayette, LA.

Section 3 &

Sample Results	
Report of Analysis	
•	

Client Sample ID: PERMIT RENEWEL

 Lab Sample ID:
 TD1443-1
 Date Sampled:
 04/04/17

 Matrix:
 AQ - Water
 Date Received:
 04/04/17

 Method:
 EPA 624
 Percent Solids:
 n/a

**Project:** Permit

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 G0272135.D 1 04/07/17 ZQ n/a n/a VG2272

Run #2

**Purge Volume** 

Run #1 5.0 ml

Run #2

#### **VOA TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	0.172	0.050	0.010	mg/l	
71-43-2	Benzene	ND	0.0010	0.00030	mg/l	
75-27-4	Bromodichloromethane	ND	0.0010	0.00030	mg/l	
75-25-2	Bromoform	ND	0.0010	0.00030	mg/l	
108-90-7	Chlorobenzene	ND	0.0010	0.00030	mg/l	
75-00-3	Chloroethane	ND	0.0010	0.00033	mg/l	
67-66-3	Chloroform	0.00063	0.0010	0.00030	mg/l	J
75-15-0	Carbon disulfide	ND	0.0050	0.00075	mg/l	
56-23-5	Carbon tetrachloride	ND	0.0010	0.00054	mg/l	
75-34-3	1,1-Dichloroethane	ND	0.0010	0.00030	$\mathcal{C}$	
75-35-4	1,1-Dichloroethylene	ND	0.0010	0.00030	mg/l	
107-06-2	1,2-Dichloroethane	ND	0.0010	0.00030	_	
78-87-5	1,2-Dichloropropane	ND	0.0010	0.00030		
124-48-1	Dibromochloromethane	ND	0.0010	0.00030		
156-59-2	cis-1,2-Dichloroethylene	ND	0.0010	0.00030		
10061-01-5	cis-1,3-Dichloropropene	ND	0.0010	0.00030		
156-60-5	trans-1,2-Dichloroethylene	ND	0.0010	0.00030		
10061-02-6	trans-1,3-Dichloropropene	ND	0.0010	0.00030		
100-41-4	Ethylbenzene	ND	0.0010	0.00030	mg/l	
591-78-6	2-Hexanone	0.0134	0.010	0.0012	mg/l	
108-10-1	4-Methyl-2-pentanone	0.0111	0.010	0.0023	mg/l	
74-83-9	Methyl bromide	ND	0.0010	0.00049	mg/l	
74-87-3	Methyl chloride	0.00077	0.0010	0.00030	mg/l	J
75-09-2	Methylene chloride	ND	0.0050	0.0013	mg/l	
78-93-3	Methyl ethyl ketone	0.0776	0.010	0.0026	mg/l	
100-42-5	Styrene	ND	0.0010	0.00030	mg/l	
71-55-6	1,1,1-Trichloroethane	ND	0.0010	0.00030	mg/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.0010	0.00030	mg/l	
79-00-5	1,1,2-Trichloroethane	ND	0.0010	0.00030	mg/l	
127-18-4	Tetrachloroethylene	ND	0.0010	0.00030		
108-88-3	Toluene	ND	0.0010	0.00030		
79-01-6	Trichloroethylene	ND	0.0010	0.00030	mg/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



Page 2 of 2

# **Report of Analysis**

Client Sample ID: PERMIT RENEWEL

Lab Sample ID: TD1443-1 **Date Sampled:** 04/04/17 Matrix: **Date Received:** 04/04/17 AQ - Water EPA 624 Method: Percent Solids: n/a

**Project:** Permit

#### **VOA TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	0.0010 0.0030	0.00030 0.00065	C	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	94%		72-12	22%	
17060-07-0	1,2-Dichloroethane-D4	91%		68-12	24%	
2037-26-5	Toluene-D8	99%		80-11	9%	
460-00-4	4-Bromofluorobenzene	100%		72-12	26%	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$ N = Indicates presumptive evidence of a compound



**ACCUTEST** 

Client Sample ID: PERMIT RENEWEL

 Lab Sample ID:
 TD1443-1
 Date Sampled:
 04/04/17

 Matrix:
 AQ - Water
 Date Received:
 04/04/17

 Method:
 EPA 625
 EPA 625
 Percent Solids:
 n/a

**Project:** Permit

950 ml

 File ID
 DF
 Analyzed
 By
 Prep Date
 Prep Batch
 Analytical Batch

 Run #1
 P48149.D
 1
 04/11/17
 SC
 04/10/17
 OP43290
 EP2322

 Run #2
 EP2322
 EP2322
 EP2322
 EP2322

Initial Volume Final Volume

1.0 ml

Run #1 Run #2

#### **ABN TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
65-85-0	Benzoic Acid	ND	0.021	0.0018	mg/l	
95-57-8	2-Chlorophenol	ND	0.0053	0.0015	mg/l	
59-50-7	4-Chloro-3-methyl phenol	ND	0.0053	0.0018	mg/l	
120-83-2	2,4-Dichlorophenol	ND	0.0053	0.0021	mg/l	
105-67-9	2,4-Dimethylphenol	ND	0.0053	0.0011	mg/l	
51-28-5	2,4-Dinitrophenol	ND	0.026	0.0013	mg/l	
534-52-1	4,6-Dinitro-o-cresol	ND	0.011	0.0040	mg/l	
95-48-7	2-Methylphenol	ND	0.0053	0.0015	mg/l	
	3&4-Methylphenol	ND	0.0053	0.0016	mg/l	
88-75-5	2-Nitrophenol	ND	0.0053	0.0019	mg/l	
100-02-7	4-Nitrophenol	ND	0.026	0.013	mg/l	
87-86-5	Pentachlorophenol	ND	0.026	0.0034	mg/l	
108-95-2	Phenol	ND	0.0053	0.0013	mg/l	
95-95-4	2,4,5-Trichlorophenol	ND	0.0053	0.0020	mg/l	
88-06-2	2,4,6-Trichlorophenol	ND	0.0053	0.0016	mg/l	
83-32-9	Acenaphthene	ND	0.0053	0.0017	mg/l	
208-96-8	Acenaphthylene	ND	0.0053	0.0018	mg/l	
120-12-7	Anthracene	ND	0.0053	0.0020	mg/l	
56-55-3	Benzo(a)anthracene	ND	0.0053	0.0019	mg/l	
50-32-8	Benzo(a)pyrene	ND	0.0053	0.0021	mg/l	
205-99-2	Benzo(b)fluoranthene	ND	0.0053	0.0023	mg/l	
191-24-2	Benzo(g,h,i)perylene	ND	0.0053	0.0021	mg/l	
207-08-9	Benzo(k)fluoranthene	ND	0.0053	0.0021	mg/l	
101-55-3	4-Bromophenyl phenyl ether	ND	0.0053	0.0020	mg/l	
85-68-7	Butyl benzyl phthalate	ND	0.0053	0.0019	mg/l	
100-51-6	Benzyl Alcohol	ND	0.0053	0.0017	mg/l	
91-58-7	2-Chloronaphthalene	ND	0.0053	0.0020	mg/l	
106-47-8	4-Chloroaniline	ND	0.0053	0.0018	mg/l	
86-74-8	Carbazole	ND	0.0053	0.0020	mg/l	
218-01-9	Chrysene	ND	0.0053	0.0018	mg/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	0.0053	0.0019	mg/l	
111-44-4	bis(2-Chloroethyl)ether	ND	0.0053	0.0016	mg/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



Client Sample ID: PERMIT RENEWEL

Lab Sample ID: **Date Sampled:** 04/04/17 TD1443-1 Matrix: **Date Received:** 04/04/17 AQ - Water Method: EPA 625 EPA 625 **Percent Solids:** n/a

**Project:** Permit

### **ABN TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
108-60-1	bis(2-Chloroisopropyl)ether	ND	0.0053	0.0017	mg/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	0.0053	0.0019	mg/l	
95-50-1	1,2-Dichlorobenzene	ND	0.0053	0.0019	mg/l	
541-73-1	1,3-Dichlorobenzene	ND	0.0053	0.0017	mg/l	
106-46-7	1,4-Dichlorobenzene	ND	0.0053	0.0017	mg/l	
121-14-2	2,4-Dinitrotoluene	ND	0.0053	0.0022	mg/l	
606-20-2	2,6-Dinitrotoluene	ND	0.0053	0.0019	mg/l	
91-94-1	3,3'-Dichlorobenzidine	ND	0.011	0.0021	mg/l	
53-70-3	Dibenzo(a,h)anthracene	ND	0.0053	0.0022	mg/l	
132-64-9	Dibenzofuran	ND	0.0053	0.0019	mg/l	
84-74-2	Di-n-butyl phthalate	ND	0.0053	0.0021	mg/l	
117-84-0	Di-n-octyl phthalate	ND	0.0053	0.0027	mg/l	
84-66-2	Diethyl phthalate	ND	0.0053	0.0019	mg/l	
131-11-3	Dimethyl phthalate	ND	0.0053	0.0021	mg/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	0.0053	0.0020	mg/l	
206-44-0	Fluoranthene	ND	0.0053	0.0022	mg/l	
86-73-7	Fluorene	ND	0.0053	0.0019	mg/l	
118-74-1	Hexachlorobenzene	ND	0.0053	0.0021	mg/l	
87-68-3	Hexachlorobutadiene	ND	0.0053	0.0020	mg/l	
77-47-4	Hexachlorocyclopentadiene	ND	0.011	0.0017	mg/l	
67-72-1	Hexachloroethane	ND	0.0053 0.0018 mg/l			
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.0053	0.0025	mg/l	
78-59-1	Isophorone	ND	0.0053	0.0019	mg/l	
91-57-6	2-Methylnaphthalene	ND	0.0053	0.0017	mg/l	
88-74-4	2-Nitroaniline	ND	0.0053	0.0020	mg/l	
99-09-2	3-Nitroaniline	ND	0.0053	0.0017	mg/l	
100-01-6	4-Nitroaniline	ND	0.0053	0.0026	mg/l	
91-20-3	Naphthalene	ND	0.0053	0.0018	mg/l	
98-95-3	Nitrobenzene	ND	0.0053	0.0018	mg/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	0.0053	0.0020	mg/l	
86-30-6	N-Nitrosodiphenylamine	ND	0.0053	0.0019	mg/l	
85-01-8	Phenanthrene	ND	0.0053	0.0020	mg/l	
129-00-0	Pyrene	ND	0.0053	0.0019	mg/l	
120-82-1	1,2,4-Trichlorobenzene	ND	0.0053	0.0019	mg/l	
CAS No.	<b>Surrogate Recoveries</b>	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	37%		10-60	5%	
4165-62-2	Phenol-d5	27%		10-63	3%	
118-79-6	2,4,6-Tribromophenol	98%	32-128%			

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$ 

N = Indicates presumptive evidence of a compound



Page 2 of 3

Client Sample ID: PERMIT RENEWEL

Lab Sample ID: **Date Sampled:** 04/04/17 TD1443-1 Matrix: **Date Received:** 04/04/17 AQ - Water Method: EPA 625 EPA 625 **Percent Solids:** n/a

**Project:** Permit

#### **ABN TCL List**

CAS No.	<b>Surrogate Recoveries</b>	Run# 1	Run# 2	Limits
4165-60-0	Nitrobenzene-d5	65%		29-115%
321-60-8	2-Fluorobiphenyl	60%		34-113%
1718-51-0	Terphenyl-d14	83%		23-138%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$ N = Indicates presumptive evidence of a compound





Client Sample ID: PERMIT RENEWEL

Lab Sample ID: TD1443-1 **Date Sampled:** 04/04/17 **Date Received:** 04/04/17 Matrix: AQ - Water Method: EPA 608 EPA 608 Percent Solids: n/a

**Project:** Permit

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	<b>Analytical Batch</b>
Run #1 a	1G133859.D	1	04/12/17	ANJ	04/10/17	N:OP1759	N:G1G4278
Run #2 a	XX207909.D	1	04/11/17	ANJ	04/10/17	N:OP1758	N:GXX5989
Run #3 b	6G45799.D	1	04/11/17	ANJ	04/10/17	N:OP1759	N:G6G1306

	Initial Volume	Final Volume
Run #1	1000 ml	5.0 ml
Run #2	1000 ml	5.0 ml
Run #3	1000 ml	5.0 ml

#### **PCB List**

CAS No.	Compound	Result	RL ]	RL MDL Units			
309-00-2	Aldrin	ND	0.000010	0.00000	)360ng/1		
319-84-6	alpha-BHC	ND	0.000010	0.00000	)36mg/1		
319-85-7	beta-BHC	ND	0.000010	0.00000	028mg/1		
319-86-8	delta-BHC	ND	0.000010	0.00000	023mg/1		
58-89-9	gamma-BHC (Lindane)	ND	0.000010	0.00000	)14mg/1		
12789-03-6	Chlordane	ND	0.00010	0.00005	57 mg/l		
60-57-1	Dieldrin	ND	0.000010	0.00000	018mg/1		
72-54-8	4,4'-DDD	ND	0.000010	0.00000	019mg/1		
72-55-9	4,4'-DDE	ND	0.000010	0.00000	03  Img/1		
50-29-3	4,4'-DDT	ND	0.000010	0.00000	025mg/1		
72-20-8	Endrin	ND	0.000010	0.00000	025mg/1		
1031-07-8	Endosulfan sulfate	ND	0.0000100.000002 <b>6</b> ng/1				
7421-93-4	Endrin aldehyde	ND	0.0000100.000002 <b>6</b> ng/l				
959-98-8	Endosulfan-I	ND	0.000010	0.00000	025mg/1		
33213-65-9	Endosulfan-II	ND	0.000010	0.00000	0.2  mg/l		
76-44-8	Heptachlor	ND	0.000010	0.00000	019mg/1		
1024-57-3	Heptachlor epoxide	ND	0.000010	0.00000	033mg/1		
72-43-5	Methoxychlor	ND	0.000010	0.00000	028mg/1		
8001-35-2	Toxaphene	ND	0.00013	0.00009	92 mg/1		
12674-11-2	Aroclor 1016	ND ^c	0.00025	0.00017	mg/l		
11104-28-2	Aroclor 1221	ND ^c	0.00025	0.00015	5 mg/l		
11141-16-5	Aroclor 1232	ND ^c	0.00025	0.00010	) mg/l		
53469-21-9	Aroclor 1242	ND ^c	0.00025	0.00014	4 mg/1		
12672-29-6	Aroclor 1248	ND ^c	0.00025	0.00013	3 mg/1		
11097-69-1	Aroclor 1254	ND ^c	0.00025	0.00017	7 mg/l		
11096-82-5	Aroclor 1260	ND c	0.00025	0.00014	l mg/l		
CAS No.	<b>Surrogate Recoveries</b>	Run# 1	Run# 2	Run	# 3	Limits	
877-09-8	Tetrachloro-m-xylene	117%	158% ^d	95%		10-156%	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



Page 2 of 2

# **Report of Analysis**

Client Sample ID: PERMIT RENEWEL

Lab Sample ID: TD1443-1 **Date Sampled:** 04/04/17 Matrix: AQ - Water **Date Received:** 04/04/17 Method: EPA 608 EPA 608 Percent Solids: n/a

**Project:** Permit

#### **PCB List**

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Run# 3	Limits
877-09-8	Tetrachloro-m-xylene	81%	81%	99%	10-156%
2051-24-3	Decachlorobiphenyl	61%	41%	57%	10-143%
2051-24-3	Decachlorobiphenyl	52%	47%	62%	10-143%

(a) Analysis performed at SGS Accutest, Dayton, NJ.

(b) Confirmation run. Analysis performed at SGS Accutest, Dayton, NJ.

(c) Result is from Run# 2

(d) Outside control limits due to matrix interference.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



Client Sample ID: PERMIT RENEWEL

Lab Sample ID: **Date Sampled:** 04/04/17 TD1443-1 Matrix: **Date Received:** 04/04/17 AQ - Water Percent Solids: n/a

**Project:** Permit

### **Total Metals Analysis**

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic ^a	1.05	0.50	0.017	mg/l	100	04/06/17	04/07/17 ANJ	EPA 200.8 ²	EPA 200.8 ³
Barium ^a	0.0151 B	0.50	0.014	mg/l	100	04/06/17	04/07/17 ANJ	EPA 200.8 ²	EPA 200.8 ³
Cadmium ^a	0.060 U	0.25	0.060	mg/l	100	04/06/17	04/07/17 ANJ	EPA 200.8 ²	EPA 200.8 ³
Chromium a	0.052 U	2.0	0.052	mg/l	100	04/06/17	04/07/17 ANJ	EPA 200.8 ²	EPA 200.8 ³
Lead a	0.0053 U	0.25	0.0053	mg/l	100	04/06/17	04/07/17 ANJ	EPA 200.8 ²	EPA 200.8 ³
Mercury b	0.000055 U	0.00020	0.00005	5 mg/l	1	04/07/17	04/07/17 ANJ	EPA 245.1 ¹	EPA 245.1 ⁴
Selenium ^a	0.681	0.50	0.058	mg/l	100	04/06/17	04/07/17 ANJ	EPA 200.8 ²	EPA 200.8 ³
Silver ^a	0.021 U	1.0	0.021	mg/l	100	04/06/17	04/07/17 ANJ	EPA 200.8 ²	EPA 200.8 ³

(1) Instrument QC Batch: N:MA41735 (2) Instrument QC Batch: N:MA41746 (3) Prep QC Batch: N:MP99717 (4) Prep QC Batch: N:MP99751

(a) Elevated detection limit due to dilution required for matrix interference. Analysis performed at SGS Accutest, Dayton, NJ.

(b) Analysis performed at SGS Accutest, Dayton, NJ.

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL



Page 1 of 1

Client Sample ID: PERMIT RENEWEL

Lab Sample ID: TD1443-1 **Date Sampled:** 04/04/17 Matrix: **Date Received:** 04/04/17 AQ - Water Percent Solids: n/a

**Project:** Permit

### **General Chemistry**

Analyte	Result	RL	MDL	Units	DF	Analyzed	Ву	Method
POD 5 Day	16.4	12	6.0	m ~/1	1	04/04/17 17:24	07	GM 5210D 2000
BOD, 5 Day	10.4	12	0.0	mg/l	1	04/04/1/ 17:34	UZ	SM 5210B-2000
Nitrogen, Ammonia	130	5.0	1.0	mg/l	50	04/06/17	TH	EPA 350.1
Nitrogen, Nitrate ^a	14 U	25	14	mg/l	50	04/05/17 06:31	ES	EPA 300
Nitrogen, Nitrite ^a	48.9	25	14	mg/l	50	04/05/17 06:31	ES	EPA 300
Phosphorus, Total	1.7	0.10	0.050	mg/l	5	04/04/17	BG	SM 4500PE-2011
Sulfide	0.010 U	0.20	0.010	mg/l	1	04/10/17	TH	SM 4500S+ F-2000
Sulfite	0.77 U	3.0	0.77	mg/l	1	04/04/17 16:15	CV	SM 4500 SO32 B-2011
Surfactants, MBAS as LAS b	0.25	0.10	0.080	mg/l	1	04/05/17 13:45	ALA	SM5540 C-11

(a) Elevated reporting limit due to matrix interference.

(b) Analysis performed at SGS Accutest, Lafayette, LA.

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL





# Section 4

Misc. Forms	
Custody Documents and Other Forms	
Includes the following where applicable:	

ACCU	ESI		10165 Ha	rwin Dr,	Ste 150 H	ousto	n, TX	77036				ſ	FED-EX	Trackin	g#				Bottle C	Order Con	trol #			
			TEL. 71	13-271-47	00 FAX	: 71:	3-271-	4770				ŀ	Accutes	t Quote	g.				Accutes	st Job#	1	TI	J	4/3
Client / Reporting Information			Project				360									Red	11165	ted	Ana	lyse	<del>_ </del>	-)/-	<del></del>	Matrix Codes
Company Name	Project Name:														Π	1	T	Ť	T	1,50	_	П	-	Wattix Codes
Gulf Chemical & Metallurgical	Permit											- 1											1	
302 Midway	Street			2500000	15/52/15/04	189E)	100000			West of the	55.27	2500			l	1							- 1	DW - Drinking Water GW - Ground Water
302 Midway City State	ip City		State	Billing	Informat ny Name	ion (	if diffe	rent from	Repo	ort to)													- 1	WW - Water SW - Surface Water
Freeport Texas 77	541	Gulf Chemical & Metallurgical																		- 1	SO - Soil			
Project Contact E-mail	Project #	rolect # Street Address										$\neg$												SL- Sludge SED-Sediment OI - Oil
Phone # Fax #	Client Purchase	Order#	****	City				Star	e		Zip							1					1	LIQ - Other Liquid AIR - Air
979-415-1537 Sampler(s) Name(s)												1				١_		0		_			1	SOL - Other Solid WP - Wipe
Emanuel Mivara	Project Manage	r		Attentio	n:										809-	als-N,	803	ayett		TP04				FB-Field Blank
		Coll	ection	······				Number o	prese	rved Bott	es		24	-62	8	Met	05,	Ē		nia		1	İ	
Accusest Sample # Field ID / Point of Collection		Time	Sampled By	Matrix	# of bottles	Ę	NaOH	HNO3 H2SO4	NONE DI Water	MEOH	NaHSO4	OTHER	VOC-624	SVOC-625	Pest/PCB-608	200.8-Metals-NJ	NO3,NO2,SO3	MBAS-Lafayette	Sulfide	Ammonia/TPO4	BOD			LAB USE ONLY
Permit Renewa	1 4-4-17	1005	EA		13	x	_	x x	_	+-	1-1-	++	х	х	x	x	x					$\vdash$	$\dashv$	LAB USE UNLT
,		1000	107,	<del>                                     </del>	<del>                                     </del>	H	+		+	++	++	++	^	^	^	^	-	X	Х	Х	X	$\vdash$	$\dashv$	
			<del> </del>	<del> </del>		H	+	+++	+	++	++	++										$\vdash$		
			<del> </del>			H	+		4	11	44	44	_											
		1 13 7543 756 75 ( ) 1 100 37	10000			L	1	14	_		Ш	$\perp \perp$											- 1	
			W Wy.	orson-		Ш	4																	
						786	Je A.M.	8,26. 5.92.3	"7E 4886	n rate of the	158	П										$\neg \uparrow$	$\neg \dagger$	
						П	1		$\perp$	$\dagger \dagger$	ff	++	_							-		-+	-+	
	*	Turlina	Bure			$\vdash$	1		#	$\vdash$	$\vdash$	++	-	-	-							-+	-	
			1070			Н	$\forall$	1-1-1	4	₩	⊬	++					-							
			CW	STATE STATE OF THE PARTY.	OCTOBRESTAL	CTORE .	200 3EN	I-KI	A NO SECURITY		$oxed{\bot}$	$\bot \bot$	_											
						L	$\perp$	Ш			339													
	0.748	B 10				M				Ш		П												
PARAGO	V She	F.S. /		11/1	ons.uc	П	8	5 44	250	П	П	TT	7							$\neg \uparrow$		$\neg$	$\dashv$	
Turnaround Time ( Business days) Standard					-anoni		Data [	Deliverab	e info	rmatio	1	1_1_		(100)	77,000			Com	nents /	Special	Instruc	tions	-	
5 Day RUSH	Approved By (Accut	est PM): / Date:		P	ommerc	ial "A	" (Le	vel 1)	Manual.		RP													
4 Day RUSH	81 M 21 31 31	D 1000		1	Commerc OLTA (L	ial "E	" ( Le	vel 2)			DD For ther	rmat		- 1										
☐ 3 Day RUSH ☐ 2 Day RUSH		1	1	F	REZTT (I	Level	3+4)			0	tner		-											
1 Day EMERGENCY			ľ		ommerc	ial "C	·A		e de					t										
Emergency & Rush T/A data available VIA Lablin	k	***************************************						rcial "A" =						L										
							ommo	ercial "B" = ercial "C" =	Doe.	die + Of			Summa	arv			11-	31	)	_				
Relinquistred by Sampler Date	Time: Sam	ple Custody mu	st be docume	nted be	ow each	tim	e sam	ples cha	inge	posses	sion, i	includi	ng co	urier			17			, f				140
( MXX i	1-4-17 1146	Contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of th						Relinguist	ed By						Ŀ	Pate Tie	e:		Received	By:	Γ		$ \overline{}$	
Balla Lilla Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of t		leceived By:					-	Relinquish	ed Bu							Pate Tim			2(	$\prec$			_}	44/11
Relinquished by: Date	Time:	Bashard Ray						4								vate i im	ie:		Received 4	ı dy:		د	(/	) 1
Date	Time: R	eceived By:						Custody S	eal#			☐ Inta		F	reserve	d where	applicat	le			On Jee	110	Cooler T	emp
												- No	intact								4	1.6		

TD1443: Chain of Custody Page 1 of 4

Form: SM027-06 Rev 10/24/2016

TD1443: Chain of Custody Page 2 of 4

# Ź

Page 1 of 2

## **SGS Accutest Sample Receipt Summary**

Job Number: TD144	3	Client:	GULF CH	EMICAL	. & METAL	LURGICAL	Project:	PERMIT					
Date / Time Received:			Delivery I	Method	:		Airbill #'s:						
No. Coolers: 1	Therm ID:	IR-4;					Temp Adjus	tment Factor:	0;				
Cooler Temps (Initial/Adjusted	): #1: (1.6/	/1.6);											
Cooler Security Y	or N			<u>Y</u> 0	or N	Sample Integr	ity - Docume	ntation	Υ_	or	N		
1. Custody Seals Present:		3. COC Pr		✓		Sample label	s present on bo	ottles:	<b>✓</b>				
2. Custody Seals Intact:   ✓	<u> </u>	Smpl Date	s/Time OK	✓		2. Container lab	eling complete:	:	$\checkmark$				
Cooler Temperature	Y or N	_				3. Sample conta	ainer label / CO	C agree:	$\checkmark$				
1. Temp criteria achieved:	<b>v</b>	]				Sample Integ	rity - Conditio	on .	<u>Y</u>	or	N_		
Cooler temp verification:						Sample recvo	d within HT:		<b>✓</b>				
Cooler media:	Ice (Bag	1)	-			2. All containers	accounted for:		<b>✓</b>				
Quality Control Preservation	Y or N	N N/A		WTB	STB	3. Condition of s	sample:			Intac	t		
1. Trip Blank present / cooler:						Sample Integ	rity - Instruct	ions	<u>Y</u>	or	N	N/A	
2. Trip Blank listed on COC:						1. Analysis req	uested is clear:		<b>✓</b>				
3. Samples preserved properly:	<b>V</b>	]				2. Bottles recei	ved for unspeci	ified tests			$\checkmark$		
4. VOCs headspace free:	<b>v</b>					3. Sufficient vo	lume recvd for a	analysis:	<b>✓</b>				
						4. Compositing	instructions cle	ear:				<b>✓</b>	
						5. Filtering inst	ructions clear:					<b>✓</b>	
Comments						•							

TD1443: Chain of Custody Page 3 of 4

## 4

## Sample Receipt Log

 Job #:
 TD1443
 Date / Time Received:
 4/4/2017 2:30:00 PM
 Initials:
 EC

Client: GULF CHEMICAL & METALLURGICAL

Cooler#	Sample ID:	Vol	Bot #	Location	Pres	pH	Therm ID	Initial Temp	Therm CF	Corrected Temp
1	TD1443-1	1000ml	1	SUB	N/P	Note #2 - Preservative check not applicable.	IR-4	1.6	0	1.6
1	TD1443-1	1000ml	2	3D	N/P	Note #2 - Preservative check not applicable.	IR-4	1.6	0	1.6
1	TD1443-1	500ml	3	3D	N/P	Note #2 - Preservative check not applicable.	IR-4	1.6	0	1.6
1	TD1443-1	500ml	4	1Z	H2SO4	pH < 2	IR-4	1.6	0	1.6
1	TD1443-1	250ml	5	1Z	NaOH+ZnAc	pH > 12	IR-4	1.6	0	1.6
1	TD1443-1	LAG	6	4MM	N/P	Note #2 - Preservative check not applicable.	IR-4	1.6	0	1.6
1	TD1443-1	LAG	7	4MM	N/P	Note #2 - Preservative check not applicable.	IR-4	1.6	0	1.6
1	TD1443-1	LAG	8	4MM	N/P	Note #2 - Preservative check not applicable.	IR-4	1.6	0	1.6
1	TD1443-1	LAG	9	4MM	N/P	Note #2 - Preservative check not applicable.	IR-4	1.6	0	1.6
1	TD1443-1	250ml	10	SUB	HNO3	pH < 2	IR-4	1.6	0	1.6
1	TD1443-1	40ml	11	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-4	1.6	0	1.6
1	TD1443-1	40ml	12	VR	HCL	Note #1 - Preservative to be checked by	IR-4	1.6	0	1.6
1	TD1443-1	40ml	13	VR	HCL	analyst at the instrument.  Note #1 - Preservative to be checked by analyst at the instrument.	IR-4	1.6	0	1.6

TD1443: Chain of Custody Page 4 of 4



# **Section 5**

# GC/MS Volatiles

QC Data Summaries

# Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

# Method Blank Summary Job Number: TD1443

GCMC Gulf Chemical & Metallurgical Corp. Account:

**Project:** Permit

Sample	File ID	DF	Analyzed	By	<b>Prep Date</b>	<b>Prep Batch</b>	<b>Analytical Batch</b>
VG2272-MB	G0272128.D	1	04/07/17	ZQ	n/a	n/a	VG2272

The QC reported here applies to the following samples: Method: EPA 624

CAS No.	Compound	Result	RL	MDL	Units Q
67-64-1	Acetone	ND	50	10	ug/l
71-43-2	Benzene	ND	1.0	0.30	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.30	ug/l
75-25-2	Bromoform	ND	1.0	0.30	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.30	ug/l
75-00-3	Chloroethane	ND	1.0	0.33	ug/l
67-66-3	Chloroform	ND	1.0	0.30	ug/l
75-15-0	Carbon disulfide	ND	5.0	0.75	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	0.54	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.30	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.30	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.30	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.30	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.30	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.30	ug/l
10061-01-5	, 1	ND	1.0	0.30	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.30	ug/l
10061-02-6	, , ,	ND	1.0	0.30	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.30	ug/l
591-78-6	2-Hexanone	ND	10	1.2	ug/l
108-10-1	4-Methyl-2-pentanone	ND	10	2.3	ug/l
74-83-9	Methyl bromide	ND	1.0	0.49	ug/l
74-87-3	Methyl chloride	ND	1.0	0.30	ug/l
75-09-2	Methylene chloride	ND	5.0	1.3	ug/l
78-93-3	Methyl ethyl ketone	ND	10	2.6	ug/l
100-42-5	Styrene	ND	1.0	0.30	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.30	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.30	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l
108-88-3	Toluene	ND	1.0	0.30	ug/l
79-01-6	Trichloroethylene	ND	1.0	0.30	ug/l
75-01-4	Vinyl chloride	ND	1.0	0.30	ug/l
1330-20-7	Xylene (total)	ND	3.0	0.65	ug/l

## Page 2 of 2

Method: EPA 624

# Method Blank Summary Job Number: TD1443

GCMC Gulf Chemical & Metallurgical Corp. Account:

**Project:** Permit

VG22/2-MB G02/2128.D 1 04/0//1/ ZQ n/a n/a VG22/2	Sample VG2272-MB	<b>File ID</b> G0272128.D	<b>DF</b> 1	<b>Analyzed</b> 04/07/17	By ZQ	<b>Prep Date</b> n/a	<b>Prep Batch</b> n/a	Analytical Batch VG2272
---------------------------------------------------	---------------------	------------------------------	----------------	--------------------------	----------	----------------------	-----------------------	----------------------------

### The QC reported here applies to the following samples:

CAS No.	Surrogate Recoveries	Limits	
1868-53-7	Dibromofluoromethane	89%	72-122%
17060-07-0	1,2-Dichloroethane-D4	92%	68-124%
2037-26-5	Toluene-D8	99%	80-119%
460-00-4	4-Bromofluorobenzene	96%	72-126%

Page 1 of 2

# Blank Spike Summary Job Number: TD1443

Account: GCMC Gulf Chemical & Metallurgical Corp.

**Project:** Permit

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	<b>Analytical Batch</b>
VG2272-BS	G0272125.D	1	04/06/17	ZQ	n/a	n/a	VG2272

The QC reported here applies to the following samples: Method: EPA 624

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
67-64-1	Acetone	125	72.4	58	46-129
71-43-2	Benzene	25	23.2	93	68-119
75-27-4	Bromodichloromethane	25	20.4	82	72-118
75-25-2	Bromoform	25	20.2	81	54-123
108-90-7	Chlorobenzene	25	24.8	99	74-120
75-00-3	Chloroethane	25	21.9	88	61-132
67-66-3	Chloroform	25	21.7	87	73-122
75-15-0	Carbon disulfide	25	19.5	78	55-140
56-23-5	Carbon tetrachloride	25	21.0	84	68-133
75-34-3	1,1-Dichloroethane	25	22.9	92	72-121
75-35-4	1,1-Dichloroethylene	25	24.1	96	67-140
107-06-2	1,2-Dichloroethane	25	21.7	87	68-121
78-87-5	1,2-Dichloropropane	25	22.2	89	72-116
124-48-1	Dibromochloromethane	25	22.2	89	68-119
156-59-2	cis-1,2-Dichloroethylene	25	21.3	85	72-117
10061-01-5	cis-1,3-Dichloropropene	25	22.1	88	71-118
156-60-5	trans-1,2-Dichloroethylene	25	25.2	101	68-124
10061-02-6	trans-1,3-Dichloropropene	25	23.8	95	72-127
100-41-4	Ethylbenzene	25	25.4	102	71-117
591-78-6	2-Hexanone	125	107	86	49-124
108-10-1	4-Methyl-2-pentanone	125	103	82	54-122
74-83-9	Methyl bromide	25	23.3	93	53-138
74-87-3	Methyl chloride	25	16.6	66	50-145
75-09-2	Methylene chloride	25	20.5	82	60-125
78-93-3	Methyl ethyl ketone	125	84.9	68	51-129
100-42-5	Styrene	25	24.7	99	74-119
71-55-6	1,1,1-Trichloroethane	25	22.2	89	72-129
79-34-5	1,1,2,2-Tetrachloroethane	25	22.9	92	62-121
79-00-5	1,1,2-Trichloroethane	25	23.7	95	70-119
127-18-4	Tetrachloroethylene	25	26.7	107	72-132
108-88-3	Toluene	25	25.4	102	73-119
79-01-6	Trichloroethylene	25	24.8	99	73-121
75-01-4	Vinyl chloride	25	19.7	79	54-126
1330-20-7	Xylene (total)	75	76.4	102	74-119

^{* =} Outside of Control Limits.

Page 2 of 2

Method: EPA 624

# Blank Spike Summary Job Number: TD1443

Account: GCMC Gulf Chemical & Metallurgical Corp.

**Project:** Permit

Sample VG2272-BS	<b>File ID</b> G0272125.D	<b>DF</b> 1	<b>Analyzed</b> 04/06/17	By ZQ	<b>Prep Date</b> n/a	<b>Prep Batch</b> n/a	Analytical Batch VG2272

The QC reported here applies to the following samples:

CAS No.	<b>Surrogate Recoveries</b>	BSP	Limits
1868-53-7	Dibromofluoromethane	90%	72-122%
17060-07-0	1,2-Dichloroethane-D4	87%	68-124%
2037-26-5	Toluene-D8	102%	80-119%
460-00-4	4-Bromofluorobenzene	98%	72-126%

^{* =} Outside of Control Limits.

Page 1 of 2

Method: EPA 624

# Matrix Spike/Matrix Spike Duplicate Summary Job Number: TD1443

Account: GCMC Gulf Chemical & Metallurgical Corp.

**Project:** Permit

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
TD1522-1MS	G0272132.D	1	04/07/17	ZQ	n/a	n/a	VG2272
TD1522-1MSD	G0272133.D	1	04/07/17	ZQ	n/a	n/a	VG2272
TD1522-1 a	G0272129.D	1	04/07/17	ZQ	n/a	n/a	VG2272

The QC reported here applies to the following samples:

CAS No.	Compound	TD1522-1 ug/l Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
67.64.1	Acetone		125	135	77	125	138	80	2	46 120/25
67-64-1		38.3				125			2	46-129/25
71-43-2 75-27-4	Benzene Bromodichloromethane	ND 1.1	25 25	26.1 24.9	104 95	25 25	26.6 25.3	106 97	2	68-119/12
75-27-4 75-25-2	Bromoform	5.8	25 25	31.4	102	25 25	33.0	109	2 5	72-118/16
13-23-2 108-90-7	Chlorobenzene	o.8 ND	25 25	27.5	1102	25 25	28.0	112	2	54-123/17
75-00-3	Chloroethane		25 25	24.8	99	25 25	28.0 29.4	112	2 17*	74-120/12
	Chloroform	ND 6.0	25 25	24.8 31.9	104	25 25	29.4 31.6	102		61-132/16 73-122/13
67-66-3 75-15-0	Carbon disulfide	ND	25 25	22.4	90	25 25	23.5	94	1 5	55-140/24
56-23-5	Carbon distinde  Carbon tetrachloride	ND ND	25 25	23.9	96	25	25.2	101	5	68-133/20
75-34-3		ND ND	25 25	25.9 26.7	107	25	27.3	101		72-121/14
75-34-3 75-35-4	1,1-Dichloroethane	ND ND	25 25	26.7 26.9	107	25 25	27.5	1109	2 2	67-140/18
107-06-2	1,1-Dichloroethylene	0.38	25 25	25.2	99	25 25	25.2	99		
78-87-5	1,2-Dichloroethane	0.38 ND	25 25	25.2	100	25 25	25.2 25.7	103	0	68-121/12
78-87-3 124-48-1	1,2-Dichloropropane Dibromochloromethane	3.3	25 25	29.6	105	25 25	30.4	103	2 3	72-116/12
156-59-2			25 25	29.6 24.9	100	25 25	25.0	108		68-119/15
	cis-1,2-Dichloroethylene	ND ND	25 25	24.9 8.6	34*	25 25	23.0 7.9	32*	0	72-117/13 71-118/18
156-60-5	cis-1,3-Dichloropropene	ND ND	25 25	29.2	117	25 25	7.9 29.8	119		
	trans-1,2-Dichloroethylene							75	2	68-124/15
	trans-1,3-Dichloropropene	ND ND	25 25	18.5	74	25	18.8		2	72-127/17
100-41-4	Ethylbenzene	ND	25	27.7	111	25	28.3	113	2	71-117/12
591-78-6	2-Hexanone	ND	125	130	104	125	134	107	3	49-124/21
108-10-1	4-Methyl-2-pentanone	ND	125	123	98	125	127	102	3	54-122/20
74-83-9	Methyl bromide	ND	25	4.0	16*	25	3.9	16*	3	53-138/16
74-87-3	Methyl chloride	ND	25	18.2	73	25	21.7	87	18*	50-145/17
75-09-2	Methylene chloride	ND	25	24.3	97	25	24.5	98	1	60-125/16
78-93-3	Methyl ethyl ketone	ND	125	117	94	125	112	90	4	51-129/22
100-42-5	Styrene	ND	25	27.1	108	25	27.6	110	2	74-119/19
71-55-6	1,1,1-Trichloroethane	ND	25	24.8	99	25	26.3	105	6	72-129/14
79-34-5	1,1,2,2-Tetrachloroethane	ND	25	24.2	97	25	25.0	100	3	62-121/17
79-00-5	1,1,2-Trichloroethane	ND	25	26.2	105	25	26.8	107	2	70-119/13
127-18-4	Tetrachloroethylene	ND	25	43.6	174*	25	45.3	181*	4	72-132/14
108-88-3	Toluene	ND	25	26.1	104	25	26.6	106	2	73-119/13
79-01-6	Trichloroethylene	ND	25	28.5	114	25	29.3	117	3	73-121/13
75-01-4	Vinyl chloride	ND	25	22.5	90	25	27.1	108	19*	54-126/17
1330-20-7	Xylene (total)	ND	75	82.9	111	75	85.3	114	3	74-119/13

^{* =} Outside of Control Limits.

Page 2 of 2

Method: EPA 624

# Matrix Spike/Matrix Spike Duplicate Summary

Job Number: TD1443

GCMC Gulf Chemical & Metallurgical Corp. Account:

**Project:** Permit

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
TD1522-1MS	G0272132.D	1	04/07/17	ZQ	n/a	n/a	VG2272
TD1522-1MSD	G0272133.D	1	04/07/17	ZQ	n/a	n/a	VG2272
TD1522-1 a	G0272129.D	1	04/07/17	ZQ	n/a	n/a	VG2272

The QC reported here applies to the following samples:

TD1443-1

CAS No.	<b>Surrogate Recoveries</b>	MS	MSD	TD1522-1	Limits
1868-53-7	Dibromofluoromethane	97%	94%	93%	72-122%
17060-07-0	1,2-Dichloroethane-D4	92%	91%	93%	68-124%
2037-26-5	Toluene-D8	98%	98%	100%	80-119%
460-00-4	4-Bromofluorobenzene	98%	99%	97%	72-126%

(a) Sample composited prior to analysis per client request.

^{* =} Outside of Control Limits.



Section 6

# GC/MS Semi-volatiles

QC Data Summaries

# Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method: EPA 625

# Method Blank Summary Job Number: TD1443

GCMC Gulf Chemical & Metallurgical Corp. Account:

**Project:** Permit

Sample OP43290-MB	<b>File ID</b> P48138A.D	<b>DF</b> 1	<b>Analyzed</b> 04/11/17	By SC	<b>Prep Date</b> 04/10/17	Prep Batch OP43290	Analytical Batch EP2322

The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	MDL	Units Q
65-85-0	Benzoic Acid	ND	20	1.7	ug/l
95-57-8	2-Chlorophenol	ND	5.0	1.4	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.0	1.8	ug/l
120-83-2	2,4-Dichlorophenol	ND	5.0	2.0	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.0	1.0	ug/l
51-28-5	2,4-Dinitrophenol	ND	25	1.2	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	10	3.8	ug/l
95-48-7	2-Methylphenol	ND	5.0	1.4	ug/l
	3&4-Methylphenol	ND	5.0	1.5	ug/l
88-75-5	2-Nitrophenol	ND	5.0	1.8	ug/l
100-02-7	4-Nitrophenol	ND	25	13	ug/l
87-86-5	Pentachlorophenol	ND	25	3.2	ug/l
108-95-2	Phenol	ND	5.0	1.2	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.0	1.9	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.0	1.5	ug/l
83-32-9	Acenaphthene	ND	5.0	1.7	ug/l
208-96-8	Acenaphthylene	ND	5.0	1.7	ug/l
120-12-7	Anthracene	ND	5.0	1.9	ug/l
56-55-3	Benzo(a)anthracene	ND	5.0	1.8	ug/l
50-32-8	Benzo(a)pyrene	ND	5.0	2.0	ug/l
205-99-2	Benzo(b)fluoranthene	ND	5.0	2.2	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	5.0	2.0	ug/l
207-08-9	Benzo(k)fluoranthene	ND	5.0	2.0	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	5.0	1.9	ug/l
85-68-7	Butyl benzyl phthalate	ND	5.0	1.8	ug/l
100-51-6	Benzyl Alcohol	ND	5.0	1.6	ug/l
91-58-7	2-Chloronaphthalene	ND	5.0	1.9	ug/l
106-47-8	4-Chloroaniline	ND	5.0	1.7	ug/l
86-74-8	Carbazole	ND	5.0	1.9	ug/l
218-01-9	Chrysene	ND	5.0	1.7	ug/l
111-91-1	bis(2-Chloroethoxy)methane	ND	5.0	1.9	ug/l
111-44-4	bis(2-Chloroethyl)ether	ND	5.0	1.6	ug/l
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.0	1.6	ug/l
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.0	1.8	ug/l
95-50-1	1,2-Dichlorobenzene	ND	5.0	1.8	ug/l
541-73-1	1,3-Dichlorobenzene	ND	5.0	1.6	ug/l

Method: EPA 625

# **Method Blank Summary**

Job Number: TD1443

**Account:** GCMC Gulf Chemical & Metallurgical Corp.

Project: Permit

Sample OP43290-MB	File ID P48138A.D	<b>DF</b> 1	<b>Analyzed</b> 04/11/17	By SC	<b>Prep Date</b> 04/10/17	Prep Batch OP43290	Analytical Batch EP2322

The QC reported here applies to the following samples:

TD1443-1

CAS No.	Compound	Result	RL	MDL	Units Q
106-46-7	1,4-Dichlorobenzene	ND	5.0	1.6	ug/l
121-14-2	2,4-Dinitrotoluene	ND	5.0	2.1	ug/l
606-20-2	2,6-Dinitrotoluene	ND	5.0	1.9	ug/l
91-94-1	3,3'-Dichlorobenzidine	ND	10	2.0	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	5.0	2.1	ug/l
132-64-9	Dibenzofuran	ND	5.0	1.8	ug/l
84-74-2	Di-n-butyl phthalate	ND	5.0	2.0	ug/l
117-84-0	Di-n-octyl phthalate	ND	5.0	2.6	ug/l
84-66-2	Diethyl phthalate	ND	5.0	1.9	ug/l
131-11-3	Dimethyl phthalate	ND	5.0	2.0	ug/l
117-81-7	bis(2-Ethylhexyl)phthalate	ND	5.0	1.9	ug/l
206-44-0	Fluoranthene	ND	5.0	2.1	ug/l
86-73-7	Fluorene	ND	5.0	1.8	ug/l
118-74-1	Hexachlorobenzene	ND	5.0	2.0	ug/l
87-68-3	Hexachlorobutadiene	ND	5.0	1.9	ug/l
77-47-4	Hexachlorocyclopentadiene	ND	10	1.6	ug/l
67-72-1	Hexachloroethane	ND	5.0	1.7	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.0	2.4	ug/l
78-59-1	Isophorone	ND	5.0	1.8	ug/l
91-57-6	2-Methylnaphthalene	ND	5.0	1.6	ug/l
88-74-4	2-Nitroaniline	ND	5.0	1.9	ug/l
99-09-2	3-Nitroaniline	ND	5.0	1.6	ug/l
100-01-6	4-Nitroaniline	ND	5.0	2.5	ug/l
91-20-3	Naphthalene	ND	5.0	1.8	ug/l
98-95-3	Nitrobenzene	ND	5.0	1.7	ug/l
621-64-7	N-Nitroso-di-n-propylamine	ND	5.0	1.9	ug/l
86-30-6	N-Nitrosodiphenylamine	ND	5.0	1.8	ug/l
85-01-8	Phenanthrene	ND	5.0	1.9	ug/l
129-00-0	Pyrene	ND	5.0	1.8	ug/l
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	1.8	ug/l

### CAS No. Surrogate Recoveries

367-12-4 2-Fluorophenol 31% 10-66% 4165-62-2 Phenol-d5 21% 10-63%

SGS 29 of 66
ACCUTEST

Limits

Page 3 of 3

Method: EPA 625

# Method Blank Summary Job Number: TD1443

GCMC Gulf Chemical & Metallurgical Corp. **Account:** 

**Project:** Permit

Sample OP43290-MB	File ID P48138A.D	<b>DF</b> 1	<b>Analyzed</b> 04/11/17	By SC	<b>Prep Date</b> 04/10/17	Prep Batch OP43290	Analytical Batch EP2322

The QC reported here applies to the following samples:

CAS No.	Surrogate Recoveries		Limits
118-79-6	2,4,6-Tribromophenol	87%	32-128%
4165-60-0	Nitrobenzene-d5	80%	29-115%
321-60-8	2-Fluorobiphenyl	81%	34-113%
1718-51-0	Terphenyl-d14	102%	23-138%

Page 1 of 3

Method: EPA 625

# Blank Spike/Blank Spike Duplicate Summary Job Number: TD1443

Account: GCMC Gulf Chemical & Metallurgical Corp.

**Project:** Permit

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
OP43290-BS	P48139A.D	1	04/11/17	SC	04/10/17	OP43290	EP2322
OP43290-BSD a	P48140A.D	1	04/11/17	SC	04/10/17	OP43290	EP2322

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
65-85-0	Benzoic Acid	100	18.4	18	18.6	19	1	10-91/30
95-57-8	2-Chlorophenol	50	21.8	44	21.6	43	1	38-102/30
59-50-7	4-Chloro-3-methyl phenol	50	25.9	52	25.7	51	1	30-110/30
120-83-2	2,4-Dichlorophenol	50	26.7	53	26.7	53	0	41-107/30
105-67-9	2,4-Dimethylphenol	50	25.0	50	25.4	51	2	39-107/30
51-28-5	2,4-Dinitrophenol	50	24.6	49	25.2	50	2	24-119/30
534-52-1	4,6-Dinitro-o-cresol	50	31.3	63	32.3	65	3	40-121/30
95-48-7	2-Methylphenol	50	17.2	34	17.4	35	1	33-93/30
	3&4-Methylphenol	50	15.8	32	15.9	32	1	28-99/30
88-75-5	2-Nitrophenol	50	27.1	54	27.3	55	1	38-107/30
100-02-7	4-Nitrophenol	50	12	24	12	24	2	10-78/30
87-86-5	Pentachlorophenol	50	26.8	54	27.8	56	4	28-116/30
108-95-2	Phenol	50	7.3	15	7.4	15	1	15-70/30
95-95-4	2,4,5-Trichlorophenol	50	31.1	62	30.9	62	1	47-116/30
88-06-2	2,4,6-Trichlorophenol	50	30.8	62	30.8	62	0	44-112/30
83-32-9	Acenaphthene	50	28.7	57	28.6	57	0	44-106/30
208-96-8	Acenaphthylene	50	30.4	61	30.1	60	1	46-111/30
120-12-7	Anthracene	50	33.5	67	33.6	67	0	53-114/30
56-55-3	Benzo(a)anthracene	50	33.8	68	33.5	67	1	57-113/30
50-32-8	Benzo(a)pyrene	50	35.0	70	35.1	70	0	50-109/30
205-99-2	Benzo(b)fluoranthene	50	37.6	75	37.5	75	0	50-117/30
191-24-2	Benzo(g,h,i)perylene	50	32.4	65	33.0	66	2	43-127/30
207-08-9	Benzo(k)fluoranthene	50	38.6	77	39.4	79	2	52-123/30
101-55-3	4-Bromophenyl phenyl ether	50	34.6	69	34.2	68	1	48-113/30
85-68-7	Butyl benzyl phthalate	50	32.2	64	32.5	65	1	42-120/30
100-51-6	Benzyl Alcohol	50	18.8	38	19.5	39	4	31-97/30
91-58-7	2-Chloronaphthalene	50	30.2	60	31.3	63	4	35-123/30
106-47-8	4-Chloroaniline	50	24.6	49	24.5	49	0	36-104/30
86-74-8	Carbazole	50	34.5	69	34.7	69	1	50-113/30
218-01-9	Chrysene	50	34.2	68	34.1	68	0	59-116/30
111-91-1	bis(2-Chloroethoxy)methane	50	27.4	55	27.2	54	1	34-103/30
111-44-4	bis(2-Chloroethyl)ether	50	28.5	57	28.2	56	1	36-100/30
108-60-1	bis(2-Chloroisopropyl)ether	50	24.4	49	24.6	49	1	30-110/30
7005-72-3	4-Chlorophenyl phenyl ether	50	31.8	64	32.0	64	1	45-112/30
95-50-1	1,2-Dichlorobenzene	50	25.6	51	25.9	52	1	37-100/30
541-73-1	1,3-Dichlorobenzene	50	25.1	50	25.3	51	1	34-99/30

^{* =} Outside of Control Limits.

Page 2 of 3

Method: EPA 625

# Blank Spike/Blank Spike Duplicate Summary Job Number: TD1443

Account: GCMC Gulf Chemical & Metallurgical Corp.

**Project:** Permit

ile ID	DF .	Analyzed	By	Prep Date	Prep Batch	<b>Analytical Batch</b>
48139A.D	1	04/11/17	SC	04/10/17	OP43290	EP2322
48140A.D	1	04/11/17	SC	04/10/17	OP43290	EP2322
,	48139A.D	48139A.D 1	48139A.D 1 04/11/17	48139A.D 1 04/11/17 SC	48139A.D 1 04/11/17 SC 04/10/17	48139A.D 1 04/11/17 SC 04/10/17 OP43290

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
106-46-7	1,4-Dichlorobenzene	50	25.7	51	25.6	51	0	36-99/30
121-14-2	2,4-Dinitrotoluene	50	35.2	70	35.8	72	2	52-115/30
606-20-2	2,6-Dinitrotoluene	50	34.4	69	34.7	69	1	52-113/30
91-94-1	3,3'-Dichlorobenzidine	50	32.2	64	31.8	64	1	37-125/30
53-70-3	Dibenzo(a,h)anthracene	50	33.0	66	33.5	67	2	47-125/30
132-64-9	Dibenzofuran  Dibenzofuran	50	30.6	61	30.6	61	0	45-108/30
84-74-2	Di-n-butyl phthalate	50	36.4	73	36.5	73	0	47-118/30
117-84-0	Di-n-octyl phthalate	50	38.7	77	39.4	79	2	41-124/30
84-66-2	Diethyl phthalate	50	34.4	69	34.6	69	1	38-121/30
131-11-3	Dimethyl phthalate	50	33.2	66	33.4	67	1	41-116/30
117-81-7	bis(2-Ethylhexyl)phthalate	50	32.0	64	31.9	64	0	50-123/30
206-44-0	Fluoranthene	50	33.5	67	33.6	67	0	50-123/30
86-73-7	Fluorene	50	31.4	63	31.6	63	1	47-113/30
118-74-1	Hexachlorobenzene	50	36.4	73	36.2	72	1	49-114/30
87-68-3	Hexachlorobutadiene	100	53.6	54	53.4	53	0	30-104/30
77-47-4	Hexachlorocyclopentadiene	50	11.0	22	11.0	22	0	10-97/30
67-72-1	Hexachloroethane	50	24.7	49	25.1	50	2	30-100/30
193-39-5	Indeno(1,2,3-cd)pyrene	50	32.0	64	31.7	63	1	45-127/30
78-59-1	Isophorone	50	28.7	57	28.6	57	0	40-103/30
91-57-6	2-Methylnaphthalene	50	26.0	52	26.0	52	0	36-104/30
88-74-4	2-Nitroaniline	50	31.5	63	31.7	63	1	41-117/30
99-09-2	3-Nitroaniline	50	28.3	57	28.8	58	2	37-117/30
100-01-6	4-Nitroaniline	50	29.7	59	30.2	60	2	47-121/30
91-20-3	Naphthalene	50	26.6	53	26.5	53	0	40-104/30
98-95-3	Nitrobenzene	50	28.2	56	28.2	56	0	40-103/30
621-64-7	N-Nitroso-di-n-propylamine	50	28.6	57	28.9	58	1	36-112/30
86-30-6	N-Nitrosodiphenylamine	100	64.5	65	63.3	63	2	39-109/30
85-01-8	Phenanthrene	50	34.2	68	33.8	68	1	53-114/30
129-00-0	Pyrene	50	32.3	65	32.7	65	1	51-117/30
120-82-1	1,2,4-Trichlorobenzene	50	26.6	53	26.1	52	2	32-103/30

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
367-12-4	2-Fluorophenol	25%	25%	10-66%
4165-62-2	Phenol-d5	17%	17%	10-63%

^{* =} Outside of Control Limits.

# 6.2.

Page 3 of 3

Method: EPA 625

## ____

## Blank Spike/Blank Spike Duplicate Summary

Job Number: TD1443

**Account:** GCMC Gulf Chemical & Metallurgical Corp.

**Project:** Permit

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP43290-BS	P48139A.D	1	04/11/17	SC	04/10/17	OP43290	EP2322
OP43290-BSD ^a	P48140A.D	1	04/11/17	SC	04/10/17	OP43290	EP2322

The QC reported here applies to the following samples:

TD1443-1

CAS No.	<b>Surrogate Recoveries</b>	BSP	BSD	Limits
118-79-6	2,4,6-Tribromophenol	75%	75%	32-128%
4165-60-0	Nitrobenzene-d5	59%	60%	29-115%
321-60-8	2-Fluorobiphenyl	60%	59%	34-113%
1718-51-0	Terphenyl-d14	75%	75%	23-138%

(a) Insufficient sample for MS/MSD.

^{* =} Outside of Control Limits.



# **Section 7**

# General Chemistry

QC Data Summaries

### Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries



# METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

 $\label{login Number: TD1443} \mbox{Account: GCMC - Gulf Chemical & Metallurgical Corp.}$ 

Project: Permit

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
BOD, 5 Day	GP41499/GN80747	2.0	0.0	mg/l	198	198	100.0	82-114%
Nitrogen, Ammonia	GP41562/GN80823	0.10	0.0	mg/l	2	1.92	96.0	90-110%
Nitrogen, Nitrate	GP41505/GN80753	0.50	0.0	mg/l	10	9.63	96.3	90-110%
Nitrogen, Nitrite	GP41505/GN80753	0.50	0.0	mg/l	10	9.86	98.6	90-110%
Phosphorus, Total	GP41550/GN80803	0.020	0.0	mg/l	0.4	0.38	95.0	91-108%
Sulfide	GN80895	0.20	0.0	mg/l	1600	1600	100.0	90-105%
Sulfite	GN80911	3.0	0.0	mg/l	50	50.5	101.0	97-102%

Associated Samples:
Batch GN80895: TD1443-1
Batch GN80911: TD1443-1
Batch GP41499: TD1443-1
Batch GP41505: TD1443-1
Batch GP41550: TD1443-1
Batch GP41562: TD1443-1
(*) Outside of QC limits

# BLANK SPIKE DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: TD1443 Account: GCMC - Gulf Chemical & Metallurgical Corp. Project: Permit

Analyte	Batch ID	Units	Spike Amount	BSD Result	RPD	QC Limit
Sulfide	GN80895	mg/l	1600	1600	0.0	

Associated Samples: Batch GN80895: TD1443-1 (*) Outside of QC limits

SGS 36 of 66
ACCUTEST
TD1443

# DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: TD1443

Account: GCMC - Gulf Chemical & Metallurgical Corp. Project: Permit

Analyte	Batch ID	QC Sample	Units	Original Result	DUP Result	RPD	QC Limits
BOD, 5 Day	GP41499/GN80747	TD1421-2A	mg/l	5.0	5.0	0.0	0-15%
Nitrogen, Ammonia	GP41562/GN80823	TD1554-1A	mg/l	0.064	0.0	200.0(a)	0-20%
Nitrogen, Nitrate	GP41505/GN80753	TD1420-20	mg/l	0.52	0.52	0.0	0-20%
Nitrogen, Nitrite	GP41505/GN80753	TD1420-20	mg/l	1.0	1.0	0.0	0-20%
Phosphorus, Total	GP41550/GN80803	LA31902-1	mg/l	0.36	0.37	2.7	0-20%
Sulfite	GN80911	TD1443-1	mg/l	0.77 U	0.0	0.0	0-10%

Associated Samples:
Batch GN80911: TD1443-1
Batch GP41499: TD1443-1
Batch GP41505: TD1443-1
Batch GP41562: TD1443-1
Eatch GP41562: TD1443-1
(*) Outside of QC limits

(a) RPD acceptable due to low duplicate and sample concentrations.

# MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: TD1443
Account: GCMC - Gulf Chemical & Metallurgical Corp.
Project: Permit

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MS Result	%Rec	QC Limits
Nitrogen, Ammonia	GP41562/GN80823	TD1554-1A	mg/l	0.064	2	2.2	106.8	90-110%
Nitrogen, Nitrate	GP41505/GN80753	TD1420-20	mg/l	0.52	10	8.7	81.8	80-120%
Nitrogen, Nitrite	GP41505/GN80753	TD1420-20	mg/l	1.0	10	9.7	87.0	80-130%
Phosphorus, Total	GP41550/GN80803	LA31902-1	mg/l	0.36	2.0	2.2	92.0	83-110%
Sulfite	GN80911	TD1443-1	mg/1	0.77 U	50	50.5	101.0	95-102%

Associated Samples: Batch GN80911: TD1443-1 Batch GP41505: TD1443-1 Batch GP41550: TD1443-1 Batch GP41562: TD1443-1 (*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits



# Section 8

Cus	tody Documents and Other Form	ms
(SGS	Accutest New Jersey)	

• Chain of Custody

000			CHAIN	O 1	F C	UST	ΟI	Y	•												Pag	ge 1	of 2	1
SGS ACC	UTEST		10165 Ha	rwin Driv	e. Houste	on, TX 77	036						F	ED-EX T	racking#	462	0 66	50		Bottle Ord	er Contro	ol #		
			TEL. 713-	-271-470	FAX:								5	SGS Acc	test Quote					SGS Acc	utest Job	TI	1443	
Client / Reporting Information	T		Project		v.sgs.com								-+		Bogu	octod .	Analye	ie ( eo	TEST	CODE	sheet	1)		Matrix Codes
Company Name:	Project Name:		riojecti	momi	idon								$\overline{}$		Nequ	esteu /	- IIIII	000	1				T	
SGS Accutest				Permit									- 1											DW - Drinking Water GW - Ground Water
Street Address	Street																							WW - Water SW - Surface Water
10165 Harwin Drive				Billing I	nformatio	n ( if differ	ent fr	om R	eport	to)														SO - Soil
City State Zip Houston TX 77036	City		State	Compan	y Name									P608PESTPPL										SL- Sludge SED-Sediment
Project Contact E-mail	Project #			Street A	dress								-	ES										OI - Oil LIQ - Other Liquid
Trameshia.Brown@sgs.com	110,000.11			0.000.7.0										909										AIR - Air
Phone # Fax #	Client Purchase	Order#		City			8	tate			2	Zip	$\dashv$											SOL - Other Solid WP - Wipe
713-271-4700													ı	SBA										FB-Field Blank EB-Equipment Blank
Sampler(s) Name(s) Phon	e Project Manager			Attention	E									HMICPMS,P608PCBAO										RB- Rinse Blank TB-Trip Blank
			Collection					Numi	ber of	preser	rved B	Bottles	7	MS,										
SGS Accutest Sample# Field ID / Point of Collection	MEOH/DI Vial#	Date	Time	Sampled by	Matrix	# of bottles	豆	HNO3	H2SO4	NONE	Di Water	MEOH		HMICF										LAB USE ONLY
1 PERMIT RENEWEL		4/4/17	10:05:00 AM	1	AQ	2	H	T _x		x	$\Box$	$\top$	$\dagger \dagger$	Х					<b>†</b>					A29
	-				<del> </del>		H	+	+	Н	$\vdash$	+	$\forall$						<u> </u>	<u> </u>	-	<u> </u>		1101
			-				$\vdash$	+	+	$\vdash$	$\vdash$	+	+					-	-	-	-	-	-+	
				ļ			Ш	+	1			_	Ш								<u> </u>			
																								1
							П	Т				T	П											
			<b> </b>				$\Box$	+	†	П	$\forall$	$\top$	$\Box$						-		100	BF 88		
	-	-	-	-	-	-	H	+	+-	H	$\vdash$	+	+					-	1	fU	Ю			
	-				ļ		H	+	+-	Н	$\vdash$		+						-					
								L	_	Ш	Ц		Ш											
				l																				
									T			Т	П											
			<del> </del>	<b>†</b>		<u> </u>	H	$^{+}$	+	H	$\Box$	+	††				<b>†</b>				†			
		-	<del> </del>	-	-	-	$\vdash$	+	+	H	H	+	+				<del> </del>		+	-	-	-		
	-		l	-	L	Data	Datin			Ш	Ш		Ш		L		L	L	-	<u></u>	. C'-	l Instruc		
Turnaround Time ( Business days)	A	S Accutest PM): / Date		-	Commor	ial "A" (L			e ma	orma —	-	ASP C	onate.	n. A					Con	ments /	Specia	ii instruc	uons	
Std. 10 Business Days	Approved by (occ	o Accurest ( m). / Dun		-		ial "B" (L				H		ASP C								·ccss	ENT	14 (	2	
5 Day RUSH					FULLT1	( Level 3+4	1)					te For							L ASE				2	
3 Day EMERGENCY				-	NJ Reduc							O For			-			ARF	LVER	IFICA	TION		_	
2 Day EMERGENCY					Commerc							ner <u>C</u>	OMM	1B			1					-0		
1 Day EMERGENCY	***************************************					Commerc																		
X other Due 4/11/2017 Emergency & Rush T/A data available VIA Lablink		1 40				NJ Reduc	ed = F	Result	ts + Q	IC Su	ımma	ary + P	artial F											
i off	-///	Sample Cust	tody must be d	locumen	ted belo	w each ti					e po	sses	sion,	includi	ng cour	ier deli								
Relinquished by Sampler: Date	444/1	Received By:	PX				Reline 2	quish	ed By:				13	0			Date Tin	10:  ] q	ın	Receive 2	d By:	$\sim$	1	
1//	11 11	1	· / ·				14				-						1112	11 1	·W	14			1	

**TD1443: Chain of Custody** Page 1 of 5 **SGS** Accutest New Jersey

2.7°C IX

Date Time: 4|S|17 940

☐ Intact
☐ Not intact

	000			CHAIN	<b>(O</b> )	F C	UST	ΟI	Υ													Pag	ge 1	of	2	
	SGS ACC	UTEST		10165 Ha TEL, 713	-271-4700	FAX:								S	ED-EX T	rackloo# nest Quot	2	4620	61	53		der Contro		D1443	<u> </u>	
		1				.sgs.com		_						-+				A malian	in / no	e TEST	CODE	choot			_	Matrix Codes
omogo	Client / Reporting Information y Name:	Project Name:		Project	Informa	tion			-				-	$\dashv$		Requ	estea	Allatys	15 ( 56	e iesi	LODE	Sileet	· .			Wattix Codes
	Accutest	110,000 (10,000)			Permit																					DW - Drinking Wate GW - Ground Wate
reet A		Street			-				-				-	$\dashv$												WW - Water SW - Surface Wate
ity	State Zip	City		State	Billing I Company		n ( if diffe	rent fr	om R	eport t	0)			-	చ					1						SO - Soil SL- Studge
Hou		""													P608PESTP											SED-Sediment OI - Oil
	Contact E-mail	Project #			Street A	idress		_			_			ヿ	98											LIQ - Other Liquid
Tram	eshia.Brown@sgs.com													Ц	P60											AIR - Air SOL - Other Solid
hone #	Fax#	Client Purchase	Order#		City			8	State			Zi	p	-	88											WP - Wipe FB-Field Blank
		ne Project Manager			Attention	ı:			_	_			_	-	BPC!						İ		ĺ			EB-Equipment Blan RB- Rinse Blank
															P60											TB-Trip Blank
				Collection				$\Box$	Numb	er of po	eserv	red Bo	ttles	7	MS.		ĺ							l		
SGS coulest ample #	Field ID / Point of Collection	MEOH/DI Vial #	Date	Time	Sampled by	Matrix	# of bottles	도	HO SON	H2S04	NONE	DI Water	ENCORE		HMICPMS,P608PCBAO											LAB USE ONLY
1	PERMIT RENEWEL		4/4/17	10:05:00 AN	4	AQ	2	Πİ	×		x	Ť	$\top$	11	х											E84
_	·	_			+		1	Ħ	+	Ħ	Ť	+	1	Ħ												
				-	<u> </u>		-	H	+	+	+	+	+	H			-									
					<u> </u>	-	├	Н	+	+	+	+	╬	+						1		-	_			
								14	4	Ш		4	_	$\sqcup$				_				<u> </u>				
								Ш		Ш				Ш							<u> </u>			<u> </u>		
								П		11	1	-											_			
								П	Т	П	Т			П												
		<del>                                     </del>	-		$\vdash$			H	╅	Ħ	1	+	╅	$\Box$												
					+			╁┼	+	$\forall$	+	┰	╁	H					<u> </u>		$\vdash$	$\vdash$	-			-
		+			-	1		Н	+	+	+	- -	+	H				_	├	ļ —		$\vdash$				
				ļ				Н	4	Н	4	_	+	Н				_	<u> </u>	_		<u> </u>				<del></del> -
								Ш	$\perp$	Ш	_	$\perp$		Ш						_		$\perp$				
				1							-									l		:		ŀ		
	Turnaround Time ( Business days)		`				Data	Deliv	rerabl	e Info										Com	ments /	Special	1 Instruc	tions/1		
		Approved By (SGS	Accutest PM): / Dat	e:			cial "A" (L			[	_			atego									_ /	49	11	
	Std. 10 Business Days				_		cial "B" ( I ( Level 3+		2)	L	_		SP C e For	atego	ry B				INI	TIAL A	SESS	MEN	T	10	1	
	5 Day RUSH 3 Day EMERGENCY					NJ Redu	•	٠,					For				_ LABEL VERIFICATION_									
	2 Day EMERGENCY					Commer				Ì	х	Othe	er_C	ОММ	B		- LABEL VERIFICATION									
	1 Day EMERGENCY				1		Commer										1							_		
_	other Due 4/11/2017 ) ergency & Rush T/A data available VIA Lablink						Commer NJ Redu	cial *B	= Re	sults +	QC :	Sumi	mary	artial S	Raw data								٠.			
_cm	argency & Austr I/A data dyalpore via Lability		Sample Cus	tody myst be o	documer	ted belo	w each t	me s	ampl	es cha	nge	pos	sess	sion	includi	ng cou	ier deli	very.						1		
Relin	quished by Same	Th 111/11/11	Received By:	150	75	7		Relia	nquish	ed By:	7	7	7	ゔ゙	_	7		Date Tin	16: E)	40	Receive	d By:	$\times\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$			<u> </u>
4	The SU	11/10	1 /	` //				2			7	=	/	_	C	$\sim$	_	7/			2	<u>ر</u>				

TD1443: Chain of Custody Page 2 of 5

### **SGS Accutest Sample Receipt Summary**

Job Number: TD14	43 Client:	SGS Houston		Project: Permit					
Date / Time Received: 4/5/20	017 9:40:00 AM	Delivery Method:	FedEx	<b>Airbill #'s:</b> <u>564246206050</u>					
Cooler Temps (Raw Measured Cooler Temps (Corrected	,								
1. Custody Seals Present:  2. Custody Seals Intact:   Cooler Temperature	or N	<u> </u>	Sample Integrity  1. Sample labels processed in the sample container labeling and sample container sample container sample container sample container sample sample container sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sample sam	resent on bottles:	Y or N  ✓ □  ✓ □  ✓ □				
Temp criteria achieved:     Cooler temp verification:     Cooler media:     No. Coolers:	IR Gun Ice (Bag)		Sample Integrity  1. Sample recvd wi  2. All containers ac  3. Condition of sam	thin HT: counted for:	Y or N  ✓ □  Intact	_			
Quality Control Preservation  1. Trip Blank present / cooler:  2. Trip Blank listed on COC:  3. Samples preserved properly:  4. VOCs headspace free:	Y or N N/A			ted is clear:  I for unspecified tests  e recvd for analysis:  structions clear:	Y or N N  O O O O O O O O O O O O O O O O O	N/A  ✓			
Comments -1 Only rec'd Metals Revised 4/7/17 -1 Rec'd missing Per	volume. Did not receive F	² est 608 volume.							

SM089-02 Rev. Date 12/1/16

**TD1443: Chain of Custody** Page 3 of 5 EXT volume will be sent for receipt tomorrow, 4/7

REVISED: Proceed w/EXT volume for PEST/PCB

**TD1443: Chain of Custody** Page 4 of 5



### **SGS Accutest Sample Receipt Summary**

Job Number:         TD1443         Client:	Project:
Date / Time Received: 4/7/2017 9:40:00 AM Delivery Method:	Airbill #'s:
Cooler Temps (Raw Measured) °C: Cooler 2: (1.4); Cooler Temps (Corrected) °C: Cooler 2: (2.8);	
Cooler Security         Y or N         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph         Graph	Sample Integrity - Documentation  1. Sample labels present on bottles: 2. Container labeling complete: 3. Sample container label / COC agree:  Sample Integrity - Condition 1. Sample recvd within HT: 2. All containers accounted for: 3. Condition of sample:  Sample Integrity - Instructions 1. Analysis requested is clear: 2. Bottles received for unspecified tests 3. Sufficient volume recvd for analysis: 4. Compositing instructions clear:
Comments	•

SM089-02 Rev. Date 12/1/16

> TD1443: Chain of Custody Page 5 of 5



**Section 9** 

## GC Semi-volatiles

QC Data Summaries

(SGS Accutest New Jersey)

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries



Method: EPA 608

# Method Blank Summary Job Number: TD1443

Account: ALGC SGS Accutest Gulf Coast

GCMC: Permit **Project:** 

Sample OP1758-MB1	File ID XX207906.D	<b>DF</b> 1	<b>Analyzed</b> 04/11/17	By SP	<b>Prep Date</b> 04/10/17	Prep Batch OP1758	Analytical Batch GXX5989

The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	MDL	Units Q
12674-11-2	Aroclor 1016	ND	0.25	0.17	ug/l
11104-28-2	Aroclor 1221	ND	0.25	0.15	ug/l
11141-16-5	Aroclor 1232	ND	0.25	0.10	ug/l
53469-21-9	Aroclor 1242	ND	0.25	0.14	ug/l
12672-29-6	Aroclor 1248	ND	0.25	0.13	ug/l
11097-69-1	Aroclor 1254	ND	0.25	0.17	ug/l
11096-82-5	Aroclor 1260	ND	0.25	0.14	ug/l

CAS No.	<b>Surrogate Recoveries</b>		Limits
877-09-8	Tetrachloro-m-xylene	92%	10-156%
877-09-8	Tetrachloro-m-xylene	97%	10-156%
2051-24-3	Decachlorobiphenyl	39%	10-143%
2051-24-3	Decachlorobiphenyl	41%	10-143%

Method: EPA 608

# Method Blank Summary Job Number: TD1443

Account: ALGC SGS Accutest Gulf Coast

**Project:** GCMC: Permit

2051-24-3 Decachlorobiphenyl

2051-24-3 Decachlorobiphenyl

Sample OP1759-MB1	<b>File ID</b> 1G133856.D	<b>DF</b> 1	<b>Analyzed</b> 04/12/17	<b>By</b> CP	<b>Prep Date</b> 04/10/17	Prep Batch OP1759	Analytical Batch G1G4278

The QC reported here applies to the following samples:

TD1443-1

CAS No.	Compound	Result	RL	MDL	Units Q
309-00-2	Aldrin	ND	0.010	0.0030	ug/l
319-84-6	alpha-BHC	ND	0.010	0.0030	ug/l
319-85-7	beta-BHC	ND	0.010	0.0028	ug/l
319-86-8	delta-BHC	ND	0.010	0.0023	ug/l
58-89-9	gamma-BHC (Lindane)	ND	0.010	0.0014	ug/l
12789-03-6	Chlordane	ND	0.10	0.057	ug/l
60-57-1	Dieldrin	ND	0.010	0.0018	ug/l
72-54-8	4,4'-DDD	ND	0.010	0.0019	ug/l
72-55-9	4,4'-DDE	ND	0.010	0.0031	ug/l
50-29-3	4,4'-DDT	ND	0.010	0.0025	ug/l
72-20-8	Endrin	ND	0.010	0.0025	ug/l
1031-07-8	Endosulfan sulfate	ND	0.010	0.0026	ug/l
7421-93-4	Endrin aldehyde	ND	0.010	0.0026	ug/l
959-98-8	Endosulfan-I	ND	0.010	0.0025	ug/l
33213-65-9	Endosulfan-II	ND	0.010	0.0021	ug/l
76-44-8	Heptachlor	ND	0.010	0.0019	ug/l
1024-57-3	Heptachlor epoxide	ND	0.010	0.0033	ug/l
72-43-5	Methoxychlor	ND	0.010	0.0028	ug/l
8001-35-2	Toxaphene	ND	0.13	0.092	ug/l
CAS No.	<b>Surrogate Recoveries</b>		Limits		
877-09-8	Tetrachloro-m-xylene	83%	10-1569	%	
877-09-8	Tetrachloro-m-xylene	80%	10-1569	%	

42%

42%

10-143%

10-143%

Page 1 of 1

# Blank Spike/Blank Spike Duplicate Summary Job Number: TD1443

Account: ALGC SGS Accutest Gulf Coast

GCMC: Permit **Project:** 

The QC reported here applies to the following samples: Method: EPA 608

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
12674-11-2	Aroclor 1016	2	2.1	105	2.2	110	5	42-160/37
11104-28-2	Aroclor 1221		ND		ND		nc	70-130/30
11141-16-5	Aroclor 1232		ND		ND		nc	70-130/30
53469-21-9	Aroclor 1242		ND		ND		nc	70-130/30
12672-29-6	Aroclor 1248		ND		ND		nc	70-130/30
11097-69-1	Aroclor 1254		ND		ND		nc	70-130/30
11096-82-5	Aroclor 1260	2	1.8	90	2.0	100	11	41-158/40

CAS No.	<b>Surrogate Recoveries</b>	BSP	BSD	Limits
877-09-8	Tetrachloro-m-xylene	85%	88%	10-156%
877-09-8	Tetrachloro-m-xylene	92%	96%	10-156%
2051-24-3	Decachlorobiphenyl	40%	49%	10-143%
2051-24-3	Decachlorobiphenyl	42%	51%	10-143%

^{* =} Outside of Control Limits.

Page 1 of 1

Method: EPA 608

# Blank Spike/Blank Spike Duplicate Summary Job Number: TD1443

Account: ALGC SGS Accutest Gulf Coast

**Project:** GCMC: Permit

				_			
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP1759-BS1	1G133857.D	1	04/12/17	CP	04/10/17	OP1759	G1G4278
OP1759-BSD	1G133858.D	1	04/12/17	CP	04/10/17	OP1759	G1G4278

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
309-00-2	Aldrin	0.25	0.14	56	0.13	52	7	18-142/41
319-84-6	alpha-BHC	0.25	0.24	96	0.25	100	4	40-149/44
319-85-7	beta-BHC	0.25	0.24	96	0.25	100	4	41-141/41
319-86-8	delta-BHC	0.25	0.27	108	0.27	108	0	34-160/45
58-89-9	gamma-BHC (Lindane)	0.25	0.24	96	0.25	100	4	40-148/41
60-57-1	Dieldrin	0.25	0.25	100	0.25	100	0	41-152/44
72-54-8	4,4'-DDD	0.25	0.25	100	0.25	100	0	38-153/44
72-55-9	4,4'-DDE	0.25	0.21	84	0.21	84	0	35-146/43
50-29-3	4,4'-DDT	0.25	0.25	100	0.26	104	4	36-158/46
72-20-8	Endrin	0.25	0.25	100	0.25	100	0	45-161/44
1031-07-8	Endosulfan sulfate	0.25	0.26	104	0.27	108	4	41-154/43
7421-93-4	Endrin aldehyde	0.25	0.28	112	0.28	112	0	41-153/44
959-98-8	Endosulfan-I	0.25	0.24	96	0.24	96	0	38-146/42
33213-65-9	Endosulfan-II	0.25	0.26	104	0.27	108	4	40-149/41
76-44-8	Heptachlor	0.25	0.16	64	0.15	60	6	27-141/43
1024-57-3	Heptachlor epoxide	0.25	0.23	92	0.22	88	4	39-148/43
72-43-5	Methoxychlor	0.25	0.26	104	0.27	108	4	38-153/41

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
877-09-8	Tetrachloro-m-xylene	89%	88%	10-156%
877-09-8	Tetrachloro-m-xylene	82%	81%	10-156%
2051-24-3	Decachlorobiphenyl	38%	66%	10-143%
2051-24-3	Decachlorobiphenyl	40%	61%	10-143%

^{* =} Outside of Control Limits.



## **Section 10**

## Metals Analysis

QC Data Summaries

(SGS Accutest New Jersey)

### Includes the following where applicable:

- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries



#### BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: TD1443 Account: ALGC - SGS Accutest Gulf Coast Project: GCMC: Permit

QC Batch ID: MP99717 Methods: EPA 200.8 Matrix Type: AQUEOUS Units: ug/l

Prep Date: 04/06/17 04/06/17

					//-		//		
Metal	RL	IDL	MDL	MB raw	final	MB raw	final		
Aluminum	50	. 23	1.3						
Antimony	2.0	.22	.26						
Arsenic	1.0	.017	.034	0.014	<1.0	0.050	<1.0		
Barium	1.0	.0085	.028	0.034	<1.0	0.018	<1.0		
Beryllium	0.50	.0022	.013						
Boron	50	2.3							
Cadmium	0.50	.0032	.12	0.019	<0.50	0.0088	<0.50		
Calcium	250	1.4	3.7						
Chromium	4.0	.012	.1	0.034	<4.0	0.019	<4.0		
Cobalt	0.50	.0018	.018						
Copper	4.0	.035	.14						
Iron	50	.19	2						
Lead	0.50	.0079	.011	0.032	<0.50	-0.040	<0.50		
Magnesium	250	.21	3.6						
Manganese	1.0	.0078	.095						
Molybdenum	1.0	.023	.23						
Nickel	4.0	.018	.11						
Potassium	250	.77	8.8						
Selenium	1.0	.012	.12	0.018	<1.0	-0.019	<1.0		
Silver	2.0	.0058	.041	0.029	<2.0	0.0093	<2.0		
Sodium	250	.89	2.5						
Strontium	5.0	.006	.015						
Thallium	0.50	.002	.013						
Tin	5.0	.044	.38						
Titanium	1.0	.031	.56						
Vanadium	4.0	.03	.2						
Zinc	10	.067	1.2						

Associated samples MP99717: TD1443-1

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested



#### MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: TD1443 Account: ALGC - SGS Accutest Gulf Coast Project: GCMC: Permit

QC Batch ID: MP99717 Methods: EPA 200.8 Matrix Type: AQUEOUS Units: ug/l

Prep Date:

04/06/17

				,,	
Metal	JC40301 Origina		Spikelot MPX200.8		QC Limits
Aluminum	anr				
Antimony					
Arsenic	0.89	125	100	124.1	70-130
Barium	8.9	123	100	114.1	70-130
Beryllium					
Boron					
Cadmium	0.30	115	100	114.7	70-130
Calcium					
Chromium	0.51	121	100	120.5	70-130
Cobalt					
Copper					
Iron	anr				
Lead	0.78	115	100	114.2	70-130
Magnesium					
Manganese					
Molybdenum					
Nickel					
Potassium					
Selenium	0.75	250	200	124.6	70-130
Silver	0.48	92.7	76.5	120.5	70-130
Sodium					
Strontium					
Thallium					
Tin					
Titanium					
Vanadium					
Zinc	anr				

Associated samples MP99717: TD1443-1

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits (anr) Analyte not requested



#### MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: TD1443
Account: ALGC - SGS Accutest Gulf Coast
Project: GCMC: Permit

QC Batch ID: MP99717 Methods: EPA 200.8 Matrix Type: AQUEOUS Units: ug/1

Prep Date:

04/06/17

					//	
Metal	JC40301 Origina		Spikel MPX200	ot .8 % Rec	MSD RPD	QC Limit
Aluminum	anr					
Antimony						
Arsenic	0.89	113	100	112.1	10.1 (a)	10
Barium	8.9	114	100	105.1	7.6	20
Beryllium						
Boron						
Cadmium	0.30	107	100	106.7	7.2	10
Calcium						
Chromium	0.51	108	100	107.5	11.4 (a)	10
Cobalt						
Copper						
Iron	anr					
Lead	0.78	108	100	107.2	6.3	10
Magnesium						
Manganese						
Molybdenum						
Nickel						
Potassium						
Selenium	0.75	234	200	116.6	6.6	10
Silver	0.48	87.3	76.5	113.5	6.0	10
Sodium						
Strontium						
Thallium						
Tin						
Titanium						
Vanadium						
Zinc	anr					

Associated samples MP99717: TD1443-1

Results < IDL are shown as zero for calculation purposes



^(*) Outside of QC limits

⁽N) Matrix Spike Rec. outside of QC limits

⁽anr) Analyte not requested

⁽a) Spike recovery indicates possible matrix interference.

#### SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: TD1443 Account: ALGC - SGS Accutest Gulf Coast Project: GCMC: Permit

QC Batch ID: MP99717 Methods: EPA 200.8 Matrix Type: AQUEOUS Units: ug/l

04/06/17 04/06/17 Prep Date:

<u>-</u>			//				//	
Metal	BSP Result	Spikelot MPX200.8	% Rec	QC Limits	BSP Result	Spikelot MPX200.8	% Rec	QC Limits
Aluminum	anr							
Antimony								
Arsenic	101	100	101.0	85-115	101	100	101.0	85-115
Barium	98.6	100	98.6	85-115	97.2	100	97.2	85-115
Beryllium								
Boron								
Cadmium	101	100	101.0	85-115	95.0	100	95.0	85-115
Calcium								
Chromium	100	100	100.0	85-115	96.3	100	96.3	85-115
Cobalt								
Copper								
Iron	anr							
Lead	101	100	101.0	85-115	96.0	100	96.0	85-115
Magnesium								
Manganese								
Molybdenum								
Nickel								
Potassium								
Selenium	215	200	107.5	85-115	209	200	104.5	85-115
Silver	80.9	76.5	105.8	85-115	77.2	76.5	100.9	85-115
Sodium								
Strontium								
Thallium								
Tin								
Titanium								
Vanadium								
Zinc	anr							

Associated samples MP99717: TD1443-1

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested



BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: TD1443

Account: ALGC - SGS Accutest Gulf Coast Project: GCMC: Permit

QC Batch ID: MP99751 Methods: EPA 245.1 Matrix Type: AQUEOUS Units: ug/l

Prep Date: 04/07/17

Metal	RL	IDL	MDL	MB raw	final
Mercury	0.20	.012	.055	0.022	<0.20

Associated samples MP99751: TD1443-1

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits  $\bar{\ }$ 

(anr) Analyte not requested

#### MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: TD1443 Account: ALGC - SGS Accutest Gulf Coast Project: GCMC: Permit

QC Batch ID: MP99751 Methods: EPA 245.1 Matrix Type: AQUEOUS Units: ug/l

04/07/17 Prep Date:

Metal	JC4036' Origina		Spikelo HGPW3	t % Rec	QC Limits
Mercury	0.0	2.0	2	100.0	70-130

Associated samples MP99751: TD1443-1

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits  $\hfill \hfill$ 

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested



#### MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: TD1443 Account: ALGC - SGS Accutest Gulf Coast Project: GCMC: Permit

QC Batch ID: MP99751 Methods: EPA 245.1 Matrix Type: AQUEOUS Units: ug/l

Prep Date:

04/07/17

Metal	JC40367 Origina		Spikelo HGPW3	t % Rec	MSD RPD	QC Limit
Mercury	0.0	2.0	2	100.0	0.0	19

Associated samples MP99751: TD1443-1

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits  $\hfill \hfill$ 

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested



#### SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: TD1443 Account: ALGC - SGS Accutest Gulf Coast Project: GCMC: Permit

QC Batch ID: MP99751 Methods: EPA 245.1 Matrix Type: AQUEOUS Units: ug/l

04/07/17 Prep Date:

BSP al Result
cury 2.2

Associated samples MP99751: TD1443-1

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits  $\bar{\ }$ (anr) Analyte not requested



# Section 11

Misc. Forms
Custody Documents and Other Forms
(SGS Accutest Lafayette)

Includes the following where applicable:

• Chain of Custody



	CHAIN	OF	CUSTODY	MUSA	S	04.
--	-------	----	---------	------	---	-----

				CHAIN	1 O	FC	UST	OI	Y	7	J	Ģ.		د. ,			7				Pa	ige	1 of	2	
	STATE AR	CUTEST												ED.	EX T	racking#				Bottle C	order Con	trol#			
		CUICAI		10165 Ha TEL, 713-										SGS.	Accu	test Quote ₽				SGS Ad	cutest 30	ıb	75444	-	
		····			www	v.sgs.com								- 84									TD144		î .
Compar	Client / Reporting Information	Project Name:	· · · · · · · · · · · · · · · · · · ·	Project	informa	tion								\$4		Request	ed Analy	sis ( se	e TES	COD	Eshe	et)	7	1	Matrix Codes
1		7 Toject Huma.			Permit																			-	DW - Drinking Water
Street A	Accutest	Street	~~~		remin									-11						Î					GW - Ground Water WW - Water
	65 Harwin Drive	Street		Billing Information ( if different from Report to)															-				-	SW - Surface Water	
City	State Zi	ip City		State	Company		n ( if diffe	rent fre	om R	eport	to)			-0						Charles					SO - Soil SL- Sludge
Hou	iston TX 77036																							İ	SED-Sediment OI - Oil
Project	Contact E-mail	Project #			Street Ad	treet Address							70									a constant		LIQ - Other Liquid	
1	neshia.Brown@sgs.com																ł	ĺ		ĺ		Ì		AIR - Air SOL - Other Solid	
Phone s		ax # Client Purchase	Order#		City			S	State			Zi	ip							-	-				WP - Wipe FB-Field Blank
L	-271-4700 r(s) Name(s) F	Phone Project Manager			Attention	,								-0											E8-Equipment Blank
Semple	(u) rearries	, ropor morager																		-	i i	-	1		RB- Rinse Blank TB-Trip Blank
-				Collection		I	T		Numb	ber of p					ĺ							-		-	
SGS					Sampled				. L	8	ш.	DI Water	ORE .	MBAS		l				evera.					THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PE
Accutest Sample #	Field ID / Point of Collection	MEOH/DI Vial #	Date	Time	by	Matrix	# of bottle:	무	HNO3	±38	Š	J M	I A	×											LAB USE ONLY
1	PERMIT RENEWEL		4/4/17	10:05:00 AM		AQ	1	П		П	×	T		Х	<						T	-			
								TT	1			$\top$	П						ļ	ĺ			1		
-							<b></b>	$\dagger \dagger$	+	$\top$	$\dagger \dagger$	+	$\dagger \dagger$		$\neg$					1	1		Ì		
-						<u> </u>	<del> </del>	$\forall$	+	+	$\vdash$	+	++		$\neg$			1		†	1	1	1	-	
							-	+	+	+	$\vdash$	+	++		$\dashv$			+	-	╁	+	-	-	-	
-			<u> </u>				-	++	+	+-	-	+	++	- 83	-		_	-	┼	-	-	-	-		
					ļ	ļ		+	+	+	Н	-	+	- 1			_		/898/50ph	85 80	452400	i (00	-	-	
									$\perp$				11		_				H	Ш	S	M			
						İ										1				200		. 140			
								П			П														
				1			İ	П	1		П												T		
			<u> </u>					$\forall \uparrow$	$\top$	$\top$	$\Box$	$\top$	$\top \dagger$		_			$\top$	T	1	+	1	_		
$\vdash$			<u> </u>					+	+	+	H	+	$\pm$	$\top$					$\vdash$		$\top$	+	+	1	
$\vdash$	Turnaround Time ( Business days)		1			l	Data	Deliv	erabl	le Info	ormat	tion		-					Con	nments	/ Speci	al Instr	ections	+	<u> </u>
	***************************************	Approved By (SGS	S Accutest PM): / Dat	e;		Commer	cial "A" (I	_evei 1	)			NYA	SP Cat	tegary A	١										
	Std. 10 Business Days				-		ciał "B" ( l		)					tegary B	3						- Marian	amana,			
	5 Day RUSH	******					( Level 3+	4)			$\sqsubseteq$		e Form	36.0								0	1		
	3 Day EMERGENCY 2 Day EMERGENCY				_	NJ Redu							Form er CO	3873		-				1	1	1 )	/		
8	1 Day EMERGENCY					Commen	Commer	rial "A"	= 8e			Otne	er <u>CO</u>	TVIIVICS						1	3	Schlester Control			
	Other   Due 4/11/2017						Commer					Sum	mary							-					
Em	ergency & Rush T/A data available VIA Lablink		**********				NJ Redu	ced = F	Result	ts + Q	C Su	mmar	y + Par												
				tody must be d	ocumen							e pos	sessi	on, incl	ludi	ng courier				- %					
Relir 1	equished by Sampler:	1806 4-4-17	Received By:	TX DOW	111	4-5-	17	Reline 2		ed By: ア火		1)	sin	المرموا			Date T	ime: 5-17	7	Record 2	Balby:	NO		وكمان	الم
Pertin		Date Time: (-571 103D	December 4 December 1	1 h sales	n					ed Sy:		_505_5					Date T			Receiv	ed By:	\-\-			***************************************
3	equished by:	Date Time:	Received By:	1	<del>)                                    </del>			Custo			j	0		J- erac		Pre	served wher		le			On		Cooly	Temp. 60V414
5			5					KS		5Ci	22		l	J Moti	intact		- Q.,	-~				فطفة	and of	_/:	<u> ۱۲۳ کا لاصه </u>

TD1443: Chain of Custody Page 1 of 3 **SGS** Accutest Lafayette Date / Time: 4/4/2017 3:57:32 PM

CSR: TRAMESHB Job #: TD1443

Client Project: Permit

Deliverable: COMMB

Sub Lab: Accutest Gulf Coast Louisiana Address: 500 Ambassador Caffery Prkway

City: Scott

State: LA Zip: 70583

Contact: Sample Receiving

TAT: Due 4/11/2017		Phone: 800-304-5227				
SGS Accutest Client Sample # Sample Description	Analysis	Location	Sampled By	Date Sampled	Time Sampled	Aliquot
TD1443-1 PERMIT RENEWEL	MBAS.	1Z 3D 4MM SUB VR.		<u>4/4/2017</u>	10:05:00 AM	
Comments:						
Sample Management Receipt:		Date:	/////	_		
				600 L		1 (4)

**TD1443: Chain of Custody** Page 2 of 3

### **SGS Accutest Sample Receipt Summary**

Job Number: Ti	D144	3		Client:	SGS				Project: PERMIT			
Date / Time Received: 4/	/5/201	17 10	:50:00	AM	Delivery	Method:	Ad	cutest Courier	Airbill #'s:			
Cooler Temps (Initial/Adjus	sted)	: <u>#1</u>	: (1.6/1	.6);_								
	Υ <u>ο</u>	r N	_	3. COC Pr	esent	Y or ✓	<u>N</u>		ity - Documentation	<u>Y</u>	or N	
ii dudiday dada i radaiii.	<b>✓</b>		,		s/Time OK	<b>V</b>		2. Container lab	• .	<b>✓</b>		
Cooler Temperature		Υ .	or N					Sample conta	iner label / COC agree:	$\checkmark$		
Temp criteria achieved:     Thermometer ID:     Cooler media:     No. Coolers:		ce (dir	; rect con	tact)				Sample Integral 1. Sample recvolution 2. All containers 3. Condition of s	accounted for:	<u>Y</u> <u>V</u>	or N	
Quality Control Preservati	<u>ion</u>	<u>Y</u>	or N	N/A				Sample Integr	ity - Instructions	Υ	or N	N/A
Trip Blank present / cooler:     Trip Blank listed on COC:     Samples preserved properl     VOCs headspace free:		□ □ <b>⊻</b>		<ul><li>✓</li><li>✓</li></ul>				Analysis requ     Bottles receiv     Sufficient vol	ved for unspecified tests ume recvd for analysis: instructions clear:			<b>V</b>
Comments												

TD1443: Chain of Custody Page 3 of 3



# **Section 12**

# General Chemistry

QC Data Summaries

(SGS Accutest Lafayette)

Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries



#### 

Login Number: TD1443
Account: ALGC - SGS Accutest Gulf Coast
Project: GCMC: Permit

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
Surfactants, MBAS as LAS	GN10286	0.10	0.0	mg/l	.75	0.73	97.0	80-120%

Associated Samples: Batch GN10286: TD1443-1 (*) Outside of QC limits

# BLANK SPIKE DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: TD1443
Account: ALGC - SGS Accutest Gulf Coast
Project: GCMC: Permit

Analyte	Batch ID	Units	Spike Amount	BSD Result	RPD	QC Limit	
Surfactants, MBAS as LAS	GN10286	mg/l	.75	0.73	0.7		

Associated Samples: Batch GN10286: TD1443-1 (*) Outside of QC limits

#### DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: TD1443
Account: ALGC - SGS Accutest Gulf Coast
Project: GCMC: Permit

Analyte	Batch ID	QC Sample	Units	Original Result	DUP Result	RPD	QC Limits	
Surfactants, MBAS as LAS	GN10286	LA32046-1	mg/l	0.11	0.11	4.6	0-20%	

Associated Samples: Batch GN10286: TD1443-1 (*) Outside of QC limits

#### **Candice Calhoun**

From: Perkin, Corey <cperkin@cecinc.com>
Sent: Monday, August 26, 2024 3:29 PM

**To:** Candice Calhoun

**Cc:** Judy LeBlanc; Mehevec, Adam

**Subject:** Application to Renew Permit WQ0001861000 Administrative Comments

**Attachments:** 331-933 - Administrative Comments Cover Letter.pdf; WQ0001861000 Spanish

NORI.docx; WQ0001861000 English NORI.docx

Follow Up Flag: Follow up Flag Status: Completed

Candice,

Please see attached Gladieux Metals Recycling Application to Renew Permit WQ0001861000 Administrative Comments for your review. Per your request, attached is the Word Documents for both the English and Spanish NORI portions.

Thank you,

Corey P. Perkin | Assistant Project Manager Civil & Environmental Consultants, Inc. 1221 S. MoPac Expressway, Suite 350, Austin, TX 78746 direct 512.225.8102 office 512.439.0400 mobile 512.952.2016 www.cecinc.com

Celebrating 35 years of client-first service!

Civil & Envir

August 26, 2024

Candice Calhoun
Applications Review and Processing Team (MC148)
Water Quality Division
Texas Commission on Environmental Quality
P.O. Box 13087
Austin, TX 78711-3087

Subject: Gladieux Metals Recycling, LLC

TPDES Permit No. WQ0001861000 Renewal Application

CN605364843, RN100210129

CEC Project 331-933

Dear Ms. Calhoun,

On behalf of Gladieux Metals Recycling (GMR), Civil & Environmental Consultants, Inc. (CEC) is pleased to submit this response to the comments related to the permit renewal application for the existing onsite wastewater treatment system.

1. The following is a portion of the NORI which contains information to your application. Please read it carefully and indicate if it contains any errors or omissions. The complete notice will be sent to you once the application is declared administratively complete.

APPLICATION. Gladieux Metals Recycling, LLC, 302 Midway Road, Freeport, Texas 77541, which owns a commercial industrial and hazardous waste management facility, has applied to the Texas Commission on Environmental Quality (TCEQ) to renew Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0001861000 (EPA I.D. No. TX0034738) to authorize the discharge of treated wastewater and stormwater at a volume not to exceed a daily average flow of 350,000 gallons per day via Outfall 001, and the discharge of stormwater on an intermittent and flow-variable basis via Outfall 002. The facility is located at 302 Midway Road, near the city of Freeport, in Brazoria County, Texas 77541. The discharge route is from the plant site via Outfall 001 to the Dow Chemical Plant "A" Canal; thence to the Brazos River Tidal; and via Outfall 002 to an unnamed drainage ditch; thence to Old Brazos River Channel Tidal. TCEQ received this application on August 7, 2024. The permit application will be available for viewing and copying at Freeport Branch Library, 410 Brazosport Boulevard, Freeport, in Brazoria County, Texas prior to the date this notice is published in the newspaper. The application, including any updates, and associated notices are available electronically at the following webpage: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdesapplications.

Texas Commission on Environmental Quality – Water Quality Division CEC Project 331-933
Page 2
August 26, 2024

This link to an electronic map of the site or facility's general location is provided as a public courtesy and not part of the application or notice. For the exact location, refer to the application. <a href="https://gisweb.tceq.texas.gov/LocationMapper/?marker=95.338055,28.956388&level=18">https://gisweb.tceq.texas.gov/LocationMapper/?marker=95.338055,28.956388&level=18</a>

Further information may also be obtained from Gladieux Metals Recycling, LLC at the address stated above or by calling Ms. Judy LeBlanc, Environmental Health and Safety Specialist, at 979-415-1547.

The English portion of the NORI above needed one edit. Ms. Judy's Leblanc's title was omitted from the NORI and is included in Attachment 1.

2. The application indicates that public notices in Spanish are required. After confirming the portion of the NORI above does not contain any errors or omissions, please use the attached template to translate the NORI into Spanish. Only the first and last paragraphs are unique to this application and require translation. Please provide the translated Spanish NORI in a Microsoft Word document.

The translated Spanish NORI is included in Attachment 2 and as a separate word document as an attachment to this email response.

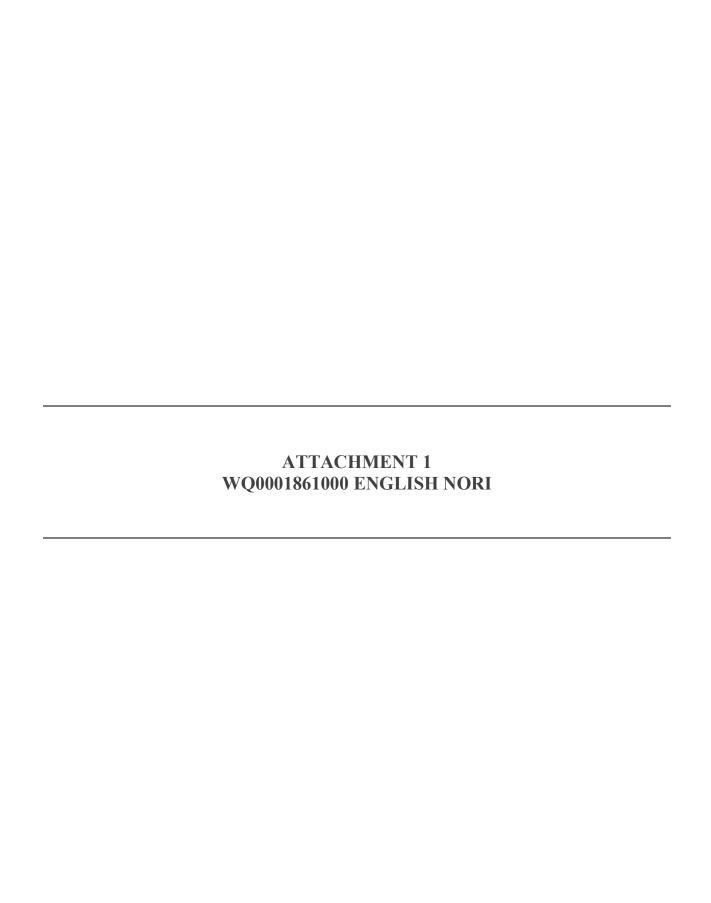
If you have any questions regarding this submittal, please feel free to contact me at 512-225-8102 or email at cperkin@cecinc.com

Sincerely,

CIVIL & ENVIRONMENTAL CONSULTANTS, INC.

Corey P. Perkin

Assistant Project Manager


Adam W. Mehevec, P.E.

Vice President

Enclosures: Attachment 1 – English NORI

Attachment 2 – Spanish NORI

cc: Judy LeBlanc (GMR)



#### **ENGLISH NORI**

APPLICATION. Gladieux Metals Recycling, LLC, 302 Midway Road, Freeport, Texas 77541, which owns a commercial industrial and hazardous waste management facility, has applied to the Texas Commission on Environmental Quality (TCEQ) to renew Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0001861000 (EPA I.D. No. TX0034738) to authorize the discharge of treated wastewater and stormwater at a volume not to exceed a daily average flow of 350,000 gallons per day via Outfall 001, and the discharge of stormwater on an intermittent and flow-variable basis via Outfall 002. The facility is located at 302 Midway Road, near the city of Freeport, in Brazoria County, Texas 77541. The discharge route is from the plant site via Outfall 001 to the Dow Chemical Plant "A" Canal; thence to the Brazos River Tidal; and via Outfall 002 to an unnamed drainage ditch; thence to Old Brazos River Channel Tidal. TCEQ received this application on August 7, 2024. The permit application will be available for viewing and copying at Freeport Branch Library, 410 Brazosport Boulevard, Freeport, in Brazoria County, Texas prior to the date this notice is published in the newspaper. The application, including any updates, and associated notices are available electronically at the following webpage:

https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications.

This link to an electronic map of the site or facility's general location is provided as a public courtesy and not part of the application or notice. For the exact location, refer to the application. <a href="https://gisweb.tceq.texas.gov/LocationMapper/?marker=-95.338055,28.956388&level=18">https://gisweb.tceq.texas.gov/LocationMapper/?marker=-95.338055,28.956388&level=18</a>

Further information may also be obtained from Gladieux Metals Recycling, LLC at the address stated above or by calling Ms. Judy LeBlanc at 979-415-1547.



## Comisión de Calidad Ambiental del Estado de Texas



### AVISO DE RECIBO DE LA SOLICITUD Y EL INTENTO DE OBTENER PERMISO PARA LA CALIDAD DEL AGUA RENOVACION

#### PERMISO NO. WQooo

**SOLICITUD.** Gladieux Metals Recycling LLC ha solicitado a la Comisión de Calidad Ambiental del Estado de Texas (TCEQ) para renovar el Permiso No. WQ0001861000 (EPA I.D. No. TX0034738) del Sistema de Eliminación de Descargas de Contaminantes de Texas (TPDES) para autorizar la descarga de aguas residuales tratadas en un volumen que no sobrepasa un flujo promedio diario de 350,000 galones por día. La planta está ubicada 302 Midway Road en el Condado de Brazoria, Texas. La ruta de descarga es del sitio de la planta a vía emisario 001 hacia el canal "A" de la planta Química de Dow; de allí hasta la marea del rio Brazos y por el emisario 002 hasta la de drenaje sin nombre; de allí a la marea del antiguo canal del rio Brazos. La TCEQ recibió esta solicitud el día 07 de Agosto del 2024. La solicitud para el permiso estará disponible para leerla y copiarla en la biblioteca de Freeport Branch, 410 Brazos sport Boulevard, Freeport, en el condado de Brazos, Texas. antes de la fecha de publicación de este aviso en el periódico. Este enlace a un mapa electrónico de la ubicación general del sitio o de la instalación es proporcionado como una cortesía y no es parte de la solicitud o del aviso. Para la ubicación exacta, consulte la solicitud.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-95.338055,28.956388&level=1

AVISO ADICIONAL. El Director Ejecutivo de la TCEQ ha determinado que la solicitud es administrativamente completa y conducirá una revisión técnica de la solicitud. Después de completar la revisión técnica, el Director Ejecutivo puede preparar un borrador del permiso y emitirá una Decisión Preliminar sobre la solicitud. El aviso de la solicitud y la decisión preliminar serán publicados y enviado a los que están en la lista de correo de las personas a lo largo del condado que desean recibir los avisos y los que están en la lista de correo que desean recibir avisos de esta solicitud. El aviso dará la fecha límite para someter comentarios públicos.

COMENTARIO PUBLICO / REUNION PUBLICA. Usted puede presentar comentarios públicos o pedir una reunión pública sobre esta solicitud. El propósito de una reunión pública es dar la oportunidad de presentar comentarios o hacer preguntas acerca de la solicitud. La TCEQ realiza una reunión pública si el Director Ejecutivo determina que hay un grado de interés público suficiente en la solicitud o si un legislador local lo pide. Una reunión pública no es una audiencia administrativa de lo contencioso.

#### OPORTUNIDAD DE UNA AUDIENCIA ADMINISTRATIVA DE LO

CONTENCIOSO. Después del plazo para presentar comentarios públicos, el Director Ejecutivo considerará todos los comentarios apropiados y preparará una respuesta a todo los comentarios públicos esenciales, pertinentes, o significativos. A menos que la solicitud haya sido referida directamente a una audiencia administrativa de lo contencioso, la respuesta a los comentarios y la decisión del Director Ejecutivo sobre la solicitud serán enviados por correo a todos los que presentaron un comentario público y a las personas que están en la lista para recibir avisos sobre esta solicitud. Si se reciben comentarios, el aviso también proveerá instrucciones para pedir una reconsideración de la decisión del Director Ejecutivo y para pedir una audiencia administrativa de lo contencioso. Una audiencia administrativa de lo contencioso es un procedimiento legal similar a un procedimiento legal civil en un tribunal de distrito del estado.

PARA SOLICITAR UNA AUDIENCIA DE CASO IMPUGNADO. USTED DEBE INCLUIR EN SU SOLICITUD LOS SIGUIENTES DATOS: su nombre, dirección, y número de teléfono; el nombre del solicitante y número del permiso; la ubicación y distancia de su propiedad/actividad con respecto a la instalación; una descripción específica de la forma cómo usted sería afectado adversamente por el sitio de una manera no común al público en general: una lista de todas las cuestiones de hecho en disputa que usted presente durante el período de comentarios; y la declaración "[Yo/nosotros] solicito/solicitamos una audiencia de caso impugnado". Si presenta la petición para una audiencia de caso impugnado de parte de un grupo o asociación, debe identificar una persona que representa al grupo para recibir correspondencia en el futuro; identificar el nombre y la dirección de un miembro del grupo que sería afectado adversamente por la planta o la actividad propuesta; proveer la información indicada anteriormente con respecto a la ubicación del miembro afectado y su distancia de la planta o actividad propuesta; explicar cómo y porqué el miembro sería afectado; y explicar cómo los intereses que el grupo desea proteger son pertinentes al propósito del grupo.

Después del cierre de todos los períodos de comentarios y de petición que aplican, el Director Ejecutivo enviará la solicitud y cualquier petición para reconsideración o para una audiencia de caso impugnado a los Comisionados de la TCEQ para su consideración durante una reunión programada de la Comisión. La Comisión sólo puede conceder una solicitud

de una audiencia de caso impugnado sobre los temas que el solicitante haya presentado en sus comentarios oportunos que no fueron retirados posteriormente. Si se concede una audiencia, el tema de la audiencia estará limitado a cuestiones de hecho en disputa o cuestiones mixtas de hecho y de derecho relacionadas a intereses pertinentes y materiales de calidad del agua que se hayan presentado durante el período de comentarios. [For renewal applications that do not include a major amendment, include the following sentence:] Si ciertos criterios se cumplen, la TCEQ puede actuar sobre una solicitud para renovar un permiso sin proveer una oportunidad de una audiencia administrativa de lo contencioso.

**LISTA DE CORREO.** Si somete comentarios públicos, un pedido para una audiencia administrativa de lo contencioso o una reconsideración de la decisión del Director Ejecutivo, la Oficina del Secretario Principal enviará por correo los avisos públicos en relación con la solicitud. Ademas, puede pedir que la TCEQ ponga su nombre en una or mas de las listas correos siguientes (1) la lista de correo permanente para recibir los avisos de el solicitante indicado por nombre y número del permiso específico y/o (2) la lista de correo de todas las solicitudes en un condado específico. Si desea que se agrega su nombre en una de las listas designe cual lista(s) y envia por correo su pedido a la Oficina del Secretario Principal de la TCEQ.

CONTACTOS E INFORMACIÓN A LA AGENCIA. Todos los comentarios públicos y solicitudes deben ser presentadas electrónicamente vía <a href="http://www14.tceq.texas.gov/epic/eComment/">http://www14.tceq.texas.gov/epic/eComment/</a> o por escrito dirigidos a la Comisión de Texas de Calidad Ambiental, Oficial de la Secretaría (Office of Chief Clerk), MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Tenga en cuenta que cualquier información personal que usted proporcione, incluyendo su nombre, número de teléfono, dirección de correo electrónico y dirección física pasarán a formar parte del registro público de la Agencia. Para obtener más información acerca de esta solicitud de permiso o el proceso de permisos, llame al programa de educación pública de la TCEQ, gratis, al 1-800-687-4040. Si desea información en Español, puede llamar al 1-800-687-4040.

También se puede obtener información adicional Gladieux Metals Recycling, LLC a la dirección indicada arriba o llamando a Ms. Judy LeBlanc al 979-415-1547

Fecha de emisión 26 de Agosto del 2024