

Administrative Package Cover Page

This file contains the following documents:

- 1. Summary of application (in plain language)
- 2. First Notice (NORI-Notice of Receipt of Application and Intent to Obtain a Permit)
- 3. Application Materials

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

NOTICE OF RECEIPT OF APPLICATION AND INTENT TO OBTAIN WATER QUALITY PERMIT RENEWAL

PERMIT NO. WQ0004437000

APPLICATION. San Antonio Water System, 2800 U.S. Highway 281 North, San Antonio, Texas 78212, which owns a potable water treatment system facility, has applied to the Texas Commission on Environmental Quality (TCEQ) to renew Texas Pollutant Discharge Elimination System (TPDES) Permit No. WO0004437000 (EPA I.D. No. TX0125083) to authorize the discharge of clarifier water at an intermittent and variable flow rate. The water treatment facility is located at 6725 Moreno Street, near the city of Von Ormy, in Bexar County, Texas 78073. The discharge route is from the plant site to an unnamed ditch; thence to O. R. Mitchell Lake 1; thence to Medio Creek. TCEQ received this application on September 30, 2024. The permit application will be available for viewing and copying at San Antonio Water System Admin Building, tower 1, first floor, 2800 U.S. Highway 281 North, San Antonio, in Bexar County, Texas prior to the date this notice is published in the newspaper. The application, including any updates, and associated notices are available electronically at the following webpage: https://www.tceq.texas.gov/permitting/wastewater/pendingpermits/tpdes-applications. This link to an electronic map of the site or facility's general location is provided as a public courtesy and not part of the application or notice. For the exact location, refer to the application.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-98.635555,29.320277&level=18

ADDITIONAL NOTICE. TCEQ's Executive Director has determined the application is administratively complete and will conduct a technical review of the application. After technical review of the application is complete, the Executive Director may prepare a draft permit and will issue a preliminary decision on the application. **Notice of the Application and Preliminary Decision will be published and mailed to those who are on the county-wide mailing list and to those who are on the mailing list for this application. That notice will contain the deadline for submitting public comments.**

PUBLIC COMMENT / PUBLIC MEETING. You may submit public comments or request a public meeting on this application. The purpose of a public meeting is to provide the opportunity to submit comments or to ask questions about the application. TCEQ will hold a public meeting if the Executive Director determines that there is a significant degree of public interest in the application or if requested by a local legislator. A public meeting is not a contested case hearing.

OPPORTUNITY FOR A CONTESTED CASE HEARING. After the deadline for submitting public comments, the Executive Director will consider all timely comments and prepare a response to all relevant and material, or significant public comments. **Unless the application**

is directly referred for a contested case hearing, the response to comments, and the Executive Director's decision on the application, will be mailed to everyone who submitted public comments and to those persons who are on the mailing list for this application. If comments are received, the mailing will also provide instructions for requesting reconsideration of the Executive Director's decision and for requesting a contested case hearing. A contested case hearing is a legal proceeding similar to a civil trial in state district court.

TO REQUEST A CONTESTED CASE HEARING, YOU MUST INCLUDE THE FOLLOWING ITEMS IN YOUR REQUEST: your name, address, phone number; applicant's name and proposed permit number; the location and distance of your property/activities relative to the proposed facility; a specific description of how you would be adversely affected by the facility in a way not common to the general public; a list of all disputed issues of fact that you submit during the comment period and, the statement "[I/we] request a contested case hearing." If the request for contested case hearing is filed on behalf of a group or association, the request must designate the group's representative for receiving future correspondence; identify by name and physical address an individual member of the group who would be adversely affected by the proposed facility or activity; provide the information discussed above regarding the affected member's location and distance from the facility or activity; explain how and why the member would be affected; and explain how the interests the group seeks to protect are relevant to the group's purpose.

Following the close of all applicable comment and request periods, the Executive Director will forward the application and any requests for reconsideration or for a contested case hearing to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

The Commission may only grant a request for a contested case hearing on issues the requestor submitted in their timely comments that were not subsequently withdrawn. If a hearing is granted, the subject of a hearing will be limited to disputed issues of fact or mixed questions of fact and law relating to relevant and material water quality concerns submitted during the comment period.

TCEQ may act on an application to renew a permit for discharge of wastewater without providing an opportunity for a contested case hearing if certain criteria are met.

MAILING LIST. If you submit public comments, a request for a contested case hearing or a reconsideration of the Executive Director's decision, you will be added to the mailing list for this specific application to receive future public notices mailed by the Office of the Chief Clerk. In addition, you may request to be placed on: (1) the permanent mailing list for a specific applicant name and permit number; and/or (2) the mailing list for a specific county. If you wish to be placed on the permanent and/or the county mailing list, clearly specify which list(s) and send your request to TCEQ Office of the Chief Clerk at the address below.

INFORMATION AVAILABLE ONLINE. For details about the status of the application, visit the Commissioners' Integrated Database at <u>www.tceq.texas.gov/goto/cid</u>. Search the database using the permit number for this application, which is provided at the top of this notice.

AGENCY CONTACTS AND INFORMATION. All public comments and requests must be submitted either electronically at <u>https://www14.tceq.texas.gov/epic/eComment/</u>, or in writing to the Texas Commission on Environmental Quality, Office of the Chief Clerk, MC-105,

P.O. Box 13087, Austin, Texas 78711-3087. Please be aware that any contact information you provide, including your name, phone number, email address and physical address will become part of the agency's public record. For more information about this permit application or the permitting process, please call the TCEQ Public Education Program, Toll Free, at 1-800-687-4040 or visit their website at <u>www.tceq.texas.gov/goto/pep</u>. Si desea información en Español, puede llamar al 1-800-687-4040.

Further information may also be obtained from San Antonio Water System at the address stated above or by calling Ms. Olga Galindo, Executive Admin Assistant, at 210-233-4570.

Issuance Date: October 25, 2024

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and are not federal enforceable representations of the permit application.

San Antonio Water System (CN600529069) operates an Ultra Filtration Water Treatment Plant (RN103114724), a potable water treatment facility. The facility is located at 6725 Moreno Street, near the city of San Antonio, Bexar County, Texas 78073.

The water treatment facility is currently not producing wastewater. However, this application is for a renewal to discharge process wastewater on an intermittent and flow-variable basis via Outfall 001. Discharges from the facility are required to contain no more than 45 parts per million of Total Suspended Solids (TSS) and are required to have a potential of hydrogen (pH) between 6.0 and 9.0, measured as standard units.

Raw water is supplied by Medina Lake where it is withdrawn from an intake structure at the Medina River and is fed through a clarification system to remove turbidity, which are particles that cause cloudiness in water. The water is then fed through pre-filtration and ultra-filtration membranes to remove dissolved solids and the finished water is distributed for potable drinking water use while the solids are stored in lagoons.

Process wastewater discharges only occur when the incoming source water is excessive in turbidity. The ultra-filtration membranes system is shut off automatically and the flow is diverted to an equalization chamber and then discharged through Outfall 001, discharging to an unnamed ditch and then into Medio Creek, Segment ID 1912.

Jon Niermann, *Chairman* Bobby Janecka, *Commissioner* Catarina R. Gonzales, *Commissioner* Kelly Keel, *Executive Director*

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Protecting Texas by Reducing and Preventing Pollution

September 30, 2024

Re: Confirmation of Submission of the Renewal without changes for Reverse Osmosis Water Treatment Authorization.

Dear Applicant:

This is an acknowledgement that you have successfully completed Renewal without changes for the Reverse Osmosis Water Treatment authorization.

ER Account Number: ER046829 Application Reference Number: 656086 Authorization Number: WQ0004437000 Site Name: Ultrafiltration Wtp Regulated Entity: RN103114724 - Ultrafiltration Wtp Customer(s): CN600529069 - San Antonio Water System

Please be aware that TCEQ staff may contact your designated contact for any additional information.

If you have any questions, you may contact the Applications Review and Processing Team by email at WQ-ARPTeam@tceq.texas.gov or by telephone at (512) 239-4671.

Sincerely, Applications Review and Processing Team Water Quality Division

P.O. Box 13087 * Austin, Texas 78711-3087 * 512-239-1000 * tceq.texas.gov

Texas Commission on Environmental Quality Update Domestic or Industrial Individual Permit WQ0004437000

Site Information (Regulated Entity)

What is the name of the site to be authorized?	ULTRAFILTRATION WTP
Does the site have a physical address?	Yes
Physical Address	
Number and Street	6725 MORENO ST
City	VON ORMY
State	ТХ
ZIP	78073
County	BEXAR
Latitude (N) (##.######)	29.320277
Longitude (W) (-###.######)	-98.635555
Primary SIC Code	4941
Secondary SIC Code	
Primary NAICS Code	221310
Secondary NAICS Code	
Regulated Entity Site Information	
What is the Regulated Entity's Number (RN)?	RN103114724
What is the name of the Regulated Entity (RE)?	ULTRAFILTRATION WTP
Does the RE site have a physical address?	No
Physical Address	
Because there is no physical address, describe how to locate this site:	LOCATED AT 6725 MORENO STREET APPROXIMATELY 1.6 MILES NW OF THE INTERSECTION OF INTERSTATE HWY 35 AND LOOP 410 SW OF THE CITY OF SAN ANTONIO BEXAR COUNTY TEXAS
City	VON ORMY
State	ТХ
ZIP	78073
County	BEXAR
Latitude (N) (##.######)	29.320833
Longitude (W) (-###.######)	-98.634166
Facility NAICS Code	
What is the primary business of this entity?	INDUSTRIAL
San Ant-Customer (Applicant) Information (Owner)	

How is this applicant associated with this site?	Owner
What is the applicant's Customer Number (CN)?	CN600529069
Type of Customer	City Government
Full legal name of the applicant:	
Legal Name	San Antonio Water System
Texas SOS Filing Number	
Federal Tax ID	742632530
State Franchise Tax ID	
State Sales Tax ID	
Local Tax ID	
DUNS Number	57582603
Number of Employees	501+
Independently Owned and Operated?	Yes
I certify that the full legal name of the entity applying for this permit has been provided and is legally authorized to do business in Texas.	Yes
Responsible Authority Contact	
Organization Name	San Antonio Water System
Prefix	
First	Jeff
Middle	
Last	Haby
Suffix	
Credentials	PE
Title	Senior Vice President
Responsible Authority Mailing Address	
Enter new address or copy one from list:	
Address Type	Domestic
Mailing Address (include Suite or Bldg. here, if applicable)	2800 US HIGHWAY 281 N
Routing (such as Mail Code, Dept., or Attn:)	
City	SAN ANTONIO
State	ТХ
ZIP	78212
Phone (###-####-####)	2102333747
Extension	
Alternate Phone (###-####-####)	
Fax (###-####)	
E-mail	Jeff.Haby@saws.org

Billing Contact

Responsible contact for receiving billing statements:	
Select the permittee that is responsible for payment of the annual fee.	CN600529069, San Antonio Water System
Organization Name	SAN ANTONIO WATER SYSTEM
Prefix	
First	Floramie
Middle	
Last	Welch
Suffix	
Credentials	
Title	Environmental Analyst III
Enter new address or copy one from list:	
Mailing Address	
Address Type	Domestic
Mailing Address (include Suite or Bldg. here, if applicable)	2800 US HIGHWAY 281 N
Routing (such as Mail Code, Dept., or Attn:)	
City	SAN ANTONIO
State	тх
ZIP	78212
Phone (###-#####)	2102333744
Extension	
Alternate Phone (###-####-####)	
Fax (###-#####)	
E-mail	Floramie.Welch@saws.org
Application Contact	
Person TCEQ should contact for questions about this application:	
Same as another contact?	Billing Contact
Organization Name	SAN ANTONIO WATER SYSTEM
Prefix	
First	Floramie
Middle	
Last	Welch
Suffix	
Credentials	
Title	Environmental Analyst III
Enter new address or copy one from list:	
Mailing Address	

Mailing Address (include Suite or Bldg. here, if applicable)	2800 US HIGHWAY 281 N
Routing (such as Mail Code, Dept., or Attn:)	
City	SAN ANTONIO
State	ТХ
ZIP	78212
Phone (###-####-####)	2102333744
Extension	
Alternate Phone (###-#####)	
Fax (###-#####)	
E-mail	Floramie.Welch@saws.org
Technical Contact	
Person TCEQ should contact for questions about this application:	
Same as another contact?	Application Contact
Organization Name	SAN ANTONIO WATER SYSTEM
Prefix	MS
First	Floramie
Middle	
Last	Welch
Suffix	
Credentials	
Title	Environmental Analyst III
Enter new address or copy one from list:	
Mailing Address	
Address Type	Domestic
Mailing Address (include Suite or Bldg. here, if applicable)	2800 US HIGHWAY 281 N
Routing (such as Mail Code, Dept., or Attn:)	
City	SAN ANTONIO
State	ТХ
ZIP	78212
Phone (###-####+###)	2102333744
Extension	
Alternate Phone (###-#####)	
Fax (###-#####)	
E-mail	Floramie.Welch@SAWS.ORG

DMR Contact

Person responsible for submitting Discharge Monitoring Report Forms:

Same as another contact?	Application Contact
Organization Name	SAN ANTONIO WATER SYSTEM
Prefix	
First	Floramie
Middle	
Last	Welch
Suffix	
Credentials	
Title	Environmental Analyst III
Enter new address or copy one from list:	
Mailing Address:	
Address Type	Domestic
Mailing Address (include Suite or Bldg. here, if applicable)	2800 US HIGHWAY 281 N
Routing (such as Mail Code, Dept., or Attn:)	
City	SAN ANTONIO
State	ТХ
ZIP	78212
Phone (###-####)	2102333744
Extension	
Alternate Phone (###-######)	
Fax (###-####)	
Fax (###-#####) E-mail	Floramie.Welch@SAWS.ORG
Fax (###-#####) E-mail	Floramie.Welch@SAWS.ORG
Fax (###-#####) E-mail Section 1# Permit Contact	Floramie.Welch@SAWS.ORG
Fax (###-#####) E-mail Section 1# Permit Contact Permit Contact#: 1	Floramie.Welch@SAWS.ORG
Fax (###-#####) E-mail Section 1# Permit Contact Permit Contact#: 1 Person TCEQ should contact throughout the permit term.	Floramie.Welch@SAWS.ORG
Fax (###-#####) E-mail Section 1# Permit Contact Permit Contact#: 1 Person TCEQ should contact throughout the permit term. 1) Same as another contact?	Floramie.Welch@SAWS.ORG
Fax (###-#####) E-mail Section 1# Permit Contact Permit Contact#: 1 Person TCEQ should contact throughout the permit term. 1) Same as another contact? 2) Organization Name	Floramie.Welch@SAWS.ORG Application Contact SAN ANTONIO WATER SYSTEM
Fax (###-#####) E-mail Section 1# Permit Contact Permit Contact#: 1 Person TCEQ should contact throughout the permit term. 1) Same as another contact? 2) Organization Name 3) Prefix	Floramie.Welch@SAWS.ORG Application Contact SAN ANTONIO WATER SYSTEM
Fax (###-#####) E-mail Section 1# Permit Contact Permit Contact#: 1 Person TCEQ should contact throughout the permit term. 1) Same as another contact? 2) Organization Name 3) Prefix 4) First	Floramie.Welch@SAWS.ORG Application Contact SAN ANTONIO WATER SYSTEM Floramie
Fax (###-#####) E-mail Section 1# Permit Contact Permit Contact#: 1 Person TCEQ should contact throughout the permit term. 1) Same as another contact? 2) Organization Name 3) Prefix 4) First 5) Middle	Floramie.Welch@SAWS.ORG Application Contact SAN ANTONIO WATER SYSTEM Floramie
Fax (###-#################################	Floramie.Welch@SAWS.ORG Application Contact SAN ANTONIO WATER SYSTEM Floramie Welch
Fax (###-#################################	Floramie.Welch@SAWS.ORG Application Contact SAN ANTONIO WATER SYSTEM Floramie Welch
Fax (###-#####) E-mail Section 1# Permit Contact Permit Contact#: 1 Person TCEQ should contact throughout the permit term. 1) Same as another contact? 2) Organization Name 3) Prefix 4) First 5) Middle 6) Last 7) Suffix 8) Credentials	Floramie.Welch@SAWS.ORG Application Contact SAN ANTONIO WATER SYSTEM Floramie Welch
Fax (####################################	Floramie.Welch@SAWS.ORG Application Contact SAN ANTONIO WATER SYSTEM Floramie Welch Environmental Analyst III
Fax (####################################	Floramie.Welch@SAWS.ORG Application Contact SAN ANTONIO WATER SYSTEM Floramie Welch Environmental Analyst III
Fax (### ################################	Floramie.Welch@SAWS.ORG Application Contact SAN ANTONIO WATER SYSTEM Floramie Welch Environmental Analyst III
Fax (###-#################################	Floramie.Welch@SAWS.ORG Application Contact SAN ANTONIO WATER SYSTEM Floramie Welch Environmental Analyst III Domestic

	11.2) Routing (such as Mail Code, Dept., or Attn:)
	11.3) City
	11.4) State
	11.5) ZIP
	12) Phone (###-#####)
	13) Extension
	14) Alternate Phone (###-#####)
	15) Fax (###-######)
	16) E-mail
1	Owner Information

Owner Information

Owner of Treatment Facility
1) Prefix
2) First and Last Name
3) Organization Name
4) Mailing Address
5) City
6) State
7) Zip Code
8) Phone (###-#####)
9) Extension
10) Email
11) What is ownership of the treatment facility?
Owner of Land (where treatment facility is or will be)
12) Prefix
13) First and Last Name
14) Organization Name
15) Mailing Address
16) City
17) State
18) Zip Code
19) Phone (###-#####)
20) Extension
21) Email
22) Is the landowner the same person as the facility owner or co- applicant?

General Information Renewal-Amendment

1) Current authorization expiration date:

SAN ANTONIO	
ТХ	
78212	
2102333744	

Floramie.Welch@saws.org

SAN ANTONIO WATER SYSTEM 2800 US HWY 281 NORTH SAN ANTONIO TX 78212 2107047297

Floramie.Welch@saws.org Public

SAN ANTONIO WATER SYSTEM 2800 US HWY 281 NORTH SAN ANTONIO TX 78212 2107047297

Floramie.Welch@saws.org Yes

2) Current Facility operational status:	Active
3) Is the facility located on or does the treated effluent cross American Indian Land?	No
4) What is the application type that you are seeking?	Renewal without changes
5) Current Authorization type:	Reverse Osmosis Water Treatment
5.1) What is your EPA facility classification?	Minor
5.1.1) Are the discharges at your facility subjected to federal effluent limitation guidelines (ELG) 40 CFR Part 400-471?	Νο
5.1.1.1) Select the applicable fee for the Minor facility that is not subjected to 40 CFR 400-471:	Renewal - \$315
6) What is the classification for your authorization?	TPDES
6.1) What is the EPA Identification Number?	TX0125083
6.2) Is the wastewater treatment facility location in the existing permit accurate?	Yes
6.3) Are the point(s) of discharge and the discharge route(s) in the existing permit correct?	Yes
6.4) City nearest the outfall(s):	SAN ANTONIO
6.5) County where the outfalls are located:	BEXAR
6.6) Is or will the treated wastewater discharge to a city, county, or state highway right-of-way, or a flood control district drainage ditch?	Νο
6.7) Is the daily average discharge at your facility of 5 MGD or more?	No
7) Did any person formerly employed by the TCEQ represent your company and get paid for service regarding this application?	Νο

Public Notice Information

Individual Publishing the Notices	
1) Prefix	
2) First and Last Name	Lilliana Gonzalez
3) Credential	
4) Title	SR COMMUNICATIONS SPECIALIST
5) Organization Name	SAN ANTONIO WATER SYSTEM
6) Mailing Address	2800 US HIGHWAY 281 N
7) Address Line 2	
8) City	SAN ANTONIO
9) State	ТХ
10) Zip Code	78212
11) Phone (###-####-####)	2102333247
12) Extension	
13) Fax (###-####-####)	
14) Email	Lilliana.Gonzalez@saws.org
Contact person to be listed in the Notices	

TOWER 1 FIRST FLOOR

2800 US HWY 281 NORTH

SAN ANTONIO

2102333744

Yes

FLORAMIE WELCH

15) Prefix		
16) First and Last Name	OLGA GALINDO	
17) Credential		
18) Title	EXECUTIVE ADMIN ASSISTANT	
19) Organization Name	SAN ANTONIO WATER SYSTEM	
20) Phone (###-####-####)	2102334570	
21) Fax (###-#####)		
22) Email	OLGA.GALINDO@SAWS.ORG	
Bilingual Notice Requirements		
23) Is a bilingual education program required by the Texas Education Code at the elementary or middle school nearest to the facility or proposed facility?	No	
Section 1# Public Viewing Information		
County#: 1		
1) County	BEXAR	
2) Public building name	SAN ANTONIO WATER SYSTEM ADMIN BLDG	

Plain Language

5) City

6) Contact Name

8) Extension

7) Phone (###-####)

3) Location within the building

4) Physical Address of Building

9) Is the location open to the public?

1) Plain Language	
[File Properties]	
File Name	LANG_2024_UF_PLANT_TPDES_APPLICATION_PLAIN_LANGUAGE.pdf
Hash	9C81D89CA86D24A216FF7B8B028AA0AFF56A4E9B3FEFEEE4518A91528EB5E8EC
MIME-Type	application/pdf

Supplemental Permit Information Form

1) Supplemental Permit Information Form (SPIF)							
[File Properties]							
File Name	SPIF_2024_UF_PLANT_TPDES_APPLICATION_SPIF_OUTFALL_MAP.pdf						
Hash	FF8313B7D3A5C33EB9B2F1C1DD7E2304DDE219AD0885745F6268D37CF4189456						

MIME-Type		application/pdf
Industrial Attachm	nents	
1) Attach an 8.5"x11", rej	produced portion of the most current and origina	I USGS Topographic Quadrangle Map(s) that
[File Properties]		
File Name	MAP_2024_UF_	PLANT_TPDES_APPLICATION_USGS_MAPS.pdf
Hash	12F438830C70AEA29E8995526B	BB72F5614113668E235C3E4A02B4BBB61AB5BF
MIME-Type		application/pdf
2) I confirm that all requir complete and will be incl	red sections of Technical Report 1.0 are uded in the Technical Attachment.	Yes
2.1) I confirm that Works complete and included in	heet 2.0 (Pollutant Analyses Requirements) is the Technical Attachment.	Yes
2.2) I confirm that Works included in the Technical	heet 4.0 (Receiving Waters) is complete and Attachment.	Yes
2.3) Are you planning to Characteristics) in the Te	include Worksheet 4.1 (Waterbody Physical echnical Attachment?	No
2.4) Are you planning to Contribution) in the Tech	include Worksheet 6.0 (Industrial Waste nical Attachment?	No
2.5) Are you planning to Discharges Associated w Attachment?	include Worksheet 7.0 (Stormwater vith Industrial Activities) to the Technical	Νο
2.6) Are you planning to Technical Attachment?	include Worksheet 8.0 (Aquaculture) in the	No
2.7) Are you planning to Inventory/Authorization)	include Worksheet 9.0 (Class V Injection Well in the Technical Attachment?	No
2.8) Are you planning to Graves Scenic Riverway	include Worksheet 10.0 (Quarries in the John) in the Technical Attachment?	No
2.9) Are you planning to System Information) in th	include Worksheet 11.0 (Cooling Water ne Technical Attachment?	No
2.10) Are you planning to Mortality) in the Technica	o include Worksheet 11.1 (Impingement al Attachment?	No
2.11) Are you planning to Biological Data) in the Te	o include Worksheet 11.2 (Source Water echnical Attachment?	No
2.12) Are you planning to Technical Attachment?	o include Worksheet 11.3 (Entrainment) in the	No
2.13) Technical Attachme	ent	
[File Properties]		
File Name	TECH_2024_UF_PLANT_TPDE	ES_APPLICATION_TECHNICAL_REPORT1.0A.pdf
Hash	EC26462D3B6BBA21186337E3834	EA5DBB95E1400AA41C82C14AABBFF9E42CC57
MIME-Type		application/pdf

3) Flow Diagram	
[File Properties]	
File Name	FLDIA_2024_UF_PLANT_TPDES_APPLICATION_FLOW_DIAGRAM.pdf
Hash	CFCCBBB16464B163C1B0CE0069982E8817D37836C80675F14F69A147827EBE1B
MIME-Type	application/pdf
4) Site Drawing	
Hasn	AFEFFD2F24CA1A448743E447CB1A6C6E969EEEF44DD3BE4FFCF780303D354451
МІМЕ-Туре	application/pdf
5) Design Calculation	IS
[File Properties]	
File Name	DES_CAL_2024_UF_PLANT_TPDES_APPLICATION_NOT_APPLICABLE_SECTIONS_SIGNED.pdf
Hash	4FE069A36D8DF307B425E8859656B8C9B2A07CA7B6E382512834BC1321F3BEE4
MIME-Type	application/pdf
6) Solids Managemer	nt Plan
[File Properties]	
File Name	SMP_2024_UF_PLANT_TPDES_APPLICATION_NOT_APPLICABLE_SECTIONS_SIGNED.pdf
Hash	4FE069A36D8DF307B425E8859656B8C9B2A07CA7B6E382512834BC1321F3BEE4
MIME-Type	application/pdf
7) Water Balance	
[File Properties]	
File Name	WB_2024_UF_PLANT_TPDES_APPLICATION_NOT_APPLICABLE_SECTIONS_SIGNED.pdf
Hash	4FE069A36D8DF307B425E8859656B8C9B2A07CA7B6E382512834BC1321F3BEE4
MIME-Type	application/pdf
8) Other Attachments	
[File Properties]	
File Name	OTHER_2024_UF_PLANT_TPDES_APPLICATION_CORE_DATA_FORM_SIGNED.pdf
Hash	1F0B5FB49E07C7E2206AD173978CC9413774B18CA3291BD1A177D28146FA8BF3
MIME-Type	application/pdf
[File Properties]	
File Name	OTHER_2024_UF_PLANT_TPDES_APPLICATION_LABORATORY_FORM_SIGNED.pdf
Hash	B89BA324927D0F560AD25C02EE7A110C3AB61A3B447A4C16740DDFE2C239853D
MIME-Type	application/pdf
[File Properties]	

File Name	OTHER_2024_0520_UF_PLANT_CLOSURE_PLAN_SIGNED.pdf
Hash	E30F2993FAF55AFEEC31FEE3B7594A0E133F46C1380935B603AA08F72263C9D0
MIME-Type	application/pdf

Certification

I certify that I am authorized under 30 Texas Administrative Code 305.44 to sign this document and can provide documentation in proof of such authorization upon request.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

- 1. I am Jeffrey J Haby, the owner of the STEERS account ER106003.
- 2. I have the authority to sign this data on behalf of the applicant named above.
- 3. I have personally examined the foregoing and am familiar with its content and the content of any attachments, and based upon my personal knowledge and/or inquiry of any individual responsible for information contained herein, that this information is true, accurate, and complete.
- 4. I further certify that I have not violated any term in my TCEQ STEERS participation agreement and that I have no reason to believe that the confidentiality or use of my password has been compromised at any time.
- 5. I understand that use of my password constitutes an electronic signature legally equivalent to my written signature.
- 6. I also understand that the attestations of fact contained herein pertain to the implementation, oversight and enforcement of a state and/or federal environmental program and must be true and complete to the best of my knowledge.
- 7. I am aware that criminal penalties may be imposed for statements or omissions that I know or have reason to believe are untrue or misleading.
- 8. I am knowingly and intentionally signing Update Domestic or Industrial Individual Permit WQ0004437000.
- 9. My signature indicates that I am in agreement with the information on this form, and authorize its submittal to the TCEQ.

OWNER Signature: Jeffrey J Haby OWNER

Customer Number:		CN600529069
Legal Name:		San Antonio Water System
Account Number:		ER106003
Signature IP Address:		155.190.8.7
Signature Date:		2024-09-05
Signature Hash:	2E9FE6E897E0EB8864AEF7085788	5D410DE05A2A22FFEE66DB5E01DFD478A77F
Form Hash Code at time of Signature:	7A1E3E1EF12E542037D80BA1B041	E50C50212C5245C57D4CDEDF93DA1F540F39

Fee Payment

Transaction by:

The application fee payment transaction was made by ER106003/Jeffrey J Haby

Paid by:

The application fee was paid by JEFFREY J

	НАВХ
Fee Amount:	\$300.00
Paid Date:	The application fee was paid on 2024-09-05
Transaction/Voucher number:	The transaction number is 582EA000624251 and the voucher number is 720065
Submission	
Reference Number:	The application reference number is 656086
Submitted by:	The application was submitted by ER046829/Floramie Welch
Submitted Timestamp:	The application was submitted on 2024-09-30 at 13:34:10 CDT
Submitted From:	The application was submitted from IP address 155.190.8.5
Confirmation Number:	The confirmation number is 567262
Steers Version:	The STEERS version is 6.82
Permit Number:	The permit number is WQ0004437000
Additional Information	

12 of 12

TCEQ Core Data Form

For detailed instructions on completing this form, please read the Core Data Form Instructions or call 512-239-5175.

SECTION I: General Information

1. Reason for Submission (If other is checked please	e describe in space provided.)				
New Permit, Registration or Authorization (Core L	Data Form should be submitted with	the program application.)			
Renewal (Core Data Form should be submitted wi	th the renewal form)	Other			
2. Customer Reference Number (<i>if issued</i>) Follow this link to search Construction Structure S					
CN 600529069	<u>Central Registry**</u>	RN 103114724			

SECTION II: Customer Information

4. General Customer	Information	5. Effective D	ate for Cus	tome	r Information	Update	s (mm/dd/yyy	5. Effective Date for Customer Information Updates (mm/dd/yyyy)					
New Customer	e (Verifiable with the	Update to Custome Texas Secretary of S	er Informatio tate or Texa	on s Com	Cha ptroller of Pub	nge in Reg lic Accoun	gulated Entity (ts)	Ownership	ne lapada				
The Customer Name (SOS) or Texas Comp	submitted here m troller of Public Ac	ay be updated aut counts (CPA).	omatically	base	d on what is a	current a	ind active wit	th the Texas Se	cretary of State				
6. Customer Legal Na	ame (If an individual,	print last name first.	eg: Doe, Joł	hn)		<u>If new (</u>	Customer, ente	er previous Custor	ner below:				
SAN ANTONIO WATER	SYSTEM (SAWS)							n en					
7. TX SOS/CPA Filing	Number	8. TX State Ta	x ID (11 dig	its)	- bears	9. Fed (9 digit: 74-263	eral Tax ID s) 2530	10. DUNS applicable) 057582603	Number (if				
11. Type of Custome	r: Corp	oration	11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		🗌 Indivi	dual	Pa	rtnership: 🗌 Ge	neral 🗌 Limited				
Government: 🛛 City	County 🗌 Federal	Local State	Other		Sole F	roprietors	ship 🗌	Other:					
12. Number of Empl	oyees					13. Inc	dependently	Owned and Op	erated?				
0-20 21-100	101-250 2	51-500 🛛 501 an	d higher			🗌 Yes		lo					
14. Customer Role (F	roposed or Actual) –	as it relates to the Re	egulated Ent	ity list	ed on this form	. Please ch	heck one of the	following					
Owner Occupational License	Operator ee Responsible	Party Dvr	er & Operato P/BSA Appli	or cant			Other:						
15. Mailing	JS HIGHWAY 281 NOI	RTH				. 4991 -			and the states of				
City	SAN ANTONIO	Sec. 1	State	ТΧ	ZIP	78212	2000 AN	ZIP + 4	3106				
16. Country Mailing	Information (if outs	ide USA)			17. E-Mail A	ddress (i	if applicable)		10 10 10 10 10 10 10 10 10 10 10 10 10 1				
18. Telephone Numl	per	19	. Extension	or Co	ode	Contraction of the	20. Fax Num	ber (if applicable)				

(210)7	04-7297
--------	---------

() -

SECTION III: Regulated Entity Information

21. General Regulated E	ntity Informa	ation (If 'New Regul	lated Entity" is sele	cted, a new p	ermit applic	ation is also requi	red.)	
New Regulated Entity	Update to	Regulated Entity Na	ame 🛛 Update	to Regulated	Entity Inform	nation		
The Regulated Entity Na as Inc, LP, or LLC).	me submitte	ed may be update	d, in order to me	et TCEQ Co	re Data Sta	ndards (removi	al of organizatio	nal endings such
22. Regulated Entity Nar	ne (Enter nan	ne of the site where a	the regulated actio	n is taking pla	nce.)	· · · · · · · · · · · · · · · · · · ·		
ULTRAFILTRATION WATER T	REATMENT PI	LANT						
23. Street Address of the Regulated Entity:	6725 MOR	ENO STREET						
(No PO Boxes)	City	VON ARMY	State	тх	ZIP	78073	ZIP + 4	
24. County	BEXAR					_		
		If no Street	Address is provi	ied, fields 2	25-28 are re	equired.		
25. Description to								
Physical Location:								
26. Nearest City						State	Nea	rest ZIP Code
Latitude/Longitude are	required and	i may be added/u	pdated to meet	TCEQ Core L	Data Stand	ards. (Geocodin	g of the Physica	Address may be

used to supply coordinates where none have been provided or to gain accuracy).

		•	-						
27. Latitude (N) In Decim	27. Latitude (N) In Decimal: 28. Longitude (W) In Decimal:								
Degrees	Minutes	S	Seconds	Deg	rees	Mir	utes		Seconds
-									
29. Primary SIC Code	30.	Secondary SIC C	ode	31. Primary NAICS Code 32. Secondary NAICS Code					
(4 digits)	(4 di	igits)		(5 or 6 di	gits)		(5 or 6 dig	jits)	
4941				221310					
33. What is the Primary	Business of t	his entity? (Do	not repeat the SIC o	r NAICS des	cription.)				
POTABLE WATER TREATMEN	NT								
	2800 US H	2800 US HIGHWAY 281 NORTH							
34. Mailing Address:							-		
	City	SAN ANTONIO	State	хт	ZIP	7821		ZIP + 4	3106
35. E-Mail Address:									
36. Telephone Number			37. Extension or	Code	38. F	ax Number	(if applicab	ole)	
(210) 704-7297					() -			

39. TCEQ Programs and ID Numbers Check all Programs and write in the permits/registration numbers that will be affected by the updates submitted on this form. See the Core Data Form instructions for additional guidance.

Dam Safety	Districts	Edwards Aquifer	Emissions Inventory Air	Industrial Hazardous Waste
Municipal Solid Waste	New Source Review Air	OSSF	Petroleum Storage Tank	D PWS
Sludge	Storm Water	Title V Air	Tires	Used Oil
Voluntary Cleanup	Wastewater	Wastewater Agriculture	Water Rights	Other:
	WQ0004437-000			

SECTION IV: Preparer Information

40. Name:	me: FLORAMIE WELCH			41. Title:	ENVIRONMENTAL ANALYST III
42. Telephone Number		43. Ext./Code	44. Fax Number	45. E-Mail Address	
(210) 233-3744			() -	FLORAMIE.	WELCH@SAWS.ORG

SECTION V: Authorized Signature

46. By my signature below, I certify, to the best of my knowledge, that the information provided in this form is true and complete, and that I have signature authority to submit this form on behalf of the entity specified in Section II, Field 6 and/or as required for the updates to the ID numbers identified in field 39.

Company:	SAN ANTONIO WATER SYSTEM (SAWS)	Job Title:	SR. VICE PRESIDENT, PRODUCTION OPERATIONS		
Name (In Print):	JEFF HABY, P.E.			Phone:	(210)233-3747
Signature:	Jehn / Haly			Date:	6-3-2024
	010000				

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and are not federal enforceable representations of the permit application.

San Antonio Water System (CN600529069) operates an Ultra Filtration Water Treatment Plant (RN103114724), a potable water treatment facility. The facility is located at 6725 Moreno Street, near the city of San Antonio, Bexar County, Texas 78073.

The water treatment facility is currently not producing wastewater. However, this application is for a renewal to discharge process wastewater on an intermittent and flow-variable basis via Outfall 001. Discharges from the facility are required to contain no more than 45 parts per million of Total Suspended Solids (TSS) and are required to have a potential of hydrogen (pH) between 6.0 and 9.0, measured as standard units.

Raw water is supplied by Medina Lake where it is withdrawn from an intake structure at the Medina River and is fed through a clarification system to remove turbidity, which are particles that cause cloudiness in water. The water is then fed through pre-filtration and ultra-filtration membranes to remove dissolved solids and the finished water is distributed for potable drinking water use while the solids are stored in lagoons.

Process wastewater discharges only occur when the incoming source water is excessive in turbidity. The ultra-filtration membranes system is shut off automatically and the flow is diverted to an equalization chamber and then discharged through Outfall 001, discharging to an unnamed ditch and then into Medio Creek, Segment ID 1912.

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

SUPPLEMENTAL PERMIT INFORMATION FORM (SPIF)

FOR AGENCIES REVIEWING DOMESTIC OR INDUSTRIAL TPDES WASTEWATER PERMIT APPLICATIONS

TCEQ USE ONLY:				
Application type:RenewalMajor Am	endmentNinor AmendmentNew			
County: Segment Number:				
Admin Complete Date:	-			
Agency Receiving SPIF:				
Texas Historical Commission	U.S. Fish and Wildlife			
Texas Parks and Wildlife Department	U.S. Army Corps of Engineers			

This form applies to TPDES permit applications only. (Instructions, Page 53)

Complete this form as a separate document. TCEQ will mail a copy to each agency as required by our agreement with EPA. If any of the items are not completely addressed or further information is needed, we will contact you to provide the information before issuing the permit. Address each item completely.

Do not refer to your response to any item in the permit application form. Provide each attachment for this form separately from the Administrative Report of the application. The application will not be declared administratively complete without this SPIF form being completed in its entirety including all attachments. Questions or comments concerning this form may be directed to the Water Quality Division's Application Review and Processing Team by email at <u>WQ-ARPTeam@tceq.texas.gov</u> or by phone at (512) 239-4671.

The following applies to all applications:

1. Permittee: San Antonio Water System

Permit No. WQ00 04437000

EPA ID No. TX 0125083

Address of the project (or a location description that includes street/highway, city/vicinity, and county):

6725 Moreno Street, approximately 1.6 miles northwest of the intersection of Interstate Highway 35and Loop 410, southwest of the City of San Antonio, Bexar County, Texas 78073

Provide the name, address, phone and fax number of an individual that can be contacted to answer specific questions about the property.

- 2. List the county in which the facility is located: <u>Bexar</u>
- If the property is publicly owned and the owner is different than the permittee/applicant, please list the owner of the property.
 N/A
- 4. Provide a description of the effluent discharge route. The discharge route must follow the flow of effluent from the point of discharge to the nearest major watercourse (from the point of discharge to a classified segment as defined in 30 TAC Chapter 307). If known, please identify the classified segment number.

To an unnamed ditch; thence to O.R. Mitchell Lake 1; thence to Medio Creek in Segment 1912 of the San Antonio River

5. Please provide a separate 7.5-minute USGS quadrangle map with the project boundaries plotted and a general location map showing the project area. Please highlight the discharge route from the point of discharge for a distance of one mile downstream. (This map is required in addition to the map in the administrative report).

Provide original photographs of any structures 50 years or older on the property.

Does your project involve any of the following? Check all that apply.

- Proposed access roads, utility lines, construction easements
- □ Visual effects that could damage or detract from a historic property's integrity
- □ Vibration effects during construction or as a result of project design
- □ Additional phases of development that are planned for the future
- □ Sealing caves, fractures, sinkholes, other karst features

- Disturbance of vegetation or wetlands
- 1. List proposed construction impact (surface acres to be impacted, depth of excavation, sealing of caves, or other karst features):

N/A

2. Describe existing disturbances, vegetation, and land use: N/A

THE FOLLOWING ITEMS APPLY ONLY TO APPLICATIONS FOR NEW TPDES PERMITS AND MAJOR AMENDMENTS TO TPDES PERMITS

- 3. List construction dates of all buildings and structures on the property: N/A
- 4. Provide a brief history of the property, and name of the architect/builder, if known. N/A

Ultrafiltration Water Treatment Plant

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

INDUSTRIAL WASTEWATER PERMIT APPLICATION TECHNICAL REPORT 1.0

The following information **is required** for all applications for a TLAP or an individual TPDES discharge permit.

For **additional information** or clarification on the requested information, please refer to the <u>Instructions for Completing the Industrial Wastewater Permit Application</u>¹ available on the TCEQ website. Please contact the Industrial Permits Team at 512-239-4671 with any questions about this form.

If more than one outfall is included in the application, provide applicable information for each individual outfall. **If an item does not apply to the facility, enter N/A** to indicate that the item has been considered. Include separate reports or additional sheets as **clearly cross-referenced attachments** and provide the attachment number in the space provided for the item the attachment addresses.

NOTE: This application is for an industrial wastewater permit only. Additional authorizations from the TCEQ Waste Permits Division or the TCEQ Air Permits Division may be needed.

Item 1. Facility/Site Information (Instructions, Page 39)

a. Describe the general nature of the business and type(s) of industrial and commercial activities. Include all applicable SIC codes (up to 4).

Potable Water Treatment. SIC Code: 4941 NAICS Code: 221310

b. Describe all wastewater-generating processes at the facility.

Under normal operating conditions, the facility does not produce wastewater. All water in the process is recycled and/or lost to evaporation of the river sediments in storage lagoons. Periodically, the turbidity level of the source water (Medina River) exceeds 500 NTU, and the flow to the ultra-filtration membranes automatically shuts off. The super flocculating clarifier is designed to continue in operation to maintain the "floc". When this condition occurs, discharging wastewater is required.

¹

https://www.tceq.texas.gov/permitting/wastewater/industrial/TPDES_industrial_wastewater_st eps.html

c. Provide a list of raw materials, major intermediates, and final products handled at the facility.

Raw Materials	Intermediate Products	Final Products
Medina River Water		

Materials List

Attachment: <u>N/A</u>

d. Attach a facility map (drawn to scale) with the following information:

- Production areas, maintenance areas, materials-handling areas, waste-disposal areas, and water intake structures.
- The location of each unit of the WWTP including the location of wastewater collection sumps, impoundments, outfalls, and sampling points, if significantly different from outfall locations.

Attachment: <u>N/A</u>

e. Is this a new permit application for an existing facility?

 \Box Yes \boxtimes No

If **yes**, provide background discussion: <u>N/A</u>

- f. Is/will the treatment facility/disposal site be located above the 100-year frequency flood level.
 - 🖾 Yes 🗆 No

List source(s) used to determine 100-year frequency flood plain: FEMA Maps for Bexar County

If **no**, provide the elevation of the 100-year frequency flood plain and describe what protective measures are used/proposed to prevent flooding (including tail water and rainfall run-on controls) of the treatment facility and disposal area: <u>N/A</u>

Attachment: <u>N/A</u>

g. For **new** or **major amendment** permit applications, will any construction operations result in a discharge of fill material into a water in the state?

 \Box Yes \Box No \boxtimes N/A (renewal only)

h. If **yes** to Item 1.g, has the applicant applied for a USACE CWA Chapter 404 Dredge and Fill permit?

□ Yes □ No

If **yes**, provide the permit number: $\underline{N/A}$

If **no**, provide an approximate date of application submittal to the USACE: N/A

Item 2. Treatment System (Instructions, Page 40)

a. List any physical, chemical, or biological treatment process(es) used/proposed to treat wastewater at this facility. Include a description of each treatment process, starting with initial treatment and finishing with the outfall/point of disposal.

Under normal operating conditions, the facility does not produce wastewater. All water in the process is recycled and/or lost to evaporation of the river sediments in storage lagoons. Periodically, the turbidity level of the source water (Medina River) exceeds 500 NTU, and the flow to the ultra-filtration membranes automatically shuts off. The super flocculating clarifier is designed to continue in operation to maintain the "floc". When this condition occurs, discharging wastewater is required.

b. Attach a flow schematic **with a water balance** showing all sources of water and wastewater flow into the facility, wastewater flow into and from each treatment unit, and wastewater flow to each outfall/point of disposal.

Attachment: <u>N/A</u>

Item 3. Impoundments (Instructions, Page 40)

Does the facility use or plan to use any wastewater impoundments (e.g., lagoons or ponds?)

🗆 Yes 🛛 No

If **no**, proceed to Item 4. If **yes**, complete **Item 3.a** for **existing** impoundments and **Items 3.a** - **3.e** for **new or proposed** impoundments. **NOTE:** See instructions, Pages 40-42, for additional information on the attachments required by Items 3.a – 3.e.

a. Complete the table with the following information for each existing, new, or proposed impoundment. Attach additional copies of the Impoundment Information table, if needed.

Use Designation: Indicate the use designation for each impoundment as Treatment (**T**), Disposal (**D**), Containment (**C**), or Evaporation (**E**).

Associated Outfall Number: Provide an outfall number if a discharge occurs or will occur.

Liner Type: Indicate the liner type as Compacted clay liner (**C**), In-situ clay liner (**I**), Synthetic/plastic/rubber liner (**S**), or Alternate liner (**A**). **NOTE:** See instructions for further detail on liner specifications. If an alternate liner (A) is selected, include an attachment that provides a description of the alternate liner and any additional technical information necessary for an evaluation.

Leak Detection System: If any leak detection systems are in place/planned, enter **Y** for yes. Otherwise, enter **N** for no.

Groundwater Monitoring Wells and Data: If groundwater monitoring wells are in place/planned, enter **Y** for yes. Otherwise, enter **N** for no. Attach any existing groundwater monitoring data.

Dimensions: Provide the dimensions, freeboard, surface area, storage capacity of the impoundments, and the maximum depth (not including freeboard). For impoundments with irregular shapes, submit surface area instead of length and width.

Compliance with 40 CFR Part 257, Subpart D: If the impoundment is required to be in compliance with 40 CFR Part 257, Subpart D, enter **Y** for yes. Otherwise, enter **N** for no.

Date of Construction: Enter the date construction of the impoundment commenced (mm/dd/yy).

Parameter	Pond #	Pond #	Pond #	Pond #
Use Designation: (T) (D) (C) or (E)				
Associated Outfall Number				
Liner Type (C) (I) (S) or (A)				
Alt. Liner Attachment Reference				
Leak Detection System, Y/N				
Groundwater Monitoring Wells, Y/N				
Groundwater Monitoring Data Attachment				
Pond Bottom Located Above The Seasonal High-Water Table, Y/N				
Length (ft)				
Width (ft)				
Max Depth From Water Surface (ft), Not Including Freeboard				
Freeboard (ft)				
Surface Area (acres)				
Storage Capacity (gallons)				
40 CFR Part 257, Subpart D, Y/N				
Date of Construction				

Impoundment Information

Attachment: <u>N/A</u>

The following information (**Items 3.b – 3.e**) is required only for **new or proposed** impoundments.
- b. For new or proposed impoundments, attach any available information on the following items. If attached, check **yes** in the appropriate box. Otherwise, check **no** or **not yet designed**.
 - 1. Liner data
 - \Box Yes \Box No \Box Not yet designed
 - 2. Leak detection system or groundwater monitoring data
 - \Box Yes \Box No \Box Not yet designed
 - 3. Groundwater impacts
 - \Box Yes \Box No \Box Not yet designed

NOTE: Item b.3 is required if the bottom of the pond is not above the seasonal highwater table in the shallowest water-bearing zone.

Attachment: <u>N/A</u>

For TLAP applications: Items 3.c – 3.e are not required, continue to Item 4.

c. Attach a USGS map or a color copy of original quality and scale which accurately locates and identifies all known water supply wells and monitor wells within ½-mile of the impoundments.

Attachment: <u>N/A</u>

d. Attach copies of State Water Well Reports (e.g., driller's logs, completion data, etc.), and data on depths to groundwater for all known water supply wells including a description of how the depths to groundwater were obtained.

Attachment: N/A

e. Attach information pertaining to the groundwater, soils, geology, pond liner, etc. used to assess the potential for migration of wastes from the impoundments or the potential for contamination of groundwater or surface water.

Attachment: <u>N/A</u>

Item 4. Outfall/Disposal Method Information (Instructions, Page 42)

Complete the following tables to describe the location and wastewater discharge or disposal operations for each outfall for discharge, and for each point of disposal for TLAP operations.

If there are more outfalls/points of disposal at the facility than the spaces provided, copies of pages 6 and/0r numbered accordingly (i.e., page 6a, 6b, etc.) may be used to provide information on the additional outfalls.

For TLAP applications: Indicate the disposal method and each individual irrigation area **I**, evaporation pond **E**, or subsurface drainage system **S** by providing the appropriate letter designation for the disposal method followed by a numerical designation for each disposal area in the space provided for **Outfall** number (e.g. **E1** for evaporation pond 1, **I2** for irrigation area No. 2, etc.).

Outfall Longitude and Latitude

Outfall No.	Latitude (Decimal Degrees)	Longitude (Decimal Degrees)
001	29.320278	-98.635556

Outfall Location Description

Outfall No.	Location Description
001	4-8" pipes along fence line discharging to a ditch

Description of Sampling Point(s) (if different from Outfall location)

Outfall No.	Description of sampling point
N/A	

Outfall Flow Information - Permitted and Proposed

Outfall No.	Permitted Daily Avg Flow (MGD)	Permitted Daily Max Flow (MGD)	Proposed Daily Avg Flow (MGD)	Proposed Daily Max Flow (MGD)	Anticipated Discharge Date (mm/dd/yy)
N/A					

Outfall Discharge - Method and Measurement

Outfall No.	Pumped Discharge? Y/N	Gravity Discharge? Y/N	Type of Flow Measurement Device Used
001	Ν	Y	N/A

Outfall Discharge - Flow Characteristics

Outfall No.	Intermittent Discharge? Y/N	Continuous Discharge? Y/N	Seasonal Discharge? Y/N	Discharge Duration (hrs/day)	Discharge Duration (days/mo)	Discharge Duration (mo/yr)
001	Y	Ν	Ν	N/A	N/A	N/A

Outfall Wastestream Contributions

Outfall No. <u>001</u>

Contributing Wastestream	Volume (MGD)	Percent (%) of Total Flow
Wastewater from Super Pulsator	Intermittent & Variable	100

Outfall No. N/A

Contributing Wastestream	Volume (MGD)	Percent (%) of Total Flow

Outfall No. <u>N/A</u>

Contributing Wastestream	Volume (MGD)	Percent (%) of Total Flow

Attachment: <u>N/A</u>

Item 5. Blowdown and Once-Through Cooling Water Discharges (Instructions, Page 43)

- a. Indicate if the facility currently or proposes to:
 - \Box Yes \boxtimes No Use cooling towers that discharge blowdown or other wastestreams
 - \square Yes \boxtimes No Use boilers that discharge blowdown or other wastestreams
 - \Box Yes \boxtimes No Discharge once-through cooling water

NOTE: If the facility uses or plans to use cooling towers or once-through cooling water, Item 12 **is required**.

- b. If **yes** to any of the above, attach an SDS with the following information for each chemical additive.
 - Manufacturers Product Identification Number
 - Product use (e.g., biocide, fungicide, corrosion inhibitor, etc.)
 - Chemical composition including CASRN for each ingredient
 - Classify product as non-persistent, persistent, or bioaccumulative
 - Product or active ingredient half-life
 - Frequency of product use (e.g., 2 hours/day once every two weeks)
 - Product toxicity data specific to fish and aquatic invertebrate organisms
 - Concentration of whole product or active ingredient, as appropriate, in wastestream.

In addition to each SDS, attach a summary of the above information for each specific wastestream and the associated chemical additives. Specify which outfalls are affected.

Attachment: <u>N/A</u>

c. Cooling Towers and Boilers

If the facility currently or proposes to use cooling towers or boilers that discharge blowdown or other wastestreams to the outfall(s), complete the following table.

Cooling Towers and Boilers

Type of Unit	Number of Units	Daily Avg Blowdown (gallons/day)	Daily Max Blowdown (gallons/day)
Cooling Towers			
Boilers			

Item 6. Stormwater Management (Instructions, Page 44)

Will any existing/proposed outfalls discharge stormwater associated with industrial activities, as defined at *40 CFR § 122.26(b)(14)*, commingled with any other wastestream?

🗆 Yes 🖾 No

If **yes**, briefly describe the industrial processes and activities that occur outdoors or in a manner which may result in exposure of the activities or materials to stormwater: N/A

Item 7. Domestic Sewage, Sewage Sludge, and Septage Management and Disposal (Instructions, Page 44)

Domestic Sewage - Waste and wastewater from humans or household operations that is discharged to a wastewater collection system or otherwise enters a treatment works.

- a. Check the box next to the appropriate method of domestic sewage and domestic sewage sludge treatment or disposal. Complete Worksheet 5.0 or Item 7.b if directed to do so.
 - □ Domestic sewage is routed (i.e., connected to or transported to) to a WWTP permitted to receive domestic sewage for treatment, disposal, or both. Complete Item 7.b.
 - □ Domestic sewage disposed of by an on-site septic tank and drainfield system. Complete Item 7.b.
 - □ Domestic and industrial treatment sludge ARE commingled prior to use or disposal.
 - □ Industrial wastewater and domestic sewage are treated separately, and the respective sludge IS NOT commingled prior to sludge use or disposal. Complete Worksheet 5.0.
 - □ Facility is a POTW. Complete Worksheet 5.0.
 - \boxtimes Domestic sewage is not generated on-site.
 - □ Other (e.g., portable toilets), specify and Complete Item 7.b: N/A
- b. Provide the name and TCEQ, NPDES, or TPDES Permit No. of the waste-disposal facility which receives the domestic sewage/septage. If hauled by motorized vehicle, provide the name and TCEQ Registration No. of the hauler.

Domestic Sewage Plant/Hauler Name

Plant/Hauler Name	Permit/Registration No.	

Item 8. Improvements or Compliance/Enforcement Requirements (Instructions, Page 45)

- a. Is the permittee currently required to meet any implementation schedule for compliance or enforcement?
 - 🗆 Yes 🖾 No
- b. Has the permittee completed or planned for any improvements or construction projects?
 - 🗆 Yes 🖾 No
- c. If **yes** to either 8.a **or** 8.b, provide a brief summary of the requirements and a status update: N/A

Item 9. Toxicity Testing (Instructions, Page 45)

Have any biological tests for acute or chronic toxicity been made on any of the discharges or on a receiving water in relation to the discharge within the last three years?

🗆 Yes 🖾 No

If **yes**, identify the tests and describe their purposes: N/A

Additionally, attach a copy of all tests performed which **have not** been submitted to the TCEQ or EPA. Attachment: N/A

Item 10. Off-Site/Third Party Wastes (Instructions, Page 45)

- a. Does or will the facility receive wastes from off-site sources for treatment at the facility, disposal on-site via land application, or discharge via a permitted outfall?
 - \Box Yes \boxtimes No

If **yes**, provide responses to Items 10.b through 10.d below.

If **no**, proceed to Item 11.

- b. Attach the following information to the application:
 - List of wastes received (including volumes, characterization, and capability with on-site wastes).
 - Identify the sources of wastes received (including the legal name and addresses of the generators).
 - Description of the relationship of waste source(s) with the facility's activities.

Attachment: <u>N/A</u>

- c. Is or will wastewater from another TCEQ, NPDES, or TPDES permitted facility commingled with this facility's wastewater after final treatment and prior to discharge via the final outfall/point of disposal?
 - 🗆 Yes 🛛 No

If **yes**, provide the name, address, and TCEQ, NPDES, or TPDES permit number of the contributing facility and a copy of any agreements or contracts relating to this activity.

Attachment: <u>N/A</u>

d. Is this facility a POTW that accepts/will accept process wastewater from any SIU and has/is required to have an approved pretreatment program under the NPDES/TPDES program?

 \Box Yes \boxtimes No

If yes, Worksheet 6.0 of this application is required.

Item 11. Radioactive Materials (Instructions, Page 46)

a. Are/will radioactive materials be mined, used, stored, or processed at this facility?

🗆 Yes 🛛 No

If **yes**, use the following table to provide the results of one analysis of the effluent for all radioactive materials that may be present. Provide results in pCi/L.

Radioactive Materials Mined, Used, Stored, or Processed

Radioactive Material Name	Concentration (pCi/L)

b. Does the applicant or anyone at the facility have any knowledge or reason to believe that radioactive materials may be present in the discharge, including naturally occurring radioactive materials in the source waters or on the facility property?

🗆 Yes 🖾 No

If **yes**, use the following table to provide the results of one analysis of the effluent for all radioactive materials that may be present. Provide results in pCi/L. Do not include information provided in response to Item 11.a.

Radioactive Materials Present in the Discharge

Radioactive Material Name	Concentration (pCi/L)		

Item 12. Cooling Water (Instructions, Page 46)

a. Does the facility use or propose to use water for cooling purposes?

🗆 Yes 🖾 No

If **no**, stop here. If **yes**, complete Items 12.b thru 12.f.

b. Cooling water is/will be obtained from a groundwater source (e.g., on-site well).

□ Yes □ No

If **yes**, stop here. If **no**, continue.

- c. Cooling Water Supplier
 - 1. Provide the name of the owner(s) and operator(s) for the CWIS that supplies or will supply water for cooling purposes to the facility.

Cooling Water Intake Structure(s) Owner(s) and Operator(s)

CWIS ID		
Owner		
Operator		

2. Cooling water is/will be obtained from a Public Water Supplier (PWS)

□ Yes □ No

If no, continue. If yes, provide the PWS Registration No. and stop here: <u>PWS No. N/A</u>

3. Cooling water is/will be obtained from a reclaimed water source?

🗆 Yes 🗆 No

If **no**, continue. If **yes**, provide the Reuse Authorization No. and stop here: <u>N/A</u>

4. Cooling water is/will be obtained from an Independent Supplier

□ Yes □ No

If **no**, proceed to Item 12.d. If **yes**, provide the actual intake flow of the Independent Supplier's CWIS that is/will be used to provide water for cooling purposes and proceed: N/A

- d. 316(b) General Criteria
 - 1. The CWIS(s) used to provide water for cooling purposes to the facility has or will have a cumulative design intake flow of 2 MGD or greater.

 \Box Yes \Box No

2. At least 25% of the total water withdrawn by the CWIS is/will be used at the facility exclusively for cooling purposes on an annual average basis.

 \Box Yes \Box No

3. The CWIS(s) withdraw(s)/propose(s) to withdraw water for cooling purposes from surface waters that meet the definition of Waters of the United States in *40 CFR § 122.2*.

 \Box Yes \Box No

If **no**, provide an explanation of how the waterbody does not meet the definition of Waters of the United States in *40 CFR § 122.2*: <u>N/A</u>

If **yes** to all three questions in Item 12.d, the facility **meets** the minimum criteria to be subject to the full requirements of Section 316(b) of the CWA. Proceed to **Item 12.f**.

If **no** to any of the questions in Item 12.d, the facility **does not meet** the minimum criteria to be subject to the full requirements of Section 316(b) of the CWA; however, a determination is required based upon BPJ. Proceed to **Item 12.e**.

- e. The facility does not meet the minimum requirements to be subject to the fill requirements of Section 316(b) **and uses**/proposes **to use cooling towers**.
 - \Box Yes \Box No

If **yes**, stop here. If **no**, complete Worksheet 11.0, Items 1.a, 1.b.1-3 and 6, 2.b.1, and 3.a to allow for a determination based upon BPJ.

- f. Oil and Gas Exploration and Production
 - 1. The facility is subject to requirements at 40 CFR Part 435, Subparts A or D.

 \Box Yes \Box No

If **yes**, continue. If **no**, skip to Item 12.g.

2. The facility is an existing facility as defined at 40 CFR § 125.92(k) or a new unit at an existing facility as defined at 40 CFR § 125.92(u).

□ Yes □ No

If **yes**, complete Worksheet 11.0, Items 1.a, 1.b.1-3 and 6, 2.b.1, and 3.a to allow for a determination based upon BPJ. If **no**, skip to Item 12.g.3.

- g. Compliance Phase and Track Selection
 - 1. Phase I New facility subject to 40 CFR Part 125, Subpart I

🗆 Yes 🛛 No

If **yes**, check the box next to the compliance track selection, attach the requested information, and complete Worksheet 11.0, Items 2 and 3, and Worksheet 11.2.

- □ Track I AIF greater than 2 MGD, but less than 10 MGD
 - Attach information required by 40 CFR §§ 125.86(b)(2)-(4).
- □ Track I AIF greater than 10 MGD
 - Attach information required by 40 CFR § 125.86(b).
- □ Track II
 - Attach information required by 40 CFR § 125.86(c).

Attachment: <u>N/A</u>

2. Phase II - Existing facility subject to 40 CFR Part 125, Subpart J

🗆 Yes 🛛 No

If **yes**, complete Worksheets 11.0 through 11.3, as applicable.

3. Phase III - New facility subject to 40 CFR Part 125, Subpart N

🗆 Yes 🛛 No

If **yes**, check the box next to the compliance track selection and provide the requested information.

- □ Track I Fixed facility
 - Attach information required by 40 CFR § 125.136(b) and complete Worksheet 11.0, Items 2 and 3, and Worksheet 11.2.
- □ Track I Not a fixed facility
 - Attach information required by 40 CFR § 125.136(b) and complete Worksheet 11.0, Item 2 (except CWIS latitude/longitude under Item 2.a).
- □ Track II Fixed facility
 - Attach information required by 40 CFR § 125.136(c) and complete Worksheet 11.0, Items 2 and 3.

Attachment: <u>N/A</u>

Item 13. Permit Change Requests (Instructions, Page 48)

This item is only applicable to existing permitted facilities.

a. Is the facility requesting a major amendment of an existing permit?

 \Box Yes \boxtimes No

If **yes**, list each request individually and provide the following information: 1) detailed information regarding the scope of each request and 2) a justification for each request. Attach any supplemental information or additional data to support each request.

N<u>/A</u>

b. Is the facility requesting any **minor amendments** to the permit?

🗆 Yes 🛛 No

If **yes**, list and describe each change individually.

N<u>/A</u>

c. Is the facility requesting any **minor modifications** to the permit?

🗆 Yes 🛛 No

If **yes**, list and describe each change individually.

N<u>/A</u>

Item 14. Laboratory Accreditation (Instructions, Page 49)

All laboratory tests performed must meet the requirements of *30 TAC Chapter 25*, *Environmental Testing Laboratory Accreditation and Certification*, which includes the following general exemptions from National Environmental Laboratory Accreditation Program (NELAP) certification requirements:

- The laboratory is an in-house laboratory and is:
 - periodically inspected by the TCEQ; or
 - \circ located in another state and is accredited or inspected by that state; or
 - performing work for another company with a unit located in the same site; or
 - $\circ~$ performing pro bono work for a governmental agency or charitable organization.
- The laboratory is accredited under federal law.
- The data are needed for emergency-response activities, and a laboratory accredited under the Texas Laboratory Accreditation Program is not available.
- The laboratory supplies data for which the TCEQ does not offer accreditation.

The applicant should review *30 TAC Chapter 25* for specific requirements.

The following certification statement shall be signed and submitted with every application. See the *Signature Page* section in the Instructions, for a list of designated representatives who may sign the certification.

CERTIFICATION:

I certify that all laboratory tests submitted with this application meet the requirements of *30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification.*

Printed Name: Jeff Haby, P.E.

Title: Sr. Vice President, Production Operations

Signature Date:

Item 14. Laboratory Accreditation (Instructions, Page 49)

All laboratory tests performed must meet the requirements of *30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification*, which includes the following general exemptions from National Environmental Laboratory Accreditation Program (NELAP) certification requirements:

- The laboratory is an in-house laboratory and is:
 - periodically inspected by the TCEQ; or
 - \circ $\;$ located in another state and is accredited or inspected by that state; or
 - performing work for another company with a unit located in the same site; or
 - performing pro bono work for a governmental agency or charitable organization.
- The laboratory is accredited under federal law.
- The data are needed for emergency-response activities, and a laboratory accredited under the Texas Laboratory Accreditation Program is not available.
- The laboratory supplies data for which the TCEQ does not offer accreditation.

The applicant should review *30 TAC Chapter 25* for specific requirements.

The following certification statement shall be signed and submitted with every application. See the *Signature Page* section in the Instructions, for a list of designated representatives who may sign the certification.

CERTIFICATION:

I certify that all laboratory tests submitted with this application meet the requirements of *30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification.*

Printed Name: Jeff Haby, P.E.

Title: Sr. Vice President, Production Operations

Signature: _____

Date: _____

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 1.0: EPA CATEGORICAL EFFLUENT GUIDELINES

This worksheet **is required** for all applications for TPDES permits for discharges of wastewaters subject to EPA categorical effluent limitation guidelines (ELGs).

Item 1. Categorical Industries (Instructions, Page 53)

Is this facility subject to any 40 CFR categorical ELGs outlined on page 53 of the instructions?

🗆 Yes 🖾 No

If **no**, this worksheet is not required. If **yes**, provide the appropriate information below.

40 CFR Effluent Guideline

Industry	40 CFR Part

Item 2. Production/Process Data (Instructions, Page 54)

NOTE: For all TPDES permit applications requesting individual permit coverage for discharges of oil and gas exploration and production wastewater (discharges into or adjacent to water in the state, falling under the Oil and Gas Extraction Effluent Guidelines – 40 CFR Part 435), see Worksheet 12.0, Item 2 instead.

a. Production Data

Provide appropriate data for effluent guidelines with production-based effluent limitations.

Subcategory	Actual Quantity/Day	Design Quantity/Day	Units

Production Data

b. Organic Chemicals, Plastics, and Synthetic Fibers Manufacturing Data (40 CFR Part 414)

Provide each applicable subpart and the percent of total production. Provide data for metalbearing and cyanide-bearing wastestreams, as required by *40 CFR Part 414*, *Appendices A and B*.

Percentage of Total Production

Subcategory	Percent of Total Production	Appendix A and B - Metals	Appendix A - Cyanide

c. Refineries (40 CFR Part 419)

Provide the applicable subcategory and a brief justification.

N<u>/A</u>

Item 3. Process/Non-Process Wastewater Flows (Instructions, Page 54)

Provide a breakdown of wastewater flow(s) generated by the facility, including both process and non-process wastewater flow(s). Specify which wastewater flows are to be authorized for discharge under this permit and the disposal practices for wastewater flows, excluding domestic, which are not to be authorized for discharge under this permit.

N<u>/A</u>

Item 4. New Source Determination (Instructions, Page 54)

Provide a list of all wastewater-generating processes subject to EPA categorical ELGs, identify the appropriate guideline Part and Subpart, and provide the date the process/construction commenced.

Process	EPA Guideline Part	EPA Guideline Subpart	Date Process/ Construction Commenced

Wastewater Generating Processes Subject to Effluent Guidelines

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 2.0: POLLUTANT ANALYSIS

Worksheet 2.0 **is required** for all applications submitted for a TPDES permit. Worksheet 2.0 is not required for applications for a permit to dispose of all wastewater by land disposal or for discharges solely of stormwater associated with industrial activities.

Item 1. General Testing Requirements (Instructions, Page 55)

- a. Provide the date range of all sampling events conducted to obtain the analytical data submitted with this application (e.g., 05/01/2018-05/30/2018): <u>N/A; NO DISCHARGE SINCE</u> 2015
- b. \Box Check the box to confirm all samples were collected no more than 12 months prior to the date of application submittal.
- c. Read the general testing requirements in the instructions for important information about sampling, test methods, and MALs. If a contact laboratory was used, attach a list which includes the name, contact information, and pollutants analyzed for each laboratory/firm. Attachment: N/A

Item 2. Specific Testing Requirements (Instructions, Page 56)

Attach correspondence from TCEQ approving submittal of less than the required number of samples, if applicable. Attachment: N/A

TABLE 1 and TABLE 2 (Instructions, Page 58) Page 58)

Completion of Tables 1 and 2 is required for all external outfalls for all TPDES permit applications.

Table 1 for Outfall No.:	Samples are (check one): 🗆 Composite 🛛 Grab					
Pollutant	Sample 1 (mg/L)	Sample 2 (mg/L)	Sample 3 (mg/L)	Sample 4 (mg/L)		
BOD (5-day)						
CBOD (5-day)						
Chemical oxygen demand						
Total organic carbon						
Dissolved oxygen						
Ammonia nitrogen						
Total suspended solids						
Nitrate nitrogen						
Total organic nitrogen						
Total phosphorus						
Oil and grease						

Pollutant	Sample 1 (mg/L)	Sample 2 (mg/L)	Sample 3 (mg/L)	Sample 4 (mg/L)
Total residual chlorine				
Total dissolved solids				
Sulfate				
Chloride				
Fluoride				
Total alkalinity (mg/L as CaCO3)				
Temperature (°F)				
pH (standard units)				

Table 2 for Outfall No.: <u>N/A</u>	Outfall No.: N/ASamples are (check one): CompositeGrab				e 🗆 Grab
Pollutant	Sample 1 (µg/L)	Sample 2 (µg/L)	Sample 3 (µg/L)	Sample 4 (µg/L)	MAL (µg/L)
Aluminum, total					2.5
Antimony, total					5
Arsenic, total					0.5
Barium, total					3
Beryllium, total					0.5
Cadmium, total					1
Chromium, total					3
Chromium, hexavalent					3
Chromium, trivalent					N/A
Copper, total					2
Cyanide, available					2/10
Lead, total					0.5
Mercury, total					0.005/0.0005
Nickel, total					2
Selenium, total					5
Silver, total					0.5
Thallium, total					0.5
Zinc, total					5.0

TABLE 3 (Instructions, Page 58)

Completion of Table 3 **is required** for all **external outfalls** which discharge process wastewater.

Partial completion of Table 3 **is required** for all **external outfalls** which discharge non-process wastewater and stormwater associated with industrial activities commingled with other wastestreams (see instructions for additional guidance).

Table 3 for Outfall No.: <u>N/A</u>	Samples are (check one): 🗆 Composite 🛛 Grab				
Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (µg/L)*
Acrylonitrile					50
Anthracene					10
Benzene					10
Benzidine					50
Benzo(a)anthracene					5
Benzo(a)pyrene					5
Bis(2-chloroethyl)ether					10
Bis(2-ethylhexyl)phthalate					10
Bromodichloromethane [Dichlorobromomethane]					10
Bromoform					10
Carbon tetrachloride					2
Chlorobenzene					10
Chlorodibromomethane [Dibromochloromethane]					10
Chloroform					10
Chrysene					5
m-Cresol [3-Methylphenol]					10
o-Cresol [2-Methylphenol]					10
p-Cresol [4-Methylphenol]					10
1,2-Dibromoethane					10
m-Dichlorobenzene [1,3-Dichlorobenzene]					10
o-Dichlorobenzene [1,2-Dichlorobenzene]					10
p-Dichlorobenzene [1,4-Dichlorobenzene]					10
3,3'-Dichlorobenzidine					5
1,2-Dichloroethane					10

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (µg/L)*
1,1-Dichloroethene [1,1-Dichloroethylene]					10
Dichloromethane [Methylene chloride]					20
1,2-Dichloropropane					10
1,3-Dichloropropene [1,3-Dichloropropylene]					10
2,4-Dimethylphenol					10
Di-n-Butyl phthalate					10
Ethylbenzene					10
Fluoride					500
Hexachlorobenzene					5
Hexachlorobutadiene					10
Hexachlorocyclopentadiene					10
Hexachloroethane					20
Methyl ethyl ketone					50
Nitrobenzene					10
N-Nitrosodiethylamine					20
N-Nitroso-di-n-butylamine					20
Nonylphenol					333
Pentachlorobenzene					20
Pentachlorophenol					5
Phenanthrene					10
Polychlorinated biphenyls (PCBs) (**)					0.2
Pyridine					20
1,2,4,5-Tetrachlorobenzene					20
1,1,2,2-Tetrachloroethane					10
Tetrachloroethene [Tetrachloroethylene]					10
Toluene					10
1,1,1-Trichloroethane					10
1,1,2-Trichloroethane					10
Trichloroethene					10
[Trichloroethylene]					
2,4,5-Trichlorophenol					50

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (µg/L)*
TTHM (Total trihalomethanes)					10
Vinyl chloride					10

(*) Indicate units if different from μ g/L.

(**) Total of detects for PCB-1242, PCB-1254, PCB-1221, PCB-1232, PCB-1248, PCB-1260, and PCB-1016. If all non-detects, enter the highest non-detect preceded by a "<".

TABLE 4 (Instructions, Pages 58-59)

Partial completion of Table 4 **is required** for each **external outfall** based on the conditions below.

a. Tributyltin

Is this facility an industrial/commercial facility which currently or proposes to directly dispose of wastewater from the types of operations listed below or a domestic facility which currently or proposes to receive wastewater from the types of industrial/commercial operations listed below?

🗆 Yes 🛛 No

If **yes**, check the box next to each of the following criteria which apply and provide the appropriate testing results in Table 4 below (check all that apply).

- □ Manufacturers and formulators of tributyltin or related compounds.
- □ Painting of ships, boats and marine structures.
- □ Ship and boat building and repairing.
- □ Ship and boat cleaning, salvage, wrecking and scaling.
- □ Operation and maintenance of marine cargo handling facilities and marinas.
- □ Facilities engaged in wood preserving.
- □ Any other industrial/commercial facility for which tributyltin is known to be present, or for which there is any reason to believe that tributyltin may be present in the effluent.

b. Enterococci (discharge to saltwater)

This facility discharges/proposes to discharge directly into saltwater receiving waters **and** Enterococci bacteria are expected to be present in the discharge based on facility processes.

🗆 Yes 🛛 No

Domestic wastewater is/will be discharged.

🗆 Yes 🖾 No

If **yes to either** question, provide the appropriate testing results in Table 4 below.

c. E. coli (discharge to freshwater)

This facility discharges/proposes to discharge directly into freshwater receiving waters **and** *E. coli* bacteria are expected to be present in the discharge based on facility processes.

🗆 Yes 🛛 No

Domestic wastewater is/will be discharged.

🗆 Yes 🛛 No

If **yes to either** question, provide the appropriate testing results in Table 4 below.

Table 4 for Outfall No.: <u>N/A</u>	Sampl	es are (check	one): 🗆 🛛 Con	nposite 🛛	Grab
Pollutant	Sample 1	Sample 2	Sample 3	Sample 4	MAL
Tributyltin (µg/L)					0.010
Enterococci (cfu or MPN/100 mL)					N/A
<i>E. coli</i> (cfu or MPN/100 mL)					N/A

TABLE 5 (Instructions, Page 59)

Completion of Table 5 **is required** for all **external outfalls** which discharge process wastewater from a facility which manufactures or formulates pesticides or herbicides or other wastewaters which may contain pesticides or herbicides.

If this facility does not/will not manufacture or formulate pesticides or herbicides and does not/will not discharge other wastewaters that may contain pesticides or herbicides, check N/A.

🛛 N/A

Table 5 for Outfall No.: <u>N/A</u>	Samples are (check one): Composite Gra				
Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (µg/L)*
Aldrin					0.01
Carbaryl					5
Chlordane					0.2
Chlorpyrifos					0.05
4,4'-DDD					0.1
4,4'-DDE					0.1
4,4'-DDT					0.02
2,4-D					0.7
Danitol [Fenpropathrin]					—
Demeton					0.20
Diazinon					0.5/0.1
Dicofol [Kelthane]					1
Dieldrin					0.02
Diuron					0.090
Endosulfan I (<i>alpha</i>)					0.01
Endosulfan II (<i>beta</i>)					0.02
Endosulfan sulfate					0.1

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (µg/L)*
Endrin					0.02
Guthion [Azinphos methyl]					0.1
Heptachlor					0.01
Heptachlor epoxide					0.01
Hexachlorocyclohexane (<i>alpha</i>)					0.05
Hexachlorocyclohexane (<i>beta</i>)					0.05
Hexachlorocyclohexane (<i>gamma</i>) [Lindane]					0.05
Hexachlorophene					10
Malathion					0.1
Methoxychlor					2.0
Mirex					0.02
Parathion (ethyl)					0.1
Toxaphene					0.3
2,4,5-TP [Silvex]					0.3

* Indicate units if different from $\mu g/L$.

TABLE 6 (Instructions, Page 59)

Completion of Table 6 is required for all external outfalls.

Table 6 for Outfall No.: <u>N/A</u>			Samples are ((check one): [Composit	te 🗆 Gral	0
Pollutants	Believed Present	Believed Absent	Sample 1 (mg/L)	Sample 2 (mg/L)	Sample 3 (mg/L)	Sample 4 (mg/L)	MAL (µg/L)*
Bromide							400
Color (PCU)							—
Nitrate-Nitrite (as N)							—
Sulfide (as S)							—
Sulfite (as SO3)							—
Surfactants							—
Boron, total							20
Cobalt, total							0.3
Iron, total							7
Magnesium, total							20
Manganese, total							0.5
Molybdenum, total							1
Tin, total							5
Titanium, total							30

TABLE 7 (Instructions, Page 60)

Check the box next to any of the industrial categories applicable to this facility. If no categories are applicable, check N/A. If GC/MS testing is required, check the box provided to confirm the testing results for the appropriate parameters are provided with the application.

🛛 N/A

Table 7 for Applicable Industrial Categories

Ind	ustrial Category	40 CFR Part	Volatiles Table 8	Acids Table 9	Bases/ Neutrals Table 10	Pesticides Table 11
	Adhesives and Sealants		🗆 Yes	□ Yes	□ Yes	No
	Aluminum Forming	467	□ Yes	□ Yes	□ Yes	No
	Auto and Other Laundries		□ Yes	□ Yes	□ Yes	□ Yes
	Battery Manufacturing	461	□ Yes	No	□ Yes	No
	Coal Mining	434	No	No	No	No
	Coil Coating	465	□ Yes	□ Yes	□ Yes	No
	Copper Forming	468	□ Yes	□ Yes	□ Yes	No
	Electric and Electronic Components	469	□ Yes	□ Yes	□ Yes	□ Yes
	Electroplating	413	□ Yes	□ Yes	□ Yes	No
	Explosives Manufacturing	457	No	□ Yes	□ Yes	No
	Foundries		□ Yes	□ Yes	□ Yes	No
	Gum and Wood Chemicals - Subparts A,B,C,E	454	□ Yes	□ Yes	No	No
	Gum and Wood Chemicals - Subparts D,F	454	□ Yes	□ Yes	□ Yes	No
	Inorganic Chemicals Manufacturing	415	□ Yes	□ Yes	□ Yes	No
	Iron and Steel Manufacturing	420	□ Yes	□ Yes	□ Yes	No
	Leather Tanning and Finishing	425	□ Yes	□ Yes	□ Yes	No
	Mechanical Products Manufacturing		□ Yes	□ Yes	□ Yes	No
	Nonferrous Metals Manufacturing	421,471	□ Yes	□ Yes	□ Yes	□ Yes
	Oil and Gas Extraction - Subparts A, D, E, F, G, H	435	□ Yes	□ Yes	□ Yes	No
	Ore Mining - Subpart B	440	No	□ Yes	No	No
	Organic Chemicals Manufacturing	414	□ Yes	□ Yes	□ Yes	□ Yes
	Paint and Ink Formulation	446,447	□ Yes	□ Yes	□ Yes	No
	Pesticides	455	□ Yes	□ Yes	□ Yes	□ Yes
	Petroleum Refining	419	□ Yes	No	No	No
	Pharmaceutical Preparations	439	□ Yes	□ Yes	□ Yes	No
	Photographic Equipment and Supplies	459	□ Yes	□ Yes	□ Yes	No
□ Mar	Plastic and Synthetic Materials nufacturing	414	□ Yes	□ Yes	□ Yes	□ Yes
	Plastic Processing	463	□ Yes	No	No	No
	Porcelain Enameling	466	No	No	No	No
	Printing and Publishing		□ Yes	□ Yes	□ Yes	□ Yes
	Pulp and Paperboard Mills - Subpart C	430	*	□ Yes	□ *	□ Yes
	Pulp and Paperboard Mills - Subparts F, K	430	*	□ Yes	□ *	*
	Pulp and Paperboard Mills - Subparts A, B, D, G, H	430	□ Yes	□ Yes	*	*
	Pulp and Paperboard Mills - Subparts I, J, L	430	□ Yes	□ Yes	*	□ Yes
	Pulp and Paperboard Mills - Subpart E	430	□ Yes	□ Yes	□ Yes	□ *

TCEQ-10053 (01/08/2024) Industrial Wastewater Permit Application Technical Report

Ind	ustrial Category	40 CFR Part	Volatiles Table 8	Acids Table 9	Bases/ Neutrals Table 10	Pesticides Table 11
	Rubber Processing	428	□ Yes	□ Yes	□ Yes	No
	Soap and Detergent Manufacturing	417	□ Yes	□ Yes	□ Yes	No
	Steam Electric Power Plants	423	□ Yes	□ Yes	No	No
	Textile Mills (Not Subpart C)	410	□ Yes	□ Yes	□ Yes	No
	Timber Products Processing	429	□ Yes	□ Yes	□ Yes	□ Yes

* Test if believed present.

TABLES 8, 9, 10, and 11 (Instructions, Page 60)

Completion of Tables 8, 9, 10, and 11 **is required** as specified in Table 7 for all **external outfalls** that contain process wastewater.

Completion of Tables 8, 9, 10, and 11 **may be required** for types of industry not specified in Table 7 for specific parameters that are believed to be present in the wastewater.

Table 8 for Outfall No.: <u>N/A</u>	Samp	oles are (checl	k one): 🗆 🛛 Cor	nposite 🛛	Grab
Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (µg/L)
Acrolein					50
Acrylonitrile					50
Benzene					10
Bromoform					10
Carbon tetrachloride					2
Chlorobenzene					10
Chlorodibromomethane					10
Chloroethane					50
2-Chloroethylvinyl ether					10
Chloroform					10
Dichlorobromomethane [Bromodichloromethane]					10
1,1-Dichloroethane					10
1,2-Dichloroethane					10
1,1-Dichloroethylene [1,1-Dichloroethene]					10
1,2-Dichloropropane					10
1,3-Dichloropropylene [1,3-Dichloropropene]					10
Ethylbenzene					10
Methyl bromide [Bromomethane]					50
Methyl chloride [Chloromethane]					50

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (µg/L)
Methylene chloride [Dichloromethane]					20
1,1,2,2-Tetrachloroethane					10
Tetrachloroethylene [Tetrachloroethene]					10
Toluene					10
1,2-Trans-dichloroethylene [1,2-Trans-dichloroethene]					10
1,1,1-Trichloroethane					10
1,1,2-Trichloroethane					10
Trichloroethylene [Trichloroethene]					10
Vinyl chloride					10

* Indicate units if different from µg/L.

Table 9 for Outfall No.: <u>N/A</u>	Sam	ples are (chec	k one): □ Co	omposite 🗆	Grab
Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (µg/L)
2-Chlorophenol					10
2,4-Dichlorophenol					10
2,4-Dimethylphenol					10
4,6-Dinitro-o-cresol					50
2,4-Dinitrophenol					50
2-Nitrophenol					20
4-Nitrophenol					50
p-Chloro-m-cresol					10
Pentachlorophenol					5
Phenol					10
2,4,6-Trichlorophenol					10

* Indicate units if different from μ g/L.

Table 10 for Outfall No.: <u>N/A</u>	Samples are (check one): 🗆 Composite 🛛 Grab						
Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (µg/L)		
Acenaphthene					10		
Acenaphthylene					10		
Anthracene					10		
Benzidine					50		

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (µg/L)
Benzo(a)anthracene					5
Benzo(a)pyrene					5
3,4-Benzofluoranthene [Benzo(b)fluoranthene]					10
Benzo(ghi)perylene					20
Benzo(k)fluoranthene					5
Bis(2-chloroethoxy)methane					10
Bis(2-chloroethyl)ether					10
Bis(2-chloroisopropyl)ether					10
Bis(2-ethylhexyl)phthalate					10
4-Bromophenyl phenyl ether					10
Butylbenzyl phthalate					10
2-Chloronaphthalene					10
4-Chlorophenyl phenyl ether					10
Chrysene					5
Dibenzo(a,h)anthracene					5
1,2-Dichlorobenzene [o-Dichlorobenzene]					10
1,3-Dichlorobenzene [m-Dichlorobenzene]					10
1,4-Dichlorobenzene [p-Dichlorobenzene]					10
3,3'-Dichlorobenzidine					5
Diethyl phthalate					10
Dimethyl phthalate					10
Di-n-butyl phthalate					10
2,4-Dinitrotoluene					10
2,6-Dinitrotoluene					10
Di-n-octyl phthalate					10
1,2-Diphenylhydrazine (as Azobenzene)					20
Fluoranthene					10
Fluorene					10
Hexachlorobenzene					5
Hexachlorobutadiene					10

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (µg/L)
Hexachlorocyclopentadiene					10
Hexachloroethane					20
Indeno(1,2,3-cd)pyrene					5
Isophorone					10
Naphthalene					10
Nitrobenzene					10
N-Nitrosodimethylamine					50
N-Nitrosodi-n-propylamine					20
N-Nitrosodiphenylamine					20
Phenanthrene					10
Pyrene					10
1,2,4-Trichlorobenzene					10

* Indicate units if different from μ g/L.

Table 11 for Outfall No.: <u>N/A</u>	Sam	ples are (chec	k one): 🗆 🛛 Co	omposite 🗆	Grab
Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (µg/L)
Aldrin					0.01
alpha-BHC [alpha-Hexachlorocyclohexane]					0.05
beta-BHC [beta-Hexachlorocyclohexane]					0.05
gamma-BHC [gamma-Hexachlorocyclohexane]					0.05
delta-BHC [delta-Hexachlorocyclohexane]					0.05
Chlordane					0.2
4,4'-DDT					0.02
4,4'-DDE					0.1
4,4'-DDD					0.1
Dieldrin					0.02
Endosulfan I (alpha)					0.01
Endosulfan II (beta)					0.02
Endosulfan sulfate					0.1
Endrin					0.02
Endrin aldehyde					0.1

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (µg/L)
Heptachlor					0.01
Heptachlor epoxide					0.01
PCB 1242					0.2
PCB 1254					0.2
PCB 1221					0.2
PCB 1232					0.2
PCB 1248					0.2
PCB 1260					0.2
PCB 1016					0.2
Toxaphene					0.3

* Indicate units if different from μ g/L.

Attachment: <u>N/A</u>

TABLE 12 (DIOXINS/FURAN COMPOUNDS)

Complete of Table 12 **is required** for **external outfalls**, as directed below. (Instructions, Pages 59-60)

Indicate which compound(s) are manufactured or used at the facility and provide a brief description of the conditions of its/their presence at the facility (check all that apply).

- □ 2,4,5-trichlorophenoxy acetic acid (2,4,5-T) CASRN 93-76-5
- □ 2-(2,4,5-trichlorophenoxy) propanoic acid (Silvex, 2,4,5-TP) CASRN 93-72-1
- □ 2-(2,4,5-trichlorophenoxy) ethyl 2,2-dichloropropionate (Erbon) CASRN 136-25-4
- □ 0,0-dimethyl 0-(2,4,5-trichlorophenyl) phosphorothioate (Ronnel) CASRN 299-84-3
- □ 2,4,5-trichlorophenol (TCP) CASRN 95-95-4
- □ hexachlorophene (HCP) CASRN 70-30-4
- \Box None of the above

Description: <u>N/A</u>

Does the applicant or anyone at the facility know or have any reason to believe that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or any congeners of TCDD may be present in the effluent proposed for discharge?

🗆 Yes 🖾 No

Description: <u>N/A</u>

If **yes** to either Items a **or** b, complete Table 12 as instructed.

Table 12 for Outfall No.: <u>N/A</u>

Samples are (check one): □ Composite □ Grab

Compound	Toxicity Equivalent Factors	Wastewater Concentration (ppq)	Wastewater Toxicity Equivalents (ppq)	Sludge Concentration (ppt)	Sludge Toxicity Equivalents (ppt)	MAL (ppq)
2,3,7,8-TCDD	1					10
1,2,3,7,8- PeCDD	1.0					50
2,3,7,8- HxCDDs	0.1					50
1,2,3,4,6,7,8- HpCDD	0.01					50
2,3,7,8-TCDF	0.1					10
1,2,3,7,8- PeCDF	0.03					50
2,3,4,7,8- PeCDF	0.3					50
2,3,7,8- HxCDFs	0.1					50
2,3,4,7,8- HpCDFs	0.01					50
OCDD	0.0003					100
OCDF	0.0003					100
PCB 77	0.0001					500
PCB 81	0.0003					500
PCB 126	0.1					500
PCB 169	0.03					500
Total						

TABLE 13 (HAZARDOUS SUBSTANCES)

Complete Table 13 **is required** for all **external outfalls** as directed below. (Instructions, Pages 60-61)

Are there any pollutants listed in the instructions (pages 55-62) believed present in the discharge?

🗆 Yes 🖾 No

Are there pollutants listed in Item 1.c. of Technical Report 1.0 which are believed present in the discharge and have not been analytically quantified elsewhere in this application?

🗆 Yes 🖾 No

If **yes** to either Items a **or** b, complete Table 13 as instructed.

Table 13 for Outfall No.: <u>N/A</u>		Samples are (check one): 🗆 Composite 🛛 Grab				
Pollutant	CASRN	Sample 1 (µg/L)	Sample 2 (µg/L)	Sample 3 (µg/L)	Sample 4 (µg/L)	Analytical Method

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 3.0: LAND APPLICATION OF EFFLUENT

This worksheet **is required** for all applications for a permit to disposal of wastewater by land application (i.e., TLAP)).

Item 1. Type of Disposal System (Instructions, Page 69)

Check the box next to the type of land disposal requested by this application:

□ Irrigation
 □ Evaporation
 □ Evapotranspiration beds
 □ Drip irrigation system
 □ Other, specify:

Item 2. Land Application Area (Instructions, Page 69)

Land Application Area Information

Effluent Application (gallons/day)	Irrigation Acreage (acres)	Describe land use & indicate type(s) of crop(s)	Public Access? (Y/N)

Item 3. Annual Cropping Plan (Instructions, Page 69)

Attach the required cropping plan that includes each of the following:

- Cool and warm season plant species
- Breakdown of acreage and percent of total acreage for each crop
- Crop growing season
- Harvesting method/number of harvests
- Minimum/maximum harvest height
- Crop yield goals
- Soils map
- Nitrogen requirements per crop
- Additional fertilizer requirements
- Supplemental watering requirements
- Crop salt tolerances
- Justification for not removing existing vegetation to be irrigated

Attachment: N/A

Item 4. Well and Map Information (Instructions, Page 70)

- a. Check each box to confirm the required information is shown and labeled on the attached USGS map:
 - □ The exact boundaries of the land application area
 - □ On-site buildings
 - □ Waste-disposal or treatment facilities
 - □ Effluent storage and tailwater control facilities
 - \Box Buffer zones
 - □ All surface waters in the state onsite and within 500 feet of the property boundaries

 $\hfill\square$ All water wells within ½-mile of the disposal site, was tewater ponds, or property boundaries

□ All springs and seeps onsite and within 500 feet of the property boundaries

Attachment: N/A

b. List and cross reference all water wells located on or within 500 feet of the disposal site, wastewater ponds, or property boundaries in the following table. Attach additional pages as necessary to include all of the wells.

Well and Map Information Table

Well ID	Well Use	Producing? Y/N/U	Open, cased, capped, or plugged?	Proposed Best Management Practice

Attachment: N/A

- c. Groundwater monitoring wells or lysimeters are/will be installed around the land application site or wastewater ponds.
 - 🗆 Yes 🗆 No

If **yes**, provide the existing/proposed location of the monitoring wells or lysimeters on the site map attached for Item 4.a. Additionally, attach information on the depth of the wells or lysimeters, sampling schedule, and monitoring parameters for TCEQ review, possible modification, and approval.

Attachment: <u>N/A</u>

d. Attach a short groundwater technical report using *30 TAC § 309.20(a)(4)* as guidance. **Attachment:**

Item 5. Soil Map and Soil Information (Instructions, Page 71)

Check each box to confirm that the following information is attached:

- a.
 USDA NRCS Soil Survey Map depicting the area to be used for land application with the locations identified by fields and crops.
- b. \Box Breakdown of acreage and percent of total acreage for each soil type.
- c. \Box Copies of laboratory soil analyses. Attachment: <u>N/A</u>

Item 6. Effluent Monitoring Data (Instructions, Page 72)

a. Completion of Table 14 **is required** for all **renewal** and **major amendment** applications. Complete the table with monitoring data for the previous two years for all parameters regulated in the current permit. An additional table has been provided with blank headers for parameters regulated in the current permit which are not listed in Table 14.

Table 14 for Outfall No.: <u>N/A</u>				Samples a	re (check one): 🗆	Composite 🛛 Grab		
Date (mo/yr)	Daily Avg Flow (gpd)	BOD5 (mg/L)	TSS (mg/L)	Nitrogen (mg/L)	Conductivity (mmhos/cm)	Total acres irrigated	Hydraulic Application rate (acre-feet/month)	

Date (mo/yr)	Daily Avg Flow (gpd)	BOD5 (mg/L)	TSS (mg/L)	Nitrogen (mg/L)	Conductivity (mmhos/cm)	Total acres irrigated	Hydraulic Application rate (acre-feet/month)

b. Use this table to provide effluent analysis for parameters regulated in the current permit which are not listed in Table 14.

Additional Parameter Effluent Analysis

Date (mo/yr)				

c. Attach an explanation of all persistent excursions to permitted parameters and corrective actions taken. Attachment: N/A

Item 7. Pollutant Analysis (Instructions, Page 72)

- a. Provide the date range of all sampling events conducted to obtain the analytical data submitted with this application (e.g., 05/01/2018-05/30/2018): <u>N/A; NO DISCHARGE SINCE</u> 2015
- b. \Box Check the box to confirm all samples were collected no more than 12 months prior to the date of application submittal.
- c. Complete Tables 15 and 16.

Table 15 for Outfall No.: <u>N/A</u>	Samples are (check one): Composite Grab					
Pollutant	Sample 1 (mg/L)	Sample 2 (mg/L)	Sample 3 (mg/L)	Sample 4 (mg/L)		
BOD (5-day)						
CBOD (5-day)						
Chemical oxygen demand						
Total organic carbon						
Dissolved oxygen						
Ammonia nitrogen						
Total suspended solids						
Nitrate nitrogen						
Total organic nitrogen						
Total phosphorus						
Oil and grease						
Total residual chlorine						
Total dissolved solids						
Sulfate						
Chloride						
Fluoride						
Total alkalinity (mg/L as CaCO3)						
Temperature (°F)						
pH (standard units)						

Table 16 for Outfall No.: <u>N/A</u>	Samples are (check one): 🗆 Composite 🛛 Gra				
Pollutant	Sample 1 (µg/L)	Sample 2 (µg/L)	Sample 3 (µg/L)	Sample 4 (µg/L)	MAL (µg/L)
Aluminum, total					2.5
Antimony, total					5
Arsenic, total					0.5
Pollutant	Sample 1 (µg/L)	Sample 2 (µg/L)	Sample 3 (µg/L)	Sample 4 (µg/L)	MAL (µg/L)
----------------------	--------------------	--------------------	--------------------	--------------------	--------------
Barium, total					3
Beryllium, total					0.5
Cadmium, total					1
Chromium, total					3
Chromium, hexavalent					3
Chromium, trivalent					N/A
Copper, total					2
Cyanide, available					2/10
Lead, total					0.5
Mercury, total					0.005/0.0005
Nickel, total					2
Selenium, total					5
Silver, total					0.5
Thallium, total					0.5
Zinc, total					5.0

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 3.1: SURFACE LAND APPLICATION AND APPLICATION

This worksheet **is required** for all applications for a permit to disposal of wastewater by surface land application or evaporation.

Item 1. Edwards Aquifer (Instructions, Page 73)

a. Is the facility subject to 30 TAC Chapter 213, Edwards Aquifer Rules?

🗆 Yes 🛛 No

If **no**, proceed to Item 2. If **yes**, complete Items 1.b **and** 1.c.

- b. Check the box next to the subchapter applicable to the facility.
 - □ 30 TAC Chapter 213, Subchapter A
 - □ 30 TAC Chapter 213, Subchapter B
- c. If *30 TAC Chapter 213, Subchapter A* applies, attach **either**: 1) a Geologic Assessment (if conducted in accordance with *30 TAC § 213.5*) **or** 2) a report that contains the following:
 - A description of the surface geological units within the proposed land application site and wastewater pond area.
 - The location and extent of any sensitive recharge features in the land application site and wastewater pond area
 - A list of any proposed BMPs to protect the recharge features.

Attachment: <u>N/A</u>

Item 2. Surface Spray/Irrigation (Instructions, Page 73)

a. Provide the following information on the irrigation operations: Area under irrigation (acres): <u>N/A</u> Design application rate (acre-ft/acre/yr): <u>N/A</u>
Design application frequency (hours/day): <u>N/A</u>
Design application frequency (days/week): <u>N/A</u>
Design total nitrogen loading rate (lbs nitrogen/acre/year): <u>N/A</u>
Average slope of the application area (percent): <u>N/A</u>
Maximum slope of the application area (percent): <u>N/A</u>
Irrigation efficiency (percent): <u>N/A</u>
Effluent conductivity (mmhos/cm): <u>N/A</u>
Soil conductivity (mmhos/cm): <u>N/A</u>
Describe the application method and equipment: <u>N/A</u> b. Attach a detailed engineering report which includes a water balance, storage volume calculations, and a nitrogen balance. Attachment: N/A

Item 3. Evaporation Ponds (Instructions, Page 74)

- a. Daily average effluent flow into ponds: <u>N/A</u> gallons per day
- b. Attach a separate engineering report of evaporation calculations for average long-term and worst-case critical conditions. Attachment: N/A

Item 4. Evapotranspiration Beds (Instructions, Page 74)

- a. Provide the following information on the evapotranspiration beds:
 - Number of beds: <u>N/A</u>

Area of bed(s) (acres): <u>N/A</u>

Depth of bed(s) (feet): <u>N/A</u>

Void ratio of soil in the beds: <u>N/A</u>

Storage volume within the beds (include units): <u>N/A</u>

Description of any lining to protect groundwater: <u>N/A</u>

- b. Attach a certification by a licensed Texas professional engineer that the liner meets TCEQ requirements. Attachment: N/A
- c. Attach a separate engineering report with water balance, storage volume calculations, and description of the liner. Attachment: N/A

Item 5. Overland Flow (Instructions, Page 74)

- a. Provide the following information on the overland flow: Area used for application (acres): <u>N/A</u>
 Slopes for application area (percent): <u>N/A</u>
 Design application rate (gpm/foot of slope width): <u>N/A</u>
 Slope length (feet): <u>N/A</u>
 Design BOD5 loading rate (lbs BOD5/acre/day): <u>N/A</u>
 Design application frequency (hours/day): <u>N/A</u>
 Design application frequency (days/week): <u>N/A</u>
- b. Attach a separate engineering report with the method of application and design requirements according to *30 TAC § 217.212*. Attachment: <u>N/A</u>

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 3.2: SUBSURFACE IRRIGATION (NON-DRIP)

This worksheet **is required** for all applications for a permit to disposal of wastewater by subsurface land application.

□ Check the box to confirm the Class V Injection Well Inventory/Authorization Form (Worksheet 9.0) has been submitted to the TCEQ UIC Permits Team as directed.

Item 1. Edwards Aquifer (Instructions, Page 75)

- a. The subsurface system is/will be located on the Edwards Aquifer Recharge Zone, as mapped by TCEQ?
 - 🗆 Yes 🛛 No
- b. The subsurface system is/will be located on the Edwards Aquifer Transition Zone, as mapped by TCEQ?
 - 🗆 Yes 🛛 No

If **yes** to Item 1.a **or** 1.b, the subsurface system may be prohibited by *30 TAC § 213.8*. Contact the Water Quality Assessment Section at (512) 239-4671 for a preapplication meeting.

Item 2. Subsurface Application (Instructions, Page 75)

- a. Check the box next to the type of subsurface land disposal system requested:
 - □ Conventional drainfield, beds, or trenches
 - \Box Low pressure dosing
 - \Box Other: <u>N/A</u>
- b. Provide the following information on the irrigation operations:

Application area (acres): <u>N/A</u>

Area of drainfield (square feet): <u>N/A</u>

Application rate (gal/square ft/day): <u>N/A</u>

Depth to groundwater (feet): <u>N/A</u>

Area of trench (square feet): <u>N/A</u>

Dosing duration per area (hours): <u>N/A</u>

Number of beds: <u>N/A</u>

Dosing amount per area (inches/day): <u>N/A</u>

Soil infiltration rate (inches/hour): <u>N/A</u>

Storage volume (gallons): <u>N/A</u>

Area of bed(s) (square feet): <u>N/A</u>

Soil classification: <u>N/A</u>

c. Attach a separate engineering report using *30 TAC § 309.20, Subchapter C, Land Disposal of Sewage Effluent* as guidance, excluding items b(3)(A) and b(3)(B). Include a description of the schedule of dosing basin rotation. **Attachment:** <u>N/A</u>

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 3.3: SUBSURFACE AREA DRIP DISPERSAL SYSTEMS

This worksheet **is required** for all applications for a permit to dispose of wastewater using a subsurface area drip dispersal system (SADDS).

□ Check the box to confirm the Class V Injection Well Inventory/Authorization Form (Worksheet 9.0) has been submitted to the TCEQ UIC Permits Team as directed.

Item 1. Edwards Aquifer (Instructions, Page 76)

- a. The subsurface system is/will be located on the Edwards Aquifer Recharge Zone, as mapped by TCEQ?
 - 🗆 Yes 🛛 No
- b. The subsurface system is/will be located on the Edwards Aquifer Transition Zone, as mapped by TCEQ?
 - 🗆 Yes 🛛 No

If **yes** to Item 1.a **or** 1.b, the subsurface system may be prohibited by *30 TAC § 213.8*. Contact the Water Quality Assessment Section at (512) 239-4671 for a preapplication meeting.

Item 2. Administrative Information (Instructions, Page 76)

- a. Provide the legal name of all corporations or other business entities managed, owned, or otherwise closely related to the owner of the treatment facility: N/A
- b. The owner of the land where the WWTF is/will be located is the same as the owner of the WWTF.

🗆 Yes 🛛 No

If **no**, provide the legal name of all corporations or other business entities managed, owned, or otherwise closely related to the owner of the land where the WWTF is/will be located: N/A

- c. Provide the legal name of the owner of the SADDS: <u>N/A</u>
- d. The owner of the SADDS is the same as the owner of the WWTF or the site where the WWTF is/will be located.

 \Box Yes \boxtimes No

If **no**, identify the legal name of all corporations or other business entities managed, owned, or otherwise closely related to the entity identified in Item 1.c: N/A

- e. Provide the legal name of the owner of the land where the SADDS is located: <u>N/A</u>
- f. The owner of the land where the SADDS is/will be located is the same as owner of the WWTF, the site where the WWTF is located, or the owner of the SADDS.
 - 🗆 Yes 🛛 No

If **no**, provide the legal name of all corporations or other business entities managed, owned, or otherwise closely related to the entity identified in item 1.e: N/A

Item 3. SADDS (Instructions, Page 77)

- a. Check the box next to the type SADDS requested by this application:
 - □ Subsurface drip/trickle irrigation
 - \Box Surface drip irrigation
 - \Box Other: <u>N/A</u>
- b. Attach a description of the SADDS proposed/used by the facility (see instructions for guidance). Attachment: $\underline{N/A}$
- c. Provide the following information on the SADDS:

Application area (acres): <u>N/A</u>

Soil infiltration rate (inches/hour): <u>N/A</u>

Average slope of the application area: <u>N/A</u>

Maximum slope of the application area: <u>N/A</u>

Storage volume (gallons): <u>N/A</u>

Major soil series: <u>N/A</u>

Depth to groundwater (feet): <u>N/A</u>

Effluent conductivity (mmhos/cm): <u>N/A</u>

d. The facility is/will be located west of the boundary shown in *30 TAC § 222.83* **and** using a vegetative cover of non-native grasses over seeded with cool-season grasses.

🗆 Yes 🛛 No

If **yes**, the facility may propose a hydraulic application rate up to, but not to exceed, 0.1 gal/ft²/day.

e. The facility is/will be located east of the boundary shown in *30 TAC § 222.83* or is the facility proposing any crop other than non-native grasses.

🗆 Yes 🛛 No

If **yes**, the facility must use the formula in *30 TAC § 222.83* to calculate the maximum hydraulic application rate.

f. The facility has or plans to submit an alternative method to calculate the hydraulic application rate for approval by the ED.

🗆 Yes 🛛 No

If **yes**, provide the following information on the hydraulic application rates:

- Hydraulic application rate (gal/square foot/day): <u>N/A</u>
- Nitrogen application rate (gal/square foot/day): <u>N/A</u>
- g. Provide the following dosing information:

Number of doses per day: <u>N/A</u>

Dosing duration per area (hours): <u>N/A</u>

Rest period between doses (hours): $\underline{N/A}$

Dosing amount per area (inches/day): <u>N/A</u>

Number of zones: <u>N/A</u>

- h. The system is/will be a surface drip irrigation system using existing native vegetation as a crop?
 - 🗆 Yes 🛛 No

If **yes**, attach the following information:

- A vegetation survey by a certified arborist describing the percent canopy cover and relative percentage of major overstory and understory plant species.
 - Attachment: <u>N/A</u>
- Attach a separate engineering report using *30 TAC § 309.20, Subchapter C, Land Disposal of Sewage Effluent* as guidance, excluding items b(3)(A) and b(3)(B). Include a description of the schedule of dosing basin rotation.

Attachment: N/A

Item 4. Required Plans (Instructions, Page 78)

- a. Attach a Soil Evaluation with all information required in *30 TAC § 222.73*.
 Attachment: <u>N/A</u>
- b. Attach a Site Preparation Plan with all information required in *30 TAC § 222.75*.
 Attachment: <u>N/A</u>
- c. Attach a Recharge Feature Plan with all information required in *30 TAC § 222.79*.
 Attachment: <u>N/A</u>
- d. Provide soil sampling and testing with all information required in *30 TAC § 222.157*.
 Attachment: <u>N/A</u>

Item 5. Flood and Run-On Protection (Instructions, Page 79)

a. Is the existing/proposed SADDS located within the 100-year frequency flood level?

🗆 Yes 🛛 No

Source: N/A

If yes, describe how the site will be protected from inundation: N/A

b. Is the existing/proposed SADDS within a designated floodway?

🗆 Yes 🛛 No

If **yes**, attach either the FEMA flood map or alternate information used to make this determination. Attachment: N/A

Item 6. Surface Waters in The State (Instructions, Page 79)

- a. Attach a buffer map which shows the appropriate buffers on surface waters in the state, water wells, and springs/seeps. Attachment: N/A
- b. The facility has or plans to request a buffer variance from water wells or waters in the state?
 - 🗆 Yes 🖾 No

If **yes**, attach the additional information required in *30 TAC § 222.81(c)*. Attachment: <u>N/A</u>

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 4.0: RECEIVING WATERS

This worksheet **is required** for all TPDES permit applications.

Item 1. Domestic Drinking Water Supply (Instructions, Page 80)

a. There is a surface water intake for domestic drinking water supply located within 5 (five) miles downstream from the point/proposed point of discharge.

🗆 Yes 🛛 No

If **no**, stop here and proceed to Item 2. If **yes**, provide the following information:

- 1. The legal name of the owner of the drinking water supply intake: N/A
- 2. The distance and direction from the outfall to the drinking water supply intake: N/A
- b. Locate and identify the intake on the USGS 7.5-minute topographic map provided for Administrative Report 1.0.
 - \boxtimes Check this box to confirm the above requested information is provided.

Item 2. Discharge Into Tidally Influenced Waters (Instructions, Page 80)

If the discharge is to tidally influenced waters, complete this section. Otherwise, proceed to Item 3.

a. Width of the receiving water at the outfall: <u>N/A</u> feet

b. Are there oyster reefs in the vicinity of the discharge?

🗆 Yes 🛛 No

If yes, provide the distance and direction from the outfall(s) to the oyster reefs: N/A

c. Are there sea grasses within the vicinity of the point of discharge?

🗆 Yes 🛛 No

If **yes**, provide the distance and direction from the outfall(s) to the grasses: N/A

Item 3. Classified Segment (Instructions, Page 80)

The discharge is/will be directly into (or within 300 feet of) a classified segment.

🗆 Yes 🛛 No

If **yes**, stop here and do not complete Items 4 and 5 of this worksheet or Worksheet 4.1. If **no**, complete Items 4 and 5 and Worksheet 4.1 may be required.

Item 4. Description of Immediate Receiving Waters (Instructions, Page 80)

- a. Name of the immediate receiving waters: <u>Drainage ditch to O.R. Mitchell Reservoir to Medio</u> <u>Creek</u>
- b. Check the appropriate description of the immediate receiving waters:
 - \Box Lake or Pond
 - Surface area (acres): <u>N/A</u>
 - Average depth of the entire water body (feet): <u>N/A</u>
 - Average depth of water body within a 500-foot radius of the discharge point (feet): $\underline{N/A}$
 - □ Man-Made Channel or Ditch
 - ⊠ Stream or Creek
 - □ Freshwater Swamp or Marsh
 - □ Tidal Stream, Bayou, or Marsh
 - □ Open Bay
 - \Box Other, specify:

If **Man-Made Channel or Ditch** or **Stream or Creek** were selected above, provide responses to Items 4.c – 4.g below:

c. For **existing discharges**, check the description below that best characterizes the area **upstream** of the discharge.

For **new discharges**, check the description below that best characterizes the area **downstream** of the discharge.

- ☑ Intermittent (dry for at least one week during most years)
- □ Intermittent with Perennial Pools (enduring pools containing habitat to maintain aquatic life uses)
- □ Perennial (normally flowing)

Check the source(s) of the information used to characterize the area upstream (existing discharge) or downstream (new discharge):

- \Box USGS flow records
- \boxtimes personal observation
- □ historical observation by adjacent landowner(s)
- \Box other, specify: <u>N/A</u>
- d. List the names of all perennial streams that join the receiving water within three miles downstream of the discharge point: <u>Medio Creek</u>

e. The receiving water characteristics change within three miles downstream of the discharge (e.g., natural or man-made dams, ponds, reservoirs, etc.).

🛛 Yes 🗆 No

If yes, describe how: Man-made reservoir – OR Mitchell Lake

f. General observations of the water body during normal dry weather conditions: <u>Water body</u> <u>appeared dry during normal dry weather conditions</u>

Date and time of observation: June 07, 2024; 1:00 PM

g. The water body was influenced by stormwater runoff during observations.

🗆 Yes 🛛 No

If **yes**, describe how: <u>N/A</u>

Item 5. General Characteristics of Water Body (Instructions, Page 81)

- a. Is the receiving water upstream of the existing discharge or proposed discharge site influenced by any of the following (check all that apply):
 - \Box oil field activities \boxtimes urban runoff
 - \boxtimes agricultural runoff \square septic tanks
 - \Box upstream discharges \Box other, specify: <u>N/A</u>
- b. Uses of water body observed or evidence of such uses (check all that apply):
 - \boxtimes livestock watering \Box industrial water supply
 - □ non-contact recreation
 □ domestic water supply
 □ navigation
 - \Box contact recreation
 - □ fishing

 \Box other, specify: <u>N/A</u>

picnic/park activities

c. Description which best describes the aesthetics of the receiving water and the surrounding area (check only one):

- □ Wilderness: outstanding natural beauty; usually wooded or un-pastured area: water clarity exceptional
- □ **Natural Area:** trees or native vegetation common; some development evident (from fields, pastures, dwellings); water clarity discolored
- Common Setting: not offensive, developed but uncluttered; water may be colored or turbid
- □ **Offensive:** stream does not enhance aesthetics; cluttered; highly developed; dumping areas; water discolored

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 4.1: WATERBODY PHYSICAL CHARACTERISTICS

The following information **is required** for new applications, EPA-designated Major facilities, and major amendment applications requesting to add an outfall if the receiving waters are perennial or intermittent with perennial pools (including impoundments) for a TDPES permit.

Complete the transects downstream of the existing or proposed discharges.

Item 1. Data Collection (Instructions, Page 82)

a.	Date of study: <u>N/A</u> Time of study: <u>N/A</u>
	Waterbody name: <u>N/A</u>
	General location: <u>N/A</u>
b.	Type of stream upstream of an existing discharge or downstream of a proposed discharge (check only one):
	\Box perennial \Box intermittent with perennial pools \Box impoundment
c.	No. of defined stream bends:
	Well: N/AModerately: N/APoorly: N/A
d.	No. of riffles: <u>N/A</u>
e.	Evidence of flow fluctuations (check one):
	□ Minor □ Moderate □ Severe

- f. Provide the observed stream uses and where there is evidence of channel obstructions/modifications: N/A
- g. Complete the following table with information regarding the transect measurements.

Stream Transect Data

Transect Location	Habitat Type*	Water Surface Width (ft)	Stream Depths (ft)**				

* riffle, run, glide, or pool

** channel bed to water surface

Item 2. Summarize Measurements (Instructions, Page 83)

Provide the following information regarding the transect measurements:

Streambed slope of entire reach (from USGS map in ft. /ft.): <u>N/A</u>

Approximate drainage area above the most downstream transect from USGS map or county highway map (square miles): N/A Length of stream evaluated (ft): N/A Number of lateral transects made: N/A Average stream width (ft): N/A Average stream depth (ft): N/A Average stream velocity (ft/sec): N/A Instantaneous stream flow (ft³/sec): N/A Indicate flow measurement method (VERY IMPORTANT - type of meter, floating chip timed over a fixed distance, etc.): N/A Flow fluctuations (i.e., minor, moderate, or severe): N/A Size of pools (i.e., large, small, moderate, or none): N/A Maximum pool depth (ft): N/A Total number of stream bends: N/A Number well defined: N/A Number moderately defined: N/A Number poorly defined: N/A Total number of riffles: N/A

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 5.0: SEWAGE SLUDGE MANAGEMENT AND DISPOSAL

The following information **is required** for all TPDES permit applications that meet the conditions as outlined in Technical Report 1.0, Item 7.

Item 1. Sewage Sludge Solids Management Plan (Instructions, Page 84)

a. Is this a new permit application or an amendment permit application?

🗆 Yes 🛛 No

b. Does or will the facility discharge in the Lake Houston watershed?

🗆 Yes 🖾 No

If **yes** to either Item 1.a **or** 1.b, attach a solids management plan. Attachment: <u>N/A</u>

Item 2. Sewage Sludge Management and Disposal (Instructions, Page 84)

- a. Check the box next to the sludge disposal method(s) authorized under the facility's existing permit (check all that apply).
 - \Box Permitted landfill
 - □ Marketing and distribution by the permittee, attach Form TCEQ-00551
 - □ Registered land application site, attach Form TCEQ-00565
 - □ Processed by the permittee, attach Form TCEQ-00744
 - □ Surface disposal site (sludge monofill), attach Form TCEQ-00744
 - □ Transported to another WWTP
 - □ Beneficial land application, attach Form TCEQ-10451
 - □ Incineration, attach Form TCEQ-00744

Based on the selection(s) made above, complete and attach the required TCEQ forms as directed. Failure to submit the required TCEQ form will result in delays in processing the application

Attachment: <u>N/A – The facility does not generate sewage waste onsite</u>

b. Provide the following information for each disposal site:

Disposal site name: <u>N/A</u>

TCEQ Permit/Registration Number: <u>N/A</u>

County where disposal site is located: <u>N/A</u>

c. Method of sewage sludge transportation:

 \Box truck \Box train \Box pipe \Box other: <u>N/A</u>

TCEQ Hauler Registration Number: <u>N/A</u>

d. Sludge is transported as a:

 \Box liquid \Box semi-liquid \Box semi-solid \Box solid

- e. Purpose of land application: \Box reclamation \Box soil conditioning \boxtimes N/A
- f. If sewage sludge is transported to another WWTP for treatment, attach a written statement or copy of contractual agreements confirming that the WWTP identified above will accept and be responsible for the sludge from this facility for the life of the permit (at least 5 years).

Attachment: <u>N/A</u>

Item 3. Authorization for Sewage Sludge Disposal (Instructions, Page 85)

If this is a new or major amendment application which requests authorization of a new sewage sludge disposal method, check the new sewage disposal method(s) requested for authorization (check all that apply):

- □ Marketing and distribution by the permittee, attach Form TCEQ-00551
- □ Processed by the permittee, attach Form TCEQ-00744
- □ Surface disposal site (sludge monofill), attach Form TCEQ-00744
- □ Beneficial land application, attach Form TCEQ-10451
- □ Incineration, attach Form TCEQ-00744

Based on the selection(s) made above, complete and attach any required TCEQ forms, as directed. Failure to submit the required TCEQ form will result in delays in processing the application.

Attachment: <u>N/A</u>

NOTE: New authorization for beneficial land application, incineration, processing, or disposal in the TPDES permit or TLAP **requires a major amendment to the permit**. New authorization for composting may require a major amendment to the permit. See the instructions to determine if a major amendment is required or if authorization for composting can be added through the renewal process.

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 6.0: INDUSTRIAL WASTE CONTRIBUTION

The following information **is required** for all applications for publicly-owned treatment works (POTWs).

For an explanation of the terms used in this worksheet, refer to the General Definitions on pages 4-12 and the Definitions Relating to Pretreatment on pages 13-14 of the Instructions.

Item 1. All POTWs (Instructions, Page 86)

a. Complete the following table with the number of each type of industrial users (IUs) that discharge to the POTW and the daily average flows from each.

musula Osci mormaton		
Type of Industrial User	Number of Industrial Users	Daily Average Flow (gallons per day)
CIU		
SIU – Non-categorical		
Other IU		

Industrial User Information

b. In the past three years, has the POTW experienced treatment plant interference?

🗆 Yes 🛛 No

If **yes**, identify the date(s), duration, nature of interference, and probable cause(s) and possible source(s) of each interference event. Include the names of the IU(s) that may have caused the interference: $\underline{N/A}$

c. In the past three years, has the POTW experienced pass-through?

🗆 Yes 🖾 No

If **yes**, identify the date(s), duration, pollutants passing through the treatment plant, and probable cause(s) and possible source(s) of each pass-through event. Include the names of the IU(s) that may have caused the pass-through: $\underline{N/A}$

d. Does the POTW have, or is it required to develop, an approved pretreatment program?

🗆 Yes 🛛 No

If **yes**, answer all questions in Item 2 and skip Item 3.

If **no**, skip Item 2 and answer all questions in Item 3 for each SIU and CIU.

Item 2. POTWs With Approved Pretreatment Programs or Those Required To Develop A Pretreatment Program (Instructions, Page 86)

- a. Have there been any substantial modifications to the POTW's approved pretreatment program that have not been submitted to the Approval Authority (TCEQ) for approval according to *40 CFR § 403.18*?
 - 🗆 Yes 🛛 No

If **yes**, include an attachment which identifies all substantial modifications that have not been submitted to the TCEQ and the purpose of the modifications.

Attachment: <u>N/A</u>

- b. Have there been any non-substantial modifications to the POTW's approved pretreatment program that have not been submitted to the Approval Authority (TCEQ)?
 - □ Yes ⊠ No

If **yes**, include an attachment which identifies all non-substantial modifications that have not been submitted to the TCEQ and the purpose of the modification.

Attachment: <u>N/A</u>

c. List all parameters measured above the MAL in the POTW's effluent monitoring during the last three years:

Pollutant	Concentration	MAL	Units	Date

Effluent Parameters Measured Above the MAL

Attachment: <u>N/A</u>

d. Has any SIU, CIU, or other IU caused or contributed to any other problems (excluding interference or pass-through) at the POTW in the past three years?

🗆 Yes 🛛 No

If **yes**, provide a description of each episode, including date(s), duration, description of problems, and probable pollutants. Include the name(s) of the SIU(s)/CIU(s)/other IU(s) that may have caused or contributed to any of the problems: <u>N/A</u>

Item 3. Significant Industrial User and Categorical Industrial User Information (Instructions, Pages 88-87)

POTWs that **do not** have an approved pretreatment program **are required** to provide the following information for each SIU and CIU:

a. Mr. or Ms.: <u>N/A</u> First/Last Name: <u>N/A</u>

Organization Name: <u>N/A</u> Phone number: <u>N/A</u> Physical Address: <u>N/A</u> **Attachment:** <u>N/A</u> SIC Code: <u>N/A</u> Email address: <u>N/A</u> City/State/ZIP Code: <u>N/A</u>

- b. Describe the industrial processes or other activities that affect or contribute to the SIU(s) or CIU(s) discharge (e.g., process and non-process wastewater): N/A
- c. Provide a description of the principal products(s) or service(s) performed: N/A
- d. Flow rate information

Flow Rate Information

Effluent Type	Discharge Day (gallons per day)	Discharge Frequency (Continuous, batch, or intermittent)
Process Wastewater		
Non-process Wastewater		

- e. Pretreatment Standards
 - 1. Is the SIU or CIU subject to technology-based local limits as defined in the application instructions?
 - 🗆 Yes 🛛 No
 - 2. Is the SIU subject to categorical pretreatment standards?
 - 🗆 Yes 🛛 No

If **yes**, provide the category and subcategory or subcategories in the SIUs Subject To Categorical Pretreatment Standards table.

SIUs Subject to Categorical Pretreatment Standards

Category in 40 CFR	Subcategory in 40 CFR	Subcategory in 40 CFR	Subcategory in 40 CFR	Subcategory in 40 CFR

f. Has the SIU or CIU caused or contributed to any problem(s) (e.g., interferences, pass through, odors, corrosion, blockages) at the POTW in the past three years?

🗆 Yes 🛛 No

If **yes**, provide a description of each episode, including dates, duration, description of problems, and probable pollutants, and include the name(s) of the SIU(s)/CIU(s) that may have caused or contributed to the problem(s): $\underline{N/A}$

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 7.0: STORMWATER DISCHARGES ASSOCIATED WITH INDUSTRIAL ACTIVITIES

This worksheet **is required** for all TPDES permit applications requesting individual permit coverage for discharges consisting of **either**: 1) solely of stormwater discharges associated with industrial activities, as defined in *40 CFR § 122.26(b)(14)(i-xi)*, **or** 2) stormwater discharges associated with industrial activities and any of the listed allowable non-stormwater discharges, as defined in the MSGP (TXR05000), Part II, Section A, Item 6.

Discharges of stormwater as defined in 40 CFR § 122.26 (b)(13) are not required to obtain authorization under a TPDES permit (see exceptions at 40 CFR §§ 122.26(a)(1) and (9)). Authorization for discharge may be required from a local municipal separate storm sewer system.

Item 1. Applicability (Instructions, Page 89)

Do discharges from any of the existing/proposed outfalls consist either 1) solely of stormwater discharges associated with industrial activities **or** 2) stormwater discharges associated with industrial activities and any of the allowable non-stormwater discharges?

🗆 Yes 🖾 No

If **no**, stop here. If **yes**, proceed as directed.

Item 2. Stormwater Coverage (Instructions, Page 89)

List each existing/proposed stormwater outfall at the facility and indicate which type of authorization covers or is proposed to cover discharges.

Outfall	Authorization under MSGP	Authorized Under Individual Permit

Authorization Coverage

If **all** existing/proposed outfalls which discharge stormwater associated with industrial activities (and any of the allowable non-stormwater discharges) are **authorized under the MSGP**, **stop** here.

If **seeking authorization** for any outfalls which discharge stormwater associated with industrial activities (and any of the allowable non-stormwater discharges) **under an individual permit, proceed**.

NOTE: The following information is required for each existing/proposed stormwater outfall for which the facility is seeking individual permit authorization under this application

Item 3. Site Map (Instructions, Page 90)

Attach a site map or maps (drawn to scale) of the entire facility with the following information.

- the location of each stormwater outfall to be covered by the permit
- an outline of the drainage area that is within the facility's boundary and that contributes stormwater to each outfall to be covered by the permit
- connections or discharge points to municipal separate storm sewer systems
- locations of all structures (e.g. buildings, garages, storage tanks)
- structural control devices that are designed to reduce pollution in discharges of stormwater associated with industrial activities
- process wastewater treatment units (including ponds)
- bag house and other air treatment units exposed to stormwater (stormwater runoff, snow melt runoff, and surface runoff and drainage)
- landfills; scrapyards; surface water bodies (including wetlands)
- vehicle and equipment maintenance areas
- physical features of the site that may influence discharges of stormwater associated with industrial activities or contribute a dry weather flow
- locations where spills or leaks of reportable quality (as defined in *30 TAC § 327.4*) have occurred during the three years before this application was submitted to obtain coverage under an individual permit
- processing areas, storage areas, material loading/unloading areas, and other locations where significant materials are exposed to stormwater (stormwater runoff, snow melt runoff, and surface runoff and drainage)
- □ Check the box to confirm all above information was provided on the facility site map(s). Attachment: N/A

Item 4. Facility/Site Information (Instructions, Page 90)

a. Provide the area of impervious surface and the total area drained by each stormwater outfall requested for authorization by this permit application.

Outfall	Area of Impervious Surface (include units)	Total Area Drained (include units)

Impervious Surfaces

b. Provide the following local area rainfall information and the source of the information. Wettest month: N/A

Average rainfall for wettest month (total inches): <u>N/A</u>

25-year, 24-hour rainfall (inches): <u>N/A</u>

Source: <u>N/A</u>

- c. Attach an inventory, or list, of materials currently handled at the facility that may be exposed to precipitation. Attachment: N/A
- d. Attach narrative descriptions of the industrial processes and activities involving the materials in the above-listed inventory that occur outdoors or in some manner that may result in exposure of the materials to precipitation or runoff (see instructions for guidance). Attachment: <u>N/A</u>
- e. Describe any BMPs and controls the facility uses/proposes to prevent or effectively reduce pollution in stormwater discharges from the facility: N/A

Item 5. Pollutant Analysis (Instructions, Page 91)

- a. Provide the date range of all sampling events conducted to obtain the analytical data submitted with this application (e.g., 05/01/2018-05/30/2018): <u>N/A</u>
- b. \Box Check the box to confirm all samples were collected no more than 12 months prior to the date of application submittal.
- c. Complete Table 17 as directed on page 92 of the Instructions.

Pollutant	Grab Sample* Maximum (mg/L)	Composite Sample** Maximum (mg/L)	Grab Sample* Average (mg/L)	Composite Sample** Average (mg/L)	Number of Storm Events Sampled	MAL (mg/L)
pH (standard units)	(max)	—	(min)	—		—
Total suspended solids						—
Chemical oxygen demand						—
Total organic carbon						—
Oil and grease						—
Arsenic, total						0.0005
Barium, total						0.003
Cadmium, total						0.001
Chromium, total						0.003
Chromium, trivalent						—
Chromium, hexavalent						0.003
Copper, total						0.002

Table 17 for Outfall No.: <u>N/A</u>

Pollutant	Grab Sample* Maximum (mg/L)	Composite Sample** Maximum (mg/L)	Grab Sample* Average (mg/L)	Composite Sample** Average (mg/L)	Number of Storm Events Sampled	MAL (mg/L)
Lead, total						0.0005
Mercury, total						0.000005
Nickel, total						0.002
Selenium, total						0.005
Silver, total						0.0005
Zinc, total						0.005

* Taken during first 30 minutes of storm event

** Flow-weighted composite sample

d. Complete Table 18 as directed on pages 92-94 of the Instructions.

Table 18 for Outfall No.:<u>N/A</u>

Pollutant	Grab Sample* Maximum (mg/L)	Composite Sample** Maximum (mg/L)	Grab Sample* Average (mg/L)	Composite Sample** Average (mg/L)	Number of Storm Events Sampled

* Taken during first 30 minutes of storm event

** Flow-weighted composite sample

Attachment: <u>N/A</u>

Item 6. Storm Event Data (Instructions, Page 93)

Provide the following data for the storm event(s) which resulted in the maximum values for the analytical data submitted:

Date of storm event: <u>N/A</u>

Duration of storm event (minutes): N/A

Total rainfall during storm event (inches): <u>N/A</u>

Number of hours the between beginning of the storm measured and the end of the previous measurable storm event (hours): $\underline{N/A}$

Maximum flow rate during rain event (gallons/minute): N/A

Total stormwater flow from rain event (gallons): <u>N/A</u>

Provide a description of the method of flow measurement or estimate:

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 8.0: AQUACULTURE

This worksheet **is required** for all TPDES permit applications requesting individual permit coverage for discharges of aquaculture wastewater.

Item 1. Facility/Site Information (Instructions, Page 94)

a. Complete the following table with information regarding production ponds, raceways, and fabricated tanks at the facility.

Production Pond Descriptions

Number of Ponds	Dimensions (include units)	Area of Each Pond (include units)	Number of Ponds x Area of Ponds (include Units)

Total surface area of all ponds: <u>N/A</u>

Raceway Descriptions

Number of Raceways	Dimensions (include units)

Fabricated Tank Descriptions

Number of Tanks	Dimensions (include units)

b. Does the facility have a TPWD-approved emergency plan?

🗆 Yes 🛛 No

If **yes**, attach a copy of the approved plan.

Attachment: <u>N/A</u>

c. Does the facility have an aquatic plant transplant authorization?

 \Box Yes \boxtimes No

If **yes**, attach a copy of the authorization letter.

Attachment: <u>N/A</u>

d. Provide the number of aquaculture facilities located within 25-miles of this facility: <u>N/A</u>

Item 2. Species Identification (Instructions, Page 95)

Complete the following table regarding each species raised, source, origin, and disease status of the stock. Identify and attach copies of any current relevant authorizations or permits that authorize the species.

Stock Species Information

Species	Source of Stock	Origin of Stock	Disease Status	Authorizations

Attachment: N/A

Item 3. Stock Management Plan (Instructions, Page 95)

Attach a detailed stock management plan: <u>N/A</u>

Item 4. Water Treatment and Discharge Description (Instructions, Page 96)

Attach a detailed description of the discharge practices and water treatment process(es): N/A

Item 5. Solid Waste Management (Instructions, Page 96)

Attach a description of the solid waste-disposal practices: N/A

Item 6. Site Assessment Report (Instructions, Page 96)

All new and expanding commercial shrimp facilities located/to be located within the coastal zone must attach a detailed site assessment report which identifies sensitive aquatic habitats within the coastal zone: $\underline{N/A}$

WORKSHEET 9.0

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

CLASS V INJECTION WELL INVENTORY/AUTHORIZATION FORM

Submit the completed form to: TCEQ IUC Permits Team Radioactive Materials Division MC-233 PO Box 13087 Austin, Texas 78711-3087 512-239-6466

For TCEQ Use Only
Reg. No
Date Received
Date Authorized

Item 1. General Information (Instructions Page 99)

1. TCEQ Program Area

Program Area (PST, VCP, IHW, etc.): <u>N/A</u> Program ID: <u>N/A</u> Contact Name: <u>N/A</u> Phone Number: <u>N/A</u>

2. Agent/Consultant Contact Information

Contact Name: <u>N/A</u> Address: <u>N/A</u> City, State, and Zip Code: <u>N/A</u> Phone Number: <u>N/A</u>

3. Owner/Operator Contact Information

□ Owner □ Operator Owner/Operator Name: <u>N/A</u> Contact Name: <u>N/A</u> Address: <u>N/A</u> City, State, and Zip Code: <u>N/A</u> Phone Number: <u>N/A</u>

4. Facility Contact Information

Facility Name: <u>N/A</u> Address: <u>N/A</u> City, State, and Zip Code: <u>N/A</u> Location description (if no address is available): <u>N/A</u> Facility Contact Person: <u>N/A</u> Phone Number: <u>N/A</u>

5. Latitude and Longitude, in degrees-minutes-seconds

Latitude: <u>N/A</u> Longitude: <u>N/A</u> Method of determination (GPS, TOPO, etc.): <u>N/A</u> Attach topographic quadrangle map as attachment A.

6. Well Information

Type of Well Construction, select one:

- □ Vertical Injection
- □ Subsurface Fluid Distribution System
- □ Infiltration Gallery
- □ Temporary Injection Points
- □ Other, Specify: <u>N/A</u>

Number of Injection Wells: <u>N/A</u>

7. Purpose

Detailed Description regarding purpose of Injection System:

N/A

Attach a Site Map as Attachment B (Attach the Approved Remediation Plan, if appropriate.)

8. Water Well Driller/Installer

Water Well Driller/Installer Name: <u>N/A</u>

City, State, and Zip Code: <u>N/A</u>

Phone Number: <u>N/A</u>

License Number: <u>N/A</u>

Item 2. Proposed Down Hole Design

Attach a diagram signed and sealed by a licensed engineer as Attachment C.

Down Hole Design Table

Name of String	Size	Setting Depth	Sacks Cement/Grout – Slurry Volume – Top of Center	Hole Size	Weight (lbs/ft) PVC/Steel
Casing					
Tubing					
Screen					

Item 3. Proposed Trench System, Subsurface Fluid Distribution System, or Infiltration Gallery

Attach a diagram signed and sealed by a licensed engineer as Attachment D.

System(s) Dimensions: N/A

System(s) Construction: <u>N/A</u>

Item 4. Site Hydrogeological and Injection Zone Data

- 1. Name of Contaminated Aquifer: <u>N/A</u>
- 2. Receiving Formation Name of Injection Zone: <u>N/A</u>
- 3. Well/Trench Total Depth: <u>N/A</u>
- 4. Surface Elevation: <u>N/A</u>
- 5. Depth to Ground Water: <u>N/A</u>
- 6. Injection Zone Depth: <u>N/A</u>
- 7. Injection Zone vertically isolated geologically? □ Yes ⊠ No
 Impervious Strata between Injection Zone and nearest Underground Source of Drinking Water:

Name: <u>N/A</u> Thickness: N/A

- 8. Attach a list of contaminants and the levels (ppm) in contaminated aquifer as Attachment E.
- 9. Attach the Horizontal and Vertical extent of contamination and injection plume as Attachment F.
- 10. Attach Formation (Injection Zone) Water Chemistry (Background levels) TDS, etc., as Attachment G.
- 11. Injection Fluid Chemistry in PPM at point of injection. Attach as Attachment H.
- 12. Lowest Known Depth of Ground Water with < 10,000 PPM TDS: N/A
- 13. Maximum injection Rate/Volume/Pressure: N/A
- 14. Water wells within 1/4 mile radius (attach map as Attachment I): <u>N/A</u>
- 15. Injection wells within 1/4 mile radius (attach map as Attachment J): <u>N/A</u>
- 16. Monitor wells within 1/4 mile radius (attach drillers logs and map as Attachment K): $\underline{\rm N/A}$
- 17. Sampling frequency: <u>N/A</u>
- 18. Known hazardous components in injection fluid: <u>N/A</u>

Item 5. Site History

- 1. Type of Facility: <u>N/A</u>
- 2. Contamination Dates: <u>N/A</u>
- 3. Original Contamination (VOCs, TPH, BTEX, etc.) and Concentrations. Attach as Attachment L.
- 4. Previous Remediation. Attach results of any previous remediation as Attachment M.

NOTE: Authorization Form should be completed in detail and authorization given by the TCEQ before construction, operation, and/or conversion can begin. Attach additional pages as necessary.

Item 6. CLASS V INJECTION WELL DESIGNATIONS

- 5A07 Heat Pump/AC return (IW used for groundwater to heat or cool buildings)
- 5A19 Industrial Cooling Water Return Flow (IW used to cool industrial process equipment)
- 5B22 Salt Water Intrusion Barrier (IW used to inject fluids to prevent the intrusion of salt water into an aquifer)
- 5D02 Stormwater Drainage (IW designed for the disposal of rain water)
- 5D04 Industrial Stormwater Drainage Wells (IW designed for the disposal of rain water associated with industrial facilities)
- 5F01 Agricultural Drainage (IW that receive agricultural runoff)
- 5R21 Aquifer Recharge (IW used to inject fluids to recharge an aquifer)

5S23 Subsidence Control Wells (IW used to control land subsidence caused by groundwater withdrawal)

- 5W09 Untreated Sewage
- 5W10 Large Capacity Cesspools (Cesspools that are designed for 5,000 gpd or greater)
- 5W11 Large Capacity Septic systems (Septic systems designed for 5,000 gpd or greater)
- 5W12 WTTP disposal
- 5W20 Industrial Process Waste-disposal Wells
- 5W31 Septic System (Well Disposal method)
- 5W32 Septic System Drainfield Disposal
- 5X13 Mine Backfill (IW used to control subsidence, dispose of mining byproducts, or fill sections of a mine)
- 5X25 Experimental Wells (Pilot Test) (IW used to test new technologies or tracer dye studies)
- 5X26 Aquifer Remediation (IW used to clean up, treat, or prevent contamination of a USDW)
- 5X27 Other Wells
- 5X28 Motor Vehicle Waste-disposal Wells (IW used to dispose of waste from a motor vehicle site These are currently banned)
- 5X29 Abandoned Drinking Water Wells (waste disposal)

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 10.0: QUARRIES IN THE JOHN GRAVES SCENIC RIVERWAY

This worksheet **is required** for all applications for individual permits for a municipal solid waste facility or mining facility located within a Water Quality Protection Area in the John Graves Scenic Riverway. **Note: Review 30 TAC §§ 311.71-311.82 thoroughly prior to completing any portion of this worksheet.**

Item 1. Exclusions (Instructions, Page 100)

- a. Is this a municipal solid waste facility?
 - 🗆 Yes 🖾 No
- b. Has this quarry been in operation since January 1, 1994 without cessation of operation for more than 30 consecutive days and under the same ownership?
 - 🗆 Yes 🖾 No
- c. Is this a coal mine?
 - 🗆 Yes 🖾 No
- d. Is this facility mining clay and/or shale for use in manufacturing structural clay products?
 - 🗆 Yes 🖾 No

If **yes** to **any** above question, **stop here**. The facility is required to maintain documentation, as outlined in *30 TAC § 311.72(c)*, at the facility to demonstrate the exclusion(s).

Item 2. Location of the Quarry (Instructions, Page 101)

Check the box next to the distance between the quarry and the nearest navigable water body:

 \square < 200 feet \square 200 feet - 1,500 feet \square 1,500 feet - 1 mile \square > 1 mile

NOTE: The construction or operation of any new quarry or expansion of any existing quarry **is prohibited** within 200 feet of any water body located within a Water Quality Protection Area in the John Graves Scenic Riverway.

Item 3. Additional Requirements (Instructions, Page 101)

Use the table in the Instructions to determine if additional application requirements apply to the facility based on distance between the quarry and the nearest waterway. Attach as appropriate or enter N/A.

- a. Attach a Restoration Plan: <u>N/A</u>
- b. Amount of Financial Assurance for Restoration: \$<u>N/A</u>

Mechanism: <u>N/A</u>

- c. Attach a Technical Demonstration: <u>N/A</u>
- d. Attach a Reclamation Plan: <u>N/A</u>
- e. Amount of Financial Assurance for Reclamation: <u>\$ N/A</u> Mechanism: N/A

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 11.0: COOLING WATER SYSTEM INFORMATION

This worksheet **is required** for all TPDES permit applications **that meet the conditions outlined in Technical Report 1.0, Item 12.**

Item 1. Cooling Water System Data (Instructions, Page 104)

a. Complete the following table with information regarding the cooling water system.

Cooling Water System Data				
Parameter	Volume (include units)			
Total DIF				
Total AIF				
Intake Flow Use(s) (%)				
Contact cooling				
Non-contact cooling				
Process Wastewater				
Other				

- b. Attach the following information:
 - 1. A narrative description of the design and annual operation of the facility's cooling water system and its relationship to the CWIS(s).
 - 2. A scaled map depicting the location of each CWIS, impoundment, intake pipe, and canals, pipes, or waterways used to convey cooling water to, or within, the cooling water system. Provide the latitude and longitude for each CWIS and any intake pipe(s) on the map. Indicate the position of the intake pipe within the water column.
 - 3. A description of water reuse activities, if applicable, reductions in total water withdrawals, if applicable, and the proportion of the source waterbody withdrawn (on a monthly basis).
 - 4. Design and engineering calculations prepared by a qualified professional and data to support the information provided in above item a.
 - 5. Previous year (a minimum of 12 months) of AIF data.
 - 6. A narrative description of existing or proposed impingement and entrainment technologies or operation measures and a summary of their performance, including, but not limited to, reductions in impingement mortality and entrainment due to intake location and reductions in total water withdrawals and usage.

Attachment: <u>N/A</u>

Item 2. Cooling Water Intake Structure(s) Data (Instructions, Page 105)

a. Complete the following table with information regarding each cooling water intake structure (this includes primary and make-up CWIS(s)).

Cooling Water Intake Structure(s) Data

CWIS ID		
DIF (include units)		
AIF (include units)		
Intake Flow Use(s) (%)		
Contact cooling		
Non-contact cooling		
Process Wastewater		
Other		
Latitude (decimal degrees)		
Longitude (decimal degrees)		

- b. Attach the following information regarding the CWIS(s):
 - 1. A narrative description of the configuration of each CWIS, annual and daily operation, including any seasonal changes, and where it is located in the water body and in the water column.
 - 2. Engineering calculations for each CWIS.

Attachment: <u>N/A</u>

Item 3. Source Water Physical Data (Instructions, Page 105)

a. Complete the following table with information regarding the CWIS(s) source waterbody (this includes primary and make-up CWIS(s)).

Source Waterbody Data

CWIS ID		
Source Waterbody		
Mean Annual Flow		
Source		

- b. Attach the following information regarding the source waterbody.
 - 1. A narrative description of the source water for each CWIS, including areal dimensions, depths, salinity and temperature regimes, and other documentation that supports this determination of the water body type where each cooling water intake structure is located.

- 2. A narrative description of the source waterbody's hydrological and geomorphological features.
- 3. Scaled drawings showing the physical configuration of all source water bodies used by the facility, including the source waterbody's hydrological and geomorphological features. **NOTE:** The source waterbody's hydrological and geomorphological features may be included on the map submitted for item 1.b.ii of this worksheet.
- 4. A description of the methods used to conduct any physical studies to determine the intake's area of influence within the waterbody and the results of such studies.

Attachment: <u>N/A</u>

Item 4. Operational Status (Instructions, Page 106)

a. Is this application for a power production or steam generation facility?

 \Box Yes \boxtimes No

If **no**, proceed to Item 4.b. If **yes**, provide the following information as an attachment:

- 1. Describe the operating status of each individual unit, including age, capacity utilization rate (or equivalent) for the previous five years (a minimum of 60 months), and any seasonal changes in operation.
- 2. Describe any extended or unusual outages or other factors which significantly affect current data for flow, impingement, entrainment.
- 3. Identify any operating unit with a capacity utilization rate of less than 8 percent averaged over a contiguous period of two years (a minimum of 24 months).
- 4. Describe any major upgrades completed within the last 15 years, including but not limited to boiler replacement, condenser replacement, turbine replacement, or changes of fuel type.

Attachment: <u>N/A</u>

b. Process Units

1. Is this application for a facility which has process units that use cooling water (other than for power production or steam generation)?

🗆 Yes 🛛 No

If **no**, proceed to Item 4.c. If **yes**, continue.

2. Does the facility use or intend to use reductions in flow or changes in operations to meet the requirements of $40 \ CFR \ \S \ 125.94(c)$?

🗆 Yes 🖾 No

If **no**, proceed to Item 4.c. If **yes**, attach descriptions of the following information:

- Individual production processes and product lines
- The operating status, including age of each line and seasonal operation
- Any extended or unusual outages that significantly affect current data for flow, impingement, entrainment, or other factors

• Any major upgrades completed within the last 15 years and plans or schedules for decommissioning or replacement of process units or production processes and product lines.

Attachment: <u>N/A</u>

c. Is this an application for a nuclear power production facility?

🗆 Yes 🛛 No

If **no**, proceed to Item 4.d. If **yes**, attach a description of completed, approved, or scheduled upgrades and the Nuclear Regulatory Commission relicensing status for each unit at the facility.

Attachment: <u>N/A</u>

d. Is this an application for a manufacturing facility?

🗆 Yes 🛛 No

If **no**, proceed to Worksheet 11.1. If **yes**, attach descriptions of current and future production schedules and any plans or schedules for any new units planned within the next five years (a minimum of 60 mos)

Attachment: <u>N/A</u>

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 11.1: IMPINGEMENT MORTALITY

This worksheet **is required** for all TPDES permit applications **that meet the conditions outlined in Technical Report 1.0, Item 12.** Complete one copy of this worksheet for **each** individual CWIS the facility uses or proposes to use.

CWIS ID: <u>N/A</u>

Item 1. Impingement Compliance Technology Selection (Instructions, Page 107)

Check the box next to the method of compliance for the Impingement Mortality Standard selected by the facility.

- □ Closed-cycle recirculating system(CCRS) [40 CFR § 125.94(c)(1)]
- □ 0.5 ft/s Through-Screen Design Velocity [40 CFR § 125.94(c)(2)] Proceed to Worksheet 11.2
- □ 0.5 ft/s Through Screen Actual Velocity [40 CFR § 125.94(c)(3)]
- \Box Existing offshore velocity cap [40 CFR § 125.94(c)(4)] Proceed to Worksheet 11.2
- \square Modified traveling screens [40 CFR § 125.94(c)(5)]
- \Box System of technologies [40 CFR § 125.94(c)(6)]
- □ Impingement mortality performance standard [40 CFR § 125.94(c)(7)]
- \Box De minimis rate of impingement [40 CFR § 125.94(c)(11)]
- □ Low capacity utilization power-generation facilities [40 CFR § 125.94(c)(12)]

If 0.5 ft/s Through-Screen Design Velocity [$40 \ CFR \ \S \ 125.94(c)(2)$] or existing offshore velocity cap [$40 \ CFR \ \S \ 125.94(c)(4)$] was selected, proceed to Worksheet 11.2. Otherwise, continue to Item 2.

Item 2. Impingement Compliance Technology Information (Instructions, Page 107)

Complete the following sections based on the selection made for item 1 above.

- a. CCRS [40 CFR § 125.94(c)(1)]
 - \Box Check this box to confirm the CWS meets the definition of CCRS located at 40 CFR § 125.91(c) and provide a response to the following questions.
 - 1. Does the facility use or propose to use a CWIS to replenish water losses to the CWS?
 - 🗆 Yes 🛛 No

If **no**, proceed to item a.2. If **yes**, provide the following information as an attachment and continue.

- CWIS ID
- 12 months of intake flow data for any CWIS used for make-up intake flows to replenish cooling water losses, excluding intakes for losses due to blowdown, drift, or evaporation.

• A narrative description of any physical or operational measures taken to minimize make-up withdraws.

Attachment: <u>N/A</u>

NOTE: Do not complete a separate Worksheet 11.1 for a make-up CWIS.

2. Does the facility use or propose to use cooling towers?

🗆 Yes 🛛 No

If **no**, proceed to Worksheet 11.2. If **yes**, provide the following information and proceed to Worksheet 11.2.

• Average number of cycles of concentration (COCs) prior to blowdown:

Average COCs Prior to Blowdown

Cooling Tower ID		
COCs		

- Attach COC monitoring data for each cooling tower from the previous year (a minimum of 12 months): <u>N/A</u>
- Maximum number of COCs each cooling tower can accomplish based on design of the system.

Calculated COCs Prior to Blowdown

Cooling Tower ID		
COCs		

- Describe conditions that may limit the number of COCs prior to blowdown, if any, including but not limited to permit conditions: N/A
- b. 0.5 ft/s Through Screen Actual Velocity [40 CFR § 125.94(c)(3)]

Provide daily intake flow measurement monitoring data from the previous year (a minimum of 12 months) as an attachment and proceed to Worksheet 11.2.

Attachment: <u>N/A</u>

c. Modified traveling screens [40 CFR § 125.94(c)(5)]

Provide the following information as an attachment and proceed to Worksheet 11.2.

- 1. A description of the modified traveling screens and associated equipment.
- 2. A site-specific impingement technology performance optimization study that includes a narrative description of the biological data collection methods
- 3. Biological sampling data from the previous two years (a minimum of 24 months).

Attachment: <u>N/A</u>

d. System of technologies [40 *CFR* § 125.94(*c*)(6)] or impingement mortality performance standard [40 *CFR* § 125.94(*c*)(7)]

Provide the following information as an attachment and proceed to Worksheet 11.2.

1. A description of the system of technologies used or proposed for use by the facility to
achieve compliance with the impingement mortality standard.

- 2. A site-specific impingement technology performance optimization study that includes a narrative description of the biological data collection methods.
- 3. Biological sampling data from the previous two years (a minimum of 24 months).

Attachment: <u>N/A</u>

e. De minimis rate of impingement [40 CFR § 125.94(c)(11)]

Provide the following information and proceed to Worksheet 11.2.

1. Attach monitoring data from the previous year (a minimum of 12 months) of intake flow measured at a frequency of 1/day on days of operation.

Attachment: <u>N/A</u>

2. If the rate of impingement caused by the CWIS is extremely low (at an organism or ageone equivalent count), attach supplemental information to Worksheet 11.0, item 1.b.6. to support this determination.

Attachment: <u>N/A</u>

f. Low capacity utilization power-generation facilities [40 CFR § 125.94(c)(12)]

Attach monthly utilization data from the previous 2 years (a minimum of 24 months) for each operating unit and proceed to Worksheet 11.2.

Attachment: <u>N/A</u>

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 11.2: SOURCE WATER BIOLOGICAL DATA

This worksheet **is required** for all TPDES permit applications that **meet the conditions outlined in Technical Report 1.0, Item 12**. Complete one copy of this worksheet for **each** source waterbody of a CWIS for which a facility has selected an Impingement Mortality Technology Option described at $40 \ CFR \ SS \ 125.94(c)(1)$ -(7).

Name of source waterbody: <u>N/A</u>

Item 1. Species Management (Instructions, Page 109)

- a. The facility has obtained an incidental take permit for its cooling water intake structure(s) from the USFWS or the NMFS.
 - 🗆 Yes 🛛 No

If yes, attach any information submitted in order to obtain that permit, which may be used to supplement the permit application information requirements of paragraph *40 CFR § 125.95(f)*.

Attachment: <u>N/A</u>

b. Is the facility requesting a waiver from application requirements at 40 CFR § 122.21(r)(4) in accordance with 40 CFR § 125.95 for any CWIS(s) that withdraw from a man-made reservoir that is stocked and managed by a state or federal natural resources agency or the equivalent?

□ Yes ⊠ No

If yes, attach a copy of the most recent managed fisheries report to TPWD, or equivalent.

Attachment: <u>N/A</u>

- c. There are no federally listed threatened or endangered species or critical habitat designations within the source water body.
 - \Box True \Box False

Item 2. Source Water Biological Data (Instructions, Page 109)

New Facilities (Phase I, Track I and II)

• Provide responses to all items in this section and stop.

Existing Facilities (Phase II)

- If the answer to **1.b.** above was **no**, provide responses to all items in this section and proceed to Worksheet 11.3.
- If the answer to **1.b.** was **yes** and **1.c.** was **true**, do not complete any items in this section and proceed to Worksheet 11.3.
- If the answer to **1.b.** was **yes** and **1.c.** was **false**, attach a response for any item in this section that is not contained within the most recent TPWD, or equivalent and proceed to Worksheet 11.3.

Attachment: N/A

- a. A list of the data requested at *40 CFR § 122.21(r)(4)(ii)* through *(vi)* that are not available, and efforts made to identify sources of the data.
- b. Provide a list of species (or relevant taxa) in the vicinity of the CWIS and identify the following information regarding each species listed.
 - all life stages and their relative abundance,
 - identification of all species and life stages that would be most susceptible to impingement and entrainment,
 - forage base,
 - significance to commercial fisheries,
 - significance to recreational fisheries,
 - primary period of reproduction,
 - larval recruitment, and
 - period of peak abundance for relevant taxa.
- c. Data representative of the seasonal and daily activities (e.g., feeding and water column migration) of biological organisms in the vicinity of the CWIS(s).
- d. Identify all threatened, endangered, and other protected species that might be susceptible to impingement and entrainment at the CWIS(s).
- e. Documentation of any public participation or consultation with federal or state agencies undertaken.

The following is required for existing facilities only. Include the following information with the above listed attachment.

- f. Identify any protective measures and stabilization activities that have been implemented and provide a description of how these measures and activities affected the baseline water condition in the vicinity of the intake.
- g. A list of fragile species, as defined at *40 CFR § 125.92(m)*, at the facility. The applicant need only identify those species not already identified as fragile at *40 CFR § 125.92(m)*.

NOTE: New units at an existing facility are not required to resubmit this information if the cooling water withdrawals for the operation of the new unit are from an existing intake.

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 11.3: ENTRAINMENT

This worksheet **is required** for all TPDES permit applications that **meet the conditions outlined in Technical Report 1.0, Item 12**. Complete one copy of this worksheet for **each** individual CWIS the facility uses or proposes to use.

CWIS ID: <u>N/A</u>

Item 1. Applicability (Instructions, Page 111)

Is the AIF of the CWIS identified above greater than, or equal to, 125 MGD?

- 🗆 Yes 🖾 No
- If **no** or the facility has selected **CCRS** [40 *CFR* § 125.94(*c*)(1)] for the impingement mortality compliance method, complete Item 2 and stop here.
- If **yes** and the facility is **seeking a waiver** from application requirements in accordance with *40 CFR § 125.95* for any CWIS(s) that withdraw from a man-made reservoir that is stocked and managed by a state or federal natural resources agency or the equivalent, complete item 2 and stop.
- If **yes** and the facility is **not seeking a waiver** from application requirements in accordance *with 40 CFR § 125.95*, complete item 2 and provide any required and completed studies listed in item 3. For any required studies in item 3 that are not complete, provide a detailed explanation for the delay and an anticipated schedule for completion and submittal.

Item 2. Existing Entrainment Performance Studies (Instructions, Page 111)

Attach any previously conducted studies or studies obtained from other facilities addressing technology efficacy, through-facility entrainment survival, and other entrainment studies.

Attachment: <u>N/A</u>

Item 3. Facility Entrainment Performance Studies (Instructions, Page 111)

- a. Attach an entrainment characterization study, as described at 40 CFR § 122.21(r)(9): N/A
- b. Attach a comprehensive feasibility study, as described as 40 CFR § 122.21(r)(10): N/A
- c. Attach a benefits valuation study, as described as 40 CFR § 122.21(r)(11): N/A
- d. Attach a non-water quality environmental and other impacts study, as described as 40 CFR § 122.21(r)(12): N/A
- e. Attach a peer review analysis, as described as 40 CFR § 122.21(r)(13): N/A

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 12.0: OIL AND GAS EXPLORATION, DEVELOPMENT, AND PRODUCTION WASTEWATER DISCHARGES

This worksheet **is required** for all TPDES permit applications that are subject to Effluent Limitation Guidelines in 40 CFR Part 435.

Item 1. Operational Information (Instructions, Page 112)

- a. Is the wastewater from an oil and gas exploration, development, or production facility located west of the 98th meridian?
 - 🗆 Yes 🛛 No

If yes, continue to the next question. If no, skip to Item 2 relating to Production/Process Data.

b. Provide justification for how the wastewater is/will be used for agriculture or wildlife propagation.

N/A

Item 2. Production/Process Data (Instructions, Page 112)

a. Provide the applicable 40 CFR Part 435 Subpart(s).

N/A

b. Describe if the permit being sought is for discharges from exploration, development, production, or for a combination of more than one of those activities.

N/A

c. Provide information on all waste-streams generated and specify which waste-streams you are requesting to be authorized for discharge.

Wastestreams	Generated
--------------	-----------

Wastestream	Requesting authorization to discharge? (Yes/No)	Volume (MGD)	% of Total Flow

d. Describe how the facility will manage wastestreams for which discharge authorization is not being sought.

N/A

Attachment: <u>N/A</u>

e. Provide information on miscellaneous discharges.

N/A

Attachment: <u>N/A</u>

f. List of chemicals that are in use, or will be used, downhole. Provide the category, concentration used/to be used, and purpose of using the chemical. Attach a safety data sheet for each chemical listed.

Chemicals Li	ist
--------------	-----

Category	Chemical Name	Concentration (include units)	Purpose

Attachment: <u>N/A</u>

g. List of chemicals that are in use, or will be used, to treat the wastewater to be discharged under this authorization. Provide the concentration used/to be used and purpose of using the chemical. Attach a safety data sheet for each chemical listed.

Water Treatment Chemicals List

Category	Chemical Name	Concentration (include units)	Purpose

Attachment: <u>N/A</u>

Item 3. Pollutant Analysis (Instructions, Page 113)

Tables 1, 2, 6, and 7 located in Worksheet 2.0 are required. In addition, Table 19 below is required and must be completed for each outfall and submitted with this application. The remaining tables in Worksheet 2.0, are required as applicable.

- a. Provide the date range of all sampling events conducted to obtain the analytical data submitted with this application (e.g., 05/01/2018-05/30/2018): <u>No Discharge from the last 5 years</u>
- b. \Box Check the box to confirm all samples were collected no more than 12 months prior to the date of application submittal.
- c. Read the general testing requirements in the instructions for important information about sampling, test methods, and MALs. If a contact laboratory was used, attach a list which includes the name, contact information, and pollutants analyzed for each laboratory/firm. Attachment N/A; NO DISCHARGE SINCE 2015
- d. Attach correspondence from TCEQ approving submittal of less than the required number of samples, if applicable. Attachment: N/A

Table 19 for Outfall No.: <u>N/A</u>	Samples	are (check one):	Composite	🗆 Grab
Pollutant	Sample 1 (mg/L)*	Sample 2 (mg/L)*	Sample 3 (mg/L)*	Sample 4 (mg/L)*
Calcium				
Potassium				
Sodium				

*Indicate units if different from mg/L.

TPDES Permit No. WQ0004437-000 Ultrafiltration Water Treatment Plant Process Schematic Normal Operations

TPDES Permit No. WQ0004437-000 Ultrafiltration Water Treatment Plant Process Schematic Excessively Turbid Source Water

May 20, 2024

TCEQ Remediation Division – MC 127 Corrective Action, VCP-CA Section P.O. Box 13087 12100 Park 35 Circle, Building D Austin, TX 78711-3087

RE: Sludge Lagoons Closure Report and Closure Request Release Determination Activities and Reporting San Antonio Water System Ultrafiltration Water Treatment Plant 6725 Agua Pura Street, Von Ormy, Texas. RN103114724; CN600529069; WQ0004437000

Dear Sir/Madam,

In October 2023, Mr. Felix Gonzales, TCEQ Environmental Investigator, San Antonio Region Office inspected the facility and at the time of the inspection, a "closure" plan for the three inactive sludge lagoons currently authorized by WQ0004437000. Although the permit is still active, there has been no treatment process(es) have occurred at the facility, and a "NO DISCHARGE" report is submitted monthly. The San Antonio Water System engaged Weston Solutions, Inc. (WESTON®) to perform a site assessment and closure-related activities for the inactive sludge lagoons (ATTACHMENT A).

Therefore, SAWS respectfully requests that a closure letter be issued for the inactive sludge lagoons. Thank you for your consideration and should you need additional information, please do not hesitate to contact Floramie Welch, Environmental Analyst III, at 210-233-3744.

Sincerely, Scott R. Halty

Director, Resource Protection & Compliance

Attachment: SLUDGE LAGOON CLOSURE REPORT

cc: Javier Anguiano, TCEQ, Region 13 Felix Gonzales, TCEQ, Region 13 Jack Higginbotham, TCEQ, Region 13 Rogelio Placencia, SAWS, Sr. Director, Production Operations Rob Escobar, SAWS, Manager, Production Operations Vicente Garza, P.E., SAWS Manager, Engineering Operations Support Lee Bausinger, P.E., SAWS Manager, Engineering Operations Support Gregg Eckhardt, SAWS, Sr. Resource Analyst, Production Operations Floramie Welch, SAWS, Environmental Analyst III, Resource Protection & Compliance

Texas Commission on Environmental Quality Remediation Division Correspondence Identification Form

SITE & PROGRAM AREA IDENTIFICATION		
SITE LOCATION	REMEDIATION DIVISION PROGRAM AND FACILITY	
	IDENTIFICATION	
Site Name: Ultrafiltration Water Plant	Is This Site Being Managed Under A State Lead Contract?	
	Yes Vo	
Address 1: 6725 Agua Pura Street	Program IHW CORRECTIVE ACTION	
	Area:	
Address 2: Mail Code: MC-127		
City: Von Ormy State: Texas	Is This A New Site To This Program Area?	
	Ves No	
Zip Code: 78073 County: Bexar	WQ0004437000	
TCEQ Region: Region 13 - San Antonio	Leave This Field BlankLeave This Field Blank	

	DOCUMENT(S) IDENTIFICATION		
PF	IASE OF REMEDIATION	DOCUMENT NAME	
1.		▼	
2.			
3.	_	▼	
4.	—	▼	
5.		▼	

	CONTACT INFORMATION					
	RESPON	ISIRI F PARTV/A	PPI ICANT/CUST	OMER		
Name:	Vicente J. Garza, P.E.	SIDLE I AKI I/A		UNIER		
Company:	San Antonio Water System	Phone Number:	210-233-3596	I	Fax Number:	
Address 1:	2800 US Hwy 281 North	City: San A	ntonio State:	ТХ	Zip Code:	78212
Address 2:	·	Email Address:	arlopez@texas-ec.or	rg	Ĩ	
	ENVIRONMENT	AL CONSULTAN	NT/REPORT PREP	ARER/A	AGENT	
Name:	Nancy L. Koch, P.E.					
Company:	Weston Solutions, Inc.	Phone Number:	512-651-7104	I	Fax Number:	
Address 1:	5301 Southwest Parkway, Suite	City: Austin	State:	ТХ	Zip Code:	78735
	450					
Address 2:		Email Address:	Nancy.koch@westo	nsolution	s.com	

	TCEQ INTERNAL USE ONLY		
Document No.	TCEQ Database Term	Document No.	TCEQ Database Term
1.		4.	
2.		5.	
3.			

30 April 2024

TCEQ Remediation Division – MC 127 Corrective Action, VCP-CA Section P.O. Box 13087 12100 Park 35 Circle, Building D Austin, TX 78711-3087

Also via:corract@tceq.texas.gov

RE: Sludge Lagoons Closure Report and Closure Request Ultrafiltration Water Plant, 6725 Agua Pura Street, Von Ormy, Texas. WQ0004437000 RN103114724/CN600529069

To Whom it May Concern:

On behalf of San Antonio Water System (SAWS), Weston Solutions, Inc. (WESTON_®) submits the enclosed original and electronic copy (via corract@tceq.texas.gov) of the Sludge Lagoons Closure Report and Closure Request. This Closure Report and Request addresses three inactive sludge lagoons currently authorized by WQ0004437000.

We appreciate your consideration of this request. Should you have any questions, please call me at (512) 651-7104.

Sincerely,

Weston Solutions, Inc.

n. J. Koch

Nancy L. Koch, P.E. Senior Project Engineer

cc: Jack Higginbotham, TCEQ, Waste Section Manager, San Antonio Region 13 Office (via email – jack.higginbotham@)tceq.texas.gov)

Vicente J. Garza., Engineering Manager, Operations Support, SAWS (via email)

SLUDGE LAGOON CLOSURE REPORT AND CLOSURE REQUEST TPDES PERMIT WQ0004437000

ULTRAFILTRATION WATER TREATMENT PLANT 6725 AGUA PURA STREET VON ORMY, TEXAS 78073 TCEQ REGION 13 – SAN ANTONIO

Prepared for: San Antonio Water System Vincente J Garza, P.E., PMP, Engineering Manager 2800 U.S. Hwy 281 North San Antonio, Texas 78212

Prepared by: WESTON SOLUTIONS, INC. 70 NE Interstate 410 Loop, #200 San Antonio, Texas 78216 210-308-4300

May 2024

W.O. No. 10412.036.001.0003

TABLE OF CONTENTS

Section

Page

1.	EXECUTIVE SUMMARY AND INTRODUCTION	1
2.	BACKGROUND INFORMATION	1
3.	CLOSURE INFORMATION	2
	3.1 RELEASE DETERMINATION	2
4.	CONCLUSION AND REQUEST FOR CLOSURE	5
5.	REFERENCES	5

LIST OF FIGURES

Figure 1 Site Location Map

Figure 2 Site Layout Map

LIST OF TABLES

- Table 1Soil Volatile Organic Compounds Summary
- Table 2Soil Semi-Volatile Organic Compounds Summary
- Table 3Soil Total Metals Summary
- Table 4
 Soil Metals Synthetic Precipitation and Leachate Procedure Summary
- Table 5Groundwater Arsenic Summary

ATTACHMENTS

Attachment 1 Field Notes

Attachment 2 Laboratory Analytical Data Packages

Attachment 3 Boring Log

LIST OF ACRONYMS

bgs	below grade surface
COCs	Chemicals of Concern
GW	groundwater
PID ppm	photoionization detector parts per million
RALs	Residential Assessment Levels
SAWS SDL SPLP SVOCs	San Antonio Water System sample detection level Synthetic Precipitate Leachate Procedure Semi-volatile Organic Compounds
TCEQ TPDES TRRP TSSBC U.S. EPA	Texas Commission on Environmental Quality Texas Pollution Discharge Elimination System Texas Risk Reduction Program Texas-Specific Soil Background Concentration United States Environmental Protection Agency
VOC	Volatile Organic Compounds
WESTON®	Weston Solutions, Inc.

1. EXECUTIVE SUMMARY AND INTRODUCTION

Weston Solutions, Inc. (WESTON[®]) is submitting this Closure Report on behalf of San Antonio Water System (SAWS) for the three sludge lagoons at the Ultrafiltration Water Treatment Plant located at 6725 Agua Pura Street in the City of Von Ormy, Texas (Site). A Site Location Map showing the general location and topography is included as **Figure 1**, and a Site Layout Map depicting the Site boundary and features is included as **Figure 2**.

The SAWS Ultrafiltration Water Treatment Plant is regulated under Texas Pollutant Discharge Elimination System (TPDES) Permit WQ0004437000 (the Permit; TCEQ 2020), which includes three inactive sludge lagoons that managed industrial solid waste from the water treatment plant from the late 1990s to approximately 2016. The three sludge lagoons are required to be closed in accordance with the provisions of the Texas Commission on Environmental Quality (TCEQ) Texas Risk Reduction Program (TRRP) based on their management of solid waste. This Closure Report was prepared to satisfy requirements listed in *TCEQ Regulatory Guidance - Closure of Waste-Management Units Subject to TRRP*. (TCEQ 2011)

An investigation of soils within the lagoons and groundwater beneath the lagoons was conducted. The results indicate there has not been a release of any chemicals of concern (COCs) and that the residential assessment levels (RALs) under the TRRP have been met. No further action is necessary for the three sludge lagoons to be eligible for closure.

2. BACKGROUND INFORMATION

The Ultrafiltration Water Treatment Plant was constructed in the late 1990s by United Water. Bexar Met Water District took over facility operations in the mid-2000s. SAWS took control of the facility in 2012. The Ultrafiltration Water Treatment Plant filtered and processed raw groundwater to potable drinking water levels for distribution to the local population. Three sludge lagoons were constructed to hold wastewater from the treatment plant prior to discharging. According to the original 1998 construction plans, the three sludge lagoons totaled approximately 2.8 aces and were approximately 9 feet deep. The sludge lagoons were constructed with a 12-inch-thick native compacted clay bottom, and 12-inch-thick "soil cement" on the sloped sides (Montgomery Watson, 1998). The wastewater

from the treatment plant transferred to the three sludge lagoons included settled solids from the raw water clarifier, residual solids from prefilter, and membrane backwash.

SAWS ceased operations at the facility in approximately 2016 and the plant and the three lagoons have been out of service for 8 years. The discharge location on the southwest side of the lagoons is identified as Outfall 001 in the Permit. Discharged water would sheet flow to the west and into an unnamed branch, and then flow south into O.R. Mitchell Lake 1 (TCEQ, 2020). The facility, surface impoundment/lagoons, and outfall location are depicted on **Figure 2**.

3. RELEASE INVESTIGATION/CLOSURE INFORMATION

The sludge lagoons are proposed to be closed through Closure Option A – Closure without physical controls. As described below, soil and groundwater samples collected as part of the release determination activities did not indicate a release had occurred.

3.1 RELEASE DETERMINATION

Release determination activities were conducted to identify possible releases of COCs from the three lagoons. The lagoons had been inactive since approximately 2016 and were dry and grass-covered during the sampling. Field notes from the release determination activities are included as **Attachment 1**.

Soil Assessment

On February 20, 2024, six surface soil samples (SS-1 through SS-6) and one field duplicate (SS-DUP – duplicate of SS-6) were collected from six locations within the lagoons and analyzed for a broad spectrum of COCs. In addition, a background soil sample (SS-background) was collected approximately 250 feet southwest of the three lagoons for background metals concentrations. Soils on the surface of the lagoon floors generally consisted of brown to tan coarse sand/sandy clay with some gravel (1/4-inch diameter). A very thin layer of soil/material was visible on the material comprising the lagoon liner, suggesting that any accumulated waste in the lagoons had been previously removed. All soil samples were screened with a photoionization detector (PID), and screening results ranged from 0.0 parts per million (ppm) to 0.5 ppm. Soil sample locations are displayed on **Figure 2**.

Soil samples were collected into laboratory-provided glass jars, which were sealed in a waterproof plastic bag. The samples were then placed on ice in laboratory-provided coolers and shipped by FedEx under chain-of-custody procedure to DHL Analytical in Round Rock, Texas, for the below analysis.

- Volatile organic compounds (VOCs) by U.S. EPA Method 8260
- Semi-volatile organic compounds (SVOCs) by U.S. EPA Method 8270
- Total metals by U. S. EPA Method 6020/7471

Laboratory analytical results were compared to the Tier 1 Residential Assessment Levels (RALs) for soil-to-groundwater ingestion (^{GW}Soil_{Ing}) and direct contact with soil (^{Total}Soil_{Comb}) exposure pathways for a 30-acre source area. In addition, the Texas-Specific Soil Background Concentrations (TSSBCs) were used in place of the ^{GW}Soil_{Ing} RAL for arsenic, barium, beryllium, lead, and mercury as the background levels are higher than their respective RALs. **Table 1** summarizes VOC analytical data for the soil samples, **Table 2** summarizes the SVOC analytical data for the soil samples, and **Table 3** summarizes the total metals analytical data for the soil samples. Laboratory analytical data packages are included in **Attachment 2**. The results and finds of the soil laboratory analytical data are summarized below:

- None of the soil samples collected had VOCs reported above the sample detection level (SDL).
- None of the soil samples collected had SVOCs reported above the SDL, with the exception of some low-level detections of benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, fluoranthene, and indeno(1,2,3-cd)pyrene in soil samples SS-4 and SS-6 (and duplicate). None of the reported SVOC concentrations exceeded the lowest of either the ^{GW}Soil_{Ing} or the ^{Total}Soil_{Comb} RALs.
- None of the soil samples collected had metals concentrations reported above their applicable RALs, with the exception of arsenic reported in soil samples SS-1 (19.2 milligrams per kilogram [mg/kg]), SS-2 (7.22 mg/kg), and SS-5 (11.3 mg/kg); these values also exceeded arsenic's TSSBC of 5.9 mg/kg.

Due to the TSSBC and RAL exceedance of arsenic at three sample locations, soil sample SS-1 was selected for synthetic precipitate leachate procedure (SPLP), and the leachate was analyzed for arsenic, barium, and lead by U.S. EPA Method 6020. **Table 4** summarizes the SPLP analytical data,

and laboratory analytical packages are included in **Attachment 2**. The analysis of the leachate from soil sample SS-1 reported arsenic and lead above the groundwater ingestion ($^{GW}GW_{Ing}$) RAL, and beryllium below the $^{GW}GW_{Ing}$ RAL. As the arsenic SPLP result exceeded the $^{GW}GW_{Ing}$ RAL, a groundwater assessment was conducted to determine whether there had been a release through the clay liner to the underlying groundwater.

Groundwater Assessment

On April 9, 2024, WESTON and its drilling subcontractor, Pacific West, advanced a soil boring in the center of the three lagoons. The soil boring was advanced to a depth of 30 feet below ground surface (bgs) via direct push drilling method with a tracked Geoprobe 7822DT drill rig. The soil boring cores were continuously logged by a WESTON geologist for soil properties and no soil samples were collected. After reaching the depth of 30 feet bgs, the bore hole was converted to temporary monitoring well TW-1. Temporary monitoring well TW-1 was constructed with 15 feet of 1-inch-diameter, 0.01-inch slotted screen from bottom of bore hole to 15 feet bgs, followed by a 1-inch-diameter riser to the surface. General lithology encountered during drilling included a silty/clayey sand and limestone gravel from the surface to approximately 14 feet bgs, followed by a lean clay layer from 14 feet bgs to 19 feet bgs. Below the lean clay layer was alluvium gravel from 19 feet bgs to 20 feet bgs. A high plasticity clay underlays the alluvium gravel layer from 20 feet bgs to the terminus depth of the boring at 30 feet bgs. A boring log displaying lithology and well construction details is included in **Attachment 3**.

After installation, temporary monitoring well TW-1 was allowed to equilibrate for approximately 4 hours. Temporary monitoring well TW-1 was developed with a peristaltic pump by purging three well volumes from the temporary well, and then sampled by low-flow sampling procedures. Due to elevated turbidity of the groundwater when sampling, the sample aliquot was filtered with a 10-micron filter in the field. The groundwater sample was collected into the laboratory-provided container that contained preservatives, which was then sealed in a waterproof plastic bag. The bag with the sample was placed on ice in the laboratory-provided cooler and shipped by FedEx under chain-of-custody procedure to DHL Analytical in Round Rock, Texas, for arsenic analysis by U.S. EPA Method 6020.

Arsenic was not reported above its SDL in the groundwater sample collected from the temporary monitoring well TW-1 and the SDL was less than the ^{GW}GW_{Ing} RAL, demonstrating there has been

no release of arsenic from the lagoons. The arsenic results from TW-1 are summarized in **Table 5** and laboratory analytical packages are included in **Attachment 2**.

4. CONCLUSION AND REQUEST FOR CLOSURE

Based on the documentation provided herein, no evidence of a release of COCs attributable to waste management within the sludge lagoons was identified. Therefore, we respectfully request that the TCEQ administratively close these three inactive lagoons and issue a "no further action" letter.

5. REFERENCES

Montgomery Watson, 1998. Internation Business Park Water Production Facility – Phase I; Drawings for Package 3 – Plant Process Facilities. June 1998.

Texas Commission on Environmental Quality (TCEQ), 2011. *Closure of Waste-Management Units Subject to TRRP – RG-366/TRRP-2A*. July 2011.

TCEQ, 2020. Texas Pollution Discharge Elimination System Permit No. WQ0004437000, Ultrafiltration Water Treatment Plant, 6725 Moreno Street, Von Ormy, Bexar County, Texas. February 10, 2020

FIGURES

FILE: G:\Local\Texas\City of San Antonio\SAWS\pro\3 Lagoon Closure\3 Lagoon Closure.aprx 11:45 AM 4/24/2024 gomezd

FILE: G:\Local\Texas\City of San Antonio\SAWS\pro\3 Lagoon Closure\3 Lagoon Closure.aprx 1:43 PM 4/26/2024 gomezd

TABLES

Table 1 Soil Volatile Organic Compounds Summary San Antonio Water System 6725 Agua Pura Street Von Ormy, Texas

1					Cto Pour	66.1	66.2	66.2	66.4	00 F	66.7	66.6
					Station	55-1	55-2	88-3	55-4	55-5	55-0	55-0
			Residential Soil	Residential Soil	SNM	<u>88-1</u>	<u>88-2</u>	88-3	<u>88-4</u>	55-5	<u>SS-6</u>	55-6
Analyte	CAS.NO	Units	May 2023	May 2023	Sample ID	SS-1	88-2	88-3	SS-4	<u>SS-5</u>	SS-6	SS-DUP
			Gw Soning 50	1 otSoliComb 50	Depth (ft)	0.0 - 0.5	0.0 - 0.5	0.0 - 0.5	0.0 - 0.5	0.0 - 0.5	0.0 - 0.5	0.0 - 0.5
			Acre	Acre	Date	02/20/2024	02/20/2024	02/20/2024	02/20/2024	02/20/2024	02/20/2024	02/20/2024
					Туре	N	N	N	N	N	N	DUP
VOCs	(20.20.0		0.71	20		0.00120 U	0.00102.11	0.000012.11	0.00100 II	0.00120.11	0.00141.11	0.0017.11
1,1,1,2-Tetrachioroethane	71 55 6	mg/kg	0.71	39		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
1,1,2,2-Tetrachloroethane	79-34-5	mg/kg	0.012	30		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	mg/kg	40000	39000		0.00689 U	0.00508 U	0.00456 U	0.00546 U	0.00644 U	0.00706 U	0.00849 U
1,1,2-Trichloroethane	79-00-5	mg/kg	0.01	10		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
1,1-Dichloroethane	75-34-3	mg/kg	9.2	8800		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
1,1-Dichloroethene	75-35-4	mg/kg	0.025	1600		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
1,1-Dichloropropene	563-58-6	mg/kg	0.067	26		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
1,2,3-Trichlorobenzene	87-61-6	mg/kg	13	87		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
1,2,3-1 richloropropane	96-18-4	mg/kg	2.4	70		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
1.2.4-Trimethylbenzene	95-63-6	mg/kg	16	1200		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
1.2-Dibromo-3-chloropropane	96-12-8	mg/kg	0.00087	0.08		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
1,2-Dibromoethane	106-93-4	mg/kg	0.0001	2.1		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
1,2-Dichlorobenzene	95-50-1	mg/kg	8.9	390		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
1,2-Dichloroethane	107-06-2	mg/kg	0.0069	30		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
1,2-Dichloropropane	78-87-5	mg/kg	0.011	31		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
1,3,5-Trimethylbenzene	108-67-8	mg/kg	18	1100		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
1,3-Dichloropropage	142.28.0	mg/kg	0.022	26		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
1.4-Dichlorobenzene	106-46-7	mg/kg	1.1	250		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
1-Chlorohexane	544-10-5	mg/kg	20	2300		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
2,2-Dichloropropane	594-20-7	mg/kg	0.06	31		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
2-Chlorotoluene	95-49-8	mg/kg	4.5	1100		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
2-Hexanone	591-78-6	mg/kg	1.6	380		0.00689 U	0.00508 U	0.00456 U	0.00546 U	0.00644 U	0.00706 U	0.00849 U
4-Chlorotoluene	106-43-4	mg/kg	5.4	1600		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
4-Methyl-2-pentanone	108-10-1	mg/kg	2.5	5400		0.00689 U	0.00508 U	0.00456 U	0.00546 U	0.00644 U	0.00706 U	0.00849 U
Acetone Demonstration	6/-64-1	mg/kg	21	59000		0.0207 U	0.0152 U	0.013/U	0.0164 U	0.0193 U	0.0212 U	0.0255 U
Bromobenzene	108-86-1	mg/kg	1.2	280		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
Bromochloromethane	74-97-5	mg/kg	1.5	3300		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
Bromodichloromethane	75-27-4	mg/kg	0.18	98		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
Bromoform	75-25-2	mg/kg	0.22	280		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
Bromomethane	74-83-9	mg/kg	0.065	24		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
Carbon disulfide	75-15-0	mg/kg	6.8	3300		0.00689 U	0.00508 U	0.00456 U	0.00546 U	0.00644 U	0.00706 U	0.00849 U
Carbon tetrachloride	56-23-5	mg/kg	0.031	23		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
Chlorobenzene	108-90-7	mg/kg	0.55	320		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
Chloroform	73-00-3	mg/kg	0.17	23000		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
Chloromethane	74-87-3	mg/kg mg/kg	0.2	84		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
cis-1,2-Dichloroethene	156-59-2	mg/kg	0.12	120		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
cis-1,3-Dichloropropene	10061-01-5	mg/kg	0.0033	7.8		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
Cyclohexane	110-82-7	mg/kg	2900	42000		0.00689 NU	0.00508 NU	0.00456 NU	0.00546 NU	0.00644 NU	0.00706 NU	0.00849 NU
Dibromochloromethane	124-48-1	mg/kg	0.18	72		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
Dibromomethane	74-95-3	mg/kg	0.56	42		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
Dichlorodifluoromethane	75-71-8	mg/kg	120	750		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
Heyachlorobutadiene	87-68-3	mg/kg	3.0	12		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
Isopropylbenzene	98-82-8	mg/kg	170	3000		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
m,p-Xylene	1330-20-7MP	mg/kg				0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
Methyl Acetate	79-20-9	mg/kg	24	82000		0.00689 U	0.00508 U	0.00456 U	0.00546 U	0.00644 U	0.00706 U	0.00849 U
Methyl Ethyl Ketone	78-93-3	mg/kg	15	33000		0.00689 U	0.00508 U	0.00456 U	0.00546 U	0.00644 U	0.00706 U	0.00849 U
Methyl tert-butyl ether (MTBE)	1634-04-4	mg/kg	0.31	590		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
Methylcyclohexane	108-87-2	mg/kg	7800	22000		0.00689 U	0.00508 U	0.00456 U	0.00546 U	0.00644 U	0.00706 U	0.00849 U
Methylene chloride	/5-09-2	mg/kg	0.0065	1500		0.00689 U	0.00508 U	0.00456 U	0.00546 U	0.00644 U	0.00706 U	0.00849 U
n-Butylbenzene	91-20-5	mg/kg	76	3300		0.00089 U	0.00308 U	0.00436 U	0.00346 U	0.00044 U	0.00708 U	0.00849 U
n-Propylbenzene	103-65-1	mg/kg	22	1600		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
o-Xylene	95-47-6	mg/kg	35	29000		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
p-Isopropyltoluene	99-87-6	mg/kg	120	8200		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
sec-Butylbenzene	135-98-8	mg/kg	42	3300		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
Styrene	100-42-5	mg/kg	1.6	4300		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
tert-Butylbenzene	98-06-6	mg/kg	50	3300		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
I etrachloroethene	127-18-4	mg/kg	0.025	420		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
trans-1.2-Dichloroethene	156-60-5	mg/kg	4.1	370		0.00138 U	0.00102.0	0.000913 U	0.00109.0	0.00129 U	0.00141 U	0.0017 U
trans-1,3-Dichloropronene	10061-02-6	mg/kg	0.018	26		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
Trichloroethene	79-01-6	mg/kg	0.017	11		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
Trichlorofluoromethane	75-69-4	mg/kg	64	25000		0.00689 U	0.00508 U	0.00456 U	0.00546 U	0.00644 U	0.00706 U	0.00849 U
Vinyl Chloride	75-01-4	mg/kg	0.011	3.4		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
Xylenes (Total)	1330-20-7	ma/ka	61	3700		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U

Notes:

Notes: ¹TRP Residential PCLs dated May 2023 All results reported in milligrams per liter (mg/kg). **Bolded** - Analyte reported at or above the sample detection limit (SDL) NA - Not Analyzed J - Analyte was estimated between the SDL and reporting limit (RL) U - Analyte not reported at or above the SDL N - Normal DUP - Duplicate

WESTON

Table 2 Soil Semi-Volatile Organic Compounds Summary San Antonio Water System 6725 Agua Pura Street Von Ormy, Texas

					Station	SS 1	55.2	55.3	55.4	SS 5	55.6	\$\$ 6
					Station	55-1	55-2	55-5	55-4	55-5	55-0	55.6
	CAS.NO		Residential Soil	Residential Soil	SINIM	55-1	33-2	55-5	55-4	33-5	55-0	55-0
Analyte		Units	May 2023	May 2023	Sample ID	SS-1	SS-2	SS-3	<u>SS-4</u>	<u>SS-5</u>	SS-6	SS-DUP
			GwSoning 50	10tSoliComb 50	Depth (ft)	0.0 - 0.5	0.0 - 0.5	0.0 - 0.5	0.0 - 0.5	0.0 - 0.5	0.0 - 0.5	0.0 - 0.5
			, mile	nere	Date	02/20/2024	02/20/2024	02/20/2024	02/20/2024	02/20/2024	02/20/2024	02/20/2024
SVOC					Туре	N	N	N	N	N	N	DUP
SVOCs	7005 72 3	malka	0.016	0.15		0.0122.11	0.0116.U	0.0114.U	0.0115 U	0.0128 U	0.012 U	0.0126 U
2.4.5 Triablaranhanal	05 05 4	mg/kg	0.010	6700		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
2.4.6 Trichlorophenol	88.06.2	mg/kg	0.087	67		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
2.4 Dichlorophenol	120 83 2	mg/kg	0.18	200		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
2 4-Dimethylphenol	105-67-9	mg/kg	1.6	1300		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
2 4-Dinitrophenol	51-28-5	mg/kg	0.047	130		0.0658 U	0.0579 U	0.0568 U	0.0574 U	0.064 U	0.0599 U	0.0631 U
2 4-Dinitrotoluene	121-14-2	mg/kg	0.0027	69		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
2 6-Dinitrotoluene	606-20-2	mg/kg	0.0027	6.9		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
2-Chloronaphthalene	91-58-7	mg/kg	330	5000		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
2-Chlorophenol	95-57-8	mg/kg	0.82	410		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
2-Methylnaphthalene	91-57-6	mg/kg	8.5	250		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
2-Methylphenol	95-48-7	mg/kg	3.6	3300		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
2-Nitroaniline	88-74-4	mg/kg	0.011	11		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
2-Nitrophenol	88-75-5	mg/kg	0.067	130		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
3,3-Dichlorobenzidine	91-94-1	mg/kg	0.031	10		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
3-Nitroaniline	99-09-2	mg/kg	0.013	12		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
4,6-Dinitro-2-methylphenol	534-52-1	mg/kg	0.0023	6.7		0.0395 U	0.0347 U	0.0341 U	0.0344 U	0.0384 U	0.036 U	0.0378 U
4-Bromophenyl phenyl ether	101-55-3	mg/kg	0.18	0.27		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
4-Chloro-3-methylphenol	59-50-7	mg/kg	2.3	330		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
4-Chloroaniline	106-47-8	mg/kg	0.01	23		0.0395 U	0.0347 U	0.0341 U	0.0344 U	0.0384 U	0.036 U	0.0378 U
4-Methylphenol	106-44-5	mg/kg	0.32	330		0.0263 U	0.0232 U	0.0227 U	0.023 U	0.0256 U	0.024 U	0.0252 U
4-Nitroaniline	100-01-6	mg/kg	0.054	190		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
4-Nitrophenol	100-02-7	mg/kg	0.05	130		0.0658 U	0.0579 U	0.0568 U	0.0574 U	0.064 U	0.0599 U	0.0631 U
Acenaphthene	83-32-9	mg/kg	120	3000		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
Acenaphthylene	208-96-8	mg/kg	200	3800		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
Acetophenone	98-86-2	mg/kg	4.1	6700		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
Anthracene	120-12-7	mg/kg	3400	18000		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
Atrazine	1912-24-9	mg/kg	0.012	21		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
Benzaldehyde	100-52-7	mg/kg	5.3	8200		0.0132 NU	0.0116 NU	0.0114 NU	0.0115 NU	0.0128 NU	0.012 NU	0.0126 NU
Benzo(a)anthracene	56-55-3	mg/kg	65	41		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
Benzo(a)pyrene	50-32-8	mg/kg	3.8	4.1		0.0132 U	0.0116 U	0.0114 U	0.0191 J	0.0128 U	0.012 J	0.0126 U
Benzo(b)fluoranthene	205-99-2	mg/kg	220	41		0.0132 U	0.0116 U	0.0114 U	0.0298 J	0.0128 U	0.016 J	0.016 J
Benzo(g,h,1)perylene	191-24-2	mg/kg	23000	1800		0.0132 U	0.0116 U	0.0114 U	0.0176 J	0.0128 U	0.012 U	0.0126 U
Benzo(k)fluoranthene	207-08-9	mg/kg	2200	420		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
Benzoic acid	65-85-0	mg/kg	95	2/0000		0.0658 U	0.03/9 U	0.0568 U	0.05/4 U	0.064 U	0.0599 U	0.0631 U
Benzyl alconol	100-51-6	mg/kg	2.9	6/00		0.0395 U	0.034/0	0.0341 U	0.0344 U	0.0384 U	0.036 U	0.0378 U
bipnenyi, 1,1-	92-32-4	mg/kg	0.0050	12000		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
bis(2-ChloroethoXy)methane	111-91-1	mg/kg	0.0039	2.5		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
bis(2-Chloroisopropul)ether	108 60 1	mg/kg	0.0011	1.4		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
bis(2 Ethylheyyl)phthalate	117 81 7	mg/kg	82	41		0.0132 U	0.0711 U	0.0714 U	0.0115 U	0.0819 U	0.0767 U	0.0807 U
Butyl Benzyl Phthalate	85.68.7	mg/kg	130	1600		0.0526 U	0.0/41 U	0.0454 U	0.0754 U	0.0512 U	0.0707 U	0.0504 U
Caprolactam	105-60-2	mg/kg	23	33000		0.0395 U	0.0405 U	0.0341 U	0.0344 U	0.0384 U	0.0479 U	0.0378 U
Carbazole	86-74-8	mg/kg	23	230		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
Chrysene	218-01-9	mg/kg	5600	4100		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
Dibenzo(a,h)anthracene	53-70-3	mg/kg	7.6	4		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
Dibenzofuran	132-64-9	mg/kg	17	270		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
Diethyl phthalate	84-66-2	mg/kg	78	53000		0.0526 U	0.0463 U	0.0454 U	0.0459 U	0.0512 U	0.0479 U	0.0504 U
Dimethyl phthalate	131-11-3	mg/kg	31	53000		0.0526 U	0.0463 U	0.0454 U	0.0459 U	0.0512 U	0.0479 U	0.0504 U
Di-N-Butyl phthalate	84-74-2	mg/kg	1700	6200		0.0526 U	0.0463 U	0.0454 U	0.0459 U	0.0512 U	0.0479 U	0.0504 U
Di-N-Octyl phthalate	117-84-0	mg/kg	410000	640		0.0526 U	0.0463 U	0.0454 U	0.0459 U	0.0512 U	0.0479 U	0.0504 U
Fluoranthene	206-44-0	mg/kg	960	2300		0.0132 U	0.0116 U	0.0114 U	0.0252 J	0.0128 U	0.0128 J	0.0126 J
Fluorene	86-73-7	mg/kg	150	2300		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
Hexachlorobenzene	118-74-1	mg/kg	0.56	1		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
Hexachlorobutadiene	87-68-3	mg/kg	1.6	12		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
Hexachlorocyclopentadiene	77-47-4	mg/kg	9.6	7.2		0.0395 U	0.0347 U	0.0341 U	0.0344 U	0.0384 U	0.036 U	0.0378 U
Hexachloroethane	67-72-1	mg/kg	0.64	46		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	630	42		0.0132 U	0.0116 U	0.0114 U	0.0145 J	0.0128 U	0.012 U	0.0126 U
Isophorone	78-59-1	mg/kg	1.5	4900		0.0395 U	0.0347 U	0.0341 U	0.0344 U	0.0384 U	0.036 U	0.0378 U
Naphthalene	91-20-3	mg/kg	16	120		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
Nitrobenzene	98-95-3	mg/kg	0.18	34		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
N-Nitroso-di-N-propylamine	621-64-7	mg/kg	0.00018	0.4		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
N-Nitrosodiphenylamine	86-30-6	mg/kg	1.4	570		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
Pentachlorophenol	87-86-5	mg/kg	0.0092	0.73		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
Phenanthrene	85-01-8	mg/kg	210	1700		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
Phenol	108-95-2	mg/kg	9.6	950		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
Pyrene	129-00-0	mg/kg	560	1700		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
IPvridine	1 110-86-1	1 mg/kg	1 0.035	82		0.0658 U	1 0.0579 U	1 0.0568 U	L 0.0574 U	0.064 U	1 0.0599 U	0.063 U

Notes:

Notes: ¹TRP Residential PCLs dated May 2023 All results reported in milligrams per liter (mg/kg). **Bolded** - Analyte reported at or above the sample detection limit (SDL) NA - Not Analyzed J - Analyte was estimated between the SDL and reporting limit (RL) U - Analyte not reported at or above the SDL N - Normal DUP - Duplicate

Table 3 Soil Total Metals Summary San Antonio Water System 6725 Agua Pura Street Von Ormy, Texas

							Station	SS-1	SS-2	SS-3	SS-4	SS-5	SS-6	SS-6
				Residential Soil May 2023	Texas-Sepcific Soil		SNM	SS-1	SS-2	SS-3	SS-4	SS-5	SS-6	SS-6
	CASNO	Unite	Residential Soil			SS Dealygnound	Sample ID	SS-1	SS-2	SS-3	SS-4	SS-5	SS-6	SS-DUP
Analyte	CAS.NO	Units	GWSoillng 30 Acre	TotSoilComb 30	Background	55-Dackground	Depth (ft)	0.0 - 0.5	0.0 - 0.5	0.0 - 0.5	0.0 - 0.5	0.0 - 0.5	0.0 - 0.5	0.0 - 0.5
			o nooning oo noo	Acre	Concentrations		Date	02/20/2024	02/20/2024	02/20/2024	02/20/2024	02/20/2024	02/20/2024	02/20/2024
							Туре	Ν	Ν	Ν	N	Ν	Ν	DUP
Metals, Total														
Aluminum	7429-90-5	mg/kg	86,000	64,000	30,000	18,800		25,700	20,600	18,200	10,000	24,800	18,100	18,400
Antimony	7440-36-0	mg/kg	2.7	15	1	0.575		0.622 U	0.559 U	0.529 U	0.545 U	0.604 U	0.604 U	0.598 U
Arsenic	7440-38-2	mg/kg	2.5	24	5.9	7.16		19.2	7.22	5.45	5.19	11.3	4.25	4.97
Barium	7440-39-3	mg/kg	220	8100	300	165		210	87	127	61.2	162	144	147
Beryllium	7440-41-7	mg/kg	0.92	38	1.5	0.682		0.945	0.734	0.653	0.454	0.828	0.684	0.694
Cadmium	7440-43-9	mg/kg	0.75	51	NS	0.176		0.251 J	0.198 J	0.155 J	0.109 U	0.218 J	0.19 J	0.191 J
Chromium	7440-47-3	mg/kg	1,200	27,000	30	21.2		31	22.4	21.9	12	26.3	21.9	21.7
Cobalt	7440-48-4	mg/kg	110	680	7	4.97		12.2	5.28	4.91	3.26	8.49	4.76	5.12
Copper	7440-50-8	mg/kg	520	1,300	15	6.36		13.7	7.22	7.06	5.2	9.72	9.02	9.26
Lead	7439-92-1	mg/kg	1.5	500	15	8.76		13.1	9.11	8.6	6.37	10.7	9.97	10.1
Manganese	7439-96-5	mg/kg	580	3,900	300	190		429	163	147	92.9	282	136	158
Mercury	7439-97-6	mg/kg	0.0039	2.1	0.04	0.0199		0.0197 U	0.0169 U	0.0229 J	0.0174 U	0.0202 U	0.0222 J	0.0267 J
Nickel	7440-02-0	mg/kg	79	840	10	9.93		19.5	9.77	10.5	7.21	15.5	10.4	11.1
Selenium	7782-49-2	mg/kg	1.1	310	0.3	0.409		1.03	0.418 J	0.338 J	0.949	0.676	0.587 J	0.553 J
Silver	7440-22-4	mg/kg	0.24	97	NS	0.115		0.124 U	0.112 U	0.106 U	0.109 U	0.121 U	0.121 U	0.12 U
Thallium	7440-28-0	mg/kg	0.87	5.3	NS	0.575		0.622 U	0.559 U	0.529 U	0.545 U	0.604 U	0.604 U	0.598 U
Vanadium	7440-62-2	mg/kg	440	75	50	53.4		396	52.4	56.7	50	164	53.5	55
Zinc	7440-66-6	mg/kg	1,200	9,900	30	34.3		57.5	37.4	38.8	29.7	48.7	48.4	48.7

Notes:

¹TRRP Residential PCLs dated May 2023

All results reported in milligrams per liter (mg/kg).

Bolded - Analyte reported at or above the sample detection limit (SDL)

Applicable PCL (Lesser of GW Soil Ing or TotSoilComb unless Texas Background is higher)

Exceeds Applicable PCL

NA - Not Analyzed

NS - No Specified

J - Analyte was estimated between the SDL and reporting limit (RL)

U - Analyte not reported at or above the SDL

N - Normal

DUP - Duplicate

Table 4 Soil Metal SPLP Summary San Antonio Water System 6725 Agua Pura Street Von Ormy, Texas

		Units			Station	SS-1				
Analyte	CAS.NO		Decidential CW Mex	Commonaial CW May	SNM	SS-1				
			2023 CWCWIng	2023 CWCWIng	Sample ID	SS-1				
			2025 G W G W Hig	2023 G W G W Ing	Date	02/20/2024				
					Туре	Ν				
SPLP										
Arsenic	7440-38-2	mg/l	0.01	0.01		0.0252				
Beryllium	7440-41-7	mg/l	0.004	0.004		0.00167				
Lead	7439-92-1	mg/l	0.015	0.015		0.0174				

Notes:

¹TRRP Residential PCLs dated May 2023

All results reported in milligrams per liter (mg/kg).

Bolded - Analyte reported at or above the sample detection limit (SDL)

Shaded value exceeds Residential GW May 2023 GWGWIng or Commercial GW May 2023 GWGWIng

SPLP = Synthetic Precipitation Leaching Procedure

NA - Not Analyzed

J - Analyte was estimated between the SDL and reporting limit (RL)

U - Analyte not reported at or above the SDL

N - Normal

DUP - Duplicate

Table 5 Groundwater Arsenic Summary San Antonio Water System 6725 Agua Pura Street Von Ormy, Texas

Analyte	CAS.NO	Units	Residential GW May 2023 GWGWIng		Station	TW-1
				Commorcial CW May	SNM	TW-1
				2023 CWCWIng	Sample ID	TW-1
				2025 G W G W Ing	Date	4/9/2024
					Туре	Ν
SPLP						
Arsenic	7440-38-2	mg/l	0.01	0.01		0.002 U

Notes:

¹TRRP Residential PCLs dated May 2023

All results reported in milligrams per liter (mg/l).

Bolded - Analyte reported at or above the sample detection limit (SDL)

Shaded value exceeds Residential GW May 2023 GWGWIng or Commercial GW May 2023 GWGWIng

U - Analyte not reported at or above the SDL

N - Normal

ATTACHMENT 1 – FIELD NOTES

10412.036.001.0002 2 SAWS Lagoon and Dreamt Sampling 2/20/24 0859 - Cole Castleberry arrived on-site and met with Orlando Mireter (SAWS). 0910 - Tailigate Safety: Heat, subburn, biologicals, and PID VOC safety levels. PID = MultiRAELite Weather: 49°F, SSW 03mph, Sunny 0920 - Equipment prepped and began Sampling Coordinates Sample ID Location Dectime 55-1 N29° 19.312', W098° 38,058' 0926 South Lagoon 0950 N29° 19.315', W098° 38,087' 55-2 Middle Lagoon 1018 55-3 N29° 19.336, W098° 38.098' North Lagoon 55-4 1045 N29° 19.294, W098° 38.091' Middle Lagoon 55-5 1059 N24°19.311, W048°38,104° North Lagoon 1113 SS-6 N29º 19.323, W098° 38.116 Sump toe North Lagoon 1113 SS-DUP N29º 19.323' WO98º 38.116' Sump foe 1135 ~250ft West of SS-background N29°19,291, W098° 38.152" Lagoons There were no ambient VOC detections during the sampling. Sample bag VOC readings were: Sample ID VOC(ppm) Sample ID VOC(ppn) 55-6 55-1 0.4 0.0 SS-DUP 0.2 SS-2 0.0 55-3 0.0 SS-background 0.4 55-4 0.0 55-5 0.5 States.

10412.036.001.0002 SAWS Lagoon and Decart Sampling 2/20/24 1240 - Finished labeling samples, Returned excess Soil to sampling locations. 1248 - Labeled and placed IDW bucket behind main site building (N29°19'15", W98°38'03") 1252 - Departed site to ship samples 1500 - Samples shipped via Fed Ex 1 No Castl Rite in the Rain.

Location 6725 AGUA PURA ST_ Date 419/24 Project / Client SAWS - IMPOUNDMENT ASSESSMENT LAGOONS 1020! Anove on-site Meet w/ Michael SAWS Rep. - 60 over HASP. Weather: 50° H 69° Drizzle - Do site Walk pround. 1040: Drillers on site. Show them where to brong geoproble rig - 60 over HAST - Go pror scape pt drilling 1100: Pacific West lines up of frilling location 1121: Begin drilling. 1157! Prillers encenter clay Unable to pach. Cargider flight anger. Talk to A. Sabet. Sens to try for + 2+3 more. 217: Drillers attempt push, 1248 Drilles reach TD by push @ - Michael off-site to grab Kuch. - Clein up more rig. Run casing 2/5' Screened - mochael chack on-site 1430! Begin purge. 3 well Volumes, Pacific West off-site, Peri-pumped 1447! Sample TW-1 +aka, Weston/S/1889- Othesite.

SITE:	SAWS -	CMPOUND	LAGOONS		WELL ID:	TW	1	2014-		
Groundwat	er Sampling	Field Data	Sheet	Task Number:	10002		Date: 4/4	7/24		
Casing Diameter			Screened Inter	val (ft from GS)		Flow Rate				
	1		216	- 30		1	75,725	nelma		
Total Depth of	Well from TOC	(ft)	Purge Equipme	nt		Sample Equipment				
v2	0,5		P	eri	ter Series		-			
Static Water fr	om TOC (ft)		Depth of Samp	le Intake (ft)		Analytical Equipment				
5	03 15.40	2 after proje	~ 6	12.5		VSI	POD DSS			
Product Level f	rom TOC (ft)	≤x well V	Time Purge Sta	142D		Well location S	ketch Logoon			
Length of Wate	er Column (ft)	1.1	Micro Purge Da	ata: CPM		1	T	~		
4983) 1	14.97		Duration (sec): Recharge	 Discharge	-					
1 Well Volume	(gal)	2. 2	Peristaltic Pum	p Setting	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1					
D 16	·	1.4	M.	ed,						
Time	Gallon	Temperature (C) (+/- 0.1)	Specific Cond. (us/cm) (+/- 3%)	DO mg/L (+/- 0.3)	рН (+/- 0.1)	Redox (ORP) (+/- 10mv)	Water Level (ft btoc)	Turbidity (NTTU)		
1433		24.6	977	2.7P	7.60	93.7	15.44	265.0		
1436		24.3	970	2.14	7.16	87.6	15.57	(12.3		
1439		24.2	967	1.77	7.07	86.7	15.98	99.2		
1442		24.1	961	2.01	7.08	89.9	16-77	118.4		
1445	Well Se	24,1	940	2.17	7,12	78.9	17.53	382.5		
1		1		i de la	-	/	* Field	Fifered		
1			I.X	-16 9th		\searrow	for	Sample		
			00	51 2		\square	Ющ	n filter		
				M. S.				-		
Sample ID:	100		Sample Date:		/	Sample Time		-		
Th	>-1		4	9/24		1447				
Comments:	RP WEIL)	1.4	and the second						
Level of PPE:	Level of PPE: Analytical Parameters:									
1. 1. 1.	∇		Stand .	Total Arsenic (6020)						
Disposition of I	hisposition of Purged Water: Sampler's Signature/Date									
	fact & Spechele D. purmer 11 101									

ATTACHMENT 2 – LABORATORY ANALYTIACL DATA
February 28, 2024

Armin Sabet Weston Solutions, Inc. 2600 Dallas Parkway, Suite 280 Frisco, Texas 75034 TEL: (310) 980-6300 FAX: RE: SAWS Impoundment Assessment Lagoons and Decant Sam

Order No.: 2402269

Dear Armin Sabet:

DHL Analytical, Inc. received 10 sample(s) on 2/21/2024 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAP except where noted in the Case Narrative. All non-NELAP methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,

John DuPont General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-23-29

Table of Contents

Miscellaneous Documents	
CaseNarrative 2402269	
WorkOrderSampleSummary 2402269	
PrepDatesReport 2402269	
AnalyticalDatesReport 2402269	
Analytical Report 2402269	
AnalyticalQCSummaryReport 2402269	
MQLSummaryReport 2402269	

	\mathbb{D}				2300 [Doub	ole F	Cree Phon	ek D e 5	Dr. 12	Roi .38	und 88.82	Ro 222	ck,	тх	786	64			С		A		V.	-C)F	(C	U.	ST	-C	DY	
	V A I	. Y T I	CAL			We Ema	eb: ail:	ww logi	w.c n@	dh dh	ana Ian	alyti nalyt	ical tica	.cor I.co	m om															PAG	SE_	OF	(
CLIENT: San Antonio	Wo	ter Sik	teim			DA	TE:	: 2	12	0	12	4										LAI	BU	SE	ON	LY			~				
ADDRESS: 2800 05-2	281,5	oan Ainto	nio t	(76)	2/2	PC) #:	:		<u></u>												DH	LW	voi	RKO	DRE	DER	t #:	\sim	Y	\mathcal{O}	2269	
PHONE: 210-233-365		EMAIL: M	chael Jor	res@Sa	ws.org			сти	00	· ^ T				<u></u>	г.	Sø	tu	ŚŢ	Im	po	wh.	m	ch+	L,	45°.	5555	sin	€h	t				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
DATA REPORTED TO: M	Chael	Jones			<u> </u>	PR	U][.00	AI.		N UI	K IN	AIVI	с.	Ĺ	age	soh?	5 0	in	1	lec	an	4	Soi	np	lin	19					
ADDITIONAL REPORT CO	PIES TO): Annin.	sabet@U	18 stonso	slutions.com	CLI	EN	T PR	OJE	ЕСТ	[.] #	104	112	X. ()3E	5.0	10	. D	502	l		со	LLE	CT	OR	: G	de	(" G5	Hel	00	NΥ	
Authorize 5% surcharge		W=WATE	R	SE=SE	DIMENT		PR	ESER	VAT		Ν								5.1 🗆	<u> </u>						8		п	5			, a	2
for TRRP report?	Lab	L=LIQUID		P=PAI	NT] [2] [0 8	1020						ST 827	0 🗆 62	NON	. MET				HERB	Ę	TEASE	NIDE	Net.			18 <u>5</u>	-
⊠¤Yes □No	Use	S=SOIL		SL=SL	UDGE																												
	Only	SO=SOLID)	7																													
	DHL	Collection	Collection		Container	ont	Lean				Å N				0 N R	SV SV	РН	0 625] 608.		20 []	111	HRON		0 10			х П	M			Cot I	-
Field Sample I.D.	Lab #	Date	Time	Matrix	Туре	5	CL ®	<u>ا</u> ق		Ξļ				8015	8260	C 8270	8270	8270	8082 [8 8321	ALS 60	480	HEX	DNS 30	-svoc	-MET/	N I I	🗆 TSS	FLJ			AST	· ·
						#	Ŧ	<u> </u> = :	r i		μ				ş	ŝ	PAH	PEST	РСВ	HER	MET	ß	됩	ANG	TCLF	ŢŢ	RCI	TDS	F			FIELD N	IOTES
55-1	01	2/20/24	0926	5		S			_	_					<u>X</u>	X		ļ											Х		_	Hold For S	PLP
55-2	02	2/2024	0950	5		5				_	_				λ	$\frac{1}{2}$	_	 						_					X	_	_	Hold For S	plp
<u> </u>	0.3	2120124	1018	5		5		┞──┞-		_	_			_	X	<u>X</u>	<u> </u>	<u> </u>					_						X	_	_	ttold For	SPLP
25-4	84	2/20/24	1095	S		5			_	+	_	_		_	X	X		<u> </u>			_	_					_		X		_	Hold Tav	SPLP
Trip Blank-1	05		\sim	W		X			+	_	_		_			╞		_					-		_						\dashv		
	 					$\left \right $		-	_		_	-	_					┣──			_	_	-+							_	-+		
									+	╋	-	-	_	_	+	+					_		-+			_	_						
				-				┝──┝	╉	╉	-	-				┼─	-	┝			_		_								+		
						$\left \right $			+-	┿	-	-		+		┢		┼──					+				-		-+		+		
								┝─┼╴		+	-	-				+		-			-		-+				\neg			-	-		
						$\left \right $		┝──┼╸	+	╈		-		+		+		┢──				-	-							+	-+		
				1					+	╈		-		-	+	1	1	†												\top	1		
										╈	1					\uparrow																	
										╈					1			1															
Relinquished By: (Sign)		212	DATE/TIME	400	Recei ^r	\mathcal{M}	y: X				(RN A	RO	UNC FOF	D TI R RL	ME JSH))	LAE REC	B US	e oi Ing	NLY	VIP ((°C):		0.	10	'n		•	THE	rmo #: 78	
Relinquished By: (Sign)		<u>.</u>	DATE/TIME	0.4	Recei	ved b	y:	1			RUS	SH-1	DA	Y□	RUS	H-2	DA	YΠ	IF >	6°C,	AR	E SA	MP	LES	ON	ICE	AN	DI	JST (COLL	.EC1	ED? YES	/ NO
Kdix		2/21/	24 03	29	fan	M	4	l					RUS	5H-3	DAY	10		_	CU	stoi	DY S	EAL	s oi		€⁄CI	HES	т: Ц	BF	ROKE	EN E	1N		IOT USED
Relinquished By: (Sign) DATE/TIME Received by: NORMAL & OTHER CARRIER: LISO & FEDEX UPS COURIER CHAND DELIVERED DUE DATE																																	

	\mathbf{D}		Τ,		2300 E	oul	ble F	Cre Phoi	ek I ne S	Dr. 512	Ro 2.38	unc 38.8	d Ro 222	ock, 2	, ТХ	786	64			C	H	41	N	-(DI		С	U:	ST	⁻ C	DY
	V A I	. y t i	CAL			W Em	eb: ail:	ww log	/w. in@	dhi 9dł	lan: nlar	alyt naly	ica tica	l.co al.c	om com													1	PAG	ΞE	OF
CLIENT: San Anton	bu	ater Su	stem			DA	TE:	R	1.X) /	14	ĺ									L	ABI	JSE	0	NLY	,					
ADDRESS: 2500 1)5-	281,5	an An	tonio, I	X 74	212	PC	D# :					\							DHL WORKORDER #: 2402269												
PHONE: 210-233-36	65	EMAIL: M	ichael : Jor	res@So	uns.org		OIF	ст		۲Δ٦			RN	ιΔΝ	۸E۰ (57	V	5.	Dry	poul	dw	nen	+	ts	Ses	Sin	eh:	7			
DATA REPORTED TO: Mi	Chae	Jones			J		01								/12.	L	agi	oon	5 6	and	\bigcirc	"Ca	nt	· `	al	мp	91 ý	ng .		<u></u>	
ADDITIONAL REPORT COI	PIES TO): Armin.	<u>Sabet Ou</u>	restons	idutions.com	CLI	IEN	T Pf	lor	EC	T #	10	141	\mathcal{L}	.03	6.	W	1.0	60:	2	С	OLL	ECT	TOR	: (0	5	(4	SH	Hell,	RMY
Authorize 5% surcharge		W=WATE	R	SE=SE	DIMENT		PR	ESEF	RVA	TIO	Ν			ü				ū	5.1 []		3				9			52			
for TRRP report?	Lab	L=LIQUID		P=PAI	INT								6	100				T 827	0 62	IONIA				ERB [ASE [IDE [2 C			1000
🗷 Yes 🛛 No	Use	S=SOIL		SL=SL	UDGE	rs	04			etat	SVEI	ន្ល	00 82	Ē	_ _			-P PES	8270	AMN				Ē	Ι× ΈΓ	& GRE	CVAN	Ŧ			the COS
	Only	SO=SOLID	<u> </u>	-		ine	H ₃ P			Ϋ́	ESE	S	HETH	8	8015 [24.1 [C 625.	PAH			O S C	3	JALK	1.0	DPE	RA 8	ō	DIST []	12	·		F
						nta				Ñ	NPR	<u></u>		H	VOC	svo	1 E E	625.1	508.3	HAL		ROM	0 0	VOC		DGAS	% M(7			23
Field Sample I D	DHL	Collection	Collection	Matrix	Container	С Ц	۶.	പ്	4	밐		<	IM I	8	015 D 60 🖾	270 8	2	270 []	82 🗆 (321 [EX C	S 300	VOC	IETAL	UN	TSS 🗆	2			H-F-F
	Lab #	Date	iiiie		Type	.0 #	ЧU	Ē	L _Z S	NaO	U U U		TEX	PH 10	SRO 8(VOC	AH 82	EST 8.	CB 80	IERB 8	ICRA 8	Ē	NION	CLP-S	CLP-N		DSD	E			FIELD NOTES
55-5	06	2/20/24	1059	5		5			╈		X			+	X	X				<u> </u>		$\frac{1}{1}$	Ť					X	十	1	Hald for SP(1)
55-6	07	240/24	1113	S		5				1	X	-		\uparrow	X			\square			+	\top						X	1		Hold for SPLP
SS-DUP	08	2/20/24	1113	S		5			+	1	X				X	X								\square				X	1		Hold For SPLP
SS-Backaround	09	2/20/24	1135	5		2			\top		X					<u> </u>		1				1				T		X			Hold for SPLP
tripplank-2	10	ł		\sim		2	X					Γ			X	(1	Γ				\square		T	
																							T					\square			
																												\Box			
																												\square			
				<u> </u>								_		_			ļ						<u> </u>			ļ		\square		\downarrow	
										\downarrow																		Щ		\downarrow	
														_			<u> </u>						<u> </u>			ļ		\vdash	\perp	\rightarrow	
										_		Ļ				_	<u> </u>					4	ļ					\vdash		\rightarrow	
										_	_	Ļ											<u> </u>	<u> </u>				┢──╄		_	
									_	-	_	-	+																		
Relinguished By: (Sign)			DATE/TIME		Beceiv					_																					
		JAr	non / k	Jos	The	Ai	γ. 				,					וו כ ום כ	ME ICH	、	LAB	USE		Y	(0.0)		1	1.	or		Т	THE	RMO#:
Relinguished By: (Sign)		x/ill	DATE/TIME		IReceiv	/ed b	7 <u>-</u> v:			_) D110	CHL		.v⊡		יתנ	נחכי ייים	/	REC	EIVIN	iG Ti	EMP	(°C)): 	<u> </u>						
Feder		2/2/1.	24 18	29	Var	1/1	[, .	Ι.			RU:	<u>зп-1</u>		с Ц	1 KU3	v⊡	DA	тĽ	IF >	ъ-С, /	ARE S	NIC	PLE	SUI CE ≁	v ICI Juno		יים 🗔	121 (ECT. איגרו	LU: TES/NU
Relinguished By: (Sign)		001	DATE/TIME	~ 1	Receiv	$\frac{1}{100}$	ν:	U		\neg	N	JOR	MD. MA	। सि		тня	R	7	COS		r 3EA • □	4L3 (1 SA		FDF	пс5 :у Г	ו:ו חוו⊓	ы рс Г		.iN b⊆ ⊪LIRIF	⊒~πN ≂RΓ	
			,		necen		<i>,</i> .				DUE DATE Shus days																				

	Sample	Receipt Chec	cklist		
Client Name: Weston Solutions, Inc.			Date Receiv	ved: 2/21/2024	
Work Order Number: 2402269			Received by	KAO	
5					
Checklist completed by:	2/21/202	24	Peviewed b		2/21/2024
Signature	Date			Initials	 Date
	Carrier name:	EodEx 1dov		·	
	Gamer name.	redex iday			
Shipping container/cooler in good condition?		Yes 🔽	No 🗌	Not Present	
Custody seals intact on shipping container/co	oler?	Yes 🗹	No 🗌	Not Present	
Custody seals intact on sample bottles?		Yes	No	Not Present	
Chain of custody present?		Yes 🗹	No 🗌		
Chain of custody signed when relinquished an	nd received?	Yes 🗸	No		
Chain of custody agrees with sample labels?		Yes 🖌	No 🗌		
Samples in proper container/bottle?		Yes 🗹	No 🗌		
Sample containers intact?		Yes 🗹	No 🗌		
Sufficient sample volume for indicated test?		Yes 🗸	No 🗌		
All samples received within holding time?		Yes 🗹	No 🗌		
Water - VOA vials have zero headspace?		Yes 🗹	No 🗌	No VOA vials submitte	d 🗌 NA 🗌
Water - pH<2 acceptable upon receipt?		Yes	Νο	NA 🗹 LOT #	
		Adjusted?		Checked by	
Water - ph>9 (S) or ph>10 (CN) acceptable u	pon receipt?	Yes	Νο	NA 🗹 LOT #	
		Adjusted?		Checked by	
Container/Temp Blank temperature in complia	ance?	Yes 🔽	No 🗌		
Cooler # 1 2					
Temp °C 0.7 1.6					
Seal Intact Y Y					
Any No response must be detailed in the com	ments section below.				
Client contacted:	Date contacted:		Pers	son contacted:	
Contacted by:	Regarding:		197 - Radiosofia Markada, Asia Kabada Sakada ang kabaga kabada kabada kabada kabada kabada kabada kabada kabada		
Comments:					aar oo oo haanaa ah aad haana taanaa ahaa ahaanaa ahaa ahaa aha
Corrective Action:					

Lab	orat	ory Name: DHL Analytical, Inc.						
Lab	orat	ory Review Checklist: Reportable Data						
Proje	ect Na	me: SAWS Impoundment Assess Lagoons/Decant Samp	LRC Date: 2/28/2024					
Revi	ewer I	Name: Angie O'Donnell	Laboratory Work Order: 2402269					
Prep	Batcl	n Number(s): See Prep Dates Report	Run Batch: See Analytical Dates Report					
$\#^{1}$	A ²	Description		Yes	No	NA ³	\mathbf{NR}^4	ER# ⁵
		Chain-of-Custody (C-O-C)						
R1	OI	1) Did samples meet the laboratory's standard conditions of	sample acceptability upon receipt?	Χ				R1-01
DA	01	2) Were all departures from standard conditions described in	an exception report?			Χ		
R2	OI	Sample and Quality Control (QC) Identification	horatory ID numbers?	v				
		2) Are all laboratory ID numbers cross-referenced to the corr	responding OC data?	A X				
R3	OI	Test Reports		Λ				
		1) Were all samples prepared and analyzed within holding tin	mes?	Χ				
		2) Other than those results < MQL, were all other raw values	s bracketed by calibration standards?	Χ				
		3) Were calculations checked by a peer or supervisor?		Χ				
		4) Were all analyte identifications checked by a peer or supe	rvisor?	Χ				
		5) Were sample detection limits reported for all analytes not	detected?	X				
		6) Were all results for soil and sediment samples reported on	a dry weight basis?	X				
		7) Were % moisture (or solids) reported for all soil and sedir	nent samples?	X				
		9) If required for the project TICs reported?	and with methanol per EFA Method 5055?	Λ		x		
R4	0	Surrogate Recovery Data				Λ		
		1) Were surrogates added prior to extraction?		Χ				
		2) Were surrogate percent recoveries in all samples within th	ne laboratory QC limits?	Χ				
R5	OI	Test Reports/Summary Forms for Blank Samples						
		1) Were appropriate type(s) of blanks analyzed?		Χ				
		2) Were blanks analyzed at the appropriate frequency?		Χ				
		3) Where method blanks taken through the entire analytical p	process, including preparation and, if	Х				
		4) Were blank concentrations < MDL?		x				
		5) For analyte(s) detected in a blank sample, was the concent	tration, unadjusted for sample specific	1				
		factors, in all associated field samples, greater than 10 times	s the concentration in the blank sample?			X		
R6	OI	Laboratory Control Samples (LCS):		NZ				
		1) Were all COCs included in the LCS?	in aluding man and alagnum stang?	X				
		2) Were LCSs analyzed at the required frequency?	are, including prep and cleanup steps?	A V				
		4) Were LCS (and LCSD if applicable) %Rs within the labo	pratory OC limits?	Λ	x			R6-04
		5) Does the detectability data document the laboratory's capa	ability to detect the COCs at the MDL used					110 01
		to calculate the SDLs?	5	Х				
		6) Was the LCSD RPD within QC limits (if applicable)?		Χ				
R 7	OI	Matrix Spike (MS) and Matrix Spike Duplicate (MSD) D	ata					
		1) Were the project/method specified analytes included in the	e MS and MSD?	X				
		2) Were MS/MSD analyzed at the appropriate frequency?	atory OC limits?	Λ	v			D7 03
		4) Were MS/MSD RPDs within laboratory OC limits?		x	Λ			K/-03
R8	OI	Analytical Duplicate Data						
		1) Were appropriate analytical duplicates analyzed for each 1	matrix?			Χ		
		2) Were analytical duplicates analyzed at the appropriate free	quency?			Χ		
		3) Were RPDs or relative standard deviations within the labo	pratory QC limits?			Χ		
R9	OI	Method Quantitation Limits (MQLs):						
		1) Are the MQLs for each method analyte included in the lat	poratory data package?	X				
		2) Do the MQLs correspond to the concentration of the lower	ry data package?	A V				
R10	OI	Other Problems/Anomalies	g and puckage.	Λ				
		1) Are all known problems/anomalies/special conditions note	ed in this LRC and ER?	Χ				R10-01
		2) Was applicable and available technology used to lower the affects on the sample results?	e SDL to minimize the matrix interference	X				
		3) Is the laboratory NELAC-accredited under the Texas Laboratory analytes, matrices and methods associated with this laborator	oratory Accreditation Program for the ry data package?	X		ļ		

Lab	ora	tory Name: DHL Analytical, Inc.						
Lab	ora	tory Review Checklist (continued): Supporting	g Data					
Proje	ct Na	ame: SAWS Impoundment Assess Lagoons/Decant Samp LRC	C Date: 2/28/2024					
Revie	wer	Name: Angie O'Donnell Lab	ooratory Work Order: 2402269					
Prep	Bate	h Number(s): See Prep Dates Report Run	Batch: See Analytical Dates Report					
#1	A^2	Description		Yes	No	NA ³	NR ⁴	ER# ⁵
S1	OI	Initial Calibration (ICAL)						
		1) Ware regroups factors and/or relative regroups factors for each	anglate within OC limite?	v				
		2) Were percent RSDs or correlation coefficient criteria met?	r anaryte within QC limits?					
		3) Was the number of standards recommended in the method used	d for all analytes?	X				
		4) Were all points generated between the lowest and highest stand	dard used to calculate the curve?	X				
		5) Are ICAL data available for all instruments used?		X				
		6) Has the initial calibration curve been verified using an appropr	riate second source standard?	X				
S2	OI	Initial and Continuing calibration Verification (ICCV and CO	CV) and Continuing Calibration					
		blank (CCB):	,					
		1) Was the CCV analyzed at the method-required frequency?		Х				
		2) Were percent differences for each analyte within the method-re	equired QC limits?		Χ			S2-02
		3) Was the ICAL curve verified for each analyte?		Χ				
		4) Was the absolute value of the analyte concentration in the inor	ganic CCB < MDL?	Χ				
S3	0	Mass Spectral Tuning:						
		1) Was the appropriate compound for the method used for tuning	?	X				
	-	2) Were ion abundance data within the method-required QC limit	ts?	X				
S4	0	Internal Standards (IS):						
07	OI	1) Were IS area counts and retention times within the method-req	juired QC limits?	X				
85	OI	Raw Data (NELAC Section 5.5.10)		N				
		1) Were the raw data (for example, chromatograms, spectral data)) reviewed by an analyst?	X				
86	0	2) were data associated with manual integrations hagged on the f	raw data?	Λ				
50	0	Dual Column Confirmation 1) Did dual column confirmation results meet the method require	ad OC2			v		
\$7	0	Tentatively Identified Compounds (TICs):				Λ		
57	U	1) If TICs were requested, were the mass spectra and TIC data su	biect to appropriate checks?			X		
S8	I	Interference Check Sample (ICS) Results:						
~ ~ ~		1) Were percent recoveries within method QC limits?		Х				
S9	Ι	Serial Dilutions, Post Digestion Spikes, and Method of Standa	ard Additions					
		1) Were percent differences recoveries and the linearity wit	thin the OC limits specified in the					
		method?	and the QC minus speethed in the	X				
S10	OI	Method Detection Limit (MDL) Studies						
		1) Was a MDL study performed for each reported analyte?		Χ				
		2) Is the MDL either adjusted or supported by the analysis of DC	Ss?	Χ				
S11	OI	Proficiency Test Reports:						
		1) Was the lab's performance acceptable on the applicable profici	ency tests or evaluation studies?	Χ				
S12	OI	Standards Documentation						
		1) Are all standards used in the analyses NIST-traceable or obtain	ned from other appropriate sources?	Χ				
S13	OI	Compound/Analyte Identification Procedures						
		1) Are the procedures for compound/analyte identification docum	nented?	X				
S14	OI	Demonstration of Analyst Competency (DOC)	1					
		1) Was DOC conducted consistent with NELAC Chapter 5 – App	pendix C?	X				
C17	OT	2) is documentation of the analyst's competency up-to-date and o	on file /	X				
515	UI	vernication/validation Documentation for Methods (NELAC	Chapter 5)					
		1) Are all the methods used to generate the data document	ted, verified, and validated, where	X				
617	OT	applicable?						
516	UI	Laboratory Standard Operating Procedures (SOPs):						
		1) Are laboratory SOPs current and on file for each method performance of the second s	ormed?	Х				

¹ Items identified by the letter "R" should be included in the laboratory data package submitted to the TCEQ in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O = organic analyses; I = inorganic analyses (and general chemistry, when applicable).

³ NA = Not applicable.

⁴ NR = Not Reviewed.

⁵ ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Data Package Signature Page – RG-366/TRRP-13

This data package consists of:

R4

This signature page, the laboratory review checklist, and the following reportable data:

- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a) Items consistent with NELAC Chapter 5,
 - b) dilution factors,
 - c) preparation methods,
 - d) cleanup methods, and
 - e) if required for the project, tentatively identified compounds (TICs).
 - Surrogate recovery data including:
 - a) Calculated recovery (%R), and
 - b) The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a) LCS spiking amounts,
 - b) Calculated %R for each analyte, and
 - c) The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a) Samples associated with the MS/MSD clearly identified,
 - b) MS/MSD spiking amounts,
 - c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d) Calculated %Rs and relative percent differences (RPDs), and
 - e) The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a) The amount of analyte measured in the duplicate,
 - b) The calculated RPD, and
 - c) The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix;
- R10 Other problems or anomalies.

The Exception Report for each "No" or "Not Reviewed (NR)" item in the Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory is not accredited under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge that all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information or data affecting the quality of the data has been knowingly withheld.

This laboratory was last inspected by TCEQ on May 30 - June 2, 2023. Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Name: John DuPont Official Title: General Manager

Name: Dr. Derhsing Luu Official Title: Technical Director

Signature

02/28/24 Date

CLIENT:	Weston Solutions, Inc.
Project:	SAWS Impoundment Assessment Lagoons and
Lab Order:	2402269

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Method SW8260D - Volatile Organics Analysis (the compound Cyclohexane is not NELAP Certified) Method SW8270E - Semivolatile Organics Analysis (the compound Benzaldehyde is not NELAP Certified) Method SW6020B- Metals Analysis Method SW7471B - Mercury Analysis

Method D2216 - Percent Moisture Analysis

Exception Report R1-01

Samples were received and login performed on 2/21/2024. A total of 10 samples were received and analyzed. The samples arrived in good condition and were properly packaged.

Exception Report R6-04

For Volatile Organics Analysis, for aqueous Batch 114106, the recoveries of three compounds for the Laboratory Control Spike (LCS-114106) were above the method control limits. These are flagged accordingly in the QC Summary Report. These compounds were within method control limits in the associated ICV. No further corrective action was taken.

For Semivolatile Organics Analysis, for soil Batch 114177, the recovery of Atrazine for the Laboratory Control Spike (LCS-114177) was above the method control limits. This is flagged accordingly in the QC Summary Report. This compound was within method control limits in the associated ICV. No further corrective action was taken.

Exception Report R7-03

For Metals Analysis, for soil Batch 114139, the recoveries of three analytes for the Matrix Spike and Matrix Spike Duplicate (2402269-04 MS/MSD) were outside of the method control limits. These are flagged accordingly in the QC Summary Report. These analytes were within method control limits in the associated LCS. No further corrective action was taken.

For Semivolatile Organics Analysis, for soil Batch 114177, the recoveries of three compounds for the Matrix Spike and Matrix Spike Duplicate (2402269-01 MS/MSD) were outside of the method control limits. These are flagged accordingly in the QC Summary Report. These compounds analytes were within method control limits in the associated LCS or were nondetect in the associated samples. No further corrective action was taken.

CLIENT:Weston Solutions, Inc.Project:SAWS Impoundment Assessment Lagoons andLab Order:2402269

Exception Report R10-01

Per project specification, MS/MSD/Duplicates are from this workorder or project samples only.

Exception Report S2-02

For Volatiles Analysis, for aqueous samples performed on 2/21/2024, the recovery of Carbon disulfide for the Initial Calibration Verification (ICV-240221) was slightly below the method control limits specified in SW8260D (70-130% recovery). This is flagged accordingly in the QC Summary Report. The number of target analytes outside of the method control limits for the ICV are less than 20% of the total number of compounds being reported; this is allowed in SW8260D specifications. This compound was within method control limits in the associated LCS. No further corrective action was taken.

_

Date: 28-Feb-24

Weston Solutions, In SAWS Impoundmen 2402269	nc. nt Assessment Lagoons and	Work Order Sample	Summary
Client Sample ID	Tag Number	Date Collected	Date Recved
SS-1		02/20/24 09:26 AM	02/21/2024
SS-2		02/20/24 09:50 AM	02/21/2024
SS-3		02/20/24 10:18 AM	02/21/2024
SS-4		02/20/24 10:45 AM	02/21/2024
Trip Blank-1		02/20/24	02/21/2024
SS-5		02/20/24 10:59 AM	02/21/2024
SS-6		02/20/24 11:13 AM	02/21/2024
SS-DUP		02/20/24 11:13 AM	02/21/2024
SS-Background		02/20/24 11:35 AM	02/21/2024
Trip Blank-2		02/20/24	02/21/2024
	Weston Solutions, In SAWS Impoundmen 2402269 Client Sample ID SS-1 SS-2 SS-3 SS-4 Trip Blank-1 SS-5 SS-6 SS-DUP SS-Background Trip Blank-2	Weston Solutions, Inc. SAWS Impoundment Assessment Lagoons and 2402269 Client Sample ID Tag Number SS-1 SS-2 SS-3 SS-4 Trip Blank-1 SS-5 SS-6 SS-DUP SS-Background Trip Blank-2	Weston Solutions, Inc. SAWS Impoundment Assessment Lagoons and 2402269 Client Sample ID Tag Number Date Collected SS-1 02/20/24 09:26 AM 02/20/24 09:50 AM SS-2 02/20/24 09:50 AM SS-3 02/20/24 10:18 AM SS-4 02/20/24 10:18 AM O2/20/24 10:45 AM Trip Blank-1 02/20/24 SS-5 02/20/24 10:59 AM SS-6 02/20/24 11:13 AM SS-DUP 02/20/24 11:13 AM SS-Background 02/20/24 11:35 AM Trip Blank-2 02/20/24

Lab Order: 2402269

Client: Weston Solutions, Inc.

Project: SAWS Impoundment Assessment

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
2402269-01A	SS-1	02/20/24 09:26 AM	Soil	SW5035A	Purge and Trap 5035	02/21/24 10:36 AM	114118
2402269-01B	SS-1	02/20/24 09:26 AM	Soil	SW7471B	Mercury Soil Prep, Total	02/22/24 08:07 AM	114134
	SS-1	02/20/24 09:26 AM	Soil	SW3550C	Soil Prep Sonication: BNA	02/26/24 09:04 AM	114177
	SS-1	02/20/24 09:26 AM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	02/22/24 09:35 AM	114139
	SS-1	02/20/24 09:26 AM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	02/22/24 09:35 AM	114139
2402269-01D	SS-1	02/20/24 09:26 AM	Soil	D2216	Moisture Preparation	02/21/24 01:44 PM	114122
2402269-02A	SS-2	02/20/24 09:50 AM	Soil	SW5035A	Purge and Trap 5035	02/21/24 10:36 AM	114118
2402269-02B	SS-2	02/20/24 09:50 AM	Soil	SW7471B	Mercury Soil Prep, Total	02/22/24 08:07 AM	114134
	SS-2	02/20/24 09:50 AM	Soil	SW3550C	Soil Prep Sonication: BNA	02/26/24 09:04 AM	114177
	SS-2	02/20/24 09:50 AM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	02/22/24 09:35 AM	114139
	SS-2	02/20/24 09:50 AM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	02/22/24 09:35 AM	114139
2402269-02D	SS-2	02/20/24 09:50 AM	Soil	D2216	Moisture Preparation	02/21/24 01:44 PM	114122
2402269-03A	SS-3	02/20/24 10:18 AM	Soil	SW5035A	Purge and Trap 5035	02/21/24 10:36 AM	114118
2402269-03B	SS-3	02/20/24 10:18 AM	Soil	SW7471B	Mercury Soil Prep, Total	02/22/24 08:07 AM	114134
	SS-3	02/20/24 10:18 AM	Soil	SW3550C	Soil Prep Sonication: BNA	02/26/24 09:04 AM	114177
	SS-3	02/20/24 10:18 AM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	02/22/24 09:35 AM	114139
	SS-3	02/20/24 10:18 AM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	02/22/24 09:35 AM	114139
2402269-03D	SS-3	02/20/24 10:18 AM	Soil	D2216	Moisture Preparation	02/21/24 01:44 PM	114122
2402269-04A	SS-4	02/20/24 10:45 AM	Soil	SW5035A	Purge and Trap 5035	02/21/24 10:36 AM	114118
2402269-04B	SS-4	02/20/24 10:45 AM	Soil	SW7471B	Mercury Soil Prep, Total	02/22/24 08:07 AM	114134
	SS-4	02/20/24 10:45 AM	Soil	SW3550C	Soil Prep Sonication: BNA	02/26/24 09:04 AM	114177
	SS-4	02/20/24 10:45 AM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	02/22/24 09:35 AM	114139
	SS-4	02/20/24 10:45 AM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	02/22/24 09:35 AM	114139
2402269-04D	SS-4	02/20/24 10:45 AM	Soil	D2216	Moisture Preparation	02/21/24 01:44 PM	114122
2402269-05A	Trip Blank-1	02/20/24	Trip Blank	SW5030C	Purge and Trap Water GC/MS	02/21/24 08:52 AM	114106
2402269-06A	SS-5	02/20/24 10:59 AM	Soil	SW5035A	Purge and Trap 5035	02/21/24 10:36 AM	114118
2402269-06B	SS-5	02/20/24 10:59 AM	Soil	SW7471B	Mercury Soil Prep, Total	02/22/24 08:07 AM	114134
	SS-5	02/20/24 10:59 AM	Soil	SW3550C	Soil Prep Sonication: BNA	02/26/24 09:04 AM	114177

Page 1 of 2

Lab Order: 2402269 **Client:**

Weston Solutions, Inc.

Project: SAWS Impoundment Assessment

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
2402269-06B	SS-5	02/20/24 10:59 AM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	02/22/24 09:35 AM	114139
	SS-5	02/20/24 10:59 AM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	02/22/24 09:35 AM	114139
2402269-06D	SS-5	02/20/24 10:59 AM	Soil	D2216	Moisture Preparation	02/21/24 01:44 PM	114122
2402269-07A	SS-6	02/20/24 11:13 AM	Soil	SW5035A	Purge and Trap 5035	02/21/24 10:36 AM	114118
2402269-07B	SS-6	02/20/24 11:13 AM	Soil	SW7471B	Mercury Soil Prep, Total	02/22/24 08:07 AM	114134
	SS-6	02/20/24 11:13 AM	Soil	SW3550C	Soil Prep Sonication: BNA	02/26/24 09:04 AM	114177
	SS-6	02/20/24 11:13 AM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	02/22/24 09:35 AM	114139
	SS-6	02/20/24 11:13 AM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	02/22/24 09:35 AM	114139
2402269-07D	SS-6	02/20/24 11:13 AM	Soil	D2216	Moisture Preparation	02/21/24 01:44 PM	114122
2402269-08A	SS-DUP	02/20/24 11:13 AM	Soil	SW5035A	Purge and Trap 5035	02/21/24 10:36 AM	114118
2402269-08B	SS-DUP	02/20/24 11:13 AM	Soil	SW7471B	Mercury Soil Prep, Total	02/22/24 08:07 AM	114134
	SS-DUP	02/20/24 11:13 AM	Soil	SW3550C	Soil Prep Sonication: BNA	02/26/24 09:04 AM	114177
	SS-DUP	02/20/24 11:13 AM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	02/22/24 09:35 AM	114139
	SS-DUP	02/20/24 11:13 AM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	02/22/24 09:35 AM	114139
2402269-08D	SS-DUP	02/20/24 11:13 AM	Soil	D2216	Moisture Preparation	02/21/24 01:44 PM	114122
2402269-09A	SS-Background	02/20/24 11:35 AM	Soil	SW7471B	Mercury Soil Prep, Total	02/22/24 08:07 AM	114134
	SS-Background	02/20/24 11:35 AM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	02/22/24 09:35 AM	114139
	SS-Background	02/20/24 11:35 AM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	02/22/24 09:35 AM	114139
2402269-09C	SS-Background	02/20/24 11:35 AM	Soil	D2216	Moisture Preparation	02/21/24 01:44 PM	114122
2402269-10A	Trip Blank-2	02/20/24	Trip Blank	SW5030C	Purge and Trap Water GC/MS	02/21/24 08:52 AM	114106

Lab Order: 2402269

Client: Weston Solutions, Inc.

Project: SAWS Impoundment Assessment

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
2402269-01A	SS-1	Soil	SW8260D	Volatiles by 8260/5035 GC/MS	114118	1	02/21/24 09:23 PM	GCMS2_240221B
2402269-01B	SS-1	Soil	SW7471B	Mercury Total: Soil/Solid	114134	1	02/23/24 10:38 AM	CETAC2_HG_240223
	SS-1	Soil	SW8270E	Semivolatiles by GC/MS	114177	1	02/26/24 05:33 PM	GCMS4_240226A
	SS-1	Soil	SW6020B	Trace Metals: ICP-MS - Solid	114139	5	02/23/24 10:43 AM	ICP-MS5_240223A
	SS-1	Soil	SW6020B	Trace Metals: ICP-MS - Solid	114139	250	02/23/24 11:26 AM	ICP-MS5_240223A
2402269-01D	SS-1	Soil	D2216	Percent Moisture	114122	1	02/22/24 10:00 AM	PMOIST_240221A
2402269-02A	SS-2	Soil	SW8260D	Volatiles by 8260/5035 GC/MS	114118	1	02/21/24 09:51 PM	GCMS2_240221B
2402269-02B	SS-2	Soil	SW7471B	Mercury Total: Soil/Solid	114134	1	02/23/24 10:40 AM	CETAC2_HG_240223 A
	SS-2	Soil	SW8270E	Semivolatiles by GC/MS	114177	1	02/26/24 05:59 PM	GCMS4_240226A
	SS-2	Soil	SW6020B	Trace Metals: ICP-MS - Solid	114139	5	02/23/24 10:46 AM	ICP-MS5_240223A
	SS-2	Soil	SW6020B	Trace Metals: ICP-MS - Solid	114139	250	02/23/24 11:29 AM	ICP-MS5_240223A
2402269-02D	SS-2	Soil	D2216	Percent Moisture	114122	1	02/22/24 10:00 AM	PMOIST_240221A
2402269-03A	SS-3	Soil	SW8260D	Volatiles by 8260/5035 GC/MS	114118	1	02/21/24 10:19 PM	GCMS2_240221B
2402269-03B	SS-3	Soil	SW7471B	Mercury Total: Soil/Solid	114134	1	02/23/24 10:51 AM	CETAC2_HG_240223 A
	SS-3	Soil	SW8270E	Semivolatiles by GC/MS	114177	1	02/26/24 06:24 PM	GCMS4_240226A
	SS-3	Soil	SW6020B	Trace Metals: ICP-MS - Solid	114139	5	02/23/24 10:48 AM	ICP-MS5_240223A
	SS-3	Soil	SW6020B	Trace Metals: ICP-MS - Solid	114139	100	02/23/24 11:31 AM	ICP-MS5_240223A
2402269-03D	SS-3	Soil	D2216	Percent Moisture	114122	1	02/22/24 10:00 AM	PMOIST_240221A
2402269-04A	SS-4	Soil	SW8260D	Volatiles by 8260/5035 GC/MS	114118	1	02/21/24 10:47 PM	GCMS2_240221B
2402269-04B	SS-4	Soil	SW7471B	Mercury Total: Soil/Solid	114134	1	02/23/24 10:54 AM	CETAC2_HG_240223 A
	SS-4	Soil	SW8270E	Semivolatiles by GC/MS	114177	1	02/26/24 06:49 PM	GCMS4_240226A
	SS-4	Soil	SW6020B	Trace Metals: ICP-MS - Solid	114139	5	02/23/24 10:38 AM	ICP-MS5_240223A
	SS-4	Soil	SW6020B	Trace Metals: ICP-MS - Solid	114139	100	02/23/24 11:21 AM	ICP-MS5_240223A
2402269-04D	SS-4	Soil	D2216	Percent Moisture	114122	1	02/22/24 10:00 AM	PMOIST_240221A
2402269-05A	Trip Blank-1	Trip Blank	SW8260D	8260 Water Volatiles by GC/MS	114106	1	02/21/24 11:31 AM	GCMS7_240221A
2402269-06A	SS-5	Soil	SW8260D	Volatiles by 8260/5035 GC/MS	114118	1	02/21/24 11:15 PM	GCMS2_240221B

Page 1 of 2

Lab Order: 2402269

Client: Weston Solutions, Inc.

Project: SAWS Impoundment Assessment

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
2402269-06B	SS-5	Soil	SW7471B	Mercury Total: Soil/Solid	114134	1	02/23/24 10:56 AM	CETAC2_HG_240223 A
	SS-5	Soil	SW8270E	Semivolatiles by GC/MS	114177	1	02/26/24 07:14 PM	GCMS4_240226A
	SS-5	Soil	SW6020B	Trace Metals: ICP-MS - Solid	114139	5	02/23/24 10:51 AM	ICP-MS5_240223A
	SS-5	Soil	SW6020B	Trace Metals: ICP-MS - Solid	114139	250	02/23/24 11:34 AM	ICP-MS5_240223A
2402269-06D	SS-5	Soil	D2216	Percent Moisture	114122	1	02/22/24 10:00 AM	PMOIST_240221A
2402269-07A	SS-6	Soil	SW8260D	Volatiles by 8260/5035 GC/MS	114118	1	02/21/24 11:43 PM	GCMS2_240221B
2402269-07B	SS-6	Soil	SW7471B	Mercury Total: Soil/Solid	114134	1	02/23/24 10:58 AM	CETAC2_HG_240223 A
	SS-6	Soil	SW8270E	Semivolatiles by GC/MS	114177	1	02/26/24 07:39 PM	GCMS4_240226A
	SS-6	Soil	SW6020B	Trace Metals: ICP-MS - Solid	114139	100	02/23/24 11:36 AM	ICP-MS5_240223A
	SS-6	Soil	SW6020B	Trace Metals: ICP-MS - Solid	114139	5	02/23/24 10:53 AM	ICP-MS5_240223A
2402269-07D	SS-6	Soil	D2216	Percent Moisture	114122	1	02/22/24 10:00 AM	PMOIST_240221A
2402269-08A	SS-DUP	Soil	SW8260D	Volatiles by 8260/5035 GC/MS	114118	1	02/22/24 12:11 AM	GCMS2_240221B
2402269-08B	SS-DUP	Soil	SW7471B	Mercury Total: Soil/Solid	114134	1	02/23/24 11:05 AM	CETAC2_HG_240223 A
	SS-DUP	Soil	SW8270E	Semivolatiles by GC/MS	114177	1	02/26/24 08:04 PM	GCMS4_240226A
	SS-DUP	Soil	SW6020B	Trace Metals: ICP-MS - Solid	114139	5	02/23/24 10:56 AM	ICP-MS5_240223A
	SS-DUP	Soil	SW6020B	Trace Metals: ICP-MS - Solid	114139	100	02/23/24 11:39 AM	ICP-MS5_240223A
2402269-08D	SS-DUP	Soil	D2216	Percent Moisture	114122	1	02/22/24 10:00 AM	PMOIST_240221A
2402269-09A	SS-Background	Soil	SW7471B	Mercury Total: Soil/Solid	114134	1	02/23/24 11:07 AM	CETAC2_HG_240223 A
	SS-Background	Soil	SW6020B	Trace Metals: ICP-MS - Solid	114139	5	02/23/24 10:58 AM	ICP-MS5_240223A
	SS-Background	Soil	SW6020B	Trace Metals: ICP-MS - Solid	114139	250	02/23/24 11:41 AM	ICP-MS5_240223A
2402269-09C	SS-Background	Soil	D2216	Percent Moisture	114122	1	02/22/24 10:00 AM	PMOIST_240221A
2402269-10A	Trip Blank-2	Trip Blank	SW8260D	8260 Water Volatiles by GC/MS	114106	1	02/21/24 11:56 AM	GCMS7_240221A

Date: 28-Feb-24

CLIENT:Weston Solutions, Inc.ClProject:SAWS Impoundment Assessment Lagoons andProject No:10412.036.001.0002Lab Order:2402269

Client Sample ID: SS-1 Lab ID: 2402269-01

Collection Date: 02/20/24 09:26 AM

Matrix: SOIL

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - SOLID		SW6020B					Analyst: SP
Aluminum	25700	777	2330		mg/Kg-dry	250	02/23/24 11:26 AM
Antimony	<0.622	0.622	1.24		mg/Kg-dry	5	02/23/24 10:43 AM
Arsenic	19.2	0.622	1.24		mg/Kg-dry	5	02/23/24 10:43 AM
Barium	210	0.622	2.49		mg/Kg-dry	5	02/23/24 10:43 AM
Beryllium	0.945	0.124	0.373		mg/Kg-dry	5	02/23/24 10:43 AM
Cadmium	0.251	0.124	0.373	J	mg/Kg-dry	5	02/23/24 10:43 AM
Calcium	155000	777	2330		mg/Kg-dry	250	02/23/24 11:26 AM
Chromium	31.0	0.622	2.49		mg/Kg-dry	5	02/23/24 10:43 AM
Cobalt	12.2	0.622	2.49		mg/Kg-dry	5	02/23/24 10:43 AM
Copper	13.7	0.622	2.49		mg/Kg-dry	5	02/23/24 10:43 AM
Iron	126000	777	2330		mg/Kg-dry	250	02/23/24 11:26 AM
Lead	13.1	0.124	0.373		mg/Kg-dry	5	02/23/24 10:43 AM
Magnesium	6130	15.5	46.6		mg/Kg-dry	5	02/23/24 10:43 AM
Manganese	429	0.622	2.49		mg/Kg-dry	5	02/23/24 10:43 AM
Nickel	19.5	0.622	2.49		mg/Kg-dry	5	02/23/24 10:43 AM
Potassium	5310	15.5	46.6		mg/Kg-dry	5	02/23/24 10:43 AM
Selenium	1.03	0.186	0.622		mg/Kg-dry	5	02/23/24 10:43 AM
Silver	<0.124	0.124	0.249		mg/Kg-dry	5	02/23/24 10:43 AM
Sodium	90.5	15.5	46.6		mg/Kg-dry	5	02/23/24 10:43 AM
Thallium	<0.622	0.622	1.24		mg/Kg-dry	5	02/23/24 10:43 AM
Vanadium	396	1.24	3.11		mg/Kg-dry	5	02/23/24 10:43 AM
Zinc	57.5	1.24	3.11		mg/Kg-dry	5	02/23/24 10:43 AM
MERCURY TOTAL: SOIL/SOLID		SW74	71B				Analyst: CMC
Mercury	<0.0197	0.0197	0.0494		mg/Kg-dry	1	02/23/24 10:38 AM
SEMIVOLATILES BY GC/MS		SW82	70E				Analyst: DEW
2,4,5-Trichlorophenol	<0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
2,4,6-Trichlorophenol	<0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
2,4-Dichlorophenol	<0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
2,4-Dimethylphenol	<0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
2,4-Dinitrophenol	<0.0658	0.0658	0.174		mg/Kg-dry	1	02/26/24 05:33 PM
2,4-Dinitrotoluene	<0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
2,6-Dinitrotoluene	<0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
2-Chloronaphthalene	<0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
2-Chlorophenol	<0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
2-Methylnaphthalene	<0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
2-Methylphenol	<0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
2-Nitroaniline	<0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
2-Nitrophenol	<0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

Date: 28-Feb-24

CLIENT:	Weston Solutions, Inc.
Project:	SAWS Impoundment Assessment Lagoons and
Project No:	10412.036.001.0002
Lab Order:	2402269

Client Sample ID: SS-1 Lab ID: 2402269-01

Collection Date: 02/20/24 09:26 AM

Matrix: SOIL

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
SEMIVOLATILES BY GC/MS	SW8270E					Analyst: DEW	
3,3´-Dichlorobenzidine	<0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
3-Nitroaniline	<0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
4,6-Dinitro-2-methylphenol	<0.0395	0.0395	0.0869		mg/Kg-dry	1	02/26/24 05:33 PM
4-Bromophenyl phenyl ether	<0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
4-Chloro-3-methylphenol	<0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
4-Chloroaniline	<0.0395	0.0395	0.0869		mg/Kg-dry	1	02/26/24 05:33 PM
4-Chlorophenyl phenyl ether	<0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
4-Methylphenol	<0.0263	0.0263	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
4-Nitroaniline	<0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
4-Nitrophenol	<0.0658	0.0658	0.174		mg/Kg-dry	1	02/26/24 05:33 PM
Acenaphthene	<0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
Acenaphthylene	<0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
Acetophenone	<0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
Anthracene	<0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
Atrazine	<0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
Benzaldehyde	<0.0132	0.0132	0.0350	Ν	mg/Kg-dry	1	02/26/24 05:33 PM
Benzo[a]anthracene	<0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
Benzo[a]pyrene	<0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
Benzo[b]fluoranthene	<0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
Benzo[g,h,i]perylene	<0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
Benzo[k]fluoranthene	<0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
Benzoic acid	<0.0658	0.0658	0.174		mg/Kg-dry	1	02/26/24 05:33 PM
Benzyl alcohol	<0.0395	0.0395	0.0869		mg/Kg-dry	1	02/26/24 05:33 PM
Biphenyl	<0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
Bis(2-chloroethoxy)methane	<0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
Bis(2-chloroethyl)ether	<0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
Bis(2-chloroisopropyl)ether	<0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
Bis(2-ethylhexyl)phthalate	<0.0842	0.0842	0.0869		mg/Kg-dry	1	02/26/24 05:33 PM
Butyl benzyl phthalate	<0.0526	0.0526	0.0869		mg/Kg-dry	1	02/26/24 05:33 PM
Caprolactam	<0.0395	0.0395	0.0869		mg/Kg-dry	1	02/26/24 05:33 PM
Carbazole	<0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
Chrysene	<0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
Dibenz[a,h]anthracene	<0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
Dibenzofuran	<0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
Diethyl phthalate	<0.0526	0.0526	0.0869		mg/Kg-dry	1	02/26/24 05:33 PM
Dimethyl phthalate	<0.0526	0.0526	0.0869		mg/Kg-dry	1	02/26/24 05:33 PM
Di-n-butyl phthalate	<0.0526	0.0526	0.0869		mg/Kg-dry	1	02/26/24 05:33 PM
Di-n-octyl phthalate	<0.0526	0.0526	0.0869		mg/Kg-dry	1	02/26/24 05:33 PM
Fluoranthene	<0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

Date: 28-Feb-24

CLIENT:Weston Solutions, Inc.Project:SAWS Impoundment Assessment Lagoons andProject No:10412.036.001.0002Lab Order:2402269

Client Sample ID: SS-1 Lab ID: 2402269-01

Collection Date: 02/20/24 09:26 AM

Matrix: SOIL

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed
SEMIVOLATILES BY GC/MS	SW8270E				Analyst: DEW	
Fluorene	<0.0132	0.0132	0.0350	mg/Kg-dry	1	02/26/24 05:33 PM
Hexachlorobenzene	<0.0132	0.0132	0.0350	mg/Kg-dry	1	02/26/24 05:33 PM
Hexachlorobutadiene	<0.0132	0.0132	0.0350	mg/Kg-dry	1	02/26/24 05:33 PM
Hexachlorocyclopentadiene	<0.0395	0.0395	0.0869	mg/Kg-dry	1	02/26/24 05:33 PM
Hexachloroethane	<0.0132	0.0132	0.0350	mg/Kg-dry	1	02/26/24 05:33 PM
Indeno[1,2,3-cd]pyrene	<0.0132	0.0132	0.0350	mg/Kg-dry	1	02/26/24 05:33 PM
Isophorone	<0.0395	0.0395	0.0869	mg/Kg-dry	1	02/26/24 05:33 PM
Naphthalene	<0.0132	0.0132	0.0350	mg/Kg-dry	1	02/26/24 05:33 PM
Nitrobenzene	<0.0132	0.0132	0.0350	mg/Kg-dry	1	02/26/24 05:33 PM
N-Nitrosodi-n-propylamine	<0.0132	0.0132	0.0350	mg/Kg-dry	1	02/26/24 05:33 PM
N-Nitrosodiphenylamine	<0.0132	0.0132	0.0350	mg/Kg-dry	1	02/26/24 05:33 PM
Pentachlorophenol	<0.0132	0.0132	0.0350	mg/Kg-dry	1	02/26/24 05:33 PM
Phenanthrene	<0.0132	0.0132	0.0350	mg/Kg-dry	1	02/26/24 05:33 PM
Phenol	<0.0132	0.0132	0.0350	mg/Kg-dry	1	02/26/24 05:33 PM
Pyrene	<0.0132	0.0132	0.0350	mg/Kg-dry	1	02/26/24 05:33 PM
Pyridine	<0.0658	0.0658	0.174	mg/Kg-dry	1	02/26/24 05:33 PM
Surr: 2,4,6-Tribromophenol	79.0	0	45-126	%REC	1	02/26/24 05:33 PM
Surr: 2-Fluorobiphenyl	84.0	0	60-125	%REC	1	02/26/24 05:33 PM
Surr: 2-Fluorophenol	81.0	0	37-125	%REC	1	02/26/24 05:33 PM
Surr: 4-Terphenyl-d14	90.0	0	45-125	%REC	1	02/26/24 05:33 PM
Surr: Nitrobenzene-d5	77.0	0	45-125	%REC	1	02/26/24 05:33 PM
Surr: Phenol-d5	78.0	0	40-125	%REC	1	02/26/24 05:33 PM
VOLATILES BY 8260/5035 GC/MS		SW82	60D			Analyst: JL
1,1,1,2-Tetrachloroethane	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
1,1,1-Trichloroethane	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
1,1,2,2-Tetrachloroethane	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
1,1,2-Trichloroethane	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
1,1,2-Trichlorotrifluoroethane	<0.00689	0.00689	0.0207	mg/Kg-dry	1	02/21/24 09:23 PM
1,1-Dichloroethane	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
1,1-Dichloroethene	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
1,1-Dichloropropene	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
1,2,3-Trichlorobenzene	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
1,2,3-Trichloropropane	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
1,2,4-Trichlorobenzene	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
1,2,4-Trimethylbenzene	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
1,2-Dibromo-3-chloropropane	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
1,2-Dibromoethane	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
1,2-Dichlorobenzene	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

Date: 28-Feb-24

CLIENT:Weston Solutions, Inc.Project:SAWS Impoundment Assessment Lagoons andProject No:10412.036.001.0002Lab Order:2402269

Client Sample ID: SS-1 Lab ID: 2402269-01

Collection Date: 02/20/24 09:26 AM

Matrix: SOIL

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
VOLATILES BY 8260/5035 GC/MS	SW8260D				Analyst: JL		
1,2-Dichloroethane	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
1,2-Dichloropropane	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
1,3,5-Trimethylbenzene	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
1,3-Dichlorobenzene	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
1,3-Dichloropropane	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
1,4-Dichlorobenzene	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
1-Chlorohexane	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
2,2-Dichloropropane	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
2-Butanone	<0.00689	0.00689	0.0207		mg/Kg-dry	1	02/21/24 09:23 PM
2-Chlorotoluene	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
2-Hexanone	<0.00689	0.00689	0.0207		mg/Kg-dry	1	02/21/24 09:23 PM
4-Chlorotoluene	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
4-Methyl-2-pentanone	<0.00689	0.00689	0.0207		mg/Kg-dry	1	02/21/24 09:23 PM
Acetone	<0.0207	0.0207	0.0689		mg/Kg-dry	1	02/21/24 09:23 PM
Benzene	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
Bromobenzene	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
Bromochloromethane	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
Bromodichloromethane	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
Bromoform	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
Bromomethane	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
Carbon disulfide	<0.00689	0.00689	0.0207		mg/Kg-dry	1	02/21/24 09:23 PM
Carbon tetrachloride	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
Chlorobenzene	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
Chloroethane	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
Chloroform	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
Chloromethane	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
cis-1,2-Dichloroethene	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
cis-1,3-Dichloropropene	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
Cyclohexane	<0.00689	0.00689	0.0207	Ν	mg/Kg-dry	1	02/21/24 09:23 PM
Dibromochloromethane	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
Dibromomethane	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
Dichlorodifluoromethane	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
Ethylbenzene	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
Hexachlorobutadiene	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
Isopropylbenzene	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
m,p-Xylene	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
Methyl Acetate	<0.00689	0.00689	0.0207		mg/Kg-dry	1	02/21/24 09:23 PM
Methyl tert-butyl ether	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
Methylcyclohexane	<0.00689	0.00689	0.0207		mg/Kg-dry	1	02/21/24 09:23 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

Date: 28-Feb-24

CLIENT:	Weston Solutions, Inc.
Project:	SAWS Impoundment Assessment Lagoons and
Project No:	10412.036.001.0002
Lab Order:	2402269

Client Sample ID: SS-1 Lab ID: 2402269-01

Collection Date: 02/20/24 09:26 AM

Matrix: SOIL

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed
VOLATILES BY 8260/5035 GC/MS		SW8260D				Analyst: JL
Methylene chloride	<0.00689	0.00689	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
Naphthalene	<0.00689	0.00689	0.0207	mg/Kg-dry	1	02/21/24 09:23 PM
n-Butylbenzene	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
n-Propylbenzene	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
o-Xylene	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
p-Isopropyltoluene	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
sec-Butylbenzene	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
Styrene	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
tert-Butylbenzene	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
Tetrachloroethene	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
Toluene	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
trans-1,2-Dichloroethene	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
trans-1,3-Dichloropropene	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
Trichloroethene	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
Trichlorofluoromethane	<0.00689	0.00689	0.0207	mg/Kg-dry	1	02/21/24 09:23 PM
Vinyl chloride	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
Xylenes, Total	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
Surr: 1,2-Dichloroethane-d4	107	0	52-149	%REC	1	02/21/24 09:23 PM
Surr: 4-Bromofluorobenzene	105	0	84-118	%REC	1	02/21/24 09:23 PM
Surr: Dibromofluoromethane	95.1	0	65-135	%REC	1	02/21/24 09:23 PM
Surr: Toluene-d8	97.2	0	84-116	%REC	1	02/21/24 09:23 PM
PERCENT MOISTURE		D22	16			Analyst: SMA
Percent Moisture	24.1	0	0	WT%	1	02/22/24 10:00 AM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

Date: 28-Feb-24

Analyses	Regult SDI	PI
Lab Order:	2402269	
Project No:	10412.036.001.0002	(
Project:	SAWS Impoundment Assessment Lagoons and	
CLIENT:	Weston Solutions, Inc.	Cli

ient Sample ID: SS-2 Lab ID: 2402269-02

Collection Date: 02/20/24 09:50 AM

Matrix: SOIL

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed	
TRACE METALS: ICP-MS - SOLID)	SW602	20B			Analyst: SP		
Aluminum	20600	699	2100		mg/Kg-dry	250	02/23/24 11:29 AM	
Antimony	<0.559	0.559	1.12		mg/Kg-dry	5	02/23/24 10:46 AM	
Arsenic	7.22	0.559	1.12		mg/Kg-dry	5	02/23/24 10:46 AM	
Barium	87.0	0.559	2.24		mg/Kg-dry	5	02/23/24 10:46 AM	
Beryllium	0.734	0.112	0.335		mg/Kg-dry	5	02/23/24 10:46 AM	
Cadmium	0.198	0.112	0.335	J	mg/Kg-dry	5	02/23/24 10:46 AM	
Calcium	158000	699	2100		mg/Kg-dry	250	02/23/24 11:29 AM	
Chromium	22.4	0.559	2.24		mg/Kg-dry	5	02/23/24 10:46 AM	
Cobalt	5.28	0.559	2.24		mg/Kg-dry	5	02/23/24 10:46 AM	
Copper	7.22	0.559	2.24		mg/Kg-dry	5	02/23/24 10:46 AM	
Iron	17400	699	2100		mg/Kg-dry	250	02/23/24 11:29 AM	
Lead	9.11	0.112	0.335		mg/Kg-dry	5	02/23/24 10:46 AM	
Magnesium	3990	14.0	41.9		mg/Kg-dry	5	02/23/24 10:46 AM	
Manganese	163	0.559	2.24		mg/Kg-dry	5	02/23/24 10:46 AM	
Nickel	9.77	0.559	2.24		mg/Kg-dry	5	02/23/24 10:46 AM	
Potassium	3660	14.0	41.9		mg/Kg-dry	5	02/23/24 10:46 AM	
Selenium	0.418	0.168	0.559	J	mg/Kg-dry	5	02/23/24 10:46 AM	
Silver	<0.112	0.112	0.224		mg/Kg-dry	5	02/23/24 10:46 AM	
Sodium	69.7	14.0	41.9		mg/Kg-dry	5	02/23/24 10:46 AM	
Thallium	<0.559	0.559	1.12		mg/Kg-dry	5	02/23/24 10:46 AM	
Vanadium	52.4	1.12	2.79		mg/Kg-dry	5	02/23/24 10:46 AM	
Zinc	37.4	1.12	2.79		mg/Kg-dry	5	02/23/24 10:46 AM	
MERCURY TOTAL: SOIL/SOLID		SW74	71B				Analyst: CMC	
Mercury	<0.0169	0.0169	0.0423		mg/Kg-dry	1	02/23/24 10:40 AM	
SEMIVOLATILES BY GC/MS		SW82	70E				Analyst: DEW	
2,4,5-Trichlorophenol	<0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM	
2,4,6-Trichlorophenol	<0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM	
2,4-Dichlorophenol	<0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM	
2,4-Dimethylphenol	<0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM	
2,4-Dinitrophenol	<0.0579	0.0579	0.153		mg/Kg-dry	1	02/26/24 05:59 PM	
2,4-Dinitrotoluene	<0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM	
2,6-Dinitrotoluene	<0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM	
2-Chloronaphthalene	<0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM	
2-Chlorophenol	<0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM	
2-Methylnaphthalene	<0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM	
2-Methylphenol	<0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM	
2-Nitroaniline	<0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM	
2-Nitrophenol	<0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM	

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

Date: 28-Feb-24

CLIENT:Weston Solutions, Inc.Project:SAWS Impoundment Assessment Lagoons andProject No:10412.036.001.0002Lab Order:2402269

Client Sample ID: SS-2 Lab ID: 2402269-02

Collection Date: 02/20/24 09:50 AM

Matrix: SOIL

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
SEMIVOLATILES BY GC/MS	SW8270E						Analyst: DEW
3,3´-Dichlorobenzidine	<0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
3-Nitroaniline	<0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
4,6-Dinitro-2-methylphenol	<0.0347	0.0347	0.0764		mg/Kg-dry	1	02/26/24 05:59 PM
4-Bromophenyl phenyl ether	<0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
4-Chloro-3-methylphenol	<0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
4-Chloroaniline	<0.0347	0.0347	0.0764		mg/Kg-dry	1	02/26/24 05:59 PM
4-Chlorophenyl phenyl ether	<0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
4-Methylphenol	<0.0232	0.0232	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
4-Nitroaniline	<0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
4-Nitrophenol	<0.0579	0.0579	0.153		mg/Kg-dry	1	02/26/24 05:59 PM
Acenaphthene	<0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
Acenaphthylene	<0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
Acetophenone	<0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
Anthracene	<0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
Atrazine	<0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
Benzaldehyde	<0.0116	0.0116	0.0308	Ν	mg/Kg-dry	1	02/26/24 05:59 PM
Benzo[a]anthracene	<0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
Benzo[a]pyrene	<0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
Benzo[b]fluoranthene	<0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
Benzo[g,h,i]perylene	<0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
Benzo[k]fluoranthene	<0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
Benzoic acid	<0.0579	0.0579	0.153		mg/Kg-dry	1	02/26/24 05:59 PM
Benzyl alcohol	<0.0347	0.0347	0.0764		mg/Kg-dry	1	02/26/24 05:59 PM
Biphenyl	<0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
Bis(2-chloroethoxy)methane	<0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
Bis(2-chloroethyl)ether	<0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
Bis(2-chloroisopropyl)ether	<0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
Bis(2-ethylhexyl)phthalate	<0.0741	0.0741	0.0764		mg/Kg-dry	1	02/26/24 05:59 PM
Butyl benzyl phthalate	<0.0463	0.0463	0.0764		mg/Kg-dry	1	02/26/24 05:59 PM
Caprolactam	<0.0347	0.0347	0.0764		mg/Kg-dry	1	02/26/24 05:59 PM
Carbazole	<0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
Chrysene	<0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
Dibenz[a,h]anthracene	<0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
Dibenzofuran	<0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
Diethyl phthalate	<0.0463	0.0463	0.0764		mg/Kg-dry	1	02/26/24 05:59 PM
Dimethyl phthalate	<0.0463	0.0463	0.0764		mg/Kg-dry	1	02/26/24 05:59 PM
Di-n-butyl phthalate	<0.0463	0.0463	0.0764		mg/Kg-dry	1	02/26/24 05:59 PM
Di-n-octyl phthalate	<0.0463	0.0463	0.0764		mg/Kg-dry	1	02/26/24 05:59 PM
Fluoranthene	<0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

Date: 28-Feb-24

CLIENT:Weston Solutions, Inc.Project:SAWS Impoundment Assessment Lagoons andProject No:10412.036.001.0002Lab Order:2402269

Client Sample ID: SS-2 Lab ID: 2402269-02 Collection Date: 02/20/24 09:50 AM

Matrix: SOIL

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed
SEMIVOLATILES BY GC/MS	SW8270E				Analyst: DEW	
Fluorene	<0.0116	0.0116	0.0308	mg/Kg-dry	1	02/26/24 05:59 PM
Hexachlorobenzene	<0.0116	0.0116	0.0308	mg/Kg-dry	1	02/26/24 05:59 PM
Hexachlorobutadiene	<0.0116	0.0116	0.0308	mg/Kg-dry	1	02/26/24 05:59 PM
Hexachlorocyclopentadiene	<0.0347	0.0347	0.0764	mg/Kg-dry	1	02/26/24 05:59 PM
Hexachloroethane	<0.0116	0.0116	0.0308	mg/Kg-dry	1	02/26/24 05:59 PM
Indeno[1,2,3-cd]pyrene	<0.0116	0.0116	0.0308	mg/Kg-dry	1	02/26/24 05:59 PM
Isophorone	<0.0347	0.0347	0.0764	mg/Kg-dry	1	02/26/24 05:59 PM
Naphthalene	<0.0116	0.0116	0.0308	mg/Kg-dry	1	02/26/24 05:59 PM
Nitrobenzene	<0.0116	0.0116	0.0308	mg/Kg-dry	1	02/26/24 05:59 PM
N-Nitrosodi-n-propylamine	<0.0116	0.0116	0.0308	mg/Kg-dry	1	02/26/24 05:59 PM
N-Nitrosodiphenylamine	<0.0116	0.0116	0.0308	mg/Kg-dry	1	02/26/24 05:59 PM
Pentachlorophenol	<0.0116	0.0116	0.0308	mg/Kg-dry	1	02/26/24 05:59 PM
Phenanthrene	<0.0116	0.0116	0.0308	mg/Kg-dry	1	02/26/24 05:59 PM
Phenol	<0.0116	0.0116	0.0308	mg/Kg-dry	1	02/26/24 05:59 PM
Pyrene	<0.0116	0.0116	0.0308	mg/Kg-dry	1	02/26/24 05:59 PM
Pyridine	<0.0579	0.0579	0.153	mg/Kg-dry	1	02/26/24 05:59 PM
Surr: 2,4,6-Tribromophenol	82.0	0	45-126	%REC	1	02/26/24 05:59 PM
Surr: 2-Fluorobiphenyl	84.0	0	60-125	%REC	1	02/26/24 05:59 PM
Surr: 2-Fluorophenol	80.0	0	37-125	%REC	1	02/26/24 05:59 PM
Surr: 4-Terphenyl-d14	91.0	0	45-125	%REC	1	02/26/24 05:59 PM
Surr: Nitrobenzene-d5	76.0	0	45-125	%REC	1	02/26/24 05:59 PM
Surr: Phenol-d5	78.0	0	40-125	%REC	1	02/26/24 05:59 PM
VOLATILES BY 8260/5035 GC/MS		SW82	260D			Analyst: JL
1,1,1,2-Tetrachloroethane	<0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM
1,1,1-Trichloroethane	<0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM
1,1,2,2-Tetrachloroethane	<0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM
1,1,2-Trichloroethane	<0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM
1,1,2-Trichlorotrifluoroethane	<0.00508	0.00508	0.0152	mg/Kg-dry	1	02/21/24 09:51 PM
1,1-Dichloroethane	<0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM
1,1-Dichloroethene	<0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM
1,1-Dichloropropene	<0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM
1,2,3-Trichlorobenzene	<0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM
1,2,3-Trichloropropane	<0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM
1,2,4-Trichlorobenzene	<0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM
1,2,4-Trimethylbenzene	<0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM
1,2-Dibromo-3-chloropropane	<0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM
1,2-Dibromoethane	<0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM
1,2-Dichlorobenzene	<0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

Date: 28-Feb-24

CLIENT: Weston Solutions, Inc. **Project:** SAWS Impoundment Assessment Lagoons and **Project No:** 10412.036.001.0002 Lab Order: 2402269

Client Sample ID: SS-2 Lab ID: 2402269-02

Collection Date: 02/20/24 09:50 AM

Matrix: SOIL

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
VOLATILES BY 8260/5035 GC/MS	SW8260D					Analyst: JL	
1,2-Dichloroethane	<0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
1,2-Dichloropropane	<0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
1,3,5-Trimethylbenzene	<0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
1,3-Dichlorobenzene	<0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
1,3-Dichloropropane	<0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
1,4-Dichlorobenzene	<0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
1-Chlorohexane	<0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
2,2-Dichloropropane	<0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
2-Butanone	<0.00508	0.00508	0.0152		mg/Kg-dry	1	02/21/24 09:51 PM
2-Chlorotoluene	<0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
2-Hexanone	<0.00508	0.00508	0.0152		mg/Kg-dry	1	02/21/24 09:51 PM
4-Chlorotoluene	<0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
4-Methyl-2-pentanone	<0.00508	0.00508	0.0152		mg/Kg-dry	1	02/21/24 09:51 PM
Acetone	<0.0152	0.0152	0.0508		mg/Kg-dry	1	02/21/24 09:51 PM
Benzene	<0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
Bromobenzene	<0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
Bromochloromethane	<0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
Bromodichloromethane	<0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
Bromoform	<0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
Bromomethane	<0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
Carbon disulfide	<0.00508	0.00508	0.0152		mg/Kg-dry	1	02/21/24 09:51 PM
Carbon tetrachloride	<0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
Chlorobenzene	<0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
Chloroethane	<0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
Chloroform	<0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
Chloromethane	<0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
cis-1,2-Dichloroethene	<0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
cis-1,3-Dichloropropene	<0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
Cyclohexane	<0.00508	0.00508	0.0152	Ν	mg/Kg-dry	1	02/21/24 09:51 PM
Dibromochloromethane	<0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
Dibromomethane	<0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
Dichlorodifluoromethane	<0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
Ethylbenzene	<0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
Hexachlorobutadiene	<0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
Isopropylbenzene	<0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
m,p-Xylene	<0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
Methyl Acetate	<0.00508	0.00508	0.0152		mg/Kg-dry	1	02/21/24 09:51 PM
Methyl tert-butyl ether	<0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
Methylcyclohexane	<0.00508	0.00508	0.0152		mg/Kg-dry	1	02/21/24 09:51 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

Date: 28-Feb-24

CLIENT:	Weston Solutions, Inc.
Project:	SAWS Impoundment Assessment Lagoons and
Project No:	10412.036.001.0002
Lab Order:	2402269

Client Sample ID: SS-2 Lab ID: 2402269-02 Collection Date: 02/20/24 09:50 AM

Matrix: SOIL

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed		
VOLATILES BY 8260/5035 GC/MS		SW8260D				Analyst: JL		
Methylene chloride	<0.00508	0.00508	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM		
Naphthalene	<0.00508	0.00508	0.0152	mg/Kg-dry	1	02/21/24 09:51 PM		
n-Butylbenzene	<0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM		
n-Propylbenzene	<0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM		
o-Xylene	<0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM		
p-Isopropyltoluene	<0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM		
sec-Butylbenzene	<0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM		
Styrene	<0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM		
tert-Butylbenzene	<0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM		
Tetrachloroethene	<0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM		
Toluene	<0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM		
trans-1,2-Dichloroethene	<0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM		
trans-1,3-Dichloropropene	<0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM		
Trichloroethene	<0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM		
Trichlorofluoromethane	<0.00508	0.00508	0.0152	mg/Kg-dry	1	02/21/24 09:51 PM		
Vinyl chloride	<0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM		
Xylenes, Total	< 0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM		
Surr: 1,2-Dichloroethane-d4	108	0	52-149	%REC	1	02/21/24 09:51 PM		
Surr: 4-Bromofluorobenzene	106	0	84-118	%REC	1	02/21/24 09:51 PM		
Surr: Dibromofluoromethane	104	0	65-135	%REC	1	02/21/24 09:51 PM		
Surr: Toluene-d8	93.0	0	84-116	%REC	1	02/21/24 09:51 PM		
PERCENT MOISTURE		D22	16			Analyst: SMA		
Percent Moisture	14.8	0	0	WT%	1	02/22/24 10:00 AM		

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

Date: 28-Feb-24

Analysas	Regult SDI	DI
Lab Order:	2402269	
Project No:	10412.036.001.0002	(
Project:	SAWS Impoundment Assessment Lagoons and	
CLIENT:	Weston Solutions, Inc.	Cl

lient Sample ID: SS-3 Lab ID: 2402269-03

Collection Date: 02/20/24 10:18 AM

Matrix: SOIL

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - SOLII	D	SW602	20B				Analyst: SP
Aluminum	18200	264	793		mg/Kg-dry	100	02/23/24 11:31 AM
Antimony	<0.529	0.529	1.06		mg/Kg-dry	5	02/23/24 10:48 AM
Arsenic	5.45	0.529	1.06		mg/Kg-dry	5	02/23/24 10:48 AM
Barium	127	0.529	2.12		mg/Kg-dry	5	02/23/24 10:48 AM
Beryllium	0.653	0.106	0.317		mg/Kg-dry	5	02/23/24 10:48 AM
Cadmium	0.155	0.106	0.317	J	mg/Kg-dry	5	02/23/24 10:48 AM
Calcium	119000	264	793		mg/Kg-dry	100	02/23/24 11:31 AM
Chromium	21.9	0.529	2.12		mg/Kg-dry	5	02/23/24 10:48 AM
Cobalt	4.91	0.529	2.12		mg/Kg-dry	5	02/23/24 10:48 AM
Copper	7.06	0.529	2.12		mg/Kg-dry	5	02/23/24 10:48 AM
Iron	18100	264	793		mg/Kg-dry	100	02/23/24 11:31 AM
Lead	8.60	0.106	0.317		mg/Kg-dry	5	02/23/24 10:48 AM
Magnesium	3420	13.2	39.7		mg/Kg-dry	5	02/23/24 10:48 AM
Manganese	147	0.529	2.12		mg/Kg-dry	5	02/23/24 10:48 AM
Nickel	10.5	0.529	2.12		mg/Kg-dry	5	02/23/24 10:48 AM
Potassium	3610	13.2	39.7		mg/Kg-dry	5	02/23/24 10:48 AM
Selenium	0.338	0.159	0.529	J	mg/Kg-dry	5	02/23/24 10:48 AM
Silver	<0.106	0.106	0.212		mg/Kg-dry	5	02/23/24 10:48 AM
Sodium	53.8	13.2	39.7		mg/Kg-dry	5	02/23/24 10:48 AM
Thallium	<0.529	0.529	1.06		mg/Kg-dry	5	02/23/24 10:48 AM
Vanadium	56.7	1.06	2.64		mg/Kg-dry	5	02/23/24 10:48 AM
Zinc	38.8	1.06	2.64		mg/Kg-dry	5	02/23/24 10:48 AM
MERCURY TOTAL: SOIL/SOLID		SW74	71B				Analyst: CMC
Mercury	0.0229	0.0178	0.0445	J	mg/Kg-dry	1	02/23/24 10:51 AM
SEMIVOLATILES BY GC/MS		SW82	70E				Analyst: DEW
2,4,5-Trichlorophenol	<0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
2,4,6-Trichlorophenol	<0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
2,4-Dichlorophenol	<0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
2,4-Dimethylphenol	<0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
2,4-Dinitrophenol	<0.0568	0.0568	0.150		mg/Kg-dry	1	02/26/24 06:24 PM
2,4-Dinitrotoluene	<0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
2,6-Dinitrotoluene	<0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
2-Chloronaphthalene	<0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
2-Chlorophenol	<0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
2-Methylnaphthalene	<0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
2-Methylphenol	<0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
2-Nitroaniline	<0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
2-Nitrophenol	<0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

Date: 28-Feb-24

CLIENT:Weston Solutions, Inc.Project:SAWS Impoundment Assessment Lagoons andProject No:10412.036.001.0002Lab Order:2402269

Client Sample ID: SS-3 Lab ID: 2402269-03

Collection Date: 02/20/24 10:18 AM

Matrix: SOIL

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
SEMIVOLATILES BY GC/MS		SW82	70E				Analyst: DEW
3,3'-Dichlorobenzidine	<0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
3-Nitroaniline	<0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
4,6-Dinitro-2-methylphenol	<0.0341	0.0341	0.0750		mg/Kg-dry	1	02/26/24 06:24 PM
4-Bromophenyl phenyl ether	<0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
4-Chloro-3-methylphenol	<0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
4-Chloroaniline	<0.0341	0.0341	0.0750		mg/Kg-dry	1	02/26/24 06:24 PM
4-Chlorophenyl phenyl ether	<0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
4-Methylphenol	<0.0227	0.0227	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
4-Nitroaniline	<0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
4-Nitrophenol	<0.0568	0.0568	0.150		mg/Kg-dry	1	02/26/24 06:24 PM
Acenaphthene	<0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
Acenaphthylene	<0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
Acetophenone	<0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
Anthracene	<0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
Atrazine	<0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
Benzaldehyde	<0.0114	0.0114	0.0302	Ν	mg/Kg-dry	1	02/26/24 06:24 PM
Benzo[a]anthracene	<0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
Benzo[a]pyrene	<0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
Benzo[b]fluoranthene	<0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
Benzo[g,h,i]perylene	<0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
Benzo[k]fluoranthene	<0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
Benzoic acid	<0.0568	0.0568	0.150		mg/Kg-dry	1	02/26/24 06:24 PM
Benzyl alcohol	<0.0341	0.0341	0.0750		mg/Kg-dry	1	02/26/24 06:24 PM
Biphenyl	<0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
Bis(2-chloroethoxy)methane	<0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
Bis(2-chloroethyl)ether	<0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
Bis(2-chloroisopropyl)ether	<0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
Bis(2-ethylhexyl)phthalate	<0.0727	0.0727	0.0750		mg/Kg-dry	1	02/26/24 06:24 PM
Butyl benzyl phthalate	<0.0454	0.0454	0.0750		mg/Kg-dry	1	02/26/24 06:24 PM
Caprolactam	<0.0341	0.0341	0.0750		mg/Kg-dry	1	02/26/24 06:24 PM
Carbazole	<0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
Chrysene	<0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
Dibenz[a,h]anthracene	<0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
Dibenzofuran	<0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
Diethyl phthalate	<0.0454	0.0454	0.0750		mg/Kg-dry	1	02/26/24 06:24 PM
Dimethyl phthalate	<0.0454	0.0454	0.0750		mg/Kg-dry	1	02/26/24 06:24 PM
Di-n-butyl phthalate	<0.0454	0.0454	0.0750		mg/Kg-dry	1	02/26/24 06:24 PM
Di-n-octyl phthalate	<0.0454	0.0454	0.0750		mg/Kg-dry	1	02/26/24 06:24 PM
Fluoranthene	<0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

Date: 28-Feb-24

CLIENT: Weston Solutions, Inc. **Project:** SAWS Impoundment Assessment Lagoons and **Project No:** 10412.036.001.0002 Lab Order: 2402269

Client Sample ID: SS-3 Lab ID: 2402269-03

Collection Date: 02/20/24 10:18 AM

Matrix: SOIL

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed
SEMIVOLATILES BY GC/MS		SW82	270E			Analyst: DEW
Fluorene	<0.0114	0.0114	0.0302	mg/Kg-dry	1	02/26/24 06:24 PM
Hexachlorobenzene	<0.0114	0.0114	0.0302	mg/Kg-dry	1	02/26/24 06:24 PM
Hexachlorobutadiene	<0.0114	0.0114	0.0302	mg/Kg-dry	1	02/26/24 06:24 PM
Hexachlorocyclopentadiene	<0.0341	0.0341	0.0750	mg/Kg-dry	1	02/26/24 06:24 PM
Hexachloroethane	<0.0114	0.0114	0.0302	mg/Kg-dry	1	02/26/24 06:24 PM
Indeno[1,2,3-cd]pyrene	<0.0114	0.0114	0.0302	mg/Kg-dry	1	02/26/24 06:24 PM
Isophorone	<0.0341	0.0341	0.0750	mg/Kg-dry	1	02/26/24 06:24 PM
Naphthalene	<0.0114	0.0114	0.0302	mg/Kg-dry	1	02/26/24 06:24 PM
Nitrobenzene	<0.0114	0.0114	0.0302	mg/Kg-dry	1	02/26/24 06:24 PM
N-Nitrosodi-n-propylamine	<0.0114	0.0114	0.0302	mg/Kg-dry	1	02/26/24 06:24 PM
N-Nitrosodiphenylamine	<0.0114	0.0114	0.0302	mg/Kg-dry	1	02/26/24 06:24 PM
Pentachlorophenol	<0.0114	0.0114	0.0302	mg/Kg-dry	1	02/26/24 06:24 PM
Phenanthrene	<0.0114	0.0114	0.0302	mg/Kg-dry	1	02/26/24 06:24 PM
Phenol	<0.0114	0.0114	0.0302	mg/Kg-dry	1	02/26/24 06:24 PM
Pyrene	<0.0114	0.0114	0.0302	mg/Kg-dry	1	02/26/24 06:24 PM
Pyridine	<0.0568	0.0568	0.150	mg/Kg-dry	1	02/26/24 06:24 PM
Surr: 2,4,6-Tribromophenol	80.0	0	45-126	%REC	1	02/26/24 06:24 PM
Surr: 2-Fluorobiphenyl	84.0	0	60-125	%REC	1	02/26/24 06:24 PM
Surr: 2-Fluorophenol	82.0	0	37-125	%REC	1	02/26/24 06:24 PM
Surr: 4-Terphenyl-d14	90.0	0	45-125	%REC	1	02/26/24 06:24 PM
Surr: Nitrobenzene-d5	77.0	0	45-125	%REC	1	02/26/24 06:24 PM
Surr: Phenol-d5	77.0	0	40-125	%REC	1	02/26/24 06:24 PM
VOLATILES BY 8260/5035 GC/MS		SW82	260D			Analyst: JL
1,1,1,2-Tetrachloroethane	<0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM
1,1,1-Trichloroethane	<0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM
1,1,2,2-Tetrachloroethane	<0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM
1,1,2-Trichloroethane	<0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM
1,1,2-Trichlorotrifluoroethane	<0.00456	0.00456	0.0137	mg/Kg-dry	1	02/21/24 10:19 PM
1,1-Dichloroethane	<0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM
1,1-Dichloroethene	<0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM
1,1-Dichloropropene	<0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM
1,2,3-Trichlorobenzene	<0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM
1,2,3-Trichloropropane	<0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM
1,2,4-Trichlorobenzene	<0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM
1,2,4-Trimethylbenzene	<0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM
1,2-Dibromo-3-chloropropane	<0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM
1,2-Dibromoethane	<0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM
1,2-Dichlorobenzene	<0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

Analyses

Date: 28-Feb-24

DF

Date Analyzed

CLIENT:Weston Solutions, Inc.Project:SAWS Impoundment Assessment Lagoons andProject No:10412.036.001.0002Lab Order:2402269

Result

SDL

RL

Oual

Client Sample ID: SS-3 Lab ID: 2402269-03 Collection Date: 02/20/24 10:18 AM

Direction Date: 02/20/24 10.18

Matrix: SOIL

VOLATILES BY 8260/5035 GC/MS		SW82		Analyst: JL			
1,2-Dichloroethane	<0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
1,2-Dichloropropane	<0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
1,3,5-Trimethylbenzene	<0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
1,3-Dichlorobenzene	<0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
1,3-Dichloropropane	<0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
1,4-Dichlorobenzene	<0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
1-Chlorohexane	<0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
2,2-Dichloropropane	<0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
2-Butanone	<0.00456	0.00456	0.0137		mg/Kg-dry	1	02/21/24 10:19 PM
2-Chlorotoluene	<0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
2-Hexanone	<0.00456	0.00456	0.0137		mg/Kg-dry	1	02/21/24 10:19 PM
4-Chlorotoluene	<0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
4-Methyl-2-pentanone	<0.00456	0.00456	0.0137		mg/Kg-dry	1	02/21/24 10:19 PM
Acetone	<0.0137	0.0137	0.0456		mg/Kg-dry	1	02/21/24 10:19 PM
Benzene	<0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
Bromobenzene	<0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
Bromochloromethane	<0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
Bromodichloromethane	<0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
Bromoform	<0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
Bromomethane	<0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
Carbon disulfide	<0.00456	0.00456	0.0137		mg/Kg-dry	1	02/21/24 10:19 PM
Carbon tetrachloride	<0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
Chlorobenzene	<0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
Chloroethane	<0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
Chloroform	<0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
Chloromethane	<0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
cis-1,2-Dichloroethene	<0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
cis-1,3-Dichloropropene	<0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
Cyclohexane	<0.00456	0.00456	0.0137	Ν	mg/Kg-dry	1	02/21/24 10:19 PM
Dibromochloromethane	<0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
Dibromomethane	<0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
Dichlorodifluoromethane	<0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
Ethylbenzene	<0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
Hexachlorobutadiene	<0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
Isopropylbenzene	<0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
m,p-Xylene	<0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
Methyl Acetate	<0.00456	0.00456	0.0137		mg/Kg-dry	1	02/21/24 10:19 PM
Methyl tert-butyl ether	<0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
Methylcyclohexane	<0.00456	0.00456	0.0137		mg/Kg-dry	1	02/21/24 10:19 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

Date: 28-Feb-24

CLIENT: Weston Solutions, Inc. **Project:** SAWS Impoundment Assessment Lagoons and **Project No:** 10412.036.001.0002 Lab Order: 2402269 . .

	Client Sample ID:	SS-3
l	Lab ID:	2402269-03
	Collection Date:	02/20/24 10:18 AM

Matrix: SOIL

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed
VOLATILES BY 8260/5035 GC/MS		SW8260D				Analyst: JL
Methylene chloride	<0.00456	0.00456	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM
Naphthalene	<0.00456	0.00456	0.0137	mg/Kg-dry	1	02/21/24 10:19 PM
n-Butylbenzene	<0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM
n-Propylbenzene	<0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM
o-Xylene	<0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM
p-Isopropyltoluene	<0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM
sec-Butylbenzene	<0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM
Styrene	<0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM
tert-Butylbenzene	<0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM
Tetrachloroethene	<0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM
Toluene	<0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM
trans-1,2-Dichloroethene	<0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM
trans-1,3-Dichloropropene	<0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM
Trichloroethene	<0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM
Trichlorofluoromethane	<0.00456	0.00456	0.0137	mg/Kg-dry	1	02/21/24 10:19 PM
Vinyl chloride	<0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM
Xylenes, Total	<0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM
Surr: 1,2-Dichloroethane-d4	106	0	52-149	%REC	1	02/21/24 10:19 PM
Surr: 4-Bromofluorobenzene	106	0	84-118	%REC	1	02/21/24 10:19 PM
Surr: Dibromofluoromethane	100	0	65-135	%REC	1	02/21/24 10:19 PM
Surr: Toluene-d8	96.3	0	84-116	%REC	1	02/21/24 10:19 PM
PERCENT MOISTURE		D22	16			Analyst: SMA
Percent Moisture	14.8	0	0	WT%	1	02/22/24 10:00 AM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

2,4-Dinitrotoluene

2,6-Dinitrotoluene

2-Nitroaniline

2-Nitrophenol

2-Chloronaphthalene

Date: 28-Feb-24

Lab ID: 2402269-04

Matrix: SOIL

CLIENT: Weston Solutions, Inc. **Client Sample ID: SS-4 Project:** SAWS Impoundment Assessment Lagoons and **Project No:** 10412.036.001.0002 Collection Date: 02/20/24 10:45 AM Lab Order: 2402269

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - SOLID	SW6020B					Analyst: SP	
Aluminum	10000	273	818		mg/Kg-dry	100	02/23/24 11:21 AM
Antimony	<0.545	0.545	1.09		mg/Kg-dry	5	02/23/24 10:38 AM
Arsenic	5.19	0.545	1.09		mg/Kg-dry	5	02/23/24 10:38 AM
Barium	61.2	0.545	2.18		mg/Kg-dry	5	02/23/24 10:38 AM
Beryllium	0.454	0.109	0.327		mg/Kg-dry	5	02/23/24 10:38 AM
Cadmium	<0.109	0.109	0.327		mg/Kg-dry	5	02/23/24 10:38 AM
Calcium	46100	273	818		mg/Kg-dry	100	02/23/24 11:21 AM
Chromium	12.0	0.545	2.18		mg/Kg-dry	5	02/23/24 10:38 AM
Cobalt	3.26	0.545	2.18		mg/Kg-dry	5	02/23/24 10:38 AM
Copper	5.20	0.545	2.18		mg/Kg-dry	5	02/23/24 10:38 AM
Iron	26000	273	818		mg/Kg-dry	100	02/23/24 11:21 AM
Lead	6.37	0.109	0.327		mg/Kg-dry	5	02/23/24 10:38 AM
Magnesium	1800	13.6	40.9		mg/Kg-dry	5	02/23/24 10:38 AM
Manganese	92.9	0.545	2.18		mg/Kg-dry	5	02/23/24 10:38 AM
Nickel	7.21	0.545	2.18		mg/Kg-dry	5	02/23/24 10:38 AM
Potassium	1920	13.6	40.9		mg/Kg-dry	5	02/23/24 10:38 AM
Selenium	0.949	0.164	0.545		mg/Kg-dry	5	02/23/24 10:38 AM
Silver	<0.109	0.109	0.218		mg/Kg-dry	5	02/23/24 10:38 AM
Sodium	34.6	13.6	40.9	J	mg/Kg-dry	5	02/23/24 10:38 AM
Thallium	<0.545	0.545	1.09		mg/Kg-dry	5	02/23/24 10:38 AM
Vanadium	50.0	1.09	2.73		mg/Kg-dry	5	02/23/24 10:38 AM
Zinc	29.7	1.09	2.73		mg/Kg-dry	5	02/23/24 10:38 AM
MERCURY TOTAL: SOIL/SOLID		SW74	71B				Analyst: CMC
Mercury	<0.0174	0.0174	0.0436		mg/Kg-dry	1	02/23/24 10:54 AM
SEMIVOLATILES BY GC/MS		SW82	70E				Analyst: DEW
2,4,5-Trichlorophenol	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
2,4,6-Trichlorophenol	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
2,4-Dichlorophenol	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
2,4-Dimethylphenol	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
2,4-Dinitrophenol	<0.0574	0.0574	0.151		mg/Kg-dry	1	02/26/24 06:49 PM

2-Chlorophenol < 0.0115 0.0115 2-Methylnaphthalene < 0.0115 0.0115 2-Methylphenol 0.0115 < 0.0115 < 0.0115 0.0115 < 0.0115 0.0115

< 0.0115

< 0.0115

< 0.0115

0.0115

0.0115

0.0115

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

mg/Kg-dry

mg/Kg-dry

mg/Kg-dry

mg/Kg-dry

mg/Kg-dry

mg/Kg-dry

mg/Kg-dry

mg/Kg-dry

1

1

1

1

1

1

1

1

SDL - Sample Detection Limit

0.0305

0.0305

0.0305

0.0305

0.0305

0.0305

0.0305

0.0305

E - TPH pattern not Gas or Diesel Range Pattern

02/26/24 06:49 PM

Date: 28-Feb-24

CLIENT:Weston Solutions, Inc.Project:SAWS Impoundment Assessment Lagoons andProject No:10412.036.001.0002Lab Order:2402269

Client Sample ID: SS-4 Lab ID: 2402269-04

Collection Date: 02/20/24 10:45 AM

Matrix: SOIL

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
SEMIVOLATILES BY GC/MS		SW82	70E				Analyst: DEW
3,3'-Dichlorobenzidine	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
3-Nitroaniline	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
4,6-Dinitro-2-methylphenol	<0.0344	0.0344	0.0757		mg/Kg-dry	1	02/26/24 06:49 PM
4-Bromophenyl phenyl ether	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
4-Chloro-3-methylphenol	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
4-Chloroaniline	<0.0344	0.0344	0.0757		mg/Kg-dry	1	02/26/24 06:49 PM
4-Chlorophenyl phenyl ether	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
4-Methylphenol	<0.0230	0.0230	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
4-Nitroaniline	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
4-Nitrophenol	<0.0574	0.0574	0.151		mg/Kg-dry	1	02/26/24 06:49 PM
Acenaphthene	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Acenaphthylene	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Acetophenone	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Anthracene	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Atrazine	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Benzaldehyde	<0.0115	0.0115	0.0305	Ν	mg/Kg-dry	1	02/26/24 06:49 PM
Benzo[a]anthracene	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Benzo[a]pyrene	0.0191	0.0115	0.0305	J	mg/Kg-dry	1	02/26/24 06:49 PM
Benzo[b]fluoranthene	0.0298	0.0115	0.0305	J	mg/Kg-dry	1	02/26/24 06:49 PM
Benzo[g,h,i]perylene	0.0176	0.0115	0.0305	J	mg/Kg-dry	1	02/26/24 06:49 PM
Benzo[k]fluoranthene	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Benzoic acid	<0.0574	0.0574	0.151		mg/Kg-dry	1	02/26/24 06:49 PM
Benzyl alcohol	<0.0344	0.0344	0.0757		mg/Kg-dry	1	02/26/24 06:49 PM
Biphenyl	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Bis(2-chloroethoxy)methane	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Bis(2-chloroethyl)ether	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Bis(2-chloroisopropyl)ether	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Bis(2-ethylhexyl)phthalate	<0.0734	0.0734	0.0757		mg/Kg-dry	1	02/26/24 06:49 PM
Butyl benzyl phthalate	<0.0459	0.0459	0.0757		mg/Kg-dry	1	02/26/24 06:49 PM
Caprolactam	<0.0344	0.0344	0.0757		mg/Kg-dry	1	02/26/24 06:49 PM
Carbazole	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Chrysene	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Dibenz[a,h]anthracene	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Dibenzofuran	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Diethyl phthalate	<0.0459	0.0459	0.0757		mg/Kg-dry	1	02/26/24 06:49 PM
Dimethyl phthalate	<0.0459	0.0459	0.0757		mg/Kg-dry	1	02/26/24 06:49 PM
Di-n-butyl phthalate	<0.0459	0.0459	0.0757		mg/Kg-dry	1	02/26/24 06:49 PM
Di-n-octyl phthalate	<0.0459	0.0459	0.0757		mg/Kg-dry	1	02/26/24 06:49 PM
Fluoranthene	0.0252	0.0115	0.0305	J	mg/Kg-dry	1	02/26/24 06:49 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

Date: 28-Feb-24

CLIENT:Weston Solutions, Inc.Project:SAWS Impoundment Assessment Lagoons andProject No:10412.036.001.0002Lab Order:2402269

Client Sample ID: SS-4 Lab ID: 2402269-04

Collection Date: 02/20/24 10:45 AM

Matrix: SOIL

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
SEMIVOLATILES BY GC/MS		SW82	270E				Analyst: DEW
Fluorene	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Hexachlorobenzene	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Hexachlorobutadiene	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Hexachlorocyclopentadiene	<0.0344	0.0344	0.0757		mg/Kg-dry	1	02/26/24 06:49 PM
Hexachloroethane	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Indeno[1,2,3-cd]pyrene	0.0145	0.0115	0.0305	J	mg/Kg-dry	1	02/26/24 06:49 PM
Isophorone	<0.0344	0.0344	0.0757		mg/Kg-dry	1	02/26/24 06:49 PM
Naphthalene	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Nitrobenzene	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
N-Nitrosodi-n-propylamine	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
N-Nitrosodiphenylamine	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Pentachlorophenol	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Phenanthrene	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Phenol	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Pyrene	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Pyridine	<0.0574	0.0574	0.151		mg/Kg-dry	1	02/26/24 06:49 PM
Surr: 2,4,6-Tribromophenol	85.0	0	45-126		%REC	1	02/26/24 06:49 PM
Surr: 2-Fluorobiphenyl	89.0	0	60-125		%REC	1	02/26/24 06:49 PM
Surr: 2-Fluorophenol	85.0	0	37-125		%REC	1	02/26/24 06:49 PM
Surr: 4-Terphenyl-d14	92.0	0	45-125		%REC	1	02/26/24 06:49 PM
Surr: Nitrobenzene-d5	78.0	0	45-125		%REC	1	02/26/24 06:49 PM
Surr: Phenol-d5	81.0	0	40-125		%REC	1	02/26/24 06:49 PM
VOLATILES BY 8260/5035 GC/MS		SW82	260D				Analyst: JL
1,1,1,2-Tetrachloroethane	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
1,1,1-Trichloroethane	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
1,1,2,2-Tetrachloroethane	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
1,1,2-Trichloroethane	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
1,1,2-Trichlorotrifluoroethane	<0.00546	0.00546	0.0164		mg/Kg-dry	1	02/21/24 10:47 PM
1,1-Dichloroethane	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
1,1-Dichloroethene	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
1,1-Dichloropropene	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
1,2,3-Trichlorobenzene	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
1,2,3-Trichloropropane	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
1,2,4-Trichlorobenzene	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
1,2,4-Trimethylbenzene	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
1,2-Dibromo-3-chloropropane	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
1,2-Dibromoethane	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
1,2-Dichlorobenzene	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

Date: 28-Feb-24

CLIENT:	Weston Solutions, Inc.
Project:	SAWS Impoundment Assessment Lagoons and
Project No:	10412.036.001.0002
Lab Order:	2402269

Client Sample ID: SS-4 Lab ID: 2402269-04

Collection Date: 02/20/24 10:45 AM

Matrix: SOIL

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
VOLATILES BY 8260/5035 GC/MS	SW8260D						Analyst: JL
1,2-Dichloroethane	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
1,2-Dichloropropane	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
1,3,5-Trimethylbenzene	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
1,3-Dichlorobenzene	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
1,3-Dichloropropane	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
1,4-Dichlorobenzene	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
1-Chlorohexane	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
2,2-Dichloropropane	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
2-Butanone	<0.00546	0.00546	0.0164		mg/Kg-dry	1	02/21/24 10:47 PM
2-Chlorotoluene	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
2-Hexanone	<0.00546	0.00546	0.0164		mg/Kg-dry	1	02/21/24 10:47 PM
4-Chlorotoluene	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
4-Methyl-2-pentanone	<0.00546	0.00546	0.0164		mg/Kg-dry	1	02/21/24 10:47 PM
Acetone	<0.0164	0.0164	0.0546		mg/Kg-dry	1	02/21/24 10:47 PM
Benzene	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
Bromobenzene	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
Bromochloromethane	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
Bromodichloromethane	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
Bromoform	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
Bromomethane	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
Carbon disulfide	<0.00546	0.00546	0.0164		mg/Kg-dry	1	02/21/24 10:47 PM
Carbon tetrachloride	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
Chlorobenzene	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
Chloroethane	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
Chloroform	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
Chloromethane	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
cis-1,2-Dichloroethene	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
cis-1,3-Dichloropropene	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
Cyclohexane	<0.00546	0.00546	0.0164	Ν	mg/Kg-dry	1	02/21/24 10:47 PM
Dibromochloromethane	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
Dibromomethane	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
Dichlorodifluoromethane	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
Ethylbenzene	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
Hexachlorobutadiene	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
Isopropylbenzene	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
m,p-Xylene	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
Methyl Acetate	<0.00546	0.00546	0.0164		mg/Kg-dry	1	02/21/24 10:47 PM
Methyl tert-butyl ether	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
Methylcyclohexane	<0.00546	0.00546	0.0164		mg/Kg-dry	1	02/21/24 10:47 PM

ND - Not Detected at the SDL Qualifiers:

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit
Date: 28-Feb-24

CLIENT:	Weston Solutions, Inc.
Project:	SAWS Impoundment Assessment Lagoons and
Project No:	10412.036.001.0002
Lab Order:	2402269

Client Sample ID: SS-4 Lab ID: 2402269-04

Collection Date: 02/20/24 10:45 AM

Matrix: SOIL

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed
VOLATILES BY 8260/5035 GC/MS	5	SW82		Analyst: JL		
Methylene chloride	<0.00546	0.00546	0.00546	mg/Kg-dry	1	02/21/24 10:47 PM
Naphthalene	<0.00546	0.00546	0.0164	mg/Kg-dry	1	02/21/24 10:47 PM
n-Butylbenzene	<0.00109	0.00109	0.00546	mg/Kg-dry	1	02/21/24 10:47 PM
n-Propylbenzene	<0.00109	0.00109	0.00546	mg/Kg-dry	1	02/21/24 10:47 PM
o-Xylene	<0.00109	0.00109	0.00546	mg/Kg-dry	1	02/21/24 10:47 PM
p-Isopropyltoluene	<0.00109	0.00109	0.00546	mg/Kg-dry	1	02/21/24 10:47 PM
sec-Butylbenzene	<0.00109	0.00109	0.00546	mg/Kg-dry	1	02/21/24 10:47 PM
Styrene	<0.00109	0.00109	0.00546	mg/Kg-dry	1	02/21/24 10:47 PM
tert-Butylbenzene	<0.00109	0.00109	0.00546	mg/Kg-dry	1	02/21/24 10:47 PM
Tetrachloroethene	<0.00109	0.00109	0.00546	mg/Kg-dry	1	02/21/24 10:47 PM
Toluene	<0.00109	0.00109	0.00546	mg/Kg-dry	1	02/21/24 10:47 PM
trans-1,2-Dichloroethene	<0.00109	0.00109	0.00546	mg/Kg-dry	1	02/21/24 10:47 PM
trans-1,3-Dichloropropene	<0.00109	0.00109	0.00546	mg/Kg-dry	1	02/21/24 10:47 PM
Trichloroethene	<0.00109	0.00109	0.00546	mg/Kg-dry	1	02/21/24 10:47 PM
Trichlorofluoromethane	<0.00546	0.00546	0.0164	mg/Kg-dry	1	02/21/24 10:47 PM
Vinyl chloride	<0.00109	0.00109	0.00546	mg/Kg-dry	1	02/21/24 10:47 PM
Xylenes, Total	<0.00109	0.00109	0.00546	mg/Kg-dry	1	02/21/24 10:47 PM
Surr: 1,2-Dichloroethane-d4	110	0	52-149	%REC	1	02/21/24 10:47 PM
Surr: 4-Bromofluorobenzene	106	0	84-118	%REC	1	02/21/24 10:47 PM
Surr: Dibromofluoromethane	104	0	65-135	%REC	1	02/21/24 10:47 PM
Surr: Toluene-d8	94.9	0	84-116	%REC	1	02/21/24 10:47 PM
PERCENT MOISTURE		D22	:16			Analyst: SMA
Percent Moisture	15.1	0	0	WT%	1	02/22/24 10:00 AM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

- B Analyte detected in the associated Method Blank
- DF- Dilution Factor
- N Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

Date: 28-Feb-24

CLIENT:	Weston Solutions, Inc.	Client Sample ID: Trip Blank-1			
Project:	SAWS Impoundment Assessment Lagoons and	Lab ID: 2402269-05			
Project No:	10412.036.001.0002	Collection Date: 02/20/24			
Lab Order:	2402269	Matrix: TRIP BLANK			
Analyses	Result SDL	RL Oual Units DF	Date Analyzed		

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed
8260 WATER VOLATILES BY GC/MS		SW82	60D			Analyst: JVR
1,1,1,2-Tetrachloroethane	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:31 AM
1,1,1-Trichloroethane	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:31 AM
1,1,2,2-Tetrachloroethane	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:31 AM
1,1,2-Trichloroethane	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:31 AM
1,1,2-Trichlorotrifluoroethane	<0.00500	0.00500	0.0150	mg/L	1	02/21/24 11:31 AM
1,1-Dichloroethane	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:31 AM
1,1-Dichloroethene	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:31 AM
1,1-Dichloropropene	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:31 AM
1,2,3-Trichlorobenzene	<0.00150	0.00150	0.00500	mg/L	1	02/21/24 11:31 AM
1,2,3-Trichloropropane	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:31 AM
1,2,4-Trichlorobenzene	<0.00150	0.00150	0.00500	mg/L	1	02/21/24 11:31 AM
1,2,4-Trimethylbenzene	<0.00150	0.00150	0.00500	mg/L	1	02/21/24 11:31 AM
1,2-Dibromo-3-chloropropane	<0.00300	0.00300	0.0100	mg/L	1	02/21/24 11:31 AM
1,2-Dibromoethane	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:31 AM
1,2-Dichlorobenzene	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:31 AM
1,2-Dichloroethane	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:31 AM
1,2-Dichloropropane	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:31 AM
1,3,5-Trimethylbenzene	<0.00150	0.00150	0.00500	mg/L	1	02/21/24 11:31 AM
1,3-Dichlorobenzene	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:31 AM
1,3-Dichloropropane	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:31 AM
1,4-Dichlorobenzene	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:31 AM
1-Chlorohexane	<0.00100	0.00100	0.00500	mg/L	1	02/21/24 11:31 AM
2,2-Dichloropropane	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:31 AM
2-Butanone	<0.00500	0.00500	0.0150	mg/L	1	02/21/24 11:31 AM
2-Chlorotoluene	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:31 AM
2-Hexanone	<0.00500	0.00500	0.0150	mg/L	1	02/21/24 11:31 AM
4-Chlorotoluene	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:31 AM
4-Methyl-2-pentanone	<0.00500	0.00500	0.0150	mg/L	1	02/21/24 11:31 AM
Acetone	<0.00500	0.00500	0.0150	mg/L	1	02/21/24 11:31 AM
Benzene	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:31 AM
Bromobenzene	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:31 AM
Bromochloromethane	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:31 AM
Bromodichloromethane	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:31 AM
Bromoform	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:31 AM
Bromomethane	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:31 AM
Carbon disulfide	<0.00500	0.00500	0.0150	mg/L	1	02/21/24 11:31 AM
Carbon tetrachloride	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:31 AM
Chlorobenzene	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:31 AM
Chloroethane	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:31 AM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

Date: 28-Feb-24

CLIENT:	Weston Solutions, Inc.	Client Sample ID: Trip Blank-1	
Project:	SAWS Impoundment Assessment Lagoons and	Lab ID: 2402269-05	
Project No:	10412.036.001.0002	Collection Date: 02/20/24	
Lab Order:	2402269	Matrix: TRIP BLANK	
Analyses	Result SDL	RL Qual Units DF	Date Analyzed

-				-			-
8260 WATER VOLATILES BY GC/MS		SW82	60D				Analyst: JVR
Chloroform	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
Chloromethane	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
cis-1,2-Dichloroethene	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
cis-1,3-Dichloropropene	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
Cyclohexane	<0.00500	0.00500	0.0150	Ν	mg/L	1	02/21/24 11:31 AM
Dibromochloromethane	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
Dibromomethane	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
Dichlorodifluoromethane	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
Ethylbenzene	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
Hexachlorobutadiene	<0.00100	0.00100	0.00300		mg/L	1	02/21/24 11:31 AM
Isopropylbenzene	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
m,p-Xylene	<0.000600	0.000600	0.00200		mg/L	1	02/21/24 11:31 AM
Methyl Acetate	< 0.00500	0.00500	0.0150		mg/L	1	02/21/24 11:31 AM
Methyl tert-butyl ether	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
Methylcyclohexane	< 0.00500	0.00500	0.0150		mg/L	1	02/21/24 11:31 AM
Methylene chloride	<0.00250	0.00250	0.00250		mg/L	1	02/21/24 11:31 AM
Naphthalene	< 0.00500	0.00500	0.0150		mg/L	1	02/21/24 11:31 AM
n-Butylbenzene	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
n-Propylbenzene	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
o-Xylene	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
p-Isopropyltoluene	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
sec-Butylbenzene	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
Styrene	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
tert-Butylbenzene	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
Tetrachloroethene	<0.000600	0.000600	0.00200		mg/L	1	02/21/24 11:31 AM
Toluene	<0.000600	0.000600	0.00200		mg/L	1	02/21/24 11:31 AM
trans-1,2-Dichloroethene	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
trans-1,3-Dichloropropene	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
Trichloroethene	<0.000600	0.000600	0.00100		mg/L	1	02/21/24 11:31 AM
Trichlorofluoromethane	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
Vinyl chloride	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
Xylenes, Total	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
Surr: 1,2-Dichloroethane-d4	90.7	0	72-119		%REC	1	02/21/24 11:31 AM
Surr: 4-Bromofluorobenzene	96.7	0	76-119		%REC	1	02/21/24 11:31 AM
Surr: Dibromofluoromethane	94.0	0	85-115		%REC	1	02/21/24 11:31 AM
Surr: Toluene-d8	96.5	0	81-120		%REC	1	02/21/24 11:31 AM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

Date: 28-Feb-24

CLIENT:Weston Solutions, Inc.ClieProject:SAWS Impoundment Assessment Lagoons andProject No:10412.036.001.0002CLab Order:2402269AnalysesResultSDLResultSDL

Client Sample ID:	SS-5
Lab ID:	2402269-06

Collection Date: 02/20/24 10:59 AM

Matrix: SOIL

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - SOLIE)	SW60	20B				Analyst: SP
Aluminum	24800	755	2270		mg/Kg-dry	250	02/23/24 11:34 AM
Antimony	<0.604	0.604	1.21		mg/Kg-dry	5	02/23/24 10:51 AM
Arsenic	11.3	0.604	1.21		mg/Kg-dry	5	02/23/24 10:51 AM
Barium	162	0.604	2.42		mg/Kg-dry	5	02/23/24 10:51 AM
Beryllium	0.828	0.121	0.363		mg/Kg-dry	5	02/23/24 10:51 AM
Cadmium	0.218	0.121	0.363	J	mg/Kg-dry	5	02/23/24 10:51 AM
Calcium	169000	755	2270		mg/Kg-dry	250	02/23/24 11:34 AM
Chromium	26.3	0.604	2.42		mg/Kg-dry	5	02/23/24 10:51 AM
Cobalt	8.49	0.604	2.42		mg/Kg-dry	5	02/23/24 10:51 AM
Copper	9.72	0.604	2.42		mg/Kg-dry	5	02/23/24 10:51 AM
Iron	60400	755	2270		mg/Kg-dry	250	02/23/24 11:34 AM
Lead	10.7	0.121	0.363		mg/Kg-dry	5	02/23/24 10:51 AM
Magnesium	5550	15.1	45.3		mg/Kg-dry	5	02/23/24 10:51 AM
Manganese	282	0.604	2.42		mg/Kg-dry	5	02/23/24 10:51 AM
Nickel	15.5	0.604	2.42		mg/Kg-dry	5	02/23/24 10:51 AM
Potassium	4970	15.1	45.3		mg/Kg-dry	5	02/23/24 10:51 AM
Selenium	0.676	0.181	0.604		mg/Kg-dry	5	02/23/24 10:51 AM
Silver	<0.121	0.121	0.242		mg/Kg-dry	5	02/23/24 10:51 AM
Sodium	80.6	15.1	45.3		mg/Kg-dry	5	02/23/24 10:51 AM
Thallium	<0.604	0.604	1.21		mg/Kg-dry	5	02/23/24 10:51 AM
Vanadium	164	1.21	3.02		mg/Kg-dry	5	02/23/24 10:51 AM
Zinc	48.7	1.21	3.02		mg/Kg-dry	5	02/23/24 10:51 AM
MERCURY TOTAL: SOIL/SOLID		SW74	71B				Analyst: CMC
Mercury	<0.0202	0.0202	0.0505		mg/Kg-dry	1	02/23/24 10:56 AM
SEMIVOLATILES BY GC/MS		SW82	70E				Analyst: DEW
2,4,5-Trichlorophenol	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
2,4,6-Trichlorophenol	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
2,4-Dichlorophenol	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
2,4-Dimethylphenol	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
2,4-Dinitrophenol	<0.0640	0.0640	0.169		mg/Kg-dry	1	02/26/24 07:14 PM
2,4-Dinitrotoluene	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
2,6-Dinitrotoluene	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
2-Chloronaphthalene	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
2-Chlorophenol	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
2-Methylnaphthalene	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
2-Methylphenol	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
2-Nitroaniline	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
2-Nitrophenol	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

Date: 28-Feb-24

CLIENT:Weston Solutions, Inc.Project:SAWS Impoundment Assessment Lagoons andProject No:10412.036.001.0002Lab Order:2402269

Client Sample ID: SS-5 Lab ID: 2402269-06

Collection Date: 02/20/24 10:59 AM

Matrix: SOIL

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
SEMIVOLATILES BY GC/MS	SW8270E						Analyst: DEW
3,3´-Dichlorobenzidine	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
3-Nitroaniline	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
4,6-Dinitro-2-methylphenol	<0.0384	0.0384	0.0845		mg/Kg-dry	1	02/26/24 07:14 PM
4-Bromophenyl phenyl ether	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
4-Chloro-3-methylphenol	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
4-Chloroaniline	<0.0384	0.0384	0.0845		mg/Kg-dry	1	02/26/24 07:14 PM
4-Chlorophenyl phenyl ether	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
4-Methylphenol	<0.0256	0.0256	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
4-Nitroaniline	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
4-Nitrophenol	<0.0640	0.0640	0.169		mg/Kg-dry	1	02/26/24 07:14 PM
Acenaphthene	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
Acenaphthylene	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
Acetophenone	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
Anthracene	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
Atrazine	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
Benzaldehyde	<0.0128	0.0128	0.0340	Ν	mg/Kg-dry	1	02/26/24 07:14 PM
Benzo[a]anthracene	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
Benzo[a]pyrene	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
Benzo[b]fluoranthene	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
Benzo[g,h,i]perylene	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
Benzo[k]fluoranthene	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
Benzoic acid	<0.0640	0.0640	0.169		mg/Kg-dry	1	02/26/24 07:14 PM
Benzyl alcohol	< 0.0384	0.0384	0.0845		mg/Kg-dry	1	02/26/24 07:14 PM
Biphenyl	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
Bis(2-chloroethoxy)methane	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
Bis(2-chloroethyl)ether	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
Bis(2-chloroisopropyl)ether	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
Bis(2-ethylhexyl)phthalate	<0.0819	0.0819	0.0845		mg/Kg-dry	1	02/26/24 07:14 PM
Butyl benzyl phthalate	<0.0512	0.0512	0.0845		mg/Kg-dry	1	02/26/24 07:14 PM
Caprolactam	< 0.0384	0.0384	0.0845		mg/Kg-dry	1	02/26/24 07:14 PM
Carbazole	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
Chrysene	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
Dibenz[a,h]anthracene	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
Dibenzofuran	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
Diethyl phthalate	<0.0512	0.0512	0.0845		mg/Kg-dry	1	02/26/24 07:14 PM
Dimethyl phthalate	<0.0512	0.0512	0.0845		mg/Kg-dry	1	02/26/24 07:14 PM
Di-n-butyl phthalate	<0.0512	0.0512	0.0845		mg/Kg-dry	1	02/26/24 07:14 PM
Di-n-octyl phthalate	<0.0512	0.0512	0.0845		mg/Kg-dry	1	02/26/24 07:14 PM
Fluoranthene	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

Date: 28-Feb-24

CLIENT:Weston Solutions, Inc.Project:SAWS Impoundment Assessment Lagoons andProject No:10412.036.001.0002Lab Order:2402269

 Client Sample ID:
 SS-5

 and
 Lab ID:
 2402269-06

 Collection Date:
 02/20/24 10:59 AM

Matrix: SOIL

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed
SEMIVOLATILES BY GC/MS	SW8270E					Analyst: DEW
Fluorene	<0.0128	0.0128	0.0340	mg/Kg-dry	1	02/26/24 07:14 PM
Hexachlorobenzene	<0.0128	0.0128	0.0340	mg/Kg-dry	1	02/26/24 07:14 PM
Hexachlorobutadiene	<0.0128	0.0128	0.0340	mg/Kg-dry	1	02/26/24 07:14 PM
Hexachlorocyclopentadiene	<0.0384	0.0384	0.0845	mg/Kg-dry	1	02/26/24 07:14 PM
Hexachloroethane	<0.0128	0.0128	0.0340	mg/Kg-dry	1	02/26/24 07:14 PM
Indeno[1,2,3-cd]pyrene	<0.0128	0.0128	0.0340	mg/Kg-dry	1	02/26/24 07:14 PM
Isophorone	<0.0384	0.0384	0.0845	mg/Kg-dry	1	02/26/24 07:14 PM
Naphthalene	<0.0128	0.0128	0.0340	mg/Kg-dry	1	02/26/24 07:14 PM
Nitrobenzene	<0.0128	0.0128	0.0340	mg/Kg-dry	1	02/26/24 07:14 PM
N-Nitrosodi-n-propylamine	<0.0128	0.0128	0.0340	mg/Kg-dry	1	02/26/24 07:14 PM
N-Nitrosodiphenylamine	<0.0128	0.0128	0.0340	mg/Kg-dry	1	02/26/24 07:14 PM
Pentachlorophenol	<0.0128	0.0128	0.0340	mg/Kg-dry	1	02/26/24 07:14 PM
Phenanthrene	<0.0128	0.0128	0.0340	mg/Kg-dry	1	02/26/24 07:14 PM
Phenol	<0.0128	0.0128	0.0340	mg/Kg-dry	1	02/26/24 07:14 PM
Pyrene	<0.0128	0.0128	0.0340	mg/Kg-dry	1	02/26/24 07:14 PM
Pyridine	<0.0640	0.0640	0.169	mg/Kg-dry	1	02/26/24 07:14 PM
Surr: 2,4,6-Tribromophenol	86.0	0	45-126	%REC	1	02/26/24 07:14 PM
Surr: 2-Fluorobiphenyl	91.0	0	60-125	%REC	1	02/26/24 07:14 PM
Surr: 2-Fluorophenol	89.0	0	37-125	%REC	1	02/26/24 07:14 PM
Surr: 4-Terphenyl-d14	94.0	0	45-125	%REC	1	02/26/24 07:14 PM
Surr: Nitrobenzene-d5	81.0	0	45-125	%REC	1	02/26/24 07:14 PM
Surr: Phenol-d5	86.0	0	40-125	%REC	1	02/26/24 07:14 PM
VOLATILES BY 8260/5035 GC/MS		SW82	60D			Analyst: JL
1,1,1,2-Tetrachloroethane	<0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
1,1,1-Trichloroethane	<0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
1,1,2,2-Tetrachloroethane	<0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
1,1,2-Trichloroethane	<0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
1,1,2-Trichlorotrifluoroethane	<0.00644	0.00644	0.0193	mg/Kg-dry	1	02/21/24 11:15 PM
1,1-Dichloroethane	<0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
1,1-Dichloroethene	<0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
1,1-Dichloropropene	<0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
1,2,3-Trichlorobenzene	<0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
1,2,3-Trichloropropane	<0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
1,2,4-Trichlorobenzene	<0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
1,2,4-Trimethylbenzene	<0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
1,2-Dibromo-3-chloropropane	<0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
1,2-Dibromoethane	<0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
1,2-Dichlorobenzene	<0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

Date: 28-Feb-24

CLIENT:	Weston Solutions, Inc.
Project:	SAWS Impoundment Assessment Lagoons and
Project No:	10412.036.001.0002
Lab Order:	2402269

Client Sample ID: SS-5 Lab ID: 2402269-06

Collection Date: 02/20/24 10:59 AM

Matrix: SOIL

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
VOLATILES BY 8260/5035 GC/MS	SW8260D						Analyst: JL
1,2-Dichloroethane	<0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
1,2-Dichloropropane	<0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
1,3,5-Trimethylbenzene	<0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
1,3-Dichlorobenzene	<0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
1,3-Dichloropropane	<0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
1,4-Dichlorobenzene	<0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
1-Chlorohexane	<0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
2,2-Dichloropropane	<0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
2-Butanone	<0.00644	0.00644	0.0193		mg/Kg-dry	1	02/21/24 11:15 PM
2-Chlorotoluene	<0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
2-Hexanone	<0.00644	0.00644	0.0193		mg/Kg-dry	1	02/21/24 11:15 PM
4-Chlorotoluene	<0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
4-Methyl-2-pentanone	<0.00644	0.00644	0.0193		mg/Kg-dry	1	02/21/24 11:15 PM
Acetone	<0.0193	0.0193	0.0644		mg/Kg-dry	1	02/21/24 11:15 PM
Benzene	<0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
Bromobenzene	<0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
Bromochloromethane	<0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
Bromodichloromethane	<0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
Bromoform	<0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
Bromomethane	<0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
Carbon disulfide	<0.00644	0.00644	0.0193		mg/Kg-dry	1	02/21/24 11:15 PM
Carbon tetrachloride	<0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
Chlorobenzene	<0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
Chloroethane	<0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
Chloroform	<0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
Chloromethane	<0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
cis-1,2-Dichloroethene	<0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
cis-1,3-Dichloropropene	<0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
Cyclohexane	<0.00644	0.00644	0.0193	Ν	mg/Kg-dry	1	02/21/24 11:15 PM
Dibromochloromethane	<0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
Dibromomethane	<0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
Dichlorodifluoromethane	<0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
Ethylbenzene	<0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
Hexachlorobutadiene	<0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
Isopropylbenzene	<0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
m,p-Xylene	<0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
Methyl Acetate	<0.00644	0.00644	0.0193		mg/Kg-dry	1	02/21/24 11:15 PM
Methyl tert-butyl ether	<0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
Methylcyclohexane	<0.00644	0.00644	0.0193		mg/Kg-dry	1	02/21/24 11:15 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

Date: 28-Feb-24

CLIENT:	Weston Solutions, Inc.
Project:	SAWS Impoundment Assessment Lagoons and
Project No:	10412.036.001.0002
Lab Order:	2402269

Client Sample ID: SS-5 Lab ID: 2402269-06 Collection Date: 02/20/24 10:59 AM

Matrix: SOIL

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed
VOLATILES BY 8260/5035 GC/MS		SW82	Analyst: JL			
Methylene chloride	<0.00644	0.00644	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
Naphthalene	<0.00644	0.00644	0.0193	mg/Kg-dry	1	02/21/24 11:15 PM
n-Butylbenzene	<0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
n-Propylbenzene	<0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
o-Xylene	<0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
p-Isopropyltoluene	<0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
sec-Butylbenzene	<0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
Styrene	<0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
tert-Butylbenzene	<0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
Tetrachloroethene	<0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
Toluene	<0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
trans-1,2-Dichloroethene	<0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
trans-1,3-Dichloropropene	<0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
Trichloroethene	<0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
Trichlorofluoromethane	<0.00644	0.00644	0.0193	mg/Kg-dry	1	02/21/24 11:15 PM
Vinyl chloride	<0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
Xylenes, Total	<0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
Surr: 1,2-Dichloroethane-d4	111	0	52-149	%REC	1	02/21/24 11:15 PM
Surr: 4-Bromofluorobenzene	108	0	84-118	%REC	1	02/21/24 11:15 PM
Surr: Dibromofluoromethane	100	0	65-135	%REC	1	02/21/24 11:15 PM
Surr: Toluene-d8	97.8	0	84-116	%REC	1	02/21/24 11:15 PM
PERCENT MOISTURE		D22	16			Analyst: SMA
Percent Moisture	25.5	0	0	WT%	1	02/22/24 10:00 AM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

Date: 28-Feb-24

Analyses	Regult SDI	рі
Lab Order:	2402269	
Project No:	10412.036.001.0002	(
Project:	SAWS Impoundment Assessment Lagoons and	
CLIENT:	Weston Solutions, Inc.	Cl

lient Sample ID: SS-6 Lab ID: 2402269-07

Collection Date: 02/20/24 11:13 AM

Matrix: SOIL

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - SOLIE)	SW602	20B				Analyst: SP
Aluminum	18100	302	906		mg/Kg-dry	100	02/23/24 11:36 AM
Antimony	<0.604	0.604	1.21		mg/Kg-dry	5	02/23/24 10:53 AM
Arsenic	4.25	0.604	1.21		mg/Kg-dry	5	02/23/24 10:53 AM
Barium	144	0.604	2.42		mg/Kg-dry	5	02/23/24 10:53 AM
Beryllium	0.684	0.121	0.363		mg/Kg-dry	5	02/23/24 10:53 AM
Cadmium	0.190	0.121	0.363	J	mg/Kg-dry	5	02/23/24 10:53 AM
Calcium	136000	302	906		mg/Kg-dry	100	02/23/24 11:36 AM
Chromium	21.9	0.604	2.42		mg/Kg-dry	5	02/23/24 10:53 AM
Cobalt	4.76	0.604	2.42		mg/Kg-dry	5	02/23/24 10:53 AM
Copper	9.02	0.604	2.42		mg/Kg-dry	5	02/23/24 10:53 AM
Iron	17900	302	906		mg/Kg-dry	100	02/23/24 11:36 AM
Lead	9.97	0.121	0.363		mg/Kg-dry	5	02/23/24 10:53 AM
Magnesium	3490	15.1	45.3		mg/Kg-dry	5	02/23/24 10:53 AM
Manganese	136	0.604	2.42		mg/Kg-dry	5	02/23/24 10:53 AM
Nickel	10.4	0.604	2.42		mg/Kg-dry	5	02/23/24 10:53 AM
Potassium	3880	15.1	45.3		mg/Kg-dry	5	02/23/24 10:53 AM
Selenium	0.587	0.181	0.604	J	mg/Kg-dry	5	02/23/24 10:53 AM
Silver	<0.121	0.121	0.242		mg/Kg-dry	5	02/23/24 10:53 AM
Sodium	59.3	15.1	45.3		mg/Kg-dry	5	02/23/24 10:53 AM
Thallium	<0.604	0.604	1.21		mg/Kg-dry	5	02/23/24 10:53 AM
Vanadium	53.5	1.21	3.02		mg/Kg-dry	5	02/23/24 10:53 AM
Zinc	48.4	1.21	3.02		mg/Kg-dry	5	02/23/24 10:53 AM
MERCURY TOTAL: SOIL/SOLID		SW7471B					Analyst: CMC
Mercury	0.0222	0.0195	0.0488	J	mg/Kg-dry	1	02/23/24 10:58 AM
SEMIVOLATILES BY GC/MS		SW827	70E				Analyst: DEW
2,4,5-Trichlorophenol	<0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
2,4,6-Trichlorophenol	<0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
2,4-Dichlorophenol	<0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
2,4-Dimethylphenol	<0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
2,4-Dinitrophenol	<0.0599	0.0599	0.158		mg/Kg-dry	1	02/26/24 07:39 PM
2,4-Dinitrotoluene	<0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
2,6-Dinitrotoluene	<0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
2-Chloronaphthalene	<0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
2-Chlorophenol	<0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
2-Methylnaphthalene	<0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
2-Methylphenol	<0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
2-Nitroaniline	<0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
2-Nitrophenol	<0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

Date: 28-Feb-24

CLIENT:Weston Solutions, Inc.Project:SAWS Impoundment Assessment Lagoons andProject No:10412.036.001.0002Lab Order:2402269

Client Sample ID: SS-6 Lab ID: 2402269-07

Collection Date: 02/20/24 11:13 AM

Matrix: SOIL

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
SEMIVOLATILES BY GC/MS		SW82	70E				Analyst: DEW
3,3 ⁻ Dichlorobenzidine	<0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
3-Nitroaniline	<0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
4,6-Dinitro-2-methylphenol	<0.0360	0.0360	0.0791		mg/Kg-dry	1	02/26/24 07:39 PM
4-Bromophenyl phenyl ether	<0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
4-Chloro-3-methylphenol	<0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
4-Chloroaniline	<0.0360	0.0360	0.0791		mg/Kg-dry	1	02/26/24 07:39 PM
4-Chlorophenyl phenyl ether	<0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
4-Methylphenol	<0.0240	0.0240	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
4-Nitroaniline	<0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
4-Nitrophenol	<0.0599	0.0599	0.158		mg/Kg-dry	1	02/26/24 07:39 PM
Acenaphthene	<0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
Acenaphthylene	<0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
Acetophenone	<0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
Anthracene	<0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
Atrazine	<0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
Benzaldehyde	<0.0120	0.0120	0.0319	Ν	mg/Kg-dry	1	02/26/24 07:39 PM
Benzo[a]anthracene	<0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
Benzo[a]pyrene	0.0120	0.0120	0.0319	J	mg/Kg-dry	1	02/26/24 07:39 PM
Benzo[b]fluoranthene	0.0160	0.0120	0.0319	J	mg/Kg-dry	1	02/26/24 07:39 PM
Benzo[g,h,i]perylene	<0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
Benzo[k]fluoranthene	<0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
Benzoic acid	<0.0599	0.0599	0.158		mg/Kg-dry	1	02/26/24 07:39 PM
Benzyl alcohol	<0.0360	0.0360	0.0791		mg/Kg-dry	1	02/26/24 07:39 PM
Biphenyl	<0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
Bis(2-chloroethoxy)methane	<0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
Bis(2-chloroethyl)ether	<0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
Bis(2-chloroisopropyl)ether	<0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
Bis(2-ethylhexyl)phthalate	<0.0767	0.0767	0.0791		mg/Kg-dry	1	02/26/24 07:39 PM
Butyl benzyl phthalate	<0.0479	0.0479	0.0791		mg/Kg-dry	1	02/26/24 07:39 PM
Caprolactam	<0.0360	0.0360	0.0791		mg/Kg-dry	1	02/26/24 07:39 PM
Carbazole	<0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
Chrysene	<0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
Dibenz[a,h]anthracene	<0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
Dibenzofuran	<0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
Diethyl phthalate	<0.0479	0.0479	0.0791		mg/Kg-dry	1	02/26/24 07:39 PM
Dimethyl phthalate	<0.0479	0.0479	0.0791		mg/Kg-dry	1	02/26/24 07:39 PM
Di-n-butyl phthalate	<0.0479	0.0479	0.0791		mg/Kg-dry	1	02/26/24 07:39 PM
Di-n-octyl phthalate	<0.0479	0.0479	0.0791		mg/Kg-dry	1	02/26/24 07:39 PM
Fluoranthene	0.0128	0.0120	0.0319	J	mg/Kg-dry	1	02/26/24 07:39 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

Date: 28-Feb-24

CLIENT: Weston Solutions, Inc. **Project:** SAWS Impoundment Assessment Lagoons and **Project No:** 10412.036.001.0002 Lab Order: 2402269

Client Sample ID: SS-6 Lab ID: 2402269-07

Collection Date: 02/20/24 11:13 AM

Matrix: SOIL

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed
SEMIVOLATILES BY GC/MS	SW8270E					Analyst: DEW
Fluorene	<0.0120	0.0120	0.0319	mg/Kg-dry	1	02/26/24 07:39 PM
Hexachlorobenzene	<0.0120	0.0120	0.0319	mg/Kg-dry	1	02/26/24 07:39 PM
Hexachlorobutadiene	<0.0120	0.0120	0.0319	mg/Kg-dry	1	02/26/24 07:39 PM
Hexachlorocyclopentadiene	<0.0360	0.0360	0.0791	mg/Kg-dry	1	02/26/24 07:39 PM
Hexachloroethane	<0.0120	0.0120	0.0319	mg/Kg-dry	1	02/26/24 07:39 PM
Indeno[1,2,3-cd]pyrene	<0.0120	0.0120	0.0319	mg/Kg-dry	1	02/26/24 07:39 PM
Isophorone	<0.0360	0.0360	0.0791	mg/Kg-dry	1	02/26/24 07:39 PM
Naphthalene	<0.0120	0.0120	0.0319	mg/Kg-dry	1	02/26/24 07:39 PM
Nitrobenzene	<0.0120	0.0120	0.0319	mg/Kg-dry	1	02/26/24 07:39 PM
N-Nitrosodi-n-propylamine	<0.0120	0.0120	0.0319	mg/Kg-dry	1	02/26/24 07:39 PM
N-Nitrosodiphenylamine	<0.0120	0.0120	0.0319	mg/Kg-dry	1	02/26/24 07:39 PM
Pentachlorophenol	<0.0120	0.0120	0.0319	mg/Kg-dry	1	02/26/24 07:39 PM
Phenanthrene	<0.0120	0.0120	0.0319	mg/Kg-dry	1	02/26/24 07:39 PM
Phenol	<0.0120	0.0120	0.0319	mg/Kg-dry	1	02/26/24 07:39 PM
Pyrene	<0.0120	0.0120	0.0319	mg/Kg-dry	1	02/26/24 07:39 PM
Pyridine	<0.0599	0.0599	0.158	mg/Kg-dry	1	02/26/24 07:39 PM
Surr: 2,4,6-Tribromophenol	84.0	0	45-126	%REC	1	02/26/24 07:39 PM
Surr: 2-Fluorobiphenyl	85.0	0	60-125	%REC	1	02/26/24 07:39 PM
Surr: 2-Fluorophenol	80.0	0	37-125	%REC	1	02/26/24 07:39 PM
Surr: 4-Terphenyl-d14	91.0	0	45-125	%REC	1	02/26/24 07:39 PM
Surr: Nitrobenzene-d5	76.0	0	45-125	%REC	1	02/26/24 07:39 PM
Surr: Phenol-d5	75.0	0	40-125	%REC	1	02/26/24 07:39 PM
VOLATILES BY 8260/5035 GC/MS		SW82	260D			Analyst: JL
1,1,1,2-Tetrachloroethane	<0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
1,1,1-Trichloroethane	<0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
1,1,2,2-Tetrachloroethane	<0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
1,1,2-Trichloroethane	<0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
1,1,2-Trichlorotrifluoroethane	<0.00706	0.00706	0.0212	mg/Kg-dry	1	02/21/24 11:43 PM
1,1-Dichloroethane	<0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
1,1-Dichloroethene	<0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
1,1-Dichloropropene	<0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
1,2,3-Trichlorobenzene	<0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
1,2,3-Trichloropropane	<0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
1,2,4-Trichlorobenzene	<0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
1,2,4-Trimethylbenzene	<0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
1,2-Dibromo-3-chloropropane	<0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
1,2-Dibromoethane	<0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
1,2-Dichlorobenzene	<0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

Date: 28-Feb-24

CLIENT:Weston Solutions, Inc.Project:SAWS Impoundment Assessment Lagoons andProject No:10412.036.001.0002Lab Order:2402269

Client Sample ID: SS-6 Lab ID: 2402269-07

Collection Date: 02/20/24 11:13 AM

Matrix: SOIL

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
VOLATILES BY 8260/5035 GC/MS		SW82		Analyst: JL			
1,2-Dichloroethane	<0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
1,2-Dichloropropane	<0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
1,3,5-Trimethylbenzene	<0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
1,3-Dichlorobenzene	<0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
1,3-Dichloropropane	<0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
1,4-Dichlorobenzene	<0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
1-Chlorohexane	<0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
2,2-Dichloropropane	<0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
2-Butanone	<0.00706	0.00706	0.0212		mg/Kg-dry	1	02/21/24 11:43 PM
2-Chlorotoluene	<0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
2-Hexanone	<0.00706	0.00706	0.0212		mg/Kg-dry	1	02/21/24 11:43 PM
4-Chlorotoluene	<0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
4-Methyl-2-pentanone	<0.00706	0.00706	0.0212		mg/Kg-dry	1	02/21/24 11:43 PM
Acetone	<0.0212	0.0212	0.0706		mg/Kg-dry	1	02/21/24 11:43 PM
Benzene	<0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
Bromobenzene	<0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
Bromochloromethane	<0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
Bromodichloromethane	<0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
Bromoform	<0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
Bromomethane	<0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
Carbon disulfide	<0.00706	0.00706	0.0212		mg/Kg-dry	1	02/21/24 11:43 PM
Carbon tetrachloride	<0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
Chlorobenzene	<0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
Chloroethane	<0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
Chloroform	<0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
Chloromethane	<0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
cis-1,2-Dichloroethene	<0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
cis-1,3-Dichloropropene	<0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
Cyclohexane	<0.00706	0.00706	0.0212	Ν	mg/Kg-dry	1	02/21/24 11:43 PM
Dibromochloromethane	<0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
Dibromomethane	<0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
Dichlorodifluoromethane	<0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
Ethylbenzene	<0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
Hexachlorobutadiene	<0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
Isopropylbenzene	<0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
m,p-Xylene	<0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
Methyl Acetate	<0.00706	0.00706	0.0212		mg/Kg-dry	1	02/21/24 11:43 PM
Methyl tert-butyl ether	<0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
Methylcyclohexane	<0.00706	0.00706	0.0212		mg/Kg-dry	1	02/21/24 11:43 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

Date: 28-Feb-24

CLIENT:	Weston Solutions, Inc.
Project:	SAWS Impoundment Assessment Lagoons and
Project No:	10412.036.001.0002
Lab Order:	2402269

Client Sample ID: SS-6 Lab ID: 2402269-07

Collection Date: 02/20/24 11:13 AM

Matrix: SOIL

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed
VOLATILES BY 8260/5035 GC/MS		Analyst: JL				
Methylene chloride	<0.00706	0.00706	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
Naphthalene	<0.00706	0.00706	0.0212	mg/Kg-dry	1	02/21/24 11:43 PM
n-Butylbenzene	<0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
n-Propylbenzene	<0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
o-Xylene	<0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
p-Isopropyltoluene	<0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
sec-Butylbenzene	<0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
Styrene	<0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
tert-Butylbenzene	<0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
Tetrachloroethene	<0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
Toluene	<0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
trans-1,2-Dichloroethene	<0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
trans-1,3-Dichloropropene	<0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
Trichloroethene	<0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
Trichlorofluoromethane	<0.00706	0.00706	0.0212	mg/Kg-dry	1	02/21/24 11:43 PM
Vinyl chloride	<0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
Xylenes, Total	<0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
Surr: 1,2-Dichloroethane-d4	109	0	52-149	%REC	1	02/21/24 11:43 PM
Surr: 4-Bromofluorobenzene	107	0	84-118	%REC	1	02/21/24 11:43 PM
Surr: Dibromofluoromethane	105	0	65-135	%REC	1	02/21/24 11:43 PM
Surr: Toluene-d8	97.7	0	84-116	%REC	1	02/21/24 11:43 PM
PERCENT MOISTURE		D22	16			Analyst: SMA
Percent Moisture	20.4	0	0	WT%	1	02/22/24 10:00 AM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

Date: 28-Feb-24

CLIENT:	Weston Solutions, Inc.
Project:	SAWS Impoundment Assessment Lagoons and
Project No:	10412.036.001.0002
Lab Order:	2402269

Client Sample ID: SS-DUP Lab ID: 2402269-08

Collection Date: 02/20/24 11:13 AM

Matrix: SOIL

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - SOLID		SW602	20B				Analyst: SP
Aluminum	18400	299	897		mg/Kg-dry	100	02/23/24 11:39 AM
Antimony	<0.598	0.598	1.20		mg/Kg-dry	5	02/23/24 10:56 AM
Arsenic	4.97	0.598	1.20		mg/Kg-dry	5	02/23/24 10:56 AM
Barium	147	0.598	2.39		mg/Kg-dry	5	02/23/24 10:56 AM
Beryllium	0.694	0.120	0.359		mg/Kg-dry	5	02/23/24 10:56 AM
Cadmium	0.191	0.120	0.359	J	mg/Kg-dry	5	02/23/24 10:56 AM
Calcium	137000	299	897		mg/Kg-dry	100	02/23/24 11:39 AM
Chromium	21.7	0.598	2.39		mg/Kg-dry	5	02/23/24 10:56 AM
Cobalt	5.12	0.598	2.39		mg/Kg-dry	5	02/23/24 10:56 AM
Copper	9.26	0.598	2.39		mg/Kg-dry	5	02/23/24 10:56 AM
Iron	19300	299	897		mg/Kg-dry	100	02/23/24 11:39 AM
Lead	10.1	0.120	0.359		mg/Kg-dry	5	02/23/24 10:56 AM
Magnesium	3470	15.0	44.9		mg/Kg-dry	5	02/23/24 10:56 AM
Manganese	158	0.598	2.39		mg/Kg-dry	5	02/23/24 10:56 AM
Nickel	11.1	0.598	2.39		mg/Kg-dry	5	02/23/24 10:56 AM
Potassium	3880	15.0	44.9		mg/Kg-dry	5	02/23/24 10:56 AM
Selenium	0.553	0.179	0.598	J	mg/Kg-dry	5	02/23/24 10:56 AM
Silver	<0.120	0.120	0.239		mg/Kg-dry	5	02/23/24 10:56 AM
Sodium	58.2	15.0	44.9		mg/Kg-dry	5	02/23/24 10:56 AM
Thallium	<0.598	0.598	1.20		mg/Kg-dry	5	02/23/24 10:56 AM
Vanadium	55.0	1.20	2.99		mg/Kg-dry	5	02/23/24 10:56 AM
Zinc	48.7	1.20	2.99		mg/Kg-dry	5	02/23/24 10:56 AM
MERCURY TOTAL: SOIL/SOLID		SW7471B				Analyst: CMC	
Mercury	0.0267	0.0203	0.0509	J	mg/Kg-dry	1	02/23/24 11:05 AM
SEMIVOLATILES BY GC/MS		SW82	70E				Analyst: DEW
2,4,5-Trichlorophenol	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
2,4,6-Trichlorophenol	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
2,4-Dichlorophenol	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
2,4-Dimethylphenol	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
2,4-Dinitrophenol	<0.0631	0.0631	0.166		mg/Kg-dry	1	02/26/24 08:04 PM
2,4-Dinitrotoluene	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
2,6-Dinitrotoluene	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
2-Chloronaphthalene	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
2-Chlorophenol	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
2-Methylnaphthalene	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
2-Methylphenol	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
2-Nitroaniline	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
2-Nitrophenol	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

Date: 28-Feb-24

CLIENT: Weston Solutions, Inc. **Project:** SAWS Impoundment Assessment Lagoons and **Project No:** 10412.036.001.0002 Lab Order: 2402269

Client Sample ID: SS-DUP Lab ID: 2402269-08

Collection Date: 02/20/24 11:13 AM

Matrix: SOIL

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
SEMIVOLATILES BY GC/MS		SW82	70E				Analyst: DEW
3,3´-Dichlorobenzidine	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
3-Nitroaniline	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
4,6-Dinitro-2-methylphenol	<0.0378	0.0378	0.0832		mg/Kg-dry	1	02/26/24 08:04 PM
4-Bromophenyl phenyl ether	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
4-Chloro-3-methylphenol	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
4-Chloroaniline	<0.0378	0.0378	0.0832		mg/Kg-dry	1	02/26/24 08:04 PM
4-Chlorophenyl phenyl ether	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
4-Methylphenol	<0.0252	0.0252	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
4-Nitroaniline	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
4-Nitrophenol	<0.0631	0.0631	0.166		mg/Kg-dry	1	02/26/24 08:04 PM
Acenaphthene	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
Acenaphthylene	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
Acetophenone	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
Anthracene	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
Atrazine	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
Benzaldehyde	<0.0126	0.0126	0.0335	Ν	mg/Kg-dry	1	02/26/24 08:04 PM
Benzo[a]anthracene	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
Benzo[a]pyrene	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
Benzo[b]fluoranthene	0.0160	0.0126	0.0335	J	mg/Kg-dry	1	02/26/24 08:04 PM
Benzo[g,h,i]perylene	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
Benzo[k]fluoranthene	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
Benzoic acid	<0.0631	0.0631	0.166		mg/Kg-dry	1	02/26/24 08:04 PM
Benzyl alcohol	<0.0378	0.0378	0.0832		mg/Kg-dry	1	02/26/24 08:04 PM
Biphenyl	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
Bis(2-chloroethoxy)methane	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
Bis(2-chloroethyl)ether	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
Bis(2-chloroisopropyl)ether	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
Bis(2-ethylhexyl)phthalate	<0.0807	0.0807	0.0832		mg/Kg-dry	1	02/26/24 08:04 PM
Butyl benzyl phthalate	<0.0504	0.0504	0.0832		mg/Kg-dry	1	02/26/24 08:04 PM
Caprolactam	<0.0378	0.0378	0.0832		mg/Kg-dry	1	02/26/24 08:04 PM
Carbazole	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
Chrysene	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
Dibenz[a,h]anthracene	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
Dibenzofuran	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
Diethyl phthalate	<0.0504	0.0504	0.0832		mg/Kg-dry	1	02/26/24 08:04 PM
Dimethyl phthalate	<0.0504	0.0504	0.0832		mg/Kg-dry	1	02/26/24 08:04 PM
Di-n-butyl phthalate	<0.0504	0.0504	0.0832		mg/Kg-dry	1	02/26/24 08:04 PM
Di-n-octyl phthalate	<0.0504	0.0504	0.0832		mg/Kg-dry	1	02/26/24 08:04 PM
Fluoranthene	0.0126	0.0126	0.0335	J	mg/Kg-dry	1	02/26/24 08:04 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

Date: 28-Feb-24

CLIENT:Weston Solutions, Inc.Project:SAWS Impoundment Assessment Lagoons andProject No:10412.036.001.0002Lab Order:2402269

Client Sample ID: SS-DUP Lab ID: 2402269-08

Collection Date: 02/20/24 11:13 AM

Matrix: SOIL

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed
SEMIVOLATILES BY GC/MS		SW82	270E			Analyst: DEW
Fluorene	<0.0126	0.0126	0.0335	mg/Kg-dry	1	02/26/24 08:04 PM
Hexachlorobenzene	<0.0126	0.0126	0.0335	mg/Kg-dry	1	02/26/24 08:04 PM
Hexachlorobutadiene	<0.0126	0.0126	0.0335	mg/Kg-dry	1	02/26/24 08:04 PM
Hexachlorocyclopentadiene	<0.0378	0.0378	0.0832	mg/Kg-dry	1	02/26/24 08:04 PM
Hexachloroethane	<0.0126	0.0126	0.0335	mg/Kg-dry	1	02/26/24 08:04 PM
Indeno[1,2,3-cd]pyrene	<0.0126	0.0126	0.0335	mg/Kg-dry	1	02/26/24 08:04 PM
Isophorone	<0.0378	0.0378	0.0832	mg/Kg-dry	1	02/26/24 08:04 PM
Naphthalene	<0.0126	0.0126	0.0335	mg/Kg-dry	1	02/26/24 08:04 PM
Nitrobenzene	<0.0126	0.0126	0.0335	mg/Kg-dry	1	02/26/24 08:04 PM
N-Nitrosodi-n-propylamine	<0.0126	0.0126	0.0335	mg/Kg-dry	1	02/26/24 08:04 PM
N-Nitrosodiphenylamine	<0.0126	0.0126	0.0335	mg/Kg-dry	1	02/26/24 08:04 PM
Pentachlorophenol	<0.0126	0.0126	0.0335	mg/Kg-dry	1	02/26/24 08:04 PM
Phenanthrene	<0.0126	0.0126	0.0335	mg/Kg-dry	1	02/26/24 08:04 PM
Phenol	<0.0126	0.0126	0.0335	mg/Kg-dry	1	02/26/24 08:04 PM
Pyrene	<0.0126	0.0126	0.0335	mg/Kg-dry	1	02/26/24 08:04 PM
Pyridine	<0.0631	0.0631	0.166	mg/Kg-dry	1	02/26/24 08:04 PM
Surr: 2,4,6-Tribromophenol	84.0	0	45-126	%REC	1	02/26/24 08:04 PM
Surr: 2-Fluorobiphenyl	89.0	0	60-125	%REC	1	02/26/24 08:04 PM
Surr: 2-Fluorophenol	86.0	0	37-125	%REC	1	02/26/24 08:04 PM
Surr: 4-Terphenyl-d14	91.0	0	45-125	%REC	1	02/26/24 08:04 PM
Surr: Nitrobenzene-d5	80.0	0	45-125	%REC	1	02/26/24 08:04 PM
Surr: Phenol-d5	82.0	0	40-125	%REC	1	02/26/24 08:04 PM
VOLATILES BY 8260/5035 GC/MS		SW82	60D			Analyst: JL
1,1,1,2-Tetrachloroethane	<0.00170	0.00170	0.00849	mg/Kg-dry	1	02/22/24 12:11 AM
1,1,1-Trichloroethane	<0.00170	0.00170	0.00849	mg/Kg-dry	1	02/22/24 12:11 AM
1,1,2,2-Tetrachloroethane	<0.00170	0.00170	0.00849	mg/Kg-dry	1	02/22/24 12:11 AM
1,1,2-Trichloroethane	<0.00170	0.00170	0.00849	mg/Kg-dry	1	02/22/24 12:11 AM
1,1,2-Trichlorotrifluoroethane	<0.00849	0.00849	0.0255	mg/Kg-dry	1	02/22/24 12:11 AM
1,1-Dichloroethane	<0.00170	0.00170	0.00849	mg/Kg-dry	1	02/22/24 12:11 AM
1,1-Dichloroethene	<0.00170	0.00170	0.00849	mg/Kg-dry	1	02/22/24 12:11 AM
1,1-Dichloropropene	<0.00170	0.00170	0.00849	mg/Kg-dry	1	02/22/24 12:11 AM
1,2,3-Trichlorobenzene	<0.00170	0.00170	0.00849	mg/Kg-dry	1	02/22/24 12:11 AM
1,2,3-Trichloropropane	<0.00170	0.00170	0.00849	mg/Kg-dry	1	02/22/24 12:11 AM
1,2,4-Trichlorobenzene	<0.00170	0.00170	0.00849	mg/Kg-dry	1	02/22/24 12:11 AM
1,2,4-Trimethylbenzene	<0.00170	0.00170	0.00849	mg/Kg-dry	1	02/22/24 12:11 AM
1,2-Dibromo-3-chloropropane	<0.00170	0.00170	0.00849	mg/Kg-dry	1	02/22/24 12:11 AM
1,2-Dibromoethane	<0.00170	0.00170	0.00849	mg/Kg-dry	1	02/22/24 12:11 AM
1,2-Dichlorobenzene	<0.00170	0.00170	0.00849	mg/Kg-dry	1	02/22/24 12:11 AM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

Date: 28-Feb-24

CLIENT:	Weston Solutions, Inc.
Project:	SAWS Impoundment Assessment Lagoons and
Project No:	10412.036.001.0002
Lab Order:	2402269

Client Sample ID: SS-DUP Lab ID: 2402269-08

Collection Date: 02/20/24 11:13 AM

Matrix: SOIL

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
VOLATILES BY 8260/5035 GC/MS	SW8260D						Analyst: JL
1,2-Dichloroethane	<0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
1,2-Dichloropropane	<0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
1,3,5-Trimethylbenzene	<0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
1,3-Dichlorobenzene	<0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
1,3-Dichloropropane	<0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
1,4-Dichlorobenzene	<0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
1-Chlorohexane	<0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
2,2-Dichloropropane	<0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
2-Butanone	<0.00849	0.00849	0.0255		mg/Kg-dry	1	02/22/24 12:11 AM
2-Chlorotoluene	<0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
2-Hexanone	<0.00849	0.00849	0.0255		mg/Kg-dry	1	02/22/24 12:11 AM
4-Chlorotoluene	<0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
4-Methyl-2-pentanone	<0.00849	0.00849	0.0255		mg/Kg-dry	1	02/22/24 12:11 AM
Acetone	<0.0255	0.0255	0.0849		mg/Kg-dry	1	02/22/24 12:11 AM
Benzene	<0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
Bromobenzene	<0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
Bromochloromethane	<0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
Bromodichloromethane	<0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
Bromoform	<0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
Bromomethane	<0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
Carbon disulfide	<0.00849	0.00849	0.0255		mg/Kg-dry	1	02/22/24 12:11 AM
Carbon tetrachloride	<0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
Chlorobenzene	<0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
Chloroethane	<0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
Chloroform	<0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
Chloromethane	<0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
cis-1,2-Dichloroethene	<0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
cis-1,3-Dichloropropene	<0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
Cyclohexane	<0.00849	0.00849	0.0255	Ν	mg/Kg-dry	1	02/22/24 12:11 AM
Dibromochloromethane	<0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
Dibromomethane	<0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
Dichlorodifluoromethane	<0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
Ethylbenzene	<0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
Hexachlorobutadiene	<0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
Isopropylbenzene	<0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
m,p-Xylene	<0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
Methyl Acetate	<0.00849	0.00849	0.0255		mg/Kg-dry	1	02/22/24 12:11 AM
Methyl tert-butyl ether	<0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
Methylcyclohexane	<0.00849	0.00849	0.0255		mg/Kg-dry	1	02/22/24 12:11 AM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

Date: 28-Feb-24

CLIENT:	Weston Solutions, Inc.
Project:	SAWS Impoundment Assessment Lagoons and
Project No:	10412.036.001.0002
Lab Order:	2402269

Client Sample ID: SS-DUP Lab ID: 2402269-08

Collection Date: 02/20/24 11:13 AM

Matrix: SOIL

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed	
VOLATILES BY 8260/5035 GC/MS		SW82	60D		Analyst: JL		
Methylene chloride	<0.00849	0.00849	0.00849	mg/Kg-dry	1	02/22/24 12:11 AM	
Naphthalene	<0.00849	0.00849	0.0255	mg/Kg-dry	1	02/22/24 12:11 AM	
n-Butylbenzene	<0.00170	0.00170	0.00849	mg/Kg-dry	1	02/22/24 12:11 AM	
n-Propylbenzene	<0.00170	0.00170	0.00849	mg/Kg-dry	1	02/22/24 12:11 AM	
o-Xylene	<0.00170	0.00170	0.00849	mg/Kg-dry	1	02/22/24 12:11 AM	
p-Isopropyltoluene	<0.00170	0.00170	0.00849	mg/Kg-dry	1	02/22/24 12:11 AM	
sec-Butylbenzene	<0.00170	0.00170	0.00849	mg/Kg-dry	1	02/22/24 12:11 AM	
Styrene	<0.00170	0.00170	0.00849	mg/Kg-dry	1	02/22/24 12:11 AM	
tert-Butylbenzene	<0.00170	0.00170	0.00849	mg/Kg-dry	1	02/22/24 12:11 AM	
Tetrachloroethene	<0.00170	0.00170	0.00849	mg/Kg-dry	1	02/22/24 12:11 AM	
Toluene	<0.00170	0.00170	0.00849	mg/Kg-dry	1	02/22/24 12:11 AM	
trans-1,2-Dichloroethene	<0.00170	0.00170	0.00849	mg/Kg-dry	1	02/22/24 12:11 AM	
trans-1,3-Dichloropropene	<0.00170	0.00170	0.00849	mg/Kg-dry	1	02/22/24 12:11 AM	
Trichloroethene	<0.00170	0.00170	0.00849	mg/Kg-dry	1	02/22/24 12:11 AM	
Trichlorofluoromethane	<0.00849	0.00849	0.0255	mg/Kg-dry	1	02/22/24 12:11 AM	
Vinyl chloride	<0.00170	0.00170	0.00849	mg/Kg-dry	1	02/22/24 12:11 AM	
Xylenes, Total	<0.00170	0.00170	0.00849	mg/Kg-dry	1	02/22/24 12:11 AM	
Surr: 1,2-Dichloroethane-d4	110	0	52-149	%REC	1	02/22/24 12:11 AM	
Surr: 4-Bromofluorobenzene	111	0	84-118	%REC	1	02/22/24 12:11 AM	
Surr: Dibromofluoromethane	105	0	65-135	%REC	1	02/22/24 12:11 AM	
Surr: Toluene-d8	99.3	0	84-116	%REC	1	02/22/24 12:11 AM	
PERCENT MOISTURE		D22	16			Analyst: SMA	
Percent Moisture	21.9	0	0	WT%	1	02/22/24 10:00 AM	

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

Date: 28-Feb-24

CLIENT:	Weston Solutions, Inc.
Project:	SAWS Impoundment Assessment Lagoons and
Project No:	10412.036.001.0002
Lab Order:	2402269

Client Sample ID: SS-Background Lab ID: 2402269-09

Collection Date: 02/20/24 11:35 AM

Matrix: SOIL

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed	
TRACE METALS: ICP-MS - SOLIE)	SW60	20B			Analyst: SP		
Aluminum	18800	718	2160		mg/Kg-dry	250	02/23/24 11:41 AM	
Antimony	<0.575	0.575	1.15		mg/Kg-dry	5	02/23/24 10:58 AM	
Arsenic	7.16	0.575	1.15		mg/Kg-dry	5	02/23/24 10:58 AM	
Barium	165	0.575	2.30		mg/Kg-dry	5	02/23/24 10:58 AM	
Beryllium	0.682	0.115	0.345		mg/Kg-dry	5	02/23/24 10:58 AM	
Cadmium	0.176	0.115	0.345	J	mg/Kg-dry	5	02/23/24 10:58 AM	
Calcium	151000	718	2160		mg/Kg-dry	250	02/23/24 11:41 AM	
Chromium	21.2	0.575	2.30		mg/Kg-dry	5	02/23/24 10:58 AM	
Cobalt	4.97	0.575	2.30		mg/Kg-dry	5	02/23/24 10:58 AM	
Copper	6.36	0.575	2.30		mg/Kg-dry	5	02/23/24 10:58 AM	
Iron	16300	718	2160		mg/Kg-dry	250	02/23/24 11:41 AM	
Lead	8.76	0.115	0.345		mg/Kg-dry	5	02/23/24 10:58 AM	
Magnesium	3530	14.4	43.1		mg/Kg-dry	5	02/23/24 10:58 AM	
Manganese	190	0.575	2.30		mg/Kg-dry	5	02/23/24 10:58 AM	
Nickel	9.93	0.575	2.30		mg/Kg-dry	5	02/23/24 10:58 AM	
Potassium	3760	14.4	43.1		mg/Kg-dry	5	02/23/24 10:58 AM	
Selenium	0.409	0.172	0.575	J	mg/Kg-dry	5	02/23/24 10:58 AM	
Silver	<0.115	0.115	0.230		mg/Kg-dry	5	02/23/24 10:58 AM	
Sodium	72.5	14.4	43.1		mg/Kg-dry	5	02/23/24 10:58 AM	
Thallium	<0.575	0.575	1.15		mg/Kg-dry	5	02/23/24 10:58 AM	
Vanadium	53.4	1.15	2.87		mg/Kg-dry	5	02/23/24 10:58 AM	
Zinc	34.3	1.15	2.87		mg/Kg-dry	5	02/23/24 10:58 AM	
MERCURY TOTAL: SOIL/SOLID		SW74	71B				Analyst: CMC	
Mercury	<0.0199	0.0199	0.0497		mg/Kg-dry	1	02/23/24 11:07 AM	
PERCENT MOISTURE		D22	16				Analyst: SMA	
Percent Moisture	22.3	0	0		WT%	1	02/22/24 10:00 AM	

Qualifiers:	ND - Not Detected at the SDL	S - Spike Recovery outside control limits
	J - Analyte detected between SDL and RL	C - Sample Result or QC discussed in Case Narrative
	B - Analyte detected in the associated Method Blank	RL - Reporting Limit (MQL adjusted for moisture and sample size)
	DF- Dilution Factor	SDL - Sample Detection Limit
	N - Parameter not NELAP certified	E - TPH pattern not Gas or Diesel Range Pattern
	See Final Page of Report for MQLs and MDLs	I

Date: 28-Feb-24

CLIENT:	Weston Solutions, Inc.	Client Sample ID:	Trip Blank-2
Project:	SAWS Impoundment Assessment Lagoons and	Lab ID:	2402269-10
Project No:	10412.036.001.0002	Collection Date:	02/20/24
Lab Order:	2402269	Matrix:	TRIP BLANK

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed
8260 WATER VOLATILES BY GC/MS		SW82	60D			Analyst: JVR
1,1,1,2-Tetrachloroethane	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:56 AM
1,1,1-Trichloroethane	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:56 AM
1,1,2,2-Tetrachloroethane	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:56 AM
1,1,2-Trichloroethane	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:56 AM
1,1,2-Trichlorotrifluoroethane	<0.00500	0.00500	0.0150	mg/L	1	02/21/24 11:56 AM
1,1-Dichloroethane	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:56 AM
1,1-Dichloroethene	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:56 AM
1,1-Dichloropropene	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:56 AM
1,2,3-Trichlorobenzene	<0.00150	0.00150	0.00500	mg/L	1	02/21/24 11:56 AM
1,2,3-Trichloropropane	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:56 AM
1,2,4-Trichlorobenzene	<0.00150	0.00150	0.00500	mg/L	1	02/21/24 11:56 AM
1,2,4-Trimethylbenzene	<0.00150	0.00150	0.00500	mg/L	1	02/21/24 11:56 AM
1,2-Dibromo-3-chloropropane	<0.00300	0.00300	0.0100	mg/L	1	02/21/24 11:56 AM
1,2-Dibromoethane	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:56 AM
1,2-Dichlorobenzene	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:56 AM
1,2-Dichloroethane	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:56 AM
1,2-Dichloropropane	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:56 AM
1,3,5-Trimethylbenzene	<0.00150	0.00150	0.00500	mg/L	1	02/21/24 11:56 AM
1,3-Dichlorobenzene	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:56 AM
1,3-Dichloropropane	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:56 AM
1,4-Dichlorobenzene	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:56 AM
1-Chlorohexane	<0.00100	0.00100	0.00500	mg/L	1	02/21/24 11:56 AM
2,2-Dichloropropane	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:56 AM
2-Butanone	<0.00500	0.00500	0.0150	mg/L	1	02/21/24 11:56 AM
2-Chlorotoluene	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:56 AM
2-Hexanone	<0.00500	0.00500	0.0150	mg/L	1	02/21/24 11:56 AM
4-Chlorotoluene	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:56 AM
4-Methyl-2-pentanone	<0.00500	0.00500	0.0150	mg/L	1	02/21/24 11:56 AM
Acetone	<0.00500	0.00500	0.0150	mg/L	1	02/21/24 11:56 AM
Benzene	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:56 AM
Bromobenzene	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:56 AM
Bromochloromethane	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:56 AM
Bromodichloromethane	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:56 AM
Bromoform	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:56 AM
Bromomethane	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:56 AM
Carbon disulfide	<0.00500	0.00500	0.0150	mg/L	1	02/21/24 11:56 AM
Carbon tetrachloride	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:56 AM
Chlorobenzene	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:56 AM
Chloroethane	<0.000300	0.000300	0.00100	mg/L	1	02/21/24 11:56 AM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

Date: 28-Feb-24

CLIENT:	Weston Solutions, Inc.	Client Sample ID:	Trip Blank-2
Project:	SAWS Impoundment Assessment Lagoons and	Lab ID:	2402269-10
Project No:	10412.036.001.0002	Collection Date:	02/20/24
Lab Order:	2402269	Matrix:	TRIP BLANK

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
8260 WATER VOLATILES BY GC/MS		SW82	260D				Analyst: JVR
Chloroform	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
Chloromethane	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
cis-1,2-Dichloroethene	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
cis-1,3-Dichloropropene	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
Cyclohexane	<0.00500	0.00500	0.0150	Ν	mg/L	1	02/21/24 11:56 AM
Dibromochloromethane	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
Dibromomethane	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
Dichlorodifluoromethane	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
Ethylbenzene	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
Hexachlorobutadiene	<0.00100	0.00100	0.00300		mg/L	1	02/21/24 11:56 AM
Isopropylbenzene	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
m,p-Xylene	<0.000600	0.000600	0.00200		mg/L	1	02/21/24 11:56 AM
Methyl Acetate	<0.00500	0.00500	0.0150		mg/L	1	02/21/24 11:56 AM
Methyl tert-butyl ether	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
Methylcyclohexane	<0.00500	0.00500	0.0150		mg/L	1	02/21/24 11:56 AM
Methylene chloride	<0.00250	0.00250	0.00250		mg/L	1	02/21/24 11:56 AM
Naphthalene	<0.00500	0.00500	0.0150		mg/L	1	02/21/24 11:56 AM
n-Butylbenzene	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
n-Propylbenzene	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
o-Xylene	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
p-Isopropyltoluene	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
sec-Butylbenzene	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
Styrene	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
tert-Butylbenzene	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
Tetrachloroethene	<0.000600	0.000600	0.00200		mg/L	1	02/21/24 11:56 AM
Toluene	<0.000600	0.000600	0.00200		mg/L	1	02/21/24 11:56 AM
trans-1,2-Dichloroethene	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
trans-1,3-Dichloropropene	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
Trichloroethene	<0.000600	0.000600	0.00100		mg/L	1	02/21/24 11:56 AM
Trichlorofluoromethane	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
Vinyl chloride	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
Xylenes, Total	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
Surr: 1,2-Dichloroethane-d4	90.6	0	72-119		%REC	1	02/21/24 11:56 AM
Surr: 4-Bromofluorobenzene	98.6	0	76-119		%REC	1	02/21/24 11:56 AM
Surr: Dibromofluoromethane	95.1	0	85-115		%REC	1	02/21/24 11:56 AM
Surr: Toluene-d8	97.5	0	81-120		%REC	1	02/21/24 11:56 AM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

- B Analyte detected in the associated Method Blank
- DF- Dilution Factor
- N Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

Page 1 of 40

CLIENT:	A	ANALYTICAL QC SUMMARY REPOR										
Project:	s and		F	RunII): C	ETAC2_	_HG_2	240216A				
Sample ID: DCS-1	114006		Tes	tNo:	SW7471	3		Units:	mg/	Kg		
SampType: DCS	Run ID:	CETAC2	2_HG_240216	5A Ana	lysis Date	: 2/16/2024	10:00	:18 AM	Prep Date	: 2/15	/2024	
Analyte		Result	RL	SPK value	e Ref	√al %	REC	LowLimit	HighLimit	%RPD	RPDLimit C	≀ual
Mercury		0.0372	0.0400	0.04000	0		93.0	80	124	0	0	

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

- The Detected at the Method Detection Emitt
- RL Reporting Limit

В

J Analyte detected between SDL and RL

DF Dilution Factor

- MDL Method Detection Limit
 - R RPD outside accepted control limits
 - S Spike Recovery outside control limits
 - N Parameter not NELAP certified

CLIENT: Work Order:	Weston So 2402269	olutions, Ir	IC.		AN	ALYT	ICAL (QC SU	MMAR	XY R	EPORT
Project:	SAWS Im	poundmen	t Assessm	ent Lagoor	ns and		RunII): C	ETAC2_I	HG_24	0223A
The QC data in 07B, 2402269-0	batch 114134 ap 8B, 2402269-09/	plies to the A	following sa	amples: 2402	2269-01B, 2402	269-02B, 24	402269-03B	8, 2402269	9-04B, 24022	69-06B,	2402269-
Sample ID: MB	-114134	Batch ID:	114134		TestNo:	SW7	7471B		Units:	mg/Kg	1
SampType: MB	LK	Run ID:	CETAC2	_HG_24022	3A Analysis	a Date: 2/23 /	/2024 10:22	2:17 AM	Prep Date:	2/22/2	024
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD R	PDLimit Qual
Mercury			<0.0160	0.0400							
Sample ID: LC	S-114134	Batch ID:	114134		TestNo:	SW7	7471B		Units:	mg/Kg	1
SampType: LC:	S	Run ID:	CETAC2	_HG_24022	3A Analysis	a Date: 2/23/	/2024 10:24	:33 AM	Prep Date:	2/22/2	024
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	GRPD R	PDLimit Qual
Mercury			0.193	0.0400	0.2000	0	96.5	85	115		
Sample ID: LC:	SD-114134	Batch ID:	114134		TestNo:	SW7	7471B		Units:	mg/Kg	1
SampType: LC	SD	Run ID:	CETAC2	_HG_24022	3A Analysis	a Date: 2/23	/2024 10:26	50 AM	Prep Date:	2/22/2	024
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	GRPD R	PDLimit Qual
Mercury			0.195	0.0400	0.2000	0	97.5	85	115	1.03	25
Sample ID: 240	2269-02BMS	Batch ID:	114134		TestNo:	SW7	7471B		Units:	mg/Kg	J-dry
Sample ID: 240 SampType: MS	02269-02BMS	Batch ID: Run ID:	114134 CETAC2	_HG_24022	TestNo: 3A Analysis	SW7 Date: 2/23	7471B /2024 10:42	2:41 AM	Units: Prep Date:	mg/Kg 2/22/2	j-dry 024
Sample ID: 240 SampType: MS Analyte	02269-02BMS	Batch ID: Run ID:	114134 CETAC2 Result	_ HG_24022 RL	TestNo: 3A Analysis SPK value	SW7 5 Date: 2/23 Ref Val	7471B /2024 10:42 %REC	2:41 AM LowLimi	Units: Prep Date: t HighLimit %	mg/Kg 2/22/2 GRPD R	j-dry 024 PDLimit Qual
Sample ID: 240 SampType: MS Analyte Mercury	02269-02BMS	Batch ID: Run ID:	114134 CETAC2 Result 0.200	_ HG_24022 RL 0.0432	TestNo: 3A Analysis SPK value 0.2159	SW7 5 Date: 2/23 Ref Val 0	7 471B /2024 10:42 %REC 92.5	2:41 AM LowLimi 80	Units: Prep Date: t HighLimit % 120	mg/Kg 2/22/2 GRPD R	j-dry 024 PDLimit Qual
Sample ID: 240 SampType: MS Analyte Mercury Sample ID: 240	02269-02BMS	Batch ID: Run ID: Batch ID:	114134 CETAC2 Result 0.200 114134	_ HG_24022 RL 0.0432	TestNo: 3A Analysis SPK value 0.2159 TestNo:	SW7 5 Date: 2/23 Ref Val 0 SW7	7471B /2024 10:42 %REC 92.5 7471B	2: 41 AM LowLimi 80	Units: Prep Date: t HighLimit % 120 Units:	mg/Kg 2/22/2 GRPD R mg/Kg	g-dry 024 PDLimit Qual g-dry
Sample ID: 240 SampType: MS Analyte Mercury Sample ID: 240 SampType: MS	02269-02BMS 02269-02BMSD D	Batch ID: Run ID: Batch ID: Run ID:	114134 CETAC2 Result 0.200 114134 CETAC2	_HG_240223 RL 0.0432 _HG_240223	TestNo: 3A Analysis SPK value 0.2159 TestNo: 3A Analysis	SW7 3 Date: 2/23, Ref Val 0 SW7 3 Date: 2/23,	7471B /2024 10:42 %REC 92.5 7471B /2024 10:44	2:41 AM LowLimi 80 I:57 AM	Units: Prep Date: t HighLimit % 120 Units: Prep Date:	mg/Kg 2/22/2 GRPD R mg/Kg 2/22/2	g-dry 024 PDLimit Qual g-dry 024
Sample ID: 240 SampType: MS Analyte Mercury Sample ID: 240 SampType: MS Analyte	02269-02BMS 02269-02BMSD D	Batch ID: Run ID: Batch ID: Run ID:	114134 CETAC2 Result 0.200 114134 CETAC2 Result	_HG_240223 RL 0.0432 _HG_240223 RL	TestNo: 3A Analysis SPK value 0.2159 TestNo: 3A Analysis SPK value	SW7 3 Date: 2/23, Ref Val 0 SW7 5 Date: 2/23, Ref Val	7471B /2024 10:42 %REC 92.5 7471B /2024 10:44 %REC	2:41 AM LowLimi 80 I:57 AM LowLimi	Units: Prep Date: t HighLimit % 120 Units: Prep Date: t HighLimit %	mg/Kg 2/22/2 5RPD R 5RPD R mg/Kg 2/22/2 5RPD R	g-dry 024 PDLimit Qual g-dry 024 PDLimit Qual
Sample ID: 240 SampType: MS Analyte Mercury Sample ID: 240 SampType: MS Analyte Mercury	02269-02BMS 02269-02BMSD D	Batch ID: Run ID: Batch ID: Run ID:	114134 CETAC2 Result 0.200 114134 CETAC2 Result 0.194	_HG_240223 RL 0.0432 _HG_240223 RL 0.0415	TestNo: 3A Analysis SPK value 0.2159 TestNo: 3A Analysis SPK value 0.2076	SW7 3 Date: 2/23, Ref Val 0 SW7 5 Date: 2/23, Ref Val 0	7471B /2024 10:42 %REC 92.5 7471B /2024 10:44 %REC 93.5	2:41 AM LowLimi 80 4:57 AM LowLimi 80	Units: Prep Date: t HighLimit % 120 Units: Prep Date: t HighLimit % 120	mg/Kg 2/22/2 6RPD R mg/Kg 2/22/2 6RPD R 2.86	g-dry 024 PDLimit Qual g-dry 024 PDLimit Qual 25
Sample ID: 240 SampType: MS Analyte Mercury SampIe ID: 240 SampType: MS Analyte Mercury Sample ID: 240	02269-02BMS 02269-02BMSD D D 22269-02BSD	Batch ID: Run ID: Batch ID: Run ID: Batch ID:	114134 CETAC2 Result 0.200 114134 CETAC2 Result 0.194 114134	_HG_240223 RL 0.0432 _HG_240223 RL 0.0415	TestNo: 3A Analysis SPK value 0.2159 TestNo: 3A Analysis SPK value 0.2076 TestNo:	SW7 3 Date: 2/23, Ref Val 0 5 Date: 2/23, Ref Val 0 SW7	7471B /2024 10:42 %REC 92.5 7471B /2024 10:44 %REC 93.5 7471B	2:41 AM LowLimi 80 4:57 AM LowLimi 80	Units: Prep Date: t HighLimit % 120 Units: Prep Date: t HighLimit % 120 Units:	mg/Kg 2/22/2 5RPD R mg/Kg 2/22/2 5RPD R 2.86 mg/Kg	g-dry 024 PDLimit Qual g-dry 024 PDLimit Qual 25 g-dry
Sample ID: 240 SampType: MS Analyte Mercury SampIe ID: 240 SampType: MS Analyte Mercury Sample ID: 240 SampType: SD	02269-02BMS 02269-02BMSD D 02269-02BSD	Batch ID: Run ID: Batch ID: Run ID: Batch ID: Run ID:	114134 CETAC2 Result 0.200 114134 CETAC2 Result 0.194 114134 CETAC2	_HG_240223 RL 0.0432 _HG_240223 RL 0.0415 _HG_240223	TestNo: 3A Analysis SPK value 0.2159 TestNo: 3A Analysis SPK value 0.2076 TestNo: 3A Analysis	SW7 3 Date: 2/23, Ref Val 0 SW7 5 Date: 2/23, Ref Val 0 SW7 5 Date: 2/23,	7471B /2024 10:42 %REC 92.5 7471B /2024 10:44 %REC 93.5 7471B /2024 10:47	2:41 AM LowLimi 80 4:57 AM LowLimi 80 7:13 AM	Units: Prep Date: t HighLimit % 120 Units: Prep Date: t HighLimit % 120 Units: Prep Date:	mg/Kg 2/22/2 5RPD R 5RPD R 2/22/2 5RPD R 2.86 mg/Kg 2/22/2	p-dry 024 PDLimit Qual g-dry 024 PDLimit Qual 25 g-dry 024
Sample ID: 240 SampType: MS Analyte Mercury SampIe ID: 240 SampType: MS Analyte Mercury SampIe ID: 240 SampType: SD Analyte	02269-02BMS 02269-02BMSD D 02269-02BSD	Batch ID: Run ID: Batch ID: Run ID: Batch ID: Run ID:	114134 CETAC2 Result 0.200 114134 CETAC2 Result 0.194 114134 CETAC2 Result	_HG_24022: RL 0.0432 _HG_24022: RL 0.0415 _HG_24022: RL	TestNo: 3A Analysis SPK value 0.2159 TestNo: 3A Analysis SPK value 0.2076 TestNo: 3A Analysis SPK value	SW7 3 Date: 2/23, Ref Val 0 SW7 5 Date: 2/23, Ref Val 5 Date: 2/23, Ref Val Ref Val	7471B /2024 10:42 92.5 7471B /2024 10:44 %REC 93.5 7471B /2024 10:47 %REC	2:41 AM LowLimi 80 4:57 AM LowLimi 80 7:13 AM LowLimi	Units: Prep Date: t HighLimit % 120 Units: Prep Date: t HighLimit % 120 Units: Prep Date: t HighLimit %	mg/Kg 2/22/2 5RPD R 5RPD R 2/22/2 5RPD R 2.86 mg/Kg 2/22/2 5RPD R	p-dry 024 PDLimit Qual p-dry 024 PDLimit Qual 25 g-dry 024 PDLimit Qual
Sample ID: 240 SampType: MS Analyte Mercury Sample ID: 240 SampType: MS Analyte Mercury SampType: SD Analyte Mercury	02269-02BMS 02269-02BMSD D 02269-02BSD	Batch ID: Run ID: Batch ID: Run ID: Batch ID: Run ID:	114134 CETAC2 Result 0.200 114134 CETAC2 Result 0.194 114134 CETAC2 Result cesult	_HG_240223 RL 0.0432 _HG_240223 RL 0.0415 _HG_240223 RL 0.211	TestNo: 3A Analysis SPK value 0.2159 TestNo: 3A Analysis SPK value 0.2076 TestNo: 3A Analysis SPK value 0.2076	SW7 3 Date: 2/23, Ref Val 0 SW7 3 Date: 2/23, Ref Val 0 SW7 5 Date: 2/23, Ref Val 0 0	7471B /2024 10:42 %REC 92.5 7471B /2024 10:44 %REC 93.5 7471B /2024 10:47 %REC	2:41 AM LowLimi 80 4:57 AM LowLimi 80 7:13 AM LowLimi	Units: Prep Date: t HighLimit % 120 Units: Prep Date: t HighLimit % 120 Units: Prep Date: t HighLimit %	mg/Kg 2/22/2 6RPD R mg/Kg 2/22/2 6RPD R 2.86 2/22/2 6RPD R 6RPD R 0	p-dry 024 PDLimit Qual p-dry 024 PDLimit Qual 25 p-dry 024 PDLimit Qual 10
Sample ID: 240 SampType: MS Analyte Mercury SampType: MS Analyte Mercury SampType: SD Analyte Mercury SampType: SD Analyte Mercury Sample ID: 240	02269-02BMS 02269-02BMSD D 02269-02BSD 02269-02BSD	Batch ID: Run ID: Batch ID: Run ID: Batch ID: Run ID: Run ID:	114134 CETAC2 Result 0.200 114134 CETAC2 Result 0.194 114134 CETAC2 Result <0.0845 114134	_HG_24022: RL 0.0432 _HG_24022: RL 0.0415 _HG_24022: RL 0.211	TestNo: 3A Analysis SPK value 0.2159 TestNo: 3A Analysis SPK value 0.2076 TestNo: 3A Analysis SPK value 0 TestNo: 3A Analysis	SW7 2 Date: 2/23, Ref Val 0 SW7 3 Date: 2/23, Ref Val 0 SW7 3 Date: 2/23, Ref Val 0 SW7 8 SW7	7471B /2024 10:42 %REC 92.5 7471B /2024 10:44 %REC 93.5 7471B /2024 10:47 %REC 7471B	2:41 AM LowLimi 80 4:57 AM LowLimi 80 7:13 AM LowLimi	Units: Prep Date: t HighLimit % 120 Units: Prep Date: t HighLimit % 120 Units: Prep Date: t HighLimit % Units:	mg/Kg 2/22/2 5RPD R mg/Kg 2/22/2 5RPD R 2.86 mg/Kg 2/22/2 5RPD R 0 0 mg/Kg	p-dry 024 PDLimit Qual g-dry 024 PDLimit Qual 25 g-dry 024 PDLimit Qual 10 10
Sample ID: 240 SampType: MS Analyte Mercury SampType: MS Analyte Mercury Sample ID: 240 SampType: SD Analyte Mercury Sample ID: 240 SampType: PD:	02269-02BMS 02269-02BMSD 02269-02BMSD 02269-02BSD 02269-02BSD 02269-02BPDS S	Batch ID: Run ID: Batch ID: Run ID: Batch ID: Run ID: a Batch ID: Run ID:	114134 CETAC2 Result 0.200 114134 CETAC2 Result 0.194 114134 CETAC2 Result <0.0845 114134 CETAC2	_HG_240223 RL 0.0432 HG_240223 RL 0.0415 _HG_240223 RL 0.211	TestNo: 3A Analysis SPK value 0.2159 TestNo: 3A Analysis SPK value 0.2076 TestNo: 3A Analysis SPK value 0 TestNo: 3A Analysis	SW7 3 Date: 2/23, Ref Val 0 SW7 5 Date: 2/23, Ref Val 0 SW7 5 Date: 2/23, Ref Val 0 SW7 5 Date: 2/23, 8 Date: 2/	7471B /2024 10:42 %REC 92.5 7471B /2024 10:44 %REC 93.5 7471B /2024 10:49 7471B /2024 10:49	2:41 AM LowLimi 80 4:57 AM LowLimi 80 7:13 AM LowLimi 0:29 AM	Units: Prep Date: t HighLimit % 120 Units: Prep Date: t HighLimit % Units: Prep Date: t HighLimit % Units: Prep Date:	mg/Kg 2/22/2 6RPD R mg/Kg 2/22/2 6RPD R 2/22/2 6RPD R 0 0 mg/Kg 2/22/2	g-dry 024 PDLimit Qual g-dry 024 PDLimit Qual 25 g-dry 024 PDLimit Qual 10 g-dry 024
Sample ID: 240 SampType: MS Analyte Mercury Sample ID: 240 SampType: MS Analyte Mercury Sample ID: 240 SampType: SD Analyte Mercury Sample ID: 240 SampType: PD: Analyte	02269-02BMS 02269-02BMSD 02269-02BMSD 02269-02BSD 02269-02BSD 02269-02BPDS S	Batch ID: Run ID: Batch ID: Run ID: Batch ID: Run ID: Batch ID: Run ID:	114134 CETAC2 Result 0.200 114134 CETAC2 Result 0.194 114134 CETAC2 Result <0.0845 114134 CETAC2 Result	_HG_24022: RL 0.0432 _HG_24022: RL 0.0415 _HG_24022: RL 0.211 _HG_24022: RL	TestNo: 3A Analysis SPK value 0.2159 TestNo: 3A Analysis SPK value 0.2076 TestNo: 3A Analysis SPK value 0 TestNo: 3A Analysis SPK value	SW7 3 Date: 2/23, Ref Val 0 SW7 5 Date: 2/23, Ref Val 0 SW7 5 Date: 2/23, Ref Val 0 SW7 5 Date: 2/23, Ref Val	7471B /2024 10:42 92.5 7471B /2024 10:44 %REC 93.5 7471B /2024 10:47 %REC 7471B /2024 10:49 %REC	2:41 AM LowLimi 80 4:57 AM LowLimi 80 7:13 AM LowLimi 0:29 AM LowLimi	Units: Prep Date: t HighLimit % 120 Units: Prep Date: t HighLimit % Units: Prep Date: t HighLimit % Units: Prep Date: t HighLimit %	mg/Kg 2/22/2 6RPD R mg/Kg 2/22/2 6RPD R 2.86 2/22/2 6RPD R 0 mg/Kg 2/22/2 6RPD R	p-dry 024 PDLimit Qual p-dry 024 PDLimit Qual 25 J-dry 024 PDLimit Qual 10 J-dry 024 PDLimit Qual

Qualifiers: В Analyte detected in the associated Method Blank DF Dilution Factor Analyte detected between MDL and RL MDL Method Detection Limit J ND Not Detected at the Method Detection Limit R RPD outside accepted control limits RL Reporting Limit S Spike Recovery outside control limits

Analyte detected between SDL and RL

J

N Parameter not NELAP certified

Page 2 of 40

CLIENT: Work Order:	Weston Solution 2402269	s, Inc.		AN	ALYTI	ICAL (QC SU	JMMA	RY REPORT
Project:	SAWS Impound	ment Assess	ment Lagooi	ns and		Kuiiii			_NG_240223A
Sample ID: ICV-24	0223 Batch	ID: R13158	30	TestNo	SW7	471B		Units:	mg/Kg
SampType: ICV	Run I	D: CETAC	2_HG_24022	3A Analysi	s Date: 2/23/	/2024 10:17	:44 AM	Prep Date	:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD RPDLimit Qu
Mercury		0.00402	0.0400	0.004000	0	101	90	110	
Sample ID: CCV1-	240223 Batch	ID: R13158	30	TestNo	: SW7	471B		Units:	mg/Kg
SampType: ССV	Run I	D: CETAC	2_HG_24022	3A Analysi	s Date: 2/23/	/2024 11:00	:51 AM	Prep Date	:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD RPDLimit Qu
Mercury		0.00190	0.0400	0.002000	0	95.0	90	110	
Sample ID: CCV2-	240223 Batch	ID: R13158	30	TestNo	SW7	471B		Units:	mg/Kg
SampType: CCV	Run I	D: CETAC	2_HG_24022	3A Analysi	s Date: 2/23/	/2024 11:09	:59 AM	Prep Date	:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD RPDLimit Qu
Mercury		0.00194	0.0400	0.002000	0	97.0	90	110	

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

В

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 3 of 40

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

60

CLIENT: Weston Solutions, Inc.

ANALYTICAL QC SUMMARY REPORT

Project:

Work Order:

2402269 SAWS Impoundment Assessment Lagoons and

RunID:

ICP-MS5_231208A

Sample ID: DCS1-113162	Batch ID:	113162		TestNo	: SW	6020B		Units:	mg/l	Kg
SampType: DCS	Run ID:	ICP-MS5	_231208A	Analys	is Date: 12/8	/2023 11:21	:00 AM	Prep Date:	12/7	/2023
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD	RPDLimit Qual
Aluminum		45.1	37.5	37.50	0	120	70	130	0	0
Beryllium		0.287	0.300	0.2500	0	115	70	130	0	0
Cadmium		0.272	0.300	0.2500	0	109	70	130	0	0
Calcium		47.5	37.5	37.50	0	127	70	130	0	0
Iron		45.7	37.5	37.50	0	122	70	130	0	0
Lead		0.276	0.300	0.2500	0	110	70	130	0	0
Magnesium		38.7	37.5	37.50	0	103	70	130	0	0
Potassium		37.2	37.5	37.50	0	99.1	70	130	0	0
Selenium		0.245	0.500	0.2500	0	98.1	70	130	0	0
Silver		0.242	0.200	0.2500	0	96.6	70	130	0	0
Sodium		33.4	37.5	37.50	0	89.0	70	130	0	0
Sample ID: DCS2-113162	Batch ID:	113162		TestNo	: SW	6020B		Units:	mg/l	Kg
SampType: DCS2	Run ID:	ICP-MS5	_231208A	Analys	is Date: 12/8	/2023 11:25	5:00 AM	Prep Date:	12/7	/2023
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD	RPDLimit Qual
Antimony		1.23	1.00	1.250	0	98.5	70	130	0	0
Arsenic		1.32	1.00	1.250	0	105	70	130	0	0
Barium		1.28	2.00	1.250	0	102	70	130	0	0
Chromium		1.35	2.00	1.250	0	108	70	130	0	0
Cobalt		1.33	2.00	1.250	0	107	70	130	0	0
Copper		1.36	2.00	1.250	0	109	70	130	0	0
Manganese		1.32	2.00	1.250	0	105	70	130	0	0
Nickel		1.22	2.00	1.250	0	98.0	70	130	0	0
Thallium		1.24	1.00	1.250	0	99.4	70	130	0	0
Sample ID: DCS3-113162	Batch ID:	113162		TestNo	: SW	6020B		Units:	mg/l	Kg
SampType: DCS3	Run ID:	ICP-MS5	_231208A	Analys	is Date: 12/8	/2023 11:28	8:00 AM	Prep Date:	12/7	/2023
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD	RPDLimit Qual
Vanadium		2.50	2.50	2.500	0	99.8	70	130	0	0
Zinc		2.81	2.50	2.500	0	112	70	130	0	0

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

- D Not Detected at the Method Detection Emitt
- RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDLMethod Detection LimitRRPD outside accepted control limits

Page 4 of 40

S Spike Recovery outside control limits

CLIENT: Weston Solutions, Inc.

ANALYTICAL QC SUMMARY REPORT

Project:

Work Order: 2402269 SAWS Impoundment Assessment Lagoons and

RunID:

ICP-MS5_240223A

The QC data in batch 114139 applies to the following samples: 2402269-01B, 2402269-02B, 2402269-03B, 2402269-04B, 2402269-06B, 2402269-07B, 2402269-08B, 2402269-09A

Sample ID: MB-114139	Batch ID: 11413	9	TestNo	SW6	6020B		Units:	mg/Kg	
SampType: MBLK	Run ID: ICP-M	S5_240223A	Analys	is Date: 2/23	/2024 10:28	:00 AM	Prep Date:	2/22/2024	
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RPDLimi	t Qual
Aluminum	<12.5	37.5							
Antimony	<0.500	1.00							
Arsenic	<0.500	1.00							
Barium	<0.500	2.00							
Beryllium	<0.100	0.300							
Cadmium	<0.100	0.300							
Calcium	<12.5	37.5							
Chromium	<0.500	2.00							
Cobalt	<0.500	2.00							
Copper	<0.500	2.00							
Iron	<12.5	37.5							
Lead	<0.100	0.300							
Magnesium	<12.5	37.5							
Manganese	<0.500	2.00							
Nickel	<0.500	2.00							
Potassium	<12.5	37.5							
Selenium	<0.150	0.500							
Silver	<0.100	0.200							
Sodium	<12.5	37.5							
Thallium	<0.500	1.00							
Vanadium	<1.00	2.50							
Zinc	<1.00	2.50							
Sample ID: LCS-114139	Batch ID: 11413	9	TestNo	: SWe	6020B		Units:	mg/Kg	
		CE 040000A	Analyza	Dotos 0/00	10004 40.00	.00 414	Dran Data	0/00/0004	

	241011121							0	
SampType: LCS	Run ID:	ICP-MS	5_240223A	Analys	is Date: 2/23	/2024 10:30	0:00 AM	Prep Date:	2/22/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	HighLimit	%RPD RPDLimit Qual
Aluminum		251	37.5	250.0	0	100	80	120	
Antimony		50.1	1.00	50.00	0	100	80	120	
Arsenic		49.1	1.00	50.00	0	98.2	80	120	
Barium		48.7	2.00	50.00	0	97.5	80	120	
Beryllium		47.5	0.300	50.00	0	95.1	80	120	
Cadmium		48.2	0.300	50.00	0	96.4	80	120	
Calcium		1240	37.5	1250	0	98.9	80	120	
Chromium		49.1	2.00	50.00	0	98.2	80	120	
Cobalt		50.1	2.00	50.00	0	100	80	120	
Copper		49.8	2.00	50.00	0	99.7	80	120	
Iron		260	37.5	250.0	0	104	80	120	
Lead		48.1	0.300	50.00	0	96.3	80	120	

Qualifiers:

Analyte detected in the associated Method Blank Analyte detected between MDL and RL

J ND Not Detected at the Method Detection Limit

RL Reporting Limit

В

Analyte detected between SDL and RL J

DF Dilution Factor

MDL Method Detection Limit R RPD outside accepted control limits Page 5 of 40

S Spike Recovery outside control limits

CLIENT:

Weston Solutions, Inc.

ANALYTICAL QC SUMMARY REPORT

Project:

Work Order:

2402269

SAWS Impoundment Assessment Lagoons and

RunID: ICP-MS5_240223A

Sample ID: LCS-114139	Batch ID:	114139		TestNo): SW(6020B		Units:	mg/K	g
SampType: LCS	Run ID:	ICP-MS	5_240223A	Analys	is Date: 2/23	/2024 10:3	0:00 AM	Prep Date:	2/22/	2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD I	RPDLimit Qua
Magnesium		1240	37.5	1250	0	99.0	80	120		
Manganese		49.1	2.00	50.00	0	98.3	80	120		
Nickel		49.4	2.00	50.00	0	98.7	80	120		
Potassium		1270	37.5	1250	0	102	80	120		
Selenium		45.8	0.500	50.00	0	91.6	80	120		
Silver		49.8	0.200	50.00	0	99.6	80	120		
Sodium		1250	37.5	1250	0	100	80	120		
Thallium		49.3	1.00	50.00	0	98.6	80	120		
Vanadium		48.8	2.50	50.00	0	97.7	80	120		
Zinc		48.7	2.50	50.00	0	97.3	80	120		
Sample ID: LCSD-114139	Batch ID:	114139		TestNo	: SWe	6020B		Units:	mg/K	g
SampType: LCSD	Run ID:	ICP-MS	5_240223A	Analys	is Date: 2/23	/2024 10:3	3:00 AM	Prep Date:	2/22/	2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD I	RPDLimit Qua
Aluminum		249	37.5	250.0	0	99.5	80	120	0.795	25
Antimony		50.5	1.00	50.00	0	101	80	120	0.774	25
Arsenic		49.2	1.00	50.00	0	98.4	80	120	0.256	25
Barium		48.9	2.00	50.00	0	97.8	80	120	0.370	25
Beryllium		47.6	0.300	50.00	0	95.2	80	120	0.163	25
Cadmium		48.2	0.300	50.00	0	96.4	80	120	0.018	25
Calcium		1230	37.5	1250	0	98.0	80	120	0.865	25
Chromium		48.7	2.00	50.00	0	97.4	80	120	0.795	25
Cobalt		50.0	2.00	50.00	0	99.9	80	120	0.217	25
Copper		50.0	2.00	50.00	0	100	80	120	0.397	25
Iron		259	37.5	250.0	0	104	80	120	0.102	25
Lead		48.5	0.300	50.00	0	97.0	80	120	0.757	25
Magnesium		1240	37.5	1250	0	98.9	80	120	0.078	25
Manganese		49.4	2.00	50.00	0	98.8	80	120	0.522	25
Nickel		49.6	2.00	50.00	0	99.1	80	120	0.389	25
Potassium		1270	37.5	1250	0	102	80	120	0.305	25
Selenium		46.0	0.500	50.00	0	91.9	80	120	0.362	25
Silver		50.3	0.200	50.00	0	101	80	120	0.981	25
Sodium		1250	37.5	1250	0	99.8	80	120	0.304	25
Thallium		49.6	1.00	50.00	0	99.2	80	120	0.630	25
Vanadium		48.5	2.50	50.00	0	97.1	80	120	0.601	25
Zinc		49.0	2.50	50.00	0	98.1	80	120	0.776	25

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor	
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit	Page 6 of 40
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	C
	RL	Reporting Limit	S	Spike Recovery outside control limits	
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAP certified	

CLIENT: Weston Solutions, Inc.

ANALYTICAL QC SUMMARY REPORT

ICP-MS5_240223A

RunID:

Project:

Work Order:

2402269

SAWS Impoundment Assessment Lagoons and

Sample ID: 2402269-04B SD	Batch ID:	114139		TestNo	: SW	/6020B		Units:	mg/	Kg-dry
SampType: SD	Run ID:	ICP-MS5	_240223A	Analys	is Date: 2/2 :	3/2024 10:40	:00 AM	Prep Date	: 2/22	/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Antimony		<2.73	5.45	0	0				0	20
Arsenic		5.25	5.45	0	5.191				1.18	20
Barium		58.1	10.9	0	61.21				5.28	20
Beryllium		<0.545	1.64	0	0.4535				0	20
Cadmium		<0.545	1.64	0	0				0	20
Chromium		11.4	10.9	0	11.96				4.97	20
Cobalt		3.25	10.9	0	3.264				0.343	20
Copper		5.18	10.9	0	5.205				0.562	20
Lead		6.01	1.64	0	6.368				5.84	20
Magnesium		1730	204	0	1804				4.15	20
Manganese		88.9	10.9	0	92.92				4.38	20
Nickel		6.98	10.9	0	7.213				3.30	20
Potassium		1830	204	0	1923				4.86	20
Selenium		0.991	2.73	0	0.9490				4.30	20
Silver		<0.545	1.09	0	0				0	20
Sodium		<68.1	204	0	34.60				0	20
Thallium		<2.73	5.45	0	0				0	20
Vanadium		47.7	13.6	0	50.00				4.76	20
Zinc		28.5	13.6	0	29.67				3.97	20
Sample ID: 2402269-04B PDS	Batch ID:	114139		TestNo	: SW	/6020B		Units:	mg/	Kg-dry
SampType: PDS	Run ID:	ICP-MS5	_240223A	Analys	is Date: 2/2 :	3/2024 11:06	:00 AM	Prep Date	: 2/22	/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD	RPDLimit Qual
Antimony		56.9	1.09	54.51	0	104	75	125		
Arsenic		59.3	1.09	54.51	5.191	99.3	75	125		
Barium		116	2.18	54.51	61.21	100	75	125		
Beryllium		54.4	0.327	54.51	0.4535	99.0	75	125		
Cadmium		54.6	0.327	54.51	0	100	75	125		
Chromium		66.9	2.18	54.51	11.96	101	75	125		
Cobalt		58.2	2.18	54.51	3.264	101	75	125		
Copper		60.2	2.18	54.51	5.205	101	75	125		
Lead		60.3	0.327	54.51	6.368	98.9	75	125		
Magnesium		3230	40.9	1363	1804	105	75	125		
Manganese		146	2.18	54.51	92.92	96.5	75	125		
Nickel		62.6	2.18	54.51	7.213	102	75	125		
Potassium		3360	40.9	1363	1923	105	75	125		
Selenium		50.8	0.545	54.51	0.9490	91.4	75	125		
Silver		55.5	0.218	54.51	0	102	75	125		
Sodium		1490	40.9	1363	34.60	107	75	125		
Thallium		57.2	1.09	54.51	0	105	75	125		

Qualifiers:

В

Analyte detected in the associated Method Blank

DF Dilution Factor MDL Method Detection Limit

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 7 of 40

ANALYTICAL QC SUMMARY REPORT

RunID:

ICP-MS5_240223A

Project:

Work Order: 2402269

SAWS Impoundment Assessment Lagoons and

Sample ID:	2402269-	04B PDS	Batch ID:	114139		TestN	lo: SW	6020B		Units:	mg/ł	(g-dry
SampType:	PDS		Run ID:	ICP-MS	5_240223A	Analy	sis Date: 2/2	3/2024 11:06	6:00 AM	Prep Date:	2/22	/2024
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Vanadium				105	2.73	54.51	50.00	100	75	125		
Zinc				83.0	2.73	54.51	29.67	97.8	75	125		
Sample ID:	2402269-	04B MS	Batch ID:	114139		TestN	lo: SW	6020B		Units:	mg/ł	(g-dry
SampType:	MS		Run ID:	ICP-MS	5_240223A	Analy	sis Date: 2/2	3/2024 11:09	0:00 AM	Prep Date:	2/22	/2024
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Antimony				47.7	1.11	55.54	0	85.9	75	125		
Arsenic				58.8	1.11	55.54	5.191	96.5	75	125		
Barium				116	2.22	55.54	61.21	99.1	75	125		
Beryllium				53.1	0.333	55.54	0.4535	94.9	75	125		
Cadmium				53.1	0.333	55.54	0	95.6	75	125		
Chromium				65.9	2.22	55.54	11.96	97.1	75	125		
Cobalt				57.9	2.22	55.54	3.264	98.4	75	125		
Copper				59.9	2.22	55.54	5.205	98.5	75	125		
Lead				59.3	0.333	55.54	6.368	95.3	75	125		
Magnesium				3170	41.7	1388	1804	98.1	75	125		
Manganese				145	2.22	55.54	92.92	94.0	75	125		
Nickel				60.9	2.22	55.54	7.213	96.7	75	125		
Potassium				3330	41.7	1388	1923	102	75	125		
Selenium				49.6	0.555	55.54	0.9490	87.6	75	125		
Silver				55.0	0.222	55.54	0	99.0	75	125		
Sodium				1400	41.7	1388	34.60	98.2	75	125		
Thallium				55.4	1.11	55.54	0	99.7	75	125		
Vanadium				104	2.78	55.54	50.00	96.5	75	125		
Zinc				82.8	2.78	55.54	29.67	95.7	75	125		
Sample ID:	2402269-	04B MSD	Batch ID:	114139		TestN	lo: SW	6020B		Units:	mg/ł	(g-dry
SampType:	MSD		Run ID:	ICP-MS	5_240223A	Analy	rsis Date: 2/2	3/2024 11:11	:00 AM	Prep Date:	2/22	/2024
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Antimony				48.3	1.10	55.02	0	87.9	75	125	1.27	25
Arsenic				57.7	1.10	55.02	5.191	95.5	75	125	1.78	25
Barium				114	2.20	55.02	61.21	95.9	75	125	1.96	25
Beryllium				52.6	0.330	55.02	0.4535	94.7	75	125	1.09	25
Cadmium				53.0	0.330	55.02	0	96.4	75	125	0.152	25
Chromium				65.6	2.20	55.02	11.96	97.5	75	125	0.408	25
Cobalt				57.5	2.20	55.02	3.264	98.6	75	125	0.679	25
Copper				59.4	2.20	55.02	5.205	98.6	75	125	0.733	25
Lead				58.8	0.330	55.02	6.368	95.3	75	125	0.803	25
Magnesium				3120	41.3	1376	1804	95.3	75	125	1.64	25
Qualifiers:	В	Analyte dete	ected in the a	ssociated M	lethod Blank	DF	Dilution Fact	or				
	J	Analyte dete	ected between	n MDL and	RL	MDL	Method Dete	ction Limit			I	Page 8 of 40
	ND 1	Not Detecte	d at the Meth	nod Detectio	on Limit	R	RPD outside	accepted cont	rol limits		-	
	RL I	Reporting L	imit			S	Spike Recove	erv outside co	ntrol limits	5		

Analyte detected between SDL and RL J

CLIENT: W

Weston Solutions, Inc.

ANALYTICAL QC SUMMARY REPORT

Project:

Work Order:

2402269

SAWS Impoundment Assessment Lagoons and

RunID: ICP-MS5_240223A

Sample ID:	2402269-04B MSD	Batch ID:	114139		TestNo): SW	6020B		Units:	mg/K	g-dry	
SampType:	MSD	Run ID:	ICP-MS5	_240223A	Analys	is Date: 2/23	3/2024 11:11	:00 AM	Prep Date:	2/22/	2024	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD I	RPDLim	it Qual
Manganese			142	2.20	55.02	92.92	90.1	75	125	1.82	25	
Nickel			60.2	2.20	55.02	7.213	96.3	75	125	1.21	25	
Potassium			3280	41.3	1376	1923	98.7	75	125	1.61	25	
Selenium			48.7	0.550	55.02	0.9490	86.8	75	125	1.82	25	
Silver			54.9	0.220	55.02	0	99.9	75	125	0.093	25	
Sodium			1390	41.3	1376	34.60	98.9	75	125	0.290	25	
Thallium			55.1	1.10	55.02	0	100	75	125	0.521	25	
Vanadium			103	2.75	55.02	50.00	95.6	75	125	0.945	25	
Zinc			81.2	2.75	55.02	29.67	93.7	75	125	1.92	25	
Sample ID:	2402269-04B SD	Batch ID:	114139		TestNo): SW	6020B		Units:	mg/K	g-dry	
SampType:	SD	Run ID:	ICP-MS5	_240223A	Analys	is Date: 2/23	3/2024 11:23	:00 AM	Prep Date:	2/22/	2024	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD I	RPDLim	it Qual
Aluminum			9660	4090	0	10020				3.61	20	
Calcium			47500	4090	0	46080				2.96	20	
Iron			25900	4090	0	25980				0.209	20	
Sample ID:	2402269-04B PDS	Batch ID:	114139		TestNo	: SW	6020B		Units:	mg/K	g-dry	
SampType:	PDS	Run ID:	ICP-MS5	_240223A	Analys	is Date: 2/2 3	3/2024 11:44	:00 AM	Prep Date:	2/22/	2024	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD I	RPDLim	it Qual
Aluminum			36000	818	27260	10020	95.3	75	125			
Calcium			73700	818	27260	46080	101	75	125			
Iron			52100	818	27260	25980	95.7	75	125			
Sample ID:	2402269-04B MS	Batch ID:	114139		TestNo): SW	6020B		Units:	mg/K	g-dry	
SampType:	MS	Run ID:	ICP-MS5	_240223A	Analys	is Date: 2/2 3	3/2024 11:47	:00 AM	Prep Date:	2/22/	2024	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD I	RPDLim	it Qual
Aluminum			12300	833	277.7	10020	826	75	125			S
Calcium			49600	833	1388	46080	250	75	125			S
Iron			27300	833	277.7	25980	479	75	125			S
Sample ID:	2402269-04B MSD	Batch ID:	114139		TestNo	: SW	6020B		Units:	mg/K	g-dry	
SampType:	MSD	Run ID:	ICP-MS5	_240223A	Analys	is Date: 2/2 3	3/2024 11:49	:00 AM	Prep Date:	2/22/	2024	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD I	RPDLim	it Qual
Aluminum			11800	825	275.1	10020	634	75	125	4.57	25	S
Calcium			48500	825	1376	46080	174	75	125	2.19	25	S
Iron			25700	825	275.1	25980	-108	75	125	6.14	25	S
Qualifiers:	B Analyte dete	ected in the a	ssociated M	ethod Blank	DF	Dilution Fact	or					
-	J Analyte dete	ected betwee	n MDL and l	RL	MDL	Method Deteo	ction Limit			F	Page 9 c	of 40
	ND Not Detecte	d at the Metl	nod Detection	n Limit	R	RPD outside	accepted cont	rol limits		•		

RL Reporting Limit

J Analyte detected between SDL and RL

S Spike Recovery outside control limits

CLIENT: Work Order:

Weston Solutions, Inc.

ANALYTICAL QC SUMMARY REPORT

ICP-MS5_240223A

RunID:

Project:

2402269

SAWS Impoundment Assessment Lagoons and

Sample ID: ICV-240223	Batch ID:	R131582		TestNo): SW60)20B		Units:	mg/L
SampType: ICV	Run ID:	ICP-MS5_	_240223A	Analys	is Date: 2/23/2	2024 10:10	:00 AM	Prep Date:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RPDLimit Qual
Aluminum		2.38	0.0300	2.50	0	95.1	90	110	
Antimony		0.102	0.00250	0.100	0	102	90	110	
Arsenic		0.101	0.00500	0.100	0	101	90	110	
Barium		0.100	0.0100	0.100	0	100	90	110	
Beryllium		0.0974	0.00100	0.100	0	97.4	90	110	
Cadmium		0.101	0.00100	0.100	0	101	90	110	
Calcium		2.49	0.300	2.50	0	99.5	90	110	
Chromium		0.103	0.00500	0.100	0	103	90	110	
Cobalt		0.105	0.00500	0.100	0	105	90	110	
Copper		0.106	0.0100	0.100	0	106	90	110	
Iron		2.46	0.100	2.50	0	98.4	90	110	
Lead		0.0977	0.00100	0.100	0	97.7	90	110	
Magnesium		2.40	0.300	2.50	0	96.2	90	110	
Manganese		0.100	0.0100	0.100	0	100	90	110	
Nickel		0.107	0.0100	0.100	0	107	90	110	
Potassium		2.42	0.300	2.50	0	96.9	90	110	
Selenium		0.104	0.00500	0.100	0	104	90	110	
Silver		0.102	0.00200	0.100	0	102	90	110	
Sodium		2.45	0.300	2.50	0	97.8	90	110	
Thallium		0.0967	0.00150	0.100	0	96.7	90	110	
Vanadium		0.101	0.00100	0.100	0	101	90	110	
Zinc		0.105	0.00500	0.100	0	105	90	110	
Sample ID: LCVL-240223	Batch ID:	R131582		TestNo	: SW60)20B		Units:	mg/L
SampType: LCVL	Run ID:	ICP-MS5	_240223A	Analys	is Date: 2/23/2	2024 10:16	:00 AM	Prep Date:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RPDLimit Qual
Aluminum		0.0989	0.0300	0.100	0	98.8	80	120	
Antimony		0.00213	0.00250	0.00200	0	107	80	120	
Arsenic		0.00524	0.00500	0.00500	0	105	80	120	
Barium		0.00535	0.0100	0.00500	0	107	80	120	
Beryllium		0.00104	0.00100	0.00100	0	104	80	120	
Cadmium		0.00102	0.00100	0.00100	0	102	80	120	
Calcium		0.112	0.300	0.100	0	112	80	120	
Chromium		0.00517	0.00500	0.00500	0	103	80	120	
Cobalt		0.00522	0.00500	0.00500	0	104	80	120	
Copper		0.00527	0.0100	0.00500	0	105	80	120	
Iron		0.104	0.100	0.100	0	104	80	120	
Lead		0.00103	0.00100	0.00100	0	103	80	120	
Magnesium		0.105	0.300	0.100	0	105	80	120	
Manganese		0.00510	0.0100	0.00500	0	102	80	120	
Oualifiers: B Analyte dete	cted in the	associated Me	thod Blank	DF	Dilution Factor				

J Analyte detected in the associated Method I

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

MDL Method Detection Limit

R RPD outside accepted control limits

Page 10 of 40

S Spike Recovery outside control limits

CLIENT: Weston Solutions, Inc.

Sample ID: LCVL-240223

ANALYTICAL QC SUMMARY REPORT

Project:

Work Order: 2402269

SAWS Impoundment Assessment Lagoons and

Batch ID: R131582

 RunID:
 ICP-MS5_240223A

 SW6020B
 Units: mg/L

SampType: LCVL	pType: LCVL Run ID: ICP-MS5_240223A Analysis Date: 2/23/2024 10:16:						6:00 AM	Prep Date:			
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual	
Nickel		0.00513	0.0100	0.00500	0	103	80	120			
Potassium		0.106	0.300	0.100	0	106	80	120			
Selenium		0.00552	0.00500	0.00500	0	110	80	120			
Silver		0.00206	0.00200	0.00200	0	103	80	120			
Sodium		0.106	0.300	0.100	0	106	80	120			
Thallium		0.00100	0.00150	0.00100	0	100	80	120			
Vanadium		0.00106	0.00100	0.00100	0	106	80	120			
Zinc		0.00531	0.00500	0.00500	0	106	80	120			
Sample ID: CCV1-240223	Batch ID:	R13158	32	TestNo	: SWO	6020B		Units:	mg/	L	
SampType: CCV	Run ID:	ICP-MS	65_240223A	Analys	is Date: 2/23	/2024 11:15	5:00 AM	Prep Date	: :		
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual	
Aluminum		4.89	0.0300	5.00	0	97.9	90	110			
Antimony		0.200	0.00250	0.200	0	100	90	110			
Arsenic		0.201	0.00500	0.200	0	100	90	110			
Barium		0.196	0.0100	0.200	0	98.2	90	110			
Beryllium		0.188	0.00100	0.200	0	93.8	90	110			
Cadmium		0.194	0.00100	0.200	0	97.2	90	110			
Calcium		4.93	0.300	5.00	0	98.6	90	110			
Chromium		0.197	0.00500	0.200	0	98.7	90	110			
Cobalt		0.203	0.00500	0.200	0	101	90	110			
Copper		0.204	0.0100	0.200	0	102	90	110			
Iron		5.09	0.100	5.00	0	102	90	110			
Lead		0.192	0.00100	0.200	0	96.2	90	110			
Magnesium		4.94	0.300	5.00	0	98.9	90	110			
Manganese		0.197	0.0100	0.200	0	98.7	90	110			
Nickel		0.200	0.0100	0.200	0	100	90	110			
Potassium		5.00	0.300	5.00	0	100	90	110			
Selenium		0.201	0.00500	0.200	0	101	90	110			
Silver		0.198	0.00200	0.200	0	99.1	90	110			
Sodium		4.99	0.300	5.00	0	99.7	90	110			
Thallium		0.202	0.00150	0.200	0	101	90	110			
Vanadium		0.196	0.00100	0.200	0	98.0	90	110			
Zinc		0.201	0.00500	0.200	0	100	90	110			
Sample ID: CCV2-240223	Batch ID:	R13158	32	TestNo	: SW	6020B		Units:	mg/	L	
SampType: ССV	Run ID:	ICP-MS	65_240223A	Analys	is Date: 2/23	/2024 11:52	2:00 AM	Prep Date	: :		
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual	
Aluminum		4.90	0.0300	5.00	0	98.1	90	110			
Qualifiers: B Analyte	detected in the	associated M	Method Blank	DF	Dilution Facto	or					
J Analyte	detected betwee	en MDL and	d RL	MDL	Method Detec	tion Limit			P	Page 11 of 40	
ND Not Dete	ected at the Met	hod Detecti	ion Limit	R	RPD outside a	accepted cont	rol limits			2	

TestNo:

RL Reporting Limit

J Analyte detected between SDL and RL

S Spike Recovery outside control limits

CLIENT: Work Order:	Weston S 2402269	olutions, Ir	IC.		AN	ANALYTICAL QC SUMMARY REPOR						
Project:	SAWS In	npoundmen	t Assessr	nent Lagoor	ns and		RunII): I	CP-MS5	_240223	4	
Sample ID: CCV2-	240223	Batch ID:	R13158	2	TestNo	: SW	6020B		Units:	mg/L		
SampType: CCV		Run ID:	ICP-MS	5_240223A	Analys	is Date: 2/2 :	3/2024 11:52	2:00 AM	Prep Date	:		
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RP	DLimit Qual	
Calcium			4.95	0.300	5.00	0	99.0	90	110			
Iron			5.07	0.100	5.00	0	101	90	110			

Qualifiers:

Analyte detected in the associated Method Blank

Analyte detected between MDL and RL J ND Not Detected at the Method Detection Limit

RL Reporting Limit

В

J Analyte detected between SDL and RL DF Dilution Factor

MDL Method Detection Limit R RPD outside accepted control limits Page 12 of 40

S Spike Recovery outside control limits

CLIENT: Weston Solutions, Inc.

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS4_231226B

Project:

Work Order:

2402269

SAWS Impoundment Assessment Lagoons and

Sample ID: DCS1-113405	Batch ID:	113405		TestNo	SW8	3270E		Units:	mg/ł	Кg
SampType: DCS	Run ID:	GCMS4	_231226B	Analys	is Date: 12/2	6/2023 4:43	:00 PM	Prep Date:	12/2	6/2023
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qua
2,4,5-Trichlorophenol		0.0167	0.0266	0.02000	0	83.3	10	400	0	0
2,4,6-Trichlorophenol		0.0167	0.0266	0.02000	0	83.3	10	400	0	0
2,4-Dichlorophenol		0.0173	0.0266	0.02000	0	86.7	10	400	0	0
2,4-Dimethylphenol		0.0207	0.0266	0.02000	0	103	10	400	0	0
2,4-Dinitrotoluene		0.0307	0.0266	0.02000	0	153	10	400	0	0
2,6-Dinitrotoluene		0.0147	0.0266	0.02000	0	73.3	10	400	0	0
2-Chloronaphthalene		0.0187	0.0266	0.02000	0	93.3	10	400	0	0
2-Chlorophenol		0.0187	0.0266	0.02000	0	93.3	10	400	0	0
2-Methylnaphthalene		0.0167	0.0266	0.02000	0	83.3	10	400	0	0
2-Methylphenol		0.0187	0.0266	0.02000	0	93.3	10	400	0	0
2-Nitroaniline		0.0373	0.0266	0.02000	0	187	10	400	0	0
2-Nitrophenol		0.0320	0.0266	0.02000	0	160	10	400	0	0
3,3´-Dichlorobenzidine		0.0307	0.0266	0.02000	0	153	10	400	0	0
3-Nitroaniline		0.0373	0.0266	0.02000	0	187	10	400	0	0
4-Bromophenyl phenyl ether		0.0160	0.0266	0.02000	0	80.0	10	400	0	0
4-Chloro-3-methylphenol		0.0180	0.0266	0.02000	0	90.0	10	400	0	0
4-Chlorophenyl phenyl ether		0.0193	0.0266	0.02000	0	96.7	10	400	0	0
4-Methylphenol		0.0167	0.0266	0.02000	0	83.3	10	400	0	0
4-Nitroaniline		0.0367	0.0266	0.02000	0	183	10	400	0	0
Acenaphthene		0.0180	0.0266	0.02000	0	90.0	10	400	0	0
Acenaphthylene		0.0147	0.0266	0.02000	0	73.3	10	400	0	0
Acetophenone		0.0133	0.0266	0.02000	0	66.7	10	400	0	0
Anthracene		0.0167	0.0266	0.02000	0	83.3	10	400	0	0
Atrazine		0.0193	0.0266	0.02000	0	96.7	10	400	0	0
Benzaldehyde		0.0153	0.0266	0.02000	0	76.7	10	400	0	0 N
Benzo[a]anthracene		0.0100	0.0266	0.02000	0	50.0	10	400	0	0
Benzo[a]pyrene		0.0213	0.0266	0.02000	0	107	10	400	0	0
Benzo[b]fluoranthene		0.0213	0.0266	0.02000	0	107	10	400	0	0
Benzo[g,h,i]perylene		0.0207	0.0266	0.02000	0	103	10	400	0	0
Benzo[k]fluoranthene		0.0187	0.0266	0.02000	0	93.3	10	400	0	0
Biphenyl		0.0187	0.0266	0.02000	0	93.3	10	400	0	0
Bis(2-chloroethoxy)methane		0.0193	0.0266	0.02000	0	96.7	10	400	0	0
Bis(2-chloroethyl)ether		0.0207	0.0266	0.02000	0	103	10	400	0	0
Bis(2-chloroisopropyl)ether		0.0247	0.0266	0.02000	0	123	10	400	0	0
Carbazole		0.0200	0.0266	0.02000	0	100	10	400	0	0
Dibenz[a,h]anthracene		0.0207	0.0266	0.02000	0	103	10	400	0	0
Dibenzofuran		0.0193	0.0266	0.02000	0	96.7	10	400	0	0
Fluoranthene		0.0193	0.0266	0.02000	0	96.7	10	400	0	0
Fluorene		0.0180	0.0266	0.02000	0	90.0	10	400	0	0
Hexachlorobenzene		0.0153	0.0266	0.02000	0	76.7	10	400	0	0
Hexachlorobutadiene		0.0180	0.0266	0.02000	0	90.0	10	400	0	0

Qualifiers:

Analyte detected in the associated Method Blank

DF Dilution Factor

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

В

J Analyte detected between SDL and RL R RPD outside accepted control limits S Spike Recovery outside control limits

MDL Method Detection Limit

Parameter not NELAP certified Ν

Page 13 of 40

CLIENT: Weston Solutions, Inc.

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS4_231226B

Project:

Work Order:

2402269

SAWS Impoundment Assessment Lagoons and

Sample ID: DCS1-113405	Batch ID:	113405		TestNo	: SW	8270E		Units:	mg/l	Кg
SampType: DCS	Run ID:	GCMS4	_231226B	Analys	is Date: 12/2	26/2023 4:43	:00 PM	Prep Date:	12/2	6/2023
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit '	%RPD	RPDLimit Qual
Hexachloroethane		0.0207	0.0266	0.02000	0	103	10	400	0	0
Indeno[1,2,3-cd]pyrene		0.0207	0.0266	0.02000	0	103	10	400	0	0
Naphthalene		0.0187	0.0266	0.02000	0	93.3	10	400	0	0
Nitrobenzene		0.0213	0.0266	0.02000	0	107	10	400	0	0
N-Nitrosodi-n-propylamine		0.0167	0.0266	0.02000	0	83.3	10	400	0	0
N-Nitrosodiphenylamine		0.0167	0.0266	0.02000	0	83.3	10	400	0	0
Pentachlorophenol		0.0393	0.0266	0.02000	0	197	10	400	0	0
Phenanthrene	(0.00733	0.0266	0.02000	0	36.7	10	400	0	0
Phenol		0.0233	0.0266	0.02000	0	117	10	400	0	0
Pyrene		0.0107	0.0266	0.02000	0	53.3	10	400	0	0
Sample ID: DCS2-113405	Batch ID:	113405		TestNo	: SW	8270E		Units:	mg/l	٨g
SampType: DCS2	Run ID:	GCMS4	_231226B	Analys	is Date: 12/2	26/2023 5:08	:00 PM	Prep Date:	12/2	6/2023
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit '	%RPD	RPDLimit Qual
2,4-Dinitrophenol		0.0807	0.132	0.04000	0	202	10	400	0	0
4,6-Dinitro-2-methylphenol		0.114	0.0660	0.04000	0	285	10	400	0	0
4-Chloroaniline		0.0167	0.0660	0.04000	0	41.7	10	400	0	0
4-Nitrophenol		0.0620	0.132	0.04000	0	155	10	400	0	0
Benzoic acid		0.0833	0.132	0.04000	0	208	10	400	0	0
Benzyl alcohol		0.0300	0.0660	0.04000	0	75.0	10	400	0	0
Bis(2-ethylhexyl)phthalate		0.0720	0.0660	0.04000	0	180	10	400	0	0
Butyl benzyl phthalate		0.0353	0.0660	0.04000	0	88.3	10	400	0	0
Chrysene		0.0207	0.0266	0.04000	0	51.7	10	400	0	0
Diethyl phthalate		0.0420	0.0660	0.04000	0	105	10	400	0	0
Dimethyl phthalate		0.0347	0.0660	0.04000	0	86.7	10	400	0	0
Di-n-butyl phthalate		0.0420	0.0660	0.04000	0	105	10	400	0	0
Di-n-octyl phthalate		0.0547	0.0660	0.04000	0	137	10	400	0	0
Hexachlorocyclopentadiene		0.0513	0.0660	0.04000	0	128	10	400	0	0
Isophorone		0.0333	0.0660	0.04000	0	83.3	10	400	0	0
Pyridine		0.0280	0.132	0.04000	0	70.0	10	400	0	0
Sample ID: DCS3-113405	Batch ID:	113405		TestNo	: SW	8270E		Units:	mg/l	Кg
SampType: DCS3	Run ID:	GCMS4	_231226B	Analys	is Date: 12/2	26/2023 5:33	:00 PM	Prep Date:	12/2	6/2023
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Caprolactam		0.0960	0.0660	0.1000	0	96.0	10	400	0	0

Qualifiers:

B Analyte detected in the associated Method Blank

- J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDLMethod Detection LimitRRPD outside accepted control limits
 - S Spike Recovery outside control limits
 - N Parameter not NELAP certified

Page 14 of 40

CLIENT: Weston Solutions, Inc.

ANALYTICAL QC SUMMARY REPORT

Project:

Work Order: 2402269

SAWS Impoundment Assessment Lagoons and

RunID: GCMS4_240226A

The QC data in batch 114177 applies to the following samples: 2402269-01B, 2402269-02B, 2402269-03B, 2402269-04B, 2402269-06B, 2402269-07B, 2402269-08B

Sample ID: LCS-114177	Batch ID: 114177			TestNo	D: SW8	Units:	mg/Kg			
SampType: LCS	Run ID:	GCMS	4_240226A	Analysis Date: 2/26/2024 3:03:00			00 PM	Prep Date:	2/26/2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit %	6RPD RPDLimit Qua	
2,4,5-Trichlorophenol		1.65	0.0266	1.340	0	123	49	125		
2,4,6-Trichlorophenol		1.65	0.0266	1.340	0	123	43	125		
2,4-Dichlorophenol		1.50	0.0266	1.340	0	112	45	125		
2,4-Dimethylphenol		1.41	0.0266	1.340	0	105	32	125		
2,4-Dinitrophenol		1.62	0.132	1.340	0	121	25	132		
2,4-Dinitrotoluene		1.43	0.0266	1.340	0	107	48	125		
2,6-Dinitrotoluene		1.52	0.0266	1.340	0	114	48	125		
2-Chloronaphthalene		1.37	0.0266	1.340	0	102	45	125		
2-Chlorophenol		1.39	0.0266	1.340	0	104	44	125		
2-Methylnaphthalene		1.22	0.0266	1.340	0	91.3	47	125		
2-Methylphenol		1.35	0.0266	1.340	0	101	40	125		
2-Nitroaniline		1.39	0.0266	1.340	0	104	44	125		
2-Nitrophenol		1.41	0.0266	1.340	0	105	42	125		
3,3'-Dichlorobenzidine		1.52	0.0266	1.340	0	114	25	128		
3-Nitroaniline		1.31	0.0266	1.340	0	98.0	27	125		
4,6-Dinitro-2-methylphenol		1.63	0.0660	1.340	0	121	29	137		
4-Bromophenyl phenyl ether		1.29	0.0266	1.340	0	96.6	46	125		
4-Chloro-3-methylphenol		1.40	0.0266	1.340	0	105	46	125		
4-Chloroaniline		0.825	0.0660	1.340	0	61.6	34	125		
4-Chlorophenyl phenyl ether		1.29	0.0266	1.340	0	96.0	47	125		
4-Methylphenol		1.32	0.0266	1.340	0	98.6	41	125		
4-Nitroaniline		1.47	0.0266	1.340	0	110	34	125		
4-Nitrophenol		1.47	0.132	1.340	0	110	25	138		
Acenaphthene		1.25	0.0266	1.340	0	93.3	46	125		
Acenaphthylene		1.14	0.0266	1.340	0	85.4	44	125		
Acetophenone		1.11	0.0266	1.340	0	82.8	40	125		
Anthracene		1.24	0.0266	1.340	0	92.6	53	125		
Atrazine		1.90	0.0266	1.340	0	142	40	125	S	
Benzaldehyde		1.22	0.0266	1.340	0	90.9	40	125	Ν	
Benzo[a]anthracene		1.40	0.0266	1.340	0	104	52	125		
Benzo[a]pyrene		1.50	0.0266	1.340	0	112	50	125		
Benzo[b]fluoranthene		1.49	0.0266	1.340	0	111	45	125		
Benzo[g,h,i]perylene		1.53	0.0266	1.340	0	114	38	126		
Benzo[k]fluoranthene		1.36	0.0266	1.340	0	101	45	125		
Benzoic acid		1.39	0.132	1.340	0	103	25	125		
Benzyl alcohol		1.23	0.0660	1.340	0	92.1	25	125		
Biphenyl		1.56	0.0266	1.340	0	116	40	125		
Bis(2-chloroethoxy)methane		1.21	0.0266	1.340	0	90.1	43	125		
Bis(2-chloroethyl)ether		1.19	0.0266	1.340	0	88.6	38	125		

Analyte detected in the associated Method Blank

Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

B J

J Analyte detected between SDL and RL

DF Dilution Factor

MDLMethod Detection LimitRRPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 15 of 40
CLIENT: Weston Solutions, Inc.

ANALYTICAL QC SUMMARY REPORT

GCMS4_240226A

RunID:

Project:

Work Order:

2402269

SAWS Impoundment Assessment Lagoons and

Sample ID: LCS-114177	Batch ID:	114177		TestNo	SW8	3270E		Units:	mg/Kg
SampType: LCS	Run ID:	GCMS4_	240226A	Analys	is Date: 2/26	/2024 3:03:	00 PM	Prep Date:	2/26/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit Qual
Bis(2-chloroisopropyl)ether		1.24	0.0266	1.340	0	92.5	25	125	
Bis(2-ethylhexyl)phthalate		1.59	0.0660	1.340	0	119	47	127	
Butyl benzyl phthalate		1.52	0.0660	1.340	0	114	49	125	
Caprolactam		1.38	0.0660	1.340	0	103	40	125	
Carbazole		1.48	0.0266	1.340	0	110	40	125	
Chrysene		1.39	0.0266	1.340	0	103	53	125	
Dibenz[a,h]anthracene		1.62	0.0266	1.340	0	121	41	125	
Dibenzofuran		1.28	0.0266	1.340	0	95.8	51	125	
Diethyl phthalate		1.37	0.0660	1.340	0	102	50	125	
Dimethyl phthalate		1.33	0.0660	1.340	0	99.5	49	125	
Di-n-butyl phthalate		1.41	0.0660	1.340	0	105	56	125	
Di-n-octyl phthalate		1.62	0.0660	1.340	0	121	41	132	
Fluoranthene		1.29	0.0266	1.340	0	96.3	54	125	
Fluorene		1.28	0.0266	1.340	0	95.2	49	125	
Hexachlorobenzene		1.19	0.0266	1.340	0	89.2	47	125	
Hexachlorobutadiene		1.30	0.0266	1.340	0	96.8	40	125	
Hexachlorocyclopentadiene		1.64	0.0660	1.340	0	122	31	135	
Hexachloroethane		1.17	0.0266	1.340	0	87.0	34	125	
Indeno[1,2,3-cd]pyrene		1.58	0.0266	1.340	0	118	38	125	
Isophorone		1.24	0.0660	1.340	0	92.2	43	125	
Naphthalene		1.22	0.0266	1.340	0	91.1	40	125	
Nitrobenzene		1.29	0.0266	1.340	0	96.5	41	125	
N-Nitrosodi-n-propylamine		1.09	0.0266	1.340	0	81.1	40	125	
N-Nitrosodiphenylamine		1.34	0.0266	1.340	0	99.9	49	125	
Pentachlorophenol		1.54	0.0266	1.340	0	115	25	125	
Phenanthrene		1.37	0.0266	1.340	0	102	50	125	
Phenol		1.40	0.0266	1.340	0	105	39	125	
Pyrene		1.44	0.0266	1.340	0	108	46	125	
Pyridine		0.792	0.132	1.340	0	59.1	20	125	
Surr: 2,4,6-Tribromophenol		0.633		0.6670		95.0	45	126	
Surr: 2-Fluorobiphenyl		0.627		0.6670		94.0	60	125	
Surr: 2-Fluorophenol		0.613		0.6670		92.0	37	125	
Surr: 4-Terphenyl-d14		0.647		0.6670		97.0	45	125	
Surr: Nitrobenzene-d5		0.593		0.6670		89.0	45	125	
Surr: Phenol-d5		0.587		0.6670		88.0	40	125	
Sample ID: MB-114177	Batch ID:	114177		TestNo	swa	3270E		Units:	mg/Kg
SampType: MBLK	Run ID:	GCMS4_	240226A	Analys	is Date: 2/26	/2024 4:18:	00 PM	Prep Date:	2/26/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qual
2,4,5-Trichlorophenol	<	:0.0100	0.0266						

Qualifiers: B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

- D Not Detected at the Method Detection Linn
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDLMethod Detection LimitRRPD outside accepted control limits
 - S Spike Recovery outside control limits

Page 16 of 40

N Parameter not NELAP certified

CLIENT: Weston Solutions, Inc.

ANALYTICAL QC SUMMARY REPORT

GCMS4_240226A

RunID:

Project:

Work Order: 2402269

SAWS Impoundment Assessment Lagoons and

Sample ID: MB-114177	Batch ID:	114177		TestNo	SW	8270E		Units:	mg/Kg
SampType: MBLK	Run ID:	GCMS4	_240226A	Analysi	s Date: 2/26	6/2024 4:18:	00 PM	Prep Date:	2/26/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RPDLimit Qual
2,4,6-Trichlorophenol	<	<0.0100	0.0266						
2,4-Dichlorophenol	<	<0.0100	0.0266						
2,4-Dimethylphenol	<	<0.0100	0.0266						
2,4-Dinitrophenol	<	<0.0500	0.132						
2,4-Dinitrotoluene	<	<0.0100	0.0266						
2,6-Dinitrotoluene	<	<0.0100	0.0266						
2-Chloronaphthalene	<	<0.0100	0.0266						
2-Chlorophenol	<	<0.0100	0.0266						
2-Methylnaphthalene	<	<0.0100	0.0266						
2-Methylphenol	<	<0.0100	0.0266						
2-Nitroaniline	<	<0.0100	0.0266						
2-Nitrophenol	<	<0.0100	0.0266						
3,3´-Dichlorobenzidine	<	<0.0100	0.0266						
3-Nitroaniline	<	<0.0100	0.0266						
4,6-Dinitro-2-methylphenol	<	<0.0300	0.0660						
4-Bromophenyl phenyl ether	<	<0.0100	0.0266						
4-Chloro-3-methylphenol	<	<0.0100	0.0266						
4-Chloroaniline	<	<0.0300	0.0660						
4-Chlorophenyl phenyl ether	<	<0.0100	0.0266						
4-Methylphenol	<	<0.0200	0.0266						
4-Nitroaniline	<	<0.0100	0.0266						
4-Nitrophenol	<	<0.0500	0.132						
Acenaphthene	<	<0.0100	0.0266						
Acenaphthylene	<	<0.0100	0.0266						
Acetophenone	<	<0.0100	0.0266						
Anthracene	<	<0.0100	0.0266						
Atrazine	<	<0.0100	0.0266						
Benzaldehyde	<	<0.0100	0.0266						N
Benzo[a]anthracene	<	<0.0100	0.0266						
Benzo[a]pyrene	<	<0.0100	0.0266						
Benzo[b]fluoranthene	<	<0.0100	0.0266						
Benzo[g,h,i]perylene	<	<0.0100	0.0266						
Benzo[k]fluoranthene	<	<0.0100	0.0266						
Benzoic acid	<	<0.0500	0.132						
Benzyl alcohol	<	<0.0300	0.0660						
Biphenyl	<	<0.0100	0.0266						
Bis(2-chloroethoxy)methane	<	<0.0100	0.0266						
Bis(2-chloroethyl)ether	<	<0.0100	0.0266						
Bis(2-chloroisopropyl)ether	<	<0.0100	0.0266						
Bis(2-ethylhexyl)phthalate	<	<0.0640	0.0660						
Butyl benzyl phthalate	<	<0.0400	0.0660						

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 17 of 40

Weston Solutions, Inc.

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS4_240226A

Project:

Work Order: 2402269

SAWS Impoundment Assessment Lagoons and

SampType: MBLK						2102		Onito.	ilig/rtg	
	Run ID:	GCMS4	_240226A	Analys	is Date: 2/26	/2024 4:18:	00 PM	Prep Date:	2/26/2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %		Jual
Caprolactam	<	<0.0300	0.0660							
Carbazole	~	<0.0100	0.0266							
Chrysene	~	<0.0100	0.0266							
Dibenz[a,h]anthracene	<	<0.0100	0.0266							
Dibenzofuran	~	<0.0100	0.0266							
Diethyl phthalate	<	<0.0400	0.0660							
Dimethyl phthalate	~	<0.0400	0.0660							
Di-n-butyl phthalate	<	<0.0400	0.0660							
Di-n-octyl phthalate	ć	<0.0400	0.0660							
Fluoranthene	~	<0.0100	0.0266							
Fluorene	<	<0.0100	0.0266							
Hexachlorobenzene	<	<0.0100	0.0266							
Hexachlorobutadiene	<	<0.0100	0.0266							
Hexachlorocyclopentadiene	~	<0.0300	0.0660							
Hexachloroethane	~	<0.0100	0.0266							
Indeno[1,2,3-cd]pyrene	c	<0.0100	0.0266							
Isophorone	c	<0.0300	0.0660							
Naphthalene	c	<0.0100	0.0266							
Nitrobenzene		<0.0100	0.0266							
N-Nitrosodi-n-propylamine		<0.0100	0.0266							
N-Nitrosodiphenvlamine		<0.0100	0.0266							
Pentachlorophenol		<0.0100	0.0266							
Phenanthrene		<0.0100	0.0266							
Phenol		<0.0100	0.0266							
Pyrene	~	<0.0100	0.0266							
Pyridine	<pre></pre>	<0.0500	0.132							
Surr: 2.4.6-Tribromophenol		0.573	01102	0.6670		86.0	45	126		
Surr: 2-Fluorobiphenyl		0.607		0.6670		91.0	60	125		
Surr: 2-Fluorophenol		0.593		0.6670		89.0	37	125		
Surr: 4-Terphenyl-d14		0.633		0.6670		95.0	45	125		
Surr: Nitrobenzene-d5		0.567		0.6670		85 0	45	125		
Surr: Phenol-d5		0.573		0.6670		86.0	40	125		
Sample ID: 2402269-01BMS	Batch ID:	114177		TestNo	SW8	3270E		Units:	mg/Kg-dry	
SampType: MS	Run ID:	GCMS4	_240226A	Analys	is Date: 2/26 /	/2024 8:30:	00 PM	Prep Date:	2/26/2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit	Qual
24.5-Trichlorophenol		1.89	0.0331	1,668	0	114	49	125		
2 4 6-Trichlorophenol		1.92	0.0331	1 668	0	115	43 43	125		
2 4-Dichlorophenol		1.72	0.0001	1.668	0	103	45	125		
2.4-Dimethylphenol		1.71	0.0331	1.668	0	103	-32	125		
2,1 2000000			0.0001	1.000	0	102	52	120		

Analyte detected between MDL and RL J ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

MDL Method Detection Limit

R RPD outside accepted control limits Page 18 of 40

S Spike Recovery outside control limits

Ν Parameter not NELAP certified

Weston Solutions, Inc.

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS4_240226A

Project:

Work Order:

2402269 SAWS Impoundment Assessment Lagoons and

Sample ID: 2402269-01BMS	Batch ID: 11	4177	TestN	lo: SW	8270E		Units:	mg/Kg-dry	
SampType: MS	Run ID: GO	CMS4_240226A	Analy	sis Date: 2/20	6/2024 8:30	:00 PM	00 PM Prep Date: 2/26/2024		
Analyte	Resi	ult RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit %	6RPD RPDLim	nit Qual
2,4-Dinitrophenol	0.35	0.164	1.668	0	21.0	25	132		S
2,4-Dinitrotoluene	1.62	2 0.0331	1.668	0	97.4	48	125		
2,6-Dinitrotoluene	1.78	8 0.0331	1.668	0	107	48	125		
2-Chloronaphthalene	1.6	5 0.0331	1.668	0	99.2	45	125		
2-Chlorophenol	1.72	2 0.0331	1.668	0	103	44	125		
2-Methylnaphthalene	1.3	7 0.0331	1.668	0	82.2	47	125		
2-Methylphenol	1.70	0.0331	1.668	0	102	40	125		
2-Nitroaniline	1.6	3 0.0331	1.668	0	97.6	44	125		
2-Nitrophenol	1.62	2 0.0331	1.668	0	97.3	42	125		
3,3'-Dichlorobenzidine	1.70	6 0.0331	1.668	0	106	25	128		
3-Nitroaniline	1.5	7 0.0331	1.668	0	94.1	27	125		
4,6-Dinitro-2-methylphenol	0.70	0 0.0821	1.668	0	42.0	29	137		
4-Bromophenyl phenyl ether	1.52	2 0.0331	1.668	0	90.8	46	125		
4-Chloro-3-methylphenol	1.5	1 0.0331	1.668	0	90.8	46	125		
4-Chloroaniline	0.96	0.0821	1.668	0	58.0	34	125		
4-Chlorophenyl phenyl ether	1.52	2 0.0331	1.668	0	91.2	47	125		
4-Methylphenol	1.68	8 0.0331	1.668	0	101	41	125		
4-Nitroaniline	1.64	4 0.0331	1.668	0	98.6	34	125		
4-Nitrophenol	2.00	0.164	1.668	0	120	25	138		
Acenaphthene	1.48	8 0.0331	1.668	0	88.5	46	125		
Acenaphthylene	1.30	6 0.0331	1.668	0	81.8	44	125		
Acetophenone	1.42	2 0.0331	1.668	0	85.2	40	125		
Anthracene	1.49	9 0.0331	1.668	0	89.3	53	125		
Atrazine	2.3	1 0.0331	1.668	0	139	40	125		S
Benzaldehyde	1.49	9 0.0331	1.668	0	89.1	40	125		Ν
Benzo[a]anthracene	1.68	8 0.0331	1.668	0	101	52	125		
Benzo[a]pyrene	1.8	3 0.0331	1.668	0	110	50	125		
Benzo[b]fluoranthene	1.7	7 0.0331	1.668	0	106	45	125		
Benzo[g,h,i]perylene	1.82	2 0.0331	1.668	0	109	38	126		
Benzo[k]fluoranthene	1.70	0.0331	1.668	0	102	45	125		
Benzoic acid	0.29	0 0.164	1.668	0	17.4	25	125		S
Benzyl alcohol	1.49	9 0.0821	1.668	0	89.5	25	125		
Biphenyl	1.9	5 0.0331	1.668	0	117	40	125		
Bis(2-chloroethoxy)methane	1.4	4 0.0331	1.668	0	86.4	43	125		
Bis(2-chloroethyl)ether	1.42	2 0.0331	1.668	0	85.0	38	125		
Bis(2-chloroisopropyl)ether	1.5	5 0.0331	1.668	0	92.9	25	125		
Bis(2-ethylhexyl)phthalate	1.9	6 0.0821	1.668	0	117	47	127		
Butyl benzyl phthalate	1.8	8 0.0821	1.668	0	113	49	125		
Caprolactam	1.2	2 0.0821	1.668	0	72.9	40	125		
Carbazole	1.8	1 0.0331	1.668	0	108	40	125		
Chrvsene	1.6	5 0.0331	1.668	0	98.7	53	125		
				-					

Qualifiers:

В

Analyte detected in the associated Method Blank

DF Dilution Factor

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

R RPD outside accepted control limits

MDL Method Detection Limit

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 19 of 40

CLIENT: Work Order:

Weston Solutions, Inc.

ANALYTICAL QC SUMMARY REPORT

GCMS4_240226A

RunID:

Project:

2402269

SAWS Impoundment Assessment La	agoons and
--------------------------------	------------

Sample ID: 2402269-01BMS	Batch ID:	114177		TestNo:	SV	V8270E		Units:	mg/k	(g-dry
SampType: MS	Run ID:	GCMS4	_240226A	Analysis	a Date: 2/2	26/2024 8:30:0	00 PM	Prep Date:	2/26/	2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 🦻	%RPD	RPDLimit Qual
Dibenz[a,h]anthracene		1.95	0.0331	1.668	0	117	41	125		
Dibenzofuran		1.51	0.0331	1.668	0	90.8	51	125		
Diethyl phthalate		1.60	0.0821	1.668	0	95.9	50	125		
Dimethyl phthalate		1.57	0.0821	1.668	0	94.3	49	125		
Di-n-butyl phthalate		1.67	0.0821	1.668	0	100	56	125		
Di-n-octyl phthalate		2.03	0.0821	1.668	0	122	41	132		
Fluoranthene		1.57	0.0331	1.668	0	94.1	54	125		
Fluorene		1.50	0.0331	1.668	0	89.9	49	125		
Hexachlorobenzene		1.44	0.0331	1.668	0	86.1	47	125		
Hexachlorobutadiene		1.50	0.0331	1.668	0	89.8	40	125		
Hexachlorocyclopentadiene		1.91	0.0821	1.668	0	115	31	135		
Hexachloroethane		1.36	0.0331	1.668	0	81.7	34	125		
Indeno[1,2,3-cd]pyrene		1.92	0.0331	1.668	0	115	38	125		
Isophorone		1.44	0.0821	1.668	0	86.5	43	125		
Naphthalene		1.42	0.0331	1.668	0	85.3	40	125		
Nitrobenzene		1.49	0.0331	1.668	0	89.6	41	125		
N-Nitrosodi-n-propylamine		1.37	0.0331	1.668	0	82.4	40	125		
N-Nitrosodiphenylamine		1.61	0.0331	1.668	0	96.7	49	125		
Pentachlorophenol		1.15	0.0331	1.668	0	68.9	25	125		
Phenanthrene		1.63	0.0331	1.668	0	97.5	50	125		
Phenol		1.73	0.0331	1.668	0	103	39	125		
Pvrene		1.75	0.0331	1.668	0	105	46	125		
Pvridine		0.864	0.164	1.668	0	51.8	20	125		
Surr: 2.4.6-Tribromophenol		0.722		0.8302	-	87.0	45	126		
Surr: 2-Fluorobiphenvl		0.772		0.8302		93.0	60	125		
Surr: 2-Eluorophenol		0.747		0.8302		90.0	37	125		
Surr: 4-Terphenyl-d14		0.780		0.8302		94.0	45	125		
Surr: Nitrobenzene-d5		0.697		0.8302		84.0	45	125		
Surr: Phenol-d5		0.722		0.8302		87.0	40	125		
Sample ID: 2402269-01BMSD	Batch ID:	114177		TestNo:	SV	V8270E		Units:	mg/k	(g-dry
SampType: MSD	Run ID:	GCMS4	_240226A	Analysis	s Date: 2/2	26/2024 8:56:0	00 PM	Prep Date:	2/26/	2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD	RPDLimit Qual
2,4,5-Trichlorophenol		1.96	0.0343	1.728	0	113	49	125	3.31	30
2,4,6-Trichlorophenol		1.96	0.0343	1.728	0	113	43	125	1.96	30
2,4-Dichlorophenol		1.73	0.0343	1.728	0	100	45	125	0.544	30
2,4-Dimethylphenol		1.70	0.0343	1.728	0	98.5	32	125	0.387	30

Qualifiers:

В

J

2,4-Dinitrophenol

2,4-Dinitrotoluene

2,6-Dinitrotoluene

Analyte detected in the associated Method Blank

0.305

1.70

1.86

0.170

0.0343

0.0343

Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

0

0

0

MDLMethod Detection LimitRRPD outside accepted control limits

S Spike Recovery outside control limits

17.7

98.6

108

25

48

48

132

125

125

14.0

4.74

4.27

N Parameter not NELAP certified

1.728

1.728

1.728

Page 20 of 40

30

30

30

S

Work Order:

Weston Solutions, Inc.

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS4_240226A

Project:

2402269

SAWS Impoundment Assessment Lagoons and

Sample ID: 2402269-01BMSD	Batch ID:	114177		TestNo	: SW8	8270E		Units:	mg/ŀ	(g-dry	
SampType: MSD	Run ID:	GCMS4	_240226A	Analys	is Date: 2/26	/2024 8:56:	00 PM	Prep Date:	2/26/	/2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit	Qual
2-Chloronaphthalene		1.68	0.0343	1.728	0	97.5	45	125	1.86	30	
2-Chlorophenol		1.70	0.0343	1.728	0	98.7	44	125	0.721	30	
2-Methylnaphthalene		1.40	0.0343	1.728	0	80.9	47	125	1.94	30	
2-Methylphenol		1.64	0.0343	1.728	0	94.9	40	125	3.90	30	
2-Nitroaniline		1.69	0.0343	1.728	0	97.9	44	125	3.83	30	
2-Nitrophenol		1.67	0.0343	1.728	0	96.6	42	125	2.86	30	
3,3'-Dichlorobenzidine		1.87	0.0343	1.728	0	108	25	128	5.80	30	
3-Nitroaniline		1.64	0.0343	1.728	0	94.8	27	125	4.21	30	
4,6-Dinitro-2-methylphenol		0.644	0.0851	1.728	0	37.3	29	137	8.41	30	
4-Bromophenyl phenyl ether		1.59	0.0343	1.728	0	92.0	46	125	4.83	30	
4-Chloro-3-methylphenol		1.55	0.0343	1.728	0	89.6	46	125	2.15	30	
4-Chloroaniline		1.01	0.0851	1.728	0	58.7	34	125	4.72	30	
4-Chlorophenyl phenyl ether		1.56	0.0343	1.728	0	90.2	47	125	2.43	30	
4-Methylphenol		1.60	0.0343	1.728	0	92.8	41	125	4.45	30	
4-Nitroaniline		1.74	0.0343	1.728	0	101	34	125	5.87	30	
4-Nitrophenol		1.80	0.170	1.728	0	104	25	138	10.7	30	
Acenaphthene		1.52	0.0343	1.728	0	88.1	46	125	3.07	30	
Acenaphthylene		1.40	0.0343	1.728	0	80.7	44	125	2.18	30	
Acetophenone		1.38	0.0343	1.728	0	79.8	40	125	3.05	30	
Anthracene		1.54	0.0343	1.728	0	89.0	53	125	3.13	30	
Atrazine		2.33	0.0343	1.728	0	135	40	125	0.798	30	s
Benzaldehyde		1.46	0.0343	1.728	0	84.7	40	125	1.57	30	Ν
Benzo[a]anthracene		1.76	0.0343	1.728	0	102	52	125	4.41	30	
Benzo[a]pyrene		1.87	0.0343	1.728	0	108	50	125	2.38	30	
Benzo[b]fluoranthene		1.96	0.0343	1.728	0	114	45	125	10.2	30	
Benzo[g,h,i]perylene		1.88	0.0343	1.728	0	109	38	126	3.34	30	
Benzo[k]fluoranthene		1.64	0.0343	1.728	0	94.7	45	125	3.92	30	
Benzoic acid		0.293	0.170	1.728	0	17.0	25	125	1.21	30	S
Benzyl alcohol		1.50	0.0851	1.728	0	86.7	25	125	0.361	30	
Biphenyl		1.94	0.0343	1.728	0	112	40	125	0.818	30	
Bis(2-chloroethoxy)methane		1.52	0.0343	1.728	0	87.7	43	125	5.01	30	
Bis(2-chloroethyl)ether		1.44	0.0343	1.728	0	83.3	38	125	1.52	30	
Bis(2-chloroisopropyl)ether		1.55	0.0343	1.728	0	89.9	25	125	0.205	30	
Bis(2-ethylhexyl)phthalate		2.01	0.0851	1.728	0	117	47	127	2.76	30	
Butyl benzyl phthalate		1.93	0.0851	1.728	0	112	49	125	2.90	30	
Caprolactam		1.26	0.0851	1.728	0	72.7	40	125	3.32	30	
Carbazole		1.84	0.0343	1.728	0	106	40	125	1.67	30	
Chrysene		1.70	0.0343	1.728	0	98.1	53	125	2.97	30	
Dibenz[a,h]anthracene		1.98	0.0343	1.728	0	115	41	125	1.55	30	
Dibenzofuran		1.59	0.0343	1.728	0	92.0	51	125	4.83	30	
Diethyl phthalate		1.68	0.0851	1.728	0	97.1	50	125	4.76	30	

Qualifiers:

В

Analyte detected in the associated Method Blank

DF Dilution Factor

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

R RPD outside accepted control limits

MDL Method Detection Limit

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 21 of 40

CLIENT: W

Weston Solutions, Inc.

ANALYTICAL QC SUMMARY REPORT

GCMS4_240226A

RunID:

Project:

Work Order:

2402269

SAWS Impoundment Assessment Lagoons and

Sample ID: 2402269-01BMSD	Batch ID:	114177		TestNo	: SI	W8270E		Units:	mg/l	Kg-dry
SampType: MSD	Run ID:	GCMS4_	_240226A	Analysi	s Date: 2/	26/2024 8:56:0	0 PM	Prep Date:	2/26	/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Dimethyl phthalate		1.65	0.0851	1.728	0	95.6	49	125	4.89	30
Di-n-butyl phthalate		1.74	0.0851	1.728	0	101	56	125	4.12	30
Di-n-octyl phthalate		2.09	0.0851	1.728	0	121	41	132	2.83	30
Fluoranthene		1.62	0.0343	1.728	0	93.7	54	125	3.05	30
Fluorene		1.57	0.0343	1.728	0	90.7	49	125	4.46	30
Hexachlorobenzene		1.46	0.0343	1.728	0	84.6	47	125	1.78	30
Hexachlorobutadiene		1.54	0.0343	1.728	0	88.9	40	125	2.58	30
Hexachlorocyclopentadiene		1.90	0.0851	1.728	0	110	31	135	0.416	30
Hexachloroethane		1.37	0.0343	1.728	0	79.5	34	125	0.809	30
Indeno[1,2,3-cd]pyrene		1.98	0.0343	1.728	0	114	38	125	2.87	30
Isophorone		1.50	0.0851	1.728	0	86.7	43	125	3.81	30
Naphthalene		1.46	0.0343	1.728	0	84.6	40	125	2.71	30
Nitrobenzene		1.57	0.0343	1.728	0	90.9	41	125	5.01	30
N-Nitrosodi-n-propylamine		1.35	0.0343	1.728	0	78.4	40	125	1.49	30
N-Nitrosodiphenylamine		1.67	0.0343	1.728	0	96.5	49	125	3.32	30
Pentachlorophenol		1.13	0.0343	1.728	0	65.2	25	125	1.89	30
Phenanthrene		1.66	0.0343	1.728	0	96.1	50	125	2.14	30
Phenol		1.70	0.0343	1.728	0	98.6	39	125	1.25	30
Pyrene		1.79	0.0343	1.728	0	104	46	125	2.43	30
Pyridine		0.884	0.170	1.728	0	51.2	20	125	2.37	30
Surr: 2,4,6-Tribromophenol		0.722		0.8600		84.0	45	126	0	0
Surr: 2-Fluorobiphenyl		0.756		0.8600		88.0	60	125	0	0
Surr: 2-Fluorophenol		0.748		0.8600		87.0	37	125	0	0
Surr: 4-Terphenyl-d14		0.791		0.8600		92.0	45	125	0	0
Surr: Nitrobenzene-d5		0.705		0.8600		82.0	45	125	0	0
Surr: Phenol-d5		0.713		0.8600		83.0	40	125	0	0

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

- The Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDLMethod Detection LimitRRPD outside accepted control limits
- R R D outside accepted control mints
- S Spike Recovery outside control limits
- N Parameter not NELAP certified

Page 22 of 40

Weston Solutions, Inc.

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS4_240226A

Project:

Work Order: 2402269

SAWS Impoundment	Assessment Lagoons and
------------------	------------------------

Sample ID: ICV-240226	Batch ID:	R131629		TestNo	: SW	8270E		Units:	mg/Kg	
SampType: ICV	Run ID:	GCMS4_	240226A	Analys	is Date: 2/26	6/2024 2:38:	00 PM	Prep Date:		
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPD	Limit Qual
2,4,5-Trichlorophenol		2.63	0.0266	2.500	0	105	70	130		
2,4,6-Trichlorophenol		2.70	0.0266	2.500	0	108	70	130		
2,4-Dichlorophenol		2.40	0.0266	2.500	0	95.9	70	130		
2,4-Dimethylphenol		2.28	0.0266	2.500	0	91.2	70	130		
2,4-Dinitrophenol		2.58	0.132	2.500	0	103	70	130		
2,4-Dinitrotoluene		2.50	0.0266	2.500	0	99.9	70	130		
2,6-Dinitrotoluene		2.79	0.0266	2.500	0	112	70	130		
2-Chloronaphthalene		2.59	0.0266	2.500	0	104	70	130		
2-Chlorophenol		2.48	0.0266	2.500	0	99.2	70	130		
2-Methylnaphthalene		2.19	0.0266	2.500	0	87.7	70	130		
2-Methylphenol		2.30	0.0266	2.500	0	91.9	70	130		
2-Nitroaniline		2.49	0.0266	2.500	0	99.5	70	130		
2-Nitrophenol		2.60	0.0266	2.500	0	104	70	130		
3,3'-Dichlorobenzidine		3.00	0.0266	2.500	0	120	70	130		
3-Nitroaniline		2.60	0.0266	2.500	0	104	70	130		
4,6-Dinitro-2-methylphenol		2.51	0.0660	2.500	0	101	70	130		
4-Bromophenyl phenyl ether		2.32	0.0266	2.500	0	92.6	70	130		
4-Chloro-3-methylphenol		2.04	0.0266	2.500	0	81.7	70	130		
4-Chloroaniline		2.28	0.0660	2.500	0	91.1	70	130		
4-Chlorophenyl phenyl ether		2.31	0.0266	2.500	0	92.4	70	130		
4-Methylphenol		2.26	0.0266	2.500	0	90.6	70	130		
4-Nitroaniline		2.56	0.0266	2.500	0	102	70	130		
4-Nitrophenol		2.52	0.132	2.500	0	101	70	130		
Acenaphthene		2.36	0.0266	2.500	0	94.4	70	130		
Acenaphthylene		2.52	0.0266	2.500	0	101	70	130		
Acetophenone		2.18	0.0266	2.500	0	87.4	70	130		
Anthracene		2.25	0.0266	2.500	0	90.1	70	130		
Atrazine		3.17	0.0266	2.500	0	127	70	130		
Benzaldehyde		2.23	0.0266	2.500	0	89.3	70	130		Ν
Benzo[a]anthracene		2.53	0.0266	2.500	0	101	70	130		
Benzo[a]pyrene		2.81	0.0266	2.500	0	112	70	130		
Benzo[b]fluoranthene		2.75	0.0266	2.500	0	110	70	130		
Benzo[g,h,i]perylene		2.63	0.0266	2.500	0	105	70	130		
Benzo[k]fluoranthene		2.35	0.0266	2.500	0	94.1	70	130		
Benzoic acid		2.26	0.132	2.500	0	90.3	70	130		
Benzyl alcohol		2.34	0.0660	2.500	0	93.5	70	130		
Biphenyl		2.87	0.0266	2.500	0	115	70	130		
Bis(2-chloroethoxy)methane		2.36	0.0266	2.500	0	94.4	70	130		
Bis(2-chloroethyl)ether		2.40	0.0266	2.500	0	96.0	70	130		
Bis(2-chloroisopropyl)ether		2.57	0.0266	2.500	0	103	70	130		
Bis(2-ethylhexyl)phthalate		2.72	0.0660	2.500	0	109	70	130		

Qualifiers:

В

Analyte detected in the associated Method Blank

DF Dilution Factor

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

R RPD outside accepted control limits

MDL Method Detection Limit

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 23 of 40

Weston Solutions, Inc.

ANALYTICAL QC SUMMARY REPORT

GCMS4_240226A

RunID:

Project:

Work Order: 2402269

SAWS Impoundment Assessment Lagoons and

Sample ID: ICV-240226	Batch ID:	R131629		TestNo	: SW8	3270E		Units:	mg/ł	٢g
SampType: ICV	Run ID:	GCMS4_	240226A	Analysi	s Date: 2/26	/2024 2:38:	00 PM	Prep Date:		
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	: HighLimit '	%RPD	RPDLimit Qual
Butyl benzyl phthalate		2.65	0.0660	2.500	0	106	70	130		
Caprolactam		2.18	0.0660	2.500	0	87.4	70	130		
Carbazole		2.53	0.0266	2.500	0	101	70	130		
Chrysene		2.44	0.0266	2.500	0	97.5	70	130		
Dibenz[a,h]anthracene		2.86	0.0266	2.500	0	115	70	130		
Dibenzofuran		2.31	0.0266	2.500	0	92.4	70	130		
Diethyl phthalate		2.34	0.0660	2.500	0	93.6	70	130		
Dimethyl phthalate		2.37	0.0660	2.500	0	94.9	70	130		
Di-n-butyl phthalate		2.50	0.0660	2.500	0	100	70	130		
Di-n-octyl phthalate		2.72	0.0660	2.500	0	109	70	130		
Fluoranthene		2.30	0.0266	2.500	0	91.9	70	130		
Fluorene		2.29	0.0266	2.500	0	91.5	70	130		
Hexachlorobenzene		2.19	0.0266	2.500	0	87.8	70	130		
Hexachlorobutadiene		2.70	0.0266	2.500	0	108	70	130		
Hexachlorocyclopentadiene		2.85	0.0660	2.500	0	114	70	130		
Hexachloroethane		2.45	0.0266	2.500	0	98.1	70	130		
Indeno[1,2,3-cd]pyrene		2.83	0.0266	2.500	0	113	70	130		
Isophorone		2.46	0.0660	2.500	0	98.5	70	130		
Naphthalene		2.41	0.0266	2.500	0	96.2	70	130		
Nitrobenzene		2.58	0.0266	2.500	0	103	70	130		
N-Nitrosodi-n-propylamine		2.24	0.0266	2.500	0	89.4	70	130		
N-Nitrosodiphenylamine		2.40	0.0266	2.500	0	96.0	70	130		
Pentachlorophenol		2.41	0.0266	2.500	0	96.4	70	130		
Phenanthrene		2.45	0.0266	2.500	0	98.0	70	130		
Phenol		2.54	0.0266	2.500	0	102	70	130		
Pyrene		2.58	0.0266	2.500	0	103	70	130		
Pyridine		2.26	0.132	2.500	0	90.2	70	130		
Surr: 2,4,6-Tribromophenol		2.45		2.500		98.0	70	130		
Surr: 2-Fluorobiphenyl		2.64		2.500		106	70	130		
Surr: 2-Fluorophenol		2.46		2.500		98.4	70	130		
Surr: 4-Terphenyl-d14		2.58		2.500		103	70	130		
Surr: Nitrobenzene-d5		2.64		2.500		106	70	130		
Surr: Phenol-d5		2.37		2.500		94.8	70	130		

Qualifiers:

B Analyte detected in the associated Method Blank

- J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit
 - D Not Detected at the Method Detection Emitt
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDLMethod Detection LimitRRPD outside accepted control limits

Page 24 of 40

- S Spike Recovery outside control limits
- N Parameter not NELAP certified

Weston Solutions, Inc.

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS2_240108A

Project:

Work Order: 2402269

SAWS Impoundment Assessment Lagoons and

Sample ID: DCS-113523	Batch ID:	113523		TestNo	SW8	3260D		Units:	mg/Kg	
SampType: DCS	Run ID:	GCMS2	_240108A	Analys	is Date: 1/8/2	2024 5:45:00	D PM	Prep Date:	1/8/202	4
Analyte	I	Result	RL	SPK value	Ref Val	%REC	LowLimit	: HighLimit %	RPD RF	PDLimit Qual
1,1,1,2-Tetrachloroethane	0	.00254	0.00500	0.00232	0	109	10	400	0	0
1,1,1-Trichloroethane	0	.00252	0.00500	0.00232	0	109	10	400	0	0
1,1,2,2-Tetrachloroethane	0	.00269	0.00500	0.00232	0	116	10	400	0	0
1,1,2-Trichloroethane	0	.00250	0.00500	0.00232	0	108	10	400	0	0
1,1,2-Trichlorotrifluoroethane	0	.00344	0.0150	0.00232	0	148	10	400	0	0
1,1-Dichloroethane	0	.00259	0.00500	0.00232	0	112	10	400	0	0
1,1-Dichloroethene	0	.00242	0.00500	0.00232	0	104	10	400	0	0
1,1-Dichloropropene	0	.00260	0.00500	0.00232	0	112	10	400	0	0
1,2,3-Trichlorobenzene	0	.00590	0.00500	0.00232	0	254	10	400	0	0
1,2,3-Trichloropropane	0	.00282	0.00500	0.00232	0	122	10	400	0	0
1,2,4-Trichlorobenzene	0	.00481	0.00500	0.00232	0	207	10	400	0	0
1,2,4-Trimethylbenzene	0	.00319	0.00500	0.00232	0	138	10	400	0	0
1,2-Dibromo-3-chloropropane	0	.00341	0.00500	0.00232	0	147	10	400	0	0
1,2-Dibromoethane	0	.00241	0.00500	0.00232	0	104	10	400	0	0
1,2-Dichlorobenzene	0	.00326	0.00500	0.00232	0	141	10	400	0	0
1,2-Dichloroethane	0	.00250	0.00500	0.00232	0	108	10	400	0	0
1,2-Dichloropropane	0	.00256	0.00500	0.00232	0	110	10	400	0	0
1,3,5-Trimethylbenzene	0	.00310	0.00500	0.00232	0	134	10	400	0	0
1,3-Dichlorobenzene	0	.00301	0.00500	0.00232	0	130	10	400	0	0
1,3-Dichloropropane	0	.00253	0.00500	0.00232	0	109	10	400	0	0
1,4-Dichlorobenzene	0	.00324	0.00500	0.00232	0	140	10	400	0	0
1-Chlorohexane	0	.00399	0.00500	0.00232	0	172	10	400	0	0
2,2-Dichloropropane	0	.00253	0.00500	0.00232	0	109	10	400	0	0
2-Butanone	(0.0126	0.0150	0.0116	0	109	10	400	0	0
2-Chlorotoluene	0	.00288	0.00500	0.00232	0	124	10	400	0	0
2-Hexanone	(0.0131	0.0150	0.0116	0	113	10	400	0	0
4-Chlorotoluene	0	.00277	0.00500	0.00232	0	119	10	400	0	0
4-Methyl-2-pentanone	(0.0129	0.0150	0.0116	0	111	10	400	0	0
Acetone	(0.0134	0.0500	0.0116	0	116	10	400	0	0
Benzene	0	.00267	0.00500	0.00232	0	115	10	400	0	0
Bromobenzene	0	.00267	0.00500	0.00232	0	115	10	400	0	0
Bromochloromethane	0	.00235	0.00500	0.00232	0	101	10	400	0	0
Bromodichloromethane	0	.00245	0.00500	0.00232	0	106	10	400	0	0
Bromoform	0	.00244	0.00500	0.00232	0	105	10	400	0	0
Bromomethane	0	.00387	0.00500	0.00232	0	167	10	400	0	0
Carbon disulfide	0	.00253	0.0150	0.00232	0	109	10	400	0	0
Carbon tetrachloride	0	.00250	0.00500	0.00232	0	108	10	400	0	0
Chlorobenzene	0	.00271	0.00500	0.00232	0	117	10	400	0	0
Chloroethane	0	.00267	0.00500	0.00232	0	115	10	400	0	0
Chloroform	0	.00254	0.00500	0.00232	0	109	10	400	0	0
Chloromethane	0	.00331	0.00500	0.00232	0	143	10	400	0	0

Qualifiers:

В

Analyte detected in the associated Method Blank

DF Dilution Factor

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

MDL Method Detection Limit R RPD outside accepted cont

R RPD outside accepted control limitsS Spike Recovery outside control limits

N Parameter not NELAP certified

Page 25 of 40

Work Order:

Weston Solutions, Inc.

ANALYTICAL QC SUMMARY REPORT

GCMS2_240108A

RunID:

Project:

2402269

SAWS Impoundment Assessment Lagoons and

Sample ID: DCS-113523	Batch ID:	113523		TestNo	: SW	8260D		Units:	mg/ł	٢g	
SampType: DCS	Run ID:	GCMS2	_240108A	Analysi	s Date: 1/8/	2024 5:45:0	D PM	Prep Date:	1/8/2	024	
Analyte	I	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit '	%RPD	RPDLimi	it Qual
cis-1,2-Dichloroethene	0	.00267	0.00500	0.00232	0	115	10	400	0	0	
cis-1,3-Dichloropropene	0	.00253	0.00500	0.00232	0	109	10	400	0	0	
Cyclohexane	0	.00344	0.0150	0.00232	0	148	10	400	0	0	Ν
Dibromochloromethane	0	.00237	0.00500	0.00232	0	102	10	400	0	0	
Dibromomethane	0	.00252	0.00500	0.00232	0	109	10	400	0	0	
Dichlorodifluoromethane	0	.00254	0.00500	0.00232	0	109	10	400	0	0	
Ethylbenzene	0	.00270	0.00500	0.00232	0	116	10	400	0	0	
Hexachlorobutadiene	0	.00681	0.00500	0.00232	0	294	10	400	0	0	
Isopropylbenzene	0	.00288	0.00500	0.00232	0	124	10	400	0	0	
m,p-Xylene	0	.00551	0.00500	0.00464	0	119	10	400	0	0	
Methyl Acetate	0	.00293	0.0150	0.00232	0	126	10	400	0	0	
Methyl tert-butyl ether	0	.00273	0.00500	0.00232	0	118	10	400	0	0	
Methylcyclohexane	0	.00336	0.0150	0.00232	0	145	10	400	0	0	
Methylene chloride	0	.00271	0.00500	0.00232	0	117	10	400	0	0	
Naphthalene	0	.00466	0.0150	0.00232	0	201	10	400	0	0	
n-Butylbenzene	0	.00345	0.00500	0.00232	0	149	10	400	0	0	
n-Propylbenzene	0	.00301	0.00500	0.00232	0	130	10	400	0	0	
o-Xylene	0	.00268	0.00500	0.00232	0	116	10	400	0	0	
p-Isopropyltoluene	0	.00335	0.00500	0.00232	0	144	10	400	0	0	
sec-Butylbenzene	0	.00346	0.00500	0.00232	0	149	10	400	0	0	
Styrene	0	.00275	0.00500	0.00232	0	119	10	400	0	0	
tert-Butylbenzene	0	.00311	0.00500	0.00232	0	134	10	400	0	0	
Tetrachloroethene	0	.00277	0.00500	0.00232	0	119	10	400	0	0	
Toluene	0	.00252	0.00500	0.00232	0	109	10	400	0	0	
trans-1,2-Dichloroethene	0	.00256	0.00500	0.00232	0	110	10	400	0	0	
trans-1,3-Dichloropropene	0	.00252	0.00500	0.00232	0	109	10	400	0	0	
Trichloroethene	0	.00254	0.00500	0.00232	0	109	10	400	0	0	
Trichlorofluoromethane	0	.00242	0.0150	0.00232	0	104	10	400	0	0	
Vinyl chloride	0	.00248	0.00500	0.00232	0	107	10	400	0	0	
Xylenes, Total	0	.00819	0.00500	0.00696	0	118	10	400	0	0	

Qualifiers:

B Analyte detected in the associated Method Blank

- J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit
 - D Not Detected at the Method Detection Emitt
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDLMethod Detection LimitRRPD outside accepted control limits
 - S Spike Recovery outside control limits
 - N Parameter not NELAP certified

Page 26 of 40

CLIENT: Weston Solutions, Inc.

ANALYTICAL QC SUMMARY REPORT

Project:

Work Order: 2402269

SAWS Impoundment Assessment Lagoons and

RunID:

GCMS2_240221B

The QC data in batch 114118 applies to the following samples: 2402269-01A, 2402269-02A, 2402269-03A, 2402269-04A, 2402269-06A, 2402269-07A, 2402269-08A

Sample ID: LCS-114118	Batch ID: 114	118	TestN	lo: SW	8260D		Units:	mg/Kg
SampType: LCS	Run ID: GCN	MS2_240221B	Analy	sis Date: 2/2 1	1/2024 3:45:	00 PM	Prep Date:	2/21/2024
Analyte	Result	t RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit	%RPD RPDLimit Qual
1,1,1,2-Tetrachloroethane	0.0227	0.00500	0.0232	0	97.9	74	125	
1,1,1-Trichloroethane	0.0227	0.00500	0.0232	0	97.8	68	130	
1,1,2,2-Tetrachloroethane	0.0254	0.00500	0.0232	0	110	59	140	
1,1,2-Trichloroethane	0.0228	0.00500	0.0232	0	98.2	62	127	
1,1,2-Trichlorotrifluoroethane	0.0217	0.0150	0.0232	0	93.5	57	135	
1,1-Dichloroethane	0.0236	6 0.00500	0.0232	0	102	73	125	
1,1-Dichloroethene	0.0228	0.00500	0.0232	0	98.2	65	136	
1,1-Dichloropropene	0.0230	0.00500	0.0232	0	99.2	70	135	
1,2,3-Trichlorobenzene	0.0268	0.00500	0.0232	0	116	62	133	
1,2,3-Trichloropropane	0.0258	0.00500	0.0232	0	111	63	130	
1,2,4-Trichlorobenzene	0.0254	0.00500	0.0232	0	110	65	131	
1,2,4-Trimethylbenzene	0.0255	5 0.00500	0.0232	0	110	65	135	
1,2-Dibromo-3-chloropropane	0.0211	0.00500	0.0232	0	90.9	49	135	
1,2-Dibromoethane	0.0240	0.00500	0.0232	0	103	70	124	
1,2-Dichlorobenzene	0.0256	6 0.00500	0.0232	0	110	74	120	
1,2-Dichloroethane	0.0236	6 0.00500	0.0232	0	102	72	137	
1,2-Dichloropropane	0.0236	6 0.00500	0.0232	0	102	71	120	
1,3,5-Trimethylbenzene	0.0254	0.00500	0.0232	0	110	65	133	
1,3-Dichlorobenzene	0.0248	0.00500	0.0232	0	107	72	124	
1,3-Dichloropropane	0.0247	0.00500	0.0232	0	106	76	123	
1,4-Dichlorobenzene	0.0252	0.00500	0.0232	0	109	72	125	
1-Chlorohexane	0.0236	6 0.00500	0.0232	0	102	60	135	
2,2-Dichloropropane	0.0227	0.00500	0.0232	0	97.9	67	134	
2-Butanone	0.251	0.0150	0.232	0	108	60	135	
2-Chlorotoluene	0.0250	0.00500	0.0232	0	108	69	128	
2-Hexanone	0.257	0.0150	0.232	0	111	50	150	
4-Chlorotoluene	0.0257	0.00500	0.0232	0	111	73	126	
4-Methyl-2-pentanone	0.266	0.0150	0.232	0	115	60	135	
Acetone	0.247	0.0500	0.232	0	107	40	141	
Benzene	0.0232	0.00500	0.0232	0	99.8	73	126	
Bromobenzene	0.0248	0.00500	0.0232	0	107	66	121	
Bromochloromethane	0.0231	0.00500	0.0232	0	99.6	71	127	
Bromodichloromethane	0.0224	0.00500	0.0232	0	96.7	72	128	
Bromoform	0.0210	0.00500	0.0232	0	90.4	66	137	
Bromomethane	0.0256	6 0.00500	0.0232	0	110	45	141	
Carbon disulfide	0.0217	0.0150	0.0232	0	93.6	50	150	
Carbon tetrachloride	0.0215	0.00500	0.0232	0	92.7	67	133	
Chlorobenzene	0.0239	0.00500	0.0232	0	103	75	123	
Chloroethane	0.0240	0.00500	0.0232	0	103	41	141	

Qualifiers:

Analyte detected in the associated Method Blank

Dilution Factor DF

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

В

Analyte detected between SDL and RL J

R RPD outside accepted control limits

MDL Method Detection Limit

S Spike Recovery outside control limits

Ν Parameter not NELAP certified Page 27 of 40

Work Order:

Weston Solutions, Inc.

ANALYTICAL QC SUMMARY REPORT

GCMS2_240221B

RunID:

Project:

2402269

SAWS Impoundment Assessment L	agoons and
-------------------------------	------------

Sample ID: LCS-114118	Batch ID:	114118		TestNo	: SW	8260D		Units:	mg/Kg
SampType: LCS	Run ID:	GCMS2_	_240221B	Analysi	s Date: 2/21	/2024 3:45:	00 PM	Prep Date:	2/21/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RPDLimit Qual
Chloroform		0.0225	0.00500	0.0232	0	97.2	72	124	
Chloromethane		0.0213	0.00500	0.0232	0	91.6	51	129	
cis-1,2-Dichloroethene		0.0227	0.00500	0.0232	0	97.9	67	125	
cis-1,3-Dichloropropene		0.0224	0.00500	0.0232	0	96.7	72	126	
Cyclohexane		0.0224	0.0150	0.0232	0	96.4	40	158	Ν
Dibromochloromethane		0.0222	0.00500	0.0232	0	95.8	66	130	
Dibromomethane		0.0226	0.00500	0.0232	0	97.6	73	128	
Dichlorodifluoromethane		0.0178	0.00500	0.0232	0	76.7	34	136	
Ethylbenzene		0.0235	0.00500	0.0232	0	101	74	127	
Hexachlorobutadiene		0.0245	0.00500	0.0232	0	105	53	142	
Isopropylbenzene		0.0237	0.00500	0.0232	0	102	77	129	
m,p-Xylene		0.0486	0.00500	0.0464	0	105	79	126	
Methyl Acetate		0.0250	0.0150	0.0232	0	108	50	150	
Methyl tert-butyl ether		0.0228	0.00500	0.0232	0	98.2	50	135	
Methylcyclohexane		0.0224	0.0150	0.0232	0	96.4	50	150	
Methylene chloride		0.0228	0.00500	0.0232	0	98.2	63	137	
Naphthalene		0.0242	0.0150	0.0232	0	104	51	135	
n-Butylbenzene		0.0264	0.00500	0.0232	0	114	65	138	
n-Propylbenzene		0.0257	0.00500	0.0232	0	111	63	135	
o-Xylene		0.0237	0.00500	0.0232	0	102	77	125	
p-Isopropyltoluene		0.0245	0.00500	0.0232	0	105	75	133	
sec-Butylbenzene		0.0258	0.00500	0.0232	0	111	63	132	
Styrene		0.0237	0.00500	0.0232	0	102	74	128	
tert-Butylbenzene		0.0256	0.00500	0.0232	0	110	65	132	
Tetrachloroethene		0.0226	0.00500	0.0232	0	97.4	67	139	
Toluene		0.0230	0.00500	0.0232	0	99.3	71	127	
trans-1,2-Dichloroethene		0.0223	0.00500	0.0232	0	96.3	66	134	
trans-1,3-Dichloropropene		0.0217	0.00500	0.0232	0	93.6	65	127	
Trichloroethene		0.0223	0.00500	0.0232	0	95.9	77	124	
Trichlorofluoromethane		0.0236	0.0150	0.0232	0	102	49	139	
Vinyl chloride		0.0232	0.00500	0.0232	0	99.8	58	126	
Xylenes, Total		0.0723	0.00500	0.0696	0	104	75	125	
Surr: 1,2-Dichloroethane-d4		49.1		50.00		98.1	52	149	
Surr: 4-Bromofluorobenzene		53.0		50.00		106	84	118	
Surr: Dibromofluoromethane		49.0		50.00		97.9	65	135	
Surr: Toluene-d8		49.6		50.00		99.3	84	116	
Sample ID: MB-114118	Batch ID:	114118		TestNo	: SW	8260D		Units:	mg/Kg
SampType: MBLK	Run ID:	GCMS2_	_240221B	Analysi	s Date: 2/21	/2024 6:06:	00 PM	Prep Date:	2/21/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	RPD RPDLimit Qual

Qualifiers:

- В Analyte detected in the associated Method Blank
- J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL

- MDL Method Detection Limit R
 - RPD outside accepted control limits S

Page 28 of 40

- Spike Recovery outside control limits
- Ν Parameter not NELAP certified

DF Dilution Factor

CLIENT: Weston Solutions, Inc.

ANALYTICAL QC SUMMARY REPORT

GCMS2_240221B

RunID:

Project:

Work Order: 2402269

SAWS Impoundment Assessment Lagoons and

Sample ID: MB-114118	Batch ID:	114118		TestNo:	SW	8260D		Units:	mg/Kg
SampType: MBLK	Run ID:	GCMS2	2_240221B	Analysis	s Date: 2/21	1/2024 6:06:0	00 PM	Prep Date:	2/21/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RPDLimit Qual
1,1,1,2-Tetrachloroethane	<(0.00100	0.00500						
1,1,1-Trichloroethane	<(0.00100	0.00500						
1,1,2,2-Tetrachloroethane	<(0.00100	0.00500						
1,1,2-Trichloroethane	<(0.00100	0.00500						
1,1,2-Trichlorotrifluoroethane	<(0.00500	0.0150						
1,1-Dichloroethane	<(0.00100	0.00500						
1,1-Dichloroethene	<(0.00100	0.00500						
1,1-Dichloropropene	<(0.00100	0.00500						
1,2,3-Trichlorobenzene	<(0.00100	0.00500						
1,2,3-Trichloropropane	<(0.00100	0.00500						
1,2,4-Trichlorobenzene	<(0.00100	0.00500						
1,2,4-Trimethylbenzene	<(0.00100	0.00500						
1,2-Dibromo-3-chloropropane	<(0.00100	0.00500						
1,2-Dibromoethane	<(0.00100	0.00500						
1,2-Dichlorobenzene	<(0.00100	0.00500						
1,2-Dichloroethane	<(0.00100	0.00500						
1,2-Dichloropropane	<(0.00100	0.00500						
1,3,5-Trimethylbenzene	<(0.00100	0.00500						
1,3-Dichlorobenzene	<(0.00100	0.00500						
1,3-Dichloropropane	<(0.00100	0.00500						
1,4-Dichlorobenzene	<(0.00100	0.00500						
1-Chlorohexane	<(0.00100	0.00500						
2,2-Dichloropropane	<(0.00100	0.00500						
2-Butanone	<(0.00500	0.0150						
2-Chlorotoluene	<(0.00100	0.00500						
2-Hexanone	<(0.00500	0.0150						
4-Chlorotoluene	<(0.00100	0.00500						
4-Methyl-2-pentanone	<(0.00500	0.0150						
Acetone	<	:0.0150	0.0500						
Benzene	<(0.00100	0.00500						
Bromobenzene	<(0.00100	0.00500						
Bromochloromethane	<(0.00100	0.00500						
Bromodichloromethane	<(0.00100	0.00500						
Bromoform	<(0.00100	0.00500						
Bromomethane	<(0.00100	0.00500						
Carbon disulfide	<(0.00500	0.0150						
Carbon tetrachloride	<(0.00100	0.00500						
Chlorobenzene	<(0.00100	0.00500						
Chloroethane	<(0.00100	0.00500						
Chloroform	<(0.00100	0.00500						
Chloromethane	<(0.00100	0.00500						
Qualifiers: B Analyte dete	ected in the as	ssociated N	Iethod Blank	DF D	Dilution Facto	or			

Analyte detected between MDL and RL

J ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL MDL Method Detection Limit

R RPD outside accepted control limits Page 29 of 40

S Spike Recovery outside control limits

Ν Parameter not NELAP certified

Weston Solutions, Inc.

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS2_240221B

Page 30 of 40

Project:

Work Order: 2402269

SAWS Impoundment Assessment Lagoons and

Sample ID: MB-114118	Batch ID:	114118		TestNo		SW8260D		Units:	mg/Kg	
SampType: MBLK	Run ID:	GCMS2	_240221B	Analysi	s Date: 2	2/21/2024 6:06:	00 PM	Prep Date:	2/21/2024	
Analyte		Result	RL	SPK value	Ref Va	al %REC	LowLimi	t HighLimit %	RPD RPDLimit C) Jual
cis-1,2-Dichloroethene	<	0.00100	0.00500							
cis-1,3-Dichloropropene	<	0.00100	0.00500							
Cyclohexane	<	0.00500	0.0150							Ν
Dibromochloromethane	<	0.00100	0.00500							
Dibromomethane	<	0.00100	0.00500							
Dichlorodifluoromethane	<	0.00100	0.00500							
Ethylbenzene	<	0.00100	0.00500							
Hexachlorobutadiene	<	0.00100	0.00500							
Isopropylbenzene	<	0.00100	0.00500							
m,p-Xylene	<	0.00100	0.00500							
Methyl Acetate	<	0.00500	0.0150							
Methyl tert-butyl ether	<	0.00100	0.00500							
Methylcyclohexane	<	0.00500	0.0150							
Methylene chloride	<	0.00500	0.00500							
Naphthalene	<	0.00500	0.0150							
n-Butylbenzene	<	0.00100	0.00500							
n-Propylbenzene	<	0.00100	0.00500							
o-Xylene	<	0.00100	0.00500							
p-lsopropyltoluene	<	0.00100	0.00500							
sec-Butylbenzene	<	0.00100	0.00500							
Styrene	<	0.00100	0.00500							
tert-Butylbenzene	<	0.00100	0.00500							
Tetrachloroethene	<	0.00100	0.00500							
Toluene	<	0.00100	0.00500							
trans-1,2-Dichloroethene	<	0.00100	0.00500							
trans-1,3-Dichloropropene	<	0.00100	0.00500							
Trichloroethene	<	0.00100	0.00500							
Trichlorofluoromethane	<	0.00500	0.0150							
Vinyl chloride	<	0.00100	0.00500							
Xylenes, Total	<	0.00100	0.00500							
Surr: 1,2-Dichloroethane-d4		50.3		50.00		101	52	149		
Surr: 4-Bromofluorobenzene		54.1		50.00		108	84	118		
Surr: Dibromofluoromethane		48.9		50.00		97.7	65	135		
Surr: Toluene-d8		47.9		50.00		95.8	84	116		

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits
	RL	Reporting Limit	S	Spike Recovery outside control limits
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAP certified

Ν Parameter not NELAP certified

Weston Solutions, Inc.

ANALYTICAL QC SUMMARY REPORT

GCMS2_240221B

RunID:

Project:

Work Order: 2402269 SAWS Impoundment Assessment Lagoons and

Sample ID: ICV-240221	Batch ID:	R13152	27	TestNo	D: SW8	8260D		Units:	mg/Kg
SampType: ICV	Run ID:	GCMS	2_240221B	Analys	is Date: 2/21	/2024 3:17	:00 PM	Prep Date	:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit	%RPD RPDLimit Qua
1,1,1,2-Tetrachloroethane		0.0441	0.00500	0.0464	0	95.1	70	130	
1,1,1-Trichloroethane		0.0442	0.00500	0.0464	0	95.3	70	130	
1,1,2,2-Tetrachloroethane		0.0491	0.00500	0.0464	0	106	70	130	
1,1,2-Trichloroethane		0.0459	0.00500	0.0464	0	98.8	70	130	
1,1,2-Trichlorotrifluoroethane		0.0430	0.0150	0.0464	0	92.6	70	130	
1,1-Dichloroethane		0.0464	0.00500	0.0464	0	100	70	130	
1,1-Dichloroethene		0.0449	0.00500	0.0464	0	96.7	70	130	
1,1-Dichloropropene		0.0442	0.00500	0.0464	0	95.3	70	130	
1,2,3-Trichlorobenzene		0.0486	0.00500	0.0464	0	105	70	130	
1,2,3-Trichloropropane		0.0500	0.00500	0.0464	0	108	70	130	
1,2,4-Trichlorobenzene		0.0489	0.00500	0.0464	0	105	70	130	
1,2,4-Trimethylbenzene		0.0491	0.00500	0.0464	0	106	70	130	
1,2-Dibromo-3-chloropropane		0.0438	0.00500	0.0464	0	94.5	70	130	
1,2-Dibromoethane		0.0487	0.00500	0.0464	0	105	70	130	
1,2-Dichlorobenzene		0.0491	0.00500	0.0464	0	106	70	130	
1,2-Dichloroethane		0.0455	0.00500	0.0464	0	98.0	70	130	
1,2-Dichloropropane		0.0474	0.00500	0.0464	0	102	70	130	
1,3,5-Trimethylbenzene		0.0480	0.00500	0.0464	0	103	70	130	
1,3-Dichlorobenzene		0.0483	0.00500	0.0464	0	104	70	130	
1,3-Dichloropropane		0.0485	0.00500	0.0464	0	105	70	130	
1,4-Dichlorobenzene		0.0473	0.00500	0.0464	0	102	70	130	
1-Chlorohexane		0.0440	0.00500	0.0464	0	94.7	70	130	
2,2-Dichloropropane		0.0436	0.00500	0.0464	0	93.9	70	130	
2-Butanone		0.507	0.0150	0.464	0	109	70	130	
2-Chlorotoluene		0.0482	0.00500	0.0464	0	104	70	130	
2-Hexanone		0.522	0.0150	0.464	0	113	70	130	
4-Chlorotoluene		0.0501	0.00500	0.0464	0	108	70	130	
4-Methyl-2-pentanone		0.521	0.0150	0.464	0	112	70	130	
Acetone		0.484	0.0500	0.464	0	104	70	130	
Benzene		0.0454	0.00500	0.0464	0	97.8	70	130	
Bromobenzene		0.0475	0.00500	0.0464	0	102	70	130	
Bromochloromethane		0.0451	0.00500	0.0464	0	97.2	70	130	
Bromodichloromethane		0.0448	0.00500	0.0464	0	96.5	70	130	
Bromoform		0.0434	0.00500	0.0464	0	93.6	70	130	
Bromomethane		0.0500	0.00500	0.0464	0	108	70	130	
Carbon disulfide		0.0432	0.0150	0.0464	0	93.1	70	130	
Carbon tetrachloride		0.0413	0.00500	0.0464	0	89.1	70	130	
Chlorobenzene		0.0460	0.00500	0.0464	0	99.1	70	130	
Chloroethane		0.0479	0.00500	0.0464	0	103	70	130	

Qualifiers:

Chloromethane

Chloroform

Analyte detected in the associated Method Blank

Analyte detected between MDL and RL

0.0454

0.0410

0.00500

0.00500

ND Not Detected at the Method Detection Limit

RL Reporting Limit

В

J

J Analyte detected between SDL and RL

Dilution Factor DF

0

0

MDL Method Detection Limit RPD outside accepted control limits R

S Spike Recovery outside control limits

97.8

88.4

70

70

130

130

Ν Parameter not NELAP certified

0.0464

0.0464

Page 31 of 40

Weston Solutions, Inc.

ANALYTICAL QC SUMMARY REPORT

GCMS2_240221B

RunID:

Project:

Work Order: 2402269

SAWS Impoundment Assessment Lagoons and

Sample ID: ICV-240221	Batch ID:	R13152	.7	TestNo	D: SW8	3260D		Units:	mg/Kg	3
SampType: ICV	Run ID:	GCMS	2_240221B	Analys	sis Date: 2/21	/2024 3:17:	00 PM	Prep Date	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD R	PDLimit Qual
cis-1,2-Dichloroethene		0.0450	0.00500	0.0464	0	96.9	70	130		
cis-1,3-Dichloropropene		0.0466	0.00500	0.0464	0	100	70	130		
Cyclohexane		0.0445	0.0150	0.0464	0	95.8	70	130		N
Dibromochloromethane		0.0447	0.00500	0.0464	0	96.4	70	130		
Dibromomethane		0.0468	0.00500	0.0464	0	101	70	130		
Dichlorodifluoromethane		0.0357	0.00500	0.0464	0	77.0	70	130		
Ethylbenzene		0.0440	0.00500	0.0464	0	94.7	70	130		
Hexachlorobutadiene		0.0442	0.00500	0.0464	0	95.4	70	130		
Isopropylbenzene		0.0472	0.00500	0.0464	0	102	70	130		
m,p-Xylene		0.0931	0.00500	0.0928	0	100	70	130		
Methyl Acetate		0.0500	0.0150	0.0464	0	108	70	130		
Methyl tert-butyl ether		0.0460	0.00500	0.0464	0	99.1	70	130		
Methylcyclohexane		0.0428	0.0150	0.0464	0	92.2	70	130		
Methylene chloride		0.0442	0.00500	0.0464	0	95.2	70	130		
Naphthalene		0.0440	0.0150	0.0464	0	94.8	70	130		
n-Butylbenzene		0.0489	0.00500	0.0464	0	105	70	130		
n-Propylbenzene		0.0496	0.00500	0.0464	0	107	70	130		
o-Xylene		0.0472	0.00500	0.0464	0	102	70	130		
p-lsopropyltoluene		0.0492	0.00500	0.0464	0	106	70	130		
sec-Butylbenzene		0.0488	0.00500	0.0464	0	105	70	130		
Styrene		0.0473	0.00500	0.0464	0	102	70	130		
tert-Butylbenzene		0.0482	0.00500	0.0464	0	104	70	130		
Tetrachloroethene		0.0432	0.00500	0.0464	0	93.0	70	130		
Toluene		0.0470	0.00500	0.0464	0	101	70	130		
trans-1,2-Dichloroethene		0.0442	0.00500	0.0464	0	95.3	70	130		
trans-1,3-Dichloropropene		0.0448	0.00500	0.0464	0	96.5	70	130		
Trichloroethene		0.0431	0.00500	0.0464	0	92.9	70	130		
Trichlorofluoromethane		0.0469	0.0150	0.0464	0	101	70	130		
Vinyl chloride		0.0476	0.00500	0.0464	0	103	70	130		
Xylenes, Total		0.140	0.00500	0.139	0	101	70	130		
Surr: 1,2-Dichloroethane-d4		48.9		50.00		97.9	52	149		
Surr: 4-Bromofluorobenzene		52.4		50.00		105	84	118		
Surr: Dibromofluoromethane		49.8		50.00		99.6	65	135		
Surr: Toluene-d8		48.1		50.00		96.1	84	116		

B Analyte detected in the associated Method Blank

- J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit
 - B Not Detected at the Method Detection Emitt
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDLMethod Detection LimitRRPD outside accepted control limits
 - S Spike Recovery outside control limits
 - N Parameter not NELAP certified

Page 32 of 40

CLIENT: Weston Solutions, Inc.

ANALYTICAL QC SUMMARY REPORT

GCMS7_231227A

RunID:

Project:

_

Work Order: 2402269

SAWS Impoundr	ment Assessment Lagoons an
---------------	----------------------------

Sample ID: DCS2-113423	Batch ID:	113423		TestNo	SW	/8260D		Units:	mg/i	_
SampType: DCS2	Run ID:	GCMS7_	_231227A	Analysi	s Date: 12/ 2	27/2023 2:41	:00 PM	Prep Date:	12/2	7/2023
Analyte	I	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD	RPDLimit Qual
1,2,3-Trichlorobenzene	0	.00269	0.00500	0.00186	0	145	10	400	0	0
1,2,4-Trichlorobenzene	0	.00221	0.00500	0.00186	0	119	10	400	0	0
1,2,4-Trimethylbenzene	0	.00194	0.00500	0.00186	0	104	10	400	0	0
1,2-Dibromo-3-chloropropane	0.	000930	0.0100	0.00186	0	50.0	10	400	0	0
1,3,5-Trimethylbenzene	0	.00194	0.00500	0.00186	0	104	10	400	0	0
1-Chlorohexane	0	.00255	0.00500	0.00186	0	137	10	400	0	0
Hexachlorobutadiene	0	.00236	0.00300	0.00186	0	127	10	400	0	0
Methylene chloride	0	.00233	0.00250	0.00186	0	125	10	400	0	0
Naphthalene	0	.00206	0.0150	0.00186	0	111	10	400	0	0
Sample ID: DCS-113423	Batch ID:	113423		TestNo	SW	/8260D		Units:	mg/	_
SampType: DCS	Run ID:	GCMS7_	_231227A	Analysi	s Date: 12/ 2	27/2023 3:06	:00 PM	Prep Date:	12/2	7/2023
Analyte	I	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD	RPDLimit Qual
1,1,1,2-Tetrachloroethane	0.	000440	0.00100	0.000464	0	94.8	10	400	0	0
1,1,1-Trichloroethane	0.	000550	0.00100	0.000464	0	119	10	400	0	0
1,1,2,2-Tetrachloroethane	0.	000500	0.00100	0.000464	0	108	10	400	0	0
1,1,2-Trichloroethane	0.	000580	0.00100	0.000464	0	125	10	400	0	0
1,1,2-Trichlorotrifluoroethane	(0.0112	0.0150	0.00928	0	120	10	400	0	0
1,1-Dichloroethane	0.	000530	0.00100	0.000464	0	114	10	400	0	0
1,1-Dichloroethene	0.	000610	0.00100	0.000464	0	131	10	400	0	0
1,1-Dichloropropene	0.	000530	0.00100	0.000464	0	114	10	400	0	0
1,2,3-Trichloropropane	0.	000260	0.00100	0.000464	0	56.0	10	400	0	0
1,2-Dibromoethane	0.	000480	0.00100	0.000464	0	103	10	400	0	0
1,2-Dichlorobenzene	0.	000500	0.00100	0.000464	0	108	10	400	0	0
1,2-Dichloroethane	0.	000670	0.00100	0.000464	0	144	10	400	0	0
1,2-Dichloropropane	0.	000560	0.00100	0.000464	0	121	10	400	0	0
1,3-Dichlorobenzene	0.	000490	0.00100	0.000464	0	106	10	400	0	0
1,3-Dichloropropane	0.	000470	0.00100	0.000464	0	101	10	400	0	0
1,4-Dichlorobenzene	0.	000590	0.00100	0.000464	0	127	10	400	0	0
2,2-Dichloropropane	0.	000570	0.00100	0.000464	0	123	10	400	0	0
2-Butanone	0	.00893	0.0150	0.00928	0	96.2	10	400	0	0
2-Chlorotoluene	0.	000430	0.00100	0.000464	0	92.7	10	400	0	0
2-Hexanone	0	.00704	0.0150	0.00928	0	75.9	10	400	0	0
4-Chlorotoluene	0.	000450	0.00100	0.000464	0	97.0	10	400	0	0
4-Methyl-2-pentanone	0	.00699	0.0150	0.00928	0	75.3	10	400	0	0
Acetone	0	.00994	0.0150	0.00928	0	107	10	400	0	0
Benzene	0.	000560	0.00100	0.000464	0	121	10	400	0	0
Bromobenzene	0.	000500	0.00100	0.000464	0	108	10	400	0	0
Bromochloromethane	0.	000570	0.00100	0.000464	0	123	10	400	0	0
Bromodichloromethane	0.	000520	0.00100	0.000464	0	112	10	400	0	0

Qualifiers:

Analyte detected in the associated Method Blank

DF Dilution Factor

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

The motor Detection at the Method Detection Lim

RL Reporting Limit

В

J Analyte detected between SDL and RL

MDLMethod Detection LimitRRPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 33 of 40

Weston Solutions, Inc.

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS7_231227A

Project:

Work Order: 2402269

SAWS Impoundment Assessment	Lagoons	and
-----------------------------	---------	-----

Sample ID: DCS-113423	Batch ID:	113423		TestNo	: SW	8260D		Units:	mg/L		
SampType: DCS	Run ID:	GCMS7	_231227A	Analys	is Date: 12/2	27/2023 3:06	:00 PM	Prep Date:	12/27	7/2023	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD	RPDLimit	Qual
Bromoform	0.	.000420	0.00100	0.000464	0	90.5	10	400	0	0	
Bromomethane	C	0.00153	0.00100	0.000464	0	330	10	400	0	0	
Carbon disulfide	(0.0100	0.0150	0.00928	0	108	10	400	0	0	
Carbon tetrachloride	0.	.000510	0.00100	0.000464	0	110	10	400	0	0	
Chlorobenzene	0.	.000510	0.00100	0.000464	0	110	10	400	0	0	
Chloroethane	0.	.000480	0.00100	0.000464	0	103	10	400	0	0	
Chloroform	0.	.000470	0.00100	0.000464	0	101	10	400	0	0	
Chloromethane	0.	.000490	0.00100	0.000464	0	106	10	400	0	0	
cis-1,2-Dichloroethene	0.	.000590	0.00100	0.000464	0	127	10	400	0	0	
cis-1,3-Dichloropropene	0.	.000480	0.00100	0.000464	0	103	10	400	0	0	
Cyclohexane	C	0.00995	0.0150	0.00928	0	107	10	400	0	0	Ν
Dibromochloromethane	0.	.000410	0.00100	0.000464	0	88.4	10	400	0	0	
Dibromomethane	0.	.000620	0.00100	0.000464	0	134	10	400	0	0	
Dichlorodifluoromethane	0.	.000490	0.00100	0.000464	0	106	10	400	0	0	
Ethylbenzene	0.	.000470	0.00100	0.000464	0	101	10	400	0	0	
Isopropylbenzene	0.	.000440	0.00100	0.000464	0	94.8	10	400	0	0	
m,p-Xylene	0.	.000840	0.00200	0.000928	0	90.5	10	400	0	0	
Methyl Acetate	C	0.00778	0.0150	0.00928	0	83.8	10	400	0	0	
Methyl tert-butyl ether	0.	.000680	0.00100	0.000464	0	147	10	400	0	0	
Methylcyclohexane	C	.00987	0.0150	0.00928	0	106	10	400	0	0	
n-Butylbenzene	0.	.000200	0.00100	0.000464	0	43.1	10	400	0	0	
n-Propylbenzene	0.	.000460	0.00100	0.000464	0	99.1	10	400	0	0	
o-Xylene	0.	.000450	0.00100	0.000464	0	97.0	10	400	0	0	
p-Isopropyltoluene	0.	.000460	0.00100	0.000464	0	99.1	10	400	0	0	
sec-Butylbenzene	0.	.000510	0.00100	0.000464	0	110	10	400	0	0	
Styrene	0.	.000380	0.00100	0.000464	0	81.9	10	400	0	0	
tert-Butylbenzene	0.	.000500	0.00100	0.000464	0	108	10	400	0	0	
Tetrachloroethene	0.	.000450	0.00200	0.000464	0	97.0	10	400	0	0	
Toluene	0.	.000560	0.00200	0.000464	0	121	10	400	0	0	
trans-1,2-Dichloroethene	0.	.000540	0.00100	0.000464	0	116	10	400	0	0	
trans-1,3-Dichloropropene	0.	.000490	0.00100	0.000464	0	106	10	400	0	0	
Trichloroethene	0.	.000540	0.00100	0.000464	0	116	10	400	0	0	
Trichlorofluoromethane	0.	.000510	0.00100	0.000464	0	110	10	400	0	0	
Vinyl chloride	0.	.000550	0.00100	0.000464	0	119	10	400	0	0	
Xylenes, Total	C	0.00129	0.00100	0.00139	0	92.7	10	400	0	0	

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits
	рт	Dementing Limit	c	Calles Deserves and the second districts

- RL Reporting Limit
- J Analyte detected between SDL and RL
- S Spike Recovery outside control limits

Page 34 of 40

N Parameter not NELAP certified

CLIENT:	Weston S	Solutions, Ir	nc.						ТЛЛЛЛАТ	V DFD	ЪΤ
Work Order:	2402269				Al		ICAL Q				JNI
Project:	SAWS In	npoundmen	t Assessi	ment Lagoor	ns and		RunID	: (GCMS7_24	40221A	
The QC data in ba	tch 114106 a	pplies to the	following	samples: 240	2269-05A, 240	2269-10A					
Sample ID: LCS-1	114106	Batch ID:	114106		TestNo	D: SW8	3260D		Units:	mg/L	
SampType: LCS		Run ID:	GCMS7	_240221A	Analys	is Date: 2/21	/2024 10:06:	00 AM	Prep Date:	2/21/2024	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLir	nit Qual
1,1,1,2-Tetrachloro	oethane		0.0268	0.00100	0.0232	0	115	81	129		
1,1,1-Trichloroetha	ane		0.0237	0.00100	0.0232	0	102	67	132		
1,1,2,2-Tetrachloro	bethane		0.0257	0.00100	0.0232	0	111	63	128		
1,1,2-Trichloroetha	ane		0.0241	0.00100	0.0232	0	104	75	125		
1,1,2-Trichlorotriflu	oroethane		0.0167	0.0150	0.0232	0	72.1	67	125		
1,1-Dichloroethane	9		0.0215	0.00100	0.0232	0	92.8	69	133		
1,1-Dichloroethene	9		0.0204	0.00100	0.0232	0	88.0	68	130		
1,1-Dichloroproper	ne		0.0216	0.00100	0.0232	0	93.1	73	132		
1,2,3-Trichloroben	zene		0.0341	0.00500	0.0232	0	147	67	137		S
1,2,3-Trichloroprop	bane		0.0268	0.00100	0.0232	0	116	73	124		
1,2,4-Trichloroben	zene		0.0318	0.00500	0.0232	0	137	66	134		S
1,2,4-Trimethylben	izene		0.0258	0.00500	0.0232	0	111	74	132		
1,2-Dibromo-3-chlo	oropropane		0.0257	0.0100	0.0232	0	111	50	132		
1,2-Dibromoethane	e		0.0264	0.00100	0.0232	0	114	80	121		
1,2-Dichlorobenzer	ne		0.0274	0.00100	0.0232	0	118	75	122		
1,2-Dichloroethane	9		0.0231	0.00100	0.0232	0	99.7	69	132		
1,2-Dichloropropar	ne		0.0217	0.00100	0.0232	0	93.5	75	125		
1,3,5-Trimethylben	izene		0.0257	0.00500	0.0232	0	111	74	131		
1,3-Dichlorobenzer	ne		0.0271	0.00100	0.0232	0	117	75	124		
1,3-Dichloropropar	ne		0.0251	0.00100	0.0232	0	108	73	126		
1,4-Dichlorobenzer	ne		0.0267	0.00100	0.0232	0	115	74	123		
1-Chlorohexane			0.0206	0.00500	0.0232	0	88.7	70	125		
2,2-Dichloropropar	ne		0.0236	0.00100	0.0232	0	102	69	137		
2-Butanone			0.115	0.0150	0.116	0	99.2	49	136		
2-Chlorotoluene			0.0249	0.00100	0.0232	0	107	73	126		
2-Hexanone			0.119	0.0150	0.116	0	102	50	150		
4-Chlorotoluene			0.0249	0.00100	0.0232	0	107	74	128		
4-Methyl-2-pentan	one		0.124	0.0150	0.116	0	107	60	134		
Acetone			0.104	0.0150	0.116	0	89.8	40	135		
Benzene			0.0221	0.00100	0.0232	0	95.1	81	122		
Bromobenzene			0.0270	0.00100	0.0232	0	116	76	124		
Bromochlorometha	ane		0.0246	0.00100	0.0232	0	106	65	129		
Bromodichloromet	hane		0.0235	0.00100	0.0232	0	101	76	121		
Bromoform			0.0282	0.00100	0.0232	0	122	69	128		
Bromomethane			0.0222	0.00100	0.0232	0	95.8	53	141		
Carbon disulfide			0.0218	0.0150	0.0232	0	93.8	50	150		
Carbon tetrachlorid	de		0.0244	0.00100	0.0232	0	105	66	138		
Chlorobenzene			0.0260	0.00100	0.0232	0	112	81	122		
Chloroethane			0.0230	0.00100	0.0232	0	99.2	58	133		
Chloroform			0.0230	0.00100	0.0232	0	99.2	69	128		

Qualifiers:

Analyte detected in the associated Method Blank Analyte detected between MDL and RL

J ND Not Detected at the Method Detection Limit

RL Reporting Limit

В

J Analyte detected between SDL and RL DF Dilution Factor

MDL Method Detection Limit R RPD outside accepted control limits

S Spike Recovery outside control limits

Ν Parameter not NELAP certified Page 35 of 40

92

Weston Solutions, Inc.

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS7_240221A

Project:

Work Order: 2402269

SAWS Impoundment Assessment Lagoons and

Sample ID: LCS-114106	Batch ID:	114106		TestNo	SW	8260D		Units:	mg/L	
SampType: LCS	Run ID:	GCMS7_	_240221A	Analysi	s Date: 2/21	/2024 10:06	6:00 AM	Prep Date:	2/21/2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLim	it Qual
Chloromethane		0.0215	0.00100	0.0232	0	92.6	56	131		
cis-1,2-Dichloroethene		0.0227	0.00100	0.0232	0	97.8	72	126		
cis-1,3-Dichloropropene		0.0228	0.00100	0.0232	0	98.2	69	131		
Cyclohexane		0.0178	0.0150	0.0232	0	76.8	40	161		Ν
Dibromochloromethane		0.0271	0.00100	0.0232	0	117	66	133		
Dibromomethane		0.0237	0.00100	0.0232	0	102	76	125		
Dichlorodifluoromethane		0.0253	0.00100	0.0232	0	109	53	153		
Ethylbenzene		0.0260	0.00100	0.0232	0	112	80	120		
Hexachlorobutadiene		0.0316	0.00300	0.0232	0	136	67	131		S
Isopropylbenzene		0.0265	0.00100	0.0232	0	114	75	127		
m,p-Xylene		0.0527	0.00200	0.0464	0	113	80	120		
Methyl Acetate		0.0210	0.0150	0.0232	0	90.4	50	150		
Methyl tert-butyl ether		0.0221	0.00100	0.0232	0	95.2	68	123		
Methylcyclohexane		0.0182	0.0150	0.0232	0	78.3	70	130		
Methylene chloride		0.0209	0.00250	0.0232	0	90.0	63	137		
Naphthalene		0.0296	0.0150	0.0232	0	128	54	138		
n-Butylbenzene		0.0266	0.00100	0.0232	0	115	69	137		
n-Propylbenzene		0.0254	0.00100	0.0232	0	109	72	129		
o-Xvlene		0.0259	0.00100	0.0232	0	112	80	120		
p-Isopropyltoluene		0.0268	0.00100	0.0232	0	115	73	130		
sec-Butylbenzene		0.0257	0.00100	0.0232	0	111	72	127		
Styrene		0.0264	0.00100	0.0232	0	114	65	134		
tert-Butylbenzene		0.0264	0.00100	0.0232	0	114	70	129		
Tetrachloroethene		0.0270	0.00200	0.0232	0	116	66	128		
Toluene		0.0229	0.00200	0.0232	0	98.6	80	120		
trans-1 2-Dichloroethene		0.0219	0.00100	0.0232	0	94.5	63	137		
trans-1 3-Dichloropropene		0.0240	0.00100	0.0232	0	104	59	135		
Trichloroethene		0.0241	0.00100	0.0232	0	104	70	127		
Trichlorofluoromethane		0.0258	0.00100	0.0232	0	111	57	129		
Vinyl chloride		0.0200	0.00100	0.0202	0	97.8	50	134		
Xylenes Total		0.0227	0.00100	0.0202	0	113	80	120		
Surr: 1.2-Dichloroethane-d4		183	0.00100	200.0	0	01 /	72	110		
Surr: 4-Bromofluorobenzene		100		200.0		0/ 0	76	119		
Surr: Dibromofluoromothana		101		200.0		05.4	70 95	115		
Surr: Toluene-d8		191		200.0		95.4	81	120		
	Potob ID:	137		TootNo	- CM/	90.7	01		100 cr /l	
Sample ID: MB-114106	Balch ID:	114106		Testino	500	8260D		Units:	mg/L	
SampType: MBLK	Run ID:	GCMS7_	_240221A	Analysi	s Date: 2/21	/2024 11:07	7:00 AM	Prep Date:	2/21/2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLim	it Qual
1,1,1,2-Tetrachloroethane	<(0.000300	0.00100							
Oualifiers: B Analyte det	ected in the a	ssociated M	ethod Blank	DF I	Dilution Facto	or				

Analyte detected in the associated Method Blank В

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

Parameter not NELAP certified Ν

Page 36 of 40

CLIENT: Weston Solutions, Inc.

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS7_240221A

Project:

Work Order: 2402269

SAWS Impoundment Assessment Lagoons and

Sample ID: MB-114106	Batch ID:	114106		TestNo:	SW	8260D		Units:	mg/L
SampType: MBLK	Run ID:	GCMS7	_240221A	Analysis	s Date: 2/21	I/2024 11:07	:00 AM	Prep Date:	2/21/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RPDLimit Qual
1,1,1-Trichloroethane	<0	.000300	0.00100						
1,1,2,2-Tetrachloroethane	<0	.000300	0.00100						
1,1,2-Trichloroethane	<0	.000300	0.00100						
1,1,2-Trichlorotrifluoroethane	<(0.00500	0.0150						
1,1-Dichloroethane	<0	.000300	0.00100						
1,1-Dichloroethene	<0	.000300	0.00100						
1,1-Dichloropropene	<0	.000300	0.00100						
1,2,3-Trichlorobenzene	<(0.00150	0.00500						
1,2,3-Trichloropropane	<0	.000300	0.00100						
1,2,4-Trichlorobenzene	<(0.00150	0.00500						
1,2,4-Trimethylbenzene	<(0.00150	0.00500						
1,2-Dibromo-3-chloropropane	<(0.00300	0.0100						
1,2-Dibromoethane	<0	.000300	0.00100						
1,2-Dichlorobenzene	<0	.000300	0.00100						
1,2-Dichloroethane	<0	.000300	0.00100						
1,2-Dichloropropane	<0	.000300	0.00100						
1,3,5-Trimethylbenzene	<(0.00150	0.00500						
1,3-Dichlorobenzene	<0	.000300	0.00100						
1,3-Dichloropropane	<0	.000300	0.00100						
1,4-Dichlorobenzene	<0	.000300	0.00100						
1-Chlorohexane	<(0.00100	0.00500						
2,2-Dichloropropane	<0	.000300	0.00100						
2-Butanone	<(0.00500	0.0150						
2-Chlorotoluene	<0	.000300	0.00100						
2-Hexanone	<(0.00500	0.0150						
4-Chlorotoluene	<0	.000300	0.00100						
4-Methyl-2-pentanone	<(0.00500	0.0150						
Acetone	<(0.00500	0.0150						
Benzene	<0	.000300	0.00100						
Bromobenzene	<0	.000300	0.00100						
Bromochloromethane	<0	.000300	0.00100						
Bromodichloromethane	<0	.000300	0.00100						
Bromoform	<0	.000300	0.00100						
Bromomethane	<0	.000300	0.00100						
Carbon disulfide	<	0.00500	0.0150						
Carbon tetrachloride	<0	.000300	0.00100						
Chlorobenzene	<0	.000300	0.00100						
Chloroethane	<0	.000300	0.00100						
Chloroform	<0	.000300	0.00100						
Chloromethane	<0	.000300	0.00100						
cis-1,2-Dichloroethene	<0	.000300	0.00100						

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

D Not Detected at the Method Detection Enn

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

Page 37 of 40

S Spike Recovery outside control limits

N Parameter not NELAP certified

Weston Solutions, Inc.

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS7_240221A

Project:

Work Order: 2402269

SAWS Impoundment Assessment Lagoons and

Sample ID: MB-114106	Batch ID:	114106		TestNo:		SW8260D			Units:	mg/L	-	
SampType: MBLK	Run ID:	GCMS7	_240221A	Analysis	Date:	2/21/2024	11:07:	00 AM	Prep Date:	2/21/	2024	
Analyte	F	Result	RL	SPK value	Ref ∖	/al %F	REC	LowLimit	HighLimit 9	%RPD	RPDLimit	Qual
cis-1,3-Dichloropropene	<0	.000300	0.00100									
Cyclohexane	<0	0.00500	0.0150									Ν
Dibromochloromethane	<0	.000300	0.00100									
Dibromomethane	<0	.000300	0.00100									
Dichlorodifluoromethane	<0	.000300	0.00100									
Ethylbenzene	<0	.000300	0.00100									
Hexachlorobutadiene	<0	0.00100	0.00300									
Isopropylbenzene	<0	.000300	0.00100									
m,p-Xylene	<0	.000600	0.00200									
Methyl Acetate	<0	.00500	0.0150									
Methyl tert-butyl ether	<0	.000300	0.00100									
Methylcyclohexane	<0	0.00500	0.0150									
Methylene chloride	<0	0.00250	0.00250									
Naphthalene	<0	0.00500	0.0150									
n-Butylbenzene	<0	.000300	0.00100									
n-Propylbenzene	<0	.000300	0.00100									
o-Xylene	<0	.000300	0.00100									
p-lsopropyltoluene	<0	.000300	0.00100									
sec-Butylbenzene	<0	.000300	0.00100									
Styrene	<0	.000300	0.00100									
tert-Butylbenzene	<0	.000300	0.00100									
Tetrachloroethene	<0	.000600	0.00200									
Toluene	<0	.000600	0.00200									
trans-1,2-Dichloroethene	<0	.000300	0.00100									
trans-1,3-Dichloropropene	<0	.000300	0.00100									
Trichloroethene	<0	.000600	0.00100									
Trichlorofluoromethane	<0	.000300	0.00100									
Vinyl chloride	<0	.000300	0.00100									
Xylenes, Total	<0	.000300	0.00100									
Surr: 1,2-Dichloroethane-d4		184		200.0		ç	91.9	72	119			
Surr: 4-Bromofluorobenzene		192		200.0		ç	95.8	76	119			
Surr: Dibromofluoromethane		188		200.0		ç	94.1	85	115			
Surr: Toluene-d8		198		200.0		ç	98.9	81	120			

B Analyte detected in the associated Method Blank

- J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit
 - Detection Line Memor Detection Linit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDLMethod Detection LimitRRPD outside accepted control limits
 - S Spike Recovery outside control limits
 - 5 Spike Recovery outside control minit
 - N Parameter not NELAP certified

Page 38 of 40

Weston Solutions, Inc.

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS7_240221A

Project:

Work Order: 2402269

SAWS Impoundment Assessment Lagoons and	
---	--

Sample ID: ICV-240221	Batch ID:	R1315	22	TestNo	: SW8	3260D		Units:	mg/L
SampType: ICV	Run ID:	GCMS	7_240221A	Analys	is Date: 2/21	/2024 9:42:	00 AM	Prep Date	:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
1,1,1,2-Tetrachloroethane		0.0470	0.00100	0.0464	0	101	70	130	
1,1,1-Trichloroethane		0.0424	0.00100	0.0464	0	91.4	70	130	
1,1,2,2-Tetrachloroethane		0.0443	0.00100	0.0464	0	95.5	70	130	
1,1,2-Trichloroethane		0.0423	0.00100	0.0464	0	91.3	70	130	
1,1,2-Trichlorotrifluoroethane		0.0378	0.0150	0.0464	0	81.4	70	130	
1,1-Dichloroethane		0.0387	0.00100	0.0464	0	83.4	70	130	
1,1-Dichloroethene		0.0378	0.00100	0.0464	0	81.4	70	130	
1,1-Dichloropropene		0.0404	0.00100	0.0464	0	87.1	70	130	
1,2,3-Trichlorobenzene		0.0562	0.00500	0.0464	0	121	70	130	
1,2,3-Trichloropropane		0.0463	0.00100	0.0464	0	99.8	70	130	
1,2,4-Trichlorobenzene		0.0564	0.00500	0.0464	0	121	70	130	
1,2,4-Trimethylbenzene		0.0466	0.00500	0.0464	0	100	70	130	
1,2-Dibromo-3-chloropropane		0.0436	0.0100	0.0464	0	93.9	70	130	
1,2-Dibromoethane		0.0461	0.00100	0.0464	0	99.3	70	130	
1,2-Dichlorobenzene		0.0482	0.00100	0.0464	0	104	70	130	
1,2-Dichloroethane		0.0411	0.00100	0.0464	0	88.6	70	130	
1,2-Dichloropropane		0.0392	0.00100	0.0464	0	84.4	70	130	
1,3,5-Trimethylbenzene		0.0465	0.00500	0.0464	0	100	70	130	
1,3-Dichlorobenzene		0.0488	0.00100	0.0464	0	105	70	130	
1,3-Dichloropropane		0.0434	0.00100	0.0464	0	93.5	70	130	
1,4-Dichlorobenzene		0.0471	0.00100	0.0464	0	101	70	130	
1-Chlorohexane		0.0370	0.00500	0.0464	0	79.7	70	130	
2,2-Dichloropropane		0.0425	0.00100	0.0464	0	91.6	70	130	
2-Butanone		0.216	0.0150	0.232	0	93.3	70	130	
2-Chlorotoluene		0.0450	0.00100	0.0464	0	97.1	70	130	
2-Hexanone		0.217	0.0150	0.232	0	93.6	70	130	
4-Chlorotoluene		0.0449	0.00100	0.0464	0	96.9	70	130	
4-Methyl-2-pentanone		0.227	0.0150	0.232	0	97.9	70	130	
Acetone		0.194	0.0150	0.232	0	83.7	70	130	
Benzene		0.0399	0.00100	0.0464	0	86.0	70	130	
Bromobenzene		0.0478	0.00100	0.0464	0	103	70	130	
Bromochloromethane		0.0429	0.00100	0.0464	0	92.5	70	130	
Bromodichloromethane		0.0426	0.00100	0.0464	0	91.7	70	130	
Bromoform		0.0495	0.00100	0.0464	0	107	70	130	
Bromomethane		0.0401	0.00100	0.0464	0	86.3	70	130	
Carbon disulfide		0.0301	0.0150	0.0464	0	64.9	70	130	S
Carbon tetrachloride		0.0441	0.00100	0.0464	0	95.0	70	130	
Chlorobenzene		0.0461	0.00100	0.0464	0	99.3	70	130	
Chloroethane		0.0412	0.00100	0.0464	0	88.7	70	130	
Chloroform		0.0413	0.00100	0.0464	0	89.1	70	130	
Chloromethane		0.0397	0.00100	0.0464	0	85.6	70	130	
					-	00.0			

Qualifiers:

Analyte detected in the associated Method Blank

DF Dilution Factor

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

В

J Analyte detected between SDL and RL

R RPD outside accepted control limitsS Spike Recovery outside control limits

MDL Method Detection Limit

N Parameter not NELAP certified

Page 39 of 40

Weston Solutions, Inc.

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS7_240221A

Project:

Work Order: 2402269

SAWS Impoundment Assessment Lagoons and

Sample ID: ICV-240221 Batch	n ID: R13152	2	TestNo	: SW	8260D		Units:	mg/L
SampType: ICV Run I	D: GCMS7	_240221A	Analys	is Date: 2/2 1	1/2024 9:42:	00 AM	Prep Date	:
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
cis-1,2-Dichloroethene	0.0411	0.00100	0.0464	0	88.5	70	130	
cis-1,3-Dichloropropene	0.0413	0.00100	0.0464	0	88.9	70	130	
Cyclohexane	0.0378	0.0150	0.0464	0	81.5	70	130	Ν
Dibromochloromethane	0.0476	0.00100	0.0464	0	103	70	130	
Dibromomethane	0.0416	0.00100	0.0464	0	89.7	70	130	
Dichlorodifluoromethane	0.0466	0.00100	0.0464	0	100	70	130	
Ethylbenzene	0.0465	0.00100	0.0464	0	100	70	130	
Hexachlorobutadiene	0.0578	0.00300	0.0464	0	125	70	130	
Isopropylbenzene	0.0467	0.00100	0.0464	0	101	70	130	
m,p-Xylene	0.0941	0.00200	0.0928	0	101	70	130	
Methyl Acetate	0.0421	0.0150	0.0464	0	90.7	70	130	
Methyl tert-butyl ether	0.0384	0.00100	0.0464	0	82.8	70	130	
Methylcyclohexane	0.0376	0.0150	0.0464	0	80.9	70	130	
Methylene chloride	0.0374	0.00250	0.0464	0	80.5	70	130	
Naphthalene	0.0491	0.0150	0.0464	0	106	70	130	
n-Butylbenzene	0.0494	0.00100	0.0464	0	107	70	130	
n-Propylbenzene	0.0458	0.00100	0.0464	0	98.7	70	130	
o-Xylene	0.0462	0.00100	0.0464	0	99.6	70	130	
p-Isopropyltoluene	0.0484	0.00100	0.0464	0	104	70	130	
sec-Butylbenzene	0.0469	0.00100	0.0464	0	101	70	130	
Styrene	0.0470	0.00100	0.0464	0	101	70	130	
tert-Butylbenzene	0.0468	0.00100	0.0464	0	101	70	130	
Tetrachloroethene	0.0486	0.00200	0.0464	0	105	70	130	
Toluene	0.0415	0.00200	0.0464	0	89.5	70	130	
trans-1,2-Dichloroethene	0.0402	0.00100	0.0464	0	86.7	70	130	
trans-1,3-Dichloropropene	0.0424	0.00100	0.0464	0	91.3	70	130	
Trichloroethene	0.0435	0.00100	0.0464	0	93.8	70	130	
Trichlorofluoromethane	0.0477	0.00100	0.0464	0	103	70	130	
Vinyl chloride	0.0418	0.00100	0.0464	0	90.0	70	130	
Xylenes, Total	0.140	0.00100	0.139	0	101	70	130	
Surr: 1,2-Dichloroethane-d4	182		200.0		91.1	72	119	
Surr: 4-Bromofluorobenzene	191		200.0		95.3	76	119	
Surr: Dibromofluoromethane	190		200.0		94.8	85	115	
Surr: Toluene-d8	195		200.0		97.4	81	120	

B Analyte detected in the associated Method Blank

- J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- $J \qquad \mbox{Analyte detected between SDL and RL}$
- DF Dilution Factor
- MDLMethod Detection LimitRRPD outside accepted control limits
 - S Spike Recovery outside control limits
 - N Parameter not NELAP certified

Page 40 of 40

DHL Analytical, Inc.

Work Order: 2402269

Project: SAWS Impoundment Assessment Lagoons and

TestNo: SW6020B	MDL	MQL	
Analyte	mg/Kg	mg/Kg	
Aluminum	12.5	37.5	
Antimony	0.500	1.00	
Arsenic	0.500	1.00	
Barium	0.500	2.00	
Beryllium	0.100	0.300	
Cadmium	0.100	0.300	
Calcium	12.5	37.5	
Chromium	0.500	2.00	
Cobalt	0.500	2.00	
Copper	0.500	2.00	
Iron	12.5	37.5	
Lead	0.100	0.300	
Magnesium	12.5	37.5	
Manganese	0.500	2.00	
Nickel	0.500	2.00	
Potassium	12.5	37.5	
Selenium	0.150	0.500	
Silver	0.100	0.200	
Sodium	12.5	37.5	
Thallium	0.500	1.00	
Vanadium	1.00	2.50	
Zinc	1.00	2.50	

Analyte	mg/L	mg/L
1,1,1,2-Tetrachloroethane	0.000300	0.00100
1,1,1-Trichloroethane	0.000300	0.00100
1,1,2,2-Tetrachloroethane	0.000300	0.00100
1,1,2-Trichloroethane	0.000300	0.00100
1,1,2-Trichlorotrifluoroethane	0.00500	0.0150
1,1-Dichloroethane	0.000300	0.00100
1,1-Dichloroethene	0.000300	0.00100
1,1-Dichloropropene	0.000300	0.00100
1,2,3-Trichlorobenzene	0.00150	0.00500
1,2,3-Trichloropropane	0.000300	0.00100
1,2,4-Trichlorobenzene	0.00150	0.00500
1,2,4-Trimethylbenzene	0.00150	0.00500
1,2-Dibromo-3-chloropropane	0.00300	0.0100
1,2-Dibromoethane	0.000300	0.00100
1,2-Dichlorobenzene	0.000300	0.00100
1,2-Dichloroethane	0.000300	0.00100
1,2-Dichloropropane	0.000300	0.00100
1,3,5-Trimethylbenzene	0.00150	0.00500
1,3-Dichlorobenzene	0.000300	0.00100
1,3-Dichloropropane	0.000300	0.00100
1,4-Dichlorobenzene	0.000300	0.00100
1-Chlorohexane	0.00100	0.00500
2,2-Dichloropropane	0.000300	0.00100
2-Butanone	0.00500	0.0150
2-Chlorotoluene	0.000300	0.00100
2-Hexanone	0.00500	0.0150
4-Chlorotoluene	0.000300	0.00100
4-Methyl-2-pentanone	0.00500	0.0150
Acetone	0.00500	0.0150
Benzene	0.000300	0.00100
Bromobenzene	0.000300	0.00100
Bromochloromethane	0.000300	0.00100
Bromodichloromethane	0.000300	0.00100
Bromoform	0.000300	0.00100
Bromomethane	0.000300	0.00100
Carbon disulfide	0.00500	0.0150
Carbon tetrachloride	0.000300	0.00100
Chlorobenzene	0.000300	0.00100
Chloroethane	0.000300	0.00100
Chloroform	0.000300	0.00100
Chloromethane	0.000300	0.00100
cis-1,2-Dichloroethene	0.000300	0.00100
cis-1,3-Dichloropropene	0.000300	0.00100
Cyclohexane	0.00500	0.0150

Qualifiers:

MQL -Method Quantitation Limit as defined by TRRP MDL -Method Detection Limit as defined by TRRP MQL

MQL SUMMARY REPORT

MDL

TestNo: SW8260D

CLIENT: Weston Solutions, Inc.

Work Order:	2402269
Project:	SAWS Impound

SAWS Impoundment Assessment Lagoons and

Dibromochloromethane	0.000300	0.00100
Dibromomethane	0.000300	0.00100
Dichlorodifluoromethane	0.000300	0.00100
Ethylbenzene	0.000300	0.00100
Hexachlorobutadiene	0.00100	0.00300
Isopropylbenzene	0.000300	0.00100
m,p-Xylene	0.000600	0.00200
Methyl Acetate	0.00500	0.0150
Methyl tert-butyl ether	0.000300	0.00100
Methylcyclohexane	0.00500	0.0150
Methylene chloride	0.00250	0.00250
Naphthalene	0.00500	0.0150
n-Butylbenzene	0.000300	0.00100
n-Propylbenzene	0.000300	0.00100
o-Xylene	0.000300	0.00100
p-Isopropyltoluene	0.000300	0.00100
sec-Butylbenzene	0.000300	0.00100
Styrene	0.000300	0.00100
tert-Butylbenzene	0.000300	0.00100
Tetrachloroethene	0.000600	0.00200
Toluene	0.000600	0.00200
trans-1,2-Dichloroethene	0.000300	0.00100
trans-1,3-Dichloropropene	0.000300	0.00100
Trichloroethene	0.000600	0.00100
Trichlorofluoromethane	0.000300	0.00100
Vinyl chloride	0.000300	0.00100
Total Xylenes	0.000300	0.00100

TestNo: SW8260D	MDL	MQL
Analyte	mg/Kg	mg/Kg
1,1,1,2-Tetrachloroethane	0.00100	0.00500
1,1,1-Trichloroethane	0.00100	0.00500
1,1,2,2-Tetrachloroethane	0.00100	0.00500
1,1,2-Trichloroethane	0.00100	0.00500
1,1,2-Trichlorotrifluoroethane	0.00500	0.0150
1,1-Dichloroethane	0.00100	0.00500
1,1-Dichloroethene	0.00100	0.00500
1,1-Dichloropropene	0.00100	0.00500
1,2,3-Trichlorobenzene	0.00100	0.00500
1,2,3-Trichloropropane	0.00100	0.00500
1,2,4-Trichlorobenzene	0.00100	0.00500
1,2,4-Trimethylbenzene	0.00100	0.00500
1,2-Dibromo-3-chloropropane	0.00100	0.00500
1,2-Dibromoethane	0.00100	0.00500
1,2-Dichlorobenzene	0.00100	0.00500
1,2-Dichloroethane	0.00100	0.00500
1,2-Dichloropropane	0.00100	0.00500
1,3,5-Trimethylbenzene	0.00100	0.00500
1,3-Dichlorobenzene	0.00100	0.00500
1,3-Dichloropropane	0.00100	0.00500
1,4-Dichlorobenzene	0.00100	0.00500
1-Chlorohexane	0.00100	0.00500
2,2-Dichloropropane	0.00100	0.00500
2-Butanone	0.00500	0.0150
2-Chlorotoluene	0.00100	0.00500
2-Hexanone	0.00500	0.0150
4-Chlorotoluene	0.00100	0.00500
4-Methyl-2-pentanone	0.00500	0.0150
Acetone	0.0150	0.0500
Benzene	0.00100	0.00500
Bromobenzene	0.00100	0.00500
Bromochloromethane	0.00100	0.00500
Bromodichloromethane	0.00100	0.00500
Bromoform	0.00100	0.00500
Bromomethane	0.00100	0.00500
Carbon disulfide	0.00500	0.0150
Carbon tetrachloride	0.00100	0.00500
Chlorobenzene	0.00100	0.00500
Chloroethane	0.00100	0.00500
Chloroform	0.00100	0.00500
Chloromethane	0.00100	0.00500
cis-1,2-Dichloroethene	0.00100	0.00500
cis-1,3-Dichloropropene	0.00100	0.00500
Cyclohexane	0.00500	0.0150
Dibromochloromethane	0.00100	0.00500
Dibromomethane	0.00100	0.00500

Qualifiers:

MQL -Method Quantitation Limit as defined by TRRP MDL -Method Detection Limit as defined by TRRP

MQL SUMMARY REPORT

CLIENT: Weston Solutions, Inc.

Work Order:	2402269
Project:	SAWS Impoundment Assessment Lagoons and

MQL SUMMARY REPORT

v		,	-
Dichlorodifluoromethane	0.00100	0.00500	
Ethylbenzene	0.00100	0.00500	
Hexachlorobutadiene	0.00100	0.00500	
Isopropylbenzene	0.00100	0.00500	
m,p-Xylene	0.00100	0.00500	
Methyl Acetate	0.00500	0.0150	
Methyl tert-butyl ether	0.00100	0.00500	
Methylcyclohexane	0.00500	0.0150	
Methylene chloride	0.00500	0.00500	
Naphthalene	0.00500	0.0150	
n-Butylbenzene	0.00100	0.00500	
n-Propylbenzene	0.00100	0.00500	
o-Xylene	0.00100	0.00500	
p-Isopropyltoluene	0.00100	0.00500	
sec-Butylbenzene	0.00100	0.00500	
Styrene	0.00100	0.00500	
tert-Butylbenzene	0.00100	0.00500	
Tetrachloroethene	0.00100	0.00500	
Toluene	0.00100	0.00500	
trans-1,2-Dichloroethene	0.00100	0.00500	
trans-1,3-Dichloropropene	0.00100	0.00500	
Trichloroethene	0.00100	0.00500	
Trichlorofluoromethane	0.00500	0.0150	
Vinyl chloride	0.00100	0.00500	
Xylenes, Total	0.00100	0.00500	

TestNo: SW8270E	MDL	MQL
Analyte	mg/Kg	mg/Kg
2,4,5-Trichlorophenol	0.0100	0.0266
2,4,6-Trichlorophenol	0.0100	0.0266
2,4-Dichlorophenol	0.0100	0.0266
2,4-Dimethylphenol	0.0100	0.0266
2,4-Dinitrophenol	0.0500	0.132
2,4-Dinitrotoluene	0.0100	0.0266
2,6-Dinitrotoluene	0.0100	0.0266
2-Chloronaphthalene	0.0100	0.0266
2-Chlorophenol	0.0100	0.0266
2-Methylnaphthalene	0.0100	0.0266
2-Methylphenol	0.0100	0.0266
2-Nitroaniline	0.0100	0.0266
2-Nitrophenol	0.0100	0.0266
3,3´-Dichlorobenzidine	0.0100	0.0266
3-Nitroaniline	0.0100	0.0266
4,6-Dinitro-2-methylphenol	0.0300	0.0660
4-Bromophenyl phenyl ether	0.0100	0.0266
4-Chloro-3-methylphenol	0.0100	0.0266
4-Chloroaniline	0.0300	0.0660
4-Chlorophenyl phenyl ether	0.0100	0.0266
4-Methylphenol	0.0200	0.0266
4-Nitroaniline	0.0100	0.0266
4-Nitrophenol	0.0500	0.132
Acenaphthene	0.0100	0.0266
Acenaphthylene	0.0100	0.0266
Acetophenone	0.0100	0.0266
Anthracene	0.0100	0.0266
Atrazine	0.0100	0.0266
Benzaldehyde	0.0100	0.0266
Benzo[a]anthracene	0.0100	0.0266
Benzo[a]pyrene	0.0100	0.0266
Benzo[b]fluoranthene	0.0100	0.0266
Benzo[g,h,i]perylene	0.0100	0.0266
Benzo[k]fluoranthene	0.0100	0.0266
Benzoic acid	0.0500	0.132
Benzyl alcohol	0.0300	0.0660
Biphenyl	0.0100	0.0266
Bis(2-chloroethoxy)methane	0.0100	0.0266
Bis(2-chloroethyl)ether	0.0100	0.0266
Bis(2-chloroisopropyl)ether	0.0100	0.0266
Bis(2-ethylhexyl)phthalate	0.0640	0.0660
Butyl benzyl phthalate	0.0400	0.0660
Caprolactam	0.0300	0.0660
Carbazole	0.0100	0.0266
Chrysene	0.0100	0.0266
Dibenz[a,h]anthracene	0.0100	0.0266

Qualifiers:

MQL -Method Quantitation Limit as defined by TRRP MDL -Method Detection Limit as defined by TRRP

CLIENT:	Weston Solutions, Inc.			
Work Order:	2402269			
Project:	SAWS Impoundment Assessment Lagoons and			
Dibenzofuran		0.0100	0.0266	
Diethyl phthalate		0.0400	0.0660	
Dimethyl phthalate		0.0400	0.0660	
Di-n-butyl phthalate		0.0400	0.0660	
Di-n-octyl phthalate		0.0400	0.0660	
Fluoranthene		0.0100	0.0266	
Fluorene		0.0100	0.0266	
Hexachlorobenzene		0.0100	0.0266	
Hexachlorobutadien	e	0.0100	0.0266	
Hexachlorocyclopen	tadiene	0.0300	0.0660	
Hexachloroethane		0.0100	0.0266	
Indeno[1,2,3-cd]pyre	ene	0.0100	0.0266	
Isophorone		0.0300	0.0660	
Naphthalene		0.0100	0.0266	
Nitrobenzene		0.0100	0.0266	
N-Nitrosodi-n-propyl	amine	0.0100	0.0266	
N-Nitrosodiphenylan	nine	0.0100	0.0266	
Pentachlorophenol		0.0100	0.0266	
Phenanthrene		0.0100	0.0266	
Phenol		0.0100	0.0266	
Pyrene		0.0100	0.0266	
Pyridine		0.0500	0.132	
TestNo: SW7471B	1	MDL	MQL	-
Analyte		mg/Kg	mg/Kg	_
Mercury		0.0160	0.0400	-

MQL SUMMARY REPORT

March 08, 2024

Armin Sabet Weston Solutions, Inc. 2600 Dallas Parkway, Suite 280 Frisco, Texas 75034 TEL: (310) 980-6300 FAX:

Order No.: 2402409

RE: SAWS Impoundment Assessment Lagoons and Decant Sam

Dear Armin Sabet:

DHL Analytical, Inc. received 1 sample(s) on 2/29/2024 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAP except where noted in the Case Narrative. All non-NELAP methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,

John DuPont General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-23-29

Table of Contents

Miscellaneous Documents	
CaseNarrative 2402409	
WorkOrderSampleSummary 2402409	
PrepDatesReport 2402409	
TCLP Dates Report 2402409	
AnalyticalDatesReport 2402409	
Analytical Report 2402409	
AnalyticalQCSummaryReport 2402409	
MQLSummaryReport 2402409	

					2300 C	out We Ema	ole P eb: ail:	Cree hon ww logi	ek D le 5: w.d n@	or. F 12.: Ihla dhl	Roi 38 ana ana	und 8.82 alytic alyti	Roc 22 al.o	k, T com	X 78 1 n	3664	ļ		C		A	IN	-	0	F-	-C	U	- S -	TC .ge	DDY
CLIENT: San Antonia Water Siktein						DATE: 2 /20 /2 4							Τ	LAB USE ONLY 2402409																
ADDRESS: 2800 US-281, San Aratania TX 74212						PC	PO#: 2702263									2 2 6 14 2/29/24 FL														
PHONE: 2,0-297-3455 EMAIL: Michael, Tanesa Saus of a						0.0	SAWS Dr. poundment Assessment																							
DATA REPORTED TO: Michael Junes						PR	PROJECT LOCATION OR NAME: Lagoons and Decan + Sompling																							
ADDITIONAL REPORT CO	PIES TO	D: Armin.	sabet@W	18 stons	stutions, an	CLI	ENT	Γ PR	OJE	СТ	#	104	17	0	36	. 00	1.C	000	λ		COL	LEC	то	R: (.01	e (Cas	iH4	eloe	ŴÝ
Authorize 5% surcharge		W=WATE	R	SE=SE	DIMENT		PRE	SER	VAT	101	V							ц Ч		1 2	1	2			Ĺ		12	10		
for TRRP report?	Lab	L=LIQUID		P=PAI	NT	[Ø	5	0 1006				T 8270	0 625	ONIA	META			L BB		ASE		101	0		8
⊠¤Yes □ No	Use	S=SOIL		SL=SL	UDGE	5	04		atat.	SVF			ПОН				P PES	8270	AMM	DISS.					&GRE	CVAN	2	वि		t contract
	Only	SO=SOLID		7		ine	Han			ESE ESE		METH	006	8015 [524.1 [C 625.				0.8				RA8[DIST D	Yer-		-	A LAN
Field Sample I.D.	DHL Lab #	Collection Date	Collection Time	Matrix	Container Type	# of Conta	HCL	HNO ₃					TPH 1005 🗆 TPH 1	GRO 8015 🗆 DRO	VOC 8260 图 VOC(SVOC 8270 원 SVO	PEST 8270 [] 625.1	PCB 8082 🗌 608.3	НЕКВ 8321 🗆 Т РН	METALS 6020 🗆 20	RCRA 8 T TX11		TCLP-SVOC 🗆 VOC	TCLP-METALS C RC	RCI 🗆 IGN 🗆 DGAS	TDS 🗆 TSS 🗆 % MC	THUJ3 TA	SPLDA	-	CELHZ FIELD NOTES
55-1	01	2/20/24	CALL	5		S	T	T	T	T			Ť.		XI	X		T	\square		Ť	T	T	T	T	T	ÎX		\mathcal{D}	Hild For SPLP
55-2	-	2/20124	0950	5		5							1		X	X							T	1	\top		X	P		Hold For TPLP
<u>\$5-7</u>	-53-	2120124	1018	5		S									X	X						1	Τ		Τ		X	\square		Hold For SPLP
55-4		2/20/24	1048	5		5									Х	X											X	\square		Hold For SPLP
Trip Blank-1	++5	-	~	W		\mathcal{L}_{1}									X															
J	2/29/24	EL																												
1	ļ	10		/							Y	1	 										_		ļ			\square		
Vadded p	er	A.Sal	472	29/	240	5	24	N	+	\$7	4	P			$ \rightarrow $							_			_		\square	\square		
Normal Terl										$\left(- \right)$	-1/	/	ļ	-	-+							+	_				\square	\vdash		
							\rightarrow			\vdash	1) / _/											+		+-		\square	\vdash		
		· .					-+			╇	-10	·	├	$\left - \right $	-+				$\left - \right $			+	┿		╋		\vdash	\vdash		
									╋	+	-	-	┢──	$\left - \right $		+	+		$\left \right $	-+		+	╋	+	┼─		\vdash	\vdash		
			an pinan sa				-+	-+-	╋	┿		-	┢──	$\left - \right $	\rightarrow		+	┼──	┝─┤	\rightarrow		+	┿		╋		┢─┤	\vdash		
						┝━╋			╋	+		-	┢──		\dashv	+	╈	┼──	┝─┤	\rightarrow		+	╋	+	┼─	+	$\left - \right $	┝─┤		
Relinquished By: (Sign)	l	L	DATE/TIME	la anti anti anti	Receiv	ed by	ed by: TURN AROUND TIME LAB USE							<u></u> ONLY THERMO #·																
1 (al lastes 2/20/24/1400 Fee				dix (CALL FI				ALL FIRST FOR RUSH) RECEIVING				ING	IG TEMP (°C): (). 1°C 78																	
Relinquished By: (Sign) DATE/TIME Receiv					ed by: / RUSH-1 DAY RUSH-2 DAY					IF >	IF >6°C, ARE SAMPLES ON ICE AND JUST COLLECTED? YES / NO																			
Zedix 2/21/24 0929 faw				MML RUSH-3 DAY□ CUST						stoi	DY SEALS ON ICE CHEST: D BROKEN DINTACT D NOT USED																			
Relinquished By: (Sign) DATE/TIME Receive				ed by	by: NORMAL OTHER CARRIER: LISO EFEDEX UPS COURIER H DUE DATE $5 bcs$, bcs , bcs					HAND DELIVERED																				

🗆 DHL DISPOSAL @ \$10.00 each

DHL COC REV 4 | MAR 2023

DHL Analytical, Inc.

Sample Receipt Checklist												
Client Name: Weston Solutions, Inc.			Date Received: 2/29/2024									
Work Order Number: 2402409			Received I									
5.												
Checklist completed by:	3/1/2024		Reviewed	hv:	3/1/2024							
Signature	Date		revieweu	Initials	Date							
	Carrier name:	FedEx 1day										
	carner name.	TOULN TOUL										
Shipping container/cooler in good condition?		Yes 🗹	No 🗌	Not Present								
Custody seals intact on shipping container/coo	ler?	Yes 🔽	No 🗌	Not Present								
Custody seals intact on sample bottles?		Yes	No 🗌	Not Present								
Chain of custody present?		Yes 🗹	No 🗌									
Chain of custody signed when relinquished and	I received?	Yes 🖌	No 🗌									
Chain of custody agrees with sample labels?		Yes 🔽	No 🗌									
Samples in proper container/bottle?		Yes 🖌	No 🗌									
Sample containers intact?		Yes 🗹	No 🗌									
Sufficient sample volume for indicated test?		Yes 🗹	No 🗌									
All samples received within holding time?		Yes 🗹	No 🗌									
Water - VOA vials have zero headspace?		Yes	No 🗌	No VOA vials submitte	d 🗹 NA 🗌							
Water - pH<2 acceptable upon receipt?		Yes	No 🗌	NA 🗹 LOT #								
		Adjusted?		Checked by								
Water - ph>9 (S) or ph>10 (CN) acceptable up	on receipt?	Yes	No 🗌	NA 🗹 LOT #								
		Adjusted?		Checked by								
Container/Temp Blank temperature in compliar	ice?	Yes 🗹	No 🗌									
Cooler # 1												
Temp °C 0.7												
Seal Intact Y	·											
Any No response must be detailed in the comm		-										
Client contacted:	Date contacted:		Pe	erson contacted:								
Contacted by:	Regarding:											
Comments:												
Corrective Action:												

Laboratory Name: DHL Analytical, Inc.													
Laboratory Review Checklist: Reportable Data													
Proje	ect Na	me: SAWS Impoundment Assess Lagoons & Decant Samp LRC Date: 3/8/2024											
Revie	ewer l	Name: Angie O'Donnell Laboratory Work Order: 2402409											
Prep	Batcl	Number(s): See Prep Dates Report Run Batch: See Analytical Dates Report											
$\#^{1}$	A^2	Description	Yes	No	NA ³	\mathbf{NR}^4	ER# ⁵						
		Chain-of-Custody (C-O-C)											
R1	OI	1) Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Χ				R1-01						
		2) Were all departures from standard conditions described in an exception report?	Χ										
R2	OI	Sample and Quality Control (QC) Identification											
		1) Are all field sample ID numbers cross-referenced to the laboratory ID numbers?											
P3	OI	2) Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Α										
K5	01	1) Were all samples prepared and analyzed within holding times?	X										
		2) Other than those results < MOL, were all other raw values bracketed by calibration standards?	X										
		3) Were calculations checked by a peer or supervisor?	X										
		4) Were all analyte identifications checked by a peer or supervisor?	Χ										
		5) Were sample detection limits reported for all analytes not detected?	Χ										
		6) Were all results for soil and sediment samples reported on a dry weight basis?			Χ								
		7) Were % moisture (or solids) reported for all soil and sediment samples?			X								
		8) Were bulk soils/solids samples for volatile analysis extracted with methanol per EPA Method 5035?											
D/	0	9) If required for the project, fills reported?			Λ								
INT	0	1) Were surrogates added prior to extraction?			x								
		2) Were surrogate percent recoveries in all samples within the laboratory OC limits?	1										
D5	OI	2) were surrogate percent recoveries in an samples within the faboratory QC limits?			Λ								
KS	01	1) Were appropriate type(s) of blanks analyzed?	X										
		2) Were blanks analyzed at the appropriate frequency?	X										
		3) Where method blanks taken through the entire analytical process, including preparation and, if	v										
		applicable, cleanup procedures?	Λ										
		4) Were blank concentrations < MDL?	X										
		5) For analyte(s) detected in a blank sample, was the concentration, unadjusted for sample specific factors in all associated field samples, greater than 10 times the concentration in the blank sample?			Х								
R6	OI	Laboratory Control Samples (LCS):											
RU	01	1) Were all COCs included in the LCS?	X										
		2) Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	X										
		3) Were LCSs analyzed at the required frequency?	Χ										
		4) Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Χ										
		5) Does the detectability data document the laboratory's capability to detect the COCs at the MDL used	x										
		to calculate the SDLs?	v										
R7	OI	0) was the LCSD RPD within QC limits (if applicable)? Matrix Snike (MS) and Matrix Snike Dunlicate (MSD) Data	Λ										
K 7	01	1) Were the project/method specified analytes included in the MS and MSD?	X										
		2) Were MS/MSD analyzed at the appropriate frequency?	X										
		3) Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Χ										
		4) Were MS/MSD RPDs within laboratory QC limits?	Χ										
R8	OI	Analytical Duplicate Data											
		1) Were appropriate analytical duplicates analyzed for each matrix?			X								
		2) Were analytical duplicates analyzed at the appropriate frequency?	-		A V								
R9	OI	5) Were KPDs or relative standard deviations within the laboratory QC limits? Method Quantitation Limits (MQLs):											
		1) Are the MQLs for each method analyte included in the laboratory data package?	X										
1		2) Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Χ	L									
		3) Are unadjusted MQLs and DCSs included in the laboratory data package?	Χ										
R10	OI	Other Problems/Anomalies											
1		1) Are all known problems/anomalies/special conditions noted in this LRC and ER?	X				R10-01						
1		2) Was applicable and available technology used to lower the SDL to minimize the matrix interference	X										
1		3) Is the laboratory NELAC-accredited under the Texas Laboratory Accreditation Program for the	-										
		analytes, matrices and methods associated with this laboratory data package?	X										

Lab	ora	tory Name: DHL Analytical, Inc.														
Lab	ora	tory Review Checklist (continued): Supportin	ng Data													
Proje	Project Name: SAWS Impoundment Assess Lagoons & Decant Samp LRC Date: 3/8/2024															
Revie	Reviewer Name: Angie O'Donnell Laboratory Work Order: 2402409															
Prep Batch Number(s): See Prep Dates Report Run Batch: See Analytical Dates Report																
#1	A ²	Description		Yes	No	NA ³	NR ⁴	ER# ⁵								
S1	OI	Initial Calibration (ICAL)														
		1) Were response factors and/or relative response factors for each	ch analyte within OC limits?	X												
		2) Were percent RSDs or correlation coefficient criteria met?	Were percent RSDs or correlation coefficient criteria met?													
		3) Was the number of standards recommended in the method us	sed for all analytes?	X												
		4) Were all points generated between the lowest and highest sta	indard used to calculate the curve?	Χ												
		5) Are ICAL data available for all instruments used?		Χ												
		6) Has the initial calibration curve been verified using an approp	priate second source standard?	Χ												
S2	OI	Initial and Continuing calibration Verification (ICCV and C	CCV) and Continuing Calibration													
		blank (CCB):														
		1) Was the CCV analyzed at the method-required frequency?		Χ												
		2) Were percent differences for each analyte within the method-	-required QC limits?	Χ												
		3) Was the ICAL curve verified for each analyte?		X												
C 2	0	4) Was the absolute value of the analyte concentration in the inc	organic CCB < MDL?	X												
83	0	Mass Spectral Tuning:	0	V												
		1) was the appropriate compound for the method used for tunin 2) Ways is a short day as data suithin the method was suited OC list	1g <i>:</i>													
84	0	2) were fon abundance data within the method-required QC lim	Λ													
54	0	1) Were IS area counts and retention times within the method re	v													
\$5	OI	Pay Date (NELAC Soction 5.5.10)	Λ													
55	01	1) Were the raw data (for example, chromatograms, spectral dat	ta) reviewed by an analyst?	X												
		2) Were data associated with manual integrations flagged on the	e raw data?	X												
86	0	Dual Column Confirmation														
	Ŭ	1) Did dual column confirmation results meet the method-requir	red OC?			X										
S7	0	Tentatively Identified Compounds (TICs):														
		1) If TICs were requested, were the mass spectra and TIC data s			Χ											
S8	Ι	Interference Check Sample (ICS) Results:														
		1) Were percent recoveries within method QC limits?		Χ												
S9	Ι	Serial Dilutions, Post Digestion Spikes, and Method of Stand	dard Additions													
		1) Were percent differences, recoveries, and the linearity w method?	within the QC limits specified in the	X												
\$10	OI	Method Detection Limit (MDL) Studies														
510	01	1) Was a MDL study performed for each reported analyte?		X												
		2) Is the MDL either adjusted or supported by the analysis of D	CSs?	X												
S11	OI	Proficiency Test Reports:														
		1) Was the lab's performance acceptable on the applicable profi	Х													
S12	OI	Standards Documentation	2													
		1) Are all standards used in the analyses NIST-traceable or obta	ained from other appropriate sources?	Х												
S13	OI	Compound/Analyte Identification Procedures														
		1) Are the procedures for compound/analyte identification docu	Χ													
S14	OI	Demonstration of Analyst Competency (DOC)														
		1) Was DOC conducted consistent with NELAC Chapter 5 – Ap	ppendix C?	Χ												
~		2) Is documentation of the analyst's competency up-to-date and	l on file?	X												
<u>815</u>	OI	verification/Validation Documentation for Methods (NELA	C Chapter 5)													
		1) Are all the methods used to generate the data docume applicable?	ented, verified, and validated, where	X												
S16	OI	Laboratory Standard Operating Procedures (SOPs):														
		1) Are laboratory SOPs current and on file for each method perf	formed?	X												

¹ Items identified by the letter "R" should be included in the laboratory data package submitted to the TCEQ in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O = organic analyses; I = inorganic analyses (and general chemistry, when applicable).

³ NA = Not applicable.

⁴ NR = Not Reviewed.

⁵ ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Data Package Signature Page – RG-366/TRRP-13

This data package consists of:

R4

This signature page, the laboratory review checklist, and the following reportable data:

- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a) Items consistent with NELAC Chapter 5,
 - b) dilution factors,
 - c) preparation methods,
 - d) cleanup methods, and
 - e) if required for the project, tentatively identified compounds (TICs).
 - Surrogate recovery data including:
 - a) Calculated recovery (%R), and
 - b) The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a) LCS spiking amounts,
 - b) Calculated %R for each analyte, and
 - c) The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a) Samples associated with the MS/MSD clearly identified,
 - b) MS/MSD spiking amounts,
 - c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d) Calculated %Rs and relative percent differences (RPDs), and
 - e) The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a) The amount of analyte measured in the duplicate,
 - b) The calculated RPD, and
 - c) The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix;
- R10 Other problems or anomalies.

The Exception Report for each "No" or "Not Reviewed (NR)" item in the Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory is not accredited under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge that all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information or data affecting the quality of the data has been knowingly withheld.

This laboratory was last inspected by TCEQ on May 30 - June 2, 2023. Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Name: John DuPont Official Title: General Manager

Name: Dr. Derhsing Luu Official Title: Technical Director

flownt

03/08/24 Date
CLIENT:Weston Solutions, Inc.Project:SAWS Impoundment Assessment Lagoons andLab Order:2402409

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Method SW1312/6020B- SPLP Metals Analysis

Exception Report R1-01

Sample was added and login performed on 2/29/2024. Analysis was added to one sample of DHL WO# 2402409, and analyzed. The sample arrived in good condition and was properly packaged.

Exception Report R10-01

Per project specification, MS/MSD/Duplicates are from this workorder or project samples only.

Date: 08-Mar-24

CLIENT:	Weston Solutions, Inc.	
Project: Lab Order:	SAWS Impoundment Assessment Lagoons and 2402409	Work Order Sample Summary
	2102109	

Tag Number

Lab Smp ID Client Sample ID

2402409-01 SS-1

_

Date Collected	Date Recved
02/20/24 09:26 AM	03/01/2024

Lab Order: Client: Project:	2402409 Weston Solutio SAWS Impour	ons, Inc. Idment Assessment			PREP I	DATES REPORT	Г
Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
2402409-01A	SS-1	02/20/24 09:26 AM	Soil	SW3010A	Liquid Prep Total Metals: ICP-MS	03/07/24 08:10 AM	114365

Lab Order: Client: Project:	2402409 Weston Soluti SAWS Impour	ons, Inc. ndment Assessment			TCLP/SPLP	PREP DATES REI	PORT
Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
2402409-01A	SS-1	2/20/2024 9:26:00 AM	Soil	SW1312	SPLP Bottle Extr. (Metals)	3/6/2024 2:38:57 PM	114359

Lab Order: Client: Project:	2402409 Weston Solution SAWS Impound	ns, Inc. Iment Assessn	nent		ANA	LYTIC	CAL DATES	REPORT
Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
2402409-01A	SS-1	Soil	SW1312/6020B	SPLP Metals	114365	1	03/07/24 03:12 PM	ICP-MS5_240307B

DHL Analy	tical, Inc.			Da	ate:	08-Mar-24		
CLIENT:	Weston Solutio	ons, Inc.		Clien	ıt Sampl	e ID: SS-1		
Project:	SAWS Impoun	dment Assessment L		La	b ID: 24024	09-01		
Project No:	10412.036.001	.0002	Col	llection]	Date: 02/20/	24 09:26 A	Μ	
Lab Order:	2402409		Matrix: SOIL					
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed
SPLP METALS			SW1312	/6020B				Analyst: SP
Arsenic		0.0252	0.00200	0.00500		mg/L	1	03/07/24 03:12 PM
Beryllium		0.00167	0.000300	0.00100		mg/L	1	03/07/24 03:12 PM
Lead		0.0174	0.000300	0.00100		mg/L	1	03/07/24 03:12 PM

Oualifiers :	ND - Not Detected at the SDL
Quanners.	The Percence at the BEE

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 1 of 4

CLIENT:	Weston Solution	s, Inc.		Δ		ICAL	DC SI	IMMAT	V R	FPORT
Work Order:	2402409								NI IN	
Project:	SAWS Impound	ment Asses	ssment Lagoor	ns and		RunII): I	CP-MS5_	24030	4A
Sample ID: DCS1-1	14267 Batch	ID: 1142	67	TestN	o: SW	6020B		Units:	mg/L	
SampType: DCS	Run II	D: ICP-N	/IS5_240304A	Analys	sis Date: 3/4/ 2	2024 10:02:	00 AM	Prep Date:	3/1/2	024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD I	RPDLimit Qual
Beryllium		0.000524	0.00100	0.000500	0	105	70	130	0	0
Lead		0.000504	0.00100	0.000500	0	101	70	130	0	0
Sample ID: DCS3-1	14267 Batch	ID: 1142	67	TestN	o: SW	6020B		Units:	mg/L	
SampType: DCS3	Run II	D: ICP-N	/IS5_240304A	Analys	sis Date: 3/4/ 2	2024 10:08:	00 AM	Prep Date:	3/1/2	024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD I	RPDLimit Qual
Arsenic		0.00497	0.00500	0.00500	0	99.4	70	130	0	0

Qualifiers:

B Analyte detected in the associated Method BlankJ Analyte detected between MDL and RL

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

- RL Reporting Limit
- KL Reporting Linit
- J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

CLIENT:	Weston So	olutions, I	Inc.		AN	ALYT	ICAL Q	QC SU	MMAR	RY RI	EPORT
Work Order: Project:	2402409 SAWS Im	noundme	nt Assessn	nent Lagooi	ns and		RunID): I(CP-MS5	240307	B
The QC data in batcl	h 114365 ap	plies to the	e following s	amples: 240	2409-01A			• _			
Sample ID: MB-114	365	Batch ID	: 114365		TestNo:	SW1	1312/6020B		Units:	mg/L	
SampType: MBLK		Run ID:	ICP-MS	5_240307B	Analysis	s Date: 3/7/2	2024 2:59:00	PM	Prep Date:	3/7/20	24
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimit Qual
Arsenic			<0.00200	0.00500							
Beryllium		<	<0.000300	0.00100							
Lead		<	<0.000300	0.00100							
Sample ID: MB-114	359-SPLP	Batch ID	114365		TestNo:	SW1	1312/6020B		Units:	mg/L	
SampType: MBLK		Run ID:	ICP-MS	5_240307B	Analysis	s Date: 3/7/2	2024 3:01:00	PM	Prep Date:	3/7/20	24
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimit Qual
Arsenic			<0.00200	0.00500							
Beryllium		<	<0.000300	0.00100							
		<	<0.000300	0.00100							
Sample ID: LCS-114	4365	Batch ID	: 114365		TestNo:	SW1	1312/6020B		Units:	mg/L	
SampType: LCS		Run ID:	ICP-MS	5_240307B	Analysis	s Date: 3/7/2	2024 3:04:00) PM	Prep Date:	3/7/20	24
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimit Qual
Arsenic			0.201	0.00500	0.200	0	101	80	120		
Beryllium			0.197	0.00100	0.200	0	98.6	80	120		
			0.194	0.00100	0.200	0	97.2	80	120		
Sample ID: LCSD-1	14365	Batch ID	: 114365		TestNo:	SW1	1312/6020B		Units:	mg/L	
SampType: LCSD		Run ID:	ICP-MS	5_240307B	Analysi	s Date: 3/7/2	2024 3:07:00) PM	Prep Date:	3/7/20	24
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimit Qual
Arsenic			0.206	0.00500	0.200	0	103	80	120	2.20	15
Beryllium			0.203	0.00100	0.200	0	101	80	120	2.89	15
		Detail ID	0.199	0.00100	0.200	0	99.5	80	120	2.34	15
	9-01A SD	Batch ID	: 114365	5 240307B	I ESTINO: Analysi	SW1	1312/6020B	DM	Units: Pren Date:	mg/L	24
		Run D.	Recult	DI	SDK voluo	Bof Vol	0/ REC		t Highl imit 0		
Analyte			Result	KL	SFK value	Rei vai	%REC	LOWLIIII	i HighLinnii 7		
Arsenic			0.0269	0.0250	0	0.0252				6.58 8 00	20
Lead			0.00103	0.00500	0	0.0174				0.230	20
Sample ID: 2402409	9-01A PDS	Batch ID	: 114365		TestNo:	SW1	1312/6020B		Units:	ma/L	
SampType: PDS		Run ID:	ICP-MS	5_240307B	Analysis	s Date: 3/7/2	2024 3:17:00) PM	Prep Date:	3/7/20	24
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimit Qual

Qualifiers:

- В Analyte detected in the associated Method Blank
- Analyte detected between MDL and RL J ND
 - Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL

DF Dilution Factor MDL Method Detection Limit

R RPD outside accepted control limits Page 2 of 4

- S Spike Recovery outside control limits
- Ν Parameter not NELAP certified

CLIENT: Weston Solutions, Inc.

ANALYTICAL QC SUMMARY REPORT

Work Order: Project: 2402409

SAWS Impoundment Assessment Lagoons and

RunID:

ICP-MS5_240307B

Sample ID:	2402409-01A PDS	Batch ID:	114365		TestNo	SW	1312/6020B		Units:	mg/L	
SampType:	PDS	Run ID:	ICP-MS5	_240307B	Analysi	s Date: 3/7/	/2024 3:17:00	РМ	Prep Date:	3/7/2	024
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Arsenic			0.215	0.00500	0.200	0.0252	95.1	75	125		
Beryllium			0.204	0.00100	0.200	0.00167	101	75	125		
Lead			0.220	0.00100	0.200	0.0174	101	75	125		
Sample ID:	2402409-01A MS	Batch ID:	114365		TestNo	sw	1312/6020B		Units:	mg/L	
SampType:	MS	Run ID:	ICP-MS5	_240307B	Analysi	s Date: 3/7/	/2024 3:20:00	РМ	Prep Date:	3/7/2	024
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit	%RPD	RPDLimit Qual
Arsenic			0.221	0.00500	0.200	0.0252	97.8	75	125		
Beryllium			0.201	0.00100	0.200	0.00167	99.9	75	125		
Lead			0.225	0.00100	0.200	0.0174	104	75	125		
Sample ID:	2402409-01A MSD	Batch ID:	114365		TestNo	sw	1312/6020B		Units:	mg/L	
SampType:	MSD	Run ID:	ICP-MS5	_240307B	Analysi	s Date: 3/7/	/2024 3:22:00	РМ	Prep Date:	3/7/2	024
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit	%RPD	RPDLimit Qual
Arsenic			0.224	0.00500	0.200	0.0252	99.4	75	125	1.50	15
Beryllium			0.204	0.00100	0.200	0.00167	101	75	125	1.28	15
Lead			0.225	0.00100	0.200	0.0174	104	75	125	0.138	15

Qualifiers:

B Analyte detected in the associated Method BlankJ Analyte detected between MDL and RL

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDLMethod Detection LimitRRPD outside accepted control limits

Page 3 of 4

S Spike Recovery outside control limits

N Parameter not NELAP certified

CLIENT: Weston Solutions, Inc.

ANALYTICAL QC SUMMARY REPORT

Project:

Work Order:

2402409

SAWS Impoundment Assessment Lagoons and

RunID: ICP-MS5_240307B

Page 4 of 4

Sample ID:	ICV-240307	Batch ID:	R1318	49	TestNo	: SW	1312/6020B		Units:	mg/L	
SampType:	ICV	Run ID:	ICP-M	S5_240307B	Analys	is Date: 3/7/	/2024 10:03:0	00 AM	Prep Date		
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Arsenic			0.103	0.00500	0.100	0	103	90	110		
Beryllium			0.103	0.00100	0.100	0	103	90	110		
Lead			0.101	0.00100	0.100	0	101	90	110		
Sample ID:	LCVL-240307	Batch ID:	R1318	49	TestNo): SW	1312/6020B		Units:	mg/L	
SampType:	LCVL	Run ID:	ICP-M	S5_240307B	Analys	is Date: 3/7/	/2024 10:09:0	00 AM	Prep Date):	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Arsenic			0.00513	0.00500	0.00500	0	103	80	120		
Beryllium			0.00105	0.00100	0.00100	0	105	80	120		
Lead			0.00102	0.00100	0.00100	0	102	80	120		
Sample ID:	CCV2-240307	Batch ID:	R1318	49	TestNo	: SW	1312/6020B		Units:	mg/L	
Sample ID: SampType:	CCV2-240307 CCV	Batch ID: Run ID:	R1318 ICP-M	49 S5_240307B	TestNo Analys	o: SW is Date: 3/7/	/1312/6020B /2024 11:21:(00 AM	Units: Prep Date	mg/L	-
Sample ID: SampType: Analyte	CCV2-240307 CCV	Batch ID: Run ID:	R1318 ICP-M Result	49 85_240307B RL	TestNo Analys SPK value	o: SW is Date: 3/7/ Ref Val	/1312/6020B /2024 11:21:(%REC	DO AM LowLimi	Units: Prep Date t HighLimit	mg/L :: %RPD	- RPDLimit Qual
Sample ID: SampType: Analyte Arsenic	CCV2-240307	Batch ID: Run ID:	R1318 ICP-M Result 0.203	49 S5_240307B RL 0.00500	TestNo Analys SPK value 0.200	o: SW is Date: 3/7/ Ref Val 0	21312/6020B /2024 11:21:0 %REC 102	DO AM LowLimi 90	Units: Prep Date t HighLimit 110	mg/L e: %RPD	RPDLimit Qual
Sample ID: SampType: Analyte Arsenic Beryllium	CCV2-240307	Batch ID: Run ID:	R1318 ICP-M Result 0.203 0.204	49 \$5_240307B RL 0.00500 0.00100	TestNo Analys SPK value 0.200 0.200	b: SW is Date: 3/7/ Ref Val 0 0	11312/6020B /2024 11:21:0 %REC 102 102	DO AM LowLimi 90 90	Units: Prep Date t HighLimit 110 110	mg/L :: %RPD	RPDLimit Qual
Sample ID: SampType: Analyte Arsenic Beryllium Lead	CCV2-240307	Batch ID: Run ID:	R1318 ICP-M Result 0.203 0.204 0.198	49 S5_240307B RL 0.00500 0.00100 0.00100	TestNo Analys SPK value 0.200 0.200 0.200	b: SW is Date: 3/7/ Ref Val 0 0 0	11312/6020B /2024 11:21:0 %REC 102 102 99.1	00 AM LowLimi 90 90 90	Units: Prep Date t HighLimit 110 110 110	mg/L :: %RPD	RPDLimit Qual
Sample ID: SampType: Analyte Arsenic Beryllium Lead Sample ID:	CCV2-240307 CCV CCV3-240307	Batch ID: Run ID: Batch ID:	R1318 ICP-M Result 0.203 0.204 0.198 R1318	49 S5_240307B RL 0.00500 0.00100 0.00100 49	TestNo Analys SPK value 0.200 0.200 0.200 TestNo	o: SW is Date: 3/7/ Ref Val 0 0 0 0	11312/6020B /2024 11:21:0 %REC 102 102 99.1	00 AM LowLimi 90 90 90	Units: Prep Date t HighLimit 110 110 Units:	mg/L %RPD mg/L	RPDLimit Qual
Sample ID: SampType: Analyte Arsenic Beryllium Lead Sample ID: SampType:	CCV2-240307 CCV CCV3-240307 CCV3-240307	Batch ID: Run ID: Batch ID: Run ID:	R1318 ICP-M Result 0.203 0.204 0.198 R1318 ICP-M	49 S5_240307B RL 0.00500 0.00100 0.00100 49 S5_240307B	TestNo Analys SPK value 0.200 0.200 0.200 TestNo Analys	o: SW is Date: 3/7/ Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(1312/6020B /2024 11:21:0 %REC 102 102 99.1 (1312/6020B /2024 3:25:00	DO AM LowLimi 90 90 90 D PM	Units: Prep Date t HighLimit 110 110 Units: Prep Date	mg/L :: %RPD mg/L ::	RPDLimit Qual
Sample ID: SampType: Analyte Arsenic Beryllium Lead Sample ID: SampType: Analyte	CCV2-240307 CCV CCV3-240307 CCV3-240307	Batch ID: Run ID: Batch ID: Run ID:	R1318 ICP-M Result 0.203 0.204 0.198 R1318 ICP-M Result	49 S5_240307B RL 0.00500 0.00100 0.00100 49 S5_240307B RL	TestNo Analys SPK value 0.200 0.200 0.200 TestNo Analys SPK value	o: SW is Date: 3/7/ Ref Val 0 0 0 0 0 0 0 0 0 0 8 8 8 7/ Ref Val	11312/6020B /2024 11:21:0 %REC 102 102 99.1 11312/6020B /2024 3:25:00 %REC	DO AM LowLimi 90 90 90 D PM LowLimi	Units: Prep Date t HighLimit 110 110 Units: Prep Date t HighLimit	mg/L :: %RPD mg/L :: %RPD	RPDLimit Qual
Sample ID: SampType: Analyte Arsenic Beryllium Lead Sample ID: SampType: Analyte Arsenic	CCV2-240307 CCV CCV3-240307 CCV	Batch ID: Run ID: Batch ID: Run ID:	R1318 ICP-M Result 0.203 0.204 0.198 R1318 ICP-M Result 0.202	49 S5_240307B RL 0.00500 0.00100 0.00100 49 S5_240307B RL 0.00500	TestNo Analys SPK value 0.200 0.200 TestNo Analys SPK value 0.200	o: SW is Date: 3/7/ Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 8 8 7/ 7/ Ref Val 0 0	11312/6020B /2024 11:21:0 %REC 102 102 99.1 /1312/6020B /2024 3:25:00 %REC 101	DO AM LowLimi 90 90 90 D PM LowLimi 90	Units: Prep Date t HighLimit 110 110 Units: Prep Date t HighLimit 110	mg/L :: %RPD mg/L :: %RPD	RPDLimit Qual
Sample ID: SampType: Analyte Arsenic Beryllium Lead Sample ID: SampType: Analyte Arsenic Beryllium	CCV2-240307 CCV CCV3-240307 CCV3-240307	Batch ID: Run ID: Batch ID: Run ID:	R1318 ICP-M Result 0.203 0.204 0.198 R1318 ICP-M Result 0.202 0.197	49 S5_240307B RL 0.00500 0.00100 0.00100 49 S5_240307B RL 0.00500 0.00100	TestNo Analys SPK value 0.200 0.200 TestNo Analys SPK value 0.200 0.200	b: SW is Date: 3/7/ Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0	11312/6020B /2024 11:21:0 %REC 102 102 99.1 /1312/6020B /2024 3:25:00 %REC 101 98.6	DO AM LowLimi 90 90 90 90 D PM LowLimi 90 90	Units: Prep Date t HighLimit 110 110 Units: Prep Date t HighLimit 110 110	mg/L :: %RPD mg/L :: %RPD	RPDLimit Qual

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits
	RL	Reporting Limit	S	Spike Recovery outside control limits
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAP certified

CLIENT:	Weston Solutions, Inc.
Work Order:	2402409
Project:	SAWS Impoundment Assessment Lagoons and

TestNo: SW1312/6020B	MDL	MQL
Analyte	mg/L	mg/L
Arsenic	0.00200	0.00500
Beryllium	0.000300	0.00100
Lead	0.000300	0.00100

MQL SUMMARY REPORT

April 15, 2024

Armin Sabet Weston Solutions, Inc. 2600 Dallas Parkway, Suite 280 Frisco, Texas 75034 TEL: (310) 980-6300 FAX: Order No.: 2404088 RE: SAWS Impoundment Assessment Lagoons 6725 Agua Pura

Dear Armin Sabet:

DHL Analytical, Inc. received 1 sample(s) on 4/10/2024 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAP except where noted in the Case Narrative. All non-NELAP methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,

John DuPont General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-23-29

2300 Double Creek Drive • Round Rock, TX 78664 • Phone (512) 388-8222 • FAX (512) 388-8229 www.dhlanalytical.com

Table of Contents

Miscellaneous Documents	
CaseNarrative 2404088	
WorkOrderSampleSummary 2404088	
PrepDatesReport 2404088	
AnalyticalDatesReport 2404088	
Analytical Report 2404088	
AnalyticalQCSummaryReport 2404088	
MQLSummaryReport 2404088	

							Double Creek Dr. Round Rock, TX 78664 Phone 512.388.8222 Web: www.dhlanalytical.com								CHAIN-OF-CUSTODY															
	I A I		CAL			Email: login@dhlanalytical.com																	PA	GE	<u> </u>					
CLIENT: Neston So	Jutio	ng / S	AWS			DATE: 4/9/24								LAB USE ONLY																
ADDRESS: 70 NE -	Inter	state y	1/0 600,	0 <i># 2</i>	DO SATO	PO#:								DHL WORKORDER #: 2909088																
PHONE: 316 - 980-0	6300	EMAIL: d	rmin, 59	bef	782/6	PR	OJE	CT L	OCA	TIC	DN C	DR N	JAN	ле: <	SAI	W	sΙ	Mpc	undu	rei A	. A	55e	53h	er	+ [lag	100	~S		
DATA REPORTED TO: Ar	min	Sabet		ave	ton solutions.			·					_(,72	5	Ag	ina.	- <u>P</u>	<u>tra</u>	5	t.		Var	0)rm	<u>\</u>	, T	`×	78073	
ADDITIONAL REPORT COI	PIES TO			<u> </u>	DIAGNIT	CLI	EN	T PR	OJEC		‡/ <i>0</i>	<u>4 (</u>	21	036	, (100		90' 1					R:	\downarrow	<u>, /</u>	le.	<u>nn</u>	ve	my	
Authorize 5% surcharge	for TRRP report?							SER					006				270 []		ETALS [ū	Sel	Ś		/	
\square No \square SI=SUI							04 □		tate	VED	S	0 8260					PEST 8		ISS. M					GREAS	VANID	13	}			
	Only	SO=SOLID				ner	J₃PC		Acet	SER	YSE	IETHOI	8	24.1	625.1	D HA	6 0		0 08.0						IST [] (616				
	_] .		ntai	-		Zn	NPRI	M		TPH 10	VOC 6	svoc	НОГР	625.1		200					DGAS	% W0	L				
Field Sample I D	DHL	Collection	Collection	Matrix	Container	ပိ		ő			A	MTB	50	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3270 []	L 0 1	270 []	321 0	S 6020	<u>п</u>			VETALS	U NS	TSS []	4				
field ou tiple i.b.	Lab #	Date	Time		Type	0 #	НC	Ξ I	NaO	Ш		BTEX	TPH 10	GRO 8	SVOC 8	PAH 82	PEST 8	HERB	METAI	RCRA 5		S-GIDE	TCLP-A	L L L L	TDS []	12	+		FIELD NOTE	s
TW-1	01	4/9/24	1447	W	250mL	1		×	Í				T						Ī	ĺ				Ī		N	\Box		Field Filter	ed
		/ .									-																			
											-		_								_	+	_		_	 	\square			
									_		-		_				_	_	+		+	_	+	+	_	-	\vdash			
										-		-	+	+	\square			+-	+		+	+	+	+	+		$\left - \right $			
										-	-	+	+		\square								-				┝─┦			-
									1	Π	-											╈	+	+			+			
																					\perp					ļ	\square			
													_						$\left \right $		+	_	_				$\downarrow \downarrow \downarrow$			
					 				_	-		+	+	_							_	+	+-	-		-	+			
											╞	+	+	-						-+		+	+	+		+	+			
								_	+	\square			+	-				-				+		╋	-	+	+ +			
Relinquished By: (Sign)	Relinquished By: (Sign) DATE/TIME Re							L		\square	TU	RN	ARC			ΛE		AB U	SE O	NLY						4	4	TH	ERMO #:	
W. Kinney		YAI	124 16	40	-20	W	K				(CA	LL F	IRST	r for	RU	SH)	F	ECEI	VING	TEM	P (°(C):	1	. J	00	,			78	
Relinquished By: (Sign)	Relinquished By: (Sign) DATE/TIME Re									RL	JSH-:	1 D/	٩Yロ	RUS	H-2	DAY	′□ I	□ IF >6°C, ARE SAMPLES ON ICE AND JUST COLLECTED? YES / NO												
Park Park		4/10/2	DATE /TIMAT	V	flu	<u>M</u>	N	h		4	NOT	RU	SH-∷ שרו	3 DAY	ם' דערי	о —						SED								
Kelinquisnea By: (Sign)		. 1	DATE/ HIVIE		Kecell	red D	y:				JE D			U 1		r. 🗀		CARRIER: □ LSO ☑ FEDEX □ UPS □ COURIER □ HAND DELIVERED					.כט							

	Sample	Receipt Chec	klist		
Client Name: Weston Solutions, Inc.			Date Receiv	ved: 4/10/2024	
Work Order Number: 2404088			Received by	y: KAO	
Checklist completed by:	4/10/202	24	Reviewed b	y: <u> </u>	4/10/2024
Signature	Date			Initials	Date
	Carrier name:	<u>FedEx 1day</u>			
Shipping container/cooler in good condition?		Yes 🗹	No 🗌	Not Present	
Custody seals intact on shipping container/coo	bler?	Yes 🗹	Νο	Not Present	
Custody seals intact on sample bottles?		Yes	Νο	Not Present	
Chain of custody present?		Yes 🗹	No 🗌		
Chain of custody signed when relinquished an	d received?	Yes 🗹	No		
Chain of custody agrees with sample labels?		Yes 🔽	No 🗌		
Samples in proper container/bottle?		Yes 🗹	No 🗌		
Sample containers intact?		Yes 🗹	No 🗌		
Sufficient sample volume for indicated test?		Yes 🗹	No 🗌		
All samples received within holding time?		Yes 🖌	No 🗌		
Water - VOA vials have zero headspace?		Yes 🗌	No 🗌	No VOA vials submitte	d 🗹 NA 🗌
Water - pH<2 acceptable upon receipt?		Yes 🗹	No 🗌	NA LOT #	13171
		Adjusted?	0	Checked by	L
Water - ph>9 (S) or ph>10 (CN) acceptable up	on receipt?	Yes	No 🗌	NA 🗹 LOT #	
		Adjusted?		Checked by	
Container/Temp Blank temperature in complia	nce?	Yes 🗹	No 🗌		
Cooler # 1					
Temp °C 1.2					
Seal Intact Y					
Any No response must be detailed in the com					
Client contacted:	Date contacted:		Pers	son contacted:	
Contacted by:	Regarding:				
Comments:					
Corrective Action:					

Lab	orat	ory Name: DHL Analytical, Inc.					
Lab	orat	ory Review Checklist: Reportable Data					
Proje	ect Na	me: SAWS Impoundment Assess. Lagoon 6725 AguaPura LRC Date: 4/15/2024					
Revie	ewer I	Name: Angie O'Donnell Laboratory Work Order: 2404088					
Prep	Batcl	Number(s): See Prep Dates Report Run Batch: See Analytical Dates Report					
#1	A ²	Description	Yes	No	NA ³	\mathbf{NR}^4	ER# ⁵
		Chain-of-Custody (C-O-C)					
R1	OI	1) Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Χ				R1-01
		2) Were all departures from standard conditions described in an exception report?			Χ		
R2	OI	Sample and Quality Control (QC) Identification	NZ				
		1) Are all field sample ID numbers cross-referenced to the laboratory ID numbers?					
P3	OI	2) Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Λ				
1.5	01	1) Were all samples prepared and analyzed within holding times?	X				
		2) Other than those results < MOL, were all other raw values bracketed by calibration standards?	X				
		3) Were calculations checked by a peer or supervisor?	X				
		4) Were all analyte identifications checked by a peer or supervisor?	Χ				
		5) Were sample detection limits reported for all analytes not detected?	Χ				
		6) Were all results for soil and sediment samples reported on a dry weight basis?			Χ		
		7) Were % moisture (or solids) reported for all soil and sediment samples?	-		X		
		8) Were bulk soils/solids samples for volatile analysis extracted with methanol per EPA Method 5035?			X		
D4	0	(9) If required for the project, IICs reported?			Λ		
114	0	1) Were surrogates added prior to extraction?			x		
		2) Were surrogate percent recoveries in all samples within the laboratory QC limits?			X		
R5	OI	Test Reports/Summary Forms for Blank Samples					
		1) Were appropriate type(s) of blanks analyzed?	Χ				
		2) Were blanks analyzed at the appropriate frequency?	Χ				
		3) Where method blanks taken through the entire analytical process, including preparation and, if	X				
		applicable, cleanup procedures?	v				
		 4) were blank concentrations < MDL? 5) For analyte(s) detected in a blank sample, was the concentration unadjusted for sample specific. 	Λ				
		factors, in all associated field samples, greater than 10 times the concentration in the blank sample?			X		
R6	OI	Laboratory Control Samples (LCS):	NZ				
		1) Were all COCs included in the LCS? 2) Was each LCS taken through the artige analytical proceeding including more and alconym store?					
		2) was each LCS taken through the entire analytical procedure, including prep and cleanup steps?					
		4) Were LCS (and LCSD if applicable) %Rs within the laboratory OC limits?					
		5) Does the detectability data document the laboratory's capability to detect the COCs at the MDL used					
		to calculate the SDLs?	Х				
		6) Was the LCSD RPD within QC limits (if applicable)?	Χ				
R 7	OI	Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Data					
		1) Were the project/method specified analytes included in the MS and MSD?			X		
		2) were MS/MSD analyzed at the appropriate frequency? 3) Were MS (and MSD, if applicable) % Be within the laboratory OC limite?			A V		
		4) Were MS/MSD RPDs within laboratory OC limits?			X		
R8	OI	Analytical Duplicate Data					
		1) Were appropriate analytical duplicates analyzed for each matrix?			Χ		
		2) Were analytical duplicates analyzed at the appropriate frequency?			Χ		
		3) Were RPDs or relative standard deviations within the laboratory QC limits?			Χ		
R9	OI	Method Quantitation Limits (MQLs):					
		1) Are the MQLs for each method analyte included in the laboratory data package?					
		 a) Do the MQLs correspond to the concentration of the lowest non-zero canoration standard? 3) Are unadjusted MOLs and DCSs included in the loboratory data package? 	A V				
R10	OI	Other Problems/Anomalies	Λ				
		1) Are all known problems/anomalies/special conditions noted in this LRC and ER?	X				R10-01
		2) Was applicable and available technology used to lower the SDL to minimize the matrix interference	x				
		3) Is the laboratory NELAC-accredited under the Texas Laboratory Accreditation Program for the	v				
		analytes, matrices and methods associated with this laboratory data package?	Л				

Lab	ora	tory Name: DHL Analytical, Inc.						
Lab	ora	tory Review Checklist (continued): Suppor	ting Data					
Proje	ct Na	ame: SAWS Impoundment Assess. Lagoon 6725 AguaPura	LRC Date: 4/15/2024					
Revie	wer	Name: Angie O'Donnell	Laboratory Work Order: 2404088					
Prep	Batc	h Number(s): See Prep Dates Report	Run Batch: See Analytical Dates Report	t				
#1	A^2	Description	¥ X	Yes	No	NA ³	NR ⁴	ER# ⁵
S1	OI	Initial Calibration (ICAL)		105	110			
		1) Wenne mener for the set of the		V				
		1) Were percent PSDs or correlation coefficient criteria met)	A V				
		3) Was the number of standards recommended in the method	used for all analytes?	X				
		4) Were all points generated between the lowest and highest	standard used to calculate the curve?	X				
		5) Are ICAL data available for all instruments used?	standard used to calculate the curve.	X				
		6 Has the initial calibration curve been verified using an apr	propriate second source standard?	X				
S2	OI	Initial and Continuing calibration Verification (ICCV an	d CCV) and Continuing Calibration	1				
~~ =		blank (CCB):						
		1) Was the CCV analyzed at the method-required frequency	?	Χ				
		2) Were percent differences for each analyte within the meth	od-required QC limits?	Χ				
		3) Was the ICAL curve verified for each analyte?		Χ				
		4) Was the absolute value of the analyte concentration in the	inorganic CCB < MDL?	Χ				
S3	0	Mass Spectral Tuning:						
		1) Was the appropriate compound for the method used for tu	ning?	Χ				
		2) Were ion abundance data within the method-required QC	limits?	Χ				
S4	0	Internal Standards (IS):						
		1) Were IS area counts and retention times within the method	d-required QC limits?	X				
S5	OI	Raw Data (NELAC Section 5.5.10)						
		1) Were the raw data (for example, chromatograms, spectral	data) reviewed by an analyst?	X				
~ -	-	2) Were data associated with manual integrations flagged on	the raw data?	X				
S6	0	Dual Column Confirmation	1000			N/		
07	0	1) Did dual column confirmation results meet the method-red	quired QC?			X		
87	0	Tentatively Identified Compounds (TICs):	. 1			v		
60	т	1) If TICs were requested, were the mass spectra and TIC da	ta subject to appropriate checks?			Λ		
50	1	1) Were percent recoveries within method OC limits?		v				
50	T	1) were percent recoveries within method QC limits? Serial Dilutions Post Digestion Spikes and Method of St.	andard Additions	Λ				
37	1	1) W						
		1) Were percent differences, recoveries, and the linearity method?	within the QC limits specified in the			X		
S10	OI	Method Detection Limit (MDL) Studies						
		1) Was a MDL study performed for each reported analyte?		Χ				
		2) Is the MDL either adjusted or supported by the analysis of	f DCSs?	Χ				
S11	OI	Proficiency Test Reports:						
		1) Was the lab's performance acceptable on the applicable pr	oficiency tests or evaluation studies?	X				
S12	OI	Standards Documentation						
612	01	1) Are all standards used in the analyses NIST-traceable or o	btained from other appropriate sources?	X				
\$13	OI	Compound/Analyte Identification Procedures	4 10	V				
614	OI	1) Are the procedures for compound/analyte identification do	ocumented?	Х				
514	UI	1) Was DOC conducted consistent with NELAC Charter 5	Annondiv C2	v				
		1) was DOC conducted consistent with NELAC Chapter $3 - 2$) is documentation of the analyst's competency up to date (Appendix C:	A V				
\$15	OI	Verification/Validation Documentation for Mathads (NE	AC Chapter 5)	Λ				
515	UI	1) And all the methy 1 and 1 the section of the line o						
		applicable?	mented, verified, and validated, where	X				
S16	OI	Laboratory Standard Operating Procedures (SOPs):						
		1) Are laboratory SOPs current and on file for each method p	performed?	X				

Items identified by the letter "R" should be included in the laboratory data package submitted to the TCEQ in the TRRP-required report(s). Items identified by 1 the letter "S" should be retained and made available upon request for the appropriate retention period. O = organic analyses; I = inorganic analyses (and general chemistry, when applicable).

²

³ NA = Not applicable.

⁴ NR = Not Reviewed.

⁵ ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Data Package Signature Page – RG-366/TRRP-13

This data package consists of:

R4

This signature page, the laboratory review checklist, and the following reportable data:

- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a) Items consistent with NELAC Chapter 5,
 - b) dilution factors,
 - c) preparation methods,
 - d) cleanup methods, and
 - e) if required for the project, tentatively identified compounds (TICs).
 - Surrogate recovery data including:
 - a) Calculated recovery (%R), and
 - b) The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a) LCS spiking amounts,
 - b) Calculated %R for each analyte, and
 - c) The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a) Samples associated with the MS/MSD clearly identified,
 - b) MS/MSD spiking amounts,
 - c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d) Calculated %Rs and relative percent differences (RPDs), and
 - e) The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a) The amount of analyte measured in the duplicate,
 - b) The calculated RPD, and
 - c) The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix;
- R10 Other problems or anomalies.

The Exception Report for each "No" or "Not Reviewed (NR)" item in the Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory is not accredited under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge that all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information or data affecting the quality of the data has been knowingly withheld.

This laboratory was last inspected by TCEQ on May 30 - June 2, 2023. Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Name: John DuPont Official Title: General Manager

Name: Dr. Derhsing Luu Official Title: Technical Director

fl what Signature

04/15/24 Date

CLIENT:Weston Solutions, Inc.Project:SAWS Impoundment Assessment Lagoons 672Lab Order:2404088

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Method SW6020B- Metals Analysis

Exception Report R1-01

Samples were received and login performed on 4/10/2024. A total of 1 sample was received and analyzed. The sample arrived in good condition and was properly packaged.

Exception Report R10-01

Per project specification, MS/MSD/Duplicates are from this workorder or project samples only.

Date: 15-Apr-24

CLIENT:	Weston Solutions, Inc.	
Project:	SAWS Impoundment Assessment Lagoons 6725	Work Order Sample Summary
Lab Order:	2404088	

Tag Number

Lab Smp ID Client Sample ID

2404088-01 TW-1

Date Collected 04/09/24 02:47 PM **Date Recved** 04/10/2024

Lab Order: Client: Project:	2404088 Weston Solutic SAWS Impoun	ons, Inc. Idment Assessment			PREF	P DATES REPORT	Г
Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
2404088-01A	TW-1	04/09/24 02:47 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	04/11/24 07:24 AM	114911

Lab Order: Client: Project:	2404088 Weston Solution SAWS Impound	ns, Inc. Iment Assessm	ent		AN	ALYTIC	CAL DATES	REPORT
Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
2404088-01A	TW-1	Aqueous	SW6020B	Total Metals: ICP-MS - Water	114911	1	04/12/24 10:59 AM	ICP-MS5_240412A

DHL Ana	lytical, Inc.				Da	ate:	15-Apr-24	
CLIENT:	Weston Solutions, In	IC.		Clier	nt Sampl	le ID: TW-1		
Project:	SAWS Impoundmen	t Assessment La	agoons 6725		La	b ID: 24040	88-01	
Project No:	10412.036.001.0002			Co	llection 1	Date: 04/09/	24 02:47 PI	M
Lab Order:	2404088				Ma	atrix: AQUE	OUS	
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed
TOTAL METAL	_S: ICP-MS - WATER		SW602	20B				Analyst: SP
Arsenic		< 0.00200	0.00200	0.00500		mg/L	1	04/12/24 10:59 AM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

- B Analyte detected in the associated Method Blank
- DF- Dilution Factor
- N Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 1 of 3

CLIENT: Work Order:	Weston 2404088	Solutions, I 3	nc.		AN	JALY'	FICAL Q	C SU	MMA	RY I	REPORT
Project:	SAWS I	mpoundmer	nt Assessr	nent Lagoor	ns 6725		RunID:	Ι	CP-MS5	_2403	04A
Sample ID: DCS3-	114267	Batch ID:	114267		TestNo	: SI	W6020B		Units:	mg/l	L
SampType: DCS3		Run ID:	ICP-MS	5_240304A	Analys	is Date: 3/ 4	4/2024 10:08:00	MA (Prep Date	: 3/1/2	2024
Analyte			Result	RL	SPK value	Ref Val	%REC I	_owLimit	HighLimit	%RPD	RPDLimit Qua
Arsenic			0.00497	0.00500	0.00500	0	99.4	70	130	0	0

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

В

J Analyte detected between SDL and RL DF Dilution Factor

MDL Method Detection Limit

- R RPD outside accepted control limits
- S Spike Recovery outside control limits
- Ν Parameter not NELAP certified

CLIENT:	Weston Solutions,	Inc.		ANAL VTICAL OC SUMMARY REPORT				РТ		
Work Order:	2404088									
Project:	SAWS Impoundm	ent Assessn	nent Lagoor	ns 6725		RunID): I	CP-MS5_2	240412A	
The QC data in bate	h 114911 applies to th	ne following s	amples: 2404	4088-01A						
Sample ID: MB-114	I911 Batch II	D: 114911		TestNo:	SWe	6020B		Units:	mg/L	
SampType: MBLK	Run ID:	ICP-MS	5_240412A	Analysis	s Date: 4/12	/2024 10:41	:00 AM	Prep Date:	4/11/2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	RPD RPDLimit	Qual
Arsenic		<0.00200	0.00500							
Sample ID: LCS-11	4911 Batch II	D: 114911		TestNo:	SWe	6020B		Units:	mg/L	
SampType: LCS	Run ID:	ICP-MS	5_240412A	Analysis	s Date: 4/12	/2024 10:44	:00 AM	Prep Date:	4/11/2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	RPD RPDLimit	Qual
Arsenic		0.199	0.00500	0.200	0	99.3	80	120		
Sample ID: LCSD-	I14911 Batch II	D: 114911		TestNo:	SWe	6020B		Units:	mg/L	
SampType: LCSD	Run ID:	ICP-MS	5_240412A	Analysis	s Date: 4/12	/2024 10:49	:00 AM	Prep Date:	4/11/2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RPDLimit	Qual
Arsenic		0.196	0.00500	0.200	0	98.2	80	120	1.02 15	

Qualifiers:

В

Analyte detected in the associated Method Blank Analyte detected between MDL and RL

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 2 of 3

- R RPD outside accepted control limits
- S Spike Recovery outside control limits
- N Parameter not NELAP certified

CLIENT: Work Order:	Weston Sol 2404088	lutions, I	nc.		AN	ALYTI	CAL (QC SU	JMMAH	RY REPORT
Project:	SAWS Imp	oundme	nt Assessme	ent Lagoor	ns 6725		RunII): I	CP-MS5_	240412A
Sample ID: ICV-24	0412	Batch ID:	R132490		TestNo:	SW6	020B		Units:	mg/L
SampType: ICV		Run ID:	ICP-MS5	_240412A	Analysis	Date: 4/12/	2024 10:27	:00 AM	Prep Date:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
Arsenic			0.0981	0.00500	0.100	0	98.1	90	110	
Sample ID: LCVL-2	240412	Batch ID:	R132490		TestNo:	SW6	020B		Units:	mg/L
SampType: LCVL		Run ID:	ICP-MS5	_240412A	Analysis	Date: 4/12/	2024 10:32	2:00 AM	Prep Date:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
Arsenic			0.00512	0.00500	0.00500	0	102	80	120	
Sample ID: CCV1-	240412	Batch ID:	R132490		TestNo:	SW6	020B		Units:	mg/L
SampType: CCV		Run ID:	ICP-MS5	_240412A	Analysis	Date: 4/12/	2024 11:30	:00 AM	Prep Date:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
Arsenic			0.198	0.00500	0.200	0	99.0	90	110	

Qualifiers:

B Analyte detected in the associated Method BlankJ Analyte detected between MDL and RL

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 3 of 3

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

CLIENT: Work Order: Project:	Weston Solutions, Inc. 2404088	assmant Lag	MQL SUMMARY REPORT
	SAWS Impoundment Ass		018 0723
TestNo: SW6020	B MDL	MQL	
Analyte	mg/L	mg/L	
Arsenic	0.00200	0.00500	

ATTACHMENT 3 – BORING LOG

This log should not be used separately from the orginial report.

August 5, 2024

Texas Commission on Environmental Quality Applications Review and Process Team, Building F. Room 2101 12100 Park 35 Circle Austin, TX 78753

Re: Industrial Permit Discharge Renewal for: San Antonio Water System (SAWS) Ultrafiltration Water Treatment Plant Permit No. WQ0004437000; EPA ID No. TX0125083

Dear Sir/Madam:

I hope this message finds you well. I am writing to address the specific requirements outlined in the Water Quality Individual Permits (EPR_WQIP) application through the Texas Environmental Electronic Reporting System (STEERS). The permit application requires submittals of the following documents.

- Design Calculations,
- Solids Management Plan, and .
- Water Balance .

After a thorough review of these requirements, we have determined that they do not apply to this permit application because the plant hasn't had a discharge since 2015. Should you have any questions or need additional information, you may reach Floramie Welch, Environmental Analyst III, at (210) 233-3744.

Sincerely

Jeff Haby, 🗗 E.

Sr. Vice President, Production Operations

August 5, 2024

Texas Commission on Environmental Quality Applications Review and Process Team, Building F. Room 2101 12100 Park 35 Circle Austin, TX 78753

Re: Industrial Permit Discharge Renewal for: San Antonio Water System (SAWS) Ultrafiltration Water Treatment Plant Permit No. WQ0004437000; EPA ID No. TX0125083

Dear Sir/Madam:

I hope this message finds you well. I am writing to address the specific requirements outlined in the Water Quality Individual Permits (EPR_WQIP) application through the Texas Environmental Electronic Reporting System (STEERS). The permit application requires submittals of the following documents.

- Design Calculations,
- Solids Management Plan, and .
- Water Balance .

After a thorough review of these requirements, we have determined that they do not apply to this permit application because the plant hasn't had a discharge since 2015. Should you have any questions or need additional information, you may reach Floramie Welch, Environmental Analyst III, at (210) 233-3744.

Sincerely

Jeff Haby, 🗗 E.

Sr. Vice President, Production Operations

August 5, 2024

Texas Commission on Environmental Quality Applications Review and Process Team, Building F. Room 2101 12100 Park 35 Circle Austin, TX 78753

Re: Industrial Permit Discharge Renewal for: San Antonio Water System (SAWS) Ultrafiltration Water Treatment Plant Permit No. WQ0004437000; EPA ID No. TX0125083

Dear Sir/Madam:

I hope this message finds you well. I am writing to address the specific requirements outlined in the Water Quality Individual Permits (EPR_WQIP) application through the Texas Environmental Electronic Reporting System (STEERS). The permit application requires submittals of the following documents.

- Design Calculations,
- Solids Management Plan, and .
- Water Balance .

After a thorough review of these requirements, we have determined that they do not apply to this permit application because the plant hasn't had a discharge since 2015. Should you have any questions or need additional information, you may reach Floramie Welch, Environmental Analyst III, at (210) 233-3744.

Sincerely

Jeff Haby, 🗗 E.

Sr. Vice President, Production Operations

Item 14. Laboratory Accreditation (Instructions, Page 49)

All laboratory tests performed must meet the requirements of *30 TAC Chapter 25*, *Environmental Testing Laboratory Accreditation and Certification*, which includes the following general exemptions from National Environmental Laboratory Accreditation Program (NELAP) certification requirements:

- The laboratory is an in-house laboratory and is:
 - periodically inspected by the TCEQ; or
 - \circ located in another state and is accredited or inspected by that state; or
 - performing work for another company with a unit located in the same site; or
 - $\circ~$ performing pro bono work for a governmental agency or charitable organization.
- The laboratory is accredited under federal law.
- The data are needed for emergency-response activities, and a laboratory accredited under the Texas Laboratory Accreditation Program is not available.
- The laboratory supplies data for which the TCEQ does not offer accreditation.

The applicant should review *30 TAC Chapter 25* for specific requirements.

The following certification statement shall be signed and submitted with every application. See the *Signature Page* section in the Instructions, for a list of designated representatives who may sign the certification.

CERTIFICATION:

I certify that all laboratory tests submitted with this application meet the requirements of *30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification.*

Printed Name: Jeff Haby, P.E.

Title: Sr. Vice President, Production Operations

Signature Date:

Candice Calhoun

From:	Floramie Welch <floramie.welch@saws.org></floramie.welch@saws.org>
Sent:	Tuesday, October 15, 2024 9:46 AM
То:	Candice Calhoun
Subject:	RE: Application to Renew Permit No. WQ0004437000 - San Antonio Water System - Notice of Deficiency
Attachments:	2024_UF_PLANT_TPDES_APPLICATION_NODI.pdf
Follow Up Flag:	Follow up
Flag Status:	Flagged

Ms. Calhoun, We've reviewed the NODI information carefully and everything is correct.

Sincerely, Floramie Welch

From: Candice Calhoun <Candice.Calhoun@tceq.texas.gov>
Sent: Monday, October 14, 2024 8:32 AM
To: Floramie Welch <Floramie.Welch@saws.org>
Subject: RE: Application to Renew Permit No. WQ0004437000 - San Antonio Water System - Notice of Deficiency

External Sender

Do not click links or attachments unless you trust the sender and know the content is safe.

Good morning, Ms. Welch,

My apologies for the late response, I was out last week.

Yes ma'am, the only thing that is needed is for you to review the portion of the NORI, that is listed in the NOD, and indicate if it contains any errors or omissions.

Report Suspicious

Regards,

Candice Courville Texas Commission on Environmental Quality Water Quality Division 512-239-4312 <u>candice.calhoun@tceq.texas.gov</u>

How is our customer service? Fill out our online customer satisfaction survey at www.tceq.texas.gov/customersurvey