

This file contains the following documents:

- 1. Summary of application (in plain language)
- 2. First notice (NORI-Notice of Receipt of Application and Intent to Obtain a Permit)
- 3. Second notice (NAPD-Notice of Preliminary Decision)
- 4. Application materials
- 5. Draft permit
- 6. Technical summary or fact sheet

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and are not federal enforceable representations of the permit application.

San Antonio Water System (CN600529069) operates an Ultra Filtration Water Treatment Plant (RN103114724), a potable water treatment facility. The facility is located at 6725 Moreno Street, near the city of San Antonio, Bexar County, Texas 78073.

The water treatment facility is currently not producing wastewater. However, this application is for a renewal to discharge process wastewater on an intermittent and flow-variable basis via Outfall 001. Discharges from the facility are required to contain no more than 45 parts per million of Total Suspended Solids (TSS) and are required to have a potential of hydrogen (pH) between 6.0 and 9.0, measured as standard units.

Raw water is supplied by Medina Lake where it is withdrawn from an intake structure at the Medina River and is fed through a clarification system to remove turbidity, which are particles that cause cloudiness in water. The water is then fed through pre-filtration and ultra-filtration membranes to remove dissolved solids and the finished water is distributed for potable drinking water use while the solids are stored in lagoons.

Process wastewater discharges only occur when the incoming source water is excessive in turbidity. The ultra-filtration membranes system is shut off automatically and the flow is diverted to an equalization chamber and then discharged through Outfall 001, discharging to an unnamed ditch and then into Medio Creek, Segment ID 1912.

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

NOTICE OF RECEIPT OF APPLICATION AND INTENT TO OBTAIN WATER QUALITY PERMIT RENEWAL.

PERMIT NO. WQ0004437000

APPLICATION. San Antonio Water System, 2800 U.S. Highway 281 North, San Antonio, Texas 78212, which owns a potable water treatment system facility, has applied to the Texas Commission on Environmental Quality (TCEQ) to renew Texas Pollutant Discharge Elimination System (TPDES) Permit No. WO0004437000 (EPA I.D. No. TX0125083) to authorize the discharge of clarifier water at an intermittent and variable flow rate. The water treatment facility is located at 6725 Moreno Street, near the city of Von Ormy, in Bexar County, Texas 78073. The discharge route is from the plant site to an unnamed ditch; thence to O. R. Mitchell Lake 1; thence to Medio Creek. TCEQ received this application on September 30, 2024. The permit application will be available for viewing and copying at San Antonio Water System Admin Building, tower 1, first floor, 2800 U.S. Highway 281 North, San Antonio, in Bexar County, Texas prior to the date this notice is published in the newspaper. The application, including any updates, and associated notices are available electronically at the following webpage: https://www.tceq.texas.gov/permitting/wastewater/pendingpermits/tpdes-applications. This link to an electronic map of the site or facility's general location is provided as a public courtesy and not part of the application or notice. For the exact location, refer to the application.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-98.635555,29.320277&level=18

ADDITIONAL NOTICE. TCEQ's Executive Director has determined the application is administratively complete and will conduct a technical review of the application. After technical review of the application is complete, the Executive Director may prepare a draft permit and will issue a preliminary decision on the application. Notice of the Application and Preliminary Decision will be published and mailed to those who are on the countywide mailing list and to those who are on the mailing list for this application. That notice will contain the deadline for submitting public comments.

PUBLIC COMMENT / PUBLIC MEETING. You may submit public comments or request a public meeting on this application. The purpose of a public meeting is to provide the opportunity to submit comments or to ask questions about the application. TCEQ will hold a public meeting if the Executive Director determines that there is a significant degree of public interest in the application or if requested by a local legislator. A public meeting is not a contested case hearing.

OPPORTUNITY FOR A CONTESTED CASE HEARING. After the deadline for submitting public comments, the Executive Director will consider all timely comments and prepare a response to all relevant and material, or significant public comments. **Unless the application**

is directly referred for a contested case hearing, the response to comments, and the Executive Director's decision on the application, will be mailed to everyone who submitted public comments and to those persons who are on the mailing list for this application. If comments are received, the mailing will also provide instructions for requesting reconsideration of the Executive Director's decision and for requesting a contested case hearing. A contested case hearing is a legal proceeding similar to a civil trial in state district court.

TO REQUEST A CONTESTED CASE HEARING, YOU MUST INCLUDE THE FOLLOWING ITEMS IN YOUR REQUEST: your name, address, phone number; applicant's name and proposed permit number; the location and distance of your property/activities relative to the proposed facility; a specific description of how you would be adversely affected by the facility in a way not common to the general public; a list of all disputed issues of fact that you submit during the comment period and, the statement "[I/we] request a contested case hearing." If the request for contested case hearing is filed on behalf of a group or association, the request must designate the group's representative for receiving future correspondence; identify by name and physical address an individual member of the group who would be adversely affected by the proposed facility or activity; provide the information discussed above regarding the affected member's location and distance from the facility or activity; explain how and why the member would be affected; and explain how the interests the group seeks to protect are relevant to the group's purpose.

Following the close of all applicable comment and request periods, the Executive Director will forward the application and any requests for reconsideration or for a contested case hearing to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

The Commission may only grant a request for a contested case hearing on issues the requestor submitted in their timely comments that were not subsequently withdrawn. If a hearing is granted, the subject of a hearing will be limited to disputed issues of fact or mixed questions of fact and law relating to relevant and material water quality concerns submitted during the comment period.

TCEQ may act on an application to renew a permit for discharge of wastewater without providing an opportunity for a contested case hearing if certain criteria are met.

MAILING LIST. If you submit public comments, a request for a contested case hearing or a reconsideration of the Executive Director's decision, you will be added to the mailing list for this specific application to receive future public notices mailed by the Office of the Chief Clerk. In addition, you may request to be placed on: (1) the permanent mailing list for a specific applicant name and permit number; and/or (2) the mailing list for a specific county. If you wish to be placed on the permanent and/or the county mailing list, clearly specify which list(s) and send your request to TCEQ Office of the Chief Clerk at the address below.

INFORMATION AVAILABLE ONLINE. For details about the status of the application, visit the Commissioners' Integrated Database at www.tceq.texas.gov/goto/cid. Search the database using the permit number for this application, which is provided at the top of this notice.

AGENCY CONTACTS AND INFORMATION. All public comments and requests must be submitted either electronically at https://www14.tceq.texas.gov/epic/eComment/, or in writing to the Texas Commission on Environmental Quality, Office of the Chief Clerk, MC-105,

P.O. Box 13087, Austin, Texas 78711-3087. Please be aware that any contact information you provide, including your name, phone number, email address and physical address will become part of the agency's public record. For more information about this permit application or the permitting process, please call the TCEQ Public Education Program, Toll Free, at 1-800-687-4040 or visit their website at www.tceq.texas.gov/goto/pep. Si desea información en Español, puede llamar al 1-800-687-4040.

Further information may also be obtained from San Antonio Water System at the address stated above or by calling Ms. Olga Galindo, Executive Admin Assistant, at 210-233-4570.

Issuance Date: October 25, 2024

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

NOTICE OF APPLICATION AND PRELIMINARY DECISION FOR TPDES PERMIT FOR INDUSTRIAL WASTEWATER

RENEWAL

Permit No. WQ0004437000

APPLICATION AND PRELIMINARY DECISION. San Antonio Water System, 2800 U. S. Highway 281 North, San Antonio, Texas 78212, which operates the Ultrafiltration Water Treatment Plant, has applied to the Texas Commission on Environmental Quality (TCEQ) for a renewal of Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0004437000, which authorizes the discharge of clarifier water on an intermittent and flow-variable basis via Outfall 001. TCEQ received this application on September 30, 2024.

The facility is located at 6725 Moreno Street, in the City of Von Ormy, Bexar County, Texas 78073. This link to an electronic map of the site or facility's general location is provided as a public courtesy and is not part of the application or notice. For the exact location, refer to the application. https://gisweb.tceq.texas.gov/LocationMapper/?marker=-98.62936328259191,29.32160560842485&level=18

The effluent is discharged to an unnamed ditch, thence to O.R. Mitchell Lake 1, thence to Medio Creek in Segment No. 1912 of the San Antonio River. The unclassified receiving water uses are minimal aquatic life for the unnamed ditch and high aquatic life for Mitchell Lake 1. The designated uses for Segment No. 1912 are primary contact recreation and intermediate aquatic life use.

The TCEQ Executive Director has completed the technical review of the application and prepared a draft permit. The draft permit, if approved, would establish the conditions under which the facility must operate. The Executive Director has made a preliminary decision that this permit, if issued, meets all statutory and regulatory requirements. The permit application, Executive Director's preliminary decision, and draft permit are available for viewing and copying at San Antonio Water System Admin Building, tower 1, first floor, 2800 U.S. Highway 281 North, San Antonio, in Bexar County, Texas. The application and associated notices are available electronically at the following webpage:

https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications

PUBLIC COMMENT / PUBLIC MEETING. You may submit public comments or request a public meeting about this application. The purpose of a public meeting is to provide the opportunity to submit written or oral comment or to ask questions about the application. Generally, the TCEQ will hold a public meeting if the Executive Director determines that there is a significant degree of public interest in the application or if requested by a local legislator. A public meeting is not a contested case hearing.

OPPORTUNITY FOR A CONTESTED CASE HEARING. After the deadline for public comments, the Executive Director will consider the comments and prepare a response to all relevant and material, or significant public comments. The response to comments, along with the Executive Director's decision on the application, will be mailed to everyone who submitted public comments or who requested to be on a mailing list for this application. If comments are received, the mailing will also provide instructions for requesting a contested case hearing or reconsideration of the Executive Director's decision. A contested case hearing is a legal proceeding similar to a civil trial in a state district court.

TO REQUEST A CONTESTED CASE HEARING, YOU MUST INCLUDE THE FOLLOWING ITEMS IN YOUR REQUEST: your name, address, phone number; applicant's name and proposed permit number; the location and distance of your property/activities relative to the proposed facility; a specific description of how you would be adversely affected by the facility in a way not common to the general public; a list of all disputed issues of fact that you submit during the comment period; and the statement "[I/we] request a contested case hearing." If the request for contested case hearing is filed on behalf of a group or association, the request must designate the group's representative for receiving future correspondence; identify by name and physical address an individual member of the group who would be adversely affected by the proposed facility or activity; provide the information discussed above regarding the affected member's location and distance from the facility or activity; explain how and why the member would be affected; and explain how the interests the group seeks to protect are relevant to the group's purpose.

Following the close of all applicable comment and request periods, the Executive Director will forward the application and any requests for reconsideration or for a contested case hearing to the TCEQ Commissioners for their consideration at a scheduled Commission meeting. The Commission may only grant a request for a contested case hearing on issues the requestor submitted in their timely comments that were not subsequently withdrawn. If a hearing is granted, the subject of a hearing will be limited to disputed issues of fact or mixed questions of fact and law relating to relevant and material water quality concerns submitted during the comment period. TCEQ may act on an application to renew a permit for discharge of wastewater without providing an opportunity for a contested case hearing if certain criteria are met.

EXECUTIVE DIRECTOR ACTION. The Executive Director may issue final approval of the application unless a timely contested case hearing request or a timely request for reconsideration is filed. If a timely hearing request or request for reconsideration is filed, the Executive Director will not issue final approval of the permit and will forward the application and requests to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

MAILING LIST. If you submit public comments, a request for a contested case hearing or a reconsideration of the Executive Director's decision, you will be added to the mailing list for this specific application to receive future public notices mailed by the Office of the Chief Clerk. In addition, you may request to be added to: (1) the permanent list for a specific applicant name and permit number; and (2) the mailing list for a specific county. If you wish to be placed on the permanent and the county mailing list, clearly specify which list(s) and send your request to TCEQ Office of the Chief Clerk at the address below.

All written public comments and public meeting requests must be submitted to the Office of the Chief Clerk, MC 105, TCEQ, P.O. Box 13087, Austin, TX 78711-3087 or electronically at https://www.tceq.texas.gov/goto/comment within 30 days from the date of newspaper publication of this notice.

INFORMATION AVAILABLE ONLINE. For details about the status of the application, visit the Commissioners' Integrated Database at https://www.tceq.texas.gov/goto/cid/. Search the database using the permit number for this application, which is provided at the top of this notice.

AGENCY CONTACTS AND INFORMATION. Public comments and requests must be submitted either electronically at https://www.tceq.texas.gov/goto/comment, or in writing to the Texas Commission on Environmental Quality, Office of the Chief Clerk, MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Please be aware that any contact information you provide, including your name, phone number, email address, and physical address will become part of the agency's public record. For more information about this permit application or the permitting process, please call the TCEQ Public Education Program, toll free, at 1-800-687-4040 or visit their website at https://www.tceq.texas.gov/agency/decisions/participation/permitting-participation. Si desea información en Español, puede llamar al 1-800-687-4040.

Further information may also be obtained from San Antonio Water System at the address stated above or by calling Ms. Floramie Welch, Environmental Analyst III, at 210-233-3747.

Issued: November 24, 2025

Jon Niermann, *Chairman*Bobby Janecka, *Commissioner*Catarina R. Gonzales, *Commissioner*Kelly Keel, *Executive Director*

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Protecting Texas by Reducing and Preventing Pollution

September 30, 2024

Re: Confirmation of Submission of the Renewal without changes for Reverse Osmosis Water Treatment Authorization.

Dear Applicant:

This is an acknowledgement that you have successfully completed Renewal without changes for the Reverse Osmosis Water Treatment authorization.

ER Account Number: ER046829

Application Reference Number: 656086 Authorization Number: WQ0004437000

Site Name: Ultrafiltration Wtp

Regulated Entity: RN103114724 - Ultrafiltration Wtp Customer(s): CN600529069 - San Antonio Water System

Please be aware that TCEQ staff may contact your designated contact for any additional information.

If you have any questions, you may contact the Applications Review and Processing Team by email at WQ-ARPTeam@tceq.texas.gov or by telephone at (512) 239-4671.

Sincerely, Applications Review and Processing Team Water Quality Division

Texas Commission on Environmental Quality

Update Domestic or Industrial Individual Permit WQ0004437000

Site Information (Regulated Entity)

What is the name of the site to be authorized? **ULTRAFILTRATION WTP**

Does the site have a physical address? Yes

Physical Address

Number and Street 6725 MORENO ST

City **VON ORMY**

State TX

ZIP 78073

BEXAR County

29.320277 Latitude (N) (##.#####)

Longitude (W) (-###.#####) -98.635555

Primary SIC Code 4941

Secondary SIC Code

Primary NAICS Code 221310

Secondary NAICS Code

Regulated Entity Site Information

What is the Regulated Entity's Number (RN)? RN103114724

What is the name of the Regulated Entity (RE)? **ULTRAFILTRATION WTP**

Does the RE site have a physical address? No

Physical Address

LOCATED AT 6725 MORENO Because there is no physical address, describe how to locate this site:

> STREET APPROXIMATELY 1.6 MILES NW OF THE INTERSECTION OF INTERSTATE HWY 35 AND LOOP 410 SW OF THE CITY OF SAN ANTONIO BEXAR COUNTY TEXAS

29.320833

City **VON ORMY**

State TX

ZIP 78073

County **BEXAR**

Latitude (N) (##.#####)

Longitude (W) (-###.#####) -98.634166

Facility NAICS Code

What is the primary business of this entity? **INDUSTRIAL**

San Ant-Customer (Applicant) Information (Owner)

1 of 12 9/30/2024, 2:10 PM

Owner How is this applicant associated with this site?

What is the applicant's Customer Number (CN)? CN600529069

Type of Customer City Government

Full legal name of the applicant:

Legal Name San Antonio Water System

Texas SOS Filing Number

Federal Tax ID 742632530

State Franchise Tax ID

State Sales Tax ID

Local Tax ID

DUNS Number 57582603

501+ Number of Employees Independently Owned and Operated? Yes

I certify that the full legal name of the entity applying for this permit

has been provided and is legally authorized to do business in Texas.

Responsible Authority Contact

Organization Name San Antonio Water System

Yes

Prefix

First Jeff

Middle

Last Haby

Suffix

Credentials PΕ

Title Senior Vice President

Responsible Authority Mailing Address

Enter new address or copy one from list:

Domestic Address Type

Mailing Address (include Suite or Bldg. here, if applicable) 2800 US HIGHWAY 281 N

Routing (such as Mail Code, Dept., or Attn:)

SAN ANTONIO City

State TX

ZIP 78212

Phone (###-###-###) 2102333747

Extension

Alternate Phone (###-###-###)

Fax (###-###-###)

E-mail Jeff.Haby@saws.org

Billing Contact

Responsible contact for receiving billing statements:

Select the permittee that is responsible for payment of the annual fee. CN600529069, San Antonio Water

System

Organization Name SAN ANTONIO WATER SYSTEM

Prefix

First

Middle

Last Welch

Suffix

Credentials

Title Environmental Analyst III

Enter new address or copy one from list:

Mailing Address

Address Type Domestic

Mailing Address (include Suite or Bldg. here, if applicable) 2800 US HIGHWAY 281 N

Routing (such as Mail Code, Dept., or Attn:)

City SAN ANTONIO

State TX

ZIP 78212

Phone (###-####) 2102333744

Extension

Alternate Phone (###-###-###)

Fax (###-###-###)

E-mail Floramie.Welch@saws.org

Application Contact

Person TCEQ should contact for questions about this application:

Same as another contact?

Billing Contact

Organization Name SAN ANTONIO WATER SYSTEM

Prefix

First Floramie

Middle

Last Welch

Suffix

Credentials

Title Environmental Analyst III

Enter new address or copy one from list:

Mailing Address

Address Type Domestic

2800 US HIGHWAY 281 N

Mailing Address (include Suite or Bldg. here, if applicable)

Routing (such as Mail Code, Dept., or Attn:)

City SAN ANTONIO

State TX

ZIP 78212

Phone (###-####) 2102333744

Extension

Alternate Phone (###-###-###)

Fax (###-###-)

E-mail Floramie.Welch@saws.org

Technical Contact

Person TCEQ should contact for questions about this application:

Same as another contact?

Application Contact

Organization Name SAN ANTONIO WATER SYSTEM

Prefix MS

First

Middle

Last Welch

Suffix

Credentials

Title Environmental Analyst III

Enter new address or copy one from list:

Mailing Address

Address Type Domestic

Mailing Address (include Suite or Bldg. here, if applicable) 2800 US HIGHWAY 281 N

Routing (such as Mail Code, Dept., or Attn:)

City SAN ANTONIO

State TX

ZIP 78212

Phone (###-###) 2102333744

Extension

Alternate Phone (###-###-###)

Fax (###-###-)

E-mail Floramie.Welch@SAWS.ORG

DMR Contact

Person responsible for submitting Discharge Monitoring Report Forms:

4 of 12 9/30/2024, 2:10 PM

Same as another contact? Application Contact

Organization Name SAN ANTONIO WATER SYSTEM

Prefix

First

Middle

Last

Suffix

Credentials

Title Environmental Analyst III

Enter new address or copy one from list:

Mailing Address:

Address Type Domestic

Mailing Address (include Suite or Bldg. here, if applicable) 2800 US HIGHWAY 281 N

Routing (such as Mail Code, Dept., or Attn:)

City SAN ANTONIO

State TX

ZIP 78212

Phone (###-####) 2102333744

Extension

Alternate Phone (###-###-###)

Fax (###-###-###)

E-mail Floramie.Welch@SAWS.ORG

Section 1# Permit Contact

Permit Contact#: 1

Person TCEQ should contact throughout the permit term.

1) Same as another contact?

Application Contact

2) Organization Name SAN ANTONIO WATER SYSTEM

3) Prefix

4) First Floramie

5) Middle

6) Last Welch

7) Suffix

8) Credentials

9) Title Environmental Analyst III

Mailing Address

10) Enter new address or copy one from list

11) Address Type Domestic

11.1) Mailing Address (include Suite or Bldg. here, if applicable) 2800 US HIGHWAY 281 N

11.2) Routing (such as Mail Code, Dept., or Attn:)

11.3) City SAN ANTONIO

11.4) State TX

11.5) ZIP 78212

12) Phone (###-###) 2102333744

13) Extension

14) Alternate Phone (###-###-###)

15) Fax (###-###-###)

16) E-mail Floramie. Welch@saws.org

Owner Information

Owner of Treatment Facility

1) Prefix

2) First and Last Name

3) Organization Name SAN ANTONIO WATER SYSTEM

4) Mailing Address 2800 US HWY 281 NORTH

5) City SAN ANTONIO

6) State TX

7) Zip Code 78212

8) Phone (###-###) 2107047297

9) Extension

10) Email Floramie. Welch@saws.org

11) What is ownership of the treatment facility?

Owner of Land (where treatment facility is or will be)

12) Prefix

13) First and Last Name

14) Organization Name SAN ANTONIO WATER SYSTEM

15) Mailing Address 2800 US HWY 281 NORTH

16) City SAN ANTONIO

17) State TX

18) Zip Code 78212

19) Phone (###-###+) 2107047297

20) Extension

21) Email Floramie.Welch@saws.org

22) Is the landowner the same person as the facility owner or co-

applicant?

General Information Renewal-Amendment

1) Current authorization expiration date: 02/10/2025

6 of 12 9/30/2024, 2:10 PM

2) Current Facility operational status: Active 3) Is the facility located on or does the treated effluent cross American No Indian Land? 4) What is the application type that you are seeking? Renewal without changes 5) Current Authorization type: Reverse Osmosis Water Treatment 5.1) What is your EPA facility classification? Minor 5.1.1) Are the discharges at your facility subjected to federal effluent No limitation guidelines (ELG) 40 CFR Part 400-471? 5.1.1.1) Select the applicable fee for the Minor facility that is not Renewal - \$315 subjected to 40 CFR 400-471: 6) What is the classification for your authorization? **TPDES** 6.1) What is the EPA Identification Number? TX0125083 6.2) Is the wastewater treatment facility location in the existing permit Yes accurate? 6.3) Are the point(s) of discharge and the discharge route(s) in the Yes existing permit correct? SAN ANTONIO 6.4) City nearest the outfall(s): 6.5) County where the outfalls are located: **BFXAR** 6.6) Is or will the treated wastewater discharge to a city, county, or No state highway right-of-way, or a flood control district drainage ditch? 6.7) Is the daily average discharge at your facility of 5 MGD or more? No

Public Notice Information

7) Did any person formerly employed by the TCEQ represent your

company and get paid for service regarding this application?

Individual Publishing the Notices

1) Prefix

2) First and Last Name Lilliana Gonzalez

3) Credential

4) Title SR COMMUNICATIONS SPECIALIST

No

5) Organization Name SAN ANTONIO WATER SYSTEM

6) Mailing Address 2800 US HIGHWAY 281 N

7) Address Line 2

8) City SAN ANTONIO

9) State TX

10) Zip Code 78212

11) Phone (###-####) 2102333247

12) Extension

13) Fax (###-###-###)

14) Email Lilliana.Gonzalez@saws.org

Contact person to be listed in the Notices

15) Prefix

16) First and Last Name OLGA GALINDO

17) Credential

18) Title EXECUTIVE ADMIN ASSISTANT

19) Organization Name SAN ANTONIO WATER SYSTEM

20) Phone (###-###+) 2102334570

21) Fax (###-###-###)

22) Email OLGA.GALINDO@SAWS.ORG

Bilingual Notice Requirements

23) Is a bilingual education program required by the Texas Education Code at the elementary or middle school nearest to the facility or

proposed facility?

No

Section 1# Public Viewing Information

County#: 1

1) County BEXAR

2) Public building name SAN ANTONIO WATER SYSTEM

ADMIN BLDG

3) Location within the building TOWER 1 FIRST FLOOR

4) Physical Address of Building 2800 US HWY 281 NORTH

5) City SAN ANTONIO

6) Contact Name FLORAMIE WELCH

7) Phone (###-####) 2102333744

8) Extension

9) Is the location open to the public?

Plain Language

1) Plain Language

[File Properties]

File Name LANG_2024_UF_PLANT_TPDES_APPLICATION_PLAIN_LANGUAGE.pdf

Hash 9C81D89CA86D24A216FF7B8B028AA0AFF56A4E9B3FEFEEE4518A91528EB5E8EC

MIME-Type application/pdf

Supplemental Permit Information Form

1) Supplemental Permit Information Form (SPIF)

[File Properties]

File Name SPIF_2024_UF_PLANT_TPDES_APPLICATION_SPIF_OUTFALL_MAP.pdf

Hash FF8313B7D3A5C33EB9B2F1C1DD7E2304DDE219AD0885745F6268D37CF4189456

MIME-Type application/pdf

Industrial Attachments

1) Attach an 8.5"x11", reproduced portion of the most current and original USGS Topographic Quadrangle Map(s) that meets the 1:24,000 scale.

[File Properties]

File Name MAP_2024_UF_PLANT_TPDES_APPLICATION_USGS_MAPS.pdf

Hash 12F438830C70AEA29E8995526BBB72F5614113668E235C3E4A02B4BBB61AB5BF

MIME-Type application/pdf

2) I confirm that all required sections of Technical Report 1.0 are Yes complete and will be included in the Technical Attachment.

2.1) I confirm that Worksheet 2.0 (Pollutant Analyses Requirements) is

complete and included in the Technical Attachment.

2.2) I confirm that Worksheet 4.0 (Receiving Waters) is complete and
Yes

included in the Technical Attachment.

2.3) Are you planning to include Worksheet 4.1 (Waterbody Physical No

Characteristics) in the Technical Attachment?

2.4) Are you planning to include Worksheet 6.0 (Industrial Waste No

Contribution) in the Technical Attachment?

2.5) Are you planning to include Worksheet 7.0 (Stormwater No

Discharges Associated with Industrial Activities) to the Technical Attachment?

Attachment?

2.6) Are you planning to include Worksheet 8.0 (Aquaculture) in the

Technical Attachment?

2.7) Are you planning to include Worksheet 9.0 (Class V Injection Well No

Inventory/Authorization) in the Technical Attachment?

2.8) Are you planning to include Worksheet 10.0 (Quarries in the John No

Graves Scenic Riverway) in the Technical Attachment?

2.9) Are you planning to include Worksheet 11.0 (Cooling Water No

System Information) in the Technical Attachment?

2.10) Are you planning to include Worksheet 11.1 (Impingement No

Mortality) in the Technical Attachment?

2.11) Are you planning to include Worksheet 11.2 (Source Water No

Biological Data) in the Technical Attachment?

2.12) Are you planning to include Worksheet 11.3 (Entrainment) in the

Technical Attachment?

2.13) Technical Attachment

[File Properties]

File Name TECH_2024_UF_PLANT_TPDES_APPLICATION_TECHNICAL_REPORT1.0A.pdf

Hash EC26462D3B6BBA21186337E3834EA5DBB95E1400AA41C82C14AABBFF9E42CC57

MIME-Type application/pdf

9 of 12 9/30/2024, 2:10 PM

3) Flow Diagram

[File Properties]

File Name FLDIA_2024_UF_PLANT_TPDES_APPLICATION_FLOW_DIAGRAM.pdf

Hash CFCCBBB16464B163C1B0CE0069982E8817D37836C80675F14F69A147827EBE1B

MIME-Type application/pdf

4) Site Drawing

[File Properties]

File Name SITEDR_2024_UF_PLANT_TPDES_APPLICATION_SITE_MAP.pdf

Hash AFEFFD2F24CA1A448743E447CB1A6C6E969EEEF44DD3BE4FFCF780303D354451

MIME-Type application/pdf

5) Design Calculations

[File Properties]

File Name DES_CAL_2024_UF_PLANT_TPDES_APPLICATION_NOT_APPLICABLE_SECTIONS_SIGNED.pdf

Hash 4FE069A36D8DF307B425E8859656B8C9B2A07CA7B6E382512834BC1321F3BEE4

MIME-Type application/pdf

6) Solids Management Plan

[File Properties]

File Name SMP_2024_UF_PLANT_TPDES_APPLICATION_NOT_APPLICABLE_SECTIONS_SIGNED.pdf

Hash 4FE069A36D8DF307B425E8859656B8C9B2A07CA7B6E382512834BC1321F3BEE4

MIME-Type application/pdf

7) Water Balance

[File Properties]

File Name WB_2024_UF_PLANT_TPDES_APPLICATION_NOT_APPLICABLE_SECTIONS_SIGNED.pdf

Hash 4FE069A36D8DF307B425E8859656B8C9B2A07CA7B6E382512834BC1321F3BEE4

MIME-Type application/pdf

8) Other Attachments

[File Properties]

File Name OTHER_2024_UF_PLANT_TPDES_APPLICATION_CORE_DATA_FORM_SIGNED.pdf

Hash 1F0B5FB49E07C7E2206AD173978CC9413774B18CA3291BD1A177D28146FA8BF3

MIME-Type application/pdf

[File Properties]

File Name OTHER_2024_UF_PLANT_TPDES_APPLICATION_LABORATORY_FORM_SIGNED.pdf

Hash B89BA324927D0F560AD25C02EE7A110C3AB61A3B447A4C16740DDFE2C239853D

MIME-Type application/pdf

[File Properties]

File Name OTHER_2024_0520_UF_PLANT_CLOSURE_PLAN_SIGNED.pdf

Hash E30F2993FAF55AFEEC31FEE3B7594A0E133F46C1380935B603AA08F72263C9D0

MIME-Type application/pdf

Certification

I certify that I am authorized under 30 Texas Administrative Code 305.44 to sign this document and can provide documentation in proof of such authorization upon request.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

- 1. I am Jeffrey J Haby, the owner of the STEERS account ER106003.
- 2. I have the authority to sign this data on behalf of the applicant named above.
- 3. I have personally examined the foregoing and am familiar with its content and the content of any attachments, and based upon my personal knowledge and/or inquiry of any individual responsible for information contained herein, that this information is true, accurate, and complete.
- 4. I further certify that I have not violated any term in my TCEQ STEERS participation agreement and that I have no reason to believe that the confidentiality or use of my password has been compromised at any time.
- 5. I understand that use of my password constitutes an electronic signature legally equivalent to my written signature.
- 6. I also understand that the attestations of fact contained herein pertain to the implementation, oversight and enforcement of a state and/or federal environmental program and must be true and complete to the best of my knowledge.
- 7. I am aware that criminal penalties may be imposed for statements or omissions that I know or have reason to believe are untrue or misleading.
- 8. I am knowingly and intentionally signing Update Domestic or Industrial Individual Permit WQ0004437000.
- 9. My signature indicates that I am in agreement with the information on this form, and authorize its submittal to the TCEQ.

OWNER Signature: Jeffrey J Haby OWNER

Customer Number: CN600529069

Legal Name: San Antonio Water System

Account Number: ER106003
Signature IP Address: 155.190.8.7
Signature Date: 2024-09-05

Signature Hash: 2E9FE6E897E0EB8864AEF70857885D410DE05A2A22FFEE66DB5E01DFD478A77F

Form Hash Code at time

7A1E3E1EF12E542037D80BA1B041E50C50212C5245C57D4CDEDF93DA1F540F39

of Signature:

Fee Payment

Transaction by: The application fee payment transaction was

made by ER106003/Jeffrey J Haby

Paid by: The application fee was paid by JEFFREY J

11 of 12 9/30/2024, 2:10 PM

HABY

Fee Amount: \$300.00

Paid Date: The application fee was paid on 2024-09-05

Transaction/Voucher number: The transaction number is 582EA000624251

and the voucher number is 720065

Submission

Reference Number: The application reference number is 656086

Submitted by: The application was submitted by

ER046829/Floramie Welch

Submitted Timestamp: The application was submitted on 2024-09-30 at

13:34:10 CDT

Submitted From: The application was submitted from IP address

155.190.8.5

Confirmation Number: The confirmation number is 567262

Steers Version: The STEERS version is 6.82

Permit Number: The permit number is WQ0004437000

Additional Information

Application Creator: This account was created by Floramie Welch

12 of 12 9/30/2024, 2:10 PM

TCEQ Core Data Form

For detailed instructions on completing this form, please read the Core Data Form Instructions or call 512-239-5175.

SECTION I: General Information

1. Reason for Submission (If other is checked please	e describe in space provided.)	
New Permit, Registration or Authorization (Core I	Data Form should be submitted with	the program application.)
Renewal (Core Data Form should be submitted with	th the renewal form)	Other
2. Customer Reference Number (if issued)	Follow this link to search for CN or RN numbers in	3. Regulated Entity Reference Number (if issued)
CN 600529069	Central Registry**	RN 103114724

SECTION II: Customer Information

4. General Customer Information 5. Effective Date for C					ustom	er Information	1 Upda	ates (mm/dd,	/уууу)		
☐ New Customer ☐ Update to Customer Information						Cha	inge in	Regulated En	tity Ownership		
☐Change in L	egal Name	(Verifiable with the	Texas Secretary of	f State or Te	xas Con	nptroller of Pub	lic Acco	ounts)			
		ubmitted here m roller of Public Ac		utomatical	ly base	ed on what is	curren	t and active	with the Texas	Sec	cretary of State
6. Customer	Legal Nar	ne (If an individual,	print last name fire	st: eg: Doe, J	lohn)		<u>If ne</u>	ew Customer,	enter previous Cu	ston	ner below:
SAN ANTONIO	WATER SY	STEM (SAWS)		0.788			T				
7. TX SOS/CPA Filing Number 8. TX Sta 1742632				ate Tax ID (11 digits)			9. Federal Tax ID (9 digits) 74-2632530		applica	10. DUNS Number (if applicable) 057582603	
11. Type of C	ustomer	: Corp	oration	Tour Ten 1		☐ Indivi	dual	10-16	Partnership:] Ge	neral 🗌 Limited
Government:	☑ City ☐	County Federal	☐ Local ☐ State	Other		☐ Sole I	Proprie	torship	Other:		
12. Number	of Employ	yees					13.	Independer	ntly Owned and	Ор	erated?
0-20	21-100	101-250 2	51-500 🛭 501 a	and higher				Yes	□ No		
14. Custome	r Role (Pr	oposed or Actual) –	as it relates to the	Regulated E	ntity lis	ted on this form	. Pleas	e check one o	f the following		
Owner Occupation	al Licensee	Operator Responsible		ner & Opera /CP/BSA App				Other:			
15. Mailing	2800 US	HIGHWAY 281 NO	RTH	- 5			" mild	North F			
Address:		T	6			1	710 7024		l are	_	1 2100
	City	SAN ANTONIO		State	TX	ZIP	782	12	ZIP +	+	3106
16. Country	Mailing Ir	nformation (if outs	iide USA)			17. E-Mail A	Addres	s (if applicable	le)		1277 2011 305
	e Numbe	r	1	9. Extension	on or C	oho'		20 Fax N	lumber (if applic	ahle	

TCEQ-10400 (11/22) Page 1 of 3

SECTION III: Regulated Entity Information

21. General Regulated En	tity Informa	ation (If 'New Reg	gulated Entity" is sele	ected, a new p	permit app	ication i	s also required.)	······································				
☐ New Regulated Entity ☐ Update to Regulated Entity Name ☑ Update to Regulated Entity Information												
The Regulated Entity Name submitted may be updated, in order to meet TCEQ Core Data Standards (removal of organizational endings such as Inc, LP, or LLC).												
22. Regulated Entity Name (Enter name of the site where the regulated action is taking place.)												
ULTRAFILTRATION WATER TREATMENT PLANT												
23. Street Address of the Regulated Entity:	6725 MORENO STREET											
(No PO Boxes)	City	VON ARMY	State	тх	ZIP	78	073	ZIP+4				
24. County	BEXAR	1	•		•	-		•				
		If no Stree	et Address is prov	ided, fields	25-28 are	require						
25. Description to												
Physical Location:												
26. Nearest City	·					Sta	te	Nea	arest ZIP Code			
Latitude/Longitude are required and may be added/updated to meet TCEQ Core Data Standards. (Geocoding of the Physical Address may be used to supply coordinates where none have been provided or to gain accuracy).												
	-	-	-		Data Star	dards.	(Geocoding of	the Physica	l Address may be			
	es where no	-	-	accuracy).			(Geocoding of Decimal:	the Physica	l Address may be			
used to supply coordinate	es where no	-	-	accuracy).	.ongitude			the Physica	Address may be Seconds			
used to supply coordinate 27. Latitude (N) In Decim	es where no al:	-	provided or to gain	28. I	.ongitude		Decimal:	the Physica				
used to supply coordinate 27. Latitude (N) In Decim	es where no al: Minutes	-	Provided or to gain	28. I	ongitude	(W) In	Decimal: Minutes	ondary NAI	Seconds			
used to supply coordinate 27. Latitude (N) In Decim Degrees	es where no al: Minutes 30.	ne have been p	Provided or to gain	28. I	ongitude	(W) In	Decimal: Minutes	ondary NAI	Seconds			
27. Latitude (N) In Decim Degrees 29. Primary SIC Code	es where no al: Minutes 30.	Secondary SIC	Provided or to gain	28. I Degr	ongitude	(W) In	Decimal: Minutes 32. Sec	ondary NAI	Seconds			
used to supply coordinate 27. Latitude (N) In Decim Degrees 29. Primary SIC Code (4 digits)	es where no al: Minutes 30.	Secondary SIC	Seconds Code	28. I Degr 31. Prima (5 or 6 dig	ees ry NAICS	(W) In	Decimal: Minutes 32. Sec	ondary NAI	Seconds			
used to supply coordinate 27. Latitude (N) In Decim Degrees 29. Primary SIC Code (4 digits)	Minutes 30. (4 d	Secondary SIC	Seconds Code	28. I Degr 31. Prima (5 or 6 dig	ees ry NAICS	(W) In	Decimal: Minutes 32. Sec	ondary NAI	Seconds			
used to supply coordinate 27. Latitude (N) In Decim Degrees 29. Primary SIC Code (4 digits) 4941 33. What is the Primary E POTABLE WATER TREATMEN	Minutes 30. (4 d	Secondary SIC	Seconds Code	28. I Degr 31. Prima (5 or 6 dig	ees ry NAICS	(W) In	Decimal: Minutes 32. Sec	ondary NAI	Seconds			
27. Latitude (N) In Decim Degrees 29. Primary SIC Code (4 digits) 4941 33. What is the Primary E POTABLE WATER TREATMEN	Minutes 30. (4 d	Secondary SIC digits)	Seconds Code	28. I Degr 31. Prima (5 or 6 dig	ees ry NAICS	(W) In	Decimal: Minutes 32. Sec	ondary NAI	Seconds			
used to supply coordinate 27. Latitude (N) In Decim Degrees 29. Primary SIC Code (4 digits) 4941 33. What is the Primary E POTABLE WATER TREATMEN	Minutes 30. (4 d	Secondary SIC digits)	Seconds Code o not repeat the SIC	28. I Degr 31. Prima (5 or 6 dig	ees ry NAICS	(W) In	Decimal: Minutes 32. Sec	ondary NAI	Seconds			
27. Latitude (N) In Decim Degrees 29. Primary SIC Code (4 digits) 4941 33. What is the Primary E POTABLE WATER TREATMEN	Minutes 30. (4 d) Business of to	Secondary SIC digits) this entity? (Do	Seconds Code o not repeat the SIC	28. I Degr 31. Prima (5 or 6 dig	ees ry NAICS its)	(W) In	Minutes 32. Sec (5 or 6 c	ondary NAI	Seconds CS Code			
27. Latitude (N) In Decim Degrees 29. Primary SIC Code (4 digits) 4941 33. What is the Primary E POTABLE WATER TREATMEN 34. Mailing Address:	Minutes 30. (4 d) Business of to	Secondary SIC digits) this entity? (Do	Seconds Code o not repeat the SIC	28. I Degr 31. Prima (5 or 6 dig 221310 or NAICS desc	ees ry NAICS its) ription.)	(W) In	Minutes 32. Sec (5 or 6 c	ondary NAI	Seconds CS Code			

39. TCEQ Programs and ID Numbers Check all Programs and write in the permits/registration numbers that will be affected by the updates submitted on this form. See the Core Data Form instructions for additional guidance.

TCEQ-10400 (11/22) Page 2 of 3

☐ Municipal Solid Waste		New Source Review Air	I I I OSSE			um Storage Tank	nk PWS	
Sludge		Storm Water	☐ Title V Air		Tires		Used Oil	
☐ Voluntary Clean	nup		☐ Wastewater Ag	riculture	☐ Water R	ights	Other:	
		WQ0004437-000						
SECTION	[V: Pre	eparer Info	ormation					
40. Name: FLO	ORAMIE WELC	СН	**************************************	41. Title:	ENVIR	ONMENTAL ANALYST	Ш	
42. Telephone Nu	mber	43. Ext./Code	44. Fax Number	45. E-Ma	ail Address			
(210)233-3744			() -	FLORAMI	E.WELCH@S	SAWS.ORG		
SECTION V	V: Aut	thorized Si	gnature					
		, to the best of my know entity specified in Sect					e, and that I have signature authori ntified in field 39.	
Company:	SAN ANTO	NIO WATER SYSTEM (S.	AWS)	Job Title:	SR. V	ICE PRESIDENT, PROI	DUCTION OPERATIONS	
Name (In Print):	JEFF HABY	, P.E.	2. /			Phone:	(210)233-3747	
Signature:	Pol	hx 6/1	Fals			Date:	6-3-2024	

☐ Edwards Aquifer

Emissions Inventory Air

☐ Industrial Hazardous Waste

☐ Dam Safety

Districts

TCEQ-10400 (11/22) Page 3 of 3

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and are not federal enforceable representations of the permit application.

San Antonio Water System (CN600529069) operates an Ultra Filtration Water Treatment Plant (RN103114724), a potable water treatment facility. The facility is located at 6725 Moreno Street, near the city of San Antonio, Bexar County, Texas 78073.

The water treatment facility is currently not producing wastewater. However, this application is for a renewal to discharge process wastewater on an intermittent and flow-variable basis via Outfall 001. Discharges from the facility are required to contain no more than 45 parts per million of Total Suspended Solids (TSS) and are required to have a potential of hydrogen (pH) between 6.0 and 9.0, measured as standard units.

Raw water is supplied by Medina Lake where it is withdrawn from an intake structure at the Medina River and is fed through a clarification system to remove turbidity, which are particles that cause cloudiness in water. The water is then fed through pre-filtration and ultra-filtration membranes to remove dissolved solids and the finished water is distributed for potable drinking water use while the solids are stored in lagoons.

Process wastewater discharges only occur when the incoming source water is excessive in turbidity. The ultra-filtration membranes system is shut off automatically and the flow is diverted to an equalization chamber and then discharged through Outfall 001, discharging to an unnamed ditch and then into Medio Creek, Segment ID 1912.

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY SUPPLEMENTAL PERMIT INFORMATION FORM (SPIF)

FOR AGENCIES REVIEWING DOMESTIC OR INDUSTRIAL TPDES WASTEWATER PERMIT APPLICATIONS

	CEQ USE ONLY: oplication type:RenewalMajor AmendmentMinor AmendmentNew
	ounty: Segment Number: dmin Complete Date:
_	gency Receiving SPIF:
	Texas Historical Commission U.S. Fish and Wildlife
	Texas Parks and Wildlife Department U.S. Army Corps of Engineers
	s form applies to TPDES permit applications only. (Instructions, Page 53)
our is n	nplete this form as a separate document. TCEQ will mail a copy to each agency as required by agreement with EPA. If any of the items are not completely addressed or further information eeded, we will contact you to provide the information before issuing the permit. Address h item completely.
atta app con may	not refer to your response to any item in the permit application form. Provide each achment for this form separately from the Administrative Report of the application. The elication will not be declared administratively complete without this SPIF form being appleted in its entirety including all attachments. Questions or comments concerning this form be directed to the Water Quality Division's Application Review and Processing Team by all at

answer specific questions about the property.
Prefix (Mr., Ms., Miss): <u>Ms.</u>
First and Last Name: <u>Floramie Welch</u>
Credential (P.E, P.G., Ph.D., etc.):
Title: Environmental Analyst III
Mailing Address: <u>2800 US Hwy 281 North</u>
City, State, Zip Code: San Antonio, TX 78212
Phone No.: <u>210 233 3744</u> Ext.: Fax No.:
E-mail Address: <u>Floramie.Welch@saws.org</u>
List the county in which the facility is located: <u>Bexar</u>
If the property is publicly owned and the owner is different than the permittee/applicant, please list the owner of the property.
N/A
Provide a description of the effluent discharge route. The discharge route must follow the flow of effluent from the point of discharge to the nearest major watercourse (from the point of discharge to a classified segment as defined in 30 TAC Chapter 307). If known, please identify the classified segment number.
To an unnamed ditch; thence to O.R. Mitchell Lake 1; thence to Medio Creek in Segment 1912 of the San Antonio River
Please provide a separate 7.5-minute USGS quadrangle map with the project boundaries plotted and a general location map showing the project area. Please highlight the discharge route from the point of discharge for a distance of one mile downstream. (This map is required in addition to the map in the administrative report).
Provide original photographs of any structures 50 years or older on the property.
Does your project involve any of the following? Check all that apply.
☐ Proposed access roads, utility lines, construction easements
☐ Visual effects that could damage or detract from a historic property's integrity
☐ Vibration effects during construction or as a result of project design
Additional phases of development that are planned for the future
☐ Sealing caves, fractures, sinkholes, other karst features
. 0,,,

Provide the name, address, phone and fax number of an individual that can be contacted to

2.3.

4.

5.

1.	List proposed construction impact (surface acres to be impacted, depth of excavation, sealing of caves, or other karst features):
	N/A
2.	Describe existing disturbances, vegetation, and land use:
	N/A
	E FOLLOWING ITEMS APPLY ONLY TO APPLICATIONS FOR NEW TPDES PERMITS AND MAJOR ENDMENTS TO TPDES PERMITS
3.	List construction dates of all buildings and structures on the property:
	N/A
4.	Provide a brief history of the property, and name of the architect/builder, if known.
	N/A

Disturbance of vegetation or wetlands

Ultrafiltration Water Treatment Plant

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

INDUSTRIAL WASTEWATER PERMIT APPLICATION TECHNICAL REPORT 1.0

The following information **is required** for all applications for a TLAP or an individual TPDES discharge permit.

For **additional information** or clarification on the requested information, please refer to the <u>Instructions for Completing the Industrial Wastewater Permit Application</u>¹ available on the TCEQ website. Please contact the Industrial Permits Team at 512-239-4671 with any questions about this form.

If more than one outfall is included in the application, provide applicable information for each individual outfall. **If an item does not apply to the facility, enter N/A** to indicate that the item has been considered. Include separate reports or additional sheets as **clearly cross-referenced attachments** and provide the attachment number in the space provided for the item the attachment addresses.

NOTE: This application is for an industrial wastewater permit only. Additional authorizations from the TCEQ Waste Permits Division or the TCEQ Air Permits Division may be needed.

Describe the general nature of the business and type(s) of industrial and commercial

Item 1. Facility/Site Information (Instructions, Page 39)

	activities. Include all applicable SIC codes (up to 4).
	Potable Water Treatment. SIC Code: 4941 NAICS Code: 221310
b.	Describe all wastewater-generating processes at the facility.
	Under normal operating conditions, the facility does not produce wastewater. All water in the process is recycled and/or lost to evaporation of the river sediments in storage lagoons. Periodically, the turbidity level of the source water (Medina River) exceeds 500 NTU, and the flow to the ultra-filtration membranes automatically shuts off. The super flocculating clarifier is designed to continue in operation to maintain the "floc". When this condition occurs, discharging wastewater is required.

https://www.tceq.texas.gov/permitting/wastewater/industrial/TPDES_industrial_wastewater_steps.html

	nterials List		
Na	w Materials	Intermediate Products	Final Products
Me	edina River Water		
	Attachment: N/A		
d.	Attach a facility map (draw	n to scale) with the following	information:
-	,		lling areas, waste-disposal areas,
	and water intake structi		, ,
			location of wastewater collection s, if significantly different from
	Attachment: <u>N/A</u>		
e.	Is this a new permit applica	ation for an existing facility?	
	□ Yes ⊠ No	· .	
	If yes , provide backgrou	und discussion: <u>N/A</u>	
f.	Is/will the treatment facilit level.	y/disposal site be located abo	ove the 100-year frequency flood
	⊠ Yes □ No		
	List source(s) used to deter	mine 100-year frequency floo	od plain: FEMA Maps for Bexar Count
	If no , provide the elevation protective measures are us	of the 100-year frequency flo	ood plain and describe what ding (including tail water and
	Attachment: <u>N/A</u>		
g.		Lent permit applications, will al into a water in the state?	any construction operations result

h.	If yes to Item 1.g, has the applicant applied for a USACE CWA Chapter 404 Dredge and Fill permit?
	□ Yes □ No
	If yes , provide the permit number: N/A
	If ${f no}$, provide an approximate date of application submittal to the USACE: ${f N/A}$
It	em 2. Treatment System (Instructions, Page 40)
a.	List any physical, chemical, or biological treatment process(es) used/proposed to treat wastewater at this facility. Include a description of each treatment process, starting with initial treatment and finishing with the outfall/point of disposal.
	Under normal operating conditions, the facility does not produce wastewater. All water in the process is recycled and/or lost to evaporation of the river sediments in storage lagoons. Periodically, the turbidity level of the source water (Medina River) exceeds 500 NTU, and the flow to the ultra-filtration membranes automatically shuts off. The super flocculating clarifier is designed to continue in operation to maintain the "floc". When this condition occurs, discharging wastewater is required.
b.	Attach a flow schematic with a water balance showing all sources of water and wastewater flow into the facility, wastewater flow into and from each treatment unit, and wastewater flow to each outfall/point of disposal.
	Attachment: N/A
T.	
	em 3. Impoundments (Instructions, Page 40)
Do	bes the facility use or plan to use any wastewater impoundments (e.g., lagoons or ponds?)
	□ Yes ⊠ No
3.6	no, proceed to Item 4. If yes, complete Item 3.a for existing impoundments and Items 3.a - e for new or proposed impoundments. NOTE: See instructions, Pages 40-42, for additional formation on the attachments required by Items 3.a - 3.e.
a.	Complete the table with the following information for each existing, new, or proposed impoundment. Attach additional copies of the Impoundment Information table, if needed. Use Designation: Indicate the use designation for each impoundment as Treatment (T),
	Disposal (D), Containment (C), or Evaporation (E).

Associated Outfall Number: Provide an outfall number if a discharge occurs or will occur.

Liner Type: Indicate the liner type as Compacted clay liner (C), In-situ clay liner (I), Synthetic/plastic/rubber liner (S), or Alternate liner (A). **NOTE:** See instructions for further detail on liner specifications. If an alternate liner (A) is selected, include an attachment that provides a description of the alternate liner and any additional technical information necessary for an evaluation.

Leak Detection System: If any leak detection systems are in place/planned, enter **Y** for yes. Otherwise, enter **N** for no.

Groundwater Monitoring Wells and Data: If groundwater monitoring wells are in place/planned, enter **Y** for yes. Otherwise, enter **N** for no. Attach any existing groundwater monitoring data.

Dimensions: Provide the dimensions, freeboard, surface area, storage capacity of the impoundments, and the maximum depth (not including freeboard). For impoundments with irregular shapes, submit surface area instead of length and width.

Compliance with 40 CFR Part 257, Subpart D: If the impoundment is required to be in compliance with 40 CFR Part 257, Subpart D, enter **Y** for yes. Otherwise, enter **N** for no.

Date of Construction: Enter the date construction of the impoundment commenced (mm/dd/yy).

Impoundment Information

Parameter	Pond #	Pond #	Pond #	Pond #
Use Designation: (T) (D) (C) or (E)				
Associated Outfall Number				
Liner Type (C) (I) (S) or (A)				
Alt. Liner Attachment Reference				
Leak Detection System, Y/N				
Groundwater Monitoring Wells, Y/N				
Groundwater Monitoring Data Attachment				
Pond Bottom Located Above The Seasonal High-Water Table, Y/N				
Length (ft)				
Width (ft)				
Max Depth From Water Surface (ft), Not Including Freeboard				
Freeboard (ft)				
Surface Area (acres)				
Storage Capacity (gallons)				
40 CFR Part 257, Subpart D, Y/N				
Date of Construction				

Attachment: N/A

The following information (**Items 3.b – 3.e**) is required only for **new or proposed** impoundments.

b.	ite		If attache				ents, attach any available information on the following ne appropriate box. Otherwise, check no or not yet	
	1.	Line	er data					
			Yes		No		Not yet designed	
	2.	Leal	k detecti	on sy	ystem or	grou	indwater monitoring data	
			Yes		No		Not yet designed	
	3.	Gro	undwate	r imj	pacts			
			Yes		No		Not yet designed	
					-		the bottom of the pond is not above the seasonal high- vater-bearing zone.	
	At	tach	ment: <u>N</u> /	<u>'A</u>				
Fo	r Tl	LAP	applicati	ons:	Items 3	.c - 3	s.e are not required , continue to Item 4.	
C.	an	d ide		ll kn		-	by of original quality and scale which accurately locates pply wells and monitor wells within ½-mile of the	
	At	tach	ment: <u>N</u> /	<u>'A</u>				
d.	da	ta or	n depths	to gr	oundwa	ter fo	Reports (e.g., driller's logs, completion data, etc.), and or all known water supply wells including a description of vere obtained.	
	At	tach	ment: <u>N</u> /	<u>'A</u>				
e.	Attach information pertaining to the groundwater, soils, geology, pond liner, etc. used to assess the potential for migration of wastes from the impoundments or the potential for contamination of groundwater or surface water. Attachment: N/A							
It	en	ı 4.	Outfa Page	-		sal	Method Information (Instructions,	
Co	mp	lete	the follo	wing	tables t	o des	cribe the location and wastewater discharge or disposal	

operations for each outfall for discharge, and for each point of disposal for TLAP operations.

If there are more outfalls/points of disposal at the facility than the spaces provided, copies of pages 6 and/0r numbered accordingly (i.e., page 6a, 6b, etc.) may be used to provide information on the additional outfalls.

For TLAP applications: Indicate the disposal method and each individual irrigation area I, evaporation pond E, or subsurface drainage system S by providing the appropriate letter designation for the disposal method followed by a numerical designation for each disposal area in the space provided for **Outfall** number (e.g. **E1** for evaporation pond 1, **I2** for irrigation area No. 2, etc.).

Outfall Longitude and Latitude

Outfall No.	Latitude (Decimal Degrees)	Longitude (Decimal Degrees)
001	29.320278	-98.635556

Outfall Location Description

Outfall No.	Location Description		
001	4-8" pipes along fence line discharging to a ditch		

Description of Sampling Point(s) (if different from Outfall location)

Outfall No.	Description of sampling point		
N/A			

Outfall Flow Information - Permitted and Proposed

Outfall No.	Permitted Daily Avg Flow (MGD)	Permitted Daily Max Flow (MGD)	Proposed Daily Avg Flow (MGD)	Proposed Daily Max Flow (MGD)	Anticipated Discharge Date (mm/dd/yy)
N/A					

Outfall Discharge - Method and Measurement

Outfall No.	Pumped Discharge? Y/N	Gravity Discharge? Y/N	Type of Flow Measurement Device Used
001	N	Y	N/A

Outfall Discharge - Flow Characteristics

Outfall No.		Continuous Discharge? Y/N	Seasonal Discharge? Y/N	Discharge Duration (hrs/day)	Discharge Duration (days/mo)	Discharge Duration (mo/yr)
001	Y	N	N	N/A	N/A	N/A

Outfall Wastestream Contributions

Outfall No. **001**

Contributing Wastestream	Volume (MGD)	Percent (%) of Total Flow
Wastewater from Super Pulsator	Intermittent & Variable	100

Outfall No. N/A

Contributing Wastestream	Volume (MGD)	Percent (%) of Total Flow

Outfall No. N/A

Contributing Wastestream	Volume (MGD)	Percent (%) of Total Flow

Attachment: N/A

Item 5. Blowdown and Once-Through Cooling Water Discharges (Instructions, Page 43)

a.	Indicate	if the	facility	currently	or	proposes to:

 \square Yes \boxtimes No Use cooling towers that discharge blowdown or other wastestreams

 \square Yes \boxtimes No Use boilers that discharge blowdown or other wastestreams

 \square Yes \boxtimes No Discharge once-through cooling water

NOTE: If the facility uses or plans to use cooling towers or once-through cooling water, Item 12 **is required**.

- b. If **yes** to any of the above, attach an SDS with the following information for each chemical additive.
 - Manufacturers Product Identification Number
 - Product use (e.g., biocide, fungicide, corrosion inhibitor, etc.)
 - Chemical composition including CASRN for each ingredient
 - Classify product as non-persistent, persistent, or bioaccumulative
 - Product or active ingredient half-life
 - Frequency of product use (e.g., 2 hours/day once every two weeks)
 - Product toxicity data specific to fish and aquatic invertebrate organisms
 - Concentration of whole product or active ingredient, as appropriate, in wastestream.

In addition to each SDS, attach a summary of the above information for each specific wastestream and the associated chemical additives. Specify which outfalls are affected.

Attachment: N/A

c. Cooling Towers and Boilers

If the facility currently or proposes to use cooling towers or boilers that discharge blowdown or other wastestreams to the outfall(s), complete the following table.

Cooling Towers and Boilers

Type of Unit	Number of Units	Daily Avg Blowdown (gallons/day)	Daily Max Blowdown (gallons/day)
Cooling Towers			
Boilers			

Item 6. Stormwater Management (Instructions, Page 44)

Will any existing/	/proposed outfalls (discharge stormwater	associated with i	ndustrial activities
as defined at 40	CFR § 122.26(b)(14	1), commingled with a	ny other wastesti	eam?

Yes	\boxtimes	No

If **yes**, briefly describe the industrial processes and activities that occur outdoors or in a manner which may result in exposure of the activities or materials to stormwater: N/A

Item 7. Domestic Sewage, Sewage Sludge, and Septage Management and Disposal (Instructions, Page 44)

Domestic Sewage - Waste and wastewater from humans or household operations that is discharged to a wastewater collection system or otherwise enters a treatment works.

a.	Check the box next to the appropriate method of do sludge treatment or disposal. Complete Worksheet						
	☐ Domestic sewage is routed (i.e., connected to or t receive domestic sewage for treatment, disposal,						
	☐ Domestic sewage disposed of by an on-site seption Item 7.b.	tank and drainfield system. Complete					
	☐ Domestic and industrial treatment sludge ARE co	mmingled prior to use or disposal.					
	☐ Industrial wastewater and domestic sewage are to sludge IS NOT commingled prior to sludge use or						
	\square Facility is a POTW. Complete Worksheet 5.0.						
	oxtimes Domestic sewage is not generated on-site.						
	\Box Other (e.g., portable toilets), specify and Complet	e Item 7.b: N/A					
b.	o. Provide the name and TCEQ, NPDES, or TPDES Permit No. of the waste-disposal facility which receives the domestic sewage/septage. If hauled by motorized vehicle, provide the name and TCEQ Registration No. of the hauler.						
Do	omestic Sewage Plant/Hauler Name						
Pla	ant/Hauler Name	Permit/Registration No.					
T -		/T 0					
It	em 8. Improvements or Complianc Requirements (Instructions, 1	•					
a.	Is the permittee currently required to meet any impenforcement?	lementation schedule for compliance or					
	□ Yes ⊠ No						
b.	Has the permittee completed or planned for any im	provements or construction projects?					
	□ Yes ⊠ No						
c.	If yes to either 8.a or 8.b, provide a brief summary update: N/A	of the requirements and a status					

Item 9. Toxicity Testing (Instructions, Page 45)
Have any biological tests for acute or chronic toxicity been made on any of the discharges or on a receiving water in relation to the discharge within the last three years?
□ Yes ⊠ No
If yes , identify the tests and describe their purposes: N/A
Additionally, attach a copy of all tests performed which have not been submitted to the TCE or EPA. Attachment : N/A
Item 10. Off-Site/Third Party Wastes (Instructions, Page 45)
a. Does or will the facility receive wastes from off-site sources for treatment at the facility, disposal on-site via land application, or discharge via a permitted outfall?
□ Yes ⊠ No
If yes , provide responses to Items 10.b through 10.d below.
If no , proceed to Item 11.
b. Attach the following information to the application:
• List of wastes received (including volumes, characterization, and capability with on-sit wastes).
• Identify the sources of wastes received (including the legal name and addresses of the generators).
• Description of the relationship of waste source(s) with the facility's activities.
Attachment: <u>N/A</u>
c. Is or will wastewater from another TCEQ, NPDES, or TPDES permitted facility commingled with this facility's wastewater after final treatment and prior to discharge via the final outfall/point of disposal?
□ Yes ⊠ No
If yes , provide the name, address, and TCEQ, NPDES, or TPDES permit number of the contributing facility and a copy of any agreements or contracts relating to this activity.
Attachment: <u>N/A</u>
d. Is this facility a POTW that accepts/will accept process wastewater from any SIU and has/required to have an approved pretreatment program under the NPDES/TPDES program?
□ Yes ⊠ No
If yes , Worksheet 6.0 of this application is required .
Item 11. Radioactive Materials (Instructions, Page 46)
a. Are/will radioactive materials be mined, used, stored, or processed at this facility?
☐ Yes ☒ No If was use the following table to provide the regults of one analysis of the effluent for all
If yes , use the following table to provide the results of one analysis of the effluent for all radioactive materials that may be present. Provide results in pCi/L.

Radioactive Materials Mined, Used, Stored, or Processed								
Radioactive Mate	rial Name		Concentration (po	Ci/L)				
radioactive ma	b. Does the applicant or anyone at the facility have any knowledge or reason to believe that radioactive materials may be present in the discharge, including naturally occurring radioactive materials in the source waters or on the facility property?							
□ Yes ⊠	No							
radioactive ma	following table to paterials that may be covided in response	present. Provide re	•					
	als Present in the Dis	scharge						
Radioactive Mate	rial Name		Concentration (po	Ci/L)				
Itam 12 Co.	oling Water ([natruations	Dogo 46)					
11em 12. Co	oling Water (instructions,	Page 40)					
a. Does the facili	ty use or propose to	o use water for coo	ling purposes?					
□ Yes ⊠ No								
If no , stop her	e. If yes , complete l	tems 12.b thru 12.b	f.					
b. Cooling water	is/will be obtained	from a groundwate	er source (e.g., on-si	te well).				
□ Yes								
If yes , stop he	re. If no , continue.							
c. Cooling Water	Supplier							
J								
	e name of the owner er for cooling purp		for the CWIS that s	upplies or will				
	ke Structure(s) Owne	r(s) and Operator(s)		,				
CWIS ID								
Owner								
Operator								

			Yes		No
		If no , cont	inue. If ${f y}$	es, p	provide the PWS Registration No. and stop here: <u>PWS No. N/A</u>
	3.	Cooling w	ater is/w	ill be	obtained from a reclaimed water source?
			Yes		No
		If no , cont	inue. If y	es, p	provide the Reuse Authorization No. and stop here: N/A
	4.	Cooling w	ater is/w	ill be	obtained from an Independent Supplier
			Yes		No
					2.d. If yes , provide the actual intake flow of the Independent will be used to provide water for cooling purposes and proceed:
d.	31	6(b) Genera	al Criteria	ì	
	1.				wide water for cooling purposes to the facility has or will have a see flow of 2 MGD or greater.
			Yes		No
	2.				water withdrawn by the CWIS is/will be used at the facility ourposes on an annual average basis.
			Yes		No
	3.)/propose(s) to withdraw water for cooling purposes from et the definition of Waters of the United States in 40 CFR §
			Yes		No
				_	ation of how the waterbody does not meet the definition of ates in 40 CFR § 122.2: N/A
					Item 12.d, the facility meets the minimum criteria to be subject tion 316(b) of the CWA. Proceed to Item 12.f .
be	sub	ject to the	full requ	ıirem	Item 12.d, the facility does not meet the minimum criteria to ents of Section 316(b) of the CWA; however, a determination is eed to Item 12.e .
e.		•			the minimum requirements to be subject to the fill requirements proposes to use cooling towers.
		Yes □	No		
	-	_			applete Worksheet 11.0, Items 1.a, 1.b.1-3 and 6, 2.b.1, and 3.a to eased upon BPJ.
f.	Oil	and Gas E	xploratio	n an	d Production
	1.	The facilit	y is subje	ect to	requirements at 40 CFR Part 435, Subparts A or D.
			Yes		No

2. Cooling water is/will be obtained from a Public Water Supplier (PWS)

If **yes**, continue. If **no**, skip to Item 12.g.

g.

Item 13. Permit Change Requests (Instructions, Page 48)

This item is only applicable to existing permitted facilities.

□ Yes
If yes , list each request individually and provide the following information: 1) detailed information regarding the scope of each request and 2) a justification for each request. Attach any supplemental information or additional data to support each request.
N/A
Is the facility requesting any minor amendments to the permit?
☐ Yes ☒ No If yes list and describe each change individually
If yes , list and describe each change individually.
N <u>/A</u>
Is the facility requesting any minor modifications to the permit?
□ Yes ⊠ No
If yes , list and describe each change individually.
N <u>/A</u>

Item 14. Laboratory Accreditation (Instructions, Page 49)

All laboratory tests performed must meet the requirements of *30 TAC Chapter 25*, *Environmental Testing Laboratory Accreditation and Certification*, which includes the following general exemptions from National Environmental Laboratory Accreditation Program (NELAP) certification requirements:

- The laboratory is an in-house laboratory and is:
 - o periodically inspected by the TCEQ; or
 - o located in another state and is accredited or inspected by that state; or
 - o performing work for another company with a unit located in the same site; or
 - performing pro bono work for a governmental agency or charitable organization.
- The laboratory is accredited under federal law.
- The data are needed for emergency-response activities, and a laboratory accredited under the Texas Laboratory Accreditation Program is not available.
- The laboratory supplies data for which the TCEQ does not offer accreditation.

The applicant should review 30 TAC Chapter 25 for specific requirements.

The following certification statement shall be signed and submitted with every application. See the *Signature Page* section in the Instructions, for a list of designated representatives who may sign the certification.

CERTIFICATION:

I certify that all laboratory tests submitted with this application meet the requirements of 30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification.

Printed Name: Jeff Haby, P.E.

Title: Sr. Vice President, Production Operations

Signature:

Item 14. Laboratory Accreditation (Instructions, Page 49)

All laboratory tests performed must meet the requirements of *30 TAC Chapter 25*, *Environmental Testing Laboratory Accreditation and Certification*, which includes the following general exemptions from National Environmental Laboratory Accreditation Program (NELAP) certification requirements:

- The laboratory is an in-house laboratory and is:
 - o periodically inspected by the TCEQ; or
 - o located in another state and is accredited or inspected by that state; or
 - o performing work for another company with a unit located in the same site; or
 - o performing pro bono work for a governmental agency or charitable organization.
- The laboratory is accredited under federal law.
- The data are needed for emergency-response activities, and a laboratory accredited under the Texas Laboratory Accreditation Program is not available.
- The laboratory supplies data for which the TCEQ does not offer accreditation.

The applicant should review 30 TAC Chapter 25 for specific requirements.

The following certification statement shall be signed and submitted with every application. See the *Signature Page* section in the Instructions, for a list of designated representatives who may sign the certification.

CERTIFICATION:

I certify that all laboratory tests submitted with this application meet the requirements of 30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification.

Printed Name: Jeff Haby, P.E.

Title: <u>Sr. Vice President, Production Operations</u>

Signature:	_
Date:	

INDUSTRIAL WASTEWATER PERMIT APPLICATION **WORKSHEET 1.0: EPA CATEGORICAL EFFLUENT GUIDELINES**

This worksheet **is required** for all applications for TPDES permits for discharges of wastewaters subject to EPA categorical effluent limitation guidelines (ELGs).

Item 1. Catego	orical industries	(Instructions, Pa	ige 53)	
Is this facility subjec	t to any 40 CFR categorie	cal ELGs outlined on page	e 53 of the instructions?	
□ Yes ⊠ No)			
If no , this worksheet	is not required. If yes , p	provide the appropriate in	nformation below.	
40 CFR Effluent Guide	eline			
Industry		40	CFR Part	
Itam 2 Dradu	stion /Drososs D	oto (Instructions	Dogo [4)	
		ata (Instructions,		
NOTE: For all TPDES permit applications requesting individual permit coverage for discharges of oil and gas exploration and production wastewater (discharges into or adjacent to water in the state, falling under the Oil and Gas Extraction Effluent Guidelines – 40 CFR Part 435), see Worksheet 12.0, Item 2 instead.				
a. Production Data				
Provide appropriate	data for effluent guidelir	nes with production-base	d effluent limitations.	
Production Data				
Subcategory	Actual Quantity/Day	Design Quantity/Day	Units	

В.			
Percentage of Total P	Percent of Total Production	Appendix A and B - Metals	Appendix A - Cyanide
c. Refineries (40 C	FR Part 419)		
Provide the applical	ole subcategory and a b	orief justification.	
N <u>/A</u>			
Item 3. Proce Page		s Wastewater Flov	vs (Instructions,
and non-process wa discharge under thi	stewater flow(s). Specif s permit and the dispos	generated by the facility, fy which wastewater flows sal practices for wastewate for discharge under this pe	are to be authorized for er flows, excluding
N <u>/A</u>			

b. Organic Chemicals, Plastics, and Synthetic Fibers Manufacturing Data (40 CFR Part 414)
Provide each applicable subpart and the percent of total production. Provide data for metal-bearing and cyanide-bearing wastestreams, as required by *40 CFR Part 414*, *Appendices A and*

Item 4. New Source Determination (Instructions, Page 54)

Provide a list of all wastewater-generating processes subject to EPA categorical ELGs, identify the appropriate guideline Part and Subpart, and provide the date the process/construction commenced.

Wastewater Generating Processes Subject to Effluent Guidelines

Process	EPA Guideline Part	EPA Guideline Subpart	Date Process/ Construction Commenced

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 2.0: POLLUTANT ANALYSIS

Worksheet 2.0 **is required** for all applications submitted for a TPDES permit. Worksheet 2.0 is not required for applications for a permit to dispose of all wastewater by land disposal or for discharges solely of stormwater associated with industrial activities.

Item 1. General Testing Requirements (Instructions, Page 55)

a.	Provide the date range of all sampling events conducted to obtain the analytical data
	submitted with this application (e.g., 05/01/2018-05/30/2018): N/A; NO DISCHARGE SINCE
	2015

- b. \Box Check the box to confirm all samples were collected no more than 12 months prior to the date of application submittal.
- c. Read the general testing requirements in the instructions for important information about sampling, test methods, and MALs. If a contact laboratory was used, attach a list which includes the name, contact information, and pollutants analyzed for each laboratory/firm. Attachment: $\underline{N/A}$

Item 2. Specific Testing Requirements (Instructions, Page 56)

Attach correspondence from TCEQ approving submittal of less than the required number of samples, if applicable. Attachment: N/A

TABLE 1 and TABLE 2 (Instructions, Page 58)

Completion of Tables 1 and 2 is required for all external outfalls for all TPDES permit applications.

Dollartont	Commela 1	Commis	Corrected	Correct	- 1
Table 1 for Outfall No.:	Samples	: 🗆 G	rab		

Pollutant	Sample 1 (mg/L)	Sample 2 (mg/L)	Sample 3 (mg/L)	Sample 4 (mg/L)
BOD (5-day)				
CBOD (5-day)				
Chemical oxygen demand				
Total organic carbon				
Dissolved oxygen				
Ammonia nitrogen				
Total suspended solids				
Nitrate nitrogen				
Total organic nitrogen				
Total phosphorus				
Oil and grease				

Pollutant	Sample 1 (mg/L)	Sample 2 (mg/L)	Sample 3 (mg/L)	Sample 4 (mg/L)
Total residual chlorine				
Total dissolved solids				
Sulfate				
Chloride				
Fluoride				
Total alkalinity (mg/L as CaCO3)				
Temperature (°F)				
pH (standard units)				

Table 2 for Outfall No.: N/A Samples are (check one): \square Composite \square Grab

Pollutant	Sample 1	Sample 2	Sample 3	Sample 4	MAL (μg/L)
	(µg/L)	(µg/L)	(µg/L)	(µg/L)	
Aluminum, total					2.5
Antimony, total					5
Arsenic, total					0.5
Barium, total					3
Beryllium, total					0.5
Cadmium, total					1
Chromium, total					3
Chromium, hexavalent					3
Chromium, trivalent					N/A
Copper, total					2
Cyanide, available					2/10
Lead, total					0.5
Mercury, total					0.005/0.0005
Nickel, total					2
Selenium, total					5
Silver, total					0.5
Thallium, total					0.5
Zinc, total					5.0

TABLE 3 (Instructions, Page 58)

Completion of Table 3 **is required** for all **external outfalls** which discharge process wastewater.

Partial completion of Table 3 **is required** for all **external outfalls** which discharge non-process wastewater and stormwater associated with industrial activities commingled with other wastestreams (see instructions for additional guidance).

Table 3 for Outfall No.: N/A Samples are (check one): \square Composite \square Grab

Table 3 for Outrall No.: N/A	<u> </u>				Grab
Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)*
Acrylonitrile					50
Anthracene					10
Benzene					10
Benzidine					50
Benzo(a)anthracene					5
Benzo(a)pyrene					5
Bis(2-chloroethyl)ether					10
Bis(2-ethylhexyl)phthalate					10
Bromodichloromethane [Dichlorobromomethane]					10
Bromoform					10
Carbon tetrachloride					2
Chlorobenzene					10
Chlorodibromomethane [Dibromochloromethane]					10
Chloroform					10
Chrysene					5
m-Cresol [3-Methylphenol]					10
o-Cresol [2-Methylphenol]					10
p-Cresol [4-Methylphenol]					10
1,2-Dibromoethane					10
m-Dichlorobenzene [1,3-Dichlorobenzene]					10
o-Dichlorobenzene [1,2-Dichlorobenzene]					10
p-Dichlorobenzene [1,4-Dichlorobenzene]					10
3,3'-Dichlorobenzidine					5
1,2-Dichloroethane					10
		1	1		I

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)*
1,1-Dichloroethene [1,1-Dichloroethylene]					10
Dichloromethane [Methylene chloride]					20
1,2-Dichloropropane					10
1,3-Dichloropropene [1,3-Dichloropropylene]					10
2,4-Dimethylphenol					10
Di-n-Butyl phthalate					10
Ethylbenzene					10
Fluoride					500
Hexachlorobenzene					5
Hexachlorobutadiene					10
Hexachlorocyclopentadiene					10
Hexachloroethane					20
Methyl ethyl ketone					50
Nitrobenzene					10
N-Nitrosodiethylamine					20
N-Nitroso-di-n-butylamine					20
Nonylphenol					333
Pentachlorobenzene					20
Pentachlorophenol					5
Phenanthrene					10
Polychlorinated biphenyls (PCBs) (**)					0.2
Pyridine					20
1,2,4,5-Tetrachlorobenzene					20
1,1,2,2-Tetrachloroethane					10
Tetrachloroethene [Tetrachloroethylene]					10
Toluene					10
1,1,1-Trichloroethane					10
1,1,2-Trichloroethane					10
Trichloroethene					10
[Trichloroethylene]					
2,4,5-Trichlorophenol					50

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)*
TTHM (Total trihalomethanes)					10
Vinyl chloride					10

^(*) Indicate units if different from μg/L.

TABLE 4 (Instructions, Pages 58-59)

Partial completion of Table 4 is required for each external outfall based on the conditions below.

a. Tributvltin

b.

Tributyttiii
Is this facility an industrial/commercial facility which currently or proposes to directly dispose of wastewater from the types of operations listed below or a domestic facility which currently or proposes to receive wastewater from the types of industrial/commercial operations listed below?
□ Yes ⊠ No
If yes , check the box next to each of the following criteria which apply and provide the appropriate testing results in Table 4 below (check all that apply).
\square Manufacturers and formulators of tributyltin or related compounds.
\square Painting of ships, boats and marine structures.
\square Ship and boat building and repairing.
\square Ship and boat cleaning, salvage, wrecking and scaling.
\square Operation and maintenance of marine cargo handling facilities and marinas.
\square Facilities engaged in wood preserving.
☐ Any other industrial/commercial facility for which tributyltin is known to be present, or for which there is any reason to believe that tributyltin may be present in the effluent.
Enterococci (discharge to saltwater)
This facility discharges/proposes to discharge directly into saltwater receiving waters and Enterococci bacteria are expected to be present in the discharge based on facility processes.
□ Yes ⊠ No
Domestic wastewater is/will be discharged.
□ Yes ⊠ No
If yes to either guestion, provide the appropriate testing results in Table 4 below.

c. E. coli (discharge to freshwater)

This facility discharges/proposes to discharge directly into freshwater receiving waters **and** *E. coli* bacteria are expected to be present in the discharge based on facility processes.

^(**) Total of detects for PCB-1242, PCB-1254, PCB-1221, PCB-1232, PCB-1248, PCB-1260, and PCB-1016. If all non-detects, enter the highest non-detect preceded by a "<".

□ Yes ⊠ No					
Domestic wastewater is/will be d	ischarged.				
□ Yes ⊠ No					
If yes to either question, provide	the appropr	iate testing re	esults in Tab	le 4 below.	
Table 4 for Outfall No.: <u>N/A</u>	Sampl	es are (check	one): □ Con	nposite 🗆	Grab
Pollutant	Sample 1	Sample 2	Sample 3	Sample 4	MAL
Pollutant Tributyltin (µg/L)	Sample 1	Sample 2	Sample 3	Sample 4	MAL 0.010
	Sample 1	Sample 2	Sample 3	Sample 4	
Tributyltin (µg/L)	Sample 1	Sample 2	Sample 3	Sample 4	0.010

Completion of Table 5 **is required** for all **external outfalls** which discharge process wastewater from a facility which manufactures or formulates pesticides or herbicides or other wastewaters which may contain pesticides or herbicides.

If this facility does not/will not manufacture or formulate pesticides or herbicides and does not/will not discharge other wastewaters that may contain pesticides or herbicides, check N/A.

⊠ N/A

Table 5 for Outfall No.: N/A	Samples are (check one): ☐ Composite ☐ Grab				
Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)*
Aldrin					0.01
Carbaryl					5
Chlordane					0.2
Chlorpyrifos					0.05
4,4'-DDD					0.1
4,4'-DDE					0.1
4,4'-DDT					0.02
2,4-D					0.7
Danitol [Fenpropathrin]					_
Demeton					0.20
Diazinon					0.5/0.1
Dicofol [Kelthane]					1
Dieldrin					0.02
Diuron					0.090
Endosulfan I (<i>alpha</i>)					0.01
Endosulfan II (<i>beta</i>)					0.02
Endosulfan sulfate					0.1

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)*
Endrin					0.02
Guthion [Azinphos methyl]					0.1
Heptachlor					0.01
Heptachlor epoxide					0.01
Hexachlorocyclohexane (alpha)					0.05
Hexachlorocyclohexane (beta)					0.05
Hexachlorocyclohexane (gamma) [Lindane]					0.05
Hexachlorophene					10
Malathion					0.1
Methoxychlor					2.0
Mirex					0.02
Parathion (ethyl)					0.1
Toxaphene					0.3
2,4,5-TP [Silvex]					0.3

^{*} Indicate units if different from µg/L.

TABLE 6 (Instructions, Page 59)

Completion of Table 6 is required for all external outfalls.

Table 6 for Outfall No.: N/A Samples are (check one): \square Composite \square Grab

Pollutants	Believed Present	Believed Absent	Sample 1 (mg/L)	Sample 2 (mg/L)	Sample 3 (mg/L)	Sample 4 (mg/L)	MAL (μg/L)*
Bromide							400
Color (PCU)							_
Nitrate-Nitrite (as N)							_
Sulfide (as S)							_
Sulfite (as SO3)							_
Surfactants							_
Boron, total							20
Cobalt, total							0.3
Iron, total							7
Magnesium, total							20
Manganese, total							0.5
Molybdenum, total							1
Tin, total							5
Titanium, total							30

TABLE 7 (Instructions, Page 60)

Check the box next to any of the industrial categories applicable to this facility. If no categories are applicable, check N/A. If GC/MS testing is required, check the box provided to confirm the testing results for the appropriate parameters are provided with the application.

 \boxtimes N/A

Table 7 for Applicable Industrial Categories

	ustrial Category	40 CFR Part	Volatiles Table 8	Acids Table 9	Bases/ Neutrals Table 10	Pesticides Table 11
	Adhesives and Sealants		□ Yes	□ Yes	□ Yes	No
	Aluminum Forming	467	□ Yes	□ Yes	□ Yes	No
	Auto and Other Laundries		□ Yes	□ Yes	□ Yes	□ Yes
	Battery Manufacturing	461	□ Yes	No	□ Yes	No
	Coal Mining	434	No	No	No	No
	Coil Coating	465	□ Yes	□ Yes	□ Yes	No
	Copper Forming	468	□ Yes	□ Yes	□ Yes	No
	Electric and Electronic Components	469	□ Yes	□ Yes	□ Yes	□ Yes
	Electroplating	413	□ Yes	□ Yes	□ Yes	No
	Explosives Manufacturing	457	No	□ Yes	□ Yes	No
	Foundries		□ Yes	□ Yes	□ Yes	No
	Gum and Wood Chemicals - Subparts A,B,C,E	454	□ Yes	□ Yes	No	No
	Gum and Wood Chemicals - Subparts D,F	454	□ Yes	□ Yes	□ Yes	No
	Inorganic Chemicals Manufacturing	415	□ Yes	□ Yes	□ Yes	No
	Iron and Steel Manufacturing	420	□ Yes	□ Yes	□ Yes	No
	Leather Tanning and Finishing	425	□ Yes	□ Yes	□ Yes	No
	Mechanical Products Manufacturing		□ Yes	□ Yes	□ Yes	No
	Nonferrous Metals Manufacturing	421,471	□ Yes	□ Yes	□ Yes	□ Yes
	Oil and Gas Extraction - Subparts A, D, E, F, G, H	435	□ Yes	□ Yes	□ Yes	No
	Ore Mining - Subpart B	440	No	□ Yes	No	No
	Organic Chemicals Manufacturing	414	□ Yes	□ Yes	□ Yes	□ Yes
	Paint and Ink Formulation	446,447	□ Yes	□ Yes	□ Yes	No
	Pesticides	455	□ Yes	□ Yes	□ Yes	□ Yes
	Petroleum Refining	419	□ Yes	No	No	No
	Pharmaceutical Preparations	439	□ Yes	□ Yes	□ Yes	No
	Photographic Equipment and Supplies	459	□ Yes	□ Yes	□ Yes	No
□ Mar	Plastic and Synthetic Materials aufacturing	414	□ Yes	□ Yes	□ Yes	□ Yes
	Plastic Processing	463	□ Yes	No	No	No
	Porcelain Enameling	466	No	No	No	No
	Printing and Publishing		□ Yes	□ Yes	□ Yes	□ Yes
	Pulp and Paperboard Mills - Subpart C	430	*	□ Yes	*	□ Yes
	Pulp and Paperboard Mills - Subparts F, K	430	*	□ Yes	*	*
	Pulp and Paperboard Mills - Subparts A, B, D, G, H	430	□ Yes	□ Yes	<u> </u>	□ *
	Pulp and Paperboard Mills - Subparts I, J, L	430	□ Yes	□ Yes	*	□ Yes
	Pulp and Paperboard Mills - Subpart E	430	□ Yes	□ Yes	□ Yes	*

Industrial Category	40 CFR Part	Volatiles Table 8	Acids Table 9	Bases/ Neutrals Table 10	Pesticides Table 11
☐ Rubber Processing	428	□ Yes	□ Yes	□ Yes	No
☐ Soap and Detergent Manufacturing	417	□ Yes	□ Yes	□ Yes	No
☐ Steam Electric Power Plants	423	□ Yes	□ Yes	No	No
☐ Textile Mills (Not Subpart C)	410	□ Yes	□ Yes	□ Yes	No
☐ Timber Products Processing	429	□ Yes	□ Yes	□ Yes	□ Yes

^{*} Test if believed present.

TABLES 8, 9, 10, and 11 (Instructions, Page 60)

Completion of Tables 8, 9, 10, and 11 **is required** as specified in Table 7 for all **external outfalls** that contain process wastewater.

Completion of Tables 8, 9, 10, and 11 **may be required** for types of industry not specified in Table 7 for specific parameters that are believed to be present in the wastewater.

Table 8 for Outfall No.: N/A Samples are (check one): \square Composite \square Grab

nple 2 Sample (µg/L)*	MAL (μg/L) 50
	50
	50
	10
	10
	2
	10
	10
	50
	10
	10
	10
	10
	10
	10
	10
	10
	10
	50
	50

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)
Methylene chloride [Dichloromethane]					20
1,1,2,2-Tetrachloroethane					10
Tetrachloroethylene [Tetrachloroethene]					10
Toluene					10
1,2-Trans-dichloroethylene [1,2-Trans-dichloroethene]					10
1,1,1-Trichloroethane					10
1,1,2-Trichloroethane					10
Trichloroethylene [Trichloroethene]					10
Vinyl chloride					10

^{*} Indicate units if different from µg/L.

Table 9 for Outfall No.: N/A

2,4-Dimethylphenol

Pentachlorophenol

Phenol

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)
2-Chlorophenol					10
2,4-Dichlorophenol					10

Samples are (check one): □ Composite □ Grab

Samples are (check one): ☐ Composite

Table 10 for Outfall No.: N/A

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)
Acenaphthene					10
Acenaphthylene					10
Anthracene					10
Benzidine					50

10

5

10

10

Grab

 ^{4,6-}Dinitro-o-cresol
 50

 2,4-Dinitrophenol
 50

 2-Nitrophenol
 20

 4-Nitrophenol
 50

 p-Chloro-m-cresol
 10

^{2,4,6-}Trichlorophenol

* Indicate units if different from µg/L.

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)
Benzo(a)anthracene					5
Benzo(a)pyrene					5
3,4-Benzofluoranthene [Benzo(b)fluoranthene]					10
Benzo(ghi)perylene					20
Benzo(k)fluoranthene					5
Bis(2-chloroethoxy)methane					10
Bis(2-chloroethyl)ether					10
Bis(2-chloroisopropyl)ether					10
Bis(2-ethylhexyl)phthalate					10
4-Bromophenyl phenyl ether					10
Butylbenzyl phthalate					10
2-Chloronaphthalene					10
4-Chlorophenyl phenyl ether					10
Chrysene					5
Dibenzo(a,h)anthracene					5
1,2-Dichlorobenzene [o-Dichlorobenzene]					10
1,3-Dichlorobenzene [m-Dichlorobenzene]					10
1,4-Dichlorobenzene [p-Dichlorobenzene]					10
3,3'-Dichlorobenzidine					5
Diethyl phthalate					10
Dimethyl phthalate					10
Di-n-butyl phthalate					10
2,4-Dinitrotoluene					10
2,6-Dinitrotoluene					10
Di-n-octyl phthalate					10
1,2-Diphenylhydrazine (as Azobenzene)					20
Fluoranthene					10
Fluorene					10
Hexachlorobenzene					5
Hexachlorobutadiene					10

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)
Hexachlorocyclopentadiene					10
Hexachloroethane					20
Indeno(1,2,3-cd)pyrene					5
Isophorone					10
Naphthalene					10
Nitrobenzene					10
N-Nitrosodimethylamine					50
N-Nitrosodi-n-propylamine					20
N-Nitrosodiphenylamine					20
Phenanthrene					10
Pyrene					10
1,2,4-Trichlorobenzene					10

^{*} Indicate units if different from µg/L.

Table 11 for Outfall No.: N/A Samples are (check one): \Box Composite \Box Grab

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)
Aldrin					0.01
alpha-BHC [alpha-Hexachlorocyclohexane]					0.05
beta-BHC [beta-Hexachlorocyclohexane]					0.05
gamma-BHC [gamma-Hexachlorocyclohexane]					0.05
delta-BHC [delta-Hexachlorocyclohexane]					0.05
Chlordane					0.2
4,4'-DDT					0.02
4,4'-DDE					0.1
4,4'-DDD					0.1
Dieldrin					0.02
Endosulfan I (alpha)					0.01
Endosulfan II (beta)					0.02
Endosulfan sulfate					0.1
Endrin					0.02
Endrin aldehyde					0.1

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)
Heptachlor					0.01
Heptachlor epoxide					0.01
PCB 1242					0.2
PCB 1254					0.2
PCB 1221					0.2
PCB 1232					0.2
PCB 1248					0.2
PCB 1260					0.2
PCB 1016					0.2
Toxaphene					0.3

^{*} Indicate units if different from µg/L.

Attachment: N/A

TABLE 12 (DIOXINS/FURAN COMPOUNDS)

Complete of Table 12 **is required** for **external outfalls**, as directed below. (Instructions, Pages 59-60)

Indicate which compound(s) are manufactured or used at the facility and provide a brief description of the conditions of its/their presence at the facility (check all that apply).

	2,4,5-trichlorophenoxy acetic acid (2,4,5-T) CASRN 93-76-5
	2-(2,4,5-trichlorophenoxy) propanoic acid (Silvex, 2,4,5-TP) CASRN 93-72-1
	2-(2,4,5-trichlorophenoxy) ethyl 2,2-dichloropropionate (Erbon) CASRN 136-25-4
	0,0-dimethyl 0-(2,4,5-trichlorophenyl) phosphorothioate (Ronnel) CASRN 299-84-3
	2,4,5-trichlorophenol (TCP) CASRN 95-95-4
	hexachlorophene (HCP) CASRN 70-30-4
	None of the above
Des	scription: N/A

Does the applicant or anyone at the facility know or have any reason to believe that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or any congeners of TCDD may be present in the effluent proposed for discharge?

 \square Yes \boxtimes No Description: N/A

If **yes** to either Items a **or** b, complete Table 12 as instructed.

Table 12 for Outfall No.: $\underline{N/A}$ Samples are (check one): \square Composite \square Grab

Compound	Toxicity Equivalent Factors	Wastewater Concentration (ppq)	Wastewater Toxicity Equivalents (ppq)	Sludge Concentration (ppt)	Sludge Toxicity Equivalents (ppt)	MAL (ppq)
2,3,7,8-TCDD	1					10
1,2,3,7,8- PeCDD	1.0					50
2,3,7,8- HxCDDs	0.1					50
1,2,3,4,6,7,8- HpCDD	0.01					50
2,3,7,8-TCDF	0.1					10
1,2,3,7,8- PeCDF	0.03					50
2,3,4,7,8- PeCDF	0.3					50
2,3,7,8- HxCDFs	0.1					50
2,3,4,7,8- HpCDFs	0.01					50
OCDD	0.0003					100
OCDF	0.0003					100
PCB 77	0.0001					500
PCB 81	0.0003					500
PCB 126	0.1					500
PCB 169	0.03					500
Total						

TABLE 13 (HAZARDOUS SUBSTANCES)

Complete Table 13 is required for all external outfalls as directed below. (Instructions, Pages 60-61)

Are there any pollutants listed in the instructions (pages 55-62) believed present in the discharge?

\square Ye	$s \boxtimes$	No
--------------	---------------	----

Are there pollutants listed in Item 1.c. of Technical Report 1.0 which are believed present in the discharge and have not been analytically quantified elsewhere in this application?

□ Yes ⊠ No

If **yes** to either Items a **or** b, complete Table 13 as instructed.

Samples are (check one): □ Composite Table 13 for Outfall No.: N/A □ Grab Pollutant Sample 1 Sample 2 Analytical Sample 3 Sample 4 **CASRN** $(\mu g/L)$ $(\mu g/L)$ $(\mu g/L)$ $(\mu g/L)$ Method

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 3.0: LAND APPLICATION OF EFFLUENT

This worksheet **is required** for all applications for a permit to disposal of wastewater by land application (i.e., TLAP)).

Item 1. Type of Disposal System (Instructions, Page 69)

Check the box next to the type of land disposal requested by this application:

□ Irrigation □ Subsurface application

Evaporation □ Subsurface soils absorption

□ Evapotranspiration beds □ Surface application

□ Drip irrigation system □ Other, specify:

Item 2. Land Application Area (Instructions, Page 69)

Land Application Area Information

Effluent Application (gallons/day)	Irrigation Acreage (acres)	Describe land use & indicate type(s) of crop(s)	Public Access? (Y/N)

Item 3. Annual Cropping Plan (Instructions, Page 69)

Attach the required cropping plan that includes each of the following:

- Cool and warm season plant species
- Breakdown of acreage and percent of total acreage for each crop
- Crop growing season
- Harvesting method/number of harvests
- Minimum/maximum harvest height
- Crop yield goals
- Soils map
- Nitrogen requirements per crop
- Additional fertilizer requirements
- Supplemental watering requirements
- Crop salt tolerances
- Justification for not removing existing vegetation to be irrigated

Attachment: N/A

Item 4. Well and Map Information (Instructions, Page 70)

a.		heck each box to confirm the required information is shown and labeled on the attached SGS map:						
		The exact boundaries of the land application area						
		On-site buildings						
		Waste-disposal or treatment facilities						
		Efflu	ent storage and tailwat	er control fac	ilities			
		Buffe	er zones					
		All sı	urface waters in the sta	ite onsite and	within 500 feet of the p	roperty boundaries		
	☐ All water wells within ½-mile of the disposal site, wastewater ponds, or property boundaries							
		All s	orings and seeps onsite	e and within 5	00 feet of the property l	boundaries		
	Atta	achme	ent: <u>N/A</u>					
	was nec	st and cross reference all water wells located on or within 500 feet of the disposal site, astewater ponds, or property boundaries in the following table. Attach additional pages as ecessary to include all of the wells.						
Well ID)	Well Use	Producing? Y/N/U	Open, cased, capped, or plugged?	Proposed Best Management Practice		
At	tach	ment:	<u>N/A</u>					
c.		roundwater monitoring wells or lysimeters are/will be installed around the land oplication site or wastewater ponds.						
□ Yes □ No								
	site lysi	yes, provide the existing/proposed location of the monitoring wells or lysimeters on the te map attached for Item 4.a. Additionally, attach information on the depth of the wells or simeters, sampling schedule, and monitoring parameters for TCEQ review, possible nodification, and approval.						
	Atta	achme	ent: <u>N/A</u>					
d.		ttach a short groundwater technical report using 30 TAC § 309.20(a)(4) as guidance.						

Item 5. Soil Map and Soil Information (Instructions, Page 71)

Check each box to confirm that the following information is attached:
a. □ USDA NRCS Soil Survey Map depicting the area to be used for land application with the locations identified by fields and crops.
b. □ Breakdown of acreage and percent of total acreage for each soil type.

Item 6. Effluent Monitoring Data (Instructions, Page 72)

Copies of laboratory soil analyses. Attachment: N/A

c. □

a. Completion of Table 14 **is required** for all **renewal** and **major amendment** applications. Complete the table with monitoring data for the previous two years for all parameters regulated in the current permit. An additional table has been provided with blank headers for parameters regulated in the current permit which are not listed in Table 14.

Table 14 for Outfall No.: N/A Samples are (check one): \square Composite \square Grab

Date (mo/yr)	Daily Avg Flow (gpd)	BOD5 (mg/L)	TSS (mg/L)	Nitrogen (mg/L)	Conductivity (mmhos/cm)	Total acres	Hydraulic Application rate (acre-feet/month)	
		, J. ,		<u> </u>		irrigated	(acre-feet/month)	

Date	Daily Avg	BOD5	TSS	Nitrogen	Conductivity	Total	Hydraulic
(mo/yr)	Flow (gpd)	(mg/L)	(mg/L)	(mg/L)	(mmhos/cm)	acres	Application rate
						irrigated	(acre-feet/month)

b. Use this table to provide effluent analysis for parameters regulated in the current permit which are not listed in Table 14.

Additional Parameter Effluent Analysis

Date (mo/yr)				

c. Attach an explanation of all persistent excursions to permitted parameters and corrective actions taken. Attachment: N/A

Item 7. Pollutant Analysis (Instructions, Page 72)

Provide the date range of all sampling events conducted to obtain the analytical data submitted with this application (e.g., $05/01/2018-05/30/2018$): N/A; NO DISCHARGE SINCE 2015						
b. Check the box to co			ples were	collected no m	ore than 12 m	onths prior to
c. Complete Tables 15 and	16.					
Table 15 for Outfall No.: <u>N/A</u>	<u>-</u>		Samples	are (check one):□ Composit	e □ Grab
Pollutant		Sam (mg	ple 1 /L)	Sample 2 (mg/L)	Sample 3 (mg/L)	Sample 4 (mg/L)
BOD (5-day)						
CBOD (5-day)						
Chemical oxygen demand						
Total organic carbon						
Dissolved oxygen						
Ammonia nitrogen						
Total suspended solids						
Nitrate nitrogen						
Total organic nitrogen						
Total phosphorus						
Oil and grease						
Total residual chlorine						
Total dissolved solids						
Sulfate						
Chloride						
Fluoride						
Total alkalinity (mg/L as Ca	.CO3)					
Temperature (°F)						
pH (standard units)						
Table 16 for Outfall No.: <u>N/A</u>			Samples	are (check one): □ Composit	e □ Grab
Pollutant	Sample (μg/L)	: 1	Sample 2 (µg/L)	Sample 3 (µg/L)	Sample 4 (µg/L)	MAL (μg/L)
Aluminum, total						2.5
Antimony, total						5
Arsenic, total						0.5

Pollutant	Sample 1 (µg/L)	Sample 2 (µg/L)	Sample 3 (µg/L)	Sample 4 (µg/L)	MAL (μg/L)
Barium, total					3
Beryllium, total					0.5
Cadmium, total					1
Chromium, total					3
Chromium, hexavalent					3
Chromium, trivalent					N/A
Copper, total					2
Cyanide, available					2/10
Lead, total					0.5
Mercury, total					0.005/0.0005
Nickel, total					2
Selenium, total					5
Silver, total					0.5
Thallium, total					0.5
Zinc, total					5.0

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 3.1: SURFACE LAND APPLICATION AND APPLICATION

This worksheet **is required** for all applications for a permit to disposal of wastewater by surface land application or evaporation.

Item 1. Edwards Aquifer (Instructions, Page 73)

a.	Is the f	facility sul	bject	t to 30 TAC Chapter 213, Edwards Aquifer Rules?			
		Yes	\boxtimes	No			
	If no , proceed to Item 2. If yes , complete Items 1.b and 1.c.						
b.	Check the box next to the subchapter applicable to the facility.						
		30 TAC (Char	oter 213, Subchapter A			
		30 TAC (Char	oter 213, Subchapter B			

- c. If *30 TAC Chapter 213, Subchapter A* applies, attach **either**: 1) a Geologic Assessment (if conducted in accordance with *30 TAC § 213.5*) **or** 2) a report that contains the following:
 - A description of the surface geological units within the proposed land application site and wastewater pond area.
 - The location and extent of any sensitive recharge features in the land application site and wastewater pond area
 - A list of any proposed BMPs to protect the recharge features.

Attachment: N/A

Item 2. Surface Spray/Irrigation (Instructions, Page 73)

a. Provide the following information on the irrigation operations:

Area under irrigation (acres): N/A

Design application rate (acre-ft/acre/yr): N/A

Design application frequency (hours/day): N/A

Design application frequency (days/week): N/A

Design total nitrogen loading rate (lbs nitrogen/acre/year): N/A

Average slope of the application area (percent): N/A

Maximum slope of the application area (percent): N/A

Irrigation efficiency (percent): N/A

Effluent conductivity (mmhos/cm): N/A

Soil conductivity (mmhos/cm): N/A

Curve number: N/A

Describe the application method and equipment: N/A

b. Attach a detailed engineering report which includes a water balance, storage volume calculations, and a nitrogen balance. **Attachment:** N/A

Item 3. Evaporation Ponds (Instructions, Page 74)

- a. Daily average effluent flow into ponds: N/A gallons per day
- b. Attach a separate engineering report of evaporation calculations for average long-term and worst-case critical conditions. Attachment: N/A

Item 4. Evapotranspiration Beds (Instructions, Page 74)

a. Provide the following information on the evapotranspiration beds:

Number of beds: N/A

Area of bed(s) (acres): N/A

Depth of bed(s) (feet): N/A

Void ratio of soil in the beds: N/A

Storage volume within the beds (include units): $\underline{N/A}$

Description of any lining to protect groundwater: N/A

- b. Attach a certification by a licensed Texas professional engineer that the liner meets TCEQ requirements. Attachment: N/A
- c. Attach a separate engineering report with water balance, storage volume calculations, and description of the liner. Attachment: N/A

Item 5. Overland Flow (Instructions, Page 74)

a. Provide the following information on the overland flow:

Area used for application (acres): N/A

Slopes for application area (percent): N/A

Design application rate (gpm/foot of slope width): $\underline{N/A}$

Slope length (feet): $\underline{N/A}$

Design BOD5 loading rate (lbs BOD5/acre/day): $\underline{N/A}$

Design application frequency (hours/day): $\underline{N/A}$

Design application frequency (days/week): N/A

b. Attach a separate engineering report with the method of application and design requirements according to *30 TAC § 217.212*. **Attachment:** N/A

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 3.2: SUBSURFACE IRRIGATION (NON-DRIP)

This worksheet **is required** for all applications for a permit to disposal of wastewater by subsurface land application.

□ Check the box to confirm the Class V Injection Well Inventory/Authorization Form (Worksheet 9.0) has been submitted to the TCEQ UIC Permits Team as directed.

Item 1. Edwards Aquifer (Instructions, Page 75)

a. The subsurface system is/will be located on the Edwards Aquifer Recharge Zone, as mapped by TCEQ?

□ Yes ⊠ No

b. The subsurface system is/will be located on the Edwards Aquifer Transition Zone, as mapped by TCEQ?

□ Yes ⊠ No

If **yes** to Item 1.a **or** 1.b, the subsurface system may be prohibited by *30 TAC § 213.8*. Contact the Water Quality Assessment Section at (512) 239-4671 for a preapplication meeting.

Item 2. Subsurface Application (Instructions, Page 75)

- a. Check the box next to the type of subsurface land disposal system requested:
 - ☐ Conventional drainfield, beds, or trenches

 \square Low pressure dosing

□ Other: <u>N/A</u>

b. Provide the following information on the irrigation operations:

Application area (acres): N/A

Area of drainfield (square feet): N/A

Application rate (gal/square ft/day): N/A

Depth to groundwater (feet): N/A

Area of trench (square feet): N/A

Dosing duration per area (hours): N/A

Number of beds: <u>N/A</u>

Dosing amount per area (inches/day): N/A

Soil infiltration rate (inches/hour): N/A

Storage volume (gallons): <u>N/A</u>
Area of bed(s) (square feet): <u>N/A</u>

Soil classification: N/A

c. Attach a separate engineering report using 30 TAC § 309.20, Subchapter C, Land Disposal of Sewage Effluent as guidance, excluding items b(3)(A) and b(3)(B). Include a description of the schedule of dosing basin rotation. Attachment: N/A

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 3.3: SUBSURFACE AREA DRIP DISPERSAL SYSTEMS

This worksheet **is required** for all applications for a permit to dispose of wastewater using a subsurface area drip dispersal system (SADDS).

	Check the box to confirm the Class V Injection Well Inventory/Authorization Form (Worksheet 9.0) has been submitted to the TCEQ UIC Permits Team as directed.
It	em 1. Edwards Aquifer (Instructions, Page 76)
a.	The subsurface system is/will be located on the Edwards Aquifer Recharge Zone, as mapped by TCEQ?
	□ Yes ⊠ No
b.	The subsurface system is/will be located on the Edwards Aquifer Transition Zone, as mapped by TCEQ?
	□ Yes ⊠ No
	yes to Item 1.a or 1.b, the subsurface system may be prohibited by <i>30 TAC § 213.8</i> . Contact e Water Quality Assessment Section at (512) 239-4671 for a preapplication meeting.
It	em 2. Administrative Information (Instructions, Page 76)
a.	Provide the legal name of all corporations or other business entities managed, owned, or otherwise closely related to the owner of the treatment facility: $\underline{N/A}$
b.	The owner of the land where the WWTF is/will be located is the same as the owner of the WWTF.
	□ Yes ⊠ No
	If ${\bf no}$, provide the legal name of all corporations or other business entities managed, owned or otherwise closely related to the owner of the land where the WWTF is/will be located: ${\bf N/A}$
c.	Provide the legal name of the owner of the SADDS: N/A
d.	The owner of the SADDS is the same as the owner of the WWTF or the site where the WWTF is/will be located.
	□ Yes ⊠ No
	If ${\bf no}$, identify the legal name of all corporations or other business entities managed, owned or otherwise closely related to the entity identified in Item 1.c: ${\bf N/A}$
e.	Provide the legal name of the owner of the land where the SADDS is located: $\underline{\text{N/A}}$
f.	The owner of the land where the SADDS is/will be located is the same as owner of the WWTF, the site where the WWTF is located, or the owner of the SADDS. \Box Yes \boxtimes No
	LI ICO INU

If **no**, provide the legal name of all corporations or other business entities managed, owned, or otherwise closely related to the entity identified in item 1.e: N/A

Item 3. SADDS (Instructions, Page 77)

a.	Cnec	k the box next to the type SADDS requested by this application:
		Subsurface drip/trickle irrigation
		Surface drip irrigation
		Other: <u>N/A</u>
b.		h a description of the SADDS proposed/used by the facility (see instructions for ince). Attachment: $\underline{N/A}$
c.	Provi	de the following information on the SADDS:
	Appli	cation area (acres): <u>N/A</u>
	Soil i	nfiltration rate (inches/hour): <u>N/A</u>
	Avera	age slope of the application area: $\underline{\mathrm{N/A}}$
	Maxii	num slope of the application area: $\underline{\mathrm{N/A}}$
	Stora	ge volume (gallons): <u>N/A</u>
	Majo	r soil series: <u>N/A</u>
	Deptl	n to groundwater (feet): <u>N/A</u>
	Efflue	ent conductivity (mmhos/cm): <u>N/A</u>
d.		acility is/will be located west of the boundary shown in $30\ TAC\ \S\ 222.83$ and using ative cover of non-native grasses over seeded with cool-season grasses.
		Yes ⊠ No
	-	s, the facility may propose a hydraulic application rate up to, but not to exceed, $0.1 \mathrm{day}$.
e.		acility is/will be located east of the boundary shown in 30 TAC § 222.83 or is the ty proposing any crop other than non-native grasses.
		Yes ⊠ No
		s, the facility must use the formula in $30\ TAC\ \S\ 222.83$ to calculate the maximum aulic application rate.
f.		acility has or plans to submit an alternative method to calculate the hydraulic cation rate for approval by the ED.
		Yes ⊠ No
	If yes	s, provide the following information on the hydraulic application rates:
	•	Hydraulic application rate (gal/square foot/day): N/A
	•	Nitrogen application rate (gal/square foot/day): <u>N/A</u>

g. Provide the following dosing information:

a

	Numb	er of doses per day: <u>N/A</u>
	Dosing	g duration per area (hours): <u>N/A</u>
	Rest p	eriod between doses (hours): <u>N/A</u>
	Dosing	g amount per area (inches/day): <u>N/A</u>
	Numb	er of zones: <u>N/A</u>
h.	The sy crop?	stem is/will be a surface drip irrigation system using existing native vegetation as a
		Yes 🗵 No
	If yes ,	attach the following information:
	•	A vegetation survey by a certified arborist describing the percent canopy cover and relative percentage of major overstory and understory plant species.
		Attachment: N/A
	•	Attach a separate engineering report using 30 TAC § 309.20, Subchapter C, Land Disposal of Sewage Effluent as guidance, excluding items b(3)(A) and b(3)(B). Include a description of the schedule of dosing basin rotation.
		Attachment: N/A
It	em 4	. Required Plans (Instructions, Page 78)
a.	Attach	a Soil Evaluation with all information required in 30 TAC § 222.73.
		ament: N/A
b.		a Site Preparation Plan with all information required in $30\ TAC\ \S\ 222.75$.
c.		a Recharge Feature Plan with all information required in $30\ TAC\ \S\ 222.79$.
d.	Provid	e soil sampling and testing with all information required in 30 TAC § 222.157.
		ment: N/A
T +.	om F	Flood and Dun On Protection (Instructions, Page 70)
ΙU	em 5	. Flood and Run-On Protection (Instructions, Page 79)
a.	Is the	existing/proposed SADDS located within the 100-year frequency flood level?
		Yes 🗵 No
	Sou	rrce: N/A
	If yes ,	describe how the site will be protected from inundation: N/A
b.	Is the	existing/proposed SADDS within a designated floodway?
		Yes 🗵 No
		attach either the FEMA flood map or alternate information used to make this nination. Attachment: $\underline{N/A}$

Item 6. Surface Waters in The State (Instructions, Page 79)

a.	Attach a buffer map which shows the appropriate buffers on surface waters in the state,
	water wells, and springs/seeps. Attachment: N/A

b.	The facility has or plans to request	a buffer	variance	from	water	wells	or	waters	in	the
	state?									

□ Yes ⊠ No

If yes, attach the additional information required in 30 TAC § 222.81(c). Attachment: N/A

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 4.0: RECEIVING WATERS

This worksheet **is required** for all TPDES permit applications.

Item 1. Domestic Drinking Water Supply (Instructions, Page 80)

a.	There is a surface water intake for domestic drinking water supply located within 5 (five) miles downstream from the point/proposed point of discharge.
	□ Yes ⊠ No
	If no , stop here and proceed to Item 2. If yes , provide the following information:
	1. The legal name of the owner of the drinking water supply intake: $\underline{N/A}$
	2. The distance and direction from the outfall to the drinking water supply intake: $\underline{N/A}$
b.	Locate and identify the intake on the USGS 7.5-minute topographic map provided for Administrative Report 1.0.
	oximes Check this box to confirm the above requested information is provided.
It	em 2. Discharge Into Tidally Influenced Waters (Instructions, Page 80)
	the discharge is to tidally influenced waters, complete this section. Otherwise, proceed to em 3.
a.	Width of the receiving water at the outfall: $\underline{N/A}$ feet
b.	Are there oyster reefs in the vicinity of the discharge?
	□ Yes ⊠ No
	If yes , provide the distance and direction from the outfall(s) to the oyster reefs: N/A
c.	Are there sea grasses within the vicinity of the point of discharge?
	□ Yes ⊠ No
	If yes , provide the distance and direction from the outfall(s) to the grasses: N/A
It	em 3. Classified Segment (Instructions, Page 80)
Th	ne discharge is/will be directly into (or within 300 feet of) a classified segment. \Box Yes \boxtimes No
т£,	
	yes, stop here and do not complete Items 4 and 5 of this worksheet or Worksheet 4.1. no, complete Items 4 and 5 and Worksheet 4.1 may be required.

Item 4. Description of Immediate Receiving Waters (Instructions, Page 80)

а.	Creek						
b.	Check the appropriate description of the immediate receiving waters:						
		La	ke or Pond				
		•	Surface area (acres): <u>N/A</u>				
		•	Average depth of the entire water body (feet): N/A				
			Average depth of water body within a 500-foot radius of the discharge point (feet): N/A				
		M	an-Made Channel or Ditch				
	\boxtimes	St	ream or Creek				
		Fr	eshwater Swamp or Marsh				
		Ti	dal Stream, Bayou, or Marsh				
		Oj	pen Bay				
		Ot	ther, specify:				
			de Channel or Ditch or Stream or Creek were selected above, provide responses to -4.g below:				
с.			isting discharges , check the description below that best characterizes the area am of the discharge.				
			w discharges, check the description below that best characterizes the area stream of the discharge.				
		\boxtimes	Intermittent (dry for at least one week during most years)				
			Intermittent with Perennial Pools (enduring pools containing habitat to maintain equatic life uses)				
			Perennial (normally flowing)				
			the source(s) of the information used to characterize the area upstream (existing rge) or downstream (new discharge):				
			USGS flow records				
		\boxtimes	personal observation				
			historical observation by adjacent landowner(s)				
			other, specify: <u>N/A</u>				
d.			e names of all perennial streams that join the receiving water within three miles tream of the discharge point: <u>Medio Creek</u>				

e.	. The receiving water characteristics change within three miles downstream of the discharge (e.g., natural or man-made dams, ponds, reservoirs, etc.).									
	⊠ Yes □ No									
	If y	r es , describe how: <u>Man-made reservoir – C</u>	R Mitche	l <u>l Lake</u>						
f.		neral observations of the water body dur eared dry during normal dry weather condit		nal dry weather conditions: <u>Water body</u>						
	Date and time of observation: <u>June 07, 2024; 1:00 PM</u>									
g.	The	e water body was influenced by stormwa	ter runof	f during observations.						
	□ Yes ⊠ No									
	If y	r es , describe how: <u>N/A</u>								
It	em	5. General Characteristics	of Wa	nter Body (Instructions,						
		Page 81)		, `						
a.		he receiving water upstream of the exist uenced by any of the following (check al								
		oil field activities	\boxtimes	urban runoff						
	\boxtimes	agricultural runoff		septic tanks						
		upstream discharges		other, specify: <u>N/A</u>						
b.	Use	es of water body observed or evidence of	such use	es (check all that apply):						
	\boxtimes	livestock watering		industrial water supply						
		non-contact recreation		irrigation withdrawal						
		domestic water supply		navigation						
		contact recreation		picnic/park activities						
		fishing		other, specify: <u>N/A</u>						
c.	Description which best describes the aesthetics of the receiving water and the surrounding area (check only one):									
		Wilderness: outstanding natural beauty clarity exceptional	y; usually	wooded or un-pastured area: water						
		Natural Area: trees or native vegetation fields, pastures, dwellings); water clari		· -						
		Common Setting: not offensive, developments	ped but	uncluttered; water may be colored or						
		Offensive: stream does not enhance as areas; water discolored	esthetics;	cluttered; highly developed; dumping						

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 4.1: WATERBODY PHYSICAL CHARACTERISTICS

The following information **is required** for new applications, EPA-designated Major facilities, and major amendment applications requesting to add an outfall if the receiving waters are perennial or intermittent with perennial pools (including impoundments) for a TDPES permit.

Complete the transects downstream of the existing or proposed discharges.

Item 1. Data Collection (Instructions, Page 82)

a.	Date of study: <u>N/A</u> Time of study: <u>N/A</u>
	Waterbody name: <u>N/A</u>
	General location: <u>N/A</u>
b.	Type of stream upstream of an existing discharge or downstream of a proposed discharge (check only one):
	\square perennial \square intermittent with perennial pools \square impoundment
c.	No. of defined stream bends:
	Well: <u>N/A</u> Moderately: <u>N/A</u> Poorly: <u>N/A</u>
d.	No. of riffles: <u>N/A</u>
e.	Evidence of flow fluctuations (check one):
	□ Minor □ Moderate □ Severe
f.	Provide the observed stream uses and where there is evidence of channel obstructions/modifications: $\underline{N/A}$
g.	Complete the following table with information regarding the transect measurements.

Stream Transect Data

Transect Location	Habitat Type*	Water Surface Width (ft)	Stream Depths (ft)**				

^{*} riffle, run, glide, or pool

^{**} channel bed to water surface

Item 2. Summarize Measurements (Instructions, Page 83)

Provide the following information regarding the transect measurements:

Streambed slope of entire reach (from USGS map in ft. /ft.): N/A

Approximate drainage area above the most downstream transect from USGS map or county highway map (square miles): N/A

Length of stream evaluated (ft): N/A

Number of lateral transects made: N/A

Average stream width (ft): N/A

Average stream depth (ft): N/A

Average stream velocity (ft/sec): N/A

Instantaneous stream flow (ft³/sec): N/A

Indicate flow measurement method (VERY IMPORTANT – type of meter, floating chip timed over a fixed distance, etc.): N/A

Flow fluctuations (i.e., minor, moderate, or severe): N/A

Size of pools (i.e., large, small, moderate, or none): N/A

Maximum pool depth (ft): N/A

Total number of stream bends: N/A

Number well defined: N/A

Number moderately defined: N/A

Number poorly defined: N/A

Total number of riffles: N/A

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 5.0: SEWAGE SLUDGE MANAGEMENT AND DISPOSAL

The following information **is required** for all TPDES permit applications that meet the conditions as outlined in Technical Report 1.0, Item 7.

Item 1. Sewage Sludge Solids Management Plan (Instructions, Page 84)

a.	Is th	nis a new permit application or an amendment permit application?							
	[□ Yes ⊠ No							
b.	Doe	s or will the facility discharge in the Lake Houston watershed?							
	[□ Yes ⊠ No							
If y	yes t	o either Item 1.a or 1.b, attach a solids management plan. Attachment: N/A							
It	tem 2. Sewage Sludge Management and Disposal (Instructions Page 84)								
a.		ck the box next to the sludge disposal method(s) authorized under the facility's existin mit (check all that apply).							
		Permitted landfill							
		Marketing and distribution by the permittee, attach Form TCEQ-00551							
		Registered land application site, attach Form TCEQ-00565							
		Processed by the permittee, attach Form TCEQ-00744							
		Surface disposal site (sludge monofill), attach Form TCEQ-00744							
		Transported to another WWTP							
		Beneficial land application, attach Form TCEQ-10451							
		Incineration, attach Form TCEQ-00744							
	dire	ed on the selection(s) made above, complete and attach the required TCEQ forms as ected. Failure to submit the required TCEQ form will result in delays in processing the lication							
	Atta	achment: N/A – The facility does not generate sewage waste onsite							
b.	Prov	vide the following information for each disposal site:							
	Disp	posal site name: <u>N/A</u>							
	TCE	Q Permit/Registration Number: <u>N/A</u>							
	Cou	nty where disposal site is located: <u>N/A</u>							

c.	Met	hod of sev	vage sl	udge trar	spor	tation:	:						
		truck	□ t	rain		pipe		other:	N/A				
	TCE	EQ Hauler I	Registr	ation Nu	mber:	<u>N/A</u>							
d.	Sluc	dge is tran	sporte	d as a:									
		liquid		semi-liq	uid		semi-	solid		solid			
e.	Pur	pose of lar	nd app	lication:		reclan	nation		soil co	onditionin	g	\boxtimes	N/A
f.	If sewage sludge is transported to another WWTP for treatment, attach a written statement or copy of contractual agreements confirming that the WWTP identified above will accept and be responsible for the sludge from this facility for the life of the permit (at least 5 years).												
	Atta	achment: <u>1</u>	<u>N/A</u>										
It	em	3. Aut		zation tions,				Slud	lge D	isposa	1		
slı	ıdge	s a new or disposal n all that ap	nethod										
		Marketing	g and o	distributio	n by	the pe	ermitte	e, atta	ch Forn	n TCEQ-00)551		
		Processed	d by th	e permitt	ee, at	tach F	orm To	CEQ-00	744				
		Surface d	isposa	l site (slu	dge n	nonofi	ll), atta	ch For	m TCE	Q-00744			
		Beneficial	l land a	applicatio	n, att	ach Fo	orm TC	EQ-10	451				
		Incinerati	on, att	ach Form	TCE	Q-0074	44						
diı	Based on the selection(s) made above, complete and attach any required TCEQ forms, as directed. Failure to submit the required TCEQ form will result in delays in processing the application.												
	Atta	achment: <u>1</u>	<u>N/A</u>										
in for de	NOTE: New authorization for beneficial land application, incineration, processing, or disposal in the TPDES permit or TLAP requires a major amendment to the permit . New authorization for composting may require a major amendment to the permit. See the instructions to determine if a major amendment is required or if authorization for composting can be added through the renewal process.												

TCEQ-10053 (01/08/2024) Industrial Wastewater Permit Application Technical Report

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 6.0: INDUSTRIAL WASTE CONTRIBUTION

The following information **is required** for all applications for publicly-owned treatment works (POTWs).

For an explanation of the terms used in this worksheet, refer to the General Definitions on pages 4-12 and the Definitions Relating to Pretreatment on pages 13-14 of the Instructions.

Item 1. All POTWs (Instructions, Page 86)

a. Complete the following table with the number of each type of industrial users (IUs) that discharge to the POTW and the daily average flows from each.

Industrial User Information

Type of Industrial User	Number of Industrial Users	Daily Average Flow (gallons per day)					
CIU							
SIU - Non-categorical							
Other IU							
b. In the past three years, has the POTW experienced treatment plant interference? ☐ Yes ☒ No If yes , identify the date(s), duration, nature of interference, and probable cause(s) and possible source(s) of each interference event. Include the names of the IU(s) that may have caused the interference: N/A							
c. In the past three years,	has the POTW experienced pas	s-through?					
□ Yes ⊠ N	0						
probable cause(s) and p	If yes , identify the date(s), duration, pollutants passing through the treatment plant, and probable cause(s) and possible source(s) of each pass-through event. Include the names of the $IU(s)$ that may have caused the pass-through: N/A						
d. Does the POTW have, or	or is it required to develop, an ap	pproved pretreatment program?					
□ Yes ⊠ N	0						
If yes , answer all quest	tions in Item 2 and skip Item 3.						
If no , skip Item 2 and a	If no , skip Item 2 and answer all questions in Item 3 for each SIU and CIU.						
Itom 2 DOTWE With Approved Protreatment Programs or							

Item 2. POTWs With Approved Pretreatment Programs or Those Required To Develop A Pretreatment Program (Instructions, Page 86)

a.	Have there been any substantial modifications to the POTW's approved pretreatment
	program that have not been submitted to the Approval Authority (TCEQ) for approval
	according to 40 CFR § 403.18?
	\sqcap Yes \bowtie No

	If yes , include an attachment which identifies all substantial modifications that have not been submitted to the TCEQ and the purpose of the modifications.								
	Attachment: N/A								
b.	. Have there been any non-substantial modifications to the POTW's approved pretreatment program that have not been submitted to the Approval Authority (TCEQ)?								
	□ Yes ⊠ No								
	If yes , include an attachmenot been submitted to the				fications that have				
	Attachment: <u>N/A</u>								
c.	. List all parameters measured above the MAL in the POTW's effluent monitoring during the last three years:								
Ef	fluent Parameters Measured A	bove the MAL							
Po	llutant	Concentration	MAL	Units	Date				
	Attachment: N/A								
d.	Has any SIU, CIU, or other interference or pass-through		,	-	ms (excluding				
	□ Yes ⊠ No								
	If yes , provide a description of each episode, including date(s), duration, description of problems, and probable pollutants. Include the name(s) of the $SIU(s)/CIU(s)/other\ IU(s)$ that may have caused or contributed to any of the problems: N/A								
It	em 3. Significant I	ndustrial Use	er and Ca	tegorica	l Industrial				
	•	ation (Instru		_					
	TWs that do not have an ap llowing information for each	_	nt program a	re required	to provide the				
a.	Mr. or Ms.: <u>N/A</u> First/Last	Name: <u>N/A</u>							
	Organization Name: <u>N/A</u>	•	C Code: <u>N/A</u>						

Email address: N/A

City/State/ZIP Code: N/A

Attachment: N/A

Phone number: N/A

Physical Address: <u>N/A</u>

b. Describe the industrial processes or other activities that affect or contribute to the SIU(s) or CIU(s) discharge (e.g., process and non-process wastewater): N/A c. Provide a description of the principal products(s) or service(s) performed: N/A d. Flow rate information **Flow Rate Information Discharge Day Effluent Type** Discharge Frequency (gallons per day) (Continuous, batch, or intermittent) **Process Wastewater** Non-process Wastewater e. Pretreatment Standards 1. Is the SIU or CIU subject to technology-based local limits as defined in the application instructions? П Yes \boxtimes No 2. Is the SIU subject to categorical pretreatment standards? Yes \boxtimes No If yes, provide the category and subcategory or subcategories in the SIUs Subject To Categorical Pretreatment Standards table. SIUs Subject to Categorical Pretreatment Standards Category in Subcategory in Subcategory in Subcategory in Subcategory in **40 CFR** 40 CFR **40 CFR 40 CFR 40 CFR**

f.				contributed to any problem(s) (e.g., interfockages) at the POTW in the past three ye	
	Yes	\boxtimes	No		

If **yes**, provide a description of each episode, including dates, duration, description of problems, and probable pollutants, and include the name(s) of the SIU(s)/CIU(s) that may have caused or contributed to the problem(s): N/A

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 7.0: STORMWATER DISCHARGES ASSOCIATED WITH INDUSTRIAL ACTIVITIES

This worksheet **is required** for all TPDES permit applications requesting individual permit coverage for discharges consisting of **either**: 1) solely of stormwater discharges associated with industrial activities, as defined in 40 CFR § 122.26(b)(14)(i-xi), **or** 2) stormwater discharges associated with industrial activities and any of the listed allowable non-stormwater discharges, as defined in the MSGP (TXR05000), Part II, Section A, Item 6.

Discharges of stormwater as defined in 40 CFR § 122.26 (b)(13) are not required to obtain authorization under a TPDES permit (see exceptions at 40 CFR §§ 122.26(a)(1) and (9)). Authorization for discharge may be required from a local municipal separate storm sewer system.

Item 1. Applicability (Instructions, Page 89)

Do discharges from any of the existing/proposed outfalls consist either 1) solely of stormwater
discharges associated with industrial activities or 2) stormwater discharges associated with
industrial activities and any of the allowable non-stormwater discharges?

□ Yes ⊠ No

If **no**, stop here. If **yes**, proceed as directed.

Item 2. Stormwater Coverage (Instructions, Page 89)

List each existing/proposed stormwater outfall at the facility and indicate which type of authorization covers or is proposed to cover discharges.

Authorization Coverage

Outfall	Authorization under MSGP	Authorized Under Individual Permit

If **all** existing/proposed outfalls which discharge stormwater associated with industrial activities (and any of the allowable non-stormwater discharges) are **authorized under the MSGP**, **stop** here.

If **seeking authorization** for any outfalls which discharge stormwater associated with industrial activities (and any of the allowable non-stormwater discharges) **under an individual permit, proceed**.

NOTE: The following information is required for each existing/proposed stormwater outfall for which the facility is seeking individual permit authorization under this application

Item 3. Site Map (Instructions, Page 90)

Attach a site map or maps (drawn to scale) of the entire facility with the following information.

- the location of each stormwater outfall to be covered by the permit
- an outline of the drainage area that is within the facility's boundary and that contributes stormwater to each outfall to be covered by the permit
- connections or discharge points to municipal separate storm sewer systems
- locations of all structures (e.g. buildings, garages, storage tanks)
- structural control devices that are designed to reduce pollution in discharges of stormwater associated with industrial activities
- process wastewater treatment units (including ponds)
- bag house and other air treatment units exposed to stormwater (stormwater runoff, snow melt runoff, and surface runoff and drainage)
- landfills; scrapyards; surface water bodies (including wetlands)
- vehicle and equipment maintenance areas
- physical features of the site that may influence discharges of stormwater associated with industrial activities or contribute a dry weather flow
- locations where spills or leaks of reportable quality (as defined in 30 TAC § 327.4) have occurred during the three years before this application was submitted to obtain coverage under an individual permit
- processing areas, storage areas, material loading/unloading areas, and other locations where significant materials are exposed to stormwater (stormwater runoff, snow melt runoff, and surface runoff and drainage)

Check the box to confirm all above information was provided on the facility site map(s)
Attachment: N/A

Item 4. Facility/Site Information (Instructions, Page 90)

a. Provide the area of impervious surface and the total area drained by each stormwater outfall requested for authorization by this permit application.

Impervious Surfaces

Outfall	Area of Impervious Surface (include units)	Total Area Drained (include units)

b. Provide the following local area rainfall information and the source of the information.

Wettest month: N/A

Average rainfall for wettest month (total inches): N/A

25-year, 24-hour rainfall (inches): N/A

Source: N/A

- c. Attach an inventory, or list, of materials currently handled at the facility that may be exposed to precipitation. **Attachment:** N/A
- d. Attach narrative descriptions of the industrial processes and activities involving the materials in the above-listed inventory that occur outdoors or in some manner that may result in exposure of the materials to precipitation or runoff (see instructions for guidance). **Attachment:** N/A
- e. Describe any BMPs and controls the facility uses/proposes to prevent or effectively reduce pollution in stormwater discharges from the facility: N/A

Item 5. Pollutant Analysis (Instructions, Page 91)

- a. Provide the date range of all sampling events conducted to obtain the analytical data submitted with this application (e.g., 05/01/2018-05/30/2018): N/A
- b. \Box Check the box to confirm all samples were collected no more than 12 months prior to the date of application submittal.
- c. Complete Table 17 as directed on page 92 of the Instructions.

Table 17 for Outfall No.: N/A

Pollutant	Grab Sample* Maximum (mg/L)	Composite Sample** Maximum (mg/L)	Grab Sample* Average (mg/L)	Composite Sample** Average (mg/L)	Number of Storm Events Sampled	MAL (mg/L)
pH (standard units)	(max)	_	(min)	_		_
Total suspended solids						_
Chemical oxygen demand						_
Total organic carbon						_
Oil and grease						_
Arsenic, total						0.0005
Barium, total						0.003
Cadmium, total						0.001
Chromium, total						0.003
Chromium, trivalent						_
Chromium, hexavalent						0.003
Copper, total						0.002

Pollutant	Grab Sample* Maximum (mg/L)	Composite Sample** Maximum (mg/L)	Grab Sample* Average (mg/L)	Composite Sample** Average (mg/L)	Number of Storm Events Sampled	MAL (mg/L)
Lead, total						0.0005
Mercury, total						0.000005
Nickel, total						0.002
Selenium, total						0.005
Silver, total						0.0005
Zinc, total						0.005

^{*} Taken during first 30 minutes of storm event

d. Complete Table 18 as directed on pages 92-94 of the Instructions.

Table 18 for Outfall No.: N/A

Pollutant	Grab Sample* Maximum (mg/L)	Composite Sample** Maximum (mg/L)	Grab Sample* Average (mg/L)	Composite Sample** Average (mg/L)	Number of Storm Events Sampled

^{*} Taken during first 30 minutes of storm event

Attachment: N/A

^{**} Flow-weighted composite sample

^{**} Flow-weighted composite sample

Item 6. Storm Event Data (Instructions, Page 93)

Provide the following data for the storm event(s) which resulted in the maximum values for the analytical data submitted:

Date of storm event: N/A

Duration of storm event (minutes): N/A

Total rainfall during storm event (inches): N/A

Number of hours the between beginning of the storm measured and the end of the previous measurable storm event (hours): N/A

Maximum flow rate during rain event (gallons/minute): N/A

Total stormwater flow from rain event (gallons): N/A

Provide a description of the method of flow measurement or estimate:

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 8.0: AQUACULTURE

This worksheet **is required** for all TPDES permit applications requesting individual permit coverage for discharges of aquaculture wastewater.

Item 1. Facility/Site Information (Instructions, Page 94)

a. Complete the following table with information regarding production ponds, raceways, and fabricated tanks at the facility.

Production Pond Descriptions

Number of Ponds	Dimensions (include units)	Area of Each Pond (include units)	Number of Ponds x Area of Ponds (include Units)

Total surface area of all ponds: N/A

Raceway Descriptions

Number of Raceways	Dimensions (include units)

Fabricated Tank Descriptions

Number of Tanks	Dimensions (include units)

b.	Does the facility have	e a TPWD-approved	emergency plan?		
	□ Yes ⊠	No			
	If yes , attach a copy	of the approved pla	n.		
	Attachment: N/A				
c.	Does the facility hav	e an aquatic plant tr	ansplant authoriza	ition?	
	□ Yes ⊠	No			
	If yes , attach a copy	of the authorization	ı letter.		
	Attachment: N/A				
d.	Provide the number	of aquaculture facili	ties located within	25-miles of this f	acility: <u>N/A</u>
It	em 2. Species	Identification	(Instruction	s, Page 95)	
of	omplete the following the stock. Identify an thorize the species.				
Sto	ock Species Information				
Sp	ecies	Source of Stock	Origin of Stock	Disease Status	Authorizations
	Attachment: N/A				
It	em 3. Stock Ma	anagement Pl	an (Instructi	ons, Page 95	5)
At	tach a detailed stock	nanagement plan: <u>N</u>	<u> </u>		
It	em 4. Water Ti (Instruct	reatment and tions, Page 96		escription	
At					
	tach a detailed descri	otion of the discharg	ge practices and wa	ater treatment pro	ocess(es): <u>N/A</u>

Item 5. Solid Waste Management (Instructions, Page 96)

Attach a description of the solid waste-disposal practices: N/A

Item 6. Site Assessment Report (Instructions, Page 96)

All new and expanding commercial shrimp facilities located/to be located within the coastal zone must attach a detailed site assessment report which identifies sensitive aquatic habitats within the coastal zone: $\underline{N/A}$

WORKSHEET 9.0

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

CLASS V INJECTION WELL INVENTORY/AUTHORIZATION FORM

Submit the completed form to:

TCEQ IUC Permits Team Radioactive Materials Division MC-233 PO Box 13087 Austin, Texas 78711-3087 512-239-6466

For TCEQ Use Only	
Reg. No	
Date Received	
Date Authorized	

Item 1. General Information (Instructions Page 99)

1. TCEQ Program Area

Program Area (PST, VCP, IHW, etc.): N/A

Program ID: <u>N/A</u>
Contact Name: <u>N/A</u>
Phone Number: <u>N/A</u>

2. Agent/Consultant Contact Information

Contact Name: N/A

Address: N/A

City, State, and Zip Code: N/A

Phone Number: N/A

3. Owner/Operator Contact Information

 \square Owner \square Operator

Owner/Operator Name: N/A

Contact Name: N/A

Address: N/A

City, State, and Zip Code: N/A

Phone Number: N/A

4. Facility Contact Information

Facility Name: N/A

Address: N/A

City, State, and Zip Code: N/A

Location description (if no address is available): N/A

Facility Contact Person: N/A

Phone Number: N/A

5.	Latitude and Longitude, in degrees-minutes-seconds									
	Latitude: <u>N/A</u>									
	Longitude: <u>N/A</u>									
	Meth	od of det	ermination	(GPS, TOPO, etc.): <u>N/A</u>						
	Attac	ch topogr	aphic quadr	angle map as attachment A.						
6.	Well	Informat	ion							
	Type	of Well C	Construction	, select one:						
		□ Ve	rtical Injecti	on						
		□ Sul	bsurface Flu	id Distribution System						
		□ Inf	iltration Gal	lery						
		□ Te	mporary Inj	ection Points						
		□ Otl	her, Specify:	N/A						
	Numl	ber of Inj	ection Wells	s: <u>N/A</u>						
7.	Purp	ose								
	_	Detailed Description regarding purpose of Injection System:								
	N/A									
		ch a Site M opriate.)	Map as Attac	chment B (Attach the Approved F	Remediatio	on Plan, if				
8.	Wate	r Well Dı	riller/Install	er						
			•	er Name: <u>N/A</u>						
	City,	State, an	d Zip Code:	<u>N/A</u>						
	Phon	e Numbe	r: <u>N/A</u>							
	License Number: <u>N/A</u>									
Itom	2	Dropo	sed Dov	vn Hole Design						
		_			a abmant (3				
		0 0		led by a licensed engineer as Att	acimient (. .				
Name		Design Tal	ble Setting	Sacks Cement/Grout - Slurry	Hole	Weight (lbs/ft)				
String	l II	SIZE	Depth	Volume - Top of Center	Size	PVC/Steel				
Casing	g									

Tubing Screen

Item 3. Proposed Trench System, Subsurface Fluid Distribution System, or Infiltration Gallery

Attach a diagram signed and sealed by a licensed engineer as Attachment D.

System(s) Dimensions: N/A
System(s) Construction: N/A

Item 4. Site Hydrogeological and Injection Zone Data

- 1. Name of Contaminated Aquifer: N/A
- 2. Receiving Formation Name of Injection Zone: N/A
- 3. Well/Trench Total Depth: N/A
- 4. Surface Elevation: N/A
- 5. Depth to Ground Water: N/A
- 6. Injection Zone Depth: N/A
- 7. Injection Zone vertically isolated geologically? ☐ Yes ☒ No Impervious Strata between Injection Zone and nearest Underground Source of Drinking Water:

Name: <u>N/A</u> Thickness: N/A

- 8. Attach a list of contaminants and the levels (ppm) in contaminated aquifer as Attachment E.
- 9. Attach the Horizontal and Vertical extent of contamination and injection plume as Attachment F.
- 10. Attach Formation (Injection Zone) Water Chemistry (Background levels) TDS, etc., as Attachment G.
- 11. Injection Fluid Chemistry in PPM at point of injection. Attach as Attachment H.
- 12. Lowest Known Depth of Ground Water with < 10,000 PPM TDS: N/A
- 13. Maximum injection Rate/Volume/Pressure: N/A
- 14. Water wells within 1/4 mile radius (attach map as Attachment I): N/A
- 15. Injection wells within 1/4 mile radius (attach map as Attachment J): N/A
- 16. Monitor wells within 1/4 mile radius (attach drillers logs and map as Attachment K): N/A
- 17. Sampling frequency: N/A
- 18. Known hazardous components in injection fluid: N/A

Item 5. Site History

- 1. Type of Facility: N/A
- 2. Contamination Dates: N/A
- 3. Original Contamination (VOCs, TPH, BTEX, etc.) and Concentrations. Attach as Attachment L.
- 4. Previous Remediation. Attach results of any previous remediation as Attachment M.

NOTE: Authorization Form should be completed in detail and authorization given by the TCEQ before construction, operation, and/or conversion can begin. Attach additional pages as necessary.

Item 6. CLASS V INJECTION WELL DESIGNATIONS

- 5A07 Heat Pump/AC return (IW used for groundwater to heat or cool buildings)
- 5A19 Industrial Cooling Water Return Flow (IW used to cool industrial process equipment)
- 5B22 Salt Water Intrusion Barrier (IW used to inject fluids to prevent the intrusion of salt water into an aquifer)
- 5D02 Stormwater Drainage (IW designed for the disposal of rain water)
- 5D04 Industrial Stormwater Drainage Wells (IW designed for the disposal of rain water associated with industrial facilities)
- 5F01 Agricultural Drainage (IW that receive agricultural runoff)
- 5R21 Aquifer Recharge (IW used to inject fluids to recharge an aquifer)
- 5S23 Subsidence Control Wells (IW used to control land subsidence caused by groundwater withdrawal)
- 5W09 Untreated Sewage
- 5W10 Large Capacity Cesspools (Cesspools that are designed for 5,000 gpd or greater)
- 5W11 Large Capacity Septic systems (Septic systems designed for 5,000 gpd or greater)
- 5W12 WTTP disposal
- 5W20 Industrial Process Waste-disposal Wells
- 5W31 Septic System (Well Disposal method)
- 5W32 Septic System Drainfield Disposal
- 5X13 Mine Backfill (IW used to control subsidence, dispose of mining byproducts, or fill sections of a mine)
- 5X25 Experimental Wells (Pilot Test) (IW used to test new technologies or tracer dye studies)
- 5X26 Aguifer Remediation (IW used to clean up, treat, or prevent contamination of a USDW)
- 5X27 Other Wells
- 5X28 Motor Vehicle Waste-disposal Wells (IW used to dispose of waste from a motor vehicle site These are currently banned)
- 5X29 Abandoned Drinking Water Wells (waste disposal)

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 10.0: QUARRIES IN THE JOHN GRAVES SCENIC RIVERWAY

This worksheet **is required** for all applications for individual permits for a municipal solid waste facility or mining facility located within a Water Quality Protection Area in the John Graves Scenic Riverway. **Note: Review 30 TAC §§ 311.71-311.82 thoroughly prior to completing any portion of this worksheet.**

Item 1.	Exclusions	(Instructions,	Page	100)

10	GIII	1.	EXC	_1u5	10112	(1113	suu	CUO	115,	P	ag	G 1	LUI	וו							
a.	Is th	nis a	munic	ipal s	olid wa	aste f	acility	/?													
		Yes	\boxtimes	No																	
b.					n in op cutive										ces	sat	ion	of	opei	ratio	n for
		Yes	\boxtimes	No																	
c.	Is th	nis a	coal m	iine?																	
		Yes	\boxtimes	No																	
d.	Is th	nis fa	cility	minin	g clay	and/o	or sha	de for	use	in	ma	nufa	actu	ring	g sti	cuct	tura	ıl c	lay p	orod	ucts?
		Yes	\boxtimes	No																	
	•		-	_	estion, 11.72(_				-		_							ımer	ıtati	on, as
It	em	2.	Loca	ıtior	of of	the	Qua	arry	(In	ıst	tru	ıcti	ior	ıs,	Pa	ge	1	0]	l)		
Ch	eck t	the b	ox nex	ct to t	he dist	tance	betwe	een th	e qu	arı	ry a	nd t	he 1	near	est	nav	viga	ıble	e wat	ter b	ody:
		< 20	00 feet		200 f	eet -	1,500	feet		1,	,500) fee	et -	1 m	ile	[>	1 mi	le	
pr	ohib	ited v	within	200 f	n or op Teet of Riverw	any v															
It	em	3.	Add	itio	nal F	lequ	uire	men	ts	(I)	nst	tru	cti	ion	S,	Pa	ıge	<u>.</u> 1	101)	
the	e faci	ility ł		on dis	tructio stance 'A.																ly to
a.	Atta	ach a	Resto	ration	ı Plan:	<u>N/A</u>															
b.	Amo	ount	of Fin	ancial	l Assuı	rance	for R	estora	tion	: \$	<u>N//</u>	<u>4</u>									
	Mec	hani	sm: <u>N</u> /	<u>'A</u>																	
c.	Atta	ach a	Techr	iical E	Demon	strati	on: <u>N</u> ,	<u>/A</u>													
d.	Atta	ach a	Recla	matio	n Plan	: <u>N/A</u>															
e.	Amo	ount	of Fin	ancial	l Assur	rance	for R	eclam	atior	a: \$	\$ <u>N/</u>	<u>'A</u>									
	Mec	hani	sm: <u>N</u> /	<u>'A</u>																	

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 11.0: COOLING WATER SYSTEM INFORMATION

This worksheet is required for all TPDES permit applications that meet the conditions outlined in Technical Report 1.0, Item 12.

Item 1. Cooling Water System Data (Instructions, Page 104)

a. Complete the following table with information regarding the cooling water system.

Cooling Water System Data

Parameter	Volume (include units)
Total DIF	
Total AIF	
Intake Flow Use(s) (%)	
Contact cooling	
Non-contact cooling	
Process Wastewater	
Other	

b. Attach the following information:

- 1. A narrative description of the design and annual operation of the facility's cooling water system and its relationship to the CWIS(s).
- 2. A scaled map depicting the location of each CWIS, impoundment, intake pipe, and canals, pipes, or waterways used to convey cooling water to, or within, the cooling water system. Provide the latitude and longitude for each CWIS and any intake pipe(s) on the map. Indicate the position of the intake pipe within the water column.
- 3. A description of water reuse activities, if applicable, reductions in total water withdrawals, if applicable, and the proportion of the source waterbody withdrawn (on a monthly basis).
- 4. Design and engineering calculations prepared by a qualified professional and data to support the information provided in above item a.
- 5. Previous year (a minimum of 12 months) of AIF data.
- 6. A narrative description of existing or proposed impingement and entrainment technologies or operation measures and a summary of their performance, including, but not limited to, reductions in impingement mortality and entrainment due to intake location and reductions in total water withdrawals and usage.

Attachment: N/A

Item 2. Cooling Water Intake Structure(s) Data (Instructions, Page 105)

a. Complete the following table with information regarding each cooling water intake structure (this includes primary and make-up CWIS(s)).

Cooling Water Intake Structure(s) Data

CWIS ID		
DIF (include units)		
AIF (include units)		
Intake Flow Use(s) (%)		
Contact cooling		
Non-contact cooling		
Process Wastewater		
Other		
Latitude (decimal degrees)		
Longitude (decimal degrees)		

- b. Attach the following information regarding the CWIS(s):
 - 1. A narrative description of the configuration of each CWIS, annual and daily operation, including any seasonal changes, and where it is located in the water body and in the water column.
 - 2. Engineering calculations for each CWIS.

Attachment: N/A

Item 3. Source Water Physical Data (Instructions, Page 105)

a. Complete the following table with information regarding the CWIS(s) source waterbody (this includes primary and make-up CWIS(s)).

Source Waterbody Data

CWIS ID		
Source Waterbody		
Mean Annual Flow		
Source		

- b. Attach the following information regarding the source waterbody.
 - 1. A narrative description of the source water for each CWIS, including areal dimensions, depths, salinity and temperature regimes, and other documentation that supports this determination of the water body type where each cooling water intake structure is located.

- 2. A narrative description of the source waterbody's hydrological and geomorphological features.
- 3. Scaled drawings showing the physical configuration of all source water bodies used by the facility, including the source waterbody's hydrological and geomorphological features. **NOTE:** The source waterbody's hydrological and geomorphological features may be included on the map submitted for item 1.b.ii of this worksheet.
- 4. A description of the methods used to conduct any physical studies to determine the intake's area of influence within the waterbody and the results of such studies.

Attachment: N/A

	Αt	tachment. <u>14/13</u>
It	en	1 4. Operational Status (Instructions, Page 106)
a.	Is	this application for a power production or steam generation facility? \Box Yes \boxtimes No
	If 1	no, proceed to Item 4.b. If yes, provide the following information as an attachment:
	1.	Describe the operating status of each individual unit, including age, capacity utilization rate (or equivalent) for the previous five years (a minimum of 60 months), and any seasonal changes in operation.
	2.	Describe any extended or unusual outages or other factors which significantly affect current data for flow, impingement, entrainment.
	3.	Identify any operating unit with a capacity utilization rate of less than 8 percent averaged over a contiguous period of two years (a minimum of 24 months).
	4.	Describe any major upgrades completed within the last 15 years, including but not limited to boiler replacement, condenser replacement, turbine replacement, or changes of fuel type.
	At	tachment: <u>N/A</u>
b.	Pro	ocess Units
	1.	Is this application for a facility which has process units that use cooling water (other than for power production or steam generation)?
		□ Yes ⊠ No
		If no , proceed to Item 4.c. If yes , continue.
	2.	Does the facility use or intend to use reductions in flow or changes in operations to meet the requirements of $40\ CFR\ \S\ 125.94(c)$?
		□ Yes ⊠ No
		If no , proceed to Item 4.c. If yes , attach descriptions of the following information:
		 Individual production processes and product lines The operating status, including age of each line and seasonal operation

Any extended or unusual outages that significantly affect current data for flow,

impingement, entrainment, or other factors

	product lines.
	Attachment: <u>N/A</u>
C.	Is this an application for a nuclear power production facility?
	□ Yes ⊠ No
	If no , proceed to Item 4.d. If yes , attach a description of completed, approved, or scheduled upgrades and the Nuclear Regulatory Commission relicensing status for each unit at the facility.
	Attachment: N/A
d.	Is this an application for a manufacturing facility?
	□ Yes ⊠ No
	If no , proceed to Worksheet 11.1. If yes , attach descriptions of current and future production schedules and any plans or schedules for any new units planned within the next five years (a minimum of 60 mos)
	Attachment: N/A

Any major upgrades completed within the last 15 years and plans or schedules for decommissioning or replacement of process units or production processes and

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 11.1: IMPINGEMENT MORTALITY

This worksheet is required for all TPDES permit applications that meet the conditions outlined in Technical Report 1.0, Item 12. Complete one copy of this worksheet for each individual CWIS the facility uses or proposes to use.

Check the box next to the method of compliance for the Impingement Mortality Standard

CWIS ID: N/A

Item 2.

Item 1. Impingement Compliance Technology Selection (Instructions, Page 107)

selected by the facility. Closed-cycle recirculating system(CCRS) [40 CFR § 125.94(c)(1)] 0.5 ft/s Through-Screen Design Velocity [40 CFR § 125.94(c)(2)] - Proceed to Worksheet 11.2 0.5 ft/s Through Screen Actual Velocity [40 CFR § 125.94(c)(3)] Existing offshore velocity cap [40 CFR § 125.94(c)(4)] - Proceed to Worksheet 11.2 Modified traveling screens [40 CFR § 125.94(c)(5)] System of technologies [40 CFR § 125.94(c)(6)] Impingement mortality performance standard [40 CFR § 125.94(c)(7)] De minimis rate of impingement [40 CFR § 125.94(c)(11)] Low capacity utilization power-generation facilities [40 CFR § 125.94(c)(12)] If 0.5 ft/s Through-Screen Design Velocity [40 CFR § 125.94(c)(2)] or existing offshore velocity

Item 2. Impingement Compliance Technology Information (Instructions, Page 107)

cap [40 CFR § 125.94(c)(4)] was selected, proceed to Worksheet 11.2. Otherwise, continue to

Complete the following sections based on the selection made for item 1 above.

a. CCRS [40 CFR § 12.	5.94(c)(1)]
-----------------------	-------------

 \square Check this box to confirm the CWS meets the definition of CCRS located at 40 CFR § 125.91(c) and provide a response to the following questions.

1. Doe	s the facility	use or propose t	o use a C	WIS to repleni	sh water	losses t	o the	CWS?
--------	----------------	------------------	-----------	----------------	----------	----------	-------	------

 \square Yes \boxtimes No

If **no**, proceed to item a.2. If **yes**, provide the following information as an attachment and continue.

- CWIS ID
- 12 months of intake flow data for any CWIS used for make-up intake flows to replenish cooling water losses, excluding intakes for losses due to blowdown, drift, or evaporation.

• A narrative description of any physical or operational measures taken to minimize make-up withdraws.

Attachment: N/A

NOTE: Do not complete a separate Worksheet 11.1 for a make-up CWIS.

- 2. Does the facility use or propose to use cooling towers?
 - \square Yes \boxtimes No

If **no**, proceed to Worksheet 11.2. If **yes**, provide the following information and proceed to Worksheet 11.2.

• Average number of cycles of concentration (COCs) prior to blowdown:

Average COCs Prior to Blowdown

Cooling Tower ID		
COCs		

- Attach COC monitoring data for each cooling tower from the previous year (a minimum of 12 months): N/A
- Maximum number of COCs each cooling tower can accomplish based on design of the system.

Calculated COCs Prior to Blowdown

Cooling Tower ID		
COCs		

- Describe conditions that may limit the number of COCs prior to blowdown, if any, including but not limited to permit conditions: N/A
- b. 0.5 ft/s Through Screen Actual Velocity [40 CFR § 125.94(c)(3)]

Provide daily intake flow measurement monitoring data from the previous year (a minimum of 12 months) as an attachment and proceed to Worksheet 11.2.

Attachment: N/A

c. Modified traveling screens [40 CFR § 125.94(c)(5)]

Provide the following information as an attachment and proceed to Worksheet 11.2.

- 1. A description of the modified traveling screens and associated equipment.
- 2. A site-specific impingement technology performance optimization study that includes a narrative description of the biological data collection methods
- 3. Biological sampling data from the previous two years (a minimum of 24 months).

Attachment: N/A

d. System of technologies [$40\ CFR\ \S\ 125.94(c)(6)$] or impingement mortality performance standard [$40\ CFR\ \S\ 125.94(c)(7)$]

Provide the following information as an attachment and proceed to Worksheet 11.2.

1. A description of the system of technologies used or proposed for use by the facility to

achieve compliance with the impingement mortality standard.

- 2. A site-specific impingement technology performance optimization study that includes a narrative description of the biological data collection methods.
- 3. Biological sampling data from the previous two years (a minimum of 24 months).

Attachment: N/A

e. De minimis rate of impingement [40 CFR § 125.94(c)(11)]

Provide the following information and proceed to Worksheet 11.2.

1. Attach monitoring data from the previous year (a minimum of 12 months) of intake flow measured at a frequency of 1/day on days of operation.

Attachment: N/A

2. If the rate of impingement caused by the CWIS is extremely low (at an organism or ageone equivalent count), attach supplemental information to Worksheet 11.0, item 1.b.6. to support this determination.

Attachment: N/A

f. Low capacity utilization power-generation facilities [40 CFR § 125.94(c)(12)]

Attach monthly utilization data from the previous 2 years (a minimum of 24 months) for each operating unit and proceed to Worksheet 11.2.

Attachment: N/A

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 11.2: SOURCE WATER BIOLOGICAL DATA

This worksheet **is required** for all TPDES permit applications that **meet the conditions outlined in Technical Report 1.0, Item 12**. Complete one copy of this worksheet for **each** source waterbody of a CWIS for which a facility has selected an Impingement Mortality Technology Option described at $40 \ CFR \ \S\S \ 125.94(c)(1)-(7)$.

Name of source waterbody: N/A

Item 1. Species Management (Instructions, Page 109)

a.	The facility has obtained an incidental take permit for its cooling water intake structure(s) from the USFWS or the NMFS.
	□ Yes ⊠ No
	If yes, attach any information submitted in order to obtain that permit, which may be used to supplement the permit application information requirements of paragraph $40\ CFR\ \S$ $125.95(f)$.
	Attachment: N/A
b.	Is the facility requesting a waiver from application requirements at 40 CFR § $122.21(r)(4)$ in accordance with 40 CFR § 125.95 for any CWIS(s) that withdraw from a man-made reservoir that is stocked and managed by a state or federal natural resources agency or the equivalent?
	□ Yes ⊠ No
	If yes , attach a copy of the most recent managed fisheries report to TPWD, or equivalent.
	Attachment: N/A
c.	There are no federally listed threatened or endangered species or critical habitat designations within the source water body.
	□ True □ False
It	em 2. Source Water Biological Data (Instructions, Page 109)
Ne	ew Facilities (Phase I, Track I and II)
	 Provide responses to all items in this section and stop.

Existing Facilities (Phase II)

- If the answer to **1.b.** above was **no**, provide responses to all items in this section and proceed to Worksheet 11.3.
- If the answer to **1.b.** was **yes** and **1.c.** was **true**, do not complete any items in this section and proceed to Worksheet 11.3.
- If the answer to **1.b.** was **yes** and **1.c.** was **false**, attach a response for any item in this section that is not contained within the most recent TPWD, or equivalent and proceed to Worksheet 11.3.

Attachment: N/A

- a. A list of the data requested at 40 CFR § 122.21(r)(4)(ii) through (vi) that are not available, and efforts made to identify sources of the data.
- b. Provide a list of species (or relevant taxa) in the vicinity of the CWIS and identify the following information regarding each species listed.
 - all life stages and their relative abundance,
 - identification of all species and life stages that would be most susceptible to impingement and entrainment,
 - forage base,
 - significance to commercial fisheries,
 - significance to recreational fisheries,
 - primary period of reproduction,
 - larval recruitment, and
 - period of peak abundance for relevant taxa.
- c. Data representative of the seasonal and daily activities (e.g., feeding and water column migration) of biological organisms in the vicinity of the CWIS(s).
- d. Identify all threatened, endangered, and other protected species that might be susceptible to impingement and entrainment at the CWIS(s).
- e. Documentation of any public participation or consultation with federal or state agencies undertaken.

The following is required for existing facilities only. Include the following information with the above listed attachment.

- f. Identify any protective measures and stabilization activities that have been implemented and provide a description of how these measures and activities affected the baseline water condition in the vicinity of the intake.
- g. A list of fragile species, as defined at 40 CFR § 125.92(m), at the facility. The applicant need only identify those species not already identified as fragile at 40 CFR § 125.92(m).

NOTE: New units at an existing facility are not required to resubmit this information if the cooling water withdrawals for the operation of the new unit are from an existing intake.

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 11.3: ENTRAINMENT

This worksheet is required for all TPDES permit applications that meet the conditions outlined in Technical Report 1.0, Item 12. Complete one copy of this worksheet for each individual CWIS the facility uses or proposes to use.

CWIS ID: N/A

Item 1. Applicability (Instructions, Page 111)

Is the AIF of the CWIS identified above greater than, or equal to, 125 MGD?

- □ Yes ⊠ No
- If **no** or the facility has selected **CCRS** [40 CFR § 125.94(c)(1)] for the impingement mortality compliance method, complete Item 2 and stop here.
- If **yes** and the facility is **seeking a waiver** from application requirements in accordance with *40 CFR § 125.95* for any CWIS(s) that withdraw from a man-made reservoir that is stocked and managed by a state or federal natural resources agency or the equivalent, complete item 2 and stop.
- If **yes** and the facility is **not seeking a waiver** from application requirements in accordance *with 40 CFR § 125.95*, complete item 2 and provide any required and completed studies listed in item 3. For any required studies in item 3 that are not complete, provide a detailed explanation for the delay and an anticipated schedule for completion and submittal.

Item 2. Existing Entrainment Performance Studies (Instructions, Page 111)

Attach any previously conducted studies or studies obtained from other facilities addressing technology efficacy, through-facility entrainment survival, and other entrainment studies.

Attachment: N/A

Item 3. Facility Entrainment Performance Studies (Instructions, Page 111)

- a. Attach an entrainment characterization study, as described at 40 CFR § 122.21(r)(9): N/A
- b. Attach a comprehensive feasibility study, as described as 40 CFR § 122.21(r)(10): N/A
- c. Attach a benefits valuation study, as described as 40 CFR § 122.21(r)(11): N/A
- d. Attach a non-water quality environmental and other impacts study, as described as 40 CFR § 122.21(r)(12): N/A
- e. Attach a peer review analysis, as described as 40 CFR § 122.21(r)(13): N/A

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 12.0: OIL AND GAS EXPLORATION, DEVELOPMENT, AND PRODUCTION WASTEWATER DISCHARGES

This worksheet **is required** for all TPDES permit applications that are subject to Effluent Limitation Guidelines in 40 CFR Part 435.

Item 1. Operational Information (Instructions, Page 112)

a.	a. Is the wastewater from an oil and gas exploration, development, or production facility located west of the 98th meridian?					
	□ Yes ⊠ No					
	If yes, continue to the next question. If no, skip to Item 2 relating to Production/Process Data.					
b.	Provide justification for how the wastewater is/will be used for agriculture or wildlife propagation.					
	N/A					
It	em 2. Production/Process Data (Instructions, Page 112)					
	em 2. Production/Process Data (Instructions, Page 112) Provide the applicable 40 CFR Part 435 Subpart(s).					
a.	Provide the applicable 40 CFR Part 435 Subpart(s).					

Wastestreams Generated Wastestream Requesting authorization Volume % of				
	to discharge? (Yes/No)	(MGD)	Total Flow	
N/A				
Attachment: N/A Provide information on misc	allanaaya digabawaa			
Attachment: N/A				

f. List of chemicals that are in use, or will be used, downhole. Provide the category, concentration used/to be used, and purpose of using the chemical. Attach a safety data sheet for each chemical listed.

Chemicals List

Category	Chemical Name	Concentration (include units)	Purpose

Attachment: N/A

g. List of chemicals that are in use, or will be used, to treat the wastewater to be discharged under this authorization. Provide the concentration used/to be used and purpose of using the chemical. Attach a safety data sheet for each chemical listed.

Water Treatment Chemicals List

Category	Chemical Name	Concentration (include units)	Purpose

Attachment: N/A

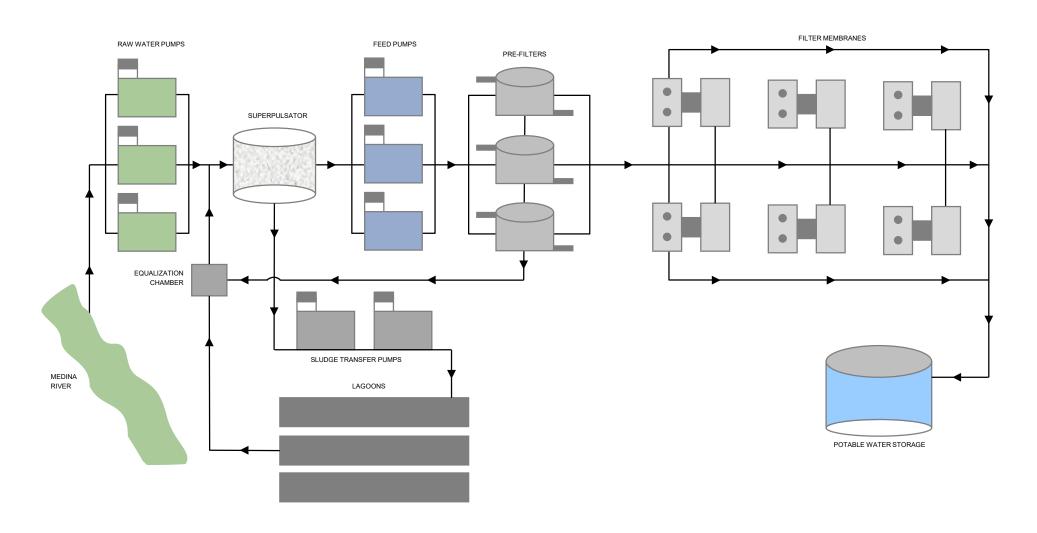
Item 3. Pollutant Analysis (Instructions, Page 113)

Tables 1, 2, 6, and 7 located in Worksheet 2.0 are required. In addition, Table 19 below is required and must be completed for each outfall and submitted with this application. The remaining tables in Worksheet 2.0, are required as applicable.

a.	Provide the date range of all sampling events conducted to obtain the analytical data submitted with this application (e.g., $05/01/2018-05/30/2018$): No Discharge from the last 5 years
b.	\Box Check the box to confirm all samples were collected no more than 12 months prior to the date of application submittal.

- c. Read the general testing requirements in the instructions for important information about sampling, test methods, and MALs. If a contact laboratory was used, attach a list which includes the name, contact information, and pollutants analyzed for each laboratory/firm. Attachment N/A; NO DISCHARGE SINCE 2015
- d. Attach correspondence from TCEQ approving submittal of less than the required number of samples, if applicable. **Attachment:** N/A

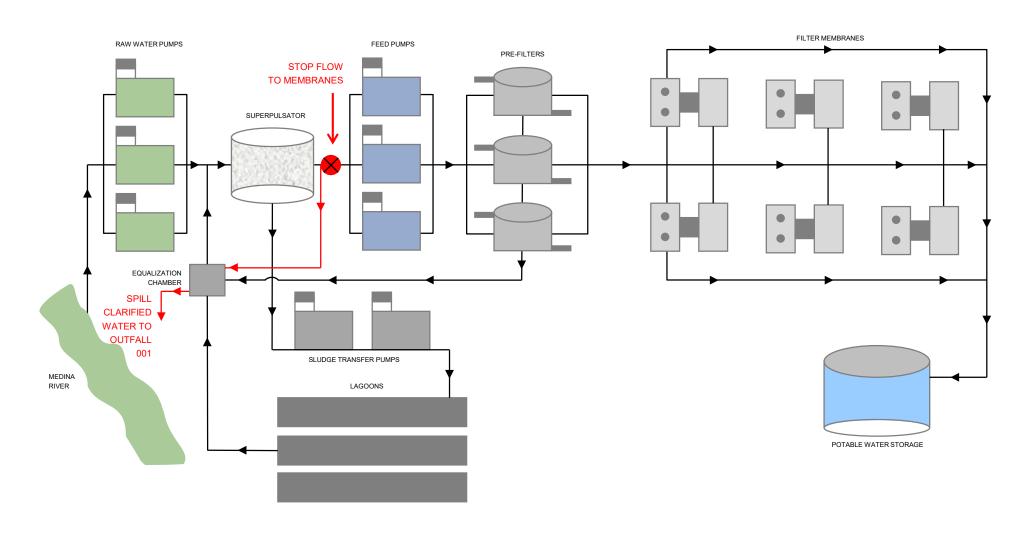
Table 19 for Outfall No.: N/A Samples are (check one): \square Composite \square Grab


Pollutant	Sample 1 (mg/L)*	Sample 2 (mg/L)*	Sample 3 (mg/L)*	Sample 4 (mg/L)*
Calcium				
Potassium				
Sodium				

^{*}Indicate units if different from mg/L.

TPDES Permit No. WQ0004437-000

Ultrafiltration Water Treatment Plant Process Schematic Normal Operations



TPDES Permit No. WQ0004437-000

Ultrafiltration Water Treatment Plant Process Schematic

Excessively Turbid Source Water

May 20, 2024

TCEQ Remediation Division – MC 127 Corrective Action, VCP-CA Section P.O. Box 13087 12100 Park 35 Circle, Building D Austin, TX 78711-3087

RE:

Sludge Lagoons Closure Report and Closure Request

Release Determination Activities and Reporting

San Antonio Water System Ultrafiltration Water Treatment Plant

6725 Agua Pura Street, Von Ormy, Texas.

RN103114724; CN600529069; WQ0004437000

Dear Sir/Madam,

In October 2023, Mr. Felix Gonzales, TCEQ Environmental Investigator, San Antonio Region Office inspected the facility and at the time of the inspection, a "closure" plan for the three inactive sludge lagoons currently authorized by WQ0004437000. Although the permit is still active, there has been no treatment process(es) have occurred at the facility, and a "NO DISCHARGE" report is submitted monthly. The San Antonio Water System engaged Weston Solutions, Inc. (WESTON®) to perform a site assessment and closure-related activities for the inactive sludge lagoons (ATTACHMENT A).

Therefore, SAWS respectfully requests that a closure letter be issued for the inactive sludge lagoons. Thank you for your consideration and should you need additional information, please do not hesitate to contact Floramie Welch, Environmental Analyst III, at 210-233-3744.

Sincerely,

Scott R. Halty

Director, Resource Protection & Compliance

Attachment: SLUDGE LAGOON CLOSURE REPORT

CC:

Javier Anguiano, TCEQ, Region 13 Felix Gonzales, TCEQ, Region 13

Jack Higginbotham, TCEQ, Region 13

Rogelio Placencia, SAWS, Sr. Director, Production Operations

Rob Escobar, SAWS, Manager, Production Operations

Vicente Garza, P.E., SAWS Manager, Engineering Operations Support Lee Bausinger, P.E., SAWS Manager, Engineering Operations Support Gregg Eckhardt, SAWS, Sr. Resource Analyst, Production Operations

Floramie Welch, SAWS, Environmental Analyst III, Resource Protection & Compliance

Texas Commission on Environmental Quality

Remediation Division Correspondence Identification Form

	1 AREA IDENTIFICATION							
SITE & PROGRAM SITE LOCATION	REMEDIATION DIVISION PROGRAM AND FACILITY IDENTIFICATION							
Site Name: Ultrafiltration Water Plant	Is This Site Being Managed Under A State Lead Contract? Yes No							
Address 1: 6725 Agua Pura Street	Program Area: IHW CORRECTIVE ACTION							
Address 2:	Mail Code: MC-127							
City: Von Ormy State: Texas	Is This A New Site To This Program Area? Yes No							
Zip Code: 78073 County: Bexar	WQ0004437000							
TCEQ Region: Region 13 - San Antonio	Leave This Field BlankLeave This Field Blank							
DOCUMENT	(c) IDENTIFICATION							
PHASE OF REMEDIATION DOCUMENT	(S) IDENTIFICATION DOCUMENT NAME							
1.	DOCUMENT NAME							
	<u> </u>							
3.								
4.	_							
5.	_							
1								
CONTAC	CT INFORMATION							
	RTY/APPLICANT/CUSTOMER							
Name: Vicente J. Garza, P.E. Company: San Antonio Water System Phone Num	ber: 210-233-3596 Fax Number:							
	San Antonio State: TX Zip Code: 78212							
Address 2: Email Addre	ess: arlopez@texas-ec.org							
	LTANT/REPORT PREPARER/AGENT							
Name: Nancy L. Koch, P.E. Company: Weston Solutions, Inc. Phone Num 5301 Southwest Parkway, Suite 450	ber: 512-651-7104 Fax Number: Austin State: TX Zip Code: 78735							
Address 2: Email Addre	ess: Nancy.koch@westonsolutions.com							
TCEO INT	ERNAL USE ONLY							
Document No. TCEQ Database Term	Document No. TCEQ Database Term							
1	1 4 1							

5.

Weston Solutions, Inc. 5301 Southwest Parkway, Suite 450 Austin, TX, 78735 512-651-7100 WestonSolutions.com

30 April 2024

TCEQ Remediation Division – MC 127 Corrective Action, VCP-CA Section P.O. Box 13087 12100 Park 35 Circle, Building D Austin, TX 78711-3087

Also via:corract@tceq.texas.gov

RE: Sludge Lagoons Closure Report and Closure Request Ultrafiltration Water Plant, 6725 Agua Pura Street, Von Ormy, Texas. WQ0004437000 RN103114724/CN600529069

To Whom it May Concern:

On behalf of San Antonio Water System (SAWS), Weston Solutions, Inc. (WESTON®) submits the enclosed original and electronic copy (via corract@tceq.texas.gov) of the Sludge Lagoons Closure Report and Closure Request. This Closure Report and Request addresses three inactive sludge lagoons currently authorized by WQ0004437000.

We appreciate your consideration of this request. Should you have any questions, please call me at (512) 651-7104.

Sincerely,

Weston Solutions, Inc.

Nancy L. Koch, P.E. Senior Project Engineer

cc: Jack Higginbotham, TCEQ, Waste Section Manager, San Antonio Region 13 Office (via email – jack.higginbotham@)tceq.texas.gov)

Vicente J. Garza., Engineering Manager, Operations Support, SAWS (via email)

SLUDGE LAGOON CLOSURE REPORT AND CLOSURE REQUEST TPDES PERMIT WQ0004437000

ULTRAFILTRATION WATER TREATMENT PLANT 6725 AGUA PURA STREET VON ORMY, TEXAS 78073 TCEQ REGION 13 – SAN ANTONIO

Prepared for: San Antonio Water System Vincente J Garza, P.E., PMP, Engineering Manager 2800 U.S. Hwy 281 North San Antonio, Texas 78212

Prepared by: **WESTON SOLUTIONS, INC.**

70 NE Interstate 410 Loop, #200 San Antonio, Texas 78216 210-308-4300

May 2024

W.O. No. 10412.036.001.0003

TABLE OF CONTENTS

Section	Page
1. EXECUTIV	VE SUMMARY AND INTRODUCTION1
2. BACKGRO	OUND INFORMATION1
3. CLOSURE	INFORMATION2
3.1 RELEA	SE DETERMINATION2
4. CONCLUS	ION AND REQUEST FOR CLOSURE5
5. REFEREN	CES5
	LIST OF FIGURES
Figure 1	Site Location Map
Figure 2	Site Layout Map
	LIST OF TABLES
Table 1	Soil Volatile Organic Compounds Summary
Table 2	Soil Semi-Volatile Organic Compounds Summary
Table 3	Soil Total Metals Summary
Table 4	Soil Metals Synthetic Precipitation and Leachate Procedure Summary
Table 5	Groundwater Arsenic Summary
	ATTACHMENTS
Attachment 1	Field Notes
Attachment 2	Laboratory Analytical Data Packages
Attachment 3	Boring Log

LIST OF ACRONYMS

bgs below grade surface

COCs Chemicals of Concern

GW groundwater

PID photoionization detector

ppm parts per million

RALs Residential Assessment Levels

SAWS San Antonio Water System SDL sample detection level

SPLP Synthetic Precipitate Leachate Procedure

SVOCs Semi-volatile Organic Compounds

TCEQ Texas Commission on Environmental Quality
TPDES Texas Pollution Discharge Elimination System

TRRP Texas Risk Reduction Program

TSSBC Texas-Specific Soil Background Concentration
U.S. EPA United States Environmental Protection Agency

VOC Volatile Organic Compounds

WESTON® Weston Solutions, Inc.

1. EXECUTIVE SUMMARY AND INTRODUCTION

Weston Solutions, Inc. (WESTON®) is submitting this Closure Report on behalf of San Antonio Water System (SAWS) for the three sludge lagoons at the Ultrafiltration Water Treatment Plant located at 6725 Agua Pura Street in the City of Von Ormy, Texas (Site). A Site Location Map showing the general location and topography is included as **Figure 1**, and a Site Layout Map depicting the Site boundary and features is included as **Figure 2**.

The SAWS Ultrafiltration Water Treatment Plant is regulated under Texas Pollutant Discharge Elimination System (TPDES) Permit WQ0004437000 (the Permit; TCEQ 2020), which includes three inactive sludge lagoons that managed industrial solid waste from the water treatment plant from the late 1990s to approximately 2016. The three sludge lagoons are required to be closed in accordance with the provisions of the Texas Commission on Environmental Quality (TCEQ) Texas Risk Reduction Program (TRRP) based on their management of solid waste. This Closure Report was prepared to satisfy requirements listed in *TCEQ Regulatory Guidance - Closure of Waste-Management Units Subject to TRRP*. (TCEQ 2011)

An investigation of soils within the lagoons and groundwater beneath the lagoons was conducted. The results indicate there has not been a release of any chemicals of concern (COCs) and that the residential assessment levels (RALs) under the TRRP have been met. No further action is necessary for the three sludge lagoons to be eligible for closure.

2. BACKGROUND INFORMATION

The Ultrafiltration Water Treatment Plant was constructed in the late 1990s by United Water. Bexar Met Water District took over facility operations in the mid-2000s. SAWS took control of the facility in 2012. The Ultrafiltration Water Treatment Plant filtered and processed raw groundwater to potable drinking water levels for distribution to the local population. Three sludge lagoons were constructed to hold wastewater from the treatment plant prior to discharging. According to the original 1998 construction plans, the three sludge lagoons totaled approximately 2.8 aces and were approximately 9 feet deep. The sludge lagoons were constructed with a 12-inch-thick native compacted clay bottom, and 12-inch-thick "soil cement" on the sloped sides (Montgomery Watson, 1998). The wastewater

from the treatment plant transferred to the three sludge lagoons included settled solids from the raw water clarifier, residual solids from prefilter, and membrane backwash.

SAWS ceased operations at the facility in approximately 2016 and the plant and the three lagoons have been out of service for 8 years. The discharge location on the southwest side of the lagoons is identified as Outfall 001 in the Permit. Discharged water would sheet flow to the west and into an unnamed branch, and then flow south into O.R. Mitchell Lake 1 (TCEQ, 2020). The facility, surface impoundment/lagoons, and outfall location are depicted on **Figure 2**.

3. RELEASE INVESTIGATION/CLOSURE INFORMATION

The sludge lagoons are proposed to be closed through Closure Option A – Closure without physical controls. As described below, soil and groundwater samples collected as part of the release determination activities did not indicate a release had occurred.

3.1 RELEASE DETERMINATION

Release determination activities were conducted to identify possible releases of COCs from the three lagoons. The lagoons had been inactive since approximately 2016 and were dry and grass-covered during the sampling. Field notes from the release determination activities are included as **Attachment** 1.

Soil Assessment

On February 20, 2024, six surface soil samples (SS-1 through SS-6) and one field duplicate (SS-DUP – duplicate of SS-6) were collected from six locations within the lagoons and analyzed for a broad spectrum of COCs. In addition, a background soil sample (SS-background) was collected approximately 250 feet southwest of the three lagoons for background metals concentrations. Soils on the surface of the lagoon floors generally consisted of brown to tan coarse sand/sandy clay with some gravel (1/4-inch diameter). A very thin layer of soil/material was visible on the material comprising the lagoon liner, suggesting that any accumulated waste in the lagoons had been previously removed. All soil samples were screened with a photoionization detector (PID), and screening results ranged from 0.0 parts per million (ppm) to 0.5 ppm. Soil sample locations are displayed on Figure 2.

Soil samples were collected into laboratory-provided glass jars, which were sealed in a waterproof plastic bag. The samples were then placed on ice in laboratory-provided coolers and shipped by FedEx under chain-of-custody procedure to DHL Analytical in Round Rock, Texas, for the below analysis.

- Volatile organic compounds (VOCs) by U.S. EPA Method 8260
- Semi-volatile organic compounds (SVOCs) by U.S. EPA Method 8270
- Total metals by U. S. EPA Method 6020/7471

Laboratory analytical results were compared to the Tier 1 Residential Assessment Levels (RALs) for soil-to-groundwater ingestion (GWSoil_{Ing}) and direct contact with soil (TotalSoil_{Comb}) exposure pathways for a 30-acre source area. In addition, the Texas-Specific Soil Background Concentrations (TSSBCs) were used in place of the GWSoil_{Ing} RAL for arsenic, barium, beryllium, lead, and mercury as the background levels are higher than their respective RALs. **Table 1** summarizes VOC analytical data for the soil samples, **Table 2** summarizes the SVOC analytical data for the soil samples, and **Table 3** summarizes the total metals analytical data for the soil samples. Laboratory analytical data packages are included in **Attachment 2**. The results and finds of the soil laboratory analytical data are summarized below:

- None of the soil samples collected had VOCs reported above the sample detection level (SDL).
- None of the soil samples collected had SVOCs reported above the SDL, with the exception of some low-level detections of benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, fluoranthene, and indeno(1,2,3-cd)pyrene in soil samples SS-4 and SS-6 (and duplicate).
 None of the reported SVOC concentrations exceeded the lowest of either the ^{GW}Soil_{Ing} or the ^{Total}Soil_{Comb} RALs.
- None of the soil samples collected had metals concentrations reported above their applicable RALs, with the exception of arsenic reported in soil samples SS-1 (19.2 milligrams per kilogram [mg/kg]), SS-2 (7.22 mg/kg), and SS-5 (11.3 mg/kg); these values also exceeded arsenic's TSSBC of 5.9 mg/kg.

Due to the TSSBC and RAL exceedance of arsenic at three sample locations, soil sample SS-1 was selected for synthetic precipitate leachate procedure (SPLP), and the leachate was analyzed for arsenic, barium, and lead by U.S. EPA Method 6020. **Table 4** summarizes the SPLP analytical data,

and laboratory analytical packages are included in **Attachment 2**. The analysis of the leachate from soil sample SS-1 reported arsenic and lead above the groundwater ingestion (^{GW}GW_{Ing}) RAL, and beryllium below the ^{GW}GW_{Ing} RAL. As the arsenic SPLP result exceeded the ^{GW}GW_{Ing} RAL, a groundwater assessment was conducted to determine whether there had been a release through the clay liner to the underlying groundwater.

Groundwater Assessment

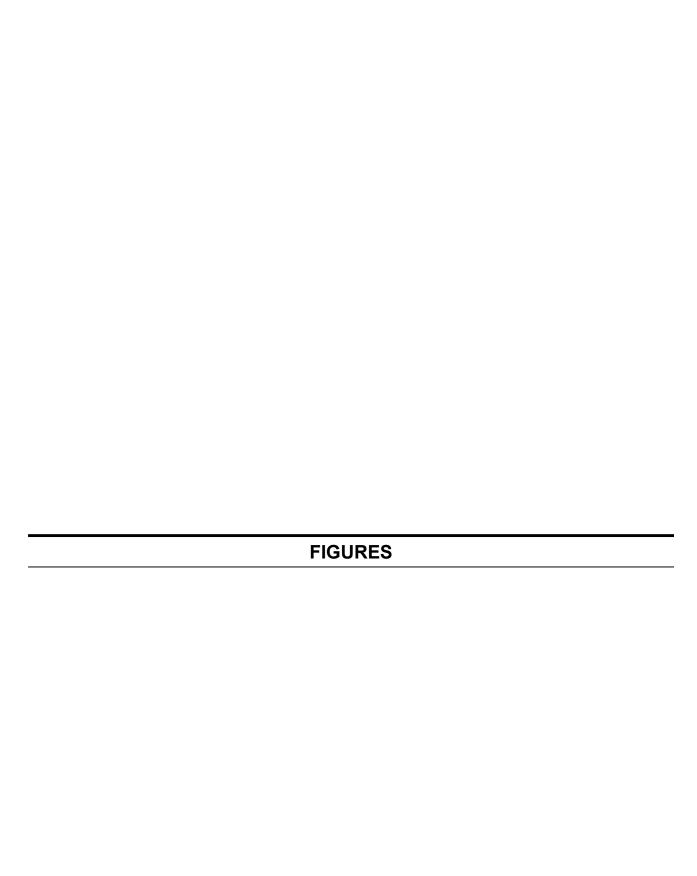
On April 9, 2024, WESTON and its drilling subcontractor, Pacific West, advanced a soil boring in the center of the three lagoons. The soil boring was advanced to a depth of 30 feet below ground surface (bgs) via direct push drilling method with a tracked Geoprobe 7822DT drill rig. The soil boring cores were continuously logged by a WESTON geologist for soil properties and no soil samples were collected. After reaching the depth of 30 feet bgs, the bore hole was converted to temporary monitoring well TW-1. Temporary monitoring well TW-1 was constructed with 15 feet of 1-inch-diameter, 0.01-inch slotted screen from bottom of bore hole to 15 feet bgs, followed by a 1-inch-diameter riser to the surface. General lithology encountered during drilling included a silty/clayey sand and limestone gravel from the surface to approximately 14 feet bgs, followed by a lean clay layer from 14 feet bgs to 19 feet bgs. Below the lean clay layer was alluvium gravel from 19 feet bgs to 20 feet bgs. A high plasticity clay underlays the alluvium gravel layer from 20 feet bgs to the terminus depth of the boring at 30 feet bgs. A boring log displaying lithology and well construction details is included in **Attachment 3**.

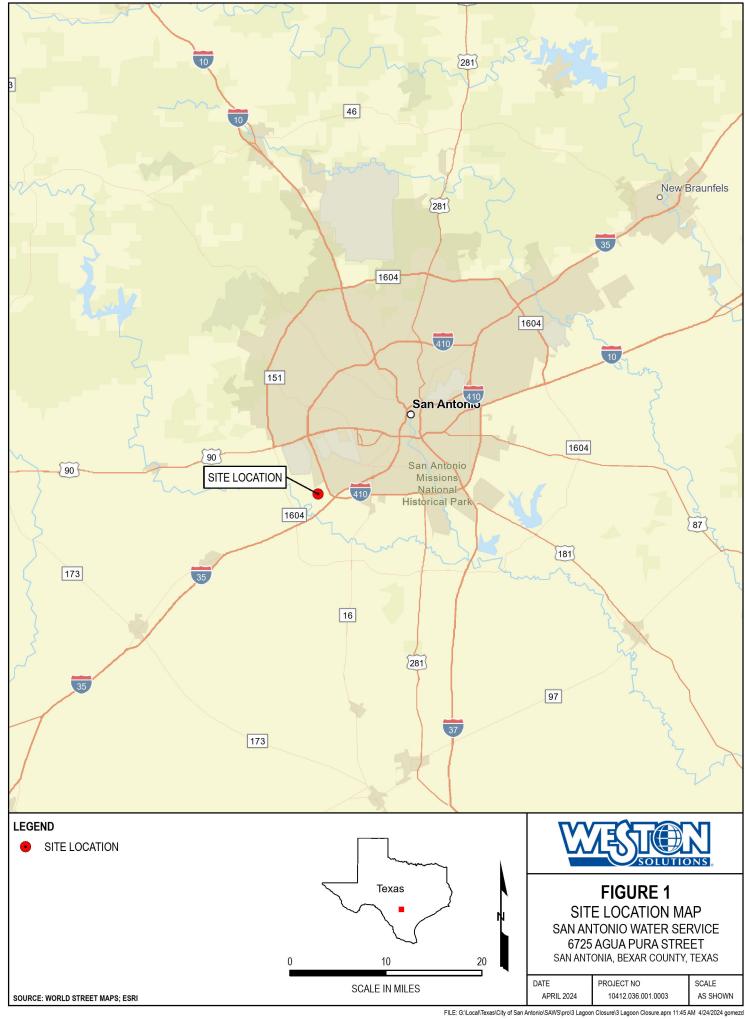
After installation, temporary monitoring well TW-1 was allowed to equilibrate for approximately 4 hours. Temporary monitoring well TW-1 was developed with a peristaltic pump by purging three well volumes from the temporary well, and then sampled by low-flow sampling procedures. Due to elevated turbidity of the groundwater when sampling, the sample aliquot was filtered with a 10-micron filter in the field. The groundwater sample was collected into the laboratory-provided container that contained preservatives, which was then sealed in a waterproof plastic bag. The bag with the sample was placed on ice in the laboratory-provided cooler and shipped by FedEx under chain-of-custody procedure to DHL Analytical in Round Rock, Texas, for arsenic analysis by U.S. EPA Method 6020.

Arsenic was not reported above its SDL in the groundwater sample collected from the temporary monitoring well TW-1 and the SDL was less than the $^{GW}GW_{Ing}$ RAL, demonstrating there has been

no release of arsenic from the lagoons. The arsenic results from TW-1 are summarized in **Table 5** and laboratory analytical packages are included in **Attachment 2**.

4. CONCLUSION AND REQUEST FOR CLOSURE

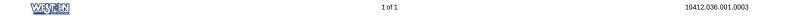

Based on the documentation provided herein, no evidence of a release of COCs attributable to waste management within the sludge lagoons was identified. Therefore, we respectfully request that the TCEQ administratively close these three inactive lagoons and issue a "no further action" letter.


5. REFERENCES

Montgomery Watson, 1998. *Internation Business Park Water Production Facility – Phase I; Drawings for Package 3 – Plant Process Facilities*. June 1998.

Texas Commission on Environmental Quality (TCEQ), 2011. *Closure of Waste-Management Units Subject to TRRP – RG-366/TRRP-2A*. July 2011.

TCEQ, 2020. Texas Pollution Discharge Elimination System Permit No. WQ0004437000, Ultrafiltration Water Treatment Plant, 6725 Moreno Street, Von Ormy, Bexar County, Texas. February 10, 2020


Table 1 Soil Volatile Organic Compounds Summary San Antonio Water System 6725 Agua Pura Street Von Ormy, Texas

					Station	SS-1	SS-2	SS-3	SS-4	SS-5	SS-6	SS-6
			Residential Soil	Residential Soil	SNM	SS-1	SS-2 SS-2	SS-3	SS-4	SS-5	SS-6	SS-6
Analyte	CAS.NO	Units	May 2023 GWSoilIng 30	May 2023 TotSoilComb 30	Sample ID	SS-1 0.0 - 0.5	0.0 - 0.5	SS-3 0.0 - 0.5	SS-4 0.0 - 0.5	SS-5 0.0 - 0.5	SS-6 0.0 - 0.5	SS-DUP 0.0 - 0.5
			Acre	Acre	Depth (ft) Date	02/20/2024	02/20/2024	02/20/2024	02/20/2024	02/20/2024	02/20/2024	0.0 - 0.5
					Туре	N	N	N	N	N	N	DUP
VOCs					1,110	.,	.,	.,	.,	.,	- 1	201
1,1,1,2-Tetrachloroethane	630-20-6	mg/kg	0.71	39		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
1,1,1-Trichloroethane	71-55-6	mg/kg	0.81	32000		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane	79-34-5 76-13-1	mg/kg mg/kg	0.012 40000	30 39000		0.00138 U 0.00689 U	0.00102 U 0.00508 U	0.000913 U 0.00456 U	0.00109 U 0.00546 U	0.00129 U 0.00644 U	0.00141 U 0.00706 U	0.0017 U 0.00849 U
1,1,2-Trichloroethane	79-00-5	mg/kg	0.01	10		0.00039 U	0.00308 U	0.000913 U	0.00340 U	0.00044 U	0.00700 U	0.00349 U
1,1-Dichloroethane	75-34-3	mg/kg	9.2	8800		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
1,1-Dichloroethene	75-35-4	mg/kg	0.025	1600	-	0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
1,1-Dichloropropene	563-58-6	mg/kg	0.067	26		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	87-61-6 96-18-4	mg/kg mg/kg	13 0.00027	87 0.2		0.00138 U 0.00138 U	0.00102 U 0.00102 U	0.000913 U 0.000913 U	0.00109 U 0.00109 U	0.00129 U 0.00129 U	0.00141 U 0.00141 U	0.0017 U 0.0017 U
1,2,4-Trichlorobenzene	120-82-1	mg/kg	2.4	70		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
1,2,4-Trimethylbenzene	95-63-6	mg/kg	16	1200		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
1,2-Dibromo-3-chloropropane	96-12-8	mg/kg	0.00087	0.08	-	0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
1,2-Dibromoethane	106-93-4	mg/kg	0.0001	2.1		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
1,2-Dichlorobenzene 1,2-Dichloroethane	95-50-1 107-06-2	mg/kg mg/kg	8.9 0.0069	390 30		0.00138 U 0.00138 U	0.00102 U 0.00102 U	0.000913 U 0.000913 U	0.00109 U 0.00109 U	0.00129 U 0.00129 U	0.00141 U 0.00141 U	0.0017 U 0.0017 U
1,2-Dichloropropane	78-87-5	mg/kg	0.0009	31		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
1,3,5-Trimethylbenzene	108-67-8	mg/kg	18	1100		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
1,3-Dichlorobenzene	541-73-1	mg/kg	3.4	62		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
1,3-Dichloropropane	142-28-9	mg/kg	0.032	26		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
1,4-Dichlorobenzene	106-46-7	mg/kg	1.1	250		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
1-Chlorohexane 2,2-Dichloropropane	544-10-5 594-20-7	mg/kg mg/kg	20 0.06	2300 31		0.00138 U 0.00138 U	0.00102 U 0.00102 U	0.000913 U 0.000913 U	0.00109 U 0.00109 U	0.00129 U 0.00129 U	0.00141 U 0.00141 U	0.0017 U 0.0017 U
2-Chlorotoluene	95-49-8	mg/kg mg/kg	4.5	1100		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
2-Hexanone	591-78-6	mg/kg	1.6	380		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00706 U	0.0017 U
4-Chlorotoluene	106-43-4	mg/kg	5.4	1600		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
4-Methyl-2-pentanone	108-10-1	mg/kg	2.5	5400	-	0.00689 U	0.00508 U	0.00456 U	0.00546 U	0.00644 U	0.00706 U	0.00849 U
Acetone	67-64-1	mg/kg	21	59000		0.0207 U	0.0152 U	0.0137 U	0.0164 U	0.0193 U	0.0212 U	0.0255 U
Benzene	71-43-2	mg/kg	0.013	69		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
Bromobenzene Bromochloromethane	108-86-1 74-97-5	mg/kg mg/kg	1.2	280 3300		0.00138 U 0.00138 U	0.00102 U 0.00102 U	0.000913 U 0.000913 U	0.00109 U 0.00109 U	0.00129 U 0.00129 U	0.00141 U 0.00141 U	0.0017 U 0.0017 U
Bromodichloromethane	75-27-4	mg/kg	0.18	98	-	0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
Bromoform	75-25-2	mg/kg	0.22	280		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
Bromomethane	74-83-9	mg/kg	0.065	24		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
Carbon disulfide	75-15-0	mg/kg	6.8	3300	-	0.00689 U	0.00508 U	0.00456 U	0.00546 U	0.00644 U	0.00706 U	0.00849 U
Carbon tetrachloride	56-23-5	mg/kg	0.031	23		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
Chlorobenzene	108-90-7	mg/kg	0.55	320		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
Chloroethane Chloroform	75-00-3 67-66-3	mg/kg mg/kg	15 0.17	23000 8		0.00138 U 0.00138 U	0.00102 U 0.00102 U	0.000913 U 0.000913 U	0.00109 U 0.00109 U	0.00129 U 0.00129 U	0.00141 U 0.00141 U	0.0017 U 0.0017 U
Chloromethane	74-87-3	mg/kg	0.17	84		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
cis-1,2-Dichloroethene	156-59-2	mg/kg	0.12	120		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
cis-1,3-Dichloropropene	10061-01-5	mg/kg	0.0033	7.8		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
Cyclohexane	110-82-7	mg/kg	2900	42000		0.00689 NU	0.00508 NU	0.00456 NU	0.00546 NU	0.00644 NU	0.00706 NU	0.00849 NU
Dibromochloromethane	124-48-1	mg/kg	0.18	72		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
Dibromomethane Dichlorodifluoromethane	74-95-3 75-71-8	mg/kg mg/kg	0.56 120	42 750		0.00138 U 0.00138 U	0.00102 U 0.00102 U	0.000913 U 0.000913 U	0.00109 U 0.00109 U	0.00129 U 0.00129 U	0.00141 U 0.00141 U	0.0017 U 0.0017 U
Ethylbenzene	100-41-4	mg/kg mg/kg	3.8	5300		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
Hexachlorobutadiene	87-68-3	mg/kg	1.6	12		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
Isopropylbenzene	98-82-8	mg/kg	170	3000	1	0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
m,p-Xylene	1330-20-7MP	mg/kg			-	0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
Methyl Acetate	79-20-9	mg/kg	24	82000		0.00689 U	0.00508 U	0.00456 U	0.00546 U	0.00644 U	0.00706 U	0.00849 U
Methyl Ethyl Ketone Methyl tert-butyl ether (MTBE)	78-93-3 1634-04-4	mg/kg	15 0.31	33000 590		0.00689 U 0.00138 U	0.00508 U	0.00456 U	0.00546 U	0.00644 U	0.00706 U	0.00849 U 0.0017 U
Methylcyclohexane	108-87-2	mg/kg mg/kg	7800	22000		0.00138 U 0.00689 U	0.00102 U 0.00508 U	0.000913 U 0.00456 U	0.00109 U 0.00546 U	0.00129 U 0.00644 U	0.00141 U 0.00706 U	0.0017 U 0.00849 U
Methylene chloride	75-09-2	mg/kg	0.0065	1500		0.00689 U	0.00508 U	0.00456 U	0.00546 U	0.00644 U	0.00706 U	0.00849 U
Naphthalene	91-20-3	mg/kg	16	120		0.00689 U	0.00508 U	0.00456 U	0.00546 U	0.00644 U	0.00706 U	0.00849 U
n-Butylbenzene	104-51-8	mg/kg	76	3300	1	0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
n-Propylbenzene	103-65-1	mg/kg	22	1600		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
o-Xylene	95-47-6	mg/kg	35	29000		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
p-Isopropyltoluene sec-Butylbenzene	99-87-6 135-98-8	mg/kg mg/kg	120 42	8200 3300		0.00138 U 0.00138 U	0.00102 U 0.00102 U	0.000913 U 0.000913 U	0.00109 U 0.00109 U	0.00129 U 0.00129 U	0.00141 U 0.00141 U	0.0017 U 0.0017 U
Styrene	100-42-5	mg/kg mg/kg	1.6	4300		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
tert-Butylbenzene	98-06-6	mg/kg	50	3300		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
Tetrachloroethene	127-18-4	mg/kg	0.025	420		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
Toluene	108-88-3	mg/kg	4.1	5400		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
trans-1,2-Dichloroethene	156-60-5	mg/kg	0.25	370		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
trans-1,3-Dichloropropene	10061-02-6	mg/kg	0.018	26		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
Trichloroethene Trichlorofluoromethane	79-01-6 75-69-4	mg/kg	0.017 64	11 25000		0.00138 U 0.00689 U	0.00102 U 0.00508 U	0.000913 U 0.00456 U	0.00109 U 0.00546 U	0.00129 U 0.00644 U	0.00141 U 0.00706 U	0.0017 U 0.00849 U
Vinyl Chloride	75-69-4	mg/kg mg/kg	0.011	3.4		0.00689 U 0.00138 U	0.00508 U 0.00102 U	0.00456 U 0.000913 U	0.00546 U 0.00109 U	0.00644 U 0.00129 U	0.00706 U 0.00141 U	0.00849 U 0.0017 U
Xylenes (Total)	1330-20-7	mg/kg	61	3700		0.00138 U	0.00102 U	0.000913 U	0.00109 U	0.00129 U	0.00141 U	0.0017 U
Notes:	1000-20-7	mg/Rg	V1	2,00	-	0.00130 0	, 0.00102 0	, 0.000/15 0	, 0.001070	, 0.001270	, 0.00171 0	0.00170

Notes:

| TRRP Residential PCLs dated May 2023 |
All results reported in milligrams per liter (mg/kg).

| Bolded - Analyte reported at or above the sample detection limit (SDL) |
NA - Not Analyzed |
J - Analyte was estimated between the SDL and reporting limit (RL) |
U - Analyte not reported at or above the SDL |
N - Normal |
DUP - Duplicate

Table 2 Soil Semi-Volatile Organic Compounds Summary San Antonio Water System 6725 Agua Pura Street Von Ormy, Texas

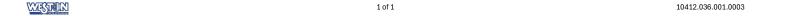
					Station	SS-1	SS-2	SS-3	SS-4	SS-5	SS-6	SS-6
			Residential Soil	Residential Soil	SNM	SS-1	SS-2	SS-3	SS-4	SS-5	SS-6	SS-6
Analyte	CAS.NO	Units	May 2023	May 2023	Sample ID	SS-1	SS-2	SS-3	SS-4	SS-5	SS-6	SS-DUP
- Tallalyte	CILDIII	Cinco	GWSoilIng 30	TotSoilComb 30	Depth (ft)	0.0 - 0.5	0.0 - 0.5	0.0 - 0.5	0.0 - 0.5	0.0 - 0.5	0.0 - 0.5	0.0 - 0.5
			Acre	Acre	Date	02/20/2024	02/20/2024	02/20/2024	02/20/2024	02/20/2024	02/20/2024	02/20/2024
					Type	N	N	N	N	N	N	DUP
SVOCs	5005 52 2	1 "	0.016	0.15		0.0122.77		0.011477	0.011577	0.0120.11	0.012.11	0.012477
1-chloro-4-phenoxybenzene	7005-72-3	mg/kg	0.016	0.15		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	95-95-4 88-06-2	mg/kg	17 0.087	6700 67		0.0132 U 0.0132 U	0.0116 U 0.0116 U	0.0114 U 0.0114 U	0.0115 U 0.0115 U	0.0128 U 0.0128 U	0.012 U 0.012 U	0.0126 U 0.0126 U
2,4-Dichlorophenol	120-83-2	mg/kg mg/kg	0.087	200		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
2,4-Dimethylphenol	105-67-9	mg/kg	1.6	1300		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
2,4-Dinitrophenol	51-28-5	mg/kg	0.047	130		0.0658 U	0.0579 U	0.0568 U	0.0574 U	0.064 U	0.0599 U	0.0631 U
2,4-Dinitrotoluene	121-14-2	mg/kg	0.0027	6.9		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
2,6-Dinitrotoluene	606-20-2	mg/kg	0.0024	6.9		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
2-Chloronaphthalene	91-58-7	mg/kg	330	5000		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
2-Chlorophenol	95-57-8	mg/kg	0.82	410		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
2-Methylnaphthalene	91-57-6	mg/kg	8.5	250		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
2-Methylphenol	95-48-7	mg/kg	3.6	3300		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
2-Nitroaniline	88-74-4	mg/kg	0.011	11		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
2-Nitrophenol 3,3-Dichlorobenzidine	88-75-5 91-94-1	mg/kg	0.067 0.031	130 10		0.0132 U 0.0132 U	0.0116 U 0.0116 U	0.0114 U 0.0114 U	0.0115 U 0.0115 U	0.0128 U 0.0128 U	0.012 U 0.012 U	0.0126 U 0.0126 U
3-Nitroaniline	99-09-2	mg/kg mg/kg	0.031	10		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
4,6-Dinitro-2-methylphenol	534-52-1	mg/kg mg/kg	0.0023	6.7		0.0132 U 0.0395 U	0.0116 U	0.0114 U	0.0113 U 0.0344 U	0.0128 U	0.012 U	0.0126 U
4-Bromophenyl phenyl ether	101-55-3	mg/kg mg/kg	0.0023	0.27		0.0393 U 0.0132 U	0.0347 U 0.0116 U	0.0341 U	0.0344 U	0.0384 U 0.0128 U	0.036 U 0.012 U	0.0378 U 0.0126 U
4-Chloro-3-methylphenol	59-50-7	mg/kg	2.3	330		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
4-Chloroaniline	106-47-8	mg/kg	0.01	23		0.0395 U	0.0347 U	0.0341 U	0.0344 U	0.0384 U	0.036 U	0.0378 U
4-Methylphenol	106-44-5	mg/kg	0.32	330		0.0263 U	0.0232 U	0.0227 U	0.023 U	0.0256 U	0.024 U	0.0252 U
4-Nitroaniline	100-01-6	mg/kg	0.054	190		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
4-Nitrophenol	100-02-7	mg/kg	0.05	130	-	0.0658 U	0.0579 U	0.0568 U	0.0574 U	0.064 U	0.0599 U	0.0631 U
Acenaphthene	83-32-9	mg/kg	120	3000		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
Acenaphthylene	208-96-8	mg/kg	200	3800		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
Acetophenone	98-86-2	mg/kg	4.1	6700		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
Anthracene	120-12-7	mg/kg	3400	18000		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
Atrazine	1912-24-9	mg/kg	0.012	21		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
Benzaldehyde Benzo(a)anthracene	100-52-7 56-55-3	mg/kg	5.3 65	8200 41		0.0132 NU 0.0132 U	0.0116 NU 0.0116 U	0.0114 NU 0.0114 U	0.0115 NU 0.0115 U	0.0128 NU 0.0128 U	0.012 NU 0.012 U	0.0126 NU 0.0126 U
Benzo(a)pyrene	50-32-8	mg/kg mg/kg	3.8	4.1		0.0132 U	0.0116 U	0.0114 U	0.0113 U	0.0128 U	0.012 U	0.0126 U
Benzo(b)fluoranthene	205-99-2	mg/kg	220	41		0.0132 U	0.0116 U	0.0114 U	0.0191 J	0.0128 U	0.012 J	0.0120 U
Benzo(g,h,i)perylene	191-24-2	mg/kg	23000	1800		0.0132 U	0.0116 U	0.0114 U	0.0176 J	0.0128 U	0.010 U	0.0126 U
Benzo(k)fluoranthene	207-08-9	mg/kg	2200	420		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
Benzoic acid	65-85-0	mg/kg	95	270000		0.0658 U	0.0579 U	0.0568 U	0.0574 U	0.064 U	0.0599 U	0.0631 U
Benzyl alcohol	100-51-6	mg/kg	2.9	6700		0.0395 U	0.0347 U	0.0341 U	0.0344 U	0.0384 U	0.036 U	0.0378 U
Biphenyl, 1,1-	92-52-4	mg/kg	1300	12000		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
bis(2-Chloroethoxy)methane	111-91-1	mg/kg	0.0059	2.5		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
bis(2-Chloroethyl)ether	111-44-4	mg/kg	0.0011	1.4		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
bis(2-Chloroisopropyl)ether	108-60-1	mg/kg	0.095	41		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
bis(2-Ethylhexyl)phthalate	117-81-7	mg/kg	82	43		0.0842 U	0.0741 U	0.0727 U	0.0734 U	0.0819 U	0.0767 U	0.0807 U
Butyl Benzyl Phthalate	85-68-7 105-60-2	mg/kg	130 23	1600 33000		0.0526 U 0.0395 U	0.0463 U 0.0347 U	0.0454 U 0.0341 U	0.0459 U 0.0344 U	0.0512 U 0.0384 U	0.0479 U 0.036 U	0.0504 U 0.0378 U
Caprolactam Carbazole	86-74-8	mg/kg mg/kg	2.3	230		0.0393 U 0.0132 U	0.0347 U 0.0116 U	0.0341 U	0.0344 U	0.0384 U 0.0128 U	0.036 U 0.012 U	0.0378 U 0.0126 U
Chrysene	218-01-9	mg/kg	5600	4100		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
Dibenzo(a,h)anthracene	53-70-3	mg/kg	7.6	4		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
Dibenzofuran	132-64-9	mg/kg	17	270		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
Diethyl phthalate	84-66-2	mg/kg	78	53000		0.0526 U	0.0463 U	0.0454 U	0.0459 U	0.0512 U	0.0479 U	0.0504 U
Dimethyl phthalate	131-11-3	mg/kg	31	53000		0.0526 U	0.0463 U	0.0454 U	0.0459 U	0.0512 U	0.0479 U	0.0504 U
Di-N-Butyl phthalate	84-74-2	mg/kg	1700	6200		0.0526 U	0.0463 U	0.0454 U	0.0459 U	0.0512 U	0.0479 U	0.0504 U
Di-N-Octyl phthalate	117-84-0	mg/kg	410000	640		0.0526 U	0.0463 U	0.0454 U	0.0459 U	0.0512 U	0.0479 U	0.0504 U
Fluoranthene	206-44-0	mg/kg	960	2300		0.0132 U	0.0116 U	0.0114 U	0.0252 J	0.0128 U	0.0128 J	0.0126 J
Fluorene	86-73-7	mg/kg	150	2300		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
Hexachlorobenzene	118-74-1	mg/kg	0.56	1		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
Hexachlorobutadiene Hexachlorocyclopentadiene	87-68-3 77-47-4	mg/kg	1.6 9.6	7.2		0.0132 U 0.0395 U	0.0116 U	0.0114 U 0.0341 U	0.0115 U	0.0128 U 0.0384 U	0.012 U	0.0126 U 0.0378 U
Hexachlorocyclopentadiene Hexachloroethane	67-72-1	mg/kg mg/kg	0.64	46		0.0395 U 0.0132 U	0.0347 U 0.0116 U	0.0341 U 0.0114 U	0.0344 U 0.0115 U	0.0384 U 0.0128 U	0.036 U 0.012 U	0.0378 U 0.0126 U
Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg mg/kg	630	46		0.0132 U	0.0116 U	0.0114 U	0.0115 U 0.0145 J	0.0128 U	0.012 U	0.0126 U
Isophorone	78-59-1	mg/kg mg/kg	1.5	4900		0.0132 U	0.0116 U 0.0347 U	0.0114 U	0.0145 J 0.0344 U	0.0128 U	0.012 U	0.0126 U
Naphthalene	91-20-3	mg/kg	16	120		0.0333 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.030 U	0.0126 U
Nitrobenzene	98-95-3	mg/kg	0.18	34		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
N-Nitroso-di-N-propylamine	621-64-7	mg/kg	0.00018	0.4		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
N-Nitrosodiphenylamine	86-30-6	mg/kg	1.4	570		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
Pentachlorophenol	87-86-5	mg/kg	0.0092	0.73		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
Phenanthrene	85-01-8	mg/kg	210	1700		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
Phenol	108-95-2	mg/kg	9.6	950		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
	129-00-0	1 /1	560	1700		0.0132 U	0.0116 U	0.0114 U	0.0115 U	0.0128 U	0.012 U	0.0126 U
Pyrene Pyridine	110-86-1	mg/kg mg/kg	0.035	82		0.0658 U	0.0579 U	0.0568 U	0.0574 U	0.064 U	0.0599 U	0.0631 U

Notes:

TRRP Residential PCLs dated May 2023

All results reported in milligrams per liter (mg/kg).

Bolded - Analyte reported at or above the sample detection limit (SDL)


NA - Not Analyzed

J - Analyte was estimated between the SDL and reporting limit (RL)

U - Analyte not reported at or above the SDL

N - Normal

DUP - Duplicate

Table 3 Soil Total Metals Summary San Antonio Water System 6725 Agua Pura Street Von Ormy, Texas

							Station	SS-1	SS-2	SS-3	SS-4	SS-5	SS-6	SS-6
			Residential Soil	Residential Soil May 2023	Texas-Sepcific Soil	-								
							SNM	SS-1	SS-2	SS-3	SS-4	SS-5	SS-6	SS-6
Analyte	CAS.NO	Units	May 2023			SS-Background	Sample ID	SS-1	SS-2	SS-3	SS-4	SS-5	SS-6	SS-DUP
	CASITO	Cints	GWSoilIng 30 Acre	TotSoilComb 30	Background	55-Dackground	Depth (ft)	0.0 - 0.5	0.0 - 0.5	0.0 - 0.5	0.0 - 0.5	0.0 - 0.5	0.0 - 0.5	0.0 - 0.5
			o wooming correct	Acre	Concentrations		Date	02/20/2024	02/20/2024	02/20/2024	02/20/2024	02/20/2024	02/20/2024	02/20/2024
							Type	N	N	N	N	N	N	DUP
Metals, Total														
Aluminum	7429-90-5	mg/kg	86,000	64,000	30,000	18,800		25,700	20,600	18,200	10,000	24,800	18,100	18,400
Antimony	7440-36-0	mg/kg	2.7	15	1	0.575		0.622 U	0.559 U	0.529 U	0.545 U	0.604 U	0.604 U	0.598 U
Arsenic	7440-38-2	mg/kg	2.5	24	5.9	7.16		19.2	7.22	5.45	5.19	11.3	4.25	4.97
Barium	7440-39-3	mg/kg	220	8100	300	165		210	87	127	61.2	162	144	147
Beryllium	7440-41-7	mg/kg	0.92	38	1.5	0.682		0.945	0.734	0.653	0.454	0.828	0.684	0.694
Cadmium	7440-43-9	mg/kg	0.75	51	NS	0.176		0.251 J	0.198 J	0.155 J	0.109 U	0.218 J	0.19 J	0.191 J
Chromium	7440-47-3	mg/kg	1,200	27,000	30	21.2		31	22.4	21.9	12	26.3	21.9	21.7
Cobalt	7440-48-4	mg/kg	110	680	7	4.97		12.2	5.28	4.91	3.26	8.49	4.76	5.12
Copper	7440-50-8	mg/kg	520	1,300	15	6.36		13.7	7.22	7.06	5.2	9.72	9.02	9.26
Lead	7439-92-1	mg/kg	1.5	500	15	8.76		13.1	9.11	8.6	6.37	10.7	9.97	10.1
Manganese	7439-96-5	mg/kg	580	3,900	300	190		429	163	147	92.9	282	136	158
Mercury	7439-97-6	mg/kg	0.0039	2.1	0.04	0.0199		0.0197 U	0.0169 U	0.0229 J	0.0174 U	0.0202 U	0.0222 J	0.0267 J
Nickel	7440-02-0	mg/kg	79	840	10	9.93		19.5	9.77	10.5	7.21	15.5	10.4	11.1
Selenium	7782-49-2	mg/kg	1.1	310	0.3	0.409		1.03	0.418 J	0.338 J	0.949	0.676	0.587 J	0.553 J
Silver	7440-22-4	mg/kg	0.24	97	NS	0.115		0.124 U	0.112 U	0.106 U	0.109 U	0.121 U	0.121 U	0.12 U
Thallium	7440-28-0	mg/kg	0.87	5.3	NS	0.575		0.622 U	0.559 U	0.529 U	0.545 U	0.604 U	0.604 U	0.598 U
Vanadium	7440-62-2	mg/kg	440	75	50	53.4		396	52.4	56.7	50	164	53.5	55
Zinc	7440-66-6	mg/kg	1,200	9,900	30	34.3		57.5	37.4	38.8	29.7	48.7	48.4	48.7

Notes:

¹TRRP Residential PCLs dated May 2023

All results reported in milligrams per liter (mg/kg).

Bolded - Analyte reported at or above the sample detection limit (SDL)

Applicable PCL (Lesser of GW Soil Ing or TotSoilComb unless Texas Background is higher)

Exceeds Applicable PCL

NA - Not Analyzed

NS - No Specified

J - Analyte was estimated between the SDL and reporting limit (RL)

U - Analyte not reported at or above the SDL

N - Normal

DUP - Duplicate

Table 4 Soil Metal SPLP Summary San Antonio Water System 6725 Agua Pura Street Von Ormy, Texas

	CAS.NO				Station	SS-1
Analyte CAS.N			Residential GW May	Commercial GW May	SNM	SS-1
		Units	2023 GWGWIng	2023 GWGWIng	Sample ID	SS-1
				2023 GWGWING	Date	02/20/2024
					Туре	N
SPLP						
Arsenic	7440-38-2	mg/l	0.01	0.01		0.0252
Beryllium	7440-41-7	mg/l	0.004	0.004		0.00167
Lead	7439-92-1	mg/l	0.015	0.015		0.0174

Notes:

All results reported in milligrams per liter (mg/kg).

Bolded - Analyte reported at or above the sample detection limit (SDL)

Shaded value exceeds Residential GW May 2023 GWGWIng or Commercial GW May 2023 GWGWIng

SPLP = Synthetic Precipitation Leaching Procedure

NA - Not Analyzed

J - Analyte was estimated between the SDL and reporting limit (RL)

U - Analyte not reported at or above the SDL

N - Normal

DUP - Duplicate

1 of 1 10412.036.001.0003

¹TRRP Residential PCLs dated May 2023

Table 5 Groundwater Arsenic Summary San Antonio Water System 6725 Agua Pura Street Von Ormy, Texas

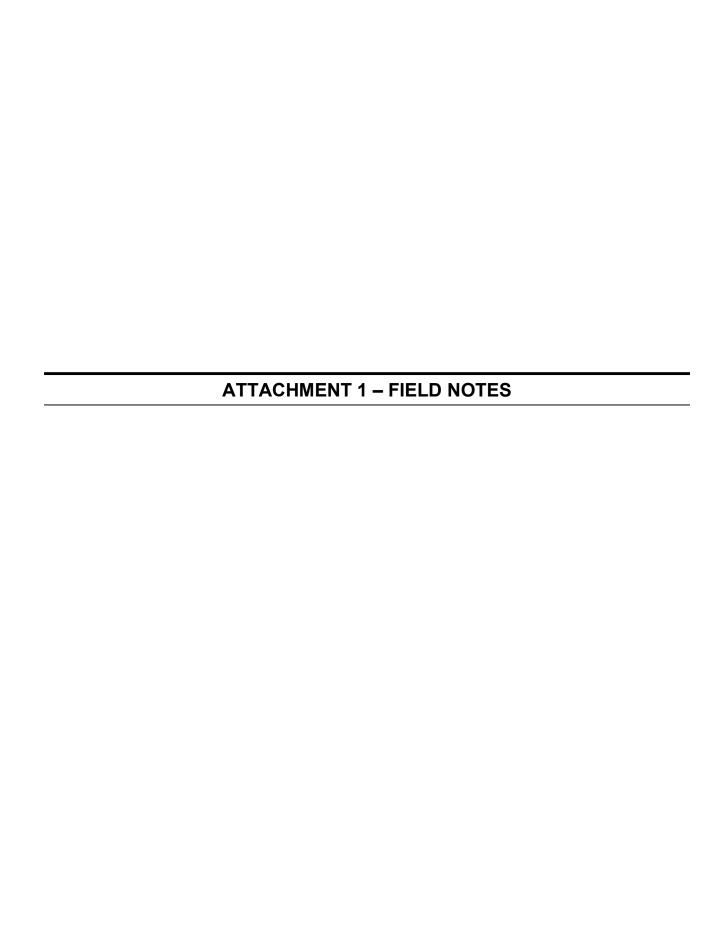
			Residential GW May 2023 GWGWIng		Station	TW-1
	Analyte CAS.NO	Units		Commercial GW May	SNM	TW-1
Analyte				2023 GWGWIng	Sample ID	TW-1
				2023 GWGWING	Date	4/9/2024
					Туре	N
SPLP						
Arsenic	7440-38-2	mg/l	0.01	0.01		0.002 U

Notes:

All results reported in milligrams per liter (mg/l).

Bolded - Analyte reported at or above the sample detection limit (SDL)

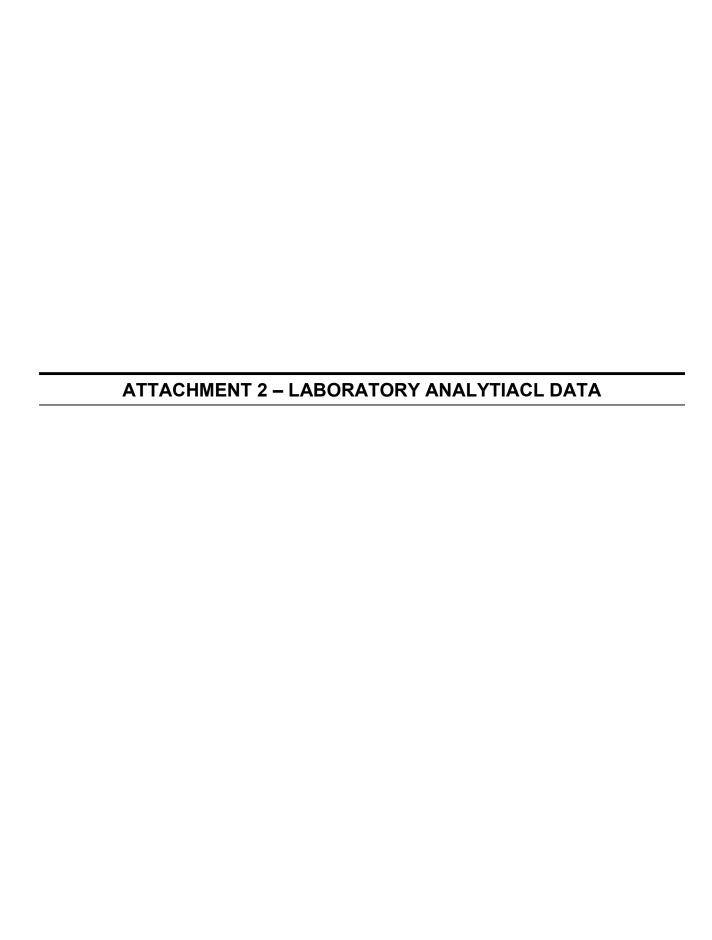
Shaded value exceeds Residential GW May 2023 GWGWIng or Commercial GW May 2023 GWGWIng


U - Analyte not reported at or above the SDL

N - Normal

1 of 1 10412.036.001.0003

¹TRRP Residential PCLs dated May 2023


10412.036.001.0002 2 SAWS Lagoon and Deeant Sampling 2/20/24 0859 - Cole Castleberry arrived on site and met with Orlando Mireter (SAWS). 0910 - Tailigate Safety: Heat, sunburn, biologicals, and PID VOC safety levels. PID = MultiRAE Lite Weather: 49°F, SSW Brigh, Sunny 0920 - Equipment prepped and began Sampling Coordinates Sample ID/ Location Ascitime 55-1 N29° 19.312', W098°38,058' 0926 South Lagoon 0950 N24° (9.315', W098° 38,087' 55-2 Middle Lagoon 1018 55-3 N29° 19.336, W098° 38.098' North Lagoon 55-4 1045 N290 19, 294, W098°38,091' Sump toe Middle Lagoon 52-5 1059 N24°19.311', wo48° 38, 104° North Lagoon 1113 SS-6 N290 19.323, Wags 38. 16 North Lagoon 1113 SS-DUP N290 19.323', Wags 38.116" Sump toe 1135 ~250ft West of SS-background N29°19,291, W098° 38.152° Lagoons There were no ambient VOC detections during the sampling. Sample bag VOC readings were: Sample ID | VOC(pym) Sample ID VOC(ppn) 55-6 55-1 0.4 0.0 SS-DUP 0.2 55-2 0.0 55-3 0.0 SS-background 0.4 55-4 0.0 55-5 0.5

10412.036.001.0002 SAWS Lagoon and Decort Sampling 2/20/24 1240 - Finished labeling samples, Returned excess Soil to sampling locations. 1248 - Labeled and placed IDW bucket behind main site building (N29019'15", W98°38'03") 1252 - Departed site to ship samples 1500 - Samples shipped via Fed Ex Rete in the Rain.

Location 6725 AGNA PURA ST- Date 4/9/24 Project / Client SAWS - IMPOUNDMENT ASSESSMENT LAGOONS 1020! Anove on-site Meet w/ Michael CAWS Rep. - 60 over HAST Weather: 90 H 698 Drizzle - Do site walk around. 1040: Drilles on site. Show them where to brong geoprobe rig - 60 over 1+45 - Go prer scare of drilling 1100: Pacific West lines up of drilling location 1121: Begin drilling. 1157! Prillers encounter Clay Uno 620 to puch Consider flight auger. Talk to A. Salvet. Sens to try fer +2+3 mare. 1217: Drillers attempt push, 1248 Driller reach TD by Ansk @ - Michael off-site to grab Kuch. - Clean up more rig. Rue casing 2/51 screened - mochael caga on-site 1430! Begn purge. 3 well volumes, Pacific West off site, Peri-pumped 1447! Sample TW-1 +laker, Wester /SAROS-elleste.

WELL ID: TW-1 SAWS IMPOUND LAGOONS SITE: **Groundwater Sampling Field Data Sheet** Project Number: 10412 1036.00) Task Number: 40002 Casing Diameter Screened Interval (ft from GS) Flow Rate v 15 - 30 Purge Equipment Total Depth of Well from TOC (ft) レる , ろ Static Water from TOC (ft) Depth of Sample Intake (ft) Analytical Equipment \sim $\frac{1}{2}$ $\frac{1}{5}$ Time Purge Started Product Level from TOC (ft) 3 X Well V IST POD DSS Well location Sketch 1430 Micro Purge Data: CPM ___ Logoon Length of Water Column (ft) Duration (sec): 14.97 Recharge ____ Discharge
Peristaltic Pump Setting DTW-1 1 Well Volume (gal) 0.16 Med Specific Cond. Temperature DO mg/L Redox (ORP) Water Level pН Turbiditu Time Gallon (us/cm) (C) (+/-0.1)(+/-0.1)(+/- 10mv) (ft btoc) (+/-0.3)(+/-3%)2.7P 1433 977 7.60 15.44 265.0 24.6 87.6 1436 24.3 112.3 970 86,7 1.77 967 1439 24.2 99.2 7.08 89.9 961 940 1445 14. 78.9 Dun Elte Sample ID: Sample Date: Sample Time: 1447 Analytical Parameters: Level of PPE: Total Acsaic ((0000)
Sampler's Signature/Date Disposition of Purged Water: 4/9/24 Back - Sochale

February 28, 2024

Armin Sabet Weston Solutions, Inc. 2600 Dallas Parkway, Suite 280

Frisco, Texas 75034 TEL: (310) 980-6300

FAX: Order No.: 2402269

RE: SAWS Impoundment Assessment Lagoons and Decant Sam

Dear Armin Sabet:

DHL Analytical, Inc. received 10 sample(s) on 2/21/2024 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAP except where noted in the Case Narrative. All non-NELAP methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,

John DuPont

General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-23-29

Table of Contents

Miscellaneous Documents	3
CaseNarrative 2402269	11
WorkOrderSampleSummary 2402269	13
PrepDatesReport 2402269	14
AnalyticalDatesReport 2402269	
Analytical Report 2402269	18
AnalyticalQCSummaryReport 2402269	58
MQLSummaryReport 2402269	98

EMAIL: Mich

W=WATER

L=LIQUID

SO=SOLID

Collection

Date

20/24

2120124

2/20/24

Collection

Time

0926

DATE/TIME

S=SOIL

Jones

ADDITIONAL REPORT COPIES TO: Amin, Subet@Westonsolutions.

Lab

Use

Only

DHL

Lab#

01

02

0.3

84

05

CLIENT:

ADDRESS:

PHONE: 210

⊠¤Yes

DATA REPORTED TO:

Authorize 5% surcharge

for TRRP report?

Field Sample I.D.

55-

55-2

55-3

55-4

Relinguished By: (Sign)

Relinquished By: (Sign)

Relinquished By: (Sign)

□ No

2300 Double Creek Dr. Round Rock, TX 78664

Phone 512.388.8222

CHAIN-OF-CUSTODY

Web: www.dhlanalytical.com Email: login@dhlanalytical.com

PROJECT LOCATION OR NAME:

NaOH □ Zn Acetate □ ICE □ UNPRESERVED 図

NaOH

H₂SO₄ HN0₃

TPH 1005 ☐ TPH 1006 ☐ HOLD 1006 ☐

BTEX ☐ MTBE ☐ [METHOD 8260]

ANALYSES

agoons

SVOC 8270 ₺ SVOC 625.1

VOC 8260 段 VOC 624.1 □ GRO 8015

DRO 8015

PCB 8082 🗆 608.3 🗆 PCB 8270 🗀 625.1 🗅 PEST 8270 □ 625.1 □ O-P PEST 8270 □

DATE: え

H₃PO₄ □

HCL ®

of Containers

Received by:

Fedex

Received by:

Received by:

CLIENT PROJECT #

PRESERVATION

PO#:

742

Tones @Saws, of a

P=PAINT

Matrix

5

5

W

SL=SLUDGE

Container

Type

SE=SEDIMENT

	-					_		_		_		
										РΑ	GE	OF
		LA	ВU	ISE	ON	ILY) [2.2.6.0
		DH	IL V	VO	RK	ORI	DEF	R #:	×		0	2269
7	en d	Am	ch-	+-	As Sou	362,	SIL	Ph	†			
		CO	LLE	ECT	OR	: (die	2 ((05	He	ene	Wy
	METALS 6020 □ 200.8 □ DISS. METALS □	RCRA 8 🗆 TX11 🗀	PH□ HEX CHROM□ ALKALINITY□ COD□	ANIONS 300 9056	TCLP-SVOC □ VOC □ PEST □ HERB □	TCLP-METALS ☐ RCRA 8 ☐ TX-11 ☐ Pb ☐	RCI 🗆 IGN 🗆 DGAS 🗆 OIL&GREASE 🗆	TDS ☐ TSS ☐ % MOIST ☐ CYANIDE ☐	THURS Target MeinlS			HALAS TONGA METALS: 60208 PUTUA-17471B
									X			Hold For SPLP
									Χ			Hold for TPLP
									X			Hold for SPLP
					_		_		X			Hold for SPLP
_				_	_	_	<u> </u>	L	_			
		_		_	_	_	_				ļ	
_				-		<u> </u>	L		_		_	
_		_		_	-	_	_	_			ļ	
_		_		-	-	-	<u> </u>	\vdash	\vdash			
_				┢	_		\vdash	-	-			
_				<u> </u>	H		 					
							Г					
JS	E O	NLY				0	_				TH	ERMO#:
		TE						<u>٥</u>				- ID
C	, AR	RE SA	AMF	PLES					UST	COI	LLEC	TED? YES / NO
$\overline{}$	DV 4			A1 10		IICC	т. г	¬ nı	2011	CNI	60 1	NITACT NOT LICED

7																					
7																					
7																					
7																					
7																					
TL	JRN	AR	OU	ND	TIN	ΛE		LAE	3 US	ΕO	NLY	•				_				TH	ERMO #:
(CA	LL	FIRS	T F	OR	RU	SH)		REC	CEIV	ING	TEI	MP	(°C)	:	<u>().</u>	7	<u> </u>				718
RUSH-	-1 D	AYE	∃ R	USł	1 -2	DA۱	′□	IF >	·6°C	, AR	E SA	٩Mf	PLES	ON	ICE	AN	ון ס	UST	COI	LEC	TED? YES / NO
	R	USH	-3 [DAY				cu:	STO	DY S	SEAL	s o	N IC	E/C	HES	T: [⊐ві	гок	ΕN		NTACT □ NOT USED
NO]	CAF	RRIE	R: l	□ L	SO	₽F	EDE	ΧC] UF	PS [] C	OUR	IER	☐ HAND DELIVERED
DUE D	AT	E <u>5</u>	bu	5. 1	ays)															
3															Į	DHL	. CC)C R	EV	4	MAR 2023

2300 Double Creek Dr. Round Rock, TX 78664

Phone 512.388.8222

CHAIN-OF-CUSTODY

Web: www.dhlanalytical.com
Email: login@dhlanalytical.com

11						CIII	aII.	IUB	III (G	u	IIdi	laly	LIC	ai.C	UIII														PAG	GE_{\perp}	(OF	·	_
	iow	ater Sy	stem			DA	TE:	R	/X	2/6	14	(L	AB	US	ΕO	NL	1			\.				-
ADDRESS: 2500 115-	281,€	an An	tonio, I	X 74	212	_) #:															HL	W	ORK	OF	RDE	R#	: ≪	<u> </u>	0_	2269		
PHONE: 210-233-36		EMAIL: M	ichael Jor	1e5@So	ens.org	PR	OJE	СТ	LOC	CAT	101	N O	RΝ	IAN	ΛE:	51	الرياة	5.	Dm	Pou	ud h	200	1+	A3 L <	55e.	55pv	ich.	/					
DATA REPORTED TO: M_l			·																		(D		in	Γ.	SOL				c				_
ADDITIONAL REPORT CO	PIES TO	D: Armir.	Sabetetu	restons	idutions.com	CL	IEN	T PI	ROJ	EC	Γ#	10	141	λ	103	36.	∞ 1					OLI	LEC	TO	R:	0	2	- (15+	14	perny		
Authorize 5% surcharge		W=WATE	R	SE=SE	DIMENT		PRE	SEF	RVA									0	1;	_	- SI		1	11,	9	Ţ,]_	465				_	
for TRRP report?	Lab	L=LIQUID		P=PA	INT				- 1	믺		-	[i]	<u> </u>				T 827	0 62	ONIA	META	5	1	ER I		ASE	E E	16			Cologet	4118	
Yes No	Use	S=SOIL		SL=SL	UDGE	2	o			stat	ŞE	S	20 82	로 .	_ _	, -	_	P PES	8270	AMN	DISS.				Ĭ	&GRE	CA	+			507	T	
	Only	SO=SOLID		_		j.e	H_3PO_4			Zn Acetate 🗆	ESE	Z	METH	906	8015	625.	PAH	0	P.C.	os	0.8				RA 8	0	Isi	Jak				ŧ	
Field Sample I.D.	DHL Lab#	Collection Date	Collection Time	Matrix	Container Type	# of Containers	HCL 🙉	HNO ₃	H₂SO₄	NaOH 🗆 Zr	ice 🗆 unpreserved 🖾	ANALYSES	BTEX ☐ MTBE ☐ [METHOD 8260]	TPH 1005 ☐ TPH 1006 ☐ HOLD 1006 ☐	GRO 8015	SVOC 8270 ₺ SVOC 625.1 □	PAH 8270 ☐ HOLD PAH ☐	PEST 8270 □ 625.1 □ O-P PEST 8270 □	PCB 8082 ☐ 608.3 ☐ PCB 8270 ☐ 625.1 ☐	HERB 8321 ☐ T PHOS ☐ AMMONIA ☐	METALS 6020 200.8 DISS. METALS	ALD HEX CHROM DAIKAINITY COD	ANIONS 300 9056	TCLP-SVOC VOC PEST HERB	TCLP-METALS RCRA 8 TX-11 Pb	RCI □ IGN □ DGAS □ OIL&GREASE □	TDS ☐ TSS ☐ % MOIST ☐ CYANIDE ☐	TAL 23 Tabact Mctals			DISTAL 23 TONGET	NOTES	
S5 -S	06	2/20/24	1059	5		2	П			T,	Χ				X	X												Х	П	\Box	Hold for	SPLP	
55-6	07	240/24	1113	S		5	П			7	Χ				×	$\langle \times \rangle$			П		T	T		Т		T		X	П		Hold for	SATA	
SS-DUP	08	2/20/24	1113	S		5	П		T		Х				X	X					T	T		T				X	П		Hold for	SALA	
SS-Backaround	09	2/20/24	1135	5		2	П				X			T			1				\top	T						X	П		Hold for		
trip blank-2	10	~	,	W		2	Χ				1				>														П				
																						T			Г			П	П				
								П																				П					
											1													T				П	П				
											┛					\perp	<u> </u>												Ш				
Relinquished By: (Sign)			DATE/TIME		Recei	ved b	y:			T		TUF	RN A	ARC	DUN	D TI	ME		LAB	USI	ON	LY								THE	ERMO #:		_
OR Detto		3/24	129/1	100	te	du	X				(CAL	L FI	RST	ΓFO	R RL	JSH)	١	REC	EIVI	NG T	EMI	P (°C	:):	1	ر).	OC.				78		
Relinquished By: (Sign)			DATE/TIME		Recei	ved b	y:	,			RUS	SH-1	. DA	YΠ	RU:	SH-2	DAY	Y□	IF >	б°С,	ARE	SAN	/PLE	ES O	N IC	E A	ND 1	UST	COL	LEC	TED? YES	/ NO	
Fedy		221	34 08 ²	99	Lau	40	lu	h					RU	SH-3	3 DA	YΠ															NTACT □N		
Relinquished By: (Sign)		1 1	DATE/TIME		Recei	ved b	y:								l C					RIE	R: 🗆	LSO		FED	EX	□ U	IPS [⊐ cc	URI	ER [☐ HAND DE	LIVERED)
										- 1	DUI	FDΔ	TF	11	Dies	10.15			1														

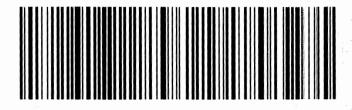
ORIGIN ID:SVZA (940) 395-8775 COLE CASTLEBERRY WESTON SOLUTIONS/OU1025 70 NE LOOP 410 SUITE 200 SAN ANTONIO, TX 78216 UNITED STATES US

SHIP DATE: 20FEB:24 ACTWGT: 41.45 LB CAD: 6992618/SSFD2500 DIMS: 26x13x14 IN

BILL THIRD PARTY

TO WORK ORDER# 10412.036.001.0002 **DHL ANALYTICAL** 2300 DOUBLE CREEK DR

ROUND ROCK TX 78664


FedEx Express

1 of 2 TRK# 2712 0885 7223 ## MASTER ##

WED - 21 FEB 10:30A PRIORITY OVERNIGHT

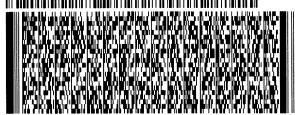
BSMA

78664 TX-US AUS

SIGNATURE

ORIGIN ID:SVZA (940) 395-8775 COLE CASTLEBERRY WESTON SOLUTIONS/OU1025 70 NE LODP 410 SUITE 200 SAN ANTONIO, TX 78216 UNITED STATES US SHIP DATE: 20FEB:24 ACTWGT: 40.30 LB CAD: 6992618/SSF02500 DIMS: 25×14×14 IN

BILL THIRD PARTY


TO WORK ORDER# 10412.036.001.0002 DHL ANALYTICAL 2300 DOUBLE CREEK DR

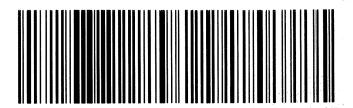
ROUND ROCK TX 78664

(512) 388 - 8222 INU: PO:

REF:

DEPT:

Fedex Express


Part # 15629834689468788E88P 11/24

2 of 2 MPS# 2712 0885 7234 Mstr# 2712 0885 7223 WED - 21 FEB 10:30A PRIORITY OVERNIGHT

0201

44 BSMA

78664 TX-US AUS

CUSTODY SEAL

DATE

SIGNATURE

Sample Receipt Checklist Client Name: Weston Solutions, Inc. Date Received: 2/21/2024 Work Order Number: 2402269 Received by: KAO Checklist completed by: Reviewed by: 2/21/2024 2/21/2024 Date Date Carrier name: FedEx 1day Shipping container/cooler in good condition? V No 🗌 Not Present Custody seals intact on shipping container/cooler? No 🗌 Not Present Custody seals intact on sample bottles? No 🗌 Not Present Yes 🗹 Chain of custody present? No 🗌 Chain of custody signed when relinquished and received? Yes 🗹 No 🗌 Yes 🗸 No 🗌 Chain of custody agrees with sample labels? Samples in proper container/bottle? Yes 🗸 No 🗌 Sample containers intact? Yes 🗸 No 🗌 Yes 🗸 No 🗌 Sufficient sample volume for indicated test? All samples received within holding time? Yes 🗸 No 🗌 Yes 🗸 No 🗌 No VOA vials submitted NA 🗌 Water - VOA vials have zero headspace? Water - pH<2 acceptable upon receipt? Yes 🗌 No 🗌 NA 🗸 LOT# Adjusted? Checked by Water - ph>9 (S) or ph>10 (CN) acceptable upon receipt? Yes No 🗌 NA 🗹 LOT# Adjusted? Checked by Container/Temp Blank temperature in compliance? Yes 🗸 No 🗌 Cooler# 2 Temp °C 0.7 1.6 Υ Υ Seal Intact Any No response must be detailed in the comments section below. Client contacted: Date contacted: Person contacted: Contacted by: Regarding: Comments: Corrective Action:

		ory Name: DHL Analytical, Inc.						
		ory Review Checklist: Reportable Data me: SAWS Impoundment Assess Lagoons/Decant Samp	LRC Date: 2/28/2024					
Ť		Name: Angie O'Donnell	Laboratory Work Order: 2402269					
			*					
•			Run Batch: See Analytical Dates Report	* 7		3 7 4 3	NID4	ED #5
#1	A^2	Description Description		Yes	No	NA ³	NK*	ER# ⁵
R1	OI	Chain-of-Custody (C-O-C)	S1	v				D1 01
KI	OI	 Did samples meet the laboratory's standard conditions of Were all departures from standard conditions described in 		X		X		R1-01
R2	OI	Sample and Quality Control (QC) Identification	ii aii exception report:			Λ		
112	- 01	1) Are all field sample ID numbers cross-referenced to the l	aboratory ID numbers?	X				
		2) Are all laboratory ID numbers cross-referenced to the co	•	X				
R3	OI	Test Reports						
		1) Were all samples prepared and analyzed within holding t		X				
		2) Other than those results < MQL, were all other raw value	es bracketed by calibration standards?	X				
		3) Were calculations checked by a peer or supervisor?		X				
		4) Were all analyte identifications checked by a peer or sup5) Were sample detection limits reported for all analytes no		X				
		6) Were all results for soil and sediment samples reported o		X				
		7) Were % moisture (or solids) reported for all soil and sedi	, ,	X				
		8) Were bulk soils/solids samples for volatile analysis extra		X				
		9) If required for the project, TICs reported?	-			X		
R4	O	Surrogate Recovery Data						
		1) Were surrogates added prior to extraction?		X				
D.	OI	2) Were surrogate percent recoveries in all samples within t	he laboratory QC limits?	X				
R5	OI	Test Reports/Summary Forms for Blank Samples 1) Were appropriate type(s) of blanks analyzed?		X				
		2) Were blanks analyzed at the appropriate frequency?		X				
		3) Where method blanks taken through the entire analytical	process, including preparation and, if					
		applicable, cleanup procedures?	process, moraums proparation and, in	X				
		4) Were blank concentrations < MDL?		X				
		5) For analyte(s) detected in a blank sample, was the concer				X		
D.	0.1	factors, in all associated field samples, greater than 10 times	es the concentration in the blank sample?			1.		
R6	OI	Laboratory Control Samples (LCS): 1) Were all COCs included in the LCS?		v				
		2) Was each LCS taken through the entire analytical proced	lure including prep and cleanup steps?	X				
		3) Were LCSs analyzed at the required frequency?	ure, meruanig prep and creanup steps:	X				
		4) Were LCS (and LCSD, if applicable) %Rs within the lab	oratory QC limits?		X			R6-04
		5) Does the detectability data document the laboratory's cap		X				
		to calculate the SDLs?						
		6) Was the LCSD RPD within QC limits (if applicable)?		X				
R7	OI	Matrix Spike (MS) and Matrix Spike Duplicate (MSD) I		W				
		1) Were the project/method specified analytes included in the company of the comp	he MS and MSD?	X				
		2) Were MS/MSD analyzed at the appropriate frequency? 3) Were MS (and MSD, if applicable) %Rs within the labor	ratory OC limits?	Λ	X			R7-03
		4) Were MS/MSD RPDs within laboratory QC limits?	atory QC mmts.	X	71			107-05
R8	OI	Analytical Duplicate Data		12				
		1) Were appropriate analytical duplicates analyzed for each	matrix?			X		
		2) Were analytical duplicates analyzed at the appropriate from				X		
		3) Were RPDs or relative standard deviations within the lab	oratory QC limits?			X		
R9	OI	Method Quantitation Limits (MQLs):						
		1) Are the MQLs for each method analyte included in the la		X				
		2) Do the MQLs correspond to the concentration of the low3) Are unadjusted MQLs and DCSs included in the laborate		X				
R10	OI	Other Problems/Anomalies	лу чана раскаде:	Λ				
-110	J1	1) Are all known problems/anomalies/special conditions no	ted in this LRC and ER?	X				R10-01
		2) Was applicable and available technology used to lower the		X				
		affects on the sample results?		Λ				
		3) Is the laboratory NELAC-accredited under the Texas Lab		X				
		analytes, matrices and methods associated with this laborate	ory data package?	_				

Lab	ora	tory Name: DHL Analytical, Inc.						
		tory Review Checklist (continued): Supporting						
Proje	ct Na	ame: SAWS Impoundment Assess Lagoons/Decant Samp LRC	Date: 2/28/2024					
Revie	wer	Name: Angie O'Donnell Labo	ratory Work Order: 2402269					
Prep	Batc	h Number(s): See Prep Dates Report Run	Batch: See Analytical Dates Report					
# ¹	A ²	Description		Yes	No	NA ³	NR ⁴	ER# ⁵
S1		Initial Calibration (ICAL)		103	110	IVA	IVIX	1210#
51	Oi	1 7						
		1) Were response factors and/or relative response factors for each a	analyte within QC limits?	X				
		2) Were percent RSDs or correlation coefficient criteria met? 3) Was the number of standards recommended in the method used	for all analytes?	X				
		4) Were all points generated between the lowest and highest standards recommended in the method used		X				
		5) Are ICAL data available for all instruments used?	ard used to calculate the curve?	X				
		6) Has the initial calibration curve been verified using an appropria	ate second source standard?	X				
S2	OI	Initial and Continuing calibration Verification (ICCV and CC)		<u> </u>				
52	Oi	blank (CCB):	v) and Continuing Canbration					
		1) Was the CCV analyzed at the method-required frequency?		X				
		2) Were percent differences for each analyte within the method-red	nuired OC limits?		X			S2-02
		3) Was the ICAL curve verified for each analyte?	unea Qe mma.	X	7.			52 02
		4) Was the absolute value of the analyte concentration in the inorganisms.	anic CCB < MDL?	X				
S3	О	Mass Spectral Tuning:						
		1) Was the appropriate compound for the method used for tuning?		X				
		2) Were ion abundance data within the method-required QC limits'	?	X				
S4	О	Internal Standards (IS):						
		1) Were IS area counts and retention times within the method-requ	ired QC limits?	X				
S5	OI	Raw Data (NELAC Section 5.5.10)						
		1) Were the raw data (for example, chromatograms, spectral data):	reviewed by an analyst?	X				
		2) Were data associated with manual integrations flagged on the ra	w data?	X				
S6	О	Dual Column Confirmation						
		1) Did dual column confirmation results meet the method-required	QC?			X		
S7	О	Tentatively Identified Compounds (TICs):						
		1) If TICs were requested, were the mass spectra and TIC data sub	ject to appropriate checks?			X		
S8	I	Interference Check Sample (ICS) Results:						
~ ~		1) Were percent recoveries within method QC limits?		X				
S9	I	Serial Dilutions, Post Digestion Spikes, and Method of Standar	d Additions					
		1) Were percent differences, recoveries, and the linearity with method?	in the QC limits specified in the	X				
S10	OI	Method Detection Limit (MDL) Studies						
		1) Was a MDL study performed for each reported analyte?		X				
		2) Is the MDL either adjusted or supported by the analysis of DCS	s?	X				
S11	OI	Proficiency Test Reports:						
		1) Was the lab's performance acceptable on the applicable proficient	ncy tests or evaluation studies?	X				
S12	OI	Standards Documentation						
		1) Are all standards used in the analyses NIST-traceable or obtaine	ed from other appropriate sources?	X				
S13	OI	Compound/Analyte Identification Procedures						
		1) Are the procedures for compound/analyte identification docume	nted?	X				
S14	OI	Demonstration of Analyst Competency (DOC)						
		1) Was DOC conducted consistent with NELAC Chapter 5 – Appe		X				
		2) Is documentation of the analyst's competency up-to-date and on		X				
S15	OI	Verification/Validation Documentation for Methods (NELAC C	Chapter 5)					
		1) Are all the methods used to generate the data documente applicable?	d, verified, and validated, where	X				
S16	OI	Laboratory Standard Operating Procedures (SOPs):						
-		1) Are laboratory SOPs current and on file for each method perform	ned?	X				
	•		L			•		

¹ Items identified by the letter "R" should be included in the laboratory data package submitted to the TCEQ in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

O = organic analyses; I = inorganic analyses (and general chemistry, when applicable).

³ NA = Not applicable.

⁴ NR = Not Reviewed.

⁵ ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Data Package Signature Page – RG-366/TRRP-13

This data package consists of:

This signature page, the laboratory review checklist, and the following reportable data:

- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a) Items consistent with NELAC Chapter 5,
 - b) dilution factors,
 - c) preparation methods,
 - d) cleanup methods, and
 - e) if required for the project, tentatively identified compounds (TICs).
- R4 Surrogate recovery data including:
 - a) Calculated recovery (%R), and
 - b) The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a) LCS spiking amounts,
 - b) Calculated %R for each analyte, and
 - c) The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a) Samples associated with the MS/MSD clearly identified,
 - b) MS/MSD spiking amounts,
 - c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d) Calculated %Rs and relative percent differences (RPDs), and
 - e) The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a) The amount of analyte measured in the duplicate,
 - b) The calculated RPD, and
 - c) The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix;
- R10 Other problems or anomalies.

The Exception Report for each "No" or "Not Reviewed (NR)" item in the Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory is not accredited under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge that all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information or data affecting the quality of the data has been knowingly withheld.

This laboratory was last inspected by TCEQ on May 30 – June 2, 2023. Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Name: John DuPont Official Title: General Manager

Name: Dr. Derhsing Luu Official Title: Technical Director $\frac{\sqrt{N}}{\sqrt{N}}$ 02/28/2

CLIENT: Weston Solutions, Inc.

Project: SAWS Impoundment Assessment Lagoons and CASE NARRATIVE

Date: 28-Feb-24

Lab Order: 2402269

Samples were analyzed using the methods outlined in the following references:

Method SW8260D - Volatile Organics Analysis (the compound Cyclohexane is not NELAP Certified)

Method SW8270E - Semivolatile Organics Analysis (the compound Benzaldehyde is not NELAP Certified)

Method SW6020B- Metals Analysis

Method SW7471B - Mercury Analysis

Method D2216 - Percent Moisture Analysis

Exception Report R1-01

Samples were received and login performed on 2/21/2024. A total of 10 samples were received and analyzed. The samples arrived in good condition and were properly packaged.

Exception Report R6-04

For Volatile Organics Analysis, for aqueous Batch 114106, the recoveries of three compounds for the Laboratory Control Spike (LCS-114106) were above the method control limits. These are flagged accordingly in the QC Summary Report. These compounds were within method control limits in the associated ICV. No further corrective action was taken.

For Semivolatile Organics Analysis, for soil Batch 114177, the recovery of Atrazine for the Laboratory Control Spike (LCS-114177) was above the method control limits. This is flagged accordingly in the QC Summary Report. This compound was within method control limits in the associated ICV. No further corrective action was taken.

Exception Report R7-03

For Metals Analysis, for soil Batch 114139, the recoveries of three analytes for the Matrix Spike and Matrix Spike Duplicate (2402269-04 MS/MSD) were outside of the method control limits. These are flagged accordingly in the QC Summary Report. These analytes were within method control limits in the associated LCS. No further corrective action was taken.

For Semivolatile Organics Analysis, for soil Batch 114177, the recoveries of three compounds for the Matrix Spike and Matrix Spike Duplicate (2402269-01 MS/MSD) were outside of the method control limits. These are flagged accordingly in the QC Summary Report. These compounds analytes were within method control limits in the associated LCS or were nondetect in the associated samples. No further corrective action was taken.

CLIENT: Weston Solutions, Inc.

Project: SAWS Impoundment Assessment Lagoons and CASE NARRATIVE

Lab Order: 2402269

Exception Report R10-01

Per project specification, MS/MSD/Duplicates are from this workorder or project samples only.

Exception Report S2-02

For Volatiles Analysis, for aqueous samples performed on 2/21/2024, the recovery of Carbon disulfide for the Initial Calibration Verification (ICV-240221) was slightly below the method control limits specified in SW8260D (70-130% recovery). This is flagged accordingly in the QC Summary Report. The number of target analytes outside of the method control limits for the ICV are less than 20% of the total number of compounds being reported; this is allowed in SW8260D specifications. This compound was within method control limits in the associated LCS. No further corrective action was taken.

Date: 28-Feb-24

CLIENT: Weston Solutions, Inc.

Project: SAWS Impoundment Assessment Lagoons and Work Order Sample Summary

Lab Order: 2402269

Lab Smp ID	Client Sample ID	Tag Number	Date Collected	Date Recved
•	•			
2402269-01	SS-1		02/20/24 09:26 AM	02/21/2024
2402269-02	SS-2		02/20/24 09:50 AM	02/21/2024
2402269-03	SS-3		02/20/24 10:18 AM	02/21/2024
2402269-04	SS-4		02/20/24 10:45 AM	02/21/2024
2402269-05	Trip Blank-1		02/20/24	02/21/2024
2402269-06	SS-5		02/20/24 10:59 AM	02/21/2024
2402269-07	SS-6		02/20/24 11:13 AM	02/21/2024
2402269-08	SS-DUP		02/20/24 11:13 AM	02/21/2024
2402269-09	SS-Background		02/20/24 11:35 AM	02/21/2024
2402269-10	Trip Blank-2		02/20/24	02/21/2024

Lab Order: 2402269

Client: Weston Solutions, Inc.

Project: SAWS Impoundment Assessment

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
2402269-01A	SS-1	02/20/24 09:26 AM	Soil	SW5035A	Purge and Trap 5035	02/21/24 10:36 AM	114118
2402269-01B	SS-1	02/20/24 09:26 AM	Soil	SW7471B	Mercury Soil Prep, Total	02/22/24 08:07 AM	114134
	SS-1	02/20/24 09:26 AM	Soil	SW3550C	Soil Prep Sonication: BNA	02/26/24 09:04 AM	114177
	SS-1	02/20/24 09:26 AM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	02/22/24 09:35 AM	114139
	SS-1	02/20/24 09:26 AM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	02/22/24 09:35 AM	114139
2402269-01D	SS-1	02/20/24 09:26 AM	Soil	D2216	Moisture Preparation	02/21/24 01:44 PM	114122
2402269-02A	SS-2	02/20/24 09:50 AM	Soil	SW5035A	Purge and Trap 5035	02/21/24 10:36 AM	114118
2402269-02B	SS-2	02/20/24 09:50 AM	Soil	SW7471B	Mercury Soil Prep, Total	02/22/24 08:07 AM	114134
	SS-2	02/20/24 09:50 AM	Soil	SW3550C	Soil Prep Sonication: BNA	02/26/24 09:04 AM	114177
	SS-2	02/20/24 09:50 AM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	02/22/24 09:35 AM	114139
	SS-2	02/20/24 09:50 AM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	02/22/24 09:35 AM	114139
2402269-02D	SS-2	02/20/24 09:50 AM	Soil	D2216	Moisture Preparation	02/21/24 01:44 PM	114122
2402269-03A	SS-3	02/20/24 10:18 AM	Soil	SW5035A	Purge and Trap 5035	02/21/24 10:36 AM	114118
2402269-03B	SS-3	02/20/24 10:18 AM	Soil	SW7471B	Mercury Soil Prep, Total	02/22/24 08:07 AM	114134
	SS-3	02/20/24 10:18 AM	Soil	SW3550C	Soil Prep Sonication: BNA	02/26/24 09:04 AM	114177
	SS-3	02/20/24 10:18 AM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	02/22/24 09:35 AM	114139
	SS-3	02/20/24 10:18 AM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	02/22/24 09:35 AM	114139
2402269-03D	SS-3	02/20/24 10:18 AM	Soil	D2216	Moisture Preparation	02/21/24 01:44 PM	114122
2402269-04A	SS-4	02/20/24 10:45 AM	Soil	SW5035A	Purge and Trap 5035	02/21/24 10:36 AM	114118
2402269-04B	SS-4	02/20/24 10:45 AM	Soil	SW7471B	Mercury Soil Prep, Total	02/22/24 08:07 AM	114134
	SS-4	02/20/24 10:45 AM	Soil	SW3550C	Soil Prep Sonication: BNA	02/26/24 09:04 AM	114177
	SS-4	02/20/24 10:45 AM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	02/22/24 09:35 AM	114139
	SS-4	02/20/24 10:45 AM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	02/22/24 09:35 AM	114139
2402269-04D	SS-4	02/20/24 10:45 AM	Soil	D2216	Moisture Preparation	02/21/24 01:44 PM	114122
2402269-05A	Trip Blank-1	02/20/24	Trip Blank	SW5030C	Purge and Trap Water GC/MS	02/21/24 08:52 AM	114106
2402269-06A	SS-5	02/20/24 10:59 AM	Soil	SW5035A	Purge and Trap 5035	02/21/24 10:36 AM	114118
2402269-06B	SS-5	02/20/24 10:59 AM	Soil	SW7471B	Mercury Soil Prep, Total	02/22/24 08:07 AM	114134
	SS-5	02/20/24 10:59 AM	Soil	SW3550C	Soil Prep Sonication: BNA	02/26/24 09:04 AM	114177

Page 1 of 2

Lab Order: 2402269

Client: Weston Solutions, Inc.

Project: SAWS Impoundment Assessment

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
2402269-06B	SS-5	02/20/24 10:59 AM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	02/22/24 09:35 AM	114139
	SS-5	02/20/24 10:59 AM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	02/22/24 09:35 AM	114139
2402269-06D	SS-5	02/20/24 10:59 AM	Soil	D2216	Moisture Preparation	02/21/24 01:44 PM	114122
2402269-07A	SS-6	02/20/24 11:13 AM	Soil	SW5035A	Purge and Trap 5035	02/21/24 10:36 AM	114118
2402269-07B	SS-6	02/20/24 11:13 AM	Soil	SW7471B	Mercury Soil Prep, Total	02/22/24 08:07 AM	114134
	SS-6	02/20/24 11:13 AM	Soil	SW3550C	Soil Prep Sonication: BNA	02/26/24 09:04 AM	114177
	SS-6	02/20/24 11:13 AM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	02/22/24 09:35 AM	114139
	SS-6	02/20/24 11:13 AM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	02/22/24 09:35 AM	114139
2402269-07D	SS-6	02/20/24 11:13 AM	Soil	D2216	Moisture Preparation	02/21/24 01:44 PM	114122
2402269-08A	SS-DUP	02/20/24 11:13 AM	Soil	SW5035A	Purge and Trap 5035	02/21/24 10:36 AM	114118
2402269-08B	SS-DUP	02/20/24 11:13 AM	Soil	SW7471B	Mercury Soil Prep, Total	02/22/24 08:07 AM	114134
	SS-DUP	02/20/24 11:13 AM	Soil	SW3550C	Soil Prep Sonication: BNA	02/26/24 09:04 AM	114177
	SS-DUP	02/20/24 11:13 AM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	02/22/24 09:35 AM	114139
	SS-DUP	02/20/24 11:13 AM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	02/22/24 09:35 AM	114139
2402269-08D	SS-DUP	02/20/24 11:13 AM	Soil	D2216	Moisture Preparation	02/21/24 01:44 PM	114122
2402269-09A	SS-Background	02/20/24 11:35 AM	Soil	SW7471B	Mercury Soil Prep, Total	02/22/24 08:07 AM	114134
	SS-Background	02/20/24 11:35 AM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	02/22/24 09:35 AM	114139
	SS-Background	02/20/24 11:35 AM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	02/22/24 09:35 AM	114139
2402269-09C	SS-Background	02/20/24 11:35 AM	Soil	D2216	Moisture Preparation	02/21/24 01:44 PM	114122
2402269-10A	Trip Blank-2	02/20/24	Trip Blank	SW5030C	Purge and Trap Water GC/MS	02/21/24 08:52 AM	114106

Lab Order: 2402269

Client: Weston Solutions, Inc.

Project: SAWS Impoundment Assessment

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
2402269-01A	SS-1	Soil	SW8260D	Volatiles by 8260/5035 GC/MS	114118	1	02/21/24 09:23 PM	GCMS2_240221B
2402269-01B	SS-1	Soil	SW7471B	Mercury Total: Soil/Solid	114134	1	02/23/24 10:38 AM	CETAC2_HG_240223 A
	SS-1	Soil	SW8270E	Semivolatiles by GC/MS	114177	1	02/26/24 05:33 PM	GCMS4_240226A
	SS-1	Soil	SW6020B	Trace Metals: ICP-MS - Solid	114139	5	02/23/24 10:43 AM	ICP-MS5_240223A
	SS-1	Soil	SW6020B	Trace Metals: ICP-MS - Solid	114139	250	02/23/24 11:26 AM	ICP-MS5_240223A
2402269-01D	SS-1	Soil	D2216	Percent Moisture	114122	1	02/22/24 10:00 AM	PMOIST_240221A
2402269-02A	SS-2	Soil	SW8260D	Volatiles by 8260/5035 GC/MS	114118	1	02/21/24 09:51 PM	GCMS2_240221B
2402269-02B	SS-2	Soil	SW7471B	Mercury Total: Soil/Solid	114134	1	02/23/24 10:40 AM	CETAC2_HG_240223 A
	SS-2	Soil	SW8270E	Semivolatiles by GC/MS	114177	1	02/26/24 05:59 PM	GCMS4_240226A
	SS-2	Soil	SW6020B	Trace Metals: ICP-MS - Solid	114139	5	02/23/24 10:46 AM	ICP-MS5_240223A
	SS-2	Soil	SW6020B	Trace Metals: ICP-MS - Solid	114139	250	02/23/24 11:29 AM	ICP-MS5_240223A
2402269-02D	SS-2	Soil	D2216	Percent Moisture	114122	1	02/22/24 10:00 AM	PMOIST_240221A
2402269-03A	SS-3	Soil	SW8260D	Volatiles by 8260/5035 GC/MS	114118	1	02/21/24 10:19 PM	GCMS2_240221B
2402269-03B	SS-3	Soil	SW7471B	Mercury Total: Soil/Solid	114134	1	02/23/24 10:51 AM	CETAC2_HG_240223 A
	SS-3	Soil	SW8270E	Semivolatiles by GC/MS	114177	1	02/26/24 06:24 PM	GCMS4_240226A
	SS-3	Soil	SW6020B	Trace Metals: ICP-MS - Solid	114139	5	02/23/24 10:48 AM	ICP-MS5_240223A
	SS-3	Soil	SW6020B	Trace Metals: ICP-MS - Solid	114139	100	02/23/24 11:31 AM	ICP-MS5_240223A
2402269-03D	SS-3	Soil	D2216	Percent Moisture	114122	1	02/22/24 10:00 AM	PMOIST_240221A
2402269-04A	SS-4	Soil	SW8260D	Volatiles by 8260/5035 GC/MS	114118	1	02/21/24 10:47 PM	GCMS2_240221B
2402269-04B	SS-4	Soil	SW7471B	Mercury Total: Soil/Solid	114134	1	02/23/24 10:54 AM	CETAC2_HG_240223 A
	SS-4	Soil	SW8270E	Semivolatiles by GC/MS	114177	1	02/26/24 06:49 PM	GCMS4_240226A
	SS-4	Soil	SW6020B	Trace Metals: ICP-MS - Solid	114139	5	02/23/24 10:38 AM	ICP-MS5_240223A
	SS-4	Soil	SW6020B	Trace Metals: ICP-MS - Solid	114139	100	02/23/24 11:21 AM	ICP-MS5_240223A
2402269-04D	SS-4	Soil	D2216	Percent Moisture	114122	1	02/22/24 10:00 AM	PMOIST_240221A
2402269-05A	Trip Blank-1	Trip Blank	SW8260D	8260 Water Volatiles by GC/MS	114106	1	02/21/24 11:31 AM	GCMS7_240221A
2402269-06A	SS-5	Soil	SW8260D	Volatiles by 8260/5035 GC/MS	114118	1	02/21/24 11:15 PM	GCMS2_240221B

Lab Order: 2402269

Client: Weston Solutions, Inc.

Project: SAWS Impoundment Assessment

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
2402269-06B	SS-5	Soil	SW7471B	Mercury Total: Soil/Solid	114134	1	02/23/24 10:56 AM	CETAC2_HG_240223 A
	SS-5	Soil	SW8270E	Semivolatiles by GC/MS	114177	1	02/26/24 07:14 PM	GCMS4_240226A
	SS-5	Soil	SW6020B	Trace Metals: ICP-MS - Solid	114139	5	02/23/24 10:51 AM	ICP-MS5_240223A
	SS-5	Soil	SW6020B	Trace Metals: ICP-MS - Solid	114139	250	02/23/24 11:34 AM	ICP-MS5_240223A
2402269-06D	SS-5	Soil	D2216	Percent Moisture	114122	1	02/22/24 10:00 AM	PMOIST_240221A
2402269-07A	SS-6	Soil	SW8260D	Volatiles by 8260/5035 GC/MS	114118	1	02/21/24 11:43 PM	GCMS2_240221B
2402269-07B	SS-6	Soil	SW7471B	Mercury Total: Soil/Solid	114134	1	02/23/24 10:58 AM	CETAC2_HG_240223 A
	SS-6	Soil	SW8270E	Semivolatiles by GC/MS	114177	1	02/26/24 07:39 PM	GCMS4_240226A
	SS-6	Soil	SW6020B	Trace Metals: ICP-MS - Solid	114139	100	02/23/24 11:36 AM	ICP-MS5_240223A
	SS-6	Soil	SW6020B	Trace Metals: ICP-MS - Solid	114139	5	02/23/24 10:53 AM	ICP-MS5_240223A
2402269-07D	SS-6	Soil	D2216	Percent Moisture	114122	1	02/22/24 10:00 AM	PMOIST_240221A
2402269-08A	SS-DUP	Soil	SW8260D	Volatiles by 8260/5035 GC/MS	114118	1	02/22/24 12:11 AM	GCMS2_240221B
2402269-08B	SS-DUP	Soil	SW7471B	Mercury Total: Soil/Solid	114134	1	02/23/24 11:05 AM	CETAC2_HG_240223 A
	SS-DUP	Soil	SW8270E	Semivolatiles by GC/MS	114177	1	02/26/24 08:04 PM	GCMS4_240226A
	SS-DUP	Soil	SW6020B	Trace Metals: ICP-MS - Solid	114139	5	02/23/24 10:56 AM	ICP-MS5_240223A
	SS-DUP	Soil	SW6020B	Trace Metals: ICP-MS - Solid	114139	100	02/23/24 11:39 AM	ICP-MS5_240223A
2402269-08D	SS-DUP	Soil	D2216	Percent Moisture	114122	1	02/22/24 10:00 AM	PMOIST_240221A
2402269-09A	SS-Background	Soil	SW7471B	Mercury Total: Soil/Solid	114134	1	02/23/24 11:07 AM	CETAC2_HG_240223 A
	SS-Background	Soil	SW6020B	Trace Metals: ICP-MS - Solid	114139	5	02/23/24 10:58 AM	ICP-MS5_240223A
	SS-Background	Soil	SW6020B	Trace Metals: ICP-MS - Solid	114139	250	02/23/24 11:41 AM	ICP-MS5_240223A
2402269-09C	SS-Background	Soil	D2216	Percent Moisture	114122	1	02/22/24 10:00 AM	PMOIST_240221A
2402269-10A	Trip Blank-2	Trip Blank	SW8260D	8260 Water Volatiles by GC/MS	114106	1	02/21/24 11:56 AM	GCMS7_240221A

CLIENT: Weston Solutions, Inc. Client Sample ID: SS-1

Project: SAWS Impoundment Assessment Lagoons and Lab ID: 2402269-01

Project No: 10412.036.001.0002 **Collection Date:** 02/20/24 09:26 AM

Lab Order: 2402269 Matrix: SOIL

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - SOLI	D	SW60)20B				Analyst: SP
Aluminum	25700	777	2330		mg/Kg-dry	250	02/23/24 11:26 AM
Antimony	<0.622	0.622	1.24		mg/Kg-dry	5	02/23/24 10:43 AM
Arsenic	19.2	0.622	1.24		mg/Kg-dry	5	02/23/24 10:43 AM
Barium	210	0.622	2.49		mg/Kg-dry	5	02/23/24 10:43 AM
Beryllium	0.945	0.124	0.373		mg/Kg-dry	5	02/23/24 10:43 AM
Cadmium	0.251	0.124	0.373	J	mg/Kg-dry	5	02/23/24 10:43 AM
Calcium	155000	777	2330		mg/Kg-dry	250	02/23/24 11:26 AM
Chromium	31.0	0.622	2.49		mg/Kg-dry	5	02/23/24 10:43 AM
Cobalt	12.2	0.622	2.49		mg/Kg-dry	5	02/23/24 10:43 AM
Copper	13.7	0.622	2.49		mg/Kg-dry	5	02/23/24 10:43 AM
Iron	126000	777	2330		mg/Kg-dry	250	02/23/24 11:26 AM
Lead	13.1	0.124	0.373		mg/Kg-dry	5	02/23/24 10:43 AM
Magnesium	6130	15.5	46.6		mg/Kg-dry	5	02/23/24 10:43 AM
Manganese	429	0.622	2.49		mg/Kg-dry	5	02/23/24 10:43 AM
Nickel	19.5	0.622	2.49		mg/Kg-dry	5	02/23/24 10:43 AM
Potassium	5310	15.5	46.6		mg/Kg-dry	5	02/23/24 10:43 AM
Selenium	1.03	0.186	0.622		mg/Kg-dry	5	02/23/24 10:43 AM
Silver	<0.124	0.124	0.249		mg/Kg-dry	5	02/23/24 10:43 AM
Sodium	90.5	15.5	46.6		mg/Kg-dry	5	02/23/24 10:43 AM
Thallium	<0.622	0.622	1.24		mg/Kg-dry	5	02/23/24 10:43 AM
Vanadium	396	1.24	3.11		mg/Kg-dry	5	02/23/24 10:43 AM
Zinc	57.5	1.24	3.11		mg/Kg-dry	5	02/23/24 10:43 AM
MERCURY TOTAL: SOIL/SOLID		SW74	471B				Analyst: CMC
Mercury	<0.0197	0.0197	0.0494		mg/Kg-dry	1	02/23/24 10:38 AM
SEMIVOLATILES BY GC/MS		SW82	270E				Analyst: DEW
2,4,5-Trichlorophenol	< 0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
2,4,6-Trichlorophenol	< 0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
2,4-Dichlorophenol	< 0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
2,4-Dimethylphenol	< 0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
2,4-Dinitrophenol	<0.0658	0.0658	0.174		mg/Kg-dry	1	02/26/24 05:33 PM
2,4-Dinitrotoluene	< 0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
2,6-Dinitrotoluene	< 0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
2-Chloronaphthalene	< 0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
2-Chlorophenol	< 0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
2-Methylnaphthalene	< 0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
2-Methylphenol	< 0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
2-Nitroaniline	< 0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
2-Nitrophenol	<0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM

Qualifiers:

ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

 $\ensuremath{\mathrm{C}}$ - Sample Result or QC discussed in Case Narrative

Date:

28-Feb-24

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 1 of 40

CLIENT: Weston Solutions, Inc. Client Sample ID: SS-1

Project: SAWS Impoundment Assessment Lagoons and Lab ID: 2402269-01

Project No: 10412.036.001.0002 **Collection Date:** 02/20/24 09:26 AM

Lab Order: 2402269 Matrix: SOIL

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
SEMIVOLATILES BY GC/MS		SW82	70E				Analyst: DEW
3,3'-Dichlorobenzidine	< 0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
3-Nitroaniline	< 0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
4,6-Dinitro-2-methylphenol	< 0.0395	0.0395	0.0869		mg/Kg-dry	1	02/26/24 05:33 PM
4-Bromophenyl phenyl ether	< 0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
4-Chloro-3-methylphenol	< 0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
4-Chloroaniline	< 0.0395	0.0395	0.0869		mg/Kg-dry	1	02/26/24 05:33 PM
4-Chlorophenyl phenyl ether	< 0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
4-Methylphenol	< 0.0263	0.0263	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
4-Nitroaniline	< 0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
4-Nitrophenol	<0.0658	0.0658	0.174		mg/Kg-dry	1	02/26/24 05:33 PM
Acenaphthene	< 0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
Acenaphthylene	< 0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
Acetophenone	< 0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
Anthracene	< 0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
Atrazine	< 0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
Benzaldehyde	< 0.0132	0.0132	0.0350	N	mg/Kg-dry	1	02/26/24 05:33 PM
Benzo[a]anthracene	< 0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
Benzo[a]pyrene	< 0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
Benzo[b]fluoranthene	< 0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
Benzo[g,h,i]perylene	< 0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
Benzo[k]fluoranthene	< 0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
Benzoic acid	<0.0658	0.0658	0.174		mg/Kg-dry	1	02/26/24 05:33 PM
Benzyl alcohol	< 0.0395	0.0395	0.0869		mg/Kg-dry	1	02/26/24 05:33 PM
Biphenyl	< 0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
Bis(2-chloroethoxy)methane	< 0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
Bis(2-chloroethyl)ether	< 0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
Bis(2-chloroisopropyl)ether	< 0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
Bis(2-ethylhexyl)phthalate	< 0.0842	0.0842	0.0869		mg/Kg-dry	1	02/26/24 05:33 PM
Butyl benzyl phthalate	< 0.0526	0.0526	0.0869		mg/Kg-dry	1	02/26/24 05:33 PM
Caprolactam	< 0.0395	0.0395	0.0869		mg/Kg-dry	1	02/26/24 05:33 PM
Carbazole	< 0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
Chrysene	< 0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
Dibenz[a,h]anthracene	< 0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
Dibenzofuran	< 0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM
Diethyl phthalate	<0.0526	0.0526	0.0869		mg/Kg-dry	1	02/26/24 05:33 PM
Dimethyl phthalate	<0.0526	0.0526	0.0869		mg/Kg-dry	1	02/26/24 05:33 PM
Di-n-butyl phthalate	<0.0526	0.0526	0.0869		mg/Kg-dry	1	02/26/24 05:33 PM
Di-n-octyl phthalate	<0.0526	0.0526	0.0869		mg/Kg-dry	1	02/26/24 05:33 PM
Fluoranthene	< 0.0132	0.0132	0.0350		mg/Kg-dry	1	02/26/24 05:33 PM

Qualifiers:

ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

 $\ensuremath{\mathrm{C}}$ - Sample Result or QC discussed in Case Narrative

Date:

28-Feb-24

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 2 of 40

CLIENT: Weston Solutions, Inc. Client Sample ID: SS-1

Project: SAWS Impoundment Assessment Lagoons and Lab ID: 2402269-01

Lab Order: 2402269 Matrix: SOIL

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed
SEMIVOLATILES BY GC/MS		SW82	270E			Analyst: DEW
Fluorene	<0.0132	0.0132	0.0350	mg/Kg-dry	1	02/26/24 05:33 PM
Hexachlorobenzene	<0.0132	0.0132	0.0350	mg/Kg-dry	1	02/26/24 05:33 PM
Hexachlorobutadiene	<0.0132	0.0132	0.0350	mg/Kg-dry	1	02/26/24 05:33 PM
Hexachlorocyclopentadiene	< 0.0395	0.0395	0.0869	mg/Kg-dry	1	02/26/24 05:33 PM
Hexachloroethane	< 0.0132	0.0132	0.0350	mg/Kg-dry	1	02/26/24 05:33 PM
Indeno[1,2,3-cd]pyrene	< 0.0132	0.0132	0.0350	mg/Kg-dry	1	02/26/24 05:33 PM
Isophorone	< 0.0395	0.0395	0.0869	mg/Kg-dry	1	02/26/24 05:33 PM
Naphthalene	< 0.0132	0.0132	0.0350	mg/Kg-dry	1	02/26/24 05:33 PM
Nitrobenzene	< 0.0132	0.0132	0.0350	mg/Kg-dry	1	02/26/24 05:33 PM
N-Nitrosodi-n-propylamine	< 0.0132	0.0132	0.0350	mg/Kg-dry	1	02/26/24 05:33 PM
N-Nitrosodiphenylamine	< 0.0132	0.0132	0.0350	mg/Kg-dry	1	02/26/24 05:33 PM
Pentachlorophenol	< 0.0132	0.0132	0.0350	mg/Kg-dry	1	02/26/24 05:33 PM
Phenanthrene	< 0.0132	0.0132	0.0350	mg/Kg-dry	1	02/26/24 05:33 PM
Phenol	< 0.0132	0.0132	0.0350	mg/Kg-dry	1	02/26/24 05:33 PM
Pyrene	< 0.0132	0.0132	0.0350	mg/Kg-dry	1	02/26/24 05:33 PM
Pyridine	<0.0658	0.0658	0.174	mg/Kg-dry	1	02/26/24 05:33 PM
Surr: 2,4,6-Tribromophenol	79.0	0	45-126	%REC	1	02/26/24 05:33 PM
Surr: 2-Fluorobiphenyl	84.0	0	60-125	%REC	1	02/26/24 05:33 PM
Surr: 2-Fluorophenol	81.0	0	37-125	%REC	1	02/26/24 05:33 PM
Surr: 4-Terphenyl-d14	90.0	0	45-125	%REC	1	02/26/24 05:33 PM
Surr: Nitrobenzene-d5	77.0	0	45-125	%REC	1	02/26/24 05:33 PM
Surr: Phenol-d5	78.0	0	40-125	%REC	1	02/26/24 05:33 PM
VOLATILES BY 8260/5035 GC/MS		SW82	60D			Analyst: JL
1,1,1,2-Tetrachloroethane	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
1,1,1-Trichloroethane	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
1,1,2,2-Tetrachloroethane	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
1,1,2-Trichloroethane	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
1,1,2-Trichlorotrifluoroethane	< 0.00689	0.00689	0.0207	mg/Kg-dry	1	02/21/24 09:23 PM
1,1-Dichloroethane	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
1,1-Dichloroethene	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
1,1-Dichloropropene	< 0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
1,2,3-Trichlorobenzene	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
1,2,3-Trichloropropane	< 0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
1,2,4-Trichlorobenzene	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
1,2,4-Trimethylbenzene	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
1,2-Dibromo-3-chloropropane	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
1,2-Dibromoethane	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
1,2-Dichlorobenzene	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM

Qualifiers:

ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

 $\ensuremath{\mathrm{C}}$ - Sample Result or QC discussed in Case Narrative

Date:

28-Feb-24

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 3 of 40

CLIENT: Weston Solutions, Inc. Client Sample ID: SS-1

Project: SAWS Impoundment Assessment Lagoons and Lab ID: 2402269-01

Project No: 10412.036.001.0002 **Collection Date:** 02/20/24 09:26 AM

Lab Order: 2402269 Matrix: SOIL

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
VOLATILES BY 8260/5035 GC/MS		SW82	260D				Analyst: JL
1,2-Dichloroethane	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
1,2-Dichloropropane	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
1,3,5-Trimethylbenzene	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
1,3-Dichlorobenzene	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
1,3-Dichloropropane	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
1,4-Dichlorobenzene	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
1-Chlorohexane	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
2,2-Dichloropropane	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
2-Butanone	< 0.00689	0.00689	0.0207		mg/Kg-dry	1	02/21/24 09:23 PM
2-Chlorotoluene	< 0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
2-Hexanone	< 0.00689	0.00689	0.0207		mg/Kg-dry	1	02/21/24 09:23 PM
4-Chlorotoluene	< 0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
4-Methyl-2-pentanone	< 0.00689	0.00689	0.0207		mg/Kg-dry	1	02/21/24 09:23 PM
Acetone	< 0.0207	0.0207	0.0689		mg/Kg-dry	1	02/21/24 09:23 PM
Benzene	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
Bromobenzene	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
Bromochloromethane	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
Bromodichloromethane	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
Bromoform	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
Bromomethane	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
Carbon disulfide	<0.00689	0.00689	0.0207		mg/Kg-dry	1	02/21/24 09:23 PM
Carbon tetrachloride	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
Chlorobenzene	< 0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
Chloroethane	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
Chloroform	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
Chloromethane	< 0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
cis-1,2-Dichloroethene	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
cis-1,3-Dichloropropene	< 0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
Cyclohexane	< 0.00689	0.00689	0.0207	N	mg/Kg-dry	1	02/21/24 09:23 PM
Dibromochloromethane	< 0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
Dibromomethane	< 0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
Dichlorodifluoromethane	< 0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
Ethylbenzene	< 0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
Hexachlorobutadiene	< 0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
Isopropylbenzene	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
m,p-Xylene	<0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
Methyl Acetate	< 0.00689	0.00689	0.0207		mg/Kg-dry	1	02/21/24 09:23 PM
Methyl tert-butyl ether	< 0.00138	0.00138	0.00689		mg/Kg-dry	1	02/21/24 09:23 PM
Methylcyclohexane	< 0.00689	0.00689	0.0207		mg/Kg-dry	1	02/21/24 09:23 PM

Qualifiers:

ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

Date:

28-Feb-24

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 4 of 40

CLIENT: Weston Solutions, Inc. Client Sample ID: SS-1

Project: SAWS Impoundment Assessment Lagoons and Lab ID: 2402269-01

Lab Order: 2402269 Matrix: SOIL

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed
VOLATILES BY 8260/5035 GC/M	S	SW82	260D			Analyst: JL
Methylene chloride	< 0.00689	0.00689	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
Naphthalene	< 0.00689	0.00689	0.0207	mg/Kg-dry	1	02/21/24 09:23 PM
n-Butylbenzene	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
n-Propylbenzene	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
o-Xylene	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
p-Isopropyltoluene	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
sec-Butylbenzene	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
Styrene	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
tert-Butylbenzene	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
Tetrachloroethene	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
Toluene	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
trans-1,2-Dichloroethene	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
trans-1,3-Dichloropropene	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
Trichloroethene	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
Trichlorofluoromethane	< 0.00689	0.00689	0.0207	mg/Kg-dry	1	02/21/24 09:23 PM
Vinyl chloride	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
Xylenes, Total	<0.00138	0.00138	0.00689	mg/Kg-dry	1	02/21/24 09:23 PM
Surr: 1,2-Dichloroethane-d4	107	0	52-149	%REC	1	02/21/24 09:23 PM
Surr: 4-Bromofluorobenzene	105	0	84-118	%REC	1	02/21/24 09:23 PM
Surr: Dibromofluoromethane	95.1	0	65-135	%REC	1	02/21/24 09:23 PM
Surr: Toluene-d8	97.2	0	84-116	%REC	1	02/21/24 09:23 PM
PERCENT MOISTURE		D22	216			Analyst: SMA
Percent Moisture	24.1	0	0	WT%	1	02/22/24 10:00 AM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

Date:

28-Feb-24

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 5 of 40

CLIENT: Weston Solutions, Inc. Client Sample ID: SS-2

Project: SAWS Impoundment Assessment Lagoons and Lab ID: 2402269-02

Lab Order: 2402269 Matrix: SOIL

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - SOLID		SW602	20B				Analyst: SP
Aluminum	20600	699	2100		mg/Kg-dry	250	02/23/24 11:29 AM
Antimony	< 0.559	0.559	1.12		mg/Kg-dry	5	02/23/24 10:46 AM
Arsenic	7.22	0.559	1.12		mg/Kg-dry	5	02/23/24 10:46 AM
Barium	87.0	0.559	2.24		mg/Kg-dry	5	02/23/24 10:46 AM
Beryllium	0.734	0.112	0.335		mg/Kg-dry	5	02/23/24 10:46 AM
Cadmium	0.198	0.112	0.335	J	mg/Kg-dry	5	02/23/24 10:46 AM
Calcium	158000	699	2100		mg/Kg-dry	250	02/23/24 11:29 AM
Chromium	22.4	0.559	2.24		mg/Kg-dry	5	02/23/24 10:46 AM
Cobalt	5.28	0.559	2.24		mg/Kg-dry	5	02/23/24 10:46 AM
Copper	7.22	0.559	2.24		mg/Kg-dry	5	02/23/24 10:46 AM
Iron	17400	699	2100		mg/Kg-dry	250	02/23/24 11:29 AM
Lead	9.11	0.112	0.335		mg/Kg-dry	5	02/23/24 10:46 AM
Magnesium	3990	14.0	41.9		mg/Kg-dry	5	02/23/24 10:46 AM
Manganese	163	0.559	2.24		mg/Kg-dry	5	02/23/24 10:46 AM
Nickel	9.77	0.559	2.24		mg/Kg-dry	5	02/23/24 10:46 AM
Potassium	3660	14.0	41.9		mg/Kg-dry	5	02/23/24 10:46 AM
Selenium	0.418	0.168	0.559	J	mg/Kg-dry	5	02/23/24 10:46 AM
Silver	<0.112	0.112	0.224		mg/Kg-dry	5	02/23/24 10:46 AM
Sodium	69.7	14.0	41.9		mg/Kg-dry	5	02/23/24 10:46 AM
Thallium	<0.559	0.559	1.12		mg/Kg-dry	5	02/23/24 10:46 AM
Vanadium	52.4	1.12	2.79		mg/Kg-dry	5	02/23/24 10:46 AM
Zinc	37.4	1.12	2.79		mg/Kg-dry	5	02/23/24 10:46 AM
MERCURY TOTAL: SOIL/SOLID		SW74	71B				Analyst: CMC
Mercury	<0.0169	0.0169	0.0423		mg/Kg-dry	1	02/23/24 10:40 AM
SEMIVOLATILES BY GC/MS		SW82	70E				Analyst: DEW
2,4,5-Trichlorophenol	< 0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
2,4,6-Trichlorophenol	< 0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
2,4-Dichlorophenol	< 0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
2,4-Dimethylphenol	< 0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
2,4-Dinitrophenol	< 0.0579	0.0579	0.153		mg/Kg-dry	1	02/26/24 05:59 PM
2,4-Dinitrotoluene	< 0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
2,6-Dinitrotoluene	< 0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
2-Chloronaphthalene	< 0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
2-Chlorophenol	< 0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
2-Methylnaphthalene	< 0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
2-Methylphenol	< 0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
2-Nitroaniline	< 0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
2-Nitrophenol	<0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM

Qualifiers:

ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

Date:

28-Feb-24

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 6 of 40

CLIENT: Weston Solutions, Inc. Client Sample ID: SS-2

Project: SAWS Impoundment Assessment Lagoons and Lab ID: 2402269-02

Lab Order: 2402269 Matrix: SOIL

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
SEMIVOLATILES BY GC/MS		SW82	70E				Analyst: DEW
3,3'-Dichlorobenzidine	<0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
3-Nitroaniline	< 0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
4,6-Dinitro-2-methylphenol	< 0.0347	0.0347	0.0764		mg/Kg-dry	1	02/26/24 05:59 PM
4-Bromophenyl phenyl ether	< 0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
4-Chloro-3-methylphenol	< 0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
4-Chloroaniline	< 0.0347	0.0347	0.0764		mg/Kg-dry	1	02/26/24 05:59 PM
4-Chlorophenyl phenyl ether	< 0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
4-Methylphenol	< 0.0232	0.0232	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
4-Nitroaniline	< 0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
4-Nitrophenol	< 0.0579	0.0579	0.153		mg/Kg-dry	1	02/26/24 05:59 PM
Acenaphthene	< 0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
Acenaphthylene	< 0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
Acetophenone	< 0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
Anthracene	< 0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
Atrazine	< 0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
Benzaldehyde	< 0.0116	0.0116	0.0308	N	mg/Kg-dry	1	02/26/24 05:59 PM
Benzo[a]anthracene	< 0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
Benzo[a]pyrene	< 0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
Benzo[b]fluoranthene	< 0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
Benzo[g,h,i]perylene	< 0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
Benzo[k]fluoranthene	< 0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
Benzoic acid	< 0.0579	0.0579	0.153		mg/Kg-dry	1	02/26/24 05:59 PM
Benzyl alcohol	< 0.0347	0.0347	0.0764		mg/Kg-dry	1	02/26/24 05:59 PM
Biphenyl	< 0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
Bis(2-chloroethoxy)methane	< 0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
Bis(2-chloroethyl)ether	< 0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
Bis(2-chloroisopropyl)ether	< 0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
Bis(2-ethylhexyl)phthalate	< 0.0741	0.0741	0.0764		mg/Kg-dry	1	02/26/24 05:59 PM
Butyl benzyl phthalate	< 0.0463	0.0463	0.0764		mg/Kg-dry	1	02/26/24 05:59 PM
Caprolactam	< 0.0347	0.0347	0.0764		mg/Kg-dry	1	02/26/24 05:59 PM
Carbazole	< 0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
Chrysene	< 0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
Dibenz[a,h]anthracene	< 0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
Dibenzofuran	< 0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM
Diethyl phthalate	< 0.0463	0.0463	0.0764		mg/Kg-dry	1	02/26/24 05:59 PM
Dimethyl phthalate	< 0.0463	0.0463	0.0764		mg/Kg-dry	1	02/26/24 05:59 PM
Di-n-butyl phthalate	< 0.0463	0.0463	0.0764		mg/Kg-dry	1	02/26/24 05:59 PM
Di-n-octyl phthalate	< 0.0463	0.0463	0.0764		mg/Kg-dry	1	02/26/24 05:59 PM
Fluoranthene	<0.0116	0.0116	0.0308		mg/Kg-dry	1	02/26/24 05:59 PM

Qualifiers:

ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

 $\ensuremath{\mathrm{C}}$ - Sample Result or QC discussed in Case Narrative

Date:

28-Feb-24

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 7 of 40

CLIENT: Weston Solutions, Inc. Client Sample ID: SS-2

Project: SAWS Impoundment Assessment Lagoons and Lab ID: 2402269-02

Lab Order: 2402269 Matrix: SOIL

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed
SEMIVOLATILES BY GC/MS		SW82	270E			Analyst: DEW
Fluorene	<0.0116	0.0116	0.0308	mg/Kg-dry	1	02/26/24 05:59 PM
Hexachlorobenzene	<0.0116	0.0116	0.0308	mg/Kg-dry	1	02/26/24 05:59 PM
Hexachlorobutadiene	<0.0116	0.0116	0.0308	mg/Kg-dry	1	02/26/24 05:59 PM
Hexachlorocyclopentadiene	< 0.0347	0.0347	0.0764	mg/Kg-dry	1	02/26/24 05:59 PM
Hexachloroethane	< 0.0116	0.0116	0.0308	mg/Kg-dry	1	02/26/24 05:59 PM
Indeno[1,2,3-cd]pyrene	< 0.0116	0.0116	0.0308	mg/Kg-dry	1	02/26/24 05:59 PM
Isophorone	< 0.0347	0.0347	0.0764	mg/Kg-dry	1	02/26/24 05:59 PM
Naphthalene	< 0.0116	0.0116	0.0308	mg/Kg-dry	1	02/26/24 05:59 PM
Nitrobenzene	< 0.0116	0.0116	0.0308	mg/Kg-dry	1	02/26/24 05:59 PM
N-Nitrosodi-n-propylamine	< 0.0116	0.0116	0.0308	mg/Kg-dry	1	02/26/24 05:59 PM
N-Nitrosodiphenylamine	< 0.0116	0.0116	0.0308	mg/Kg-dry	1	02/26/24 05:59 PM
Pentachlorophenol	< 0.0116	0.0116	0.0308	mg/Kg-dry	1	02/26/24 05:59 PM
Phenanthrene	< 0.0116	0.0116	0.0308	mg/Kg-dry	1	02/26/24 05:59 PM
Phenol	< 0.0116	0.0116	0.0308	mg/Kg-dry	1	02/26/24 05:59 PM
Pyrene	< 0.0116	0.0116	0.0308	mg/Kg-dry	1	02/26/24 05:59 PM
Pyridine	< 0.0579	0.0579	0.153	mg/Kg-dry	1	02/26/24 05:59 PM
Surr: 2,4,6-Tribromophenol	82.0	0	45-126	%REC	1	02/26/24 05:59 PM
Surr: 2-Fluorobiphenyl	84.0	0	60-125	%REC	1	02/26/24 05:59 PM
Surr: 2-Fluorophenol	80.0	0	37-125	%REC	1	02/26/24 05:59 PM
Surr: 4-Terphenyl-d14	91.0	0	45-125	%REC	1	02/26/24 05:59 PM
Surr: Nitrobenzene-d5	76.0	0	45-125	%REC	1	02/26/24 05:59 PM
Surr: Phenol-d5	78.0	0	40-125	%REC	1	02/26/24 05:59 PM
VOLATILES BY 8260/5035 GC/MS		SW82	60D			Analyst: JL
1,1,1,2-Tetrachloroethane	< 0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM
1,1,1-Trichloroethane	< 0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM
1,1,2,2-Tetrachloroethane	< 0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM
1,1,2-Trichloroethane	< 0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM
1,1,2-Trichlorotrifluoroethane	<0.00508	0.00508	0.0152	mg/Kg-dry	1	02/21/24 09:51 PM
1,1-Dichloroethane	< 0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM
1,1-Dichloroethene	< 0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM
1,1-Dichloropropene	< 0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM
1,2,3-Trichlorobenzene	< 0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM
1,2,3-Trichloropropane	< 0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM
1,2,4-Trichlorobenzene	< 0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM
1,2,4-Trimethylbenzene	< 0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM
1,2-Dibromo-3-chloropropane	< 0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM
1,2-Dibromoethane	< 0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM
1,2-Dichlorobenzene	<0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM

Qualifiers:

ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

 $\ensuremath{\mathrm{C}}$ - Sample Result or QC discussed in Case Narrative

Date:

28-Feb-24

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 8 of 40

CLIENT: Weston Solutions, Inc. Client Sample ID: SS-2

Project: SAWS Impoundment Assessment Lagoons and Lab ID: 2402269-02

Lab Order: 2402269 Matrix: SOIL

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
VOLATILES BY 8260/5035 GC/MS		SW82	260D				Analyst: JL
1,2-Dichloroethane	<0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
1,2-Dichloropropane	<0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
1,3,5-Trimethylbenzene	<0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
1,3-Dichlorobenzene	<0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
1,3-Dichloropropane	<0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
1,4-Dichlorobenzene	<0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
1-Chlorohexane	<0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
2,2-Dichloropropane	<0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
2-Butanone	<0.00508	0.00508	0.0152		mg/Kg-dry	1	02/21/24 09:51 PM
2-Chlorotoluene	< 0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
2-Hexanone	< 0.00508	0.00508	0.0152		mg/Kg-dry	1	02/21/24 09:51 PM
4-Chlorotoluene	<0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
4-Methyl-2-pentanone	< 0.00508	0.00508	0.0152		mg/Kg-dry	1	02/21/24 09:51 PM
Acetone	< 0.0152	0.0152	0.0508		mg/Kg-dry	1	02/21/24 09:51 PM
Benzene	< 0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
Bromobenzene	< 0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
Bromochloromethane	< 0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
Bromodichloromethane	< 0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
Bromoform	< 0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
Bromomethane	< 0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
Carbon disulfide	<0.00508	0.00508	0.0152		mg/Kg-dry	1	02/21/24 09:51 PM
Carbon tetrachloride	< 0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
Chlorobenzene	< 0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
Chloroethane	< 0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
Chloroform	< 0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
Chloromethane	< 0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
cis-1,2-Dichloroethene	< 0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
cis-1,3-Dichloropropene	< 0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
Cyclohexane	<0.00508	0.00508	0.0152	N	mg/Kg-dry	1	02/21/24 09:51 PM
Dibromochloromethane	< 0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
Dibromomethane	< 0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
Dichlorodifluoromethane	< 0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
Ethylbenzene	< 0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
Hexachlorobutadiene	< 0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
Isopropylbenzene	< 0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
m,p-Xylene	< 0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
Methyl Acetate	<0.00508	0.00508	0.0152		mg/Kg-dry	1	02/21/24 09:51 PM
Methyl tert-butyl ether	< 0.00102	0.00102	0.00508		mg/Kg-dry	1	02/21/24 09:51 PM
Methylcyclohexane	<0.00508	0.00508	0.0152		mg/Kg-dry	1	02/21/24 09:51 PM

Qualifiers:

ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

 $\ensuremath{\mathrm{C}}$ - Sample Result or QC discussed in Case Narrative

Date:

28-Feb-24

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 9 of 40

CLIENT: Weston Solutions, Inc. Client Sample ID: SS-2

Project: SAWS Impoundment Assessment Lagoons and Lab ID: 2402269-02

Lab Order: 2402269 Matrix: SOIL

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed
VOLATILES BY 8260/5035 GC/M	S	SW8	260D			Analyst: JL
Methylene chloride	<0.00508	0.00508	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM
Naphthalene	< 0.00508	0.00508	0.0152	mg/Kg-dry	1	02/21/24 09:51 PM
n-Butylbenzene	< 0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM
n-Propylbenzene	< 0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM
o-Xylene	< 0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM
p-Isopropyltoluene	< 0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM
sec-Butylbenzene	< 0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM
Styrene	< 0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM
tert-Butylbenzene	< 0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM
Tetrachloroethene	< 0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM
Toluene	< 0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM
trans-1,2-Dichloroethene	< 0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM
trans-1,3-Dichloropropene	< 0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM
Trichloroethene	< 0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM
Trichlorofluoromethane	< 0.00508	0.00508	0.0152	mg/Kg-dry	1	02/21/24 09:51 PM
Vinyl chloride	< 0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM
Xylenes, Total	< 0.00102	0.00102	0.00508	mg/Kg-dry	1	02/21/24 09:51 PM
Surr: 1,2-Dichloroethane-d4	108	0	52-149	%REC	1	02/21/24 09:51 PM
Surr: 4-Bromofluorobenzene	106	0	84-118	%REC	1	02/21/24 09:51 PM
Surr: Dibromofluoromethane	104	0	65-135	%REC	1	02/21/24 09:51 PM
Surr: Toluene-d8	93.0	0	84-116	%REC	1	02/21/24 09:51 PM
PERCENT MOISTURE		D2:	216			Analyst: SMA
Percent Moisture	14.8	0	0	WT%	1	02/22/24 10:00 AM

Qualifiers: ND - Not Detected at the SDL

 \boldsymbol{J} - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

Date:

28-Feb-24

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 10 of 40

CLIENT: Weston Solutions, Inc. Client Sample ID: SS-3

Project: SAWS Impoundment Assessment Lagoons and Lab ID: 2402269-03

Project No: 10412.036.001.0002 **Collection Date:** 02/20/24 10:18 AM

Lab Order: 2402269 Matrix: SOIL

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - SOLID		SW602	20B				Analyst: SP
Aluminum	18200	264	793		mg/Kg-dry	100	02/23/24 11:31 AM
Antimony	<0.529	0.529	1.06		mg/Kg-dry	5	02/23/24 10:48 AM
Arsenic	5.45	0.529	1.06		mg/Kg-dry	5	02/23/24 10:48 AM
Barium	127	0.529	2.12		mg/Kg-dry	5	02/23/24 10:48 AM
Beryllium	0.653	0.106	0.317		mg/Kg-dry	5	02/23/24 10:48 AM
Cadmium	0.155	0.106	0.317	J	mg/Kg-dry	5	02/23/24 10:48 AM
Calcium	119000	264	793		mg/Kg-dry	100	02/23/24 11:31 AM
Chromium	21.9	0.529	2.12		mg/Kg-dry	5	02/23/24 10:48 AM
Cobalt	4.91	0.529	2.12		mg/Kg-dry	5	02/23/24 10:48 AM
Copper	7.06	0.529	2.12		mg/Kg-dry	5	02/23/24 10:48 AM
Iron	18100	264	793		mg/Kg-dry	100	02/23/24 11:31 AM
Lead	8.60	0.106	0.317		mg/Kg-dry	5	02/23/24 10:48 AM
Magnesium	3420	13.2	39.7		mg/Kg-dry	5	02/23/24 10:48 AM
Manganese	147	0.529	2.12		mg/Kg-dry	5	02/23/24 10:48 AM
Nickel	10.5	0.529	2.12		mg/Kg-dry	5	02/23/24 10:48 AM
Potassium	3610	13.2	39.7		mg/Kg-dry	5	02/23/24 10:48 AM
Selenium	0.338	0.159	0.529	J	mg/Kg-dry	5	02/23/24 10:48 AM
Silver	<0.106	0.106	0.212		mg/Kg-dry	5	02/23/24 10:48 AM
Sodium	53.8	13.2	39.7		mg/Kg-dry	5	02/23/24 10:48 AM
Thallium	<0.529	0.529	1.06		mg/Kg-dry	5	02/23/24 10:48 AM
Vanadium	56.7	1.06	2.64		mg/Kg-dry	5	02/23/24 10:48 AM
Zinc	38.8	1.06	2.64		mg/Kg-dry	5	02/23/24 10:48 AM
MERCURY TOTAL: SOIL/SOLID		SW747	71B				Analyst: CMC
Mercury	0.0229	0.0178	0.0445	J	mg/Kg-dry	1	02/23/24 10:51 AM
SEMIVOLATILES BY GC/MS		SW82	70E				Analyst: DEW
2,4,5-Trichlorophenol	< 0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
2,4,6-Trichlorophenol	< 0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
2,4-Dichlorophenol	< 0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
2,4-Dimethylphenol	< 0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
2,4-Dinitrophenol	< 0.0568	0.0568	0.150		mg/Kg-dry	1	02/26/24 06:24 PM
2,4-Dinitrotoluene	< 0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
2,6-Dinitrotoluene	< 0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
2-Chloronaphthalene	< 0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
2-Chlorophenol	< 0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
2-Methylnaphthalene	< 0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
2-Methylphenol	< 0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
2-Nitroaniline	< 0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
2-Nitrophenol	<0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM

Qualifiers:

ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

 $\ensuremath{\mathrm{C}}$ - Sample Result or QC discussed in Case Narrative

Date:

28-Feb-24

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 11 of 40

CLIENT: Weston Solutions, Inc. Client Sample ID: SS-3

Project: SAWS Impoundment Assessment Lagoons and Lab ID: 2402269-03

Project No: 10412.036.001.0002 **Collection Date:** 02/20/24 10:18 AM

Lab Order: 2402269 Matrix: SOIL

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
SEMIVOLATILES BY GC/MS		SW82	70E				Analyst: DEW
3,3´-Dichlorobenzidine	< 0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
3-Nitroaniline	< 0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
4,6-Dinitro-2-methylphenol	< 0.0341	0.0341	0.0750		mg/Kg-dry	1	02/26/24 06:24 PM
4-Bromophenyl phenyl ether	< 0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
4-Chloro-3-methylphenol	< 0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
4-Chloroaniline	< 0.0341	0.0341	0.0750		mg/Kg-dry	1	02/26/24 06:24 PM
4-Chlorophenyl phenyl ether	< 0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
4-Methylphenol	< 0.0227	0.0227	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
4-Nitroaniline	< 0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
4-Nitrophenol	< 0.0568	0.0568	0.150		mg/Kg-dry	1	02/26/24 06:24 PM
Acenaphthene	< 0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
Acenaphthylene	< 0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
Acetophenone	< 0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
Anthracene	< 0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
Atrazine	< 0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
Benzaldehyde	< 0.0114	0.0114	0.0302	N	mg/Kg-dry	1	02/26/24 06:24 PM
Benzo[a]anthracene	< 0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
Benzo[a]pyrene	< 0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
Benzo[b]fluoranthene	< 0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
Benzo[g,h,i]perylene	< 0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
Benzo[k]fluoranthene	< 0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
Benzoic acid	<0.0568	0.0568	0.150		mg/Kg-dry	1	02/26/24 06:24 PM
Benzyl alcohol	< 0.0341	0.0341	0.0750		mg/Kg-dry	1	02/26/24 06:24 PM
Biphenyl	< 0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
Bis(2-chloroethoxy)methane	< 0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
Bis(2-chloroethyl)ether	< 0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
Bis(2-chloroisopropyl)ether	< 0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
Bis(2-ethylhexyl)phthalate	< 0.0727	0.0727	0.0750		mg/Kg-dry	1	02/26/24 06:24 PM
Butyl benzyl phthalate	< 0.0454	0.0454	0.0750		mg/Kg-dry	1	02/26/24 06:24 PM
Caprolactam	< 0.0341	0.0341	0.0750		mg/Kg-dry	1	02/26/24 06:24 PM
Carbazole	< 0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
Chrysene	< 0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
Dibenz[a,h]anthracene	< 0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
Dibenzofuran	< 0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM
Diethyl phthalate	< 0.0454	0.0454	0.0750		mg/Kg-dry	1	02/26/24 06:24 PM
Dimethyl phthalate	< 0.0454	0.0454	0.0750		mg/Kg-dry	1	02/26/24 06:24 PM
Di-n-butyl phthalate	< 0.0454	0.0454	0.0750		mg/Kg-dry	1	02/26/24 06:24 PM
Di-n-octyl phthalate	< 0.0454	0.0454	0.0750		mg/Kg-dry	1	02/26/24 06:24 PM
Fluoranthene	<0.0114	0.0114	0.0302		mg/Kg-dry	1	02/26/24 06:24 PM

Qualifiers:

ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

Date:

28-Feb-24

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 12 of 40

CLIENT: Weston Solutions, Inc. Client Sample ID: SS-3

Project: SAWS Impoundment Assessment Lagoons and Lab ID: 2402269-03

Lab Order: 2402269 Matrix: SOIL

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed
SEMIVOLATILES BY GC/MS		SW82	70E			Analyst: DEW
Fluorene	< 0.0114	0.0114	0.0302	mg/Kg-dry	1	02/26/24 06:24 PM
Hexachlorobenzene	< 0.0114	0.0114	0.0302	mg/Kg-dry	1	02/26/24 06:24 PM
Hexachlorobutadiene	< 0.0114	0.0114	0.0302	mg/Kg-dry	1	02/26/24 06:24 PM
Hexachlorocyclopentadiene	< 0.0341	0.0341	0.0750	mg/Kg-dry	1	02/26/24 06:24 PM
Hexachloroethane	< 0.0114	0.0114	0.0302	mg/Kg-dry	1	02/26/24 06:24 PM
Indeno[1,2,3-cd]pyrene	< 0.0114	0.0114	0.0302	mg/Kg-dry	1	02/26/24 06:24 PM
Isophorone	< 0.0341	0.0341	0.0750	mg/Kg-dry	1	02/26/24 06:24 PM
Naphthalene	< 0.0114	0.0114	0.0302	mg/Kg-dry	1	02/26/24 06:24 PM
Nitrobenzene	< 0.0114	0.0114	0.0302	mg/Kg-dry	1	02/26/24 06:24 PM
N-Nitrosodi-n-propylamine	< 0.0114	0.0114	0.0302	mg/Kg-dry	1	02/26/24 06:24 PM
N-Nitrosodiphenylamine	< 0.0114	0.0114	0.0302	mg/Kg-dry	1	02/26/24 06:24 PM
Pentachlorophenol	< 0.0114	0.0114	0.0302	mg/Kg-dry	1	02/26/24 06:24 PM
Phenanthrene	< 0.0114	0.0114	0.0302	mg/Kg-dry	1	02/26/24 06:24 PM
Phenol	< 0.0114	0.0114	0.0302	mg/Kg-dry	1	02/26/24 06:24 PM
Pyrene	< 0.0114	0.0114	0.0302	mg/Kg-dry	1	02/26/24 06:24 PM
Pyridine	< 0.0568	0.0568	0.150	mg/Kg-dry	1	02/26/24 06:24 PM
Surr: 2,4,6-Tribromophenol	80.0	0	45-126	%REC	1	02/26/24 06:24 PM
Surr: 2-Fluorobiphenyl	84.0	0	60-125	%REC	1	02/26/24 06:24 PM
Surr: 2-Fluorophenol	82.0	0	37-125	%REC	1	02/26/24 06:24 PM
Surr: 4-Terphenyl-d14	90.0	0	45-125	%REC	1	02/26/24 06:24 PM
Surr: Nitrobenzene-d5	77.0	0	45-125	%REC	1	02/26/24 06:24 PM
Surr: Phenol-d5	77.0	0	40-125	%REC	1	02/26/24 06:24 PM
VOLATILES BY 8260/5035 GC/MS		SW82	60D			Analyst: JL
1,1,1,2-Tetrachloroethane	< 0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM
1,1,1-Trichloroethane	< 0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM
1,1,2,2-Tetrachloroethane	< 0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM
1,1,2-Trichloroethane	< 0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM
1,1,2-Trichlorotrifluoroethane	< 0.00456	0.00456	0.0137	mg/Kg-dry	1	02/21/24 10:19 PM
1,1-Dichloroethane	< 0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM
1,1-Dichloroethene	< 0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM
1,1-Dichloropropene	< 0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM
1,2,3-Trichlorobenzene	< 0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM
1,2,3-Trichloropropane	< 0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM
1,2,4-Trichlorobenzene	< 0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM
1,2,4-Trimethylbenzene	< 0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM
1,2-Dibromo-3-chloropropane	< 0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM
1,2-Dibromoethane	< 0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM
1,2-Dichlorobenzene	< 0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM

Qualifiers:

ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

Date:

28-Feb-24

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 13 of 40

CLIENT: Weston Solutions, Inc. Client Sample ID: SS-3

Project: SAWS Impoundment Assessment Lagoons and Lab ID: 2402269-03

Lab Order: 2402269 Matrix: SOIL

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
VOLATILES BY 8260/5035 GC/MS	SW8260D						Analyst: JL
1,2-Dichloroethane	<0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
1,2-Dichloropropane	<0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
1,3,5-Trimethylbenzene	<0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
1,3-Dichlorobenzene	<0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
1,3-Dichloropropane	<0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
1,4-Dichlorobenzene	< 0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
1-Chlorohexane	<0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
2,2-Dichloropropane	<0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
2-Butanone	< 0.00456	0.00456	0.0137		mg/Kg-dry	1	02/21/24 10:19 PM
2-Chlorotoluene	< 0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
2-Hexanone	< 0.00456	0.00456	0.0137		mg/Kg-dry	1	02/21/24 10:19 PM
4-Chlorotoluene	<0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
4-Methyl-2-pentanone	< 0.00456	0.00456	0.0137		mg/Kg-dry	1	02/21/24 10:19 PM
Acetone	< 0.0137	0.0137	0.0456		mg/Kg-dry	1	02/21/24 10:19 PM
Benzene	< 0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
Bromobenzene	< 0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
Bromochloromethane	< 0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
Bromodichloromethane	< 0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
Bromoform	< 0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
Bromomethane	< 0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
Carbon disulfide	< 0.00456	0.00456	0.0137		mg/Kg-dry	1	02/21/24 10:19 PM
Carbon tetrachloride	< 0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
Chlorobenzene	< 0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
Chloroethane	< 0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
Chloroform	< 0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
Chloromethane	< 0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
cis-1,2-Dichloroethene	< 0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
cis-1,3-Dichloropropene	< 0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
Cyclohexane	< 0.00456	0.00456	0.0137	N	mg/Kg-dry	1	02/21/24 10:19 PM
Dibromochloromethane	< 0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
Dibromomethane	< 0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
Dichlorodifluoromethane	< 0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
Ethylbenzene	< 0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
Hexachlorobutadiene	< 0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
Isopropylbenzene	< 0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
m,p-Xylene	< 0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
Methyl Acetate	< 0.00456	0.00456	0.0137		mg/Kg-dry	1	02/21/24 10:19 PM
Methyl tert-butyl ether	< 0.000913	0.000913	0.00456		mg/Kg-dry	1	02/21/24 10:19 PM
Methylcyclohexane	<0.00456	0.00456	0.0137		mg/Kg-dry	1	02/21/24 10:19 PM

Qualifiers:

ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

Date:

28-Feb-24

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 14 of 40

CLIENT: Weston Solutions, Inc. Client Sample ID: SS-3

Project: SAWS Impoundment Assessment Lagoons and Lab ID: 2402269-03

Lab Order: 2402269 Matrix: SOIL

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed	
VOLATILES BY 8260/5035 GC/MS		SW8260D			Analyst: JL		
Methylene chloride	< 0.00456	0.00456	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM	
Naphthalene	< 0.00456	0.00456	0.0137	mg/Kg-dry	1	02/21/24 10:19 PM	
n-Butylbenzene	< 0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM	
n-Propylbenzene	< 0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM	
o-Xylene	< 0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM	
p-Isopropyltoluene	< 0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM	
sec-Butylbenzene	< 0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM	
Styrene	< 0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM	
tert-Butylbenzene	< 0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM	
Tetrachloroethene	< 0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM	
Toluene	< 0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM	
trans-1,2-Dichloroethene	< 0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM	
trans-1,3-Dichloropropene	< 0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM	
Trichloroethene	< 0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM	
Trichlorofluoromethane	< 0.00456	0.00456	0.0137	mg/Kg-dry	1	02/21/24 10:19 PM	
Vinyl chloride	< 0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM	
Xylenes, Total	< 0.000913	0.000913	0.00456	mg/Kg-dry	1	02/21/24 10:19 PM	
Surr: 1,2-Dichloroethane-d4	106	0	52-149	%REC	1	02/21/24 10:19 PM	
Surr: 4-Bromofluorobenzene	106	0	84-118	%REC	1	02/21/24 10:19 PM	
Surr: Dibromofluoromethane	100	0	65-135	%REC	1	02/21/24 10:19 PM	
Surr: Toluene-d8	96.3	0	84-116	%REC	1	02/21/24 10:19 PM	
PERCENT MOISTURE	D2216			Analyst: SMA			
Percent Moisture	14.8	0	0	WT%	1	02/22/24 10:00 AM	

Qualifiers: ND - Not Detected at the SDL

 \boldsymbol{J} - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

Date:

28-Feb-24

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 15 of 40

CLIENT: Weston Solutions, Inc. Client Sample ID: SS-4

Project: SAWS Impoundment Assessment Lagoons and Lab ID: 2402269-04

Lab Order: 2402269 Matrix: SOIL

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed	
TRACE METALS: ICP-MS - SOLID		SW6020B				Analyst: SP		
Aluminum	10000	273	818		mg/Kg-dry	100	02/23/24 11:21 AM	
Antimony	<0.545	0.545	1.09		mg/Kg-dry	5	02/23/24 10:38 AM	
Arsenic	5.19	0.545	1.09		mg/Kg-dry	5	02/23/24 10:38 AM	
Barium	61.2	0.545	2.18		mg/Kg-dry	5	02/23/24 10:38 AM	
Beryllium	0.454	0.109	0.327		mg/Kg-dry	5	02/23/24 10:38 AM	
Cadmium	<0.109	0.109	0.327		mg/Kg-dry	5	02/23/24 10:38 AM	
Calcium	46100	273	818		mg/Kg-dry	100	02/23/24 11:21 AM	
Chromium	12.0	0.545	2.18		mg/Kg-dry	5	02/23/24 10:38 AM	
Cobalt	3.26	0.545	2.18		mg/Kg-dry	5	02/23/24 10:38 AM	
Copper	5.20	0.545	2.18		mg/Kg-dry	5	02/23/24 10:38 AM	
Iron	26000	273	818		mg/Kg-dry	100	02/23/24 11:21 AM	
Lead	6.37	0.109	0.327		mg/Kg-dry	5	02/23/24 10:38 AM	
Magnesium	1800	13.6	40.9		mg/Kg-dry	5	02/23/24 10:38 AM	
Manganese	92.9	0.545	2.18		mg/Kg-dry	5	02/23/24 10:38 AM	
Nickel	7.21	0.545	2.18		mg/Kg-dry	5	02/23/24 10:38 AM	
Potassium	1920	13.6	40.9		mg/Kg-dry	5	02/23/24 10:38 AM	
Selenium	0.949	0.164	0.545		mg/Kg-dry	5	02/23/24 10:38 AM	
Silver	<0.109	0.109	0.218		mg/Kg-dry	5	02/23/24 10:38 AM	
Sodium	34.6	13.6	40.9	J	mg/Kg-dry	5	02/23/24 10:38 AM	
Thallium	<0.545	0.545	1.09		mg/Kg-dry	5	02/23/24 10:38 AM	
Vanadium	50.0	1.09	2.73		mg/Kg-dry	5	02/23/24 10:38 AM	
Zinc	29.7	1.09	2.73		mg/Kg-dry	5	02/23/24 10:38 AM	
MERCURY TOTAL: SOIL/SOLID		SW7471B			Analyst: CMC			
Mercury	<0.0174	0.0174	0.0436		mg/Kg-dry	1	02/23/24 10:54 AM	
SEMIVOLATILES BY GC/MS		SW8270E			Analyst: DEW			
2,4,5-Trichlorophenol	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM	
2,4,6-Trichlorophenol	< 0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM	
2,4-Dichlorophenol	< 0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM	
2,4-Dimethylphenol	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM	
2,4-Dinitrophenol	< 0.0574	0.0574	0.151		mg/Kg-dry	1	02/26/24 06:49 PM	
2,4-Dinitrotoluene	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM	
2,6-Dinitrotoluene	< 0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM	
2-Chloronaphthalene	< 0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM	
2-Chlorophenol	< 0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM	
2-Methylnaphthalene	< 0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM	
2-Methylphenol	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM	
2-Nitroaniline	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM	
2-Nitrophenol	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM	

Qualifiers:

ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

 $\ensuremath{\mathrm{C}}$ - Sample Result or QC discussed in Case Narrative

Date:

28-Feb-24

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 16 of 40

CLIENT: Weston Solutions, Inc. Client Sample ID: SS-4

Project: SAWS Impoundment Assessment Lagoons and Lab ID: 2402269-04

Project No: 10412.036.001.0002 **Collection Date:** 02/20/24 10:45 AM

Lab Order: 2402269 Matrix: SOIL

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
SEMIVOLATILES BY GC/MS		SW82	70E				Analyst: DEW
3,3´-Dichlorobenzidine	< 0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
3-Nitroaniline	< 0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
4,6-Dinitro-2-methylphenol	< 0.0344	0.0344	0.0757		mg/Kg-dry	1	02/26/24 06:49 PM
4-Bromophenyl phenyl ether	< 0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
4-Chloro-3-methylphenol	< 0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
4-Chloroaniline	< 0.0344	0.0344	0.0757		mg/Kg-dry	1	02/26/24 06:49 PM
4-Chlorophenyl phenyl ether	< 0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
4-Methylphenol	< 0.0230	0.0230	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
4-Nitroaniline	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
4-Nitrophenol	< 0.0574	0.0574	0.151		mg/Kg-dry	1	02/26/24 06:49 PM
Acenaphthene	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Acenaphthylene	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Acetophenone	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Anthracene	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Atrazine	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Benzaldehyde	<0.0115	0.0115	0.0305	N	mg/Kg-dry	1	02/26/24 06:49 PM
Benzo[a]anthracene	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Benzo[a]pyrene	0.0191	0.0115	0.0305	J	mg/Kg-dry	1	02/26/24 06:49 PM
Benzo[b]fluoranthene	0.0298	0.0115	0.0305	J	mg/Kg-dry	1	02/26/24 06:49 PM
Benzo[g,h,i]perylene	0.0176	0.0115	0.0305	J	mg/Kg-dry	1	02/26/24 06:49 PM
Benzo[k]fluoranthene	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Benzoic acid	< 0.0574	0.0574	0.151		mg/Kg-dry	1	02/26/24 06:49 PM
Benzyl alcohol	< 0.0344	0.0344	0.0757		mg/Kg-dry	1	02/26/24 06:49 PM
Biphenyl	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Bis(2-chloroethoxy)methane	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Bis(2-chloroethyl)ether	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Bis(2-chloroisopropyl)ether	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Bis(2-ethylhexyl)phthalate	< 0.0734	0.0734	0.0757		mg/Kg-dry	1	02/26/24 06:49 PM
Butyl benzyl phthalate	< 0.0459	0.0459	0.0757		mg/Kg-dry	1	02/26/24 06:49 PM
Caprolactam	< 0.0344	0.0344	0.0757		mg/Kg-dry	1	02/26/24 06:49 PM
Carbazole	< 0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Chrysene	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Dibenz[a,h]anthracene	< 0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Dibenzofuran	< 0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Diethyl phthalate	< 0.0459	0.0459	0.0757		mg/Kg-dry	1	02/26/24 06:49 PM
Dimethyl phthalate	< 0.0459	0.0459	0.0757		mg/Kg-dry	1	02/26/24 06:49 PM
Di-n-butyl phthalate	< 0.0459	0.0459	0.0757		mg/Kg-dry	1	02/26/24 06:49 PM
Di-n-octyl phthalate	<0.0459	0.0459	0.0757		mg/Kg-dry	1	02/26/24 06:49 PM
Fluoranthene	0.0252	0.0115	0.0305	J	mg/Kg-dry	1	02/26/24 06:49 PM

Qualifiers:

ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

Date:

28-Feb-24

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 17 of 40

CLIENT: Weston Solutions, Inc. Client Sample ID: SS-4

Project: SAWS Impoundment Assessment Lagoons and Lab ID: 2402269-04

Lab Order: 2402269 Matrix: SOIL

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
SEMIVOLATILES BY GC/MS		SW82	270E				Analyst: DEW
Fluorene	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Hexachlorobenzene	< 0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Hexachlorobutadiene	<0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Hexachlorocyclopentadiene	< 0.0344	0.0344	0.0757		mg/Kg-dry	1	02/26/24 06:49 PM
Hexachloroethane	< 0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Indeno[1,2,3-cd]pyrene	0.0145	0.0115	0.0305	J	mg/Kg-dry	1	02/26/24 06:49 PM
Isophorone	< 0.0344	0.0344	0.0757		mg/Kg-dry	1	02/26/24 06:49 PM
Naphthalene	< 0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Nitrobenzene	< 0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
N-Nitrosodi-n-propylamine	< 0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
N-Nitrosodiphenylamine	< 0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Pentachlorophenol	< 0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Phenanthrene	< 0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Phenol	< 0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Pyrene	< 0.0115	0.0115	0.0305		mg/Kg-dry	1	02/26/24 06:49 PM
Pyridine	< 0.0574	0.0574	0.151		mg/Kg-dry	1	02/26/24 06:49 PM
Surr: 2,4,6-Tribromophenol	85.0	0	45-126		%REC	1	02/26/24 06:49 PM
Surr: 2-Fluorobiphenyl	89.0	0	60-125		%REC	1	02/26/24 06:49 PM
Surr: 2-Fluorophenol	85.0	0	37-125		%REC	1	02/26/24 06:49 PM
Surr: 4-Terphenyl-d14	92.0	0	45-125		%REC	1	02/26/24 06:49 PM
Surr: Nitrobenzene-d5	78.0	0	45-125		%REC	1	02/26/24 06:49 PM
Surr: Phenol-d5	81.0	0	40-125		%REC	1	02/26/24 06:49 PM
VOLATILES BY 8260/5035 GC/MS		SW82	60D				Analyst: JL
1,1,1,2-Tetrachloroethane	< 0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
1,1,1-Trichloroethane	< 0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
1,1,2,2-Tetrachloroethane	< 0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
1,1,2-Trichloroethane	< 0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
1,1,2-Trichlorotrifluoroethane	< 0.00546	0.00546	0.0164		mg/Kg-dry	1	02/21/24 10:47 PM
1,1-Dichloroethane	< 0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
1,1-Dichloroethene	< 0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
1,1-Dichloropropene	< 0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
1,2,3-Trichlorobenzene	< 0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
1,2,3-Trichloropropane	< 0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
1,2,4-Trichlorobenzene	< 0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
1,2,4-Trimethylbenzene	< 0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
1,2-Dibromo-3-chloropropane	< 0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
1,2-Dibromoethane	< 0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
1,2-Dichlorobenzene	<0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM

Qualifiers:

ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

Date:

28-Feb-24

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 18 of 40

CLIENT: Weston Solutions, Inc. Client Sample ID: SS-4

Project: SAWS Impoundment Assessment Lagoons and Lab ID: 2402269-04

Lab Order: 2402269 Matrix: SOIL

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
VOLATILES BY 8260/5035 GC/MS		SW82	260D				Analyst: JL
1,2-Dichloroethane	< 0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
1,2-Dichloropropane	< 0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
1,3,5-Trimethylbenzene	< 0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
1,3-Dichlorobenzene	< 0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
1,3-Dichloropropane	< 0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
1,4-Dichlorobenzene	< 0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
1-Chlorohexane	< 0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
2,2-Dichloropropane	< 0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
2-Butanone	< 0.00546	0.00546	0.0164		mg/Kg-dry	1	02/21/24 10:47 PM
2-Chlorotoluene	< 0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
2-Hexanone	< 0.00546	0.00546	0.0164		mg/Kg-dry	1	02/21/24 10:47 PM
4-Chlorotoluene	< 0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
4-Methyl-2-pentanone	< 0.00546	0.00546	0.0164		mg/Kg-dry	1	02/21/24 10:47 PM
Acetone	< 0.0164	0.0164	0.0546		mg/Kg-dry	1	02/21/24 10:47 PM
Benzene	< 0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
Bromobenzene	< 0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
Bromochloromethane	< 0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
Bromodichloromethane	< 0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
Bromoform	< 0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
Bromomethane	< 0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
Carbon disulfide	< 0.00546	0.00546	0.0164		mg/Kg-dry	1	02/21/24 10:47 PM
Carbon tetrachloride	< 0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
Chlorobenzene	< 0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
Chloroethane	< 0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
Chloroform	< 0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
Chloromethane	< 0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
cis-1,2-Dichloroethene	< 0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
cis-1,3-Dichloropropene	< 0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
Cyclohexane	< 0.00546	0.00546	0.0164	N	mg/Kg-dry	1	02/21/24 10:47 PM
Dibromochloromethane	< 0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
Dibromomethane	< 0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
Dichlorodifluoromethane	< 0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
Ethylbenzene	< 0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
Hexachlorobutadiene	< 0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
Isopropylbenzene	< 0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
m,p-Xylene	< 0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
Methyl Acetate	< 0.00546	0.00546	0.0164		mg/Kg-dry	1	02/21/24 10:47 PM
Methyl tert-butyl ether	< 0.00109	0.00109	0.00546		mg/Kg-dry	1	02/21/24 10:47 PM
Methylcyclohexane	<0.00546	0.00546	0.0164		mg/Kg-dry	1	02/21/24 10:47 PM

Qualifiers:

ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

Date:

28-Feb-24

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 19 of 40

CLIENT: Weston Solutions, Inc. Client Sample ID: SS-4

Project: SAWS Impoundment Assessment Lagoons and Lab ID: 2402269-04

Lab Order: 2402269 Matrix: SOIL

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed
VOLATILES BY 8260/5035 GC/MS		SW82	260D			Analyst: JL
Methylene chloride	< 0.00546	0.00546	0.00546	mg/Kg-dry	1	02/21/24 10:47 PM
Naphthalene	< 0.00546	0.00546	0.0164	mg/Kg-dry	1	02/21/24 10:47 PM
n-Butylbenzene	< 0.00109	0.00109	0.00546	mg/Kg-dry	1	02/21/24 10:47 PM
n-Propylbenzene	< 0.00109	0.00109	0.00546	mg/Kg-dry	1	02/21/24 10:47 PM
o-Xylene	< 0.00109	0.00109	0.00546	mg/Kg-dry	1	02/21/24 10:47 PM
p-Isopropyltoluene	< 0.00109	0.00109	0.00546	mg/Kg-dry	1	02/21/24 10:47 PM
sec-Butylbenzene	< 0.00109	0.00109	0.00546	mg/Kg-dry	1	02/21/24 10:47 PM
Styrene	< 0.00109	0.00109	0.00546	mg/Kg-dry	1	02/21/24 10:47 PM
tert-Butylbenzene	< 0.00109	0.00109	0.00546	mg/Kg-dry	1	02/21/24 10:47 PM
Tetrachloroethene	< 0.00109	0.00109	0.00546	mg/Kg-dry	1	02/21/24 10:47 PM
Toluene	< 0.00109	0.00109	0.00546	mg/Kg-dry	1	02/21/24 10:47 PM
trans-1,2-Dichloroethene	< 0.00109	0.00109	0.00546	mg/Kg-dry	1	02/21/24 10:47 PM
trans-1,3-Dichloropropene	< 0.00109	0.00109	0.00546	mg/Kg-dry	1	02/21/24 10:47 PM
Trichloroethene	< 0.00109	0.00109	0.00546	mg/Kg-dry	1	02/21/24 10:47 PM
Trichlorofluoromethane	< 0.00546	0.00546	0.0164	mg/Kg-dry	1	02/21/24 10:47 PM
Vinyl chloride	< 0.00109	0.00109	0.00546	mg/Kg-dry	1	02/21/24 10:47 PM
Xylenes, Total	< 0.00109	0.00109	0.00546	mg/Kg-dry	1	02/21/24 10:47 PM
Surr: 1,2-Dichloroethane-d4	110	0	52-149	%REC	1	02/21/24 10:47 PM
Surr: 4-Bromofluorobenzene	106	0	84-118	%REC	1	02/21/24 10:47 PM
Surr: Dibromofluoromethane	104	0	65-135	%REC	1	02/21/24 10:47 PM
Surr: Toluene-d8	94.9	0	84-116	%REC	1	02/21/24 10:47 PM
PERCENT MOISTURE	D2216					Analyst: SMA
Percent Moisture	15.1	0	0	WT%	1	02/22/24 10:00 AM

Qualifiers: ND - Not Detected at the SDL

 \boldsymbol{J} - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

 $\ensuremath{\mathrm{C}}$ - Sample Result or QC discussed in Case Narrative

Date:

28-Feb-24

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 20 of 40

CLIENT: Weston Solutions, Inc. Client Sample ID: Trip Blank-1

Project: SAWS Impoundment Assessment Lagoons and Lab ID: 2402269-05
Project No: 10412.036.001.0002 Collection Date: 02/20/24

Lab Order: 2402269 Matrix: TRIP BLANK

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
8260 WATER VOLATILES BY GC/MS		SW82	260D				Analyst: JVR
1,1,1,2-Tetrachloroethane	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
1,1,1-Trichloroethane	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
1,1,2,2-Tetrachloroethane	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
1,1,2-Trichloroethane	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
1,1,2-Trichlorotrifluoroethane	< 0.00500	0.00500	0.0150		mg/L	1	02/21/24 11:31 AM
1,1-Dichloroethane	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
1,1-Dichloroethene	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
1,1-Dichloropropene	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
1,2,3-Trichlorobenzene	< 0.00150	0.00150	0.00500		mg/L	1	02/21/24 11:31 AM
1,2,3-Trichloropropane	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
1,2,4-Trichlorobenzene	< 0.00150	0.00150	0.00500		mg/L	1	02/21/24 11:31 AM
1,2,4-Trimethylbenzene	< 0.00150	0.00150	0.00500		mg/L	1	02/21/24 11:31 AM
1,2-Dibromo-3-chloropropane	< 0.00300	0.00300	0.0100		mg/L	1	02/21/24 11:31 AM
1,2-Dibromoethane	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
1,2-Dichlorobenzene	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
1,2-Dichloroethane	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
1,2-Dichloropropane	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
1,3,5-Trimethylbenzene	< 0.00150	0.00150	0.00500		mg/L	1	02/21/24 11:31 AM
1,3-Dichlorobenzene	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
1,3-Dichloropropane	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
1,4-Dichlorobenzene	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
1-Chlorohexane	< 0.00100	0.00100	0.00500		mg/L	1	02/21/24 11:31 AM
2,2-Dichloropropane	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
2-Butanone	< 0.00500	0.00500	0.0150		mg/L	1	02/21/24 11:31 AM
2-Chlorotoluene	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
2-Hexanone	< 0.00500	0.00500	0.0150		mg/L	1	02/21/24 11:31 AM
4-Chlorotoluene	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
4-Methyl-2-pentanone	< 0.00500	0.00500	0.0150		mg/L	1	02/21/24 11:31 AM
Acetone	< 0.00500	0.00500	0.0150		mg/L	1	02/21/24 11:31 AM
Benzene	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
Bromobenzene	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
Bromochloromethane	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
Bromodichloromethane	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
Bromoform	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
Bromomethane	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
Carbon disulfide	< 0.00500	0.00500	0.0150		mg/L	1	02/21/24 11:31 AM
Carbon tetrachloride	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
Chlorobenzene	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
Chloroethane	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM

Qualifiers:

ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

Date:

28-Feb-24

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 21 of 40

28-Feb-24

CLIENT: Weston Solutions, Inc. Client Sample ID: Trip Blank-1 **Project:** SAWS Impoundment Assessment Lagoons and **Lab ID:** 2402269-05

Project No: 10412.036.001.0002 Collection Date: 02/20/24

Lab Order: Matrix: TRIP BLANK 2402269

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
8260 WATER VOLATILES BY GC/MS		SW82	260D				Analyst: JVR
Chloroform	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
Chloromethane	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
cis-1,2-Dichloroethene	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
cis-1,3-Dichloropropene	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
Cyclohexane	< 0.00500	0.00500	0.0150	N	mg/L	1	02/21/24 11:31 AM
Dibromochloromethane	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
Dibromomethane	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
Dichlorodifluoromethane	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
Ethylbenzene	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
Hexachlorobutadiene	< 0.00100	0.00100	0.00300		mg/L	1	02/21/24 11:31 AM
Isopropylbenzene	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
m,p-Xylene	< 0.000600	0.000600	0.00200		mg/L	1	02/21/24 11:31 AM
Methyl Acetate	< 0.00500	0.00500	0.0150		mg/L	1	02/21/24 11:31 AM
Methyl tert-butyl ether	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
Methylcyclohexane	< 0.00500	0.00500	0.0150		mg/L	1	02/21/24 11:31 AM
Methylene chloride	< 0.00250	0.00250	0.00250		mg/L	1	02/21/24 11:31 AM
Naphthalene	< 0.00500	0.00500	0.0150		mg/L	1	02/21/24 11:31 AM
n-Butylbenzene	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
n-Propylbenzene	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
o-Xylene	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
p-Isopropyltoluene	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
sec-Butylbenzene	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
Styrene	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
tert-Butylbenzene	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
Tetrachloroethene	< 0.000600	0.000600	0.00200		mg/L	1	02/21/24 11:31 AM
Toluene	< 0.000600	0.000600	0.00200		mg/L	1	02/21/24 11:31 AM
trans-1,2-Dichloroethene	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
trans-1,3-Dichloropropene	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
Trichloroethene	< 0.000600	0.000600	0.00100		mg/L	1	02/21/24 11:31 AM
Trichlorofluoromethane	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
Vinyl chloride	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
Xylenes, Total	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:31 AM
Surr: 1,2-Dichloroethane-d4	90.7	0	72-119		%REC	1	02/21/24 11:31 AM
Surr: 4-Bromofluorobenzene	96.7	0	76-119		%REC	1	02/21/24 11:31 AM
Surr: Dibromofluoromethane	94.0	0	85-115		%REC	1	02/21/24 11:31 AM
Surr: Toluene-d8	96.5	0	81-120		%REC	1	02/21/24 11:31 AM

Qualifiers:

ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

Date:

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 22 of 40

CLIENT: Weston Solutions, Inc. Client Sample ID: SS-5

Project: SAWS Impoundment Assessment Lagoons and Lab ID: 2402269-06

Lab Order: 2402269 Matrix: SOIL

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - SOLI	D	SW6	020B				Analyst: SP
Aluminum	24800	755	2270		mg/Kg-dry	250	02/23/24 11:34 AM
Antimony	<0.604	0.604	1.21		mg/Kg-dry	5	02/23/24 10:51 AM
Arsenic	11.3	0.604	1.21		mg/Kg-dry	5	02/23/24 10:51 AM
Barium	162	0.604	2.42		mg/Kg-dry	5	02/23/24 10:51 AM
Beryllium	0.828	0.121	0.363		mg/Kg-dry	5	02/23/24 10:51 AM
Cadmium	0.218	0.121	0.363	J	mg/Kg-dry	5	02/23/24 10:51 AM
Calcium	169000	755	2270		mg/Kg-dry	250	02/23/24 11:34 AM
Chromium	26.3	0.604	2.42		mg/Kg-dry	5	02/23/24 10:51 AM
Cobalt	8.49	0.604	2.42		mg/Kg-dry	5	02/23/24 10:51 AM
Copper	9.72	0.604	2.42		mg/Kg-dry	5	02/23/24 10:51 AM
Iron	60400	755	2270		mg/Kg-dry	250	02/23/24 11:34 AM
Lead	10.7	0.121	0.363		mg/Kg-dry	5	02/23/24 10:51 AM
Magnesium	5550	15.1	45.3		mg/Kg-dry	5	02/23/24 10:51 AM
Manganese	282	0.604	2.42		mg/Kg-dry	5	02/23/24 10:51 AM
Nickel	15.5	0.604	2.42		mg/Kg-dry	5	02/23/24 10:51 AM
Potassium	4970	15.1	45.3		mg/Kg-dry	5	02/23/24 10:51 AM
Selenium	0.676	0.181	0.604		mg/Kg-dry	5	02/23/24 10:51 AM
Silver	<0.121	0.121	0.242		mg/Kg-dry	5	02/23/24 10:51 AM
Sodium	80.6	15.1	45.3		mg/Kg-dry	5	02/23/24 10:51 AM
Thallium	<0.604	0.604	1.21		mg/Kg-dry	5	02/23/24 10:51 AM
Vanadium	164	1.21	3.02		mg/Kg-dry	5	02/23/24 10:51 AM
Zinc	48.7	1.21	3.02		mg/Kg-dry	5	02/23/24 10:51 AM
MERCURY TOTAL: SOIL/SOLID		SW7	471B				Analyst: CMC
Mercury	<0.0202	0.0202	0.0505		mg/Kg-dry	1	02/23/24 10:56 AM
SEMIVOLATILES BY GC/MS		SW8	270E				Analyst: DEW
2,4,5-Trichlorophenol	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
2,4,6-Trichlorophenol	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
2,4-Dichlorophenol	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
2,4-Dimethylphenol	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
2,4-Dinitrophenol	< 0.0640	0.0640	0.169		mg/Kg-dry	1	02/26/24 07:14 PM
2,4-Dinitrotoluene	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
2,6-Dinitrotoluene	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
2-Chloronaphthalene	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
2-Chlorophenol	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
2-Methylnaphthalene	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
2-Methylphenol	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
2-Nitroaniline	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
2-Nitrophenol	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM

Qualifiers:

ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

 $\ensuremath{\mathrm{C}}$ - Sample Result or QC discussed in Case Narrative

Date:

28-Feb-24

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 23 of 40

CLIENT: Weston Solutions, Inc. Client Sample ID: SS-5

Project: SAWS Impoundment Assessment Lagoons and Lab ID: 2402269-06

Lab Order: 2402269 Matrix: SOIL

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
SEMIVOLATILES BY GC/MS		SW82	70E				Analyst: DEW
3,3´-Dichlorobenzidine	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
3-Nitroaniline	< 0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
4,6-Dinitro-2-methylphenol	< 0.0384	0.0384	0.0845		mg/Kg-dry	1	02/26/24 07:14 PM
4-Bromophenyl phenyl ether	< 0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
4-Chloro-3-methylphenol	< 0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
4-Chloroaniline	< 0.0384	0.0384	0.0845		mg/Kg-dry	1	02/26/24 07:14 PM
4-Chlorophenyl phenyl ether	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
4-Methylphenol	< 0.0256	0.0256	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
4-Nitroaniline	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
4-Nitrophenol	< 0.0640	0.0640	0.169		mg/Kg-dry	1	02/26/24 07:14 PM
Acenaphthene	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
Acenaphthylene	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
Acetophenone	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
Anthracene	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
Atrazine	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
Benzaldehyde	<0.0128	0.0128	0.0340	N	mg/Kg-dry	1	02/26/24 07:14 PM
Benzo[a]anthracene	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
Benzo[a]pyrene	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
Benzo[b]fluoranthene	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
Benzo[g,h,i]perylene	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
Benzo[k]fluoranthene	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
Benzoic acid	< 0.0640	0.0640	0.169		mg/Kg-dry	1	02/26/24 07:14 PM
Benzyl alcohol	< 0.0384	0.0384	0.0845		mg/Kg-dry	1	02/26/24 07:14 PM
Biphenyl	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
Bis(2-chloroethoxy)methane	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
Bis(2-chloroethyl)ether	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
Bis(2-chloroisopropyl)ether	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
Bis(2-ethylhexyl)phthalate	< 0.0819	0.0819	0.0845		mg/Kg-dry	1	02/26/24 07:14 PM
Butyl benzyl phthalate	< 0.0512	0.0512	0.0845		mg/Kg-dry	1	02/26/24 07:14 PM
Caprolactam	< 0.0384	0.0384	0.0845		mg/Kg-dry	1	02/26/24 07:14 PM
Carbazole	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
Chrysene	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
Dibenz[a,h]anthracene	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
Dibenzofuran	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM
Diethyl phthalate	< 0.0512	0.0512	0.0845		mg/Kg-dry	1	02/26/24 07:14 PM
Dimethyl phthalate	< 0.0512	0.0512	0.0845		mg/Kg-dry	1	02/26/24 07:14 PM
Di-n-butyl phthalate	<0.0512	0.0512	0.0845		mg/Kg-dry	1	02/26/24 07:14 PM
Di-n-octyl phthalate	<0.0512	0.0512	0.0845		mg/Kg-dry	1	02/26/24 07:14 PM
Fluoranthene	<0.0128	0.0128	0.0340		mg/Kg-dry	1	02/26/24 07:14 PM

Qualifiers:

ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

Date:

28-Feb-24

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 24 of 40

CLIENT: Weston Solutions, Inc. Client Sample ID: SS-5

Project: SAWS Impoundment Assessment Lagoons and Lab ID: 2402269-06

Lab Order: 2402269 Matrix: SOIL

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed
SEMIVOLATILES BY GC/MS		SW82	270E			Analyst: DEW
Fluorene	<0.0128	0.0128	0.0340	mg/Kg-dry	1	02/26/24 07:14 PM
Hexachlorobenzene	<0.0128	0.0128	0.0340	mg/Kg-dry	1	02/26/24 07:14 PM
Hexachlorobutadiene	<0.0128	0.0128	0.0340	mg/Kg-dry	1	02/26/24 07:14 PM
Hexachlorocyclopentadiene	<0.0384	0.0384	0.0845	mg/Kg-dry	1	02/26/24 07:14 PM
Hexachloroethane	<0.0128	0.0128	0.0340	mg/Kg-dry	1	02/26/24 07:14 PM
Indeno[1,2,3-cd]pyrene	<0.0128	0.0128	0.0340	mg/Kg-dry	1	02/26/24 07:14 PM
Isophorone	< 0.0384	0.0384	0.0845	mg/Kg-dry	1	02/26/24 07:14 PM
Naphthalene	<0.0128	0.0128	0.0340	mg/Kg-dry	1	02/26/24 07:14 PM
Nitrobenzene	<0.0128	0.0128	0.0340	mg/Kg-dry	1	02/26/24 07:14 PM
N-Nitrosodi-n-propylamine	<0.0128	0.0128	0.0340	mg/Kg-dry	1	02/26/24 07:14 PM
N-Nitrosodiphenylamine	<0.0128	0.0128	0.0340	mg/Kg-dry	1	02/26/24 07:14 PM
Pentachlorophenol	<0.0128	0.0128	0.0340	mg/Kg-dry	1	02/26/24 07:14 PM
Phenanthrene	<0.0128	0.0128	0.0340	mg/Kg-dry	1	02/26/24 07:14 PM
Phenol	<0.0128	0.0128	0.0340	mg/Kg-dry	1	02/26/24 07:14 PM
Pyrene	<0.0128	0.0128	0.0340	mg/Kg-dry	1	02/26/24 07:14 PM
Pyridine	< 0.0640	0.0640	0.169	mg/Kg-dry	1	02/26/24 07:14 PM
Surr: 2,4,6-Tribromophenol	86.0	0	45-126	%REC	1	02/26/24 07:14 PM
Surr: 2-Fluorobiphenyl	91.0	0	60-125	%REC	1	02/26/24 07:14 PM
Surr: 2-Fluorophenol	89.0	0	37-125	%REC	1	02/26/24 07:14 PM
Surr: 4-Terphenyl-d14	94.0	0	45-125	%REC	1	02/26/24 07:14 PM
Surr: Nitrobenzene-d5	81.0	0	45-125	%REC	1	02/26/24 07:14 PM
Surr: Phenol-d5	86.0	0	40-125	%REC	1	02/26/24 07:14 PM
VOLATILES BY 8260/5035 GC/MS		SW82	60D			Analyst: JL
1,1,1,2-Tetrachloroethane	< 0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
1,1,1-Trichloroethane	< 0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
1,1,2,2-Tetrachloroethane	< 0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
1,1,2-Trichloroethane	< 0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
1,1,2-Trichlorotrifluoroethane	< 0.00644	0.00644	0.0193	mg/Kg-dry	1	02/21/24 11:15 PM
1,1-Dichloroethane	< 0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
1,1-Dichloroethene	< 0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
1,1-Dichloropropene	< 0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
1,2,3-Trichlorobenzene	< 0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
1,2,3-Trichloropropane	< 0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
1,2,4-Trichlorobenzene	< 0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
1,2,4-Trimethylbenzene	< 0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
1,2-Dibromo-3-chloropropane	< 0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
1,2-Dibromoethane	< 0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
1,2-Dichlorobenzene	<0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM

Qualifiers:

ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

 $\ensuremath{\mathrm{C}}$ - Sample Result or QC discussed in Case Narrative

Date:

28-Feb-24

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 25 of 40

CLIENT: Weston Solutions, Inc. Client Sample ID: SS-5

Project: SAWS Impoundment Assessment Lagoons and Lab ID: 2402269-06

Lab Order: 2402269 Matrix: SOIL

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
VOLATILES BY 8260/5035 GC/MS		SW82	260D				Analyst: JL
1,2-Dichloroethane	<0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
1,2-Dichloropropane	<0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
1,3,5-Trimethylbenzene	<0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
1,3-Dichlorobenzene	<0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
1,3-Dichloropropane	<0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
1,4-Dichlorobenzene	<0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
1-Chlorohexane	< 0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
2,2-Dichloropropane	< 0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
2-Butanone	<0.00644	0.00644	0.0193		mg/Kg-dry	1	02/21/24 11:15 PM
2-Chlorotoluene	< 0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
2-Hexanone	< 0.00644	0.00644	0.0193		mg/Kg-dry	1	02/21/24 11:15 PM
4-Chlorotoluene	< 0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
4-Methyl-2-pentanone	< 0.00644	0.00644	0.0193		mg/Kg-dry	1	02/21/24 11:15 PM
Acetone	< 0.0193	0.0193	0.0644		mg/Kg-dry	1	02/21/24 11:15 PM
Benzene	< 0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
Bromobenzene	< 0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
Bromochloromethane	< 0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
Bromodichloromethane	< 0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
Bromoform	< 0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
Bromomethane	< 0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
Carbon disulfide	< 0.00644	0.00644	0.0193		mg/Kg-dry	1	02/21/24 11:15 PM
Carbon tetrachloride	< 0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
Chlorobenzene	< 0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
Chloroethane	< 0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
Chloroform	< 0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
Chloromethane	< 0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
cis-1,2-Dichloroethene	< 0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
cis-1,3-Dichloropropene	< 0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
Cyclohexane	< 0.00644	0.00644	0.0193	N	mg/Kg-dry	1	02/21/24 11:15 PM
Dibromochloromethane	< 0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
Dibromomethane	< 0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
Dichlorodifluoromethane	< 0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
Ethylbenzene	< 0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
Hexachlorobutadiene	< 0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
Isopropylbenzene	< 0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
m,p-Xylene	< 0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
Methyl Acetate	< 0.00644	0.00644	0.0193		mg/Kg-dry	1	02/21/24 11:15 PM
Methyl tert-butyl ether	< 0.00129	0.00129	0.00644		mg/Kg-dry	1	02/21/24 11:15 PM
Methylcyclohexane	<0.00644	0.00644	0.0193		mg/Kg-dry	1	02/21/24 11:15 PM

Qualifiers:

ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

Date:

28-Feb-24

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 26 of 40

CLIENT: Weston Solutions, Inc. Client Sample ID: SS-5

Project: SAWS Impoundment Assessment Lagoons and Lab ID: 2402269-06

Lab Order: 2402269 Matrix: SOIL

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed
VOLATILES BY 8260/5035 GC/MS	1	SW82	260D			Analyst: JL
Methylene chloride	< 0.00644	0.00644	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
Naphthalene	< 0.00644	0.00644	0.0193	mg/Kg-dry	1	02/21/24 11:15 PM
n-Butylbenzene	< 0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
n-Propylbenzene	< 0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
o-Xylene	< 0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
p-Isopropyltoluene	< 0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
sec-Butylbenzene	< 0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
Styrene	< 0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
tert-Butylbenzene	< 0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
Tetrachloroethene	< 0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
Toluene	< 0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
trans-1,2-Dichloroethene	< 0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
trans-1,3-Dichloropropene	< 0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
Trichloroethene	< 0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
Trichlorofluoromethane	< 0.00644	0.00644	0.0193	mg/Kg-dry	1	02/21/24 11:15 PM
Vinyl chloride	< 0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
Xylenes, Total	< 0.00129	0.00129	0.00644	mg/Kg-dry	1	02/21/24 11:15 PM
Surr: 1,2-Dichloroethane-d4	111	0	52-149	%REC	1	02/21/24 11:15 PM
Surr: 4-Bromofluorobenzene	108	0	84-118	%REC	1	02/21/24 11:15 PM
Surr: Dibromofluoromethane	100	0	65-135	%REC	1	02/21/24 11:15 PM
Surr: Toluene-d8	97.8	0	84-116	%REC	1	02/21/24 11:15 PM
PERCENT MOISTURE	D2216					Analyst: SMA
Percent Moisture	25.5	0	0	WT%	1	02/22/24 10:00 AM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

 $\ensuremath{\mathrm{C}}$ - Sample Result or QC discussed in Case Narrative

Date:

28-Feb-24

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 27 of 40

CLIENT: Weston Solutions, Inc. Client Sample ID: SS-6

Project: SAWS Impoundment Assessment Lagoons and Lab ID: 2402269-07

Project No: 10412.036.001.0002 **Collection Date:** 02/20/24 11:13 AM

Lab Order: 2402269 Matrix: SOIL

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - SOLID		SW60:	20B				Analyst: SP
Aluminum	18100	302	906		mg/Kg-dry	100	02/23/24 11:36 AM
Antimony	< 0.604	0.604	1.21		mg/Kg-dry	5	02/23/24 10:53 AM
Arsenic	4.25	0.604	1.21		mg/Kg-dry	5	02/23/24 10:53 AM
Barium	144	0.604	2.42		mg/Kg-dry	5	02/23/24 10:53 AM
Beryllium	0.684	0.121	0.363		mg/Kg-dry	5	02/23/24 10:53 AM
Cadmium	0.190	0.121	0.363	J	mg/Kg-dry	5	02/23/24 10:53 AM
Calcium	136000	302	906		mg/Kg-dry	100	02/23/24 11:36 AM
Chromium	21.9	0.604	2.42		mg/Kg-dry	5	02/23/24 10:53 AM
Cobalt	4.76	0.604	2.42		mg/Kg-dry	5	02/23/24 10:53 AM
Copper	9.02	0.604	2.42		mg/Kg-dry	5	02/23/24 10:53 AM
Iron	17900	302	906		mg/Kg-dry	100	02/23/24 11:36 AM
Lead	9.97	0.121	0.363		mg/Kg-dry	5	02/23/24 10:53 AM
Magnesium	3490	15.1	45.3		mg/Kg-dry	5	02/23/24 10:53 AM
Manganese	136	0.604	2.42		mg/Kg-dry	5	02/23/24 10:53 AM
Nickel	10.4	0.604	2.42		mg/Kg-dry	5	02/23/24 10:53 AM
Potassium	3880	15.1	45.3		mg/Kg-dry	5	02/23/24 10:53 AM
Selenium	0.587	0.181	0.604	J	mg/Kg-dry	5	02/23/24 10:53 AM
Silver	<0.121	0.121	0.242		mg/Kg-dry	5	02/23/24 10:53 AM
Sodium	59.3	15.1	45.3		mg/Kg-dry	5	02/23/24 10:53 AM
Thallium	<0.604	0.604	1.21		mg/Kg-dry	5	02/23/24 10:53 AM
Vanadium	53.5	1.21	3.02		mg/Kg-dry	5	02/23/24 10:53 AM
Zinc	48.4	1.21	3.02		mg/Kg-dry	5	02/23/24 10:53 AM
MERCURY TOTAL: SOIL/SOLID		SW74	71B			Analyst: CMC	
Mercury	0.0222	0.0195	0.0488	J	mg/Kg-dry	1	02/23/24 10:58 AM
SEMIVOLATILES BY GC/MS		SW82	70E				Analyst: DEW
2,4,5-Trichlorophenol	< 0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
2,4,6-Trichlorophenol	< 0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
2,4-Dichlorophenol	<0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
2,4-Dimethylphenol	< 0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
2,4-Dinitrophenol	< 0.0599	0.0599	0.158		mg/Kg-dry	1	02/26/24 07:39 PM
2,4-Dinitrotoluene	<0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
2,6-Dinitrotoluene	< 0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
2-Chloronaphthalene	< 0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
2-Chlorophenol	<0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
2-Methylnaphthalene	< 0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
2-Methylphenol	< 0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
2-Nitroaniline	<0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
2-Nitrophenol	<0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM

Qualifiers:

ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

 $\ensuremath{\mathrm{C}}$ - Sample Result or QC discussed in Case Narrative

Date:

28-Feb-24

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 28 of 40

CLIENT: Weston Solutions, Inc. Client Sample ID: SS-6

Project: SAWS Impoundment Assessment Lagoons and Lab ID: 2402269-07

Project No: 10412.036.001.0002 **Collection Date:** 02/20/24 11:13 AM

Lab Order: 2402269 Matrix: SOIL

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
SEMIVOLATILES BY GC/MS		SW82	70E				Analyst: DEW
3,3´-Dichlorobenzidine	<0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
3-Nitroaniline	< 0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
4,6-Dinitro-2-methylphenol	< 0.0360	0.0360	0.0791		mg/Kg-dry	1	02/26/24 07:39 PM
4-Bromophenyl phenyl ether	< 0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
4-Chloro-3-methylphenol	< 0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
4-Chloroaniline	< 0.0360	0.0360	0.0791		mg/Kg-dry	1	02/26/24 07:39 PM
4-Chlorophenyl phenyl ether	< 0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
4-Methylphenol	< 0.0240	0.0240	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
4-Nitroaniline	< 0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
4-Nitrophenol	< 0.0599	0.0599	0.158		mg/Kg-dry	1	02/26/24 07:39 PM
Acenaphthene	< 0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
Acenaphthylene	< 0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
Acetophenone	< 0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
Anthracene	< 0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
Atrazine	< 0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
Benzaldehyde	< 0.0120	0.0120	0.0319	N	mg/Kg-dry	1	02/26/24 07:39 PM
Benzo[a]anthracene	< 0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
Benzo[a]pyrene	0.0120	0.0120	0.0319	J	mg/Kg-dry	1	02/26/24 07:39 PM
Benzo[b]fluoranthene	0.0160	0.0120	0.0319	J	mg/Kg-dry	1	02/26/24 07:39 PM
Benzo[g,h,i]perylene	<0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
Benzo[k]fluoranthene	< 0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
Benzoic acid	< 0.0599	0.0599	0.158		mg/Kg-dry	1	02/26/24 07:39 PM
Benzyl alcohol	< 0.0360	0.0360	0.0791		mg/Kg-dry	1	02/26/24 07:39 PM
Biphenyl	< 0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
Bis(2-chloroethoxy)methane	< 0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
Bis(2-chloroethyl)ether	< 0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
Bis(2-chloroisopropyl)ether	< 0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
Bis(2-ethylhexyl)phthalate	< 0.0767	0.0767	0.0791		mg/Kg-dry	1	02/26/24 07:39 PM
Butyl benzyl phthalate	< 0.0479	0.0479	0.0791		mg/Kg-dry	1	02/26/24 07:39 PM
Caprolactam	< 0.0360	0.0360	0.0791		mg/Kg-dry	1	02/26/24 07:39 PM
Carbazole	< 0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
Chrysene	< 0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
Dibenz[a,h]anthracene	< 0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
Dibenzofuran	< 0.0120	0.0120	0.0319		mg/Kg-dry	1	02/26/24 07:39 PM
Diethyl phthalate	< 0.0479	0.0479	0.0791		mg/Kg-dry	1	02/26/24 07:39 PM
Dimethyl phthalate	< 0.0479	0.0479	0.0791		mg/Kg-dry	1	02/26/24 07:39 PM
Di-n-butyl phthalate	< 0.0479	0.0479	0.0791		mg/Kg-dry	1	02/26/24 07:39 PM
Di-n-octyl phthalate	< 0.0479	0.0479	0.0791		mg/Kg-dry	1	02/26/24 07:39 PM
Fluoranthene	0.0128	0.0120	0.0319	J	mg/Kg-dry	1	02/26/24 07:39 PM

Qualifiers:

ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

Date:

28-Feb-24

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 29 of 40

CLIENT: Weston Solutions, Inc. Client Sample ID: SS-6

Project: SAWS Impoundment Assessment Lagoons and Lab ID: 2402269-07

Lab Order: 2402269 Matrix: SOIL

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed
SEMIVOLATILES BY GC/MS		SW82	270E			Analyst: DEW
Fluorene	<0.0120	0.0120	0.0319	mg/Kg-dry	1	02/26/24 07:39 PM
Hexachlorobenzene	<0.0120	0.0120	0.0319	mg/Kg-dry	1	02/26/24 07:39 PM
Hexachlorobutadiene	<0.0120	0.0120	0.0319	mg/Kg-dry	1	02/26/24 07:39 PM
Hexachlorocyclopentadiene	< 0.0360	0.0360	0.0791	mg/Kg-dry	1	02/26/24 07:39 PM
Hexachloroethane	< 0.0120	0.0120	0.0319	mg/Kg-dry	1	02/26/24 07:39 PM
Indeno[1,2,3-cd]pyrene	< 0.0120	0.0120	0.0319	mg/Kg-dry	1	02/26/24 07:39 PM
Isophorone	< 0.0360	0.0360	0.0791	mg/Kg-dry	1	02/26/24 07:39 PM
Naphthalene	< 0.0120	0.0120	0.0319	mg/Kg-dry	1	02/26/24 07:39 PM
Nitrobenzene	< 0.0120	0.0120	0.0319	mg/Kg-dry	1	02/26/24 07:39 PM
N-Nitrosodi-n-propylamine	<0.0120	0.0120	0.0319	mg/Kg-dry	1	02/26/24 07:39 PM
N-Nitrosodiphenylamine	< 0.0120	0.0120	0.0319	mg/Kg-dry	1	02/26/24 07:39 PM
Pentachlorophenol	< 0.0120	0.0120	0.0319	mg/Kg-dry	1	02/26/24 07:39 PM
Phenanthrene	< 0.0120	0.0120	0.0319	mg/Kg-dry	1	02/26/24 07:39 PM
Phenol	< 0.0120	0.0120	0.0319	mg/Kg-dry	1	02/26/24 07:39 PM
Pyrene	< 0.0120	0.0120	0.0319	mg/Kg-dry	1	02/26/24 07:39 PM
Pyridine	< 0.0599	0.0599	0.158	mg/Kg-dry	1	02/26/24 07:39 PM
Surr: 2,4,6-Tribromophenol	84.0	0	45-126	%REC	1	02/26/24 07:39 PM
Surr: 2-Fluorobiphenyl	85.0	0	60-125	%REC	1	02/26/24 07:39 PM
Surr: 2-Fluorophenol	80.0	0	37-125	%REC	1	02/26/24 07:39 PM
Surr: 4-Terphenyl-d14	91.0	0	45-125	%REC	1	02/26/24 07:39 PM
Surr: Nitrobenzene-d5	76.0	0	45-125	%REC	1	02/26/24 07:39 PM
Surr: Phenol-d5	75.0	0	40-125	%REC	1	02/26/24 07:39 PM
VOLATILES BY 8260/5035 GC/MS		SW82	60D			Analyst: JL
1,1,1,2-Tetrachloroethane	< 0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
1,1,1-Trichloroethane	< 0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
1,1,2,2-Tetrachloroethane	< 0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
1,1,2-Trichloroethane	< 0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
1,1,2-Trichlorotrifluoroethane	< 0.00706	0.00706	0.0212	mg/Kg-dry	1	02/21/24 11:43 PM
1,1-Dichloroethane	< 0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
1,1-Dichloroethene	< 0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
1,1-Dichloropropene	< 0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
1,2,3-Trichlorobenzene	< 0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
1,2,3-Trichloropropane	< 0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
1,2,4-Trichlorobenzene	< 0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
1,2,4-Trimethylbenzene	< 0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
1,2-Dibromo-3-chloropropane	< 0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
1,2-Dibromoethane	< 0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
1,2-Dichlorobenzene	<0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM

Qualifiers:

ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

 $\ensuremath{\mathrm{C}}$ - Sample Result or QC discussed in Case Narrative

Date:

28-Feb-24

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 30 of 40

CLIENT: Weston Solutions, Inc. Client Sample ID: SS-6

Project: SAWS Impoundment Assessment Lagoons and Lab ID: 2402269-07

Project No: 10412.036.001.0002 **Collection Date:** 02/20/24 11:13 AM

Lab Order: 2402269 Matrix: SOIL

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
VOLATILES BY 8260/5035 GC/MS		SW82	260D				Analyst: JL
1,2-Dichloroethane	< 0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
1,2-Dichloropropane	< 0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
1,3,5-Trimethylbenzene	< 0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
1,3-Dichlorobenzene	< 0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
1,3-Dichloropropane	< 0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
1,4-Dichlorobenzene	< 0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
1-Chlorohexane	< 0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
2,2-Dichloropropane	< 0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
2-Butanone	< 0.00706	0.00706	0.0212		mg/Kg-dry	1	02/21/24 11:43 PM
2-Chlorotoluene	< 0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
2-Hexanone	< 0.00706	0.00706	0.0212		mg/Kg-dry	1	02/21/24 11:43 PM
4-Chlorotoluene	< 0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
4-Methyl-2-pentanone	< 0.00706	0.00706	0.0212		mg/Kg-dry	1	02/21/24 11:43 PM
Acetone	< 0.0212	0.0212	0.0706		mg/Kg-dry	1	02/21/24 11:43 PM
Benzene	< 0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
Bromobenzene	< 0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
Bromochloromethane	< 0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
Bromodichloromethane	< 0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
Bromoform	< 0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
Bromomethane	< 0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
Carbon disulfide	< 0.00706	0.00706	0.0212		mg/Kg-dry	1	02/21/24 11:43 PM
Carbon tetrachloride	< 0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
Chlorobenzene	< 0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
Chloroethane	< 0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
Chloroform	< 0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
Chloromethane	< 0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
cis-1,2-Dichloroethene	< 0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
cis-1,3-Dichloropropene	< 0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
Cyclohexane	< 0.00706	0.00706	0.0212	N	mg/Kg-dry	1	02/21/24 11:43 PM
Dibromochloromethane	< 0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
Dibromomethane	< 0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
Dichlorodifluoromethane	< 0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
Ethylbenzene	< 0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
Hexachlorobutadiene	< 0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
Isopropylbenzene	< 0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
m,p-Xylene	< 0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
Methyl Acetate	< 0.00706	0.00706	0.0212		mg/Kg-dry	1	02/21/24 11:43 PM
Methyl tert-butyl ether	< 0.00141	0.00141	0.00706		mg/Kg-dry	1	02/21/24 11:43 PM
Methylcyclohexane	<0.00706	0.00706	0.0212		mg/Kg-dry	1	02/21/24 11:43 PM

Qualifiers:

ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

Date:

28-Feb-24

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 31 of 40

CLIENT: Weston Solutions, Inc. Client Sample ID: SS-6

Project: SAWS Impoundment Assessment Lagoons and Lab ID: 2402269-07

Lab Order: 2402269 Matrix: SOIL

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed
VOLATILES BY 8260/5035 GC/M	S	SW8	260D			Analyst: JL
Methylene chloride	< 0.00706	0.00706	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
Naphthalene	< 0.00706	0.00706	0.0212	mg/Kg-dry	1	02/21/24 11:43 PM
n-Butylbenzene	< 0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
n-Propylbenzene	< 0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
o-Xylene	< 0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
p-Isopropyltoluene	< 0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
sec-Butylbenzene	< 0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
Styrene	< 0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
tert-Butylbenzene	< 0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
Tetrachloroethene	< 0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
Toluene	< 0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
trans-1,2-Dichloroethene	< 0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
trans-1,3-Dichloropropene	< 0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
Trichloroethene	< 0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
Trichlorofluoromethane	< 0.00706	0.00706	0.0212	mg/Kg-dry	1	02/21/24 11:43 PM
Vinyl chloride	< 0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
Xylenes, Total	< 0.00141	0.00141	0.00706	mg/Kg-dry	1	02/21/24 11:43 PM
Surr: 1,2-Dichloroethane-d4	109	0	52-149	%REC	1	02/21/24 11:43 PM
Surr: 4-Bromofluorobenzene	107	0	84-118	%REC	1	02/21/24 11:43 PM
Surr: Dibromofluoromethane	105	0	65-135	%REC	1	02/21/24 11:43 PM
Surr: Toluene-d8	97.7	0	84-116	%REC	1	02/21/24 11:43 PM
PERCENT MOISTURE		D22	216			Analyst: SMA
Percent Moisture	20.4	0	0	WT%	1	02/22/24 10:00 AM

Qualifiers: ND - Not Detected at the SDL

 \boldsymbol{J} - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

 $\ensuremath{\mathrm{C}}$ - Sample Result or QC discussed in Case Narrative

Date:

28-Feb-24

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 32 of 40

CLIENT: Weston Solutions, Inc. Client Sample ID: SS-DUP

Project: SAWS Impoundment Assessment Lagoons and Lab ID: 2402269-08

Project No: 10412.036.001.0002 **Collection Date:** 02/20/24 11:13 AM

Lab Order: 2402269 Matrix: SOIL

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - SOLID		SW602	20B				Analyst: SP
Aluminum	18400	299	897		mg/Kg-dry	100	02/23/24 11:39 AM
Antimony	<0.598	0.598	1.20		mg/Kg-dry	5	02/23/24 10:56 AM
Arsenic	4.97	0.598	1.20		mg/Kg-dry	5	02/23/24 10:56 AM
Barium	147	0.598	2.39		mg/Kg-dry	5	02/23/24 10:56 AM
Beryllium	0.694	0.120	0.359		mg/Kg-dry	5	02/23/24 10:56 AM
Cadmium	0.191	0.120	0.359	J	mg/Kg-dry	5	02/23/24 10:56 AM
Calcium	137000	299	897		mg/Kg-dry	100	02/23/24 11:39 AM
Chromium	21.7	0.598	2.39		mg/Kg-dry	5	02/23/24 10:56 AM
Cobalt	5.12	0.598	2.39		mg/Kg-dry	5	02/23/24 10:56 AM
Copper	9.26	0.598	2.39		mg/Kg-dry	5	02/23/24 10:56 AM
Iron	19300	299	897		mg/Kg-dry	100	02/23/24 11:39 AM
Lead	10.1	0.120	0.359		mg/Kg-dry	5	02/23/24 10:56 AM
Magnesium	3470	15.0	44.9		mg/Kg-dry	5	02/23/24 10:56 AM
Manganese	158	0.598	2.39		mg/Kg-dry	5	02/23/24 10:56 AM
Nickel	11.1	0.598	2.39		mg/Kg-dry	5	02/23/24 10:56 AM
Potassium	3880	15.0	44.9		mg/Kg-dry	5	02/23/24 10:56 AM
Selenium	0.553	0.179	0.598	J	mg/Kg-dry	5	02/23/24 10:56 AM
Silver	<0.120	0.120	0.239		mg/Kg-dry	5	02/23/24 10:56 AM
Sodium	58.2	15.0	44.9		mg/Kg-dry	5	02/23/24 10:56 AM
Thallium	<0.598	0.598	1.20		mg/Kg-dry	5	02/23/24 10:56 AM
Vanadium	55.0	1.20	2.99		mg/Kg-dry	5	02/23/24 10:56 AM
Zinc	48.7	1.20	2.99		mg/Kg-dry	5	02/23/24 10:56 AM
MERCURY TOTAL: SOIL/SOLID		SW747	71B				Analyst: CMC
Mercury	0.0267	0.0203	0.0509	J	mg/Kg-dry	1	02/23/24 11:05 AM
SEMIVOLATILES BY GC/MS		SW82	70E				Analyst: DEW
2,4,5-Trichlorophenol	< 0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
2,4,6-Trichlorophenol	< 0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
2,4-Dichlorophenol	< 0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
2,4-Dimethylphenol	< 0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
2,4-Dinitrophenol	< 0.0631	0.0631	0.166		mg/Kg-dry	1	02/26/24 08:04 PM
2,4-Dinitrotoluene	< 0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
2,6-Dinitrotoluene	< 0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
2-Chloronaphthalene	< 0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
2-Chlorophenol	< 0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
2-Methylnaphthalene	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
2-Methylphenol	< 0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
2-Nitroaniline	< 0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
2-Nitrophenol	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM

Qualifiers:

ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

Date:

28-Feb-24

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 33 of 40

CLIENT: Weston Solutions, Inc. Client Sample ID: SS-DUP

Project: SAWS Impoundment Assessment Lagoons and Lab ID: 2402269-08

Project No: 10412.036.001.0002 **Collection Date:** 02/20/24 11:13 AM

Lab Order: 2402269 Matrix: SOIL

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
SEMIVOLATILES BY GC/MS		SW82	270E				Analyst: DEW
3,3´-Dichlorobenzidine	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
3-Nitroaniline	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
4,6-Dinitro-2-methylphenol	<0.0378	0.0378	0.0832		mg/Kg-dry	1	02/26/24 08:04 PM
4-Bromophenyl phenyl ether	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
4-Chloro-3-methylphenol	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
4-Chloroaniline	<0.0378	0.0378	0.0832		mg/Kg-dry	1	02/26/24 08:04 PM
4-Chlorophenyl phenyl ether	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
4-Methylphenol	< 0.0252	0.0252	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
4-Nitroaniline	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
4-Nitrophenol	< 0.0631	0.0631	0.166		mg/Kg-dry	1	02/26/24 08:04 PM
Acenaphthene	< 0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
Acenaphthylene	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
Acetophenone	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
Anthracene	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
Atrazine	< 0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
Benzaldehyde	< 0.0126	0.0126	0.0335	N	mg/Kg-dry	1	02/26/24 08:04 PM
Benzo[a]anthracene	< 0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
Benzo[a]pyrene	< 0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
Benzo[b]fluoranthene	0.0160	0.0126	0.0335	J	mg/Kg-dry	1	02/26/24 08:04 PM
Benzo[g,h,i]perylene	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
Benzo[k]fluoranthene	< 0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
Benzoic acid	< 0.0631	0.0631	0.166		mg/Kg-dry	1	02/26/24 08:04 PM
Benzyl alcohol	< 0.0378	0.0378	0.0832		mg/Kg-dry	1	02/26/24 08:04 PM
Biphenyl	< 0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
Bis(2-chloroethoxy)methane	< 0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
Bis(2-chloroethyl)ether	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
Bis(2-chloroisopropyl)ether	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
Bis(2-ethylhexyl)phthalate	<0.0807	0.0807	0.0832		mg/Kg-dry	1	02/26/24 08:04 PM
Butyl benzyl phthalate	< 0.0504	0.0504	0.0832		mg/Kg-dry	1	02/26/24 08:04 PM
Caprolactam	<0.0378	0.0378	0.0832		mg/Kg-dry	1	02/26/24 08:04 PM
Carbazole	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
Chrysene	< 0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
Dibenz[a,h]anthracene	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
Dibenzofuran	<0.0126	0.0126	0.0335		mg/Kg-dry	1	02/26/24 08:04 PM
Diethyl phthalate	< 0.0504	0.0504	0.0832		mg/Kg-dry	1	02/26/24 08:04 PM
Dimethyl phthalate	< 0.0504	0.0504	0.0832		mg/Kg-dry	1	02/26/24 08:04 PM
Di-n-butyl phthalate	<0.0504	0.0504	0.0832		mg/Kg-dry	1	02/26/24 08:04 PM
Di-n-octyl phthalate	<0.0504	0.0504	0.0832		mg/Kg-dry	1	02/26/24 08:04 PM
Fluoranthene	0.0126	0.0126	0.0335	J	mg/Kg-dry	1	02/26/24 08:04 PM

Qualifiers:

ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

Date:

28-Feb-24

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 34 of 40

CLIENT: Weston Solutions, Inc. Client Sample ID: SS-DUP

Project: SAWS Impoundment Assessment Lagoons and Lab ID: 2402269-08

Lab Order: 2402269 Matrix: SOIL

Analyses	Result	SDL	RL	Qual Units	DF.	Date Analyzed
SEMIVOLATILES BY GC/MS		SW82	270E			Analyst: DEW
Fluorene	<0.0126	0.0126	0.0335	mg/Kg	•	02/26/24 08:04 PM
Hexachlorobenzene	<0.0126	0.0126	0.0335	mg/Kg	-dry 1	02/26/24 08:04 PM
Hexachlorobutadiene	<0.0126	0.0126	0.0335	mg/Kg	-dry 1	02/26/24 08:04 PM
Hexachlorocyclopentadiene	<0.0378	0.0378	0.0832	mg/Kg	-dry 1	02/26/24 08:04 PM
Hexachloroethane	<0.0126	0.0126	0.0335	mg/Kg	-dry 1	02/26/24 08:04 PM
Indeno[1,2,3-cd]pyrene	<0.0126	0.0126	0.0335	mg/Kg	-dry 1	02/26/24 08:04 PM
Isophorone	< 0.0378	0.0378	0.0832	mg/Kg	-dry 1	02/26/24 08:04 PM
Naphthalene	< 0.0126	0.0126	0.0335	mg/Kg	-dry 1	02/26/24 08:04 PM
Nitrobenzene	< 0.0126	0.0126	0.0335	mg/Kg	-dry 1	02/26/24 08:04 PM
N-Nitrosodi-n-propylamine	< 0.0126	0.0126	0.0335	mg/Kg	-dry 1	02/26/24 08:04 PM
N-Nitrosodiphenylamine	< 0.0126	0.0126	0.0335	mg/Kg	-dry 1	02/26/24 08:04 PM
Pentachlorophenol	< 0.0126	0.0126	0.0335	mg/Kg	-dry 1	02/26/24 08:04 PM
Phenanthrene	< 0.0126	0.0126	0.0335	mg/Kg	-dry 1	02/26/24 08:04 PM
Phenol	< 0.0126	0.0126	0.0335	mg/Kg	-dry 1	02/26/24 08:04 PM
Pyrene	< 0.0126	0.0126	0.0335	mg/Kg	-dry 1	02/26/24 08:04 PM
Pyridine	< 0.0631	0.0631	0.166	mg/Kg	-dry 1	02/26/24 08:04 PM
Surr: 2,4,6-Tribromophenol	84.0	0	45-126	%REC	1	02/26/24 08:04 PM
Surr: 2-Fluorobiphenyl	89.0	0	60-125	%REC	1	02/26/24 08:04 PM
Surr: 2-Fluorophenol	86.0	0	37-125	%REC	1	02/26/24 08:04 PM
Surr: 4-Terphenyl-d14	91.0	0	45-125	%REC	1	02/26/24 08:04 PM
Surr: Nitrobenzene-d5	80.0	0	45-125	%REC	1	02/26/24 08:04 PM
Surr: Phenol-d5	82.0	0	40-125	%REC	1	02/26/24 08:04 PM
VOLATILES BY 8260/5035 GC/MS		SW82	60D			Analyst: JL
1,1,1,2-Tetrachloroethane	< 0.00170	0.00170	0.00849	mg/Kg	-dry 1	02/22/24 12:11 AM
1,1,1-Trichloroethane	< 0.00170	0.00170	0.00849	mg/Kg	-dry 1	02/22/24 12:11 AM
1,1,2,2-Tetrachloroethane	< 0.00170	0.00170	0.00849	mg/Kg	-dry 1	02/22/24 12:11 AM
1,1,2-Trichloroethane	< 0.00170	0.00170	0.00849	mg/Kg	-dry 1	02/22/24 12:11 AM
1,1,2-Trichlorotrifluoroethane	< 0.00849	0.00849	0.0255	mg/Kg	-dry 1	02/22/24 12:11 AM
1,1-Dichloroethane	< 0.00170	0.00170	0.00849	mg/Kg	-dry 1	02/22/24 12:11 AM
1,1-Dichloroethene	< 0.00170	0.00170	0.00849	mg/Kg	-dry 1	02/22/24 12:11 AM
1,1-Dichloropropene	< 0.00170	0.00170	0.00849	mg/Kg	-dry 1	02/22/24 12:11 AM
1,2,3-Trichlorobenzene	< 0.00170	0.00170	0.00849	mg/Kg	-	02/22/24 12:11 AM
1,2,3-Trichloropropane	< 0.00170	0.00170	0.00849	mg/Kg	-dry 1	02/22/24 12:11 AM
1,2,4-Trichlorobenzene	< 0.00170	0.00170	0.00849	mg/Kg	-	02/22/24 12:11 AM
1,2,4-Trimethylbenzene	< 0.00170	0.00170	0.00849	mg/Kg	-	02/22/24 12:11 AM
1,2-Dibromo-3-chloropropane	< 0.00170	0.00170	0.00849	mg/Kg	-	02/22/24 12:11 AM
1,2-Dibromoethane	< 0.00170	0.00170	0.00849	mg/Kg	-	02/22/24 12:11 AM
1,2-Dichlorobenzene	<0.00170	0.00170	0.00849	mg/Kg	-	02/22/24 12:11 AM

Qualifiers:

ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

 $\ensuremath{\mathrm{C}}$ - Sample Result or QC discussed in Case Narrative

Date:

28-Feb-24

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 35 of 40

CLIENT: Weston Solutions, Inc. Client Sample ID: SS-DUP

Project: SAWS Impoundment Assessment Lagoons and Lab ID: 2402269-08

Project No: 10412.036.001.0002 **Collection Date:** 02/20/24 11:13 AM

Lab Order: 2402269 Matrix: SOIL

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
VOLATILES BY 8260/5035 GC/MS		SW82	260D				Analyst: JL
1,2-Dichloroethane	<0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
1,2-Dichloropropane	<0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
1,3,5-Trimethylbenzene	<0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
1,3-Dichlorobenzene	<0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
1,3-Dichloropropane	<0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
1,4-Dichlorobenzene	< 0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
1-Chlorohexane	< 0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
2,2-Dichloropropane	< 0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
2-Butanone	< 0.00849	0.00849	0.0255		mg/Kg-dry	1	02/22/24 12:11 AM
2-Chlorotoluene	< 0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
2-Hexanone	< 0.00849	0.00849	0.0255		mg/Kg-dry	1	02/22/24 12:11 AM
4-Chlorotoluene	< 0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
4-Methyl-2-pentanone	< 0.00849	0.00849	0.0255		mg/Kg-dry	1	02/22/24 12:11 AM
Acetone	< 0.0255	0.0255	0.0849		mg/Kg-dry	1	02/22/24 12:11 AM
Benzene	< 0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
Bromobenzene	< 0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
Bromochloromethane	< 0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
Bromodichloromethane	< 0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
Bromoform	< 0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
Bromomethane	< 0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
Carbon disulfide	< 0.00849	0.00849	0.0255		mg/Kg-dry	1	02/22/24 12:11 AM
Carbon tetrachloride	< 0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
Chlorobenzene	< 0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
Chloroethane	< 0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
Chloroform	< 0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
Chloromethane	< 0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
cis-1,2-Dichloroethene	< 0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
cis-1,3-Dichloropropene	< 0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
Cyclohexane	< 0.00849	0.00849	0.0255	N	mg/Kg-dry	1	02/22/24 12:11 AM
Dibromochloromethane	< 0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
Dibromomethane	< 0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
Dichlorodifluoromethane	< 0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
Ethylbenzene	< 0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
Hexachlorobutadiene	< 0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
Isopropylbenzene	< 0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
m,p-Xylene	< 0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
Methyl Acetate	< 0.00849	0.00849	0.0255		mg/Kg-dry	1	02/22/24 12:11 AM
Methyl tert-butyl ether	< 0.00170	0.00170	0.00849		mg/Kg-dry	1	02/22/24 12:11 AM
Methylcyclohexane	<0.00849	0.00849	0.0255		mg/Kg-dry	1	02/22/24 12:11 AM

Qualifiers:

ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

Date:

28-Feb-24

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 36 of 40

CLIENT: Weston Solutions, Inc. Client Sample ID: SS-DUP

Project: SAWS Impoundment Assessment Lagoons and Lab ID: 2402269-08

Project No: 10412.036.001.0002 **Collection Date:** 02/20/24 11:13 AM

Lab Order: 2402269 Matrix: SOIL

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed
VOLATILES BY 8260/5035 GC/MS	S	SW82	260D			Analyst: JL
Methylene chloride	< 0.00849	0.00849	0.00849	mg/Kg-dry	1	02/22/24 12:11 AM
Naphthalene	< 0.00849	0.00849	0.0255	mg/Kg-dry	1	02/22/24 12:11 AM
n-Butylbenzene	< 0.00170	0.00170	0.00849	mg/Kg-dry	1	02/22/24 12:11 AM
n-Propylbenzene	< 0.00170	0.00170	0.00849	mg/Kg-dry	1	02/22/24 12:11 AM
o-Xylene	< 0.00170	0.00170	0.00849	mg/Kg-dry	1	02/22/24 12:11 AM
p-Isopropyltoluene	< 0.00170	0.00170	0.00849	mg/Kg-dry	1	02/22/24 12:11 AM
sec-Butylbenzene	< 0.00170	0.00170	0.00849	mg/Kg-dry	1	02/22/24 12:11 AM
Styrene	< 0.00170	0.00170	0.00849	mg/Kg-dry	1	02/22/24 12:11 AM
tert-Butylbenzene	< 0.00170	0.00170	0.00849	mg/Kg-dry	1	02/22/24 12:11 AM
Tetrachloroethene	< 0.00170	0.00170	0.00849	mg/Kg-dry	1	02/22/24 12:11 AM
Toluene	< 0.00170	0.00170	0.00849	mg/Kg-dry	1	02/22/24 12:11 AM
trans-1,2-Dichloroethene	< 0.00170	0.00170	0.00849	mg/Kg-dry	1	02/22/24 12:11 AM
trans-1,3-Dichloropropene	< 0.00170	0.00170	0.00849	mg/Kg-dry	1	02/22/24 12:11 AM
Trichloroethene	< 0.00170	0.00170	0.00849	mg/Kg-dry	1	02/22/24 12:11 AM
Trichlorofluoromethane	< 0.00849	0.00849	0.0255	mg/Kg-dry	1	02/22/24 12:11 AM
Vinyl chloride	< 0.00170	0.00170	0.00849	mg/Kg-dry	1	02/22/24 12:11 AM
Xylenes, Total	< 0.00170	0.00170	0.00849	mg/Kg-dry	1	02/22/24 12:11 AM
Surr: 1,2-Dichloroethane-d4	110	0	52-149	%REC	1	02/22/24 12:11 AM
Surr: 4-Bromofluorobenzene	111	0	84-118	%REC	1	02/22/24 12:11 AM
Surr: Dibromofluoromethane	105	0	65-135	%REC	1	02/22/24 12:11 AM
Surr: Toluene-d8	99.3	0	84-116	%REC	1	02/22/24 12:11 AM
PERCENT MOISTURE	D2216					Analyst: SMA
Percent Moisture	21.9	0	0	WT%	1	02/22/24 10:00 AM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

Date:

28-Feb-24

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 37 of 40

CLIENT: Weston Solutions, Inc. Client Sample ID: SS-Background

Project: SAWS Impoundment Assessment Lagoons and

Lab Order: 2402269 Matrix: SOIL

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - SOLI	D	SW6	020B				Analyst: SP
Aluminum	18800	718	2160		mg/Kg-dry	250	02/23/24 11:41 AM
Antimony	< 0.575	0.575	1.15		mg/Kg-dry	5	02/23/24 10:58 AM
Arsenic	7.16	0.575	1.15		mg/Kg-dry	5	02/23/24 10:58 AM
Barium	165	0.575	2.30		mg/Kg-dry	5	02/23/24 10:58 AM
Beryllium	0.682	0.115	0.345		mg/Kg-dry	5	02/23/24 10:58 AM
Cadmium	0.176	0.115	0.345	J	mg/Kg-dry	5	02/23/24 10:58 AM
Calcium	151000	718	2160		mg/Kg-dry	250	02/23/24 11:41 AM
Chromium	21.2	0.575	2.30		mg/Kg-dry	5	02/23/24 10:58 AM
Cobalt	4.97	0.575	2.30		mg/Kg-dry	5	02/23/24 10:58 AM
Copper	6.36	0.575	2.30		mg/Kg-dry	5	02/23/24 10:58 AM
Iron	16300	718	2160		mg/Kg-dry	250	02/23/24 11:41 AM
Lead	8.76	0.115	0.345		mg/Kg-dry	5	02/23/24 10:58 AM
Magnesium	3530	14.4	43.1		mg/Kg-dry	5	02/23/24 10:58 AM
Manganese	190	0.575	2.30		mg/Kg-dry	5	02/23/24 10:58 AM
Nickel	9.93	0.575	2.30		mg/Kg-dry	5	02/23/24 10:58 AM
Potassium	3760	14.4	43.1		mg/Kg-dry	5	02/23/24 10:58 AM
Selenium	0.409	0.172	0.575	J	mg/Kg-dry	5	02/23/24 10:58 AM
Silver	<0.115	0.115	0.230		mg/Kg-dry	5	02/23/24 10:58 AM
Sodium	72.5	14.4	43.1		mg/Kg-dry	5	02/23/24 10:58 AM
Thallium	<0.575	0.575	1.15		mg/Kg-dry	5	02/23/24 10:58 AM
Vanadium	53.4	1.15	2.87		mg/Kg-dry	5	02/23/24 10:58 AM
Zinc	34.3	1.15	2.87		mg/Kg-dry	5	02/23/24 10:58 AM
MERCURY TOTAL: SOIL/SOLID		SW7471B					Analyst: CMC
Mercury	< 0.0199	0.0199	0.0497		mg/Kg-dry	1	02/23/24 11:07 AM
PERCENT MOISTURE		D2216				Analyst: SMA	
Percent Moisture	22.3	0	0		WT%	1	02/22/24 10:00 AM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

Date:

Lab ID: 2402269-09

28-Feb-24

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 38 of 40

CLIENT: Weston Solutions, Inc. Client Sample ID: Trip Blank-2

CLIENT: Weston Solutions, Inc. Client Sample ID: Trip Blank-2

Project: SAWS Impoundment Assessment Lagoons and Lab ID: 2402269-10

 Project No:
 10412.036.001.0002
 Collection Date:
 02/20/24

 Lab Order:
 2402269
 Matrix:
 TRIP BLANK

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
8260 WATER VOLATILES BY GC/MS		SW82	260D				Analyst: JVR
1,1,1,2-Tetrachloroethane	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
1,1,1-Trichloroethane	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
1,1,2,2-Tetrachloroethane	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
1,1,2-Trichloroethane	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
1,1,2-Trichlorotrifluoroethane	< 0.00500	0.00500	0.0150		mg/L	1	02/21/24 11:56 AM
1,1-Dichloroethane	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
1,1-Dichloroethene	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
1,1-Dichloropropene	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
1,2,3-Trichlorobenzene	< 0.00150	0.00150	0.00500		mg/L	1	02/21/24 11:56 AM
1,2,3-Trichloropropane	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
1,2,4-Trichlorobenzene	< 0.00150	0.00150	0.00500		mg/L	1	02/21/24 11:56 AM
1,2,4-Trimethylbenzene	< 0.00150	0.00150	0.00500		mg/L	1	02/21/24 11:56 AM
1,2-Dibromo-3-chloropropane	< 0.00300	0.00300	0.0100		mg/L	1	02/21/24 11:56 AM
1,2-Dibromoethane	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
1,2-Dichlorobenzene	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
1,2-Dichloroethane	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
1,2-Dichloropropane	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
1,3,5-Trimethylbenzene	< 0.00150	0.00150	0.00500		mg/L	1	02/21/24 11:56 AM
1,3-Dichlorobenzene	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
1,3-Dichloropropane	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
1,4-Dichlorobenzene	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
1-Chlorohexane	< 0.00100	0.00100	0.00500		mg/L	1	02/21/24 11:56 AM
2,2-Dichloropropane	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
2-Butanone	< 0.00500	0.00500	0.0150		mg/L	1	02/21/24 11:56 AM
2-Chlorotoluene	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
2-Hexanone	< 0.00500	0.00500	0.0150		mg/L	1	02/21/24 11:56 AM
4-Chlorotoluene	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
4-Methyl-2-pentanone	< 0.00500	0.00500	0.0150		mg/L	1	02/21/24 11:56 AM
Acetone	< 0.00500	0.00500	0.0150		mg/L	1	02/21/24 11:56 AM
Benzene	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
Bromobenzene	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
Bromochloromethane	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
Bromodichloromethane	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
Bromoform	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
Bromomethane	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
Carbon disulfide	< 0.00500	0.00500	0.0150		mg/L	1	02/21/24 11:56 AM
Carbon tetrachloride	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
Chlorobenzene	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
Chloroethane	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM

Qualifiers:

ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

Date:

28-Feb-24

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 39 of 40

Date: 28-Feb-24

CLIENT: Weston Solutions, Inc. Client Sample ID: Trip Blank-2 **Project:** SAWS Impoundment Assessment Lagoons and **Lab ID:** 2402269-10

Project No: 10412.036.001.0002 Collection Date: 02/20/24

Lab Order: Matrix: TRIP BLANK 2402269

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
8260 WATER VOLATILES BY GC/MS		SW82	260D				Analyst: JVR
Chloroform	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
Chloromethane	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
cis-1,2-Dichloroethene	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
cis-1,3-Dichloropropene	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
Cyclohexane	< 0.00500	0.00500	0.0150	N	mg/L	1	02/21/24 11:56 AM
Dibromochloromethane	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
Dibromomethane	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
Dichlorodifluoromethane	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
Ethylbenzene	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
Hexachlorobutadiene	< 0.00100	0.00100	0.00300		mg/L	1	02/21/24 11:56 AM
Isopropylbenzene	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
m,p-Xylene	< 0.000600	0.000600	0.00200		mg/L	1	02/21/24 11:56 AM
Methyl Acetate	< 0.00500	0.00500	0.0150		mg/L	1	02/21/24 11:56 AM
Methyl tert-butyl ether	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
Methylcyclohexane	< 0.00500	0.00500	0.0150		mg/L	1	02/21/24 11:56 AM
Methylene chloride	< 0.00250	0.00250	0.00250		mg/L	1	02/21/24 11:56 AM
Naphthalene	< 0.00500	0.00500	0.0150		mg/L	1	02/21/24 11:56 AM
n-Butylbenzene	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
n-Propylbenzene	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
o-Xylene	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
p-Isopropyltoluene	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
sec-Butylbenzene	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
Styrene	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
tert-Butylbenzene	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
Tetrachloroethene	< 0.000600	0.000600	0.00200		mg/L	1	02/21/24 11:56 AM
Toluene	< 0.000600	0.000600	0.00200		mg/L	1	02/21/24 11:56 AM
trans-1,2-Dichloroethene	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
trans-1,3-Dichloropropene	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
Trichloroethene	< 0.000600	0.000600	0.00100		mg/L	1	02/21/24 11:56 AM
Trichlorofluoromethane	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
Vinyl chloride	< 0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
Xylenes, Total	<0.000300	0.000300	0.00100		mg/L	1	02/21/24 11:56 AM
Surr: 1,2-Dichloroethane-d4	90.6	0	72-119		%REC	1	02/21/24 11:56 AM
Surr: 4-Bromofluorobenzene	98.6	0	76-119		%REC	1	02/21/24 11:56 AM
Surr: Dibromofluoromethane	95.1	0	85-115		%REC	1	02/21/24 11:56 AM
Surr: Toluene-d8	97.5	0	81-120		%REC	1	02/21/24 11:56 AM

Qualifiers:

ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 40 of 40

CLIENT: Weston Solutions, Inc.

Work Order: 2402269

ANALYTICAL QC SUMMARY REPORT

Date: 28-Feb-24

Project: SAWS Impoundment Assessment Lagoons and RunID: CETAC2_HG_240216A

Sample ID: DCS-114006 SampType: DCS	Batch ID: Run ID:		_HG_240210		stNo: alysis Date:	SW7471B 2/16/2024 1	D:00:18 AM	Units: Prep Date	mg/	Kg 5/2024	
Analyte		Result	RL	SPK valu	e Ref V	/al %RE	C LowLi	mit HighLimit	%RPD	RPDLimit Q	ual
Mercury	(0.0372	0.0400	0.04000	0	93	.0 80	124	0	0	

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 1 of 40

Work Order: 2402269

ANALYTICAL QC SUMMARY REPORT

Project: SAWS Impoundment Assessment Lagoons and RunID: CETAC2_HG_240223A

The QC data in batch 114134 applies to the following samples: 2402269-01B, 2402269-02B, 2402269-03B, 2402269-04B, 2402269-06B, 2402269-07B, 2402269-08B, 2402269-09A

07B, 2402269-08	B, 2402269-09A										
Sample ID: MB-1	114134	Batch ID:	114134		TestNo:	SV	V7471B		Units:	mg/Kg	
SampType: MBL	K	Run ID:	CETAC2_	HG_240223	BA Analysis	Date: 2/2	23/2024 10:22:	17 AM	Prep Date:	2/22/20)24
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RF	PDLimit Qua
Mercury			<0.0160	0.0400							
Sample ID: LCS-	-114134	Batch ID:	114134		TestNo:	SV	V7471B		Units:	mg/Kg	
SampType: LCS		Run ID:	CETAC2_	HG_240223	BA Analysis	Date: 2/2	23/2024 10:24:	33 AM	Prep Date:	2/22/20)24
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RF	PDLimit Qua
Mercury			0.193	0.0400	0.2000	0	96.5	85	115		
Sample ID: LCSI	D-114134	Batch ID:	114134		TestNo:	SV	V7471B		Units:	mg/Kg	
SampType: LCSI	D	Run ID:	CETAC2_	HG_240223	BA Analysis	Date: 2/2	23/2024 10:26:	50 AM	Prep Date:	2/22/20)24
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RF	PDLimit Qua
Mercury			0.195	0.0400	0.2000	0	97.5	85	115	1.03	25
Sample ID: 2402	269-02BMS	Batch ID:	114134		TestNo:	SV	V7471B		Units:	mg/Kg	-dry
SampType: MS		Run ID:	CETAC2_	HG_240223	BA Analysis	Date: 2/2	23/2024 10:42:	41 AM	Prep Date:	2/22/20)24
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RF	PDLimit Qua
Mercury			0.200	0.0432	0.2159	0	92.5	80	120		
Sample ID: 2402	269-02BMSD	Batch ID:	114134		TestNo:	SV	V7471B		Units:	mg/Kg	-dry
SampType: MSD	1	Run ID:	CETAC2_	HG_240223	BA Analysis	Date: 2/2	23/2024 10:44:	57 AM	Prep Date:	2/22/20)24
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RF	PDLimit Qua
Mercury			0.194	0.0415	0.2076	0	93.5	80	120	2.86	25
Sample ID: 2402	269-02BSD	Batch ID:	114134		TestNo:	SV	V7471B		Units:	mg/Kg	-dry
SampType: SD		Run ID:	CETAC2_	HG_240223	BA Analysis	Date: 2/2	23/2024 10:47:	13 AM	Prep Date:	2/22/20)24
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RF	PDLimit Qua
Mercury			<0.0845	0.211	0	0				0	10
Sample ID: 2402	269-02BPDS	Batch ID:	114134		TestNo:	SV	V7471B		Units:	mg/Kg	-dry
SampType: PDS		Run ID:	CETAC2_	HG_240223	BA Analysis	Date: 2/2	23/2024 10:49:	29 AM	Prep Date:	2/22/20)24
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RF	PDLimit Qua
Mercury			0.265	0.0423	0.2642	0	100	85	115		

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits
N Parameter not NELAP certified

Page 2 of 40

CLIENT: Weston Solutions, Inc. ANALYTICAL QC SUMMARY REPORT

Work Order: 2402269 **Project:** SAWS Impoundment Assessment Lagoons and

RunID: CETAC2 HG 240223A

Troject: Brivis	Impoundment 713	Bessment Bagoo	ins una					_110_21022011
Sample ID: ICV-240223	Batch ID: R1	31580	TestNo	: SW7	7471B		Units:	mg/Kg
SampType: ICV	Run ID: CE	TAC2_HG_2402	23A Analys	s Date: 2/23	/2024 10:17	:44 AM	Prep Date	:
Analyte	Resi	ılt RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit	%RPD RPDLimit Qual
Mercury	0.004	0.0400	0.004000	0	101	90	110	
Sample ID: CCV1-240223	Batch ID: R1	31580	TestNo	: SW7	7471B		Units:	mg/Kg
SampType: CCV	Run ID: CE	TAC2_HG_2402	23A Analys	s Date: 2/23	/2024 11:00	:51 AM	Prep Date	:
Analyte	Resu	ılt RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit	%RPD RPDLimit Qual
Mercury	0.001	90 0.0400	0.002000	0	95.0	90	110	
Sample ID: CCV2-240223	Batch ID: R1	31580	TestNo	: SW7	7471B		Units:	mg/Kg
SampType: CCV	Run ID: CE	TAC2_HG_2402	23A Analys	s Date: 2/23	/2024 11:09	:59 AM	Prep Date	:
Analyte	Resi	ılt RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit	%RPD RPDLimit Qual
Mercury	0.001	94 0.0400	0.002000	0	97.0	90	110	

Qualifiers: Analyte detected in the associated Method Blank

> J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits Page 3 of 40

Spike Recovery outside control limits

Parameter not NELAP certified

Work Order: 2402269

ANALYTICAL QC SUMMARY REPORT

Project: SAWS Impoundment Assessment Lagoons and

RunID:	ICP-MS5	231208A

Troject: Srws	mpoundment	1 13303311	iciii Lagooi	is and		Rumm		<u> </u>		7011
Sample ID: DCS1-113162	Batch ID:	113162		TestNo	: SW6	6020B		Units:	mg/k	(g
SampType: DCS	Run ID:	ICP-MS5	_231208A	Analys	is Date: 12/8	/2023 11:21	1:00 AM	Prep Date:	12/7	2023
Analyte	ſ	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD	RPDLimit Qua
Aluminum		45.1	37.5	37.50	0	120	70	130	0	0
Beryllium		0.287	0.300	0.2500	0	115	70	130	0	0
Cadmium		0.272	0.300	0.2500	0	109	70	130	0	0
Calcium		47.5	37.5	37.50	0	127	70	130	0	0
Iron		45.7	37.5	37.50	0	122	70	130	0	0
Lead		0.276	0.300	0.2500	0	110	70	130	0	0
Magnesium		38.7	37.5	37.50	0	103	70	130	0	0
Potassium		37.2	37.5	37.50	0	99.1	70	130	0	0
Selenium		0.245	0.500	0.2500	0	98.1	70	130	0	0
Silver		0.242	0.200	0.2500	0	96.6	70	130	0	0
Sodium		33.4	37.5	37.50	0	89.0	70	130	0	0
Sample ID: DCS2-113162	Batch ID:	113162		TestNo	: SW	6020B		Units:	mg/k	(g
SampType: DCS2	Run ID:	ICP-MS5	_231208A	Analys	is Date: 12/8	3/2023 11:25	5:00 AM	Prep Date:	12/7	2023
Analyte	ı	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD	RPDLimit Qua
Antimony		1.23	1.00	1.250	0	98.5	70	130	0	0
Arsenic		1.32	1.00	1.250	0	105	70	130	0	0
Barium		1.28	2.00	1.250	0	102	70	130	0	0
Chromium		1.35	2.00	1.250	0	108	70	130	0	0
Cobalt		1.33	2.00	1.250	0	107	70	130	0	0
Copper		1.36	2.00	1.250	0	109	70	130	0	0
Manganese		1.32	2.00	1.250	0	105	70	130	0	0
Nickel		1.22	2.00	1.250	0	98.0	70	130	0	0
Thallium		1.24	1.00	1.250	0	99.4	70	130	0	0
Sample ID: DCS3-113162	Batch ID:	113162		TestNo	: SW	6020B		Units:	mg/k	(g
SampType: DCS3	Run ID:	ICP-MS5	_231208A	Analys	is Date: 12/8	3/2023 11:28	3:00 AM	Prep Date:	12/7	2023
Analyte	ı	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD	RPDLimit Qua
Vanadium		2.50	2.50	2.500	0	99.8	70	130	0	0

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 4 of 40

Work Order: 2402269

D VD VGD 15GE 440444

ANALYTICAL QC SUMMARY REPORT

Project: SAWS Impoundment Assessment Lagoons and RunID: ICP-MS5_240223A

The QC data in batch 114139 applies to the following samples: 2402269-01B, 2402269-02B, 2402269-03B, 2402269-04B, 2402269-06B, 2402269-07B, 2402269-08B, 2402269-09A

Sample ID: MB-114139	Batch ID: 114139		TestNo:	SWe	6020B		Units:	mg/Kg
SampType: MBLK	Run ID: ICP-MS	5_240223A	Analysis	Date: 2/23	/2024 10:28	3:00 AM	Prep Date:	2/22/2024
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qua
Aluminum	<12.5	37.5						
Antimony	<0.500	1.00						
Arsenic	<0.500	1.00						
Barium	<0.500	2.00						
Beryllium	<0.100	0.300						
Cadmium	<0.100	0.300						
Calcium	<12.5	37.5						
Chromium	< 0.500	2.00						
Cobalt	< 0.500	2.00						
Copper	< 0.500	2.00						
Iron	<12.5	37.5						
Lead	<0.100	0.300						
Magnesium	<12.5	37.5						
Manganese	<0.500	2.00						
Nickel	<0.500	2.00						
Potassium	<12.5	37.5						
Selenium	<0.150	0.500						
Silver	<0.100	0.200						
Sodium	<12.5	37.5						
Thallium	<0.500	1.00						
Vanadium	<1.00	2.50						
Zinc	<1.00	2.50						
Sample ID: LCS-114139	Batch ID: 114139	·	TestNo:	SWe	6020B		Units:	mg/Kg

Sample ID: LCS-114139	Batch ID: 114139		TestNo	: SW6	6020B		Units:	mg/Kg
SampType: LCS	Run ID: ICP-MS	5_240223A	Analys	is Date: 2/23	/2024 10:30	0:00 AM	Prep Date	2/22/2024
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Aluminum	251	37.5	250.0	0	100	80	120	
Antimony	50.1	1.00	50.00	0	100	80	120	
Arsenic	49.1	1.00	50.00	0	98.2	80	120	
Barium	48.7	2.00	50.00	0	97.5	80	120	
Beryllium	47.5	0.300	50.00	0	95.1	80	120	
Cadmium	48.2	0.300	50.00	0	96.4	80	120	
Calcium	1240	37.5	1250	0	98.9	80	120	
Chromium	49.1	2.00	50.00	0	98.2	80	120	
Cobalt	50.1	2.00	50.00	0	100	80	120	
Copper	49.8	2.00	50.00	0	99.7	80	120	
Iron	260	37.5	250.0	0	104	80	120	
Lead	48.1	0.300	50.00	0	96.3	80	120	

Qualifiers: B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 5 of 40

Work Order: 2402269

ANALYTICAL QC SUMMARY REPORT

Project: SAWS Impoundment Assessment Lagoons and

RunID.	ICP_MS5	2402231

Sample ID: LCS-114139	Batch ID:	114139		TestNo	: SWe	6020B		Units:	mg/K	3
SampType: LCS	Run ID:	ICP-MS	5_240223A	Analys	is Date: 2/23	/2024 10:30	0:00 AM	Prep Date	2/22/2	024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD F	PDLimit Qual
Magnesium		1240	37.5	1250	0	99.0	80	120		
Manganese		49.1	2.00	50.00	0	98.3	80	120		
Nickel		49.4	2.00	50.00	0	98.7	80	120		
Potassium		1270	37.5	1250	0	102	80	120		
Selenium		45.8	0.500	50.00	0	91.6	80	120		
Silver		49.8	0.200	50.00	0	99.6	80	120		
Sodium		1250	37.5	1250	0	100	80	120		
Thallium		49.3	1.00	50.00	0	98.6	80	120		
Vanadium		48.8	2.50	50.00	0	97.7	80	120		
Zinc		48.7	2.50	50.00	0	97.3	80	120		
Sample ID: LCSD-114139	Batch ID:	114139		TestNo	: SW6	6020B		Units:	mg/Kg	9
SampType: LCSD	Run ID:	ICP-MS	5_240223A	Analys	is Date: 2/23	/2024 10:33	3:00 AM	Prep Date	2/22/2	024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD R	PDLimit Qual
Aluminum		249	37.5	250.0	0	99.5	80	120	0.795	25
Antimony		50.5	1.00	50.00	0	101	80	120	0.774	25
Arsenic		49.2	1.00	50.00	0	98.4	80	120	0.256	25
Barium		48.9	2.00	50.00	0	97.8	80	120	0.370	25
Beryllium		47.6	0.300	50.00	0	95.2	80	120	0.163	25
Cadmium		48.2	0.300	50.00	0	96.4	80	120	0.018	25
Calcium		1230	37.5	1250	0	98.0	80	120	0.865	25
Chromium		48.7	2.00	50.00	0	97.4	80	120	0.795	25
Cobalt		- 0.0			_					25
		50.0	2.00	50.00	0	99.9	80	120	0.217	23
Copper		50.0	2.00 2.00	50.00 50.00	0	99.9 100	80 80	120 120	0.217 0.397	25 25
		50.0 259			0 0	100 104				25 25
Iron		50.0	2.00	50.00	0	100	80	120	0.397	25
Iron Lead		50.0 259	2.00 37.5	50.00 250.0	0 0	100 104	80 80	120 120	0.397 0.102	25 25
Iron Lead Magnesium		50.0 259 48.5	2.00 37.5 0.300	50.00 250.0 50.00	0 0 0	100 104 97.0	80 80 80	120 120 120	0.397 0.102 0.757 0.078 0.522	25 25 25
Iron Lead Magnesium Manganese		50.0 259 48.5 1240	2.00 37.5 0.300 37.5 2.00	50.00 250.0 50.00 1250	0 0 0 0 0	100 104 97.0 98.9	80 80 80 80	120 120 120 120	0.397 0.102 0.757 0.078	25 25 25 25
Iron Lead Magnesium Manganese Nickel Potassium		50.0 259 48.5 1240 49.4 49.6 1270	2.00 37.5 0.300 37.5 2.00 2.00 37.5	50.00 250.0 50.00 1250 50.00 50.00 1250	0 0 0 0 0 0	100 104 97.0 98.9 98.8 99.1 102	80 80 80 80	120 120 120 120 120 120 120	0.397 0.102 0.757 0.078 0.522 0.389 0.305	25 25 25 25 25 25 25 25
Iron Lead Magnesium Manganese Nickel Potassium Selenium		50.0 259 48.5 1240 49.4 49.6 1270 46.0	2.00 37.5 0.300 37.5 2.00 2.00 37.5 0.500	50.00 250.0 50.00 1250 50.00 50.00 1250 50.00	0 0 0 0 0 0	100 104 97.0 98.9 98.8 99.1 102 91.9	80 80 80 80 80 80 80	120 120 120 120 120 120 120 120	0.397 0.102 0.757 0.078 0.522 0.389 0.305 0.362	25 25 25 25 25 25 25 25 25 25
Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver		50.0 259 48.5 1240 49.4 49.6 1270 46.0 50.3	2.00 37.5 0.300 37.5 2.00 2.00 37.5 0.500 0.200	50.00 250.0 50.00 1250 50.00 50.00 1250 50.00 50.00	0 0 0 0 0 0 0	100 104 97.0 98.9 98.8 99.1 102 91.9	80 80 80 80 80 80 80 80	120 120 120 120 120 120 120 120 120	0.397 0.102 0.757 0.078 0.522 0.389 0.305 0.362 0.981	25 25 25 25 25 25 25 25 25 25 25
Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver Sodium		50.0 259 48.5 1240 49.4 49.6 1270 46.0 50.3 1250	2.00 37.5 0.300 37.5 2.00 2.00 37.5 0.500 0.200 37.5	50.00 250.0 50.00 1250 50.00 50.00 1250 50.00 50.00 1250	0 0 0 0 0 0 0 0	100 104 97.0 98.9 98.8 99.1 102 91.9 101 99.8	80 80 80 80 80 80 80 80	120 120 120 120 120 120 120 120 120 120	0.397 0.102 0.757 0.078 0.522 0.389 0.305 0.362 0.981 0.304	25 25 25 25 25 25 25 25 25 25 25 25
Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver Sodium		50.0 259 48.5 1240 49.4 49.6 1270 46.0 50.3	2.00 37.5 0.300 37.5 2.00 2.00 37.5 0.500 0.200	50.00 250.0 50.00 1250 50.00 50.00 1250 50.00 50.00	0 0 0 0 0 0 0	100 104 97.0 98.9 98.8 99.1 102 91.9	80 80 80 80 80 80 80 80	120 120 120 120 120 120 120 120 120	0.397 0.102 0.757 0.078 0.522 0.389 0.305 0.362 0.981	25 25 25 25 25 25 25 25 25 25 25
Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver Sodium Thallium Vanadium		50.0 259 48.5 1240 49.4 49.6 1270 46.0 50.3 1250	2.00 37.5 0.300 37.5 2.00 2.00 37.5 0.500 0.200 37.5	50.00 250.0 50.00 1250 50.00 50.00 1250 50.00 50.00 1250	0 0 0 0 0 0 0 0	100 104 97.0 98.9 98.8 99.1 102 91.9 101 99.8	80 80 80 80 80 80 80 80	120 120 120 120 120 120 120 120 120 120	0.397 0.102 0.757 0.078 0.522 0.389 0.305 0.362 0.981 0.304	25 25 25 25 25 25 25 25 25 25 25 25

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 6 of 40

ANALYTICAL QC SUMMARY REPORT

CLIENT: Weston Solutions, Inc.

Work Order: 2402269

RunID: ICP-MS5_240223A **Project:** SAWS Impoundment Assessment Lagoons and

Sample ID: 2402269-04B SD	Batch ID:	114139		TestNo	o: SW	6020B		Units:	mg/l	Kg-dry
SampType: SD	Run ID:	ICP-MS	5_240223A	Analys	sis Date: 2/2 3	3/2024 10:40	:00 AM	Prep Date:	_	/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD	RPDLimit Qual
Antimony		<2.73	5.45	0	0				0	20
Arsenic		5.25	5.45	0	5.191				1.18	20
Barium		58.1	10.9	0	61.21				5.28	20
Beryllium		<0.545	1.64	0	0.4535				0	20
Cadmium		<0.545	1.64	0	0				0	20
Chromium		11.4	10.9	0	11.96				4.97	20
Cobalt		3.25	10.9	0	3.264				0.343	20
Copper		5.18	10.9	0	5.205				0.562	20
Lead		6.01	1.64	0	6.368				5.84	20
Magnesium		1730	204	0	1804				4.15	20
Manganese		88.9	10.9	0	92.92				4.38	20
Nickel		6.98	10.9	0	7.213				3.30	20
Potassium		1830	204	0	1923				4.86	20
Selenium		0.991	2.73	0	0.9490				4.30	20
Silver		<0.545	1.09	0	0				0	20
Sodium		<68.1	204	0	34.60				0	20
Thallium		<2.73	5.45	0	0				0	20
Vanadium		47.7	13.6	0	50.00				4.76	20
Zinc		28.5	13.6	0	29.67				3.97	20
Sample ID: 2402269-04B PDS	Batch ID:	114139		TestNo	o: SW	6020B		Units:	mg/l	Kg-dry
SampType: PDS	Run ID:	ICP-MS5	5_240223A	Analys	is Date: 2/23	3/2024 11:06	:00 AM	Prep Date:	2/22	/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD	RPDLimit Qual
Antimony		56.9	1.09	54.51	0	104	75	125		
Arsenic		59.3	1.09	54.51	5.191	99.3	75	125		
Barium		116	2.18	54.51	61.21	100	75	125		
Beryllium		54.4	0.327	54.51	0.4535	99.0	75	125		
Cadmium		54.6	0.327	54.51	0	100	75	125		
Chromium		66.9	2.18	54.51	11.96	101	75	125		
Cobalt		58.2	2.18	54.51	3.264	101	75	125		
Copper		60.2	2.18	54.51	5.205	101	75	125		
Lead		60.3	0.327	54.51	6.368	98.9	75	125		
Magnesium		3230	40.9	1363	1804	105	75	125		

Qualifiers: Analyte detected in the associated Method Blank В

Analyte detected between MDL and RL J

146

62.6

3360

50.8

55.5

1490

57.2

ND Not Detected at the Method Detection Limit

Reporting Limit

Manganese

Potassium

Selenium

Nickel

Silver

Sodium

Thallium

Analyte detected between SDL and RL

Dilution Factor DF

MDL Method Detection Limit

92.92

7.213

1923

0.9490

0

34.60

0

R RPD outside accepted control limits

75

75

75

75

75

75

125

125

125

125

125

125

125

Page 7 of 40

96.5

102

105

91.4

102

107

105

S Spike Recovery outside control limits

N Parameter not NELAP certified

54.51

54.51

1363

54.51

54.51

1363

54.51

2.18

2.18

40.9

0.545

0.218

40.9

1.09

Work Order: 2402269

ANALYTICAL QC SUMMARY REPORT

Project: SAWS Impoundment Assessment Lagoons and RunID: ICP-MS5_240223A

Sample ID: 2402269-04B PDS	Batch ID:	114139		TestNo	: SW6	6020B		Units:	mg/Kg-dry
SampType: PDS	Run ID:	ICP-MS5	_240223A	Analys	is Date: 2/23	/2024 11:06	6:00 AM	Prep Date:	2/22/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qual
Vanadium		105	2.73	54.51	50.00	100	75	125	
Zinc		83.0	2.73	54.51	29.67	97.8	75	125	
Sample ID: 2402269-04B MS	Batch ID:	114139		TestNo	: SW6	6020B		Units:	mg/Kg-dry
SampType: MS	Run ID:	ICP-MS5	_240223A	Analys	is Date: 2/23	/2024 11:09	9:00 AM	Prep Date:	2/22/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qual
Antimony		47.7	1.11	55.54	0	85.9	75	125	
Arsenic		58.8	1.11	55.54	5.191	96.5	75	125	
Barium		116	2.22	55.54	61.21	99.1	75	125	
Beryllium		53.1	0.333	55.54	0.4535	94.9	75	125	
Cadmium		53.1	0.333	55.54	0	95.6	75	125	

Arsenic	58.8	1.11	55.54	5.191	96.5	75	125
Barium	116	2.22	55.54	61.21	99.1	75	125
Beryllium	53.1	0.333	55.54	0.4535	94.9	75	125
Cadmium	53.1	0.333	55.54	0	95.6	75	125
Chromium	65.9	2.22	55.54	11.96	97.1	75	125
Cobalt	57.9	2.22	55.54	3.264	98.4	75	125
Copper	59.9	2.22	55.54	5.205	98.5	75	125
Lead	59.3	0.333	55.54	6.368	95.3	75	125
Magnesium	3170	41.7	1388	1804	98.1	75	125
Manganese	145	2.22	55.54	92.92	94.0	75	125
Nickel	60.9	2.22	55.54	7.213	96.7	75	125
Potassium	3330	41.7	1388	1923	102	75	125
Selenium	49.6	0.555	55.54	0.9490	87.6	75	125
Silver	55.0	0.222	55.54	0	99.0	75	125
Sodium	1400	41.7	1388	34.60	98.2	75	125
Thallium	55.4	1.11	55.54	0	99.7	75	125
Vanadium	104	2.78	55.54	50.00	96.5	75	125
Zinc	82.8	2.78	55.54	29.67	95.7	75	125

Sample ID: 2402269-04B MSD	Batch ID:	114139		TestNo	: SW	6020B		Units:	mg/k	(g-dry
SampType: MSD	Run ID:	ICP-MS5	_240223A	Analys	s Date: 2/23	3/2024 11:11	:00 AM	Prep Date	: 2/22	/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Antimony		48.3	1.10	55.02	0	87.9	75	125	1.27	25
Arsenic		57.7	1.10	55.02	5.191	95.5	75	125	1.78	25
Barium		114	2.20	55.02	61.21	95.9	75	125	1.96	25
Beryllium		52.6	0.330	55.02	0.4535	94.7	75	125	1.09	25
Cadmium		53.0	0.330	55.02	0	96.4	75	125	0.152	25
Chromium		65.6	2.20	55.02	11.96	97.5	75	125	0.408	25
Cobalt		57.5	2.20	55.02	3.264	98.6	75	125	0.679	25
Copper		59.4	2.20	55.02	5.205	98.6	75	125	0.733	25
Lead		58.8	0.330	55.02	6.368	95.3	75	125	0.803	25

1376

Qualifiers:

Magnesium

B Analyte detected in the associated Method Blank

3120

41.3

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

1804

R RPD outside accepted control limits

95.3

75

125

1.64

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 8 of 40

25

Work Order: 2402269

ANALYTICAL QC SUMMARY REPORT

Project:	SAWS Im	poundmer	nt Assessn	nent Lagooi	ns and		RunII): I	CP-MS5_	240223	3A	
Sample ID:	2402269-04B MSD	Batch ID:	114139		TestNo	: SW6	6020B		Units:	mg/Kg	g-dry	
SampType:	MSD	Run ID:	ICP-MS	5_240223A	Analys	is Date: 2/23	/2024 11:11	:00 AM	Prep Date:	2/22/2	2024	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD F	RPDLimit	Qua
Manganese			142	2.20	55.02	92.92	90.1	75	125	1.82	25	
Nickel			60.2	2.20	55.02	7.213	96.3	75	125	1.21	25	
Potassium			3280	41.3	1376	1923	98.7	75	125	1.61	25	
Selenium			48.7	0.550	55.02	0.9490	86.8	75	125	1.82	25	
Silver			54.9	0.220	55.02	0	99.9	75	125	0.093	25	
Sodium			1390	41.3	1376	34.60	98.9	75	125	0.290	25	
Thallium			55.1	1.10	55.02	0	100	75	125	0.521	25	
Vanadium			103	2.75	55.02	50.00	95.6	75	125	0.945	25	
Zinc			81.2	2.75	55.02	29.67	93.7	75	125	1.92	25	
Sample ID:	2402269-04B SD	Batch ID:	114139		TestNo	: SW6	6020B		Units:	mg/K	g-dry	
SampType:	SD	Run ID:	ICP-MS	5_240223A	Analys	is Date: 2/23	/2024 11:23	3:00 AM	Prep Date: 2/22/2024		2024	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD F	RPDLimit	Qua
Aluminum			9660	4090	0	10020				3.61	20	
Calcium			47500	4090	0	46080				2.96	20	
Iron			25900	4090	0	25980				0.209	20	
Sample ID:	2402269-04B PDS	Batch ID:	114139		TestNo	: SW6	6020B		Units:	mg/Kg	g-dry	
SampType:	PDS	Run ID:	ICP-MS	5_240223A	Analys	is Date: 2/23	/2024 11:44	1:00 AM	Prep Date:	2/22/2	2024	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	RPDLimit	Qua
Aluminum			36000	818	27260	10020	95.3	75	125			
Calcium			73700	818	27260	46080	101	75	125			
Iron			52100	818	27260	25980	95.7	75	125			
Sample ID:	2402269-04B MS	Batch ID:	114139								n-drv	
l					TestNo	: SW6	6020B		Units:	mg/K	g u.y	
SampType:	MS	Run ID:		5_240223A		is Date: 2/23		':00 AM	Units: Prep Date:	mg/Kg 2/22/2	-	
SampType: Analyte	MS			5_ 240223A RL						2/22/2	2024	: Qua
	MS		ICP-MS		Analys	is Date: 2/23	/2024 11:47		Prep Date:	2/22/2	2024	Qua S
Analyte	MS		ICP-MS	RL	Analys SPK value	is Date: 2/23 Ref Val	/2024 11:47 %REC	LowLim	Prep Date:	2/22/2	2024	
Analyte Aluminum	MS		Result 12300	RL 833	Analys SPK value 277.7	Ref Val	/2024 11:47 %REC 826	LowLim 75	Prep Date: it HighLimit %	2/22/2	2024	S
Analyte Aluminum Calcium Iron	MS 2402269-04B MSD		ICP-MS: Result 12300 49600 27300	RL 833 833	Analys SPK value 277.7 1388	Ref Val 10020 46080 25980	%REC 826 250	LowLim 75 75	Prep Date: it HighLimit 9 125 125	2/22/2	PDLimit	S S
Analyte Aluminum Calcium Iron Sample ID:	2402269-04B MSD	Run ID:	Result 12300 49600 27300 114139	RL 833 833	Analys SPK value 277.7 1388 277.7 TestNo	Ref Val 10020 46080 25980	%REC 826 250 479	75 75 75	Prep Date: it HighLimit % 125 125 125	2/22/2 6RPD F	2024 RPDLimit	S S
Analyte Aluminum Calcium Iron	2402269-04B MSD	Run ID:	Result 12300 49600 27300 114139	RL 833 833 833	Analys SPK value 277.7 1388 277.7 TestNo	Ref Val 10020 46080 25980	%REC 826 250 479	75 75 75 75	Prep Date: it HighLimit % 125 125 125 Units:	2/22/2 6RPD F mg/K ₁ 2/22/2	PDLimit RPDLimit g-dry	S S S
Analyte Aluminum Calcium Iron Sample ID: SampType:	2402269-04B MSD	Run ID:	ICP-MS: Result 12300 49600 27300 114139 ICP-MS:	RL 833 833 833 5_240223A	Analys SPK value 277.7 1388 277.7 TestNo Analys	Ref Val 10020 46080 25980 25980 25980 25980 25980	%REC 826 250 479 6020B /2024 11:49	75 75 75 75	Prep Date: it HighLimit % 125 125 125 Units: Prep Date:	2/22/2 6RPD F mg/K ₁ 2/22/2	PDLimit RPDLimit g-dry	S S S
Analyte Aluminum Calcium Iron Sample ID: SampType: Analyte	2402269-04B MSD	Run ID:	Result 12300 49600 27300 114139 ICP-MS	RL 833 833 833 5_240223A	Analys SPK value 277.7 1388 277.7 TestNo Analys SPK value	Ref Val 10020 46080 25980 c: SW6 is Date: 2/23	%REC 826 250 479 6020B %REC	15 75 75 75 75 75 1:00 AM LowLim	Prep Date: it HighLimit % 125 125 125 Units: Prep Date: it HighLimit %	2/22/2 6RPD F mg/K; 2/22/2	RPDLimit	S S S

Qualifiers: В Analyte detected in the associated Method Blank

> J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 9 of 40

R RPD outside accepted control limits

S Spike Recovery outside control limits

Parameter not NELAP certified

Work Order: 2402269

ANALYTICAL QC SUMMARY REPORT ICP-MS5_240223A

RunID:

Project: SAWS Impoundment Assessment Lagoons and

Sample ID: ICV-240223	Batch ID: R	131582	TestN	o: SW	6020B	· · · · · · · · · · · · · · · · · · ·	Units:	mg/L
SampType: ICV	Run ID: IC	CP-MS5_240223A	Analys	sis Date: 2/2 3	3/2024 10:10	:00 AM	Prep Date:	
Analyte	Res	sult RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Aluminum	2.3	38 0.0300	2.50	0	95.1	90	110	
Antimony	0.1	0.00250	0.100	0	102	90	110	
Arsenic	0.1	0.00500	0.100	0	101	90	110	
Barium	0.1	0.0100	0.100	0	100	90	110	
Beryllium	0.09	0.00100	0.100	0	97.4	90	110	
Cadmium	0.1	0.00100	0.100	0	101	90	110	
Calcium	2.4	19 0.300	2.50	0	99.5	90	110	
Chromium	0.1	0.00500	0.100	0	103	90	110	
Cobalt	0.1	0.00500	0.100	0	105	90	110	
Copper	0.1	0.0100	0.100	0	106	90	110	
Iron	2.4	16 0.100	2.50	0	98.4	90	110	
Lead	0.09	0.00100	0.100	0	97.7	90	110	
Magnesium	2.4	10 0.300	2.50	0	96.2	90	110	
Manganese	0.1	0.0100	0.100	0	100	90	110	
Nickel	0.1	0.0100	0.100	0	107	90	110	
Potassium	2.4	12 0.300	2.50	0	96.9	90	110	
Selenium	0.1	0.00500	0.100	0	104	90	110	
Silver	0.1	0.00200	0.100	0	102	90	110	
Sodium	2.4	15 0.300	2.50	0	97.8	90	110	
Thallium	0.09	0.00150	0.100	0	96.7	90	110	
Vanadium	0.1	0.00100	0.100	0	101	90	110	
Zinc	0.1	0.00500	0.100	0	105	90	110	
Sample ID: LCVL-240223	Batch ID: R	131582	TestN	o: SW	6020B		Units:	mg/L
SampType: LCVL	Run ID: IC	CP-MS5_240223A	Analys	sis Date: 2/2:	3/2024 10:16	:00 AM	Prep Date:	
Analyte	Res	sult RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Aluminum	0.09	989 0.0300	0.100	0	98.8	80	120	
Antimony	0.00	213 0.00250	0.00200	0	107	80	120	
Arsenic	0.00	524 0.00500	0.00500	0	105	80	120	
Barium	0.00	535 0.0100	0.00500	0	107	80	120	
Beryllium	0.00	104 0.00100	0.00100	0	104	80	120	
Cadmium	0.00	102 0.00100	0.00100	0	102	80	120	
Calcium	0.1	12 0.300	0.100	0	112	80	120	
Chromium	0.00	517 0.00500	0.00500	0	103	80	120	
Cobalt	0.00	522 0.00500	0.00500	0	104	80	120	
Copper	0.00		0.00500	0	105	80	120	
Iron	0.1	0.100	0.100	0	104	80	120	
Lead	0.00	103 0.00100	0.00100	0	103	80	120	
Magnesium	0.1	0.300	0.100	0	105	80	120	
Manganese	0.00	510 0.0100	0.00500	0	102	80	120	

Qualifiers: В Analyte detected in the associated Method Blank

> J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

RPD outside accepted control limits R

Spike Recovery outside control limits

Parameter not NELAP certified

Page 10 of 40

Work Order: 2402269

ANALYTICAL QC SUMMARY REPORT

RunID: ICP-MS5_240223A **Project:** SAWS Impoundment Assessment Lagoons and

Sample ID:	LCVL-240223	Batch ID:	R131582		TestNo	: sw	6020B		Units:	mg/L	
SampType:	LCVL	Run ID:	ICP-MS5	_240223A	Analysis Date: 2/23/2024 10:16:00 AM				Prep Date:		
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qua
Nickel			0.00513	0.0100	0.00500	0	103	80	120		
Potassium			0.106	0.300	0.100	0	106	80	120		
Selenium			0.00552	0.00500	0.00500	0	110	80	120		
Silver			0.00206	0.00200	0.00200	0	103	80	120		
Sodium			0.106	0.300	0.100	0	106	80	120		
Thallium			0.00100	0.00150	0.00100	0	100	80	120		
Vanadium			0.00106	0.00100	0.00100	0	106	80	120		
Zinc			0.00531	0.00500	0.00500	0	106	80	120		
Sample ID:	CCV1-240223	Batch ID:	R131582		TestNo	: sw	6020B		Units:	mg/L	
SampType:	CCV	Run ID:	ICP-MS5	_240223A	Analys	is Date: 2/2 3	3/2024 11:15	6:00 AM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qua
Aluminum			4.89	0.0300	5.00	0	97.9	90	110		
Antimony			0.200	0.00250	0.200	0	100	90	110		
Arsenic			0.201	0.00500	0.200	0	100	90	110		
Barium			0.196	0.0100	0.200	0	98.2	90	110		
Beryllium			0.188	0.00100	0.200	0	93.8	90	110		
Cadmium			0.194	0.00100	0.200	0	97.2	90	110		
Calcium			4.93	0.300	5.00	0	98.6	90	110		
Chromium			0.197	0.00500	0.200	0	98.7	90	110		
Cobalt			0.203	0.00500	0.200	0	101	90	110		
Copper			0.204	0.0100	0.200	0	102	90	110		
Iron			5.09	0.100	5.00	0	102	90	110		
Lead			0.192	0.00100	0.200	0	96.2	90	110		
Magnesium			4.94	0.300	5.00	0	98.9	90	110		
Manganese			0.197	0.0100	0.200	0	98.7	90	110		
Nickel			0.200	0.0100	0.200	0	100	90	110		
Potassium			5.00	0.300	5.00	0	100	90	110		
Selenium			0.201	0.00500	0.200	0	101	90	110		
Silver			0.198	0.00200	0.200	0	99.1	90	110		
Sodium			4.99	0.300	5.00	0	99.7	90	110		
Thallium			0.202	0.00150	0.200	0	101	90	110		
Vanadium			0.196	0.00100	0.200	0	98.0	90	110		
Zinc			0.201	0.00500	0.200	0	100	90	110		
Sample ID:	CCV2-240223	Batch ID:	R131582	_	TestNo	: SW	6020B	_	Units:	mg/L	
SampType:	CCV	Run ID:	ICP-MS5	_240223A	Analys	is Date: 2/23	3/2024 11:52	2:00 AM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qua
Aluminum			4.90	0.0300	5.00	0	98.1	90	110		

Qualifiers: Analyte detected in the associated Method Blank

Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 11 of 40

R RPD outside accepted control limits

Spike Recovery outside control limits Parameter not NELAP certified

68

CLIENT: Weston Solutions, Inc. ANALYTICAL QC SUMMARY REPORT

Work Order: 2402269

RunID: ICP-MS5_240223A **Project:** SAWS Impoundment Assessment Lagoons and

Sample ID: CCV2-240223 SampType: CCV	Batch ID: Run ID:		2 5_240223A	TestNo Analys		W6020B 23/2024 11:52	2:00 AM	Units: Prep Date	mg/L :
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qua
Calcium		4.95	0.300	5.00	0	99.0	90	110	
Iron		5.07	0.100	5.00	0	101	90	110	

Qualifiers:

В Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits Page 12 of 40

S Spike Recovery outside control limits

Parameter not NELAP certified

CLIENT: Weston Solutions, Inc. ANALYTICAL QC SUMMARY REPORT

Work Order: 2402269

GCMS4_231226B **RunID: Project:** SAWS Impoundment Assessment Lagoons and

Sample ID: DCS1-113405	Batch ID:	113405		TestNo	: SW	8270E		Units:	mg/	Kg
SampType: DCS	Run ID:	GCMS4	_231226B	Analys	is Date: 12/2	6/2023 4:43	3:00 PM	Prep Date	12/2	26/2023
Analyte	ı	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qu
2,4,5-Trichlorophenol	(0.0167	0.0266	0.02000	0	83.3	10	400	0	0
2,4,6-Trichlorophenol	(0.0167	0.0266	0.02000	0	83.3	10	400	0	0
2,4-Dichlorophenol	(0.0173	0.0266	0.02000	0	86.7	10	400	0	0
2,4-Dimethylphenol	(0.0207	0.0266	0.02000	0	103	10	400	0	0
2,4-Dinitrotoluene	(0.0307	0.0266	0.02000	0	153	10	400	0	0
2,6-Dinitrotoluene	(0.0147	0.0266	0.02000	0	73.3	10	400	0	0
2-Chloronaphthalene	(0.0187	0.0266	0.02000	0	93.3	10	400	0	0
2-Chlorophenol	(0.0187	0.0266	0.02000	0	93.3	10	400	0	0
2-Methylnaphthalene	(0.0167	0.0266	0.02000	0	83.3	10	400	0	0
2-Methylphenol	(0.0187	0.0266	0.02000	0	93.3	10	400	0	0
2-Nitroaniline	(0.0373	0.0266	0.02000	0	187	10	400	0	0
2-Nitrophenol	(0.0320	0.0266	0.02000	0	160	10	400	0	0
3,3'-Dichlorobenzidine	(0.0307	0.0266	0.02000	0	153	10	400	0	0
3-Nitroaniline	(0.0373	0.0266	0.02000	0	187	10	400	0	0
4-Bromophenyl phenyl ether	(0.0160	0.0266	0.02000	0	80.0	10	400	0	0
4-Chloro-3-methylphenol	(0.0180	0.0266	0.02000	0	90.0	10	400	0	0
4-Chlorophenyl phenyl ether		0.0193	0.0266	0.02000	0	96.7	10	400	0	0
4-Methylphenol		0.0167	0.0266	0.02000	0	83.3	10	400	0	0
4-Nitroaniline		0.0367	0.0266	0.02000	0	183	10	400	0	0
Acenaphthene	,	0.0180	0.0266	0.02000	0	90.0	10	400	0	0
Acenaphthylene		0.0147	0.0266	0.02000	0	73.3	10	400	0	0
Acetophenone		0.0133	0.0266	0.02000	0	66.7	10	400	0	0
Anthracene		0.0167	0.0266	0.02000	0	83.3	10	400	0	0
Atrazine		0.0193	0.0266	0.02000	0	96.7	10	400	0	0
Benzaldehyde		0.0153	0.0266	0.02000	0	76.7	10	400	0	0 N
Benzo[a]anthracene		0.0100	0.0266	0.02000	0	50.0	10	400	0	0
Benzo[a]pyrene		0.0213	0.0266	0.02000	0	107	10	400	0	0
Benzo[b]fluoranthene		0.0213	0.0266	0.02000	0	107	10	400	0	0
Benzo[g,h,i]perylene	,	0.0207	0.0266	0.02000	0	103	10	400	0	0
Benzo[k]fluoranthene		0.0187	0.0266	0.02000	0	93.3	10	400	0	0
Biphenyl		0.0187	0.0266	0.02000	0	93.3	10	400	0	0
Bis(2-chloroethoxy)methane		0.0193	0.0266	0.02000	0	96.7	10	400	0	0
Bis(2-chloroethyl)ether		0.0207	0.0266	0.02000	0	103	10	400	0	0
Bis(2-chloroisopropyl)ether		0.0247	0.0266	0.02000	0	123	10	400	0	0
Carbazole		0.0200	0.0266	0.02000	0	100	10	400	0	0
Dibenz[a,h]anthracene		0.0207	0.0266	0.02000	0	103	10	400	0	0
Dibenzofuran		0.0193	0.0266	0.02000	0	96.7	10	400	0	0
Fluoranthene		0.0193	0.0266	0.02000	0	96.7	10	400	0	0
Fluorene		0.0180	0.0266	0.02000	0	90.0	10	400	0	0
Hexachlorobenzene		0.0153	0.0266	0.02000	0	76.7	10	400	0	0
Hexachlorobutadiene		0.0180	0.0266	0.02000	0	90.0	10	400	0	0
i iezaci iioi obutaulene	,	0.0100	0.0200	0.02000	U	90.0	10	400	U	U

Qualifiers:

В Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

Spike Recovery outside control limits

Parameter not NELAP certified

Page 13 of 40

Work Order: 2402269

ANALYTICAL QC SUMMARY REPORT

Project: SAWS Impoundment Assessment Lagoons and RunID: GCMS4_231226B

Sample ID: DCS1-113405	Batch ID:	113405		TestNo	: SW	8270E		Units:	mg/k	(g
SampType: DCS	Run ID:	GCMS4_	231226B	Analys	is Date: 12/2	26/2023 4:43	3:00 PM	Prep Date:	12/2	6/2023
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD	RPDLimit Qual
Hexachloroethane		0.0207	0.0266	0.02000	0	103	10	400	0	0
Indeno[1,2,3-cd]pyrene		0.0207	0.0266	0.02000	0	103	10	400	0	0
Naphthalene		0.0187	0.0266	0.02000	0	93.3	10	400	0	0
Nitrobenzene		0.0213	0.0266	0.02000	0	107	10	400	0	0
N-Nitrosodi-n-propylamine		0.0167	0.0266	0.02000	0	83.3	10	400	0	0
N-Nitrosodiphenylamine		0.0167	0.0266	0.02000	0	83.3	10	400	0	0
Pentachlorophenol		0.0393	0.0266	0.02000	0	197	10	400	0	0
Phenanthrene	(0.00733	0.0266	0.02000	0	36.7	10	400	0	0
Phenol		0.0233	0.0266	0.02000	0	117	10	400	0	0
Pyrene		0.0107	0.0266	0.02000	0	53.3	10	400	0	0
Sample ID: DCS2-113405	Batch ID:	113405		TestNo	: SW	8270E		Units:	mg/k	(g
SampType: DCS2	Run ID:	GCMS4_	231226B	Analys	is Date: 12/2	26/2023 5:08	3:00 PM	Prep Date:	12/2	6/2023
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD	RPDLimit Qual
2,4-Dinitrophenol		0.0807	0.132	0.04000	0	202	10	400	0	0
4,6-Dinitro-2-methylphenol		0.114	0.0660	0.04000	0	285	10	400	0	0
4-Chloroaniline		0.0167	0.0660	0.04000	0	41.7	10	400	0	0
4-Nitrophenol		0.0620	0.132	0.04000	0	155	10	400	0	0
Benzoic acid		0.0833	0.132	0.04000	0	208	10	400	0	0
Benzyl alcohol		0.0300	0.0660	0.04000	0	75.0	10	400	0	0
Bis(2-ethylhexyl)phthalate		0.0720	0.0660	0.04000	0	180	10	400	0	0
Butyl benzyl phthalate		0.0353	0.0660	0.04000	0	88.3	10	400	0	0
Chrysene		0.0207	0.0266	0.04000	0	51.7	10	400	0	0
Diethyl phthalate		0.0420	0.0660	0.04000	0	105	10	400	0	0
Dimethyl phthalate		0.0347	0.0660	0.04000	0	86.7	10	400	0	0
Di-n-butyl phthalate		0.0420	0.0660	0.04000	0	105	10	400	0	0
Di-n-octyl phthalate		0.0547	0.0660	0.04000	0	137	10	400	0	0
Hexachlorocyclopentadiene		0.0513	0.0660	0.04000	0	128	10	400	0	0
Isophorone		0.0333	0.0660	0.04000	0	83.3	10	400	0	0
Pyridine		0.0280	0.132	0.04000	0	70.0	10	400	0	0
Sample ID: DCS3-113405	Batch ID:	113405	·	TestNo	: SW	8270E		Units:	mg/k	
SampType: DCS3	Run ID:	GCMS4_	231226B	Analys	is Date: 12/2	26/2023 5:33	3:00 PM	Prep Date:	12/2	6/2023
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD	RPDLimit Qual
Caprolactam		0.0960	0.0660	0.1000	0	96.0	10	400	0	0

Qualifiers: B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 14 of 40

Work Order: 2402269

ANALYTICAL QC SUMMARY REPORT

Project: SAWS Impoundment Assessment Lagoons and **RunID:** GCMS4_240226A

The QC data in batch 114177 applies to the following samples: 2402269-01B, 2402269-02B, 2402269-03B, 2402269-04B, 2402269-06B, 240200-06B, 240200-06B, 240200-06B, 240200-06B, 240200-06B, 240200-06B, 240200-06B, 240200-06B, 240 07B, 2402269-08B

Sample ID: LCS-114177	Batch ID:	114177		TestNo	o: SW 8	3270E		Units:	mg/Kg	
SampType: LCS	Run ID:	GCMS4	_240226A	Analys	is Date: 2/26	/2024 3:03:	00 PM	Prep Date:	2/26/2024	
Analyte	R	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLim	it Qual
2,4,5-Trichlorophenol		1.65	0.0266	1.340	0	123	49	125		
2,4,6-Trichlorophenol		1.65	0.0266	1.340	0	123	43	125		
2,4-Dichlorophenol		1.50	0.0266	1.340	0	112	45	125		
2,4-Dimethylphenol		1.41	0.0266	1.340	0	105	32	125		
2,4-Dinitrophenol		1.62	0.132	1.340	0	121	25	132		
2,4-Dinitrotoluene		1.43	0.0266	1.340	0	107	48	125		
2,6-Dinitrotoluene		1.52	0.0266	1.340	0	114	48	125		
2-Chloronaphthalene		1.37	0.0266	1.340	0	102	45	125		
2-Chlorophenol		1.39	0.0266	1.340	0	104	44	125		
2-Methylnaphthalene		1.22	0.0266	1.340	0	91.3	47	125		
2-Methylphenol		1.35	0.0266	1.340	0	101	40	125		
2-Nitroaniline		1.39	0.0266	1.340	0	104	44	125		
2-Nitrophenol		1.41	0.0266	1.340	0	105	42	125		
3,3'-Dichlorobenzidine		1.52	0.0266	1.340	0	114	25	128		
3-Nitroaniline		1.31	0.0266	1.340	0	98.0	27	125		
4,6-Dinitro-2-methylphenol		1.63	0.0660	1.340	0	121	29	137		
4-Bromophenyl phenyl ether		1.29	0.0266	1.340	0	96.6	46	125		
4-Chloro-3-methylphenol		1.40	0.0266	1.340	0	105	46	125		
4-Chloroaniline	C).825	0.0660	1.340	0	61.6	34	125		
4-Chlorophenyl phenyl ether		1.29	0.0266	1.340	0	96.0	47	125		
4-Methylphenol		1.32	0.0266	1.340	0	98.6	41	125		
4-Nitroaniline		1.47	0.0266	1.340	0	110	34	125		
4-Nitrophenol		1.47	0.132	1.340	0	110	25	138		
Acenaphthene		1.25	0.0266	1.340	0	93.3	46	125		
Acenaphthylene		1.14	0.0266	1.340	0	85.4	44	125		
Acetophenone		1.11	0.0266	1.340	0	82.8	40	125		
Anthracene		1.24	0.0266	1.340	0	92.6	53	125		
Atrazine		1.90	0.0266	1.340	0	142	40	125		S
Benzaldehyde		1.22	0.0266	1.340	0	90.9	40	125		Ν
Benzo[a]anthracene		1.40	0.0266	1.340	0	104	52	125		
Benzo[a]pyrene		1.50	0.0266	1.340	0	112	50	125		
Benzo[b]fluoranthene		1.49	0.0266	1.340	0	111	45	125		
Benzo[g,h,i]perylene		1.53	0.0266	1.340	0	114	38	126		
Benzo[k]fluoranthene		1.36	0.0266	1.340	0	101	45	125		
Benzoic acid		1.39	0.132	1.340	0	103	25	125		
Benzyl alcohol		1.23	0.0660	1.340	0	92.1	25	125		
Biphenyl		1.56	0.0266	1.340	0	116	40	125		
Bis(2-chloroethoxy)methane		1.21	0.0266	1.340	0	90.1	43	125		
Bis(2-chloroethyl)ether		1.19	0.0266	1.340	0	88.6	38	125		

Qualifiers:

Analyte detected in the associated Method Blank В

Analyte detected between MDL and RL J

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

Spike Recovery outside control limits

Parameter not NELAP certified

Page 15 of 40

Work Order: 2402269

ANALYTICAL QC SUMMARY REPORT

RunID: GCMS4_240226A **Project:** SAWS Impoundment Assessment Lagoons and

Sample ID: LCS-114177	Batch ID: 114177		TestNo	: SW8	3270E		Units:	mg/Kg
SampType: LCS	Run ID: GCMS4_	240226A	Analys	is Date: 2/26	/2024 3:03:	00 PM	Prep Date:	2/26/2024
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Bis(2-chloroisopropyl)ether	1.24	0.0266	1.340	0	92.5	25	125	
Bis(2-ethylhexyl)phthalate	1.59	0.0660	1.340	0	119	47	127	
Butyl benzyl phthalate	1.52	0.0660	1.340	0	114	49	125	
Caprolactam	1.38	0.0660	1.340	0	103	40	125	
Carbazole	1.48	0.0266	1.340	0	110	40	125	
Chrysene	1.39	0.0266	1.340	0	103	53	125	
Dibenz[a,h]anthracene	1.62	0.0266	1.340	0	121	41	125	
Dibenzofuran	1.28	0.0266	1.340	0	95.8	51	125	
Diethyl phthalate	1.37	0.0660	1.340	0	102	50	125	
Dimethyl phthalate	1.33	0.0660	1.340	0	99.5	49	125	
Di-n-butyl phthalate	1.41	0.0660	1.340	0	105	56	125	
Di-n-octyl phthalate	1.62	0.0660	1.340	0	121	41	132	
Fluoranthene	1.29	0.0266	1.340	0	96.3	54	125	
Fluorene	1.28	0.0266	1.340	0	95.2	49	125	
Hexachlorobenzene	1.19	0.0266	1.340	0	89.2	47	125	
Hexachlorobutadiene	1.30	0.0266	1.340	0	96.8	40	125	
Hexachlorocyclopentadiene	1.64	0.0660	1.340	0	122	31	135	
Hexachloroethane	1.17	0.0266	1.340	0	87.0	34	125	
Indeno[1,2,3-cd]pyrene	1.58	0.0266	1.340	0	118	38	125	
Isophorone	1.24	0.0660	1.340	0	92.2	43	125	
Naphthalene	1.22	0.0266	1.340	0	91.1	40	125	
Nitrobenzene	1.29	0.0266	1.340	0	96.5	41	125	
N-Nitrosodi-n-propylamine	1.09	0.0266	1.340	0	81.1	40	125	
N-Nitrosodiphenylamine	1.34	0.0266	1.340	0	99.9	49	125	
Pentachlorophenol	1.54	0.0266	1.340	0	115	25	125	
Phenanthrene	1.37	0.0266	1.340	0	102	50	125	
Phenol	1.40	0.0266	1.340	0	105	39	125	
Pyrene	1.44	0.0266	1.340	0	108	46	125	
Pyridine	0.792	0.132	1.340	0	59.1	20	125	
Surr: 2,4,6-Tribromophenol	0.633		0.6670		95.0	45	126	
Surr: 2-Fluorobiphenyl	0.627		0.6670		94.0	60	125	
Surr: 2-Fluorophenol	0.613		0.6670		92.0	37	125	
Surr: 4-Terphenyl-d14	0.647		0.6670		97.0	45	125	
Surr: Nitrobenzene-d5	0.593		0.6670		89.0	45	125	
Surr: Phenol-d5	0.587		0.6670		88.0	40	125	

Sample ID: MB-114177	Batch ID:	114177		TestNo:	;	SW8270E	Units:	mg/Kg
SampType: MBLK	Run ID:	GCMS4_240	226A	Analysis	Date:	2/26/2024 4:18:00 PM	Prep Date:	2/26/2024
Analyte		Result	RL S	PK value	Ref Va	al %REC LowL	imit HighLimit S	%RPD RPDLimit Qual

0.0266 2,4,5-Trichlorophenol < 0.0100

Qualifiers: Analyte detected in the associated Method Blank

> J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

RPD outside accepted control limits R

Spike Recovery outside control limits

Parameter not NELAP certified

73

Page 16 of 40

ANALYTICAL QC SUMMARY REPORT

Work Order: 2402269

Project: SAWS Impoundment Assessment Lagoons and RunID: GCMS4_240226A

Sample ID: MB-114177	Batch ID:	114177		TestNo): SW 8	3270E		Units:	mg/Kg	
SampType: MBLK	Run ID:	GCMS4	_240226A	Analys	is Date: 2/26	/2024 4:18:	00 PM	Prep Date:	2/26/2024	
Analyte	F	Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit %	6RPD RPDLim	nit Qual
2,4,6-Trichlorophenol	<	0.0100	0.0266							
2,4-Dichlorophenol	<	0.0100	0.0266							
2,4-Dimethylphenol	<	0.0100	0.0266							
2,4-Dinitrophenol	<	0.0500	0.132							
2,4-Dinitrotoluene	<	0.0100	0.0266							
2,6-Dinitrotoluene	<	0.0100	0.0266							
2-Chloronaphthalene	<	0.0100	0.0266							
2-Chlorophenol	<	0.0100	0.0266							
2-Methylnaphthalene	<	0.0100	0.0266							
2-Methylphenol	<	0.0100	0.0266							
2-Nitroaniline	<	0.0100	0.0266							
2-Nitrophenol	<	0.0100	0.0266							
3,3'-Dichlorobenzidine	<	0.0100	0.0266							
3-Nitroaniline	<	0.0100	0.0266							
4,6-Dinitro-2-methylphenol	<	0.0300	0.0660							
4-Bromophenyl phenyl ether	<	0.0100	0.0266							
4-Chloro-3-methylphenol	<	0.0100	0.0266							
4-Chloroaniline		0.0300	0.0660							
4-Chlorophenyl phenyl ether		0.0100	0.0266							
4-Methylphenol		0.0200	0.0266							
4-Nitroaniline		0.0100	0.0266							
4-Nitrophenol		0.0500	0.132							
Acenaphthene		0.0100	0.0266							
Acenaphthylene		0.0100	0.0266							
Acetophenone		0.0100	0.0266							
Anthracene		0.0100	0.0266							
Atrazine		0.0100	0.0266							
Benzaldehyde		0.0100	0.0266							Ν
Benzo[a]anthracene		0.0100	0.0266							
Benzo[a]pyrene		0.0100	0.0266							
Benzo[b]fluoranthene		0.0100	0.0266							
Benzo[g,h,i]perylene		0.0100	0.0266							
Benzo[k]fluoranthene		0.0100	0.0266							
Benzoic acid		0.0500	0.132							
Benzyl alcohol		0.0300	0.0660							
Biphenyl		0.0100	0.0266							
Bis(2-chloroethoxy)methane		0.0100	0.0266							
Bis(2-chloroethyl)ether		0.0100	0.0266							
· • •										
Bis(2-chloroisopropyl)ether		0.0100	0.0266							
Bis(2-ethylhexyl)phthalate		0.0640	0.0660							
Butyl benzyl phthalate	<	0.0400	0.0660							

Qualifiers: B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 17 of 40

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

ANALYTICAL QC SUMMARY REPORT

Work Order: 2402269

GCMS4_240226A **RunID: Project:** SAWS Impoundment Assessment Lagoons and

Sample ID: MB-114177	Batch ID: 114177		TestNo	: SW8	270E		Units:	mg/Kg
SampType: MBLK	Run ID: GCMS4	_240226A	Analys	is Date: 2/26	/2024 4:18:	00 PM	Prep Date:	2/26/2024
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qual
Caprolactam	<0.0300	0.0660						
Carbazole	<0.0100	0.0266						
Chrysene	< 0.0100	0.0266						
Dibenz[a,h]anthracene	< 0.0100	0.0266						
Dibenzofuran	< 0.0100	0.0266						
Diethyl phthalate	< 0.0400	0.0660						
Dimethyl phthalate	< 0.0400	0.0660						
Di-n-butyl phthalate	< 0.0400	0.0660						
Di-n-octyl phthalate	< 0.0400	0.0660						
Fluoranthene	< 0.0100	0.0266						
Fluorene	< 0.0100	0.0266						
Hexachlorobenzene	< 0.0100	0.0266						
Hexachlorobutadiene	< 0.0100	0.0266						
Hexachlorocyclopentadiene	< 0.0300	0.0660						
Hexachloroethane	< 0.0100	0.0266						
Indeno[1,2,3-cd]pyrene	< 0.0100	0.0266						
Isophorone	< 0.0300	0.0660						
Naphthalene	< 0.0100	0.0266						
Nitrobenzene	< 0.0100	0.0266						
N-Nitrosodi-n-propylamine	< 0.0100	0.0266						
N-Nitrosodiphenylamine	< 0.0100	0.0266						
Pentachlorophenol	< 0.0100	0.0266						
Phenanthrene	< 0.0100	0.0266						
Phenol	< 0.0100	0.0266						
Pyrene	< 0.0100	0.0266						
Pyridine	<0.0500	0.132						
Surr: 2,4,6-Tribromophenol	0.573		0.6670		86.0	45	126	
Surr: 2-Fluorobiphenyl	0.607		0.6670		91.0	60	125	
Surr: 2-Fluorophenol	0.593		0.6670		89.0	37	125	
Surr: 4-Terphenyl-d14	0.633		0.6670		95.0	45	125	
Surr: Nitrobenzene-d5	0.567		0.6670		85.0	45	125	
Surr: Phenol-d5	0.573		0.6670		86.0	40	125	
Sample ID: 2402269-01BMS	Batch ID: 114177		TestNo	sw8	270E		Units:	mg/Kg-dry
SampType: MS	Run ID: GCMS4	_240226A	Analys	is Date: 2/26	/2024 8:30:	00 PM	Prep Date:	2/26/2024
Analyte	Result	RI	SPK value	Ref Val	%RFC	I owl im	it Highl imit %	ARPD RPDI imit Qual

Sample ID: 2402269-01BMS	Batch ID:	114177		TestNo	: SW	8270E		Units:	mg/Kg-dry
SampType: MS	Run ID:	GCMS4	4_240226A	Analys	is Date: 2/26	6/2024 8:30:	00 PM	Prep Date	2/26/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
2,4,5-Trichlorophenol		1.89	0.0331	1.668	0	114	49	125	
2,4,6-Trichlorophenol		1.92	0.0331	1.668	0	115	43	125	
2,4-Dichlorophenol		1.72	0.0331	1.668	0	103	45	125	
2,4-Dimethylphenol		1.71	0.0331	1.668	0	102	32	125	

Qualifiers: В Analyte detected in the associated Method Blank

> J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 18 of 40

RPD outside accepted control limits R Spike Recovery outside control limits

Parameter not NELAP certified

75

ANALYTICAL QC SUMMARY REPORT

Work Order: 2402269

Project: SAWS Impoundment Assessment Lagoons and RunID: GCMS4_240226A

Sample ID: 2402269-01BMS	Batch ID: 114177		TestNo	: SW8	3270E		Units:	mg/Kg-dry
SampType: MS	Run ID: GCMS	4_240226A	Analys	is Date: 2/26	/2024 8:30:	00 PM	Prep Date:	2/26/2024
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qua
2,4-Dinitrophenol	0.351	0.164	1.668	0	21.0	25	132	S
2,4-Dinitrotoluene	1.62	0.0331	1.668	0	97.4	48	125	
2,6-Dinitrotoluene	1.78	0.0331	1.668	0	107	48	125	
2-Chloronaphthalene	1.65	0.0331	1.668	0	99.2	45	125	
2-Chlorophenol	1.72	0.0331	1.668	0	103	44	125	
2-Methylnaphthalene	1.37	0.0331	1.668	0	82.2	47	125	
2-Methylphenol	1.70	0.0331	1.668	0	102	40	125	
2-Nitroaniline	1.63	0.0331	1.668	0	97.6	44	125	
2-Nitrophenol	1.62	0.0331	1.668	0	97.3	42	125	
3,3'-Dichlorobenzidine	1.76	0.0331	1.668	0	106	25	128	
3-Nitroaniline	1.57	0.0331	1.668	0	94.1	27	125	
4,6-Dinitro-2-methylphenol	0.700	0.0821	1.668	0	42.0	29	137	
4-Bromophenyl phenyl ether	1.52	0.0331	1.668	0	90.8	46	125	
4-Chloro-3-methylphenol	1.51	0.0331	1.668	0	90.8	46	125	
4-Chloroaniline	0.968	0.0821	1.668	0	58.0	34	125	
4-Chlorophenyl phenyl ether	1.52	0.0331	1.668	0	91.2	47	125	
4-Methylphenol	1.68	0.0331	1.668	0	101	41	125	
4-Nitroaniline	1.64	0.0331	1.668	0	98.6	34	125	
4-Nitrophenol	2.00	0.164	1.668	0	120	25	138	
Acenaphthene	1.48	0.0331	1.668	0	88.5	46	125	
Acenaphthylene	1.36	0.0331	1.668	0	81.8	44	125	
Acetophenone	1.42	0.0331	1.668	0	85.2	40	125	
Anthracene	1.49	0.0331	1.668	0	89.3	53	125	
Atrazine	2.31	0.0331	1.668	0	139	40	125	s
Benzaldehyde	1.49	0.0331	1.668	0	89.1	40	125	N
Benzo[a]anthracene	1.68	0.0331	1.668	0	101	52	125	
Benzo[a]pyrene	1.83	0.0331	1.668	0	110	50	125	
Benzo[b]fluoranthene	1.77	0.0331	1.668	0	106	45	125	
Benzo[g,h,i]perylene	1.82	0.0331	1.668	0	109	38	126	
Benzo[k]fluoranthene	1.70	0.0331	1.668	0	102	45	125	
Benzoic acid	0.290	0.164	1.668	0	17.4	25	125	S
Benzyl alcohol	1.49	0.0821	1.668	0	89.5	25	125	J
Biphenyl	1.95	0.0331	1.668	0	117	40	125	
Bis(2-chloroethoxy)methane	1.44	0.0331	1.668	0	86.4	43	125	
Bis(2-chloroethyl)ether	1.42	0.0331	1.668	0	85.0	38	125	
Bis(2-chloroisopropyl)ether	1.55	0.0331	1.668	0	92.9	25	125	
Bis(2-ethylhexyl)phthalate	1.96	0.0331	1.668	0	117	47	127	
Butyl benzyl phthalate	1.88	0.0821	1.668	0	113	49	127	
Caprolactam	1.22	0.0821	1.668	0	72.9	49	125	
Carbazole	1.81	0.0821	1.668	0	108	40	125	
Chrysene	1.65	0.0331	1.668			53	125	
Omysene	1.00	0.0331	1.000	0	98.7	აა	120	

Qualifiers: B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 19 of 40

Work Order: 2402269

ANALYTICAL QC SUMMARY REPORT

GCMS4_240226A **RunID: Project:** SAWS Impoundment Assessment Lagoons and

Analyte Result RL SPK value Dibenz[a,h]anthracene 1.95 0.0331 1.668 Dibenzofuran 1.51 0.0331 1.668 Diethyl phthalate 1.60 0.0821 1.668 Dimethyl phthalate 1.57 0.0821 1.668	Ref Va	117 90.8 95.9	LowLim 41 51	Prep Date it HighLimit 125 125	: 2/26/2024 %RPD RPDLimit Qual
Dibenz[a,h]anthracene 1.95 0.0331 1.668 Dibenzofuran 1.51 0.0331 1.668 Diethyl phthalate 1.60 0.0821 1.668 Dimethyl phthalate 1.57 0.0821 1.668	0 0 0	117 90.8 95.9	41 51	125	%RPD RPDLimit Qual
Dibenzofuran 1.51 0.0331 1.668 Diethyl phthalate 1.60 0.0821 1.668 Dimethyl phthalate 1.57 0.0821 1.668	0 0	90.8 95.9	51		
Diethyl phthalate 1.60 0.0821 1.668 Dimethyl phthalate 1.57 0.0821 1.668	0	95.9		105	
Dimethyl phthalate 1.57 0.0821 1.668			EC	125	
	0	04.0	50	125	
		94.3	49	125	
Di-n-butyl phthalate 1.67 0.0821 1.668	0	100	56	125	
Di-n-octyl phthalate 2.03 0.0821 1.668	0	122	41	132	
Fluoranthene 1.57 0.0331 1.668	0	94.1	54	125	
Fluorene 1.50 0.0331 1.668	0	89.9	49	125	
Hexachlorobenzene 1.44 0.0331 1.668	0	86.1	47	125	
Hexachlorobutadiene 1.50 0.0331 1.668	0	89.8	40	125	
Hexachlorocyclopentadiene 1.91 0.0821 1.668	0	115	31	135	
Hexachloroethane 1.36 0.0331 1.668	0	81.7	34	125	
Indeno[1,2,3-cd]pyrene 1.92 0.0331 1.668	0	115	38	125	
Isophorone 1.44 0.0821 1.668	0	86.5	43	125	
Naphthalene 1.42 0.0331 1.668	0	85.3	40	125	
Nitrobenzene 1.49 0.0331 1.668	0	89.6	41	125	
N-Nitrosodi-n-propylamine 1.37 0.0331 1.668	0	82.4	40	125	
N-Nitrosodiphenylamine 1.61 0.0331 1.668	0	96.7	49	125	
Pentachlorophenol 1.15 0.0331 1.668	0	68.9	25	125	
Phenanthrene 1.63 0.0331 1.668	0	97.5	50	125	
Phenol 1.73 0.0331 1.668	0	103	39	125	
Pyrene 1.75 0.0331 1.668	0	105	46	125	
Pyridine 0.864 0.164 1.668	0	51.8	20	125	
Surr: 2,4,6-Tribromophenol 0.722 0.8302		87.0	45	126	
Surr: 2-Fluorobiphenyl 0.772 0.8302		93.0	60	125	
Surr: 2-Fluorophenol 0.747 0.8302		90.0	37	125	
Surr: 4-Terphenyl-d14 0.780 0.8302		94.0	45	125	
Surr: Nitrobenzene-d5 0.697 0.8302		84.0	45	125	
Surr: Phenol-d5 0.722 0.8302		87.0	40	125	

Sample ID: 2402269-01BMSD SampType: MSD	Batch ID: Run ID:	114177 GCMS4	1_240226A	TestNo Analys	: SW 8 is Date: 2/26	3270E /2024 8:56:	00 PM	Units: Prep Date	•	Kg-dry /2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	t Qual
2,4,5-Trichlorophenol		1.96	0.0343	1.728	0	113	49	125	3.31	30	
2,4,6-Trichlorophenol		1.96	0.0343	1.728	0	113	43	125	1.96	30	
2,4-Dichlorophenol		1.73	0.0343	1.728	0	100	45	125	0.544	30	
2,4-Dimethylphenol		1.70	0.0343	1.728	0	98.5	32	125	0.387	30	
2,4-Dinitrophenol		0.305	0.170	1.728	0	17.7	25	132	14.0	30	S
2,4-Dinitrotoluene		1.70	0.0343	1.728	0	98.6	48	125	4.74	30	
2,6-Dinitrotoluene		1.86	0.0343	1.728	0	108	48	125	4.27	30	

Qualifiers: В

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

RPD outside accepted control limits R

Spike Recovery outside control limits

Parameter not NELAP certified

Page 20 of 40

Work Order: 2402269

ANALYTICAL QC SUMMARY REPORT

GCMS4_240226A

Project: SAWS Impoundment Assessment Lagoons and RunID:

Sample ID: 2402269-01BMSD	Batch ID: 114177	-	TestNo	SW8	3270E		Units:	mg/l	Kg-dry
SampType: MSD	Run ID: GCMS4	_240226A	Analys	is Date: 2/26	/2024 8:56:	00 PM	Prep Date:	2/26	/2024
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
2-Chloronaphthalene	1.68	0.0343	1.728	0	97.5	45	125	1.86	30
2-Chlorophenol	1.70	0.0343	1.728	0	98.7	44	125	0.721	30
2-Methylnaphthalene	1.40	0.0343	1.728	0	80.9	47	125	1.94	30
2-Methylphenol	1.64	0.0343	1.728	0	94.9	40	125	3.90	30
2-Nitroaniline	1.69	0.0343	1.728	0	97.9	44	125	3.83	30
2-Nitrophenol	1.67	0.0343	1.728	0	96.6	42	125	2.86	30
3,3'-Dichlorobenzidine	1.87	0.0343	1.728	0	108	25	128	5.80	30
3-Nitroaniline	1.64	0.0343	1.728	0	94.8	27	125	4.21	30
4,6-Dinitro-2-methylphenol	0.644	0.0851	1.728	0	37.3	29	137	8.41	30
4-Bromophenyl phenyl ether	1.59	0.0343	1.728	0	92.0	46	125	4.83	30
4-Chloro-3-methylphenol	1.55	0.0343	1.728	0	89.6	46	125	2.15	30
4-Chloroaniline	1.01	0.0851	1.728	0	58.7	34	125	4.72	30
4-Chlorophenyl phenyl ether	1.56	0.0343	1.728	0	90.2	47	125	2.43	30
4-Methylphenol	1.60	0.0343	1.728	0	92.8	41	125	4.45	30
4-Nitroaniline	1.74	0.0343	1.728	0	101	34	125	5.87	30
4-Nitrophenol	1.80	0.170	1.728	0	104	25	138	10.7	30
Acenaphthene	1.52	0.0343	1.728	0	88.1	46	125	3.07	30
Acenaphthylene	1.40	0.0343	1.728	0	80.7	44	125	2.18	30
Acetophenone	1.38	0.0343	1.728	0	79.8	40	125	3.05	30
Anthracene	1.54	0.0343	1.728	0	89.0	53	125	3.13	30
Atrazine	2.33	0.0343	1.728	0	135	40	125	0.798	30 S
Benzaldehyde	1.46	0.0343	1.728	0	84.7	40	125	1.57	30 N
Benzo[a]anthracene	1.76	0.0343	1.728	0	102	52	125	4.41	30
Benzo[a]pyrene	1.87	0.0343	1.728	0	108	50	125	2.38	30
Benzo[b]fluoranthene	1.96	0.0343	1.728	0	114	45	125	10.2	30
Benzo[g,h,i]perylene	1.88	0.0343	1.728	0	109	38	126	3.34	30
Benzo[k]fluoranthene	1.64	0.0343	1.728	0	94.7	45	125	3.92	30
Benzoic acid	0.293	0.170	1.728	0	17.0	25	125	1.21	30 S
Benzyl alcohol	1.50	0.0851	1.728	0	86.7	25	125	0.361	30
Biphenyl	1.94	0.0343	1.728	0	112	40	125	0.818	30
Bis(2-chloroethoxy)methane	1.52	0.0343	1.728	0	87.7	43	125	5.01	30
Bis(2-chloroethyl)ether	1.44	0.0343	1.728	0	83.3	38	125	1.52	30
Bis(2-chloroisopropyl)ether	1.55	0.0343	1.728	0	89.9	25	125	0.205	30
Bis(2-ethylhexyl)phthalate	2.01	0.0851	1.728	0	117	47	127	2.76	30
Butyl benzyl phthalate	1.93	0.0851	1.728	0	112	49	125	2.90	30
Caprolactam	1.26	0.0851	1.728	0	72.7	40	125	3.32	30
Carbazole	1.84	0.0343	1.728	0	106	40	125	1.67	30
Chrysene	1.70	0.0343	1.728	0	98.1	53	125	2.97	30
Dibenz[a,h]anthracene	1.98	0.0343	1.728	0	115	41	125	1.55	30
Dibenzofuran	1.59	0.0343	1.728	0	92.0	51	125	4.83	30
Diethyl phthalate	1.68	0.0851	1.728	0	97.1	50	125	4.76	30

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 21 of 40

Work Order: 2402269

ANALYTICAL QC SUMMARY REPORT

Project: SAWS Impoundment Assessment Lagoons and RunID: GCMS4_240226A

Sample ID: 2402269-01BMSD	Batch ID: 11	4177	TestNo	o: SW	8270E		Units:	mg/l	(g-dry
SampType: MSD	Run ID: G	CMS4_240226A	Analys	is Date: 2/26	6/2024 8:56:	00 PM	Prep Date:	2/26	/2024
Analyte	Res	ult RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD	RPDLimit Qual
Dimethyl phthalate	1.6	0.0851	1.728	0	95.6	49	125	4.89	30
Di-n-butyl phthalate	1.7	4 0.0851	1.728	0	101	56	125	4.12	30
Di-n-octyl phthalate	2.0	0.0851	1.728	0	121	41	132	2.83	30
Fluoranthene	1.6	0.0343	1.728	0	93.7	54	125	3.05	30
Fluorene	1.5	0.0343	1.728	0	90.7	49	125	4.46	30
Hexachlorobenzene	1.4	0.0343	1.728	0	84.6	47	125	1.78	30
Hexachlorobutadiene	1.5	0.0343	1.728	0	88.9	40	125	2.58	30
Hexachlorocyclopentadiene	1.9	0.0851	1.728	0	110	31	135	0.416	30
Hexachloroethane	1.3	0.0343	1.728	0	79.5	34	125	0.809	30
Indeno[1,2,3-cd]pyrene	1.9	0.0343	1.728	0	114	38	125	2.87	30
Isophorone	1.5	0.0851	1.728	0	86.7	43	125	3.81	30
Naphthalene	1.4	0.0343	1.728	0	84.6	40	125	2.71	30
Nitrobenzene	1.5	0.0343	1.728	0	90.9	41	125	5.01	30
N-Nitrosodi-n-propylamine	1.3	0.0343	1.728	0	78.4	40	125	1.49	30
N-Nitrosodiphenylamine	1.6	0.0343	1.728	0	96.5	49	125	3.32	30
Pentachlorophenol	1.1	3 0.0343	1.728	0	65.2	25	125	1.89	30
Phenanthrene	1.6	66 0.0343	1.728	0	96.1	50	125	2.14	30
Phenol	1.7	0.0343	1.728	0	98.6	39	125	1.25	30
Pyrene	1.7	9 0.0343	1.728	0	104	46	125	2.43	30
Pyridine	0.88	84 0.170	1.728	0	51.2	20	125	2.37	30
Surr: 2,4,6-Tribromophenol	0.72	22	0.8600		84.0	45	126	0	0
Surr: 2-Fluorobiphenyl	0.75	56	0.8600		88.0	60	125	0	0
Surr: 2-Fluorophenol	0.74	48	0.8600		87.0	37	125	0	0
Surr: 4-Terphenyl-d14	0.79	91	0.8600		92.0	45	125	0	0
Surr: Nitrobenzene-d5	0.70	05	0.8600		82.0	45	125	0	0
Surr: Phenol-d5	0.7	13	0.8600		83.0	40	125	0	0

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 22 of 40

CLIENT: Weston Solutions, Inc. ANALYTICAL QC SUMMARY REPORT

Work Order: 2402269

GCMS4_240226A **RunID: Project:** SAWS Impoundment Assessment Lagoons and

Sample ID: ICV-240226	Batch ID:	R13162	9	TestNo	o: SW 8	3270E		Units:	mg/	Kg
SampType: ICV	Run ID:	GCMS4	_240226A	Analys	sis Date: 2/26	/2024 2:38:	00 PM	Prep Date	e:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
2,4,5-Trichlorophenol		2.63	0.0266	2.500	0	105	70	130		
2,4,6-Trichlorophenol		2.70	0.0266	2.500	0	108	70	130		
2,4-Dichlorophenol		2.40	0.0266	2.500	0	95.9	70	130		
2,4-Dimethylphenol		2.28	0.0266	2.500	0	91.2	70	130		
2,4-Dinitrophenol		2.58	0.132	2.500	0	103	70	130		
2,4-Dinitrotoluene		2.50	0.0266	2.500	0	99.9	70	130		
2,6-Dinitrotoluene		2.79	0.0266	2.500	0	112	70	130		
2-Chloronaphthalene		2.59	0.0266	2.500	0	104	70	130		
2-Chlorophenol		2.48	0.0266	2.500	0	99.2	70	130		
2-Methylnaphthalene		2.19	0.0266	2.500	0	87.7	70	130		
2-Methylphenol		2.30	0.0266	2.500	0	91.9	70	130		
2-Nitroaniline		2.49	0.0266	2.500	0	99.5	70	130		
2-Nitrophenol		2.60	0.0266	2.500	0	104	70	130		
3,3'-Dichlorobenzidine		3.00	0.0266	2.500	0	120	70	130		
3-Nitroaniline		2.60	0.0266	2.500	0	104	70	130		
4,6-Dinitro-2-methylphenol		2.51	0.0660	2.500	0	101	70	130		
4-Bromophenyl phenyl ether		2.32	0.0266	2.500	0	92.6	70	130		
4-Chloro-3-methylphenol		2.04	0.0266	2.500	0	81.7	70	130		
4-Chloroaniline		2.28	0.0660	2.500	0	91.1	70	130		
4-Chlorophenyl phenyl ether		2.31	0.0266	2.500	0	92.4	70	130		
4-Methylphenol		2.26	0.0266	2.500	0	90.6	70	130		
4-Nitroaniline		2.56	0.0266	2.500	0	102	70	130		
4-Nitrophenol		2.52	0.0200	2.500	0	102	70	130		
Acenaphthene		2.36	0.0266	2.500	0	94.4	70	130		
Acenaphthylene		2.52	0.0266	2.500	0	101	70 70	130		
• •		2.32					70 70			
Acetophenone Anthracene		2.16	0.0266 0.0266	2.500 2.500	0	87.4 90.1	70 70	130 130		
					0					
Atrazine		3.17	0.0266	2.500	0	127	70 70	130		N
Benzaldehyde		2.23	0.0266	2.500	0	89.3		130		N
Benzo[a]anthracene		2.53	0.0266	2.500	0	101	70 70	130		
Benzo[a]pyrene		2.81	0.0266	2.500	0	112	70	130		
Benzo[b]fluoranthene		2.75	0.0266	2.500	0	110	70	130		
Benzo[g,h,i]perylene		2.63	0.0266	2.500	0	105	70	130		
Benzo[k]fluoranthene		2.35	0.0266	2.500	0	94.1	70	130		
Benzoic acid		2.26	0.132	2.500	0	90.3	70	130		
Benzyl alcohol		2.34	0.0660	2.500	0	93.5	70	130		
Biphenyl		2.87	0.0266	2.500	0	115	70	130		
Bis(2-chloroethoxy)methane		2.36	0.0266	2.500	0	94.4	70	130		
Bis(2-chloroethyl)ether		2.40	0.0266	2.500	0	96.0	70	130		
Bis(2-chloroisopropyl)ether		2.57	0.0266	2.500	0	103	70	130		
Bis(2-ethylhexyl)phthalate		2.72	0.0660	2.500	0	109	70	130		

Qualifiers: В Analyte detected in the associated Method Blank

> J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

Spike Recovery outside control limits

Parameter not NELAP certified

Page 23 of 40

Work Order: 2402269

ANALYTICAL QC SUMMARY REPORT

Project: SAWS Impoundment Assessment Lagoons and RunID: GCMS4_240226A

SampType: ICV Run ID: GCMS4_240226A Run ID: SCMS4_240226A Run ID: SCMS4_240226A Run ID:	Sample ID: ICV-240226	Batch ID:	R131629		TestNo	o: SW	8270E		Units:	mg/K	(g
Butyl benzyl phthalate	SampType: ICV	Run ID:	GCMS4_	240226A	Analys	is Date: 2/2 0	6/2024 2:38:	00 PM	Prep Date) :	
Caprolaciam 2.18 0.0660 2.500 0 87.4 70 130 Carbazole 2.53 0.0266 2.500 0 101 70 130 Chrysene 2.44 0.0266 2.500 0 97.5 70 130 Dibenzofuran 2.81 0.0266 2.500 0 92.4 70 130 Dientyl phthalate 2.34 0.0660 2.500 0 92.4 70 130 Di-n-butyl phthalate 2.37 0.0660 2.500 0 94.9 70 130 Di-n-butyl phthalate 2.57 0.0660 2.500 0 109 70 130 Di-n-butyl phthalate 2.72 0.0660 2.500 0 109 70 130 Fluoranthene 2.29 0.0266 2.500 0 191.9 70 130 Hexachlorobutadiene 2.19 0.0266 2.500 0 87.8 70 130 <	Analyte	R	Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD	RPDLimit Qual
Carbazole 2.53 0.0266 2.500 0 101 70 130 Chrysene 2.44 0.0266 2.500 0 97.5 70 130 Dibenzla,hjanthracene 2.86 0.0266 2.500 0 91.5 70 130 Dibenzofuran 2.31 0.0266 2.500 0 92.4 70 130 Dimethyl phthalate 2.34 0.0660 2.500 0 94.9 70 130 Di-n-butyl phthalate 2.50 0.0660 2.500 0 100 70 130 Di-n-butyl phthalate 2.72 0.0660 2.500 0 100 70 130 Fluoranthene 2.30 0.0266 2.500 0 91.9 70 130 Hexachlorobenzene 2.19 0.0266 2.500 0 91.5 70 130 Hexachlorobutadiene 2.70 0.0266 2.500 0 98.7 70 130	Butyl benzyl phthalate		2.65	0.0660	2.500	0	106	70	130		
Chrysene 2.44 0.0266 2.500 0 97.5 70 130 Dibenzofuran 2.86 0.0266 2.500 0 115 70 130 Dibenzofuran 2.31 0.0266 2.500 0 92.4 70 130 Dienbryl phthalate 2.37 0.0660 2.500 0 94.9 70 130 Di-n-butyl phthalate 2.50 0.0660 2.500 0 100 70 130 Piuranthene 2.72 0.0660 2.500 0 109 70 130 Fluoranthene 2.30 0.0266 2.500 0 91.9 70 130 Fluoranthene 2.29 0.0266 2.500 0 91.5 70 130 Fluoranthene 2.19 0.0266 2.500 0 87.8 70 130 Hexachlorobutadiene 2.19 0.0266 2.500 0 108 70 130 Hexachlorob	Caprolactam		2.18	0.0660	2.500	0	87.4	70	130		
Dibenz[a,h]anthracene 2.86 0.0266 2.500 0 115 70 130 Dibenzofuran 2.31 0.0266 2.500 0 92.4 70 130 Dierbyl phthalate 2.34 0.0660 2.500 0 94.9 70 130 Dirn-butyl phthalate 2.50 0.0660 2.500 0 100 70 130 Dirn-butyl phthalate 2.72 0.0660 2.500 0 109 70 130 Dirn-cotyl phthalate 2.72 0.0660 2.500 0 109 70 130 Fluoranthene 2.30 0.0266 2.500 0 91.9 70 130 Fluoranthene 2.29 0.0266 2.500 0 98.7 70 130 Hexachlorobutadiene 2.70 0.0266 2.500 0 114 70 130 Hexachlorocytadiene 2.45 0.0266 2.500 0 98.1 70 130 <td>Carbazole</td> <td></td> <td>2.53</td> <td>0.0266</td> <td>2.500</td> <td>0</td> <td>101</td> <td>70</td> <td>130</td> <td></td> <td></td>	Carbazole		2.53	0.0266	2.500	0	101	70	130		
Dibenzoluran 2.31	Chrysene		2.44	0.0266	2.500	0	97.5	70	130		
Diethyl phthalate 2.34 0.0660 2.500 0 93.6 70 130 Dimethyl phthalate 2.37 0.0660 2.500 0 94.9 70 130 Di-n-butyl phthalate 2.50 0.0660 2.500 0 100 70 130 Fluoranthene 2.72 0.0660 2.500 0 109 70 130 Fluoranthene 2.30 0.0266 2.500 0 91.9 70 130 Fluoranthene 2.29 0.0266 2.500 0 91.5 70 130 Hexachlorobutadiene 2.70 0.0266 2.500 0 108 70 130 Hexachlorobutadiene 2.85 0.0660 2.500 0 108 70 130 Hexachlorobutadiene 2.85 0.0660 2.500 0 114 70 130 Hexachlorophendethane 2.85 0.0266 2.500 0 98.1 70 130	Dibenz[a,h]anthracene		2.86	0.0266	2.500	0	115	70	130		
Dimethyl phthalate	Dibenzofuran		2.31	0.0266	2.500	0	92.4	70	130		
Di-n-butyl phthalate 2.50 0.0660 2.500 0 100 70 130 Di-n-octyl phthalate 2.72 0.0660 2.500 0 109 70 130 Fluoranthene 2.30 0.0266 2.500 0 91.9 70 130 Fluoranthene 2.29 0.0266 2.500 0 91.5 70 130 Hexachlorobenzene 2.19 0.0266 2.500 0 87.8 70 130 Hexachlorobutadiene 2.70 0.0266 2.500 0 108 70 130 Hexachlorocyclopentadiene 2.85 0.0660 2.500 0 114 70 130 Hexachloroethane 2.45 0.0266 2.500 0 98.1 70 130 Hexachloropethadiene 2.48 0.0266 2.500 0 98.1 70 130 Indenofi, 2,3-cdlpyrene 2.83 0.0266 2.500 0 98.2 70 130	Diethyl phthalate		2.34	0.0660	2.500	0	93.6	70	130		
Di-n-octyl phthalate 2.72 0.0660 2.500 0 109 70 130 Fluoranthene 2.30 0.0266 2.500 0 91.9 70 130 Fluoranthene 2.29 0.0266 2.500 0 91.5 70 130 Hexachlorobutadiene 2.79 0.0266 2.500 0 108 70 130 Hexachlorocyclopentadiene 2.70 0.0266 2.500 0 114 70 130 Hexachlorocyclopentadiene 2.85 0.0660 2.500 0 114 70 130 Hexachlorocyclopentadiene 2.45 0.0266 2.500 0 98.1 70 130 Hexachlorophrane 2.45 0.0266 2.500 0 98.1 70 130 Indeno(1,2,3-cd]pyrene 2.83 0.0266 2.500 0 98.5 70 130 Naphthalene 2.41 0.0266 2.500 0 98.5 70	Dimethyl phthalate		2.37	0.0660	2.500	0	94.9	70	130		
Fluoranthene 2.30 0.0266 2.500 0 91.9 70 130 Fluorene 2.29 0.0266 2.500 0 91.5 70 130 Hexachlorobenzene 2.19 0.0266 2.500 0 87.8 70 130 Hexachlorocyclopentadiene 2.70 0.0266 2.500 0 108 70 130 Hexachlorocyclopentadiene 2.85 0.0660 2.500 0 114 70 130 Hexachlorocyclopentadiene 2.45 0.0266 2.500 0 114 70 130 Hexachlorocyclopentadiene 2.45 0.0266 2.500 0 98.1 70 130 Idewachlorocyclopentadiene 2.45 0.0266 2.500 0 98.1 70 130 Idewachlorocyclopentadiene 2.45 0.0266 2.500 0 98.5 70 130 Idewachlorocyclopentadiene 2.41 0.0266 2.500 0 96.2	Di-n-butyl phthalate		2.50	0.0660	2.500	0	100	70	130		
Fluorene 2.29 0.0266 2.500 0 91.5 70 130 Hexachlorobenzene 2.19 0.0266 2.500 0 87.8 70 130 Hexachlorobutadiene 2.70 0.0266 2.500 0 108 70 130 Hexachlorocyclopentadiene 2.85 0.0660 2.500 0 114 70 130 Hexachlorocyclopentadiene 2.45 0.0266 2.500 0 98.1 70 130 Hexachlorocyclopentadiene 2.45 0.0266 2.500 0 98.1 70 130 Indeno[1,2,3-cd]pyrene 2.83 0.0266 2.500 0 113 70 130 Isophorone 2.46 0.0660 2.500 0 98.5 70 130 Naphthalene 2.41 0.0266 2.500 0 96.2 70 130 N-Nitrosodiphenylamine 2.58 0.0266 2.500 0 96.0 70 13	Di-n-octyl phthalate		2.72	0.0660	2.500	0	109	70	130		
Hexachlorobenzene 2.19 0.0266 2.500 0 87.8 70 130 Hexachlorobutadiene 2.70 0.0266 2.500 0 108 70 130 Hexachlorocyclopentadiene 2.85 0.0660 2.500 0 114 70 130 Hexachloroethane 2.45 0.0266 2.500 0 98.1 70 130 Indeno[1,2,3-cd]pyrene 2.83 0.0266 2.500 0 113 70 130 Isophorone 2.46 0.0660 2.500 0 98.5 70 130 Naphthalene 2.41 0.0266 2.500 0 96.2 70 130 Nitrobachrepene 2.58 0.0266 2.500 0 96.2 70 130 N-Nitrosodi-propylamine 2.24 0.0266 2.500 0 96.0 70 130 Pentachlorophenol 2.41 0.0266 2.500 0 96.4 70 130	Fluoranthene		2.30	0.0266	2.500	0	91.9	70	130		
Hexachlorobutadiene 2.70 0.0266 2.500 0 108 70 130 Hexachlorocyclopentadiene 2.85 0.0660 2.500 0 114 70 130 Hexachloroethane 2.45 0.0266 2.500 0 98.1 70 130 Indeno[1,2,3-cd]pyrene 2.83 0.0266 2.500 0 98.5 70 130 Isophorone 2.46 0.0660 2.500 0 98.5 70 130 Naphthalene 2.41 0.0266 2.500 0 96.2 70 130 N-Nitrosodi-n-propylamine 2.58 0.0266 2.500 0 89.4 70 130 N-Nitrosodiphenylamine 2.40 0.0266 2.500 0 96.0 70 130 Pentachlorophenol 2.41 0.0266 2.500 0 98.0 70 130 Phenol 2.54 0.0266 2.500 0 102 70 130	Fluorene		2.29	0.0266	2.500	0	91.5	70	130		
Hexachlorocyclopentadiene 2.85 0.0660 2.500 0 114 70 130 Hexachloroethane 2.45 0.0266 2.500 0 98.1 70 130 Indeno[1,2,3-cd]pyrene 2.83 0.0266 2.500 0 113 70 130 Isophorone 2.46 0.0660 2.500 0 98.5 70 130 Naphthalene 2.41 0.0266 2.500 0 96.2 70 130 Nitrobenzene 2.58 0.0266 2.500 0 103 70 130 N-Nitrosodiphenylamine 2.24 0.0266 2.500 0 96.0 70 130 Pentachlorophenol 2.41 0.0266 2.500 0 96.4 70 130 Phenol 2.45 0.0266 2.500 0 98.0 70 130 Pyriedine 2.58 0.0266 2.500 0 103 70 130 <	Hexachlorobenzene		2.19	0.0266	2.500	0	87.8	70	130		
Hexachloroethane	Hexachlorobutadiene		2.70	0.0266	2.500	0	108	70	130		
Indeno[1,2,3-cd]pyrene 2.83 0.0266 2.500 0 113 70 130 Isophorone 2.46 0.0660 2.500 0 98.5 70 130 Naphthalene 2.41 0.0266 2.500 0 96.2 70 130 Nitrobenzene 2.58 0.0266 2.500 0 103 70 130 N-Nitrosodi-n-propylamine 2.24 0.0266 2.500 0 89.4 70 130 N-Nitrosodiphenylamine 2.40 0.0266 2.500 0 96.0 70 130 Pentachlorophenol 2.41 0.0266 2.500 0 96.4 70 130 Phenanthrene 2.45 0.0266 2.500 0 98.0 70 130 Phenol 2.54 0.0266 2.500 0 98.0 70 130 Pyrene 2.58 0.0266 2.500 0 102 70 130 Pyridine 2.26 0.132 2.500 0 90.2 70 130 Surr: 2,4,6-Tribromophenol 2.45 2.500 0 90.2 70 130 Surr: 2-Fluorobiphenyl 2.64 2.500 98.4 70 130 Surr: 2-Fluorophenol 2.46 2.500 98.4 70 130 Surr: 2-Fluorophenol 2.46 2.500 98.4 70 130 Surr: 4-Terphenyl-d14 2.58 2.500 98.4 70 130 Surr: Nitrobenzene-d5 2.64 2.500 98.4 70 130	Hexachlorocyclopentadiene		2.85	0.0660	2.500	0	114	70	130		
Sophorone 2.46 0.0660 2.500 0 98.5 70 130 Naphthalene 2.41 0.0266 2.500 0 96.2 70 130 Nitrobenzene 2.58 0.0266 2.500 0 103 70 130 N-Nitrosodi-n-propylamine 2.24 0.0266 2.500 0 89.4 70 130 N-Nitrosodiphenylamine 2.40 0.0266 2.500 0 96.0 70 130 Pentachlorophenol 2.41 0.0266 2.500 0 96.4 70 130 Phenanthrene 2.45 0.0266 2.500 0 98.0 70 130 Phenol 2.54 0.0266 2.500 0 98.0 70 130 Pyrene 2.58 0.0266 2.500 0 102 70 130 Pyridine 2.26 0.132 2.500 0 90.2 70 130 Surr: 2,4,6-Tribromophenol 2.45 2.500 0 90.2 70 130 Surr: 2-Fluorobiphenyl 2.64 2.500 98.0 70 130 Surr: 2-Fluorophenol 2.46 2.500 98.4 70 130 Surr: 4-Terphenyl-d14 2.58 2.500 98.4 70 130 Surr: Nitrobenzene-d5 2.64 2.500 106 70 130 Surri Nitrobenzene-d5 2.64 2.500	Hexachloroethane		2.45	0.0266	2.500	0	98.1	70	130		
Naphthalene 2.41 0.0266 2.500 0 96.2 70 130 Nitrobenzene 2.58 0.0266 2.500 0 103 70 130 N-Nitrosodi-n-propylamine 2.24 0.0266 2.500 0 89.4 70 130 N-Nitrosodiphenylamine 2.40 0.0266 2.500 0 96.0 70 130 Pentachlorophenol 2.41 0.0266 2.500 0 96.4 70 130 Phenanthrene 2.45 0.0266 2.500 0 98.0 70 130 Phenol 2.54 0.0266 2.500 0 102 70 130 Pyrene 2.58 0.0266 2.500 0 103 70 130 Pyridine 2.26 0.132 2.500 0 90.2 70 130 Surr: 2,4,6-Tribromophenol 2.45 2.500 98.0 70 130 Surr: 2-Fluorophenol 2.46 <td>Indeno[1,2,3-cd]pyrene</td> <td></td> <td>2.83</td> <td>0.0266</td> <td>2.500</td> <td>0</td> <td>113</td> <td>70</td> <td>130</td> <td></td> <td></td>	Indeno[1,2,3-cd]pyrene		2.83	0.0266	2.500	0	113	70	130		
Nitrobenzene 2.58 0.0266 2.500 0 103 70 130 N-Nitrosodi-n-propylamine 2.24 0.0266 2.500 0 89.4 70 130 N-Nitrosodiphenylamine 2.40 0.0266 2.500 0 96.0 70 130 Pentachlorophenol 2.41 0.0266 2.500 0 96.4 70 130 Phenanthrene 2.45 0.0266 2.500 0 98.0 70 130 Phenol 2.54 0.0266 2.500 0 102 70 130 Pyrene 2.58 0.0266 2.500 0 103 70 130 Pyridine 2.26 0.132 2.500 0 90.2 70 130 Surr: 2,4,6-Tribromophenol 2.45 2.500 98.0 70 130 Surr: 2-Fluorophenol 2.46 2.500 98.4 70 130 Surr: 4-Terphenyl-d14 2.58 2.500	Isophorone		2.46	0.0660	2.500	0	98.5	70	130		
N-Nitrosodi-n-propylamine 2.24 0.0266 2.500 0 89.4 70 130 N-Nitrosodiphenylamine 2.40 0.0266 2.500 0 96.0 70 130 Pentachlorophenol 2.41 0.0266 2.500 0 96.4 70 130 Phenanthrene 2.45 0.0266 2.500 0 98.0 70 130 Phenol 2.54 0.0266 2.500 0 102 70 130 Pyrene 2.58 0.0266 2.500 0 103 70 130 Pyridine 2.26 0.132 2.500 0 90.2 70 130 Surr: 2,4,6-Tribromophenol 2.45 2.500 98.0 70 130 Surr: 2-Fluorobiphenyl 2.64 2.500 98.4 70 130 Surr: 4-Terphenyl-d14 2.58 2.500 98.4 70 130 Surr: Nitrobenzene-d5 2.64 2.500 106 70 130	Naphthalene		2.41	0.0266	2.500	0	96.2	70	130		
N-Nitrosodiphenylamine 2.40 0.0266 2.500 0 96.0 70 130 Pentachlorophenol 2.41 0.0266 2.500 0 96.4 70 130 Phenanthrene 2.45 0.0266 2.500 0 98.0 70 130 Phenol 2.54 0.0266 2.500 0 102 70 130 Pyrene 2.58 0.0266 2.500 0 103 70 130 Pyridine 2.26 0.132 2.500 0 90.2 70 130 Surr: 2,4,6-Tribromophenol 2.45 2.500 0 90.2 70 130 Surr: 2-Fluorobiphenyl 2.64 2.500 98.0 70 130 Surr: 2-Fluorophenol 2.46 2.500 98.0 70 130 Surr: 2-Fluorophenol 2.46 2.500 98.4 70 130 Surr: 4-Terphenyl-d14 2.58 2.500 98.4 70 130 Surr: Nitrobenzene-d5 2.64 2.500 106 70 130	Nitrobenzene		2.58	0.0266	2.500	0	103	70	130		
Pentachlorophenol 2.41 0.0266 2.500 0 96.4 70 130 Phenanthrene 2.45 0.0266 2.500 0 98.0 70 130 Phenol 2.54 0.0266 2.500 0 102 70 130 Pyrene 2.58 0.0266 2.500 0 103 70 130 Pyridine 2.26 0.132 2.500 0 90.2 70 130 Surr: 2,4,6-Tribromophenol 2.45 2.500 98.0 70 130 Surr: 2-Fluorophenol 2.64 2.500 98.4 70 130 Surr: 4-Terphenyl-d14 2.58 2.500 103 70 130 Surr: Nitrobenzene-d5 2.64 2.500 106 70 130	N-Nitrosodi-n-propylamine		2.24	0.0266	2.500	0	89.4	70	130		
Phenanthrene 2.45 0.0266 2.500 0 98.0 70 130 Phenol 2.54 0.0266 2.500 0 102 70 130 Pyrene 2.58 0.0266 2.500 0 103 70 130 Pyridine 2.26 0.132 2.500 0 90.2 70 130 Surr: 2,4,6-Tribromophenol 2.45 2.500 98.0 70 130 Surr: 2-Fluorobiphenyl 2.64 2.500 106 70 130 Surr: 2-Fluorophenol 2.46 2.500 98.4 70 130 Surr: 4-Terphenyl-d14 2.58 2.500 103 70 130 Surr: Nitrobenzene-d5 2.64 2.500 106 70 130	N-Nitrosodiphenylamine		2.40	0.0266	2.500	0	96.0	70	130		
Phenol 2.54 0.0266 2.500 0 102 70 130 Pyrene 2.58 0.0266 2.500 0 103 70 130 Pyridine 2.26 0.132 2.500 0 90.2 70 130 Surr: 2,4,6-Tribromophenol 2.45 2.500 98.0 70 130 Surr: 2-Fluorobiphenyl 2.64 2.500 106 70 130 Surr: 2-Fluorophenol 2.46 2.500 98.4 70 130 Surr: 4-Terphenyl-d14 2.58 2.500 103 70 130 Surr: Nitrobenzene-d5 2.64 2.500 106 70 130	Pentachlorophenol		2.41	0.0266	2.500	0	96.4	70	130		
Pyrene 2.58 0.0266 2.500 0 103 70 130 Pyridine 2.26 0.132 2.500 0 90.2 70 130 Surr: 2,4,6-Tribromophenol 2.45 2.500 98.0 70 130 Surr: 2-Fluorobiphenyl 2.64 2.500 106 70 130 Surr: 2-Fluorophenol 2.46 2.500 98.4 70 130 Surr: 4-Terphenyl-d14 2.58 2.500 103 70 130 Surr: Nitrobenzene-d5 2.64 2.500 106 70 130	Phenanthrene		2.45	0.0266	2.500	0	98.0	70	130		
Pyridine 2.26 0.132 2.500 0 90.2 70 130 Surr: 2,4,6-Tribromophenol 2.45 2.500 98.0 70 130 Surr: 2-Fluorobiphenyl 2.64 2.500 106 70 130 Surr: 2-Fluorophenol 2.46 2.500 98.4 70 130 Surr: 4-Terphenyl-d14 2.58 2.500 103 70 130 Surr: Nitrobenzene-d5 2.64 2.500 106 70 130	Phenol		2.54	0.0266	2.500	0	102	70	130		
Surr: 2,4,6-Tribromophenol 2.45 2.500 98.0 70 130 Surr: 2-Fluorobiphenyl 2.64 2.500 106 70 130 Surr: 2-Fluorophenol 2.46 2.500 98.4 70 130 Surr: 4-Terphenyl-d14 2.58 2.500 103 70 130 Surr: Nitrobenzene-d5 2.64 2.500 106 70 130	Pyrene		2.58	0.0266	2.500	0	103	70	130		
Surr: 2-Fluorobiphenyl 2.64 2.500 106 70 130 Surr: 2-Fluorophenol 2.46 2.500 98.4 70 130 Surr: 4-Terphenyl-d14 2.58 2.500 103 70 130 Surr: Nitrobenzene-d5 2.64 2.500 106 70 130	Pyridine		2.26	0.132	2.500	0	90.2	70	130		
Surr: 2-Fluorophenol 2.46 2.500 98.4 70 130 Surr: 4-Terphenyl-d14 2.58 2.500 103 70 130 Surr: Nitrobenzene-d5 2.64 2.500 106 70 130	Surr: 2,4,6-Tribromophenol		2.45		2.500		98.0	70	130		
Surr: 4-Terphenyl-d14 2.58 2.500 103 70 130 Surr: Nitrobenzene-d5 2.64 2.500 106 70 130	Surr: 2-Fluorobiphenyl		2.64		2.500		106	70	130		
Surr: Nitrobenzene-d5 2.64 2.500 106 70 130	Surr: 2-Fluorophenol		2.46		2.500		98.4	70	130		
Surr: Nitrobenzene-d5 2.64 2.500 106 70 130	·		2.58		2.500		103	70	130		
Surr: Phenol-d5 2.37 2.500 94.8 70 130							106	70			
	Surr: Phenol-d5		2.37		2.500		94.8	70	130		

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 24 of 40

Work Order: 2402269

ANALYTICAL QC SUMMARY REPORT

Project: SAWS Impoundment Assessment Lagoons and RunID: GCMS2_240108A

Sample ID: DCS-113523	Batch ID: 1135	523	TestN	o: SW	8260D		Units:	mg/	Kg
SampType: DCS	Run ID: GCN	/IS2_240108A	Analys	sis Date: 1/8/	2024 5:45:0	0 PM	Prep Date:	1/8/	2024
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
1,1,1,2-Tetrachloroethane	0.0025	4 0.00500	0.00232	0	109	10	400	0	0
1,1,1-Trichloroethane	0.0025	2 0.00500	0.00232	0	109	10	400	0	0
1,1,2,2-Tetrachloroethane	0.0026	9 0.00500	0.00232	0	116	10	400	0	0
1,1,2-Trichloroethane	0.0025	0.00500	0.00232	0	108	10	400	0	0
1,1,2-Trichlorotrifluoroethane	0.0034	4 0.0150	0.00232	0	148	10	400	0	0
1,1-Dichloroethane	0.0025	9 0.00500	0.00232	0	112	10	400	0	0
1,1-Dichloroethene	0.0024	2 0.00500	0.00232	0	104	10	400	0	0
1,1-Dichloropropene	0.0026	0.00500	0.00232	0	112	10	400	0	0
1,2,3-Trichlorobenzene	0.0059	0.00500	0.00232	0	254	10	400	0	0
1,2,3-Trichloropropane	0.0028	2 0.00500	0.00232	0	122	10	400	0	0
1,2,4-Trichlorobenzene	0.0048	1 0.00500	0.00232	0	207	10	400	0	0
1,2,4-Trimethylbenzene	0.0031	9 0.00500	0.00232	0	138	10	400	0	0
1,2-Dibromo-3-chloropropane	0.0034	1 0.00500	0.00232	0	147	10	400	0	0
1,2-Dibromoethane	0.0024		0.00232	0	104	10	400	0	0
1,2-Dichlorobenzene	0.0032		0.00232	0	141	10	400	0	0
1,2-Dichloroethane	0.0025		0.00232	0	108	10	400	0	0
1,2-Dichloropropane	0.0025		0.00232	0	110	10	400	0	0
1,3,5-Trimethylbenzene	0.0031		0.00232	0	134	10	400	0	0
1,3-Dichlorobenzene	0.0030		0.00232	0	130	10	400	0	0
1,3-Dichloropropane	0.0025		0.00232	0	109	10	400	0	0
1,4-Dichlorobenzene	0.0032		0.00232	0	140	10	400	0	0
1-Chlorohexane	0.0039		0.00232	0	172	10	400	0	0
2,2-Dichloropropane	0.0025		0.00232	0	109	10	400	0	0
2-Butanone	0.0126		0.00232	0	109	10	400	0	0
2-Chlorotoluene	0.0028		0.00232	0	124	10	400	0	0
2-Hexanone	0.0020		0.00232	0	113	10	400	0	0
4-Chlorotoluene	0.0027		0.00232	0	119	10	400	0	0
4-Methyl-2-pentanone	0.0129		0.00232	0	111	10	400	0	0
Acetone	0.0128		0.0116	0	116	10	400	0	0
	0.0026		0.00232	0	115	10	400	0	0
Benzene	0.0026		0.00232	0	115	10	400	0	
Bromobenzene									0
Bromochloromethane	0.0023		0.00232	0	101	10	400	0	0
Bromodichloromethane	0.0024		0.00232	0	106	10	400	0	0
Bromoform	0.0024		0.00232	0	105	10	400	0	0
Bromomethane	0.0038		0.00232	0	167	10	400	0	0
Carbon disulfide	0.0025		0.00232	0	109	10	400	0	0
Carbon tetrachloride	0.0025		0.00232	0	108	10	400	0	0
Chlorobenzene	0.0027		0.00232	0	117	10	400	0	0
Chloroethane	0.0026		0.00232	0	115	10	400	0	0
Chloroform	0.0025		0.00232	0	109	10	400	0	0
Chloromethane	0.0033	1 0.00500	0.00232	0	143	10	400	0	0

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 25 of 40

Work Order: 2402269

ANALYTICAL QC SUMMARY REPORT

Project: SAWS Impoundment Assessment Lagoons and RunID: GCMS2_240108A

Sample ID: DCS-113523	Batch ID: 113523		TestNo	: SW8	3260D		Units:	mg/K	(g	
SampType: DCS	Run ID: GCMS2	2_240108A	Analys	s Date: 1/8/2	2024 5:45:0	0 PM	Prep Date:	1/8/2	024	
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD	RPDLimit	t Qual
cis-1,2-Dichloroethene	0.00267	0.00500	0.00232	0	115	10	400	0	0	
cis-1,3-Dichloropropene	0.00253	0.00500	0.00232	0	109	10	400	0	0	
Cyclohexane	0.00344	0.0150	0.00232	0	148	10	400	0	0	Ν
Dibromochloromethane	0.00237	0.00500	0.00232	0	102	10	400	0	0	
Dibromomethane	0.00252	0.00500	0.00232	0	109	10	400	0	0	
Dichlorodifluoromethane	0.00254	0.00500	0.00232	0	109	10	400	0	0	
Ethylbenzene	0.00270	0.00500	0.00232	0	116	10	400	0	0	
Hexachlorobutadiene	0.00681	0.00500	0.00232	0	294	10	400	0	0	
Isopropylbenzene	0.00288	0.00500	0.00232	0	124	10	400	0	0	
m,p-Xylene	0.00551	0.00500	0.00464	0	119	10	400	0	0	
Methyl Acetate	0.00293	0.0150	0.00232	0	126	10	400	0	0	
Methyl tert-butyl ether	0.00273	0.00500	0.00232	0	118	10	400	0	0	
Methylcyclohexane	0.00336	0.0150	0.00232	0	145	10	400	0	0	
Methylene chloride	0.00271	0.00500	0.00232	0	117	10	400	0	0	
Naphthalene	0.00466	0.0150	0.00232	0	201	10	400	0	0	
n-Butylbenzene	0.00345	0.00500	0.00232	0	149	10	400	0	0	
n-Propylbenzene	0.00301	0.00500	0.00232	0	130	10	400	0	0	
o-Xylene	0.00268	0.00500	0.00232	0	116	10	400	0	0	
p-Isopropyltoluene	0.00335	0.00500	0.00232	0	144	10	400	0	0	
sec-Butylbenzene	0.00346	0.00500	0.00232	0	149	10	400	0	0	
Styrene	0.00275	0.00500	0.00232	0	119	10	400	0	0	
tert-Butylbenzene	0.00311	0.00500	0.00232	0	134	10	400	0	0	
Tetrachloroethene	0.00277	0.00500	0.00232	0	119	10	400	0	0	
Toluene	0.00252	0.00500	0.00232	0	109	10	400	0	0	
trans-1,2-Dichloroethene	0.00256	0.00500	0.00232	0	110	10	400	0	0	
trans-1,3-Dichloropropene	0.00252	0.00500	0.00232	0	109	10	400	0	0	
Trichloroethene	0.00254	0.00500	0.00232	0	109	10	400	0	0	
Trichlorofluoromethane	0.00242	0.0150	0.00232	0	104	10	400	0	0	
Vinyl chloride	0.00248	0.00500	0.00232	0	107	10	400	0	0	
Xylenes, Total	0.00240	0.00500	0.00696	0	118	10	400	0	0	
,	0.00010	0.00000	3.00000	•			100	J	•	

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 26 of 40

Work Order: 2402269

ANALYTICAL QC SUMMARY REPORT

Project: SAWS Impoundment Assessment Lagoons and RunID: GCMS2_240221B

The QC data in batch 114118 applies to the following samples: 2402269-01A, 2402269-02A, 2402269-03A, 2402269-04A, 2402269-06A, 2402269-07A, 2402269-08A

Sample ID: LCS-114118	Batch ID: 114118		TestNo	o: SW8	3260D		Units:	mg/Kg
SampType: LCS	Run ID: GCMS	2_240221B	Analys	is Date: 2/21	/2024 3:45:	00 PM	Prep Date:	2/21/2024
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	SRPD RPDLimit Qual
1,1,1,2-Tetrachloroethane	0.0227	0.00500	0.0232	0	97.9	74	125	
1,1,1-Trichloroethane	0.0227	0.00500	0.0232	0	97.8	68	130	
1,1,2,2-Tetrachloroethane	0.0254	0.00500	0.0232	0	110	59	140	
1,1,2-Trichloroethane	0.0228	0.00500	0.0232	0	98.2	62	127	
1,1,2-Trichlorotrifluoroethane	0.0217	0.0150	0.0232	0	93.5	57	135	
1,1-Dichloroethane	0.0236	0.00500	0.0232	0	102	73	125	
1,1-Dichloroethene	0.0228	0.00500	0.0232	0	98.2	65	136	
1,1-Dichloropropene	0.0230	0.00500	0.0232	0	99.2	70	135	
1,2,3-Trichlorobenzene	0.0268	0.00500	0.0232	0	116	62	133	
1,2,3-Trichloropropane	0.0258	0.00500	0.0232	0	111	63	130	
1,2,4-Trichlorobenzene	0.0254	0.00500	0.0232	0	110	65	131	
1,2,4-Trimethylbenzene	0.0255	0.00500	0.0232	0	110	65	135	
1,2-Dibromo-3-chloropropane	0.0211	0.00500	0.0232	0	90.9	49	135	
1,2-Dibromoethane	0.0240	0.00500	0.0232	0	103	70	124	
1,2-Dichlorobenzene	0.0256	0.00500	0.0232	0	110	74	120	
1,2-Dichloroethane	0.0236	0.00500	0.0232	0	102	72	137	
1,2-Dichloropropane	0.0236	0.00500	0.0232	0	102	71	120	
1,3,5-Trimethylbenzene	0.0254	0.00500	0.0232	0	110	65	133	
1,3-Dichlorobenzene	0.0248	0.00500	0.0232	0	107	72	124	
1,3-Dichloropropane	0.0247	0.00500	0.0232	0	106	76	123	
1,4-Dichlorobenzene	0.0252	0.00500	0.0232	0	109	72	125	
1-Chlorohexane	0.0236	0.00500	0.0232	0	102	60	135	
2,2-Dichloropropane	0.0227	0.00500	0.0232	0	97.9	67	134	
2-Butanone	0.251	0.0150	0.232	0	108	60	135	
2-Chlorotoluene	0.0250	0.00500	0.0232	0	108	69	128	
2-Hexanone	0.257	0.0150	0.232	0	111	50	150	
4-Chlorotoluene	0.0257	0.00500	0.0232	0	111	73	126	
4-Methyl-2-pentanone	0.266	0.0150	0.232	0	115	60	135	
Acetone	0.247	0.0500	0.232	0	107	40	141	
Benzene	0.0232	0.00500	0.0232	0	99.8	73	126	
Bromobenzene	0.0248	0.00500	0.0232	0	107	66	121	
Bromochloromethane	0.0231	0.00500	0.0232	0	99.6	71	127	
Bromodichloromethane	0.0224	0.00500	0.0232	0	96.7	72	128	
Bromoform	0.0210	0.00500	0.0232	0	90.4	66	137	
Bromomethane	0.0256	0.00500	0.0232	0	110	45	141	
Carbon disulfide	0.0217	0.0150	0.0232	0	93.6	50	150	
Carbon tetrachloride	0.0215	0.00500	0.0232	0	92.7	67	133	
Chlorobenzene	0.0239	0.00500	0.0232	0	103	75	123	
Chloroethane	0.0240	0.00500	0.0232	0	103	41	141	

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 27 of 40

Work Order: 2402269

ANALYTICAL QC SUMMARY REPORT

GCMS2_240221B

RunID:

Project: SAWS Impoundment Assessment Lagoons and

Sample ID: LCS-114118	Batch ID:	114118	1	TestNo	: SW	8260D		Units:	mg/Kg
SampType: LCS	Run ID:	GCMS	2_240221B	Analys	is Date: 2/2 1	1/2024 3:45:	00 PM	Prep Date:	2/21/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qual
Chloroform	(0.0225	0.00500	0.0232	0	97.2	72	124	
Chloromethane	(0.0213	0.00500	0.0232	0	91.6	51	129	
cis-1,2-Dichloroethene	(0.0227	0.00500	0.0232	0	97.9	67	125	
cis-1,3-Dichloropropene	(0.0224	0.00500	0.0232	0	96.7	72	126	
Cyclohexane	(0.0224	0.0150	0.0232	0	96.4	40	158	N
Dibromochloromethane	(0.0222	0.00500	0.0232	0	95.8	66	130	
Dibromomethane	(0.0226	0.00500	0.0232	0	97.6	73	128	
Dichlorodifluoromethane	(0.0178	0.00500	0.0232	0	76.7	34	136	
Ethylbenzene	(0.0235	0.00500	0.0232	0	101	74	127	
Hexachlorobutadiene	(0.0245	0.00500	0.0232	0	105	53	142	
Isopropylbenzene	(0.0237	0.00500	0.0232	0	102	77	129	
m,p-Xylene	(0.0486	0.00500	0.0464	0	105	79	126	
Methyl Acetate	(0.0250	0.0150	0.0232	0	108	50	150	
Methyl tert-butyl ether	(0.0228	0.00500	0.0232	0	98.2	50	135	
Methylcyclohexane	(0.0224	0.0150	0.0232	0	96.4	50	150	
Methylene chloride	(0.0228	0.00500	0.0232	0	98.2	63	137	
Naphthalene	(0.0242	0.0150	0.0232	0	104	51	135	
n-Butylbenzene	(0.0264	0.00500	0.0232	0	114	65	138	
n-Propylbenzene	(0.0257	0.00500	0.0232	0	111	63	135	
o-Xylene	(0.0237	0.00500	0.0232	0	102	77	125	
p-Isopropyltoluene	(0.0245	0.00500	0.0232	0	105	75	133	
sec-Butylbenzene	(0.0258	0.00500	0.0232	0	111	63	132	
Styrene	(0.0237	0.00500	0.0232	0	102	74	128	
tert-Butylbenzene	(0.0256	0.00500	0.0232	0	110	65	132	
Tetrachloroethene	(0.0226	0.00500	0.0232	0	97.4	67	139	
Toluene	(0.0230	0.00500	0.0232	0	99.3	71	127	
trans-1,2-Dichloroethene	(0.0223	0.00500	0.0232	0	96.3	66	134	
trans-1,3-Dichloropropene	(0.0217	0.00500	0.0232	0	93.6	65	127	
Trichloroethene	(0.0223	0.00500	0.0232	0	95.9	77	124	
Trichlorofluoromethane	(0.0236	0.0150	0.0232	0	102	49	139	
Vinyl chloride	(0.0232	0.00500	0.0232	0	99.8	58	126	
Xylenes, Total	(0.0723	0.00500	0.0696	0	104	75	125	
Surr: 1,2-Dichloroethane-d4		49.1		50.00		98.1	52	149	
Surr: 4-Bromofluorobenzene		53.0		50.00		106	84	118	
Surr: Dibromofluoromethane		49.0		50.00		97.9	65	135	
Surr: Toluene-d8		49.6		50.00		99.3	84	116	

Sample ID: MB-114118	Batch ID:	114118		TestNo:		SW8260D		Units:	mg/l	≺ g
SampType: MBLK	Run ID:	GCMS2_240	221B	Analysis	Date:	2/21/2024 6:06:0	0 PM	Prep Date:	2/21	/2024
Analyte		Result	RL	SPK value	Ref V	al %REC	LowLimit	HighLimit '	%RPD	RPDLimit Qual

Qualifiers: B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 28 of 40

Work Order: 2402269

ANALYTICAL QC SUMMARY REPORT

GCMS2_240221B

RunID:

Project: SAWS Impoundment Assessment Lagoons and

Sample	D: MB-114118	Batch ID:	114118	TestNo:	SW8260D	Units:	mg/Kg
O T	MDL IC	D ID	001100 0100010	A	0/04/0004 0 00 00 00	D D.1.	0/04/0004

	D ID				/2000		5 5 .	ilig/Kg
SampType: MBLK	Run ID: GCMS2	_240221B	Analys	is Date: 2/21	/2024 6:06:	00 PM	Prep Date:	2/21/2024
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RPDLimit Qual
1,1,1,2-Tetrachloroethane	<0.00100	0.00500						
1,1,1-Trichloroethane	< 0.00100	0.00500						
1,1,2,2-Tetrachloroethane	< 0.00100	0.00500						
1,1,2-Trichloroethane	< 0.00100	0.00500						
1,1,2-Trichlorotrifluoroethane	< 0.00500	0.0150						
1,1-Dichloroethane	< 0.00100	0.00500						
1,1-Dichloroethene	< 0.00100	0.00500						
1,1-Dichloropropene	< 0.00100	0.00500						
1,2,3-Trichlorobenzene	< 0.00100	0.00500						
1,2,3-Trichloropropane	< 0.00100	0.00500						
1,2,4-Trichlorobenzene	< 0.00100	0.00500						
1,2,4-Trimethylbenzene	< 0.00100	0.00500						
1,2-Dibromo-3-chloropropane	< 0.00100	0.00500						
1,2-Dibromoethane	< 0.00100	0.00500						
1,2-Dichlorobenzene	< 0.00100	0.00500						
1,2-Dichloroethane	< 0.00100	0.00500						
1,2-Dichloropropane	< 0.00100	0.00500						
1,3,5-Trimethylbenzene	< 0.00100	0.00500						
1,3-Dichlorobenzene	< 0.00100	0.00500						
1,3-Dichloropropane	< 0.00100	0.00500						
1,4-Dichlorobenzene	< 0.00100	0.00500						
1-Chlorohexane	< 0.00100	0.00500						
2,2-Dichloropropane	< 0.00100	0.00500						
2-Butanone	< 0.00500	0.0150						
2-Chlorotoluene	< 0.00100	0.00500						
2-Hexanone	< 0.00500	0.0150						
4-Chlorotoluene	< 0.00100	0.00500						
4-Methyl-2-pentanone	< 0.00500	0.0150						
Acetone	< 0.0150	0.0500						
Benzene	< 0.00100	0.00500						
Bromobenzene	< 0.00100	0.00500						
Bromochloromethane	< 0.00100	0.00500						
Bromodichloromethane	< 0.00100	0.00500						
Bromoform	< 0.00100	0.00500						
Bromomethane	< 0.00100	0.00500						
Carbon disulfide	< 0.00500	0.0150						
Carbon tetrachloride	< 0.00100	0.00500						
Chlorobenzene	<0.00100	0.00500						
Chloroethane	<0.00100	0.00500						
Chloroform	< 0.00100	0.00500						
Chloromethane	<0.00100	0.00500						

Qualifiers: B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 29 of 40

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Work Order: 2402269

RunID: GCMS2_240221B **Project:** SAWS Impoundment Assessment Lagoons and

Sample ID: MB-114118	Batch ID:	114118		TestNo	: SW8	260D		Units:	mg/Kg	
SampType: MBLK	Run ID:	GCMS2	_240221B	Analysi	s Date: 2/21 /	/2024 6:06:	00 PM	Prep Date:	2/21/2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit %	%RPD RPDLir	mit Qual
cis-1,2-Dichloroethene	<(0.00100	0.00500							
cis-1,3-Dichloropropene	<(0.00100	0.00500							
Cyclohexane	<(0.00500	0.0150							Ν
Dibromochloromethane	<(0.00100	0.00500							
Dibromomethane	<(0.00100	0.00500							
Dichlorodifluoromethane	<(0.00100	0.00500							
Ethylbenzene	<(0.00100	0.00500							
Hexachlorobutadiene	<(0.00100	0.00500							
Isopropylbenzene	<(0.00100	0.00500							
m,p-Xylene	<(0.00100	0.00500							
Methyl Acetate	<(0.00500	0.0150							
Methyl tert-butyl ether	<(0.00100	0.00500							
Methylcyclohexane	<(0.00500	0.0150							
Methylene chloride	<(0.00500	0.00500							
Naphthalene	<(0.00500	0.0150							
n-Butylbenzene	<(0.00100	0.00500							
n-Propylbenzene	<(0.00100	0.00500							
o-Xylene	<(0.00100	0.00500							
p-Isopropyltoluene	<(0.00100	0.00500							
sec-Butylbenzene	<(0.00100	0.00500							
Styrene	<(0.00100	0.00500							
tert-Butylbenzene	<(0.00100	0.00500							
Tetrachloroethene	<(0.00100	0.00500							
Toluene	<(0.00100	0.00500							
trans-1,2-Dichloroethene	<(0.00100	0.00500							
trans-1,3-Dichloropropene	<(0.00100	0.00500							
Trichloroethene	<(0.00100	0.00500							
Trichlorofluoromethane	<(0.00500	0.0150							
Vinyl chloride	<(0.00100	0.00500							
Xylenes, Total	<(0.00100	0.00500							
Surr: 1,2-Dichloroethane-d4		50.3		50.00		101	52	149		
Surr: 4-Bromofluorobenzene		54.1		50.00		108	84	118		
Surr: Dibromofluoromethane		48.9		50.00		97.7	65	135		
Surr: Toluene-d8		47.9		50.00		95.8	84	116		

Qualifiers: B	Analyte detected in	the associated	Method Blank
---------------	---------------------	----------------	--------------

Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 30 of 40

ANALYTICAL QC SUMMARY REPORT

R RPD outside accepted control limits

Spike Recovery outside control limits

Parameter not NELAP certified

Work Order: 2402269

ANALYTICAL QC SUMMARY REPORT

Project: SAWS Impoundment Assessment Lagoons and

RunID: GCMS2_240221B

Sample ID: ICV-240221	Batch ID: R13152	7	TestNo	: SW 8	260D		Units:	mg/Kg
SampType: ICV	Run ID: GCMS2	_240221B	Analys	is Date: 2/21	/2024 3:17:	00 PM	Prep Date:	
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
1,1,1,2-Tetrachloroethane	0.0441	0.00500	0.0464	0	95.1	70	130	
1,1,1-Trichloroethane	0.0442	0.00500	0.0464	0	95.3	70	130	
1,1,2,2-Tetrachloroethane	0.0491	0.00500	0.0464	0	106	70	130	
1,1,2-Trichloroethane	0.0459	0.00500	0.0464	0	98.8	70	130	
1,1,2-Trichlorotrifluoroethane	0.0430	0.0150	0.0464	0	92.6	70	130	
1,1-Dichloroethane	0.0464	0.00500	0.0464	0	100	70	130	
1,1-Dichloroethene	0.0449	0.00500	0.0464	0	96.7	70	130	
1,1-Dichloropropene	0.0442	0.00500	0.0464	0	95.3	70	130	
1,2,3-Trichlorobenzene	0.0486	0.00500	0.0464	0	105	70	130	
1,2,3-Trichloropropane	0.0500	0.00500	0.0464	0	108	70	130	
1,2,4-Trichlorobenzene	0.0489	0.00500	0.0464	0	105	70	130	
1,2,4-Trimethylbenzene	0.0491	0.00500	0.0464	0	106	70	130	
1,2-Dibromo-3-chloropropane	0.0438	0.00500	0.0464	0	94.5	70	130	
1,2-Dibromoethane	0.0487	0.00500	0.0464	0	105	70	130	
1,2-Dichlorobenzene	0.0491	0.00500	0.0464	0	106	70	130	
1,2-Dichloroethane	0.0455	0.00500	0.0464	0	98.0	70	130	
1,2-Dichloropropane	0.0474	0.00500	0.0464	0	102	70	130	
1,3,5-Trimethylbenzene	0.0480	0.00500	0.0464	0	103	70	130	
1,3-Dichlorobenzene	0.0483	0.00500	0.0464	0	104	70	130	
1,3-Dichloropropane	0.0485	0.00500	0.0464	0	105	70	130	
1,4-Dichlorobenzene	0.0473	0.00500	0.0464	0	102	70	130	
1-Chlorohexane	0.0440	0.00500	0.0464	0	94.7	70	130	
2,2-Dichloropropane	0.0436	0.00500	0.0464	0	93.9	70	130	
2-Butanone	0.507	0.0150	0.464	0	109	70	130	
2-Chlorotoluene	0.0482	0.00500	0.0464	0	104	70	130	
2-Hexanone	0.522	0.0150	0.464	0	113	70	130	
4-Chlorotoluene	0.0501	0.00500	0.0464	0	108	70	130	
4-Methyl-2-pentanone	0.521	0.0150	0.464	0	112	70	130	
Acetone	0.484	0.0500	0.464	0	104	70	130	
Benzene	0.0454	0.00500	0.0464	0	97.8	70	130	
Bromobenzene	0.0475	0.00500	0.0464	0	102	70	130	
Bromochloromethane	0.0451	0.00500	0.0464	0	97.2	70	130	
Bromodichloromethane	0.0448	0.00500	0.0464	0	96.5	70	130	
Bromoform	0.0434	0.00500	0.0464	0	93.6	70	130	
Bromomethane	0.0500	0.00500	0.0464	0	108	70	130	
Carbon disulfide	0.0432	0.0150	0.0464	0	93.1	70	130	
Carbon tetrachloride	0.0413	0.00500	0.0464	0	89.1	70	130	
Chlorobenzene	0.0460	0.00500	0.0464	0	99.1	70	130	
Chloroethane	0.0479	0.00500	0.0464	0	103	70	130	
Chloroform	0.0454	0.00500	0.0464	0	97.8	70	130	
Chloromethane	0.0410	0.00500	0.0464	0	88.4	70	130	
	0.0110	2.20000	5.5 10 1		JJ. 7		. 50	

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 31 of 40

Work Order: 2402269

ANALYTICAL QC SUMMARY REPORT

Project: SAWS Impoundment Assessment Lagoons and

RunID: GCMS2_240221B

Sample ID: ICV-240221	Batch ID: R13	1527	TestN	o: SW	8260D		Units:	mg/K	(g
SampType: ICV	Run ID: GCI	/IS2_240221B	Analy	sis Date: 2/2 1	1/2024 3:17:	00 PM	Prep Date) :	
Analyte	Result	t RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit	%RPD	RPDLimit Qual
cis-1,2-Dichloroethene	0.0450	0.00500	0.0464	0	96.9	70	130		
cis-1,3-Dichloropropene	0.0466	0.00500	0.0464	0	100	70	130		
Cyclohexane	0.0445	0.0150	0.0464	0	95.8	70	130		N
Dibromochloromethane	0.0447	0.00500	0.0464	0	96.4	70	130		
Dibromomethane	0.0468	0.00500	0.0464	0	101	70	130		
Dichlorodifluoromethane	0.0357	0.00500	0.0464	0	77.0	70	130		
Ethylbenzene	0.0440	0.00500	0.0464	0	94.7	70	130		
Hexachlorobutadiene	0.0442	0.00500	0.0464	0	95.4	70	130		
Isopropylbenzene	0.0472	0.00500	0.0464	0	102	70	130		
m,p-Xylene	0.0931	0.00500	0.0928	0	100	70	130		
Methyl Acetate	0.0500	0.0150	0.0464	0	108	70	130		
Methyl tert-butyl ether	0.0460	0.00500	0.0464	0	99.1	70	130		
Methylcyclohexane	0.0428	0.0150	0.0464	0	92.2	70	130		
Methylene chloride	0.0442	0.00500	0.0464	0	95.2	70	130		
Naphthalene	0.0440	0.0150	0.0464	0	94.8	70	130		
n-Butylbenzene	0.0489	0.00500	0.0464	0	105	70	130		
n-Propylbenzene	0.0496	0.00500	0.0464	0	107	70	130		
o-Xylene	0.0472	0.00500	0.0464	0	102	70	130		
p-Isopropyltoluene	0.0492	0.00500	0.0464	0	106	70	130		
sec-Butylbenzene	0.0488	0.00500	0.0464	0	105	70	130		
Styrene	0.0473	0.00500	0.0464	0	102	70	130		
tert-Butylbenzene	0.0482	0.00500	0.0464	0	104	70	130		
Tetrachloroethene	0.0432	0.00500	0.0464	0	93.0	70	130		
Toluene	0.0470	0.00500	0.0464	0	101	70	130		
trans-1,2-Dichloroethene	0.0442	0.00500	0.0464	0	95.3	70	130		
trans-1,3-Dichloropropene	0.0448	0.00500	0.0464	0	96.5	70	130		
Trichloroethene	0.0431	0.00500	0.0464	0	92.9	70	130		
Trichlorofluoromethane	0.0469	0.0150	0.0464	0	101	70	130		
Vinyl chloride	0.0476	0.00500	0.0464	0	103	70	130		
Xylenes, Total	0.140	0.00500	0.139	0	101	70	130		
Surr: 1,2-Dichloroethane-d4	48.9		50.00		97.9	52	149		
Surr: 4-Bromofluorobenzene	52.4		50.00		105	84	118		
Surr: Dibromofluoromethane	49.8		50.00		99.6	65	135		
Surr: Toluene-d8	48.1		50.00		96.1	84	116		

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 32 of 40

Work Order: 2402269

ANALYTICAL QC SUMMARY REPORT

Project: SAWS Impoundment Assessment Lagoons and RunID: GCMS7_231227A

Sample ID: DCS2-113423	Batch ID: 113423		TestNo	: SW	8260D		Units:	mg/	L
SampType: DCS2	Run ID: GCMS	7_231227A	Analys	is Date: 12/2	27/2023 2:41	1:00 PM	Prep Date:	12/2	7/2023
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD	RPDLimit Qua
1,2,3-Trichlorobenzene	0.00269	0.00500	0.00186	0	145	10	400	0	0
1,2,4-Trichlorobenzene	0.00221	0.00500	0.00186	0	119	10	400	0	0
1,2,4-Trimethylbenzene	0.00194	0.00500	0.00186	0	104	10	400	0	0
1,2-Dibromo-3-chloropropane	0.000930	0.0100	0.00186	0	50.0	10	400	0	0
1,3,5-Trimethylbenzene	0.00194	0.00500	0.00186	0	104	10	400	0	0
1-Chlorohexane	0.00255	0.00500	0.00186	0	137	10	400	0	0
Hexachlorobutadiene	0.00236	0.00300	0.00186	0	127	10	400	0	0
Methylene chloride	0.00233	0.00250	0.00186	0	125	10	400	0	0
Naphthalene	0.00206	0.0150	0.00186	0	111	10	400	0	0
Sample ID: DCS-113423	Batch ID: 113423		TestNo	: SW	8260D		Units:	mg/	L
SampType: DCS	Run ID: GCMS	7_231227A	Analys	is Date: 12/2	27/2023 3:06	6:00 PM	Prep Date:	12/2	7/2023
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD	RPDLimit Qual
1,1,1,2-Tetrachloroethane	0.000440	0.00100	0.000464	0	94.8	10	400	0	0
1,1,1-Trichloroethane	0.000550	0.00100	0.000464	0	119	10	400	0	0
1,1,2,2-Tetrachloroethane	0.000500	0.00100	0.000464	0	108	10	400	0	0
1,1,2-Trichloroethane	0.000580	0.00100	0.000464	0	125	10	400	0	0
1,1,2-Trichlorotrifluoroethane	0.0112	0.0150	0.00928	0	120	10	400	0	0
1,1-Dichloroethane	0.000530	0.00100	0.000464	0	114	10	400	0	0
1,1-Dichloroethene	0.000610	0.00100	0.000464	0	131	10	400	0	0
1,1-Dichloropropene	0.000530	0.00100	0.000464	0	114	10	400	0	0
1,2,3-Trichloropropane	0.000260	0.00100	0.000464	0	56.0	10	400	0	0
1,2-Dibromoethane	0.000480	0.00100	0.000464	0	103	10	400	0	0
1,2-Dichlorobenzene	0.000500	0.00100	0.000464	0	108	10	400	0	0
1,2-Dichloroethane	0.000670	0.00100	0.000464	0	144	10	400	0	0
1,2-Dichloropropane	0.000560	0.00100	0.000464	0	121	10	400	0	0
1,3-Dichlorobenzene	0.000490	0.00100	0.000464	0	106	10	400	0	0
1,3-Dichloropropane	0.000470	0.00100	0.000464	0	101	10	400	0	0
1,4-Dichlorobenzene	0.000590	0.00100	0.000464	0	127	10	400	0	0
2,2-Dichloropropane	0.000570	0.00100	0.000464	0	123	10	400	0	0
2-Butanone	0.00893	0.0150	0.00928	0	96.2	10	400	0	0
2-Chlorotoluene	0.000430	0.00100	0.000464	0	92.7	10	400	0	0
2-Hexanone	0.00704	0.0150	0.00928	0	75.9	10	400	0	0
4-Chlorotoluene	0.000450	0.00100	0.000464	0	97.0	10	400	0	0
4-Methyl-2-pentanone	0.00699	0.0150	0.00928	0	75.3	10	400	0	0
Acetone	0.00994	0.0150	0.00928	0	107	10	400	0	0
Benzene	0.000560	0.00100	0.000464	0	121	10	400	0	0
Bromobenzene	0.000500	0.00100	0.000464	0	108	10	400	0	0
Bromochloromethane	0.000570	0.00100	0.000464	0	123	10	400	0	0
Bromodichloromethane	0.000520	0.00100	0.000464	0	112	10	400	0	0

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 33 of 40

Work Order: 2402269

ANALYTICAL QC SUMMARY REPORT

Project: SAWS Impoundment Assessment Lagoons and RunID: GCMS7_231227A

Sample ID: DCS-113423	Batch ID: 113423		TestNo	SW8	260D		Units:	mg/L		
SampType: DCS	Run ID: GCMS7	_231227A	Analys	is Date: 12/2	7/2023 3:06	6:00 PM	Prep Date:	12/2	7/2023	
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit '	%RPD	RPDLimit	Qual
Bromoform	0.000420	0.00100	0.000464	0	90.5	10	400	0	0	
Bromomethane	0.00153	0.00100	0.000464	0	330	10	400	0	0	
Carbon disulfide	0.0100	0.0150	0.00928	0	108	10	400	0	0	
Carbon tetrachloride	0.000510	0.00100	0.000464	0	110	10	400	0	0	
Chlorobenzene	0.000510	0.00100	0.000464	0	110	10	400	0	0	
Chloroethane	0.000480	0.00100	0.000464	0	103	10	400	0	0	
Chloroform	0.000470	0.00100	0.000464	0	101	10	400	0	0	
Chloromethane	0.000490	0.00100	0.000464	0	106	10	400	0	0	
cis-1,2-Dichloroethene	0.000590	0.00100	0.000464	0	127	10	400	0	0	
cis-1,3-Dichloropropene	0.000480	0.00100	0.000464	0	103	10	400	0	0	
Cyclohexane	0.00995	0.0150	0.00928	0	107	10	400	0	0	Ν
Dibromochloromethane	0.000410	0.00100	0.000464	0	88.4	10	400	0	0	
Dibromomethane	0.000620	0.00100	0.000464	0	134	10	400	0	0	
Dichlorodifluoromethane	0.000490	0.00100	0.000464	0	106	10	400	0	0	
Ethylbenzene	0.000470	0.00100	0.000464	0	101	10	400	0	0	
Isopropylbenzene	0.000440	0.00100	0.000464	0	94.8	10	400	0	0	
m,p-Xylene	0.000840	0.00200	0.000928	0	90.5	10	400	0	0	
Methyl Acetate	0.00778	0.0150	0.00928	0	83.8	10	400	0	0	
Methyl tert-butyl ether	0.000680	0.00100	0.000464	0	147	10	400	0	0	
Methylcyclohexane	0.00987	0.0150	0.00928	0	106	10	400	0	0	
n-Butylbenzene	0.000200	0.00100	0.000464	0	43.1	10	400	0	0	
n-Propylbenzene	0.000460	0.00100	0.000464	0	99.1	10	400	0	0	
o-Xylene	0.000450	0.00100	0.000464	0	97.0	10	400	0	0	
p-Isopropyltoluene	0.000460	0.00100	0.000464	0	99.1	10	400	0	0	
sec-Butylbenzene	0.000510	0.00100	0.000464	0	110	10	400	0	0	
Styrene	0.000380	0.00100	0.000464	0	81.9	10	400	0	0	
tert-Butylbenzene	0.000500	0.00100	0.000464	0	108	10	400	0	0	
Tetrachloroethene	0.000450	0.00200	0.000464	0	97.0	10	400	0	0	
Toluene	0.000560	0.00200	0.000464	0	121	10	400	0	0	
trans-1,2-Dichloroethene	0.000540	0.00100	0.000464	0	116	10	400	0	0	
trans-1,3-Dichloropropene	0.000490	0.00100	0.000464	0	106	10	400	0	0	
Trichloroethene	0.000540	0.00100	0.000464	0	116	10	400	0	0	
Trichlorofluoromethane	0.000510	0.00100	0.000464	0	110	10	400	0	0	
Vinyl chloride	0.000550	0.00100	0.000464	0	119	10	400	0	0	
Xylenes, Total	0.00129	0.00100	0.00139	0	92.7	10	400	0	0	
•					-	-		-	-	

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

 $R \quad \ RPD \ outside \ accepted \ control \ \ limits$

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 34 of 40

CLIENT: Weston Solutions, Inc. ANALYTICAL QC SUMMARY REPORT

Work Order: 2402269

Project:

GCMS7_240221A **RunID:** SAWS Impoundment Assessment Lagoons and

The QC data in batch 114106 a	oplies to the	following s	amples: 240	2269-05A, 240	2269-10A				
Sample ID: LCS-114106	Batch ID:	114106		TestNo	: SW8	3260D		Units:	mg/L
SampType: LCS	Run ID:	GCMS7	_240221A	Analys	is Date: 2/21	/2024 10:06	6:00 AM	Prep Date:	2/21/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qua
1,1,1,2-Tetrachloroethane		0.0268	0.00100	0.0232	0	115	81	129	
1,1,1-Trichloroethane		0.0237	0.00100	0.0232	0	102	67	132	
1,1,2,2-Tetrachloroethane		0.0257	0.00100	0.0232	0	111	63	128	
1,1,2-Trichloroethane		0.0241	0.00100	0.0232	0	104	75	125	
1,1,2-Trichlorotrifluoroethane		0.0167	0.0150	0.0232	0	72.1	67	125	
1,1-Dichloroethane		0.0215	0.00100	0.0232	0	92.8	69	133	
1,1-Dichloroethene		0.0204	0.00100	0.0232	0	88.0	68	130	
1,1-Dichloropropene		0.0216	0.00100	0.0232	0	93.1	73	132	
1,2,3-Trichlorobenzene		0.0341	0.00500	0.0232	0	147	67	137	S
1,2,3-Trichloropropane		0.0268	0.00100	0.0232	0	116	73	124	
1,2,4-Trichlorobenzene		0.0318	0.00500	0.0232	0	137	66	134	S
1,2,4-Trimethylbenzene		0.0258	0.00500	0.0232	0	111	74	132	
1,2-Dibromo-3-chloropropane		0.0257	0.0100	0.0232	0	111	50	132	
1,2-Dibromoethane		0.0264	0.00100	0.0232	0	114	80	121	
1,2-Dichlorobenzene		0.0274	0.00100	0.0232	0	118	75	122	
1,2-Dichloroethane		0.0231	0.00100	0.0232	0	99.7	69	132	
1,2-Dichloropropane		0.0217	0.00100	0.0232	0	93.5	75	125	
1,3,5-Trimethylbenzene		0.0257	0.00500	0.0232	0	111	74	131	
1,3-Dichlorobenzene		0.0271	0.00100	0.0232	0	117	75	124	
1,3-Dichloropropane		0.0251	0.00100	0.0232	0	108	73	126	
1,4-Dichlorobenzene		0.0267	0.00100	0.0232	0	115	74	123	
1-Chlorohexane		0.0206	0.00500	0.0232	0	88.7	70	125	
2,2-Dichloropropane		0.0236	0.00100	0.0232	0	102	69	137	
2-Butanone		0.115	0.0150	0.116	0	99.2	49	136	
2-Chlorotoluene		0.0249	0.00100	0.0232	0	107	73	126	
2-Hexanone		0.119	0.0150	0.116	0	102	50	150	
4-Chlorotoluene		0.0249	0.00100	0.0232	0	107	74	128	
4-Methyl-2-pentanone		0.124	0.0150	0.116	0	107	60	134	
Acetone		0.104	0.0150	0.116	0	89.8	40	135	
Benzene		0.0221	0.00100	0.0232	0	95.1	81	122	
Bromobenzene		0.0270	0.00100	0.0232	0	116	76	124	
Bromochloromethane		0.0246	0.00100	0.0232	0	106	65	129	
Bromodichloromethane		0.0235	0.00100	0.0232	0	101	76	121	
Bromoform		0.0282	0.00100	0.0232	0	122	69	128	
Bromomethane		0.0222	0.00100	0.0232	0	95.8	53	141	
Carbon disulfide		0.0218	0.0150	0.0232	0	93.8	50	150	
Carbon tetrachloride		0.0244	0.00100	0.0232	0	105	66	138	
Chlorobenzene		0.0260	0.00100	0.0232	0	112	81	122	
Chloroethane		0.0230	0.00100	0.0232	0	99.2	58	133	
Chloroform		0.0230	0.00100	0.0232	0	99.2	69	128	
					-				

Qualifiers: В Analyte detected in the associated Method Blank

> J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

Parameter not NELAP certified

Page 35 of 40

Work Order: 2402269

ANALYTICAL QC SUMMARY REPORT

Project: SAWS Impoundment Assessment Lagoons and

GCMS7_240221A **RunID:**

Sample ID: LCS-114106	Batch ID: 114106	i	TestNo	: SW	8260D		Units:	mg/L
SampType: LCS	Run ID: GCMS	7_240221A	Analys	is Date: 2/21	/2024 10:06	6:00 AM	Prep Date:	2/21/2024
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qual
Chloromethane	0.0215	0.00100	0.0232	0	92.6	56	131	
cis-1,2-Dichloroethene	0.0227	0.00100	0.0232	0	97.8	72	126	
cis-1,3-Dichloropropene	0.0228	0.00100	0.0232	0	98.2	69	131	
Cyclohexane	0.0178	0.0150	0.0232	0	76.8	40	161	N
Dibromochloromethane	0.0271	0.00100	0.0232	0	117	66	133	
Dibromomethane	0.0237	0.00100	0.0232	0	102	76	125	
Dichlorodifluoromethane	0.0253	0.00100	0.0232	0	109	53	153	
Ethylbenzene	0.0260	0.00100	0.0232	0	112	80	120	
Hexachlorobutadiene	0.0316	0.00300	0.0232	0	136	67	131	S
Isopropylbenzene	0.0265	0.00100	0.0232	0	114	75	127	
m,p-Xylene	0.0527	0.00200	0.0464	0	113	80	120	
Methyl Acetate	0.0210	0.0150	0.0232	0	90.4	50	150	
Methyl tert-butyl ether	0.0221	0.00100	0.0232	0	95.2	68	123	
Methylcyclohexane	0.0182	0.0150	0.0232	0	78.3	70	130	
Methylene chloride	0.0209	0.00250	0.0232	0	90.0	63	137	
Naphthalene	0.0296	0.0150	0.0232	0	128	54	138	
n-Butylbenzene	0.0266	0.00100	0.0232	0	115	69	137	
n-Propylbenzene	0.0254	0.00100	0.0232	0	109	72	129	
o-Xylene	0.0259	0.00100	0.0232	0	112	80	120	
p-Isopropyltoluene	0.0268	0.00100	0.0232	0	115	73	130	
sec-Butylbenzene	0.0257	0.00100	0.0232	0	111	72	127	
Styrene	0.0264	0.00100	0.0232	0	114	65	134	
tert-Butylbenzene	0.0264	0.00100	0.0232	0	114	70	129	
Tetrachloroethene	0.0270	0.00200	0.0232	0	116	66	128	
Toluene	0.0229	0.00200	0.0232	0	98.6	80	120	
trans-1,2-Dichloroethene	0.0219	0.00100	0.0232	0	94.5	63	137	
trans-1,3-Dichloropropene	0.0240	0.00100	0.0232	0	104	59	135	
Trichloroethene	0.0241	0.00100	0.0232	0	104	70	127	
Trichlorofluoromethane	0.0258	0.00100	0.0232	0	111	57	129	
Vinyl chloride	0.0227	0.00100	0.0232	0	97.8	50	134	
Xylenes, Total	0.0786	0.00100	0.0696	0	113	80	120	
Surr: 1,2-Dichloroethane-d4	183		200.0		91.4	72	119	
Surr: 4-Bromofluorobenzene	190		200.0		94.9	76	119	
Surr: Dibromofluoromethane	191		200.0		95.4	85	115	
Surr: Toluene-d8	197		200.0		98.7	81	120	

Sample ID: MB-114106	Batch ID:	114106		TestNo:	SW	8260D		Units:	mg/L	-
SampType: MBLK	Run ID:	GCMS7_240	221A	Analysis Da	ite: 2/21	1/2024 11:07:0	0 AM	Prep Date:	2/21/	2024
Analyte		Result	RL SI	PK value R	ef Val	%REC L	.owLimit	HighLimit %	6RPD	RPDLimit Qual

<0.000300 0.00100 1,1,1,2-Tetrachloroethane

Qualifiers: Analyte detected in the associated Method Blank

> J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 36 of 40

RPD outside accepted control limits R

Spike Recovery outside control limits

Parameter not NELAP certified

Work Order: 2402269

ANALYTICAL QC SUMMARY REPORT

Project: SAWS Impoundment Assessment Lagoons and RunID: GCMS7_240221A

Sample ID: MB-114106	Batch ID: 114106		TestNo	: SW8	3260D		Units:	mg/L
SampType: MBLK	Run ID: GCMS7_	_240221A	Analys	s Date: 2/21/	/2024 11:07	7:00 AM	Prep Date:	2/21/2024
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	SRPD RPDLimit Qual
1,1,1-Trichloroethane	<0.000300	0.00100						
1,1,2,2-Tetrachloroethane	< 0.000300	0.00100						
1,1,2-Trichloroethane	< 0.000300	0.00100						
1,1,2-Trichlorotrifluoroethane	< 0.00500	0.0150						
1,1-Dichloroethane	< 0.000300	0.00100						
1,1-Dichloroethene	< 0.000300	0.00100						
1,1-Dichloropropene	< 0.000300	0.00100						
1,2,3-Trichlorobenzene	< 0.00150	0.00500						
1,2,3-Trichloropropane	< 0.000300	0.00100						
1,2,4-Trichlorobenzene	< 0.00150	0.00500						
1,2,4-Trimethylbenzene	< 0.00150	0.00500						
1,2-Dibromo-3-chloropropane	< 0.00300	0.0100						
1,2-Dibromoethane	< 0.000300	0.00100						
1,2-Dichlorobenzene	< 0.000300	0.00100						
1,2-Dichloroethane	< 0.000300	0.00100						
1,2-Dichloropropane	< 0.000300	0.00100						
1,3,5-Trimethylbenzene	< 0.00150	0.00500						
1,3-Dichlorobenzene	< 0.000300	0.00100						
1,3-Dichloropropane	< 0.000300	0.00100						
1,4-Dichlorobenzene	< 0.000300	0.00100						
1-Chlorohexane	< 0.00100	0.00500						
2,2-Dichloropropane	< 0.000300	0.00100						
2-Butanone	< 0.00500	0.0150						
2-Chlorotoluene	< 0.000300	0.00100						
2-Hexanone	< 0.00500	0.0150						
4-Chlorotoluene	< 0.000300	0.00100						
4-Methyl-2-pentanone	< 0.00500	0.0150						
Acetone	< 0.00500	0.0150						
Benzene	< 0.000300	0.00100						
Bromobenzene	< 0.000300	0.00100						
Bromochloromethane	< 0.000300	0.00100						
Bromodichloromethane	< 0.000300	0.00100						
Bromoform	< 0.000300	0.00100						
Bromomethane	< 0.000300	0.00100						
Carbon disulfide	< 0.00500	0.0150						
Carbon tetrachloride	< 0.000300	0.00100						
Chlorobenzene	<0.000300	0.00100						
Chloroethane	<0.000300	0.00100						
Chloroform	<0.000300	0.00100						
Chloromethane	<0.000300	0.00100						
cis-1,2-Dichloroethene	<0.000300	0.00100						

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Limit Page 37 of 40

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Work Order: 2402269

ANALYTICAL QC SUMMARY REPORT

Project: SAWS Impoundment Assessment Lagoons and RunID: GCMS7_240221A

Sample ID: MB-114106	Batch ID: 114106		TestNo	SW8	260D		Units:	mg/L
SampType: MBLK	Run ID: GCMS	7_240221A	Analysi	s Date: 2/21/	2024 11:07	7:00 AM	Prep Date:	2/21/2024
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qual
cis-1,3-Dichloropropene	<0.000300	0.00100						
Cyclohexane	< 0.00500	0.0150						N
Dibromochloromethane	< 0.000300	0.00100						
Dibromomethane	< 0.000300	0.00100						
Dichlorodifluoromethane	< 0.000300	0.00100						
Ethylbenzene	< 0.000300	0.00100						
Hexachlorobutadiene	< 0.00100	0.00300						
Isopropylbenzene	< 0.000300	0.00100						
m,p-Xylene	< 0.000600	0.00200						
Methyl Acetate	< 0.00500	0.0150						
Methyl tert-butyl ether	< 0.000300	0.00100						
Methylcyclohexane	< 0.00500	0.0150						
Methylene chloride	< 0.00250	0.00250						
Naphthalene	< 0.00500	0.0150						
n-Butylbenzene	< 0.000300	0.00100						
n-Propylbenzene	< 0.000300	0.00100						
o-Xylene	< 0.000300	0.00100						
p-Isopropyltoluene	< 0.000300	0.00100						
sec-Butylbenzene	< 0.000300	0.00100						
Styrene	< 0.000300	0.00100						
tert-Butylbenzene	< 0.000300	0.00100						
Tetrachloroethene	<0.000600	0.00200						
Toluene	<0.000600	0.00200						
trans-1,2-Dichloroethene	< 0.000300	0.00100						
trans-1,3-Dichloropropene	< 0.000300	0.00100						
Trichloroethene	<0.000600	0.00100						
Trichlorofluoromethane	< 0.000300	0.00100						
Vinyl chloride	< 0.000300	0.00100						
Xylenes, Total	< 0.000300	0.00100						
Surr: 1,2-Dichloroethane-d4	184		200.0		91.9	72	119	
Surr: 4-Bromofluorobenzene	192		200.0		95.8	76	119	
Surr: Dibromofluoromethane	188		200.0		94.1	85	115	
Surr: Toluene-d8	198		200.0		98.9	81	120	

Qualifiers: B	Analyte detected in the	e associated Method Blank
---------------	-------------------------	---------------------------

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 38 of 40

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Work Order: 2402269

ANALYTICAL QC SUMMARY REPORT

Project: SAWS Impoundment Assessment Lagoons and

RunID: GCMS7_240221A

Sample ID: ICV-240221	Batch ID:	R13152	22	TestNo	o: SW 8	3260D		Units:	mg/	L
SampType: ICV	Run ID:	GCMS	7_240221A	Analys	is Date: 2/21	/2024 9:42:	00 AM	Prep Date	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qua
1,1,1,2-Tetrachloroethane		0.0470	0.00100	0.0464	0	101	70	130		
1,1,1-Trichloroethane		0.0424	0.00100	0.0464	0	91.4	70	130		
1,1,2,2-Tetrachloroethane		0.0443	0.00100	0.0464	0	95.5	70	130		
1,1,2-Trichloroethane		0.0423	0.00100	0.0464	0	91.3	70	130		
1,1,2-Trichlorotrifluoroethane		0.0378	0.0150	0.0464	0	81.4	70	130		
1,1-Dichloroethane		0.0387	0.00100	0.0464	0	83.4	70	130		
1,1-Dichloroethene		0.0378	0.00100	0.0464	0	81.4	70	130		
1,1-Dichloropropene		0.0404	0.00100	0.0464	0	87.1	70	130		
1,2,3-Trichlorobenzene		0.0562	0.00500	0.0464	0	121	70	130		
1,2,3-Trichloropropane		0.0463	0.00100	0.0464	0	99.8	70	130		
1,2,4-Trichlorobenzene		0.0564	0.00500	0.0464	0	121	70	130		
1,2,4-Trimethylbenzene		0.0466	0.00500	0.0464	0	100	70	130		
1,2-Dibromo-3-chloropropane		0.0436	0.0100	0.0464	0	93.9	70	130		
1,2-Dibromoethane		0.0461	0.00100	0.0464	0	99.3	70	130		
1,2-Dichlorobenzene		0.0482	0.00100	0.0464	0	104	70	130		
1,2-Dichloroethane		0.0411	0.00100	0.0464	0	88.6	70	130		
1,2-Dichloropropane		0.0392	0.00100	0.0464	0	84.4	70	130		
1,3,5-Trimethylbenzene		0.0465	0.00500	0.0464	0	100	70	130		
1,3-Dichlorobenzene		0.0488	0.00100	0.0464	0	105	70	130		
1,3-Dichloropropane		0.0434	0.00100	0.0464	0	93.5	70	130		
1,4-Dichlorobenzene		0.0471	0.00100	0.0464	0	101	70	130		
1-Chlorohexane		0.0370	0.00500	0.0464	0	79.7	70	130		
2,2-Dichloropropane		0.0425	0.00100	0.0464	0	91.6	70	130		
2-Butanone		0.216	0.0150	0.232	0	93.3	70	130		
2-Chlorotoluene		0.0450	0.00100	0.0464	0	97.1	70	130		
2-Hexanone		0.217	0.0150	0.232	0	93.6	70	130		
4-Chlorotoluene		0.0449	0.00100	0.0464	0	96.9	70	130		
4-Methyl-2-pentanone		0.227	0.0150	0.232	0	97.9	70	130		
Acetone		0.194	0.0150	0.232	0	83.7	70	130		
Benzene		0.0399	0.00100	0.0464	0	86.0	70	130		
Bromobenzene		0.0478	0.00100	0.0464	0	103	70	130		
Bromochloromethane		0.0429	0.00100	0.0464	0	92.5	70	130		
Bromodichloromethane		0.0426	0.00100	0.0464	0	91.7	70	130		
Bromoform		0.0495	0.00100	0.0464	0	107	70	130		
Bromomethane		0.0401	0.00100	0.0464	0	86.3	70	130		
Carbon disulfide		0.0301	0.0150	0.0464	0	64.9	70	130		s
Carbon tetrachloride		0.0441	0.00100	0.0464	0	95.0	70	130		
Chlorobenzene		0.0461	0.00100	0.0464	0	99.3	70	130		
Chloroethane		0.0412	0.00100	0.0464	0	88.7	70	130		
Chloroform		0.0413	0.00100	0.0464	0	89.1	70	130		
Chloromethane		0.0397	0.00100	0.0464	0	85.6	70	130		
			0.00100	0.0 10 1	J	55.5		.00		

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 39 of 40

Work Order: 2402269

ANALYTICAL QC SUMMARY REPORT

Project: SAWS Impoundment Assessment Lagoons and

RunID: GCMS7_240221A

SampType: ICV	Run ID:	GCMS	7_240221A	۸ ا						
				Analys	sis Date: 2/2 1	/2024 9:42:	00 AM	Prep Date	:	
Analyte	!	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
cis-1,2-Dichloroethene	(0.0411	0.00100	0.0464	0	88.5	70	130		
cis-1,3-Dichloropropene	(0.0413	0.00100	0.0464	0	88.9	70	130		
Cyclohexane	(0.0378	0.0150	0.0464	0	81.5	70	130		N
Dibromochloromethane	(0.0476	0.00100	0.0464	0	103	70	130		
Dibromomethane	(0.0416	0.00100	0.0464	0	89.7	70	130		
Dichlorodifluoromethane	(0.0466	0.00100	0.0464	0	100	70	130		
Ethylbenzene	(0.0465	0.00100	0.0464	0	100	70	130		
Hexachlorobutadiene	(0.0578	0.00300	0.0464	0	125	70	130		
Isopropylbenzene	(0.0467	0.00100	0.0464	0	101	70	130		
m,p-Xylene	(0.0941	0.00200	0.0928	0	101	70	130		
Methyl Acetate	(0.0421	0.0150	0.0464	0	90.7	70	130		
Methyl tert-butyl ether	(0.0384	0.00100	0.0464	0	82.8	70	130		
Methylcyclohexane	(0.0376	0.0150	0.0464	0	80.9	70	130		
Methylene chloride	(0.0374	0.00250	0.0464	0	80.5	70	130		
Naphthalene	(0.0491	0.0150	0.0464	0	106	70	130		
n-Butylbenzene	(0.0494	0.00100	0.0464	0	107	70	130		
n-Propylbenzene	(0.0458	0.00100	0.0464	0	98.7	70	130		
o-Xylene	(0.0462	0.00100	0.0464	0	99.6	70	130		
p-Isopropyltoluene	(0.0484	0.00100	0.0464	0	104	70	130		
sec-Butylbenzene	(0.0469	0.00100	0.0464	0	101	70	130		
Styrene	(0.0470	0.00100	0.0464	0	101	70	130		
tert-Butylbenzene	(0.0468	0.00100	0.0464	0	101	70	130		
Tetrachloroethene	(0.0486	0.00200	0.0464	0	105	70	130		
Toluene	(0.0415	0.00200	0.0464	0	89.5	70	130		
trans-1,2-Dichloroethene	(0.0402	0.00100	0.0464	0	86.7	70	130		
trans-1,3-Dichloropropene	(0.0424	0.00100	0.0464	0	91.3	70	130		
Trichloroethene	(0.0435	0.00100	0.0464	0	93.8	70	130		
Trichlorofluoromethane	(0.0477	0.00100	0.0464	0	103	70	130		
Vinyl chloride	(0.0418	0.00100	0.0464	0	90.0	70	130		
Xylenes, Total		0.140	0.00100	0.139	0	101	70	130		
Surr: 1,2-Dichloroethane-d4		182		200.0		91.1	72	119		
Surr: 4-Bromofluorobenzene		191		200.0		95.3	76	119		
Surr: Dibromofluoromethane		190		200.0		94.8	85	115		
Surr: Toluene-d8		195		200.0		97.4	81	120		

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 40 of 40

Date: 28-Feb-24

CLIENT: Weston Solutions, Inc.

Work Order: 2402269

Project: SAWS Impoundment Assessment Lagoons and

MQL SUMMARY REPORT

TestNo: SW6020B	MDL	MQL	TestNo: SW8260D	MDL	MQL		
Analyte	mg/Kg	mg/Kg	Analyte	mg/L	mg/L		
Aluminum	12.5	37.5	1,1,1,2-Tetrachloroethane	0.000300	0.00100		
Intimony	0.500	1.00	1,1,1-Trichloroethane	0.000300	0.00100		
rsenic	0.500	1.00	1,1,2,2-Tetrachloroethane	0.000300	0.00100		
Barium	0.500	2.00	1,1,2-Trichloroethane	0.000300	0.00100		
Beryllium	0.100	0.300	1,1,2-Trichlorotrifluoroethane	0.00500	0.0150		
admium	0.100	0.300	1,1-Dichloroethane	0.000300	0.00100		
alcium	12.5	37.5	1,1-Dichloroethene	0.000300	0.00100		
hromium	0.500	2.00	1,1-Dichloropropene	0.000300	0.00100		
obalt	0.500	2.00	1,2,3-Trichlorobenzene	0.00150	0.00500		
opper	0.500	2.00	1,2,3-Trichloropropane	0.000300	0.00100		
on	12.5	37.5	1,2,4-Trichlorobenzene	0.00150	0.00500		
ead	0.100	0.300	1,2,4-Trimethylbenzene	0.00150	0.00500		
lagnesium	12.5	37.5	1,2-Dibromo-3-chloropropane	0.00300	0.0100		
langanese	0.500	2.00	1,2-Dibromoethane	0.000300	0.00100		
ickel	0.500	2.00	1,2-Dichlorobenzene	0.000300	0.00100		
otassium	12.5	37.5	1,2-Dichloroethane	0.000300	0.00100		
elenium	0.150	0.500	1,2-Dichloropropane	0.000300	0.00100		
ilver	0.100	0.200	1,3,5-Trimethylbenzene	0.00150	0.00500		
odium	12.5	37.5	1,3-Dichlorobenzene	0.000300	0.00100		
hallium	0.500	1.00	1,3-Dichloropropane	0.000300	0.00100		
anadium	1.00	2.50	1,4-Dichlorobenzene	0.000300	0.00100		
inc	1.00	2.50	1-Chlorohexane	0.00100	0.00500		
			2,2-Dichloropropane	0.000300 0.00 0.000300 0.00 0.000300 0.00 0.000300 0.00 0.000300 0.00 0.000300 0.00 0.000300 0.00 0.000300 0.00 0.00150 0.00 0.00150 0.00 0.00150 0.00 0.00150 0.00 0.000300 0.00	0.00100		
			2-Butanone	0.00500	0.0150		
			2-Chlorotoluene	0.000300	0.00100		
			2-Hexanone	0.00500	0.0150		
			4-Chlorotoluene	0.000300	mg/L 0.00100 0.00100 0.00100 0.00100 0.0150 0.00100 0.00100 0.00500 0.00500 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100		
			4-Methyl-2-pentanone	0.00500			
			Acetone	0.00500	0.0150		
			Benzene	0.000300	0.00100		
			Bromobenzene	0.000300	0.00100		
			Bromochloromethane	0.000300	0.00100		
			Bromodichloromethane	0.000300	0.00100		
			Bromoform	0.000300	0.00100		
			Bromomethane	0.000300	0.00100		
			Carbon disulfide	0.00500	0.0150		
			Carbon tetrachloride	0.000300	0.00100		
			Chlorobenzene	0.000300	0.00100 0.00500 0.00500 0.00500 0.00500 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00150 0.00150 0.00150 0.00150 0.00150 0.00100 0.0150 0.00100 0.0150 0.00100 0.0150 0.00100 0.0150 0.00100 0.0150 0.00100		
			Chloroethane	0.000300			
			Chloroform	0.000300	0.00100		
			Chloromethane	0.000300	0.00100		
			cis-1,2-Dichloroethene	mg/L 0.000300 0.000300 0.000300 0.000300 0.000300 0.000300 0.00150 0.000300	0.00100		
			cis-1,3-Dichloropropene	0.000300	0.00100		
			Cyclohexane	0.00500	0.0150		

Qualifiers: MQL -Method Quantitation Limit as defined by TRRP

MDL -Method Detection Limit as defined by TRRP

Work Order: 2402269

MQL SUMMARY REPORT

Project: SAV	WS Impoundment Asse	essment Lagoons and	i		
Dibromochloromethane	0.000300	0.00100			
Dibromomethane	0.000300	0.00100	TestNo: SW8260D	MDL	MQL
Dichlorodifluoromethane	0.000300	0.00100	Analyte	mg/Kg	mg/Kg
Ethylbenzene	0.000300	0.00100	1,1,1,2-Tetrachloroethane	0.00100	0.00500
Hexachlorobutadiene	0.00100	0.00300	1,1,1-Trichloroethane	0.00100	0.00500
Isopropylbenzene	0.000300	0.00100	1,1,2,2-Tetrachloroethane	0.00100	0.00500
m,p-Xylene	0.000600	0.00200	1,1,2-Trichloroethane	0.00100	0.00500
Methyl Acetate	0.00500	0.0150	1,1,2-Trichlorotrifluoroethane	0.00500	0.0150
Methyl tert-butyl ether	0.000300	0.00100	1,1-Dichloroethane	0.00100	0.00500
Methylcyclohexane	0.00500	0.0150	1,1-Dichloroethene	0.00100	0.00500
Methylene chloride	0.00250	0.00250	1,1-Dichloropropene	0.00100	0.00500
Naphthalene	0.00500	0.0150	1,2,3-Trichlorobenzene	0.00100	0.00500
n-Butylbenzene	0.000300	0.00100	1,2,3-Trichloropropane	0.00100	0.00500
n-Propylbenzene	0.000300	0.00100	1,2,4-Trichlorobenzene	0.00100	0.00500
o-Xylene	0.000300	0.00100	1,2,4-Trimethylbenzene	0.00100	0.00500
p-Isopropyltoluene	0.000300	0.00100	1,2-Dibromo-3-chloropropane	0.00100	0.00500
sec-Butylbenzene	0.000300	0.00100	1,2-Dibromoethane	0.00100	0.00500
Styrene	0.000300	0.00100	1,2-Dichlorobenzene	0.00100	0.00500
tert-Butylbenzene	0.000300	0.00100	1,2-Dichloroethane	0.00100	0.00500
Tetrachloroethene	0.000600	0.00200	1,2-Dichloropropane	0.00100	0.00500
Toluene	0.000600	0.00200	1,3,5-Trimethylbenzene	0.00100	0.00500
trans-1,2-Dichloroethene	0.000300	0.00100	1,3-Dichlorobenzene	0.00100	0.00500
trans-1,3-Dichloropropene		0.00100	1,3-Dichloropropane	0.00100	0.00500
Trichloroethene	0.000600	0.00100	1,4-Dichlorobenzene	0.00100	0.00500
Trichlorofluoromethane	0.000300	0.00100	1-Chlorohexane	0.00100	0.00500
Vinyl chloride	0.000300	0.00100	2,2-Dichloropropane	0.00100	0.00500
Total Xylenes	0.000300	0.00100	2-Butanone	0.00500	0.0150
			2-Chlorotoluene	0.00100	0.00500
			2-Hexanone	0.00500	0.0150
			4-Chlorotoluene	0.00100	0.00500
			4-Methyl-2-pentanone	0.00500	0.0150
			Acetone	0.0150	0.0500
			Benzene	0.00100	0.00500
			Bromobenzene	0.00100	0.00500
			Bromochloromethane	0.00100	0.00500
			Bromodichloromethane	0.00100	0.00500
			Bromoform	0.00100	0.00500
			Bromomethane Carbon disulfide	0.00100 0.00500	0.00500 0.0150
			Carbon tetrachloride	0.00300	0.00500
			Chlorobenzene	0.00100	0.00500
			Chloroethane	0.00100	0.00500
			Chloroform	0.00100	0.00500
			Chloromethane	0.00100	0.00500
			cis-1,2-Dichloroethene	0.00100	0.00500
			cis-1,3-Dichloropropene	0.00100	0.00500
			Cyclohexane	0.00500	0.0150
			Dibromochloromethane	0.00300	0.00500
			Dibromomethane	0.00100	0.00500
=			2.2.33	3.00100	

Qualifiers: MQL -Method Quantitation Limit as defined by TRRP

MDL -Method Detection Limit as defined by TRRP

Work Order: 2402269

MQL SUMMARY REPORT

Project: SAWS Impoundment Assessment Lagoons and

Project: SAWS Im	poundment Ass	essment Lagoon	as and		
Dichlorodifluoromethane	0.00100	0.00500			
Ethylbenzene	0.00100	0.00500	TestNo: SW8270E	MDL	MQL
Hexachlorobutadiene	0.00100	0.00500	Analyte	mg/Kg	mg/Kg
Isopropylbenzene	0.00100	0.00500	2,4,5-Trichlorophenol	0.0100	0.0266
m,p-Xylene	0.00100	0.00500	2,4,6-Trichlorophenol	0.0100	0.0266
Methyl Acetate	0.00500	0.0150	2,4-Dichlorophenol	0.0100	0.0266
Methyl tert-butyl ether	0.00100	0.00500	2,4-Dimethylphenol	0.0100	0.0266
Methylcyclohexane	0.00500	0.0150	2,4-Dinitrophenol	0.0500	0.132
Methylene chloride	0.00500	0.00500	2,4-Dinitrotoluene	0.0100	0.0266
Naphthalene	0.00500	0.0150	2,6-Dinitrotoluene	0.0100	0.0266
n-Butylbenzene	0.00100	0.00500	2-Chloronaphthalene	0.0100	0.0266
n-Propylbenzene	0.00100	0.00500	2-Chlorophenol	0.0100	0.0266
o-Xylene	0.00100	0.00500	2-Methylnaphthalene	0.0100	0.0266
p-Isopropyltoluene	0.00100	0.00500	2-Methylphenol	0.0100	0.0266
sec-Butylbenzene	0.00100	0.00500	2-Nitroaniline	0.0100	0.0266
Styrene	0.00100	0.00500	2-Nitrophenol	0.0100	0.0266
tert-Butylbenzene	0.00100	0.00500	3,3'-Dichlorobenzidine	0.0100	0.0266
Tetrachloroethene	0.00100	0.00500	3-Nitroaniline	0.0100	0.0266
Toluene	0.00100	0.00500	4,6-Dinitro-2-methylphenol	0.0300	0.0660
trans-1,2-Dichloroethene	0.00100	0.00500	4-Bromophenyl phenyl ether	0.0100	0.0266
trans-1,3-Dichloropropene	0.00100	0.00500	4-Chloro-3-methylphenol	0.0100	0.0266
Trichloroethene Trichlorofluoromethane	0.00100	0.00500	4-Chloroaniline	0.0300	0.0660
	0.00500	0.0150	4-Chlorophenyl phenyl ether	0.0100	0.0266
Vinyl chloride	0.00100 0.00100	0.00500 0.00500	4-Methylphenol	0.0200	0.0266
Xylenes, Total	0.00100	0.00500	4-Nitroaniline	0.0100	0.0266
			4-Nitrophenol	0.0500	0.132
			Acenaphthene	0.0100	0.0266
			Acenaphthylene	0.0100	0.0266
			Acetophenone	0.0100	0.0266
			Anthracene	0.0100	0.0266
			Atrazine	0.0100	0.0266
			Benzaldehyde	0.0100	0.0266
			Benzo[a]anthracene	0.0100	0.0266
			Benzo[a]pyrene	0.0100	0.0266
			Benzo[b]fluoranthene	0.0100	0.0266
			Benzo[g,h,i]perylene	0.0100 0.0100	0.0266 0.0266
			Benzo[k]fluoranthene Benzoic acid	0.0500	0.0200
			Benzyl alcohol	0.0300	0.0660
			Biphenyl	0.0300	0.0266
			Bis(2-chloroethoxy)methane	0.0100	0.0266
			Bis(2-chloroethyl)ether	0.0100	0.0266
			Bis(2-chloroisopropyl)ether	0.0100	0.0266
			Bis(2-ethylhexyl)phthalate	0.0640	0.0660
			Butyl benzyl phthalate	0.0400	0.0660
			Caprolactam	0.0300	0.0660
			Carbazole	0.0100	0.0266
			Chrysene	0.0100	0.0266
			Dibenz[a,h]anthracene	0.0100	0.0266
			. , .		

Qualifiers: MQL -Method Quantitation Limit as defined by TRRP

MDL -Method Detection Limit as defined by TRRP

CLIENT: Weston Solutions, Inc.
Work Order: 2402269

Weston Solutions, Inc.
MQL SUMMARY REPORT

Project: SAWS Impoundment Assessment Lagoons and

Project: SAWS Im	poundment Ass	Cosmen Lag
Dibenzofuran	0.0100	0.0266
Diethyl phthalate	0.0400	0.0660
Dimethyl phthalate	0.0400	0.0660
Di-n-butyl phthalate	0.0400	0.0660
Di-n-octyl phthalate	0.0400	0.0660
Fluoranthene	0.0100	0.0266
Fluorene	0.0100	0.0266
Hexachlorobenzene	0.0100	0.0266
Hexachlorobutadiene	0.0100	0.0266
Hexachlorocyclopentadiene	0.0300	0.0660
Hexachloroethane	0.0100	0.0266
Indeno[1,2,3-cd]pyrene	0.0100	0.0266
Isophorone	0.0300	0.0660
Naphthalene	0.0100	0.0266
Nitrobenzene	0.0100	0.0266
N-Nitrosodi-n-propylamine	0.0100	0.0266
N-Nitrosodiphenylamine	0.0100	0.0266
Pentachlorophenol	0.0100	0.0266
Phenanthrene	0.0100	0.0266
Phenol	0.0100	0.0266
Pyrene	0.0100	0.0266
Pyridine	0.0500	0.132
TestNo: SW7471B	MDL	MQL
Analyte	mg/Kg	mg/Kg
Mercury	0.0160	0.0400

March 08, 2024

Armin Sabet Weston Solutions, Inc. 2600 Dallas Parkway, Suite 280 Frisco, Texas 75034

TEL: (310) 980-6300

FAX: Order No.: 2402409

RE: SAWS Impoundment Assessment Lagoons and Decant Sam

Dear Armin Sabet:

DHL Analytical, Inc. received 1 sample(s) on 2/29/2024 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAP except where noted in the Case Narrative. All non-NELAP methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,

John DuPont

General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-23-29

Table of Contents

Miscellaneous Documents	3
CaseNarrative 2402409	8
WorkOrderSampleSummary 2402409	9
PrepDatesReport 2402409	10
TCLP Dates Report 2402409	11
AnalyticalDatesReport 2402409	12
Analytical Report 2402409	13
AnalyticalQCSummaryReport 2402409	14
MQLSummaryReport 2402409	18

2300 Double Creek Dr. Round Rock, TX 78664 Phone 512.388.8222

CHAIN-OF-CUSTODY

Web: www.dhlanalytical.com Email: login@dhlanalytical.com

APPLICATION W	N Å í	. Y T I	CAL			Em	ail:	logi	n@	dhl	an	alyt	ica	l.co	m												F	PAGE	\ OF_	(
CLIENT: San Antonio	s Wa	iter Sus	,tein			DATE: 2/20/2												LAB USE ONLY 2402409												
ADDRESS: 2860 US-	281,5	oan Anto	nio. TX	(74)	2/2	PO#:													DHL WORKORDER #: 2/02262/29/24 EL								9/24 EL			
PHONE: 2.0-233-365	ţ	EMAIL://\	ichael Jon	185êSa	us,org	DD	015	CTI		A T'1	<u> </u>	I OR	NI.	A B 4 E												€h	F			
DATA REPORTED TO: Michael Junes										1 Ur	. 147	+IVI C		Lag	ycor	5 6	άV	4	Ma	nf	-50	wn	plia	19						
ADDITIONAL REPORT COPIES TO: 4 min. Sabet@Westensolutions.co					CL	LIENT PROJECT # 10412.036.001.0002 COLLECTOR: Cde Cost										@5t	1000	PWY												
Authorize 5% surcharge		W=WATE	R	SE=SE	DIMENT		PRE		VA7	ION	ı		0				0	110		IS 🗆	1 6	1		0,0	L		3	130	G G	
for TRRP report?	Lab	L=LIQUID		P=PAI					[19	D 100				1 827	0 62	IONIA	META			ERB	10.11	ASE	JOE	اض	1	200	:
⊠¤Yes □ No		S=SOIL		SL=SL	UDGE	S	Q					2 8 8	걸	In		₽ .] A	8270	AMI	DISS.			1	×	L&GR	CYA!	i	4	15.3F	
	Only	SO=SOLID)	7	 	ine	H_3PO_4		Aç.	ESE	IXS	2 8	1900	8015	524.1	C 625.	PAH C	B .	os 🗆	0.8			l l	RA 8	ō	JIST	Tarriet.	tad 157	18 X	
Field Sample I.D.	DHL Lab#	Collection Date	Collection Time	Matrix	Container Type	# of Conta		HNO3	H ₂ SO ₄	INAON L ZII ACELATE L		ANALYSES BTEX MTBE [METHOD 8260]	TPH 1005 □ TPH 1006 □ HOLD 1006 □	GRO 8015 DRO 8015	VOC 8260頃 VOC 624.1□	SVOC 8270 M SVOC 625.1	PEST 8270 625.1 0-P PEST 8270	PCB 8082 □ 608.3 □ PCB 8270 □ 625.1 □	HERB 8321 🗆 T PHOS 🗆 AMMONIA 🗆	METALS 6020 🗆 200.8 🗅 DISS. METALS 🗀	RCRA 8 TX11	ANIONS 300 🖂 9056	TCLP-SVOC □ VOC □ PEST □ HERB □	TCLP-METALS □ RCRA 8 □ TX-11 □ Pb □	RCI 🗀 IGN 🗆 DGAS 🗀 OIL&GREASE 🗆	TDS 🗆 TSS 🗆 % MOIST 🗀 CYANIDE 🗇	平 27 12	र देग्दर	HALAS TONGT Metals: 60308 74707, 7471	OTES
SS-1	01	220/24	0926	5		5				Ι			Π		N)	$\langle $		T			Т		T		Π		X	初	Hold For SPI	_P
55-2	-02	2/20124	0950	5		5									X	X											X	7	Hold for The	
SS-7	- 3	2120124	1018	5		S									X	X											X		16/1 31 21	LP
55-4	64	2/20/24	1045	S		5						L			X												X		HUE SISTE	PLP
trip Blank-1	05	-~	~	W		2	Ш			\perp		L	L		X															
*	2/29/24	EL							\perp	\perp		L	L	<u> </u>			\perp					\perp								
						L	\square		\bot	_			L				\perp						丄	$oldsymbol{\perp}$				\perp		
<i>(</i>)		1,00		/	,	L	Ш	_	\bot	\bot	V	1	_	ــــــــــــــــــــــــــــــــــــــ	\sqcup	\bot	_	_					_	<u> </u>			\perp			
V/added p	ur	A.Sal	ret 2	129/	240	5	2	14	+	97	k	中	1	_	-	_		<u> </u>			_	_	1_	<u> </u>			_		<u> </u>	
Normal 11			ļ	ļ		_	\sqcup	_	_	4	4	/ _	igdash	┦	\vdash		\bot	_		_	_	_	1	<u> </u>			\bot	_		
						_	\sqcup	_	4	1	1	_	ot	 		_	1	<u> </u>		_	_	4	_	<u> </u>		\sqcup	_	┿		
		<u> </u>				_	$\vdash \vdash$	_	+	+		_	╀	╀	\vdash	4	-	╀	\sqcup	_	4	\bot	╀	↓_	L	\dashv	+	┿		
						_	\sqcup	_	+		-	-	╀	╀	\vdash	4	4-	╄		_	4	╀-	4	ـــــ		\sqcup	\bot	_		
						_	$\vdash \vdash$	-	+	+	-	-	╀	╀		+	-	┼	\vdash	_	_	+	╀-	┼	_	\dashv	+	+-	<u> </u>	
							\vdash		_	+	-	-	╀-	+-	\vdash	+	+	┼	\vdash	-	+	4-	+	\vdash		\vdash	+	+		
Relinguished By: (Sign)		L	DATE/TIME		Receiv	ed h	<u></u>			+	<u> </u>				<u> </u>	10.05		 	<u> </u>		<u></u>	<u> </u>		<u></u>	<u></u>		<u></u>	<u></u>		
Col liste		2/2	1	100	Fe	di	X			TURN AROUND TIME LAB USE C								ONLY THERMO #: IG TEMP (°C): 0.7°C 78												
Relinquished By: (Sign)		_i .	DATE/TIME		Receiv	ed b	y:			R	USI	H-1 (DAY	□ F	USH-	2 D/	¥Υ□											OLLEC	TED? YES/N	
Tedix		2/21/		29	Kan	W	W	4							DAY□														INTACT INOT	
Relinquished By: (Sign)		,	DATE/TIME		Receiv	ed b	y:				N	ORN	IAL	=	ΟΤΗ 5. √α	IER I			RRIE	R: □	LSO	1	FEDI	EX [] UF	s 🗆	COL	IRIER	☐ HAND DELIN	/ERED
									D	UE	DAT	E 🗅) [)\t	s. ya	45		1													

DHL Analytical, Inc.

Sample Receipt Checklist Client Name: Weston Solutions, Inc. Date Received: 2/29/2024 Work Order Number: 2402409 Received by: KAO Checklist completed by: 3/1/2024 Reviewed by: 3/1/2024 Signature Date Date Carrier name: FedEx 1day Shipping container/cooler in good condition? Yes 🗹 No 🗌 Not Present Yes 🗹 Custody seals intact on shipping container/cooler? No 🗌 Not Present Custody seals intact on sample bottles? Yes 🗌 No 🗌 Not Present 🗸 Yes 🗸 Chain of custody present? No 🗌 Yes 🗸 No 🗌 Chain of custody signed when relinquished and received? Chain of custody agrees with sample labels? Yes 🗸 No 🗌 **V** No 🗌 Samples in proper container/bottle? Yes Yes 🗸 No 🗌 Sample containers intact? Sufficient sample volume for indicated test? No 🗌 All samples received within holding time? Yes 🗸 No 🗌 Yes 🗌 No 🗌 No VOA vials submitted NA 🗍 Water - VOA vials have zero headspace? Yes Water - pH<2 acceptable upon receipt? No 🗌 NA 🗹 LOT# Adjusted? Checked by Water - ph>9 (S) or ph>10 (CN) acceptable upon receipt? Yes No 🗌 NA 🗸 LOT# Adjusted? Checked by Yes 🗹 No 🗌 Container/Temp Blank temperature in compliance? Cooler# 1 0.7 Temp °C Υ Seal Intact Any No response must be detailed in the comments section below. Client contacted: Date contacted: Person contacted: Contacted by: Regarding: Comments: Corrective Action:

Lab	orat	tory Name: DHL Analytical, Inc.					
		tory Review Checklist: Reportable Data					
		time: SAWS Impoundment Assess Lagoons & Decant Samp LRC Date: 3/8/2024					
Revie	ewer I	Name: Angie O'Donnell Laboratory Work Order: 2402409					
_		h Number(s): See Prep Dates Report Run Batch: See Analytical Dates Report	rt				
#1	A^2	Description	Ye	s No	NA ³	NR^4	ER# ⁵
		Chain-of-Custody (C-O-C)					
R1	OI	1) Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	X				R1-01
		2) Were all departures from standard conditions described in an exception report?	X				
R2	OI	Sample and Quality Control (QC) Identification					
		1) Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	X				
R3	OI	2) Are all laboratory ID numbers cross-referenced to the corresponding QC data? Test Reports	Χ				
KJ	OI	1) Were all samples prepared and analyzed within holding times?	X				
		2) Other than those results < MQL, were all other raw values bracketed by calibration standards?	X				
		3) Were calculations checked by a peer or supervisor?	X				
		4) Were all analyte identifications checked by a peer or supervisor?	X				
		5) Were sample detection limits reported for all analytes not detected?	X				
		6) Were all results for soil and sediment samples reported on a dry weight basis?			X		
		7) Were % moisture (or solids) reported for all soil and sediment samples?			X		
		8) Were bulk soils/solids samples for volatile analysis extracted with methanol per EPA Method 503	35?		X		
D.4		9) If required for the project, TICs reported?			X		
R4	О	Surrogate Recovery Data			37		
		1) Were surrogates added prior to extraction?			X		
		2) Were surrogate percent recoveries in all samples within the laboratory QC limits?			X		
R5	OI	Test Reports/Summary Forms for Blank Samples					
		1) Were appropriate type(s) of blanks analyzed?	X				
		2) Were blanks analyzed at the appropriate frequency?3) Where method blanks taken through the entire analytical process, including preparation and, if	Λ		-		
		applicable, cleanup procedures?	X				
		4) Were blank concentrations < MDL?	X				
		5) For analyte(s) detected in a blank sample, was the concentration, unadjusted for sample specific			X		
		factors, in all associated field samples, greater than 10 times the concentration in the blank sample?			Λ		
R6	OI	Laboratory Control Samples (LCS):					
		1) Were all COCs included in the LCS?	X				
		2) Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	X				
		3) Were LCSs analyzed at the required frequency?4) Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	X				
		5) Does the detectability data document the laboratory's capability to detect the COCs at the MDL u	sed				
		to calculate the SDLs?	X				
		6) Was the LCSD RPD within QC limits (if applicable)?	X				
R 7	OI	Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Data					
		1) Were the project/method specified analytes included in the MS and MSD?	X				
		2) Were MS/MSD analyzed at the appropriate frequency?	X		1		
		3) Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	X				
De	OI	4) Were MS/MSD RPDs within laboratory QC limits?	X				
R8	OI	Analytical Duplicate Data 1) Were appropriate analytical duplicates analyzed for each matrix?			X		
		2) Were analytical duplicates analyzed at the appropriate frequency?			X		
		3) Were RPDs or relative standard deviations within the laboratory QC limits?			X		
R9	OI	Method Quantitation Limits (MQLs):					
		1) Are the MQLs for each method analyte included in the laboratory data package?	Χ				
		2) Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	X				
<u> </u>		3) Are unadjusted MQLs and DCSs included in the laboratory data package?	X				
R10	OI	Other Problems/Anomalies					D40.01
		1) Are all known problems/anomalies/special conditions noted in this LRC and ER? 2) Was applicable and available technology used to lower the SDL to minimize the matrix interferor	X	-	-		R10-01
		2) Was applicable and available technology used to lower the SDL to minimize the matrix interferer affects on the sample results?	ice X		1		
		3) Is the laboratory NELAC-accredited under the Texas Laboratory Accreditation Program for the					
		analytes, matrices and methods associated with this laboratory data package?	X				
_	_					_	_

Lab	ora	tory Name: DHL Analytical, Inc.						
Lab	ora	tory Review Checklist (continued): Suppor	ting Data					
Proje	ct Na	ame: SAWS Impoundment Assess Lagoons & Decant Samp	LRC Date: 3/8/2024					
Revie	wer	Name: Angie O'Donnell	Laboratory Work Order: 2402409					
Pren	Rate	h Number(s): See Prep Dates Report	Run Batch: See Analytical Dates Repor	t				
# ¹	A ²	Description	Run Baten. See 7 marytical Bates Repor	1	No	NA ³	NR ⁴	ER# ⁵
# S1		Initial Calibration (ICAL)		Yes	No	NA	NK	ER#
51	OI							
İ		1) Were response factors and/or relative response factors for		X				
		2) Were percent RSDs or correlation coefficient criteria met		X				—
		3) Was the number of standards recommended in the method		X				
		4) Were all points generated between the lowest and highest	standard used to calculate the curve?	X				
		5) Are ICAL data available for all instruments used?		X				
S2	OI	6) Has the initial calibration curve been verified using an ap		X				
52	OI	Initial and Continuing calibration Verification (ICCV and	d CCV) and Continuing Calibration					
		blank (CCB): 1) Was the CCV analyzed at the method-required frequency	2	X				
		2) Were percent differences for each analyte within the method-required requency		X				
		3) Was the ICAL curve verified for each analyte?	X					
		4) Was the absolute value of the analyte concentration in the	inorganic CCR < MDL 2	X				
S3	0	Mass Spectral Tuning:	morganic CCB \ WIDE:	Λ				
55		1) Was the appropriate compound for the method used for tu	X					
		2) Were ion abundance data within the method-required QC	X					
S4	О	Internal Standards (IS):	mino.	4				
5-1		1) Were IS area counts and retention times within the metho	d-required OC limits?	X				
S5	OI	Raw Data (NELAC Section 5.5.10)						
		1) Were the raw data (for example, chromatograms, spectral	X					
		2) Were data associated with manual integrations flagged on	X					
S6	О	Dual Column Confirmation						
		1) Did dual column confirmation results meet the method-re	quired QC?			X		
S7	О	Tentatively Identified Compounds (TICs):	•					
		1) If TICs were requested, were the mass spectra and TIC da	ta subject to appropriate checks?			X		
S8	I	Interference Check Sample (ICS) Results:						
		1) Were percent recoveries within method QC limits?		X				
S9	I	Serial Dilutions, Post Digestion Spikes, and Method of St	andard Additions					
		1) Were percent differences, recoveries, and the linearity method?	within the QC limits specified in the	X				
~								
S10		Method Detection Limit (MDL) Studies						
		1) Was a MDL study performed for each reported analyte?	CDGG 0	X				
011	O.I.	2) Is the MDL either adjusted or supported by the analysis o	f DCSs?	X				
S11	OI	Proficiency Test Reports:	C :	W				
013	OI	1) Was the lab's performance acceptable on the applicable pr	officiency tests or evaluation studies?	X				
S12	OI	Standards Documentation 1) Are all standards used in the analyses NIST-traceable or	Intrinced from other ammunista command	v				
012	OI		obtained from other appropriate sources?	X				
S13	OI	Compound/Analyte Identification Procedures 1) Are the procedures for compound/analyte identification d	agumentad?	X				
S14	OI	Demonstration of Analyst Competency (DOC)	ocumented:	Λ				
514	OI	1) Was DOC conducted consistent with NELAC Chapter 5 -	- Annendix C?	X				
		2) Is documentation of the analyst's competency up-to-date		X				
S15	OI	Verification/Validation Documentation for Methods (NE		Λ				
515	OI	1) Are all the methods used to generate the data docu	• •	X				
		applicable?						
S16	OI	Laboratory Standard Operating Procedures (SOPs):						
		1) Are laboratory SOPs current and on file for each method	performed?	X				

¹ Items identified by the letter "R" should be included in the laboratory data package submitted to the TCEQ in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O = organic analyses; I = inorganic analyses (and general chemistry, when applicable).

³ NA = Not applicable.

⁴ NR = Not Reviewed.

⁵ ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Data Package Signature Page – RG-366/TRRP-13

This data package consists of:

This signature page, the laboratory review checklist, and the following reportable data:

- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a) Items consistent with NELAC Chapter 5,
 - b) dilution factors,
 - c) preparation methods,
 - d) cleanup methods, and
 - e) if required for the project, tentatively identified compounds (TICs).
- R4 Surrogate recovery data including:
 - a) Calculated recovery (%R), and
 - b) The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a) LCS spiking amounts,
 - b) Calculated %R for each analyte, and
 - c) The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a) Samples associated with the MS/MSD clearly identified,
 - b) MS/MSD spiking amounts,
 - c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d) Calculated %Rs and relative percent differences (RPDs), and
 - e) The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a) The amount of analyte measured in the duplicate,
 - b) The calculated RPD, and
 - c) The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix;
- R10 Other problems or anomalies.

The Exception Report for each "No" or "Not Reviewed (NR)" item in the Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory is not accredited under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge that all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information or data affecting the quality of the data has been knowingly withheld.

This laboratory was last inspected by TCEQ on May 30 - June 2, 2023. Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Name: John DuPont Official Title: General Manager

Name: Dr. Derhsing Luu Official Title: Technical Director $\frac{\sqrt{N}}{N} = \frac{03/08/24}{\text{Date}}$

CLIENT: Weston Solutions, Inc.

Project: SAWS Impoundment Assessment Lagoons and CASE NARRATIVE

Date: 08-Mar-24

Lab Order: 2402409

Samples were analyzed using the methods outlined in the following references:

Method SW1312/6020B- SPLP Metals Analysis

Exception Report R1-01

Sample was added and login performed on 2/29/2024. Analysis was added to one sample of DHL WO# 2402409, and analyzed. The sample arrived in good condition and was properly packaged.

Exception Report R10-01

Per project specification, MS/MSD/Duplicates are from this workorder or project samples only.

Date: 08-Mar-24

CLIENT: Weston Solutions, Inc.

Project: SAWS Impoundment Assessment Lagoons and **Work Order Sample Summary**

Lab Order: 2402409

Tag Number Lab Smp ID Client Sample ID **Date Collected Date Recved**

2402409-01 SS-1

Client: Weston Solutions, Inc.

Project: SAWS Impoundment Assessment

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
2402409-01A	SS-1	02/20/24 09:26 AM	Soil	SW3010A	Liquid Prep Total Metals: ICP-MS	03/07/24 08:10 AM	114365

Client: Weston Solutions, Inc.

Project: SAWS Impoundment Assessment

TCLP/SPLP PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
2402409-01A	SS-1	2/20/2024 9:26:00 AM	Soil	SW1312	SPLP Bottle Extr. (Metals)	3/6/2024 2:38:57 PM	114359

Client: Weston Solutions, Inc.

Project: SAWS Impoundment Assessment

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number Test Nan	e Batch ID	Dilution	Analysis Date	Run ID
2402409-01A	SS-1	Soil	SW1312/6020B SPLP Me	als 114365	1	03/07/24 03:12 PM	ICP-MS5_240307B

Project:

CLIENT: Weston Solutions, Inc.

SAWS Impoundment Assessment Lagoons and

Project No: 10412.036.001.0002

Lab Order: 2402409

Collection Date: 02/20/24 09:26 AM

Matrix: SOIL

Date:

Lab ID: 2402409-01

Client Sample ID: SS-1

08-Mar-24

DF **Analyses** Result **SDL** RL Qual Units **Date Analyzed** SW1312/6020B **SPLP METALS** Analyst: SP 0.0252 Arsenic 0.00500 mg/L 1 03/07/24 03:12 PM 0.00200 0.00167 Beryllium 0.000300 0.00100 mg/L 1 03/07/24 03:12 PM 0.0174 Lead 0.000300 0.00100 1 03/07/24 03:12 PM mg/L

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 1 of 1

CLIENT: Weston Solutions, Inc.

Work Order: 2402409

ANALYTICAL QC SUMMARY REPORT

Date: 08-Mar-24

Project: SAWS Impoundment Assessment Lagoons and RunID: ICP-MS5_240304A

Sample ID: DCS1-114267	Batch ID	: 114267		TestNo	swe	6020B		Units:	mg/L	-
SampType: DCS	Run ID:	ICP-MS	5_240304A	Analysi	s Date: 3/4/2	2024 10:02:	00 AM	Prep Date:	3/1/2	024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD	RPDLimit Qual
Beryllium		0.000524	0.00100	0.000500	0	105	70	130	0	0
Lead		0.000504	0.00100	0.000500	0	101	70	130	0	0
Sample ID: DCS3-114267	Batch ID	: 114267		TestNo	SWe	6020B		Units:	mg/L	-
SampType: DCS3	Run ID:	ICP-MS	5_240304A	Analysi	s Date: 3/4/2	2024 10:08:	00 AM	Prep Date:	3/1/2	024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD	RPDLimit Qual
Arsenic		0.00497	0.00500	0.00500	0	99.4	70	130	0	0

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 1 of 4

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

CLIENT: Weston Solutions, Inc. Work Order: 2402409

ANALYTICAL QC SUMMARY REPORT

CAMCI

Project:	SAWS Impoundment Assessment Lagoons and	KuniD:	ICP-MS5_24030/B

Project:	SAWS Im	•					KunII); <u> </u>	ICP-MS5_2	240307	Ь
The QC data	a in batch 114365 ap	plies to the	following sa	amples: 240	2409-01A						
Sample ID:	MB-114365	Batch ID:	114365		TestNo	: SW	1312/6020B		Units:	mg/L	
SampType:	MBLK	Run ID:	ICP-MS5	_240307B	Analys	is Date: 3/7/	2024 2:59:0	0 PM	Prep Date:	3/7/202	24
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit %	RPD RI	PDLimit Qu
Arsenic		<	<0.00200	0.00500							
Beryllium			0.000300	0.00100							
_ead		<	0.000300	0.00100							
Sample ID:	MB-114359-SPLP	Batch ID:	114365		TestNo	: SW	1312/6020B		Units:	mg/L	
SampType:	MBLK	Run ID:	ICP-MS5	_240307B	Analys	is Date: 3/7/	2024 3:01:0	0 PM	Prep Date:	3/7/202	24
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit %	6RPD RI	PDLimit Qu
Arsenic		<	<0.00200	0.00500							
Beryllium			0.000300	0.00100							
Lead		<	0.000300	0.00100							
Sample ID:	LCS-114365	Batch ID:	114365		TestNo	: SW	1312/6020B		Units:	mg/L	
SampType:	LCS	Run ID:	ICP-MS5	_240307B	Analys	is Date: 3/7/	2024 3:04:0	0 PM	Prep Date:	3/7/202	24
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit %	%RPD RI	PDLimit Qu
Arsenic			0.201	0.00500	0.200	0	101	80	120		
Beryllium			0.197	0.00100	0.200	0	98.6	80	120		
_ead			0.194	0.00100	0.200	0	97.2	80	120		
Sample ID:	LCSD-114365	Batch ID:	114365		TestNo	: SW	1312/6020B		Units:	mg/L	
SampType:	LCSD	Run ID:	ICP-MS5	_240307B	Analys	is Date: 3/7/	2024 3:07:0	0 PM	Prep Date:	3/7/202	24
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit %	6RPD RI	PDLimit Qu
Arsenic			0.206	0.00500	0.200	0	103	80	120	2.20	15
Beryllium			0.203	0.00100	0.200	0	101	80	120	2.89	15
_ead			0.199	0.00100	0.200	0	99.5	80	120	2.34	15
Sample ID:	2402409-01A SD	Batch ID:	114365		TestNo	: SW	1312/6020B		Units:	mg/L	
SampType:	SD	Run ID:	ICP-MS5	_240307B	Analys	is Date: 3/7/	2024 3:15:0	0 PM	Prep Date:	3/7/202	24
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit %	6RPD RI	PDLimit Qu
Arsenic			0.0269	0.0250	0	0.0252				6.58	20
Beryllium			0.00183	0.00500	0	0.00167				8.90	20
_ead			0.0174	0.00500	0	0.0174				0.230	20
Sample ID:	2402409-01A PDS	Batch ID:	114365		TestNo	: SW	1312/6020B		Units:	mg/L	
SampType:	PDS	Run ID:	ICP-MS5	_240307B	Analys	is Date: 3/7/	2024 3:17:0	0 PM	Prep Date:	3/7/202	24
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit %	RPD RI	DI imit ∩u

Qualifiers: Analyte detected in the associated Method Blank

> J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

Dilution Factor

MDL Method Detection Limit

Page 2 of 4

R RPD outside accepted control limits Spike Recovery outside control limits

Parameter not NELAP certified

CLIENT: Weston Solutions, Inc. ANALYTICAL QC SUMMARY REPORT

Work Order: 2402409

ICP-MS5_240307B **RunID: Project:** SAWS Impoundment Assessment Lagoons and

		1								•	
Sample ID:	2402409-01A PDS	Batch ID:	114365		TestNo:	SW	/1312/6020B		Units:	mg/L	
SampType:	PDS	Run ID:	ICP-MS5	_240307B	Analysis	s Date: 3/7	//2024 3:17:00	PM	Prep Date:	3/7/2	024
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	t HighLimit	%RPD I	RPDLimit Qual
Arsenic			0.215	0.00500	0.200	0.0252	95.1	75	125		
Beryllium			0.204	0.00100	0.200	0.00167	101	75	125		
Lead			0.220	0.00100	0.200	0.0174	101	75	125		
Sample ID:	2402409-01A MS	Batch ID:	114365		TestNo:	SW	/1312/6020B		Units:	mg/L	
SampType:	MS	Run ID:	ICP-MS5	_240307B	Analysis	s Date: 3/7	//2024 3:20:00	PM	Prep Date:	3/7/2	024
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	t HighLimit	%RPD I	RPDLimit Qual
Arsenic			0.221	0.00500	0.200	0.0252	97.8	75	125		
Beryllium			0.201	0.00100	0.200	0.00167	99.9	75	125		
Lead			0.225	0.00100	0.200	0.0174	104	75	125		
Sample ID:	2402409-01A MSD	Batch ID:	114365		TestNo:	SW	V1312/6020B		Units:	mg/L	
SampType:	MSD	Run ID:	ICP-MS5	_240307B	Analysis	s Date: 3/7	//2024 3:22:00) PM	Prep Date:	3/7/2	024
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	t HighLimit	%RPD I	RPDLimit Qual
Arsenic			0.224	0.00500	0.200	0.0252	99.4	75	125	1.50	15
Beryllium			0.204	0.00100	0.200	0.00167	101	75	125	1.28	15
Lead			0.225	0.00100	0.200	0.0174	104	75	125	0.138	15

Qualifiers: В Analyte detected in the associated Method Blank

> J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 3 of 4

R RPD outside accepted control limits

Spike Recovery outside control limits

Parameter not NELAP certified

CLIENT: Weston Solutions, Inc.

Work Order: 2402409

ANALYTICAL QC SUMMARY REPORT

work Order: 2402409

Project: SAWS Impoundment Assessment Lagoons and RunID: ICP-MS5_240307B

Project:	SAWSII	npouname	nt Assessm	ent Lagooi	ns and		Kumb); I	CP-M55	_24030	J/D
Sample ID: ICV-2	40307	Batch ID:	R131849		TestNo:	SW	/1312/6020B		Units:	mg/l	-
SampType: ICV		Run ID:	ICP-MS5	_240307B	Analysis	s Date: 3/7 /	/2024 10:03:0	00 AM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Arsenic			0.103	0.00500	0.100	0	103	90	110		
Beryllium			0.103	0.00100	0.100	0	103	90	110		
Lead			0.101	0.00100	0.100	0	101	90	110		
Sample ID: LCVL	-240307	Batch ID:	R131849		TestNo:	SW	/1312/6020B		Units:	mg/l	-
SampType: LCVL		Run ID:	ICP-MS5	_240307B	Analysis	s Date: 3/7 /	/2024 10:09:0	00 AM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Arsenic			0.00513	0.00500	0.00500	0	103	80	120		
Beryllium			0.00105	0.00100	0.00100	0	105	80	120		
Lead			0.00102	0.00100	0.00100	0	102	80	120		
Sample ID: CCV2	-240307	Batch ID:	R131849		TestNo:	sw	/1312/6020B		Units:	mg/l	-
SampType: CCV		Run ID:	ICP-MS5	_240307B	Analysis	s Date: 3/7 /	/2024 11:21:0	00 AM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Arsenic			0.203	0.00500	0.200	0	102	90	110		
Beryllium			0.204	0.00100	0.200	0	102	90	110		
Lead			0.198	0.00100	0.200	0	99.1	90	110		
Sample ID: CCV3	-240307	Batch ID:	R131849		TestNo:	sw	/1312/6020B		Units:	mg/l	-
SampType: CCV		Run ID:	ICP-MS5	_240307B	Analysis	s Date: 3/7 /	/2024 3:25:00) PM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Arsenic			0.202	0.00500	0.200	0	101	90	110		
Beryllium			0.197	0.00100	0.200	0	98.6	90	110		
Lead			0.199	0.00100	0.200	0	99.3	90	110		

Qualifiers: B	3	Analyte detected in the associated Method Blan	k

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 4 of 4

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Date: 08-Mar-24

CLIENT: Weston Solutions, Inc.

Work Order: 2402409

MQL SUMMARY REPORT

Project: SAWS Impoundment Assessment Lagoons and

TestNo: SW1312/6020B	MDL	MQL
Analyte	mg/L	mg/L
Arsenic	0.00200	0.00500
Beryllium	0.000300	0.00100
Lead	0.000300	0.00100

April 15, 2024

Armin Sabet Weston Solutions, Inc. 2600 Dallas Parkway, Suite 280

Frisco, Texas 75034

TEL: (310) 980-6300

FAX: Order No.: 2404088

RE: SAWS Impoundment Assessment Lagoons 6725 Agua Pura

Dear Armin Sabet:

DHL Analytical, Inc. received 1 sample(s) on 4/10/2024 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAP except where noted in the Case Narrative. All non-NELAP methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,

John DuPont

General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-23-29

Table of Contents

Miscellaneous Documents	3
CaseNarrative 2404088	9
WorkOrderSampleSummary 2404088	10
PrepDatesReport 2404088	11
AnalyticalDatesReport 2404088	12
Analytical Report 2404088	13
AnalyticalQCSummaryReport 2404088	14
MQLSummaryReport 2404088	17

2300 Double Creek Dr. Round Rock, TX 78664 Phone 512.388.8222

CHAIN-OF-CUSTODY

OF _____

PAGE

Web: www.dhlanalytical.com Email: login@dhlanalytical.com

CLIENT: Weston Solutions / SAWS ADDRESS: 70 NE Interstate 4/0 Coop#200 Still							ΓΕ: [`]	1	10		2.	1								LA	ВU	SE	ON	LY			\sim		-11 -	20
ADDRESS: 70 NE	Inter	state 1	46 600,	n#2	100 SAID	PO	#:	-												DH	łL V	VOI	RKC	RD	ER	#: €	<u>火</u>	4	040	88
PHONE: 316 -980-	6300	EMAIL: @	rm. 59	befi	782/6	PRC)IFC	TIO	റവ	אדור	א מכ	OR N	JΔM	ıF· հ	SA	in)<	: 1	- Mc	Mand	1.00-	4	A55	ess	ime	1	La	وں و	~S		
DATA REPORTED TO: A	min	Sabet		aires	tan solutions.			' -					(b	72	5	Ãq	n a	- 1	2	a j	5+	,	V	on 1	/)r	<u>ny</u>	T	$\overline{\times}$	7807	<u>'3 </u>
ADDITIONAL REPORT CO	PIES TO):			com	CLII	PROJECT LOCATION OR NAME: SAWS Impoundment Assessment Lagorns 6725 Agna Pura St. Von Ormy TX CLIENT PROJECT #10412, 636,001,0002 COLLECTOR: J. Kenney								Ly_															
Authorize 5% surcharge		W=WATE	R	SE=SE	DIMENT	<u> </u>	PRES	ERV	/ATI	ON								2.1	ar la		□qo:				- 1		<u>}</u>		1	
for TRRP report? ☐ Yes ☐ No		L=LIQUID		P=PAI			ן כ		e.			[092	LD 100				51 827	0 0	MET		ΤΫ́	Ш	HERB	11	EASE	NIDE (2)	<u> </u>			
Ø Yes □ No	i .	S=SOIL		SL=SL	UDGE	Si	O ₄		etal	I S	SE	8 QO	위 -		5.1	╻	4	B 827(DISS		KALIN		EST	Ĕ	IL&GF	֓֞֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓)			
	Only	SO=SOLID) T	1		aine	Ŧ		Zn Acetate 🗆	RESE	ANALYSES	[MET	1006	624.1	OC 62:	D PAH	9	ŭ	20.8		I AL	056	0	SCRA 8	<u>ရ</u>	1% MOIST □ CYANIDE □	7			
	DHL	Collection	Collection		Container	lal,	_		1	ls	Ž	TBE	HE E	Š	S	로	62	909		111	HRON		9	_ s						
Field Sample I.D.	Lab#	Date	Time	Matrix	Туре	# of Containers	HCL HNG HNG	F 50,	NaOH 🗆	ICE □ UNPRESERVED □		ВТЕХ □ МТВЕ □ [МЕТНОВ 8260]	TPH 1005 TPH 1006 HOLD 1006	VOC 8260 □ VOC 624.1 □	SVOC 8270 🗆 SVOC 625.1	РАН 8270 □ НОІЪ РАН □	PEST 8270 □ 625.1 □ O-P PEST 8270 □	PCB 8082 □ 608.3 □ PCB 8270 □ 625.1 □	METALS 6020 □ 200.8 □ DISS. METALS □	RCRA 8 □ TX11 □	pH□ HEX CHROM□ ALKALINITY□ COD□	ANIONS 300 □ 9056 □	TCLP-SVOC ☐ VOC ☐ PEST ☐ HERB ☐	TCLP-METALS 🗆 RCRA 8 🗆 TX-11 🗀 Pb 🗆	RCI □ IGN □ DGAS □ OIL&GREASE □	DS LITSS L	2			
			-			#			e Z	💆		BE	표	S S	ş	PAH	ZZ	2	ME	8	뷤	ANK	直	直	2	<u> </u>	<u>4 </u>			NOTES
TW-1	01	4/9/24	1447	W	250mL		*	4											\perp							77			Field F	Filtered
		,				\sqcup		1		<u> </u>				_		Ш	_	4	_	ļ			4	_	\downarrow	+	_	\sqcup		
	<u> </u>						_	4	-	╄				_	-	\sqcup	_		_	-		_	_	4	_	+	╀-			·
						Н	-	+	\bot	1				+	+	Н	4	_	- -			-	_	-	+	+	-	\vdash		
						\vdash	_	-	-	╁		\vdash	+	+	\vdash	Н	-	+	+	-		\dashv	-	-	+	+	-	$\vdash \vdash$		
						H	+	+	╁	\vdash		\vdash	+	+	\vdash	Н	+	+		╂			-	-	+	+	╁			
					1	\vdash	_	+	╁	╁			\dashv	╁	+	\vdash	\dashv	-	+	+		\dashv	+	\dashv	+	十	+	\vdash		
						H	+	╁	╁	╁			+	╁	\vdash	H	\dashv	+	+	+	Н	\dashv	-	1	\dashv	十	╫	\vdash		
						\vdash	+	╁	+	\dagger		H	\top	+		H	\dashv	\dashv	+	+	Н		+	1	\dashv	十	+	\vdash		
						\Box	\top	T	T	T				1		П	十	1	\top	1	П			\forall	十	十	T			
							1	T	T	T				T		H	T		1					1		\top	1			
						П			1																	T				
								Ι																						
																			\perp							丄				
Relinquished By: (Sign)	1	4/9	DATE/TIME DATE/TIME	40	Receiv	red by	:						ARO IRST					LAB RECE	USE (ONLY G TE	MP	(°C):		1. 6) 0 (THE	RMO #:	
Relinquished By: (Sign)		1 1	DATE/TIME		Receiv	ed by	: 1			RI	JSH-	-1 D/	AY□	RUS	H-2	DAY	-	F >6	°C, A	RE S	AMF	LES	OŅ	ICE	AND	JUS.	г со	LLEC	FÉD? YE	S / NO
Fedy	C 4/10/24 0840 La			Llu						CUSTODY SEALS ON ICE CHEST: ☐ BROKEN ☑ INTACT ☐ NOT USED CARRIER: ☐ LSO ☑ FEDEX ☐ UPS ☐ COURIER ☐ HAND DELIVERED																				
Relinquished By: (Sign)		1	DATE/TIME		Receiv	ed by	:							0	THE	R□		CAR	RIER:		SO I	₫ FE	DE)	⟨ □	UPS		OUR	IER	☐ HAND [ELIVERED
									IDI	JE D	ATE																			

inis lag

ORIGIN ID:SATA (310) 980-6300

WESTON SOLUTIONS/0U1025 2929 BRIARPARK DR STE 175

HOUSTON, TX 77042 UNITED STATES US

SHIP DATE: 09APR24 ACTWGT: 9.70 LB CAD: 6994916/SSFE2500 DIMS: 11×7×10 IN

BILL THIRD PARTY

TO

DHL ANALYTICAL 2300 DOUBLE CREEK DR

ROUND ROCK TX 78664 (612) 3888-8222 REFF.

FedEx Express

Part # 156297-435 HHS62 EXP 12/24

TRK# 2732 1573 7289

44 BSMA

WED - 10 APR 10:30A **PRIORITY OVERNIGHT**

AHS 78664

AUS TX-US

Z

SIGNATURE

DATE

	Sample	Receipt C	heck	list				
Client Name: Weston Solutions, Inc.				Date Rece	ived: 4/10/2024			
Work Order Number: 2404088				Received b	oy: KAO			
57								
Checklist completed by:	4/10/202	24		Reviewed I	bv: 5H	4/10	0/2024	
Signature	Date				Initials		Date	
Car	rrier name:	FedEx 1day	<u>!</u>					
Shipping container/cooler in good condition?		Yes 🗹		No 🗌	Not Present			
Custody seals intact on shipping container/cooler?		Yes 🗹		No 🗌	Not Present			
Custody seals intact on sample bottles?		Yes 🗌		No 🗌	Not Present	✓		
Chain of custody present?		Yes 🗹		No 🗌				
Chain of custody signed when relinquished and received?		Yes 🗸		No 🗌				
Chain of custody agrees with sample labels?		Yes 🗸		No 🗌				
Samples in proper container/bottle?		Yes 🗸		No 🗌				
Sample containers intact?		Yes 🗸		No 🗌				
Sufficient sample volume for indicated test?		Yes 🗹		No 🗌				
All samples received within holding time?		Yes 🗸		No 🗌				
Water - VOA vials have zero headspace?		Yes		No 🗌	No VOA vials s	ubmitted 🗹	NA 🗌	
Water - pH<2 acceptable upon receipt?		Yes 🗹		No 🗌	NA LO	T# 13171		
		Adjusted?	10)	Checked by	EL		
Water - ph>9 (S) or ph>10 (CN) acceptable upon receipt?		Yes		No 🗌	NA ✓ LO	Т#		
		Adjusted?			Checked by	,		
Container/Temp Blank temperature in compliance?		Yes 🗸		No 🗌	na.	The second secon	Marrows allow the control	
Cooler # 1								
Temp °C 1.2								
Seal Intact Y								
Any No response must be detailed in the comments section	n below.					T ANTONIO ATTRIBUTE INC.	desired of the same of the sam	
Client contacted: Date contact	acted:	70.0000		Per	rson contacted:		AV. 4	
Contacted by: Regarding	g:			***************************************	***************************************			
Comments:								
Corrective Action:			***************************************				1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	

		ory Name: DHL Analytical, Inc.						
		ory Review Checklist: Reportable Data me: SAWS Impoundment Assess. Lagoon 6725 AguaPura LRC	Date: 4/15/2024					
Ť								
			oratory Work Order: 2404088					
•			Batch: See Analytical Dates Report	X 7	N.T	N T 4 3	NID4	ED //5
#1	A^2	Description		Yes	No	NA ³	NK.	ER# ⁵
R1	OI	Chain-of-Custody (C-O-C)	1	v				D1 01
Kı	OI	 Did samples meet the laboratory's standard conditions of samp Were all departures from standard conditions described in an experimental or conditions. 		X		X		R1-01
R2	OI	Sample and Quality Control (QC) Identification	Acception report:			Λ		
		1) Are all field sample ID numbers cross-referenced to the labora	tory ID numbers?	X				
		2) Are all laboratory ID numbers cross-referenced to the correspondence		X				
R3	OI	Test Reports						
		1) Were all samples prepared and analyzed within holding times?		X				
		2) Other than those results < MQL, were all other raw values brack	eketed by calibration standards?	X				
		3) Were calculations checked by a peer or supervisor?4) Were all analyte identifications checked by a peer or supervisor	?	X				
		5) Were sample detection limits reported for all analytes not dete		X				
		6) Were all results for soil and sediment samples reported on a dr		Λ		X		
		7) Were % moisture (or solids) reported for all soil and sediment				X		
		8) Were bulk soils/solids samples for volatile analysis extracted v				X		
		9) If required for the project, TICs reported?				X		
R4	О	Surrogate Recovery Data						
		1) Were surrogates added prior to extraction?	001: 1: 9			X		
D5	OI	2) Were surrogate percent recoveries in all samples within the lab	poratory QC limits?			X		
R5	OI	Test Reports/Summary Forms for Blank Samples 1) Were appropriate type(s) of blanks analyzed?		X				
		2) Were blanks analyzed at the appropriate frequency?		X				
		3) Where method blanks taken through the entire analytical procedure.	ess, including preparation and, if					
		applicable, cleanup procedures?	, 31 1	X				
		4) Were blank concentrations < MDL?		X				
		5) For analyte(s) detected in a blank sample, was the concentration				X		
D.C	OI	factors, in all associated field samples, greater than 10 times the	concentration in the blank sample?					
R6	OI	Laboratory Control Samples (LCS): 1) Were all COCs included in the LCS?		X				
		2) Was each LCS taken through the entire analytical procedure, in	ncluding prep and cleanup steps?	X				
		3) Were LCSs analyzed at the required frequency?	morading prop and drawing stops.	X				
		4) Were LCS (and LCSD, if applicable) %Rs within the laborator	ry QC limits?	X				
		5) Does the detectability data document the laboratory's capabilit		X				
		to calculate the SDLs?						
D.5	O.I.	6) Was the LCSD RPD within QC limits (if applicable)?		X				
R 7	OI	Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Data 1) Were the project/method specified analytes included in the MS	C and MSD?			X		
		2) Were MS/MSD analyzed at the appropriate frequency?	and WSD:			X		
		3) Were MS (and MSD, if applicable) %Rs within the laboratory	OC limits?			X		
		4) Were MS/MSD RPDs within laboratory QC limits?				X		
R8	OI	Analytical Duplicate Data						
		1) Were appropriate analytical duplicates analyzed for each matri				X		
		2) Were analytical duplicates analyzed at the appropriate frequen				X		
DO	OI	3) Were RPDs or relative standard deviations within the laborator	ry QC limits?			X		
R9	OI	Method Quantitation Limits (MQLs): 1) Are the MQLs for each method analyte included in the laborat	omi data maliaga?	v				
		2) Do the MQLs for each method analyte included in the laborate		X				
		3) Are unadjusted MQLs and DCSs included in the laboratory da		X				
R10	OI	Other Problems/Anomalies	. 0					
		1) Are all known problems/anomalies/special conditions noted in		X				R10-01
		2) Was applicable and available technology used to lower the SD affects on the sample results?	L to minimize the matrix interference	X				
		3) Is the laboratory NELAC-accredited under the Texas Laborator		X				
		analytes, matrices and methods associated with this laboratory da	ta package?	41				

Lab	ora	tory Name: DHL Analytical, Inc.									
Lab	ora	tory Review Checklist (continued): Suppor	ting Data								
Proje	et Na	nme: SAWS Impoundment Assess. Lagoon 6725 AguaPura	LRC Date: 4/15/2024								
Revie	wer	Name: Angie O'Donnell	Laboratory Work Order: 2404088	04088							
		-	Run Batch: See Analytical Dates Repor								
#1			Run Baten. See Analytical Bates Repor	1	N.T	DT A 3	NID4	ED //5			
S1	A ²	Description Listin Collination (CAL)		Yes	No	NA ³	NR ⁴	ER# ⁵			
21	OI	Initial Calibration (ICAL)									
		1) Were response factors and/or relative response factors for	each analyte within QC limits?	X							
		2) Were percent RSDs or correlation coefficient criteria met?		X				 			
		3) Was the number of standards recommended in the method		X				 			
		4) Were all points generated between the lowest and highest	standard used to calculate the curve?	X				 			
		5) Are ICAL data available for all instruments used?		X				1			
02	O.I.	6) Has the initial calibration curve been verified using an app		X							
S2	OI	Initial and Continuing calibration Verification (ICCV and	d CCV) and Continuing Calibration								
		blank (CCB):)	v							
		 Was the CCV analyzed at the method-required frequency? Were percent differences for each analyte within the method. 		X							
		3) Was the ICAL curve verified for each analyte?	od-required QC limits?	X							
		4) Was the absolute value of the analyte concentration in the	inorgania CCR < MDL2	X							
S3	0	Mass Spectral Tuning:	morganic CCB < MDL:	Λ							
33	0	1) Was the appropriate compound for the method used for turn	ninα?	X							
		2) Were ion abundance data within the method-required QC		X							
S4	О	Internal Standards (IS):	mmts:	Λ							
54		1) Were IS area counts and retention times within the method	1-required OC limits?	X							
S5	OI	Raw Data (NELAC Section 5.5.10)	a required QC inimes.	7.							
		1) Were the raw data (for example, chromatograms, spectral	X								
		2) Were data associated with manual integrations flagged on		X							
S6	О	Dual Column Confirmation									
		1) Did dual column confirmation results meet the method-red	quired QC?			X					
S7	О	Tentatively Identified Compounds (TICs):									
		1) If TICs were requested, were the mass spectra and TIC dat	ta subject to appropriate checks?			X					
S8	I	Interference Check Sample (ICS) Results:									
		1) Were percent recoveries within method QC limits?		X							
S9	I	Serial Dilutions, Post Digestion Spikes, and Method of Sta	andard Additions								
		1) Were percent differences, recoveries, and the linearity	within the QC limits specified in the			X					
		method?				Λ					
S10	OI	Method Detection Limit (MDL) Studies									
		1) Was a MDL study performed for each reported analyte?		X							
		2) Is the MDL either adjusted or supported by the analysis of	PDCSs?	X							
S11	OI	Proficiency Test Reports:									
		1) Was the lab's performance acceptable on the applicable pr	oficiency tests or evaluation studies?	X							
S12	OI	Standards Documentation									
		1) Are all standards used in the analyses NIST-traceable or o	btained from other appropriate sources?	X							
S13	OI	Compound/Analyte Identification Procedures									
~		1) Are the procedures for compound/analyte identification do	ocumented?	X							
S14	OI	Demonstration of Analyst Competency (DOC)	1' 60	•							
		1) Was DOC conducted consistent with NELAC Chapter 5 –		X		-					
015	O.T.	2) Is documentation of the analyst's competency up-to-date a		X							
S15	OI	Verification/Validation Documentation for Methods (NEI	•								
		1) Are all the methods used to generate the data document applicable?	mented, verified, and validated, where	X							
0.5.5		applicable?									
S16	OI	Laboratory Standard Operating Procedures (SOPs):									
		1) Are laboratory SOPs current and on file for each method p	performed?	X							
				1							

¹ Items identified by the letter "R" should be included in the laboratory data package submitted to the TCEQ in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O = organic analyses; I = inorganic analyses (and general chemistry, when applicable).

³ NA = Not applicable.

⁴ NR = Not Reviewed.

⁵ ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Data Package Signature Page – RG-366/TRRP-13

This data package consists of:

This signature page, the laboratory review checklist, and the following reportable data:

- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a) Items consistent with NELAC Chapter 5,
 - b) dilution factors,
 - c) preparation methods,
 - d) cleanup methods, and
 - e) if required for the project, tentatively identified compounds (TICs).
- R4 Surrogate recovery data including:
 - a) Calculated recovery (%R), and
 - b) The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a) LCS spiking amounts,
 - b) Calculated %R for each analyte, and
 - c) The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a) Samples associated with the MS/MSD clearly identified,
 - b) MS/MSD spiking amounts,
 - c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d) Calculated %Rs and relative percent differences (RPDs), and
 - e) The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a) The amount of analyte measured in the duplicate,
 - b) The calculated RPD, and
 - c) The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix;
- R10 Other problems or anomalies.

The Exception Report for each "No" or "Not Reviewed (NR)" item in the Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory is not accredited under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge that all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information or data affecting the quality of the data has been knowingly withheld.

This laboratory was last inspected by TCEQ on May 30 - June 2, 2023. Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Name: John DuPont Official Title: General Manager

Name: Dr. Derhsing Luu Official Title: Technical Director 04/15/24 ature Date

CLIENT: Weston Solutions, Inc.

Project: SAWS Impoundment Assessment Lagoons 672 CASE NARRATIVE

Date: 15-Apr-24

Lab Order: 2404088

Samples were analyzed using the methods outlined in the following references:

Method SW6020B- Metals Analysis

Exception Report R1-01

Samples were received and login performed on 4/10/2024. A total of 1 sample was received and analyzed. The sample arrived in good condition and was properly packaged.

Exception Report R10-01

Per project specification, MS/MSD/Duplicates are from this workorder or project samples only.

Date: 15-Apr-24

CLIENT: Weston Solutions, Inc.

Project: SAWS Impoundment Assessment Lagoons 6725 **Work Order Sample Summary**

Lab Order: 2404088

Tag Number Lab Smp ID Client Sample ID **Date Collected Date Recved**

2404088-01 TW-1

04/09/24 02:47 PM 04/10/2024

Aqueous

Lab Order: 2404088

2404088-01A

Client: Weston Solutions, Inc.

TW-1

Project: SAWS Impoundment Assessment

04/09/24 02:47 PM

Troject.	Brivs impoundme	in 7 issessment					
Sample ID (Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID

SW3005A

Aq Prep Metals : ICP-MS

PREP DATES REPORT

04/11/24 07:24 AM

114911

Client: Weston Solutions, Inc.

Project: SAWS Impoundment Assessment

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
2404088-01A	TW-1	Aqueous	SW6020B	Total Metals: ICP-MS - Water	114911	1	04/12/24 10:59 AM	ICP-MS5_240412A

CLIENT: Weston Solutions, Inc.

SAWS Impoundment Assessment Lagoons 6725

Project No: 10412.036.001.0002

Lab Order: 2404088

Project:

Client Sample ID: TW-1

Date:

Lab ID: 2404088-01

Collection Date: 04/09/24 02:47 PM

Matrix: AQUEOUS

15-Apr-24

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
TOTAL METALS: ICP-MS - WATER		SW60)20B				Analyst: SP
Arsenic	< 0.00200	0.00200	0.00500		mg/L	1	04/12/24 10:59 AM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 1 of 1

CLIENT: Weston Solutions, Inc.

Work Order: 2404088

ANALYTICAL QC SUMMARY REPORT

Date: 15-Apr-24

Project: SAWS Impoundment Assessment Lagoons 6725 RunID: ICP-MS5_240304A

Sample ID: DCS3-114267 SampType: DCS3	Batch ID: Run ID:		5_240304A	TestNo Analys		V6020B I/2024 10:08:0	00 AM	Units: Prep Date	mg/l	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Arsenic	(0.00497	0.00500	0.00500	0	99.4	70	130	0	0

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limitsN Parameter not NELAP certified

Page 1 of 3

CLIENT: Weston Solutions, Inc.

ANALYTICAL QC SUMMARY REPORT

Work Order: 2404088

RunID: ICP-MS5_240412A **Project:** SAWS Impoundment Assessment Lagoons 6725

The QC data in batch 114911 a	pplies to the	following sa	amples: 240	4088-01A						
Sample ID: MB-114911	Batch ID:	114911		TestNo:	sw	6020B		Units:	mg/L	
SampType: MBLK	Run ID:	ICP-MS5	_240412A	Analysis	s Date: 4/12	2/2024 10:41	:00 AM	Prep Date:	4/11/2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	%RPD RPDLimit	Qua
Arsenic	<	0.00200	0.00500							
Sample ID: LCS-114911	Batch ID:	114911		TestNo:	sw	6020B		Units:	mg/L	
SampType: LCS	Run ID:	ICP-MS5	_240412A	Analysis	s Date: 4/12	2/2024 10:44	H:00 AM	Prep Date:	4/11/2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	%RPD RPDLimit	Qua
Arsenic		0.199	0.00500	0.200	0	99.3	80	120		
Sample ID: LCSD-114911	Batch ID:	114911		TestNo:	sw	6020B		Units:	mg/L	
SampType: LCSD	Run ID:	ICP-MS5	5_240412A	Analysis	s Date: 4/12	2/2024 10:49	0:00 AM	Prep Date:	4/11/2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	%RPD RPDLimit	Qua
Arsenic		0.196	0.00500	0.200	0	98.2	80	120	1.02 15	

Qualifiers: В Analyte detected in the associated Method Blank

> J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 2 of 3 RPD outside accepted control limits

S Spike Recovery outside control limits

Parameter not NELAP certified

R

CLIENT: Weston Solutions, Inc.

ANALYTICAL QC SUMMARY REPORT

Work Order: 2404088

Project: SAWS Impoundment Assessment Lagoons 6725 RunID: ICP-MS5_240412A

1									
Sample ID: ICV-240412	Batch ID	R132490		TestNo:	SW6	6020B		Units:	mg/L
SampType: ICV	Run ID:	ICP-MS5_	_240412A	Analysis	Date: 4/12/	/2024 10:27	:00 AM	Prep Date	:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
Arsenic		0.0981	0.00500	0.100	0	98.1	90	110	
Sample ID: LCVL-240412	Batch ID	R132490		TestNo:	SW6	6020B		Units:	mg/L
SampType: LCVL	Run ID:	ICP-MS5_	_240412A	Analysis	Date: 4/12/	/2024 10:32	:00 AM	Prep Date	:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
Arsenic		0.00512	0.00500	0.00500	0	102	80	120	
Sample ID: CCV1-240412	Batch ID	R132490		TestNo:	SW6	020B		Units:	mg/L
SampType: CCV	Run ID:	ICP-MS5_	_240412A	Analysis	Date: 4/12/	/2024 11:30	:00 AM	Prep Date	:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
Arsenic		0.198	0.00500	0.200	0	99.0	90	110	

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 3 of 3

R RPD outside accepted control limits

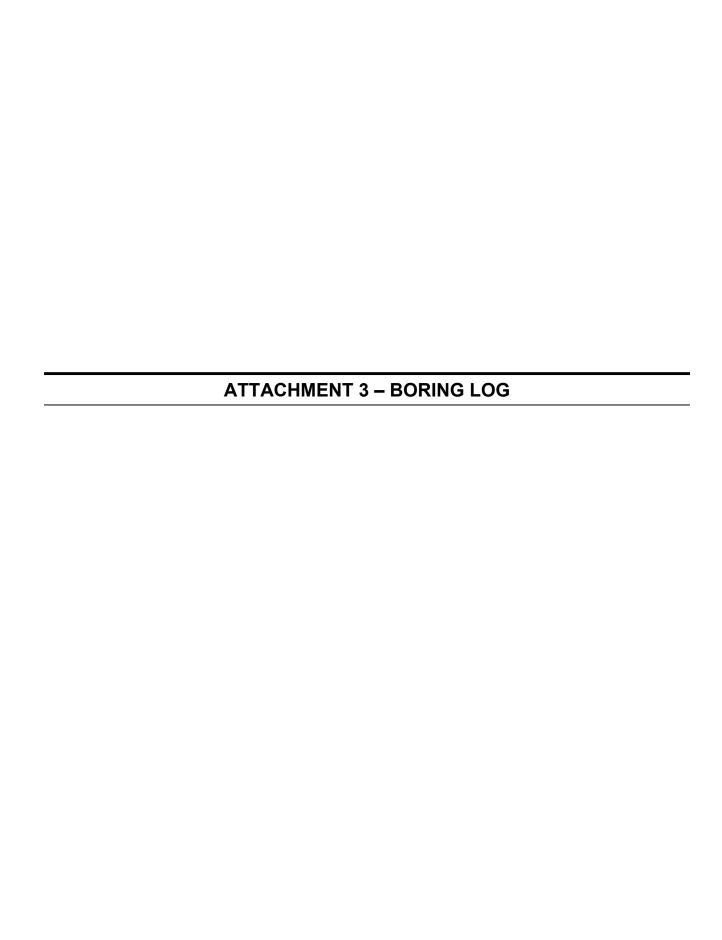
S Spike Recovery outside control limits

N Parameter not NELAP certified

Date: 15-Apr-24

CLIENT: Weston Solutions, Inc.

Work Order: 2404088


MQL SUMMARY REPORT

Project: SAWS Impoundment Assessment Lagoons 6725

TestNo: SW6020B	MDL	MQL
Analyte	mg/L	mg/L
Arsenic	0.00200	0.00500

Qualifiers: MQL -Method Quantitation Limit as defined by TRRP

MDL -Method Detection Limit as defined by TRRP

BORING NUMBER TW-1

PAGE 1 OF 1								
CLIF	CLIENT San Antonio Water System PROJECT NAME SAWS IMPOUNDMENT ASSSESSMI							
	ROJECT NUMBER _10412.036.001.0002					PROJECT LOCATION _6725 Agua Pura Street, Von Ormy, Texas 78073		
DATE	ATE STARTED 4/4/24 COMPLETED 4/4/24					· · · · · · · · · · · · · · · · · · ·		
DRILLING CONTRACTOR Pacific West GROUND WATER LEVELS:								
DRILLING METHOD _Direct Push INITIAL WATER LEVEL _26.16 BGS								
						▼ STATIC WATER LEVEL 15.03 BGS		
NOTES								
DEPTH (#)	SAMPLE TYPE NUMBER	U.S.C.S.	GRAPHIC LOG	ОЕРТН	MAT	WELL DIAGRAM		
TA GENERAL GEOLECH BIPLIP & WELL - GIN SID US.GDJ - ZISZA 7:240 - CIUSERSIL TCARRONEDINS, INCIDOCUMEN I SIGNI I EMPLAI ESWELL I EMPLAI E.GPJ 0 DEPTH 0		GC		14.0	(0.5'-14') Limestone Gravels and Gravel Inclusions (some crystalin	Very Fine to Fine, Well-Sorted (Backfill) Sandy Clays- Brown-Tan, Fine, Poorly-Sorted, ne pebbles to gravels), < 50% Alluvium (some red), Very Fine to Fine, Moderately burn, Moist, Plastic low to med, <10% Sand	1-Inch Diameter PVC Casing	
AA - GENERAL GEOLECH BIJI IV & WELL - GINI SI D US.GD - 25524 12:40 - C. US.	- - - - - - - -	GP CH CH		19.0 20.0 22.0 23.0	(20'-22') Silty Clay- Light Gray to <10% Sand (22'-23') Silty Clay- Dark Red-Ma clay, < 10% Sand, Organic Odor (23'-30') Silty Clay- Gray to Tan, sand	Tan, Coarse, Well to Moderately-Sorted Gray, Very Fine, Medium to High Plasticity, Moist, uve, Very Fine to Fine, Well-Sorted, Dry, < 10% Very Fine, Medium to High Plasticity, Moist, <10%	0.01-Inch Slotted Screen	

August 5, 2024

Texas Commission on Environmental Quality Applications Review and Process Team, Building F, Room 2101 12100 Park 35 Circle Austin, TX 78753

Re:

Industrial Permit Discharge Renewal for:

San Antonio Water System (SAWS) Ultrafiltration Water Treatment Plant

Permit No. WQ0004437000; EPA ID No. TX0125083

Dear Sir/Madam:

I hope this message finds you well. I am writing to address the specific requirements outlined in the Water Quality Individual Permits (EPR_WQIP) application through the Texas Environmental Electronic Reporting System (STEERS). The permit application requires submittals of the following documents.

- Design Calculations,
- · Solids Management Plan, and
- Water Balance

After a thorough review of these requirements, we have determined that they do not apply to this permit application because the plant hasn't had a discharge since 2015. Should you have any questions or need additional information, you may reach Floramie Welch, Environmental Analyst III, at (210) 233-3744.

Sincerely,

Jeff Haby, ₱.E.

Sr. Vice President, Production Operations

August 5, 2024

Texas Commission on Environmental Quality Applications Review and Process Team, Building F, Room 2101 12100 Park 35 Circle Austin, TX 78753

Re:

Industrial Permit Discharge Renewal for:

San Antonio Water System (SAWS) Ultrafiltration Water Treatment Plant

Permit No. WQ0004437000; EPA ID No. TX0125083

Dear Sir/Madam:

I hope this message finds you well. I am writing to address the specific requirements outlined in the Water Quality Individual Permits (EPR_WQIP) application through the Texas Environmental Electronic Reporting System (STEERS). The permit application requires submittals of the following documents.

- Design Calculations,
- · Solids Management Plan, and
- Water Balance

After a thorough review of these requirements, we have determined that they do not apply to this permit application because the plant hasn't had a discharge since 2015. Should you have any questions or need additional information, you may reach Floramie Welch, Environmental Analyst III, at (210) 233-3744.

Sincerely,

Jeff Haby, ₱.E.

Sr. Vice President, Production Operations

August 5, 2024

Texas Commission on Environmental Quality Applications Review and Process Team, Building F, Room 2101 12100 Park 35 Circle Austin, TX 78753

Re:

Industrial Permit Discharge Renewal for:

San Antonio Water System (SAWS) Ultrafiltration Water Treatment Plant

Permit No. WQ0004437000; EPA ID No. TX0125083

Dear Sir/Madam:

I hope this message finds you well. I am writing to address the specific requirements outlined in the Water Quality Individual Permits (EPR_WQIP) application through the Texas Environmental Electronic Reporting System (STEERS). The permit application requires submittals of the following documents.

- Design Calculations,
- · Solids Management Plan, and
- Water Balance

After a thorough review of these requirements, we have determined that they do not apply to this permit application because the plant hasn't had a discharge since 2015. Should you have any questions or need additional information, you may reach Floramie Welch, Environmental Analyst III, at (210) 233-3744.

Sincerely,

Jeff Haby, ₱.E.

Sr. Vice President, Production Operations

Item 14. Laboratory Accreditation (Instructions, Page 49)

All laboratory tests performed must meet the requirements of *30 TAC Chapter 25*, *Environmental Testing Laboratory Accreditation and Certification*, which includes the following general exemptions from National Environmental Laboratory Accreditation Program (NELAP) certification requirements:

- The laboratory is an in-house laboratory and is:
 - o periodically inspected by the TCEQ; or
 - o located in another state and is accredited or inspected by that state; or
 - o performing work for another company with a unit located in the same site; or
 - performing pro bono work for a governmental agency or charitable organization.
- The laboratory is accredited under federal law.
- The data are needed for emergency-response activities, and a laboratory accredited under the Texas Laboratory Accreditation Program is not available.
- The laboratory supplies data for which the TCEQ does not offer accreditation.

The applicant should review 30 TAC Chapter 25 for specific requirements.

The following certification statement shall be signed and submitted with every application. See the *Signature Page* section in the Instructions, for a list of designated representatives who may sign the certification.

CERTIFICATION:

I certify that all laboratory tests submitted with this application meet the requirements of 30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification.

Printed Name: Jeff Haby, P.E.

Title: Sr. Vice President, Production Operations

Signature:

Candice Calhoun

From: Floramie Welch <Floramie.Welch@saws.org>

Sent: Tuesday, October 15, 2024 9:46 AM

To: Candice Calhoun

Subject: RE: Application to Renew Permit No. WQ0004437000 - San Antonio Water System -

Notice of Deficiency

Attachments: 2024_UF_PLANT_TPDES_APPLICATION_NODI.pdf

Follow Up Flag: Follow up Flag Status: Flagged

Ms. Calhoun,

We've reviewed the NODI information carefully and everything is correct.

Sincerely,

Floramie Welch

From: Candice Calhoun < Candice. Calhoun@tceq.texas.gov>

Sent: Monday, October 14, 2024 8:32 AM

To: Floramie Welch <Floramie.Welch@saws.org>

Subject: RE: Application to Renew Permit No. WQ0004437000 - San Antonio Water System - Notice of Deficiency

External Sender

Do not click links or attachments unless you trust the sender and know the content is safe.

Report Suspicious

Good morning, Ms. Welch,

My apologies for the late response, I was out last week.

Yes ma'am, the only thing that is needed is for you to review the portion of the NORI, that is listed in the NOD, and indicate if it contains any errors or omissions.

Regards,

Candice Courville

Texas Commission on Environmental Quality Water Quality Division 512-239-4312

candice.calhoun@tceq.texas.gov

How is our customer service? Fill out our online customer satisfaction survey at www.tceq.texas.gov/customersurvey

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

P.O. Box 13087 Austin, Texas 78711-3087

PERMIT TO DISCHARGE WASTES

under provisions of Section 402 of the Clean Water Act and Chapter 26 of the Texas Water Code

San Antonio Water System

whose mailing address is

2800 U.S. Highway 281 North San Antonio, TX, 78212

is authorized to treat and discharge wastes from the Ultrafiltration Water Treatment Plant, a potable water treatment plant facility. (SIC 4941)

TPDES PERMIT NO. WO0004437000

February 10, 2020.

[For TCEQ office use only - EPA I.D. No. TX0125083]

This renewal replaces TPDES Permit No. WQ0004437000, issued on

located at 6725 Moreno Street, in the City of Von Ormy, Bexar County, Texas 78073

To an unnamed ditch, thence to O.R. Mitchell Lake 1 thence to Medio Creek in Segment No. 1912 of the San Antonio River Basin

only according to effluent limitations, monitoring requirements, and other conditions set forth in this permit, as well as the rules of the Texas Commission on Environmental Quality (TCEQ), the laws of the State of Texas, and other orders of the TCEQ. The issuance of this permit does not grant to the permittee the right to use private or public property for conveyance of wastewater along the discharge route described in this permit. This includes, but is not limited to, property belonging to any individual, partnership, corporation, or other entity. Neither does this permit authorize any invasion of personal rights nor any violation of federal, state, or local laws or regulations. It is the responsibility of the permittee to acquire property rights as may be necessary to use the discharge route.

This permit shall expire at midnight, five years from the date of permit issuance.

ISSUED DATE:		
	For the Commission	

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

1. During the period beginning upon the date of permit issuance and lasting through the date of permit expiration, the permittee is authorized to discharge clarifier water¹ subject to the following effluent limitations:

Volume: Intermittent and variable flow.

	Disc	charge Limitations	Minimum Self-Monitorin	g Requirements	
Effluent Characteristics	Daily Average	Daily Maximum	Single Grab	Report Daily Average and	Daily Maximum
	mg/L	mg/L	mg/L	Measurement Frequency	Sample Type
Flow	Report, MGD	Report, MGD	N/A	1/day²	Estimate
Total Suspended Solids	N/A	45	45	1/day²	Grab

- 2. The pH must not be less than 6.0 standard units nor greater than 9.0 standard units and must be monitored 1/day² by grab sample.
- 3. There must be no discharge of floating solids or visible foam in other than trace amounts and no discharge of visible oil.
- 4. Effluent monitoring samples must be taken at the following location: At Outfall 001, where clarifier water is discharged and prior to entering the drainage ditch.

Page 2 of TPDES Permit No. WQ0004437000

San Antonio Water System

¹ See Other Requirement No. 3.

² When discharging.

DEFINITIONS AND STANDARD PERMIT CONDITIONS

As required by Title 30 Texas Administrative Code (TAC) Chapter 305, certain regulations appear as standard conditions in waste discharge permits. 30 TAC §§305.121 - 305.129 (relating to Permit Characteristics and Conditions) as promulgated under the Texas Water Code (TWC) §§5.103 and 5.105, and the Texas Health and Safety Code (THSC) §§361.017 and 361.024(a), establish the characteristics and standards for waste discharge permits, including sewage sludge, and those sections of 40 Code of Federal Regulations (CFR) Part 122 adopted by reference by the Commission. The following text includes these conditions and incorporates them into this permit. All definitions in Texas Water Code §26.001 and 30 TAC Chapter 305 shall apply to this permit and are incorporated by reference. Some specific definitions of words or phrases used in this permit are as follows:

1. Flow Measurements

- a. Annual average flow the arithmetic average of all daily flow determinations taken within the preceding 12 consecutive calendar months. The annual average flow determination shall consist of daily flow volume determinations made by a totalizing meter, charted on a chart recorder, and limited to major domestic wastewater discharge facilities with a one million gallons per day or greater permitted flow.
- b. Daily average flow the arithmetic average of all determinations of the daily flow within a period of one calendar month. The daily average flow determination shall consist of determinations made on at least four separate days. If instantaneous measurements are used to determine the daily flow, the determination shall be the arithmetic average of all instantaneous measurements taken during that month. Daily average flow determination for intermittent discharges shall consist of a minimum of three flow determinations on days of discharge.
- c. Daily maximum flow the highest total flow for any 24-hour period in a calendar month.
- d. Instantaneous flow the measured flow during the minimum time required to interpret the flow measuring device.
- e. 2-hour peak flow (domestic wastewater treatment plants) the maximum flow sustained for a two-hour period during the period of daily discharge. The average of multiple measurements of instantaneous maximum flow within a two-hour period may be used to calculate the 2-hour peak flow.
- f. Maximum 2-hour peak flow (domestic wastewater treatment plants) the highest 2-hour peak flow for any 24-hour period in a calendar month.

2. Concentration Measurements

- a. Daily average concentration the arithmetic average of all effluent samples, composite or grab as required by this permit, within a period of one calendar month, consisting of at least four separate representative measurements.
 - i. For domestic wastewater treatment plants When four samples are not available in a calendar month, the arithmetic average (weighted by flow) of all values in the previous four consecutive month period consisting of at least four measurements shall be utilized as the daily average concentration.
 - ii. For all other wastewater treatment plants When four samples are not available in a calendar month, the arithmetic average (weighted by flow) of all values taken during the month shall be utilized as the daily average concentration.
- b. 7-day average concentration the arithmetic average of all effluent samples, composite or grab as required by this permit, within a period of one calendar week, Sunday through Saturday.
- c. Daily maximum concentration the maximum concentration measured on a single day, by the sample type specified in the permit, within a period of one calendar month.
- d. Daily discharge the discharge of a pollutant measured during a calendar day or any 24-hour period that reasonably represents the calendar day for purposes of sampling. For pollutants with limitations expressed in terms of mass, the "daily discharge" is calculated as the total

mass of the pollutant discharged over the sampling day. For pollutants with limitations expressed in other units of measurement, the "daily discharge" is calculated as the average measurement of the pollutant over the sampling day.

The "daily discharge" determination of concentration made using a composite sample shall be the concentration of the composite sample. When grab samples are used, the "daily discharge" determination of concentration shall be the arithmetic average (weighted by flow value) of all samples collected during that day.

- e. Bacteria concentration (Fecal coliform, *E. coli*, or Enterococci) the number of colonies of bacteria per 100 milliliters effluent. The daily average bacteria concentration is a geometric mean of the values for the effluent samples collected in a calendar month. The geometric mean shall be determined by calculating the nth root of the product of all measurements made in a calendar month, where n equals the number of measurements made; or computed as the antilogarithm of the arithmetic mean of the logarithms of all measurements made in a calendar month. For any measurement of bacteria equaling zero, a substitute value of one shall be made for input into either computation method. If specified, the 7-day average for bacteria is the geometric mean of the values for all effluent samples collected during a calendar week.
- f. Daily average loading (lbs/day) the arithmetic average of all daily discharge loading calculations during a period of one calendar month. These calculations must be made for each day of the month that a parameter is analyzed. The daily discharge, in terms of mass (lbs/day), is calculated as (Flow, MGD × Concentration, mg/L × 8.34).
- g. Daily maximum loading (lbs/day) the highest daily discharge, in terms of mass (lbs/day), within a period of one calendar month.

3. Sample Type

- a. Composite sample For domestic wastewater, a composite sample is a sample made up of a minimum of three effluent portions collected in a continuous 24-hour period or during the period of daily discharge if less than 24 hours, and combined in volumes proportional to flow, and collected at the intervals required by 30 TAC §319.9(a). For industrial wastewater, a composite sample is a sample made up of a minimum of three effluent portions collected in a continuous 24-hour period or during the period of daily discharge if less than 24 hours, and combined in volumes proportional to flow, and collected at the intervals required by 30 TAC §319.9(c).
- b. Grab sample an individual sample collected in less than 15 minutes.
- 4. Treatment Facility (facility) wastewater facilities used in the conveyance, storage, treatment, recycling, reclamation or disposal of domestic sewage, industrial wastes, agricultural wastes, recreational wastes, or other wastes including sludge handling or disposal facilities under the jurisdiction of the Commission.
- 5. The term "sewage sludge" is defined as solid, semi-solid, or liquid residue generated during the treatment of domestic sewage in 30 TAC Chapter 312. This includes the solids that have not been classified as hazardous waste separated from wastewater by unit processes.
- 6. Bypass the intentional diversion of a waste stream from any portion of a treatment facility.

MONITORING AND REPORTING REQUIREMENTS

1. Self-Reporting

Monitoring results shall be provided at the intervals specified in the permit. Unless otherwise specified in this permit or otherwise ordered by the Commission, the permittee shall conduct effluent sampling and reporting in accordance with 30 TAC §§319.4 - 319.12. Unless otherwise specified, effluent monitoring data shall be submitted each month, to the Enforcement Division (MC 224), by the 20th day of the following month for each discharge that is described by this permit whether or not a discharge is made for that month. Monitoring results must be submitted online using the NetDMR reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver. Monitoring results must be signed and certified as required by Monitoring and Reporting Requirements No. 10.

As provided by state law, the permittee is subject to administrative, civil and criminal penalties, as applicable, for negligently or knowingly violating the Clean Water Act; TWC Chapters 26, 27, and 28; and THSC Chapter 361, including but not limited to knowingly making any false statement, representation, or certification on any report, record, or other document submitted or required to be maintained under this permit, including mortalized or reports of compliance or falsificial to the control of the contro noncompliance, or falsifying, tampering with or knowingly rendering inaccurate any monitoring device or method required by this permit or violating any other requirement imposed by state or federal regulations.

2. Test Procedures

- a. Unless otherwise specified in this permit, test procedures for the analysis of pollutants shall comply with procedures specified in 30 TAC §§319.11 319.12. Measurements, tests, and calculations shall be accurately accomplished in a representative manner.
- b. All laboratory tests submitted to demonstrate compliance with this permit must meet the requirements of 30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification.

3. Records of Results

- a. Monitoring samples and measurements shall be taken at times and in a manner so as to be representative of the monitored activity.
- b. Except for records of monitoring information required by this permit related to the permittee's sewage sludge use and disposal activities, which shall be retained for a period of at least five years (or longer as required by 40 CFR Part 503), monitoring and reporting records, including strip charts and records of calibration and maintenance, copies of all records required by this permit, records of all data used to complete the application for this permit, and the certification required by 40 CFR §264.73(b)(9) shall be retained at the facility site, or shall be readily available for review by a TCEQ representative for a period of three years from the date of the record or sample, measurement, report, application or certification. This period shall be extended at the request of the Executive Director.
- c. Records of monitoring activities shall include the following:

 - i. date, time, and place of sample or measurement;ii. identity of individual who collected the sample or made the measurement;
 - iii. date and time of analysis;
 - iv. identity of the individual and laboratory who performed the analysis;
 - v. the technique or method of analysis; and
 - vi. the results of the analysis or measurement and quality assurance/quality control records.

The period during which records are required to be kept shall be automatically extended to the date of the final disposition of any administrative or judicial enforcement action that may be instituted against the permittee.

4. Additional Monitoring by Permittee

If the permittee monitors any pollutant at the location(s) designated herein more frequently than required by this permit using approved analytical methods as specified above, all results of such monitoring shall be included in the calculation and reporting of the values submitted on the approved self-report form. Increased frequency of sampling shall be indicated on the self-report

5. Calibration of Instruments

All automatic flow measuring or recording devices and all totalizing meters for measuring flows shall be accurately calibrated by a trained person at plant start-up and as often thereafter as necessary to ensure accuracy, but not less often than annually unless authorized by the Executive Director for a longer period. Such person shall verify in writing that the device is operating properly and giving accurate results. Copies of the verification shall be retained at the facility site or shall be readily available for review by a TCEQ representative for a period of three years.

6. Compliance Schedule Reports

Reports of compliance or noncompliance with, or any progress reports on, interim and final requirements contained in any compliance schedule of the permit shall be submitted no later than 14 days following each schedule date to the regional office and the Enforcement Division (MC

7. Noncompliance Notification

- a. In accordance with 30 TAC §305.125(9) any noncompliance that may endanger human health or safety, or the environment shall be reported by the permittee to the TCEQ. Report of such information shall be provided orally or by facsimile transmission (FAX) to the regional office within 24 hours of becoming aware of the noncompliance. A written submission of such information shall also be provided by the permittee to the regional office and the Enforcement Division (MC 224) within five working days of becoming aware of the noncompliance. For Publicly Owned Treatment Works (POTWs), effective September 1, 2020, the permittee must submit the written report for unauthorized discharges and unanticipated bypasses that exceed any effluent limit in the permit using the online electronic reporting system available through any effluent limit in the permit using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver. The written submission shall contain a description of the noncompliance and its cause; the potential danger to human health or safety, or the environment; the period of noncompliance, including exact dates and times; if the noncompliance has not been corrected, the time it is expected to continue; and steps taken or planned to reduce, eliminate, and prevent recurrence of the noncompliance, and to mitigate its adverse effects.
- b. The following violations shall be reported under Monitoring and Reporting Requirement 7.a.:

i. unauthorized discharges as defined in Permit Condition 2(g).

- ii. any unanticipated bypass that exceeds any effluent limitation in the permit.
- iii. violation of a permitted maximum daily discharge limitation for pollutants listed specifically in the Other Requirements section of an Industrial TPDES permit.
- In addition to the above, any effluent violation that deviates from the permitted effluent limitation by more than 40% shall be reported by the permittee in writing to the regional office and the Enforcement Division (MC 224) within 5 working days of becoming aware of the noncompliance.
- d. Any noncompliance other than that specified in this section, or any required information not submitted or submitted incorrectly, shall be reported to the Enforcement Division (MC 224) as promptly as possible. For effluent limitation violations, noncompliances shall be reported on the approved self-report form.
- 8. In accordance with the procedures described in 30 TAC §§35.301 35.303 (relating to Water Quality Emergency and Temporary Orders) if the permittee knows in advance of the need for a bypass, it shall submit prior notice by applying for such authorization.
- 9. Changes in Discharges of Toxic Substances

All existing manufacturing, commercial, mining, and silvicultural permittees shall notify the regional office, orally or by facsimile transmission within 24 hours, and both the regional office and the Enforcement Division (MC 224) in writing within five (5) working days, after becoming aware of or having reason to believe:

- That any activity has occurred or will occur that would result in the discharge, on a routine or frequent basis, of any toxic pollutant listed at 40 CFR Part 122, Appendix D, Tables II and III (excluding Total Phenols) that is not limited in the permit, if that discharge will exceed the highest of the following "notification levels":

 - i. one hundred micrograms per liter (100 $\mu g/L$); ii. two hundred micrograms per liter (200 $\mu g/L$) for acrolein and acrylonitrile; five hundred micrograms per liter (500 $\mu g/L$) for 2,4-dinitrophenol and for 2-methyl-4,6-dinitrophenol; and one milligram per liter (1 mg/L) for antimony;
 - iii. five (5) times the maximum concentration value reported for that pollutant in the permit application; or
 - iv. the level established by the TCEQ.

- b. That any activity has occurred or will occur that would result in any discharge, on a nonroutine or infrequent basis, of a toxic pollutant that is not limited in the permit, if that discharge will exceed the highest of the following "notification levels":
 - i. five hundred micrograms per liter (500 μ g/L);

- ii. one milligram per liter (1 mg/L) for antimony; iii. ten (10) times the maximum concentration value reported for that pollutant in the permit application; or
- iv. the level established by the TCEO.

10. Signatories to Reports

All reports and other information requested by the Executive Director shall be signed by the person and in the manner required by 30 TAC §305.128 (relating to Signatories to Reports).

- 11. All POTWs must provide adequate notice to the Executive Director of the following:
 - a. any new introduction of pollutants into the POTW from an indirect discharger that would be subject to CWA §301 or §306 if it were directly discharging those pollutants;
 - any substantial change in the volume or character of pollutants being introduced into that POTW by a source introducing pollutants into the POTW at the time of issuance of the permit;
 - c. for the purpose of this paragraph, adequate notice shall include information on:
 - i. the quality and quantity of effluent introduced into the POTW: and
 - any anticipated impact of the change on the quantity or quality of effluent to be discharged from the POTW.

PERMIT CONDITIONS

1. General

- a. When the permittee becomes aware that it failed to submit any relevant facts in a permit application, or submitted incorrect information in an application or in any report to the Executive Director, it shall promptly submit such facts or information.
- b. This permit is granted on the basis of the information supplied and representations made by the permittee during action on an application, and relying upon the accuracy and completeness of that information and those representations. After notice and opportunity for a hearing, this permit may be modified, suspended, or revoked, in whole or in part, in accordance with 30 TAC Chapter 305, Subchapter D, during its term for good cause including, but not limited to, the following:

 - i. violation of any terms or conditions of this permit;ii. obtaining this permit by misrepresentation or failure to disclose fully all relevant facts; or
 - iii. a change in any condition that requires either a temporary or permanent reduction or elimination of the authorized discharge.
- The permittee shall furnish to the Executive Director, upon request and within a reasonable time, any information to determine whether cause exists for amending, revoking, suspending, or terminating the permit. The permittee shall also furnish to the Executive Director, upon request, copies of records required to be kept by the permit.

2. Compliance

- a. Acceptance of the permit by the person to whom it is issued constitutes acknowledgment and agreement that such person will comply with all the terms and conditions embodied in the permit, and the rules and other orders of the Commission.
- b. The permittee has a duty to comply with all conditions of the permit. Failure to comply with any permit condition constitutes a violation of the permit and the Texas Water Code or the Texas Health and Safety Code, and is grounds for enforcement action, for permit amendment,

- revocation, or suspension, or for denial of a permit renewal application or an application for a permit for another facility.
- c. It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of the permit.
- d. The permittee shall take all reasonable steps to minimize or prevent any discharge or sludge use or disposal or other permit violation that has a reasonable likelihood of adversely affecting human health or the environment.
- e. Authorization from the Commission is required before beginning any change in the permitted facility or activity that may result in noncompliance with any permit requirements.
- f. A permit may be amended, suspended and reissued, or revoked for cause in accordance with 30 TAC §§305.62 and 305.66 and TWC §7.302. The filing of a request by the permittee for a permit amendment, suspension and reissuance, or termination, or a notification of planned changes or anticipated noncompliance, does not stay any permit condition.
- g. There shall be no unauthorized discharge of wastewater or any other waste. For the purpose of this permit, an unauthorized discharge is considered to be any discharge of wastewater into or adjacent to water in the state at any location not permitted as an outfall or otherwise defined in the Other Requirements section of this permit.
- h. In accordance with 30 TAC §305.535(a), the permittee may allow any bypass to occur from a TPDES permitted facility that does not cause permitted effluent limitations to be exceeded or an unauthorized discharge to occur, but only if the bypass is also for essential maintenance to assure efficient operation.
- i. The permittee is subject to administrative, civil, and criminal penalties, as applicable, under Texas Water Code §§7.051 7.075 (relating to Administrative Penalties), 7.101 7.111 (relating to Civil Penalties), and 7.141 7.202 (relating to Criminal Offenses and Penalties) for violations including, but not limited to, negligently or knowingly violating the federal CWA §§301, 302, 306, 307, 308, 318, or 405, or any condition or limitation implementing any sections in a permit issued under the CWA §402, or any requirement imposed in a pretreatment program approved under the CWA §§402(a)(3) or 402(b)(8).

3. Inspections and Entry

- a. Inspection and entry shall be allowed as prescribed in the TWC Chapters 26, 27, and 28, and THSC Chapter 361.
- b. The members of the Commission and employees and agents of the Commission are entitled to enter any public or private property at any reasonable time for the purpose of inspecting and investigating conditions relating to the quality of water in the state or the compliance with any rule, regulation, permit, or other order of the Commission. Members, employees, or agents of the Commission and Commission contractors are entitled to enter public or private property at any reasonable time to investigate or monitor or, if the responsible party is not responsive or there is an immediate danger to public health or the environment, to remove or remediate a condition related to the quality of water in the state. Members, employees, Commission contractors, or agents acting under this authority who enter private property shall observe the establishment's rules and regulations concerning safety, internal security, and fire protection, and if the property has management in residence, shall notify management or the person then in charge of his presence and shall exhibit proper credentials. If any member, employee, Commission contractor, or agent is refused the right to enter in or on public or private property under this authority, the Executive Director may invoke the remedies authorized in TWC §7.002. The statement above, that Commission entry shall occur in accordance with an establishment's rules and regulations concerning safety, internal security, and fire protection, is not grounds for denial or restriction of entry to any part of the facility, but merely describes the Commission's duty to observe appropriate rules and regulations during an inspection.

4. Permit Amendment or Renewal

- a. The permittee shall give notice to the Executive Director as soon as possible of any planned physical alterations or additions to the permitted facility if such alterations or additions would require a permit amendment or result in a violation of permit requirements. Notice shall also be required under this paragraph when:
 - i. the alteration or addition to a permitted facility may meet one of the criteria for determining whether a facility is a new source in accordance with 30 TAC §305.534 (relating to New Sources and New Dischargers); or
 - ii. the alteration or addition could significantly change the nature or increase the quantity of pollutants discharged. This notification applies to pollutants that are subject neither to effluent limitations in the permit, nor to notification requirements in Monitoring and Reporting Requirements No. 9; or
 - iii. the alteration or addition results in a significant change in the permittee's sludge use or disposal practices, and such alteration, addition, or change may justify the application of permit conditions that are different from or absent in the existing permit, including notification of additional use or disposal sites not reported during the permit application process or not reported pursuant to an approved land application plan.
- b. Prior to any facility modifications, additions, or expansions that will increase the plant capacity beyond the permitted flow, the permittee must apply for and obtain proper authorization from the Commission before commencing construction.
- c. The permittee must apply for an amendment or renewal at least 180 days prior to expiration of the existing permit in order to continue a permitted activity after the expiration date of the permit. If an application is submitted prior to the expiration date of the permit, the existing permit shall remain in effect until the application is approved, denied, or returned. If the application is returned or denied, authorization to continue such activity shall terminate upon the effective date of the action. If an application is not submitted prior to the expiration date of the permit, the permit shall expire and authorization to continue such activity shall terminate.
- d. Prior to accepting or generating wastes that are not described in the permit application or that would result in a significant change in the quantity or quality of the existing discharge, the permittee must report the proposed changes to the Commission. The permittee must apply for a permit amendment reflecting any necessary changes in permit conditions, including effluent limitations for pollutants not identified and limited by this permit.
- e. In accordance with the TWC §26.029(b), after a public hearing, notice of which shall be given to the permittee, the Commission may require the permittee, from time to time, for good cause, in accordance with applicable laws, to conform to new or additional conditions.
- f. If any toxic effluent standard or prohibition (including any schedule of compliance specified in such effluent standard or prohibition) is promulgated under CWA §307(a) for a toxic pollutant that is present in the discharge and that standard or prohibition is more stringent than any limitation on the pollutant in this permit, this permit shall be modified or revoked and reissued to conform to the toxic effluent standard or prohibition. The permittee shall comply with effluent standards or prohibitions established under CWA §307(a) for toxic pollutants within the time provided in the regulations that established those standards or prohibitions, even if the permit has not yet been modified to incorporate the requirement.

5. Permit Transfer

- a. Prior to any transfer of this permit, Commission approval must be obtained. The Commission shall be notified in writing of any change in control or ownership of facilities authorized by this permit. Such notification should be sent to the Applications Review and Processing Team (MC 148) of the Water Quality Division.
- b. A permit may be transferred only according to the provisions of 30 TAC §305.64 (relating to Transfer of Permits) and 30 TAC §50.133 (relating to Executive Director Action on Application or WQMP update).

6. Relationship to Hazardous Waste Activities

This permit does not authorize any activity of hazardous waste storage, processing, or disposal that requires a permit or other authorization pursuant to the Texas Health and Safety Code.

7. Relationship to Water Rights

Disposal of treated effluent by any means other than discharge directly to water in the state must be specifically authorized in this permit and may require a permit pursuant to Texas Water Code Chapter 11.

8. Property Rights

A permit does not convey any property rights of any sort, or any exclusive privilege.

9. Permit Enforceability

The conditions of this permit are severable, and if any provision of this permit, or the application of any provision of this permit to any circumstances, is held invalid, the application of such provision to other circumstances, and the remainder of this permit, shall not be affected thereby.

10. Relationship to Permit Application

The application pursuant to which the permit has been issued is incorporated herein; provided, however, that in the event of a conflict between the provisions of this permit and the application, the provisions of the permit shall control.

11. Notice of Bankruptcy.

- a. Each permittee shall notify the Executive Director, in writing, immediately following the filing of a voluntary or involuntary petition for bankruptcy under any chapter of Title 11 (Bankruptcy) of the United States Code (11 USC) by or against:
 - i. the permittee;
 - ii. an entity (as that term is defined in 11 USC, §101(15)) controlling the permittee or listing the permit or permittee as property of the estate; or
 - iii. an affiliate (as that term is defined in 11 USC, §101(2)) of the permittee.

b. This notification must indicate:

- i. the name of the permittee;ii. the permit number(s);
- iii. the bankruptcy court in which the petition for bankruptcy was filed; and
- iv. the date of filing of the petition.

OPERATIONAL REQUIREMENTS

- The permittee shall at all times ensure that the facility and all of its systems of collection, treatment, and disposal are properly operated and maintained. This includes, but is not limited to, the regular, periodic examination of wastewater solids within the treatment plant by the operator in order to maintain an appropriate quantity and quality of solids inventory as described in the various operator training manuals and according to accepted industry standards for processing to accepted in the standards for processing to accept the standards of the facility site. control. Process control, maintenance, and operations records shall be retained at the facility site, or shall be readily available for review by a TCEQ representative, for a period of three years.
- 2. Upon request by the Executive Director, the permittee shall take appropriate samples and provide proper analysis in order to demonstrate compliance with Commission rules. Unless otherwise specified in this permit or otherwise ordered by the Commission, the permittee shall comply with all applicable provisions of 30 TAC Chapter 312 concerning sewage sludge use and disposal and 30 TAC Chapter 312 concerning sewage sludge use and disposal and 30 TAC Chapter 312 concerning sewage sludge use and disposal and 30 TAC Chapter 312 concerning sewage sludge use and disposal and 30 TAC Chapter 312 concerning sewage sludge use and disposal and 30 TAC Chapter 312 concerning sewage sludge use and disposal and 30 TAC Chapter 312 concerning sewage sludge use and disposal and 30 TAC Chapter 312 concerning sewage sludge use and disposal sewage sludge use sludg TAC §§319.21 - 319.29 concerning the discharge of certain hazardous metals.

- 3. Domestic wastewater treatment facilities shall comply with the following provisions:
 - a. The permittee shall notify the Domestic Permits Team, Domestic Wastewater Section (MC 148) of the Water Quality Division, in writing, of any facility expansion at least 90 days prior to conducting such activity.
 - b. The permittee shall submit a closure plan for review and approval to the Domestic Permits Team, Domestic Wastewater Section (MC 148) of the Water Quality Division, for any closure activity at least 90 days prior to conducting such activity. Closure is the act of permanently taking a waste management unit or treatment facility out of service and includes the permanent removal from service of any pit, tank, pond, lagoon, surface impoundment or other treatment unit regulated by this permit.
- 4. The permittee is responsible for installing prior to plant start-up, and subsequently maintaining, adequate safeguards to prevent the discharge of untreated or inadequately treated wastes during electrical power failures by means of alternate power sources, standby generators, or retention of inadequately treated wastewater.
- 5. Unless otherwise specified, the permittee shall provide a readily accessible sampling point and, where applicable, an effluent flow measuring device or other acceptable means by which effluent flow may be determined.
- 6. The permittee shall remit an annual water quality fee to the Commission as required by 30 TAC Chapter 21. Failure to pay the fee may result in revocation of this permit under TWC §7.302(b)(6).

7. Documentation

For all written notifications to the Commission required of the permittee by this permit, the permittee shall keep and make available a copy of each such notification under the same conditions as self-monitoring data are required to be kept and made available. Except for information required for TPDES permit applications, effluent data, including effluent data in permits, draft permits and permit applications, and other information specified as not confidential in 30 TAC §1.5(d), any information submitted pursuant to this permit may be claimed as confidential by the submitter. Any such claim must be asserted in the manner prescribed in the application form or by stamping the words "confidential business information" on each page containing such information. If no claim is made at the time of submission, information may be made available to the public without further notice. If the Commission or Executive Director agrees with the designation of confidentiality, the TCEQ will not provide the information for public inspection unless required by the Texas Attorney General or a court pursuant to an open records request. If the Executive Director does not agree with the designation of confidentiality, the person submitting the information will be notified.

- 8. Facilities that generate domestic wastewater shall comply with the following provisions; domestic wastewater treatment facilities at permitted industrial sites are excluded.
 - a. Whenever flow measurements for any domestic sewage treatment facility reach 75% of the permitted daily average or annual average flow for three consecutive months, the permittee must initiate engineering and financial planning for expansion or upgrading of the domestic wastewater treatment or collection facilities. Whenever the flow reaches 90% of the permitted daily average or annual average flow for three consecutive months, the permittee shall obtain necessary authorization from the Commission to commence construction of the necessary additional treatment or collection facilities. In the case of a domestic wastewater treatment facility that reaches 75% of the permitted daily average or annual average flow for three consecutive months, and the planned population to be served or the quantity of waste produced is not expected to exceed the design limitations of the treatment facility, the permittee shall submit an engineering report supporting this claim to the Executive Director of the Commission.

If in the judgment of the Executive Director the population to be served will not cause permit noncompliance, then the requirement of this section may be waived. To be effective, any waiver must be in writing and signed by the Director of the Enforcement Division (MC 219) of the Commission, and such waiver of these requirements will be reviewed upon expiration of the existing permit; however, any such waiver shall not be interpreted as condoning or excusing any violation of any permit parameter.

- b. The plans and specifications for domestic sewage collection and treatment works associated with any domestic permit must be approved by the Commission, and failure to secure approval before commencing construction of such works or making a discharge is a violation of this permit and each day is an additional violation until approval has been secured.
- c. Permits for domestic wastewater treatment plants are granted subject to the policy of the Commission to encourage the development of area-wide waste collection, treatment, and disposal systems. The Commission reserves the right to amend any domestic wastewater permit in accordance with applicable procedural requirements to require the system covered by this permit to be integrated into an area-wide system, should such be developed; to require the delivery of the wastes authorized to be collected in, treated by or discharged from said system, to such area-wide system; or to amend this permit in any other particular to effectuate the Commission's policy. Such amendments may be made when the changes required are advisable for water quality control purposes and are feasible on the basis of waste treatment technology, engineering, financial, and related considerations existing at the time the changes are required, exclusive of the loss of investment in or revenues from any then existing or proposed waste collection, treatment or disposal system.
- 9. Domestic wastewater treatment plants shall be operated and maintained by sewage plant operators holding a valid certificate of competency at the required level as defined in 30 TAC Chapter 30.
- 10. For Publicly Owned Treatment Works (POTWs), the 30-day average (or monthly average) percent removal for BOD and TSS shall not be less than 85%, unless otherwise authorized by this permit.
- 11. Facilities that generate industrial solid waste as defined in 30 TAC §335.1 shall comply with these provisions:
 - a. Any solid waste, as defined in 30 TAC §335.1 (including but not limited to such wastes as garbage, refuse, sludge from a waste treatment, water supply treatment plant or air pollution control facility, discarded materials, discarded materials to be recycled, whether the waste is solid, liquid, or semisolid), generated by the permittee during the management and treatment of wastewater, must be managed in accordance with all applicable provisions of 30 TAC Chapter 335, relating to Industrial Solid Waste Management.
 - b. Industrial wastewater that is being collected, accumulated, stored, or processed before discharge through any final discharge outfall, specified by this permit, is considered to be industrial solid waste until the wastewater passes through the actual point source discharge and must be managed in accordance with all applicable provisions of 30 TAC Chapter 335.
 - c. The permittee shall provide written notification, pursuant to the requirements of 30 TAC §335.8(b)(1), to the Corrective Action Section (MC 127) of the Remediation Division informing the Commission of any closure activity involving an Industrial Solid Waste Management Unit, at least 90 days prior to conducting such an activity.
 - d. Construction of any industrial solid waste management unit requires the prior written notification of the proposed activity to the Registration and Reporting Section (MC 129) of the Permitting and Remediation Support Division. No person shall dispose of industrial solid waste, including sludge or other solids from wastewater treatment processes, prior to fulfilling the deed recordation requirements of 30 TAC §335.5.
 - e. The term "industrial solid waste management unit" means a landfill, surface impoundment, waste-pile, industrial furnace, incinerator, cement kiln, injection well, container, drum, salt dome waste containment cavern, or any other structure vessel, appurtenance, or other improvement on land used to manage industrial solid waste.
 - f. The permittee shall keep management records for all sludge (or other waste) removed from any wastewater treatment process. These records shall fulfill all applicable requirements of 30 TAC Chapter 335 and must include the following, as it pertains to wastewater treatment and discharge:
 - i. volume of waste and date(s) generated from treatment process;
 - ii. volume of waste disposed of on-site or shipped off-site;
 - iii. date(s) of disposal;

- iv. identity of hauler or transporter;v. location of disposal site; andvi. method of final disposal.

The above records shall be maintained on a monthly basis. The records shall be retained at the facility site, or shall be readily available for review by authorized representatives of the TCEQ for at least five years.

12. For industrial facilities to which the requirements of 30 TAC Chapter 335 do not apply, sludge and solid wastes, including tank cleaning and contaminated solids for disposal, shall be disposed of in accordance with THSC Code Chapter 361.

TCEQ Revision 05/2021

OTHER REQUIREMENTS

- Violations of daily maximum limitations for the following pollutants shall be reported orally or by facsimile to TCEQ Region 13 within 24 hours from the time the permittee becomes aware of the violation, followed by a written report within five working days to TCEQ Region 13 and Compliance Monitoring Team (MC 224): None
- 2. Upon the first discharge of wastewater via Outfall 001 after permit issuance, the permittee must sample the discharge and have it analyzed as directed below for those parameters listed in Tables 1 and 2, of Attachment 1 of this permit. Sampling and analytical testing at Outfall 001 must be conducted for a minimum of two (2) separate sampling events which are a minimum of one (1) week apart. Results of the analytical testing must be submitted within 90 days of sampling the second discharge. Based on a technical review of the submitted analytical results, an amendment may be initiated by TCEQ staff to include additional effluent limitations, monitoring requirements, or both.
 - Tables 1 & 2: Wastewater must be sampled and analyzed for those parameters listed in Tables 1 and 2 for a minimum of two sampling events. Report an average and maximum value.
 - Table 3: For all pollutants listed in Table 3, the permittee shall indicate whether each pollutant is believed to be present or absent in the discharge. Sampling and analysis must be conducted for each pollutant believed present for a minimum of one sampling event.

The permittee shall report the flow at Outfall 001 in million gallons per day (MGD) in the attachment. The permittee shall indicate on each table whether the samples are composite (C) or grab (G) by checking the appropriate box.

- 3. The term "clarifier water" shall mean the discharge from the water treatment plant clarifier unit. Water is discharged from the clarifier when source water to the clarifier exceeds the established turbidity level.
- 4. This permit does not authorize the discharge of domestic wastewater. All domestic wastewater must be disposed of in an approved manner such as routing to an approved on-site septic tank and drainfield system or to an authorized third party for treatment and disposal.
- 5. There is no mixing zone established for this discharge to an intermittent stream. Acute toxic criteria apply at the point of discharge.

Attachment A

Table 1 – Conventionals and Non-conventionals

Outfall No.:				tion (mg	:/L)
Pollutant	Samp.	Samp.	Samp.	Samp.	Average
Flow (MGD)					
BOD (5-day)					
CBOD (5-day)					
Chemical Oxygen Demand					
Total Organic Carbon					
Dissolved Oxygen					
Ammonia Nitrogen					
Total Suspended Solids					
Nitrate Nitrogen					
Total Organic Nitrogen					
Total Phosphorus					
Oil and Grease					
Total Residual Chlorine					
Total Dissolved Solids					
Sulfate					
Chloride					
Fluoride					
Total Alkalinity (mg/L as					
CaCO ₃)					
Temperature (°F)					
pH (Standard Units; min/max)					
IIIII/IIIax)					

Attachment A

Table 2 – Metals

Dellestoret		Effluent Concentration (μg/L) ¹							
Pollutant	Samp.	Samp.	Samp.	Samp.	Average	(μg/L)			
Aluminum, Total						2.5			
Antimony, Total						5			
Arsenic, Total						0.5			
Barium, Total						3			
Beryllium, Total						0.5			
Cadmium, Total						1			
Chromium, Total						3			
Chromium, Hexavalent						3			
Chromium, Trivalent						N/A			
Copper, Total						2			
Cyanide, Free						10			
Lead, Total						0.5			
Mercury, Total						0.005			
Nickel, Total						2			
Selenium, Total						5			
Silver, Total						0.5			
Thallium, Total						0.5			
Zinc, Total		-		-		5.0			

Table 3

Outfall No.	□C □G	Believed	Believed	Average	Maximum	No. of	MAL
Pollutant		Present	Absent	Conc.		Samples	(mg/L
				(mg/L)	(mg/L))
Bromide							0.400
Color (PCU)							_
Nitrate-Nitrite (as N)							_
Sulfide (as S)							_
Sulfite (as SO ₃)							_
Surfactants							_
Boron, total							0.020
Cobalt, total							0.0003
Iron, total							0.007
Magnesium, total							0.020
Manganese, total							0.0005
Molybdenum, total							0.001
Tin, total							0.005
Titanium, total							0.030

Indicate units if different than $\mu g/L$. Minimum Analytical Level

STATEMENT OF BASIS/TECHNICAL SUMMARY AND EXECUTIVE DIRECTOR'S PRELIMINARY DECISION

DESCRIPTION OF APPLICATION

Applicant: San Antonio Water System; Texas Pollutant Discharge Elimination System

(TPDES) Permit No. WQ0004437000 (EPA I.D. No. TX0125083)

Regulated activity: Industrial wastewater permit

Type of application: Renewal

Request: Renewal without changes

Authority: Federal Clean Water Act (CWA) §402; Texas Water Code (TWC) §26.027;

30 Texas Administrative Code (TAC) Chapter 305, Subchapters C-F, and Chapters 307 and 319; commission policies; and Environmental Protection

Agency (EPA) guidelines

EXECUTIVE DIRECTOR RECOMMENDATION

The Executive Director has made a preliminary decision that this permit, if issued, meets all statutory and regulatory requirements. The draft permit will expire at midnight, five years from the date of permit issuance according to the requirements of 30 TAC §305.127(1)(C)(i).

REASON FOR PROJECT PROPOSED

The applicant applied to the Texas Commission on Environmental Quality (TCEQ) for a renewal of its existing permit.

PROJECT DESCRIPTION AND LOCATION

The applicant currently operates the Ultrafiltration Water Treatment Plant, a potable water treatment plant facility.

The wastewater system consists of raw water, drawn from the Medina River, receiving treatment as a potable water supply for the City of San Antonio and, under normal operating conditions, there is no discharge of wastewater from the facility. Discharge from this facility only occurs when the turbidity level of the raw water exceeds the maximum allowable level for treatment and the water from the treatment unit is discharged, via Outfall 001, to allow the proper operation of the membrane filters within the treatment unit and to allow enough flow to maintain proper levels within the water treatment unit.

Domestic wastewater produced at the facility is routed to the San Antonio Water System Medio Creek Water Recycling Center TPDES Permit No. WQ0010137040 for treatment and disposal.

The facility is located at 6725 Moreno Street, in the City of Von Ormy, in Bexar County, Texas

Routes and Designated Uses

The effluent is discharged to an unnamed ditch, thence to O. R. Mitchell Lake 1, thence to Medio Creek, in Segment No. 1912 of the San Antonio River Basin. The unclassified receiving water uses are minimal aquatic life for the unnamed ditch and high aquatic life for Mitchell Lake 1. The designated uses for Segment No. 1912 are primary contact recreation and intermediate aquatic life use. The

effluent limits in the draft permit will maintain and protect the existing instream uses. All determinations are preliminary and subject to additional review and revisions.

Endangered Species Review

The discharge from this permit is not expected to have an effect on any federal endangered or threatened aquatic or aquatic-dependent species or proposed species or their critical habitat. This determination is based on the United States Fish and Wildlife Service's (USFWS) biological opinion on the State of Texas authorization of the TPDES (September 14, 1998; October 21, 1998 update). To make this determination for TPDES permits, TCEQ and the EPA only considered aquatic or aquatic-dependent species occurring in watersheds of critical concern or high priority as listed in Appendix A of the USFWS's biological opinion. The determination is subject to reevaluation due to subsequent updates or amendments to the biological opinion. The permit does not require EPA review with respect to the presence of endangered or threatened species.

Impaired Water Bodies

Segment No. 1912 is currently listed in the State's inventory of impaired and threatened waters (the **2024** Clean Water Act Section 303(d) list). This listing is for elevated bacteria levels in water from the confluence with the Medina River in Bexar County to a point 1.0 km (0.6 mi) upstream of IH 35 at San Antonio in Bexar County (AU 1912_01).

The proposed issuance of the draft permit is not anticipated to cause any additional adverse impact to the receiving waters with respect to the listed impairments. There are no sources for bacteria associated with the discharge from this facility. Additionally, this is a renewal without changes so it will not increase any pollutant loading in the segment.

Completed Total Maximum Daily Loads (TMDLs)

There are no completed TMDLs for Segment No. 1912.

Dissolved Oxygen

Due to the low levels of oxygen-demanding constituents expected from this type of waste stream, no significant dissolved oxygen depletion is anticipated in the receiving waters as a result of this discharge.

SUMMARY OF EFFLUENT DATA

Self-reporting data is not available because the facility did not discharge during the reporting period.

DRAFT PERMIT CONDITIONS

The draft permit authorizes the discharge of clarifier water at an intermittent and variable-flow basis via Outfall 001

Effluent limitations are established in the draft permit as follows:

Outfall	Pollutant	Daily Average mg/L	Daily Maximum mg/L
001	Flow	Report, MGD	Report, MGD
	TSS	N/A	45
	pН	6.0 SU (minimum)	9.0 SU

OUTFALL LOCATIONS

Outfall	Latitude	Longitude
001	29.320012 N	98.634408 W

Technology-Based Effluent Limitations

Regulations in Title 40 of the Code of Federal Regulations (40 CFR) require that technology-based limitations be placed in wastewater discharge permits based on effluent limitations guidelines, where applicable, or on best professional judgment (BPJ) in the absence of guidelines. The discharge of clarifier water via Outfall 001 is not subject to the technology-based limitations located in Title 40 CFR. Monitoring and reporting requirements for flow at Outfall is continued from the existing permit and are required by 40 CFR §122.44(i)(1)(ii). Effluent limitations for TSS and pH are continued from the existing permit based on EPA anti-backsliding regulations [40 CFR §122.44(l)] and were originally based on BPJ.

Water Quality-Based Effluent Limitations

Calculations of water quality-based effluent limitations for the protection of aquatic life are presented in Appendix A. Aquatic life criteria established in Table 1 and human health criteria established in Table 2 of 30 TAC Chapter 307 are incorporated into the calculations, as are recommendations in the Water Quality Assessment Team's memorandum dated February 7, 2025. TCEQ practice for determining significant potential is to compare the reported analytical data from the facility against percentages of the calculated daily average water quality-based effluent limitation. Permit limitations are required when analytical data reported in the application exceeds 85 percent of the calculated daily average water quality-based effluent limitation. Monitoring and reporting is required when analytical data reported in the application exceeds 70 percent of the calculated daily average water quality-based effluent limitation.

No analytical data was submitted in the application; therefore, Other Requirements No. 2 has been continued in the draft permit, which requires the permittee to conduct sampling upon the first discharge after permit issuance and submit the analytical data to the TCEQ, Industrial Wastewater Permits Team (MC-148). Based on a technical review of the submitted analytical results, an amendment may be initiated by TCEQ staff to include additional effluent limitations, monitoring requirements, or both.

Total Dissolved Solids (TDS), Chloride, and Sulfate Screening

Screening for TDS, chloride, and sulfate will be conducted when the permittee submits the analytical data required in Other Requirements No. 2 of the draft permit to the TCEQ, Industrial Wastewater Permits Team (MC-148). Screening procedures are conducted and effluent limitations for TDS, chloride, and/or sulfate are calculated using the methodology in the *Procedures to Implement the Texas Surface Water Quality Standards*, June 2010, and criteria in the Texas Surface Water Quality Standards (30 TAC Chapter 307). Based on a technical review of the screening results, an amendment may be initiated by TCEQ staff to include additional effluent limitations, monitoring requirements, or both.

pH Screening

The existing permit includes pH limits of 6.0-9.0 SU at Outfall 001, which discharge into an unclassified water body. Consistent with the procedures for pH screening that were submitted to EPA with a letter dated May 28, 2014, and approved by EPA in a letter dated June 2, 2014, requiring a discharge to an unclassified water body to meet pH limits of 6.0-9.0 standard units reasonably ensures instream compliance with *Texas Surface Water Quality Standards* pH criteria. These limits have been carried forward in the draft permit.

Whole Effluent Toxicity Testing (Biomonitoring)

Biomonitoring requirements not included in the draft permit.

The existing permit did not establish biomonitoring requirements and discharges authorized by this permit do not meet the threshold established in the *Procedures to Implement the Texas Surface Water Quality Standards* (RG-194) to impose biomonitoring requirements.

SUMMARY OF CHANGES FROM APPLICATION

1. The retest requirement (Other Requirement No. 2) has been revised to include an additional table of parameters.

SUMMARY OF CHANGES FROM EXISTING PERMIT

The following additional changes have been made to the draft permit.

1. Pages 3-13 were updated (May 2021 version).

BASIS FOR DRAFT PERMIT

The following items were considered in developing the draft permit:

- 1. Application received on September 30, 2024.
- 2. Existing permits: TPDES Permit No. WQ0004437000 issued on February 10, 2020.
- 3. TCEQ Rules.
- 4. *Texas Surface Water Quality Standards* 30 TAC §§307.1-307.10, effective March 1, 2018, as approved by EPA Region 6.
- 5. *Texas Surface Water Quality Standards* 30 TAC §§307.1-307.10, effective March 6, 2014, as approved by EPA Region 6, for portions of the 2018 standards not approved by EPA Region 6.
- 6. *Texas Surface Water Quality Standards* 30 TAC §§307.1-307.10, effective July 22, 2010, as approved by EPA Region 6, for portions of the 2014 standards not approved by EPA Region 6.
- 7. *Texas Surface Water Quality Standards* 30 TAC §§307.1-307.10, effective August 17, 2000, and Appendix E, effective February 27, 2002, for portions of the 2010 standards not approved by EPA Region 6.
- 8. *Procedures to Implement the Texas Surface Water Quality Standards* (IPs), Texas Commission on Environmental Quality, June 2010, as approved by EPA Region 6.
- 9. Procedures to Implement the Texas Surface Water Quality Standards, Texas Commission on Environmental Quality, January 2003, for portions of the 2010 IPs not approved by EPA Region 6.
- 10. Memos from the Standards Implementation Team and Water Quality Assessment Team of the Water Quality Assessment Section of the TCEQ.
- 11. Guidance Document for Establishing Monitoring Frequencies for Domestic and Industrial Wastewater Discharge Permits, TCEQ Document No. 98-001.000-OWR-WQ, May 1998.
- 12. EPA Effluent Guidelines: N/A.
- 13. Consistency with the Coastal Management Plan: N/A
- 14. Letter dated May 28, 2014, from L'Oreal W. Stepney, P.E., Deputy Director, Office of Water, TCEQ, to Bill Honker, Director, Water Quality Protection Division, EPA (TCEQ proposed development strategy for pH evaluation procedures).
- 15. Letter dated June 2, 2014, from William K. Honker, P.E., Director, Water Quality Protection Division, EPA, to L'Oreal W. Stepney, P.E., Deputy Director, Office of Water, TCEQ (Approval of TCEQ proposed development strategy for pH evaluation procedures).

PROCEDURES FOR FINAL DECISION

When an application is declared administratively complete, the chief clerk sends a letter to the applicant advising the applicant to publish the Notice of Receipt of Application and Intent to Obtain Permit in the newspaper. In addition, the Chief Clerk instructs the applicant to place a copy of the application in a public place for reviewing and copying in the county where the facility is or will be located. This application will be in a public place throughout the comment period. The Chief Clerk also mails this notice to any interested persons and, if required, to landowners identified in the permit application. This notice informs the public about the application and provides that an interested person may file comments on the application or request a contested case hearing or a public meeting.

Once a draft permit is completed, it is sent to the Chief Clerk, along with the Executive Director's preliminary decision contained in the technical summary or fact sheet. At that time, the Notice of Application and Preliminary Decision will be mailed to the same people and published in the same newspaper as the prior notice. This notice sets a deadline for making public comments. The applicant must place a copy of the Executive Director's preliminary decision and draft permit in the public place with the application.

Any interested person may request a public meeting on the application until the deadline for filing public comments. A public meeting is intended for the taking of public comment and is not a contested case hearing.

After the public comment deadline, the Executive Director prepares a response to all significant public comments on the application or the draft permit raised during the public comment period. The Chief Clerk then mails the Executive Director's response to comments and final decision to people who have filed comments, requested a contested case hearing, or requested to be on the mailing list. This notice provides that if a person is not satisfied with the Executive Director's response and decision, they can request a contested case hearing or file a request to reconsider the Executive Director's decision within 30 days after the notice is mailed.

The Executive Director will issue the permit unless a written hearing request or request for reconsideration is filed within 30 days after the Executive Director's response to comments and final decision is mailed. If a hearing request or request for reconsideration is filed, the Executive Director will not issue the permit and will forward the application and request to the TCEQ commissioners for their consideration at a scheduled commission meeting. If a contested case hearing is held, it will be a legal proceeding similar to a civil trial in state district court.

If the Executive Director calls a public meeting or the commission grants a contested case hearing as described above, the commission will give notice of the date, time, and place of the meeting or hearing. If a hearing request or request for reconsideration is made, the commission will consider all public comments in making its decision and shall either adopt the Executive Director's response to public comments or prepare its own response.

For additional information about this application, contact John Hocher at (512) 239-5210.

John Hocher

September 26, 2025

Date

Appendix A Calculated Water Quality-Based Effluent Limits

TEXTOX MENU #8 - INTERMITTENT STREAM WITHIN 3 MILES OF A LAKE/RESERVOIR

The water quality-based effluent limitations developed below are calculated using:

Table 1, 2014 Texas Surface Water Quality Standards (30 TAC 307) for Freshwater Aquatic Life

Table 2, 2018 Texas Surface Water Quality Standards for Human Health

"Procedures to Implement the Texas Surface Water Quality Standards," TCEQ, June 2010

PERMIT INFORMATION

 Permittee Name:
 San Antonio Water System

 TPDES Permit No:
 WQ0004437000

 Outfall No:
 001

 Prepared by:
 John Hocher

 Date:
 September 26, 2025

Date:	September 26, 2025	
DISCHARGE INFORMATION		
Intermittent Receiving Waterbody:	Unnamed Ditch	
TSS (mg/L) (Intermittent):	13	
pH (Standard Units) (Intermittent):	7.9	
Hardness (mg/L as CaCO₃) (Intermittent):	248	
Chloride (mg/L) (Intermittent):	84	
Effluent Flow for Aquatic Life (MGD)	<10	
% Effluent for Acute Aquatic Life (Intermittent):	100	
Lake/Reservoir within 3 miles:	O.R. Mitchell Lake 1	
Segment No.:	1912	
TSS (mg/L) (Lake/Reservoir):	13	
pH (Standard Units) (Lake/Reservoir):	7.9	
Hardness (mg/L as CaCO ₃) (Lake/Reservoir):	248	
Chloride (mg/L) (Lake/Reservoir):	84	
% Effluent for Chronic Aquatic Life		
(Lake/Reservoir):		
% Effluent for Acute Aquatic Life (Lake/Reservoir):	89	
Effluent Flow for Human Health (MGD):	<10	
% Effluent for Human Health (Lake/Reservoir):	11	
Human Health Criterion (select: PWS, FISH, or		
INC)	FISH	

CALCULATE DISSOLVED FRACTION (AND ENTER WATER EFFECT RATIO IF APPLICABLE):

Stream/River Metal	Intercept (b)	Slope (m)	Partition Coefficient (Kp)	Dissolved Fraction (Cd/Ct)	Source	Water Effect Ratio (WER)	Source
Aluminum	N/A	N/A	N/A	1	Assumed	1	Assumed
Arsenic	5.68	-0.73	73590.432	0.5110709	0	1	Assumed
Cadmium	6.6	-1.13	219403.73	0.2595887	0	1	Assumed
Chromium (total)	6.52	-0.93	304812.44	0.2015088	0	1	Assumed
Chromium (trivalent)	6.52	-0.93	304812.44	0.2015088	0	1	Assumed
Chromium (hexavalent)	N/A	N/A	N/A	1	Assumed	1	Assumed
Copper	6.02	-0.74	156921.31	0.3289499	0	1	Assumed
Lead	6.45	-0.8	362114	0.1752086	0	1	Assumed
Mercury	N/A	N/A	N/A	1	Assumed	1	Assumed
Nickel	5.69	-0.57	113514.75	0.4039275	0	1	Assumed
Selenium	N/A	N/A	N/A	1	Assumed	1	Assumed
Silver	6.38	-1.03	170859.19	0.3104463	0	1	Assumed
Zinc	6.1	-0.7	209044.94	0.2689919	0	1	Assumed

Lake/Reservoir Metal	Intercept (b)	Slope (m)	Partition Coefficient (Kp)	Dissolved Fraction (Cd/Ct)	Source	Water Effect Ratio (WER)	Source
Aluminum	N/A	N/A	N/A	1	Assumed	1	Assumed
Arsenic	5.68	-0.73	73590.432	0.5110709	0	1	Assumed
Cadmium	6.55	-0.92	335098.22	0.1866968	0	1	Assumed
Chromium (total)	6.34	-0.27	1094549.2	0.0656636	0	1	Assumed
Chromium (trivalent)	6.34	-0.27	1094549.2	0.0656636	0	1	Assumed
Chromium (hexavalent)	N/A	N/A	N/A	1	Assumed	1	Assumed
Copper	6.45	-0.9	280188.94	0.2154032	0	1	Assumed
Lead	6.31	-0.53	524336.42	0.1279366	0	1	Assumed
Mercury	N/A	N/A	N/A	1	Assumed	1	Assumed
Nickel	6.34	-0.76	311460.55	0.1980595	0	1	Assumed
Selenium	N/A	N/A	N/A	1	Assumed	1	Assumed
Silver	6.38	-1.03	170859.19	0.3104463	0	1	Assumed
Zinc	6.52	-0.68	578786.67	0.1173127	0	1	Assumed

AQUATIC LIFE CALCULATE DAILY AVERAGE AND DAILY MAXIMUM EFFLUENT LIMITATIONS:

	FW										
	Acute	FW	FW								
	Criterion	Acute	Chronic	WLAa			LTAa				
	(int.	Criterion	Criterion	(int.	WLAa	WLAc	(int.	LTAa	LTAc	Daily	Daily
	stream)	(lake)	(lake)	stream)	(lake)	(lake)	stream)	(lake)	(lake)	Avg.	Max.
Parameter	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
Aldrin	3.0	3.0	N/A	3.00	3.37	N/A	1.72	1.08	N/A	1.58	3.35
Aluminum	991	991	N/A	991	1113	N/A	568	356	N/A	523	1108
Arsenic	340	340	150	665	747	1334	381	239	814	351	743
Cadmium	20.74	20.74	0.462	79.9	125	11.2	45.8	39.9	6.86	10.0	21.3
Carbaryl	2.0	2.0	N/A	2.00	2.25	N/A	1.15	0.719	N/A	1.05	2.23
Chlordane	2.4	2.4	0.004	2.40	2.70	0.0182	1.38	0.863	0.0111	0.0163	0.0344
Chlorpyrifos	0.083	0.083	0.041	0.0830	0.0933	0.186	0.0476	0.0298	0.114	0.0438	0.0928
Chromium (trivalent)	1199	1199	155.9	5949	20513	10795	3409	6564	6585	5011	10601
Chromium (hexavalent)	15.7	15.7	10.6	15.7	17.6	48.2	9.00	5.64	29.4	8.29	17.5
Copper	33.42	33.42	20.58	102	174	434	58.2	55.8	265	82.0	173
Cyanide (free)	45.8	45.8	10.7	45.8	51.5	48.6	26.2	16.5	29.7	24.2	51.2
4,4'-DDT	1.1	1.1	0.001	1.10	1.24	0.00455	0.630	0.396	0.00277	0.00407	0.00862
Demeton	N/A	N/A	0.1	N/A	N/A	0.455	N/A	N/A	0.277	0.407	0.862
Diazinon	0.17	0.17	0.17	0.170	0.191	0.773	0.0974	0.0611	0.471	0.0898	0.190
Dicofol [Kelthane]	59.3	59.3	19.8	59.3	66.6	90.0	34.0	21.3	54.9	31.3	66.3
Dieldrin	0.24	0.24	0.002	0.240	0.270	0.00909	0.138	0.0863	0.00555	0.00815	0.0172
Diuron	210	210	70	210	236	318	120	75.5	194	110	234
Endosulfan I (<i>alpha</i>)	0.22	0.22	0.056	0.220	0.247	0.255	0.126	0.0791	0.155	0.116	0.246
Endosulfan II (beta)	0.22	0.22	0.056	0.220	0.247	0.255	0.126	0.0791	0.155	0.116	0.246
Endosulfan sulfate	0.22	0.22	0.056	0.220	0.247	0.255	0.126	0.0791	0.155	0.116	0.246
Endrin	0.086	0.086	0.002	0.0860	0.0966	0.00909	0.0493	0.0309	0.00555	0.00815	0.0172
Guthion [Azinphos Methyl]	N/A	N/A	0.01	N/A	N/A	0.0455	N/A	N/A	0.0277	0.0407	0.0862
Heptachlor	0.52	0.52	0.004	0.520	0.584	0.0182	0.298	0.187	0.0111	0.0163	0.0344
Hexachlorocyclohexane (gamma)											
[Lindane]	1.126	1.126	0.08	1.13	1.27	0.364	0.645	0.405	0.222	0.326	0.689
Lead	170.9	170.9	6.66	975	1501	237	559	480	144	212	448
Malathion	N/A	N/A	0.01	N/A	N/A	0.0455	N/A	N/A	0.0277	0.0407	0.0862
Mercury	2.4	2.4	1.3	2.40	2.70	5.91	1.38	0.863	3.60	1.26	2.68
Methoxychlor	N/A	N/A	0.03	N/A	N/A	0.136	N/A	N/A	0.0832	0.122	0.258
Mirex	N/A	N/A	0.001	N/A	N/A	0.00455	N/A	N/A	0.00277	0.00407	0.00862
Nickel	1010	1010	112.1	2500	5728	2574	1432	1833	1570	2105	4454
Nonylphenol	28	28	6.6	28.0	31.5	30.0	16.0	10.1	18.3	14.7	31.3
Parathion (ethyl)	0.065	0.065	0.013	0.0650	0.0730	0.0591	0.0372	0.0234	0.0360	0.0343	0.0726
Pentachlorophenol	21.6	21.6	16.54	21.6	24.2	75.2	12.3	7.75	45.8	11.3	24.1
Phenanthrene	30	30	30	30.0	33.7	136	17.2	10.8	83.2	15.8	33.5
Polychlorinated Biphenyls [PCBs]	2.0	2.0	0.014	2.00	2.25	0.0636	1.15	0.719	0.0388	0.0570	0.120
Selenium	20	20	5	20.0	22.5	22.7	11.5	7.19	13.9	10.5	22.3
Silver	0.8	0.8	N/A	18.2	16.2	N/A	10.4	5.18	N/A	7.61	16.1
Toxaphene	0.78	0.78	0.0002	0.780	0.876	0.000909	0.447	0.280	0.000555	0.000815	0.00172
Tributyltin [TBT]	0.13	0.13	0.024	0.130	0.146	0.109	0.0745	0.0467	0.0665	0.0687	0.145
2,4,5 Trichlorophenol	136	136	64	136	153	291	77.9	48.9	177	71.8	152
Zinc	253.0	253.0	255.0	940	2423	9882	539	775	6028	792	1675

HUMAN HEALTH CALCULATE DAILY AVERAGE AND DAILY MAXIMUM EFFLUENT LIMITATIONS

	Water and Fish	Fish Only	Incidental Fish				
Parameter	Criterion (μg/L)	Criterion (μg/L)	Criterion (μg/L)	WLAh (μg/L)	LTAh (μg/L)	Daily Avg. (μg/L)	Daily Max. (μg/L)
Acrylonitrile	1.0	115	1150	1045	972	1429	3023
Aldrin	1.146E-05	1.147E-05	1.147E-04	0.000104	0.0000970	0.000142	0.000301
Anthracene	1109	1317	13170	11973	11135	16367	34628
Antimony	6	1071	10710	9736	9055	13310	28160
Arsenic	10	N/A	N/A	N/A	N/A	N/A	N/A
Barium	2000	N/A	N/A	N/A	N/A	N/A	N/A
Benzene	5	581	5810	5282	4912	7220	15276
Benzidine	0.0015	0.107	1.07	0.973	0.905	1.32	2.81
Benzo(a)anthracene	0.024	0.025	0.25	0.227	0.211	0.310	0.657
Benzo(a)pyrene	0.0025	0.0025	0.025	0.0227	0.0211	0.0310	0.0657
Bis(chloromethyl)ether	0.0024	0.2745	2.745	2.50	2.32	3.41	7.21
Bis(2-chloroethyl)ether	0.60	42.83	428.3	389	362	532	1126
Bis(2-ethylhexyl) phthalate [Di(2-ethylhexyl) phthalate]	6	7.55	75.5	68.6	63.8	93.8	198
Bromodichloromethane [Dichlorobromomethane]	10.2	275	2750	2500	2325	3417	7230
Bromoform [Tribromomethane]	66.9	1060	10600	9636	8962	13173	27871
Cadmium	5	N/A	N/A	N/A	N/A	N/A	N/A
Carbon Tetrachloride	4.5	46	460	418	389	571	1209
Chlordane	0.0025	0.0025	0.025	0.0227	0.0211	0.0310	0.0657
Chlorobenzene	100	2737	27370	24882	23140	34015	71965
Chlorodibromomethane [Dibromochloromethane]	7.5	183	1830	1664	1547	2274	4811
Chloroform [Trichloromethane]	70	7697	76970	69973	65075	95659	202382
Chromium (hexavalent)	62	502	5020	4564	4244	6238	13199
Chrysene	2.45	2.52	25.2	22.9	21.3	31.3	66.2
Cresols [Methylphenols]	1041	9301	93010	84555	78636	115594	244557
Cyanide (free)	200	N/A	N/A	N/A	N/A	N/A	N/A
4,4'-DDD	0.002	0.002	0.02	0.0182	0.0169	0.0248	0.0525
4,4'-DDE	0.00013	0.00013	0.0013	0.00118	0.00110	0.00161	0.00341
4,4'-DDT	0.0004	0.0004	0.004	0.00364	0.00338	0.00497	0.0105
2,4'-D	70	N/A	N/A	N/A	N/A	N/A	N/A
Danitol [Fenpropathrin]	262	473	4730	4300	3999	5878	12436
1,2-Dibromoethane [Ethylene Dibromide]	0.17	4.24	42.4	38.5	35.8	52.6	111
m-Dichlorobenzene [1,3-Dichlorobenzene]	322	595	5950	5409	5030	7394	15644
o-Dichlorobenzene [1,2-Dichlorobenzene]	600	3299	32990	29991	27892	41000	86742
p-Dichlorobenzene [1,4-Dichlorobenzene]	75	N/A	N/A	N/A	N/A	N/A	N/A
3,3'-Dichlorobenzidine	0.79	2.24	22.4	20.4	18.9	27.8	58.8
1,2-Dichloroethane	5	364	3640	3309	3077	4523	9570
1,1-Dichloroethylene [1,1-Dichloroethene]	7	55114	551140	501036	465964	684966	1449147
Dichloromethane [Methylene Chloride]	5	13333	133330	121209	112724	165704	350573
1,2-Dichloropropane	5	259	2590	2355	2190	3218	6810
1,3-Dichloropropene [1,3-Dichloropropylene]	2.8	119	1190	1082	1006	1478	3128
Dicofol [Kelthane]	0.30	0.30	3	2.73	2.54	3.72	7.88
Dieldrin	2.0E-05	2.0E-05	2.0E-04	0.000182	0.000169	0.000248	0.000525
2,4-Dimethylphenol	444	8436	84360	76691	71323	104844	221813
Di- <i>n</i> -Butyl Phthalate	88.9	92.4	924	840	781	1148	2429
Dioxins/Furans [TCDD Equivalents]	7.80E-08	7.97E-08	7.97E-07	7.25E-07	6.74E-07	9.90E-07	0.0000021
Endrin	0.02	0.02	0.2	0.182	0.169	0.248	0.525
	53.5	2013	20130	18300	17019	25017	52929

	Water and		Incidental				
	Fish	Fish Only	Fish	14// 4/5	1746	Daile Assa	Daile Man
Parameter	Criterion (μg/L)	Criterion (μg/L)	Criterion (μg/L)	WLAh (μg/L)	LTAh (μg/L)	Daily Avg. (μg/L)	Daily Max. (μg/L)
Ethylbenzene	700	1867	18670	16973	15785	23203	49090
Ethylene Glycol	46744	1.68E+07	1.68E+08	152727273	142036364	208793454	441733090
Fluoride	4000	N/A	N/A	N/A	N/A	N/A	N/A
Heptachlor	8.0E-05	0.0001	0.001	0.000909	0.000845	0.00124	0.00262
Heptachlor Epoxide	0.00029	0.00029	0.0029	0.00264	0.00245	0.00360	0.00762
Hexachlorobenzene	0.00068	0.00068	0.0068	0.00618	0.00575	0.00845	0.0178
Hexachlorobutadiene	0.21	0.22	2.2	2.00	1.86	2.73	5.78
Hexachlorocyclohexane (alpha)	0.0078	0.0084	0.084	0.0764	0.0710	0.104	0.220
Hexachlorocyclohexane (beta)	0.15	0.26	2.6	2.36	2.20	3.23	6.83
Hexachlorocyclohexane (gamma) [Lindane]	0.2	0.341	3.41	3.10	2.88	4.23	8.96
Hexachlorocyclopentadiene	10.7	11.6	116	105	98.1	144	305
Hexachloroethane	1.84	2.33	23.3	21.2	19.7	28.9	61.2
Hexachlorophene	2.05	2.90	29	26.4	24.5	36.0	76.2
4,4'-Isopropylidenediphenol [Bisphenol A]	1092	15982	159820	145291	135121	198627	420224
Lead	1.15	3.83	38.3	272	253	372	787
Mercury	0.0122	0.0122	0.122	0.111	0.103	0.151	0.320
Methoxychlor	2.92	3.0	30	27.3	25.4	37.2	78.8
Methyl Ethyl Ketone	13865	9.92E+05	9.92E+06	9018182	8386909	12328756	26083287
Methyl tert-butyl ether [MTBE]	15	10482	104820	95291	88621	130272	275609
Nickel	332	1140	11400	52326	48663	71534	151342
Nitrate-Nitrogen (as Total Nitrogen)	10000	N/A	N/A	N/A	N/A	N/A	N/A
Nitrobenzene	45.7	1873	18730	17027	15835	23277	49247
N-Nitrosodiethylamine	0.0037	2.1	21	19.1	17.8	26.0	55.2
N-Nitroso-di- <i>n</i> -Butylamine	0.119	4.2	42	38.2	35.5	52.1	110
Pentachlorobenzene	0.348	0.355	3.55	3.23	3.00	4.41	9.33
Pentachlorophenol	0.22	0.29	2.9	2.64	2.45	3.60	7.62
Polychlorinated Biphenyls [PCBs]	6.4E-04	6.4E-04	6.40E-03	0.00582	0.00541	0.00795	0.0168
Pyridine	23	947	9470	8609	8006	11769	24900
Selenium	50	N/A	N/A	N/A	N/A	N/A	N/A
1,2,4,5-Tetrachlorobenzene	0.23	0.24	2.4	2.18	2.03	2.98	6.31
1,1,2,2-Tetrachloroethane	1.64	26.35	263.5	240	223	327	692
Tetrachloroethylene [Tetrachloroethylene]	5	280	2800	2545	2367	3479	7362
Thallium	0.12	0.23	2.3	2.09	1.94	2.85	6.04
Toluene	1000	N/A	N/A	N/A	N/A	N/A	N/A
Toxaphene	0.011	0.011	0.11	0.1000	0.0930	0.136	0.289
2,4,5-TP [Silvex]	50	369	3690	3355	3120	4585	9702
1,1,1-Trichloroethane	200	784354	7843540	7130491	6631357	9748094	20623518
1,1,2-Trichloroethane	5	166	1660	1509	1403	2063	4364
Trichloroethylene [Trichloroethene]	5	71.9	719	654	608	893	1890
2,4,5-Trichlorophenol	1039	1867	18670	16973	15785	23203	49090
TTHM [Sum of Total Trihalomethanes]	80	N/A	N/A	N/A	N/A	N/A	N/A
Vinyl Chloride	0.23	16.5	165	150	140	205	433

CALCULATE 70% AND 85% OF DAILY AVERAGE EFFLUENT LIMITATIONS:

Amushio Life	70% of	85% of
Aquatic Life	Daily Avg.	Daily Avg.
Parameter	(μg/L)	(μg/L)
Aldrin	1.10	1.34
Aluminum	366	445
Arsenic	246	298
Cadmium	7.06	8.57
Carbaryl	0.739	0.898
Chlordane	0.0114	0.0138
Chlorpyrifos	0.0307	0.0372
Chromium (trivalent)	3507	4259
Chromium (hexavalent)	5.80	7.05
Copper	57.4	69.7
Cyanide (free)	16.9	20.5
4,4'-DDT	0.00285	0.00346
Demeton	0.285	0.346
Diazinon	0.0628	0.0763
Dicofol [Kelthane]	21.9	26.6
Dieldrin	0.00570	0.00692
Diuron	77.6	94.3
Endosulfan I (alpha)	0.0813	0.0988
Endosulfan II (beta)	0.0813	0.0988
Endosulfan sulfate	0.0813	0.0988
Endrin	0.00570	0.00692
Guthion [Azinphos Methyl]	0.0285	0.0346
Heptachlor	0.0114	0.0138
Hexachlorocyclohexane (gamma) [Lindane]	0.228	0.277
Lead	148	180
Malathion	0.0285	0.0346
Mercury	0.887	1.07
Methoxychlor	0.0855	0.103
Mirex	0.00285	0.00346
Nickel	1473	1789
Nonylphenol	10.3	12.5
Parathion (ethyl)	0.0240	0.0292
Pentachlorophenol	7.97	9.68
Phenanthrene	11.0	13.4
Polychlorinated Biphenyls [PCBs]	0.0399	0.0485
Selenium	7.39	8.98
Silver	5.32	6.46
Toxaphene	0.000570	0.000692
Tributyltin [TBT]	0.0480	0.0584
2,4,5 Trichlorophenol	50.3	61.0
Zinc	554	673

Human Health Parameter	70% of Daily Avg. (μg/L)	85% of Daily Avg. (μg/L)
Acrylonitrile	1000	1214
Aldrin	0.0000997	0.000121
Anthracene	11457	13912
Antimony	9317	11313
Arsenic	N/A	N/A
Barium	N/A	N/A
Benzene	5054	6137
Benzidine	0.930	1.13
Benzo(a)anthracene	0.217	0.264
Benzo(a)pyrene	0.0217	0.0264
Bis(chloromethyl)ether	2.38	2.89
Bis(2-chloroethyl)ether	372	452
Bis(2-ethylhexyl) phthalate [Di(2-ethylhexyl) phthalate]	65.6	79.7
Bromodichloromethane [Dichlorobromomethane]	2392	2905
Bromoform [Tribromomethane]	9221	11197
Cadmium	N/A	N/A
Carbon Tetrachloride	400	485
Chlordane	0.0217	0.0264
Chlorobenzene	23811	28913
Chlorodibromomethane [Dibromochloromethane]	1592	1933
Chloroform [Trichloromethane]	66961	81310
Chromium (hexavalent)	4367	5303
Chrysene	21.9	26.6
Cresols [Methylphenols]	80916	98255
Cyanide (free)	N/A	N/A
4,4'-DDD	0.0173	0.0211
4,4'-DDE	0.00113	0.00137
4,4'-DDT	0.00347	0.00422
2,4'-D	N/A	N/A
Danitol [Fenpropathrin]	4114	4996
1,2-Dibromoethane [Ethylene Dibromide]	36.8	44.7
m-Dichlorobenzene [1,3-Dichlorobenzene]	5176	6285
o-Dichlorobenzene [1,2-Dichlorobenzene]	28700	34850
p-Dichlorobenzene [1,4-Dichlorobenzene]	N/A	N/A
3,3'-Dichlorobenzidine	19.4	23.6
1,2-Dichloroethane	3166	3845
1,1-Dichloroethylene [1,1-Dichloroethene]	479476	582221
Dichloromethane [Methylene Chloride]	115993	140849
1,2-Dichloropropane	2253	2736
1,3-Dichloropropene [1,3-Dichloropropylene]	1035	1257
Dicofol [Kelthane]	2.60	3.16
Dieldrin	0.000173	0.000211
2,4-Dimethylphenol	73390	89117
Di- <i>n</i> -Butyl Phthalate	803	976
Dioxins/Furans [TCDD Equivalents]	6.93E-07	8.41E-07
Endrin	0.931-07	0.211
Epichlorohydrin	17512	21265
Ethylbenzene	16242	19722
Luiyibelizelle	10242	19/22

	70% of	85% of
Human Health	Daily Avg.	Daily Avg.
Parameter	(μg/L)	(μg/L)
Ethylene Glycol	146155418	177474436
Fluoride	N/A	N/A
Heptachlor	0.000869	0.00105
Heptachlor Epoxide	0.00252	0.00306
Hexachlorobenzene	0.00591	0.00718
Hexachlorobutadiene	1.91	2.32
Hexachlorocyclohexane (alpha)	0.0730	0.0887
Hexachlorocyclohexane (beta)	2.26	2.74
Hexachlorocyclohexane (gamma) [Lindane]	2.96	3.60
Hexachlorocyclopentadiene	100	122
Hexachloroethane	20.2	24.6
Hexachlorophene	25.2	30.6
4,4'-Isopropylidenediphenol [Bisphenol A]	139039	168833
Lead	260	316
Mercury	0.106	0.128
Methoxychlor	26.0	31.6
Methyl Ethyl Ketone	8630129	10479442
Methyl tert-butyl ether [MTBE]	91190	110731
Nickel	50074	60804
Nitrate-Nitrogen (as Total Nitrogen)	N/A	N/A
Nitrobenzene	16294	19786
N-Nitrosodiethylamine	18.2	22.1
N-Nitroso-di- <i>n</i> -Butylamine	36.5	44.3
Pentachlorobenzene	3.08	3.75
Pentachlorophenol	2.52	3.06
Polychlorinated Biphenyls [PCBs]	0.00556	0.00676
Pyridine	8238	10004
Selenium	N/A	N/A
1,2,4,5-Tetrachlorobenzene	2.08	2.53
1,1,2,2-Tetrachloroethane	229	278
Tetrachloroethylene [Tetrachloroethylene]	2435	2957
Thallium	2.00	2.42
Toluene	N/A	N/A
Toxaphene	0.0956	0.116
2,4,5-TP [Silvex]	3210	3898
1,1,1-Trichloroethane	6823665	8285880
1,1,2-Trichloroethane	1444	1753
Trichloroethylene [Trichloroethene]	625	759
2,4,5-Trichlorophenol	16242	19722
TTHM [Sum of Total Trihalomethanes]	N/A	N/A
Vinyl Chloride	143	174
	1.0	1,7

Appendix D Comparison of Effluent Limits

The following table is a summary of technology-based effluent limitations calculated/assessed in the draft permit (Technology-Based), calculated/assessed water quality-based effluent limitations (Water Quality-Based), and effluent limitations in the existing permit (Existing Permit). Effluent limitations appearing in bold are the most stringent of the three and are included in the draft permit.

		Technology-Based		Water Quality-Based		Existing Permit	
Outfall	Pollutant	Daily Avg	Daily Max	Daily Avg	Daily Max	Daily Avg	Daily Max
		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	Flow, MGD	Report, MGD	Report, MGD	-	-	Report, MGD	Report, MGD
001	TSS	N/A	45	-	-	N/A	45
	рН	6.0 SU (minimum)	9.0 SU	6.0 SU (minimum)	9.0 SU	6.0 SU (minimum)	9.0 SU