

This file contains the following documents:

- 1. Summary of application (in plain language)
 - English
 - Alternative Language (Spanish)
- 2. First notice (NORI-Notice of Receipt of Application and Intent to Obtain a Permit)
 - English
 - Alternative Language (Spanish)
- 3. Second notice (NAPD-Notice of Preliminary Decision)
 - English
 - Alternative Language (Spanish)
- 4. Application materials
- 5. Draft permit
- 6. Technical summary or fact sheet

Este archivo contiene los siguientes documentos:

- 1. Resumen de la solicitud (en lenguaje sencillo)
 - Inglés
 - Idioma alternativo (español)
- 2. Primer aviso (NORI, Aviso de Recepción de Solicitud e Intención de Obtener un Permiso)
 - Inglés
 - Idioma alternativo (español)
- 3. Segundo aviso (NAPD, Aviso de Decisión Preliminar)
 - Inglés
 - Idioma alternativo (español)
- 4. Materiales de la solicitud
- 5. Proyecto de permiso
- 6. Resumen técnico u hoja de datos

Plain Language Summary for Texas Pollution Elimination Discharge System (TPEDS) Permit Renewal Application for Permit No. WQ0005010000

INDUSTRIAL WASTEWATER/STORMWATER

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and is not a federal enforceable representation of the permit application.

Conrad Orange Shipyard, Inc. (CN604118448) operates Conrad Orange Shipyard (RN 102745825), a marine vessel repair and construction facility. The facility is located at 710 Market Street, in Orange, Orange County, Texas 77630. This permit renewal application does not request any modifications to the current permit (WQ0005010000).

Discharges from the facility are expected to contain Total Organic Carbon, Total Suspended Solids, and Oil and Grease. The wastewater discharged at the facility includes vehicle and equipment washdown water, high pressure wash water (hydroblasting), hull wash wastewater, process wastewater, welding torch hose test water, and dry dock effluents (ballast water generated from the filling and emptying of wing tanks, runoff from submerging and emerging events, process wastewater, and stormwater runoff). The above effluents are not biologically treated prior to discharge but are treated by best management practices including dry sweeping materials prior to leaving the property for disposal via a licensed disposer off-site. Wash wastewater from Outfall 002 enters the Sabine River directly after contact with the marine vessels. Outfalls 009 and 010 have yet to be constructed, therefore have not discharged. When wastewater does leave the land-based operations/process area, it enters a series of catch basins for particulates or solids to settle prior to discharge via Outfall 011. The catch basins are periodically inspected and cleaned. Domestic wastewater is treated and disposed of by the City of Orange's Jackson Street Wastewater Treatment Facility (TPDES Permit No. WO0010626001). Stormwater discharged via Outfalls 001 and 008 is authorized under the TPDES Multi-Sector Industrial General Permit (TXR05Q959).

Resumen en Lenguaje Sencillo para la Solicitud de Renovación de Permiso del Sistema de Eliminación de Descargas de Contaminantes de Texas (TPDES) para el Permiso No. WO0005010000

AGUAS RESIDUALES INDUSTRIALES /AGUAS PLUVIALES

El siguiente resumen se proporciona para esta solicitud de permiso de calidad del agua pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo requerido por el Capítulo 39 del Código Administrativo de Texas 30. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no es una representación ejecutiva federal de la solicitud de permiso.

Conrad Orange Shipyard, Inc. (CN604118448) opera Conrad Orange Shipyard (RN 102745825), una instalación de construcción y reparación de embarcaciones marinas. La instalación está ubicada en 710 Market Street, Orange, Condado de Orange, Texas 77630. Esta solicitud de renovación de permiso no solicita ninguna modificación al permiso actual (WQ0005010000).

Se espera que las descargas de la instalación contengan Carbono Orgánico Total, Sólidos Suspendidos Totales, y Aceite y Grasa. Las aguas residuales vertidas en la instalación incluyen agua de lavado de vehículos y equipo, agua de lavado a alta presión, aguas residuales de lavado de casco de buques, aguas residuales de proceso, agua de prueba de mangueras de soplete de soldadura y efluentes de dique seco (agua de lastre generada por el llenado y vaciado de los tanques laterales, escorrentía de eventos sumergidos y emergentes, aguas residuales de procesos y escorrentía de aguas pluviales). Los efluentes mencionados anteriormente no se tratan biológicamente antes de su descarga, pero se tratan mediante las mejores prácticas de gestión, incluyendo materiales de barrido en seco antes de salir de la propiedad para su eliminación a través de un triturador autorizado fuera del sitio. Las aguas residuales de lavado del Emisario 002 ingresan al río Sabine directamente después del contacto con los buques marinos. Los Emisarios 009 y 010 aún no han sido construidos por lo que no han descargado. Cuando las aguas residuales salen del área de proceso/operaciones terrestres, ingresan a una serie de drenajes colectores para que las partículas o sólidos se sedimenten antes de su descarga a través del Emisario 011. Los drenaies colectores se inspeccionan y limpian periódicamente. Las aguas residuales domésticas son tratadas y eliminadas por la Instalación de Tratamiento de Aguas Residuales de Jackson Street de la Ciudad de Orange (Permiso TPDES No. WQ0010626001). Las aguas pluviales descargadas a través de los Emisarios 001 y 008 están autorizadas según el Permiso General Industrial Multisectorial TPDES (TXR05O959).

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

NOTICE OF RECEIPT OF APPLICATION AND INTENT TO OBTAIN WATER QUALITY PERMIT RENEWAL.

PERMIT NO. WQ0005010000

APPLICATION. Conrad Orange Shipyard, Inc., P.O. Box 1670, Orange, Texas 77631, which owns a marine vessel and manufacturing and repair facility, has applied to the Texas Commission on Environmental Quality (TCEQ) to renew Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0005010000 (EPA I.D. No. TX0134422) to authorize the discharge of wastewater at an intermittent and flow variable volume via Outfalls 002 and 011, and the discharge of wastewater and stormwater at an intermittent and flow variable volume via Outfalls 009 and 010. The facility is located at 710 Market Street, in the city of Orange, in Orange County, Texas 77630. The discharge route is from the plant site directly to the Sabine River Tidal. TCEQ received this application on May 9, 2024. The permit application will be available for viewing and copying at Orange Public Library, Public Information Section, 220 North 5th, Orange, Texas prior to the date this notice is published in the newspaper. The application, including any updates, and associated notices are available electronically at the following webpage:

https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. This link to an electronic map of the site or facility's general location is provided as a public courtesy and not part of the application or notice. For the exact location, refer to the application.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-93.735555,30.083333&level=18

ALTERNATIVE LANGUAGE NOTICE. Alternative language notice in Spanish is available at https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications El aviso de idioma alternativo en español está disponible en https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications.

ADDITIONAL NOTICE. TCEQ's Executive Director has determined the application is administratively complete and will conduct a technical review of the application. After technical review of the application is complete, the Executive Director may prepare a draft permit and will issue a preliminary decision on the application. Notice of the Application and Preliminary Decision will be published and mailed to those who are on the countywide mailing list and to those who are on the mailing list for this application. That notice will contain the deadline for submitting public comments.

PUBLIC COMMENT / PUBLIC MEETING. You may submit public comments or request a public meeting on this application. The purpose of a public meeting is to provide the opportunity to submit comments or to ask questions about the application. TCEQ will hold a

public meeting if the Executive Director determines that there is a significant degree of public interest in the application or if requested by a local legislator. A public meeting is not a contested case hearing.

OPPORTUNITY FOR A CONTESTED CASE HEARING. After the deadline for submitting public comments, the Executive Director will consider all timely comments and prepare a response to all relevant and material, or significant public comments. Unless the application is directly referred for a contested case hearing, the response to comments, and the Executive Director's decision on the application, will be mailed to everyone who submitted public comments and to those persons who are on the mailing list for this application. If comments are received, the mailing will also provide instructions for requesting reconsideration of the Executive Director's decision and for requesting a contested case hearing. A contested case hearing is a legal proceeding similar to a civil trial in state district court.

TO REQUEST A CONTESTED CASE HEARING, YOU MUST INCLUDE THE FOLLOWING ITEMS IN YOUR REQUEST: your name, address, phone number; applicant's name and proposed permit number; the location and distance of your property/activities relative to the proposed facility; a specific description of how you would be adversely affected by the facility in a way not common to the general public; a list of all disputed issues of fact that you submit during the comment period and, the statement "[I/we] request a contested case hearing." If the request for contested case hearing is filed on behalf of a group or association, the request must designate the group's representative for receiving future correspondence; identify by name and physical address an individual member of the group who would be adversely affected by the proposed facility or activity; provide the information discussed above regarding the affected member's location and distance from the facility or activity; explain how and why the member would be affected; and explain how the interests the group seeks to protect are relevant to the group's purpose.

Following the close of all applicable comment and request periods, the Executive Director will forward the application and any requests for reconsideration or for a contested case hearing to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

The Commission may only grant a request for a contested case hearing on issues the requestor submitted in their timely comments that were not subsequently withdrawn. If a hearing is granted, the subject of a hearing will be limited to disputed issues of fact or mixed questions of fact and law relating to relevant and material water quality concerns submitted during the comment period.

TCEQ may act on an application to renew a permit for discharge of wastewater without providing an opportunity for a contested case hearing if certain criteria are met.

MAILING LIST. If you submit public comments, a request for a contested case hearing or a reconsideration of the Executive Director's decision, you will be added to the mailing list for this specific application to receive future public notices mailed by the Office of the Chief Clerk. In addition, you may request to be placed on: (1) the permanent mailing list for a specific applicant name and permit number; and/or (2) the mailing list for a specific county. If you wish to be placed on the permanent and/or the county mailing list, clearly specify which list(s) and send your request to TCEQ Office of the Chief Clerk at the address below.

INFORMATION AVAILABLE ONLINE. For details about the status of the application, visit the Commissioners' Integrated Database at www.tceq.texas.gov/goto/cid. Search the database using the permit number for this application, which is provided at the top of this notice.

AGENCY CONTACTS AND INFORMATION. All public comments and requests must be submitted either electronically at https://www14.tceq.texas.gov/epic/eComment/, or in writing to the Texas Commission on Environmental Quality, Office of the Chief Clerk, MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Please be aware that any contact information you provide, including your name, phone number, email address and physical address will become part of the agency's public record. For more information about this permit application or the permitting process, please call the TCEQ Public Education Program, Toll Free, at 1-800-687-4040 or visit their website at www.tceq.texas.gov/goto/pep. Si desea información en Español, puede llamar al 1-800-687-4040.

Further information may also be obtained from Conrad Orange Shipyard, Inc. at the address stated above or by calling Ms. Elizabeth Byers, Senior Consultant, at 225-346-4003.

Issuance Date: June 20, 2024

Comisión de Calidad Ambiental del Estado de Texas

AVISO DE RECIBO DE LA SOLICITUD Y EL INTENTO DE OBTENER PERMISO PARA LA CALIDAD DEL AGUA RENOVACION

PERMISO NO. WQ000501000

SOLICITUD. Conrad Orange Shipyard, Inc., P.O. Box 1670, Orange, Texas 77631, ha solicitado a la Comisión de Calidad Ambiental del Estado de Texas (TCEQ) para renovar el Permiso No. WQ0005010000 (EPA I.D. No. TX0134422) del Sistema de Eliminación de Descargas de Contaminantes de Texas (TPDES) para autorizar la descarga de aguas residuales tratadas en un volumen intermitente y flujo variable a través de los emisarios 002 y 011, y la descarga de aguas residuales y pluviales en un volumen intermitente y de flujo variable a través de los emisarios 009 y 010. La planta está ubicada en 710 Market Street, Orange, en el Condado de Orange, Texas 77630. La ruta de descarga es del sitio de la planta a hasta el Sabine River Tidal. La TCEQ recibió esta solicitud el 9 de mayo, 2024. La solicitud para el permiso estará disponible para leerla y copiarla en Orange Public Library, Public Information Section, 220 North 5th, Orange, Texas antes de la fecha de publicación de este aviso en el periódico. Este enlace a un mapa electrónico de la ubicación general del sitio o de la instalación es proporcionado como una cortesía y no es parte de la solicitud o del aviso. Para la ubicación exacta, consulte la solicitud. https://gisweb.tceq.texas.gov/LocationMapper/?marker=-93.735555.30.083333&level=18

AVISO ADICIONAL. El Director Ejecutivo de la TCEQ ha determinado que la solicitud es administrativamente completa y conducirá una revisión técnica de la solicitud. Después de completar la revisión técnica, el Director Ejecutivo puede preparar un borrador del permiso y emitirá una Decisión Preliminar sobre la solicitud. El aviso de la solicitud y la decisión preliminar serán publicados y enviado a los que están en la lista de correo de las personas a lo largo del condado que desean recibir los avisos y los que están en la lista de correo que desean recibir avisos de esta solicitud. El aviso dará la fecha límite para someter comentarios públicos.

COMENTARIO PUBLICO / REUNION PUBLICA. Usted puede presentar comentarios públicos o pedir una reunión pública sobre esta solicitud. El propósito de una reunión pública es dar la oportunidad de presentar comentarios o hacer preguntas acerca de la solicitud. La TCEQ realiza una reunión pública si el Director Ejecutivo determina que hay un grado de interés público suficiente en la

solicitud o si un legislador local lo pide. Una reunión pública no es una audiencia administrativa de lo contencioso.

OPORTUNIDAD DE UNA AUDIENCIA ADMINISTRATIVA DE LO

CONTENCIOSO. Después del plazo para presentar comentarios públicos, el Director Ejecutivo considerará todos los comentarios apropiados y preparará una respuesta a todo los comentarios públicos esenciales, pertinentes, o significativos. A menos que la solicitud haya sido referida directamente a una audiencia administrativa de lo contencioso, la respuesta a los comentarios y la decisión del Director Ejecutivo sobre la solicitud serán enviados por correo a todos los que presentaron un comentario público y a las personas que están en la lista para recibir avisos sobre esta solicitud. Si se reciben comentarios, el aviso también proveerá instrucciones para pedir una reconsideración de la decisión del Director Ejecutivo y para pedir una audiencia administrativa de lo contencioso. Una audiencia administrativa de lo contencioso es un procedimiento legal similar a un procedimiento legal civil en un tribunal de distrito del estado.

PARA SOLICITAR UNA AUDIENCIA DE CASO IMPUGNADO, USTED DEBE INCLUIR EN SU SOLICITUD LOS SIGUIENTES DATOS: su nombre, dirección, y número de teléfono; el nombre del solicitante y número del permiso; la ubicación y distancia de su propiedad/actividad con respecto a la instalación; una descripción específica de la forma cómo usted sería afectado adversamente por el sitio de una manera no común al público en general; una lista de todas las cuestiones de hecho en disputa que usted presente durante el período de comentarios; y la declaración "[Yo/nosotros] solicito/solicitamos una audiencia de caso impugnado". Si presenta la petición para una audiencia de caso impugnado de parte de un grupo o asociación, debe identificar una persona que representa al grupo para recibir correspondencia en el futuro; identificar el nombre y la dirección de un miembro del grupo que sería afectado adversamente por la planta o la actividad propuesta; proveer la información indicada anteriormente con respecto a la ubicación del miembro afectado y su distancia de la planta o actividad propuesta; explicar cómo y porqué el miembro sería afectado; y explicar cómo los intereses que el grupo desea proteger son pertinentes al propósito del grupo.

Después del cierre de todos los períodos de comentarios y de petición que aplican, el Director Ejecutivo enviará la solicitud y cualquier petición para reconsideración o para una audiencia de caso impugnado a los Comisionados de la TCEQ para su consideración durante una reunión programada de la Comisión. La Comisión sólo puede conceder una solicitud de una audiencia de caso impugnado sobre los temas que el solicitante haya presentado en sus comentarios oportunos que no fueron retirados posteriormente. Si se concede una audiencia, el tema de la audiencia estará limitado a cuestiones de hecho en disputa o cuestiones mixtas de hecho y de derecho relacionadas a intereses pertinentes y materiales de calidad del

agua que se hayan presentado durante el período de comentarios. Si ciertos criterios se cumplen, la TCEQ puede actuar sobre una solicitud para renovar un permiso sin proveer una oportunidad de una audiencia administrativa de lo contencioso.

LISTA DE CORREO. Si somete comentarios públicos, un pedido para una audiencia administrativa de lo contencioso o una reconsideración de la decisión del Director Ejecutivo, la Oficina del Secretario Principal enviará por correo los avisos públicos en relación con la solicitud. Ademas, puede pedir que la TCEQ ponga su nombre en una or mas de las listas correos siguientes (1) la lista de correo permanente para recibir los avisos de el solicitante indicado por nombre y número del permiso específico y/o (2) la lista de correo de todas las solicitudes en un condado especifico. Si desea que se agrega su nombre en una de las listas designe cual lista(s) y envia por correo su pedido a la Oficina del Secretario Principal de la TCEQ.

CONTACTOS E INFORMACIÓN A LA AGENCIA. Todos los comentarios públicos y solicitudes deben ser presentadas electrónicamente vía http://www14.tceq.texas.gov/epic/eComment/ o por escrito dirigidos a la Comisión de Texas de Calidad Ambiental, Oficial de la Secretaría (Office of Chief Clerk), MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Tenga en cuenta que cualquier información personal que usted proporcione, incluyendo su nombre, número de teléfono, dirección de correo electrónico y dirección física pasarán a formar parte del registro público de la Agencia. Para obtener más información acerca de esta solicitud de permiso o el proceso de permisos, llame al programa de educación pública de la TCEQ, gratis, al 1-800-687-4040. Si desea información en Español, puede llamar al 1-800-687-4040.

También se puede obtener información adicional de Conrad Orange Shipyard, Inc. a la dirección indicada arriba o llamando a Elizabeth Byers, Senior Consultant al 225-346-4003.

Fecha de emission 20 de junio de 2024

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

NOTICE OF APPLICATION AND PRELIMINARY DECISION FOR TPDES PERMIT FOR INDUSTRIAL WASTEWATER

RENEWAL

Permit No. WQ0005010000

APPLICATION AND PRELIMINARY DECISION. Conrad Orange Shipyard, Inc., P.O. Box 1670, Orange, Texas 77631, which operates Conrad Orange Shipyard, a marine vessel manufacturing and repair facility, has applied to the Texas Commission on Environmental Quality (TCEQ) for a renewal of Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0005010000, which authorizes the discharge of wet dock hull washing wastewater on an intermittent and flow-variable basis via Outfall 002; hydro-blasting wastewater, hull washing wastewater, dry dock effluents (ballast, wing, void tank water, and process wastewater runoff from submerging and emerging events), and stormwater on an intermittent and flow-variable basis via Outfalls 009 and 010; and hydro-blasting wastewater, hull washing wastewater, welding torch hose test water, process wastewater, and vehicle and equipment washwater on an intermittent and flow-variable basis via Outfall 011. The TCEQ received this application on May 9, 2024.

The facility is located at 710 Market Street, in the City of Orange, Orange County, Texas 77630. This link to an electronic map of the site or facility's general location is provided as a public courtesy and is not part of the application or notice. For the exact location, refer to the application.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-93.735555,30.083333&level=18
The effluent is discharged directly to the Sabine River Tidal in Segment No. 0501 of the Sabine River Basin. The designated uses for Segment No. 0501 are primary contact recreation and high aquatic life use.

The TCEQ Executive Director has completed the technical review of the application and prepared a draft permit. The draft permit, if approved, would establish the conditions under which the facility must operate. The Executive Director has made a preliminary decision that this permit, if issued, meets all statutory and regulatory requirements. The permit application, Executive Director's preliminary decision, and draft permit are available for viewing and copying at the Orange Public Library, Public Information Section, 220 North 5th, Orange, Texas. The application, including any updates, and associated notices are available electronically at the following webpage: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications

ALTERNATIVE LANGUAGE NOTICE. Alternative language notice in Spanish is available at https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. El aviso de idioma alternativo en español está disponible en https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications.

PUBLIC COMMENT / PUBLIC MEETING. You may submit public comments or request a public meeting about this application. The purpose of a public meeting is to provide the opportunity to submit written or oral comment or to ask questions about the application. Generally, the TCEQ will hold a public meeting if the Executive Director determines that there is a significant degree of public interest in the application or if requested by a local legislator. A public meeting is not a contested case hearing.

OPPORTUNITY FOR A CONTESTED CASE HEARING. After the deadline for public comments, the Executive Director will consider the comments and prepare a response to all relevant and material, or significant public comments. The response to comments, along with the Executive Director's decision on the application, will be mailed to everyone who submitted public comments or who requested to be on a mailing list for this application. If comments are received, the mailing will also provide instructions for requesting a contested case hearing or reconsideration of the Executive Director's decision. A contested case hearing is a legal proceeding similar to a civil trial in a state district court.

TO REQUEST A CONTESTED CASE HEARING, YOU MUST INCLUDE THE FOLLOWING ITEMS IN YOUR REQUEST: your name, address, phone number; applicant's name and proposed permit number; the location and distance of your property/activities relative to the proposed facility; a specific description of how you would be adversely affected by the facility in a way not common to the general public; a list of all disputed issues of fact that you submit during the comment period; and the statement "[I/we] request a contested case hearing." If the request for contested case hearing is filed on behalf of a group or association, the request must designate the group's representative for receiving future correspondence; identify by name and physical address an individual member of the group who would be adversely affected by the proposed facility or activity; provide the information discussed above regarding the affected member's location and distance from the facility or activity; explain how and why the member would be affected; and explain how the interests the group seeks to protect are relevant to the group's purpose.

Following the close of all applicable comment and request periods, the Executive Director will forward the application and any requests for reconsideration or for a contested case hearing to the TCEQ Commissioners for their consideration at a scheduled Commission meeting. The Commission may only grant a request for a contested case hearing on issues the requestor submitted in their timely comments that were not subsequently withdrawn. If a hearing is granted, the subject of a hearing will be limited to disputed issues of fact or mixed questions of fact and law relating to relevant and material water quality concerns submitted during the comment period. TCEQ may act on an application to renew a permit for discharge of wastewater without providing an opportunity for a contested case hearing if certain criteria are met.

EXECUTIVE DIRECTOR ACTION. The Executive Director may issue final approval of the application unless a timely contested case hearing request or a timely request for reconsideration is filed. If a timely hearing request or request for reconsideration is filed, the Executive Director will not issue final approval of the permit and will forward the application and requests to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

MAILING LIST. If you submit public comments, a request for a contested case hearing or a reconsideration of the Executive Director's decision, you will be added to the mailing list for this specific application to receive future public notices mailed by the Office of the Chief Clerk. In addition, you may request to be added to: (1) the permanent list for a specific applicant name and permit number; and (2) the mailing list for a specific county. If you wish to be placed on the permanent and the county mailing list, clearly specify which list(s) and send your request to TCEQ Office of the Chief Clerk at the address below.

All written public comments and public meeting requests must be submitted to the Office of the Chief Clerk, MC 105, TCEQ, P.O. Box 13087, Austin, TX 78711-3087 or electronically at https://www.tceq.texas.gov/goto/comment within 30 days from the date of newspaper publication of this notice.

INFORMATION AVAILABLE ONLINE. For details about the status of the application, visit the Commissioners' Integrated Database at https://www.tceq.texas.gov/goto/cid/. Search the database using the permit number for this application, which is provided at the top of this notice.

AGENCY CONTACTS AND INFORMATION. Public comments and requests must be submitted either electronically at https://www.tceq.texas.gov/goto/comment, or in writing to the Texas Commission on Environmental Quality, Office of the Chief Clerk, MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Please be aware that any contact information you provide, including your name, phone number, email address, and physical address will become part of the agency's public record. For more information about this permit application or the permitting process, please call the TCEQ Public Education Program, toll free, at 1-800-687-4040 or visit their website at https://www.tceq.texas.gov/agency/decisions/participation/permitting-participation. Si desea información en Español, puede llamar al 1-800-687-4040.

Further information may also be obtained from Conrad Orange Shipyard, Inc. at the address stated above or by calling Ms. Elizabetrh Byers, Senior Consultant, at 225-346-4003.

Issued: October 28, 2025

Comisión De Calidad Ambiental Del Estado De Texas

AVISO DE LA SOLICITUD Y DECISIÓN PRELIMINAR PARA EL PERMISO DEL SISTEMA DE ELIMINACION DE DESCARGAS DE CONTAMINANTES DE TEXAS (TPDES) PARA AGUAS RESIDUALES INDUSTRIALES

RENOVACIÓN

PERMISO NO. WQ0005010000

SOLICITUD Y DECISIÓN PRELIMINAR. Conrad Orange Shipyard, Inc., P.O. Box 1670, Orange, Texas 77631, que opera Conrad Orange Shipyard, una instalación de fabricación y reparación de embarcaciones marinas ha solicitado a la Comisión de Calidad Ambiental del Estado de Texas (TCEQ) una renovación del Permiso No. WQ0005010000 para autorizar el Sistema de Eliminación de Descargas de Contaminantes de Texas (TPDES). Este permiso autoriza la descarga de aguas residuales del lavado de cascos en muelle húmedo de manera intermitente y con caudal variable a través del punto de descarga 002; aguas residuales de hidroarenado, aguas residuales del lavado de cascos, efluentes de dique seco (agua de lastre, tanques laterales, tanques vacíos y escorrentía de aguas residuales de procesos durante eventos de inmersión y emersión), y aguas pluviales de manera intermitente y con caudal variable a través de los puntos de descarga 009 y 010; y aguas residuales de hidroarenado, aguas residuales del lavado de cascos, agua de prueba de mangueras de soplete de soldadura, aguas residuales de procesos, y aguas de lavado de vehículos y equipos de manera intermitente y con caudal variable a través del punto de descarga 011. La TCEQ recibió esta solicitud el 9 de mayo de 2024.

La planta está ubicada en 710 Market Street, en la ciudad de Orange en el Condado de Orange, Texas. Este enlace a un mapa electrónico de la ubicación general del sitio o de la instalación es proporcionado como una cortesía y no es parte de la solicitud o del aviso. Para la ubicación exacta, consulte la solicitud.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-93.735555.30.083333&level=18 El efluente tratado es descargado al Sabine River Tidal en el Segmento No. 0501 de la Cuenca del Río Sabine. Los usos designados para el Segmento No. 0501 son usos elevados de vida acuática y recreación de contacto primario.

El Director Ejecutivo de la TCEQ ha completado la revisión técnica de la solicitud y ha preparado un borrador del permiso. El borrador del permiso, si es aprobado, establecería las condiciones bajo las cuales la instalación debe operar. El Director Ejecutivo ha tomado una decisión preliminar que si este permiso es emitido, cumple con todos los requisitos normativos y legales. La solicitud del permiso, la decisión preliminar del Director Ejecutivo y el borrador del permiso están disponibles para leer y copiar en la Librería Publica de Orange, en la Sección de Información Pública, 220 North 5th, Orange, Texas. La solicitud (cualquier actualización y aviso inclusive) está disponible electrónicamente en la siguiente página web:

https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications

AVISO DE IDIOMA ALTERNATIVO. El aviso de idioma alternativo en español está disponible en https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications.

COMENTARIO PUBLICO / REUNION PUBLICA. Usted puede presentar comentarios públicos o pedir una reunión pública sobre esta solicitud. El propósito de una reunión pública es dar la oportunidad de presentar comentarios o hacer preguntas acerca de la solicitud. La TCEQ realiza una reunión pública si el Director Ejecutivo determina que hay un grado de interés público suficiente en la solicitud o si un legislador local lo pide. Una reunión pública no es una audiencia administrativa de lo contencioso.

OPORTUNIDAD PARA UNA AUDIENCIA DE CASO IMPUGNADO. Después de la fecha límite para los comentarios públicos, el director ejecutivo considerará los comentarios y preparará una respuesta a todos los comentarios públicos relevantes y materiales, o significativos. La respuesta a los comentarios, junto con la decisión del director ejecutivo sobre la solicitud, se enviará por correo a todos los que enviaron comentarios públicos o que solicitaron estar en una lista de correo para esta solicitud. Si se reciben comentarios, el correo también proporcionará instrucciones para solicitar una audiencia de caso impugnado o reconsiderar la decisión del director ejecutivo. Una audiencia de caso disputado es un procedimiento legal similar a un juicio civil en un tribunal de distrito estatal.

PARA SOLICITAR UNA AUDIENCIA DE CASO IMPUGNADO, USTED DEBE INCLUIR EN SU SOLICITUD LOS SIGUIENTES DATOS: su nombre, dirección, y número de teléfono; el nombre del solicitante y número del permiso; la ubicación y distancia de su propiedad/actividad con respecto a la instalación; una descripción específica de la forma cómo usted sería afectado adversamente por el sitio de una manera no común al público en general; una lista de todas las cuestiones de hecho en disputa que usted presente durante el período de comentarios; y la declaración "[Yo/nosotros] solicito/solicitamos una audiencia de caso impugnado". Si presenta la petición para una audiencia de caso impugnado de parte de un grupo o asociación, debe identificar una persona que representa al grupo para recibir correspondencia en el futuro; identificar el nombre y la dirección de un miembro del grupo que sería afectado adversamente por la planta o la actividad propuesta; proveer la información indicada anteriormente con respecto a la ubicación del miembro afectado y su distancia de la planta o actividad propuesta; explicar cómo y porqué el miembro sería afectado; y explicar cómo los intereses que el grupo desea proteger son pertinentes al propósito del grupo.

Después del cierre de todos los períodos de comentarios y de petición que aplican, el Director Ejecutivo enviará la solicitud y cualquier petición para reconsideración o para una audiencia de caso impugnado a los Comisionados de la TCEQ para su consideración durante una reunión programada de la Comisión. La Comisión sólo puede conceder una solicitud de una audiencia de caso impugnado sobre los temas que el solicitante haya presentado en sus comentarios oportunos que no fueron retirados posteriormente. Si se concede una audiencia, el tema de la audiencia estará limitado a cuestiones de hecho en disputa o cuestiones mixtas de hecho y de derecho relacionadas a intereses pertinentes y materiales de calidad del agua que se hayan presentado durante el período de comentarios.

La Comisión otorgará solamente una audiencia administrativa de lo contencioso sobre los hechos reales disputados del caso que son pertinentes y esenciales para la decisión de la Comisión sobre la solicitud. Además, la Comisión sólo otorgará una audiencia administrativa de lo contencioso sobre los asuntos que fueron presentados antes del plazo de vencimiento y que no fueron retirados posteriormente. Si ciertos criterios se cumplen, la TCEQ puede actuar sobre una solicitud para renovar un permiso para descargar aguas residuales sin proveer una oportunidad de una audiencia administrativa de lo contencioso.

ACCIÓN DEL DIRECTOR EJECUTIVO. El Director Ejecutivo puede emitir la aprobación final de la solicitud a menos que se presente una solicitud de audiencia de caso impugnado oportunamente o una solicitud de reconsideración. Si se presenta una solicitud de audiencia oportuna o una solicitud de reconsideración, el Director Ejecutivo no emitirá la aprobación final del permiso y enviará la solicitud y la petición a los Comisionados de la TCEQ para su consideración en una reunión programada de la Comisión.

LISTA DE CORREO. Si envía comentarios públicos, una solicitud de una audiencia de caso impugnado o una reconsideración de la decisión del Director Ejecutivo, se le agregará a la lista de correo para que esta solicitud reciba avisos públicos futuros enviadas por correo por la Oficina del Secretario Oficial. Además, puede solicitar ser colocado en: (1) la lista de correo permanente para un nombre de solicitante específico y número de permiso; y/o (2) la lista de correo para un condado específico. Para ser colocado en la lista de correo permanente y / o del condado, especifique claramente qué lista(s) y envíe su solicitud a la Oficina del Secretario Oficial de la TCEQ a la dirección a continuación.

Todos los comentarios públicos escritos y las solicitudes de reunión pública deben enviarse a la Office of the Chief Clerk, MC 105, TCEQ, P.O. Box 13087, Austin, TX 78711-3087 o electrónicamente a https://www14.tceq.texas.gov/epic/eComment/dentro de los 30 días a partir de la fecha de publicación de este aviso en el periódico. INFORMACIÓN DISPONIBLE EN LÍNEA. Para obtener detalles sobre el estado de la solicitud, visite la Base de Datos Integrada de los Comisionados en www.tceq.texas.gov/goto/cid. Busque en la base de datos utilizando el número de permiso para esta solicitud, que se proporciona en la parte superior de este aviso.

CONTACTOS E INFORMACIÓN DE LA AGENCIA. Los comentarios y solicitudes públicas deben enviarse electrónicamente a https://www14.tceq.texas.gov/epic/eComment/, o por escrito a Texas Commission on Environmental Quality, Office of the Chief Clerk, MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Cualquier información personal que envíe a al TCEQ pasará a formar parte del registro de la agencia; esto incluye las direcciones de correo electrónico. Para obtener más información sobre esta solicitud de permiso o el proceso de permisos, llame al Programa de Educación Pública de la TCEQ, sin cargo, al 1-800-687-4040 o visite su sitio web en www.tceq.texas.gov/goto/pep. Si desea información en español, puede llamar al 1-800-687-4040.

También se puede obtener información adicional del Conrad Orange Shipyard, Inc en la dirección indicada arriba o llamando a Ms. Elizabeth Byers, Consultora Principal, al 225-346-4003.

Fecha de emisión	
------------------	--

May 9, 2024

Executive Director Applications Review and Processing Team, MC-148 Texas Commission on Environmental Quality 12100 Park 35 Circle Austin, Texas 78753

RE: TPDES Renewal Permit Application Conrad Orange Shipyard, Incorporated Rn 102745825/CN 604118448

Dear Sir/Madam:

On behalf of our client, Conrad Orange Shipyard, Incorporated (COS), Trinity Consultants submits herein an application for the renewal of the Individual Texas Pollutant Discharge Elimination System (TPDES) Permit for the COS facility in the City of Orange, Orange County, Texas. One original and two copies of the application are included in this submittal.

The Administrative forms and the Technical forms are provided in Appendices A and B, respectively. Also enclosed are facility figures and maps in Appendix C. For your reference, a copy of the Application Fee (\$1,215) voucher submitted via ePay is attached in Appendix D. The Core Data form is included in Appendix E. The Plain Language Summaries are included in Appendix F. The Supplemental Permit Information Form is included as Appendix G.

If you have additional questions, please feel free to call me at 225-346-4003 or email me at ebvers@trinityconsultants.com

Sincerely,

TRINITY CONSULTANTS

Elizabeth M. Byers Senior Consultant

Attachments

cc: Robert Castile, Conrad Orange Shipyard, Incorporated (Orange, TX)

TEXAS POLLUTANT DISCHAGE ELIMINATION SYSTEM

Permit Renewal Application

CONRAD ORANGE SHIPYARD, INC.> CONRAD ORANGE SHIPYARD

Prepared By:

Elizabeth Byers – Senior Consultant Alexa Harris – Consultant

TRINITY CONSULTANTS

8545 United Plaza Blvd, Suite 350 Baton Rouge, LA 70809 (225) 346-4003

May 2024

Project 231901.0015

TABLE OF CONTENTS

			SUMMARY	1-1
	1.1	Gene	ral Facility Information	1-1
2.	DES	CRIPTI	ON OF SHIPYARD OPERATIONS	2-1
	2.1	Facili	ty Outfalls	2-1
			Outfall 002: Wet Dock Hull Washing Wastewater	
		2.1.2	Outfalls 009 and 010: Dry Docks	2-2
		2.1.3	Outfall 011: Other Wastewaters	2-2
		2.1.4	Summary of Outfalls Covered by Industrial Wastewater Permit	2-2
	2.2	Analy	tical Data Discussion	2-3
AP 1	PEND	OIX B. 1	TCEQ INDUSTRIAL WASTEWATER PERMIT APPLICATION — TECHN	ICAL FORMSB-
AP	PEND	OIX C. F	FIGURES	C-1
AP	PEND	OIX D.	APPLICATION FEE	D-1
AP	PEND	OIX E. C	CORE DATA FORM	E-1
AP	PEND	IX F. T	CEQ PUBLIC NOTICE PLAIN LANGUAGE SUMMARIES	F-1
ΔΡ	PFNI	IX G. S	SUPPLEMENTAL PERMIT INFORMATION FORM (SPIF)	G-1

Conrad Orange Shipyard, Inc. (COS) is primarily engaged in the construction of new marine vessels to include barges, crew boats, towboats, etc. under SIC code 3731 (equivalent NAICS 336611). In addition, the facility repairs marine vessels. The approximately 22-acre site is located at 710 Market Street, on the west bank of the Sabine River in Orange, Orange County, Texas. The site is located in an industrialized area characterized primarily by marine related interests, both on the west bank (Texas) and the east bank (Orange Harbor Island, Louisiana).

COS is submitting this application in order to renew its TPDES Water Quality Permit WQ0005010000 for industrial wastewater discharges.

In October of 2021, COS filed a Notice of Intent (NOI) with the Texas Commission on Environmental Quality (TCEQ) requesting the renewal of coverage under renewed Texas Pollutant Discharge Elimination System Multi-Sector General Permit (TPDES-MSGP) Number TXR050000 for Storm Water Discharges Associated with Industrial Activity. The TCEQ issued Notice of Coverage with TPDES Permit No.TXR05Q959. COS will continue the coverage of storm water discharges under the TPDES-MSGP.

Additionally, COS performs hydrostatic testing on vessels/tanks. A NOI was submitted for coverage under the TPDES General Permit TXG670000 in June of 2020. Coverage was authorized by TCEQ with General Permit No. TXG670215. COS typically tests only newly constructed vessels/tanks. However, a NOI was submitted for coverage in the event a previously used vessel/tank requires testing. COS will continue coverage of hydrostatic test wastewater under the General Permit.

1.1 General Facility Information

There have been no substantive changes to the COS operations since the issuance of the current TPDES Industrial Wastewater Permit WQ0005010000.

The shipyard is located at 710 Market Street, Orange, Texas. General information regarding ownership, site contacts, TCEQ reference numbers and Standard Industrial Classification (SIC) codes are provided below.

Owner/Operator Conrad Orange Shipyard, Inc.

Physical Address 710 Market Street

Orange, TX 77630

Mailing Address P.O. Box 1670

Orange, TX 77631-1670

On-Site Contact Robert Castile, HSE Manager

Phone (409) 883-6666 Fax (409) 882-0609

RJCastile@conradindustries.com

TPDES Industrial Wastewater No. WQ0005010000

TPDES MSGP No. TXR05Q959

TPDES Hydrostatic General Permit No.: TXG670215

TCEQ RN/ TCEQ CN: 102745825 / 604118448

Facility Operations Shipbuilding and Repair

SIC/NAICS Code 3731 / 336611 – Ship Building and Repairing

Maps and figures required by the application are included in Appendix C. Figure 1 is a topographic map and figure 2 is a facility map.

2. DESCRIPTION OF SHIPYARD OPERATIONS

Under various owners, a shipyard has operated at the site since at least the early 1970s. Conrad Industries, Inc. purchased the facility in the late 1990s. The facility is involved primarily in new construction of marine vessels. The repair of vessels is limited. Other maintenance/repair activities include those to equipment and vehicles used at the facility. Primary site activities include welding, cutting, and machining; surface coating and abrasive and hydro-blasting; maintenance, cleaning, and fueling of site vehicular equipment; and other ancillary activities associated with construction of marine vessels.

The shipyard portion of the site consists of a six-bay, 140,000 square foot assembly shop; adjacent office and administrative facilities; a paint storage building/warehouse; a container box for equipment storage; a large assembly yard equipped with three turntables to position vessels during construction; a northern boat slip and wharf with access to the Sabine River; a southeastern boat slip for two dry docks (proposed); an adjacent laydown yard; employee parking area; and a guard gate. The ship construction/repair area is 80 percent paved. The support areas are about 18 percent limestone/shell (northwest property near the northern boat slip and the areas behind the assembly building). About two percent of the site is composed of small, isolated, grassed areas along the riverbank and storm water ditches adjacent to the access roads. The laydown yard surfaces are approximately 80 percent limestone/shell and 20 percent grassed areas. Other adjacent undeveloped areas are used for employee parking and limited industrial activities such as the carpenter and maintenance shops and repair and laydown offices along the western property boundary.

2.1 Facility Outfalls

Most water at the site is either routed 1) east, directly to the Sabine River through a series of pipes from the localized turntables and wharf area, or 2) west, through a series of site trenches and drain inlets to storm water conveyance ditches on the west and south boundaries of the facility. The outfall designated as 001 in the MSGP is the discharge from the facility and directs water to the Sabine River from the storm water conveyance ditch at the southeast corner of the property fence line as well as effluent from the marine railway. The outfall designated as 008 in the MSGP drains the parking lot on the western side of the site, the laydown yard, and other non-industrial activities on the west and discharges into a city storm drain routed south of the facility. No process wastewater is discharged from Outfall 008.

Newly constructed vessels or equipment may be hydrotested for leaks using municipal or river water. In addition, repaired vessels or equipment may be hydrotested for leaks using municipal or river water. Effluents may be discharged directly to the Sabine River or via a discharge pipe into the Sabine River. This wastewater is covered by the hydrostatic general permit.

Facility outfalls covered under the TPDES Industrial Wastewater Permit are discussed below.

2.1.1 Outfall 002: Wet Dock Hull Washing Wastewater

Hull washing typically occurs at the wet dock but may occur anywhere along the river at the facility. This activity includes the use of water at low pressure in order to remove solids from the vessel hull. The wash water enters the Sabine River directly from the vessels.

2.1.2 Outfalls 009 and 010: Dry Docks

COS anticipates mooring one or two dry docks at the COS shipyard in the near future. The dry docks will be moored at the northeast property line. The dry docks will be used for marine vessel repair. Repair activities may include, but are not limited to, abrasive or hydro-blasting, hull washing, surface painting, cutting, or welding, and hydrostatic testing. Best management practices will be used to minimize the potential release of materials to the Sabine River.

In addition, river water will be used to fill the dry dock tanks for submerging the dock to charge/off load vessels. These waters will be discharged back to the Sabine River when raising the dry dock to off-load vessels. These waters will not be exposed to industrial activities.

2.1.3 Outfall 011: Other Wastewaters

<u>Torch Hose Test Waters</u>: Welding torch hoses are submerged in large buckets of potable water to test for leaks. Following testing, the potable water is visually inspected for sheen or other visible signs of contamination, prior to discharge to the concrete surface in the shipyard. These test waters drain to the discharge pipe that directs water to the Sabine River Tidal.

<u>Vehicle/Equipment Wash Down</u>: Typically, vehicle, equipment, or vessel wash down is conducted within the turntable area. Generally, wash down effluent is captured in portable containment or will evaporate prior to reaching the water way. However, it is possible for the water to be discharged from containment. Therefore, this effluent is covered under Outfall 011 in the event it is discharged. No soaps or detergents are used for vehicle, equipment, or vessel wash down.

<u>Hydro-Blasting</u>: Primarily new materials are hydro-blasted, but some painted materials are also hydro-blasted. Hydro-blasting is conducted in areas of the facility that have shallow grades, which direct the water through a metal grate into the subsurface drainage system. Best management practices are used to capture paint chips, rust, or other materials prior to entering the subsurface drainage system. In the event the solids aren't collected, the particulate paint chips/rust settle in the catchment basins prior to the discharge of effluent to the water way. The catch basins are inspected and cleaned periodically.

Hydro-blasting is occasionally conducted on vessels on the rails in the rail area. This occurs only during dry weather so any water will have evaporated prior to entering the water way. However, this could potentially occur more frequently as the facility workload increases.

The samples are collected for analysis at the point of discharge from the activity, prior to commingling with other waters and discharging via the discharge pipe directly to the Sabine River Tidal.

2.1.4 Summary of Outfalls Covered by Industrial Wastewater Permit

Outfall Number	Outfall Description	Sample Point		
002	Wet dock hull washing wastewater. 002 after contact with hul			
		surface and prior to entering the		
		Sabine River Tidal.		

Outfall Number	Outfall Description	Sample Point
009 and 010	Hydro-blasting wastewater, hull washing wastewater, and dry dock effluents (ballast, wing, and void tank water, process wastewater runoff from submerging and emerging events) and storm water.	009 and 010 at dry dock freeing port prior to entering the Sabine River Tidal. Sampling of dry dock effluents, wing tank, void water tank, and ballast water is not required during emerging and submerging events.
011	Hydro-blasting wastewater, hull wastewater, welding torch hose test water, process wastewater, and vehicle and equipment wash water.	011 prior to commingling with other water or wastewater and prior to entering the Sabine River Tidal via discharge pipe.

2.2 Analytical Data Discussion

COS collects samples from Outfall 001 per the requirements of the MSGP and from Outfalls 002 and 011 under the individual TPDES permit. The dry docks are not yet constructed. Therefore, no samples have been collected from Outfalls 009 and 010.

Due to the intermittent nature of the discharges, the required analytical data has not yet been collected. The additional analyses required by the TPDES renewal application forms will be performed upon the next sample collections and submitted to the TCEQ under separate cover.

APPENDIX A. TCEQ INDUSTRIAL WASTEWATER PERMIT APPLICATION - ADMINISTRATIVE FORMS

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

INDUSTRIAL WASTEWATER PERMIT APPLICATION CHECKLIST

Complete and submit this checklist with the industrial wastewater permit application.

APPLICANT NAME: Conrad Orange Shipyard, Inc.

PERMIT NUMBER (If new, leave blank): WQ0001050000

Indicate if each of the following items is included in your application.

	Y	N		Y	N
Administrative Report 1.0	\boxtimes		Worksheet 8.0		
Administrative Report 1.1		\boxtimes	Worksheet 9.0		\boxtimes
SPIF	\boxtimes		Worksheet 10.0		\boxtimes
Core Data Form	\boxtimes		Worksheet 11.0		\boxtimes
Public Involvement Plan Form		\boxtimes	Worksheet 11.1		\boxtimes
Plain Language Summary	\boxtimes		Worksheet 11.2		\boxtimes
Technical Report 1.0	\boxtimes		Worksheet 11.3		\boxtimes
Worksheet 1.0	\boxtimes		Original USGS Map	\boxtimes	
Worksheet 2.0	\boxtimes		Affected Landowners Map		\boxtimes
Worksheet 3.0			Landowner Disk or Labels		\boxtimes
Worksheet 3.1		\boxtimes	Flow Diagram		\boxtimes
Worksheet 3.2		\boxtimes	Site Drawing	\boxtimes	
Worksheet 3.3		\boxtimes	Original Photographs		\boxtimes
Worksheet 4.0	\boxtimes		Design Calculations		\boxtimes
Worksheet 4.1		\boxtimes	Solids Management Plan		\boxtimes
Worksheet 5.0		\boxtimes	Water Balance		\boxtimes
Worksheet 6.0		\boxtimes			
Worksheet 7.0	\boxtimes				
For TCEQ Use Only					
Segment Number Expiration Date Permit Number		_County Region			

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

INDUSTRIAL WASTEWATER PERMIT APPLICATION **ADMINISTRATIVE REPORT 1.0**

This report is required for all applications for TPDES permits and TLAPs, except applications for oil and gas extraction operations subject to 40 CFR Part 435. Contact the Applications Review and Processing Team at 512-239-4671 with any questions about completing this report.

Applications for oil and gas extraction operations subject to 40 CFR Part 435 must use the Oil

	d Gas Exploration and Production Administrative Report (<u>TCEQ Form-20893 and 20893-</u> st ¹).
Ite	em 1. Application Information and Fees (Instructions, Page 26)
a.	Complete each field with the requested information, if applicable.
	Applicant Name: <u>Conrad Orange Shipyard, Inc.</u>
	Permit No.: <u>WO0005010000</u>
	EPA ID No.: <u>TX0134422</u>
	Expiration Date: Nov 7, 2024
b.	Check the box next to the appropriate authorization type.
	☑ Industrial Wastewater (wastewater and stormwater)
	☐ Industrial Stormwater (stormwater only)
c.	Check the box next to the appropriate facility status.
	□ Inactive
d.	Check the box next to the appropriate permit type.
	☑ TPDES Permit □ TLAP □ TPDES with TLAP component
e.	Check the box next to the appropriate application type.
	□ New
	☐ Renewal with changes ☐ Renewal without changes
	\square Major amendment with renewal \square Major amendment without renewal
	☐ Minor amendment without renewal
	☐ Minor modification without renewal
f.	If applying for an amendment or modification, describe the request: Not applicable
Foi	r TCEQ Use Only
Seg	gment NumberCounty piration DateRegion
	mit Number

¹ https://www.tceq.texas.gov/publications/search_forms.html

g. Application Fee

EPA Classification	New	Major Amend. (with or without renewal)	Renewal (with or without changes)	Minor Amend. / Minor Mod. (without renewal)
Minor facility not subject to EPA categorical effluent guidelines (40 CFR Parts 400-471)	□ \$350	□ \$350	□ \$315	□ \$150
Minor facility subject to EPA categorical effluent guidelines (40 CFR Parts 400-471)	□ \$1,250	□ \$1,250	⊠ \$1,215	□ \$150
Major facility	N/A ²	□ \$2,050	□ \$2,015	□ \$450

h. Payment Information

Mailed

Check or money order No.: <u>Not applicable</u> Check or money order amt.: <u>Not applicable</u>

Named printed on check or money order: Not applicable

Epay

Voucher number: <u>704451</u> and <u>704452</u> Copy of voucher attachment: Yes

Item 2. Applicant Information (Instructions, Pages 26)

a. Customer Number, if applicant is an existing customer: <u>CN604118448</u> **Note:** Locate the customer number using the TCEQ's Central Registry Customer Search³.

b. Legal name of the entity (applicant) applying for this permit: <u>Conrad Orange Shipyard, Inc.</u> **Note:** The owner of the facility must apply for the permit. The legal name must be spelled exactly as filed with the TX SOS, Texas Comptroller of Public Accounts, County, or in the legal documents forming the entity.

c. Name and title of the person signing the application. (**Note:** The person must be an executive official that meets signatory requirements in 30 TAC § 305.44.)

Prefix: Mr. Full Name (Last/First Name): Eric Bland

Title: <u>G.M. COS / Dir. LNG Ops</u> Credential: <u>Click to enter text.</u>

d. Will the applicant have overall financial responsibility for the facility?

² All facilities are designated as minors until formally classified as a major by EPA.

³ https://www15.tceq.texas.gov/crpub/index.cfm?fuseaction=cust.CustSearch

	⊠ Yes □ No
	Note: The entity with overall financial responsibility for the facility must apply as a coapplicant, if not the facility owner.
Ite	em 3. Co-applicant Information (Instructions, Page 27)
\boxtimes	Check this box if there is no co-applicant.; otherwise, complete the below questions.
a.	Legal name of the entity (co-applicant) applying for this permit: Click to enter text.
	Note: The legal name must be spelled exactly as filed with the TX SOS, Texas Comptroller of Public Accounts, County, or in the legal documents forming the entity.
b.	Customer Number (if applicant is an existing customer): $\underline{\text{CN}}$
	Note: Locate the customer number using the TCEQ's Central Registry Customer Search.
c.	Name and title of the person signing the application. (Note: The person must be an executive official that meets signatory requirements in 30 TAC \S 305.44.)
	Prefix: <u>Click to enter text.</u> Full Name (Last/First Name): <u>Click to enter text.</u>
	Title: <u>Click to enter text.</u> Credential: <u>Click to enter text.</u>
d.	Will the co-applicant have overall financial responsibility for the facility? \square Yes \square No
	Note: The entity with overall financial responsibility for the facility must apply as a coapplicant, if not the facility owner.
Ite	em 4. Core Data Form (Instructions, Pages 27)
a.	Complete one Core Data Form (TCEQ Form 10400) for each customer (applicant and coapplicant(s)) and include as an attachment. If the customer type selected on the Core Data Form is Individual, complete Attachment 1 of the Administrative Report. Attachment: $\underline{\text{Appendix E}}$
Ite	em 5. Application Contact Information (Instructions, Page 27)
ap	ovide names of two individuals who can be contact for additional information about this plication. Indicate if the individual can be contact about administrative or technical formation, or both.
a.	$oxed{\boxtimes}$ Administrative Contact . $oxed{\boxtimes}$ Technical Contact
	Prefix: Mrs. Full Name (Last/First Name): Elizabeth Byers
	Title: <u>Senior Consultant</u> Credential: <u>Click to enter text.</u>
	Organization Name: <u>Trinity Consultants</u>
	Mailing Address: <u>8545 United Plaza, Suite 350</u> City/State/Zip: <u>Baton Rouge, LA, 70809</u>
	Phone No: <u>225-346-4003</u> Email: <u>ebyers@trinityconsultants.com</u>

Full Name (Last/First Name): Robert Castile

□ Technical Contact

Credential: Click to enter text.

b. 🗵 Administrative Contact

Title: <u>HSE Manager</u>

Prefix: Mr.

Organization Name: Conrad Orange Shipyard, Inc.

Mailing Address: <u>Post Office Box 1670</u> City/State/Zip: <u>Orange, TX, 77631</u>

Phone No: <u>409-883-6666</u> Email: <u>rjcastile@conradindustries.com</u>

Attachment: Not applicable

Item 6. Permit Contact Information (Instructions, Page 28)

Provide two names of individuals that can be contacted throughout the permit term.

a. Prefix: Mr. Full Name (Last/First Name): Eric Bland

Title: <u>G.M. COS / Dir. LNG Ops</u> Credential: <u>Click to enter text.</u>

Organization Name: Conrad Orange Shipyard, Inc.

Mailing Address: <u>Post Office Box 1670</u> City/State/Zip: <u>Orange, TX, 77631</u>

Phone No: 409-883-6666 Email: ejbland@conradindustries.com

b. Prefix: Mr. Full Name (Last/First Name): Robert Castile

Title: HSE Manager Credential: Click to enter text.

Organization Name: Conrad Orange Shipyard, Inc.

Mailing Address: <u>Post Office Box 1670</u> City/State/Zip: <u>Orange. TX, 77631</u>

Phone No: 409-833-6666 Email: rjcastile@conradindustries.com

Attachment: Not Applicable

Item 7. Billing Contact Information (Instructions, Page 28)

The permittee is responsible for paying the annual fee. The annual fee will be assessed for permits **in effect on September 1 of each year**. The TCEQ will send a bill to the address provided in this section. The permittee is responsible for terminating the permit when it is no longer needed (form TCEQ-20029).

Provide the complete mailing address where the annual fee invoice should be mailed and the name and phone number of the permittee's representative responsible for payment of the invoice.

Prefix: Mr. Full Name (Last/First Name): Robert Castile

Title: <u>HSE Manager</u> Credential: <u>Click to enter text.</u>

Organization Name: Conrad Orange Shipyard, Inc.

Mailing Address: Post Office Box 1670 City/State/Zip: Orange, TX, 77631

Phone No: 409-833-6666 Email: rjcastile@conradindustries.com

Item 8. DMR/MER Contact Information (Instructions, Page 28)

Provide the name and mailing address of the person delegated to receive and submit DMRs or MERs. **Note:** DMR data must be submitted through the NetDMR system. An electronic reporting account can be established once the facility has obtained the permit number.

Prefix: Mr. Full Name (Last/First Name): Robert Castile

Title: HSE Manager Credential: Click to enter text.

Organization Name: Conrad Orange Shipyard, Inc.

Mailing Address: Post Office Box 1670 City/State/Zip: Orange, TX, 77631

Phone No: <u>409-833-6666</u> Email: <u>rjcastile@conradindustries.com</u>

Item 9. Notice Information (Instructions, Pages 28)

a. Individual Publishing the Notices

Prefix: Mrs. Full Name (Last/First Name): Elizabeth Byers
Title: Senior Consultant Credential: Click to enter text.

Organization Name: Trinity Consultants

Mailing Address: <u>8545 United Plaza, Suite 350</u> City/State/Zip: <u>Baton Rouge, LA, 70809</u>

Phone No: 225-346-4003 Email: ebyers@trinityconsultants.com

- b. Method for Receiving Notice of Receipt and Intent to Obtain a Water Quality Permit Package (only for NORI, NAPD will be sent via regular mail)
 - ☑ E-mail: ebyers@trinityconsultants.com
 - ☐ Fax: Click to enter text.
 - ☐ Regular Mail (USPS)

Mailing Address: Click to enter text.

City/State/Zip Code: Click to enter text.

c. Contact in the Notice

Prefix: Mrs. Full Name (Last/First Name): Elizabeth Byers

Title: <u>Senior Consultant</u> Credential: <u>Click to enter text.</u>

Organization Name: <u>Trinity Consultants</u>

Phone No: <u>225-346-4003</u> Email: <u>ebyers@trinityconsultants.com</u>

d. Public Viewing Location Information

Note: If the facility or outfall is located in more than one county, provide a public viewing place for each county.

Public building name: Orange Public Library Location within the building: Public

Information Section

Physical Address of Building: 220 North 5th

City: Orange County: Orange

e. Bilingual Notice Requirements

This information is required for new, major amendment, minor amendment or minor modification, and renewal applications.

This section of the application is only used to determine if alternative language notices will be needed. Complete instructions on publishing the alternative language notices will be in your public notice package.

Call the bilingual/ESL coordinator at the nearest elementary and middle schools and obtain the following information to determine if an alternative language notice(s) is required.

	1.	elementary or middle school nearest to the facility or proposed facility?
		⊠ Yes □ No
		If no, publication of an alternative language notice is not required; skip to Item 8 (Regulated Entity and Permitted Site Information.)
	2.	Are the students who attend either the elementary school or the middle school enrolled in a bilingual education program at that school?
		⊠ Yes □ No
	3.	Do the students at these schools attend a bilingual education program at another location?
		□ Yes ⋈ No
	4.	Would the school be required to provide a bilingual education program, but the school has waived out of this requirement under 19 TAC §89.1205(g)?
		□ Yes □ No ⋈ N/A
	5.	If the answer is yes to question 1, 2, 3, or 4, public notices in an alternative language are required. Which language is required by the bilingual program? <u>Spanish</u>
f.		in Language Summary Template – Complete the Plain Language Summary (TCEQ Form 972) and include as an attachment. Attachment: <u>Appendix F</u>
g.		mplete one Public Involvement Plan (PIP) Form (TCEQ Form 20960) for each application a new permit or major amendment and include as an attachment. Attachment: N/A
Ite	em	10. Regulated Entity and Permitted Site Information (Instructions
Ite	em	10. Regulated Entity and Permitted Site Information (Instructions Page 29)
	TC No ma the	Page 29)
a.	TC No ma the reg	Page 29) EQ issued Regulated Entity Number (RN), if available: RN102745825 Ate: If your business site is part of a larger business site, a Regulated Entity Number (RN) by already be assigned for the larger site. Use the RN assigned for the larger site. Search at TCEQ's Central Registry to determine the RN or to see if the larger site may already be
a. b.	TC No ma the reg Na Sh	Page 29) EQ issued Regulated Entity Number (RN), if available: RN102745825 Te: If your business site is part of a larger business site, a Regulated Entity Number (RN) by already be assigned for the larger site. Use the RN assigned for the larger site. Search at TCEQ's Central Registry to determine the RN or to see if the larger site may already be gistered as a Regulated Entity. If the site is found, provide the assigned RN. The project or site (the name known by the community where located): Conrad Orange
a. b.	TC No ma the reg Na Sh	Page 29) EQ issued Regulated Entity Number (RN), if available: RN102745825 Ite: If your business site is part of a larger business site, a Regulated Entity Number (RN) by already be assigned for the larger site. Use the RN assigned for the larger site. Search at TCEQ's Central Registry to determine the RN or to see if the larger site may already be gistered as a Regulated Entity. If the site is found, provide the assigned RN. Improved the name known by the community where located): Conrad Orange ipyard, Inc.
a. b.	TCO No ma the reg Na Sh Is No Wi	Page 29) EQ issued Regulated Entity Number (RN), if available: RN102745825 Ate: If your business site is part of a larger business site, a Regulated Entity Number (RN) by already be assigned for the larger site. Use the RN assigned for the larger site. Search at TCEQ's Central Registry to determine the RN or to see if the larger site may already be gistered as a Regulated Entity. If the site is found, provide the assigned RN. The project or site (the name known by the community where located): Conrad Orange in the location address of the facility in the existing permit the same?
a. b.	TC No ma the reg Na Sh Sh Wi ma	Page 29) EQ issued Regulated Entity Number (RN), if available: RN102745825 Ate: If your business site is part of a larger business site, a Regulated Entity Number (RN) by already be assigned for the larger site. Use the RN assigned for the larger site. Search of TCEQ's Central Registry to determine the RN or to see if the larger site may already be gistered as a Regulated Entity. If the site is found, provide the assigned RN. The of project or site (the name known by the community where located): Conrad Orange in the location address of the facility in the existing permit the same? Yes No N/A (new permit) The facility is located in Bexar, Comal, Hays, Kinney, Medina, Travis, Uvalde, or Illiamson County, additional information concerning protection of the Edwards Aquifer
a. b.	TCO No ma the reg Na Sh Is to Wi ma Ow	Page 29) EQ issued Regulated Entity Number (RN), if available: RN102745825 Ite: If your business site is part of a larger business site, a Regulated Entity Number (RN) by already be assigned for the larger site. Use the RN assigned for the larger site. Search at TCEQ's Central Registry to determine the RN or to see if the larger site may already be distered as a Regulated Entity. If the site is found, provide the assigned RN. Ime of project or site (the name known by the community where located): Conrad Orange in the location address of the facility in the existing permit the same? Yes No N/A (new permit) In Recall the facility is located in Bexar, Comal, Hays, Kinney, Medina, Travis, Uvalde, or Illiamson County, additional information concerning protection of the Edwards Aquifer by be required.
a. b.	TCO No ma the reg Na Sh Is : No Wi ma Ow Pre	Page 29) EQ issued Regulated Entity Number (RN), if available: RN102745825 Ite: If your business site is part of a larger business site, a Regulated Entity Number (RN) by already be assigned for the larger site. Use the RN assigned for the larger site. Search a TCEQ's Central Registry to determine the RN or to see if the larger site may already be gistered as a Regulated Entity. If the site is found, provide the assigned RN. Important the location of the facility in the existing permit the same? Yes No N/A (new permit) Ite: If the facility is located in Bexar, Comal, Hays, Kinney, Medina, Travis, Uvalde, or liamson County, additional information concerning protection of the Edwards Aquifer by be required.
a. b.	TCO No ma the reg Na Sh Is to Wi ma Ow Pre or	Page 29) EQ issued Regulated Entity Number (RN), if available: RN102745825 Inte: If your business site is part of a larger business site, a Regulated Entity Number (RN) by already be assigned for the larger site. Use the RN assigned for the larger site. Search of TCEQ's Central Registry to determine the RN or to see if the larger site may already be gistered as a Regulated Entity. If the site is found, provide the assigned RN. Interpretation of project or site (the name known by the community where located): Conrad Orange in the location address of the facility in the existing permit the same? Yes No N/A (new permit) Inte: If the facility is located in Bexar, Comal, Hays, Kinney, Medina, Travis, Uvalde, or Illiamson County, additional information concerning protection of the Edwards Aquifer by be required. Interpretation of the Edwards Aquifer in the real orange Shipyard, Inc. Full Name (Last/First Name): Not applicable

f. Owner of land where treatment facility is or will be: Not applicable Prefix: Click to enter text. Full Name (Last/First Name): Click to enter text. Mailing Address: Click to enter text. City/State/Zip: Click to enter text. Phone No: Click to enter text. Email: Click to enter text. Note: If not the same as the facility owner, attach a long-term lease agreement in effect for at least six years (In some cases, a lease may not suffice - see instructions). Attachment: Not Applicable g. Owner of effluent TLAP disposal site (if applicable): Not applicable Prefix: Click to enter text. Full Name (Last/First Name): Click to enter text. or Organization Name: Click to enter text. Mailing Address: Click to enter text. City/State/Zip: Click to enter text. Phone No: Click to enter text. Email: Click to enter text. Note: If not the same as the facility owner, attach a long-term lease agreement in effect for at least six years. Attachment: Click to enter text. Nomer of sewage sludge disposal site (if applicable): Prefix: Click to enter text. Full Name (Last/First Name): Not applicable or Organization Name: Click to enter text. Mailing Address: Click to enter text. Phone No: Click to enter text. Full Name (Last/First Name): Not applicable or Organization Name: Click to enter text. Phone No: Click to enter text, Email: Click to enter text. Phone No: Click to enter text, Email: Click to enter text. Note: If not the same as the facility owner, attach a long-term lease agreement in effect for at least six years. Attachment: Click to enter text. Item 11. TDPES Discharge/TLAP Disposal Information (Instructions, Page 31) a. is the facility located on or does the treated effluent cross Native American Land? — Yes No b. Attach an original full size USGS Topographic Map (or an 8.5"×11" reproduced portion for renewal or amendment applications) with all required information. Check the box next to each item below to confirm it has been included on the map. Sone-mile radius — Three-miles downstream information Defficient text.	e.	Ownership of facility: Public	Private		□ Rotu	□ Federal
or Organization Name: Click to enter text. Mailing Address: Click to enter text. Phone No: Click to enter text. Phone No: Click to enter text. Note: If not the same as the facility owner, attach a long-term lease agreement in effect for at least six years (In some cases, a lease may not suffice - see instructions). Attachment: Not Applicable g. Owner of effluent TLAP disposal site (if applicable): Not applicable Prefix: Click to enter text. Mailing Address: Click to enter text. Mailing Address: Click to enter text. Mailing Address: Click to enter text. Phone No: Click to enter text. Note: If not the same as the facility owner, attach a long-term lease agreement in effect for at least six years. Attachment: Click to enter text. No Owner of sewage sludge disposal site (if applicable): Prefix: Click to enter text. Full Name (Last/First Name): Not applicable or Organization Name: Click to enter text. Mailing Address: Click to enter text. Mailing Address: Click to enter text. Mailing Address: Click to enter text. Phone No: Click to enter text. Note: If not the same as the facility owner, attach a long-term lease agreement in effect for at least six years. Attachment: Click to enter text. Note: If not the same as the facility owner, attach a long-term lease agreement in effect for at least six years. Attachment: Click to enter text. Item 11. TDPES Discharge/TLAP Disposal Information (Instructions, Page 31) a. Is the facility located on or does the treated effluent cross Native American Land? Yes No D. Attach an original full size USGS Topographic Map (or an 8.5"×1.1" reproduced portion for renewal or amendment applications) with all required information. Check the box next to each item below to confirm it has been included on the map. One-mile radius Applicant's property boundaries Highlighted discharge route(s) Highlighted discharge route(s) Highlighted discharge route(s)	f.					
Mailing Address: Click to enter text. Phone No: Click to enter text. Phone No: Click to enter text. Email: Click to enter text. Note: If not the same as the facility owner, attach a long-term lease agreement in effect for at least six years (In some cases, a lease may not suffice - see instructions). Attachment: Not Applicable g. Owner of effluent TLAP disposal site (if applicable): Not applicable Prefix: Click to enter text. Full Name (Last/First Name): Click to enter text or Organization Name: Click to enter text. Mailing Address: Click to enter text. Phone No: Click to enter text. Email: Click to enter text. Phone No: Click to enter text. Full Name (Last/First Name): Click to enter text. Note: If not the same as the facility owner, attach a long-term lease agreement in effect for at least six years. Attachment: Click to enter text. h. Owner of sewage sludge disposal site (if applicable): Prefix: Click to enter text. Full Name (Last/First Name): Not applicable or Organization Name: Click to enter text. Mailing Address: Click to enter text. Phone No: Click to enter text. City/State/Zip: Click to enter text. Note: If not the same as the facility owner, attach a long-term lease agreement in effect for at least six years. Attachment: Click to enter text. Item 11. TDPES Discharge/TLAP Disposal Information (Instructions, Page 31) a. Is the facility located on or does the treated effluent cross Native American Land? Yes No b. Attach an original full size USGS Topographic Map (or an 8.5"×11" reproduced portion for renewal or amendment applications) with all required information. Check the box next to each item below to confirm it has been included on the map. One-mile radius Highlighted discharge route(s) Highlighted discharge route(s) Sewage sludge disposal site New and future construction			Last/Firs	st Name	e): CHCK to	enter text.
Phone No: Click to enter text. Email: Click to enter text. Note: If not the same as the facility owner, attach a long-term lease agreement in effect for at least six years (In some cases, a lease may not suffice - see instructions). Attachment: Not Applicable g. Owner of effluent TLAP disposal site (if applicable): Not applicable Prefix: Click to enter text. Full Name (Last/First Name): Click to enter text. Mailing Address: Click to enter text. Phone No: Click to enter text. Email: Click to enter text. Note: If not the same as the facility owner, attach a long-term lease agreement in effect for at least six years. Attachment: Click to enter text. h. Owner of sewage sludge disposal site (if applicable): Prefix: Click to enter text. Full Name (Last/First Name): Not applicable or Organization Name: Click to enter text. Mailing Address: Click to enter text. Mailing Address: Click to enter text. Note: If not the same as the facility owner, attach a long-term lease agreement in effect for at least six years. Attachment: Click to enter text. Note: If not the same as the facility owner, attach a long-term lease agreement in effect for at least six years. Attachment: Click to enter text. Note: If not the same as the facility owner, attach a long-term lease agreement in effect for at least six years. Attachment: Click to enter text. Item 11. TDPES Discharge/TLAP Disposal Information (Instructions, Page 31) a. Is the facility located on or does the treated effluent cross Native American Land? Yes No b. Attach an original full size USGS Topographic Map (or an 8.5"×11" reproduced portion for renewal or amendment applications) with all required information. Check the box next to each item below to confirm it has been included on the map. One-mile radius Applicant's property boundaries Effluent disposal site boundaries Highlighted discharge route(s) Figure disposal site boundaries New and future construction				Q1 (Q	(
Note: If not the same as the facility owner, attach a long-term lease agreement in effect for at least six years (In some cases, a lease may not suffice - see instructions). Attachment: Not Applicable g. Owner of effluent TLAP disposal site (if applicable): Not applicable Prefix: Click to enter text. Full Name (Last/First Name): Click to enter text. or Organization Name: Click to enter text. Mailing Address: Click to enter text. Phone No: Click to enter text. Email: Click to enter text. Note: If not the same as the facility owner, attach a long-term lease agreement in effect for at least six years. Attachment: Click to enter text. h. Owner of sewage sludge disposal site (if applicable): Prefix: Click to enter text. Full Name (Last/First Name): Not applicable or Organization Name: Click to enter text. Mailing Address: Click to enter text. Mailing Address: Click to enter text. Mailing Address: Click to enter text. Phone No: Click to enter text. Email: Click to enter text. Note: If not the same as the facility owner, attach a long-term lease agreement in effect for at least six years. Attachment: Click to enter text. Item 11. TDPES Discharge/TLAP Disposal Information (Instructions, Page 31) a. Is the facility located on or does the treated effluent cross Native American Land? Yes No b. Attach an original full size USGS Topographic Map (or an 8.5"×11" reproduced portion for renewal or amendment applications) with all required information. Check the box next to each item below to confirm it has been included on the map. One-mile radius Applicant's property boundaries Labeled point(s) of discharge Highlighted discharge route(s) Effluent disposal site boundaries All wastewater ponds Sewage sludge disposal site New and future construction					ate/Zip: C	lick to enter text.
at least six years (In some cases, a lease may not suffice - see instructions). Attachment: Not Applicable g. Owner of effluent TLAP disposal site (if applicable): Not applicable Prefix: Click to enter text. Full Name (Last/First Name): Click to enter text. or Organization Name: Click to enter text. Mailing Address: Click to enter text. City/State/Zip: Click to enter text. Phone No: Click to enter text. Email: Click to enter text. Note: If not the same as the facility owner, attach a long-term lease agreement in effect for at least six years. Attachment: Click to enter text. h. Owner of sewage sludge disposal site (if applicable): Prefix: Click to enter text. Full Name (Last/First Name): Not applicable or Organization Name: Click to enter text. Mailing Address: Click to enter text. City/State/Zip: Click to enter text. Phone No: Click to enter text, Email: Click to enter text. Note: If not the same as the facility owner, attach a long-term lease agreement in effect for at least six years. Attachment: Click to enter text. Item 11. TDPES Discharge/TLAP Disposal Information (Instructions, Page 31) a. Is the facility located on or does the treated effluent cross Native American Land? Yes No b. Attach an original full size USGS Topographic Map (or an 8.5"×11" reproduced portion for renewal or amendment applications) with all required information. Check the box next to each item below to confirm it has been included on the map. One-mile radius Three-miles downstream information Applicant's property boundaries Highlighted discharge route(s) Effluent disposal site boundaries Highlighted discharge route(s) Effluent disposal site boundaries New and future construction						
Prefix: Click to enter text. Full Name (Last/First Name): Click to enter text. or Organization Name: Click to enter text. Mailing Address: Click to enter text. City/State/Zip: Click to enter text. Phone No: Click to enter text. Email: Click to enter text. Note: If not the same as the facility owner, attach a long-term lease agreement in effect for at least six years. Attachment: Click to enter text. h. Owner of sewage sludge disposal site (if applicable): Prefix: Click to enter text. Full Name (Last/First Name): Not applicable or Organization Name: Click to enter text. Mailing Address: Click to enter text. City/State/Zip: Click to enter text. Phone No: Click to enter text. Email: Click to enter text. Note: If not the same as the facility owner, attach a long-term lease agreement in effect for at least six years. Attachment: Click to enter text. Item 11. TDPES Discharge/TLAP Disposal Information (Instructions, Page 31) a. Is the facility located on or does the treated effluent cross Native American Land? Yes No b. Attach an original full size USGS Topographic Map (or an 8.5"×11" reproduced portion for renewal or amendment applications) with all required information. Check the box next to each item below to confirm it has been included on the map. One-mile radius One-mile radius Three-miles downstream information Applicant's property boundaries Highlighted discharge route(s) Effluent disposal site boundaries All wastewater ponds Sewage sludge disposal site New and future construction		at least six years (In some cases, a lease ma				
or Organization Name: Click to enter text. Mailing Address: Click to enter text. Phone No: Click to enter text. Email: Click to enter text. Note: If not the same as the facility owner, attach a long-term lease agreement in effect for at least six years. Attachment: Click to enter text. h. Owner of sewage sludge disposal site (if applicable): Prefix: Click to enter text. Full Name (Last/First Name): Not applicable or Organization Name: Click to enter text. Mailing Address: Click to enter text. Mailing Address: Click to enter text. Phone No: Click to enter text. Email: Click to enter text. Note: If not the same as the facility owner, attach a long-term lease agreement in effect for at least six years. Attachment: Click to enter text. Item 11. TDPES Discharge/TLAP Disposal Information (Instructions, Page 31) a. Is the facility located on or does the treated effluent cross Native American Land? Yes No b. Attach an original full size USGS Topographic Map (or an 8.5"×11" reproduced portion for renewal or amendment applications) with all required information. Check the box next to each item below to confirm it has been included on the map. One-mile radius Three-miles downstream information Applicant's property boundaries Treatment facility boundaries Highlighted discharge route(s) Effluent disposal site boundaries All wastewater ponds Sewage sludge disposal site New and future construction	g.	Owner of effluent TLAP disposal site (if ap	plicable	e): <u>Not a</u>	<u>pplicable</u>	
Mailing Address: Click to enter text. Phone No: Click to enter text. Email: Click to enter text. Note: If not the same as the facility owner, attach a long-term lease agreement in effect for at least six years. Attachment: Click to enter text. h. Owner of sewage sludge disposal site (if applicable): Prefix: Click to enter text. Full Name (Last/First Name): Not applicable or Organization Name: Click to enter text. Mailing Address: Click to enter text. Mailing Address: Click to enter text. Phone No: Click to enter text Email: Click to enter text. Note: If not the same as the facility owner, attach a long-term lease agreement in effect for at least six years. Attachment: Click to enter text. Item 11. TDPES Discharge/TLAP Disposal Information (Instructions, Page 31) a. Is the facility located on or does the treated effluent cross Native American Land? Yes ☒ No b. Attach an original full size USGS Topographic Map (or an 8.5"×11" reproduced portion for renewal or amendment applications) with all required information. Check the box next to each item below to confirm it has been included on the map. One-mile radius ☐ Three-miles downstream information Applicant's property boundaries ☐ Treatment facility boundaries Labeled point(s) of discharge ☒ Highlighted discharge route(s) Effluent disposal site boundaries ☐ All wastewater ponds Sewage sludge disposal site ☐ New and future construction		Prefix: Click to enter text. Full Name (L	ast/Firs	st Name	e): Click to	enter text.
Phone No: Click to enter text. Email: Click to enter text. Note: If not the same as the facility owner, attach a long-term lease agreement in effect for at least six years. Attachment: Click to enter text. h. Owner of sewage sludge disposal site (if applicable): Prefix: Click to enter text. Full Name (Last/First Name): Not applicable or Organization Name: Click to enter text. Mailing Address: Click to enter text. Phone No: Click to enter text. Email: Click to enter text. Note: If not the same as the facility owner, attach a long-term lease agreement in effect for at least six years. Attachment: Click to enter text. Item 11. TDPES Discharge/TLAP Disposal Information (Instructions, Page 31) a. Is the facility located on or does the treated effluent cross Native American Land? □ Yes ☒ No b. Attach an original full size USGS Topographic Map (or an 8.5"×11" reproduced portion for renewal or amendment applications) with all required information. Check the box next to each item below to confirm it has been included on the map. ☒ One-mile radius □ Three-miles downstream information ☒ Applicant's property boundaries □ Treatment facility boundaries ☒ Labeled point(s) of discharge ☒ Highlighted discharge route(s) □ Effluent disposal site boundaries □ All wastewater ponds ☐ Sewage sludge disposal site □ New and future construction		or Organization Name: <u>Click to enter text.</u>				
Note: If not the same as the facility owner, attach a long-term lease agreement in effect for at least six years. Attachment: Click to enter text. h. Owner of sewage sludge disposal site (if applicable): Prefix: Click to enter text. Full Name (Last/First Name): Not applicable or Organization Name: Click to enter text. Mailing Address: Click to enter text. Phone No: Click to enter text. Email: Click to enter text. Note: If not the same as the facility owner, attach a long-term lease agreement in effect for at least six years. Attachment: Click to enter text. Item 11. TDPES Discharge/TLAP Disposal Information (Instructions, Page 31) a. Is the facility located on or does the treated effluent cross Native American Land? Yes No b. Attach an original full size USGS Topographic Map (or an 8.5"×11" reproduced portion for renewal or amendment applications) with all required information. Check the box next to each item below to confirm it has been included on the map. One-mile radius Three-miles downstream information Applicant's property boundaries Highlighted discharge route(s) Effluent disposal site boundaries Highlighted discharge route(s) Sewage sludge disposal site New and future construction		Mailing Address: Click to enter text.		City/St	ate/Zip: C	lick to enter text.
at least six years. Attachment: Click to enter text. h. Owner of sewage sludge disposal site (if applicable): Prefix: Click to enter text. Full Name (Last/First Name): Not applicable or Organization Name: Click to enter text. Mailing Address: Click to enter text. Phone No: Click to enter text. Email: Click to enter text. Note: If not the same as the facility owner, attach a long-term lease agreement in effect for at least six years. Attachment: Click to enter text. Item 11. TDPES Discharge/TLAP Disposal Information (Instructions, Page 31) a. Is the facility located on or does the treated effluent cross Native American Land? □ Yes ☑ No b. Attach an original full size USGS Topographic Map (or an 8.5"×11" reproduced portion for renewal or amendment applications) with all required information. Check the box next to each item below to confirm it has been included on the map. ☑ One-mile radius □ Three-miles downstream information ☑ Applicant's property boundaries □ Treatment facility boundaries ☑ Labeled point(s) of discharge □ Highlighted discharge route(s) □ Effluent disposal site boundaries □ All wastewater ponds □ Sewage sludge disposal site □ New and future construction		Phone No: Click to enter text. Email: Click	to enter	r text.		
Prefix: Click to enter text. Full Name (Last/First Name): Not applicable or Organization Name: Click to enter text. Mailing Address: Click to enter text. City/State/Zip: Click to enter text. Phone No: Click to enter text. Email: Click to enter text. Note: If not the same as the facility owner, attach a long-term lease agreement in effect for at least six years. Attachment: Click to enter text. Item 11. TDPES Discharge/TLAP Disposal Information (Instructions, Page 31) a. Is the facility located on or does the treated effluent cross Native American Land? □ Yes ☑ No b. Attach an original full size USGS Topographic Map (or an 8.5"×11" reproduced portion for renewal or amendment applications) with all required information. Check the box next to each item below to confirm it has been included on the map. ☑ One-mile radius □ Three-miles downstream information ☑ Applicant's property boundaries □ Treatment facility boundaries ☑ Labeled point(s) of discharge ☑ Highlighted discharge route(s) □ Effluent disposal site boundaries □ New and future construction				a long-t	erm lease	agreement in effect for
or Organization Name: Click to enter text. Mailing Address: Click to enter text. Phone No: Click to enter text. Email: Click to enter text. Note: If not the same as the facility owner, attach a long-term lease agreement in effect for at least six years. Attachment: Click to enter text. Item 11. TDPES Discharge/TLAP Disposal Information (Instructions, Page 31) a. Is the facility located on or does the treated effluent cross Native American Land? □ Yes ☑ No b. Attach an original full size USGS Topographic Map (or an 8.5"×11" reproduced portion for renewal or amendment applications) with all required information. Check the box next to each item below to confirm it has been included on the map. ☑ One-mile radius □ Three-miles downstream information ☑ Applicant's property boundaries □ Treatment facility boundaries ☑ Labeled point(s) of discharge □ Highlighted discharge route(s) □ Effluent disposal site boundaries □ All wastewater ponds □ Sewage sludge disposal site □ New and future construction	h.	Owner of sewage sludge disposal site (if ap	plicabl	e):		
Mailing Address: Click to enter text. Phone No: Click to enter text. Email: Click to enter text. Note: If not the same as the facility owner, attach a long-term lease agreement in effect for at least six years. Attachment: Click to enter text. Item 11. TDPES Discharge/TLAP Disposal Information (Instructions, Page 31) a. Is the facility located on or does the treated effluent cross Native American Land? □ Yes ☑ No b. Attach an original full size USGS Topographic Map (or an 8.5"×11" reproduced portion for renewal or amendment applications) with all required information. Check the box next to each item below to confirm it has been included on the map. ☑ One-mile radius □ Three-miles downstream information ☑ Applicant's property boundaries □ Treatment facility boundaries □ Labeled point(s) of discharge □ Highlighted discharge route(s) □ Effluent disposal site boundaries □ New and future construction		Prefix: <u>Click to enter text.</u> Full Name (L	ast/Firs	st Name	e): <u>Not app</u>	<u>licable</u>
Phone No: Click to enter text. Email: Click to enter text. Note: If not the same as the facility owner, attach a long-term lease agreement in effect for at least six years. Attachment: Click to enter text. Item 11. TDPES Discharge/TLAP Disposal Information (Instructions, Page 31) a. Is the facility located on or does the treated effluent cross Native American Land? □ Yes ☒ No b. Attach an original full size USGS Topographic Map (or an 8.5"×11" reproduced portion for renewal or amendment applications) with all required information. Check the box next to each item below to confirm it has been included on the map. ☒ One-mile radius □ Three-miles downstream information ☒ Applicant's property boundaries □ Treatment facility boundaries ☒ Labeled point(s) of discharge ☒ Highlighted discharge route(s) □ Effluent disposal site boundaries □ New and future construction		or Organization Name: Click to enter text.				
Note: If not the same as the facility owner, attach a long-term lease agreement in effect for at least six years. Attachment: Click to enter text. Item 11. TDPES Discharge/TLAP Disposal Information (Instructions, Page 31) a. Is the facility located on or does the treated effluent cross Native American Land? ☐ Yes ☒ No b. Attach an original full size USGS Topographic Map (or an 8.5"×11" reproduced portion for renewal or amendment applications) with all required information. Check the box next to each item below to confirm it has been included on the map. ☒ One-mile radius ☐ Three-miles downstream information ☒ Applicant's property boundaries ☐ Treatment facility boundaries ☐ Labeled point(s) of discharge ☐ Highlighted discharge route(s) ☐ Effluent disposal site boundaries ☐ New and future construction		Mailing Address: Click to enter text.		City/St	ate/Zip: C	lick to enter text.
at least six years. Attachment: Click to enter text. Item 11. TDPES Discharge/TLAP Disposal Information (Instructions, Page 31) a. Is the facility located on or does the treated effluent cross Native American Land? □ Yes ☑ No b. Attach an original full size USGS Topographic Map (or an 8.5"×11" reproduced portion for renewal or amendment applications) with all required information. Check the box next to each item below to confirm it has been included on the map. ☑ One-mile radius □ Three-miles downstream information ☑ Applicant's property boundaries □ Treatment facility boundaries ☑ Labeled point(s) of discharge □ Highlighted discharge route(s) □ Effluent disposal site boundaries □ All wastewater ponds □ Sewage sludge disposal site □ New and future construction		Phone No: Click to enter text. Email: Click t	o enter	text.		
a. Is the facility located on or does the treated effluent cross Native American Land? ☐ Yes ☒ No b. Attach an original full size USGS Topographic Map (or an 8.5"×11" reproduced portion for renewal or amendment applications) with all required information. Check the box next to each item below to confirm it has been included on the map. ☒ One-mile radius ☐ Three-miles downstream information ☒ Applicant's property boundaries ☐ Treatment facility boundaries ☒ Labeled point(s) of discharge ☐ Highlighted discharge route(s) ☐ Effluent disposal site boundaries ☐ All wastewater ponds ☐ Sewage sludge disposal site ☐ New and future construction				a long-t	erm lease	agreement in effect for
a. Is the facility located on or does the treated effluent cross Native American Land? ☐ Yes ☒ No b. Attach an original full size USGS Topographic Map (or an 8.5"×11" reproduced portion for renewal or amendment applications) with all required information. Check the box next to each item below to confirm it has been included on the map. ☒ One-mile radius ☐ Three-miles downstream information ☒ Applicant's property boundaries ☐ Treatment facility boundaries ☒ Labeled point(s) of discharge ☐ Highlighted discharge route(s) ☐ Effluent disposal site boundaries ☐ All wastewater ponds ☐ Sewage sludge disposal site ☐ New and future construction	Ite	em 11. TDPES Discharge/TLAP D	Dispos	al Info	ormatio	n (Instructions.
 □ Yes ⋈ No b. Attach an original full size USGS Topographic Map (or an 8.5"×11" reproduced portion for renewal or amendment applications) with all required information. Check the box next to each item below to confirm it has been included on the map. ⋈ One-mile radius □ Three-miles downstream information ⋈ Applicant's property boundaries □ Treatment facility boundaries ⋈ Labeled point(s) of discharge ⋈ Highlighted discharge route(s) □ Effluent disposal site boundaries □ All wastewater ponds □ Sewage sludge disposal site □ New and future construction 			•			, ,
 b. Attach an original full size USGS Topographic Map (or an 8.5"×11" reproduced portion for renewal or amendment applications) with all required information. Check the box next to each item below to confirm it has been included on the map. ☑ One-mile radius ☑ Three-miles downstream information ☑ Applicant's property boundaries ☑ Treatment facility boundaries ☑ Labeled point(s) of discharge ☑ Highlighted discharge route(s) ☑ Effluent disposal site boundaries ☑ All wastewater ponds ☑ Sewage sludge disposal site ☑ New and future construction 	a.	Is the facility located on or does the treate	d efflue	ent cros	s Native A	merican Land?
renewal or amendment applications) with all required information. Check the box next to each item below to confirm it has been included on the map. ☑ One-mile radius ☐ Three-miles downstream information ☑ Applicant's property boundaries ☐ Treatment facility boundaries ☑ Labeled point(s) of discharge ☐ Highlighted discharge route(s) ☐ Effluent disposal site boundaries ☐ All wastewater ponds ☐ Sewage sludge disposal site ☐ New and future construction		□ Yes ⊠ No				
 ☑ Applicant's property boundaries ☑ Labeled point(s) of discharge ☑ Effluent disposal site boundaries ☑ Sewage sludge disposal site ☑ New and future construction 	b.	renewal or amendment applications) with a	all requ	ired inf	ormation.	
 ☑ Labeled point(s) of discharge ☑ Effluent disposal site boundaries ☑ Sewage sludge disposal site ☑ New and future construction 		☑ One-mile radius	☐ Thr	ee-mile	s downstr	eam information
 □ Effluent disposal site boundaries □ All wastewater ponds □ Sewage sludge disposal site □ New and future construction 		☑ Applicant's property boundaries	□ Tre	atment	facility bo	undaries
 □ Effluent disposal site boundaries □ All wastewater ponds □ Sewage sludge disposal site □ New and future construction 		☐ Labeled point(s) of discharge	⊠ Hig	hlighted	d discharg	e route(s)
☐ Sewage sludge disposal site ☐ New and future construction				Ü	J	
			_		-	
A TOURCEMENT OF A TOURCEMENT CO.		Attachment: <u>Appendix C</u>	-,0,			

c.	Solution of the sewage sludge disposal site in the existing permit accurate? ☐ Yes ☐ No or New Permit
	If no, or a new application, provide an accurate location description: <u>There is no sewage sludge disposal site at this facility</u>
d.	Are the point(s) of discharge in the existing permit correct?
	☑ Yes ☐ No or New Permit
	If no, or a new application, provide an accurate location description: <u>Click to enter text.</u>
e.	Are the discharge route(s) in the existing permit correct?
	☑ Yes □ No or New Permit
	If no, or a new permit, provide an accurate description of the discharge route: Click to enter text.
f.	City nearest the outfall(s): <u>Orange</u>
g.	County in which the outfalls(s) is/are located: <u>Orange</u>
h.	Is or will the treated wastewater discharge to a city, county, or state highway right-of-way, or a flood control district drainage ditch?
	□ Yes ⋈ No
	If yes, indicate by a check mark if: \square Authorization granted \square Authorization pending
	For new and amendment applications, attach copies of letters that show proof of contact and provide the approval letter upon receipt. Attachment: <u>Click to enter text.</u>
	For all applications involving an average daily discharge of 5 MGD or more, provide the names of all counties located within 100 statute miles downstream of the point(s) of discharge: Click to enter text.
i.	For TLAPs, is the location of the effluent disposal site in the existing permit accurate?
	☐ Yes No or New Permit ☐ Not applicable - The facility is not a TLAP facility. The effluents are directly discharged to the Sabine River.
	If no, or a new application, provide an accurate location description: <u>Click to enter text.</u>
j.	City nearest the disposal site: Not applicable
k.	County in which the disposal site is located: <u>Not applicable</u>
l.	For TLAPs, describe how effluent is/will be routed from the treatment facility to the disposal site: Not applicable
m.	For TLAPs, identify the nearest watercourse to the disposal site to which rainfall runoff might flow if not contained: <u>Not applicable</u>

Item 12. Miscellaneous Information (Instructions, Page 33)

a.	bid any person formerly employed by the TCEQ represent your company and get paid for service regarding this application?
	□ Yes ⊠ No
	If yes, list each person: <u>Not applicable</u>
b.	Do you owe any fees to the TCEQ?
	□ Yes ⊠ No
	If yes, provide the following information:
	Account no.: Click to enter text.
	Total amount due: <u>Click to enter text.</u>
c.	Do you owe any penalties to the TCEQ?
	□ Yes ⊠ No
	If yes, provide the following information:
	Enforcement order no.: Click to enter text.
	Amount due: Click to enter text.

Item 13. Signature Page (Instructions, Page 33)

Permit No: WQ0005010000

Applicant Name: Conrad Orange Shipyard, Inc.

Certification: I, <u>Eric Bland</u>, certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

I further certify that I am authorized under 30 Texas Administrative Code §305.44 to sign and submit this document and can provide documentation in proof of such authorization upon request.

Signatory name (typed or printed): Eric Bland

Signatory title: G.M. COS / Dir. LNG Ops

Signature: <u>(</u>	65) DES	Date:	Q7MAY24
		(Use blue ink)		

Subscribed and Sworn to before me by the said Eric Bland

on this ______ day of May _____, 2024

My commission expires on the _____ day of _____ day of _____ , $20\overline{25}$

Notary Public Rays Matt

County, Texas

KYMBER-LEE SAYA MATTHEWS
Notary Public, State of Texas
Comm. Expires 10-11-2025
Notary ID 131312408

Note: If co-applicants are necessary, each entity must submit an original, separate signature page.

INDUSTRIAL WASTEWATER PERMIT APPLICATION SUPPLEMENTAL PERMIT INFORMATION FORM (SPIF)

This form applies to TPDES permit applications only. Complete and attach the Supplemental Permit information Form (SPIF) (TCEQ Form 20971).

Attachment: Appendix G

INDUSTRIAL WASTEWATER PERMIT APPLICATION CHECKLIST OF COMMON DEFICIENCIES

Below is a list of common deficiencies found during the administrative review of industrial wastewater permit applications. To ensure the timely processing of this application, please review the items below and indicate each item is complete and in accordance applicable rules at 30 TAC Chapters 21, 281, and 305 by checking the box next to the item. If an item is not required this application, indicate by checking N/A where appropriate. Please do not submit the application until all items below are addressed.

- □ Core Data Form (TCEQ Form No. 10400)
 (Required for all applications types. Must be completed in its entirety and signed. Note: Form may be signed by applicant representative.)
- ☑ Correct and Current Industrial Wastewater Permit Application Forms (*TCEQ Form Nos. 10055 and 10411. Version dated 5/10/2019 or later.*)
- Water Quality Permit Payment Submittal Form (Page 14) (Original payment sent to TCEQ Revenue Section. See instructions for mailing address.)
- ∑ 7.5 Minute USGS Quadrangle Topographic Map Attached (Full-size map if seeking "New" permit.

 ½ x 11 acceptable for Renewals and Amendments.)
- ⊠ N/A □ Current/Non-Expired, Executed Lease Agreement or Easement Attached
- N/A ☐ Landowners Map (See instructions for landowner requirements.)

Things to Know:

- All the items shown on the map must be labeled.
- The applicant's complete property boundaries must be delineated which includes boundaries of contiguous property owned by the applicant.
- The applicant cannot be its own adjacent landowner. You must identify the landowners immediately adjacent to their property, regardless of how far they are from the actual facility.
- If the applicant's property is adjacent to a road, creek, or stream, the landowners on the opposite side must be identified. Although the properties are not adjacent to applicant's property boundary, they are considered potentially affected landowners. If the adjacent road is a divided highway as identified on the USGS topographic map, the applicant does not have to identify the landowners on the opposite side of the highway.
- N/A ☐ Landowners Cross Reference List (See instructions for landowner requirements.)
- N/A ☐ Landowners Labels or CD-RW attached (See instructions for landowner requirements.)
- ☑ Original signature per 30 TAC § 305.44 Blue Ink Preferred (If signature page is not signed by an elected official or principle executive officer, a copy of signature authority/delegation letter must be attached.)
- ☑ Plain Language Summary

APPENDIX B. TCEQ INDUSTRIAL WASTEWATER PERMIT APPLICATION — TECHNICAL FORMS

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

INDUSTRIAL WASTEWATER PERMIT APPLICATION TECHNICAL REPORT 1.0

The following information **is required** for all applications for a TLAP or an individual TPDES discharge permit.

For **additional information** or clarification on the requested information, please refer to the <u>Instructions for Completing the Industrial Wastewater Permit Application</u>¹ available on the TCEQ website. Please contact the Industrial Permits Team at 512-239-4671 with any questions about this form.

If more than one outfall is included in the application, provide applicable information for each individual outfall. **If an item does not apply to the facility, enter N/A** to indicate that the item has been considered. Include separate reports or additional sheets as **clearly cross-referenced attachments** and provide the attachment number in the space provided for the item the attachment addresses.

NOTE: This application is for an industrial wastewater permit only. Additional authorizations from the TCEQ Waste Permits Division or the TCEQ Air Permits Division may be needed.

Describe the general nature of the business and type(s) of industrial and commercial

Item 1. Facility/Site Information (Instructions, Page 39)

u.	activities. Include all applicable SIC codes (up to 4).			
	See Section 1.0 of the report text.			
b.	Describe all wastewater-generating processes at the facility.			
	See Section 2.0 of the report text.			

https://www.tceq.texas.gov/permitting/wastewater/industrial/TPDES_industrial_wastewater_steps.html

c. Provide a list of raw materials, major intermediates, and final products handled at the facility.

Materials List

Raw Materials	Intermediate Products	Final Products
Steel Plate	Used oils, paints, and solvents*	Barges
Surface Coating Materials	Used blasting media*	Marine Vessels
Blasting Media	Scrap metal*	
Welding Materials	Spent welding materials*	
Oils and Fuels		
	*These are waste materials generated during fabrication of barges and marine vessels	

Attachment: Click to enter text.

- d. Attach a facility map (drawn to scale) with the following information:
 - Production areas, maintenance areas, materials-handling areas, waste-disposal areas, and water intake structures.
 - The location of each unit of the WWTP including the location of wastewater collection sumps, impoundments, outfalls, and sampling points, if significantly different from outfall locations.

	outfall locations.
	Attachment: Appendix C
e.	Is this a new permit application for an existing facility?
	□ Yes ⊠ No
	If yes , provide background discussion: Click to enter text.
f.	Is/will the treatment facility/disposal site be located above the 100-year frequency flood level.
	□ Yes □ No
	List source(s) used to determine 100-year frequency flood plain: <u>NOT APPLICABLE – not a treatment facility or disposal site</u>
	If no , provide the elevation of the 100-year frequency flood plain and describe what protective measures are used/proposed to prevent flooding (including tail water and

rainfall run-on controls) of the treatment facility and disposal area: Click to enter text.

Attachment: NOT APPLICABLE

in a discharge of fill material into a water in the state?					
	\square Yes \square No \boxtimes N/A (renewal only)				
h.	If yes to Item 1.g, has the applicant applied for a USACE CWA Chapter 404 Dredge and Fill permit?				
	□ Yes □ No				
	If yes , provide the permit number: Click to enter text.				
	If no , provide an approximate date of application submittal to the USACE: Click to enter text.				
It	em 2. Treatment System (Instructions, Page 40)				
a.	List any physical, chemical, or biological treatment process(es) used/proposed to treat wastewater at this facility. Include a description of each treatment process, starting with initial treatment and finishing with the outfall/point of disposal.				
	COS effluents are of low contamination potential and benign in nature. None of the effluents are chemically or biologically treated prior to discharge. Best Management Practices include dry sweeping materials prior to leaving the property for disposal via a licensed disposer off-site. Wash wastewater from Outfall 002 enters the Sabine River directly after contact with the marine vessels. Outfalls 009 and 010 have yet to be constructed, therefore have not discharged. When wastewater does leave the land-based operations/process area, it enters a series of catch basins for particulates or solids to settle prior to discharge via Outfall 011. The catch basins are periodically inspected and cleaned.				
b.	Attach a flow schematic with a water balance showing all sources of water and wastewater flow into the facility, wastewater flow into and from each treatment unit, and wastewater flow to each outfall/point of disposal.				
	Attachment: NOT APPLICABLE				
It	em 3. Impoundments (Instructions, Page 40)				
Do	es the facility use or plan to use any wastewater impoundments (e.g., lagoons or ponds?)				
	□ Yes ⊠ No				
3.6	no, proceed to Item 4. If yes, complete Item 3.a for existing impoundments and Items 3.a for new or proposed impoundments. NOTE: See instructions, Pages 40-42, for additional formation on the attachments required by Items 3.a – 3.e.				

a. Complete the table with the following information for each existing, new, or proposed impoundment. Attach additional copies of the Impoundment Information table, if needed.

Use Designation: Indicate the use designation for each impoundment as Treatment (**T**), Disposal (**D**), Containment (**C**), or Evaporation (**E**).

Associated Outfall Number: Provide an outfall number if a discharge occurs or will occur.

Liner Type: Indicate the liner type as Compacted clay liner (C), In-situ clay liner (I), Synthetic/plastic/rubber liner (S), or Alternate liner (A). **NOTE:** See instructions for further detail on liner specifications. If an alternate liner (A) is selected, include an attachment that provides a description of the alternate liner and any additional technical information necessary for an evaluation.

Leak Detection System: If any leak detection systems are in place/planned, enter **Y** for yes. Otherwise, enter **N** for no.

Groundwater Monitoring Wells and Data: If groundwater monitoring wells are in place/planned, enter **Y** for yes. Otherwise, enter **N** for no. Attach any existing groundwater monitoring data.

Dimensions: Provide the dimensions, freeboard, surface area, storage capacity of the impoundments, and the maximum depth (not including freeboard). For impoundments with irregular shapes, submit surface area instead of length and width.

Compliance with 40 CFR Part 257, Subpart D: If the impoundment is required to be in compliance with 40 CFR Part 257, Subpart D, enter Y for yes. Otherwise, enter N for no.

Date of Construction: Enter the date construction of the impoundment commenced (mm/dd/yy).

Impoundment Information

Parameter	Pond #	Pond #	Pond #	Pond #
Use Designation: (T) (D) (C) or (E)				
Associated Outfall Number				
Liner Type (C) (I) (S) or (A)				
Alt. Liner Attachment Reference				
Leak Detection System, Y/N				
Groundwater Monitoring Wells, Y/N				
Groundwater Monitoring Data Attachment				
Pond Bottom Located Above The Seasonal High-Water Table, Y/N				
Length (ft)				
Width (ft)				
Max Depth From Water Surface (ft), Not Including Freeboard				
Freeboard (ft)				
Surface Area (acres)				
Storage Capacity (gallons)				
				1

Parameter	Pond #	Pond #	Pond #	Pond #
40 CFR Part 257, Subpart D, Y/N				
Date of Construction				

Attachment: Click to enter text.

The following information (**Items 3.b – 3.e**) is required only for **new or proposed** impoundments.

- b. For new or proposed impoundments, attach any available information on the following items. If attached, check **yes** in the appropriate box. Otherwise, check **no** or **not yet designed**.
 - 1. Liner data

Voc	Nο	Not vot docioned
Yes	No	Not yet designed
		,

2. Leak detection system or groundwater monitoring data

	Yes	No	Not v	yet designed
ш	163	110	INUL	yet designet

3. Groundwater impacts

□ Yes □ No □ Not yet designed

NOTE: Item b.3 is required if the bottom of the pond is not above the seasonal highwater table in the shallowest water-bearing zone.

Attachment: Click to enter text.

For TLAP applications: Items 3.c - 3.e are not required, continue to Item 4.

c. Attach a USGS map or a color copy of original quality and scale which accurately locates and identifies all known water supply wells and monitor wells within ½-mile of the impoundments.

Attachment: Click to enter text.

d. Attach copies of State Water Well Reports (e.g., driller's logs, completion data, etc.), and data on depths to groundwater for all known water supply wells including a description of how the depths to groundwater were obtained.

Attachment: Click to enter text.

e. Attach information pertaining to the groundwater, soils, geology, pond liner, etc. used to assess the potential for migration of wastes from the impoundments or the potential for contamination of groundwater or surface water.

Attachment: Click to enter text.

Item 4. Outfall/Disposal Method Information (Instructions, Page 42)

Complete the following tables to describe the location and wastewater discharge or disposal operations for each outfall for discharge, and for each point of disposal for TLAP operations.

If there are more outfalls/points of disposal at the facility than the spaces provided, copies of pages 6 and/0r numbered accordingly (i.e., page 6a, 6b, etc.) may be used to provide information on the additional outfalls.

For TLAP applications: Indicate the disposal method and each individual irrigation area **I**, evaporation pond **E**, or subsurface drainage system **S** by providing the appropriate letter designation for the disposal method followed by a numerical designation for each disposal area in the space provided for **Outfall** number (e.g. **E1** for evaporation pond 1, **I2** for irrigation area No. 2, etc.).

Outfall Longitude and Latitude

Outfall No.	Latitude (Decimal Degrees)	Longitude (Decimal Degrees)
002*	30.084431	-93.733988
009	30.085740	-93.734647
010	30.085165	-93.734444
011**	30.083320	-93.733686

^{*}Discharge coordinates are representative as the actual discharge of hull wash water has many variables (listing of vessel, size of vessel, area being washed, river level, water in ballasts, etc.) and can occur anywhere along the bulkhead.

Outfall Location Description

Outfall No.	Location Description
002	Varies along the bulkhead of the shipyard
009 and 010	Varies along the bulkhead of the shipyard
011	At the point of discharge from the process, prior to commingling with other wasters

Description of Sampling Point(s) (if different from Outfall location)

Outfall No.	Description of sampling point
002	After contact with hull surface and prior to entering the Sabine River Tidal.
009 and 010	Sampling required when discharge occurs during dry dock operations (vessel maintenance and repair activities). Sampling taken at dry-dock freeing port prior to entering the Sabine River Tidal.
011	Prior to commingling with other water and prior to entering the Sabine River Tidal.

Outfall Flow Information - Permitted and Proposed

Outfall No.	Permitted Daily Avg Flow (MGD)	Permitted Daily Max Flow (MGD)	Proposed Daily Avg Flow (MGD)	Proposed Daily Max Flow (MGD)	Anticipated Discharge Date (mm/dd/yy)
002	Report	Report	NOT APPLICABLE	NOT APPLICABLE	NOT APPLICABLE

^{**}At the point of discharge from the process, prior to commingling with other waters.

Outfall No.	Permitted Daily Avg Flow (MGD)	Permitted Daily Max Flow (MGD)	Proposed Daily Avg Flow (MGD)	Proposed Daily Max Flow (MGD)	Anticipated Discharge Date (mm/dd/yy)
009 and 010	Report	Report	NOT APPLICABLE	NOT APPLICABLE	NOT APPLICABLE
011	Report	Report	NOT APPLICABLE	NOT APPLICABLE	NOT APPLICABLE

Outfall Discharge - Method and Measurement

Outfall No.	Pumped Discharge? Y/N	Gravity Discharge? Y/N	Type of Flow Measurement Device Used
002	N	Y	None - Estimate
009 and 010	N	Y	None – Estimate
011	N	Y	None - Estimate

Outfall Discharge - Flow Characteristics

Outfall No.	Intermittent Discharge? Y/N	Continuous Discharge? Y/N	Seasonal Discharge? Y/N	Discharge Duration (hrs/day)	Discharge Duration (days/mo)	Discharge Duration (mo/yr)
002	Y	N	N	Varies	Varies	Varies
009 and 010	Y	N	N	Varies	Varies	Varies
011	Y	N	N	Varies	Varies	Varies

Outfall Wastestream Contributions

Outfall No. 002

Contributing Wastestream	Volume (MGD)	Percent (%) of Total Flow
Hull washing wastewater	0.002	100
(Note: Volume based on flows from	discharges during the year	prior to this submittal.)

Outfall No. 009 and 010

Contributing Wastestream	Volume (MGD)	Percent (%) of Total Flow
Dry dock effluents - wing/void tank	0.36	60
water, runoff from		

Contributing Wastestream	Volume (MGD)	Percent (%) of Total Flow
submerging/emerging events, storm water		
Hydro-blasting wastewater		20
Hull washing wastewater		20
(Note: Projected flow based	on dry dock discharge from	similar facility.)

Outfall No. 011

Contributing Wastestream	Volume (MGD)	Percent (%) of Total Flow
Hydro-blasting wastewater	0.002	36
Vehicle and equipment wash down		
Hull wash water	0.002	64
Welding torch hose test water		
Process wastewater		
(Note: Volume based on flows from	discharges during the year	prior to this submittal.)

Attachment: Click to enter text.

Item 5. Blowdown and Once-Through Cooling Water Discharges (Instructions, Page 43)

a.	Ind	icate i	f the	facilit	y currently or proposes to:
		Yes		No	Use cooling towers that discharge blowdown or other wastestreams

☐ Yes ☒ No Use boilers that discharge blowdown or other wastestreams

☐ Yes ☒ No Discharge once-through cooling water

NOTE: If the facility uses or plans to use cooling towers or once-through cooling water, Item 12 **is required**.

- b. If **yes** to any of the above, attach an SDS with the following information for each chemical additive.
 - Manufacturers Product Identification Number
 - Product use (e.g., biocide, fungicide, corrosion inhibitor, etc.)

- Chemical composition including CASRN for each ingredient
- Classify product as non-persistent, persistent, or bioaccumulative
- Product or active ingredient half-life
- Frequency of product use (e.g., 2 hours/day once every two weeks)
- Product toxicity data specific to fish and aquatic invertebrate organisms
- Concentration of whole product or active ingredient, as appropriate, in wastestream.

In addition to each SDS, attach a summary of the above information for each specific wastestream and the associated chemical additives. Specify which outfalls are affected.

Attachment: NOT APPLICABLE

c. Cooling Towers and Boilers

If the facility currently or proposes to use cooling towers or boilers that discharge blowdown or other wastestreams to the outfall(s), complete the following table.

Cooling Towers and Boilers

Type of Unit	Number of Units	Daily Avg Blowdown (gallons/day)	Daily Max Blowdown (gallons/day)
Cooling Towers	NOT APPLICABLE		
Boilers	NOT APPLICABLE		

Item 6. Stormwater Management (Instructions, Page 44)

Will any ex	isting/p	roposed	outfalls	discharge :	stormwater	associate	d with inc	dustrial	activities,
as defined	at 40 Cl	FR § 122.	.26(b)(14	4), commin	gled with a	ny other v	vastestrea	ım?	

\boxtimes	Yes	No

If **yes**, briefly describe the industrial processes and activities that occur outdoors or in a manner which may result in exposure of the activities or materials to stormwater: <u>See Section 1 of the report.</u>

Item 7. Domestic Sewage, Sewage Sludge, and Septage Management and Disposal (Instructions, Page 44)

Domestic Sewage - Waste and wastewater from humans or household operations that is discharged to a wastewater collection system or otherwise enters a treatment works.

a.	Check the box next to the appropriate method of domestic sewage and domestic sewage
	sludge treatment or disposal. Complete Worksheet 5.0 or Item 7.b if directed to do so.

☑ Domestic sewage is routed (i.e., connec	ted to or transported to) to a WWTP permitted to
receive domestic sewage for treatment,	disposal, or both. Complete Item 7.b.

Domestic sewage disposed of by an on-site septic tank and drainfield system.	Complete
Item 7.b.	

	Industrial wastewater and domestic sewage are treasludge IS NOT commingled prior to sludge use or d	- *:	
	☐ Facility is a POTW. Complete Worksheet 5.0.		
	Domestic sewage is not generated on-site.		
	Other (e.g., portable toilets), specify and Complete l	tem 7.b: Click to enter text.	
V	Provide the name and TCEQ, NPDES, or TPDES Permit which receives the domestic sewage/septage. If hauled name and TCEQ Registration No. of the hauler.		
	estic Sewage Plant/Hauler Name		
	nt/Hauler Name	Permit/Registration No.	
Jac	kson Street Waste Water Treatment Plant	WQ0010626001	
Ite	m 8. Improvements or Compliance, Requirements (Instructions, Pa		
е	s the permittee currently required to meet any imple enforcement? Yes 🗵 No	mentation schedule for compliance or	
	Has the permittee completed or planned for any improxers $ extstyle extsty$	ovements or construction projects?	
	f yes to either 8.a or 8.b, provide a brief summary of apdate: <u>NOT APPLICABLE</u>	the requirements and a status	
Ite	m 9. Toxicity Testing (Instructions,	, Page 45)	
on a	e any biological tests for acute or chronic toxicity been receiving water in relation to the discharge within the		
	☐ Yes ⊠ No		
-	es, identify the tests and describe their purposes: Clic		
	itionally, attach a copy of all tests performed which l PA. Attachment: <u>Not applicable</u>	nave not been submitted to the ICEQ	
Ite	m 10. Off-Site/Third Party Wastes (Instructions, Page 45)	
	Does or will the facility receive wastes from off-site so disposal on-site via land application, or discharge via		
	□ Yes ⊠ No		
I	f yes , provide responses to Items 10.b through 10.d l	pelow.	
I	f no , proceed to Item 11.		

	 List of wastes received (including volumes, characteriz wastes). 	zation, and capability with on-site
	• Identify the sources of wastes received (including the generators).	legal name and addresses of the
	• Description of the relationship of waste source(s) with	n the facility's activities.
	Attachment: Click to enter text.	
c.	with this facility's wastewater after final treatment and proutfall/point of disposal?	
	□ Yes □ No	
	If yes , provide the name, address, and TCEQ, NPDES, or T contributing facility and a copy of any agreements or con	
	Attachment: Click to enter text.	
d.	d. Is this facility a POTW that accepts/will accept process we required to have an approved pretreatment program under	•
	□ Yes □ No	
If	If yes , Worksheet 6.0 of this application is required .	
It	Item 11. Radioactive Materials (Instructi	one Page 46)
		UIIS, I age TU
	a. Are/will radioactive materials be mined, used, stored, or j	
	a. Are/will radioactive materials be mined, used, stored, or ☐ Yes ☑ No	processed at this facility?
	a. Are/will radioactive materials be mined, used, stored, or j	processed at this facility? ne analysis of the effluent for all
a.	 a. Are/will radioactive materials be mined, used, stored, or p □ Yes ⋈ No If yes, use the following table to provide the results of on 	processed at this facility? ne analysis of the effluent for all
a.	 a. Are/will radioactive materials be mined, used, stored, or particle. If yes, use the following table to provide the results of on radioactive materials that may be present. Provide results Radioactive Materials Mined, Used, Stored, or Processed 	processed at this facility? ne analysis of the effluent for all
a.	 a. Are/will radioactive materials be mined, used, stored, or particle. If yes, use the following table to provide the results of on radioactive materials that may be present. Provide results Radioactive Materials Mined, Used, Stored, or Processed 	processed at this facility? ne analysis of the effluent for all s in pCi/L.
a.	 a. Are/will radioactive materials be mined, used, stored, or particle. If yes, use the following table to provide the results of on radioactive materials that may be present. Provide results Radioactive Materials Mined, Used, Stored, or Processed 	processed at this facility? ne analysis of the effluent for all s in pCi/L.
a.	 a. Are/will radioactive materials be mined, used, stored, or particle. If yes, use the following table to provide the results of on radioactive materials that may be present. Provide results Radioactive Materials Mined, Used, Stored, or Processed 	processed at this facility? ne analysis of the effluent for all s in pCi/L.
a.	 a. Are/will radioactive materials be mined, used, stored, or particle. If yes, use the following table to provide the results of on radioactive materials that may be present. Provide results Radioactive Materials Mined, Used, Stored, or Processed 	processed at this facility? ne analysis of the effluent for all s in pCi/L.
a.	 a. Are/will radioactive materials be mined, used, stored, or particle. If yes, use the following table to provide the results of on radioactive materials that may be present. Provide results Radioactive Materials Mined, Used, Stored, or Processed 	processed at this facility? ne analysis of the effluent for all s in pCi/L. oncentration (pCi/L) wledge or reason to believe that cluding naturally occurring ity property? ne analysis of the effluent for all

b. Attach the following information to the application:

Radioactive Materia	us Present in the Disc	charge		
Radioactive Mate	erial Name		Concentration (po	Ci/L)
Item 12. Coo	oling Water (I	nstructions, l	Page 46)	
□ Yes	y use or propose to No		ng purposes?	
If no , stop here	e. If yes , complete It	ems 12.b thru 12.f.		
□ Yes	is/will be obtained f No re. If no , continue.	rom a groundwater	source (e.g., on-site	e well).
c. Cooling Water S	Supplier			
	name of the owner(er for cooling purpo		or the CWIS that su	applies or will
_	ke Structure(s) Owner	r(s) and Operator(s)	T	I
CWIS ID				
Owner Operator				
G	ter is/will be obtaine Yes 🔲 No	ed from a Public Wa	iter Supplier (PWS)	
	nue. If yes , provide	the PWS Registratio	n No. and stop here	e: <u>PWS No.</u> Click to
3. Cooling wat	ter is/will be obtaine	ed from a reclaimed	l water source?	
	Yes □ No			
If no , contintext.	nue. If yes , provide	the Reuse Authoriza	ation No. and stop	here: Click to enter
4. Cooling wat	ter is/will be obtaine	ed from an Indepen	dent Supplier	
	Yes □ No			
	ed to Item 12.d. If y CWIS that is/will be u er text.			
d. 316(b) General	Criteria			

	1.	The CWIS(s) used to provide water for cooling purposes to the facility has or will have a cumulative design intake flow of 2 MGD or greater.
		□ Yes □ No
	2.	At least 25% of the total water withdrawn by the CWIS is/will be used at the facility exclusively for cooling purposes on an annual average basis.
		□ Yes □ No
	3.	The CWIS(s) withdraw(s)/propose(s) to withdraw water for cooling purposes from surface waters that meet the definition of Waters of the United States in 40 CFR § 122.2.
		□ Yes □ No
		If no , provide an explanation of how the waterbody does not meet the definition of Waters of the United States in <i>40 CFR § 122.2</i> : Click to enter text.
		to all three questions in Item 12.d, the facility meets the minimum criteria to be subject full requirements of Section 316(b) of the CWA. Proceed to Item 12.f .
be	suk	to any of the questions in Item 12.d, the facility does not meet the minimum criteria to eject to the full requirements of Section 316(b) of the CWA; however, a determination is ed based upon BPJ. Proceed to Item 12.e .
e.		e facility does not meet the minimum requirements to be subject to the fill requirements Section 316(b) and uses/ proposes to use cooling towers .
		Yes D No
	-	yes, stop here. If no , complete Worksheet 11.0, Items 1.a, 1.b.1-3 and 6, 2.b.1, and 3.a to ow for a determination based upon BPJ.
f.	Oil	and Gas Exploration and Production
	1.	The facility is subject to requirements at 40 CFR Part 435, Subparts A or D.
		□ Yes □ No
		If yes , continue. If no , skip to Item 12.g.
	2.	The facility is an existing facility as defined at 40 CFR § 125.92(k) or a new unit at an existing facility as defined at 40 CFR § 125.92(u).
		□ Yes □ No
		If yes , complete Worksheet 11.0, Items 1.a, 1.b.1-3 and 6, 2.b.1, and 3.a to allow for a determination based upon BPJ. If no , skip to Item 12.g.3.
g.	Co	mpliance Phase and Track Selection
	1.	Phase I – New facility subject to 40 CFR Part 125, Subpart I
		□ Yes ⊠ No
		If yes , check the box next to the compliance track selection, attach the requested information, and complete Worksheet 11.0, Items 2 and 3, and Worksheet 11.2.
		□ Track I - AIF greater than 2 MGD, but less than 10 MGD

• Attach information required by 40 CFR §§ 125.86(b)(2)-(4).
□ Track I – AIF greater than 10 MGD
 Attach information required by 40 CFR § 125.86(b).
□ Track II
 Attach information required by 40 CFR § 125.86(c).
Attachment: Click to enter text.
2. Phase II – Existing facility subject to 40 CFR Part 125, Subpart J
□ Yes □ No
If yes, complete Worksheets 11.0 through 11.3, as applicable.
3. Phase III - New facility subject to 40 CFR Part 125, Subpart N
□ Yes □ No
If yes , check the box next to the compliance track selection and provide the requested information.
□ Track I – Fixed facility
• Attach information required by 40 CFR § 125.136(b) and complete Worksheet 11.0, Items 2 and 3, and Worksheet 11.2.
☐ Track I - Not a fixed facility
• Attach information required by 40 CFR § 125.136(b) and complete Worksheet 11.0, Item 2 (except CWIS latitude/longitude under Item 2.a).
□ Track II – Fixed facility
• Attach information required by 40 CFR § 125.136(c) and complete Worksheet 11.0, Items 2 and 3.
Attachment: Click to enter text.
Item 13. Permit Change Requests (Instructions, Page 48)
This item is only applicable to existing permitted facilities.
a. Is the facility requesting a major amendment of an existing permit?
☐ Yes ☐ No
If yes , list each request individually and provide the following information: 1) detailed information regarding the scope of each request and 2) a justification for each request. Attach any supplemental information or additional data to support each request.

	Click to enter text.
b.	Is the facility requesting any minor amendments to the permit?
	□ Yes ⊠ No
	If yes , list and describe each change individually.
	Click to enter text.
c.	Is the facility requesting any minor modifications to the permit?
С.	☐ Yes ☑ No
	If yes , list and describe each change individually.
	Click to enter text.

Item 14. Laboratory Accreditation (Instructions, Page 49)

All laboratory tests performed must meet the requirements of *30 TAC Chapter 25*, *Environmental Testing Laboratory Accreditation and Certification*, which includes the following general exemptions from National Environmental Laboratory Accreditation Program (NELAP) certification requirements:

- The laboratory is an in-house laboratory and is:
 - o periodically inspected by the TCEQ; or
 - o located in another state and is accredited or inspected by that state; or

- performing work for another company with a unit located in the same site; or
- performing pro bono work for a governmental agency or charitable organization.
- The laboratory is accredited under federal law.
- The data are needed for emergency-response activities, and a laboratory accredited under the Texas Laboratory Accreditation Program is not available.
- The laboratory supplies data for which the TCEQ does not offer accreditation.

The applicant should review 30 TAC Chapter 25 for specific requirements.

The following certification statement shall be signed and submitted with every application. See the *Signature Page* section in the Instructions, for a list of designated representatives who may sign the certification.

CERTIFICATION:

I certify that all laboratory tests submitted with this application meet the requirements of 30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification.

Printed Name: Eric Bland

Title: G.M. COS / Dir. LNG Ops

Signature:

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 1.0: EPA CATEGORICAL EFFLUENT GUIDELINES

This worksheet **is required** for all applications for TPDES permits for discharges of wastewaters subject to EPA categorical effluent limitation guidelines (ELGs).

Item 1. Catego	orical Industries	(Instructions, Pag	ge 53)
Is this facility subject	to any 40 CFR categoric	al ELGs outlined on page	53 of the instructions?
⊠ Yes □ No			
If no , this worksheet i	is not required. If yes , pr	rovide the appropriate in	formation below.
40 CFR Effluent Guidel	ine		
Industry		40	CFR Part
Metal Products and I	Machinery	438	3
Itom 2 Drodu	ction /Drococc Do	ita (Instructions,	Dago 54)
NOTE: For all TPDES]	permit applications requ	esting individual permit	coverage for discharges
	er the Oil and Gas Extract	tewater (discharges into tion Effluent Guidelines -	
a. Production Data			
Provide appropriate d	lata for effluent guidelin	es with production-based	effluent limitations.
Production Data			
Subcategory	Actual Quantity/Day	Design Quantity/Day	Units
N/A			

Provide each applicable subpart and the percent of total production. Provide data for metalbearing and cyanide-bearing wastestreams, as required by 40 CFR Part 414, Appendices A and B. **Percentage of Total Production** Percent of Total Appendix A and B -Appendix A -**Subcategory Production Metals Cvanide** N/A c. Refineries (40 CFR Part 419) Provide the applicable subcategory and a brief justification. N/A Item 3. Process/Non-Process Wastewater Flows (Instructions, **Page 54)** Provide a breakdown of wastewater flow(s) generated by the facility, including both process and non-process wastewater flow(s). Specify which wastewater flows are to be authorized for discharge under this permit and the disposal practices for wastewater flows, excluding domestic, which are not to be authorized for discharge under this permit. Effluent limitations guidelines provided in 40 CFR Part 438, Subpart A are applicable for Outfall 011 as the discharge of hydro-blasting wastewater (described in the application) involves the use of an abrasive. This meets the definition of abrasive blasting specified in Appendix B of 40 CFR Part 438. Abrasive blasting is listed under 40 CFR § 438.2(f), Oily operations, and is subject to 40CFR Part 438 according to 40 CFR § 438.1(a). Therefore, effluent limitations guidelines under 40 CFR§ 438.12 are

b. Organic Chemicals, Plastics, and Synthetic Fibers Manufacturing Data (40 CFR Part 414)

applicable to Outfall 011.

Item 4. New Source Determination (Instructions, Page 54)

Provide a list of all wastewater-generating processes subject to EPA categorical ELGs, identify the appropriate guideline Part and Subpart, and provide the date the process/construction commenced.

Wastewater Generating Processes Subject to Effluent Guidelines

Process	EPA Guideline Part	EPA Guideline Subpart	Date Process/ Construction Commenced
No new sources			

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 2.0: POLLUTANT ANALYSIS

Worksheet 2.0 **is required** for all applications submitted for a TPDES permit. Worksheet 2.0 is not required for applications for a permit to dispose of all wastewater by land disposal or for discharges solely of stormwater associated with industrial activities.

Item 1. General Testing Requirements (Instructions, Page 55)

a.	Provide the date range of all sampling events conducted to obtain the analytical data
	submitted with this application (e.g., 05/01/2018-05/30/2018): Analytical data will be
	provided under separate cover due to the intermittent nature of the outfall. No discharges occurred
	during the preparation of this application.

- b. \square Check the box to confirm all samples were collected no more than 12 months prior to the date of application submittal.
- c. Read the general testing requirements in the instructions for important information about sampling, test methods, and MALs. If a contact laboratory was used, attach a list which includes the name, contact information, and pollutants analyzed for each laboratory/firm. **Attachment:** Click to enter text.

Item 2. Specific Testing Requirements (Instructions, Page 56)

Attach correspondence from TCEQ approving submittal of less than the required number of samples, if applicable. **Attachment:** Click to enter text.

TABLE 1 and TABLE 2 (Instructions, Page 58)

Completion of Tables 1 and 2 is required for all external outfalls for all TPDES permit applications.

Table 1 for Outfall No.: <u>002</u>	Samples	are (check one)	: D Composite	e 🔲 Grab
Pollutant	Sample 1 (mg/L)	Sample 2 (mg/L)	Sample 3 (mg/L)	Sample 4 (mg/L)
BOD (5-day)				
CBOD (5-day)				
Chemical oxygen demand				
Total organic carbon				
Dissolved oxygen				
Ammonia nitrogen				
Total suspended solids				
Nitrate nitrogen				
Total organic nitrogen				
Total phosphorus				
Oil and grease				

Pollutant	Sample 1 (mg/L)	Sample 2 (mg/L)	Sample 3 (mg/L)	Sample 4 (mg/L)
Total residual chlorine				
Total dissolved solids				
Sulfate				
Chloride				
Fluoride				
Total alkalinity (mg/L as CaCO3)				
Temperature (°F)				
pH (standard units)				

Table 2 for Outfall No.: <u>oo2</u> Samples are (check one): □ Composite □ Grab

Dellestont	Commela 1	<u>-</u>	Carrella 2		
Pollutant	Sample 1 (µg/L)	Sample 2 (µg/L)	Sample 3 (µg/L)	Sample 4 (µg/L)	MAL (μg/L)
Aluminum, total					2.5
Antimony, total					5
Arsenic, total					0.5
Barium, total					3
Beryllium, total					0.5
Cadmium, total					1
Chromium, total					3
Chromium, hexavalent					3
Chromium, trivalent					N/A
Copper, total					2
Cyanide, available					2/10
Lead, total					0.5
Mercury, total					0.005/0.0005
Nickel, total					2
Selenium, total					5
Silver, total					0.5
Thallium, total					0.5
Zinc, total					5.0

TABLE 3 (Instructions, Page 58)

Completion of Table 3 **is required** for all **external outfalls** which discharge process wastewater.

Partial completion of Table 3 **is required** for all **external outfalls** which discharge non-process wastewater and stormwater associated with industrial activities commingled with other wastestreams (see instructions for additional guidance).

Pollutant	Sample 1	Sample 2	Sample 3	Sample 4	MAL
	(μg/L)*	(μg/L)*	(μg/L)*	(μg/L)*	(μg/L)*
Acrylonitrile					50
Anthracene					10
Benzene					10
Benzidine					50
Benzo(a)anthracene					5
Benzo(a)pyrene					5
Bis(2-chloroethyl)ether					10
Bis(2-ethylhexyl)phthalate					10
Bromodichloromethane [Dichlorobromomethane]					10
Bromoform					10
Carbon tetrachloride					2
Chlorobenzene					10
Chlorodibromomethane [Dibromochloromethane]					10
Chloroform					10
Chrysene					5
m-Cresol [3-Methylphenol]					10
o-Cresol [2-Methylphenol]					10
p-Cresol [4-Methylphenol]					10
1,2-Dibromoethane					10
m-Dichlorobenzene [1,3-Dichlorobenzene]					10
o-Dichlorobenzene [1,2-Dichlorobenzene]					10
p-Dichlorobenzene [1,4-Dichlorobenzene]					10
3,3'-Dichlorobenzidine					5
1,2-Dichloroethane					10

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)*
1,1-Dichloroethene [1,1-Dichloroethylene]					10
Dichloromethane [Methylene chloride]					20
1,2-Dichloropropane					10
1,3-Dichloropropene [1,3-Dichloropropylene]					10
2,4-Dimethylphenol					10
Di-n-Butyl phthalate					10
Ethylbenzene					10
Fluoride					500
Hexachlorobenzene					5
Hexachlorobutadiene					10
Hexachlorocyclopentadiene					10
Hexachloroethane					20
Methyl ethyl ketone					50
Nitrobenzene					10
N-Nitrosodiethylamine					20
N-Nitroso-di-n-butylamine					20
Nonylphenol					333
Pentachlorobenzene					20
Pentachlorophenol					5
Phenanthrene					10
Polychlorinated biphenyls (PCBs) (**)					0.2
Pyridine					20
1,2,4,5-Tetrachlorobenzene					20
1,1,2,2-Tetrachloroethane					10
Tetrachloroethene [Tetrachloroethylene]					10
Toluene					10
1,1,1-Trichloroethane					10
1,1,2-Trichloroethane					10
Trichloroethene					10
[Trichloroethylene]					

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)*
2,4,5-Trichlorophenol					50
TTHM (Total trihalomethanes)					10
Vinyl chloride					10

^(*) Indicate units if different from µg/L.

TABLE 4 (Instructions, Pages 58-59)

Partial completion of Table 4 **is required** for each **external outfall** based on the conditions below.

a. Tributyltin

Is this facility an industrial/commercial facility which currently or proposes to directly dispose of wastewater from the types of operations listed below or a domestic facility which currently or proposes to receive wastewater from the types of industrial/commercial operations listed below?

\boxtimes	Yes		No
			next to each of the following criteria which apply and provide the results in Table 4 below (check all that apply).
	Manufact	ture	rs and formulators of tributyltin or related compounds.
	Painting	of s	hips, boats and marine structures.
	Ship and	boa	at building and repairing.
	Ship and	boa	t cleaning, salvage, wrecking and scaling.
	Operation	n an	nd maintenance of marine cargo handling facilities and marinas.
	Facilities	eng	gaged in wood preserving.
	•		dustrial/commercial facility for which tributyltin is known to be or which there is any reason to believe that tributyltin may be present

b. Enterococci (discharge to saltwater)

in the effluent.

This facility discharges/proposes to discharge directly into saltwater receiving waters **and** Enterococci bacteria are expected to be present in the discharge based on facility processes.

☐ Yes ☒ No

Domestic wastewater is/will be discharged.

☐ Yes ☒ No

If yes to either question, provide the appropriate testing results in Table 4 below.

^(**) Total of detects for PCB-1242, PCB-1254, PCB-1221, PCB-1232, PCB-1248, PCB-1260, and PCB-1016. If all non-detects, enter the highest non-detect preceded by a "<".

c. E. coli (discharge to freshwater)

This facility discharges/proposes to discharge directly into freshwater receiving waters **and** *E. coli* bacteria are expected to be present in the discharge based on facility processes.

□ Yes ⊠ No

Domestic wastewater is/will be discharged.

□ Yes ⊠ No

If **yes to either** question, provide the appropriate testing results in Table 4 below.

Table 4 for Outfall No.: 002 Samples are (check one): □ Composite Grab **Pollutant** Sample 1 Sample 2 Sample 3 Sample 4 **MAL** Tributyltin (µg/L) 0.010 Enterococci (cfu or MPN/100 mL) N/A N/A N/A N/A N/A E. coli (cfu or MPN/100 mL) N/A N/A N/A N/A N/A

TABLE 5 (Instructions, Page 59)

Completion of Table 5 **is required** for all **external outfalls** which discharge process wastewater from a facility which manufactures or formulates pesticides or herbicides or other wastewaters which may contain pesticides or herbicides.

If this facility does not/will not manufacture or formulate pesticides or herbicides and does not/will not discharge other wastewaters that may contain pesticides or herbicides, check N/A.

⊠ N/A

Table 5 for Outfall No.: <u>NOT APPLICABLE</u> Samples are (check one): □ Composite □ Grab

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)*
Aldrin					0.01
Carbaryl					5
Chlordane					0.2
Chlorpyrifos					0.05
4,4'-DDD					0.1
4,4'-DDE					0.1
4,4'-DDT					0.02
2,4-D					0.7
Danitol [Fenpropathrin]					<u> </u>
Demeton					0.20
Diazinon					0.5/0.1
Dicofol [Kelthane]					1
Dieldrin					0.02
Diuron					0.090

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)*
Endosulfan I (<i>alpha</i>)					0.01
Endosulfan II (<i>beta</i>)					0.02
Endosulfan sulfate					0.1
Endrin					0.02
Guthion [Azinphos methyl]					0.1
Heptachlor					0.01
Heptachlor epoxide					0.01
Hexachlorocyclohexane (alpha)					0.05
Hexachlorocyclohexane (beta)					0.05
Hexachlorocyclohexane (gamma) [Lindane]					0.05
Hexachlorophene					10
Malathion					0.1
Methoxychlor					2.0
Mirex					0.02
Parathion (ethyl)					0.1
Toxaphene					0.3
2,4,5-TP [Silvex]					0.3

^{*} Indicate units if different from µg/L.

TABLE 6 (Instructions, Page 59)

Completion of Table 6 is required for all external outfalls.

Table 6 for Outfall No.: <u>oo2</u> Samples are (check one): □ Composite □ Grab

Pollutants	Believed Present	Believed Absent	Sample 1 (mg/L)	Sample 2 (mg/L)	Sample 3 (mg/L)	Sample 4 (mg/L)	MAL (μg/L)*
Bromide							400
Color (PCU)							_
Nitrate-Nitrite (as N)							_
Sulfide (as S)							_
Sulfite (as SO3)							_
Surfactants							_
Boron, total							20
Cobalt, total							0.3
Iron, total							7
Magnesium, total							20
Manganese, total							0.5
Molybdenum, total							1
Tin, total							5
Titanium, total							30

TABLE 7 (Instructions, Page 60)

Check the box next to any of the industrial categories applicable to this facility. If no categories are applicable, check N/A. If GC/MS testing is required, check the box provided to confirm the testing results for the appropriate parameters are provided with the application.

⊠ N/A

Table 7 for Applicable Industrial Categories

3 ,		40 CFR Part	Volatiles Table 8	Acids Table 9	Bases/ Neutrals Table 10	Pesticides Table 11
	Adhesives and Sealants		□ Yes	□ Yes	□ Yes	No
	Aluminum Forming	467	□ Yes	□ Yes	□ Yes	No
	Auto and Other Laundries		□ Yes	□ Yes	□ Yes	□ Yes
	Battery Manufacturing	461	□ Yes	No	□ Yes	No
	Coal Mining	434	No	No	No	No
	Coil Coating	465	□ Yes	□ Yes	□ Yes	No
	Copper Forming	468	□ Yes	□ Yes	□ Yes	No
	Electric and Electronic Components	469	□ Yes	□ Yes	□ Yes	□ Yes
	Electroplating	413	□ Yes	□ Yes	□ Yes	No
	Explosives Manufacturing	457	No	□ Yes	□ Yes	No
	Foundries		□ Yes	□ Yes	□ Yes	No
	Gum and Wood Chemicals - Subparts A,B,C,E	454	□ Yes	□ Yes	No	No
	Gum and Wood Chemicals - Subparts D,F	454	□ Yes	□ Yes	□ Yes	No
	Inorganic Chemicals Manufacturing	415	□ Yes	□ Yes	□ Yes	No
	Iron and Steel Manufacturing	420	□ Yes	□ Yes	□ Yes	No
	Leather Tanning and Finishing	425	□ Yes	□ Yes	□ Yes	No
	Mechanical Products Manufacturing		□ Yes	□ Yes	□ Yes	No
	Nonferrous Metals Manufacturing	421,471	□ Yes	□ Yes	□ Yes	□ Yes
	Oil and Gas Extraction - Subparts A, D, E, F, G, H	435	□ Yes	□ Yes	□ Yes	No
	Ore Mining - Subpart B	440	No	□ Yes	No	No
	Organic Chemicals Manufacturing	414	□ Yes	□ Yes	□ Yes	□ Yes
	Paint and Ink Formulation	446,447	□ Yes	□ Yes	□ Yes	No
	Pesticides	455	□ Yes	□ Yes	□ Yes	□ Yes
	Petroleum Refining	419	□ Yes	No	No	No
	Pharmaceutical Preparations	439	□ Yes	□ Yes	□ Yes	No
	Photographic Equipment and Supplies	459	□ Yes	□ Yes	□ Yes	No
	Plastic and Synthetic Materials Manufacturing	414	□ Yes	□ Yes	□ Yes	□ Yes
	Plastic Processing	463	□ Yes	No	No	No
	Porcelain Enameling	466	No	No	No	No
	Printing and Publishing		□ Yes	□ Yes	□ Yes	□ Yes
	Pulp and Paperboard Mills - Subpart C	430	*	□ Yes	*	□ Yes
	Pulp and Paperboard Mills - Subparts F, K	430	*	□ Yes	*	*
	Pulp and Paperboard Mills - Subparts A, B, D, G, H	430	□ Yes	□ Yes	*	*
	Pulp and Paperboard Mills - Subparts I, J, L	430	□ Yes	□ Yes	*	□ Yes
	Pulp and Paperboard Mills - Subpart E	430	□ Yes	□ Yes	□ Yes	*
	Rubber Processing	428	□ Yes	□ Yes	□ Yes	No
	Soap and Detergent Manufacturing	417	□ Yes	□ Yes	□ Yes	No
	Steam Electric Power Plants	423	□ Yes	□ Yes	No	No
	Textile Mills (Not Subpart C)	410	□ Yes	□ Yes	□ Yes	No
	Timber Products Processing	429	□ Yes	□ Yes	□ Yes	□ Yes

^{*} Test if believed present.

TABLES 8, 9, 10, and 11 (Instructions, Page 60)

Completion of Tables 8, 9, 10, and 11 **is required** as specified in Table 7 for all **external outfalls** that contain process wastewater.

Completion of Tables 8, 9, 10, and 11 **may be required** for types of industry not specified in Table 7 for specific parameters that are believed to be present in the wastewater.

Table 8 for Outfall No.: <u>NOT APPLICABLE</u> Samples are (check one): □ Composite □ Grab

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)
Acrolein					50
Acrylonitrile					50
Benzene					10
Bromoform					10
Carbon tetrachloride					2
Chlorobenzene					10
Chlorodibromomethane					10
Chloroethane					50
2-Chloroethylvinyl ether					10
Chloroform					10
Dichlorobromomethane [Bromodichloromethane]					10
1,1-Dichloroethane					10
1,2-Dichloroethane					10
1,1-Dichloroethylene [1,1-Dichloroethene]					10
1,2-Dichloropropane					10
1,3-Dichloropropylene [1,3-Dichloropropene]					10
Ethylbenzene					10
Methyl bromide [Bromomethane]					50
Methyl chloride [Chloromethane]					50
Methylene chloride [Dichloromethane]					20
1,1,2,2-Tetrachloroethane					10
Tetrachloroethylene [Tetrachloroethene]					10
Toluene					10
1,2-Trans-dichloroethylene [1,2-Trans-dichloroethene]					10

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)
1,1,1-Trichloroethane					10
1,1,2-Trichloroethane					10
Trichloroethylene [Trichloroethene]					10
Vinyl chloride					10

^{*} Indicate units if different from µg/L.

Table 9 for Outfall No.: <u>NOT APPLICABLE</u> Samples are (check one): □ Composite □ Grab

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)
2-Chlorophenol					10
2,4-Dichlorophenol					10
2,4-Dimethylphenol					10
4,6-Dinitro-o-cresol					50
2,4-Dinitrophenol					50
2-Nitrophenol					20
4-Nitrophenol					50
p-Chloro-m-cresol					10
Pentachlorophenol					5
Phenol					10
2,4,6-Trichlorophenol					10

^{*} Indicate units if different from µg/L.

Table 10 for Outfall No.: NOT APPLICABLE Samples are (check one): ☐ Composite ☐ Grab

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)
Acenaphthene					10
Acenaphthylene					10
Anthracene					10
Benzidine					50
Benzo(a)anthracene					5
Benzo(a)pyrene					5
3,4-Benzofluoranthene [Benzo(b)fluoranthene]					10
Benzo(ghi)perylene					20
Benzo(k)fluoranthene					5
Bis(2-chloroethoxy)methane					10

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)
Bis(2-chloroethyl)ether					10
Bis(2-chloroisopropyl)ether					10
Bis(2-ethylhexyl)phthalate					10
4-Bromophenyl phenyl ether					10
Butylbenzyl phthalate					10
2-Chloronaphthalene					10
4-Chlorophenyl phenyl ether					10
Chrysene					5
Dibenzo(a,h)anthracene					5
1,2-Dichlorobenzene [o-Dichlorobenzene]					10
1,3-Dichlorobenzene [m-Dichlorobenzene]					10
1,4-Dichlorobenzene [p-Dichlorobenzene]					10
3,3'-Dichlorobenzidine					5
Diethyl phthalate					10
Dimethyl phthalate					10
Di-n-butyl phthalate					10
2,4-Dinitrotoluene					10
2,6-Dinitrotoluene					10
Di-n-octyl phthalate					10
1,2-Diphenylhydrazine (as Azobenzene)					20
Fluoranthene					10
Fluorene					10
Hexachlorobenzene					5
Hexachlorobutadiene					10
Hexachlorocyclopentadiene					10
Hexachloroethane					20
Indeno(1,2,3-cd)pyrene					5
Isophorone					10
Naphthalene					10
Nitrobenzene					10
N-Nitrosodimethylamine					50

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)
N-Nitrosodi-n-propylamine					20
N-Nitrosodiphenylamine					20
Phenanthrene					10
Pyrene					10
1,2,4-Trichlorobenzene					10

^{*} Indicate units if different from µg/L.

Table 11 for Outfall No.: $\underline{\text{NOT APPLICABLE}}$ Samples are (check one): \square Composite \square Grab

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)
Aldrin					0.01
alpha-BHC [alpha-Hexachlorocyclohexane]					0.05
beta-BHC [beta-Hexachlorocyclohexane]					0.05
gamma-BHC [gamma-Hexachlorocyclohexane]					0.05
delta-BHC [delta-Hexachlorocyclohexane]					0.05
Chlordane					0.2
4,4'-DDT					0.02
4,4'-DDE					0.1
4,4'-DDD					0.1
Dieldrin					0.02
Endosulfan I (alpha)					0.01
Endosulfan II (beta)					0.02
Endosulfan sulfate					0.1
Endrin					0.02
Endrin aldehyde					0.1
Heptachlor					0.01
Heptachlor epoxide					0.01
PCB 1242					0.2
PCB 1254					0.2
PCB 1221					0.2
PCB 1232					0.2
PCB 1248					0.2

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)
PCB 1260					0.2
PCB 1016					0.2
Toxaphene					0.3

^{*} Indicate units if different from µg/L.

Attachment: Click to enter text.

TABLE 12 (DIOXINS/FURAN COMPOUNDS)

Complete of Table 12 **is required** for **external outfalls**, as directed below. (Instructions, Pages 59-60)

Indicate which compound(s) are manufactured or used at the facility and provide a brief description of the conditions of its/their presence at the facility (check all that apply).

- □ 2,4,5-trichlorophenoxy acetic acid (2,4,5-T) CASRN 93-76-5
- 2-(2,4,5-trichlorophenoxy) propanoic acid (Silvex, 2,4,5-TP) CASRN 93-72-1
- 2-(2,4,5-trichlorophenoxy) ethyl 2,2-dichloropropionate (Erbon) CASRN 136-25-4
- □ 0,0-dimethyl 0-(2,4,5-trichlorophenyl) phosphorothioate (Ronnel) CASRN 299-84-3
- □ 2,4,5-trichlorophenol (TCP) CASRN 95-95-4
- □ hexachlorophene (HCP) CASRN 70-30-4
- None of the above

Description: NOT APPLICABLE

Does the applicant or anyone at the facility know or have any reason to believe that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or any congeners of TCDD may be present in the effluent proposed for discharge?

□ Yes ⊠ No

Description: Click to enter text.

If **yes** to either Items a **or** b, complete Table 12 as instructed.

Table 12 for Outfall No.: <u>NOT APPLICABLE</u> Samples are (check one): ☐ Composite ☐ Grab

Compound	Toxicity Equivalent Factors	Wastewater Concentration (ppq)	Wastewater Toxicity Equivalents (ppq)	Sludge Concentration (ppt)	Sludge Toxicity Equivalents (ppt)	MAL (ppq)
2,3,7,8-TCDD	1					10
1,2,3,7,8- PeCDD	1.0					50
2,3,7,8- HxCDDs	0.1					50
1,2,3,4,6,7,8- HpCDD	0.01					50

Compound	Toxicity Equivalent Factors	Wastewater Concentration (ppq)	Wastewater Toxicity Equivalents (ppq)	Sludge Concentration (ppt)	Sludge Toxicity Equivalents (ppt)	MAL (ppq)
2,3,7,8-TCDF	0.1					10
1,2,3,7,8- PeCDF	0.03					50
2,3,4,7,8- PeCDF	0.3					50
2,3,7,8- HxCDFs	0.1					50
2,3,4,7,8- HpCDFs	0.01					50
OCDD	0.0003					100
OCDF	0.0003					100
PCB 77	0.0001					500
PCB 81	0.0003					500
PCB 126	0.1					500
PCB 169	0.03					500
Total						

TABLE 13 (HAZARDOUS SUBSTANCES)

Complete Table 13 **is required** for all **external outfalls** as directed below. (Instructions, Pages 60-61)

Are there any pollutants listed in the instructions (pages 55-62) believed present in the discharge?

□ Yes ⊠ No

Are there pollutants listed in Item 1.c. of Technical Report 1.0 which are believed present in the discharge and have not been analytically quantified elsewhere in this application?

□ Yes ⊠ No

If **yes** to either Items a **or** b, complete Table 13 as instructed.

Table 13 for Outfall No.: <u>NOT APPLICABLE</u> Samples are (check one): □ Composite □ Grab								
Pollutant	CASRN	Sample 1 (µg/L)	Sample 2 (µg/L)	Sample 3 (µg/L)	Sample 4 (µg/L)	Analytical Method		

TABLE 1 and TABLE 2 (Instructions, Page 58)

Completion of Tables 1 and 2 is required for all external outfalls for all TPDES permit applications.

Sampl	es are (check on	e): 🗆 Compos	te 🛮 Grab
Sample 1 (mg/L)	Sample 2 (mg/L)	Sample 3 (mg/L)	Sample 4 (mg/L)
	Sample 1	Sample 1 Sample 2	

Table 15 for Outfall No.: <u>011</u>		Samples are	e (check one):	□ Composi	te 🛮 Grab
Pollutant	Sample 1 (µg/L)	Sample 2 (µg/L)	Sample 3 (µg/L)	Sample 4 (µg/L)	MAL (μg/L)
Aluminum, total					2.5
Antimony, total					5
Arsenic, total					0.5
Barium, total					3
Beryllium, total					0.5
Cadmium, total					1

Pollutant	Sample 1 (µg/L)	Sample 2 (µg/L)	Sample 3 (µg/L)	Sample 4 (µg/L)	MAL (μg/L)
Chromium, total					3
Chromium, hexavalent					3
Chromium, trivalent					N/A
Copper, total					2
Cyanide, available					2/10
Lead, total					0.5
Mercury, total					0.005/0.0005
Nickel, total					2
Selenium, total					5
Silver, total					0.5
Thallium, total					0.5
Zinc, total					5.0

TABLE 3 (Instructions, Page 58)

Completion of Table 3 **is required** for all **external outfalls** which discharge process wastewater.

Partial completion of Table 3 **is required** for all **external outfalls** which discharge non-process wastewater and stormwater associated with industrial activities commingled with other wastestreams (see instructions for additional guidance).

Table 16 for Outfall No.: <u>011</u>	Samples are (check one): 🗆	Composite	Grab

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)*
Acrylonitrile					50
Anthracene					10
Benzene					10
Benzidine					50
Benzo(a)anthracene					5
Benzo(a)pyrene					5
Bis(2-chloroethyl)ether					10
Bis(2-ethylhexyl)phthalate					10
Bromodichloromethane [Dichlorobromomethane]					10
Bromoform					10
Carbon tetrachloride					2
Chlorobenzene					10

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)*
Chlorodibromomethane [Dibromochloromethane]					10
Chloroform					10
Chrysene					5
m-Cresol [3-Methylphenol]					10
o-Cresol [2-Methylphenol]					10
p-Cresol [4-Methylphenol]					10
1,2-Dibromoethane					10
m-Dichlorobenzene [1,3-Dichlorobenzene]					10
o-Dichlorobenzene [1,2-Dichlorobenzene]					10
p-Dichlorobenzene [1,4-Dichlorobenzene]					10
3,3'-Dichlorobenzidine					5
1,2-Dichloroethane					10
1,1-Dichloroethene [1,1-Dichloroethylene]					10
Dichloromethane [Methylene chloride]					20
1,2-Dichloropropane					10
1,3-Dichloropropene [1,3-Dichloropropylene]					10
2,4-Dimethylphenol					10
Di-n-Butyl phthalate					10
Ethylbenzene					10
Fluoride					500
Hexachlorobenzene					5
Hexachlorobutadiene					10
Hexachlorocyclopentadiene					10
Hexachloroethane					20
Methyl ethyl ketone					50
Nitrobenzene					10
N-Nitrosodiethylamine					20
N-Nitroso-di-n-butylamine					20
Nonylphenol					333

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)*
Pentachlorobenzene					20
Pentachlorophenol					5
Phenanthrene					10
Polychlorinated biphenyls (PCBs) (**)					0.2
Pyridine					20
1,2,4,5-Tetrachlorobenzene					20
1,1,2,2-Tetrachloroethane					10
Tetrachloroethene [Tetrachloroethylene]					10
Toluene					10
1,1,1-Trichloroethane					10
1,1,2-Trichloroethane					10
Trichloroethene					10
[Trichloroethylene]					
2,4,5-Trichlorophenol					50
TTHM (Total trihalomethanes)					10
Vinyl chloride					10

^(*) Indicate units if different from µg/L.

TABLE 4 (Instructions, Pages 58-59)

Partial completion of Table 4 **is required** for each **external outfall** based on the conditions below.

d. Tributyltin

Is this facility an industrial/commercial facility which currently or proposes to directly dispose of wastewater from the types of operations listed below or a domestic facility which currently or proposes to receive wastewater from the types of industrial/commercial operations listed below?

⊠ Yes □ No

If **yes**, check the box next to each of the following criteria which apply and provide the appropriate testing results in Table 4 below (check all that apply).

- ☐ Manufacturers and formulators of tributyltin or related compounds.
- ☐ Painting of ships, boats and marine structures.
- Ship and boat building and repairing.
- ☐ Ship and boat cleaning, salvage, wrecking and scaling.

^(**) Total of detects for PCB-1242, PCB-1254, PCB-1221, PCB-1232, PCB-1248, PCB-1260, and PCB-1016. If all non-detects, enter the highest non-detect preceded by a "<".

		Facilities engage	ed in wood j	preserving.							
			Any other industrial/commercial facility for which tributyltin is known to be present, or for which there is any reason to believe that tributyltin may be present in the effluent.								
e.	Entero	cocci (discharge	to saltwate	r)							
		icility discharges, cocci bacteria are									
		Yes 🗵 No	O								
	Domes	tic wastewater is	/will be disc	charged.							
		Yes 🗵 No	O								
	If yes	t o either question	n, provide tl	ne appropr	iate testing	results	in Tab	ole 4 bel	low.		
f.	E. coli	(discharge to fre	shwater)								
	This fa	cility discharges, bacteria are expe	proposes to								
		Yes 🗵 No	O								
	Domes	tic wastewater is	/will be disc	charged.							
		Yes 🗵 No	O								
	If ves t	t o either question	n provide tl	ne annronr	iate testing	results	in Tab	ole 4 bel	OM		
	11 , 00 .	to estates quiestion	ii, provide d	ic appropr	2000 000 0000			,16 1 56	LOVV.		
Ta	•	or Outfall No.: <u>011</u>			les are (chec			mposite		Grab	
	•	or Outfall No.: <u>011</u>			J		l Coi			Grab MAL	
P	ble 17 fo ollutant ributylt	or Outfall No.: <u>011</u> t in (μg/L)		Samp	les are (chec	k one): □	l Coi	mposite			
T E	ble 17 fo ollutant ributylt nteroco	or Outfall No.: <u>011</u> t in (μg/L) cci (cfu or MPN/1	00 mL)	Sample 1	les are (chec	k one): □	l Cor ole 3	mposite	e 4	MAL 0.010 N/A	
T E	ble 17 fo ollutant ributylt nteroco	or Outfall No.: <u>011</u> t in (μg/L)	00 mL)	Sample 1	les are (chec Sample 2	k one): 🗆 Samp	l Cor ole 3	mposite Sampl	e 4	MAL 0.010	
Po T Ex	ble 17 fo ollutant ributylt: nterocoo . coli (cf	or Outfall No.: <u>011</u> t in (μg/L) cci (cfu or MPN/1	00 mL)	Sample 1	les are (chec Sample 2 N/A	k one): E	l Cor ole 3	Sampl N/A	e 4	MAL 0.010 N/A	
TACO wa	ble 17 for ollutant ributylt: nterocool. coli (cf. ABLE 5 (completions tewate	or Outfall No.: <u>011</u> t in (µg/L) cci (cfu or MPN/1 u or MPN/100 ml	00 mL) L) ge 59) equired for which manu	Sample 1 N/A N/A all externated factures of	les are (checonomics Sample 2 N/A N/A N/A nl outfalls was reformulated.	k one): Samp	l Corle 3 /A /A	N/A N/A	e 4 A A	MAL 0.010 N/A N/A	
TACO was a lift to the state of	ble 17 for ollutant ributylt: nterocool. coli (cf. ABLE 5 (completion astewate astewate this faci	or Outfall No.: 011 t in (µg/L) cci (cfu or MPN/1 u or MPN/100 ml Instructions, Pager from a facility	00 mL) ge 59) equired for which manuntain pestical not manuf	Sample 1 N/A N/A all externated factures of desor hereacture or f	N/A N/A N/A N/A nl outfalls were formulate bicides.	k one): E Samp N/ N/ which diss pesticites	l Cor le 3 /A /A scharg des or	N/A N/A re proce	e 4 A Ss ides	MAL 0.010 N/A N/A or other	
TACO was was lift to	ble 17 for ollutant ributylt: nterocool. coli (cf. ABLE 5 (completion astewate astewate this faci	or Outfall No.: 011 ti in (µg/L) cci (cfu or MPN/1 u or MPN/100 ml Instructions, Pager from a facility ers which may conlity does not/will	00 mL) ge 59) equired for which manuntain pestical not manuf	Sample 1 N/A N/A all externated factures of desor hereacture or f	N/A N/A N/A N/A nl outfalls were formulate bicides.	k one): E Samp N/ N/ which diss pesticites	l Cor le 3 /A /A scharg des or	N/A N/A re proce	e 4 A Ss ides	MAL 0.010 N/A N/A or other	
TACO was was If the noon in the second secon	ble 17 for ollutant or ibutylt: interocool of coli (cf. ABLE 5 (completion astewate astewate this faci of will no N/A	or Outfall No.: 011 ti in (µg/L) cci (cfu or MPN/1 u or MPN/100 ml Instructions, Pager from a facility ers which may conlity does not/will	00 mL) ge 59) equired for which manuntain pestical not manufer wastewate	Sample 1 N/A N/A all externated factures of desor here acture or fers that ma	N/A N/A N/A N/A nl outfalls wer formulate bicides. ormulate pay contain property	N/ N/ which diss pesticites esticides	I Corle 3 (A (A (A) (A) (A) (A)	N/A N/A re proce	e 4 A Ss ides	MAL 0.010 N/A N/A or other	
TA Co wa wa If to no Ta	ble 17 for ollutant or ibutylt: interocool of coli (cf. ABLE 5 (completion astewate astewate this faci of will no N/A	or Outfall No.: 011 ti in (µg/L) cci (cfu or MPN/1 u or MPN/100 ml Instructions, Pager from a facility were which may condity does not/will ot discharge other	00 mL) ge 59) equired for which manuntain pestical not manufer wastewate	Sample 1 N/A N/A all externated factures of desor here acture or fers that ma	N/A N/A N/A N/A N/A nl outfalls were formulate bicides. ormulate pay contain process are (checked) 2 Sam	k one): E Samp N/ N/ which dissessicides esticides esticides esticides esticides	I Conclude 3 (A (A (A or he s or he s or he	N/A N/A e procect herbicides erbicides erbicides erbicides	e 4 A A ss ides s and es, ch	MAL 0.010 N/A N/A or other does eck N/A. Grab L	
TA Co was was If the noon of the property of t	ble 17 for ollutant oributylt: interocool of the collins of the co	or Outfall No.: 011 ti in (µg/L) cci (cfu or MPN/1 u or MPN/100 ml Instructions, Pager from a facility were which may condity does not/will ot discharge other	00 mL) ge 59) equired for which manufain pestical not manufer wastewates T APPLICA Sample 1	Sample 1 N/A N/A All externates of desor here acture or fers that materials are the materials. BLE Sample 1	N/A N/A N/A N/A N/A nl outfalls were formulate bicides. ormulate pay contain process are (checked) 2 Sam	k one): E Samp N/ N/ which dissessicides esticides esticides esticides esticides	A Conscional Consciona	N/A N/A e procect herbicides erbicides erbicides erbicides	e 4 A A ss ides and s, ch	MAL 0.010 N/A N/A or other does eck N/A. Grab L /L)*	

Operation and maintenance of marine cargo handling facilities and marinas.

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)*
Chlordane					0.2
Chlorpyrifos					0.05
4,4'-DDD					0.1
4,4'-DDE					0.1
4,4'-DDT					0.02
2,4-D					0.7
Danitol [Fenpropathrin]					_
Demeton					0.20
Diazinon					0.5/0.1
Dicofol [Kelthane]					1
Dieldrin					0.02
Diuron					0.090
Endosulfan I (<i>alpha</i>)					0.01
Endosulfan II (beta)					0.02
Endosulfan sulfate					0.1
Endrin					0.02
Guthion [Azinphos methyl]					0.1
Heptachlor					0.01
Heptachlor epoxide					0.01
Hexachlorocyclohexane (alpha)					0.05
Hexachlorocyclohexane (<i>beta</i>)					0.05
Hexachlorocyclohexane (gamma) [Lindane]					0.05
Hexachlorophene					10
Malathion					0.1
Methoxychlor					2.0
Mirex					0.02
Parathion (ethyl)					0.1
Toxaphene					0.3
2,4,5-TP [Silvex]					0.3

^{*} Indicate units if different from µg/L.

TABLE 6 (Instructions, Page 59)

Completion of Table 6 is required for all external outfalls.

Table 19 for Outfall No.: <u>O11</u> Samples are (check one): ☐ Composite ☐ Grab

Pollutants	Believed Present	Believed Absent	Sample 1 (mg/L)	Sample 2 (mg/L)	Sample 3 (mg/L)	Sample 4 (mg/L)	MAL (μg/L)*
Bromide							400
Color (PCU)							_
Nitrate-Nitrite (as N)							_
Sulfide (as S)							_
Sulfite (as SO3)							_
Surfactants							_
Boron, total							20
Cobalt, total							0.3
Iron, total							7
Magnesium, total							20
Manganese, total							0.5
Molybdenum, total							1
Tin, total							5
Titanium, total							30

TABLE 7 (Instructions, Page 60)

Check the box next to any of the industrial categories applicable to this facility. If no categories are applicable, check N/A. If GC/MS testing is required, check the box provided to confirm the testing results for the appropriate parameters are provided with the application.

⊠ N/A

Table 20 for Applicable Industrial Categories

Ind	ustrial Category	40 CFR Part	Volatiles Table 8	Acids Table 9	Bases/ Neutrals Table 10	Pesticides Table 11
	Adhesives and Sealants		□ Yes	□ Yes	□ Yes	No
	Aluminum Forming	467	□ Yes	□ Yes	□ Yes	No
	Auto and Other Laundries		□ Yes	□ Yes	□ Yes	□ Yes
	Battery Manufacturing	461	□ Yes	No	□ Yes	No
	Coal Mining	434	No	No	No	No
	Coil Coating	465	□ Yes	□ Yes	□ Yes	No
	Copper Forming	468	□ Yes	□ Yes	□ Yes	No
	Electric and Electronic Components	469	□ Yes	□ Yes	□ Yes	□ Yes
	Electroplating	413	□ Yes	□ Yes	□ Yes	No
	Explosives Manufacturing	457	No	□ Yes	□ Yes	No
	Foundries		□ Yes	□ Yes	□ Yes	No
	Gum and Wood Chemicals - Subparts A,B,C,E	454	□ Yes	□ Yes	No	No
	Gum and Wood Chemicals - Subparts D,F	454	□ Yes	□ Yes	□ Yes	No
	Inorganic Chemicals Manufacturing	415	□ Yes	□ Yes	☐ Yes	No
	Iron and Steel Manufacturing	420	□ Yes	□ Yes	□ Yes	No
	Leather Tanning and Finishing	425	□ Yes	□ Yes	□ Yes	No
	Mechanical Products Manufacturing		□ Yes	□ Yes	□ Yes	No
	Nonferrous Metals Manufacturing	421,471	□ Yes	□ Yes	☐ Yes	□ Yes
	Oil and Gas Extraction - Subparts A, D, E, F, G, H	435	□ Yes	□ Yes	□ Yes	No
	Ore Mining - Subpart B	440	No	□ Yes	No	No
	Organic Chemicals Manufacturing	414	□ Yes	□ Yes	□ Yes	□ Yes
	Paint and Ink Formulation	446,447	□ Yes	□ Yes	□ Yes	No
	Pesticides	455	□ Yes	□ Yes	□ Yes	□ Yes
	Petroleum Refining	419	□ Yes	No	No	No
	Pharmaceutical Preparations	439	□ Yes	□ Yes	□ Yes	No
	Photographic Equipment and Supplies	459	□ Yes	□ Yes	□ Yes	No
	Plastic and Synthetic Materials Manufacturing	414	□ Yes	□ Yes	□ Yes	□ Yes
	Plastic Processing	463	□ Yes	No	No	No
	Porcelain Enameling	466	No	No	No	No
	Printing and Publishing		□ Yes	□ Yes	□ Yes	□ Yes
	Pulp and Paperboard Mills - Subpart C	430	*	□ Yes	*	□ Yes
	Pulp and Paperboard Mills - Subparts F, K	430	*	□ Yes	*	*
	Pulp and Paperboard Mills - Subparts A, B, D, G, H	430	□ Yes	□ Yes	*	*
	Pulp and Paperboard Mills - Subparts I, J, L	430	□ Yes	□ Yes	*	□ Yes
	Pulp and Paperboard Mills - Subpart E	430	□ Yes	□ Yes	□ Yes	*
	Rubber Processing	428	□ Yes	□ Yes	□ Yes	No
	Soap and Detergent Manufacturing	417	□ Yes	□ Yes	□ Yes	No
	Steam Electric Power Plants	423	□ Yes	□ Yes	No	No
	Textile Mills (Not Subpart C)	410	□ Yes	□ Yes	□ Yes	No
	Timber Products Processing	429	□ Yes	□ Yes	□ Yes	□ Yes

^{*} Test if believed present.

TABLES 8, 9, 10, and 11 (Instructions, Page 60)

Completion of Tables 8, 9, 10, and 11 **is required** as specified in Table 7 for all **external outfalls** that contain process wastewater.

Completion of Tables 8, 9, 10, and 11 **may be required** for types of industry not specified in Table 7 for specific parameters that are believed to be present in the wastewater.

 Table 21 for Outfall No.: NOT APPLICABLE
 Samples are (check one): □ Composite □ Grab

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)
Acrolein					50
Acrylonitrile					50
Benzene					10
Bromoform					10
Carbon tetrachloride					2
Chlorobenzene					10
Chlorodibromomethane					10
Chloroethane					50
2-Chloroethylvinyl ether					10
Chloroform					10
Dichlorobromomethane [Bromodichloromethane]					10
1,1-Dichloroethane					10
1,2-Dichloroethane					10
1,1-Dichloroethylene [1,1-Dichloroethene]					10
1,2-Dichloropropane					10
1,3-Dichloropropylene [1,3-Dichloropropene]					10
Ethylbenzene					10
Methyl bromide [Bromomethane]					50
Methyl chloride [Chloromethane]					50
Methylene chloride [Dichloromethane]					20
1,1,2,2-Tetrachloroethane					10
Tetrachloroethylene [Tetrachloroethene]					10
Toluene					10
1,2-Trans-dichloroethylene [1,2-Trans-dichloroethene]					10

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)
1,1,1-Trichloroethane					10
1,1,2-Trichloroethane					10
Trichloroethylene [Trichloroethene]					10
Vinyl chloride					10

^{*} Indicate units if different from µg/L.

Table 22 for Outfall No.: **NOT APPLICABLE** Samples are (check one): □ Composite □ Grab

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)
2-Chlorophenol					10
2,4-Dichlorophenol					10
2,4-Dimethylphenol					10
4,6-Dinitro-o-cresol					50
2,4-Dinitrophenol					50
2-Nitrophenol					20
4-Nitrophenol					50
p-Chloro-m-cresol					10
Pentachlorophenol					5
Phenol					10
2,4,6-Trichlorophenol					10

^{*} Indicate units if different from µg/L.

Table 23 for Outfall No.: <u>NOT APPLICABLE</u> Samples are (check one): ☐ Composite ☐ Grab

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)
Acenaphthene					10
Acenaphthylene					10
Anthracene					10
Benzidine					50
Benzo(a)anthracene					5
Benzo(a)pyrene					5
3,4-Benzofluoranthene [Benzo(b)fluoranthene]					10
Benzo(ghi)perylene					20
Benzo(k)fluoranthene					5
Bis(2-chloroethoxy)methane					10

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)
Bis(2-chloroethyl)ether					10
Bis(2-chloroisopropyl)ether					10
Bis(2-ethylhexyl)phthalate					10
4-Bromophenyl phenyl ether					10
Butylbenzyl phthalate					10
2-Chloronaphthalene					10
4-Chlorophenyl phenyl ether					10
Chrysene					5
Dibenzo(a,h)anthracene					5
1,2-Dichlorobenzene [o-Dichlorobenzene]					10
1,3-Dichlorobenzene [m-Dichlorobenzene]					10
1,4-Dichlorobenzene [p-Dichlorobenzene]					10
3,3'-Dichlorobenzidine					5
Diethyl phthalate					10
Dimethyl phthalate					10
Di-n-butyl phthalate					10
2,4-Dinitrotoluene					10
2,6-Dinitrotoluene					10
Di-n-octyl phthalate					10
1,2-Diphenylhydrazine (as Azobenzene)					20
Fluoranthene					10
Fluorene					10
Hexachlorobenzene					5
Hexachlorobutadiene					10
Hexachlorocyclopentadiene					10
Hexachloroethane					20
Indeno(1,2,3-cd)pyrene					5
Isophorone					10
Naphthalene					10
Nitrobenzene					10
N-Nitrosodimethylamine					50

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)
N-Nitrosodi-n-propylamine					20
N-Nitrosodiphenylamine					20
Phenanthrene					10
Pyrene					10
1,2,4-Trichlorobenzene					10

^{*} Indicate units if different from µg/L.

Table 24 for Outfall No.: <u>NOT APPLICABLE</u> Samples are (check one): ☐ Composite ☐ Grab

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)
Aldrin					0.01
alpha-BHC [alpha-Hexachlorocyclohexane]					0.05
beta-BHC [beta-Hexachlorocyclohexane]					0.05
gamma-BHC [gamma-Hexachlorocyclohexane]					0.05
delta-BHC [delta-Hexachlorocyclohexane]					0.05
Chlordane					0.2
4,4'-DDT					0.02
4,4'-DDE					0.1
4,4'-DDD					0.1
Dieldrin					0.02
Endosulfan I (alpha)					0.01
Endosulfan II (beta)					0.02
Endosulfan sulfate					0.1
Endrin					0.02
Endrin aldehyde					0.1
Heptachlor					0.01
Heptachlor epoxide					0.01
PCB 1242					0.2
PCB 1254					0.2
PCB 1221					0.2
PCB 1232					0.2
PCB 1248					0.2

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)
PCB 1260					0.2
PCB 1016					0.2
Toxaphene					0.3

^{*} Indicate units if different from µg/L.

Attachment: Click to enter text.

TABLE 12 (DIOXINS/FURAN COMPOUNDS)

Complete of Table 12 **is required** for **external outfalls**, as directed below. (Instructions, Pages 59-60)

Indicate which compound(s) are manufactured or used at the facility and provide a brief description of the conditions of its/their presence at the facility (check all that apply).

- □ 2,4,5-trichlorophenoxy acetic acid (2,4,5-T) CASRN 93-76-5
- □ 2-(2,4,5-trichlorophenoxy) propanoic acid (Silvex, 2,4,5-TP) CASRN 93-72-1
- 2-(2,4,5-trichlorophenoxy) ethyl 2,2-dichloropropionate (Erbon) CASRN 136-25-4
- □ 0,0-dimethyl 0-(2,4,5-trichlorophenyl) phosphorothioate (Ronnel) CASRN 299-84-3
- □ 2,4,5-trichlorophenol (TCP) CASRN 95-95-4
- □ hexachlorophene (HCP) CASRN 70-30-4
- None of the above

Description: NOT APPLICABLE

Does the applicant or anyone at the facility know or have any reason to believe that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or any congeners of TCDD may be present in the effluent proposed for discharge?

□ Yes ⊠ No

Description: Click to enter text.

If **yes** to either Items a **or** b, complete Table 12 as instructed.

Table 25 for Outfall No.: NOT APPLICABLE Samples are (check one): ☐ Composite ☐ Grab

Compound	Toxicity Equivalent Factors	Wastewater Concentration (ppq)	Wastewater Toxicity Equivalents (ppq)	Sludge Concentration (ppt)	Sludge Toxicity Equivalents (ppt)	MAL (ppq)
2,3,7,8-TCDD	1					10
1,2,3,7,8- PeCDD	1.0					50
2,3,7,8- HxCDDs	0.1					50
1,2,3,4,6,7,8- HpCDD	0.01					50

Compound	Toxicity Equivalent Factors	Wastewater Concentration (ppq)	Wastewater Toxicity Equivalents (ppq)	Sludge Concentration (ppt)	Sludge Toxicity Equivalents (ppt)	MAL (ppq)
2,3,7,8-TCDF	0.1					10
1,2,3,7,8- PeCDF	0.03					50
2,3,4,7,8- PeCDF	0.3					50
2,3,7,8- HxCDFs	0.1					50
2,3,4,7,8- HpCDFs	0.01					50
OCDD	0.0003					100
OCDF	0.0003					100
PCB 77	0.0001					500
PCB 81	0.0003					500
PCB 126	0.1					500
PCB 169	0.03					500
Total						

TABLE 13 (HAZARDOUS SUBSTANCES)

Complete Table 13 is required for all external outfalls as directed below. (Instructions, Pages 60-61)

Are there any pollutants listed in the instructions (pages 55-62) believed present in the discharge?

□ Yes ⊠ No

Are there pollutants listed in Item 1.c. of Technical Report 1.0 which are believed present in the discharge and have not been analytically quantified elsewhere in this application?

□ Yes ⊠ No

If **yes** to either Items a **or** b, complete Table 13 as instructed.

Table 26 for Outfell No. NOT ADDITION E Complete are (sheek ere)

Table 26 for Outfall No.: $\underline{\Gamma}$	NOT APPLIC	<u>ABLE</u> Sampl	es are (checi	k one): ⊔ C	omposite	⊔ Grab
Pollutant	CASRN	Sample 1 (µg/L)	Sample 2 (µg/L)	Sample 3 (µg/L)	Sample 4 (µg/L)	Analytical Method

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 4.0: RECEIVING WATERS

This worksheet is required for all TPDES permit applications.

Item 1. Domestic Drinking Water Supply (Instructions, Page 80)

a.	There is a surface water intake for domestic drinking water supply located within 5 (five) miles downstream from the point/proposed point of discharge.
	□ Yes ⊠ No
	If no , stop here and proceed to Item 2. If yes , provide the following information:
	1. The legal name of the owner of the drinking water supply intake: <u>Click to enter text.</u>
	2. The distance and direction from the outfall to the drinking water supply intake: Click to enter text.
b.	Locate and identify the intake on the USGS 7.5-minute topographic map provided for Administrative Report 1.0.
	\square Check this box to confirm the above requested information is provided.
Tta	em 2. Discharge Into Tidally Influenced Waters (Instructions,
10	Page 80)
	the discharge is to tidally influenced waters, complete this section. Otherwise, proceed to m 3.
a.	Width of the receiving water at the outfall: <u>~475</u> feet
b.	Are there oyster reefs in the vicinity of the discharge?
	□ Yes ⊠ No
	If yes , provide the distance and direction from the outfall(s) to the oyster reefs: <u>NOT APPLICABLE</u>
c.	Are there sea grasses within the vicinity of the point of discharge?
	□ Yes ⊠ No
	If yes , provide the distance and direction from the outfall(s) to the grasses: <u>NOT APPLICABLE</u>
Ite	em 3. Classified Segment (Instructions, Page 80)
Th	e discharge is/will be directly into (or within 300 feet of) a classified segment.
	⊠ Yes □ No
If y	yes, stop here and do not complete Items 4 and 5 of this worksheet or Worksheet 4.1.

If **no**, complete Items 4 and 5 and Worksheet 4.1 may be required.

Item 4. Description of Immediate Receiving Waters (Instructions, Page 80)

		(Instructions, Page 80)
a.	Name	of the immediate receiving waters: <u>Click to enter text.</u>
b.	Check	the appropriate description of the immediate receiving waters:
		ake or Pond
	•	Surface area (acres): Click to enter text.
	•	Average depth of the entire water body (feet): Click to enter text.
	•	Average depth of water body within a 500-foot radius of the discharge point (feet): Click to enter text.
		an-Made Channel or Ditch
	\square S	ream or Creek
		reshwater Swamp or Marsh
	□ T	idal Stream, Bayou, or Marsh
		pen Bay
		ther, specify:
		ade Channel or Ditch or Stream or Creek were selected above, provide responses to – 4.g below:
c.		cisting discharges , check the description below that best characterizes the area eam of the discharge.
		ew discharges, check the description below that best characterizes the area stream of the discharge.
		Intermittent (dry for at least one week during most years)
		Intermittent with Perennial Pools (enduring pools containing habitat to maintain aquatic life uses)
		Perennial (normally flowing)
		the source(s) of the information used to characterize the area upstream (existing arge) or downstream (new discharge):
		USGS flow records
		personal observation
		historical observation by adjacent landowner(s)
		other, specify: <u>Click to enter text.</u>
d.		te names of all perennial streams that join the receiving water within three miles stream of the discharge point: Click to enter text.
e.		eceiving water characteristics change within three miles downstream of the discharge natural or man-made dams, ponds, reservoirs, etc.).
		Yes

f.		eral observations of the water body during er text.	norn	nal dry weather conditions: <u>Click to</u>
	Date	e and time of observation: <u>Click to enter tex</u>	t.	
g.		water body was influenced by stormwater in Yes No	runo	ff during observations.
		es, describe how: Click to enter text.		
It	em	5. General Characteristics of Page 81)	Wa	ater Body (Instructions,
a.		ne receiving water upstream of the existing uenced by any of the following (check all the		
		oil field activities		urban runoff
		agricultural runoff		septic tanks
		upstream discharges		other, specify: <u>Click to enter text.</u>
b.	Use	s of water body observed or evidence of suc	h us	es (check all that apply):
		livestock watering		industrial water supply
		non-contact recreation		irrigation withdrawal
		domestic water supply		navigation
		contact recreation		picnic/park activities
		fishing		other, specify: <u>Click to enter text.</u>
c.		cription which best describes the aesthetics a (check only one):	of tl	he receiving water and the surrounding
		Wilderness: outstanding natural beauty; us clarity exceptional	sually	wooded or un-pastured area: water
		Natural Area: trees or native vegetation co- fields, pastures, dwellings); water clarity d		
		Common Setting: not offensive, developed turbid	but	uncluttered; water may be colored or
		Offensive: stream does not enhance aesthe areas; water discolored	etics;	cluttered; highly developed; dumping

If **yes**, describe how: Click to enter text.

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 7.0: STORMWATER DISCHARGES ASSOCIATED WITH INDUSTRIAL ACTIVITIES

This worksheet **is required** for all TPDES permit applications requesting individual permit coverage for discharges consisting of **either**: 1) solely of stormwater discharges associated with industrial activities, as defined in 40 CFR § 122.26(b)(14)(i-xi), **or** 2) stormwater discharges associated with industrial activities and any of the listed allowable non-stormwater discharges, as defined in the MSGP (TXR05000), Part II, Section A, Item 6.

Discharges of stormwater as defined in 40 CFR § 122.26 (b)(13) are not required to obtain authorization under a TPDES permit (see exceptions at 40 CFR §§ 122.26(a)(1) and (9)). Authorization for discharge may be required from a local municipal separate storm sewer system.

Item 1. Applicability (Instructions, Page 89)

Do discharges from any of the existing/proposed outfalls consist either 1) solely of stormwater discharges associated with industrial activities **or** 2) stormwater discharges associated with industrial activities and any of the allowable non-stormwater discharges?

⊠ Yes □ No

If **no**, stop here. If **yes**, proceed as directed.

Item 2. Stormwater Coverage (Instructions, Page 89)

List each existing/proposed stormwater outfall at the facility and indicate which type of authorization covers or is proposed to cover discharges.

Authorization Coverage

Outfall	Authorization under MSGP	Authorized Under Individual Permit
001		
008		

If **all** existing/proposed outfalls which discharge stormwater associated with industrial activities (and any of the allowable non-stormwater discharges) are **authorized under the MSGP**, **stop** here.

If **seeking authorization** for any outfalls which discharge stormwater associated with industrial activities (and any of the allowable non-stormwater discharges) **under an individual permit, proceed**.

NOTE: The following information is required for each existing/proposed stormwater outfall for which the facility is seeking individual permit authorization under this application

Item 3. Site Map (Instructions, Page 90)

Attach a site map or maps (drawn to scale) of the entire facility with the following information.

- the location of each stormwater outfall to be covered by the permit
- an outline of the drainage area that is within the facility's boundary and that contributes stormwater to each outfall to be covered by the permit
- connections or discharge points to municipal separate storm sewer systems
- locations of all structures (e.g. buildings, garages, storage tanks)
- structural control devices that are designed to reduce pollution in discharges of stormwater associated with industrial activities
- process wastewater treatment units (including ponds)
- bag house and other air treatment units exposed to stormwater (stormwater runoff, snow melt runoff, and surface runoff and drainage)
- landfills; scrapyards; surface water bodies (including wetlands)
- vehicle and equipment maintenance areas
- physical features of the site that may influence discharges of stormwater associated with industrial activities or contribute a dry weather flow
- locations where spills or leaks of reportable quality (as defined in 30 TAC § 327.4) have occurred during the three years before this application was submitted to obtain coverage under an individual permit
- processing areas, storage areas, material loading/unloading areas, and other locations where significant materials are exposed to stormwater (stormwater runoff, snow melt runoff, and surface runoff and drainage)

		Check the box to	confirm all abo	ve information	was provided o	on the facility	site map(s)
--	--	------------------	-----------------	----------------	----------------	-----------------	-------------

Attachment: Click to enter text.

Item 4. Facility/Site Information (Instructions, Page 90)

a. Provide the area of impervious surface and the total area drained by each stormwater outfall requested for authorization by this permit application.

Impervious Surfaces

Outfall	Area of Impervious Surface (include units)	Total Area Drained (include units)

b. Provide the following local area rainfall information and the source of the information.

Wettest month: Click to enter text.

Average rainfall for wettest month (total inches): Click to enter text.

25-year, 24-hour rainfall (inches): Click to enter text.

Source: Click to enter text.

- c. Attach an inventory, or list, of materials currently handled at the facility that may be exposed to precipitation. **Attachment:** Click to enter text.
- d. Attach narrative descriptions of the industrial processes and activities involving the materials in the above-listed inventory that occur outdoors or in some manner that may result in exposure of the materials to precipitation or runoff (see instructions for guidance). **Attachment:** Click to enter text.
- e. Describe any BMPs and controls the facility uses/proposes to prevent or effectively reduce pollution in stormwater discharges from the facility: <u>Click to enter text.</u>

Item 5. Pollutant Analysis (Instructions, Page 91)

- a. Provide the date range of all sampling events conducted to obtain the analytical data submitted with this application (e.g., 05/01/2018-05/30/2018): Click to enter text.
- b. \square Check the box to confirm all samples were collected no more than 12 months prior to the date of application submittal.
- c. Complete Table 17 as directed on page 92 of the Instructions.

Table 30 for Outfall No.: Click to enter text.

Pollutant	Grab Sample* Maximum (mg/L)	Composite Sample** Maximum (mg/L)	Grab Sample* Average (mg/L)	Composite Sample** Average (mg/L)	Number of Storm Events Sampled	MAL (mg/L)
pH (standard units)	(max)	_	(min)	_		_
Total suspended solids						_
Chemical oxygen demand						_
Total organic carbon						_
Oil and grease						_
Arsenic, total						0.0005
Barium, total						0.003
Cadmium, total						0.001
Chromium, total						0.003
Chromium, trivalent						_
Chromium, hexavalent						0.003
Copper, total						0.002

Pollutant	Grab Sample* Maximum (mg/L)	Composite Sample** Maximum (mg/L)	Grab Sample* Average (mg/L)	Composite Sample** Average (mg/L)	Number of Storm Events Sampled	MAL (mg/L)
Lead, total						0.0005
Mercury, total						0.000005
Nickel, total						0.002
Selenium, total						0.005
Silver, total						0.0005
Zinc, total						0.005

^{*} Taken during first 30 minutes of storm event

d. Complete Table 18 as directed on pages 92-94 of the Instructions.

Table 31 for Outfall No.: Click to enter text.

Pollutant	Grab Sample* Maximum (mg/L)	Composite Sample** Maximum (mg/L)	Grab Sample* Average (mg/L)	Composite Sample** Average (mg/L)	Number of Storm Events Sampled

^{*} Taken during first 30 minutes of storm event

Attachment: Click to enter text.

^{**} Flow-weighted composite sample

^{**} Flow-weighted composite sample

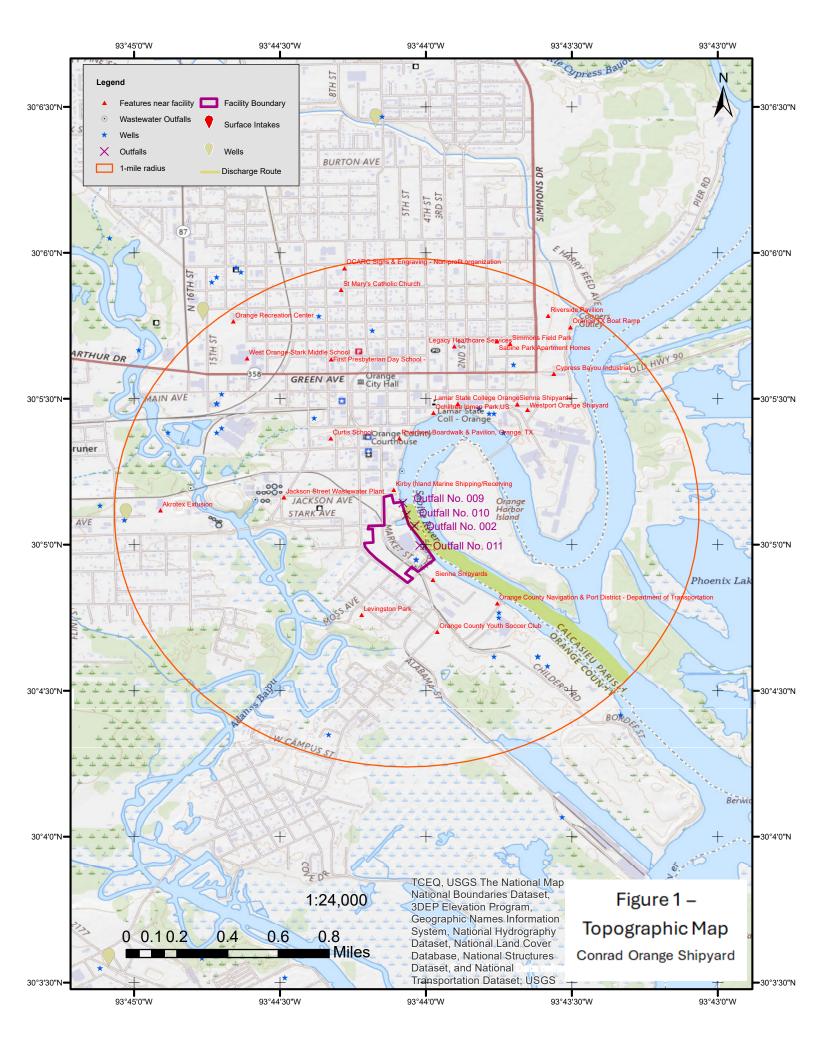
Item 6. Storm Event Data (Instructions, Page 93)

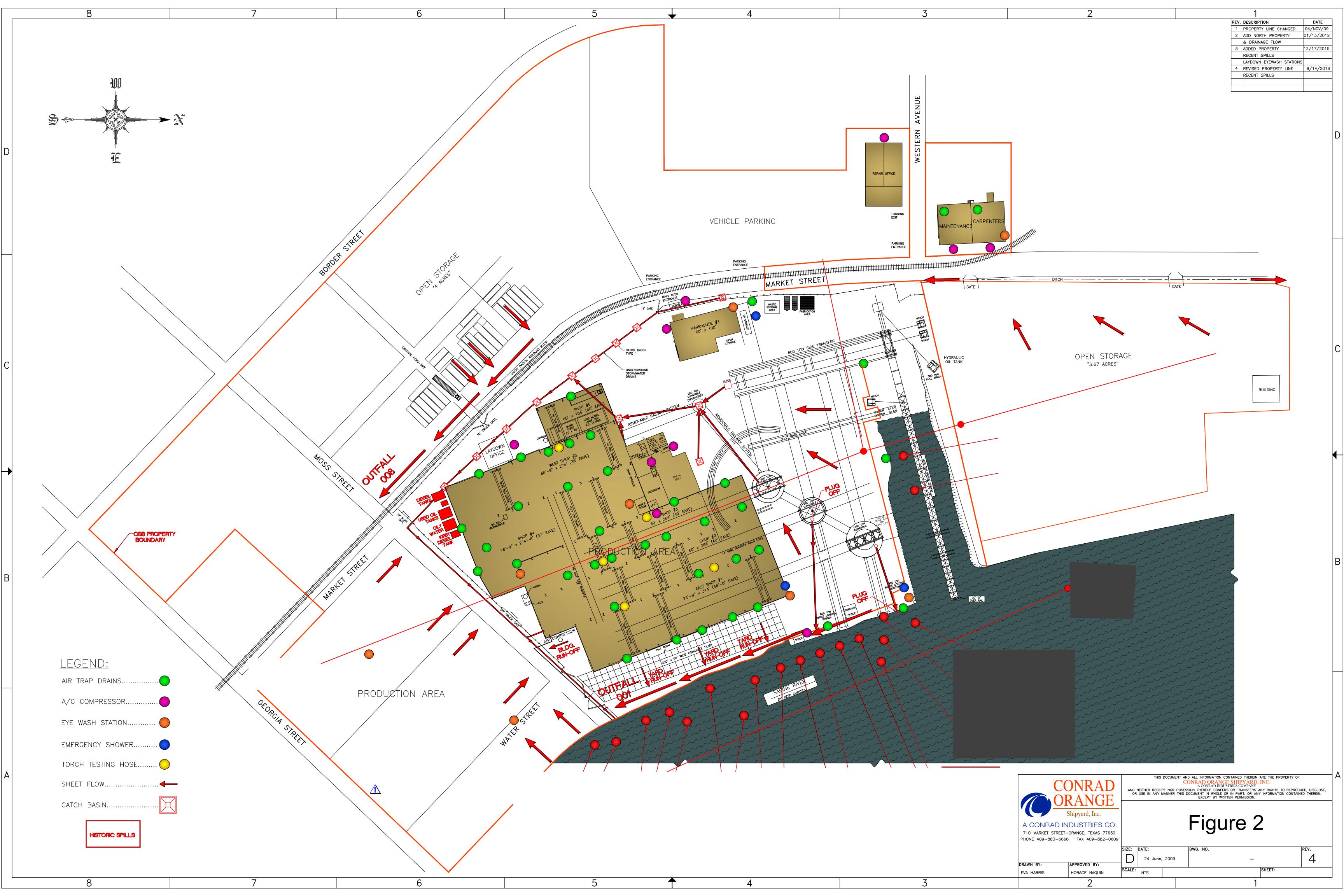
Provide the following data for the storm event(s) which resulted in the maximum values for the analytical data submitted:

Date of storm event: Click to enter text.

Duration of storm event (minutes): Click to enter text.

Total rainfall during storm event (inches): Click to enter text.


Number of hours the between beginning of the storm measured and the end of the previous measurable storm event (hours): Click to enter text.


Maximum flow rate during rain event (gallons/minute): Click to enter text.

Total stormwater flow from rain event (gallons): Click to enter text.

Provide a description of the method of flow measurement or estimate:

APPENDIX C. FIGURES

APPENDIX D. APPLICATION FEE

Shopping Cart

Select Fee

Search Transactio

Sign Out

Your transaction is complete. Thank you for using TCEQ ePay.

Note: It may take up to 3 working days for this electronic payment to be processed and be reflected in the TCEQ ePay system. Print this receipt and the vouchers for your records. An email receipt has also been sent,

-Transaction Information

Trace Number: 582EA000609422

Date: 05/07/2024 12:35 PM

Payment Method: CC - Authorization 0000217053

ePay Actor: ROBERT CASTILE

Actor Email: rjcastile@conradindustries.com

IP: 12.245.3.234

TCEQ Amount: \$1,215.00 Texas.gov Price: \$1,242.59*

* This service is provided by Texas.gov, the official website of Texas. The price of this service includes funds that support the ongoing operations and enhancements of Texas.gov, which is provided by a third party in partnership with the State.

-Payment Contact Information-

Name: ROBERT CASTILE

Company: CONRAD ORANGE SHIPYARD

Address: P O BOX 1670, ORANGE, TX 77631

Phone: 409-883-6666

Cart Items-

Click on the voucher number to see the voucher details,

Voucher Fee Description

AR Number Amount

704451 WW PER

WW PERMIT - MINOR FACILITY SUBJECT TO 40 CFR 400-471 - RENEWAL

\$1,200.00

30 TAC 305,53B WQ RENEWAL NOTIFICATION FEE

\$15.00

TCEQ Amount: \$1,215.00

ePay Again Exit ePay

Note: It may take up to 3 working days for this electronic payment to be processed and be reflected in the TCEQ ePay system. Print this receipt for your records.

Site Help | Disclaimer | Web Policies | Accessibility | Our Compact with Texans | TCEQ Homeland Security | Contact Us Statewide Links: Texas.gov | Texas Homeland Security | TRAIL Statewide Archive | Texas Veterans Portal

© 2002-2024 Texas Commission on Environmental Quality

Select Fee

Search Transactions Sign Out

Print this voucher for your records. If you are sending the TCEQ hardcopy documents related to this payment, include a copy of this voucher.

Transaction Information-

Voucher Number: 704451

Trace Number: 582EA000609422

Date: 05/07/2024 12:35 PM

Payment Method: CC - Authorization 0000217053

Voucher Amount: \$1,200.00

Fee Type: WW PERMIT - MINOR FACILITY SUBJECT TO 40 CFR 400-471 - RENEWAL

ePay Actor: ROBERT CASTILE

Actor Email: rjcastile@conradindustries.com

IP: 12.245.3.234

Payment Contact Information-

Name: ROBERT CASTILE

Company: CONRAD ORANGE SHIPYARD Address: P O BOX 1670, ORANGE, TX 77631

Phone: 409-883-6666

Site Information

RN: RN102745825

Site Name: CONRAD ORANGE SHIPYARD INC

Site Address: 710 MARKET STREET, ORANGE, TX 77630

Site Location: 710 MARKET STREET ORANGE TX 77630

-Customer Information-

CN: CN604118448

Customer Name: ROBERT CASTILE

Customer Address: P O BOX 1670, ORANGE, TX 77631

Other Information

Program Area ID: WQ0005010000

Close

Ste Help | Disclaimer | Web Policies | Accessibility | Our Compact with Texans | TCEQ Homeland Security | Contact Us Statewide Links: Texas.gov | Texas Homeland Security | TRAIL Statewide Archive | Texas Veterans Portal

© 2002-2024 Texas Commission on Environmental Quality

Search Transactions Sign Out

Print this voucher for your records. If you are sending the TCEQ hardcopy documents related to this payment, include a copy of this voucher.

Transaction Information—

Voucher Number: 704452

Trace Number: 582EA000609422

Date: 05/07/2024 12:35 PM

Payment Method: CC - Authorization 0000217053

Voucher Amount: \$15.00

Fee Type: 30 TAC 305.53B WQ RENEWAL NOTIFICATION FEE

ePay Actor: ROBERT CASTILE

Actor Email: rjcastile@conradindustries.com

IP: 12.245.3.234

Payment Contact Information-

Name: ROBERT CASTILE

Company: CONRAD ORANGE SHIPYARD

Address: PO BOX 1670, ORANGE, TX 77631

Phone: 409-883-6666

Close

Site Help | Disclaimer | Web Policies | Accessibility | Our Compact with Texans | TCEQ Homeland Security | Contact Us Statewide Links: Texas.gov | Texas Homeland Security | TRAIL Statewide Archive | Texas Veterans Portal

© 2002-2024 Texas Commission on Environmental Quality

APPENDIX E. CORE DATA FORM

TCEQ Core Data Form

For detailed instructions on completing this form, please read the Core Data Form Instructions or call 512-239-5175.

SECTION I: General Information

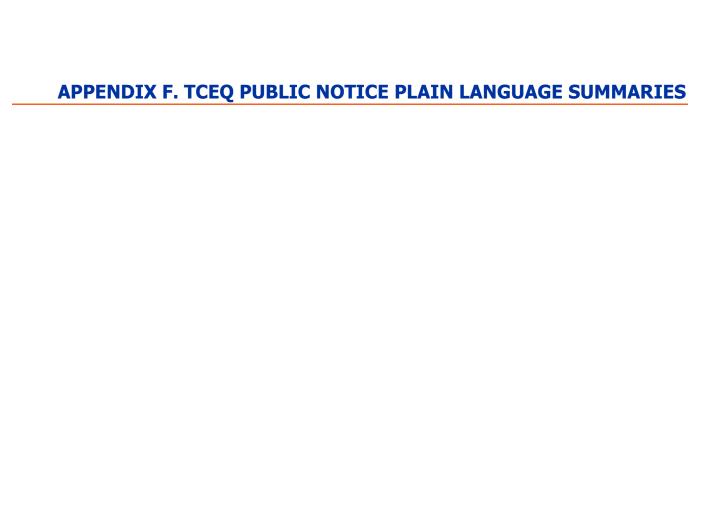
1. Reason for Submission (If other is checked please describe in space provided.)

☐ New Pern	nit, Registra	ition or A	Authorization (Core Data F	orm should be s	submitte	d with	the prog	ram apı	lication.)			
□ Renewal	Core Data	Form sh	ould be submit	ted with the	renewal form)				ther				
2. Customer	Reference	Numb	er (if issued)		Follow this li			3. Reg	gulated	Entity Re	ference	Number (if i	issued)
CN 6041184					Central R			RN 1	102745	8			
ECTIO	N II:	Cus	tomer	Infor	<u>mation</u>	1							
4. General Cu	istomer In	format	ion	5. Effective	ve Date for Cu	ustome	r Info	rmation	Update	es (mm/dd/	уууу)		N/A
New Custon		(Verifiab		-	tomer Informa of State or Tex		otrolle		_	egulated Ent	tity Own	ership	
The Custome (SOS) or Texa			-	-	automatical	ly based	d on v	what is c	urrent	and active	with th	ne Texas Seci	retary of State
6. Customer	Legal Nam	ie (If an	individual, pri	nt last name	first: eg: Doe, J	lohn)			<u>If new</u>	· Customer,	enter pre	evious Custom	er below:
Conrad Orange	Shipyard, I	nc.											
7. TX SOS/CP	A Filing N	umber		8. TX Stat	e Tax ID (11 d	ligits)			9. Fe	deral Tax I	D	10. DUNS applicable)	Number (if
62180700				174178927	738				(9 dig			069646644	
			I								1		
11. Type of C			Corporat					☐ Individ					neral Limited
Government:			Federal	Local Sta	ete Other			Sole P		·	Ot		
12. Number											_	ned and Ope	erateur
<u></u> 0-20	21-100	☑ 101-2	50 251-	500 📙 50	01 and higher				⊠ Ye	S	∐ No		
14. Customer	Role (Pro	posed oi	r Actual) – as i	t relates to ti	he Regulated Er	ntity liste	ed on t	this form.	Please o	heck one of	the follo	owing	
Owner Occupation	al Licensee		erator esponsible Pai		Owner & Opera					Other:			
15. Mailing	P.O. Box 1	1670											
Address:													
	City	Orang	e		State	TX		ZIP	77633			ZIP + 4	1670
16. Country N	Mailing Inf	formati	on (if outside	USA)			17. I	E-Mail Ad	ddress	(if applicabl	e)		
							rjcas	tile@conr	adindus	tries.com			
18. Telephon	e Number				19. Extension	on or Co	ode			20. Fax N	umber	(if applicable)	

TCEQ-10400 (11/22) Page 1 of 3

(409) 883-6666		(409) 882-0609
------------------	--	------------------

SECTION III: Regulated Entity Information


21. General Regulated Er	ntity Informa	ation (If 'New Re	gulated Entity" is sel	ected, a new p	ermit applicat	tion is also req	quired.)		
☐ New Regulated Entity	Update to	Regulated Entity	Name Update	e to Regulated	Entity Informa	ation			
The Regulated Entity Nat as Inc, LP, or LLC).	me submitte	ed may be upda	ited, in order to m	eet TCEQ Cor	e Data Stan	dards (remo	oval of org	ganization	al endings such
22. Regulated Entity Nan	ne (Enter nan	ne of the site whe	re the regulated action	on is taking pla	ice.)				
Conrad Orange Shipyard									
23. Street Address of the Regulated Entity:	710 Market	t Street							
(No PO Boxes)	City	Orange	State	ТХ	ZIP	77630		ZIP + 4	
24. County									
L		If no Stre	et Address is prov	ided, fields 2	5-28 are red	quired.			
25. Description to Physical Location:	Not Applica	ible							
26. Nearest City						State		Nea	rest ZIP Code
Latitude/Longitude are r used to supply coordinat	-	-			Pata Standa	rds. (Geocod	ding of the	e Physical	Address may be
_	es where no	-		accuracy).		rds. (Geocod		e Physical -93.74	Address may be
used to supply coordinat	es where no	one have been p		accuracy).	ongitude (W	•	ıl:	-	Address may be Seconds
27. Latitude (N) In Decim Degrees 30	es where no	30.08 05	Seconds	28. L	ongitude (W	/) In Decima	l: utes	-93.74	Seconds 8
27. Latitude (N) In Decim Degrees	al: Minutes	30.08	Seconds	28. L	ongitude (W	/) In Decima	l: utes	-93.74	Seconds 8
27. Latitude (N) In Decim Degrees 30 29. Primary SIC Code	al: Minutes	30.08 05 Secondary SIC	Seconds	28. L Degre	ongitude (W	/) In Decima	utes 44 32. Secon	-93.74	Seconds 8
used to supply coordinat 27. Latitude (N) In Decim Degrees 30 29. Primary SIC Code (4 digits)	al: Minutes 30.	30.08 05 Secondary SIC	Seconds 0 Code	28. L Degree 31. Primar (5 or 6 digi	93 ry NAICS Codes	/) In Decima	11: 44 32. Secon (5 or 6 digital)	-93.74	Seconds 8
used to supply coordinat 27. Latitude (N) In Decim Degrees 30 29. Primary SIC Code (4 digits) 3731	Minutes 30. (4 c	30.08 05 Secondary SIC	Seconds 0 Code	28. L Degree 31. Primar (5 or 6 digi	93 ry NAICS Codes	/) In Decima	11: 44 32. Secon (5 or 6 digital)	-93.74	Seconds 8
used to supply coordinat 27. Latitude (N) In Decim Degrees 30 29. Primary SIC Code (4 digits) 3731 33. What is the Primary I	Minutes 30. (4 c	30.08 05 Secondary SIC digits)	Seconds 0 Code	28. L Degree 31. Primar (5 or 6 digi	93 ry NAICS Codes	/) In Decima	11: 44 32. Secon (5 or 6 digital)	-93.74	Seconds 8
used to supply coordinat 27. Latitude (N) In Decim Degrees 30 29. Primary SIC Code (4 digits) 3731 33. What is the Primary II Marine vessel contruction and 34. Mailing	Minutes 30. (4 c) Business of	30.08 05 Secondary SIC digits)	Seconds 0 Code	28. L Degree 31. Primar (5 or 6 digi	93 ry NAICS Codes	/) In Decima	11: 44 32. Secon (5 or 6 digital)	-93.74	Seconds 8
used to supply coordinat 27. Latitude (N) In Decim Degrees 30 29. Primary SIC Code (4 digits) 3731 33. What is the Primary I	Minutes 30. (4 c) Business of	30.08 05 Secondary SIC digits)	Seconds 0 Code	28. L Degree 31. Primar (5 or 6 digi	93 ry NAICS Codes	/) In Decima	11: 44 32. Secon (5 or 6 digital)	-93.74	Seconds 8
used to supply coordinat 27. Latitude (N) In Decim Degrees 30 29. Primary SIC Code (4 digits) 3731 33. What is the Primary II Marine vessel contruction and 34. Mailing	Minutes 30. (4 c) Business of and repair P.O. Box 1 City	30.08 05 Secondary SIC digits) this entity? (D	Seconds 0 Code State	28. L Degree 31. Primal (5 or 6 digital) 336611 or NAICS descri	ees 93 TY NAICS Code ts)	/) In Decima	11: 44 32. Secon (5 or 6 digital)	-93.74	Seconds 8 CS Code
used to supply coordinat 27. Latitude (N) In Decim Degrees 30 29. Primary SIC Code (4 digits) 3731 33. What is the Primary I Marine vessel contruction an 34. Mailing Address:	Minutes 30. (4 c) Business of and repair P.O. Box 1 City	30.08 05 Secondary SIC digits) this entity? (D	Seconds 0 Code State	28. L Degree 31. Primar (5 or 6 digital) 336611 or NAICS descri	93 TY NAICS Codests) ZIP	/) In Decima	11: 44 32. Secor (5 or 6 digits) 336612	-93.74 Indary NAIC its)	Seconds 8 CS Code

39. TCEQ Programs and ID Numbers Check all Programs and write in the permits/registration numbers that will be affected by the updates submitted on this form. See the Core Data Form instructions for additional guidance.

TCEQ-10400 (11/22) Page 2 of 3

Dam Safety		Districts	Edwards Aquifer	10	Emissions Inv	enton, Air	☐ Industrial Hazardous Waste
					LIIII33IOII3 IIIV	entory An	Industrial riazardous waste
☐ Municipal So	olid Waste	New Source Review Air	OSSF		Petroleum Sto	orage Tank	□ PWS
Sludge		Storm Water	☐ Title V Air		Tires		Used Oil
☐ Voluntary Cle	eanup		☐ Wastewater Agricul	lture	Water Rights		Other:
		Renewal of TPDES No. WQ0005010000					
SECTION	IV: Pr	eparer Info	ormation				
40. Name:	Elizabeth Byers			41. Title:	Senior Cons	ultant	
42. Telephone N	lumber	43. Ext./Code	44. Fax Number	45. E-Mail /	Address		
42. Telephone N	lumber		44. Fax Number		Address	com	
(225) 346-4003			() -			com	
(225) 346-4003 SECTION 6. By my signature	V: Au	thorized Si	gnature	ebyers@trini	ityconsultants.	and complete,	and that I have signature authority utified in field 39.
(225) 346-4003 SECTION 6. By my signature	V: Au e below, I certify on behalf of the	thorized Si	gnature	ebyers@trini	ityconsultants. his form is true odates to the II	and complete,	
(225) 346-4003 SECTION 6. By my signature o submit this form of	V: Au e below, I certify on behalf of the	thorized Si	gnature	ebyers@trini on provided in th quired for the up	ityconsultants. his form is true odates to the II	and complete, D numbers iden	

TCEQ-10400 (11/22)

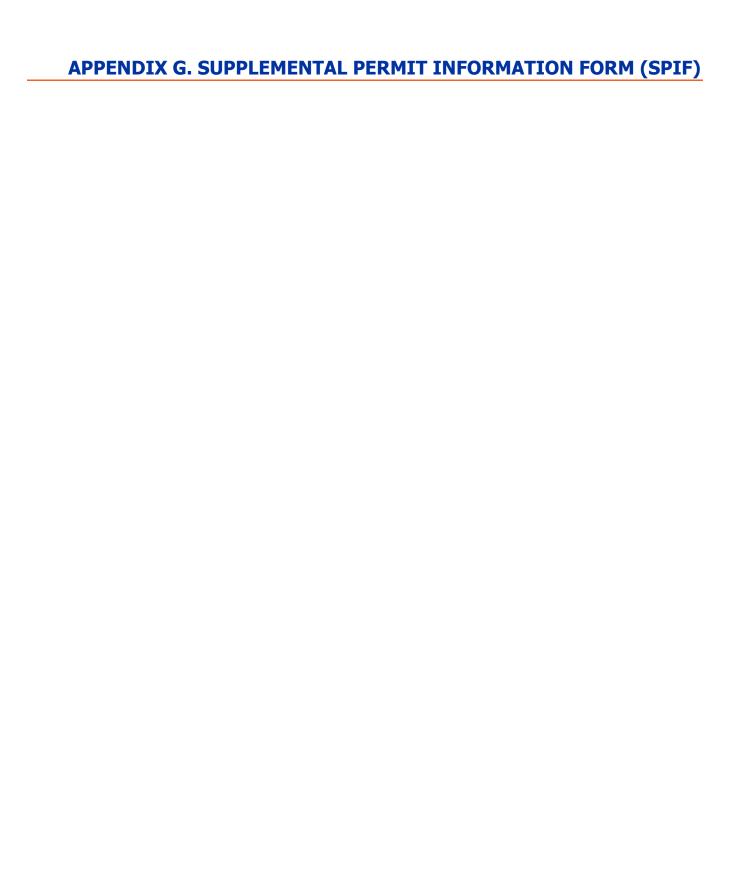
Plain Language Summary for Texas Pollution Elimination Discharge System (TPEDS) Permit Renewal Application for Permit No. WQ0005010000

INDUSTRIAL WASTEWATER/STORMWATER

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and is not a federal enforceable representation of the permit application.

Conrad Orange Shipyard, Inc. (CN604118448) operates Conrad Orange Shipyard (RN 102745825), a marine vessel repair and construction facility. The facility is located at 710 Market Street, in Orange, Orange County, Texas 77630. This permit renewal application does not request any modifications to the current permit (WQ0005010000).

Discharges from the facility are expected to contain Total Organic Carbon, Total Suspended Solids, and Oil and Grease. The wastewater discharged at the facility includes vehicle and equipment washdown water, high pressure wash water (hydroblasting), hull wash wastewater, process wastewater, welding torch hose test water, and dry dock effluents (ballast water generated from the filling and emptying of wing tanks, runoff from submerging and emerging events, process wastewater, and stormwater runoff). The above effluents are not biologically treated prior to discharge but are treated by best management practices including dry sweeping materials prior to leaving the property for disposal via a licensed disposer off-site. Wash wastewater from Outfall 002 enters the Sabine River directly after contact with the marine vessels. Outfalls 009 and 010 have yet to be constructed, therefore have not discharged. When wastewater does leave the land-based operations/process area, it enters a series of catch basins for particulates or solids to settle prior to discharge via Outfall 011. The catch basins are periodically inspected and cleaned. Domestic wastewater is treated and disposed of by the City of Orange's Jackson Street Wastewater Treatment Facility (TPDES Permit No. WO0010626001). Stormwater discharged via Outfalls 001 and 008 is authorized under the TPDES Multi-Sector Industrial General Permit (TXR05Q959).


Resumen en Lenguaje Sencillo para la Solicitud de Renovación de Permiso del Sistema de Eliminación de Descargas de Contaminantes de Texas (TPDES) para el Permiso No. WO0005010000

AGUAS RESIDUALES INDUSTRIALES /AGUAS PLUVIALES

El siguiente resumen se proporciona para esta solicitud de permiso de calidad del agua pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo requerido por el Capítulo 39 del Código Administrativo de Texas 30. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no es una representación ejecutiva federal de la solicitud de permiso.

Conrad Orange Shipyard, Inc. (CN604118448) opera Conrad Orange Shipyard (RN 102745825), una instalación de construcción y reparación de embarcaciones marinas. La instalación está ubicada en 710 Market Street, Orange, Condado de Orange, Texas 77630. Esta solicitud de renovación de permiso no solicita ninguna modificación al permiso actual (WQ0005010000).

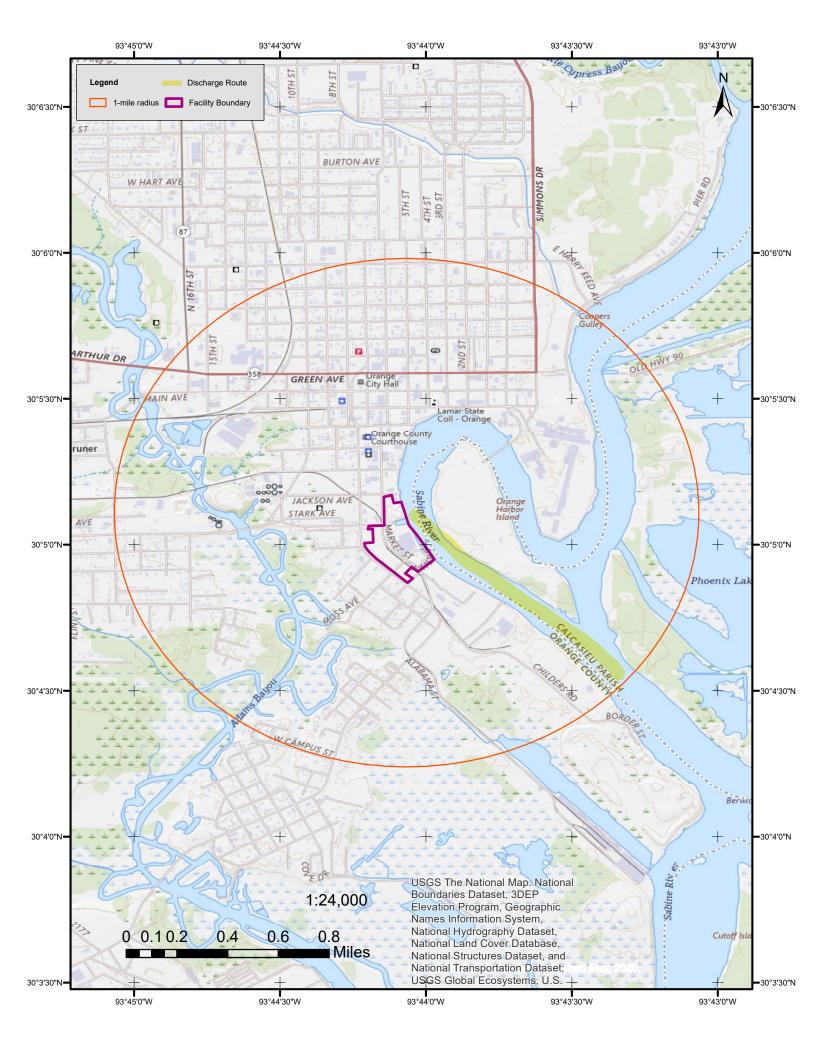
Se espera que las descargas de la instalación contengan Carbono Orgánico Total, Sólidos Suspendidos Totales, y Aceite y Grasa. Las aguas residuales vertidas en la instalación incluyen agua de lavado de vehículos y equipo, agua de lavado a alta presión, aguas residuales de lavado de casco de buques, aguas residuales de proceso, agua de prueba de mangueras de soplete de soldadura y efluentes de dique seco (agua de lastre generada por el llenado y vaciado de los tanques laterales, escorrentía de eventos sumergidos y emergentes, aguas residuales de procesos y escorrentía de aguas pluviales). Los efluentes mencionados anteriormente no se tratan biológicamente antes de su descarga, pero se tratan mediante las mejores prácticas de gestión, incluyendo materiales de barrido en seco antes de salir de la propiedad para su eliminación a través de un triturador autorizado fuera del sitio. Las aguas residuales de lavado del Emisario 002 ingresan al río Sabine directamente después del contacto con los buques marinos. Los Emisarios 009 y 010 aún no han sido construidos por lo que no han descargado. Cuando las aguas residuales salen del área de proceso/operaciones terrestres, ingresan a una serie de drenajes colectores para que las partículas o sólidos se sedimenten antes de su descarga a través del Emisario 011. Los drenajes colectores se inspeccionan y limpian periódicamente. Las aguas residuales domésticas son tratadas y eliminadas por la Instalación de Tratamiento de Aguas Residuales de Jackson Street de la Ciudad de Orange (Permiso TPDES No. WQ0010626001). Las aguas pluviales descargadas a través de los Emisarios 001 y 008 están autorizadas según el Permiso General Industrial Multisectorial TPDES (TXR05O959).

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY SUPPLEMENTAL PERMIT INFORMATION FORM (SPIF)

FOR AGENCIES REVIEWING DOMESTIC OR INDUSTRIAL TPDES WASTEWATER PERMIT APPLICATIONS

TCEQ USE ONLY:
Application type:RenewalMajor AmendmentMinor AmendmentNew
County: Segment Number:
Admin Complete Date:
Agency Receiving SPIF:
Texas Historical Commission U.S. Fish and Wildlife
Texas Parks and Wildlife Department U.S. Army Corps of Engineers
This form applies to TPDES permit applications only. (Instructions, Page 53)
Complete this form as a separate document. TCEQ will mail a copy to each agency as required be our agreement with EPA. If any of the items are not completely addressed or further information is needed, we will contact you to provide the information before issuing the permit. Address each item completely.
Do not refer to your response to any item in the permit application form. Provide each attachment for this form separately from the Administrative Report of the application. The application will not be declared administratively complete without this SPIF form being completed in its entirety including all attachments. Questions or comments concerning this form may be directed to the Water Quality Division's Application Review and Processing Team by email at

answer specific questions about the property.
Prefix (Mr., Ms., Miss): Mr.
First and Last Name: Robert Castile
Credential (P.E, P.G., Ph.D., etc.):
Title: <u>HSE Manager</u>
Mailing Address: P.O. Box 1670
City, State, Zip Code: Orange, TX 77631
Phone No.: <u>409-883-6666</u> Ext.: Fax No.:
E-mail Address: <u>rjcastile@conradindustries.com</u>
List the county in which the facility is located: <u>Orange County</u>
If the property is publicly owned and the owner is different than the permittee/applicant, please list the owner of the property. N/A
N/A
Provide a description of the effluent discharge route. The discharge route must follow the flow of effluent from the point of discharge to the nearest major watercourse (from the point of discharge to a classified segment as defined in 30 TAC Chapter 307). If known, please identify the classified segment number.
The effluent discharge route for Outfall 002 is after contact with hull surface to the Sabine River Tidal in Segment No. 0501 of the Sabine River Basin. The effluent discharge route for Outfalls 009 and 010 will be from the dry dock freeing port prior to entering the Sabine River Tidal in Segment No. 0501 of the Sabine River Basin. The effluent discharge route for Outfall 011 is prior to commingling with other water or wastewater and prior to entering the Sabine River Tidal in Segment 0501 of the Sabine River Basin.
Please provide a separate 7.5-minute USGS quadrangle map with the project boundaries plotted and a general location map showing the project area. Please highlight the discharge route from the point of discharge for a distance of one mile downstream. (This map is required in addition to the map in the administrative report).
Provide original photographs of any structures 50 years or older on the property.
Does your project involve any of the following? Check all that apply.
☐ Proposed access roads, utility lines, construction easements
☐ Visual effects that could damage or detract from a historic property's integrity


Provide the name, address, phone and fax number of an individual that can be contacted to

2.3.

4.

5.

		Vibration effects during construction or as a result of project design
		Additional phases of development that are planned for the future
		Sealing caves, fractures, sinkholes, other karst features
		Disturbance of vegetation or wetlands
1.		oposed construction impact (surface acres to be impacted, depth of excavation, sealing es, or other karst features):
	N/A	
2.	Descril	be existing disturbances, vegetation, and land use:
	N/A	
		OWING ITEMS APPLY ONLY TO APPLICATIONS FOR NEW TPDES PERMITS AND MAJOR ENTS TO TPDES PERMITS
3.		nstruction dates of all buildings and structures on the property:
	N/A	
4.	Provide	e a brief history of the property, and name of the architect/builder, if known.
	N/A	

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

P.O. Box 13087 Austin, Texas 78711-3087

PERMIT TO DISCHARGE WASTES

under provisions of Section 402 of the Clean Water Act and Chapter 26 of the Texas Water Code and 40 CFR Part 438, Subpart A

Conrad Orange Shipyard, Inc.

whose mailing address is

P.O. Box 1670 Orange, Texas 77631

is authorized to treat and discharge wastes from Conrad Orange Shipyard, a marine vessel manufacturing and repair facility (SIC 3731)

located at 710 Market Street, in the City of Orange, Orange County, Texas 77630

directly to Sabine River Tidal in Segment No. 0501 of the Sabine River Basin

only according to effluent limitations, monitoring requirements, and other conditions set forth in this permit, as well as the rules of the Texas Commission on Environmental Quality (TCEQ), the laws of the State of Texas, and other orders of the TCEQ. The issuance of this permit does not grant to the permittee the right to use private or public property for conveyance of wastewater along the discharge route described in this permit. This includes, but is not limited to, property belonging to any individual, partnership, corporation, or other entity. Neither does this permit authorize any invasion of personal rights nor any violation of federal, state, or local laws or regulations. It is the responsibility of the permittee to acquire property rights as may be necessary to use the discharge route.

This permit shall expire at midnight, five years from the date of permit issuance.

ISSUED DATE:		
	For the Commission	

TPDES PERMIT NO. WQ0005010000 [For TCEQ office use only -EPA I.D. No. TX0134422]

This renewal replaces TPDES Permit No. WQ0005010000, issued on November 8, 2019.

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

During the period beginning upon the date of permit issuance and lasting through the date of permit expiration, the permittee is 1. authorized to discharge wet dock hull washing wastewater subject to the following effluent limitations:

Volume: Intermittent and flow-variable

	Discharge Limitations			Minimum Self-Monitoring Requirements	
Effluent Characteristics	Daily Average	Daily Maximum	Single Grab	Report Daily Average and	Daily Maximum
	mg/L	mg/L	mg/L	Measurement Frequency	Sample Type
Flow	Report, MGD	Report, MGD	N/A	1/day¹	Estimate
Total Suspended Solids	N/A	75	75	1/week¹	Grab
Oil and Grease	N/A	15	15	1/week¹	Grab

- The pH must not be less than 6.0 standard units nor greater than 9.0 standard units and must be monitored 1/week¹ by grab sample. 2.
- There must be no discharge of floating solids or visible foam in other than trace amounts and no discharge of visible oil. 3.
- Effluent monitoring samples must be taken at the following location: At Outfall 002, after contact with hull surface and prior to entering the 4. Sabine River Tidal.

Page 2 of TPDES Permit No. WQ0005010000

Conrad Orange Shipyard, Inc.

¹ When discharging.

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

During the period beginning upon the date of permit issuance and lasting through the date of permit expiration, the permittee is authorized to discharge¹ hydro-blasting wastewater (without abrasives), hull washing wastewater, dry dock effluents (ballast, wing, void tank water, and process wastewater runoff from submerging and emerging events), and stormwater subject to the following effluent limitations:

Volume: Intermittent and flow-variable

	Discharge Limitations			Minimum Self-Monitoring Requirements	
Effluent Characteristics	Daily Average	Daily Maximum	Single Grab	Report Daily Average and	Daily Maximum
	mg/L	mg/L	mg/L	Measurement Frequency	Sample Type
Flow	Report, MGD	Report, MGD	N/A	1/day²	Estimate
Total Organic Carbon	N/A	75	75	1/week²	Grab
Total Suspended Solids	N/A	100	100	1/week²	Grab
Oil and Grease	N/A	15	15	1/week²	Grab

- 2. The pH must not be less than 6.0 standard units nor greater than 9.0 standard units and must be monitored 1/week² by grab sample.
- 3. There must be no discharge of floating solids or visible foam in other than trace amounts and no discharge of visible oil.
- 4. Effluent monitoring samples must be taken at the following locations: At Outfall 009, at a dry-dock freeing port prior to entering the Sabine River Tidal; and at Outfall 010, at a dry-dock freeing port prior to entering the Sabine River Tidal.

Page 2a of TPDES Permit No. WQ0005010000

Conrad Orange Shipyard, Inc.

¹ See Other Requirements, Nos. 9 (definitions) and 10 (Best Management Practices). Sampling of dry dock effluents (wing tank water, void tank water, and ballast water) is not required during emerging and submerging events; however, Requirement No. 3 (above) is applicable to these discharges. This exemption does not apply to the discharge of process wastewater runoff from submerging and emerging events. Sampling is required when discharge occurs during dry dock operations (vessel maintenance and repair activities).

² When discharging during vessel maintenance and repair activities.

During the period beginning upon the date of permit issuance and lasting through the date of permit expiration, the permittee is authorized to discharge hydro-blasting wastewater (without abrasives), hull washing wastewater, welding torch hose test water, process wastewater (hydro-blasting wastewater with abrasives) 1, and vehicle and equipment washwater subject to the following effluent limitations:

Volume: Intermittent and flow-variable

	Discharge Limitations			Minimum Self-Monitoring Requirements	
Effluent Characteristics	Daily Average	Daily Maximum	Single Grab	Report Daily Average and	Daily Maximum
	mg/L	mg/L	mg/L	Measurement Frequency	Sample Type
Flow	Report, MGD	Report, MGD	N/A	1/day²	Estimate
Total Suspended Solids	N/A	62	62	1/week²	Grab
Oil and Grease	N/A	46	46	1/week²	Grab
Total Zinc	0.244	0.474	0.474	1/two weeks²	Grab

- 2. The pH must not be less than 6.0 standard units nor greater than 9.0 standard units and must be monitored 1/week² by grab sample.
- 3. There must be no discharge of floating solids or visible foam in other than trace amounts and no discharge of visible oil.
- 4. Effluent monitoring samples must be taken at the following location: At Outfall 011, prior to commingling with other water or wastewater and prior to entering the Sabine River Tidal.

Page 2b of TPDES Permit No. WQ0005010000

Conrad Orange Shipyard, Inc

¹ See Other Requirement No. 7.

² When discharging.

DEFINITIONS AND STANDARD PERMIT CONDITIONS

As required by Title 30 Texas Administrative Code (TAC) Chapter 305, certain regulations appear as standard conditions in waste discharge permits. 30 TAC §§305.121 - 305.129 (relating to Permit Characteristics and Conditions) as promulgated under the Texas Water Code (TWC) §§5.103 and 5.105, and the Texas Health and Safety Code (THSC) §§361.017 and 361.024(a), establish the characteristics and standards for waste discharge permits, including sewage sludge, and those sections of 40 Code of Federal Regulations (CFR) Part 122 adopted by reference by the Commission. The following text includes these conditions and incorporates them into this permit. All definitions in Texas Water Code §26.001 and 30 TAC Chapter 305 shall apply to this permit and are incorporated by reference. Some specific definitions of words or phrases used in this permit are as follows:

1. Flow Measurements

- a. Annual average flow the arithmetic average of all daily flow determinations taken within the preceding 12 consecutive calendar months. The annual average flow determination shall consist of daily flow volume determinations made by a totalizing meter, charted on a chart recorder, and limited to major domestic wastewater discharge facilities with a one million gallons per day or greater permitted flow.
- b. Daily average flow the arithmetic average of all determinations of the daily flow within a period of one calendar month. The daily average flow determination shall consist of determinations made on at least four separate days. If instantaneous measurements are used to determine the daily flow, the determination shall be the arithmetic average of all instantaneous measurements taken during that month. Daily average flow determination for intermittent discharges shall consist of a minimum of three flow determinations on days of discharge.
- c. Daily maximum flow the highest total flow for any 24-hour period in a calendar month.
- d. Instantaneous flow the measured flow during the minimum time required to interpret the flow measuring device.
- e. 2-hour peak flow (domestic wastewater treatment plants) the maximum flow sustained for a two-hour period during the period of daily discharge. The average of multiple measurements of instantaneous maximum flow within a two-hour period may be used to calculate the 2-hour peak flow.
- f. Maximum 2-hour peak flow (domestic wastewater treatment plants) the highest 2-hour peak flow for any 24-hour period in a calendar month.

2. Concentration Measurements

- a. Daily average concentration the arithmetic average of all effluent samples, composite or grab as required by this permit, within a period of one calendar month, consisting of at least four separate representative measurements.
 - i. For domestic wastewater treatment plants When four samples are not available in a calendar month, the arithmetic average (weighted by flow) of all values in the previous four consecutive month period consisting of at least four measurements shall be utilized as the daily average concentration.
 - ii. For all other wastewater treatment plants When four samples are not available in a calendar month, the arithmetic average (weighted by flow) of all values taken during the month shall be utilized as the daily average concentration.
- b. 7-day average concentration the arithmetic average of all effluent samples, composite or grab as required by this permit, within a period of one calendar week, Sunday through Saturday.
- c. Daily maximum concentration the maximum concentration measured on a single day, by the sample type specified in the permit, within a period of one calendar month.
- d. Daily discharge the discharge of a pollutant measured during a calendar day or any 24-hour period that reasonably represents the calendar day for purposes of sampling. For pollutants with limitations expressed in terms of mass, the "daily discharge" is calculated as the total

mass of the pollutant discharged over the sampling day. For pollutants with limitations expressed in other units of measurement, the "daily discharge" is calculated as the average measurement of the pollutant over the sampling day.

The "daily discharge" determination of concentration made using a composite sample shall be the concentration of the composite sample. When grab samples are used, the "daily discharge" determination of concentration shall be the arithmetic average (weighted by flow value) of all samples collected during that day.

- e. Bacteria concentration (Fecal coliform, *E. coli*, or Enterococci) the number of colonies of bacteria per 100 milliliters effluent. The daily average bacteria concentration is a geometric mean of the values for the effluent samples collected in a calendar month. The geometric mean shall be determined by calculating the nth root of the product of all measurements made in a calendar month, where n equals the number of measurements made; or computed as the antilogarithm of the arithmetic mean of the logarithms of all measurements made in a calendar month. For any measurement of bacteria equaling zero, a substitute value of one shall be made for input into either computation method. If specified, the 7-day average for bacteria is the geometric mean of the values for all effluent samples collected during a calendar week.
- f. Daily average loading (lbs/day) the arithmetic average of all daily discharge loading calculations during a period of one calendar month. These calculations must be made for each day of the month that a parameter is analyzed. The daily discharge, in terms of mass (lbs/day), is calculated as (Flow, MGD × Concentration, mg/L × 8.34).
- g. Daily maximum loading (lbs/day) the highest daily discharge, in terms of mass (lbs/day), within a period of one calendar month.

3. Sample Type

- a. Composite sample For domestic wastewater, a composite sample is a sample made up of a minimum of three effluent portions collected in a continuous 24-hour period or during the period of daily discharge if less than 24 hours, and combined in volumes proportional to flow, and collected at the intervals required by 30 TAC §319.9(a). For industrial wastewater, a composite sample is a sample made up of a minimum of three effluent portions collected in a continuous 24-hour period or during the period of daily discharge if less than 24 hours, and combined in volumes proportional to flow, and collected at the intervals required by 30 TAC §319.9(c).
- b. Grab sample an individual sample collected in less than 15 minutes.
- 4. Treatment Facility (facility) wastewater facilities used in the conveyance, storage, treatment, recycling, reclamation or disposal of domestic sewage, industrial wastes, agricultural wastes, recreational wastes, or other wastes including sludge handling or disposal facilities under the jurisdiction of the Commission.
- 5. The term "sewage sludge" is defined as solid, semi-solid, or liquid residue generated during the treatment of domestic sewage in 30 TAC Chapter 312. This includes the solids that have not been classified as hazardous waste separated from wastewater by unit processes.
- 6. Bypass the intentional diversion of a waste stream from any portion of a treatment facility.

MONITORING AND REPORTING REQUIREMENTS

1. Self-Reporting

Monitoring results shall be provided at the intervals specified in the permit. Unless otherwise specified in this permit or otherwise ordered by the Commission, the permittee shall conduct effluent sampling and reporting in accordance with 30 TAC §§319.4 - 319.12. Unless otherwise specified, effluent monitoring data shall be submitted each month, to the Enforcement Division (MC 224), by the 20th day of the following month for each discharge that is described by this permit whether or not a discharge is made for that month. Monitoring results must be submitted online using the NetDMR reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver. Monitoring results must be signed and certified as required by Monitoring and Reporting Requirements No. 10.

As provided by state law, the permittee is subject to administrative, civil and criminal penalties, as applicable, for negligently or knowingly violating the Clean Water Act; TWC Chapters 26, 27, and 28; and THSC Chapter 361, including but not limited to knowingly making any false statement, representation, or certification on any report, record, or other document submitted or required to be maintained under this permit, including mortalized or reports of compliance or falsificial to the control of the contro noncompliance, or falsifying, tampering with or knowingly rendering inaccurate any monitoring device or method required by this permit or violating any other requirement imposed by state or federal regulations.

2. Test Procedures

- a. Unless otherwise specified in this permit, test procedures for the analysis of pollutants shall comply with procedures specified in 30 TAC §§319.11 319.12. Measurements, tests, and calculations shall be accurately accomplished in a representative manner.
- b. All laboratory tests submitted to demonstrate compliance with this permit must meet the requirements of 30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification.

3. Records of Results

- a. Monitoring samples and measurements shall be taken at times and in a manner so as to be representative of the monitored activity.
- b. Except for records of monitoring information required by this permit related to the permittee's sewage sludge use and disposal activities, which shall be retained for a period of at least five years (or longer as required by 40 CFR Part 503), monitoring and reporting records, including strip charts and records of calibration and maintenance, copies of all records required by this permit, records of all data used to complete the application for this permit, and the certification required by 40 CFR §264.73(b)(9) shall be retained at the facility site, or shall be readily available for review by a TCEQ representative for a period of three years from the date of the record or sample, measurement, report, application or certification. This period shall be extended at the request of the Executive Director.
- c. Records of monitoring activities shall include the following:

 - i. date, time, and place of sample or measurement;ii. identity of individual who collected the sample or made the measurement;
 - iii. date and time of analysis;
 - iv. identity of the individual and laboratory who performed the analysis;
 - v. the technique or method of analysis; and
 - vi. the results of the analysis or measurement and quality assurance/quality control records.

The period during which records are required to be kept shall be automatically extended to the date of the final disposition of any administrative or judicial enforcement action that may be instituted against the permittee.

4. Additional Monitoring by Permittee

If the permittee monitors any pollutant at the location(s) designated herein more frequently than required by this permit using approved analytical methods as specified above, all results of such monitoring shall be included in the calculation and reporting of the values submitted on the approved self-report form. Increased frequency of sampling shall be indicated on the self-report

5. Calibration of Instruments

All automatic flow measuring or recording devices and all totalizing meters for measuring flows shall be accurately calibrated by a trained person at plant start-up and as often thereafter as necessary to ensure accuracy, but not less often than annually unless authorized by the Executive Director for a longer period. Such person shall verify in writing that the device is operating properly and giving accurate results. Copies of the verification shall be retained at the facility site or shall be readily available for review by a TCEQ representative for a period of three years.

6. Compliance Schedule Reports

Reports of compliance or noncompliance with, or any progress reports on, interim and final requirements contained in any compliance schedule of the permit shall be submitted no later than 14 days following each schedule date to the regional office and the Enforcement Division (MC

7. Noncompliance Notification

- a. In accordance with 30 TAC §305.125(9) any noncompliance that may endanger human health or safety, or the environment shall be reported by the permittee to the TCEQ. Report of such information shall be provided orally or by facsimile transmission (FAX) to the regional office within 24 hours of becoming aware of the noncompliance. A written submission of such information shall also be provided by the permittee to the regional office and the Enforcement Division (MC 224) within five working days of becoming aware of the noncompliance. For Publicly Owned Treatment Works (POTWs), effective September 1, 2020, the permittee must submit the written report for unauthorized discharges and unanticipated bypasses that exceed any effluent limit in the permit using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver. The written submission shall contain a description of the noncompliance and its cause; the potential danger to human health or safety, or the environment; the period of noncompliance, including exact dates and times; if the noncompliance has not been corrected, the time it is expected to continue; and steps taken or planned to reduce, eliminate, and prevent recurrence of the noncompliance, and to mitigate its adverse effects.
- b. The following violations shall be reported under Monitoring and Reporting Requirement 7.a.:

i. unauthorized discharges as defined in Permit Condition 2(g).

- ii. any unanticipated bypass that exceeds any effluent limitation in the permit.
- iii. violation of a permitted maximum daily discharge limitation for pollutants listed specifically in the Other Requirements section of an Industrial TPDES permit.
- In addition to the above, any effluent violation that deviates from the permitted effluent limitation by more than 40% shall be reported by the permittee in writing to the regional office and the Enforcement Division (MC 224) within 5 working days of becoming aware of the noncompliance.
- d. Any noncompliance other than that specified in this section, or any required information not submitted or submitted incorrectly, shall be reported to the Enforcement Division (MC 224) as promptly as possible. For effluent limitation violations, noncompliances shall be reported on the approved self-report form.
- 8. In accordance with the procedures described in 30 TAC §§35.301 35.303 (relating to Water Quality Emergency and Temporary Orders) if the permittee knows in advance of the need for a bypass, it shall submit prior notice by applying for such authorization.
- 9. Changes in Discharges of Toxic Substances

All existing manufacturing, commercial, mining, and silvicultural permittees shall notify the regional office, orally or by facsimile transmission within 24 hours, and both the regional office and the Enforcement Division (MC 224) in writing within five (5) working days, after becoming aware of or having reason to believe:

- That any activity has occurred or will occur that would result in the discharge, on a routine or frequent basis, of any toxic pollutant listed at 40 CFR Part 122, Appendix D, Tables II and III (excluding Total Phenols) that is not limited in the permit, if that discharge will exceed the highest of the following "notification levels":

 - i. one hundred micrograms per liter (100 $\mu g/L$); ii. two hundred micrograms per liter (200 $\mu g/L$) for acrolein and acrylonitrile; five hundred micrograms per liter (500 $\mu g/L$) for 2,4-dinitrophenol and for 2-methyl-4,6-dinitrophenol; and one milligram per liter (1 mg/L) for antimony;
 - iii. five (5) times the maximum concentration value reported for that pollutant in the permit application; or
 - iv. the level established by the TCEQ.

- b. That any activity has occurred or will occur that would result in any discharge, on a nonroutine or infrequent basis, of a toxic pollutant that is not limited in the permit, if that discharge will exceed the highest of the following "notification levels":
 - i. five hundred micrograms per liter (500 μ g/L);

 - ii. one milligram per liter (1 mg/L) for antimony; iii. ten (10) times the maximum concentration value reported for that pollutant in the permit application; or
 - iv. the level established by the TCEO.

10. Signatories to Reports

All reports and other information requested by the Executive Director shall be signed by the person and in the manner required by 30 TAC §305.128 (relating to Signatories to Reports).

- 11. All POTWs must provide adequate notice to the Executive Director of the following:
 - a. any new introduction of pollutants into the POTW from an indirect discharger that would be subject to CWA §301 or §306 if it were directly discharging those pollutants;
 - any substantial change in the volume or character of pollutants being introduced into that POTW by a source introducing pollutants into the POTW at the time of issuance of the permit;
 - c. for the purpose of this paragraph, adequate notice shall include information on:
 - i. the quality and quantity of effluent introduced into the POTW: and
 - any anticipated impact of the change on the quantity or quality of effluent to be discharged from the POTW.

PERMIT CONDITIONS

1. General

- a. When the permittee becomes aware that it failed to submit any relevant facts in a permit application, or submitted incorrect information in an application or in any report to the Executive Director, it shall promptly submit such facts or information.
- b. This permit is granted on the basis of the information supplied and representations made by the permittee during action on an application, and relying upon the accuracy and completeness of that information and those representations. After notice and opportunity for a hearing, this permit may be modified, suspended, or revoked, in whole or in part, in accordance with 30 TAC Chapter 305, Subchapter D, during its term for good cause including, but not limited to, the following:

 - i. violation of any terms or conditions of this permit;ii. obtaining this permit by misrepresentation or failure to disclose fully all relevant facts; or
 - iii. a change in any condition that requires either a temporary or permanent reduction or elimination of the authorized discharge.
- The permittee shall furnish to the Executive Director, upon request and within a reasonable time, any information to determine whether cause exists for amending, revoking, suspending, or terminating the permit. The permittee shall also furnish to the Executive Director, upon request, copies of records required to be kept by the permit.

2. Compliance

- a. Acceptance of the permit by the person to whom it is issued constitutes acknowledgment and agreement that such person will comply with all the terms and conditions embodied in the permit, and the rules and other orders of the Commission.
- b. The permittee has a duty to comply with all conditions of the permit. Failure to comply with any permit condition constitutes a violation of the permit and the Texas Water Code or the Texas Health and Safety Code, and is grounds for enforcement action, for permit amendment,

- revocation, or suspension, or for denial of a permit renewal application or an application for a permit for another facility.
- c. It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of the permit.
- d. The permittee shall take all reasonable steps to minimize or prevent any discharge or sludge use or disposal or other permit violation that has a reasonable likelihood of adversely affecting human health or the environment.
- e. Authorization from the Commission is required before beginning any change in the permitted facility or activity that may result in noncompliance with any permit requirements.
- f. A permit may be amended, suspended and reissued, or revoked for cause in accordance with 30 TAC §§305.62 and 305.66 and TWC §7.302. The filing of a request by the permittee for a permit amendment, suspension and reissuance, or termination, or a notification of planned changes or anticipated noncompliance, does not stay any permit condition.
- g. There shall be no unauthorized discharge of wastewater or any other waste. For the purpose of this permit, an unauthorized discharge is considered to be any discharge of wastewater into or adjacent to water in the state at any location not permitted as an outfall or otherwise defined in the Other Requirements section of this permit.
- h. In accordance with 30 TAC §305.535(a), the permittee may allow any bypass to occur from a TPDES permitted facility that does not cause permitted effluent limitations to be exceeded or an unauthorized discharge to occur, but only if the bypass is also for essential maintenance to assure efficient operation.
- i. The permittee is subject to administrative, civil, and criminal penalties, as applicable, under Texas Water Code §§7.051 7.075 (relating to Administrative Penalties), 7.101 7.111 (relating to Civil Penalties), and 7.141 7.202 (relating to Criminal Offenses and Penalties) for violations including, but not limited to, negligently or knowingly violating the federal CWA §§301, 302, 306, 307, 308, 318, or 405, or any condition or limitation implementing any sections in a permit issued under the CWA §402, or any requirement imposed in a pretreatment program approved under the CWA §§402(a)(3) or 402(b)(8).

3. Inspections and Entry

- a. Inspection and entry shall be allowed as prescribed in the TWC Chapters 26, 27, and 28, and THSC Chapter 361.
- b. The members of the Commission and employees and agents of the Commission are entitled to enter any public or private property at any reasonable time for the purpose of inspecting and investigating conditions relating to the quality of water in the state or the compliance with any rule, regulation, permit, or other order of the Commission. Members, employees, or agents of the Commission and Commission contractors are entitled to enter public or private property at any reasonable time to investigate or monitor or, if the responsible party is not responsive or there is an immediate danger to public health or the environment, to remove or remediate a condition related to the quality of water in the state. Members, employees, Commission contractors, or agents acting under this authority who enter private property shall observe the establishment's rules and regulations concerning safety, internal security, and fire protection, and if the property has management in residence, shall notify management or the person then in charge of his presence and shall exhibit proper credentials. If any member, employee, Commission contractor, or agent is refused the right to enter in or on public or private property under this authority, the Executive Director may invoke the remedies authorized in TWC §7.002. The statement above, that Commission entry shall occur in accordance with an establishment's rules and regulations concerning safety, internal security, and fire protection, is not grounds for denial or restriction of entry to any part of the facility, but merely describes the Commission's duty to observe appropriate rules and regulations during an inspection.

4. Permit Amendment or Renewal

- a. The permittee shall give notice to the Executive Director as soon as possible of any planned physical alterations or additions to the permitted facility if such alterations or additions would require a permit amendment or result in a violation of permit requirements. Notice shall also be required under this paragraph when:
 - i. the alteration or addition to a permitted facility may meet one of the criteria for determining whether a facility is a new source in accordance with 30 TAC §305.534 (relating to New Sources and New Dischargers); or
 - ii. the alteration or addition could significantly change the nature or increase the quantity of pollutants discharged. This notification applies to pollutants that are subject neither to effluent limitations in the permit, nor to notification requirements in Monitoring and Reporting Requirements No. 9; or
 - iii. the alteration or addition results in a significant change in the permittee's sludge use or disposal practices, and such alteration, addition, or change may justify the application of permit conditions that are different from or absent in the existing permit, including notification of additional use or disposal sites not reported during the permit application process or not reported pursuant to an approved land application plan.
- b. Prior to any facility modifications, additions, or expansions that will increase the plant capacity beyond the permitted flow, the permittee must apply for and obtain proper authorization from the Commission before commencing construction.
- c. The permittee must apply for an amendment or renewal at least 180 days prior to expiration of the existing permit in order to continue a permitted activity after the expiration date of the permit. If an application is submitted prior to the expiration date of the permit, the existing permit shall remain in effect until the application is approved, denied, or returned. If the application is returned or denied, authorization to continue such activity shall terminate upon the effective date of the action. If an application is not submitted prior to the expiration date of the permit, the permit shall expire and authorization to continue such activity shall terminate.
- d. Prior to accepting or generating wastes that are not described in the permit application or that would result in a significant change in the quantity or quality of the existing discharge, the permittee must report the proposed changes to the Commission. The permittee must apply for a permit amendment reflecting any necessary changes in permit conditions, including effluent limitations for pollutants not identified and limited by this permit.
- e. In accordance with the TWC §26.029(b), after a public hearing, notice of which shall be given to the permittee, the Commission may require the permittee, from time to time, for good cause, in accordance with applicable laws, to conform to new or additional conditions.
- f. If any toxic effluent standard or prohibition (including any schedule of compliance specified in such effluent standard or prohibition) is promulgated under CWA §307(a) for a toxic pollutant that is present in the discharge and that standard or prohibition is more stringent than any limitation on the pollutant in this permit, this permit shall be modified or revoked and reissued to conform to the toxic effluent standard or prohibition. The permittee shall comply with effluent standards or prohibitions established under CWA §307(a) for toxic pollutants within the time provided in the regulations that established those standards or prohibitions, even if the permit has not yet been modified to incorporate the requirement.

5. Permit Transfer

- a. Prior to any transfer of this permit, Commission approval must be obtained. The Commission shall be notified in writing of any change in control or ownership of facilities authorized by this permit. Such notification should be sent to the Applications Review and Processing Team (MC 148) of the Water Quality Division.
- b. A permit may be transferred only according to the provisions of 30 TAC §305.64 (relating to Transfer of Permits) and 30 TAC §50.133 (relating to Executive Director Action on Application or WQMP update).

6. Relationship to Hazardous Waste Activities

This permit does not authorize any activity of hazardous waste storage, processing, or disposal that requires a permit or other authorization pursuant to the Texas Health and Safety Code.

7. Relationship to Water Rights

Disposal of treated effluent by any means other than discharge directly to water in the state must be specifically authorized in this permit and may require a permit pursuant to Texas Water Code Chapter 11.

8. Property Rights

A permit does not convey any property rights of any sort, or any exclusive privilege.

9. Permit Enforceability

The conditions of this permit are severable, and if any provision of this permit, or the application of any provision of this permit to any circumstances, is held invalid, the application of such provision to other circumstances, and the remainder of this permit, shall not be affected thereby.

10. Relationship to Permit Application

The application pursuant to which the permit has been issued is incorporated herein; provided, however, that in the event of a conflict between the provisions of this permit and the application, the provisions of the permit shall control.

11. Notice of Bankruptcy.

- a. Each permittee shall notify the Executive Director, in writing, immediately following the filing of a voluntary or involuntary petition for bankruptcy under any chapter of Title 11 (Bankruptcy) of the United States Code (11 USC) by or against:
 - i. the permittee;
 - ii. an entity (as that term is defined in 11 USC, §101(15)) controlling the permittee or listing the permit or permittee as property of the estate; or
 - iii. an affiliate (as that term is defined in 11 USC, §101(2)) of the permittee.

b. This notification must indicate:

- i. the name of the permittee;ii. the permit number(s);
- iii. the bankruptcy court in which the petition for bankruptcy was filed; and
- iv. the date of filing of the petition.

OPERATIONAL REQUIREMENTS

- The permittee shall at all times ensure that the facility and all of its systems of collection, treatment, and disposal are properly operated and maintained. This includes, but is not limited to, the regular, periodic examination of wastewater solids within the treatment plant by the operator in order to maintain an appropriate quantity and quality of solids inventory as described in the various operator training manuals and according to accepted industry standards for processing to accepted in the standards for processing to accept the standards of the facility site. control. Process control, maintenance, and operations records shall be retained at the facility site, or shall be readily available for review by a TCEQ representative, for a period of three years.
- 2. Upon request by the Executive Director, the permittee shall take appropriate samples and provide proper analysis in order to demonstrate compliance with Commission rules. Unless otherwise specified in this permit or otherwise ordered by the Commission, the permittee shall comply with all applicable provisions of 30 TAC Chapter 312 concerning sewage sludge use and disposal and 30 TAC Chapter 312 concerning sewage sludge use and disposal and 30 TAC Chapter 312 concerning sewage sludge use and disposal and 30 TAC Chapter 312 concerning sewage sludge use and disposal and 30 TAC Chapter 312 concerning sewage sludge use and disposal and 30 TAC Chapter 312 concerning sewage sludge use and disposal and 30 TAC Chapter 312 concerning sewage sludge use and disposal and 30 TAC Chapter 312 concerning sewage sludge use and disposal and 30 TAC Chapter 312 concerning sewage sludge use and disposal and 30 TAC Chapter 312 concerning sewage sludge use and disposal and 30 TAC Chapter 312 concerning sewage sludge use and disposal and 30 TAC Chapter 312 concerning sewage sludge use and disposal and 30 TAC Chapter 312 concerning sewage sludge use and disposal and 30 TAC Chapter 312 concerning sewage sludge use and disposal and 30 TAC Chapter 312 concerning sewage sludge use and disposal and 30 TAC Chapter 312 concerning sewage sludge use and disposal and 30 TAC Chapter 312 concerning sewage sludge use and disposal and 30 TAC Chapter 312 concerning sewage sludge use and disposal and 30 TAC Chapter 312 concerning sewage sludge use and disposal and 30 TAC Chapter 312 concerning sewage sludge use and disposal and 30 TAC Chapter 312 concerning sewage sludge use 312 concerning sew TAC §§319.21 - 319.29 concerning the discharge of certain hazardous metals.

- 3. Domestic wastewater treatment facilities shall comply with the following provisions:
 - a. The permittee shall notify the Municipal Permits Team, Wastewater Permitting Section (MC 148) of the Water Quality Division, in writing, of any facility expansion at least 90 days prior to conducting such activity.
 - b. The permittee shall submit a closure plan for review and approval to the Municipal Permits Team, Wastewater Permitting Section (MC 148) of the Water Quality Division, for any closure activity at least 90 days prior to conducting such activity. Closure is the act of permanently taking a waste management unit or treatment facility out of service and includes the permanent removal from service of any pit, tank, pond, lagoon, surface impoundment or other treatment unit regulated by this permit.
- 4. The permittee is responsible for installing prior to plant start-up, and subsequently maintaining, adequate safeguards to prevent the discharge of untreated or inadequately treated wastes during electrical power failures by means of alternate power sources, standby generators, or retention of inadequately treated wastewater.
- 5. Unless otherwise specified, the permittee shall provide a readily accessible sampling point and, where applicable, an effluent flow measuring device or other acceptable means by which effluent flow may be determined.
- 6. The permittee shall remit an annual water quality fee to the Commission as required by 30 TAC Chapter 21. Failure to pay the fee may result in revocation of this permit under TWC §7.302(b)(6).

7. Documentation

For all written notifications to the Commission required of the permittee by this permit, the permittee shall keep and make available a copy of each such notification under the same conditions as self-monitoring data are required to be kept and made available. Except for information required for TPDES permit applications, effluent data, including effluent data in permits, draft permits and permit applications, and other information specified as not confidential in 30 TAC §1.5(d), any information submitted pursuant to this permit may be claimed as confidential by the submitter. Any such claim must be asserted in the manner prescribed in the application form or by stamping the words "confidential business information" on each page containing such information. If no claim is made at the time of submission, information may be made available to the public without further notice. If the Commission or Executive Director agrees with the designation of confidentiality, the TCEQ will not provide the information for public inspection unless required by the Texas Attorney General or a court pursuant to an open records request. If the Executive Director does not agree with the designation of confidentiality, the person submitting the information will be notified.

- 8. Facilities that generate domestic wastewater shall comply with the following provisions; domestic wastewater treatment facilities at permitted industrial sites are excluded.
 - a. Whenever flow measurements for any domestic sewage treatment facility reach 75% of the permitted daily average or annual average flow for three consecutive months, the permittee must initiate engineering and financial planning for expansion or upgrading of the domestic wastewater treatment or collection facilities. Whenever the flow reaches 90% of the permitted daily average or annual average flow for three consecutive months, the permittee shall obtain necessary authorization from the Commission to commence construction of the necessary additional treatment or collection facilities. In the case of a domestic wastewater treatment facility that reaches 75% of the permitted daily average or annual average flow for three consecutive months, and the planned population to be served or the quantity of waste produced is not expected to exceed the design limitations of the treatment facility, the permittee shall submit an engineering report supporting this claim to the Executive Director of the Commission.

If in the judgment of the Executive Director the population to be served will not cause permit noncompliance, then the requirement of this section may be waived. To be effective, any waiver must be in writing and signed by the Director of the Enforcement Division (MC 219) of the Commission, and such waiver of these requirements will be reviewed upon expiration of the existing permit; however, any such waiver shall not be interpreted as condoning or excusing any violation of any permit parameter.

- b. The plans and specifications for domestic sewage collection and treatment works associated with any domestic permit must be approved by the Commission, and failure to secure approval before commencing construction of such works or making a discharge is a violation of this permit and each day is an additional violation until approval has been secured.
- c. Permits for domestic wastewater treatment plants are granted subject to the policy of the Commission to encourage the development of area-wide waste collection, treatment, and disposal systems. The Commission reserves the right to amend any domestic wastewater permit in accordance with applicable procedural requirements to require the system covered by this permit to be integrated into an area-wide system, should such be developed; to require the delivery of the wastes authorized to be collected in, treated by or discharged from said system, to such area-wide system; or to amend this permit in any other particular to effectuate the Commission's policy. Such amendments may be made when the changes required are advisable for water quality control purposes and are feasible on the basis of waste treatment technology, engineering, financial, and related considerations existing at the time the changes are required, exclusive of the loss of investment in or revenues from any then existing or proposed waste collection, treatment or disposal system.
- 9. Domestic wastewater treatment plants shall be operated and maintained by sewage plant operators holding a valid certificate of competency at the required level as defined in 30 TAC Chapter 30.
- 10. For Publicly Owned Treatment Works (POTWs), the 30-day average (or monthly average) percent removal for BOD and TSS shall not be less than 85%, unless otherwise authorized by this permit.
- 11. Facilities that generate industrial solid waste as defined in 30 TAC §335.1 shall comply with these provisions:
 - a. Any solid waste, as defined in 30 TAC §335.1 (including but not limited to such wastes as garbage, refuse, sludge from a waste treatment, water supply treatment plant or air pollution control facility, discarded materials, discarded materials to be recycled, whether the waste is solid, liquid, or semisolid), generated by the permittee during the management and treatment of wastewater, must be managed in accordance with all applicable provisions of 30 TAC Chapter 335, relating to Industrial Solid Waste Management.
 - b. Industrial wastewater that is being collected, accumulated, stored, or processed before discharge through any final discharge outfall, specified by this permit, is considered to be industrial solid waste until the wastewater passes through the actual point source discharge and must be managed in accordance with all applicable provisions of 30 TAC Chapter 335.
 - c. The permittee shall provide written notification, pursuant to the requirements of 30 TAC §335.8(b)(1), to the Corrective Action Section (MC 127) of the Remediation Division informing the Commission of any closure activity involving an Industrial Solid Waste Management Unit, at least 90 days prior to conducting such an activity.
 - d. Construction of any industrial solid waste management unit requires the prior written notification of the proposed activity to the Registration and Reporting Section (MC 129) of the Permitting and Remediation Support Division. No person shall dispose of industrial solid waste, including sludge or other solids from wastewater treatment processes, prior to fulfilling the deed recordation requirements of 30 TAC §335.5.
 - e. The term "industrial solid waste management unit" means a landfill, surface impoundment, waste-pile, industrial furnace, incinerator, cement kiln, injection well, container, drum, salt dome waste containment cavern, or any other structure vessel, appurtenance, or other improvement on land used to manage industrial solid waste.
 - f. The permittee shall keep management records for all sludge (or other waste) removed from any wastewater treatment process. These records shall fulfill all applicable requirements of 30 TAC Chapter 335 and must include the following, as it pertains to wastewater treatment and discharge:
 - i. volume of waste and date(s) generated from treatment process;
 - ii. volume of waste disposed of on-site or shipped off-site;
 - iii. date(s) of disposal;

- iv. identity of hauler or transporter;v. location of disposal site; andvi. method of final disposal.

The above records shall be maintained on a monthly basis. The records shall be retained at the facility site, or shall be readily available for review by authorized representatives of the TCEQ for at least five years.

12. For industrial facilities to which the requirements of 30 TAC Chapter 335 do not apply, sludge and solid wastes, including tank cleaning and contaminated solids for disposal, shall be disposed of in accordance with THSC Code Chapter 361.

TCEQ Revision 05/2021

OTHER REQUIREMENTS

- 1. Wastewater discharged via Outfalls 002, 009, 010 and 011 must be sampled and analyzed as directed below for those parameters listed in Tables 1, 2, 3, and 4 of Attachment A of this permit. Analytical testing for Outfalls 002, 009, 010 and 011 must be completed within 60 days of initial discharge. Results of the analytical testing must be submitted within 90 days of initial discharge to the TCEQ Compliance Monitoring Team (MC-224) and Industrial Wastewater Permits Team (MC-148). Based on a technical review of the submitted analytical results, an amendment may be initiated by TCEQ staff to include additional effluent limitations, monitoring requirements, or both.
 - Table 1: Analysis is required for all pollutants in Table 1. Wastewater must be sampled and analyzed for those parameters listed in Table 1 for a minimum of one sampling event.
 - Table 2: Analysis is required for all pollutants in Table 2 for Outfalls 002, 009, 010, and 011 discharges. Sampling and analysis must be conducted for a minimum of one sampling event.
 - Table 3: For all pollutants listed in Table 3, the permittee shall indicate whether each pollutant is believed to be present or absent in the discharge. Sampling and analysis must be conducted for each pollutant believed present for a minimum of one sampling event.
 - Table 4: Analysis is required for tributyltin in Table 4. Wastewater must be sampled and analyzed for tributltin in Table 4 for a minimum of one sampling event.

The permittee shall report the flow at Outfalls 002, 009, 010, and 011 in MGD in the attachment. The permittee shall indicate on each table whether the samples are composite (C) or grab (G) by checking the appropriate box.

2. Violations of daily maximum limitations for the following pollutants shall be reported orally or by facsimile to TCEQ Region 10 within 24 hours from the time the permittee becomes aware of the violation, followed by a written report within five working days to TCEQ Region 10 and Compliance Monitoring Team (MC 224):

Pollutant	MAL¹ (mg/L)
Zinc (Total)	0.005

Test methods used must be sensitive enough to demonstrate compliance with the permit effluent limitations. If an effluent limit for a pollutant is less than the MAL, then the test method for that pollutant must be sensitive enough to demonstrate compliance at the MAL. Permit compliance/noncompliance determinations will be based on the effluent limitations contained in this permit, with consideration given to the MAL for the pollutants specified above.

When an analysis of an effluent sample for a pollutant listed above indicates no detectable levels above the MAL and the test method detection level is as sensitive as the specified MAL, a value of zero shall be used for that measurement when making calculations for the self-reporting form. This applies to determinations of daily maximum concentration, calculations of loading and daily averages, and other reportable results.

¹ Minimum analytical level.

When a reported value is zero based on this MAL provision, the permittee shall submit the following statement with the self-reporting form either as a separate attachment to the form or as a statement in the comments section of the form:

"The reported value(s) of zero for <u>[list pollutant(s)]</u> on the self-reporting form for <u>[monitoring period date range]</u> is based on the following conditions: (1) the analytical method used had a method detection level as sensitive as the MAL specified in the permit, and (2) the analytical results contained no detectable levels above the specified MAL."

When an analysis of an effluent sample for a pollutant indicates no detectable levels and the test method detection level is not as sensitive as the MAL specified in the permit, or an MAL is not specified in the permit for that pollutant, the level of detection achieved shall be used for that measurement when making calculations for the self-reporting form. A zero may not be used.

3. The zone of initial dilution (ZID) for Outfall No. 002 is defined as a volume within a radius of 50 feet from the wet dock. Acute toxic criteria apply at the edge of the ZID. The ZID for Outfall Nos. 009 and 010 is defined as a volume within a radius of 50 feet from the proposed dry dock. Acute toxic criteria apply at the edge of the ZID.

The chronic aquatic life mixing zone for Outfall No. 011 is defined as a volume within a radius of 200 feet from the point of discharge. Chronic toxic criteria apply at the edge of the chronic aquatic life mixing zone. The width of the Sabine River Tidal (Segment No. 0501) at the point of discharge is greater than or equal to 400 feet. The ZID is defined as a volume within a radius of 50 feet from the point of discharge. The human health mixing zone is defined as a volume within a radius of 400 feet from the point of discharge.

- 4. Reporting requirements for Outfalls 009 and 010 according to 30 TAC §§ 319.1-319.12 and any additional effluent reporting requirements contained in the permit are suspended from the effective date of the permit until plant startup or discharge, whichever occurs first, from the facility described by this permit. The permittee shall provide written notice to the TCEQ Region 10 Office, Applications Review and Processing Team (MC 148) of the Water Quality Division, and Compliance Monitoring Team (MC 224) at least forty-five days prior to plant startup or anticipated discharge related to Outfalls 009 and 010, whichever occurs first, on Notification of Completion Form 20007.
- 5. This permit does not authorize the discharge of domestic wastewater. All domestic wastewater must be disposed of in an approved manner, such as routing to an approved on-site septic tank and drainfield system or to an authorized third party for treatment and disposal.
- 6. The executive director reviewed this action for consistency with the goals and policies of the Texas Coastal Management Program (CMP) in accordance with the regulations of the General Land Office and determined that the action is consistent with the applicable CMP goals and policies.
- 7. The term *process wastewater* means wastewater from *Oily operations* as defined in 40 CFR §438.2(f), which means one or more of the following: abrasive blasting; adhesive bonding; alkaline cleaning for oil removal; alkaline treatment without cyanide; aqueous degreasing; assembly/disassembly; burnishing; calibration; corrosion preventive coating; electrical discharge machining; floor cleaning (in process area); grinding; heat treating; impact deformation; iron phosphate conversion coating; machining; painting-spray or brush (including water curtains); polishing; pressure deformation; solvent degreasing; steam cleaning; testing (e.g., hydrostatic, dye penetrant, ultrasonic, magnetic flux); thermal cutting; tumbling/barrel finishing/mass finishing/vibratory finishing; washing (finished products); welding; wet air pollution control for organic constituents; and numerous sub-operations within those listed in this paragraph. In addition, process wastewater also results from associated rinses that remove materials that the

preceding processes deposit on the surface of the workpiece. See Appendix A for definitions of the above terms.

The term hydro-blasting means the use of water at high pressure to clean materials. The term hydro-blasting does not include the use of water containing any additives such as abrasive material, blasting media, or chemical additives including soaps or detergents. Hydro-blasting with abrasives meets the definition of process wastewater above.

The term hull washing means the use of water at pressures low enough to preclude the removal of solids from the surface of vessels, including, but not limited to, paint chips and marine growth. The term hull washing does not include the use of water containing any additives such as abrasive material, blasting media, or chemical additives including soaps or detergents.

The term welding torch test water means the water used to test the structural integrity of welding torch hoses used on-site. Water used for the testing of any part, assembly, or complete unit is considered process wastewater.

- 8. The discharge of wastewater generated from *Metal bearing operations* as defined in 40 CFR §438.2(d) is prohibited. Metal-bearing operations means one or more of the following: abrasive jet machining; acid pickling neutralization; acid treatment with chromium; acid treatment without chromium; alcohol cleaning; alkaline cleaning neutralization; alkaline treatment with cyanide; anodizing with chromium; anodizing without chromium; carbon black deposition; catalyst acid pre-dip; chemical conversion coating without chromium; chemical milling (or chemical machining); chromate conversion coating (or chromating); chromium drag-out destruction; cyanide drag-out destruction; cyaniding rinse; electrochemical machining; electroless catalyst solution; electroless plating; electrolytic cleaning; electroplating with chromium; electroplating with cyanide; electroplating without chromium or cyanide; electropolishing; galvanizing/hot dip coating; hot dip coating; kerfing; laminating; mechanical and vapor plating; metallic fiber cloth manufacturing; metal spraying (including water curtain); painting-immersion (including electrophoretic, "E-coat"); photo imaging; photo image developing; photoresist application; photoresist strip; phosphor deposition; physical vapor deposition; plasma arc machining; plastic wire extrusion; salt bath descaling; shot tower—lead shot manufacturing; soldering; solder flux cleaning; solder fusing; solder masking; sputtering; stripping (paint); stripping (metallic coating); thermal infusion; ultrasonic machining; vacuum impregnation; vacuum plating; water shedder; wet air pollution control; wire galvanizing flux; and numerous sub-operations within those listed in this paragraph. In addition, process wastewater also results from associated rinses that remove materials that the preceding processes deposit on the surface of the workpiece. See Appendix B of this section for definitions of the above terms.
- 9. The term *dry dock effluents* means any water which results from the lowering/raising of the dock following maintenance/repair activities and washing of the drydock or items on the drydock, and wastewater from typical shipyard activities performed on vessels on drydocks. Drydocks must be inspected for the presence of spilled oils, fuels, paints, solvents, and other similar pollutants that may be present due to processes and activities that occur on the dry-dock surface, prior to submergence. Process wastewater runoff from submerging and emerging events is not exempted from sampling. Such contaminants shall be removed prior to submergence. See Other Requirement No. 10.

The term ballast and void tank water means water (typically surface water) that is taken on or discharged by ships in order to accommodate changes in weight resulting from cargo loads, to control trim, list draught, stability or stresses of a ship. Any ballast or void tank water discharged by customer vessels on the facility site must be authorized to discharge under the National Pollutant Discharge Elimination System (NPDES) by the Vessel General Permit (VGP). If the potential exists for any customer ballast or void tank water to contact facility property, then the

potentially affected area must be inspected for the presence of spilled oils, fuels, paints, solvents, and other similar pollutants that may be present due to processes and activities that occur in that area, prior to the release of customer ballast or void tank water. Sampling of ballast and void tank water is not required; however, Provision No. 3 (Page 2 of the permit) applies.

The term wing tank water means uncontaminated water that enters the wing tanks from water surrounding the dry dock and exits via submerged vents during emerging and submerging events. Sampling of wing tank water is not feasible due to safety restrictions during these emerging and submerging events. Sampling of wing tank water is not required; however, Provision No. 3 (Page 2 of the permit) applies.

- 10. The following Best Management Practices (BMPs) are applicable to the wet dock and drydock operations and are to be followed and documented.
 - BMP 1. Control of Large Solid Materials. Scrap metal, wood, plastic, miscellaneous trash such as paper and glass, industrial scrap and waste such as insulation, welding rods, packaging, etc. shall be removed from the drydock floor prior to flooding or sinking.
 - BMP 2. Control of Blasting Debris. The TCEQ can, after review of monitoring data, revise the conditions of the permit to further enhance protection of the water body. The permit may be revised to require removal of abrasive blasting material containing copper from the drydocks prior to submergence.
 - BMP 3. Oil, Grease and Fuel Spills. During the drydocked period, oil, grease, or fuel spills shall be prevented from reaching drainage systems and from discharge with drainage water. Clean-up shall be carried out promptly after an oil, grease, or fuel spill is detected.
 - BMP 4. Paint and Solvent Spills. Paint and solvent spills shall be treated as oil spills and segregated from discharge water. Spills shall be contained until clean-up is completed. Mixing of paint shall be carried out in locations and under conditions such that spills shall be prevented from entering drainage systems and discharging with the drainage water
 - BMP 5. Contact Between Water and Debris. Shipboard cooling and process water shall be directed so as to minimize contact with spent abrasive and paint and other debris. Contact of spent abrasive and paint by water can be reduced by proper segregation and control of wastewater streams. When debris is present, hosing of the dock should be minimized. When hosing is used as a removal method, appropriate methods should be incorporated to prevent accumulation of debris in drainage systems and to promptly remove it from such systems to prevent its discharge with wastewater
 - BMP 6. Maintenance of Hoses, Soil Chutes, and Piping. Leaking connections, valves, pipes, hoses, and soil chutes carrying either water or wastewater shall be replaced or repaired immediately. Soil chute and hose connections to the vessel and to receiving lines or containers shall be positives and as leak free as practicable.

OTHER REQUIREMENTS

The following is provided for the convenience of the permittee. In the case of any inadvertent discrepancies between the following and 40 CFR Part 438, Appendix B, 40 CFR Part 438, Appendix B takes precedence.

APPENDIX A Oily Operations Definitions (40 CFR Part 438, Appendix B)

Abrasive Blasting involves removing surface film from a part by using abrasive directed at high velocity against the part. Abrasive blasting includes bead, grit, shot, and sand blasting, and may be performed either dry or with water. The primary applications of wet abrasive blasting include: Removing burrs on precision parts; producing satin or matte finishes; removing fine tool marks; and removing light mill scale, surface oxide, or welding scale. Wet blasting can be used to finish fragile items such as electronic components. Also, some aluminum parts are wet blasted to achieve a fine-grained matte finish for decorative purposes. In abrasive blasting, the water and abrasive typically are reused until the particle size diminishes due to impacting and fracture.

Adhesive Bonding involves joining parts using an adhesive material. Typically, an organic bonding compound is used as the adhesive. This operation usually is dry; however, aqueous solutions may be used as bonding agents or to contain residual organic bonding materials.

Alkaline Cleaning for Oil Removal is a general term for the application of an alkaline cleaning agent to a metal part to remove oil and grease during the manufacture, maintenance, or rebuilding of a metal product. This unit operation does not include washing of the finished products after routine use (as defined in "Washing (Finished Products)" in this appendix), or applying an alkaline cleaning agent to remove nonoily contaminants such as dirt and scale (as defined in "Alkaline Treatment Without Cyanide" in this appendix and "Alkaline Treatment With Cyanide" in appendix C of this part). Wastewater generated includes spent cleaning solutions and rinse waters.

- (1) Alkaline cleaning is performed to remove foreign contaminants from parts. This operation usually is done prior to finishing (e.g., electroplating).
- (2) Emulsion cleaning is an alkaline cleaning operation that uses either complex chemical enzymes or common organic solvents (e.g., kerosene, mineral oil, glycols, and benzene) dispersed in water with the aid of an emulsifying agent. The pH of the solvent usually is between 7 and 9, and, depending on the solvent used, cleaning is performed at temperatures from room temperature to 82 °C (180 °F). This operation often is used as a replacement for vapor degreasing.

Alkaline Treatment Without Cyanide is a general term used to describe the application of an alkaline solution not containing cyanide to a metal surface to clean the metal surface or prepare the metal surface for further surface finishing.

Aqueous Degreasing involves cleaning metal parts using aqueous-based cleaning chemicals primarily to remove residual oils and greases from the part. Residual oils can be from previous operations (e.g., machine coolants), oil from product use in a dirty environment, or oil coatings used to inhibit corrosion. Wastewater generated by this operation includes spent cleaning solutions and rinse waters.

Assembly/Disassembly involves fitting together previously manufactured or rebuilt parts or components into a complete metal product or machine or taking a complete metal product or machine apart. Assembly/disassembly operations are typically dry; however, special circumstances can require water for cooling or buoyancy. Also, rinsing may be necessary under some conditions.

Burnishing involves finish sizing or smooth finishing a part (previously machined or ground) by displacing, rather than removing, minute surface irregularities with smooth point or line-contact, fixed or rotating tools. Lubricants or soap solutions can be used to cool the tools used in burnishing operations. Wastewater generated during burnishing include process solutions and rinse water.

Calibration is performed to provide reference points for the use of a product. This unit operation typically is dry, although water may be used in some cases (e.g., pumping water for calibration of a pump). Water used in this unit operation usually does not contain additives.

Corrosion Preventive Coating involves applying removable oily or organic solutions to protect metal surfaces against corrosive environments. Corrosion preventive coatings include, but are not limited to: Petrolatum compounds, oils, hard dry-film compounds, solvent-cutback petroleum-based compounds, emulsions, water-displacing polar compounds, and fingerprint removers and neutralizers. Corrosion preventive coating does not include electroplating, or chemical conversion coating operations. Many corrosion preventive materials also are formulated to function as lubricants or as a base for paint. Typical applications include: Assembled machinery or equipment in standby storage; finished parts in stock or spare parts for replacement; tools such as drills, taps, dies, and gauges; and mill products such as sheet, strip, rod and bar. Wastewater generated during corrosion preventive coating includes spent process solutions and rinses. Process solutions are discharged when they become contaminated with impurities or are depleted of constituents. Corrosion preventive coatings typically do not require an associated rinse, but parts are sometimes rinsed to remove the coating before further processing.

Electrical Discharge Machining involves removing metals by a rapid spark discharge between different polarity electrodes, one the part and the other the tool, separated by a small gap. The gap may be filled with air or a dielectric fluid. This operation is used primarily to cut tool alloys, hard nonferrous alloys, and other hard-to-machine materials. Most electrical discharge machining processes are operated dry; however, in some cases, the process uses water and generates wastewater containing dielectric fluid.

Floor Cleaning (in Process Area) removes dirt, debris, and process solution spills from process area floors. Floors can be cleaned using wet or dry methods, such as vacuuming, mopping, dry sweeping, and hose rinsing. Non-process area floor cleaning in offices and other similar non-process areas is not included in this unit operation.

Grinding involves removing stock from a part by using abrasive grains held by a rigid or semirigid binder. Grinding shapes or deburrs the part. The grinding tool usually is a disk (the basic shape of grinding wheels), but can also be a cylinder, ring, cup, stick, strip, or belt. The most commonly used abrasives are aluminum oxide, silicon carbide, and diamond. The process may use a grinding fluid to cool the part and remove debris or metal fines. Wastewater generated during grinding includes spent coolants and rinses. Metal-working fluids become spent for a number of reasons, including increased biological activity (*i.e.*, the fluids become rancid) or decomposition of the coolant additives. Rinse waters typically are assimilated into the working fluid or treated on site.

Heat Treating involves modifying the physical properties of a part by applying controlled heating and cooling cycles. This operation includes tempering, carburizing, cyaniding, nitriding, annealing, aging, normalizing, austenitizing, austempering, siliconizing, martempering, and malleablizing. Parts are heated in furnaces or molten salt baths, and then may be cooled by quenching in aqueous solutions (e.g., brine solutions), neat oils (pure oils with little or no impurities), or oil/water emulsions. Heat treating typically is a dry operation, but is considered a wet operation if aqueous quenching solutions are used. Wastewater includes spent quench water and rinse water.

Impact Deformation involves applying impact force to a part to permanently deform or shape it. Impact deformation may include mechanical processes such as hammer forging, shot peening,

peening, coining, high-energy-rate forming, heading, or stamping. Natural and synthetic oils, light greases, and pigmented lubricants are used in impact deformation operations. Pigmented lubricants include whiting, lithapone, mica, zinc oxide, molybdenum disulfide, bentonite, flour, graphite, white lead, and soap-like materials. These operations typically are dry, but wastewater can be generated from lubricant discharge and from rinsing operations associated with the operation. *Iron Phosphate Conversion Coating* is the process of applying a protective coating on the surface of a metal using a bath consisting of a phosphoric acid solution containing no metals (e.g., manganese, nickel, or zinc) or a phosphate salt solution (*i.e.*, sodium or potassium salts of phosphoric acid solutions) containing no metals (e.g., manganese, nickel, or zinc) other than sodium or potassium. Any metal concentrations in the bath are from the substrate.

Machining involves removing stock from a part (as chips) by forcing a cutting tool against the part. This includes machining processes such as turning, milling, drilling, boring, tapping, planing, broaching, sawing, shaving, shearing, threading, reaming, shaping, slotting, hobbing, and chamfering. Machining processes use various types of metal-working fluids, the choice of which depends on the type of machining being performed and the preference of the machine shop. The fluids can be categorized into four groups: Straight oil (neat oils), synthetic, semisynthetic, and water-soluble oil. Machining operations generate wastewater from working fluid or rinse water discharge. Metal-working fluids periodically are discarded because of reduced performance or development of a rancid odor. After machining, parts are sometimes rinsed to remove coolant and metal chips. The coolant reservoir is sometimes rinsed, and the rinse water is added to the working fluid.

Painting-Spray or Brush (Including Water Curtains) involves applying an organic coating to a part. Coatings such as paint, varnish, lacquer, shellac, and plastics are applied by spraying, brushing, roll coating, lithographing, powder coating, and wiping. Water is used in painting operations as a solvent (water-borne formulations) for rinsing, for cleanup, and for water-wash (or curtain) type spray booths. Paint spray booths typically use most of the water in this unit operation. Spray booths capture overspray (i.e., paint that misses the product during application), and control the introduction of pollutants into the workplace and environment.

Polishing involves removing stock from a part using loose or loosely held abrasive grains carried to the part by a flexible support. Usually, the objective is to achieve a desired surface finish or appearance rather then to remove a specified amount of stock. Buffing is included in this unit operation, and usually is performed using a revolving cloth or sisal buffing wheel, which is coated with a suitable compound. Liquid buffing compounds are used extensively for large-volume production on semiautomated or automated buffing equipment. Polishing operations typically are dry, although liquid compounds and associated rinses are used in some polishing processes.

Pressure Deformation involves applying force (other than impact force) to permanently deform or shape a part. Pressure deformation may include rolling, drawing, bending, embossing, sizing, extruding, squeezing, spinning, necking, forming, crimping or flaring. These operations use natural and synthetic oils, light greases, and pigmented lubricants. Pigmented lubricants include whiting, lithapone, mica, zinc oxide, molybdenum disulfide, bentonite, flour, graphite, white lead, and soaplike materials. Pressure deformation typically is dry, but wastewater is sometimes generated from the discharge of lubricants or from rinsing associated with the process.

Solvent Degreasing removes oils and grease from the surface of a part using organic solvents, including aliphatic petroleum (e.g., kerosene, naphtha), aromatics (e.g., benzene, toluene), oxygenated hydrocarbons (e.g., ketones, alcohol, ether), and halogenated hydrocarbons (e.g., 1,1,1-trichloroethane, trichloroethylene, methylene chloride). Solvent cleaning takes place in either the liquid or vapor phase. Solvent vapor degreasing normally is quicker than solvent liquid degreasing. However, ultrasonic vibration is sometimes used with liquid solvents to decrease the required immersion time of complex shapes. Solvent cleaning often is used as a precleaning operation prior to alkaline cleaning, as a final cleaning of precision parts, or as surface preparation for some painting

Conrad Orange Shipyard, Inc.

operations. Solvent degreasing operations typically are not followed by rinsing, although rinsing is performed in some cases.

Steam Cleaning removes residual dirt, oil, and grease from parts after processing though other unit operations. Typically, additives are not used in this operation; the hot steam removes the pollutants. Wastewater is generated when the cleaned parts are rinsed.

Testing (e.g., hydrostatic, dye penetrant, ultrasonic, magnetic flux) involves applying thermal, electrical, mechanical, hydraulic, or other energy to determine the suitability or functionality of a part, assembly, or complete unit. Testing also may include applying surface penetrant dyes to detect surface imperfections. Other examples of tests frequently performed include electrical testing, performance testing, and ultrasonic testing; these tests typically are dry but may generate wastewater under certain circumstances. Testing usually is performed to replicate some aspect of the working environment. Wastewater generated during testing includes spent process solutions and rinses.

Thermal Cutting involves cutting, slotting, or piercing a part using an oxy-acetylene oxygen lance, electric arc cutting tool, or laser. Thermal cutting typically is a dry process, except for the use of contact cooling waters and rinses.

Tumbling/Barrel Finishing/Mass Finishing/Vibratory Finishing involves polishing or deburring a part using a rotating or vibrating container and abrasive media or other polishing materials to achieve a desired surface appearance. Parts to be finished are placed in a rotating barrel or vibrating unit with an abrasive media (e.g., ceramic chips, pebbles), water, and chemical additives (e.g., alkaline detergents). As the barrel rotates, the upper layer of the part slides toward the lower side of the barrel, causing the abrading or polishing. Similar results can be achieved in a vibrating unit, where the entire contents of the container are in constant motion, or in a centrifugal unit, which compacts the load of media and parts as the unit spins and generates up to 50 times the force of gravity. Spindle finishing is a similar process, where parts to be finished are mounted on fixtures and exposed to a rapidly moving abrasive slurry. Wastewater generated during barrel finishing includes spent process solutions and rinses. Following the finishing process, the contents of the barrel are unloaded. Process wastewater is either discharged continuously during the process, discharged after finishing, or collected and reused. The parts are sometimes given a final rinse to remove particles of abrasive media.

Washing (Finished Products) involves cleaning finished metal products after use or storage using fresh water or water containing a mild cleaning solution. This unit operation applies only to the finished products that do not require maintenance or rebuilding.

Welding involves joining two or more pieces of material by applying heat, pressure, or both, with or without filler material, to produce a metallurgical bond through fusion or recrystallization across the interface. This includes gas welding, resistance welding, arc welding, cold welding, electron beam welding, and laser beam welding. Welding typically is a dry process, except for the occasional use of contact cooling waters or rinses.

Wet Air Pollution Control for Organic Constituents involves using water to remove organic constituents that are entrained in air streams exhausted from process tanks or production areas. Most frequently, wet air pollution control devices are used with cleaning and coating processes. A common type of wet air pollution control is the wet packed scrubber consisting of a spray chamber that is filled with packing material. Water is continuously sprayed onto the packing and the air stream is pulled through the packing by a fan. Pollutants in the air stream are absorbed by the water droplets and the air is released to the atmosphere. A single scrubber often serves numerous process tanks.

OTHER REQUIREMENTS

The following is provided for the convenience of the permittee. In the case of any inadvertent discrepancies between the following and 40 CFR Part 438, Appendix C, 40 CFR Part 438, Appendix C takes precedence.

APPENDIX B Metal-Bearing Operations Definitions (40 CFR Part 438, Appendix C)

Abrasive Jet Machining includes removing stock material from a part by a high-speed stream of abrasive particles carried by a liquid or gas from a nozzle. Abrasive jet machining is used for deburring, drilling, and cutting thin sections of metal or composite material. Unlike abrasive blasting, this process operates at pressures of thousands of pounds per square inch. The liquid streams typically are alkaline or emulsified oil solutions, although water also can be used.

Acid Pickling Neutralization involves using a dilute alkaline solution to raise the pH of acid pickling rinse water that remains on the part after pickling. The wastewater from this operation is the acid pickling neutralization rinse water.

Acid Treatment With Chromium is a general term used to describe any application of an acid solution containing chromium to a metal surface. Acid cleaning, chemical etching, and pickling are types of acid treatment. Chromic acid is used occasionally to clean cast iron, stainless steel, cadmium and aluminum, and bright dipping of copper and copper alloys. Also, chromic acid solutions can be used for the final step in acid cleaning phosphate conversion coating systems. Chemical conversion coatings formulated with chromic acid are defined at "Chromate Conversion Coating (or Chromating)" in this appendix. Wastewater generated during acid treatment includes spent solutions and rinse waters. Spent solutions typically are batch discharged and treated or disposed of off site. Most acid treatment operations are followed by a water rinse to remove residual acid.

Acid Treatment Without Chromium is a general term used to describe any application of an acid solution not containing chromium to a metal surface. Acid cleaning, chemical etching, and pickling are types of acid treatment. Wastewater generated during acid treatment includes spent solutions and rinse waters. Spent solutions typically are batch discharged and treated or disposed of off site. Most acid treatment operations are followed by a water rinse to remove residual acid.

Alcohol Cleaning involves removing dirt and residue material from a part using alcohol.

Alkaline Cleaning Neutralization involves using a dilute acid solution to lower the pH of alkaline cleaning rinse water that remains on the part after alkaline cleaning. Wastewater from this operation is the alkaline cleaning neutralization rinse water.

Alkaline Treatment With Cyanide is the cleaning of a metal surface with an alkaline solution containing cyanide. Wastewater generated during alkaline treatment includes spent solutions and rinse waters. Alkaline treatment solutions become contaminated from the introduction of soils and dissolution of the base metal. They usually are treated and disposed of on a batch basis. Alkaline treatment typically is followed by a water rinse that is discharged to a treatment system.

Anodizing With Chromium involves producing a protective oxide film on aluminum, magnesium, or other light metal, usually by passing an electric current through an electrolyte bath in which the metal is immersed. Anodizing may be followed by a sealant operation. Chromic acid anodic coatings have a relatively thick boundary layer and are more protective than are sulfuric acid coatings. For these reasons, chromic acid is sometimes used when the part cannot be rinsed completely. These oxide coatings provide corrosion protection, decorative surfaces, a base for painting and other coating processes, and special electrical and mechanical properties. Wastewaters generated during anodizing include spent anodizing solutions, sealants, and rinse waters. Because of the anodic nature of the

process, anodizing solutions become contaminated with the base metal being processed. These solutions eventually reach an intolerable concentration of dissolved metal and require treatment or disposal. Rinse water following anodizing, coloring, and sealing typically is discharged to a treatment system.

Anodizing Without Chromium involves applying a protective oxide film to aluminum, magnesium, or other light metal, usually by passing an electric current through an electrolyte bath in which the metal is immersed. Phosphoric acid, sulfuric acid, and boric acid are used in anodizing. Anodizing also may include sealant baths. These oxide coatings provide corrosion protection, decorative surfaces, a base for painting and other coating processes, and special electrical and mechanical properties. Wastewater generated during anodizing includes spent anodizing solutions, sealants, and rinse waters. Because of the anodic nature of the process, anodizing solutions become contaminated with the base metal being processed. These solutions eventually reach an intolerable concentration of dissolved metal and require treatment or disposal. Rinse water following anodizing, coloring, and sealing steps typically is discharged to a treatment systems.

Carbon Black Deposition involves coating the inside of printed circuit board holes by dipping the circuit board into a tank that contains carbon black and potassium hydroxide. After excess solution dips from the circuit boards, they are heated to allow the carbon black to adhere to the board.

Catalyst Acid Pre-Dip uses rinse water to remove residual solution from a part after the part is processed in an acid bath. The wastewater generated in this unit operation is the rinse water.

Chemical Conversion Coating without Chromium is the process of applying a protective coating on the surface of a metal without using chromium. Such coatings are applied through phosphate conversion (except for "Iron Phosphate Conversion Coating," see appendix B of this part), metal coloring, or passivation. Coatings are applied to a base metal or previously deposited metal to increase corrosion protection and lubricity, prepare the surface for additional coatings, or formulate a special surface appearance. This unit process includes sealant operations that use additives other than chromium.

- (1) In phosphate conversion, coatings are applied for one or more of the following reasons: to provide a base for paints and other organic coatings; to condition surfaces for cold forming operations by providing a base for drawing compounds and lubricants; to impart corrosion resistance to the metal surface; or to provide a suitable base for corrosion-resistant oils or waxes. Phosphate conversion coatings are formed by immersing a metal part in a dilute solution of phosphoric acid, phosphate salts, and other reagents.
- (2) Metal coloring by chemical conversion coating produces a large group of decorative finishes. Metal coloring includes the formation of oxide conversion coatings. In this operation, the metal surface is converted into an oxide or similar metallic compound, giving the part the desired color. The most common colored finishes are used on copper, steel, zinc, and cadmium.
- (3) Passivation forms a protective coating on metals, particularly stainless steel, by immersing the part in an acid solution. Stainless steel is passivated to dissolve embedded iron particles and to form a thin oxide film on the surface of the metal. Wastewater generated during chemical conversion coating includes spent solutions and rinses (*i.e.*, both the chemical conversion coating solutions and post-treatment sealant solutions). These solutions commonly are discharged to a treatment system when contaminated with the base metal or other impurities. Rinsing normally follows each process step, except when a sealant dries on the part surface.

Chemical Milling (or Chemical Machining) involves removing metal from a part by controlled chemical attack, or etching, to produce desired shapes and dimensions. In chemical machining, a masking agent typically is applied to cover a portion of the part's surface; the exposed (unmasked)

Conrad Orange Shipyard, Inc.

surface is then treated with the chemical machining solution. Wastewater generated during chemical machining includes spent solutions and rinses. Process solutions typically are discharged after becoming contaminated with the base metal. Rinsing normally follows chemical machining.

Chromate Conversion Coating (or Chromating) involves forming a conversion coating (protective coating) on a metal by immersing or spraying the metal with a hexavalent chromium compound solution to produce a hexavalent or trivalent chromium compound coating. This also is known as chromate treatment, and is most often applied to aluminum, zinc, cadmium or magnesium surfaces. Sealant operations using chromium also are included in this unit operation. Chromate solutions include two types: (1) those that deposit substantial chromate films on the substrate metal and are complete treatments themselves, and (2) those that seal or supplement oxide, phosphate, or other types of protective coatings. Wastewater generated during chromate conversion coating includes spent process solutions (*i.e.*, both the chromate conversion coating solutions and post-treatment sealant solutions) and rinses. These solutions typically are discharged to a treatment system when contaminated with the base metal or other impurities. Also, chromium-based solutions, which are typically formulated with hexavalent chromium, lose operating strength when the hexavalent chromium reduces to trivalent chromium during use. Rinsing normally follows each process step, except for sealants that dry on the surface of the part.

Chromium Drag-out Destruction is a unit operation performed following chromium-bearing operations to reduce hexavalent chromium that is "dragged out" of the process bath. Parts are dipped in a solution of a chromium-reducing chemical (e.g., sodium metabisulfite) to prevent the hexavalent chromium from contaminating subsequent process baths. This operation typically is performed in a stagnant drag-out rinse tank that contains concentrated chromium-bearing wastewater.

Cyanide Drag-out Destruction involves dipping part in a cyanide oxidation solution (e.g., sodium hypochloride) to prevent cyanide that is "dragged out" of a process bath from contaminating subsequent process baths. This operation typically is performed in a stagnant drag-out rinse tank.

Cyaniding Rinse is generated during cyaniding hardening of a part. The part is heated in a molten salt solution containing cyanide. Wastewater is generated when excess cyanide salt solution is removed from the part in rinse water.

Electrochemical Machining is a process in which the part becomes the anode and a shaped cathode is the cutting tool. By pumping electrolyte between the electrodes and applying a current, metal is rapidly but selectively dissolved from the part. Wastewater generated during electrochemical machining includes spent electrolytes and rinses.

Electroless Catalyst Solution involves adding a catalyst just prior to an electroless plating operation to accelerate the plating operation.

Electroless Plating involves applying a metallic coating to a part using a chemical reduction process in the presence of a catalysis. An electric current is not used in this operations. The metal to be plated onto a part typically is held in solution at high concentrations using a chelating agent. This plates all areas of the part to a uniform thickness regardless of the configuration of the part. Also, an electroless-plated surface is dense and virtually nonporous. Copper and nickel electroless plating operations are the most common. Sealant operations (i.e., other than hot water dips) following electroless plating are considered separate unit operations if they include any additives. Wastewater generated during electroless plating includes spent process solutions and rinses. The wastewater contains chelated metals, which require separate preliminary treatment to break the metal chelates prior to conventional chemical precipitation. Rinsing follows most electroless plating processes to remove residual plating solution and prevent contamination of subsequent process baths.

Conrad Orange Shipyard, Inc.

Electrolytic Cleaning involves removing soil, scale, or surface oxides from a part by electrolysis. The part is one of the electrodes and the electrolyte is usually alkaline. Electrolytic alkaline cleaning and electrolytic acid cleaning are the two types of electrolytic cleaning.

- (1) Electrolytic alkaline cleaning produces a cleaner surface than do nonelectrolytic methods of alkaline cleaning. This operation uses strong agitation, gas evolution in the solution, and oxidation-reduction reactions that occur during electrolysis. In addition, dirt particles become electrically charged and are repelled from the part surface.
- (2) Electrolytic acid cleaning sometimes is used as a final cleaning before electroplating. Sulfuric acid is most frequently used as the electrolyte. As with electrolytic alkaline cleaning, the mechanical scrubbing effect from the evolution of gas enhances the effectiveness of the process.

Wastewater generated during electrolytic cleaning includes spent process solutions and rinses. Electrolytic cleaning solutions become contaminated during use due to the dissolution of the base metal and the introduction of pollutants. The solutions typically are batch discharged for treatment or disposal after they weaken. Rinsing following electrolytic cleaning removes residual cleaner to prevent contamination of subsequent process baths.

Electroplating with Chromium involves producing a chromium metal coating on a surface by electrodeposition. Electroplating provides corrosion protection, wear or erosion resistance, lubricity, electrical conductivity, or decoration. In electroplating, metal ions in acid, alkaline, or neutral solutions are reduced on the cathodic surfaces of the parts being plated. Metal salts or oxides typically are added to replenish the solutions. Chromium trioxide often is added as a source of chromium. In addition to water and the metal being deposited, electroplating solutions often contain agents that form complexes with the metal being deposited, stabilizers to prevent hydrolysis, buffers for pH control, catalysts to assist in deposition, chemical aids to dissolve anodes, and miscellaneous ingredients that modify the process to attain specific properties. Sealant operations performed after this operation are considered separate unit operations if they include any additives (i.e., other than hot water dips). Wastewater generated during electroplating includes spent process solutions and rinses. Electroplating solutions occasionally become contaminated during use due to the base metal dissolving and the introduction of other pollutants, diminishing the effectiveness of the electroplating solutions diminishes. Spent concentrated solutions typically are treated to remove pollutants and reused, processed in a wastewater treatment system, or disposed of off site. Rinse waters, including some drag-out rinse tank solutions, typically are treated on site.

Electroplating with Cyanide involves producing metal coatings on a surface by electrodeposition using cyanide. Electroplating provides corrosion protection, wear or erosion resistance, electrical conductivity, or decoration. In electroplating, metal ions in acid, alkaline, or neutral solutions are reduced on the cathodic surfaces of the parts being plated. The metal ions in solution typically are replenished by dissolving metal from anodes contained in inert wire or metal baskets. Sealant operations performed after this operation are considered separate unit operations if they include any additives (i.e., any sealant operations other than hot water dips). In addition to water and the metal being deposited, electroplating solutions often contain agents that form complexes with the metal being deposited, stabilizers to prevent hydrolysis, buffers to control pH, catalysts to assist in deposition, chemical aids to dissolve anodes, and miscellaneous ingredients that modify the process to attain specific properties. Cyanide, usually in the form of sodium or potassium cyanide, frequently is used as a complexing agent for zinc, cadmium, copper, and precious metal baths. Wastewater generated during electroplating includes spent process solutions and rinses. Electroplating solutions occasionally become contaminated during use due to dissolution of the base metal and the introduction of other pollutants, diminishing the performance of the electroplating solutions. Spent concentrated solutions typically are treated to remove pollutants and reused, processed in a wastewater treatment system, or disposed of off site. Rinse waters, including some drag-out rinse tank solutions, typically are treated on site.

Electroplating without Chromium or Cyanide involves the production of metal coatings on a surface by electrodeposition, without using chromium or cyanide. Commonly electroplated metals include nickel, copper, tin/lead, gold, and zinc. Electroplating provides corrosion protection, wear or erosion resistance, lubricity, electrical conductivity, or decoration. In electroplating, metal ions in acid, alkaline, or neutral solutions are reduced on the cathodic surfaces of the parts being plated. The metal ions in solution typically are replenished by dissolving metal from anodes contained in inert wire or metal baskets. Sealant operations performed after this operation are considered separate unit operations if they include any additives (i.e., any sealant operations other than hot water dips). In addition to water and the metal being deposited, electroplating solutions often contain agents that form complexes with the metal being deposited, stabilizers to prevent hydrolysis, buffers to control pH, catalysts to assist in deposition, chemical aids to dissolve anodes, and miscellaneous ingredients that modify the process to attain specific properties. Wastewater generated during electroplating without chromium or cyanide includes spent process solutions and rinses. Electroplating solutions occasionally become contaminated during use due to dissolution of the base metal and the introduction of other pollutants, diminishing the effectiveness of the electroplating solutions. Spent concentrated solutions typically are treated for pollutant removal and reused, processed in a wastewater treatment system, or disposed of off site. Rinse waters, including some drag-out rinse tank solutions, typically are treated on site.

Electropolishing involves producing a highly polished surface on a part using reversed electrodeposition in which the anode (part) releases some metal ions into the electrolyte to reduce surface roughness. When current is applied, a polarized film forms on the metal surface, through which metal ions diffuse. In this operation, areas of surface roughness on parts serve as high-current density areas and are dissolved at rates greater than the rates for smoother portions of the metal surface. Metals are electropolished to improve appearance, reflectivity, and corrosion resistance. Base metals processed by electropolishing include aluminum, copper, zinc, low-alloy steel, and stainless steel. Common electrolytes include sodium hydroxide and combinations of sulfuric acid, phosphoric acid, and chromic acid. Wastewater generated during electropolishing includes spent process solutions and rinses. Eventually, the concentration of dissolved metals increases to the point where the process becomes ineffective. Typically, a portion of the bath is decanted and either fresh chemicals are added or the entire solution is discharged to treatment and replaced with fresh chemicals. Rinsing can involve several steps and can include hot immersion or spray rinses.

Galvanizing/Hot Dip Coating involves using various processes to coat an iron or steel surface with zinc. In hot dipping, a base metal is coated by dipping it into a tank that contains a molten metal.

Hot Dip Coating involves applying a metal coating (usually zinc) to the surface of a part by dipping the part in a molten metal bath. Wastewater is generated in this operation when residual metal coating solution is removed from the part in rinse water.

Kerfing uses a tool to remove small amounts of metal from a product surface. Water and synthetic coolants may be used to lubricate the area between the tool and the metal, to maintain the temperature of the cutting tool, and to remove metal fines from the surface of the part. This operation generates oily wastewater that contains metal fines and dust.

Laminating involves applying a material to a substrate using heat and pressure.

Mechanical and Vapor Plating involves applying a metallic coating to a part. For mechanical plating, the part is rotated in a drum containing a water-based solution, glass beads, and metal powder. In vapor plating, a metallic coating is applied by atomizing the metal and applying an electric charge to the part, which causes the atomized (vapor phase) metal to adhere to the part. Wastewater generated in this operation includes spent solutions from the process bath and rinse water. Typically, the wastewater contains high concentrations of the applied metal.

Metallic Fiber Cloth Manufacturing involves weaving thin metallic fibers to create a mesh cloth.

Metal Spraying (Including Water Curtain) involves applying a metallic coating to a part by projecting molten or semimolten metal particles onto a substrate. Coatings can be sprayed from rod or wire stock or from powdered material. The process involves feeding the material (e.g., wire) into a flame where it is melted. The molten stock then is stripped from the end of the wire and atomized by a high-velocity stream of compressed air or other gas that propels the material onto a prepared substrate or part. Metal spraying coatings are used in a wide range of special applications, including: insulating layers in applications such as induction heating coils; electromagnetic interference shielding; thermal barriers for rocket engines; nuclear moderators; films for hot isostatic pressing; and dimensional restoration of worn parts. Metal spraying is sometimes performed in front of a "water curtain" (a circulated water stream used to trap overspray) or a dry filter exhaust hood that captures the overspray and fumes. With water curtain systems, water is recirculated from a sump or tank. Wastewater is generated when the sump or tank is discharged periodically. Metal spraying typically is not followed by rinsing.

Painting-Immersion (Including Electrophoretic, "E-coat") involves applying an organic coating to a part using processes such autophoretic and electrophoretic painting.

- (1) Autophoretic Painting involves applying an organic paint film by electrophoresis when a part is immersed in a suitable aqueous bath.
- (2) Electrophoretic Painting is coating a part by making it either anodic or cathodic in a bath that is generally an aqueous emulsion of the organic coating material.
- (3) Other Immersion Painting includes all other types of immersion painting such as dip painting.

Water is used in immersion paint operations as a carrier for paint particles and to rinse the part. Aqueous painting solutions and rinses typically are treated through an ultrafiltration system. The concentrate is returned to the painting solution, and the permeate is reused as rinse water. Sites typically discharge a bleed stream to treatment. The painting solution and rinses are batch discharged periodically to treatment.

Photo Imaging is the process of exposing a photoresist-laden printed wiring board to light to impact the circuitry design to the board. Water is not used in this operation.

Photo Image Developing is an operation in which a water-based solution is used to develop the exposed circuitry in a photoresist-laden printed wiring board. Wastewater generated in this operation includes spent process solution and rinse water.

Photoresist Application is an operation that uses heat and pressure to apply a photoresist coating to a printed wiring board. Water is not used in this operation.

Photoresist Strip involves removing organic photoresist material from a printed wiring board using an acid solution.

Phosphor Deposition is the application of a phosphorescent coating to a part. Wastewater generated in this unit operation includes water used to keep the parts clean and wet while the coating is applied, and rinse water used to remove excess phosphorescent coating from the part.

Physical Vapor Deposition involves physically removing a material from a source through evaporation or sputtering, using the energy of the vapor particles in a vacuum or partial vacuum to transport the removed material, and condensing the removed material as a film onto the surface of a part or other substrate.

Plasma Arc Machining involves removing material or shaping a part by a high-velocity jet of high-temperature, ionized gas. A gas (nitrogen, argon, or hydrogen) is passed through an electric arc, causing the gas to become ionized, and heated to temperatures exceeding 16,650 °C (30,000 °F). The relatively narrow plasma jet melts and displaces the material in its path. Because plasma arc machining does not depend on a chemical reaction between the gas and the part, and because plasma temperatures are extremely high, the process can be used on almost any metal, including those that are resistant to oxygen-fuel gas cutting. The method is used mainly for profile cutting of stainless steel and aluminum alloys. Although plasma arc machining typically is a dry process, water is used for water injection plasma arc torches. In these cases, a constricted swirling flow of water surrounds the cutting arc. This operations also may be performed immersed in a water bath. In both cases, water is used to stabilize the arc, to cool the part, and to contain smoke and fumes.

Plastic Wire Extrusion involves applying a plastic material to a metal wire through an extrusion process.

Salt Bath Descaling involves removing surface oxides or scale from a part by immersing the part in a molten salt bath or hot salt solution. Salt bath descaling solutions can contain molten salts, caustic soda, sodium hydride, and chemical additives. Molten salt baths are used in a salt bath-water quenchacid dip sequence to remove oxides from stainless steel and other corrosion-resistant alloys. In this process, the part typically is immersed in the molten salt, quenched with water, and then dipped in acid. Oxidizing, reducing, or electrolytic salt baths can be used depending on the oxide to be removed. Wastewater generated during salt bath descaling includes spent process solutions, quenches, and rinses.

Shot Tower—Lead Shot Manufacturing involves dropping molten lead from a platform on the top of a tower through a sieve-like device and into a vat of cold water.

Soldering involves joining metals by inserting a thin (capillary thickness) layer of nonferrous filler metal into the space between them. Bonding results from the intimate contact produced by the metallic bond formed between the substrate metal and the solder alloy. The term soldering is used where the melting temperature of the filler is below 425 °C (800 °F). Some soldering operations use a solder flux, which is an aqueous or nonaqueous material used to dissolve, remove, or prevent the formation of surface oxides on the part. Except for the use of aqueous fluxes, soldering typically is a dry operation; however, a quench or rinse sometimes follows soldering to cool the part or remove excess flux or other foreign material from its surface. Recent developments in soldering technology have focused on fluxless solders and fluxes that can be cleaned off with water.

Solder Flux Cleaning involves removing residual solder flux from a printed circuit board using either an alkaline or alcohol cleaning solution.

Solder Fusing involves coating a tin-lead plated circuit board with a solder flux and then passing the board through a hot oil. The hot oil fuses the tin-lead to the board and creates a solder-like finish on the board.

Solder Masking involves applying a resistive coating to certain areas of a circuit board to protect the areas during subsequent processing.

Sputtering is a vacuum evaporation process in which portions of a coating material are physically removed from a substrate and deposited a thin film onto a different substrate.

Stripping (Paint) involves removing a paint (or other organic) coating from a metal basis material. Stripping commonly is performed as part of the manufacturing process to recover parts that have been improperly coated or as part of maintenance and rebuilding to restore parts to a usable condition. Organic coatings (including paint) are stripped using thermal, mechanical, and chemical means.

Thermal methods include burn-off ovens, fluidized beds of sand, and molten salt baths. Mechanical methods include scraping and abrasive blasting (as defined in "Abrasive Blasting" in appendix B of this part). Chemical paint strippers include alkali solutions, acid solutions, and solvents (e.g., methylene chloride). Wastewater generated during organic coating stripping includes process solutions (limited mostly to chemical paint strippers and rinses).

Stripping (Metallic Coating) involves removing a metallic coating from a metal basis material. Stripping is commonly part of the manufacturing process to recover parts that have been improperly coated or as part of maintenance and rebuilding to restore parts to a usable condition. Metallic coating stripping most often uses chemical baths, although mechanical means (e.g., grinding, abrasive blasting) also are used. Chemical stripping frequently is performed as an aqueous electrolytic process. Wastewater generated during metallic coating stripping includes process solutions and rinses. Stripping solutions become contaminated from dissolution of the base metal. Typically, the entire solution is discharged to treatment. Rinsing is used to remove the corrosive film remaining on the parts.

Thermal Infusion uses heat to infuse metal powder or dust onto the surface of a part. Typically, thermal infusion is a dry operation. In some cases, however, water may be used to remove excess metal powder, metal dust, or molten metal.

Ultrasonic Machining involves forcing an abrasive liquid between a vibrating tool and a part. Particles in the abrasive liquid strike the part, removing any microscopic flakes on the part.

Vacuum Impregnation is used to reduce the porosity of the part. A filler material (usually organic) is applied to the surface of the part and polymerized under pressure and heat. Wastewater is generated in this unit operation when rinse water is used to remove residual organic coating from the part.

Vacuum Plating involves applying a thin layer of metal oxide onto a part using molten metal in a vacuum chamber.

Water Shedder involves applying a dilute water-based chemical compound to a part to accelerate drying. This operation typically is used to prevent a part from streaking when excess water remains on the part.

Wet Air Pollution Control involves using water to remove chemicals, fumes, or dusts that are entrained in air streams exhausted from process tanks or production areas. Most frequently, wet air pollution control devices are used with electroplating, cleaning, and coating processes. A common type of wet air pollution control is the wet packed scrubber consisting of a spray chamber that is filled with packing material. Water is continuously sprayed onto the packing and the air stream is pulled through the packing by a fan. Pollutants in the air stream are absorbed by the water droplets and the air is released to the atmosphere. A single scrubber often serves numerous process tanks; however, the air streams typically are segregated by source into chromium, cyanide, and acid/alkaline sources. Wet air pollution control can be divided into several suboperations, including:

- (1) Wet Air Pollution Control for Acid Alkaline Baths:
- (2) Wet Air Pollution Control for Cyanide Baths;
- (3) Wet Air Pollution Control for Chromium-Bearing Baths; and
- (4) Wet Air Pollution Control for Fumes and Dusts.

Wire Galvanizing Flux involves using flux to remove rust and oxide from the surface of steel wire prior to galvanizing. This provides long-term corrosion protection for the steel wire.

Attachment A

Table 1 – Conventionals and Non-conventionals

Outfall No.: C G				tion (mg	:/L)
Pollutant	Samp.	Samp.	Samp.	Samp.	Average
Flow (MGD)					
BOD (5-day)					
CBOD (5-day)					
Chemical Oxygen Demand					
Total Organic Carbon					
Dissolved Oxygen					
Ammonia Nitrogen					
Total Suspended Solids					
Nitrate Nitrogen					
Total Organic Nitrogen					
Total Phosphorus					
Oil and Grease					
Total Residual Chlorine					
Total Dissolved Solids					
Sulfate					
Chloride					
Fluoride					
Total Alkalinity (mg/L as					
CaCO ₃)					
Temperature (°F)					
pH (Standard Units;					
min/max)	1				

Table 2 – Metals

Pollutant		L) ¹	MAL ²			
Pollutalit	Samp.	Samp.	Samp.	Samp.	Average	(μg/L)
Aluminum, Total						2.5
Antimony, Total						5
Arsenic, Total						0.5
Barium, Total						3
Beryllium, Total						0.5
Cadmium, Total						1
Chromium, Total						3
Chromium, Hexavalent						3
Chromium, Trivalent						N/A
Copper, Total						2
Cyanide, Free						10
Lead, Total						0.5
Mercury, Total						0.005

Indicate units if different than $\mu g/L$. Minimum Analytical Level

Pollutant		MAL ²				
Pollutalit	Samp.	Samp.	Samp.	Samp.	Average	(µg/L)
Nickel, Total						2
Selenium, Total						5
Silver, Total						0.5
Thallium, Total						0.5
Zinc, Total						5.0

Table 3 – Toxic Pollutants with Water Quality Criteria

Outfall No.: CG	Samp. 1	Samp. 2	Samp. 3	Samp. 4	Avg.	MAL
Pollutant	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Acrolein						0.7
Acrylonitrile						50
Anthracene						10
Benzene						10
Benzidine						50
Benzo(a)anthracene						5
Benzo(a)pyrene						5
Bis(2-chloroethyl)ether						10
Bis(2-ethylhexyl) phthalate						10
Bromodichloromethane						10
Bromoform						10
Carbon Tetrachloride						2
Chlorobenzene						10
Chlorodibromomethane						10
Chloroform						10
Chrysene						5
Cresols						10
1,2-Dibromoethane						10
<i>m</i> -Dichlorobenzene						10
o-Dichlorobenzene						10
<i>p</i> -Dichlorobenzene						10
3,3'-Dichlorobenzidine						5
1,2-Dichloroethane						10
1,1-Dichloroethylene						10
Dichloromethane						20
1,2-Dichloropropane						10
1,3-Dichloropropylene						10
2,4-Dimethylphenol						10
Di- <i>n</i> -Butyl Phthalate						10
Epichlorohydrin						1,000
Ethylbenzene						10
Ethylene Glycol						_
Fluoride						500
Hexachlorobenzene						5
Hexachlorobutadiene						10

Outfall No.: \Bigcup C \Bigcup G	Samp. 1	Samp. 2	Samp. 3	Samp. 4	Avg.	MAL
Pollutant	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Hexachlorocyclopentadiene						10
Hexachloroethane						20
4,4'-Isopropylidenediphenol [bisphenol A]						_
Methyl Ethyl Ketone						50
Methyl <i>tert</i> -butyl ether [MTBE]						_
Nitrobenzene						10
N-Nitrosodiethylamine						20
<i>N</i> -Nitroso-di- <i>n</i> -Butylamine						20
Nonylphenol						333
Pentachlorobenzene						20
Pentachlorophenol						5
Phenanthrene						10
Polychlorinated Biphenyls (PCBs) ¹						0.2
Pyridine						20
1,2,4,5-Tetrachlorobenzene						20
1,1,2,2-Tetrachloroethane						10
Tetrachloroethylene						10
Toluene						10
1,1,1-Trichloroethane						10
1,1,2-Trichloroethane						10
Trichloroethylene						10
2,4,5-Trichlorophenol						50
TTHM (Total Trihalomethanes)						10
Vinyl Chloride						10

Table 4 – Tributyltin

Outfall No. C	\Box G	a 1 .	a 1 -	a 1 -	a 1 .		DEAT
Pollutant		Sample 1	Sample 2	Sample 3	Sample 4	Average	MAL
Tributyltin (μg/L)							0.010

¹ Total of detects for PCB-1242, PCB-1254, PCB-1221, PCB-1232, PCB-1248, PCB-1260, PCB-1016. If all values are non-detects, enter the highest non-detect preceded by a "<" symbol.

CMP THRESHOLD REVIEW SHEET INDUSTRIAL WASTEWATER DISCHARGE PERMITS

	Conrad Orange Shipyard, Inc.
TPDES PERMIT NUMB	BER: WQ0005010000
CLASSIFIED SEGMEN' NAME:	Γ: Sabine River Tidal
NUMBER:	0501
COUNTY:	Orange
Is the facility located within Yes \boxtimes No \square	n the Coastal Zone?
If "Yes," complete Section A	A and, if directed to do so, Section B. If "No," this worksheet is not required
	SECTION A
Yes No	
□ ⊠ 1. This i waste	is a new permit application which would authorize the discharge of a ewater subject to EPA Categorical Effluent Standards (40 CFR Parts 400-into a priority segment (see Appendix B).
the m EPA (is an amendment permit application which would authorize an increase in lass loading of pollutants from the discharge of a wastewater subject to Categorical Effluent Standards (40 CFR Parts 400-471) into a priority ent (see Appendix B).
disch	is an amendment permit application which would change the point of arge of a wastewater subject to EPA Categorical Effluent Standards (40 Parts 400-471) into a priority segment (see Appendix B).
IF "YES" TO ANY OF THE THRESHOLD, COMPLETE	ABOVE THEN THE PERMIT ACTION IS CONSIDERED ABOVE E SECTION B.
IF "NO" TO ALL OF THE A THRESHOLD, STOP HERI	BOVE, THEN THE PERMIT ACTION IS CONSIDERED BELOW E.
	SECTION B
The IOM from ☐ 1. waters is antice	standards states that "no significant degradation of high quality receiving ipated" (if receiving water has a designated high quality aquatic life use).
\Box 2. The IOM from	standards states that "no loss of designated uses is anticipated."
	nit complies with all applicable provisions of 30 TAC 307, 309, and 319.
Thomas E. Starr, P.E. PERMIT WRITER	<u>April 10, 2025</u> DATE

TIDAL SEGMENTS DESIGNATED AS TCEQ PRIORITY WATERBODIES COASTAL MANAGEMENT PROGRAM

Segment Number	<u>Name</u>
2412	Sabine Lake
2411	
2423	
2439	Lower Galveston Bay
0801	Trinity River Tidal
1113	Armand Bayou Tidal
2431	
2424	
2432	Chocolate Bay
2433	
2434	Christmas Bay
2435	•
2442	Cedar Lakes
2441	
2451	Matagorda Bay/Powderhorn Lake
2452	Tres Palacios Bay/Turtle Bay
2456	Carancahua Bay
2455	Keller Bay
2461	Espiritu Santo Bay
	San Antonio Bay/Hynes Bay/Guadalupe Bay
1801	Guadalupe River Tidal
2463	Mesquite Bay/Carlos Bay/Ayres Bay
2473	
2471	
2472	Copano Bay/Port Bay/Mission Bay
2483	Redfish Bay
2482	
2492	Baffin Bay/Alazan Bay/Cayo Del Grullo/Laguna Salada
2491	
2493	

INDUSTRIAL EPA REVIEW CHECKLIST

Permittee Name:		ame: Conrad Orange Shipyard, Inc.	=
Per	mittee N	umber: WQ0005010000	=
IS TH	HIS A M	INOR AMENDMENT WITHOUT RENEWAL? EPA review is waived per the MOA, because this is a minor amendment with renewal. SKIP TO THE END.	out
		application types, check all that apply:	
Yes □	No ⊠	discharge to territorial sees (within a miles of the coastline) of the United States?	
		discharge to territorial seas (within 3 miles of the coastline) of the United States? discharge or sewage sludge management may affect another state or the Republic of Mexico? For sewage sludge management, "may affect" means accepts sewage sludge from another state or Mexico. For discharge, it means a discharge within 3 miles of a boundary with another state or Mexico.	L
	\boxtimes	discharge of uncontaminated cooling tower blowdown with a permitted daily average flow >500 MGD?	Э
	\boxtimes	discharge from a designated major facility?	
	\boxtimes	discharge from a categorical industry as listed in 40 CFR Part 122, Appendix A? (see Attachment A)	
		discharge from source other than a categorical industry as listed in 40 CFR Part 122, Appendix A with a permitted daily average flow >0.5 MGD, except for facilities that discharge non-process wastewater? Non-process wastewater is water that (during manufacturing or processing) does not come into direct contact with, or results from the production or use of any raw material, intermediate product, finished product, byproduct, or waste product.	
	\boxtimes	minor facility discharge to critical concern species watersheds (see WQ Standards review)	
	\boxtimes	(Prior to a final TMDL) discharge from a new or expanding facility to a 303(d) listed segment which has the potential to discharge any pollutant which is causing or contributing to the impairment of the segment?	
	\boxtimes	(After a final TMDL) discharge from a new or expanding discharge to a 303(d) listed segment where the TMDL does not allocate the loadings described in the draft permi	
		(After a final TMDL) a permit with effluent limits which allow loadings in excess of those prescribed by the TMDL for the segment?	
	\boxtimes	(After a final TMDL) permit allows a three-year compliance schedule for limits based on the TMDL allocations?	i
		Is the main purpose of the facility to desalinate either seawater or salty ground water	:?
Per th		ng above, choose one:	
\boxtimes	Yes,	EPA review is required. □ No, EPA review is <u>not</u> required.	
		tarr, P.E. April 10, 2025	
Permi	t Writer'	Name Date	

ATTACHMENT A

PRIMARY INDUSTRIAL CATEGORIES

N/A
Part 467
N/A
Part 461
Part 434
Part 465
Part 468
Part 469
Part 413
Part 457
N/A
Part 454
Part 415
Part 425
N/A
Part 421
Part 440
Part 414
Part 446
Part 455
Part 419
Part 439
Part 459
Part 463
Part 414
Part 466
N/A
Part 430
Part 417
Part 423
Part 410
Part 429

TPDES PERMIT MAJOR/MINOR RATING WORK SHEET

TPDES No.: WQ0005010000	NPDES No.:	TX0134	422		
Facility Name: Conrad Orange Shipyard,	Inc.				
City/County: Orange/ Orange					
Receiving Water (Name/Segment No.):					
Sabine River Tidal	0501				
Is this facility a steam electric power plant (S with one or more of the following characteri			nis permit for a municipal separa ving a population greater than 10		ewer
 Power output 500 MW or greater (no cool A nuclear power plant. Cooling water discharge greater than 25% waters 7Q2 flow rate. 			YES (score is 700, stop here). NO (continue)		
☐ YES (score is 600, stop here).☒ NO (continue)					
FACTOR 1: Toxic Pollutant Potential					
Primary SIC Code: 3731					
Other SIC Codes:					
Industrial Subcategory Code	_				
Determine the Toxicity potential from toxicity potential column and check o		-Minor R	ating Instructions. Be sure	to use th	e TOTAL
Toxicity Group Code Points To ☐ No process	oxicity Group Co			Code 7	Points 35
wastestreams 0 0	□ 4. 4			8	40
☐ 1. 1 5	☐ 5. 5		<u>—</u>	9	45
☐ 2. 2 10	✓ 6.✓ 6.			10	50
			CODE NUMBER CHECKED TOTAL POINTS FACTOR 1:	_	6 30
	/a /		TOTAL POINTS FACTOR 1.	_	30

FACTOR 2: Flow/Stream Flow Volume (*Complete either Section A or B; check only one*)

SECTION A - Wastewater Flow Only Considered

		Code	Points
Type I:	Flow < 5 MGD		0
	Flow 5 to 10 MGD	□ 12	10
	Flow 10 to 50 MGD	□ 13	20
	Flow > 50	□ 14	30
Type II:	Flow <1 MGD	≥1	10
	Flow 1 to 5 MGD	□ 22	20
	Flow 5 to 10 MGD	□ 23	30
	Flow > 10 MGD	□ 24	50
Type III	Flow < 1 MGD	□ 31	0
	Flow 1 to 5 MGD	□ 32	10
	Flow 5 to 10 MGD	□ 33	20
	Flow > 10 MGD	□ 34	30

SECTION B - Wastewater & Stream Flow Considered

	Percent	Co	de	Points
	Effluent @ Mixing Zone			
Type I/III:	< 10%		41	0
	10% to 50%		42	10
	> 50%		43	20
Type II:	< 10%		51	0
	10% to 50%		52	20
	> 50%		53	30

CODE NUMBER CHECKED TOTAL POINTS FACTOR 2:

21 10

TPDES PERMIT MAJOR/MINOR RATING WORK SHEET

TPDES No.	.: <u>WQ0005010000</u>									
FACTOR	3: Conventional Pollutants (O	nly whe	n limited by	$ec{v}$ the p ϵ	ermit)					
A. Oxygen Demanding Pollutant: (checl		one)	BOD/CBOD	□ cor	o ⊠ o	ther:				
	Permit Limits: (check one)		< 100 lbs/d 100 to 100 1000 to 30 > 3000 lbs/	0 lbs/day 00 lbs/da		Code 1 2 3 4	Points 0 5 15 20			
В.	Total Suspended Solids (TSS)					6 1	5			
	Permit Limits: (check one)		< 100 lbs/d 100 to 100 1000 to 50 > 5000 lbs/	0 lbs/day 00 lbs/da		2 3 4	Points 0 5 15 20			
C.	Nitrogen Pollutant: (check one)	☐ Amı	monia 🛚 Ot	:her:						
	Permit Limits: (check one)		Nitrogen Ed < 300 lbs/d 300 to 100 1000 to 30 > 3000 lbs/	lay 0 lbs/day 00 lbs/da	,	Code 1 2 3 4	Points 0 5 15 20			
	CODE NUMBER CHECKED		A 1		В	1	С	-		
	POINTS FACTOR 3:		Α 0	+	В	0	+ C	0	= 0	Total
Is there includes include i	4: Public Health Impacts a public drinking water supply I any body of water to which the infiltration galleries, or other m eed supply.	e receivi	ing water is	s a tribu	itary)? /	A public	: drinkin	g wate	er supply i	nis may
	☐ YES (If yes, check toxicity potentia ☐ NO (If no, go to Factor 5)	l number	below)							
Determi referenc	ne the human health toxicity se as in Factor 1. (Be sure to use	potent the <u>hu</u>	ial from A _l man health	pendix toxicit	A. Us y group	e the s columi	ame SIO n - check	code one b	and sub elow.)	category
	roup Code Points rocess estreams 0 0 1 0 2 0	Toxicity 3. 4. 5. 6.	Group C	Code 3 4 5 6	Points 0 0 5 10		Toxicity	Group	Code 7 8 9 10	Points 15 20 25 30
							E NUMBE			0

POINT FACTOR 6:

TPDES PERMIT MAJOR/MINOR RATING WORK SHEET

TPDES N	o.: <u>WQ</u>	0005010000		_						
FACTO	R 5: Wa	ter Quality	Factors							
Α.	technolo		ral effluent gui rge?	delines, or						ne receiving stream (rather tha has a wasteload allocation bee
		N	Code	Points						
		⊠ YES	1	10						
		∐ NO	2	0						
В.	Is the repermit?	ceiving water i			able water q	uality stand	dards fo	r pollut	tants tha	it are water quality limited in th
			Code	Points						
		∠ YES	1	0						
		∐ NO	2	5						
C.		e effluent disch toxicity?	narged from thi	is facility e	xhibit the re	asonable po	otential	to viol	ate wate	r quality standards due to who
			Code	Points						
		☐ YES	1	10						
		⊠ NO	2	0						
				E NUMBER T FACTOR	CHECKED 5:	A A	1 10	+ B		C 2 + C 0 = 10 Total
FACTO	R 6: Pro	ximity to N	ear Coastal \	Waters						
Base So	ore: Ente	r flow code he	re (from Facto	r 2):	21	-				
			that correspon Code (from PCS		low code:	0.10	<u>) </u>			
		HPRI#	<u>CODE</u>		HPRI Score			Flow C	ode_	Multiplication Factor
		1	1		20			11, 31	or 41	0.00
	П	2	2		0			12, 32		0.05
	\square	3	3		30			13, 33,		0.10
		4	4		0			14 o		0.15
	Ħ	5	5		0			21 o		0.10
	_	3	3		ŭ			22 o		0.30
								23 o		0.60
	HPRI cod	de checked:	3					23 0		1.00
Base So	core: (HPR	RI Score)	<u>30</u> X (N	Multiplicat	ion Factor)	0.1	0	- = -	3	(Total Points)
В.	For a fa									enrolled in the National Estua
		. ,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							_	
			Code	Points						
		∐ YES	1	10						
		⊠ NO	2	0						
C.	For a fac		eat Lakes Area In HPRI code of			charge any o	of the p	ollutan	ts of con	cern into one of the Great Lake
	JI UIEUS	oj concern:	Code	Points						
		☐ YES	1	10						
		□ NO	2	0						
			_	Ŭ						
	CODE	E NUMBER CH	ECKED		Α	3	В	2	С	-

TPDES PERMIT RATING WORK SHEET

Total Points

TPDES No.:	WQ0005010000			

Description

SCORE SUMMARY

Factor

S1.

S2.

Date Reviewed

			7	
1	Toxic Pollutant Potential	30		
2	Flow/Streamflow Volume	10		
3	Conventional Pollutants	0	-	
4	Public Health Impacts	0		
5	Water Quality Factors	10	_	
6	Proximity to Near Coastal Waters	3	_	
		53		
	TOTAL (Factors 1 through 6)	33		
Is the total scor	re equal to or greater than 80?			
□ YI	ES - Facility is a major, stop here.			
⊠ N	NO - Facility is NOT a major, proceed to S2.			
☐ YI	ne facility to be designated a discretionary major? ES - Add 500 points to the score above and prov	ide justification belo	ow.	
☐ YI		ide justification belo	ow.	
☐ YI	ES - Add 500 points to the score above and prov	ide justification belo	ow.	
□ YI ⊠ N	ES - Add 500 points to the score above and prov	ide justification belo	DW.	
□ YI ⊠ N	ES - Add 500 points to the score above and prov	ide justification belo	DW.	
□ YI ⊠ N	ES - Add 500 points to the score above and prov	ide justification belc	ow.	
☐ YI ⊠ N Justification:	ES - Add 500 points to the score above and proving - Stop here	ide justification belo	ow.	
☐ YI ☑ N Justification: Check appropri	ES - Add 500 points to the score above and provide - Stop here	ide justification belo	DW.	
☐ YI ⊠ N Justification:	ES - Add 500 points to the score above and proving - Stop here	ide justification belo	DW.	
☐ YI ☑ N Justification: Check appropri	ES - Add 500 points to the score above and provide - Stop here	ide justification belo	DW.	
☐ YI ☑ N Justification: Check appropri	ES - Add 500 points to the score above and provide of the scor	ide justification belo	DW.	
☐ YI ☐ N Justification: Check appropri ☐ ☐ ☐	ES - Add 500 points to the score above and provide - Stop here iate classification: Major Minor Discretionary Major	ide justification belo	OW.	
☐ YI ☐ N Justification: Check appropri ☐ ☐ ☐ ☐ ☐	ES - Add 500 points to the score above and provide - Stop here iate classification: Major Minor Discretionary Major	ide justification belo	DW.	
☐ YI ☑ N Justification: Check appropri	ES - Add 500 points to the score above and provide - Stop here iate classification: Major Minor Discretionary Major	ide justification belo	DW.	
☐ YI ☐ N Justification: Check appropri ☐ ☐ ☐ ☐ ☐	ES - Add 500 points to the score above and provide - Stop here iate classification: Major Minor Discretionary Major r, P.E.	ide justification belo	DW.	

NEW SOURCE DETERMINATION WORKSHEET

PERI	MITTEE	L:			Conrad Orange Shipyard, Inc.				
		MIT NUN			WQ0005010000				
		MIT NUI			TX0134422				
		DUSTRIA	AL ACTIVIT	l'Y:	a marine vessel manufacturing and repair facility				
	CODE:	NI CIIII	DELINES:		3731				
CATI	EGURIC	AL GUII	JELINES:		40 CFR Part 438, Subpart A				
A.	NEW	SOURC	E DETER	MINA	ATION - SCREENING				
	ANSW DIREC		HER "YES" (OR "N	NO" TO THE FOLLOWING QUESTIONS AND PROCEED AS				
	1.	Is there	an applical	ole ne	w source performance standard for this facility?				
		Yes ⊠	No □		YES, proceed to Item No. 2. If NO proceed to Section B, the cility is not a new source.				
	2.				on facility in existence prior to the promulgation of the rformance standard?				
		Yes ⊠	No □		NO, proceed to Item No. 3. If YES proceed to Section B, the cility is not a new source.				
	3.				sified as a new source. Additional information will be required and make a final determination. Please refer to 40 CFR				
В.	NEW	SOURC	E DETER	MINA	ATION - DETERMINATION				
	PLEAS	SE CHEC	K THE APF	PROP	RIATE DETERMINATION:				
	\boxtimes	Facility	IS NOT a n	ew so	urce. Determination made via screening in Section A above.				
					urce. Determination made via evaluation. Please see A of the Statement of Basis/Technical Summary.				
					Determination made via evaluation. Please see evaluation in nent of Basis/Technical Summary.				
		arr, P.E.			April 10, 2025				
REVII	EWER				DATE				

Minor

 \boxtimes

Fish and Wildlife Service for this segment?

Major

 \boxtimes

ATTACHMENT 1

EPA - REGION 6 NPDES PERMIT CERTIFICATION CHECKLIST

In accordance with the MOA established between the State of Texas and the United States Environmental Protection Agency, Region 6, the Texas Commission on Environmental Quality submits the following draft Texas Pollutant Discharge Elimination System (TPDES) permit for Agency review.

РОТ	W 🗆 :	Priva	te Domestic 🗆	Non-POTW ⊠				
Facil	lity Name		Conrad Orange Shipya	ard, Inc.				
SIC (3731	,				
Туре	of operat	ion	a marine vessel manuf	acturing and repair fac	ility			
	ES Permit		TX0134422	TPDES Permit No.		000		
Segn	nent No.		0501	Basin	Sabine River	Basin		
Rece	iving Wat	er	Sabine River Tidal					
		New	•					
		Ren	ewal WITH changes					
T	Permit	Ren	ewal w/out changes					
	Action:		mit and WQS)					
		Maj	or Amendment with	Renewal				
			endment/Modification		val,			
		•					Π	ı
An	swer the f					Yes	No	N/A
1.	Are there k permit?	nown	or potential interstate	water issues associated	l with this	\boxtimes		
2.	Is there kn		or potential third-party	interest/environmenta	l concern		\boxtimes	
			ermit action?	:	10			
3.			discharge to a 303(d) l facility discharge any o			\boxtimes		
			303(d) listing?	i the pollutarit(s) of co.	ncern		\boxtimes	
4.			nsistent with the appro	ved WQMP?				\boxtimes
5.			ontinuous?	<u> </u>			\boxtimes	
6.	Does the fa	cility	discharge or propose to	discharge process was	stewaters?	\boxtimes		
7.	Are discha	rges D	OIRECTLY to a classified	d waterbody segment?		\boxtimes		
8.	Does the fa	acility	discharge to a water bo	dy segment which has	a finalized		\boxtimes	
		es the	permit implement the	TMDL consistent with	the WLAs?			\boxtimes
9.			eet document the rations for each 303(d) listed					
10.		ority v	vatershed of critical con	cern been identified by	y the U. S.		\square	

Answer the following:	Yes	No	N/A
11. Is there a thermal component to discharges from this facility?		\boxtimes	
12. Does this permit authorize ammonia discharges > 4.0 mg/L at the edge of the mixing zone?		\boxtimes	
13. Does this permit require testing for Whole Effluent Toxicity in accordance with the state's standard practices and implementation plan?		\boxtimes	
If YES , were there any toxicity failures within the previous three years?			\boxtimes
14. If this facility has completed and implemented a Toxicity Reduction Evaluation (TRE), has any subsequent toxicity been identified?			\boxtimes
15. Does this permit propose to grant a variance request (WQS, FDF, etc.) or does it incorporate a proposed or final approval of a variance request?		\boxtimes	
16. If a POTW is ≥ 5 MGD, does it have an approved Pretreatment Program?			\boxtimes
17. Since the last permit issuance, has the POTW had a new Pretreatment Program approved or a Pretreatment Program modification approved?			\boxtimes
18. Does this permit contain authorization for wet weather related peak-flow discharges?		\boxtimes	
19. Does this permit include a bypass of any treatment unit or authorize overflows in the system?		\boxtimes	
20. Does this permit include provisions for effluent trading?		\boxtimes	
21. Does this permit contain specific issues on which EPA and the state are not in agreement regarding the permitting approach?		\boxtimes	
22. Is this facility subject to a national effluent limitations guideline? Please specify: 40 CFR Part 438, Subpart A	\boxtimes		
23. Does this permit contain "first-time" implementation of a new federal guideline, policy, regulation, etc.? Please specify:		\boxtimes	
24. Is this a new facility or an expansion of an existing facility?		\boxtimes	
For an EXISTING facility, if any limits have been removed or are less stringent than those in the previous permit, is it in accordance with the anti-backsliding regulations?			\boxtimes
25. Does this permit incorporate any exceptions to the standards or regulations?		\boxtimes	
26. Is this is a permit modification/amendment? Please specify:		\boxtimes	

Name:	Thomas E. Starr, P.E.
Date:	April 10, 2025

TOXIC RATING WORKSHEET

TPDES Permit No.:	WQ0005010000			
NPDES Permit No.:	TX0134422			
Permittee:	Conrad Orange Sh	ipyard, Inc.		
Facility:	Conrad Orange Sh	ipyard		
SIC Codes:	1. 3731 2.	3⋅	4.	
40 CFR Section:	40 CFR Part 438, S	Subpart A		
Toxic Rating for Facility:	4			
Permit Writer:	Thomas E. Starr, P	.E.	Date: April 10, 2025	

CALCULATE TOXIC RATING FOR THE FACILITY

For each outfall listed below, list the percent contribution to the total wastewater flow from the facility and the toxic rating for the outfall.

OUTFALL No.	% Contribution	Toxic Rating	Rating × Percent
002	.3	2	.6
009	49.7	4	198.8
010	49.7	4	198.8
011	-3	4	1.2
		Total =	399.4

Toxic Rating for Facility = Total/100 = _____4 (round to nearest whole #)

OUTFALL NO.: 002

List waste streams in order of percent contribution to outfall and toxic rating for each waste stream:

Description of Waste Stream	%	Toxic Rating	Rating × Percent
Hull washing water	100	2	200

Total <u>100</u> Total: <u>200</u>

Toxic Rating for Outfall = Total/100 = ____ (round to nearest whole #)

STATEMENT OF BASIS/TECHNICAL SUMMARY AND EXECUTIVE DIRECTOR'S PRELIMINARY DECISION

DESCRIPTION OF APPLICATION

Applicant: Conrad Orange Shipyard, Inc.; Texas Pollutant Discharge Elimination System

(TPDES) Permit No. WQ0005010000 (EPA I.D. No. TX0134422)

Regulated activity: Industrial wastewater permit

Type of application: Renewal

Request: Renewal without changes

Authority: Federal Clean Water Act (CWA) §402; Texas Water Code (TWC) §26.027;

30 Texas Administrative Code (TAC) Chapter 305, Subchapters C-F, and Chapters 307 and 319; commission policies; and Environmental Protection

Agency (EPA) guidelines

EXECUTIVE DIRECTOR RECOMMENDATION

The Executive Director has made a preliminary decision that this permit, if issued, meets all statutory and regulatory requirements. The draft permit will expire at midnight, five years from the date of permit issuance according to the requirements of 30 TAC §305.127(1)(C)(i).

REASON FOR PROJECT PROPOSED

The applicant applied to the Texas Commission on Environmental Quality (TCEQ) for a renewal of its existing permit.

PROJECT DESCRIPTION AND LOCATION

The applicant currently operates Conrad Orange Shipyard, a marine vessel manufacturing and repair facility.

The wastewater discharged at the facility includes vehicle and equipment washdown water, high pressure wash water (hydro-blasting), hull wash wastewater, process wastewater, welding torch hose test water, and dry dock effluents (ballast, wing, void tank water, and process wastewater runoff from submerging and emerging events) and stormwater runoff. The above effluents are not chemically or biologically treated prior to discharge. Best Management Practices (BMPs) include dry sweeping materials prior to leaving the property for disposal via a licensed disposer off-site. Wash wastewater from Outfall 002 enters the Sabine River directly after contact with the marine vessels. Outfalls 009 and 010 have yet to be constructed, therefore have not discharged. When wastewater does leave the land-based operations/process area, it enters a series of catch basins for particulates or solids to settle prior to discharge via Outfall 011. The catch basins are periodically inspected and cleaned. Domestic wastewater is treated and disposed of by the City of Orange's Jackson Street Wastewater Treatment Facility (TPDES Permit No. WQ0010626001). The draft permit does not authorize the discharge of domestic wastewater. Stormwater discharged via Outfalls 001 and 008 (not included in this individual permit) is authorized under the TPDES Multi-Sector Industrial General Permit (TXR05Q959).

The facility is located at 710 Market Street, in the City of Orange, Orange County, Texas 77630.

Discharge Routes and Designated Uses

The effluent is discharged directly to the Sabine River Tidal in Segment No. 0501 of the Sabine River Basin. The designated uses for Segment No. 0501 are primary contact recreation and high aquatic life

use. The effluent limits in the draft permit will maintain and protect the existing instream uses. All determinations are preliminary and subject to additional review and revisions.

Endangered Species Review

The discharge from this permit is not expected to have an effect on any federal endangered or threatened aquatic or aquatic-dependent species or proposed species or their critical habitat. This determination is based on the United States Fish and Wildlife Service's (USFWS) biological opinion on the State of Texas authorization of the TPDES (September 14, 1998; October 21, 1998 update). To make this determination for TPDES permits, TCEQ and the EPA only considered aquatic or aquatic-dependent species occurring in watersheds of critical concern or high priority as listed in Appendix A of the USFWS's biological opinion. The determination is subject to reevaluation due to subsequent updates or amendments to the biological opinion. The permit does not require EPA review with respect to the presence of endangered or threatened species.

Impaired Water Bodies

Segment No. 0501 is currently listed on the state's inventory of impaired and threatened waters, the 2022 CWA §303(d) list. The listing is for bacteria in water from the confluence of Sabine Lake upstream to confluence of Adams Bayou Tidal (AU 0501_01) and from the confluence of Adams Bayou Tidal upstream to the confluence of Little Cypress Bayou (AU 0501_02). The listing is also for Polychlorinated Biphenyls (PCBs) in edible tissue from the confluence of Sabine Lake upstream to confluence of Adams Bayou Tidal (AU 0501_01), from the confluence of Adams Bayou Tidal upstream to the confluence of Little Cypress Bayou (AU 0501_02) and from the confluence of Little Cypress Bayou upstream to Morgans Bluff in Orange County (AU 0501_03).

Bacteria is not expected to be present in the discharge from this facility, as domestic wastewater is neither treated nor disposed of on-site. PCBs are not expected in the discharge from this facility either, as the application indicated that PCBs are not used, stored, or expected to be generated at this facility and results show below the minimum analytical level when tested for. The application is for renewal only with no increase in flow or pollutant loading. Therefore, the discharge from this facility should not contribute to the impairment for bacteria or PCBs.

Completed Total Maximum Daily Loads (TMDLs)

There are no completed TMDLs for Segment No. 0501.

Dissolved Oxygen

Due to the low levels of oxygen-demanding constituents expected from these type of waste streams, no significant dissolved oxygen depletion is anticipated in the receiving waters as a result of this discharge.

SUMMARY OF EFFLUENT DATA

The following is a quantitative description of the discharge described in the monthly effluent report data for the period January 2020 through December 2024. The "Avg of Daily Avg" values presented in the following table are the average of all daily average values for the reporting period for each pollutant. The "Max of Daily Max" values presented in the following table are the individual maximum values for the reporting period for each pollutant. Flows are expressed in million gallons per day (MGD). All pH values are expressed in standard units (SU).

Flow

Outfall Frequency		Frequency	Avg of Daily Avg, MGD	Max of Daily Max, MGD	
	002	Intermittent	0.003	0.010	

Flow

Outfall	Frequency	Avg of Daily Avg, MGD	Max of Daily Max, MGD	
009	Intermittent	ND^{1}	ND	
010	Intermittent	ND	ND	
011	Intermittent	0.002	0.010	

Effluent Characteristics

0 16 11	D. II.	Avg of Daily Avg	Max of Daily Max	
Outfall	Pollutant	mg/L	mg/L	
002	Total Suspended Solids (TSS)	N/A	3.0	
	Oil and Grease	N/A	2.8	
	рН	7.33 SU, minimum	8.10 SU	
009	Total Organic Carbon (TOC)	N/A	ND	
	TSS	N/A	ND	
	Oil and Grease	N/A	ND	
	рН	ND	ND	
010	TOC	N/A	ND	
	TSS	N/A	ND	
	Oil and Grease	N/A	ND	
	рН	ND	ND	
011	TSS	N/A	5.6	
	Oil and Grease	N/A	2.6	
	Total Zinc	0.103	0.638	
	рН	6.04 SU, minimum	8.80 SU	

No effluent limit violations were documented in the monthly effluent reports (0.638 mg/L of total zinc was prior to the 0.424 mg/L limit).

DRAFT PERMIT CONDITIONS

The draft permit authorizes the discharge of wet dock hull washing wastewater on an intermittent and flow-variable basis via Outfall 002; hydro-blasting wastewater (without abrasives), hull washing wastewater, dry dock effluents (ballast, wing, void tank water, and process wastewater runoff from submerging and emerging events), and stormwater on an intermittent and flow-variable basis via Outfalls 009 and 010; and hydro-blasting wastewater (without abrasives), hull washing wastewater, welding torch hose test water, process wastewater (hydro-blasting wastewater with abrasives), and vehicle and equipment washwater on an intermittent and flow-variable basis via Outfall 011.

Effluent limitations established in the draft permit are shown in Appendix D.

OUTFALL LOCATIONS

Outfall	Latitude	Longitude
002 ²	30.0844515 N	93.7339662 W
009¹	30.085778 N	93.734642 W

¹ No Discharge

² The locations of Outfalls 002, 009, and 010 describe a generalized area for the outfalls because the discharges are not stationary.

010¹ 30.085133 N		93.734392 W		
011	30.0831838 N	93.7334739 W		

Technology-Based Effluent Limitations

Regulations in Title 40 of the Code of Federal Regulations (40 CFR) require that technology-based limitations be placed in wastewater discharge permits based on effluent limitations guidelines, where applicable, or on best professional judgment (BPJ) in the absence of guidelines. Technology-based effluent limitations from 40 CFR Part 438, Subpart A apply to the discharge of hydro-blasting wastewater (with abrasives) from this facility via Outfall 011. Development of technology-based effluent limitations is presented in Appendix A. All other wastewaters discharged via Outfalls 002, 009, 010, and 011 are not subject to ELGs and technology-based limitations are proposed in the draft permit based on BPJ.

Hull washing occurs at the wet dock for Outfall 002 and consists of low-pressure water with no additives. Effluent limitations for TSS and oil and grease have been carried forward in the draft permit based on anti-backsliding regulations in 40 CFR § 122.44(l) to monitor for the release of solids or wash water contact with industrial materials.

The proposed discharges at Outfalls 009 and 010 are dry docks effluents, which are specifically exempted from effluent limitations guidelines at 40 CFR § 438.1(e)(5). Effluent limitations of TOC, TSS, oil and grease, and pH at Outfalls 009 and 010 are based on existing TPDES permits for similar facilities that have permitted outfalls discharging solely dry dock effluents and stormwater¹. Existing Other Requirement No. 11 (draft Other Requirement No. 10) has been carried forward in the draft permit, which outlines Best Management Practices (BMP) for controlling potential pollutants or contaminants during repair and cleaning activities at the dry docks that will discharge via Outfalls 009 and 010.

Effluent limitations guidelines provided in 40 CFR Part 438, Subpart A were included in the previous permit and have been carried forward in the draft permit because the regulations are still applicable for Outfall 011, as the discharge of hydro-blasting wastewater (for Outfall 011 only) described in the application involves the use of an abrasive. This meets the definition of *abrasive blasting* specified in Appendix B of 40 CFR Part 438. Abrasive blasting is listed under 40 CFR § 438.2(f), *Oily operations*, and is subject to 40 CFR Part 438 according to 40 CFR § 438.1(a). Therefore, effluent limitations guidelines under 40 CFR § 438.12 are being carried forward from the existing permit and are included in the draft permit at Outfall 011.

Water Quality-Based Effluent Limitations

Calculations of water quality-based effluent limitations for the protection of aquatic life and human health are presented in Appendix B. Aquatic life criteria established in Table 1 and human health criteria established in Table 2 of 30 TAC Chapter 307 are incorporated into the calculations, as are recommendations in the Water Quality Assessment Team's memorandum dated July 30, 2024. TCEQ practice for determining significant potential is to compare the reported analytical data from the facility against percentages of the calculated daily average water quality-based effluent limitation. Permit limitations are required when analytical data reported in the application exceeds 85 percent of the calculated daily average water quality-based effluent limitation. Monitoring and reporting is required when analytical data reported in the application exceeds 70 percent of the calculated daily average water quality-based effluent limitation.

Page 4

¹ EPA guidance on technology-based limits for stormwater discharges, 1997.

No data was submitted in the permit application therefore Other Requirement No. 1 has been updated in the draft permit to reflect all outfalls. Based on a technical review of the submitted analytical results, an amendment may be initiated by TCEQ staff to include additional effluent limitations, monitoring requirements, or both.

Total Dissolved Solids (TDS), Chloride, and Sulfate Screening

Segment No. 0501, which receives the discharges from this facility, does not have criteria established for TDS, chloride, or sulfate in 30 TAC Chapter 307; therefore, no screening was performed for TDS, chloride, or sulfate in the effluent.

pH Screening

The existing permit includes pH limits of 6.0-9.0 SU at Outfalls 002, 009, 010, and 011 which discharges directly into Sabine River Tidal, Segment No. 0501. No screening was performed by the Standards Team for Outfalls 002, 009, and 010 because only acute toxic criteria apply and therefore is not required. Screening was performed in 2019 to ensure that the existing pH limits would not cause a violation of the 6.0-8.5 SU pH criteria for Segment No. 0501 (see Appendix C) via discharge at Outfall 011. The existing effluent limits of 6.0-9.0 SU are adequate to ensure that the discharge will not violate the pH criteria in Segment No. 0501. These limits have been carried forward in the draft permit.

Whole Effluent Toxicity Testing (Biomonitoring)

Biomonitoring requirements are not included in the draft permit. The existing permit did not establish biomonitoring requirements and discharges authorized by this permit do not meet the threshold established in the *Procedures to Implement the Texas Surface Water Quality Standards* (RG-194) to impose biomonitoring requirements.

SUMMARY OF CHANGES FROM APPLICATION

No changes were made from the application.

SUMMARY OF CHANGES FROM EXISTING PERMIT

The following changes have been made to the draft permit.

- 1. Pages 3-13 were updated (May 2021 version).
- 2. Clarification on discharges with or without abrasives as well as dry dock effluents were made throughout the Statement of Basis and draft permit.
- 3. Other Requirement No. 1 was updated to reflect all outfalls for effluent retesting.
- 4. Other Requirement No. 3 from the existing permit was not carried forward as this requirement related to the former total zinc compliance period for Outfall 011 has expired. Other Requirement Nos. 4-11 from the existing permit were carried forward to the draft permit as Other Requirement Nos. 3-10.
- 5. Other Requirement No. 4 in the existing permit (No. 3 in the draft) regarding mixing zones and zones of initial dilution was updated to the most current language.

BASIS FOR DRAFT PERMIT

The following items were considered in developing the draft permit:

1. Application received on May 9, 2024.

- 2. Existing permits: TPDES Permit No. WQ0005010000 issued on November 8, 2019.
- 3. TCEQ Rules.
- 4. *Texas Surface Water Quality Standards* 30 TAC §§307.1-307.10, effective March 1, 2018, as approved by EPA Region 6.
- 5. *Texas Surface Water Quality Standards* 30 TAC §§307.1-307.10, effective March 6, 2014, as approved by EPA Region 6, for portions of the 2018 standards not approved by EPA Region 6.
- 6. *Texas Surface Water Quality Standards* 30 TAC §§307.1-307.10, effective July 22, 2010, as approved by EPA Region 6, for portions of the 2014 standards not approved by EPA Region 6.
- 7. *Texas Surface Water Quality Standards* 30 TAC §§307.1-307.10, effective August 17, 2000, and Appendix E, effective February 27, 2002, for portions of the 2010 standards not approved by EPA Region 6.
- 8. *Procedures to Implement the Texas Surface Water Quality Standards* (IPs), Texas Commission on Environmental Quality, June 2010, as approved by EPA Region 6.
- 9. Procedures to Implement the Texas Surface Water Quality Standards, Texas Commission on Environmental Quality, January 2003, for portions of the 2010 IPs not approved by EPA Region 6.
- 10. Memos from the Standards Implementation Team and Water Quality Assessment Team of the Water Quality Assessment Section of the TCEQ.
- 11. Guidance Document for Establishing Monitoring Frequencies for Domestic and Industrial Wastewater Discharge Permits, TCEQ Document No. 98-001.000-OWR-WQ, May 1998.
- 12. EPA Effluent Guidelines: 40 CFR Part 438, Subpart A (BAT, BCT, and BPT). A new source determination was performed and the discharge of process wastewater is not a new source as defined at 40 CFR §122.2.
- 13. Consistency with the Coastal Management Plan: The executive director has reviewed this action for consistency with the goals and policies of the Texas Coastal Management Program (CMP) in accordance with the regulations of the General Land Office and has determined that the action is consistent with the applicable CMP goals and policies.
- 14. Letter dated May 28, 2014, from L'Oreal W. Stepney, P.E., Deputy Director, Office of Water, TCEQ, to Bill Honker, Director, Water Quality Protection Division, EPA (TCEQ proposed development strategy for pH evaluation procedures).
- 15. Letter dated June 2, 2014, from William K. Honker, P.E., Director, Water Quality Protection Division, EPA, to L'Oreal W. Stepney, P.E., Deputy Director, Office of Water, TCEQ (Approval of TCEQ proposed development strategy for pH evaluation procedures).
- 16. General Guidance Industrial Permits: Uncontaminated Stormwater Runoff, EPA, January 1997.

PROCEDURES FOR FINAL DECISION

When an application is declared administratively complete, the chief clerk sends a letter to the applicant advising the applicant to publish the Notice of Receipt of Application and Intent to Obtain Permit in the newspaper. In addition, the Chief Clerk instructs the applicant to place a copy of the application in a public place for reviewing and copying in the county where the facility is or will be located. This application will be in a public place throughout the comment period. The Chief Clerk also mails this notice to any interested persons and, if required, to landowners identified in the permit application. This notice informs the public about the application and provides that an interested person may file comments on the application or request a contested case hearing or a public meeting.

Once a draft permit is completed, it is sent to the Chief Clerk, along with the Executive Director's preliminary decision contained in the technical summary or fact sheet. At that time, the Notice of Application and Preliminary Decision will be mailed to the same people and published in the same newspaper as the prior notice. This notice sets a deadline for making public comments. The applicant

must place a copy of the Executive Director's preliminary decision and draft permit in the public place with the application.

Any interested person may request a public meeting on the application until the deadline for filing public comments. A public meeting is intended for the taking of public comment and is not a contested case hearing.

After the public comment deadline, the Executive Director prepares a response to all significant public comments on the application or the draft permit raised during the public comment period. The Chief Clerk then mails the Executive Director's response to comments and final decision to people who have filed comments, requested a contested case hearing, or requested to be on the mailing list. This notice provides that if a person is not satisfied with the Executive Director's response and decision, they can request a contested case hearing or file a request to reconsider the Executive Director's decision within 30 days after the notice is mailed.

The Executive Director will issue the permit unless a written hearing request or request for reconsideration is filed within 30 days after the Executive Director's response to comments and final decision is mailed. If a hearing request or request for reconsideration is filed, the Executive Director will not issue the permit and will forward the application and request to the TCEQ commissioners for their consideration at a scheduled commission meeting. If a contested case hearing is held, it will be a legal proceeding similar to a civil trial in state district court.

If the Executive Director calls a public meeting or the commission grants a contested case hearing as described above, the commission will give notice of the date, time, and place of the meeting or hearing. If a hearing request or request for reconsideration is made, the commission will consider all public comments in making its decision and shall either adopt the Executive Director's response to public comments or prepare its own response.

For additional information about this application, contact Thomas E. Starr at (512) 239-4570.

Thomas E. Starr	April 10, 2025
Thomas E. Starr, P.E.	Date

Appendix A Calculated Technology-Based Effluent Limits

Outfall 002

Effluent limitations for Outfall 002 established in the existing permit were based on similar TPDES permits and Best Professional Judgment (BPJ) as indicator parameters to ensure that significant amounts of solids are not removed from the surface of hulls during washing activities, and that contact with oily surfaces and containment areas on vessels is not made during washing activities. Requirements to monitor pH are another indicator to ensure that the materials are not contacted during hull washing activities.

Outfall	Pollutant	Daily Maximum	
002	TSS	75 mg/L	
	Oil and Grease	15 mg/L	
	pН	6.0 SU, Min; 9.0 SU, Max	

Outfalls 009 and 010

Effluent limitations at Outfalls 009 and 010, which consists of dry dock effluents (wing tank, void tank, ballast tank water, and process wastewater from submerging and emerging events) and stormwater were established in the existing permit based on TPDES permits for similar facilities that have permitted outfalls discharging dry dock effluents and stormwater.

Outfall	Pollutant	Daily Maximum	
009 & 010	TOC	75 mg/L	
	TSS	100 mg/L	
	Oil and Grease	15 mg/L	
	рН	6.0 SU, Min; 9.0 SU, Max	

Outfall 011

The existing concentration limits for total suspended solids, oil and grease, and pH were based on 40 CFR § 438.12 and are still applicable.

Outfall	Pollutant	Daily Maximum	
011	TSS	62 mg/L	
	Oil and Grease	46 mg/L	
	pН	6.0 SU, Min; 9.0 SU, Max	

Appendix B Calculated Water Quality-Based Effluent Limits TEXTOX MENU #5 - BAY OR WIDE TIDAL RIVER

The water quality-based effluent limitations developed below are calculated using:

Table 1, 2014 Texas Surface Water Quality Standards (30 TAC 307) for Saltwater Aquatic Life Table 2, 2018 Texas Surface Water Quality Standards for Human Health "Procedures to Implement the Texas Surface Water Quality Standards," TCEQ, June 2010

PERMIT INFORMATION

Permittee Name:	Conrad Orange Shipyard, Inc.
TPDES Permit No:	WQ0005010000
Outfall No:	002, 009, and 010
Prepared by:	Thomas Starr
Date:	April 10, 2025

DISCHARGE INFORMATION

DISCHARGE INFORIVIATION	
Receiving Waterbody:	Sabine River Tidal
Segment No:	0501
TSS (mg/L):	6
Effluent Flow for Aquatic Life (MGD)	<10
% Effluent for Chronic Aquatic Life (Mixing Zone):	N/A
% Effluent for Acute Aquatic Life (ZID):	30
Oyster Waters?	no
Effluent Flow for Human Health (MGD):	N/A
% Effluent for Human Health:	N/A

CALCULATE DISSOLVED FRACTION (AND ENTER WATER EFFECT RATIO IF APPLICABLE):

	Intercept		Partition Coefficient	Dissolved Fraction		Water Effect Ratio	
Estuarine Metal	(b) Slop	oe (m)	(Kp)	(Cd/Ct)	Source	(WER)	Source
Aluminum	N/A	N/A	N/A	1.00	Assumed	1.00	Assumed
Arsenic	N/A	N/A	N/A	1.00	Assumed	1.00	Assumed
Cadmium	N/A	N/A	N/A	1.00	Assumed	1.00	Assumed
Chromium (total)	N/A	N/A	N/A	1.00	Assumed	1.00	Assumed
Chromium (trivalent)	N/A	N/A	N/A	1.00	Assumed	1.00	Assumed
Chromium (hexavalent)	N/A	N/A	N/A	1.00	Assumed	1.00	Assumed
Copper	4.85	-0.72	19486.38	0.895		1.00	Assumed
Lead	6.06	-0.85	250363.74	0.400		1.00	Assumed
Mercury	N/A	N/A	N/A	1.00	Assumed	1.00	Assumed
Nickel	N/A	N/A	N/A	1.00	Assumed	1.00	Assumed
Selenium	N/A	N/A	N/A	1.00	Assumed	1.00	Assumed
Silver	5.86	-0.74	192383.61	0.464		1.00	Assumed
Zinc	5.36	-0.52	90232.16	0.649		1.00	Assumed

AQUATIC LIFE CALCULATE DAILY AVERAGE AND DAILY MAXIMUM EFFLUENT LIMITATIONS:

	SW Acute	SW Chronic						
	Criterion	Criterion	WLAa	WLAc	LTAa	LTAc	, -	Daily Max.
Parameter	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
Acrolein	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Aldrin	1.3	N/A	4.33	N/A	1.39	N/A	2.03	4.31
Aluminum	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Arsenic	149	78	497	7800	159	4758	233	494
Cadmium	40.0	8.75	133	875	42.7	534	62.7	132
Carbaryl	613	N/A	2043	N/A	654	N/A	961	2033
Chlordane	0.09	0.004	0.300	0.400	0.0960	0.244	0.141	0.298
Chlorpyrifos	0.011	0.006	0.0367	0.600	0.0117	0.366	0.0172	0.0364
Chromium (trivalent)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Chromium (hexavalent)	1090	49.6	3633	4960	1163	3026	1709	3615
Copper	13.5	3.6	50.3	402	16.1	245	23.6	50.0
Copper (oyster waters)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cyanide (free)	5.6	5.6	18.7	560	5.97	342	8.78	18.5
4,4'-DDT	0.13	0.001	0.433	0.100	0.139	0.0610	0.0896	0.189
Demeton	N/A	0.1	N/A	10.0	N/A	6.10	8.96	18.9
Diazinon	0.819	0.819	2.73	81.9	0.874	50.0	1.28	2.71
Dicofol [Kelthane]	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Dieldrin	0.71	0.002	2.37	0.200	0.757	0.122	0.179	0.379
Diuron	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Endosulfan I (alpha)	0.034	0.009	0.113	0.900	0.0363	0.549	0.0533	0.112
Endosulfan II (beta)	0.034	0.009	0.113	0.900	0.0363	0.549	0.0533	0.112
Endosulfan sulfate	0.034	0.009	0.113	0.900	0.0363	0.549	0.0533	0.112
Endrin	0.037	0.002	0.123	0.200	0.0395	0.122	0.0580	0.122
Guthion [Azinphos Methyl]	N/A	0.01	N/A	1.00	N/A	0.610	0.896	1.89
Heptachlor	0.053	0.004	0.177	0.400	0.0565	0.244	0.0831	0.175
Hexachlorocyclohexane (gamma) [Lindane]	0.16	N/A	0.533	N/A	0.171	N/A	0.250	0.530
Lead	133	5.3	1109	1326	355	809	521	1103
Malathion	N/A	0.01	N/A	1.00	N/A	0.610	0.896	1.89
Mercury	2.1	1.1	7.00	110	2.24	67.1	3.29	6.96
Methoxychlor	N/A	0.03	N/A	3.00	N/A	1.83	2.69	5.69
Mirex	N/A	0.001	N/A	0.100	N/A	0.0610	0.0896	0.189
Nickel	118	13.1	393	1310	126	799	185	391
Nonylphenol	7	1.7	23.3	170	7.47	104	10.9	23.2
Parathion (ethyl)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Pentachlorophenol	15.1	9.6	50.3	960	16.1	586	23.6	50.0
Phenanthrene	7.7	4.6	25.7	460	8.21	281	12.0	25.5
Polychlorinated Biphenyls [PCBs]	10	0.03	33.3	3.00	10.7	1.83	2.69	5.69
Selenium	564	136	1880	13600	602	8296	884	1870
Silver	2	N/A	14.4	N/A	4.60	N/A	6.75	14.2
Toxaphene	0.21	0.0002	0.700	0.0200	0.224	0.0122	0.0179	0.0379
Tributyltin [TBT]	0.24	0.0074	0.800	0.740	0.256	0.451	0.376	0.796
2,4,5 Trichlorophenol	259	12	863	1200	276	732	406	859
Zinc	92.7	84.2	476	12979	152	7917	224	474
ZIIIC	92.7	84.2	4/0	129/9	152	/91/	224	4

HUMAN HEALTH CALCULATE DAILY AVERAGE AND DAILY MAXIMUM EFFLUENT LIMITATIONS:

	Fish Only				
	Criterion	WLAh	LTAh	Daily Avg.	Daily Max.
Parameter	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
Acrylonitrile	115	11500	10695	15721	33261
Aldrin	1.147E-05	0.00115	0.00107	0.00156	0.00331
Anthracene	1317	131700	122481	180047	380915
Antimony	1071	107100	99603	146416	309765
Arsenic	N/A	N/A	N/A	N/A	N/A
Barium	N/A	N/A	N/A	N/A	N/A
Benzene	581	58100	54033	79428	168042
Benzidine	0.107	10.7	9.95	14.6	30.9
Benzo(a)anthracene	0.025	2.50	2.33	3.41	7.23
Benzo(a)pyrene	0.0025	0.250	0.233	0.341	0.723
Bis(chloromethyl)ether	0.2745	27.5	25.5	37.5	79.3
Bis(2-chloroethyl)ether	42.83	4283	3983	5855	12387
Bis(2-ethylhexyl) phthalate [Di(2-ethylhexyl) phthala	7.55	755	702	1032	2183
Bromodichloromethane [Dichlorobromomethane]	275	27500	25575	37595	79538
Bromoform [Tribromomethane]	1060	106000	98580	144912	306583
Cadmium	N/A	N/A	N/A	N/A	N/A
Carbon Tetrachloride	46	4600	4278	6288	13304
Chlordane	0.0025	0.250	0.233	0.341	0.723
Chlorobenzene	2737	273700	254541	374175	791622
Chlorodibromomethane [Dibromochloromethane]	183	18300	17019	25017	52929
Chloroform [Trichloromethane]	7697	769700	715821	1052256	2226203
Chromium (hexavalent)	502	50200	46686	68628	145193
Chrysene	2.52	252	234	344	728
Cresols [Methylphenols]	9301	930100	864993	1271539	2690128
Cyanide (free)	N/A	N/A	N/A	N/A	N/A
4,4'-DDD	0.002	0.200	0.186	0.273	0.578
4,4'-DDE	0.00013	0.0130	0.0121	0.0177	0.0375
4,4'-DDT	0.0004	0.0400	0.0372	0.0546	0.115
2,4'-D	N/A	N/A	N/A	N/A	N/A
Danitol [Fenpropathrin]	473	47300	43989	64663	136805
1,2-Dibromoethane [Ethylene Dibromide]	4.24	424	394	579	1226
<i>m</i> -Dichlorobenzene [1,3-Dichlorobenzene]	595	59500	55335	81342	172091
o -Dichlorobenzene [1,2-Dichlorobenzene]	3299	329900	306807	451006	954169
p -Dichlorobenzene [1,4-Dichlorobenzene]	N/A	N/A	N/A	N/A	N/A
3,3'-Dichlorobenzidine	2.24	224	208	306	647
1,2-Dichloroethane	364	36400	33852	49762	105279
1,1-Dichloroethylene [1,1-Dichloroethene]	55114	5511400	5125602	7534634	15940622
Dichloromethane [Methylene Chloride]	13333	1333300	1239969	1822754	3856303
1,2-Dichloropropane	259	25900	24087	35407	74910
1,3-Dichloropropene [1,3-Dichloropropylene]	119	11900	11067	16268	34418
Dicofol [Kelthane]	0.30	30.0	27.9	41.0	86.7
Dieldrin	2.0E-05	0.00200	0.00186	0.00273	0.00578
2,4-Dimethylphenol	8436	843600	784548	1153285	2439944
Di-n -Butyl Phthalate	92.4	9240	8593	12632	26724
Dioxins/Furans [TCDD Equivalents]	7.97E-08	0.0000080	0.0000074	0.0000108	0.0000230
Endrin	0.02	2.00	1.86	2.73	5.78
Epichlorohydrin	2013	201300	187209	275197	582219
Ethylbenzene	1867	186700	173631	255237	539992
Ethylene Glycol	1.68E+07	1680000000	562400000	296728000	4859064000
Fluoride	N/A	N/A	N/A	N/A	N/A
Heptachlor	0.0001	0.0100	0.00930	0.0136	0.0289
Heptachlor Epoxide	0.00029	0.0290	0.0270	0.0396	0.0838
Hexachlorobenzene	0.00068	0.0680	0.0632	0.0929	0.196
Hexachlorobutadiene	0.22	22.0	20.5	30.0	63.6

	Fish Only				
	Criterion	WLAh	LTAh	Daily Avg.	Daily Max.
Parameter	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
Hexachlorocyclohexane (alpha)	0.0084	0.840	0.781	1.14	2.42
Hexachlorocyclohexane (beta)	0.26	26.0	24.2	35.5	75.1
Hexachlorocyclohexane (gamma) [Lindane]	0.341	34.1	31.7	46.6	98.6
Hexachlorocyclopentadiene	11.6	1160	1079	1585	3355
Hexachloroethane	2.33	233	217	318	673
Hexachlorophene	2.90	290	270	396	838
4,4'-Isopropylidenediphenol [Bisphenol A]	15982	1598200	1486326	2184899	4622473
Lead	3.83	958	891	1310	2771
Mercury	0.0250	2.50	2.33	3.41	7.23
Methoxychlor	3.0	300	279	410	867
Methyl Ethyl Ketone	9.92E+05	99200000	92256000	135616320	286916160
Methyl tert -butyl ether [MTBE]	10482	1048200	974826	1432994	3031708
Nickel	1140	114000	106020	155849	329722
Nitrate-Nitrogen (as Total Nitrogen)	N/A	N/A	N/A	N/A	N/A
Nitrobenzene	1873	187300	174189	256057	541727
N-Nitrosodiethylamine	2.1	210	195	287	607
N-Nitroso-di-n -Butylamine	4.2	420	391	574	1214
Pentachlorobenzene	0.355	35.5	33.0	48.5	102
Pentachlorophenol	0.29	29.0	27.0	39.6	83.8
Polychlorinated Biphenyls [PCBs]	6.4E-04	0.0640	0.0595	0.0874	0.185
Pyridine	947	94700	88071	129464	273900
Selenium	N/A	N/A	N/A	N/A	N/A
1,2,4,5-Tetrachlorobenzene	0.24	24.0	22.3	32.8	69.4
1,1,2,2-Tetrachloroethane	26.35	2635	2451	3602	7621
Tetrachloroethylene [Tetrachloroethylene]	280	28000	26040	38278	80984
Thallium	0.23	23.0	21.4	31.4	66.5
Toluene	N/A	N/A	N/A	N/A	N/A
Toxaphene	0.011	1.10	1.02	1.50	3.18
2,4,5-TP [Silvex]	369	36900	34317	50445	106725
1,1,1-Trichloroethane	784354	78435400	72944922	107229035	226858707
1,1,2-Trichloroethane	166	16600	15438	22693	48012
Trichloroethylene [Trichloroethene]	71.9	7190	6687	9829	20795
2,4,5-Trichlorophenol	1867	186700	173631	255237	539992
TTHM [Sum of Total Trihalomethanes]	N/A	N/A	N/A	N/A	N/A
Vinyl Chloride	16.5	1650	1535	2255	4772

	70% of	85% of
Aquatic Life	Daily Avg.	Daily Avg.
Parameter	(μg/L)	(μg/L)
Acrolein	N/A	N/A
Aldrin	1.42	1.73
Aluminum	N/A	N/A
Arsenic	163	198
Cadmium	43.9	53.3
Carbaryl	672	817
Chlordane	0.0987	0.119
Chlorpyrifos	0.0120	0.0146
Chromium (trivalent)	N/A	N/A
Chromium (hexavalent)	1196	1452
Copper	16.5	20.0
Copper (oyster waters)	N/A	N/A
Cyanide (free)	6.14	7.46
4,4'-DDT	0.0627	0.0762
Demeton	6.27	7.62
Diazinon	0.898	1.09
Dicofol [Kelthane]	N/A	N/A
Dieldrin	0.125	0.152
Diuron	N/A	N/A
Endosulfan I (alpha)	0.0373	0.0453
Endosulfan II (beta)	0.0373	0.0453
Endosulfan sulfate	0.0373	0.0453
Endrin	0.0406	0.0493
Guthion [Azinphos Methyl]	0.627	0.762
Heptachlor	0.0581	0.0706
Hexachlorocyclohexane (gamma) [Lindane]	0.175	0.213
Lead	365	443
Malathion	0.627	0.762
Mercury	2.30	2.79
Methoxychlor	1.88	2.28
Mirex	0.0627	0.0762
Nickel	129	157
Nonylphenol	7.68	9.32
Parathion (ethyl)	N/A	N/A
Pentachlorophenol	16.5	20.1
Phenanthrene	8.45	10.2
Polychlorinated Biphenyls [PCBs]	1.88	2.28
Selenium	619	751
Silver	4.72	5.74
Toxaphene	0.0125	0.0152
Tributyltin [TBT]	0.263	0.319
2,4,5 Trichlorophenol	284	345
Zinc	156	190

	70% of	85% of
Human Health	Daily Avg.	Daily Avg.
Parameter	(μg/L)	(μg/L)
Acrylonitrile	11005	13363
Aldrin	0.00109	0.00133
Anthracene	126032	153040
Antimony	102491	124453
Arsenic	N/A	N/A
Barium	N/A	N/A
Benzene	55599	67514
Benzidine	10.2	12.4
Benzo(a)anthracene	2.39	2.90
Benzo(a)pyrene	0.239	0.290
Bis(chloromethyl)ether	26.2	31.8
Bis(2-chloroethyl)ether	4098	4976
Bis(2-ethylhexyl) phthalate [Di(2-ethylhexyl) phthal	ā 722	877
Bromodichloromethane [Dichlorobromomethane]	26316	31955
Bromoform [Tribromomethane]	101438	123175
Cadmium	N/A	N/A
Carbon Tetrachloride	4402	5345
Chlordane	0.239	0.290
Chlorobenzene	261922	318048
Chlorodibromomethane [Dibromochloromethane]	17512	21265
Chloroform [Trichloromethane]	736579	894418
Chromium (hexavalent)	48039	58334
Chrysene	241	292
Cresols [Methylphenols]	890077	1080808
Cyanide (free)	N/A	N/A
4,4'-DDD	0.191	0.232
4,4'-DDE	0.0124	0.0151
4,4'-DDT	0.0382	0.0464
2,4'-D	N/A	N/A
Danitol [Fenpropathrin]	45264	54964
1,2-Dibromoethane [Ethylene Dibromide]	405	492
m -Dichlorobenzene [1,3-Dichlorobenzene]	56939	69141
o -Dichlorobenzene [1,2-Dichlorobenzene]	315704	383355
p -Dichlorobenzene [1,4-Dichlorobenzene]	N/A	N/A
3,3'-Dichlorobenzidine	214	260
1,2-Dichloroethane	34833	42298
1,1-Dichloroethylene [1,1-Dichloroethene]	5274244	6404439
Dichloromethane [Methylene Chloride]	1275928	1549341
1,2-Dichloropropane	24785	30096
1,3-Dichloropropene [1,3-Dichloropropylene]	11387	13828
Dicofol [Kelthane]	28.7	34.8
Dieldrin	0.00191	0.00232
2,4-Dimethylphenol	807299	980292
Di-n -Butyl Phthalate	8842	10737
Dioxins/Furans [TCDD Equivalents]	0.0000076	0.0000093
Endrin	1.91	2.32
Epichlorohydrin	192638	233917
Ethylbenzene	178666	
,		216951 1952218800
Ethylene Glycol		
Fluoride	N/A	N/A
Heptachlor Fnovide	0.00956	0.0116
Heptachlor Epoxide	0.0277	0.0336
Hexachlorobenzene	0.0650	0.0790
Hexachlorobutadiene	21.0	25.5

	70% of	85% of
Human Health	Daily Avg.	Daily Avg.
Parameter	(μg/L)	(μg/L)
Hexachlorocyclohexane (alpha)	0.803	0.976
Hexachlorocyclohexane (beta)	24.8	30.2
Hexachlorocyclohexane (gamma) [Lindane]	32.6	39.6
Hexachlorocyclopentadiene	1110	1347
Hexachloroethane	222	270
Hexachlorophene	277	336
4,4'-Isopropylidenediphenol [Bisphenol A]	1529429	1857164
Lead	917	1113
Mercury	2.39	2.90
Methoxychlor	287	348
Methyl Ethyl Ketone	94931424	115273872
Methyl tert -butyl ether [MTBE]	1003095	1218045
Nickel	109094	132471
Nitrate-Nitrogen (as Total Nitrogen)	N/A	N/A
Nitrobenzene	179240	217649
N-Nitrosodiethylamine	200	244
N-Nitroso-di-n -Butylamine	401	488
Pentachlorobenzene	33.9	41.2
Pentachlorophenol	27.7	33.6
Polychlorinated Biphenyls [PCBs]	0.0612	0.0743
Pyridine	90625	110044
Selenium	N/A	N/A
1,2,4,5-Tetrachlorobenzene	22.9	27.8
1,1,2,2-Tetrachloroethane	2521	3061
Tetrachloroethylene [Tetrachloroethylene]	26795	32536
Thallium	22.0	26.7
Toluene	N/A	N/A
Toxaphene	1.05	1.27
2,4,5-TP [Silvex]	35312	42879
1,1,1-Trichloroethane	75060324	91144680
1,1,2-Trichloroethane	15885	19289
Trichloroethylene [Trichloroethene]	6880	8355
2,4,5-Trichlorophenol	178666	216951
TTHM [Sum of Total Trihalomethanes]	N/A	N/A
Vinyl Chloride	1579	1917

TEXTOX MENU #5 - BAY OR WIDE TIDAL RIVER

The water quality-based effluent limitations developed below are calculated using:

Table 1, 2014 Texas Surface Water Quality Standards (30 TAC 307) for Saltwater Aquatic Life Table 2, 2018 Texas Surface Water Quality Standards for Human Health "Procedures to Implement the Texas Surface Water Quality Standards," TCEQ, June 2010

PERMIT INFORMATION

Permittee Name:	Conrad Orange Shipyard, Inc.
TPDES Permit No:	WQ0005010000
Outfall No:	011
Prepared by:	Thomas Starr
Date:	April 10, 2025

DISCHARGE INFORMATION

Receiving Waterbody:	Sabine River Tidal	
Segment No:	0501	
TSS (mg/L):	6	
Effluent Flow for Aquatic Life (MGD)	0.0043	
% Effluent for Chronic Aquatic Life (Mixing Zone):	8	
% Effluent for Acute Aquatic Life (ZID):	30	
Oyster Waters?	no	
Effluent Flow for Human Health (MGD):	0.0025	
% Effluent for Human Health:	4	

CALCULATE DISSOLVED FRACTION (AND ENTER WATER EFFECT RATIO IF APPLICABLE):

	Intercept		Partition Coefficient	Dissolved Fraction		Water Effect Ratio	
Estuarine Metal	(b) S	ilope (m)	(Kp)	(Cd/Ct)	Source	(WER)	Source
Aluminum	N/A	N/A	N/A	1.00	Assumed	1.00	Assumed
Arsenic	N/A	N/A	N/A	1.00	Assumed	1.00	Assumed
Cadmium	N/A	N/A	N/A	1.00	Assumed	1.00	Assumed
Chromium (total)	N/A	N/A	N/A	1.00	Assumed	1.00	Assumed
Chromium (trivalent)	N/A	N/A	N/A	1.00	Assumed	1.00	Assumed
Chromium (hexavalent)	N/A	N/A	N/A	1.00	Assumed	1.00	Assumed
Copper	4.85	-0.72	19486.38	0.895		1.00	Assumed
Lead	6.06	-0.85	250363.74	0.400		1.00	Assumed
Mercury	N/A	N/A	N/A	1.00	Assumed	1.00	Assumed
Nickel	N/A	N/A	N/A	1.00	Assumed	1.00	Assumed
Selenium	N/A	N/A	N/A	1.00	Assumed	1.00	Assumed
Silver	5.86	-0.74	192383.61	0.464		1.00	Assumed
Zinc	5.36	-0.52	90232.16	0.649	_	1.00	Assumed

AQUATIC LIFE CALCULATE DAILY AVERAGE AND DAILY MAXIMUM EFFLUENT LIMITATIONS:

	SW Acute	SW Chronic						
	Criterion	Criterion	WLAa	WLAc	LTAa	LTAc	Daily Avg.	Daily Max.
Parameter	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
Acrolein	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Aldrin	1.3	N/A	4.33	N/A	1.39	N/A	2.03	4.31
Aluminum	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Arsenic	149	78	497	975	159	595	233	494
Cadmium	40.0	8.75	133	109	42.7	66.7	62.7	132
Carbaryl	613	N/A	2043	N/A	654	N/A	961	2033
Chlordane	0.09	0.004	0.300	0.0500	0.0960	0.0305	0.0448	0.0948
Chlorpyrifos	0.011	0.006	0.0367	0.0750	0.0117	0.0458	0.0172	0.0364
Chromium (trivalent)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Chromium (hexavalent)	1090	49.6	3633	620	1163	378	555	1176
Copper	13.5	3.6	50.3	50.3	16.1	30.7	23.6	50.0
Copper (oyster waters)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cyanide (free)	5.6	5.6	18.7	70.0	5.97	42.7	8.78	18.5
4,4'-DDT	0.13	0.001	0.433	0.0125	0.139	0.00763	0.0112	0.0237
Demeton	N/A	0.1	N/A	1.25	N/A	0.763	1.12	2.37
Diazinon	0.819	0.819	2.73	10.2	0.874	6.24	1.28	2.71
Dicofol [Kelthane]	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Dieldrin	0.71	0.002	2.37	0.0250	0.757	0.0153	0.0224	0.0474
Diuron	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Endosulfan I (alpha)	0.034	0.009	0.113	0.113	0.0363	0.0686	0.0533	0.112
Endosulfan II (beta)	0.034	0.009	0.113	0.113	0.0363	0.0686	0.0533	0.112
Endosulfan sulfate	0.034	0.009	0.113	0.113	0.0363	0.0686	0.0533	0.112
Endrin	0.037	0.002	0.123	0.0250	0.0395	0.0153	0.0224	0.0474
Guthion [Azinphos Methyl]	N/A	0.01	N/A	0.125	N/A	0.0763	0.112	0.237
Heptachlor	0.053	0.004	0.177	0.0500	0.0565	0.0305	0.0448	0.0948
Hexachlorocyclohexane (gamma) [Lindane]	0.16	N/A	0.533	N/A	0.171	N/A	0.250	0.530
Lead	133	5.3	1109	166	355	101	148	314
Malathion	N/A	0.01	N/A	0.125	N/A	0.0763	0.112	0.237
Mercury	2.1	1.1	7.00	13.8	2.24	8.39	3.29	6.96
Methoxychlor	N/A	0.03	N/A	0.375	N/A	0.229	0.336	0.711
Mirex	N/A	0.001	N/A	0.0125	N/A	0.00763	0.0112	0.0237
Nickel	118	13.1	393	164	126	99.9	146	310
Nonylphenol	7	1.7	23.3	21.3	7.47	13.0	10.9	23.2
Parathion (ethyl)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Pentachlorophenol	15.1	9.6	50.3	120	16.1	73.2	23.6	50.0
Phenanthrene	7.7	4.6	25.7	57.5	8.21	35.1	12.0	25.5
Polychlorinated Biphenyls [PCBs]	10	0.03	33.3	0.375	10.7	0.229	0.336	0.711
Selenium	564	136	1880	1700	602	1037	884	1870
Silver	2	N/A	14.4	N/A	4.60	N/A	6.75	14.2
Toxaphene	0.21	0.0002	0.700	0.00250	0.224	0.00153	0.00224	0.00474
Tributyltin [TBT]	0.21	0.0002	0.800	0.00230	0.224	0.00133	0.00224	0.00474
2,4,5 Trichlorophenol	259	12	863	150	276	91.5	134	284
•	92.7	84.2	476	1622	152	91.5	224	474
Zinc	92.7	84.2	4/6	1022	152	990	224	4/4

HUMAN HEALTH CALCULATE DAILY AVERAGE AND DAILY MAXIMUM EFFLUENT LIMITATIONS:

	Fish Only				
	Criterion	WLAh	LTAh	Daily Avg.	Daily Max.
Parameter	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
Acrylonitrile	115	2875	2674	3930	8315
Aldrin	1.147E-05	0.000287	0.000267	0.000392	0.000829
Anthracene	1317	32925	30620	45011	95228
Antimony	1071	26775	24901	36604	77441
Arsenic	N/A	N/A	N/A		
Barium	N/A	N/A	N/A		· · · · · · · · · · · · · · · · · · ·
Benzene	581	14525	13508	19857	42010
Benzidine	0.107	2.68	2.49	3.65	7.73
Benzo(a)anthracene	0.025	0.625	0.581	0.854	1.80
Benzo(a)pyrene	0.0025	0.0625	0.0581	0.0854	0.180
Bis(chloromethyl)ether	0.2745	6.86	6.38	9.38	19.8
Bis(2-chloroethyl)ether	42.83	1071	996	1463	3096
Bis(2-ethylhexyl) phthalate [Di(2-ethylhexyl) phthala	7.55	189	176	258	545
Bromodichloromethane [Dichlorobromomethane]	275	6875	6394	9398	19884
Bromoform [Tribromomethane]	1060	26500	24645	36228	76645
Cadmium	N/A	N/A	N/A		
Carbon Tetrachloride	46	1150	1070	1572	3326
Chlordane	0.0025	0.0625	0.0581	0.0854	0.180
Chlorobenzene	2737	68425	63635	93543	197905
Chlorodibromomethane [Dibromochloromethane]	183	4575	4255	6254	13232
Chloroform [Trichloromethane]	7697	192425	178955	263064	556550
Chromium (hexavalent)	502	12550	11672	17157	36298
Chrysene	2.52	63.0	58.6	86.1	182
Cresols [Methylphenols]	9301	232525	216248	317884	672532
Cyanide (free)	N/A	N/A	N/A		
4,4'-DDD	0.002	0.0500	0.0465	0.0683	0.144
4,4'-DDE	0.00013	0.00325	0.00302	0.00444	0.00939
4,4'-DDT	0.00013	0.0100	0.00930	0.0136	0.0289
2,4'-D	N/A	N/A	N/A		N/A
Danitol [Fenpropathrin]	473	11825	10997	16165	34201
1,2-Dibromoethane [Ethylene Dibromide]	4.24	106	98.6	144	306
m -Dichlorobenzene [1,3-Dichlorobenzene]	595	14875	13834	20335	43022
o -Dichlorobenzene [1,2-Dichlorobenzene]	3299	82475	76702	112751	238542
p -Dichlorobenzene [1,4-Dichlorobenzene]	N/A	N/A	N/A		
3,3'-Dichlorobenzidine	2.24	56.0	52.1	76.5	161
1,2-Dichloroethane	364	9100	8463	12440	26319
1,1-Dichloroethylene [1,1-Dichloroethene]	55114	1377850	1281401	1883658	3985155
Dichloromethane [Methylene Chloride]	13333	333325	309992	455688	964075
1,2-Dichloropropane	259	6475	6022	8851	18727
1,3-Dichloropropene [1,3-Dichloropropylene]	119	2975	2767	4067	8604
Dicofol [Kelthane]	0.30	7.50	6.98		21.6
Dieldrin	2.0E-05	0.000500	0.000465	0.000683	0.00144
2,4-Dimethylphenol	8436	210900	196137	288321	609986
Di-n -Butyl Phthalate	92.4	2310	2148	3158	6681
Dioxins/Furans [TCDD Equivalents]	7.97E-08	0.0000020	0.0000019		0.0000058
Endrin	0.02	0.500	0.465	0.683	1.44
Epichlorohydrin	2013	50325	46802	68799	145554
Ethylbenzene	1867	46675	43408	63809	134998
Ethylene Glycol	1.68E+07	420000000			1214766000
Fluoride	1.68E+07 N/A	420000000 N/A	N/A		
Heptachlor	0.0001	0.00250	0.00233	0.00341	0.00723
•					
Heptachlor Epoxide Heyachlorobonzono	0.00029	0.00725	0.00674		0.0209
Hexachlorobenzene	0.00068	0.0170	0.0158	0.0232	0.0491
Hexachlorobutadiene	0.22	5.50	5.12	7.51	15.9

	Fish Only				
	Criterion	WLAh	LTAh	Daily Avg.	Daily Max.
Parameter	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
Hexachlorocyclohexane (alpha)	0.0084	0.210	0.195	0.287	0.607
Hexachlorocyclohexane (beta)	0.26	6.50	6.05	8.88	18.7
Hexachlorocyclohexane (gamma) [Lindane]	0.341	8.53	7.93	11.6	24.6
Hexachlorocyclopentadiene	11.6	290	270	396	838
Hexachloroethane	2.33	58.3	54.2	79.6	168
Hexachlorophene	2.90	72.5	67.4	99.1	209
4,4'-Isopropylidenediphenol [Bisphenol A]	15982	399550	371582	546224	1155618
Lead	3.83	240	223	327	692
Mercury	0.0250	0.625	0.581	0.854	1.80
Methoxychlor	3.0	75.0	69.8	102	216
Methyl Ethyl Ketone	9.92E+05	24800000	23064000	33904080	71729040
Methyl tert -butyl ether [MTBE]	10482	262050	243707	358248	757927
Nickel	1140	28500	26505	38962	82430
Nitrate-Nitrogen (as Total Nitrogen)	N/A	N/A	N/A	N/A	N/A
Nitrobenzene	1873	46825	43547	64014	135431
N-Nitrosodiethylamine	2.1	52.5	48.8	71.7	151
N-Nitroso-di- <i>n</i> -Butylamine	4.2	105	97.7	143	303
Pentachlorobenzene	0.355	8.88	8.25	12.1	25.6
Pentachlorophenol	0.29	7.25	6.74	9.91	20.9
Polychlorinated Biphenyls [PCBs]	6.4E-04	0.0160	0.0149	0.0218	0.0462
Pyridine	947	23675	22018	32366	68475
Selenium	N/A	N/A	N/A	N/A	N/A
1,2,4,5-Tetrachlorobenzene	0.24	6.00	5.58	8.20	17.3
1,1,2,2-Tetrachloroethane	26.35	659	613	900	1905
Tetrachloroethylene [Tetrachloroethylene]	280	7000	6510	9569	20246
Thallium	0.23	5.75	5.35	7.86	16.6
Toluene	N/A	N/A	N/A	N/A	N/A
Toxaphene	0.011	0.275	0.256	0.375	0.795
2,4,5-TP [Silvex]	369	9225	8579	12611	26681
1,1,1-Trichloroethane	784354	19608850	18236231	26807258	56714676
1,1,2-Trichloroethane	166	4150	3860	5673	12003
Trichloroethylene [Trichloroethene]	71.9	1798	1672	2457	5198
2,4,5-Trichlorophenol	1867	46675	43408	63809	134998
TTHM [Sum of Total Trihalomethanes]	N/A	N/A	N/A	N/A	N/A
Vinyl Chloride	16.5	413	384	563	1193

	70% of	85% of
Aquatic Life	Daily Avg.	Daily Avg.
Parameter	(μg/L)	(μg/L)
Acrolein	N/A	N/A
Aldrin	1.42	1.73
Aluminum	N/A	N/A
Arsenic	163	198
Cadmium	43.9	53.3
Carbaryl	672	817
Chlordane	0.0313	0.0381
Chlorpyrifos	0.0120	0.0146
Chromium (trivalent)	N/A	N/A
Chromium (hexavalent)	389	472
Copper	16.5	20.0
Copper (oyster waters)	N/A	N/A
Cyanide (free)	6.14	7.46
4,4'-DDT	0.00784	0.00952
Demeton	0.784	0.952
Diazinon	0.898	1.09
Dicofol [Kelthane]	N/A	N/A
Dieldrin	0.0156	0.0190
Diuron	N/A	N/A
Endosulfan I (alpha)	0.0373	0.0453
Endosulfan II (beta)	0.0373	0.0453
Endosulfan sulfate	0.0373	0.0453
Endrin	0.0156	0.0190
Guthion [Azinphos Methyl]	0.0784	0.0952
Heptachlor	0.0313	0.0381
Hexachlorocyclohexane (gamma) [Lindane]	0.175	0.213
Lead	104	126
Malathion	0.0784	0.0952
Mercury	2.30	2.79
Methoxychlor	0.235	0.285
Mirex	0.00784	0.00952
Nickel	102	124
Nonylphenol	7.68	9.32
Parathion (ethyl)	N/A	N/A
Pentachlorophenol	16.5	20.1
Phenanthrene	8.45	10.2
Polychlorinated Biphenyls [PCBs]	0.235	0.285
Selenium	619	751
Silver	4.72	5.74
Toxaphene	0.00156	0.00190
Tributyltin [TBT]	0.0580	0.0705
2,4,5 Trichlorophenol	94.1	114
Zinc	156	190

	70% of	85% of
Human Health	Daily Avg.	Daily Avg.
Parameter	(μg/L)	(μg/L)
Acrylonitrile	2751	3340
Aldrin	0.000274	0.000333
Anthracene	31508	38260
Antimony	25622	31113
Arsenic	N/A	N/A
Barium	N/A	N/A
Benzene	13899	16878
Benzidine	2.55	3.10
Benzo(a)anthracene	0.598	0.726
Benzo(a)pyrene	0.0598	0.0726
Bis(chloromethyl)ether	6.56	7.97
Bis (2-chloroethyl)ether	1024	1244
Bis (2-ethylhexyl) phthalate [Di(2-ethylhexyl) phthala	180	219
Bromodichloromethane [Dichlorobromomethane]	6579	7988
Bromoform [Tribromomethane]	25359	30793
Cadmium	N/A	N/A
Carbon Tetrachloride	1100	1336
Chlordane	0.0598	0.0726
Chlorobenzene	65480	79512
Chlorodibromomethane [Dibromochloromethane]	4378	5316
Chloroform [Trichloromethane]	184144	223604
Chromium (hexavalent)	12009	14583
Chrysene	60.2	73.2
Cresols [Methylphenols]	222519	270202
Cyanide (free)	N/A	N/A
4,4'-DDD	0.0478	0.0581
4,4'-DDE	0.00311	0.00377
4,4'-DDT	0.00956	0.0116
2,4'-D	N/A	N/A
Danitol [Fenpropathrin]	11316	13741
1,2-Dibromoethane [Ethylene Dibromide]	101	123
m -Dichlorobenzene [1,3-Dichlorobenzene]	14234	17285
o -Dichlorobenzene [1,2-Dichlorobenzene]	78926	95838
p -Dichlorobenzene [1,4-Dichlorobenzene]	N/A	N/A
3,3'-Dichlorobenzidine	53.5	65.0
1,2-Dichloroethane	8708	10574
1,1-Dichloroethylene [1,1-Dichloroethene]	1318561	1601109
Dichloromethane [Methylene Chloride]	318982	387335
1,2-Dichloropropane	6196	7524
1,3-Dichloropropene [1,3-Dichloropropylene]	2846	3457
Dicofol [Kelthane]	7.17	8.71
Dieldrin	0.000478	0.000581
2,4-Dimethylphenol	201824	245073
Di-n -Butyl Phthalate	2210	2684
Dioxins/Furans [TCDD Equivalents]	0.0000019	0.0000023
Endrin	0.478	0.581
Epichlorohydrin	48159	58479
Ethylbenzene	44666	54237
Ethylene Glycol	401927400	488054700
Fluoride	N/A	N/A
Heptachlor	0.00239	0.00290
Heptachlor Epoxide	0.00693	0.00230
Hexachlorobenzene	0.0162	0.0197
Hexachlorobutadiene	5.26	6.39
	3.20	0.33

	70% of	85% of
Human Health	Daily Avg.	Daily Avg.
Parameter	(μg/L)	(μg/L)
Hexachlorocyclohexane (alpha)	0.200	0.244
Hexachlorocyclohexane (beta)	6.22	7.55
Hexachlorocyclohexane (gamma) [Lindane]	8.15	9.90
Hexachlorocyclopentadiene	277	336
Hexachloroethane	55.7	67.6
Hexachlorophene	69.3	84.2
4,4'-Isopropylidenediphenol [Bisphenol A]	382357	464291
Lead	229	278
Mercury	0.598	0.726
Methoxychlor	71.7	87.1
Methyl Ethyl Ketone	23732856	28818468
Methyl tert -butyl ether [MTBE]	250773	304511
Nickel	27273	33117
Nitrate-Nitrogen (as Total Nitrogen)	N/A	N/A
Nitrobenzene	44810	54412
N-Nitrosodiethylamine	50.2	61.0
N-Nitroso-di-n -Butylamine	100	122
Pentachlorobenzene	8.49	10.3
Pentachlorophenol	6.93	8.42
Polychlorinated Biphenyls [PCBs]	0.0153	0.0185
Pyridine	22656	27511
Selenium	N/A	N/A
1,2,4,5-Tetrachlorobenzene	5.74	6.97
1,1,2,2-Tetrachloroethane	630	765
Tetrachloroethylene [Tetrachloroethylene]	6698	8134
Thallium	5.50	6.68
Toluene	N/A	N/A
Toxaphene	0.263	0.319
2,4,5-TP [Silvex]	8828	10719
1,1,1-Trichloroethane	18765081	22786170
1,1,2-Trichloroethane	3971	4822
Trichloroethylene [Trichloroethene]	1720	2088
2,4,5-Trichlorophenol	44666	54237
TTHM [Sum of Total Trihalomethanes]	N/A	N/A
Vinyl Chloride	394	479

Appendix C pH Screening

Calculation of pH of a mixture in seawater.

Based on the CO2SYS program (Lewis and Wallace, 1998)

Conrad Orange Shipyard, Inc. 05010-000

	http://cdiac.esd.ornl.gov/oceans/co2rprt.html			Outfall 011		
Ī	INPUT			Notes on Data Sources		
	1. MIXING ZONE BOUNDARY CHARACTERISTICS					
	Dilution factor at mixing zone boundary	12.500	12.500	Calculated from values from December 12, 2018 critical conditions perosn: Effluent % at edge of mixing zone = 8%		
	Depth at plume trapping level (m)	2.000	2.000	Default value. Various depths tested.		
	2. BACKGROUND RECEIVING WATER CHARACTERISTICS					
	Temperature (deg C):	20.00	25.00	Range of temperatures tested (5 to 35 degrees C)		
	pH:	6.70	6.70	Ambient pH for Segment 0501 from 2010 IPs.		
	Salinity (psu):	10.00	20.00	Range of salinities tested (2 to 30 psu)		
	Total alkalinity (meq/L)	1.00	10.00	Ambient hardness for Segment 0501 from 2010 IPs.		
	3. EFFLUENT CHARACTERISTICS					
	Temperature (deg C):	20.00	30.00	Range of temperatures tested (5 to 35 degrees C)		
	pH:	6.00	9.00	Proposed permit limit. Sequentially modified until predicted pH met segment criteria (6.5 to 9.0).		
	Salinity (psu)	1.00	5.00	Minimum salinity assumed because discharge is freshwater. However, values up to 5 ppt tested.		
	Total alkalinity (meq/L):	0.40	4.00	For high pH scenario, calcuated and tested a range of values. For low pH scenarios, used default of 20 mg/L CaCO3 = 0.40 meq/L $$		
	OUTPUT			I		
	CONDITIONS AT THE MIXING ZONE BOUNDARY					
	Temperature (deg C):	20.00	25.40			
	Salinity (psu)	9.28	18.80			
	Density (kg/m^3)	1005.26	1011.05			
	Alkalinity (mmol/kg-SW):	0.95	9.42			
	Total Inorganic Carbon (mmol/kg-SW):	1.19	10.82			
	pH at Mixing Zone Boundary:	6.65	6.74	Segment 0501 Criteria: 6.0-8.5		

To convert from units of mgCaCO3/L to meq/L divide by 50.044 mg/meq PSU refers to the Practical Salinity Scale (PSS) and is approximately equivalent to parts per thousand (ppt)

Appendix D Comparison of Effluent Limits

The following table is a summary of technology-based effluent limitations calculated/assessed in the draft permit (Technology-Based), calculated/assessed water quality-based effluent limitations (Water Quality-Based), and effluent limitations in the existing permit (Existing Permit). Effluent limitations appearing in bold are the most stringent of the three and are included in the draft permit.

		Technolo	Technology-Based		ality-Based	Existing Permit	
Outfall	Pollutant	Daily Avg	Daily Max	Daily Avg	Daily Max	Daily Avg	Daily Max
		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
002	Flow	-	1	-	-	Report, MGD	Report, MGD
	Total Suspended Solids (TSS)	N/A	75	-	-	N/A	75
	Oil and Grease	N/A	15	-	-	N/A	15
	pH (SU)	6.0, Min	9.0	-	-	6.o, Min	9.0
009	Flow	-	•	-	-	Report, MGD	Report, MGD
	Total Organic Carbon (TOC)	N/A	75	-	-	N/A	75
	TSS	N/A	100	-	-	N/A	100
	Oil and Grease	N/A	15	-	-	N/A	15
	рН	6.0, Min	9.0	-	-	6.o, Min	9.0
010	Flow	-	-	-	-	Report, MGD	Report, MGD
	TOC	N/A	75	-	-	N/A	75
	TSS	N/A	100	-	-	N/A	100
	Oil and Grease	N/A	15	-	-	N/A	15
	рН	6.0, Min	9.0	-	-	6.0, Min	9.0
011	Flow	-	-	-	-	Report, MGD	Report, MGD
	TSS	N/A	62	-	-	N/A	62
	Oil and Grease	N/A	46	-	-	N/A	46
	Total Zinc	-	-	0.224	0.474	0.224	0.474
	pН	6.o, Min	9.0	-	-	6.0, Min	9.0